From db454c9b571f84569e28d168a580f52909978505 Mon Sep 17 00:00:00 2001 From: ivy-seed Date: Fri, 12 Jan 2024 16:29:20 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20main=20from=20@=20unifyai/ivy@?= =?UTF-8?q?c3533828d507dab4b71db2a2ea27269d64293600=20=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../ivy/ivy.functional.ivy.meta.doctree | Bin 95382 -> 95382 bytes ...vy.functional.ivy.meta.fomaml_step.doctree | Bin 34830 -> 34830 bytes .../ivy.functional.ivy.meta.maml_step.doctree | Bin 37244 -> 37244 bytes ...y.functional.ivy.meta.reptile_step.doctree | Bin 26943 -> 26943 bytes ...ivy_tests.test_ivy.helpers.globals.doctree | Bin 33732 -> 33732 bytes .../docs/stateful/ivy.stateful.layers.doctree | Bin 316882 -> 316882 bytes ivy/.doctrees/environment.pickle | Bin 5562841 -> 5562841 bytes ivy/.doctrees/index.doctree | Bin 708545 -> 708545 bytes .../contributing/volunteer_workflow.doctree | Bin 9684 -> 9524 bytes .../contributing/volunteer_workflow.rst.txt | 2 +- .../ivy/ivy.functional.ivy.meta.html | 6 ++-- .../ivy.functional.ivy.meta.fomaml_step.html | 2 +- .../ivy.functional.ivy.meta.maml_step.html | 2 +- .../ivy.functional.ivy.meta.reptile_step.html | 2 +- .../ivy_tests.test_ivy.helpers.globals.html | 2 +- ivy/docs/stateful/ivy.stateful.layers.html | 34 +++++++++--------- .../contributing/volunteer_workflow.html | 2 +- ivy/searchindex.js | 2 +- 18 files changed, 27 insertions(+), 27 deletions(-) diff --git a/ivy/.doctrees/docs/functional/ivy/ivy.functional.ivy.meta.doctree b/ivy/.doctrees/docs/functional/ivy/ivy.functional.ivy.meta.doctree index 76d8115428cc90303b8aa229b447471f11257d3c..43a6c0aa1ade764b9989a4802b60e35a0e120dc1 100644 GIT binary patch delta 138 zcmbRCl6Bfk)(zK8*o~9Z(hO3}CvDobdAg|x6O2Fou0Ep$jI;TpIY$+YvuV>g9I8aN f2A9KBP1g9I8aN f2A9KBP15MElez6?9JsStg!&7TM#P% delta 47 qcmeyfi0RKFrVa6i>?!7^=BdePo6`(WGr>5MElez6?9JsStg!&7IS@kt diff --git a/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.doctree b/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.doctree index 6b650f50271d0c98fb3dbfbefb22ee30e9ee5ec5..1e01aeb0e6c7f7850005d1e19876ef75a7d2284e 100644 GIT binary patch delta 47 qcmdmgiE;lW#tmVr?8eDyX$C3gn`2c|nPHsCCp9c!?9CjS<_-Xvk`JH& delta 47 qcmdmgiE;lW#tmVr>?!7^=BdePn`2c|nPHsCCp9c!?9CjS<_-Xva1Xcu diff --git a/ivy/.doctrees/docs/helpers/ivy_tests.test_ivy.helpers.globals.doctree b/ivy/.doctrees/docs/helpers/ivy_tests.test_ivy.helpers.globals.doctree index e29b1574afa6b0e70684b5a76c01f324200aa723..0446641c6d32538b88d6a98cd536d3dae7f10d2a 100644 GIT binary patch delta 39 lcmX@o&UB=mX+s|er*U$ck(psiipA#X9Eyxc+=HCVRR9SG42u8& delta 39 lcmX@o&UB=mX+s|eXNtK=l8KRJisk0%9Eyxc+=HCVRR9D@3_Ab- diff --git a/ivy/.doctrees/docs/stateful/ivy.stateful.layers.doctree b/ivy/.doctrees/docs/stateful/ivy.stateful.layers.doctree index 60700a590f2288a8bda74af8aa8490e84d4d4206..186de49c692954e7523c86d82492308e129592ce 100644 GIT binary patch delta 848 zcmY+CyGz4R6vnwXg9?I_f;cJq518~OHwmciph8!ng5c7JDN>yr97MrE1QnMe*QG{_ zFWSXY@OCY95bU7cis<01D7rZrn%qam^PQaYyXX7TsYW~1=v|{bfU?d?E~Z&#z1dv^ zq9mFNXGK|Ge<_KsMj~Het9bm{>I>${?gW_OpKJB=w?v$kW~SKe9*~Vu&=yi?znP&Y zV?Y2*qX!`OJrg=Z z&(OlB1knxZg%RiB=wY9{_SrXxai5UyQ&xpM3>5YWIdo5hA`BGxbd4Yn!_(v|kWCvp zjI6RNu-Xe_`Ak5t8oC0jbjOt-hUr`7UI>V%$q>WbuazOGm6gZ-;IBjExdac%(52EA zlIp@a_7H@qcBL#NS=aUlhQGvsP2>R^QR`bN0hVtu^14lyev}s5V39%@PP6@1juw8E G{QEyiyC3-g delta 850 zcmY+Cze~eF6vw$_P(jdA5GTd{1;*rZJrLW$rK_MIIHhTdR40cH{s0FNR9u2wm$q8` zMY~uEUN>tU-+TAIpZ9(5I<;u07JX=XV>W`w(je9wEpH8o zkZ5IPS%i)4_ad*xZ4&8$UH81(4qmX-Rz+D9VdL^6nHU+WyHDO3*_i=vypAOOIHDJ` zpa}T;NOzw+&H*8>$?_U~iGjaFAcris<(-h#v>+f$A|Q+AZAKU!PK3y05A2bG1KI(U z9LB&BSA?{h1=E~hIzHh}5KKoRm=4X~GeV$X;=z(gp(<>!TzE?+rqvo4PXcUV5w!vvh*ZblHYquR;2ax$yT(Y^(5Jr^ptbXS+eBt|8=VB*6pr4_jdO* zpKOvlU3E`YojP^SsgvqcF8z|LF1YXl{@>ubZo3vW&lSVwPSj~N8)36I92|N_KdM*G zI6r;y@aU%w&kv6bE)Lr5;nRbIl~%de3ByX%84hmHF#5fyUM#hPUacN&37?IJipB#{B(;N2I|n;qul_ z*y%)-u!|K94u6ReMMup+ru_>y4-^U%?_!Yia*9~mnuOo z7>1Z`zuoSH-EQe@&}l}^P42iJ<8-Rye3sbmM|8Q9+tcO7tXur4;?hFT4_rgZI9`wSlB2Kl<2TS(H;ozE5t=Fi# zzw{SKstZD>3nbG8Ok4e@xP!B@0197d?_%8MN^xm%p&RwWW9^{4%^gAm*H_Ye(W`|3 zCI9VfDYqK!Ruc!W3yd6;neY?Pg{M1Ept^K>K`$!D3%aZ%zYGU2%ry5g0$Q+uA4mtx z-Ca=U7Tpy`(d1@64hL7OX_v9r)u;|K=3%=Ue=Z2E74c7=#{=z7)apdN-QiP(i@TpS z96Vp^_1fJB78a^4ps2XnYHeb7+ff%Mv9W-!9;yb7sJ?sZ@n$dVJg~I5c>gl~vx5J0 z!p(j?=-huC|6ap?PT)W5_|M73MGRGYLPiJ&SE;FO#WNdRwbfnN4%$I6h>BaBm+2e~ zu8Vi5)N1n-v;D~6s%EgW5p+sr>?95Z==f^?;U}5d}>hel?xg0K4*Osc4 zV0CG2~)WA)>|8a8c`iBMKYP=uANvt zUS8Z-T@O}IRI00sC)X>XJMOWwH6TGozl5k%he@bQCKg1){@{S!4YjX&k4j+i<(lCs z2e!Ike*F%(_q}H72E>9o4f?Y#nFeSGoVefDl%{t?(fdXB-A7uvMos~DR|rC_HS)a$##(JP#`Y#GGVZn53me5ezgJ=N>jAd00~Wt`r*1neM?pRA^wGiH7E-?(mV!#7g`p_eaHJp#14s@qD|bXs zzh(=<1)c8M3s@(thMllkRy}d5Mb4K94pZ;o^Xn2nLP7_P;YUY)?NHjIZ;V_BPzX$b z?J7-x^SIFhV((H=k01`a(A(m#f?lsv3YwU?BBm||inm0If32lx#ps<{m)qLf@;1styzD5yVDMBt_PwGJ4q0C?A1ksx%u%X zWF$7A@KgxNT}eW?C8bq=e22_CrIRf4O?&pyfbNP{uqUv?nf)}tL+@!rA?>wBFmmna z&(b{{+-mhj=x03euk=A6)hMiha&8OiXM^1?kD1~$)Dwe-C9GTGZ*32u$d3-LkK0Jo z=I86;pDSTC=+~*IUJBXW2&l?NIA9P7T9o2!f>TkXe$0i3vk2}>vHJAjrdYQvf$kga z9u&88Pz^76@WBTQ&@`R)@SI{FpwlAQeb{Va=$nngTk3?b^rKD)xz9VxaBu;1Zb!2% z*Kj<-I{1ED3CP>Y$dzJOu2V{NivdYl{+m4fx|1s_E9;A^>nB!@udJU~UOm1F348b0 zXJFPs!r;*QU-J3-@(F&wyuQA+y1ab+e|W)e&!oa;hB`<4tD}`Twh;ZSzB2;j_+>u z3eiQ!FRtU`wUv{c=AEA5!gDx# zkrK&u{pm7xad{PAEw5rrmQJqW(>uJMI`_`n&j*7ydOB@};B=6s?yQcVJb41@7L-|n z_91Vx6I3E~p>V!CxxBQtvT_1+wMabpkXH|Op^v(Qom@L{a{c7e8Z>HR{4UQFd9a{e z2KCKwqZ2qE0|(0|SC?@pmX?;&Mr`pQB|ci^DOz1WzP3tI^dY?wG@~{Y`w=Q$U0h#Y zT?bXIojksTPjB{2wh`jq86#zNX%U@IF0QVw9Vb$JpESd6FY(C=t`dtYnB_9@e~V|7 zCfHSCQNaA-35;@LO?~6TeJ5yET8+d&!29v_^`+y-*El!dMt6bvGOqrc?svsf}St9z>UfEBmheCmjULE;pX=VAuA~@l3+ozvop^_BId)e|cxPGU}dxe{nwQAyZVPc7o| zs96cm6+1XZkPxwL2uBe*Sc!UQ1XGpb0_SmuC@FoU88pIDX*jsMbhZ<;ts$xS_Ie9< zi|&KPW_Z^AI_w660lSq;iTSdGqEO$G|?6}zo|ufGvmk$$KWHd@^Ur~&0|Y*z@g2vOJ`nBo(MqY;3Cf}QsQOB?b|yOZ%IVd!drWba zA2qv>_x8iJ_doLDd)~RUQ+W~}-kUbXTYSLTMA(jz`gE@bHUE)yI!pBJo6sl zWFhUlwNkBhw$#HVAL<`&-Yun-Lgl)m+7B!J$Im>qz4786-=A&F4h27v-+W6}u-{Tb<~|xEfxDFg%pMH2 zWWGH6K3IC6d`IP#XMwMKl3%JlQRvlQR_$kt@7}Dw^M%vLp9~+jlwhusxN}v29FiRj zpUtqR{=h8X_gq+e;guIl8;!-`;4RX_^HER_&pBV6e(~K;zqtF(jc1<3&YVpBN=z-? zaMM~3o?E@Ufe>HmL`K8C#w_fZ6Qu_FUAZ)U-c3<(-d*1!Ne)O*PiC17uxi5A6 zMgyl2n2vCY%%_|0T{^RSEL_}eZNlhs$g1Vxxv&g=fJ;I%1b>EY#5O_ShZSk~fgis3 zf(s57i-p&5$7vR#X5o<*OzE!|V4-;6fdZ`}2M-qTe{T;8HE@AbhmB>V%zi~6UI|WZ zOjL#vF^m{HiKg+`M)KNg1(<#5kyz$s;fVf&Z0i03m_m5!Y1nX&zK*+i9Vhk3VL`>= z`wNHhpQWRP^XCs2z+pDS-l@Z-je5}BKK!7Xqnam7Fa@|b@=R0=WD9B~ur5|Ml|f4b zd;3E0;6a6%$CSq)2TDA~BANUDe~VYEYJ$c07Sul%Xy00pi9W=CpOSyyqx>g{rN8!; zLR3{-g>LW%6&;rUlCxa+EqAKpqVc~34>D5jhKEAeixKImeTRn9c;{5Q)AR8_C zY8np|meeSgE)pbh_Uu`+8bz@*y;T-8VP>rsU1Jn9@b=dB2loBqG+T-V8I;%a!|Ar$1woni) zZI76YLcwKPr-8lvIdK{m-h#Qm0o|}SaF)FjM6Q0iv`3#CY#s08|Eix3QZ+e-gIor8 zKKLY6@#ZF5`hz!GrW%_;Ty#Ng>xG-j5i?ln)`I2ZYsXH9%P+jTuo^y7dAz^&!QICf zj(_m6?u*Thw>B2vU4KvGiD$NYYajUF$#=hd`}8SDlyV2RJDd}oA~^AaW~;f|X!SYx z4a#tht8)XoG&~w5F<@W#W-M$csQ0mbpo7{TKY+2`H@C67AnzwMj#vz5q`zkaurLxHVmxi*-bRRB#aJ$n;``D&(uWF0c z@MCsT2OB{bS080hA6%+*^mx<*oRw$Kbq(a7SA&>RZa_=1U^5yq@eHnwyTyFNfUmu+_I3;K8slm&Z6NFdCnz54s_igr z$IgE{z1mW3*}xjy1f(hg#c^-IKcjDUkO+2&gScLnLR@vA9mZ!?{faY?{PjA8I&gQ~ zIeVpQJwVh!yo(ScP?q5~)fgXK)ZUF3ePt6dFF=`caSxwi~=h5UAU`!;h(cSL?sE;K91o&o?B0#vX4%Eb7KLh@@~f^m;8jATRJQ z+$!1-nonG4u(%cSAXnYfd`BZV7d6nAaUlUkJ$--pudum^Z{rCoAzcDg`uf0#oKdf( z&@6?ofB=ouiod%;HR_qhC_dP$cT3>PjNXWUy@J1%LA)KsH#}IGgD%<%V6Ql!Vj9HQ1HA+r z3O|ElZ(+=`?hyJfAJCtA)!`L&&)ii?{`0n=xPNW6_Hjig>SrUS9((wJ z3eCD;a0!1`O#Pthp&|o@TUTF%jpTpv+w0;MCmO*v>kpL+xwdM5zCwK^OkoJQYM{vk z4IYMDA0@e%M$uj{rFzt5sDksIR%~Knyk@_;Mhyk685Sh?m~frDtl!*jGEBktk?C~7 zwILI?3hw$2sLyd(*S{MLKo+KAv4%$tjU$+g3YNOtJHP6QgS<`TiTyxk*KUy!=%^Ia zwpHTdKjLCQkZnZI=m!JA9(cJvdlwr}16d$j`fZ2g?FU`xFg}G2rVg4JrSQ3y-H_S-A$Z+$eEWqoVC{H4MZ-E0#gEbG2Oqv-Vi+UH0G4)ZT0V{f^or z=HCOEE7*M}7@h0jMi~IARjJ>G4=aS$pwvh$Tx+k?Iu?+0hSs104&eHf_&#WVMigJK zz=M@`pb3^1|l*g?m5rp}X(7_vqUS3k!w2?U13L)Q#KL{|9W2~ecvfM#ThP3{QsABzst7MA1cj%;!;0v| zjt{GNh{9|9?YuVVsSbr+s{j%O;@H*plWCtffD4a2_gujstk9|!nt+2DwoC{4Sk~Mv zy!PmOo_bC#{Cwekc19l&JK{%RT!nyiM))Lg5kUuNw%|1x3Jg927{N1v#&UsEcJnF%K)n!uz9oy|57$+O)TV9za8C z=w2=870v<=y5~Wx3@oN!SACiV_}({EZ$&{c_G8_OWMNJV!M?fas!0KoFPr!FI21Tw zg~n{L8admjtU-@pqOz4(%_HPG&EEZL`ZD`xR4fd8+>eFeC?Pfhds>CJ3?^#w8bXj> zPmy43?_*Ww43|ULEGkFR}H!S55a1=nIm76@|(N_6UauD^CApk_TVGvG8 z_KAP1qxd#4(*uQ%whCv%g1WaCu+;?)gT=+;piQ%`Zh=@m{H`<4o;hZ0blt-bsl6v; zppjGNBr%J-?()sp?ffp8w(9FH!Ol&Eu!MRAJgeYUye)yjG5knP2b75WIjw6PPJ!o1 zFdJbo!J{CUz;JM3g7GMpckhRf+*^37cQ^6#y+@A}?>l<$Q3V#f1UsskV+OngTjhq1 zlFHFB=(1{H9(+Lvk;o)jy!3Lsd$RI(w))r!O=EH6W~=9HfFi&|V~lX8O-3a09&7c4 z7M(Fk5=Y`L<`8j@aSV!G>Mlp_{ZRAXqb{ZujR6Xw7S$g|1o?tVB9EIS-Clpa;7(lr z)KhhV@~hwp{0NDhCQ|R||TGAfX(vN^qa5I(-mK&B7Mab%^7FSlbby%jt9#M1x{` ztcqQvwj9}^5XFCCs!Gbcv!#5}M+>LN#mW|Js&dZcL_>q(Mu34ot3)vbD!sfIeUt2s zvmnC^c3M$IMQ9vjN)20;_=Rub=bj6q(~Ou<}P5M`mXc`+sFD;Gj!aPt(6 z9edzj%H-BU8x)floLkoI>N-S+k@6QQQy>CnwRw2!AzEdUQvjo>;bw#I9!?=P*{LB` zB|rvY?e;6!LsgQT+?oe(vrhR+6A2Q$c>gjh)*Wj!>c`5Q zBr|d>P~$-KVd`o#ptgP_U54Wz5c~^OjX`I0Extt8;>*L(_Osw1h~UzRO$gSDxoo_c zb~m@4;vM{H_ac6cap`C(0{wgu+G))@WSZziQr643?Ml?+kz{N$zB9 z5q+a=jm->l7oe5X8mMkI-QXF8HHC3Q@GrG+r@Qr?&p-KO;px*)ohiKi%u}ZyfAZne zk3RbBndhE+aA>D+WBj%DaP>l@E(~sX^7PY>J%9Q!eEQ^*57(n&tF!5Rb|r=g&*8Aa zL5Q2;fp!JPc>DsYBr>j%W~<_HTa-I$a2W&O*ik14n#8|1z&?vucBG320^*>65QC5W zbVzaAtxl(P7TIR<%@z6^G1C4wumkyB&rfW3 zu_s6xHMXTuMcEr{>#1XRm2c8c{Sf(;x(CGW5P@}D++s|yE^Ul;QXW&V!49*Ou^%yd zu8twm25u?f*7$ci#pxcBJiGYQYuzpo_n@CAE|j62Cd62V5G7{soff8&(kbx7rDGo< zGX=Ixh!bhKB_2t)#0VK&^x?YSGUg zzF+wrr1RxCO4=T2kDbcX9$fY~6497fi=A8#p19B+wyXF_Ov0K(-^gDZ!8UAnawh00 zSN0-%c&_i_oYX@x$H7y8WJTnv#CFnaanz$`wMF}sN=o6G)vQ2r$5-KtIEI+8!JY4c z!hv;$n4vXb^R@uRNm7chdJ4JAVI6W8JJgL?#dT&74`(=J+Qtu>Y4M+HJM$PVg9FBC ztIz6<21FAJM0k2sM~q(IobX#rs|uz7E!!M2O(q3qG7j%$_nkWSNr&J1k(j?< zrFvVaw!@K z^0i>EWBM}mhhz+}Z9Y_HDmskp+u<&bO-1ec;4(yvz+1^xs(-brSPl3V0zEIIKt*^Y zxEEEQsHuWS4>0P7CPZe!GakKMqDhCbzE}1T9T-%Q<_Lueg5E6U&N3)ApKJ8ya=R@? z^Ks|20e7wHlZJ&G*t!=U?qY|$^Et%MI70nRtg5vQcauJc*T)Tt7*&#~ZacCS>;!UL zau0MXEt_q}bxflgl!k82@ebc5De@{HxZkvSW-6Ub$4FS0|KM)jIqy;r>;776BkO@D z2!;S=%$STdyQeqeT!Y7i^)_^*CepFh_(Mb(U2a>Hul0KSr|AfF>*=l6z+R}8+z>Z| z3DU5yoXnSo&0}CEw%aXnH$9y3?+z|pio0DMcT*uy-f^}!X#TGtxCS&1?u!8EofyQS z7z8?!-+O`3tN^B;Y`;1FRst-H4EmT|$gOdg2BUWovlRyj7^FBjL*0nBoL2E3n=Z~Y zB|=JjmreUM@i^kl8yujZc^5V;Uh8dfCtg$-w*dA+*D{z+yle;gwwuIxK;<<9-W0=9 zYsYm>DJX+$7W&=J!UhtfYZ22>;!hlOS-A4ewe}m+5PwyO2Lh?8x)|VVD%%>t&@H%U zV{9WKVMk~*4iaGOjrviM=d~1*$u98j?(9M~YJsBem#T-~Wfr$nAuxATdt(_~^9s~8 z9+P+q_6l@Jx2gCh6=@WIccpGq${wS)Tc}(RU({}Jn|-&nYk7fD${=r1wCgcXRE27q zQ(Sws_L}+k;AZy6vP<%f4PwDpjp$s6hylZZZBG;36|1SX&us=8Ad1r_=53BVi!ksX~M*|csrjLk}K z8HXxPHy}mv$GGcFrmHT!g18mv`yFSkZ!|rkCaiMM6)kF9<=|G+3$h;|;H$K0zA>@c=;is-w@8rI{N z$_rMwv zYjA3RweGIs?WrP2go`!#)Lyq+T{~|-t$kAb>nF$m{FJ!Er^dg2TKvyXkN^1@@jpK^ z{_L~tuY((Gr32o{wWb);aP6~g*V;$p>3&Y_bIp;deJqCi4c1mw`@iGwzA^6bP4Pd! zx%Mp<#J`I>f2$p2aC3aJIk%Vx*xrLTrF6lLD2>(jWN3k5!dst;ySJU`)~DewYk}PQ z^u%AEk@)K~@mFl{+xo2JpP!xl^P~84>tp;cZSfI9641#I;S%lhPWx4=eY4saZMaD_AcBqsrYJ~t@vbk3S=;rh zixIZnUCe@klV-mLH>-AVRvI}GeQw0DGyEad1=>FD$^zY0gDrS z{)i?TTwG;K926)37#1m4LpP>T#;>v#2<{^KLJTMR&{>1@(HAZ%6-XL_$Vtc=!J$%@ z$WFvo;VeSh`7;l{(e0c#F~Ozj(5>UvK)wrA$_SLJ6&}>pT;)!?vPLzT+pHK3RU}h< z{029wK1v@fAx;U5sL9l>Cw|NhaGmPW?Qei9_MmRD_JcEsY$ci@Rdiqqu6`H3hW{{S z!h*R)f#G(tn1qDMtIc&LBPgvXv$Zk~fhbXb%@t;X5VwoOQ`>W|X~*qRL4t$w0vMdh zT%-$FH|bOxpzV1c$hss(3=CC@$Hk+_&KdKy5p;vevra66630f_*EU)da&}5vkJCu~ zZvK~9$PG3}1U4&{!jQ1lI8!1{BGE~ENOjq?CK?OpMhi#Kt`v<}4%t>?i_#|3xKan{ zpGF(pJkG(@Ft`M|r4!Q|!x#UU4u~9Fx>`IAbAaVqx7v{)@lbQEi!*2Y9$#H-$9=b+ zAR?Z0u@R>sjs=>>6Ns8j_>pNq=X&Wa-IpJTsq`j00Z4SGr{7H8S!e;NNwJRgLH!Z@!hoW#2NEp{TNgQF4~DA(IgC_dQOXoA(LIhghs zoiM0i*AWITVP@`$x}NHx$qQF{y$Y7Iw4pRs)6NSEX$&WVHCN1fw%)|W-RW+|n_RFa z-MmDlN2y>&TS`E0xGMYBkK#gaXK}j=PPBShj-|R)tUcb5=%v!hOu`4%bm#a&_Lu^R z3>ZUDP#Xnie(ilVgcv~&XS7f)K-5$X5s#_}Phk_Z*eoDh5#b~Su45-ccnE`q;P!p( zHE=*lEjfR_VE>IkpQ`#q!9vP(K^d*dL+>xZ+JOsPp&EvD1hR$74-0EoxkiUB;(_o# zox)3;C~RvlA9?LH{ZAzm&!0caNFBF2(d?D;QPh7~5M|%DAFJhX+ zjeGD0IDA+Z=jqzY;A%+>DOzjuWzT54v#CB>yP|!Zu!TPJ5#G#^C*#;8ewmOrWY)akJCvw~;5-fjjXLA7oo7$Oq6i7R&HL zl;PVcz?g_Qjg z{|U>vj@TaHlIWocXO~d2)GgHGgPxpUqC3K;=)&2lU@w{&dlQCqD6E5b`i7ls_R0zC z2b5!5C{k2CIBoGAyjil>&qi$|kE2)zgUaFWB2%_(EJKCAEc&Bxh!A1J4}xDlyRajfJr96YXoxx19yP|Kgjchfc% zm8=^MW}O(~Tv&NkCbr>S<^BnTN((IH4mHRqZNPUDsL%+%n9Re~>#%L^s4xL7{BJip z@j`_u!%$wrg}Bb$z}F0~2>exy&>OtNhYTsX=G$#)Da!w-3BW(Bw>s9V_@!(%&3HaI ziY(Yjeu&b^5Z4v{nMYn2;`PCG4|dUXG}A4&hl3Y=>vg}HkR1d&o252x<4| zGDJV)0jf(K!5r(JMER^Q>%B+8G+Qr=ip7e`YXm=BDJ}6rKobwrVXA!=^BxYCgcpui z4Lhl;h6VCH{NlWOWV6a6cT!w>(d;l|v1=e*+0i`J( z_COe^tebK>boiAI9Zqu*Hx4iW@14%+mIWmO6vQ=&vN$4eTpF5+nqgS+U}7PMRHk1X zPU;j9V5!2lI@_2a87&M&qNpxjrPwM;3bNY|O1i%O6)RgblG=mcSn3+6L@et z7i&g=i)OiU9+)VpIrLa+VDWePqxZaXRxM7Y#? z&$?ACd_Zht5hons;;6hU*Y9i@;*ReF?V=OL@mN3=Bh>HB7Wy_4Ox!o4A};~n>5G@y zP@@DEVXuOngUXRgp)4X^!+nnLW5ced&-W<$Og}1CLsM9E`#H)RI>F^Buka1BFLCCS zWNwVUg**vt&vFW8RO>i2&&ClU-J~#>La1OqI zQ_X7-K1kMthTB&I;p3`kQHpzHPho+|R!F{OUXh{;lM_*cZw4Ic4n-uRc0#yG>G6jq zc%`-ORfAWC1HYGmZ|Y@R+DwdZ!rV3sKwQNj6%1I-Ky(pu8iSBW$mlEeKdf*~lTJHo zBU}kyIz(oISEr~uIgVQ&^^lOH)u6=_c=B$rOAWp~cH51q`Mo}=GQlx0Ht>3g8&kIy zRiPtWprfz4rtWoX~uP*QfAHUrwA9c6}3)+$NcHU~~4}nDtXaF->K<*K( zYF>R}&$A$QGFN@dHpV+VJ`*!eUzA%yh!9RO{NqQwhb+VaM2$zrXCgwd4reG(IJ*tk znL~sgr|=^_a&W1A!J+nvP6mRHSk!JfsAmq5v;$<0lI$)qVo>Lh63n;- zaYe+ejo|QTD5Qyg{cJ(M5S2NO?#CM$l5iOn-ssC4lqpt*%+v15bm^R8ftg@4%Pl0b z`kf9rPNvGUQBK2aoRc8IB;MPwk%vC)nKtS`ed^T`Fy*}s=b2kmm7@dC0AM}`gNI`? zY01^ad~{UTBe}EuhA;KkHy{$EM3o*#=3#*RX@&Y`US-*qAek%>C0R zbU3(Et$p;?CfV~UQDeaT%kfB5cQ8Y}nWLJH#qEHphO+%|IAd4&nLWCV?t}to- z&`!)eJCW2!GWR3doxzs4mCo$QFvYz| zMxo`5_Y<6!3YEZei0O3r3ZmCGktqnvJneix0`;AlxMMwp{?O@|0eLAaZnn{$c*m$_ zOH`<&+2y*j5Q8HY+DUEcKl}f5zMJISO2XdS;YPrZR43gpoae+@E=Oiv;e$lThPNAA>DCZ;i5pyYqKi43nM0V4CUCh2L6`pUX!7AxZ|Lcs1~RG0YAq!Terb}`*_~NRETcDe7?fAKfvTI1uRBtHxom@Et0hy?(1Ba@sd|9I0 zhvSry6?v~l#zr!;dtZzs*~TuH3HmVOve%^bpwsG|ggbrS#;y%{7ovoW7kVSTR~qXn z^{v1*LczkO7){t~qshXC+YW+(>P*W?wg%{&Sl<*ANOt-bSp*L`$#t+SubVWfS^GdI zdlc(^dp>4QvvaYL;w?`OpJRej?Pjo}4sQ-6uD08TCkf@oy2gXXLDE#d@!mz{Wi;PT zZ&p+)AWHZQb0pdB!AKI6p!?w|4HTFI6Uh$Ga%jhg>jZSCZxMvtgiY0J|8zgf1gZ*= z42nM1>oEjbYgVlJp%R{s4_!E0;{(`yi7tn|WitPx3DRw{ZiNce%{HPt_{v0s)3->} z8VNnm=uPaC%6iN8)n?f`TqW7*TSS!uM7~Q_ol)O)hP%rOeAsc@i!`dj=?$iaYo^Z{ zw6K`^UVZjHxkLG;;?i?cqVd5R)E0%lCgL|;LQ#7# zNy8V(b5U*@uW7>K&1_VA{qFc?>u&sv8TY*&3j=lV03d=SB)?~R(Se64S-1dXcX!%x zSQbWzTN$lkdBaW>ZAwt3SD(y*VnnDQb^@BLNTBR2w&@94>)*Iap`snG#8jJ)T6(em za&>7&sVY>6R`v?0cd8n{-z$~abB_da+x1;%o^lp-7@5Wpi@SJPq*zc?lhNhg8&rVD*~SEHU^_s%@lFi&JH+gH9Nh1lhRkZVD@aOC2e?yq(J4^OQ35%6d6H12Hx` z#kcXCM!(IXk0?*-uV>=OLf_<^=3*7H5^qMxd48pjhs(eWS=V|N%dNXJBQ_=PZN`~U z)_mb^Mmz@`dc(n6?U_p$h)_XXDPy2eWgLQ~jp=6I7+FXC@eS-WtCT6GcB#PWyo}9> z;=e~wtlpJHZG#nElt4XmQ$kE?RnmD)*zAn-YwwaNYJQ$GN<#$;e^TCw@e>|ZS9qOO z!s`=p_t7N`^-w7Wq#SE9qB}l8;2_M@gZCRQ1a-wqV{0I4AC2H=W06tLcznJu(d^Ed zNV)I0JjypSx4nqU8(_HJdz0HQ6OQ=9ysCAk=_|>yjRi>@$m#UHrwS{sgOvD;90ak$ zB5^rxZCN--=RgS*MFPN1p`hwVJv3^r6aamuLJ^R-Z|s zMx8LU>GiWYC(}0@rx_JHs*Fg&!u$@&eDUTq8R1O?sSqJ*vbTEM#5SxQFg;4r94@+< zYCf1;U9WP#r@`HjkuFjuQEPW9xicD4L?<4Ky{O_D^D{uPJWiT+ghgKX<^*U&N5WNw}z=o1Jb#{yN-3UOh7RE~^`mj@P=+x3?a9 zArz++{%NG8Z_=i%h-{q3M!$-r)s(<0#ZI#mX^}yuO4WJqKRIE*BCnpEA|%x8tb!Av z>^T_wJmnjnQB?IJvuk2nI`JVig`#%0Kv56*wlW7%sQAQE73!kb{F+`^Mp~5hSltl4 zT8w4AFJv>{AXJw`%v zLpIfFkG2nBf@XEUA|6fPKhx@dqdK7@}BxqBY<^SlqIhTYl3O; zBFH+aEpW)P?Cm(k?p{t;hoO;HdsnS>6sqX8Rxg&^SveLH1Nknb>BVYDAXQ88V7LJP7 zgn|CTyp<1?N5*HK9 zk(7ceY~~$TzIY68fUzjJu1inoUT+ z%1$9MzlbvEW>8(cKIG&T-?#8&59BDLGE53E=cM@{In8uPD+L541M--DoKL-w-DBqT z#d87YdO=l%G*7RZq99HeZYip!*?W|J7F@<*ve3Gy$VOMc$?f%ONy#1Xtv}hL_zE`2 zt1IMS7ut!GXQ>XNeUnP8*Xc`R{g%0W8SbP_aaK3*0kn;X0NhkLrrtfJ^*?909PV7k z5;QWA^lg+DT?w2I2fD1xdmBvdj&Ehj9i<E@xrDlMD;Yzz=e1sIO&~ExfLRu z*^32-DfkfTG$YcBIpzE9zd$&Ydenjbi(00#mprB38M|^Q*}b@p5<#ISYb_nq3XKSjI$sQuJRQ3Mh;P|)_ zniy)5G)eO?@wRDQmC$E%A!7V%>1tGlHgJlTt< z!Xdpx1SW8l_+w9IXVOJQHB5Y$_#>AiTLfc@kzp^@+O#PfU>ORu0w&r^{W)*cKxC?JJWqhK@0okyX*`Eyu?+0jBU zyH$`z9{3`%)f(3pm5FG#b8$yA>g-%_hc#pl;q-;-1aq7>8#N~b8HraFPv-qTw&yXt ztAG|`?;W`s<)C{RTN$nrTE3SdI;-|!$Z0N0CD&|L_Biv>g4~ias&i?F z_N*6B6^}m`ovPfntljIXHGIy8a?=LoO1PFc^wCkzeL$RM^(GKbWO``>JmQ3BA8@JM zVr6%)r7F{1g8Qh7{Z$%I{5a7;&>x8229QiUz(?i$`@={=Uh68n0@>V{ZY|CpFQMq?>r*ARrRAC+W(rKouq+L2A zs*=Q&jEK!l{*|n&l2X11B1jc&>tjcz*KJklWyL2=5#o`_rr)sirHbytk|AR8vZ{z9 z?-5PvsJ=s*>;X9svf1?MDz5H3L#(FcHJZA|*>@i!5q)!ar?gj5L{+qSTC+S@bR9-5~<-1egNoDB!Jt1~^S4#OS0sbsZR)6cQ|9t;M2(}C5T zp8;MBAjO^>i3E}XS5pk!s78!Z;n@e&Vf@?VgrFb=1GHW z^QYO*Oe~s?D1+I6xg!o&$sWV8-enHs^ew*9$3u=P>;IH*yUdJyFijiD6b@2v++2c` zT(;>0=ypzKRjTS*x5v)9T2&j})N@Fckjb|D6A~hJeO_dq=%NZlK>8j4-hclSY zM4IVX+(7Z>ZQ$DmJY^@6X0bK*xI2A|74tHYHxN9>nW9w;z9^);=?Kj1yo7XR-Q67% z{8fQt1@$&577ly0GW&2@2Zp*75t(Bl!f*|Xka7lIIpm>%<$~Iz$a+|+++aZs% zArsy!{~j4ECTWFFAgiPm(a95!4`=5`v`dVU zK8q!r`5^C+;Fm>Hnl*b*)2TJFC{4N>NWdQsUdrCnU>5~5GEt?i!i=!#H{0O7OJJE^ zzna5XeNdfdKJ=^*ovmeNiJUYY0g;wv*!W?v&=FVTD*6(NhoJ_Jeo~8>Gn)Ky6Dw&)!K3d zJB8JNuWF8z+sn2;>pXQICAml{>V8FL_s|{-*9D52iawKKt#ZGgkYOVEYZ*G7WBFh( z5+^BHX-MB~gnSPo<@t-`&=bY=+P7Z)Mqua@5UD~ ziIbK1V^5VybfPq4VZLNxiA2x7-Apcwgn^e#RjS+)ac#bIBe> zT)BCh_ReRo<7nE7d?3A+FK=x!gMf`x4)mL3^yX#1{4u@#ioySgFW0YMsLPhu+?IK$ z(V;{cn-VgZ+<_c>6#GrRA&?Wp6Z4shF7;~Cqq>oAilco{MTFI>BswPVTMSyeN+G`- zx))tW$fjlDTDBR`Ig!2cq_d2gOutJ$8Mikva_lbp5QJl zbKzD;-G4_YLFR#lFofe&Wh)YnoXT9W)0gQA@@PP|%VjcVX0k14-t@}$ z92n3E>nuSp&;CjAScrmB=FN3_t|-;iydKyIBrH-lR8)q%@|~yjTsBv8>6#D!@xjNS zz8OM2cOH+ny5TWV;!V}=RVrLzy~Sq$QGo*dY=`Ai&cZy!>+Nje=IS1en=YbAB3+Am zwleHSnRlyQt0Gz{PE?00_zr;6jKYJ=oSUB+t`b#k%46c%k@#cJJBZfyhJ&p+5<06p zCj!2_T4kPdstp1X2mR*w?r5*PaUmAQ8}qequUXvaSiT)JZIYQY=W?k!I*rWB>psYg z3>^sx^@TxzyTP^w)NO<{)Fo{7A=A@CV{uDV=7 zfK)TdD9KKI8?YDm2`XDHRhI3X8YqXwcKnerj+qiHRvhn*8oUUdhAGF|*1T1!_cX|+ zM8Hd-=2j-krWY~by?Cd)#6pF5H5*D2%Ek@{%f1nT6#Is5P%rXNM}DWgCg5(>gvKj* zgvL5(#g3FH5yxw!D}baqAj<*h_HT~aW9;7 zrA^!HsRk@nG}lnJa4*AiXwJ85PBY)LPsy=zC+&mcwzE7i3{80m+(-r=NcSYf9vx#u z1IP8=2i>nGJU{e)q*!v*Q2XlfN81Cxl zn@3sGd6e0@n4`b>FyKx(VTdX#UC*o7Wbq2eT*fS<*(0M-vXh0Fvi(`pE|$*}OY*BX zoH7TWl3RN+$t&X}UpjJnbK;UT9U-bh)4WpRvDLd53>h>V>b*NA9dLg<}W{^Y;| z)w1#YRUxA(PnAC6CT=|)3Jpz}KER~9HvK}G7@=f!LL{A5nn?N-$E5yP34%PXt;t;0 z`ZduMh1?N9KK|e|gVm(ybHzT$({EloGftg% z^Wr2GWlf>OK8r&4yj`oX;5>zf)3v9Bz|pFd4(OxRetw#2wS%Ek?4C)c;6r7y2SQ}= znr90AOduX5<+BdGV{x*w+g3ONtbq=`9NMvb^cSJgFSW7Aj%E%&0J3j zo+Vt{wErG=x4L9<{o;OrH?RLYiVpqrt=^))sm*1QI+P<8) zwjc8yEh=iplCG^sLbA#DBvX4?ol?@i*x~Xg%dl{Lo*H^tLM6>UqY~}$NWImsycZnT ze&9PjZhNtNHfRUu7*~)TXXbwB1Dx1tw=*hEOP(_WBE4sR&*&%Hs3O-?U26LVSMG@P zcGM2ZH?*ZRk1NVu!er|;uOOL1RIL(n9rN6Iryr89de)%@U#c_o=H69W^=DpUlEV6e@4ei$16jf#dAjbK4j#uext?WY#ShtJXUgi!Oa|Uj* zdh>fqJzv#v_9hQcFl!d>TFz7AASnei2{hT=l-E^i^t~20>XKtp5a?6DizE~VaLb^Q zNs7~Pg2llgfwg&c)LdGkx}_zJ>yACe7d*ZkyMkuP_GI~M6ZJeoFgXmGFnJFLZ?ssB zlYk|r2#~$zr7UjXw$mTN*ZjOGLvBYOp}6fZIqOufY1Scpfl7cp{Zew18Q$wuBVnIyyY9lK-?hQuOpgvBnh^=-$L z=YyQUo70!+B+4^2EekI9I~_h?ZJw-!DbLhe$>Ht}c7mv`N`u%7CwQM2?$WRQds?v^ zD@clXa+dEymD7v|Gx#z}To#Q%uG}Of|Jc}#;ou(2$X&PS0;=gDU2iiiF%K?aIR`H< zHV4C-Ph=ax&hY}Q`ExjUlVUv-HS(SM7b<9UHdja)q4Iku7+ zo+aqHFajZxxP-FMn^>_|`7x`=Sg|S?FE4xf5tr@yqr+k(*s`Dy$4wqD=&dcFSBg3- z5n?D(6l=FD5;@XcSV78%)o_P{`{OPnKAe?OWfy_kC}M)@)QYsA_j`rALwCNdahiE( zB|I@TL2EVEa&*Rt_d=b;%pKus#Hu&+IEStl;G&PZilf1cDTl(^w|uCujm5+}l6e9` zjfK?*HbMNRV{xa|*?=rIZ;@oDyPGfb55dYI2)&EhOso$I>tK3P{y-RKQ&TGQxGP<7 zx@S(=>05-hgnQvV-dAT&W6iL{F3|&NUn?`t&=G@yIf?*_XIk#(mmr#z}0NXA*9^jp;~v_$=K( zD=nyv6=EK7c{ZmeIi6d@P`ERzXR5rM*`11SL)>-~u{NL6yB(kgT*sbXZ^T2M^diI* zmuu`uw9LwO9bp|ePSSY+FGO4cnR-5dB>MH^G_`|*lXP!vqO>DLr>i)7I$QciGJ>kfG2D(a; zDoE<28Z=#}CPQ&s`5u+TTcl{wIYd5P+l-`;Vr#Q9|8gr$f>{3U+XCBIL=nDMLk3y< zc~(rAJ}?eh^O?4wqCz8cq@Xw-df_@6dC}>MI8U8~?+xH}4KzNmZaZI6R|iVfyj$~M zR-`bOE-q>xRd#P>*>_N9`o1~2XEL!=WZS6dlkAf`?Fj1e2EJdpUnd#aB6x|w%K)u* z>cfF;EN*n*9xSsALJuS<+PQlGlb-H9ue=s$%6)4u{%6|M^YEogy{(Lf-g=Ji{w+Ay zY~MQFzKO^~{ph8{<9RvZo^sBbdN=iJ<=z4dNw({oU$Td(Jjwf?tMw#wS@$f=%FDn( zaA~wBac}Rt4iXSQSvrYWhOO4?_KSJBDfuvcFfDmHDt`b?UR^5dfW}O=C?wzw5Xq&F z(D5`sJKn3xb?Ysrn?v%M%slgaJ+A)!c3Z2DUgMxW!#--YjflUInjmfg*qL~Tb9Iqd z#zrnyo{L8E?BoeWpO#suDCKRRy5#bg87iK~Ojx-%pkS=~M$4qfCacMMBRw*c#1Wk? zeTIX(9EMbVn<4_xU&d&fmJIG<-)4sJ7B^W*lLG(?=t9a zql>qyN+!;9TwsdKnqWyf8`!NZW3Xq=q0Nx>TETMcQ4cXNcqz2hVtpSz32qS>8xX7s zJXEg{q@=}U4rX^8QRjwfXc7Ugy(&lIG>`na>|^Lj7HWL&;!;rAMqc4+uQEQ6wvk3ItsHqTI#!tYpx8#{nYlv73(BP{A2hc; zRy_hA&fKmuF!Tznjr4kZFHK3T`zD<1QS9zi=zvSH>g6Cui5$}mN?dGH9=PPpnCgnK z`31u(blpnN(HAzHQkOb`^ofE3+ivaXd2VPQ_2ui(^!8~(p?FtlH1fU$WOX4QY1l?w zr^7O;d0g;% z+5reWdvAD_$@uVK8;d&T-0LjM;Mz`e5z!irRs<57_0pz7((`5`J2S{*qD&rdA70#T z9<6erUIxmxN>5IHDDDpf9umrXkfqg3>YI5L!fj*iG@)|twCeq4FQhpiRRUQ|JWsre zYYEH5tJ@h4uBhDy-H69Coo`#4L?_r)Be-1?ncqbz1reuFyX(tECKDANWhE4P<&k8K z_^KAI_9>jt9y%X}Y$Lovth6wG1NB~-G8J8=NbieP!`20n)0rb$LA=qTzOMM_+9OKc z6PPEe+a)F+UR`*}3i{OuDe-Z&FE0nQyW#_F8;gm`GiBdO-Dym1)`MKNeAXLEG{Joi zup;Ihs4!h`>Rl#j8NDbryTmsr@ANFf_QocZ;$%XUKfWbLV2V75WP&QZCZTL@n(R?5 z*IG!)-iEhF$H1BzM{&$6o!bGbh)3IfQv_w&CD>=2r69rl+ynJZJg|X03UA~|&W)q> zgbzx>kB#C!cz1diTD_<^3PQO~j?kUp2CP*fbB{I@XDZ0&F6O}s7+TZW%sigyMiuuI zo4`n!A{MNlOyE6)m41!8VRX*n4%AHV0Z=W)9-fNB39vzXhi1VQSk5`B=pxXO8ujryUFjQ1XwWQ#t` zCwmzCi;iXTGQ`Q`*V5u}aJ{9fIBL|sdX!e$en}PgQBVAMZ@d#?$zd*DB_hXtPO_Mt zhikn)5qGyIOrk{&Eh4QfviA0cQDIh9Ao4`EO|O8d2j|Lg7^hgL_w-RB7RPCL$uoaX#0i4NVBc4*OIdP^bv35C#20%7Y1y*Hkjp!nXj|DgAwk6Om zfW?=Oob&x1#N}VBispZ zUwu!urOgcj`AwWR^R5~YHWfmGAo*y0=T&{9Siyb@xxb?(kC$@1Q!Y$sGi$HK|Sg9vzMUPTcy|d#212kc#d^p*};5r zo`7`-zUPw-#=E=yuXzLdKa@H|R;Z&H_KS(8#Z)k3-Zb;wkMO&6FC0uoqYJ!{6Hdp8 zux`-ER&dS?@`1fSaqD%OPyUIY=!iyhW8Fhan9r^~F#g#d7hUt&Ul9vBU&D;1-sW&+ zQdImp;&j=R@o>%2cXZ5G|AAlWts4JoS>8WVi5=#P zf5R!Je&IeoV!rtCJ!dwWKw`eyCHhk9td2b0X+9cqsN;ga@#U=H-GH-XHF!-8NY%y8 zy5{3AE5AAc#Qt9NdEWN%qm^XWfx(kId;eNw-G6bPkY?li4XbJ6_dcgRm} zl+W!8ex~v33EN3jhI)bwA;eU`(oUnK_?8@KKSF5wjPULt5t! zB&HgqcmDDW0jHt{CEF1$eRvu7h z^d$4@cF$QF zQ>eiE2JWX^v8IHlKBEO(0Dc`ODCVGP0g63XVelt8y_q(}xr)gIuOdh>e@!{Tgr!7H z^AHz3lVL=gJ!Fc1M{qN3inY-S!0#ZytOK_v)u`)(0Q(z?*qL@%91Q~P`w1<}3BKpl zlBO+z`ZF_Ap{^aKw)g&-NhWcZ7Lp;%nYKh(X=J%aW?rtgp{uFAol~2M{Nivy1@H>) z@l5_O+^c1!pTW7!bkejtU%>q}!Og^9DAFT5KMnhmfV_rMeWn@e5#lbbKzG)90bF^x^DzACThQzpx>v|*cmY~E^@z*#3u0@Gr~@Y z-c$Rwc_SkD-xIJzV$3*SM-=}af$j@MxFY!!Q7ctrXPl}}G~d2&RP2iA-{g&HUr23S zRDaXHZJi^se~uI0m#uR}_s+hN?}!M$ERUef#e1wM{}AW8FDE!5(tn@ywJ#E5Otk-( zed9R^5&un`@xBP6q^SQplGukb*zee_di-`f)q=E>c-I4+P4)*ojrW zgR2sEa5`DIHkfgWa9bUM`z)m)FWbJ8uPDkG2VJCw0@0z4ekn#)a-R-Kd<7+^EzVv-zJ`u5D?$bU0TUG`J|G2 zY?7I)jf(ZyujR~_at`aNs-MOW^CEj}V?TvcmI}@>X1Ptitr}N2|B#wLSt_lo+y1lMrM!3^*S7wdCo1oo7Ao9Q zjrs_uoA)#F7C8c6#J$N|iOW&n-ox+m?u)CTo#s6A62piR_FcqmF((OHJ?oG8RbIkP zs8au8lJhpEEnUc!<{dYo5S`+eVnP|AU5A7EPOa07%3t-q?D5ZW8Qy?Lr+*eW8$v5E z{}-p|4XmF4CVa-*yC`^VCb~+Zk~_il>qde@Nk9K3Q~gdZe^zY5$y^g~pUg?l3NBvr zUlN=*YhnUK>g*7i;4g7&W`-yas0qZI2~n(s)9(xSgpcM3$l`v1WVvVod7PM(i_gd` zc`uu?$h?4l3uo(nM`i}ls9!J8-%IG;T=%JVPHS75>-oK-54hq zc(T0Vlv7PSj@Xl_-$vW#{((PRL*%!EnO`Sn#410EnGRk7g%{h$6RjGETNBC;%S>M& zC~pR=>7D@!DKi3Tm9*fEkFHPtD7lK9LKKdRbX&e964No_jg{G6`>^U#*7vO8zHY z=4qeylW%(cy7tgKNc4L%7IFh}u>X&omN@dJIYv;uQH8&(x1c#AFeFOGzA=>@hBJdO5-ZoO&bw zo>QBi_b5otPQH`iyc(djZTKXdZ7jM^e#%J{y_PKdYg0u{&Y6~jW{LGO1>EsCcEHZJCDXE^}?h2V5URn7@0@C3|qUQu`$4}+pSdQ4c?&J43# z+Grtr&4KxEiGf)J3kn5z*wrQ6B(G5}Cm8_j7+3jK%7R(A3V_xEQ~*^0;xS%-l6aj( z3Igs3qxyTUe-@PjAjegTKPS|gh{`SYCk){yXN761Z8%5tb;9%-sdDaq0%i$`FDUTY zH|+4wxLvcT1V|U@*Wr@2kk3UHH!7{aYT0S@7(_9XoD+ zLg=%oGcNRz^KlO`;x#npq!1VOs4)LslHV*`os=A&P;LLMnEB>zSgge~^wL9eIdr;FKked7&corsHc`BPP zd;SRb+F=kfdd{=ku17sQK37IX1)1e1bC!N1VdgByfNgPyyk4VB zE~RJIZgIGvU!-t`;E6{BH80>9|F&m8{7x0Kb0*fL`|Vj|4a!xg<3U zciG>^-SuCtvvya2`l;||rr&4p$-XF+JvxzlJ`1?hTnsj}Kzo4Dyn2AsJrf#U0h68n z6@v2;^@QMb(9Ear%VI0q7x%)x%&xgWPAT3;mx`qVW%q4K7T)U7ZLCR?PWrnmGl5jv&&uX?yT$* z;2KLZz2Dytc(5y(llCf?>s6m7pcMrV*WNSk|?z(aNkJR?yR)Ugj@l)K{R@AloL!d>cVr1 zR}cl{PwWSIM^L6TZ}_YIP|l(*UR9O(9pKK)%37l?B2Kl{>!tl5MZD!M)BE)OICiLe zukQud6Wpx&2*F9cPnqLKh{9P9AHx0x+Ba~Dv+`F!TUr!&m-2}02RtoKZrzt1X>Dq8 z@;t$Ly^|9hIV@M+T$Uw&#lGyafvG2Y3+Z}Ry$};suUA;L{^xm|_Y10x$iIUWIWw8- zxf;RxKlc*>Rx$ol?$xZarV*Tr8hy<&{yR}RGeod(3-SG2`K)3=N~PCz2>Jc{L84&d ztg8sKuF(BaZu_kBY=)ai9@x?1>z}#wS&t{^(&d*A?FTyBt!@-g^8i84%7RglT=4kx ze$XT?FQ|d2nfgWCnOXIeSjPU`ew^>Pu(quF77B`4x4IKHP9qRB z3R2k*JjN+kX9#XqvaxovUnbeiy2-KG>>r4`nZe;jU)kR8;p}Er^rXhU0K9?pGAp;~ z_BT+kwXEm(MV#ZT`(X`*oBKg5v0d+5IJsGA8H;VdD)@U~f8fFUqW6RFX1)0KI`rna z7vJxtIQ3uMoOcSmrg^8m=wyS+bpJ!T=Hq;q2^X1qZdHXh^3eD-pNXLA3_6+WM~PX# zk~RrY8*?I1f0yLxKR**ebv$Ml5ajH8PWqX3(}d= zBr|m@G5i1*?+xQ{i%et^s;@@F&+ZQixP`QSh-mfu2_`|ncwL9j;mPvLkBI>Dfh|?> z;S2W%U|b90Y6A2t{*%nmsS@#KLY)1Gy7eRePlBACmyA@F_!JV7Up7s$bc7qo-n2J5+plxjKzt)Ke|5>YODapTRGv`k&q~j@t=vS#$<801t996cXhDe}oAN$%Pc z_G5D%C^F@1{s%EQKO$sUQr9`kzeSlfKhof>Ku2VJ!F*2_2XYrS=JW`DQ&>%79t5T?7%i%Nuct*9J(^Uq1|m8kVdkl%;d;yU~y+d6^tbB z6AD^ynHQPBMhm|IpOn&;{$JzD=0PT)5)5`u*7Lbs&pbwHx9Yn{r;$-^giauE9X6qR(fBb*SXc$le)HoyPqOOl;^-B zSe7MO1m)+6J}KL5a&7dx@2<#On4I`Hl&;+JNgSg-hvguGyw&M}!FI#VMu_~2Mra~M z+C<^@CuB?$CG|m4$R}jTuJNIMoU5FNFxhE!Hjtm~3X}8P#cYMcF~?@=98TXNQZiK4 z5jg?h%Y|j%R~!J74F(^)4D{{u9>`F~jkNV>`!A)_tp(SC`0G`F=uX;N!5qdmmYvibakm_(=* z3!yYgj!06M{+wrr6 zFAvNaea2^gpNs-zD`da_n!F_2g*D9pjsX0_dB`Rs&<$IBlBB!e0?-U%_~J6@XF>8Z>@+p>n<)>o4NsG8LKiilM*~g@MALo~ zQ@3a2`gag~wj&`K1)qJ}ig-9s1a33j=mf=}veg1B7V`Zc9I>4(cM~8c9dRS*sk)WW zC5=(&Gbv!Q!{laLDcnI?wf|onE{8@l(=sbjuvx|JOE7zqn9afEW*gENlz)MeZr-CI zvPRbSt31uwaZ0o89^-gQaMu&9t)_`e+4)2q5e$tm7#)=L>s;))IUf;ixq|p=B2EiM zxM9H3gjD8=cji2P4amm8tqx+tN{tqy7G$fxlcV?MJUUB#M5wv{YFKjPP5zW)XGdku zMrPZ!07O>m1lqNFHD$@XIn#E>TztNQYs@wz&$vbmhqqV^^IhSX^QP!Vu#Lj7I~6*v zOUZorA0o4w_r6L1V97eCp5rl|w+MhcCxim6&(6C)5qqmjBE(}p!ZBZ&^LdpqlZ*X5 zZtA=TMl2s0MS@HG69=BRFzUAIuv3Fk;JwFwJ<#DSzx|0&D|m*g^++4yKf)nfbKc)x z$Otwp7i9=U47`hEHE%sp2tAS8%u-R)xui>u*4ZhzD69>Ey5_ zO*F_hqSzx{YyLT|!uvEt(ik?;0QDtj2|vOmZMUzT3l&%aO^BYwp!+W z@INP|X6xNE4A!dm8%>-_B)y5)ew;&QYlO25*(@XUQa$$Eg(E9$nrM>?xSR7tZAHBo zAnSZ!-uqZ_kor^eUKxb7t?2h9+`;Ty@$@@bjUWn>mZd-90<%qMGmHt_Ahb)_yMN6U z&XZ7hWvJ_W%Dd;icO0y*CE{;#uxx2R10HSK?jQ32WG50%KU6IYc2GCgRJ{J(d2d?H zIo;RJd(&#p>AsLF%hm;_$7Hl9bblQOn&+0On_L;DL>ceOeCE9A7uIO)gs7aUjm7_p z%gc_@oPM~rDd+yLNc;1YtH#z+wa4wZxVUUv@GOhd<{fQ+Xq9$C9dP?NPeZoNaQ3nL zc(B)$1^5LH`iWRDmN{yB_)Q{vt_$w-VW<{T>SOZlkf^fr5~jy;r`0>DIl*Uef!QXd z>BmwxL|f>=hGzXT*Emo4)Pv<)n9mP#i73HP?k?;VMl<~qIn>xD{>{8MvDa#sw5t7! zT;V)#X}D`QN=$sy4E8M?aGrXTd;b3`&wsW}d;0zBHzV90@WdS+CoQAKm8lr~_48ik zj-zNiNqU(lN_QMZbUcmp``eh<5+fF;la4^uZyK=e;v-%e#gMA)kd32E9 zBI2?I%tR|`!L)(0I^8x;QH;K=2YGt;c|k%14%Yq)2gwdtmTC%_1TEc)FrYVE{dzr; zo%x?cT6WaYq+^&GlK&4ke!rJci8@iaRyVZ}*NLX=__E2C;H2qY#514m1DFiHHk->P z+{qPWn+I%7$;`dBJ&XNjC)h#h8mGj|Z}7xtJA!m=$n3FDkAe!2yjfPlYom>R&k4VN z2Zzfhfk}s}hv)c-An?C)j83L9v{CI`SWJfOOU}Hyj+1?XnR=W)Dl+H_2GDy>QwwR9=9Q26F3c@!u{PhK8X?Ts+Nk_IhsxHjrlkzzkjIsb z9_Cm%4bM#-4AiVM|}clkA!ZM!_7C#oyQ@6pRgX87FK5yQmLvVJU?@$ zX#rF-XqbwPzd%^;oO)WFVAoybPm>2eJ1sQScI@C4)_%JUoeR29vyD2STI#+=$kU>) z9KeTMs%j?lmpmU&OgYIi97QJB%3gH0O2pz!AYnko%kIwQ?-!~3c=YiPobXW;)15WCY3X!Q3SmVaLV@hmR!fMd3YyJB0EJ#FBW~<%B zEt)0a5iTYN_%VWf*OZg9AmdsLUq{lJ8D2XyITn9S&esJ3Kv{ms2PVDh10aaW5 zP6S#(6ad111#>^jnR#`=9K>R5#pWy{AX4787iGHQ5asu9;$DB#B;%l9p>T~oM!J!- zFfFd}8XD3I1T}9UplPLo04kZho^K+o=ce2@$}374^$G&{CF(RbS{+>jf-~!c)e!8c!}DJ5ce>W>{Hdg-Y1dpsXdLt? zJ;|>jsA+dbi!QS>mNJ-M*@~G~3>~!GjNS zMpKgscw*PaW}G3YX~_g}9_3nT`z#`WHOsk_;HJgCye!&jp%y!^rt=&xr&Zbe8eEP8 zN2aZIa!j<`!QFU%%1v$K9hbf2)@1}fEmE=32vO@G-^8d`{~y7fnR2cMoDtUtxkJ-( zM7*mc_(Xo9QM2xwMg9|Dc&;3(`zw=O;Czcge--CCEz==r!*FAe+XOl7(NQ3+O7VFF zHT5oIb})C~GGc;s|CV^1mK}0t1czeyE&OkQigMqD9!>P;r`8YaX@yltg#bp#O+eJ}t+fSBI{(ctidZH)Ps116&=KZ#gQj zaAMPnZ9pyIW z2ya>mg)2YKs?tv!R`^HU)oC>o0humQe}}-Invxd?@Nt>?Z-|6xRSE%`6ooGlp!fOL z94s~lI3^6&x%z2Etibh%!%yODXT#~ZK)i`WKigD2BJsC5RqxZ4xe@CZiq8S*FvdAJsL_XKx$_aa5YCAlPb#E77!NQ)iUa)m$z zm$pEmKq>H*0!3Qfp*Tf~OM&A4?SE!Zc}ea<=-u(-m;KMq?Ck9Bth{}D`&`gxy9ZJU z?VvtFIj2!O6elgU;&LtVGgYhM^flc-VXpeb;hb{l<5_Jl>{Q>Yab6WJBo@o+=m3Pa zwXhBCq(1vPr(Lg+=jxwB)7!LAs3y$c&b9(?uTktw+Lm@aG^#JAohvO~QHJ3wBz9_B zp|#Z?Pn=ULP8391T!@=J96Hs-gx6Ax<;Un;oq}x?he3jJRuEuX?m-$!4 zMpS#!?W*>MU57E!t9qDI4Itjqi}#x1ZGE5)7e&j_>I)QBwTHQ;)S(W;l3w^gu`Lra z1P|(PVRI`Fg+kTG$wci80Xjev(FxaP#Y?b*L-VxhByeVvfVrxZk9`^^v<8|FS*MBLg%Z7?#y(dc{4|;kosQxsPrcgz-ui6v)qv$KsL8v^3|(2F3vhr!?RRhIotb<6W$sc>ldWK zVI9^y37XYs9#>mTyb%&3A*-!}s_m{i@FhVlu742 zWsUr?UOwnny@|=?Ry5z2WxrlLi~Q3J^{{P6W|mMa?n zLYpN|cVo>qH9Ql#lV{;TFDJR(DxfZsXTTgR9y86Svi2t5I4sU$TIx3~)Fw~;zH!8J zF=`?tS;ly&8yofmwL|=(hlPb{#V?NoM%cA|A}*g zG2&T7t}fd^sp{)CPO3VivQiaoPm^w<{N<90QXQ14KEfvU!)IH*503tFMP`FjsE)n1 z3Din%%g5e^IIh4ddqJh@D%CcLGb+W)Lb2Iqxn`pv=1kQg%_YTrxslBwzBzE-x35&| z#h{y#rv~_^f#MQd%W=aAX#TfvtthSa+-^n`UUlwqsZzyneyuP4`X*0>Mn#0mC1g4% zRNWbM$w-?Y+V4aYy?wEx#mg0~`FS|=H-wBDZ92jy0MhH|akLo|_^q2}L7v`C)T zvHqB4WAfCccr#-y`2^^E`;z0f3hMy!C6uaeS&1n|qdFqt^N2waVVbZ|n^!3>P=gKC zX1fISIB0nZYgA8hC#XeqUR1q}Ip?5A_5BszQmPdT@%WrNo$3*LIr3+sJbwGYja5sR zpgMeqoAj}kS};m=7D!M_U~FWl_@SwIDa7x?>37(E0U_ciAab{+AQY=^QYWaG6;Z+I z{gMJTsw=`o)X*<`#JN9lHbK;)*!n{4Y2}YJ`=jnur>LZ8)rk|3T$`_%5b-Muc{=2K)V}L3D|J~Ku~5>g$*hKI%c5)=JW6#eOt5^BQL*8; zz&bKU*3-vH^99y}tQ>mKRy?<=PNGiOWuwpPUB5%4>%NaOIX3#tJ$xPN&2`^*&}Ox6 zKk83)7Kr!a6=L|%KE2IW*liS3)nUcPP+&xu+C0DP)gjPwH;GyUT9`iK?7iixfKOr6+bT2v2D>CIQ>}GN=80NnGZyZKZK^Ke zq&o2p6RhfZUYrSSs!s2uHXF6eMuK@(TRw}x=RhQSR~Up*#p6OClSIjxt^EP*EVD&nhgRO?#a zniFQ#vm<`TOk5AU2b7t6@@J?h)k#{GA|bP^Rvm>^s`Hn4x=H976&tosfH?JPxtL%m z3{%~nut}n7oHave6kmGfru-EqzO6$3bSx|E0)^^*+G;{#7FtHH?(w&)3)-~ii#P_N z`rg_&^Jtg>+SErw=Z&+r?d*6bNEg~RIz}EH`93+?!Qv)GlcVCqPaN4tO2IbOr^*B_ zxiH^rVHsX~!=@x_F|X~fqt;csx)Zj9MwrhP)`KxgRTC|)8RMGC0yQ=1*)BvIDmMM1 z(N)C9Z}5|N{Ka{HAITCQy}$#gxaC7m6xWcNM^k4~57vmYM)(;|khp(GJ0v1%pwy#- z9zLGpgdWS!;$ffVH+p*1Yc*#}5*!-gZ~3y{eye*pk$uRpNbzM8ZL~OcYpxf1s85L} zqDDCY5ZA7WmXyB~ zH2?l`5KM5o6tWTR>vAzn8SZRdzS$xPIq{p)Vu^qYSnOJJ;(u!a-Q{3!fe{Y<(SKG4 z=JSAdweSkHFycS6LHytb-;A;|;TKdxc`^ahk~S!oFM=}@KH?CGZZO?pDE;^u{I6UB zDR7cdjALT3<34i~S(Hv7ft^7$Q707=khXrs(wsqCWKb%BBz*3Ttuev;1cmvv9}PNw ziD?cKUl27v=k0)S$pp;chkH^SlUOBM&Qi-t%!z7AsMh%dDfnz3mopGKlpt#`^U=iP zL+FiprZWsLswyfk(qWY~p|Y5|ocKYixSd5Bdje1MWmE+Nhly*Q#2a5-7_LuZy$2!A z4&rDkFGa;Rf0URSS$aNdqN1vDi?sO7ft^#8M+wy{!}3EaY5RvzuP!R~sUyV&NMeF! zOAf?eZ{lEy_+pkk+cyR()$2_x7sWSH%tb2%g~e5iCVG^AM6}MlH5Y-V;Kh<-mB}Wf zH95Dpxe@W9DZ6Uf1jFj8<`=(~5U~qnvA8cZ@Cw{{JECL#EjKjTX*-Pa=M!Igh#IWZ z4)GNOi8vkLFBF?=@^2J7w?!aOtHqCC&8w|CNS@P%8*Mog+Y+p77FLjE5I13A#OJld z!o8OC!TvRz6M(Xv}xlbOtkzg&7uM9w}M(9O$;P#kXO_&oRZRaOr4iv7oUQ zHcCqe#r?2uy7RxMM-s&A|kcneleP8^Fnn) z01JZvd# zNn>#}UtY~4L_wL>*wk>aE{Cn$~ts`;A}NWmpAR86yG#CPZnub|o58LTZHB+jJ< ziH9o~gY~q`U|f8bU>{oiLcr3?M#Wb~%cGXqM2p2ONmBD9R9z{RO0gucxtr{lc+HLt zr^$-%Ah1{yfqE&bqTJzEdZ%bsR*^IRI@s=a@4vwcYj?C(9-eo_7u>bZK3Hyq39pXHgn6WJjHUng>wP7PG^o9qDc}_RnW~gh9 z+OQ5aHsV7VZ2{jD>-ug!_lG7z$AvlkL8OUnhap|Da_n@yG(>>Jj0 z_27%S$y^{gqKt)3>ttdl9uN_R%%j9uFB+KlEMm>?w;#c3Yge&LC*)C_}&!rlIahK`&wMZPF%D$RS&u%N~8(5JdUhJ8S2K9 zj9#4&7K4*m99e3@(ayQZ*hgK1Op8YYU66RP5w$N%7lSsc=3FXs)-q``FQ$ zL>x>Bj1X7LQ9llpJH$hg#Jb3_Pa%kjdIOaLS_xDd=#Us{^<{uYBCae@R#7kdazN9d zr99Afpb9`K!L10?3#by%b08m}?D*r0KmQ^{WuUdtTm|SK$W;Z}2viMd0l3wHb|J0? z&@iN}2^5F8T0mbxt~St@;MM_p0d8HOODIP@pl=aZA80$`8USTNTtlD^NZSY~82TCm z6$5Gl^bO>i0zCq12J|CPbD;kLwE$A^rzQUMguYfl^}uZnR2gw?fbs&h1sVd>4rnLj z+5-(nTnC`PVQEL89Qe}-fBr#SXP^;C(FG_sP*{9l6bMunTrE(2#03FmMA~4WPZ1XabRS3ulofyU_)`FB2LgSA6rn(uAQuLd6Mw?- zCpWkeK*xY0fvO_yAfU5|ivrpJ6b^3PRs7pbKcD z;XunEHv;HS#C-%b7;z(k6r}was4wD10bPZb(Ljg69RsusabtlVLCYsVF-Y+#&^E7XiIS+_ym0q4_(YpTYee zXcXcW1Kk5!0(1%~mICDg`T@uXXc0BVR78-bo8 zZWB;A&~HGOk#;jsKE!PSI)b>ZKqrxQ8&EH3{vD_Y;{E`th!op_rXX$y&{se^fm(sP z3+OT8b_2Bp+5=P)`t}0(0__93jTHNVssJ4TS_tkzpx^Rx?q#4mKv#$hbQS0$pld+?AjNf{YCt!DRsr1v zdI-(8fNlZZ1}Y8iKR}nE4Ee}kpU|ZE;~?Npd3JFfN}zT0`xvm51?E?S%Go`-GfzmfOz!3+_FIZfXV?4L)!8{SAi-34F|U(P=BPY1XKlaK0qrV=L<9e z+{!=)z^ww59}Qm>$RBdmfOZ2_2l^K!uK|<}DQW`s0k;;=C(u_LC?`-IpaGDp3$zq* z^?=?(9`%9pA+7^5_pV5psS&m!WR}PzoRo(0Qcr2bv7I0OG=yK%gz)YJmE9k?Tab^?6_^b*{WKo?=@$3Rn%b`($? z&}g8EKx2T8L2fM2Y@knoo2_^BQ7lc94HQQQ-Cr7nSefm<}ZNuA;nanW8h8$`WPqOkBCeVDy%>pU`?rfmFux}1f2WXxP^e?#cfaUId`#&;y`lKr>*=a-eyL z`w^%xELZ{Lhq#qM1rWCis5#<(0{R?iHPA|+pD7Od)&T8BinT!35VsEKF3|sg0)c)3 zIt97)K#hQY1quas1JF6t!A79J5Vr|v2+(gpyTIKHG!kjI03ATwR-kgQY8%izaDN91 zK-?cd8PHnWfqn;f2hbC6cLIeWk6l1lz}*cLfVe$Chk*71-A8WwfUX1W2Wk&32Y{*~ z?Lp!K9RgYpbQtIoVW$f&~aFL4(Kd2p9dNY?ggN8h`R_BfVjVbeg?V(bQ|b0P!`y71!xxH zt^!p9x(2ijd0YqT27Nbx+Jbu%s2R{LpevBO4fGu7AE3Ws^Btf8KzD&!BgH+SCW!kN zXdcjgpnX6OfMx+b1oB0SM?l>W_ZVn9;+_CKMQ%@lrh)qms1nd~phmFy1<-NCy#yKr z^a`jYxUYetp)W-S@#hIpN}#pirUHsUTxy^@NSg+z4bXc)DIk{?s4nCbpnZr-2Q(dW z>49z_E(6d^#AO6(i?~cc7l1MY-Gr7bK$jtx6(~En*?>|aE;~>Tpd3J%(1JOEzDC^p zgrFrC&_%@M25JK>d4P@ska)E+5H0G&cyNub=YxfBpS+^jDRbQ;_;Kwlt5Ss;9!SYHmPAvBi< zIt)|+2%q8AR|NV6DJlWg2G<8D74q-}DuTGmKI0QSTmzt*Kn;OD0BQu(7^pEJ zXlVk}9dS*8t|6`&(3e2Xfwlp)0J;j)5@;MyE1=^*t$_}}f;K=SfZ77xgXVTXevoSq zgpYISI{@LMTKbMaAxO~)s5s<01GNI`0<;KPx&qyYTsNTi5!W4P2jV^eT93FMK)H~% zCs10TUO>x$dIOaO`VeS2()I!R8mKSO7-;DSG#{ux(2qcVK&^oW08NJ$4N!l?`2($j zmH;4p1w|hS^cm!|KeL02&DN9#AMydiYuxP$8rU z2U36{fKC8K0%bsoK|tkUK@`wj#6<%Q1d0Lr3@8@pA>;-FZ2=krv>n``K-~~G3@93T z3>lEk)eNKz9*03Md<_9}R@-&h=w}Zb0)`pg)k}6QDte`xIy{ z&^Vy1&@vwA0^%kBjRl$rbOUK80bK$z04)G_GEg5NBT#K{KLh$0ai0U_hUO_ief?a6AZ|KP6tv6$s)Q6@0{w}&uYmROH2U-b~2i#Ra_Yn6J z& zklO^52443YP(Gl|K)WEf1?U9iwgN3c+%}+Mi2EJrDB}JAnv6WQ1L3YC{SKi0;O+$a z3n_L1%>>#FQ~}&QKzosPFHl;beL#!B-48S#DGmU&0Xhiu6zC9;4(KpYHl#fQ)C=e+ zP(hUFPoO!_cMNC~xW|DeAnggDjNqOG>I-xVC>_vgpq)r@21tVxXMy^F`xj6PpmRVQ zA$J~V0?-AZFM%!sy@1@`Kraz@3FsWqWgs7Dz5-MWaaVx~0$l@AfUX1ehujUI*FZOc zra<#8pvREA4U`!r{|Bfn;_d+X0Nn-p9x3ht6@uKqK+~Y_KG4UIdjN#r|LPwC;di_G zM?mW!_ZVnD1=JOBuYo>AT#Ah1 zPf5h31lo!=NP{&=R2ZKs$gk0DT6zj6g>b zmkDSn;xYsMinuI5U4XIzbqC4@G!SyxfieK)0GbU8asqu1x%YvJf}0Dd6ykCN^+sGC zpzBDH7pNZM@&RQ5$`5o6r~r@-s34FYDGCAYhrYr)6a!j=xZ*&A z5LW_dG2%)BO#~_hWQ69@K(7#22Iv>Wl?8f+wB>+~BCb48O~_RMYKypvKqkml0`fzg z56})EU!WLpD+A?3+A2VSh^q?J8FJNtY9g*W5RN75YXITIvA!nIe59=fR30g61AU0N zIzR^yR~Kju;_3kvLR@{I2xx8qvI~EpXb!lofYPF6S`z}d4bX6K+X5{|zU_ck0ksF}4!I6M8-O|j4FtCnP&CqZ z209OJ7oesF z#PtOl2hOoEm^gB=x5RQ83 zgMl=N3jwMRqyu_}w0fX^h#Ls>2jW73(gTG7{eaxUfij{MB7kZkE)vK9Gzh3UQbYkw zg}!K@GC(mvp^%FO$^f~+Kw}X%1n3duh605lZWz!Kpy5D&0F3}z4Y`ki<|1w+Pz>~a z3=|9QD4?N0qk(>f+!%pkWBv7`Q>I8Ej&~TdMMs9{!iV~Z>jUTlmVmf+sf~FZBk6pP zIItGiE~PP#BU6W;MMi{!m&1`485!3uz43jAXu3`X^7$MXdd*->bU>6YQsk7{nA3qP zPE&@&wM%8p0;liSgMX zamfJ{YmzaCUA#C`6s3)uWK?98iBmGhbn?h*&|vuI+)2^w9XxI9@a4voecQ|SWZ zjG1*|8gWPpKQ0s*#D(aL*|g$^IQTm8FmbFkL@TOyk}+3+5Ev+~-w+2){WO7r;uy8K z(k^bIF;k>Cx zaqZqS=Ee^p#2GaC8%U8Ae#{ssY9MEHm^hL@C^kYIz7^GoJF27O`o-yo2@^t6>(`55 zk}-3rIEogFipHtUIQ>M}mx)sPaZ;fvI}YHBEW?AvFGNDc#|mQN+NQYh@V!`LI$W8A zgYD6&uR>H6(aQ`<#TjLY`bqROgHpb~ z4^eopY*4CIDo<2uN>{O5b)s4lm33BOqP`=_XLk*v_K?o+D%2*b8d0@d)FK~%Em#;^ZFQpsOlS_;D=murp=32xnLXvIsaSmHa=b+786Ge%4ERNgnE8=y?$Td-e zbiOWFjkKg8>hg-3L@gvL|Ms#(l_o8}9_ALiOuWpsxWy_GZ}BUx3Ctx1C1Or*N{89Y zpv)fFg($2F49c&Ydl7}%#GvR;^(6|kmT0j8J&D51U{J~(7(f)}N`um%YD=OpF9_d# ztsx3CkwIy#>qivkSA%k+e>0*mvl^7V?OGFs`O~0uJj2C z<$(FvpiDUM0a2LG4a$x*oIB=zgED$ecJ&YQ8;&HQ2v$T za|RRDgCtXHgNXW>^1E?^``<01S}hMJUOu93O^hY#6zN=5u0K&eL|vBN`V~wTKtoz8LXvTFaoEt{OuW&i@&dkIwQKS(_y1R^#yu zPY?!W*oiqLi6aL^UPL8r@w;6rO-YKiWKoC_JGUlxAOiNfcK11|?X(mZ(ug zwg2#EqVTk0PzJ2}hNyN#hlI_Gi@c*-#-Yxn*{>F@+&P%3}3jwn1m8I(#r7ZZi&FoSZX+XABSWNJ_* zJ@|wuJV_ap2bY!;g{M7(lBEULAf9FoN{KxziRUJR5?gu=N#f~Ov~(Kway*?Hlmod( z5f9I=Vh#wKLKL2;L=JxcBMMKxV$IOjNEDu?4N9)7T!VPBH7IwEj3yqQ8AZA&Y&D*- z4a(5boFATd4a(V@++uhxG$>!rT}J8f%xqA8`HpkP)4cEre;%dq1a45?n>~>v@q8~v z%;S+n;W^!)RNXa>DC|8MlrDGvCJH-824&8TTSQ^^$e=_&{D&y)m@ugGQATN)DONbY4m`sw`IWs8dvvb+8LuXJ<#<6AC zsT8x?{7ED^f~d7^j}wKxH!%**=9b0|pjg-C;c*xHiv}gt_1PrZh0+ziHFCD80`WA}S9_UY(ndsInfaH$!4|pQ$lXc<&@UvVkvAcyDD;{@huHD7-lmD}j_;hHRvB<=igB8&8t`OSC2G z3zB@&l6z_~;>~PPlX!T0CVI}^!bBY<>Ok%WM71ZKFK=WZ3h$GI*Y)a1R0YnxeRHBp z6Yt=Uxri!5)VQubMB%-g=qvS06E%r+PTSA5w19ZEZdNBA-g}AKUC@*$yrD8Ezpd^{ zR2`CBaHRrKc#~#OF1Bh&6yC{+GR&+(6y9fvr?WHNh^kNNe%#OPzL=;-ZQ2k|NBIrN z)tRWhq;o`Y3!<`;J&B9;$ ze@xWJM5Ud_>G00qpiHcVlKl8()n$%K;nHyI@jf5 zEq#azI?1`0C+dWTYyN+vGsEv(yIY8Nc|Y4yg>?4q#5IVM2x2|)Netzn5HD+cf6kBX zyvB8gQwauT@|RrK+liXrfNKJ0A;e1V5mR$1zpqLSB`y6)GIg14L@g)D7r8bN)tDsD zJ^F?yoNF;Cp_$hZHG-&VeZD2?I7!y+xsa&pq;tgkMxxRZugH;Kh{AavF>_s+K~yW^ zy?nHkD4c!~&rUUeB?>27#2m1F6Hy(Aw?1wPQHzMzH)I)6SBW=u-~yuFC+e|b5>Yt6 zBi7#2787-icqhW=5S5FlR-ykRsxj$oFz#!jc2N1YPF+V7&OeD2XW&Glek94Jg?}Te zHBsSBHWPJ#((MUaMASIS;pkJgEGJ3k8TJM7-sk*YaDC#$kwIDBknJo^>E>@(LXu-h za@qEcM3p68g*dLI?!+rMeHQUPAS!#AuZa4ZY{^-O)8UMiK^c{DKJkKy*RsnrqC$uo zd4+Swi74?Lu%6o%CzixB*K@9k>7=EpZVRRRlBn?9^N6ZU)S`d5-TjDqe)l`#l_M=p zZ%ro(r^pP-kDa-VrW0@f>wUzlOX=RfxrZp6hZ9eOpS~a}JK5=<^Dm;lrgY~{T_kEI zQ7=m#A`0jC#4}~<8$_KZYUzwyMB$vAL3uqOOIEBZ+mOyj8LtwrEm2EaA110jrCWaH zAyFwQhitbv_mf0rS$&Uq-x5_~*#n|Z5f!%P5mBd!`eD^;qHv{V*p;5DEDi}?+}HvgJL~+BqOEEL6WWaoFm>5;=NdSpQv9b-AiLOk~~hl?LDp$Zvauj z>GKm0=P$*R@W2bi`-0NVshW~_pHdFb*W4r?PCbeh{M2Ve;moIa;`{IjQD0NKg4-?; zg>#PvrEu2tq@^}Vepn_4QO`){ME`t5Z6)e6zkeuQDWclW|CgwSl+HIW14-T>D&+ir z;x#6!*F<09H6f}{4X)1>M2&74Noace1(JWo`kSv3rNOE3*Q$*q1l|lI{M|G0?lXyNO zauaV2r8_h^H}P;*OFWZosY29E;vN5(+o1qa7snQ$bS9DvdChj>e3(J0v$81h&QK0j zI&Bi7_1 zDkbS$F|0UA7AMKCg0d1XoOst-v1QMRx8-17;%yEJj?7Q%j#a`+O0%dYBw7|>Glzo{o`&#y(Y@PoDWeE zlUs(tQGVozXdE25@R?m_zgMAae516g^jYec!1 zTCO1;epzNv_VoCPs2P-QnPDzbDJWgQ-6y{jh2ISsltsg)5%m-C8gCv=)I>^G za4t*YH%VeGT=p~KrJz=M9sDOzYbl+s!*HVhC93;i6H${%%ReKJ5>E{T)%)sFtpWFD2?2@#fu#C8|78-M*VaR6n9R?3_(h2TIrF$IprKBi_CI z3yIo5`7O#mil`DqRqSabN<)&b{l6y4pQ!QKzalC>>3q46+fPfpMc+>+-d*B7+0Ay& zCf?buGl_>^d5O1(QDce1uLTWCt>H(Ann#kuv&|=JK2fh5O(yC+qV@&OBI-lRVSDdk zM9m?q7tZ^Fs1Ty2jG0Q*=OlS5WC>BbiMKWbTXu-312wtFH6p6d>K{n*5T$E0aW_%; zos!sP%(9250OECgx|1mUrqQ4@I^Ub9K;m6E!TFscoh^@Xei?~+QRXyBKA{q|n8{v# zg?OPWb`WnQQ5n*&CF*<9xo`=$Eq)&*-XcyrK)mZDsae9lw2gRIXGIbZzkd`~kL6x9 znk2RDza-vYq_e8eN}@uEN~2vy6n+;bcJ|WzOjH>0nl;%@)LzOVe;D`1EW{gsnR@_! zJ7!RZZ(m1}Lx@+rD|<*eN;j?HX5y_UTkd8)MihQaChSbhy{Z$XEBgWaSpcQ08@H7t z@q0G$CZ^htMEy=$j@{*SnMtzQq~pY^MpXO$XNW36It$%npGZZ#^I<26hhK$>cQ$>` z5>=ISE)P6R)FqOvu$JvKkd{ULxU`YPD>|I((?mS&9_HcKY+^2Mw~w^UBb_<7Z6T@x zN!C5YeHy>D75iWdUlH#X>1;e&$%ZF}IFda0JR4E_NK43p;za#Ol0)a+r*sENGUaD! ziI;QxWw(Q5A;1B*|Pv?d$y>@$gGlgA!gU z3sLKdr(1oSB=H+q@tjjS1Mx0W4yMjoiCRpSHQ$+zsOOaKg_4J;yd=4(RUxAC5mok9 zVWM`Ds5d75-?t965N_>0P3e_;{g{YAXhXSqc9 z4Yt_Hxc?7H&LEv}o$`|8MAA99Mh>Fzn{R`1x$@s6`Gk0rpWP(tJJMNqZbp&}BrP{O zT_s*!;%&Y0fT-ET`%RyVB!h{XbnzbXrjX8Fm$+3jQM%v?T=v^UeVL~+r8_|BIv3{F zd`0R0+2%vMg~a>%yE~*4zt$HgP&(!(UMk`>4{bnHPSV+77uU-o;*D#|b`B@r<86;f z%b&z6F|Q$|^QZi}yvj`!es3?%%}lRCR63HZc7)p@A8E<6z7+9>6E9P63ZgaW{2I zRDa6h=HJ{?^HREwY04AtbIPGfhG(R+B1x`1SDkp}h_|O}O`^UbUg{$36SIhVd9N(- z`jKSDRBYK&;vHMTqfJlB@8RRBBw2+dzkJU9XaG@h<=K~BkmN@rYLO&vdk}AkN3rkr zA>Pmi+&gv?b$Sx_2R&)2`4QLrKa~6YMb$_PZXhuzeKxay9wf<6PqUxlb`9~yZ$> z#0?+@Wo2M(qH0hMt%|evq@i>pKjs!Y!&bN89R5f7nX0o-{6M@l-*TPB5_O|Z4bmAz zI@b;GC8{0qKB?D%s1V|X89BeYMD0k~n0QYqhXxtg>QuyAI!}^;*hyHX~}&-`py=fyJP#3gL8J zNz0bP?J3{pSdFGMi$c+3> zQ6XNNb-hXQ80qXbmiI0)6K{N`mXt0VQE963S%(6orAHdh{Sxu6U*U5X4MNE4WyjTXWZ7V%a;57*Ip8)mgR;Ie_p#i>tG6DB$??Z@69|QEwLN9 z#j29z!J$=XS7ih73asQe6}bCNy!Z9v)x{!`ToGJ}bZ#ce&^~->=PL20uJNN1^(EfF zPx}(Jhb${U!H3etl4QYgd?sTsQ7>okyjhPVhvem_tRci3aGY1T{}OdJ_yuW6Ns{ON z`9x1;%CFTg#fdkJBwzXHs6<~8&-4}VVGg{|pHl0Om^`q>Xu+F;T$K|h431w<`t-jZzTKsvMSW?#bHjRxi4 zt31DNCtl#uiKO!%(%EcC9!j^8wA}C1f^7L8@v67!MO05p*L}lCqHx!xctQ#0ns`K# zH+#<|Tc(kuX;cj5ppZ`tZW~VNMp6!gH#H(&FG}Z^kx!s(Bx-sZ?m1tQmZ?*hlVxiu zUC+juiF!_w-?ZhneL>WOnVX3hN7REYV~DCuT5g?QO}Q5%Evq6XlAYPfvLc1~EY3HS zF6H0TiPxJXfB2bO40lQzlyy7P5D)ibiZgq&c2f>JDcyBFKNajE>gsR3!HYF!3KZWc z7vI$l4-hxB#u+mPh;M=O&jUaOYJ)W5PS!wOKup{;@dFFob}sH$7Od3x9m=%0adBP6 z?W8!NKSliHqLhyhE+h7(+s6Y!@d>49zM|cC2rfMpzf}-Fl87@FmvZJCv^DgZ6HbQ9 zv`MI(nlj6E#dZo!^s4~(TF^w)t9vb|B0K^Xlux+gELX!j-xQ_QG}4XJ_HAaOd-vR1 z3;3OfyK5n}^aXdeM9akeF(69I7i^TJO5u4fc4zptQ>E?GWX53yLJ}3AU@Nl?Ir1-W+z!=`*wup?>&Ms$T?MK@?}A&&arST5p*6AY!}pN{-d6 ztv(Zd6bUs@Q*GlqNPI;-B1$)0T>2!wgBcwW!(W2CB#ioB;U|id?Va9 zBqBOS8yFK25gMQg2+{g>rYo_0tNB!^>{F$h@6ejneM5ErzI;y^gS^6jZ3Zd zTAJwo$_jV4-(+&P0i|SHxYU66JjUB`*Ao0sbw~^sAIla~9*>NciOW~b(d|UFp;~+m zdx(ywIum`F5V^dgJ{1sY*Qa{9xCl)4B^a)yLU9v#hxl$s(;kUW%Xcj#fc2w%ZXV z`hKrl-3*sd!hpBk=x}+}SX*rXdGkq3TnDZZu~qHXjZf zaz=+`MiuO&{BetTc%W}|tiQNvoUmVrCOj~d?K9fz)D8{MM&c%LDwRp!PLA`LgwC!l znl$gw!Y3?HY)$2q)mTX86)o;7*9OIgqKx9&?&0FTb~b8^6wG61RA@wSuq>2`KK1}V zDr_ebI4oQfrVH@Xg+)e0#n3F!K8ZERDzMFF`$E)2-Lao;P4poVxX0T!5c(?>uxS#li_wNf;`)73V(+ezQ4!$C!RABhRQ9gt z*sB9&uYRNVMr#MfiU)h0Y|nhspDevQEFv(LtuWD-R8T!dRGrRth;eB^GSLTNoKsv> zHEY{WZges42w5}clJiI_Mtc7U(c|U5{0`Z_U3$1MYgDOAW5*=Ah0QNB?1nbWpl->` zw*SA;>O7Z;ek{lA^0ItpL9PU?m~Udk{KTv(#xZh4`{BmI7oTph$<9O{0z!KxR0C$8 zwip~PK3Bm*u-U&XESzZ(9%?hm%y*cL;xX7n-^79`=8`$=`s0ZLB{R{-uACCYZN?BZ zPhO51EyYm%!Gv|qYAtU9D-(;5iM}+3e9h0S4*7;@!gZ0cq1Lnfs%uhf_HW3W7rrX% zBS%>ieZ=C2)$IgypC8gEw z?3)FhH5OOYU)kPn zaJ7w|5_>tI)a#|6W?1XkFvuCr-@=89k{U z$|hV7)>&+)C-s#5(y!$^P4U_wI!0{miobri!9wn7_y&hY_-jIWZ$iGxj88OD7pbK$ zT5?)?;%kw_y&gP=$on(+L2jsQ@p#^uVY@^Z9itOpccE)4H_g={ZYVfW^d|JuT@y<*PQ{v=vP^cz2 z$xfa~zd%-^A#Jw_jd-c&#G96oVUZCrA=+qNv^XdoMH}L#>3LF!kI9OE^i_7xXv!t_ zP5B?Y^iesknm3MkL)82#&~|U$JOf#FS4DRd+uhd9;MQ`ONu){DhPtG_7}kcz^6pro z=9~1xWIY#@TW*e>SIcjf%)^D+SRh5r-QP~cX7FJ#lm3~kkT*s&>&p?#Zm^|R-#AaM zmn{@ewNhscii!vqKSv0Rw%^?M%q}lqw8S^M*uVWu{x=?YQ7dNY__8;<1@Yw^V$v7& zm?^Z2bYrsU^z^=2^~yu6m@kn$A{!Fgw{{ELapPlc@(#I(q=9v57vfjqcovr zbu?ww6IxuI6vAVoB6!KuEQw1ks(kT_og`0xD7qJM#Yjj`nvn`FBuba4Bg|xV_ ztH7o%>kwnFznK1Q-ryNsHzW{Ow%O`1>DSm#i1Bq)+XYLqEtNl${akhFW;4WFSA|CN zgyGl`ZA8p{)o#L2SzmVdn7(atV(NNhS_{<-GoKuZ?~s$_b&6%ad-EM_8JYKgH&OR? zuGO(NlCSpTYjsYOYJsMBLLxeR3N5tH-$KL}^JpYa;UlxY|jZ%Qr@ClYWqN-T&~Bt(D7j77l>LXoJO3Is2(U*@o>>9^;v#We@%D2CrXa zj>$5CCrj@z>0inANS?J_5_-7@EC)?`opXItGgzYw)%b^M{erNiG9)5uAg?Er?>M1J z|LcG5m-l6k?tG0lP_}@1Dt26>{dXI7HD!-TN*e);nge3m2#R{4}A#TK_0IJ7_setkoUlri;LS$+?!_Bowr_if%B&M_jD!?gccsjuMSMlDNSgE; zo%Vxd&-#R1Pq?AfD;(O|u?628yUo9vv8z(ql5a{UVc1G7Ys1`j9$-=$&oe2H`+7=R z&#R4Hp0{Ax=Ww{z6Wmz7zw@A;RnYUspZ%WaOW9jID1z>%aTGjv&u#ph+&T`QFJ$yTJ2mW~S%)PcKheF4Xb7CY$WCGr#kP-h3Xo zG?ylsJF>&T_}?x%>q{?6e1b5WYd4|t{zTGOc#A#HiFFR+j$L`*?E+%2=k=egvVjtL zH7XC1(z{mkD`LBfV@I(Si{}lhjfhFVK(>XmzL&U8*X|g&>(;LWMG4^9O=l`CYy|1C0^S|L%?=R$L?_VlwKgko*j%~o162$R@2{#d<&|4v%(_)%82yBfQ-TgSBnZf&`7ZtiF~y{)6Y?^b6y>DD79#ig?(+a9oM?+V7a zd7LQg=DyP1+xp4}-e&OEZXJuaN&hnc9xS0XrtKAS<_8Fsw?}sSDz<4<_i^IckFiN- z(g({bGH05Qksh&m6e10F*XrV)n@6qnZq9$Y^lJC)$9ySs_ZoMt>}>}7xwU=EdD|3o z!GI3_mf>q-alCYv|OR#LqXL#4_r z-}5w9bD^%Rsm#AvN@zBdZEqjz0iA8df~`+(hF_=)(dSu<%Kq%mNt9n zg6*ak4iQDG=f3%lDd(sey| z5IgRLwK~8Bo1@=2GnPqCEZ(%o_l5K$4;@ZE^}^vKw{!y!t31@Bls$xaLqBdX9Np>qY%aPSR=Tm-`1$X+Aca#2z>~L;q(Pq+G z^S9<5_P@fkG4y>QlfIP{EG{>&90Y@-G=VztbsqkXUIJgBvlmR{<7{@qCjAT9u;znb z4mLQhMojuFa$S&k#hO*BOa^v$nz?i@`FWXr;uoQr^rL0{nor_7lua9|#mA3^=%Tg! z1C)i*XX0rODhIyw%+j5uCC(Nzaf@9$=-Wx=Us&CHYz{(AdgqX=IxRble8A`0-S$ z-OoXyJiuYEOB;OD2WGpo&3=Bma9xa_9}kmz-9B?wlI`uv#+h|SFgkN2&_>+ZLxl5G&74j8*IsLRg!Id#y!$cf2Y79{o5^yU zdxQ7*+AN1UxARx)JZIlqtRGzc5Bl*_`P^x)ThFs_tsKXb;`PS2`;E$ThsyCD$J^$$ zmbZMH=62Jo!`5CqKt;dBl;W-zwS&F3w%dBGfJZa*!wSC)b zJ-nNocgzbR@A2@}vd*1;jMEI$M)5l~b77rY^;wfSwJx=YoAf_>tyc{4!qMaJw;DZ6 z`l251Pi?%gRi4ON^`?2~xYs^K+<6NRG3j4=?ReGAq3=62u>YqU4p|(28RObKYto;U z^R&}PV_f{y^V{uAn)KrwTEMmP8Q(7Zx7rvz=d~-K6kfPz;Oj8PcwSGf=3t>~o@~+w zyj6Om>d|)Vp6Q!g`)}p^v);~FH+I|Y4wieKBVF;@WyCax!QAuewvI#VyVgnFIo&jJ zm~K3;ZZ}H5H6QX%sBYglOf*Bfj_NN9R9;m&9L_X4lc{4GS3alVkk+J6Aw9{NhkM(D zN-JeMdQCwiWkFRp_pB3)-Ag&!V_Zh_Bb=Sbsx+xxB4>^v*d{RPAN=uqh5!r|Ao3HhPjS#Fblt(QzL|9YGIO_uKG%&#YH4%&*d_}*61!ro@^=iWBY zT$5{aXXY7){(VfA^*>y0l=rsk?dNR37RoO~TXLA(_{`=DDNkb&s$6ZLave<1y>W-H6;>>cw;U=QLJbpM1b-|r&r_f!pNoE=X^}-{ zXufVPAuqFDxpP2Pq;pqMIWy{5o5^Ti#@a2rtxIUDq)9)-<6X6!Y#4Xf)OwE}Co{+m zE6?qmous!p)5+}a*9-9YY4n`OkBq-3-GN;jf5df&uFTjrKM1Vm@y%R9da#Rk0jElO z!Cb3*SH}K4a=dUY2a~>P(jCdXZ4%GSWOugGI!!ruagmK5T}q<=8D#4^vtoSnM%YN1 ztNHe_gjNF4T6y=LNoMKH^1*sz?sbnJZRSZQard-cLDsJ`=ceDd;BSMhX4TuC<;h-=!$8@fozja7!(#N?_?+%IGWAHxdu&$qD z{86@z`@Q6#w^e!$Z*%Jw(o5Xm*2knJUNa)B@wT>p-(&i9E^n*4mvZ9t8s}W^F>U?Y z+p6xOw+%##y=|6!E}hfU4`Sq%p5W$@P z{gq^YeqU~ox_@+-@!!u_6TPi7=k=J@dLpaN{eJVE^nI^+4hxiy?*6K)>oG&$?6>Xw z=GPf^d(tW!z_#~H7+oJ|gFUA0rX+prGU+oVdA_*qF)nk!W18ZX$BcywJ*H0n^_bU6 zsXV4ma(YbPS>!QwGTdY8wa{ zc}&kt=P_QG&ttrBxX0AVCXcC;Pdvtwjvix4Cy%kDk;kllCU{JpH20V~N#`+^eBd#y zvqIL1>d!D$o*5mdd{+()Ii_`XWl+dt=7C`z<3U$F#*+6uWgl*OniMHh;Gh1O$1Lmm zdrU{q>oE@VxyN+piXPKCHsKPIOcD2i;rw_dI5m{MfziP(yY{H@QI?_qxFu_h$b;IRqr|!!estDDfsr zp1#3=VxL~mIUi9ftK+ml_|WctKo zI%yA&vE-q9J>oa_W?#}{+Tn_v*4?oCam~F8nqBU7ft#}8ogHzKfA?cqLMuA!8C#pn zC)M}ht)l*#Xf5{OP5Nw7xA}KKcAN1kr+REI-+PPCXB(ZpiO_muZj$f*arV5DsGY&u zsA!$|5DUGYaQ3$`c1M_V+iZRL(HjhH6lrs|z&3ZAneReOv`P5JF!k@Bt2AMFL{u0T zv0D6ZYV0mtv){RMx+s<#ca!!3TxT23;c_mg>p>T$38r3PY~mXc8RHug5gnrqjERT{ z4bTLHXni{miwTJc_pRnrrLs?zYQ95jR`(6n`TIsvG-7?jW5fJ~%TNP5TbFh>0z2Ig zteeqB)gSq)G_&J1bVg?_wEH}d)7{ST$eyzUip`fAoc=0=%}8g`*OzO?1SUr7C}Pq# zkm9Pt`I{r8E7v9-mZ}r^U4o;(I%$bX|BajoRTHoW*uOMgEeH3~@%MAP#y066$*JC@ zW%E*5?&Ro336#zDM~K2wS+?ZJ)O@^DWu&!nPm^9r#)6u!b+pUV>VNjbgler=g{{;1 zG3g@7Q7eh~fNgU)zuw3!tI+w~DX~UL#%hmuf>tdpcPht`RD2>d=!k|juF zWN^Ih(CKDxkkDg_)lY1kIa%gBr|l~!>&wXm>QlJ29BSXsIV-Ec>9@Mh`|R)1`UHGd z*k-$UH0d)+a}pSO?Ynp~^jMRASu%Ei)#azP4IDd#^VJz6jck*|RaZbnXs9+I1`Bmx zjeh{Gz8WM^mpQ#^VS_|}jEK?=*9Q85TLp*s}>%5kli^r47ehhTw5^x*$aV10Q9hO5Vu2hcWe@~{p2y=za$<7H`D~Y(PR|_ct1yAJgJm!hA8e5JCQ{+{gQnBA zY;bN)b#zUq^)&_EZx?UtJMs=aVOE9}iG3htU!Y1S?HXow6nvkbh`=RYj z?sUEMm8Ph!O>K0`ePgHf?n%5eSSJCo4wOY~7N`x2i1r<#i}bDL7Zwqy74BWCR#W`1 z)~r<3%7Zmg;%}4?iqZP{YXZfltXSe}{6%D`YAs6DYA*iA8JoMVC0G{|5^Jxi8xHg6ezbe)JD*NaogT?Eos?t^Sa~+0iHBsR< zt>F_D9TR6P$jmpjGCLcygJX4p+GvV0>GOJYJ^m=`u`XMVp5c0jsF6q`2(5my)~nR^ zt5QwWd1QESoUxwMnW}nduxzo$PGldb)kcQtgbze&qXM)#u|uMZ@T*$cY)R5pRQ0RE zg-N;!_#o9s(pA)yR+#i1q`NgqQlmh@?2^Mn_1WBs#?cKP=BE+kmS2o`zKo94g=(Yxbm1{k5q>qL zznJvXWV!n!qVLV|%8!;_e$m?CFl~5@2Fp9YA!3s9L$GaL*W;e<)+6OW+{$$~)P!n>T4v*FHO$SHglXMQQ*Eip zr2kTOkuHhY<~ZN`Rjy_2d1Cc2%ul>=kJ3a9<23_~*U6~UJQJDp&*d1AgvuNm>>nXc z4)D^ZdL48BeOpa6swJDI>dB?4x>!fhq-oMumM!d=3)Nz>Z@kq4t5YJ*iv^ZeEN)^V zIEd2d!ZAZf>LRt+x)T!z4eZs-W6Rqvy}n6~Wn%*;N)-|$Uw8zCMhp>-t&8!iWgdOs za{2hTd}jBohr*ra?r&WpRh2`JPCVWuvN%^;Y_&|1CY5DYtTCM~JRmeSP#YMhUzJhZ zS@g5`GcK-cTv`1ss!aVI>Wlg&R0w?)@_qeJ9QhlIq-I`A4!+}H4@*|#;3H1(kP|#) z>M;i$IYE97N^;~Krc%>v4VFy9!9os7v&dzpDl*la6KI&4!$Ag)OwU0K2SYgcm6MO< z;5QEHak}~(bmqvGO#Q)>frHWfAvu(&!Qx4wa;3Nlsa)LaZ{2WK7;KzpE=zv4)SquiY0wG_=oP z0|)IWC~HhFHh{afXwtkx3$Za$htp-}bl)+Rlc`l4EaAv4tfe>y<2V?@A}^Wh&cQ1V zA~;I{Wt};46H|qlIwjL_WFRN+%hY+MYI5*52mZ{9U}^_z zDbGO+N6u#vACBD5!EMgyOQvdZ(1H_eW!~=`tmNb`n5VGhr%at=Y7$esIq1p>)^RX} zBl~dBmxCD`Okk0ZSxZT#3Nn?MJ!Be3o?%-iFmEO&f6Y7}4(4#=zbvwmgH0UtXOYKD zX_!jK30`vK_e>R%qXtuDnYWXJf7poqoO~#Y_%ZJ&M}E)2Vh(0AZwXUJnQG1HhH>Nw z4xVwOo<)i>)rEN}*`zg0ea5`*OqrM}!$EHj+On4G9Q?|X6FC^fBBhub%_6^W@QNdK zEb=Qy=HT4#Gc}NTHCb{82N^iB9tTF2yv9@zi)3LcjH!D}g)?=8gA*K_%NE zl24gefg?*ZRfdBgj-14j3z(Y8yj~nxha)F5l~0<)L4D>e=0L~k_OfJFj$FWzcbQtn z!2>SeAm%+`DmU}ya`M_7Twsy>%=??Ek2!dcMH+H&gCh&EWU3WY%Q%?NksX*?#MD)$-sj*CZij13<>H_* zOYY$OcC*Nj9NC(K1I!!83377e`y8C)1jU&*h9k=|)t#viIQW{iY-3(9Qz0DOW0Cb7 zOlOfVIjGEm9|z@F zIXK0^X%23(WD!o+lq1h`aDju19He5O*vFEWIr0G~Kg^LiIPwTnzcBAOQv*22#9F>! z-lv=(H%DGzk*}F|kqcIvBcHM4Rt`#W(2#jIIB3j46Ao5zu$i^|%+wK1*NmxF9K2wW zES&9m4n{L?At&g}k)1dg&%7^~mzje@9C?_P{mIlC<{3HNO{NNPVB*LM9Gu|*_DvE>a9PE|ZvdBITUULw^ya7x# zV`>&tPr0;fS<7>#wsFvsBU^KVXbuK*(3XRFtmQZdO*pvCyl$L)HB&!xFo;F|=AbA? zwqfcCQ^z^?I~@6vBfBw`h5hU-s~*RZ=a@>tfiEYh#z6oFvpCq!!4=M78Yi#Ak&QU{ zM&`|6UJB-|WL_jw514As!AK51=3op5msxTrEBlG5iOk!}ktw(+Ynk^i2a{Q(08@oI z_?#oJu}R06D$hYb4mvQ;kEsout^@}fj`ZgsKTB$vy35pTrgE`K=h?t{966tZ_c-{F z6U<@NA<{sO+|AS>4jM^{dG}do08?9-3S{aOOJ?NY31@VLsgWFf&yww#cby}*F|~u0 zjpoR|STdA@UCaw(YA+|q!qfrg4PmMr^VYML3|tePm>0mjbDZFJ7Rk(!)i@}@lBt-= z!^x|%@wEn3~E|90wyf@*@uNa4?y*bYbc= zOY+AQ^?xzNpE=aeV9ALr$zRjcKVj-SmJDQ(x=hVxDwu;QESZUUw>db#yjRRy$P|D6 zNS}(SoGiJBso_lh$&^2*zDM zD#Xf$F?E##zQ|l&9IV**alp6Y=)1DWEl&3d2U%H!Zzj?Ah%ZOs!!|txZfVH?)4{Afq|X zd)dYd>a0uI@j-U{oNfEC?HOiBvSTwF+pyyzw*AOPXLcOP&n;ocGud_-`;E43LtDyu zu$))$tZ3=OR`>k*ik4pN<(xO90ka^-+=qF}nV^b|>)EL1AQ!VSgF`;f8vSv$ea9hh z;up;2^iN-(T$bHybP17|B7_>A712N5?^s5O$wl!WR0hIE%Yue^v5l<>J~=H ztV<|T3j<}=)j(*Wtz8iWpL7=51Z#g-PX$72U~7L1A5s=Z;w*F*EcC1_^zE%>Kt=F4 z3g~?x^rkE{OBOm!)*XoIV_4BfStsJ>3s})QS!j){0r>eIKMx}CDxgP!egpakKUW~| zP#|<>tPwzHc&$x=(6h17RkpT-^?g`Bzz@D@Ei{{%m#Is=^u5A;?o^b_psA1(APEOaw1^oFdz@v{zo(54^+2G5@q=+e>oB0< z@IXJ=LNCPH4>6 z4)Q76HeuT&e!$PR^Vuk6#}YOYY%F5q9)A2VHXdMO8-8wEHfFKo6t+Fawqw~C!p1G^ zmtBc>Rbd%#UNgP*%B6_TUgoDICw^Z?#!GPYzJ=8edPc_T8mV#ft+JkOC$;K*KL+jZ=B7dsxp z#=UIpY#S{li=wgGKr|UikZKs(QUGgw#f&ZmEk(5UGMNa*SL|GvjN3CxL|V-;Ue57% zXWLC|T*ZzLas2DCaU>gua*%)6HiwOW*@*IUO>D&3z>E^{?ZrWsvLj}c$nhACY!*A- z&$fYV!;BK1W5-&4d>^)bz_u;e_?V3v_KULZ365nWHWKW35eGq|K~X=)24WHtEe9EBipju?5*bIc-#Pp^nk{lfn?=U??D!)GxsQ$e*+6SULC~O* z;b&VhKY#|79MQy*fi{SYGPa?~CEJs1U`B~-&++4nImmqWdxagZVB<=wIu26Fwnn!7z_tk6 zUS{JBHr{394i54j+orLxn2r0`?+qrpfgSVMmd{3Sb}VGuQ~UsClqe~fQ6ggi2YHVD zx^l>)*zsg`T$gR9vF#N$rgO+Y*l%NY9KyB@*{Ea3V>sl+Y&(bj_F%`Y+3`5GVMYle zv9T@tUCBm>pL>==R$3+Hi|=HMv0y)NhwjIF6>+HB0 zhb&~<7Hpf!wrknAh#hCJ?NYXV&NlSENixhRk?{rFda^N&Lq5TL`23(C*R$h}Y&_3? zNAd&R*|7&3m{Fn!)?>dz*>Nb_=CExp8)tDWkFZ}o+Zx#TfrH%5#%Ubn3^qoxF`tcL z90VUiM0**J#)oWt#0F-R$ZsWw{FEJk=Eq-R$8PNSGTZKAzt`D@Z$Nq+GfHHf z%zj7k1DH`F#}7HkS?q@yC34(~9slHz53{iW8~CiDAYZXDj*anb+`tBAlqkrpYbgszVXPmjQ#L&OSW0;xCaq58~?EpWxxH|Hj!=TvJEpzB;f5F3uctah8ZO?rm*9V{6L(IW;S+W z<3f(*bvDMc@h$t!=ErYg+pTOYe{NClL zk7UR9+181TP5FT_Yy{XimyO5Sz>E^baw@QKHChX4`W1!;BI+Vn&IK+u83&Hjd*U{n@q-8z->i7cA0iY}<&9 zec717e)HLOFF!Y!4L>{9u+fi02HA#D6%yh+wqZtzY?x6Z<3e`4h>Zd^_TmT5=cpS} z0a^aHA{6Hn!Fr!3%i`X`d{qE*iFr!3%yRct?{V=0Mju?a@qk{!AC!nW=l@=~@fW!tN4tKsJ`qeKrBvtwTlvXpK2 zv+Zy;X0ovh8$0mhN3(4b+ltwk%Z@j&Z6HUsgl(U*ff*&D#dWk~?8guEVZRgjflb(P z7~9Tf+qrD)%Z^vGZ5}^2iXHc7<8OAvj1n>I&9h;i*zaL>e1~n^)j1t9iHT(U_jzw&HjYC$jtt%V-Imjn$+m3?_ zV8?ga_9)xR*mf-&2{wM>=Z;`wD2IH3jn6npGaHyuBFTEO?E!w^4z^)NiTpNUM~ffF z0T$%=GY1*Xj`y++GfL!lDLX#Mj-Rt_AGSTiktNx&nT>7OaS_{oWTP`Xj^yW-u;ZC* zyNvxtvn^;F*@nh;=-h5-tP2f|_2H<>IgTneu4kj3W4xG+85|OmMwG0_+4dcWype<4 z$+mgyhe;y}`71k~%8r;cBFBUHfj!voJ~qzaAh)yMU+nld8!Olt$wAiTAec0w$j)ZJ zJ=qbHM&yV|BQl<3zo%>?*;1GYC1`g(h70X2BrTORkzgM?G9p69GsIW46xbnXzF^p) z_Ml=(%)cleP0}Xr6%Dty6bBk;`+qDLS+Os5CkA4AVNP%{rWacJ(OEH_Xva{UKN%)K z`-l9n}Fdq89@g-w2XG(qhkJsGd@x0L!5iCCz{9;w6#W?qQKFZW&1QWOaL<8cy) za6!c1$f&qB*_5`__yY@K!8(LVwiG4&_3&zwKUrhXaab1+6Q{(wm|(;0)+J<+@RyU( zQXPtSnjfLvxXnRRRO=e@w(h1M64SbtOyt=0WYVKIvT-vTx3Y1&Z6vKb$+YgGACh1^ z<+>n2nVmtM=GTN0@l-Z3_Y)L_hIzm0bE?!4hBPTSjD1eY-2A_)V6g5;ZZ4(hDf*XUZ>P&tya@iYBEL{bVT$>Rbx&ASLVi zIb^*bS>L=QlMXsoN&mf^=$-*OmMn-yx7i;K)n=0745buUU?IGTm2FM0`z5?oNk3Iq zf)&*7OX3Bf)hP}&bd!?(I+?wkE_nznNOe+;_V<1z`6{{m`?p?>+i8A0+0+z`(bW^F zN?_{aXOyx$BfkoEdz`KB^@fuFCb=L6m`W%R#o=L#Grba@Dus#3!mQ)eiK`LkN2NG} zipDXFXFoTv;%vg)StLAqYzZ*s~D>>jG|UiMY8VzHQ@5xci(#4OG7 z5Ty)n%I{-=TN#g0vYsgCcRnfOu#w&4l%(Ivb*zv+xYA<--20oMr2S5&?bp`tvpc|@ z=11$$3^gSk-`{&FMcGs?>}vEwvX4I0D<#0HN1@7hMJF`FNDY@pLMgx?xiosVy>nTm zI8-Uc!*c!a-6q9qH2w)nIea3u<2hrTx;2fnCXUe$&ZICpy!IetV&E
U&92$#qrRJ0qMOPFIs&nwx7$ThK#*)Pk|Aikp% z#BaKlw=b*OG*<_dNadKH0*4=9KR~5C&_PQ)$9Zvr|XZ^hL+kVM;iQj zKBGU@;W2c32D6zlSq+zADyG@n@Cd#hHSk|*{m|M(*Sw}8&zyn zv(eo)QUmBc$wD%mFUwFmBTB>f?ra%MF|;2)_ex#5+G4S%K8nJ$6C>siw@sE9a|>lO z!Z0Ek3DqqbI?TwF%~O(LKBA>+|NYyA+kgKRTnuedx6M7|Ab(3f&YoK_v!yUKVKbB4 z@sW0Brl&D-h>E8%Ql(I`+N`iAQo2uTUgGn|eSY7Zw$oFML{C>1M?#jN$L@3_UoH)B^Hg)wLvtO)qX;uPRV|ctS!6Ei}{=A#AT9z zCc|huzyec*xKf0}WDzPT*L|(}%4A=rWPd*_iqi)Bf=&1>){e6`VF+y@;rzP5G;BQvU$B4DebFq%-hOC;z+7sQeJ0ZM9Y zZxpEQW_KdBx^xh4FlHotn3DZZxzX=7J4rg1zEpe@f(_IqrsXn*2wNycz>ZEK14>Zn z?)GM)l6f7u;^j>lzpIhjSxU}dWzOEMubFRJq%KASiLqoLk&KxiANwlh*iu%2U6Jdg z029HwWElNTBO@%O0O8dNuo-E$)XJvzOPZ=e^x4sNg@NPKV`)kv`_rR4e|oeF+xq!o zZAWo?`SP$P(E~HB$@Z_kbZQYXCEG2X^7_ruxZ1Sa-yB^hFAg;LBlSVw6uQ>l@91fr zpv?RWWC46LXc_E%V2|KF&PS1Ls)l=Gx~w_uoF zhg#n}`uH%&Z&Q+QxLUQ4dEKc>(g`wY z#hhed0X2hsZ?=)-IZE~dnY|#`*px8qyI;xrrp#JQOEqX+Y1CXn98nU#D!*v?^}(YD^lVShc@|GN&TNpUD7~vjPXUz0$-(Mj>xZ9F%28V zX=>H%F#Mw=E|-am{4`YU>>-s7)-}x=$XQ*KDrMu%>aFDcA&1vF=4>$5SCZn$EujZg zHaQ%`wTD!*%mN;z%6|M^Rt=UOq9_f&I@Qb#?=?8RB~@FbK5G!wN9YF zk~k<6m()dRX|LO8%|nEH4=E`k)CZSr^ExrL%(xdm-pt zb8M#Bq+Vl#zR%~NUZ>GFWzZgaHF{>pm?BvRlbyzVm$7je8%MBllx?KOe3z4j#(XEp z>b1%)1I!3#n3O-AqG>y`f{IqBVJCu@8-A%j*S`e>50mL?{RJh((D!*z0vsGJ;& zMPt4l!A_GP2K|jn`n%*JsB9f}_swzbbiYqYe~3(9%9GM~C5)6mt)#v;2WnaY81c>V z#~rIbUsqD^EK?U^F@&Rg{)v)yYq`3YObP~@e3R%H7bCBKP%>A`mAqfu93K|IPl^WO zzFDbDzztFURf=-CoC&?~jY7wMN0YP!jMg91gm=QZD6nh;o$Bc>=Sb-;O^Hw=4c$8C zdiyA;Z<47ir-l+clH%JfxCjH8MgeS~q`yiofKn7cZJvtMo7AI~)DOw;UDbq?u1~eX zM$&gs@~y*6z$Vo4>dmCns$Cb2mWZLQ-gW)DDeA_L^8%|6KmMJCpSC*g~EdisC8q#u^ zyBWtTMTi!Nz5VL8Zic=0!dd!fDB`9qhn=55}NxOzJK}bls}^ z<r{9Tq9cYYN5ptJGdu>JmL! ze*cQ&i~LRg#g4&|zDi>IcGuNU0rqN&C9y==sB%Gb1@92081~h&s~4kBCNW%}QDc;X z+*l~q{3=?fREr649MIvc{o|DUe;0}T<#o|UeO%VsFai{uxejMNPdS#-St zdnvh(kP}WT#Oj?($Lp1}@5@Q1%aUoB2#d#E8J+;tKl3StaFsScgVaw+>NS3!(FKq;zT*u^BVo;`+S>{b8nfm zAf9j@O7*akbsw3vh>kID@V8y=z()-|ujD;l<}GW)uG>ho(fNJ+j*|Omxr$ZL=u0Er zRzVA=LXLj)mrC}7WhGXgYCYXsoPJf3uP-OvR@@=;h>^UZx*pR2In9IU&W~^?KwFAa zyZ7wQGFmU%`%NEIhH~qwl*hiWef2$2tF%Rr?Vr^=<#4Q)4$jkaF~G8|fG zBc%wqaaj0xsBG;*;p@RMRJEm&{%E;k6wxt}F10sF$$O5heu^T|2tHkminpth_dmJB z2T^6Gp=VTo97Jez7jnyH+X9 zZ*ms&aI1cY5O*ns@XJ|J6sNg?;8L^vA6N1g%WqnKEb7=w{<4zvA34WMvwS0eprpP+ zPH)#%&6e>i>RY7%1B=DxwQbna*|h(udPC*n?w0DzWE-C7 zp%mdsS%iW(^)}6fud8JJPVPz-%q5j>c4bGHtZQy?ItLX)2RPRF9rBDf<*~LPJB>zf z#l~1Rwq;{`+enQ@k0T3>MlY6YT~Q#}NQd*AlL`i>uOkb3$=0>t#Q1bpMXM5Rr+Tp?npqov|yGm|Lu5Df0mSiRP9XAsHl~Mqo zocKJNQ8ze$Q*!Pq7j$9Jp2#<7^Ec8pQ=R1wVYeNZG(~BXK|B=Cs7b4pBHSjYylA$4 z(56|<)=}~vFPCz8Jm`-F8lX=d^C%lD$>+$4rV)K}o^&fE=Sgyc3#VgZ-puF8O4W!sSkLnl6|3EvwEO$rlnW77J>RkzPhmAu}SAbr4Sp) zS&-N4H&;Jhr{r8F*RZnISK9e%-L2%lOXjYenQW|~%+6HiPblgCm9x8QYLLzX_lGm` zzoO(1r0*toTB_Slq|JDK z-Cs%xev&hwz`X{dcw=2>ZGl|&`HexpIak_KNxFqx;fr?6usvWsCGQh5Z$YE$OLtQx zYpI;Yd5w%CgG;aj9P4WCHoh0lCy1j2`H)S%2KgW*`3-Wm7ucn4ux_Gc&6AUyM*}+s=hjNj{2VxIgJ#iAQF8W{ zb9YcY;16SY9KF}H$Al&o>3$$=wV}7&btcMer96dl9uzhQ15OpQzmoPT`OT`PTXA9` zS}U2k@6f1}V5K~>ofmI5^~q8tXTJQ+S<#y6rsyI^>v^=2eSlo`3PKU*4P+~ntk20M zT}1iZ?3}Z|NXgq(uGskj=d!Ttm83_>Sv;8DCORFSsx>Wyj4uc-qTeNrG_V&71+Wwr zb>7f&_b6pLSuTKHj^27Ljr=$#E1pz}v96poT^5?%#aES-r^zYLM|aW4?vIqDugIiD zaXQ`6*|2=COs{X;I+%GLA{ONQ%uXdBD9T|n)J<7oa~O4cEA zqI;#5gEa*G)RJdzy9X=9*iaUuytO%T?UEg-B(IZmzL-8cq1Vk%&+U}N$H*1EG@R@- zpAIo4J!@3Bkee+(zGnM26Wbz6sVA`w_!MBKG z{P;2@`?hj9m&T$Y(w|}H-PkuPsjrl&%UgSDF5UTnk~}28(!J>PXIjLt+5whlm0~mRR@9m!N}rj`YizvuV!1qe(2lL3y@9DIOx+3UsnhlJ zhW7cx6wdmN>@;?~ij5!H_?eAgZ6h^y{5x4_?0A)&EtT{h(u^#23^j)w^o1kLo|ISm zn`C<0(UM9$tpx}{5*qo7C!27DonvWJccnBx%U|b3IIXnSu~gEh)Da%%}EWK0OfM#*&Wej3JH(g!i=xzFya(pP)#Zr3^frbkmUv&{Bbw9aI^tOw` z-bA0Ol^Jy60ZKVOmb0K|swimjG?q`(>CHjsaQt$m6bI)n1vXx>igvvsrzxc^N{FS8ei;uyJhRK**V#9zso-!Ih$k$P-vp?G4%Trza8Qj~!? zycLlo&C1wH+LngiiC|+iW_DwqQp$0)TowiH(=A?8vM!KWy9r&SkCh@!mPIHIC4!A{ zS`TaV%~mOiOJ(9Rs{1rUg9FLTNrQis+=Jy>S7GOS0#|R=hRh+4(oJ>U!o%d(uZnNz zp$oGq?R0IRk@LNk{Ig|#u65b_ChIFj_(U%JfvH9)hu+C3r8K+C)u9(UilJtjoloxr zcHR=Yy;6){loFK4<40BYNO+coaEB=Q-;m#iiZ;be>*mdI$`&R2@j1K% zZMD$-<#v{mes7t+Yx@rs*IRhGQh<$e5WrRf*m4lG|^g@jL;nG zqL{ylj>5|R0r{X(s)yuk>6zAz**+gvDy0}DzZ&@=TA6Az*Ka9FyUO~Ytn~|tRyY{k zpDVeGJs(Ee($U5qjxAE5$ipuA3!xEkKXe$cWA(b$zzSWadf?9N1k1_lH8I zlKyd-zPp|9)qE`XSIQ8V>jKNLnqh;XN*OMY)j+j9&P_L6HB;Z&T@srsCD>0ci7Lkz zvr!QznEY#Oy!|@4bV};&(RSynG1rvH+KKEm$UdEonQY8rV>jDK4YJQ63k|Z5lgp$e z;*T^2Xmf-}OsFMBwnZB<-&WE(QhEt46aiCI? z*X1H8rQs{|TIq&xgZdaH^=9(>P)rM(?cHVu@##w9LOIQa^>nnp;}hi)CG8e+dJ9AK z{>DbXk=h%Tv{U8OR;Q~vn&C*jIcjj9Qi5w`2}(J?shXL?HBT$4FOu`Tq`_~0lsOIn zeO<{sLr!#FAZjk5{zS=nshrw&T8$Pmo8|n2lKyi!$)$E*k1nNgYzg^SN!>%H-lFxp zyLB!<^%-RMz3B8s+8Ne*-V60caT27v3s5#n*X%qd&ntFq8y}%hBG+xReUt)xA?H&O zwYaWhjy6#8_LO-y#`hpr)Z--mws~w!=-IcUrOKq%ohPG}vW=798sv#<8}1HD-Y4Wv zKvi8dN%y1C*Kv^ALB|?{=}P{m<;vK%{dkq}-WW~Po=QosmrI~uThF-lL$R%j7^2iE zMcGjnrCXaQwZT9vh}+`~5#mY_o|o%Ic}jP=73nf1`H}LAT4MJHLy1#HDYZkvweIa!r3mZEMO{=Itn|shNevoTkNx&aypuxC0 zbM$8mCG*`f^RRSpw5_9&Ltk{FQnJ(JdYSHi(AY?Z?#C>p2xrJ56w~(`ZGLqe9lx)V zcw`R5foLoihz9G72FX$q&zFf)ZE@E9JBySe43leQNdt94qV;tAlacr%l+0hr9g&_H zznl#zPF6~BnwR5VV?*L&ptK6CQ}^iaR`l$b+?D&EQiOlydR{`O{Y9e5a5!Y-e)$+(EuSXW@;kIHZWqdh^rAxDCxhJ zt9O1KDKsOi4^@&5l3(SbrYJ4PkD4vX2}<4xa$a}0PhTcg&X*0+(gueN=O|_PK$d~d z(vQ)Zccf44%UF!8zfwv6p-i7v=cK|}m$P0s1i4Kq$Vaju6>aT`s|G%-WbY!c^D1yp zEI+SgT`AXl>Lj~V%sWcjPvxvGp>rOZX*Hc=!sJUO^Utz&sZRJ8kYe+PGxyzoRZ8%Z zoaGha)YpN14!Kdu^ET6Up1R37-z7BCpzNxod|6I#VUlJd94dXFlJ+jSr1NWn33H*w zMoQAx<+N6{>5vSG-crfGzs#TB%aDCCaFSAta#@*`*yAt(=f0v{mCPs0rCt#p#oZS7 z+qIvP{RsK(Du_iBTbnP~0wrrNIk(Gdcpsyyx3*Zx{h?gp>~El?*g#ry>#{rAiDw+S3D|JygxY%{*_gzZfhh^S; zG}T69^|+FB1DUjpPD!9Gskrsm9L{=K$-TW?#681N+7OJn)OZseB9rO+>jR|}U&&Hb z)`hU#KjXo`-zw?H$@JB<#(rUYwjKzY0@S>bN9=qzdu?pJJX z_Sm|Rod%Ti*(hYAn2l1~NDU~LlZ6J9Z^(fb88XV$u>I)i_G8IjX&;oeT_qhwh7$sK zfsy%PyrGi*Ryoy`)9u6eeEx8KuqI~q<2F;$zbvZ(9Mk1I9(lZycA}i>{29(Z>r5r- zRGG9I^XQGZ6Di{X$$Kj$_*<@P}UlnY1W% zUyZ?gn38vyT-Ifid65Lp05`Z#RB~S;zf&cX{0YAg%R>$3bCt}q?<$#Jl=C{%b$(wdXOUc(r(tG14k_G>x8d9xiKg&Qk5 z`^%i=VSi&y#{R-qO7fHBeBQ84pL^J*K3OT(#IOSt0! zdtG~mm%XP_lI`TYD4I*_rb7wy2*UN0yfK-#l$A_85j2Z`QziA6GIjan#kBl{P6DNK zzf2vot&;p%S-IxB`bpE2q{HRv)-~Q3jp8E(vxQ;0lFfMIb~goBV`I!KWx)y)$-n}~ zu?8Vi9BV(a(-`yqY}Bw(%SN4Tq{f&V$U?$XpaNAA;S9C^YNZ%|$b%K#=t3V_^2ST{$$ViBYA``>ed|^+Y#zw4;B*tE7_ZA>l;K<(zLvpke79C|kC(YC z6EQl?1J~A(2#$Ljrzq*amCK&?NQSV7gJvBm_uYM-*-8;+=b(04D*$adY~eMkVR3GHK5SdgC$48;#K&HJJZ$os6+mDaAs$;#JeJY0*H)ZfWekpQ&|^ zR!Z=34ieaxQrW7HPST=TXLAS73Z(=-xg@IMVbZ$jeJ!FT_l|QtFH-VPlXHOXs0t?= zsmXUQ{=Qzx{=1y|bgSo>D!E6={kq)g$#b?gPbxXTmvg%?&=7SlV|rCd`;VN>MgCeV zO2@Yvy6qz+?`%1_MGNfJW9E{I@0GljIjn+R(16=uY5APrJon~rCHK2>TarheDI=dt zw$^pvj+FDc(q8q8_M0wnaSR#sQqsRKC%GtfTcwfg!AjmvGA}OQrG5*2y2qk4C?BU2 zmgwj$b4kfar5KyaZ&z7Ek~Y9*_;%e+$vsBqE?E$xdm~)qL^~;&12S{(`XJp4fHkW2 z&DU+$ts9kKo>Go;WjXSZ0|sfWlJs$zv^e8n;X)fdZ~ zud#vZ)8#6WPnFR;wOHN6A9N)Scu?kZGd*C3?F3 zK($xe8|5mHztp)Z_kAU4lblxEnP*=Vi8ihtUuyKl7Id7l{f$zNpXJ0ChTR)e|4`CS zl4-lz``1Esv`#a_;7s9IU7;T&3sBh{jn!cBdxlT6?n?TDWqP`XJrqtFO`K23dZ^4= zPHT72x1zfy96ie6O7c(T8lPo-@K`1Dld^)%s|zhQvU;kL^JY1<`F`g?nRAq+%jNRT zyhO^cBz{)T;o?BFX-V99D|JLk+)4f_%(C?P044M7asl_spupovbNkS8r5HcTV&vC` z>dc1vG$rYAay`qqz2RadZ~q(;OBeK*OLlHhlCC3@mPCS!6aG5qH~76u<`d*>E?7(x zspd+Rr7&9B{&A&(A6I+**B8e3+iIdNrF{M)_rBx z{BSU4X7oQw(iw8$R@%3DV4rgYdti;6F5O1g>zXg8xd?4UO~@Ry?5*UzSAK_!=>XvX zecPGiNb4(!2g}4*d1D#5JW5IGmvgzGVM&u?)^&R&YmLlW+`7ikNbb%`;(l_S&axS3 z4<&O@PI7*ovy&H8lCF}Io7ZfaY9prPJWoz&Q7Gh1OUZqqoY6R8+}Vq~TuFP8Oj|z}1V?s9}sK z8g?vOTi2A%>P2=M0`9{`KQ;!iv5sw|hJbx!p&{TGSqK!+o$G!)tU83pW zbULL!Xm0A;Kq<(x@{5*n6Xj?nZ>5|8?!DM|7kh3};wb>wjNJ%>a(4HK&>>uOP)zndSd~(UW96Eb{ancbO7bQ-2VAFe4O4QSBq!K?e&`lT z(l2w+)$KZ*h6bCcTzx9(CU=?ijp z7f?w%)@aaaSNlWAkR^H%`&}Os@TT>2IlDEhyu3X>`#j*D_1N{j~`kUpnm(Z2!bXE@?VPO>Y zIZEbJGJTFBfnL(F6tfW3L z2kO?eC(L&1c_npknYxH-nQOWEJ4)W;a!_SNOZD4Sp@wW zXuS`0K{LGRzbfTJ~89(00{Q%gHUHGLIx1X@9+A zwsN47yN5hHSs16K9x-#0bR#A0>2gi4YVbGGvdYW{;cThoUoO}9lC}>mqn=GtGWU@) zyfhXJgqmWw@XMgyRZ0E3oM`&+a10sjrzE{xuH5A~B={VnX zv66MHoMif*^*1dwO7}=5>v?ioyVivLfd!5J%-zFNlmgVt0_0H%8;QO^$$6q&r3-Lj zxj77Wt&+7|F5tGdB4Kt#?^05KD^r(a1diUQPV*N>P4dT0@-;R9{JdQ9MfJFV!O<^& z)0D@0j_fr0`vMy;vGEEUuh~Xw^!E+2(CF{Ka_N_~Wria!KBFkw5C3}QzC=!Qejpe! zHTX|T(jVncN&#J+9Wgicb{elsY8N@FMRcLb=-Qxp&{c(!x4T@|X&|l)7eZ(`>LGWe0p=uYCK*^S|h)=`JqO?S(|1mN&l4Jog!L2 z6l!$r!{1xUTP)`=y|c7+%V-!Il&pQ_>V%n^QRbISQpvhBhqTf$A`Vr2n3DDW9MX#A z>SiTAQOSC^%$gStm}feitK^)S11Fu&V$`Iol$^WBoaMAD8@EQfdmOhb$#;-7MQJ2T z1IzC6eMCupw4Cm|`hYo|{eqHnlAK)H6dpHwv+pWNi)GScx@(!vWNtPG0lrca&y{mH zpLCQtqWPPW^aeS#v@<(umTUe5T@PxYtQXV0cB;?D3tX)vUy?(LX&bGX&Fd&hKbJ`h zh_rE(k<^WqtOfGmirwmsG+4J%vc4wwEYhV*D?$wN$x8D5+zZgMj&3EEA`-bXHG zEdBAJ8C{(5ex2`>#Qo&f zurf6)mnq$UDe3o?(_I*fy9O7EC+hlIPs_B$p?DoG88N%FJ(a|kT*oTnO>}=C9Unmp z1sos2>zV9pY;5*BS+xwPqqTL|%T340CYzd4C(G8_7uT9veREStYa_DLfbAx1j9_CV z8>4L_HDJ3LS!lra`y6^oxcDa2OlP~20EWVwKykDmvGq#+f?Pg*TQ85M$3+N@;c#T`oiI{6hCkkUl8 z!8(63j3$FmU#?9oX)=}3qe@|RmNTQk@0vn=QOVjMXF>k}UHwN(2?Kt*40LtX;XS1+ zV`W+L{5573_*%*Nhx{gXOQ81Qm~nrzKNR-Ygw2BgT`58rIoaKktA7y-Ch3~w1Le9` zV!w#>O-VEVyD6C;l=HuPB1(52uSN|GQp(UxPJKS!JVWM;UqujY=V&$?w$3x?o_ZPQwmeanOpP*2M%HZnrKWgT65?C!=K@`w$cA zkEK2l>{D|{L1yYCELDoLn_NZhcF`QwJX*>6jjR)@+Fs94q&eu=va>?Tf4I!w-&rY> zS!(4)N?EGpT3JB1G&-8a>y@mpTgZ&A&%UK2Og60(=>oGk{MjS!c=_-Hlq{ z)pbT*Rf=$|oba-?dhZxI`AErqNDj&8FXODEH{UBo*i%k^U%Mk@kBqEN?ftEkJ+}*?NltO$ax4n7JL4lo=oL}UNdf(SXrwCAj zbL)W2QwsEyToP5Q>yOnc`M;J6p`12VhUnAW-6LJ7B)?WB&v=mB!6xq-8%FOc%Tqpi zF%4jaa2=atsoBYsOZRs$Nnu|0?Uf z%t?M6Y3^JN}N)J}M`_Y+@8cMR9t)&0+Kd zl-y-W0 z->c*tD%a@@M}XU%F?O2PS^v5;`^KZ6SB9G{0=$cS-vmUS29=0s}Qq(&W%!XZz5-Trh6Z@ zSJGNVVo7K1gzc>4?k;DyyJ^}(N&2%~yE165pptd8oXuJ84UZ|A@0HV=^|R&>CHIH2 z;>=X1Ta>hyb~v-oQZhd%XLezRVW`WMw4cif&e+|$MajF5oLpCT>p>;wGdbwVN%neR zV{~Apk~S%4apBY?9b;^Mw7g}~uCX!RW?7udF(XEf_07UMMcNG+GjiiwQ!MKvvePK< zCv1Gi#usdSWgDqc-fzf4qrBV5h0tvj=%@RaF7Y+TeUqsxXo~PB#ngVp*Q*GNio}Mi z*QgO=#`-2LiO}t;0Z1`BLBmGo(X2%~>csd_7Gu~PI*cpcL<1<1dY|9d;14ZG`mj(t z>`O#_HOWx8))$QsHaEEUP)gQWE~Bn5+2 zZVOX~?5LFDGPxpD>@sQgM7tiK3=CBKOFasr)tnzCk!!alwt&B zF$&!EFREniBiFy~qehG#>l;sR0M-9g`5P%eP$@&XT>OJ3MjJ^#*<^~_O zY@!{7wdsa?+Ae4vrp}sc$a14nmWyRsO6NvGbxYh@@jfN>4Ed$l2(RK;U#n_HBZZ8a zK^gPWva{mtGsno4ra&rbv8qon7%AlmZnMiyuqnBS(xH z>*J1qSwW^N$q$m>%C7hX86OTVri4>B*wF>uQz^h6a{XA}(517M%!$SV4Xah8bxNV` zlZC3B7o&~ecGY!#n#7g#XUJ8wXWOenUuR2v;ZRM?A2VCIWlAY-m#fBzRw=kSnG=k} zqcPfHxG0BD=;M{*{Uw*tK%?U9F?B*T8c*<>>}-0^R!Z}?EKT>;%%WSGsmSa>2BWRH zLMg)vS%!-2V?MVk*+@bM_dYQ_55=>-ddZs|UYJhMHULSk&7}+0K@$P5&K}_4Opz z6n`M-YxkB<3WnwwRrm{~EPKjj*L6DW=A{w2hM=zoAHwE%%r8m-K9)O7J;$IH({Lqi zr1eb-)zwjd*|FTM%TBsp<0rBdy}AAIr!;NmK6{l?jwj`+Q8pSK=bfXmNXTzgg#k+L zr)2I@dS$3Wy4v4iI_hK#oi!GzPoOUxx3>^}gYvkLb`DzKL(AO_G#>Ij0W=Dg_7$L; z;rk)b19;*)pge^83up>Z@jCQ#IZ#iaXYlNLKx2S51v(J1Yzy=YVwq+mxa|(~8&Cjf zCSqv<>IZZX(E9K_7U+ApodJ{w<#Q>}RB+q`bRE$BK&ue$8K7tI>>EHg!S_?37|@SE zgAndNplZ0452Byn;MNzY7#u@@-b5^8fKG((IG}Iw#0;SCfc65~6yfTD-bE@CK!f0W zDA2=r_5>gw+|B_y6K+=mZH{Me1Ih<_80Zq9=YfXciFbfLh1-`vo51Z?ph<`&&qqIg zxb*@$A80U8DSSr)l>ki#N&xK%vRX~Nv@c}?(K*NCkgnU~7y^TDb z2(%8Km<9AJ(7r%hg2Ms|11$n-1Udoe0-$q%9z%Rr0u{pTHlPg=%fmod!R<|;N8$Dv z&?!Ja0qqOaX+8S62H`4zHicV1pfF+{4zvoAjs@BtZc~9K0L=j^0P+L92^0Z(6|o!u z)EhA`2YMgArvY_>@5Mm9;C2JhAwc&6t%E0?0$La7HK1LAJ_h;^XcbTdvHSy64pcgr zel~z_Z=fF#-}*q$LHbcZbK$l<&>jf4GtkTM-2-TM_y&P)MSL-!Z-5Q~>I>8Y^cJ2y z3upw;Uv{y;&X zp+Nmnhc*Y=5^fWKKFz0}U4Xs@+6QPW_=bQM05t)6X;MpQ3v!7 z+~PoUfR+LM3v@hCw19rj25JJj0w@l2E6@x1^z#tVUU=d;pr!DA8|V%AegSk0*nR<; z1>Y`1=;wa8RRIlz+W?@q@We2nz2LhAP%UDf2(%B}W&wQww|#-O0J4BS23iDEQ%FBY z07c<;GSCy?I3H*uplg5<@Vyi0qC)z43}^&=Ujlj#=u@C?A=QsSXTa@0pe=#QH>97* zh@~&k!w5G7=ux0CKsOfB&p4pJi|A(tP!XQp3+M>A)dRf`w*=5Ja61&}X`mB;c0(-Z z0Nnv}CD4iRy$xt@pof9>0eT+jbf9;Dj>Z#T0v!yFUxC(#Ti#Im834DgKoxk!1_GT5 z-;IFYK{~bsIvU|70iA=GcLn+n;r0U>0ki<!Knp12n1 zH@Mvea0$mAo7|?kLcOuYLa61?16}Vjmv?JoX9cT%B9|1Z5 z=mnrZ;rlL-g(toO^1P(JeNXrKXj zVg=B12zL=sS3G+?&{6Qc2k2z@J_)og++GDb4Q?L+y#n+-&~!ZeH_#slS2CP_HimC6 zpdoM@474H8NT53SZU=M>p4|!PVz|u%ItSruf%bs!LZGeTdoa*(a61mDFH&?S&;X#z zfVM@rn}MzbdH^Vd_?`uN7SFy3R0ZG9fG&pbA3&?%RycxwZUX8K^fU6$2ec63h6DW$ zx3NII5N;~a1&DbL&{jZxpbzmx1gIav9RTz(+?E3!40IY$0iL)RXnUX=fWCt7y+8x; z>{CEj!}m3y1wbDIO$J&8R0{MD&|o}Kx+(n}hFE$7%?4T@=o5q+1++WDZ4dMde0K)g z8NPb}eFYQ*>IoDBDnULU0`vx+Z2>wS&z=ReH_+uk8v)${bSIvD5a=Petppl{XWs(q ziugVUDuUb3K*!^W&LipPF`!DI$AS6-#Sv~O&;^KZbD;g;I|1lA_|63y2j3c?pWqe+ zIsoWEpx5Dh4A5qH_H>{^xLpFY1>9}~nhLl3fUX648t5YUz78}4Zl3^M3b!ACK8M@C zKs|uUM$yk>s4snhzJS{XKs|v*1C7J8I{-Za`KALsjVJa5x*ooDKsy4(fu2XWWk5$F zmg9lC!}n~U9za(By@^31885Mkw6yEe4s@@!|=orKwm-9lYvfy+xb9a z5$-0S`{8>(P&Ig;0Xhre-T*oW=u@B=p7;^yZJ_^v{>8K9W9VlZp6v^?6VMQ#=?FIl zs54?22lOV;44}(^_5ykfs2=ETpajs@c=k}BL5S}Jpb79j2j~N!D}g=)x((V}Iy$-i6f%XTQ1XK== zU4c$Uxcz{RKr9P@dck)w(1&>9NT9P2?i8SpkZTtJZ3W+Jf&Rp^cL6;N^f=H4KraJr zk8mFVeFgL_&^Vw!fyM(>Y)(Hn0QCcU5F8r<-3qtOfL=y?f9ffd@0G*6*F91~ly$kdre7^#E32eUs zy$ZMdE$HVqgsTQ>L44}~eGRvbf%*e&1#}X8Cj)H^v>VVnh-E&|gK!H24Tswjpu_O& zQ9!!^oeFdc!d(b-6x^-@8V!BdI;z*pc42NZ%IFo zz^y0Hc5qt{CVfkHt40W||f5$^wSK~4QMBzK|mLRV-uj) zfwl%34>SenTZEepG#fGR4|EIM8i8&FS_-rfPaF;OG0+MiAABzYng+M)fqsYEJwUHR z<|l!^hwrOE|G@VnpxJQy9;g!U+uuO%LV}X5>E}rJ_5ykzZi9h30gVLO6tQdvGzMrV zpa9T3pmTw0fgT512=p0bIT+|v#C#mk*6=+OXa~f68PI(QcQerG2=^FJCxm+m=thKl zAE*g#-vIp#w?BX;0Tqs=pM!w9104+H13DCFIMAnfb}Z17V4DhbGu-9?Ek`&%(6jK3 z0ChqR9RPGY!Yv2-5$H6agu%1JF7^_X3>&-=~1SK#E=idJS$L18oGf3TR)T ze}HBnTjMo28U^Hs@Ag17Ksy8V!?Sw;1>qJ1S_QWl(0On>1gIxc z)B^MYQh658h48%`=pvw7fC_*f1lkL+tOPnA61)Y}0Q5P~3Gn?H=xMlh-j;q|1gZqu z0cc&@4dF%r{RG}^fC6ya5$GYf%>}B3TMf`#cs2@D26Q0M?~v*kpwHlTI?zEtmjGRX zXKw_Wj&Sz@eF@*EfgXX|>p)L{?GvD7@cjYkJv{p_P#CCeJNkJF;rakI!fgYfXA#S2 zph~#y0Q5Y^P|AzU5M-Qb7=l_Kw#0quft#{&fr?rfm<5z7@okK&12fhyqp z5YQN)=YR&|*|&kZ!0ij5-iY}ZpwW1?%l7p134E)7j>QuLfSTYo4Co}dZ2|Npcqal~ zh-YU3Z4BRif$oK`1@sM`JqTz8e2)cMi6_ngx*ool0=)p=n}E8(?S7!i2=@%oYd~)R z-3H%JfqDS_2-FkkKcIiWTfPJR+zq$BK>xvQ2+&7}Wem`jU>gVY7sAZ|>I2`sfcgT} z13d}f1W*Z{I25P_ZYKcU47YQDPJ!E%Kr4W513Cb{xX<1?5D3@HTfKpB;k$JlIB*5K zwJY3k`MLErp3NIaKlZ)iU2O!nfk5`9+ZzF$j%T+7T8?KY0ogZ1?+Wxg-1Y;y9M3KQ zs>KtFfyTn^NTBoJb_!5E&;>vz;@N9~$`S4^pl^X52YMdi-URv=;XVVp1a3b8+1HHX z)=;Yp+;ESl)g8~`a!u<}xZ%1>Ybo4t1EuvU+;Amtz!7%MnkJF zp1>`G)>63P=0EFxxZyTF>u@04k!Q^W!p(KoEZC z41^oWthw;THDT5baKqhQ)<^*Io3oU-g|qi_q9WnbllE19hQ5DTtH zvicw#ZY#1*KrFaJ$l3(HxYWlQ1~=TWW1S5*+M!4cI~7r5c1XzM^c(GBQ9_znW< z1~(jPY=saG2Mb#d!xv}zTJOLO2klzd0O6clYa$R1o3-o{V{y)_wHuzm*{jw!h!3Zr zT89H&1XP75a4x82AMS}mI<0x|#le}@O!&SEbS&IH0y+e4-vjLlHyo;H9S*mW$@H^3 zP%ofgfCd9S05lS4eW2}tK7&*{0ojMk%>#N0zO_JK!*?OjwLk|0bp<*ZXj|}}540W7 zH9#)`-3fGd0sTA%bPJw%3CKRk>3yK95$+q?4ZeQ>6~V1=3jMrRKtJ7qD&Xb=>IyU* zs6U<<3-k%xrUGq;C*}YRfUh6uUARSn9);ThKxJ@S4s@h4j-K=nlB84`gpP9|g1te76U( zis)x&AbW509zZ|ii6GEu_{MX~piAL<7SMz6y&ULsxZMJ@58NIEdIoGO zfs*ij3#b|BTcB;=`zO#MxM6#o^&=3rqgkEdyDrd3#E0!!))M$)r<8Rj+^}28x(wm4 zbI2MEH*DUqf^rb#;8`s5 zx9qk0SY~fM4mT`px4y%(SVeB#h$pb9+qx5OSYvI?LpUsVw(K>_Saxjv3SX@EwN8aE z7TQ|&YFVs$wGKioSbl2lfpA#!Y262e<(JkOcmhixt=ka}s|~Hc;ER=h*55!_Z)dFl z!rC`$B%XK(Xk9#kC0~}kZVL;ntg{gg%bTn{;fr-f*2nqugS9@Ey@^2hx3bkbZymWM6ohz09{v0x++%ofZ( zH@lyCY-rZIB=)3Kx8FZ{Jtdf?Wp8BTW;SkR<96FjAxV>rg;uoe zR!jM|Y3l**{_v)u<|Uif(pmQNadbIsBhsEDU~TgpL88)yANB#KeCb8%bjg-dey>B~;);gbc|N$MB%J})H6)QW2L)H-x2`1%3QkT!Dy9rM&oR!lW3+Z8BV%FD$mTIS zo5vp6JT~)X;jl}wZt>u3q2Yv0#>{M*`eB=3Vasm7{(Z!>2w*Cmxs zxkDobt=SrnewF9S++m$kW*nYKeoZ??GKj?W z)(pFvxdC<*-t&HqE0Xebx*a-Xvgbl^>5vJYGb*zV8Ab6Jh0;=G>yWhUZuPN)ckUe3 z$F`nhcBzl8I~qk=eQ*s@sgJ%IDM)>c!spxCQy6)EcC-l6eUgLiD6*ErP;0Gy4Rv!S-=R^i@LWPJjdH2y{K~9R zPNjH^vT5mQYZPY++V@I*}O1#f_yoV#4x#lSMS4b*vZ>Fo< zU-XyWBIU!(IB%d6y%{(tpNt%>VP!A3$eVCuqxOFecT2&ePR3;9t-AlWPqa zWY>V~X>r$rzr4$mV=egIbIe(4K?gbp>AnRwDIJI+{eg5qM-u`msBdvIhLG1@-=as` zwLRIc&Ku{s3TLc;Ei)9|i`GF{$e81x$95#P@>^xB9fkM8SmWO+t%Wo{oqk746YyL} zu9jwh&l#4noUL6b91_`h{zhO22HW zk%IKg1DJ4Hd-|m$;HO*D@$F(v3|vg9@YXZRSlL=8DwGOI#)28OHN&^c1s%=u^tZ~n zb`)9jeJy^gl(r_@p+O$=Tp}(F^04Q8%2=q@O%#t&CM^}V25FVttv4R<&YYv(xYu*c zF1>M=9mU%FHtEWJ`qtcXl=F`yjkhUy8qsqV~!FZG(%nD11Jh_ovB<)ocjjuG`LH>uXh=8EcITVW6o0Q9cb9oeFJVH zIuJ$r+vBW`R^QaON8Z|<7AXjYB6a3z#QS-!s~Ia=%Q!{9fTc1TpbVXYy*pZI(w%}m z>?r;}bP9^>G&}Uhp`Oda)lwYnIg>ILr`1UD7zNT&YPS?zR4H1kZHDmx@3c9pip8E| zcBzV_9mU$~4peY=AX5onPogOM0@rxXkX%c+YrDQcmU6z*J9&=fe3|E%|L5ggoo+-k zmG#^DvVOyJrsP`IyfVU(0CyMQRqq1iSl%yrjyX$tccA@FcLBIT=s*4ZBv1lxHolTtLw;kj^hhSz9EJvTIQ9IahKmYo4-prodg|wcaJjvBdqJ zWB#9)c&~Kxnzhu=(3koO&pDH8srR)zgqc#|F8PzaOOa#ApWr#>EG6H8W^@tD1aZaj?8UVOJQ z`N=zdj>=?}=a^l}IXRt8d1-*D_t#k!Te$ z$Iirw9j#93&P0nHMb^&5+G}5^h}ueslkaF9h)O3yL7bV!*U#ae7P_`9TChB-=m5((t(Ep(Ok zc+c6Ax!rJ=Hn$tDB)H3bd+#FTSmxV!j`@FH=DpKh`RwJsP+#s5&smdex%YF7X|_v- zyX+Tu7bC~AZ}1#*ma^|agP-m*aHG+IDAL~}Uw5?WN_~$UxOR76R5rz;jnM>silEbA zZtJ|!bG^-2=~QEyDe+R$84Xm1e#3Pgtwrg6!_{^aS^EuZuQ{nQlJ00qUiMrxuBPM# z&v})xbgc&{9-~}Zcu3O_->phkdZ*7(l|1b^W|t~?qN7oyRSDN4l`6SHBL#ha*cY#@ zy^R*#&2zQv69SAa7u|OC+W*N|<5WW%?ax_a35~j&L8nxa)ZRMSsp^#0Ddlz){||Hu zim2^8F+2GVy|TIIB68`K(Vp`wV<}tfQanc4v~U;Il?1nL+0?rTIqH^8Jjd+PEyFq* zMOwFTeNyR`5{(qlEo--%(i6RtPV?J3D}MJO6bVX^x38;=^{!>6VvGY)whEc+ITQ;! zS`umf60xKBf1qFNVsd1FL&KcmxtLrUW`*Y*%UIIZ;S`UlVR&jTQz@o|u-b-CPxdZE zjymQ9&oR4n%yAu!BCTV%PN{Uv0*w@;V}4t^I;Ij+Gqk-s)2z&El$150T&60N3r$Pp zzWMy+j^=$@tGr-GkyWd##Sv60nRL<}`s5GKCF9a3zk1HA%=+Y0ipSI^)vc2;>4I}9 zlApY@=cq_ld5+noNWQhBSbHD6J=)fGwB?wiyoc=O^-Xk@_h5>`TaP~1^5(sS?lic& zs6Ov99h4EKg)C8dKBPFGxY1hnZ`4acIwEL>m4$#dH15Sou^RD7KX52*3)X$;vPQ za$-lTRJtqCVn>m+E3x+47cM3<0~`&^ZJvwC)xg~BIma@Vv~>~1W0Xz{f1qS4#gq`~ z50o3c3z4Iaxz=;cE**1KN25sV7_L()9dnFE3eqwC)~=2zsB`UB|Cv&-CcaBFyVY4L zqn>8aB0qFAuhUxOJ3ET3T4XJLkQCWzb|{YCv%QvuOL6p|DAq*JG>_sj3M92#or}t) zDyqHH=BO$vJ;&@)6=il5Yp;n&?N-lJ!jni8Z*QBcgvWc%kjzbkyM){CR?kw-+j}R^ zv7EQ@9P|IYoZIbI&s5e6^<^FLoGH1MwR5+6mhxWUU4R_RyTNnJS<1Tu?RUBhzzsqN zqDX&ceBIGzDfOAL{#qWR^ka;&c}b=*${Rh`*o@V!MKea}r-8cWB{?n{zpkT|DBUHv z+KwV?mtgI+8kOx+?&ui2?73iE&BhC!vnpfRS`Sb>X2*bsDBDZ#9EYBQ;mZgaeLb~08u)o?{h zN)|Fltx`pDd+S4|s#IF5l-p7KKhP?z#ne6n9Li;L&&A|YE~7o?SjLjJ)}?q%<-)@i znMyGwgw-~mx~X>|a?~-Kc#henV}^A!inNa5I;GMvB^oJ6$K(~S)q{5{+Ya`2F9l0b zQoMahWvp_lrKPP$dgrzbY+*+;Kdn|Gb`<{))Jm0+bcaGY!*kKN6v_(Ed6ltrt-~oE zQ=#zEQbT-qcjaX7^f{`M6FkT4QYFWAG>Wt;;d-P}B?~lCkSdwFc6YW_Bx0c?7H8Ck z0**!MuTe_YgeJ*&fm!QOT&q2%3$nF|W>nVuRJ2RDLz^u3Tr4haa-`>+%2={ig5ohsCAB%ao$ziIa+r7W99766o?~{Y zkOMm!MOuY$9a5=~eKb;#3R$&wN6q@zB_n}EC`$Lq#FI@;(O4qbI&^04oP2`PwI({H za}>*kTV+j)$^&R|aly}{9W9l#etF1_;{SnuX)7{UHaN7+SDuT^rENa?Y?I8jq>!#b{DG|^*2KwW(Y~_t)HK&Mrj>0*p4Erj#-P}!8m;~opy&}neMr4 zT#99y=gi8iShk{gjDksR)i%U;cVwn`r_WKDO!OSHOPP$bqgZ<#*7WIF45v?~ z6XGua3%v`HWBH%wIp!?o-+>-Lx)Z?-NC%=wkAe6)nh;1qors&(?ik1bbB{tG+Sn8h zF3vRj|0yNRn-0rZ30pK@Fzt8xr$o(h4ZueoEtYie;(a@cti6l1*WmQenhg%sQ#|kg zsQVH)xr%E20kTZ?eJ9Y+EMe&hA_B69Y-Afk78WHoJ>7R^`lhG5=_SdaD2O2VT2UMX zQ4m2uMMXsc1wnZ5^r^VOL)lkxSHukjf&aNxw{P9LRd=RN)xF*M`+IM0LXxjeednuF zr*^E%gl=avK;W`6sn_j)0C{|(K}Rs5RS|>Fu6R=vgU?&K;$Y4GKe`Ys_)vWr1)nEP ztbpKCX>IV?BX~q=nDDa_t!1eY8>bpfpzx<`Z~q}6LDDs^XWdTQN8-Zh(+GAfg>Qc^v%k=~zG`O^I?qq^j??5d1 z3ECq+im_!W8d-=fC+I@3*h2MW6k8G|RzPfdthM{bMvI3p{|jmmMGj(eX_VTb%Zqin zW)b8<0udTPS~$}=mee_rhI|d}3n6UWj3!AQHm(93K5UF9vz*jbLa6v6zF5UjaRVAz z2o={6h}I2F-Akin9)1E$!L>HQ!;hi~QT4F@(x?zWKY}k@(a#T|k=yQP-=$G9Uw6LC z*w>>00+%$Y`Z{=NREWQK#T%gL@3*4zw?_ZXQUKZ^Xh5(T%@68U#IXWWfJ<9D4KWIi zIu^KDh?QuaN=4Q$}Np%2ZG z)Rp$BfW!HtF^=^9#8Gakwl`Oq!ZzjKEc*7$NmI2T{K?8zi0LST8 z#LWQy+}btGF`26Ks1cU~?DlSKY?7+1u|$>w1z1 zPVCBtN zs~9d8qLGDgF`q!RE*F?g`%|fpH-asO*}!@Y z_ukNSG6L8NUFvl%Rx8(Q{1q1WpyeyoUSoqndcZv)4Td)DhnHNGrAb)rs?Jl=DvHal~G;30i+dl;y&O;4)?lhz#VmI?7-Vnv0^B5Xg2s*#i zgO!!XLbYTRQ|6jj0WsyNQ7ye*daCnWZ*QTLkv`aa0aOMz z){+XYvC1H%z_lvGKE;S~o-Y3^YdM!dghrGWZgv3g_$wcXC^w?LBSe(z(QHW_Y+nXA zd_q`duNK)DuQzG6VR8jUOjl&c6t>yp&jbl!mHEa3Bp!6sab6ny@3G&8C`pXXZ( z;cFp!{z1GIik|-w8oBMBpU-ANc-{iu@7QAO{Ws9;sCs{4U^axWiKu|r@Rlel;1x7- zhypY+0hUbAZbSou&5E3(TM@?!NGA4d?X1WwZwGd0MsYk^!BY7dy@%7>!HY>Njsd$3 z2P*F*5TR*B>-w3dn}$g(deCkXx|uYZF{!8RZouJF3wp3r=0(>C+gr^!6K{lKj5!01 zEX0^obs<=cp_(#^F^8L20Ws#j)^5X^JxY6%{98- zV8fTs5Qv>1&NN+><|qiHH20%jB}AHg(VR)WZGRnb_((IKq%?9*3bE#HycvqI=1w%S z5NqzxgdGkATxntj#F|8l^BH(4+^WD_tJRyS7o;;JyS*oxNYiZ)X^53gBNeAf zI>2tjeC7?}%$*?4%#sigh%)=3-6TYrB$_dKl$j1Ve3YU2jHD9cm??obLNUfHL?a6^ zX1*>2i!oGFMlt3!!x(dAYx5arTX~(^Qf2{-Q6w)$+sf-Bo=fe~^)|~?(gY$jg0yg= z)!9~F55$a%(S8tO#)W8((5TkNpy|%;k74Ff zFM#UcQY5MT8f#2uH>ynw6{j}N)Aa!xn4C)>LZeL!2PWVlzWRX}b0gYALX5c{&6m{4 z_GN&>#~8XlK3D^Bz;Z3#0>!{`H5yq6ELRbT)^#wub9(`Xn>v3OEW@=zE6A8r5(5p=LS3S_9yaVkSA*vjT z=1S^ZdoRG@{Ng@2@3&rzBa88+E5?z7(a1s^Ie(GE;xx+Z!inzJMeyv@5pUXe87jmWRPoYw{;3d_c(MBKtb8PC@ zy8c+#9c+~PLjn<+PqeO+nIokj5N%#YyGqC_{(|OA>TUZez~S=>y3t2k4KdjK5pRZK zu=yPtSqL^S>O!z!Lv>{oY#uPN0_MS9Z0$g09v^I+=UincEDy;<6Kzg07_|5`>U(yU zle1*_k^<8Whc5>bh@BwZI9-Fc-HCA!h&LP2&JyCydNgVBcym19a1LtF>_%P>G2pDj z+o2e6R-=)HfU{B;f(0C^ETe$4zljwPa1L&5b~C^s#Y#fTrMi@}45mRKc7l*H!K-#4ihLXG5Fv_u6U~!6ihLe$IG;4=`+1(}V&J$1 zU$kQ2_zD_X2pnJ1gc=Q>Tw-Dc1de5`-7Yv~V=Yt6Wh%M+IdBm~smMi-e?VRQ z(PKh_TrfF_ex}gRH2RrAK2oJMlBI1{Wn13bzIdPnw@r|O7FPoWb5d-EhsL;y1zV=A zV%BnRrFc2O@5nY$p){sB%LSQiEnUu3GJTayx!*f(?`l`2nj~%Txvv+o}oYKUlTAbNdPBg`>cL2t+UO!onn3v1%HT z+Ez_D|DkDw;FlvbN%i^VFkOhZ!#||zh{++-mz5ID*i%iMR;p}0o^!*N*xWEZnJcB5 z(Wjc)4n;S6I@TuMrAr)Z6Q}7y#LoTfP5oAaOynn)tY781f#d(Y*!Z85to2)|Or??; zOl8V>&lRE*&edg*IpG{#h@cZ#QlJ_h8xwl!g#rvMoe;`|9n|hnsA1+jPZuI~nkSqHvq@GlCs2K2Y*bH7_RuorbRVzF6;t&wx)8C`J)eb> zldMA7sw7s_i&uUtsAcCZwACxvQe~dvuv(&PeM*#O{n~r&^UNP@mXb zEa!_wNM5*Lb8&1wn4W~G5~t);-78s$?icFv#;E_GE<})eja=4AMCsV_R?^34Krk!5 zuG>wy>F_nJO^3&?^Jc&}MSVXSMKxx4SumSw8!_emo~{^}p1w;ULMPGeQy_nBjIEWj zwTfj8eR9ani)ljKOpotyX2-n0WPb&I>m<(;=nUg<(~e_cQV*tfhU}k#9gVT@%Szs= z4neNn-AG6%Sv*ikTRX~ylGD_NE*k1?ER_AN?frvrEGOSPNdAh_H0DJ^R%2qmm@U-d zmWO3|-O~)1S}ftm4qcjY%%F`yVc8bQbFaJupL>8(IVDIm~B4k)>i`5dPKpN@hD_ zg8a5wjQw{oqi!z)X4g!zm&2!V_~QQ3fVH?%FBYxJVrN#wc_oDWKUrRu@Y7ZC2DZO) z@Om-`pSe+u1p_J}qhN5mi4`#UKE7p>?}q{9d>bGGxd}jd7g1bb-Dp9Mrnk;O(mn?M zvF$V#`&j2!>g|Mjyqh?@n}*=I0E}~-e2#yfr;k$6f+-IWQFSqGJKU&IGUA?vHo?^n z3qR8dL}>U4A8{|z9deJ`?8F5jH(uiUN!=$>I_*OMhvN-ipC@d}GvnjTDLi_33Zoo8 z`^3*pjM&4sfgGA!S0|*EkUPyYXr9#F<279|SAGw^*kRXAneg9@Ms_)28Pw^z5G-_4 z?HGmbBZ(DJs*H$f^yX@&kDqY73QCG%W=3qHW0G}JnoBX8Q@lc#V&>=}T?pprm?$2< zu|HEOCwlUMw@SVj8_%$u=@gkFMG9npSC=V9_U*b5v6J1od`AWrG9j(>Kh^MTY*dd+ zTFn9lqMy=bi4py{E<})Mjo8D&7tJ0tAea?XbSvTxL&vo&^CV$$#wwUX%~TVa#HLE7 zSS`aqrNSv{t`$j;^lkm1Q`OFRA`S0Cz&nJjU@p;-C5T`QE=P5>%7iwZKxib0y7}S4 z6_rx4=1iY9r|~icCtIv0{`$GAZsNE;G8(S!{Q-xgvN12&>ssN>OV#C_h!|O*u>7pnND_ z%o0!6rH{#cvo1vJ9@qnpkipa@SqJX6YR>#ZVjZl<79K5W5hnvp6}Gg7dK z2WE)=c&{#*%pW^+A%gzU=$w508?izIf>|*|w<2!;R%>nlHuF@7yroKNW7*2)d-GWm zdAXo_8&oKQ#@;y4oA;<#1y~NxrODLUHd21N>Xx4-F_#O@l78-1U6PsLzD^)o*w2mI zWEHEW%7#q|j^1BJL$Cb+;Bd4xrYE6Sg%T^ZRPz^N(|y>S$)D>&utxJBfrz{_8@+V% zvL!s-|AvwxP_u;Y@yTpGmq|H4M4JDl%Mlao-*q8^G;4%679nY~(STr9d{wt1ZiL+4 z+6Xzx838nNRDLx1w%$m@NIB^v$KEbvi zvUJbI#8aZ-)jk1m_?S2;2`3C$p~6VL+nmQWx)7{|oJ1fZ4~H{0!M4Jtk`pIps`)Ih z=Ngn7MQ{{(pGmf|Huaq9p=As7pRLOs3zJ1%h}h|$e_91L(ZlXe&jrl^FYkpbV)Md+ z8m@w;M>JhvAJOytQa~4!(RJl!2$1j( z|CKI8?8GNFHm|`=EX&kjuG4v2Jpt$4V8iaVd^RwN-q9CVH?bFNtSgtHMSw4IU`UEQ z@}2@iU;{5TL~zU-x~wwCyrv5gyJL1=TF6wZt}j*qy4t6gZ7V zjUax=yGEo2Tq6XBB)}5GTy&u>MC=aP+v~i&hLTucDLH${U=!p9*yGN-WkqamNwO(x zuc@TyBlXU%$O5DL~x^dB9&MQS0M)XrsiXF z&7MivYgQgikx4CQ9l=fmaHyB>~5LgY%|rwvO1hCbq>QM)|cQH zgWRyM5t~C6cx|Pc$~8?$m8l7WGcM6(k~!ldU5KDFG-g`ZWDOnCYd|n77U_14?qtoK zV`1N2*!ix|5w7-Tv+1Y7d3ACmppqG|oC#(=9N!;}#2Sm_liAy8=`eBQmCnsSNT#yy z)l~`;+uZ~rl;!X}eY#7woy%dXPz53_*L;5+4Y&5gfWxuYn3}Yl0wJQhUon6_XHMhO zx)7|jJV78rWv$Eim^D@f_8@R0~5V14uE{ClR1d(;Ik=gP%8ad1dYNH3AXZPNN_EOf1!F ziRO$B*OMlqVb-1kI2?10Nl7Twn?@45)P?Xb40H1Nx)7|b&LI$yN5)CnQW^GOyK`t9 z<4d8$C>E?m#wWx6M;LEK5j*9hPlY=O`To5(Hmb)Yof{7&+e)*# z{4k2o(uD|8tkHe29*D*$4G3n%E4q==O%#tF-O@yHx_{GDVv|)3tmR%4jhdu)S#dk3 z($M`u*<3i4bVQ%g)d`c@l?0-d9Z~51sk@_L*ZwNtaLhqRH2nUlJI#5#Ll=TImTwb? z(2huZc6oMlA%iG7Aw6OC9F!eJmn3pO$6LgJ35;qj6@K3AX_QU*M(pzewDf)>MQWZJ4E-wg^K~E_lb?^apYbw zr$~|Ny`WUX%ykc4h}fy#+v)h69e=0gVZ#Ot8#Y&+-;wSxacZVe4-Cy##^!<~oCP4J zq_$I2Qgz1^5=g44ZPXMY$6cn&EQ=#cbRlAQ&XgsEJS?iP4UqnG!gg$)n3~Ku<$A{q zC3$b3E@zDPoGwI=c8#Q!<-N2M(STr9jL?H3vPv9ar37Mjb6B7e-BzF+D>Fp)p33&G+ab>hw#|E8ZbST4a4>uSE5pqFU! zvpo~G#+7!@NcMY0r|9LGk}j|l$~R04N9#f`3B=U-Eb_wKisn8c((O38Asqhh&G*$S z;u|AfvAN^`7U;Za@{eX zJ4bg+Yv<^uoD3V~=za6f{Q`Ud=#55g(p92Tv)r_Ep}@$Kb6H)1FpZr>An@I(b}F-A zC0s}edyv<|8#=I49&XWqUE)yhnseKxf246yG(_8Vz~SfWc27E&V#4-g=N%tngR?!n zX@k&`FED5Myy01na?)rKy#lXurBwrRkK%W1-AFjKeYfYi*Qb&zeI_{*AjiNHfX>kT zIL;YgCI2u(u32qNJL@d&Z=QA5P*itGItIeBFfnI*B2$A)SbOR<{`NIm2~0qe-@qpd zV_~w7u$F@ArCc6T%m_gl*Ar_st}JEk?^<057G1BVoJBVs)|AjjnS`Ez(yBdS5}M`+ z!+AtfE~DqkKXzp_i^_=m+Yw61F|;YA(d5V$r|9A9F~g}xy~x?d{qukLYchw{B=GlR zs>}G0nHgH4IGV)~N#Fs3NwZn7rUA##oTfr5?)_IbaU?XDM~P328q6cQ5Wxn6Valxt zONwYf*MMMFoU2^;#QvbO+;|kUUhY@cbIr7MB(x8Iv`pc^h{i zKcK~MiGyT$^aLo{a5#3XE(DX(QMwRre!Zf#`SqA(;$t_Zh^&fkAO6lwn!ensx5-!o9@#Xa?WAqPoZ zx~EXe!bu9^ajBIXxT5(;_Xj5wp{M~xB`Ay_RH|! z$({7}-{4n`rnl{X!0#@x{|P@Yw*N(b{R;eC(_z0#e)Dhmxn;%rF|Vria@*)md7M*Qkp>VtGfI! ziT+a;B6f<$)k>9Yf0v!Fabn(MATFB6CrODZr$mA31yHP3sAp8q)rE+i>P|{^?+%XX zC9yFLVZ-rl3JMg6K2Db zJIu}%L0p8mAtJxd^adF)N$MOqBPEUG%j3zyA{nTT!_H;ne%#&E(B{McM*ul6SpzTVAL9TPT+S? zR1}$;NcmWJ&7Bk{ko=-9LrlES>q5j%@@${Vd*Py{M730}Wcj6*3B|ZbpX1lLQ+&!T zUT{Ju*kG8{jn;)wc7k@;Ubt%8;PdBwx|*OPUb0RBzmz?w(G{CBb|?FgtM0P`riYifGma-PD07qUg1J3_=GNd%mE+Mg$O!8V-U#3ku;uZ zKrkz4E~Np%te}~)1_ZO>v%2|;JL${PoH z;~#Fm8lC|ruWCB0Em_Y1E~%FcaUaoDEffAj1fqpq=(tnrkeB59`uVxOSEJ$A{w?5e zv^7HR-}t9FcYo7`U=8IZ0ulMpXDsYEtQRu;to4FYG-JnQm)z`wMCjwU6sUu%_}+0ugzy1N5HG(fb`JCyLoNDZN?AiqdVm+%QqzstXZ2 zy`#EM4aoP&*!UftEN;t6?#z5lmmNm%FLfb;1Z(sbtiz$PM+1UcF`!!!x5L@d+74&> zY5kd6B3FXJyfcfnB$qp$YpgTNku=uE{_>t?JCvSwN>9UH-!vSB9C1(GG%(08eVj}n zTG+!3bA#hy(eP_00f+BvCMTV_DRzCMFhTM*b0)iVAy|7kh(JW%>x^_K`DsvW6rGUB z`wV#RiCl*c4-9!1k_+T-(q)c?%u{qBVkdvRcf^uUThED&^a*g9GMwz~x=b;$Yq}7z zlReCK%By4JdvcO&`g2!xBxi}Q(&dX$euXYX?37Pkz9ZY8DfYp`ex=GlCUDK#_hVyy zTGDb0PW8G43xVZ(x~wtczpD!oJMnXx!{NlLA~g7FtpX2O)+_wN@(Z!?KNs$&q$A-} zo-bc;!?U^^GB-S>3lX~;66@-PT0TYRD#+BhGdlq9`gtMPzxiv-*>QEXdnE^mA#}b1 zPR+Z{8Lltb4XiQDA3Jm*Vt35Q4~riVn=@u5T{kpe6;F{@#f6r!pDuf>Wh8YWVt0Vz z{N38vyf9zzLbFv!I_XuqJTh0T(1nQI6$;CDrP$msJ2_B*qpSJeL1(Xk;{v*PD71!x zE`Q7gd0mL03pD0E*whIfRBJ#mD<B4TcQ-$tX!nyP;;o+)h37JoQ=LzoyGqjQu z)()xnjN0KfCRV_C!U>Xgc=>J}yL34J>%Yx*?*$3l8K&JJCpj~iaFCq|mtX^@tWcpNod_jsH66y|I9&+Vg^eK)p?!_+$(qR1!7b14@CoFY_-<5n7@&}If=VD`hBAF;|mMPHvv@TbS?k991VyAol(t5R48pxkx zID#<eyJH<;I&p;erEJ>axcI&oW(z*c~tl zMy0-6ll@Cj1FYMDect?)Dc@z@xjl!WIsGpS~w z0^uLkWs4F15nYJb37^t!)wY)^TNB$Y=dcVP)o+cB^Qp-qEjQIHSD^jtx|}iEzp4un zq+Mh7lTDz~*)$CZX2oxG=k(l#jMv7rbRlE<#yVV34fn7nPPF=Av;b%Ixjgxg(deqN zuW$0yDyMTWv$DAA7M)0GKR+KU9Dg)^qJm+z=qMQ7Yc4lTo7D#cu; z!e6E`p%zU-{2Ek_1mMy)ZW5RhfFtNP1H=oU0#Vmir#TBtR=71!; zUO^2?^>GG~R}51YGf2n*hjdwHj{1ZyMC^{5w60XKF6WuVe0!wl$>cy;c?Fh7&8s9daip?7bBnLc$ z-~u%;C{^lB6^TLK+mh5Ep=~^_%QAD+uXG`Tj?x(1u<;Sioi!ks70>Ht@b38NiBT;b zAB}VNm5}#ixin=~J(7IAvAbkgM!95l^)kQeSfqy-D@^iXp?7wbZ>7IH9wh9AV&if?oZ=)Fq#O%UU;!MZbuAEL#+Bv_U#<(m)O;Cr zQrNai-MwdXo33E7L(&=E9h)cSd7kjSVM_Z(!4Y@rvdE-p=N$#6;NKfTh*#iAf>vG5Fe?k``cKW9^+d)4c`&Sz*{4 z<-0)fhH2oNJ1zB#Ruv)iJI|(;ip~&lBaOsx8($({td+>k6;4XYdu0FEJaPbBFzgxR z3<2G)0StmYi?tGYxGp3_?PKn!y>uaBZzGA*`Ul}M5m=o}6fM~QL!X*vj|%dW?W<#R zPy!~~2UEEcELWx+L)h4pYi!<0CVL!n{OyLW@H!r9nj*BDuj{hQ9Q0LPh@gWs<`3Bv zBpr@wKrky}nqb*yqgCilIme^&RggxF?D%%x#DPVe8W}c0)8?iFo{vo=`@&u2V2pEY ziW)=qfLpFHB$0HC5oGd=u8)~ap45ei-9a;)v@D&eR5F9<=3~N~KSpnlE01@k!VVMZ z-W3Wo%-rAFY3ZJ}pJj-<un%=jpniDd=1R(ZZ?j-Pgf!b?30S6DCj0z-v)( zNbFSDj|r0<~wh$J!JtI;*)QHr!rV&DlaIHDdSL;HsHgXk#hq5j%`J7FIWsBs> z8~ZcxtEK%`c55(G{(WrZ&rQ~#e3Bklo$^!JX8D2}exu7FbHfX|5V5;q;>z`#6L7I% z&Uv1Y3+EGe#3lSm$-Z(u%Rk|<#1JOvTk@BW$xkpT!_fMw-SLSmw zkdkBG@6*)`lieVJXyIJ$sI_ZPUB_k2pNocE`(uE^F&6fg+-J>c`?M|uYbT!~5Rp&K zj#{^N)dr5=`=FpGW@P33N_NxVqe~8xy7VxH zpV5T~GOW>Au>OXI9}Ng*#WvlFxc$u$V_SMsZmP4)Pm-42dLa>1(!z5hX{(L5dmYX2 zmoSrj1`J8VLlh$}9nJ^i3=_#Y1fqrA4Smo#uts%kG%VW(0}kKgbUL%f^#YV9<0A|12mlirz=$dJ=3g_Z2D-zD1WU79`)L3lTfv z<4-QvoO9nnx-W>0?g_~fD^ei)JYA+3+2`s)1j*LuPFRmbBa{XNvtp)hMcf{#(6S!s zutZ140p|~$JG7|z;=qjyA*4-#Q#4(0fP_95vFHFU*}2ID3*pflj9cVM$#=w;PZ33au%V{5{oxG{(t%{IS{MvPxx^tww+7AN`M_yw} z(i2I=dCE%c^qw;(^XcKqjIt~9H3vuC>>ZAgTgBM-V!Jt4HKg4T{f`0&TzaMIr^(LQ zMAo21H|>HidPa3?zMQT)M^H+|bg@3r1Mi7kEHs5Tbp^n}>Fc@>ET~fr83pwxs0_o7 z4r{mEnVYN5t~TesHP)E8fO{-jTB^F31ve2x;pA>9U*SUMeiT|Bf)0)#5E>y-_e}Pz zW<+$@ZEj=d7ecngM(k`aFgo~-Sex&uz-{k=k=S`H zazVi>U2wsA_*z}=82wl4LImm8 z=pa}hLnE991hZmH3Sg{3p5) zv6J1od`D)W?92f9o7q2Oqk0@%Tn;40NcP8dnPOyrR2L#hwno3fx*i&rG$5E2`{-80u>!iD&$YJeNvx|EYWdWuaL5jJ z)H+Z0z{yzHT3g8sSkA*5d}j0GXf)P1T;3H8IJTs>5nIyUJ{j*N*^w{*{Gl%SOo$H< zh!%ED%KkI`^#KMpv2|1=?)Aw{NY+XlqO{5x|FU(|(Q&FFao5qSr- z+v#hUa9P0QbED~=M3zS-cN8)ry%V57!|bV37b1RoS1w)3(fhU->FvvAMS8n*xnU9D zAYF(cy&C-p>xyU`(tu!A+^5?N-LB|?7C*b=Y?jGX6B*X~a9YYoqou~)Ugs0KU1r4H zF}=DPVKU1Sh|rG4ej*!Ou638G$O`N;@TZ6sSo=55-`@d6+P{TgZ5dkBt?_pIMMK?s zn~j`*c<{)ylc(azT{J@%4O#X})KdGSj@g$wKRy9JEc<2n@2lT}|Ji?oUp1ynbYuSm z{^Sz-pYZcy`(NbOufWeW9rml_H~)s8ux9-_eC#0rr7P5H_9RQxjpd8`O9R$o=cW#; zve-$39Lvc6=Stb?;*o38RjJm7=t}o_4t!4r;VgH!%whqRicu^$%ft#uOUJY}EuFZ* zD!}IZT;en!pNj(Dgo;Eko@~tWoamno8L{EtqRS&|_+KFqEp7PsLXoWDC#6+i3~Tyn z*dj~1WQ|HbWG+>U5R! zcadA|oqwV`1abcDf%2NV1D9&q%I4vf8fTj&tqKbmeyuGI{{7~NhyJ636Tap%XA&X1>^AI~~J zo_Buy+WGMt=g04yAAf)!LJa2HD<=B>8Q|RLdm@d#N2*3&KbgLO`@asNS-_=D)F|M7 z$;1i>xcj&4WQ=bk%=HUNw@Bvlrh#0XZ6sMMO&VulXV~QT(>P3ahW#YMonaFI80S9u zboV^3Ih2Z4+Idx@Qe8~yGh&eMM4KSYaE~Ssp+SC8=*U)kZ^?LA{e|Eu>mSH!;=`wp~l*&uMtRggN@J@PD4}d>g8D29!ayrO=z~Hs<%Zi zO>OQ6Yc^zY(0mHMaK#;A-DqT&88(VtqYJ_EXR0HkaDEW6B2;nOt#&H6BMjOvm+XEN zN{t}dm8fDGzZ=Xc*kyh+%tKR6engjfmg|0)(st5nZ!F8TuJACZ(S%8_HE%h*LRLw@ z%^iizIfL$mws@J!S7Re~e$sL*NWou0;!LSi3j~J0Y|ijax)7{|eStbD>K$Q| zmN>V{CbBTQ4aq8}>z~I)|Kuc@KS(u86)1mDmoFyjAL&BGPWgEEjiumAD1VQQ?+Hoz zC?yurPfX(j}O_$aBVa~Qke4OM$D4UbXV&t zgNf@Z0--V0pc@Itu3NHc?UEDu?ML5_hEn?$z~M-1z?;vRS|QVuq93vI`<^+6-_?a+ zP2+X~5jsNDC40=qY<~S9&-DvXR20KPk?V=cYBpaUOp%`=)6eSC#MJtfE=2rHZz@%? z{XElS&Wn#}NSU+!@a7Zz6q())3N}pWI&>l8XS%yS5Y+SmF)|GY7D3bGr^xhvx->CO zCv_oWXL=Guk2Ubp&RQ!|De}@@8yn&CoglI`UrQC7Qk_`h{YIpJl`eOT{uR0qvC}^m zZV1d2OFZ$V*odF(Tn-53IcGfKBa&UvWr~rV*M*3m?Dfvtb(JUkvKYxOlk!sZBa(fo zE>n!`hAu?xWRF>0FXS^k*WZqf>xoI*DK15RicEh~mnO#aExHh~Gd;uIAG{H6ecqZ_ zw-!#f^0Yr18}0iwHwsssvQq;EC>s|0obAdf-+vMv@`x^*%pniyLd5QnF-tRWOFQp_ z*JJa+#AMbf4konWr^xiHx->DS|EUWRJJX#@`{5ZLSkB>QSob(TuAF>oGD{1D2Tw@B zBHs(3aKpTOt}aCEd{5eB6|1F+^Y%mHZ9M5qVk3P%ysYY!>OA_8dK)~$$bKWzf1ECN zOzubPLc~u0n02RjTQ#2dTx`5gOb+ZQTD27UDKeeWrHL{99$kponI65gd(#@8=nuz6 z^!Q}9SlgO%euy-GNS7l<^ZB|EvD4hSeo!)}^5xi=o|-HV(peSvEAoAlE?JE4FX%$V z&iCjQh58O&)(^%;_V{Eklm>70)Fr2!f27M1qxlEA5V6xdYW0%9S@OTe#&T!U&g@9R z|BF)ovo1l5<3H#^#Llrl6*-ib^o$S2mH%<6$f5pJL~`-1x7##AYeH!k1W4s=!JgT=mJHJugP1 zyT$@4%IREwn?=r@!4C1-h&#i#>Pm*GuAe}(aJjbgWO%rCTi)W|^ZQsdblT?v z4!>SI&O72Gw%Y$P=kH=&2-aRMBoLuXwc49`XDr{5uhw9*W0;1&0R=~~a4V8N6K;m0 zWjl|PHQSG{A@6ItSFbs?C-e@LAa^_JebC&A2+b9<@h0&+mJdKBl0f5hgAxygQ*Bmx7N$W!!| z5<%%N>ypTn{uf<{pdU0kca|T}_ND>BtQaBQ>26J#wF)lehO=SLrNHFT%*|EE7C9*- zFNiDP&4vd7ywb@VnRQaSAcO>%V3?;b)P;!M1ry18z4@NH;{%TQ6|pft39f^JcY2$J z3WP7!Ws9}E6LcYBC%kh*sb0(_HkUcF^RbaVE?IF3Ox4R`SJSJ@5+gdR3lSt*BR;VZ zM^j=A2xf()8>`(R&}FS10*ybde=xDxImdlGC#26uBP8Fm2m_^Bej5qVi?{a=(zD|u z4s)*2l?7AQX9z?KhdFz8m*BPLij~-4rSi_Dtj_!Kq~g`YUq5%%O&rhnM#HoHb->|A zKMRtu|7HN}NWuRF>=2vq-R4B!sSCjx&m9CJbUdV+A1r+Syw9#G_Bs#uSkIq#bz)<` zRp^C*KP;X<|Je&UfBYIOh+<$Q`eP>K3DksCm6TtA@BZ>a$-GS$T_3#6APtm;Kst;KNN|u8hiR?jjH*+;^H2+&~y(i zl#2qAjsEk%5W_TdHi2kiNL_GZCc71GWAt8H&yYv#szUQUCK{IQg8+vkvN1Q=Lv8RL zR>%~b`vxR$uD#Qo;lp(ySmSv+frvbo&W4%NfExraq@n02f~e?)8O|L70S|~V^h{m$ zSPVTw7b12C%xJcSlVI1Ub46;f3;SSf>`(RDKtC;8r2YfCyfNzErwb7~^%LBiO@u7& zhS(?{>%3*97FW_uk~X z#C_;zKl)ijKL?VJ^pdv5dUA_!b5S`{AU6w>MU_$^?d*e3m&#S=KX$Rd)8+g&_;Cy`EK)&zl%n8sTo&*ohE6ZXTT-rc3q?iJ@rDts=@7?-gVhjP%PG{O4R z9{+r*vZR@>H=tQj_4O>`>tGE;kDrXUK+)rC(a3H0_-tpp3^~~u?)49vd;J4wW>mdC zk9b{H3(@oM!&{-~`9U;ti03uBd8d!2nGx+SG$2^S`48!F*xMY+E!@o%{yM6qqmpsW zov{2U_g=JOrE+WREy)uCBaji(fV*|2!P0;`2}JmiV%Udq8e?mvY^`F!h^Kks`N&Rf zOw1Rvg?i5Fg~#uzL-0CI<4_3~vJn}KiQMfq@H*WgivI|Pan9TUywKb@Lj9lAD!$R- zP-C&`zjTv1b@OtWS|(i^EL%g3lwu({Yg-;hnaZ?TbbHSBJdCg#Z&xhD+5vNnd9tmi zFx2Q${8#jTTKEU5-htt5E)RQ$z&ondFJuOt<0_4JDB9$_Mv$qbGlf2@r;s=$ zpvsI5!0RC8x_kR{;~+)rU_uLQQvKUS3&w7ZgB7uha5w=$Yy}oPO9Se@s{*Zb3bt{e zqD55;%vTi?+*9D3?@$*ywDX#CE+Y#w3Cg9wZeEyu7#y-1V?l=%=YbdJ#V-4|5Exw-Jc&G$O*YF~d(LjB#ol7+Ssy?FL~Q;WRWw zQcv0|0Ecr&V;mV|5I?!4GRJJfm#R3ZI0cO?3@W;HAy|x{sxgWYT_#pQj5x8iF=EoD zI&AW*B zU+Jn5v)z9%;<)5fx=vvM<&y*=G@yh}PwK2f4Ife_QlD)icO`Kyy9@0yA+UT0O_kK^ z_7?$%4=l%#z=H8>7gtds8r_CBRWTafN{}_29r-Nf96tqJ>9n(*KAjHqC%*x6aV=GF z`wMt3JDnqVl_I3J7dOVhT4TMEACkCzrJ38kI*U_W&*E)X^#4<6WT7{DoItd0I(s%R zluS=H?VLa1!o!Sa+vTzcA5$oA&2d3MGTr8qS%YRsHMn$} z1{c2SqHIpWo31FE(1az)Wp(8z5U z&7M-xIM*~5V9_HWn=hKn<_0uHsO^fc70$Ky+77Kth+8 zOXwmrQK}N!9I=Gl-C3@m*nYeV@HJ2r(Rpa(5D{r?repi@=sp|`2zJQl>n+}gF*n@< z#~R3u_328fR7=D4lW=i;K)v^wtM?wXhg8+8u^=X|v>5g7!W*q9*zcf`1;J9OXsC?| zmhKYNfMA0CxbEH~#|qd$I=ZzRNJm=(WjL&G;n4X*=eidH?DAjO@q|>FjpMX;nNyp% z?T3U`Lqu0*ELQ^r?Wu`J*wO^pVt4 zLdUiTzF5ULu>g%M#EH4O5G+nm-5AA*S9R6v#)-#T8z(wTMXMv-U#fATA`4XFcCN}p z#R=M>0?Z;-apIH&i?ei{&Vt1j0udT4!ncq|zN>hgTkAl)xCreHAzoa7rb+5hy8<|z zOWd1sn(h)J#(DUH6(h#EXk;N`oI@a5*BeZsH$%w1d@C4(Yjc8^zmBFv)yvaKufUlv zW|3dT7q95+FQbv$?&}%sJ_xzLpEdXQQ)pUL{S6QKz|Cet6-1vujyFNk=f6TDhxlBh zJ7*aI?Hn{9*vR2sx)pIVf=5QT_IPTaRj6~>z@80kWRl8Ee&v<#u7(k=a_Az4alMZu zA=n*^#bw5>Y*<1tk3j4U3Beer%7JX)M6@@Ae&TpEM^cB{U4X;+!#$-+9OagJi+455 zG5AsyL&ZDM$U>+%oItcL6_`l-Qi*>{V2NQKP(bsc>R)=98M9sN5c2r46}{YxMsB;8 zr?MVY;_1(td-~I8PE(|Exf$ulL0lujuQ&(a3H0wQp8H?(fsh{k<7Yi>kka zvjU+$-+(tk(dQ?lkwbj0(WkStfOZZV5G*ZtNH2Zy&tY&>_`_%CH|G& zE6{?Ks;#k6mKwmFjNAo_vKfNl-{~TjQbV~;Ns=cF>8gq437;Skp?N~zz15}#zzh0tNmQteiJHyOGD&sTRIFtEH@Ct zxP((O40v6aZPxf-B@m&FzlFnqF;0~O>A_x?V!a_Gg?j)5u3bnSYEJ?j&L8fE1L7#R z)LXm_2Mh3}Dy9Q-(a1tNFpEI6F7)&u7_wq^jvK76& z9F5#|FZ(teNId;sb5HL;bE4|$;D!Uax9j-w6}??SBZqifqwi+jKkW)MAXtk3Pu&j5 zP4V{_+tLjO(^hyF&C9O4|1MgyQo%)%c8-TPt@}%GxAuTFB*_GB*HsY91inQeLNkGw zh5@IKkWLF3xG+SLJO$8`slqc-TjGGumc17SvT@)$?LT@6)?!!tF=*f z+@_i=x{m!gHusZ9*LWHT6YvO;cNA1ZOA;*d?m{5KBX8KtMA5$^(z$7qgd%Zbc)vT^PRT0V!O_ zt98FOm&b3=)TqisJ9_x)D@KnO@b)T-uMGrz+^WnBYCo}sp<6+DUfQV-p zqxSfiIE;am-0NqooG6s3c#9Q4>*%u95*XJ*p~Edv#fiB*8k1VzKcyD~hELjofyzER>2x zdIkQ~=5o0TO^~WwR%xcMez}BQdw&JqYDK{ep^-xbqp{_K?HZv=$QlrAZ{8ldbArqY zx>3Q%iZ>1SuAI`^y({Ch1Lcl%zFG|2Qv5q~LzA|W#s;#7thZhy&jVx%&hECw!D|JS zt{wnGT|2q`5t6-vFX}3q?O1u9K!omSXx*Ci1h3kG6nw%bjZ^SWfQTXme+9_meA1Xq zBB5ux*#C{j7p)l1c10r#;p{D4{jfkn^^{ZJFUdI!SC0NO8ZGhsKJ*=VAquC>nq z9L_0j`0z{@!$%*!XvOf6Ln8~}BSRos*F{XDSB83Y1w4Hfm}9uB=?XL{s-B)nI*LFA zM1K$A4N&y=C(y`k_xG%&%>%z(VLtzXxzF!M6Qk<$xy0v^N{D{H7jJ~3-|t2vhxlEi zk7sED?I<)L*r;cTZbcj`AWbN?_IjeuLcUlnXR`d=L}P}qF-j^n_aIVmv{A7#wS1{4 z9c8$G*5#SS^+b~NU^g%omo&S=Vd+5!f!G<+gYnI32l|Wy(Ee~M$+Cm}&^$?9YR>{3 z&L@pYBz`n47lTF;U$SD*NT890ps|oZv@SWAO8eF(TLC|x3f36r1{=|wsQQ^6TIKB* zy}ce^zM{9+p^@9}?U}4s4e|H|<{m!}&5NqX=L9l?W*tPYpNqFa(d*}+kwd($(W|q> zfOZiY5G*lx!!R+J*xJNkY^Ita7vT7}%if1pt5j+Y{kPJZR&iaBBrUi{S2ipyxQjsS z3~9kQx7LB);zhJKgsk9sG)+>6+P?rC&L!@x=uLOI1>fS`SMm(LV8wv(BpO)=7>^N% z)+Gh*t>|(uPruwaCzt{dxExv4%l=!@Lw!9FU%aBP$Dxti?rYzz=yHD_Z|?77(6p%f zJ9sO4sL$VtH$l~@u#M4{MJ^d~;C(_Vti!C{L@1fk=r{T+2^!6q+a)`Gz`fk?!)2=`R zf{h)1r5l{wvBOVCwe;S@3Cj!CfK{x)b|ikG@v~^PN~PA=Ji^s@{yVY73;q0m+GY7n z<@zB>UhrvMJ+ZvtQv@P3F9;n)M1L38>~3;#I9cEc^VdCSf4L2a4Jz(Jb0&4UeKX*2 z{%I^Bg9`sm?OkD>?Fy-@Yc0z!zJs?`F&5oMkV75c!h|p(C!;IvT~*{?1Nc4IjZ54G z3H%06s`O3-Q37j>CE%;IAchz4b}NeESv0b19P1LEA`qeRBJyN28KRnM4R&{A)0tc@ zFvggDg|TpE07MjH3{g01&4t4%F3xC7#T%}uoJnZp5anp(BP^w%!At{!>GxLMCcvzq zeW{TZpER)o=2bSgc3x%N(z5KT(+s+)N&DE?Z!{j^s?+!AYMZ53?j6S{U zT)JLz)#-=Oo)UV~^U*9xoo$x^hfk=Kt~&KDsP6JAD0H0f$D61a{@zQFL;c&rENVux z`rh@Qf&TAnV5(u_bTghuY2qZhTIs4&(bZmE#V+rQcv}^Heghg==<=>35TUI<@?>c` z6NfaZegf<<)W)M|R#d})(&2oWHoU3|0pSt6v5Mk&2#vfGi33Q?mdb;Hz|nc7u{cHp zL==g$7&w$JDU^uAt*RI|cEy{jD2=!N|C7cXFKz%|y@h-^UCs9u1NwM}xjqiXldjmY zC|wdH*N0bMQ6!7;_9}|xU^H^ua%0<$wt|*a9 z@a8H?vx$eq@#FXA>i7+s6;*W@q^eF;#n|xz-c&_tJc~wdyEM2|)!{2s$e$Cujeqv1jfXNb z03x2Dj6tgE)mIeBRJ^^4BAJ9n-nm2)cIoL-bCH~Yrbac07>LBHuPBmZ@%Ac;1tTyEvwLv7AEh-dtAwB{tLd~mx5-cChPEI=c-T@)b7 znTA(cu`^kNH&#&|C!vvdB6)aYynsC3Z!VAbqIrp19$sZddF;R&t0<2;8oBNAU@I@a zv0XqQH=7IOi)dz41){t1;;XJGksI*lDoW%!G;-S|GR@06fHQF%`>44(9zm0$st%=R zq9k)2w5Fmk9>QCyD2$(>k=rheq$dpe_7A);=d9bNxAtdhl{`FJSqcP_(VsC+QFjH1 zcv94pHB;2Ex{Km@3+-an1Hu16Bez{V3q0|7Z(2Y*lst5LsJUns$0i!3XI~`oC0J)s zEC=IlR*W8-t7X;cYLs&Y3geHq=vr0t_|tn_9j zl`EKuN!)=D$qDG2bY;tq=zM`dgdX8&-6s7pPK^WE)Pra@xXqFsc>WQZBB>|s?*IV7n`5UK9fgUcreBQ(gh!GFB_7a6jML1Zy&FV;t z_p(m>EH>wtO02P5J6KTLT+=v}N`l5XFc&wza23RY#ux$-8Z=sX?rXBY>VfF780{A! zdK`@AO6ppB0pM_cX-p$yF~9Xjoba_2Q?_Yqo zL(%)^p^-zpuhH$Z%z<_t8W3!Zvzu;394jDmIJLF61dPeRlusXj^U@EY3b;@uRa@hD z?UcbaitCgl$-)D=T(e~1J^~S%EVQl%>7;cI^csIeyF$nkeupMW>P`DsfWtYYL2qhx zedU(RMj0>S%Tts zhmdyy4(FD}RFZ!9j2Cl`mH5IH5Qx_G5;JIy?jtPV?Q_5&T;DBtdpnvI zRd3TL0)#4vKCj_TQ1toPXyms0d=AUb!~K4fx!=ElrbgB8^8b=(uIkv;(`8S+%;IA2>r(xfWReIQn%Xw1iCn{H0W*M z%yuz&?1nE}F?e*Kk%i##2K9f-?tGukIu6EJz~6_P`}^%^W>oz>FVJtWT8N%M1aF0+ z=Tm6p5YKDGeAaEy;GqG*x{arFLzvrb%xi78(K%pM`}->S9M@^o(Snt#&EWlE&nzxD zNxF=Ru5ehFQ6dmKLzgkWS?xdoxf1OUp~JWw&6Cun_J;t6^NIWZaMN-zXk3ObSuto_ zibfWKMuR}KZfxnkKip(1;O7Ux8c5bI->qYp4(EUNR~B}3oIAA0-h1zkjx9s>KJ>F6 z{VbxN1Ib5l_;FbwZ{qQn(7dR6 zJopfCvks!y|Ae0V9AVGNB z=ddFfsni-P4CkVowsAd@BunT5dvU`hS3E3BIEX;(3|YcBx7L9OvI*@Iq0cx4O_S8E z_6dN)xx{^rxalsp;9Fod*1j3KIJ+BPuwvL)gGLs@#z_RCbvc6j9I@QX=Yui0`5eK^ z??+Rj>Sh0P#G$@^FTQw1U++L8x82vi=ZNM0{+hYJZ${Ii>hIul#GyX_BHjc=pWlE+ z4)M80pU%<(+Bs-Iu(V*2ZbjU*psTfML8r4sT`tu5UGsm2O5mcCRBDZtrg=frIIb6x zBnE%bWt}Akza61WaF!frjSA;%e5Pu%H)rsd*@Vm!WN z#n3SpjVy$YQ3RrOsewCv&}1v%=VQSdTjl`R!(nS2oz$GP4|k`dgf zs~DCMTu&f|$q1gvc61zY{*W`Xdp!()VP^L_`1Idq-{A~~pS}n+^J~8de}Bu+qQ=Q1 zkm7M5zQF4JQI~Hc;85eFC=h!xRck03qR;8LR6{|yywNV(?+`%x^SQiBx(Ohk? z3>Bu^Ed3(nCF)T=oHugTwtO}!_PCdI*GExZYe(6tlDc_5cnQCOEB$iP1SXnb4941$)28XKZ8tN^hsQ%PqEeO6B;6P1OfY88$}HzLu> zK&F^4*9&llvQ&)78_xA;U|u9G4Nhp}N&^wet_r@$_QO>%L+(h{Fbq_!T13sOTB_8D zU6FJaRR@jw3F<%AB4{NqM>g4r|$P>?)T^J z_ZRN>A@}>R`~5%n`-uDfrThJr`+d~?KIVQOcfU`#-zVMgQ||X^_xp_deb)Ux=YF4e zzb}xlWzYF=N5|^7;D7d9_*J((kNlhuKes?ay)5DUx8>v~nNj~f{4+Sc5Vj90`u8d%Z=5Vq^!;k7mpr8S-)FgEjN2v$mZB+F2 z{%B-jl)4Xr2yO3?zo^NJB9{|Hu>}k=oQ!%GnilD3(T+wGP8~&2oQAhiQ52id$ZZ$J zbT3juE3(cOH1QF0O?(*5imE0guPu9HG+AfhR#BA1hwvsUO5%Jp^3ElRK1-0q?dFpB z7Mhh9CE-+2l*BjiCMrteYiQ)1OcFIg62CT=#B*p?;*D2XHSCMrte9cbj8OcG+8*lI3`el#m_N3^*3`>yoBaORTUaZCat6>i$CFwRFuW<(a3F=h41Q*bh=Wh_UC)W zv|`WejfWq*14KN-56Q!0Bh6fS^%TW14{xWUIA)`f+b#~@@qQ48TpMf6wXq7#jB3<4 z3O_V$R#TM53cQ($(pZW{Zo4%2?xb4p5t58Sb75>l^P(yYo$iEGQj|p%Z=|9u%4p=a z%YsWiWvaN*Tou=&X;D>$M(Pp98Ha? zFf?)uubyJWco1)=qBwqpMsB+}xQMZ%R1t*H@de}L^9?jDs>0BS7^IG(C|<+cs3?k8 z(8wX8(AdJyP65yzJsJ?~6ad}Tr2)aLxSs4Q(tu!ATuUG__`53Hvj~Tcg$?du8=FG6 zu;^@AyKy0G`5K+6R5F9yIfOOn7A0*CjpNAP-QIdJ>uhVy6r8=>i<^7O$;NK>XI;*r zgyx@hQJc8!Xp+MSCxM-~F{3M7b{Jtffxy!p`HrEnq{@Mc%KeoM>VNY+n8CsFucw-K;_W zj{dKL{kSb`Qe`!c(T)<1MVuxjG2+X*EVCGK6M@(XV#H{ua3Dhb9PI=lLOh6ONa{!X zF2Lcu(dZ-*!ts(2AAW={R53pM0F5lfhx>IQSbU(GF^UggFtGyS!}G1pBSxL*oMgLj z$T_%2udSJKLo@-RdxRrE@Gf4>%F)-o#N%TAKkcHY?Z#({+5S?cm>IB!Bq3uW*ln0r zj3W^EkfD>s9hQ*qfwxI|H>I1fv&2dA1P>jG_K*-g7Ng0MM~^)KhmRg_7w2XLUv>p+ zCj^><@%AYOnga-OsE=EC1Yv%F1=xEl-6eJ=Sd8nj1$Uo;r&D?oL3H;q8t(QgDt0iZ z;tf^w`$jaf(7~)H5TRqa$Ojkm1c79Fvg!OlxxfYNOTa8ceO!blM>QNAtECUGoSb-clf zg83>Mx$T0P85E3jOppsEFPKZ@Su`)I5|J$L6@6JG$rFRQ1-UXql*LncBNb)wI2yU_ zvY0K%f?mQP zj@OZgzovpna(G)6MUp`yw_PMczERBO2RL^(8@PR6$M#*0&k?EEIx)t zZo4e@2*wV7XC0U-zu#OS_o5k6703xX;lp29F)_UxZ>*wF?nEQET_{2)<8lWV8*Syn z$jjy``3ssJRh4LUGX9zh(d3VKTNOp}J2Z0JMY4N0KUdyW$@KNX%ECaV9Ec@*++;k4 zSpX36jA4$`i6yM6VkDW1H&sz2v(U(G7l|-c)?}_;sO2S6Sz|7hlh7=w1{AHSvS5Wp z!7RrctSFch(a3EVj4+QB^8JZYXm1s@7(K@=^vrUOV!CR>)jQ>R=w_O->gVCg3?8z5%fe7-J zxil?PP368r`m<0r9&FVV^0vHFZDT1u165 zI09j0#TXMSU|-yBV_Uj!b|P(O3A$0*zud9M}2df5irWdvfFol^1K_#gSc!OhWaMD*V_@4J4v2uwNGFPF#{eXVhZ65YCM zjVJgz5iX}V7c4Q{N^}mX4CWk-w0YQP01m&iP;w~C-z2)Y-}q}NWE9)+HY#=+HG(`$ zn+bDr@XyFi+76Ig5L?l0h}lu5kQD`;M-0l}a0aK zGie)XoTz=4&oPYJ#pP;}<2kFqR>J|w3Iee+Bv%u>dIvJ9651nfJ7q_I3uvOGPPN|+ zIGj@&lS$z7Oc&!<9$&O#{OUy`3-K#UAX=9nO(Tb|x;(l9p8hPDW0(?s8cm9-r)LsR z2Pz=?`%`!W6#e~4G;-VhJ&V2b5a#p$HTU`dpovlS`CQ_2NhL(T|2N(UMZbR^jU3{4 zjqaUg2(+WnfM6NIQr(KU8Nv-Mp00GpG9Bq$p`6L`JEJ#?T1HsF+oyv;hPlFKG%c#$p6$;SSQW%xV*}m< zMW3IHMsB;$eV5;bxAF_k{r*8THL8A}AIukq^Zf_#W+?jpeQ4wm-)nUDEMuUZh6V)7 z7~V3>7!DiL(m90*1uL_4up?cu3UzJ`=zg?lrHXUkCT{MKbFUHey~HiMNzC`hUBo_W z9@jldvW9zgHN+M>?*2=Mad{ zRH1c!$oOWh15xC9v{QsU;aW6JQoq`l0uJYr#v~F&nwE=^<7#}#ijm_gG_nvmuF!>G zk%OwoC~|B!u>w{vt=2}4alNGqEMAsMWiE6)54FHeiby5aI7K=!39s8%N`-W90rs?% z%2nB5!+B1||985;PHHBnSV<6hM%Mu>h&)Lkc7`C*taTuWjQ$GNJwg!K6(FKWKwk!~ zIG4CVq-nVrMBYL>sG%4{{)0vqg2=yhAy^Qh>M;r;kC|8jL1aN^Yo{w}6_~8Bc4Vz` zjSC~o&^ncek&Tgs5wNsrD5qLUAX$QLA+DNOAUTde>;!>iBCB^Gl=PupB!rS2nkcE4 z?TvuLImMl~V780FB!e$oF_^pujVuI{ck4p1U_upS6ikjbu>yk05iQP0HdPWet5_{n zxKMH<)FO(EWD5x;;U_zKVVbj4$)5vv6i_R~>yL%M(p9Ute|f~CAJ^+Tg9Vjq2?Rc< zM1K)-=cWytL{I%M+EYSA`5!b(@`&n1p+GjVt~0{f5RCBAB`jfDUa#TZ4@hUEN;nl`+u3ISn0-dII(%t0f! zT^v(AaTL?#OeMqLE4R*E8mrNqsP+(&tA3QE(X6N-jFos(6@{@3jofx&%=Cm&E4evS zpieo+TpZicyr_ypH*R>96+4w0-dII>oQ+0qyF6z5PfC>VTSx z!uToPQbl3>7>(R^Va#H}sHENAI3SK)zGj@0zKJGARUAunLx)#eQ6R75tyL7rt7zo5 z3uKO8AYP9gkVu!gL=FOoc!n)Y^(ErfR}{%2yuFGd*%yu6c9F~rh@{yo2W0YYbD5lu zCPy`rEH{!#v&N!OHsdW;6v_rPa@&RC8_B@zFX^BI8oAh9BNw81QPqg{NTyj?Q63+} z8>=Xf51^6TE{_FX9NCsBsp@(h|FRk^Iv?0Ecgao7G_pRfg&C-GJ*3g$61a)@9w zmTB2aFJ1Q0fMB~;zo)y3z^tH)i$+#lZDIwiH@`TlrJGke3#Gm)oXq8K??~N(9VtrN zNMng~=Ss!O)bgdGbmN=*XI-9I+ybU#pUQz?DsH&p%9kxE?@u6hh9$@G&1wh2-g>k@ z+)A?JHS5qkNnL6m12~*d+#PRC%f-HKHNIrU(6thcEQGFQ1fq58hEv_cHEyd5`1xG0 z#&AXX95g4Yex5wG zxNJ-6c>7f#jL#yJmJS21?Fv-ZHTM>8o7xz>xr$+FH-a4M@fL1Vo5z#jZQu%YG>4lz z|Lu4-rJL16=dV#2IS=oAuij$kbO_#VMHQsb$U^6IAb|*t5RqTLJU1v8Z%>zh`&t&P z!UcFCRGfw8Mm1EdjY2J6wS}Ou1#h^bT;7F7Zo6C#3dki>E*A#LrZ&>WmMbOO$~vR@ z;61w^H&@U{(R8UQXiEeN3THx$Kp(-^L{U;7MkBXfQhNj>MJ_2?x}GL1fnMu-<|_Iw znjuvcNuDbcmj_1ZwYbWQ!nqx9yrOWvg+^|>aApUD)7*3F@3{V8E|}kIlM4 zv(iGh^=rJ@ic)zFjofyrBm+|MT4AwN8GseZsuc({bG~7m@XQ2=c*aJXBhZb=fEaD2 z;cK8Mp~-0Ewo7R5FbTnKhiW084Jv4vxq_CUSyGKWo1#=ulK@db$KflWD4?U!$ZZ!; zXbfud7fhMYHdjy)O_QpEB8@>F1EPes;%lHNp?);-PAwtn{)lVLCG;6IP3@9U*j|Y% z@ikDC(B)|4wo7Q=VY;#AUdKQ#^kZ`o{SZx*s)$aDxF>6JAV#7G@O4m>(S2y-w#z6n zjEux%D6g6;=$~kgR28%#Vg*Uhru+?WzM^iDxv+AN~*5XZ9 z6wN9$a@$2SM-+|NGkw5ZFYiNBqpBCB4a8-BdqZFi+&M}s?T`lXRx3(n8ydOoQaKkT2fZRZ^`HH!CzJw-ARXp#GAlQWQAV!`W@%2!Y)AeZN5IJe=)?ypJ=>8532)5y? zLwDMoSwZ&|8CmhH?(Qac+u4z=z5i@9*)vl<$Dif$h{-mf3MhL?l;3C!DYAGtV-3{ zLonpN<;DGD?l;3Dxu*w)8p}2yuinZ;q zWHr<{$)sA=jAG1=(6aGh@4-z-wf-d?G@PCdGkUzZ#NnK8Emm%x4NU_fb)mW9a>~x z2miVMHv4+`00EKj!jz;r8^8v`Ete;gYGmxMfYnYV_TJmE-rk3P_M@Lg^m8EjNHZmS z4B+s)vy$mAEcrKw_c(euE*P@sD^9N$g!ybFM?c7 z5Wz3aMes11lBh-C)Jqh>&+&FCir_&sa@$2Pxfuzpvjq+8_ATQ;&;bxptZa!L!hvdm zz^Rrffj7{OQhm?lH8k?hBY{3kkia445=gaM0#3C=2^@$wOEC)Uk4D~!Bv2D1u*F;g z??N-8+7l>7fj+2~D1p=PW+_Tw6B@bg5^(Q$NT>6~yeNW?n2X@UXiii`aIjieKr1H7 z;6r%B6lHKe8oBK<@bZCz*csezE`o2N8BrC1VkB^?B}(8Mc(W8G@HI5@P9y;_4*c3& z0?(ltiCO~E&fsahS&9;P0*$=$NT4W2fob119u-Umh_;RjoN9?tU;^GOMG17Gk=rf- zZ;Gf4FMbB6h>kPYz|m+*RKtMc6cMSHD1syLb}5SB9cbjXi@-|?VbN2ZBid@Nf_^k7 zswz-S3Teee8CZD36lKtZMsB+dW;7>>DwS$~zE?~Ot~6J|d+??yO5rXva@(cAx`%4LM@SO> zW-f%6(443WLA84z6%%FfC%j>bGWb0jx$QFWQbm~x_Pot_xUf4w#4}t_Ocg^!Fb{8+ zq6lWAk=rf;FGr|V>Q*klO$Y~T&4sWEO^a$cP|Oj$x``2C1>QDAF)T$Rw_OZgMA%WP z2tpV%7s56)C8|PDj0mJ&q6n&ZyA(xGMkBXf1e0i@*pta_wTd}ztI>_-61W~sNTd>I z*2-m>Z6CW9Z|5q5`cZ+{tK@jHuwL}(QK&tf04=LcYr^3_!5-<_Xgh1;nqSGl!00-mU(iFgfXv=LEz)VK~^hlDI|JQ}*|8z7Qy2F2^ zPV66`eUj+kj`vEF{@0)_x1IiZ4*jDAYb2XVH_9ci5H1Zbgp1L@=nCQGT0-#kPLjk0 zc>gpdaUR-o+a=)?gXG|wP!D`2ybeBvMnhKzTE!skl0^O|@J?xxe+$}j+sSwK6=kdT zNF{rYI2-tNcmezpjfk!Qv=)lpZb>3|1n-!p2p&dTZo3Gkv7|5}o;#X#SLpe`OfV5m zL3of(9)J!>#81P!q)Gf_wB@!F?}YxsKz2k3{jUm7{VULD=#G4?&`-N0k$(ilqLzjK6z)!m*k^e=!Q<~)8jker& z@|_Prm1;RV0GEPzNB>{K^ZzF_AiDf(eFJRtN|L~nc)v6y@C4d&fCLQg=Hl0Tv0Drb zOz=y_*v%CNCb$>u_9+7s+>578@4zBnz{MLobu41(|HHd z`!mjGzb<6IE@rrP`K|i+%?1;CQEJ+SBCsN=<%5fqEPNb+4&d@#) z{yPTyYbi+l9u-~KbEmi_PBS!7pAL`HRMTV?#9?e3wG{ql3x1aYd!vYlF692v=0 z1s2YS=Db%{jNf*(5Ht1Qmg zua6ArY01)PhPEfce4QyqT-w)~n$U*XcnZ;aIFj-@k}4EaaA6s7L*nH=Q&2fC_fiuvhW6Q~R!A@(fz!Z{ z=LW>B2~R`@?wn+ew437XN@zYF9?i#0O>mVz$_Q!URa7i;GuU^5v;;X%|9o_jn;}k{ zl)#<>?V1!Rp2)qAsR=*Wyowz^Z?TTlXZF|fdAph>dDls~Y$V}r<+wZJBogBYx0J=P z#HK>kE<-+rpNZYs>Tp7pVO|-TA`(d!$WmGEM~e873d}r5nsUq|+{>wn7$e-&)3b14 z-&C~=}^;Sket0UUv%~s~*Z9*`6Q)D1dNsd^VVnt5D zqo(+9f$lOj5jn(DPVKK1sx<-Q4@HLY)MSk{C+YYDrU-G6-)CyV53)gkKLpxlGX)ll z3`}q@#>o-dcNY3)c1!r`Mq;}S7t2D8mMtg~#CIZ7!2U^RwIfw4rK-#eNEX5A;ajGx za$$VK)I{Wztk_&E+lh5{)yn4WfyBnqQV~`kD%ncnq~cH|h@EF5V`pV@1RP2YI1Z(T zU58S6aHuI!Pn)95iF(S^gf>ye^;J(}@YG5PSTss(DBI%4w%#v9Rb}^jhYYlx8YFE? z5wsf|2w85=q9)p1M;#s+l9Q6zfg@$)4h@f7pQ#D1+?O)&TU|q`68!0rBK!&&;q9jI z@YwJgQxlORywB;|P7>;;b0UOycO@^wyW12S4sX@eMC9;xAD^vmto0|>7U2sge7o>{ z=DapCu;(U+VB%Wqhoxz^Whv@jV~QJx{%TVbe&`K~PF}aN*l%Ehdl6CH+PNLR3a!Z& zta8@J{kJ3IzAH(-0`)fs}-!iV`W^5`{N_M6S?+OV~d(szMQoz-h!U|Yr6?t-_Lf=TD|J0Y|jSAl& zhd(Q6YcFslWFhxos;xj!R|KMJFtgZMG|4{+Z8?B^gOJa&28%BS zCb$IuWt#q+tg&WltXYFyw~;t*>n6H(Ca(OC0Vy~IE9F;T=I##~ugw>bGGvd z9#S)FR>Jc8;j#RVsRChGDC4-nU`!g4W2& zc|+B|bl|k?Sxj*Lq>o&h==^iK;g?X~DC)!WOhv?X_(p2NpguGxW}2@q^k(wpVOBx`{Z8AS^k4~FEyu}??+p9 zAmju7z0^c}>kUf=VZT(`+64*F>WBA8nh50k;2Li3CJE#_Xn=GDvPM%NO}Z;9G_#@9tz5vSl?)KtXDXv=L^#Bv{8>1vVZC?{$8 zRPvVaD!C91l&(rnFjI-D+p==rjCWg8Id4K+Zo6`NY6YKmd^))!yiRUM!=kH`S7_=) z>ZGiSTk%e6s^a5l%K@q|SX1H4GHgisX-l!7rd`Q4< z>&+1DWd_`AHe%5$-GoW$@vTu+ zeTiz;!kZLIZpCbLovAGN;69F;h;ha;^CY-WB(Zkb&g>NDDnqToGMv8^Rrb?w|SDc&1 z)E9>?{Yq3>Vt=xl1zx1G)C=dHu_kwkE(TXZ7S;Qin$V`iIBCy^i4E*OuN7+*dJP<0 z?<*a0T@x7@3&_mIX&&y0soIU^rG$NqDTI7@zM7ht2nA?=WPp;(N)D5ANIE=vZ!k5% zHT+seK&w;rY+C2@vQtReZ;1@*Ijq*_)us&lg{GKs(Z1Q#gdcW;gurtO8#)FixECy^ z7?|K*uo92R3j8z_h;W-dNn7s1{+~3@_?R%7VKD9lTvvq|tV2c+5{RHNi*Q$&9ujotu&~*OfV4>7|!_dspP% z7#SHoT;v&Ecnc%)=Ey|Qn{13b z&sw)U`?$%JLau@vsENR^*YXOYm(Su7T;JZI^o{|ka|KQaX*!%N(B|k2E#mr^X<1@!-dXo`DJO z#Wob@T6n&gUI}A4pGp$so5`-x-<3gc#8$2hOmHvm zHC^T*Ucf!5CpKG5@961Od(I zUu#WSDGPXZ60S*hnkAV?E?TBQ+ac@8eW-~*Fk2o6dOc9GTwltH&kL`N4A6OAKv^~? zjY}FmC_Jo5QxiNkBuq{4G|tEkmBu@$7cG~;^i%1hm{9x)gXs)ttrdGH<-s(=xffD7 zj!rd&ng^v*OiggY8Po=Bal%<>G%&%vh$#Pe!HbMFy5u44!nrgu(r1zP7d@>?BmH7i z);RGOn3{+j@@eb$STIxZoff`1GPI||GKkZl1oTa&C~=@~Fg2kKv~hjVwJy7hEIpBP z)4t0PABqfa5I1cV-Y282N|--r3K+-y0cs+?>fj()Ln}#Gw&2wWcp0vIjF2<_92vp~k%go}in)`@robJ#B4AbEQz3UpE+GCG9{Jy!n&4{x zt*Hr~PZ<9bF`sn0dof_(33^!k^{8ryF1o3+ob87@Dxpzn!0iVuhb+hEo0{OXN0h*) zlReHbqppe-+cA-$J%jFNW-UrkzuFWh9@}1NY9ex|r>)JxVwC?yp8m*?o}SD!8kB%e zo1(;leuJqA3Ft>M9UUt#7&~`tMeh0~9UW(mr>zmJbZ{7V+%-A;UDR{T4#>cCv7akn-cX&6+1sTcFCAk@5~l5`PzUz2sx-S z27hDPh_z?HE>(xePIv+SuRb+nl_+gn>XU}@#s0C&>r;la0|Rzp?6P{7^ItoEaCv=N zp*GSF`%ebOPK1@KYPJeiiv>7Tc6oh9+1kxL$<+ZstCm}r=;%0cYHmIJs;^iz4Bo9G z&o$WPRlAGjo#aAf`v3I7CA#9+S9afOcY;Dw0CN{YI|%G@my^FwrdqkT!atokwqi@Y z*FB91D?#bTD$pfkTk3NL?2%$+)!DTyoLVHSQh=$QyMq0PxsMW4H^C1(_b&KJ@yuNb z|5Tqr-#fD^*-T|D_ip%;%X4G!^RnDk^q=1YKTqt)T}}VTd*LVWLf~sqk-HiG%)xFJ z#V&UZ{0Y0uI4)G?v%ZttnPL0sunpH#)BX@#I@!M)s=;do6~JUmeP8w`jbb_tw-co4 z9|?$kj`ZSg^5YBeLxOGcIs&&QV!2z1oiD);2dM?^LaN8r&q%SF-Nm9H0cD>1FUmIg zE;NuPq8AW(kaXhPDllfOu`)Y{%Eek?0ENhRIU)zN3z6Aw$3Y+2p#qf%N5kD1N-7cp z)LhTscV5k*f8Oo>IfSN41ui_If86Q*@t}1!{0SeDj}SN?B|m;ee*BvJcpQF6Qsbpq zv5ZsP6JX9!+)LVm@0L0j9Nhnrh812L`T)`1iA=fw1s5%UOzI*JADv2xRyvcnDixc(C+PhHPX}gCxDKqSceBjAYqSsYU)3J0<;Uu?+&`oD z-j6x&B?24lfvZ09jz${(XWy`$hqZ+Y4A4fh%`Ksw+>+bh`Ms3>_Kr^kYX*}%=S%G? zCqrZiIxQZ!a%{ZVGJPGacO+oNMcf;3ICQ=ROUKIiDSTK|oE13~+73DK>!T)uVT_=1 zTMJFPVyYkHCIWu@U%}dy9im${Xw^bq{-sGnbu}!UUu&QcA1Qc3ZQ` zLv$TH7$y>kVD3{GVt+-&o%>hPjoLI24*xrS#KFY@Js=^DHJS+c8;x!G>~E=*N|12> zmh(1X5GeMZ3{2W!dd=@FC4Y6LqH&@fc7{0ZJ;WQ-8#v@U05>T)y-~>o4xo{9$c3Tw z2zf@E;+Il1++WM)$!d+``wH2Dw%S&R25);GBTJK zBw>k&ocL@spK_X)z|<(zhyM;!6Fdnq3PUBK$CwIQeVlL(8Ap&Kc9M8CVhxEiwpT>PdN&QH2ASVGel%n)EJKXHO&ERPeCG6qa(<;t+A34*t7`d`o#%Yc`n0aV}EE>|EkU5@Iiy`Y@*Fa5Akb@$p@rCJ<;!^v=vwgRhT zVu`-+8&Q?$bCVg`GMr3yTb2g;0%$&DvEEBf802J=@+Tl>&t+XrTeWJjQX3)9&Isf9 zXa{8)w&(BIA^-Ij4(HWqOm&BIPlHl#KP66&LborC>cg9J8bcQDTn!s~;0_t`e!*&i z%ONk9b9U_T{>2uuIDke`m&KV$-ZeQUTj+Kr_Rcaj!K2~pO-=Ba%rq1#CLc<@h(T@L z1KA411QMRfhaZ^U3X;1H{BWzjc{_GUf4hacyB3YSuI}c-#`Z=pQ%*0X;BgJQc}ad( zo0{PAi;eiXm7UpAiN4<6_@*Z?|B#n?NF4HCZz1&$qJh(;z9;EA-sG-^2hisuDMm}zmPt*eA|MW862@`qeFSU^8=g=VO@;sfqWSXLVl1BF5(5*`BK4WUa&#pmM z;E9D5oCYSi7p&MfFu}dJp04c~nBZPqM@<-hD1}dyH^#d`NayD7_1|pCbOy6&K=_uX z*hI7jTnahGIfj}rnBo{LJJLnQW#mvuwwhS6wN@Ekwe^&hiS6a=&=A?xo*;M6!uLrb zXxXiSJ+~d~2zbJ`Npkyrwwfw|C#g~y&SyD}zF2heteZYJ!ihH&7F;EFRhV z?r7Y@s~ksE%+|4U;x%;A*Qp zO0a*+6f+L{H%v`L4*P-IsztI(FtGxTr6kHWIW9%cKCh(vfi^pP8oghfo{5Z$B)pzU zoq;>M22$J?dI{f%h5jj1}*TOrdgdV~UNy_A(;jU%aQ33}R=v&7{ z-1`>K#2tMaE9Tmp`n03QqS{M^i%$KO|lbSAcre-W_{&kpF|znCBlz ze_hCaUCe%6LVr27_!v5r+KRDOT}mPs>_JIvE0KH0SCHGmMy>2BCuXe_U_U)F*!QPF z3;ak`h#x7(jZ|Q~+O7Z{iS=ttP4L06h0)dO9YTq9cGWJAz`kZ$tHKKlyI_MfkaRkn z?iDtJM=uVC}4U_$(^faCX{57Viap12uH4!=RvrZw=X>AcMGnTFZxHmG`XD7=f z7{Nvhr&$T~drT4Ipnu-fgdcQ+)hxas#uAT#3GPKiQ})@%mCF{rxLPrB|4U@t!<2@! zn}RE=gQo9)GG&gF|D>sj$YGze6>eiM4rDXRC9ApLimE*BPQqaz+Hmj^)of@zWF_2b zY9eyrmu$8QHS&%!oaTgLs0wcr47iD3OgKkG#=`!|5yy)Ze0FraaI?PR(VfFg@#JG+ zm8l7BN{lBbbJuQi5A-B{^T7}Q<*qA)!uX8Hi0Fh{Xj1MeH!1&|YKj?${S;~<#wo`n zG6NUj+Y=dllapkEEw4t^!sAvpHNoXtWYD*I`p~(xme0e&#@X=fu6R7>{gDCP1wiNX zuztZBm4y0UQ?$5HuQD~^2i%~_;e`?#E(RvJ7ZDXo)7M#*;r^mk7LO1-7#Zg?k^^pw z65$V+vc(DinyCpt)CO#E!rA9T0~6efSDUVk5-;FWanF=kPqV@^q}A+5_8fAthIiF% z?{BxH=&LU$=S@~MuKS>Ot~CBfA32!jG%b9}RD2qK!BiexVgIHk404}ICE?lq>Riy~ zJ()7;xB+WKfO|O_Zf6kEvnsd1QI^~?Fo7$S)q7RC!Hz&jeF^!l>0a65p{Z%P?%*C}Vmax$9-HD%N7l3Yh^!n>qN>jt!C2QMCW*HRO$ z+(Xcu|2dR@a*YcOXFdVE3A_m@fKfCiy2JV4<^pj0Br9MS-X~23RM3{&u7DX#0pubp zA(VeSJoh)E(a_~SIS%)2k371>O}+(fy2Zg}yST(9|}$9bTAQ3P1rn%@IJ}BPQm-6$?HC7%Th4uFg3x02~*dLE0|0=>A1~ngjlj3 zfCw2&)}XP}jU~Yo650~<&qD8Hz9}f`_P!^4(H%pBKApEzs9I5(>yynT`tunq5%rUJI2 zEw^0(P(u*3q#ELq@Z4X7MnjkTW;KM{8!4clkM~ED_jA#f19&$m0C)|-(u#qJHr5c+ z-LKI?A@Sw#>iZ&^6J7N!3tZUbosqXgw zn1gprQwv>a%Wc=f9FG>NcF7kJ)`pkCv1m+mBYkjUD4Gpj?JW)rL8Kc}eX$Ggh^F8w)bd2AFJ?i{-3;uD zBR7WU@_Iaknw7=!W?Z^Gl1aS|?~x{{*P<;;QREtGBEFhpHeugQx<2}U2+o9Ds`wrn z65XL3yjCT2N#_3{yi1z=KZv&6cK)YRu%v~Gj_-wL{y%6ibeRvHD)P=qq5PkCcQjdl z4sAJrb%VsuYX_E43{3cI2Llt_3${Dlzy$Z=dDA`W#0%K@|EYL){?9r-TisaehqFVw z;TVay`~O7rC{hlAI)9}N&Q-%jIsNd)XJKg7P_{Z;>ra=RmWAEsip~EU!5iGf&e18~ zIKG~mh^K0ySDZ{)V+{=XZZg@~8dP(y13Lm{^{L5z)|?bQhQniLo0{N5qo0~+WpO}3 zo=HJYY|r{nue<}=!{vXaeicY}GNe;*O%0rwk>GxtDOOynmzkRI!)*}EcsyhS#=r#k zVvT7>oOt+gqf0XlHr7xr%~%Hql^{fs=Rds%q3&;ul#~yglCx1xlfrmb#K8MZ!Q{fa z*VF{3^d3_a4y9k28tdV<+2qxG8}0$yX0r!$y~O@+i-=V{a_WD$cRY6gVu~wg_fOPB zj2Ujhy3v9)0(V9<19|TETN8-)0y_eT^?j2Ato@V&b_yng^tx3kD9?ufIAs0MX=;Lx zo$1s>%X8p?4fx4@cN@x3W)Z=k2H6R&$WLsml}g33crg43aHJK!wY3 zH^(B^v5M()q%~qwzNGG^PyQOW5F-?6G-oOkuCyU)BE~>Fm7Kn{I5j0|U{XVRVo^Y=_K;xIpCYQhh*LDJxPhs7iV6Wogd z(~dZK=PfbkoekMNi49g3UdI_?cg2ZsPtE*6OUA8d1#7^zOX-2^E_>Brc29bcHJxU+ zy$cakk#?qmHz6y~$<#!QX=nDs#cQ0KG75@9wIlInur|i zIplR_xEmbqSxvBk>|G!@J2J?->3hs@4LCF$bm3&d6g3X~PE!++1K&knO@Zm@`f|DG zyLf0UGSp|$2U1`jYO_|Qa^PL2cyY+zVQM0B$mg9t3}Kb1-Ky+N3>M3Yjdos)F`tVJ z`uWM-q;+!hJ+z*J)>Ffzb%}z{nBvDN_>`#$KLrNm6tBowx;8Muz1Z8dBThwjLA>7+ zr=CiX>Onlhi~!3_15XxvsEK%z1^sy4xy7o&%0z-9DkR_!wg%AL+rf^2T)it< zppB*|uJV9=e|Q|YeWb#&}VpkHoVfS7F^e-?m^+!=D|G*@<*VOSP#e7LQzNCmRDfnUOCDif}>SDKpO93N?F!r}P8MjV^m zYe^I6-1U1hHr)RWi-5|=zOzLvFLznyg`nMNI_*aH@i-nfMVE7IQxh>3g*~K3;V`cy z;aiB=Z)*+4xpTmd0ARhB?jdk-X5m_n(U*ls^)03*_{h1CnrL~6cmTX$Hkci%m92hw zLvAxH)X-JeZB^JJ1&@ToV`Bmtp8zjfQ98e^-DzkArBjok8I z?_He%a98i}{_P!Oxx2{q{B(8gR`{oL$5!OdV-JI}*Fx))$bU6v*-sjCL+~SfMVtzOLL12Thp98C&u2HKW4+7>Sm#%8~MK(Up=|U0Twgu zOamVp+L;0GkY?a@Sa=~;&^P%zmHsHyvpC5RN^yiz1FjE}fF@ICt(SNkvk7^MI~E-t-G1gL{|A-bTuUc(|_GzJfGx;M(e3;@b}T9O!4Dm_;6Dbky9}D zIGEg)X+gRHBAWE_=$Vn>-;*TsYT9&)1XJ3yr2p5MBFDi$-PD91d`viSI>P6(tPVCX z!M*4=%>>R|r)YGt$at>P-4ImbbW%b16ZBQBQI>kEnxiLHyO5TJLR~SNz0y=9TxVBM z6EV(oX1lp7Q7jMmDzrOW18?pIup@w1p94>3J2^AO+LcD_9pTZu-P8mhFSk+?EuZ1^ zK-O~3b}(i8k6}Ix?Y3f0BSYUya#rJ9iBo(kj${7V6gw{FADEhm9R9hR3WKnzrT~v+ z)41YC|6h@z-vdjsPScIbUjhCo@PsT(;xCPihVEpAG@RnuSYArJ*c3Gm`~{{aA_u6+dlBL9M)r1@c#;Nnwt!SRh#rZiK9=mr)ZjE|4sAAx&&5K-o;@jGOK1 zaM5?~*T&XBoI48a2sqXkkqJA47?zls3#k#u1u1{650CL0QxkmL979dCeA%S;xUHL- z)36g7ZpFHZOvAjSRmy4*Fl>q*51+QFiO31)Ap~qI*%>;EQ4E83M23Ga#lOPZ4%YwM zOtIteUuJ3|a`@-EGxx^aQT#OesmRdp;dA%KhZe=U)hA4mY9eyr=WezN z7CFS4crENaPHZTacM1z>Cr1W-PjbX*IyDMSlMQ-1<)yTfOp)W@Z!$HZ4ZiVr@)@TO z7ZclyiQ_6F>gC8#p9$yEi_WQZ8SSDeR2=O*H4$U1o_jhuok6ZwAol^D1hZ)I;+88T z!*Xtt9>&P9rXh$F6x&L#2oGu9)C3ps<&2fhCvERa8opzage`ITX0v9idjEe*4*+9n;at<&B_k@5W&B%+1O6ui{`T3#W#pq4hpfKKRgj4>b|r(CQ=; zhs4&=wZm3f2E7Jcl z)ff*L|D+~j2^fdN(MRQ+ozB2#vp$n+(Q0}B#b`-1>P}SP7o#P>1g@x8AHtdqb_8DP z>}^?gEtW`NpU@{c;4i`Zq(A8(b$sj@@Ic!f_mCB1Zhez^FrY8949Hk~&4*BB7xrhom%UXo86+Wdn z2hqgkv5$fSEfBSWfhBN%6FVPKAxB!N6YeH)#Yg{-n4-z0{UK8mkrM*v)bBK&hQ`yR3?BDj>wiq)(^%*CmKB#oM#>^F8Zk;5E=VKgB2y$e8Rwgt@RMOs9`Fi- z#X|!V+=~UYBQ3A@6M`gQkg_{M$x1mJvBGG*GcsWuAPNJ9XoX%7N|wvnc$LTM9j4rJ zdE9Pl!cU9=w_F~qHZd^4y?D;FLUIbwhvQvgowg=hu*zBA?#Ms4Mqc$LL_VwNf}H2Y ziT*~DLV=`MD*2Zwbg$EYyvy=gUCH~eQa&D;eVgpB{?|Ez`LZmv^o`S*};pC)=AVvD}#A+5iHK+ zZL3f#rD0=XdeE+BhJ(a#G3n#zQy zmR;0DJgJ3UO{#nx`U9;2HupBLBZmCxa8loSjoKL_{Nn!ig~#tbrY86pc{erD%J5Br zPHZh!vg8IqxS)mX06)1t|N=-~=vGE0wJv;DBVwb%eeKzmqxQUR$JCga4u_ zs$AH2o0^E6n9faw61_62Y>kTH>ThB_Qc5e*gsidUeHgl zju*|o!frIhlaG(}rY0h%q?^8}1K+~8kuw``1&5dh3X#z;m%X3^%heUPWob0*G{ucW zKWu6ua_Gmqa^PK&VXt@Pz&lKlc6 z-Wx6s=Wn(~QuU?Ebx8Nd@bSNU-)|}muC4p1iFl@q%@?6&vSm9s)8boz{1X~(Cj#;X z$S2W2sV74ZgB@`;y417g#F=xJAfYdEq4)&e7tKYc$I+G@p!f)VjGAcW)U`S3^IX!? zumWurM$>}@AN~9N5?j(s^v?$qxY}Ho{*~j<&wC{cp$G4krV!?!Ew^0=jnQ8i_0hi} zJpF6YaOl$CeDoI-ZxROR@y6!Mmg>fveG$+b#j;)3lwpN7C6snp|Dv6Tw5_MeraR7hMsoXciN^oswnn z0NyE08GH?Gx$QFOVvzurH!T0m;Gg07e+~_ZF8^?Wfx9(93Ien@GVy=Id!tGGGib|g zCw`VgJlQMi5B~@MD)gk_Krj)_q+nT7=4p3i>JPxXqe=b#Xv=M<-Wl_QR=(mt>bX5U z^RGbz(vmSxdm|IS1@Da}@h74!x1IQfY|IZ?Su~QskGrCQIUtc-J%~u?KCr?UGm`NCGyf1*_r{;Z<=98X#R&9NH`^II0kPCkx|a zc<(fY@lmwpwhLpnBaE_b!HreE0P#q8DLjmZL{|#Qrcz-2k;(rt-XBf!e}J~!cJdc7 z@*x)F;gR!nC3}utQD%y1kA_9pr(|$SL8BN+RL0fJ+?as`hSg_N(t=~ zPW)n43s9&kO>@H9@H#jajgM{=cv-XBK-D=}7DwZq)0D+(wB@$T!YL7}<(fYkl$Z>z zn$)pZ2l>C;txGyO$ioun9oW%v=2-50_Ul6S>tgon68g*O72k(Af(Axc4^3-D(kq$& z9NrmC{)f<(+s^-T78YuSO0itE2htUL2zH)0A0J>IS++*}bBAl8m$(ylk{+%>1Es5n zS2l|eO?xQ|vTMiJ4!M1e1vz_gMHZZ~W&E9Le_14+h{-t=2MbA7At~(#L z^KfoQ+}i#Nw5FAUtglvXZSS|>W~IV__tFjaCw(w0OE>%xHdrg}-}srSX!x%8pHLG9 zyWUN1duzS}x_cA7M0$JKDpbhkN8inFFQ5sLg3Q0scquu}Jq30IZtC75#NpPpC>KY3TKQynt=xvjNmnb!h0+S?t*n=u@!o3cD}{+v@!p5fjGCqCiD&2fBt`E=hb$Bq9TLtBnm?JSP^DfGv=UTjrntWe_wk(C7t4&St z(8E;Mg3x1Nf_uSMn+;6x0Qf`nGN}V6@d92*ToUiiIn%b5i-Xy`uX=wP2*o9HW!MY2 zzq{0EQdpx_d_Q=~R9F1_!5^pzd^BtQL`jWw_iwRCJ96Qls%L?TR#eje0jLB<>We+m zt3g_yD;Oy!&BQyR8Kb6A%YiJm^ufC3UkG{|-R~=vVYhf1_9#}x4|A^y&*&@gKq~W* z%&2$fD={i`Nn-a1yi=O&9)`B;ILD*zDrzFW+N9H!!LIB%!o8-$;0Z2tN(0(PRA(iMsJe!Mf9w5QRQ+fI9rOMAd)!K=cveCjBzTf44${{l8#+%}rL4?N0^GsP7@V-nwY`Lzh(+5gauo7O+u?;%0oAn> z)tskbzaBRH!bV^E_ZMg3QXjIMTZ5e$yR+5dbORLs_Rtd?c0L0Cb$!`t@*2qM9l`(g zj+!loN5_`jdiwJgVwrRd zmI7!udJ>J-NfMRp5NtE4mBk0N848%Zp$wOb;eA+=JTwYGq#PLOLvAS-M)wl&6!%Q3 zACIMdvG9Abxz>(0HNoS+YKCY~9KdfRb41yFTp{5+a^k!RD=74h&}^kYyh1OecC1|M z6q-8~Oq%MGbgR}Mh2#!NS_M!WeKp2;-8NW%a$ws-9SbG4nyHBh#l|ARers!$YH=jt zW|_u|N#gp$C!hl@D4!JZU|}*tJ#Zs{8vqpNTW>MNk&pY2nVRrZfl;axz<6EGGM#}5 z?nP8p$ij6tiM)y8IOWHqkx2p``=Bo9)g3=KC6sI8r_@9&bq5=D3r?<;6QyE4n;9jq zAG^sKQ#um0WU9DLNhSIy1vI$`1rahu`WK&SidJ@m*lW? zb8B=S@MMh58x@w)6bq0ynaYzZ{03^mpjc}C*YEk8*!^#(mImOYjElWcMLmRu-U$o* zTlj-$(A0||cY_^)pt^Uz7H6?9pj%SBdI0a3<~NkDQOkiO$M;S205ulwhb7;>t>?gR z+&ooc`)_zqmEXx_wvX_9DjSz=w}oNr;u<{T1Z8 z?g`KH=kbVY1|RSHSj~BMyC;XA&*9zEB>XdI%ToCHl&J|GewgfDT;XRvQE1~{ z&27V0Nm2Uz9iRyrfu2R9s~drWCSdArNkQnZc*is~`Dbc*0tBH0)D*h|)fa~ne+bR? z5-<@>p&K*-Q?l*$P!2^4@g8c@z5s1m3Pru9CU_`f;(Kw0qFJERb@r}oMiGKu3y_2i zL8qZn)eS)h2F|{`-H}4iHoQZc8r(`PPk_)v&gywEa0jF>e7*?KgbX=%qtVq3 zIl)zrs#{X%`7GWsO-+89TAl!*hg3ZZEZl+W3qenWXZvwHsG1=txaw)vLpc;ZhWAjD z_D9i{rBL*9QxiNCG4Z{)LeVtPsT_QkJ{darECv(N6yf^^W<=HzDctObcSTco^Qq+t z5N^ma9_@WlfY}tD(G7SQH3LlW_XDv{a!6T=_eqo5W6_qSkaD!C2_90Iz+PM-rITo} zv7jd;H_DZUC@s4SdJOyo83N!ndn&4rEN$tfIW)@Oa()Yuq@5yf&yI}0xu^c@axe?$A z8FSX75!Q`4!5cR=71Ujm0?-<~bDG*bhFYEg0cd$J)$XA6MWb?f){A&xHESO4W&8e2 zqh#Ifr5u{_crP{S&!R0$p=r?61P@J2gfG6(w53>u+qv0M7JI<0(S<43EdWo*(DX4h z!r?eO1$^-2%+nhw08PXDqp85j)ba!f zKxA^pAqa{&uL#fW5qK;$V@~koOwlnp%p8VyOq1kQXvL?^QHB}(T_)c9 zNyrT&!=KH0FVg85wh9AzJI#w*Uk*GQUlm z*{K-=9dRkL(}4yi_z9v9hdDt6HyjO2jrYvwHv8-voJP-Dd7*UwBwD~q_0^Ztw-m{h zu=ZdrPajWg{Exm0Z(2B5s5tp~o2fkb$~jkz-h_+iiQp>a~u zmisc;5jd%{0!6`HpQkrcf$|XEAI*UAAhnFAv*o#99`Aopb@CtZHDosUCmu*;bs`hX zs*~o#x*d~K!gF}XG#UOI+Om`qo-sASQv%ajsFd(PcrRG+3gyL3VZ4CE^oA+1CZ?$y zX^ABsMBVr&>_Ae6xB8LD7k*i3R2~yTq9RSL2mf&MLr1baO|79O0^?fnz3#2gQ?uai zld8R^y4fngJ(?mDJJC!?xoQ{0n17rtUqN=Uj2q=TO+^>ywnRY`j;R@vNU( z4rDg)xOdAl)_x)eZgBU_VXgvyLuRcj@n9;mmQ1ntP+oJ2-R{Y`>k7Pknq1e>mZjWv zxv2@ByO`oaWsNlTB0g;{$P5>Y6*~o3aQL*q0!Y1KHg8Beq|~< zC+qSXc;_^A`E|5qNtbaeqB~P7mtlq)poM>h*TO&0py+DhC7#V+k`}~n$tw6iyjz+o z_+PZ;wyR*#z-Yl5$z~cVNW*PtaI<^WF8gA`ia&>r4a>m`En_FJ`QKe$*$6Q^U*R6f`!vvQRzG+K`31cd{l< z#(Sr!iIdQl+pdYZ1hs6jR%wI_pBgR)=gzzch6)iniQ# z9duRfpt|Aq@DjKc4T!D;4r)?2c)BFB|8cxan(W_*w%m615AZ;ht`_M_spJmcG!zaM zIQQxc3cm=ih@YWB(pAK2Jw>RxDXZiscsDgw@GNh$267jI<)1sE1{PRosu;`cKSG@ z%2zVHGrSbuj>bh-3f{|GR6#-PnXHAk;yu&U!lh`-ZP&uSLi70``$N>c%|(3ab- zfLZi8O|<~lg%`kaXhd|wfOj*nUjW`d$^8Eh-X~4|Uxl_Dz`wz#Z~pb1?Zh!K!8ZdR zWBQ?ucmaE^9*cJ~@Z8gi`5J8bvCE0m;T17b=m?vFFG34hslxh-#v942;42<`bs$?9 zTD7audYZgpMq3y5^(Z!6oo}iXzTxUzY9er3PVj~+gMB&l`P!Le`we|+!S~F<^{s(7 zcO}>nfU9>VU7(>&XRw@jH*DymN64=WkK(naCiq~vhMH*QRuc;MoV7)GiY*B9`=L?X zRuZM86_|Ge=4G3_+U1fh0e_znc}mCQk_De@|6m9#2_nL|wR;*hU2HQ|Tcpq}C-8OzlMCb$>pm=0N|Bs((R zl5FZ4_JF7$rJ>eHslK?`Hu!NjyAPO3f~(4+CIV}(+#{Kej+Nx9n-z`Ym(F3#yWmV_ z?!vFbk6YoN$iF}Dz>bbH$8zVhUl+1p7qefNuwPfe-#>F~MSXR%Zqp-bwQ4qB>1#}f ztV%UKZ0Aex)p*SO=)f9etCd=RV?iO^IDcU0-pcy0CHFRf?vk-Bxw`ZF?ew>udl&qL z6JCJ-%e@=^X-n=(`t!Z?Kda@|CCHzxr$1@wcOGTH;CXmHC>e>N2IW~{ynuPqd^O$Eb<8hUDd-%iKNCq$})tLfQ3Iu)bCW zw9~cH7|1^8Z&ioMr%S~L@pZ$`* zeW2T*JCgv3DC_^TDD5MYZWbt1s5P2T=v;f6^2k}*5y zM9tg}2unXAKYl`fJVJgvN`Cx`{P;Eb@i_eOMj#S<>f&IbQR(vB82p>da#z96%X9C6 zpC@+YuBQKk1*+V`U#VAk*beUoh;NopdZslIZ;8vA zJFr&4ySP@GJXHXBcZOAf(-URb1a6Nh7J~KyH;g#tk?+5hkif{-`h}o5E~JUg#erJh z7E;N9tpPUI19k-T>fK2KY>EJz8et7fQ-%Y={*3jZjCYuBPg)yp~Tg!GPTd|3n zMJ*3S24`0iwnURgiIQy@$AR!TTFr56eOy@3z|qxaV!PGv3lEn@2I;;oq^>?wRocE3 zB`yw+?ggeMc$7Gg5fr3n({=hqTZ)C04iz^?M#bV}0eomEd|WziGR2YyjT=l&_~|gH zjXYCI>V<&`?!{TA9pPTE02<1RaT1uRG#4LN9;%JNp{Gg$mK%#OjVUKK)Cw8$nv+kS`8;sWc86aks5TJkYdGeObOxQ{FSK*E{kypG0uGlZmX3_ML3T*kbslR ziBk&|_kX*!hRDpc|BZ^7{k6gZQDeH;yEQf}o}k#pr_@F-*ry*D)xSVOnIl3S&N zd%}I&UZh|}WE8wii-MF@W#0y2f+LNW<>A>_X2^zVSnAwXf?CYVC)QdOu>jl{8PZ+J z3Trf#A&p8ft`8668dDQI>>Oiif@dQ}W~gkmG`tsVfQRy8oDgg(zWL6Vl7t&?6KiTi z;()&h0Ei|VE=W3G3wVT0^^@i$L7s0)0?&iznwsE(jEIB<9DIlYWWknB21OQbjEseS zJ(Ft)2c&&EFI3QQy(xyAhU-jCL{7s($cpf_%C33_gOezQWsYw~#>66$0I3U}0RewR zY9x6~+;55`C*wX-6MixbVjBB< zTi;*#)f5i!I&BIon~HVe|C-8zE9+m>1iq#!>N|sU zAR1{WCGlHB4*(Om!e6}!ZVuQH2&pgf99wot>tp?p!@&M{KQwm~FG5>(K;q+aUsDr2 zIxr=LiVpuU)idz|z8XC+89u4SwMReF< z$|;WyXHpY^kOr>~n=Canj}I!aFF}JXMTd*fAgQB68SDszIMJcOU>_r`&ykE=IOF}$ zj1K2g%LW{_Jj8di&cmIBP6|codaaGRkZoNMpU4O}9gG(7ze) zkS47+p)E^6{|0IzaM>zC{`HKSzV2JDSJgpLIy)|EG9|H2MD#+H%|Z zpXH4I{@UOm*>324=x@f~LX$rgOthlVlLx==dUzp}_ceMWh4e{ye>Az@3vGDgCd5$n5hc=C&ARCLK_m%{`U_ud{!F+Y#@NmBz^wB@#IU|&ZAWqT-FfhP;n zY(c~q{y!962_HaXqpJjVDS3breEpIm!u#-kX{zBpXv=L^!y>;LN>&+8HOWs|d^@}# zzKMoMR}g*8>H${}Zr5Z@+>dunQxo^0Ew^10jjFI>?XrDg;rZ|?_&XX9T@^H~4oGKY z-k-%gqsjYU(U#lJ`#dKW5UA3-?d;HSwc_LdpudNn6(qq#G_wMBePBRZ@ODbpK?3iT zrVf^%Ew^0yQI7zk2Q*yi1x2*p0T_b_F!%itttmTSN5)f!o4M z;AS)`x)NC4tRQrIB*%c8@E&O@;0Cniwkx35$ph80m9dqH;OF5r@KZD{x*BM@Uf}7I ztb!lmebQ9H_tBQyu7buc5I`*Jf2C;ZbD_(@Nnj$Ha;;y9Hpx~zEz8r{|G%}IS5R& zV#XrN;N>)ru={?MGEnqS)Plgx3ZD>Gr1>k*HS(O$%-I5h>Gu|yt1>A(T+;#=b zDwe9*5i75fz@y{1oq(rUrh5w%m3N^ujivik)@_QnmmU zqc0fDcs_KEI2BApQzLpGPE`d1xp%T2CgHu))WcqA%Wc=gVuo0$SgB;;UfU+M;!)vs zaX1`KKjs>+pdrKwG!M@X{YI(qU7O%T3*@~H4t7I78)5{ zWsEngRP|5R#94U%G&S*hwB-OzXe>ASR~h+=C0oEUFu~W#zh}B+;w)5F~5!Mq;Zo?_iR)zI1#br3xnTmohNnT4$7%WM){xY1IYpiN!nBaZbI^na% z{b;})?ekU1`_M=!Im_Jvb_7=HzRwzzxIS-B9AEebs(bOiXaxhSW|TkUkyL&gms$1gl9gC>J0<6UKjNLzr1$q|%Tf;bt*Hr~1DMD{<$%vq zF9PM*`p`1{Bx}?zlh7grmX-euEy07pL@VYnvIKqK>6rw1Kcujd#CxKty9Bj70m4eJ z+kJQZ`DUft!ZW%RkE3Q#@ol>HG3s_n4k?@QE@@JG0@|_^QjRw@!9xlYSPMdmfeG#f zD}@Y9@Z$EGFyR&Mdi-#_FNAfiZ+wM^#h$Vd8b1iE;e7OJVI!Y9g>kX}Km0_#oKVQ1& zU!jGtFPLaW*(yf{<##wL1gTrH4(8$A($v9RwB@$zpj!Z}TK1K?8^fz$JsK3mYwB@#Ipmzu!BCZu`6(|xaqa*#ry#KIqExZiMXk2t<5S$g{ ze#uHG;{DQ8LLP0o?MmnzvLPE#3HSoRN5U)MLufp76~JzpRRsdxADQ_N;Qi5L{(Wf6 zZD)STuvJOJbzRwk#`pNlFnpa)7Yq4OpA^0uUJBnv1Eed3!vp6GO*$xR?)s_e|``>Hunqm>zC};W9-*&=r5%b>#w2<*NxYatvq?HXccLc zK3l~9ybu1okNi3P0n;?%kg!5%u~qe9glaq#(ssim3ywR|2X zo5Y|XD;{5Tg_`@7+p)T#JGm$5f0+ADyzyl|JjL0OCK`Yc1OE>Pq~N-DaU6O;Ntu{qXPXHUCTd~%u@j13o}dqgC)mF z%nv{(*(hHOCcJg7A-}nqU`Jr5zAue1icZL(WATv#c z3N6o?D%%Myf1U)+pha!6ONl-TIx|l;BSCQSZ$~-{&}>CKIa(P{$c|EF?Lz)VAN7g3 zBuG^eNM3JBIu9ggP!oZe$M`wElXu(~KrTSDAq9~0&`2p0L~aD^2&_0I3in-(8*jw7 ztr<7=pe;*rqee}{SB=g+u3WZ8JtFsU{R!{~H}WK|Z$YD?%k?~(Ec`u?8UGmG15L(1 ziniQ##^$fB>-$mGRlSgz|1sVRP3C`qwj98`L4xNs z0!tSLCU~WCs%b}@8sX}ArytYLvCG8{nBETvyYd$P7aOOPa;tArRR|+iAzP~Dt!lPd zP!$T^f8R&^qwWcLNl`5<0GDw^w4)$iE%Z_o6QNp|(df1>k{pfZMamzm(Ksoo&8-AG z0w?t@8c7Z(oyb3vIdWZ1?i~+Ca?5_|@SVA4B7!%lHCcjnL?W%=)|VK4`N34z%R})(z4- zuMk*@FfhR@gl^N0I2FQC@m2^kGR4v;TcH$6gr7h+a3M;mw)$#Si9psvRiy#>bJ+P^ z8l|g}>dzmZrN|$eLd|P}?@<$hH9>p{W2W0}U*vcmO@vev{2h&xlFQuhz>ZiG%%YLQ zbzKe^&*Gcb3>be!Tb2UGpG{5hfWh<=DquVm#tZmjx<1~M?9(c{t&+9J_YLC}FSI6H zgr8Bk?g>g&%qWfkmqX4d4x=UlqeqPEk24zG_C=4^qj`~{#~Emx)Y0R3up@Bd%qSY3 z%faJRe9M}_;}o=IDR`VrO~jWVoEb#}Eg#R9fj78xE%E#oG$y({duJ34|7Er>#J8`> z_M6d`+s?LUM$tgb$M~J$8NUOKi!S5-8AYQHGV8bFeb8k6R;+%8t-?>`K5BLVEZ;b*n5Q8#owSyxNxOZp23y}>YR7e19&E6B}Jw1j41(p zp7As_5m+h2mqz9(0PsbY1#n9|jvOhM^nwXoZKdQlw-4A6*m1TzC^{jBmTtTgnxSPD z+OiZ{W}2Gdp@nHGRA_n1RM}2w`C7c8WnWcjk@i!a2GHX4s}x^-1A6H~k|p&`5U?V= zY%`St4=-D(i3t#17APU`1(;DZK~jL(g~m+Dan1%i0zdVIbV)oKK9FXOpvW2tlVh|JP#{(P!oY+CC2rQIb!F10p$@iFH%5x7>$-XpgaI}1ZL`N z_AB}?N0J}o+t-XFKR{cSBFT5DiTH}t`Rwbdh?$S`X?tPEqQv=RFwu%CRpy-Sx>5B) zW`1wH7n;n!@Zw{BA^(!vl>H;Zvws*KcjX0bGW+bxy`Y}R3Rs2rL{kBWpe+ZCeS;E! zR}n0Y7?|K|Ah(-J*_o*PJKm2ZorA>@Yb4*1hQnngVdbNW7OpbS)L*SCAx7XOKUD!i z{=AR5#5@u*l%jSx+f+Bab|_F2fweT~Es z#N)giINpVCTr+UI18rFf9B(rc8r;DK+N8w+K&PKXvNe6 ze;$>3q`4u(6l@+gzDG?=fUwcY`|XPw&!ef3qQ>9RK&hj~@4${2HQ1q3?zN9Df;gIFDd!u`>@>G1gn&ILUv}Gw=oJ>u`S4+-fQ+g%Gmw_+13@vf|7BnKd z9CuTWz23`-;X-`tnoPeLZMp4C&*js1CEIs~XZsE`D!Od5qkjG#$c*2P_dt{JThW#S z7&pk{ycA$*!N3GxcvxlH5#j}u0>6rP{?Jvn;nl@FY`>6J9{vVB!Nn(~-0I3>;Z0W_ z9G~=-9-c7;oL2)+Qxk#JK#b|a+jCz@uwWl79a6gJ1rxZ!Ny%t#AFv~q1T0;6y_bVW zH@-x0~lKoGhV5hMX&{a z)f9sLn?CA}AWX&VVVfz_JYH<2CMH0%A28Ygwg zcmV7OoH&O*8lKB##gFkVYle*|6c`}%2MF}bM z>^=0+@Ly(oZ+!cjY`^g0W7~7+qk))@@gu@Bei$Bc^|lAVR~*^?Lm!Pk$gHoz`=H7C zA!y41W85IG^U{E&2m=#*-Qjjq`8rdFQ{vq=Ikhre8yw7wl|dD)R%H@V?{ye|_TYFV zh*VJ$oNX!@UJ?|jiHT4WOm}$j#f_`cOh}nx3=NZ#%-ls_N1&wM$tDpFT~5P%9`P=G z!&= zx$Ru{@CAG|-_L~S`)M>Rx_r;4d`n%Bi-D)`E@*Q82ejn?&J8j-F9uk0FfhT3ft{uu zaf*S@#aj&Y%9mdI&VRmaGB#2vWmjLLT32j(yNvI$WR26GDex6HMRHWc>w}k26M^+X zeCeY{>b|c~*oG#?=`6qQdMg?)CAYa_z>Zibu#h5kK@KUK@h)hFloQaFrI2#GsRTt0S*bxY+&tR($R7O(3=*Bmz88Bv{ zElUAoCN&XX@z~|8JrJmT46g%MaAQtl_&78mx(u^}G#=;W#PC1(#x;3<720y!dG7X1 z+7(=%9iHm~8Wdfwd;O~p>T$gj?|>%X!)VI^d>dqOUI?&+U|@o;IXq>WmWUTn2)rTQ zLSSmyt_)ix@dLys(Nb0FtiDk-N${rnaZ7=QcS7z_6a%-J%7+&NH&YW6p%{RN3MnVP zWbs2ZD^jxf9vUVkvAHjU9f1<(V?={4r(r&WcnIIHX5e@bZCMH&4^R{F6$H-52sO(c zQ$v>o|3O2d%d+=lL?GAy#5b?W^>b*;ZRgtaF+$CEDm>pW0TZn#^5s$O{}>U-`N4P> zG&w&IZ8?B*gRIUA1C|^NOz^_sCR6b`g~5B`EevLk)biDAp*WI-Ctu$(cEQ-W&SRu` zv|yFdrGBicI2d<#g4Zh{11XAvtf_Q(Q7}kNOoXDK%hPjTVQ>YS5od_-j}LV;R7z5F zZv;C6EzWfe9_Qs*dojd$llSII7q)T(fNav(b*zS6y78a7-hHCNxPDi=^|3677< zMIlKkYKP_EHm;_2l*DU?Wz@t(s2yf`yY5RTC!+arI?9WOjcBZt6z7ftI|46tcAnDf zy&O%}<6GB^CTq}^rD$>tH4$I+(92S<7cn2-d%&ZR2Tj(C zXv=M9eP5n;@XUV%jg2nzi+mp-y#0{b{}A2}P4+*4wj98|LHg$v1WO$TCU^z0 z)U+c`1#w=y7cg`>SJc}hrRu1#-tb%K2rghLHK#re(R9xvyUd(}{;+8E4A!7qtrAmp_!(QSBZV3ui#ErFRK{^A9 z$BkpDiNLrK<1Qw8iCebdiy2uo8&b>|M5Cl6G;XGyE(@ zTb9Dlex@dP_+csw6@H#K)w&aYx~9eY1lD{wJL7x4Q+i`>0D#5SN$RMxPW3gUY19Gd zyw7)Py|8DQ%76!(v#5y)5Nzft0Pw|_OVQ*=G3H`4VoH8<6|f`5n0;xCQFKBMEf?UO z&Xx8dMFDf4De^p~+)GVNfSBUY!h7!vC{LnkkpjvSXt>k?<;P%0pr+2| zNfLjK2RFKFAdllc(2ORJp)E_%7FBdYu0_juCp394qAjm&UuwI<;1iFOT>w^Z^&HlzMByiP464 zLXJ`t55G1=ofi+kq$Vap@i5)#wJ(WG?ZmPoC6P&B0#{=xiOoF=SP7IkCq^4|ISun^ z$6ok`H3P?gO_}FI_Fs(o%_nqptRyF+R^&diq@!c_v$^Zx*O_CvZ9)IyjG%vUcp|{m zjbO3voETNJe0X@455)4yg%L(qf-mT!Z~)iC~U>L z4lP!t($qIrx(`{X?vZf+WnaTDA^#{!f@@8M!%Ko|sEG+t5;(o~l?3;p`H)J2d(ki{ zDb3vub_7bClAuACR1(~SZ&)*Ad>(CC3K^fHCgNK|a7qF-%YOxDaOJqf@}JR==(6lB z2?DwPBffb}u78iV+;*-#C4rjnC0(KUUI->yQRvH~+Fud`a=rlXf+pv^Xv+bd8{~6d z60qc8V1kzfSDT90DG6SP_q*j%*mY%>t7IQmwK(41h&P}`tc*DIlhAu3n3vQ^^d5=V zno5fo4X05Pfki`nIb}%`AbfSio6%%R8RkuBZG^h4ic?ALGTFI@rn zFU#`uM;5`=&HPcjp(%nfwB-O1803FmLa^*%V1h4-EHLeevncYvF>jzCTV`NEMEFkf z3+MwbVky<8zU6}L(NTRQVgIJD;gOJ*6qAsjnIg@rg`ZFp6QNp|?)2IhLta2LA?1#L zqhV5#nR^QC2$VFg*>(ivG<>7GSNnN@%ib>}jiD)VeGtBRO|Fw@%Wdb{^Myn`s$UzP@6*t*=<@CVLK4XNHoOa( zoNq;24&dA%lk;MLB?ki&ycqbQX`ph7fqUXD1}0UrzSqCsi&m;qX7%-|&mgFE1nQcQ ze-tIbRi?t>CBc={#6&0wrjRcCGQ}6rd`Ow%E;L3;N^>`X9f6Pfbo!-(5+x;wJMpb* z28%n;mZe~EJ2eqsG0@3QD=7H=19*a~yd{2rhsHyf-`SL3?z=oc{0+WsO_qO!w%m4> z=kNm-3a01H3C;9eFwu&dPaerVzH=4oF+CgKz9!q9Xv+a?8)R=@0I*bGV1gF_SD4Dy zDFD6{a{(}z&x%jh8BJPH08rP2grg_`USld8UI1*NCMHAyK)UQJ0CuDKkP<`{ zjggYlTn6k2d^iOFCCX{_Mt3#fY<#Pl!J>e+ECq|5)I{tBfP&u}z>|;#z=zRz=<@3= z0Msmh5Z|^Y%kM{9Zad4K0zkp^_ro*&9W*AoO#2G}HQV39x39_eH_(;?*fz-CyZ~US zz`z7A08TXRh*JQZ74JSJXVaZ>kEFdv_((9P8yl&V;;WyaS{i7&VJToQ9r!1tBSm@8 z1wP{{W=B@MJeWaE1eOQ!<&Z^zF!)M_m!pYtI?W%|co`ZuCD*y7U`ODnzJIgbk-(_q z3a=wlcvm!I&P&jirI>TDsR zMV`SotQk0-Mq8Ew$5YfqeD$ca!$HmRfpf8APh$B1FoCPxby@cAa0ujje|+X3@N`fh*%f5Qx(`Y`V zOz}xHMoLO^9|Ai9AI=93N|e(oF9vSIx2hQ|Zbn;{g2heLM0~}7v%^8b?_=Nzt_qj< zeH4v{F2CLn9BP(-j&EC&<)5N0x1D9r2Mz_(T|J?ho&hFWQS-?o+5dq<&GuA$`q&%Tb6>x!KNm7&|nG*6*Q)X@dARz%y_GhDP_B4 zTjJ^LGIXI8HOKL)c!4^TcDXU*bx|Uo)vemy+4s(O^fc4_Gvj_;Wnq zmBNX54>Y66Mzm!qnyfc9!J`RNQ>bXNJd76*O}-ItG?`o}<+EY{c_;J$SLG;WR^JeM zcENlTq^g))yxkOWKDl@+H4zv^Vw_w|rG56rj!&Z*kz&Uu(I6>F&3y>$2!zyU(B(`< zl@u^;!#ArLFm6U$mIB62)I@wKqKjRepknwja0NH!B!(YF1ER|?yARakyu9x8bA02P zJpUAJx$Qi6^J^beTzAb6&Gig0fh(MJxn>_Hd>xSao{D!slkZ7r%K>~FWN}^yu!LY> zf=??hH5INit#~@#SGXsi3Riqogqg%iKA|4Dl3p_U3ifL?`}Jz}>woAkrON8FXd#gO zf9k$GK#r>FelUAN_JsrjB&=Z@_8nOh2!Vtx$fDSEW;&Vf%ybXkJy}3NQ20QaMI2Pz zP*6m{4Fy3^+*dY1{O|)oardX0M-SH0woaEHK_nbQS)~l*l z>o#@|@ndNHqu$VK6Uw>O?B;5*CpTQUlYM2daH64vkqR5OFwa&}EQ zJJ=@?kLQSqZNBhKPvfhH^2>?xJBs&3Up*XGE%j8(ITqes>_4NgERGyeZOeSIr+=t7 zx0>zbR2e>Rcu{S8UJYIe{zM4>x9)5u`Z7trRICiw<~#qys%+2NT(Nh!wypcu`C_)5 zXUC}R==^=}#$t9L-;>D?43^5(;o1()Kb2#zlnxCJS7t|b zrXhy5+ht${#-AAZje7W%AXg?pBKrWZ;?MQmOn4yKXbM51KAC| zEbYGGWv{XS)kd%BFRdD0Q5)Bj<+Wh{I3Lv!~bI8(Ue~TJAoBGYq;8{ zSt#*QYvgLUU2Si!HmU#UOwLriYp$H_ zm$G~muAGz7!j~D2#!~I@=;CGsV!M-4m4k_5_y>5LO{XSB{C8nw8Qh21Ulj8D7Kcc@ z8d}u)uLz%5WF(e{2CKQ=mF6nuYb+WcX%wDoB=jGiP!{Rd&aVjDs@R{R3Nt%P4gbR9 zBdXya968Yj5;<-;#akOi=+3YO(tI_OF%~#>+bWptT^Iz`FsUAJga_M=MC+GM$^>@A z10~YF07kY9i?h|N)}B_eVg!0n2CgSnm3vZD*+|PW zpEu!w5mk5&M@}@K6lai`_4FHOqhUL>aDuPK>qu-e2O3Ex&my zhe)p>O>0PEbuq&(i1lZ=?`P2jp78g=HKCsH2S9qLr)Qn`pT`3v%Hgvxa%ahbukBnh zeA)2D^0MOB;d1x|T$4>E2cDiKho9jA66Nqy7`g3on9*>Dd?mwP&FU-lY6HQ{xxxN0 zjX`XhG4&wGA5?;tBqrk_5+yMaMsB+#7BnPL85)dMPT4n7dvoj9$6GVK)s2H}y*2I_ zM~4gK^>B@-jr%v%;fi=1E(}!>2h$ay zPWD{NUf@j}X;j&OgL0T)ZGPEV}3LYU*690se z+b)T@je=<>lF>f)3fIN%3}Vw<6CFk|3wN5fICjOuB#L7v7&$>49%G4`Y{boD4+u5c zda)2W&|9-O6!2Lj&yb5&a^+9~QLJrQDA{SE|`6d!{1alkInH2NU~scRe=k zhIIXDsn}x!d0+9UyT_|JL?5>Ol z_xrBK4@|U;D`8~IHr~b|(p!I*Tg19qevkzdxcq)UToNkF@hxH#xxN=aJdx|q!^myt zI<`fuoA2L+^ZjeMEL6VDEn*Wn{{1AQEzezt+tRqH5m2z-0C4Q1JwVcyI&ku>n@IlzcUL38<(XlRKwqa zLwGd&);|R{=h*1M<&DRcS@KKR)48R=jZyivb<>mJ;>(Ox`(Fwd&B`ur^#-*l%C3sv!_c)d#Cvu!#&tK@SMdOhLW7ZpDaR*KTWxS})hcaxk`64-y z>_&q2rDO>YkjQ#JjBNFcyf1|68A5wOJ>w`IMWRYuZ$#6YTF|FiIDx9X6Rs=Of_8RV zkd=>RK6l^|5oP!>!QRqkjTdU6yhn&nBqI3wv7XD9vQ0QSn<)$e8xyH^v!hduMmCn&Ov2+KN^m?!?tn>Wo?e5-`Dj?p;o;;S zf)|r$HT=0^Yr;uL%r=?>@xX{I?*}7WMzgmsgfbeTwH6qS2ZV}3T)%lhsB7}=LrjmGZkie$jlFZ~T%#Ai>gEAymx7LK^|$#dPF<_N zl|v-DTZ+%qkBw3`yzCP&3-YW~m*%&_HF6SJxQXFte8`WraH6bsbQ^wDqEUSqMz)OV zgB&99;-}>gg~*S!IQacBiv&B%EPkJa>p|r={;?J}%a7y7CbIkpjNEpXV;^gAFgQO*Ad4$%qC ze+0jE3#&J*f=lG2vv3;2(dej+mlvtM_BBcdKPb^A-UK6CHgOJzNU!xzlKXmD z?B2)%3GDpW!{wl|D?Y>12;Jtmh98>9@zpSL+c};Z+t175`Jr&0AB0OnoA$O&9~^la7kMHBFVP;LKE-$Z2Fza!nYKQ(&mid}y%sBbS7zwrMr%LOwg zr`l=g#e*dZWC@Jic7aTl0&$whMd8ZW0GEWSj6*$? zAzvMrRaX!D4B=4{B~gZv+b)U8QW6fUxFcK;AA<`*6-3h)&=R_d+aYenVSSAiX8WVhT2_n>@>IAio`4HOmBmqrPdIY58^~jLtVDS{3?sK)9`hX~ zlLNV-lGkk)JZHQH*N3W-;{#P9Q?|wOA3S8DSpEegccxgJqsQLiV%d{HY?|wqV6i04 zA-mxr6UDL%jNEpyjIHEy=F0Y)!ewy|TnVa&?1Oknl$`ArZ@_~i3g8SFIY9s(%Ux>4 zOe~*xK&Tb7mwXp-Zkov>s!HcHu;O1=WKAJ}2Yg_y4g-0#~dXTeH!8cOX*=L9hF6SDP~v}WUI{wsY&qniI|9HJAN{{)$}(f==mxsWG@ z>i_HEGCAoitY$bGC2|LgI$iR>Y6Pg_2PWFZ1u(K@7ex+{-UuLfuyC{daTZMA6!1~F zBvh8;J6I%g{So}|M6N#sBe$LF*bWwMzJCcBl`;uNZo5);uw12D%EVpS7-)|P z*U6D^m8d%5&*;)D#mLfD$>DgEM3o!@BPXcDVue1%yVCv74YRf^6mAZRvIFgaAULe0&QsHM>F;h_>0 z`fZM!*xb^ys%`B$ByEoTuW;`Ffftn6+fG27s!7iF4E{GfW}*oG3?o}M^+#U_Wm7_m zo6@FQ{?NzlH97VL@A`Lg*)uV#^J|Pt#{G5-ZmWAUh)r|J*z}Eb^ODh#t1Z$!@mPr> z-3>;zL@K(Nhr*Od#S)bVgzBZA4Y^!p`)h7Y_q~BBL&f|BL%FWZx@`ZD@yV+TU~xNJ zXzd8+>jSx}bBoPfwOfQ#k4RepbF54jeU+nDCf9O^#5S4YHQ-b&cf)LkVLs$JqE;r~ z2^Y&rY2mF5Mt9xm6yxBcTf{P0BoxCTbH{NpMPk={%+TkKw`mCRuLYb>O|tG2Je zg`qM&H=2dI9ZA@{KY#~8`RG>_$*ocRGXnKZSGu|KQ?Kxu4IuPe{b( z|F?J`ME-vTBPa0h(e%~aAR34Vgqj=rd=rVHU~|Jo>CO$~R*F3_wPne@c0%pSskhqp zd|*i4vvI_Yw|8fOU^BH;g_;R=ww zQU21pY`#Ccif`tb9muUOmDjSrehBrL^(`QHOl&{Y;o9ERzq+Qsv?|-r4t5yzZ}e>( zELHn*m3&2QyGq`$bzrE!nrE**_v9)S9w_;58ka>tij``4sHck15p4>W8O)X$73@Ww z=w*U6?5~qUHMW`?&J`{dDq2xEjfwZl;T46`<-6&AA(@U18;;s3ldQvYK1*St>cVV>sGizPR0uFWH=fdwQc#_<)W=S z%0ot?9`U#ZkAygQeSjk;QkdRl)D)I@(pvIkEJ*CsvABE~ub^`++2+!CHZXPyMqD;h zvPu0O9ukq%Z^Ov4UTTj0hA)Kjej%+O@4uNxkto8}+sK#`mYiT1$@rav#W#jQkQ(Vt zW4pHKivGvuOfgbY9cBAuM-eGmp7J_sP%0Lp{9Y5Rwg02R(|GEQQ_#3F-!Gilz400n zU1iY-d^VD@ePvHPC?c`D!N``c?BWZdd_~A>^YWF^Cz$ieT2_d_p4JD~lIkYgHB+B! zK*`~u5H+`oBX_`nGBu*GaoQPPa#J{)H{vBEddaTM*=*!wTgml!Ohj61FtTMOSNlRJ zD-q(_ysTux(rmf6vOZtw)2??OWz`7ulOMnZrTU5SrSbTTtg^8tl<(s45Y_iBj@$vJ zGOLk(<193s<>hc*U&8B1bQa?y<4#^1iP`q@S3EEx!7swdmc9JJ7ed*KklAKtFDK`+ zYd4;rGp>U6-6hywx)}uNDo9;$5M|iJUQ{-gz3hR^Q#&BNG z#_LGrwTZphiP`pYCLS1(;L~Ab%U(|Lg;4e)WVU(P%fypQYtG2887SrT?*R|9as-Yq z?}RH#9ba}z9-w3CSO#+)9uQG~*Kp(xFqqjY|0IX`N;tC*;DsbQ%w7~`8=2V_a~~cV zk>Yz`WXodi_JvRuBZRgYT1;tmbs)PzyF&UWD@UNk{2i`ni!4T_V_D2!@PLT=`x8g* z6pIo0H%>%jh*`L6Ftgh+h)pw`j$koHX12v_gGWZBcrJ`=Szz^Or}PeCwa+l!rA;KUP7XmG`TyZmf4RNYn_xdY5(8c#jRO_qi8c>-QTqMJ0C zO!TB|J6VheMI`nZ7}>IuBYh#1od|htUUo9ta+9~QLIh4GZ-r~wg2{v@VwuUscql~8 zUC5C;z)Yq_nJ0P4r^4C%Bwj+Imo%A7w47`!`8XaEk=BpG$d;9S#1}$Yi4fQ3WhG-G z&JNO6WPi;n5$GkqfQw1>k|vXh$iy;}pW(3(Rrgbl+yQ1Xji;XECewBc=5sQG*ff)7 zlgUI+%C?hI8V zBCU_W$d;9S-xoqzi4fQ3WhLWW&$dn7J=jgQWDuKXEMA!W1XMj2%TOlZ(GZn4mLqq7 zq0ErUCwa=D;hY|XSCQx`yN}3eBQ4uj_Q%5_lDiL#Y}v|Qz7Wb*gv2&CTX8(kR%W#b z98yYfIjKWRGh0b|n5`d=hN!$eNA3t)F`oA_o@Dz#IHxz`RcwK+7-`wI@@_mVBDwE^ zku6)f!52c=ijdgmWh>*)V6+YP59uEle~J|&&{v*->q+&M9h$VZdNS6$@)#ZtQF{+_ zFnRO}~o!xMj*TPx-4_-#1v+OZ4tBt&DYxx%*7m?n7z{r-h{LL3aS&If!AnTA zlO{KgwVZ4#c@rKJk=AoyWXnq4;0vLwM2M>eR^kDnq7eJWc|fTBsWyh}PsMfxER10r z9Kt&k`D{3KJKIXJHtqPKBHNpULU#VPVn^+Dz zHVgcuuk_Srfgk4(i8W8&EU@JtgqWEvuc>6%ms{DlAjA&NhPgcs^C8bwwRhknaKW6E z79M0c`rd&@Mzd1VezNA?uH9Cuwx50&V7-+_@W&-*5aNZbLg<=U80FIfG9A%-+w zW$|FAswItA;Hpri@p><5)HAh}@lQNbqB8ytBez`{v$ExKb|d$Vdc_QF?7nBPHg;tY zt(b6a+c*l;hMB9aj-BvWiRxGgBez{06SI{}f4)+!7@9aMToWtdYEb>+Kui-dLt6=_ z;Smy*umVPIzY^F~v5svbo->s2_HZR!23KR#D50LAt%OVP2#HF#2u5zZ5@z+3bJ1t2 z`AD&Lee}c7#OJ~_@oBg&R83$V!_L)K$DMerM0MN&Bez{06WE6Ws?}W4ki>K0l6VF# z22~OVKn+7CXzSov{&$0Ii5jmnz0hQ8nsfj zwJ`<{m8gx^!N_gb#*BKw60SH7375u!a8;;gfnAN7ncB+O508|njJ;vxwku;BvtF6i z>z(eA3zx_$xI9#e9PiUl)VEygDcf4f;2{&W@+KI$?OK^@X~orMZVVU7^>A&dLOCu> zC_Gd%=_R>dHmI^ITeeJS=;ROKI{6)3BdShLf_$WT-nMFfjmJ$?%`af&4p2=w z+ndi7tC@VUr!+9gK8eOZStxIW8mgJs9ej~9he2$biyTljP4l)@GZT-SsG4aoa@$oi zbxpl`(T#FLB*%w~&On_0CqZA~o1!z5~AI~cj`n%Ge*R%TVUXKjw%--|AU zhpPPR;D&{)4A;qNaG9tUvckhcd(q@Kij8L2R0-_z=8Vi6m`3ybceNsE5}!KRqmr>A^J?8g_DExJLHF%kO-} z)P9}fWM7TA61R1;Hy$`qH+#a!ZTFE~;<_RBqE+GI$-tGO_M+3g#gml1t)MsI(GwMP z4vgG(1s;{Fml_~ zvF-YDb};r-VSVMo@xsP~;WD`&E)Z2F*!{&ON!xn47Y~}Km(Rn<33~C^PC)HQAYM-Q zfKWRUeAM@q)+h?LBf)}ksqRQHsxma7Z9?#GSlUiq){gBh^;Gt*-%QK)@6BFU-@6j6 zc~+|V9`WDZ>et=u*WIyScSmt)Z@fFUBY4?YG-^A7mpDWxY)3GLWo(ST+wB{Cd9)3K zXvO8xM24f$Q5zpkFPtWMCZ5LxT)2~Mb5WR!ACzblvteY*CT4Jm^tKY1bWHSgWK<}F z-IG`#fqMunh0EbQSqnD1Q#iYg(Ct>R1V1#9<6~juwsSo7xcU|%4xTrJ^E?EXgv#>_ z&a)Q2&2f4HB+dpk=s%?L4E?+b|{}*AMIz?7n z64?1=Xj->%H2*L7N=G&S&vA%OX#V3x(ng2)KbR4DcBl=A{ui#2lhneu8IHzCZ4!45 zNtQgW8UcQUAD3tuKZKDj%XpMSq&EUg5q;Fj@wokhr-0E6q7^fq&GGcu6p+O97WmPL zO#gTDV|s?_q)xUE2xog=yxz{mY@6-b#w?J;csCvak?}oXmSUO^}V1guxy=Oq;?n|4dfA`6@jD;?D`t< zWa{x~-N!Kx4EkzE%>x4*B5@ulJk!(FwcBOG7Y{Eg+{UhR&l@h>%6|0STevT}>RlUM z|K7#^E&BaIyYb&2B7PhuejFiw94UU3*`Ggecu{Sge^Ia!vRwe#m8dFcdI#n&X{ZBl zNG;Uxb9+-oR*^xB<`z9s+gwF1vOEOJ8jE6_Q3-u%4aVax$W|q?~o4{4d2E5is5Kr7x$%l z!X*Y!QaznUSu7#^a6-(0{vzquz zG`z$Uwj}coJY=F|{s%^GyJWU=NJc#3o3Xs*%i(hQ5?mpwT#ohhmUyz3RKAFZOO(nN zVB`d;cwEt{i()ZHdqAj3>PdLWmx-t-#C2Ox6rT@?f?b+lo9-h?TUK(}a!+4{@9&|F zeB%#5FA|(5NbNX&eXbrp63-^FHMqJOuZOA^28)&kS63mxl`V_2}*<%r~7U9-QA zLv+HG+?06g#$C!iU{++J>Uw<Hl#!F4y!HP$3UySXHADw7qJHW`6k!{Z* z(z{nVOFr`xI|mKE&t?%}t7I16XTo)%^1T(mhh^trvwk`r1CjMpVC1&5K3CnhjGrq8 z^H+p3e>q$mD)ZZL=G}SN>|ct9z9=;4We~;K&av6HQy;Lih_*|E7M)k zA2pEOpiK+kgw^VlTJV$1QCwP6atsS!^A(L67QVtEI$>BC!!kCU<2NuDR?qk)Tp}l( zg(n$~Mu&WoIig7(RISqg96u=0CZ2tv$S0X?c4r+JJP}N15ZJU#WjFpL zvyJ(XRAzvqm-b%`?9^!8>@mG|h|LE=)ht)cX zqp@G?D+|@wFXRv&jlK1^?x!Eqn;op?*X52`x8~GRsej*IZQ{BOuDd)3)JnjI;d(i# zD_qZTG;V6U@auy*nUcS5J0Tg8ngKqDheY&@_i^MzX4C8J^Q|&8?p+&$+#@XHz>ELy zFneSp-e|8Zu2so3H1qQu{Po4Sv3ON-)gv^)Cp%hcl(p0+G1OH zJ$NWY;hoQsJ7BVz)!;G7T;3H<=?!=tiRQ9vb4nXI+1y@>$3*1z9Wb(GD*xjPp-e?6 zZ1Xgg{d7}#m{lXtRK5onv?Zp(60s(iZ{wj5h4&4P+(D+Y-{QszXiO~s2&eRKcpY0| zDzThwZvTwOMCA65FtTMTzxRburXm!!d78@px~c4aaImTD$sjh(Wl_^fg(YH{%5Hcl zMB(kikvqs#_D?jGbHXWo1762gm`W@so7*$+n26k-3L{&lvfLL!nTk-@=4C2l*>e=@ z_SGHbMplZzG39!=n$$5xJpEy=?#e7IJE`Gu5G8jtNA3VSnJ#iq8c-e#C-Z*1h(s^h z$$8adBxD=Oy?8)GRzD9TTSoF(UkGI+LR*`ckwo{CnUSn4XN#4=Qbm7->m^o`Ku7s2 zTvn>1G!vmp$Fi0e@qmaT`~yes0BhOW;55l&wm&48-uVn-(~O{dHSw4Ry^YLlvzdoS zM&x-8jBJ_BOkW6PHbQNim)Y>C#aLW9o0THaW6p%DN%ffIsl~OjaylLdQF5nn|%frdM6fa`%)Dla`Hj=mC0TEf<2qRlYvd$Mm8Hv!==4B*&YS}MgYI%Uw zB+yargUd>Fl;o);o{lxO+=B;16ye<*xdW_)Pc5+`GJn!S}uXh8a}ne)3K(Oi|~MmBHX}{JHT4_)DkN~($sQiIK6k^)g*dM^3>wW z%r={k;gJz}z7Im6f9GD z4iADTwr4nU2bjtfmUxnpOgSu=#z_of(@dTVlW1&YWAiy4kA}$S7#P_ykJtG^DDx1i z+PutT>f+pBwQqgCl8bI77%R3Xu$lxK$zr&yR3mYZ%Vs*3sT_j`L=@qX9JvEbWox4d zjZ@ON8oD5y-XdPjph+buGuv#|;*k+~?t_snv&s2FD6e{@_WWo}*tAB4V+bB-E_?diou$@d~5SwOdc0X;a60rNXIsi zf8yZ~8T~tqY#GR3d?A#92wiPn1~UG{-dwSouWr;vkb{m0Hj(`q#HP8l+19PSdLEXM z?1M)_l-*t&xdV)3W}U^x*=JnXoF7i;d3YI#X5!v3$4bdIlymWrh|Hb^BU^^D(icJ* ziqO~QWhkRhK4ax_%}j1)g$SHT-VN6>Y$D+~SVr^jE6&{^h+?Z}~tkrR7LdbToM<`79n2k=swf$d;*m z(icLRicr|*X)4C!j4!fk1e(ep;DWZqR9x?%{|*m@D7;^DOjC7jZYcpY0Ysl;-!O=TS(6Or2rjBJ_8pf7|n6``=r%T#78 zAL_5>m*%p)$5gA)Ex%GxTT{7*l_k(!?uIK%b(e(xW@ltw5Pb%Zi73UpIC2Nr%(gbO zNmoYChm-s)UQnXn?BiU!ZIYaAJU_vMBeMNt7}+wOCw(E5@d(Yez<4|$R21UlR2~p& z8F_ukXKmPbMt4p3gJV;NiuntMa$W4k$U64nF?~nF-H$?@(`kFP*E_#Zo~t^)PM)iF ziWpK5eq!tck zI2tpxncU{|_-!XU0Y5&`$ri)NmXjUBA=0~pFh_jbTd$eH`GqW|!1-l8Tp23o;<-mx z7B=%$JPIQ77r@AEXFl2rqnc%R0LzBm8SH;Noc)i&)uFO49#~7t#8$vZ@JNUX_z;Yo zpa75NujU8QMm!+Y{IJkBkthl_Kb({9{4grp->+S5{hGy(xs_9FwZmL9!%#Kf&z|UX z%?##=lSQ93rv2$*TfB^*vxgLSx~DAJ2wt_RMNg z-}mENaM9&ypq2x^4wuQvTj6sIN28>+qrU1HC$GDajf_Xl01x5u5Iy5Tj_ko^%Uk=* zdiqJL*)OtCu_4;x^$&O*ovYb4uX_@BZ6sz7dB4L0BNF^;7};tHzu*w*t^aJ(P(n{R zm#yY9>$2s1c2$3_VvO|jj|o=9JOuOg%ndu2fIXZp@X>$d_~aoz*kLMR_{R47L62-b9pUQdSo_1rLiT z#gjR5Vi!u!dbT!-(6DU7c`gkn`7L-giM?olI?0XvY~$I8$46v)9gJ)lPsJBP8IRE1 z=4CvSPv|d|OVu-r`PHTJfVRYVAFD{=Bvv_nwrhft>TZZ#vUkGJ5LT{Uw;Y^AxZD@A0 z&9T9DGnYYZn$g?XVL-dcjwfW9&1^g*q6BAfK?P3M!HZMO6%UKdm^09bDiI#J4 z6U%9qqisA#;V}|fKLSR!jOS2a2xUA%dz+W>Og<@_A7EQ>u3&RcR==5g39Crpq;nBm z)K*M7dPGgcAQ)B z=!jI`0wY_F^8pT#-Zl3Ey=o)$q^DSPfoJ~{aE+*E|DjEKQu8crjXZ`&Nz};0Fmi%M zJX(tCO2U*pAlkU_H~N%fuA@5vA zCfo~HK>~YR5w0n<#~CkYX&2X8MwYp(#bY9hu#Y1rnoEiU?pE;&z%&0_aEYjA{vl1qiKa=~ z3i&!7BvBy`!N>^;@n|Nh9|=S9fN0}zJI213y~W~SIsO;sgDS@bP2?z2u{zMd@nDFu zdzm9AcA)g^W*SeuVa~?N${yi_E@BXy=5l4XkqB*MWgE)QcvM7YcYu*CL)qRJLK%wC z*XCs?<6QTtds!_4J6sknC)HAnO=Y#&r=E;uDsRTaAxiI!968ZcQXFe%$m| zd9&xElJc{4aSt9JQ5Sc^$O*deXcwyE2=noPXy*ufZmwL?7ij+;uEf84_>){ZIewO0&Jccn~xL6J5K%SD%F%1>&WUn0-u7*qGq_MDp;b?T! z-$rLNS?%Xa{GddWdK-*vnbcc3M0$;?{x-VB?)@wf>u{cb0hffzv-LK*i|e1^hbMCVQy4jcYmZ*7+P!E39uTVCpYNN9 zZ1)e0P4#W`u{}crl_CA*ke!c5{m3b@+7j3PGtpOr@|9}7C)@AZgC_RtZW)@^Z5+*i z2No_ipG)be=D$6M=!E7!UL7}>InBRE8QBfu1~%bSzqAr?#E6i|jMLgjcm=Qtj{J?xe6qZ66#hmqUP^bGb^ zy4;)2$@Z<`Y~KP`h06A9&bFC>&G-lK2#Ac|3?nBn?$OKDI3U`B2ZS02=KCfh$APQT z9S0`!Q+z>Ru7A+no#y8(6U?8Sa;vT5Q-M4}Gy-I*xk|Ot9sM)I{wkB|HH7DUnNnlKGaRB5#)$1j?(C7l%&KxJ+uM_6gB9BoBU9=P zx^XbaHXL7Fl9p?@%$vhC^G3KxRF`>E3p68}lwAm0M`z=S5Os7WjNEn|%@R7w7kl$P zxk@IxA#d8vHQ~~^3a$%PI;XTiI`Q0XwOoP6PE^a~Fml_~vYoD$!J%p<+g~cKap~s1 zaNXPkSBR>cb6Thyy$ZI1?#8nqD(EvXa@!R&MJQ-pwtvXlBkot>ig^L92vspBwm>l= zYg-}D<53e8@+^$pc7;sm3Sq5?T|Q+uSR$FRH28XHDudWG*Gngdi$o=E>tstjaH38o zz{qXaiI`j}8MeJvW{_Pbu^lLkq4%h8sT={4A~ku9P`FCDwU*v(;>7O|Iy^oW40+ zE$@aaLsiRZL27YjZ!6|qc=SZY+yEoDT`@b#C+u12de|PwMZVT6rx?C4W17vk!{zf0 zxJ*>}yg5uhVjJk>QrKGhDxL~aOJ9bO+peYAQcG;(i)yZyt?03Su~ zo>N<)o_O-MUjB#&Pt?orVdS>!WrkS!jV_j)*VGG648C02mO*Tq%cZcn#?0JS%GP+~ zM5Sy6Bez{CGiAN_eOdO&)Ux@U^YU=1EQ8BJ^_3MtzG9_rYvlwybfQ)k!^myd%2rmv zB6l(R(1qc8Sr3Cam5<<|6SeXo7`g3QnVQQN*@MsSi|ZeS>*R-UNvJwm7UU~h+O|d>#lt3QfmR(tv~1KDahzrkolTPzEna{migh$@+|dyUPiU@Pd~ zcoswjy$mC_T|slr+Bvn;9j=`{7{sQzLOLVJZru6Xs#%1`PgKp$Fml^fvwc*xN{+9C zj%Yk@3>VMYaEYkK6ZZ6G(=yl^IulQWsG-wge@j^;{LMo-5$uP}Q?C*m|^+ zNEE=<&E=Ah+;)YGi)v-wPkJF-8qdR}pi1M|ARpoB+M0M450|KkpTNj%*TnV%L)9Vn0rQQn z*G){VOg$<1QfW&Dv1!KLu!*H<8Eg$rz|$aVXe^A}b`6akESGwXj&nq~R1SqJLA8}* zf@~$q)>gzpc(g=C><=R+D8l1?NcBpkcty?wLcLP?wC}4_@|DU9#-+N$!mO3-KKg>e zY&koStLDlJR`+Mu=$p=61dH6M(Ap8yH!Jz8mW_xqA|mazJI6K)8+`Sn-j5vO5FYPG zw*I5clNN6*W(V>;$1^sxPqcgpCPSVk>Sf6H!%+ z{~;LJ>NF2>i1aq*m=#w^rCMgs(5=z8!F!2C6sVEE!gZngLYPJx`C10?A|5eOBY%LA z6Exy6N~mc>*pvr^nnrHqi6knu^_^?p@nyEPNUqp>{7|u{nlBZj`66m#`cTn*a9Y@%p)=E$AU)pkm(N5k=rE2*=?^>8L$SYnTBdXEXy zLnD8?}0vV((cA%|ZT7$UlY1sT``FNaG-ZGvxr z2PIMoY#m*Sr$E%vTVUh_9eK1g)fI)!c|f$WE6%QSd15hNb$7(Cgp2n9m>;TmkM|a@ zp0L#o@54hTiuE3j+zH)qfs_13CooLxx8XYY6<$7bFj?Ore7u@eRH zJdA9)*RvcVy)L+;TRF)caQ5=x4mg8BY?`sU=@Z9*cw*_>`k9J{Pt?zrFmi%^JX)9P ze!|u~AllgdwyMi`d9K=5>UH%2o$liU&;;>=KUL2_0~U z1OYVqfYAdtgll04FDtPJHhp^-(Ly78+r`Rw^h8mVU}Ve1`Z+{;U2x|l^~4&1A)t@3 z5Cg9SZ-om*HIt^#jX?s66~NZeEqDS%4SfJcPSB7?8&jQ7*qaAL8$03j=BuL5h0FFC zm>a5Wn?9!GmaVk}Y<0h<@oU4d0z(k?uIC3X+y6qg5Xn4M1Tkj3mz)g5biMG{r-wmg2HOt&~tsC*kiDI}OMz&n5 z#v#(XzFX+3UCi_i;e3mQ7kF*=b+|}W^Ju!e4_P>|vsPQ7wo@bW~hQa8t!&xs#d3a84s2y(3d!JCv>{4jVdH{xkaZ0o7K(? zV$)pFHGL<|X;w*D+b*>O9yL(}+r!9~OU>sH>2?l7t2~r6sle(am!OtVCse07h=R zGG_AT(!@QU2p7j=a9OD0z@PN7(zW&RFdi;ZAK!zK+pdo(O{DQ!xHSF)SA;5!*TcRM z&vba`rqNwnbVdIw+_x?JhuZAnUwFtwdHe%LPLPMkRkFI!7MqKBK&Z99vhPdjQ4~X~ z3OkQYb!VAT>#}8S?~)@=L$AM_s;nK$H=W#Jvk%Bu*~V}A9`WDZ>et=u z*WIyScSmt)8<#k?lR2Elie2bQ(WvcY4&e}q%X^E`Ti+YQGB%b^4HTCxxrw>@Jk{Mba#m<1zSo-v(6q&EZ15RFvT%iww$iw8UF zEUr(0t3u^^c5D<-8Q6?3#v>pyehiGNw&eYj|P_jE*hyG6pbOFfAPOmwNo zVPwmt9^nw_O(bLUMN1T8&j_AEMlpz1Oq{kTn%?dhSrk#awj{dnaEX$5b@P+Ncwv*q zkg|WcDE7gt?0llo7Db>_h=grf?1cwRl*R5aa)MKM3?piu5#7lHLd`Ru^3}JTXa1Y+ zZH}oYlwpZGJ6UZ*Y6Hz0kqvpGDf!AyO*H)+q7x>XDaV#e+1{RPrMjeC zF6no#Zi1<_=9(MfS~=BFxQyZGb4}CtRUIwNV7c4KTSl&KyIhY)PPDBWjBMG~)f^(d z0cW;&iKUWVovX5qXtO=ll6eE>>nxH|;zLKf*We0QSC#PNvm&+gEs!-+9bk9$MT+G~Ut^5v;ov4*x!^rK|N{%g$^!Db9 zYuq3Ip1(5KTIMl`R$NNieJE5bX709D=HRgtwK5Y%Zo5`?H2Qd^x4LmKm&q4bm)znx zFKM5Y==vjNEoLO^m+Do86E%yVJUG(Ny4S zP(^b>uxLciwl)Uwn2FjLfRWp-jV&W>tSSu^drfuR7OsvD!}Xx5qv;L@gxN)9ZR_KM zc+^CFybnfhyFR8wl^V!piUo z8krPngkS#{3&F333*;5J98`fceKC_L5T3NHj(_4o6V>r|7`g50m@$y8mh&4j>{cv$ zSbJ5!`E~c*&kVlq*_A#myRDU-@Yso3SqLMyT`SYdIetpHS5wXkSISDbCR95K zU8&VGw{>zF9yw7bD`4cd>tsS@XjLU=-Hm>GxIiw0i$N7g(^q#1{YIv2E8`M8WTG-I zf|1*Hcj5Z_yIBRq`|*I8h}}!N>_J@pv*pJ=`E}RC_?E zha2*~Hzef44f%0CFLQY8xN|#uJ-0UNn048Ff8>q}R+qB_x%H*;TK$R5ZQp=SweaoUu^K--v3K;q$X4$-pF^bhgo*Z2kCXA6SxA9Tn7kV< z43+V@{0$FB5;pJe!h<04egll$cHZY%ul6{(|8_X{-++rl<$gZrJ|PjC|F7bK5c&Ty zjGVx~$H1p%M$te#Ak^G&v~MDEZkRFNXJ%aFJ2Xx|zCJ20=;_Z^Dmi_07;_eCTu$ZH zrt^t0dOauF+atGnsDH$_Z(hd^9XJNQ#<@tG2MW*hbam|(eduOU;WjowpEq2%mHp_u zS8R8)b`I;dcd`E?`u#z>@!uaJejFx#93g%jDSnjMpFeMSQEeBVYduf?qI3N}y4mB0 z`E_jXlTxuVT-&+HAM7a=*X7F5CF^i)hbDin{$f^b*Cu}`+VCl#?ayDx;TAUell|F^ zBmbEamr1P|&OoVms6RJcThQcK#Zq}-gesHu5hW~VMSp# zrl2c_R}^-aKlhM7_mn^Pl0UoU&%Nc(edN!5<# z^TQ1l7BA>x|KAe+&pVlF3iH`t^AfP~BO%}*Kl;xb0-|915dAIP>zFa?`*P)+cKLEH zt0Oi%xjpD;u0`weC0p+4W6$roHzbh1>=sdJld|K=^(l803f#jnQ?OB`LQFtRneT)-jHyJVRxrhON~ zpJbt6XPd?F$Kird8J-rqR7v3ZqxivzJbwg6ZadG@)nxDD`hUZ@{t;XhD%Z1&OOph? ze~1S_&GX5_8NME<$!sTQ)aZKw29ebPhY8AWcSdA9S#05-+HPB|1gJ0Z1CxI zfyvAHLY=GRFTo|3`hSish>1;y{|Z;i$y(v(3`cMCJ92YqEUVV{eA2U#@u&gdMLZs& zS^NP;w#?#pz7WbRgsg(h;(H-cu;s$ndX>xU#$i6Jfz^jCA4v}agX)YD=oQ=zbvtS-9|5ynZ$?YG`tG_%TazYApDxB~e^j$8n4RfAp=jx{mlghv`c1mP9nkgQ}~9$@oEuHZc)KwrpY?he)se%deK$>>kYm!Ok>`-PgnA zpt2kPYKfEM!|+2BIX)OhZac@Zua?+64}|kvfJ;K<+5BpWlj}A3;fY-L!pI3+d-QD8 z_C*u$fKYA!H@>Y%w*AA?ZTq9yR@S}RMgLu}N}Up`9qzhAI8@E|=c^lCPYB6hb@PC< z4&!L}pYWB7YWTNvh{T4UUSAj+Wo$J3$6ykymhdoKA}5c92N;eng0*xXBb>ZA+FQ-J%kPvoqJxW5VzqVLD&)#@ zzNbZ1mAQu{oUi^6tJck(S+b z!?kj1p|CB((d`D^%Sz+8JD#L8t;jcPi2a5=+|F$Juz$M17nIBez{2vtp%kZ?kz#xJ<5s>q36OUmp`>|&pq8Aq9drIu|CUmxPs~z$>8b zI7BC00nHGJM_UkuB#dl1%i$a%y=$JjCMxU+#Z0u&VazC17Ej=X&joN*HjyS8Iog^i;xQ66 zu@**dyC&w#bEr`-zU`T71K*E?tK&m(eW>a<26GHYwzf{*k4HC{+aH0^Qk{zZ;Y^KhHK<>xI9#i98J_nVzRbM zPQimEs^nxCx$P?1a$UB6h+WyRPr4hjxIA1Im%{a+%3@!lEL3*34&H)CN7TVa7&$=) z9?M^91x+lhctEHXv~7GFqg+8-o$f12QN!kYU93CXmV4i`IErWTQL!`HmHg$EmRIDZ_V)~nd$J8kdq7`GR zt%ySrMQB;tl9+@?NtDER7&$=_9t}hF9AQ8n5US_g=c{embEc$w*JgAjyH4Lk?^IaK zPH*ylK$ZujnVO^7Ecca*YBtL_L}If^&sxSt85=#O0+V3%m_fKiP96&xhNICTACTod z$)lR{dxBADXZ3itkn;EktVGg>hEVy)|L%1zh+~Be73-hEo`o zi3ZogU(y|0#_!H}C8y<56%#A#)f7#IJp>Unt z_OgiKXq?n03wx<+$}*IL@FNoqWq%l12B%KleKqiva(R6X{V5hd=1oqS)t0toK8T{z+K^*3 zc*3{hYBYF^LnK~{q&OOkVHq1!!OJisR=0QwE|HVe!Y>()Mu*(_Bce$jRJDk|;s+&~ z#fvbqWfp(n5a|sBa_0}5-JQ=z&o_(R9T-G>U3}!(n96Q^=MN{x+vA5Oay%bKZac@Z zoj+`zPY>t$6u2Z*p3R*0oO=S6L7`g2%$G#BYV0ub6nCVFjq7}2AeI}b<2ynAK9zQ;j?J+QN0^1%PTnz!D z6?j0XA>b-s*~%f{>2!yHF{L4Pe@dGImcu%A+DUC$OQrx3pVoF9s{qS<<)g-c6F5XC zi~-|#&c+-t2(x1Ki2=AsPGSphVmKNhatm-ll{~B(1Pb_JiKejzMz&0&mqVmC2*|Gm zx)}Z-3ng$8cpqF4D#P(Dz!P|W4}NeW&%-cs+j)*{0q)}Z`{7)F2QCVgYjX?m1irtC z2SDWeYcO&G-yWS@4FjSfctEIOV6kr^av1n&y2HTu-h6gVsmPvIiEmFaVHN62PNCIW z^UOdaM6ClkMuM>{Y;0DRB2pv4C=SsHBf-Ra+Qw9{C(MmZQav-U8(b$Ry@k09N8?03 zGfb`dv>qp=|$5r|ll2UQCLFW?6ydc*TD zvgHlW`a&pg5Sj_{h6h8UU=JNXm+l3`1or+P`?y(eN&k%Cu05@Bh!swU(4HxFI)(Np zx>bytQXRgr6N@|W5@I2TNc4>qpDmiy$lI`wWiUIIeVhOn%55J9F&vGQns^4K5xQ+6 zi}6DfP2?CD*)owMIYfHRVY+y5w^1&G>GdoetW#S|SK*>inHH-~Mglh97vKR9`7Xl9 zZRdNodTcj|^N)se{t>t^RL?UVtd>iI`uj@1U@2ja<&<8+6G`l_Irp^%|4p|D zP{h{=PwP*Pq2Xt~EU1f(pK^#!7#bu;dI^lKGPW1x$m%Mi7z8$GIcYBZl@(6or#6o} zjFU(ig}NT;!lNKs%&WedP$%~*LKDjq-d`)6k@SnRlYVi)0{5$Mh1<97>Z;8bo!C`5 zga7@*`QHbx{P;ZEY@{6BtGKE*mc6e$RL&1O_}`xMpPY-`X!gQmA*x_^7};txX{%s? z8ZZb-I6qto=fO3iI>C;{tl`SXR>Qe?JVZ5|1tTY@!DD7nV~1!p9uUfz{?FIkvHWXn?*+G{SR<$sJx4fH{5yH?EemrgUJ4`VdS>6KVMB3BPd{gE?5Ec z7(^?sG3+y6%$Ui!*eaNV$3j%WOc*&q1s)@Tnkqy~@qkcM#k+mwET@Vur+Zg)TrXR@ zU=PY^PfooNR;|-?YDf6Z5;7vKO*ux0vwbC_Mu;;xL??_86C@8t2e|}h!s;Lw!DVui zStu|Zjgs1yVseml$pfopi4FLHiDoebBU@%s<`C%(3{z#J6~!`GzLNzLI49fzmxRi) zc*|A`-);;a!w*m7`c@dZ?Oe}{wNxkHPlxmU6kHZ6-*b%hhI)gr&hIDi5Qv;V1|uhM z?$OEBFd&+P2ZS01PWMej4g*i8`^EGv`zzIfuFTM2Z?>v$0=d;{)S;Yms~zn%5kz6t zqtaTCV=9=%BE`mKsU0;HOy>}tFcnOWWp4D0!(c{ap6UtegW*y+NiFQca5P$K;;oxl z@OH;I06#dE%)f=5a~?^Gevui70h6J4GSo6LgWq~^FAET`#a&%PG>t#P$d+mRoJ*C{(V^SFjWKUWNxi##vSk*lI7I5r-)8syERewF|6aHp zRCeRd-^uY!_@Rj$-v}eOo#R;Zw|V|gfNiLVh!{SvK}eu@fE*(SsJk$d(6f$05?2DRvS!@S9c8(8F0Q!oXo; zC0r+}9(Lt=7&#|f6{q1b5mm7QMsB+*7OAHc0A;*ATp5?awW2Cx596_gW_j7_xCD=j zsE&(Z|825v|DsLd`Az4V+uXrn_h{c3rN=-1+Gnuz;QFOZe!uwyzUm=O-DU z*6^qz02ObBInDOva0(jh6Fkm=|jV`2}1hC$)tq7>>qBZ4x&YNtQgWTEO@j zeq5q){1isEjN|_}M0&%<6w#QS9M3ESj}_Ax1U8~mIi4OHE0UO=j31rI^h6lB?M%;5 z1B8?9qr=&LJzNzk+v445GXr}lI1G<~$oRo9asuNX9bF9tqAhqpsG;CXz9uCXGrpJZ zdy&%zvej~aLszC+&K4_!rHcMO#HFxmosz4a>0G`*=K~RIEL5#8IVOd-_^L`x3L7~@ zCrk=6%=C?!;Z~R{c?zjzi(BA&Iq5E3$8a=mu7 z$lVvrsu{dL#-a*bo_H9p4VCx!?h9rfHv8Yh;~=vCZ5X-j?8kOrFe_&$;6LFC_!nFs zssha27tCC275oE_g{XqR!N>_J@E8%)lp$J*2ZWk3*7+tPr;JBNcXcK9v_ykjhy_Wu3l@)8T7T&vMGGMbAq_(P{0Ae` zcp}%Ifsqrq_UPQI`HLpt0il}ze!hvw=0AFTs?C40nE2SE5~cOVr)>YpGQn)gskMZs zBRrQEM3`Cwa?AsN_a#Bi1ApNVoiGnfkwZC8-53nE?ngP2r;Qp6wqg+2?Bt}mFqYwH zywt=pbv$}|LYRdgo#-gjVPwlurf`V#CWKkyhD5w#2Hz*Jh_G|g;(IY%7b@T4!)A64 zHtWaWF%Vfl5=L%2>vPr8eiP=a;mltE*M`cxSV(f`VY6Sv;~=uX7Di5B-(v(&Q-o+8 z9uR7Z_>*q~lT*a}bf3Cp@Anmr>EZLRUY%lV(Jl-kKCL}D#)i-O%14b2pW+amFgA?i zIUD`s$1p2a|9BEEl9SlN*BOpRh}?xiP$dtmmJ%Mv4@)$SM_^>jG``Ov(i;@yE(|V) zM-2o|2we=K6%(P&aC{er1fE}o*{BhDeg#HuJI}FQ7+hTM6VCNsn~ZC77ls7BcgF)D z^1UmJoWQq7Cs)IOXb2tizv zsP!MmK+x|iAvF->IYcK61QTS|#z=4@%#1uu)Dpt=aG9Ls7A|2p8YOaf=Q>^Tz-lO{ z;Rhy~$JH>hWgb^@i1da6xx2HQ<%d`>feQx@!X=@y9N*nJk?Z^M!xOo_7e;P7*RkE5 z-F*KcobTVkWufwI?(Uq(`LFR1h@AfdMo!?|qqD2wKr{yr2sIq6_Dw_%2h-Ah&tY^= ze|}JV33HDk>P$|VxxX1TkS*p1hx)V8tDmlS9OA$4=Ami*$1xHtV&P&JM^ZRyB-oil zbizn5HcHu;2Ufs*$OP3qa1vZ2C#8kM7>>qAZ32Jtof9RGs)m83_)&>wu>?l8%;H!M zk=`({rC5e{@Ou%9BybYg0M~=c@6_0v4Q`f)@M9BMF2l%eXL*`ha(6I&M>x|TgKI)% zdM0ODkKevka4UX%BHOpX$O&wFbZ<2Ph*sbMp$32*d=rraz?JFVD%g>|fKx4%**guT zu1sZZZaw?w#({wxd(ok%D>Ki-UoM%2g~VdMmjcuXg1z!A;L140cr&-u1Y zIpDlA-P<2?df0cdyE1EX?1_kMKih~Z&z2u@`WqIv!J2jovUZ|#rWxrw*-?P?_!{A9 z-Ow?(eArh`YH;}=he#Y;(z`h36qyw;Z0FlBMb@zL4Y*`ZmJ4??9F3mZJZ?Kq9%U42 zS>&sD6hw#lGK_3F%$Iy2l*0&B1v$+7LZTR2RaltrCDiLKC~H?pV+PT=+NrbJ2~Iab zAJk^SX<~JF$?I6a*c2~?qrBubPFbRtr1-kl=nKk*bu5DUu&iTexI#`!3$qxG#zt)% zw+=>mErgSeWM)&5kYqYliHCUuhg(X}>plzRrr?nbK5>Ol z1Ht?70~5{TJutFm9>W|Wy@8_O-imX>g-947|ir!3@f& zx7xAJVSpVrS8=^#)z5#^%>!%1rF9_3Oz>CVva6ZkMGnykGr?3XcVje|TR~ZoXNnpP zW-|zEfN~OB7|n1rVrt^@Q48O`**F6~Jkdp_!pN43Y{?^!s>KNcCrzj^Ep_sPPMgYA2$)7 z)}tK5!>4`aqlSk&IYcK6594^whK>9PX2ohDKZJ|qB)0HXhNBT8_i+4X=FtTMD-{lbL4GVG~Hy6WORD*|v|H1{KG92H>ErI8M;|C}5{4$K(cAjJVxVgCQ z4(ECg2GNR30Q+n<_i;<$dl4Q0k?);haXUzGJUyhZ&&Qo^zmm824LknEhga^#F6eV@Bn#yvGBBBGGbhc3w=f)yANeMelSmnb8Xew&M?tih|ACP$i+MYTNN;qQ zFV-1cl{5JNGK(y5x#3H2eW?7450EA2VqbNB5s!taf-k_xZCAkpb+JxR!tcYC@Ef>B zR3+?aEIzpMvDNTPJRYJNehwoisKH}qP-BN^H69RZ?CAAPM2;Q1raN|QDfWQr$`niG z0qy?9ZbPV%Iki_i)p`E{ec?fVtAR(U^)$!Ku?veFo6e<{)XcFXhvRRtk0pso)_HIUj_P+s^q`v3Vkq_uIpHzYQ)8mG`a9F+!zb zbN^vH3?la*gpm`t_h|iUdJs*+142y?3w#ri)5Gd??_iA2<<~@;&-ZDQ!>?Epm{U3B zR$JbZ$)ORV)}I_>!wbH(S7XET9HJA(hKcpGjhSKmI+PoErl^@=41>VND<{2$zq4X# zoYce{_4UYY19=^OWTJt*=F7c0b^jx{Pi_0RX`(EbvD|ERvQyO0t?ou zw%Ur8j0yci^%%9DFvkSN$LY`3O+r7?OiUtFiz$Efw_ zBdT`Xj5a+cyz&haXzEzvnr+=*>$l(OL(yTF`SuCXIrBPXqe z84O3`LvF~ziIPWEOOXrkqY@2cTNv3gjIB9DdQCxY$l~Dl3>FD?WpD9&DqIgLzwr%O z+$=B0k4TIGBEGIMWxyHK8(XZph+h`$GKqM7Gz%$O&wFbZ|8Uh*sbM zp{^ue2^<36pYF}dN!47jQYu$U{p<9{rXPaU>XcfG?p4O4)LM{ZBzVwQN@^sypF?!Q zNH95;xiJ~M05fEDj_2W0IY}-&%5XGV#bAJ#X29f*yVdMnvJvzS{9z@gdfKbE3y}rgJmm$wicNubQPpR0G)i-my2-d4p zZ0^0><6paUy{R4leYXrw>r0MtVS}%D)VMIjAv$4P7%!4GJmf<#C)T9!ez;0bS_|)B zI2t2z^A<^#Jg!mI3BVPMNi6PZklM)_@!% z!JmDru111Ca)?eC3C8i9jfr5+g(xfX1W^;gOa_6?O-^D9uVXkGA#zU^L6tnL8VIK0 zhb5ZEWEj~pjfos0y@5dP$>L)8I2HIWTI1#Da<;fuTPOGotXHSl zTJ*pH8&Avm4H+J#)`%RF!Ck&uQj@_aI7A{3DL#W(e>pnJ+?WrZfElv7$767*oFo^% z!f-TN^p~SKZSvr1N_ZGQIMGeM2P0c<@@)>0c*1#{ZwD+$IH~!GsJ|TTVEZ)|P~fca zAGj=3w&M>R#7|X=^MBzX5IO$`jNEq4V-Fm}ie{YUdtMaG`)&-P6;}cFS#CaX5KF^; z;9wU#3?lbC!pI5Sd$fKvJ&2~^0imXc+kHhWr-%9JP7jmWt)xmdTda0v2D81|_^=k1 ztbgYE8;9JM{S~NzD#94$%p-!<0HbQR;@RTnFiaU$Q8ZiH@|#$x=?MAJA1Mz&1jNM8tL8bUuorm{yJbv4R zt>WIJ^{eSYGz||3b;8f5Jz!{P8c90M|ueikLiOsvU*Dnu9=hO!b*mt@gqM& z;UrQ=3QS z144}*NBAZp$Bu{7ee8Pdx@@sGr|%EB#U-ePIaSx9cd=xES|f7|8vpgJyBak9%^^Br z&=@b0HVkDam=}4Ds0Gi345Ag6FVh%~#)y0uOOhpztA>f~@Z%DVV;dORGLE?%BE4Zk zzM$>o_%s$v;P|itu88yWE!Z5#-^EH|`Xv15M5dR*$Zcmj_AZu_?MtX^-!!Ici>~N@ z>}lKg?GgR3PVI}}@=$3vU&>0Neghr>k@_JRIe~hQ)~==l(H}e@)O7H&Z=@au;5 zDEo8b$j{j(>Zi9=}ccB>eb9(#ONdvWJXge^DqhZMI|Io~T#MVEjlHTYOv` znJ$@>V*GHpE>y7uvtF@kAcYgfiQ9c>#FTjYh0VOYN)?ISItDGq4fq z1yA!T^zl*@ZcX>T#;l=YCC8q`&KC#!vpwwo#z3i8-$V8i78j;rrvTk|H3-uL53nAe z2v2KN^|_*;TGK_os!}~@gJ1)Gr>^C%_y~fu{0)=&2uzS=G9Q8q=H$3=EyK~ssR@&D za42I?q`e=HfoL-Cg^?|jxyctII;%x@5{e4)mZ6X+*b`TOPWSR;3VXPCRX_8T-u$|} z;VM64skFjX7JFW!h|ubhX_|Ey%1?a@uMFk?I7BC0l1$ZdH_T+zTTxytGwEUwt(Z|? zWEInhsmrr@+j*a-Uh-(h{dwWsp9>eqJv!KD`+Vaq4=oX!|FiHwi2SdFkrVj$ zX#Q$`5DmlwLS38uudjj0Ym?8VJ3nmOxF}hdE$5?AqSBSA3=IyJ%GI3y;^+rpAv;xA zJKb}fkdbB@fyUz0dYEIlxY<`;YPfhehe#YQ(pvzlQ|2m!(RUt#DYGVx2jR*&Sufnl za5R=`3%K_*V^s#Du3zrQgCY9Qy)d%nKcDx7Q2rw{7UVzg3W+rMy@X60+=K8~ngTyO;|jTXr#rq(BXUMz#<6)YI+jI&ri z2`-7dQP?btOHwU-do*2&AD+nd5*WGdT+fVOnz;DBD4g#Na9OB)i`Rdw6l~6i@DPZc zmto`t&OLg$8V5vk@PJU4BQN>3D0w+@LAtj}#z#+E@S8Nev5oa)`uXA-zr_AE}JzZ+Od@FhMd~H8q?L7tG0V;TVRaPYv-$ zD&slW-f{{a1JPSfhLJ6AInftFd5cg~khkm>5(T>@c}u$QgKxth*3NC{$qiQXrD9j6 zT6RCRJ8c=?kGuN2n{vbgl`Bf|<@C>6*?~ z@*Rd2dH)vaDtfgTO{Xx7CbcI2u1SvB#d9Ny}$u;$aYdW*Ura`OIWr2<05suhp)xH#KWQXj^L;BG0Fm!oVC1&*JzG7wl*IW{;haAK z7lz8Ycpu1-gw6Y7co0P1ABK?=c=u@TYCaH+!UIArte)bVh@20$PIqB-E57(q>B|nX zMOA*|)v>lZ>k8DeoZ55mjz@SNE4t+8A&LlTiyqTi(AY>V6{Y5eDI6kkZb+}C%yCt~ z=qm@qBw2ms0JvmMo(nrN9DRbA*I4kdc$877#g2XPD2OK04I^77vxhH)G8v(&Ad{IC z5(QiA_(i%GA+zOT#|1;VA!akx{6MZWRMnO`*0GGRsmLk4+A`1U5pjXc18l^nN!W2^ zQt@R$Im{r3=m3Wi6lJsm7zT4QOp#?U?}jVpWVvt!!_nBOi6O?tqUA5|!h<0C%MCEH zzq%9jP@FHdlY&hZzm z0EWN(8>YzemzUv+x&7rg3@6!Nv?T0{r2kLdnZU_Wl>L7ZNU}LLcOW4V1d#v|!y(Fj zpK{3|h{k2IJG(o>?94JV8xoL9xx_(576nn1Lj*y1Q3OF0MNtIh5ahlEK}1m$Me+DQ zT~#yHb#%6VRkPju=ks~rQ4@as)boA%sb6@U2gg8IvS zAyH6&Sv%c_HPh&8+C2ju-NzoEtM;p}u5N#3d-}>Ap1y@e)(lK3S&LzL9|aqDNwf`< z7zYidD?W0qlPrUw7@g#3I92vevLERvSi~olZpDjgIjhUkTYUc=ZHzjPpaH zppNlMx)(JI#I8K_LQHGVp5dY1TwUKhgND_P9^$ia0U6B38nAa;=C>*z=pw$7EK;Fdma*Ra9Z+gsSjx71EgSDab=YJ~Dp8cOs0U zAY-y9b3z&f-XJ_N^%C zNN!{jiH;<_>1duU1DY9m3Wj7%LXX2KvvMx}f^-x-;=`@BQJ78U5j+aVCi4)iY&4k% zd?jR);Z+sXWNrwFf||@X)4gA^Hd`m4JR)9rHfouyrPkQd^HwX5NGVcF51CITHFkkH7+qsWI7wEN#mz}a0n(Vv7n(%tnann^9e!BHHnA>|jeSGHzTA|q7*_Z{VbS29)ag}fW zTfCKY6f_O~rB8hXW>2{bkHE2~+zBfi zJ>?Ex3E5M4H3jvQ%R-_ci@8_2J!Mk#QNvo{1ohKg(>~RnPU8JYt{Ie4rj`yenF0+o zniH8sVh2glXijdj&|1e*n1<0hwt(|wZygIsM`6-@Cf5Wejx3+aZH6D&v1M!mD;q82 zolGLVNus&cl*pFGc^O56&EE#+qv4#ma#psQN~C=xetbvThr`O5(~fU7WhZ`4IPtUK zytooKwwg+$emWk5BlXi@3`3^)}YD`Yo7EGZf7Ipd@G<^kJ z{T|LQXdGCNvX)z8H{WXv9#<5WG7nk2!OwhCF0U?r!X(CnH<&7b(7?4><5if5F>CxD z&Xg5u@ln!Is5GYYJ5dsvIJWc$zr&C1*gJj;D;vGzStgO5KbR%%=(O^sv7UbpdiEKt z=aB^Fm|a=(i%5M0=0)UeJOW4JGhpS+iO-8YPEMk}cR2Mu;LNyE=PxzdMq!fQ6_3J^ z{7$fP0(p-~Uit(+U3f@HpYS8!rX_sBM(I8VpT=%U)(3~8Z}F;|tDFH>t+nJDyZbr? zx*tb@vAC2;$zl~g;afh^DxAV360Jgdb4Y}wIdE>s>_g8IkDL!zMDkDo|)eed*obyY`qz7*|dTdtJV zyO1x@SlV%|;rl6Xij9TFBU7r?(nDVG&AjX(&oPN{&_g0Da_CwYnfz%Ki_t|Ul0-X9 z=-(+}3K#JuZzX)QkF13s-m#CY0V^AQM=jqo6+WbVwA`M-EH3kMKvM$s1$u z2iL51+6sC!s%)vORIR0(?Co1fvYYI|B*sBEVUI@Rqt_Zr35H`dlmeVCE8pT#q@$pT zJsORV!0ah~cm$3;r3Y3vdde}r60)c8Y6|KpyM{zTJ>`XT?}0878@9A|n@-*o`x+Wq zJDkb~J+F26mLIJ^k!`WB@`WNB&DWX4IA}Brlk=dpoO@wlM$5SePMp2v+)6rX%UPe@ zG)*3h*?jK8V{vRgcf!g>^SQ%ULN*^>VL{F3vXCgK`Ftqd8!PjoZ-5n6(8W=-(MG=4 z_Cc^|jrMdM-|eF4+cOlQ2+;A{V3R3k%=wFYlI><9lNbl>X09axTAx`8BQpBT7I4Pw zeP$u)sC|ZS7iAfQ*7$&04OMO1^oQ9i_k|#z9AkptMG=wUW=nP>fdc zSvXbpR&p}wC|JaPF7fEi9@4;%?$|><1uGjp)~-Y(q9)=PN45GAIK?%HxmyDxuD=K-!hJ(pef~* zl&2JN(=8W${@SvI=`nEeS}V`{Mn1nQ!=iKBzjT>zA;~G_XeN<3rKHziX6d8XI?E?v zI7VkV6;79xZ?Qr;wi!hqf!R||!Xt3(DJQ_nMo&53S3>p_UQIzg<;ajIsHe?kRkRAQryUh60? z!fcF=@;sa_dq;VIbkvT*zZ0Ylz-%bb-~l)`lqX?jqoF*;B+{Eg)@fPPc+G3nXMF}e zBMs`)NunJN)uhh9C1@Rn$$lyxh9mn&aEZ+DW7F-zA*?j&OQh&-%BsE0n~c zm^H8+9*ScPYzr$V)PRQ@kcNU!CLR*B+h1u&24eCtaHa%_R zq>;tN%NBKX4BS+_oPLpu>!gDdIJ8`B4eOZCD~wbGNX)e7Z)#ZH_I7q7MQ8oqWy zk4>4gEcd)l^erN3Csr~E9Dqmux7i?p7y~m?8@$$6E``w;^U5V~wyboE=aP;>ror8W zHUP7mT#N_c*i9~km5pw4fv<$@CcKt{y2)@z6m)s=Xu6O3r?uX->?`He4?;alBWcH_ ziT8sz@k$a4Oet4OBYDa{}M z6fVstadB|s=<=P*|G=agjy>dGu(HuZ{=sYDz@!-%pR-p#XUySNel@(8hV$NH%y{#+ z^vyAtGsk9l435+{ft53-zOFRzt0BKEocz&nZtRA^Jk$B368ktz`bXk%IMP2HR!*Sr zG3iU+z^4um33(Orh;Q=}S0U%7yn?6o^gS0nEKx2(z6=+xwdxwa#(}Qyqosj7FlBA2|3rHG=FEEL5VI1N^*NnsMFcop8yms;$9mQ+t(zAFQoGUBX;x(kBa1q8K9=+K_ zZo!Z4*hFrEm5nCy9VU@@wcqxOO<^438Pj;bN)ci9-QfLuI4`ceCb?b6X<))`qDV?sl!7; z8i(_J%UBqPkEClHW{5Qw_Qk(P!KG{MIE}qLABXZM^v=tFkMJ!bX&w$`5{c#^y%~jr zNm>AWA`HfuO;*Cmva&7qlaA^h`1XJrJ8^t@<6#&-zGE+`!pcT3srX9BUcxIWsFxfZ z5(VA7+$`l@!d@d_KHsuh>sA^JW`L~q=G{x81?em{x3yX~`{rKuk{g-Cc<3eS*foFh z6b#1bC6B|&va&7yf^=-XM2+9{C6D08ckCq(!OBK2dB9gf_7Yx6LA~ULkSM5^d@tQ~ zS{t)oQX8lo-_hMST<+=UKE9e88j5zItXFeAw0O(d@_ylY?P)MadYYA}NTYyRyv=Zt z*RSW(05F#?YE8DBc}!v)w44n`%ZAp3c7fp;O=w3refB1_Iq9fPXk)%}W5T#N_d*k3M$m5u&#fv<$@FTAFL`pa-g6x3g~On3dqS_N7|raZlQmIly{ zcCv$~t6>2t6>8}pPx)q9_K(MzL}LF)ak>cAZN|eH* z(aG!y10{|sEy#ahGS168U}d94{DU)3ZF$Gk-J*x1ODueshV$KG%=q$+(`D@DM6elt zY{!XU6IeNO$}{9L2n*?D;iQj-bK-g?^E;<%{3h)q@#8zvJ{(p~pzSed%W0oa1s)Re zDa<3j%_)k4ru`Y|E+U^&tLK)N=%&U{<#=WG|1w;y)>8BT#0HCtg{90n77uWdZ|z7A z@C7C@9z4KQ4kQ}5<^*nsiHK7qwr&H?loe|68q!gyG(WK+p^0NlKX40vY{%Yl6Rd3X zj_)vu^q#RbKe5rum&W>4iU;%F2J7F$S#f2pd}5^9(mWvC$fZNq#mSg(LYHuyO)zHbQ&pD;1q z+XHVOsus$1+W)as5}QCqJ42S~VMuMv?NTuCxfW+zeBh zv@BNQ2;cIOR^m`5k!U5-n`0Ix=RxZ`C&Ivt*=8l2I4kpFKj|ot8hjtxCwur2eVA6cM!A(nfw?4W(KUQO5FFhq zXF(|yYiTPt`=(pAl^dDFIA|-Ao1@m6$Wt&3qlr8Yr^(8*_zTiekcjUCHzPM&#v}NV z9b3jju(HuI9`KcrErVB2P|LU>BnoO7cc$Aiy6P3Nb#-kZH>BF1&eqsB_6%m zL$->><30f_lj8kSM5!{4CubGMm|sXzP1^kJMQBbux{o9R_4y z&qt)ugw_ntZE@*|z64}9S;-{EK{tu;sKeJ<%B3(KqorH|=gZzw&LthSrOazB?NSMf z5af;1i}4T~`^tr|ve8#A@Rg8#h1XM1Ul|UGg8E7=-J2=AuN*g=AEpN{^}=AjGOX>m zLF37~udwi1(J8fSaVbyv5|Dl6aV9Zd`ie4qt*@+k0gA`yD;*?(xjK7ad5w~$uxZG? zq71?GEB}F!IWN$Fm5sjg4_^t{S9m=I^_53LqM*L=)pXa0&Wx^knp=#Tmp!|~WoxZD zQdy%T`p0{7F!Ir2-$l1epk3gTMbwjQE;}-banM|dkurF#wd7$&Mr&CPXUmGY_(9T9 zTMOSDOdEjNSi12591Y7yVP&JSeArh)HWpq>L5*d*kSM6Jd@S7yq3MP4P>H?!GCb6q ztE+cYuAs5R&C32u+2(}@@SlVD&msKhQ1)Z3H}BW$L~Pw6G^J#lPNmUV&G+T2`EpNw zgl}PSsYYP*sCg+hX7*GDhjKmj?x9>Y*H5no4G6_cm||j!NpT(N3^gTMi}?l2ON@MC ziEegRb0sm}pTQZlaxZ>|bQEX}z8Fm%M6=C&m;N><_!Ip2t8Fv4wUmDZD~k+umI^iT zNPx%q1E!STGrxIattLNR#VMijf0JUu&R5YyA8sY+4LCur==mxG+bGNecpZf9! zl|_pF)Jjp>AM;$BQYyreLND!3Rnm$Cscs6 z38SY;bdf2`hf5{8wG}lJWp2T>in1Ut_O0oISt^R(O7|W~XMdiSn;4IL^Arr$ysWk7 z{m7T1THPaGIXf-)Eg(4!b@RmUo3saIYHu%0ZjM@;NzR607&FNkaGI<%akdtach0$6_}XOS6+e>W$!Bwla2zV(Z%{o zD|EB5ynr9tv9UY{D;tgFX(o~01<6cq z55SRk7p$B)@450aB#HT+;mmh~6XSYz^LOAagD|=8j0fS!eFs=MfxE}-FAW5rC_E(O zHOCKq8?HW$&Kr;irfO@sKOB|Nld zWXhCe@d>B;R*>`wCozff;1i}RW7lSoD`76i401V~EGydL=SfEa)0oA)f)c*jN4|z1 z-m#B-1y(lt$d{NzdVXOppKg_uX~Z9-kT5@Q5WgQzj4N?Ie^>@#a{m<`gd_L6Vdc!Z z&zDo~>ezQ&7|i}ZaB^JPFVyZ{Dg!b3{|gVqk^etn7K zaALatVScVw%U9{PWo>w9s8X%7SLE1(Q{}alUEm_NR$${GPb z92?GuVP&J?e27V;XEfI5b96%Tv?};41s7;J8gPnSt6)Pm?W}e<=H&A!JRHYbI1^UR zycRZ+=EJQXZVRu6Ti`Ug*2B9r8Q7s(tRQ_IalqER)h}bYl;JTi-v*qGi&iRcJ*~2)qW9`GND;K$D6(hm!9JdCXwhl z(wlOo5Dh+TZF+h8MJNt&ddL+y>yZTJ&8$R=lSxNmBA$1&LO0vSy7-|T+s0g2*=QTH zd?jSt;Pn&KHeUCwV$n9XNq4#Dq~(QjPi45QzLc_zQrV8Ck+U_8__I;(=cui)l?t|W zm7{&DLUxrSnM7h&NpZF3T ztZX!uI+I9m;+VnBeKT7c=WkIo*m-Gi{wACgSI&GXuNuEe`y2T29cfvht>`rA8=^p&(j--!)l`|(jOHQL!+FuB#eLkEOSK54=SbYSh4fq@$fg|yA zVdVtk9&@;~0eo8UkdQWDhVMXx4cIo_`v(&W{kg%xoN~+YH#7vSFx#_i&6NsFAHfD?qd?;!YJ@TYewNsn3XthnZ$VT2D9|xYcAnN zn2s@n+yLjx3b^<+(oxtncu&zsU|xJ&hezPpQ?7xPjh=E9lSt1mtjljK=vmXaKSxnv zPTt`DG@Kh(?(4;FG3etk=|6$T;Yj~cSUGe03+1J{o;j@oy1pD-0aHk#9p2GA^ZEAz zlE-3J!6ZBu$0}GGR!*n_4^tq01)owpB&4r6+qayBuedf{Uon~AEu*DRy~<691L4B8 z_8sqaPduzBDrL5^IEnpzD@QtseVD{}a1v8m_k@g|5a^|#S>ld3D(}ld42FsYx4$KXi)Bv?6ty2qq0eF2{$JS3zq=k&XgJ-w}?X6Ni_+;1c}sj(y}}SlQ?! z7cz*hn2nq5&q$&bZ;n3&Xr0X-TC8&>8nX` z@37NX(T-&;Iq!uC6qblenVu}ZVS9=cyL1wjBYngBn8bMS4O3d<);z;8Fb`t}Sq3M{ zinMqD=_pW|JFv8ni9<`ja5R2s$G&kStZej+!Mt?@Zg5)ud{(+m=U#2hI)C()}-L=^NMq_La zQH(GepctPr0a{$i-+eJlSMpaTk?2a&o3OS7lcP1ag@y&*njm9^_S3)*EUW-AE@6WzxglK$suGP_jpA3tOhb4WT z?x>_cxN;GFI($Y?g+7^8pwC`Vvs*Q!?N9j;N@+V<+TOO7=J4WID>xCGQq-1qbd+xi z$aZuDlfVgh0N7@Oj*d;E``C+%ml2DBn~Imy&$5vsBSYUe7G(I~wRUqdjK*j;C&JmX zx0@pAC}bMkKWhUp+sR5i0LOMR3@aP$r0Odn+X=6wpmuU-NEGzxzn9bXQ4?t`=TNnx zzU}b?8bdp}$T7Aq(w4;=&8U?sw)B@@O+qR~db#F=C}PmS)*t*iasUm5qk-5R*vH&rav7A?%c=U5cKQ2Ia{l z(GIt2Qsxi&mGI5UV%9*pCy+_k5L?1D=oYmWh^L`(k7T2?S9y_azA(+g! z!9#Flz9p=jz}#cDmxh5)4jvNn#>@XW&W~QiWRUkTZ^kCdsFdqzu9l_l)OvuUbfoXn zurOC;t-!{?wvOcRs78dz*UQ#oK`P~Jx!U=*FAv#ou4fYCpx-oM8ClRe&Z96aqvQMr zPMei?@u#GtAZlRbbHRM zR?q3p_f+$PdF|uK>s-;EUbAmtuaVIy6>MoTb0}i$l0j6GY%(*ML}HUk@qx?i=DFD# zzthxr)o<$Z9%?Cs@Uq@%!T@SC*85KJ$#4IYAHU)d5?Hu}mECXt?#ozHJc7-`eU z_fuGy3oyv{!pU(Z&tDKv7>LO~hX>-w|6{On=KL4Q+bg5hz({xvoChb!wFWlO?ywkx zG3($ncrcE2@M%~%p$$$SwW zf+O<?eO<5{dmJ z#k-l4_@K3RGUrN^mC;USl0-XfXb0&iM8sFw1uSt~`8=cxKdxglnF1>t&14djNN>96 z;%42-csGg#J0A_kJHr{VPZ=iT_*dDJNbi6j-I4VBVdcz8$G*yLrCkoEeJq?6SK9hl z*^`J5;1M_y&%??I#64ztX%zUh;2|NeEnfDWoW!-ooRp11er2InS3iyREx1&zb=KI) z^Dd+aNttvkHsG7SB_nOXH<-k@umOC~nhm%gCSgnwzk;)5g;~6fbQB`O1_)TbP6ic8D_!pcJSH^K0kVN_)_|Y9n{|#2ooOH|vSZQze zjbPfFkVHF-y?I9KHXw=kJMjn{iN6C@P9W|vhf5p4rv(oQX#=kCEnQ&)9!q!K_pF{$ zVTg7g&G*zR^b%RQQXN$89TecQwRV`sKAx5!3Qt7GgHxs=i#h1?EhK3UdYHs`Fb9lI zeE6D8Xux#DStGXv{S=%pE8yZv(oxtncvCR|iU_1(I1`V+v8j9#RyLZ-sZ1h0!?3Qn zZ=jXE#{CwGD$qLI1n0(;J72kPABTAh`a5_Wj`aTzR?eLMLixl}KX0@O_+5Af{1(oS zYXz*YJ+{=xVphSkcr1=p@D!|^Pz4^YKpG1^rFck4V{we{K!mZ_Fx_XD6MOT0x#3b> zaT6O~h4w9L$u)NNbQ8^(l!?k>A~vKrF{dqxMw*EAnZ$T75uIYxS_jz|W+BEXy~AE` znyfgB+mMceMC?=3#3c?aEyM2kfgRh$F0iuEE_P%R=~)J`PmP`OFa;Cn6smAaTq(!* zsYzsA!4L1qx&$jHu=eQda%$j>!b3t%4GVn-BBqAZ(!KROzdv8^=&t7b^3`g-N^ka6 z^F71W8ohd~OcpoNsIbzt)?MQu&&h(KltIQ~R63Pq^0>j5hMYXEV-kszM|!;_LS;*W zHkUjCqcY}_hv2MPX%~M&Itrl%fBhn1Af^?401w2m-`oo;8~x@UUkTZ7cx?ssn`=U% zpfxdz)3u@tS-+uAE{QMiP{%2hJGuw+gO%zkrRB`Kx;-t&_hsU!NTW|fv2~s`in1A` zQqh*4Gn)brG^{h2#5m|V3zD*+HJ$BXSVq&?7EYVJ>1<3o3L^0`aneZ4uCp~BiDTDU z3M(63XA55m*>!kz1$CWiAyH7*IXqpLGa=f_wNO_2%SswTJ1ouEt;7>SE5&T-H^aUx zq{pc;iNt=B=1M$1Xsx|m46`!Y%Y|^3?Cs?&(ou+rNALocIIg@rz5qY2V>9_YtZX!s z&oYVhEUZ|GXJvdB#e$uW2ID*7jJPt6KY~vpeFuJYN7A>$%9)dnJ%YE=ej}Xr>u^?F zY3q;RlZd~DN8m{ORaiNJxW_CnjRKz*JS61pkc#g>#O;tHQZ@>M`QC!I<@+|@L>rT} z&KhH96hzR~Thc%RFHDv&iE&{R_@FhTa3svim_!bTvt-3x+=Fx!BEl#LSmLPErJ_;iXT&?uY+XT+6p+$bcGJ{do{Bk2=i<;+RPjDnT+ z4dJw}gR|mFTQ>?x#IM04a3p>eteimHW0sdjflmt_64EGa?mG}+6fR14`;abnAG16> zNMEoj45~}_|4c){8kDu(8hZphETPDFV9FF^F$I70&AYsN@CuU{52hfZ(%l@oW({Uv zgHjP^ihRaCgCsBmWd&ROA06kHL}p`(WkFsjn;7Lxp9>~-tkDtuQ#@d4N5`^};z9i95dL#0`*AGiSgh<*oH*~{d2dUhFOX8M&9B$8_tpycky`AQHaDgEFxIqxYB8yfgjhgnS26P zHk!#POd>s}5!ZvA^vehQqg@M1;)%S$xWbWU&bEpqMd-Ey_t+ zgts$^M2nE#9MVJ-Pk`23_JI+J;Yz!(C!8@W<>J<)qtI!r%dSam6h#oyJM4xB;n-hx zhLw%}vV*UL>@U2gg8IvPAyLqJ?Z2eE46Cyz*E2w$o9k1TY@bP^z`T#O+PpVgW>G~! zDWz&@B%kz6w`?S*GKq1}NG3N&t#yy9VHigDxDrm2m1pq+(ov9z&6b;yo0l7x<41OE z8DE2yjh68hUkTYVc=ZIejFUp5pq6oKx-DbVzTt9D^kgOWaY|a7kzY~h$jSX)wLQg(jQ&B1RCqNuV^+p#SZ1eM8xPB|Q@ssVHagY+eCtkjDqeR%o$8s8 zD5z6iknR&;`DM#O+4g12{oz`+7Gfjx%a$@arJOD8XCL26lI>?tCXv{FQhWog^<~S} z__ba$2=g&|O%YC*6>;&yq@%#mzHHeVg4tL4@emyQN-wNz^pzZwNbh1<`?6&#Z5sJ6 zQCOH+Fvx!qPL3;i+m|g{12OrJ;DI>uKMz*UoWJGEmaWujHSqKB8u%%kAlDj5`m$wf zFlHV67!Ss=4t@wLC)9z5IgtK>Pb?l1^5*Prz5|J(Ab;`2bp6Gorh)}*0ePF)n1v>P2vVm#Q5 z$<1MFeP&abmoeA83(k`jd2uf3C``odm1g8-Q`rbVvSU-(09H1d$|5F_p1GL8msmBk zrE&fcMHA>L4uf;z%6WEdnR+vRllCF_@f~R&2rFk!dyZTd*36hj{FC9tPlfa1N}Ru# zV2;70ei9yoBlQzt@_ovK+&kcMwbt4g z8i!Wc$|Pkm4!8RjmNX8xF^O?u9Gb({+RKYDFT*%I59i5>y!Zg=C`_8qWtw#+jw~PL zK7$|Gv8g->D;rJaF(#3^aY*1i>;Hm{!*r6sjI=A~xN&I4Z%!do@#8zv?u3;yryVm6 z&5UVh_AcSXcZBoeN?bP%%`uqNx5Hy_q`obzoIu@U)|bYCPZ1sx(m34W+pNSLhwgNZ zgZOaGV6I**th9W%=47~VtyLHH;Tj&D+lOmT^erT56jm~c@n97AhihWP*V@XZFdcE$ z$Yo%c!1=NQE}ly|s$qzIxF$9Nv#DH+N8s30E`*hhrg8z3NY6OLKU@>bn#TQJiYoBV z!#!|rT)7(`u8EDqq<$vVdc!}>mRO(WlpPrx56vnO*lWU6=3~vO>8V?6}*AR z;#dW*!^#O&;Nc3SvEWmRhlDg1!@dI%#$wZS7j<JCm2ygov(9UHoy2kP` zdzK;NR;Dw{J&E_xSg>m_QCiY!Y{MkRgVmVQ8n@PImchitD5b|Z8cviIdT~F}QJ^%s z*j?^c=w@R%5ujFHX6$ZnM8W#VkUo_(Mp#_`Wy-;&{doTC&iWYoY?b>)&NZ2 zr{e)Q@;(h#&YbsL`7ofBGL8Ao;mmJ@6XVL9zer*kgvtE|JP1eb*TKpO+&yN0X(0GS z;UOUn#FoAT5eDLwbU&#(w@hmhR?wRywV_X;Gl5n| z(YqYVL)D`wk@2Q;KGW!ApNz|wd-5a2YZlRlL`P_)G5Uyjbv0)8R0fA~J@syCcsaV%8yXObhcd;) z?vvt@@JT!sTE{sFW++BHk+xjRS92vX&J*CwS!K7l z?KDFz-}!Z&Y;N6aZD+_iALx5%}e>vPjKkt<1iX8$Ymrpa8vPe`dLQ* z^}vKbDIS*e2S+9S!8RM%4^q66j@6jN2d(*s9bsC=e6k&!B`fgaV$xBF2?>Qt%0^#V$|TaGD?Edhae-pN&PaoCADj_a#&OS(M7jq*x+CdhVCBq7$2^0T z_7}owpATonmA38~l8Ao}kHC@mxv+8qagTXEnxy$<51$r1B&1cC;X4pv6@HlRP0%U* z)ynXYWnI>9XdGB~vKCw8$Wd>7mMhi4+Nif5*xy>hqFvoOEjbVU+82a$3HLFH@o<-6 zsvNlH6yAh68MDY6aHg!Ni!YFl>J+B4XKFI`=3^B}>2>_rjveJSSlQ?(uQG}B+`=sW z_*CXgW4-Z>=s9Vy-jF2X_pwL!&aSNa9HNiFB)&c#fg|ySuyW?a=gDV}iPR4br+zS; z8CUB3ivhM#nB)(@qi`g@AFP}}-ec;Q?txDi9um?${L;5+3HLBF-Mv01445|>&V$R< zT5Dr^qd|nNOjec~4WIEXD`_D<%_PQyg_y(#txYL6!nBMj`J9RyNwnRZJp1>mY74SQ$S@v0zr-VEiD@gqC7m3~;+Xe+%;B0b9> z_MT~GOXK_%iYCxBd=p86#x&x0hZFxfoEKN( z`YYtkF__eUipStc{l~C!0(FmhUs?w~MR-U^>#(QqK!kO;I9=;7v5%H0*7NFq|D89X z{mEKt4)1xz%>d>cnsFXVff)4Sswx`XU=-Iys>ZReP%fCPr_+&+U8 zg_ScWzd+8-tEIntIQ?DV?6}fjq`3@rBxVKdh)3dB0o%dK2^HYs6r|bU(};(JG#j`1 zHZfr~o=Deh%&JxT$ZgaIs`=VLrPNy}_babnoCcS#we}jNF|-@e5Y!PU^P0tRoa|d| z(s7)~B*uf|m~D(-n}Du>85$GNrEtQmWl;Pa=_qi-hkcA8n7!u`JOszyb1|%J^qvcu zM0&nMeAvfGn@0Wt3JbefFv#BvC&!h1{KG!RKurGk;DI>uzYA8*oPX@YK1S-a8u)K` z4ZH;>$h8La5BnH{G3($>JQ&A1cmq~Wr~?lJAw3A6SUe=82U+Pm5aB`oo9=rYoy+sp za)sV~EhyGwr|+T7%UX4fqeitJRocd)GC1n<5&qYf$Y_B!bYI|Dmo`?a7jh-Kdyy~K zDpmTebab!C_b4vnpEM|}XIYD{F*K@+@Ly{o1|r5m!(gLOCNhh=_`5GI=`Q}tB*ufg zSjUtI({IrBPrN9>V`LoKWb zuZ0?%B-dJar~YKcHXySehVXzK>tPU9PN)YDiy>VKpKv@Rq)Yj;@3bde%KquPlnH&M z!ceKIc#`kJm1`}#F@4QcgsseR78CMq-?EY>R0+u+gT>SZK{J4(ooXHGiynyHocR^hbYGiJ2)*G!X$zZ;Lhk@%*tasqLWd0tutJ}r1i zNULzIZ|MrFa6r0iF(#}qcceHDE>-KyF{V~Qgsn_W7OPP9Eh}jij%5<#!Yc4VYgS@noFyyp;*O-F5NT~*#cE6(S6YSr@#8wSlYL-i zqn+%@BvQ8uR>mh$EP+ZObegz(ZBk@aNwY(Z&Icd zAdSiFF(*f5%pMc)!#ehoHDP6=mvk_R^nAiJzAnHjs{XUatkHr9RNtb5?3xU%L;Xte>DypO>HaOAxVR!-pUF~LiZz$XL` z3F#4@^_`Z4NBDZW9%1%yxp3SteMY#aQm*BDhNEu_EB6+@4wtR9<{E=zXc+hylp!dS zmBl?==38&lJ$#i(j0g8H$4r1`CGLVL8WYW(aK@~KP`r_J6gmyQOP)Cfv;W+I$Kcq1 zZikhP{&O3XNY7U+;8U}iH;w%p6jz|hcpc7;D|@~VLDERf3V02V#IXWig_Sd}fVayD zd(0PoP&Oq!!HD`6oXjbkOuhm{j5!NW*MFT$r64+-f-zU*7l z!izkft{0(I5XPg899*{6&NHTuHbmIUq-L=kAM-6MX*oW^B*uf~n8XLIO*N;(v<#bZ z8k{97@Zu2ZC`4MTAncDePR5Vx*iKG_m5p|?l1ZdzEyRLJE8`m|mOwjk9h?zY#_>lR z;us)L=jGmD{;QBfMpOS_kKJGNAA6_a^~FU z%UcnvWB;Xa_FsgPLvX5kYGV8^Ooi2!^6HLq@j3_NsI?WF(DeVHmm#_ zCS~}Df5JJk!Y;l{Itq_QC%eDNK#8Nu%hA8%M|Er?e}$EeHu7gCk)C~+%4c2+-%W2v z&qRaoyGQ~v)vkQ`7vp8@=47!Eer!j|8^Fq$Q=TE`SPSV7g_AxE&WS5&zEi#$ze)QL z{P>Qv4}_HyXnV}-(i-roz(Yb>gZq7(lduNsr@NWM#Gy)|R;#FA^SS`8RBM?vJ~XO3 z!1k$Z#;Qz07E|zf-(r%c;Im9(JeYz`F>1{hd=F-1%p2c@(`3b5yn=KTB;pHRO3m!0>l9|iNCP7>{KgXUSSf59t}`BXdvN9LWdasqRYIbPZXJ~?C#CY%zbIb&2R-z8GGbWki;EY-E7mpzwg^pN6X^z3XI4R>XICh<5 zVP&K13^0lGTt#dNotZn0|D_aLpvkxd&X6mAeF>d88nY5E#-nkpgbQKigi7$3Jmmbt zn~R5poPYN99f+8Jo=tcD=^8Fqb1U++GjgHan_sEi%YK%If|ake_8h)FUCZaHJp)dY zPxEgs5rK=imELBVd7kpcB4?h*nZ$UQd8R94*P70nKSrq;lTHUow8QDXMj2DUH29T` z6294G{sXge-JtGYu(Hu*{=uu@!2LTqHa%_Rq>;tN%NBKX4BS+_oPLc0=KgQJrE zV4DpRq^=~zhIl@%q)a2eG@SSrV@5pwd|VlX$$c|C2*=rF6IeNO?y=|NO4>B`%fi_o z4JXIi=8NXpu0J1F24eC*5)Z_Y|KYH50)G!{Al(I@Ks+R*yLiO6feCl3>ZHEb=wRKB}F$?j|4zzxB zJIvB>AGg6tvz9~g8q!e!Y2RH?hGBN2TktR(yU|UsveAvc!z9wX>earxprlT#fLAFr z?5e@2fZxLja;*T{cNdhwn04?wJQ&A1_${oQc^z23yP%{`tA+V@1lPhml4!@Zh}jL2 zzPq3d$gGFictDQzFauUjs0R;=Azccea6BZWOF7@Su!T!`K3$hGt@U*%w&3cFk?6Xv zcnw{B6_0`o*xHF2{i8mx_g~J}{EiR{UYYPLj^qg68k3IXP$n@R97$Jv=vwPJ5hiC$ zLo4B2S>YG^Nk`$*;BTG9qc{7^Fn)B$K2wF2jXqOh66yJmIee*HJY$0Q1#jzEqa*sK zdCFczp#}Pnufqv)1^l%)GTt_c=J$P*ZptRz-(Bo+gO}aM zUAsRwIG9uJd(8O>+NrF?);N4rbAhb}cTr06kYE(%FHi7qCQ2w`!0^UFjw zX3avp59T9ADBm>P22PR{ad9KkQGkf;6get!Sh)^xOZ>2o?PCe7Y_yNfnM8VQ#deA| z!o3tqpjXJj32`MH-%c@s^T+UmJ97RAteiRL*mjCG*5`$@{tTQHSJwJ=iV3_wjR)Y! z`)pV_fw#w;E^Psy5IiKLEtujv5Mc{`mF{Z-6MD@pjP9o)U|q>tW@EaAkqBFvlPo6T zSH3i)Nw}Lyj0cl2i4R(H34euYi8DvKgg?VsvH~wYLpll(v4xR8Zvk77gBP-(#eu|!v2IEB}f!SqO#_=tTl1MMWkM2l%9auSY(y=X!th5gd zr@cR%6<6B&7Dh?L_rW7@B)%uCoIu=To|jgEPYWIr(klGiw@C@B@M5};DLM!8xfO+4 zp;z5+xdB(JwbUBDquxdEe?%c8SEeV6Vfd79aY@5)CX*NshG9x;+?r>&9%g3DC)dJ> zvSKe@OgajbMi;wN*$UmfIe9gHXvfxaC9G_;mdlw$dbVLEznR}kmqz+Y3J3G@2I$ziT2gF>dQtqdpm4%w}Kw@9GaIKxD zQ5-`n5siQkfXA=QT^2*Jmv5;_L$N!P7!QVm@r#XKn{1AS`5BYV0Guvs2^5bc9R*E; zPc}L}5rDiWk;emYY&y$fWuxhIGl}%f#X5X$){>@CzmS3ov=|q_sd1&gfSF0_Fw6<( z^LQAJ>^}=DXU={-IY+Oa|DECd?|{?e%Kz=!vIlJ_W)0kqhvHZRx53H@HQ?bGr0L+3 ziHC$V9lQ7rM3|0Wr~8OwT8Ta?8SQ+WD-}*q?_I3*GqiPC>#p(PQ4I&O^Kxk@7Opah zS^UKsGz844i>i|T;=hdNc<>ip@u6$e%qB1^F;MxOthkG_Nk`!#7F5QgH#^Ha z@S{6+mbb&oMrT=%Nu=j2#DdCr#x&lCQ$&Hb;)8HrTzSXWQO3t$Qa=cf!IAn0VCBrI z$JSBCv!;+2}v<1p!;h{xebe-5v$6;loeLTV>(z6Vc`Bl8ZcE-rP+@gqADo(L;vPPj|naxf_G6i#`2I3uo<`4X6T^yazzKK$s8q_=^U z6G(f^)1}d04p2q zU{(3Fs8;u3)P1bU26h?Ih{!bK|yN8JImHEly7yjal zNBV_7F^Tcu7iOq~*PO#Tzd-4UQ%X9AIV6F(D{BE1*CZW496T<2h}UM=+K>#t|sjT$Fw zwTGU0lxQ;n5-AAa?N?Rtq#&s`^1Zz~*ifi|4Tw4OKaoyt!Lwbk1n8bMS4qc_# z(6t8h7nqe{AN~aA%8I-A6zQn;fiK62M{jnPKj24q>?|+C%0_2-kx8WIAeygnCG&p! zJ?Ob<@LrE3FkkJ;TX~HuHU^XWx_AtZ)aSy=nNyFy#udw&cBX$Iocz9UZd}P5uW`l3 zVbb3VkHeAv?yzzKeGe-j-2|UHJS3!>xYM_J2{&}!K{o~<(qJlthkF8k&XgHY>m%R ziNneTTHnAA>)1-JfR&9_aw(HY&pwE)@oj`3r%*6YZxDV2PKYbv_}2IdoFBpu?#TH8 zSUGdfv90lKtSA05nDtsD(GHJjp3VB!_zAq%zyomP{oi)+_L$$LMc@;HhlI2Ur}+*< zScG}$KC_szJXh}-;P)Jqr=@$tVO1J_JK0p?^(A$@SBtf-4ekdA5+_#$5!yLr*kgCE~n8hDe z$b4z6zd-Q>+J*Dsthln~@BQc_Fo}N-kHC@mxv+BP#OKN7SBcbr5>EX`aAsVo^M!Y| zQJCa^fJfm-{#IByfxO4mFWm#5E<7Zpd)Uc$Ai_O7m+rEw34Nu)&~UF}9NzXTv`JZO zZA@Pd7hx-tmE{)0|9ojk3-NCzF&-?$BtB?uO4%5uW!Q%eNunKBB{NA!AtGK57qG-} zA{_-sV-kDwBf=yOD(%4&_(2_8$fK~b(L#R1B+|17Q}}hcNw@3X zU~e#mB--KsOuGCdNv+UL#*^?vJ2GAyR?eL9ba@qSa^4}F^ZVhHxSqwcjQ6)J=kt5< z!#lFx3RX^F?J=KAOTZ@q4+&`rzU$kVge7=>t&WbwStzktEiN9me@Dlrr;VI6vbcEJ zqK=M%n~Imy&$5x?QAvMrCH;A0T4}4K#f~Sy8J)lEOv}VZ_XlL#E)GqqCgHBoa?P zk8^LE4HC{)c2YJMJH|4m@xGfP3cQ{0b2u-qyp_d{u`!s`e~QQ8Nd3pKa^}?IiydQG z)5!lLoc!P5+_;iA7CXkqVbcE#9)~0SKf%fg^gXPAbQ65)@Q{#h;yB-d2siQmbe~0Z z_7>>n%Yjn9t~`#|_CB;*SqrXl)Tp-^ur26hw915KxxuhCjR3p85(OoV#8M_P9*o44 z*0{Ca@?n^h7^QR(AA%EQMP1yBbQCD!jmuW(W;;0yKeS^zIRsWV+R1@TB0UQs-neX~ zOCxJ_#qqm2~`#%hmu)-lyULIPyLTR?eJv?2XG-$~5NR31|L)aAI7U>u+4P z24Qml79NBn_iw_=3EVyAd}$l_MByPJZNnD60};02U+KOhF|m|iS*ui4)9^Zt0c%m# zT5~WB(V+|F{?T`d;eT&QGg@VSvY3X~d?`rN@G6rS52m40j9P0dbMHqf8J1xdNnqZ} z3c9!k=_p7VQ`tSuCN6Pc`E+7BeqhH&G8I-f8c8RUNY5}#=ePLnly|3KuyfI%ybGKX zSIYd(wGzHLY3zs}-jVfouyW?CXUnG)cHWh6-X%CKuDs`IPbw16?*blzBlA93If1#y zEH8}$pBy|Sq*3_2?-V7B!X4=vg|(uuDl4}Zu7fMpT4s&zQEx5yuV7$7D>IYDEL`JT zQqnA3#U#dqS(p$FS#t^xz@&^h~zmSiK9xJa1VY|$2M{otZcNA zJDEg!HbLxkZ{ho2iX_k@yangOm2Z5fdpqSf@nbtuegjs{oN{cZdkg8!9|$JBm?YZa z`OPy~-|5~?dt?0gjSN+Um(4uN79p)2!}#V7Rp)|d1Ny-Z>}_=KquG(K?6Eu0He6Q_}U6mbrm zDJ%HmD$-G?H27>HV>d51&%%%G*k4YEm5uk0!RGl*9zWxh1lw^BTT&f#V_E3T~L zuT;trn8a_yBXA^s1FW1m@z^VsGG`j~m%^#P0B6RPy8cR~9EC~#IXntS@=wFc3FJMD zfb8!(APLy_K0!@;Qu(Av&^FgP(>X)N}JGiGI9d@t#! z#)3ZuwNVs7$h#7I;6XTcon2vNqwDPCD*m`Bof&NVPQ zqvKo!C(DYz_(jrDz%=;7GbMb};d~uGykoDq3|2OJ%~zR3igOHq(x{|NBmO9bgq^Jh z@!!CSaV5^@7|S3`?!U%^aO8d;teiRb`SPLZ>e#RSU@-f)kp$+*T-h(w9-S%!G5P-w zrqpoc|8H11fxm}AkRF3iARZF(%H|Z`fru-cUDNd#GkYrK6W*5W@C_|GK%GnxHZE3dJa&1RHxtMb*FZIu=OlO;U1SZK;r)$|aJ&T76d zU(J_$@*~A-=pDA=Zrb@Wdepp_8kCK}p#yd92880yOmRFoi&=V7w5g^5 z6BA>fSSr->RkE2phkbAkt>lY`k&c3`!Ed1H!)P{}Bk1q*2zu}cR@-bo+EP9SRu(zx zEEQ_?Zpzc3$kH;Vl%CgEmrv7r^0XSbkfMs)4cGcFu4tv`0yssk`1vbA_Hmd+@OeBA z$0GPFtSn}n&$N=1HvNTrRLb>Sp`5Q8tx>ChJ1NG%3b+H#k81_2ubB?Ln$0S>9goGa z3T}gy6RJR(2G_H#F=hF1iQbIrj+%-x&)`}`S(H2Yj_5V^FBW%8*MLkoG)Ld=RPUv( z{SaEc*3xTiVRIeyDbFQ+!{wfOA-buuB>J!XC9#A}W#okPHVP|l!(Bla<;?Rxp5uKJ zUcp~ne4?lI9_U%b5kz3AoqiSJf4wp&UiTkq>=7a|TrTuQ z_wXCrd8yR$dD?}@FAKGS;l937ek9+Rm@m_VBu?d^;^tIeXO0|He7E@BLi{cfzwZ&h zOWAL}F=;TjvNu0e9~jyHfAmjdt^QJF`N%X`?OdUX>-;-6iVQnwI>@*4mmp}Q9b6X(e2f<8x!b4Vz^ou zDb67s)wJ?`_hZ4Elhkhb!5t^5ond8Tl1iI%r#RI$#&sG=AmiiUWLPH$3uFFvNV7+Y z6w3Br#t-bs_gGjtbH3C0q#$~+M)}fk%9p??aiz>}a4X@P=kmq);T>6D2rFmKdWJ}r zm@+lk_lCp12hNErY`*wYjo+kw7k+$4+IParnbV#SSsRV^JbEI+A@IR?eJkr!bxx+{M2Mo|88w3GB+q6)vBXn~vGwyCHsHN51RB$_acuF6N^v zaefb!UoUz{$om2R4!j?5eaiO(qPsy`s=Lzm!xd^Ruf`6xOFgHj5EPJdJLJOIDP{6{MpO5&P1M>MG*LS8^vj` zve76`W)kULgo}OYt&DG`SOTxmZiF-9$~e9+eG=&#@S{7Dz7AH-oOEnodMoW0!f8JT zXT_DazAt?e@u%?!9Em>xD<=^5n8Bq9;M0PKgfsyk^BstIDDb0nH=*rXkt+?;D(gax zR$AxE%F4%$9!49KwchM^kNflVa4lD|tw|7nw1kC5k+Hy(Dac|9HlScJV=M|tnu0}4 zVmz1vPDKn|vj%&^RK!4~HP{2rl@)ApE7DQ8H2AckfD=cT_H9@E=#EWfCs^5NBHJ^G z^bCU7Z#JGWjdzVA3bYABa9&(_$M>6!kHNh2Gl<9FNWBOvXHGq~-)uZ<8u_nVo2i zbW0O>bXwe${(iKa;6PhK)Y01vmHIc9^bAyJeZsM;MjHFKM~~k7uZ=YJZHrhhZD8Ek zuRT)qI?qU(a@Kk^s7=Gn7bvv$43ne=+BHnlqDEdLz4nwwp-e8nU8PYduNY|@)RxjH z4R`m^>f;K<_JOtt4(95#WMQOnNW0Xkg_YtZ(hs&%a;S2A1f;ED(nG&vM;b@8GfcTg zzDUVBi`*+6exw5e0App}8qsnDLjw<6!u#@vw_^<>fa zdfReV2+4Y-yLN2;`0m=O!NEMO1nlXij!ivwBwyT;o2!G0Yd*qP1+FE2*A~AM#P3A$ zJ4yU@ir>lNcZ&F(Dt@Pl-!AbxUHr}vzca<}Eb%*A{LT@-bH(pG@w<-rU03|h7rzU{ z?|R~Qq4-@Se%~&B*B8GVu-|-fI~q7!&sf}^{?kFl9oYZhk)^}3fbs9#^QN|dadOkA zYL~_PQ~21`g}CCAH^BBG3G8N}^#Y~%CrXKOwb7WymPj-sH!p7owhSw0&US6GA{yB%!pU9=C&HC1 z|CDOvpA4>-;0JZ&dNHh=IoAo%m9Pf(fpD<*!kKUd%NMOhQJZA%!H?=l_AXdCbF!10 z_c%1V{|%@67Mu-Nx_rKEMs5;*6F;&e;WuFA%n7eew|6wSn?D+CrWTXL*qABalcQT@ zMo-=tKd2+u4PoWXxlV{~0cv263I}@xoC(*nmiOc+YLo1t_)#6n9tG2Ld63&P#Vm|RkcexF~ zkKqS(1pF|pJQjc%>D}+> z(Vhl)yKunU!ntrgeWx(M;*q3r25*fY*OBg0SUGdL)A(Zm_Q*j)+!v0x2Tq79V)2$d zdxpWEml&Ln!4K}pc^RynIp;3HnLYp3K%XBD`g3qbTtV{{wejf9etj-}bVt(Xz{;7E zZl2N6sss)6kHSI!08WT2XyuG%ODc>r`d0klj+}3Xl{4o&OPmv}r6L;aKZe781LU|_X$V4C!7h_Gnn7PWGlf8vb*6&btJnpteiR7wT`Q5TB6!pfOb?G&pGHMEz8qrC)9hAUdJ!-ZHTY4E)mKd>X;3t{EV`A%dD z7&W^0hSR+VPK7I7KG*Vfmj>Ir@WVQ?y%Sc>obB4Q8doFxRyf%=;Y7HS<#(f_CBz2T zH}Hcxa(x|E&YWu}r6_t>sIguAM6g5Nm?Xx=A&Z_Y)^r)FenHnc)F&*6jdLpw4)09MYN@wC|M0~+N|gi}5RPKYaIe)lRCyvh0F z_`w}HuY#2`=RA?U)1eW*KAiBia4K90bAQEOMKSvH)%al@*RT{!N0u)$iNs{5_(fW_ zqw7}s9kx4R4&t1UZ>`<|XUU4PcmwGuL}EL-5-f3C`CjAg_;DQ@#ci;%(I{?V5{c)M z$EmdXrM$5nT@A*sQ!IgRCcg$}#FeqWqpOYdtN76!N&g;J&YZNiqpLxC{ilLyFC>X} zSbp=2w(aO@BR(IGz>)YoSUG{X#|$n_0G}2-B%}$r$hUNb3D_gujoH>ZFke@XiQx-|~=C{!vU~HBRjUt@s>R*=WUSbDq*FdX4gr zXe@!0e*mY$+7F8+W&W(I6}rjzR{YS8jBkdOGiTft?@b!!KZav|1dn>j%BHvP zej05|)^fA&%hq4b^%m&!qBWbxX#L@mR)oy}l}X5Q<7HC{8oK}ywIp5GyO_jkTv%$} zV3t07t*0Ce6B2`!w_px{^JRrx+<|lyHVuBkrjNkvEBoOQIQEsjVP&JQ?7<|`yBV`C z|G2%LHI4hnDXKurunNwND|fz+x_ulb{S|l|j`VA=a_00G?olb%bF}w&)o6TL1za6o z0awELajk&$+2fn!v6xkGIUb8+6?_d=PN)J8V<5c+pHe&|q_^0}cOb%B{5##x@Ju~0 zS1t?T11EA};d<4My{Q@Xq)qHIrH$*!% zhbOCADba57dk0r(ZKzae%h+ni4d?SG(Ae4#Q$5#18^&9|egNgWc6@Fqw=&WprZ zwxb4y%XAL5XLxj_Sz+gL?6&RHXZUT~Y2vp_{7x6YGsN#q@jFZW&KAFO#P3}3J5T(s zBYxKvzw^cK0`a>Z`-N{0|BrX~)Gh%hL|s`kfA6Evu^H63?AwMUu*+oYBwYLlr9+uh z8~im=HkXK_%IEG|;zxC~c}rkr!{((;Hd<9d^Q6YMH=Jz_&V?&mzU-36ZJPLx;m38P z`w>_ z;tHBSz>5WMa{eBEa7WJHg_SesJR!3C8sI;K1AZCKgezb^6SIpHkvusQzla~zk?ixZ za^_^a;ul~V;dP%4_F8jEVr;w?@73|>&2xAbeso9D(_!VzNl)UJ#v0?j!Wr)l=fd?Y z=AKJj(i`XTF8FaB>Fx+CXHK_M+^*2@R>SdD;AFVs<*$o3@3R><;=-WWOwy6w7(2T`wKV~u4u*PEbL~a z!S-kPVIA521Xj+RZKt@=s?q&tINiU)$#A7BHt`U5hz-7f#SiSr_s_6$=6olz+rt{& zcRd$un>Qkfv9ZnK++}yQ4YnKLhjnDT2v*LV?d0YI2@UUI;dl>$v*CL3@~?F?BR8*z z4#bb_NO*r(Idj4jqQ^uU-BZKqo&;yYl`i*G?BSMi?w)`j)sgJ+uyW>PJH>-L4eqzX z;eHcNhAUh??>3(}8hpQjAJ~!a6|i#Vd?z=brfPs64+s1RoDEmNyf-%^H+%C#_>mn6 zKL9Hy5cXKbB^QG6#X%ktav|6=zDtzELa?q0slLL$7ClN@p{y&P|2*mqt<}}o&bF4M zlv|arS{Ie`KUu=UQ65=amVwQq5Has5ibXC1o6RH=mw~0Xq?qlYp!J9yVFY4)a^d)P zaEh!Hi;GD|!O>hn5S5KMs(fy-Eq+wT{;)NyZ1jhvz7n!O@Tv*w4>Lld7+zj{Hr@U( zai2V`cg~fR7I7kt0bAi>Ew08ATZ^!)5$zW-D1~V03oCtdEBnGQlSu3fi;H8kJakuE zCd9C9D>}s=Ey#EV6-l7ckdvoxmC@P9ONrf ztL3Zp?%MFsP^DV0(Wr(>xgJ_&=bM_IT+cwhyRV$E?AC!#w9u+se0HN;sSXAz#rNB? zFN}1FsreQ|cYW1R1Z{uMeD@4jtMrao_i|c)n5TuiwR&}=v9qUGZ@w=#T%x6;)&;f> z!^#)Rm7!X9HJ_`}*KGO;`<|Ymw3K>>qv{Ek;mdukuhP4WYh|HUPg-*7@bC9khO32q zwL4$#sr1rtKI)m3zTt9D^tM3r{L0fx?fi;DPrla8R&9%7`dFwuU0(7NIN<=kdF;>C z2l7;)zFm(0``u+)>VB~282j_}?xX0lsFm9XgA;Y?~O_U3!4 z`9bP@;ZlWiOUk;2ABal4BHTFCvk;o2Tal|4a?49}TE|l6JA)ReIYh3)>H}!ik|Eb=eue5i#&bH&i^Ei#>d`}Q_Ay5-&2LDRgUkD zoN)K?)!Yy*?NrLt_v$x_vpzUP9*kgGxBGH|$zKKZy;>1f&|6qhh^`X6`w1^5`s}U$ zr665LQVapsPrm~ob|)c4-)38{Fc%_TxAeWnC6y9g%=u4mBq02Ph{U&@MMA@aL*&bR zFNa8>X&QV>u3n{EJ|$`xLs#M>_8qw$61QS7H#8D^rTD9Ki#^&2@@wMvQt^A4_`O{GULk(JE`F~R zzuyqQSBc-N#qT%8?=|B0TJifW@q3;4yfenkeex>~L^smu#x71!KpVE4!qdgVg|F`Hwv*C)EFAi!(ZW2BYKe8j?GOV0A z;VDs`*h5hb@fG2SFNM?LiddY*&CpH8m*9tXWPCBKoH^rZ{F;M3f7d8K5Kj4CI3cc- z`K#rz;7!i=;0Jf)d>5>oIp_H~`@#Z^`G3QizXd19mH9%p>0iP?O#W};fjIJi16IzQ z|K#R65Doa|F9aL1#UwE{hK$eF&B#r{8{(tUOML$JSG6#LoyP{s}lM9>ilKFo~anN8m{OvHCnHI^c^ za@qZ3co2@vPi7$nfGbcX1m9J<)wuZYe9Cr_#5?9=_ zSPxgiH(4KpAKsDmGFW*Wv5r>FYpl-?XZ<-iC7!I=qJN{4pNk*fk@Y#Sa^|cj<=LwZ z8sr~^L;eAr3s=Z|yEh)Uc_!bAAJ>uY&9HLjbZ4k9o@kW+7*6>WI47=@XS24g#&6Po z2|vCg?H6F>%xQ1p^m>q11Pgu_?8(<5iLvqIoADxWdh5yP^K~ zT9>q%ce}Le*eAR?_Jot=+9KYqR>$fGX7-NV@W34FV`o@7^ZJ;?U#-*d*TeB22j{{S zKlcIRl|tj}FXP8`q% z7bLyesv*BO9Qi$Pc3hD!Vl6#sBxVKNg-7C80e8a6nODH%=9|bG@wdW>zX@lT3sPi?;5DPbTc|AX;B9QhvrD`(Dsa&z+q4frR*fu90r!xcF1 z<;}=V!XL+v>_~VOteiRF1%)m(3unibIQMHwBQY!BYCICh3b+zh z&b$I%$8*nCk=g1IQnDY1i7N$Kr~ML~6<6APy`w$?llTjG1dha?gOxKUK3C)`zQ>>jeVyM2JM}pv zF*Z(}uUxkb!sI>^55kdq7p$B)_nDNk_;!#Q^F70v?*=Eu^+e}ysAvN)dGCw|;K+Li zSUGdv6AH9Pr3U%9aL8pi6Rwc?$DN|6O|r-0M|C7S04rxsmi#y098IHpNjTk$;cU3l zZTfGqt(!=qe9P!U{K$@kFMyTD0b#M@tw#8saKd-N*#HSQ_v$qW--#dDk?VCBroFHGKu zUE_aBIRB5s`EljHKI5M}7PAUg;juVY!3tP8^D5|SZh9YWov(4fHk|v_a7J9Y^O-#! zy-E5?{OFFPFNc*gCq1>9t8%Z#`LS@$55xIzNE|C*GgvwE^Lw`D4P#FN3q< z+S~aPF?|Fk@uTqw9El$ZD`!r8GRqg;x6(+T8&3KhI2*2{`Tf*p@FP1CJ{?xh zoN!l^r{c{%OFhd&*4Eha(^0D&Yb(~C}qk=Vl?V=UJW+tGf84>j5=R^Yz)C<-i3$Y$b1T{ zoH=vm)Z*Xr(U9*Jj(lf0E3PNHbZYStn8bI$BXA`Cepoqk;_NI}zPO|zFNY&P7EX&R za(R|3Lok^S;2}6N&%?@@GoKf=Mg7BA8up9Bv0n&h#uYn%o?;t?N&W&n3PU26M2;14JFJ{}MNEq-LVS2mga1Z2 z{MX@xxWeb(M2Q7&a()dzxFhFRVdcy@Ph|aGBfQ}sgB|?(Br!G)elkD3*;jH!`sCWS zh4^6|+0KWRGiN(p`4+Io_~3BH2f!(DJ&XB%yGr=xdAuKfct_TI!^)Yno+^?>A8gh@ ze>@!YDmWjmpv4nX`LSu^j9!5s+mUh&R?eJqr}(6{hWP4m#8<+}a7E1b#BY8J+~9jT zeqcwwUxSr1=er>3i{~2fhr@wC2xrF?xOgVYHwdk@9`NxO*K1}UzaNjpu>yVtD`#E- zUGzQn!irV=GF+p+=AVLXSqDjsjVX{OjTtY^`-|8%>X?ZMJ*S%^6EwP54j zMG|9Uy!qp8eFP@)DR=~q#3#YZnG;{g^X0Joc;|5TJHYvIJ=OUOM9E_@tKj{3ERI$1 zURXKvDwxAFx0)r$$A;4%fb-%?e;xKD#2kZ3J&(uWNPRi1oH_LwJYxxqR4)uCegT{l zSK|CN6E%L5_UG~AJJS9vteiRRb!4`Z7pmSF4*d=|HLlPX#7^_5Xk)`L+24+b;mH0r zSUGd{b2LW=Yj_-v^oL;O%;~?gNk4h1r`80n46lUC;XJuk z!X`>3B#+6gim%}@IabA2VCBrKVmhx1`vTSn!wcYkI3=zH!0+BF;hU^~g&*FL_1&;? z=B&F`STUFz(z^K; z;e6ps#v zdnB9;*VC6jPnCg-B+A9;hvSEKB>X{GIdj5O4yopQ3bnk!_^fcor^D%RWz1hEiHB}b zJ`F#(BjuA}M@%9y(Tj^u^t2F&+zS%li<6P+* z(W~KwKGNK;O`4VJNaN5pX;lmT1FZntMPy|ZVQ9(rBQrhWfNZtsEJN&<<9p5wI?Xcr};uHFB__lXIlf zES^wfUaC;-grXvmEtj@OrVXu`qM_EjZ{YbrD!JZXYS3-q)s&*JLVXW~RiL*TxD#!c zSh>;$%h-%8nu*#K7;|@_eS0vsvM@MIXK%0&HAp5D+H3hIL`ti|ON&}$H-8~0d~gKA|sx=;=^Hnl=O8Gumk?A}OtDDAj4QadiX-Vb#&HM*9n(pegM zYSo69*Q>c6iYPS2?2b=pius+I(9)w34V@5P!SyQL_zl0JVlvGus(f)vemC`?;wy9) z_so%lihmHluZrJ4ir+tp-`B+NpT+NA#P93k_pjpjZ{qh2@%wl2`w#K^ruhAT)V&Fu zTt(IXKR_~*NhT`^frLQVB!CP{*jIrddsqU<7Me~^C)1st?xDLU3yTQIA~cFJ_~HwH zQFuX75CjE9P=pu67X$@C5fl*=!39N86oG%;s_L$LtLo02r)uWj`SJNk1vB&1sq;Pe z)VX!**8P`k|1H~hWcwf4zAM}JWc$8s+ujuRt|QxZWxJki$H{iQY};kqA=?SE?Ue0A z*-nyemux4?c8YAL%66J;r^|MRY}c3VOxezo?FO=)E!z!cyOC_?$ab!5Hjs1TI^MCV4x4&d~*`u4dhcgb( zW_DrX)(1fRq0M;q7(m+^a5=NQw#?zN)2h}ZkxQAxNNf#whIu3M1g9~9Z}bYDT^NsY zF2Xw{K2f{?RyLj}Ce5`y%hoO7`y1F5RJ7vgL2kCm_C>r~BHI^W<OgYz|gVooq)yR-b7<=a2TYuq&u&~#+rZ(hTP;GGjWFM^d*=RB?HDzVv8Lw%M%>eaAMsHnv`GEw_Y+I75t zBJDF_<eRcM9;@g_eg4#+ z_D^7cP-%t0p2;0^H#8O>YUqymoPNI zr}_gv3HAi_f);Be{M8YI>u?6!-SBRSY!|}Hsk0r=-hkD}7W~OBhaEvBD{86W zwOxa24)2u6^$b{f3~*heADZ=9f38=-jsUr`x8n@1SK^%#xn2P)r_QxKcu!orU?1`a z`vB|-Dp*k?^S9d#viIY?63N~RE2mDjgTK44q5X?L+CRarprVztEI)FsOjtQ}wo}5VTxf_7_eXpP>=Eka zD^4N}TW`+2i}2owqz{0VQzzXXoIs)xUhPk~4ts)1Sj@fr+!W&)J`?YiNVW_sj|H+7 z{nds4@hAI5*b^vOc9xAn_VakJM6%by%Bhnb&ra&mF4>>>gM9*a1Qo2fzYUHTGPpj5 zcS_{?D6E`1*G_rnk;e8tf41+y&Y-dtE6UANpA5cl;~f+Ez6C3%&Ub3$Oe>A@c5i!E z&I_2t=v2<)EdPl4=C!;P-aV1^=CE?=tlNVF$27zz`6E67_5}4p7IhUrCe65tkHdQ< zl06z$PMz$;<{@wz-HZI`UI2T8N>_Xpy=l35?VgACOeA~`teiUG4t_YFhWAc?ytl)y zpyCxP8{$ks4EgXZr%|3Y2Yd(4)cjIlNmU+h<|r)Y(oD z$5?7`yZ+@}SamXq(J8FN6MK35ra`wI@0Un-Jy{3`cb+TRR3|@`z zRsMXhg#AI~E8aO#wwu@Q6?or7%9p{)sZ$=$&a~C=KH!h{e%KLIyfQDdBb|+__g=hH zBG-Fh<z_I@@-30qDD_4)I632=)Z^vX%8za3H;rkq^LoC6e6_R!*Jl zBt}*ox36X8x>Xaul%FQoSXxH)+{+J(w9YVz{-q#HoZ(hxh;++#YKMX669nS1y z4;trp{5ii3JH(AMGv4I<7T!6L^P8}8>YRhD&97(U_4@_yco)@MF^SPBs#{rG+HO+b z9PgV*c~e+9b;_-*ZJx4lfbDDay}APPMve7{1}p!u`lpvd>-r! zDr2z^tN9ft=|Xji#yNP$M80cbtH$DPS!8<1MeF;`hoo{>aeO(Ri?03EE=b21mbn0jEq?msd*dRL{@0Cb) z3ap$u*)H|XV~y`3f4&F6{-9pGVm(^fZszCx@V<$Z_lA{Ir#z|kHEIp=nf{Q=usf)b zMfKb=-DJEH@0!TC7gkQ4aR>iQxW@PM{(P^6T|wn5c4~>Qn;TjB8oXN~+pA&a)Y-NN z-)`5?KIV`1QP>kyv||3{Uz|6{K8*KDB>Nz&oI2U@<_8Gh_6PeG>@)#g{W>w#!bDTffqhU`_ zFIkz3nbl?mbtK*^k?dixa_VF!)Xp5pR`pN)p6Ac@9M~6Bw&JZ&VYf+lE#5DY?kZS0 zb-EL41Iy~wY)-#+Z}sPU3+xRlU$MH}wA>_oGu|_i@Qtu?>V(IepM`zSAMUfTBdBmi zEoJ>G?9+IsM6N%El~d>1&RnE_IJEtJ?^%{~p;6mXQ0; z(r#=Q`lH$Ei{X3M$W3j3?R{9r?@S#YyW zw%g;~64`DGE2nnz_+(4selC%9vtnRb@y7AYjzbS`Yuo1h!C(|OFuQv1 zF5bu*HkhMg{$fFKNzC6APm24Co0(*za}oQl{QUab{`}xYgF%nN5s$->Y7Mi-jy;uJ zZHMJ7ZPW`DHiPU?ShY6zU$^?dx`Y4hVOC_g6_Gim_il+uZ7%qsYoMIgLi7lih;{OU z;`6zd`=#F{g>MBxviVP0xX^>FxDEUHrGpC^huD148u*Z2>CV@HM_Pp=;bJ-R<8^;4)U-omn~-kvj!U<_EG80 z=T>IeS?XCPwAe?eRH@~elU8L*g`Ot6V>|?V^2@UWrFte;>FY1$*EA&$9RW!hrar@M zTE{)twC%_du#MHSO}V2+KyDzU_aPrWaUmV-E0JN}{biSsk15Lw<>ldn@Av&%}Ysm*7`WpbfQ+h@jQO3@kD6J?0pQ*E&uLbjyNQ^$&sFr6b-#**<%qU@5dAvj?Hu0bi+eH$AO1f3r??mU)8gXZ z{NMX-@*Lfd`aYG<_@+j5x4N*uud9T3@Ao3o7l~dZB(&*TOZ*JNr}KVbmy#{b5bZO~N0D%BgdoZC(G=$bZ|P{N1o?sO0Bx^44LP?C-+OAhN#$R!*J$ z)TYz;YNf{fcmB*@hFwBsF20xtDjksk5HdbXI5~StGvwy56PvG$t`R zrMbxOmO+@@C*wvCxle?ZQ|G>Z(`BudevSHv{HgB?yM=n4ZxG4tts$7q_rgseGT$9m zPM!J8CUf;5MuXnx54{Ncg$jLk1iBi7Nqq%w1Ce?UteiUa4%;mL-~OQg3w8w+wAec? z9+gV>sqLJDc(+8hpN5rFXWPY{#J6y1SMm@10sk-T4=P}B;*7H0yn?@v_f4eyU06AF z${l=zod)>t{(%1qyMhW>T)|>rpm7EN8Sj?J_7AXf>TKu6?tIjEZ?>Ly6}}0R7@aD7 z6FxP^4#m8_=i;UiV_-vAIrSKr*K!=&FQe^$)uLc=CFp=9{elgLhA4{V!NKb=EW3+ZvHK z;xybl_~ZT{lNg=4U2J30M_>})2DgAn`~$FZ>cpopf5ks7InAH<$*@nTm-qU-Fpt`A z(moOIpGbQNteiUS^_jP#uZd|F_$T~dFo(4s zDrvay_Q!n}>=7z%@k&A1dXw}Wc<)5gx53J(lb+6eHN-0gFZ;v(HS82BZ1GBgHUN|N zFL48iyng{Jr_OsSbC-H@s9oCA#(P)hlbOWmlxp%WENs5XdLrIEk#z^GoIdO3`=P;0 zBsGoozW%KDf?YzrvIXmi`6lb#@$QMNcY&2tXT4FxS?Yyyje60a`U==NRO%b^;yh*` zCjTDX5F-C9teiUk$)R`uHRk{2&wLPe2$i|mjvg}Jf$zY|smH+jVaM4vH~rP0{hwjCP}z$+a$^W4^FQDw z5SjlTR!*JyMq!7=FTQQk?p?vpWfG%P!HfAlW*{d24RJ$={Aa<+sq>#5c3a%i%n|9DAr+^><`AxAhJIYR!*J$hGD10-n_5zhd%)Oh6;Z!FYWE)FzHuuJBaiv zuyX43XIYMV(rUe%{L$Y4JBEs0?3b_%!sLEEZUmA0b+B^k+~-BljvDF_>r?*xpM)Jm z>mLq!p@;y z|KhGMW*{d2CAc9({>Q+|sq>!`bz5xhf3bf6TnKxI8UXWn?H@N1GXg$_TSAP0b7AGw zBVcmqtWT}#zsn!`9k4^F(8aob$as_UZFuKI&R>C*Q|G+?B5~aELE_s2i-P;5$oEBl z?N9rcuv@6KMU7`0f^@8Uef1Z(5k%@ggOyXK-X&dT;+{OgyQrJUBu1yG6T7S;wi}!~ z@ZO1>$HB^}bDl1J_2J;FCMN8?{9*47JB4~}i{~}w01V>0;3g1>?*uESPJF6#*kNT0 z?-l;MdtjGPd5c|jy7>m}EN%di_UW*4>a?dxcb&lQ(9Fww&>#1wVV_WOi#H$)`wiZo z#4RB5z8qGL;qCAhI`ttt@rg4B3H2enhxozo4u`D=R7$ zs?=BSe#9kWzj~M43I7|~eW2YB{sRUjuOszF{NG@wSy>l*9_?E3M8$s@a}GzRbSw7XD=L zO>7icoLYm7{K?=IEh{1+X-R@NxcXNm!Rxt1!bxyJW05Tjwgzs?gss2q&h}*cGPQcX zKjtfZt)C>w4D_?_6z2yU*6+pIG-gN^+?#u&)Ne7UgI!_dQP z{uui}U@gaDI@28Leja8OvpGMfm$H4!T9#P9t=6==HuUgH*(!U*OwzM{_me18>8}_1 z3TLtTwW((P^dwQOR%!LxiPxDSSb{e0s9xn`@h>F4 z!E_>7yD^17R&AMX))BAZT@&kwmtbY1j!2sEWbP<&C2EvsPxPidlSyDV4c3{wXi^r> zQA5U?oTuZR6FEY;W!Mu`)}1_w2UeS8SK_@A$@ap^sgvEPS=?x4rw04;{;;owokN8!cEZIB#N>Ys zZU~Y8)v$8v{KvC91da7${;VH`9YJM1fnV6cZH;uD+5z)0-YJpmgRpYyTqlQa+%&## z`}2JZb_kWPsLMjeo1EXoJ125}16CdjoLl$R8t1JhdDq{YGl|ixzr%|H#`U}@-Z_!; z#;|hgoM-6E9vbZ9{9zvrdxd&Yi@gx~2+S+{NZbM<@xx%{)QL}xEKO;+&-2H94(t*t zZgI*`#C((WTD*HA>s7FF>a3?l*A6wxJ@)$dk7}z>#VVvqrb=k%wjLK~35a zS;4hDcl*6-kf`TwzvU8%KXv+O*vIBdfyMqUHC^nHipsLpJ3j z@qZlhZx-c|i>c8i9*4+qlDSjebZ?AzOib(>!OBKrPnvHBzi2eNNBh$~5_W|(trktX z;`1uvS~u7phIdP3`(ao)b+%K&8BIfcjz8kHut%tf#Y;tD>&^0P72Z3MbPZNcopgIJ zYiWdU@h5yU>*Tyw`Bi<{K>=$6=7_tskvnsqrS>_<23h&>z7KgI%o}6sq z-FZ-@T&rjGO>e)4Bh(sR3ROJQ3`{ntX7EmlR8NDI)2GTl z4j7^O8Govug57{o4NNwuHtD~=1$Ix}CmsQCviZKTXRdT=RS`x~V`zOi1XVQLT@IF^GLf?ZU)EZum?QKh= zmZfg~W>al2QsG&O?RQ*5L>1d_bBQ5}?dNlCZQGnb7eXzy)?cZycT%jY+$1Y@_OfE<5wc>TmlX>mR#;!8Ao(IAUr^8V6iVz>A7+#FZ4pc> zM9GbIPrkq2ySh-zvu|>iR|UMR4_1b?s;64%uMDu~GH$_ADwNrSmBGe`oIEd>HhmFbcTC@Lq`p+=pRhqkv1A?1aEaJL#MM&tU`cWV;sjg|&bxnrtWWMG|4RdGoaj z@0Uoo1}mpdcZTqis$#Tj_!fW8H^W|`au(YP^%0oFZ^SJi68{3MoH}uSJ@2ev&(HdE zej4@#m9x5@S>0u1>mTF&66yX3R!*HRzn;VQ1KRbx-c;|r-NqzF;(3Lcx7GC=9)U^x zU6@OQNc`Wha_YqS^}JBOo_F-;y#1(gR@XDT<20`4ZSj7Ibhn0;Q>V+X=kT4ic0Dik z=X?t66>8pA*K>FTCh?Ep77&Ra4=blme1o8#(bqsU>X-RbzXbLSmHI}l>RTU$N&e%w z6-4sq!^)|X-!MYHwPK~QzsH~bH(=jT*^5`~?c*@%e;v1jNdIfFa_aPF=qrpG_gDP6 zzXW@Q%3Wl7eFP@)U*Q%Ii9Zi3r%t?6t_5qLr%&@P(Wfwp(J9fzqtE6dwsfJ|4L%9) zn8;okij{RcTVKI3|3B^^9HsjUK;Rg{DEH$dxi>J)Z?~MnDg^za4U%9KLsnN zPJTRlKB<9z*dO$Rup_9T?09 z*fQN@{71ZNBIDO!<a1coLTwVvk~Cua6A3LVrHYMqV=N>meV7{bj{l>|;6+HVx_u{n@w$ z#Eh~ARyH!q0GCMct1$;utJ$@D=V>_XwOQqB%qq_vGGB##L**{kY3<`M=aVnvb`a^` z1S_Xbf8&EH<$9KF!>kS$0nhtKz|Ud-P$OVdURT7A#f*Yya9fB`@D!{Z69o<>fvPIR zl;R+vs)`d_2O_JAXOexbp?Rir8~+kQTk9D7=!*_>W}u188iV$Iy3IpdhxvFw%%RPZ z$;?t{%x0!zWw{J2RcOrQ60wCwg0qg@2imN&FAPhLSXCQ)!A`UCE^fngB7o$#%IxDX z^UdzK9mIUI3#@G9o1I)GRK5|B<&|%y`&hxYhkrBSlM9ycL!tCT!_Hx&z$ztcz>!Zb z5J#Z|Rz$+nl0VkE`d8(TRa_!Ae~ivI%N8^au)UDc8o2F!s@7iyM~C%g*9>}V6xhod z_T$5vVKA&6t9$cR_F~n69-}E&%IsS)m6%s%TB9D?6k$i`wU93`ticyuz9`!pWP77* z|A)8mYa3UwUrX|}jR}IaHi>+bS%F=U#w2nlABg{p8<#Vk$W_`9k0@n~%6`=Y=-csr ziIc{yu(B~}q(Zk)*699*4aAe~i?A=O8M`;0#_cB8fKfMYH*kp|Zrl=k!eoEL z=P{Urye8C2&!e!HtSF23FdbWwE@2so;$ggBVxo8uRyGpF_qarI>v~hdPhqr~{%vN9 zXQ}=c>=7zsajtCGdb6B+6Yrf!`VCk)b<#8Rr!5-ot!8@D-keE{MB#2;(c($5J_3{Y zrnm(};v2)tF~l8aa8(3|X~9846#>_~hOR6E{*dgd?Rrb{^+*NK1IMW~r8Ks+t?F4$ zzN)eQBh!mzr8est9BRTpol6Wc;U{?P6&tdBL9*UGP%fMqd}g{-iaCO4_}|S{27=Rr z8~fS-4FBte@+x*18e5jNo`5v`@AGfP)WV;2xRkj*SWW$eY%i1T<-CPgQO{<-mgFjG zmtvx&^lOrd@%kisWqk(xr!Q7`C5#!-Av|J<9!p8`Db8dBbg^nd8+i3xOz0u zkFxQ2f_@lwi8ZYjP0-?dToLn4)(_&{6Ip)`R!*JuH0dmv>NMDI`NMt__6ZfX_#Ri( zev|eac>hG&e}t7&r`^1=#l)n+-h7t#mAxsG7>TNUm@8Y(tJ0n7nb^j7_e9nk!OAhL z9qMUSl8eI4K|+<}r@98MEXn64TatGL-^Xohp5z!_oy)?}YRxN+58FyZ;%2Sz$9p3c zhox>m-8F(#-F_;U7@}@ZY@u$5Z!Uiv<|3~YwOV&R>?$kTVn5S~U}+G(x%^SQb7BrT z8&)=Q$Qmw@+>+h;V$mxU=h~d{b!L!fHTX5yEmYbY@Uq_+f>|Sc6*qy%{L8R%>da@W zrLTDIzw+n)JnR}O_c_{*@6a$z_CLqXAhLf3R*qrsFyX73K};GB5~^l6$#o#IX1Frh zXL(x>l-bfuTc*}qS>2XdK2XlFZQs>we}BHpUn|Sy+cJHXp6KU|=52r`GHWz8PPUd4 zdG-=Twq#rAl1G5E#V%$uH0V}>`yr~LfHkXL4Fp`^i zwjACc+D!Bz7@!=zsyp_D9cYb#;s=>d1Xg2fxd1gRV`-DRrP&L&iI|>thn0==w2P~R zN>3u2}GcC-DXJwoJCn-f|6YG$M~2&SQhY3My+1Hmqmf6K`v@Pn<_W z*^+n8arM8-J8QYb7|1(Af1dsZ7>403luqqpTo+A1>+e>U5BaupWwv{xNrS^hNwva?zDj|83&&fi z>77G7T^+c&zcj!eZjXc#8(%s6oO=9h@tnF{wjHvaAlpvaPL%B=*>=fxvTUdD7Jjb% zwz#$vThD9{u1f8OVoPQ^mOhQielsS4-I3WR`@b-EL^7)Us0+^}vR8G>unFEPaf+V{ zD;raM(qt#KGNp$1Sbw~WVRumRiX*UErkkr)N8nu(86OHOr_Q)bO<@}3kNQJC8}W}%$utTVrYx_=J^k-oI2S~d4HtA-Ps@R4xBH=q=b+UGCj@ zAmN9j!RDiCr8Iwesj_;0r9b*a<83%tt&!H)-M02>d7_aM#$*CxGJ!FXML5f2jkjFG zMm^SelS?H2SmS7$OZ4&Eo=WIH)1B+<&lH%ejvHaca)rGdXZ-}aZUV{7<&|otRH^h2 zHjWuFLkr6@`BLz{*pd;GtXJ1&@@sPWem3}#Q(fI#DCNcQLq~mWypdS+pC{W*WV@+s z=gW38-olIeQ`xU2`Lfys5sBJ_w~$%kxvaklF zwy?4>-6c(TlJFAC3L4-u*jQWuUp=mEownegqS_I*6!wdC!YP`h#R`9G3}*Fu3f?sl z_D5jl)L~C-W^0Z06^^V!h%bY^K}9U?PnwpSgfGE+CKCQQteiUGPC0jKfbaDOd=Kml zDqyj~(46#*bo~vyVG4{x6;R@fy}aj<;(Ncn4^72V_7~B zoGfHLah?48(xKKv=t&~%3&b_%4(3%4jmipdjlO)XcSSYW;d-z$-7?FktJr}};)?l@ zvreU)&-4bXeb!@}NN!~kYzfkxZSeb&t-DCQ(u#HWk<_aN7NuUl&-R3%eEogD`fjg-ok6BMfPinuAz!KSS#l5 zWLCH=v4x8H+xbBJ*HD)+ok;D}`fLKP9gLguTk(F0h5RkBvQfwOFORfRF${+BRus^7P#TBeU>oXGhVSUGjhU23sW!#rnW?^1d;lNg;+T4ZTuyGeN_-Zzo*bXYlc%I(2o zu*UZgf4+-gPf#yo@zNPz!Zz~s0eG)Ovirfxsgs=)_=qnXYIy7Zc+Z60LB%V!hqX*M zuii4=HIea3SUGjZ6Pr&_G{j%@NBnu%8&t$%dsx$Qlkl~8&qTu4z{+EQuzbd)5q`p- z@MEwyK*G(Zb4H$i6z`cx_+eN%eZtKrkQ(84{0YAedjlifwA{Rg-@bJ`JN?t_J!&)dwV1NWy06}Ill^fgvwcbB|@{_xT0Ud`zNw~ z3096_?eMOmdfidH3g;l9UUxj)bxW{(-SL8CKcv~dD8Gum!VwA7Z8k-32&_@o*xvT0 zkL6{@9$`XcyT0XB#}6>Gu$v4SBI;GgEx5$kc-2vi+V-NO_?zx*EyJ9ZVgD8L#u7zA zu1<52BW*l}70I!asH>S=HrJc)$@Jy>GL^Eh$@^U zuf}EB28SSm_-hfh7B}lVU&9)?qMyC)Rm)^oWecV3vJxX_Js)dWonH2RD|W_Ia6F^* zTV_?ZS`d=fcj|_fED!W$a?HG3r5e18<`x!#2pc2&ee1_gNJdzk?RL$vPZH+x<$7kI zrd@MxKJTv~MoG*6EkB_1j`3rEoOxPcYhFOr&Y`mkRaFa`q9I3VRLM z`u6PbIuQ-)d(Bi0mMvKF4BjZVz9TuTOt7*kQ>EL5Td&l!rAXp-)G-o(8*lLiM?H3q zaLRJ>YmlK_BBIBQn0~c|UMD?@6%N7cq>E*Hv}})&?Xj{wPPR*Ad%SE*s%JwwbE|u-+vdzf$4B2L7yG*t@+4jgbFWcp^UBO%UHPa8VUrX{e(=Js5 zX*bQEWR`fojd(d9jQ^{qdoZ0y?b;AG&B}K3rukC5Z{m&AMX<7QBb7AesmxQVPSrqv zhmFS*^tWJ_Snp?wCg>UbrHF|6ChKqF-4j{g2`i`0dZU=z361*i{i**Jb`F*L#+-W0 zKurF>!3`nue-Tzro&U7x#IIqWHQ)PUpTQ)sRRSt@u|yWN-=sYi@1ID!3sz2@_IOsh zYKRZ?N4!7m2r6Rnk{dJHuDUs`*uyX2LCo&iDMHCHg#UE}7_68NM*jV4R+$3DU zdnOWI4lAclc;onGE{*wh{>(oI`-jSWQ$AJ4kHw6F&*HWaqu?r7IrS*mq~$rw(xes# zKlG1-M_><8<6yIB99TwUM#4k5HN;4G09H;t66VG(C~INx5C1Uu8|)rx7;M7BAa*Eb z4EzN*g%|^Wf|XN`ff@QU01f>Xn|W97^O?lxRPVC{dVLX7I#q2doQGRLBt8dLPM!F? zA)eM~@Q?9_e-!K>>UBS#!yjTW=9PaqZVWLF4uO?ZkAta^M{FATbN$Jm1-pbwUaZhX z%r{xD#=9r7uEWZyv!2*|5~^YTia+Kr!QP-^7WZ~d%T2=ngZE4%{6$zfb;7d)KN-)e zHQYb*$Nf{-HB{Vlcs{od!({&x+zcZ7Ct&5&*>4oHwLqgkZgcNaZXG5uI;EUge~%f6 z$^Si=67`GB@4(8b^Pe}wUJxw?cJhyb?oo>YQPB-C7&8vG!;K;4fd#N~>TxjB+`yyZ zKiwbysjy$D6Toaf0hnVjsh@<~K%{;GteiUa4FZqpo2@kNm-}7|_=+yEvMM4*$+8lt% zy9+mf$h#9(PM!Cp)}COE^#1;&_krC(y{yGy94*sL#(Uyj6B+LYE2qwQhQ4iELtXMm zU4XqpMJ?uQeFP@)<+uez;yGA(3=r3zO=-kG=TH2zuvb9h+6YYISK$^AiC+mTr%rqW z+p7>7^+)`vKLmS*N?qKI*+yZKe*m|FNdA6UId$?I3ZLosup0Zn`Lq8E>>Dckxx8?* zkHe(@C)^Gq{nugT)ag&xUNq9M&)?F!UZ2M#Mzdbm24M1@gBw8PJsVa|o%iHL;+^M3 z=BxHc`LjM8b_n$n7thY4#!F|a{W6E(-4jVKf|XMzJ>i&YWqF~*zCRm2_~R^p$g5#r zP$7#a=PkPpzID83BHuG%y!i30cla?bt?sg3kb>zogTq5x!KdkRYi&5K-{1AWBy{u5qR@Y{7 z?31{)3_Adz%DxdEbNI)wTAGNPLG1g{)mmONDD+%n0^eFZjVsHuw)_(O|=R@|BC2aPuzk$ojJVF}3rMR*G=5JS5tnSTM*{N@Mgh>gG19w65 zx49>{#y;>M`l|!wd`5hGx`D$KzaAJ83hxg)S`m^FQDHsvF8Ha~EEH^n3dsZ)8$Kva zgxeCjvHL1Z$-#}?t+KsMwqKL&?XtZ?wqKX+owB`4w%?HLH)VUbZ10inw`BWm+1@ML z@5uH(+1}4v_{Q?{?AMY!uxh3`Ludu(3(O+V+sfzop!{zuKg)C?vwK5qt2M`9-e^3F z+dwQgpN5r6M{Vi!jt3^f`v5_ZI`Ax6UXuyX2=(4|UdjeE|Y`x&r5sNBV&gvxf4 z@>0BSBIQ$H<o1f3NZ#Qft6E_fq5~G3yNhe z3hwuhf_q^HQKLY-EH}hp%s99QH-;Do-++}U{OaxYqZ>jUaO08&*!8`;0zqEmgbJ&-900hP^_CE?%h6 zM_^v*D{%{m#Cu`o)QNWmYouc3TVwrsf7aK+{-ClJ_i4&@lkzoq-$cq+!^){sp5FA7 zd_tk2e#{^Bqp(w`sKv{V+5k-6590<9c|Qm%r_Q^1RkLYaL;bct>bGEjP*F#&YG%7h z`AxiUBIP$=<uw$sa#r>CM5GMDv zxDiC|t6=5Sxz9FSX1Vje)t~$=uxqH~#i4`NVVLZ1#?2tIzY$hWo&EaSW|RCH?TUZS zpZl}0Td3T{I-4;BlljxQ2}I^UhLuxiK1*|$w^HEoOR-?Hq^J`j#gnK{(%?ESgK5WBPEcD_4oeBWir z*S02yMy|~uy)YL!&Q(vd&EsDUwvp#yS6R^(k7qg&EDdpw5HjA(A z&R$~3SBK#Kpg;HT!LFfl7xxF&VVLai!_6SF|2C`~!`@-SS2cr}G#n&U&9IN_KxECZ zeX_4>b!B_9eb$;`oo&%UdQ%yu&5NM9mNyxi*Vz33D-OhRvA7 zNZfx+V>-5)A!NLnLpH%XC+3j3u(FXuHslhC*9;+tX|#`J26@&Di($7|FXW<0J6tn_ zhF~&30ylxk{7_gqb>^X(A>=fT`$zq`pAEZ)%3ZG+Lc=iGuffeAvLAqzW7s=P_^M_Q zlZJzYsu|vPow{Vruuey!uXs;dQqR^4wK{vDw-i}sxE~H$Ys58nw!NijdDFWVvLiAN zS(X&;bqy9(9^AtvhA0n4=Y?R{;Q+?Uwp z6TF=J8`-`r+gD`!TiO0jwy(ww-rD_bwla z|C_XrGo47w@ovi`M&jam?s5RzQdp_PNk?Tic<IoI2U@eFYutOa5Sg1v`QYR$j5}w!q-}Jl-jh>(623)Va0?H$B=F zJLQAkCGsRDF*-GrxMKOOnn88~-Yb#pcvv}gvg6r}s0Ma#f3SPNj=-+i;O^Prx+~r( zk?YQ|@)+Q1-1PMNbIrq!0J+-kc$VRv61iqz<@C9-hQckJ#r8W(GC*ok;6A!7hL2chs~4S+BlVevZpOm@9S^N^c13Bs`x1! zrq&pSG;>-9{Dq@Y~+zYxJsxzBI3v^ zk38mM1zV0UC;RAfO08aD8Kk)@Ir8*!x9!o}4r{PA4z)dIYxX$ICh5RDWnCm>EvaN7 zvlzR}kx`^l$&OqiHkB+$FqcHeuH}-GVKzoCIT3c26>srirV{}pb4kQ}vnE-BcTdbE z$H2-)E;))zB*%J|*k>GZnMV9#W|HT|rwd`nP>GAzY%GH?xql2dg2??`SUGj>8>xN9 zL$SZhpZy)MbExb$=1aCQ12OsEh8sfU{}os{hQC7rplS#)fjCI0dy(y32O{r9-bwae zWW8cG7bzUxWcFjJ${K5p{X7bXz^2HoWGNTkaP_k)7yig4V#|f(W{~l0z}k#4s~g2& z)Ce<}1XfU4Nfy^(IuRNT@jM`)Bs*2RDyHI{5;H^>tZZb6PFD$)AwzOQ{Z8_h_h3+s;GQg&^=YF&pAf72~&3z-&)R7>Kx%hmZR zaooWrViQM#>ku>a;cHpsIhc)+MV^KIWzQlHGo1*VhB(AaAAwnOJdImG%qTyGm5q$@ zBQB9#ExDn%k=MPZac|!Ny(SIr>oJLuC@)R!bNNlFeH?=WSC4C3r!DxW$iFyMx3*Uy7Q;&r$R2dTEKrJ5L@Q;T-!fv9*!w0l#BxXovOuUAhM2v~w z!OAf);ZRYiqC`wS4ic&;DYy6rMcS@>-4SXV@q_xqb?Egf)E@ zW4W^H+Thy2J0)`c1gxAo*Y+TLX<)zS5B5IT6I8I`K@-op2H9`py%NdZ4J)TlHkes7 zvVZg^`x@*Cj4YoI4YI$(dnJ;68CH%V>re};a#|Ey4ic)I-pX|#vYf6aTTV|5PTgwD zu#bgBw;F7>6FRF{<16NE2-;cC{6H{nS)^F7)Y%J|wVrkMR$O9;IyE?WYDBd+OcN`2W8@b~^E|J_)-E^^3*K(Ie z`fO&7XHB;Tb_$iW_;Q;z0F(CsZUB*Y6;@82_bjy>7svd|{>*QJ9YbXO)_ubiCy|9X%u30J9 z1{;Ta%dv<5>?}m~ZH~dlVg6#(JhyBl3}c@t$!6+n`}2d1L%a>^$**D`>KSbKyFXvb z2N%og0^5*he~~XtYgn3cXYNQitoh)Ck@R<%*yuOdINICwCHC!uY&DZDt;jE{W=F)f zO0AY>qddynw!Un+&_7U;F>Bom3DNA!*VzdDb%Jkf4%*MfhwLd=s(m984r~uYs0FEEsaVh4P9)`~4#{KK2=_k+=wJm1><^CAhsm4d1YMWx_X75>V{3ifd6@npaGF)o-(B2QtDXWk!)YH)vB z&Th?Iw&}9~#gvt?LekY!g!f3H-$ zgDb{nnFQZwksO;Y(Gt${Fh@D^4z`siI2cKe_vf$&t?^KNnCV2IHP+|L(;8QKiT{B8 zv>^Bl-v5yK=ZTi`Q?Ro1P-lsKBO}AS)F*xPBv(pqsd@vk(i?T1#(&~M^g5QV|9#6r z9ZVuTCl7z|P|Nk!4?#x0g ziyQQJfxSbeKTq2_8Xbul0XyNA5F?-)R*s1PRX+@WkqC*#q-6u8Qof!El1XH4!L^Di zAa8R_YQ-#fMe#?;)*|iof!xY`^whuA%n~eit%29b4_|>q*0^kUG0{pS^5fmo^vI;v ztVD_`f7M-MOwCkh3O0ux-qyCw`Ge;UE-2o>z7X7dckxEnEM@TSJ*35+TvY!eFSFR@MqitBJn@K z$}z+p=K5fw7R9HS791p0xlnc;h%6W0Pqthb#~yn|7dRL0f~F;Flr?grTr60SMnsWUn)#h;EXy==MzVJyowZf$fWPIXLiGKdW0^0LNiosAdBY}| z=#O_Z>xJ==Shl2?#je4jQp^!tA~wY&xN}`&ztz zBJFEn<?HtCk)f#cd!`e;8Jdq3$sGtNKAq z5e^dSHsw&)fynydpk!}TCiV@K>IHU!U!@+oN141Enxd@H*61Df9wk~4paldspIaZ9 ztt=J9L^dL<@|F>%Du@m)F%~L_Nv&~fiDpNbn;fOOMcE#9lofq(W2O^diFF9Ej(VDkP5ZUB+@@vw60 zyhASmw_K(%zs#TcC9q?t%=MRmTZ1sUe;hZ0$o+g+IflDK5uoY_F;O^3s5)Yt>p)~3 zab2?O5E}&VW98d2`MzcOo*wpR%XaP`vLRs^%Nlx==cCYeZf?4=e27imp{-Ppxbjiu z#6w(SER++1p5_8A_xus2XH*ui!9KGFK=J2HCt6vEO}ti+(h7AG^E=!MV)A(zRyLB) zuen5WMaIVBM&IT+jsHfwqgSuNe*-3gmEctV;yn8Jv6xfP`nWB`D3}H-ryd3K)dB_~ z5ud#C2dLz7#YuLvr;UDg9ji5Pz$oyt`rm`O!6m~-=V@=f_ zdvl2~QG4ja*D_EKOwgEvvar9bK~Ow~=|tGbZ!+p5F!RpoxCO+#b1JNCGY>9pB*L;il$80QE^jbr&(Kqbe>VCITFa1yyf|X~aQ7)f+!>O=7a%cqrL=W5d4eO7^&) zZFgf?fsOho7aqZ2g0TccQ6q`Wa+dnz6RxqR>W_=L z#8{|5W?OxrC8gV8p2n1PE9^9DNEEMSIuSsPIsD0=br@zwx&=3bn2~OVm5q#aBbP|7 z8kr{^oLgO|MZgQpH0)Nwh=Au{2T>znK97JQ24lv-v$!$DICvUXPCX7bQ`-P2vCz4f zcPz9siIFH!&1|rxwhzEMATu7;!wn+FLmR9d6Aun$hN@J=gySHgDwPXe16x)qA5L~% zep0qx%JWtEoubFJ914f8H4hQab_*}EV=MB~_6##UGTB+Gk%L|1OI0HWa*44}jdZDj zYZK5)n3^#G^}?RAf-ioA=|reB#IYXAb~C@^@xF=qWf`n&Z1!OB|Z)+me&(`7-;`3wy{?%@)d$rH*lXqq)i& za)jsme$QCM2;=}FvzMi&SceS?E6-(|shZ+FPIxTT6jQ=O*JhfnVR~|)>b1!&VP9DT zptwHMiExo8yM(PbbIoRW@5EfQ39M}7nz>vexw>Men3cmG(|8}xEb^=@j)na~MnyyP}xPB(Q3m%G$P8VIw{fw}42z16EF*xMi)vpuVp^^}S%vP^rhQRoKYyj$1(_ zzYDA!L*AhfP_=}ZE*vCOEpd-)(voWxtCFoHrsoSQ*oXD%)k04pyCQfsF|uB94jj4G zuxnICd22>6ipU@$vzVo}SnC>ZsG*k9H_C|=HV zB5dS43Hk`kI^%P=1;pI*Syd%x!-f%T+wC3j^5!tUB+ ze5rb4XD%@o>WzubVQbmuRG69^q^dJcg8gI#Up$2AMC%N3GIi5(Gq;?8_e{(!$HB@* zZaJDuBv)U^lc}5D(l}qrtnsWXE`ohRrpSsEqAOeTSqV%BgduE%sDcpBntTgxEKOf(%gf|!Y>z{*A@n#3iN zt2XA!T?}UYYxEZ}!>}vapnm}D9xDA!LhqH3Vqibq6k-hQ4J)S}1Dl5SGYlICXZpuM z8Fmph4mQ``DIvweO57Y`EcC+4F|puKR;bEEOfn7r^Kzlb z6@2k~OeaF6xl5yEyIF7i2=AMiU;YnPHuB34xI}XGMst@&%U>Gnw*9@!jCWzLP+3QI zX|zUQ68|@D0g?DWVdd0`hj(eTe5O&~-kQG zhrmY=nZGPmMZq=FR8_H@ON@o8VrmOtFm^5NdY;{y-dV> zGv9my@1B@%E{2tjd~+d}NUpY+CD$^-(XJ7{kD27Tit%mOF;wDW4a+hJll$Gc5k&5H z!OE#~-zc%ZbCJ+Y+RcGW} z2O{f?KP9^xV@9D|2+jvBoW=HJSdIu?@F6sFSwpYUKgzX+8b)&zk!j6RZ*0XzhE?t| z;#9q{IhPm<^~URIuSUH4R{tZhG6EOgK-mx`R71b z*~mZpbBW~Yj*Y~WZMaP%zlNFRS$hn?&Y_YQ^H0n`O#W5e5F-ByteiUkd8+;xE(UJ$ zkAWLt2T@}{oX$4HV9YqU9yf*<2iL*MF>&BfM5sDMOe_u(st(!Ibs(}1S(5N+T+JOF z>=Rj$#g13lII#3(jk`u+lnW4HekgXT1~d?+Jx+JzovpV7s)@Ud=Bbs1^n-ti#Vw)Cf%C-M9rr;@iQ>#;lSw@zC=V zY^jlv{i>k}N5>{T6xaX;QGF?HMvD;uff9xjpGl0=ud zleh5w3$p|(;|;!lg8f0|D~@MXwwn{g>v-Qp%CEx8sZ*Y&?$s@%=N;%xdJdBqiL&3k zlEte+QTt8Wv+@3kv}eM~F|-}#a#aq9slY)(l>`6f8n&_=_(rnjz^q<&TtuE7&{?VW z1WjM1FJF$<2dBYtYfUes{?3RPi5N(89FghDQa+sQ8g{CDIFUeAj97+a#=_IM zImB4_F{~UD3l3F1sMhGAuzLtdch6&2Ss*M+W z!2YrZL2+xQ6JaAy;?hT8=AB(}3y67VXIRVFBe4~C6 zC?7?55Ro~~Qh)r!6_ctzp5PL(^+$4((F}d`S`zvv4ACe*{tmm#8VALfnN9?aEI;%S zn5pNlxCO-2^JiGuNIidWl~AciM3YzQdCbR(fn~+{$*#vvt(DmE!{rrinbn1IPi1u^ z@$9x}WD?KPk$zGuY;KwyiDgTgS;&Urd7HB%mxxU>3zEw-({;eurV}C45YK#~_M16o3En?3#~cGI8#(4EE|DDV4dk=XNWg2%FJ?Aj<$=NcLfA7@ z=3?`YZ4@T?kKtAj$)5`=r%rxO=-KE{^zZVge+TRxD*budTW!N#`?uki5F_9#uyRZU zI1~q}z7W%hgM_-Z+1_;^^48|CWN&RI=PIRvzH)FJPd2wQQeC{sMuO!nYuFJE8g^e& z71m4RBeR*M&UnKWjk=xrBbP{^&bWG=wsqQqf0hmwhu(2KCF}!j>X~&giqM#PW-tk? zII~7UaUG@;0VKc57`EP=a;DAfbwk*IZ{ZS!BGO>>`HxD&xZF0X<)Xqt+U7qkG<8y_C<^>KSHwWd5=g z7+-abFI8ZCnM)*4U<_MVw7$x?P(POEConZ*mU#m9lofpOex?(l(md}^L6d!}y<(5y zeG~J`qp-4(UmoTX$<-9i^Zr`?(&m--m_42q#XGQ9sI0^9t7TgwFlUsvaSMpV--4A> zCmwoVP5DftzTJntsV`s>BXQqgUg7%tYHAcF`K@p(h~zhim1D>|6auQ25YvT&gsLTO zat&cwOZ;qHTU+dW6`RNw6!AB2Z=ToI)>u#f9#RpGRcm@_EF1nINTHn1Rx{bsiu|%_ zcKFxUB0t_8*d3XwECs|0*Pv1bL=TsU1(M*CknwE9T3)#VW+g8gwa4o+*hN;{#kEW) zf}=5kFNOw~WT&cRxCHN%m_|MhD;sI#d@d1tr8!(^LoYZ@5>E?Ey7w|eJZpt}V0TdI zPT_Q0rkjkvfp<-0{B>A4b;eWG(+!jJtNxr{fn7r7ERN-jm~XOv3GbfB`d6@W3~Pru zU6lo55^#`EWkJ?;AhIlYBiZK|?YZ7crIwF8!1%x+Xg;zAStC1aW#I7uLzo?zi7bV| z7HlY3H7&zR6$bOUL~LP@-25>?pwdc%!(do)gsL?7Fzh5N@8YgZCjz7~iBBFf#ALs! zIyeaLmzYgH1S=caWM5Yal}$wCcx97$K31?@SMMgfVA+xFDOT8-Igxa7DH{V;-dMw{ zv3%Hc;`iazrtOgsw&awHT$!kxasii!%_#}qY;?*|Ygy&1Ff${od>M9=6?^f&m`(&q zql;&iCN3kb+=O>bOe;6Q%0^nbo=YS*X-pNByPfjSnK9UvX;6L!b_tcTC`cpbn+54p zc=trsPr}NnvtD0S?{?nf5B27~E|b6tDk^VrMz1jhlll8FnFf*he_-Vp<_>edDjUS) z;2@!HLe6s?h`b3|lI%@L$I24>UVC9xq-Bx_|n$ZYW}5k3ujgvxk&Xl*i%^e6G&iKH)wl~X4@Lrt$% z+TZu5{ax5ARNCUHwLSu~KKKr90g?E(VC5L%4wJj855%w_s15`A_# zX=QKlIrg?pHCu_)2yKU<*~uDgjnO{4TiDOdkIYh*y5U_{G^%d+HVQ!=g*p>oP;Tp~87B)DQZo{d<` zCKti1jBIiN>>?}f;+ae*f;5;BDu*zZjUhO-pLHX zu0(_G?XWwjbi>;ttc-8PyCyQe1y)X-acFyl$@xWp&M&|&p>o!@M_5@uhj&k8{Vc2; z!`fj^S7m{i1RNyPoyW=9@iWWh3A0$|aJkALLh(BQDd3mzhbPmBdQeF;wE=uOvqXVRG-qjUaN* z!^)|14}B#$;x>)_wf^j{ft^ETuYV;uG7yvh)wm%<{-1%BWB5B1398Nz6NrO^sxxM} z4n)=&FDASE(821-RoPN4QegaojR8wn)_5EBjZ;nABQuz#wD_4T6IELLluL|-(xOw2 zT1zwU!pw}K;@_~Ftk{dMF`Wn!xpAtAOLnZ5BmRkZOiU|(hn0=A@>edATsa{(PT47M zdjxuA8kDzY5?Gy0r5xTk70Y@{yn7<+&0yu!S%)@G*?E7&pZD>wTd2JCjZ?AAkHt+O zGG7cU$1r!8^Htd(CI<%zRW|&@HBrg3p)J|6VS`+yoXghRGRv!#K6VyW{>*`VITwAK zcT;&>cs+_ozON@nbLXwQSK&vgj4U;rxox5S5 zS%aZ?6Vr+CX^6MWMLb4FVcx&ogq4?QyhgOsU%ANG>rJYL6~8aBapJfJqrMP8If)6?QSpbRtyb zHZ5hlnNuow-^83!f|ZS&Qs5HF)fw`{D&;SY^$pA(&+6iO*eg`l;S;OW2u$MF;T8~y ze-2hoop|WPD&;ec`jh_DABR0drLLb?rAA?r{~>M#k^CdDatwKg$zRnEV!CjUQ1!!M zt^<+v!@^|iht8GNN;#ifscpNMauk}Utl`$^9lm;q97KhlTcxazOk0*>ViFq>R*K62 zQ^mvtE)iQyBsa@UY7JXUG&{lA zHnPiBt`aJ{i1_i!F5`WyU`JKtlFcr&SLDn2YL>ltS}3zWv}O9Mm7alI^yrFyHYThl zvPN8^KFYa9jztWmHIhh-Tk=kyD>0RKid-T#?w8C{D@;2zYWDAvXL0KAEKmFihG>2J(u8|w%s)QRJ znd2-)$Tn;+o;N=q;1Xk@2x$+7tYw*_VOqwFb0q8|EAZmpOeeyl(aEz62PJz|CB|WR zuf$aHVOZHnB?obdk)KEoXr@RX9n@G6^E2mC*nkpbH zSMn|Xq;H0OLM1IeLK?N-EDvtP`zO-=0<0WE+hJ~3<$;(A93)hEu!ZYDWO?vNvgN^q z(oU8~tiNZ2z><>jkfes(cW9415TYIm@!R@I}{P zQ)R^Gxx`o~BLuKaYPCwaEmJPBT^7bJ@H61>wPv0MD+F@29hMK2bM-={oGk_Ww06j^ z>CaaSefe^o{U1Ts^z*%?*@4xxwTh*#0j7$KQ@F%fC^DMVTEo|-oC{%U#+36h*k4xg z#R}7jmKkD~umMn7pbCw1aSMpa<}6s*NH(jvL~@13hGL4=y{2)$gIVQSYTO3-`@nv(f-i2zbRtX|llgSh zwA@TBd*VG4Q_F6!vXNRAa*5>1i)o^~XnITITw>OEmK6oqCsfX2)hcSgNqafoKaqA0 zR!*JvOf?0^5dWM%@z273p%S01ty(n4U{b#dw}D9gN?19Dy2ISB$_Ft;I7q1SVSU$u z$ns(TWY5x>QL8LxC+YNMt1Aj@(ZX1-_&FO6ma42#H{$CRf!We(+Iqz^u3S_B@f4RB z3k3wH79PGf!Mp=gGYW~fVSib{7hh#M(LzG3R~P`L1!}$GE!+ZPvUw9$Hj>R7Tq3!G zLatZnUemZQI1as94enbp39Qhjau2Up=;JV_n$2-Li1aswl~bo5TCdPOr$xXC{t<8- z>>p|b=<5~wSj;Fm8n=ZQ1xLclF;U=9EvSM+Oeqc$s^ECiHJQnRCaZPE2`Q4Ub#2rlU#9#V&nN- zYonjs;V1X|eT!{vX>`;pxq3C9A1vO={xjGOIJ`-Xu0lCi8tBO{FO>4N!KH%>8cTokq-ssV;2@In*j6lCRjN!kQ=X&kcd#m|cZ>7X8z2U$1>D>v7 zUVatk8y##9LbV_!k;TRP*j#q;;Ns%_vi+`XzbD%VWcz*DJ}BFVWc$CeeOR`S$o2=a zeN?tTll?wyDXP)Vm~8lq~GDa4q40J+ERWQ zR+fJ0EEQ_?4D(H&^i0x}$D5GnE^&ig{8!5#8#0OTJ^b)-VlAaDd?)aw;$Q|b@Xo?J zCE}d{D@)_1vtJakmo(QdRUc~C@S)5mmuonL_h8r`RJ`KFS!KIP`9QpHBIW&I<S>r&$ zUx#-~WcxW-Id!&O>c&(9{G>nN$6P7W=HX@pPoC%go92=(fn#^>LV@n(KL2Jf86`6yU9bQBO6p`sRBf%OrX#4pD!AQHb6R*oUA z_V5k=v`t7fCM_E%mGbpW@DMVx>kHQ^sz+UyJ3b68euulF_}OF+Oc=+GW?CLOmFXwU z4(th;HQWe$*Yc%&a9G0XLM=b+=C9Dtc5{;>55Ai_1B>c$_YrJid)CWsswbEIE_ z-m!H~6z@CBHYQ87FR`^b8U z7awIh5gxK4+A@0B=vJPj)wv&WCQMB){pg>UCayeqSiJ$Ix~t=Tt=~rUC~ERT$ji znw(@|(C<_cE^sXgXAhKXm1;fT)0U~_R|G3J?BI%gHu{;c0XTB4VMq8-a;}=^udxnW zC^UbtyJ>&Zd|`cLnz9s;Ro8G+WkZEajD@nH#W3Ont&X?`W+*Q(wX$?I>@;f_6hF>% zB7o!vOYJD78LF`O3~mN734IDyHj+?-OC(oV$PboUU8hCB!^|{n4cLf)2VnVOjUmRteXw%saS-}osnva2EWGI-3va+qqQ-*$!BXph%y{@CZV)jZUW1im z;=!S^P{oOua2zC5aZ+*}h%8S2p6secduc_suP?f8vC~Ot7PE#O;qWZibqi^9WQMbp zAl+;r*j<|pDpi7P$0f!>2{J(pTFWxW!>o)M=UCWFR@}u8F`WpJ#w77lkBBhYuPQPY ztQuTRf|ZkHQ|IGM>&EhpjiKjkEFIiKN%S$}yxJ za=w~2M3QijP}9Z&*MZ1sV^Olx#&j+`+k%jLE*kG`LwMHA^X4Z8A zX`0`(K9aXAGs*p~c+^aCFP9h#Gs$#q^xBm2GEC2yQhp7)%NhX1Cz(zJO=G5bPen#w z6Q41+{1P{Sm~nmqD;pW-XIvt=xn;J<&O=k5b~1X+8q_B<39Q_rQlAr=WVB(Jv&}@@ z3?lmuSUGj}bJZEon&Y&qeqVq7d%^CZ^52B>j~$8`1H0p<5My8$SUDyJ9Lfb%afr#p zK|)m=_qZl9S#g}3Y{fBURi(PDP;1MqE|hyJt0VQsIdJS+1Fvz$up2CzYvT09b76MV z>d0hfsWaBPMwhBHR&j~3P-jeyj9tq&*Tc+=`Q|# zPs}l&g_VsQa}}3JuEy9%CFh9SH0qBtv#>h@gZd9)=TNC{tj#i!ftdUs!3`nue+X8N z;qNd(s5wR?5(f!2$JAU0BIlToCOgNBXNUi>w`jxPTAp+Y8nD)AYn(I+Q;V=RlDRBX z$^z}dAceU zY^*Q!XMGXu6e?@6{G<)QC}rNQ~hmIhtR zOO-6!xYb`-osTYd|9}ky%T3l`Bb?Cfy4cN4mzGB+Crh>PzphwRweWo|F&3(Y$)S;J zHN)#LHF+JWy;`rruCjtJKFf3>SQ=tR2^nu@m{;)5i5cc4SlP%hzv2?fRSxTm$v5OM zjrQzQ(QDM8J(EdbWi*xc2BF36&=5@K({U4s%%{N0sWYFgCgG6NH13Q1xgP+#hRR($ z)UXc2WWOJ729f>VuyPE0hjO4*QCz)u+d6H*KSeQnIB2QT;=8UHOqLeEb=n{9x;?ye zQMR6)UtilFeQEGQICQOX*EoFGg@<8Z8f5lmxP6gX%2GUh%r%r$@o=uIgu;K8tAxb= zXtH0HT5ow_O=QXG_7NgK{6~tM3rc43aItW!D+Lt`w{VHEP)LqvjI^ocDVUN`QalN} z$a;wvzsqzYI2z)62SH%TPSujr<9MgUiR6c{vN4f7!X=U`94E=b(V+W2GX%S-GwA*Y zb_bQNIBBY7y2n&jA7}gHOT&plFib=phLKOrzy9TW+2<~*M2c6#+9G7L^eTq~BE8!@$rjk)ST8f(- znS(6lVXtdIsgfYiCB{NY&>jp~s|h{{b24U)%V8f`Q5Vl*IuRc7AOQ|a_Nt14OYvTb zN#r6}*+?Q6aEauK0(rEQh3|KmC7xBmw_txz`GyY?uv7jf-Zzo*ov?E1ltTvzSV;fg zpY(5GpHNBb2MO3|{|4`$Nc%-tIfk~wtgZ?JF%>vSsKQ{G>p)~-aA~s7pe7t7U)_%s z2U{;ilae*g8i#o=6g4+T4!bt6B{LZ-nPmW}LSQp4F+?FS<%crW|; z;KS0xfAX~H1o{rqWu=PWBo_w{iiXD6`_cD*l#$(xI zvy0(B0F5K*V?$Y;FRbXTXZo^iF9%x{91Zg2o_u+rk9`QX&cb&z$TRS)4`%&ni1$}Y zYge%k&=Nixj}xe7*=G2@Os;=$R8o_aXK!0&muGW3kLnoe)zOt_AB!K2{r%EK^?}?< zwlRe8&N~h{*d>)|Wv5ZxN!mLKiO+trL}NuFT@}iM$@Ekk=o_8zita(r7atde$l~G= ztN;o=PJX0pkCN?T*&Z$1V`O`*Y>$)e64@Rv+Y@AaqHI4R+mmE_vTRS0?WwXoO}0yA zd%A2hvOR;h`Qopb;ruh^#TVJ178ifb|NRmlj^(@M`>|h3^1J2JwJJSWr=mt)3y{P0s7#ofA2?!OE#~?v!<~#&|b>#tUI*P#Jge z4W7*cUb;{{eAyB2n8a5o{RuVPd_xtm{7j_Gkx7fgM z48df64{idH`8QzY)R|8XE$eEuU-zf|D(ny{ZBem>j5j&If_F~j{1U93I_FNgx~?&v zo$;>9XEKS=smevg)_g1=U8pLy>3GLPzEfc3^!dsM92(z6{(KLBok6{Z1>feA8H4YB zc*jJ(d&A19^PSXs#-tHG)1Pn|b_bQP*dyIC-OSM|@ve!Cdtv3&8Bf<9^l79&?@#(# z*eO)fV)a`afXVwB+yEl)t6}BTc{i`=dQ~I+m_O-9VRukTN3Lo1xY)?s593`E89(^{ zQ+MV8auwD7A0U}zvXVd`Y{HX=29dCeq6i{8k3~Ub4MS(9XQpp@x`&>gY=Uee2#ul) zn+VD-f}#kBD9R>_Acz8j@IaA85FQAkC@mp^g?nSATi`P4n< z+`3hDVdaU#xN0zdE1dD0usi%1S8c|x<4qG8zX~g7&Um&Adt&v0!FiLTf-CIzGKuz7 z*kX=EGv8*tA>KTZ_4=@K=B#JMmw_0l4+uxSKkO0eEiF!nk6Uk(-Un};NO~_=Idjs^ zL(Yy1M|=$I3M%3;4>?ZwK%rIy{t>RSIv}Mftx{O ze<`e-Is3J2rxi*@B!4^{{iCpFsOZ<>@3dUKup|0!aVv=Ae+?^7K=N$Cph3Pf7hJBb z#w6NPt|gGKFMG7^`3~F)BKiOP|3`kzGqAS_N4_QQ?5TxPHD4*QCF!TuIxG3UkxF6I zvDl1s2KMH7^F-DkfRz*Oa*rKiYLl7RX5=BEHkrN0cQKXRWOjeL$I(pfDG#j}F7)f4 zr>(#v)tOUjxt7bmeb1z6nysykb?ibf`wlF%`K-t##@Kw8+UM-2HM(sile1x7^6pW` z8-5M;lM{J#0@Kl$)WkB@hUInw`3l}LF{spFWhcUy!l7d-J5F)Wy*oNKJz@0N(FM^Z8+3FG+!$TTE{jGJ z1DN-*HC=mDa=iuib^Bp$d-}q~XoPYOwsAPeu)k@amW~`H!e-27>^VvfAypzQ;1Y@M zUl6rte|n{5ebw|r%MI$ypIo?@tzGW!85yp!t)`9t+ub)(>ZumWY=>Rz9f^&9Gz>Hv zEoGZp+atX+8XAplr8|JJs&Az`P+mX7uke<&-30Q~YQGJ~#9|Z*JFQ*d5u##Q~M| zTU@$MO&OntH%jDs3ap$xR~D)auD679y%}}{#QSz#ice&G z4+&NAZQ|PzS@GSN?m>mk_Zc1C!}a__p|=Zx`ag`=TJ*=7yqoWAdeVAp~9c=O6 z3-%9{|AxGBOzw-FhIYqoA&!DwVCBq5!A5GThA*zlwBy}W?ckO!k}hcd zj!3v_VI|)?(vu&}$wLwMi_T*m`y%^q@T|epg+Ef8b(ty*H_D&OnH7Q0*_ZH+gukIV ziRozLur{4PT}g*q1<*I~c8S6A8?dq!ECpSUNT-6OxM4gbRIps)+YuQo*Gu^+YPeA9 z(IVxutOMBabVtfXEyIBC3P5hMHf$Z?^N+q9RQP;~ONWJ(_8B<~nC zT|0?Mj7OFI26L3gLq0`uP*xCG1#guYMBedbu5RDA1@qL%%BLs?-)+PBZiRc=SzFtD z<4;j;$_w$fiIg{km912fHs#n;l!J6Gob-{fPnUPL?{uaH~VeW33tH6tUBRV*ilaC(X~uRgHjVGeKbwC-`m`RH%$yIH^a(S zVEGZ3NN>t@j(GpsbeBQ;HD(T0xm%=Pft^AnEl%$-I$-mD2{(Yq`vq7zbKdjRTiYb& z8}tP;UzbUY$5ViPch5Io)iyg}b6*=bg2;VMSUG{aNA_0*gh&(~5~_eW*LMKR0^-Z* zPQy-KUM%;o(29p6;KAyQE`)DS`4$htW-UiK3Wq~|hm3DePl)Wjhq0+no5y`x=$H%km8OJQXzkPLH)^a_TVBHy|QU&BlZEEcYU z9YQ56j^2$KZzqf^@WzRpFNKve=R8Lh3NF@8$jg!Ygjpf zw?}qY1%gNj9ulfRIMBBvvOxIrkC zQd$lrRT#|W5{ZRDdbz`~)97O`AlW_j%Hbohhn$R~_cI;6Di~v@(TDIxiLqmASlNml zTlh+-*dfMDQ0$l;Vg>tt-=pb1T+FPWGT71lR%SektYkgG3LEDLOW^~bErQ81UnDA+ zRJlZAFj?IEziYUC&rgiSlNm%U*!_%k)E$g zx%g3_#slUrnN`?bYB9eX_6?Q!dd9p}ydQRDdM9oNk^XJ4asqvi)S$A92qGR5sxm#= zwKtrsoVpS=Yr)Ggb=ArG5m=$F#w8{~Qkla0Y($n1 z!lbOovMKB&C+uiG)6sy)sVjj>Hmjzt-iJ3!3?v)F%2puRh)blGM$i}0b$l)&8a zS=b>|!ttrA1kMNIjT1S43RcdXb8PC$#rliktWScSLS=1ET_x~79yfr<`&d{xfwxC? zR|SGd2p$ruK?0@Y=wYU#@sO)#IVjnxDh{5(TO|gOr(tC)h&;(9 z(kl++s#yo$c?I-7wD`_t5?F~$!v&#Z<|PY2CSSp<=CoO2kB3SlimsT36-?D zYSvAA2fTeE?d@UZ1lk^1T@?l*6?jOf!r-UA!ATYd`=3hDuy4 zt8{e2=6)Y;1d;nauyW?y*HLdK#$x|YIQzF@=TOtW;6)VJ(tov)_ZT7Ghr41f3Kp-P4~xWqKyP5ZPX0wFF|?9yGOmZ zScgeqrIizTG?nRSOyqaI8kXCMWG%d9Vo+HFRRckdqCtM=tKlt!^Ipsv?7p-( z?+*Kf$~pd>uZI0L?OpKpiL^ffD`!qS_MNYW#|+|2!-)^WexVXKzw_1TgH3%1w}D7~ z5LQm0?veFX;UH3khlDB|Uh_>Oc?{-cC6Py9A30G+cQPG~hg{^qLCIFt?80yGR*6C6L0H)e zBKLEN^a=&J$icyPaxu6_Sd~ePM=@ygjW2R=Q+^j_Q6p0RH>{jF<=7$z2kEWDNpI0M z(&i!uH|-DN?GtHl3M(hj_Q>k0Fc7K0LqZh>*Z2-wSs3KfeFZUjV8u{be*tkcJWieI zqK(@lgw0wia+C%o-yx++gC$&IB9sPGc%O~hU=$`LZyGg`@KxAJPT0}$Oh*GEw?_z6 zvRPFed>L<+7)VZsm90Q>DwjyFIFQ>TT!e39rUXtQ{0w#om2iA}L;~lZ;EfYG-vldX z&N;R{!o~Xk!dd?Xb_$iXxjiC*_n&bCh`gVJl@oY-WOr2{h=kxFp$dcn-;T%vVR5wMz@Vh;Zra# z*-2F?>1a&kD~E>V_H^Xlc+13~vInee1(jX7M0&-7eC5#amcjX0W=&wd zuoCtOm2>=+L&JWX_A14C3DjCw?XD7bR2|j|hZk8VumI&8 zYqh;wu5N7g?It$ECGFF)k)uL*-q-P}Lim%fgu?#^UkQmnpKjeasc$g1Tth#vG(PCt z_c0o7a;woWmvtksUYyM(CPKZ~S?{uuQ9c55vTDT-!9H@{<E(^dtiwh@@HZHcl`#Ga zd&tQ+`UBI^Xw<|}v2{waQB@E8AKoZ2cKiiawqnPheI-=v5Mw4NcH9$U1v@JC!gL=h zrWA(leb)CxMR^n{$c8IFjNiv0bv)Mlks-Ov?%;2f}W0 z2a``S9Sw=xFxS9k1(Z+W4HE;(zOb?tQ1<2$=_LxeVa`qYBxVej(=E!!!!Dsxj&GPt zWPL2&JdyQESUGdnu?=%>-ro=B{ax5CRNm%>xkTpQ!A&4CzYvmtsf=!F%e3I z&U%-PI$`b*%E`(gvzY`|PB~FW?=VMcJmf4S2PIooPaQMxR*6BR3s$y*NGF#_uSk%y zkPf~(F-x%f(BiuT><=p6_$;KG^7eS!M9SO2%9&G+%|bdz7sE*xV4qM)o3oH^+I@KY zMA|*Dasq9StgZ?JkqSH{RAKPEZ$grV!5=22S{O{x&DeT&2K{w`^x8_+Fwmg6=5~t*9S@GMe6Tn(bSI&|B#18*Ss^UA=|=+~8oYoxJmv zzMj$A5iJ8?EWmBiYPC-6XBYMr*gei`_%e{Z?#y#2761vY^-9wp+TCD-Dkf zwlk5I^2@8azG^*WwC_DqqGMT8+rY$ygn?ikI3tz^7=b@ zeN0{-m)GCR>l5<&q`dyGygntbPs{5cRDbD1l`Zb?f#@4dcox>t^5y9C|(l4y(U_IRsAvfIJR6M?Mt zDxernwg7tqCCi@EEwX)ht3Pr#I&sj5j^!hvPj5b_W&jEPmrQO}81Jg*Q!P zd?u`%Ib+uWR(FNty#w|H6|acP?!#_w#aktky#-dzob0s5B%5*bz7bCMHP{1f$a-y9Idj&X^;u@)PTn^h z@!qf}sCTl6(|m4RI!`?r?SZ#SB)coDoH^MpIlphfT^SB{8SD%yT=AKT#)}DyZxwHt z$oFViIdi_9^_MFK+$+Q3UIu%D3Rm2@{FRVJ_F}wMBH4>z<;=-WX0Npjun&iWeF%00 z6|C5JQ-2p{aeV-9l*siySUGd9GyBy0M1$`t!@*V6JFr8je8uT*G2?B{Z{v*MvXRX8v z04q8lgf~lMdjPDQIoqTI(@qV?dot_|DqbX6ZV)s6HfPO*cnv1;%T?B?#Q}#pTrv`@_igu&YbTQ zzIMvUytAvpRr3rc(Vn78+`D4Qm&LXVZ` zx;MkhnbV!#T%v3Mek~mEE3iALfW`Wors?(^lC#bit$h~}1ffb#1#aktk-5FNSoa`K9 zV}t>DSvce>>=Y_w@ogBR19qf78aIH*y96s|&U*^qlwwf6ES&Piuq&vP#mt7-OJm*3 z7vaqk*z8}ay`%pOA2VhT7(TXU|cQILH@55UqlD!93P9W=XZiPDfLL7VG zA)$`GxPNpo`ChG`Rr%D#;AdG2TVvK_@QrpPpejwilW+l6*zU8zf>?J4eXhWu>Z(|$# zfqZkkU1Bi#0IX~UllOCp^tLI^+PPB6tyt)sbUBLI5_me+BG@BT#&h^&Y213d*gFhw zok;p%SUGdjbJ@3Ws<}cbUvbkuBb@eWuve(G=W*I*4{YM6;1&>xe*sobAnuXnRiPl# zf`^1E6sGugL>3Acr&}m=scmoZTH$`y3oJG{hgv$P8nq}F?)4?2%7weQ#6&0;5_ed> z3KO#`hL>SSIiW{SFde;OXt~4kMZ9TZV0j)^wgStaxI}tI!yJ)zn|G%1n7RHk^xm{c zufrs;3Ytn<%o7uL=l}C_E%o0da?Kz>)>TS|6v%4B5Wu=mD!%lL-j?QH|deJcEGP}$1W{H915?I*^B;Vu`=@kq! zMZR?{q;YVPHPzj6eM=|5=gz+1^aU$mjVdcy@&ryYfi}mE?!K_zh65~-A z+IO=k42=%hyx)bX)QG(Q4J#+`_Q>w4KoAMRLqZh@$N6?d76^x>`z^q=M(T$ER`b0b z-NX6*`gztFo;h2pdT-Y$bVLdlq%T$h66g$KB zksNHQbl8zgOoY;*NigmLy@@&SBTa!=W2iYw68Ve*DLmhAKb)#U&;}`H^tk(Z(<> zdF!Yp5*smz@p#&q&2%&*@*|@ST(V(RWNd&pObjUN!pc@aS({6wS7gYKj7n!2+2m8q zn83PXU)Uwi+d8r-$3HTf$a-(Qc_QmQVCBqN$38OZ=6!59@0GAysJzXOj3zQ)hMPcS zUWJttn0sVC+6rBrlS$5i5(UamTXte9-NK0OAI1kgO#ly@)a(TUSS}2SU4Hq!)ythJop9d z5h~;O4vQqxx8to7N&g&H&YW~?hlP{&o8h!yhrL3jZSJs0BK|6F0g?F2uyO)%kL<1r z1d$dzBvgS=_U(u)5Pq5N%)v%%IV@ZI&@(bzEf02dH%|2I={FT#r5mPZ?Zfsi<|-TIiv9V;m7Ero&S71N*HLTj(9yAIG@36i z>x#?z;_@DTaSp!P{w;%2t51X%xslxsBejv-h&Z*bO1>{&$(Ptunb`S$mVu(R{bEej z=Jb>YhjKmaOX0anjz#XF0jYQEwwhKTJEV<^31+# z*nb{7x*%$8Qf&r17pOSWo9`SIbDR|M<( zH8Rj$trY6ME0=P`(YB9q*5cA!ad@;=ZFAS;6ij!a#HMVzhbm<@ZN#v(F4V$C;Q;d} zYp-1CWxo%W>+5evYeQ}BYoS!A7IMYH%6xZqq-RO}i|K_nH@RdW$Hq-}C08D;wL5++ zsj#Y@@B#HOa`jg7!g=i;n}fL}`R?JRz1^j9sk@Z#XG^4)=G)I~u#RkbcYgU$`=c>C z8#dp~17+(E--mG<94S@{qN%|)4|>s*>RP+oV`WhNzHZ*s?M?^7<>FEnLMnw^seh!H zV_~HA3jZ*8^_!rtSYQKkNt@YK^YwiZtaI$pkoH$t)e4(!$gy1*_1nDtS*KdqGMT8+rY$ygn?ikI3tz^7=b|&DW-~ zFUd#02NIU5f`a;o7<_G6;qf8!00IS=x^rt&{wW$Bu(Vqv)2&D=96 zos%}}+1k^bL3}Gu;?ZpO4~5ScvOmSA5yuaD?R~W-OPvJtrE!|1S@Awc3NZl!k~M4 zINeiWZ&2xqkES&&x9{DP@s^2%PlS~-Cp?)w4H(h9nM6OT5%9(SWYfg?Dkmnv7oOfq4iT0FM zV*P{J1Dp5^+yWx;E?7Bp;$6&N^~q@i^iJWRcYvKiy_?0SKBVC`-|g{+iF~(%l{4qN zw)35ULAw}Ey8yd}N_$D$)5u|hDu%>`se6` z&HXIg2qO10Vdc!ZuVK9#GpOGcPW=wpEmZ1a2c*>noB6G{2}I_%z{;63pP^n(8nE98 zhy5Dt4=QZ2c}dxBQ+@?+n@IU3SUGdbo%I*C2H%Z7A6%1fz$DsJlZ&}9{xVxSPt9_! zi?>Q7yEd$xIoavWSMdhkeZ%qY4ZDMS`-(%io2J`$?;d#5M8>+qnk9;Jq@O z_cGWuRNkT%cXq>OU&YNJvOgMD&Yb-WwGhPseq}iD%V2*{fs6dCY_}<2jJHjsd=adi zIpt}MbutFyhr<~^1bc(ZSiI3_SZ))30B@N{_&!)UbHdY`ORo&Xs~i_xhP?y3gNj(> z>89y6W?tnG>JZSZ`~Pz9F3Sb+9+6q(x2Eu-qnmE#5Mb@HMb<=7eX(*Et)Mp9!b@H0%*7 zWpO@3+5E5-#eB89z7;^*v5sp+YH|4)o?8;4v$!jw zozgwgU|z1bz9D95o_%j7x4ff!s9Y{?-K!mJa1}EQTdM9Hb(9U>xfS_J>!VhR{KweF zdtrIq@P^&mzLdsU2ay`dSNM)Mwddqg!D-LEn`aluLkq+a1`E>LFVtig^MDa_?uXgQ z`%7&zxEFSr6Mu9Q)6wwMM1FB$v?9=5xDmt%bO)?#MW9=`M0(uU6Ca#$IL@H|Pi7c) z=UVjt4!eg+|2?tq%{aPZ*BEc$rVz)#Yp`o0mSw_kz_n1R3Y*$-$5-4k%!VfB6f12udk{f z^OlE)tuyx2KGS+jHB@*AOSN3)C^Z)Q4kT4-baRO@4p2&MYw{G{XCthf3iGkj%gL~l zoQR_;)6sy`#D{SOD%q?m15d=8C5DgVU}Y!_KgioQ$I_nT`fT9vd%*m26kR*%5D- z7(qS;D_ardBfb(Uf{2k56hY>PSi#QI=}Gs&Vp2UV|5A z)$v$yys!6F^f;DFBu0-EXD~bKY>eP>1x&{Z9+$#CasrON#&k3uHL)9nk0>j2d<$=t z7&n{Xyj${}h#*@~`l=iIjf{D`!qQ_9-d{ z>5h|vN&g4-36-?@DJnPZf8p&DY5xOOPN40P%T+lbQh|qrdZ1Y8+Y$Ldaa+m{6#MYG zKCK|w2_C4o{Z;G>_*9{rU4 zeEl?b!YSX-Tx|2@M{a39e+j%5JGis$jj%W5?Q10dI-8x4+cUgH<0B~I8)jRuqk!|3 zLj90x_CLhS@Yct!bFVJURq{D@xOV+HwaiXkXU7*GI^HeBIJ8TchUO8!Xe{rX{9{GzAsR}iP|JxXV)g_I=b{$Qt2FRcG#`_tP ziEd3g02+$2;_RAgzB^wi4UY_V=Z_v?r=Qo)cPAWI47S9MWmWO1n;nZ^%Cj#VjJKZ( z{GJ?lRnD|c?;G1SU3u6z$B-Dl@ek9Dwvr#d!WBB>@(VOf~`$d1}zyE`~%WerU3J3d-iaGQh;XBJnL@<;;oCP`S`x-51Wf2lfY*wRpX! zY_};Ng||(lya-mFIFzk0epWc;Ghu)DQFdkRGw`;Fluv_|Cl2Lp%p&d9aLTv9{_vyB z=2fI4Rc&@N-Zqi)k6`7@DNkk-o<^vCB^>Wdup_8=<%dkzn-h!c3wWbMuFt~C6M(C= zf@sVaZ#2Y1YodYXp&UJck<5iq-*X|KccURaQ)Vo$3)7LcJ zX1p`rG?DR+u=0dqY?W8laK=Z&?(kyls;)|S(?rHgVC4zJ*eb3r4rhE3><%x+uG;DX zylEoi^I+xd88=r67_s_+aK`t+?!Xu~O}At9J$TbZ#=n4-GiN-Ry_PfRz8y~YE!YuM zx}wgizoC?_Q_n?j;*Aoyz78vA&b5=dXln!Pf-eRa(3>!c_7u=!3qsv$o9uh>R*7Uc zgq1TVyKd5|C4=@s;j|Bcy_0+!pS?=QDjoG-`n$*tVjmH6EX1;I^8Im>h(lo?SUK~d zFu$Lj^A%gbBA1mJ1L4H*fp8q`o8*C@^IuQ$clE;#1jpcZ5b3Xgl{2T`SzqjDu)a2& z^);|3sI28Kv-%Q6>%P7UZ)3RrmpkhQC_C&S4;4toM5>nzJ2#aktk{VlAVIa%j{ zGhL?y*JYhdqCIulmG?&sG@?fWAc`GyF|L1 z!^)Y{of)gMjHKHWj`%3pAymZTIH8#FHs?in<3!Gf!OEF)X5Rx7$F6Q=zBWEH9P=5l zKd6`+-vevdZc{!DZ<|Q@6j*uUP`2Jt+!9XtX4oHolwB_=euTG8qBQ znCarX|D^NOYpNx9t3PXKQ;I4a66PBfbE32^F#UZjffaeHWjHH&0}JHmsaE z>(2TXPy_LO;fU{nJwZh*?qa?j*1C&-fwxK|dpoS0IoTpHWC_dN54t+U! z^n}r4Ro z;pPy>!q%{I!dURAB2*zFl8lFhDnxGZ4Q#Ry`F&>Jjb-4S-;G@f4`b&TY=0rbUJq-T z&QXXg^BrcY5UFyBiCKtPFZVBm*;$3i*I}1A@kd``IvSp&Ld5l!|6JS%V&EBtm94<@ zRW6ZzA!5=0B{MAWaIU*y_fYANS%|pCz@4}$#4&Iitep867^@Jm#=$?r$HCuV7g5JS z%RW6&hP|iHT5XxL#x)3e%AtR8t(Eg?;1%9PP$*G#>Kv zP8^hMRV_z25O0+jIz9y}TcKlLE|Fd-AwTa__muJQ`bB0*VC`@c><=p6_~)J6l#j>T zCQ?2YR?eJq?DI|z(mxC*{e9RcRMO_>o!qp)i?>gt{T*02fwo63SLJ|61s)Qr9N65q zBeEQLYf7r$i*0WD?vUTAVAsaSD&j@L>#SQ?m~xK1TK_nosGhWEz2ywWtG=96;qWq- zNGu%E%Pvib=J!U7Tr;nRLX5->uQDQQ0Tp5P;}VGx zCe<&`+GheRgXvh|qze1U9Zq_fjvh|NIuqb%yj5c8D8b5B=vcxf(n}tVFVEV1FJqQq zcb~=gV%Q&4zVSyB9yes$>H+j3ylo=o3t;8UDaRg79H)Cc6i)g9*e6ud=A((5_I-H! zMB4Yj$_cbRa=9u8L@Mx*P>&}6|yST&{>AyW6 zpl|(wXyJmEUsM-Aws0}~Kyi7bSS(P!FN#W6bCfSyW2(J{N}*?kk!U(*3!? zL1yu1Th57NvP0#<@G$$>bnHW*ud%^X{}AY3<@I%WeM4UV#;@=PGXKQ>S(+cnoZcKg zM)^7U%VCWKCfHx{4i|-HdhKYQ?4=X3|^?24(kBj1=!9zklF5cl=LdeI(ebQafGMycJ=G^D| z7CcOyW2|;)%WA!tTam8}w|pQHKekXE3)*rL`Ay$3rJf>R=MrN)MW(jBH~Bo&^}Z5Z z%+F^M<5A2{VLEy--}*e%d3f8zm@*euwqnX`E|K1p@?0@5s|LA|JoaSvU^6+gOX|JB zZm?IJH+E#R7N5E{dtg_9pTsR765k0{&YbvKYKAtE`baqS3hWsw^>uj3;Od1W5c-la{O>UQG9`v#KB1`MB}7&)36a);ZwXRzEOvwM^xh zh5mu>m{Rq__qfD_svoQ~n12V8vU1A9u&11`qdS<6My00L53VzqAHv%v#*_zOWhEwAUu>$&oJp1htfuV0tf3-}dY z18@raXKAhhSj%-w8na5*GMfTtm9F94g5JrC@3fV2#nDr1ot1pwNTo0u9mjOEa9b1g zfvXqx{K8eZ6~y}B3Ru~y57H(-W1tx(4c}|nCq8AnP5Dv0Z6f90 z!pfObo+=WSLAdLy!Gt@R#CSaC*>|+~+M!Ie(t+w7@@jayM7kZYa^`fqWJ)yfZWoSs z8`v4t8(6$UZsc-{@0NJOM82ED%9-<>YgTUt=$>%UN5Nj9f)?{NW)JLmy$H8}Nc=EZ zIeX$}HEj?-Go1JtuvakRW)E!Qr{NY5iJt;1XHI-|{prTweM>m+n_-_&dCM<6=uc-> zME?=qK9TnIuyW?K=bF!&2Je@`dA|UAh00q*bh8Kc{rxO%0g?D0VdVtk9+RkQ9#+i8 zc}S>v*nZzf2{{jY_oP%0HkxtZP_8nZ-zZn#(x}bGZu&L!QNlUeYWudFGb$`yv9NEX z)Ke{#*{s0A`hVt^59KR`!93f8S6n#EP3#sXYLf(xIobCyv$4k)Igr$x?8aOo^*LF# zeXD193+0IV4C5AYM{E&yM9cZd_zy2E40kiN?)d*3tsULo21~hWVQJoIvz?uEHh5Ya zJLzb!yISrplzIz2`Qh%Rx#9@Bu&r<1!vndYe0-I*Zt-7Q~V0gE`Eaj zvovQH=Q#$Hk?@XUCIwD5E#kcjpIrP1)6wFFJnP%h2|MQ(<=;u<4(I+d-uN1z0(A`tw?&zd0QJk6_18(aY~Y zJMxlrt(uLz9yfx>{Rgme=G?b(a33qt8R6iC@G@@0_*p`O_u!DA-_#*PC&ew%&PZn#Q6`UUCFbS;6r;dlU_;|28U`2>oxCun!(_!VziBC^r zy>mG09btD+S+CAn$4$2=e++M&NckhMasp+K=?XRDA)a+TB-D(@M!o?`&UhT3?#lJ9 z1M|5`Pkmj17L<;M2dZ^EwtA24GAAE~~_`xE{&{S~I8jm(-j za!NDbu8^+AnZ(E1XW7$dZ%7FlMfjvHZRjZu`8ymi#R($$&7c$DJrGI!}= zMXU%@w%ajfCf+tNrc8sCt(Y=}OQgOBNcqcP{Rw6dc2`=gKMs4vd1FU5>-ZiZ)dQRO zM{x^?#6JuxXHGn}2T1wMpgtH*J%T+$rEcy4QoXRr_v2O&$@jv_3FJMJzp5WZy6})t z^}`FkNlVrb#dPb3Ik`$c*TKs5YQ8d5F6OFv?TPFfc;q^VU5&8u0y>GLZnb8#mbDy@ zX;=AEJ*?S}0JP1RxlFa?EyPVvkpD-N_O-&>jvj=vlxfi#97;5f< zm90>7hp&VRHDWXcg_=u4tYB}d?@f1^%WCy6(Zr7_m~}Q<3^@nc_#cwb?9>LWBc4oW zwqq5y97HOfOyv@Z@g&7B=1jIfsInEz#)=^eVHY{^MjJ344M*dUe1=Ijs@@rHhBrzK z8w+4%D{O4SCDKb2jYIN#%ugU3$qWg63^^Qj2bHdNNWP2lA$Ze7#s|U5nKOG3Z%X*@{7b^p#LC zNQ|tY7<5~R73@*u{&Y`1nQ~CIP%KpS#r7XOXM94=o-IR8tGCZ1(mHL>I-<&^%;La@ zkoR$k#Hg|$YRB0pgs3cC(DKc*{JDkYA+d9zyM9yWi~0Jth1l!oPqA)#ynfzAcqg@& zL~FUaVFcDi%qA=|T7mU2-mUPr&>v$u+8C7wM!0%mht-2|D~MtBGqAE1Rt0&Fn5e?4 zxV1baRB5-dZ%1TlH_NNEiw@koqhr$(Mvom`5M9DnVGP_DUCJ(tMx#TL{^APu_q9p; z<%jhdo^LSwv9apR;I-X?Lu#pRnl@G)@$`IOcdIJx9A60q{VZPz3H`xzr}eseE9If` zNOddy4AOhX34QC2I$;I8vbNP|_=PVAH5zW`5@Tf7)H2KTX1|Se@)wwsl}`Q)JIZ;N zN55k_8Wj0CqNeF~4tWl5nwUeLft9Ts@-&x7@4;-2IR3loE`#*^bJ1XIk)FpSu!56H zdQH9z*yw=GdoFGOk@sv^Idk6g)WP3L%y$cC{z=#|ROVtUkfRee_nmMfh}?I8l@qvo z6nd&w6p6w^LX{0a_YGLGY*^-1D=zRY7S+N72nA?qA(l!Gs^B?n9EXFZmS z%v>!=IqJw0e8-fk96rw_CPL-VT)1c*ZG0t6%1S7g!Jcx$j?Q8_8WnkXd1En?>plE11SM7r>hQ1!#-d^;lRhfUL+ z!f#AFuzdva>fsach;1Bkp&ft54oZBIK`%x?*2elzSCD)WSC2N(Ar;YJX-Uk@uMaQDdh zs%#L6!b3up4IlRHh%6g!PIu?|O#aQ)ky8Ch-gsm2Z`KnmP&r3j?eLZ_tFSi~^-mKv z4b~EsW9s3bzBp9%@OLgT5vqq-@va*M#D?diwB!w>))%eMB(O@$2|Sw4bTlrtIea!d zZoOSYtb?~sj4f-y%2sSygG;1WL#!!g{^K4qc<;k3!tPFs_g=7HsJz#Xy}gL{!KS`D zZUd3}F0gXu)aR?Y|G3u-@+-p0FNJ+WB`;PIy8B_%AI9w<(jS7A6X<&s1FD`7sl!7; z)e~>{CNNn~Oq-hO*}bdv_32AqZh}XvbEu8`rlz``T9R@U4>$M@B2_$G$0a60@i3Y7 z*oY)gz-+7>@)+zQC*J68rlaAIo0{sFWTR@j;Ss!1V%Yc%tZapi2f0LgrGnhlWYeAc z_23F&GLsmOiqNJT-_+z}yei%_k@36#|1pkjYO*91NKjMHN%tx%ay8moLvuT;C)HxLF#s_ZP)a%q(C zRtRmSm|tH1C-GzH&to2}A4`8ezrx4RpDqBTwz70h+fhc@btSVX@X`G;-l^~%3nwuh z?Ix&+M|Zmqb`^FpZUZrDUj!>#Q9EtwU2@(e?}L>S_y-K6;3|DCDMCnmum!??lMUCFmnRa#!;|SsHEd-1ezVNc`w2ZAo4y8 zR?eJvY>hzEWd`#z!k!j7I|IvN#YYXXBN+g20)FXL?!W6F!LvK3RF=Mw4F4#w65i}i-zK<`S6 z_4-T#tEZ`~U0V}e#Mi+sAQE2-R?eKbV{3v%eV=gZd%>QeQcv2N;3B^}ZUvG2F0gU} zd5`3;>Iac7JS0^8aF=h;lJ&!#>8>%H#9sPrt<5-`4i8r6NUI$<&Pxlqp;~fslnkf( z4kJ}EoXjOALdnos@3QeE@;#W2l|ZfreROt5$0{B5UyDYaq@%AhK@Ci;i?1=`#ANfT zUidcHJZqI0LoSDvtr&6%mq@Q(m?72@IzT_cEWzq`3-n{KKd5}gmo}8`c2)QY-Zqi) zZ(!vF${t}}WeO1`JS0@6IMKHwGE>Y$8>$5)N2XYt z8IP6Gau}&hu_l*D%oOQGk*S`J_@_Y$v4`R>1a4)e&C#Bt13Ty7;lvr zIkttBt;n&JuY`&mV$=jhjyWM#uoEn|NjGv#uCV-8(n7~EtOrZ`1)VPj-^~8F?OVQp#BuzXCr!i6Xs(@k8i+Eaw3jSXF3{?+B9BW3RG73I3I78 z7(UK{m96k`7MDmbG0YStnv3xL%oOYnvk_w3%R7!j;6u#bz=w#fxx^TSKzr7p9^BGH z+ygCFpz@zuxHwns8R)M6d9*gZ%Keq{$dFV%Y+P+Fl!mLhQcqrrxBhl4;*jE2TsBuM ztjv!R-l0O;TgSDJ8ds+j%RRYbcO^eOR4xs-$u$C}a7|u*bbG;m(Gl!Ms4pd6B(F!x zYqz`}C9gSoUCgiWlH>i^KVy$TsjV2Bq3#W%#vWmo1Xf@b-kI>F#(OXwE!N5RzRGqx zA(!#Ci3zy~D_aRUb;>GE8I&(!oe8A;P1qmKtQaLxR<_%ezk#<+qk(Uc7lC>$_m(%vsNhr*H%Hzr#`g6ZQxdwK&fsZoN(V?|AD( z(r>`Z6M%HApfX5r`pw|z{XQmvJtKgmW7gZGH^y5hlHLeb&Ybi-M|o=i|7~40sN$J;K#!rp#qn&JZ8O3`dGYmBI%W|asp|O zSuHg&CMHNcB-F&%7QRVIPK>RZ?)$P?m3;3=PrjpjS)tThUZ%~E-3|{|=UA&9(Q?`V z+Ycs8Zdj~6OFHJwe(pQ6)C;tqa)~kK%~E^9pRM)X2rtjUyyQKk_JutIJIjeYdWh+0 zU~1y2Kr`QtFHhsm6XVO1u(B0j9_JG2&F0LL@1*z*Do49PeD1e`OUBtuVmwMlo4BYT z9G$Sa&%li!a_@qbGv~fe?ETaj>~{)hzXR+X>fOFRe{G)75u5+^xFJOT+ri2S{5^^S zRab}v;vu2xiXZz1Fj-fuo$~o_m6E;+=kxGzb&j=hKmV<6r#EK%l$C7yt2N-eZ=P){}viK?NF(>`#YNn&nsfo!hM< z4}B$6*b!qYDD0dSVg-9_IW67Q#WVKJl?p>6EZEdfLybSTyu&&&9?vcNwhT9|78wu5 zP1MG&BeJ~h>wgtl-r^F8k!3;Dp0&pLmX3-$qUDm~_zy444R;S$D}~-Xd)Qmj)^>)= zJq0$Hmgc*Mdva`ks;#}M7W28`YIpsRq%_*8KPsouPW^k-?WDB0QqJ}E)IB#mkQ>Sm zkJkFzI3{`q@;yuHqoJ6qjMj2(ZK+%yW(&#N+M9B5WU$2Urd-dG(OS8ky(yP^a@Fp> zN_nt*IDhm=o~^=fum5_7hl&OEO_6po>Xn{rXB+wDL%9;WhX&e6r>{^fcJ~%?{pC`w zI7%q0Q#lldr&G%=$jS!l;}+XUYq;E3?XC{6Nv{Dm80%kJX=`Gr=9aLC9ksDT^%hbC zR4os6vjVi8k0UIu4tB51SIR8twX^hS+^&OdWHVAKunM}nr@mjaXQcjo+TK1bO(A

n8I0K6!n=ye^Q}P383i^17M4eo$UFm)C{zx`n)MDX&|} z>(=tRjl6CvuOE`v?d0{t^7;{Z-CkZlDz6`t*B#{b+bTphrI47uY2(;yh(N*`)8?cl2y|<#su@R%o1#}&YECe$vYFiNp>dF(I)8{ zha;;gDA~4J4zmnzn>eprg_W&&<+Lf!%?<05Xa?)=ur39%z7qC|`(=X7TD-b8dtkpw zxD2;|Nc>`0IdkGOa?OcMgZ1yiSw9T>gUVVQZ>emzDL;g_O{Dw)tUPfjZ*3lJKk3ro zJ9-r+F&+z#>^oYg%%;Gt==~1Ng1YeNZCH8YP~OI*yj3{mg(*>HFCZ++o8fH}@8t!s za^{rhny*ldxP4?e>%(EMP~*19(Pj^9;)mcC5Q!fID`!r8R{S-VLHqP@+NZ)Eq0$zc zW8>D_q)*0MCz3u9R?eLC)SiL*Yea+bP2r4hfPFz_Je}`Z5_a2kufy9V(!CZ|&YbS7 zp4baqgYk3WjGuu$LS-!P8J75iKL%|l`|*37Mtv|UZ5Mq=Ux_EdCz7N?Ww%Q zf?!uKZ1OX3D~RN~VCBroPZbLp4Awh^v)%#r1@-P05nL|7kPcMyW835H66tOSD^CQv z^~E;^-C{W10_+QvE?+cc(e1RSJgbG<40-~93XW?7%=83Ftft537-6hwp8I<1$r~Df13@YUr z;)`5z!JTz4zk)YRJ4tw8lx_iUEpx(TSE?Z=3(cJ@Ymq>S4SUGdLo%IEB#+|z|ob58$6I8bHQ;GFe zix$}`-YSvo(XevnWT!WmCmVRL499yJ><%j4Sv>DHO}80ej5keWd=adiIpe8fZMXsW z;c&nY!M>mZ7O`2bX}9j+2k>@@bnkqNu;_7teiPjcKVatg<`-xJRI&Jusf)? zt;o7f({08F;Y|}69{?+7&Ujj53y^{M)NsTn!``4Gp2_duhUGTl6Y-XbgpY%jGbcQm zZND<$-VhG=I@l3ZxKlaY`kpZ>I$w)7O5}PCteiR5S@B(O2HvhReIGiSeg zgT2^KW42T+GpbJ6KS6TD`!r73g3%v zK)xd!@~yBdsF0`ea4xpcTT%QLyjddKn_=b5*{)$70$^}{Eu8Z!uv@5{*W#S5F4*_; zOSlO{<}bj?nKSRKpOau<-r(E8CHcBcqCF+Kc=yQ9kFf6MweePoWY>h1GbcO8I03_e zymvU{Jz%F$@8vc5y=-*AzLR&w4IuK~8CK4m_Y{5zi9vZ;IOQtr3MyrhnZ?;D*1dc* z-Yk)A30BUW?F@DLivjquaKIPC{-6RDyOovg_8oi?-Zqi)1+a4Fl&3o9N*)R)`~d6= zDq*pbAZd=|KD=Eb-Fsl=%;~OapL%56%kPAfejD}+mGs&?CEIFy6JC(!lyAb|R&fH+OwLqdJZ zAi89Oj*fvFqf6Ok(P(r?(qCM`{=T-_f%&TTC4qC{!RZ`XwOw1D57_EU0>jKQ?QAl~ z2LwiaM~(V`z*l`G6!I_oN=W2qdVNO17x|=p^VOWj{El&AzFRQ!!MbU!px^52ZUy}o zUkL^MW?u;j{l!Tg9f_ZNvqatR;NxlZSD8TaAd9eOagx@gkQ< z1d`%64`;@DZq$WyzY|;+&SnzhQ5U|${H0;3t5J|&BLX{EE`=%~gMtm#X zFDG~PR?0)=kt#cMF#i3qtKlK*9B;Kl#<_@4)@r%R@g(tW-vOmch|9UeL?|JqH~Vd* zlm}o=^0t|M%&HyH)$EBex({}g6LoYm)6t;R#14n1>2^4|2XC4fPJRI^TjAt(E|FgO zFh}Ixrn?N%Z!>cOi-)&hr%*|Y_qRp|Y~F9;1`v6_4l8HQd!EXDjP(i@Q_et!zI20Se6Z&c}+R_&psSjW#5?` zt`^vb1+~JVA0D#K7*pG)W#Q0rx-n*!0wCB5}tv?OJzEjd5 z)$+@Cv7cSIxKQdTkCaGXB#iw#sEwX-rP5Q*_l?$$Xvy2Zjir=t8+pr*46<*#YYj=+bA@A9sMf2n9G z)6vp$P3)F#SZ-I5-@#iZR*_f2%2pMbI^jm@GzkAM>q;Qu-^1Q;mT*xL;fCcl;ospc z6A3>ID`!r4a!+}w0e9Lp!EmQAiSc+IwBd^V@XTnN>m$SHl5+8FmL1usq+d`H*KZJ{@nG$oN!PIdjHS#e=E=_-EmOe**i03RuKv z`G9TFy$NrZNcRRs zTsO~S678v*#i{3wnI((wT)bf--`TKo=6t6&XU7b}yM+_}BIdjHS>yEN2=t?-?GVBW~V3B`?-8S7K-Y$`D0anhOZaqTRCx(st_nYB(zX3ag zinke|`HZ#|q0h$~Ch|Q8R?eL7w8pHw0r>uK!1u!5paK>%&kf7%JNPcVWg_7_VC4kD z9*Ymu`UUas+CxIEUpUftf>o|x_-VSkCuUYFBc+~>?%u-ELT_GM!7%-Mda+p9k#D=I zipx@QSuQRs`NcWRYX9SWqg~7o=1bLOh2gyOMY;Oxh1|l1f!dpr#sY>~S0&$j)TC;Mn!rlTRNiNi$WU1)@v_1Vvg)<1x^K4zHN zxT*YpSXug~tH@@Jx|xp#rHB5TE2Xz8a!s+QFzz^meK)fx{>Fo4gXNw1|s~=!pbto9Mp7B+SKQ(WrbsquQB@q$$ts<4VCQA2$6j;&u?} zp9Cu>&{yRF^$x2|Up!JQ=BwTHAfn|HTq{z8aaG?Q-N^r8^s?86Z11I#(~9N(;X?ml zxu9>cxSv^rjb7)_tMxeRjO9c5N}*nARF1k!(AhJgo=9=S<_y(wBiFnNGm|%y$~7;;o^oQ3o?to}m6|wxN!e~k znHTZ4iBaZxSlNm)f8rA9RTgtaR#yHpSg(IAdVgB1*I^P^IZkCgk7pON2R8Awa0`gU z*MOBXC%%@-#);JT3a7q1>=`O`@lASHFKqI=;8qaHe*#ucAn#EH)Kj>4SQ6>NLqZi2 zclZV^SxAhgyXRtBHCGxK9;g&bOSB1#Q{f@&9B*wbBw~hZDa%nvoa{TeR3UL9mzW4s z7Bf`GjpTAQ%*;wI--bQq#2%f?bTlfmkWjYU!R2ziZDMe_1Xi|!%Qv}1>V<^zm%;im zW)D{ATdW^}y+UOjFCmfK)LS0x=&p|REXh~2 zVq#Z#*g7K(VP{cKCC}$1T24tcesG~MyJ5AKvmBMg&hXtMN0+K3cH|O?l|*_eX13OK zBhvK4$gKR*3;W7RJvxx-Xk2P@`Gcxvz8zw6c=N;%b0n;6g_y&AB~*wJ<0vS^d@RHY zw)O0L=}vl1s%I1}uw219fK@@xAy(VPIo+w=n>xdZ`s;<2Run{C%RTIs3;H?rv#jUWi6)JAw z66vLd8S=%V&G+xj66|iX_`U)AgUVM-R4dzU%CF&V6Dhv}D`!r5bv5DVxRW>jK``l! zn8bKIXV`bL_~4puzfF4synQ0=bz$WM+8()ErGJqMJS5Z;#)ZDaRz6|;I^C(t$!vbT zpr1p%7#^q2a8f(cng3(2FhgEs-;9NsK3kQ@UmTY+Q+mq@QTnAvBuv4h4#kqk-2W;Mt;|36UKME@+ z@b<{=sz4A4!9zk72#5N1L>35hQ=T8_$rneo`GNObhsGr5AUnIGW0j8juiB!v6$;#T zEiF0fg!Nc|u%cRyELA7W=Mod4PUx(6*+?Qg!@y(*)mo?>VIMh}N1HPpjfb2<;Gkry zs!I46-YPMgd<0guqREH2M0!<%oI-H$Eip?1i-aYxKd5};QwVO#19;m+%6V8hbIP$P z1PAF0!bzV8`-Do`oI-HZJ{xbJNc(HBasq9S^sXudkqSH{RE03lw5^6<{GN3H3rNl}7W@W*8>XcjNBaMrueVkDf0#>5i1c6YvXTD(1JjWAg-ZYbf_>x! z8okJLG#)bjb5OEXmHz*Mw@M5Ze}k2+Q1MqTk$U=f@cqCK(Ywv!`+g>YmB3WK@$~Pe z{NH%nM9TjKD`!qQmi`^24-O~&8Q3RO(q{U1)BZHxK9Tl*uyO)zkKC=&zeoih5-R;a z{MV;?* ziS#Oo`SN|fx^4NeH@H8~tioz|i~FBo-%z=WExYc1*!2H^+d-uNzp!%V^w(E&_~w0M zjDR(+4;}%lGl}u2EA2afLvz!%F`DgBFcY_hI0~l0$_b;uqij%>he#Gfwf0AR|SDc0v-~oAlS>dBeEb^Gu?tCNz z)L)A;;##Ku>C9TJUX}w#rT(d0Vj`seDV&D!P_Y%vL-tU;j93Ue$%!=Dfa&PTUo2S^ zgGe^3(*I_7v&3+*09Llb#U@-Lz4R}aEV>9E$xI0>01k&8LM0quvY5d65WI0B=YwG7 z%sI!FEV@{q9?tqy*eO)j=90w(-Y4S*5P6>nD<|;w$lPcnS8C6M6JF)6tm7FCaE7x1TLuz*{B;m1kjPE2#XDOQcsUtS%n78{RTFuX`hU zUs{~kW)fK0Oyw+IYU}pfwAaMjC(@n+D`!r7P4(EFKzxsI;=96rp%NG80NZ`Asqc*2 zK%~ASteimIBkQZeL8J%|2~{}U<{PYJ;qaey&zff|8I8RTUxbIMbDXttivu@VOHPi0 z;UwPyr3!}Qxx_>$7&_}+Hj>CyFefXCTmk#Yi8?x)>1aHfYaCrK6)weFB?ggi!OB(; zxsXewS18CW4i3JLGE1=H-QxRO*dJ8B`Wi{|;PYVx)i8Wh4FPVH#F?SPc8f2{igN)6sY| z(tjP4Y*oEf=*C+mCWa$mWh+!1$|cfI|2E&RF-ro||5sptQ2A=<-$}WKw@sw{C0IFg z%JKAXlm2-)>7T+rp^~=JzmxWl@%D+dZ-kW-XnW*tmHtI4@Q_gHe|z7K$n^hiy7K~) z>$@7Z)7BNd!+L;4B4TOs1m&k%uG+RI*uB9IS^oOAI9QVPz|j%;OU26$f&~fs62d%oOZiv=5Ve9NC29D-IGk?};}~{6K<-V%pgD*G3qt!Xo+W5hjnBiJxa+C@`@*P~N zRJfi?OoUQlhU&OcFZ?ge%*rOehdt%Q9^K1yG%E6gFUod%M&WmO+r;4VFsy6^mxs7S zdPRf$a-8y)!Ft+{gDZzAOkzB0Lz{K{gDB2)o6%s%24O+60_;$+2F%Q*iMs22H zDLh)8L#>T74Z>zEQ8~(oVc#L8%7-B?F%im#DZI}{Tsa>mWmOL6z)o_)j!tGe8W1_t zAW+F>)l9=#c(cSnawe>71(GwkM0!PooM~_ozKfX>IMZ+k><}v9_)J3r=Uef{iJWhN zl{4oYn`v;dej}XqYp_$Otj(E*1m3UU1`v6_1S==-_Q>w4KoAMRLqZh@gT5V+1;X3u zu0-g{ugG_F7Yj@BT9L5z&1hh9jliIBE336Zfj_G%iw$>vnH@qI1cs+m2-SsL&JWX_Az+-MA|E0<;-cv zwly?7W)QzNocJ}cU#P^*Z4He+*wnAWZ6H#=0#;6-?ve0S%^*^QhlHvbHudd@tQqE~ z`*vcD!F;i!ds)8FKTz%H9?VrMh2>iH@PDj7SgdjmyIOA>st0DfG`(TDma-gW#9w^r zs50WuTw)@W5p{NY|Ba|K=O-vTtDcy}B(S>6i9h-e^O^>ywiZ97&FX?3bf)7b5QENC zSlJ3Xlet8Cg~d8zzoF$egZz%nEbOke$bSrW4wd}+oP0t@Z2lj?4I%RX5UiXz{|(gc z!&YNpN%$BTfE`2~0~;AL+3 zbc>HEL*?R%rMaS3aC`?Iw$3qEJFE=_N5ft%lR3(aD}4u)Dl;zQ5)+}!=#srQQp~Sl zPF9NfCF~|A>gdNzM?+GZ!NW@fmuy(Q)3_UNm>5d#gq5vOavPUOucTN*r4%>me=&ms zi-~{0ZlRJEWu(;wJAM2OH-X6fuds3gbC1}s(uW8b9ug{jT0>+A4eX&y4k(pAw&4;JA$@e#DH*xr2$+-Xpql7D6!wu5 zb+jkb(ReiW1(b$r2^ZgRDBrs!q5%vd_ueK-8 zN%>Rbe1ffro@D z47T*`h%5}c(p@PxV<1;5v03dxskgjLd$@d)bp#7c≈VFxPm+O@9|&H@ac7mXRD4 z!t1_3RE6*=mzW3@!pvCDjY47mEhsN}2dP3~9+SX|DJSx164TMJ)Wo8ynDKVKFc)u} z7+Yq;%2sTd!6nkG7uHr!X)&i6#CKyxVRxuS{FAV2sKnPbW-Vjgu-Wf~n?Yp11FW3D z-XkffydnaKhlI*2FZ+funOAD*K5))jk}C}7E6&XF1$f*#2VL!`HcVRzv#Gh|1mDr6 za?9tr#6-v~v$eh(vF1vcnH6g;gPrBX9-YN>^z0(OQ=yq}$C!)p=7}-pB3RjqF&A)& z^zzF(D!*uMGpIkz%nHmf55dl%QWx(=6FOq^e*iax$p1cAIf1`Nf>1d|1QHJkm192V z+Yy;#u1ojXrK^%3%&`ZTd_{Y3S>tEupmmP8+MdqzqCQ6Ad|Xj~y--=FMJvZ6%IeHw ztnQWrNTrdPTw)@mk?GBT8^L5dn2VJ{wt*exL>s-A>1a@D;*(ZQ)9vuFCEheKd~6OY zTjApaTq3>nF-NROX}ZfG-NVcYOdChRPN9+(dp?W~*t{3v1`v541}kUId!EX&NzBg- zXMP6k7%KDm#=~f{6E^qLa3hG^Pl1&axO?PyRVIi;;US^QglWDVk!8Zy(tQ-2Iy|zt zT47%k(W-<8Stqa<XjUO_c_?nJ(R2D`f@#6Yh}Xe@UV4`x!Pi9 znGoCP>#-wP7_RKrvX!HPIMsKAsS4s`E|FM4q?cai7@aqw&G%qzR(`n}_Lh@;^mV4A zk*SF%P@@BOsQET-05Q~D4l7%s<`Q2C6>7v-3JNtRhFCGOIQm?=6PElNeU9@DUt!%C zk7tpdmO&=un~KtKZ7e&Y%uBvZRFrvvOC&~_1?hzuwmhcND>`mOnALAZnOPBLCX*PC z3ijX3T^bd6zM-<+4ldL1wu!-I3ao4emq}bAJ<9TYL**}n^~ae#*!^j-{wVAfcQ&zE z$ImxZJ+O&?7`K2(d|OyKbKQOlLe%Lcq>gM@|suwo-Ufc>I`5dgAK;EMY zP=$m@7akJondMpEq$QtOj!C(YXgsr2^-0aE;34ZAZ?z*@783ZHOmg&uI8`0%{7?qV%?uGs2q#fPFbTlT7x1s#OxSJ7^O{>ivci~MF zL&_bnvK3Np^_5T|MU0=Ikn*h%E7-Hi+UbUrDQqD{p(j7A&3;V34J~|}BdjeOj2rf9 zBi9j4rm{X@Rkj>ZDw<5@5)&YrbjeN|v1B2P$%-YL!CrEbj@D&58WFj_xIxQ`Bn$9{ ziIHRzSlNms@AZ{XkwlE0ph&W6h!rf7oSyPg1uT%TMOpgUNQ0~o*dvs4e6=N#H0;&J zts{~|z8q8}>E{v?A(F^W8oVIVPYgX1y;5q z$rpSjR3s5&Cn%EihFHNO$*0q;Nj4N~lRLT>=ZD$W=#Fl-)U&WO-|O5}@F45kctn_T z8=igS8f(#wMlYzF4DR=Zrozs>Tp}^-q&T7ap0QkE1f$nsqE;|^751Gw7(K;w^kDQ~ zd`a0@y|JH~UdF8nAzWf2q@BsE$3`SM0cK%ElF!2~a^j2z znU02|HkC(`IwskuntJ;j-Y79lEQgh?Ffqa<(n})K#X5eQ?)R7>ST$(Ty&850m9E%q z(lp&>{B68xBICqM=7d$N6+Hy)$+-7YA zJEF=8Umhx|EaegtAgauab=-(6--K~lapfDZr<}y2)0vJ&MIO==Gv1CY=i`kNBg;9k zvK3j*@|94LMU0`K$TA#a1&b_ePVMNx2l0aFz`Z*iB^z{f4BQx9$}WpW zqeGJZ;tKZnwa($AM{*TCs655GFdji=x6o+{VVX8d9kJsHUyrNU@fep#bbE>utEVn2tuIHeF0s2w1XRRgAoiw@VBeZ^6n|$as@Wq*rjxk`Mjd zR|eyS;fyz95?F0cWju#7j$3ahhXr`+MADnU%9)d%8++_`(LOw!_93uWsI|ck+taHHC za?ZLSY%`>^oBC4yT;K7fYKBoRF%fEp)%DIBdF2+En!J_N!LT>O-g1JEu3|cR?I8Br z>-O7m=0|w@#5i+3tZc=ZA8?8EYKV1JT-N<&aDR!}g;ntu_ZMLAP`PhlyeijwVvm4l zaZ89J;E%9!!U*t46Dre)VB#U6GR;?gJ0dg9sp&56>Z%S@^1}n=Vy`wyzUeQ}QR^IX zgbnw;dtsH`S}1con7)to1uMtp&{9ceV=gfflFamGzl}Jv4@}I8Gkd{~azc+j!gMq! za<05-x*b?{$D1YwmR(?FE3kZmOQe@tLK)(tF5Ifq+qFXvM#eUV+vJS`_V3WaBUJ+BId zr@6#LC=_O>jvKLL>Rl)qt5TTEB(Rdo2{-y1bC*U%o|&O+w?oLPc-zDf@~$s`b@TpP z@ZUG-We@&(XxohvUMTVRM)J%IcbGc%OW4C;%+sdvMkq2A%c0ft9UL zaTAwFZw8_9p;MdhUzsIXS#I(DKiD5szS@UQos|EAw@sw{XIMFN%JC1K+N9recQEPo zn8bLL`SzV`edyFldp_Pik@h@TIf1rE?pEnvqyi5KmHyB39kw$4Uy<$#+8M)ao}j*U zyqYu0fJN|dbw-t1ud@t@zt#4A;~-2ImTP&*Q70VcJHAw%a4?sc2zA2DSkH}e;dq#u zl}?U@UF8HH6`78PMXscc8E;n&EAhsO5oQ^zY(>tL> zAhLf5R!(5=Q4XkzLL?0j2~|;i#w z3+5qj4OIrb2|LM&GRT=O)z1g!@=~$(s{wrF!V}0LejTkpxr8gm! zt+??rmq@)HaG~DhUi8+pP`{T+U}Z5Cb-W%(0KOsKIFa-EuyW>{WA%WG^#S3m_lKQA zWo_023B32g4IuK~3sz3x?UBq?Js>iJhlHvJ?)ME)vL3iF-D!c<7Z-CqO9pc#=N7uJ z!eiDs;0W6r@Go>U45#j)`?Bu{Q-#CnTw)>=4s(p&8zsc`FgGi&`~Y^B6Mgh8rlXe- zBGwoku%A7?hZ{hQHCMyRR;>9pmq@RMSX(@n8%{H*|B)Gm74jDKr(oAmsf+1nXE$v2 zPvB+{**^v=XU={-^_V_3|5?8b=0BZDj7K$T-}Ub?won>fvB$tv+!W#%m<%f?i~)~A zLDd=}nRrO3TH{pT!7OWy{&Z`N)!1SNZRTNLc)&WNP4EH3b-T12<(PNa+jr2Y@?j4y zF%im#$*jjl@)&|ySjl4$c99cjbOh7UaL5CO>zHJtYR)0T8zqK`epuNG6TMs_y)r=_ zFl^JkkQowK8hjmg2bFI8fMF-&bMdB$j7MSR%o)cH7`8e8GMw|>uuG_%%>#y=tnb8| zC$hc`R!(5;k+W6W7fHZFLZ$s(eLEu4{#Vl7$}oADf!6mjblr!BBj*?+oCE5;h>_c@ zWg$mV(8>CNmCJHSsiI&tE|FLiq?bFUa7;#3@Ie@q?4WuVu_^2$C+lcF)6saycM)QA z$!1ku@IJg*VjS5RR<`2EM!pg%j)-v+6h}HjtYBw<&PeywW%Ho&YDIgBSi-u2)i%xn z*3N^}7@?{v66;4iv{p6$_tz)|F4(a(pKrGM6D z|4@v}w3)}YTg04ZaNm!ahs9`%`~SeMp>j93Tg19yv)>apgUEh2SUG{cDhpcQ8$zNs zeep=Kn6Gx%1BjMMaIHuU#XCI%S+tzHB6=|0mmX94D|z-A6ur9mGBX7mxz1r%+dZ(l zXxOIZsYYcHskC&u??SAH=t8EWA(0;w zZ{U&*D?V4_4HM(Xw_#-~eq7Ea(yJF{i$w-*%1<$4ushG9`~>V0DrGT2u9j+>R?wc zF%f1M8dE}yi%}p9!ep$}5y75v!i^4PIvN#u9%KxfY+Ka`{dn8N7}5(XTQMZZCDN-A z z=6R5+7dH9Za4U%9e+DZjkoQRTs$LN3!b3vU3p@LEMAi$JraO%=sV843YOg&zA3#Ht zbEE~I2gwc7l98iCSdAHr)zEU-s1l)rOH70kp|jp)BXn#E(~uohbI|XDedGih&0{(m z4|yIW2PIooWx>XHtHe;T5v**5iVe6#dS!t;57NQ+v&@pfg5W^dA5^~a^B~=nKZUnV zq`WVzoH^y#d5{j$Cxw$f9`*^9w0Rz+oA$AI`$XC+VdVtc9=Thke~}72BvktUPhk3g zeNw95J)T@(XAt*k`Tur!oH_?t@UacTGA-da3V@&c4jfeg{FF;fgaTj+@3T<>JO}fT zw}z?!o`Id@L>fKBbTlAxsiZ(9n^h&i(|EJQaPcIpY=w)*xkP#;fIPj)MR@Lm!8O2a zCV|z#RKoGo8WK3qz#AuW?t+yw=Nvn&!Nq!~aMnA(PNA|kPisivy*+LKk@t46asqFU z9Ina$kq|s2R2lGN-vA|N0ai_S7GO#x*SmFZzF#W@J`WF7=Qs;qOwh1R%RG)!;B&r% zN0kE0xx_>$1-fLfjbh+pn2EeWR55T7>?SAH=nST#A(4v-8n|S`svNigZh zAzuz~P_k833LK2LN(>dBft9UL@o6rRUMV174mkLp#w-b}15SbcLFF5NIpC)J1-xw{ zL|B^^f*@P@C?RT1zSmzW4eK$q;bQ3tH^ z5XwZ}AgT^ni%DR$k`rq*ndxXqG6&k7{6{si7Uk@d%6<;+>fW(C~5hr@Xf!ET}QHfIGAnGfP75Sd4? zasqRYoUY0OksLfER9WzfZ;Fy-!OC=J1v+~ROAEbuttz+<9;?oQR@?3Warf?la!q&t z|B2ia#GN3KR7gUcNZjw2h!7H&P+FJioO9-!Gn2U-GjnpG)TJ~Y^H6P29$NQXTv{p* ztyZS$Yd)XPUVH7e zEnhtJObc`%%}{WsDLQf}xXqDhg`r@S>$EZxJO^ilbc?6qC~1?Lc~IyCGEy1q9NOw7 z%e$@|37*8S%Pbj>!^)&&JnBe9HxjJtzP6{$@mfz?PXu4U5#i=|ec$&W!!rGE{OZh1 ze*!DVp6Lzb3wzpZ&$Q3>3?b2oDWCqL-FHV+59k{N({T%!8Q&IG4#~JdFPGzh+ZGHY zHHVpDA7DA4Ojw8AJbqUy3T z2wV(j!~0#x#eoaq7-@)oq920J))rSQ7Y`=kD zpPB8~VC9f(8}x43{@qq!AR*g-%G43B{dYur;J~nSE*ac6xZN{oLDDj2-TocJ0_{fA z{-+9Kv5DBjMz;Scjzmke|EkMM`(FTO!*fu!|M_r?voc?ceONgp+XlT`wtu%37)Z$WKiSj~ul;`-?F)n>bIE1tTz@X` zG~i9)16Gr?m|5=;sM!{1I+`Kib<>#3A>dUG$-Bt?m&B&G|{V3Cx^-6;=+(xj|2tV}aWo3?$@O@Um%(^2UNu z(LNLq=L+PNk1}2hqpIbs0p|)-EerG?%}DSAQ*h)+aHS*B3L}9yS3vlz3pv{;CzrKaRwYDZAvpap%X}mHwL(=@-8dKfYb2HGRws> zSecZIen%qmF+i8$JA^5gW56mnAlwZ5$AFML-;7_Jndci|<=FG=8v}H?e#t)9FTg?J z=2{&CLh}6_ZU8giPs7R~`8Md`atv@Af`Nn_1CBLy#2W)njd(SnJ6ljbN3i*C(W0cK z%z6xPEemuV%^0w$uofGQJ#ge0u#qFt5@UelvoZ$k1Lwo@P_72-2?t4=(#&+B6G(_R z2Dqv6E-S}?-SEpY%f-&HGAS3c9Er%s09}SN!W7Ffpa%{JH^crhASBOS_{EudPQuEu z=h-&~=yH9TeXdu+LE+|F9Rou0eKBqTGv61&$|3nS=;3klXCH{BN6!+pv&;K&!fLMlHsj|1U3zG zGwdG&Lh?Kbzc@3`6JX`o^XwY~bh%z+pX(#xpm1}ojsYS0UVt0G%=dg)IV9f(JzS0f zZbLATkYm6TrUl9y1I~$d3>cd23~m?v4veXmvC4s#hX+*c3UnOJ2yl@pG;#!}I1;Te z0t^=(D+9nia4txDxC;)EHl3MkgiatGl~K+s<<&HK7nSY*PW+-r81(B}B}_@$XS{vE6wdydD+ckOAO$Gu>k=e31I zBZfTsD|WYm2F$0w=h67(nYkVTD~IITpl8dr?=}Gg3EB3~H-*+~`wJs(`+bF_ft>&g zVMw)=#JcTQ?F#f6P1`@r6dKv~4{;<~qU{Thm9~EhoD0$z@^FZ>>CBuYbOPz{+I}@n z-bH2GUyNUrStfd6Wl|^h$wL#C8ZQpGI1`@LE&oy<#Yx_q;+xFM) zNSBwUOR2WRGGz30%@tZtHeIz>0B@szc{mwOo5e29hvM%L^l^~=q?BN z0;Xj9tHL15`QSJ>EZl6nZ;=rfXwHwpOXTzv!IkSGOP_--2g*2nV zH%y_Cqrul5iB=d5h6|6CR&fKI3(_jCg+ruGXXav|6G(^mSfQFG@1pXt!VmC^GRwr3 zuretVmpc;CjRW3p0-D{Yg(27|PO|$X91d=F{f`y2Ier|!G&9GK!pgDd*!Nh0=J^Zz zJpUUG2{+H`V+C!lKfy20%=JgGa!9TXdbVu)ZWAz&kZpgtsUu$7KPcMefnlA6Qg2{8 z!M-n{)kuq&^|8Z_VS!GgY5aQ$W3d|`4;$I|cXuROq4AHXx~z2mB%BS>8%~B}q)ljM zfzS!$!#j4^NtAb0+4@hwugWYH$HU5`R2=I_MA!PguMTMPd!ewzviDyA$Ag<+|FOgR zEU&CFkJQb+ju4Djt6dwFp!Yr!TY9-${P=kjrO6y zFmbfh?7-^4Y8X{5XV$9&j$wfoq!|nDHpNDc1wV8oT45|0QFU2q6~BYCL0ZLc;TUNX zn)$WR3FO0D9dHumT~)3QJcD1ASt_1_l}V|1!jXt>9Pm~LH2EFzvh^r1R7f;pax=QFM+c`+W&Xp7-oc?cCafHiZG+w|+rQfi3?yXxPn$a8wf_mx9yh$UnDf$|$!uFf>;w(0 z0<`}DElgV0tY10w40P-ZbRW$$u)VMuyAkpzlGDI6N1_#`fpvVID?`CiaBe(5C3snZ5jp=a&Fkh)DdrPSRV1RL26lF@TtL{g#%cX(xPU)Y~UCc=t!DD;ZLT~ zmV?6oITEcfD2%AOtkjNmUO}@#CWJ9U0vo2Z3C(;W0u{)Iw`|}f%Dbw3YA_PNDzj7! zgOy3C7~)7oHyU_P4K(@PQ&@ui+DLwPgX6)?uYcJf4E3=ZdPEu z;6|8JEoAneCvYqaG#t$UaGfbQasas6k!XbhV5E}`Wde8<&Ijob55qyyrZjVp&3{d43PS zI5W@h!pgDd+5dThYPghN^VY9g=X#QmXv92Ef6e6c1p0hWzztyLdvjPhB;N)-T#f;5 zLokq#W589W;Cf@g@KNH}pF`%iwN0;{0yHgitvCj#cXj4E@yAIkLyOk5OGdX1X{-K| zSrqo~9v}7>Hwx{F^YP*x1M@%!OsuxFSkD7uVQSWngPtysFeOON11CBXq0yff8h(SI z?>s3a#ZERxIzB5E(isd|TCmaxNhW+zENS<%QFV4*KEwFOzdG^f%x?I0vpX=YlLE+|F zod-hl{X5(MX1;$5D~IIUpqa~gz-? z+Vp025ITXhD7y)&Y4a{F=YzfQi!~hsg_~{N zZUSx2dvOz(IZwgLvFBW~n}Fv1zwGn=JvcPnyoc>3(B}RU+ze*!zXL0WOj2s<4g=3{naOQ2H6Ua+tedn!azx8x>_!z%B zvzB}aE0bFCz9SLc?68sh&c8omO1`&y4gEEed`}e;*i_BUxBC`5^?_!63T^{4>yu&S z*t5QwJiB0k%pYf;`D5VNa5KM!a(;o|51Rd>a66dUUkEFQWZ$6q%lW}=9R?C|e)x@P z@$%+}&7$3oFh;B}CA+$u-6#GJAY2MVt0k^-sO9kBGcVAhG^4|JO%al#!?zuYRu~p@;#ltywNoEg$cR>P6fCO30~&rg$Q8GjYGfSK`^VddB}zKI+eLbJZ%>(*IcPe?Rk zRHVP~@yfs;y`Y(22e*Qm`7y9^NahWCy&MO|N-J&1P1?d(=I7HfXW|BfDkPh!V z2-P%s7nM&T3iw5tWg-hJlQNNZB%&J$yzd~;>|QGjv77~d0EdH{UH^9wv^l;Kzce$) zm&3}j=h*ih1e)h3?eqLN91?Dx)$br^bNwiOd1kI3hLuBdZP2r2+jpCQfrM=PhnhO# zwfz~(7?cec9!K-oNhup%qDsne{=)b>jjZM>7D76$WEdv4@Ww07f|ytuO$L zskyC80khz&cuvX(3+-^6w29435ITXJcn2ZZET^Nu_V|^VrDGbbOiIT#jzn~$fOimb zEm}&RPZri#&I2dFG2!Ofe-Lubewyv$@#{0QeJrdTd$xTCA=e_NWc&jAjIV&>!p*pP z5OU22n)P#W8<<%?8&(dpBeUA}j%#^Ipv(NfLaAdeyS05utFKFfuz^!0reqUHQ zB=ZK{UJeXyyD*TD1H*%+Mavr)u84L$VW{|mR$xvz4`x*hn)PFZs$GFrq!|#-F@;7B z2xmGHtuP=A7al8h;}$p+p**%f!{NGAR>R zITF#01m0r=n%&WJ6&uZ*_skFIYP2{iu$ zVN|vCq;g23_8Ja40_+F>GCY9f2(Y&!(F!BL*m_o!K_CU^g|vzeI8fTuW{wg%!9l=n z6?N0;IFP_E%`6`$!pfw4e8rK7ZX8%&*`}vt`a8lL%c0;RI4ImqyYIv+4$yp8a08h6 zJ|9+&J>MH^wizlpf51NH_rrnV=6tiTU4}I8_u)n`^S&BZ4#~SgkC$VD+b9eqwf(5%v={?<&az(^laJo-6milA=~~xOk0uH_HT`LbzrEtnG3Z2pTLl63A1kdRl5Rx zM$`8H+Y}nv_J8b1v_#t%9xHACWjGh4F}w(eNSn^gqe3T;4zKN3(?nXr^Y}%XW#U;_ znUsm&I1-V!eVW}dZ&|nfkwT&oLmkbozwK*tJPf}yGsi<<<=AuVYx^|MyV>V?XE-F> zU$NTuwYi>!U!Ixkc33$i*9JXXwtcq=7)Z#r|0C1F!sq-^}BBN5#gFwR{|*Jt@*VT|Ppz^~wtaI@^Th=BQY zkZ|D0DZncu+R5G1Iq!k-$pBw7BlP5Bszu#x{qccm?@0KZihT<jz)>{<4GCQ*~=JMA-l8ypjE zrq$0R>a%?detl-PZ-kXYvTe}2W&3wqfq{f<|In8T$u>g|1+8y@24Usf^~%i zHZ^IJoB2$HE0C4i!Gtnt-nHdiFc!Zyvxba{m!~ zy%!u6Zm#`r6iQm@P2=vk1*^bY(hHjT6mA7G z^Bu5qNahWiy_^@^c3~hP=Y=;+o0c~({5#sG2&3|;o@6<_B=`x0TVY_ev{|1}R5vcr zlr*ElO{VzBQQ>+=q7_DkF*Uc9GV%nR71BH&gX5%4Z00_p6Ud2oLQ&0fS~?!VugokR z55dZ$bUf%tL^mdQCluA9rR4cjVU6XG@G%?{Zl3)o6xHmf+5Ql}J~P|z!^*K|+jl}y zEn-T>r@mvI@hL*05w`&Jm#v;qRP%vmeKKwXGwTy!<&dl!^maKOxGlm!LXHR5nBwb= z2b-IHZrSwnitF|iQ^|6ws9RC!hN0Egn9AXndks7jnTraYrXnSP-Y92eXt(gE{nJvj%zJhPsh2`iI&a=IfC-ORAD`}jT(G9}}y zg-Mo!!`*OTxEXg}P186*^ZrBJ2xi`Ihm~W``*`^nf1upIZlC*C;oxv{zoqh8V!#oa z|Cez?nE8JZRu0L(!4M$l2)BV4NXR+jBvVJcIpTz9ml;N+OJa}+K9Ts+U(jl$#jP^e za(?hk3-l+=62n%)Tx`Jh(2;|~mX1U#3=X4Qr<6>;~dsUFabUyfVA%=o3Sa!AGvdbu12+_qpK zA;*F7rjAst=hK5Q1Xh}~q**_8s2dk(K$?-@CDW+Ok>CYK zq7_DhF*Uc9pDugokR|AduE>G+2u z5#3neJ$0x>OUZM)eV(@$64;2$&9nchL(P7g?P>V+nc3b3R*pT}zNZegh$$IA!9L^1 z!*SteTz%?L^MPjlSlk9?){lmjL$Yqr+vRxRwg>|WIUYP`TCBYBAQSB-#&t@4*>t%r z(Vgrp7m9&xj8`bkZa1f`?WC2N8SWqL?jJk4f6R9N&;nOEK(}bnm0FVSOwCL$S>E2= zpYJTE3;ATWz4{;BziD^us+kq&M78OlGP;=RP8C!6&eY1xstIjvnadQ22DjLSsIq=% zA=f7&kmySmlRd>`U$3XQ(oqbZ8KP?_>-yuN6qg6!M0swH6sb=Y#afXYzWd?uX%n8g zMd$=FR&j4O{VvpM%PR4|b+3LOe)R!s%UyNl)v&S`pV8TLshkio%6SpG+f-?6M}Ib( zDkrLf0kmYT;li5vzq(@=8=8}O$N3jCe~tF^lr3w&^tME)zpt-QET_8K67KIkc-H!m zzXk{4!DFK(v2uh_>8Y71t*jdvz`9n5G7{p?O*0~C{g<1YL*}=&O+Rbp=_{vYt`)Vd zcXj4E@rS6t3&Q?lQP^J`ANChJPYSuljp9<3db(&FlmavbPM6ob9~Zv5zy8TW!avU% zW<0Z=&XPo@aZ)Pe{{mr|vb_uhpJpVN1+^al) z8z$N{jQBLuy%lRG#futZxNxdXV94nd;q)(r7;;zHNQOI53?)g|QgCJE)&O!F=) z%Sny|9(IGM4_sM9I%<9^mE=4)9i)<+0|!dmJ2FL~6RafeD}B;-I>VfaUz=GuPKT9A z&Q) zRY_%2xm3QqG+ojz!}$KX-7zcxtEQSv5yoN@yoZgfCX*eB&}uR*x_h4yRhO0GF(1wb zDIW9S80m}0u0kh}5AQe$CsE#2<>+`2epP0vH~>~ArD9)4BD&0a$4O}NyHr?$^>C8k zG8_+Xe*MQu=(BtZer;x!^RRO4S@s<#p~>|1_L;s0jtMu@>TweKY=0lWJ~P|@1uKVS z+n{&L_V2a=0|~iOGSSqLsuiOBe;jT5-;{Ho@w)H{t5I6)^hZm$cQ*q)lMyS})f*w` zF5^|xG|0K&Wk(`(E{LvqY$9?*BA|>3Bi=((MB2zuA%Trj+AL@OF5(s(6Wlk@bzaar zj5gc~W{LUC6bbp`{?t@LmKc{Rs}l2~jTNHA>=Nx>uyNI8(7f{wI$a5!3v;W5PJfjB zpru8us=0=-7DEq&(e!>}vZn0kNVGsr5lQj6t`w7AI4PuSuDv6q$P8b_i9Dv6tzMD zj21uXwnTq99jqdw-)~G6*~h4g2%B7!0+4FT#|U92HmQ5m$nr7Nk!XSPF{b9VQa5J6 zsUUS@Ivgf_-Pla%1XAMdO0QW?$B%9CD>Dnm*03@u7?VsTWWjLhu__pCHdcs&ac{J{ z$i|clwFj|*og9mW8;zJd_BE;)<$|{;GU!H*Uej>Pl96&GLQ6)3&q>DC{Z@*`g>W`V z(YOE(l)h-3Ds+NH!~I-S-E>+tR^XRrR*iFEWl}ZHb|j)(^zuH;T@RO%>7NR7u-_fY z^u2IUxS95Un7i%(&G$XH0nB{g1uMs%Z{LTx>mgHe{+4~t-+%+d&AIwv?z$5+@2}xT zF!TNjtQ?YegVrvm1GiBaNXUiO4pT>}R*30fRkXJgTlA%honl*qxTPpncbDf zCyMl!d2rOUxz6k=bb^zFd)iKjBedQegd4)FHwVDVq~7dnDk1BQ%a&EWnP_8$s5kx5 z)|+wpeoNVGs@ zsU}6buGEv;;G~dxatjoSvx-~?E0Zd6wW)-xA}&W( zRpd+?D?}CPj`qRqmfkM&u2grjKU;krH(N+n_nViO_XRhazat!LL`gYDyULL)Cll36 zYWIND{<7WOqU_n~n(A2^fLT*y-ZD*#EHZC65-m_;+$ zC8Q6|2Pq*rI7s>ua-z@)B&0INDIspENV&-1mt~fV9$1-_i!MhZx;x%=+~f9i8NN!G zg8kx1hOdAF!p-n{PKJHP)0y-#{Nl_!uY{Fj&-427pgmo#AG6Q(BXCf-xpr5~6$fa( zAHoe_=KDcdIV9f(JzS0fZbLATkSnJLnL6T)0lm@QgKW{6O(n(G2Rf6Ty#ubCj{XoW zRa*88S56%(JtL8o(-FdIY=ri(l0(8!MhI}*{giLu_qPO|$`VF>n1BiX$d4hJ{8 z?&h4j=`_dp;Fo6R_%2vE_8gD%P3k1iZ`tSh4LBs+JiCuN0_M|PzlL9)nd?_z<&az( z^laJo-6milA#XD}OdauVGd_uS`{oAa>a)_cco8kRB$>`8JF>wC98>>+)+Q}*`cIV% zx-UZ*Cv5YX7U(>hL12n7*YdVvvLg{X2t?N}s;LQhuM7qA;na|}F%J%xHoKW!g-#$f z7557Vst2^99E4lItSAS-%A}&~Ybqftic6DKMVV-0g}9MeE7}{04F=iib-r*1n|8F! zRkRN?2CXPnCD4u7fHL z&~kDkZUD2KTn8(Ya&on)ge)g6OIGFNOdBgiIr)0Dk3&a0JGy%M`h%+z?+7m%QANyN zNUQD$a!d+9s+mXLG7YvYA8$AkEl@tj)Vx;e#=0M&sUUS@tdPLQHhtarRKzNflG?}F zYx(l7ysExJF$%vjvtSH|l}W)^%Tz)Z43{3Og7KOu!&NIp!T3eAcQhN83*}^XfUV{W zL{uA5I<#M39CQG2tV1S{`KA!a5;D(`Xn_*4f$F_dO8Vf`kW!L^!=*1JCkmZlDe-P; zs&x7DM@mWtw}4qvdSGQzQo2kfWJz&pvMMPD*;pY;$_CNSAj7KL1_C>>?i3C*qJ~%> z1zI&MfT?B(xy>}%vVz>=NQ7392%nCOsOCZ`8&AX8AZ6o8I7a%i@pGXQ$Vcrc&}yPc zsdyZ}Dzj8P3M-RR@vtKi-FjE;C{UW;FN7u7uZ`sQ-*7y*`3)Qes?G8z__di?{s>l% zJY>o2BP zR*u%a5CZI)@Jx0s_6!d6CC!}BYs#0L6H<;uE6fSCr1>MDj13pUNh59L0yt#8yvuZF zP8B+V^i8#0}6G8PLlWFrZ5?}3s#Pufvw~=hQT>_%btTb;1F>+_>!}?YCv}=3$NkkFj;s7 zRt{moV0@4hh}&cgB;*9rVd{uCf&4PsHO+~&@8yYeH1dOdta0i;(YmIEv2v7d0vU99 zvu3E@PVXqL!MAZv5vF6KyN8z?Kqfm9p#w;CeW;!?T_luNG#^fx=ePV|<2*QY+N@`G z6*|E|WU^C&2F$Bxjhsjh!mVLepaWoKQi1k0m5>$4rOc`VO|-E>EP?($+Iyg3$<9LX z3GDg80c?KK5?8Ta0<9VrKvr{WbDn9mWo0?XkqE6UkuHG>mz5H78=MVNLT-U$q)lk% zdqO9WkJ=JwHBqEg+=yS5St_oBl}V|%+L4H^Y1EcLX?}kvEWv(lB)`9fom{Y#)U(<45y&h$_rfz46eOp_&0ZMNI+>oc?cS);OT(7R>(cUysh zguDSc)6@~~24q#V?SFIiM4WW>Oh0-a&RiH?EqVIo&o1%k4?Yh^7|J{i=RlZRuad|a zVLwMAbVi7-k+|Q<6*pea0Y-^>5R|E*7fu)HDk(T>+Kgw85jw%C!F?q)c&ty|5jse8 z;D#`ZP6AdYE#^d130ZVpwycWI-ZoZUXwa^J9 zr?RQDu0egEmE|Ga24-b>5LPCY<>#gnva+~DSyh(r+gKqg%l}0CamR^0)sM)FPbG<0 z-$)16E_`qReLn1x0)Mi^SPvudViCHHLN5yEclCctA$mYSiCL<^Lf zEkeVfRGb-bvPi|54#!PjaW)e=!HVNP)C+Zm7M^W!Q<#NkYgm~So=K(>vhcWkSrwi( z8!JTNIXc=0InLpJvja2CV&Op}W*F`JaKMg{>b}a^gD#}@n#NmJm6Rh9T2&%kNOcbP zo2`_P3*mf_5^@0?Bz*}vRp`$EY$Z(EYM{m3s#6@z<8r~V5qPg>q8 z3v@Rez(7#jI^~%dXhfQ&jVZ!x%lnPVjzlX=2I~c#S4M>SaE3?&nFmKpo8-){LMM=! ziu;HrXg{454#Ka`tSJY;%A}_3>qta5D{K|X;%hnxKgA)7?K!tDilReits_i;;@1pF7Q972G> zFd*j%w~ZJ`$a!L-sUzMzaZa@Jg!}P}>Q~jg50>j4TSJEm32ZRa<~;Lv5xd~1 z;TE3Y6I$sBZ9Q$cCCtL}nJF6bC;zFbge*KRT~>wXMH?%`jm)@cAJGm^=6jSA1LwlT zYH`z_?*-hxxRwQg)!ell2qWqJzGO|=&yfhNDUq&cRoqEi35>$SvjY4;Fo2Viv+Cf87IrdiH<~c4WqW6smbsq!W68jlMH_c4hT2Hf%Qy% zo-e{L&dhTKR*pT-{`E{vu77Et>j&VVaC1%8GxhntA2)!R@B3iokbE2Ta5)CJ4Z%P{ zR+qg^9r5lzo{e@t#oG1t%w)bR@N{#?XJ~EG!d98DyWs$)f!cal)xJOr(#!;(n+9Lb z1pjg*T45$w$LF~+8BBq5L;A*KA<>9?i}i#~AT1TQZ}^O-w-Xcbi!Y(XLw# zPnOckw@!Zs)PbFe;36vZ1t%SK)kkKMlD6`7#_N zZAvqb3!OkhYRd;ssz|GN5x*?6Ts#jelXCH_BN5$rP+LBzhDyosI-gq)24jRoBgR0Q z;lT2NKF=fZi!<{)3|5Xk&;I2DO|JK}&-HF_P`JNlvV5S=_s+Nh%zV#+l|%Av(8J{z z;5GyU2{{J**t9@-W5B{_pCW7^&e9*~BSgz#YPHB2euPLE7x)a%pz8-qOfix}LCKK_ z9SWlB8`abVyjPmXm2hgjpNt$2E{DUV&2DCe&#N}JrwpM_2!D;4*IliF&eNSb%;RrO6( z|HQA&tReq^l}QcxyCV@{*9a~~l3Z{91^O!_xt=B@8ga`(bM1Bw)dQOGZEy>i8UGTj z9DBw$p-Yh@>&M$?{a83M++Vo6g;wVU&HT~070k>Z0V{`O-k{mbdBJTL1`_fPa+()QdH)x&N1UG|OXEubDNu62GR6^Dn zmn*9}^PVZ)-sEylw3Ey5>cPCdfi;d3L>wDYQ>;&va4ZYZs+m=eH_f`NCdWDwq17b9 z<&BX}Hk9&l2AmI4K2C#!q@PeSLMM=r+9OmaRo-P+)fY9E;g@BWi+)&{l#8Mx5#1nK zdxTmIm6G9A!W8TmM>2df91w1X1CLPkdAyl+0bh=G3>cd13U0jKbO>6Kw2V~_ zw0zJ}wJXqZG$X)9!d7fJ_Mnj?!1|6vD~tfcg~v*J*b~kLX%D->A=0KZv#rnxq@yy* z*@9V3lXp?s{&&VN$}AJJU}aJ!+8v4L+W%Phi2%)Rk1)it`FFwL;AVGS-^OZfj+6MM znK?cgR*pT#SvY1YGC@*F|BV5Dklor0qk-CXs z(4|J#P{&TsOlf7HA!+7=r%aO~=YuC4iO~5Vx;8RlfIui?!$)w!ydRa^TlE1PIc?4} zuL+$%mMW8+f-`_Kbewn(H-=e$-i4J(`T4V{ge*TUV^-zoF&ityLyiZcEkB#6p9S%b z!9RE9Su0OpnOQZVtu3?5T8$|?+8tMemYv|?B%XNzk~Q^awlLZ9eq^R2(E|0xO;P=z z88-q-p*bE-5h*ms!XeWanuCN+AUzd#V}>@5o)z+js0F*NG6F5_(%=|YTF@2f2QRoEAjQcr|+73_Y107?2jN8C0GCzWqNs+n3 zk%(@b-8{HYQpQcm{hx$g*sql2{{P_UaC7gTV;1HKCE$;^B}@YT04v8%z(l!bLVrC9 z1se^ureJ*`fz4)I3fvDJ59AFcVO`uBCJAF<Xo_^z3NdiJ z8SNK3hKdO}u$y8L%&Zo;%I-$XCRJ+!jY@O7a-=CLa*SBuNVLKjF|Q4fv78L9hQqyk(`?sP!w{B8j(K#ra_a(q_!_Z2l#n12oieswbw*c1`mSaP+$CsQC zMmrLr6GC*2WWoS}PzHzDaKb#d(_v*& zfVMT2kOjzP%&Gv5u(3kiZ9E$7^5(euiT$GEh)1`9JC9R@FW6+HWv?>F@Xo{icDQF) z0A9^aNZvH?vcxQQBwC=vtQY*Mvr<)7!f7E@l3p7tL?L-6+GUHimn5_4F0lioyu2@1MV=9kG@^wjew1m8eUz}M&-i4J(3Hh_Bge)O0Lsli^F&isH3AruW z5;F4Ga$3CqzC194>@qx9J)!y$J7=X1li&RDzQ{AazDleuecjw7$VY~mXXK>qH zkSgnU7IJ;!5P(EqvY6~CCi{9l#hH#GURb7O7R_&Kn_k@%Gc9wi*cH>eI&+=)LqziU zu)o-OQpmq?qxcsq8z<@yDvnE+dv&S%Dx5mc{gHx#R56+LoIVZ?qZWb8K|&{xxyl~S z9sMplp8af_Mc+zKmu zSl=T4MYpuI8Z!Ci3No(>Q!SBs84gpF$mEw(WM0HAW+L-EtQAMC3j2 z;Pam=Q5oCOpUsLx%c{eVH}|+xG_IAAeQ=>^UF;H}a9gQ+17~H$3>z!NUHy8|-qo)? zcUfPmn9ild{dMpL;XDx)tZQq3B$Y!3xwTIgi^=8mw%+-#+f#n)0(XbC`}&NW(#|nO zTHef^=|~vd%r*WNesaRuaaz57KR_&-E)ny1Azunj*DY|myx+6DpSux`pEl!}ON34! zSCyk_=cM^<7fUKNH`@ny-ZNjO|2o`!X05#1Q8u8W;p;lv4;mNW4Y2<;t7n7@*sq!3 z@f054QDXZ%I9w#;)4__DvC{N&yFhO|?R`!gOUF;D@BDw{D zX@e8hnacJnw{&eIt#SGcjup4s9M=S#sxhDw{HM4NOp-o^m18Gq>fj_%kan;KX*(g& zh#NlIw!Yj1khC04#a&=>GzC_Uouk2fe|vAT*j4HkoAVYcb?K}2I2{K^j9ZsZY64C& z60|xUgL}fH>L^$_cB*C!UY)A3EGNka(7t8Q)HmUHahW=yNlaDaK#4jF_k&5)8L)Ef zL`@%@sBEDpT~LuJ0CRH!M%CS?$s8D@HI+L$E%KGMRtdMBVOx}zNa z3@Aw#;XW`)s=&%?1W9SKD*j7*k{*C#6)Q<129%`xaUYl@-3KejP7>qJu6j7Db~W>F z_B{Osju@AxX587yNKmTY#yw$D^(L&mCQwx!owQVKIokU6ZoH6a&h1?@sFIPORBeKL z!lY_LSUGm8b{KpvFZUKxrQSkTU4%N+9;$=kfN@JzGxitM13{UZgFC`xYJXTccBXa) zm=ZU9n&qe^_Gp#hxN*_yY{Cs+9W5^&l(0VBA0}ZrSUH3+gH4ojAEvwE%0NQyqq%C} zeKbwouP5HUTaqf42HdZAr#;oT!MWm6&D*ah-n^{2>6>!HocB19`}J zS;cOm?CNuhDQ9bP=+5K~##rBPj1v;gx!*XP)xSGEAN^%c=Qd$?ZQO7syQ3ZD&>9!v zYsbD-R~-w!pSHik?QKuR9(Zt>6^^&@k4c3u0ECZSaTl0;>;x;5+P0%35nZ?3ap0oT z-jPjqF3u(MiKXd$S7E90q%ke5wcO#}4abZ-Q1R|Sxj-p_p!WxzxFbxgz6LADj+Jj0 zgtk7VmZ!verC@5M#!(Cyb^%Gb*cC@w~1T8@mdD{4% zJx=e!k>cXSTtVQ?)$NY^6rn%k<}(rc6RaFNLc0!vkoZJap;#76iltOf^>yDwE|ttH z6>7p*>ltcuA<>*$wT_1NJZ(5AVw>XbFcI4bR*oI9U0}r0Dq-{O37ZE8j$5>nO(raz zr+^)Vd&30m09bj=1FY1aQ%cxUd%((Y;93MQ5e*91DY!RG!1Azi2w(}=Arr@&U}b`1Vs`AqU^IMCdQjR&#s6X!mX!<;7&Uxk~`g!l?aIkdV(xBP#%JnNws^>k%;a_z;{?p7*XOx;m&NK zq&~I&R9I?RaXyCQ#jQBJ!)h?3YH^?|4IkouFo}8}R&Eecm$bDFX{-KY{$&u~Zmm$X za!K{k_0)B&v6>~UHJ$BK(nGpbWH29%_maUYl@-2f}cP7-4n?=18!7l*T{ zn;l-Vr|AVaUR;`*F^t#ZK#6(|_k&5))39>vM9q?m;$i)+v(PWLXypre(eesPks7tG z^)NnMNHk{{{~Bwh92>?1!Jurdg*(G!>x(syEk@t#N_TfFNbO>e)NDKp%$2BS^u1~f zC`mJMADAS~fR$sfQjBHIu5?c_mrE)zb=bp{fWyUYdtYrree%LUc{&kygUQoZVCC3( zVpOJ7vAa`&=^}fWDsZg0Fg2qxRbxO&Iv@9eNz!?+a_l7ezBCawKXsG0Z|=7T={`7A zT#$G#oMKax2m$42HSPkFqq||{*g5i@LmJ9awvZGb`YtRbD^G9R^YkVhGA>WNx4A%` zWGE81UB&`E0uNfp2 z)Wg{3*pswB94l^VY7R+-E=tlqxDQN{_JoyVC&{3!S{CQpBbm1F0LQJb<|baI-qp7rhAWFgU<+qq`cCMO7#rHQx` zOqRBQm1Ad#u`-ZN71bg9D0`F^!m;8Ore@sFRbxO&It=%LNzx&(a_l5+H~1cctnT65 z8TKrl21kp_(pQ@BaL$barD+-N1(T+JSUGl@7h6W;j+{mYPwQsxhD> z-GKYRB?~xQ;hY2>R#Rs^5yQ?_C(EW z8d1$yAMnCJd76Q{!Q^Q=tQs?lcX=h z%CVEQ)8O}XrM{&2uuS*zL^)MG&r^B4Qn82Xd^l`esCeghVo&Roa8SO^!`)%>bq=f? zJ70{I%w^d^&vJ#T`|PP&4F`)$RWnvHogh$_?#7*9vh+h(Id+y9UGLOXS=}1`raelp z!?EI`)QqlIjR7U;Ron+ANiW07AtV``%Oj8WanEKkkYJz5+4z&nCdlSHFO^RfliAQ? zeYV=b`qpwwA<>*$%lWJ|)E?JG-;q8#r#&|0A&ld3vzg#-;wZPmaX!A?<(ioI&am+x z<#VV#5(ne4WxhalOyiL7xliDjgFC>4V}DqgRJDB^iRg~-@tt|6qo|nb>hDw!?^z;j zv^>101V@V79gk`tM6UO=FZSWqGYQJU${_?9G&R{5-6Cfo5o2HU9Z@{b+tgPI?TmNY z6MP$-DK5dhBZ_M~_DcTVsCAqaz*}(BnfTu5D2H~(=*pV!7E()tuRr+P zW_#q_LbAE=g@6$94DJMzkf&f}QsAC2m5>F_<#f#|a9ha1|Il2rC;T+e4K}oH&*Owd zbH@IIS?xJpbUMHxnmmdto5wp zp|6x_Tqe{OaHE;jW*z0wS{C7H#J(F(8WP`6+F#9nV9&#qcxai`jCW2og9o4UgpA8^ z^O~70ZSY> z;8ZLE*0vj2SFEjtM00NKnozN1AZW#!gge3nYXYnsJ6OK;E?p}O>wt^wc{&mf7Pn9> zV%;9HI$+&@iqQhxekMlqVdXUhBT|;mw8!XlI9Tyvq-%4h;`TE!S_&(#AsFqXj!n1Q zV{|JVtoSh6Ni!|ogxk-==z3T=c8tCx*E=;$t*cW#X5mG9ex8S;#O3GkhIKRHIBjFk z;)XN9`3fm&%;EdeZdaNEMB$_i;HxQg|4LCz^!w>mnsU%h3I&Kq!;Vn9dRuwKJ0XQJ~8tQRoLopHG7OnBCYm1Bp;cLIy%UMrm!M`iRCvdOag z_Q8Sn2<-<)i(7tpuduKXk^!I~?TtIY1ZfXgId+f+e)d&+gh+OO6zn<5!olKl)VOC~ z(tnCk8n>T`Q8%o-hG0aVeO+mf(dBTk;=@Sy?CVn8ekMlWg_YM3jL5UEN9{3s7!Fo^ z80nsU{R+3AiP0}$<=8Ruo&Kbmj;ckyKd;@?_>nzGAHd<_f^=-d)`a{KppET4+yf>` z@50KlqvZPxf(9k`9oNLtbiS*wR9Ro#dQ|IkJwprNFmdZqO$@2r|>MrO=rSWhLvN7$9KZ2riqoZ>FRTNeHXjco}!!JfN?3}9p=R8V!;?t zoUX@xVB&NQtQ#4Q@FTo&SZEL(nmJ1y;UA z>%J9fAQ9tvCw_v{`BbuaK(;5r~a2}LnGkf zB98_egZsc_d8DJ<3h&nXn`KyJd~cchU$NcOo|4`02s8JxC3(vSFeScN5MFl1ycEJJTHqb<~!17{2TWS*bg^AV4uyX8J z`3{smJhWbQB+H$>sjft!pMFGPr9E61!(rpXm1-7TfrwDVF2p@zB6b0+96MtE-3FnE zbr$mKJ4p}Pll5~rT3oW2Z`|Vjuo?&o)K76om_XeNE5{BLXZmdKN+)}|#U2)=7yi{A zs(0XsaiRKJv&vO17!<6xaA%lcy#Xu74wipAOK7F)BHtL^V!ZWywV9A;&g~uVlhs+g zP>DEDoHoY&VB)j^th{F6luE1bG#z4((_A=M+!EC^oJ1TbP6y(CFmc)sR*oH~U42`A zL#vYrV{f8d6l?Oyoa_m^`#i?K3S0@tby!gOIqOVvGhv2I- z{FC;OJr0MD3t6sNMNAtRirk~PXH4WChLvMSZVwJ}y`p6b)(XWg@qcrLT#789{@Wh7 zPvGEjfm_@x;52cexP65C#l-CcSUGmwcH`id&Zo=iWHxb|Zo+talOjuy9+HEmI~8VCy1k+>sF zpccT&u>-}L&T`4csYGc>S0Z1?C-SMDWc8F^vme@Xb~_w1E@!+i*&3|6%5YG)ZpGbU!gUj@96MaB zheWwTS1Lgl^k23|>qR(XT(p|@kf;_63fA+uGfc3ag_UCmYbL8|^=Hdz4OwHhupaJ5 z3W??n_f6a5m8(UAqBRWnhKbe?SUGmIcIKm1`>`rbaW{Luc824|tz6yBx_NZ@s)d9? zHVb!&30XU=ykEnDfBB8UG|VA;kd;PSui9NvXgO_n2?R^AdJzf{W5#!?3wCSrB3<}l-xHC+!R=~=!gXRD5Q0PPOaw=ac6vbokWLjPS`nf$^ zKZT>lg{!Ms4bmSF3fR54LrlQ#ft6zijI|-UTnRr!?(bItZL=+{??iQsE!8J;R>m)8I65S!RCF*74APYeil5z>qK9F2jvxQrqt+ zx57)e{tw!ckoev(^}lUmU0mLcQXIlT@Pq6^=w!{7;l=>^WhuwClEITM60}u5iF?9C>v32) zcC`F&6=~4w?-1J#H9)O3!5XM9;9zlqVjhyq0jlml#pvI-{Y;ELft6#&XdB6Q6Bi<=F8Vct*<3(v_eS?fLl%94T%I zIc+OLRzKk2s1ZWYg96Lb%eGjz$WD7mwyV>bdNo)+%G_&*VNjeV>8JDE5G>#-C z3KXexa4(ohoe3+qI8rs7^4Y8osnzyK-3^B8VkmNR7e0U?MdVRt`bRVA)%)oVzQb1`;u@ocq4;y&#!S_w|dj za?*u-=oyxW+QWP>oGfm2 zJy=JF>iGivi-Td80M3miDuza)&)+tKi^q zA>$pOghNK7LSefZ_lgPI4X|?Tu=&378VXxisV|#WPak~A9W$Tth9Y8)s~YvFz{f%@YApFoLYk&@)Y8N1j6 zH5*R^b0NMtK)G?CK+VMcU;;G*R*tOU(yFcu6S+Ll>0p{*@*9(;+|+2Ty=)uTkRMFp+P)IcA=8v~W5N>@U3bZ<{hkL<ef8_?3v2J;o>sYoGHqU0|hFB`@saN2UcD~ zfYPjaUS$u|6>zxX21>u?c^U2p6R4H2a_m4&WjtR_@2GUV$LwKx1P&D!Cf36$rw`$Xad~Ra1XT|O#p-?B6(&}Hg_UE+ z%J+I<=v`i}uq2gSmR1jlnerv;JH5$5qB(bZyaQs;DpiXFg=!-12@|RS;aY}!!-T6JR*oI6Jy~_i`*47F1a~2^B-N?RSF7wPyBUrim$FQgDwifK z6t^32x0twH3oFNto9{@z&{?bY>+R2Ls@V(noIMAJjmueQQ#o_vK>>Rj_lF7Cldy8^ zfFbovRIxu>s_6Q?i3%CY0LD`VVu&i*O)7E`5OaW^SWNmfSvialEA!;#~n#rqx|x=2An zLNPlJcZrGFIk0lr+zTd5KZKQIhspN^ z&CnKD4P*F_^`<>nufuWUa>e^V7+SHEfKbF<#T{ZI_A;y-J7SzEt6bAsG76cFKoHA2ls;sR2QrqJ5akZ?g#tx zX>le)LY&f2N_F;^(@WH`{R(@yE`vkIg{!A2YYj9ev~sP)ePV)kF{~UrXq?KmM7K@( z5qr2Eg2Tmyt2vd+jROVhLEH}}P(O#2*ASpI+mt`F2kLz|TyX=X-=_Rm+z%#D@4(6- zKp7msEzj_FPhd8Xi17^XEo4VtSSaSgKYqExHrDr^+X;#0+bm)=gT7t8)M1Yb zd0h8Y++-%QQyk@1IIi3GRWK3}-|^J`bGnbShv67JvdrT_cwcoI6b7H`1dF3^7;-E(z zMt`u!=p{H@T#R_%B^kV%1p+`xdI5KUNz!w$a_l7ep3hK{#FxLS(N1RRTVG?hweD%7 zghX>@WZw672M5XTKjmmRZa7hp=uEi;joBRVR(h9vE`j>3g`*OlmK2lv`oh$@evJ8WP{) zi+|ne|Jn2KYdo~fb*G~n#e>gzLdGv~^ON!pD#_d=4UG*(VV-y z1q~}gRnI9pTjG{8(HRdb$BvF~MnO=rSWf|X;3XW${auaGX4 z3hGhmx7g!zBOEC%KD>vw#ldf?+CAqfK-b~MGXc69Rt^Ek;C@~%3And-1`;tY32Y^c z;G$Hr*x4)I0}Ndic+DQ*SKv%>0p``eQq4)f>JS#RBz7P;ZM&M2`5g7_AlM2`7NJO_t;Cnkp&r*NB zm|T*|Cerz?)H3B>Zx3Ot1 z1;XL$4gU6cr9B0g<6&j4o*!;cfzNHi!=P7QeG)gD3GU;La%dr&7F{Lt9ofE!#>Drt z_E)nn?2-649$RKL88I!%KtXtJSl_;+0mca9?wUB~o&Za0jmjW(4SY^=KaD_%X$1h zI9}X}!+T9$ybn?>=%1&)F(i5>`~eujuy8r@eT>aI-MH@O4B~L7fhP=gq7D6 zn$qgtn?8G*a&WZbrYW7LG-Yrvm^Agk%CXbr`y^agZR!jmp*0>)FW`TxIi_d-?>qsG(CiS!KCRySb0sL zDVOR>C)IxUu{}*6!qJM8CN~O{ruT6#m^A$rR*sz}#!6;Bna`yNPE)qGzOS1sB${(y z$2$NU8^*mbP@X2@ZZLV;0#=TlC&v8b1X5F=jM-09CR2yN z%CR%Wn4hYlBzJgc*aLMM94#(T&6uCuC{UV~;a)Il>W7tMr-|3``iceh6V0paak?1} z7Z;}{b-ZdAC{H)wZZLVe7FLd(C&rVzQ~HznayqM?p8kS8P|v~f;sVu-CwH|tP@*jU_bCb**<; zn%~wo{j8PMOI|B3-Mcz-o%lms`S`HExKaFlWrTZxN}$2t4gd7CznjW|U4_ol%&ufP zndrphHDX<7LqaD2k)czhS^9Nak5#M_*C)4>xg>T`)zc{m8SZ(=aVhJ8n?cxkg`vG(wVx`^Z zD*>Q{TgwEX4_5Y!lMN^5NQBk}gLUzN%fdE#Qk?Cjoe2@^C9~AML^lc(ErGcX4ivXe zXg=Y~1Sa4z9hR=fO=ePa6|5XPH8UC1B+BA8tkhR1sauDhvFGP0IAmOYGzUkU@FSh4 zBt3x}&m`$FSUGl*2CqM})%w#m)4KkA1_z4EPeba@Y|XyKPjQo()O-vp$4<@Q^=EdM z{0S;6g*({uvz?H@?hLs6G^GCcou~C@DsDWJq$#j+>?93de|A#q&sXjFISvjKm!F2z zpPe-I=NQ~%CN)RF%CS>3c>UQay#9R4o}X{RA>;DXkox0yp4OkUaO0UIodGMiI7wZp zzH;xnaxd3jON&Yk#x{ z=nrtDxB$&FUiafR@|!7D0X!B@VnqvGufF9E3X;skejbwdv;QAtfFQ| zcmLIaTg_xA0V~JO&cJu=S@HZgSyWbiF0lvaJ8+=5;8@?ayDrm7=OWx>CN&jUId*Ec z8*tLemdd$Af1h}FLw#WJOM7%4fTP7l=P=t@$LBZY=YHI7CO`MV%CYma(}4Uqo4ymh zsbp6oSuTq=0L3eTN)7s(JxG6n!^Q6;oaP zovFl9@kPPHQU#?gXIbBWjTaKlx&P99Jsv|T;5lVz6WnqpLmR@%u`{&SfDDzy2R~9> ziLOF9Q9Tc(zq1@#oes4}>R>p0-0Gw`!wN%cpg>T<=HQMn3ELl5j-9XxTEay5>E56v z_6(Ka0C5@8Y_8`qBCKBQj&v}W2a>50F;D2i@(mEm#g7Wad|n!bhLJPkxo-` zuELFGl5+*D96LGT^@S`QK4s6#6L5gIyjay2-Fo3;xT#D^9)Xo(rzE_-__w<#WAbPA zynG6Wipz^teepX@>&wTu(M)nagq33_C%nFp<>l>WTi;eq6%x(4t+J{wx;5n~xT#D^ zCd10HQxaZZ{M%WS`f{8-FUP>4iln~you>8WDBNf!ISXOs79~gBzM_!xO?z_AfGrd&`-J`P#x0T7s&9HLpoJ`W* zTYIr1dvpF^Ps&ShjJTv2ztLCsme!OPaBG>YJO?YcHY?Ex;CM#>f%B{@`xjEY1o|RqT7)4cAboWQIach~Z%!HL=XGMP(t=(&rvInID4iFa< z;FP{H4=M1-F;U%lWW! z?7VERdkdvNZD!^H*Xa8qz}j#Gl}!wqK=v>H~9ouDaNf&x286m1dCS8@s5SEQ{|{ zr^VK_z!`E~@Q+SgbSpLO*m}Yd}m5RCy=7bfD22$%qmC9`F-`QmFLQxgP2g=m175pQGaL$`;I+77r~+8^3%ZjqitUm z+;S#9=flct0zON~F$fRX<8wb8su=JQp40YqA8t7lpVhE(?D!0DFR#A?`-?p~Z^L2Y zqBG#JJ-o@s^O|DwCT=woo7Z9G*s)O_@cXA85kT6n#_wu<$F+%&XwDtifN$WisnNEo z4RNEH(5we5w=y)Tbe=+Uust+$;3#oRO#`5Dou-v$f81y$H2c8Hu|u;}_+oP|xlCEu zDcKX#2ZxAD%z)4Id1Xd;OmWHK7Bg|lz{;`XqU@3PH>O-FsUF31wLLFa!7<|UGT?Dw zOkRY`6qqY;lbOI=1}n!7%s}-et@84OJui>JA>#7Vi29;i?t28cn2F0nuyX9U3{YP* z%Y2{O^YSqqBQ7rus4x2Ey$^AdnZUdcE5{DZ0QIF*RzE5+bvNtVq$xt8Ik!m-s4v1} z+KwjU7Bg{~2rIWVF624pG4{9|1&4@RUK)Xm?&0M^++rp!hr!CNj0;`$JLc$_cYvMCN9fhEp96_`#*q{Nu#;akqE5_4IfFi(qWS9O6J7t z4yit6B6&_2X9>#FaEQ3Y!4Q%cX|LB;i!!t!t2S|%)?z{;`1vV#tmT5uCxsZyty3iV$znrRQt3?b2oyB^w% zG#iLH;DmTiA)1a`&V*=NSUGlxv=t|t%ysC&Inf@RufRcSa>em^OJVskZY>j*MX++K z!cr{hVL9I(mh<2sH650^w-lChaBG>coCzz(4$HQ>_EhLAr*r93Q$;;7tL=%o8;%s0 z7|o6ePG3@8rr7)tH<^je?XYs}*lexCrc^HUC29>`xnFwSo|#wSFmajDoF2zvCg3jx z=4ISoCNM9;$|1lQEWyfETz7%TKtitK7ER}QX@$F>Xl2FGHdctWagtFikNk7T)`Jk614g>}Y(pKcxnC&+VEKHXdh zM@yUI%sxUVxSYHbT~4Oi9P|n2VYq$FigyUCOe)@7Me)T{O_LTDsVWH)k z;%RW4xP;7O5i+>Xv`;R>ZDvx_4=aaIW6)k?hjI&)frRXn+n74yJ?*?T+H>JX%_*kD z!El9q;9=*_gcBIvS~l(W-E`J03)DZ&v(BHGhFo^0|8^uoJ5y*WYW%a#4dl44P0g!t zYDjN-8IG4WyP3y@P9QfGO>c6i^I9%_Pde+~dG^T%oiF0{F{{k;j&f+4BYe=gB~7#M z>7V~O=a{|F-y%u)NFjlZZrp_LLtD+D3HSL)Qa=p0l$rV=u(D^IEbX7W^ehP56uBtu zFOCoUi-EU2=om?socJoY?7P`BvNIeXE+c!HFyi@1N03>#olHX7VddBf@jVBxmDBdl zLZ7!)Pl2S%9+D&+A}%DF4@eANNTjQjlap~%nVg&eE4L&ksa#)qc_N!$oKiTs*q)OM z;Se>I6X`1D?Y|T;1$OgEfOh(4R%B{&rp-0EaTzf_i zgagDaBxa0wj#5VU!wqFJvNx>Ul8oe1rQV)mT7BogXwOIi4p37WsX0m+$>N4G8A-#+ zu`}Y^cvtT=d9k#;B;~%irVOt?u;=7TI7nPh_BZJ_erG8wm*d7VS-BKej-3_V%32|x zO7s@W3MP-+WAZ2*A1)?FD{G#gl#qvUJDG(13RaGt5Z(Qah+Ii`fAfhwBOk#L;xb}% ze^d9AQt|80-&{Ta4T-2nG`JIrOve{s_+zX@$Gr#mb5w+gMTEiW}{* z4kPEK@~NWo@yq{#e_Gn#MP<$)J8_*ynRFMf`-HQ{Gc2%`MzhW7|C#bDw>kaVkqF)Y z65%$d_2uNGOUz&4#CV9y9k}nn;nLD%N~^UbqP?s0kxw~krn z-f)yda~$Cwr!7d1eOrJ0TbwrA*LptQSV%NtKBn0Yy~z&Ew$DqF_YH76nRy=vD|^Pt z#$FK z6Op}P<=7GNP0Dpds%HUdAt~BJQh-Cmg(P$#CcKU~^MUIr#UzVc%ETlME60w>_O#U` zOQlq?oGA78^%aWcl6a$|FH0Xg|G*xZE8%c)k}(IoEIjVoQ@rV;AA?HbI!WPZ$Bksd zu|2FDdnM64_i^Kv$gA7=llFX^3tvlw1JEh)YT67OC)7<9C&UvH~}i3Cg*!a_pe^w({3N=}ndr`D9*& z4ueK2SjuCBO+J-2B$KvTxk!<<#3F+kQm(k_+6!- zT#B2@1m(N1a_pdJo*R47s~=^o!1Aa)EDytR;=*FEaY=QT0`n`}TqZETfR$qh#{V@4 z?|wl<(0_D*!pleYynFzMiOWm)C(*+1g@WEvT;9X2W#aNKtQ*xS>o) z%CK_mkZ5+ZmCDJEY)U-rS&}9@3vRXNPg*E3dwJ9Lz$5LFRUCpBs1vPs=f#2eJ@dcNH}bc^(Z?; zNHk}ZosW;QVQy1^K8Mp>VFL6oSUGlpG_Pxv3yJP@R^8+_%bu6^rtxC%x`yW^#bbNi zN+urDVC5FYBP({wDjn!#dpu5n!^7=BW_VP+q<9>UTgk-ZSXeoBJT%XD#P3S%UFut| z@Nt1XA1mPaaQQHJzEg9P0&*^HCKHgeVddBX(QJSekrTIz*`&Hb_Fj8J?tufuCB$F@ zWZh4S$X&RdOhoR4m19Rlv%t0_ne9&{oaK6T1@;YlN?wCw#HGYwfz9tK1?3goR3<3D zhm}J>F*sUHp3deT;bb5okMem9K3~dnL|Wk<7G`C|FKw(4XT*(+_G6f%7m1f`JA2dl zp1{{IcRUEaC)EBjDhmcVC9eL+mYx(>|Eu;=-NeA5WSaBhb`WM`_n{sF^1Qh19Es4g z#6nMsYW!z0H%-hbI)8;y}pU?>;sG>RlN0Zg| zFh4y@TWmwrWPBx-b9Es3M(eN|nriCISR@uwxPO;6dCzo8N+=tyNth6NO zCOB5y%5gYd_5&(Mdm`XCou;nG4QJwW4XnIo;6pY*Ja3QBvv90pz(=<&;y1YAOnm+q zR*oH??HJW(sdx)kT}B=@*Sh`;5fa$A#|3C%!|IRYI;}vT!--};dVrNH+FX2b*P2P^jSCr*@3qI} z9ymr3;-VXm@4^jc;&Laf96K&w8lbx9y3!l=z`O=Wi3`lZ*7YT%A-#f|%tYq*uyX9k zgf0Q<$KVYPw!V=XCnTD4BQ@8Kn9%WeZQNoeFr#7R*n!z9tj6dH%zpN`>8gRW!hLdPWyMq*E5yUo-wtnU z3w?+ax*%`z=@@!xq;Tif)rR-V3cTIO1jir&?k>%<=?t;{%y*(6vHwQ0H?PLuc3l}}D@ zg=418bmnrQ6Ua|Rv&%@#a*5k5Cn?&52~@I6HI zKQ?_{*lqdn>sdUg+Q+6e`2)^OgCyVQFTvn9xW!Bi{ufpzZSa2_iO?F|@Q0?#lA+|K z{^(G10{yUg*4PXY5{($ODK?r{CD=8?_r$d7HeCYx9L_NNc?GN-J3Gn)cgjx5`DT&& zxWXQu_NKuz;Cl0*HK+EQas8(BY>(T`tUS|T<=E-jUO$}Fe}bKbzUA7JkxsS;=ma=i z+=*qtC#GD0r0bNS<8jlO3>^zA$Ij5UgD{lJ^_9ts7xwt9fFs4lNAuk`ym>iZQ*zG5 zt!9#QHmn>wIfGRnCx(e^da=4+<6e7w?t#O_#it?FN4icKx(hd*$ni+#o(_Jixlg_h!$f2?v)RpYOExtc}~wq-Zp(96LqZ3`S9ZR{fCne)jn64F`%_d=6;{ zKEi3r%^tYXOm23Cm1E~d*`_+jTNkh2b#;pn>c*a|Jv?bRT3mPr++@hEJvGlMLEX6J zOoBRL<=6>QcBvAAvgv$DG%t1Zx!fM0OW|N~0UGc<3obx4$0H~Xz-h+b`DL*yGDL?Px zhBNv3GprmtKRXOEIS+6m@}xtpZ@?x9iRRpZ9odKp+V4E&Xmi|nCP$mX%CU1a*we2< zK9%S#sK-Jrut#V<94l@aYRJc4Jlt+3JqN+cvC}iy{kw>wdO+c+;pkj4q-{uB z^&heG=Rf8;e^lH*E_D9z+?88)mckL^GSrY8`KtF6pfYYW6QEOI<=6ol>_)yCLfwu0 zP2m)A;kh1;78jm|+{o8GrvzPtTh1it`>=BC1PxY#%Eh$0g!rsIJimbh#f7IKm8a@7 z<>r5JqnX_N53IZ;ckZ8^wS3@>yI9^k7rr}mI$=L>0j-8yrHfuOB)D1f)*yD3N94>C%X~<>`={jZT zSlo0bLr25Pu`?95F+Qo?q`JZ$oO9tAalskz?Xba~R(SqWTF%DpWzzBuSUGlDwhmb& zlshw(3FjVrVD5s$#06%+_mu|&M!HOyxf3^;$;@rAa?3I!_tPoNyk^hLD{z=1VMe-4 znfX0#GLxC#!OF2S6SjrWw-HK#X53-cw^C~hiRMhiR$B;tK2vH&<2Ey?838NDPEA;M zsz$J*zq>o79wooGJv4j3VTz>ENS7%yyW%D@nb`?ej-46h0G9f;ov;mGX?tY4;V5yD zv3fPM?lC2%6StU2%-3M$*ojfjU#SyQ+vlV-rc3RC`7Ru!|Bt%!4v?#={`evgdX)}= z&_Y7l5D2{n2!uc&5D1;&?abTV*-Y8Y%x;SG8e!=RiuBN=H$fEXh|)n(6h#q5ktY67 z1f~4$^f&k1JA1x!=FQ#pk6(To{Cdv!edgSA@4N3_E--aZ1RJUYE+qf3e@PL`T{1{dqw!D=0F=_SXV>vG$!X~wZmvX|izPyJA z%;e>7u(ESrZ0{?BdzLh2Mjt4iEUlv?!kH|I-d6^brrfNF2hHSWHCWj>H@1~uwNJpX zL2H^Enf+joxMfDP@>|N6(y|X8FO!zZu(ESnZ1bebt`e=p%$4(!gI(hCBAO>vGN#1L z!6Rl8lY*6<6Jy(nRXPo%xtVOJE)SkUOR5c|3L|ML&m?ol`X0^3Kw*kMAovHvfYS z;$pL>p3>xyW;9ZZ^zLxIOf8Tb5A>C`-) zft_eqPM&DHImc3z)q}V{#G_=EzV`~s*5}>AgSa;^dJ#C6I(QEE=!3+4_Bu+U8GSZ= z@`goc=93R(OBh%akC(~7YOpdH{#GeSSgS+RPvKtI42##He-ATF1tvVOeLvV9Ziz75 zbIt`tWlB4weeg(`h)jl+og=cI1(7KEW@@gSksRy~myz8Y9!AI2*Nt*Yu7?fcQnH7Pl5UF0HF&H{Os<5LonvAfZeseONw3Nwc?q_M3yEa7 ziNz=)&*PCY5&1c+>>LqWB}sK9^ppL*l0))8*dQ(>l1h@#m16Q49xD@*f5XboF|l0QZ@a!L+|4QfR#$>&Nj zITVkTiOIpRvU5yqwIt`IwBGeBIVGpV{%|Rg)Do2{h2#`GR3;=R!phDevDFgg+%_5| z_sJ=_8#ahbiKH*d=SnfT1CN!7$*r*RaK=O*a{egCaEyBbw4+EJo<+QrJ|SLyhPaDeMoEOz#Ts_|a@Su28Pm!#3XhnH%;K=Jb7aQWM<$-? z_cQvTuRF=9*&cR^TVf2`Vo+*|NmFpP#e-&ovo);j9GuPTgOl((bCGO!yi=G9o!w1zr@no1&^$&_FjFP|!f zWHmfgCM2uC%FZFNyn&{hS@x4NvJY$zx1I>zKpXe6OvWQ+BC>LqW9Z6^P6}+6B zkvXtGTt*~yM5RjWND2>?3CV0&**PSZUA8g5YnzOxFWy}*=j0mLA}%MB8{hI&%9f&X zB_1skmG8pJ&QV$4JR6F|`{OZvOUp}gQl5t$;*w(c?vXnIDke)o`8gge6O^CA%FaQt zykhj{^m+PyDF2gl@)>LpmlMG&#zL+XlYir}GBNo-SlKxymKN5}bZYOR#~mu3=4`4Y z!kOj>T3D4SMPws9QYIoBz{f~y&RTpVSl)# zMbM|@Q>Bn>jfcvFWGh(NIV6@TaaUAdiH*t`IRUnZ%ZOmUqcWw49EV5BMC52#**PMX z1^cdy@8!s~H5bV-IUlx&i-};tzLYIRQ)ZC|(%!`=TV;_+N^JCa3 zE-;46vAB&&P0kdXAL21HvH1b4>>L|QrxH(kUD{mvJvl9ZgZ<&sBIs1|sZvP(f``h4 zq&X^>;n{$Vr(D8^kRsg5|eDt`w8q@mQId>;fwfUrbWu1Liq$Oj58xEx|#@ z$I8T{8&-CXiDe&3JgcTa`u>7z>LuycY}H7jEg9n9xk5kY@{T@ne7O^8>}Wwf!P2Lmk~UVQN^8k4@lctNyaFpbhh#(ZlD#U!UM!|Ik!r)vs9EAJc5x*UP8TbBEC z0<#q!FcX-~VP)s_#d6ez`n|=YUczt|+zE1Gj)QIDjzxl_E&>@-WRAuoW+HP0tUTP2 zNu~9(yv~;+b1rOC3z1P7Q)JG;BW5CVCamln8T+tQs4`@u{*UFv{1A4DON?w-DkV&T z`2ij<6PSBpW#_;QF)Yy&nEoaw<}a{KTw8xNNWiw`S1hsDz7 zs@-9cTso2>qtKOdT)qpt#KlF>=2jD?z+8q0%mn5VSlKx+mgox@_;{M4JCt97^s z%Q-m^wuf6)1e>2!rWBF=@kp77>J#LkAax?4?mlMIxmVBxdk{j?)nUGuuD?5k8GFi^}(Rgnr ztzJHBCFR$0RDKD?9gS*|8bfq4ZFmT)u=K>Hrg$|H8`7aj|UH&ZPUu{f1l1QQ0aqR0Nx~3%OEEHpgRSVzL>m z>>LwIuab>->Gv-mC#U3S*dOiyB~h@6Q>%0%QeSlKxu);f~XFK+pvoRJ^E{%{!))sd9p;+A{yP??b21uG9* zNam2sbN?cT%j4vFQcjI6qeBcs0(T;*u-Bxgk>5zZt> za8yPySqjQ>c(6=RmWGv`gJOBZlkMxsWxS}q3ww7tD!afQaVv`84No~;3d@doxJ+2K zgO#1bVrgM>M_Yjfc#HW(`=`0*&8u$LO}UlLp82oIRzj?YP07g~dP4E&ef3{NsYcA0>&{ zsKwiQZdd=Up7*BbA4vlew=P+h_*+53lSJ{HJc^%5qUh`BS$ULlW9qcFw(+M8=Dl2` z-06O>=LYqMvUIxTFUIxEwERuak+#3MSxF8oKix~kd;1bG;o_9kk6 zpFdP_XFD1wch!gg1Kd>O$sP3JTR(VZJp4eu1cQ6=h?yAN1uK_=s}4Z77bIH8OJF8e z!%H*~*N+AIiwaE$%b#F_xRt`XOw55LpDb;c{(uL|xPCuSGe zC~j?;D(FJmqv=#7Y0Axxc+gC4wu6Wkd{>UkWw1e9TtppAK3U4iC3vt*PA-I%opWLv zm3sY5vM=YG%F9pXygUgT#pOjbDg~3K+&qQ{&E)1Mu(ES*Y@Kh$?^PFX>aQW>#QX!c zh)ay9^DU-JS@{4Dm&wZCVP)s6*j8UMezx1|)%RU(aGZFWw4Ra(XPRXFxP;Tal=7vt ztc}OZq-70Q**Pt?&Lxvh=-;g!C`V;~*dT6Q5p^#4WGN^6;=wXG*&9}N&PiY|XU)7Q z+nb2%1JHaqDE+WQTu`jvOmk{VAzMmH7LS%mN-wPJoD|#mqjtjj{sMjcxmnK24X{UC zRz%}ZDPKy*MZTWf58DQD#s*dZ<}vbvJbmXh)!9xaoU=U`>$ zqy)a2t{s8qdcEE}UtgAMJ6_z_ehHhzg~j@nJ!=puB}{qwFCH+Hm;b=Z&UvwQwz+sh zAB47&v$DC8Xu>4uvbMIx+VcN0Y(x;XxcRIpFq`2~GlAIzR(1}It#RqgzdRv>(a~~d zj(|Pl))!IZQp%Uoau^;jla@nZW#_cm%1eLT*N+-IM~=#wut8i@L{%l9Eal`hJXj_t zC&S9lIkB}Z3;ayl@Dln5a#rqzP2#d5YFo+)Q(o@E17`AaJFINsrGX8-)jh$*op}vN zRJUZE*641XY81sSp`s`}Nfc^N@VZO2bWiY7hpVn9o||8@-SBJp2WI?r4D2o04%}A? ztY)XFVJGkxjq+RF3H*6M!n!Tgy34PTo!Irag|1TFBWrpv8%4wuwhfd-6Poaz6_rlS zqZycJ+kR7el7aod<=je@q`IwpJv=&QnOnP{Y<9s~SN?%2WZ_26 z{c%5yyMF1@wr=^hKJ7r3tdDAps1to-| zAGXF=<_)D_JGd0&Go)Ql7LSmLMK7#8EU`%Gmy+Bp$KnRqnlQ0Q&8Jvgheyc7;%Zpg zf<*&8WVH<~j#UjvRGZ;78cn1cMX@UqMe%8)y;(jA)eQfowI9eWH#w?K%P)K$m#t}t z|Eb)>immY{F>vq@4YAsUoKxqU`WgC-T;;FY)oCx4AZt1>Lv#F5qZm}1Qv)sLlCQ4-B)lG~I{%_ABxyaF>m*>-!brD&^7 z^NM)1%yPI~LD~B3Ti7&jZ1p41RtB5r-Bsw=PnJ-y3+}72d8QN`K>H(*fCN=GI^d{x7P)vd(&Z=mwAbjfRg^+{x?!)3V@409=b$Fg z6G)x*S3Vv(6QB-Q**QR44GmDYmx*QP#`un%O*xD*02CF2UnxqI4mw z>>MTgpxz!S{U8&*H+z00Lo3ox>MXXpOmB{+yxodUEr9y$}CHDKkD0FYr=J5UbL{;*fvLexZn@~KmR_QgYI0<<@*>>Qvi zh91z=?G?#%TtAdxzMP?c*e)(Zhcs_6D`ihH%Hq*8G3tetM+8R3p6F&dMmNBAxxlEH zJ;mrcJbETZSHsHAG1`(*jg*nSi9UT-{V(Mly#o8i<>=5RmZMVo6r>mN@R=Yz2P-=V zX^b5t!@^@*hq$5s684A-kKx2qblEzeG6m+pc*sm({sSvJ2WC?{FqMTiZ92b|oSMy* zL^#v1CcNyZZ_$N6qe}Fw|Au#3z!r$Q`GlBUHtn3_^I(vZ3 z3xg|0#gnP!ltegf@&59`$+{r8G#)h*nkaANGmM&9o+z8|#8!2Oc&PoCvIJ0jGg|?A5LC#eJ|1 zNL2SdF5T#sfNB)Qo!Fu%-feV0cxglaZcDcI>(u>xwHe;4y$s`i_-AJPjSL*njLrC6 zr2uPoc^fw3-_t0^)s6Uf79^~jv8`Kbo4*l%_1e;CdPu*9A5!UeTit~JOV~2wbMARk z>C`-)ft~8r!qOAf_Ue^$EJaz}eE$j_CA0LsSWvb;?-p*p-@y3116$C88}Hj<;->pc z+*9Mmd-~)JhrU$bVAOr`four_|Hb2FGVmW*nGApbDq>{2O|0n~?#EkTDQ$37-+4xS zb-THKa_UxcY&KUC&6ulEZ0f$k7y=tTZ@P@Q86GzipG{z8=lE#5fJ$|@vOl_TRh$u^ zqvZe{0o%nLaq6x_GXctEy!pkP>i2{k*$#Mu>JQ260!8aIJPRgTC&S9l(b~E`TKNmgB1tcoiO-9q z(wU_8vg`+PrtXD3<1$ruXArMM>FHCL?!v=o!gM>VJR)G~_oKOV#st%!(~ z1=6Q5{SFVG3Da+2<>3yKA5W!wv+BdLd;^v0(nq@$eetAiIVBNJ_uYibq^D0|S{e_Z z3Dc6WvU8ZUZ(j8#yy9l8kMvEu$Vu7}HjG=A4wm;#HMvuaw!>p*VzdpcJYq01T+q}l z$H<2bbAeGlcZyL59y=4G2(0WJBW+hBsYdhS*_^%!|1vp0m%vVO`7vAx$6kdjEhqVf zq$xNT;z2XP8Gx0YgJWL9uS|hE(|wt^pNaUXXga2ML{G{AdJJ}q3(yStI98iH1?eYv z@Jx_?1S>lSX^0Bc<>k8lj5gW-ha8{}V5hhMHK76(lcwPO9S@ob&R=0==im(SGNkBX zB&C1Rx?ZPvI<~fw2xmIhgqI>MKPWDgypZZ8{2c`3bt?w13Ug}veeRChBQ z51?||6rNr@Y$iNOSlKx|6YIb5D7`z2#QbQ+Px>kSn#&vH6kP|K#-*t431~cuNd6S3 ztMT}mIDHRR9w|7*Q)ZlAk>m6tY?=d{D*02Kp2Op3;`B3E**Q)_Oz_LU&c5E5m(wTs zU&>kfFYFkXr6x@9Ym=uS{Ra=83DUn{W#=Fb(IdsPk;29!ZHm8nmw1}CnUV-+n%0CK zshl>2XA?YZCOjL$%Ff{#VwR>{jQ7ts0(68Npu=FlxHYH=v$SC96rw}$(3ub&1S>m- zNIT9`pQR}$Q|hqle&5K^nR1R!gDvB7RQCilW}97`Jw@qcJbETd--4B$qclW4%0|6h zPQCW%OnCZq?Or)Ycfo#fIch>Z3Z_mWx*ZRl3DNgqW#?_jsM z2-Q7KhF6NJiBo`ng9pw8=vT0^bAX1}L!{ngcO-nZblo2(?_QVd7WdUlD~WLW>L%z*Vv?Lxo6Qggy%FZzwsty$~>P_nxO7AFVXgk=gR@R|P;uN55@W7b>O@Ni11GM81 z1DW<2NTj$}q`waFZCKekIzucuDihVK{a*ck&&TBK`~>!j z%T5!P9Ls4_cz%S3&4lMcSlKx|L+mS3E~?P8>z07<8w7^85bYHJ26Z46s7Os(KAu{4y^1P zCCh9}Ke0e#=tVh0&%s`C84}F4^t35FKf}Xj!t*q&JgngfoKT>_^IthU|AD<~6+D5o zDLnte!)C(sPgr@l!c+N<+Rtn3^f?Jl5l z(_C@UZ~(($a&iuVjpCM_{TgqZYjUR89E8Wr#O454dDvrPIB?-KIW{N5Mzs?tTSmV*_(j|a;Hmkh zSK|$DIb90NxAAb9u$&DmJBP)x2me~p`MVsSzrtp<5T8ok6rVriaWnCG3s!cHk7dGL{uLSzI9MYgolU~+yk8(*NG>h&KvDF1>z;({XSU`pvySpJEJ%Y@}4SlKx&mJX(TXoKO%lTDK1 zS<;3|BAi*0po0mfOrcpH519$gy0EfyXf`qrLuCia5hsVpkvRxeg)gaB}VYc zTp(kL%rEeWnaI2hD?3NVvKmu1&^&2cG9~VTzo8_;>462SFGhwr*!f;Ddoo0X>D!ePaDj8xk$Ow{b0`x>JMezQf!o1PWKY>a6Hi9(!_a-0LpdZ}o4I+OB}{$TfmC7$-Jz_74Us;5^Z&MHW>=2=V{ zV|n0(hqP|(8bR@qO*TBSyWl5QGOnwV_3f~6#)sbXJ*89gkOu13#@ffLT}@Y;FnQMB z$3te;#+wStRs_abe~%6P9P1;Xy)~_Iq&?zws5ctP-bBsM_cto|Y)1q2unNPkaA%F5 zby67W-qFX0A&@%3;um=EOe|i8l}o`@2dftf60PH>-Y=>>Qd+T91vTMkXY0piFWD;w z=^IL-89h1$>4J3xna0D)&Pmd~4b?`r(yub+>-RuJMmzDP?S{ql%k{X@R=0N zf|Z?9q}_C6p(yTkX{!kXa*VzWyT!$*?j7rmV5IV=9G#8F&*bO~SlKy8tUf8Gd`zdj zgvQd3)OuekMn6!phD$V$~((qgqAI>MVV8j(GmIvXU4X^S81Gl&2N&9GE;U3oAS4i8X(V zr&7Lt3(}r)n0ABh;ufZ6&)*6LP?C1W6JV0G1FYbp6b^IxTKt;9@s1{N6ntU zsq`sDU3mCRiej*`bBeS}waoLkq?b$f>0S5tYuP{T&#|1ex1tyx(Yr}u0F!^U~=_7tn8dCq*`UX)NHLprpi8&g;d3F*EZ84tfDr)wVU8<(zTFC-KUph)%M z2{4h$z{+x@ge0++%6sWb!uRDM-2}VE1*zFf<@x+6M~m?InH*gUD?8^%yRFi^lrTqM z*Zh^7qF=yXaVe^M<7or4zBw7n(93xAOom>7m7O!R6{mg5CemGWW6C$O;)eWd*f1_g zvzpvBl`Nn%eSxRIr0H{5**Q(D9x0nn^y?k?1UXAvDv59=cg^mR3Ij$o&l4kNwD$=Vabou)~QF%QWxx(GnNVtP?lnN227SbSlKyCtiGw=kLJ=D)5fRo z$blM!P2&R9?7k^r1EuO>JPjsQ7r@HSshYx>-<9mlAA2<0pBu@}PbPh}!7dspZZOkU z5uTQl_5^Gsm$X!qXMIChL+N`IPmM|6!?3b*`m}>}Yv1Ns4lMYm9IuaHr?_|>+$6lp zxl?}L$75&m^DeCHoFDBNc#R*!0R`*#iD!H3Dv5Ardj~cP9`nHjYvF-2$yps%c216V zl3^`5^u6x^a&D%=CUJ|-v?g(5JcwWl9yXJjy4RP3VpI2y z^F+;wY;`|S&3`OT$Ege+Hu3dCRrQ9%FfBEJ99T3O>vZ*q*<^{+_KcHnY-mkikW!eOmb$x z%FfBDJ9DQWken^&<_y>*E;r4Zxf{P5ITa6^NzF;HvU6&*s|adm?!|)_v_9y5IXL&g zK5@aB-lU zqSs+%=M>fb01c@+=89YBWtBuYEp)TKfDGnOIa&&jpUKe@u(ETGIMv8-l*G<* zjCO#{a#W4XM@USRb;(hR!H#iJYSvM>x(Bo>d3X*? zo{oo=o%2+8K5sf9Vo(mz#js6Wh?+H@x10=d0UkJ$obzC1=j7CVw_!LD;t4r8kHRi- z!D-gJ4f9D5594t&xp@dycFv7yy@hJck!s1%)A3D zJ7=cuMO)?*AJ&~Go_?*RB*K|~9n>UntS3FJj)%^qXH{6)IX!iI9MiXoQ|0VTfou8#A65aupsnlbS1FW#`n??~05kg}f{$ z=LOg(E;&u>ifku@Jd20Uq~{q}**QI%)f?L?hhk_0*%xwtK8LO1^3$yAYb(jqQR`DY zcqT!gz{<`Es{2MGa0G_N(D?b{nb}w+5zfr4S?^Z^=~Id}#=~b)GzM07PEp<2nd#(@ zS#o}6!ZvYhP_t%dmJ>f_;DIyAnGP#EC#UY-Amd3NXUNex750gXPP6s~*-rR436Gq~ z&H`9@n6qO#+2bBLJ9ol9wVWNxi5|D%ku%x31y**>PTjsIaD;`{_q-_w=ndE`E9|OfdE-3s_l8B93yshVU_225bDV=|0 z4M^O&WLaWSLBf+nah5!a(#b@aTsq;g~Gw6?bKrw!)4T%_FTez1J;#dOPGjO&?c z`I{c=tt&Sx<$+QA`2F#yKX}$){(r9cEDnc%fyTl-FfEpjW+%kFoEM2EylmFj{!KKU z%6aM&@63dF|NQpgKi6LQtM*tizJX=Elsb~TG|Us?k{wE7Qwebd8kk9Zx?NIcn_sQG0sQc-6+8Ypqq$9^qt>C*9(x?Cyc zB?cD`jLP_(eVO>6;jvF{@UaJSB>-H7N6Q4@3Rt-mTy?;?ydcp!QnXEK#UD+3r1a`m z{jju7>SYz5kd_xqW5$0=Tw}&6iDt~!Xd|*q zqcuk5N%`0qkCVyA7+BdkAKJ#(eF~MNz4GhQYRW7*B{N}3Xq!Za|{iJtZ0~iq$BJGd58a2TGz))Ags9YUy-+xxLe=em|3qr&HOQ znZfn&FUZz)p0iB+pb$)bdYX%aRtq zNAW0`#qVKQnH0Z=3KFfGv@MgjORaBdBjP_*7{a;PN3a=O7`9-+P|S-y{`c{?n2-Nm zSlRjGU%v2bQG1EW&5P@wC?;TCCDDw|nU;fgE&-`RY7~OC@X(kLtPU$XhhP=0WNNkG z067U$VNsThhg;!4AnBK5%CK- z5ii5WaEUOy^P}?zLyojYynx5Z#Nt_4**O+V8z&E6%SreG_JT{o=A7DKn>&1thsAvO zpTf${AO3R6CF9tz<;EjT{b4k*r^5E1}gajv7|4FKd*Z>gx3+1qtiwwRMHEk*$99cOZQ; zGC9Aldqh0fZGJcp!w;wQTdA&GKLi_Qe7-%mD4m*zGq9a)ys13Rc2j<(2&+2?AHXAI zmYVwt%GM{{!o6mr4Ne5MUj;XTzN3N`E>ORXJ8Il&MxXf}4L$QfrsV1W5s#Jm^nVX4 zlY!>91qo|KX!@4K^-P$k$y?H!r_D)MJy}f2N=l*`ohYSb*TyI*CQ5se7GKR64c5&!n|da)q3d%VC4Klhl_||KWcH2yzW$`-BLv!$KzxI@(8SK0i=P2jq2J+aoW^? zM0IWC?nZm>Y81t3x+sbZB~hpqnmby%LbLpIFBR|YOQ@Y4=~T@k%_^s$-M;acF)(9@ zMViXje{`c^<*(Y4!6<8%1PtpnE2_w`Nk)n2>Uzy`1qtgc-a0#L{(6nJH{bfWCc%%Z zlyr63W+LpH@rn10Q93oxXrS)*Kf!0Kea}&oZ7JUBB2GIVFS90YQBbx%{uVCcXeY%4 z4GFAp1lMwoSFsD%a*n}`HLm4Q5bB;3!vrCaH$mb^JaQ%yhr`OH;Hm@Ep#=$R?P&VS zj&|BdEjy(T>!OKxuhw{W7)iMS4B`bBcH5 zG`$U*#--^m|ICnU=s~4Qg!c?LJL&D14`8Lcn(aWmVuR>6UFJ6I%&tWha9C{VY9d>HML{P zCr=sL2@jsh(DtyhbA~u0U9X=>_T_w2SxU%Rio>RHS!(J?7c_w~)rlv;WGV_PJ7nW zozv(03-mE$T^w|yT#?G zx%DWYJ*6mzN6(~a4y^2)qOBM`c6P4U>&^4^CCOXlAl(QX#s%rHrVeZ+11L+^;|VZX zx&~Hu&Jw4~&cze@!1kJ)qgP?GxEwXL%g!fH8F~p1p2^Vju(ET8IQ>yy{+$yU*A_cn z+-H9U`^Ckmsr^wYe@fE-@c5Y|eFiH#Cy6t%d00$fU-0W zPk_nNrm(Vemb80=Yv%rjJxRyN`8g6ciCc=MHls7jCrz0-91ohw%%QNdb7r*r7HgR? z?Lk^7r{*l!CN4E~Z=2>WTC3e6YU>r{=5#!4CO4% zuvy%))0B}bm^`gJ+vCAA8QKK>%)CeFaydAc!ai}qIiMNcj&*O)MR?pya?Xd9os(0q(=qG`dPRHG=KswRqJX-O37c)eU}kJnpbFE8uY9ILngS?C1R_!Aj8a)@K~I=yHv zory2-W09Pn%BC~)cs=ruw0GpAtvR~QaJ=5WDg$i(TOzu8yx!gg3G4Z4)+4f-f4ttx z`&N89tYA~k!%DyptCVW>P`xk0cq*QYM6`kMauu@h0JKYSKaD5o(Wkx_ow6~XdL>;t{9S~H%Y6Lj z!^&j%JGUTVtqDy(Hg6ruiPsU0#FM>=n&R-3ic5&e<9b9 zg+wsoRPv>y?1RV4BxN$J?3|SKO{DatI@5`mub-GXSI$Zfc8JT$l*XG_#Y#D2O3NHP zVkRvqSlKx(Yny24_oG@-xls%6j&wWgbu@~Z8`xyg_!Ak}dx&Mf!WA=gsjqbN zOewIMbtJN)6xDg9`>mR!7q_)1Em8IAW> z%CnkBGcb{sznUi*yzI1;TPeEg(%$lTbj*6UOhMWDj9a<1N1k!ul8E5t7`w`!_D;B; z#-%;_wCy)W6`w7A+JP*|bKf41llk1Yg_X%Tw{=0nT6>$mrWd?YtYoIT`BS|W(bsC? zDln{0lXB1r+hZ*CJrt0g;BwGj%96H0Q9Mc}9w)%c&hc2A){mqCj?3k6Tnd}Rg<}UC zjzW$Ujf?OYnP{93D?3MH3`L`OfnS~vGV6XyPRQf1M_fV-%XmX{6YarNDJYNNp)x`F zF|6zyl(h_?(DCJCIUpax-f#ig9xoyJUjYTAv7=MG6EnqY-BdyM{i=A%+64g2O zs74d1Mp2w&iK6&xqcgpH6l!XHW^1R`i_i3PHSb_|S%|i4#^1ug9-?Wr3aVz_W|&g% zr~<|2h$U{TQ|j#s64vRKwV7^YA*243dWAr#(;mq2@B=C3S)EQF16yT$rajY?PR(N( z7;mj_el9q6h|7k3;;fGf?Ikvf zIZ`}+kH^TwK{5du z1uHuT#9Tl6y+j{57=2ecA3MPYarwaOM=?i=$M$%POgy%Ql`VKQFx#w7Sc{!*0}|El z=g>wAVKs{4JW3SBHj*gRw0Yc8Eqx=sU>&3!aBvWHq*_YISI!K8;>a`{B1Iy!n16k~dY`khj>mVmiKp{oz&t zYcp)7qnae`cK(M4$;9I`SlNO{15HA;&nT9q1|+K8&NYoDQjMZG^ogQ4SrUcnc3x?1 zx3l7b@s#gn#(0S?za!(-v^@vHzb)erV_=%3?MW2kQ%h*Y_-ck(!>fb+Rm|ATwnTHa z|Jk=7VI3i@Rj~Q}Phg3;_?RXeo>CfqN~MgeeNX~6&G?{uj!`-_4`{&p7QObd1{$K; zL`$Jo8>2WLDzgrD7L=`zy@id@hSkxp#*IMx5NwdHP=N~@q|0$vjSUh7z;O6YaT^5> zfI!Lwg-h|EnJ8QYE0=<+4o2q}B&@Zf=^fKXHfEyT>4cx1Jzwjao>B1$p?L~+iCZ=H zv(28E(3EqgZPep<%uHq;ft8&zvw@YFOggK-mH0#s%*U`rTwwN*0+Uae(()l5Fq4+| zU}fjD1XiGHN2Qpr?+YGtp18P-RuWhr$7RLv4L39*sdOnR>)_!sNm&zCc1}v*WtK)t z-0RZDq3Lo|roj$zQ89d_i=m?OrL63S$IE18A6VHrE7raxro2n1yoAQf0y!^pVVAhP zNc)y@&Xk!P9y61fIk2*GW~?KTAJ@yvEpl9Lgbm{2A{~iTx|Edb@o<@>TmvgRC&fAv zDeJnm%JP~Vl~-YhxTr`+qI|xTm6z~%nXEhyD?4Y!Iua@G)E}W$5SakqZOETIWSu&iEw5`(iwCiVM@z5JYXg*o5IS@ zX|eV#Y73mk$}w_Qj)V>378hyXqSB?L9FB*}B;`<8**PhJ?0x`OnEsSkC@5JDX_A0UN*I@E z+LWBT@vxcX+yN^)Cui&sc7Bh?&1C1du(ES@ zhN?OlFEv~1YgRg6JZV~9Nrck_H>v96)28GsgNMx|XB4dLoSe;vs5&|2VYW9-K7H9$ zj?Yf8TinWHxFWuh%2UamGPFG&JCmVpVP)qGS?AvAz8o2{;&O00VT-unNax;#gefgi zJYXg*C&0?iX|b*Z_tMGt<#Jdqg&pF;B3%j2=Sx|+2#=S^%K5Oeb5;Vo&ueGjbMz&> zr{ttO4*SC;WwLNn%$yA6~;cnZ%@EW#`0fY+HdT-lanCWx7$$%=NHMTxO(SnN*Ud)LerH&7|f^SlKx> z))n8Pfu=6zRXH~=!A5bpk*@d#(x&7*kB7}9=jX7pb8@VmuUhVm>YeXba%TPqTf}8X z+W8g|rnG#92h619->|ZCTCDpY`n^<)EbeY`p?IP+PDz9_QIhU|C}vD~*%XhM$;(Et z@-XJbkJ47=NI5Tu!ya+ViNMr*d2H(Ou}x3l`Vuda3)OkSefF{5)DXH&l89?`oVBDisHE@qA2#3 zM4=A1`RkIcJ<4zYq}S!woN4nV{KGT;Y6kWn;!K-pI+gR((KQ)*yoFD0Khox#k-f{#91+iT(+4!>B5^Z6T1hmcnO|P%)I6Ml z?Pz7xo@To#zfw)9o?^2O9wD>ftyxgUpLEj?BpGcmB5;~Z@Bo`>DrVtXB>Ulp8V|6c zk9?1Y9(f>B^6>Y;V`V=4$*?jR?RIZeqB_nL5fqIxtI4A%mON1u|7x`G=Dkp(U4Lsw zyHSU##gTNfX1Kdd8HxS0%){MKN4Qn0V7=i^ZR*U&S5s0AvhJfm{gyzsI9x0`OZ{ zxfEP=diCpqgtZTDdUv$BnUrkK%jK60`V#6+>~u0tjz3xHVlg$#D~V=w$CMhwr#DP$ zXx?;@U>Q7aCO@NKW#{~it;9Fm)KvatG1DoQs$JQC>}YJp%Y+b=L~Jd zVMty6)Jackzg!N{rLbXKhz@EJM5WXzMHk_rGbuVBR(4KN{ShqN-PhTf(D#KrCCBG+ z*eNbP;t{NrGv($HJZ2_0KZcc^bF-1L`q(?>kLApK2)o2(#_%y0uj>iqOL=(@kC(~I z-(Y3uyqM?Y<_>xECF0rDI!Yp(*;UwZjgMH#w7Q;3oUS+Atm@=~u9x;=d$*{6>W;U(IjJX4zD~Bcr8^wjj@aY8vjkWWg zgNMwdCIu@yr^Y-YnLFMa<+xlAJH*AM;StH&>0X1!%H-rqSlPl!18)?ouSScnDjJZe zu2kRA=wf#@isIWbQ4|A`DAcRbUoFwvjX;G925a7o{saDH8Gjbd*$7m)4{pd8qaQTN zaP`IL-wP7fcV*TWAkBXHa7T?VMd>rIJKR~Hc_35r z^tZ=jWj_6FVP!JhZC#MCR)nU%5*<_9Ocyb!UWutqzTzr6;p_8G*dyZz&_hYtv))Rw zos?>_blw%kgJq&}0<3I7rGbW`+LIK^RRa>$&S+GliBzK~4v(TJ{@UmuosU9wMr*Wo z)7Wxqlgdh)AieoC7?ipkR+YaAXt6QWIFW#j$F@K8E;duN^ln#ZJouj0^vJawUtV0Xs{G0{5#O23u)R3w^#c%!Ed3DHE ze@@4PWj*eEVHP3V6VH@13nHy$?=ojYJ<3px$Vs;d+8 zVpraPM70ZhzR^am8bxtlD2n2CNfc^%;IUCHeQ~nI8Wsq?Y?SEg0>OU^5)Dieo4-P!?OT}~RSlVH%F-$8liL`6a;0B% zb+KTKl4wSozmn3ad0YcW)oag!kGb8eWSZ4h4lEv&vZ%g%8I5PbESl>SlpElq>2pDr zHG!FRa6MtV$^u&gB%n;gEjF$vP*9?wff8_oAhREy4-=VvVC7P9)e&xTLBhH^*>twH ztzDop|LiJD4pBeRr@h2kpaK>GHW#+dI1Kerz&b+&th5l3w}j3eb9hQj#^%7v&KcVV zVvHhoiyW~VVb{2b`QamGBKa$bsDK7P4)-Z0{=Y7FJ=Zagt2Z+F1T&UxDr>e_PM89&>dPUu&Hy)DP> zkFa-K+-8U0vsHYdwEZ5>i%HvWVP)sEZNZ|=uzI`Fcf@nh<&{J@lLEsT=GAQ)qW4Jc z=2hEe@Kl&gje?b(Go|f7w7eOhtF^nzk=hA%i(9jf3$JDwS82D$Ghq_7Ev)REsEMp9 zRb7PC-ZaJKV0FT#alwj(2UgV(ItoVdgqVDt04qD^YXX}u!}8eWa=I>sE#uPF5iVVM zJ1AQh;ps5hIv-Yc&X#uQqGdExcZSFHBRijxgY`J<7Z? zuA?NvnHYvxwF+KPs@BAFVN$gktUN-f%0soi*1}JdQ?(!L7q?)ANL9fLO4UAiE=;N> z!^+O7;_VU(yv5bnnk#232fM~)E5u!50Y@ldbMTCqgr#6*=Y;WANwah?yitzU^{`!B zv_f1Z&09g4x&}{$$<&pw@h{Tx;s>Sc1Uw%mUB|)7 z>TP@m+D#JYZfbhwLKQIxb`(e(|l_LRmW>Pm9Ugxv;W@wFZuitDZVnJWQ$qiR#Hf zYZg9Tx1J0X`l)2q(;Ka)lD#13`&syLarx$-O2#<>w8n!HG1XJap24$V;`~%W*?KCO z6_2JL9HkvfW~L)>3|H__vQOole1bdN^h3!|P6BQaVm`+6VG{EptV{~vdyPs|3t*Ak zkyQZoGmkTV{X-ciTv?b8t2(_{TmD}?cc`=B^GC&>J*99){KDcN=NA7MDE@Il;g6E# z)zcZbR9fLoj1OZ^jH9K5^`E-Q2LkkXJOL)qV++dG64=7q9klJWdmD@i{N{rd@Tejx z5<+I-1~V%le@78ONWcif%1k^JCMz>wWm5d67bIFYuxe|-W~j{i2(6$UbaHVjo(>bQlVD}%culHZCNbjGk?^9klU^z^H=c^6=W0tO_saph z2lkB%7=I-W0ZcQ5B6cU95EHT6U}fis>DP{!hDCqAA4$Y#`x;ws$=P}nHjK*_|Ko9l zt+EposyFaVm{7eAD?5iu+u~uYTisqV8BcYY%hn24iO0odl|(pAIe�L95me3fNM3 zK1{%tfR&vCroBI~0G6^0iaX2c+5z^ATewaLW6Iaw?N!X6XidVCVWKq=R(6ioWJb?5 z+ly!YOr*ols(l@in7Xi|U%f;yHeg+H)?%=UT-NyS-H}RG&m9V%hiAux?|4|*IeeV? zWXWD5ZG&>!E{0v>(iYBqvc?XI*9CYwOuWv6m7U|YJ)^cIRYjZY$Gf_7k))T)#OG;U z{}Xb=9)+FbBF5i+ixf0s3B~MTJS8S(55daLG2<+?_NEi_`@Mt)*GF==-iQ6-!gXvY zomt5UiqyM!B21*-ft8&jwF{$il@=DY^&gF}b*~oBEZ0&J;mj=gU#TGF%j^pUZgo5_ zCUC35%Fcn~EWMVDEiVdbq)nBRHU;*LTg$>(desb}i0y?Z#6)ZlSlKyZ+GP>OMU0Z8 zwTnXM4L7HO<4lCyR#Y#o=i zu234Z%1^N32?gycJSQe-SHQ~7L7U3&)#@!3Y2>{uC+`K=OD=iy!X&SrNfgCr@g$ij zJ_9Q|M^U@Eq+ZRdSx3^?`$Ep%=dgKP_TnvIuejJqVfz%%iV52%u(EU5cH`GQvZAB` zH~t#&EOo4s2xpeczyGU&mX0_>q1zbGj0xQsSlKyroLB9o4#vFXHcO7$OxQMVZ42jB zd#xW7uo-whOu(kY%FY4P4u`2XgsQg%iHO>T7LWQ_t)QJDr|eYNJ1%A2VUD0dQz&XD z;Yl%3TL3FNM~(C9z4Y7dOJ&oUoOJ#yymgiYi!7tX8qdhSs8 zZo{)>R#5`Q00ZFRruqrkuSuU=O+M^@dsROy*GZUdNMTqW2oCJfhLd_9eBl zx9qjzxx-RQBAmHHYtd8YQ1q6-lVhT{7_96ZJz#;PKb`4_XU)6Zc91hS2{w;g?m}H4 zsd0tEHWAN?30pg?>>M`jR2kz`BG@i#g)JtB%!5tiLgs}srUu=ha2=0l!-VS?SlKyT z+7*aaxb%auE|ybu0qho+s-r`r%5YZvd3YL3oEE~$&T-lXtoG8;|z0EJS!$_E5XXnVdH$#QZtFty8bD0%Jza?(?AT7CcnuWI5K~ zf}a)_>sjn+N35KvcJ7ebfD$d$v)AU~DKJs)D=1qJ9%|hYG1>tOMq>i!?F1S5zMPSp zaD$l#5AnZKh8PK0L1kUjnN99->=^OTdUrmlu5$# zj{X4q%&mGe_*JivrC#!A>V)9m;lVQr{!Kx77}Ps$9c~}uO5hhBEOyIXFGgc&B@xbS zg1-(I^lZ z9O%jL^WxSzKG1$K)wwEFt>D>AAVBYqr@;hzmx8jj>b3BA$q6h#0zdm;?Mul~nT>nQ zZ1nh_3c{!a>>$u|;|VdL@nL0B1v?57t(!z>=N(yodF@^z5ly7C`ax}1s%V8>*LPvh zxRr>%#TUn`><3*#xeU*TN!KN?vU9q$^BSylB|ZHxke|!R`YG%em#hf8pKpLHH}EWIaS&oB3rHMh^M?ve1V_Q z-X?6cNIVp7pd`YXWro>lRScngt%oPX7`LJhPvcl}&%YIP0`tf|2bY)>>=X7ny zTYHG6`_zY0sdP#Wi)pQR-6}`yX4p6`V*Ky(@J7DI6w28Rcv4Kxu7j1GbH*GSWAV;T z4X%|xiG2P3|4kd z)fT*dtCO6ae4HGrqhY(a!yx}AF}zwSD=1S(;HfZ~It*5J&XjhJi)~%2Gm-Xkk>2!N zva)rqoULw7oGNYGv~@hp`15)- ztX8>EJSSXHNrW>en8A2LAu#Sp5U`i;Gp5s||TCC{-WexiG2vJFGlX zs7j_|`a9?iZW2!m*HaSVObf%LD(?lQYHd6hCRJ;|%Fe0cec9BW@>28|lmq2l?GHP~ ztycVF>G0)-q8pT~eerCVWbF+rJ12{|UpeK^%XytS@>XZQ9Ik%YG%j3W?pLlDLix(# z2{HNVg_WK2#he-Dca?U;^)-i^<#gQuTgIg;%$Z@y4$9VbcsfkBu7;JJv&HP-v+Ed$59FZT3wy@}ZFYz! zLzIeH#TQ!9?!xn8(snzn?3^}i)HHl{{UnEjQs{ycFq`g z##yXr<&TcFg0|u<;u+_1N@B#$0?M|~dbTv47L&ClVP)s6?aKQ$s5DB{e0{6|w~HLO z9bx~tg)JTa2wLL}rEWVsHzsx4z{<|4!$wiV2io0o*nHSFE^I9rMa|!7ci<^88H>Qm z&KcVts%+-ZwJ(!nb_whp7c>5qAq_0s7JCcpSKAljSusf)fR&w-hE+4e$J3)?oV7&CqQ-HWHhWGo3QJ7;VX zG}G)fd;)%h9J1?R-?)%DZ}0hls|yhnzL8rpuGrN#|5ng zdxOfh(9Y~RJS`?`KZBK>vxZeP)92w|%0c@t>>C%f7F0CLSK|M{b7E5VFId?*W!MU> z`D5|TZxzorH&YVf%r;xFLTmkId=oq?CTSbO%Fao{>Y3@&@gwA%9R~Y0jOv-?3-Uwo zoS2jy1S>nI3|r4Id`Nz#9J143+qjUmU_Hb9J^9IaN=(MS1uKs*#tfg8-z#VAF4(qV z#F+W(^4sy0n2dcNR(8%9^L~cXo*?5#=6{e=_B+@(E@fff&ro9uon`(8Pm0OeuV7{8 zoMAh+D_>Y^OB&1FCY}K-tt7&k0kmM}cEuM;+md)*OxnHyD?6tRn{ApuK;Kc$+IFyW z+_Kh!*{1b7^lk90n50dBm7SA@%>xXdqx*8qI$+zln6+RYVE!sSf~Uk}>{wXYIb*v+ z@0_%+u(c8N5;<-c!VYqAn-l)qC(Ru?jt=12G0FQjtn8dTY%OhGBHcA#?v(+#|`!@EdFtB@sEMx9~Tt{7VTz5$6_mn=)Hd0D=S^h}@D);9jM!F(KxlydijJvXR7j#K}3rsZ#X zj*sic9pN z?72l(F-`5Qq}!nc3Y>+)-U^Fg4mRUQc&!>eGMxsBmL?4lRXC#k_q6DRmy zfrrk-_ws`BFerB8hoB+w>ke}9telHyaC4c3?#SkH5wL&|@)Vu~laR+@Wm4cCX;h+G z;EJ4%tO7Tt7U=`M`F_UU)_vnnafSOD_L*DZX0S<46tdJxoFR2W@E3USOoBfzC|he> z3m4q92`sfG@DmSKxh>^vj8_ujOkj_0HX8vG2qk0jG?M!bx(ULNzp~2m zQfH@rDbGM%yJVnf-Z~9#1mmcH3L?54%JRWjan5ivx#^tp6ZIs zji+Mix!OwZ*>b+lfX(Cb#osN2@>S~zMeS5PCnjnq!OG52)An{7hC?sr_2%OJe#GnV ziu9(_iHR|dv-{*_*I)!w9l% zVidAB@PwFYzbJoNswK( za@%5U`G2WhM-6V~(OwLg#!cIBxw9Oy9bo6UmF$?N&m^mD17&Lxo(GeyiLi2$*lGn* zq;7S|k&3~Fxkt)0CVF@tOr(y7l}8X#+v@$+pd6`-VZ+=bwXLDex&Y6EiPU+pvU8-y z4!JfFi|PwqPsmw%6n2Ws(qT;>@st5{sCyVsfCA-z6JSEL2dwNIqRocvkK(jJ>XTEHfvw_Fba>Mn zq`U(ZqcolY6QcyIJQ6UX#b}WnqibQS9AadwMpxk(FfqCUR(6ijxS^|&GBKs~M=#4c zdI9!|%MpKjJNJcNJZ}N5N6+FZFhP0-R(1~3(ED5pUk3K36JAdLqU;MfPM^b$adB$? zK9_(I6sk}0M3_*00xLU*YUr0JwGsE%v;VnNUeI{4j&XTrql7FgLiRzt5nW$2>8 zn{u4qfUV-<)cm!lyaN=Y*YOOP7`+B7JI83~MT5MF`l7+I_li66rIbWC9eMK?4GI=e zke0wxV1l$5tn3`5i9-%^wR`ooWvCtGL`{NC<5njAnQq)=s9G;5S`+bHm}s@b%FfZ+ zZD_P|UM?Pu7>WHECSY&F$|DajQp(o4Pdw9HT}gy9(+nLj z)1bL3o(>bRm0;zO2N+qlpCSirFW9$XQ^8ED_j};!Fag^YR(1~9(66maV*=gimywf| zh7IGA)%~M-WovyNGM$NL>XR<{l~2D*hFC9!#Vzhn1ZprQHK$ zZ{#bV2WWl#3v#fYg>B=4#XkrfTod+hzeV?BAi)acu*N%XOF=XVL~+;R(1~6 z(3@?_KTyM4?U{0_X26zlOI7nX+XS7UwQ4$^2@|Vnu(ETkw&T8m4D1KjI;>OWaGeAj z$Av2z)=Fu>4~p0VJRc@vb75uYh_Tn=%WpTxHu*c{gxv=F#w9GYrP8V$6tG+HbeMqM z2rG{~z{pzs8*;#2hkYA1fSK0fU&GU30`@AbJn{e|Yw=6{K-|_Zp(Mg->qD<#rnUIR z@N}4feKqm`8~Xg(QcIg36D%9*C&>|;h(8nN1s2Ue_0eDm9VXlHgqVQgt zGxZMa7?-KghQGWK6souJM3_+h5mt5%)zIH68faSm0r6yTRV5M5WU%?)Dw;7`3D1Cu z(ekje1)~NoiL2f-SG+5%0SSjU2{tKgq zhzWQ?*va5oG1*DO%A_VH3KFfmla39U7wbu@w{hBA$(vNT!fWXk!KQJ`5^!x;V~~|R zq21fHcuq{ju7Z`FBesL~^4nU+I=o!8+mA)keK|j)f%XeIXfMOoaY0LlUCnBop}4(( zXU4?sSyBQr|b*ZF)n4m>V9M8EN=*f>vKFICS0Gw%Ff~1hFi;G zaj&aWoo}g?u`M4IkC)?>L^zYu?y$>P*%S)dSUf2vWE;cE&LPv6Wvv5dEUoi(l$@_w zuwmQ+2J8}Rtbi#$C|Wb|e3)p>fR#rMT7F!=2;*!yT4%t94I8wS9~7-q@qCzQodhd8 zM{8&9(5S5Jj^r}xGHS0Yo$?ae5P83xvwL9oxSaKdJw)o}Q0VT&lVd`68?5XcI`;B~ z^0nVfWHr{_lC$0Wzz;j|E_ByQW95Ma$Fl#r~t?HVeiKH_z^?#G; zq)%4MR`{W~`(IW`gwy?J!!B(Ge<*rO;rTJqTLM;gj@~ZZAvKzQB*<`l7SR z>e>NM+GdXKFm-N&Wbza1u*Q?DLo{%&5DC`@Txt{QuE89Xrdl*lP3ED%j zvUAYbZwiv>m>;1lxgW_fdmnaut$uH#0eGVJPWe&Iqr;s}OJxY7P7mC`acwS7@ zK7o~;qqY-R=gM0IwGub}N8)+vSS1n8JT={-5?A(yBDXP~8xy%Pu(EUH*h{>nUol;K zn?F>0+r^3DsH_((V6tt7@w3whR zfR&wtHW?g5m811`Sl%P2?oQZ5E_HKTG??lhQ3P+pb7UfT3#{xMLG}`GY4lL`8unYh zDJSm@*gGzHp)Uc~T0?<*9Z!u3+-tD1bKv#?Yo1|up*Gkq`(yDOVkspN&KzPvi^`tC zCJN#bc$!QQ7lW0ZgSZz6BH3-IVYq`F!%47<+!{EqMHmv3D1;O7B$*Jl!^+MfL|5z# zJ2PW)?mXByE_bb3u`_SbJRZ-BiP|x+vUAk-1?!!07ot}4E|#-*0qi7~y%Sqh^NdE( zx_2I)C=f`0WZS zk2w5lw=`<_W#ss!VGD;Fezgu!{1SMEO#I@ovUB{>^TLy@}z&y9)P<*>4IpUS2)>a-j$u77F$f*iYNVFS6?g?^ZX!5@m= zGkAVX^qzv1ouh~DIL>AIQc*9b&SO=-ZEdXmT+ZI7u!CIoTD9Z2#vlscCwPKP_&$b} zox_K|&CTT^rKP-FI#Mix8iHegBA(}NtR%vj=eFu?uE8b>;ut(lCWxb9W#=HW52G#* zFs9>lX3E){0b9o{f1w{nUE>VJZ91MA6SrxwvUA+nrvQ}uXRXSeDktqE*flO`p`QX! zHibgA08feu*<4uJIb{01rq<7S>dYqYl!JB~>>L-gMA&a=gT_$UZov~{!geF9>>M`s z09w-?Yh~>XIc=}Q)^TYIeE_X-hT`@bo*5IjS7Bx6xUm;Z46U#R-BOQ;XADayiEw5N zp)Z&i{GsSAhUdpb@2ioA-qzfWP{t!SC&_7>h(8VH^;?~x52%G{69udtPl*ZG7O=9V zwl#2>VD&!2;_Yz_NI1NYaE!)zI-B*g){6*}a;|&eN5vhwXYjc$WT~HYN>eXEQoVVw z3lE-2aIBy_9Bv-md?+FU*XsqZ9Q=-)jX~UAX3aag*=z(%Ae3B;r@^G;0$7>Ux$_DV zt-E7T-(^C6W$lsDno@T>)#XS0WQQM%ssA^UQ2(gb#XYTp7v4Dd1Z*L<{s2=4Uj3=- z3>{t{#WQ1K_b{yN96SA+i8|Qzb*Llz4Y2)F4%y%K~Dt=JJ-pBJ{BK9t< z>>M%u`Vl)~vlEe6ykDzj>pv>4W$P-5aAu^yrOqH;MK35?YvH*t(OMl=c8-?*=D?0t zVxp;Z9Uy0GD(o7!be+)rUaZtXl+2)TO~I34!nGHy>>Murvzj_^rMn`%>3BA)4&gTp zkn`k}^}+UWDFe7EQi+5Kx0~d+ErRWHkDKla#qC-= zD<*DN!OG5Y)A#k-t6MgiPUpHK<`MK4a@bym&EvubTn-1;wpvdpYA@h9F;ROKR(6gW ze<01KJM(+mGF@@wK>D>Dwl84&xUhvckm{~b+&;&%V&e8Gtn3^&{pCBYY>XAOEguul zI>#%CaAuu;(`N=IM<`}v@r;<5Z44_r$4tL~+<;kSg-Bb{I7$xJEZ8t^9XqD^a8-Pu zNX^9aU?MdGR(6im_#s~@8CS^8mg95=Y!(-%BbttrZDs6KJO?I9C&9|jQ5yQ~q`9BJ zU(V7!uv=V~j%+$h)|Ie3@g$fq-3BW=he^Ldiw<@AT8}p1y(OpWP1rUrRbKO{8gk|9 z4LlnrUa!N-BLFXbZAZgvg~!Fs`m#zQoMyfGc$z{<|?8v6ZX?P`t& z*Uoadc7RRe)~@Eif2{R_qBRN6g^AWgSlKyRLl2Dl+KmQRmmIDbY#SG@=2tG=4T_hC zXT!wncv#tjR|6YYt9xII`xhIKaJct%Z0)pkx|fRg_9fI+Z0A%vT!@sya{JOL|{TKH%|qILUYwUasQfR*;RbjH=&@%&{_>6DkyM&19Y*oE6; z{{=h9El!y*i&JH*Y>hp182%@oo)NvvzR|W=TmD}QO8`w@a`CpF+ef#x^?U^XPdH~# z+oL@sgS~w@b!%Q)?a}t;#q~Yfn>-PlD<)`DVP)r_Y1=i11}zg$ zMi%&)v|iy(mgDv<*gh_9{4@VVxK+HN(9OehV?x&lD?5j7Z{8fU(!cbj;&b}^h`Mw) z>qq-?@qWG5-7bgk`>>5%`1tp?N#LU%Q3!9sb7Vre2v&9up|+f7t$bcqeT$cg$9(|{ z--c})UXX2Tfb48MCnjWPz{<`c;_$-puL4>#RTn5 zSlKyf+A)#VnWtJ*Q+FCfIy32HB!tMB=J(`qeFwH|c)(TkgTgh4=fi~S zVp!QZT-ucc)_$yJua-7C{!Gr;)39?~#(F~C%2s0wMePYZEhcJ@!phE3<8IIGRNK1M zJr5dW|B^%YPuMdqWU+7|D;h%a`Up>miP!tEvU9w+4SxP&&_qU~Ys06-bIJ9UL^yNF za2x!h9~7>2@qCzYtpzKOD7gCc9_%1FTnE6GaZ6YDaP=8h`={dhFyWd4D?5ivJH^G` zgQXKXTHlhRH4iq7ix&Uey+#%$I+Yu=YW3mSFu}^e%Fe;kj;6JO)$M!z@vPcQrj3f< zm(z6<>>8J@a6gHvSV9q7gr~$r>{?jaIbz(dtJ}1!`YSnKzkn^{@)hpDSoDL!^)j9h z6RsCv>Mg?$5ps9JsMx2cU;HH**Xe#ja#(B?YJtIP{d~8 zDKQb72`f8COgl=*+SDi0{l4Lo-*3waI~z8QOBnx9*+!~Y*%1oZ8F)raz)ppgoddQd zb71WC^wo$57Eh0f-cqo#bM&-h|E;}Q+1tL9p~~$hXKrWMI&PJl9qOCzT3;w^JK%XS zVVeXiJBJOebE>*Ua_LC1+-Y^LN6uUq>>!u9*3`KgdnkG_JUu3Q9<1yfJ$9X|clgwI zrp%%CRz`}%FfZ+nYq+aI5Rlco$<5XYF4T)JlBTLf66iY2zHN)St?Y_h&2?s_wm%2 z$h`|Ij~wK3>e!WNqatxz%Ci5r>R&cG5mt3lxXOEEl2MQ*gr0My{$kmXb#2hb38dFcAvt^&avAE z#cs%xT(P!=ud#)qHWN>aiP{WUdE}vH_#EMEIcjIX&J8ov%wHv(il@ay?Ic)vq@iX!^W}ay zYWKj-4J*`aN59;Or^Q6=Hdxs?YTTFjrIEsXEXP}N*4~7zFD9NDq69JL)_=eT99 zWvH1>?wEw9#YAl)tn3`MN!U_|VY6?S9JCnh8yB?hRxEv(&++i^q?ni;4=X#zjC&k> zsUxYJU7@Y=4$4`(7&ec~TDZr->(0<_?E*YACUED$%FclUyEWtC9#6<=dlYt#OIu5Z zP}>>Zc4L@Q>YWn(CAX*@9|ZV6b~Id0s0JWJyR zJtAb0oV06U+qk5Kdyi+;6AIZ?cuq{nu7H)DLk8|^D}OX@SY3NrPTLExe_YyHvac;@ z4#nqYhaB_6vP>LmP`<*!^+M<Jd?e397cPDHj7rMSybbQ1i3gB&chD-o&ft8&DxCaJc&YSH=yhJ+H z6)~Ld`=%VfH((37_+?vxpXLvR?{z#sCVa2K%Ff{fhuK`ZH=^JBzU&L)8OBmdBAgjU zONQBkD-^UP@T{1iEe0z)2Myd&Vw}tFASZ1S>>RhawPZ(0(H4r@L_94fYVEM{NJFjP zbTd&*j+zHMH>^-A+Cot~9#4yj+A*;5$V1JrdFf&~Y8SxH4Kvito0rbR(_*5w5LR}M z8uyaOeE+M>NgtIH_AqQ1m#}aziOjn}YuH10HcYS{fR&wt#oa-oO{_G=-j_4>F6>M}lX}+eZ=2|a`r<$uPiEyTx;hyGenPaYsr^7^RC0N-x zTHMV^xlBA6S>R{VS*?gok@K||Y#XIto1d*C@SA=?#Jb`BZ$!dv4CMn(=; z8n%oJShyG7+LkU7cs@+H;;^!FxOQQ_3+PM5=k)oJXgZbkqkXw}zuxj+D+lc=*gh_3 z=}_MTP;Y2Oy8_RR3EkzevUBLT70tL%_JSO=XJN~@poLq}Y%65X;Q27&dJ0w^L2wzC z#y*$B^(k!GaDmIbCiV%Q4->ABVPy+ke$O4F+uBYV9M^O9l(x3x274A3|2Vh!$3XFq z3krXfBx0i$Z|k{T{kM9)^LT!K)_}yVOO_?pyeu!#GkscH+xXK4^KmRv%H0q4+@StY z;moxC#gVqZm^8*Bb+b|&SVIlNQ7;$i%%qc%tgi;$0E%C6Kz>bHN39v(;GOp>YY*5?a9hA-_vs32v`f5h%r*d9m@T|c+vc=y*L=Mfd zut(hTcMuzzR6a><*@q@xdN%u3e#S@Pp)JUvVH%M?${1(By`=%qmN^fX!7 zI8WR(gP5P3GHhFiuColOsgG-?sL3FaPXGCB38$!t5h7KS=mkMiHIb}roT}0KmA%CU z9#2-$xqu&(9jOo1VPwa!dFt$hp$hvTGIcP$97v`Xla)6CrWVFBRnTW@fb5ttrb0f5 zOy%k2Kr&^Kl{W#V{H~NNPhGFi)Ck!zV@!p75ShA$UJfKvSCN&CGsW$95PMX?XMk+T z!wvktsSnm8WZSS{otJO}D3~GA^)S6KNV*;*D{nG%u>lZA*WdK%`ZL)!!*nq-M7mz2 z7Y0e!3uI;EbaCGU#pbTaScn5`*7vmsg)=}Rok1af?b)4?8+CrXH%MO*KSai+)60Wo zY#LeFIAh$$jj@b{hejM?C+H)#f@~Z%hv9dek`N2qAriKnUK}K0OUcTc4q>5z5=Ynu zeZm@K<4hA4vO^@SN-qwQunJju(;+N0Y~l#JRiCh1$i|r_EM$jB*v<6fAPKvPtQX=$(!iKKvMDs znLi=Vz2<{9X4~|*{So3@*4qcWTPlrW(cv1<1NDJgNUsUxcAMmZYTF<-ob%|#Kmv6D zS=l&H`;MBQ`s}*JvDBx}QkHBLw&6N8@#N$>AY$}3dI^viok>JoVZ!RU1CF`0WNiPTzs>8_2#-T#ztajIwYYB(+$tsa;!;+O+ z&T6|M=Bxs}G)TM#$jZj?;&#NxH;J~VVNAFEdU{EaSdEaC zjbpW7)bU?nro8w59euFAO*Rb+RyHlLVmtBQq?ZMW)+1!)7_<}?`q)~bzuu!DVQ{Um zJ4*O!+p6XUo$^5Ja^dDb)E+x@fkZlE2mItltyNI2w<|XwpoJ|OzD@?NiA4F|p7MBD zG~|v+l{ynzG7GO8_UJ>hUuuxxcSDmP30WcFvM;?bNL=nHAS7Y$BrC@drqB^%eL24wR**2*mz&8a z)_QC&?rZu;e}!C6SfufXDAnw`(0_{-T4;(NpofhF_kK?~w&yl>4J@~tVznKyB-Bp{ zciH|xB;wjBU7K~e|2e0X9M};izoUDM+@iCFknKi6Bjkes$#3WdKtl2>va*ofexWMC zvYU_Urj_0HN#O;EXVSw*LcE)&9GmIJ z@YJvUM};EvnupWfN_{+zr~8Y{a`=U+8WxX`4FV{~(hGtFWf@sn$aYISiLq-uxvwc# zi*H)5Q(k9R>sdHzu+*qqbw}8>aRJ1vIWk>Ob`IOSvXjp}5=UB{0ybq`e2YqXXHs} zqFGV-(I@*&#Dstu*5zAFF9s6m1)lPF7=dy-k5vT?fj6@r+af3C8Q1FNbJR)uUA7OZpei%+b;$nHK^Au?5@7X`_bLsmA< z6xK-DDDq}~tZpJZhQ*37TT92vb3-KS26}0bWL-yA-jv7^`tpzIll3UsvGGEdY_#|- zdTEekeS@rQoGk7Wyw&Xejm&@z!mNB{plb0Kvc0Mg*UMznuyCb0!`e1P%v>+g3xwqB zuViK8d?DLJNA}_H?5DIxh}|HO&ImEhHqm!OBr8KN4U(*xWaUkTtdgB~EPf_+wLV#^ z$c|ytR+?n_Zir;9q?ZOs*70Oz<76S%9NjrWTR`g~eY7qlTZTmoe-1x=S}U+aWa|QY zagc1SCo3Cg3)$cD%#7`T<$lI9d2saj06!bF-!sf1=%$-vT7k>B^_vD!O)v zY;8s_4w9|^ZhCAXR}#-}SmnA?4tCwCLBwhQHm5pbv zgK_KB!FHzB@+_CZEPcq%C0mDW91AI~`*601tes6S7Lv6y$jX}-YpumvjcWsAt#<@919S$i*8**I(b7a}op_rVJ+E@eNckJ(1DYgo((-%+x1BS$~X5s|Qa z=_NuE_C>O?al#HEwVdrW5iXs*pwHR!Wbd$?5l)g)<*eFOga|e(}XPh~helIO<t;?|Llpce|s*`Z`*}oK(>Vtw?qb3tF0A7X?{9a7Ao69eSyd zr1g`Pjgv;}r+J=A7ME_)XYB^EcUacOpr6+EMWpRIdbyCaeTb}VoHlY^lPm~4s?XZD z$j)I|8=Jf)Ul;fWy;MljzD8CyP8x0Iwly8j4L@JjN9`rDby(EKVCJ@EiWe6B+?o1;?H4h z_{HSr?_`A!IANz?%%z8qgm|{6JRVNL;J#Lp_!2tuA&keF`goj1_ZPV|ia&=DjYr4^ z0hHDBf*?UzMOGHF-AYel>`uPmMhr5dDnstsi&il^VAr#D(JtA-H@ufZ)S72sTtfB^ z+q4d#r`zy&$vhF;)r;t5LXvhNS=l&gM@82VWTXXSeVMsjU+x}#;O-_{hy|{k0&pFy z5xKjIUNj_kx097)xKrqivHqOjAS+1l{W%2*7RA3u-2Re+1dHNdo`hAnb7oi9g(Gtc zmo9e?dM{k=|G2{c(e!^@<^2fkbfakW74F}%t1Gr&65EK(DXc!et84DXBkm(_fkzMC zSNJ6SfG3|3_lr-%@0(j6Teb2Ir2kr^@A+Ty%P4)5nk(~_Ty0+7s$1Dy(W=#K?q711 za@}&uc6FY!Zn!u6_j=pE>V=Qff)JaNta5I!QY~90dt~swz&X}o{EsTjE4SRdt8fPx zQh3Fa7@HbcoQbJ3uWELQW>23e`J< z9w{;jPWO~!YkdsQW#NWYb_Z}R^BSXX^Hj_2hgqh0Np~i2@8;B25OgCgyv>?%t&Z% zA}bq*hCAz*gQhVA9Xoz!{}cMyJWe(Wi_LL*dB?-XFSQ8HWAvzz;5$>Q#CPkU+gmRyGb)Y$hsNr9L@C2mD;S z2Q(KX(iuW&W};B3MQ~=*qeg<$O;#Sy;8bgJaL&{R=QOfW*zBVXPP^11IIHPVBf(ik zRyGdKelgQDz3!ZM$+^I;%IUdOpPoy|Zei&;Nw4kVi!LH`5j}JyLKl*ijU&WeJIZ=N zod)jr=<{Er)8J8zMSsV2jePe&u6sz@UuW7kv=@=M5?EG zsF)0e8ts*rF~}}#g=+>qN@VJr?kUIC_ZTjL>>>3cv>Xsw0D-VI=dV}LJ(VwjfKIgL zk5;bvP-z7Qmeb=!GO(1aEH;0hL~M3QeDNa&7P!wxvNe4J1g8m0gKUwsDJV<^ohU3z z)L{uqEB2JC^k|W&RLIK4QJE#rD_~x&!JmG6D-=(Ylv~ISVM%$57Aa6z5tN(h!6HGq ziL5+cL9v~(2+9-spgc}?XbeE{3oC;17(G}dD36krje{~no>9b`5(E4 z*@CPbgNVXf9b4}6=l>NXLW_>7!!s7eE8eP;RuunKUHb|a9S@i=ri+dfPOP}!MMc&d z&mg~8(!|+ZsTNnVHNX<0o#f{MYdJHWv1|lYNGNu*(z*SSVqhW?v?IBfyK_yWAuQL)I3U7Hcm}O zpr#WpZ|LLl8rdT(F0q~FxXcnMsmRHz^hlAMyi8U$&WV^^YC~4FW_Qdk2Ry5tUFL#B z5@Rf}AtGlNS%F1rX43;kQqxUVj-f_jgu(_nes@Sgf(^AQs`#@g{9dzNcF_;?+n#wX!sQ_V-O`9gN@LmM5exLJmuK> z9>XzMXv<#6i_jn?JP`XPgss`TeuVC+bRZ_yeC+G2{Nc#y0tG=CdC ziP-Fr_>e5L?iq$NCs@O+*ksc}%k{8Iz#v$30 zjljZ?3|iHEZM{<)O^x&ySySU)9LXdahXO|Hjc|)a$JhGwRSjL z6*J2T`n;?lyM)awv172&GYc!Q2+VSNz(`=0l9i1E(;Wj$WguIt^w-7xo*VRuX^?Hg z60S-Kx*ZEo6VNtZ4LG+@gw*+)NJ@3CT@l z82RA$qoMWWJ8RyK}G zXwfn}WOlo=L&Zjo8!?}$&&p|JkFaTFsd|65Ra_C4)%0+Yu&g30$H1bnbi-DE{OMo? z3AP4xmFh$hi^5-o(2An069ue6?Krk)jBK&gs@ajvexD-0ThbS!xnh*fe(eL*#REp# zzv}ICql+wWNLHUdp-M1YefpRup|Bc}{PNS}qg#j23sv)Na@7Q{DqD8?CfO@#?H29< zok+bjd&RUDt;gPI!Gh4(TGJ!+(2yzaVNY41b`xJdm=W=yH|ySbWX)!|}_E!&IqFp<^%0$EvT*`D_##%_6OI?snwcIpBgvwp1&#|)52 zqN^;zaWEMUzlz%HWKvA(JrRQ$8vg@NIsU5 zm5uYU3zs>pzFgKR4HYAOyAAqmG|1Lq**JunINC)Nx)N1-kVrBrWM$)IEa1q-B{r8W z+4aFnKD!={+06DA?F~*}(au`c0e&v<4SlFyBio0C>MSLwP&SBsy-F_zlCPJ^%EtNH zOUhTJoP(CHQFi+I&!!IejrN#oE=Z&^rjjf_xDA$t7fqu#`x4(YOg?lyu@z;uclp@cx!Li{Dw6UvJys+sPmz_4 zlfuvKxyd>UH&jRF_9j2C-GQA166thc$#Z+{A_nHOWx|Q{AdzHjK~^?ShBSw`C!9*h zIEU#YaxmGWbaMzRtC&L;(_=-FvVg2?oRr0~)@G>MDBIYH-~oMl@?_tz^mM$M+1*7V z9U*rvzetotj~_|YxnyPIL@lBbB~AyA=mT{P*)}Xtrzmx4;(?OR2wz1HAIZ~|WM$(# zN!zko(aCukiti6Uq7To*WRI}$sP%_gS;frrAU#$jDI3Yk#z~RR#K2t`(oWBx^+9=& zY!Ma|wV9Z9QAJK(pofa&4#o$*`k@zZpWNN4;+<|JBF zk&|ikP?4PMKvp)+$*gEk#v6OOE0O(HvBppAuF%J1IoTm>I+2{0<`yP)VmDe+k&>nK zNRgBrMOHRWNp}n-Y#$AmQ5yQFRLM4BQIUM5fA5I0Lo8C?E;I;tfB{uWM(B<**G)v z5X`_PV0rqvM4z6E$d+O0IZ2~2YtzGuE^>4sJ#-{T7m$^WbF`<7qtIt9T;91`pPakM zCSl2uT%nD~JE6jgtlUly7RkzOWM$*5aJ#`>Z=;_;aj-n256jbJm$0x!Y%m><>1jD4`ORQ%oic=y4(m=_M;0CuFuHnSgVp zN;$OgifexI`m9)Fr?9L@&TDmBn9gG)p~NCJ=h7oaQgb$0**G=3N~tOLI|GqTzt`x4 zauwMeEGX2&9$bptSxmQ(K?Sf@=Sq5*NIEVjD;uX{e>oka&jmlM&&z{kyRf_*uhL&} zp%JIRMSeEY!$$IRFIjo~^Ak7y@}fRJFOcmTJAT^57WsLe9yXGn=g7*&`H{Cy!c~;h zf3H0{ng$Z-jE<MP`no2aIIq2(q$qX7-l#XBzcNKLF!?gFjT~@64&{BU2&!ghfVj z4_DAlv8%G<8vN7}Ew4ySksdFS7>BHEoET}AX*)P*I|GA!mbqCUnVZN)VUbbGGF*X0 zW^SMdjAZ6Iva)ezWZQi6wmk%6PND1am_96zk{!arqO{GoT~d*fZ_y(~Qt}P5vT;gw zmb6813QT0$!Rdv>QxtZLO7b{7i$lX|&ia+f|ax04;i60=f?n7ERQ8Rj;6MOHRW z(Y})2NxxIhclT%O9vdGP5^pKI<{CCsiMz*V^zi8F#c4%7*hs|PrY!=Y#0C}g4(ykVv#3D7l z^oWtv>`zu6pV@||hTmgp>0@&)*{XC~DWS+BH)qpBMsjloS=l%@(ri^E}z9v7^QpHql!K+MY2t) z@)9ks$csY{7s*RMS=l%*vdZ7sXH2B@jhejJ zB0n?fVI%q3jjU{(AK9EQGZMB*z-OZTQo$;HbXJm`!e$$#IbWf~A~na;BSunlELqt& zHFG5MFwDdD>MqwxU8v8^1!S+V+#IVi4I?SDNX~kC%t&(TWM$*zNP9K?S-5z(R_F7~ z?fSgjMs^6xi(0RyRZ@|XPthYqQt}D1vT;geb9KR_OSUnThb?YC1=nhMN)DqS=l%x+%;KlPVrU~;bSfdCK2ccwb@Xz*%d_RAbJ|{k(G@zA{*6|8pXPk6p>!!}l~l|m{q#tY zl;p_D#wn4_oU|!{4RG21Mmbk^ggx3f=o51t*)1$FN;4vYC>fdNja7t zE0UCDWM$)|$WG7o-D|I{agEdk`n0Sk`-G)M>GWK#ydp7mdb~(t&L=AyCq{O9F6SWM zEZwG$%%{jkVUbZfJ(n-A$jm3`0VA3D7+KjkGqQ8an1$X4eC>3@!}Fv*JU<{ihJ{Dz zoU+)Gixhp29yyYt?~;{`QzRRIx4q=C+3auHUE%+dEy7}>H2!8q6*>72JyawouaK3E zb0WJWn3UVV7JNVW5Pb!Zr1Y47}(FgC)kA^C6bMu$jZjq zkoIKf#Z06IF2QogH0bwGyndvYGUSCMh_E7#}cygIHjYqp4%$5UZ0LS*&Hk# zY9pP&%6gHF^XWk%*(j5hjk6(})31ST?T;HRr)*a_Qa+_m$|uNHVM$S%(-(^@a`Q2I z$VhHJLRL1;jqLQfnsb4jtyJ?itjEefGx>o&INu|Cg#}0H^f^hHMRLANj~PkM|B{uB zlOx*~Rf9V~y=7>A!1G^yVE#k42n&qTz9?2yk&{>Gp&~i?Ct2AzC$g{Zee>2imgGeD z{r{mo@|gn?>5P1ozPgW;R-|PgdbCJd_981Ar$suCQmNLnecqkITnFY1eO68-dxT9Z zYV#1 zp|Xmkyq_K`l9VgR%En2N?T`z(=g!aZbGcvB$K@+zqp-Lr?U3UOEHd)|Jzyj=_mh>4 zGZWK;X=Rt}I;+^Qd20ToPt705R$-}8?ZI$G7Poo-Uy

  • 7BKcTL zRyNMZOv#xF^{P{nEI)rjpOBA{4Z;#~gvzmWt%8b-e1sk-l93OSm5nnZ%^_7-b<$(WrJeg; zDMdQ|Nskgq$KT1y#_5pla%z;lYpcAg@%Z8JoPTMLZuS9*bVfHyyPP7W6=~Uv9xalV zJ;=)AlNRqTRu>kyCY)<>PSvO76tYX$oT5fcxU?cIC)1-v(sCkM**Gn-6B5=taL7~M z?zi9$4*!URN>P~Df44q1?;_iU#YX9b1bMMVe%?V38_CZwS=l&0vinCoBkeMb4eVOh zs(EuNd>i$7eSGdDyM@I^>HZOEsYQA|OOF~!&!@@C#_5r*5P3ermC4yYxR%o{^Y0n7Y@C_cjN_iS+~I`6tzXgZ6;A+(bb7_=8HX>m zNYCc66%*n z;c|+3 zoWiBcySmO9DO~RVxWfO@^nYCC{RkxT6E^QE+yVcu!o$zGud0H?XSZxgJm^UjRvzEg zHTU8XH;!9CdGNl%C*cQ#vpVhflu})SNSR88#CT6Sl5dX2s?fTV!8`%nM_0Jx?`rRUl_5LY(NXUBs z1X($z-W3uE%RwL0&p{vYBrLT|*yt<#V@t?|E8_A|Txy%6klVZzw&igpYru{S;C@d= zSIS*;NxqV+&C6SLE1N4?wVKWSi+8j8JXl`o4gZ~9?|<%fys(;+ta5I!Qiai`Ju-M- zP~~j&^;=bHR<_%WUwaZ`<9O%RWJ-2PwQ3EY4olu*rEL3e?Y{8VAdy60_!V$0QZY?Q za}uh>UcOvHHBO*MhD0MRd}5`SMIKy3B6gXFPC*nL&eCucaVNHFQS{d72Jko z!%J2ixx6`{YWFv)&PYM5=7Ys%qeC@^N+?wLe0q$?3hyB+3+>2$suHXn@v&2AidbK^ zOFs%fwP{81tZIUFy@1wi;lwd*&9+_!txcvrJQQuwE(R}aeUvs?-lDA>rA32HZFTPe zQn6KQ|H^OdybvQvRMNV=QxyT$y1m_#pyxl8{zT^lxJ$OZvDj_l+=^NQ^%Onv`BUVI z3f|s zIJ|en9jg0t0N;baX)mf!|KFv%DsBG6`tNw)s@H{e-|D#f50zLT;eY8dBT4ulvT_g{ zYlyz?NsJvbb7GN!ZRT}Ybh2u$&)js&e;`Uta$X^Oh0Po%YGsbzY^31gsQjPwz>)a; zovdsepM|60(^sun`5ZtbKl6Fcf3!i`2PBdhXo)H4v}8cyEfA5~i(UjIQhSh*(qn0vu<+YFnYH> zM(-lKg~jNkWH4$KT}0>|^w5zA4U?6PBXsa+2(>$=;C7OS(&+*XQX@vUOOV z&Q69WsShGtpQV=r3D>8|%EsY35DQm-v0~MwX#HFtt)G&O!=iO&vS@`|5W)H}y%b2W zen?g}4%WV-f+fjPTfe5=7oPwU>GZ`r?mk6K2LydbFFT9yY)+3G2~QVUdHloE@09!b zp7%le@GK%*h0Q|=!Q+)%gl9fIZX`TCWM$*<96nm+>2H*Cb*EB>JH&>D;9d$iddqt$ z`R_z?`aqpWwhs$bHkpPk)(a7`bLeG3LUtBe**IiJq9KFxBRXStwLWI=CmV>x%t{zD z(G3x_E9j*`f_52M**IvU_M@CoQ+Vy-uFbmK|FqUuzM{|817y#zY$entdIpFT-A|7j zNzs?c%El?0H(I)aeXV_!3S2KF>6QOMAEMupEyF^zI++9&DZdEQZ|LzOVfqzW**Hw2 zuDF1io#vu;d0l&yw-ZRDGs;V7#f7&(L~46_5s*l2M^-kD)O}-7N&$2@WRCxQCdq6 zABoZ+S=l&Bn4VK3j-`+3v-Ap8LVi!gnd9zPPMYst#SVd@#JnXB40_uxB8 zC;YqmDE%+lFf2-MO{R?tm0kqtf9TO8LHasb**HjO@K<8w0EDQw>9cuwo+c_&9=G zhV$>z$L1Ymm$2A$yi#j)Y+6MYkr}3kj6`M~S=l%;d&D6lo1eZ@pO?>)EyD8B@#f*t zd5PIA@@aa!NLW5eRvy2w$aabRR3DZflPww}SYmdE{E!|m5|;0imB%kE;dRv3^67*( zwEMrCgG4(0U(L)CvuxT$j~5Bc>zf`dv5W68ff~D9x=0_I`SeOae$%MA<{l}x*oWz% z$Bl$%KeDp%OcOik1`|6ikDjN`&pBkbuq~A4pqnqch|pQ|(2)q8PF6OKQ0%9%;A3bt zkQ+a}Umu_=$X;Oq()=_wT5u7c%jkh4@p%tf**HG2b2i{&+>+G;`taOOb_xrR=A2Eq z*djV#qKAz{=L=+I3t-`XS-}7PR7UB67J#HjCzaT3chi9L- z*_+S;ABWCPU0diL=de9Uq%+d$ctgtQb2y<=i{NZWj~WTiHe}@(a1;)dVkcwyN7E=s zumedxta>N~i^4w^Nh^vCI#IyMSPzZuIgi^cFWM!zPiDPSi=K^@CBJFX4BI?8iL_+smn5fSy-k&8b~@IXoAuF(`3S6S~SS61*2v-7duMYc^^--R;h zM5?IS@q)}y&2qc(!etGjWe0q|gB~q19S(cSv2{O&XJmE9)_v&AsPHLScS7izXB~Z( z?yGc0Nu;1-zY0Y`sMG=vpQgu+tH4;BllG#d7cn-oeVR`=E-ShMTI)`kPi6$(c7x6iZ9yt=9)5*%l@xe4>@&6qQ{Oz z=nG_J;|O7LP~GBl(C_pK`VHADEI~=;ASk*B(68vBBLVsaS=l&1m>dKyF63IVo!+E9 z5ZfLk(iw;)nS9HdbI)toj z93k$*X4z~|pW`hbWvwzlA}i~Iw3cic7Nk>?8`6gy5Hr#sy#z>{Y_hU(oVY__I^pD$ z*V$G6!0V6b6ZK)TYgnSrNS-L)1QDuh>4iW-^+B?-ai|U&eZsNzh8FGqdbT#`^z&f- zuRd7+Lv{`e*4vT?iy0xp^>undkZ^sKtZW>v_+{z#YFZ1f3V++{KlP#dJJ~TTR2@$o zqAiLr14NkqLN5RkrazLEjl;wp(%-51t2zUN@>I3g=Gr5?JwPIz5#Bk;r>c+>B3`@G zOM=8}SF*Bkya=834MMUySs$wt$(CW0RSKPTa6rWAIC=??I2}V)HjWcw3NvRrMQ#G> z9r_#%lfA-nl;9MmTXYeib@b4Y0M*FK#sNYs@JW?RVUf0LDsW5j);EgQAvopny0zkGJSK1DsL zQM4+#ftp`<5u*L*!6PBsm#l0YBE)j8eSX8@d(-FWGjtZ&ENp9*;98tlb`hb|>9Hdb zT0>Sgju4_dZCCrb;n)@W09{753JXwz-DxPfh|hcIkt6ZBn5?`>;Imf|e7;1s z$^#__>4U>k-?3pjv&qYu!p$Yx;yO0ofS%Pu1H3wrEGgnmX= z-V_jm^J;{d>Fu}F9*u1W66uV_5=6)=yNJ*>^w^OIZADf#ju3YRjBG6C*_f4%$lk0^ z(&1#!u*s<7okFy6eb@pKs6*&QKmv6jS=l&Hh&iHxs%_P6esO=TK1+jSyRa-JI7bwe zUc|_zM~}p)kF0DQqXnZ+H3mjzWyAar>%(*{*)%Lnrzba66!Abr>Vxz$Ad&h2S=l&J z2aJxCQ-i~NojO19_&@qIeVyzVmZpxEQ_-5aR`ErUzDf@t3DQGkW#b?rMs5y#(Z$ak z{av4;zmUzsQj}n~+bg?>&>!isBN6&NS$Weys4RTWw#NkRk=yPdG44lhP7TT~BD5<# zb|gYOla-Algjhv$YS7c>S3pkGXXrSxTi7&|;3}G5coCvw=)of)I-0C(93sRLNHJI9 zrXYv)30g(-w5aMeP*G1_V|A+b*eV^F#R9B07#g=Lsm8p6Q(h% z3~-HE*F^0u_3LD-uoNZPm{kTueEv<39Es1r$jZj?K@97Qm4OBGIe>cf0oo5F#{HPg zE4zr$zVz6U2<=T)-c%6cH-(&~kI?C4v#>cR!I>c!A<4FoHT2k#2)&i8Y#bp>m%1{* zpHg#~K0)sxdxa$^$u2b%UCcoj(?drB^iHy}ae%nn?qw_b@E%(Eye(`_`;tCIUmzQX zrD%0>t7h%;izt1L9zPPLJIKn$Q9^wG3RXHft0+0F=2!YK{eo;67N!Khe+@Yx;`B3m z36MDbgsi+N;Z&~h2a0UBmG(Go8<0q+o1Fqq;DCtJR`e1eaoUosY#b-d+)(g`y*)eQ#N^K3DTUl5J?f#4UIHXe zS+cTmoDjPpOV$Rb)Zo|FuGL5BgJip~C?&WHGAO;6l|Dd^9*I$tth`BJ1RK^wjJ~dq z(O1cKnZU>|y@=66^yrZoeVMFm93#Ze$5NwMcZQ0?+~oFO^f~$?*)J?d3GRGs6<-AD z_w?|QApMrCyeWWGwg;@bvyR_FyZhGK!?#^QBAww|f*`euFM_l)J$xicJCc=+gM^r* zgaNR0+5b3wl8zx8hD}KcPExkZFQRlbJ$@ugZy_riM+wom4OME6Bqy!YC#gpE3rkXh zIjL2A5u_n{_(+gSWM$(ZA-0bURn~JIq)+NI^l`FPScVeZJ_02d@%bn{awI-Cl9i3) zgBbF|!B`97h$s%B@9QJEC3>up}iotIZ4$Vfq)n07#hrK~^>n6QY}4wM&*$&I_Mo?>9+%z_u?)q%&Yk zu$$d3zlhS_^!Sk|?MYTPjuK*bWVO-|uBC!L4mx*+qojN{=0h&`D%v z;|L+Pw$+>g{tCbM=o54?*()qT32tq3i!K86PI~A_fZk44HVzPCga+STbDg3u==1YA zvQ=1q5*(pH$whqbphu3x=QCtw(&2(08*+;-=ASRqLq`I1A6eNrK!_qI@ylEiRDCanYcHLHcNVYRbq%$N-6d@?Ph|rGo*pUcLB`X_82yp^-y$UwU zPryD#pQNM7o?(+wf+t{yEf9fv3%v+PppGOf8wYBS_;Y5hKK?AMnm#{6WQ(x;EZ6_! z8cHnUQldwU#HB!1HjYcC11{oio*&oe<)dVeu)G|T058&OJa43jj0EO-va)et_UsG{ zKj8X5ePX^tHVI42vB?l48EJi+9y1b|Z<3XbBh#r#%JY|X{#zfIe~~T10+U3Ol+TMz z(m&`CBXRi~S=l%)oia>$pvbRI>^oU|G_^NKq%)dIBEz_47LnPL9y1b|S!8A7$aLz( zhNE6^k-*$aRyGbyryK+B@rNk> zOrMyakWIo8lSGbj%Pi)YAJJn*BJ%`UdAuXTH%nV>r``445+ufN*B6kHG)r%y$Babg zjZF`k4%;aDocemFW=l>-JWwB;h4f0;$|=Lei)E`ga(Qz?)$VUposmMhYm2VtB&(bo ztiZ2I_DC~{pe)%fY-^Rkp1^3~ zMTp);4;~58nPg?-5Ow%!wB=*b?yqNSgHAucEARvQAT`O3VL?jZt5MMa5vKRi3xI^_ zQnIpfm}bW>FtofB4%B=|AEGalox(zNqW&raE4T>Hee}SQ@Z3XIHV#jRgEU(nR-J)C zc`Ew7K1IJJTZW}5frB(94v0AYnqC4VPS28+jpKyqT#M(i?mR_%RJJ2Xq%$f@uyZXv zhjl7FawI;J$;!s@=`dxOvmO5YjHC6rc?;PiZ2C!H%Fr#cm~W1xhl~W~FtW07U^=Xn zi<@zV^m!?fEyD7Wz)HDvFHV6TF%p*nva)epI^~y2jh`+2s6H<@l0Cxml0<%iB8&Ou zdV0u6U`EKw#)0XMA6vo6U<=`lEN-j%cl4S0HrXaDGso!7H4>Xg$jZjC z*{cIK&N?U0Z^`+WJ~jU!yM(1?MFP}#g%+Xt8$DVbVf}HEPr}s7Ll1nj~R)~46?FuWIA+z?P@>QG`&?Hn3KpBVUtV(-CroNh|3A| zh>^IgAS;h+T!h;N->Hww+sPJ-n$GJnFm(P$r z!t#>9Xvr<|NaNZqx;E=_|5MmF6aF}6%gwtAcewv_D?N53Ik%9Njg!-<}^?7+8*&-}235>U)#3C-2 z(j!LVatT@4I4&Jl4+g5X1$%qBj_{ZDk-3j-6Bd~SRu6(wi`d*lj~a>1-DG9s*mO8( zD=<)c)7o$K;rTV$EG#?;oRSnNyNJ-U^w^OIJwsMDj!=i5jZ?DtD~)#CL3=PY6(rIb zOeN5>af>VhGnpPT5|~M3W#ho?9lv7f)cWDt-a5Z#`4)X>jwJhpO*hBuuUWQ=ErN3x zJ!~X62a}bJgVSNE&w-Dm`9-LbJ~aihNmyzUnCkP&EFv>Nj~R(fo~%5+kttjJjUYGb zBXd33q%lPX$}A!?LXR1V%r#_Xc39ZjnV`X3#@M0yCYgY#f*lA6~ldNhfJe(#PfmvQyYJlfZ|Utl%O% zE9ikE;aN^rHV#jx#;L+j(7aurnhj)&u+${cI8`L`GYxvgNL;F9W#hPX7-knM0}JMJ zy_wJG19L0cBrGrq470s5iy7t?ddx^_cVvb*WPYTN%oAjj#uypNj?c&GF(Z+A zjI3-NnND5c$^gIP^G!QxcY)s^dxRw>fn@_oGLrMxUZaPM1m;z;vTEIkRFGZHGfh|eYT$dUM5 zL{{Du@F`dLgV*lU$LAihRR-{Zl8gA?tl;8=O*uU)VfSADzR7(;!vQJoa639BOVvFFsNDmtc&I@E^4uzHJ8O@uW`IOGBdY|K zBiiK_(V0$<8;Q;|va)e>I^>+8O3jhvoD=lPSwZ$`40BGa*djQ~>0u+mSxQzm4o-)S zTtk)hT<>^;J~IunMObDM*vJJX7ICT4BSzvT#y*IO;$FJPKS-^)k>qxACh#YJ~pS3O~R&}1U9OB zWfqZHO^+Fg%qp_7ab!C5ZEDT{|2g=j`ovs9_6SQ%0(~2|$RaQo(L+W8b0JyTI4~WC z+;HRs*QvQjpO?GI7GZfwV8{(67IC?Y9x)P^+sVqtap{;}%KWWA&+7B?4A~PM!%U=yj09#2va)etIvh_@ zgR5Jr{Bq@C`p6tib_ttf5;&g3FSH2FVtUX>Xcmx_jYHGn`08367P)iq3By2{yYsgk%`AJ|Waj4`XK3CBr zN8)oOS$Pw{M{)@IBl`F}Otxz5@sXc}{vbVaBt9F-%Es~Ou)q+!gW{3sf7YkxMY2;^ zdJl_6`Dw+|=#eAw*@3KV z9G{-}V+Vp)u>BQ2{|WgDeTbHm4a26O)%wQ|2;~c{+d2B zuaYgoGLyh^D3n;lY97;i0kDo;LhNEg-^l{uyke2 zFXj|h$NZ*nM%*tx4U)|XCst}TyEgLP5%+O^UHpgqrb%Cu=JEMTt~M`k)vauuEQ4wc6FY!Zn!u6_j=pE>Mi>5H78l+++d|zwo3NM;C%r<$FwW|6;+B?wk7`Q zNsNv6i!(75>{ZH6(MfMf70sHV-B+Ih5=r#cCxK3+cA5uwn%nm4vsYR|p;o8UV?<`X zX`XUyWzUIy(-dB`&Xqk&W<_t->dR%F(oiw-X0Cv!YkdkSZlF#1a=N8kIc2!OxC|fS zUEZ8fwfh@YXQUuj`x3=!50zB_U@1LXBmhT|m4o0|gL8x@F?OUZl9Ljw1NAv&t2&&` zRUu(!?Q*?Z8RAcDYCyo6_*BWZN!tbqK5LZm>0p4^k*d%OfF!C&RyI!50Ue3zgwieg zDBVo<3yV_6#f%OOP;WLsDN=Hgp_}NDBN@7ZtZba2&RMB8WL0Z+$E@_YK1z>~ZNs9Z zot0z;h(tX~F94FLZ;_Ra6ScoIDh`;Iwd7p!9{{zrU#BB=q0kU zae}x7R(}B18_DY2yyV>7wYx^MK_Z<2Rma7$PUu8REHcwgj~K~JhOBIy8F|)`rEdCXe^;F! zbEAN1$xlrj(`m`Am%*%IranAmN9I31L4MVw?@4p{C^M5*wQ3EEvy$Hb>`zpBp+%;> zB$JXKQ)QS&od)ebB9(HBdLvY2$B_D<^nk+2qtC zWW%KOTeur^B9+rTP@G-hYO_~Xz92$2&-^ewLS({w&{K}B=`oyk=hh;h0 zDQq($*@lK_Mtb=oi`Xoshm6GLD6+C~Z1(DmO})Y))6hqzN_Gj0%u==d!jP#~L|iKL zaFMta$;!rYnI*#|2X{}nNrpq^7JXE1COd>h<;`lSw2CTXauYpNBqleIm5pOELxxFS z(p`C6pOMGN_Fx$~T#XU0oFX8P(&Iz|@-4FR_ynZiDfjd3&1?FAyh^qwWk9@gih#UK zj}r;VOJwEo35X*BWbQ2O0ncoZNN2#Km_fX9ihy*}<3s|IAuAgPq+8a+IJInFrBckw znwrz}L0L_<37bidR%>b^I1U$A#N~E+xJX=XBP$!n zC9X+o#PRZsJ}*y`ZNl=R-XyW|ioiTYj~5BdlVoM%!0ah&lB#wME`iNT2FsK7(C+F^ z1c`LIx{@vFnCaS3X+>DJpht^@WizsJ3@i#e1=wZ-e;ramf^B)&sJfWNqVU(fwW9d2 zP86`^;cHut>6V8HCtAaHHM*pJD*5G-Cer3oo&63)Kd#7nx@5D%DXR3c%?>Af60u9* zu}hoDZ+4i>u9Xa0^7NxxwLPx}DMu4q{awO04Qo8HGx}i5?}g(r+Lu z3(eYfoT?IPegVc2k_$!Sbhp;r^c#LcgHV+&`g~KnR*x`AU9wL&AZ;_Ra zlMxzD`RUXBR2j&~!dW5Z8eF8y?|peqpOII|Henfgiy9-Wup%ul(}P9Q@)B9uI4$x# zvXIXsb2Hj`WHv}7F@_Qw8Kpe3FfWqPO%D-CMux0xoD6v$Ss0&3PSa;(HQATAn7`lo~C3 zVMSV=q6dql%#aazPVk~|zLQfcseDktr!-F=-166thbC5I9DO8_y`VZA{aMK-pe z$B1NOGqSRAHbNhN1mobqH(`?GV0}6kll{S_5b_LKyObgy3+PcI`RFApk6%87CMK`X zheh@$Z9Zh<-*f3vBKbI*tUP}C5C%2Z=<{(E*`Kuekd14uq(_P5<8rdHaX!QmZxK$4 zw5r_a91rWm@gUh8EF9z!uU|y5W!Xp%5lP0qWM$)IgueC(dLG4Ey_9VX!2zQDI zc)UP%2#ZJTKJ2)jX{ekcBhS<0L^ARmS=l%v`wHuKCD^{?WCv|4pS9|BI3Cfdl(}3o zeJ|}{%ruZlXBZQ^vo;PES%F1rcAy80q-F|P**G=x1ZrwIt7zx5`AR)IRITJ2IrwHd zhMwj6^eiP?hD|k+v&T9Qf;$ylr06Jm;7E#&AS=gEq_C5WZASCAttd#aEpbKF#Y+~2 zzdK4RiW7CBfGu&q8{1QWCa$hj>rQzfat6@V?ncpcAQ{rexBm zUD>@sjdBN+x5^kq$@a?KMUN7h`fm4>W9xei_sVg%js;$XHj{-n%sm5PYwn49n(nD| z!<<<2lFtW_H6JRiz`#@Vc##Y|Nmdq`zaMxKvDqQxYNjabZRjDlN)sDvH6V;2kY~* znCus}x#@T}kXsz+;mDht_Ic#tqKgnMpoflxsF$p493t-MUjZU9`Q-KCvB*AQ;gK9T zMNK{~Vj?u>(nCf4PjXp0|kuAdVBKhJC%S%vN5tS?H(IQc~oUCjd zm6_7PPjAV6%eY?6!}_2+NHz!yisW!iEGS-CMNBr*V?|TxXeP{{zYloKW!?Kj@(^zDdP?5#VauhveBs52mm1Ce$n9FC&0sj1; zf&^QXxJ`9>iACYhN^3=NnNAe2DDk$j{Z4=L)pk9)AVGe;r0+)a*hCg2Ah^hEw`?&& zmEX`}geMU@IUPIQnEYbI_FS9ERn9%+$_d`p&_V>+E@}N1ZU&u5)if7$oLRK%{Hzd^ zEr>3(06~uqndWZylw<373>P3~2z4Bqj*l!pK*+j_4|G4}iw~d^t!>GEpHR0*R@=n>SA)HVY)a=rCIXNHF!@C_Cpj?5tHRa^tN@`)IQ=5hN1nLJO=& zw)>3AicnxNS!_WM7zxd0WM$*f%pDb)T%}R2^Y;@Rtk2D2vRT*`)=!;eq(B0A0mrv z8y2D!+7JbW7AZQH9yF4ov&qV1PZ0;t=m}_@RczRN0=h<@ovX-ZVcF47Kz^A;bgrbw zj6~;hva)e>W{G(xwxjc~J}(cF9m4V=xqWH0jt(oR2+2lzph!sWB`X_;WY1Vgq#c_V z^*MQgY!a4}&dXKO!P6)mn&;`UB2jsctZW>Wy<$<3_g|*Z)*d`f1BrA7Pm)t4kU1r` z-?9TeSR^b{$jZiHiO(z2{>pNFR+f@YN`BjI|`M{EDxrbaW!HXJNbRfGWt=YoOpcAQ?`167NdJLTp9F#1G zEwto7j}4jOZugX9D|if-971Q`_%?**;v*{#5V7ux1Km#fiUa6Gt6K7*OK|+X_sR-Y z9V(+x=}*z4L{|EfWM#2g^CV*5|HRiDc4l9S26Vv7!>=#wt4+p4kVvG9EReBCoZ{U>mgA92p1eld+iW54L$A=ZtnKMLrhLqeSx2 zOID8IL!k%BI-!1Zr63XN3achR7R42wgjN)n=|llt;l|j07d+wEhLg9WS7p4Ld#Ro~ z)?20djsN4f{*M>@AAj(ENZ*L&wt2f$sm&YkpAczJTbXUTuG(ejjTi2K)u6(= zI2=cRxQ}CV`&^|oWWlilLsr!qs9HmVf#N$n#n_%u;b*z7uDKVFTsShPwH|c~1Of{T z8{tQDV!e{9S8WLIPWV^%FO42ia{|Nw2V;yBu7PJaC&E8g9WeQvkvS(d=Z0OGH-ABJ z0=NSw)(m8=Y`p?sW@Ss2yj>i*bmXMw?C4)##Q*jF_TROe+dAc3v5~j?oudD=!X5DZ z!d>u(-Q22VZSYQQ96A0C_)l|U&Kh!$?igvd7-()WP^|QgystT7(8=fR^2p`Q$$?_< zKfJHGRk=~>g9^)!oB%zfx>JWIRm#O-_zqHvE}2Zd#suC5cdFD!>2 z&3W?%D(uR15Y@0^RE2MN|Hs0*i7Mk?g}#`#(z@NE-uZ`RR@v2@ z?ZAp^WCz~U5Ky=iKDsCJcR%A}yWSa^x5y{72LCWWJJf!vG#?Z`1kd+t`YBaUZ){6E zsVecEw!{xqC4!ngd~9bnc39w6?TOX}!4V4cgg0tLEft z^A9R@x-H{HHT&_V)AkDtOSyi#N@5ITh9}0 zK1S6e2I$eM5~zXb6dZoUb$~?N47T zF>L8421ZBh{arHl7Jdvm(YAi8?$+~!SN1ph?)^$tg1s!i@FWs%?I%beo-{X^#$I%J zVt4R3!Q_eXOwG>d7OD~{nmotfVVhf1SynkLV{aHLT248$&avR1tk z78b*JKRUtU_o87cVJO;*UL4f9I|0+&`n>bJzj5AqBf(Tm5r*7Vt4NuO@h2TlD!6kF zC;4rL8x>5n`7wBrQ-b#9XCnWHW4WNcztIZ1a0L98G+W_LlElV)_yL)|M!i)t$5_Q$ zDpfNHj&+6ahx?0_^^u~U87}H}=bgv?T1w^Jl3G8T7px7Dkk^Joo_OAQ@cWcv-K;nA zU>|-;*F-v#B55Ta>Godap5R69ffpJ6*?*CH;6?5UUgRG4MecEGJ@6v;)GIyii`>%( zzxH2b_^WogC-fq_e+ORV9`{A=@m@XeUp<}==mG9pLLPT$B?gHn2NlpO_DJ`GYSPTS z`>IOtnU_*$K@;N6_W0Sw@1iJ3uqYl@ZKs1dr@t%pNL6PO=e7oPFn^t~GJ}@0w&67) zMYmz-YdFPxrUDH{B|7l=T<~5JX4Pd&_55`DLT-NC3n!Q&kMy-#D-fX>$2(L3Vja}a zs7kQfzg1NtsQt~xcE)k)sWrFak6SmKImND>#CPUO{SPVSC8 zROlxEOW((Ts7kOG>8bt|)~YP;*T0^Dy&&G7BJ-3RxCA1pY3q^fN!Q5@z;jA5eK)i05qf#n!) zfKchr6sR;P^c_A+Rf4g7x?f2vk8cl9gQfrA z!_?Jrzc?fA7v89H)`=A>@704-f<>^_C_D4lo3DH5FB?A)$>Nu!Rv&wGyJ2{h;f2u} zBlNVw5Gv&&RYw{27ph96UMW*fb7~C>R_yG_Eqpq)TA141er}KdT*3BFs(Qw3 z|G26IZ@a?4g^hjuoTnhcq8O!7S8i>luXK0RWR5EbyN!a*>Y~LF41Sav2D^590ra#3 z=<$2Y5P-nL6RMTTczE2C7{k_Quj9&2-GSHZ0(UfU5;W-R?93W>FO%Hqf2QViH*{WE zC_R2CJzgjsJpa4C=YLU^VD$gduePMyqeH@ugobL17H8Hw^+C522Gc-rDO^5ty6p@M z)@zyP?!1g|siyCrRv-A#XqCZOvRzX>Zh&rQEeNnD2(TvzP z{3cC7f<@uaw<}1nD1M+i)$B$A8wKW%?V-3kEN|_}a5q&fa~C-xE%izi?RijQjVy;gN;U!asRm;ougO+z)W}iSucm zw=fPL>}1_N2ku|pFZQpNN<+aACj9pgjs5%HOi{LG50v1G8gF(y>kfpn@QF;e0qb4f z~P$rR99(nX>I#>-lyj2cyhL z?#V$>64-#>3_c$z!Zl>&@aH4*7q^%1?X36o$ik##&Hg-9b6InHjwcbHi<0h>$~S^v zl8m*5D(FN^Yj)ZQev!U?7ph9I7Wx8J3D!^WD^cq`JxeDFcuzk(w*7=@D=O>V9X1V^ z63W}T3M`^ls?n~(gHWO*Ue|ekJ0-rZ2W1B<>)jR&f`AsJ9Yh2`$y>Wo)oS+E-s?%k zzO`fW(bvzC@wf0D(1}WsswvspYS9S-+HknG(Ft0O#g)^C4jKhV*hEv zB-DRY{b6vvqAHQP#W5dz?b(x-%^g4Zngx$l>Yy>JXQ)b~ZneCfUzVEFo!a>&sxC33 z->fRZ8?Detvv%H3`w9{)iZ80ZoWXp+tz)~va`MT`Rv+yx+AVX3XyF}z??{HF<`lnu zFFCc`yh^^78+8U?Sd|5a(>hN=q5W1K*zDl$QMGEYNBNklRkGb9Cn9d%l#H8&D?umP zn(x@{E@@h|9;=5vT4;A}&^PruRZ~?rfA8pey41?8wPCJm1x#2KxdR6tO3l=rJX3>b z_q3iZxcX&%SMO7mU^(X=zhaUeN>1_iP_C|58@YM|c0xyZ{$*;`PxZG@hMp_f{&Q8& zScdqiszmCxdzs{zMmgthTeXUrC995$IRB>JWO`F^nS?#M$9=S5{u`>!G4o$jl}O$E zscy<~Kj5_c8>035q-Op0UcPBPSZ@4Y@N~`o>>jETsT;rTvF@Q-@Hr@q(W(*NSEOe8 z6d&?l+1Nq3a=*!I+TYEGjZ0|WQk#2u;8-F^+Dd+7CqfW)l zf`@8$IcInhW7zghJ<(nG^)@p5=LSY>T#}59h54Wporl@J+grl&wkrn@7Ba<~_5D0t zRf4@8hjPpkUIUjC;%iTIa4>5<#+M^|mw1L++vb5f;l!-mDR znf^-E+Z-F|I=r5YrG-C&PPFSVvpW|A0gE{0Ac!6a0!~wcRXL%B`?tQ$|5BA;FUdbt zCD^O#SGLxx`lL=2@TyK9+YOLAF6do&SZ0a4P`IqMr71$$f%B7jaf6!x+%wX-L$nuW zts2|~(B4rs>RY`KLQ-lO*jqi%lZbt*$7Dm*smVB7SOz-L_c!(w?NjufJ6TnNy{IR8 z5{dWsrKf0bfM+Gp?nq4TaEf+A)guOIRaGK&n`1UreIzxbJ8r7_u&PhY>T6XcQny;Z zsp{d>obI%#>OobPn9&9_+f<?6FUbb#msIU$ z=>64`7{m5{a&V}edp^MjAC5S@^MYiWq%A=wVqJ5))=_ru5d`p5p`*Sd{9iPCPE%DS z*y}UdlSsV%-!?c~4jli;B@xFDg$E|l2@oBJ!vp;T^uTat_-ZA@6Q(c-6 z2>tI$trm9cZbcB(f!D;iufoU0SK%G1MzXpX_9VtIi*K_UPKEFDcYH=Xy*V{cx9x^! z_OzZU5Pg%ri#MoBFru&XDFluH4Z@=|ckYG`aGICJvN$u^w zdhV)A&2jID$&~E|T)qN7>h7mA(5bpD+NnA#H6Zp0UPTC|#}B5*4+egC!9f2Cf)O}5 zUA2-KCu=;3G3;M$8?-+w-4p&IEzSk0`8&DQ;`k30d|a>ZV_j8(k$%2k6^Zw-yw%0v zNX3ZZA5GD4|DoOuEkzOB8&%z6;9jpPk-p&p;bNEeYbhEY^r>RHv|mwmiy8iaszmCB zPigg{f@~Rq{MV^@KDFI}YCTs-EYGTX#%zB^RU&oUJM^6E)0w-!^pA#wQmLS`?hddR9_Kvg33YSTg{lPFeC3g8=Zk~xNzHrA#X)zg+Qyu}%ae#5 zaVDNq_H)0dcG~x1cozb!w$E?a<(!>4+CN_2$$85d5y*d-n$i1vUs|_A@()68h1A1^ zB*6cD{VMoBRS5?FcT^=)8}75J9(S^Plku^uPK{LU#}lgBS*&XF!K1T7tw%ef z-){R+RexD6-{?ui_C4dL6_h*kaJ_B43gZ~>D5Z$4UrWZ;!skIJ@`8BR+lC%0q`j}` z8~K2$k*Z(z&Th>NtQxKlR?3Td56QUK2f)qmjUjKgV69y(a|=q(rsnXz?TLbRINk@T zUO3+5K@g7M{WJRBKdmakQq@y_^(DR3wCB;q3T!QLrwttFLAw;-&EgxdSGO05R}*do5J?Y<1Qy;Q5}|6kARNsu+Uw)CYUZ}ypHRj4*T&Z}{nbjz zt2Eb_=uFS-)T(H|_A3;spdg|iHzKd{{D_3A>ejESjH(3x7Abbz3U|!x>MHnoR6&A8 zaewD`S-It!a!SKL!oqE~pS$SOk;d!P)VP@14bKhcUrUwV-d^!VJw>(ZSV!PwPeP$1 zpxS;-0|&jSCvPYs-C){C&C{K`!AI|+N$=_LTTQF_&Q??<7|}()a*}SHW*K5AT2(I@=pR&-NWD6CY`qb1yO6XR9!#woc51&5 z@a%Z|H>!Ha?7vr4B6a)Q38~yD4Gl{x;1{V?082>T)8nh)XR7|OD)@=21YZRTtu&kL z_8S}p2^NLl&?`u=DE#rSf&`1=dets&Fw1ev*v@iHI<@TH9xUASwAVq2j6IscJ!|}l zJoDx+gnP{3$+%md_JC+KhaS6o60tp+#ODF!A1W_R#@50D(1}iJbox;FD1G~mP?cbB z#-XYb?EUmBQS1HORVNDgPBLA}so}KR=94H*S7#TJZ1O?LNK7e|r1N z!Z;*2m1=GHa;C+Qp!jE%C zV*9hoZThbM;d&>-z{dNIpyqEDKW<(0BA!E&snKRPo3iqc)vL50oOM@uv#_IL)IF02 zsn!yEuNQd|u|6k1ZPnp~y)%>Xwy*+pqEl9*p0IbCzLTp}CD<#o%9Ds?TXm)|{)D}E zzyp(*s1h9??S#EyRks+r>r^GshAStNy&!G)*Z8_iSB{;}tUQt3=nKb^j9e7y72KR! zJ#>2;>b=|Pf>3%^p2%+ag+oao6rsa#ld83>c5d(_#xSwWJ$le855S>Vt&5XunZ9Az z3vI)NYVZflle-Iundd(I(TMe5P0jlK;D{hMBG?HRT;*Kr=^O5WhLQ zp#~n(uYoVCO0f6iKED!^9)iq1sRBpzz*_<5mccnaRd`qWDh(J;!!R&YA0D#Z<5#cx zOr)NkORb*v?LMgjhxFKa_Y5;HoE|Tn9ygpGFC2JHARM8ReyQp(drf|>Dv^36Er_Y4 zHqDv5(;s}y<{g*&g-CsEd1zWq%fh(&YDd-+iVUjmgI^G zn>z&w7R4yNKjqHIKJCs3TtZdOTi*VD=#R8t7ht0q?T?(E8XL1&e}qNjc1haN04WfS zK*}1`YG%3it)9dfc1fnKhB@M;{yDU)`xki&*Qe$*td_wpOeCssy9I z>{m|GU5)so>TXQU`O%K5yI$2ThVqE2MEZsYN7Z>tKZftX;q2zjX%yk@7nu9ZjDtP zu%ky`Z+=)>{on23t1Ec0_d#6nV8QqELt#5foRU&oPC%4w{GAC9lLy@$8T#A;rp4#I*RiOMBRlitzIa*bMw_Ks?&(^j4 zo~eQai^3m0C`hm<{IviD2^PhC)iH5v(WleS<-{k(_g#|9*+p-`2ljHVT)C=hd&K$Y z1_diX$1gb}!u$J^;k~(^zXBvVNU&5Is@ipTl|EaqWa0CsQ5S-)P^Fl?2$!i!u*!dr zszgxve;(6AP!3pTud|DlA$OX@a<`MNs}vh`*i9NbKfFsoKvVxJOljL2$RKL;%6vWBhH=TiNa0;X50iPpFQ? zJHR6=lahmQo>MiDRpT!`35AIcNX0P}SRclojZ?|jpI3X=9S#?~bDcUDBOQ*E2h_Z@3?qdZn z_tN)r4^;`4ZFcu067LvnySi@G?f!;n`HIvmhZ~K8hsq6KuId)c3rkfcc*7O?h^(9G zzd{NUEQ;6sw=nU^Lg@YF+!kN>)O3A{)gC<5TMQQ8v$|@Xv1&hGRRV3ea=Wo(du;+- z@ID^o=C5u{&3L$r&^=YC)?@XAo-O3L>s8HT{*QPP3eB-oJfoDKx%eQ z?uLi9Kgtm~zF*(RFR4l}j=$hnMbe358`ton(^s{s(d~lIq~`awp5Lu!3fMla>J`KG zDOHKo?cUn8yChsb)OAE!JDq~1n{~PWfj#H4@-(+{ z;N$x$Od5?`-keZ{F+zchArEHJoA|dX?F}VkNh>HgA4*zJIRBsMC6RRZduD zu{?>`zDMFCC;6LtS-im%UkmF%Cpz};^rpT?-@c1gCD=RiPE`r^ruvnr^`@Sy69pV8 za{9zE{TgGt`MnF-fg;f_TfYiLNnq1@b8hFCbYZsM8j_6qqCTYRE_+eG>`9n@QGc0? zw}tP44*o^`xxRfrRh3{b>W@_=*o*2{qSlLgpH39;qW(bXvnkb)=Jsn&&YZG*)rm`v zUJkFTQ!hqe)m@HE=2e~Uzp7RZzI}!UbV0Um!*#DPMK|i3xf4X7*<0IQRf3_lovK98 zPkMQ5`$^t4YE})F#n{Y9CiW2YqZ6v+&?j-uy5X!(nrlD<8t8?(1~W|UAos)df@TiK^o!53nSh0 z^vyk|v$=`)M|X-6Y*+iOTr@{rlA5v8+%MmQNzER3eS(JzwqB%f>xHTkEJt0SD#4mR zzjC#jzq7n3631ZcHL%a41e+?N({o>hrzOypl)O}v;A{NW6NL)@ysFhKN!_U`!74l@ zt7k0eWz9x=m!A8D(8w*3jP|3{%-_9xK`)!sZ|~Ww!KVcfgHRn$sCvn&<8f7q^s8fG zxH?Ys=BVK|PNSD&5)5=S`b}tIog&% z-7Bd|u$QRdNyK*Ul*dn4zTT}W!HB-gubQOy6U=f?rt|OM z^3r&)NgO%~*FE%?jUR|q#ZObKiap?y7Yj~BfNQ+H^xYGL0o?^Z453nftm-I({fDX& zsaMLB)0|qvDmpMxFzmKK}0=n zM1HrzogIaUgg533sy?%-`kbl+UsVb{1J=3l8#x6D7KPurP>^6z_>&L{5-f`2y}nxP zFj{rgx5FCmI>Te&Iz#DIa(_vU&mCd0#Jx$;eRTXia(`5%h=KTfRf*Ki-<IRQs&>CRDf^vH2R4$x%3y1b6po1$ zI-m!pRu%KR+i`j6+3nW&aY0TF$K@UtDesXkRP~&_74uXj_-a$gYQgmQ#I443d*Qb8 zdlwuA_hyxb9B#*wl}ueX_wBs7Z~=VY?LRy+g)5o&K3BDJSpA;uNyLus5^qT4dw?%a z#@WIU=tN9wcG?5{PJR2{t}4M^j}594tl!{QqQV=-qBuh*3fNkBVW&^?lb?m2>SpOB z|4-a^z{yb@>!Z^tp@cvvhZB-O0&bPaSy=)}2uVa6FRQyb-8Of(=iNO8oa4jx*_>@T zzW1Et!wCm$oO8kk8v`bqzbbGp0GDNyT@O@pQ`WcP+eW!)6-pD)7#@6 z#3mGvlVftZg&NZYtG;p7kGY1UKvmPp6y3@|RXZat<}tlFt8V2n{X|w4(!(FqESmm6 zPufa9ct*E)>SIKw7anL%FQ{)5A4kQ5bb+{CX=J%_Z&q!I!tc(?V#F0*`#|fd5mS1a z1Fe5$)tV^&A6Z$9xZ)Ssb57CNT-%C$Y@Bq){&8!YG6ThoeX>i^LeQW3+5<7@FE&m_ z7w-#6mIfE^^RluS@lKg8yF=;;V+XfyYuPwrT|qvavNe^;Bh%5ktlE>O;{2>EM!W+i z(}poY^W7t+`6<|@%HWTVc`vKJMCE(4vKVod=gh{iZ5gH{{nG_qrE;(ya<_-eor&pH zBi1J?g8gbc#NyvCAhBewa(1oDqn&nrR*g%iy(}w>aHnNhO#9o_D>8kLk<~D_#JQ%< z{OY4NE+^bk_vz-0fEtVADt>t~?e%n@%-Unp={IF%A)Wq_tStOa|3aot&+ODRgi*+$aOT2HK~7>v6Z67E0pQ3!EP_Fe~U_gVRZnt<5#H2Qqej5cUBK)RjzdLgPKMC zW{S)j9=|^Bhto%|YtFLnacYjcrJ1les4%jAID%?zZ~^!4+WKq$27QXZL&H%cy$zgq z(Bcu(;#9LSq-xtyZA6!Cjq7rLRu(ed%+V~Gz89a&KBaLw-!x)6r{7QO?Jt$_YnJgU zU!PT9^7vnnmBomwTwhXUe#T)7{e%Wx8S4!8;)p4pFR3y=;$Z5IjQFmsx)b$xWMwhp z>Ys{V2X5P4Ee~{52g;u7O+7ebsy|BqL~y%RZ$#~{$f`3@`^&Sk7;&{9O>=AT`Bu#3 zlOG*1%^#!9A9C+y{C$WY%Bne0{s*(N7;)um+qbz7GIH5lmzBkcD?a}0>aQcF@LFeAk7w1ADEbdsS%ejxaj(ojj>Rj}3@k*7C$sJ^5*hBB+2CVuX?vN;-7TZoUNw3_GMmo=`w-C0@4Q@b-O3wdg} z6B~MJS2iLAJ+(L2I`?k=Q=2nSE%tbH1&cm^=z>>X;7_Wrl%wCaCErr_$5>uVO>M@h z`0@NWo1Z3F6FkHu6Ru_H%4=DMJr;jWR@KWZ>{Xh@|L>>xrsgPCy@U9qe~LfSxcY9) z%0iyv4`gK_Pce65Lr?MbjYvUH@jq*sZ<}u%o9`Iyuh_hy%yEzj&@Sy{-SdswqboL#fNqhmkGp0uGU9iaYBGP@6VjZd;C zP^AqnaK>h3G2&_-v&XAcT}#c15mWM5I-^Hz5&O)^S@k0$d3jbABd+43@Nq7d2y|}K z1{0ZMlH4_7+McGr3Wg;Z9|r4+BZ|K`tJXyE+p@Aqt@sSvs%7eZbkp(Rk?uBn>Xf!4j#&Pp!?+On-ISefxYecR&@7zqD(f?+&K$iF*7wkbhQ+R8$eR3Izw6$G zsuo;xO>(hot~sneL%GyB%Uh4A>k{S-B;pRWQPUg20ix4OQVTjp|E6UfEt^In)@aac z>;@gH8|3D0dOPY_XvE&&95a=lO{aH$ueT?6iT+j2s5&A~NLlMU!_C?9gp|0;p1x}# zCc+J9FaMmiGde!ycX0Y^z|$&yl6C?zbw;%K@y50I(X1?Fp7{`WM6*A~^}ol`J3pfV z+v)9|5!1T)9t%|`e~)!nR?W!}z9TD(5m)|H<7N}5`G1a>=8szJ*PE>Nzh~8%sQs^5 zS&X>aXKpW*y*BS)cY$u8!JPp9X2zLr7Hk};<@zkTZK3SZJtwAqbLB~NZ8?{OXmI&H zD=Uj|H`MdG^XE|6n)7QU0}GL2g!XEuZQNhz8K932Xq`niv0|V8quA@U?XTq8b`13H z^~!DZ!Jgh)BW+h{ps&;2b!;E8v2yxi5f7J5YVq3lka+DRUOS72@Aiy%?Y?-Cx7dYQ z$ALW2o3pYQ@lM1YxS^igM8C3zA6l)T^CCN!{t@f3C4nr`O@S=vsrb!IZ&uw(_o%Ea zM!b8D^%u1jGA2`RY^Pg3iXHAF^!gF&kQru4O|?V+ruN7aGL%(+(gm;1$|Bqa8D>gM zwzRqWS1k)GbrMfPLGdDG5%{%CSmmYmqPtEsG<@x=Uyr(O7 z23*Yf{B#ni!S(Mn%_8wBZT^|enCMS`o!%V1s^f`|qq4!Vi@CPQ1A0p1np>5Xg*+NL z%_8xwll6RM483$hKd^8W)zpOJtymRvZ4nh;o>f2c3fYsD#fYnTLhxR9cE!&dF*Va~ z8JOR(h`w&F%c>_)^?|G`MqJhL9zE|EF-@EI`lT`N_5aPPB~kQSv$6;)I>Sp@-s?Q= zXJ8>xOv&01eGi{#wF=kG&{nh8J5VZLOSiK3c+rdb?rF}j8qBfp&Vge83i_ce z`KW7Eeia=*`7+Q|>_!IXwH5QGzbmVQ%oWK90(g-}HZNTyu|S zWg!pCA2f@mzv;)pauB{gY3}Ccyz8S%9?k&8CZxEw`ZLL z{kQ$1TK>Du-(@b|*hiP~MJT(_M%7I9~_8 z{XO6Bi$K4mi0`_G_1%4A*6|}l@by_)Naqh}7EOP99TR-e+Qwfb&~IWn+o{htr&H7i zh>yEmpl>>Zk7=du$Xo4}thy8R-<*}jh^zmUZC>@!7rv#^#-8kOVKc*%?;Cgg-s8^T z9~!a#S+kggJE799Mbl1hMl`-{ywEN#`N_xh4`kK7bl<&MS&Vr1oqRc+DbPXv0Dc&z zZTpU`yZ5wpk_#gJJZ~Frsi}4sD{XrQ=#mh+G+T zyB4b57pfh1)Ig~AK&Z&`_Ec7FONad{D~l2DuqAuw2a`+XLivzBa791SckFE&4)qm! ziydt}Qsj#^6Yy1p>_#Fd26UUR-M?Y=OP4myq`YH*pqFe{4@@1R*5ye>W_ z$6Sa{uj$rH7z>=IXUm9n%Iw8PfZ!rxBS54hHfGhLJSpq4vKaA>SVFc=?uc!rQa`_p z2CBuLV)an)dkXGK;o1@F6navOUkQZa*N-nu@Z$g1HeZ!s$uNkqPS+Lkhp&u6`MZ1wA^31#{t3IVmuFuM1#Jgn1?gF{$1>Hfv z5wjh?eBn%8H;q_d%v_A>r60V`cCJ3s2_MO-LFt4Wv$6g5l z5h-XEd#p9f4^CzEiad4=9DwLry}k50-B9f6A{%w7&zZ^oL=9@jOlJM?)Ed5|r?O%V zdH&E3xKQQ!&Y*JVl^f&s^ZTqCmZ|MGSy{;2>X%tr_?zXQKCS&clke;<_%}82@ksc% zcm9RV>FHHTGx3>uzP!7@{ZBI-E&Nj*`OYEHGCkYU=QFdikUpQDm4)Bu-_EqP%KB_i zT%B8aR@+6Ta$nKCf@5ow`dR<>Rb>T^^;i4X=h0y`{k<}OE!R5Sqr54rLZw^RXJsMX zdO=neez$%nQ@3Vbcpgc1FWM_d?%p40Qnw~9q@3l^a9vx@s#NLPl4g;-0B!cY2JsfH zH#A4B>ZQcTQCiJw5?|N2`fkX|LY|DltSn?n#huvDlB%Z>DF*fq3{I_(@~d3DjnSLA+^L+i6~SorZsvJBXZabY zoy=$h3XD+&pmFML2u7(R5jj>(U}jYWqtyWf6V>NXe5`sgbNLdpJ{#pGsdEsts-1`& zr8Y6MZvc%^ujI(%5sX)#;G6>-97HftjfDzEsfh@ts3%e1cy&KoJ54P>mMQ9QT;OzY zX;nQ4Ca7LUZ|C3}C^t%t1sbJJK!GFG2Z5%muLF%&uR}0eU5#Ljx)Et()C!;$)q~=# z>W`>)lsXTnMXf_{j2gq}Ue0nC3bd-3T1f$gl zIm=g2V6-|8L92Qhg0bpFoaNs@W7Hl5qtt&8j8i3)o2dE`j8PQ?Q`8Sw6IUTitGW)6 zW7R!~9IajfW)sv-M9x%S1e&PkbMgC-Wum$Yk#kfhijP*$1Ugzh3^Z1qhG3L>jDx*M zo2*JeE$Um~GFzR9;7C>PU56WhytzZt1SH2Irtcg zx2k_}4dXcHOF8F5j9$TM-{r_%T;S6PTGS1k_6$yYCI@fi;J-NM^O?&MM)Md=<}vYl z=JEiG`(H?FRsYS!pW?I}2XEuZ$2rRvIQSw5&*Cgk0JW$BP^%ix1^&&E?+0p8^SRoI zoVJY9zRg^I4=e_NE@f_WS;Nm-~$LIsQ=}1ALPh8fhMReC^tbJ;>hP9 z7^R*>ob!4F zbJVkuWuaQikuT&dw{Y+uL{3#jWErJC$B{>K?SE!;E!S`wa?)^PE=O|Y*$7(HAaagX zzXY0~x{zhGn!;(lT<%X?ppT3Hh=Y4Lc#wlnbAg{Q+RDK}4!*#}?_rTX%8{cPwQ?|% zBgZoO4j1@7529AIs8!A5EVpsmQJnMT9Qj(VeG#KKaF#nc*v2{k!D%OPRpWfo71k~;%9Q?s~FApMdIKbq_wCIaF!yM`yS_<%8~CvWQ+PEqno(EU$}kG z<^q3bG=tOL&a#}r!6Tey4yQfF%%0D|7|wDY2fyZ=^Ev1LA#$|3meV#OXjMmYu$Z&F zn7Qoc;HRAPGEVy|M_z=;(dyTnb}Sd4fVQ`&dyunLy_&0i1{XMygU@h*uP|E0IgetU zjpG_#%~`&|!8bXmaN66s+_Mnbsy@t-7a+1#{h66Phl3w;&Qmz&Sk7`9qs@#y#KAi` zayz5X#gOEJt3zIlsmAeV4O*1d%Oj3#Z-AX)ogf$8h9y4({c? zJq~H3)r+{?GS0b&vs}u-TbRq&kk+d9G3rLpqW;9?KFh%yILn(jSjj=2gXPTZ*DU87 z7@fswUu0RPG3&Q*+JAFU<}CMf@E^{(m2+Om!8T4C#Rcx=;JqB&$HDy^{DyNbAZSq?jQ)p%Z*uT+uHp4u{7jBK zpNoG1Y17mjIqe9fjZz=uw0_R{7ogE<14llO(eoL-h=ZSTxo>ktALnw{BWV_Bq!A>e%V4vu^$2V*$6iYs~>v+ni<$TXpTU#5 zgV9%j7OPH1_i@gN9Q+*>wWyyndL9SwN6xWo8w>F(j{F+X1obU28>e1~$QJbz=GlXw zMSTZpt*V#N_n7q*pi$~}PCLK_mNV@Xr*)%TI5MSX-L zf54GPGup_-@8;lB966nXV>$RY^ZYEMrx-oT1wO#c{>f>xIC3_E(dyeAIRRNlt3jaA z>f>DCb)0q>L5q40M?M!pi<-&7tH7m2T>>;(-OmMng4(I8xZHHs^&7dq>zT_ej{G~L z_i?#Smh3D>|I26}2RCqilbGl4ILqyv_8;c*ZbpxD+glhN!#Ur>=sHGsG1|-Jp5y}K zIdV2G=Qz${LC z4Hr0>BbPIJE2ID6;A)QiKSq~xxm6r_4F~_?$T?imGZ=lB1BEOt>h~y4=05JRA8_QK zSfnR7@>CRPQLUWz00*DpYHwsTz(E)1ya=dObu&7P>-z^+)WVU^8jzQn;2 zj{G@S^h>VxJDm0#7Vtv|#;Kza+@;O|&++P91dG)j2#!&2MS;=k6UcI;`Wv{6R{w{z zY3gr?T%yJSO;&d!=W;a}XuCQJ!E`kjS;nZJ0v)T)MV9qy9wN_G4+4!-Uk93~CIXFD zA40HLRS`^3e@3}+>ZKekL(W$90|agA=g2Zz?ME)q zhROF{@s=kcKqt!2fCaPyL&s)K4 zj2b}XD7Bx1vpMnrP^)^JBS#@}s#=M1qtqcpwx~A)jZyDK+C;S)s8x9gTGT9L8KWj4 z?I<-B!Fcr%1f$eGWI0m3i*s&A&PnQ<5ceqcO|I|vobzLx^D{s#>T<63hsZff{SA@h z)awyBMU8_dTGaDUV4S*wi+=&Z1pWJAly)=M_fJGl($@-7VxkC1vna~;M+(WrM{!H3=B?z5x?SfkR6|{SA`9qqq>Uwtf-?XSGDZX z4@CEM^bBNg<2BjRZ@GvZ(0Ls4%4c@q&&Tayug>$559`yjUy z@zgg+7R0~$c@%X6$ZLsEerg-y??%);Aoqbh0P+)%hd~|%`6UxEA@u{1xPHAWwk&9poP%PlEgt&Z&1|xK|T#~3&`g{z6K>9(-AXSk4AO}IN19>jU^Fdw+ z@?wyeg1j8$dLo`SQA3JX{gI*uL0(P7(>80w-+`z*LGA{*ALK!hhd>?yd5nmsU~xr( z>WoqJOAjFXK@NZ%1UUq99msP)o(u9kkmnQe)N{si`Ae2i)Gm2AKmg7i1pDe2@ho3qjh5cnW3-i1*?LDe5I4FD2qB z7$^`w=^=`m3^D~|D#%eF(?E^}IR<1p$gv0+|gm2V^c0Pun`c`0bBU)H^`l z3GyzGcZ0kKy819?Bl2S7du@_!&Vf_w<%!yq34`6$T8KyCv0ILIeJJ_+(Ekefk1 z4e}X~TR=Vw@;Q*tgM0zxiy&VD`7+2?K)wp{HIT1^d;{d0Am0M{Hpq8Cz6)|I$oD|L z4{{sG?I1q@`60+1AU^`R6XY(CyFq>oau3M8AoqdX5Ap!WgCIWvc?jfTkVils1$hkQ zryxHA`8mihKz<4GE0AA<{08K=Aio3oJrPe^pU^SC{u6S5{1)VQAioFs1IQmi{si(k z$e%&}0`gaozkxgf@^_GbfIJEEPmq6s{2SyyAWwlD@i>uDAT1!HL0Un^fQ$th2QnUH z0?3gd6G0|{Oa_?(G8N<~kZB-CgB$}g9pqS$86Y!3W`WEGnFBHxWFE+TkOd$MLE1nT zfgA_27-R{^Qjp_8P5@a3vK-_@kdr`825AS$fvf;o39<@gHOLx}Q;2xl><9h-@hOV> z6UgHre+Kyr$X`MJ2J!^R-$DKX@+8PVLH-5uZ;=0hJOy&Z5iO))kQR{9Agv%{K*oZM z0~rr80pv)Ki6E0eCWA}?nF?|g$TX0nL5=~L4stBW43L>1vp{Bp%pu~bi}e()uAI(3d>`aCklR6i0P;hSJ3xL!#M5?AC~N8@iaH8p8pzQ^JZ%<5 z;&D?bYB9(Xkfk8UgPZ`e3}iXTi6AF|oD9+qk^@-*vJzw!$Z8^wJ9D{@>vouXa=@=B0b5%Cm^u1Fj+lcL6gi~|`DG6CdBkcl9ZKqiAsA>wI6 zEsD;YO;Phf7Jw`SX#-hA#M6dcWIHg2q7H%_0=W+4IUvskc^=5~L0$mzLXa1Mycpyq zATI@Z8OX~){tM)KkXL}b6694NgCMU4c?}Uyn~)*E_JtI+1LR_mogkNh>;l;hvIpc+ zkjp?W2e|^|N|38So&oYqkgGwS1(FB32BZM87o-EE6T}1Q0@+8z)3$8L^WYMS`U%KG zL_GC6e^GJcQi}Qz$cI5b0`gIikAd6-@^O$)fP50Z64Ah&>g7UXjvp9lE@ z5n6%xUH-_46!j>`V<0~T`5DO1L4E=9OORiI{F;cT&h?A#T1ip6LH2-LO2ktzq@!IE zS5wp^kjWrZK&FBm1u_lfXpmz-rh^;{G6Q5L$SjcAAag+Gg3JS%53&GcAxIk$Pr=@d zYCpe=qP_s~MUXFnd>P~`AYTRf8pzi{z5()0kZ*x}8{|76-vzmqh^Js}2IGsarl@To z+d+1KTnw@kGpm~{{hGkLGA$g5y+h&cY)ju@?(&DK<)*(59EH3 z2S6SK`3cBFAP<8)0`e%xV<0~T`5DO1L4E=9OORiI{F(?&bp8PT;&UkKOCVnc`3lHa zLB0m^b&zj>d=unbAm0Z04#;;wZUy-s$oD~R1GydK2OvKLxdY@!Aa{b?1#&mYkBN8+ z_HpQ^<0TZ;3F3itf$Rh61}TClkZVDDKzc#?KuRF}AkPLVgH%AOAOj%#K@NZ%1UUq9 z9msP)o(u9kkmrNE0OW-rF9LZn$V)(8O2kvJ&_m=uzM7)`1oAk@pF#dY#8WWWBgf$( zih2Xc8$sR#@@9~?fV>stzlnI-u#W=UUq?|pKrRN^NrV>oK0b$AfF<8v$Un zN3l1*l`_ADh^JtkN7OUlMp0LTJPRZbat%lUWG@jgpO+-9xjsvF~={qF#VIrQkyCLd~lPT&fkaIxJ1GxZX9T88P;B?6q6!l?{kAmDp z#M5RhB&PjrYGCjvd?8xF*Is2$-&derQ(=y}f%rV1!Xa&!5(ER4AQ+;64pKOzEmDGD zni2%l7trk#4rv>hAQ;00!RQ5aGlfIi`XvZvFhMYP0ewZ+4!f5i7{CO<5+(>HF+s46 z34)PK5Ugc_U^Wv3`=$L1;I`&2nK6Guv`m*Z5ZeaT5~WG3xc&+5X{DcU_TZF zL$V-Plm)@GEC`lzp!F0EX_L7i*voz5(FcdAXvi$!7L^SW-*|>6b@?L+1i@k^ z2&OYZu%QWpF-;JxYJy;169hY(AQ;>P!SW^uCOAQ`#R-B@P7thff?%c-1bdwz814kY zf+q;3JVCJO34(D?5UhNHV6O(cpTZ$+xE2Hpwjh|Y1;M5*2*zzeuyPB6xmytI-hyBN z7X(YVAeh7j!8R@kMsh*0mJ5Q}ToCN%f?!A&1dF;LnAQcs#x4lPc0sVZ3xfGw5bW@R zV2~FC%e)|%=mo)6F9=3^L9pHnf*D^B?D>LV*cSu~zaW_U1;OSo2*!UwI0X=d;{ZW8 z7Z8L40zo(_5Cr=%&>0jCX+yFgSd<09v@8fVWeig7sPu%-Dip&lUv3wjfxz1;NxU2sUp)Fn$Yy6u}f5Dp9l;p9*djt~XmEKv{+6$RmRQ4o$91>w9=5Dp#% z;RI3;jv@u&Oi~aICk5e@QV@xLM5DqW};UrTKjx+_~Y*P>pIR)XgQxJ|l1>yWt z5Dr2G;Y3srjz$IHj8qT~O9kQ7R1l6&1>qc35DruY;bc`1j#vfZtW^*WT?OIvRS=G0 z1>rna5DsPq;e=KYj%o$r%vKN%Zw28LR}hYK1>sy*5Ds_+;iOj(j(i2->{k#Dfd%0- zSP+hd1>t;H5Dtn3;lx-Fj*bQ43|SBklLg^aSrCqw1>u}o5DuIL;pABmj-UnMELso_ zr3K-1S`f~ffc~}$b21K{1mW~a5RRb);XFzZ4yFX*gh~*Oss!Q8N)QgO1mP4*5RS71 z;ap1)4!8v2q)QNvyaeIwOArph1mQGH5RSzJ;e1RG4$1_<)dlF46b@;h7eR1-5d<$7 zL2!o=1iu(TaF7uMPZ>dQnGpov89{KO5d?1DM4_a5(Fx1Gr3!+7svtP33WCR~Ah@myf)A@8 zII{|ZSF0enw+e!vt04FQ0ezdoA?*w#2wp*g;Q0#l#81$haDf#BUsyqKiWLO!SV3@; z6$F1-L2#TE1P@w4aHSOlpISk1t`!6?TS0KQ6$HOqL2$qo1dm^!UJ8e_>#rdA01JYD z6wn(f9MX)PFaHB zoh1lvT7uxOB?yjNg5bd=2+oT@8z>x7@cagvPT`Pt0T%>ca6xbi7X__DIC&1bAsSJ zCkS42g5b^u^ll1=v|pPbIJgOdr<)+Sya|Hun;i&91{h>Ls1Z16$Qa(Q4pLL1;L9^5ZoCB!LLye92^C~2NUQe6w>+FUPk9q zNKd$f;JS&NoCa@1pdAzrX}3f{@J|#3M@2#KSQG@;MM3ak6a;5RLGWr61ouWk@N*Od zhetv1d=vy1NI~$06a=S8LGX?g1UE@R@Rt+>$4No(pcDjGN>=%h9LZ8h9LZQMt}weC-3Vi?ImAu zeStyc@C}Ctr}51O9)2@jVvp=B_0ms);wOaRERT@{1A7O@mG&yHqlz0G)C)(^9S=tg3{L3iF7)m5=ofc&Q^xtw&N9BESY<(|&3-{D z=SS-MASN3`-t=9F85kVh(ccf2>Z%>&ad|x{MLmQ5auuTT6tzQL13EZCH~!-C#r@Rc zDOLJK;GRO&+eupJtx(J)6SKCwkFeUSi*{(Lm7+T7?^h^~D19chPY2ZMF;JY{X7wg& zyVaC&;mfJ7rmh`}Ur6Zj4i7FT)zGiObQK1As`)PZC1OI=L;c>e9I7drcLnmyvvfi;9(eAL({K{R~GE(__Fil+Q3*JC;Ap z(9Gs(7Wuu!Y9&s%Dc~bn42xA`Gz(v#Li8D0Vf?-o8R&ze(OtpReB=5vhZ90olK^J@QsPfw}vsmowD#bNo0z}cNjs$b0fazVSda8&YExEuc83-t)^|KJf z+jY~GGLF>quJg*J3jH|7wXsjCei$T+BmY8)H#!UrTm1m=u$8Dh}LGi1H&q0boN~TQ%F7YFYGUudP`ML zH!*g~)&s-IWpssKP6+0~#rDf9@r|V08Oa$iv?W^#rRPn>g~V5i9&|Bz4bvx>sXrwx zpfOT&qCUzW9ziDN;}^$UH%KwP;CAYuo+7y~?c5HZrFM$p6VsdeEf>V&83<};exClR zil7&k4)jH|tJ#N^8(L{Gd5zNMIJ3vhuA1|>PIa0$M+!t|32PpYmR#VJ3|cPZJ2a15 z96Yte9zP2Tq^$jil4m^K({?7)_&;#tc~V*0(Nn5;w5Zu%=qYw4bJH4)$!nP6S3`ns zT4)vxi4Tf?>YQAL(Pn4WwSaycWq<}nXR*VJeSCE*?MzNbEwxk9k3+i@^Yio%p#%+_ z-_h-LT+55zxbdgQfR)EI?vJ+WPwE=z>%cZ9Um57{FO{pbr_u_GZRmVFxQQi91-Cl0 z0bYx>*KOvtD7hT{;k779MuDLT!F?@Cc83#Qi;`qG#XJDf*P;|-j`Y)x_G|GZdq(Ie z(cZ{Am^_ZP8WT$xHJ0rP+TDp{*eVvHr)rcjl`M27p}D0#`szAqRW=zsgB*@#7X;Bp ztD*kUQwmSmK~{&uaY3}<5YsQZmxK7QES{QXt88JhZpV;|6DKn*icWRZI!6lBd`m=2E^tZ) zN>6-CSR6ccgEOpV&|KCN*YxoiQAl)To*iV5imZ1AJdPse=G*0B1lD`AAl|CiQ@?X2 z{8_XuOt2vw35hw`k$J9FBr3IjL9o;@Wf!_-0|`addPft)JN46Lf%c$ZZWeQBKqX)5 zqW4z+K)lI8&vFU*&G1`czwQ^&n>>|0B$UrE!>?@7!{M*<+GsW&#$uy;%+2O#9lMb* zi>UVXK905T=686V;HK4>h2~)lNN>31n5U-}+P$*WJlGi=Z_9d0-QbCq3$H$ zmct|vlnXjZ9;N6c;FtH*srFcJ50*Lf7EQ4<(l6W^WsFix5!R0vgs#MI>y@4*|{A)mf_MD!+sKl zS7=KY<>#s6?Gb;1y%?+cveu7MY;G2`pnhhLqGfhgSwqG>23qF$?1uHpw#;+sa-7bd z{zAvKaoqG;Ey!UQY|u}n{$)b4!Sn6U`j-i5Rvv8aFBHp%2N&SJooYK7&&_B)8}@Tr zOwy0VFC(k4UTJ7#*iK-!RSpht@Hwpq{iB9d*OwTbty`df)Q}=~`eRJY`E%9|ROt|> zTI^_BU+VOT^zElht!aN!IXt+q>Xm!jgBeU zHaLZzwoU$Chj`7?yqx5ANmiex(!%CgT}fZj>!aV7m0W{!d?q9TCnmF)u!+t|Jp6h) zuIENOBqCJXv>>HzOQEl`$D>Y};TCB(38A7>*U@nB`Z}fHbY0MoPAWEKbGgvpP0H@= zr)!s}x?^-H9ZL%KV?%XK*t-8vn|_8(izuR3*8#j@&_9T!Elst3VJJ zDli!}1hf6&!J~sJBr>kZrZSySkitkRDI$@fB1fYZ)BiM{*6!STcyMM=m87&IB~6m5~l8| z88Vo@`ORQr%oN_s?B31+-{-k~6?b0a~VIF?bg%Y2zXt9o(B(K9`vBVo5!IUHmme5g?lwn@xmk{)C=b|fg%Vu;9^dxVq zk!Uos&ew=}$DhH2n_ukkm&lVlLxoJRxvoM-wNx%%2iFR(uTm=Kssr>&Df{T~;OShn z9eS^;q&{HxCEv0~Gu@+WXj`T$Z=)4Qy-aDKom+32oL#rmRhQ&xvs|p^^QNQfX`jPZ zI(Ab-;^mA)j-0#mg}oj5A{iOU$Dz({aK$WCX}7d@pz4t#H#fv87s%v@dI^mda-Jyh zDSJb*23`pbs?1~U z1qx}&3cb|D(5A)B~9pw@9X>jrnHbX%x&%*Ik5E(h^0 z7f;>ATWzzS+~@TqpU@!DseN{kJu0|$LK7)B-!2!3CU5r835}HZ)J$z5FgyF%l~Px= zw{S2rqNumD#{G0h>UnmdsNj~y<4U)MO2>#F(zwILQxDmLZQcR;0Km)lluG?^ZO}@T zEZmHOI>PC+d3s1D`fO+(lEqQQLWwu8snGbd%o~!|;jvia4UZU|gv=XKhIyGETU0M_ zo~RkU#R?gdqK^F9Z2*amD6@m?(QdWIW2D@CyIhR$q46l?&CfupMP^u@41?1tw5X(y z4$>J{$nRAfK@JbD;bN%_D?usSsB*!cJ$tekR17nEYEDh_QZV^*raq?^wi=U#84kl4 zQ6lVQCO9vXIPpf4ivj~hx;=hWEZbOeen!cR;l@$f?tHbHuXD2z6)*gPUz<@xk;M^m z4_@8}^8@|VpQ(2h!%Mj?o0PUNj+k3~J!b7>%Yc*0vKVP$E^b@4yT3s8)M~z-HED!% zTa$X&lEqQog~6t#36E~Z2P6=|k!*XgTcNMMnjl=pL1#ewwsdp59YoRjTw z;QAez_Rw&n==!z~QOUw%F01M+VH`0pV=?Qs6%H?GDhphMP0kg^5%m&IYpA2c>dg9> zXmy6Sz*orLvDs5iDw}&$n_+<*eO_g!HhY|I$@U;cMPiXXbqTNWc$YZ0qqjd_tn|h2 z_VfvBkb@Z%)Kg}WsL$@^b{EQ>l>-S2T+JcK;b?6^5N#&H(3;)yv<|X59F7a34TqRT zZ^+X+C}Pyn=WIge(1Cu1T#;grX!XaGCW9l%d=qN~2{lEpym|X;aysP~nOIXkrXit^ zDNPB}j!8~CW)~_2d<3QW#qHt!bVrJLcA@Cj!`e~Cm2L}_j%h+@N9l0!)KYt3&f;Mg zC%^Vw=42MXp#J1;x5~A)|44M2Jv+!AZL_uAij<@8{d_9}m5XU@XuBolJ$0M$AJ+S< zRf+p7`iKGFvFNVMc|Be)eL_x;8o8XTOxk267O{6&7s0*7>(nE1qp+=YfStsbHd_}& zrl_RMx%hgW?zpVh{-#dGZT42@!bZhRI2yj1--Y=?XZ#6ay)uVitx-#Jog8x_AZyxF zmzoEr?u~v&f0m8Dl(L861?zWa+2{w%Qf~Bv{5eyfGvMmo=ttSrx6zN5Z^}kL%GMeE zX%=Wv770Us3+1fi{5Hy0G?r#_8ZDpm1#miY4@GwM6#Mg);=VrfCLP9V6J;IQou=6- zMA<;XKp02NODUzNQms52PG<2_M$~yJT0un4^^y544I9WQ(l~?2uE-A8HZ~rEsb$FT0TdDg)N2G zu)US6>F~|XU)x-xQDo$hQjIzlE zc0*qvM_e&<1|_o()9^MojiEEBHrUBI0<-OvMfTJcwmoSEd6>lB1fq}Nk;ugg>PN;l zqs^NO{LjP_t!esuQ9F~Pu|;-@(Ums4$P{9IFKXv@_$;+k44)XAQ|Nn9yOdGOWwztS zEbmNzG^ou=FzpHHMOzDXT+Yhu za9Ls{7%nkd30-q#6*5Zst<$o3U3AaY-hnRqcsx!s+9)Vl9Elc7d<}s@ZX{C1$TQoK zXAWH~*}bn^_Ao56lgobE_5&n^_T&{|e$KciE+EmS(D2_dVr!^KlMrv-B`-urt7Vy6<_6DETr z#e5TMG@0BJCZ|(=k%=|sW111_2~&dkcQYrxkE9ON7?xt6_jF5v8Y5C9eH&M^NisC**Tp`n(UD?Z zP4}{ta-3fG5asUz9Z6_xknd*vw}L6}_noWauYdry~iC+=d0If8<8xpz%^I4|tu${f#N5{_zr28`jIg zQn@i%>eq{|lI8H!DfV`FW+BNtM1LKkQ@LP4{em~d>@ak!cPMtZI1VG3(oCU8o#p0< ziOWsrD0^=Kt_{nR7Msz$_EPiQ9pcllju@qOWEcZ_U+BZ~ zlEuZ@^$QYzfV?HOCk0dxZk%&^9JSaD+n|J_<4ffZE4qA}uJ$uq8pl#MEcb}LD|-4l zED!6>eip^)&vg(e#`}6$wzh#kI;jp@T$?N%Nj7wP`{~BsMrDb&V5;B{@5XBi~j(1;+3HA3bPQ@5r^KT-djdT<>}d{6$;%D8X(} zY?Ea^j~>xvy&HVpLb zrH`62_Hi)DWO-R}%`6T5x{R{|U7c!A zqTkNo)NL=|oG!UA{mRr~Zi^pu%rLWm5`*{^>J>Qo$d}31(c|^)t9GYY3?^037J5rX zZv%2lI$($NQ!Xr#qshyI)JlJk`TeV!Q$kWbVR56!wN6O~#EQ!TnZf@L=lp0cu24(- zvRZ$m5#(^%yC8@*&vWSD!um!d$m(!7E{HZ9)|&$cc|*>`OdiD3?=tw(n%2D6Jj(h= zcE0X}FjjhD#v7v@3M(XcaOoJH_~6>z2*y z@e0=-qTjZQzr8@8J4zNuqJ`Rd{wR&tmiBEppzZm+i}U+Kw=`f8fjTP@kr zc)dl-!@10SyX!mv^?AKT8H>`QHndcOEXM0?7gbZA&wGqq;eAOOpZ6#m`tcDXileqY z$Xf4L+tG(KEMywD@^~QwVH`0pV=+z7o7bLWi%io?5p!f3f9*s;jW~{|m$0bm{k5a) zBT{C4j&;Kb(7f(Xa4_Fd9;6Vtu4i_4n99TGwGaY__FpoYa4#~8H}^6wn9SDnk&ugCsZouO5mvc(mK~) zwOPx{DEcw%uv!a=8NV*Oyw;ghy;V4CwCHEB^|DJik?Je-_xBvq*Ct~a;8#TP^X2%d z4l~Y&c^?d;^zcjUnGwTf-7QHL*%>|8=q;!D>a{to3E5eqR@k~5;|S@3 zJ#_lmoWT=r$?nDv)Ub* z#$49i5oUySdZxo}PWlD9l;R(#*y%1r!q3Vj&233|`F>fjLuyV(1SbYfcyR}!IcmRx zqD_A^S?2AH>)H~|k$N{JG;NFoN=~!ks6F1|KCkNuJ_iexZH~IbBmAnywVos}cY&wQ zaBRCv689ek_{ZfmJv_KLX{TZ5viB7Hb5pg>{H&6+X*e#@a4Vg6Y0em0u_tCl6e(ga zd6o=cLvD{#$EmeGp@`NMjKmXD)D-ur1nNulHEz7V$R`n})c7Q#Ms>?mH81k%1J#!J z=|jV{MLuyrZAqTejn_t;osn`{%{^+3`c6uv%a~6VsC|i_EYzqkUEf7MO+alUrp?GF z2vl3*CkPFS8q}yR-BTX@q=3dsjZX?{RG4n8#C$q%rscyQ``W5eY4j7c zNM+97CKH`ynupjO;PeH^7e0ABQ-}p^2&g!iRd>zfLNpeK3*{Bqf<)V(J ztFw%WH2MQyr&Xs`=u(+ZuTrlH)6B#^Yp%~z*Xr%5y4`o*Ge2`W&)%mFREs^89PTOR zQ;NfbbFKYpB$fB2^2_9_vCGo^kp~AhhuV%=xiAabpz7^oI6fERWR$jeH~o0X%C0`E z7X6|gt`fZqj#T3CF?w33Jp$Do#?5gds%(#H$)6o_SVs7N=ex~sk^7e*=+zciTPwT2 zzt@f1)In}<^xcVYO;lqImZVqhb3JU`xoCBct}n(9QsoQ#3&kG%nspQ8(x;fi%T=RZ zN5Cto6X|v3<@Hg|ey?1i(=|Q(ie2;$^HY-sNo^HggsC@$sA(i{g!WPiZ7Vxl11@i3 z18ixW#;mV+RXZ`8sQNqq;dLFV%Ms-AP$Im9Fc0a0;E#-K!s%1Jx`m6Y-w}A@Kwn7Y zY~txp0f!eaQX327sSoq3;TE3xUckZUIk<>}Gxc<+rg6^qF*?RrJoOy8(4HewvI<0BfV)4o$NkV(srQd-`8Cii2|7FnM z<*B-0el77Ycet)f+Xt7Y)XwGcy>P;|wcFRF5;p}=@7kliJOOlyz#wqTA;)_ zE7ZI7+7$+@offX5U$O|k(XGiqT9-Huq;=rx)N}mq%^Onn(A=aRA_fk}6>0hgwFZxg z-iF1sk#fcN$I3uywfe)UByl!GB>_99B`0f{lHYRRZ#^Q3V_4T9Pl%^(;-$<7c`5T1 zUgjLf!OJ*!k+Z&;ZLe>5wM8zd`{;t$!-KP|m5rNZuW7W#{4)B=d9ApZy{n(c9N#(| zwVrGyj=EO!BF|1Az7lH-?ib8O*>E+U`Zw!l4+sC@pu}42=b*yD4~#>uULLkZ)n}}L z#oqo>xq5ieUqM>C=1>k>nWu0m=#j1)OlqXdfE22qPgba#mUH--)?UT!yN+9QkJF+# z(H7D7$%S%}ZhRf|M~l^#AkA*YnvQO-l#!BTQ^A%E%cQXJez^ zH_)Fa6Ggtut9EqPQ(;UqwB;b4p;6u|_z~Nwl}Eowtj9r&!KqNGcxCMs8)tB`Qf+`uKbfQ2%s!}eKRS!e0mwvm*{7PiZ>?8W2+E&%jTRdAw0DpYb-67aBZajehd$cDXv$uk@>@!;5On{mya2 z&oWF$8_Rs0D$e05s9pLB5gaH~>d>wBI!G8NF+82B{YSZ2q4R-ip)cl#4C5MD>roa~ zPDOqjul34(UJrdd(b%%+b#G0avWY=sdI+Y0VJL&DT^&kb7=r(1s+_AF9`(>6~4&Bhy88$|kz& zry;rY7wTE%LhX)htGDhyw5?R=tZOt|3(?q4Gc28&&aPt=8wN5?toKRHD&t4(dEP;< z!`^<^9I+nsy^PRnPj0J*hVO_-@uN-HA2-55+`1qZEiP)Lf6rt%>8y{I| zCN^ivI!ap8UoO&H3x+%2u_d9D^AWB!{v+&j7DuP5llB*{W7}YwDy)}rv{p7dkZPd3E5exdY z4SD3GXf7eQ&GG#BiDpBDf@7!!>v-j~Q98x48o4YZS?yMwlcp764$=!8VNH*Q<@J0xL*#pkx$lVXI$GLa@FjIh{J@vWLdt=gdPCH7mhxEQ?DTrJtT z>{gtfrdO=OBK^rJs*0ByeX*f>sNbX6xVHp5>TrD#m)mYds=kO}BCSd6ikC$!|q?1S3vcH8S4D#4gMvhKnr8GrFQhjt< zGjF`KlS$gGv_?AUE7Y<&x#C)xY8m&w!QFkj77^P@sLdp16V)R{B z=ov7th{VxnWwP6nYV=825kGPCN#=NoPhm%1|9;0>#}?B0v_g)bNFuzE*t8T z+L=Rr;;Cmki{wSg)~LY$+COZLu|%0HwzAgXvMKLib$g+&uy2@+q+gy?W-Z(H`qnT% zQC~PK{2aw4EZb^x5cOHhw%SEPO7xe|WIHXDDjx1o>!jB{s)5>Ut$ss^ zWb}>U>@@xKjsZG?q@7{i)#|UN_?;7}*5&C`xYnHT`-SKXw2%CNYn;u5xKoQ`j1;Dq z6S+G=oY!CW_M_E>jt)8zpetuP=)5`cs5dG>jFrYn5YO7F{tVu7M{{-L+W<4dL1>eojT3t%Nvd>-0_4cf!XHuwm+O1Uem=RpDU$t*{}?_B>R}*9>*_&}H&(Ugz3kysa#nKw zH*>s_<4J|yI(tiWhH~iepl`FamL`&DFG`kmXrpJ+92OL!ca;8V?odTJE^ZX?Eyr%` zNEj@}cwOa67*4b$T)JJm-X*OsnVk_Y#3;vQouNQW7Q7ner|ja($YMxaXW}yjyuvjk zxGb}aAG2%1jz{lad zs)ww!dKO9M3|_?!8TPd*06Vt=R$RWb*pa$h_4J+40*jqff^A34O4M;SjD!?Y>T zmixVd+sh%APJL$tiMXMR*!eD9$!ZL$)RTKc^P*gxT2HJL_OokAih64G6ZklsS0g5W zz$@l$`7YYDhHwXC3z zNO>+u+Z6Xp3U|B(%$zz_Rm=E2u(}jh>j|>hIrW@G2}Sl~PSN$Xre4j+;Z3*o6K`_V zOFKW-dU+dOP7NpQPs`fq!ONn02G3Ct*o0p0)8FD^PM@JWQlzPd7 zm%jZc56t}DL;8u+4?~Q}D26H3s;`8pQEN;EjtJ*yKM1nk(7@2wXV+J~eRGl9*nItVCz(O`o6N~b>hnKD$kv%b!=G>;_9>bIu)K#!Z(5i z_}SK5qh%k8tI=lcRCyk~Pss-9mm#;~fjU)d?WyA`jE-^A(trAnoUD=n;^uWwk{ zXF$#huTIa$cM%a=$6@ka6!wiOO} zWwapaonYj5Uo^}DeR48T&4VxD0le zp6}bu>2nHN1k-n9`^h;u-E)h|sH3f8i(m*NDVNCE(cT#*8(oW2=_nWbQ#>Jl&2f{I zQ?syisyto4a!LbLe7vIF!iSw4{2JpXVqIf|qf_CjPI9%JwmQq|=BhTt&#CN;eO@13 za6M3gm-(UIy``Svr<~yw8fEEJxpE&_Qn{|QO|uV*%>=78DXg3-)^->Ck73NqrK6i( zHThCs@_CD+Ga9MZd5@EntHIk5;;dqf3~5_z8LHjdm8N_QQc*W#3On+y-6xLkl_27+?#~dC}ixEt+ z7zOL13ng9`rE1sW0&#gyOou2sE+=^%9*ZU3@K_)Hsnl8E6U0Y&dFoAOXQKt1LwEX= za3T}eqDkOoGB~o#H?c;NP;0CoiZVH!@{3HYDIZ8I8VUVSlqtb{JaxL=;d47mbdH4{ zk88(dv?IvD3<_$aSv0XCDhCSvg@f_qL@UB%a2hh-#F~aAE5hV-$}cjpru^`VFeQv4 zzRH8tANl>|0s1n{8vEYCIF;y;ACuQ8=j%4p6CxRt9w_~Twz0Vlzmq1}1hSR0R)Akh^2uA{j*)RY7CF?95!LFzv}N0)!X%o%-k5g`%=sy&qS)EmS&?Q{)fzzQe^+Z**EPzn82l#lBK6 zIaJ2ALTl2>3)pZ6|0`$>`abSi|iC5R;Y1$rr^fexg9=B?G(c&rg_?BA&Ae}rA+&tZ_nTJd1>JF z_E)2>bLJgrB;{g1FLc zq0+;*z~SPlr|f~-PR|y3y1?#9R*m7U0{T3@Mj38sLFMd9mcZx9ANVya4tn;DW;HC| z=4gICS$}ZRSJKNszvrwxP7kzM31&oxo(=0gXJvM{EU^*{mzdrNz2~e#%*|7eyH5ok zIO>nYG3BQ_vdps!)f`iCrS(?RR7s^{S`m6G94?;vg42Q-*oVZ4ulEp0bY!0$WRD82 zcWpdHMas>$%f*PS_YOgPPRi5mAFjMzJ;m51u9g>xuDn6^n({`<&9}=1a>>LKl2^)m z>RI;VbW+0e7r)ZipB5&T;D!~{6RZ$_3lVzl#WU6;B9hZEEU?68rmxUPK3>fAM!~L% z(;Yp}vkOI4ZLO>Qj85scQ0W+jhsLzS#Z%**`DRAB6mt(BiLb{95}n#-2ic>7TVpy> zZoXYEM&!^Kk@9qHrQL;dYuZz^(J#nhy6pYjU>*aD{Q27Kmg630y{`)8GtB1OYc6B9 zPFNV(W^2k~SWI*}U>2D!=+?0~IrPewlbueOYZZxhgSE1aDZ9`u8`Bk`m95RgQ_Jkm zIF6TvVtk5ggk~4cXjJiSXTF+Qp@nj+CU|d+R7VkWq(D>;_TD;Da)DDaMhoG+wQ%s% z@AaBi-R4gP<_B3$WQQZ|Jx*U9&<%h&&^&hOzPnIvUr%W--MV*pa5-m&zu|Cs`9N0= zOE#^)bl0wpJND!^?Yel!o{c*;B^F}n>7Q$O8Z;TH1Gtu@C@A(w$VdC9xy>=aE52@*P>U#7G~r=ejR z=(ogN&w^nDBPE}dLIT6v(Q5cp{$Z-h879*BQ|hQXzSZaZKX;=2_fiW$mz45VAJlxD z%BC%t^J{a}K#^5)t$O-IKy8i)Yv~M^J%qChacVt!2J5r zv5;2B&dojR>k%rUc1OhXtC;Y*`m*b(uJPj6=88bpUtE^lU(_mzypo1d6b;!`DYW8N z;s~&T)96=?Xo91i9E8ju#c8RfaB6ZySy!cBr0OgkpkLj}u8uUbNTeP|jLku^BWebv z;A_ueI*{JEew&@jSRhXwG>b1itIzJBk0HyY*n=T$=kU{==FGDTMb{nH`aQ06Tc~u* z+9R}ncer>eZ`Mqo#Je~CgRmZQk;Gl*_9ts(lHwos@e}R$?WyZ<{rREwWh%Fke0Aw$ zeH;DhzU$=c7Un>YiuTb8G0w&Fa#VO;==~mMoxnq0ZI~uf7K(qft*E=L?$-gVf?Sx3 z(@Ofa--M6W5=u+^-0x5lvd6cqeOqbY&Qh^Lw^D9P(}(VdY<^WP52sbh7f8gGl{R4| z6zMa!qEL%Gb*I^G>&JBlu2+pr8#E625Enm1V2|qALH6iVYHe1L%PBYCE*JBBhBm8G z-c#>)zChKrqpZy;6;znKY_vHR&_z7+vK1jw&UUTj4=I%(z)@uu;xw#IuR zl$+cG`|xRcsB))kwuke8M+4%W-+*|i+7WJ(FI>Y)gI9b?6&s~-osKvgd~q67QLW`q zLJvkXvyI#t>6h&3>utISh(44cn@{w>EoF;oP@PwYeqw5Nw6r@Wga14=Fs?Q>CZR9D z@Palx)EX5uX55_{>)?~VcURP*J8>8C)c>007{8&CR+IV-g+xcYvxDr>N#A-yMat2k zy1!_pa>1-FuiDTXO3HicgJ!zt1u&k8gqNyb0Q>2V)bs2@QNgVRa9ruOQ0W-)LknPs z3#|!^#`O!!`CuYgiguX$f@l$Je=rf3!G0C3*{(k;B$@cSp~NMyR6sMsG8#LwvXLbJ zRs!MXsPQ6t<@Dyedg#^}et+sGKP9I&w8Z}M8(X7PGUUS5IznyJspOk*?Laf6f{C#X zsqA`V#G)U8pzj2lpsYH@vg>uk+ODC&cD;^R z>*+M!R%Trzo+o{J-1O&rF;8;jam$6Ob7WaViKK3OIN9d&xNe}j-EX_BN8RDZ6?tll zu{NY$TlW|Hy`CbubMxYwtWn&3wGIlxW$X!U!#ciwXp3IuhJK_W>FpR|NX@QgcnRgE z@A*2eCBv6rqoeaH{Vy8*J9+%>Pbo%-aT|a29gK=C=uE5uV~$;Fi%R4u+$9iA|V&y!7o`=wPODpjhcnH-22hv|UHQ$mxe zwTE_jX-8FZivmU&S`?H`)1n}Ae2a2qkKbL~*IO!frt2j4G9X)b!pUh<8by_NB(sB=gNZy zBGZ}-Hj+K3Qzi|gbPS517sEZbA)OS#ldem=m%X+^rH zTUQ;lAo=M=zL4~uQqBR(8r~h&bZhP!=+n3RX{!Xe29O7^>?xB>6_G;rHuEAJ`rt|$ zG9mC@IJFfa%y$^mTR1x|BXDbW^namAHb#y{xi1 zvm@ArCb=2US6vT&xMD}F-Qm=H*MY|MR?9&nsT;-YYb0<4-5C+I;oe=BrFTvDv637S zFLX@EWiP#tS6C-BW7XBg;ffuxu0SeDqaO)hi}VpdA9=ZB(r@H(y|5k)))pfqa=Fl1 z#E&Nx`)~^}nVNB9t5MU_Cvr_O9FaHEE#540U9M}UNqSPEr4RLdt;5oA_MB6zBhaNm z5`C*LpMKz{3>tc6Y_6-%jZ&gAIKp1SuQEJTdV$o}gm+u5&r>3LOsL-xawmG$nx_0! zYa^qvt|=(KdPl?^ZXRC3HzME#_4IaJ<&JptDF-yz1jW_$kT|tE0zJb?GQYJ%y9V5R zt`E2xQQr3Ym1lNBzKeq`i6i(muHgI1bWu4ic*+BGxqOqP-<4hZBypT3uXhnClJe*eKPt;g44Bh<51#`T?2fYqmcB zd-IO5)>U;aTx!U`!g{LBI7(<&=ws=(Jt9v$t>(s2H|8kKY2qxCnbJajANI#Op;Gg# zQZYUr;cs+IX-{3^_^-_38>Zug)mKJvvLo+Yt4LI2>&l3jvJ2g^F@jHrih}r@&BIfp z{2Md03*@OOjEUWc`tg$r75WM~_`>Lv;mwIL#k4`Opgv`^r$tC}O+$s=!yVOh*EE>C zw)OIYO}+=zcCXr9>P&xcfX|GEU9Ats{am?dEl#Iz4IM)yO$W*Bt&J5f;{45M#^YmED{8LLnR}x3e?YwTtH%o`LKJlv|q9p~3=c!jauYm;>`hL8l8z05Q zyiw`F)RU#1$!X>yJ4MgX(dpK@j?>QV@S*GMLt@xdtUQ-<+^N?tW!ksLOn>~EOSlJG zzvd{-kz$s~9BqX4nhTejXO#-x3LM$K_AqTe)Wdh(ywVu_iM6APqqF(>fSuevMjj^8_6Rf zu?UbR_dRRrs_w4TbhjiVfdr%OnbAnINi);4>&>f|Co|ve%zQcTWmZ=Wi&+fDP}mr^ z@Mj~;ZextW#(-H224q$vgD@bBgb=$Vz-;0(ViArL=f*klJ16da_vL#zpQiq)s(0cS zHzH1)IC1t)(!bOo{T+%sk6xHAI)~4=51_8sfCZn4HjUigLZ)eq7Q zloL9$OnHVrWs=7eYFI5_h)m!M%{wnaya-Op;2uSr+SZEep+f^`tcT3|<5$}1LA!pV zm74tCk7FLa_)4S!VOCf7rUrrcN$Sv!tjX{!g_h#TvnsReUA zytIgVP)xuko!Wx}cc=$N9W4ak+<(PCwLGO|^U0Aszz`5PJvS}m@L!5C6nA~qEtn{5 zDGy$uH#bgbr@jk~VXDMt?Pg3s`l+_hz)2G`7G>17R(D^adyVK_xT)IkS)0QC0SsDv z`P4e7zZmNwyF@7DdbM1()c4+g_Rt;D#mV$O?-ai=bD#(Z$*1N(5tb}(W)YFjmVW;o z@A%+UxlMm3AV@sb-~E@OolSoy3R}us@9H8ZzbBNtg-3#%&rkCS{#Fze_b}EC)05be zKJ%_aT2voiKACD%JbfjMYcxpQeEKRwCG(miBoWP){MNfa@WJ;?mD;qiM}ovtZOq?l zx3MR&CH+dj&%sZq&{HGy>JZ(U*3`-2XKmR<&?==0hQP6dXp0{9*`UVXeqw=I8m4PIyLfks3 zn4>loDhihZK{lxv(XRR?*v-DD7NAlc*U^4RZ=TT9Vtr&9&qD)=o?v`H(oipP-k4Wv zB-sQHf$Bm(w+l?_ovnJExu@hZ*kTHa>eO+U)Xk(GoeG%eC8^*Tx zi|;%gjYpRs3J+p7#Y4@PbbY4zqreU{{h8e~1qMmaw|4xbt>s(a6;dkS$U5qXX{I&+ z-5$^RnP&zXzAg7F33M@WZ(@`5^mh;1u|a>f-Gg8J=Kk=E25s-RrQ23(f0`_e_4qD)nN-Z_% zKVVz)g>R)Z52Lf0Tn3XPkVta_jhd6AMtsr?lcPp}t>HJ!<}X@O#iLPO;l)sS4*P$6eg$eTEae2HJ`t3vAG+-I9}gE=5$~N}4=oyqeuSda$&gn~K>XM0=MbTTV!{0_tBZ6O-tO*?ZW-4+Pir^_h45ZFP@uMaaF&JV2Me&g zk_-g@a5!~y197wMp5>_)2dO~dBflzs_2@3TK(#2QG2j&T;4f25!ull=_ zdZVM>gcds%*)HbF_O(zT?)zrD>S>zaQm))~(q|g{fTaNekI$|yuV{Vvi8V8_&|G;g zFK?9+6nbxb3`ozN&5<9pT^TXe;QFnhPs=6&o+pu5bFlBIFW>kerH8(rv$_0P3``Z>miJh` z5s%{*Vt}-toTu8GHI1tVZCS!>V%sk9ss696G4*p;>*ck>`OD7HZ-B z0(lp0Bv_2Uv>lplH9Uv_Qhsz1z5?u1uxOit>MpMBBcD)apT|cUL~k1d&LFxH60H8M z;v4Vb)BB6@j<$t{R+%#)K+=yd!auSPBoAquFq=hW+ef}lnSUN1X%xRLGoML(B`8?` z-9@0EE3s(Hb8UI^?hd5;&|JQevrb;|O*04QoR{qnA5mt$mOtd5Ng}sRyL7W`V?Xj< zAEI&>go8RWW*sljYF9KSjaBZ7nTudtoF6DM$PnT zFx-cZ**8f7{n>IJE!l^Mi z?WCJB3H&8qfJ6dv%d?gO6;V?R=WUHa{01I!;!N={l;IO+@%KU=SN%cJi6?$v=`itY z%qyQ?(aHC5+9O%-w0zJK>ZfzjQ^MbJbUNzK@GQkt?o>f-@pCHvAP5AtN^O6^BDS^t z=^}b@K)`Pa^;9&krg6{IPt0w_AW#s}RX-+?fPL}p*Yic%kwkCLpC)IleR@V`%-Lvf z{E}~wjk<3ik4NJ-p0*9I3?pW|4>ET8Q@xNLPWnggl4f%0NuyC29%rb(?9)_%Z8LNo zWH;mkpZi3MXqtD!erq|c=EK1mJX9rNlCgaT1t^`buX_r=e(TwMy=Hkj|=_em@em!B^= zbNzF=Oyh8|9?~`!*->B-3`G7AZ_GI9U(B`PqBL;ZFtDS%e1HRl{Y2Q*(xdy5!y%8w z+IY@jmF zODXxQ^98vkAwiXoJ`T?x4Nqxf$b#cu+pJ&*%Y$S=Xjcux-j}NL)|dXH{_vD{jmPV# zyKQ|jft>F3t3NCQF&+lX2ysAthvB`{UGXrr9vcQKsDyne;y6=|GWj|$7-brq?wXw9 zm@$|VRj2H1rx6)Kxt#;7A0~UkcO2rw@@5h^%KD@mgp`COJ<(H zqB4+pRftP@)dW_K+Ege*)@%YRqFwbf>qr;;m!?$8Bv1U;7Y0%L)l+G$93iiHj5ciO zkM4H8W3YU%Y_Mcc+2WxmF*f^c8YNAkG6Ur!o;2Umx1kvy2e!$D{Xdglb^GIQe$&(S!O4j3c6_ZoT1?!2GFgD4 zM<5U*Gi*zKWg*HD29F%Ws8c8bzbC&6-WY4}14;4sOb%C_i`%n6OKw-2P9AT9-0L!%tEsZdd@G+54tMiK3*{~IJ-rjiq@?${B0A;`KG$xC6?*uKDRX`CT$ zHnvZASN%1RcZDv?HwF@9TOKNNDM-AY0Hw%ks9Ykq0ci-G4V4uKSN#o;di`+NKOUVM zr_RN%g#cvVl3&Fy*@sglE58;>!0*Ygf;W`N{8|u!kE{OII%)*BK0hlnba87c3!r}W z{h<5?-8@0_8;2uvhJ#%^Qh@l|@n?}g)1NCKwChL;9QNbS!ojcr&ke@k4MTx6>mtfh(W^p7KI3#smnJ+26ZhI@O@xW2;Zn|awVR- zioYLNXtBp*u*d$PyvspPMAIuZ=0po`^2rH7-aC1z$eP)JyOdyq90C09=cU3g>X>wA zyT;!Sa-`_}N1&@(I}Gn=FyCxP)KBs~Rb38JZE8>%jyP!7%Hh)<-28SkbQC$MvgE%U ze@7W8l*;s0=rvC#muJ1J3%cIMOa(YNDjLvaR~3k9v#MfQf;Ng6xZG9+!X-+dv|2;0 z6iDjkcY{x^aO1RUhC2x^1v%CepsW?uNtDQKKpL`VorL1xs{a7$V~K8Mw`As|fyzMQ zRUt0rRY^mR+Ege*)+}j=Xji=%B|UUzEN4ln3?&ufR!MWzrb11ZG@@O#0-kU%8T3!- zMQZANdj1qRy`bCc%Ps$wvBM)REg;bCg{kaIrTKQ;&@9@}@SU%0qikt7eCug6U#l^~ z_gwXbP}8fA+@PW3=36jBG03{1Af@)|7EA-XgV-o}3I*9Mn3{*H{wzf3{d$?db%?_J zazfDOPF^bZ&cdDQnQ{d1yPuZ|KSSHBXUdUMXW#YaH@)eTZ``|Ag)D9I$n1oDgN}5y-x$OT>yW50?HXx&rso`Y( zkmBH~{|nm98r2ug>zJ87XEt>?NbWr%f=by{W@DjuGqfRpme~LoSN$}ITFZme;e};( z9@P3mkbNzZmx8N7ZGqd;I78%YP@C|s`eooJFHjhx?XJDcQE&2^d%ZV#az^I|#=}9= z%~Ley;s=tZ;6Tf-m_pppfbRR;D>R@f4B%^DJ%w1lW|-{(W_wc@g|E8mKi31*y8}H( zbx3#4>!p^+^H{;68D=A447+eJ zjK9b4x$4`Y`7Zk*e53RGLa3;F+(b()X3n4RuKLR$@7m;abS&9k7A8Zu z3FRR5rUsRQ>u_VBcQbS}YO16>+-NSYdN+idRl13l9!s-q&Ph@z2KhG>q!eEzNd|TY zv4-$jlB9XK>PNw&cX&Y3Hjlx!1S-&EABw~wvR+tizXEdLbQg+*lc8R={R&`#qpO|+ zA6uau&{%tuSwk)bS=JMvtRB@7m&k2E8q#MSvEtyWyHGcGd6j_{`}>FOgBFfr7BT2_ z-=YvRXBDQVnk*FXePB@tU&8>|RFj34T6_lVu~lbW=k$IJ^UtCM*NdV7DR)(Y2$w0X zCM*;&aJj7tgo~kKHesPaqS+Dn=Q>Sz`|Qb_iRb=82tXP?tDaz`qpJB~p#=P%{Mw>Q zHa{!~(c?b}kuZ!rHcqdaPVP`s1$h>TAG@R;j^JSZS0!6r=14(ki=w z-9hYh*)J0*Psc5Zv!h=+@7P>$ucs5rdTX zEea7gQ(EO;77F-2uqcGDVTLUKve06WKM$daE+IHSwCA(JWH1+lY#RzvwrbTS1UkU( zAlA?%>k>2%SN+u5OViGkb(&wHbJ+HBEoWImAaZ=yCumd3mi#I<&FV^JSwac;J^5Ae zh9+5-C5XVsRlhm-WySK`rafo0JCzS4)jyR+%shAMrftZYLx(JWR_9j;s z7j*Q(nG@#xoLUP;O!*@+{mx%mqx)dVhAq>lp&XRn)S$AV==lr-y_=y8W99Q1nv1JG zEpabsKhgngmhhHSIC` zzA;Ik-sH-hSLTGG!rMWG_2H#EGhe|VErJKu1fa+kz)D?oPh;Wta(t}Ww1koOG{A=r zbAle5)J$k!%(!=Mrb0ZKmPkOCo%Fl-Ulw86p0$6+&j62GB@aU*cCYxm-_BBt9C*3v zmiF2$UxSxt7rn!wxi-W8qG$q>e)WrW^xL_ly`Jurdf)TWxtV8kZU$7s=mVM&JD%>I zt-u@|PZJ8ezpMTD`4GOl_T)UCY=+1uUe)%yL%9hpZ1(Dh%($bngyz6+&59{io zO9{LVY_rDBoyE%uMcpM(*JqZLN)72rs>XWYJSL+9Wp8JN4Xu?kv(Q>I0C2mP6$-c5 zK2s#x!WI1t7`VFXi^IHI$lCUJSty+fvZ|LA&gjH^e=T^jvLnCPm8{AGM0yQuFGm%yx`^w1FmjJ zYmvP45Vhb|;AmuBf5!F*wt4iFgM_E8T{0cd<5!v};ZX?f)w84yc}gS!*=3GPprr;J zkn1*V^SG6L-qt41Q!-wz`U$$9eg0xh7g+N7Zf-bJa%}F(n;}xoze>C6y7vd4GFmp{ zEL8{u{wFou521a0NZEHbpycqPiG$ ze}3j@qnH_wc!noZfKuD>XVHi4kaSTqJdqSQ?8l#lL)1KR;lLVyKZp=9#=nrj%GTJS zS4Kw{lit`}I6LRyfdf#XOi(0pWty=}q1J&MINgOJ;S@DV8fG)<023{LE@*i_oJ^N_ zbRW8SRf0c~1qtTfKo9ah-#{diXExaLU23pF0}!~swSh>u8+N(lzYu?qcR*xQL1Llr zsUr%z!3IrmQK&ex*8|w8BSm1)ufC#=BBA-O(^)*eTFkO3$8I42HMitf(JQkWN1b3b zp#=P%{3`gUfAW`XhCvWwh%bcZy?Wfgq}$IdEqL`X6oU*K3L* zqN0FM0)9_^6}+KH76k+$db|f}Woa;KKIBMc@by(8E*lWnA1iZ^qc#=F5SP2%_bHW$QwL6`2F*r;9k{0g=~Kgt3`#w$4!q!$I&jS?>X3Y@sRK_OUG)#3J~sTdQts3A z_%PRS)@6tONhmp8nZWFyk0bOaxq`JP_!P9c=JWjH1ic`Z$6FgWWL13Reu^X z?cJl%)p$tG24STUaKoF6$E1KoaSJ*E3iqybL9?fh6JrPgngp-E!2- za=kf?Te9W)oNdtjq0wN)5q?*2gwQCTm2oU{q|3?M_W!WtO#os4jo@c-tbXVQV|PZ^ zgIH2?vk}IT66|}oC>9fE)x{y7e~V*un`2Zx77ItC(sppfQwSsV_7}iMx7e!9-3hO_ zDH_mtR~3k4tXJyZ*lzq=ecvc|T)^eF!Nt%o+X|{cqS-Ii!E4=*(T3+oBdaz!`x1fx z?^j<2Zm~MJqT$113mrDob1^8gp&(`KQDdJ#2iP6N8v1AB2hD@}RFvI4roCWh_rRIY?cUPB#RCMJ=0+rRKvIRi9>KEw4fH{@esxc`!)HCQ&jGo?PMIj@@ZAIu_8&xF_kFg#9>TsJ ziot3;Ynj$II69?>rP`^1-BF(-gB!JG)D8#4n=zAR#p^S(tP@@9H-{NUdXEEMp4U{MHP!w%U=0t+qnIEMP> z{;;K;`Ti)aJcfzX@S8}JX{mhGz;b_>+NhyP*3L8!SDggeLk4+=;@Oz;I@-W8c+L5d zM$pcq|HW;K|{WBdj*9U#Na<+G5u6%HQAp`>dLmK`w;@BwWv$XxzUpG8$WW~2T zbVAFAza1Pq=DRdU-7(*dl!0SC){6OVEN-Z2Bj1e>;287WSS%ck`ftd0BQ$V!)qe@v zuhYEA`Q`A`?A*B8ga9Pll3zuj%$e1soKOOOPkt4=p-?s{CkWBwt*FOfG#(E|?uZ#? z!{gw7H37)61+cOMQF;g^;Aw_Leb(*(Gd%<$dh|e#knYt-`kKz8rF2gbf?OfpQ>9|( zte*08Pa%L`NcU8!@H6VoO7|2}^u7;W|HcVr=%eFt-(274NxVn_l5NMIMWjqcHHjBV zfx~|MSvVLf37*rM37~_xOV5{w!woNX8e7 zdaw3q?VUz45mGw1>U9DgU}+?yv4&l;UPtqA)z^w^vmmR7lZ(@#nb5QBp%}iup&+fY z8`vGhPM2NtaMd4`Q5egwC++nSib0MI1!=7h1G|G*L;lQ{G!M$QC0wxV>t~}!&U{u< z_N)s5$iF4OiWRe(P~l!E0lz1|3f|Bn3-^MMI{0;<$C}@$Nf#L~zbrcND7P*LDK<5z ztOhm8wa~j6+E5{z69+D?8bhnzy}0t@+0ps2{mduT2U``%K%ZM!CbrG$MosD>J@9%4 z%Y>JqWHzabIH|4g1zm4VMn|+C|HQvxI66I~+vJUU`}WU&)91a(|9Q%0EFd86-J)0| z&a_uKV*vq<&lbhP(Xc_5GZs)W!;e8Q+@SZv&qr6Mr$a;ia7Rj{0NJ+V&mvQ%rRu9A zDR9`2KMMy#tE{h%5Ygsc5C)&2mA1PC*o(j0aIwlafmK$IXxj1A92RnC9g0D^4FxHql1elT><(h1$Y~lX z>l`!>y37ok>FT5Qjx7|U>~z^R4_AF2bO@^_v^{rVUO>Wj55*|Eg0#wR zV5w7%pCjya*)x9JF`|Rbqvpi6E(fVMHK-I^CAJoN zH$z7;llWO;3tU|F4d7R|>83V%`>sa^V$QBEX-B=S49A6%6!dzoEEhL3gv{D-i4_m| z0g#toAs*ACN2h+PkTch5*?vF;QqqCHoIzO!svQ71aJmacEvjbi0AQl!-vTXTwnjOc zPt`)wW;G1R)_@vhjoBKIh|F0OFtRm(0q2-*0f}%nD!w6G1Gre_Z-Z5~C3lR?H;WP+ zk2MiUx~EG-z)W@a^AG?vHSoEkON5W1XtwyIQKH}H%aJJ_?yofNUFOV!OF@$L1Sox2 zWfmopw$92nX+j#pXPJfK;HvL}7)TRdv75{4qn_~c#UM9LctuDlxaw5{9bjp~OJfbu zvm9FUaMj-fkJ_LsTOZLGHhY^^n2!|-kYXEwr4nk47fFG`e*C$`g|abTgal5m`Vr_o z_b&Ud(Xr#!SqhdbqXW5aXN4kN)=<>h;|u`Y?q!9-&8W8Q>~RJZjsFt(-u7vjt)zSL zK4Y%!urFyMkZwbmEFx%>==Y`IpKlqymDy$Oimx#rz7=Fx zsYy#$6o#USg3f|T;A_HSS*0f?U? zY?LphKUw?NJY4k$p~WmebeHB~5zaS#A;`TJ$xEqKzFFY5G|rGX%Qq9=Ro?@)-jz;7 z86oqHFb!Ex_GsPjRouzkGFX(_=xNAiUNKEk;@EYPPeU3!UG=G;Ymifps88Ei$|15o zn67C<#r3P73|;I7FVPJeq6G*1NC8zJUOKu(Cb6f{~-fKnBe z5S7SnKpMhl36bJJcfo;=Z9e2Hvzo@~94HbA$iI_*mu@8MjySl5V4i4!$F20c@G#WL zR?!kB@N(7Pg22NQrB~+AoP)fdsJz0#IZu?}!#{6kMf01#U~@43V?+C*fUn2jtzP%TUjHpK4@&iq}|t(3qLd8IJ?WPY0w6y{pyFI zq3s+EY45dv%BSfqV|Fy40#)~+NVLrw9m^B~B9H^8yHF&Y3@^xL$p9v%`#H6iX{*rw zfZww9m-#e5Z_ZVl6N;2?>C^The``BEiJP%0orFVPP&r2czx#PMKh`0T z(jiqIWnled9SZxh9CS^6c$P(}1AY zf7=zlO%c}I6rsQEY2e%Qzx*3&lCICTFRbBt0xpH`c7MH!`FDFwl1XQMBr(XJ-uKCR zPL^Li=TrO061}S0=!sMY%Fg;sEQ_=emK+DZSupBQFGR5WOlRw%oFqyXSH zT_fiY8Z~~FlO#$?ure4sXv?pfVBzji*)w#aTw5r zasaKQO$cU>t+zaI#ja0Y?_cyE+qVmG+AIX{o#m!Oi>$ma1oAbySUK*F$OL0u>T&?B z`w6wCNAp-TAqX&6eMy*K53>f#zDu!cltuJ~0oJd6K&IunrSG@2^kYZ2G4)U5B!@MD zAvC&uU+0pnP(5-jh@}YIKnTEevtJr1Q!RbI@~ZJZFK*|G2EMxJyF7yhPbZ^)De| zWfpt!ji@5GX*PyWA%O51?>^vIKmRpnwKVaz2fRWoi$A~3OVs_f z3MQZRdAL|<^;22Rl?HEV)v)WnX(tBCUb3-1&ifHEI&hr3*5hjyCtgmrh=JWrJWV0i z(y!WB67n!n6M(X4GU@8fhen^|A`h&4iX z@ej<*_%v4yU(EY7HM9Aj3aJ^*`|O&Q2i^~{T$Vd5?>0aQp0lWzKWn*e`VFG`GuL}c zuLjTZ$|E;Wd8p?)k5My&>pc?0&{3_n&la1{^ooy;M8B9 z{h@XK_H~~4WgzXsy5=K|wZQW}*H^Q-iANc0){A)by=FDfYic!%#Xa*}Gpt`Op87Zx z?+pvjya6r5*hM^>jdDRew<5oi3ur;EdqHrXtDcg8@WP2r4lKVyXl8qbjvoV_4uwzA z2^rtDwLGZGo2q~c7|glRXZg`tzj+zL7sA(8-{z-6-$M!B?!Cb&z4=2!MZc$wuGHam zwpa|P_4kLj)=eDGo+^TXbk#4EB{rUbt{0HZ4RrO*pRdzv?r%K36K1NdNoY-{C!&}7 z56vyAyxoP$K$qqIz~0cxGw8k$$XEO?=Jps~;owpLEcFk~1>qpfA+G4I(0rr4yDf0{ zrNDi;FE0jW(+fd*^)MlK0V|%oMS5SF@u$lMtfn0JQz4MA^y!xuE&3q8FD(Hr0ucZO zq6eEUy<_<2DXj0X_bD3q+O8CY1Me1|$23R=EN)BLsiS+ECMUxqbA^)k(v_sZYE#Nb z<{dcUs7kHvXbjLh0v*$KtQIji;2N~RESmJOEeM#DXaKxCaKq*WLSG2v^sr5H)6Cl% zEpFLOtzO)kpli@<|M83CzUdac{#KWRK&#E^GcTluVt}kPE*!Cw!)^QA>XzKtyfZXx zzZ)L`_a$0jwj47MKgRIAOvGk$V+;90;Jre>oV{Ri50d**1RR}?Y^PuVmjYm$f1*Y0 zM-9iidA>pu0etzW;a+jp#~0@0_FFGC`3R%y((%A_4mK^70q?crF}+A=Z){_4s>=aH z7cnxZ`EdvC{ecP?EDz86=2lJC$QJ@RP2C+0&*?Qut4`~Q(?9^Q75{Rq>5^QnT$%&u zQg!PiHGoP1usWQOCCtFU%_lDciTEa zVV`$`YxHW#@a)QTUyc=ZIec-AqFFmAlmlozOlzMuZ(WXIOO<3Am8*uBzlXC8iMs1HhCfe=my;pPfwy9+MN&EE>ZxHj%;7q zX)#9=E(O5yWO!_bb=Juj0{Iek80&hFw_IO*#^TNu#-+fY z09WVc&7n1bN&&FVfN2StCJJy@{TA8U%;WXjVHj?X*AHpb$FKLj@$^>nXgyKsvHCVW z*h%vZJ$}~CG6W}#nh4a}{wvlA)FHeo9$G3X}+4p+G`?!(}Ni2Juigyb@pf>0N572qA_@_M_IVNy_Wk}MFU{E z_J1^Sq&J=E8Xh)Vorj(VEiikg-hf3nW1d~mY3XKmeC3fz4GedLq|u)^0S78za7T*R zI?eL1dIl{pyCnp4G_#o%uZId`EMnQ(JQ zmPi1)LSqm6H8}njmjd89IZB(J91M0dKh2j`H6noVgGfd*ukxB<3v0fGuLT3lSB9-> zaw!1r5IvnOkeX_&5q2_z7MRiHq*IzAyF5^33?{vYqY)ihZ;FC}fu;fmek0A)2F$@Q zCj>UTR63>A@$4Lu0gGEyMq9m3`VZ+4NTWJo$5c)UjCgBNTchQ`Oka!b5#VYYPoosv zEfI(MaSo;fCOcHv-rl8N5*0F_^z&?V>6%~GWd=Y64DLfwZ*)ZJ(k1q0W8@nI8t8%P z7M(+&NB3ALtKZ_@N6`TIIls6f?PjXaae!z<0At=tA&eXAEN)!@N?>$fe{YIAv&|al zf$1}vD7u_wJ?YG8OzlO*@CIPxN!O%5#Y_~_9S58$0crlW9BGiZU?gRnp*W}aHp z9Isn2z`R~Y73Ph#&5|P1vX#>1+1fZ$YMec?5dl)(N3zyhXGdzF2d2*=QG3nvy>U$d zV7oP?2jVuZXaKzbN_bK8<&Xou;(eo7jpVv82!Yc^O<=R&kgX{IyIYsM!)L`d18)5V z8F1OIi{EwLz=NZHMg$yo>cS6Eh1+6qPnuH&9?K2>mhl z$s14WBc;~TZJ^Kt!OheD6UvF2PSJ_S# z5XkS#N2$x54E%GB&8lz+YM=+EOI6>Tz~D(FDg)xJ)Bf4Rmann_6-^GNw{@FEuECK8 zzzaG9OuO{xT?ny@WqQuRfC}W;rLaj)N6=h4bFnyZR*YnU1zlMQlQ?as{`_TX^x9DC zsXw97ZDWnj=CxkLR+ocPD`!m*9vE^d0JbNtKOUTTlzm?i2X{>b@a3k@g~>(YDhB&0 zV6e7;LWe8qxaYKhlBl%NemZqer`O(7s~W>Gu;@EhICa|!@5#fyb=lk9?&V4Q%5t(v~WnH$iu4v&8_=~ z3!8-JyZ72afxWB#l3a4ZyKxre@qB5aZVz0$gw_`O`-8<$<~ zVe@s>UkMR8+!V0LY_ebdzRulb=#x3KXvw=1mG-4o${lFwys_PcVlX2^>{ZIJmO~t~ zh01ke^ZJRi7ZZ6EMF`+aYv-eLe>a0AUFaV}Ie=CgKg5X-mj-~Vp2~QO-S!%>o$nT^ zyMxj(Ib-7ey$8X8Kv2G0C}9mJxcuJ3^`s*~Uk)kix zKCxLpIM%oCCE;;mA^|Av&92{0yP~wssyEKXfeIMVnE+r$rcd;fUOOWdhXPY&|GPCIe_Sbb2=aQctGO>OG*U9QbX;eDPX6g=6)Ukq9cQ-*|^joe%jdZa|q8 zUc0eOz&Q$+0${B_X@sz~>v8~X4n`MGns0qzlO+;>uDG*{OLGS#3&^Da*yNw+n5TW= zK7T8b0CdScG5dKQ`%oDWZynKsYwz&%qTzX6j(v&-z?;6{Azg26Z~J2*6A3_Vu^q4ZYeE39 z?Rr7I(Iq+Y)kFYa8=bq}i5;lend@=@Ez^%?K;#PWg+RXHe`&9PNP$4w!`tj$Tyv2E zfXnm}LbHeX!h*ax&meN_SZR~t@X9|5Ivm($V3TVi_}YpeMw#a0_ROUK*yNuY4aiL; zkpOh-y|j1D9e#jL={R~tw^(Q7{2gfm-c`R?(r@l-+a@><-6OI@>jY;_qC@qj>~eJG zjee|EA_1*-)b>Uj%_AG20tWX7l<|#eFClIFJM5jgv)<^O7JW=Xc%`R-9+>VPhJ{_v zi0oknC^k2e0SmfJ-IRgDFO>oDI{nb2*R@SY=YSyu0DC^}^HMv*SYp#BdGe(h0;~@r z9WA4$ZD-BQ;XR3-0Rr~V9n)?Y8VK_aT8?*T-r=! z)g4a&W zB9h<4vbzWYz@G8H`Yp>-4bJ0UlNuP_r(0gb;_9SZ+iRc)rVlR0e#b~>=U~&fV1W5; zz2k-2R72zD?WiRwunIT5DF2{AiRo=TRqdH+XY$0rjxVy|OK5vXG>Ep(0kPvUD}Ntt zO$cnZr?CjjjZN^q8cv(>DWuw|8E*v1=s*U4&quRuV_(nK2jKqY=#oxfwFhywK~9*l z=^6trGeTf<7dH?!Ys3|75d%Bf($c|W^z9HCIk4Qjn%?fXwlX?kvRQA)d4=nvNGmuL z0STa2-aj7En@et7067jxX~4MZTRUeWv{#=t>$heiHHpqd?mirz_h~RZptOvRP5Oz0 z3v;~1b!HKRb~{t~uz7$A7~HMj76l3`;)ftXkF3%K0YEI4`!z6M(st)PW#}|9-E!wW z6KJd5_QBTwN>RKe7v`u~l7hlCb5Da~&&$%1+kT_~;KAV)1tq!{opy}yCCC04+2h{e zgwB(h{TwG8Z6IL38Q3)m#wltd0qAoifE!=>4byZEku;;lJ#QvwF7I%z(ue@Y4;sjt z#vIEfy^-fmYqzZ3}G-!d@epug4)nd66cLzBk zu-U9VyMJy*0sROEhup&E-hjIgdvm3QWbKUO8UJxSG}bS+*q1%kp5G)K{Hy^8HhF6UQHyEr_%B409W*cy z3w@n<2G5DN?JxK9vctRWb=|N2yxxw}^_WV(dQi8}^d|N0<(h1tVstRM8)3^G!Iw(dyw64=WlL(z7XVI zi{z!$JoXDUQQ)>T?&WeTE&D?J-S1+ozw4?|?UHQj?QkE4-)?NDGi*9d6vXdWp8~bl z>48w%gJVAx$CG_R0P1haui`+NGqM`BGu9sf{9cZaDyPchiK+Pefgl1OdM;81E^LpD zFqm$8qBK%~B-`=l231s4i=@Dzp3sm_>+UKklSQ?RldHZ1YUS<;ZBX_@`-kq3-cdhp z3?1C)En<-HzD3cXE~g@)<}4KOePB@t-&k|W2>aNVTj;>wRX-|w_oXsOe7%XPWoL$%amph4@xIm;BhPcE<6nN*n8sd z2MHrOeIxWK+u>#E9-a5HCpyA5B6m)wIRg>Mv{%5(RDt`rpqZuyK6i9Ui*_8fl6D#; z`b|K;SZDU(GpI9prukmQfhpEmdhU68on<^?oh2So`qXDM)S2*d)g#b}UQ0Yap~@H@ z4*SQWbNjMG_NSZ>ZJw8k-7_s!Pmv>l-~GH)_!$~!Jw=X`y8I^4d);q6@MqPSaTa?y zj}ror%O7+}u+l$O9w(H5_q)yjZ|IZdae@#%ej{W)cP{BQqdwK&V}Czr@L@|O&Zi7o zknWyAAcoH>k{9^uhFD4fT%T{@YN*dsB=PqH11y&K9Bd+(bNU&&>Z)->%u68!CCXS7i=3JFvW&rd3kYze zCnhb?>@f@H8qp#L1yr>E0A>Pp^KH1}nf*4AfOI?Q_Xb6k-zHk%L5toTJ>>JYYFV$6 zFrw4{0yVlkxwPL^2y<;z2r|%fR5f|o@>u^+Rh|lPTN)P)pITcsIgs$K`n@3UofGN> z>Gqn@m@e(@osIk?7+W;!7`UYvv>??zgP@^$R1`Hp!1Z~9K)4#JXHnDu2kx%=G(?yPF^aaW(`s0133ct`B%G3v20(>@_`&FdjFlEcgWB7 zC!9suJ13HX%D1qr!GLOj zhxEYf87vcChTmiZJj99V-UTkRJs6!{ot;w;+Hh2?lG`_oD6tO2M1EyJsfM@;(@52N0)0G;!4)%U=l ze5oPx<%Je11Iw-oaal3El`TZ)9JQ%XhQOS-#NQ7h+ExEVH_X++$%yVNwi-}a_2=Rs zZom3>P;qPh!)iqP)huv0*A~h_*-Z^96=t!6!ZjhFX-h}?r0sv4$0Wspi>p2WO>6Zv zy47`Po}gguLorCOp&+IBYJtGO?jSY_nR--q*ZBK^=HaR@`Jy+y>635NBi_x|PJCj~ z8~4o{7P!?U5~;wy0jbdvjpeM$V=tvLP<&O0ORbfc=BQ1Dih3n|GcS#3SN&3`sGW!X zOFnu-SIgK7I?M^EK>B?sk^r3r3zet?IdHlQMZ(F@Elbn^7C5@nk^Xe0fjO(n z4XQ2&dAx-qsH_{+pe*!mhBoxb8WeDG)tf*Af6oz(r+R#db5b87vs{ehsYMLB`8^9Z zyHZiLP+*~e?*ogXr7E+90t+oQ`sENJH&3n}QpVe~M8K^yk${Xl>35MVb63^3C0gKd zEB!7!UM|=8vc4^0M5mX6P9c@scx_CFFPqj?ITS>Sz@T3Zz$nkiJy^qYx(`b(GqSvd zXRJ+XQ1e-nL^RH^77;ru?Nrbau%WTHlgo|0f1FW*_t!5d4$8^3BBwLH*Wm8aN zx&pVQafSlfm@eU6^`}7IwU!+O9IWbcka|;tO2JjIve3I3+7LerR=~woe;<;x-LUE@ z6M&ZO*&0X&`rN`Yag5C6)F1-sf!8xwCcF$Kvq1#n0#8@{7tn$3%WCDhKib}~@q+_O zP6#sI$xB7bOk*|f%n`uveqJj446U0u14b&l<&WJbpVxbc{g!&qrEc48e z82HEMg)7=*mUY%|rYxE=7Q+ z|0>H84B%1#Y}FSVHrauXJSZ9fFHah(Domf|6-zI5wfKQA1n!&OvqQaE3bEZ12|!o; zjk)G!RBQ$=1;D1KpYp9l0?>`i6FL`uGCDQaJvfhx6ad_hKhv^FQ$2H6k`o3tuKKmo zHF3LHrlx8>w#l{O3*qx?k-W?w*tQ`o7dXGP7(PQdBRpk^Pr}m}Cv+**Z}ZLkfJ!>W zqi~e>ji(O+U}`9;>FW)j|C5COV585t%f97JY$IQYHj3n}HY#vi8aLfW3Gb>4>2_J( zXXv0Z-$mV6yJo0FSzPQ zpcYq8kNan5W)co8T5evkph(mx+G-gz_{KcovfnwJN7r~yU9fkF^cN4+U6<|4TD?(K>Jl8E`5MI>)Li1YEz-2O_Hs+6~x~U;x}FOdmx@K z_Z!abasT5BLDscMUJ9%F=mNK;aZ#)!Zq`R9ysLh>cq@0(bp=fyG{j2*pMH7AI*o`h zT&TDv_a2_o;@lZMH`yF7%)0ARZ()Twk>3q>+uu|<~(wTaG+ zThRb`jh0}W&N1^uP+bn7gV*{)y6>R(kRBd)vrvluT#!a_u!nx>j2!FK$aLqI7$clTj95=nsrT{xsa zZMz6>#)t|YL`dM|s{d5{g!}WA$21jf-n_(vYAyvC))S!AKn>WIJoMQAoVicDrojA+-!Xz$h;QGOOaJTEO1*IX9%1H#DsU%dtkPl z9-g7sS^QZ)e}l8t33K8KRGu-p5CT-c}1I0|toNW7i^rO2uyD3RNMG=$EgkmBH~hamO3q}P_E z*;|AFWZ#lsrM8>BMJNHkC%+2bP$KgdK?FXoTCY1ao_6azMxpxii<$nl;jUwp1gYmz z9awPrsBMPQ7lP(%k-V&Q<);O1OXCb{Wqz9QuKK6Y^>-T0^s8SFO0EqjjWH!mwS{s} zbyI^%ZBk1ya*Q za>5xRXVsMOuKEF)Jz$USy!*tRI={~8AJBZG^X?N3(&Lb8b{;d%($82I8+?&59U^R= zq>B_#88dbv*PO7KJ29GlXxzA(%Wd&+$mM7XH$F07_h$F^g+RU}t2bFf%@ZVXv8J92 zooj_|#_&0Nt}p$@Y#rRpz4^5w&Vt9}#6e(k8f9fQ3jk6H4mrhy_Uc;J5gSvVM~WYa(q5;(c)3qYHh zTk?8p`eik!?7xfw+kiAA&$55T!BroFF?~5nE!j)vhxXb@p8S-P)WWV*v2Bt%=UYxv zE53#SrcF{u{;v9OV9ZIg&a-!|n;KLqs?uDmW8TfshB{fA3tU`v0vasO*3Yj+@=|b> z<`((Emc|((XK8N2)AT8L;4Bm0ap^V9m6uYh2&N~^YwV7iXD6&7c^1Jm4_E!UVCyi6 zdULB({p!2xN|n9nU)6Q5PS5k1~Xg4%`nX9 zI;WBERSfNZ?v2T3KYmz$XOZ{h1)b9^EtV^C+)gBt`7m_$+p&V~;iQ)w{LhjDUb2f6 z@V)s?y79N?yHb%^%zFt)U6He25zAk{{_S}TpXaJ5X0WK6#F*JEHygX^XG?Ap1feUe zFD_}j9UUioOt+YhPVM{lIP*4W!L#le1d`2X;{kOUj{yR%&l?27)kqey%XkcM;O?sL zmaK;@u|k^^F3mHyJnrXGkZU~w%9KZq7E0tcAPpU|(SqXOs(%rtBtyJhr5iUImMnRw zABuz6bn+S$UiNIQV8sJmUkK{bGvQtCjVf?k8fWO5rKJh)sy{BXum9SoE}hTXoc5o% zF)b!^J!@0b*K@8}v*2P3rK4*+n z1|lvU+RY>oXRT!8ke>gedr53daIYLG;41>O?Vy2~83brsK?5@*Y{VP9tsua_NCBcQ zNg&8_jxZ6O8DyD=&3(WeWqcv`bD{8PTl z&wKO|z_~MbMe|k{n;cj!4;!2)gwNcIW{kEo_eQhy1a$-2QUzB+G?8ZSU>Wt*2}^^=(|IWj1JKy9or=N!e~95Uxh{)RgTe zaNzE$zuu7d3#Hu{ZA)aWvb03aY&J_|TuVzNuGg>xasT$0-t>8I@_#thbJb4*lg!vi z)?%9~wd6R&Bc6kzacyawp+}YvC%mivRao8#ssEyT%6|3t(Hyh&Z)=gf)f}D*{C!K~ zrkf+-UG?)p-kH+0Rmtf}VL9;$bw@-X>!v~(qH++9zaK=jtNuHQLbDBI!hxgi1DTp$ z4`epz#Tb>TX!qNCCPoKWw{Xz!w7f#^G>09GsjwGp`O=s89fKrEzhGhuyGi zf@A+$ebo&5u2aSS@r91O1A7vLyB;X#iT|pX}gT4kW8<25xfLqV%%zyqTi}>5~ z-y_Cs=6i)MNRnS5Wm%q^XHFQBR5(^qs|+v5u;>i6U0^;8e09XA4$cEvk%O$C8_ zn!r+p(=vk=yy+ehoY$9&`#V2sF)e;P=(Wj#<(-cF!YHWxHZXge!OTCbQ6CZS(Xr(# zH|fz?pc2`?UoskQ zesL$gnERIi$7fyb@%yYQIa10{^;bQ*LD>Gix*qy6g7NDpO0PHFSEKrP7-UW$2%$r-F9XnO1y}Q)Tp2DfH@{4{*xkwle8IHKGbY`}f@u zt!(*cmU@0Vuijp51rg4-EMoDDFR2a04fXl1eZx6T7rpWHxsJO%n3~1!SAPLqM`n2K zlr`kmGV2WOVmnSXOS8z5JGCn>k^+bQ__J^@9E*c}{QV$8#CosWv7%)PPuiwrhjrQ# zV@1j|Glh&;k@1MJBJqf#H)gB3Jg&Mge$9W)svKK7rmqHP$JgmS5%0XC<&?quQF?2!UKyB&X)aMj$L zA}Mg#k3S0sqx!Pu6d|I`--PfTlOsERLvoZ)IY{8Cp`{NR0Waeb176}`sFY1Pr0;@0kcNe`JspaJt8PK7uctDmUvqIj8lTbBN1c#NZS#R#xA;wdhl0+JkI$@@##NI@ zK;O;d@#yNJ9hyi0x-;bSo&(p2=J*Iyz+ju^G`!6Gik&4mFXd^X4E|ylxFP~LJ=9DO zo6}{tlM6by+N=ae34<1xZJ!1kPEkb>1-Pp|A3S~TCBl7JJ(S>=g-=!~v{fJnmF_~3 za57p%b`t==M9Y=>nVZmYcUorbS1&@WiqoTZcE(OFQ>>B_Ny3?a7dQyr75M{OGFtq!*wd3T3Z(X0w=~gUlZ9 zl!?sz!8t1$a2@4@P)G6Av9>Ncz9DTxTf9pi2+O=Hezk2RRDU%a#q8%#pEv5A6N2#D z^o-KrHUIQr!z+9oNHr0_XL&EIuCVLBU&j$(aZd^{yVb+V#i@O<2ydSZ#i;XPET;}bb}874Cv6jgZ~uvi(7F2Ba~7+&t?QUKiI z1*`aY0uAyl=iw!af)W@lU-n-!9gmxxF9h;E|H~9*c}SDd0h5)>(M8XE(}cCo(>zoQC5`eBYI|{d5!$EFeoew{K<$433#}8-<`H^WLp71D1@#~M;gH0&T zA+5pYkqS2Sq(Ytl@w`wyr#yXxIB_%s{cOh>Xir>EK>zBH7*?}Qc%S)QA)P0@nY#Yo z55bJdTpLqq-43_2mjiijEnyg=h@o<5F09~U3}LeCZkT9# z;DuAqx*R|o{A1InSf@wUTkf zQ%-5WP*&%Z=O>`dS|l$`!G;WdvZn&vmc|)Xnr)d*cvt;JsLWZOy<=0YlY7+j1Et7n zJ%GtT=50V4LTBp%ii4}Z6s_F(=|PrxEs~caD=X_K3mLbiafZN|l@s1oZRyciyWDT$XXu(erTn<=ya7DkHZ6X$YNpx8mTczYS6IdM}%@6gz&VNP&EOM+=iL}q#=4%6N-bY{tfv1>`#TU1Y7cen8b;! zt*SU9lu!eE@~hwtC9*gp2#GVR;8BZsW{Wj@P`tt=A_f(CW?_&b3ok^6h*}^)Fic3~Yn`{k-X0}j>wNo4-|T6{sd zYy&!g#_qjNn6@;|5IGO{5$~!mhGu)+7wcI1+v+L1mfFl_`V>g&@hRAFo=4|cuDkFa zU5jMdHVS}=Y`+KWwJ~;QegBr6xzxw$T%-X1r|v@o%j)K!6t{z^F>A`olQ8ov}Gc!T}l5EMZV%p~LCzOESlV1gID3XOgL5Lo21U=T`c?#XMQ>oG@abpBHor2AchOzkao% z8O-)JWxx8BAuxxp&-VIazxo!aj+=YolB?`1>qg)FfTrCkJnL7fqu;g)DOK{l(Ds(- zCTFYJ@$5L2fm5ssaTzz%5Hd&6LoVSHTGZ69Wkbk_cGdTXBpaQl`;(Ua>ic!`yx!BD z{pu~U^_(kebwabmV{;CfXRAXoSZzZ=O2hGtaR|5ub_cPsrjz-&DaYRrG!Iw(TF6Z1 zds>#&e+HkOZ3zv0wNH`@apH@=9NO4Mob|9gl07U^fQ7f?&mvG3?^LfANr6L}K@tv8 z^knL+SIaoLY85e+$uV%WsUMsku1) zoFx}Lz*96J#jYw46J~y;)}a+KaJj7tgp1)@S$3*GQWJ;JmT4QxmAxaa-iAV@Ajf(F zl$D_dx=aShZ9p2bX9Hcu!Bt-i^+D5s{fp074pdJAQYn0!rU3=eDm9Y&fW?aU&uU){UCG)8344qmlX;(Lr=cCDE@ws0RvZ89fQV8)L^Vy z;;ewmK$cY@E^A0-1vzR{p`vst)@E5jM7!!g(;49k%>>vHi5-edgRuSTC+ln==Atbl zsPKliyiwh+{&DTgX+3z$FZxi3={+8qe7IdH8nN5Y8_{a;t}2lF%e+Cw7ex$QZmR;} zV%Rf_FA5a6x#};72e5E!$8@nIZJ@EdfS1_oa*&0Nlq68;4P2+ew=MK;hBmaw=0Jdp ztA0%SD%QZSWpmxwRm1&HA^|=8TDFFks;K@q(E<;@mYwl16w3PFgppeLEl?}V12;6Y z3GRP=A;>@ri8Xntf$Dz?94#a!oFR4A|0cYv{<%zya~-VEw%>DezYaG~E(M9#6QC4X z^-?8r8<2+3SudqH&`}()@)|vk{o<~z7S-m!=5#HDY){J0!PoFCY&L1<|hg7s^5whCu_e*8Z}0nx*Vk5 z)SyyuWpN9=o1qQyGm8TkSA7O7zS_Jeh{uJY804oLx8gRUQhYToG_X5}HH6Q`g_?(} z{t8%snWA=cRPlu%_gW+`rB>cj;I=f*kT~;}gs0~r!J7r;8b18g#Jpo#!E|J@SoG!KE;Hp20w)WRNn?Z!7=2Db8 z0a~Rlk=uZrF16y|s$T+9FP#p|R>|WWDg%jEg}9VgjdOC;ra~FAayyQ{A4IgP-iwl6 zj9$0eA4^JQD5(&)N}8iK6)H;9I3kN^y7B@f-J*xS{ky5HV;sVki!l<()LO@%V#&3r$iUG)msonEY(G|xKvLXedn zEw9N-VO4%o;ONovgfqm=@{@$8-V)?pzZgx1mkno;cs)}HK<+L1RjN3f4B+nv#}`V# z@5!%%H+0C>GX)X&xavdTA|7$o=24xrZBrg_3%RTQB*F4 zZ~M*gHK0}M63O{(_!J?hORYH2W^EV^MXzr-Q4d~EG@wEBdI6Vu7+#-qiC(X`7&jOA`hdw}41D`v(MEDr$Wv7EQD)6HfO=u;4 zMzw$FAJ;b9Hn-G70y6m-RShkx4QEtqTHxVlR5KoiR^^N;@S>+uAqFqeE2>tz=PZcI zK!Q~vF2z?_P>$MEC_~^Z3yNr0JrCZs&W{0JoIbI{<*Y&oK;|v^RXic{D3w(RCE)ku zSHT-9WLbqE0w20+5iGt*<8^2&6x|O|%%0PluAuh#NUX-IY70RfB%!?x0Ro?-UZp21pxe;?7l>rG)hWk@Xb{rZk04g`S2`tGhNb%cGZU=%CFI3+&J-=CH`TyGL(bFn;KL~ z%~lHCR!s=#-3)C=pU+lm8C>-Ocm<6E>`iU;I3Vq6<1~uK0cnF;=F}?t^i&`gc9(3@~hyDddYe#L5LpfkYn%EYs}5n!@dnvAkjV) ziCCFh9Q8u`0CM1T7m9?Fpy$Z!3&4z-MUZ+;C4D1eK z4HejHEaNx`&g^!*#L*x_xq~49opV*`u|7h#6XUqC$PQxK9kqC>w7!(dt-n*hZdoFu? z=TVTZNAoJ?&RQO+*yO_cpUD`L#ar&vz5`1z?g4yZz}*X?tVQzDlT{B;;I=f*sQ;`7 zNO)KMf7+UNyBdOnuth9p_{z{Uf?7LN1NF-q4fVva3#f$An{`#~)hh zR&Q`|Mb~4|UALCCxc-4k7#(RxdM>oRLwD4_I=$@COhNy$cX;{a!fdU);jj@QANb}V zX4^HVN7itl7zhcf4;WrUWcZ@Rg}>Qv!AD%z`A$tSDy^+m$W(N8MMI)wKn$*0*Rwp@}-_zH9)}id4oW>8mec{ts3CK-Bo`=JHkQC zk0`KpNvizIQ>`FzknaP7FZX4dC(EdUgT!f_=paJg?jSjCD}JV%gG4-aU%IW{$1qQ~ z=QVc=+2@L11{qeZ}WYW^%vKKZY z9FJ*SPc-88& z%)SXA4)9Z<1+VnakL@lnIDjt&W!Dp+Y{c3D3gk8*4eR6%kT|&NFT;Q-ZrYI*u`K+s z9Ae$L09IFh^d141dZY?kS zKyIf`*%`hff z;1Od({dwCu*$iXO%T@m&n23kL{_^*h`4Sc_ClnKXRELFUe4^-QH2Twe1$ID_S{VP5 zEFe(t+2Vk{6s)!GJLh=(F*CMyzyi4qNTc!O4wyK&>Q#_>iB@W?ZXk?44&$mk_hG9- zTs9az`p8h53T4Qek3IzLs(-2d-~nCaad_%r9_dkkJZu_>@TD#-7^%enU4P^*_5sbw z2>Y-_ENpLsm1E31bw@4fHK#bz9ug^dP3$vMc|&{UP7V9ugaMw0BJT0PK^@BQjd~h-L$wKG!kv**i zBQEi0wWraslrYIcQqY90)dV>cLo#9Y5A~R3i=N*d(#&tuJPn5uMI%gpXI(u{-+a*@ zj^pj);jZ#S%3yo^ysn!Z3`XadbPbIgAIR&SPw&$l?$xP#;D3svU6(f{GD=%C8*I;@R*KzidS>>wQ&IIGO^izs|AX6Fu%MeN1{= z;{A4|SzC;1{}6e~w-lbz4mp@A4!94!bkZEj=KT_cxQ{Pfk%rjU*Y_Mx@gwaH(=C^# zNMBvNGU>kMdlfs@r_|lLH>Adg7OzIU#IM%kINkbXc0_agSd3qvSiCYxc4#!t|4vhN zaTIn#)$_5N(a1{<`aGoFUg;L}8&c-Oi&uul22GCXC%OpyY%~nR(>#~>aqVqMcF^e| z+$8(CQ#7~x} zP&br+4(UNsgC57}KINcs5*4{+L-K=gTIn>)X=yy@{o+MldG-iFoBdM?aikYed9#*+mar*F; zvn)WcJNZRd`tl6R4+*9dh>xTM;uXL2>iN!*LBx-cS>DsdED@lb-xLI@Z7^dJ(fKQo zMs%8R?994MB)IBdoT=)0(f*C6FU(T!0i!GZTUDiV={z;g45+%_*{QmjTGw^)eW>V9 z&RWsa`9l?V>h!`^iB_Q-DtD%ZMR)3azv%Ban{8oH19dg4g~hiA-XA93bJVr^5LI|5 z+bM`LV1qbN^|Ou=XZjL2L8laZCibN}a8F7%ot_R(N0YGarbF*J(??T&&}rFcCf)}k zIaE=8bhnOa`N!g-U$TtbaH>3O6<_`lB}*3%t~z$Km1dxPNxmzu~(1=;G_9796zc z)3sIMdFRimTJchY9-lfI-gJlAY4UTn)Hg3g>St~sD@*s7%4UzFv8%7&y17Q*X^cOke|fQ?M%*#IJu#%Q-3Mzf{VJEwR7QpC%nY2QyLkbw zx*VOm$Cv#hc}VT%qVWxk_@n5c(V-tD)49MKj$$_uk!!(08-HT^b8y_^r3O7tCl`I% zz;yJacj^2(?hV&Yr`6k;8s3_yu-t>_F2Kr4e zwdldCVlU0IDt7GXh^RmRRj;L$heM586p&sp`CwWXduQM|$6`tS0a_?|SC{U&CRd9j zh6rLKUQOuDxHi`53$QTqfrSa)upsjBu{*q~Pa${cySix*&-1*0apDI##r(6c*~>7B z_J7W@W}jf%P1TzHJL`evWFAKq9$nY$qg2{ig^3nK?8WXn>zaM%uYk*Tin5(qmu|~d zUoXFRJ1^?r?V|E0;shQU9=iL8rDI-6470yBLj5U+8?guftc)zf%b$5vwEs&t z(=-+?|4Y~+UOgOio(1Vp%_&NCI@{5K;{gc>9`ov9eSK?(T)qSUn~?YjCH{mvd+2DX z{5-yFGHt08J+g)7eW>-d#6d5PO>LK zL4!|9{&GV}@xuDaB&RL^kM}%94V zH|5AB?%j?ZCvx2Awvi~yk}S&-MN#a%s;=gC=k8{28+Ue(Jh>-MLM6%{p#?DXE9M2 zik0v<6VE-Fkk0Ic1R=+a-q+XJ%nc3U_)xe*B^a)ROS9nerJF6>u*$cx>n_Oru?I1S zoh*YU9z22+Jb7m2Pri~pdPT6fEYa&SwDj0gk(gvh{Cq~6JMHr*aQj6;e=q^_%yhEa zKI3eJ`hd~!!@97*5r`B>p-q;8IbI1gfwNzYr{bHi>w98Hh!Bp;u!X|hZDTFhtl-RC zw$>RWXBSg<&Y&L!E6XrUXhR*1woKS-M2B-AWfk_#7lYd8nH81M@>cr{Isl*Y2_tiN zkhNy`=L7HwpBV(KcHu~dr1U1^Apbz;oHY{mvdqY>cxp0KE`(_Wzru;*>^3eF1HM7& z`D*b~3WV4Bbmc=g8pBeT?sNu+pj$YH8?YRDD#lzwg!5t*v=+!tW_@^$;Aoe2dh&rM z#yNBdUs!V&%_BHc|DmuuU-Z`6>DgC3vDL^BuFGq)iTRkXf%^LD-4pzT(fLuZ2A71a z_me%5U4G|t8(qDx8k$Rpa2}2V=u|FrL-RccO?nigMWOZ?bTSr%-2g_4VYemI#+SXu zIS^)RBe-QXYKxk$F`pnoxJ_9w=iNpH3_UfWlnG@CtFe>5qQ#EF7fZ^7upA`K>GCi# z-Uwu0`7?XfR}JJG2s4<8NmkK=O%B)Fw4tLtPdX~|APgt-8QkU#b7K9ZQ*48xFCPUV zLO3qwaEKl20^t^JyNwY|RMnS-nnQ>1U2V@SHQM%VFT)OFz*(U?*>2_MB#uMdm7nYz z*?lap{KQ|I_>D0EXCQJlQg8%NdVHX-} z<36D}r>qnX8})P5DRvk}g8QD~b^e5Iw7A_weNvDFIc#xHmOV#t3}aJodSkTX)rf+E zmU7`d#&FH{*5{(4C0v4dG?~m-yFL}mY!=a=Mo_GTM=!am0ZgIUN^~XYmx`8iL37|H zHbHE*w`UZLqv-g6~UFF7`1Vk6PxRu`?Q}S*8x`C=0?7*bT!Vo_EccI9lePvGY@Q0)IX)^QDhl zlb5n2Qk0kZlE|&eOWD$~)|(6$qj7S#Zg0)h0Ito<$n$EMI;?BR7!X~IVZ{SDe7eiC z$*3EL=N94Ed}p^MimbL7&0krjo~+%_m=LaEKc2$n(cVkYXvKpqJBD55(~3rV;*(&f zd|*l{Fke4pDZxzpyzpVz37_F|1fw0>=N(^t8n!S?rIr!mCu#i)vlu9O85lPwcgdu$cJTH zf1+y%k5!z>>%r9s!@Qf{U!z!{9<>Jm+C4#jFQ1n*Xp&y~EKHPD|6kf0J!= zj*u-K08W^!@x>3V^g>>SgE9lcZO(t;O9Up}_0aezL`%tLY8aVJ09mHq$)!Trj(C*C zxRtUry6(0vO~!%n6Qv1d*tK5lUN z_TOzAov~`E8y$pB*i3OgN8HwIah8W=-kDw+Erzp9y`#|}EPHcUVC>yA@iJ0LkP|NB zB&5v>X0-gxw!9P)gkgU^nRfkqc)ipxgihE*Fzq$!CO7@~wf@Ys?`K!lnVYGR|I|urGlTS{#KX2gp%X8U!OmNS>MUX?qufl z8@W4?*5@C`6dUv>EP2!Q`7E~7qv-i_>C{@EZ;(FeRE*Z=8zfrLt=tDI*~gQ`a2T1k z3If-7#go$G04V)#05-({;bt? zT2{!7&WJQfv4ao^>U+{v;9hjx$m}!0or2`ZvGKjZW;JvSCvEkT?JIVdTx6fgO|W#y z#R;BngH~8%0u8ZINsAApwm26Emlrn2wwGKO=Rz7~qsb}bqzjtn<;8dwtcOE5a|CV` zG*w;WT(c&_XjP7Jx*YEfly=?aO(XLTnO?5>_;OJs8=6#qzWhon29 zPOvna6eUXmiqq&$s1%P}q&fsrthRST8RbBV*J!+Gl&oINsG0W-!wbpx#w`vLNx6`+ z*2c&rG{c_)S?`nDoGeNch0Rg{r8SdX z_K933S*Q$$%MME(W?Pqf-Dor&UbEe(wae11&WR|oS(jsze1S5DOK_9oWMO`Cm822| zoWxaUMl%dnX?HksQbb{IGMn`#q47PiR(WQ%)B_)mobY+DH!#GCL=Od9UWL|u0=LZ>`^;<7@z9y=OCRor9);e?7_B$35>zJzPS`ACU<-xg zq237Sgi&(m_~=S()fjHVCDFCy1X9o4jUQc0fD<;bQ85_LqoMIi2`lx^dK?cH4M)!T z*pHH7i3n_C+_1YjnSUe?JfuyN=~Co=5h`ME+ZUh*p8Boav%c? zqfxR^vIPT+XaW~nCTBT!SHgKWy$ap5MjB@goD>VX4|&=FK^#I zKs|m*g|m)%v@c(Jarv-0jV9~r&DkLNI8N?Wt0zkZ6tYt=E@crU6=W$Bt-G^&cw3MR zQLUToAQb4&ZaiIbJQ=|$k|kT)wousMXM-$}Pvv?k=9vnP|Rx5HD>mYdzG|pasz> ztC2c+xe(DGENe-Ok|Qn3?V3^;rBTqboJmf%0H0>E3U$5UycMJLuVLwA{gA#Q&nTS^ z1w$k47WoSg&foyZFbr?r-%sLdla}%8}Get0AEK(?=Moi-zm zAS*42=w#T5%MR7JX|u-w5iP!tYw<9ikGhK~+%oO5H{ah-k0n$DHk`f3%qDj1KOBb9 z@8YRA$uQrc#C6YvQHLe0kvw>W$OD`Rxu?`21AT3z9Rq@kK!1v*26+)ffJnSq6D{2;w8eVsioY&YChMKnTVM%4{(g zkn7s*Ww;oFaPS+%kDe}i&soBnl_%QCeC6t^tDWg`eA%OZfcm;mWGmCm-0D)g;9DvgfvR6!1KPuhcB=kuyBD!ZW$I!L~{%4TeU4y6eGzL zC6T#s`N5CzB7fPOWquliGMAsB_%RyHa3DxRK#YEiR{JzXUpD%+Lk|cE^e$H)Z@Qyz zyt0&r&>d|VkC3}Bt#K!JKuF{+psxq{2L)RSNmF=t&;cQVe!^u-BaE>!C#IQ-=QS4>ZD zNECK+jH3Su2k(Bgyjt*Og=>F;*(})ToSy~LDeeb-Y0+Rsi71a!Uf)f=@4}Ago|ugp zU&9i*MjJ}fgi00-a!?(bJkgYcLBF3|P29y)VJ|kcFUe^@OsMQQJ_{(iOO2xKlxN4F zg@f;TtStO=F;&ihktGfrVER!wp2I0$X*m^bsLo=_;=e6hunEiaSW;!fLnT)zf!7oi zlE_b5xhb+B<*>hOFsNjhmlzoU7L`INoPt5$zMvl@^HyQmE!m|BXA7+A;SvCdzz$$= z$@Hs<&_vUrkL(RT2W1A)FbD+O87_}*Ka6{znPt<&1{q}%)J<)J&pQQh2<8LBV6@~6 zXFYjJ5L9flc+;^72n5^FWXbsmj`g281E?Dp`x+&>)XY4|S)p z!RH+Ug5e7XAHG^{>t9*e(Priq@7FG0dPPxZn-f`X@o%R+BFdwq!ue+6xvjE-db2RSsxi#yC zcclqc_rg4-+!A3r$)iZ!CQqN#k-gPja7j|611?&dU-ErH_q#iYkwrq~2tj8jDRK>2qS0D_Tg29 z{o%CyGDagWVTBWGg?1Nok;&fuvItqSTZ%fL3Jj z7k=6ynHS)i!U(;Y>NmiZWKMA15yI7x^Ri2S3fX35Sk&(qe%fKV5+wVVCyQAGPCU3( zeo}hFZDFz*q9RMS@Kd;KSI(UvyJIDouZH<6H!51j43WKzSgr)gZWh)pz4*M4V+O{) zPZSvwJbRO)Nydv2TwFeCs6$1zS|OW`oHs#r=V}ml;RvIKh;FvEr#d`eg62@#C&Nqx znDZl;i)dE+3mw1A5Y)}Qjs_qfADm;kx%dPCf^R>EUp>=QB!Nuv?b`*KJ3)456thX& zW(8`mXFOkmW-o+-#=1acUl--P395tXFT&B?Ojh>Rf|@@;cL08s9T?5P6;8Po>19XB zo?yEjE_%=37HZt*++f{;C3zAQdtr6?d=9i)YN#fx9>>i1lL{ZPt(cyX3AYdQcNO{GeLAx9jvCawhephqT|*} zN>Uj#a~uTiF1QMLx%}+F!W^=0$A09MW~*Ttg0vG4nM zz68x~2!)C{ELdJ`++f<<#Uf*ZXYYD2gj+hXd2iT;+qar>-V9YZcr2MkewD!#zqpR$ z@}+b|fbPi@oq8vWE&DU~D0_eSEiYwW&73sBx2e0#a^k6bTzGb*XpWcpIV}<;KF_i_ ze<7M8cm@8?`}t;#V76kg2%D2F%0=5VP_~)R05kL}$q`@-9FZ^qUSPu52%6=THKy)> zE4Gf<9s{J#!+<~Ev(*H8>Gqha5)@lwI6NYCvBzXQ87FfXx$SZj?E1nti_`@66di#s z&U5i2^wQ0E#zIGI1omM^6;mvM+@+c8HWJRMiHOia4RnZ5sd7iTE;m+Jfl*((XDLO! zq>s3&Qvzh^LitLa%&SC)+*BTcP+T%m)~BD1OHbfNTm-U^ceYf}F>V*~&cG4y;+V;Bqsl0)C|ONQ%7!i#X=T#h z2npN=c{?Jle{?MD!zH$oDQpQHfq%Dv534jC<1X7yY>XRV5x~Os7b`m*qb{@kZBXN? zE&^Q)7WoQL$H>bDi>Amqv;yE|i&TwUF0EcV0iL&pRY;t#C*6V)=g^46#mOO+GdA_5 zUUqVbsk+GU2mxWKl&y@dkKKi(lDBYHG>6F=R>#WXqB%@p5jl(IF!`l;A!&U{yJ!vt zHUeG9x^Q7|ebg>wt*slD0q3tD-gLlpd9g5EaiOncb#`I8A}*p7!gS5nCOgLM!gS5R z5%7oH49krC5>+j9-gc^^*$}6pPzA&?4^$Pz3=NUu(QII_6;Nhq2+CuUMePb^lktfJ zhu}P#{ICRf+Y~J7GjFn-lzE1RpgiKrnin9Oc#H%Xg7Gl7ja?OYnGd|G?rQc?S7mZtZRb8FDN{hR0=-))mSo=7@}kAUyNy{=G;uuTpd;}2JFxmi zJEbpmHP-)*X67fznws~nkWqX7xWlp*2%EG`G9FU8M>7k#VTBSnn^>9|8iq0)Jc%q4 zN>BDE+~}CzNSa*Qboo+xGvBK2_rs9(NCMZG4hk+43MQJ(!~_TG1xu zDy@o_G9txuxNL?_%QinjGC!yH9fqkC%+Bozmh#;%hRJ3tX!O-ohDme)0ukEYpf_;@ zs%W8GWhr(N3_%$(=)kZ6>_||E?2hvvqVYQH`E~f0--Z3h>%xiakOs+A3YD^la|;*_f^J`Ocz~mRvwr)AAXHp%7>t|3Y=R3w z5M2AC81yfHfw6U2*0;+T3W99Uu$O-^n>DQZtr|cenD!3Cc+)-22?m1da1!FOF{?jf z&yWy=dxjH74OxS-oX~b`A7Hxf+Rd(!2!hB8aXGTG>$emMF2&A2)-#&PLU&XqPpW_Hx~ zo^gx-g?jQUb+=Qs$u!(euH*`YaZn(6v=BSS(E9vp{ox@5GTzq8R= z@#@Qu;~?k`L1W|6z^mWO2_OXD!RaK9wu1CH4uWn^`MF~j)uO)jsUARf0Q~ejz)|j| zI@E9HQW!*Dd)-!xN3qQAPBC#akS#dHBw*S5)1^@9&jYNQMCH420$Q~KvJ$2{xp%)n9e)y zjnBDSgV6vLU?8&EAH%f`1;=Mu_viIJTMPw3b}(Kn&1XT+(Mpi|wg$&R(CvX0L7T1j z0D)lIo2*iD1FF7;X)C4nK_N~bas#V=dx{{4v;Y@eA-wsx00hBx6me~lIX)Q+Lm3X9 zO4gnipAp5Hk5Mp=rVBWcIGT)0&WOs1EU!M_ovl7UBqdnA{9MjH_lzh#V`;s(oEI&m z>J{j6&IL)5HRwgY7K3yOR-x}tu2CsbaD$XHS5Q&gZjcCG=R(AH5capgVb!j%6}9a~ z*boUpcO1~c{vWuBcv`wl$RPPlensmh4HAKi95Xxw=`rx=fEAFGQ!q}wFFeC&W zjOyamU|QxFvVvDMsxwHWlR_c*_Rl5-2Sgcn09pAqX$un^1lfUjI*gn(g+)FN6S*M} zg6$C4=GaZ+u`_pFbysg>}su{bw!>SqoPf*5QO{Z z<)`HvBx?MKs^2yq=TClgA6v^_-_zGSx$cG#wZv6kX4m#*nP}G;vY{2G?^ICPYRA z`hm8r)hPVBU>tB8+>%++MiwTQRqodmY!)v3v;$cZq1+aX%O>3l6KaHEyumf^{bbDA zF}PF#98b|Yj#}f(mtM_2(DzJd`}F1bvL+s&ryK9gk}cE7+;l-R^)4zmrgA2+lqo5c z(`BPr%Y=#MmYr`W391-ofhLRNwN}Dm)fopy`DkZ3mL0EUl%hCkHGxQ^-REbOt_HJy z44Vh@eRZ~SXD3x;_2jr#S1nT%3BjhxOVX(FVcZ+%|i4)FvWIzd#WkF=J(v2s} z^XjWRj5I*gsgv%QWJn1WQ7=Zmw8~w*NFe5e_ohnjz$Xw1_$97HFf%rqMEN@mEGwX< zKu4V^P>QmEg2y`GkOD(VDD*@rz>m}6B7gO9(_%R0t{767gv3#2otn|1Ge&J0+}x@t z{3+2Z+(c-&$_Ty^|p$h|j>PKd1eXkg>jT+Zu8PjbJ|N ztm6@2^^Iw^V6~p+sIwl%Axf=FIpMM^5kSk%yESVH^7@VwF6}0lSaUjwlL=O5or3^d zc2|m_U`cNf4sIov@Dv~JmDPvzUdxihz4W;9AaxfVr0!w2;F=9k)4X#J_tJ7zMto^T zq$xRUHYiQA%}kdqO${^AjJ>jsu#~hIw+UQCuHvY5bRu~G zUe>!90-w!-4Tg+BA8_+7h+{a&rmJ2{ThXzXX0FNqY>Aauno=hJe3XQeuvn8h`tB%z zqX;i_$CFw9X1=<*RA#Z7aZ%xwkXR3U^T}+>l91r#lL({nWEz7*BdH+cmHbJs%_|8N z9w8yF@e#55i=JBsWv8i{=@P+K0l#pnyKVtEgr8s|@Wssv;RU#SxoYrPDlDxz($^9g zN&lY+a@4YSjLm)*}&DgptVf+GZk#9=!MT>t8_19;af zw_UX@`FE+g=ovbKTv!k6w{F2w^SV-RZaoNG1h()nu7vaCHu2*1GIf!cIqA&wMTSPe zi^~#MgSZP@o7~pWvH^e@a1M)r7SjdMcsdMvutF(>W6Ve4IDf53U9p!<7nq^f@Rieu z##@_)z(;6^7L&7GO#5(hi_3=RQu7v*f+GY(9e|teaRlHLdh@^~kYt*4!E<*a-Yg?hJm>zS6oqmIJv9U>@Uhk?^U$))CYy}(6aixz%87%svtc2)Ts+v>`@c?&N?Bj67SPiG^o7OwpI zo?-!n;5*{V)hZC`n}iIDr6WNh81MDrQx$mYnAyMMIG8ci@|JAj2FVkPuj?`vg7O6X;>?F9fYu*AD{u(b zy~(-CZYqy{42Wr)lwcsJ4#HX3qc|$qOKO;Gw#%V`7N$4|x})3`*Vw@+3b(!%%2)`> z!~BGoNeLI|hAvh1GKQ;ADx{zePGx9VboJT$I$TY0X zES;?8)OR6Bh=?%n;Xk;j;VRtvZKQ&VK)yTuF@|+l{emsphE+jZ_)xzSr=SR6*y-LJ zsnFK4ZG`34a0-K9yRXO*?WX?MU&K~~i=aOMj?u=BaR-u3VGwKwArKZ@H1vQAaP>P) zj)R~(1fkFmG<9_gc=d;o0tmr(RCXM@(Z%|mx{QUP3xqYlhxs6 zi!RKQELbYO%4ZaNs}s2NVXbN=%RED^*EwA>ooJq{SbN6-ladfye|xh@!3`f-r)i$4 z#-(iQuX(Z=mjo>#B357b!>S2U^ZYa#WgVA!vVsO+B_zZGv3^u=0g{u#C|e*_hXsHo zG(;UqXiUZh=N3Dm;<%1*z=Vz{l@P97t>|>j#i!|(<5Ee$5*ngZ;1}q+D$gotK*e#X zaKMC)Xt|>CxN^C011^qRE<{U+h?Wa(QTC@@j$1CkN=S&47hvBD+=SqdN7=~>=A|rJ zU8x5()qs=Zh8xim zBEl}1dTqHK+XV?&LPIQSKIgG8%2o}Tm$7K(&e03p;cx}!T8-hL1+N2uQ*J9tikFm! zs2}lUSa2U5i^)|Wn&0`L`QDhy9yqJ{N3EO>yDk6!71BTWZw34I6{K^v}32U0A049$Og3L zWj^WDxD@ zx^?Bu5fV8srwbXn=tS+porthCz~O9<5d6Jv+VWhugwbio&TGNIQ46Sht4})hbqKtU zT0qseaRz#Qr|xJ0xa?>wi#CwqBRX+k>g_Z*I?6nwY_XW5@v;Pxpua!;!Lfr`$lZ}Q zOh!rYbLqSFBn$X%rLVb;gOr!>yn1Ni9Zl}3NJ%N2cI+D#@^{oO>dxR(Zk@maup?Vb z^ZK4}>FpJ0%a(SUH&z|Ry?fTVTUP)s+sbSKIM0uJ+OaoEV0NU#y2Ey!deL+37I!TP z%O&fPmfTodW#CEUa?+_kS`>>T6GnAFpM?Ooj%R_`mGb9!n(q<*T6cOQa64MyCm<5- zxKDD+dcf|;0FXcu^rs#BjD^e{H9ESJ_>61kuz>8yM9=XCp8@ZjQ!lV{%(~n6KFM{u zb@f^TN%VSJ;Scq|D0I^;RRCu!!@(bu6T)9^uyDK|u1CG_@}=$73&zu^@QbfNg2 zn3&lLah4ja41aBjgjghHML5fa6zoB>rQjvWk+t7t+h9u4C|K-$lFur@rxhAjlDIZy zUA8NtBptE(0pbuD$_GNR?;V0IGwDsh!b}W{Mj-Eoum&JSd#PWjmrY)mp@ZKDo@C1q zi|+zeT`d$K7`AZm(_}kI@x1|f6i{-h^m;gp;aYaM;4W=KUai$pJ+9m?z*UEMWII3^ z!~EG2T-h0>dsD~Pu$JbU>Lhco4$v}&T9=a-DVLkN00i>GQn3T@ifWjhGRq3cg=|_MVd=94#viymh_KYXvQr~MCxKqHsFKK+`Rk)t&(*B*cEJSs1Sd(|k*)dHY+o!o*NAqK2eM2@O#@W|Lvn zMp?uBw32Yyha@lw0kL5$o(>~lT}au6F+-_{Qb3%9f>5RS+#(DsPp~u0P%8$Ps+1xn zG_sPIgP+b*XYRBl5}bsB*z6LY52nF|%7eS=7Dd@+7sE6&eM+GcBBEN)qoJ>+$z`=p zU=jkNPAn3m%9}d5tP?3xLPIE2GA{LK7`jv_4wVo&?r@ADJS1f&*_l=YZBTL2>0m-& zEn84yj8z{!+#{Rej@nFt*+mVN@ez%V=8P39>IOw;W$7@+Jz=-hW|aX z1?^hIE_6f2M`V1`sbw#u?4l0lnDVFGn(zW{*=ku+EzYyqk2|#01y~mvtQqGgTpHy9 zYS|(HQ@QF^_$jy6w?OMc3-ZkE6E5u{f!2v^HM{z>V|!Y_En5g^tO|Js^l^uVvq0;j zj%k+iDYq7~0P8|;^GxE?+`e?(qq)!pj*azZ;b3k!XR;h5chke^^ZhPc4BJ@>VptAW zIA>Dufjnoj>n@S#NjxE=Y^EeXz1)>A`B6J+Zlps$*oAG5(Y)KuEi}Uvv-vgspkTu! zIvfWMsEV!S*V_QU+?9z*6?vFa!18z#|_pb(7v;Rjgq>qdb3 zHCq<&00l!94nFvpZQJg@ynXv%b$0c(OD`>)hfXKBC$l-Oba@Gjs82uBcybGRi?q&# zB~#Xfl60WuytZf&082_H>j229BO1?MGEI~ zaVvSf!JsCp36L6Cw2n1azbdGCZ&-{YnAw3-_48-gQbkcy%PQUVMWv~J(#din8nrVG z?@botdH$(!l^_c1TM-DB8NqQ!iUUqYfTiL26BCs{ZnTv~nj1mFC4$!`v?URi8LwsA z$#VJ^SJbk^K7xhxFDkERESB64-I&$1!$}g=bq&*i+E%oZ7JrxO8zxJHdq;JR%T0vT zx*~nc{j#9u-7yR{!dW-@B-aLFx|W+_R{M(dE%&odmLo6cUnAxG>WXrv`@EqP$_reH zE|>h?tmF@x-n_vCLK6j5DC*p3L`f$|hD0|`RO^OWszh0I&q^MXB7g-3K=5bkvi{4i%nE zW|M3NPakR8q|-^z5a}J`=X`A)J>-Z8&Vz7HmP3dQOBuirbcY}y|H2HL(s5SG2^xYA zt{5-538NmyhOG@pL~tH1J|(Ok$cC+rekvGrKKa`@>)~sthw3R{N8qfXqEo=?0o46Q zHtBR29#Y09)ANuj3@6*pPoKZF1)6)E#Hkc*@hM+6*<>|bp8>H+Cy{Fc7g6O(xA0Ui zn`|<;ZltT7;&pe*qx=-FdXV*X9yaN42@7OI%7=?j?Xt-vlW)UzNZfcS zEINLw9=?WsrFz`d(X!*F>LF}e$~nhN9cR;2Mbmrra5fy#3P_|)JjsGxYh}ZpM*>CA z9xgsUs-8?6)*k)1s3RrEMb(4Y(3ZTn= zRpyme(gJs+e)@nCN7;z0S&Y$!*%1YZtru&qP(h>WW zQbYvq12Wvn2q$cu%DHS4eo1)|&;l2M-c_K(4Civubd!;wG=U$|`T(PJRO~4*0$!*| zyt-IkuG}eBA}I}ZQ#DBu5x9pWbefogeD1nXygW%iOytavnqOwkDX{NUNdtV|cA=Nv7Tr4Db|$&KlH1%26NetcP14p2jXSC*`q zl_}u>y(zQnq?n3Sq)dqpoi1C30Lje*STZq_53wvxnCMfPMP~%FK)13T-PsY8>l>YZ zFb}%DVGze*oS?PBty-gHdjbuyr*bmaivn~E`Tuw2?sw$7Mz+KO$NJr!&x*6LE(ob+iWs1 zk`K~W3KyW?Qn(;1|Kkqq%8AzT=rUN3_qw9xSq2}=ZDo(Pl{-ZqyCtG#&8Ey$1`BQI z*^;3|(Pv7#mye9p^s!mn+9*TP<}Uf7RnQj0O`hzA?_M}uRI~)mSgI{_*)i~qauTD( zgc2#ubxyWzu6=){niii*_062>YB1}^tFvfab&O3TnQLR_HSdfwVx)}UC=-V>?DE%1 zRX1ryZG}cVYK3+}i;#W`Cmr{KVX|?vZQeugyd`FYx@f@S=n>a|C6owRQLE$0^8685 zt21Kx#1qYaL=w-45#n#+HG96AoSy+(G+XVY2j1(o;6-S!dN)VJ7(kzwbksR?H2Y)4 zx7{H~-RG^`R6}E&^}}8@Q&8)9qn0rtx;RY2z4xesU*MHr!h^7jhLe@b!zP>AhJxAy z-l!o7!fOmcakMg;M1EULLC&9EW=sgfXgX`HJ@Hp^NP_Z8XuY5{lBtdvhBonqB zcK(K)5*5O6HEvBM{q@@k2ZfdIv4vCfe^^5Jaj&9#D8DO-wSJJ%|ITr$_XOXRV;*<7oXpUqsW^qDe$ zl8=l_6xS!$nQOJpu-;s&Z7%v;E2_**w$t;yS%{PKmoMFDIX5r9l$GTHIx)X1O}(kA zq{)DulpWnqTu2AotrsFO0BHCd*60^uaR}9qrSUCA-mIF7>(cz!nO*{*l4j~MmZ3EgVkW%nnot;+KQGr)>Vp* zM1U}R<602KaAMd}2n#BQa0&Y?S_i|drOIbKn6N3wGDd{^Fpb#~SuZUqp+MM8M^K*U zlT&x*U3Q{{_qNp7*I`qf8V$m7c{&+xz%hf~x!vodR;J(yBkrM7`Ve0P)$zTtht8%9 z)1kdWiO^o8ad`jI7GE#@zruwOePj9~?QYtlYdj9FQM{B9A$>uR_TG=OoH8qD*+<3I z=@7aPr@xnVMQxS%d5`?d_z{6TLKZ9R zeV$VH+&8P`>}6CysSuhQ>2Jv>7H$jaN4?7XGwa&#+OT}ZqfX0w2w^?}0k_=X0rK5A zTuFAMbVp$@ZcDAbj2Y6B%q2!d@b24JPxfOK(*G zz>5fgcV+97*-{jH9x1ELeRgGp5TU##w+O!KxtOYX(1&`<3<$S=@{83JszrC1sqEdp zNYOP&bG`n0Y??)pc^OsYQXyp*>rwo*!h)=qI+(|#f~&^{w`Hzs6FVeLk@p72i(`&Z z;3bI@d^g)p@ZpyC`NkB^A4?|(%MK?XCT8}jJjM4Qo#MMQ*;1dRzq{FVu*eK1`A(U( zcj6;umM<3+mm|)Ht<{+3v&xN3^cj2Qt+LRk`cOq)Ypo*TI*dLpU%J6^2Ds0@la=Eh zML94=Q_a9cKrPA+T%d}JU#L2vVIc|u7Y-HQKvrOeG67WPLsY@IFE>oQKnbk(>4(EG z8I7HX2_5@=`trxJI`pYJ>}GkKfjk=Ogp?sDhOtbg&y-RtfJRhgQbR?ob0o@Q>|eId zMpqkb7DsUFR&O{dxNNGR8dztZS+>Sr7wbGaoCztyC>RA7Y-|GSd^2vw8$Yb`=p-yu zUUtT-b)GHpQXB^3rDz-^HwDjHDm0HZPEesG2bF5j5;>0=nXn+dM!m^&19k~mIkp;T zrN@?pGa>wDcwrwL5;#t7!EUJljUBhvf`rqs;IczbhcJ!$(eiRj1U+hK!h-M`_M;V8 zc@(rn&3K?_Uv?=G!Y&GD%lTIsyYIz4mRiDs@LFAt+UmfKmuK3S7?2>Wrpv=gFlV>l zw4{&5>uqYV%g7Lx(efk0`bt=+ye3v#z^z5viuJV&?5%jUI%Fq zW}}r^(2roe+Y&jC)(K}q_zhM!rjxeFc`P}kL6{ArxXl5o$6h-nLf8$4{YONNLmGrx zGz@1gH6`!bw(Y8I$-he;4U>cpB?ztOBfv~fSP))o<6vw#TV&lrXWg6e{H=8!9ma!j z8;`>a^I&=YNN_I*Dum%M8GZ%x@q}g74&Wn)d=PdYlNUMZB4*XbFUClk6 zk@fAR-VCye&syxkXvcM}GB)0WQKJ$wea?4e^D_4D&sG`xS7^<<&6_Ol8h)fTS)3PX zvfh?fZ{jL$m-*OqWk_x1CgccxuHgRN;q5E9<{ak>Ra^0qt9*?Y$<;39JdZgqU;mDC zm9PH>Omn02laIW6(^am~7cU@IOT4ya;Jt#x3~r+b?6? zv(HVARvi2)VgDvap1Yrya0_04m9YO>tj_`P7TW(*fXdc?ccje+aI*fV1==U8O%m|k ztZmE{sB}Fpieg#81$@a22x*(SlSg>n+wGD3J9z{#LYueIt;{N@1?|6$&YNT4_1OPZ zgUZ)`qoqwe@J-r^yS`oJHr}LN+rU)l5f$fs@&!23d!t?A{`+JkMd)(%ekh!KUJ2R0 zdMBI+*+C11Dz-m*To$7jBP@~kU4DX?$5j<_iQ#6p^i#X-2Sb>6ocEJN-o2vy=meX!}Zy{Yu6;k$pJ&`lthM7(jMtT6&Ox)_GW%{%){R*kc?ao?AuE0;ixrX4c@l{jSDu;T}c zI%q(MD)eeJ>PEQ`6*%LRKta)4Z&V)!8{rI^2HTD5>34GBD;w1hV#*CmpJfBZZ@f{R zeW8@Uj)f>dosH^-`4AN_-c)UvxUK|j$1(5GmzS;9s~hI3b>_yVieUz#D+m0foGx%; z@ep><)jHnV5Q4_hcpPb%f#67~5W3@_A57~O*|ykZ$<1V|Z%Eh*VbaGORpxzamM$dm?|0oCK~oY-%r2nk%7_?_ruXr*iX7(8*i?myt4kt zxxFM{)AI0SC;2N6)iCNtzAME^*R5}Yn3O^n4ioTOvE6e}%i+O)o3 zW}{@dN%^cK;frw#LpI|(r3@=)M@CLKb!S&x`IM%z#0zG<|THeV}k-j+T>XlHatX~#_d zo?UusAscTZx7F=@ABsw{og(#3Qc+-)q#xU*?UGcyEyGk@J&i9_cFqmx3_huaf|j2l zXKS<+`(~EX6@HF3`c31t9F}d1AVErQlv4EN@lcD-`50BgpHIw_ncW&O)#x5`#=dNC zm6`J~kxYP;8NXOd@;kIq0&{G8Ws(jJ1@zX>f*s7h(u53 zH5QRlF_~sdmJ}Lq;H#Hc!3x83L4Pm-YthQsttI1Zve0}5UagE^tr}7yg?fG|nD-b-lc^qBI|v)+%lN?ld$g|CZ$ApzIhc&IGlASvpzgWljOp!3=ZrA{v;NXUOystY+|^-ZV{8||n=4p}0Uhf|?wL-|SD_Uw5I734J9jUUgYZhVh5}fUupa;GuwsKe!F>p`Pe6|?(U?Y7$nFiSe zIkeFj@1~~0d{W~M&U)Ss?HsR`Mi)6`iBR|jO07+Ksx5@?^+mjT;FK<* zKI5%M3zb2vvGhGd#5obB>n%5dg6*2;F@nsCFg{P3fi?@+w>}eMg!7wo>Ux{ZeRp&@ z^a%fHYi*d&Z{u4W>UA0&#)z}TCDir@t4@;D1~m>=W#7q5rqzR0F-Ft1(wK(=7fY~Etu4al3rcMX3mSyxl+#=rcHvshHp4k3LUy3f5;S`$I5LZtR54rW^>thXlb%a$;^2$FT0KEoC)dn`6sVA(Ky;(;W|o zS3YHx456Hz13j8d=BwQnwb^`)uw@y?gbJZ6lscX)CxhtOO7sX&YLyJ3Jjv^je6+^G zrZm1p*|eF;V?a2DtD+C`%FKKVsG-VcxCx)YU!N&T>9q04){sk1C%NRYIT1vRZ-X#Z zx4hnP4end>-U|v!=I6i|mW_&@Xxp0FLwK!2&bg`R3Ac!L240ytH$N$M!fQ=!^Sv^2 zUS=wK&J7&|uZQVBxID*vkM$@RN7DuDLX2S3#HCx<=dU(x-^kapvtXIp&xfR3WGlMH zO+0dz;5abefiHijSocNfxMb0ZaIVJA>Kb_xhk~((sYXTx&V^6qLzm?U4EQ=5{%T;+ zJPhaRD4=1fijf;(NXq&hTnN(zY^Wbj;EtEzLS*GzaUlg`pK6WFgcK-6A_igc&td`3GxXsLiugHv8 zPI?h;i|od|z-pyL4ICL;V^?yGT!1ZQML3@e=EE?E=UuyF+J!aNL^=7o%~~IrY|j z8zO?QR|`aDM7X{Y`dnD4)m@%VM%_4sUU+PG9daX$HeShGBbQ{)yT*)gANAwuFtR#% zq6UtvJvN@#tC35GaZ&lTs==Q5C0r;!I9(vHJGQBYWLqjf#)a^klObbk4UzHYyc)vn z5K4sYI60gO7Fo5%)A(SJT09vU!f=!IqCp*-cmB%FHN+v1e=Q>DApR=n$5p)kjc|&$y`k9yvY!D%#(KUld*2ntB?~ z5!I=G(Y1uv6gLU<;5@L_=y|Puf(~Ih8BNy1Hay#6Ol7>jp-vfcHiY9~8no9%7_Ty` zLl1}$W-;IW)oL&3byO@fB3$3Zf8mS%C*Ae1*IM25Iv%Twt3+TAKpnq}!PZ+YHh<^J4r^ww5N0RMuVxE~$Q})JQYO%etLeB$ag= zwK```Nha-oYH71bD-%r{Tnk#5Z&E269~#o2153P0M78fU3QW~-uS=aXT7)hick|hjHs(rH-ffJ#Wqw2epD6^B z-WU>&73N^%R`+dMk@9)q-w=G-H-q((8c7|E{6U zA+5Qe*V@>sEmre+T@kJA&0bfUGT+^npy_q|rjQ~kJZz<57CgPKjM1CobM5W17Zkk? zOEW&C6i4m!HG-qpT^KpN%Z9#-zO}09^{@n;7cJLzy3=;bHKzj|wbOI9#ZT)i&lE0C z7+=HALAs`n3j+=%+E?eh((SQ$xYG@`hdYfYvk@Hr{2I$so!DpcaZYFHaZZPmbazYl zR@XSk2{Qp%9Ws>_exRK3qX8imv{&QECZk-)Ax*|-=ouwla4b^~uY!g9%V#5-w$&)h zY|Z3Zr)AN}Fw7~h8#r}vZoEy)O!qVf zxdgKot76jcLwv;V`n%Z^Jw@Th2Kf0h<&~cPX3)UWuGE9RL}MsFNTj z9Qyre7WGz#q17o@hS_;65doX9d2l5djrK`4&IuYTGBm7Vdx+nSxyGVrn!HO+@Qs_cA~oghKVF7cJj zqh8lrtD(}n&voM=6Cl*4=`S9e5|y0sc{rAusWdETP2OzldXB?j)=Ms*xqRs+OZRj3 zsccg|NL|n;c=`>^N|6~@md0I;_((A>b3qX`S*ziaw#toInZ|w&t1Jp^O}+_iF`fnM z;jkNx`{4zfHp~iyc3!ygCNQgPI%%~gq)3U5$xr_HifJ;C-m zr5)C_e$I2nk=RMKzRw%i^tsK{TpZ4|+D#x3wB1_ux*`Wsmrs~>WtG77`isSUqjfP) zV3m2&z^Av;8s8cNYtr#Uxp}`&DQ*^}X_2#3pxBQYOOJh`7QGIK6hGV#vefHFqv`OP z?ap%|YG7=Rrb4bJqN@YezezM+4`=i4G@OkViP<)>ItbP{`)nLxd^VhM+Az(fav;Ul zABJ!|&&+BlZk%~W%-B6*oOUM#PT25mPC99;UdglqXg#p;GC6aaY458uBExFP*7;FW@%a>kf+ZQMGJ^fg2r29%EokeTfP-iJYV{Kkv zvd`3ZF8f7>M$~3fr_s*RHOrAS-sYy8Z8imsxVXWow*Wt#oi%O?L2D0;cezNqY9>^1 ze-EQYN|jKK?E0)Lg>p2`r#ueEqemcRMoXsruBUCgYFqN}(r76f_a=+6T_0{;&|>su zJnL+))SQV-^wOv|naz5WaM`L4-;(?|6T)w`H?g|k-de1g8Fs(1Wo|1zSh~4RSgp0u z-U^*GH%07;VZWhs^WDm{#Z75R$E#rWOjc%r)hf#dI_c3O5L9UCMb^&u2J}2?CgVZ5 zjY7Dv)N_~LhGsGzgxfIb1jE+I8817sR*p_egs>Z9V2g$4vEB(PgyC8e{77gu84toO z(aq^>Vs*^Ewccd?xL@5&h!A$8bBka+kA_w^K{TM}(Zb|R2tU3#n46z|4NVkGFDp#r z&B4|Z;^ka#-hBba zXf)rjpLgdU%2PVZy!$DZwmfH2V{dPokGlPc0>b?o6WygCQ9n*T}|K>RLOpF@q99H0^jho%kfkwDUTKx z$wJe|E1@tl^_wU zLL0jMFz!Jm?YhQYwk4^Oeuu|U;1LcdhQVmbIqqiimLREEXYrQ9Dj*T8XOnJV1g9v> zoC7X9G=&#=VZ(!cvy6+NKIOKN6ZLO@qxwfcF}&g6DUXx8(pMCArNL|#Y_PtWuZVhi zQAeuBmAlbh-JMBVXQKJ)iOh3T)`@EAK^J0L9Ps0RB*Lg=>SOwkY z0hk0Y9J!hT6#8>}ZFDINBE0<&7%%c?d99({)&v@$pvXcvf?)HJF%$&Zo}v|G)&kRQ zNW&yL0D)lITR10bm|`{vy0vyGCKw2+Jw-Ep)}R_lN?F>l*IiYtFDcFAvnQVCPaC!< zDS$vr&sp`WUwUe*uxCA((Nx#2$^=P0E3#ZG zQz@u%dso8YqNIjZrkmBZqQ0^+iB5uni0#m7Fzd(Xqj=Q~wE9vLKnT9W!!TIe=+2zU zuBe@=mR*K~AUrahtaOu`A<8Y;%Jj41y|bVxtxTdLK_M9Tj+_;6ecekiP*mcDikh}|?KJ8M@0j)S2K z2hSiLotG8bm2h(NJc!2O49=L1!^@XmT4Y%&5#=87rd>RdJ0Oj+o{%O2-C)^H=LArP zBuzwrXE&MGi{{~|+s&0e&5Wj$>FUjz$jiR#NSP8eJG*d9Lo{y$<+Zj@SdIh-NCmd7 zw=WfuDM7QV%swfTGcihTw3G|qK~A9D1B>-wQX!ak*FqQptb)?VP-N2ugvH%{)T`R} zq^o15L`N(URzV@i?=D3ihvyn-|6zx~0SUp~XSiYC?2u3UF&||2Ja~P(%dk5)S{lNY zO0$*x=Cf2mggdirkE>p09Scx|&GGcZ30_bS7aA<*j~q)utBZs5&Zz8jj$ML4Al}6w zCaWF#VbxwRT{M|G-%>{_(rgK$y%M7N#==j&F(nxnp^8_7%|V436IA;$ zS>caO>ckuB79h)+;JSn1f)qKjmk5%h3`yc7?mDV~ zwFH#`An@*I@TRlHIP}rUl&xyerJptyOCa>uSmlj;R4(?QPQP6AvS}LIAq> z)~ipJGm+{MCRK1lyVBWOEuqMtfZK~pv5~G7-Em1ztVyA} z!Y;57?5AX|Q6FYqlB0C&>yBzW>pso0l1lD`N=ABE`T_+3${K1l3JhIpOIU?mw%91A z3(SR_;UVDnv&hou)?UJ5NTn~sFc7VjH9>YjL)N4@upBYzc@u2ArQe&NdR?8`j{=Jc z9@fkBCdpYWHEOh~Z*^d$nG;y2QB3g5Xfl>8TYC*t0qRcwB&WYXXn z@p81%V7y}K6_he1XioAU5>DunLGOv<(_R(V8?yD?kvmccii{n88o^ zR&?8z<5H0&L2{S{&q7#c-Hn#P=NUsUXJ0#n#OicyJtcdB@DM||m`|1gUg92_&hzI! z&BUfpc$R&a)?1o8!Iw%<#8?fZmDScIsANwNvN1_N45wfwG*Y=bV-k@s!L$=g6rb$ z(bqsF$(DDPea-oq+|>#Vz+wuHlBB)DWp7ER&Za~fv|0yi7(s1CLrrr#mj2`1Y=t0v&jf%I%BvxA?~jBmv7jlLRVo_K^?@ECuSS8c~MxVV72s5>g z6O(36(49bWuEG^}FewZ(^TVL$U<_ObB*j2LGFxXADiCy;4P;lx)=6_Ec$jx3{e>-S zXn?AYcZK9luraG%INR)Tsa;GR(^+IspfP8#_${@9>dw2WIO~jf^RW=ntQF59LVW=* zM~$9F#apLo)L;;(XR$74afB_>TnWlHO6%PK8++yeA#mB~4u-AYpE#D zmtbOzb=nS^?R(YfXKOm@w1YHrf{u+np_6Jbps6$Vgd7PD)@fwZVtg_Ou2ZpBHBpLX zTds8>GabvtK(Mm*FzIx=1Gp5#9-mro>nNMZoDn>1Z@I)9Qk!N!_Y*dD-~ zjSZTKI$AFBC74(R94&_Ps9US_TvR}jJ%M%)RsiuE*uUN7#TfP%xfuG?Y0h$?5XgHG z@)#Djpbx2u>eXp1vWy8THsvyb+ltQ5U`Y#E@N3_yi5{VjNtX|Tpk#~QCT>e&YKK@EZ5$lwn;e?Tx^0vS?t!Jxa&-CD7h1StmRQ+G%4UZ zQ$%X^1R?VaXHjsVp4l`FWLd{AT!@2UW-XA2+eDsqTA(arf{KlOvLCzdL|JD6Nih(D zn%NSwu)lEOb*VFd&hjRpSo1gwN6NrUV*&>LpTkniRY?L^H_j_;AI}`H0E>` z!Awh2sC7KnIsk%_trePu=kWiznG!T<4P2d^ zZ@UIUmIMjwkzxoIJ_4MBYJjUwkE8=2D376WAHxZM-N~#Uf+f&=Oj*ZIoP&ViWCmxp z)1!eD>lmC_#sn2J-Pn)oQP6N^s*W3oEH1U!bZDOe}TOjQGDbtYqJ<^&xxej&mvXku{IF@9O51WnpU%%V}f{$A}<>+ArW zr@0egshHpZz_nh3!mA}F%#@&EjjW@6>~#iFm^FdK49Ue9r+{%Ly-D*>$B-m>=V8OM z>=S6P@})r;*1{&|O|UUz5>GYhhsy!XFD9A~D2I(Ys5DuepSt$Ae5w;l({1Zb!};?7zkG8 z>_R%sISni7o9$GpUE)&q1Rj>M~rWjLCu zo5pC4%u;4b{si2eG3?r5hZi(ysx1u|DN};xb=@fLa%&moG`@zN9(YZ~;&nI>=v5U_ zI&$J9+w0+6)F~VHS>*SU%KVa4Sw`XDL*#0y^tA0;bXx4p@MsjQz|n~>Dmpq*jwPR) zcw=@Z_r4^FvXc{~G;*aU{VtswjL8z|-BETTUr8e5Kt6r#TFIB{$-v=Y2RXCZa4>(byLcE0DOrr;mD&GVjbW2c2OehM)i?*=hAvOYA+$aiTk>sd3Pi=waAc47=zl@?Hh)=?A?u-P1w^>^%VQp^Rf5E@hJzm=(;pp!%cH_!ID(mExKa-$LS9`o5t6yn<@mCb{y=vZce$T|OJa6s z$(p(8rF6kjU$)9aimABjrA$fToi3X?$)#4DFmc$IX`2zu0;l~0++>CWNh`F?C>zZM zQ?|3yC`Bjsf|0<_ z)TUpx(#9w&4ZK6O>C=NbGPQ{-&sV93-J#k5L?ZW0ZQz$JuQmxr0zZ@eJg7R`X47R4 z5DEB9_VCLNFO8+cDw|*|hQH-i2jElHS>_GqQiLW%7tR3mQU)hWJcdR(DVj|QDJh9a zr4o(dD3Yoh>EW zwa}Uaccw`Kk$@K_p)YIPok^$~{ zhFa}sJmAhMVju|tVO9)#RksEkDXZ2Zxic#OA%QMN1j8`i>T?STL;_xTEs|e6wxjO6 z78y`NBvYVC)kf}3SD?uXfi9ZP;bi5yYrQo7?%E#2SPb8fVeJ+^HLbJiJ6ZALsdqP^ z2jNpky;zJ1zXbh$=xJb6wiwf>HVNB7;3O&}{BrPfa+~uN;INmFmQxu|{5ZDVxfnSW zKuV}&eM4F*o`!A?`vw7&5Yg0Y>$`nI|rIAs9!Oj&x zfuST6#E1=VHJA>oj;%LpBQ=xN-H46D%qKApS6~-t<>|hgO@hNDBt!=Yjh9FB)m;ZD za1t6qp{A2Kx&q3A!z3hx2|lenr?#Fhxf{a)LIPd1NiZq01Ew9k7~$@k)f6S6AbRUr z*o&sK37An{Sh(x0GoXZssM2ukJRFt)$M<^S;jT&xoP>rL)y*agPs>l-4T}&XfiH$d zakR44mtQ3i33$;GfiKdF^0;e>03m@c$=%bUJ$J*=;x&8mIZtbp9D)akMDoIi8pFiw z%#Rb^oe!0PBm{&J0hgN3XF<=;xYM0g%3%@`qUyq`zAavL0U?1ds&29%(F=BW+OMsd z6x|hQ&h#NK=-qW!h>^%%f)Cf+ZF%^Bk-!%-%y3c7xOZjDFw0O0nIo?DhluT7WyeAq z4JA72hLEGqHi8I{WxHk#L8^<*jwLAFG$jIN*>PUxFzJHpBj9^>Qs)Fp2PLlT8b-+CZI^|IU2Y!T7@tjXr^kW9!pSeJEr8HH`;aGyw z&E%7S=|DFVP((Ko=hiEAz)9PqGkguctBoH*s?7&}5;P*)d-x9ycX$Zc&Bq-S9YOv8 z|1H}Y;kGkq?sC!*5(cOF?~Z1;gxt&a)f@FSoeUX4+~wiYRtL92Z$7`61CekLwba#g zoDjRaTB^>!9d)+dLV#`FJ8SzZ;9zz)E0F}q=JuFs+rkAhu1#A9l2mt0oN&2QLP)dh zgaxx^A#ZEMafb_&1=Kx_7r-)9q~;%Uw_sNQZEo-An;nk0+T5egxU)s5LfI)`W@Z$}MbI8|w}nMOZQc*)dsYCatGy~tajKhBjyv3x zB7ioxOLKOi9C5Y#M8Irr@2T5Ojyl_BB0x5;@!GzU)7dr+x2;oik4lD&)cPZ^ArO8s=UCB&_kHgB^sWCZak zvH8O-;O4D>07md0bGI8sC_?iQq`v*+sIzS+0%mi4)%KYjalTZqc`K!^)B{PnUa03n zl4H7J>!`CGBQDEZ-6C?_;nom=v$-cTXDYNB(bW+WSc^nrJ^buIP?G|Wr0}3D!j7O8@H$ty z8}yvwRCnZ^mAALKE&b+}lZ=h&YB>1wtG8{t|MK?jgVov9+b+G_;F7K3B#y)Q@}=$7 z_iLq5<*T)J(yO%&Vq#{uYO&PdLao=9EG}h{lq;`TE~I)MG`mKtBsp?ws`sc1z@a>_=XW!-y80v!T` zU_6~CcNb9WN;MA;LmUpi_OWs!pElgLT%$Fkc-wMET-JE`(#wk4cr~Wn#NXE4IhzF= z$<2v(!Vblg8`Cf@YvGl&pn-o)6|zoF7NmIgmo@K7hIxsR#{CU-;1o3Nca_|}ZGubG zzFTU6%DHX(Xm&?50?6M2WQ9#PR1H4ws5nT09?X6%xLw;Ii>yJ|Sxb5{27+!czr8xQ z1+YSPYb|6ve}Zav@$K1GkX}~{l73tEZoHtnxrplF!OW?Aif_kmK|cCz*oWXA;fmX^ zt#IkLof~}KAs~pn4#Q8d0V0@p9VynXT8c$c5QGQexAJ?V4J6RCm5?zIbV>PUS28!R z2er#L13~Z|kS<|vj!qvE8OXjPL15Uz!H<)BpkGorL}kejgN<+o!_ya+n=WZI*>1Tx zGb#>ZBGpCJPJt$~2$F@tQYK=*v)WcENQPJ`H`zfbuupD>E2P)2%ikm<3s|F+ z)tVbDfv_BjNcOX^E;xe5F|72+KUU2U&uz8vWO);0D4!jz%V!7OBZczW(a$iJRM#Ti z5td{f`N(G6|s+3}<34 zhZCQ}Stp*%=FxcNGM~qIwbt|Nab*i|7oD6q!ICR81GV(P7SyYl7E76*NHZcub-2tb zG)$1#hx%y2FqHyJ@gA{QXtt6FKDRM2%tD))C|k~&mU6xf#oR=|P!XAmqgG>Ryn3ri zLSeqCQWtmGB%K*<85#k9hRfTzuyuExA$=k21QG#zAQgWjr4SaXK9n>Cn5PB%MvWyX zkm;^rQ)CE&$n2qeOfrbd?|H$l=f#3PwvZZQTnoQZrG27bLhjaE$cbMx!U$BdEaH&cjYBS z`YhctlQbmn>w>=O6mL5h;}WCTQ1_f)U|F(H_$5arHYyXA*FU!0osFGAm;fq zG8H*#Sj(2>PE4yk!fVjqs*m2w+vd>%njlZV~x1EClXd znVM8}2)X(y`YC<3u%b9RSD;)gdW90P!RUY+zxE}SwN{@OPP40svkNTaMNLd%e28=9~5|28IAi1Ae z%0x*GJn99>klsfh$jKNr2nBu5t&ml2Jt<8ra{}zpy5iCgJCGd_#xB^+%h)zSVJi!f zDZ>&D7C4$8tg}D2pau@kv;X}Y`*RfwycTVw!3GQbBKE(pW54ZS{|nil=dvhIWWPOy z{rPtGXN5)iYWC+4i}|y-+Hvr+?0^5nVtyx!@*eiTGwiotXE8s_0^i93AN#nZ-VEN% zJ~+#MdoTO*g)GYVv)}%Q1%8D6xy=4t%c8uHMR^)a?A`3QyIJ60vTWba{`@@q?S1%X zvAFc8L45hmm$wh1!&h&6^W{sAW#(fNHh3HCk~pw!ap~$&Fkh7;J!v&yH#8^CDE9e3 zK+M+yYT&I@clFK`BHp-4~8%Bc>$k~L3U5T=YM1R ze~4T@0e}54K5xWthxi=f^DFTAGZ_Cd`2I4C`Azu#)A;`R_`DyV--6+vjPFDI>R&LI zH{kmn_*4+4;2HS-UHJSa{Pia=<|pCv)A0Fr{PlnF{UkpB51$i^KgDN^&tF5F_u#J& zVaV@c$itYzQ4IM}e18GH{{f4SA$|PnK79W(e19!I{}P`|7(T)GpTloofzLUHd=>uM z!H{3U=Rab~Ux@EF;&V5~{7DS|X?%Vse)SOye=Np%2fqI)zCVobzktu<81o14`8gPJ zFFx@ z2H)R@F@G85e>GzMc>MKOF#M?)=hHFd^DyLv_zwF9p~v|xd>+I&|ApbN#E_Tb`^)gT zj3EzWoUg|BFTwD$7;-a)d=|cc9LpV_ugCCj#Ak%@e+lC}1w+0XL;eNdzYCuqLj312 z{6F#i*%3b{`!UZycVBbe7+oi{X5L%UHJYw4F6FKc^ank z#Tfo2_?+Rde~8cj!#Mje&VGCz#PF*y=I`V4>+typ`20hB{yoO|M2vq2hWr^m{~Vux zfzL-_IsP)n`2dD|2*3Ib40$?+{3gEtAcp@gzCVc1C*rrChvDzQn9s(LKgVCc7{mVp zk>7+N|BZ2e5}z-@=NmBm@9=p$K6m2tJMj7A`0e+?`^CX;V*Fhgz6YNl!C#+@x%?SE z--a>224fz@kR$l~bd3Lb82%)D{yK*I2Bz@a`2KwuehK6MJ-$C5pP!2%uf*pcVay-L z_gBOF#lfdwoa6ZXd<_3|e1A2*Uxo2M2}8#C{y+Hs6ZrgC4EZU1zZKtS`21UZ{u0Xt zfBj{AeiWY*41W;ccj5b&!u!R+e<7Fe$8Y}!-+v09cVWn0j2Yu|9iRK*d2#TSn9lFw zb07@W+_ir(wvS z;`=syelo_q9-lpYekneG7N36wX6TZ4QxEVuk!>`_pd3^z@5k_e!{=w=ug}N#Pr&E@!;rth+B4Baqx4P!rL(9PcY69pYOx)5x)Nte)VL0|5Xe>kMA$X@E^i&ACDZ5V0aJ1{}f~X zH2(S|47nbkFTyyF!uRLkS35Ay`!VD*@z*K7e=ffNEvEC880VE3@*^1X4;be%hWs-A z`t2C7YDzCzkVNvJQJVK!sq{DIzI&O7Y853_rJiH--s#v55{>ehI|}8 ze;z|V7Jt2j@86B@pO5dC@%cs!c@sXLgU`>xZ;#>oA7Y$8!My$i-=B#R_yUY`5#u}; zL;e%qFAlyQ@*Wvq@;rj|cKL_JK5ySrxpTCOX|A*mUgYW-_c|8i>pMi0{7T+I& z_ltwy#`h(R|KAw%aTxM(81o@~|51GZRD2%B=Mj9~hF^UKzTb)OkHhCF2)Q`;4t#$B zrm%tUe~r&a13M@Y%lq9= zj3J+i?{CHTyIFjEKaJ0S$LEjX^Tqi5D@^%sFrD{d$lqhgx8n1u@Vq#9J*IOjK7RwB z@5Y$lgK<8L-+nWOe;7j^i|@aKah`puv$79GJSNk82%J|emg!_F#cEL^AN^K{FN8cU3qcvPZ;Mr@z?j@`x%Ur zcq%UrK8zvn#E`^Ic@e#o;Az3|_u}&l@z?Li6#fT8K7!B7_`DW>eIfpu_$Dt7-i_gR zL&(E}#4&kskoYAp4t^fP-Bf9@GQNE22}hO&VQ;=0HaBlvekV9Lm!9{iZG#^QVK@5YmSKB+;#0s$tko;Xo z{|@0NPVC_{=&fB&V3e{|0UgQHDFf}3!}=#2 z%z}XVscJCdgZTph=FNJ_IvD!N+w@PKno4E?J9GLlkrWe9Kbr^Yc^YNy;}4t!fRER6 z``F~uheFsePqKMmUN%?|7?pS}DrAbJmY<`oTmE+td&;ScK{ zqTs-J58ty5SDeuwe)OtsgZKA}Y6yHXhLtDlVa`{7o%hw_6NKr`&{PJP#oy&cMpR4& z^pmIG3;a*%C4xfBYGBSsXA3^cwp-$imncyL_m6qtP;nTzqL1Hs0APNBF6~dC#Z>zF z7wey+ShA1i6H-|Jk_YzLNscPm?86s62tYqy7mZRm^76z_-=%;0#3VXQWytr6oOgYFG@4g!}W2dfr*m-A~ zp?`Cy{tY(J7&E!Jl-BB?9D&k2wJZKBViYLO}oKKlE>2kdz>| zV!H8SI>jZ&Ox-A-XXau2MDqP&T$;jj@=`#Fu&u_jM4p!ySCR<%Vsr>3^6ff1MI!n) z-=%+pwILcWhcj4|!0I4T1#H`2kcSTI9xSjasO#4heDBKCbtB!UpcmJkzySbpbzuikt2-tW9uOONV@`QKuL|#rkYI*XCn6~&~s*p zwH~&%7WpR$+{a)vg(6ipGxTOVi`vj;3r#J$Wx?sK=T;iT>XtR&YX?d8Ugsk8y5&UZ zn+!!g5^H z!q$Y2Ikbj2%9>RGH;^W4NOYjmZ#L!XsTu=pyA15?Lo_79P)@Mt@|m7WcAz(`p6eeY z;k5i@Wxy9KI^fKEp%@KipPnb_M{4QOxy#1a?ztiN)?JeJ8dC}V#gi>e^NXvUa>cB< z!LOq`o2!*8g?VxwP|hmKk&2GoK>eqXZr}$(x8gxUw|KDEtiGzkhc{EmI`*DC4g3!4 z%7%3@XsMI(=GJCNJ2KKP6l$4_!@gReIWKEWU3Gfi)Y}|=wlkM0$SlF(U(@g}DTh2O zh0eiRzHWjKv@~Tx+@6z*{Tu`9a0d7QU$gAp#lk=a*U;BnLX_)zY=X}-G;2c6#8zjS zIPY?@u>srQtCyO!At5LozdR0Q=VD{Fz{ka!wNT2)Wq;Xz$G~Q6p#5?#l`Ag$mdxIM zIU9Bv9?y%K4wUoO3(|xvi3W{@H{}nR zVCzg{i-t@yS}zIDbsgD(f#O_r+$b(-1I-6ToOY-W6kz{s&g+50H{LB1l8isVg}rmx z-h|=X^V)t`I^S6G+x}_8w-rTHz16Np;|iF)kTW=S0UDKtuv#<+&+J0Hm~Ae|jD|L& znI$rM>6dQQZM9(ZayEL%g7vOH$b#7`+3Z0J)~q$`g2k)Z;sR)cq$CxmUdOg34L^5c zOZDaTY^|9dE~<7x2K?qutobgykqsR-{A@+Nwy+%6|Z=H`BUju4-_)1 zTWw~QAtLISHpT5q!8papYk8G{NvZn;`@x*~X2!)Dz29Ym{~Ly%y3A%~4T=e`=YWC3 zjRC*sXfq2`<6z-Pc2P5lUn<1@bN?Z)SBtBd=t%66j$A&CLIG z19}nkv596T=ZPl#whoT!XCv*#ku(iX69@hQ=5JcJ6g^8QkL{p7FoA8<* zu-{_X{l>pdCk@DzhvFx@KEcLqoP#z?n%Xw--@*KC7DCj$mtm7kmDg7bfmy6HPV$ihh{zn|~O2fQ__U&M;#2!{C3I`I~C~ITLa7uY~Jk zY^JH^Ki!Pm{3Ab4vZ1Y;7_rv|b2DYbHsPawUi^T z5r>uCj1|8TAExK19f74iIX}&;XQh--)a1q=dSGd9w$xOMl^k+z%L^m>u#w?rC$MjS z%7vu~Y^j+=hcw3pmejDD$kryd+OoJ6sV+o|z604vC`4*VIy7r#mR?^|U)X!YM;PXh*r z1|0aW&2-Y~q&H~H&@s*7_>JN4yOPbCpvlN}pVfE+4)XI`p5Hb})z#%u{hp~dZAw*s zmdA8|yG%WKkLjVdnXH{kaMYvBw0Tpxb9X&~>j~y+&Qr3XHrhW0rl;Fx^7HqHc9}}P zrav)Lb0IZQp6zAtFHF^((`A2?AD%BUS4UF?SgBNd3*ElIUSYZ|o1@d%USqZ;m#LD^M*CvHw4%n;OiakJj`;8%s8-gfn#mqHd^L@!nFgXN+oQVT z^9qo)rbfnttz2~EJo+iDJh%Q>#(NjbrX*{;$E{xk>xh5aJ0x|eE;aj`oUz|%3Z|GN z{wZRU6&Ys$2Z5LKuBkR??cNf!S28Vs=8ZMRKiO*SfgM<{UJ$JIAP=n9Ef7|#g9q#N z%(_F%<>e0kzmln57D0O_)3#nE7-WyiFSFm3BTra>nZ zKhD&xD|QB;pnZyIxvP?ERpjNOOfVj@e+fH=L$8)TW@QL;rQIlrnr#!oey-9upJ1!&0}GHIo3{%O<*< z^4lfdzebSHNM#4=S2=L`J846;{MiQNe>ddx*@llRHRg}+%fOH`iVK)|i}S#(TVosc zvR+_L{hr3n*Y!8SZQq{(>iHTqpNVNqT`0-(d>Lnq4+9@+ z2HNqsJ*5Hj#~O2kwn~k4J9A-E2n(MY3vOH0j%(`t_F_5cztA$kpLK0{9cl(D*`6Nh zEBdnoj{JqWZEB}Fh3s;fN`Y)F#x{7%ee*d8ZODPoOn9k=lc$kvk3YFKVJ|;WG^ci@ zWemDlw~<(yt+Z3!xHc?nh!;dFF<9!94-}4TR$$S*?Blp5U(EN*6Q<^=;*jaO^QA{x zOajyDk$5{~5{uo9j7uONX`sBO8dZ0q>qCVm@bPPYgj8V$UpX zNM%eMPxtH9fe>B#0{yv*)EE>2&5tNyjx&Lw%P~fhr}Mx*Dl+F>jgn;dpkG zuS!9k#Hg>pSCV$1I2iSaa8{2d3#CzamIwOOc*73*DJ~ zG45rNdY+aVl~e9X&E)6g@&nO52mlJMLBPUZ!JyEBRJ5Nv65-({S znYGslkoGh!Ei#&|a_Td+)K*3FFi(D8LgzgWPA{Z2)O<$4p=QHYFwP5GZe-(ZO_&*6hsHr4-i4ll3gP+@N}ED%=iVPV%b66S$+HP-?h z%~|(_X|Q7%24VgAYHyExfph}w`Ub*$&4z4}FU+?d~}iG!tJ zAfN%)yjTQwvZXcL!9XH3&rozWW%)kT8+X~LIX7$itj@;6R8ALZWeyv!v(Zo$MxioG z+Gx}PNx#x0p>mp;WM1l6hwSqmjIRT$%okD5Ov7|C_=n&U3i!*zbWCFC9}U!*Vy|yJ zts`ZrHz$u}$D3qe{m+4Q`*y8#4)=2+J}MhHs#FQ=?cfB`@xV9B{m&aisaf*@y#*cQuNy zrO3$37F@>{?;8epp(71nEXOy7LBR)%-zdd?P&YDivApZgkF<>7Ls~-7R`NXs`KVUO zxScvQ{g*XiPhKM`b8uc>BZ!9xVEdfe(mYhn4!O~`(81(kY>P=yWAK^T`9e=`e0L^v zEXq7-v0v?#k7>?DhG1EuMHbVjad9nWSp2GtT{Q{0k{#_z4OoW7qy>+1IV1A4Jkz9A zBcUmjoJ#OjCP-@_L13Lbgosr%mtaGAf=h-R39D=Hb&_k+qxU>j?oo$m~aRipf>&VM#SerWq2~Z*INuSf($8d%=PpT`CmIUV<$6Sd%wzz8fXqgjjzzIwf+&XPsX=XE4?xv29 zdI4ZhCdar#02ivezAJCD*TQ4%R3@Zkpcf)7Vr~P1FyNL}MRH<4@ z(IP7d?$ZdiNzo$1QMtysQjv3l8TkOvFPB4GLppFisBt1X6Y?h;_2uSla`7V?4+cyL zJmxF8*)>s=DURdu$2BI5b(5H84aVV$Og*Jhpt2-U%n=pQ=m#9nY8+`Yy0g{?6Hq*- zQDByqAfqQ+>y_yq9u){)5OO^8yvBz+8q)bnU5S)0YLuwnNtANF!kRrIpD$}99Vu}s z8N_ZDb1b5&Wb{>yFfAwxRawccWlQl=E`{~RDa70D<^JYexXrg z?KTJp?+Dn?d(s!(?{=k_M>wg?vv--^d{J)Aj;y`?vLF|6k(OKQc5GzFgnsj|(=_>R zS~X37yx;?_#i>WOJkk^$bx%$NYE9J0=Xxoh*IeKF(bR;97_ByM04>F;$1T9U)U4 zh_BZN>3S>>pI}{qz1dP%F?Rp-ccd0r#{{ji@(NsOuksFk;rZkv!?P1`9 z>mrRy39(R}cZ^oXv85py+j}m&L}OKILdZH$$qyNY*_^!kD(?W7&8MVjlntSmX_S}^ z>zOu`h4P@h%jO=q2H6!FnbkM@rEC@nG@h$89_-fFMOi%N4mK0{g>E^NEG{%-cc)~o z)woki*>Lw|=cqb=rg15iJ}eKz)jy|{kn0=TU@Hyw%ibByhc{_#TW~94YcnH3*{P(_ z-J;Q@gr3Q2a2brea5Y<{yiKEQ;5~USDc7sA-J!85olThE;6*7dt9NNkSc%c2Z+4-k zOZuHgq*RBh-1JZvBJb-t&F|TFO7pv=47{x7R~fq~3>`VyKr2T+V(w^s1=6jx(cBo0 z4~rla7xXXLp=_aurvR-au8nOq8~ZnDqa@Gq$;chsg6b7HuG!tezlJp%IU225o4x?8 z+0Jw<@1$8)dTh&4kuOa}vHsrS-BshA&|Ho@-n4cR-rGa7wL^2Zg1VHHi@h{ve9EfV zr$Q-PDa5-nK7C$d{uctWV&1Mb_2l&>EVI>94qGt8FEz8)dPE39MJWvq$Rbu(raLd6 z$8^41H9l-C3$hV*;qD-Qxj##0u5mMCwIwd7Bfxs2OHlk&vyRowziCOH)m*nw*!K!$x zI=8>GT#TAP$U0IZvzDA(Sv{sP0E^@FtVUvuCS4MFqP0GWum62c4ti8Gjj*mgtK49(gED2IO_R{G0)|6#6u}#NZt$SF43id4(p7Vi^Wv zY~)Dn*Ep>;i73a?p?hl*Z~RB9(z=4Ts*=?xDM-BYZatOUwNl1p+t7ns2jvhaG!amj8*pFZQQ7Bg5F&;QtSItaLB>__;K6oQVT}Qu-2*t z)`&d@bW8{qy$>FcquBXzI4xmC8F+Rw!{a3*O#R8c?X1cW!m0^$v@QVNT@A0Ym!jTL zTBJjB$Ak}vj;mD4Q3C{;Jydzt3PYq^a(_kRBd+0=Qz)z z(KStDO^JRRYmWF&#v95~9a!6RRa>Ip6gpkwVXV>a_nZu~sv}fY)-cws3LwyRe3Nxp zUn)JCP*vDBp<3otEp{&u!cZ-v`lIXVW|V*sq)Mr4t+b%^fO1W~Km@1G^IcJ~IAuH7n$`qLUF#gynpo0@WQ&7J zqjr=kFR`R!7G2RXtVpj?!J1J0%prBh#~B)bMrQTm=G0Gcb#mzIuihcO_}1fSj@Ju{Lph{*)-c&{b}k ztf$77qWaIySpmQ=)=XO24@rVWjYOJDH5zMGLteq`mSdmMnBud)iS!MntgN9E_GJZ5 z50iID=fJp4Oc^`hzpR-pK|2O2GKt6b(5T2@ese=ZS1wrJmzip)FfS}HP;{simiw5( ze;*z^+ZY~qkcKlifj49!qO&X?Eu(K0%bPPdj|#@}9?si%={s`Bdng&OCyXh-f-GlZ zOeURX(MLAHxp6v*IzVI)~PcMxWh;hw-{UU zPMsw}M>2FNBeIeokUcw&&tB5xAxDAFT*z@NiLgtV9ZhQNH3f7zgO&~?IeSM?j<0B% z(C~$t9L!ydi>QB@`I=j2yn}Eu%d@X>1?u07LTFXW@#a5BdQFpLg_aGtbVbo~D(BY= zErOiEkR^?aaCe(iXm4n0P-_DRIfzSF7CAp-ZZs)znK9-D#-PZmvN1G2FWOoI|Gcd! zvWm>Z{A~r%^lj$%icCX&hf#r-YBDKwy!1~^lkFuNv4{zxzjHYFULwp}jKTTX>g?=5 zc22x<4>$cwlZ3da7n}zg|AjQ|=dlIve5`K^unQQ5*p}_FZrS}?6J^D=4Y+DKaZ`?q zz>95ybTb68Bm)WCqj1uHG(A=3{S?)CJyY3b4GOVe!%k4@a6 zL68@71h;;zmh7#ON3o*;!}%M^%_X~cD+2~-!(9^w8TuLN$7t!X`LJtHZn4an&0tw` zuZMhrF;5f93cd`d9g49U1tL0tkj?QL0E+-ZUH|YSi{>IVlQmy~#I9p-KMjwuV*;MM zG)ZGv!ZiQZ-FWcNWGy9vT~elKoT}mQmCVDDwnH=|y8M3JdY9nTLp2ymp&l)=Gv4vy z3=Mz=I0RIBX3MtdsQH3FG8)P@<2$fZ10XwfGeNF=SYCsnRt{7KWoxc;6$+H~Y6y5d zKqSZ0ObvL+?S|#+o{-e>B_pEX>hcpJcfhcx7AWxF;R6f$1f`Rc$TGjF`=QJ zV-)6=*-DRfz2NC9N;O|zyFJ93Te^_(3yY@PnBALODxfr6^VGu@^qTcDjAZis&lr^&SLH92rvL5D4dm~E~_87wuRHbssj6}l_gs#;! zT~<(en4f<|WbMWo_kv18?a3%i>eyFnX_~A_or5S$7e&7~j8+D`NgZQ;$r$u!Qln+^ zo3V}tR#%ch-%=B0^=AxQa*8NBlC60CSpqQ2Kom*!4x|3DZfa?otJNGGkGHrLvo|N@4x|WN8V@tF>X4RewE9_t!+*Ud->+ zUkx>mQK-NDr0F_MlU08m#NLOBqDMK1y!y+SCm4f%rz+cibG^Z#F2_~ZYqHRu2Ezdj zxaxMI?v!s(S$eCqiO|y-8Vm*ea=cL!hxVv0&H|jbridEJ#esSkk5KG#0c2^0Ag*$< ziM~>fh9-|}CUJF^Hr}`5%EKJBx=4D1TX-+7G}POSLeDN~Wk+XNf)I6%CdwLYxRCAk z5luhhI`8%D3h2iSf}~&rlOyT829jLJecOnnE{+LLk^<^sP<`bfTBU%CF3|K~B_@a? zYy9@KiS2Wk7o{ABk&if!5eVu2d^Xxe2Pqe6Qml}+0ULfpwA{fp+6!rd+{KW+5sZM6p=|Vx8liG+ z10`1aNe79NXbS(6gA}E4hbzw6cX$Sn7w5`J zm|9dbwOiY!s5q9;`1fdzA0cYHD!QAdejhh-u#{$D>*g$A{(-=7f^!*-a;r4T=r~-r zxpQ)MxiT}Fo^D|#nLn10>AT|W@N&M*Q@FxRLYB4t>5k2X=TqrXES|K2@_FR0_@1gc z36={te}s7k^B1PC@++jdZ6K-MB=XClJvl`bzkmb!g-r+K)2G!Lg9Z|miBJNQqXFc@I@n1(wdR2Tr2YQ&q5>2f5GK&Erm3C^C;ZZk{RV%3yh?V z-9nbIuM9@DkrBE5xi?7= zH4;%9LSv|@nk94MAgQD1DV96sYQ(TdxN{X5vEL#qyw-?)=f?1ky$_x;W!wSNGW$$9 z@PKLK4j7x+`@jSCnK0g=z1=JvFN&vbgJyD66T}l_%u=Zg4#>1~n$>eb=beU-4rK1q zIxC%b0sY;)(4963s(Z4-$Q+xE??wmLJ%-CU5Ro>{_o;M!_p!dT(K3;GcalKogK(*g zqAP_?**af8*oxqKW$B0rV2e0a7K-c5$q5@uMsyB z#x?oE*HxY^hpIHaFKV=D!<$fVM4K%6WsQ5w6#w?l9Wdw5s}gPAg$mypB`xDjXrt%vN;k^!fk6mz%QY4#2pjzh_wxm3vsq9-+*3m}hyJGp^-Mzc3zIC-pJbE8y{ zKWesy)sAERvQUxlnALJop4sX&&l_dr>iptu9-3ySSC%)8B^Y^4`w-vanA}0S1rJ44R!vEi~&owtbF`6*U}L6cV|Y0UOor76R!W+c%~IkG z=Za+vYu>W37MGqlLfpQBY}d2gp7x#Aqv;60J{#sxAUIdjwgB$fyuglV9i6CG)u_|* zK2R9Q%Zggw8z(-no(Va3Ltxrczegjl0q17QHobjih0waH46MCoGobT@Ev;8dC+?_U zMO$}u=w;ZMY3#U{8l{Z{(+y3s9)<^dX#wWKkjtBowYt-sT+A|d=w`LFWt7Gl>6k7L zOK8Sws(jKJG=)Ce#VntJYxPjraJTw!g&Z zd|AP<`n|NZ8;z@D>|F7AA-9hZhf=}&p;;MnqI7IZ$JdCOVih(%Ha6T?9hMO(5&1~c z6D{Gx$fw2#1!-EttY#*x)ce#o{Y{gP`NnC{zzN2_Ag`sZFt=t%_u;~35as&t;8qJN zF>f8gN(4vUVr(_7PNrsbg0wEWH%A&PP7J2a>Y6vAdva;cQ`$OC3+9r%xGY;tn;@rJ z3_2U#k1LQL(>{Z?Vn+AmN}R8>?+z^)O!DQbY%{I#)@`QN?KQ}YX-g-~8PNT=Hs>Yn z`(Kl$l03IATT7ejsn$##PK&_x$#-eXCC!@9y|)qPC+!n>)5engw<+688v?2J(tNiC z`7Ui9)(pMwx2-rIX(Pv`3?=z&6x&LhwW_wJsXg%a`hkg|GML{_vyrwmsb(V4N0T)Av_&UFFAHt{I_ENL%fw@KnO$2G zk4B!bXgcc88F+;nPCvlDmNs{9)U2l2Fj;Xdd`+{Ewz%gxBg{qMZHM~n8g<%+;RI^Z zyrD+iD9CNE$SSOC&69ieN z8Jo^LXu~utb?+cK$B?)a#dQ){#*Z8CX*iEGY@CkPRb0R-)=uH^L|jB7@Lr1M`Hu18 zMP0)stih}bss-4wuk5t1&Ms7=hv?wU%Sg!PjTv+`SG1yLVm>=_?v%XemaAG&6EWy& zu4OgrC+2Koxo2vjr@vf?zWl;DKO;F?G(n;3xuI1(q)Lf z;-5m)=|IYDBqg~P0j;aJgHg$HOH$0dLGLoB)(Ld4yw6&a<8)fK67AZk z4yja9OH0wP3h?pt+07k}s|?gMfNDQObOj{GNx^N95PPGxQG@WatIzF4l5YX`ee4M5o;q|98u zmY~d`(RCfly4-5u=$a4*R@h)e)eKT)mSGZ9StK2)<(Xk^DL&gjTj-Z1g#(;-B%rR7 z)TQ{$q0xPoXI*Za-UWrw>oxh`Eifm~s z_bXnXMQY4~P(n=DEV`;1t1_Dpo8e3K`E2I>S~4#;74s;Y?r_C%7T|jRj%FS1*wG=< znucRZi92@G2y`vSvzCw(^48feDO4SJUNfX&Tj~Yr2v(xzml%Pj&x{4O=ec=xWm9wm3dm*Kl2H8b-Mqu5U@h zsIj_+8(Y(`t*hbYmNaaepy5}nVGS+Z%*1IMSHSHgz+INC7es*6J#Z&mPvMv*&ni{r zQ%STP5%F+0$#9o89T^dYuIC=sljsdEB<>>_i8)D%hX>hu3P+R`r*=F-G7`NpYHUQI zd*gA|ljsdEIG-XJi8)D%%xBqp3P+R`#~aU)j6`p2+sGTwvmSSWq8?~tbJ0Wy@%bWY zaM!+Km|hAmvt88>W90$OUim75H4ZO0UnLEyA3O?O&)-?knp%r7wo)D_54yg1i*(?T z@@S1G^hE&G?f--AtG&m#@Gzqj5$}-#wfBg?x`z3zL5+od_L=5b|B$S!u^=$r?#FD` z{mxl;-~`|Br)1b2Fj_d>@)vB`{a6|@bjf9})*JDt0t?fCOdW$vsAF{ni}7eo&HKcu z(-Qt)FySJ94m^SfBP*Vc!NAn*?^h)OYSoFrx`s7c)8I8^Yqz8!siR%DH4R?hwth<* zlDfBzScC3P^V03U`E1u1bL+Q#*DRu9QxfCOoa>=EiCFZ~*@9JhQ=W3Q8ZRa6u!c-| z-j)03tSOIIHITkzuR2ViU zRR&$nLcFexCei|NaYyrY=kd!)>>1k^E%TFTflXHw(N1ESv1L@ghSav}RxMAN1-$Ym&` z*kuZ63kEF*N!40^COB{!R(j}qSJQ>82hJ)oZli7ycOqvUpEWFT3CL3ziI~R;WZ4&& zm23I@mKIXq*Q6qd0;y>P->Qk`@$4Ja{aABDiv5^k3FF>Uf7F&j>j#?FWlYLSxgfVH z7J8y@7)bw-mOdDo=CVce7*4sCF*g;-SISCzig7}&w=Ca-W=4n7{`m*7dw}+m@rovSkO3dGNk%{$vxQX*Bo?c}He=Y55N0~a zu!2C6(;f~5@uR|~Fbw6DkB?hld6e|i%gvNF-2dckm6w%%)&xnvWiPe)UU~V5 ztqC!>$r&gyNg3@EL5Y1+bC6YHHsHtK6zA;1x%5hmAiFaJB_;{wuEluACug5+srM@>Of zV?~ga{*oTiav}425#%E-W(4?)gWf$`D6^ub2csUj9!UC6M|@dJY>j$c$UbvL|H)iV z-l#_boyH&(SpCMLl6+=%bX7E6)~H9p?Py}}AhzR;dXkXS7zsbr(+`wqdr>&3NkpIr zExiU@+yvvZT$~uB$IWaa^f`vwZj{NyOvjCLG>z;=8~2-eBJm=2hVDi}UcyL3M?Fh4 z-$BS8rOC7=E=l0;_KDWtvQNB;ODg>L3`esg3$tEmfIkoph-cm5>$ma`ATM-u{5)y zs>Kz+11!q`OfIX%a*s7Uf?H13v{;i%4|B#W5%e|Y_a>Jb>g$X`#%&pV~hyOYpBbNF&s5# zYijKBaxusBi=sD~-!Cr(^$w$uYgsguH`itU=IA$cacJwf zZ!!+?5u|p?8c}|}rp{{E72IQ{4XARAcny0Ja)^qS@|2nN z|B6Gzm&Bmk8HAD;%A5OHGc@kHT+?O6m4dtATO#fz&bk*@Nyu9miLW;G^s-sFIx{~z zQ=Qu{CnYO|oOeq)BJN5}^``Mmw@I!KOOlh%*kfB7rnm;T!Zw0)hqbg$toCPeW}P7; zA1%y!f7tvyuz}1ox6vNKw${?p2;Mg>Q4i{Mn3Gj+r>RB*7&MwHa#7O+ zY|D3L14HS0_Q|Md(JdlXwlJ68wQ zpPu2O>(z{6up`KloWGaXKo~VsL!pBW+SLT?lV^(3lUOOXH0&KZ#k{GfSqA!4Mx%Ku z$X&LMH%ppCt9h~k?|x5o-O9{f^F)weGo)Tg%mK9HGvIPk2!PH?P7fJ{nJ$=5^N3K`9~VDoqlVl^BZ z@ZIl9DSV&Z=`|dQ&>t`qF&hF(QQrcICutJV(ggL8Vb7T`Ih3uS7~(3J0Gz=<%%2+o^-BxC=^*q{*!0!uy}IF7hU6KOXh1iS7W zQTRLdhTn+jz?7Q*)=feEi%~%|NXJ(~T3-58ecW@vU|8nk5fW6n-kL;M|@ zc$A1h%wt|owA`howo1gqJZMVfBlfLVA{y$yjKUB@($d@{R)L?(Ss)4NE zt0lJvSw83yvljOh>+%L!D(qQ?1@R4%!#=fj#lG#Y~?(>h}?#+}h)8VuvO0M>9k@T5in_Xh-FEv4S` z84ZY{4uEPW|3?jkc}@&U>gNBfVNn_ZHo2pJK|@-3Ozi6assSyN$({Y*G$aPC@no#N zbcB)(n}i+Dk+s3YippvM%!c(eShr&25gKw^v%IMwGZMSu+s5HDobr^c(+EJ%H#Jr? z0HdkuVju3&ZfSE?16rmq63gnkMUGot6HXABmiUIKyaJ;ugtAOk+f_<~P`H z-AM*9f6&CBvkMx@oC6v06VY=Uv!m6r^f2fS21SzMWd}(5QxlS6$n2krq-ELliX;!T z0)tQrz0zNodn(yzegjp1(NtNz385z3D8eSP4X-!RaR)LE?keDPUUut63rFzPD-9&MkiD-JN$)YcCrJU#XAlNmrEJMO1?RZw zHBFN>=<+acT_&PVWPWeZrJ+t?6ygeL$yaY^x~#Y&)E~|lW%GHo;l-7X`;c)cM3XwM z9w@}OHDOjlZKyNZAEJU;U+9||;YMR_av@wtTSVYZcelA2p&0`dL znOTE!=TD&+jpX2}e`&I;?#~CUY>kDywP`YT~6L zGtVXGRSg~2%Q%#{+)XTFrtWg+Oh_B4Nei+f$<6CQ?(BAHEj?CBf>AzaepwBHzzsTP z1^3DolKtyA8{TL8B;@ss#Cl0qj-XX!xyqY4JN{TfQ;QR)b+zdn2V5Y^mtgxiF&mF7 z8YltFQp^$z53{-6e5O0<6i|#SX|mB|neV9eeF@H%3cyy?VAf}*B=DIxNH+K4I)GXj zXEPN(j^VLjWk&`CuhEQP1w7{}5&S57R1=&8e}dtt!@2NdRi-xAdT|_j*Vgo+7Uu>l zau-=m7L)N_pqw^#moL}Vkmygk^4(cE5bA{O`dVtMKk+czT`lhTBj*PNkS~vo8^; zhqEnj%{3W&Bx7Bj1Np35d|NcD(?*{21JU^zkAsqQ5_SaZ#26|+MBOz zkUPxm>KGkSA90fUf&?JL=T-S`IchD<2V;EE5I2mO0Ir&bFh*hH~x6 z)_UXZhcLa1me?v+7qW?&bA65T?Ukzn`Z|L!$Ow{Vyib|CYpSgA5}{^XEW&nU8{T+H z$L+~DL;)TbZ}csBj3yQRG_I2HKQ4~dlEdF7x%u?nRftc6qKL+85Dc(`_||}5n3?D& zoG4isn<-S^(H@Pj#BrUl$0n$%3_L$4Rj8}P_3L9>qEnDGdRFsJTGbU67? zO|aDo=+K+a6Sc2#59)OSDd0C4jHb4$I#7&XDp=-nnYK>V=GInI>q0iUNu=f35nfZP zfO;8JmsFFXW*E|tbVx%%Oto?nQh z!#TsABn5ONgD^(xE=Y^-pW219W@yT+v80Op!BZk|S+ncYy}rU5qa|ZkU@Rs9a%H)> z=fLq@MpI}_0zAxWw}`eg*$>{Ll7>2)Q7F)EnQRuLc?{gvsfn_}-i7@BHqmq!vwH=q zfPTlINYbDiWBDc|#gG*q6-mG62v#I{p!*qw{fXV>qARFZ6J+gAv;lAYM&vBU%xEFw zUV$JZ8G;d*+?g>Xn;GLlHA-!!rpOwB5$dAfi>xVZ!yAF=xPuvovg_qmw4@2M!pVjF z_-0Wxmm|X~I|cMD2Gu3mts8tbtDz(tvg@x!($maNk_hw%2I0VCVQZ%qsA+OA{;H2R zqU4X?CsGF3_i$$%N-;kGRR$oCaFR7=ZC!Hz+(S{iCK`dW<^cgxZ$fn9L()2#R+p^H2y zioeU=@1eQtncb%@DCY`{iyN)#7FgrqJ4t>L4zBScKicZa^y= zM=fJ+VhqN9Re5eGQ|qndt8&v)m%Oy#6#F@vHfuhch(7yQqVqELfj2iy$6vvCjHznb znb9%?TzH-)(;8FRfIFWMWgoIPyfGC)K4u7T$(jdjKxNK#TyDw)-+onl&hOA*bIjvgUDNcq2dsbTos|5f7FM zvYpRdyI7Saxtg^i2hUxh$wRXhcrF=!^Bp4f?_5r}TrT!t1A@1h0G=G;;r&&bRLhet zvoB>juoNfLqn%^*~VP8__lPs5MDM3$3A zXtH1>C{%_W{D?@qokPg04hg_J83=hjmGa<#^JN+G7HJ@lVXvAMuQEHqla~OjFc1Ub z0#4$}X(Dpq;+jHhJx4`uVP@a|Wn12QPBQj$#v;6n+dv_n@(R0KIC4o%rZxQ5fG?Oi z)K9p;yy15u^csc+B1a{N{7NH{3h>m&MC5a9$rqUfeV(Bxy<%B*(95?8d22$NLoWB_ zG_67Qf;i?fSW$!6WuO4RY9`m+tkKV2612cj%mX{~l~Q@ISS*B5^8A_78my%4iL$2I zgqnD($h(e%(VJ%Lxa%2*L0D(L7H#Q-tW`Bx)*#FVjDJ8Boxr*F24Ms_nIUkLoCho9 zdW-QLm{7EarpR&>p~gKfvR+{uo}+Z!YmCE?%h~)2U2AK)tRa_!Sl_I~@6O!bkc%;6 z7=zX1f#9}kC#2TZ6j`gu9_EU>MALH2@2w_ls1+FnJAB%TqOt|>&j z7@UT|DUPI5L$7OJ`fxTb1UGr2^i7SZ9(PG+O5f2i=sR!-C4&PpQR(B$N_;x zD08FnSe}1)eMcg6JVVhw5A|oGds`sxeN7x%&umw=U-qQsqx3f~DWQD4c1^U^dJ<~q zZ3OkUxyr`<{^hlvI_{s03wD|sZSF^4s5?nhhd2&~#IWMxmfuYDoyd0lou+IN$Ws`J zGRn^}^RRqocA?grkrNnQ1=;Estv*BSshU`nl1U#nAV_+KmK3d4NG*GUsyVZp(9Ipt zXK83_M{5I)cCHrPIhtaWd@7WWFfp>XPTC97x+3~h_ro!)IIGSTQ#5539BBx?pqN%lp0V;Cbmg3f5vU9v)Kr;4L z#$t>bG{>@`0b(7YmuW)bn{bC;w%B1d{AF{s!VrcKQETzuDx!B{5N^S%*{9aNf86)a zzygj3H!DEqE$0aQpRbtAiuJy0E?#s*09?!%iWW2cx3;{%_-;Y%PO5s3G!` z_a(0<&l2(eRrBzai#PY{IOu5~3;J0NjrerYg9Ly7zXJb2gQGQ-DpimTuV!C;DEE~` z7mDZ-jD2K1X#B}p`=(Zk@YQ_@p>Xx z-^Y<{^l5e52TOc$)@PCNEt@f(Ox8EzM`7JWU+g;(`?JG%-SKM@;ZM6w306R4Gpxuk zySc-pm48aosaj<~KZxD4(mmvD%(V9eQ_wJ|y}6>C;>hI8k)bYgmsUn@SF$Xw_HRL- zr=ii>bp@5lAY}h~DDzlT1G8EUM2BF}cP=6+r)nv&D??Ido#x-22G~lKeU?IjVt4p6Hj6BShY&nmoj*teph& zm#P}4qm9sSYnI`j_};ff`|FsXJwmgOxwx6|>(PFT>EQmPnZ}0+1GJ09zH8+DcLkc) zpoj%P%{F20rHr3^A+QZKspwts(aeKf^ACaSuUSIVT!##na?%tOqxyD>X*>Eg6qW#F z*N0p2=b8FBsHI1KYUP?NymKQn<3oY{JQE0LOQ^q-D`nYO9H01sz0JrT&OV22qiZjbq3`I(l+!lX;q_zN<~`%EeR}p^ zGC=)Q)|;%MIQolhXVk#VGu_dJniH`wlFh|i0xmG^^utzd!?mOVtt5@aKJuBQT}G1-(8}~K zbm?zQ#kwh(R+5ei)6O&f(#xr7BMCF+OWM=5v>23k7HXzo&1trfeR(5#5luA45g{U2 zQ|RR}Cc8`0k~z3ZA90CR>AP?0yU zJX7=jBgi{7jgBkk#I{!dlORS7DDxAPUoIbycUFE(l3rX^k|HjxXg}{YN%@y#QY+Xe zJugWoYe_N1?#lO!vep+Dds0&WUXy_B5biaGzcq;;(-I?$oumJ+{Xx>Mq{%?u@|9>k zAp18-`J3dFbD|~aW&SQH-_ugUwQ|ZM3ipp+l%(I$k_J-e4D@dk#^EntlC)k4WlMv@%9NR!{BTaWVL|V75qcYRo7`a|v@4M^BpC^b?J`p4M8ay73uF`=OQ=VPB|8Fh6No{*%sYYNbYnWV0hKQpnhTC$3Av`h0r zQ%ye6RKOAPF3~p8Zqr$Rm9*!lrj4p!|Fe>IgqAkQUAZT!e)s-Gl6GlHF|rg1*)I8} z8&Mzhx}<+yOCNY6OdlDz@)ZHxtO0^m_;OFd>;kd6s4Y!3{Bc7>DSm2aH`9j9(Ga01 z*oYg4Lmw5uIa--IqO8v1FAodi7!85CDR-O|`Uj)%`oL74cal>})v;2a_=cojR0|kX zwcv8@V)U}d+OJCT2NH8DmB(xYmpNY8Z2rjrp3(rp350t9~n|?_XaffNiQAw?PZjX3QQf{K9gwLgO93`D(n9DOCm((|CK1a~o z?ZnYfNz&)Eq=*-DC$rqnBw-nH|NCA6Y^4F<5;>PEk6T+027UcElK#<>GG0K%mW_Dv zh-{MwB<&=P8@j938^Uk?LXwWwXyH0*9NYgpNx5(eX*`U*;XX;aQ*zQ-@ven~ekDmO znte3JRk=>7688xANaB?=UPN7Wu+v-~9t{;=G%ow2#*MsLgXtL$Ny?cTF&ri-qw(=C zZ;+&`X{0Cz5il?>EaO*AIZW4R>uF_D9;RLUmy&jx#*4v4tzstd?%-mL>jmGyU>IQ-tM5hU6e71_A)FJj}GR2!qZ*v8bS1-6O?i}JB; zWaC#~6+!EoZ)?7wC?DG@Hu_f(*cWEy--luAgBJ+JLdmR?XNx`g&Pud}5$|{HFFG3) zr96}sFRJ2+tPZzAX_c`*TPh3;$}w(hzZhOGddRhiDXOPeo*Ro)_P-$Bys0t9+%X)6 z+xZ)ccXn|#VpYwvV>V4kF*?@l0GjK@s2150QeEX}n6T0_B5yrco>q~nQUJML>#))3 zD~h>g+z%&M81OX8GHRHu>PiCH%!O!enb|XES^8vYfnDilOk35GPwTZpwPr?rp~Xkc z{-HBmM`{+$XO2QG8f@*hwZNWpVQAxnT^34B-dQ~8?V&>a?;Tz~)}erQV-UpIR=9ei z3AkUxdG_EE-(CXzA%=VT^IDOgvQ#C19_Z%`^75D1{H)GUC4Y(VwHWT@&uhWfH!YaE z2TsYK2ik~1Uj7oBzJ(d8>4*c4mvDYYd#xUgN)T>3 zblg~hzS%?0K@$-NTMGCc1_wjjTD)Qifq&ElVrX6$XaRmcMr7U3%y5Dw%ZEI~5X>sF zU43QwI2|?{R~{wwBQ!l&WeN0nm>-N6%*wswDQ}~$hFXnLu!EyM^1-cazb6fCi)h-c zomDDw%l$;*4r~iw_+qCeV|Qk3I0%Zy1CY14CeJF$TsfWz?X{h#T9M1eD@uZ_%n(d5 z%;hlVP86psm(&EoLQs}IX!C%pZ#U~W;Cc@Q&W#^7J>Q{{LH;X z`;%On7~IDJ+lb*AWU8`qj7Q5ivo|YME>p=y7d%7kdYV|YsxvF`K@}w3Kuc=1sy1Mk10*Z`T<~72N{|7D zph+?b^W^D`HASc!{pN_hyzMUM`%3aon!DDB+-#;{t-6uQaM4bZy+hg4UfpQSF@rha zQQTiMN8Y@P*1#cpOHDM|)F8ANHs8e5ooodouQ;X>fOj)6SRIxHoQ%~$K-|`vIIEL0 zyC`hX_}xU>>1@I44@=%9clI+T<>3SuSy#;$1bd!Ah{S4d$9SXPCB!mfVV9)1cU(Z*DKST9<`+ z5v;=2XIQX|n=i@wgPAwS?^Ga0_R_?`Qc(B9D~oL4S9cMC{cH*2sW^@kp#u!X5C?0` z@?BV-R2p)J-s3ct*33Xf9<_(ayoPOgGlOL8PZFauUOm72G|Ce~V3a3LpcEBZzMfR<(unj*9Mme1t-JM&$b zq1cja3nzc>*FbO*xI9?|pUy7w1gFBk%W!mc)&6o>j-`5qf{>h~$+dJ zLvB-zI!)Xmw7vF))@p?qc9-dWE@iiPtxy8+at6YhygO6Q6|gVEJQ*78B!$QwHIbG- zlfWDAEmEIni=IDI;V&{g@Mld9uvBZA_`4>g?xIPx{YkLtJB!F1Tk-v=1G^dM$cw*A zK;G_6%8Ox-n{nK1wvr&v1I}ZhBQO4}0C{7Ylo!M994GQVV=D>rJm3hfEGVnaN;%t= zGsTM=AEL1aM2^)&dLflWFxgB-_GP)~T;(WKZl?EOE-a4MECyesd&|}*awOhQOC0c* zi-Y|oX$Jh;)+cEYYkZ$mfD0MN&*z+Yogj)6qwW&B20v9r3^Sd#=*Jr}hZ= zB?ET9(ABr-6pDk6nK_ynY)7e2)I?u|SmQ9^UY)tII$_Pw2(uPru<|7bU*z+(nVIE# z%#x~{xQQEbxZx;GpSALp%5cJT(fc3vytneznBx=XK$ra-~xaAG+Ueq51?( zwKq9e(Wf6Ol2>GVSb~wGW;q$PMSJ&dACSZ|jA#8iYAwO|ppi2Lv@92gw*;fYR$v%b zzO&Zj!4Q?vM4<}}YP1cQH$w#N!dXTh;tEZW-5F9B6UDzgN3zfe^IsoSbv9HLA^Scr zi>fJ{UsB~k4rU0}S>?s*Y{lFX61IF$l-Cql>#T%&en@2fhHZH3tUB(uj0-;p_c^k9 zHCa~iNlz02esAJwHD>l4MUXWaf*{Y82j<$lY2l}tnjkC4eb8}P5p_BTh!^B4?7Iv@ zZO7y0=JSZTO4o5$NmFMn;i<^83nK9ow&k@F$=J^ri_+{WbVp}6;JjIyJgYQq!2PDl z{3$bgrAd&VGX!fQUG96)&{Na&SZg94X1Tc{=`RN34ko-c5e@Ycqu?SrEfsANhNRh= zB+ErM;9;ZZb!PTlM36Tbf^7!fh3GCmXql&Jv9=jl>3?&$NZE#64`;?rr;pf<5g2XB zX)77S%GQ3bl{#8e1osE6xq|zH8Kteyb}-_yl(9u1H)13TuG{Zuj@6`D1!n^`D2b+> zxfHyDBgk$H!9cdVVts8y(H*a;u?DgZVzpiqN1Rb_Aj_CH8H1KH+&b;FO($uRtd`RU z?b5$aj5D&^`Lt z2RY|xa;&;$1D-L#{T>IZSJwzKpCMQ=C^~nqLe6=b9BaAXh3xqa5wsAqBdhX>+3hkf z(73Iv+JL_vEX*(QP4CyE2}Q#Yi5jivw^rBCf11JwpRiD zib3djO8GgpY`1l)6{;@LR9S;pLj621!tUoX@CL6s?jgpZGMllY95{Cxy~{LZR%P}u z6Z=HhqMUcHGHa+M7=?(ELtgF(;|fiZ6;U=|ewXOElk@9E6hZE02#Nz2#}>NhdXLVa z5UiqZx=aEPe+2iJ73C<*c&L(n)>^7fnD$D2U8#pw1I0IbHr zg`7N3An%zRq&5x;Xg-7R>0aiVU76gV-0vv28`ZC7&4g!4!fLr&rhwgJW@*@3@GH#cGND;x>3@8 zT}ulsQs<<3>n|6g?`+RsFMtsm0OSJ|E2AggCTY)3Oly*k4kKZiTP5wcw6v(v@)fNp zYq54Vi}wp+Z|%ru(9~K&_Ps-r{!$~ax5{xbo_C8R?bVXPA?9nPTR0CI;U{STIKh0ust<1 zn>MO4IsYoukIYPATWJ*fp1eG~3U!l)EZ)VSSS{U4>aazEmb$YjpL^s;pSQaD;|IlP zR?9bPNPccUQ!K(dnl`Wk8ior`%W}clFCwZ#nee<+8ri9w-;*%2|St`?g<8>g%=Cs3^f%Nx7LXOuwno@)b=B!mOTNwozugv$^Ox zj31hY_~k}cYSCiuJX7E2YF2DjwWu||^=?W3uEvk@tE+OinoYeyFe_=8hIKc(hBWlb zIcDK#Gq>7l2fCe3)4db!Vl%RNUHVI_<~Hnim3z!Eq&n1XMmBELjMUFigxSG3=q5Ki z4V@B>RiaOx7b;S4rone<5wv?}+n zzb~+(w5>wu+Bk17UL=4Q8v~{NfV)Qf=21%OdfcFr2lE7^l=_F51(|$Ilccv!>pymm`PH`&Emz9^bIX3wx$KOQl4qZ%X?jNd8xU;%s!33 z&=~^%Sc^F9DKK}zS^<}lV?w2T)bRhw6y2$sZOANGrJOT%KGW<3Nv+JE^Bqarqb0?l zPClj7qD@`3<0S2&T3Sra0_mauw>HE%EirmcE1x0a^J@fgi&ny@SYZW@LvD$)1h9eT z5eE>*+`B(EfQA<0pu5Ld=+G=+erY5PmfV(XX%kJiXb`ky=2{53H^DCFF#p$GW{hd- zP-@0Zm~_)0Nz!*UBSH6xNwPO&dh$}itddAyv4UdU>4sh_I|PME8U@AaM#_9m3hG&< z6s0`Vcz<0@Ku4qQPQOkA8}dIjJ!jwlg#+-${grdK1~#egDC#YWEgGrOF518zr%{qQ zi%7eX#u-r9w{ARTqW>2y64+O8TxS~K@4H#Sn=0W_M0k~|b!Sh9a~}tu2mH)sXy{M( zat=H_wt`F1a3DfAb>K;^K9@y%rNMEgb#2E_j4!Wuec5nG<=x?dr>`DzH8hNj#22cj zxkQ+79Dr@JQ)TE~&10=Gtlc}FBl2^Ca4$I8y-{4+);k)r_bqpYbM;Y@l5SG6V@pcX zc>7j~G&CGLE4QT#T_>J;sKtWzu1?v-)SENi^05x|G#a$NXqriPDbYL7(}>|^W=OLi zcV`&-zQO25_C1ETnL)E3_P;S21L!G?PO_iCa4<7q0AAlIMRNs=r(ZTf>AD^J>EfmL zgn{_03{IT;10(q>8I)kn176KQ42}a&S_4E(1HQwlF?xty z=p#;Kgv}ohsWEw2ic|ai9%30rV3DG(U!8JX#2D{$nm$#zgmG*uE=^2Ve$E)(mWTTV zV}5uDunDn*b*7-9)Blclf^$GobKTQ=W<59wzJ=1W1Ac{(U|Pc@N_dbvk+*!@NTbiO@S3il!lmmEbF>Hql(2 z{o-xxOvbLoSgV%NMD=|RXRnqKy`TE>`<8Dm98!sWfA%o2L)uqFYx zJp-*~U%&bH3A2{&8uOZc9rrZjZ12&n!IKlT#cdSdG(43tRt%V(C}B&B+lF^yNnQ*P zWLJh*otJ+}@nWpU>%4r#NJcn0h(DI%YU5owIpx5E?7GWQX)7-5x& z{ec`;KCek~1~)mwD-!~(L!dLP+Q)ZAAI6%zwu>=GFvhXr-!VO%HIWS;a~NZ+zAW)> z>W{f|@cObu=%);|N{6<%Y{de-vLVPQhFI}s?bE={m`R-4i!UEBnGsf>lCYoV4F-9m zjRfG^47BQ{x)~?S5U*aUur7vK@g{q7ynQ?ya(XY`7_$juEZ-&U|5=1Vp6?QXi!;#5 z5pNzkm(zPWV$AuBv25_Bqi=J1&jw?@!x(F>khEE8A8tRqxk3_h0wb+DDjPzgbFkRz zbSumA>L@{e%@EsybS)_l*pFhH)+Su0-Z)doZO%9}^`0$li`U*P(>v-PnbhF>Fx=V_oVGQq zi#2;&g457FjJ8@_b#vE`SgP0Js<0n3%)4DBWpCJeEYqvrNqfY8$7VM(9~0v7Vbi<6 zK4&U#hMBwz?7;+V5LxLv!LDMgcim<>{#wSPMU7pc?fAMe0Tn0?ADpvZ0>ZO#+nZNu z+!>x%P)W!g8ELhW^yu8B91&hCNs!AKVvUvjx9VPEJ>FQ!N4&xaI|u#?cT+jJp93Fq z2t%MLC==~ry!$!NUfFA?hZtqe!rb>;@TA_83_zCm2>ZnCK$5@ zW2`dw-|+h_r}oO+NBo`<;O@mxu7I;m;W6&F&JRH!##H8+sLS z1@m&4+cbJ*Ly(mi;#lw=Q=G+u$btu{F~o{r{|&|ooZ5?DA2Bfj5wuv^%Z;aVtKhX* z8tS`@vQ~|g-+bJPJ?!=A$=FehwMvKHjC_qHdZj~>l9pzSa3;m^-F_g*U_ zOCVvS;Hl6N%x^`Or1qW*y^t+EF8&8BtSJB+hqEVLDkVDKX9uNdUVm=3(1f!4Z_C{&+Q{Xa%| z^OYpzPZ+7#E5+9^;4#*t7?ohpM;^mS*PGf?uIF(zXK!l23mB;6&YJz<9oXX-m5@6h zc>*I*=YzPEkHz-8uy{rGT}F801P%2*qij3M`?E`M+v3|%P)jiiRkNNSb1DCT_j2vS zT)ja%}4*kcT{;zIgI?a|w38RW%90`NHoTKV!{vA~PD8?r0Be5tTa7-qFpQahB# zcK2X)UQ4Cp_F|lsEA^q?BN*c4N`-xsVOCG*zwx^{r}lb6AJLJ32;xqA8Tcly5ng<2 zs9P9i^;Gnx@bjG9>!}FxB10@s$;r5I1kkz2A|v_^snF!g^OTP`lo3{Z$wSfZ;k$YN zl1;mFI3~UL(s4&I&dN)+Gdd7A@84qOVovSl#YbGq2&*)*)Ec~n3plzGRF2&S9DN*qlLu6&Yar!l84xh5q2I*J#u)k?}(EY z9kEH@v`@uNpK_kP5uCi|;bFdDj9n7emW|QxiismRxnB}KB+C#x7m_?GiAO#Y6U%e1 z{ag^{tBkR8Azx}jNB!nQF>wn^@^j%sZexg@3rQXg3+H_zCSK+Ael7^}cgA=&B2Uej zFE+l*=@lC;=6j5>#!2B?w>&2sI&67UCX2Iwy>U_!a!E#_;||*Q5LGA*<>S}MNB>t$ z{*#4zpI=hI|4IP6R*U&=a}RbQ-jn*1g{7iSWXU*nA2$V|u^E{s^HkZli7Ly5wmx*r@X@njTr7>2Hc*D6Xm(0+(DnOc4RA+ z>|E_mm6QG|9`890ouPdkdPnokE1jYvgW{ZCsP&G?)e1v6NE-D_Anr57&Ku}^waeR) z$#&*4h5mu)h#@TW8w*QjYjVeRr#$IdKg_*b+g5t4@Aoh;5cnov>y?$z;HY@}dB8T7 z*@d|8gNZ7e*t_iv$m0Ps=Q=lvz{U{U7~8%Ld9cKM>z4^rSchO_E*ojTB>H_feQQCo z+gGkY`?r~W&$b=pUDN{u-&vpr6z`wN2FA3X12HgA9CWMmDQqFBsmYa1mr|97-Xn?| zj*_P4+winz1!>~!sj0Km9ZyGPmO7pWbopR|+KJFet`W+#q`?c`ZUTMJ`Y8ifu zi^3oV*@+t2mI;pZ$x1je>F}MR@r`PhFCoXLYor}bkjld{RpUxO*Wc9$w`qY;$@%v* z&e5%KCglG68Zi#>HYjf;<3G^2aE!Jwmy+inYIM!`QKXd;vil>A6FWLIiQe^1kL)b9 zZp$I3)+I(?9c%UMduw!C3!U4o@0wJq$&B2gL+ZAMn>zHJ+u+Yu(Qt&75$vN4yZcQw zsfWs?NH@2V2hEbhzSDwX&-V}1<~o;TLHn-Ejsw>zL7)_52OdD_Dh^n0wSayPrf;WI zy9dpqVAcg+Am5A0cWI+Y<(36GLY|AJ-QXU#fVky;J>uSX!EpEItGzw)MwSyT`!n|* zZTKW;gp_DJfce|0M)F8;rZ@g70hb@d)a}HIP**utrZM>rZTQ8!dgJ(e`U2yPcKE^> zhcRzEZHjrbK=H;A%#PWxQtRXd7eGVGX>*+kMRKtmI<1x=obU>m2gjrQVFvLR=w6$@vwg|;0v zsGB&OO(f0K(;X$(T*-IU429^qY+&uAHX=VH_lAab=hBU&d0bIG2v{@Rq)A!uwa9L4 znQCRBa$DM@`Emjqx3Q48n&G83HfdIn#4UgCWPDA->Nc&d%9Tk_V9g<3hl!Jx9hBQE zUz#Knpvr8gP?B_6aI0j-74zoRIa#-hN*bhtLh2SzQm8lN<${8RImQANRMJqZu@&n( zAo!0m{BDsY^&(A>Tb~WVehjlGjTD+=k3OY<{y3%|hG*h$e;_}B$%moc{_F?(lbL=P zj<-Jff&DaQABK4QYai&(Wcp!+FqVKK%4! zeGWt(E@UI)6FR8ojkw`8;f#^K~0d4hqP z*+A0jO%nzRL-K%nIOqZYub996X3#n31p3>VzWt)L4mpAR&IL*ypKt>C-Avwo+}Nj^ zzkm-|FHyQ_}c8&>F9$_o(mwqvG3rqwn0b!Pv|j}FF(R-(&+JLd1dYSUKRyHtFS3R9tC@3h z2=p&6SbFQw5a?fJ`u5v?_qY)F|IYmFR{`s+5Xj$R^7cc=J|_hBe=vLd!#F-21RL+M zjbXSaJ{kn_`Apt^WXf5P_#_eNKU~oC(Sab)f6Vm5C|v6>5ZFIu_V!mi=nN1{e8DD$ z5kGYD2R0U-L#rO`kIa?hJ}|P_mtn*@;{zij*~qZG<(=$-jiuSf@V({FW0qwj?f1*x zIUeLbKxJ;frYi%Li=q9oz8)Y zb=gGwneb2Lz{2`$q5U4nI+6qOjhMXsy5OC~fq_lgK>MA9?2?H-vx9vLW^X@C`7Tk| z*otkmA4GJ8C`^oE6YY-!oZCY|zdh5pUk3Kgp%NX=%+G$`)e!O4WO`c2wPb{Y5l-@CMR4vJa2LN*m<0sNU^>^Z`A}|I~oG6 z6I`x?TI906qFQG}#w95~*_@?u&Wjwrzzy=JR%G-vW12p-920oKvtL4B^VPD*^Y#A|z&d^W&1}1K!AE#x+q;4m+5Z(w zXlkfootbj7bi43b!p|67P1Unz4JX`p zj39r+n0E(f)0(Mg&D!>_K8Df9*=SSUSF=VFum6Shr`URPbuszClpRtX=3qv2f&vzw zWsBJb>EywZc{)?tuxh@?RHRIQKE9Cx3Z7#H-~4hF6rw9JAmI7`wE%hj*=a;xWC2M> zMbs9l!@Cn2xq8`z}&R4gx2mYW0tyxq@&EP$DIA+aQ{DCcO~u-v^$1`-QJ0gdXF5{RAbSE znFJTjS6$T9$iv#K;1u?UuAiF9fW>76*0^A+_;lGSp6IcU$zx6RW-S>^@ZG1X@0yx= zw`M+DEar;kc)vWt@e5QVr=$HDCf>XDO)MX*+D0u zN3!iN!P7Dp?sLp8&1S!Z*fNK&?JpiE7k&te;;kr(f+)YL*WK@`em!sc*ziY_?KfSYdR6u6)vI?=SgS$EV0s>_@`G)d zb?rz|tpf4^QQ59Nm=4xjbAh7gAnGyQZ_b?|SaHHUll2}H)++QGP}VI7o)pX4i{j?s zyvAWdz6wJS1$rL}okNu;rkY|KKNI!76gLO&QEk&uU_M38p~kg}uH=I#ZVpYU=CoAX zT0mh>&fZPesFyy30_RZQx>r%VrNby}4)ujKO!_ExAqCDM=xR9YI;F9W=B5`@>>OGX zMn14FOz|H_QRE!74C_GDzW5jlYn8Sc%u~amEO3t47#slRU>ZlM_%g~t4sK)}%&PG- z!kFV+PH}S(_?b>ejk#7**u8Ds$hgyRT4I?NtHLUvC8bi94nRj5?;hn-HjZ^qL5`I) z%F4`u3}f8Y2uV^X%d>;^uLW1^ut*hSmE{Vf0e*T2Q_ZNV8mlZ9rz9&Uh&9?q^*BU5 zR?Wv6%%Gx)NEMk5aDzTvOn~5C6~0l9No$QNE#sOTLPe6)Qlx5>QiDk8cpGbCtj2*D zq;p23bgXiKwbB$Ex~Q0DM-`7%4$vnfv3@M0YZTC0A|R_2ngxtOL}x~d$f~Ee0WDQZ zO*qijDV8S3i%mGLWq*Eh7c;qY5ME7W<%d0A#XfH)uwf|3>aAg4K(SZYv;-@eM~nKR z8GzJkdGQQD9-u0P4aUTEVCwwU}}^6B1N+rP1^{x zU8`ar5hc<4C~RgDZFjW3;(iKdI&V!G@4$(-PN`Ka)yAFCmYNNC5J*ZRcsr3PPS()bv3riua{rTA9UG)eHa z>5|804%(@zVeJzXdORny1L%n&tkFa1dkrmX_!Q+Muhs{AOqObDGUI6qU&~1hLCzG8 zIfdM5vDt#lakPQdGn5%OCuSx*k&%ZY z?1gdUvn{f#jC|}8nf+l5L!IpqkPLOKcGkhdTfFm6T+eqbsoU@b42qp1&!HCa8%3x) zQ2p5DtZcx$qY%ds$ek(VaaK;k0&)!;xnJeym9s8-R|;n}uV*9P+Wxe9yHh-?MKM-* za3f#StG3$^j}W=e%MmyPZQ!jxx()43f$g#s77A_GJ+CuSj1u%Ph0RRRxDOTFYHPe2 zA?W=n@P0N1TrV}M%`S{|;krDf5grHxCC_G+sFsOIK46)IVf1ou#0n^0&ZrIBtJL*0w1eF zR~?z$JC$-^mAo041L)~sJfie;@1WSZm>Z5vYiiD_G=tDxwZo}UXsbwNV2OJ*6?mKi z=hD+pIHgHAo>`o2&rIE==(#9+g8G*Fj6oCM(xlK<(eR+kuI{I_tTu(sMb#|VP=>s) zf<8&nt;Vo}R=Vy@I;C}0bqqU2!L8P}4hr5Zsjcg5iknLm5hnb`^yYmoWuQ9fK*VC~ zFdQ-v=G?sEq@(T;cqiq=>YSRvRp947yKpI>=Ibt`EaWN-5CPt>9g%T+59K5uVRSpN zV!(rC52Q(4LRqldq%x>JT3+W(svmkkMYc-E4~oo2==|U!eSP5Nl#5(?+z!kTDUNWO z0$XLk2dzE=o0NYwB&|`VH z;%=h~qqrih*JwNCF0NizByb~TBNquw(va)pGX_mUu3IRy)h?5U*Q%?b#BD%H%EVdi zGGSDtZuB^$YRtWT8hKT6Z&umpz95Ed+noqUvTat|r20d$rAsh5-crvPx|^yaBfxPu zVY^8I@1=lNIn@3&gp26mRKT)BF~2}DttL+TV?wSQf5aAFD2@Be`9aP%Kz=npNMDb% zmS3ZgRx^ez$h3H>AwC48q}FUTW9XBSn)3=q*VvvPL3Wk)Y&BzO0b^*<-$p>vqB8@9 zDZ7T(t<|cE>3xqX#cC0)O*KdL{jWcyV3}2~Qf*bs6E#O&SoIT%Xtfa9rh0U@{{K-l zt3JR6EtsfNl=uHA-jGdf(uO6;Wt>4)s67ePq()^WCr(LfS1Uv6#-{ZPOL0 zFhc|T6~dARW|bnfhwe67rAem->ki@Y3PrxZq1xKhPFt!?|6bM8LQ5KohB`*w{E6ts zYX4Q+>6ifw`uIzvKCE`c<9U#}{r*jr%Tg=3_;h5}{WnJW{Da8HDk2FOjt4Tx>BUGn zS$R%7*qXBrf2dgNzY$d3BfGDaL_07q+V0>@R0_RWUB$cDaW81ef)j6zTG{~6R1ag< z%mwNGfCg>73ZaRYu^OyFNE*t{0v?WzW9OMEVtx&xt7^*uy6m-DWzSI$joFMsTkWeF ztkz{uT?MoSMYT!@4T#!>^V3v!zV(a&YwIAlp};v9_XIRz4-Se@1MmN$*f~f$;<&ok z&j@hcfr(XhVsj@7Y?X5x%)a0#Byy(lE)+QjJu_rd>)j}J4thpx&A9iZ!1;(9cZ4XO z^9>X^2hVv%x76rVYie?Dh(cRML69bdwHNBqM*9IRDT=p>f&w~HpL3#5+1S4xfE+6k zyj2ur1!U+~4@OARuUciH?O;7PGXytG6~~=UF*xH&v5+@WHSJ^wiL?`&9y=5++9*vb znlY^`3_g{V5ggJK^1_H!fS9U)k$6@pJt}8Lc^oMdIS)=9ju0*?_trD&E>c(HlQ$2{ zc&XJYO+^r|Q{qPtP8=3rw>rgkx7mc4xD5ljX00R^SFu_&DUfLxW>n{J8J4nyEBxhD zD??~!h5*x<9j~S2IT^wvMOZMfuqw`2saxYC2S#{`5*}PQPPO4R+eNsN0CWvY-4)|M zn<5-GFzXxvHU_HX&&`y4(-AvhnS91>A4s4Xun$*WB!Vv>o zCLlEYHSSbEw@`qC5&($cpV{PXl02-a4q&2GO8b^RFiN$zhdC}7D_(}*J5iT!!UNo5d9QIG%fo*1$BHL6b zZ=q)x4^a%$f)o?`7$d_`E^xq6cn+8W>k*2zyQx0PQGB7mPkk?Rm{Vsd9f~RTwmXJJ zp?o$_R{Iyz%11lmw7X#yI2U0^ceBJw5^@L0L=+rJIb5FbYEF9%9|bX_cOsJ7{}>HO z5x5zqB^_eHFfODRrfiF))GA_;Awzf%MKDEhwg_-`pQ8CoC`3wq=sSp6P2NvoQp!p? z2$3ONP7zYd3eP)KWHn78Qpzeg%20*5n!=>CU3OHVQk82cMoN8D8+`c;)5oK z4*N*KsVmjEo`RTCOqLBKI2cQwHe=Pfks=+Fx;l6|pK_}ogZemy%BE5fN%PHD4Cxk% zWI9)AF!7O~ox$Bk;Zhp5asn>H_%y{x=?0p*W#365O!)^(shz>|Y^)A8b>HTeR?Na<#zWAhlomnlM8Sxr{t<7FAjS1C%$0LkA3EFF!> zaK1)yQZ{`bhic{_ij-3O(B{Q-H>=Gf6eDF9FbO+r#EcXJ`F8doPFdH>_b5n8y+kaY zVAc5{MLI2AKNBEfN`H;Bw%DGk*B#gmTMkx;DE;YAD7rD>#g1YNzaD=Q#wRD7uZ&NO z39slw+!RtL0V#DrVjR0iQ==mg#^T$NE*XIsE#E+!-K{-UEaQ*>7BqAq`@n}E4CXY1 zQHLL<#Yl!j{D#fMPp8BOtpK|^5t1>+3Y00vT!R_P`_MxjPMr$o@b-0zIhb+-^7qo{ zYngN`okI3BAgh{&$*EXSre?xeKOHfMnV7O_HaNH@OQ}W~AygAFb&Xc^Jv_EcK^UV5 zrcTQe0p^imZbmxPgbAxkaZJM^8ytt7fTb*oVK6lclSU!(NyLo4N9m^#7hFwPhx-|5 zJz5kejpAF5ybg@jq)QP@F|dt7T26bS)Z`Q63}PLHNTZCFSK|XaM*l2I-xOopR6#j= zfC2nB1xO>KHXO0wh!c(&#Q78=RUPC*3>d(>D1fOWuoBYRQnR#99HGoG-c2#mC|X{j z&gj3F(ods@F7CcB^HDB?cprsGQ-#T@!!KZB^e?0I)2IOtDIq@gN{V5cXl2I*gdM>L zE{2Y{22q`~Fv2v^%085O;N#@8E*K#X!$W03glVECk{0c38Pyh2C7rEl1!y#7mZ4Xc zA~Vum`*_yhDjmx0{(V4hhpIasO!2J$r6jl&%DDoJ)DdJ`gDIXhP@}SAbQeYLT`+}O zCfaPSq~X=!jsQgfOX$7?lfq4;@x63a5@UKPC2NX~DHWBqtaeNc(CC%R)}Vx1WyyMmG}7{YD7VLYt$&F6rr-f*VU#7%3T_{Wm9t_*k8 zD+F%>f@)JYtxSrgNzInAdoxleP2RNfFdhMp+?IAwGV-?~c{R39PFpM`WwdXnv`zNa zm+!T(Vx7lTjQSmvx~XZzQ-}L!up?1)dKV>b@)YsJDc|={(%Tyim=9Bqc@LQGDz$f- zXZ}nvT9wEtq-Qc+qDRgXpeD-LS{>Od9bn7daB%DvY*q?&z{nP9k7RNnlv93`SGOUy zXfU#)l&q-(HIjuqH{214tI zXiOX4jAs-m#1F2L6h14m8HR846`qXEB}kcgIa9}Pm>$R10{8ois5tnWOKwm3$gF?~FxZd!+eU&A>Z5wa#cub@d(|1cZ^-+xN`G`Oa%rwaCk5Y!!2At#0de6 z`a()Q1?wV?VZ;|x;>lSjR&x}ko}Be|hi|B7tRIspam^l=Wl4Ne?4V$rFQ>#!{a&!O zJoG4=7r{+k4OsxmO_};Vk05I(ZR>Zjw$+NrLd(;UfO4IM!{H2p}hwwAU(+~aSZ{mS?j7k>|u&XR}Kw|NLu_iDN1^8 z7TwanL!sz`_CYITXyMJX4N8xaWh?~2z!ufVQl0F{l&EqUBfXI&blfd`+(^~1^Fh592dcx zk=dG~BF>ZXF%^^K%@lynzgS2T56G!Fd|v^heJiC+^A@(WJ5yp^3!{E}hSZf+GmQEj zlsX;WS@O=Pt9reQk{`4!GK&H$RP5y*q`NWXcwkKv913U}ms&86M^Q%D%jYQLal;~` zK{i|6hGW;*zepkD;>`q*dV9Z*A|_IPyHL^ z9{vISo?>7RQ|dHZ7;9e4ZqX5rm1^fpT}0^-Rj?QLHkL<_8G3Hh0UNu9!|| zfR9l?x-`o|_kIoG@FX~5RXTs1VLU-G;_?oCq{uO#OOLA2QxuI($5_-ziis3kewxxB zFgEaQLZYu4-7^$`=ACUTppyP=Hl)j59Txbj&F~MDG+lMxpKBmp_Zm_UrO5uz6lB0C zoyi^^V^yA{W;Xg)q^$SgaicVol?GLeYvg~YwMdN=-4^~ykp_%+0(ptu8%$dNqI8pZ z4LG?F4i+p{$BL!VHh2z2*Z-jybapt9w$mCm>Z9B7#sC20WH@3&fq2C`LFwu$s6^G^ z5EHl~TCK*06eCH`U2&Wy^ck8SUQLM)I2dO7)khGUAX&XJB=JE&7`?P2^x09wlUQY? zI>v87U{<*$l?Gj>(BEPzWXv-sisiU$p2-+1UAVCwcA?;q6VFkGaLFHZD-zn4)*~*P zX9638dvIbxjqNfyFRTVD zXbqAm06kIB^~Aa~M*Kude84;wS{QS4m=za$!5H%!vOH8$n{0^!BvB=-#fTVyRFJrCl8MN}O%PQ$uRs;fIORQwz555np@^yt zvM!5h!KFY+OcIa!XMwS*f;y$1q!aL9@&4Ktq*j&rE~UF^Qlz-G2qp&+jigqpO`!%% zcC%LOC-j|qQ`|+wG%`uaCmB6!^972qrYJ;`(X$4jO6hEhk!0K@Fj$x;9Jo@Ub17I7 zE9PKoRo+RdC&_{e>czOaTu9N9WXf8Od_@bhtoKmLN!kcpS^>?34d`l4V;rVqYj9Ar znmf6KLM0j31yIcvY_p6&c|S!-k}wVq0RVtCYG(9uNQ0bNf)l4x3hsN`>?q8M3wE4Emzig0s2c zINXRB=S~Wfr0+3Iecw%~CyA1M>XX$H$uita0TNk0>}e~Gvb?C`A-+J#Cy8c42MQMr zlH~E1DMXSK3>+dxmQ8(?l1{=sBW=j&eJyhclFxgHLL_N!QZ1sgd5=((B%Lv!MCbCp zP3b2wRG<$7iB<`&_frh@dz5^Vu1q42O-=0ven>GADk7{xQQd&dyz5UWNpQ(IZ5C>&1P2qbl$vVrzt0GOU1Nvz^~wJ~QGg^NG+R^}T+8Xl&|XdR z4}YOZNis4F36E8*I&gzHV+&B(= zkpd+N-dSb*Q6Nl>>gx^uO+gY%%rw-Tg*WD?3l5Tuou!K4@y10stg@`9pf{jU0|u0p zsYa;|+sUF-|0<-ej~E7wmnIHk*U1$zG*&#-Yf`fwoFG&TAQbAGQR)MFSaw!kgrC}i zQl=+~X|p?c&s$^%xiyopw$*j_e#_rsr(si#NVbWh6St!k7{pUf$_B?I0tnHjm<@R~!a)?DkWoN_$hNxiQUwtt|s14rzR73E1%S zu)SN_-xTMt!tZqh#wBYy*%xrvxU$(Pu6yc3nc6L5{UyX8b{iL_^u-A*wgjiViCexI z*vkl}T5POZ1ECmX#WyCG+AQ;-sN|Jv2~=EK+_qAJ z6UP|NYbj3LB$IWu0EepTbrdXa53(&7#DN$Es`}bKCoFHAV(pj@RvnI39&d@g_e^00 ziWRr-(N>00S8g-BxfCx8cj!UrKH>2xF9x*-h04O_0g8_g8O~l5CkvZL9BT9XP_Qg2 z1;bx{bRetLzPaJ>LrNIVe2SArFM`KWs#-dT0%g&QFd(X?1r#kVPu;IsMfLWFP>8tP zWj_c*FMn9JD27gVAw@~k>6&`M#S|uu$Pi`}&es)}#4wXSilU^6VX=>;26hYuiA%Bc z(|%;1w=83fsJ?D_wiuCp+)9d(#%CJ)wpA1-O{0(M(@vofX>2RHk6BGY(sXFS*vQaY ziWDqOARML+TGcKrv4iK&PgGn{{b1yao>JFeQ7 zsp@kUQ~1-fg@?)EI0lZQ3}mC#DiQTD6e=#6Z*M>_5rhX&MA+;y3Ym@f14wfdT~1Ns zj>R0PqNdill454#aiONT_?I@)RTMEZb#|j6Poa=;hl7MAeBHV_(Xtfqi*!>;~- z(2+>TLNSM4q!{UXF40Fu^vt6aEp8^He~kp1)+0LJrBWnoieb1l}=^VY;>vkwqI*X3=wreR`x@a2EOkVa(ij}VQ7`^K`6e+d33|{p- z3Kf@=?can<-t+$#^f;N0~Y2qc7>)5r)#DcO=E?&;kP168N=MG|;6$accqMy~2QCWikK5(5|Ftae2nU(fD~t4DJII zE<;IH_=a!>_8|(Ep(NX4(>z1_2t~_Kl7Oa4@}m?k!^*+^6`?z0mHQuxmSN=pZN38c zvAp3_S$=}T#od)KSR)v%GS^syvssinev*Qo6w}Km17-Kg@thn}<)MRz-v-*CPVy@1-zAZeJEuzBzOTn|ZtaVzAKTkoka}8xjEQw(9 z{SrmX&ZXEXf5lEJ~2R$`owQ`GEQ-#9xMly78UO8glGT$Nc*5daoxtN1yEjY~-n zCf#ZqvS_diQ!$@kQpD`6wF;rC+7f@AFI+>5Rewj}vU8%V9bu{`MMawQ?L$rtn@jS)MP@En=mYIq31qzm3TY!7g_TNuw zdN1V-r}j%PQ@9L`#T!?LZLfS6q)OC96me5sgLyKLC0w)UXdUlH6f(O28zAwhc`|g{ zcqTv_V%;_~)J-X9hAlCusn+ptPBF8Wu0DL(ih^d>@53p1)w;NDmPz)txdKA>s{_7{ z0%q6av$OP?HGW1btK#-~A~u|HWiuT^+>s(?=L?{1MD!a43Ync)n_j!xsfu%@SS9CD z#O!*irZ|m=f$c%TvTGMG5}gktQl+ojivninaavBf3fCD)H+is1?n5!NGaERj4US)e z6Oxo_?n@!FivU_)SIhg&r*PSI$#4synz%iPqGe~HdJ2321Oirn%7bC}?&TqbCtApkV2nG@1Lnh@zzT=z8yTF$Kw>D*9Y!kD|n_ zjI%Sps5#C{DNx*2Jxd@ueRKuIN$+my?9EjaCcO#hbD1B^1w>1wewc!!w=>AssyX88 zC`txuAv2^m4!1K8PS_5T6ztQ)wP9ew^Ee!7Cl~8S3liOLDIXMs7c*B zC{X&LpLsI(E((`kMb&yq&CK0HQR3Fu+xgJQsp8L3r1Z^|P7!}G9~gaV_&y4gzVC^c z6270}q;Ep{MDT+YB)zGT3E+n*O8T(WF!B3Mij{%bv}Q%O(%N4pBIce!TTc$ zlYtTF6T6R6l=RE(qbGD9qfi;xTR3;D#v)Hptn?!i)1>iJd4lPa#ZObPOr*%B!?nTW zGZZU3DeB|8-%_yjaYNLk@E>vkikJ-kGX+ZDmq$(l|CJ)8Hwx%ti+G%>HmCk~ij}@r zkrU1Tq)6#~Q}hJ$zbI7tN<~gA|A!)_?+Nt@UhQ{d0sgge?bB$jn4aI;=NRu=L?X~%>hqh2Qjqj+ zmn`Ktf}*7F4(Sq(Mft$!OE;EKnDlPfxMX7~McXrOgUh<612;&)-hQ#;VT-Hac!_=C zq6BGY{{faXhGE4~b&_3fz*l)Ndh=C!ap$ywcjr9G^t59G7ILH`r4PcTB@FZ+yzN0b zL0~jNJ*;r)$pVan1;_z8S-{DUi@@EMof2^3VlkkXsuo7LZq44>I6sG>FL7B+U4YhR*oH3*5dN0|b==n7PL+`kj z@{nJ=AaV(sGdPoSkzc`@-_8ya(IDBZ`Ul!g2TV4Q_0g=76vZgG)nOXB1P+nVgN{k0B?#Epmk_J5CfsJf*a7(WYNvYgqkd}_E3Xx zFj|A#8tbsSU@dIf6JRUCzLVjQ@) z05ZRm;G-i9;vULSF3lofD1w8}Q4Xv_yFo-!2SKcL*l~mP65La?PH~4{q+G-v?wHUe z4mZ8p)TA~ma396Cjc#!g79l|6KM~t_4m~t|fhqnl% zF;R+k8sDUBtj&=PYv1u5%GX5xd_}mB?^8ysbNvY{Cf<|$h%%E)FBce1ltX!xvM`>b zV(`*B{c=3k;Xg+C$fdUnL;*Ju`S&2TopGFeE!G`z!X0Di3CfU{qhKgQV#g5U=c)C~ zPg^WLW&Au%`N^|IPkOCUxS%4UML$CsiMzHcahzr}-QQ9MPRYYkkO6g=@CS;VOZP{O zQ*SMQrkvzr4U`kDnf!HqF`~DRzf(qXiI&X`QcflI02Ddu z<m zDMsPF8o5`5XYH3_?n;s23}V|PQf$^KJ!vbYVt%t#*;!XcqNf?)k^apmC&363MT&(Q|UUUN#`+rVsacglkGaAj~CEW^Qq zonpgl;2qM6DCSWt}?W@6Zz!dnLygNvb39fve&NfE#>b7g3$wr@D1MI4a2&S$RUuEIw82G`g&ajNG1U~OWit^hq4+s^p=z6kBugm=IZB`= zpN!5Va4f~ou?g0kR&)BQp;@n(h5xyyU9{n>c`oDQ_!;G+?p4(8Xa$A0PQeV`7GYbF zKG;5yGLU0%)^OH!N@E?(9iL2j$gwqGWCVx7DgNM8%0Z6S2s=X6KKUIK-Z~pKxD~XU zrB=H-HdX96n9EfJQJPs!{B=)}W2Oq_B*#c0NN$((u6lg^aG{N$T*`&@++_m$@U;>> zkg8Kw@>dHPPcj9kE?Q*~q`mvVogCUb}XE za6yJ`*HbQXOr{3GX~gL5M#@M2fnoF@?&Fk|{F_VESnd|eNd9(8hIF@4F05DOB=+iY zBfC#ihVu6!>tOdGzv_$STkfQ6; zxC3jpwY9Zh271!eeC$m?^3;4lOPg9g%11CxD}NQaS0?AJ7ZFh;_zp z0QkV?x1371%&*5~E$AVtJnJnw_6$S-KSF`6SH*;Zo_ey%w}GN$H`c3SI5pjJf?R*w zXglA-Iw-bd-R=hhHQ3J&5uVu3kZs$;W3NUh2PQ z5L$DQub)9^%|-4+p{+M++nN{(yxWKf40fU5nYZMY-l%q?pqV!+1XUZ=o)pzO-C--| zm@x1S6y7>ZY7HMOW#|(P4y{L4w05`OdSE5=J{l_rP*$uL01c|3=n(PXndd;0!JB5D z1I-)0nR1YM_Y;g4^#J4W8HCot$G1>u>wMmTwig{m9!VLvR$dq*5)7k3nijQOx<25BqQcbhDoRmJc_Ic$A6$! zyoR=H;k}ffyjv~s0|%3-6O!+vY`{r!cE{x<6w3sN1x~K>T5xDxvF_nHK8mI;qbymk zUP{Ok+&$T;mTItbyV&WL*JxXWuA~g*?M&9RJT+wa0ObKD{&Lk*y|l(DwkIpNle(zi zFUj)NAEHcIFWXJ1DgR)KAW4KsmEMd^BAPix0cLPWhT4Cq$yJZ%|gwni=Kw55m4hdCNOo4$RyT zi+z_eG(#RcGWPfZWhd`}Unn0I5a}V}k10QSNAe0kkwW_EdSfakPJ5g(HA9Akqn@!^ zwW*9te@5BKd#D^J&Oa*wQVDQoy~5JZDN8dHJF<&ZVGU6QM~Dhfzob0PP)FB+^MKj8 z@5PQ6b-u)}DQ9_SC_@F(q{8ngGkK3#Bdz+6ln?7GBNO)iMst3a@{+fL%y#@7WhU?D z-p_!arz~0TUrVYhYPl~^F6_5NczFMY;xAqTa?&J@{gwzuN}s%8FO9P{FC**9td0F@ zT{}3#G|el|jhd#hH*Q<-z~4;3YGJ3ymwXiAP*7Fq8zDdH9trz7fkBz+jzXfBu&^;@ z!F~d7Ko-`(4Jp-0#q2hv@YcJrur6?mOmR_ojm$~a&cw0orEGe`#Xudk{b}_#r}*}n z!a?yp+#OPFw;_>B^svV;sMRPVuceIG&xi~tk#^nlIupex#k`KPk(*-ha!80- zTI1CS#cWR*u|B!Q)$%%!l_n+Bw?u1Zq~FzkewN4fv9C-hFO3$OeJl}=o-p`_3DBoiZBN$ z4a$l2nzuxpKkUm%0;fmFhPCPc{9!e@lh907OaQJNsOVopQ40|D15G_z^3!cuq;>M z;$q5$bz&@u5bEBfLxxN}%7k_PI0+NYlG-XSrTDo2~pp4`?zz!J+XA!;P zq@&(wa24gqdf`wq)%Z(IyA2|o4^mcUL^vQ4!zB2JDM$GV$DDPzjRZ<@H`?&}_Vvq+ zHp;$(a$~&;D3KKhcXY%Jw(p`mS+BZF!IN>!eGlcwdXZ}?e)b;K9sf+I%Y zUtC|DkRbQI^}|WTc>I3KNv@q`pdH-8sSk!9q^!(@p+t;{A6|c)XhY*~QckSb(4}b9 zB+B~^?CO*$sU-jMN9% zzom@jI;zzeix_ABfpRpHqB0M+|4bRnHBA$UiVk)EN*S@BQw#DM>MYgtRGG$X$Jlk=aFU0Ga-{nup4a-cSFia zuCp>^rOc}-1G)C!acyQ3%1f?^Jla@hQx0;CAYe62)Ow*UDI2*?Qbjb@Ih2K5S5Wm? zsd zS0*y|Mr?H#PR79FEw9_8z{3>SdSS3#jjIjlGhv+(#onJ{Tkj~a!-m!M_(OJ{lOpc} z^M{^qfPQ2C(7v8&tw$)d^-Q&$z=N>bVC9F-6u!aOkD&P0UC==FH{1Lo%7S%(G!P3$ z(_b=U9GF_b(i!8x)DVuP99VB$ZNXAKPxao%139T{wBEStlhV4Y6^y>Ib6kO}E1jeD z##Ku=L-%+h0+a4Bb8y%p+VHxyT2=AaCsT!;U>ktgR(n*xp7T@+nt63A)mF7UQFGLT z58pwNt?$RMt?qcKURMv%Em2hKz{?gj*!HC;w?c8PN6@yoVaF6{UE`Di>mX=g2DCe1 zU5cGo<)dw_P8qO1dV9diQj_C#hHFOJSBRuIAtmnoDVC}qVM#WjDi2q!w zQ0v9&gRx@f;hmI+z3q)k?FcReT9P?grwZCmhZs`FXhQEnjujKKzCf-okil#&K}cdY z`&!G%gPAF<>Ahc-)!PQ7rOV4lFv{$5A~WkQqwSOK4``6xbfoO87e3p=R~wT~t5a+` zt$G(%dTASquSP!9q=j{SWY0v+S%*JXn)x*p**fKIj~sZLK2o@r@?zbA56nxHFs`Qz z9AItxsMdC;TGq}azY%Cke#c&|f}U>PqQuyyK8`g}{E)r#7Ub=K4Q=ZdWP$i4>v=zB zGQK=**$Awx+=Xyl?aXeYik%@ww8P~-yTK3fAlDaiB2xOvnR==Q3*rz6vG7;^ue??ibUZS4ZMj{;dZ`KDN5&rx4l#d*v z+rU1e-1wg;Bl+7%v^W0?Wo1TWLVW7qC?okhv`E+b56X#kmI%&Eg40E&l;HVApeK!N zt+PY{EiGt1(MK?jX#b7eDA-G^?-02jZnnSMf z+5kCG^F-ErYwg(xT6kY>UPZatHD>fQ?lhd1$d24!-e8vd>vf6^E$IKbW;RDf5d9qx zRZZnBN$FCHU~K;p5lC+1nB*vd$V+g(9ULa43F%oxQ?-6bG!+5%90iM8KNTo7 zS}XkEz7m}63+c~xx7maQWE-X%nzfQRFp0_Zc?uloQtW`saQsYofITky2pt$hd?7bP z*t^j2TFN>thWJt*h)%WPHQU7&%x}R&-Z+n^8RE+n@wn8s!x1Z8O^L6ZBBq)lT+I}U zSSHN56e+!30utCj1lk@HZFzcYL9=8hc+%?aMFG=S4-N{2z4R@(&PVgd`%tvErmkLy zra6>-DOUQf2I8>M8eBnIos`Z>V|Fs1!evl3AFk=GRjmIYiWN6+Xy?83;H&62JJp*l zpvXt3Rv_$ltwEQnRPhiBl)ixj5cCF3wSgZ-k<#~ZfCOe)E2-V-LJF0>vBCAyaBMMn z6zF;s5iX`^$;Ua-Bafpf#Nx!}z?@UWh~pRvlH4cSj5L-}z~r_UJHl9=Ig)8)u`){} z9^XfeC{|IVC5df3TFtHL-kSVK`3CPs-I5i}@5@(w4Ak)uZfXXF7DJp$-ZsN{wm)+!?MUrTY4 z>nAeeKa(OPw=-j;e-1@S9!as@-w@%SM}ZDaY|wBtUyL47gLl)iKP^xXd{vy#Yo;Wnnxm+QkWD~i5`JmK{1jCenE1Z*w$4PBzY4F zL846TgA^#a?+SqY%RAK3(}yX}5y_2=-43DxTt@+t=g6%Fgf~#cO+onJ`9M4QgMG4{7a6f*M`n{n-r#G5o67zFDBnbg9eHbb35XFAhWu2d<( zy&)Zk--gX#wxuw!4zX{|7>pWZF`(@zP~0ZaP$v5IoJVm6!e2nfx?KjF3zAEU5O<)U z>1tOi)kmX%cFrEC)s6z%l>)`)d$_pNTTX=-amu|80a7apZFh7p;nr5 zTD)^UWEkqas;kub;J#mLl|Gh|JOxOqwT|n2eV!tz(t0zNS0jB=@3^ij79;SZaG=hl zxWbD86%j~X!VouqWRFtpz?^rx>9zU%5yKm$cv;j+99hm#9Ey@ft>#w@wVI%KS=34# zea>pNhN5Iqs{>56YGjXBahjcpwbeGe?r&1l+8Gott~0l>#Y)R-dR;!l!Nl01Fmc`8 z05DqHTALe?Cb%b}*L$TtL!f{yUp5${BBxzS^ z-Gh9QV(t|;dSkH!9CkhKjJEi}PuF-b2K)@9=%nmgY}BGq(MN5paA5?(XE6z=q}gJF zb88SfLSz;CUxXtg#8uYPiK`c19$tog^XJOnLx^CsLtYd6fo|1y##>mnm4X@ zb$_I&8Edoc)h2l!m|4)X6f6K@asgtZhowBaijVNfw zdW~4f%w)VVMXqN%+6a(wCC3_PZLvL7uRE~TrX1`ORqT6H%1zuRlL6XQ?#=0t%Z^gP`M|Lnu~8 zE{%+P4x>=9GvxLyLL2Waq(E`&vOLS{$CV*yQyvPqyqrWwPwxxH_<}^%)jQaygJx zXUAe^yv)>M&=(cn0k4y-2Qb72g26~d~^Cu3WW z1*RG76bhEMf^E2u8yDl@AT+Xqt0`uzD~hRLUttz0R_ru(43@b2TatI2R_bKMyThn!Ju%svy(QTII4*quT7k$sp1t2aNoe&|xSu*Ksy%i9p*a z!})!=}XU&MSt5`jMKykA)q?RKe zg1``eOcCS8?t?0{<+LYCO+GQhAb(0Bvs7lwtMQ3rhW9wdi<@H`w2I2L>J0E_6fjGf zw$JD~&Y7xAe@-DYt)qMeGppk-DPUZrFtAY9mYSt?B4}iozowX38jgG*Im7!M#miEU zUA)t`%xB#hZ*DNq)&i|W<3qEMOCiMZX@QlPjYo3-$wda>70tSk(I z^j_OjoGkPd)oblYp|TKPWN%fVSaJK4*>&GxH}sz?V5qy<*~(BiZhx}zu5g9m7C=xP z+{W$XFw&&MS;p?xNSzF4;|};TBd}%p%KAnIu?<3~em5?i2UBCx-Q73gp6_3RQl#`j zTsqJHT1y-XV#yz4xUp`NO~sGWLIjD8voMb>kLDfio<%#-(dH8Qh}?r}jD7VTpt67}jGH zE6zU+RIjygu0Bu2FtjHqTAb^(M{9TujEEH5c#49>^<4H~v|dkBsJOG|`a?xn#WQ(e zXx8vsiV^3rtm;9f^#_U)=Y0F4L}~xe6eO;X>JLKe@mC75Q_KVt++-fw=SOz~fA}oS zPf3B{e(|3Ycc>D34kx>mkZ@#Bder$bHlIhz#QDXWcf{TBd{-m%VUVPS-GMw4&0t=j zvvu*V+yaALuFEIa8O%!*CT@fodHcLx6?T8OIBAFByi9RYSBIT|r&i~c5UXol#UTUh z-Jp?;DDAkwB3e`d?Fdb5Ov%TM++xW`X<$=IKQa3elHZ(?-!)G1aKTfx!B=H}bXREm z-vJwu96;PHU$OVNbFYF#zmJBeID%NW=d-0dm+)&z9u$8O8zc)VX8JUc zVAc3KA`!n4HxPuN%^GfUm#-ORnBSmBSj0`!3=G)r^1JgG-nS@T>;T73 zoIwTaB3fr)-=$!&&T$|xBFZ07wCt*;%kjr~f=!AO&zKy4O2J}#Gb=epS>xjrC^q=C z1=6MWvpjI%P7)pG=M*P)AZJw{DI3DH^Gga6>#FTQ9C2$9L-{pD$)GA)gZ&)^NnaJx zQ2$6#(pRP3;h_?f*R#2RXx{X>JV5l;|2zeW3*>|Qg2O&^@kY==yDg=Ijtk^tuNzi~ zHh`$wF~)4jO-Maa}}sZuEdcoEhE`2#T6&0>J@D&K zeiau2{PWXL`mPmn>9L~p?%SaBc%}3LQM&DAPtL}o* zdlkylqV(SDq4XmP&rgcdQ$7Ku+bG}uRg~`ZF)00+^6i`6%W*&X0Vv%_DV?~4m$sgR z(jT25*XUcK^v)Nc^zakq(kDgfR^Nis<5tS0BRx*}zTZRXg$m^(Md?qUfYL81-(D|D zC!dAVhm>z`6s5oaIh1aolzvB)p7aMOy;LdP=6#&2%f1AqLkjMJqV%Q5q4Z9r^l(wS z#bZ!I_l(n}0xQK`H&9DE-_sP%hJ@;p(xC2IfMO6iT4amoj*e#I>J?{Am&`;aKzXBCuQuarI_ zO24=_l)iM5{O!WaIpr^H3#Iq0l1tAPrSF^%rE5->OV1Uh&n|(|n@*8SpAn@yo(iSE zP`LWHC_R5Al(v-81y^vc9$W#Xj#7G*DE;1PP`cHrGVTgd`tUCJty15vDE%hZ$Wv-` znJ9hlTcPwhrAC`x$+?=nBb08ZP#zYgm+uCpJ*D)kqIA~+lrB|De<@0TelnCkpw##G zqVzLIK7Nz-e&Qp%^x17+Im!S3tuYqsRQ|kK-Q965bD1BHd z{f#L7(@%i%TT3$T??vguyTP}^3Riy;rT_RDeEW#S(ib;{(vK;) zuM(x-dIOa96rNurN)O!+N`I=9e(!%c?u{#;^yUd!&ab_Zm;SR3r3bij>FY%4!KXp# zTdH#D+ePUWr$Xr)l+x2g=|@&U=`#xM>7w-WO(;D@!7Yo@3o1~0mqK|=lpZ z7Nr+l1Er5B-)<^O7hD0QCn%*mh|#tqV%JCK=~lOLuC96&l%C&`OJA#%zDp@RRV)3xQaYxUKA@Cdu9f~$DgB66`bVYoX07yj zrF4%^sx?~GmTPp7RywMb9-)=4QA*#cm3EZUd$iIAmC_w=Q@NVck-0irD?Lyt{k2wl zn^L;T?JDJml+wMl(kGSD1zPFvmC{98>ED#n6Lcl=2x zJwa)|hl$duQ=#*R0WCrUqXF_hL6${!J>_wNIxhbq$ef+)TD94Ng(@eGfN(qrBO zrK=Rme;1|yxd=*+P)fJFgV$*G6HvO3Qlmwpbn_yVUaiz}R zZ&tqjtSG(f7f{+$a38pnbM?TLP`cgOvLt^dNfBs$k+sj^r(z%NEH~cIw zt(*y^RYj6Ji_*p{_~E;iZ_m7kf4jw1@a?_|SLbM@^Oe$B|Eqp`l~TH?R(hRMdXZN8 zFQxQyt#re4WLbSgE1j*BzWZL4t1m01*J!2RR!TpnmHtF2y+bQ~QYrO5r{a45E%W?_ z&#R>`DWzSl^q_O)Z}0em`t7dg$)&&7N{?4cclx6G?W9t=zgBvoQu=1C^!-ZdNm}WR zO6en7>5EF~6QY#e#Qp1aa*clTCC)RuGZZh575-|@mw73_@KKcRBud%!PD7{6L zvLj#d(hO1hk^4AheoBxiy-$>~z0!DQi6}khEBsr&%}bP?B1+lr4&1OLN_(P|E#bzc z{G#+eQOcG*;+j@b`a7u(cwXrT6zp@Bb{le^z?` zIqCi9rT0%u?|&)1|Eu)=IqCgxrT4#+-hWYg|0U`DGt&ECOYgraz5kZ<{_oQJ=h?rz zy;s#rqYj)tj%KqloDK+g!8z-u-KAg;6ZiCHx0@5y#=7B}hqt#)_qHmY0K0wK{%JtV zTi!ZM#P4P9h@#W-P>p>BlGU*(RWYxHinrOpDY;W)DZt`;vV-{fC)c$ zkApvYoB2upf=u95{$jgn_hiOZ#8;cHWV>t%%kkn`A60>JPxI?DXZaM&w@< z|F3EHh7wwzc!B>8ewxzyI30xafx!CCNNs%zU1oj!jgR8qfV#m)D&26ZBOPybC=w7v<$RNot#4b$sMsoHKAR_au$ zWv9)}XDE0v?f&WnFr&>7n7{M?48K9MIwm`K9}&#!8sEH9L<`7t$R(>;XlCI{AIp6; zDhMA?6DPZxP)EYK34k|2V0-}Z%2bvS)`(fi>hP}s=0j*IOohAv0GB4ODegS>ZH4`7 z+WpDNU?dy)e}w-Bh(#Gd_{6~;ZuaeASq3zjW+c|#gHaLq0HzlwRs^FsBGdgiNNq9uVz|ISg7Ly$$AR!Sk=_J<@G$Y{tYD{I!~$L1>FXke*J136`e4fxuY4T$Zpc!w z2Z-*ptm+`e5CrgE1jGjbmNEqt9RmUV0)pZLK#xyndrY3b0fs{dRG9l2G(+D)xKW%E zS-(oDQz~|*noiWvl@|_|+HB2h1%JsrYpFd1DjZ@jrrrBiVxOVB!#~A0*k>G@B?CSt zSmsxK%ZxS`UV#B?ht{dE&uZxY3pIxisLiS<%_YDaDZ!`@@L+&}!u9LregzdsBp5xi zwFhlLl425;w#r)c--U|YZ#5`#3s9u;8s8M)z~1AIWWR;SaeTq~wp{{`1B*3tbYYBx%z(S4n@f+fBBwzT!Bpw3s7+Uzg> z52)pmbixgRrd>n;ojvO7EIM`{oPWRli8{C|P(%0t-lIFAgdi-N6bOh_#yt_C@BvWK zv1l?V(IY5uCnFp_0Pg5iwuj;Zlar+O6ST8X{Xjpui?giGXv-^A%0R!!Mpk|}$X^cm zFQ?rr-wGzTC3!Es3cg1lvOJ9$atw(fA0G_z8Q&nIqx&>9M$^=heN^{K>>ls|HCvN) z&7?5K0RI7m#|OZBxxfn(Hn8v^WC0(*!f7dtStmcjU#t$ThZ&mtE3|N7ZDAq6rwVsC zT(RS^aEHGb>cA09yPS^Uj`B|W6TV3u?r_=x13o6$_1}HFP8IIx#F=TyFMTxkQgluD z0CA@3jb++=T<+&*a5Q$AK2H?MB&fs8jbUgvJLzpO}gLc0Ad3IndwG zZiNK}CX=fBESDNZbk9t{@W&ATG3|clSg_TN`QPlH?00CR(E~+G_b3DUIAEU}e$5wN z8okMcnQewId=&Qv^fLH>8l>u>L%NzxhOYy-n-C5k0GBEP59x9^VT)l=0C_V);sYQf z=avRk(Fo9A?Q5MGgu4N#Ni~I3QB`@uDX%Gx)x1(*e)#tg`x`R6CxQiT%6<~O3jXpx zKs$_{iLkAt3ho1fDbDdtF`b2|w0&z7?|dwGb95W{fT~2M^#-rW2$R?9KtxQ2?$)R@ zUywp{sXS!4=E2=uog$q6RE3LI!mxgB@P3HB566bPU}AVqR1tqG6GFX4=f7;F5zQR* z62J)PcPC%JsUj_t09a2!@qKLfWo(}KfGSo}bQ2NiBf-1Xz9{*)5$o*khz1a9K$mqY zIaHjnQn%KDP0er?ma|SWg`i|8C<%?>j?=&xwuvs}?^SYW5Yh84mIh&Da@s|9z$Eta zO(IqFYeZpd1AV2Z>Y534McF}S4)NR#P|5fJsh*U9 zk{NBGTp8*B)M+SIA;wf5KddP0n`9wpw{sLT2JHgBM^k{8B4rbW1Zc@&;&va=(0{VCJQ-%bHgLd z0N#d1u;3Ihf~|s|!<2AXz~8|fV?Y8ue5x@_BvaEavH~$5CRp`D<>Kp5?Z@M|aqEZ@{<0{j zpyF4g8S+IlHtix8p!pMh%~!LBQ2e}9A%^T;i-8_Kpnjtn=w1K_<>Nc9eXOs00%|`L zy(Z;UBPFQ=_p`*;VB6lv?{mWcLsgGVCFgJyG3_FG(BA33_EJq43D%jT7VNu+Vf(}f zFrF^F3>jxO;isp9?iefLE<_-F08pyzqFNV`1dzcNBN#paY)Kl+!%B_Fl#6IxfzC4# zS#h-5@n-`V%n<%L?e35B0Gmi}fq`xjINK7jF5&0mG^o4*Y7Hw3~50Hrc86-YFH8SEbj zh7SNs)BG9D5t;H7YySQlAl^>n>cgE5#df#ZWQR@rp``B(!qOpL>c4~~N)l(A*_tbx&9>>KUc{KSL(SSSI)i_eFCAeEI){LZbZbxuupmQLeDt7?( zOCza2bm>VHUgz zlP4Wq9zR=s$^RBiq)LbrCSWoWU_sTN^HrTHAx@|VN|q|_^sS75BXC3%mp)bG)p zQ?1O@3Hla|_+ZgL^esBAc}3J122?uow2P?jd(cPW18SCPa#*L&Oe7_Jl6;3fx7oIar!9We6|iFVV`5 zOEVr)$ptp%Zy|Wfx3RRXiqzA$FzGcY7Z>zbP`UVkI;9IS6%ldk;*OI-k0Ufb06JZ8 z7Y(f#HidT)9v=Yz_HL@p&4hv-O_bUbrO}$aH3qCVd>fke z4ab97Z$%66okjwUJJn1mq3GK;vH(8x&%S-9HMOvUa`5AuxLN|IDgdtg4eTfJ0hLQL z6H4mF)Ez={jWf(Yp~j=-n{HGJo72K+YrmPnhBh(#`Kz~qsy72wi+A{^_y!f6YD1e$ z%-1bqf^J{*b(_{lYqj&$%3ngf2Walos8M`CZPK(Y` zWAWku`nL#;4}eayg-=!=GhYDWmdj-O0$MJynRJ6Pb@y6mxBeEh&`W*y7%<%}z;u<@ z_$J#ed>TF9h7lZW_%#n^Vp8&EI<8&~ciKfv_Y%}AK0vQ&w(x1xnQFByd<<`6s9~f` z(+)<(5`j>?_$E~Df>oeg9E?gY*4s{^>8pM-onBg zz;n07&;lP&p|qm~L7dwWkEuji0K6Rn;{$-x4n_rW4y^bmQ67NrfZ+H5@RWm5L7SN| z{>fbwlkglgVoYU-U!wJ-GGRDSuw;{&Q&PcdFHaG}}8YQV?CVT5MfA+(cFJ((+^<+O1d0XB8!@BF`+k-&No zZ26nYufo6B2WSDQCj2yT9}u+uCSU8R+?qz4X4JB0*Zac7G z*|_5cO8JakkXQ@DufJjVwVn9~tSp)|T6d}uYb?{#F0ux;ezb4vsa9mfA~DN1{=(pq^i4*qo2SBR4z^4h#+fLAY-mT z<)h50d{c!)GDRt2$^0dhan-Z3&}~fMkoL@gJG!xW|LHwzDUA6-u z9Q3h~fS+8!_d~&Zeg@M87;wyqD)QeJRYGVRsn(tun1da>JGn|;;_`JBgp-;gF zRK1(Rr^FzQu(FuZ3<|})7%j?Iomn}lT#U*h3#KD1DhRS~Sb;8veZq~+FACmrCjGZ* zU5tS_n3)Dfz+$e-z{MCaA}mD`g8N5wG5AR7Vj|FqWyrYG%*8}}g{}0B`+Ad3YqIKq zuW_7au>$9Q?hARqTB+<5yG__-7o7bayc-JMO}krEL9tutuX|f8^*=70=zokLds>3{ zL_tZ{`${^{^1HcSw*!6Jc(?8}U}p~FY%}Fu5C1Iip8!t>+0rh1aKjA$(kDJ!ec5Aw zE98f4$)o5Y8P0g#$p53a(JJ;5xSZc#JFo(lX{(@U#{DR2JxUoCjEyM5V!XK@LwZDt z`&saZvJ$fKsojFqsMO|Jkdp-F-i~C1v<`@@+vHSntmQR2PNU+7La_g3h`*V3j~D|( zo~^#@&0ab=Rag>!hDN-*6>*;&nDCc@HB_M0S92joY!{4z>;7SUK>@g*p7$x1Z*)B98~e7BJ>RG=B1F2o%;N$x6?`_BRE;AkpX@V zw&SPU=(e2-_aPw%Tax#^El*@WEi4Rt8LRaYI~2ZUZ3wqU2h(k(Mg@A^NxZ=!(0ZZo z?|Oxm;r6=1VjxvG0q0{2K&r4fAO&@Qiyc?xTB!{uhYcYk)keEhYLuO!x&v2cRYHz- zi2Y4(hebXK#=z2mL}6J#0ysI^j+3y(3-JWQA!u?#t!|A=XjhA0_I3?@gAh?+Ih)Z2 za)lL)oV~?1x^?Je+D)fiE!DW8u!9+)F$J32sn4%^h2y&Q}V|40Cz{B+@my-$f`3_qTsvIN!tZ&Od1J?hg?l($_8QOOm^<0=l^Zj;(#) zq_{cvQG~E^WQX>J4Ez&wK%oySC_c=69O3$UszrUFLYo(rEBGlG^eU2*a-T#%ODEJ{ zsLZnz0{_F+1 hUFf}eVPf?#>@0K_^_t!0(US4*}=HKMzB7PChgfj-*I6vMV1RG6h>-EwFCy&UB}>u> z<nPD{dI4Ph4{mQ z_#prtGYAm3iO>fIah%eYcIxx1-cHG*rkWmvC2ibp;?$Z>D{RDDN0juoKAQi$aCGobNl2QR1vZjJ3Tfc^P5pXP-#I9;WP!C@ zpD}kcaLXn?e}FAnW;K+0g^_M7;z{@gc z>28m7Ro~k;xD(P1eXCDvC#0ph+@+S%418!I@U{i!ZGD{;WN+*4iXfKW^k7SH<}oGz z=vQYCM2hmAM_Q8Q3Ju+65IQQR_y$C=aE;5d0M)H(7{Ledc!OA(@6&uy&PN<(W!%%* zwqfDQ3W}3+4@Q~>r*{0H!s7mk=?0xnggD41^CyV?ZP5P6&z^=GJJw6 zxYB~j{f7)ry9f=TY#AyKAMDldgSnyX{V#hP^S^r=A0Ny(#D;hw@?2+K)epglAm&6B z_2wKIe4y2Fq%X^1XymmjP7Acp0fRd5v#sb4dfP1t5|zgXA9Dd?Esc>sujPcdc8KL; zL%j@PzY1MBQ~B#m#l8PJ+FM(|tOUm^oP-~aAgnPz$zj1doN>RmW+}RE8?U?fLAQx6 z>}|7De8k4YC$f(KFM84g`X7#mtAtzC(XOB8W_8<4dDq(v`g!paD^qKEUC1tWo1v-k zzk3_6z#^E6LTS7uG(mZ$D_{);N5V!x*{mTUQ*$^dM2(V0pO)Y@k#fArn{sJr3L{|7%xJk} z3(VR_0ts}Ge5_@gq7z14vRh`Kl2Nv>2)u~TD;fyJ)8y9grL-MY{vV5b@k!+Ng)yA)%oT}-yaiA}pm0$lsGzzH-H43z+VK6SXB=37$o)8Rpmxn(E1mjGaK&V#s4~TAn|LkodhAr5XttiYF z6y{I&wqR2kM>!2A7@PnZ<2YL|63$jldEM5Kx3)3V?!foXIHbW@owqapptoH(n}r`2 z;Nt@S7{HDF5d{~~PdL_Q*#8w`lk(nwh0sE7!X~1pzQM``a%fL5c~thG!XAz)8R(p- zqTZa)=wOP7e*l#fJiO@x1a@jsKUe)lz1%a zVm}TlInVm{y?INe-q0H>tn}>zNEeVahF(JQ3;VXlxoaojvRrRytuxecVA9Z!cIEUA z)56aEe%33TG%;1Ec!jl20SN_Rvl!kSj_v5J{rO>$2k-+Ev(AuiXhY7}m;;m6lTIyc z5PR8w(A$dzFTf)bFX*OPkck7c7Q#avGRIVEb#NxFUR?(=412TCvUcwGv);}pgl@|x zR9J?D3So>FKN-yoiMi=f52kZvp*ibt6#}y4lsaA5!W7ust`@)S?e-QVHzLVtPe?@h z1Pe<-f*>g4a6@p`c4}iVyl6ny2nfL983>@9bvV&i?S#pkfVbVOe%sq^C6a{TEg;Ey z-XjB&tObB#tbO-^0XTU71E*nqB&fq*7g-FIiKHyNORL*xphXbxLJN9Zt?+-Ww%J4b zw~>|u6UaW!SgBeA{pxV9kNZjQ^(&mA5PJzDpt7)sAy#AhWce-jFJETvM=+vLqX5$! zsZRi(AftlXoxA^obRs+OJ!AP1P9k9F<48#B!S{(J!KU`cMPJRj9`{zH6V;EKGCY3u zf_|hxdtsmKr;u!XUu_DORRB@(Ft>xg+PxF$$9Bl3go;ldY>Ck;=zXz!4^lRDy{1Wa zmFJLn;ECMNBgyD))|BuHxKz7A(Zl-PppNrp#2KjXG$l}j`t=dUxaN@h6C4 z>W<=DT+l;cenD{$k0HtEu4h5435YJG;P*O&^v{rVzs}|GsQ#@{nyik)Bu-5KO)TZQkZ-G@hE2s$UKs5j?0PKXWoG53f)cjOpXP*6a902rWd`w$zTMh=_| z-_FH_OXFUvdS);q#dzIZd)wQ5k@_>>@XdpWrQIE^!}86V1LLK3bsXlk8P1mEeQ(Q^ z;ZI?t#C~duV@x#y`xz=Vs{sU?I>$eIuU-m*p|WH4Y7CAZg&kh<1O^p zy)BLpKQ1i8kI_p+Zp+|b7CDGd6ddqUU>Lqz6y+KtzMDH<^G0D5-Ynr{KFna@f?Hst z1Idwq(bvcQr1$!x7=gm_kN_^R4G91vk?X-D8F6p|&7WL@f8u};rqtL(1oU4_WIK$< z{ie6`QLLCv4-CH74*Q#g#Cw4a)r)GXny^Rs-v!AW-J{Xaqb%^S2=By6_y#!QTS$Q$ z5iW=fZGfrHJr2qDvz4fLo-P2ImCBS+S7JAq(q17g~7~ zVWQE+RxIK7;*z(?#X7}?Y|@w?wAnyB*mEu+e)4z&i~Bt#ZM0xWZw$UmF1i<4qE=7I znk+JF8}z>=bQ`rc`aJ0tTYh3o%F)oiwDf&)>DFj3vbz2I2W?h}J{K0Oc~MhS(cQUWfrsFS*l zigKF@+8*AvsHHejET|+!c`~hwtwAVdAgJy24vwi(^wYPYhB+4s% zsF}17o)nEJQ`dRY%d6}042cY^)uHnv7Q~}tC9$>ACb80-BB8-`cW<>aPpe^+t+raX z^3^teh=k`Op39@iX0)BeShZHpF8`COhK~=%HL2SJSwD{J0l!Ad`O}A&Xb@oF6>=mCra|KlPm0`iF0?HKj}qZe)WqBGc={t(G5*k zFL^MK(>_92kF2DgRNf>P@4{F+OV5(4SO!Me>ybX?93;XfE51L@gTvZ;}mno8-|x^mKHW66o%jv!XVk z7GeUe{Xp|HW~*k#kAnpx>V=_K$%XLcm`Gy=%ubmMAe}jaS50JlEWn+L7lGFm;*)i` z6H_vYSMWE3j6$v2SzG)C8gtgn{4VoQ3FW!caBy4ZQO+9T zFG(E?m;P;eS2j=~biZ2gm|^k@KK>ihC@W`wF?zThwkX}9VHR=x_oNUk)XeaD5I(o0 zHn0OzXJa5KH}z;tKmN{x@F%OYk$SNSw&|Eeu-VLZz{gasSN0kZqn$Om*ksLtY%KMkiGWE_V^ha`v9}B_u0$flKO2RfpGB-jvmgAuj@rakFs_uO~E|v z1((zCrje#)VY!P)mfziL^7atCgwUCdw$;m36*(hU@YvZgqvVajcgaT8b}kDzn5Sbz zS^LLQ)iGuxlhxZYi9oD!W1cl7ZeGh7@TyE)vP$-%TN?+Z$~~4WrFL^hPT!tvwvHX= zCpAQ{wfX2|?OsiY&A^%vB>g$1N<}Gshm^k3ivOEUnB0{G?YSnUYV(-F)$z+Yd66Uj zuKx|}Rls#Gz<1RigoDmjG{g83f(M+ve@LjBT2goJT6Y#hyn+qOl;i{W8 z1kXBif2F?~sPD()4Mg;OxPMnkH8^$B;*YIqE3+39y2M>q?QOc^RFC0#>iBZv=N

    4+wz(f>we?wNG0oc{hgQ9$|C4iwKN`0{89%y zceelq=6!4YSkfpu)VaF_*$AAqrp?4Ic+jf7eplSaOQt?iwR1DkL;iAC)dnA{2Qy9F zHZq2xMLNQ_kvfI<_~)TxzK$L9OgzQ{81El6`R#VA%$m`l(zjTaa6cv;^w1lS37#`^ z^VeK}uoT6;ZKwvq_)`0rEZt*X%%us-vx%E-aAhDSyPt=}3PWO5CXSaWcu7F4ayOtr ztTR2sH7`eMg%^{o*ymn@%=U^t#HS+7q>a$+O4M3>n1&TB;KIygNhjQbvV7~d45Ucn zqXhR$qiS`?U}luAz%hXf>aXe~GU%S36}wIBoW=)?NH7E0?oH!#g&XV2G@*;{$B${E zV#x`${43oiFEe(SXf{CX)80^CuN^Y$v7)0o{UG>8#sLG3Y{pIY28i5LK8#)Xy|naw za@9_I-BNa1zn4yv514VxanbEydn#6VIdz9uG6gU6Hw4}!mmENHuG(^f=TLTPen7uC zM-$!_o8M%=mF<+maGR4>^vlW<59$aQh5`1tuWKsi1U zunT`DVb)nXoVqQ!+=Ra2P>MHx5vf!t$WmY9(PK&3LP0dj(9FoQAmf*i(!heNLcq zLyFCX6q}|n`Nd%e=MBu#N6l=vgpCQ6D+i`YuH54waNVtJg^tYjUm5gXQ=~d^y4{#+ zjn{f;NGzGv*~nz|c1;u=ltf_PyEDV;g0~mSdyIaE_~gz>Q)(N7?~;vHt8fm?676J`FnVJaCwnJa zIHB6btY6C<01%!x2Hzzcw=&E2To#~veK1>e7$WdmRK3|&hW96WvIkf9yG~BxWPESR zNb~55sguVXFtCr8(v^9F6Fu3oJ1N^>EiRbyR=+G$*t#$+cOQ4UX=7sz^rG;~jaru4wA$G4b%uWg6_DZFup1im#jL3hR?sX;F2P1(!Vi9e1SeB z7aU~&ohG?1^|sJn9sf0D{A&76>-BETB=TGpZkJVGlyztE8<=~j)4DtZYwA+u`K$O% z#3?!{cXb7srUMc~6#o=u{Zsr_LJV?6mu0ws$8j!3d~^IxA{2bjRhew!UT`WQ^(C71 z-OL(vG}mUbTiK0|iJXs#-$#g2kCKH6It=CH*9E4`b+~&_s8H(%w0g_v7S&rtef1Gf`D)-eH?zH-v zr9D@# ztn<15%H@xEguq*`L0u#-!pk@pFuvS1Kz z$?@X-sag*^#K&>ALa;6_d5fJcX*OO;Jr$X3pyjPf=J}L~6ElX9-jnMg8-iC1N|IcG zX%<}ZWIE937xAYzB=okEg-9RmOyYhpLx~q1;)*tjNmc+D7jenMV0CfJzm(>*jK?sd zuVE{JRaeQ|_mFCYc8u@!m;7fw)(}UgYAiQd7Jp%rUo+c~%%-OthT!g@rYy zh5M((f?#-JLCVzSB5b*lm6V_}mYjXXR}-+*n!J$}4*B$YjjnEqvJd_E0Jo_wOP`Zv zcbIfE`HMYovHM0OihmQn0$u^ zUX|@hx!y%0`teKHY^|E|)Y7#rCEgfMc z-c7*@40wYs4-1Y)&h3~393ovV4xa<(iS)Jk=w$7|Y-Wn-&HoLiqNtGc9+lL)d}eUQ zO}z)2m{uN_;h=D~!iz~(9CWY2&yJAIY{`itQge-GvL&nP-P1LUJ{i%R!A$uHG`vFS z%7JO{!2%y5LQj+t76Qz8+c}5Gh%2isk3G4%(r~c8_#)Y`y~7@o6k|`WtCV9+-u8td z#5hvZO^IwcEnP$L;*z(?#T?P;7DYCkmIE4r+g4jnxo+vCcL`9%@!hoDkYTw4(t|Kv z*-MGV&mmmSB-~{F0HjPwvnUy1i&C-2h&{B--G;&e)NrwwRYyBP8q@oOm;EiBt&Sqb zP-3Sj-BvHOUPM~Mb>sCYI_)Me#KjV%*drc!^Q^2$zK=ULS9md4A8R)w^BU&m^(eA1 z{g`=Shp$jObUg}}u8yA;OOnSwDJ764;f*9*)-BRQ6@EG3k*69i4xT>Vk2gJ^jcqZc97xwsIzqCt$GS24Uf^HB0l+HuxZb>U-$7n7_wq-!K__w@2xoOcL< znQwb|>th1Bt`LuJ7s+=!=&O_-;l2J!5Wb0HUR}1+la1$bpY9YEGtH#5(7CKUL2}s+ zW~N(bW@)BvW>EIrUXZf3mE#SwuU)9E&PFDywPm!4fI3X~=6*KWqp!O6Vv-el8dh!& z1(-Kk9b^%XUUp3wb6S=@C(91nR~2}|JY{#fcBIA4aLSVxgLaj#BY9ncCwKT(pq8c2 z$+8{Zhi@uW7{4AUWAVEE_!=w&Fj8)pbv^knMrNzg;ll>v=U98g)yz%f=Cy54@}PA! zFs~CQkgY0@O~;*u{N|es&h$mm@f(Q}tQW3xRlpL9Pp!I8CE~Xbbg=C|rkqplMp%nh zHs4OfqOA|mmuJ)p@h;I<*1X-sYeB};k~Q~xnLA_C189r!s=aFN4+!n784sYHTCC>& zkkIyR*PGGHGOp8MzQfm;e*8IZUXoJ}k&+6*E-cuR2qQTw&B{)Mx@Qyf@ zWuePgDqVH^!q1vqY_jH1n#^vb^6u0r1<$y8L&k`_G59Xom}v@Z7RXZC9B3L*t>v0i zf!++gh;&i-Wpa^~j8nTV(>y3nwvKeM=bcN~MT+iamg4R-6DWH9%u<#5Vql>|Hvep4VN^(}(sdNl5$;2=iUn&bZ>LZ&O@O@?^@ZtToXz8O0|VS;047m=)_1$Y=FgUhTg52m)(_4|&P~keN+Q@VQqKL#AXy*7thve%>=$YN ztls0tF?XgScm>yOVwBdL7~@GBX|zp*ndST~9$H_OiAz=;&^$7?Nu#>l_3-m>{g?=- z2V21ek~*&al-M{RT*zFTW{Gbj*9B5ulk5X*L4ThM+B)efa`!_*O9m7;r zw~_A5kRrD4a2nKq*N=bVGz$BYve(Ha+hleEGY**X^FXO~Z^fx9A4(6V@O^3uWj1R0 z35g;`A#AHroWFbbJ$uN{{J`*W7z>7v!<@fo_pSr;2fM|A-O^8%>}xm8jMLS|M6F=B z3q7Mw<-w#fQ$oBLGMj2(ak#TVRZ0Wr>^SX&g3ZwoPU7d%{stC)+L~0NHaU3$TOg_E zc%0B_p}Fp4C7h|r7B*Z6&N0EU<>hu)Rl-5@gIZ^h9w3reSl-!#3|RBjICjP!YmVvH zs&v-YMq=*=KhFoRaO*>;QtJxw$+{gTzxhO)cu{ZcF_e}gXZ;Yr$Shu%)In2|K>=3T`^WG7uJhvD^58+7vd39ziELA7uz$UwjivoLs+E5Tb(wjrQyYD0<}u z(CV^}H*jhLmr@|Kvingu?9Ep=Hq8WpEo&09USbm*HWylP&PM(k=(YLiWbHOhfDP}O z5F{!ZJnj+gb-LVSUb_h&(sB=m*kyiPHbHXPAxY08EzwQ*Mu?ZWy6UD*;nY@5LaRDI zDp|SbKAfhDGy!0}MbSYOdAvRIK#hR`UG5^1<=gfix+{{G)yrb~w7Me$tB3x$<4l<+&l*cCYqT(a30Y5IAAh~S& zj{BnBCNqv^c$uMr^`<-KDxZNgFWi-X7?J0id$(z|q#SVM(sm{kHGVz2AvqYgE4K_r zoAc-){fjOQwI07&x-_Q6r!w6pt}-CBOVg*Lhvbiic^hGtp!q_JSq(+%LiCXQu_(VR zC~ExGP^5K6kB@D+MR|{)XzNWBcj3kWiO|wU(q@ZbX}fDN-%rfdkk2*GgdVPSZDAp& zw6qrPgM?dZ8sTa{+L}fW>0b-<5dks{ZZ(xj^BFxPe=N+$L}l8%66MZtH`!StCWzSB zMbfB7(x^rc6&pZ{|GUJ$FwkaJV_8}~bjI2ES;$Wc%i1aurDUw(v22<);Ak6Xkv>hN zWwrq%)^Lk)O%>X$hul-`CX4zxqOQ)gZ`FjAb_&&$t(pb{8N}C3?tj9W3-W1Ul1*kn6IUJlQ@r zhGjLJch@1L#F!I6=y?Awj|r^KMkcH8;Py0gcfr7^>jJ(aVmSH4Ps(tzY{XZ{xM}97 z-4!Q1ElZyh{M;-YQBrTqP^N&3fGFZ=OnnL31^SR&@C=CrPT5>+5l32MC|d1Pol zc<8`eJS;5eoji^1e9>-kXtJ^}KGWH=n_yR(PPV6H+41j}fJuWNHxfmm)r7D0Z+DOpkx&7DAD}VD(OK5ZL!`# zxlBzOsF+Yo_N7I2f62tm)a>L;YwQHRNz~~|z2drzyC&V#Febv4CQRfOh+IFeAO9KG z9U=i6lrD+(2-H0SWp)r_9cZT;Prx8l@tiY?Xg4+0lPynz>-AM&3J54pi^&^pR zh3QW-CRt%R&xdpgux!j-NyDcm8-~Pr{F$70-|nrfVIzSa8y~lz{F$70$F^+*eT=QP zUa?B8ku|wOv6|$y1uETp!vmRNYO4F>%ejr8Ps6WdW@Qd$h-KJuR%#XTi%2qO4eprH zoJ_c$8bbUMqFOtcFI;K@aUyWW0=(O+Gwc~Z(3@_Kx9~M8Uh<|Mz|?*Ff?FEUd-@&T zbha`0F4?GcymruF$%jX1ePwffWwezHYV_+N0rGoSo>k*rhk{*v_e&--yXbuitd{y9eq%Wm`JS($^IBwXb>JE^QO$i8hXLmqEkN1ZelorNU%+ zYoB0)C2;4<@8tZw_b7W&Ni|6UOg@vYP*+^KAw{z*+&Yz(Orh#HN+L=8L7L)Vb13OC zmeXumJ;lF8bX$h=z%j)a|Bk_t(kt1|QqGSnxcCzUN{j7jB^8e!ZyTHFG<##%H9FRq z(Ccj&TVt$zBNwqa8#IlIw!Zix*>EqvWXHtOE`Fb8VnPnfmhJBg5>$B9sJ{f$a1-7^ z^GuBjW|ptDcsu@t)75a>gSYyXb?Cx0PGa^5AC>VJD^w*L0&k!bO`hvcdq++xh~;E9-lO)uRprtNhxVG@V8cS{yBi*$V7 z79Q{m!T%z`N(26q1*szCoZ~WsF`@Q9q*gi{Dw$FkPQmKbc&PZiPl3$fUZcCDVu&Sp zUdW#t6>*l5PWjxZcUym!h}NF`JYk?y5`XR(dT?{;u9R(qG2l6xINt{X=)>IvNzjKY z?Ja~kmb2g3b7=l5TCz4Dovhu#s}Hb~!X^Z%vRQ#JqnmK6A-3sBXvnPeqmq?(F##?@ zLpW#*RRTYQ&jpTSiy=Y_??+)vCSPHDArpZ6(vE0YQ95{^#H|}Li86`pq*AhG62*UE zCsB5vHj^kw41#4#dL{D6KvhWSKy}&P=4`jKzcWFsv?)|(ac!g9k0W_Zf|>#Mdqid3 zWOohA5L2%k&;r%?39L;ez3{SztDx?>F|p_&^8=F_lqr4^(U)06q#8;lNs1b+i&aGr z$sdbXC*BgZy1Ai=5pe?zY{{ZMP0-ZHh*suoi}G5FvhzZd+%_Z<-%d<3F9d5MY{?RA zK;$;2X7NdGnu~Iv zUZW4y(nZix%mBQ;{%qxS^BB&OwPwb~OwnFSrWt_gH=MmpH;#;t@oF%`^%dlr0l0qM zS<5x5-*|_I9i$RnO`aKm=U+UVc|JPXnjYg9J`Cg6l5qxL{7q*wVl_zkehm3$0KWg%+01u)jCZtSMOxT?EZJrNw$JKX*~Sq? z!*h*1GXT$Lb*&`N@=Y+q_!G!DgR`CSnU3j%7{+fQ;|##~o6lzB2II4BxmDWwlP8gN z24MZ{Z7kXA>tGuV#$Hk_pF*w~fa|ljUy^fyw~}cFVEXL!C0YOXbn?sqJpaO3YuTRj zyPXU(IIHbB@A-C+YX)aE*Lk;hC%I+-uFu}SNYUrrMZOt;@7JESMxAkZd&x2bu>31$ zEz8=ra0@Xyeq#?{QKQ=$>oz*ZYd@1hFn|!hbk+)S0$mbJLNv$F=-~D=9EOx8=Mb4^ z0OsFzPB5Pt$=^%%8G!v`i#jn=A5SM$RC9r;mc{95u;Y#yqnqb9LzK(ikN^FbF;DcO z1DGdTyWb#tvqi@j#RhUr=)DJI1an5O(mA8Io+-jrW{&dw+GlHfqQf774r2zez4x3u z+U6<#{#bVQ{V%kd+53`%*x!r9ceMVSzG^;0+Xr0R;NUIcjlk z&PmGX7by}0i1h2{s7NvwCDOcw(lCHD=Tf%-H78?eZ=)OxAjkX8p;CbyIs1AiC1C(b z7H6=WwhyX7-TFU#5jvmEJ{uHB;>_w-C6)tOK@1!1Urwk1Pn&ZY(KW z-$$+)fa}Fs(^v?u(?N;w{2cPk;H=iP*E|c?-$$+)fa}GXY+ndXXBuPSyFtDgfbYeb zY+oS0rRf!xC&)4bu)H{X6&8f$?pW5YkCAN#V0&@a{TGPsylKZ|oBqN_IhoKZ~B(P^)$I=0InBjA!Z>Ip7taGrVBB`e2>gC0P~Bp5VO$CXF4Y* z$UXzGzbFeaDfjsJkL@Rx_8u3hyE`+_?yk+(k1u{Xy1Q@0SCi1)ov~s-WsB6^wS=|1 zOXBG6{+~td?)oGvbs^IXGc(qrL`!ex2c{T6J&V-cO-Wbn?xqaon0_mnW&oxa z$#JGUjKH+(?h4oMAlD4Q^&)k`7J}=U8P_!szTZW@8G!Fa>KZHn->o(-5*(YI=IXog z0Pi8=48ZszjV~5}@w6W%%6=btW^h&;$#et9E@n)_Dt!MM`DOsV&)zEObsmN550PsI zXSHdk<05R1F{b?yGR^>uFVeth0ZiNW8%5V2CCd!XZe2rcH@7W}{|*^v0LB+-gs~91 z7RKEOLsMjD%;E?k5xZ@kgQ z(KExmGJz4tlHZq7Tcoa~FL%`?tE{5+$y%Fe?j~9r16bQT&WyS$jg~UP`h0sM5fR{t z6o3H)c;~qxfE$&F1m8mm7@RXj;7&$}0Cft$00O-IoG5~{$1nVUFZpM1&X|zbK@tgW zqXY~f!Mo0h5=eX0O&nzs8MaXd29RNqn(d5JsXDEY$&~R#wsS4)?y1=cB}~ z4p0yV=b9jSKYKR?VE{qie=e0s(cRuhQ5Zm!#o3{}NOdIRb)Q2i7(j|&J0}Xn4O+FX z=+c-}lkcN23?R%0&q-l2LyHE*VE}Q?+MfB?kycNSA&hl9IQ4dvv)I^)Bn2`-2^c_v z&SLC#%T$rNKH2f>z>)23!_1>_ZA^n7G?!tc{OZR`-h->hF3^YM0{MPBuhFT`A6YRm z4!%Xl!OxvPRB?=`{ClBNi$BN(Sq9*JY*7hr#$^~(TKpR%$p9pqi%W8BtZ}5rt8s+z zZ;>#AGeUS`A|?FWB+LMWCl*`c=7TBS-z8lJXM!$1A8r->d!)#M?L)r|^h{}7jN7BOnJ5pu<%8PDgKH;yCFoQEu)-&DN=0xj6D)m2+ID<1G z^(lN2$~G7OLc$CdpYV|eR!-WOGZU}<|45ht2p?J8s&%BnQlPTrb8u?U_ca-R#QLL;BQ@KkzzC zKP-0qsdd84+)Un z?BddS1FAWG0~ulPurQ)S0b%49$p`~5GIORiqVo#E$6Lq;gNK6;oo5g}-bOwcJS=?3 zC`tHuC;4CiK2DtJa z07kaWwX>RbcIxRb)9?BLc3QLD$@}J9C5qp!;549%HJ^Iv$Deo^Kf+jik*wdDej&rI z=|Rq&3&V-hMF;n7+QB_ISM@oD%{JV+i?QsAZ1G#E&ag0h=PXRS*_*)^Lv+TJ8r6uJ z8FW1BEl}pFOkA>RujGj|2~@asWUBp`grL3ms`lpYF$;1O22+_7fd^0G_)^X>F@SV0 z99g>JU?D)>6oJ0c;&310pmyRb$P@!G^`j3PQ*ygr7YiAa&GxaG;~3`(b61l&24LB-iNj^<#`0D0_pmk=s>BZrQ-Kd#{7{eob~9&sWzdUV zb+ePr;^%n^sr&KOzX*f*OL+3+{M$KE49O2J0!vB=_4c>5-v00+&=^vCL_4YhsWmz; zF7khg%^3qo|FW}#GjEw!So~|U$N((9{A^*-?S~g0ze*k%fXAOcOL#oe?KCFF8@-t^ znOj6n7gqm)tTF(rKYo_5s!Jxq-q*<<1F-kfvxPmgwjvDvGZ|z629vXeL0yCq{=P~6 z7=XW5oF)9V+L%pMGc;ECZ{(7}S!9K}+#pK)53{0 z?hzGb{tvli04{&>EKz2+aqJlS^iz##qss4M2Z#ZfJX<`tWpZ|Mrsc7E0a;}LR)<~| z!2(43xZj5o(1u?{Y5E4h-) zG61t@ijRI(Uu{F4qhetz*t4H0q-eG=Y)nck>>f8$TA8Oc%_W+kKm1{CG_YxU z{bc#h^re%_zAuGTAjq}k52U0YFC{%NTiw1jT*Mb3YmWS$kVIQBaojoqGwZZ_AqlxPSrV zFN3UYDQut8Iws#E+-Bs{N!U zGqUHI>>L~Gb&k$VHBN~$z;n$!_v5Gh0xWi=A0XfOP1m8< zA?E$5k%$$=Po?qFl+t+69Jy7VvONL*=*O$M@8Nv;ZT^7B$URLy6HmwXPXIdV)N79!uV7ZKFT7<28*v}Hvk_e!iT?F%Y)4kTQsZMJ`+FSFx zAK&&`7}!$#=zf9VU89p*|~}_yzPt3?RnnMwlaIj4(s+he(hC2##)qIf9-MW{CbU zi827uk&RH1>(&yayyBB;goY}}+&!{m0@n28Y)@UGdFaRgO<%Z-#QC!C{RGk73rSRI z!4iK&Epg=Wzhyd|S+NmHDSicA1p`Pj^4P{=r^K8wisD3(@heG^0Z5KKBrlN6nxjYd zXGoR-$nGE2DH>A{gY;QU(z4xgn=H8eLnej^Nu^ zuvD^B>;hWvQQSx}+38G6(c+=ThkpDo;!M-$WSLFJa=mBa%GJV>yi!H6zF&(q+!D@9 zy*?SKr8Yuo#&^)cGWe1H>cI{;<2WW{rDh0&YP_8V&uW3W|^9^Yq=?q zd6j9F4W*4@{e3Og@LJ9S5R!W8Xe-_LF4j~Aka29m3fGar2lP&(fJN(u;t1lgC>)LZ13yc{E=5O)q6BdokugJ;}nBa+ZyLOxh^rKUwfn&JvPRc2P<<{xMcz z1`Arsj!a#CT8~Uo<1a`lyCkec;Te^2+)u+@Ho@MZd57itM*EoVThyQZ_zSN_X)ZBO z=?{?E9&S(PMn>^bVqeh`3orZ4m3LhjqbQ0Ww>V~G0KRty>tA)YacPW){ACt^RS(d2 zjiQy@wYATFBUGPWTPtI5mhZL&AkmKr4!!@A>OH)yQBm)f?Q}g-(c?d+))~-RM$kI& z?M*%8I{rF!ZuA1^QF!m^%m(+-HS~8s{!AZgUuqxSFOb?Xg6bV9B?0CChblk3;8#ug z4pn@Tg1s&K z^r)tglShV{sfbD^zM5sj05X(}52~0#fRt8N_regomIN7qU`c;{o&=rw6^K5HL>YkS zzIi)02aBs6rqPE}FE0faFGX?XjbeoMr8zY{qg#gMS3h3&<7{8_!TyCbBeX9m2?dAA zU7{v8f{#uy#ld;3$H!R&48ZjK+ZREs`?wcV??x|x9-;aR>eyuK0qs-CV~vmfco}!1 zukd2bgQOm@`e(^1EtJJ|BUk?{uqzN{T4aiUf~CR$svDvD2S{o4cP~`1_$Nt_0SJyz z{T;5%DyeI;t&e+Yi1ta80f^4O`a4)PK=kcXhF@!C`RajG*25NJPqsn5WAM= zA*!z-ptsJyZ)2bp7KV0{8rmqn$}r1PAeX{${AcV?G61``&D-Y!ukJ9PKrM?V09rDq zRHgNh%R43}r*Ubq&PsMWQ#F0=$Cq%6?n)-HQTjAy5`gpw%F2=MzjE^<9{C9V6S^pm zTeUpGi;$H%6gd)7^SwBgFy6vx4hE2?WVUxcs!Ycfn~NlGCP@Y$Su(vbUy`ozFOvOk zl4St0&z!dxuMiO_Tzu$j@%VqOy&V( zN9c??RGlv;Eg0opYLp|4OR~VJO{$10Q+$#xg8^h1p>YV1%9=-p=<`UF0f+{-OjNFO z3MqRQ z21hL0lw?09A(X(lmcS?tUPcsK45kA^D)IGnk_@1;5#|K4I`bL>%YX_M-#~HfhjA7C&V(B_~n;msx+z=QQbbN!0@_icq24pKCC!>8=;cKU!etZ=40QNm zqYbgYB{2pdHo|DfqNc=L>tbISf`3nf3_$Q1^ENpPTDLz8`h&DLX9}P(in(=;dFEyw z`thy5EaqmPLC*dJxlzo`Bd1hgZZ90&+&ow{H_NU_5tZ&OW*+{%6d;Pn{>sm}tZ)Mvs(|fH}TX&2fY=lZPs$WS*5mJjwnLgVAbpo`~9C zmQ;tN7=Y9W)hkcRSzVS~m*g0LoZhWFAA>WPb^N_widf1%eh1Br24IVQgb^lCbeA-L z^y6RqdDzzZ^4t7@03*yESa?N-NqtyNYJ}MX3u*1ia2-E~b({e?o_FV(=+w7G{SbAn z3IVQ}XXo8YO^hdHKaPFaJSF!KixZ7PaNupREuYGx;pYqBCuRU%Ov7f=m+>O{w~4Z#xXyRHfyoklcu=JMGomwC zD0KTR7D4|a(HQ{U%*0!^=EJ+r)uH?a{QnS~0l-Z)8x6cQi3_;|`YVKH0BCbsWMt?u zlqyzS1pjY|&tTzLXX``r{d+<)0JNE19))%LAw$9bM`ANr7`DyF3I+Nbgk}I}GkO?> z?dA!7HBONKFOeB64DuwdaW=^RN@NB=Ha&?^c-C4!HqjclW%=(UzyJhHOFs&MZu3|R z-%jX`**R~~&wr5!0}wICZ5D*cG&b~2H9^j3>pP^wU}4Ik*EnHo(4|>OOT<87vS!8$sWYRuG>7@J;(Z ziiT!7V;R4&n(zz&zW^0srprrUef_K>0R|wj0InVcS~w&qs=tuX3;?|V&8tAS+V~i$ zpkGXM20%9(fJRaL2?Ki>VHp5+N45URfIb0gDL#=a{9Z|51^~W6dTN8%t!Fwa`Hs`m z2Qk*}bf>g;s~Fi1nY``C@BR-oXio<>$pw3vp53wQE1_y$^v3>2dt+u-byyh3OQtiX z(MK9H(59VEa21WX5i9*j>mPB*(`!LWTNQ5gVr zpbr?xc8Z#3`YysV0Q{o|SdO6AB@7qvzwgcT_f&x$5VfWd+lLKnS6sb(EQGgz=ffSYrl)Djw9(qOP)g#a4)LYO5H1`AdQ zB;pmqDH31+0t5Tg6{~WZ%#_6U6Q2R_&0dUf3z}xs_N2_=rOEQe@q7|u07B*@^a2se zm&prBi2*1rgb#NjVMvHW-eO%ZA`u24GH?{0<{qrK-Z6BV1o=mZ%mB#y7ND5}a=t8n zj3gL<#6tK$lE|0BOG$$PXe@-`3JtGfyqx$9fd7O6y(p*uy8CHV9qR84>{Rud566vVkzmJgc}1grdh94h_9FDhNPqzdjLvuaw1NFNVHp6{Sk?Ub z#x%;gWDX8?5L%I1&G z&r9$lLz9?bH29w;J_F#JIf@bRADrccuBhd+1ZDtW(@2c~dJdrqYb%g zLsY)4qI9Xr`LJ(hm|vTV)#9$#xp@-FmF|(v3rSMInGXVO?4#<4%OMw54 zzzhIvR!ruvcl{b@P(A-aIt)N(PD*H*pyN*K9wVKmW7sUZ=|sa`&3Y_=PU5 zW-wQ*{#b+h9};8$f{&G6Z8<%h8n>Mr!)~baa%0$u9>FoOW?Q!^n&18S#6NRWj(tp) z-mZz*2fB7BjAlm%=tbHAdQ^~o1CCFj34P5J{}8fd$W06+CoAHj7<@ok<>2RHk2fc$ z1M{7w3H$NazJxB{dFYKME4TJ$A_G8q&6Ipz`-a?b1{53GNK_l0Q3Y~6#gNFYscG02 zmQ>n3c8=Ich-^#P-DUuh%!k+KEt1#LR${>$bqX)b$qNJU^8cM-b!>)$U>Y54c*92% zMOj8etH>1taP`oc=IR6*#F;EVYsn7-@biL)lOLWqGdkKpo*00qV~fnwiPPLSkQ(qs zB+US%r_T`Syy0F-9vFa!-kIW|d8#?ijWGBsyeWk%$OZ$j@xY?9F^#_SQG6CNEs3j1 zo&m_uoPQpR26L8|{fnbHvq~A<8yG zCQ(1W_aD&&y$sSMOYhW-Y<`|P0#U_8)AJT>dgk1g`T`W29s8EMMw_SbeVumW7>z^( zc?HXc0c4mOL54tE6Q=9cRbk+jWPkw}m~$nuBf1ZRHfbg9A8r9^UINfec;cJ|RFlJ-gCos8|mi=qU0t2ux zxj3>~plr?|RCh_$ zl+Wq)Y>B^_L>YkSoc-~fiH>0>6Mb;&C@cWQ&iOGT{aeWh12D2kHc#o}#;KeJ-a*0) zKzPpGlIj|mI@K;H|6L@_U~x&eXQyy|SGL^WL(&XD`uO6QIn~Ws6kM>GrTsqAW&qlY zRK-bq2J^3-u3VL#rT=TB&tP%YKGW%rAJ2*YA(CbQ(&nCzg|6e6ASf8xM@W_d$R1go z(mvUm$qV~YQe^Ggo1Hvqx-^jQN$fw2KwU(2rmK zVRW}@m|#gRJUDwKGUgRoW+89MG_6S)5I8_b7w$+4-LTJUH*C&>xf0w!*C>>79N$^& zj(Kk|#U#Q%fm2KjAnT7VR3Q|*i5}&&xTGiFIMHZLa%wZg+%05|0hs%#Gt69j4E>wt z7{|S~g>y~bQGIK4_$0E)0BpYYEM(JHtzr2oWSIe2{(&>gGQFB-4u+vy$q)lD^pg)O zL*c%SRF@(uICmXFRg#6OL5ldg0 z`c>+e0oXB{W9Ezv-`k#@#v=Q~*wH3-MdxXJfHW9@hHe2aBT>(BS5#Sv{C2dalbzw+ z57{*Rc=f5*u=EmEY9<$toLu3Y%UP9tIB*9=Iv~{f69-D2?_P9=Xdg@4L(rWAbNQD8Ylq|$o7vvb5WPvv_ zG>Fas=;mno{LA8a!|Wj#GaQZMTlBrLPMdQzqOu8+V*qj`3&YigX$7bmI>$(d!9viP zY#zfN5={LW)|#iLtqH`W!vJ(fuAS4JUaxgz^0b{{WB){E0*p{oB*p;5bnD~5qN*#q z*6$4TNW&^SMv4PhS<^yu3H$NieG4uy0>8e#@gN-iy=rI5o&Ukw(TFNsj^Om2A_SC%wteG;DabZMFG$Qepr~ z=Hi=D%k}skF4?hevpI1Z&GHP+iHZ`pkQ4)uG9UF>7*eu{xWQdUDXp7HivehT-$ELR z^c1YOG3~QR_uZt(02E86y60D9O3^r=CLK`DSe{JE3_y87E5z*d1lQ&}vSY8??9EQH zpCHmcl{6WE=B>e=UO-sq^*mQo!4=(BQh@SlBW?;U>Gh@WaZAYG!rwg!vuDYQ9WENo zKdK70=7)ECqI$QIF^GO^DP_oWYAMOhW>=r8HqBrdd|Cd)zP>Y#fOrr|Bi zi8gK}F$N%Jj#L(^qr)sGcH%Vl{dQYN;5wV#ZU@b;z(1Yv3;f1F4ABC8l#w4kVamhy(Go}#7f4*skR4~jh@)|1$id1834O%q*AR|JnXyxhe(9M z$R#3sJEt*^*0Ev=yjFhXvb$~m6PWftY5t;#@NAnjB zI?w(jX)pkd(cE~eE!+L`PSBJ@hjbW#PRX|3%4!PI$qUvcK?WlWh7a6gG7M)(unnS# zBI0K*r7JJ(;4JAd7+J6qI(flPkst#Q9L?aM$JtDq{{4hz0O-*S&Oztde?Dn20F4oR ziLM@+?_9D=X6)>Rgl7Qw@NVw30DE=!)8r2IAWM3u7*%6$1`Q$HJ9Y2-@r55k@AO(u z@~+sGX5(yRN$=F<)v-78qj%cY-l;h*nfL42Ox{@7dw~rGdcUNsvO#CU+4Y>(WdM#! zEXu>k_7uGrSg(^C6wSs#fxdyz3`&c`0o2{k0V=D9JM_3@_!v&0gv-Lb?8o2vEDGXh z!A`Ptw`O1|lx(#3AT=k7;CWgE+lMpZMh6y$YjWndxo%C^c{NqU0GyPxeik9CdK;^& zRsrPK5}5&z!$$*5CSK7@?UgC0WZ?1hPAwEptWT3c;@2b z$EUj}Rm035Qaud7h2A=q_q=Jwditweko8-nGbV<`bKJAAn|FTeusKm{v<%h?FD6-Wx4w?H?xH3y_cCHlf=7C5AkAY^CimKW zbh7piO&HmPz`4xBf#;sVwopQ$vKW{(x!7dQt~6Q1WB|D)3^I#Di^poyEnNK|y4mPK zxp&D%4^W~bW&!L*4_4DVwwAkyWcl4B6zx)GF7&CL@r1IElZ!1W!vm4 zWLYJ3unwb5>tFmj)GNR4t3z(Utqm7y%B;<6>R)H- zqV=P~Q=Zh&HSupSamM5=a>kG~@kbRo^9E8sUXf|A)(~4_h>)OYhzj*_Le0T;HzsAF z5L;txKVFNyNy+-+i)8)n1|mY@2o6{7S$zCl=qWmcUHVxO_O7{P-c;ZTUR9iQ2d7}+ zN`>>QhonlbE{Fm11q>x349Z}~oY+z(P(V1G(Q4v!e@!=f7=|t_eV<%OiW|=~$+VNT304MsnPT3ilGPzC}vx%^22yjuSZFCgf2{^EL z$DCNq6pS*M9$^vIE+3F0xja*B%8<_99r6)Cv^puf!393s;{o6TjY-9Eylh&Si6$w?SA-7efD%KVSEL^NH zUPpQZtHCqoMyY7BDqob=fOsQmR+#@e#BaYjUy4njKuAjPB$y2qr@ny|FS41w}J) z3j{#UTf%zDGFO*JJv;U9+=VFsJ zceG~U7NY~2bCAGA8VU-5Z&iVxP@<}0&P_)e6UR8R5w4b)r)0_P8V%)r_Z+cmGc6o& zGk_}v&_pFG1vNS(3ChbQ%Vk|3qm2IIr%JipQPA1r!bP2fG-8U-@m4~40zaWTMC8dD z?;uWI#Io)b_krQ_AuyC)XSR#;m{K=PENsQZ_T#;O#O_q_MY8@*g@DD_#87EjcPdCv z(P1_R)oe=InL^&Wi9wlI(!ytafGP+xR%Vi&X>8e?Y4jdY4e+rhkGPfPw;=ioFNU`( zW7u$rsaZj;FEPz5rUF6A`&G(%rCghiwobtf)Q;l34gbzG_5LpMv@!TD*|<}(L_0N0 zbV#y*&+n;55x4c%W;(UBtIm6LNN#=c1(e)58O?N}ZMI+Eq(W|~MhJ&=u>RG?EYoxg zHC2eL&PFDycbY`e*8RIg+jmw2$H=bRq#SZ57G^6_VEg?eL-D!_DU<6kW6^C=Qh~!f zg@ub!I0#y!e`2}-{996s_@Fv-?)2hHF2d$@6(}QKNmbq__#4ZfIN-o?v z+m=PBXs5fN59F$vYnrJb+(yTN_YUToW{ENaR-}jldkvd-n_b@chiMO5lPTJb!FQO- zz!-mrmxZ=PyM1akmEyt#Sgq7X3^z%`k-RAUGP!7n%_N;-a$ty-jXrWVQ?OFAEMBvv zXk@;2c*5k`f;Ahkj4|I=O&j_Za=4~OyVmOUW@WrarSxjr+?nAm<_nvczQq1O!|BcQ z$eG-{O}-h7ac-j>?IJmj=b+BV^di#?YhS$qzh}syWJ}s(r(@hJ3zzPB{P;O+L~@?~ zyTfg=2cs@IGVVI^+;!X_V5xJyc_=j8FC9?cFUL)7?Lv-t^H5Oha3be};}!vnj(6Ko zFfqNsPEx#lJVgo>eQHUs+1Gi|KPs6ANv6boK5?itwqixjZ>is3moDw=7SUbwRV33WP4`yCDF);_W3KKAUS3 z?Ee9_b{GWL#wR;%+wygr(;dUxl>^fxSE7w41T;Mn83-{WfdD5Jb%Lv7&@Y{uYGEl= zb>hV&EB50x7jp0#n6+xsO`qn$Cft%HfJ^OTvULCHZSn$8+p9sHXmw|Bac`~J#;;DB z{gGa+-AQNTgu>NBQYFzn3KRJ-Q7zir@#f;nhQqm{(^=9fe5DZ0#soflBrL4WM<;9V zmML79uzHy&7AB4HwI(eSF9yq60xYkASvDn|V_TC5-cpGP7B;g`A+6q}S@zu$`z^607w06N-kprboe z=x8^fbKI5reDw|Qvk!wvn$-tk- zpBc-m4Dn*78lSzh)nI+` zMY7)X=eN1UAarvzOX5PHJ9RG%ugb(Fs}5oL&%d^yWQ^b>z()+U&9zN({44AT@|-H{6XP3+fd#xl;e!wjXy#Rzj@p`6u`83`6jL1 ziR?^2izxmWkt?--C9|WRmZcSnT#Kgi|1K$nTD#%8R6y6z#h(;iW*fMY6(x@^6&M~T z*Cb_i{AprWX}*RRo^7gB0be7q-)KF0XyJM7Rs02Jca7C!hGzELsrVbr?X^))8=Bo! zIT=fvmL;pJzar}JHfYySVr)*Z4N9Az$TdF^n;*6jS-M{#-8nTZC4)}SIy`yVM7TC3 z{wk@JH6f20DqHHf<8Knk`t6cw2ah8&6w15o_*;Yt`{>$GZs3Zetb30Ci+Ba6TsANO z04@^iwaf+(aqaThkN^D(94vV;$%;dC_4*o3NZDX1i>W{uEZy=s87!4GJlR~E>`q6n zO&DHQW#W=mcI)GvOagwMRMMp7kY_p*of;>Lb(#%Lr%1Z45TC3&)Y;yNb|a}yk;%My z+1zxFid+TDUf^jg2yxQ*0Yhg);7zh&4{wfTt$Y@ebISMuN>s7bP9E=Yh92uEhQ)<5`ivT8OaGTJv%vx)i->KNmhGAfYsT^Wc7X|!m67| z1is6dp zbU-udiW&wEnh8X2s-_CD4%^`oQY-zaWTn`PN<~B5S`F5^7l>G!>cBs62T~QNVM(XUl~tWAsh?LHjcE42I$EID){1?!cCV4MRyy~4eOktal`SggbO;}k_l`N(t6g2K9@s7 z;}7H82)ZHcV~6Vw&Xkk!se6sLi|(>+bvSo4QLH+slcYzj8x7tm+=^S)a&{%N_8v*&%5)(L{aDY>#rKm=xl?=m(5fIs==-zyFd_49?AD<` zwt9l`i~~wNSUf@CVUB9J9}teMKa!3?e4NMy&vaXf>pjt##Jn5MxQ?AfHRbKbGFhKS z*KBk@e#JMqq91sZY`DjwME4pL`q{FX$P^+&QwgAd`qK~qxyxGraPCd%G9vHa5LQ?E zQOQcSs&bS92>@TVgQyfl z0ZE>x`Mq;1@|n(bfZ*DEbh7qPXF5-+tdmlr%(#OoS$4-~n*5Nul-BBOWU~4hNEGcu z`*DbgP-0IFSGyvOdKwjFtv7xZ>qd#SmiW;WD>YWP>ED`K{A%LnEv#hQR}c^u;~SBv zBz_%HgXUCS6>2X5@HdJo!j|*o%9@6C1hC&i?2w(5`1gQHXbtGLb>Zl(iNtRwY|$>R zb#~4pU%0jGL{pp?pK5&S$J;&*-?iLDB+IwsWrUMrGGl#734~^ZPx=^0!vwEP6_Zk` z^H=1k#2+P>S$J=#m*(4|C&97ijGN`rXBUnoj=OK{zPSH|bM496d~~vQYq#5w9XHx{ zXZ7&T#tbCVj|mEyKBY2wes*BKP3b5C-Ey-JMA%zje37iTLkqTm>4rUTVqh>SnVJNV zE~Y#A;ZUKoCKsEm(W%NqHW`%QEhAQLBYdK`vvxB*=yx2CH^9@hgd`vzNynFYYg$1gztg{ zcoT{_#yvNM@_Fg!;GLF;E%dPXCQeD_=B^I-Q+0R(pgG}!{vGsTao##}kRCpe$JrJk zWT>vn#3iftN|H!epf|i>Fb6!;p21u0B9i61FqTP?yk2aOIpNAXcp*wzlZ#E(2wvvk zMY%IkEpv2r%(#&8+1^ZN3cFSKc}+bQrRT_n+NLT=lTEuEV5ET9yCQ(Pi2!0#by2aA zGi9gM-V}WNEgFwk=x*U9ucx{eRwPQ%0*t@S+=XJ>R8AWOlmU3;9|0g+RBr94z=4qV zPN7h5@dbnkluT*8?cpeLS|~vsf=eUda)MXYd9a6I_Ke}vtg=iiJp{W;*2MMWM}CGq zgnV?e_ICXSX>?FCm-Y|>L=+U&^D2k{gLrzVE(P*!GMAax^4utsmz2FuF4=A_b`LPU zyDD)@l=I|v7ibNqh51paT5oom-y${YdQ_#f$)hYgoJ~(Rt>2@N(LnVb-ohqQOcoA?~`b%Y+I**hwbu+Y?iRcd6E8fBCkKbrI^t87oO zSo4RW$8cLklT&nR`{s3eDw_9S$m@Rm0e0}SCsi?#({m|uhx{-p-HZ0y>@35%Go(~e zPoAjt5@o}uAp1uL19Wa5~zq! zkaE{NSVaGq69a`~)S~i>OWr0I9|9|0Htz_vcM!t)X?s#LJqVvId){y?cbEy)rS>sd zy3f3TaNZ8F%D7}73gcmHIUZ{Cy{-_Cxo`*svq4flcujqJr@p3qqWAyUP7>xJqWOM>pY5CE_bNmW+cPIau<>4Z&pGI z9qhOaDL>rdJk!EfQdq=M?8Y-R*5;!V8^c?kk8Van(DSD1Dk~Wqg@hwq^!er#_UW7U;UVB zbgeQs1l}Yja?DQ-!rt6qWpR&Vyn{1@_(+zKbA=a^tg5>wSsI>?MkiW52q7&tyuO@& zSB(~5B2t!L zWAX~n?)-Tb?tV!@Z%-L22_`hrhCyBiLpv+xCcr@l!~- zQbVp#CD3$bU+a3kqN^rjwa(lokp^<+>Pn;duZ zLM42b42&tLo;BGj;vft`5El^H8jPX z?YPxHS6xFG*x_ahF{7IJjl>*M)}a{_j|LYOO3>dz^wL5NtqA0BO`%0urr%E3vf>L( zuY0JreA3hAR=e*aXh}&0yZ!`iwP*P;_jIDsT%YY;!N|=VB)^t)=o6UuxVYqPa`Cnl z5tYDYLv`C+<|4ujC?&Xy--b}g9vt~PHUj+f9Aj;Iws*WXjg|jy>)0_|K`|k#W3oIY zlAsqiBwcbHH)pkGq8s)DYs>xvH%5mnn5>l%3=DevgR^!VmQPj$%(|0sA}azKq0`J< zCXq^3>M6^RdCRGHRjR^^Z;8@ou%BW(G0R)?e=E$Z!-^*EH+8$Y+!7gpE$+Nn+ak;|*v~YTTwZzHw+w{<| z9C)G;0+bsQ*_A)wK*6ndOt6{_W=sH$4z72dIbA!}#UFgX*6?{v)^v)=l54WIgvMwu zfucJs5O@nttPe0Q79(#jlyh!1Uix~v(aM$eRf7{H*RYs*XW>B}mWysMC|gVc-$+B8 zt7F0W7FpcYO$nG_!t^xxbX$LkfJq8%%+=T6D|#|pJJAxaqK3UD7n`g(K=p6K5o%2aLUZ;t z+=1e6RS_+()pbvHj*ROJZ3mdE4tW_)XQDNpYb(|j;*)jzO;W!ln5(5@`!Y_wPhxJS z1!KpTlF>?8YqI5c)!;xB31oMWahMvUm#j^>9O95Qc-z&AKgK@YfNs_9z%VqdBhb-) z4As14x{J0h?Z>e4upc7@9e;u}D|UO_{`aABVqj`_+OYD*zfUrhQ_L&!kS#_f$9$|Y_qF`b&ob!y_z6FAh52~Av<=%0-ho9pw*vCJ(Mk{9GPp&uCD1{2^?zU=b#PSj0>>ydjBEX2sP-T zoeO1}w#~3>%hM7zZF&4{5*prMyJH_i>(h8EU30Nbv8wBlp9iUumfD>P8j3Fsvm#zV z#I%Wa8>}l}xFbfUnk^?*p-rAci{e^eWo|VAv+Zzjs*@{SV>73x&3&zWtjQxjbM-Hn z-&o z6hbz|2Ro=Guql^zfmoDviKUQ#om^sxrGi9$l5uTjrWA z*;0k+Xsi8Dv+!S~;@CNUd`md3IGMO)m7Vb4#w0M{;E9S{shN#+u8gp3e#}aLamm}{ z;@i!x&a@nGjXbh}XqDQU8bpm>Mn+33?!Z#Lr0g|z5!zypAR{x1lMuSW2?`>4{v3sg znU5wu<6te)ZOD{*a`}K1$>k_n$?mMr-+UQb@^JL){26&|N&F19Nx3#8)bxfhaG2Az z1@V3&1-*Z086t?6I!1LE@gYK%`T55Nh7}&F@rUHmSZaJ9;R=pDwBI3slk$dZWM$J2 ziz>dKkb~TJs7vXgdu}-jQ#ect!yI&|d+AY0{jPJYcC(H#_jrP2hI(Lk)n~{7*I~EZ zSKOQsPw6?|h|FZ{?l|dHcCC8`mvt4oQQoV@lVo8&j&g|Q*(EjSBjah3DtN}wIUujp z>~7;!clgqab&Bx}5eGQHAy(}$jqj6sVvXSx!3Vjy&;ZQi-1;w9>~43oRGWuLV2CFR zp5W7Ov+L@&`Q48n{4;clm)gf<>2@r>@bWpd1J?xGWPPv8{>+TN@LRwU(ue!wF8wB@ zlJ9eDYl7`Z@o1!*xB*R~aTUJ(NaRC2>9Qg4CfTsv zCdd9-lN?3#*kDz#NizidG0{;gJ`V1YHFz2zC7sEt3&#yC#S4Q=F{_F}5EgX#YcqcV zFFfK5vLblh&Lob#3ZU!?m1o&Av{`=6gGGGV+GmlE$|8ROFX-V49M)4MU>loXGV$-Q z+)GNrU1Z@^mLj%Qm0oIG;_=te}zKi$Ofxr z`rY^3N2X4VH|4yAci!=N{F2UwG=qDSY}jFwXU;tat7V!$L$Dtc9rAu%~%M_b2cyRwgq{cv75$8QIZ zKftfcj-y{L>biD#!sOa*9+-@`nU@moC^mb+wUb?JsKAMrX-q%M ze5){ZY3cjqQtF0T$4u5}zsU*~ynEAJ?Ji+K+KQ%AKF+{2afM0)D=|hjR}4y$TzQ+m zh6gs5*u&hsMF2D2MJq#@K_TESX6(fsKg~{ve5edHMU-(-_+@etO2ua4*h0RiRz46; z+05Dr58dKC4CbKhsKk)n5O|Yp*lLrfvqNPLyGRcon>Cv9PQOyb_#f#EO6q865SId_ zveaQQXa+34941yl;{QwVvMLptzfWNtI*K5zP10MJ3Lv$KpH;TCDgHOos#aaxXBh`s zhscHH*@&}tCcsvn^1 z899yFuL1FQ{V@oYn|r9c5TKCSbGkXw7|0UBmsoaiqXE7|GiE+R;Dcl)FkXk<`HkzXd%){9PcPj*QZo=dYuXAg4Wh0;hC2MlA z$y!WFd&z{oCx&{lVIt;iv3z1fv@qxs8^H;~FfPuJaMK)Y-|XrUJtXT2@yR-#BEeQT zBsI%~P*ZSYcbF2lM8GRrLlhxaXCsr<-2aI$n>g1SoUIQNNWUh9TLh(X)_ZM*&_&^w z$wl|tkEJ1#_#k`JZDTc#VKTTM2CpFT$!tr2a~nyos1a+Xzh*76H@m_1F@2 zW)Xikfy-?mI1WI!Zwk|I=v>Kg);;#)dw!GS052w4u`^B0c0D)_aOrg%KomHl-QW#b zf_u5MSvKK}| zoszmFS_LP)jZtyzW99<`!Cq>PAGL9FH@5j)OkU=z1}93c+NQ2jJ}jqSBSz2N|EN%K zt*XF@J(Z9>dLRPM=jg$sgMKJ$TCItjO;Oh7na#&^+6cvtT#BRW5=3f>FlsJPUZutxDU&0Xz0g3{ui9ou^GHK=tSG^scub^mwH%}G)qv? z(RlqNxJTCD+^8j;&AQ3WISPl%(&uEEKl6K6(7^<`*(8TRFcilz3T}#cpm`d5y|I}h zl}?or4NaFs`+1&3pkz7lE``EXVpgw^HryEwv({=)m~tJkXrCrYl`s~{XE?=v9jY>a3=xZ+h}#^N3@0oUUV z-#A5UxmaI(k*wcEUxG_#4yK7w5Ob;EZEPmbpDfi19(YrBUNJP@FG^RpQC?|@;l?kg zt159Gp^1G9zuPf8#d@UcT0b&OQY6BGoZm@)(qeX-$Aw$)2YpdS+vt?_5UEF4RCPOFd&6I!@0tE&qN zZ1YfP!rJ=ci)8(NO`LU@!NnXan74Zjy-ZhQea9{IE-8DRT!O)m%b2Ad+@2etJ=Hpe zjgT^Qvq78Tx@h6%FmI&*7Qc(H3@4>%v!y_K~2>z4m7=M*? zO6x#yfS4s>&EF%T$X_FJNn!GE5+>K?qq$AVB#boS(4KXMjObi1n3Z@r-Yum5f9}3BK$4?88x&7DlR*NRWY`lz zfbn1f0%atGaym4Oc4zOVZg*$3GkZZGKqMhp5nF%_#w3Fc1`}*-Fqj-{OfUw6g~`F$ zB*VvNu=$>+-m2=Vo|@U2>Y6?7yC3g$SI@rB8=eYXU0r=l?9$pXItBUE5conNipBi``%HcjAtZ(9pD&Lx8keUBU{ zUpw+*{**8Bn>~5SrqNRXf%kl&wp_3ywdAm{aP2Ve5E3llnSieDiEtHVk_AKY+43lH z7O{b3dtsrq)W#k<)hcp_Ay?P#aK8U%K~)*qZP-|ry}m7xl&M3|at&z*M|Krf4OWtd z?UPQCI*MvzZP&;f7N@ji)(N`IHCyU9DjwEKjqHS+a@P!1b>Eq~hcrkdyML#ex3%_u zw_IM$wn*Kb%7?Z*(Px!a{xodkQc-7(DHz%~$bo%WLXQja?;)c3!G0nkBZ!P-G**`KmGj(wi!B=>9H1UM#^5hbw2xa1`X+b2w&?;SotYwbbah~;$xN!vtoFER4!*L22rtIJ zBYZLrJYbSPS(`ZxYqkX71o_U*C_fnc=uqGJswbSxF4DHp1siu-n(22Q{)4qUKUQ|R zKFg-u-U19C=2{&4h6`gnf`)gQYY+X!+Fef97l#oqdIJ&S^P_aj-GvTTgkl+zyJlR! zzUTTsT)XF)Hk?iw2i?9h zL^<{W9GkXY!yO5k)K%<+!mc9r9NhhxTgYVo{z?4%ptXy~runYReqo^<%_v5?6xvS<1aI25@sy9ok|arB!J2q3hwBk-jn-*G`y z=Uukn?X&>s*6D!ir^XTJ3kXdC=|mvpa-~2KnmukHuf^=Tj_^}5}pQtzehj{0A?7= zQ~*nE2B5DaCknli!a+}Y{u-Ab- z0_6EwAq5IN{GRYILr-gL)ef=$v$kue)PG)z98tiP3>{My%u>;dqxvBsDFB(Fhp0mO zWb|SGi?9@ceL@B{YTcltkMUjd(Pu}7Atm>p5H{+KJbv$J4k=|55BU%NWEfIfm_iW& z4E%{OFh{FyJ<#-XUa04=eV~8`If(AV7~+*+HxrBkU^$vxAIzg%3Ajc;3g)Li-=Mf5 zTahq7>c7Y|m;Vemz`f;#j`Y0x2sAhjMB86Z?Ei4(arN6f2PGij+J0ZwVam{aJKee` z^juMIWqVS*?!al(rp zn^tM_Y~XYp)zb(`0muxUZPh=Ih=HfiAS?x7>vy&WwGp~@H0kJg0-zkNAh*QPy)9O7 z&TcQ%z8v}OFDLeYK;>u!EtG(OhWEMl!qOG>9gc!1;6#pAFaR_&iW-5gKTo= z-XUNgpP>iyU9IJ8uZJ zj~*pM;8zfs0>Bs5@0*SChV|OS^g-liNf}^exB=;R7Nm#fL80Ds1aCm}vH1@$8E!x< zj39uDj}|IsxB;=Mb&5(a)RWjtQNV)?oqqr$^z*=G2}S|13^yPFSV=n%aGrn^%uj8~ zQE|i5{wPvSXaM~g#)8=Km~E=Azvj45KR$$GL3>&r0W!l_(1R2xukb$CHhYCjiRO zEnnYW={A>JbDEJnnZZe+?*G5+mfg7=@^^d^ouOOyVFeAWyhd1=pHo9L$_?TJJ6Dv_L2d99)T$Ud~xkI(kgH8V2kF2ri*$a z>8Uwmi87@1YWG{w)e%%cOb4tk1E^u8k+n&%8Yv%0uKQQe@BcACQ}; z#m74nKne`#xF~cSa>F%&M$JIaF+osoV_GO+_BqkCjERBGbr`fQ5(FJ3wZLSUP`Tio zGkI{rZ1BwF;_73Ni-XDnId)KwstHvn0w4>!Bnt^t3QgzSfh!U1>P2j{DUg9PCeDD< z*5HwiKFwA;8GRib7my)i)KMwMQy`8-vwaqA8w zq~e*9iXmgwi9C^KG^Kljp+3keL4kxkZsLUahVu~`gJ;u17t}MD78@}aqIiG9w_9SZ z6w5c`Yo|>fwCC{MZhUCf+}5IaMvAd_iY_kHrw>Dxj*eW>g%vGq!Oo6mEWsSXM&4c^ zd5aIg5)|w9Y%m0Zr_N@jqJS?~#Bw+xVgpE9Oq{mZa2u>!m{0~c632LBHxhidyS!U# z(zT6eI-Q03E{8)0l?8IFf6A1_8@utL1OS=(ZOK%;u^V5XPLOj(w5u1eZc)JCXk#~? ze!Munyj${N6u*K=(7|y5=}yk!xm7%ynQdXcj~>-C(d}K$*=?=Pl6lp^{y;W(VhwBW z!Um1}L7|R17}e}Z4b_=cTS;X)nHXJL0nH6HQ< zdo7}xgh>kc2vfx%B=o(K(8UynjL@%JXYn@Xkq(FIv$9ga!EFiY9)geT^9t){A2)AI z1gfk)N20`Y^&axU#ay*gm9{m@hVJ}!mP*5pE) z1)_XRh;m&vqF97cR4D_aPA6F?keP*CWTF01bn);%O2U}z42}P(lSc<%wbpG1{x8&P z_Xh>`<)KLU`kTorMIBQ2IZ0i7+F&F(tZ{NW)K%pb!V{s}`^-&NN{RMIBZvd7`@F|kX!)Hg`~0ZdA` zU#hrfO)3=Ok=O4@UgI;YljPNE*6m>gRS?xZm|F_C6I~%bDP|r)M2wmvARSy_ghgEnx{V zKFcSk*wc46Hn{l(<`53{O6&=LO}KKLiaiv@{1f|=pE*;Lht(f}jp%ekfpe z^eHM+Ftn%e^fmPH783*=C3RmWMM6~uCt>U^Ftj9`6w~F^yRm(-f$G{Zu}h}ZA8umO zhK^6(K@Bkp58?oiyqzL>OBlNk(d^|f2!tT2S8-H90e2=JyGJl>J_#1ganV8bU}jc= zJQ&U#PPEROVbl9t&;4cnseX@->;MZj@H*^rJX=b=2SmT^6cf zeNLERiJDR<0wcrcNQM)duBcv}-GM8Drv8zcrGO)o&#(+=<>&PxGc0sWoz09gtb-w} z@2aCR^!xb~Mji4$xScyDc1f4|2I)UQFcMnnifh)SLJ=N$y+rbw&|nSG9LsF!u-d`g zQoxa9B)cBm#mp~*91G`=aS^^R)r-htd;S#H2mYS0R;t#Yf9pV42vdFsWVo(B?#(zCW?ZUFg`k%7(|xa4nW;NC<<~S z6I8jDaRBb=grfjle84xZV-2kvZ43UugzXvoX~o08y4?hQizFCi%a8GY|+5=5Dk^eLeh$-jUX0E+h;>mu<7c+9KYIdfd7 zf8$1D2inu}2r%)RzDZz2J;-*0kS*RqPohy1&04FCSC{dIj{+vgmm*FKAOs6xt|SZv zVB!tv#4shXLZ~f-q5#zCv7zv|NR3eMQ%EM4YbZ~w`~t7rL(`T?iS9RB3)q~9FR&aI z7TR<3XTwLe@@FF&(gAn@1kKijX7PdhH0g?%7lDF7RtGM)@o6SBJ~U94q_dOmq+=wbs6yc)F(ZmceK__J99gDBwr@ zejpVtU}*^YCW2A`G(LTh3Oc~k5ctgmrT}pCot6o49aBS?-yu~Eb9|yaHagB-7qi!H z%bQj_!1N1O@b9OO&42Lbk@ZxIRxt0)!o2uY!uXbQEk$Xq`Y7X0K}(bRDk{TWpY>n; zAww)dfX>9RPH)@l{JeRC*Bs+5oBcS}v8Uw`U=qhV9*n3*oc~nfoH*9;H0r8tt<}b> z&okN-FgbCoQw5O99Kw8&Fcg4EY=x^ZW%UiAzDy_zK&6d!jJ`&w_fN_@gbSYg`~f0G~c8e2U+7POR1p zGw6;WsCP316ho7p3bNAT_ADOMdk94VsCW;U233+PfO{X|C;)eMtZkYItr6({2>E5x z5B;_2)mhR*6@qk@3U%p0mR>j$ARGXwHoXK$5J0cL%S10@Kf4Ft2X!PzkQA^z-j+;| zg#g6T%Z5uGLnsPB)uxvR71GPW-GOivfU8Td&XT5=)BSlzFUfk{+F!1FL2~p7Mx-2V zY;xz`Asvd2I>t|x0~8z(?OQ^$_&sNWV%w5=-l$Kq##3Zqfb+lr8M^s!pCTLu;Ntgz zseT2N^C3S&ND4qkC!8ikB<+0t-z4!$QUE2s?qy7vrS1}63)fAXIWE*6AIfoQPx?*>CWY#+WvB4{|88XE`3svLQy?P zcDvhjbZXU<(sXvAp84vJuR;PSV0f+8GlURw`9SX^5CwqZb7+%BNLQDVSU%XF5{v?1 zXVw^;X`KyU^Djv$lXEDK-$CLTVtgdt-;6tcZ0py=Tg1BAlG7QS7V4mjK&OMf5_`g5 zb95HJSsxor5WuJ-ZqtDoHmV%gc2cQyN3^S}8F>oWJFH!t1VD&10CNptC;&5T;5P|O zNuvR%7NIBr6@8U?tOQ_p9VQ-YgKVnR;kSWGCf_#2!)p0@zRY%4?Z*!VXhup3b;V_1 z)nQ?wJ#U&H!L#@r#rm$5zybw&-2;Br$bP9&S8$UL-yQV^ri218!`hMwA||&L9D>Eb z-b648fDP*tCj=W{Tj1TB2}l9J=)M%=X2o$XP=EK^Ks!SSj{w7N0@ib_qrYP++u0eG znW94d=A*#9!z-n>0PjEW3#e_jZ1Keo>-*_}3mWJ*1OK3MSZ6kgKVA!GjnzJ>2VIF2 zQ2=Pz&ETX!K}#3HokBPYzzw?(^b@@n&=k4~V9w!XY71Bb3lu2$TSCFq{;$;Nw}8e{?T)(fa-@d> zhNrfG6_|j30obz$Mgg$Y7O(;~z`g+RCIV6bFtG&`eU5v9`bYRJpt(Y%_^d>Cr9W&6 zS1xf%s)s{6#m3`8%^wfe9cV7$0~huPK=J1}{Il_a1OQxnoN#SOwV6n#W}CHBJD?uL zOi;k=AuVbOgqiLrBc&cgAPN8tA@t-xCCfsu&L9{Cz~Z+DV`FiO!*kC4qdP&k=|MK#z&`jbl2~@U>of8>nOQTgL;rjV62C<6l08 zl7d3r@gbnmq5hAG$|=ByOwg|HmamuO6+CdO1Mi?XxoTGxYYzB@f~1~(1#&|HupvXG z$-VFh7lC{(At?YEUp>RvuhX>qdUdU56)NfHUpAgTpRg2wjcx)vAu1k|S9zkgk&_`= zfHq`;YYZpx6YU&LE7Yxb1r_(x$L2pMkH45ajxR>J=mq6=3FU@N(M(`1Q&C#1_Gj-w z0c(@HUFvgrmZ6siv562AfEY50oX~!cO885OkvfDh6pVXfLq@9`p6NSD8A2AWqfCjt?X%e1i&GkSE(^NF;`yp0R;$5 zx=ENcWTL73;|X-@CdGQ79a7)rTsQ^X7&6RGhZ2f~fd5QD3IMj^gWq((l5ipDzY&xI zpwUm*dD$N`o{bRUIb@(?2VjPbI41I~w<@ds0ENRsJ>*PK@Bnk>4geP4w|_FH449yR ze=igM4H?uV`JuZP&lmMOyy2&S4@0Ijl7SrgTkSE|;np6`ol zaTG%VA8OOC0wlBx;N}QN0l3<+g8GfNjBc>5b6z``<%uX~(ZT2B1(>4xasq@NCFfYGS>bWX^c?LdKs0v8mmH8q>WS zf)eN@1fl@Yko%l8UrJ(?V7C&C0$}kejES(Y_Y{`wF(2w(UV5P3a}}ab0qbjz3Ih;nvplHx z5sCs(wHwF)%A=LbjrsuLD43V%Ex}}IX?U)D_%_}e=mKc3-%goTbb3kSFF8B5FAqfm zpnf|g0EMD*uV2dx}B0GjJ4Y-cazD3LcRGOY^U_G`49HjZl^4W=m(>|2_K-i zb~|Mi>wc;9Ks}T<_!I!C-A)A{LMjjH;e?_9RPA;ufGTO_!99X-6wFJ_c8Y4Torlf4 z`UaUL$%ppZ?NqOCUc>2wSQp-n?G%d8PEi7&b~|MNL^)XX17TI|cFG#A=fAA+>Ig=j z0;bn)r+f&Z6oaCpq>d&K1%PU|Q$A2hs1ocrf>8jhZaW37_`aoeT(WaDPVeiGINR=$O=QnXKU?lQUjjcoo7<0n=-f$%ha!l|Yvehyp;h$>al-WGcZfCm035>XHds z8>QyMkPVmX_@abWeAcMb-yNHXHJA8#B26N_u<<8c@wG1xMZ)GsMQ4`BS6nD61$pi+ z zlm~_Si>pA7{q(W<5BA0%2amyKt6cPgA&(G-#2*Jwpis9TrN!!NY@aD;ZR}2DOx+Dn zXM^#TP(W*PfP1YSvM`qig=${I0PAD(U!4G3<)Rk>KC@&)#OrCYuCvX>+T`FWPjv<}+c7-MQ6;_RLs+ zP^eS3pvM0MOj$elG^dBn>u)6Di%Nw42@?9HL_Li77#@rBd{v=2yU@kTZSm-5tN;}7 zWMeGowHDjW{_bUK!Ov*{1uWRLAu(_kVB`3?W^Y@|+48@%g#xzhn653e+uF0+u~A5G zb$J=9Fz_jWx%LihXlU|sd)6BYSn~8eV~LK=oR_KnXcGl&THSD)JVOqoArvrV=X4Fx zjfkJ6`PHRawjm}@2h$V^n6hoUrs&1ax~3cK!-!1*>{E5;HBlqjDBDA$FxI?HP$hS? zIt#69@fq6r71Z&a-IeX~J;pH_+Q^?4*j)-u?rTsR*N#2S{@{dCHydBGfOZ_et%izq z0)u9F+gEfTWiP8lg^iX)@$DSPk>#M_Vk(ySWSrUvg)X8q7@VyYXzvX zqrb9>&R1J;2(6&l*xbynwB@U|TYJszJNa&cvFC8wLjilP+qm4!FSPn#tTEy!8bJXg zHn27uBlKVdtX;y_QFM-ur8yKZX9H`qHK$U0?nrAWV9hf(JVUN7H|KYJ>t_CTv>F%_NVq+7x68TqRsL-axc7GdJ5omfplonCIq79_CSQOT@htm`anDYFM z4vsOUd2MTUJI1aUQ!g&BauFGCfOVuELGvhJ-i!8>d0SVog~nVHL%9C7h>ee=jTCzz zgs#OJ9>UXT9>pFAp)+rt5S~sODPZIHb3eA82luKY<|_w&uPa1QGtZ(S6forG4d$B| zGNLk^OXDbD+za-MaqHyqd|F5W3pen#v%k`s#Q>)>k5SKctDP0@>8qQMC(s@W*t3D1 z_s$i3i+7+q(jBHT>|z>50mJ0uA!E!5Rr%Yn1#V(RydFO5a?RMR*}BlZwzV+s44e5i zzASnN%=)|=uW+p$c$R43WY0rVU_}|`c-|>xq#)4dEBFszf5EbAa9>8vTJC)w(cv0rvUsE>wIfv zuDf%o>igFSP66=oA5%}vJ_8~?#h<^N27SEXCLOtWbSTJ&Q9Qcw92W025 zBz27v!C9ysQhyKK!yNd_8etr@ZlpBExvLkIx-<4E>py{8PfekIfcMhX8?e@E?Xc6h z*39{i?2JF6&baF1+7&EYn{DCMeok(h zH6S|vZ{mVG3IzQld$*(4cDoChjMQ$unQl?QtuO7}ZkZ-U#snA)&v#9NjjL~^s}ykc zulH_OJNPi)Y`fQN?dsS>zMbAtz`HN}|KS~`6tOU^yR_B!^Ii0l0)BpU@AlJfV5lqN zyXhAN{QAUR?H6c?mbA62ZK?Slx<;|rSG-;mpNMNNqy6M+7->P@NAD=$-6!|f#JPS? z`aGMt570LX`1Ut@t8bVU!YWG4QZ%==m%=XL!}N~={{6#V>z}L-ft#~fC$gkRE_y`M zbGOI3h4~nrrGT@a+RL3?!o(9Nj+f9!n0ok0x<|1$*F!y@q1(@(bNCc}qkwOJwYR3u z_@+nR*fxI!@5^XjeumCbz`0NVf8$&e2{aD=EghuT`?Dvk^v7dgpmP*(?qhpv_GG7} zuy6Ph9ixC_d+mT)FK_B#BBI&rF6?OI8D)QVTXV71U+G|PAYJ`#qn{M;^D}#E0;_%o z9)6V`QozH#c8-D`_S$+ZGc=XopraIU^s{?&Dg#G@Tz;D_QozN%_V$lUo15MFX0LNS zp5o|Q_&xeX0l(hAx2Dc4+13vI3mu}^n=9SoYJU~4#_f*H3)*|6f2X4qaP)n9YvyF9 z9G$rD(;o`>^Q>{7XbeuV)|p(!2K@dsx73g!6W|*-yDtM+GtD^W`!$1s*&L`T)ZMSf z?Ebg-I@4jN^JTU@G`k;IMd!pa%Ygnp-8dy zT}4r$ZoC*B$_iq>cEni%;+#hoZrC_(RVhaAl4gr4_38po%L+%^JsHxc^L!WUTePH-`$*V&Gwy(yXYbXT-?B?0{LBZ z33N|AbPAtL|0wo$|JsY!w&&*XsLFMu+P|mLKMMHw)jirA)U1FNM#P@{Ylm;7!xV6M z1BbB{^Yk6VWXn{l8rZ+eGk@*Zv*;HE{QCIboydOkTE44;af9~kCVEBz&o=O(YBk>V zTTy0=yJI)?=AqiR=g~I`__l#F=F{=bERoWV-9pDG;MiW>FUX8z6RRm@A($cMi|8K( z{M)MsE-P)Fwy@WGDZQhBcN=(5oS&Ax)oZa(+O{MwqgxbkYXcwSa|0g{=l64$y#21{HEa@JMdv8s+;cZQ88|=wObro;s zu}LJGD;?}@WI6=`yn$2O6_X|(_f!<%7m++e?npx@V8~hH zQnI4BQ8`~Pi{q1OxwG8Hn%TDLqV%os`me@R{;Ifj=61Kg9sj9M-jf{@H>o?~2}ZT4 z2$Qj^f*|aoa>7W=&xo>7?5h6UuxlGuPcQJ1j`ndIcc-I3TE~A8zN&g1epP=S zTC#a{8LMZxc1UmbVGP?&!zf_b_#16ik!l$R0%7@t4$~5?q1ba_qBWaw;}M4GIvPd+ z!=5vCJC!|5n|F5l+d|9ww2WdS6X=uDAR%o_hyyP9Tk&d4?K2$SB^K$~*|&7pufV>j{@YZ~_4Hkj))rsHot(ZfbNv)Eyq zm3sZg-Tb;xpTZlds*5c()(*T_G)%Vjga<3i(01P_ZMPb`#(7Fcwb}M(Ha+q#yljD> z{aE4tAQZ?@Z{yHC-fA;eX$A$%c=`sK;kMzG%_xKgCdIpG69sGJdzD`eJe>Rwy z&3ao5*{ngw=E<~!0(Okwb6J2Ic3?wxZA%c9r_vepc8hUZpkc*cLqK1}1NRw(*6bGwnt&MciWPXClE`6%Gx_+yW# z@^x4r{Tt69uX)nx_`kG_V$WL!;$m>S6)&S`%YH%2C}7$6+v-LAPl=grzU&53R4g+nZ<_1xy=% z6UFS=4os_N`ViVk0UKZXD-u4lcE!)~;WU#1X5PH#%#>cYn&+cv90iPf$*+uY)l45t zD=A>*t-m@}4%X;9(ohN*I{v+6zG`E3N3CZ0E;Ne*X07dk_*KoS=J)Qjj{^3+@K?dU z!OWgO6DeTg__JZzGRuZAUV~4hVH7az1sfl`h+)<2-iH=az`_^*YFId!-}}=@3K%*5 z*4Wwd8_(?nX%q#FdfvuIu3}U*uP4zu3Rri`p0{o=rw^uq6fki7DYR@kt+v7sr8yKZ zXAcbboH>y(%EM_I1xy?N;d-`6UAx*@nA11h=3eL#w1)!r?7=Zp)7}ipWPma5ku;71 z#_fTwz}~3IjE+CjJdK7?>=}YN!=&8^Vs<)Bqkw7S&kANESTv7k(IyJmv^aSj zra`FArCAg(>#2LHSq&^YpB7QTqOre57Rz0Og#*)I&8J4P%3s$$FY-SPpC)KlZ@ z-S~iq0`5)L1!S~{78`qxr#%#~XZ+<2RhP$@3G>Z25efoxFB(DtL&krulE)A)9`~jh z6fk45!Hn;aAM82S>+tg$cw!us2bFJVyE#&>gPqa>(v68*to?l(i z&6RshH#57y&wXO8-m#ZsU*Mw#FRUGPru}T^3HHbE;0|%kq6e+&kEB&SQLjYu@f!}p zsngi%hxm&jV0SLT_~C8oPV`ZsuEvK8*7lc^wf!&UWj@k5Ch{lpV;J{yG45Droc{BM zr&0Ykttr(#(5cf~Z%4i&%{pzeRjA+kH5hfEJzYES66w5X*sqPFNi@LH{l2RCa$jrd z5Om86`8%~Q{we@{oPb&maP@6T2)x?Y*`dGPQ|+gtzbVv<;hkColh+P8t^8X$_kam- zL=SvCRD68s1b=&?dx$4m)($EQ)((1teR@cfPMSn*XYOR9a9@3$ny*p}V!$*}B;6pzqg}@U4WP0K^rUA*$}Y zomdoE-RaKv7hBjePP_9iLQrINM`$d(79Jj~RGzomAHYC-L1@vE zkz-3thsyX=)ktl$ar_1ZNmh4dXCsa-W z<$1b1DzCcmGonxc<-z(6eBJwkhIcb}aoG zA?@&6`|>A+y4MM~vp)wOuO0kY_m{kj{`FB@DK*GaSZcw2{Z_fJA33ZF|CDQ9%Q*+{ znyi>E3yh`bF+mitaBh4H$A;OAhiQv^2(zmx78u+Mh)V(7_SA5J+%YYwlzg~(SBnPRFgV{xKH}6=;M$f(M;z2cF$tSVr5$7U;fX>XyGp^Yb)men#Fi`Zfh^kG&v_2u=Gq zAH-6?s$U<`j+?(~gnvEY*vNjKkEc7W1?&?&q6PPVRH%168sR$~OT^a>J;(cN#?Z`S z$7`;yMcQ#{LLhIJKwdB^0o6Yao7mtgm;?isa0jj}J&P;aDPZ5osgXd5d4g85C%9@M zybfJsol7hVU_B|bJDX?aGb}q=D;<7<1tTtvc|I{IfH`u+6?ib(zj^NHztGwZQsA4} z_ynm&dIFIsfYi+7T?MHc(2EI40mw@-LE@vBE8YI;QU{+}S~RX*MjQ&@JaHO0RmZL* zAO!$N4lpOkn)g%V))t~r0A*wsM~=(9AgveA5O7E(-$q~x0FQjuHUV%K-#9XX+)nir852hJ z)%YzDhXObwhwT%%v4ZUkx{CoXt|JTuV76qc%|1-ktv>N6fH(3sAxE;fH3me)#M0OXP!wY3P9!R zCXF-0i0~XjQUEd+5ila`+VZgGITtv|NtFc=n5Cwo9GGgfKXQ|IbIsRAF zPLV~si;Ri;-%vY6hPXd?&S|g4{j-Fj$Pjl|OFvJg6d58jSVg}`?G#zGyU3Whf0^1T zGQ|Cq;c@>8VJHCe$QoVJ+$?6nbVdCdHBvz1S@kqlN%Bpqrl=Y5x%P5@8;K^J}cejEt9_K`B)#(4AdJ3qo zGjegCaWH28fO;vQx6a7L>8%?6V**eBpbo$1=WV2aN{tlIScl)xST*+lQZ)rsKdJ^b zI;FM0ph^m;9J%Os9bQmn)!biFHwAQ$d|tAi?z#3-zthLQHJZx%@Xm|^YU>R5J4S8Q z?ER^qqGpsAdVNglYLhonB}L6BQ)SiML#Ueqx<@XpUMI?0H}~T+H?jO6K;Mq84kri& zKWJmYWE=kMO^^y{=BV?2@&jXgeI$t z=T(~N_a^`a07gC;Tc?idO^XA7DtR7ABnlwiZ^X2f05#-4V`X(NX>>*J@@1;wlT`Y0 zp?>2on56ptWqOiIieT92Nh+sU{u+~15BQq)XLRf4{;V=3BIVb1mRc*jXEBl3LuN3D z*}Z^6W8aTppQ3mfQ$V~F>1h0fXcRyjJro;_HpH2qQ9T9Jk9<(c0GJGhGXqjy zRbO@E=ft4^&d7yX>)>D&`Es|@>vfmBjQlT^Q$YF1hmsR1uexx1E)Jmp%E-#1BhnD8 zA)Gc3HSLT4tp&b$c9PUD{SsPvWi!KVYC7*Qn)d4(bDafrxpTTw@xqL`Fk>zh>YZJ@ zZFg++niN-caZcDg$0!Y`XPQ`nYWZlXmRqI9q4`Z??67Yy#XB!f;uJl0pIg~Ck>G?`zF zuDCG970yUuq24wJ3LH65?iHE8XU#XG>Pge?w0ouqG7^57B-}ht%%NJRx{4`yYKcjv zfH!8HLpDhL>GjP+fUhGk1%NvlGs?Cfx$L)aC$usQyiafnfM1?O?W$J|SFpwMLsLmz zN;a2#vKIktI`xUeZDxoxeeE2SYV$2|GkH{$M}RS-%o;F-qIyuXEz~r3Wi>PkBYor5 zE~bP6CY$FAbpZ_j0+=TghJu+-q@9<53flsxrxJ<+P^YJnO!PHuUUeSS92wo zw=y-=3xWLLsQVLy0w896L`{&gu?m15NFWLTJtm1gqOK8W?U6e+!8PK9d9tQ_%SCsi zoZFg_^FrNc9wa)%FOoC!2kbY`NTgE;D^TFnGlf&B`3SY@wu#nTd$mLA8LZ6|Fh6kw z;wjZpBZCda2H>7eI10ce4h3Rx9@z#UpG!yzK%Sq*xKd|>=vyiwB>6NkY&nn;@9XqT z4fYCZ%{AR*kPfQ8FvANo?n0rS(g!Dxjb1aw6xP*oR)DTA5xOSc)(lgxc^kVZ zxaxE^C=>|#Vp{!+X|FIj_7h{kSu}tG23$7<14?d>FydSqK>;Ju?rvks5j7 zgfx!7n7kMAMOc5Q0B{uX9|fhvR3 zOXFZ~wzbfnYtD81O?;Jb4j+OltCUWU{9pz@m@z-_+xk0nkg>as{EfXF$6#K~Q-n$L zx}NEUqIF31pGm5BPANjHaHDJyJJg$56Di=a`OZvkk2Mixlrx4wZ>2#LFzCi9#-{8m z#xUybG>QU7U6)jCMu9ZsBBn&U{VkU8K_^1WsCTn^8CDOc?U0eFzD+{C+}gf&r4^km z4}P(Ec3T&(oo(N(YnweO)cu;MS)1IscZkTC#|Tya1d1nw7DUvRk4tSCG7zo~z%!$0Q|Bj%Tuu%6{L@m$|a3} zH{{N3Vn9BA6wdOfP~YOM=>GaiTVekPoO%DWHdQU00D-4p6rNrgZ@JRlVRJ5CXqVI) zb43AXa#afJjMrfMkS`=81t5pqv(@y^P1^dfFCi=iV4skOm2|Y>V|;;pG%Nwkkm1*) z-p#f9nu_?pP*-gO5%=YxNWcsks3yV)1St3&piEV-G?h%#1it2grorEd0A)&-FQY|sGz=0%4t3TV90d$#7yY4whH5LfbVTD zgL3=L@!0$as3DK4Q=tR}toyOBZpe&!s(RfNX%DnF>S*4-P{0%O?snZaoZ5BJ$Z$hE z7d~|y0Vx33%G0O^fFAWq&^r;7g89nBJt%K@ar_b4C)5B&t{MywZYu65$df|diBl7s z2(Hh)LqKO5Gg|G07DP~TpRel(=4vo}?{sTuJ<=Yk^Vncez^hDSM&B#1Q?|w8sJei_ z6adaNX0!;dUW7C)^QtZ)I0eA-j2SJqrmKf^dt@`@PNr_U-I4l_{|ogU-r(%ZLy>SR zQ#Wm31On_lO4ymHo3>7nn9dQknc1O$8<{G(4kyc)$7Ko z^hQ0LS)qU@nY!r!$`Q|mPd$Qw6adWBO$UGh^(^Qk2};3yW$C7gN%C2QZkmXo&(x0Aj!i;970H`Am3%ZT0ZgVbV`piHq2i80y?QIh zj3~mGkrFVO#*79=AV9(Mg@V~?lyL%MM%t|%Q7>asDBwn>9>=)hwT&g*ZxfCJaM{>i z`sEYPdiW|rQUEf~m=W%PbXNa)q?~0!rs2=RYI7dj0e7VZTv(lvvqHUn2gr9&S-@lS zQxY-Lkk#pwo|~Yc;})S~rU6%gp}FEp#7%WAdoc<)c4d|UmqTbQtZuPk(=k<7GmBv` zGmV-TTYW4c(d~yE7V6C1$l?L!%pJhZA+HroI-gcT3Ko*LRg#yfikAR7bG~2dSxg%R z{K>?X3Y_$40q9Kxr2uHAab5+qY+3@~=Mk6!z!zm9sidQ9ih;k7@DzaW=9z%@e3U^9{0_)mG2s%LKmik;n2XUCgS5u+7NL;lm|7*d z4bdF6GL1`(^UK|x=59g?W^_TJ4&Y72p+T8F#b-0|HzSq?CDOo|BIuy`vxVkEmWS4b zu?;jc;CZb+&tVY-(!7|JY0g7$1nB2M99LhY0TeLcx+xkkz;!e%i>K8tiWoGVF|ucu_9v6t6&zeVSHq5krEuSM5IuG;A{#2{~rZp{#AP`#K& zi*8YTrfYw+!|D}m&nVzt-WELo4q9{%{*{EM0DRsSJ%Arzxo5(wX#xdI$l9V4!*SdL ze5v1}>+ip?+Qp1W-Qz z-37r{f5~=^0*P47+SocIH@FCDg1c-C`4A1EfFZl5Y{)>Js2cN88bbkNw&ra89gwRX zuEfOQb*v(WpCK7DHNn`b%nW(-QK7c9P$Tx26Z=2>&NPAQ-~ISV4+#%5&E{D3nuet}YMy;81w6?#2^c^L2|d6L z0Vx2OY48{TmK5|r7YIthd}V1csl4GKe31MTY5*fs<8+j?sG!AOx4HO&lwBrgWAMYP{4;wZL9|)baP;b5R3v~nb_@tl~i+phZB$j zfahi*+I1@pr~R`e8A*^Yc0FvnWEYv5<3g=n2eKV#Ps<~~W_mK^!3rF>_jTc3raXBF zy3MoRXy?@3m?sLjl&L4I0tyvF*y9OH0oY9QCRNyylp*xJ2u%U#OR_N2=x>BLUn55y zcL0`YT-fU_>}cz;x;`q@KAaWUUry}*fXmeMIyeCWJ^xeanW@ck`h}cyPLR|Km?#Q3 zlWANSf*E3ZkS``A1t4?P2A3|j{vIhk*n+SWfXy>5)Q&c^G|~JI($TO4Fu9tq9kMM` zZwEH|KX*HbxGxVy0w&Xgb?B6PaYBHC|05L4Rilg(OptR#eUgK93b>K!she>_Gu@ES z#!Y>Sa1?;c#dgmxk9ZF9GlZl7WS$4>aIjHE@E4?<<^uq7H5WVPxO_?4KRGVcQx|nN zZBEhXnj^sGZU!%3=xSaXzF`R6$M<%)i6~69U(o~e<3UdU~_fT z71)579`wHxngY<7x@kcsK|P#9ki~#8nevJKZhPGoydtcr>dx@){Vd3OP+8y~!`DoA z98SNqn*;@A?<$ndbh{Z~=tj+zh@0vvCXpf^e;kC4D{G1n*OeRSClZmp9GRkxa4R>U)?m`NCi~?lV440!OK{msR&u|jx5WgrqgBh7RXb(f^ zOlZ*g*M-iR))!PzJVJX8t7VSWD01_vjB=IKK75bx6oAk4C?e)}mDs)sJ7@w0OxTi< z+8V=<+sC^<=^gMaBePaovvM-3QtvM(_J6=-x|z~?g~9{^g@02hoN09A z^b2`QmsEpEqkuD+hL<6jX@xz=Qwd1{$V_9F5Yi*52m5HkQUEs3&6GxMXek6y4<{uJ zO8}E;YI+AgmuepQ$YG(5d@AU8fH`vq^eoS#w-QpYz{s50I^xmg4I3T_5>h+kyS+(N}nV^qO# zW)zCh;Ox9`HeWsiXE{{#kOft}olOk|qMYg8#{+S9KaRrIBm@60!czb~(-<`dACS3X z!n3Cv<9AC1It9KHpy*>=BRaZrcPSJHT&IWZ+m-Zv$uP3v5iHzvrSnY zrSl;s&Gfr7{LPH}&5Zn}P(NKlO*nqNpV?mw1>+O9Os_+lh>mhg%tkF*m0EPm#s$=? zS;H(8>(qa<^`t;(Ub?Xc1~qUUGyjKXQoziYZ>*UEHFX_RZ^zn80aKrwuoQs3Fxt*f3q{lpmXei}dl0}`9(n09AC$?@3Fj1eEC5fm^Yt$B_qZ%E-_^URE^ z*Xrgu_IG4id`f$MZ!@z?=HF%4$pFTGK0Ve*%Enm&p zFoFOgze9)|e^i>JS{h^Lh57+|Qwn$xZ}8J$Ofy`9{g_}B0E<6;P6sQ=S>{Onlz zPpsXY7_Z@Je>-U>G=TmbN$M`mw&XcF+`(a?p0^8BJHVW|1Hi>s15f6UgA*JO?t?6`heo1ZoHbb?XAOS5ofD#`>O$vjre=p(t1}*nBQe7~EfxbaQ7YMCL( zAn0d>pz%RXEeK0f=e}U7*D;M0@GL$dR3Fw+whI3H1g8Lad`wXv9N8@CTQ%ShXaEHa zxVnA|YKTLokjfejpBAvxQlBBC9ltE0deJ)^^NHM8uWBw~_n_qkJne4oXsvWw*W$wg z&ED$ra(BgkYS&z!ao1EQZZNBzWIjRCMG#M{yOhKq5i4qub%uybkw!nFH{ zAc`I8pGXo4xV#)ANj;CTg^^C}P-?n>zNKhw?in|MVPSf`Lr`i)1>!%yXRh1|Bf2)>Q3<`XzHnQH!=!5D8iZ zYM&*i^@3|<8Bd$;Z^*f`YjDmf;++m^74X2jp9$~c_XbH`3HKbDAgNa}OBC=TK8{HR za~!NfzM7B}fQ%0)QXvB_R$*UDSPH;KA3{%vsyPV|M@(i;{T~u@fFJR@uJHj&$4o;A zTz;Th1`vh%#u`X^q#zD z47Y+yEYZeOQ3&bl*#ud)v_tvo2*e<9~Y#GJXUy9u%{r>Hje^{kR$(pRY@@OkiaB zc*$~|?x?EUX4o$;6!FwEnOzFF6JJF$9&vrudeRbYw0U=+8aM%d4uL5E9KXY@0qj~4 z4mf?&jMq04oC4s{_Xj4&)_fKyM`a!1dyvX8_MDNF-Yb2@ATH_XypHpm^t-^b9g2C@|KpEUXm~-zCU^Q+b zOEAFzeNGkn)VPH#m6~?U_d=b-;8Vczvy+1_Dv^Ld_ir%?WteIuqTgQZb*`7UAv)#+ zJ?zao5%wHl_OMnWJTSpPBF?Ux2v4ab!kVhRQ0Flb6tFyf3aScXhN22iTqX1ko#f-{^ORz-kETNbM1VZwyJk}!4ZfkDe*;?5uZ}94Z87U~#Ijr;C zSaEinEiEp#F9`KG{6m?xE$E4=+{93U$j1khdeM#e*dSb!_|d;r*vK%RktvW6mTc{ZH{r$7;2WU(GMWCn9G5<0ycRVytKL~Hx{@r zTxu@17rQI+$zWWNy9>;tEzQV%@k4 zjKhB-R;a%sTPWaf>QkTLAPs#9tXWuyQ-_gIJ4qc$)X-cc_u?3U_OUf(a~`XNG-XV| z3=42m#@^u2pv;}>zp2%WSHT4jseh)VKDigKD%OpHUnofG#Y`^+(wp4l_`97o6 z>WCpXHRS~ZcO~H{09Tv*o?nAJv>8)d2uT6R^AkJY(vOmZ4&cRPpyh?3LV7FGM%TKs z(%Riz?9Q28+S+~TN@rMvzWqhu;o-foR2O)ENj}C`PL9!8Lbs=iITciJ^0mUrOOmNR zp!!5Ch;HG1G=9NLyLM1nuy)WB+(kH){FH6bA!(fhV+3CPA^Ac9z|`S+h}XcW>1#1U zb2(J6A#s>UFWAi61*t3zG&RaF>bR;m5-tpAeCgAe3~BG0Z7*|~FL$rTVxWMq?&6HT zXsG-8XM(zSg2yw_>-tjDUGnrYEVVcnQ!2!!O(6EWgxJ^AA@(p3pW-?M!zrFTDkqJG z;_Ie=$PWrdlhk3PJq04Yy#@heHb@04{gGq z57v)b4US#k71Rs6>`j`1_dXZ(;Yikppj;Q>eohwI>7OD1$&d9JRbQF#p4j01$AtIE zkM(29UE}Jb7K(`KZ1Ri(9;H58uVMrM*App$^ZueAf1w*H)v&;%+y02oXl{# z6MYA7Z8y1dec05O0G9l`!3Przr0jE&vh*=7!(lzJO+)F0`ZQBS0n1Ytc3HzsYFvoa zXPFVk$pt5Ud#MHzbENUUZG+` zSpf>N>|K*6sCO{g6!0m5=d}iTzA_o)5gRPt_ggxv$+PE7QdPN6V(sE^ z64x4B4&Yi2`xgpD6Vx_Rm;#ZkGr06s3xiFGC9p=@2T_e@F?qJL5@(;j8gdgML;BWg ziLYC2ueO{0&SD#%0CGLCE}b!@n9Ox8ad<&0Z=j-fOB`qu4ig?6K2A7Xt3e#l?z-LJ ziny%)fo!6v*&qhGg-*H%_rVf)gLf>Gs~g1NFBsG02ez!ay=|>!vmP{Tr}TwjZt=ut zqpdm?e>5|2O&1U7qH)O&Y=;?FDB6LXpCCDpf1Pj4?kMWLH#eqT9^Q5(KP(>RoTFUT zF!5R)Pu5W&vZ)V?W7tAG4O*FuWCYalBp)*$P4T5QW`wGK`i+`~zBi%6M(u_=ktjEH#bhz4m$=I8G0QV^;Xs=3S{DjS~MP>Wm~tpJMnB1oZ4cU zSDET$%+$%GJGr$kaZ=w!SWmZK1GP!NF<1kW7ZVe_zqs6->y)?lIG@3Jp^E3BULC@E zWsCHg{R7sP__j-9HufH{fT3cXE)}EJEu5#> zjK?xfj9#92aabT@J|3YV;cWE&y16dw|M2Ft&L^V=zfutgN5udhAo2(mv(rk4a z!%qQ&(s0hso57Ewtxgnf?(BNPZ2%OzM;d2qf~pMe?4$z+k{NoqxYnu+&%ix-|tH zNx$v%6+5~aKKR!R=r;&T0nqf3y06%QdJ7x;>jwDS1f~G+#i@k!^)@7jY;;P_sH@3P zLmYbri0SoAAeXy4rTNjPGdRU76)yot4>lZSi9KoZ1fc1QYywb00yVb_HPatL1Zt&o za7BWmKEQT^0`}Lf12$-^00ARi_|%69M*+C>*#YOoa4wdRA0s3MAd?r_I7G+75D>r6Kb~uwZ-B{hp$@wd%sa4WPRk>B^w{JcumlnS5bk;*T>6uWQm0{?c1HB8 ze`AY40kdmxx{Qy{Gau+b2}A*)^k-caU;Nh22m2wxC;)b5ayzFrf?K}k-Q<|QoxJUM_|6%26rPz zJh7{jxr>26>g7z|K-7{uQvfb>dgd#I-5DNZrHbxMktlt-cA)tY)05npdO!kzChGN) zndHvY(`l1ZI-q{SZik{KrCof=&eR4(M@s#SKokI~!?FOVY)wM2pA(D%U}q&Z9!8@k zm>00uky?JTlSjJ%Fq;~b_xzxfl*z-1LS1+(nu8;%#ViT_n5?Tq@2VjJ4EDWK*q1!U zuGs0iq)NHqsjsqipnyB6J33S}>->p(u8m+&)jOETSR9j=%@KKZaarCLWXgC_sK4R& z$u_xj9?I{SwB%)TR*AIY#6Y&*FWE}IYxR}d#=`SLeU|l#0+uIF;tYVu@Wd8Nz|`jn zMFFT+@Gosl}Cb6SLGgaOh1Mu?U?gC1zLO!Hk)$FV7(fbn(u3olwh*A#%=iC`1} zOI|B8=u^P90PwB^qyXUK(mN>8sreSD{}c%q5+J?0uIz5M7qI?kskHU@6Gc1{5 z2|oG42Ofuoh5EewGq!ZebFR=_Y7!O_5-j|RurR%OsA?7_`laHYnq$5w;7IgK+haWX z2>igOGBIXl6#0oP8%A{-6USJV9y4~yoLpVvqZHl1mg^#PVX!8m%iXe$94I$M-rv)h z!IV+uuVIFemPh&r63yhP z2LX3)oKzP8=*#hUkkos*T<-W}*SR>}y-OkqMUi=%WUGGbwo0g~Uk4ON*DB~X#t z1HY{!T(hSO{Ns2pM8q%|XzKS_wJG3B>ie&uVw+Cj+jmPe(gE-)7Qy6qD@s`JZ3YJN zM14iS2jpET)c(9LI4*wCl*e9vNWO&}YM_{cOdlb^`r1=64ThEc>bn|upt+j9Dv^zZ-pjWxFJEPNwpY)?OO}U$A{th+o(K9Q z=QIL2KP5{&AJFe5J-CK1Ua-!c$gESqwR-hD&~DSN3%wT`H0Fc7dLH~0<9kcAt84GV zx^282fgSJ{PBLGh(|78z&(iom-t7O_+Z#D3=8&M={#q`{J%6FDeLdQQI}EwX3+~wh zULwHEkG6`A?ASAoh{fR3BZW^d-ZN%s+6@Vgj;VUtHDDeEV)gvk0K-pX_M8WsS4+mt zT!aKrol269NbgP4jH`Xbf$CSNr4bOYl@VNSkRC%Ja*H$bzEf3)Y-bhjQkaI`GF0N zBR^8!S(@u$3s-#qX<-%rwU*|*H5y{)jNgpT;8~0L8+-(ee=~!>vCnNcy#@q6Y0^Kl ze-V&-lyMB!3xCCeRVX@-N^yx)ijVw?*{7TF2=PY7S^K0G*uGOB>>t|L$~4Nlctyhy zg==Gk*8Bh(If_cSH0K_KGg0bd)rp~dN+mM_+ zT?WjM>SBwHF%PFP6fkCr)y1M}X0Yy-)x};i20elXQQTCl-fxN(#=_zwu0eJdb%k+- z2upmbC`+xK?d~vjWk;dD@Vlrc`=Y223F!FDTux|#MZLH|>P7q|{G5oUN*IULu^Y9?uF~I{aS6?!fEm&GqFh-3-R_N``vJ3Z<_=)S-1LSJf+qa|@xl8w;r%qJSNg6~@A;Q)XFeowhd zcqW*^k(UT{I1QnIAycjro*~}A$T#LF8bbkNrduWO>9`;tzvHTea5278EK4)B4fp8X zt=OYncNFdnA7y$6D#k%&fq#sE#2?`1H%SaZ4SBQFkSWsB`Km*~M%$H$73v%^f&u}E zzbKbK0D9~uRi$dqc{GOt<~(hBJ-CB)aVaZ|yJjME0ZpQSNeff!MjUFx9U1&TWXX$tP+du zxlT*IZYzg{dhDB7CCr&SfEiP)5~Ue}k1FxWsaJ^-R96Y#fAt?sJ_Y=qVwI?vAXOqT zmIft3+VTk7*1AjG11Q5XeS={0UtpOcBuIJ0oQ2&X-zCi)~XU%yFUq z^|h!J2inu}2&PPN^2;+tOhCQ(lGKYSjxjw{T`{cJItc0+ckHnbf)E7ae= zjQ1dAfqx8>rg#tHFgdsrLr_(|Csk#N?RS7%R+cgx>IYonMzH}Lbvdb27|)y^(;Nzz zGsSz5!MIc^jc3wNX%YoYn%+H#vq&nAhyPtx9gnpzV~PVV+F|B0wdE<c$Y8TY|c(!Z|(qufEO3lLCHExx#u=NiyK_6QRCGLnvU#6bD?D zScKKXMde>;35F-ujsD7V6c%558?` z*>ioUe@C{Ro&!uUK(5CW8W&r*3|RKxpq9IN)0cHbm-COatNT8nz#tuut6TSdtu7y)E9!72grZLE zuqcudU;VjKJM0e_qV$H0?TOza^W3({-+BY`a)|C*O_4b(tL0hgqz-@!MKEONGRaQz zerMWR&mlMKX>8Uw>JOM93dAnG!K}p2LCG5y0pME*NCCk3>f~`c&j?^SxbQreXsWjn zlmeg^#KshpVSDJd~>@_swdh6#x zJ^mG7=^a}`F54>uO6ygd;f9JqU~*fS9G?QH84OLexDA4@_G9iTko)-5X$})eh|LoE z!2s*br~_#T1q_MbfoCwps|6#YaxjgdfHBd@p>$gs5(d1SXV~j@CpQ_HV^uLcbw5I{ zDl~>c$wQpk*6g-+b6!?#=#!awOrhWURt|C8xjDq|Y7KFGFu?%V`@;3)A&#$9?wO2B zf}rlqyCVvODRqcrF&g>+pFuMrQavU{;$(u8+$GE|be5ZoEquUX7xsl*kp-D7oRLE8 zxw*24oyp#g%p5sTE=B&|GgHYMHpYw*Y-H?dlCk8zD5hL8R|$b2sz)({6!0ki%y*2c zHxyL&Oq;8h4fJCOO#$fSuBoa!a+6g3iGe?Z@DzYg-Kw&xy1@eMT%(!BEl4e^)Kf`j zO|2@A>XCX!d$!+QsgPO<4XJm%$&uPGH^z8>U!T;TGUlOB#0IHfkb~3}9kV=AdzTILrwL6_o7A3e2VM53nt9$&4E*N^Pf?fDo@zsCDY2wxX4Nev zslDHmN6DK9I}e-v-OJ{d)RoQXvO+07Z#<$}?3KtL(~!rd-UvDEr6B?gKL4)pxtUS7 z(AmB}WbD_Ds%7Ss0`6R%c)L*X2CvLvf27V*dj;DWFwWwddKD8|2DS`i@+Moet1By* z+Q;^ov)kL;{G%@)_cZ0$BU6{ppuAA0aAb5$?2;?>6*0fbvmQeX6C;r0Kad=!_lZLs z=Pg16TX5BJ?35_rTJ)vKaeCuHWV`~S)4*Lcb-XbgwgFdfV$yBY?GNObg zkY_sPxKI!I10?uBds-d==&`Al$paDqB=234ykv5CI(5ag7HbF87g!-FVD_aM%+?Un ztAs#bA`k_D&P=TNMq?w?{7&ZFB?9V`My_%pD0F5sl8>0h^`xs%Z2Yd~IDFB@MLEHe>_6438sE67gMd~kg3{o?VkE?E=s1z!qfn+!c-6Re+WvE zg{c8(gsC3z?Z{M$989HNkEtHaS3{=iE47HS3vWZqBgVEqEY$n-mKo-3?ErHCkjJDB zsze3b8PN_J{)f;oc@no&Dg5(nS07|5D42@+HfsRGI3MOCgrNXTdP`BpU*Ce*8^Fyb z>^d9j zd0ZQ6cCcmB7yiINzl6{ffW9=5o}uD~ImP2s%_sx(bMn=4$X){IO{ukfesyWK-{~&d zCrs@*d}m>Y-WrvAqRy4GUG|suk!pKx#{5$6get!*)c@gJ$-T$>arwKE@T?QbBRy-$ zNCat_X*#OPA>Y+`eE#%9$_8&N`y{OD?wp08KtP_8O0#hi-mq4=$CGVrBWluZHWl>~ zt`0`bCdg*}*y76!^4xR`!g{}rQueugFZaII<(YMUUjDM_{n7?U?<8zOgDj;te>P2{ zF@(5u0K~n65ch?(iMu|gH2&k+SSZ@3p2{|o0%3VxUGk2$(4(*S!(jy0)*VLzI}VJI z+2niZt*!pHwoEq5VWIA)HxMyrYX_JE#3^~eS%Qdmu;ZS>j^qJnsZuB37^!VncVliT zU~}?-vjQLk&H(0k!cYJvdB9nLDSP$+>RyDR095LLQxrA=y(f@oUWSvWf<HJAws7@s^mcS_xe z&ZiecqvNJdB^U+3lE=z}U{#WpfR8311prf5Mms!1H9QNo{+vX*88WaGD2u7x1K)_@ z8fzW79#$eX7u$>775M-*--^LS`JzJ)tLLj%TPq{gN4k}$3>!x9jkGK2p}vV*A^ z8vpd(0!lmmwybDk@_ACIK6iK6{vDH@yo{b6STMmra?h3ICa*E`l}e9iPy|8! zJ15#GV0r2qGm9a~Dnq2sVP+U77o6k=dQ^gMpEu_^i!#lH0)DK1h6RQCC3k8%G$_-j z?r)fxv+GntA6)Q|ol7M<=?!|-D_h+xnjoqF!zxArFOt_q41|zirUUWpFp&REND4qE zkN=~PUNZ}ZJZLxtmi%=ARN`6vn zbvmfBRkD{1+_{9K09V?n(=F<=cFQmlsNd z%CZ~`ciNZ_fd|81k%{4f_JHB;ieRdH@*xaG4u(7Bj$|Rj-E{;0YXqmr!EmSCftOvm zWug0xG2p&5fFc9Ko$iw1uE@Z>JYaZv73j&gj@Gr+<+)bhEdDZ`yc8AcUAKbUhnpYH zm{M2JGzBms`BD9#5rPUzzey;aJpDMRI^eVKqxu#nF(}|m?OsAOJ2Hh#4q(4aSPH-< zKdK+%=OBjz=zk_O1)x(O)rZI>djp_1lDd{d9%bSkQ?TFdVr!|hyt;soDR!6E-MPsB z@#eYSGPXO?DUd@v{&^R;e1JJ~2k?H3-MxI>sfLIJ;PtzO*YQDVe*byL?8iV|%chG0 zzVD0`DP!z`mm>|j4JhkIV9qw0LjiN5QwLcC(+IHtl-0!26ZliE z9(}xLVyXuZ3-$GnNcGTXG(;c3kSSLWYlv8Y>hZA+sU8+q)4@2aW1!A>5=cM+-=|zX z0wZko&~X=2&Za38FlEZsBQV9U9-cXmqd62XXS&scpr{@m_D4;-ZTlr~rERf^{eA~nvz>uj{kJ1pa0M+9Q8&Ew;SY17gvpNRq3bv6H@O`S)qhf?q zkHD0xX$l2QnQHZ@m{L}cz?^Gn4h77aX7vzItl!mKl&t)nt{$dn+Tob*;ORFu{odML zG8@vd1kcf=q);#aJSxj!VWFJ6KjZxLRO|47kzy8V(6^-qJ#Cspp8<4Tk%CgOM;+1v zYbX$qXK%boQmtZ!9Zth2VA#zYZ&+E$V#Xas<0xR<&e#MKszQ6E!(B`94fgbLV}RY@ z8J`0BJXhah)zf4zufVGK)301+;hw19mW^xX*U`+hpGQTlm1nSt2 zq>lBb${Q~Tyvebi>p-aIu{EZE`@1*N3{#{0tf*UP3$4@Yz6%pJgxsgC9ZkHbo_0QKbd-_t3W z>RdnxE1i%R1NA=gfC9cxbu?Eo!d4PyMuMR}KvO7S%2Y>l6;u2w;+gYdnnM9|ra77u zYfwQv?Aw7AJ}akQJyzvrheoVo$>dR=w$%e?Vh9d4qI!rSVgahhksDM!jQ`S$lrc~r z;vFx=MpO^ah_ZUvbf}Ng6pD?g9-b*-^>F5Vg62?cK=oLi)78UaAK|KpurmI9HCGST zT`-jc2Zj3QzeLs8Z=T2IKLlWmZwu8Jf*Jz^8)KXb^;t&E}8dhB>>lyHjT_o0-`?=LCV|3j&daV3=?be&Ginh=70yf+7**q9`{}Kok%J z1-ZyY5D-7%d!F~Ls;=(oJzG27wK;#hr@MOgd7i3z-@0{mcP3>wrO?n1QqDv`iH9Mb z51OB45U3-ju8Wm+YrQk-*vEPO*~Gl;{RoCVSweUWQAy*{v+8(?QV<)bXlx|)i5#;G zseFnSiFq`Af(C_oLP*k9btStisfTzU&)YcEvSDC;9p>*Sg(iJ?S+`6 zvA;lA{8Z<(i5L*?OHZt<2!$tUC?p--xx8XTgIr2}O^@RR8ssUuz~?(Ze6QUVPm zB%S^Q5;C{vJyNc3kD^Yeer*+!NS z9z#@8fAp*jL6w3?Fd7L-hbuW|=@)#8>M$>*H_)IElFl|fu^-%Pc=&WH=;ahd13^h= z8=lw;%7VpTv!Y%>Q8W;ha<<`l8~(^D=rDo;|AmmGqwU^cz1_mQzNB#637+r&BZSdz ze;yn{&`QdF#Bpj2Q3qn^kj7B?w^nLu$3kKaAzL(B8s=IKA!twnNeBE>LTmu#wzv`~@smiB5(*L?B+#C(KzLyqL3 zT9B7-5wFQxEx8gSLY|`$QvPgly_^ypKGWtyY%^()<)lrO&9cyINMs^DN)a>=k+hWv zMPz}H3HdmM&_Kw(gfRfdM#lPVdcJrcXp?SaSZxi*9enYZi_Fqz*n~MLc zWR<@pv9^{Z<1QJNg~ez~>?}&7fwZ-xag`}UfXN9yXC=2(=t$;83^nKB-lfam(N}Y6 zVKdhVp9vZdn)pylF8K7y+;}jDD-*MuJ6BG$>gVzoeR?wo$GA+~aB9KkSapy`xd_nT z)d0P5C*omBMJ`fvSG73JA98R*gMzyGwv*^OzLLVULjQFnNh6&Zall5HVKS()du51~Ps>`3=k5S5SJoV4dt z8V#iFNMBNrHXW@wdB070G>~^_2f|dzv-r%3c^kvh`F-H#J5p|F9oPYDgOTflafKbQ zUYVFT{CU_1=PzcBN)B$v`rsU^_Q8~kkbVCS_Q6vsa*><6s>NyUM>nK_8}3LSoD(6n zo!t#~El=(@R_FsLlmFOHa+=-+)CQZyI_&CM!g;Yrh{*pq|_Q6v^RT%>M?{=aO zo}$-C&LyiNGvR=b24#}A56-dskg$Dl?xL0UVoIZdw6uLmj@?TOqBZveEAMwGj|TFt zN!bVI$Q$r&z8MuRkN>>So4?ggIQLun`Tmq+&Ea7D%X)uXjwa@%A42#Yttak(h)8;e z-HT9q#Ml=##**G{_N)?GLH5lX*?iL=<4I@mc?lXwp^!hI5E=+cx(1mSl7&qu=B*S% z12IbpqeVCyA@e^oGOSO6Jn8b@Xs|SHj#q~5(F$gXo&K^kCQO|RQ}N-scOX#iG<`wS zauAH-r0e*lqE#Y-={p)sN&ALU1rk_OS5%j|g^e!_3g>w#o46?fzI)Jso4RfVzLElI zAn>QqGg>7u@>iiS>0Xg>YrpPY;lae* z`ZtKrqvY8B2LVZ+7;yrW8-aJkSEOE&Zr*gH5^Gt`&3D;a(;(MLw@l>(Xha1vzE2r6 zkdbu1PEJM^H-VJ@q7)kXLBdcWWh3DI3FAQ>5zI+97LYZVB}qfawA=*i@gG27oKQ^G zl;DrqX(b(hm580(+&JQPNARDaN`%k}8bV3C{1PEPn!*ARP3B6v5e>@chLqjHX0oyv zn-(`uaWoK@v{T(oTt4!q1vV*=1_FO0aS#UV5|4#R7d^}z5C1B4{iL(5@nE&78}4y5 zhqr+Jko)bA))V=^xu5Zubk^lXC_RGhXEoT;M!nBE*Zo9;@|%C;P=*E>Pde-J8J8%x z;Y3+h$mb}8211g~y7EGT&<}$w|3}QfMG0=}zc^lq_Cya-K#xG?0_>(MKh1$#9fx(( zmsFYg7mj9VP(Dd_rA;gFeS{0YV$EBLU!g=ANPOYWSD`dhVOVY=^J|nz1DV$)?9QeO z65&cs^ErQ)@GuuLc5RI0E<=Gu3%o3m&B078;>bD0oTfLMIu4s>%F zt@uw^2Iep5DKyA?(r&IGLgOqa<*z7(22zrCa|J0`Jmutkm~vUW+mD0`G zB=9E=4?Za^E#SI+j(YW04G(#Qn&IJ|rA{0kPRPVi0m7rRBjMp_ZFop#MS=Myoq#5N zc;rO5@Cc-Qhf-+Lheu9I7#@L~?@SZVTDfDao`yj=h$gerBn@=f4`4JWeH7p{QAuHsYW3{X(l-s<6 zgMS+2HDYd7kzT`KO2j)Uf(9ZY7M?1K$O2$W$gLDY10f4rjx^ZkMO{Br0;L zs=)k^u0Vsjh?q=NtP6Bc+CP*@`EN?0fs}~JM0F`ygp|qoG3C%ePN&w6BFBcWeW}a3 zP@!X(n;9zJO}$&zJbLJ!F37E}drM6BbO{qln3&J;MKQZTozf3 zl!$p9#n3>^*7q`J)zavmuCWogrFk_2WXc)qj*q>WuS?Z*_lEIt!$&1P!Zb(<{w76y z1n?RkRDt+-TblSN&}n=Gi4#M9^GSLFO@jCc*oyHHT(UwwO(8T1;v-=5LW1}RE?Y65 zp%|L_<0Bwzbob`sLn`F08Xv*W=!|u@7=s18=K@=+S9!lhVnxG*>2ogKj=av~$BgdM zExBY<^FWjvv0Y|cjY_%PiJ>%v(EBumA|9BkfmI`ET9K+TyLfk-2F0*m>*zyjAYaxE zNt^eHZYaWXG4G`(X}$R$NL90j>TYm#{u&HOR>KDOE__|%aosSDr&%MNqQMQ|wZWwd zc*{rAG`Iyib(0`*V#se6*tF1~66zk11Z=*YvjdXgk`=Ndkc_BfA8(g+x zIut_#F*OfJ0K)f)J%gP<&2d>h=|InBC=R0md2YXga$&ke#h2~IvPdR&oTxAA57zSRw^Rv;x32gIyP)H$X$Xq#TIGye3 zK?4!Bx80u1i^!baU$a8~l|pDBr0%xcb2a>tW&M$~-B~KgBNoB87jMh0UQZiuIhvT0 z`LXn)^~C)T;w$TJRz0y&!r5>CZ&JPs$(Y2^gKV0!S*zZWahoVz~4@)un469t2$C)GmjTVRIZSmL`Q~6{)r5&I>q!0%#zh_RgayAam}# zh&xjR4MaS-X7{#CjXdK$=;GenKpW9#joPi@!V2Dju;pyi{}Nk&hpqK?x7q10whv10 zWmD!PWn#Yd9=QD-@`?Uj|15GQ>`AN0Q$YxaU(#@hSd*xQS3)CKSgOR_o325FI*NFr zr#>+nEM<~Tq9htfig==@K1o^ll*u}ovS=V{>nD0DtHQo#aqW5Qq~giuevB*U&YAm0 z+>pkLXU9>orN29+(_e27$4z`+y|*@QjXSnK(d4-xd19Wz7`t=H6_*&IFxn!%KTwZc z)rN38OT#V3!)q!hY$lj4Le*pLMpvRiSwuWEQBPS&6Og(1rsD2NaWoKjV9U;;x;AVv zpr_5}oJ4%eJeb~Y9V>Sk(jxA@Y*$;ieUN`5-H1J&nA`Ei9=qIWb_59#Gv5jllp4N! zp89UYsJsH3c!$fSWZHa{jzEK~Mr>@TO0FG3Ucxshfd&#HUMo^nLKYo)8Q-D|8pzoC zOH4DWXyiE`LEra&2jXXMJxU+pm6o{EDJ8k}C?)vuDV-WZl+_=poo5R>$bMe z5^8it7+S0!nzxmX*HsLMtwUO9<}!NUW|djq5-qp;?P051R(19gM(d;YxH(#Bty(8- z_6GKQ!*Xd(E~%T%@zTV6araLhv2nLeuG$Mzi1fJ2N^854NL2%eda^oH`BFtC3Oi0O zD<)+(Ym0Ch8sxF`CgRNe7;%CZ{=oXN?l3PkWT~&BQ)pe37J2!5!ndJkaG<%g)?a8I z7`9e1!fcL*Eo_#Z@{z%TIsRIDjv8pl0Wt2jGow zbOGmuEGn}?FVq@7d>$bB@zqLm+*@s8&DpLiAUNibGKZ9j`O*X7XPAhEiT1o{|BT-A z>$M3`N;t|`9i@EHF1kX(tZ`9ReZnc1?3p($q55f%k;j(xPTOU3H4U117OdvUj98;u zmSNdlF>Beax4L-B9=&eArHi1FFoyvP5+-Kvr!aguE|+Fc?ccEC9$6Q;@}b_Iq4idN z_aLGqr*g$=3lo*eoXfpgG{{ByJ(5|;bc9|)c^)ZgKv}+;Ju784A}^u6fV4EAy=+GR z3}G8`f>9AhM&47*)9Ib+E`fiXKeK=ITC38atm9x}7EVDsa+Dm~|B#tqtqQKVaJuKK z)6LurQJC*HGR5XSY#L~&cGjW?b|b)i9t&EF0;rdlm%*^L*lG92rB7ZiyNjo^7F)gM zXxvuqJe%X$#57Jvaqr0z^jLm+nC9BymX2-R#XPA}p$1;6HLyuf$d*lwA3;gfEEvpgGQz=+rT zhIt8{P#nZNMfIv%TU~68^=+}@dU`%FcYFZ6@z^j)&zklJ$mXLehe1ZJgz(AVQ=i;q z2(gVa%&;@B3^Ql`H*1Wh7B?x`AHrN-kBqQ4vA?%e0f#>RAlR+ zIhxnfN5yRdN7-aD8dsU^gM1%RyLq59UTONkm4@G5n&YK8e`#Xwe`oma-8Q-EFBA~j z#y+k}jchJd6~VdRq0U`?v(;zd@U7tHG~xs0msNq;!$}hj@@gtLK{-joCS!_(3YpI; z%d)?nzTv8+r1Uo#3B{5hyk)^SxS`7uNwQRhKC@ z-)FSaP<4fhA|#$Cb|qr|oK>L30^~te=^XAf7u%x+{;%zTuLEA2v)ATa8*$yKsFu4^ zP}$||N&%FyS*fdYj0IeZofwKjeSSpivwS(&0cXsW?{l(kNS?3Uks zclZ@$=xoV>6~tOGAEy`^h$MIq=o1t~13{%<0C#^rTj5BUux>E@SC5`| zU6^=?`7mS0`>y+u`wc{0P^FYiOTW5`|8aMXGp{3gs21Rlr~zDo;p(4NSFbdHbAnlg zUbJ}^D~Se@A6}v10%9XW{S1p<$^)>K8iH=Cw=Zm|c}kfvOw!2tjb%CXYaD1eq0pI)G?N^r%JK8&O^Agwg!4WK<~ z)_Me2E%C3CmDErGwF1R6-Vs=|1n2;cAtnVYks%~7c4a@VTVy^i?ue>cFC>@&qL zI^a=|Ikd`m$S3N#|1$<$rP<vz4($UZP~OCWriD{tZrPXSDJ9aL1;*aA_YhNoTBwpeh+YK9I1%qc6Uty z&7)cTG|+bbjM@Zqr8Qg}9q5c!EbwInrUCG;RRQj{Tl){;Sc`k8J~`F?`Z0JIV5s=jI){>Vx!ahUSKa=G)3hl6f&sf#U! zgH`oa5HN9$iE~Jtm|gco7kS62^o=_{LVtP^e|i#siX3gnF{a3s3r>5LI&E}UVa4Th z!W=JPzhB4Z!CcKof(AM-+(vay>6EZg=>7nq#u74PqSFAq{GMEF70B-f!)A9dzy=oq zKR|FAfR}G%+YWeVsoCz15Z8iz4Y6r}UA_di9qjS&P_un-p}p$LZa6(Hq71VQ{QBGLdcdcfvNDx2+& zWWH-vK986*z>FSTO<^t!Ru8#nCPeBB2uo8b^X=a17*Amc;tPpLQ%R^GHoF~urdnWM zL|7WY#<#$M_h?6d$l<+|cr?I^9{x?0=hAS{Yc6(I@o@&L^X0^)sg!-x zWd9X}r2*`0k*O_Qw`&1kML-$=K73}cU&4FS!diL_QE7l0Kb$DmQWr09Mv=Oz`aOcu zR0AC>hoEmDC`~2MUVF5%JmgeGYUxb`r2%O4ymiW{`e;tq?ZZYE_$>sc0r2cC%AntF zuCO;3v2P^Tn?Pm+s}96e#q5hyIiPjA%mQ}hB@4n+r0`gG`G zrq=w+0*aId`l2TXrO3AZ3&Foaa2kL|w|`~ef#9zZlLna4bERp_eZxU(aiKLD>$nPy zAuG@PJJD%?UZJ2f^zpzVf1AiOK#p!^r*$v1`c2BVsNW?j4N#+-n-bKO_QHNnQd63~F)(Xk_$X@bS}QfsX{#y1&zt9YtCNAZ72 zK?92DmS}T|Q2kE`O;fFSoO&twoc5pMVhjxkqUXMwYwvJlXAnh46P^a}7gaC)wIcp* z;?n?s#&(q>-%#?ggrosv^w7VgL|6*VeVwrj`QwR8Q%&j;R_9!---(bkfGmHwsAS<{ zTB^HU)Eup?uHtPWZ5u&O`CUmv1Df(D7`I1*2Q$lw?oJ|_YDLruis)X1qyc1w_63O8 zuj0ZebeDURfCdB=f*)^;nQFRDA~a1!=uvau0IQs#>XQjg1Lz998y-k4YY^{CbQ+*X zFV;=_CD5lEtosw22G|uEEMTv+@LGUQo}r0J*{l2*@QP zpuGgA0eBTJ#P-3W?lTEZQw@3*YZe1MkHcosH7pMyG!391GkfolgKiF%Q1q*7zTG{W zBs3tYFm%DkHQ4_LecL$%rU7t;)|W5Fa1BdYFr7;p8qid5_>d-a`11%)Q>_j{`01d% zfFv{^sW1o&Ns4ZIAt`7;QN9~6s*?&Srb6Lja?pUILT4f)1Lw4|it7U6QWDUBph8cp zZ$3DjQ(aCXnrb=86NPT|I1g9&QtY_X$n|@CrjL3r=?l(XS>t4bWq6qWck6gGahtq{|V%&qb>IBGNBM z_s8vZEFa2!sYN-Qn1}ovZtfjp&o+)ZPm`f^@Ag3z4a-t@`i!Qumtkr9e zdAmfU?a2~0_FU>OLSXb=i2$9!-?A%S?RBLvpW+fC4M5{(ky%k%P&d@`xc@+08sL_1 zrz~rW^0*7wo;Jkl&cX_2dcAh9Ip|{q;*@`u3^ZVfZ-?>>)@g|f->^mUc>>b_xUqdl zkd?(u<`;=Z1GM;=e^KUob8XB;db)-AS3=SNGQKm(Lzc~@xft$9CiYh?~#QDEVBk_f34SCKqeLjm?2p8KOim* zaA);R;x4ap-=Mh7j|fQv$oPe{e1Q;hv%35r;?n?s)^-K&x6>!OM`i8G5!?q)1BO|v zbalwF+2MThNV3p?CB93~ms2UWAe%5%R_R(s$ zGj1+nOXtA$c;+}l(*Qd99-QXg?>H%eJ%O+^fQ=vd6$(Vv@+FD*h^1?b?@VMGAjjX* z$s_ZwuB6x)I+2((70P!!7~>0^Q=R5L2u)K3y1Xg;X+qNgdRC{)Pd##l^0S1e0et-I zAYaf5zlm4>JPBw(FsqNOm9{ANAuSM#CjbqQx{(u{0qn|1XP}mkJI3@&7(Fs9x4Ha4vJW*x18LC>PATNV zz+wIr@7~b>GkRvR873Z55uryDlm?*H^1g_TNdmc>kTjKb_Ln(?6VPJ`N>jN&M;$!n zAehG!lcuszV7dam6G3Sz3&jHuR_I-cNmE%UF!x%}yAzbA4p5i-dl8fdpwWYlG9SgQ zPPPSnM9u2GH=$_&9lZi_IB5N>f<-@x=rll&9&E{R0V21L#UkEZJ+B@9}y^x?ZRY9@1?E~~;g3qLx zOq%ML1K0UHj+ivStmLQ53l8#1Lec=TQt&TxuPEmR;;Zw7r2%a8l0{i}KkWU3=9gE)8%iwO1XC?p))tLQtCOpz@%lRM~!l z(g3tld)*nq6PU{)Fy5i{qk2Z&5l zxc~;vSFa%?4InG|6dt@k{WM#uPa`Nz9iXnux|X0c0IgP4gJsucT~ACJU`F4|DT`F( zzO{(&Q97~DA}|ertNDNfc9L%(G7XR`jawnPg9XK4KC(e*n!2Fn*;i>0ZX`5K4do%K zeP4bPk!k7@osHvfCNvG8EA?l18AYeJ=GvT>5SFGgEINk__GN^n0c@pSr-yx9oz*U$ zNR+C(g}5}pt>nt+9-3Hk#$6VR{7NFzR8`z>FUvz;7WdV}r2%fGsD}UM+TYg_n5L@W z)xoI4r_`+A*AtfpxRpA#)xiM^`9?z00J4(rViL9&lQ9eX2ZW^oY^6px=+@s#Od4QT zaip91hm}a?ra7N>jCL^|dDw zyzeF^4KOQtR<_3YUP97Tm+6-nKR`^H%9vLV-Rjf_iAe*@N@LIwX7@uEsvjaM4Nxn! zvZJ+q{LqzC`%&W30Jl;_WoxV-CnQbPLItE--}wYFX@FVD@san{YiyYQJwa)zgW@i! z1^q{Y(g3v59Dh9It=HTf|8vBq0e0-mgo06HBRIBdo4nCfyaN>9WF5rTf)4LC;f-dv z1#~h7qCR0_zRxe<9G6SmIPU!LC&D~yHH^Eu~QT) z9RhkRL1_RQJ;N)gKr z(dH8FX$t0DiAe*@=pLsid!gG|ZT4Dt@xZ}me=x*UNwDuuY?{j0>uqj(3bF4+Y#Lxk zuP99E#tV`#MCKP<^#LZ4eQ!e306Kba&J^_8aEPw0xeu?2Y2!VsqcMiz0)GuQ8em8F?M1mBdvT3BhXwfl1g5D4 zcomE97Wjb#rU7vD%PyuAAMA|yw3$dfm54MzjGpWj5tjyQ!wy^xucVOOfr7l3$TUE{ zYKG2S_PcDpJy~8YD^D1>teiVDQT+I2i8hfIFpr9JDZ3!K%BW> zP{bx@vI2SzL1_RQy}7zr$!>SGJ^+UHo4X1JLo7=P$GPO70msapBsp+@#kI2M5t9a( z(UZF}-P}pM*y%Y>xq!Gdz@526qt;;?k691f_|^c{I@X3GSwfQHxR4YyRf+>o{PHWP zPWHvbqygs4)oA-&w?W?T$G6pZDLH7s5q)#7Smcglv5l9@a2jO6FDE!n9pIgQ9{h0x zrvdoPEtym9J}Dt}c_oo)fE@h@#AapUw)BtOP^j&qbe=RcpqV*>_-q2d$!JTwNlY4G z&KyB}INUu_VR82nmj<{qkF6{&-{mMn6^q>_HVv?69;8@oeO*$nNLC0>1NfPTSAe&V zI)$aZpU^abj(+ZI%28x#PaLmLJR0Ct@Q4vsU|X((xtf?Xl`zppkMKzpTVrEl(g1U2 zFT)^vVWqkMKx??{8oUFK(2hhCGX?G(erX zh2{ezQW{Nt5=CnB1|rh{dFGyx$oe8&e2SpS#o%_xu|WNIrDIYJ1+E%xS`tj5}F3kGj{;GnPb(B{XalV8eq=6lmN`!@bQBLr2**7 zK_Rc4$NTKD>e+YQ%7+L{1K^pPW__@4s&)G)v1x!k^I%M|4>LgcI9X`G68-o{anPhJ zB}0Ty5S<3-GY_5=z0jfmJ&|dE9Q{OPxo#p)cj^B~0vZs^JYrDkWu5xx2v1YJ+)KLk zFA$xky7;n={Y!+W0etjRLFI+NN!R{mGSGnGiL-X?TKc1vEj#zGl8pvzGq(@Qmhaxb zL0}pH&)iSw2h3#h?(PzOi?}qvoq5i_-fLl}sdU5tK|C7Z&D`or3l@wm|C69J0G)Zr zWSu*J{UKp#0Q=y`Cv&auHSGU3*Sm1TJ$L&)_BGTFu5j1g{5%2kPx{6WYKE;ve&Jld zkK?~>H!*M9gN+w^vV@I27r38p>%&bRLHAn_7Ml+KMmHVA*N@|tJrNvzwia7G+)iu5 zmxyVu=S!1lP(Sg(R1WJ_GzIus1f~IS{J?GsxP1_--grmifzEivf58z0JK?y295mpF zzgIQI!Lqi98$_f5V)XlNa&;y5lw1mWs*%3`V-@e0!Z<`^-$)V~ki<_Trew=U-39O_ z0@47mLL~+t=eA03CNND^;OtY$S_Cg4Fb#m?2QpJd;6GjKzI&|bFC#h)(BntZQ|P(R zi`o*oh0rvBjvqr#L2EDJKLo0>UrB5lV8_0|%z4_V;g77+k4f`(fum;Y6a50SZtD>4 zI7y?ShZA#$~d{-bczeQ9Upw8+Oa(kz_(rzs_c^jk8?+9Db|3P>fz(>EpuOPb5 zO#>qKKZ!;IwCE+80@`rU!P~&(E2x6`Lt@eZGy2YQ0h7x!d;>n7jlshf*oB1qBZY$a zZ_?0!CiZPU%F@vPY!Q5uy;jh>M6b`QFCpv8?R~?Rc3t9Lb2e#WzWFI^1wLMX=u?dA7B;S#}JnWxbeYPE_tzy)l5NsEKzBI8a-#(MD1dS4_gcD;|WUx*sA4ASbi1U zLO+qvG&Ph%yW<33MO2y^$^oc&GDFJYDTJk|p&S51N8WQuRNgb-elYd^7Xhzc$)geV~~tbLW=lO0E4CacO{CwVN8PV_+|+&m$^L9p$jT$ad5szktXzK(5*_VcX#Ci2Dnw5({-$$_`rKPfobXhZZBlz z{0aio)KJd3Co#nLUPW{opg*}{Q)kh6KXrfmKy!4chc~4< z&j)=&PyL8lqv)O(@Rkjx;}@MU9Btc0Cpny$58g)>o%9UT0zH86_(dlVs%RLQH+5tl z-z$0u8IkY9ULt(YTt?4$90A`5=k0JRHK+5HrZgRW?55JH+kq zGWfFyPXqYqxtpkN;2VReGn@S<(*uG^ijMDItKV5&!&(a_)-rPo6DH;d|Acwlak;dO z<1P;VhRcxA53`0iBvX9&MPL0Qx_d1G>3j_jb19Y|4N<)DK;Hc(pFzacCQ zV54Wpo55o55FWEy<^2zqviUoL(*QiW!zu;GvOZ6t-LQ1m!@(74+nhf zxQP8%g3~Ll9J%Z9yE?aDp2uk4x#HFcR3jA<&(CGY#z%&4k zeU(7yVU6&_mTZrG(Nrf9{TXNsoOBJ52NTo#9D1Om-)4W)F zn&>572OvGn(xBJsb?rTT3NvqK`O!dB^x}RFvxxX7M5F;?ykEL9qobq2qf3S|-$hUw zmR;n)lPViDT6X3|tX5wG(bdU4T{5uX!Nk1i7cs0nN{%;fplZeOsp z+XpSfg=C-sL-b~q7zTXm$ra4S=6)raG;=(6z55G!10W=5=I247U21%t;x~6Osmy(WA7S zRtGs;K7gmM(LD=plejchrDpE1kB~Hgj2@qqN!2@@8E~7xGysn7t#ZJtc$HGS+3u~5 zUAe9hlLnZxd6;67rWnWjiA@9S=ryqty#coP@6G#TZ%Cmw^BcUMO#@YXBL^!2*$}I;%qLh}S@xor z!f-ESanO?yiyltQT|a>#=rQ(e~f##Yv_L#=ks*#z!9VS z-4QnZEUe%`X>o9WHZjk=Gg^f`S;EGi%iT}u>CwY|kD%*&goU&J=Qdl29Ey(Bhs$`c zuj({+KR0(sVG(UO*^R%CMXR+Pl@cKQK0Y?TdQUls>4@mbYqR%uw&nP z>G8z;=va8kE_-RRvFmbs0ovl-E(2CTc+5T3W8yqW&AC~qXAy*b4V7hVgI+v?m?dk zt2g@202Winc+{6Kv)9%oJD->jKLGx7Z19uG#<7M5O_0d^nY8l`((_ zeF-6H02x09D1&VCJ9&cnGGfwHmdRm-K;A+~nyNB`ntvrRX{yQ`jh!>SnvgV=A-yNP zmXI`6A@NQvTbQpWBn=>A-vk{5WFt7Xi1%lUQVjO!-iTjo?~JkHj+a2&Bg=r^hX@KME6DkumYk5xjV`6Uz7glimXD*n{(Y&e<};zz2Oqw z4o~&UDSSReoJOCb`X#<6`zSfK|3PW_I5ir2Vu%X2d4jr4`5lsIIH{vdt@$x0vNTj$ zHvWr3ZUl&rXW42Y0JDPJ(-(cw@`Q^=^zfOT=JZ8z z8!vw!9miELke^f~3)w?>ffLOIJD5Lk3R?F&syhYgE-Cwaw)f@h;E|=7K~c)YkQvT4 zRA+0}m`fQ1N`PdX%4goswvz_AY1d2{y5bb^Uy_&x#GRUni|#o^{?{a@0r}%AIBEuL zU3NZ8u?2iJz1R9va1q26n!vqT6UfI9-||`41ma9X1qYz0&;%-lV#6!1tK0-y&CVB{ zZu2@e8Z^*bp$QD&Gr#jBzfTexkW^>_1CqRtd7?Lyhz3NnH-US#3G}Gf`X&%bK(5dP zhR-4UCUEa!(A1gB{|@dXE}KhtNqH}>&;%BxOoSQE_JYbyU=iB)yx|4qGk0T^(V$=} zG=U+q6f8YGbj6_DB%|h@B&Gpzg(k3+xagi!Q*;WKAHSe}Bha&~3{g0cZXI6cw64rBG~m3kGqefxsJHkg5J^C;&;*9BH}Fm18M!8~ zcPBRr%%y7+82&w_RA>T2C>;fo8P4{m%1vMq+BbpW1#JBTpZN(_aA}a63Qb^$T+#%F zmo4#6(N}0dT%idJkv(zIJ;NqYa(y((X+S=E6Bu$!6L?0x2^6X~`X(^^Ii2U~(y?#& z0k2axpHGB8b88QyZU?vcm+@97>~lCErD2oiG-+baKM&r0d?D2**uSK>ed)!i8hHGz z>hWvoDJ2r}#iT0CmzUuYG|2l?cSwjf)unR2N;x!;^NbymlSNIbq;F6X4J7r-W=^3? zR`T42<)3%{C~j-s#Yl3#>n=geRkfGTc*)+V#=*qA`CP=zQ6nDP|3F&)uH`C4U`dq^ zQSo7oidM4RaWEpek{p`%vwmriyXB;$*6)4cn!hA94XF1gr4D>NqyKBt)39Fa_H5AL z=7jSj^C3F1IuqDN5t+?BfM2%q96H@8`DaS;VnQ>(t}p2e?D53B_yRceE_a$8MV5YD zf>a1R{WI$62X?YBWQwMRqdLr;SKtLSD2Au)xDR|OpR4;drgD`O_Rm7IgGVB?3O zq`z_}6Z5|wgAm#6&x1o0NjG&3IbMoVEeMz0-<0||w3FoGB2JAeF*mVIr9nv~A5%DP zsU8`O$_UUUTS+%l5)C9J@4FqhmjvgvA>=MuSude18pv8r97c}1;SQ{ZUGSQ`_r}Z| ztA*6SMibu_b?Da+NJsL8Mru(MF|+161SmNo=k6LggXEE8GfqF1S2!{A<|ujr4YHoT zISV9cFOvz`MIkg0lD-uQgaiTNT*BO*VrU>{DRpcN#(1K`I-|K8BSJh9)X9SZueOwi zLf*%D^{+D+c&HWvk_UqoFfk-YFx+>Cg282+!QeA*9>8j+LDrK8LnuLmArmr3Av6$@ zJQzYDSukW`PNNtah)Ep`U~Oc~zbL`Lb5Q?g>IM=#E4ayo+b{awTNfEC*j(Wg@dVXF z5hi!!k8|mo6#hL$k8cansu9t2rbbipnR#i++0e=rsVXy1=Lnt#C3NF$Q9?3u^g&l9 z@j6PRfy5WyW)gGZSSItClt}}b*Cp<#inYu@UEy|-LU5P|F>ED5au*>n`BFI~@g1Ws zboG6sU**c)E_(^jpSdFl+KC?437QxRL0F!rVVQhZ9~Op<#;ichIc(NxPz=eJ%8OEb z>;;0(r63ym@(zTYtCzw`gYyolEpr}4(Lhw{rE<&6xC)Bp5saqLXOp*>?i(NSc5?Sw z0|_a6WlpZl*$*B}%rh=VfSp)=(Wm3hG4>pBl7c!`2(Ab2Bj|5>WT zeaUZL!(-mZhXj?mjKS|BYdV6So4Slw(8VKY@p5h0-k^t<`ieVf`kbWCY5K(Me>j?f zyOdpWsW~7v0m=KoO){Wj(E#kz1|WHxx`_@6|B`E}&wP}_I~o+#&9_xuXQ98j(2r9n z4TL6drAlP@HYyAIl3&?U{RG9*K8>4F8hLzRUV!+!Nnu?ZZr*?r( zzca=gi#pe|o8z^G{q3Qat52QN)QLIkR}t!W%6{%HglQInVV-<3B~uazSD6U%t2M}z zx0a?sY6ECrKdi5@F!l`$Ozi@OSy$%nxES6Y~$H;1i(l%t-`;dEk7;Ck=vgA{kdUo&d^ zsU0#eP8A_suhno(J}J%9OPpp&s>a-x14J5>$68{S%E%jfI4?CJ6=j}5C$hEWDk%BZ zjQvCV)d3z%%-NT~V~&zz`yWar`PK|4Liynz&sG0OzBR)Ut7rHUFor%sgWM+{z~)5g z3`{COD#P?Bg$7cRZ_UU_$p%`1oK?!9pv)7A2>nLn0fjL4GII_Y)ZQM)YpPIN~q$c^p>EO zASU@7u-Dp;x4y40;%%FKyrFp+ue@4sOSjA`bGR~xD|7D3#Jud6;Yuf#U)1y|xE)zn z+cYC88SeHPb+_c}YMUw%*DJlM8qMQ4R-{4AC!evF3h@J5ZPiPEW5r%cu{02yd|jl+`=!6Lg6Aoi27;fLILJ$N;KLXD+w%;Md4?N|jW;Xs)r@}$t=lSuFf2dV#72AD z0Pu7UrxWvC&aH2+UzU^-m&L16fz6?(8gegC#aEo+^%G z-pi;GPj>E`d}^wn#PC7I&yQ$S{mg?o1(M5>V2_=!L@v^ofxV^ z=>4;X-VV7{C?SYHm#nJH)42{ogR)6}XK1=?L|7P!1$oy|9u4H(xbsyf@`^E8koZhW zq=Cez??_-e0WLauZex_5X1>4})nLf^e)2%Y7le7^G`RVAvQ2V#M$P9R!ayyg`h?(~ zQ1U>X7CRAj2-I)yP@qmr5Qobrt15F5+kcv!2-Lg+zv`iZn!jk}J(}`pb|O&o3cS25 zQ1d^q5-+1f8c2Lv;y}#{XxP*2jwr*xd`sdq|5Nr+$vcSApu3K}4Z}{Wzl^VH>;48w z@zQ?~zv}#1e{zM}-`5yl=5fZb-3#!a~kv>O*5=y-@ zy(j^nr9d^y*7RJJnjh2ev|bC9n0x_(>;C*Wx5O-$`t?iQPdO8ww%eb}q5N(~79c`V z6GJWVsM~)_DlPc}L`bflWQ$0Zn0wQMXy8G~7a*p@Xp8TXt)!DEi3XCAFF-i%l2+bb zva(L5EE>p4y#V2;8#tI(PZh^8d*C*C_f5V~JZ|^#0UAUyKC&yNqzQZ(E#*# zc|T2q(WUUt_QX8(R}hVN@IRBp;GBQPcuc;l$189`RT={Fmoy-gH|$diG$LJbNl8d? znct;j(V$?GkMPQ6*_bR5_d1HBfw<=-Z$(1^WlQGJX( z^9Lw8lf2#bVkU+v5U#(b;hKELt=aW`MOYT*Xu1y#${_g-!GaJQhxQ2p7K+(TIW&-y zex&BBL|U#O+CoXkQW6a$byEkJ5I1r)bUtIqxhyoqOeP1TQG2xY3rgi@r|>J=?Pj~T zue~TQT<;=ToJB6o`3rNrFfpIzJ?*=eUbD#sEOw1Cd*f>nt@;pLS7>m>Oe$+378fcj zN>yY|ryJ3rG-4)|^@-9jJB+jkQ5p@T#SFsgla__tVdR}fc{GrB&DH@}SsflrL_lDp zmWzn_X6E_ku?$Cb|Lhm~1L*5SbR*jnxV8@u9A_cPQyYk_ix7ynU&&JJi5K(av|=WP z3J_|G8fr1SS*qlnTaP5SwmQgeF5|6N8WeuaOI4~0u)*YOMGL`PK^ZiV5i<>_DkBJ- zqLe343Js*R>kb!B){vTTks(#Fz{pU4^e)({+XeS`n~NR&Ch7j}91ijEt4DH7XU}-R zU$E18VmfkVh3}8l_uJ{Hq+_v}lDwLqVGYwDkNXo7tH0;ye~$DtpdTcr&-^?m;TI@@ z1`@8S*~gWrvA>J`6wbZOkiH$b)*(a6lf}$Tw?{l!ZmteGqY<9_@?)CrV0q3aTECy11;4-J zRJtVP{+_M;V(s2pB64D=2_f;@8WJ)0gsYbf9TcUI&$1{nXLC?YgA$0DDAyxKdxK3R zokK}9kQ8(4pdLv<{FIl}xs*i%SrLy}R#MeK(csNR>ftW7=sD&Ej4isfyXsr=+Jnpm zSijrNg3JXN5^azTE@hBSrTe6&`}-t8Rwi;{s0l&#|0fEvGE(V)iWgLgc@EoPniN4+ z4Ri6%vm6*;}6EXayKv9g{|Su_cPtVr3g33!yTi$R*s&FMMj6%u5{ z-_w6<@5V>H!C<`74104;nsdW7^MSnxu;UAS&BaHl5ke*`R#89%%8~SSfjx$)|U8Ui2Cm0frkcfM-Otih#SNNq5Y*;L$ zYf||4NqQ^th9s=ViJ>Nh)So5lt;$F>s0wOSiFrBOV45U;T;TMcYy+!s*-Cl^CDA}q z?L)#%%O~rtia)WkUPW0nkX84Putpd4^nvIeobK!cS%F8D#BC^!s{c^ z;Z+y4b{JX4rCiL**(TGV93r}jdd27m6^oKyK}j@_6cJvvO3H#Pa1kx3S5X!XWNp0* zw+>Z})(9Jn)T`BT%!e6W1^11(8CXTlXt2aM?#B(V13b3)~OHGSHO3i$leno?liMUUhLYR%iQhA@D zJQ~Q0*n*WnUKo?5690)3X&`ay=b!3Ri1_q+5U4&7%x9zz46b_DPumBMyY1F!+&ta( zfqFW3I(Fwiz9D^JmV!pa|2lmi=&5vwNi~SZukS=3n4{J>^hsJS<|*_a8u(AzKF~84 z2AV-#NL85yN}_?Jw0+>Tq#)k>MO#u!ltlwsN&7%g+^|J653jZ&zNUSk|4I6>rKQ@N zkE^{9^f5kz;zDT-DgLC16O>Zgv1Lw}szF@+Xb0oUmWkYS@@iCx8Pi*6b}FtyG1{jU zB^{t7nw^TPK+<$vIS(?|P!`P&#ns-$EUvtW|H{Rcy6=wkS7+qo>I}ryt>=evg_JC= zaI#ZzrNUGV;%d*grGg^vl2sUESdX=362_G)7xN=}3(Zc&RVXGGS6mOv_V~1!Fz!@|8lQ`kOVGUAYo#D%+Jvu zmrJv!_HXF?5pN2dy~QsIR84UFUsT7B*co3Rxj22ONY$8o(wk^d8e6|zvK~DR(IFFS zUsdKl^dhaVpn@VcR8`S57>x8q&I>C%oR~8&fY%&j&-?+(W@+nfJ9P+A1@Mv6)JGz2 z1lK`py(23Fb38j(8svTJH^Nud0FMZ`Po*okN&tV_W@OM^>-Di3+gjK!jqrjb;4T9a zCgye=uO636bEo<@>6?*)K-B~nIeRCXkpj6oN|2~(%(vN$(4e}KE^BB_1l5)8iVQDV zS>L5B8pw)xilu@Z2SrlSm6u5SKBdt>TGEC$P}Wc#y!YUp+cdP{4Sq(Kj(BRlN@?+x z1I?x3pw}F=uU>2S7i=>;;DtF}m~$5<<~5H(4Biz3qv>ldIgiB*M7-Up{tT#A#O8$> zn-P!K*Du1x=yVaQI`c?2?KCK*h!_1Q5~w%gwNeYUClziUMVT~^`QoI#uQ*m-Lum|e zTB4UwDh;GQYs<~g^%f{%n!4~x9|R2|+lG^^>tAPZ+tA79kTDW5x>y*t<8Io!AD)8S znq7SHa%Q};I%7O_d%@ojn2-u-Y&m})_=Ua7$vu_WfO zW+#>442wurn9p|LLNv&I#I1^&gk+P=5=oz@BpOKSZRyq36yePq9c+%wd5L*~^h`Nr zkg~9KTQHlJH3@pstxe3mo(MNRT2I{nAipXpxzfTTm((L8o@A+#RSunk?3%l=!f9CH zNi!-@pglk+;GPsf0|Cj}Caq@XJ@5Ut(#_9M1Pw$yIg#71iN8C>HvQcC8b~9?&)cu{ zHNJ68-tyF5=GTCmy|&%+;jUo7C0FKnWn!NBcm%+S7_BN3 z0kft76EViGv*_qVrP@@N`5wmwG$@#epWGQ#UrE*9mE{^xc_`on@hOCbc_Y?gEWJcTtsH3v&+Y_DCEQ0wK#mf(J z)>L{eOU{(zPar&EL9{;Msu9uqOpV@%I|22POBduyCszzoa^_yoehWHOtF-&cl@8Cn=Ez61RTMd_4+F!`2tt^^95{61hr;#+?b;(OOU1 zKUZ)*XmMd;j$J4XT3#y=&SVJRnV_}8RU?A-g*zFvmb^S@SqxHg<`o>f(V$dzCTK%p zn*?np?^TpX19>|Ww4uDi1Z^hqHIzsLi8~Uspe_sAOwmo{LCYUNW5i2Tw%@X>4~F|X zqviojM+XNaS~X=(QzquQS0YUBkWX~y_RlCT;x!vJh*LR;$X97ZM!e9a2385hTtTT0 za{@hx1_h9$NzIX#j3sl|t*ARw6b(cT5{w~poDDsjcb*{bVqQrwKrLGB~&G}b3WH(ce#98WPc5EHRKpf)jC-{Ad1{KVXef@mPfY#BIJ z^)w3XZ(_`3t_lqiOJXyN=(P??bJD`W#9T9vFgZ$&?SG(;c=ov}y)q*-{!Bw7;+08N zDK#v7uFXT(TGAlL5$kaE&}%qkBF?4=8ib96*hztcQK!ss`;Y8^+uIz=-T|L$^JunpG{|vM zw-4#9+q%Q)$a<$ijuW<4IeHC>K*T*Lf(9ZI zwi7uKI2q&PHE2HrAwNwaG_3z*eFh1+?ZtYY`I__@k^tU>6Y7P*>Y-6*S)Y}6ClhmB z3+}($p9hDKlW;=q7`3~g3WUOsG!zm}s6$#C4q7Z)66QG^FVi6R2`AK3GF({X#5|W` zXdouxgnCL0ywQh8PSEoyhz5evO{kq7gh`J5zZfc+tER4@HEcBK5BeBo4QzLTlsTI+ zF)!#KaPF`$2ovqO`!miy63&2y+i__eQ5526&v(-MOtE-$Q%aDkMPz$6$aRJiTw|y(LmbPyQ^zahERhJyyZ{*-ImdA zxKW8qC!9qrc9xbT*my88f5|(FN6E4M4@Hu2Z06{d8G&>U4WxuY>?p-uvs|0k(Ftgf zXPs|C2;QYJnrAc-KDeaVX;iaeqM8W+u3X-~^XSIP46oUB&j?8J0^@tmU zb<~2au1V+NDnRPPe3nvZASK~qLg*0MvAPjiUe4z!hX!)Ce$uUC!5}okTDdQy!}})$ zBN|HS;+li>76 z@=z_PTj}}%ORco<`194{BR;w`Yb)b2%l6J^*qp+ip9a}YxH=M&tGj0sPNxJKNJzLe z5lYCMJ(KYu%AkRarzG=r@HH~d^XTc~b0AF^=}X-Ko~c|N9I&@E z5>ENcBn5#pCF{PFMFUw|zb9_yW-Q}vh(dm(!uzqgoDrqYoVjnpk<$`x&CAG%2NQFj zK1WV+Z2v=HBpf+8dSyn~ENIvyoKZVU898OSHfM3HK*Q=!*m1f7&!!N8hz3Q_Kt#&+ zG!zlUg!cjSFbbhz{io|qK-dVfzmMLp?g!qKt@f~ea8>=DM-y|86*&IUOLF4=hlGd+ zGG}fGoCGC@?+?}Y6D}l3{v_MdS!7u^Ut;4&gG{F!#JEgL^w|y~knv^8pn;5pQ~7*3 z1OX68`6{K*K+0me2q0ra{Z5?FT+JA;o(SrMgWBa`Yq5jPx8e})WMUrLLn!R_=fNT5 zB)sM47%4|pASSNUm`Lc7A+30&OHd8w{%i?pko$zAImhawQ-i}LTQLu$7#fI4c+1bR zdNEmuxJy>hsT4#5LFsP!InstZusT}?=w871V@l{^K-0w8e}?QfaV2gScEcufih?yBVnJBmyrcTDCHL^g$7d6 z^%=t02zhUmK0{MLop1!v8D)=M*yD+LIQP}=a;Mo5q$FJZ3Z$q6gu^Q|91@P-16BzL zm+PA!dBp9G;6Eu1b3Q$RCaqHz)o64$O)BM)ltKe33GYc1rDPG3m-8sfp@E!q_arQ5 zBhP&cA8$(DU3gB3jv(vi1FU!& zWIADYkr$u=5z6==WzaxI!tNq3BMXL5%7-Y022#>>7sA*GdEY4Ag{FWy;qp?qJ=AG7 z4<_aloMj&+$M!$aCtO}~^vVqXzg7J|;qsEBRQLC}Hvi7)Bn@($uzSkUTj$S2e48R@ zAR^)NQcgtR`k9dLQV0#}KiTA(IvO-u|K?rvdv!nXrgVaAyF%CA6aUpG!1a%@XZ`>( zBHjl#>k^Z)>3o{}2!Ic303=*h$VfE=g8Z8w^K~~giTy7t{%n;stO#>E`X3F1ET!{5 z(b32;e~3Ql`~d6;8{ghwQFqJnU}C;-1sh*Ew*P@XVdLxQl^MSG56K%}M=73{<=T9f zen*2GCv1Fk^xF6aB0f(MG!T)n@y&_I8s9+37b%2>^`Ff7N!SQjKP`=~B!D+zx7Jz>MtZyy}Dmd1AXgg={@H@6WO zd$NS^7?KipPM%YTClrDR`GH1A!sao@t3l!lM~lO}pJM|W6hOlDl4&6}R0?wbl5%Ju zC*cN;X*of_6eRsMCDA}qx(7nNqJ}@RHS~Q(PT;kWk#NbAPsQ!)=*qu6o|uaa0%w;y z&5j@?;gV+{MI|6)j`CN{!IGD96s6EWO2Wu3 zO34BxFJ~9!&_GVQl}^jq$a5bJugH02!lr!G>Fe%m9!$)47dg+6WBVWSpKzYx=#?1} zaiT^)H304X>*!}Z;Eo+=Y(Q%mSX>yn^aSF zVbfAo8lvSs8Z8m8vzv7p%H=*RD0*%oT@{(5=`}Pcl4qyehgTq%+6%%dUtm_+Zc3wp zwCC=;v>?bz~^FUA*PF8?GSdohysao0A!a-tpZvC`)+D?O=DXd`N0ijwWXR z5~A;DJ#qg-Lc&{aUV@S%zRuA2N*LXqQ@W!d>*k~M2pVKM;Vrkk03DfyGCocjG?0;S zh?tj=MN25<6O=*&Dd}#x31cJV-OF&Wo(SrMqp@q+V|`MT2NUzb$8j_!$M!$aCmfAA zdS!qSLY8z{5wU^Kt#gPSWZOd`hk#dQwR;~ zKUwcU!bZS)F8yBJ54;f#?{XXO-D!2VeEX{X-6_NN;+p-!njTKfv#){6A7jt_0qEzq z?z3m7S6(>$W7OdzLVR{IarH32=HEHlq(MF-`kIQ=>gG8C-=+W>2#AQbiUKkh&x!ah zMbJRR)*rZ;O+zEccqtv+IU87Sj_@(N?|QVgle=G@f_I`VHW$`LV|-T7ZGvqst@Rhi zoq@iyiNBcBU(C5*%(-7o%p;zPpt$$pf27wprQswcqWgB_wPsHa?^ROPW@(#EmpW`95lkJ&nQ zwkbhrQJvRmbw06n28qapHb05T9GW+9giM3{T$zR~BYP9cXh8OqG-NBS;o@jz*y-b2 z-;%+%kdp?SPfo`8Jb8-J+a?*e^Q552<>pti|Mmm~wStMI7i+@W_8gMq# zG&JLtVSBVP=(@oFBq?b?8Sz-`ETQ2k5g$Pt@M$vBfcXhqjvco_+z9)4ZBno0K%>~( zUt7I|F@dMgjCHtyZGmgu_S{xd{U1%t5Al?;IRgW(jXjTWP#lOnx@Kw0gki|*bQtp3 z%H{1d!S_6C8El@N$JdY@`2>Uyh;wAOcDjN#%548{@ z)}Oa@g)mqA@xE?rVL!e<@4i1J88qi}nni<5)zI|0;_|l(+lSiCZfAd6b7&q(IvUW` z&|OZ^t>8V7o&It@kB=fL4M=Mk)|HU<3#EDq8EL>+LkB&@h_#E(LVIKj^)Y0l0o$Nn z$CLrc{uaJIHf-)|k1#4|E@D!&j`r4l507zT9!m){kWfRfJ(XcAA;6ndGDa=VjH0&UVn(aL#O5-oi;rZU9@u z3}vx3ZZ*e;R`naBkuwzkM-y`sUdU=5fUIxqIS)`L5vrycif7?CRGBci{&HP26c69v zkqX~5JJ(c?-Np7ghI=xmjxA>Si-~zTcDI->Vt zB~7{vVp#;Azmg2Dkc|dxiQFaoijXkwCnF6QBepATHwyXt!uMu`woh7`bj7M)t`N4X z$wmXV1WgSy=|2V_gkuuYq|2VZfL+)Qkc|dxHQdN63k!J%wvb&zG8&N8u;f!pmc29B z#>LY}N|UZU^|h>$#cRn%1GX9#(Mq$ZZ{8HT>q$ogx8c@@L;KBy=~Djs|pzx?Fv$i?H29HX5+iu)i0K}orpvyhcsk<~E#b7KX)Q|-?t=3)C# zQ+u+6jXf8*{n|CH^LT8XK9dmj^$4x6h)woewIw-xsj)4#HdBGQnH5Qcimc)O^t1@s zwJKCEAr(z3D%nvfR4*eH4XCQ$CMlgS((6e_la%fZ=Q+cV6%Po znmj9E$zMrw8j#m;J9&zH95%~M>=5X;vAsm{{c2LvBq`v|qHj@NOCp*yM48LHojoz8$G$2nGFd)a?bgV@R=ZWN` z0cXF4v37Ze?GimEF?h94b9IPky*RB91^1u=8Yt){Q?P;}2lZfxhdY|R0iSud{69^8 z8t|KB{GEPh+-Y??*R-2%i?`(dXUR?j_B0&>8_E4Ee7vJMYz=Itf1b27piS3W?H>*> zgphpRhlDgBtl^=AO&Vqrwsix&u-=cXG+<5V-M!ZSc5}48*z6Db&3=0s3j^zTutgL+ zfC^}m)~`Oj)0FQR3+)_fX+WEAorjW~2IT3yixIWd z?clK{ap_+nDGf+#*hH~O3!-oBMV4FKVk^WCCov6((~T*|L%fy=_gog)l33>R$xH+0 zbY0`vJ^j}l5B&BK$@wG6PXqos=6&U%mFo{5MM@e_ZvFbUEf;Zfj18@GKl#z>y@k`W zl6g@bw`2!+p48rwmBWd7#tY<@te#<3s0YYw9k*mXo$_G%^;w;M)e$cqTqYtbn6YCq z+}%`Yc5zu*&DmX4Aq{d>$I4@Ycx@j>Z~@&pq@w{{9c#FGy8U<@xU+6^b}p%CKvl!T zam<8u4?1%9^e|iJk&6agb+oYst^sePcSa+OSc0;=fTT1@NF8Cn+YL!CBqu6>2 zIUV%|gYil;U$_^Ok|s$$`Suk&P(57k*hLtACW0p8aU z(z8iQvje2OyCbCMkd$TzNO_M(NY5oHO~RVpHypGU7g)ffmDVa>Zz0s@k(vh7H7o*@ zIu#Zy7xvSgWEd~B7m$_)v^6XOY(hI2j4&A%!V5`AlQN%!?pm*psKvWrEbYalr2%ck zOUSnxRF>y+z|nhiX^1y5jIcSN-CuCIzLfMd35$7gwA$r6@T8b8Cm~Hz!k~a3M?#u} zgjn0adoFAauOuN22y3`KT3Vw^9Sl>l6Hk6V26QznvX|1Wv|H<)5k?KRO!t$M zCSjSbge^dygfvMBgBIXw64HRMh7I?nrP?{o7U!5`GzqIvR#X?TTyHrKkdp?SDTdYT zbb5pJcI#lrjS8+IB@HNR*jZUxrmHO%hEF3K4cJnRLEK8_QWlQal9mRvH7s#$l1aOO zDqrd1D%W}&U#XMk;Ck}YfWL-SlEd<^^@EH*i^McLka1);T-%e3-#~tvlo?+eV~@fB zdpiQR-XJjzh-HUZb<(!^3i}V)m#|!{$BH%_Hf`D&woBqa<6 zEw3jb4G5oD`EkUsbQ|G`4bJazac*jDY`uoHG55JI+?|Yhg>Fy23ih|J!)n$aBJ&$Z zUCacO!G-l{nHb_@eeUA#N%3A-y?FUqsZFKVP>g--h?VDXBa4y0pO`ni2*o(TqVC2~ zmoTB8Vsu&*AH{e@UByUbd`){3={0=Ap+6Y*^p=+#P0R(iV2Su>J=r+=5?*F0J*v91 zc`7AAF+Ev}sfN+A$ChPa+3<($9mAednIqVA(6H&KF(<;dJRGd8hHOWYjRtHrbUgXI z;dvIkg?phL5*|ZB8W7enM#~f8RtytlGn6gPJ>;WF!nb#d?>O?&fUkzhP9c8-EVANd z?W0xpsbR66Kw6q4*;JPai}lXrqXFMVm0MuRWkam3wyO|sK}gqd$6VinD$TGSPRwVX z$2;csY~z^AunIWnu?4B&j(J9>JZM7JYHLC=aBV~I(AHqB+wCZoxhro6(jY4}JZdq; z#!r8;?9AOsL<6E4+NuK4VrSS{Sn0OW7Yf_G$VLOU$5n3`3vA1H`?<^4y~#uarW)?X z7ntnLYMZN*$VCIL>i2Gys-gc`hB0F)@a`H`(MEViV1XMoB%b`)#N7Bogw&oaVPntb z?xzf_M^~>lkF7UrNr>2bj>c9E6Sf?_gx6Ys*jmT?%scv?Z!(%5YmEk(s{TR;&)M)t zT9oG5th;;}j_WAHZH-4q48h;!sQyi8@i&gV9OuaQuh%9-(NT>zX*E8wa*qPZD9cjW zHMEGM0haxo^XoBQc=J1O{ayCbWMkLm_5w<(hIi`(luCutdYP714Y#QRbaDAkf4w~% zH}MU(-rCqcjm-R+kI?UFkgGb{k)R-Dqf+}IrDzV#-;j(3WYu5lWAoUs|67jVVSt5o zRl^dzyfF()S;JvVzZkCxbCNJI54j1Ba$GKL{pSU2JFwOq45mz=d)kJ&INk(UHs@t6VKxMARsvqNovZ-}h)V?)#p& z#za3CT)%Vf?{3vyJ+EKis;PSO$9Y}VJ@=gZyXUS|b?e>I%4Bde!w7@Sc^YlK)v@GK zeTwr@0`im-<9w&vo$u7KcP2BaK0`(V7_;aJeYv>0Jm10X!J6!IBqM+{ykdTmH8EV2Hk3S?OA-|ZC(%JMU8jf$V+`<5!wfeA4_N_Q#wIRLPz@s+4Eu-!g?fE%u z*EnalwfWSADA`-4edW)F`#T~sQ`}#liQu84IC$YF;)QeeR-hPX8<8;YT95h~AB7_z z6zA_%NqR~=S=cuzi~wO5?oDC1NuiJDGV9$vMD05iM}WAUtFBN*`=?^Vw1ow@#qCZ? zN2wpP3Odh+B@A)-SI5l@>D7_XSzLHgYIVd{DS~kpg7dGAB3Q(sI{t2NRYw!3)aq!1 zrG7wT5fF;}t79lBy*fH!Kcp}Mgymly17Ulpj!xW9D2@PexmU-{3u)ESX}K}II^uhX z%da}xz4A=tY=bd}^SXDWz8jvNsE)x`L3Q*AcS5EfbrOw5$hA6pS~uU91>?!W9!p__T&rV>u$1cPeT^HD&k?-9x-`dPKBGWvI>vi@~jV`0GS_{ zLU%IyltIX|J_Itx>w}ZBgHi}N)(4LL?F8HrAC;&NI1K^0)rb3->9(m4+*sg+mxc8K zXMBCY0mS6iKZqDnfckKB&h^3MU5^@!5pDj}D_Hsj^&pGRT>h%;~0LSpY^ zPkuhh2_S!b#zP#iR6Ns3^sIIesIoWfqA@Es1iv$HHQ%s+kAfh~-mF3>WH4(rFSDAA z(K*bK&YU`c#YRBZvNvl$DXS!&_+SzfK%Bi<1LDA}F4u>WoB;C7&AJG)I;JO!S#b=i zrOaCc`!*zLU+vLQeTkP%5ArWd3O_^06n7S^u_d(B6e9Gna$BrC#TGjeY|{E#e&JS^ zvw#W6>=Z9WjHNf`9ue^piXcEl=F3;EY~3_CF#3p)f1wZpglx^aZMIw$r^u8+i`EZ3 z2=crtfSGj|1sv_4ba_w#aKZ_ZF@IhaK!gZAD!^0otpLGfYb5LH^(=BijujxFPgDRK zfAvO+Amms90uf^szzKOXg%I+q0GMu$mciL!1rXomRRPR2!zkeJ{vEFkDgaKn3Lu00 zyefbQ5qeaB-T794V0JZ~E4f2~+N^VJobF-}-r=G6OGkOX8c z^9gH6DTemMA0#mW#FP%~btA0Xi z0t1`z)Q`+`j^(<6){)W#+xb~XchVbowV&*lbMiXgIsZD|eRsoShfn<8e>L_dUu0s6 z9SGO9c3^dkk}(rQMXm7XN5r2O?$rpgnVqCgl&Kqevk(E1IWJ=~O`@*YFSeMF;jequ zGUKH_Oxw8v9t|wl-OkNEkcoGtn)fdoBlg1^i0168nZLs89=E}r|7qXqFT(p)>>HgS zUhO^cLq(M^;Ah2vIaJ|^aTEKceJ!fgg>1#N)P>~Pj__~-Q^WM`E>5k0jQ2mju4gtB# zy!T9yO79s^??cZKK%Mz2c7oau`U3h5q$jXkGqyZwDgoEmXl5}J*s`}S#tC9wd>E=1 zoTshJ&miR=W-;rQjtNW0NtSk{auJYDH=SsI#|j zNF7+$)3-=ZV7X>(UC>mtX(Y-&7VDB6Y?;qP$<%h<#e=&2b79{7^y#7f3*sl{VP8!w zl<@EG#J^MQP`9>GX^=&X0wrfUo9c-yM*=dK`K&id>n&_zthSJx0P@W5WKEJMO>6~J zDS!Y0t8X_kL(H{}E!&OsvGElMv+rQrcsuoqI9Y!jsw3GB?=LsJ58VgmHghvOa$$v= z5BjwZY&}0JX^(@vs(F?u0eRe#b-SdADkhpbw(3CSF^p^WO|d5J;2k0Lpk(#&Q2hzJ zf9*abe4ZhBgdk+!TqXsH2$c4%q_jKvly(pRwqRa^@T=>20fc}oXMQa{pp!Cy1k;+0 z33)q(5FljN-iSrevWEXF@{e9gKbO=qR}p7l-cg z^8=oTs&Q~|Mjr&X$!C5iZc@xpQ32}3-K1V*-oGX3bW7+@3A?&GCl~|-Kl3|rJ=;j7 z@Lw1ie@z(#$jJOoT+ilY_$uMQG*bSSQV5We^_{q$4BNq*hu`>KJsLsXl@)@13@n&i zeK0pofXzK{`tz&8`hdF?ycoH4A-DPO!N>q<7aoUL_HHe0Aq~0*b`?(gSri?I{_Kbd|@m> zIMSIWzB6KOM==D5d1}_pVS>bd7ARu>{ zclrrZ89wSr>fowhkeWbWWo~p^n!LFu@VC$TuSic|xn^x^&{Tq~K0`P9`UKcAzwW_= z|YRPewo-23nl#fLh*0rmx&#dGcYb)GMnm`?7RucVCHKyNm_4V zOa5z;6F{E%gg8l_G_e(MBLxs3AnVJ-nqS+vJ-qbjefHgl|0L)yprMVyzIz1mWpS3 zISWq55>yk~gJ!)|Z})dJdiB)Zm;Kk9y7l=6HXpa|lJJK^_5VJMLOVD(lQ;nRqtiX( zQ(qgoFrwtHm6Dq#MiqpIJnTQ^5|V(L9G>p}iR z_!-0}##=QY7CJcfUExrE(G1{V|pN`576K0 zzaTn3Ga{jY89ymzJSDS~rN#8wP$#nKARq(rJr5Ih6If%wfb3+F5kMB-6(q<4;{}AL zkdOev^f!#J!E{Ww5?DZef@bsOAKf7J8cQ<3;)kL7(VJnjjrz0sgIqi^)(VzH(uc>s zDjs`GRtam1`5dVGvEmb;KDx88>NSZNETDP-sR*EoZom^%-d+LSgGfhUxkNT;OtuoF z{S|sk3LmNeQ+(lAXTeyl55QO(dUzj>APA1jh(HpDt9~S|if(+N(lsblti`LFuwD}& z{nU)4CoE-&_9GDiMA6M-n3vE{mh3>15kPiqw4Z1voAM9oCSBr4I)iqqy{rob1j|Ep z-AAOI!e=@be?XE!J0&ENJ{M?KA*5YSai+?h)mLZY! zVXXsxqhk}_1)7AV3#43~1Jz|mLCC~fA&Ie;ry7uokcqWIs=!*FZYSvoSy&6nR(!du z{ZT5u)H5iY0j}ptyM+gayLeUF&prry?cb9l_W@aXRCJ%B(80G%-DyZ~6fi|k z2KqG_Q{(SYZTSR@xPc!9K@dF|Fa(k~ocH(Qyy(e*70%|!iC5d$BoH7yy1IrGVl_|H zCJ_Nd(X}Wf@@<_bJA-5dki||0kZQ%Jd>=YWmpGD+9BCXSh@+wh1vX*bj`; z*JH(B(F?CGWign~hI#_)Hvt)lZ%kaI{76m0qhqF?L^1-%q8DD1c?wJxC zs3x0}6GL_TH^6o`O`J1_=KoN{$+43Ioqixfc;Uqr@nZC~$Wa2*_92Ki8#<@z*Sx`k zfLujiF;68844S0Ak<(gj|=ev4-0kE#urmy`Qr`7x@h%8TNSF^~op&lyI!tu`)$4_zR zWl(R|RL5;*Iofa;R*zx{6Oi3b{*m^BT`%E8N+3YO6i+W?k$-P?FXLp&AV9`ba`QU) zDxUK>bh`FjzIk7+br*We-9~$xZsq;qQ2pV(u>HZonZyBPE$8P7&ni5D?o}z$AB+k5Aq5d2=-j<3$XAy!Q9q$50z~0isrlX!ix}K+ z1cKoRYWorOELuxXTk#)FIlYv1C^RsXuo$18i{0`R9S|IQR%Ti}{w8l_M%p zfnF~aD96UsW>hyPY}D-u(V(78TM&@@U3(|@!BA>MOpRg)5R-FFwnZVs$_@tQjW+I+ z9TBuZK?Dd=xmFtL(N%^YOxe7S6~%~%O}-@$rdoS1uI;6}k#ry;l6LWDUSs;_YY>EPf@;sCO89DaFL8Gca< zYR4y}cI4}dFdpnbycUUx+J~+nAO<-$+Md^SWv;R$3Q29CAOZyCIQ&Wxl&CgIQTtOA z0iyC7etAu-KuHB3XDtd13?(`CCo5gdo^(;^PeXP7+u5JUf&B{!Irb+`f{>%ed?ok( z#Bu8WB*?mYJ{>?nrgQ91k^-cPgfd=883f44vE@k0@D(GJ@*+whKuUi7iDs;XykFM+ ziJSp-j+KCQ;C{Li=ubm+=nbp{a$x^LLXMTdNf2^Wf*`HfVO94Evh%(|ik=R}D*hS&ND z2*VUxMa{b68W4{Ru7Yojq+=YK3$5R#ovd+kDZW8cT zsWy)KHS3fyv$OAn%dc5Xn0t1J#ScUE$akSGZPcI59|R-EtAUnYm{D!^|E-RHj#mRM zrPLRfYxP#Pq68Lyj;^!;_m@X}=+zArL4b%n+tW})P$zse-bo<@mVbVg0fdzx`}?8v zz3=k0eZ$NwdiXF@mtL=J&(EOepPX%P=!F@!zjgk$HM!_Ewi8rIom#@m(i3D zz1l_*gq&?3iU@4)qtT`iLcX>KAs*9mWpFF8Jx_o)$3bncv)B)=4f?~O`Z%W*2M1>o z2auKH;*@7)M=e@VDef+nBFE8nl31#S3z6th&!Qy=h(V5vQz=qRH5nCjAq5d2D96RA z6hT3i85Omgq6iR`-{O?lRPi58Io*wwC^RsXv5lM$JQ9R5jEp#6IK!2X4V9Ovbl zOKJ?sQDg2SH73W49gb5fi_f|maQI9>rt_PHYW|8uSuxjYGt1q?9n?9tp3H2}diukm zy6lZ?J%cle1IWs;_4KUb1!{p89+G?OnIzVR@TVju>R`4D1jHc6*3!vq=XHX7>*>EVq7I`d0z~E4dU{&@Scq8JD0r}LJ^e2@5Xo^C)L+J4+{>M& zTqJWxLv?@dfp(BT5q^fG9H#`1Q)&@~pcb7dwJ68ASb|q7kqwT7L*0WdD**vGE5DiP zxDZo?M&#U!atM%<&6S#ISMFvZvTz%Co zjFVJfnB&QzdevJ{l@1#_pE#xeKkIsXFZe2uE9y|cwn+WTaTzcOfR7dzUq-(WP3mE6 ziwTIzg?l$Dy7rG$IukS_?ih+AK-_Z*5SLN~lLC*WKmr7wm48h%*p(0z4hAuaMRXiZGKy;)($t5x98k;@>hKv_44MUr~R2=$L=Y* zJIfsT5On9~7Z6s{IwH8%llTLteXgrn>?$BgE<}y z)zR-j{W{Pc>yP?(?B}L<+fkel;YU?EQ>xMwbMZJrU59Kagk4?1R+vCLtqvd_A#W87Ws$3IS49e^cb_B~k(J7IB+4qT0nOK{q-JPBE8Q zJO6U6)oQet!j8wBa{bOVA40vj*~nRUBB-oW+`^uPz@efd)RYUQrc80EJPTS~Uy|Vx zCF)LWL<#W76a&)C#CX%D%K9tHB0$#a*QH}s;SO@`B;T^Ll+*>Zu{BTNl_{RSm_<=L zF@##KwcF0d8{Z8Z9}=FDqd?RYYp&6vhKfSq-WQ2`b7^Lo%dkqz(--cXXi)EE+eUyv zrdVT(&bqEap=n12eSm@p5VZR1Z=&?TuI;w>D$7J&O0Q~%1fIxcD2<)b8}s#^bU*SL z&+ES*20g%hHT0hlj0xMYg*S4nJsN=sA%`hnDW;s_Hi{@d?F5@sopJR`mOTO4UH!&^ znc4A@avgffv3doI+{GN!m*g?(*;c~~9=g@7^&ak7sA5z6#&%3VgBOR%59Z_tbLI!G z<@zR#amPLW#(tg7!2xW)h>T&kGiZme-XOlZv@KkO_GnDpP*D!*$~&d5^y~U1tV`;fxZPohS#!fw8z}Y!DJ11v{>W^Hy zxW)Jv`dl&z_651Ds-%h)X)yK2#MDz<_gQ;YN@do@9{Wc0sDGu82na?l>v3bmZlysM zJjT8^!mg$;0)$O*5h2T1`IfKsjmJNeryc~}^P9GAUN**CzxlAnsM*2&Hpt5~QDqAj{>IkQxrB_+Njj92*_?86FI|rr!y*qOol9}Abeg-i*X(P% z_2;2_`#Vwl4=`V0-flnTRosCHAxCllEXU#w_;hjG{OOFVH?X(~$Zjqx)T8vipGpdO z6NM0R@||JB3&w+TS3lLhv*$paOO5N+aCcX$I=`Za5ppy)zk;{8v*$U;pRk|tQx5cM zc}!yyVnhNQ_&af6E}d_JQG3vx5q@=3_BRA%dMSsYiQ}utr!5Syj=s8)4lqSv!k)|2 z%}7|Ob!&^Y`OTpd?75-3f;)BHTz)#|PTMn8cZOlg(HoXWMkN#lhwOKwE}mRwN@>C2 zqW8#o36S~@n+gKLkjGW;5mx6J8x|vDBLb3IGZQWSWUS zCJr~eFZ2N3%jCr9mow$rkMy+|kpK_eVJ~<rkbD6-I#;HG;-)7&=YuW;RW~ff#%N`E3=8%*2xGMjR?LscAqGRGj4t#M>@kO3p zYY>vq8$npqt>_N|0+7c7WFr6GBcX(Q&?lyNg5o$Wy*r=|Sk2bmT=wRr_4Oqgu(I7)M$ppUj8 zzAuRhAfB*58%OLXPUE@0KgkIoe?sc`c_!|PVcMciqFtnpq<^iIta(n1HP3v#A=7ex z7^+);8h*w0(D-crAY+fribT?fH6JF{d`wme>$#23fqE&2Bm@>qrX=FRfa+zWB7iEo zEn&KPg2FoHeHYNZf^-CyOQhkLEcOPs<*pt|he_ch^?!B9O%4s*}W3(G4n828Ce6tFN=F6CnN6jHGMd8cW$Isc(^p0HWx3;Ux27_e^y~ zqP|Nq0?1-ttc6r7KIKQ#O}fO9bbLG2>B)<=K!D9wPyCv0r}!C;W$&5Y$>f_s~ki?nFQk_C70;uBKsgNpYr+m&HPdWn2CAOVHvNV>> z%IVTh@dQ#oCAKau)R#7QYw~2I`8-tneHI2gz#jTfAdGGp141E!(^}%RXcGi!YqQxL z=nSb3vG*V#8>eR(H}+Rzxg_C7Nk{PJ(F@J$UK{nK_*as1if#`u$l1A(nlHHbM z1dv5Htw}O(wvh1lBqV?^_N9V4-Ab7HMRc0+0SKb|yn1(0kE!t&@8$U(Otyg^1wjx! z888HrIP7(W*ekw<7~$;UoOtyf2A=@w(QT%YuKjC_Wuv6tPa*<{;yoPXB`}pE`w+

    A?#f&d7DcryusBn~rOla-l_aBU_l zUi~k_PJr}yGX)gJOpfT6BqD$)-b?{eU?xZQYmyN_7Hy`TD-~DR>NR2}DeLH&CDN6P z!u&8)H+~a#+NeL9KhPgNv$Q0VJ{)y}I4XMFXcLys&*ea!$LJHFK6+A-AaSNL!BXdw ziU6wUVO@eMVJk~_0qF=Vm&nmQ*=Q`A_S@(zDSV_J-*@a>X&oiq9zWrI-QUuqD}8|8 zRsRK1{OHOO2?hN1QSn#&=*p&S4Q8{UcC#D^$Uqj2iHVe-NlJKh%+&KpMgUp-=qiz? zgvng)UO++u2%|?=K~!ceECNkZL!%gSD*AJ++m}K@p7>`qiye(!iie>T5|&0QI)m$$2XEh+UKP*O8t8`q)=ChwNfr|H@_-tolAp zEUvODKpQ>qTf_zq;$eKiwiQ3(z>gHRsMi2aK!s1Pr19h`A zP%;Flj~@6XNQ@Uf)h$Rx09EwBFF_S}&(qzCbOe@5b>w=& zVym+-ROfy}tcA}c!JllbB_xtQthM2HIyM&5N_}cc?D;DvY&(9|a*ldhNpyNaAqS zUx=%s$Ea2~P36R^V;Ok@q(`rPgcM>aPjozq2q21{u7pJ1P@e1rk`X`_yY_)pD?a60 z&`r9;k#zLzZizeYnY$Uy=b^gt-(ji)?4kbz!g%+3LLq{|{z?oM-C2d1(Iyiv;ZYax z(hLFFh@L@?QW>))2rnif0ff;b(ow>|bP3Yul9T|_*h`;=vts_5INpT@bnXC6^rbbE ze$`*}FlXk>1&P5=V8}z0C*869H+HDe{oa_6p&~UbdZbu%!o#T3kMYMC^yn>dRyftY zIoKf}W6^gtCJ6M9*RQf9zBA-UkemSWR_x>=LEy;83~b6#M_g^D00IP@7CF>Q@LMx) zNzffZPg{d|Lq!h*8?D-sH(kQFpwuP4Ag&+z33T+C6V-D)`yB&qpO2WSbJ2< z)j3e#WgA0)`shYGK_bm)K=lJs5$J zT;$iEhU&AtnS4Jvuzx`meYL|82?acOx_B^pJnT}IHjfz+4)tm_4FqH$1FO48x%=jV zn5k<>MgUp#ST&ia&~!d`uO}e^gt1pUG#~8dQ{O_b86SWk1EaNTvU1nx;nPsP>GNVV z9*~HCL6m{f43SX4XwA%wW>Pjrqhg&6^=lRd0U5}^Xd#Vl<2>1oBqM+<1EYmxq0v0y zA4o_5VZ70hE{x_=-)4-)Ga!f`0rfDsG7n_vk3)47JJ|gja^yZRH}RdTB@-67?JRLy z27?8gw6Plxg+<+uoecqbh#z7F0Sj8TfbIdLBY-Z0UObVn&~gFggGfmLW$aCvQt&Wc zkp7u;owWowq8CY;^DR9t!QY{J`Ilh04g4qwg6JhaLm-L6XBUajq8nx_oU=252;ps$`{g4y2O!m^c=K_%~Qoq z_%Kw*e+G8i$dj0Z>OUZfo`YHvNgs}Su{bKa1-1$6c1z3EIZ*FlKSF@|=s9SD#F)wj zOTC*^1W-jckO`{5R-W#Cq$99gA_xCus{~QIoX&Ek9$!U}ysVZugV`m!Kk{Pg!K5~4 zg#(RwzFM2SOOy1egWI(g2!`ZPAP*l;=!xTbq#RTmgNJ{{1 z^j!xjv`JegsP9B-0;o^Tz?_n}wy0Z?V?nB`=~V3>!w49MK<1L;z8IqY)4VPIF}Y z&|(CTMfac*PexSpF{fj(APeOHyBoYeP z>LX&S=+zFFvNUf#8|pX{SiqCAgyOGFdWHa z!i)*xpOTmW;>X52Qqra^6D+@=Hv`XrEQ?X8aJUxG9O6B&--SgFb|TOkh6f;zpUT<{ zYI0$OOK&1vs(abQc>TRSYfHrTufnnV#cf|j| zZaj-YX(&KQ;n`b=XQNm4je3_sV_M58eCjHeApu#+qM@_NkGHS(8$0Tp1Na5bQWb9s(z8x9pa%3KKCe==sBOy!ohLo<+9U(r8#Dpx}8xoJZ z*XR0aBqwC(UZn2b>#6RXa4*k;GmD{uj;DFx(wdjMeLnG1W~jg)%;Ah~_|30Lp2bih zAQwg$_Xsg=7DI&~`Gjw6{?rS2fr5biWHD42B}}^3(Oybg0%)@sDvZ*Od)853PHF8UX z+J|J^+S&|;V+EH<^)wbD0Wr;NtPoNred~$OB{2cSnT-`f;&JDC@@JBq0P?KH3P|01 z*Hb+>(c1DnIHT97TeY2y)0DI^^fiU_aQ9vj}aO#QT)aYf9AZ^{Y z+8pQ%sh_f}2*^fsOFl{^?o1N?oP-1rMlVi`5_(rANq<370!U+@P%$Z2k_;!%h|V3L zi8mo`wRR?y&qHN!m}7mH^t=JN_+e#eOi+RCJ^_3Yek`5ck)7H;vWyHy~usQ<#y zeu1}n41GQc0R4YgkmgOA8&bQ@~ZC8==1rWa<^hK7lYNfWtJcV$mUKu)6D&@nP& z&?MzONJ#)?bQ?NG8JIIkdoR)wKpWeJTGopFAmyem&~2zY38v^d0hXoY7B}%^r*Che z`~qJca}d6^cTn=PzZ)+4(x^*Kd`UX^@^bNI^r}N5bup$>ugIky#HNIRC`J$b#_5bT zM@Sz^QUXY$R{_RJ19OfL|09VBAU-9w;k0R2pupWXse^hM4VpAcbfdY_=`~!VX%B|# zAl@HxpgRseB8$WmuAFmdfodqQ%hp2Wf;AScm{rcGPdZ>~*=Gwo?Z zc{(Wxpp0%bZQ72~`_g`8XrDq_0%&6!O`9~{^eToi9Iw`mraK9y==t$VXNS%k{tngY zUxpDk@S`9IqVME21d=$McfB|-dM(rnrw^QXbuX3z0n#(5t`eKjY9>nR??^-dQS|6P z%u8r6OSXw*1dzqv$qO#n%BK8QI!c!~l8#>8!Mi^;H0{2-4Oqo6UjFkh+eGZv9xQz7f5Ltn^=I=3B+)ltT9Tn+`f%On z#dXm)U)qGla{A#?GN>=JBnVI+Z*BK1uIog7u+-N`MF3Uw=rxg_z-B&Y-y|J@fN%ID}VDSV{fOTE8jq1LZe`@2@^N3fk=9JJ^AjZPa6EA!BOxoObu)%(?j`eF?W zPF3u*S;GcU=hFhc%am-RQBECz*NMYIEg=NhG>0}qC zMtib{@SSzg<8Fk5Zku$F|Jr=xbJCx zl+uKvh^oNbYt6<&&`arK>yYnm+<+Ta!c*qRG>C{w`uKdx)?c+KMPCUo zY}fU>)|5u>TLl>b$5^ zSpNvnp1PaJ8dxf|-WJ9JC1YcyZpLyMiBbBRz%)c{eYqnn895_`^SJ*-;T(#>2~P63 z>i-*yD19|$?eysSK!{Shy_C{~LE;oe@AYZJnS%0Xg-JD7Rs>`s^?8)FF?&`yE%L}*J(>Z9{&G0)|&LS z`DQ#(7H<07FGl82Q4Wgv9#YJ$*=qQn0>J{G@V&6BOIh>;WN|sQn_SIi6Vk8f^IJ?X zx3Gw|pp1+mm~(Y^8bV4VJ?0a-$JG?sX`B>}cD|jv$*G}wI=jc4jhuBSXe6}cEcW!Z zgjI`uT!L_-w2ze1p3p;>Y(3{jpmT_91qZr{T~|j1KqLysDDS3{Nv2U>ZpVPPI;6#W%h`>B&}UU zrp|#ngDo)us*jsB;yOWweM^}1@eDpABqu>IVVPq!Q`+^jYHzTz(&_fm^&(X?1+sOP z{d&%Q&2E=p57l8D;NE@@zwlpvtV1-Y zlUV))(*sr$uFxXbyl#O~EP2vj3|IU^$%OEy9Sh3i%ae^Os>)h|Ru+ANA z7Ut4^1)lVo*C;4X}xgZk8kJjt)5oPw|?mVJDBKp zlYgMUOHZ24pK+$VN4e-&APU~uCf=E_lDL|8_Q;`)Gw~OqKz)O*A+TI#a?M1B3ckUU zvQ0cLi&hYyIF!L`-p>RO0;Omf7S7}Xm~p(kv@)nRdez$YTBBLp+LY@#I62qo&AF39 zb-|zDj>E>z>r;vUPcNizVJkgd>J=MZf}7H$2s13OT`Z7(7tKsbOUaL9U-;B*Il3bt zH~&0afsZ6yLGDn*DA|#yssYQEp&g6kjDBCn!}-m6wbxnX6*~?us@rSbhAUn9evaRp zK4i{*kEO$XF^{;zo_=D#O(kIQ&$!C8ifoYvC!8xzn6P-hT4S&Zi#Ej`ej_T>(ewua z+3n2ak3Dcy*Y6VAF>0t{H z1W;YfB4iYkQJZo0$8^w&$V>wVb3DL>-Cv=o4s^%*qy8NWXvW!JNF@v?o6DqZW}N+n zNxEY3IZ&@-i4bV3nQEM6kirO(ei4g-5prQkzoU26UWQ4a6E}T$IPStXX=APf_d#QO z>+~=6`SIjfY7rq$l{Zurf+Bo{6yc03&Xcpx`CaO_!mR#=%_#wyTbQ|U$MPm6jngT^ zD&|<~){wPzs|f@65S+J&j>YBQ54L z4$W4&yn|u#{7ip8X@+(uuF2nFPd_o=rW4RAGY-vGkv&wD2D{uKcA0T#whD__W^w>U zg*u&W2?5znzmaOSA>tl%RP=XyoUbty>TUFo6xHOym~k!>-iRk%l3u9BX^iIe^#?Pm zAFAtl>(pPQe4|fdav-c6{lQgdeu}px7e)afBHY*KQc+6;AaPwjBiI zY0FF<%6QThoZ@Iad5K5ISbc!y%|P4l&BTi_jmUO5g==*dWO5Fc#N3Tv4An1wj-tL* z>Ua8dVv3;u3#6rQBQ#Zsq)8JMDDY29fls)RYPI^uFs3Dcx0PDA)~e$@vnIO-`4hVj zI@x`RjHN%#I&;RH*+ylF5LKt$2%xUbY`4+G#c(|9CxO1O)u-q=miSn(=(^diXQriA z@ln<;Q=cPoGTt*TK54p@W&?K=*XH|XBP^Vp>+$5AoE)lG{~6vsZ0x)~Rn#;Oyj7BpYhL;vt}TW~|6AN!I|&lVW}G%ok~UOSfnvU=6!VOew@JzCqE7o#c-12~+$JFCPnoF-rzJl2 z_=|0pnOAiW7Q2K!CB9Js7@b81h0m|d;9yQBlAq^IXSdP%$JZ3h7pc?BlV=+{NTkvv z4i&Y)1V@Ppwq;Ea*kF`jxYZL_?+GwMJ;Dg1$y+P%yzQRRzUyThW?CIdH%KX@27AT< ze%keivFi?(vu(fm=xI4K(#gy?z)z8ZtE|$nKS&CD#sPjx%2LY73opW^u4eHPP`s&I z*h&rE!wo7Ud=(y#cGS$6dLRo_2X!Qb>6dov&3X$LjCM47sSig5UvH{ymFv6si{T@m z*4V(0g2-6<755;8wCn|6TLMWO)$uqfp_5XpWAGoROjnnW6R%#(G9f^E`n8E!DfAuT zp6I0{B7i8pI?YJr$Mv4eDgb%1Cyp42Y zji1dQkfcA~F$0OD4@W&-9F;y(oFQScl*@toB%@D&`t+IN%p_tePxWb15kQqb1fP{E zu$8C#Ea?a=m$VLQjcgTN*1Fu)sdSbUK2ndb?ohp~haTiu9xBCK9rlw0`xiv%eaag1 zp^1b7{;G?=($_C%N!c09WJAqy#7IB};u{keDc&U^D-uD>)R813fGoYAoH z#0b}=ZpEvAVDJf$9^WB`6w-D%q6&!!Ad2^JKopqDkv*7X1dv5{hzko9SJ&*zk(X7k+b)*_bsEcn0QK=BuLOx0%u_v?R0L4PkGw*vz+RrN zMmhq^C3fV6WU&K)Eq8SZy(NW@)Z^PQq-;iB{4`Ym{zu)0=>xQ3`Y(v$+b~Nc6!6!} zvueX^%F>2u#X1}6PfV^OPb6Q-jaj_5JtCQKv%I zu%;8BKE4f0kch!N)%BzzfGWNX3#kHodAhfgj=*w>ZNrdkMVGZi?TylgkqoKFw_!*~ zUZ6`3ylM4JKAgCp9N51gif_X#kx;;2@6DvND<{OB&4*UP3}bMn*$t8N}{W z&S<*)qnqcg4ZXbY-a~AT5&7=WFEc46NEpZ$*tD{Yh_lkn{_-o-&<}hCcVznbNV#yp5~1+e_{O| zeB(}5eJUJ6r0=gXgExG#Z1qG5y#IUgek&^vBxw@<_g@LSI-U(20r^bd0w+43T0pWM zjLA5GG6;~dBgZ(5*M~7FCs7IkQWi6+6Q0D^3!cM90kosyT)cPhL8&*jDPT-q~*z~z)jvbn()~bHgyLUD*^dQ zzd>*2{G=G%hE?5(v;@$m-y9Z4J8o!4{a2(WfI9Y_er36yvC6GV4#fjiu$Z z7G0mWP5PO?frD>p9UOk;&Q^nj=;`PcA{&w*U1`-R2Ijt%b6_>~d!L5d+jOzMN_aY6BQ zLsPrfU6;t=tR>c?qi))!m+H-d zQMW>Mgz^M%xz=6i;kHbyIq3lQD3Jh(&o4&+vCH?iUDd7+<92E!K;tDP(b!qi_cga_ zJ53;WQ6!-}PHg#NKAY+YtahA^VDef;USTVQOm_JB5r`Cz?ta9wfym$VfS#QV5W8W>hViQHs1F!>GA{Y6wts zP9bW>%IacDB0$nvds|YiyVRqFe0e>WatM&~w4&rB%Ip#J5KT}CAYC^6I8y;s|zBvD#dPz<36|4__WL0w5j1SpE?1%m>p1fTcR<*dZ{ z6>s6>Oj@ri?0F(RZ+?oq=ql*{=C-5%JMb8L5;-^b9?WWtK#5SG=c`H2cXoDpoaB7V z?q|*;`8^W(RRrYpSw-pzXUn=I?n7k+D0^n1%4$8maAO>DKk6bt*Ru=NHQ!k=o1GeI z51=$c;nM1@mHw`3v#|{~@$1rj5Ty|y?Sew1w%F~oste5(jQfnXhf*5>+KR0Mivzqm zAc)#OQW*it;#S*iwRbD6VS8o=$&*`)P0dEThmhIgd<2CNiWk;d3WYtA!U%;6Yt?(p zOI^;&bp`k*3L`++g@slC8FfgHV8lI|;s_8|Y+KuD*Q?7NTujwLdkl3EpsU!L30=Lg zWbnHO zR&gzpebaJQY%^=}K0cc4MtMccbFY2h^T5{q7Q^g2BA<=(F|s}A;kX`k7yZg{M zG-IY6fmzi73C6Y;%Gfq;jUbWqq@@%8BR{(3Ipz)vc{WNCFPKp`kIRjSsNrq7q2UpFwK_417u$jP||U?;st5zf|yWA!=I%J3#+Rxp`DaSfW)|YVaUCQ;d%J8bcuSG zIW6uiiX%W=+D&M<`M7pbi@gXy?6< z@(AUUXB(9lQ62&E;%@5Atj)7euIOivbqrrjkpzewMh%NI7ik|K)jD5FodoE-yj(i{ zBYwu0FQZlhw8kxjW*$>MxuxUz3Th-kPLrfpg2N_LZ>&t)uDS6)e)dBZm~48>by{2+T5+#0ph<= zAOQm7mLjtg*x26S8xC~<-$s1|=qt(KzkbG`W~;_KD31VnC8-+q?xKm^yD5%PB5^xc zjJWqv90B4=(&W{5uGrz>2dR!wBHQg;X&q&P_Yuk?lt&(}a=7m7H&N9tSSA+~o5=sEz=2C23if=54R>pA<)cxRP{hOS~h7Z;I93#uq4%0D&(o zhXakkYS?{znKB9Gv0$TBTQWiX8r2b?F785VW@Cd!57)>WeLFh%CKVE(uq2~{23BZn z2mBq%Ba}&A+bz+2pYjNhSCX+`qlap22Uq`1eFW$$NfX$dZ<)&RV~Qg{TuH_+&3X^_ zD(Uv`XH-Xkx{@p-P+g+&`(J7#l&E++w(a{R#StK`BrQv`vvkyvrhI=*d4zJwvxEB^ zDUSeoWvLvUB|EtP1Jx0rt|XTWQMP!;1tuV-eE&>|1V}7P{k0Np7;mx@8VS%?l9e@t zv4Iya%l??UA>5B53FQ;n=2Hh+dh#U0Ffn`mtYr) zMr&Y44Y!~`LWu-oK1OyXHI`fg#;)pNgs&zFfl&73ndcD6U3EHuMq_CZd6Es!jeo-RysRO zJ-H{v5g@K4Z6Pi@Y{umWBk*r1kN|-t86*ai&wEoH0qRQ9%yjGXjg@W(0~`~hxXqMEfW(r_qq>~|x8Kp7$$cr0P#zCrZ!LQd&Hbs40Cgp4U;N!s z52QFknL@``dgy|E2-Oivr0$Ha9q=Dbbp)s@$;w*~S2eqKbntNMBS2qCMuEM-)_xZ| znwj!FjtU7-SdyyY?|pj|#SzM5K6%xNt{Nv&9Rcb}(j=o~SI#sgdotw_$|P^lo;UJN zp*#ZQmE_uHzYBTEYnzX!N&-|y?W7c3xv2!7O)yfQJJ=a_y=~`8z1wKj+x=Q|nr9(` zpAXfg`{QAVbFq2(?wdX$`~p!pF;i7Sg~uUI|Fe$q%Q8)U;`0zeo;C%$JK|{rzMpAi zpJJ>gx=5PPJe!-l6A+MVN-jBkghH3=MHEkf_>Lx(##pO=Db*9!L)cejgJ>=MWfV?W55lSYe#S4apl||&zpm^??_u4gzEBP7>8mK8 z0Qsfwkb1sle+_jL)`ji{Ul^c${yOR=KzHeTq#ic-?u9+l8>pVJ9@Nw23H5KHdIHp! ze&pC+#-0qzohDZKv~m88;t3FcUD?|iCmxMW(8#}yc_1JU1rU37!lMsPM|w()LC zCKThDK-}t*$7UPvqj&zBB-YS?fR?~&2+|C90wkY7YAIHhB_MW!9Ke1Vb)ko?B-`ee}V zb-I1@IlcN4SKq3wI&T!#QU5ZtKtLAWu%5EOrzvy}zQ!C7)>#gEyro3v;G4_=0XaCY zz%p3rGox2Z|>^d;v?dYZG5%K`3 zx(Vw;x9hj}qi(`_F#6U;yVh-B({E#z11X-c9)gb9vNF04p>6_nm%f7Xog{M0ls5X! zsGR`q*Y5p}a%~lK9(SVktL;vk8^xR8-+~z+tOwI9G#2r!qYnJ7sG9)YSC>8T3yq~( zt5q}7Z%gTf^$>Dw?|@rTbjWW{-2~_^VAW@BUSD)`_`jrV0%RAk1hGchdh=%7Rqa~! zyHGx1J-B7j4*~8*-Gud_yJHvc?@8SR=q_N+wnn>jF~ov%R%gKu6CXm|g!K?{JlE$JV2`G90+g42 z&81!6*{?0?{cv;@eK^GvAing?BByiMZPc{r$5A?AJvbeY$Jo*Nqo|tz-346tS=+b; zZ#2X^+!uFM`*mIiGNC__Ss)+_r5}3j#0`CTMp)bZWC|y&2hW^Y@7tN^Db!7X?#uRm zf3#F@*Somw-Y=holk75ZW7Q1N0 zzJOv05L?pzrQX_FUs!0gu|bQD@1>MXC~tfhU3@R6SOUaeQO;HkVzGCg4(&^*mQY@` z4PVjzg=z^UR_mSca;hajZ2?oJY1%McHt*Y8Q~#B636NXBM0zT@ZLB2X#!qapZTx#R zMH3*pq+?r|f|*HSZ~{F>bu;#z7ZlwY$OLtIDA1ZXbc!H8)LO>Yd^iTTJ|sG0!P z1>8(AjcQpKN0U9WYkwdPWNYqu7xb2jxC=6uSE(Z{Hp0Nn*V6(jQ2 zqI+xs>66R>0XcYm0b}MhM}AXnL3Qvlcryz5H1!jp|IO<{|JGW6ei;v0bq4<0>}Qz^ z0&-ErGTz!t0rv{q1%uC1JOSbhxZie$O0dwVEiGawYdrKNW`KYU6mXZ;EE#Y&JAIYf z3F}5X9_ci3{|2=ap#81uqVDo>)GD6rq=7nZ_Xym#nGpgqvOXG7WCTy};Z-4eDdKz7 zPk{b+tc!v$7p1F>HZE6Ju_G?7m)h$5U(5{wxw&CoGY?@nbb@=S9DVZNJ zF9hV}`gM^PzMH90YvLK0YJV`l&D}HoQ|5$#oUD&7ZdJKU9?e>16LxFjXyCPgmse*+_1-{HrdYZ z+ebDC>!xO~m0D~zY}MY#3=oikH?0dh$qkbj7h>Cc(>@)*Oc0QX^)W5gI|yTSAG?2S zw==tgnF|7Pu|7speQa8yH;duRSQ0m~9?HBBke31;Ih&!=OAMb5qkID77jY9+r`M|| zZlcmBQkKMSL!kr+E#e~g>O#lXz-~v$1V}DmQ$g%4uv%<4En|VVUUgUJtNcHvsktN7 z6QI6`>u}SkA8f_MCeVCmY9>JQOABb@r_j8u$?eoljPFXl1n4c`p37+*(mW~*@I5G) z0Ko-3)ijmh4sQo+^m>?}1lG70l@rRV+^TLjo1yZ*qjCb27jda*3RCx5olbwbn)J#h z>L!#o;@n9U9ea1Fk?_hPfk>!s z3ejVoWrgwykYB)B=UV00det5mZ0mMR`(WxPKz{)v^R?^mb>!cL=&3diZueuv?j-h_S`qJ-i$~l($3F}M0yFur8>L);d0jo}Htp)R)=AhL^O~x*) zW=M7db3i~23RoFmdk)(3wSIN6+i78Y%`*n|wtK$oB<6&GoD^{RajiL7=&dx}lev$j zcEWnm9ysV!YA37@?HEeb+%@-qrgj3f7qEoCR?jRpFjOA7XnGp6KtL7>xFEFVEMT06 z1trt^JelGN>%%)-UTxY(x@*)Q`#Ec|V)N2@t*xrX}_Q?4obx z&tVP-$idt8{>t{+LvJo2>pfq1(QJF&?p|{qvqC^t3V3DCtXUbfgW@=!c_6H>;y@vc zUBJA6Ss|>G;u!RCV|oYAB?JxA#moZ%c_?5HsPy`Z96EslKKhIzYdn!65ZHU)J}l*e=Gl}V$g12g|muhM0)l40XKg! zb@-Lc2Vs4b!S-+#`D$t>tQYOUEbkUmbiH2Ox$BtT{Xw^^(z zbL?X1n<$}1VSLbf}DX0u_c-DfD70LcYx z-!M&-xBBgAKS#BM@&ngyTfiV_8oA~M zNMqoyQ!t^J`1Y`M!#wYg4w^J~E~QobF69y+w}8cQCv7#kV{O|HD4YP{1za$nUihHh zt!>BKd-1B|x_xW!4=J7i@z2})GuU3epNMxq#TfrXi3CV2VB^C*N*pu8|4}RfVhh+N zoG%IR5b#N6`d`E@134o#$_FJPOtwZ(nDW1k_qIb{zI|Cn>)FBU3+z(e;S^6;4`ENdP4f;^PFN4hTXo!+YVYg36O|L7 zynqYTYpbMqH&v_dr2iGA6V`**we%qFcc*y5dTPtNqi7?%>5D+=i{XRPR^K+s;hTA3*&C=s$I#Gv7O6q1LZe=bJS?Y@a-+b-T4) zM>MwY+7$j~lRmvEEYM1LV2IA`Zro@0O&<}w$!7@4cGMDweF+y|9fVzK2F?211a;<@ zL-o}MZ@^9c+o9!vJvv8?3Bg zJ*9`0%avx059sOWtxzNZA}=aV3-!g?pox_-Eov7<5sD32z0vNh^r~H4z`#|PC2O~{sg3}3&n_-xPMy4pPzUZD zN+Xm++De_9_-bkAQ5pf#o?c+o@DxTLw;XCs=Tj2_nl30#(_&}PZD0c)Jaddq2#vN2 zsEtr;yq0QxY<+4pT}({`XezK%7fn?@Y^#g$xs*kKtY;Nhj2z^)2Q55D+p-3`gvtm| zc3yGHma)qQUzBa)HKZy6R9#%0D$|Kq7wYrfy6mZ|i}NzdBa}lP7UmQ3uAn>uR>NONcfVig>DUK_By4`p^6%mTH8Fm4}Mg(1Knd-(q zZ=^B;ls&V!SXpJR<9su95umHUkt|l#w>Gi)a$~!Go?RE_TPclDaL7d3N@s^L*$vc1 zfUXx5Sd=3(;i_~4wugTwRT7}Gz*!w0SH;dEwsU$9MG*=Y)x;dYl;`^?iU3gsj?fS( z3>{Z&#cI0?72A*C*r-?DGDaKDw83D@vDP}p@ ztYTJ@tC?d9x81m^->oe)@DhpMrYTmC?Qe%l-5+bn83Z2D2KdmFDdVKlt+NP=NH_lY~ppv z7B-XVCNQ2ohgt2fhR@va<(p4ECWW4le!lb6^cfywp5>@ zpVPk^s^8v-KJIqUKp(f?@%*2>N_uQI0wi(tZ3F4saFsdYy0g#Mgr-n_;5(2ogLgy* z6#=<>Y5_9B>!Ld1ccvf$1RWP0mP(k{k-}_7W!JoKb@gGB{BWoi?u?9Gc0T;H{|U8S z^=^-bIxZs(k~|!Bt~hFYM(IxKT_?P4*5vXED09IMR> zW3jr1(g+2|iW@fTSiPQt2nEOLKI5@^Bc%}vl(tY`=`ZhS^z^19+nvMSOlbs2i(5pV zy*4g%J1cnCuPMj3QV{`)ifTlSBG+c!Kuv_=HMx>|Cp8g@*W~Kpd#H&3O>v{D+1(`X zkuqj_KLrsWC~k2vLQt>Ya?>2$RDFo52v8NbBrv-wdBYzzv0bR@ZJT+Ys0rFfDUSeo zaeLv+E|068c+(nQ2Wj73J0|lJlu3Zh<6}n5qOu}?ObkW`tY^m!ER(MfpJMQw_zy#M z+C`X@?K%sC=$oCOzq(7Uxm4fUt#L4YQpVbZ4uk5~$)GxJCO-0Bw>_*4jr`J2+~f(`sK$wS>}!7AtbtPFIV)hGGd28@F|2UZD-v54Gag zQ!xRGOV(OpeZ{%pjg(1%%#w{vR(x~yW~wAWW!&}3%!~gFTc6%ajRa_n+o&*ejlE`P z$qz^yt9}d;hx3J3lxO4Tb5^@TekGxgF zX^`Zxs{4PL+$!PHowx!izX(=wB}ce;&IeIE{$SwR?9n`@(7R@_Y6yOW_fA4ojqBi^h0qn~TIFVVkEs z0_4SACel%>Nbn|9)}2vJZQ>0&t2Z0r&xdN)X=ps2v=fcTO;4<~8!H1m{lsf}$o7eu zsuC(RBpYs`cRGoC1T)OUp6&=w{LVKj;b{|t(-8wjK+fZ)w_)Ou+QP<0m()|Jk^q%) z7ud2?$sIII80RUF0D*D)5oao}!?%PRiHnp-fW)}zcg7O&JRNRc*Kcjqh25Y~0))m5 z#j_NOy_zr%H&4rJolWW_l**KRH?t}64h0fQRpKl4ZVT&cVI;d0N`TPv)Shl#_5;y{ zJ)lGaB*rbUWogQ8y|-Lj!5mg=+)0guQW>(_Y2spq7I+o~5+LxonRc_2#?^^nr+0*# z%v-s%!lzLop;X1(!|TuLe3`J;crG;($`wUFKCK~B8p13EbJvQq}JL z9?kdo#Xm9S1W4kTYaJzXtzJ|YMzpRjWFdstD2bZ+2DupN%%w1GJ*!sfYkYaVw;8iaIUx8b+h* z1nMF{SKQ{Z(Yo;B;YIzfQys9AD2z~G5%!h`i;LW%Mk{(O6%n8)YPD7(Rgpg?@zEA6 zZVwUvy06t6Quo`Ty85YTOJ9B_+R}qgu`gz0a~ijYh$G-SrI4USJylxNxIIJ?Nl$82 z{f~UR>du)=|0^=B2*_>R9wIK~J*~?6AEihN+gM#9S5q7T;^KDJ@x1iKgvWRNkJ7}| zx=Z@yGFsVdsf-d#dQZ6NDE_jJ%texrCt5Rj`KdsRT#lIjR=p%en7 z#9a@yWjnDA9f`#zjBc>5SjFc4CM;EIAwbJndp9gbi+-mZ7U*eNFhEIfKAIUAm3${|3`F>&orA1zO6m5+Pxh<)qi6fKUt?Q^L9^enVG z4@0JQA8?8}hwMEv&Ww_fjP*!>*5@2)ed69b66SAGtux%gxFwO*V_1j;=Uzmpn`xRtT+)p=92U;Z7hLv`pk z(1zU`_fYLV)h2nfSzN5&SG@)BIVJ{UdlE83DPD zyP`i@5R)2OF9EF?H~!`>nBjj8_QBL8w3!kKkQjIUFJz%tW|laQJ$3c_^t8bHQXl~W zcW3FGD1p5JUMQ;d-Jkjh<S^_4*hU=+Hfi;s_-Y=h~AKDUMJcaof3< zxQ^V(6i0x#Q=(>DzAdQ)9fzSw9X7*S0BZgUk=sHsu;mshWinAA8@L?nUw24 zakH>Mh7e%n@|G-SVL`%^IyUU?r-j-qEeC;F;~E zDVAXEPlxJj|A4yqJ6z-2ec%(!|7T@9J~Jgkf!g>%sf}@~kXE?P2^=$VcNBflM z!^f@WLzm(jm@ z=#spak_nLfijqp!W21Szin}>5fxeEa2~d4?xm7RMx(hw*AB&xtbim(2=>$lBO}V8v z>$PpW@Df=U_Uoyg0PWY5TzhA!+UqR#^)y=t{_PY`D8JKN-Y)N=YC`!{2S#}>RTH54 zRpmBHud&qXG%zdHCiwt`6V`$7gu6dX;RFbOb;%Mh^JEPOZCpm%TlN1i|gPRvw^P+;Eu zXPI}edJ~vaxTl`k<#TK~$o+Sn!Ar8ok_ zt-4XzUJ}>e#Z5D`ylW|sP#$?^PY*5cI?5wJ-l{hN?VadpdA4%Ah5884S8R*U%<~G4 zDc9>Mj8Kli@#dODoqap?5uh)d33^n6xY8Z8>#KD-@1kY`G-tC8l9OiN@4T0i3FWXs zui3ywMfB~q{(OM?2+&u8))9BlC0zPp$|DpmkDUr0SHS}-98sD|{xQlUK;Ei%(dF4X z>c)p-ibd=wZM&9FQXK*6R=o*!uc-5bN)y0OQz8Kp3mrMQ0QS2B8^6y|9HAWIdeyC+ z4)+V!9rNcYjsS7lteni)7E0uLy?R%V4f}e^&>L*^*R74>FHtd}w2FHu{Q3TXkEQAu zf0c>}P`v6sQu$XPiE(2AJIyvQfiNP!L6HQAd`XcrvCs%kBqlk@n0}jb36Q($ZSVQV zG??g`cz%xp2@qK5bW7qH2((rIzo?J^g{$77w3k9?wf%_N2&K?A-)UiwW?P+qN^Jya zTXnD5+~Wpqtxh`_@*4mBoGJ-WS?G$R_8(x8FHF zQS8QUF7Z3Jj5zF}EtEG`;hhfx>-!d883Irlod5Uj@D zlFA5Bmd$-ZF|(?L!3x%E*y`ygN;y`LOEM;ox1m}B)UNt&quk@T*ueheX%oNOQ6`~W zGDrL2J5nYAGK(J`F5-<4c$<|UADS}1GgT7G5zJAQb{=q7$|RH{nAk-xaZS?%^Bz=5 zD2K`}_99$p^tSO@>+-_leT~X{Q6-^#Dpe0JEs@dU-%%w2DzkZDBBtqF3}d;{nBUgq z))abJyNN;x5L*1Qs20k~UTrqG8K9PU6eSW$A#oY|cH)vWZUboQ7uIQse@}@7NGyKf zvy2*p-qD2bAE=E0ZN)F)7;SPlg;7|cLIM;PKiGDwbw=HTsg3}3#n1DdIx`ANT>pI- zr4k^u_)gnP#b^ubCbl;`hAIhAx#}xrav!L9m7_zTW2uu+4qGl(aW_n_Z=-lT)e)es z_=ejwht>XayAlr#K61A_&N+N@1H4;0C~mF_?w-Y9dn&VVFU;(zFxFy zctw>C*psP?0A0n86rjsZplzd9qe21{7C%zJlZ}a$%>}9>ltbO1*>B*@w6=7YsEz=2 z#kYETQ+}$$NIKYbK>JWpDFI50Z&%v53rDXwSrfJ>j{tea4+uNh6?I1!x8Wr2QyyM= z#XkG)!+%n>SE!i)&6gM6<)v%3@$FG70a^>a%TjkMaxY%JwbHi}s_oQAfWG1{vW(m- zXqxg})JTBF;;&YXXtV`=HboL3viS97FH)~U_+gm|={ZzOfZF0)C8yQ~^E}EUKwj~8 zzIb`n^k|+>xdg~9{=$B@zA%`#)0PV;jR0xIx0T&`3(cio`EJ(ROL#1z*=RNF+StX^ zN`ThlFM1fQD_y+UCL!~=lu3Zh;_q`ZFY1KCZMMuWp+Euz7T@PU;K+?)L+T?yU-4s( zK%c)PV;iE&D3t)I#ZS9>weA0(yYCK=Gx?;gXS&EeysUED$TA2?C7BL4Zt-223{CfDOh549M^iL@-zetna-_ zU7concKh7jzCYgWRCiasSGj(bbQ-^u#0Vgkf18Nic)=cl)Qm65& z$dUk-`4<{&VW~7NXaY83D}lZ}$S$<2R5R0n`dmaOXR?HdKrU-%Mfz z5X--j>w%atOkjPtt5=x3jWh|MnZI4T*VyY;JKZ|&6{-ivuXm9r0X*~X$VN8dyqok0 zpqIZDO48feaI6`%_mCk03=2^E;iiG=%pQy1`^k?0e)$hjbyvn|VmjZfdioGK62LM4 z8Pk5p-p>6|aw8NX{sgzkGKjw=M?%p!T8kh)MUDh;%)j2Y;xV`c;xnX40L}adC!iT# z0P%SeB!FQ4^$iHZ+Sqma9o_K#J^2y9FaM6U#gBEO?h^h3NfL^Z8FeI9^+i&muk%&X zBormBS)Lsn!l3$M|4e=a@XLSN8EM_dSQ$MWYrW9FkRkyT^Y3DVV%O0<*?%K70;uJ` z!?WLQw5)E!cSw#73C7BYyH2+3fFvSX->I|}{+tw=~eoc~u;zTD?JjT%e-(*Sv)BNpnB08m+ z9s3OY{a?Q$OG0rHJvte%-z^|X0LlF4SFEUP!kAO-EjTrQ0oDV_l>n}}+Dhts+D;4S zV+G64fuu(Oy=r@vLS#??|+$1*Im$q%;QOe02Dh^dZ zT|M$jFyqrI{raN!l8aGK{|Yxz4G-SHgBjolE9oa^Q&yCZvW8|*sG%PwYv^pO!CJ`J zT2C_xRe4&njEDPpEf)bXkj)S|BYt*$EK=;ZWJ&#3ucIfxw6MmIGyw~Z8h0==e{=2}J0KOTu(3(d^e0ijXoEuk^4u$ng zfjv(mevc++0yw`U^X6w{-(8o@F?Gc3pozo!1li+AmH@KZoZ6Uq1cR)deNQA~0vKm= zGJV#JVZ)*YOXuN-kT9XRggbLK;ZsSNP*}n(w>Ll6<$Yx$6IV!>0K(balazIqkiGRl zJGYXg2_Rj}u0#i>*!d2Yxr<0XoqP%4Tg++=d||#5WX~j70>~D#S|eGzT04u335AVb zOmXQ}V>QVVicA*Qq>8+-j${cSTg(pSUboxPIrm($C4g-)d+dU(opsMAWdbN?v*NhwTdK`HYz%!dU?yPu520<5+Dxq*xBg2XHq)GtQVhtyvUGt6PN+?{klIslS$heYS z)LNI2DgjiBWy0a;!7l!nktqR8Gn%f@fO9sh$g=9TSR(?LBnd?%sYe3yBuN0tVpUg&$#AmoAXx&) z7OS@!8343Nl>n+&XK@9s&Y;u!57jA(&hPzECI(gT=3yNAv!o_q_kcyyHr& zi5VWU5x!K!+0BTDtFk911H;VY9y#-v&DwvXW!%)G|60Bj5$gGt4 zA&==0`Y$F>wC5iM*)vI&0J7OMVLpfDlhsp@J$WLyV0;!C6TtZO*=Mp*^9#PT#OPIw zXSyAyUUP6(oj$fna9>UC1aQx0^^H#{v)J~z_d6;}uOn{)cxTgX*ay68xKNQ%t~j4d z&IE9NOHuQQUgM9uXBKeNY*ih7FEY#d6hMH0Hx*sLEY23h9UE3TeH`f%KtG##s(p}W zY{D0kFrmnVai;&QE|u#^m;l1>C~5|o9kgp)jD+I~78bBg9Q))%r0dplBSjD(;+=&T zfz3_vGA^MELXk61!^%9DkuU*-|GKF0j+NlNVlhy!Y$kC6h!?i~2l2QneG9o0!2NXv zj`V14zLm@gU|!gs3u2w8e%Y1!HRMewcs3t|iC<6R1Q35sQL_pT;o=TOtJS}Ov1anHNxURBAI0H%fO)B1hz!1!T?oC)BZ&6oS zhQ8v`wOfA`-RxLN}5q0YnQoREg^Y^+}ij!iB55 z68b*7$e94ng|jq)bF|O1my8KuT)5gcrmu4o`4S46jU#=Wn@N}e!r5$o$gs+d_HAw< zT>|J{n}wO*u$|^#(sZ6^P~V+RC(zxAskO9be)006SKkX8e`7Cf{0DB7PKbdkGv*_M zfp!0*(z>6`87sJeQ|rZM!c`*1YfT3?xA(Y%QthQwZ-uP7w)!U2dju%Y<~+M)GqY{^ zB858SNC3xd&WFf=qcVuYCzX%7WJv(ajQWJjO=Gip2>S}9WW{wrt^{z+=B|(B$EY8Z zyUC7Fpgb9l!9OHN0ysW7lR8r*_H-bb!c|i?8|U4o+rqIXyBfW;^`-U2qSxLJ%Abwa zVtCj^zE9b0oVNmFbuI%$_4$=7H_nFw88ta(zZ$GattTp4{+ul-0l6ZZMZQ)Td1t>mg0h}2oq=&(kbWLX6F~aanY7n7lWa-XxCC6V zegRn%z&ab#*FI&9OXUUa7m_xi1UaORtwVzJOGuhff*jK0t#5+$Uy(JT1UUq(bq;wY zX%k8i*?mVx_N&R7P=d$?>vbxR{55G4%0XM_k=K(p0kq#x>?(VvAv#A@+(xY8{7ocJ z0QonUgM5Rh=&0V4_g3;JfdAXe!N2Lw_N%@5#;n%x4r(AkLpJlH`>gfU8Hh()ihBKB z7+U zuaGvO__Q%KXd1|WB5eX_zp>a|L_r&u%2<`jH^`m<_64uK=eP-$+kr(U|5p+xfOs~G zq4!zst%z6c+VIoo1yr~8KPGPico)32Z`N8WYu`)K1duNHSf}asv~~O!WK96;f{*XX zI#3P%irfh$$R?dRl}+v=X#z+WyasG`=GLxJw0}$5gmTcuipv-e>JQ@`zKfyJq-s0I3r|z2N35P;b<5hof(BKA7YQ|Hv%Aq6=pM^)Bu*#+aSS4S;wO?g0mKVF z{%K)HOJkvliw8s@eF&KoiqE|5&Z$H31@lwMoB-wpZ=S zMEXiHCxCgu2SN+H++2`8oummMUGVx4_WX6Q>nq}Ck~jgx3*Lfu-CARz+d=n5aX*XP z3E*Dv;@NduxN`>AxGU&cq{-UaUy_69Tku2a(k zw~b^@0P}(uNq-sNB_vHKe&z;gz1-k3vL=9a!J8W7kcGXfh1^Wqgfh^^2`!5D7Sbkw zcEKk%`(4luPHt``dji;JbG%{ZMmWbT&A*0Z2_T!zsqER4_17w0PqqZG&1R?OK4GhC zjT=apP~e>yi0 zfg{)25zr=GLb2)UO6*3`C4g>0dzpFxw?84%Cussm7j!V9Ne5Q`?;>vkco)=?q$8c61iv*vE*k8UDo0yr0R)=_hguJFH^epfNVjlT&x4qYnWa^wuAy_TWkNo z9i&SrE?s-yz-vjD0J;U8e2UpGa3@(4ikpLHTjp4RH z3y!)29QsXECFN-+CQ^4e*7KT62P{g zW}e7~kI#}bp}^U}Z1ng7$r3=epf#Dj!Q)G$ODHy7y|LpTNtXb+MJ;UphK{e1Edgu` zdO}@zBgfZCnE=W~tsnH>6FuhqCOH$pxuBNR=%$lzku;(Br2Wk%|4!0`Lgx;#y~j)v ze4m^N#gAy;&i(_ECV+H7$92I?B|jozLV*bfHk166gb5&A&@obI6UooXm;lBFt(r09 zsN(S6w%Kd+pX5v^ZY+m3y!;m#6TrBjZFYF0%Wp`TP~1okZE*P?GA4j=K?ivL#+C>C zDaaB)wxD%!a6`+3NSFY^1??nTr#>7+wgj*(XtfsEc5^5>6TrEkl|*>E&Ecd>0Of*? zOYLnoN0Ba}xOv#xUUMwj62P{g^_jn#@dT136gg_m+WnKrmQY}}{x+IZ$d&-M1+}yW zw$D72d{gL90i+AMkyk~uu^4Le+geg56rOryczO=06AGVItPb;INSXlB1+`p+ zwmMFeF#(JV+CB33BV0hT1duK0=*imJ_yn>gfNep$_4by=4WvsbGF^Ww$0rXAJf*~YQJaf^;FNy=2Y9=3vRc;3$&bO%IgNv<1(KtdPm-l zO9xj!9rtIgxX6Bhn7MkNFqA>!2CYL5Jb>~4)_oGn$SbrgovX0jys;DK`E=U7Rlz%- z{3kInb}nMfBS67>%B8@*b4#TD`P4#ymiL!Ui|TXL+~z=K=EqSE0dn3~QaQew3#o9M#qCQ+=QL>vM3eiSNB0$o|N-C*`W0Tx^)lzi{RS}@7 ztW`s=VXB79D2Gtu!qn@`_5+1!Ger?fEQ(n!AZiOm5g_U#B`r?n43vSM646AwWynOr1tcFt6Q4Nd!pB zdG@B(;l1L$nAscuNzClci>ZK+e+Kh;hUcIBC$@sf?9I!lg#axX9r0z)k9B+f)N^Sy z-X)2&2u-AEXIq9U9e0pC0pxS;`fHXc$VbxPwUj}CjGXN+6UoqRO4slH-$^M1NXfY& znMBG=)2Z!fVROwc+@Qc4H-r)9jTA$Gn4C?OlZbKmxYcH32abXjD&9gB1gOZlIh;hr zywk#&F>}Ebc{{Zbpyl29_P{37(hg;I|-obemP&HPYCL z#ywDI?xr#Vl$EG5Q_2ET-b*P2NXdElKS?6BkTkp8#@u|r+H(5c#%@&+e1LKYkn@i6 z6rP1nbI(p*$RldA4^spIB67B2Op+$5sf=%DK1NLhXev>osWgR}n@>;-0b+6T~k%Cf(_HxsD%J6A1qy-LpPyW#n`7&b8&^aXlcJrK?DdYQ5RJu z&Y<1vbo=O>_S`wHZ?3jn2bZ-8W#6PS0+fBCbV(Ie#-lZbuy0Wq;s1uP9*?;Y!v3AY z2oP4j3Vmm%JJaX|he_Y3A_5fMU7kD`Q&0SWN(fN$wsI-aYrcO(2?R(eQJ*zh6Zm!9 zPbrB|t`ZZKgv#yq7wz|e{rFE-20y1XLdm81)!Tnk5dn%yWHX7Y*ZzxA2$1rod~1Wc z(|4-tDz z%$!_|(`?q7ot~b}Ie}UT(30~4=Ot*tnTD!Ie-d>N%BjN)xlW-DLKzFnOrz~|8+&|`(orOK}=qr&XkDwL;wB&48n!Lc*Is=$q+MPD? zSVtw!85Be)V8M;sF$9PyUDd@QBQC>M&B;?Jg;2(lf}@mmkN#=Y zL4b~&XXYj^DZK>;n@eW*RQoPhBdDZtD2Y%?Npe$M$S7H-BmyLrZor}zj5vNre~xkp zrIuq%lpf^}ASdS~vr8yLGQ))}l`U!_lsJhjgXIF{5Fn>~)tpSCklnIJNd!px+k7X2 zmz?Y3%$GZ0_5bpePii)&N6%cCG`-X zr>vcYkoEKVltd_T64^%3Md~3yPgz^lpe^)8R75Co3fU&nmr@S_ddfOvwJf7AryN3w z73w%smnn+e{QqFiHEqJNas380?ysTHZIM^>Q! zEkzI@BIgO;2}G!lOxLXsYI^KMgB{`qomR?Cf!Dpy|00lYkP|~B|@Y!v~J*GVT zJ?RrbKj*sD&?O(YxUyZpHK{; z#A4QIF+ZaiLJ7rSIf+OaBj%SBLx7mK=i6|k&Sv4<^=oP%luv_6hySJqLiseDtqaEQ zsDS_tIiK2_HZRp{y8YPik3gPKBJ!s3dmzaZK)xiM5Vtks*4gZ-9_)dXKqycA`<;(N zNS*-lZ!AYG+VHdf3bH4Zh`k^8N0L1O>~kJDr>%9cU9+!G$2x}e37}t+&Ud4Y)#*5A z&gpCW%kdOJfQXXxB6Ls4^idy74TSP(FujPAsew>F4W<|Id(=RHhMdngPg|aumj>;? zi05HcL4b;qvr%3~>oP+BRb zo&SAGAwWt=`i#ox?2nutPYs0fX)v~fCsG3e8giZmp0J>YO$ZlJ2?0tMXP3*R{Jz|y`2&KzTy}s!uHYkDs5hbx`S?rr+PXPP8O+t;f>vXG5bIzUVI^lIj z;-PvLv)rgl9R%ped3!^1Njf5{j|NmkfTFw??kr7_Q};UPajA*S-PA*Xo}4!mFENE? zoPKQ{m(+9y{wYL%NL2)=%DZ`AS}NgS3%yX`k0^!!F*$GKT4EB_8_wJ;Cg4<_`(p|s zKv3Qzm8GRl-5k~TOll#NRts*qRO#|;Y9T;N&UZR3F{AOu&MNNLVTS9p&4rhLPGJNH zD`%w*VYt6jUn}-p>LEbS-{ri3V`&9w9tnj@a64Vxe_L&Jc)OU&gwLZk0<`74;ckhU zu+eVx8%`5v!dLr)+75Fx-V3OV0A=NDly-DGdXVr!iXlMEXG)m`Th0!*+S^&@(dyN< zJLhmQu*!rlp*jN8<$OHE5;LK^wYZ8txsvo(lth4}a`qyyx81G!E$=HShyX$599y&o z&3?mD^lB<1K+(s`S*C=dP(uARWf4j%3ujQWMh{l!ucs_RX=N#kVsJqCCdwi})~8FE z36-q4ap7AjjsS6aFHu=q$4QB^hKKK;T)kVV4@q^SyfWC6J$to8HN01+(ECOVGvCPSqJdpf2B@!U< z^JSKpG@kq<1ri{z)Qy=nto$@J5uoWyWlpqFqsz}xBmpAJY2r|IN@S4vMJgjeS*iOX zp&`tdsfz$z<+P0I6blVGzd~UI2rH)Ih{oY&62nHXGVf z^{>=LfUa^{w^g2$S5{y?!ZG&6gRCVog&1gI*fZ8%hg{Fs6W&t4pyG5lyLJCZTA$GwzA zC~fYGt2TZ?RRpLiXMLYsU;K*N2+)@E5y?w5&IP70@1q<74b&!sDWaZiZ&wvC1B;?)nq?Mo=n|U0Z;a1HCm}(Q>t3Ja4R7HTQyw?Iv zs%kKU#S4~}gQL5Tz&c`D%c2kt{RaKSKnrrO@If6n6 z5R&&4@uWgJJd~`_>tS(%mBo&xB0~8TX*KO;(^hmG6%n8)@3mPIrctle>GbET!8~^& z^$^OJLcPu`2R_}oMj+2Ugo+4Il=JOLX{&<~4bG`lLx7sRcW9){Z}Z`Xra}z_Xn1ou zdNY9rW+nL(z(42nU(@EOU?D%90tgV0_b%j=nFuH4$2BNtQVF3vN)j59v#5jsB_-*7 z#Wo!oN^;(p*mBy9g#or8G&=3j9wz%y%*gS4iXcEl&Leo6X-W~1 zQRL$&hX6UB%D3rQk{s2~pKYKQ8CvCkA*B%@EoVE@a-=N``q*vPY0p)i-3>iVUQcZV zXv=vdvm9-GthrW$%#Bn;fTEnIikGFR+h|qyy4{XWsY|Gf09`pRh+2-WLA!C|z~u!a zJ-0Tnmd0O3eFW&sdAzn1eNGRi0&Ea+^`zBi>LEZ+&Stfx>FIT94Y7Bj+N(Kwd&U;3 zB9t_h`c2pA^{eI-jjhx}D7PMSl*TpGLnyZ%bDqZa)I%s|DVphaoO+Ept~c*2xVkRC zfvN~lRl-)c)@cq}ZJI`FJ5;M%r6K|p<-GK4DYYG%BP=?o&UQPkYR^Rj)i#$Z%}^Nu z%5t7aSc8dMuPswcCvpLnvon;~KbTS83@}3!%JP2D*>Ei&_ZKlC!yVNtvwE)JpbJ z2?0tL8S}xQIodH5}xiY%iyn>nt(3JD(!b{15-A@0px`DleQV5We^Y-MWND&jq{rRrj zn@8p6U$6FB$|96hmbz9XJlAk1Wf96PD{P#9BV`f(PslPh`nOOP;s1mzW2%2UWf34N z=PhVUsxoBRO0d|!li~;vm-9y5Wr&M0+}}-M1PIIdG=pUcOSIp=mjVe8SVG&XT9*jDd%ms%c#?>aqt%?hyXz)TuY;hQrJlTC8{EnI_Cv!<^M=Ygpy0LTBfg25&@D* zI5VU2p0S*NopK1JE=pko`ZuYH0985f%3nr}7qX*&i=qe+Rl*gKD(Cs;^na%w0`!!3 z45e+*R`c|I3L`++7s|Kx-6WJcjMi=UI$auUedGEMsE`1KC7d@1DGb=ye?)17{}YK9 zXKMc`6%wGZgwt3m@oek#z2MLC}?wv6gN$w>X5R7Zfi67Dxq>BTJ>(fua>MQwyq z=f!?!p{iHD{)UPOP*h&~QlLuwA4(#WTGCE?5zhl|h9pACC0PTL2T>9Ml1jMv&Dyec z5S0+1q=dcq_?qreiXuQ%2`7W?D(-MfAwWtA2O`*(72Ha96!j3Gr-V!T19kPW)Ixxk z5^i@)+zxmGbrH&$MuEoXBx)g)Rg2Z?oI))GXnAFU#=0YR@H~{1384I%d?~j(-B$Q) zIpG#_K)@qNn*iE5A7+w@cH~HaGbn%n0dFlqysr{ByWrZcZcD8xd^8mh%A#Pd+Zim_ z3RY180SaKgg2EV0p^@mOQ(QC`UKF=c}$u%|EN1SrXQWH+%AQ=&bJAe1gS!UelUB?KtBs~iPeWh}dVFHi*mDstW*K4GQ`7V{o; z5TGOHYPRP(-5Sr04)v6bdrW6(59t#?Kj%TJp_zt$q|5Yl3L!v9&THT&6Qat-pxt$L zy3J~%U3Yh@Cgd5^M1ZE8Pqvv%Q=FJTp%?&Fz1KO=(cbBH z`_%=v+Zu3}Vn?4#^&+YvKuykr>hx-w?ry%UYSWie0s#_oUi*<=f@&QS)8*w9MS!TB zM;Q}~3MS91sDw~}9LB8Q>o;mnGu%%2Ph#q=*HHoi67p`ZeWK|kMCz|MPz(WLa$d_T z3c)1lVJ=gu4Pa5w-KjTI5uxmg%w4Q+qas3?6}6pq%P6{wiU?4Y^AyeGxo)P>u5|`& z-Qc{NS_oy-QtNcPwT?Th8qfDo3jtc*nR9P);;OCI(f7i=pE3xLk#}=BxeU89`w*27 z%BsW^`HxZw0ZK~OYR;pd(3$HxdL7T-QVgMt$ap$1b0t5(1Ru zJXJn7hlw>p+4omP!gfUl0sd}f1@MxzDG?2Xv+Dxmn9ddKqu!vD2PyEL4m%` z|DzxR1eMNeqY6{7%kvW|B9yosg?m0fqb5SRQ_1Q!{E~_YP*m2YHq?9gH6;-sDd!0^ z++K&Pb@qfTxym)h5dAw+CxCj+6KJWaM-0&W{V_xkAR_0zpy@?)7C33G@9T5omT={wb0)9Llx&<|{#>pP9M+g;t* zxo4IA-YWBGm7Slb?H|e%x%%l3+HbhxqTQIJY%qGA<|2aLn~70!&ILKl`gD8!m90*F z&~&FpFja3adLOHy!*|ba@H*%c=>sWk$(oW3X#Q?*t1gaWh1iBWwV_r>i(Dz1M^)`ViRb{p-^La*Azx=O4OozpqwezGQjbv7&6 zGR@wGb$wtm_5OQ6nNV=b3$BCNQ<0+&AY}q5zqoki(8bN>ecZAtxE@Td1aN&-@wm=* z2Hl3+t>UiH4lhm;4_eiFqop(Oab!#YH4)1Zba1+62%pVCAM`d$54{9Ge^~FlEC4g-K>kF_& zpF6<#bTTG@@g2phFTl8sC7e5PETk39XOc9bn9=>|B~WmXq-gdM7Lf=_2WpE0I~(_6oD*yaSOT;xsYrLU|YaGGT5TJ zXgaz}zn*jnpj*H;Z>Q57xK+`PU>TXHDK?TZ0gMY|+zeX_FCk3=Xx?6&A|@K*fR*qv z5+#6Wf%*`mt%I9MngG%TsuL2df?LRzP(Zd(Yv5M0B@~OTv8M&CfY*>M0c>AXoN{K^ zTGqeoNtIAgs+QI722v$}>hlT|tG2bTN{$3@ERba~*2*_Su7qO6XTZAWk|O~e3)HZN zt$OpMNdV0k7AI@QSo3y}DFIAxD-P3;6|YT}1h6bnhgI8?!q&SRNtaMex?!tbpL7YJ zTcAox$8Nw{w~Jf}#mcWCE8SkQB!Fds%72V??j|xNfN6n7+3{Ann@N@cvVU2e%Bs=h z1~oD8yM+u11h-bS7T@GOvVLM^JIRs& zmIWG;hK=ZNBuxTn7N|=aV?2KgnG(QsYZj}-)vVRD`d@X`B5Sb!D4Qy#>(m=qYTiq` zFkHXC=pFtIEDb*t%j1WKTw+`i30GxLOa_MK;ct`6!*9(#h>;7#wY=~WaqX@m<8W>m zARrbpYFc#&B6&uw4>m7W&3=Pjjs83ia8T)6b!KYSMr#3UuSLooMY05t&E^zzKP+xC zSRPr^!s3=l?XMz!EQu3}7|TxGX;piDcR`Uofn*6Fn~^EVr0B9^S&-HC3Xv&JB3%OL zX0tO)C!VZemX#^AS6F`5tD(+PGw>>=Pa$5Lq-HyVgb5&gZ6;j_&39Ut9Sl~I+U=d0 zG^&l3Gv}u4Oo(?Ey%opYooA@<%m|c-A85syV5TBJDh+DGtepF*8BP7@= z+rqyI;T{31pIZQ0_MS44GT$OW0tjB2MXnU;r|mchCI0SAqM_;Ral2{zwesaf?{TY; z7q1y0FCKWg_@0^Z%8dEQV2~TXCUfJnGWLH|c2uzv%#Q)}*F(KWfbwi6s#Ta{`YR)t z*?Cf=&<*5B0LN^sZ5eP>eOC0pcdo^T2|=_#S3+^Q znmXYoawULk(Hh+*&fee(Y>`=SCQ$;2X0wzvyUg0`^;>3`D%jpawgj-vX3t-CY+Hk7 zzfqlcoqCm9cyI(E?@bW2pGDdP(9UKDPjNj+0IJ!nZCie65B6AJ zONIn6EQ%RJF*H5ZJIRqyJdUO=dLua!ipSBE@wbp80UV3cI0ky8Zzn+l2xhZ3WckG< z+7o>zSrWi9o5{-MvmDU_y_<9ipqtHV%jMIJ>v_JHJPF`gln#E19_I&0n*iER&cg05 zV|QBqr+VdKQ~RG~V+t3e!K%}ob7#6v%GoGcVD(3f-b*`}3U~(=_6(1>T=-W}{&7m+ z+I_@R2FrsG4;2R?W;1UYls0ZHN$Bm+RDp;J9TPH=-o+(Q1Vl_Ws|G?8#?2fAlY0bV zdm=%k@86I*0o32RkJ5DHbj$?Q_58wor|I@~V0XMw@IERaKtV?1+90P4BVQ}%c6ykI z7W6+z`UKF==0wGPmv$clYWzTwO%_8%vELV5B&?pT@QA;e0- zC#ir?p7?hgbMuP*r^%jBp7;lQEP?H51)rk=0u+>_?rF4f4zfysFOoh1^h;9r;JQ>r z{>vm!0QonUqvgWkuISDy{$C+~0{CZhlKVcdI|GN)iU#1HD1rbHcae`qw`V^jcLKP-r5xOQ&CZN`fPP8( z6TO{S@gvCpg5(J$$~-&k?2Re`zoGyF1iY;rxgRs?xLY36zDmMLMkA8*z8IyQ;lCt(J?e<27|9hbkS1Q5XTjURP{kwV<8!2r?&tc}BA^ z`^rvQv+ScslQsdgvpGw0pAD1!e%x^+O#ta^P8ryDqttO>=B?~vWILgoZ8e`m34L3N4%u7ZNyQ?D*mmHA4_AV5aJt3=yudpcJ(uJO zAYbr_brtntGwk_PK!AdR*N(RN^>L(40PTYJy)3iqg=9?t>uk;!*k?UPV{Tnf&IEAI z<^+{}#yMza-ALku;^%DJuyhG&6F~cY#co2?N|8~Wugj>005t{g#rQ_z%_L1IL6#2~ zhqsV80mKWwL@jI--b(5OP%n57ENTqChU5t#U+_lMHUeKy+62%pcyB#m{Jnv^2_@id z8-1(fO(=dIj~aVtNS*-lA1rpel+MWOQV;=xoJ>}J2P~!2vYTU;Q_Fdmq?Ohg9R`CH zr*7)QV8qLd-k~QW9yb4}I1ENQAwn`b494)0!C=MrYvhXWj1Ge_{*PRJEZ+((n3htd z`YllJ5uiMyT~y0uX0PEEDYTUw3E-Gf8?$_lss}jJXgl3KRbkP`EyaBts(^*tg7!6} zO#tnTHc)3qJC5)5#7QWcZy;>~XlJykY1z>{B3D#NmjJpMZE9LJ z-MDC-Ax}bqqIE^DYr7&pDcQn zXJ8}K`_P;ZS8TTY;x?wM_X$H8B$~AM%O)+G17mDaO9O1#s?^~H+%CrOe;NY+{e@r`#30f!NDp&5%-^_00IPLv$|u z{);3|C`Ha$aJwxm>9%A3%M?I>fZ~_ht}Cxz6q)8Lq)q_!Y}Rz|%S_*Od-Ki$mLm%8 z|3vPDQe^mUr-}VNg7`N`oB-n4tQ6aqk=|QqHgqNbuVhXrMRw`kIB;Fwl_g^R+vH9t zN38dq8usr9=HDfA0+?rG=H93IWtX$y?B?A+g8V%sPXPJi_r>~+rp_-vBymD1^7^2S z{*1{nKPGoVDRK;sr|(!Dv3p6L0P@)!@~|(mJ8$1sS^O6yOaS3*PBPvngzet?uSl5y z%Ec{}I7KhqOTUlA2_T-$^wYkG>uB%%x8zMIbf&g?<@b{?q0l)brZ>Jn59KF-cyUW( zpcj4sDHA|BnUAGR!UPb0#Xd3ajhasiBuKK^ZI#{IK7x!1 zh0YeiUiQ)COel6NTYaVD$d~}e*{n7Sr1h9Hf&%Z3$``?2^@$`+0O{iPk*wbILr9oV z=)4^4MW0H}ghJ>N66|4_Z(`00~uu1soox~;TJ6U4iV-v8W& zDV-Hh$CS)T_!i&JkI9w*w%Od>k{w(6)M&$= zEtuX*rUWp}W}#8GOgk-6GnttE1^E)dH=Ax>=6nb3#;mAJMFjtfgb4-A3cdNk>@3Z_ zg6Vx^N&wSr&Y@m@)JBWeZ^@DXmf19)%V$X+{33Nf84|!Sn^jubFbo%^{n^YDz%!dG zdotr0EJ6p6D4{?}9xOTslOX{NGg(0$_NRGV+K=Ti2Y%=?Sp z<2Rz~^o5=1IvuiA`@-H+HkZ7cfJjURh7Q!ZvIBK%CIgN@5Tp7~{)@qGlyO&)@g+ot zM?frObIH32VcbeF|HTA~c9%+|+&_{m0c5i=2l^bw*nIpK6UnN+mD8PTIlEQ#evOO? zMQ7Z=MOY$^zfQ&kFwVxV?MGdfalC8Z?V=wbIDeCz3E-T~^ua#h-0rk#_ED6-Mal$F z&Zbwm4=CGl{O=@80O4!~2pJL%l)3MdDWRxLOn^ncx#;KkDKO$EGxMp)9 zT83PMW$UM;N&wYtx``Q5wd3^XBuW6$YqKz08J^STFIC^fbb7iO^+@`u`(fx5z4A0j zz85?cz^?0bp?AJ(^0J0gGYO*9NyT|0~VlSCs{B<%WfN@3x+)Nq!ar;d&C4lMk3saa@VGwR* zfNzl`0VFfBeP$7zEsNs6lOmy5DISwIzfYzFFwJHPiP4~&j8R>6^;&H8xyp*mACMuT zU~$>UMspncZ87~3nG(QsYbMRRjH784rAh7TpJY=~DX0fcPBZPW+y7$G>z#uMkdNRN z)Zt-UEq6r4wtYcQ28gErxw7fc$Qt7_A3Mijy&B5H{u31~ALk9R1jI&0R%AbnOo-ZD z0+EuRBxM39XR{?lH0DJsDD4C`xy)H>HJew^c`;vHXfQ4p) z_vgr)0N&XwJlHk}Lsavsq`Ed1h$2j;@REAzMO$qt-MWKO|W~aii91Fn&z7 zgyKeRudh2m_mV83z+_FY=NBYPC@xvQHTxCG5(Q&AL_qqs+ScwP24yxvD5= zBMLkM)MsPX)uE1Q!SrjfdQHy53Zi`yB@~os8%L1} zqPs|x0HWD!sLCWp#f-KfxR(S81tVx;@Fo%@fM6yzG8KW->i?ul>gkynp>}nh1zg6F zc73pZebKvM8a3xitj8H1e68|>Rp*m4XC;F|-T8T0cV=_6rWP{J)@0tR@~`Ubpk3o> zoJ#-cT$DtB@@y8RnefI`Naj7KUa!LN*B(x$Q>ie$Q~id^34SF4Khqez(m%3~K|`=0&pQg&u))kbRpOSMD>oFZpJfup(A zspBL_UQ#V6uOVduD33i*JEv%tJDmmHvq_gw;9P-AcLRm*JaQ(0^H}?HPEicbgZ6Bv zS?78H5z~()YXVr0wTkA)8h2nQ!oN?#1P~r~io}xnPP2tl0S23!6IR#VR;RbR>pJz8 zyQ)=RDSj_{KU$4e=>Yj-c)&)!#OCR!@cZ&jv?xE9Ey`5*g_Sk<%~|UyXR6)lyEC26 zjwx(houc0=oKr@=GdyL3@}lBYu25c7;6;VB$m$ruQ;C=sKcvsz&%nx}e`erC9V)!l z%!IdmNqzroem^$+wMsPC%=UY$*Q`ZRLjCIW-Bpc+J?)v5{mvB5p=#oW_vxvAqtCst zr(b{wK6=}gQ&(NIeu$6Ta*so-^y zgd%61Ix-CDA>ua65 zD=KfD{n?FlTewt4r2d&o_Nw*fE2f6|N*9jsS3~nbf-arwQu=F`BI)Nz^m9d^c%|pbf>enVB=1zgGp^`t zOv%&IZ?YOQyH#eqhcT2CCt92FY*Sf(t_X~uT^JE-7f*~bl|FhF+LcWi9d?r1P zX7+9AeAKzT!d&iWKb>*H*-vVjVvtM7xg)CZ8Mhl~X;w~w&lFu%Lv#JvXlRaHIfa}% z^+Y;vWTOI?3iC2uOsD9~PgX3?X!Xk#vcqS4h~=u6$eO!enoFl1HX)*9RnB8Z-- z3Pa@aP(P{QLzGMZLj?c(sfn*d!eAYr@E#+?0lFqC2AvF)UHNeR$XlXwA~k{dRY_oi1? z8c@dHsow;;NYB_Q3a2bwMKqUDOcX<@9<~WpM8J5;HApfk3gAzHg!L38g-{ zt?{`>8)Xq6+vsgkw$Y-eOLir$WP8^!xCu+_#VLuzXBp9HWrtQ42k!<_09$P|)k5e&vZ?MZ4$WT(1=Dv)O=ZeZqHVPZE^S+V^|A@n z2EBf#CAtgUPR&IF+@4dKkJ})haX9Qh8!BfpO7@)*8`Wi#X?C2t=qJhSr@HV{_rCIl zANc8eZdJ5?@AA=a4aEzhq7~j$ls6Ua4X9$t$}$sfXQMZ8nvEWY_ACO5+mY9VoNwQM zzX$Bce?$LKMShV9jZkx|X>9JWbF;~e+J{F9mx}L_NqTWs2?sqk_R@0NMn`X_E6p5s z9r1gc?6!LrjUKvmabvQEQ*7FU|%{DAt@F1Il^-|tO* z=grUdGu$}=0lH?B-=b{jZ?6r0I}Cg#Mn0_VWZma~R#Bf-RFFuQ>y|B673!AL+rgCa zr{P8Aa-u5Nk;g;zq@tcw%!gp*Et}NfnP*{bR?W-Qp3a~vi%}0{{iQdnTzux$ zsXrL$ zzMTkaL{CeN2viTldlrMVI~SKNU1fAgz&zspIfIBD5?rzLuw-2$tb%@TKy;eCzhroc z-G%Fx9wz$6}$rh%}#)*6T=XR1;fUddO&7Q#OB+%NxmMvPSdrrL*%}OVj*G8gC_ygx2wb zrH5ylMei;Kpj*Yp(tR||p{#aBwNh3yayLU?N(*;=a{JxFW>?wgtYT#el&TTCQ>(d6 zmlK@m@%b;w-d0ccRzSNz8TVn(s|U8cn(Vn$f_arYG}BYU=e zz;UzaCdp@u-Ve^?Z2Q&1o&BJz+@7$9NGCBKP)?Bj=;ZW{geAR3l>J0T+4&QEtEWOl z&qr|#P6kHj2G5?ze=(zhK8=uXx-)@}%|sC!HIT@N-I#9f{-R09qhMi)fE=V?jSTy? zO=re!YB?vNlq9?`)XzlyfREWFa2NhoIqibCh#z z$7jSqCz8Ea%Hg3uNhIGm`y7?09xS>$zHLJlEIc2|N4}AxA`2KEAqlRSM6BHj(jyqr z3Bn2~7Jb9!;dUQrO4=@_q;bOpJ`B7R>?oO+z_7k#h8VpVVqGcv(Fi8 z*9d%S)njL$lft%f%_JHl1_L$ouqVc1AXGgnVlhbmV#t?+eJ1^Ktj!>UJbdn&(Rmop zlkzYgWu1o&n?UxA%fsXqcquLqONLqG;d9q4FAwYQQClb3=92R8xocA7;nkDm;YNL} zO7sWv&q;G#^30;Fh(sS`TJ%1|AW6E)5WOF>%M;t*Sew|*vb|NaqE=_Y`vtuW_85>a z&r0W=-8b-lO`l8$0iL9j8Z~XOb6*txN$F$y}C*$2u|3|m+8&U-{ z&U7KvJn(RYmcn##PO2bH%dM>xB8-C=hTnXvXGn+SahIJpL@VtZB(Pf7ZWq17==;d_ z_>xrI?S?pLjR*yJBm*264LN^;CV$o57<^lL}--LqQ_7Xp;Z~7=OlMoq93aT zix~9^>ZXkjwASk;^0DvsxRgTpcfdCBW2pXTi!+g5Y(Z&k5vw`T;45#By4-SSM*#bP zl#^)Hg%bjsn<%har-czegF`%3XS+CQ9&>%G@IzIz4Ywa=kqS|zZOSR`_8B!B*sl zG=%97E9yhY8?gc>CW51yX1mw~kG(uS%Hp6vX<4ax_yR7rUzIh3dCO;O-XdXLSv+x~ zL{ODQuhS+eoF~w2)N~vluZpsIxLG|MTJ8*3yCa5@#}jr01sg&2L^d3v^Ev6=*Lo__f4LGrGdfDfu65VgCX1H2|Z zi>>Pr-A zug}24b@ut`V!*GgL!R!Yr&f(^9wXh8$L|5Ax}T=2U&;3A^f;~}P9Av#d}R$BSCLBJ zZ>H~~D%%^<#fx9dR&5N}`|eNh1mL#j4i$EE42qJMHZhLXnhBZ7JlmLg~g%#vw}at>}oq1 zMiQGw2G%hI&APe}F%;1(BGvmK6Vi^^G;yVNnxs%VEi_iNM(^VcE}-rYLOEw$)e?c6 zGw(EZ3`XP}@!Ve*8O%2y_=*XTEX4>D%0AI*_08L zQmIvlsnPov1{WyAdee-K@pCY@veRvLc-|YzFfN(f$weP}w~T56{C7~D^PNr;C((7< zPIC%x@9K1SOqsPI*m%yhH)m}${*L(u^Rk#+@n1)j1cIojAS!YKh_9nWYh%wuLL@ij zpnGHvQfq8e`hh)mI;zHSgdtr9<$a$iFtNBts`PGPY2j|sN$3yIFk=@&PuOAf(xXLh z4G)JoA>rxpgl+n>%KCP_a*;ajgYkD%I0)$%;^tl%HxCQHu(F9OztPNNr8Ew)5raMv z`cV;g3{3c{7_+EX5#osv4`sY75pg}Am61=ha{GW2!D5mFP982Ra}m4KCho*YNBb{H zc|T?HjflllY@b9t*rG-1c>hU1Vq@eO`)fNgy!-f#)oc4b`%TT!K39ct;QfwYC7i3G zEvtfL6^U4tDI;=MBn7>(tNKW(B>d{Ma0o;mDR_tD ztN6&fFdP+H(zT*oE7}$Mw3RotJ`OOadj0O8)*oQTR0Vn@EoxI+ednQYsaP%uOq<(M2S$~8 zlM-57XQ83OJBA`JR>zOx$@(puZ~_-K`i>PkB2>NkbfQpshOs+4u)`EbD{a;8B1Ca` zi+0lCO`PfdF_z5q31h6s#Md9uvV`Vs>r*{fH z3>3@s4E^#*nle$nieMNmgUVi*f}tsVmanJL*Jz3R{nW7ug4zy-!Io9jyff%^Qpr-b zxD>2eq$=Se<();(<4Tb-)uiy4%>Ck1F~!GQL%$P>%VQ^s7+p>*&(ERfu_YsYR`ZAC zEE3-N^fJ(!*CU{4EUd#m_r@%b05Y9{EU{&@0ph|?lHR7F6xINm>l;}pQU$*`}uKkAN|&fd%ZLwb7Nx@e40tkRJ4-Xdp0wWNbf-UCRP}s zIFMDpRPH^Oe)-9g+7Bx|yypu)OkyM!j4%)QVW)z3JN*ep|C*$}Mc6ODj4|H5m(VL2 z`D()9^2CHZuR7n^#dUI6ISCVAt%E&too-K+H9X_g4W1!x^s`0pGprSlzclutaHnaV zOEImFke!lyAtPDH@K6@t0$uPXxxyIfjV_ade6&n1)mN1lq^~j?SYlZrlH?)j=nzDn5mQwnfTXf|QBodE@O>ItCMNYomhs-qjLCcx^9B+&v0g|DOVzRz z;N3;P{jxl;#Z8m1QPIr$gyL{WR6tX*GJa)wsi`rlN^|3bQ_&v_{9e$^hrAn`O9wl zD-{&&zbLnXa;oNP{cln7Dk9=S zCC}UMNO&O3xzUm)?^0PE^hGVs^v&6n;XR1nB$=}x8degqS_?l8rXO)u>sU29U7e=1 z9}6#57&RB02_8MSB2EPEh1BTsVfk?s{fMD4yOUX)VWuFSmB4^e0);ecUA`WPUBa> zoU6;wje|yQ2V%IZkB;>n7QJ6`z009bHm@uOet@xF`QU#fn=bh&8k@@yGTzh6p~CO2 zoWnUCvrY?ZG@Y*8PbJz-5%BSsL>_KpFM#e9{gGTNPj>{Pn}tX)I+pb$qwxO-KmW-I zM$18GNZm9?eAJmzR@%b96J$MMn1BqV=_|`XglNm&xD4tI-wq!&HSG>ygUv!kgq8Ti5v! zFMRWY@F8g+rpl=Q`LzG1%=O+TmNvW8FlWjl>c2aUoFB@>Cg*!s(ud@1uIg&bGe3XJ zN|F-1t@I@(Ppd}D`dnvb>*H(raU=^zKUH~GW=v6Gcux_ZhI8y`kr;qp+1`b-s#m2C zN%d=#1FK0L11b$_f&=oU{{X3=s%A?$KMmwSZ;oGvYuJZG$n!%h$9X&WS+I&#)v^_u zKTsA4)ZsS)lZduo?`kZpUQ-ndi8*qbX?9Ra!)1+}{8ZzEHLKQ4WYbuM~4f1g#g za8cHK@uMPtK)YThmC9@BAL{ShKoK9Gs|sGKkF8O!V3kyql(l$_pVQQY!wZc{@A-_j zkh)befyVjeCjgmwFN!39K2s^lqqUg(Y+*}*UV61=)!J#)+rnwlTi_L4D}>tyh;nFj9M9l@`G=DS?z#E``5HqIJ{k@hVwDz4s1AtB8W2VzrSXjlX{BAye;f zA_=7zfYCGDPiU56;>ViUsnNBp!9w$+$De_;Iz~JRO_B=73LOJ8X{)WuDNU%09)m!V zeM}~qUAd+CUeC)2qS1L7yMU(h&J-r$;X%5p7@EJ3FYRoV%2O-(g}0V5KWx~aF#4phSM zU+gwI6xkzu(WO=hh?ZJy-=8p|Otui-nj8_x8+P+G0beVl2+yrN63Q=n(a?n4{hopF zKdBt6Q+?8Uj?#<{g2_8LtX*dSk$1fBGmnZ4l$1-Xu1K2b(&d{XydTkbzkI7HkJQ`) z$?4ro&rF&k=UHuVDrTW1^nOVXt#pK!YPnNthJJ|`djE?)21>j>`Xa{1byWw~>iUZ& zOkqd2NZ4`B>W4*d;~JFnW7o3Bw4Sp88}(`m?8&8TWj&4lzAL2IeWy_L#D^?HLBU>e zlqlGGDmFcJH7pQhqh(r838nYXq`&adBz+(g=&StF`)Xwa;jfhgLb+i?Gany?R%0x@ zPAbF~_~WB7NrUo>)D?EkP1fELI0wwgau z^jzTDRcB96sfS!lC?76*UuAFk1o3pE{FF~=iEPv`7sv+{^?;pb^?>oS1Qs$l6xg*8 z1wTf##K}sO2u1xMMGiM}>A&Fdh%%P!aUe<#)KQ@SfUmz?f@EB)UhhofNFdy-j`P)b zHXMCC5YAwm-(!-5wxFp7(gikaEI`9f8EhuRV|UgWG;vheyo(KnYDh*~FW$jk1N5JqJ0sKkljK2 zI3`3SMFmNr4_v}A_VarxDq{(=T&2-N&!f*}Ta-|l!DE>ec-6%QPCqI54&okNmQJf8 zl0y8HNr5vO`r0EQA+=9_QV8!vQXmhiV}W9-rI?J3x){Y*>q7Chv$(g0HOq(+p4^X$ z3rd9|vx|2g{kBVFa&;Q#S%Bv>{j!ST?-JXhIIl$cn>f)~{!%B^_U$6s&5=MN>9=n` z%T9bz4kz%@Pk!SqvcUH3syuoZGE)9eDgS*Moj;dtOTQ(do7uj_PNwqp?T2 zEPB^*rO#o)=}F?HMft0uexa!7H4`i=qdbWjUZ}r)bwcvJZE>4QmEBw!!9yn;0BF@xpbT6RHZnpkGtn4QHctxj8|V2$Y)dL*`l`} z)AV@paI5%mYNP%Tv$k|+{{tRYe0M~GZ4gfpx(o+#;mEkKy0#;~MwEbnWL*id_O>%- zk}28|BzBiqJBVBKv2cQ2_(%!ye9C`rO>19zJ|gI(C-RJesVj{K@&!&|t7jGeSzvlw zuc~6s9>W65QxO&-$&-;}4~52jx>9Z42uJ@nF6F~ZNJZQ1 zIW`1&lsNo)*)1x76><+X{f8UQD3`Cmd;Em=`g-sb+Qlj}F`nh{uz`CaTTRQDb?++| zaYdm>iiac8<;a)QWPEe;{OT39wsr5Xida1Jca?5lfUIM{wR+${9zc%l*aqq4% zlJwYB?6h4>h68Z;AXfrRedon5S3J+$kotq6de^tW^w?^_bIfxBaI6Iknc%5ga00jmU$0M@gA7!Jt=9Ja{Q&1 zzxg4mcshP79_phLF4o3xG)-_fhbQ>%2zio94dV-zUbQGd)GsSGO1I4@aZOZe@@GZ< zoY4DP*Ts3eSv&&TC3<$Y%X2O>81a@D9%aFhz-O5;9MPH3d`t57mY zP>uEistqyRb-Gvvql4OH+_y=0tnj0g7(Xc|1T{%h*6j3p{>mgN>F~?xsMmgR>m`1h zb0wJHCJ6xpNnCP(0e!Q>QvyY#9llLFUQWlM`CSpe5rWlcNlch&@ucE+BxGLzMNtOh zHP~m7y@{kAgJn)j4oA25teI4M?{(<6Y4qh2@V4g5M)+qp-6BT39=(gS=@Tn&?Wa8K@$3WA5!@7%3a;&1piGt+XFlaziRb{vioW*8HlI@<&!|)9v`yMJ&*@ z8c0dv86+`5o2pKBToMDnre=3K(7s7Bw~)-zT1RX4I5}_VW-;8l$@NRw|SQb<^kl1w%~VuBmN$qr;~aORwiP5w2>0TNz$*>y@gs%4SQiWn=y2y@1|E z8mm;k$z~+r+lz#6;kL;#P9>+W@-5UTc`u`nvCU8_Uq$;PZG2Yy9f#cx==JB5F`buq1p-IJ5EB4T7(?aX4fPsXlZ9;pWK)>|BI zIP%;(tED_(Ek>#j-5{2E3D4wfPZUE}zwNZ&;LyTBHwuH>Kx=AG3tHhOvs?5SI>xU5 z0=Z~(?CI@P9)w4*LX2t5(EUU+7t^@eO8`=a6Bx&eV00sgP-4fiwk2VbK-BSWV%Z%! zXCka)$bDP71q)2IcGG9N(Kt5o5LG4VQ8MIwSwYf z^ds;wxahs>toqV%vHJBY^uySjS2ZJyhwQ`aUkG9H#Oyh|v3^R_4l0NhTWvQihZa9^ zZ5Dc^l<_2M%%4t%8YGyQ#aLQ?h~slanm$Ag8RFg;s)weU;h0%}4m$d_)bz2cJ{Ct` z>JSx?<2J}Op226h4_-Qp0}ah52z>HVTAO!kJ9zOWCdhEmoGhgq0*=GO#c$r-C0;@} zS5F-0QY8E6y@p8Qwmaxr2fW_<$~$$AK253{^X|}pts=d|@Sk3q16_reAUk<3R2f8# zB4w4LvVuqi;RC_IXEJsP8JSip8&2%wLd9nxkGS$*G zWUfA}SLLE3RVFpgL+zqdh^1HW3r}BM#BGowy5wz;(cEcuDaQ!FaeJ(rWxXhxPSH}E zvMr@}-(ZuUrkS-C5?MaSwX)Np0Urf<-xgg9ZRIrsK5GHhSYHFfKH=&2=&5cIS@{c7 zt~K~g=chXA&~E#@AJFThrp}sV9T$SG!lKQTsF1uLGn~6MK+qYI`b-he@6eq zjn@RRE?X_tBuUEuDPld`R&Df$yyN0T)NTYKbc!?bky*O8NlB^!rp*>`;k3=p0|NB8J@%ACePR?-p9C1?6~0j8{zwA_>T9@ zgzu&+7uBm~2L^MF|EfPJi&xP=>Fum6Lz+MgUC9FDr6)l*KC{i2BR*Rxr)b4&lRlMM z$T@l&=V&?L^N(kiZXDtnH-uy_R~!|RNP0#Kk62fkN(6PxMjFV2Plm=(R0#6*2?7%z zpjV9vOP*qkDO#0G$87Gv3?Fl2Dq+dUYu_9VxsQ1t~l3ylSrbBRjkQTi4f z<37|*72|{`O&bjDnjG!bJGkTJRD<(=%%AYiUhyz0#(Bval2Q3~5O3b(&!PEi0&4zhf1&o^ zt9S`u^roLn{l+hr8Lo;z-56Lur{8;I&tGt&>qhS~*2Rw!6=ZC!_nn(x(hJvnmVHe7 z9jNxEm2KBt-WCQHUsYKPc;o%lb(B>$M85F0(bI%FX{@iJG78o%(%0*RucAf@ zK1PyS9m;sFtaYLli1hdddYoLvjP={9TOv`hUHFZhtZN_Z4e+)s#PPiKZBV9Kkd*86 zHnz?f>!YeH{2D;|I4^vRs~#RTHh+ie1+PiJLiNEJ<9tCZigryFU2lPY1gZdaTSQ{h zJ{>6gUY{P=#eOUUe;GQ65PP6(#vY%x4dw40@+`?edd)qna{+zr~ zb*1dC4qv%s%hfp4L_f7lIWIlqQ)HS)q@p2%LLcW2=)hO&QhfzOaKGEB>t29hyJC~= zhS9106F%#cN8?k*M2i|j^VYcePW$Xt=Zgt#v|ED((aYK4cH5Zqmoap@8du}OxRGxU z^^3SGPQ57RDTKG8tSN87^OAHiP!nr4*h#=dmf*<$MYYs}?QH>lSP?A`+c5UUp?pX1 z5VK-fH0^tau@yW6u`AON(-COVQcEncZUc+rNts@vHzf$3spD|`2Sfd?FdT4gH@;Dx zV>%bhyy3avD|%h_uEc1)Wm3F5XbVy-`m0u99j~Bu5b&1w zQ^{=r#EhdDJUI^R(ixdA4bc9weCP z)hw_|I;8yAxJN_nTEPc)a1%zg+!^fA-N+w601FVeWR@1;;SK%J-jzEhzV-0 zCyZ)58=YxUWsR(5WVml-xasPok-b_3sVbus^@R-jE(SeWEo1Fh*SW#()Pe%4mq4u{ z1G<|51!|P<-26J$very@taqx+glYxp>HFyE@$iV1P3VmjnOWBcapheG@F50pG6E14 zOWb=1W@O(P5uz2?|$O^e>^FF{9Y%;6OZ((IG!bG-cTb(JtnerPN5&!EhAM@q5XbU-%AE~>1 z*{{&S$>n;1>q4y-!&#EFUG9|Ab=8%Wt#+d)mtWIdGTZ5*dx9N^`r1Dg<7ZuKf3x|D zOq8fZ=8>r0@u;F7Ej{*hJ;Jp?a{CBwEp0aX{xN*Iz@4V6 zh$*f;O?nrxr)v_vCbO>cGH9Z_YDvkx(CqX@eZcbA*X+&x;v$_--7@l}p?NOiQF~%8 zDMw`5%Q4cYY|q&VPMQ~Yi*&eJTc+y?TfKvI(lJWk7%~RUyfBj@EOqFfbz#Po+A zHeGs2;^!oB4(exNFO(Ojr>|`PU^14w>?%;yve7CqSj&39BEO02&Z{QlWhzZWhc%q4 zG<6Lpy(pY_zfAzeI0rKrz< zWk)iJgbWCs&qqNKzOnmAN#CrLN1fN4_SB4v;~9Dbr-}V5bjy!j0MxKny<%mxjoH)j^UDR`n~D`5`BB5zQ_qH$Gh<9SBUpQ#-PmApS{N%-ba_OQ9kR_h;6xttH+;R= z>WGf>b?qv1_6m00s#E8=?Q`+fDx8z?ijieDhpAVFcxomuU9-5ohZSw`U_vhIY%cQX zVT^Xc#IvSLI&0tI~f?8U(uL#ug9Oq*#ukwvX<@*2z+;Zo~8mi38P%^o^zKT<9&D{OM8 zSTfCv-onL0WH;~e3~NLQva0D3Aq3>uMaSDf{}T%eRvEQA(uzF7cT)%?Z`HS8yoccWED)9mx^xqZyjbiwaWMAaB zXcJoCf>%%VlgorRE&rltA|$U#-YPg5#9(-+)9$pJ&WzjaE#9Pbc(0>|&_;dV)AfBroL=d;?U*2Bn!Sjv7P14~7#^Gk^ zaJz9(KE9X^-`j>DUV^_6#9wI#5yUI>FYh4f!K;kJq0-^i#zA@T*L3*mb@1_Z_zOP1 zK|2T^-=u$e=SdIVVjR@_Z>PhVSHOdJ;4gUaF6|&ZxLg17-hG95{2t@*9_jEtvRr5yU6-FYhR;Xqq{tr`hZjnRpBRUiNQZlkgYxkgba>cy1o2D!g&=;d z9YhfK>0jQhlH+fT!)?;xcgEp%>2SYsP(JSew+P}Lmm`P=;x7bopmq>J9IStNcSw$h z8i&_PhZV-*PU&!jaZo-UO^5!~2;vz0g&>aC4kCyX^)K%T$?+uPpx!@)4i94?Iu(Dx zgNk+#9z0zC^6r-mPBRYb{YTQ_?N5aVXW%b*@M!HIJebnIysl)h+Bm59*U{k?GB_K5 z!GrU(gYe*d{mXlx^kCXJsP`|R!xdz3A^w5~>$QXMV1xeUwWS9a83*e@Zfs=%X_(u#HSbs_5Rc7@Y4U! z)m?{wSu|?^Cj>zx1*97UL{hpD0g)~#>0CfkKm??_L_k2KyQHPNySrN&k*+hl_ssoX z*E#>3na{J_v%Amt7x13&JE$*}1T-=T0ZpuPMX-ZrgyMh}gpvS9(8M+#a`-Q)AEc5I z?G3_+j@G%6*yE1`UEkG1WdDulC#fW$yFm!(X`OqFfL?_E0DTD00sRP?IMBmM|7jj1 zm5dl_5Jn8Q&c(waM-p`XXb;)zOTceZNx(RR5HQ|4*AD>`3A+AI4{gdzz+|Z;V46V) zm|>k;fFsNzEC$RWECtLXXyQT-@%&H5MN-L#B?e){GV5Gt>~RG_*Z=LIlm98TS}F-x zXAlB5Sm$ygU=u;tZ}o7)|CHJ$l?3cG2m!mTbDMC4y@aiR{e&HWg9J@H;$gIZ5l5wx z5ho17h*Q?NLD=IN!cf3Df(Bd+;D2mgl1dV<8id5_*10AKxJhUZxJ__?I|NOCg}Qj9`e)NSq&Em7KC{l9!X7gbbbS^N2mNmtUq~eZ*$qNKPU~DpojZUX6eS!66ek=5d_~a2QXc;E_gGpg8Bx|Cj3{TFONBjFAn5wa z9#Z=cOBJakpt?Z__|7_a4m+qt(DijawD2E=@1>G}1_mLZk#%k$0-6wXeRB^N{I5VQ zq>_ME1|gu0b#4NV(3YU+DhcRp5CXbd=l(=MH-fJ3;i0d;gPu}JKyQN( z(APS52}kHp(Dj2n)bM}X8Z4Cr3^ND;Bdl}ju!B(qUH_YhX;ma(j8qcvyFmz;V4b^< z9sEJi^^-lsZYcp%q>_N?1|eXkb#4|O&n3(QEF>%fEFoy(a)M^8B51}Mf@ZAuP^_8k zYJ*g=tIY;sS6i)f+wgcNVHaR8VISZi;Sk^`;TYf~;S}I3;T+&1;S%5~;Tqs3;TGTy zK@W1Dpj&@L(5*iq=+>VRbn7n(y7e~%-THfiZavaYyHMSF6oPI&8bP-n!^0x~$@o|* zc?Yo#!aIm-or{OZ2?z-Ri3v#n$q6X{sR?NS=?NJCnFyHyUl6haau9L?auf0Z@)HUG z3KR5X#Rz(quLydUQUpEAHv~OPIf9<0B0Ptbk*;UV3RayyfxlG~YL5N>Chb#6Ky&mznQ%p=SPEFvrh zEF~-htR$=gtRbugY#?j|Y$0p~>>%s}>>=z093UJ793dP9oFJS8oFSYATp(NoTp{Rn zT_@-T-6H4(-67}&-6!Y;JtF7@Jt61?JtOD^y(H)by&>oYy(j1eMcQR=S}!OHK`$s8 zK`$rL|NvCY9`}r9s$LE9+cqJZ?*92k1!X1n5HO z3iz4O9qrG;}*b zLw6B0bT2_e4|wR>L-u`8Dmmv7gRt*o*4g8e9`5;bp2GUG24Veq>)ZuAzD&3RxK6kM zxJ~#6aF3uP9uhS4UxJ1{C1~gif`-2K@UFe=`;Am`&i4jk-w}7)<497;<0yovfarve z05J)%0C5TN00{^Q0f`Ao0Lcj{0I3OS0O<)C0GSAx0bdZZ0&);?0&)}d?D+_K+JXc< zZ4rW=wm3mgTauusEltqVmL=$E%M+n`Z3sUA+7mRf6G1b&5HzD3K{I-I_^heys;5-4tKJ4-SADH> z{qT4oVGv*_VHjW}K@&$4G-E75GsY7%;|~v`yU4C4NhQ0QVi0yU%{n(7k7p5P1LhIt z0~Qe$1C|n&0ag-L0oD-K0yYpf0=5vg0(KB~0`?I00uB%k0*(-l0!|S0?57EO+H(Xw z?L~r~_6k8yd!3-Cy+zQ|-XZ8|?-TU2j|h6&Cj>q1GlHJ>B|%U7hM=c??_ot7dD9X0 zgf|^o{#$_XrlVNrqT+FM!bgCZgjj&Mgm{1igoJ>^gd~9EgcN|(1l?6Sg6`upg6<*0(0$|~=sxm$sN#Rx7m!N64hkED+bL?DJuczlP-9vD71ozB2TpjCc8ie(=t#ftoxE`TCpb?=lpc$b#z!7vr z8-j+mBWP$xf`)b`Xy{KKmh_c&<`+>paDY&`bUNn^pA}4 zu*&~r|5YlPImRH&9A}+9p5P&EPgy?^>;E(e>!(=frsDAo!c4#%!d$=t!a~4bge8FG zgcX3l39A9?2dZ7^e{npdW@huJxS1=o+0Q? z&wDuLf8bt_N?yQagK(i&t#jA#_$J{N;11y~-~r(w;9tTMz%#;gz$?OQz&k=T++T#f z|8JX-3A(YU1l?G4f^O_%f^IA}K{pnUpc_j-(2XVXkiCgqS7NE;x{?`$>q=prONqy6 z2x$Qs2%iBm6FvuICCtOWerG4>%v=PWl82yE@)LAQA%adR>S2rjt3xrVXAss`u+CM)<0^!zfEol1s725}QrE+XpJc@M_#+Jr!iYxJxyE?h zjL;n52(17=5ZVGd5OlthhM+0Q!HACCtS1_Oo> zh66?seg%vn=!oA58ak1np??xIbgGBHevxfXlS;NZ(;#efwsmd}9?vH%04yf_1z1K{ z4p>F_8?ctJ4zQ8139yy04X~523$T~44{(rh2ym2e3~-Wg3UHQi4selh32>Eg4RDii z3vh>U7w~}a5b!VI3E&w)ulyxJFZm5YFZn$|FFDdadu@8jQ3!g;(Fl6UF$j9eu?Tv} zaS3|K@d%>vk~-?b9&h2f4R#g zm3)lz7=({;KI>e5JT62i3@An@4k$_Z8c>Gt4WJxBXI3QWlqv+BQk|evY7%rx9S^sD zkb~5fN)A%rARMHjb*>Q}HzhO!v?Mq{8^RBO_5>Z#iJ+lf2pZarprJiHob}(`dP*hR z>}?RX+1EPP503{D1_6c=h5<$rMge{!=!kIy4V^&H&`AUho#J7K{~P&Ksbrfo48k^N zS?6Zs@jSwOz#_t8z*2%Ht{`Z}-vrHA>!E*J*~B`jWD^?=!X`Fb=eFSScES$8Zo(eG ze!>C3VSn4dGI(tp#Y#Tp$MQj zp#d>f{v|9(6KcLI<^);$JQn2*!mvY{Vqq1S2-NDkwG|W6YE?8 zJZ?rv1ZY7>3UGuJfYyZ6fFB6y0PP5$0Xh&e13D4D0CXl~2XrOm0(2wf0dyzi2lONq z0`wvj1@s}50Q4h#4H!Tu0~kd37BGZR0WgeE88CuS4KRxE9bhy;-_lqQFaDC()~`x< zZQ~8XYny1D8;Hk~2txpq3Bv(X38Mhh3BLhm62<{$6D9!W5+(uW6Q%$b5~c$d6J`OH z5at4w5f%Ve5EcVg5tag06IKA$67;$@cv!hm?yn+NY&Hn@x79jV1&_BAssnZsY65l> z>Hzi<>H+o>8UhXyng9+Hngfm!9N;*i4d5i99pE&fBj7BdGvGWy&wj~6!clS=Gw~Pt zs|MjRu3P8k;PFkue86qOBETKO62Lvea=-(^D!?Pc8oc; zy8&+q`vC6<2LTZd*kv36L?Yk`PB0?!Z62dotWQ1~n6oiU^RD>#kG=%DabcC9K41_v>jD&iC%!G!3 zEQBV2tOUK#93G-BmmAJ0mHhn8Z4hoauXS!6KGFFJ8vz9gTL6U#+W|!hy8y)rdjVe& z4gkI;90rso90PnqI0^Wca0XDGa2`;Ra0yVEa1~IMa05`Ca2xO);Vz&S;Q^oy;W6NQ z!heAJgy(>UgjayZgtvgEga}o`TWU^-3}{J+3TQ=$4roL87|@mw8_=E*573d20PrIr z5ughpDc~o9exAB}SUpufU_GRg4_GgQ@B!;%otuK6zx@c)0RsrL0D}l~0YeB20K*82 z0V4=Y0iy^j0HX%+G0LBwG111u-0VWZ40wxpo0HzZ51Ev!W0cH}80%jBR zLg#tdGg5ANzEpCsJ|s^{cIOiSXfDOGpY>Pe=jSNJtIX zOwbYAJfxTTP`v@8FMk@JSy*CIWA|CvIk3aBmc!1xMRI)yrL0JEh zb@n)>hpfY7eJrexYY^6dVx8-ZpIr$EKLI`^bO$6RXks!CwSJQk$)%Dlr7{R3(pcxt zARry#JRk$%5+EZ%6F>KGY`%=hB9)BDW)Mc?u+HVjo6JQh1jtP&3dl>)!~!1j|0yF1 zN+lzT7=#hUtaEMfCQA_70ZI}&0!k4y@f!~@{r8ZvQpt$&24O@+>)ZrfLuJAwKvlvN zKy`v9*7Wdjtc<87m5ius5JuFq&b>xJ1HwB%BSJ)+q6tA0n|mlWMMkucN=CFY2qW59 z=LR95Enz62Jz)f(BS8~8d${92v|Xf<5#0>Ji0;<8Uf6U`LSH~H!T>-Yf+qI&@W!8F zfK)PKut69x)H*jBdmK&}3m8cl5BQa!iDNvBTp%OHN+l!48-x)Pt#e=DBRPqn>!)}a z?qB9qsU%>AK?s;-oqLW$&LQaf`5vB+mVgCPNx))*5U|8LcLD*+2)cfyhsXX1tE7^E zH3lJIopr8sIKqz^-3F5WiOn7s^_Pe(Qc1*igAlRPI+p}{*iF#&`#e{6z z2mwc|bKl|`j}dhJNe{D!OTa0qB;c$;2sm$@8-g8NBzp{A-;%iGcqIy8gL`BV#1sg;Wyo+8_kHwa(qg5#AFX z0U{o+1Wkgi^_f z#0FtRQtMm`1SBWu`cxjG`5%_4rILVj1|cAWb#4R#G7^3TWG0LOWFcr`HV^CltI95w zjL2mWM&!26oyDulOVITNJbdbZR27s;0*V-ffMV9UZ1}jAAmjv;B;*E^B52|_9-jIi zRb{1;5#F&^F4$vbLN`EFf(F#^P|E)kz;{wfVr_$vSl2q23D;JSpz9lYs54Ij z8c8JqO$|aobL(7soT()tBcK)Gb3hw{CbsjCz<&+2mr6!-G6*9&Tj#D}k6j5j0o@4y z0J;-2@fQz;{J%o>l1fJOH3%d6Tj#oAj{^xk0D}p=07L%=Qc2?KN24Tb) z>s(K~s&RzgfboQWfQbZ6{L@2H|LtnBR5Ej#K^QT^I#(Y7vj~jH}1;7!)Wxz4QHNXkNO~5I_KY%lYdw_FWPXSj5F96pFuK_m*?*O+55vzyG_=oTT;4a}qz%u0U#xzF(5Ue86Yj8B_KVa zHQ+NsTR44ixTwhl<=_WuB`2kkNejK;dPa^&JDujZwNyH-x4&Sf``)=Byj^~RyGKU zRjqTI@whr+8{j*_PCzZf9zY$!e!%yHLxB2(qkx8l6M)8q(}1RgbAaZAi-4AdD}Yvn z>wq?dTY$ENJAn3t`+$ywM}Qv*PXJvA&j3FWUIKn5yaDteya)V3(3jH3L+3~GmikI1 zKO+Vhgts)vI(t0S!`&;gJ~H0>2!pVGlyxpD9*-tO2aF+n3>Zg<4H!>|2bf4m0GLEb z1ei=n3Ybbr0hmrm4VX#LgUs>p-90(kNUWG|5KgwxIyV}R7Zb(;mJr4RmJ$8{tRPGV ztRhSUtR~C^tR>6=tS8I|Y$PlKY$hxLY$YrQY$vP&>?EuK>?W)S>?Ldh>?dpm93<%d z9q}+~gIwqr`0yP!2p4+NI+q=fPZM$h&Jywf&J*$jE)og>E)$9Zt`bTBt`l@uw>-Q# zC)-?x6?Y86Ht$*IR^ssk!fL=Hf(AVC5c{ko&cljl1|jiE z&=t^x@H3zpp(mgPp*O%0^gXum@X304v8nOZ+0G!m*bdgY^myEfkP*>%s}>>=z093UJ793dP9oFM2?PZRWT=LmYZiv&H~ z6@nh_IzbP2i=cR@Drdrp$DKBp*Nr(p+8^{VK87AK~FZ4pl2CP(6fvs=vl@S z^elf6^emGJdX{MfJ~3O^+16@Em}D~w6dD~v-Dp(LO*p$y<#LODQ1LM1>|LN&m5gqnalgt~zGga&}dgeHLIgcg8S z1U>r?1U+qgf}XY$K~LL-pr`Fd(9`xH=xKWq^t62mdfEX5J?&tEo^}{PPdk#JryWhu z(~k8p`k}n(aZ<^fo?sB(^dHu_Nq9VkFcmO^FcUC`Fc+|Zun_PUL1!)_=#-TNowAys zQ`Ql5%0_}t+2Y}=opQ3RQpw477=)AUvd$jw^)SQ#RbU_1A2bN-4_oJs;PG+73BYN> z8NhkM1;Ay(6~J|Z&b&p?DR&4uf`%p{XlPOo5s%2elSw7}NNEuEo!UB= z29MJdG5|6WG$0E>|4251{*jy>R{Kv)E~#W@9)mD5pLH%j9v31M1{5O{2b3gy4JbqS z22hSr9#Dx;8BmQ-9Z-`{3s9HvJ)i-hA)pDNDWC_=5;~{GkLr{s@8||5t(@e+)s7|2sjCKarrv|Ic2<62NkTj#x#|&@}`NT~E-^O#}_y>Y>^m+4nZ7 zWZydt!oGJ~=l0<7e!>C3VZsr>al#3}X~G%6dBO$2Wx^G}b;1q6ZNfi*dxZOdM})_K z{|HY3F9+JDe58eE~-rU3bhX!H&W9!_%c>I*`4Dgch3hpEQBur*$FuSUlMWy@)2}qL4r;xLeMG22|A@DL8p`^=#;V^YHXI1eJhom ztb#!}StaXSWjwA%s1B$}s0FA?_#V)J&=Ams&=k;u&=Sy^&<4ql*=*G4XbYt5Iy0KjZ-Pm4& zZtMU-H+I-V7XJ^~N2HSbJ8lr}@1%9^6ds=?oC91WTmoDrTm#%B+ydMo+yy)!JOunp z&|N(x=ssQ$bRVw?x{r4R-ABYzc2wQR2L#>6hXmcnM;>OLklTqNmE2A&gK#@>taEYk zI6ff(AQ2%kAQ>S!AQd4sARQq+AR{3YAPeCOKz2e7z?X#FfP4f!NI`;by$C_KUYwv? zFG$+z|Vy4fL{o`0DTGl00RknkRb%!`f!47eH1~r{u@EJ zK8~PUpFq&9Pa^2nrx0}O(+RruSp?nsTo2h|MU?-s7OCVNEHnu3V6k)a#+Tp&yVTp~;dTp?)Ubq|}O z%7`0M$%xwqVZaX1TrGBR5Bu}K^PIuIyWBy9}yM-J|-*y#3E>7To2dc%7}PU$%q67 zVZ^7_x$X!^O!x(ml+Xu|oS=!RJVf^IBDGX9BAr1Pk-<859XFkka0`%`a0ifupo!T$ zlzuPY{<2FYBXSvp5xK2%qY;poFcy%XFdk5lpov91%!w_hC@PhVC}9vrl(fz@z%`U2 zGzOF*Gy{|+XkvK}Ph!Z33R204$_8OXRqI@K1XL&F0(?iv1E@vN#JV0by_1XjUMd;U zz#xohWS#4WYiL3k2xvwa0%$?d#8w{qMwC;umP$snH3%cxTjv%dpd&%oclJ={6A9=d zl>~G%2m#%#bE9y`o&;Ur+e75Y63|B~3FvPS0tQ;=He&~a3A%omhXXMsV7OEgFv=hV zjJD2|!4Ad{bp7uhZun~+FO>xRVGsiTw9bvd4yF)v{d5m;Kaw5HkV*n(8-#$l*106u z!F+H{-KA${u}rssU+ZuK?rzi zotuq-=LB8<%EQbz@)gi($V$-lIXw9PT@RO2DhbGK5CZaA=O*D2^AmJ^ArDP`Kw+sQ zpqN1jC}EwOihz;?U0>QmQU6gcBb5YvYY+m;Tj$OrpdvxnSMds)69)F$Zq?>)5f0rjMkfQAMkps{tX8v>dVdH|XedI4GzG_kdZpFfmCwvkFkv@-}J zI#}mkAfOZBHJ~%$9iS^g6Myz_*Z+#$T`C#zi$NIC+d5YRABDbzT7dq9x`2TMO&sDO zum2%DR4N%U!XS(oWu41_fYF3ZfH8zDfN=y(oZw-X|2R#QN=E!?5JpU~&dtO%Oe4$z z%plAM%pz#wTn|nCkHC3S$%uspVZ>tV+;#*kA?W($9{PSD0V|}EfWHkwz#8k^Q3R|b zoB(VfoCa(nXyR56r6b9RZBogIod#jVZtL7C1necO0qiHN2OK15;t>zkqsxe+Qpt!D z24Tc0>s%bXsxyR70Otq^0T&3Gc-g})f74f_k`dPp!ibyJx!u^~ZNfgl9l}AtJ%T1a z^zhfmGUAa`GUACr81d9PS0LRsudEXkttc(W}UaSW?M|xCUXwC)T+-wZr2CgnEEa2@L^>37VM9 zL(Lj8BDqvDB9%cHk;XbVvvzo#jxYz1fiNGCk)Vm6d&pl@Mr4snMr1PxBXU^hveyca za}ja@auf0Z@)9($fQMdbWkf-#WJD2zFrt`suJ?E0aS1{{KuN+tKq-PIe&eB8N*PgB zDj8AUAdIMJohyof%7hYts)Vlr)d`wd)5BM_WJE2gWJFzqFruDyZg1`IxB=k+pb_CP zpb0?}n|t{5OBvBZDjCtrAdF~Zo$FsSJZ?)E1ZYnf3g}4C#LgbZCY2Fgq>>Tc48n-+ z*10IShMt6IfL??cfIb9G?C;^{#4=)lR5D_)K^QUAI(GwKyTb{$0V4@_0lyM7ag2vA zOUa0_Qpt$%24TcR>)b?qBqtI61WYDO1xzJq;tUTvbI6F9Qpt!p24TcJ>s&+J^a4T? zz#>9(z+VJST;}1Jf8EQak`b#6!id$@xseE1OBfAUPZ$f>NYKPB9@5v85nH8_5jzaR zh+WpXHMPUzJ%sgueS}Sb0|ZSx?BTutx;P@0j5ux(Mx3s$eRVWlM$2Baqx z1AIo%#LOPLek~(Dmr6!tH3%cJTjxe0ASdBBz?Xz^fII|E%`m&LO@yTT+%w>aXEsnujnCHT?u%K5mgLAKsD>!3p}nt zcnzpYcn7FWh*&4gtV{R+P>=8-paJ0{KqEp-Kof#)v$=;X{#TNz80!qezFS*okK1}! z|GBJxgRhGY24Q_C>)d-h?o5b;4|!KY6hJpZG(dMk3_wppEI=+JDG50CtBMKkej?}|ZKf6Y2K2aj(M<^ygK76JYt zECJjlEC<{ttO7hFtN}bGtOq;SwZ>;}9h>;t?d90a^4905c;Z?|(C z5Sefa5QT6S@FC#>AUfePAO_(YASU4^AU5G2KwQE-z$b)dP?|6S@C{)S;9G)T zMgf^M^yhkgDVV_W=S>1z=7-QPOb0gnd~egq6AbOj70{0taQ=m{7}=neRlpqm)u zVaT_#t0(w6{@oz#YJzp{86N*ZcnSEE@CGo2@E$OY5D6cW8H6Z+S%heSIfNL1d4yPi z1%$YOMTGc(zX+cKmJ*TxmJ^Z#RuWPH{wAaatRZ9otRrLsY#?L-Y$9X>Y$4>%U=>>?Bd>>(5Z>?0Hh93Yeg93qqk93hki93zwmoFM3jr0M7@zWU2I13k z!8(@=k1r8Y0eZUk#BfvC5Q@{*D3&1QwE5IDW z4}f`u_J9S1PJl&(E`YxX-2h7oJpjuIy#Ol-eF1+H1_0I&1_Ra+h5VKLwsVJYAQVFln6;cvhh z!dk#N!Un(v!e+oF!ZyGa!cM?7!XCg4!hXOl!Xdyvgrk7FgcE@KgwueBgmZw$go}VD zge!ojgzJFkgj;}@ggb!Og!_QEghzn)geQQA7wyCG3=o;{5)g&(2Jj)_Js>(E5)Z!*!{br}UH^@TE&d*J0T08CqWZ?d&tmCM)Z+N zM)WrbBL-UM`e2WP3H<>>34;K`37R;{L-$TH;#a9;#2AAxVw`oZB=$I-P#Q3iP!=$W zpovpF9B(8erb;CvW*CGKv#fJ9u*W$BT|eJLp6(K`Kq?7XY!CvLSmzdE2g?Y$ex-+m zEhS);R1&bpAOx(l&dtXTHV_s8HW8Kpwh%ONyN8VRWyB7tWW;WRFk-KDE*%2)6FvhR zBxD90CTQX@4_E!C;kZ;X;*>!camG3~3<2i|BLNo(qXCx)nt0Vi?G`fPnp864ra>5S z+d4ND0e1*90QU&90S^e8_}IhYb~55$sbs`cgD~Q`buJ!W=1W2Xz-vMxz*~YQMz|y+ z68R5YM5$!N2L@q8RO?(h>@galBH$xJ6~M;?O^of~x_{kqq>>Sz7=#fCtaDir@F^h& zATi-fKvIGxrtmPefs9Bgm5fMZ5Jsf4&gDZu20}qVMnVxlW`ZVu;o-j@Wkgn~WJC^w zFd~?f6s7-$ei47Sc4#XSxsoB#|boCb^}XyRxO8@tJf-=vZe z;|#)x@z%NV*yBXPAAm`O$$-fOO`PUogp(1|rIHb|48n*x*13(?<2=F^zyiW{z#@Vs zF7Z&ep^R86m5f+n5Js%B&XqvGYQoomwS+Q&^#o1atQpt!%24Td%*0~V~_>b@_;2B{I-~~Yw zUwbIqN=CeqN=Cdl2qPk1w#U2iG9wfA0iqBN0zM>Y;zu5OwviDrq>>S_48n*w*14Mq zh)4Jb5T9@lkdUB>i9O_LEF+RgB_om>gb^vNbF~qWn(#d!EujG*JwX#QdN}Amw3(!m z5m^kvh^*GRcDU*6gpPomgwB9337VMK!{&}MBA-+;qM$(-QP?_H00Bh_g#pD0#Q)Z<5 z^!J3n0rd%M0SyV7*u=wl|66rasboY8gD}Eb=ayiPtqIEkKM+;{+7UFdqlafd$cRo- z$%rlnVZ=|?xmVcZ&xE&t9)t)O@e4r{`*`@*e`xzkB_jqHgb{>TK4Z?_(*11QxhQA3<0BZ=(0P6^vxY5Iqt}!I@b+*+)3yG*iGmK*h|pF10K5lEF%s|B_oa)gb~NAbJG!Uf-nnkiZB;& zhMIZc8NrcMU?oee2wN1Uw`}`aZ0G zOo#$_LeRu#9u|z05znQP5w8rwh&R@`KM?SaFc}cxiUmvqL?UQn6c3k&$%v>@$%yC% zVMGk;Tvr6dB>W7BP0)aN9+LUQPo$E>ga#ook#(*e0+JAPeR2;+hD$&SsU#q^K?q1| zo$HH$^n?L`&j^D7nFyMg#lyp2WyBX!$%yO*VMI>r+)4y|NmvcYLs$pMN6^HA9u^Fc z5rw3Z5k(Ech~n0{YzX*@pzBL{NH$mkN=qdHWeq|=IqO_G1XLhY1XLna0aPJqVs#JS z_&wH;N=DQ&2qWrP=RQZk_XJ(vz{Btn63|d8320&v0-9Oph9jT_LD#qPuxFqIw3bQ& z+8Ts__SU(=2)aj$^d#u|-X0$MBlM9<0{R<-fPvPz zUlA~vFa|J`@H=2QK@&%LIPKr$uTsf~F$Q78IO|*u1dJ!t0!$>-1xzAn;uH^iM#+e& zQpt!J24Tc3>)dQSo=2F6#03NmSWM7Aved(jzA|E&R5D_vK^XD3b#65tuOr07hz$e{ z*i6trvdzQVK{8^yR5D_hK^U>eI#&jX`v|)JpocyF({M;C2{>vH0*+hf4j|wpLD!%0 z(9?hOIxCd~Trda$m#lN05O9T{>#utl?!U9#kV*n>8-##6*14q!xJS_S4+D&mfJahE zz!QTI@YFi@43A$DP9X6$K?B|q^p8ZmDtoLsR7OOSN=8I62qQkU&PBuH7=#uW5tE<+ zaR~ZHKJoC-pCZ0gGU8K%Fe0&a?hF!>5_EkE4{7^LKuW13AdNu?NN1f(kH;AaDUq1@ ze}ENV5cH2^_wc!YRXMQYOM@^Xk996D9v2`i!iYiy4Jb;`KT^WOm?1LaE2-oZr3}J| zGS;~UNGwax_2oT$?!O``NF@Q44MIRw>s)aJR40@Kd`HlL+8!SMB8hdRlEiujA+dpV z?gD;oX+*dTXhOIKXhzV)mL3+2mJv=W8PUcdjA(0}+k`!~Cu{|DB1WgYFqxq1r+L`puVK1W5-`gk1kAC{J;fpC5nccm z5MBco5j1g$hstAR#8Rnb#0rBjVwH970`|C?pzGIp*zf-uys%8ATp{TC>mJ(r-)e72B>}e$LcksC+%E{YN6_^TJ*@TLwI4|(0Z$AtV+&2hVLMR7VMyLo_LD0m%JzSqCBUVc# zBi0#&5gV*?8E_4o2$=v|2w4Ez2%5Ol!&mcV#4f31#9o6iV!w6nJ^~IB9sv#$o&b&# zH1ULoJJV#uNvUMS8G|t5oOP}b0xl5x11=E;0j>}<@w$hT<7C7Qsbs`$gD~Qbb?y>TO4Z?_**12og<7>iAz+1vUfcFGVjC5T_?DyY; zB10GSCN0SvAupjRAU~l6pddjLi+GqkOGXrxN=B402qQ{b=awO$6hYU2VbC z1XQ%n#X>-3g08RT;p$8Ys4kTR)HDbIwXJh=5m1+~08o#x7|?*AiH$u}7%wB5NF^hh z8-x)pt#cnBpcUamKpVnGfVKop?BHSSA{o(9DjCt)AdKj0olA^&-Ho8@dw3YWL;`wB zB>}w+LO@^ZTu}t{CzJpTBzz4ROwhz(9=gtv5yPdD5u*&kh|$)$y*T6;!U4cI!ePL8 zf+qgq!TB%kNm9v(DF$K0H0xYD1k51l`q>_G`Forrl?2Q;2muSNa|v+B#ROfy)Wer^ zC19CU60p)B1pIBCJB}T!A)ErNBWS=z4^#h;#7$C3;#Px@xZOIJ9RWKDxd6Kfc>sF} zns~s&sL3+opj0yAh(Q=}%sN*S0VfD`0H+A`0A~oAc;3V4-(|!Fsbs`ugD~Q%b?y~@ zFkC0R1>7V=z=+!fO}y)2z5jjZo>Vg8p+Ok&*gCfv0Z$0q08a@!0nZ7V_{ziV=`!NA zR5Ie7K^PI?hCLpJfJlUqfDZ_x0Z|E>7~R8j{|Wp^Dj5;eAdHA@olA~SU|fQ(kMCiS z|2-gqR1%QLAOs|_&h^9&k`Z)$N)H+RuS2P%l7O@ZAt1eVE*SzoBcudmBBTL)PSC`x z9_mh#5!s}Y5jhRQh%c>k1rU&jP#BPpPz+FjpoxV&r1!r_6p>0s6gLPXzOv3;LcrGq zU0=pSC;!XNH&RJJIfD>T!8&&jAJ9q!U0>D1d;dFMHK`=vJA)8V%R2WQJE%i=1^Axu z7Eqs{iH$sL^WSY6OC=+k8H5ontaIlO;0U_DjfX`3uOUB3B?0XXLO@6BTuB7{NGJ{H zLMRLPiJ*zyJ#6=X>FgnujOb+$M)a}HO+-LHg03IvA%p)3JxD4E7-|p#hFj+*BVZ(9 z8sJyLOu%mhO&sT;)?yj)yHqk_qCprj$vT%BUv!fR=>Ss+p8=*5G;x-P<^JEYW=ka_ z<{5+$3#@Zj@o`#2xB>W!a2v3cpouFyWLz#IR!Su!RvUy7YprvQu*da;rhtuv7J$tJ zP2A?;(l!~fT`C!|%OH%{W1aiDL3q56PzG>-@GamFK@*R9Xzu@w;h0o1;-o5qE6%4|NO4hl<2&h6h z2B=0j38+EP#9AH>?UWI-*uq2Vy)vSuR5GHq zK^XCab#4Lz+7TuJIuND+IuSIni-)=^Wkgr0WW>(~VMGt>TrXV1FND5;-h=^wz64Di z;NgJ(x)>;xj2L1NMhvsg?ZX~N5Do%H5sm;x6EtzGhvr*l#5k#B!~}yd;t%Uw4g~y3 z_!2OMkQXqGpoud*MDyQ3W=SO@<{E?%^R08sa19FyD*=lMs{u<0nz-CUq$aDkwSmpx3_CnK&%B_pmIgb_EbbBnOY z+k_>6JA~zcdjw5<=wZ~~GUAa`GUACr81d9PHyL|;PM8LGNtg+EP0+-59yT175$~mv z5s_{wgb^QD=bm7XQ3=lg(FiXA9}zS$ribr#$cR`{$%wcHVZxI(GsAYYC?T>j~!o8wr}Y#Y1lY_lvDk$%q{W zVZ<)$+=uwu-9ymz`#pT(e-S$%l>{6%2mwc}bB(cs75e5RD z5j63ohp!LGh*wg{h_?n|#Cz-9B?LsgZR@WBA`@-^q7XDOnuoOhue{Nvk`W&pgb}f< za|IC)hfo9%k5C*CpP-4KdYHLMMkJC-MkF-|Ba&O^K1M)FLTo^4LOeiPf+lA0@Nlz? z_)IDpk=Y=O$YPyKj)1I$RDkS+w1AuhP0a0~fgh1aDjAXAAdDzzolA&-!i2b_jB(ao1NGxNW`v(DK3HJcy2oC`j2%1>g!zTX=Y89zuM0JBO;ydfySOnA} z==!=Iu11R_|KF#il7I#VA)t|U?#CwKaT9{BZ|)&WLJ4Rgl?1dh2mx)Zb0wRG$88C^ zzJrHrStOvNR1(nHAOv)^&Mj^h9(NswZJpbUJ&qyh`rkbi$RPparILU@3_`%4*16jVm_oP< zm_~R2m_g9Q*&gC#mJxHLk`eO_!ia^|xjqP3Oz00-LKp;CM$p8S9x}y~5v!z<5o-*> zh;`Pv=y=x~2)cf=hsHT2V2e}|u-za8?6l53!wz;6bp1XLy|YQceyJqjkUAkLSeu|LNUN&f+qgwp;{&x@l+}q@xmaCcx9dIiaov|{0w+U=n07M&;Lt|?4jUA z`KtOrDjD&iK^PI;I=2~LGcgF;05J(W0kH|17|+AkU&tvwkxE7+GzcRSS?88vk4XqC z0m%rf0VxQYnA*b#|J^B#R5BvHK^XCwb*>Cb}RY$d+6moo?_ zt6-g5jmMP;>i|^<8v)e_TL3i(+W|ERIPjWoTi+mTqM>!JJx&xF~X;S6NDsyQ-tJzGlW!tbA+^j3xo`SON2~-D}*e7 zYlLio8-$#ITZG(ze+c;icL@an_X$M+4++Hqj|n9KPY9&}PYGoK&k5xLFA0?ZuL)HF zZwWO3?+LX45%1W?xGo?vp*|oAp%LIiLQ_C=LJL3)LMuQ_!ViGhg!X{A1pRV~?;&4G z`No+*D*5_KWDvf-l33@G;&BSXNqohoBAfxFA)E)KBU}PxAY27xB-{XGCfo*OA>0LI zB|HFRCp-q^B>V^XlJFdmhwuuJkMI^yfDi${t`s6f1{5Jg1r#Gh2b3Uu3@Ay64Jbv3 z2Pi{G04PgH1Sm&H3aCIx0jNYs4X8p$2dGB)3{ZoR8Bmj;AC5W%{W#R~aN@Cid#*2) ze0&-igpW@X>)iWB;c+uUBz#+JL5KoyglK@)gcyJy2(bX|2yp=&2=M`(2%iEv6OsVB z5|RVD5mEuV6Vd{D5;6dK5i$Y#5V8RJ5wZaW5OM+r5pn~D5b^>CyWH_ zB#Z{^CX5B_C5#8`C;S08NSF*bOqd2ZN|*^aPM8BYNth2fO;`jtOIQLpPgoAPNLU59 zOjrZBN>~rLPS^yvN!SXwP1pgrL)Z8R0D81>pkV z6+yo~T~NL$1oV)(@qU^&c68^&ea3V&ZWeLR>(6 zLIOY{LSjHNLUKSVLTW%dLKJ)h&p?O<$Vi9*$V`X@$U=w<$V!M0$WHhakdu%E@FgKR zAP*rGARi$upa3BQpb#Mwpa>xgpco+=padZ&pd=wTpcEk=pbViPpe&&Xpd6t%paP*J zpc0`ppbDWZpcFp4k-Fq$wQFov)QFpjVUFrKg+Fp;ndFp01R zFqyC(FqNpPAU5GCATHqr;1j}YKmvl^Um_0={D1P6 zSSq>DWCr0vQ&{IJ;6DLKMW_r&L#PHwNB9nqflwQek?=hrGob+>3!yO}E1?-6JE0{Y zC!saqOF~;f9zq8|KEjWH0)(!BLWG|IMF>3s#R$CtB?$chB?$uor3ga+WeCFoWeKAI zEz3=o>cN_X=o5WEsd>n zIq>fVO$lEDniKK@S`sv|wTI{aKeTEim5gX-5Jq&c&K8G=vxD1tx#nuYY|<&AM&CJDHu-~#UGWE$94$s`w%RKZgr~q5D-kb2B=TC31~>T0|+7biY68c*uNgrR3_SjLRz5gA-pWoKPj~67M zolFwYQNaat(#@1XKo>%JKvzN~KzD*q>}BDA{gW`gWs-`%3a;Wu-OPU6B;*4uCHTY@7P_aA zij^`+#To@yu}(Mh5nsL=2=S1(iI5Pmh2RsnTc}=5Dt5>u6}uE%#U9p>Q3kh?Yqz9x1qre|0k@5%82y2JoCv9`GN*C%&@q zRY|FMEt6EdRd5yWbu+2(7(Nox0^@j50|@76n(4O*fMO0XYbX00D%gfLsKh_?d;?wWT7jOj1!m z!Bu>&oB138g$RWKUl57{iV}Qc2@7ErrJ|%vQc*_1Rg}}s{Ddc6fiMD4iSRR^3c)9S zWg*(WqpHdz6*UxGMJ?S-Wn5z&LJ*)Hp&H<8f=_H{VOX$Kd?S-oG*)mGO?5ME5YUX! z9?*jDJ)jlAC$_QB^((1pE0a`oP;eFB>t;^kF?1%J0T{x0KsSO<>}jFQmr~J7CaLJ7 z;41p*X4W8}KVdy!AYl_=Fu^DOWFeJ(M-7unDn=@}il22e`S2J<6a4w(EL8Yf0)CN6 z0wyT9fJwR;gMcZ7?tp28UVw0dPn>BXhkY?;$s`rODY%Mxx|x;;SU~XSFSIbHoCGYA zNdh7jT);&u}><0Wv z@QHgY)T|^Gdu5V}0}8IR|tgxe-nJ-bqnk3OT`VDq~f-MtGKJ1`3W!PeZmMpG~s8!LxNBI*TVI(Qt?D4 zsd%p7D*n^W)WbEtB-97ICVT^UL-2|3E!?gu6(3}hinvcaxQh6?nOg`*Nbu(;w$P@O z1SFA30+K7ZfRwtK90*8F$O%YG$OA}E@QIl$q^lqmnPrlSYznR-hi=9oAb`*vkc-d@ zkcZ$C^H~^NMJn>kBo&`4xQar$nI#DLg0K`&l&}I&oZu5nS%_a*DoV>F73CCMMFri= zR0LEagafJ&W&(l;KCzmG(Iup!x=d10OTkst(aj`8Ks`cYz}JLifCdDg7-Hd){laP_ zlT09Bickj7n&1=LS!i2ND%#5=72hkkiq5*3Z}4Sf2#o>V2;TyF z5PV{93n8_n;s=?eqMw4R=&zf}j(~xL0Ki~EZop82PaJOHmHl=yLMEyBS;19|*3I-q zz*s_mz%PVBfbj&MILX5FGEy;FCaIXF;3~p(GZpZpXAmj_W)Xq_a|k|ho`s$bq+-5I zQt`Wjt5~F)8H;ONLI?x=L6`_wM(~L%EgZ1_aLFo}q++dtt5~m_d5hnSZX|pFY$n9T zU2G-z#2psy+nuUN=$KdPf-l8S2zuHuGn<`M#K5uyNh2-g7j2tF~|Leuh6 z@jxc2c&y+mp6F)UAmACHJs^hgJ>UhwC%(3D%6^!~$|M!<6kNpz-ArEu#CfXc_Xory z3<4w|_{2mOc2<{)#4<@mG6h$WLO1gU0jUV@0ci+v@N%ak_{5AB8rbj5nPifRtO~9o zyKbgB50^}t4fIJpH*xx#SCX*!QS8$1ex|u8pC`j<nIxdNf(t0A zn@Nd#Doya`m$MMpKDP2QNkAn97f?kv^AuMQM2G=YCA!dbw0!Ue!Yf=`@cAz6E=m@1Q0ge$m; z8M>MIcnq@$zXRqF76axIeBuHNVa=o>LMEwLq~I!+=w?zO;15Dtz%qglSZN_~S4mtY zlO(QHaEa@6Gs$q*8wn`^n+a(ETM0gKhlN2crDCT{Qn6dXRqWNxl*KjfCsY6&Bvb|* zCiui-7C!WpisLd##VG|>aYi>&AJ=$}@D1Psp)ueh!6#m^5cQ)}M9Cx-*A!gE4c*Lk z1l%J03AjVp1Gq=@kKmvkKOk`nl7pX`rlT;*Aa1|+ZGp`Vkitq-IhVUMc zj^GnBS~z6C(lW^;6Sk`^ z8V3;W0R|DG0YeBrahQdQ-KAo4)g)y?e3V|Y(E1o%ie3W)ps{}K~esAr@ip-fVdSiw~!)y>4kH6|w{ z0Hh=&0;DGR#B>&7I!Hx&nWQ3! z0nG?8fEEOw_??BSgQcRiOj6NK!Buq7&AdXu_XK}_7Yq6AZ_A8K63|`21@zR-T*7ng zP4MUUwQ$3J59}wC1PoAc0fTfiLAZh;1b_Z83k$!IfZ;MpK&XNX7^Rz8j>kNPunI7a zuoe(T*Z`P7*bJCN*anzF*a?_M*bN9L>;udo90bfF90ANB90$xLoC3@zoCQP>E&vu1 zE&&!3{Nwt=!fX5Oy9A!_as~JNR_dmQ*H|dsO3q&^lRWPY3hw+(x|!;D#kUY@0k#q9 z0(KC-2K-5A2-r<%1lUVx3fNC*4me0?1vpG-12{@(4>(Tv9&nP-1#p_s4RDsw6L6mJ z1K=-0Kfooz0KgT(V8Gvmp8(egBLFuDKLc(N{EKqe!c_YM^5;0?9|iX+JGcNAU>fp zAR(bEAQ7PlAPJ#2AQ_=AAO)d6AQfQ{APr$CARS>iAOj&3kcluFkcBV~kc}`Nkb^J@ z5I~p;$VCVT>B7|jtVuY1|5(NL!m$ndUe`Y8n zle`zoE4cSUMcvFMycH`G{P{r^Dz%eIyEPrfw!20ksJ;0d)y;0Ko*G*ucWq zp;FOMCaGwo;3}HvX8Lw@hrcEC2Q()P0<y59myo z1TciDfNq3vKo7!9Krg}^zz>9ZfWCwXz>kDQfB}R^z#zghz!1Vpz)yrVfZ>GofRThv zfS(Cl0iy{!0AmTe0KX9S0>%>#045R+111xW0j3g80;Utr0DdK$2h1c~1k5J*H`rVY zi|vnA^JJ2DT!eyq$1T*iGfLVQ3Z;S<18LK47oLUO=LLMp&&LR!FDLI%KkLT125 zLN>r=!l!_(gj|5_gwFsw3HbrL2%iJ?5DEkK5sCs15J~_J5lRD&5Xu3L5h?;s5UK!9 z5xxSPAyfyPBh&(1Ak+n1B={HhiiKg5<&}<-NnYt|3htG@p_{4D%^ki)s0_G62m;(A zR0I4&s0nyLr~`OJ2nPI1XaIOh@Ru25A;s@<-T%oX*ZoStU3aW*rc`%#_${F<;60%N z;3J_jAnt!!5d?@&s0K(#s0m0!r~^ns2nHl0GytR^gaA?zngG%engP-gS^_c z+5xfz2g8+eqp@4#f;ef(~P(TsFXh1Q- zI6w))ct9z_BtRL$R6sdGIG_SyCZG~w4xkEQ9w3Mi0jNq?1gK7k1k@xf1Jow?w{blS zXP3(RdL7QFui)O-4RzDQjVvtxRnDJ|uau?=?)+xD>EV_ZYR;4MTgfC}H*FN$`R#Nw zaZulZ5FhY8;S)e-LK1)>BnNaOqyqFHqy_XM_^aw;A!>qLW?z})GW#pI%N(eiNsqf8 zOvnTnO2`TrM#upeLC6URCHT(K7A8%Tix?x5T*NO5?jpwPX1XI_BEg?O#ljN%Vy?n{ zPFHXNzv`xkXITiHE$7dcNebsGxbx@hW=^0mf^ZtJkl+KBSSUMH5+h}j#AOODafNQC zDFRjzngiAlS^?G(+5k2X+50(X;m752RXb#otJ61@|!S=w>G4Y2G9F^P?@C7$*S_WRif#3NGM@ZYByp13V*K1H=$+0$vb& z;%f`zevyh;nWW;Kf~)wTo4JdCI4|`4e*p0a4*>}XJ~5GnEyJZEu}o5tOu<#8(9P6G zKq|sFfHZ{0fOG_(n9;)a=~9tNCaK7(;3~4~W(MO)e@gJ@=dy5Zjs)bENdodJxPbh+ znQI6LB-{iPB-{ZMCiujn7Czd~oMJLbMM(u$QCc_C8v$hreF5bO{Q(sTKCz00X)~na zOPQpis)DPiuABKC0W}GW0ksK#0O}Ha;@1{(giA$znWW+y1y|8XH!}YkJH&S~Nkv-)SJ7TKlL!GF2}uE+2q^$v2tKi!g^Ttpv%5@E(M!Qq{Ggke ziGaR@Ie;Gt^8f<~K5?*x`ZJ|sh)hy3Ouj&O zF~KMPVd2m$saPtLRIE^N6{~bJyAiO4un(|~a1gM8;1f4nnEjhnY>`PSwkx=bow}KS z5U`8z5U_{f1NK{pJ6;kG$Rvq}6= z;3C1Ff5k$3dj(N4Nx(G)7jQ#2^Bz}lix3BicL?zT_Xs{Q+QQV4Qt?10sd%j5DxTsKC0_xzQ9%1BoqVGCX@u!CHTazEhMua7xiV5 zif8|UJcf=0e|~2RfpaCG zi%b&GO~D29(9Jx-74#zb^ZQshGhYJw$|M2(6&j)s})?pTHQ>Mp6>8^ zLUF)GLMgyzf=}FLA@`qBv0Wyq_*21E?AFbk=;03UC7cHAC!7NuB>2Q57784eilZ_~ z#R&yhaY{E6jB7kYXaG1z2mxFm_{2*VqSr~qWtpVnZv|IzO*c~-*LZ_a4seT55paj# z6YpE-zE>*#kx42ZD!7Wrx|w*m#wUb?fMLd}(3LL8*8plT^G>a24-#GvyHQ zflv_;=amLj0mLKt#Do?aZkCEqWRi*`3a%oVZsrF(h7^Q;fK-G5fHVZ3nBKzUeNvG@ zCaK7*;3~4}X42ytvlB7_J|$!Y0 z(p6o-b=B0(WX8qTCS(KDC4349Ciuh#7Vg-u!GTr`QzohSLBUn@)y=%b z2kMW6Sik_nJHQ}BC`_ zOj0pf!BtGv&D24_bV4xTS3(28OoC6GW8vK{srXGMshF?eDk5|7e1#CsM}Y>|rlGD*b)1y}J%H!}nQ{}P4)o)Sg^o)diH z3k%&2NySTBRK>@`dqNGsM?!5t+}Hn?n7~4<9a51{CaFlQ;3|^pW;Ws) zlM}W8QWCZUQWJb)It$^Oq$0gcQjtl)RbqlRP=k;fP>bLb>slyle{`)UlT_4Ka1{-8GkI~1A%p^e#)N`^ zrUakZ+`{7ZQqe*tsrXL8RkYE~e2HspN2m(uK&S!up5PO^SXgjGDvV50(Otn+^wiC? z#WnUObO7`rbOQ7v_{0Ggg0@M;K$)ash=Qy5NjEba*EpOo7ci2r0Pr)xCyueObiY)L zl}ReX6kNpw-OQ)B#z}-+fGGqYFx^6eost+XlO)bmaEY^ZGrMp}zY+EV<`H~AgoUho zB=L8dByq8VON`Xb#2{cP!Jogv!ZjPPQYHylqu>J8>1N&{U<2U;U=zUyY_%}W-sCo! zByp#LOWdWKIf#Hggd>1`1RrqF!h8E#ACgHDk1Dvt`&i+$s`q*6ZYDKe+N%VA{tXL5>~p*+lLXvRZ~^ypGp}$3{}BB74=rrnE&-2Z zl7J@)F5sDNW)%Wr2x|c^2tMGog+O~xu`)^GI|Y~cK{t~e_Y^1g|IUwZVYdBoD1l58 zkVwG=B+<>>#1$kX`14a*7-TRdfm)GTtP;HKR=6wExRQkt4tD*L%{_E z=w_ba3UU$r`JY(`vA;*iE0Y8iP;ddC>t@m;pb){IU&KO|%MwsjCJ88^-~vkNW{UT6 zhszL30m>1|0xA%EVr2^%PD(`;nWW+?1y@l`H}e~wQVqgi%N1P3O5My;1gs{+0M-&-0@f3J z;wB5R*Q8>zOj5B;!By-Gs4#y#$|lz{1AsQgKiwsW_tGDvs%9#v|Ya zVG`gJVJhGZ!6%-#5NKcS3o=Q?B?VV;MK_Za0e=%x0Im^I18xv};%y7jH>Ki^Oj2=Q z!Bs@-W|kq~Az>xpF<}kh3Be~mw-6L96)`eN#Y+WO@me>NvbQ_@hL8sEj*uSkf#4J4 zzLAO%SEVAJOj40h!Br&E&Gf)ECL#0&BqQ_%q#*dj)E1^(k%}}jNkw`ESCLUSQv(5+ z3AF)P3H1Qk2|h8v!rbFhky9qA$fMvY^6F;B;^QGdAq)^mmtoB0yg*oaUS(1cI}@GZe7wy3+EF}2EB^KV>&!|Y5q+*$Zt5~6%$&AOa zijWPkhVUt19l)|E-JW+%et932#6xY2V5n50=Q1_ ziMK2q_**J&%On-|6kNqWx|t3LctGd`ctkLOe+fSEnT3Y;q~f_uQt?8;RlL&8+(SSt zAsXS65fHH)cfN}(%Skc1Y_V<#NWRi+66nDGP=oL@pccU=*0u1$e%GrflT_4Ka1{-8Gmj7uLU;mbOn44xO7MxzEsXj{Dq6@S z72heiiZ;5L1o(JpM@R(dKu8Msp5PO^SjcflDvV50(Otn+^wiB9#*5jTa179ga1zju z;1dT}xNIv1$|My-6kNqmx|y>G7*4nV7)iJU_?h4n$5`0H(p%q{?p$%Xy!6$C8(CU&@Y?MhVwkWuYZMvBP2-ra=2>6rm1zLS2b>^m0-PfF#IqKLo|TGoGD*c>3a;XkZsrmK zt`MRCe-o|&t`U6VO$%?HOT{gjq~flEtGKV58H4vrG{K+$$U>u733x1%1Uyx60nc?a z7ZC6t!Jq%i!t=Kh@LDDbc&p$7-s@&wAmAgxpC9j?1l&pxU;ZtyGD*NE3N9eAZl>c8 z?r>6qKR<2xz8xPlA>e|}~Qjh;$C7MUaQ;h1(ejyw8b+hP4MTJv(PTS z1eBLa0xBuEfGWC~5CjAfngFU2ngOa4d}1vNnV-o`)|N>s>M6L2uXQuMagz-Q{`?RN zsqO33NG1trs^9{e>1OI9pasF7|DA=>uO*fS$UUs|e^#@aOlnF!qB4^pi;f1}M0ILAsetc!)y?{`_GUZpD??X}C-h5USt; zM(JjP5HN<|&;P~3O#1~NCX)nARB!>4bu*#3g{cI8ez=7oRyT7FhyNmUMB*ia4~Qc8UvkaDl8;hxT_&lxrQj;==w|ZbChrma`Oy}Z zK9+z7GD*N=1sCu{H&Yjv^o-!o|IflE`?2^!CJA`0-~!(0X1XKb9l@Xf(ZV46i4o_$ z3y3fO&w&d_sGI4BfJB4=fFy*$fMf)pn9@Samr{{RCb`D63a%o(Ze}$CG7|jxSuB*c zUk+Jil7JivE+9ZRvk(Ef2>$%fEL4jpZ^pbbNk9Pw7x1}mraE4yLIi()5ew(-$6`^L zB%p+X3n-2+6pe9 zu5M-)0)h#@0qPUx0~!*1Vj~MP?MHWGnWW-d1y|8rH**XDEeR(9-x1CL+7NtVdke;X zE_IMeDmp2+iY~gD!gwLN5{d%46G{Mj5`5wh7V_Co?>;g~#g7WEVt{U@3<3rb$^(WF zDgk~X_{0$w8oiSTHBu(27^UDU#^`2Z@fgMt-T}f09|02xK5?>z()Pn^icC^5UBOlS zs+(znfSH8v0J8~g0lyJ^;(QCo-%G^;nWSQ&f~#1pn@NGk5J^Z4SV~9-SWfVXt1SF! zzw%ehBo*rvT*U_6%z9koCc-Ab7Q$A*HiA#wX6RI1#pSr6QeAowy(wCGD*dC1y^xX zHxnOE`ZnPcz+FNTz8w_8PiL)eCIb$yCu9a}BxD0@CVUFmO7Ims zEL;zkck~baUFR+Z*SSYG(+`LD5e5Jb5C#Jd5q<(3A&dYVBm4|FK^Ox#Mfe49hA;te zjxZT;fiMklk?aE&&n} zq5z2q*8oWfHv!2AcK|5}_W`L04*+Qhj{)fjPXQSSF@Q{jmw+sUSU@(yJ3tP?M?e4} z-T?R2lZ%iLkcW^Mke84Qke`qe5J*S^C`d>TC``x%C_=~zC`QNuC_%^xC`HHvC_~5x zC`SkcR3H=rR3a1sR3Q`x1QALBsuIcqsuL;zY7!~~Y7>G0bqUn~!GxNC`h+@whJ;{1 z2%!O>F(Cxdl+XmwjNm^iTUrSJL_Rx5;OENL3huMBt!`!v4!0-#0_aGX0O&-R4Cq3b z2Ixxo70{h93(%AB8=yB~KA;cbcR)YFVnBbwAAo^`<$%G2Re+&{wSZxS4S*4Z&45tC zPQWO_ZonAALBKe|5kMH>IA8+d6krnJEMN-Z0$>{95+Ixq1(-p&2AD;-37A8;5131M z0GLmB3Wy-Y02UHr0gDOm0Fi``fTe_ZecT7oazaADNN$Aq)k)APfh*B7_2B38MjT3F83o3F84D36lVE<0SMS zxKjb~3E_Z*gqeUuggJmDgn58uga|+i!XiK_LL?v!VHqGDVI?2~VGSS?VLc!VVG|%5 zVJjd9VFw_9unUljuosYra2Sx6a14;2a1szmI0Gn1I1eaHxCkghxB@6fxC$sixB)0d zxD6;nxCbalhz3+3JOWfAJONZ8JO>03UI3~RUIVHV-U4b8J^*SH;`Vi)sC5Ym0KtSr zfck`_fQEz=fDl4zKx0BiKvO~%Kr=#iKnp?upcNrEpfw>cpe>;Qpgo}=pd;Z6Kqo>m zKo>$8KvzO}KzBkVKu^M#fZl|vfIfs8fPRG9fc}JffPsYifWd@s07D6l0mBI20!9#8 z0741h0Y(wp0>%(J0LBqI0m29dFoDn=Fp1C$FonEGA3=L=vV0mJ((FmJ?wi7l2b`rJ#b`iD%_7MIA>?7;}93bom93mVA93h+l93z|toFJS7oFe=M zI77G$I7j#!aDi|OaFK8qaGCHAAd2uW;40x6;5y+I;3nY>;5Oks;4UG4Klf>QpYRDF znvewWkdPekn2-wagpd~SjF15kL&ywxLC6MpMfemDOUMOyOZW`%o{%5#k?=VnZe0EO zqc9*op#&fyp)?>7p&TFy!T+W)xrHm0t+(+a9cuBKzl+8 zKu1DqKqo>vKo>$rKvzN*KzBlRKuwD?6{qJe|m zOSDqKJ|zPdE*TCY%F2B>V+X_sC1>W_sdq8Nv^Ma)f?>3Iv~6*}~pJ zQc(#%ss$;yimJMqFLAg!p(>yzp$4Efp*El{p&lTZP#;jA@C~3L!CzG)3z0+RG9&yS zY*28Q*-SUH$p5JZLZtsw4TNQY)`XRSwuCi+_Js9-j)YBsP6U5d#zLL3a+yu=yt^y7 z%j~I}X@N*Q4Tg$!Az?c3; z1$Xb8bu+VZcq?HpU^`&}U?*WAU>Ctx?6nY8Mmpc%i|l}c>pY~Jd5^()&MRO)&rsln*dh{TLISzI{-Hcy8yQddjWR| z2LSg8hXK)qV}OT*lYqyBGk_%p@F6NSF#pLnE_yDL+h&$4KhiOPi00ZiF77#{g0hmDe4ls$(7BGd-0Wgiw2@p;&fEk4D zfLVlIfH{OdfVqSp0rLq10TF~DfQ5u%fW?H7fJnk9z*53kz;Z$uU?pK9U^QV1U@c)f zU_D_5U?X8RU^8JZU@Kt(U^`(UU?*V-U>9L2U=LvhU>{*M-~eGA;1FRW;0R$0;22>$ z-~{1Mz$wBWz!}1Rz&XMpzy-olz(v9dz-7W|KosE|;40xSz;(i9z)iy6fZK%YfV+fS zfcu2IfM~)$fQN*KfX9S?0Z$0e0M7{j0b&TR051q{0Ivw|0kMQQ_{)NC3Go5%37-Hy z5|RMoCeWWok^|xsQUMYY(gG3@G60eg{7*E=E$o{nKjLH=;=X&NQgA=wq|wb}$KiB@ z06+#pZa^kNUO*N?0YElFK|l_IzlfX`X4R0ZdWj#8^C-Bh%B!1+#o_#fcYr{`M?gVB zJp4h+!i0o?B80?%VuWOX5`>h1QiL>sGKBPia)eBP3WThHN`xGMDukSXAVMBMRYE>M zbwVJZCZQ0ZHlYZhE}=Lem{1B(pHLRikWc{-LZ}RAOb7xrB~$}6Bh&=6Ak+c0A_N0k z6B+>85<&p&2~7YU3C#eV2rU6!2(1BK3GD#g2^|4F37rAG30(nw2t5G(2>xw6z{2D= z^1jZ4ugAd(?tMK}HZ34;Ke2}1!}3Bv)~388?U1poHgZK1;;c|Uc*Uo_jN z;NDLMbTi#>_zys{3vie48{j@+J|LR#JK!NXgoNXOM1)g-B!shoWP}TV z6ogBFRD>u%8p1U|I>Jpr2ErXcCc=F{7QzESHo{{-4#HDF03imDi|`VVhY$kPuLqkQh*ekPJ|akP=XWkOokSkRDKmkO@$ZkQGpYkONSOkP}da zkOvS%$OouO2n19o6av&F6amyG6bIBLlmY}3$^z;WDgYW1Dg#0YL4d}DYJjGMnt*16 zI)E00U_dKE13+s+2%s&Y37|cp8K5JfC7=_bHJ}Tj9iS_rBcMB>GoUA-E1)-_2cQq3 zH=rM(FQ7l6KVTqX5MVH2C}1dIIA9nd6flA?8W2ht2N*>d4;Vw31QF111n= z0wxjW0HzS;0j3cm0O5p1fEk2Hz%0Ttz#PI#z+A!_z6_Ad;{P zu#~VDu$*uJu##{Xu$piTu$FKVu%2)Ru#s>cu$gcXu$6EHu$^!fu#<2Du#0dTu!nFD zu#XT8I6!y=I7D~?I6`<1I7WB@I6-&~I7N61I79dVI7f(!KOS;{kN|LzkO**@kQ5L_ zNCCJ?NDa77NC&t{$OyPi$O5=a$PTzq2mnMAaswU`@&XsqMvUjjZ7ssiGEqCbDs0K_NM1|%f-9|{v&NEI$WyB5J;1xTjg zeo9QCn<<6EsR(5OX$Tbn=?Ikp83;juOoVEHEQFeXY=k<19E4y%0HFaO7a;_YhtLF& zm(UE5pU@HzNN5cxNN5KrOy~$GLg)-AM(7GCLFfS}Md%GEL+A@AN9YfzKo|t5L>LOF zLKqGRB7_2}5=H~66UG5*62=2+6D9%b5~c!z2{Qrp33C7q2@!x0!XiLpLL{ImVHuzq zVI`miVGW=aVLhNVVH2P&VJo0LVF#ciVHcniVK1Ny;Q*j3;V_^(;TWJN;Uu6p;S8V; z;XI%p;Ub_v;R;|N;VNJ-;RawR;Wl6x;T~WFAsP@$cmxoS#BS1eiuh3J52p2FxI&1I!|11k5310n8<22h1k~03ryv0SgIv0gDL* z0Fi`(fTe^l0Lux*04oV40jmjR0BZ^50qY5s02>Kk0yYz>0=5!r0Jalq19lSX0d^7U z1NIQU0qi3*1{@%K3phk*0XRbV4seXn7I1>l0dR`Y32=sB0OttZ0T&3p02c{;0GA0r z0-^{50apn_0M`k_05=IE0k;XG0Cx#v0rv@EfM~)*z(c|mz+=L6z!Sm@z%#;ZKn!6n z;00j;;1yvZAeOKM@RqO?@Sd;&@R6_@5I2$j;IIx5pRf^-kgx@ih_D@ygs=yYjIbY& zf^Z0sif|N=hHx5?j&Kf;fp8g+iSRcd3*i2jL$;0O27Z7vWz(9>Oy~Uc!HX z{DfD4K*Ae9LBe}LVM3gr+{b4TLVQ3m!Y6I9Ks)fxrF6_`Gi$~2*O&xLc#{XV!~!X zBw-t1DPbpIIbkfWDBjFTaGvO>?E8zlQJK+*wCm{;3i*OCF zhj0_Hk8lTYfN&phi0}Y#gz(sb{7WK^k)Gn56NDJRDZ)#@8A2@J9N{D20wLZo_o;l5 zkPvX0kQfj}NCvn{NC~)3NCUV@NDsJ8$OO1c$O^bm$N`8ZE2COiT3 zAv_24BfJ3gC%gs>B)kO-CVT)4CBz->K9h$L5&%XJ5&=R9Ndcn>DF9;#sR82%=>TDb zjDQJ*EPzRb?0_kR0KhatUO+gZ0AL28AYc~Z3&0#gF~D3xNx*zU89)S~JYXTA5@0dm zOF$%{Dqtz024Fd%Hee;89$+=$8^BsZW59aCw}6d=7J$u!?*Ll~Z2{W}9RNECodCNC z@?QqA|E}OYgzkWSgkFFHgg$^ngn@t~gdu=qgkgXagpq(#gt34#gfPH4!W6&-!gRnz z!VJJ=!fZekVJ_e*VFBPeVF}iT?a?84#cFHy|P5Iv^3@79a`X zE+84LRLU+LJmM(LQX(1ArGKFAs?V2 zArKHkCaD}Edl)qtpWWB?EnJ_9RY(0odH7$T>--gJpdyJy#b+wzJO7L z{(v!rL4a|Dp@1;LaKHpYC}0v{G++v09AFw@JRqDf2{3~&6)=ks4wyrj37AWm1DH>k z2Z$g<02UG!0TvS?0g;4dfTe_$faL`L0kq0OiYWO+N{Y{{wF>SNX}xYH1rBc{qy}sz zqyuavWCUy{WC83XWC!db1OWCBas&1e@&XPJ3IGlf{EZy7kbJV-*%kb=$0rorot@In zT*cutgd2c!1RwC1g$iFtViWwsv6mHGVw7&C84h11v;Jgo2ErOZCc=6^7Q!Y# zHo{gw4#EyV0Kvb(a$A_)Q{HiF@%5Wm0Y5M3W;Wn(AYn70AYmJzFkvU42w^v%7-1iv z1mPf{6yXS<4B3O}G!JOLzbX zCOihzCp-l-B*Xwh2rmJR39*2tgm-{ugpYt0gn0O~>8%I}0j&v%0c{D%0PP7W0UZfx z0G$Zw0bK~009^@L0o@5X06hsg0lf)%0DTDg0R0Gofc}I+fPsV}fWd^~fT4s^fMJBP zfDwcWfKWnZz$iixU<{!eU>u<)AdFB4Fo6&Zm_%p*m_i5vOd~V_gcF(pW)NBeW)WHg z<`CKe<`Oyr<`eu!!|xW7W|M!IAsByLQB9} zLTkW!LOZ}lLPx-6g1^jd7IF@g&$w;4vz-d=x_9YjcH;0J!fwDm!al$O!a=|x!V$m` z!g0Vc!YRNB!dbv6!Uez?!X>~tLKNTv;Tqr~;U?fR;SL~*a364$@Bna~@ECBD@Dy;H z5CgbNcnP>qhy_Fw-T@vGJ^~&S;^C*GCxnE6XN1In7(z0@3qnf3D?%DTEFnGMEg=)& zJs~ULBOwPMZZds8kAQ-N zc(}8|goJ=1gv5Yi1b?d~EmWx{_kI%pNNX7dckktNGiPwP0^vNM65%4C3gHSMh;S89 zm2d-4op2jalW-4En-C4COLznbCOiSuCp-r*$pBpmDFNLH{ziH^$Srqv619C4 z+@1B)&78sE{)F>@frN{I!GtS-p@ge|VT2oi5ro@-P{KXHC_*$~4B-)A9Kqkncnf_> z%KLRUehi z#e|!HNWvY!Qo?<}a>4_^O2T8nYQj^%T0#t9J>ex_Bf&q=Ef%UJlqYQP-|pD1;GXbK z-AoT0-bLsQ*hAB`(L!ngRkaO3ht`T=w|Za@Hs*t z-~z!1T(a=(C`tSbAE!|YF7c{vCO-~eCwvaLNhl1sO(+VuODF-jPbdwDCX@p_Bvb@E zCiu&IYT;24`PzOall*<1{}kMHztqjV!r?arfBt)dKO;_ZNz7MC664Awi3t>3;wQT4 z;UpIF6q56k;`|f}?)+4`>EW~%4u2`IA^6&_2)?$ug=Qt>-fPGt&$hOLyZ5@fnR+-} zpU?mhLTChNO86Ggg3uDsn$QN&p3ni%iQuow5d3v?C;02=Mex_rhv2W{M}ohOfdqdY zLkRvlhFNG=S)R^tndIq&D!8XJN;fkahsP0q0ZbrF1WX}J1%wlR1FfBPi}{`N}~{Oy+`_}i~Y@V8%u;BWsc zg1`Oh1b_Rr2>#OR68!CdP4Kthkl=5>k%fan^3pe!NnV$472HeTTsJ-3%EIfaa{hNX zzpa8hzrAjz0}gj0bOv-KbOZDx^aAuD^ab=M3;+x!3;_%y3+!Qaawg1?tYg1?t#1b;6p3I1Nz5d6KYw=gBY zyh)Jf_s&=>ZXTxSa?)R&fkgicPqH__v&W$;qXC%KmQ29pK;v6PWzE^0>9+6 zf=fKBn;yPkVS#;L{e|-{E4cHcbTfbB@O6Se{}#cYao56O`yqG_za(10B|g+m5C3bS zsQppz3C@46;LiU~H}e9AUlU>h?+EV!aZ>(YVtj(n_=Mmyk`R1Gato_!%T=Y2NnXj+ z3ht`X>ZXS?Sa@!~o-^Y7EDG-YY`U53I2=I83CKhE43M8t08o%n2vCGj6i|Xt5>SRv z7EpoUFS9biUsw>qUsyGQzp$DFe_?e9{=$L@{=ym%{Dp-O{Dn2KP^`2(zos(D^KP!- zo?lDdOe-92L-6OfC-^hIxA1cvN$iAQVia6rH{DEk9PUN%=l3D_Gk&!2gZ(W*fBcd` z3NCSoZe}PB4=4EZLka$j(H8R6ki;?gCBG=R#PPbB2{=5NFaCV911E4b@ktD9Me!y5^k09y&$06PhP0`?Gm#eRYh zJw))KM+rXk1i^=%wouD{+MSU}uKT=#yY9bqGZ%6A3c;U$mEg~~Vc}$TNxX?)a!0`> z-qX$8$KeMAfBs{FKjW!|LiT<848P<*1(*0zH$5C{A*`^R{|4v3S8(Tl)Xl_6&#NtyyszphxYyuo-AsKP z{)P|&XhLWTXijJW_>RyT(2md^@I9duz!16udJuX7ejxbk?nm%fI)LD>bTGkR=}!cI zr6UObN`EH!D;-1dSNaRVU+DybztYJTeyk`@c#2H&gr_UGC;Y2!W`;XFK6(3|-P*P* z+^%2WzCC-$Z@Eh*i1U9Y8MFDTeCS*PV$1>yz3gAriEz1Qk%FsTqMM1t;bjDW{z`&B zV~vHA_D0s?muygQiJNpYn{jv>!JogA;Lq4?AwvO4+=E}TU%@3F)Xf~i;iH6OfRlt% zfU|^ifWHX7;xfU9{!Q?q*9kuK7Qu(!wQ%2l^SdXLyd2RA?z$i9W**`26T(wK4B-lUk@&RIWRjOmf{R72I{F*3G2B;q-(IfXsv} zfb4`EfSd$hk%!4LPpAl@~Tl?+qYnkM#8Y;M}3eimuH?a_He~Z-==Qmey=eN{N54W}u z$L6=e`Rx_l`5krB!<{YEDl6xA!TH@3-1$9pGd*$m2SOjfkN<1s++!rEsyIBT3oQGX z-GN2ih+QD zK|})yM0{W%5Q#)0kw`)$!GI48pr8;j{!X29PxZ`fFT2bBu~pUIz31F>&wZVHt7a8U zGq_a2Wel!R@Kpw1SMUu6-%@ZDgKHFA%i!Azb~5;mg6kRFpx{OZH!HY>!S@v0#^81Z zcQCk1!4DYRt3bSSp91m6j}?eNeyTwH@sI-X$HNN5A3swd{`iFg@yBBd#2=3<5Pv+W zK>YC=1>%q2DiDACPJ#I2_X@-xe^4O)_#=TOW%QO8@Pyv`q6K+x`IG(CdWn-?R`6#A zuPXQpgTE_yjlt^*-eB-A1#dC0OgB@7N$u#~}a1uGb= zQm~rAVG7nTI6}cX21hFp?;NW@{BfKD@y7`Y#2>>7#2=?95Pys)5Py^vh(9J2h(9(d z5KBLYDZ1>%oSD-eHdRUrO2OM&>~GX!?fp7tC(!RzN*kav#r?621OoP42z&oa13 z!50{ONx{Vo90gxtP*qT4&`{81FsUG55Gm*|NEDT;C=smnDAq%PMfkh;t%kh)y2KJZ3?5eS2!lrz{G7qB6gcuIlT{j>tH z^ce+W>9Y#N(&rS2rOzu6OJ7hRmcFP!EPY9VSo*R8vGf%Jcb^RpzltY#_-_{E9)8XK zYW;(g-%#)-gSQmC&EOpc?=pB#!T%T>Fl5X85S~!x5(Nh`SgPO<1}hYZnX43tVTURZ z!`3Pg!`3Mf!;V%Uh8?Rw3_DJN7IK?nRFI;5}r_(Q!U8-H)4OaN}N2VK=N-; zAUQS@xPV@UZ()&7SdeS{l>OB@os-W{u$94C3eIM5j)H9rwktR<2l#IsE>LtK=lQ$> zG2@F0q~MDcNWqQ*DY&9Q3icFm!L6nODRz;WIB5kX)#E5k zd(xigw59dfZF|#EJSj52WWJJQ(%21?jvsijB)-(6unK)H%&=+CaawLiHEQ>YJu5mJ zvD;~`Uy%3|CmtdNR#oAPoG_GIpM}-bk3u(C?{<8#<^|5MTC1?W>4vq!+Fx_}pm=3L z>JyxLq?@Ht+fDr{46Av#gi~Iepe*afhoqQJ?6=(*o)lYb`sPxg(e}{! zsimE1KW#ejnUj%a<*`EPclVdlv5ipL3G=Gny5E#;DU{y4zm$$o6iRQ}UrHxNowBX| z<)W0nT-aStiM>QSN|}t3p7KMHr`OqYrhiYFX;h*pk)AfOxiH}FeNwQcP;k$_DA+Jw zD7bf@6igHf?h*y`GGfkb=FT2?ZX7yk({n0r;#U)Abd#ggKZf9}6Zn-F)1OlwE!z0b z52&iAyX+KIv}u_$!)(>G-@#z_I&B|w0Op*khgmCj{K%Oo7ZtijL@APDtg`CNp394d_W{Ao}Duri+W;NchbnoZ!y+nKWsQQN^txzpPt5h zCXok45e0U0=J-NUv+f{9NTRqNMAPuRpE{e0*1l21D0-VSrxao|{kfQ^iynhE3ez}p zdJ4Ttq$&EDGe;NFGFHnNW#d{{M(e@SF+@uT(&gV}Ts}%qN73b7`Z-EZ8|m^M{XBx6 zw$NocUB>BhJY5FqGC-FT>2eHRK1`Q2bUBSKLv%SAm$`~Ls20?*PGNO_6Kc(hGo$G+ zh};@2UJ0*QW+;mNhL32(;T0i^eZ*#FY3jAnVcpcFU&~^z?ogEE&7}1EFf1HyT*Yb; z*1Q=f^;1%agu~}2Q0cTv=4or@r?uTq2dzs|N6k;k)j2)sN6b%mgP^C#1;T6**0k8? zV%N?Wjw-Emw$m?3ja|pfJvvU}H$tbHBu*6}S;MP!cbH}ESxl(#N8N9r&iSv78z){o z!f>RGuG=*$&#j%GlTH){v(R~Pqu#d9tKl?+MTi@y3+M6M zPH3z7Nsg0Qtk^T%77ok?%n*44G4v#b83?V>l4M~P2ToFLdhGk*)+XfL-ok+_u3Pde z-m?vC&$wx82pfGwiQCOkoq{bI0yRJO5U5UhU6ef(X6*{5D~c7_LN!&^{0R70@bbl^bD5O~k!1w>c((xl^7y@gq87%(YiJ(RQ7qKsP05A&_e z4zn`rVBmP@!D+LFhPv7e%A->a+$2HgYt_jv+sSQIFLBft^`O96irs+4D0sc`h zD?EO+S>_|84^xcUya#6$v`j_1D)|jdJ*tK-mVcyej>)H{5|x=IrO`5`Lzv&FO5&E{b@+IMk}44?@joUp4J^ zC-$()V~Idlgx9Scg;(a}zH&X$m6f3H33uZYI3E+={6Z)O+l@$X2xd#6@6}9+?P_E` z=9#>GWSg3g9uz`FVXNW=R*XJMTPQZBixrDCU4Js0FGk;{nN#PNHoibCt2wXy(QuiP>(7f>XP5uvXG1ToRI&7KUR~&FL7!GhfT8ds`{`aLG2+VyQ7~ zOK1%DO3;T%{U!1WVlwNMpbwAwTQ;FCnJ+~j7s+OB7xmeI$ph2M6lP%T6=Pc+`m)Dt zVE-+y&PJz+SqI%HOFTHW8pSS}JF&tP(e@Ya6VO^=`jW=B+~Sfq_f(Ri;d%XwKAAC_ z`Wd}NTFzx5*iQWbF_SHszMwH{SiJ2g)lyVTsy2~6?J#RO@siBP8j`wkYE$X61UrTh zESE-|O6CXoI>HMM$SC&#D?*T;*Lzl^s3sL6j2EdK-n-P+Cv?!oTHiqeM099P)1ct2xv z(jKPQOMSO6Rv`b3XI-IMcP)}3Gb=Ty;Qhnp-PTS7EH-`&j-L~j`3 z=wX#PD2<{Z^*i0|S^jrVP)orAm2w|8FdyXbN)K9E_d^r(Q}_V=6b-2U{-<+2QGugp zE>;!A2T(<8zN*^8RmY81Y20Yx#f=tG+-OzAjg~sxX#K*C79`wg ziNTE)3pHi$PeJUC-Wo;A2ei^sfE!KexY6W|8_m+V(aeh*&84`}+=v@ZcDT{Jg&WO7 zxY4A78_gED(KLV?4Q$+KxZ*~`PtD)+;}UBw4M-J#-y;)y2w|mZh^q9y9zpAhRs#)d)v)_R2@%Q6Djn$4eyxE`0ycZY{I;FX6$dqgo6TTL*fpC< q&8Y2_;w;1qlM=mdDPhLR|J9;uQp#8D(g>c@*u%-KmcT82?DzywkPiFEI=dzAP6E51i%0SVDnA)>*+Vs2_0s3 z0IVb`0&+{Tq~^)CEK54sCo5;l3bvKb$~m2_aFT546i(79*plUwb>CNiRlR!M_2#|q zp61EMa<{AAUsZqo_2>HQvo8GPjpv+u4*zd(b+=uMnrDh(b0_MwnvJm88xD@VyC2mn zk2*hn`SAEBhG&Pz2ImLu_VDS!;YzFA>x5w?>I?_hY8d@qR4vqZtqcoKC z^h&+Gc8E>vq3J5!RBpBRHu}9D;b?@Eu;6GD|Gu=b*X?1OI$iF;q2`8sGaTGP{1;0= zNU_}S_F4@!Lbu;&1f4ysA#ScjUGyN*N?ar1I3IVnqjo#ksE4I$zp2&``jK@J4gG;!YPPADgX)Z4=FP^|3D|Z(@ z*o>-Zz6f}zwJ?PX^$!p?HG|rd`HfSED+}n1}5O{BuEQt%$$!JRWLyqE;vB?G2wQoZtQY z;oyU{Ua#G~XJMh*0*Z>8t=1-Xw;gqH5*rKn>Vay|i0XUyJ>KkvoqLuR7w=xie=GQ} z6K?kFLFew1`1>0EJB9z&@!#piMGRGYLPiJ&m#e95#WNdRzSUjW4%$I6h>BaBm+2e~ zu8w!8)N1n-v;ElM@@BBJ5p+sr>?95Z==ci!asoe{XhfAtJsbvu!@5t{tf=)L0W0At zI?>&YdgU6=(G`kNoFA@|Z%#yDXeW5uNG7+`!k`j%)amP%Ho|JF6P7BSR=d*LZ4RHP z3~m62X*DZ2xTP*w9VZ47ZK(5ghL#F0YiA%i&UWZK+xb zR+rW`PM%&D?X&of)>?toDrmH{zG$bhC9FX(o|UiZXiy|odj5!KOBB$GMr+Nsr( z<;9KF^rMkL!dc6|5vzDt?=(|4AQseV(4Te5G(bb(#QnaeG`%B=-p{-1F4D@CatgRBCn#8lLD%qt zs0Z2^Tm@EGc%)VCQ$*wFle1r@NU<91kT!+`Y@Dn`q=iD4no|%h=>IM1rl_^B0SqrR zf~dI=H8vM01v|~4Uf&arUg5N5%OIxqitXm+1D#;^zFwz~$y{qhPa|w>fDBt55F_Rj z)Y~p(xmJq#z0dNDeS7cSKLW zW(&dvo$lBVSSPH8ov>L}J#nf<&X))dQ}5vOs}ny$LI;iE8zaAVDDBZVMlJ*>1SY_C zl_tP>TxS8XcPXex5QkmpZShw@uh%IBP0U;oQx^lpTcX9k)>5=$^d2qDgL>gn!3(&x z{#$nlPJPXIkM6McMQFLvX?dvA3HB@m)qGQ0v;O=Rrybf{4@4Vwk|1u~uZsqA!{bfJ zNNhmisSuL8l7w($N~`|(R+)E7Ct2oO_wAzr-4?H4UtmWw`)Pnj-rt5o+G~wq4QM3QCI=x+#J+*gS{?~nc_6m6N82&tQ+HRZ4aTyHwM?lZKP@Q z^VRXsm9QH0>(o;(gzRnvRAnO^Fo*;#N^v&9sVGw4bm8GFg8NdeK0UZT)@@6m`$oG5 z#qA7K!wc@e|Na6rO{YCPqu2-Nv3wQ_Q0{nYa6$yG?$+s8fw zvlbEtht_|S&)1hv@%!cV^|jUI<&&q^@%dZ%dDR}hBL5jcsRpxCc*3~XK<8OpTwPf` zy|}V`dimti`su}#FR5!rP=zTzoG(uh#*u z(#px@WiIt*&s@u$aBR4>(~HX|S5L35t(@X#zTp&}NjdItr!dF$_0^TNm8FyT?k3N0 zQ23*A@}pBH7nhgTm)Dk;PvavWK4C6Us_sUx8JyLvFP~go$H!|cr#a2Hd4>zm;Os?8 zB-iz)%h<)`ReZI)iY-|>y@pS3^?vHuowZ*J25<3n+6=+zAWPj@ojiT|6x1y!vjpu! z-exDLM9QFWzB|3Vw6?Nx3UswdJou1T5B8vsx`UlwJ9T>f^wJtMYGV90&lGvEpj`&_ z&2Xa=I3EKC%cobDaVVCSmeWRT@gOBWTIDHPT|c?DN>cP8y%98{HWd32DqdY&UtV1Y zRjr*qxr9$|@JzN5!tRWbvbwa0&ZiewSJzGwDZWpdVYip~WCfPQ@q7FJ(Us+jO zJq03O0+UP`kG>=tf$mpe8#q!+pkt1w5YGWZNU=1Qh`m}qeQI^(G;o4%)c)FUz|x?k zL#nuY1-tR|sgvtK;K~xwr}oNzLOm1;Wc2FDM@uWqrxw8pPr~}aN7oSN_M`D*wY&&^ z3r4@TrVyU&-e^_&(D>t(;{bs{Lo|?+0s7Sm=%d88vb=I~9UO1*)ae!OW^&E6SQ}&0 zUp{qe{nX-V?8@q?u}``XlVB!TwmYZAQ|l}1ORJ|=PMyY_`eG7jUr|ZeR!=SBlBih; z&lEd2MUW7&ZwN;bI#`K%XarZ4;sR%3LzI+0(hM45sWcqiUfS&hZR7`@CS#3W6}W*hfcEu%e=G^bR)Pr7MCzD*pkrP_e$d8yR`nohf5z?{pj`! zkG3%Hv=5iX1U4VN@I>d#3-3O$^pR-4k5)>(PEZcbN7YxFwMU~9uROH6yU!F?`BAeA zd2c^l`|!gry#GB*JC!H#;hkwyJXxv-ukMw0x}^{v0oZkyo(XnV-}^#!=b85dCktuc zt(9u6-BJ%mKGZ*0-Yun-Lgl)&+7B!J#~*!ad*g+DzCYzmIB3!kg+QU_@zSkRFKj&F4h2P*r+W6}u-{TWrA1 zOh-6H=F`m&EIqn+B3#^SZNlkt#H!`tnXn9g03)FpfIHvzWHg$IaOd-7QY4~uDzYbfxj+1)qsG#EL-G!t0 zZ|Qj9?AfCQaG1@oci+*{Mm=b5AH84AQOy%Bm;%BZc_u0jvIVsgco!?1%Auu!y=x)3 z|FFW$V=7{h10^13k<9)7zs0LnHNoP03+k^6^lvT5L?7Va?~}jZq2ecrrN8!$LR3{- zg>Hxk6&;rUqO)l)7v6D}cp9Ua+G?TO+pCB79Yxe*Git&k*S@DvTs+wc8}}Z)|3hFK zt-|w=H5~}VcP-Rb1>a+EqAKj>u&^6ddbRtGo?KfzTBwEet=@MO;{52yAR8^jY8v+x zmeeSgE)pcMySr;vqbQcHx5|Ph%&gUd{47*8vkm35yYDFG1+QOg_r9ZWO?CF#y|8kk zfw*39Z=oHPd;Ly$0!Yw*)qUwU=)$lIn?l0xT9DQ1e{FQ`Ka72VlN(zBG#?&4rmt(_ zJdCrg17|CcZ7P08m+Sd3=#|NRIBL?oc#7sZ;syBsgL7{mZat6SWypV=_tLQ;{y07i z5ns?wut&S)pbc%}jsD*qn^!{EEw)-2UL^&fI_0xqt#@yiRc%J{OemYFm;`es1+}dgZmK}cV5M6NmQSvocqm-{(5nlp;WL%T`)eQFdwk*KM<46H z(A;=uWAT0U_cxw+W~;aMk&m8!-}|;7x(^bi+<|q6bAnTZAYRaHHTN2=J_o;6Ij&(k zH=s)+qEQkD_PKAz!ghjsAKM2ysIAmi2j}C^4xj#lVeM3HeQOUJkG~JD0+tye1ksqt zVC_=~FJo_2-;=eqt+TrC#o7@+tbNLSUprm9$NYV8A!57%;?K5qaEbb*RBiNzPup&X zz_K^{(1$>9VRLAIzf>ut(03v+BQBPIcZY%Pa--}Ov?_t10$`LJ@Hf5IX|;N1i?5ls zv#-IIbv6cHfWV-83-&b*DKy?!p_wU_MeJWX$}ZM@xb(p-P9yzen<~7jJyydv?W7Jj zf-X!SkP^nmRgFaChL^Ws;U^8~+N7zS};=S?OsHw^gNy|s5)fLEGOduan{7dS!jSeI{yVLJ}~+v(Mo zYRd-J;Cdic5h#v(1MwMc*+C-MAr8a5EQK(2pdH3%R{e@Iko@&(g*tF|*qpsmwH_er zAl^lY5h%+Dn`(>?&TH?*i@vOhoEM->g}8@LKg|<&M1BL!n>>=UXhFkea8#+34HYMh zr*#NU1PIjaz2Tdx-xd1bTJT_9>gQ{dKVy$KAr^JxMItGj4ZTLo4#*4q4OT@PLi34p z4HmaT9^|Tfns03cXQBrBGA|^csAudCe}v6Vd>c<#3F#7`GS&x1>!tj)4C3v;#~i~r3}X_5!lU4F<4e2Pquwih6?cna zTe}Ege;R9+ygLvl?_m9)e#kS&)nro{?l4e+`qP3`;?*+^|KLEk3D!urDmNoxPZSa zrhZuUP?-V4tt-yMM)D7Sdv)C6WFy#S{hDmdS1#U>WUYxb)v)lkry;Xy)-3Fh3z{pNO)X$rQFOs5O34Vk!AaMyQ8 zeGX$?|86t@S(wVj8Xh+^j$|$>Sjx6{e$^8Pd7I1=`+>}^-6A8vPp3?c9xP?NyL5D|S|(1fG{KaI zkuiKCmeaCg#rct8SJXtDbyaUJ!JX!l}aI01TMk2n77wHSo@IaSKF!Wn!lSo zD1b%;P$)cZlsu|Y(RPU%2I8O<%b?ns+Ma<~d#v_e`}b#RAFzLackN;G_kqk6?7kC> z&UJ8|3;@-t)Ndn(6+&xJYNQsfwO48#3rIRcYfuRX2z^R^AGALsimy@NL=thM5Za=w zGR-oRSdEUGw)!Nc9sXfDOa7I+${Yu)XW|u@Ui^tGfyrME`qb~2X zU$15#HyO2Ya6z#L1<{TntK`gZ3Yy}Yp+26RACH@X5GxQeKMp+JCUDjKVml$m-iRB=-AV{iX+()BE^%0pLw@LO54+7O)+AH5t`_94597<9zO?W!$itKJfSHI0^W@3%9 zU`$6!U+nMTCZ`h|0!TR3J=o|Dz8I7r<>`v_BheK6<8oOmc*d7hY2y3-}HDohJMxOdNviPW)>NFBb25 z=K~+R{k5~lj=%omOE16l(#s2*cNgw_>80E6xbyhEg@uK}?ROL!AspZZu$96tq;Xh) zJ^~?A(ZCMFHL-BlU55*I6`oaC?iMs}uN1hag(}hu3PIs%@US9!vEzd(AENLYe>T(3qM}BwGgaFKm(MYcMKcIJoPZ#6G&88k(ydcU!7n1x z)Y*GZ6VyZXx&>7P?K~QkYsZMN!hQFvuR#qw9LJ6yzgNLI>k^CrjF@Ro4BV@Bd!g_! z^w$j}>VhKRIt~gX&w`xSLe#}Fp_qr2V&TJ4yzoc&n0B3Zc8La=Xcx@uB@TjFtD|_Yxaony zM_Ps5u%PVr0=BxqVX(M(9JFcH)h!UKN8kJCvyYxIKDzGF2h`pZGSJ8=bCQ_FZMXSm z>~?;yOk4GJmtg0nQdmO00-jayDq2fma7;f^(*Y&IKBsq$!zu7Q31%Ym__p=m5`+-&un4NwG_Xp9l=w8@A>-eawv(4sRYN#a=C#T+8; zF^)m8OWozzoi8=-Jnmvz(HNi*YEk{;m>^#;N#t>pq}%JS7u<=3+~E#3IuF8kHc6nX<-EB3auW0y+3;Kb z-`Mx#OAx*)-3tjUY23oq-~BLzky<`C#pMpi3wO9@QW3F%#RaR~(XP4fG4}-OFU=+- zz9aN{#s9J$^`be-Z5|Fdip~sFIM7CzBX&uxf}W*g#|!t}cVFSoJ12!Mr`vL! z$Eh4Buw5n2{;U$k5U7muV)RY2H_n0#GuUZG6_ufJ zf>&zTs>CmZD@bM2&eItfH_|js9et^JG;yq*UYMTquVNR{J3O{{cj3g6P=7)raC$-+ z7}mb4_T7DJWJpLt)>?|4&lf7^b8M@~?GL6=LXC#ItP5vVY!Zk?CmuNZ%Cw(+a9*(x zgOHK5$zgphu}P!N78Rj(eLBV*k|`LI1z8qKn-^D-Ho1@@1Itr1cI<&`l!?_s9~3Vy zI9Apz${b?ANX3hkD-a2@+C9AW0KGEFDS*+`VA&wOhf|1Mc4~-KNsvKWyZs9OP<2U8 ztmeVJHYi_d;(`PXkDZPR`Zn7Q+)Pk?A6!`oyC)a0btf8)`iU|p$s0Kqs0kqYFm;6) zPwp zAstOcpr0>8JH2^FOcR4h%6l2NU1r+)^oG4@zq#7{&IG8E+?|X)qHnRSv713`0eU&D zgX#v;4UtiJQ4K8K^96Ra@g687iMexremmSwd0|9YZK#0RfemWvQ;TkLB)AXmj ztjD`qTIh$6zcrAnj=*HS-)IisOw5UW&cGi755D|ToD1=QDWQ@M-CB zt@If6xw62j4RT~{d@U+7hDBoQnZ90FMZfyDedimXPEg5H}v|lCd zDqyS+IBEV6V{!Nq4#P{Z?pCMM+Qn@%`Q}pnjW}t41?)h6*YgwKT^tFLMvZN0R9W^0 z+j{EQT@{93rr8j$4ci)}@WHPAXywHrU}UW$Z_co-1NV^nqInxGDaf zL2-tMWy_f8A1k}@dp#D!xY;bsbanGh$^a$`J_ zZix{xIPYV(85*ak*9c4YQ#Y8%%kM}+QW7^KZ!|LljvLcYa`f(?@rDHBjw6pWDn0ZU7VA8 zDDF5!3UFBwcU59P=~X!DQM1~je@b0S;hEK}K<<|8WU{c6xA3y1ej23OsB(VaD|##e#qL6KfSVCibj%rE!eAheHr>g zG6&c;A1U)HI-Km=;U11nMeX|FVq}aUTFF(azqP7Z4fqxkJujv}MS3K-7ge9Asgg$z zG3$peMBapFK6<%Cmkx7%FY6&YFsR^~BNQeGdb5xT{p3 zG%Q@p*8T8s8$0Bk&k=UU5$bPZRjqA=oAf!nCT>u~s4ki6wqsktP9Vo6_dqw%v)Oh+ z$8@SeY3SCR=fnYvDuu;rOSBPesoT~_hHfD|8)F+65_W_} z<0Jv*-l!iHd0s^^ne2k-?#>=$qZTO2zEnN@A+xxh3W2dvt;I69@)f9SJSOoJtO;~P zx2gOlm1z`zcbRTe${w?~Tc}(R8*10O%|2`GDjG0K8Kf0OzaH<2s#HyLifgadUNe6m z+`#@=c1gamNi6uP5uFKRVl~zFx!FJiLnk@y&PSRKmh;gXbhH zDYXjD%3gbgIEv?H$GhE(XZwL|Ta~3GHW~~ZrrX$$?CAW+Uh77{*sS!%ai|h>15y-! zjJsZMy6Vy^$XkKF-*MLZ7SkhY!Yc<|(W1sx4sJ5NAo~FVu}XW*H|Fg(n5sEiht+v< zvGIkFCm1Bm8`HrAvEnXcFx0*~2HY5o_MW8N#W1e4!`RX(qVM9?upYlmo{l>RvCcm} zu&$+H%&oYCTneJmKqb_u@(8qQ;7S4Eg*e>RZ($&kPgbvPuR>cw>w69?l-a@M4bmDI zvyRSdiH;z#8IiH;MucKL$i{$d#KlD2M=UL{QOu*;s_!5#PvK(g4tOJC4NmQ^*4Z}JcA^rO4f{C#j;98A(~MkNPh=qL(?)EBVvU>C%NyL`%f z;HZYzswz~H(8(0x68-Z|`{k;Av)UMKxL!3NgN_BJC`fhjt}lsM+cm0-5w_hu%z}xN zX1@kEsCIBxIysSjZp5)O{1Md!+EPi<(#Q>tF~hva@@E$+*CqY}j}v14$R-+`Uu8?2 z6es|g7AdBoo6{)cS6K@Lwum-}5kwz4Ymh$L;G$B2OG6Mj30WgJRO%AhiTEmK1E1ID^Pmq8U;}C#JykJNGsG$14*S%#8{Rx0A&r zBu!pzt}_`yX+^oMm2(J0iTZ1d|wRc3| zvtlU>Nn4F?O2n5)^rbyqb=kBo8Vlz-3rEnd6pdI8*;eC=(k|1uQU~duP8(PrXAo)_ zTmaqD$?1*ZOMFZxL=G-oEuMrsz;dmd>`0J!sJYg~nX`RQt}eFYzFSWa5l_00cBh!G+_2N6aFW(bW>GgI3kmydwtxsIwpxs$F;(92mTMV0CH^raeX{94gp#q=8GC znR}wHp?YZUg)6;YCCgdbP#UXgr@=xR!--(c6|I7{kE#eyVH332Ea0{x(n$(j$4-Rw5GD&D?EBhl;DB2g3h!3NLb^@U6Xk z?6ueQUzJQed-gapkvR5?$-&`bL`qeiALzfD4{nR;{4y8TaB!=M^y#0Ao0|(C{m=(0 zI~%V){eky6pSci+gZoE6gSN1syL1;$oj$#eA`)w-P-5luNz_JI!d*xMAgY{=g-Gpt zYyZaV^ww>pqN5HeZQaR#9CLo@_csQYON>vIFN9y`iF29q$f%$GMO>4xxCa*@;KQ;w zPuErkSIEVXqV+ak{EYTHo9d&rYirkUeI*C`D*o}+{Nro!2R%zjLFY9V(d3O?uKEoQ zLCaS*H&ldUgGXqHEf@?4br*FI4mN@u`(7nBlF#`J3{8;3(jPw~S@~vZ8;eL3XC$Lkp;a&kP~}2jGlBuTu!B?#_=Ul8$evk=b~t#q8r?<91gMk!FhF9tNu(?|T+@rB zxMo}tfz#pOVILkQ07Cx|bRHiRBOZP8Fl|M34J3smO{aYU@U}y#QfC!wLy{vXN$!~s zSh5Ey?E*26`}NLO{-Zbhy4bbA!z_xhmfI%>Yf>84^AhRASmkNP@?rc~Q& zw;=a%&lL_QrB@9H?^hqEpF$pERkT&j!|g|%O&7y-@R)~nJKcS&OW?`rTU7I({kS5h zY#BnxE+%xi@vgMtjUONDpcaYZUzFe(qk*hhW4=1zWLzr*WxESio*DEO?omZFH~ z(Co0cO6I_H^UU6E8Kz&)oW6UKGdIfZ3|Rvm)v9X1=bZHuSZ!c2UYYI?karD^FhIsi z`&DCkxTKyGOf){+RwTZn9tV;{XfzB5Z&P^X5tRbs>Tkse^~NNNYB&foG4H5f-bp*P zOR3P9N{u*@oldzGBC*D6|F|@l30F+R;oybL*-pmtf}PD$8@loec1(=C5m}YZ(aXr6 zry{wLIW%4L8V~vFWJIc;+Gn z)u0USc05+GnOda_2bWq^6v~4+icBhl^ps6V_aA7NLAQoVGAvr;73>NPw1s?Yu#Lqk zlLPVYg>N5iuM7~nz%t^ge3ArFSsX=WZGb@TP=I+t=&MtJ%s*VKGDVN9s}i@q;iUy^ z8$FN(-NW+@IQb$=4Pv!(CkM~g^F}SDrn+ya&1lTutAHgnHShEihC-3W%Z7uuc;tbo z(HJPbYGATz;cfdMRFINlkWavdQTGV@1^Z-He%|3Vo8h40qpk!ibY+(hpKj-*F|Jii z@BqZw!Re`wJ?$HB;!UgfOE}6Zk^e~_z)V{eeltF3!VEs;4@Wc>ei}Tg<5LVc0?ar* z<1;wwA(S!7^m<*aa^ypzZG_Qg5dR2lO zoH-uQNknrVIk5YBV;MYG?$|VMNTvq?-bHoi(eAGIj8AY}@W=&t5HmDqSB-&p2#=5W z=xv5A;p;YtTrA@(^4jm1lY1vAl?eVoGW43}Hn z8LmjOSXN520P;9nv-dJFWU@O{cT+jM)a#?f03?&w6Pm6DYhz!fUeVRhEXf@nhr44n z4dsmEBGpT!l~QF7VIwGNDCVqGeE4{?RdIUZyjzx7pz2kuFDs`Va`9h<)GB9gTM{jq z8<*@}+{PP)DIz_GiX>r~UV~P+)eNRRX4EfK>i1^mnvI5?xmwea0VL5ub;)Lyra?tb z*=TLt-x6bzCL2<{;9%cif6$1l?-DLGsM$KnlQNXRg6y?&Y7QSWJM)=%1U8{F^kFbk0A1t@Mi0XvE$WcW@ z#;Q;snSYoNWr~foucBdn3Y)lY&1yW0K3eriP7nviSLU%-u1&D%QW-;dUpLc7zv6-y zBPjv-BqDB-4Ic6x1nXb%Ey^|`?zV}5Jl@;$!ElLa1~vxWM8#*T2vVnr?A!tmk#2b_ zL%pTJG)(v?k$Q@RB5bf16NVIgh%jvo4N7)o4qv20o<5i^)?A-T5f>UO5^MF6vqNcK zurZw?LeGfp`!e^;!wnO&Q&cGd`s=);HaF9UzRoan{;qWK;>6{lZs#I6U8BTU8_tI} zn3RL!BA|IVctXuG{ruYFswU|6bG@C=fRuqPJMZ?Iz#O6uz}sOn`+@MHZxd#14gsKE z(aJ=L{c z+(P`=BQu-e6q@`a*tzNoZnl>o-G`hwmfE3=sw+*TSJopFLILJda=wggo071opP9F< zyxuOYZQ@F`3I?V)ikMaJqZR%RFCp$!BP;~f=H0%7@65pm!)b<2knm{5u}HI*A{^9# zEBnTBu{~oF364LAe0JR#CHUs-D!^eP0VQ1p-t#oU89?Y586&_a*ohYj&c0=BYX})k z({NpFSq?{!-EQsiIjHaeUJQXRwBnAfXQL+bKSf|UHNon0}JoDAvYv43=;Kh(E zp_Icg!49YrCwXll#UDiAd!^#O7MQZtwXfI9J9G14yuracpH5Eceqj`FYd#{U!wBgt z&RU3wI;)*=yC!1NMM*%FaEjY&0%6Rz+}eu8cyVDd?V}OfSTwhI`*`2M$hd5$R(c%H z;uYf_i{h!Zf_DE77y4LatW>4}CIN3g=Hm`rdwl)>Q5AJ2I>xGRPw!2gLG z4myAOpvhX_Zzwf+5lwN1oxDdTn~+U+|4;+KNn8 z-9YXL<0#kIbBJ4kyp06vPSLE)_xr-u@gbdwHEaF=En=in&CmCF2KprI+qoI0Ce@0D zsrULx4!RRlGA04n0hPnrNKK(}d8rlM;J~AF&U z3gOU*S2cIC^QDWZ9sjXYnH)q>e#D!aWhD;*ch^W|C1;(2vD9g%< zbE3S8N{lcvOqUevBQq^U=*e(>>7L>?N!k{^RVI7zDgr7$=E*g6chLtpeakzo-s#1Z zI8;uthZ{_&PpSB`@nnqbN{(}>?OW@QOA+U}*e36>>Y%|p)M=p^JDxE|twF!KJveST zcdTh~E~pZK;(Um@@Cia4W_`PYIU3S4@ol-Yn?eFP$w{fL(sw^^SJtk(?L}yf4OBcp zz!`;C{6ZkdHkpl0rYEW_A!KUvL1EgbX{Jh!0W=+Gk(WDbq#d

  • diff --git a/ivy/docs/stateful/ivy.stateful.layers.html b/ivy/docs/stateful/ivy.stateful.layers.html index b421600f25..4239e78f4f 100644 --- a/ivy/docs/stateful/ivy.stateful.layers.html +++ b/ivy/docs/stateful/ivy.stateful.layers.html @@ -1508,8 +1508,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd757b15930>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd757b158d0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f3cfed21870>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f3cfed21810>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NWC') – NWC” or “NCW”. Defaults to “NWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1546,8 +1546,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd757b15870>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd757b15810>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f3cfed217b0>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f3cfed21750>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NWC') – NWC” or “NCW”. Defaults to “NWC”.

  • @@ -1585,8 +1585,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd757b157b0>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd757b15750>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f3cfed216f0>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f3cfed21690>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1623,8 +1623,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd757b156f0>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd757b15690>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f3cfed21630>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f3cfed215a0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • @@ -1662,8 +1662,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd757b15570>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd757b154e0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f3cfed214b0>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f3cfed21450>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NDHWC') – NDHWC” or “NCDHW”. Defaults to “NDHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1700,8 +1700,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd757b15540>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd757b154b0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f3cfed213f0>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f3cfed21390>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NDHWC') – NDHWC” or “NCDHW”. Defaults to “NDHWC”.

  • @@ -1764,8 +1764,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd757b15630>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd757b155d0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f3cfed21600>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f3cfed21570>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1921,7 +1921,7 @@
    • input_channels – Number of input channels for the layer

    • output_channels – Number of output channels for the layer

    • -
    • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd757b153f0>) – Initializer for the weights. Default is GlorotUniform.

    • +
    • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f3cfed21330>) – Initializer for the weights. Default is GlorotUniform.

    • num_layers (default: 1) – Number of lstm cells in the lstm layer, default is 1.

    • return_sequence (default: True) – Whether or not to return the entire output sequence, or just the latest timestep. @@ -1980,8 +1980,8 @@

      • input_channels – Number of input channels for the layer.

      • output_channels – Number of output channels for the layer.

      • -
      • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fd757b159f0>) – Initializer for the weights. Default is GlorotUniform.

      • -
      • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fd757b15990>) – Initializer for the bias. Default is Zeros.

      • +
      • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f3cfed21930>) – Initializer for the weights. Default is GlorotUniform.

      • +
      • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f3cfed218d0>) – Initializer for the bias. Default is Zeros.

      • with_bias (default: True) – Whether or not to include a bias term, default is True.

      • device (default: None) – device on which to create the layer’s variables ‘cuda:0’, ‘cuda:1’, ‘cpu’ etc. Default is cpu.

      • diff --git a/ivy/overview/contributing/volunteer_workflow.html b/ivy/overview/contributing/volunteer_workflow.html index 3378656eb5..ba5e2c63af 100644 --- a/ivy/overview/contributing/volunteer_workflow.html +++ b/ivy/overview/contributing/volunteer_workflow.html @@ -1396,7 +1396,7 @@

        Top Contributor

        Join Our Team#

        -

        Embark on a rewarding journey with Unify by signing up as a volunteer. We invite you to complete our Google Form, where you can share your details and get started. This is your first step towards making an impact in the world of AI technology. Join us, and let’s innovate together!

        +

        Embark on a rewarding journey with Unify by signing up as a volunteer. We invite you to complete our Google Form, where you can share your details and get started. Join us, and let’s innovate together!

        diff --git a/ivy/searchindex.js b/ivy/searchindex.js index 9c954d9ec8..ee8af19bde 100644 --- a/ivy/searchindex.js +++ b/ivy/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["demos/README", "demos/assets/01_template", "demos/examples_and_demos", "demos/examples_and_demos/alexnet_demo", "demos/examples_and_demos/bert_demo", "demos/examples_and_demos/image_segmentation_with_ivy_unet", "demos/examples_and_demos/mmpretrain_to_jax", "demos/examples_and_demos/resnet_demo", "demos/examples_and_demos/torch_to_jax", "demos/examples_and_demos/xgboost_demo", "demos/guides", "demos/guides/01_transpiling_a_torch_model", "demos/guides/02_transpiling_a_haiku_model", "demos/guides/03_transpiling_a_tf_model", "demos/guides/04_developing_a_convnet_with_ivy", "demos/index", "demos/learn_the_basics", "demos/learn_the_basics/01_write_ivy_code", "demos/learn_the_basics/02_unify_code", "demos/learn_the_basics/03_trace_code", "demos/learn_the_basics/04_transpile_code", "demos/learn_the_basics/05_lazy_vs_eager", "demos/learn_the_basics/06_how_to_use_decorators", "demos/learn_the_basics/07_transpile_any_library", "demos/learn_the_basics/08_transpile_any_model", "demos/learn_the_basics/09_write_a_model_using_ivy", "demos/misc/odsc", "demos/quickstart", "demos/wip/0_building_blocks/0_0_unify", "demos/wip/0_building_blocks/0_1_compile", "demos/wip/0_building_blocks/0_2_transpile", "demos/wip/1_the_basics/1_0_lazy_vs_eager", "demos/wip/1_the_basics/1_1_framework_selection", "demos/wip/1_the_basics/1_2_as_a_decorator", "demos/wip/1_the_basics/1_3_dynamic_vs_static", "demos/wip/2_libraries/2_0_kornia", "demos/wip/3_models/3_0_perceiver", "demos/wip/3_models/3_1_stable_diffusion", "demos/wip/basic_operations_with_ivy", "demos/wip/compilation_of_a_basic_function", "demos/wip/deepmind_perceiver_io", "demos/wip/deepmind_perceiverio", "demos/wip/end_to_end_training_pipeline_in_ivy", "demos/wip/hf_tensorflow_deit", "demos/wip/ivy_as_a_transpiler_intro", "demos/wip/resnet_18", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type", "docs/data_classes/data_classes/array/ivy.data_classes.array.device", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental", "docs/data_classes/data_classes/array/ivy.data_classes.array.general", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients", "docs/data_classes/data_classes/array/ivy.data_classes.array.image", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms", "docs/data_classes/data_classes/array/ivy.data_classes.array.random", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching", "docs/data_classes/data_classes/array/ivy.data_classes.array.set", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations", "docs/data_classes/data_classes/container/ivy.data_classes.container.base", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type", "docs/data_classes/data_classes/container/ivy.data_classes.container.device", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental", "docs/data_classes/data_classes/container/ivy.data_classes.container.general", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients", "docs/data_classes/data_classes/container/ivy.data_classes.container.image", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms", "docs/data_classes/data_classes/container/ivy.data_classes.container.random", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching", "docs/data_classes/data_classes/container/ivy.data_classes.container.set", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor", "docs/data_classes/data_classes/ivy.data_classes.array", "docs/data_classes/data_classes/ivy.data_classes.container", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor", "docs/data_classes/data_classes/ivy.data_classes.nested_array", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise", "docs/data_classes/ivy.data_classes", "docs/functional/ivy.functional.ivy", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.dev", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.hinge_embedding_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str", "docs/functional/ivy/general/ivy.functional.ivy.general.default", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat", "docs/functional/ivy/general/ivy.functional.ivy.general.exists", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.gather", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array", "docs/functional/ivy/general/ivy.functional.ivy.general.isin", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.shape", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow", "docs/functional/ivy/general/ivy.functional.ivy.general.strides", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad", "docs/functional/ivy/ivy.functional.ivy.activations", "docs/functional/ivy/ivy.functional.ivy.constants", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops", "docs/functional/ivy/ivy.functional.ivy.creation", "docs/functional/ivy/ivy.functional.ivy.data_type", "docs/functional/ivy/ivy.functional.ivy.device", "docs/functional/ivy/ivy.functional.ivy.elementwise", "docs/functional/ivy/ivy.functional.ivy.experimental", "docs/functional/ivy/ivy.functional.ivy.general", "docs/functional/ivy/ivy.functional.ivy.gradients", "docs/functional/ivy/ivy.functional.ivy.layers", "docs/functional/ivy/ivy.functional.ivy.linear_algebra", "docs/functional/ivy/ivy.functional.ivy.losses", "docs/functional/ivy/ivy.functional.ivy.manipulation", "docs/functional/ivy/ivy.functional.ivy.meta", "docs/functional/ivy/ivy.functional.ivy.nest", "docs/functional/ivy/ivy.functional.ivy.norms", "docs/functional/ivy/ivy.functional.ivy.random", "docs/functional/ivy/ivy.functional.ivy.searching", "docs/functional/ivy/ivy.functional.ivy.set", "docs/functional/ivy/ivy.functional.ivy.sorting", "docs/functional/ivy/ivy.functional.ivy.statistical", "docs/functional/ivy/ivy.functional.ivy.utility", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial", "docs/functional/ivy/random/ivy.functional.ivy.random.randint", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform", "docs/functional/ivy/random/ivy.functional.ivy.random.seed", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save", "docs/helpers/ivy_tests.test_ivy.helpers.assertions", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing", "docs/helpers/ivy_tests.test_ivy.helpers.globals", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper", "docs/helpers/ivy_tests.test_ivy.helpers.structs", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers", "docs/ivy.stateful", "docs/ivy.utils", "docs/ivy_tests.test_ivy.helpers", "docs/stateful/ivy.stateful.activations", "docs/stateful/ivy.stateful.converters", "docs/stateful/ivy.stateful.helpers", "docs/stateful/ivy.stateful.initializers", "docs/stateful/ivy.stateful.layers", "docs/stateful/ivy.stateful.losses", "docs/stateful/ivy.stateful.module", "docs/stateful/ivy.stateful.norms", "docs/stateful/ivy.stateful.optimizers", "docs/stateful/ivy.stateful.sequential", "docs/utils/ivy.utils.assertions", "docs/utils/ivy.utils.backend", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler", "docs/utils/ivy.utils.binaries", "docs/utils/ivy.utils.dynamic_import", "docs/utils/ivy.utils.einsum_parser", "docs/utils/ivy.utils.einsum_path_helpers", "docs/utils/ivy.utils.exceptions", "docs/utils/ivy.utils.inspection", "docs/utils/ivy.utils.logging", "docs/utils/ivy.utils.profiler", "docs/utils/ivy.utils.verbosity", "index", "overview/contributing", "overview/contributing/building_the_docs", "overview/contributing/error_handling", "overview/contributing/github_rewards", "overview/contributing/helpful_resources", "overview/contributing/open_tasks", "overview/contributing/setting_up", "overview/contributing/the_basics", "overview/contributing/volunteer_workflow", "overview/deep_dive", "overview/deep_dive/array_api_tests", "overview/deep_dive/arrays", "overview/deep_dive/backend_setting", "overview/deep_dive/building_the_docs_pipeline", "overview/deep_dive/containers", "overview/deep_dive/continuous_integration", "overview/deep_dive/data_types", "overview/deep_dive/devices", "overview/deep_dive/docstring_examples", "overview/deep_dive/docstrings", "overview/deep_dive/exception_handling", "overview/deep_dive/fix_failing_tests", "overview/deep_dive/formatting", "overview/deep_dive/function_arguments", "overview/deep_dive/function_types", "overview/deep_dive/function_wrapping", "overview/deep_dive/gradients", "overview/deep_dive/inplace_updates", "overview/deep_dive/ivy_frontends", "overview/deep_dive/ivy_frontends_tests", "overview/deep_dive/ivy_lint", "overview/deep_dive/ivy_tests", "overview/deep_dive/navigating_the_code", "overview/deep_dive/operating_modes", "overview/deep_dive/superset_behaviour", "overview/design", "overview/design/building_blocks", "overview/design/ivy_as_a_framework", "overview/design/ivy_as_a_framework/ivy_array", "overview/design/ivy_as_a_framework/ivy_container", "overview/design/ivy_as_a_framework/ivy_stateful_api", "overview/design/ivy_as_a_transpiler", "overview/faq", "overview/get_started", "overview/glossary", "overview/motivation", "overview/motivation/ml_explosion", "overview/motivation/standardization", "overview/motivation/why_unify", "overview/one_liners", "overview/one_liners/trace", "overview/one_liners/transpile", "overview/one_liners/unify", "overview/related_work", "overview/related_work/api_standards", "overview/related_work/compiler_infrastructure", "overview/related_work/exchange_formats", "overview/related_work/frameworks", "overview/related_work/graph_tracers", "overview/related_work/ml_unifying_companies", "overview/related_work/multi_vendor_compiler_frameworks", "overview/related_work/vendor_specific_apis", "overview/related_work/vendor_specific_compilers", "overview/related_work/what_does_ivy_add", "overview/related_work/wrapper_frameworks"], "filenames": ["demos/README.md", "demos/assets/01_template.ipynb", "demos/examples_and_demos.rst", "demos/examples_and_demos/alexnet_demo.ipynb", "demos/examples_and_demos/bert_demo.ipynb", "demos/examples_and_demos/image_segmentation_with_ivy_unet.ipynb", "demos/examples_and_demos/mmpretrain_to_jax.ipynb", "demos/examples_and_demos/resnet_demo.ipynb", "demos/examples_and_demos/torch_to_jax.ipynb", "demos/examples_and_demos/xgboost_demo.ipynb", "demos/guides.rst", "demos/guides/01_transpiling_a_torch_model.ipynb", "demos/guides/02_transpiling_a_haiku_model.ipynb", "demos/guides/03_transpiling_a_tf_model.ipynb", "demos/guides/04_developing_a_convnet_with_ivy.ipynb", "demos/index.rst", "demos/learn_the_basics.rst", "demos/learn_the_basics/01_write_ivy_code.ipynb", "demos/learn_the_basics/02_unify_code.ipynb", "demos/learn_the_basics/03_trace_code.ipynb", "demos/learn_the_basics/04_transpile_code.ipynb", "demos/learn_the_basics/05_lazy_vs_eager.ipynb", "demos/learn_the_basics/06_how_to_use_decorators.ipynb", "demos/learn_the_basics/07_transpile_any_library.ipynb", "demos/learn_the_basics/08_transpile_any_model.ipynb", "demos/learn_the_basics/09_write_a_model_using_ivy.ipynb", "demos/misc/odsc.ipynb", "demos/quickstart.ipynb", "demos/wip/0_building_blocks/0_0_unify.ipynb", "demos/wip/0_building_blocks/0_1_compile.ipynb", "demos/wip/0_building_blocks/0_2_transpile.ipynb", "demos/wip/1_the_basics/1_0_lazy_vs_eager.ipynb", "demos/wip/1_the_basics/1_1_framework_selection.ipynb", "demos/wip/1_the_basics/1_2_as_a_decorator.ipynb", "demos/wip/1_the_basics/1_3_dynamic_vs_static.ipynb", "demos/wip/2_libraries/2_0_kornia.ipynb", "demos/wip/3_models/3_0_perceiver.ipynb", "demos/wip/3_models/3_1_stable_diffusion.ipynb", "demos/wip/basic_operations_with_ivy.ipynb", "demos/wip/compilation_of_a_basic_function.ipynb", "demos/wip/deepmind_perceiver_io.ipynb", "demos/wip/deepmind_perceiverio.ipynb", "demos/wip/end_to_end_training_pipeline_in_ivy.ipynb", "demos/wip/hf_tensorflow_deit.ipynb", "demos/wip/ivy_as_a_transpiler_intro.ipynb", "demos/wip/resnet_18.ipynb", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.device.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.general.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.image.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.random.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.set.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.base.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.device.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.general.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.image.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.random.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.set.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.array.rst", "docs/data_classes/data_classes/ivy.data_classes.container.rst", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.nested_array.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise.rst", "docs/data_classes/ivy.data_classes.rst", "docs/functional/ivy.functional.ivy.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta.rst", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.hinge_embedding_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson.rst", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile.rst", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.default.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.exists.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isin.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.strides.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad.rst", "docs/functional/ivy/ivy.functional.ivy.activations.rst", "docs/functional/ivy/ivy.functional.ivy.constants.rst", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops.rst", "docs/functional/ivy/ivy.functional.ivy.creation.rst", "docs/functional/ivy/ivy.functional.ivy.data_type.rst", "docs/functional/ivy/ivy.functional.ivy.device.rst", "docs/functional/ivy/ivy.functional.ivy.elementwise.rst", "docs/functional/ivy/ivy.functional.ivy.experimental.rst", "docs/functional/ivy/ivy.functional.ivy.general.rst", "docs/functional/ivy/ivy.functional.ivy.gradients.rst", "docs/functional/ivy/ivy.functional.ivy.layers.rst", "docs/functional/ivy/ivy.functional.ivy.linear_algebra.rst", "docs/functional/ivy/ivy.functional.ivy.losses.rst", "docs/functional/ivy/ivy.functional.ivy.manipulation.rst", "docs/functional/ivy/ivy.functional.ivy.meta.rst", "docs/functional/ivy/ivy.functional.ivy.nest.rst", "docs/functional/ivy/ivy.functional.ivy.norms.rst", "docs/functional/ivy/ivy.functional.ivy.random.rst", "docs/functional/ivy/ivy.functional.ivy.searching.rst", "docs/functional/ivy/ivy.functional.ivy.set.rst", "docs/functional/ivy/ivy.functional.ivy.sorting.rst", "docs/functional/ivy/ivy.functional.ivy.statistical.rst", "docs/functional/ivy/ivy.functional.ivy.utility.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices.rst", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.randint.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.seed.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save.rst", "docs/helpers/ivy_tests.test_ivy.helpers.assertions.rst", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks.rst", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.globals.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper.rst", "docs/helpers/ivy_tests.test_ivy.helpers.structs.rst", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags.rst", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers.rst", "docs/ivy.stateful.rst", "docs/ivy.utils.rst", "docs/ivy_tests.test_ivy.helpers.rst", "docs/stateful/ivy.stateful.activations.rst", "docs/stateful/ivy.stateful.converters.rst", "docs/stateful/ivy.stateful.helpers.rst", "docs/stateful/ivy.stateful.initializers.rst", "docs/stateful/ivy.stateful.layers.rst", "docs/stateful/ivy.stateful.losses.rst", "docs/stateful/ivy.stateful.module.rst", "docs/stateful/ivy.stateful.norms.rst", "docs/stateful/ivy.stateful.optimizers.rst", "docs/stateful/ivy.stateful.sequential.rst", "docs/utils/ivy.utils.assertions.rst", "docs/utils/ivy.utils.backend.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler.rst", "docs/utils/ivy.utils.binaries.rst", "docs/utils/ivy.utils.dynamic_import.rst", "docs/utils/ivy.utils.einsum_parser.rst", "docs/utils/ivy.utils.einsum_path_helpers.rst", "docs/utils/ivy.utils.exceptions.rst", "docs/utils/ivy.utils.inspection.rst", "docs/utils/ivy.utils.logging.rst", "docs/utils/ivy.utils.profiler.rst", "docs/utils/ivy.utils.verbosity.rst", "index.rst", "overview/contributing.rst", "overview/contributing/building_the_docs.rst", "overview/contributing/error_handling.rst", "overview/contributing/github_rewards.rst", "overview/contributing/helpful_resources.rst", "overview/contributing/open_tasks.rst", "overview/contributing/setting_up.rst", "overview/contributing/the_basics.rst", "overview/contributing/volunteer_workflow.rst", "overview/deep_dive.rst", "overview/deep_dive/array_api_tests.rst", "overview/deep_dive/arrays.rst", "overview/deep_dive/backend_setting.rst", "overview/deep_dive/building_the_docs_pipeline.rst", "overview/deep_dive/containers.rst", "overview/deep_dive/continuous_integration.rst", "overview/deep_dive/data_types.rst", "overview/deep_dive/devices.rst", "overview/deep_dive/docstring_examples.rst", "overview/deep_dive/docstrings.rst", "overview/deep_dive/exception_handling.rst", "overview/deep_dive/fix_failing_tests.rst", "overview/deep_dive/formatting.rst", "overview/deep_dive/function_arguments.rst", "overview/deep_dive/function_types.rst", "overview/deep_dive/function_wrapping.rst", "overview/deep_dive/gradients.rst", "overview/deep_dive/inplace_updates.rst", "overview/deep_dive/ivy_frontends.rst", "overview/deep_dive/ivy_frontends_tests.rst", "overview/deep_dive/ivy_lint.rst", "overview/deep_dive/ivy_tests.rst", "overview/deep_dive/navigating_the_code.rst", "overview/deep_dive/operating_modes.rst", "overview/deep_dive/superset_behaviour.rst", "overview/design.rst", "overview/design/building_blocks.rst", "overview/design/ivy_as_a_framework.rst", "overview/design/ivy_as_a_framework/ivy_array.rst", "overview/design/ivy_as_a_framework/ivy_container.rst", "overview/design/ivy_as_a_framework/ivy_stateful_api.rst", "overview/design/ivy_as_a_transpiler.rst", "overview/faq.rst", "overview/get_started.rst", "overview/glossary.rst", "overview/motivation.rst", "overview/motivation/ml_explosion.rst", "overview/motivation/standardization.rst", "overview/motivation/why_unify.rst", "overview/one_liners.rst", "overview/one_liners/trace.rst", "overview/one_liners/transpile.rst", "overview/one_liners/unify.rst", "overview/related_work.rst", "overview/related_work/api_standards.rst", "overview/related_work/compiler_infrastructure.rst", "overview/related_work/exchange_formats.rst", "overview/related_work/frameworks.rst", "overview/related_work/graph_tracers.rst", "overview/related_work/ml_unifying_companies.rst", "overview/related_work/multi_vendor_compiler_frameworks.rst", "overview/related_work/vendor_specific_apis.rst", "overview/related_work/vendor_specific_compilers.rst", "overview/related_work/what_does_ivy_add.rst", "overview/related_work/wrapper_frameworks.rst"], "titles": ["Demos", "TO REPLACE: Title", "Examples and Demos", "Ivy AlexNet demo", "# Ivy Bert Demo", "Image Segmentation with Ivy UNet", "Accelerating MMPreTrain models with JAX", "Using Ivy ResNet", "Accelerating PyTorch models with JAX", "Accelerating XGBoost with JAX", "Guides", "Transpiling a PyTorch model to build on top", "Transpiling a haiku model to build on top", "Transpiling a Tensorflow model to build on top", "Developing a convolutional network using Ivy", "Tutorials And Examples", "Learn the basics", "Write Ivy code", "Unify code", "Trace code", "Transpile code", "Lazy vs Eager", "How to use decorators", "Transpile any library", "Transpile any model", "Write a model using Ivy", "ODSC Ivy Demo", "Quickstart", "0.0: Unify", "0.1: Compile", "0.2: Transpile", "1.0: Lazy vs Eager", "1.1: Framework Selection", "1.2: As a Decorator", "1.3: Dynamic vs Static", "2.0: Kornia", "3.0: Perceiver", "3.1: Stable Diffusion", "Basic Operations with Ivy", "Compilation of a Basic Function", "Demo: Transpiling DeepMind\u2019s PerceiverIO", "Deepmind PerceiverIO on GPU", "End-to-End Training Pipeline in Ivy", "HuggingFace Tensorflow DeiT", "Ivy as a Transpiler Introduction", "Resnet 18", "Activations", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Activations", "Base", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Base", "Cp tensor", "Parafac2 tensor", "Tr tensor", "Tt tensor", "Tucker tensor", "Array", "Container", "Factorized tensor", "Nested array", "Base", "Elementwise", "Data classes", "Functions", "gelu", "hardswish", "leaky_relu", "log_softmax", "mish", "relu", "sigmoid", "softmax", "softplus", "softsign", "cmp_is", "cmp_isnot", "for_loop", "if_else", "try_except", "while_loop", "arange", "array", "asarray", "copy_array", "empty", "empty_like", "eye", "from_dlpack", "frombuffer", "full", "full_like", "linspace", "logspace", "meshgrid", "native_array", "one_hot", "ones", "ones_like", "to_dlpack", "tril", "triu", "triu_indices", "zeros", "zeros_like", "as_ivy_dtype", "as_native_dtype", "astype", "broadcast_arrays", "broadcast_to", "can_cast", "check_float", "closest_valid_dtype", "default_complex_dtype", "default_dtype", "default_float_dtype", "default_int_dtype", "default_uint_dtype", "dtype", "dtype_bits", "finfo", "function_supported_dtypes", "function_unsupported_dtypes", "iinfo", "infer_default_dtype", "invalid_dtype", "is_bool_dtype", "is_complex_dtype", "is_float_dtype", "is_hashable_dtype", "is_int_dtype", "is_native_dtype", "is_uint_dtype", "promote_types", "promote_types_of_inputs", "result_type", "set_default_complex_dtype", "set_default_dtype", "set_default_float_dtype", "set_default_int_dtype", "set_default_uint_dtype", "type_promote_arrays", "unset_default_complex_dtype", "unset_default_dtype", "unset_default_float_dtype", "unset_default_int_dtype", "unset_default_uint_dtype", "valid_dtype", "as_ivy_dev", "as_native_dev", "clear_cached_mem_on_dev", "default_device", "dev", "dev_util", "function_supported_devices", "function_unsupported_devices", "get_all_ivy_arrays_on_dev", "gpu_is_available", "handle_soft_device_variable", "num_cpu_cores", "num_gpus", "num_ivy_arrays_on_dev", "percent_used_mem_on_dev", "print_all_ivy_arrays_on_dev", "set_default_device", "set_soft_device_mode", "set_split_factor", "split_factor", "split_func_call", "to_device", "total_mem_on_dev", "tpu_is_available", "unset_default_device", "unset_soft_device_mode", "used_mem_on_dev", "abs", "acos", "acosh", "add", "angle", "asin", "asinh", "atan", "atan2", "atanh", "bitwise_and", "bitwise_invert", "bitwise_left_shift", "bitwise_or", "bitwise_right_shift", "bitwise_xor", "ceil", "cos", "cosh", "deg2rad", "divide", "equal", "erf", "exp", "exp2", "expm1", "floor", "floor_divide", "fmin", "fmod", "gcd", "greater", "greater_equal", "imag", "isfinite", "isinf", "isnan", "isreal", "lcm", "less", "less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2", "logical_and", "logical_not", "logical_or", "logical_xor", "maximum", "minimum", "multiply", "nan_to_num", "negative", "not_equal", "positive", "pow", "rad2deg", "real", "reciprocal", "remainder", "round", "sign", "sin", "sinh", "sqrt", "square", "subtract", "tan", "tanh", "trapz", "trunc", "trunc_divide", "celu", "elu", "hardshrink", "hardtanh", "logit", "logsigmoid", "prelu", "relu6", "scaled_tanh", "selu", "silu", "softshrink", "stanh", "tanhshrink", "threshold", "thresholded_relu", "blackman_window", "eye_like", "hamming_window", "hann_window", "indices", "kaiser_bessel_derived_window", "kaiser_window", "mel_weight_matrix", "ndenumerate", "ndindex", "polyval", "random_cp", "random_parafac2", "random_tr", "random_tt", "random_tucker", "tril_indices", "trilu", "unsorted_segment_mean", "unsorted_segment_min", "unsorted_segment_sum", "vorbis_window", "allclose", "amax", "amin", "binarizer", "conj", "copysign", "count_nonzero", "diff", "digamma", "erfc", "fix", "float_power", "fmax", "frexp", "gradient", "hypot", "isclose", "ldexp", "lerp", "lgamma", "modf", "nansum", "nextafter", "signbit", "sinc", "sparsify_tensor", "xlogy", "zeta", "reduce", "bind_custom_gradient_function", "jvp", "vjp", "Activations", "Constants", "Creation", "Data type", "Device", "Elementwise", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Sparse array", "Statistical", "Utility", "adaptive_avg_pool1d", "adaptive_avg_pool2d", "adaptive_max_pool2d", "area_interpolate", "avg_pool1d", "avg_pool2d", "avg_pool3d", "dct", "dft", "dropout1d", "dropout2d", "dropout3d", "embedding", "fft", "fft2", "generate_einsum_equation", "get_interpolate_kernel", "idct", "ifft", "ifftn", "interp", "interpolate", "max_pool1d", "max_pool2d", "max_pool3d", "max_unpool1d", "nearest_interpolate", "pool", "reduce_window", "rfft", "rfftn", "rnn", "sliding_window", "stft", "adjoint", "batched_outer", "cond", "diagflat", "dot", "eig", "eigh_tridiagonal", "eigvals", "general_inner_product", "higher_order_moment", "initialize_tucker", "khatri_rao", "kron", "kronecker", "make_svd_non_negative", "matrix_exp", "mode_dot", "multi_dot", "multi_mode_dot", "partial_tucker", "solve_triangular", "svd_flip", "tensor_train", "truncated_svd", "tt_matrix_to_tensor", "tucker", "hinge_embedding_loss", "huber_loss", "kl_div", "l1_loss", "log_poisson_loss", "poisson_nll_loss", "smooth_l1_loss", "soft_margin_loss", "as_strided", "associative_scan", "atleast_1d", "atleast_2d", "atleast_3d", "broadcast_shapes", "check_scalar", "choose", "column_stack", "concat_from_sequence", "dsplit", "dstack", "expand", "fill_diagonal", "flatten", "fliplr", "flipud", "fold", "heaviside", "hsplit", "hstack", "i0", "matricize", "moveaxis", "pad", "partial_fold", "partial_tensor_to_vec", "partial_unfold", "partial_vec_to_tensor", "put_along_axis", "rot90", "soft_thresholding", "take", "take_along_axis", "top_k", "trim_zeros", "unfold", "unique_consecutive", "vsplit", "vstack", "batch_norm", "group_norm", "instance_norm", "l1_normalize", "l2_normalize", "local_response_norm", "lp_normalize", "bernoulli", "beta", "dirichlet", "gamma", "poisson", "unravel_index", "invert_permutation", "lexsort", "is_ivy_sparse_array", "is_native_sparse_array", "native_sparse_array", "native_sparse_array_to_indices_values_and_shape", "bincount", "corrcoef", "cov", "cummax", "cummin", "histogram", "igamma", "median", "nanmean", "nanmedian", "nanmin", "nanprod", "quantile", "optional_get_element", "all_equal", "arg_info", "arg_names", "array_equal", "assert_supports_inplace", "cache_fn", "clip_matrix_norm", "clip_vector_norm", "container_types", "current_backend_str", "default", "einops_rearrange", "einops_reduce", "einops_repeat", "exists", "fourier_encode", "function_supported_devices_and_dtypes", "function_unsupported_devices_and_dtypes", "gather", "gather_nd", "get_all_arrays_in_memory", "get_item", "get_num_dims", "get_referrers_recursive", "has_nans", "inplace_arrays_supported", "inplace_decrement", "inplace_increment", "inplace_update", "inplace_variables_supported", "is_array", "is_ivy_array", "is_ivy_container", "is_ivy_nested_array", "is_native_array", "isin", "isscalar", "itemsize", "match_kwargs", "multiprocessing", "num_arrays_in_memory", "print_all_arrays_in_memory", "scatter_flat", "scatter_nd", "set_array_mode", "set_exception_trace_mode", "set_inplace_mode", "set_item", "set_min_base", "set_min_denominator", "set_nestable_mode", "set_precise_mode", "set_queue_timeout", "set_shape_array_mode", "set_show_func_wrapper_trace_mode", "set_tmp_dir", "shape", "stable_divide", "stable_pow", "strides", "supports_inplace_updates", "to_ivy_shape", "to_list", "to_native_shape", "to_numpy", "to_scalar", "try_else_none", "unset_array_mode", "unset_exception_trace_mode", "unset_inplace_mode", "unset_min_base", "unset_min_denominator", "unset_nestable_mode", "unset_precise_mode", "unset_queue_timeout", "unset_shape_array_mode", "unset_show_func_wrapper_trace_mode", "unset_tmp_dir", "value_is_nan", "vmap", "adam_step", "adam_update", "execute_with_gradients", "grad", "gradient_descent_update", "jac", "lamb_update", "lars_update", "optimizer_update", "stop_gradient", "value_and_grad", "Activations", "Constants", "Control flow ops", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "conv", "conv1d", "conv1d_transpose", "conv2d", "conv2d_transpose", "conv3d", "conv3d_transpose", "conv_general_dilated", "conv_general_transpose", "depthwise_conv2d", "dropout", "linear", "lstm_update", "multi_head_attention", "nms", "roi_align", "scaled_dot_product_attention", "cholesky", "cross", "det", "diag", "diagonal", "eig", "eigh", "eigvalsh", "inner", "inv", "lu_factor", "matmul", "matrix_norm", "matrix_power", "matrix_rank", "matrix_transpose", "outer", "pinv", "qr", "slogdet", "solve", "svd", "svdvals", "tensordot", "tensorsolve", "trace", "vander", "vecdot", "vector_norm", "vector_to_skew_symmetric_matrix", "binary_cross_entropy", "cross_entropy", "sparse_cross_entropy", "clip", "concat", "constant_pad", "expand_dims", "flip", "permute_dims", "repeat", "reshape", "roll", "split", "squeeze", "stack", "swapaxes", "tile", "unstack", "zero_pad", "fomaml_step", "maml_step", "reptile_step", "all_nested_indices", "copy_nest", "duplicate_array_index_chains", "index_nest", "insert_into_nest_at_index", "insert_into_nest_at_indices", "map", "map_nest_at_index", "map_nest_at_indices", "multi_index_nest", "nested_any", "nested_argwhere", "nested_map", "nested_multi_map", "prune_empty", "prune_nest_at_index", "prune_nest_at_indices", "set_nest_at_index", "set_nest_at_indices", "layer_norm", "multinomial", "randint", "random_normal", "random_uniform", "seed", "shuffle", "argmax", "argmin", "argwhere", "nonzero", "where", "unique_all", "unique_counts", "unique_inverse", "unique_values", "argsort", "msort", "searchsorted", "sort", "cumprod", "cumsum", "einsum", "max", "mean", "min", "prod", "std", "sum", "var", "all", "any", "load", "save", "Assertions", "Available frameworks", "Function testing", "Globals", "Hypothesis helpers", "Array helpers", "Dtype helpers", "General helpers", "Number helpers", "Multiprocessing", "Pipeline helper", "Structs", "Test parameter flags", "Testing helpers", "Framework classes", "Utils", "Testing", "Activations", "Converters", "Helpers", "Initializers", "Layers", "Losses", "Module", "Norms", "Optimizers", "Sequential", "Assertions", "Backend", "Ast helpers", "Handler", "Sub backend handler", "Binaries", "Dynamic import", "Einsum parser", "Einsum path helpers", "Exceptions", "Inspection", "Logging", "Profiler", "Verbosity", "Home", "Contributing", "Building the Docs", "Error Handling", "GitHub Rewards", "Helpful Resources", "Open Tasks", "Setting Up", "The Basics", "Volunteer Workflow", "Deep Dive", "Array API Tests", "Arrays", "Backend Setting", "Building the Docs Pipeline", "Containers", "Continuous Integration", "Data Types", "Devices", "Docstring Examples", "Docstrings", "Exception Handling", "Fix Failing Tests:", "Formatting", "Function Arguments", "Function Types", "Function Wrapping", "Gradients", "Inplace Updates", "Ivy Frontends", "Ivy Frontend Tests", "Ivy-Lint: Ivy\u2019s Custom Code Formatters", "Ivy Tests", "Navigating the Code", "Operating Modes", "Superset Behaviour", "Design", "Building Blocks", "Ivy as a Framework", "Ivy Array", "Ivy Container", "Ivy Stateful API", "Ivy as a Transpiler", "FAQ", "Get Started", "Glossary", "Motivation", "ML Explosion", "Standardization", "Why Unify?", "One liners", "ivy.trace_graph()", "ivy.transpile()", "ivy.unify()", "Related Work", "API Standards", "Compiler Infrastructure", "Exchange Formats", "Frameworks", "Graph Tracers", "ML-Unifying Companies", "Multi-Vendor Compiler Frameworks", "Vendor-Specific APIs", "Vendor-Specific Compilers", "What does Ivy Add?", "Wrapper Frameworks"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 163, 166, 167, 168, 170, 174, 175, 189, 192, 202, 208, 209, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 427, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 546, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 569, 575, 580, 581, 582, 583, 585, 587, 588, 601, 602, 603, 604, 605, 607, 609, 610, 611, 612, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 708, 710, 712, 713, 718, 719, 723, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 762, 764, 765, 767, 776, 777, 779, 780, 782, 783, 784, 785, 794, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865], "repo": [0, 11, 40, 805, 808, 811, 814, 816, 817, 822, 830, 832, 847], "hold": [0, 52, 53, 57, 65, 75, 80, 88, 92, 93, 328, 344, 349, 365, 380, 460, 488, 512, 513, 518, 565, 566, 622, 625, 635, 666, 746, 762, 809, 840, 859], "all": [0, 1, 3, 4, 5, 7, 8, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 39, 40, 42, 43, 45, 47, 48, 52, 53, 56, 57, 59, 61, 66, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 84, 89, 90, 92, 93, 121, 129, 136, 140, 141, 142, 196, 203, 235, 239, 267, 268, 322, 323, 335, 353, 362, 365, 368, 369, 370, 371, 380, 401, 410, 412, 413, 414, 422, 427, 435, 436, 438, 441, 442, 463, 474, 482, 487, 517, 523, 526, 543, 563, 564, 580, 587, 588, 602, 605, 617, 619, 620, 622, 623, 624, 625, 627, 628, 629, 631, 632, 636, 647, 649, 650, 655, 668, 673, 674, 677, 682, 691, 695, 697, 703, 704, 705, 706, 707, 708, 717, 718, 719, 720, 726, 729, 734, 759, 761, 764, 765, 766, 767, 779, 780, 786, 789, 794, 796, 800, 801, 803, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 854, 855, 856, 857, 858, 859, 861, 864, 865], "jupyt": [0, 848, 860], "exampl": [0, 6, 8, 17, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 167, 168, 170, 171, 172, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 431, 433, 436, 440, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 455, 457, 458, 459, 460, 461, 464, 465, 466, 468, 469, 470, 471, 473, 474, 479, 480, 481, 482, 483, 484, 485, 487, 488, 489, 493, 494, 496, 499, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 523, 525, 526, 527, 528, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 543, 544, 545, 546, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 561, 562, 563, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 585, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 704, 705, 706, 707, 709, 710, 712, 713, 714, 715, 717, 718, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 765, 772, 789, 793, 794, 798, 803, 806, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 825, 826, 828, 829, 832, 833, 837, 839, 840, 841, 842, 843, 849, 855, 856, 859, 861, 864, 865], "tab": [0, 806, 807, 816, 822, 840], "ivi": [0, 1, 2, 6, 8, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 40, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 761, 772, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 801, 802, 803, 804, 805, 807, 809, 810, 811, 813, 815, 817, 818, 820, 822, 823, 824, 825, 826, 828, 835, 836, 843, 845, 848, 849, 850, 854, 865], "": [0, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 38, 41, 43, 44, 45, 48, 52, 53, 54, 57, 65, 75, 77, 80, 88, 117, 134, 140, 141, 161, 162, 191, 194, 195, 207, 242, 277, 323, 328, 329, 330, 332, 342, 344, 350, 354, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 384, 390, 396, 401, 412, 420, 424, 430, 439, 444, 446, 447, 463, 465, 466, 474, 490, 491, 492, 501, 511, 521, 539, 540, 546, 560, 582, 583, 604, 606, 607, 608, 609, 611, 615, 616, 617, 618, 619, 620, 622, 623, 624, 625, 629, 635, 639, 641, 643, 645, 650, 657, 668, 675, 676, 682, 718, 752, 754, 765, 779, 780, 781, 782, 783, 784, 785, 789, 800, 801, 802, 803, 804, 807, 808, 809, 810, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 839, 840, 841, 842, 843, 845, 848, 849, 850, 851, 852, 853, 854, 857, 858, 859, 861, 862, 863, 864], "web": 0, "relev": [0, 48, 71, 133, 617, 784, 800, 806, 807, 808, 812, 815, 816, 817, 819, 822, 826, 827, 830, 831, 832, 840, 844, 848, 856, 863, 864], "link": [0, 17, 26, 27, 41, 800, 806, 807, 808, 814, 816, 817, 823, 829, 852, 854, 856], "list": [0, 4, 5, 6, 7, 9, 42, 47, 48, 49, 51, 52, 53, 56, 59, 60, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 129, 131, 134, 135, 136, 138, 144, 148, 150, 163, 167, 168, 175, 191, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 342, 343, 344, 350, 351, 352, 354, 355, 356, 365, 368, 369, 371, 378, 386, 387, 388, 390, 391, 392, 393, 404, 405, 406, 407, 411, 413, 417, 422, 426, 429, 434, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 455, 458, 459, 460, 469, 480, 482, 483, 484, 488, 490, 492, 493, 494, 496, 498, 503, 511, 512, 513, 514, 523, 525, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 543, 545, 547, 549, 550, 551, 553, 554, 557, 561, 565, 566, 580, 581, 583, 585, 586, 587, 588, 589, 601, 602, 607, 612, 617, 618, 619, 620, 622, 624, 625, 627, 629, 630, 633, 634, 638, 639, 640, 641, 642, 643, 646, 647, 648, 650, 653, 654, 655, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 677, 679, 684, 685, 686, 687, 688, 691, 694, 695, 696, 697, 698, 701, 702, 706, 707, 708, 709, 712, 713, 714, 715, 717, 718, 723, 724, 725, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 742, 743, 745, 746, 749, 751, 752, 754, 755, 756, 759, 761, 764, 765, 766, 767, 772, 777, 780, 786, 793, 794, 805, 806, 807, 809, 811, 812, 814, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 828, 829, 830, 832, 833, 837, 840, 841, 842, 843, 851, 858, 859, 864], "open": [0, 3, 5, 6, 7, 8, 23, 26, 27, 40, 41, 42, 43, 53, 61, 84, 121, 617, 631, 727, 729, 800, 801, 802, 807, 808, 809, 814, 817, 820, 822, 829, 830, 835, 844, 847, 848, 849, 851, 852, 856, 857, 858, 860, 861], "task": [0, 43, 628, 703, 704, 705, 800, 801, 804, 807, 808, 809, 829, 830, 858, 864, 865], "avil": 0, "discuss": [0, 806, 808, 814, 817, 818, 828, 829, 831, 832, 835, 838, 839, 840, 843, 849, 854, 859], "suggest": [0, 806, 807, 808, 814, 817, 823, 827, 829, 832, 833, 834, 844], "new": [0, 6, 8, 10, 11, 13, 15, 18, 21, 22, 23, 24, 26, 27, 28, 42, 44, 47, 52, 53, 54, 59, 60, 69, 71, 75, 76, 77, 80, 82, 83, 125, 128, 130, 131, 136, 137, 138, 143, 144, 181, 224, 270, 272, 276, 328, 333, 344, 349, 365, 368, 371, 380, 403, 450, 458, 459, 473, 479, 518, 534, 535, 536, 538, 541, 542, 544, 565, 566, 569, 571, 578, 580, 581, 587, 604, 607, 609, 610, 611, 617, 618, 620, 622, 623, 624, 627, 629, 630, 650, 662, 670, 690, 694, 698, 711, 723, 724, 725, 777, 780, 783, 784, 789, 794, 800, 801, 806, 807, 808, 809, 810, 812, 813, 815, 816, 817, 819, 820, 822, 823, 826, 828, 829, 830, 831, 832, 833, 835, 836, 839, 842, 844, 845, 847, 848, 849, 851, 856, 860, 864, 865], "should": [0, 4, 8, 9, 21, 22, 23, 24, 43, 46, 48, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 74, 75, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 95, 97, 98, 108, 112, 120, 134, 136, 140, 141, 149, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 296, 307, 323, 329, 330, 341, 345, 346, 347, 348, 352, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 375, 380, 383, 391, 392, 393, 395, 400, 411, 426, 435, 441, 448, 473, 474, 497, 498, 511, 512, 513, 528, 546, 551, 602, 604, 607, 609, 610, 611, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 644, 645, 653, 654, 655, 656, 658, 660, 661, 662, 663, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 677, 679, 681, 682, 694, 710, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 745, 746, 747, 748, 749, 750, 751, 753, 754, 761, 762, 764, 766, 776, 777, 779, 780, 782, 783, 784, 785, 793, 794, 802, 803, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 839, 840, 841, 846, 848, 852, 854, 855, 858, 860, 865], "comprehens": [0, 15, 808, 811, 831], "possibl": [0, 3, 32, 48, 52, 71, 75, 82, 92, 123, 242, 285, 306, 329, 330, 362, 365, 368, 370, 371, 390, 443, 452, 453, 454, 460, 462, 464, 465, 466, 473, 488, 561, 620, 622, 624, 635, 647, 690, 691, 692, 694, 696, 697, 699, 701, 748, 750, 764, 780, 794, 797, 800, 801, 803, 806, 807, 808, 811, 814, 815, 817, 819, 820, 822, 823, 825, 827, 828, 829, 830, 832, 835, 837, 840, 843, 848, 856, 858, 864], "us": [0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 85, 90, 92, 93, 95, 98, 105, 133, 136, 147, 159, 161, 162, 173, 174, 194, 195, 197, 202, 206, 207, 208, 209, 211, 214, 220, 228, 256, 257, 259, 260, 262, 263, 264, 266, 267, 269, 278, 282, 287, 306, 308, 309, 311, 312, 313, 321, 342, 345, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 394, 396, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 420, 422, 426, 430, 432, 434, 435, 437, 438, 439, 441, 442, 447, 464, 468, 472, 474, 482, 490, 492, 496, 497, 498, 499, 500, 501, 502, 503, 504, 511, 518, 521, 539, 540, 549, 550, 561, 562, 569, 571, 572, 574, 580, 581, 593, 594, 596, 603, 604, 609, 610, 614, 615, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 631, 633, 635, 648, 650, 653, 658, 660, 668, 672, 676, 679, 682, 684, 693, 694, 695, 699, 703, 704, 705, 706, 708, 709, 715, 716, 717, 719, 726, 727, 728, 729, 731, 732, 733, 734, 737, 739, 747, 762, 764, 765, 766, 767, 772, 776, 777, 779, 780, 781, 782, 783, 784, 789, 793, 794, 798, 801, 805, 808, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 832, 833, 834, 835, 836, 837, 838, 839, 841, 842, 843, 845, 849, 853, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865], "easi": [0, 26, 27, 40, 807, 808, 812, 813, 815, 825, 827, 830, 832, 835, 848, 856, 858, 864, 865], "follow": [0, 9, 20, 21, 22, 24, 26, 27, 30, 31, 32, 38, 41, 42, 52, 53, 54, 56, 57, 63, 69, 75, 76, 77, 79, 80, 129, 160, 163, 208, 218, 235, 242, 268, 270, 277, 278, 313, 362, 368, 370, 371, 374, 390, 403, 411, 447, 462, 474, 490, 492, 549, 550, 551, 580, 581, 604, 607, 609, 610, 611, 617, 618, 619, 620, 622, 623, 624, 625, 629, 633, 650, 653, 666, 672, 682, 712, 718, 737, 738, 739, 740, 780, 784, 800, 802, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 851, 855, 858, 861], "attract": 0, "visual": [0, 9, 44, 798, 800, 807, 822, 829, 832, 843, 858, 860, 863], "graph": [0, 3, 5, 7, 9, 15, 16, 19, 21, 23, 24, 27, 33, 34, 39, 44, 45, 63, 633, 737, 738, 739, 740, 772, 800, 815, 825, 829, 831, 835, 837, 842, 843, 845, 849, 850, 851, 852, 853, 854, 858, 861], "nice": [0, 832, 849, 858], "format": [0, 23, 24, 26, 27, 38, 40, 41, 42, 50, 53, 56, 65, 68, 69, 70, 73, 79, 95, 113, 158, 192, 368, 369, 379, 409, 440, 507, 534, 614, 618, 619, 622, 624, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 747, 757, 758, 759, 776, 800, 807, 808, 810, 816, 817, 818, 819, 820, 821, 829, 831, 840, 852, 854, 856, 858, 859], "result": [0, 3, 5, 6, 7, 8, 9, 11, 13, 21, 22, 23, 24, 26, 27, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 175, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 424, 425, 427, 428, 430, 431, 432, 433, 434, 436, 440, 443, 444, 445, 446, 448, 449, 451, 458, 459, 462, 464, 465, 466, 467, 468, 471, 472, 473, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 504, 509, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 529, 530, 534, 535, 536, 541, 542, 546, 551, 558, 565, 566, 603, 604, 605, 607, 609, 610, 611, 612, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 697, 698, 699, 700, 702, 709, 712, 713, 715, 719, 723, 725, 726, 727, 728, 729, 731, 732, 733, 734, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 766, 772, 786, 794, 798, 800, 803, 806, 808, 811, 812, 814, 815, 816, 817, 819, 820, 822, 824, 825, 827, 828, 829, 830, 832, 833, 837, 840, 843, 851, 852, 853, 859, 861], "etc": [0, 29, 34, 41, 48, 52, 61, 63, 67, 71, 75, 84, 90, 124, 132, 133, 136, 368, 375, 396, 401, 412, 497, 498, 500, 501, 617, 631, 633, 726, 727, 728, 729, 737, 738, 739, 740, 764, 767, 779, 780, 781, 782, 783, 784, 785, 806, 807, 808, 811, 812, 813, 814, 815, 817, 819, 821, 824, 829, 830, 832, 833, 837, 839, 840, 843, 845, 849, 851, 856, 858, 864], "gener": [0, 5, 15, 19, 24, 26, 27, 29, 32, 40, 42, 44, 45, 48, 51, 52, 56, 61, 67, 71, 74, 75, 79, 84, 90, 93, 121, 132, 133, 142, 150, 235, 238, 248, 249, 264, 268, 277, 306, 309, 313, 314, 315, 317, 318, 319, 320, 321, 322, 329, 330, 362, 365, 368, 369, 371, 375, 380, 411, 417, 437, 482, 499, 511, 617, 618, 620, 624, 625, 627, 631, 635, 647, 673, 674, 677, 680, 702, 726, 727, 729, 730, 752, 764, 767, 772, 784, 793, 806, 807, 808, 810, 811, 812, 814, 817, 818, 819, 820, 821, 824, 825, 828, 829, 830, 833, 836, 837, 839, 841, 842, 843, 845, 856, 857, 858, 859, 860, 861, 862, 863, 864], "tone": [0, 4], "feel": [0, 41, 97, 98, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 776, 777, 779, 780, 782, 783, 784, 785, 800, 802, 803, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 836, 844, 851], "free": [0, 5, 40, 41, 97, 98, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 776, 777, 779, 780, 782, 783, 784, 785, 800, 802, 803, 805, 806, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 836, 844, 851, 859, 861], "includ": [0, 9, 15, 19, 29, 34, 48, 51, 52, 53, 57, 62, 65, 66, 69, 71, 74, 75, 76, 80, 85, 88, 89, 121, 122, 123, 132, 133, 135, 142, 215, 239, 243, 244, 245, 248, 250, 253, 261, 269, 282, 287, 308, 311, 312, 313, 316, 322, 325, 327, 329, 330, 334, 335, 336, 338, 339, 340, 341, 343, 345, 346, 348, 349, 350, 351, 354, 355, 362, 365, 368, 371, 380, 386, 387, 388, 418, 421, 423, 465, 466, 468, 471, 473, 475, 478, 499, 501, 502, 510, 514, 516, 517, 519, 520, 521, 547, 601, 617, 620, 622, 625, 629, 631, 632, 635, 636, 659, 680, 682, 706, 729, 733, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 765, 767, 779, 780, 783, 796, 800, 806, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 824, 825, 828, 829, 830, 831, 832, 833, 835, 837, 848, 851, 852, 855, 856, 858, 860, 863, 864, 865], "emoji": [0, 806], "don": [0, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 67, 90, 800, 806, 807, 808, 816, 817, 818, 823, 827, 832, 835, 841, 843, 844, 849, 851], "t": [0, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 42, 52, 56, 67, 75, 79, 90, 92, 93, 97, 342, 357, 365, 367, 369, 422, 551, 569, 583, 605, 622, 623, 624, 629, 648, 649, 714, 759, 780, 800, 802, 806, 807, 808, 810, 812, 813, 815, 816, 817, 818, 819, 822, 823, 825, 826, 827, 828, 832, 833, 835, 837, 839, 840, 841, 842, 843, 844, 848, 849, 851, 852, 853, 856, 858, 860], "keep": [0, 1, 11, 13, 17, 23, 24, 26, 52, 59, 69, 75, 82, 92, 95, 353, 369, 441, 627, 701, 805, 806, 807, 808, 811, 814, 815, 816, 821, 828, 829, 832, 833, 835, 840, 842, 844, 852], "thing": [0, 24, 38, 40, 793, 805, 806, 807, 808, 813, 829, 832, 835, 839, 840, 847, 848, 849, 858], "super": [0, 3, 5, 11, 13, 26, 27, 40, 52, 75, 369, 422, 800, 821, 837, 840, 841, 842, 852], "seriou": 0, "given": [0, 3, 17, 26, 39, 52, 53, 58, 59, 61, 69, 75, 76, 77, 81, 82, 84, 92, 93, 95, 97, 98, 121, 125, 132, 133, 153, 154, 155, 156, 157, 169, 174, 193, 202, 204, 206, 207, 208, 210, 214, 287, 316, 325, 328, 334, 335, 342, 343, 344, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 389, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 412, 422, 427, 440, 444, 445, 446, 448, 449, 450, 451, 461, 462, 463, 470, 472, 484, 489, 493, 494, 495, 496, 497, 498, 499, 500, 501, 511, 512, 513, 514, 520, 542, 546, 565, 566, 576, 603, 604, 607, 609, 610, 611, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 683, 684, 685, 686, 687, 690, 691, 692, 693, 695, 696, 700, 701, 713, 714, 723, 724, 727, 728, 729, 731, 743, 744, 745, 746, 759, 764, 765, 766, 767, 772, 776, 777, 779, 780, 782, 783, 784, 785, 786, 793, 794, 803, 804, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 838, 839, 841, 848, 849, 855, 860, 861, 864, 865], "an": [0, 2, 3, 8, 9, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 170, 174, 175, 205, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 310, 311, 312, 314, 315, 322, 323, 324, 325, 326, 327, 329, 330, 332, 335, 338, 343, 347, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 399, 401, 403, 404, 405, 406, 409, 410, 411, 412, 413, 414, 415, 416, 418, 421, 422, 423, 446, 447, 451, 452, 453, 454, 458, 459, 460, 462, 469, 473, 474, 480, 482, 487, 488, 490, 491, 492, 495, 497, 498, 500, 503, 504, 509, 510, 511, 512, 513, 514, 515, 518, 519, 522, 527, 529, 530, 538, 541, 545, 546, 547, 549, 550, 551, 553, 554, 555, 556, 557, 560, 566, 569, 570, 579, 583, 587, 588, 589, 602, 605, 612, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 712, 725, 727, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 764, 766, 767, 769, 772, 776, 777, 779, 780, 782, 783, 784, 785, 794, 800, 802, 803, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 832, 833, 834, 835, 837, 839, 840, 841, 842, 843, 844, 845, 848, 849, 850, 851, 852, 853, 854, 856, 857, 858, 859, 861, 862, 864, 865], "intern": [0, 9, 69, 100, 101, 102, 629, 706, 716, 717, 779, 780, 781, 782, 783, 785, 809, 812, 815, 818, 820, 828, 830, 832, 834], "releas": [0, 41, 806, 807, 817, 833, 835, 843, 849, 858, 864], "tracer": [0, 3, 5, 7, 8, 21, 22, 23, 24, 27, 43, 45, 800, 829, 836, 838, 843, 845, 852, 853, 854], "i": [0, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 175, 187, 189, 191, 192, 194, 195, 197, 199, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 302, 303, 304, 305, 306, 307, 309, 310, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 419, 420, 421, 422, 424, 425, 426, 427, 429, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 472, 473, 474, 475, 477, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 504, 509, 510, 511, 512, 513, 514, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 544, 545, 546, 547, 549, 550, 551, 553, 554, 555, 556, 557, 558, 561, 562, 565, 566, 567, 569, 575, 579, 580, 581, 583, 585, 587, 588, 589, 601, 602, 604, 605, 606, 607, 609, 610, 611, 612, 614, 615, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 712, 713, 714, 715, 716, 717, 718, 719, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 762, 764, 765, 766, 767, 772, 776, 777, 779, 780, 781, 782, 783, 784, 786, 789, 790, 793, 794, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865], "around": [0, 10, 11, 13, 15, 52, 69, 75, 98, 371, 474, 482, 806, 808, 811, 812, 814, 818, 824, 825, 829, 833, 839, 843, 845, 851, 856, 858, 865], "corner": [0, 52, 75, 368, 403, 807, 808, 822, 829], "anybodi": 0, "abl": [0, 3, 5, 28, 32, 43, 45, 69, 92, 807, 808, 811, 817, 822, 825, 828, 829, 833, 837, 842, 851, 861, 864], "start": [0, 1, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 41, 42, 48, 52, 69, 71, 75, 79, 121, 129, 132, 133, 346, 356, 365, 366, 368, 371, 380, 410, 464, 467, 475, 477, 486, 520, 617, 766, 793, 801, 806, 807, 808, 809, 810, 816, 817, 819, 820, 822, 823, 824, 829, 832, 835, 836, 837, 839, 840, 841, 843, 851, 852, 858, 864], "work": [0, 24, 26, 27, 38, 39, 41, 45, 47, 52, 75, 92, 380, 521, 625, 629, 676, 713, 714, 718, 723, 724, 800, 802, 803, 805, 806, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 828, 829, 830, 832, 833, 836, 837, 839, 841, 842, 844, 849, 851, 852, 853, 856, 858, 860, 862, 865], "shortli": 0, "so": [0, 1, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 368, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 580, 581, 582, 583, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 624, 629, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 665, 666, 671, 672, 673, 675, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 706, 717, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 754, 755, 756, 794, 800, 803, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 843, 847, 848, 851, 852, 853, 858, 859, 860, 862], "worri": [0, 26, 27, 806, 807, 823], "about": [0, 15, 16, 17, 20, 22, 24, 26, 27, 30, 41, 42, 49, 72, 160, 163, 618, 800, 802, 805, 806, 807, 808, 809, 810, 811, 814, 816, 817, 818, 823, 824, 828, 830, 831, 832, 833, 834, 835, 836, 837, 839, 840, 841, 842, 843, 849, 853, 859, 860, 863], "have": [0, 1, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 160, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 416, 418, 419, 421, 422, 427, 428, 431, 432, 433, 434, 439, 443, 444, 445, 446, 447, 448, 449, 453, 454, 459, 460, 462, 467, 475, 476, 477, 478, 480, 482, 484, 486, 493, 494, 496, 497, 498, 500, 501, 502, 504, 511, 512, 513, 514, 518, 522, 529, 530, 534, 535, 536, 541, 542, 551, 565, 566, 569, 603, 604, 607, 609, 610, 611, 612, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 697, 698, 699, 700, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 776, 777, 779, 780, 782, 783, 784, 785, 793, 794, 800, 802, 803, 804, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 851, 853, 854, 855, 856, 857, 858, 860, 864, 865], "access": [0, 23, 26, 27, 69, 800, 806, 807, 808, 816, 817, 823, 828, 829, 844, 852, 858, 860, 862], "transpil": [0, 6, 7, 8, 10, 15, 16, 19, 29, 771, 772, 806, 807, 821, 822, 829, 836, 837, 838, 845, 850, 851, 853, 858, 864, 865], "code": [0, 4, 6, 7, 8, 15, 16, 23, 24, 26, 28, 29, 30, 31, 32, 33, 40, 41, 50, 51, 69, 73, 74, 98, 209, 255, 380, 518, 527, 535, 536, 551, 565, 569, 583, 619, 622, 624, 625, 627, 646, 667, 668, 669, 698, 798, 800, 804, 805, 806, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 828, 829, 830, 832, 835, 836, 837, 838, 839, 840, 841, 842, 843, 845, 847, 848, 849, 850, 851, 852, 853, 854, 856, 857, 858, 859, 861, 862, 863, 864, 865], "now": [0, 4, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 42, 780, 781, 782, 800, 807, 811, 812, 813, 814, 815, 816, 817, 818, 822, 824, 826, 829, 830, 832, 833, 835, 839, 840, 842, 843, 849, 851, 852, 853, 858], "you": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 52, 53, 75, 76, 92, 97, 98, 371, 380, 462, 518, 541, 542, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 650, 776, 777, 779, 780, 782, 783, 784, 785, 800, 801, 802, 803, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 853, 858], "can": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 41, 42, 45, 48, 49, 52, 53, 57, 59, 61, 63, 71, 72, 75, 76, 80, 82, 84, 86, 92, 93, 107, 110, 122, 123, 133, 135, 150, 189, 206, 207, 208, 296, 313, 360, 362, 368, 369, 370, 374, 375, 378, 380, 390, 403, 427, 432, 434, 439, 447, 459, 490, 498, 499, 504, 511, 558, 569, 602, 605, 614, 617, 618, 619, 622, 623, 624, 625, 627, 631, 650, 658, 665, 675, 679, 694, 698, 727, 728, 729, 737, 761, 764, 765, 766, 767, 772, 794, 800, 801, 802, 803, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 853, 855, 856, 857, 858, 859, 861, 862, 864, 865], "style": [0, 9, 40, 42, 371, 474, 632, 735, 808, 823, 858], "stori": 0, "If": [0, 1, 3, 4, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 41, 44, 45, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 93, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 134, 136, 137, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 175, 191, 207, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 322, 323, 325, 328, 329, 330, 331, 332, 334, 335, 336, 339, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 411, 412, 413, 415, 420, 422, 424, 426, 427, 432, 434, 436, 437, 439, 440, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 460, 462, 463, 464, 465, 466, 469, 473, 479, 480, 481, 482, 483, 484, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 510, 511, 512, 513, 514, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 544, 545, 546, 547, 549, 550, 551, 553, 554, 557, 558, 565, 566, 570, 580, 581, 583, 585, 587, 588, 601, 602, 605, 607, 612, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 647, 648, 650, 653, 654, 655, 657, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 684, 685, 686, 687, 688, 690, 691, 692, 694, 695, 696, 697, 698, 699, 701, 702, 703, 704, 705, 718, 719, 726, 727, 728, 729, 731, 732, 733, 734, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 765, 766, 779, 780, 782, 783, 789, 794, 800, 801, 802, 803, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 839, 840, 842, 843, 844, 847, 851, 852, 853], "anyon": [0, 800, 801, 808, 816, 843, 848, 864], "ha": [0, 3, 5, 7, 8, 9, 11, 13, 17, 19, 23, 26, 27, 29, 32, 34, 38, 45, 48, 52, 57, 59, 63, 65, 69, 72, 75, 76, 80, 82, 86, 88, 92, 134, 191, 215, 235, 238, 240, 242, 252, 268, 270, 275, 278, 280, 281, 285, 324, 325, 326, 362, 369, 370, 371, 380, 403, 436, 446, 457, 481, 483, 487, 510, 512, 513, 515, 547, 617, 619, 620, 624, 625, 627, 632, 633, 635, 649, 650, 665, 666, 674, 675, 677, 679, 682, 690, 697, 735, 738, 739, 740, 745, 746, 749, 751, 752, 753, 754, 764, 767, 789, 806, 808, 811, 813, 814, 815, 816, 817, 818, 819, 820, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 838, 839, 841, 842, 843, 844, 847, 848, 849, 851, 853, 854, 857, 858, 860, 861, 864], "ani": [0, 5, 7, 11, 13, 15, 16, 17, 18, 19, 28, 29, 32, 38, 39, 40, 41, 42, 44, 45, 47, 48, 50, 51, 52, 53, 57, 66, 67, 71, 73, 74, 75, 76, 89, 90, 92, 97, 98, 117, 118, 120, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 151, 166, 170, 174, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 412, 413, 422, 427, 442, 463, 474, 482, 490, 491, 492, 511, 514, 517, 518, 519, 523, 533, 534, 535, 536, 537, 541, 545, 547, 549, 553, 555, 556, 574, 581, 588, 589, 596, 602, 612, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 709, 712, 713, 715, 716, 723, 725, 729, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 759, 762, 766, 776, 777, 779, 780, 782, 783, 784, 785, 789, 793, 794, 800, 801, 802, 803, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 853, 856, 857, 858, 859, 861, 864, 865], "question": [0, 97, 98, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 776, 777, 779, 780, 782, 783, 784, 785, 800, 803, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 838, 839, 840, 841, 842, 843, 847, 848, 849], "ping": 0, "me": [0, 808], "guillermo": 0, "commun": [0, 41, 801, 806, 807, 808, 809, 843, 848, 857, 858, 860], "ux": 0, "team": [0, 800, 801, 806, 807, 808, 829, 844, 860], "discord": [0, 41, 97, 98, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 776, 777, 779, 780, 782, 783, 784, 785, 800, 803, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 837, 838, 839, 840, 841, 842, 844, 847, 848, 849], "channel": [0, 24, 42, 52, 53, 56, 75, 76, 79, 97, 98, 368, 374, 391, 392, 393, 403, 490, 491, 492, 495, 534, 538, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 646, 776, 777, 779, 780, 782, 783, 784, 785, 808, 814, 822, 831], "To": [0, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 26, 27, 38, 41, 42, 43, 93, 242, 370, 446, 575, 620, 622, 779, 806, 807, 811, 812, 813, 814, 817, 819, 821, 822, 823, 825, 826, 829, 830, 831, 832, 833, 840, 841, 842, 844, 851, 852], "ensur": [0, 7, 8, 11, 13, 21, 22, 23, 24, 52, 53, 75, 76, 368, 369, 404, 405, 406, 437, 551, 622, 759, 800, 804, 806, 807, 808, 812, 817, 818, 819, 821, 823, 824, 826, 828, 829, 830, 831, 832, 833, 844, 858], "similar": [0, 17, 26, 27, 52, 277, 370, 442, 620, 624, 650, 780, 803, 806, 807, 815, 816, 817, 818, 821, 822, 823, 825, 826, 827, 829, 830, 832, 833, 840, 843, 847, 852, 854, 855, 856, 857, 864], "ar": [0, 1, 3, 4, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 44, 47, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 92, 93, 97, 98, 121, 131, 133, 136, 142, 196, 201, 203, 208, 232, 234, 235, 238, 242, 263, 264, 268, 273, 274, 278, 280, 285, 286, 287, 322, 324, 325, 326, 328, 331, 333, 334, 335, 338, 339, 344, 349, 352, 356, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 384, 390, 391, 392, 393, 396, 401, 403, 411, 412, 421, 422, 426, 434, 435, 437, 441, 442, 443, 447, 448, 452, 453, 454, 464, 465, 466, 468, 474, 477, 481, 482, 490, 492, 497, 498, 499, 500, 501, 511, 516, 517, 518, 519, 520, 521, 523, 526, 527, 528, 537, 543, 548, 552, 563, 564, 573, 583, 595, 605, 617, 619, 620, 622, 623, 624, 625, 627, 629, 631, 632, 633, 647, 648, 650, 653, 655, 659, 660, 661, 665, 666, 668, 671, 672, 675, 676, 680, 681, 682, 687, 688, 691, 695, 697, 707, 712, 717, 718, 719, 727, 728, 729, 732, 733, 734, 735, 737, 739, 759, 761, 764, 765, 766, 767, 772, 779, 782, 785, 786, 793, 794, 797, 798, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 853, 854, 855, 858, 859, 860, 861, 862, 863, 864, 865], "across": [0, 7, 8, 9, 21, 22, 23, 24, 38, 52, 62, 69, 75, 76, 85, 97, 206, 207, 235, 242, 268, 286, 370, 374, 442, 492, 495, 526, 547, 582, 619, 620, 622, 624, 629, 632, 647, 650, 712, 732, 733, 780, 806, 811, 817, 819, 821, 824, 825, 827, 832, 835, 856, 858, 863], "templat": [0, 800, 814, 820, 832], "help": [0, 15, 42, 44, 49, 524, 569, 622, 635, 753, 779, 800, 801, 802, 806, 807, 809, 812, 813, 814, 815, 816, 817, 819, 823, 825, 826, 828, 829, 832, 833, 839, 840, 841, 844, 845, 854, 858, 860, 864], "get": [0, 3, 4, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 40, 41, 43, 49, 50, 57, 69, 73, 80, 97, 158, 159, 160, 163, 191, 192, 193, 196, 202, 207, 210, 214, 371, 479, 525, 543, 564, 582, 618, 619, 622, 625, 629, 682, 708, 764, 779, 780, 793, 801, 804, 805, 806, 807, 809, 810, 811, 816, 817, 818, 822, 825, 826, 827, 828, 829, 830, 831, 832, 837, 838, 839, 840, 841, 845, 849, 852, 853, 858, 864], "It": [0, 3, 8, 9, 18, 21, 22, 23, 24, 26, 27, 28, 29, 38, 39, 40, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 416, 418, 419, 427, 428, 431, 432, 433, 434, 442, 443, 444, 445, 446, 448, 449, 459, 462, 467, 475, 476, 477, 478, 480, 482, 486, 490, 493, 494, 496, 497, 498, 500, 501, 511, 512, 513, 514, 522, 529, 530, 534, 535, 536, 541, 542, 551, 565, 566, 567, 603, 604, 607, 609, 610, 611, 612, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 668, 669, 670, 671, 674, 676, 677, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 697, 698, 699, 700, 702, 705, 725, 726, 727, 728, 729, 731, 732, 733, 734, 736, 740, 741, 744, 745, 746, 749, 751, 752, 754, 755, 756, 779, 780, 800, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 826, 828, 829, 830, 831, 832, 833, 834, 835, 837, 839, 840, 841, 850, 853, 856, 858, 859, 861, 862, 863, 864, 865], "locat": [0, 42, 136, 380, 512, 617, 629, 631, 634, 710, 726, 743, 794, 806, 808, 813, 814, 818, 829, 830, 832, 833, 844, 856], "asset": [0, 845], "01_templat": 0, "ipynb": 0, "pleas": [0, 32, 41, 45, 97, 98, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 776, 777, 779, 780, 782, 783, 784, 785, 800, 803, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 837, 838, 839, 840, 841, 842, 844, 847, 848, 849], "make": [0, 3, 5, 6, 7, 8, 9, 18, 26, 27, 28, 40, 44, 52, 75, 368, 411, 789, 800, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 839, 840, 842, 844, 848, 849, 852, 856, 858, 859, 860, 861, 864, 865], "copi": [0, 42, 45, 48, 49, 50, 51, 52, 53, 59, 69, 71, 72, 73, 74, 75, 76, 82, 92, 96, 122, 123, 124, 128, 139, 147, 209, 269, 371, 450, 452, 453, 454, 460, 462, 464, 465, 466, 469, 473, 480, 488, 544, 570, 580, 587, 588, 617, 618, 619, 620, 622, 627, 629, 634, 690, 691, 692, 694, 696, 697, 699, 701, 707, 742, 744, 772, 794, 807, 808, 811, 813, 816, 817, 820, 829, 830, 837, 843, 851, 852, 853], "firstli": [0, 18, 19, 22, 28, 29, 33, 38, 812, 817, 819, 820, 821, 825, 826, 828, 835, 840, 854, 864], "updat": [0, 4, 5, 6, 8, 9, 20, 21, 22, 23, 24, 26, 27, 40, 42, 47, 53, 54, 69, 76, 77, 92, 371, 479, 551, 565, 566, 569, 570, 592, 603, 604, 607, 609, 610, 611, 622, 623, 624, 628, 629, 647, 649, 703, 704, 705, 713, 714, 718, 723, 724, 772, 777, 783, 784, 789, 794, 800, 806, 807, 808, 810, 811, 812, 815, 816, 817, 819, 824, 826, 827, 829, 830, 832, 835, 837, 839, 840, 842, 843], "file": [0, 40, 41, 42, 53, 69, 578, 600, 622, 782, 802, 806, 807, 808, 811, 812, 813, 814, 815, 816, 818, 820, 821, 822, 823, 825, 829, 830, 831, 832, 833, 837, 840, 844, 854, 857, 858, 859], "name": [0, 6, 26, 27, 38, 40, 41, 42, 52, 57, 63, 67, 75, 80, 86, 90, 242, 368, 369, 371, 415, 421, 484, 487, 524, 525, 620, 622, 625, 633, 659, 660, 664, 672, 673, 675, 676, 680, 737, 738, 739, 761, 765, 772, 782, 789, 790, 792, 806, 807, 808, 813, 814, 815, 816, 819, 820, 821, 824, 829, 830, 832, 833, 834, 835, 837, 840, 842, 858], "match": [0, 49, 52, 69, 72, 75, 147, 242, 277, 333, 335, 365, 368, 370, 371, 412, 442, 457, 479, 483, 561, 618, 620, 622, 625, 660, 661, 666, 682, 759, 803, 806, 812, 814, 815, 819, 822, 830, 859, 864], "topic": [0, 15, 18, 19, 20, 28, 29, 30, 31, 32, 33, 826, 839, 858], "your": [0, 2, 3, 4, 6, 8, 9, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 44, 800, 801, 803, 804, 805, 806, 807, 809, 811, 813, 814, 816, 820, 822, 823, 827, 829, 831, 833, 835, 840, 841, 843, 844, 848, 849, 851, 852, 858], "Then": [0, 45, 624, 650, 802, 806, 807, 808, 813, 814, 816, 822, 823, 826, 828, 832, 833, 843], "place": [0, 7, 8, 21, 22, 23, 24, 40, 47, 48, 51, 52, 53, 57, 59, 69, 71, 73, 74, 75, 76, 80, 82, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 269, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 306, 307, 310, 322, 323, 328, 329, 330, 332, 335, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 464, 474, 479, 482, 498, 511, 514, 518, 527, 535, 536, 541, 545, 547, 549, 550, 551, 565, 569, 583, 588, 592, 612, 617, 618, 619, 620, 622, 623, 624, 625, 627, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 784, 800, 803, 805, 808, 810, 811, 814, 815, 816, 818, 819, 820, 822, 824, 825, 829, 830, 832, 833, 835, 842, 845, 860], "its": [0, 8, 17, 19, 26, 27, 29, 32, 39, 40, 42, 47, 49, 52, 59, 69, 72, 75, 76, 82, 95, 107, 110, 113, 118, 148, 153, 154, 155, 156, 157, 208, 235, 268, 287, 296, 360, 368, 371, 380, 407, 415, 487, 514, 538, 586, 614, 616, 618, 619, 620, 622, 625, 627, 629, 665, 690, 694, 695, 699, 712, 761, 794, 800, 806, 807, 812, 815, 816, 817, 818, 820, 821, 822, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 842, 843, 845, 851, 857, 858, 864], "folder": [0, 7, 8, 21, 22, 23, 24, 42, 800, 807, 808, 811, 814, 816, 822, 825, 829, 832, 833, 834], "next": [0, 5, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 40, 42, 52, 75, 160, 341, 345, 350, 354, 365, 618, 779, 784, 800, 806, 807, 808, 813, 817, 819, 820, 822, 823, 826, 838, 839, 840, 849, 858, 860], "edit": [0, 806, 807, 808, 823], "titl": [0, 9, 12, 14, 25, 41, 44, 800, 806, 808, 814], "descript": [0, 1, 35, 36, 37, 42, 45, 48, 51, 52, 57, 74, 75, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 474, 482, 511, 514, 541, 545, 547, 549, 588, 612, 617, 618, 620, 622, 623, 624, 625, 627, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 806, 808, 820, 827, 828], "accordingli": [0, 52, 57, 62, 63, 65, 66, 75, 80, 85, 88, 89, 134, 235, 240, 242, 258, 268, 282, 329, 330, 365, 617, 620, 625, 632, 633, 635, 636, 682, 733, 737, 738, 739, 740, 748, 749, 750, 751, 752, 753, 754, 755, 756, 829, 837, 844], "thei": [0, 9, 33, 38, 43, 52, 57, 61, 63, 69, 80, 84, 86, 173, 287, 339, 365, 618, 620, 625, 628, 631, 633, 680, 703, 704, 726, 737, 759, 785, 800, 805, 806, 807, 810, 811, 813, 814, 815, 816, 817, 818, 819, 821, 823, 825, 826, 828, 829, 832, 833, 835, 837, 839, 840, 841, 842, 843, 851, 855, 858, 860, 861, 864, 865], "render": [0, 814, 820], "correctli": [0, 23, 26, 27, 40, 52, 57, 62, 75, 80, 85, 334, 365, 380, 517, 518, 519, 520, 521, 625, 632, 666, 732, 806, 807, 808, 812, 815, 817, 819, 821, 823, 824, 830, 832, 835, 841, 843, 851, 852], "webpag": [0, 15], "content": [0, 1, 12, 14, 25, 26, 41, 42, 52, 69, 75, 380, 518, 806, 808, 814, 818, 828, 831, 837, 840, 844], "behind": [0, 17, 26, 800, 810, 824, 832, 836, 838], "exist": [0, 17, 26, 27, 40, 41, 42, 45, 48, 52, 53, 69, 71, 75, 76, 82, 123, 371, 452, 453, 459, 460, 462, 464, 465, 466, 473, 488, 533, 569, 622, 627, 688, 690, 691, 692, 694, 696, 697, 699, 701, 784, 786, 800, 806, 807, 811, 813, 818, 819, 820, 825, 826, 828, 829, 832, 835, 837, 843, 845, 847, 848, 856, 858, 861, 864], "cell": [0, 1, 3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 56, 79, 624, 649, 780, 816, 837], "where": [0, 6, 19, 23, 29, 30, 34, 42, 48, 51, 52, 53, 57, 59, 61, 62, 65, 66, 69, 71, 74, 75, 76, 80, 82, 84, 85, 88, 89, 92, 93, 130, 131, 134, 136, 142, 223, 233, 235, 238, 240, 242, 243, 252, 257, 258, 259, 266, 267, 268, 273, 275, 279, 281, 285, 294, 296, 322, 324, 325, 326, 340, 344, 351, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 382, 383, 384, 390, 395, 396, 400, 415, 421, 422, 426, 427, 429, 435, 441, 442, 443, 452, 453, 454, 468, 474, 490, 491, 492, 495, 497, 498, 500, 501, 511, 519, 520, 521, 551, 565, 602, 617, 620, 622, 624, 625, 627, 629, 631, 632, 635, 636, 650, 655, 659, 660, 664, 666, 668, 670, 671, 672, 675, 676, 679, 681, 687, 689, 690, 692, 698, 702, 710, 717, 726, 727, 728, 729, 734, 735, 750, 752, 754, 755, 756, 764, 779, 783, 794, 800, 801, 803, 807, 808, 809, 811, 812, 813, 814, 815, 817, 818, 820, 821, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 840, 841, 842, 843, 844, 847, 848, 849, 851, 856, 865], "The": [0, 3, 5, 6, 7, 8, 9, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 42, 43, 44, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 128, 129, 131, 133, 136, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 161, 162, 163, 165, 167, 168, 169, 172, 173, 175, 176, 178, 179, 180, 181, 187, 188, 189, 190, 191, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 341, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 418, 419, 420, 421, 422, 424, 426, 436, 437, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 461, 463, 464, 465, 466, 470, 473, 474, 479, 480, 482, 483, 484, 485, 489, 490, 491, 492, 493, 494, 495, 496, 498, 499, 500, 502, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 523, 524, 526, 527, 528, 529, 530, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 545, 546, 547, 549, 550, 551, 553, 554, 555, 556, 557, 560, 562, 565, 566, 569, 571, 572, 575, 578, 580, 581, 582, 583, 584, 585, 586, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 721, 722, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 764, 766, 767, 772, 776, 777, 779, 780, 782, 783, 784, 789, 793, 794, 800, 801, 802, 803, 806, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 830, 832, 833, 835, 836, 837, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865], "h2": [0, 1, 12, 14, 25], "tag": [0, 1, 12, 14, 25, 807, 808], "section": [0, 1, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 46, 52, 63, 75, 107, 368, 371, 401, 412, 460, 469, 488, 633, 737, 738, 739, 740, 800, 801, 803, 805, 806, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 832, 833, 835, 836, 840, 841, 853, 854, 861, 864], "h3": [0, 1, 12, 14, 25], "subsect": [0, 1, 12, 14, 25, 806, 807, 808, 811, 816], "step": [0, 1, 12, 13, 14, 25, 26, 27, 38, 40, 41, 42, 52, 54, 71, 75, 77, 121, 132, 368, 371, 413, 415, 468, 603, 604, 607, 609, 610, 611, 617, 623, 628, 703, 704, 705, 784, 800, 806, 807, 808, 809, 812, 813, 815, 816, 817, 818, 819, 822, 827, 829, 832, 837, 840, 841, 842, 849, 858], "explan": [0, 1, 12, 14, 25, 806, 807, 808, 815, 820, 824, 829, 833, 839], "go": [0, 4, 11, 13, 17, 24, 27, 32, 47, 52, 75, 79, 368, 410, 414, 629, 717, 718, 800, 801, 803, 806, 807, 808, 810, 813, 814, 817, 819, 822, 823, 829, 830, 832, 833, 836, 840, 843, 854, 858, 859, 863, 865], "default": [0, 3, 5, 26, 27, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 167, 168, 173, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 191, 192, 194, 195, 199, 202, 203, 204, 206, 207, 208, 209, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 383, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 420, 422, 424, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 480, 481, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 526, 527, 529, 530, 534, 535, 536, 537, 538, 539, 540, 541, 542, 544, 545, 546, 547, 549, 550, 551, 553, 554, 557, 558, 561, 562, 565, 566, 569, 570, 575, 579, 580, 581, 583, 585, 587, 588, 601, 602, 603, 604, 605, 606, 607, 609, 610, 611, 612, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 664, 665, 666, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 712, 713, 714, 716, 717, 718, 719, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 764, 765, 766, 767, 772, 776, 777, 779, 780, 781, 782, 783, 784, 785, 793, 794, 806, 807, 808, 813, 814, 817, 818, 819, 820, 821, 824, 825, 829, 832, 835, 837, 841, 845, 851, 858], "which": [0, 3, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 148, 150, 152, 158, 160, 163, 165, 168, 175, 187, 192, 196, 201, 203, 206, 207, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 316, 319, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 341, 343, 344, 345, 346, 348, 349, 350, 352, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 410, 411, 412, 414, 419, 422, 432, 435, 436, 437, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 479, 480, 481, 482, 483, 484, 490, 492, 493, 494, 496, 497, 498, 499, 500, 501, 503, 504, 511, 512, 513, 514, 516, 517, 518, 519, 520, 521, 523, 524, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 543, 544, 545, 546, 547, 549, 550, 551, 553, 554, 557, 558, 563, 564, 565, 566, 580, 581, 583, 585, 587, 588, 601, 602, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 629, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 647, 648, 650, 653, 654, 655, 657, 658, 660, 661, 662, 663, 665, 666, 668, 669, 670, 672, 673, 674, 675, 679, 681, 682, 684, 685, 686, 687, 688, 690, 691, 693, 694, 695, 696, 697, 698, 701, 702, 711, 712, 713, 714, 719, 721, 722, 723, 724, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 765, 766, 776, 777, 779, 780, 781, 782, 783, 784, 785, 789, 790, 796, 800, 802, 803, 804, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 854, 855, 856, 857, 858, 859, 861, 863, 864, 865], "text": [0, 4, 7, 9, 40, 52, 53, 369, 370, 434, 442, 806, 808, 814, 819, 820], "paragraph": [0, 1, 12, 14, 25, 814], "p": [0, 1, 12, 14, 25, 38, 52, 53, 57, 75, 76, 80, 93, 134, 239, 369, 374, 418, 496, 529, 530, 617, 620, 622, 625, 629, 666, 682, 714, 780, 800, 807, 808, 810], "without": [0, 3, 9, 29, 38, 42, 45, 63, 69, 95, 575, 589, 622, 627, 629, 633, 694, 707, 737, 738, 739, 740, 764, 767, 793, 807, 808, 812, 813, 815, 816, 817, 818, 819, 821, 824, 825, 829, 832, 833, 835, 839, 840, 841, 843, 851, 855, 858, 859, 860, 864], "path": [0, 7, 8, 9, 21, 22, 23, 24, 41, 42, 761, 772, 788, 807, 814, 828, 829, 830, 844, 858], "correspond": [0, 3, 6, 8, 13, 26, 27, 41, 49, 51, 52, 53, 56, 59, 62, 63, 65, 69, 72, 74, 75, 79, 82, 88, 92, 95, 98, 148, 160, 163, 223, 273, 287, 325, 338, 339, 362, 365, 368, 369, 371, 374, 380, 390, 396, 407, 412, 418, 421, 422, 423, 440, 465, 466, 490, 491, 492, 495, 512, 513, 580, 602, 618, 620, 622, 624, 625, 627, 631, 632, 633, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 650, 655, 659, 660, 666, 673, 674, 694, 695, 726, 732, 733, 737, 738, 739, 740, 745, 746, 751, 752, 753, 754, 761, 764, 766, 793, 800, 806, 808, 812, 813, 815, 816, 817, 819, 820, 821, 824, 825, 827, 829, 832, 835, 837, 851, 852, 853, 858], "toctre": [0, 814], "index": [0, 40, 41, 42, 45, 48, 52, 53, 59, 62, 63, 64, 69, 71, 75, 76, 82, 85, 86, 87, 127, 134, 204, 307, 314, 315, 324, 325, 326, 362, 368, 369, 371, 376, 378, 380, 390, 396, 427, 429, 434, 457, 464, 467, 475, 477, 479, 482, 483, 486, 502, 503, 512, 521, 524, 542, 544, 565, 566, 570, 615, 617, 619, 622, 627, 629, 632, 633, 634, 694, 698, 708, 709, 710, 713, 714, 715, 721, 723, 732, 733, 735, 737, 738, 739, 741, 743, 765, 780, 794, 796, 815, 816, 821, 825, 826, 827, 828, 830, 832, 839, 858], "rst": [0, 825], "left": [0, 19, 29, 40, 41, 52, 57, 62, 64, 75, 80, 85, 87, 115, 116, 227, 242, 334, 349, 356, 365, 366, 368, 369, 371, 380, 402, 421, 426, 430, 437, 439, 465, 475, 516, 517, 518, 519, 520, 521, 534, 616, 620, 622, 625, 632, 634, 659, 660, 666, 675, 680, 732, 743, 764, 807, 808, 811, 814, 816, 817, 819, 822], "mai": [0, 50, 51, 52, 57, 63, 64, 73, 74, 80, 87, 97, 98, 121, 128, 139, 209, 235, 236, 242, 247, 255, 263, 264, 268, 269, 271, 286, 329, 330, 365, 396, 533, 569, 617, 619, 620, 622, 625, 633, 634, 635, 673, 682, 737, 738, 739, 740, 741, 744, 748, 749, 750, 752, 764, 794, 805, 806, 807, 808, 811, 815, 816, 817, 821, 822, 825, 826, 827, 829, 830, 832, 835, 838, 839, 841, 849, 865], "need": [0, 3, 6, 8, 15, 17, 23, 24, 26, 27, 40, 41, 42, 52, 53, 59, 75, 76, 82, 368, 369, 380, 390, 395, 396, 400, 421, 518, 529, 530, 551, 622, 624, 625, 627, 629, 650, 659, 687, 690, 717, 765, 800, 802, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 825, 826, 827, 828, 829, 830, 831, 833, 835, 837, 839, 840, 843, 844, 849, 851, 852, 854, 858, 859, 860, 864], "add": [0, 19, 29, 42, 44, 51, 52, 60, 67, 69, 74, 75, 83, 90, 97, 98, 356, 366, 368, 370, 371, 410, 447, 479, 561, 589, 620, 622, 624, 625, 630, 635, 650, 679, 725, 753, 761, 772, 780, 783, 800, 806, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 822, 823, 824, 825, 826, 828, 829, 832, 833, 835, 837, 839, 843, 844, 854, 856, 858], "grid": [0, 42, 48, 134, 310, 362, 617, 819, 832], "item": [0, 4, 26, 27, 38, 40, 42, 47, 53, 67, 69, 71, 74, 75, 76, 129, 154, 191, 245, 261, 269, 335, 338, 351, 531, 541, 542, 546, 580, 581, 617, 618, 619, 622, 629, 636, 711, 712, 713, 714, 718, 723, 724, 758, 800, 806, 815, 817, 837, 839, 840, 842, 851], "card": [0, 52, 75, 353, 365, 863], "refer": [0, 5, 52, 59, 65, 66, 75, 77, 82, 88, 89, 127, 142, 240, 258, 307, 322, 351, 362, 365, 368, 369, 371, 396, 401, 412, 419, 441, 464, 603, 604, 617, 620, 623, 625, 627, 635, 636, 655, 657, 681, 694, 752, 754, 755, 756, 780, 800, 805, 806, 807, 808, 811, 812, 814, 816, 817, 824, 825, 826, 827, 828, 829, 830, 831, 832, 843, 844, 845, 858], "also": [0, 3, 4, 6, 8, 9, 11, 13, 17, 19, 21, 22, 24, 26, 27, 29, 31, 32, 33, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 163, 166, 167, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 580, 581, 582, 583, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 617, 618, 620, 622, 623, 624, 625, 627, 628, 629, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 716, 717, 718, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 779, 780, 789, 800, 801, 802, 803, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 832, 833, 835, 837, 840, 841, 842, 843, 844, 847, 848, 851, 852, 854, 855, 856, 857, 858, 859, 861, 863, 864, 865], "look": [0, 5, 17, 26, 27, 40, 42, 45, 800, 803, 806, 807, 808, 813, 814, 815, 817, 818, 819, 821, 822, 823, 824, 825, 829, 830, 832, 833, 834, 835, 837, 839, 841, 842, 844, 847, 851, 854, 858], "document": [0, 17, 26, 59, 242, 329, 330, 365, 602, 620, 622, 698, 801, 802, 805, 808, 814, 816, 817, 819, 828, 829, 830, 832, 840, 842], "sphinx": [0, 802, 814], "design": [0, 9, 17, 26, 75, 242, 306, 311, 312, 362, 620, 800, 804, 810, 814, 816, 817, 828, 829, 830, 831, 835, 837, 839, 843, 847, 848, 854, 856, 858, 861, 862, 863], "websit": [0, 44, 807, 811, 848], "alreadi": [1, 8, 18, 21, 22, 23, 24, 26, 27, 32, 40, 42, 45, 52, 57, 69, 75, 80, 231, 241, 268, 278, 288, 371, 380, 453, 454, 474, 509, 518, 620, 625, 662, 670, 793, 794, 800, 806, 807, 808, 813, 815, 817, 818, 824, 828, 829, 835, 843, 844, 858, 860, 865], "instal": [1, 5, 6, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 43, 44, 45, 802, 807, 808, 813, 814, 822, 823], "skip": [1, 4, 42, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 369, 371, 391, 392, 393, 411, 427, 429, 434, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 475, 478, 480, 482, 483, 484, 490, 492, 493, 494, 496, 498, 511, 512, 513, 514, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 580, 581, 583, 585, 587, 588, 601, 607, 612, 629, 638, 639, 640, 641, 647, 648, 653, 654, 655, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 679, 684, 685, 686, 687, 691, 694, 695, 696, 697, 698, 701, 702, 719, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 745, 746, 749, 751, 752, 754, 755, 756, 765, 793, 814, 825, 832], "colab": [1, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 40, 42, 44, 45], "manual": [1, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 629, 706, 716, 717, 806, 807, 808, 817, 823, 832, 841, 844], "do": [1, 3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 38, 40, 42, 52, 53, 69, 75, 76, 235, 268, 277, 368, 370, 371, 380, 413, 447, 459, 518, 521, 551, 620, 622, 629, 706, 713, 716, 717, 718, 723, 766, 794, 800, 803, 806, 807, 808, 811, 812, 813, 815, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 833, 835, 837, 839, 840, 841, 842, 843, 845, 849, 859, 864, 865], "run": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 40, 42, 43, 44, 52, 54, 75, 77, 374, 490, 492, 603, 604, 609, 623, 628, 703, 704, 705, 761, 762, 780, 781, 782, 783, 793, 800, 802, 806, 807, 810, 812, 813, 816, 818, 819, 821, 823, 824, 826, 829, 830, 837, 838, 839, 840, 841, 842, 843, 844, 851, 852, 853, 856, 858, 859, 860, 861, 863, 864, 865], "below": [1, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 38, 41, 42, 43, 48, 52, 57, 75, 80, 88, 140, 141, 142, 242, 252, 275, 322, 323, 332, 362, 365, 371, 482, 617, 620, 625, 658, 679, 754, 801, 803, 806, 807, 810, 811, 815, 816, 817, 818, 819, 821, 822, 825, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 851, 852, 853, 854, 856, 861, 863], "mind": [1, 11, 13, 17, 23, 26, 30, 806, 807, 812, 815, 832, 844, 852], "packag": [1, 3, 5, 7, 8, 11, 21, 22, 23, 24, 27, 40, 41, 42, 45, 792, 800, 803, 807, 816, 829, 843, 844, 858, 860], "avail": [1, 3, 5, 7, 21, 22, 24, 26, 27, 42, 53, 76, 191, 197, 199, 200, 211, 535, 619, 622, 625, 676, 765, 800, 807, 808, 815, 816, 817, 818, 820, 821, 829, 832, 835, 843, 844, 847, 851, 852, 853, 863, 864], "click": [1, 3, 42, 806, 807, 808, 816, 820, 822, 823, 838], "runtim": [1, 3, 4, 5, 6, 7, 8, 19, 26, 29, 40, 41, 810, 825, 832, 835, 858], "restart": [1, 3, 4, 5, 7, 40, 41, 807, 822], "pip": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 44, 45, 803, 807, 814, 823], "q": [1, 3, 4, 5, 6, 7, 8, 9, 40, 41, 42, 52, 56, 57, 75, 79, 80, 355, 365, 369, 380, 421, 521, 624, 625, 629, 650, 653, 659, 660, 672, 714, 807, 808, 810, 830, 843], "git": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 800, 802, 805, 807, 808, 811, 814, 816, 822, 823, 832, 844], "clone": [1, 3, 5, 7, 26, 40, 42, 43, 800, 802, 808, 822, 844], "http": [1, 3, 4, 5, 6, 7, 8, 13, 21, 22, 23, 24, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 482, 511, 603, 604, 617, 618, 620, 623, 625, 627, 635, 673, 674, 702, 752, 800, 802, 807, 808, 811, 814, 816, 817, 820, 822, 844, 852], "github": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 44, 800, 801, 802, 805, 808, 809, 811, 814, 816, 817, 819, 820, 822, 823, 831, 832, 844, 847], "com": [1, 3, 4, 5, 7, 13, 26, 40, 41, 42, 43, 44, 800, 802, 807, 808, 811, 814, 816, 817, 822, 844], "unifyai": [1, 3, 5, 7, 26, 40, 41, 42, 43, 44, 800, 802, 807, 808, 814, 822, 844], "model": [1, 2, 3, 9, 10, 15, 16, 17, 43, 45, 235, 268, 370, 443, 620, 777, 781, 782, 800, 840, 841, 845, 851, 852, 856, 857, 858, 859, 860, 861, 862, 864, 865], "depth": [1, 3, 5, 7, 41, 48, 52, 56, 71, 75, 79, 136, 368, 371, 403, 461, 534, 546, 617, 622, 624, 642, 643, 808, 816, 840, 841, 842, 844], "1": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 144, 147, 148, 149, 150, 154, 158, 159, 160, 163, 168, 170, 175, 191, 192, 196, 200, 201, 203, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 319, 320, 322, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 435, 436, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 455, 457, 458, 459, 460, 461, 462, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 543, 544, 545, 546, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 561, 563, 565, 566, 570, 579, 580, 581, 582, 583, 585, 587, 588, 589, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 704, 705, 706, 707, 709, 710, 712, 713, 714, 715, 717, 718, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 765, 766, 767, 769, 772, 776, 779, 780, 781, 782, 783, 784, 785, 789, 793, 794, 800, 803, 804, 807, 808, 811, 813, 814, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 827, 828, 829, 830, 832, 835, 836, 837, 839, 840, 841, 842, 843, 848, 849, 851, 852, 853], "from": [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 85, 88, 89, 90, 92, 93, 95, 98, 121, 123, 126, 128, 129, 130, 131, 134, 135, 138, 142, 144, 150, 168, 174, 175, 191, 196, 201, 207, 208, 234, 242, 243, 270, 274, 275, 282, 286, 306, 307, 313, 316, 322, 324, 325, 326, 333, 336, 339, 340, 342, 343, 355, 359, 362, 365, 367, 368, 369, 370, 371, 375, 380, 391, 392, 393, 407, 412, 413, 430, 437, 442, 443, 447, 457, 460, 469, 474, 480, 482, 483, 485, 487, 488, 497, 498, 499, 500, 501, 512, 513, 533, 541, 542, 544, 564, 575, 585, 602, 604, 605, 609, 617, 618, 619, 620, 622, 623, 624, 625, 627, 628, 629, 631, 632, 633, 635, 636, 638, 646, 647, 655, 658, 675, 679, 680, 681, 688, 691, 694, 697, 703, 704, 705, 707, 718, 719, 720, 726, 727, 728, 729, 733, 736, 737, 739, 745, 746, 751, 752, 753, 754, 755, 756, 759, 761, 764, 765, 766, 767, 772, 777, 779, 780, 781, 782, 784, 789, 794, 800, 801, 803, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 832, 833, 835, 837, 838, 839, 840, 841, 842, 843, 845, 847, 848, 849, 850, 851, 852, 853, 854, 856, 857, 858, 859, 860, 862, 863, 864, 865], "repositori": [1, 3, 5, 7, 802, 806, 807, 808, 810, 811, 814, 822, 831, 849], "cd": [1, 3, 5, 7, 26, 43, 800, 802, 807, 808, 822, 844], "here": [1, 3, 9, 12, 14, 17, 22, 25, 26, 27, 38, 40, 41, 42, 43, 45, 75, 278, 449, 620, 800, 803, 805, 806, 807, 808, 811, 813, 814, 815, 816, 817, 819, 822, 823, 824, 826, 827, 828, 829, 830, 832, 833, 837, 838, 839, 840, 841, 842, 843, 851, 852, 853, 858, 859], "normal": [1, 3, 7, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 52, 60, 61, 75, 83, 84, 92, 93, 352, 365, 368, 374, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 490, 491, 492, 493, 494, 495, 496, 511, 514, 627, 630, 631, 688, 698, 725, 726, 728, 779, 780, 783, 800, 806, 828, 829, 835, 840, 851, 853, 856], "resnet": [2, 8, 15, 26, 851, 852], "imag": [2, 3, 6, 8, 11, 15, 23, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 56, 74, 75, 79, 97, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 278, 279, 281, 282, 286, 368, 386, 387, 403, 404, 405, 407, 534, 620, 622, 624, 637, 638, 639, 640, 641, 644, 645, 646, 780, 800, 807, 822, 835, 837, 838, 840, 842, 844, 851, 852, 858], "classif": [2, 3, 7, 9, 15, 40, 800, 858], "acceler": [2, 15, 800, 817, 829, 856, 860, 861, 862, 863], "pytorch": [2, 3, 4, 5, 6, 7, 10, 12, 13, 15, 16, 24, 26, 27, 38, 45, 278, 329, 330, 365, 620, 784, 800, 805, 806, 812, 817, 818, 821, 824, 825, 828, 829, 830, 835, 837, 842, 843, 845, 848, 849, 851, 852, 859, 861, 862, 864, 865], "jax": [2, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 44, 46, 51, 52, 53, 63, 68, 74, 75, 76, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 342, 360, 365, 380, 521, 551, 583, 602, 614, 620, 622, 633, 737, 738, 739, 740, 772, 776, 789, 800, 803, 805, 806, 807, 808, 811, 813, 817, 818, 821, 822, 824, 827, 828, 829, 830, 832, 833, 835, 837, 839, 842, 843, 848, 849, 851, 852, 853, 859, 861, 864, 865], "convert": [2, 5, 6, 8, 9, 11, 13, 15, 16, 18, 20, 23, 24, 26, 27, 28, 30, 32, 40, 43, 45, 47, 48, 51, 69, 70, 71, 74, 92, 122, 123, 135, 145, 146, 188, 189, 190, 191, 202, 210, 214, 234, 274, 371, 376, 452, 453, 454, 502, 567, 584, 586, 587, 588, 590, 617, 618, 619, 620, 622, 625, 629, 683, 707, 718, 719, 761, 789, 793, 800, 806, 812, 813, 826, 827, 829, 832, 834, 837, 843, 845, 849, 852, 856, 857, 864], "them": [2, 3, 6, 8, 11, 13, 15, 26, 27, 32, 369, 436, 528, 564, 622, 764, 780, 800, 802, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 821, 823, 826, 828, 829, 830, 832, 834, 837, 839, 840, 841, 843, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 856, 858, 860, 864], "faster": [2, 3, 6, 8, 9, 15, 26, 27, 43, 45, 52, 57, 75, 80, 369, 439, 625, 675, 802, 805, 814, 845, 860, 863], "infer": [2, 6, 8, 9, 15, 19, 29, 31, 32, 41, 43, 45, 48, 52, 53, 56, 59, 71, 75, 76, 79, 82, 121, 123, 126, 130, 131, 135, 138, 144, 153, 154, 155, 156, 157, 306, 307, 368, 375, 403, 499, 545, 579, 617, 618, 622, 624, 627, 647, 694, 789, 790, 810, 813, 817, 818, 832, 837, 842, 852, 856, 857, 860, 862], "mmpretrain": [2, 15], "segment": [2, 15, 52, 75, 324, 325, 326, 362, 814, 819], "unet": [2, 15], "alexnet": [2, 15], "In": [2, 3, 4, 11, 13, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 45, 50, 52, 53, 59, 73, 75, 76, 82, 92, 93, 202, 209, 210, 214, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 371, 374, 391, 392, 393, 413, 452, 453, 454, 460, 462, 464, 465, 466, 467, 469, 473, 479, 480, 488, 490, 492, 524, 544, 551, 569, 619, 620, 622, 625, 627, 631, 673, 690, 691, 692, 694, 696, 697, 699, 701, 729, 800, 806, 807, 808, 811, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 832, 833, 834, 835, 839, 840, 841, 842, 843, 847, 849, 851, 852, 853, 854, 856, 858, 859, 861, 864], "we": [2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 43, 44, 45, 52, 57, 58, 59, 67, 75, 80, 81, 90, 92, 93, 113, 357, 367, 371, 452, 453, 454, 460, 462, 464, 465, 466, 469, 473, 480, 484, 488, 534, 544, 583, 605, 606, 608, 613, 614, 622, 623, 625, 626, 627, 668, 684, 690, 691, 692, 694, 696, 697, 699, 701, 776, 782, 789, 794, 800, 801, 803, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 835, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 851, 852, 853, 854, 858, 859, 863, 864], "show": [2, 3, 4, 7, 15, 21, 26, 27, 28, 29, 31, 38, 40, 42, 43, 568, 577, 599, 622, 800, 806, 807, 808, 814, 816, 819, 823, 828, 829, 832, 834, 843, 851, 858], "how": [2, 3, 4, 5, 6, 8, 11, 13, 15, 16, 17, 18, 19, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 38, 41, 44, 45, 46, 51, 52, 68, 74, 75, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 235, 268, 286, 290, 294, 295, 297, 360, 370, 371, 442, 457, 482, 483, 614, 620, 776, 779, 780, 781, 782, 800, 801, 802, 803, 805, 807, 808, 810, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 823, 824, 826, 827, 828, 829, 830, 833, 834, 835, 836, 838, 839, 840, 841, 842, 843, 847, 849, 854, 858], "written": [2, 3, 4, 15, 17, 26, 27, 40, 53, 371, 463, 807, 811, 812, 820, 823, 824, 828, 829, 833, 837, 839, 842, 843, 847, 852, 856, 858, 862, 864, 865], "xgboost": [2, 15], "video": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 800, 801, 807, 808, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 844, 856], "tutori": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 800, 808, 829, 844], "nativ": [3, 4, 8, 17, 21, 22, 23, 24, 26, 27, 47, 48, 49, 50, 53, 70, 73, 76, 97, 101, 135, 145, 146, 152, 153, 154, 155, 156, 157, 171, 174, 189, 190, 191, 192, 202, 210, 214, 551, 553, 557, 564, 569, 586, 617, 618, 619, 622, 761, 772, 777, 789, 800, 803, 806, 817, 818, 821, 822, 825, 826, 828, 829, 830, 832, 837, 839, 840, 845, 851, 852, 853, 856, 865], "integr": [3, 4, 11, 13, 20, 27, 30, 49, 51, 52, 72, 74, 75, 147, 287, 348, 365, 380, 514, 618, 620, 800, 804, 805, 807, 809, 810, 826, 852, 856, 858, 860, 861, 862], "three": [3, 4, 15, 21, 31, 32, 42, 52, 134, 306, 362, 371, 454, 617, 807, 808, 815, 816, 817, 819, 829, 832, 835, 836, 837, 859, 864], "major": [3, 4, 632, 735, 817, 818, 830, 832, 843, 848, 855, 858], "ml": [3, 4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 45, 800, 801, 805, 829, 836, 837, 838, 840, 841, 842, 846, 848, 849, 852, 854, 855, 856, 857, 858, 861, 863, 865], "framework": [3, 4, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 40, 42, 44, 47, 53, 165, 187, 197, 200, 211, 532, 548, 552, 583, 586, 618, 619, 622, 629, 708, 759, 761, 765, 772, 777, 784, 789, 790, 800, 803, 806, 807, 810, 811, 812, 813, 814, 816, 817, 818, 819, 821, 822, 824, 825, 826, 828, 829, 832, 833, 835, 836, 837, 839, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 862], "sinc": [3, 5, 7, 23, 24, 26, 27, 40, 42, 52, 75, 93, 365, 800, 802, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 821, 828, 829, 843, 848, 858, 864], "want": [3, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 39, 40, 42, 52, 67, 75, 90, 235, 268, 371, 462, 620, 782, 800, 801, 802, 806, 807, 808, 814, 816, 818, 821, 823, 825, 826, 827, 828, 832, 835, 840, 841, 842, 843, 844, 848, 852], "after": [3, 4, 5, 6, 7, 8, 26, 27, 41, 52, 53, 54, 56, 60, 69, 75, 76, 77, 79, 83, 181, 282, 298, 302, 350, 360, 365, 368, 369, 371, 390, 391, 392, 393, 410, 414, 433, 463, 474, 551, 604, 607, 609, 610, 611, 618, 620, 622, 623, 624, 629, 630, 637, 638, 639, 640, 642, 644, 646, 647, 717, 725, 784, 789, 800, 806, 807, 808, 811, 813, 814, 816, 817, 819, 821, 824, 827, 830, 832, 836, 844, 851, 852, 858], "first": [3, 4, 5, 7, 11, 17, 19, 20, 21, 23, 26, 27, 29, 30, 31, 40, 43, 44, 45, 48, 51, 52, 57, 59, 61, 62, 63, 65, 71, 74, 75, 76, 80, 82, 84, 86, 88, 92, 93, 97, 98, 117, 118, 132, 133, 142, 173, 181, 191, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 285, 296, 306, 307, 322, 324, 325, 326, 328, 340, 342, 343, 344, 350, 354, 355, 360, 362, 365, 368, 369, 370, 371, 378, 380, 390, 420, 421, 422, 424, 428, 448, 458, 460, 464, 471, 474, 476, 477, 480, 487, 498, 500, 504, 512, 513, 514, 521, 526, 616, 617, 618, 619, 620, 622, 624, 625, 627, 628, 629, 632, 633, 634, 635, 650, 655, 658, 659, 660, 662, 665, 670, 672, 673, 675, 677, 679, 681, 694, 695, 698, 699, 703, 704, 705, 706, 707, 716, 717, 719, 731, 732, 733, 737, 738, 739, 742, 743, 745, 746, 761, 779, 780, 781, 782, 784, 789, 800, 802, 805, 806, 807, 808, 809, 811, 812, 813, 814, 815, 818, 819, 823, 824, 825, 826, 828, 829, 832, 835, 837, 839, 840, 842, 844, 847, 848, 851, 852, 856, 858, 859, 863], "notebook": [3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 32, 41, 782, 800], "automat": [3, 5, 7, 24, 26, 27, 32, 800, 806, 807, 808, 810, 813, 814, 816, 817, 823, 825, 828, 832, 835, 836, 838, 841, 842, 844, 845, 849, 858, 861, 865], "sure": [3, 5, 6, 7, 8, 9, 26, 40, 806, 807, 808, 811, 816, 821, 822, 829, 830, 832, 835, 844], "gpu": [3, 4, 5, 6, 7, 8, 9, 40, 42, 44, 45, 191, 193, 194, 197, 200, 202, 204, 206, 207, 210, 212, 214, 619, 800, 807, 808, 816, 818, 839, 844, 856, 858, 861, 862, 863], "enabl": [3, 4, 5, 6, 7, 8, 9, 21, 22, 24, 41, 52, 57, 69, 80, 98, 368, 370, 390, 446, 569, 622, 625, 668, 782, 800, 807, 808, 809, 812, 815, 817, 825, 826, 827, 828, 829, 832, 833, 836, 838, 840, 842, 843, 845, 848, 851, 856, 857, 858, 859, 860, 861, 864, 865], "dm": [3, 4, 5, 6, 8, 26, 27, 38, 40], "haiku": [3, 4, 5, 6, 8, 24, 26, 27, 38, 40, 44, 777, 800, 842, 849, 852, 858], "exit": [3, 5, 7, 26, 27, 818], "download": [3, 7, 11, 13, 26, 27, 41, 42, 45, 802, 807, 814, 832, 851, 852], "imagenet": [3, 13, 41, 43, 800], "class": [3, 5, 7, 9, 11, 13, 17, 26, 27, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 129, 138, 144, 160, 163, 176, 178, 179, 238, 275, 332, 353, 365, 379, 380, 387, 388, 421, 517, 518, 525, 534, 538, 551, 561, 583, 617, 618, 619, 620, 622, 624, 625, 626, 629, 630, 645, 649, 653, 659, 670, 674, 675, 677, 684, 700, 707, 718, 725, 740, 747, 751, 752, 761, 762, 769, 770, 771, 772, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 788, 789, 793, 798, 800, 806, 813, 814, 815, 817, 818, 819, 820, 824, 826, 827, 830, 831, 832, 835, 837, 838, 840, 841, 842, 845, 851, 852, 856, 858, 859, 865], "preprocess": [3, 7, 9, 26, 27, 40, 43, 851], "wget": [3, 5, 7, 40, 41, 44, 807], "raw": [3, 5, 6, 7, 8, 23, 26, 27, 40, 43, 44, 69, 800, 820, 852, 859], "githubusercont": [3, 5, 7, 40, 44], "hub": [3, 5, 7, 40, 43, 45], "master": [3, 5, 7, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 43, 44, 804, 816, 858], "imagenet_class": [3, 7], "txt": [3, 7, 41, 53, 807, 811, 814], "r": [3, 7, 40, 41, 52, 57, 69, 75, 80, 92, 93, 342, 357, 365, 367, 605, 623, 625, 627, 672, 701, 807, 808, 810, 827, 830], "f": [3, 4, 6, 7, 26, 27, 39, 40, 42, 52, 59, 75, 82, 296, 313, 360, 362, 371, 464, 485, 627, 629, 694, 709, 713, 714, 715, 718, 723, 724, 800, 801, 808, 810, 815, 816, 821, 833, 837, 839, 840, 849, 854], "categori": [3, 7, 806, 811, 812, 815, 817, 821, 829, 833, 836], "strip": [3, 7, 19, 29, 848], "readlin": [3, 7, 41], "cat": [3, 7, 41, 830, 835, 837, 842, 851, 852], "jpg": [3, 5, 6, 7, 8, 23, 26, 27, 42, 43, 800, 852], "filenam": [3, 5, 7, 26, 27, 40, 42, 45, 53, 782, 788, 840], "3": [3, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 131, 132, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 189, 191, 192, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 433, 436, 438, 441, 442, 443, 444, 445, 446, 447, 448, 450, 452, 453, 454, 455, 457, 458, 459, 460, 461, 464, 465, 466, 468, 469, 470, 471, 473, 474, 479, 480, 481, 482, 483, 484, 485, 487, 488, 489, 493, 494, 495, 496, 499, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 516, 517, 518, 519, 520, 521, 523, 526, 527, 528, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 546, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 561, 565, 566, 579, 580, 581, 585, 588, 589, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 707, 709, 710, 712, 713, 714, 715, 717, 718, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 767, 780, 793, 794, 800, 803, 806, 807, 811, 812, 813, 815, 816, 817, 819, 821, 822, 825, 827, 830, 832, 837, 839, 840, 841, 842, 851, 852, 865], "import": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 43, 44, 45, 52, 63, 67, 71, 75, 90, 189, 190, 194, 204, 206, 292, 301, 380, 511, 546, 562, 619, 622, 628, 633, 704, 705, 740, 772, 789, 790, 800, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 815, 817, 818, 819, 820, 823, 826, 827, 828, 829, 830, 831, 832, 833, 837, 839, 840, 842, 843, 844, 848, 851, 852, 853, 854, 856, 858, 861, 862, 864], "torchvis": [3, 6, 7, 40, 849], "transform": [3, 4, 6, 7, 8, 23, 26, 27, 40, 41, 43, 52, 56, 75, 79, 368, 369, 389, 390, 395, 396, 399, 400, 401, 411, 412, 415, 430, 624, 648, 764, 767, 780, 800, 826, 832, 842, 845, 851, 852, 856, 858, 859, 860], "pil": [3, 5, 6, 7, 8, 23, 26, 27, 41, 42, 43, 800, 852], "numpi": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 51, 52, 53, 65, 74, 75, 76, 142, 171, 189, 219, 279, 292, 301, 322, 362, 380, 511, 518, 527, 551, 580, 583, 587, 617, 618, 619, 620, 622, 635, 747, 759, 761, 772, 789, 793, 794, 800, 805, 806, 807, 808, 811, 812, 813, 816, 817, 818, 821, 822, 824, 828, 830, 832, 833, 835, 837, 839, 842, 844, 845, 847, 848, 851, 852, 853, 860, 865], "np": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 45, 48, 51, 52, 74, 75, 76, 122, 123, 124, 135, 171, 248, 252, 292, 301, 368, 369, 395, 400, 416, 580, 617, 618, 620, 622, 629, 712, 761, 789, 793, 794, 800, 806, 812, 817, 818, 821, 824, 828, 829, 830, 832, 833, 835, 837, 839, 840, 842, 845, 853], "warn": [3, 4, 5, 7, 8, 9, 21, 22, 23, 24, 40, 41, 42, 45, 797, 807, 808, 834, 851, 852, 853], "time": [3, 4, 6, 8, 24, 26, 27, 32, 40, 42, 43, 44, 52, 54, 57, 63, 75, 77, 86, 92, 93, 129, 335, 365, 368, 369, 371, 380, 396, 401, 413, 415, 434, 441, 474, 480, 511, 604, 609, 617, 623, 624, 625, 627, 628, 632, 633, 647, 649, 665, 700, 703, 704, 705, 732, 733, 737, 738, 780, 781, 782, 806, 807, 808, 811, 813, 815, 816, 817, 819, 822, 824, 825, 826, 828, 829, 832, 833, 837, 840, 842, 843, 844, 847, 848, 849, 851, 852, 856, 858, 859, 862, 863, 864], "filterwarn": [3, 4], "ignor": [3, 4, 39, 47, 48, 52, 69, 75, 134, 368, 369, 371, 380, 391, 392, 393, 422, 436, 476, 477, 481, 519, 617, 624, 625, 629, 650, 664, 717, 718, 784, 807, 814, 816, 819, 832, 843, 864], "compos": [3, 6, 7, 26, 27, 40, 52, 75, 368, 382, 383, 384, 807, 815, 829, 832, 851, 853, 858, 865], "resiz": [3, 5, 6, 7, 40, 41, 52, 75, 368, 403, 835], "256": [3, 5, 7, 51, 76, 278, 279, 581, 624, 639, 641, 764], "centercrop": [3, 7], "224": [3, 7, 11, 13, 26, 27, 40, 41, 43, 800, 852], "totensor": [3, 6, 7, 40], "mean": [3, 6, 7, 8, 9, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 42, 52, 53, 56, 58, 59, 61, 65, 67, 69, 71, 75, 76, 79, 81, 82, 84, 88, 90, 92, 129, 208, 324, 334, 362, 365, 368, 369, 370, 371, 374, 375, 380, 396, 401, 419, 430, 442, 443, 444, 445, 446, 447, 448, 449, 459, 464, 474, 490, 492, 498, 517, 518, 535, 605, 606, 608, 613, 617, 619, 622, 623, 624, 625, 626, 627, 628, 629, 631, 635, 639, 641, 642, 643, 645, 646, 647, 657, 684, 685, 686, 694, 703, 704, 705, 712, 727, 728, 764, 766, 767, 779, 780, 783, 800, 807, 808, 810, 811, 813, 815, 817, 818, 819, 825, 827, 828, 829, 832, 833, 835, 837, 839, 840, 841, 842, 843, 845, 852, 853, 855, 858], "0": [3, 4, 5, 6, 7, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 136, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 163, 164, 168, 170, 175, 188, 191, 193, 196, 201, 202, 203, 204, 206, 207, 208, 210, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 227, 229, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 319, 320, 322, 323, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 386, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 410, 411, 412, 414, 417, 418, 419, 421, 422, 423, 426, 427, 429, 430, 431, 434, 435, 436, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 457, 459, 460, 461, 464, 465, 466, 467, 468, 469, 470, 471, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 523, 526, 528, 529, 530, 533, 534, 535, 537, 538, 541, 542, 543, 544, 545, 546, 547, 549, 550, 551, 553, 554, 555, 557, 558, 561, 563, 565, 566, 570, 575, 579, 580, 581, 583, 585, 587, 588, 597, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 704, 705, 706, 707, 709, 712, 713, 714, 715, 717, 718, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 765, 766, 767, 769, 776, 777, 779, 780, 781, 782, 783, 784, 785, 786, 789, 793, 794, 800, 803, 807, 808, 811, 813, 815, 816, 817, 818, 819, 820, 821, 822, 827, 828, 829, 830, 832, 833, 837, 839, 840, 841, 842, 843, 851, 852], "485": [3, 7, 40], "456": [3, 7, 40, 832], "406": [3, 7, 40, 52, 75, 389, 529, 622], "std": [3, 6, 7, 8, 9, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 41, 56, 61, 65, 79, 84, 88, 375, 498, 624, 631, 635, 639, 641, 642, 643, 645, 646, 727, 728, 800, 819, 853], "229": [3, 7, 40, 274, 620], "225": [3, 7, 40, 42, 229, 620], "torch_img": [3, 5, 7], "unsqueez": [3, 5, 6, 7], "img": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 800, 840, 852], "4": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 112, 113, 121, 122, 123, 124, 127, 129, 131, 132, 133, 134, 135, 136, 138, 142, 144, 148, 149, 150, 158, 160, 163, 168, 170, 175, 192, 193, 201, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 253, 254, 255, 256, 257, 258, 259, 260, 261, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 314, 315, 322, 324, 329, 330, 332, 334, 335, 337, 339, 340, 341, 342, 343, 344, 345, 346, 347, 349, 352, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 430, 436, 442, 443, 444, 445, 446, 447, 448, 450, 452, 453, 454, 457, 458, 459, 460, 461, 464, 465, 466, 469, 470, 471, 473, 474, 479, 480, 481, 482, 483, 484, 487, 488, 489, 493, 494, 495, 496, 499, 501, 502, 504, 509, 510, 511, 512, 513, 514, 516, 517, 518, 519, 520, 521, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 544, 547, 549, 550, 551, 558, 565, 566, 580, 581, 582, 583, 585, 589, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 653, 654, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 684, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 705, 707, 709, 710, 712, 713, 714, 715, 717, 718, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 765, 767, 779, 780, 784, 793, 794, 800, 803, 806, 807, 813, 814, 815, 816, 817, 819, 822, 827, 830, 832, 835, 837, 839, 840, 841, 842, 849, 851, 858, 864, 865], "ipython": [3, 5, 7, 21, 22, 23, 24, 26, 27, 45], "displai": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 45, 807, 814, 816, 821, 832, 840], "end": [3, 5, 40, 41, 52, 75, 121, 223, 279, 346, 365, 368, 370, 371, 415, 442, 464, 474, 476, 477, 617, 620, 794, 800, 807, 808, 813, 816, 822, 828, 833, 835, 836, 843, 856, 861], "see": [3, 4, 6, 8, 9, 18, 19, 24, 26, 27, 28, 29, 33, 38, 39, 45, 46, 49, 51, 52, 57, 62, 63, 65, 66, 68, 74, 75, 80, 85, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 128, 132, 139, 142, 149, 168, 175, 218, 223, 225, 227, 228, 229, 230, 235, 236, 240, 242, 246, 247, 254, 255, 258, 260, 262, 264, 265, 268, 271, 273, 277, 284, 286, 289, 290, 294, 295, 297, 322, 329, 330, 360, 362, 365, 369, 370, 371, 418, 444, 482, 614, 617, 618, 620, 625, 632, 633, 635, 636, 655, 668, 671, 674, 681, 682, 733, 737, 738, 739, 740, 748, 749, 750, 751, 752, 753, 754, 755, 756, 776, 800, 801, 803, 806, 807, 808, 811, 812, 814, 815, 816, 817, 818, 819, 822, 823, 824, 825, 829, 830, 832, 835, 837, 839, 840, 843, 847, 854], "5": [3, 4, 5, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 121, 122, 123, 129, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 148, 149, 150, 154, 158, 160, 168, 170, 175, 192, 201, 206, 209, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 324, 327, 329, 330, 332, 334, 336, 339, 340, 341, 342, 343, 345, 346, 347, 348, 349, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 417, 420, 421, 423, 424, 426, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 455, 458, 459, 460, 461, 464, 465, 468, 469, 470, 473, 474, 479, 480, 481, 482, 483, 484, 488, 489, 494, 495, 496, 499, 501, 502, 504, 509, 511, 512, 513, 514, 515, 516, 518, 521, 527, 528, 529, 530, 533, 534, 535, 536, 538, 541, 542, 544, 547, 549, 550, 551, 565, 566, 570, 580, 581, 582, 583, 585, 589, 602, 603, 604, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 640, 642, 643, 644, 645, 646, 647, 648, 649, 651, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 669, 670, 671, 672, 673, 675, 676, 677, 679, 680, 681, 684, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 704, 705, 707, 709, 712, 713, 714, 715, 717, 718, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 765, 766, 767, 780, 793, 794, 800, 804, 806, 807, 808, 811, 813, 815, 816, 817, 819, 821, 822, 824, 827, 830, 832, 839, 840, 841, 852], "set_default_devic": [3, 4, 5, 6, 7, 8, 212, 619, 818], "set_soft_device_mod": [3, 9, 213, 619, 818], "true": [3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 23, 24, 26, 27, 31, 32, 33, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 158, 160, 161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 175, 187, 191, 192, 194, 195, 199, 202, 203, 204, 205, 209, 211, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 460, 461, 462, 464, 465, 466, 469, 470, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 498, 503, 504, 510, 511, 512, 513, 514, 516, 517, 518, 519, 520, 521, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 544, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 565, 566, 567, 570, 573, 574, 576, 577, 579, 580, 581, 583, 585, 587, 588, 590, 595, 596, 598, 599, 601, 604, 605, 607, 609, 610, 611, 612, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 712, 713, 714, 716, 717, 718, 719, 723, 724, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 764, 765, 766, 767, 769, 780, 781, 782, 783, 784, 786, 789, 791, 793, 794, 798, 800, 803, 807, 813, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 828, 829, 830, 832, 834, 835, 837, 840, 841, 842, 851, 852], "set_backend": [3, 4, 5, 7, 9, 17, 18, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 39, 41, 42, 43, 51, 53, 67, 74, 76, 162, 171, 189, 190, 204, 206, 211, 219, 527, 551, 618, 619, 622, 628, 704, 705, 789, 800, 811, 813, 817, 818, 825, 826, 827, 837, 839, 842, 851, 852, 853], "ivy_model": [3, 4, 5, 7, 43], "ivy_alexnet": 3, "order": [3, 20, 30, 32, 40, 43, 45, 48, 52, 53, 56, 57, 59, 63, 64, 69, 75, 79, 80, 82, 86, 87, 92, 97, 98, 122, 123, 134, 142, 223, 242, 285, 322, 342, 362, 365, 368, 369, 371, 374, 378, 413, 418, 421, 422, 423, 424, 425, 429, 433, 435, 438, 441, 464, 465, 466, 471, 472, 484, 490, 491, 492, 495, 504, 617, 620, 624, 625, 627, 628, 632, 633, 634, 638, 639, 640, 641, 642, 643, 646, 659, 660, 666, 675, 676, 680, 682, 691, 694, 703, 704, 735, 737, 738, 739, 740, 741, 743, 744, 761, 783, 785, 794, 800, 806, 807, 808, 812, 813, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 829, 830, 831, 832, 833, 834, 835, 840, 842, 843, 847, 854, 857, 858, 859, 861, 864], "quick": [3, 15, 27, 808, 810, 830, 841], "call": [3, 6, 11, 13, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 33, 40, 44, 52, 67, 72, 75, 90, 92, 98, 117, 167, 168, 208, 369, 380, 433, 518, 569, 575, 589, 605, 606, 608, 616, 619, 622, 623, 625, 629, 673, 706, 712, 716, 717, 761, 772, 780, 781, 782, 784, 789, 794, 800, 806, 807, 808, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 832, 833, 835, 837, 839, 840, 841, 842, 843, 848, 851, 852, 853, 858, 859, 862], "trace_graph": [3, 4, 5, 7, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 34, 43, 782, 800, 837, 842, 850], "take": [3, 7, 17, 24, 26, 27, 32, 38, 40, 43, 52, 57, 59, 65, 75, 82, 92, 117, 118, 120, 136, 275, 282, 296, 360, 368, 369, 371, 387, 395, 400, 405, 415, 424, 436, 457, 464, 483, 512, 513, 616, 617, 620, 624, 625, 627, 628, 650, 665, 669, 694, 705, 745, 764, 772, 779, 780, 793, 800, 801, 806, 807, 808, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 828, 829, 830, 832, 835, 837, 839, 841, 842, 843, 844, 849, 851, 852, 855, 856, 864], "moment": [3, 52, 54, 75, 77, 369, 425, 603, 604, 609, 623, 784, 806, 813, 843, 851, 852], "one": [3, 6, 8, 11, 13, 15, 16, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 44, 48, 52, 53, 56, 57, 59, 62, 63, 65, 69, 71, 74, 75, 76, 77, 79, 80, 82, 83, 85, 86, 87, 88, 92, 121, 124, 134, 136, 137, 138, 148, 150, 208, 229, 235, 242, 243, 260, 266, 267, 268, 287, 296, 306, 309, 310, 328, 334, 337, 340, 341, 344, 345, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 389, 391, 395, 396, 399, 400, 403, 411, 416, 418, 427, 434, 448, 452, 453, 454, 458, 464, 465, 466, 471, 473, 478, 481, 490, 491, 492, 497, 502, 512, 513, 516, 517, 518, 519, 520, 521, 523, 561, 565, 566, 568, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 617, 618, 619, 620, 622, 623, 624, 625, 627, 630, 632, 633, 635, 638, 639, 640, 641, 642, 643, 646, 662, 665, 666, 670, 672, 681, 682, 690, 691, 692, 695, 697, 701, 725, 732, 735, 737, 738, 739, 740, 745, 747, 764, 766, 783, 786, 789, 794, 797, 800, 806, 807, 808, 809, 811, 812, 813, 814, 815, 817, 818, 819, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 839, 840, 842, 843, 844, 845, 848, 849, 852, 858, 859, 861, 864], "cost": [3, 54, 77, 603, 604, 607, 609, 610, 611, 623, 628, 703, 704, 705, 794, 817, 835, 856], "arg": [3, 5, 6, 7, 11, 13, 21, 22, 24, 26, 27, 31, 32, 33, 44, 47, 69, 91, 101, 117, 198, 208, 589, 616, 617, 619, 622, 759, 761, 776, 777, 780, 781, 782, 786, 789, 793, 798, 800, 812, 817, 818, 821, 827, 828, 829, 835, 837, 841, 851, 852, 853], "asarrai": [3, 4, 5, 6, 7, 41, 48, 52, 53, 64, 71, 75, 76, 87, 122, 378, 503, 504, 534, 545, 549, 550, 580, 581, 617, 622, 624, 633, 634, 638, 738, 742, 821, 826, 829, 830], "cuda": [3, 4, 5, 6, 7, 8, 9, 17, 26, 41, 42, 45, 48, 52, 61, 71, 75, 84, 132, 133, 136, 188, 189, 190, 204, 206, 375, 497, 498, 500, 501, 617, 619, 625, 631, 676, 726, 727, 728, 729, 779, 780, 781, 782, 783, 784, 785, 800, 837, 843, 845, 863], "7": [3, 5, 6, 7, 8, 9, 11, 13, 18, 19, 21, 22, 23, 24, 38, 40, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 107, 108, 109, 110, 121, 122, 123, 132, 135, 136, 154, 160, 163, 193, 215, 218, 221, 225, 226, 228, 229, 230, 231, 233, 235, 236, 237, 238, 239, 241, 242, 245, 246, 247, 252, 253, 254, 255, 256, 257, 258, 259, 260, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 278, 279, 280, 282, 285, 286, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 312, 313, 324, 328, 332, 334, 335, 342, 343, 344, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 409, 410, 411, 412, 414, 417, 420, 431, 443, 444, 445, 446, 448, 449, 452, 453, 454, 458, 460, 464, 469, 470, 473, 474, 479, 480, 482, 483, 485, 488, 489, 499, 501, 502, 509, 512, 513, 515, 516, 521, 527, 529, 530, 534, 535, 538, 549, 550, 551, 558, 565, 566, 580, 583, 603, 604, 606, 607, 608, 609, 610, 611, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 638, 639, 641, 643, 645, 646, 647, 648, 653, 655, 656, 657, 658, 660, 661, 662, 665, 667, 670, 672, 673, 675, 676, 677, 679, 680, 681, 684, 685, 686, 687, 690, 691, 696, 698, 699, 701, 706, 707, 714, 718, 725, 726, 727, 728, 729, 731, 736, 737, 739, 741, 742, 744, 745, 746, 747, 749, 751, 753, 754, 764, 807, 808, 813, 815, 816, 819, 825, 828, 832], "output": [3, 4, 5, 7, 17, 23, 24, 26, 27, 39, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 416, 418, 419, 420, 422, 424, 427, 428, 431, 432, 433, 434, 436, 437, 440, 442, 443, 444, 445, 446, 447, 448, 449, 450, 457, 458, 459, 462, 464, 465, 466, 467, 468, 471, 472, 473, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 486, 487, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 504, 509, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 528, 529, 530, 534, 535, 536, 538, 542, 551, 558, 565, 566, 567, 590, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 664, 665, 666, 668, 669, 670, 671, 672, 673, 674, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 697, 698, 699, 700, 702, 719, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 764, 779, 780, 793, 794, 800, 802, 807, 808, 810, 811, 812, 814, 815, 817, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 837, 839, 841, 842, 843, 845, 851, 852, 859], "softmax": [3, 7, 11, 24, 26, 27, 42, 46, 56, 67, 68, 79, 370, 444, 614, 624, 650, 653, 776, 800], "pass": [3, 5, 6, 7, 8, 9, 11, 13, 17, 24, 26, 27, 33, 39, 40, 42, 44, 45, 51, 52, 67, 69, 74, 75, 90, 98, 117, 118, 120, 152, 174, 189, 208, 223, 269, 368, 370, 371, 374, 375, 380, 413, 444, 464, 490, 492, 497, 517, 518, 551, 616, 618, 619, 620, 622, 628, 703, 704, 759, 761, 765, 772, 777, 781, 782, 784, 785, 789, 793, 798, 800, 803, 806, 808, 811, 812, 813, 815, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 835, 843, 851, 852, 853, 856], "argsort": [3, 7, 64, 87, 634, 743, 829], "descend": [3, 7, 64, 87, 625, 634, 675, 676, 741, 744], "top": [3, 7, 10, 15, 24, 26, 27, 40, 41, 52, 59, 75, 313, 362, 370, 371, 442, 484, 534, 622, 688, 800, 807, 808, 817, 822, 829, 831, 832, 835, 840, 841, 858, 862], "logit": [3, 4, 5, 7, 40, 41, 42, 43, 52, 58, 75, 81, 360, 375, 497, 500, 626, 684, 686, 776, 800, 851], "gather": [3, 7, 40, 52, 53, 75, 76, 324, 325, 326, 362, 542, 544, 622, 865], "print": [3, 4, 6, 7, 9, 11, 13, 17, 18, 20, 24, 26, 27, 28, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 161, 162, 165, 167, 168, 170, 175, 187, 188, 192, 194, 195, 196, 197, 199, 200, 201, 202, 203, 206, 207, 209, 210, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 300, 301, 303, 304, 305, 307, 314, 315, 322, 324, 328, 329, 330, 332, 346, 347, 352, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 394, 396, 399, 401, 404, 405, 406, 409, 411, 412, 417, 420, 422, 424, 425, 433, 440, 443, 444, 445, 446, 447, 448, 449, 455, 457, 459, 470, 474, 479, 480, 482, 483, 484, 489, 493, 494, 496, 511, 512, 513, 514, 521, 523, 525, 526, 527, 528, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 544, 545, 546, 547, 549, 550, 551, 553, 554, 555, 557, 561, 562, 564, 565, 566, 570, 571, 572, 575, 578, 579, 580, 581, 583, 585, 587, 588, 589, 593, 594, 597, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 653, 654, 655, 656, 658, 660, 661, 662, 663, 665, 666, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 681, 682, 684, 685, 686, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 704, 705, 706, 707, 709, 710, 712, 713, 714, 715, 717, 718, 723, 724, 725, 726, 727, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 789, 793, 794, 798, 800, 807, 808, 815, 817, 819, 830, 832, 834, 837, 839, 840, 841, 851, 853], "indic": [3, 7, 48, 52, 53, 56, 57, 59, 60, 62, 63, 64, 69, 71, 72, 75, 76, 79, 80, 82, 83, 85, 86, 87, 92, 95, 122, 123, 136, 140, 142, 163, 167, 168, 279, 322, 323, 324, 342, 362, 365, 368, 369, 370, 371, 376, 378, 386, 387, 388, 390, 394, 395, 396, 400, 401, 404, 405, 406, 407, 411, 412, 422, 441, 444, 452, 453, 454, 457, 460, 462, 464, 465, 466, 469, 473, 479, 480, 482, 483, 484, 487, 488, 502, 503, 504, 526, 541, 542, 544, 565, 566, 570, 602, 605, 606, 617, 620, 622, 623, 624, 625, 627, 629, 630, 631, 632, 633, 634, 638, 640, 641, 642, 643, 646, 650, 668, 682, 690, 691, 692, 694, 695, 696, 697, 699, 701, 706, 709, 711, 713, 714, 715, 717, 721, 722, 723, 724, 725, 726, 732, 733, 734, 735, 737, 739, 741, 743, 744, 761, 762, 764, 766, 780, 786, 793, 794, 796, 807, 816, 824, 827, 829, 842, 851], "to_list": [3, 7, 53, 76, 622], "arrai": [3, 4, 7, 8, 9, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 164, 166, 167, 168, 170, 172, 173, 174, 175, 181, 191, 192, 196, 201, 203, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 543, 544, 545, 547, 548, 549, 550, 551, 553, 554, 555, 556, 557, 558, 560, 561, 563, 564, 565, 566, 567, 569, 570, 576, 577, 579, 580, 581, 582, 583, 585, 586, 587, 588, 589, 590, 598, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 712, 713, 714, 715, 718, 719, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 766, 772, 779, 780, 781, 782, 785, 789, 793, 794, 796, 800, 803, 806, 807, 808, 810, 813, 814, 815, 817, 818, 819, 820, 821, 822, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 845, 852, 853, 856, 857, 858, 860, 864, 865], "282": [3, 7], "281": [3, 7, 40, 42], "285": [3, 7, 75], "dev": [3, 6, 7, 8, 9, 19, 40, 42, 45, 50, 69, 73, 196, 203, 619, 807, 818, 822, 825, 839, 841], "64773697": 3, "29496649": 3, "04526037": 3, "39": [3, 4, 6, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 38, 40, 41, 42, 43, 45, 46, 51, 52, 57, 61, 68, 74, 75, 77, 80, 84, 107, 221, 256, 258, 260, 290, 291, 293, 360, 368, 380, 387, 389, 406, 409, 512, 603, 614, 620, 623, 625, 635, 662, 670, 728, 747], "tiger": [3, 7], "tabbi": [3, 7], "egyptian": [3, 7], "check": [3, 4, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 43, 45, 47, 49, 53, 57, 69, 72, 76, 80, 113, 151, 152, 161, 162, 165, 167, 168, 169, 172, 187, 194, 195, 202, 214, 527, 537, 539, 540, 547, 553, 554, 555, 556, 557, 573, 583, 595, 601, 614, 618, 619, 622, 625, 629, 660, 661, 668, 706, 716, 717, 718, 759, 766, 793, 794, 800, 801, 802, 805, 806, 807, 808, 809, 811, 815, 816, 818, 819, 821, 826, 828, 829, 830, 831, 832, 833, 834, 836, 837, 839, 840, 841, 844, 851], "confirm": [3, 41, 806], "same": [3, 4, 5, 6, 7, 8, 13, 19, 21, 22, 23, 24, 26, 29, 31, 33, 38, 39, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 88, 92, 93, 94, 95, 96, 97, 111, 121, 126, 131, 133, 134, 136, 138, 140, 141, 142, 144, 147, 148, 149, 160, 163, 208, 215, 216, 217, 218, 220, 222, 226, 228, 231, 235, 241, 242, 248, 268, 270, 272, 275, 277, 278, 279, 288, 295, 307, 321, 322, 323, 324, 325, 326, 329, 330, 332, 339, 355, 360, 362, 365, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 404, 405, 406, 407, 409, 410, 411, 412, 414, 421, 426, 427, 435, 436, 437, 438, 439, 441, 442, 444, 447, 457, 459, 474, 482, 483, 490, 492, 502, 504, 509, 510, 511, 512, 513, 514, 515, 521, 558, 612, 617, 618, 619, 620, 622, 623, 624, 625, 627, 628, 629, 631, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 650, 653, 654, 655, 656, 658, 659, 660, 661, 663, 665, 667, 669, 670, 671, 672, 673, 674, 675, 676, 679, 681, 688, 691, 692, 694, 695, 697, 698, 703, 704, 719, 729, 737, 738, 739, 740, 741, 742, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 764, 765, 766, 772, 780, 793, 800, 807, 808, 812, 813, 815, 816, 817, 818, 819, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 839, 841, 842, 843, 847, 849, 851, 853, 855, 857, 864, 865], "8": [3, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 97, 98, 105, 120, 130, 131, 135, 138, 144, 153, 155, 156, 157, 160, 168, 193, 210, 218, 220, 221, 225, 226, 229, 230, 231, 233, 239, 242, 246, 247, 253, 254, 255, 259, 260, 263, 264, 266, 267, 268, 273, 274, 277, 278, 279, 282, 283, 286, 287, 288, 292, 297, 299, 300, 301, 303, 304, 306, 307, 324, 328, 339, 342, 344, 345, 346, 349, 356, 360, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 414, 417, 420, 428, 443, 444, 445, 447, 448, 449, 450, 452, 453, 454, 458, 460, 464, 469, 470, 479, 480, 483, 484, 485, 488, 489, 499, 501, 513, 516, 517, 521, 527, 528, 530, 534, 535, 538, 541, 545, 549, 550, 551, 553, 554, 557, 560, 565, 566, 570, 580, 581, 582, 583, 603, 606, 608, 610, 611, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 629, 631, 632, 633, 634, 635, 638, 642, 643, 645, 646, 647, 648, 650, 656, 657, 658, 660, 661, 662, 665, 666, 667, 670, 672, 673, 675, 676, 677, 679, 680, 681, 682, 684, 685, 686, 687, 691, 698, 699, 701, 707, 714, 718, 726, 727, 728, 729, 731, 736, 737, 739, 741, 742, 744, 746, 747, 749, 751, 753, 754, 764, 767, 780, 807, 815, 816, 819, 832, 836, 840], "torch_alexnet": 3, "alexnet_weight": 3, "weight": [3, 9, 11, 13, 26, 27, 40, 41, 52, 54, 56, 58, 75, 77, 79, 81, 92, 93, 309, 313, 346, 362, 365, 368, 369, 380, 394, 427, 509, 511, 514, 603, 604, 607, 609, 610, 611, 623, 624, 626, 628, 648, 649, 650, 653, 684, 705, 766, 779, 780, 782, 784, 800, 815, 825, 832, 837, 841, 842, 857], "imagenet1k_v1": [3, 7], "dropout": [3, 56, 79, 368, 391, 392, 393, 624, 650, 653, 780, 840], "9": [3, 4, 5, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 68, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 97, 98, 105, 121, 122, 123, 135, 153, 154, 155, 156, 157, 160, 163, 216, 218, 220, 221, 224, 225, 226, 229, 230, 235, 236, 237, 242, 249, 255, 256, 257, 259, 263, 264, 266, 267, 268, 271, 273, 274, 278, 279, 282, 283, 284, 289, 294, 297, 298, 299, 336, 338, 342, 348, 349, 356, 360, 365, 366, 368, 370, 371, 378, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 414, 428, 443, 445, 447, 448, 452, 453, 454, 460, 464, 469, 479, 480, 481, 482, 484, 488, 499, 501, 504, 513, 530, 534, 535, 536, 538, 541, 549, 550, 553, 554, 557, 565, 566, 580, 582, 603, 604, 605, 609, 610, 614, 617, 618, 620, 622, 623, 624, 625, 627, 629, 631, 632, 633, 634, 635, 638, 639, 640, 646, 647, 648, 655, 656, 658, 660, 661, 662, 665, 666, 667, 670, 672, 673, 675, 676, 677, 679, 680, 681, 687, 691, 695, 696, 698, 699, 701, 706, 707, 712, 714, 717, 718, 726, 727, 728, 729, 731, 736, 737, 739, 741, 742, 744, 746, 747, 749, 751, 753, 754, 764, 784, 815, 817, 819, 827, 832, 840, 841, 854], "torch_output": [3, 5, 7], "dim": [3, 7, 42, 52, 69, 71, 75, 136, 307, 362, 368, 371, 385, 395, 396, 397, 400, 408, 464, 617, 624, 637, 644, 645, 649, 766, 780, 800, 817, 829, 830, 835], "torch_class": [3, 7], "torch_logit": [3, 7], "tensor": [3, 4, 6, 7, 8, 11, 13, 17, 18, 21, 22, 24, 26, 27, 28, 32, 38, 40, 48, 51, 52, 53, 56, 58, 59, 61, 69, 71, 74, 75, 76, 79, 80, 81, 82, 84, 91, 124, 132, 133, 136, 142, 158, 174, 266, 267, 296, 313, 317, 318, 319, 320, 321, 322, 331, 353, 360, 362, 365, 368, 369, 370, 371, 380, 381, 386, 387, 390, 394, 403, 404, 405, 406, 413, 415, 417, 424, 425, 426, 427, 430, 432, 434, 435, 438, 440, 441, 442, 444, 447, 448, 464, 467, 472, 475, 476, 477, 478, 481, 486, 517, 522, 565, 566, 617, 618, 620, 622, 624, 625, 626, 627, 631, 647, 649, 650, 664, 677, 684, 694, 696, 726, 780, 789, 794, 800, 812, 813, 817, 818, 822, 824, 825, 828, 829, 830, 832, 833, 835, 837, 839, 840, 842, 843, 845, 847, 851, 852, 853, 855, 856, 859, 861, 862, 865], "devic": [3, 5, 6, 7, 41, 42, 45, 48, 52, 61, 69, 71, 75, 84, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 212, 214, 306, 307, 322, 323, 362, 375, 462, 497, 498, 500, 501, 525, 539, 540, 617, 622, 631, 726, 727, 728, 729, 759, 761, 762, 777, 779, 780, 781, 782, 783, 784, 785, 786, 800, 808, 810, 813, 817, 821, 825, 826, 830, 832, 833, 835, 837, 842, 843, 844, 845, 848, 857, 858, 860, 861, 862, 863], "6477": 3, "2950": 3, "0453": 3, "grad_fn": [3, 7, 24, 38, 606, 613, 623, 840], "lt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 98], "takebackward0": [3, 7], "gt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 45, 98, 830, 837], "great": [3, 5, 800, 808, 832, 837, 839, 848, 849, 864], "With": [3, 19, 29, 38, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 163, 170, 175, 176, 177, 178, 179, 189, 192, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 329, 330, 332, 334, 337, 341, 344, 345, 346, 348, 349, 352, 360, 362, 365, 368, 369, 370, 371, 380, 389, 391, 392, 399, 411, 418, 419, 420, 422, 423, 424, 433, 436, 448, 464, 465, 466, 468, 471, 473, 474, 480, 482, 484, 487, 502, 511, 512, 513, 514, 516, 517, 518, 519, 520, 521, 523, 527, 528, 529, 530, 533, 534, 535, 536, 537, 541, 542, 545, 547, 549, 550, 551, 565, 566, 580, 581, 583, 585, 587, 588, 601, 602, 603, 604, 605, 607, 608, 609, 610, 611, 612, 613, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 653, 654, 655, 656, 657, 658, 660, 661, 663, 665, 666, 667, 668, 669, 672, 673, 674, 675, 676, 677, 679, 680, 681, 684, 686, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 704, 705, 706, 707, 709, 712, 713, 714, 715, 717, 718, 723, 724, 725, 726, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 807, 817, 819, 829, 832, 835, 837, 848, 849, 851, 858, 861], "simpl": [3, 11, 15, 16, 18, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 38, 40, 42, 45, 52, 75, 380, 511, 766, 780, 794, 800, 806, 807, 808, 809, 812, 814, 815, 817, 818, 819, 820, 825, 828, 829, 832, 833, 835, 839, 841, 842, 843, 845, 847, 851, 852, 857, 858, 859, 860], "chang": [3, 4, 9, 17, 27, 40, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 580, 581, 582, 583, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 614, 620, 627, 629, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 665, 666, 671, 672, 673, 675, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 707, 718, 723, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 754, 755, 756, 761, 800, 804, 806, 807, 808, 809, 811, 813, 814, 815, 816, 817, 819, 820, 822, 823, 829, 830, 831, 832, 833, 834, 835, 837, 841, 843, 844, 849, 851, 861, 864], "backend": [3, 8, 18, 19, 20, 21, 22, 23, 24, 27, 29, 30, 32, 47, 48, 52, 53, 57, 69, 75, 76, 80, 97, 124, 161, 162, 165, 187, 194, 195, 197, 200, 211, 329, 330, 365, 369, 420, 422, 518, 527, 539, 540, 548, 551, 552, 562, 569, 583, 586, 617, 618, 619, 622, 625, 675, 759, 761, 762, 764, 765, 766, 769, 771, 772, 777, 781, 782, 784, 788, 789, 800, 803, 805, 807, 808, 810, 811, 812, 816, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 832, 834, 835, 836, 838, 839, 842, 845, 847, 851, 852, 853, 858, 861, 864, 865], "let": [3, 4, 5, 6, 8, 9, 11, 13, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 43, 45, 53, 65, 76, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 279, 281, 282, 286, 541, 542, 620, 622, 625, 635, 679, 749, 751, 752, 753, 754, 800, 806, 809, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 829, 830, 832, 833, 834, 835, 837, 839, 840, 841, 842, 849, 851, 852, 865], "u": [3, 6, 40, 42, 44, 45, 52, 57, 71, 75, 80, 92, 93, 133, 369, 430, 437, 439, 625, 629, 654, 660, 661, 675, 714, 800, 801, 807, 808, 809, 810, 815, 816, 823, 826, 828, 829, 830, 831, 832, 833, 835, 841, 843, 848], "differ": [3, 4, 6, 8, 9, 11, 15, 16, 20, 21, 22, 26, 27, 30, 31, 32, 33, 51, 52, 53, 57, 65, 69, 75, 76, 88, 97, 98, 107, 110, 160, 218, 235, 242, 243, 268, 284, 328, 335, 339, 340, 344, 365, 368, 369, 371, 380, 401, 412, 435, 441, 458, 465, 466, 480, 512, 513, 521, 541, 542, 614, 618, 620, 622, 624, 625, 627, 635, 647, 648, 662, 673, 688, 698, 745, 746, 751, 753, 754, 759, 764, 772, 781, 782, 800, 803, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 827, 828, 829, 830, 832, 833, 835, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 851, 852, 853, 855, 856, 857, 858, 861, 864, 865], "ll": [3, 5, 6, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 41, 800, 801, 803, 806, 807, 808, 809, 814, 819, 822, 823, 827, 828, 840, 844, 849, 851, 852], "try": [3, 18, 28, 38, 41, 45, 69, 589, 622, 779, 789, 800, 806, 807, 808, 811, 812, 815, 816, 817, 821, 823, 828, 830, 837, 839, 843, 846, 848, 849, 853], "10": [3, 5, 7, 8, 9, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 42, 44, 45, 48, 51, 52, 53, 54, 56, 57, 61, 63, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 121, 131, 132, 133, 217, 225, 226, 229, 230, 233, 240, 245, 247, 253, 255, 257, 268, 274, 281, 282, 287, 295, 328, 329, 330, 333, 337, 339, 341, 342, 344, 345, 346, 348, 349, 353, 356, 365, 368, 371, 380, 386, 387, 388, 389, 399, 404, 405, 409, 410, 411, 412, 414, 442, 454, 457, 460, 464, 469, 479, 480, 488, 509, 512, 513, 516, 518, 521, 534, 535, 536, 538, 541, 542, 544, 549, 550, 558, 566, 570, 575, 580, 582, 594, 597, 609, 617, 620, 622, 623, 624, 625, 627, 629, 630, 631, 632, 633, 634, 635, 638, 639, 641, 647, 656, 658, 662, 663, 665, 666, 667, 670, 675, 676, 677, 679, 681, 691, 696, 697, 698, 699, 701, 712, 714, 717, 718, 725, 726, 727, 728, 729, 735, 737, 743, 745, 746, 747, 748, 750, 751, 753, 754, 764, 766, 784, 800, 803, 807, 811, 815, 816, 817, 819, 822, 827, 830, 832, 837, 839, 840, 848, 853, 863], "tf": [3, 5, 8, 11, 13, 18, 21, 22, 24, 26, 27, 28, 29, 31, 33, 38, 43, 44, 777, 800, 812, 817, 818, 824, 828, 829, 832, 833, 835, 837, 842, 843, 845, 851, 852, 853, 858], "onc": [3, 5, 26, 27, 38, 40, 57, 61, 80, 84, 208, 369, 421, 619, 625, 631, 659, 660, 661, 675, 726, 800, 806, 807, 808, 815, 816, 817, 818, 819, 822, 823, 828, 829, 832, 835, 837, 840, 843, 844, 849, 851], "set": [3, 11, 13, 19, 26, 27, 29, 32, 40, 41, 42, 43, 44, 47, 52, 53, 56, 57, 62, 64, 65, 69, 75, 76, 79, 80, 85, 87, 88, 110, 113, 120, 140, 142, 176, 177, 178, 179, 180, 191, 204, 205, 206, 207, 208, 223, 322, 334, 349, 351, 356, 362, 365, 366, 368, 369, 370, 371, 380, 390, 411, 415, 419, 423, 426, 442, 447, 448, 464, 474, 477, 484, 511, 516, 517, 518, 519, 520, 521, 523, 527, 534, 546, 551, 567, 568, 569, 571, 572, 573, 574, 575, 576, 577, 578, 583, 591, 614, 616, 617, 618, 619, 620, 622, 624, 625, 629, 631, 632, 634, 635, 647, 653, 655, 666, 668, 671, 674, 675, 706, 713, 716, 717, 718, 723, 724, 730, 732, 733, 737, 739, 740, 741, 744, 752, 754, 761, 764, 765, 766, 767, 772, 779, 780, 782, 784, 789, 794, 797, 800, 801, 808, 810, 811, 812, 814, 815, 816, 817, 818, 819, 821, 823, 825, 826, 828, 829, 830, 832, 833, 835, 837, 839, 840, 847, 850, 851, 852, 856, 857, 858, 859, 860, 862, 865], "our": [3, 6, 8, 9, 11, 13, 15, 18, 19, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 44, 67, 90, 97, 98, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 766, 776, 777, 779, 780, 782, 783, 784, 785, 800, 801, 802, 804, 805, 806, 807, 808, 810, 811, 812, 814, 815, 816, 817, 819, 821, 822, 823, 826, 829, 830, 831, 832, 833, 835, 836, 837, 839, 840, 841, 842, 843, 847, 848, 851, 863, 864], "post": [3, 5, 40, 60, 83, 630, 725, 807, 822, 827, 842, 844], "process": [3, 5, 21, 26, 27, 31, 40, 202, 214, 619, 801, 807, 808, 814, 815, 816, 822, 823, 825, 827, 829, 830, 831, 832, 835, 837, 842, 848, 849, 851, 856, 857, 858, 861, 862, 864, 865], "11": [3, 5, 7, 8, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 53, 56, 57, 61, 65, 74, 75, 76, 79, 80, 82, 84, 88, 98, 218, 222, 225, 230, 240, 277, 278, 284, 346, 365, 368, 369, 371, 386, 387, 399, 404, 405, 409, 410, 414, 423, 457, 458, 460, 464, 469, 471, 488, 512, 513, 528, 534, 535, 541, 550, 566, 620, 622, 624, 625, 626, 627, 629, 631, 632, 633, 635, 638, 639, 647, 648, 658, 661, 662, 663, 665, 666, 670, 674, 675, 676, 677, 679, 681, 684, 686, 691, 696, 697, 699, 701, 712, 714, 724, 727, 728, 729, 736, 737, 745, 746, 747, 754, 815, 816, 817, 819, 827], "st": [3, 4, 6, 764, 811, 830, 832], "perf_count": [3, 6], "raw_logit": 3, "latenc": [3, 6], "nn": [3, 5, 13, 24, 26, 27, 40, 44, 134, 617, 800, 825, 830, 835, 842, 852, 859], "axi": [3, 5, 9, 41, 42, 43, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 108, 112, 132, 133, 136, 208, 282, 287, 329, 330, 334, 335, 342, 349, 365, 368, 370, 371, 374, 378, 380, 389, 390, 396, 399, 401, 411, 412, 446, 451, 459, 460, 461, 464, 465, 466, 469, 474, 479, 480, 482, 483, 484, 487, 488, 493, 494, 496, 504, 509, 512, 513, 514, 516, 517, 518, 519, 520, 521, 534, 541, 602, 614, 617, 619, 620, 622, 624, 625, 626, 627, 628, 631, 632, 633, 634, 635, 636, 646, 655, 658, 666, 679, 681, 682, 684, 685, 686, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 704, 705, 731, 732, 733, 737, 739, 741, 742, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 766, 776, 780, 781, 786, 815, 817, 819, 821, 824, 825, 828, 829, 832, 835, 837, 839, 842], "direct": [3, 52, 75, 335, 341, 345, 350, 354, 365, 368, 371, 401, 412, 465, 466, 480, 634, 744, 806, 812, 814, 829, 835, 841, 842, 854, 858, 859, 862], "tolist": 3, "652289830999962": 3, "shape": [3, 4, 5, 9, 11, 13, 19, 20, 21, 22, 26, 27, 32, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 96, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 203, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 310, 311, 312, 313, 315, 317, 318, 319, 320, 321, 322, 323, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 353, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 416, 417, 418, 419, 421, 422, 423, 426, 427, 428, 429, 431, 432, 433, 434, 435, 436, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 454, 455, 457, 459, 462, 467, 472, 473, 474, 475, 476, 477, 478, 480, 481, 482, 483, 484, 486, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 504, 509, 510, 511, 512, 513, 514, 529, 530, 534, 535, 536, 538, 541, 542, 545, 551, 558, 565, 566, 576, 584, 586, 598, 602, 603, 604, 607, 609, 610, 611, 612, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 741, 742, 744, 745, 746, 747, 749, 751, 752, 754, 755, 756, 761, 764, 766, 779, 780, 783, 793, 800, 808, 809, 815, 817, 818, 819, 820, 821, 822, 824, 828, 829, 830, 832, 833, 834, 837, 839, 840, 841, 842, 851, 852], "dtype": [3, 5, 7, 9, 13, 19, 21, 22, 23, 24, 38, 41, 48, 49, 52, 53, 56, 57, 61, 62, 65, 69, 71, 72, 74, 75, 76, 79, 80, 84, 85, 88, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 203, 230, 269, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 327, 332, 334, 349, 362, 365, 368, 369, 370, 371, 375, 380, 389, 399, 411, 412, 415, 436, 442, 447, 458, 482, 497, 498, 499, 500, 501, 511, 512, 513, 514, 517, 520, 521, 538, 539, 540, 542, 551, 560, 587, 617, 618, 619, 620, 622, 624, 625, 628, 631, 632, 634, 635, 636, 640, 647, 666, 682, 704, 705, 727, 728, 729, 732, 733, 734, 743, 744, 745, 746, 751, 753, 755, 756, 759, 761, 764, 766, 767, 779, 780, 781, 782, 783, 785, 800, 803, 811, 813, 817, 818, 819, 821, 822, 825, 826, 828, 829, 830, 832, 833, 837, 839, 852], "int32": [3, 38, 40, 49, 52, 53, 61, 62, 65, 72, 75, 76, 84, 85, 127, 132, 138, 144, 147, 150, 152, 154, 156, 158, 161, 163, 164, 168, 171, 175, 179, 183, 185, 203, 230, 376, 380, 502, 512, 513, 514, 542, 551, 587, 617, 618, 619, 620, 622, 631, 632, 635, 727, 728, 729, 733, 745, 746, 751, 753, 764, 765, 817, 829, 832, 837], "6477362": 3, "29496726": 3, "04526032": 3, "float32": [3, 5, 7, 9, 11, 13, 18, 19, 38, 40, 41, 42, 48, 49, 52, 53, 56, 71, 72, 75, 76, 79, 88, 133, 136, 138, 144, 145, 146, 150, 154, 155, 158, 159, 160, 161, 164, 167, 168, 170, 175, 178, 184, 248, 275, 327, 339, 362, 365, 368, 369, 370, 380, 389, 399, 412, 436, 442, 447, 514, 551, 587, 617, 618, 620, 622, 624, 625, 628, 640, 642, 643, 646, 673, 675, 676, 682, 704, 705, 761, 764, 765, 800, 817, 819, 830, 832, 833, 852, 853], "As": [3, 5, 6, 8, 9, 11, 13, 19, 23, 24, 26, 27, 29, 32, 38, 39, 63, 67, 90, 633, 737, 738, 739, 740, 800, 803, 806, 807, 808, 809, 812, 814, 815, 816, 817, 818, 821, 822, 823, 824, 825, 828, 829, 830, 831, 832, 835, 839, 840, 841, 843, 847, 851, 852, 853, 858, 863], "expect": [3, 5, 6, 8, 19, 23, 26, 27, 29, 42, 43, 45, 52, 57, 58, 75, 81, 174, 242, 286, 368, 370, 390, 412, 447, 525, 618, 620, 622, 626, 670, 684, 779, 780, 800, 807, 808, 811, 817, 818, 821, 823, 826, 828, 830, 832, 835, 843, 844, 849, 851, 852, 853], "ident": [3, 9, 24, 41, 43, 57, 69, 127, 196, 544, 570, 617, 619, 622, 625, 629, 662, 667, 719, 780, 815, 825, 826, 829, 830, 833, 835, 839, 840, 843, 845, 847, 849], "had": [3, 815, 816, 828, 833, 837, 858, 859], "anoth": [3, 17, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 128, 148, 150, 617, 618, 800, 806, 807, 808, 813, 815, 817, 818, 821, 823, 825, 828, 829, 832, 837, 839, 842, 845, 848, 850, 851, 852, 858, 864], "postprocess": 3, "routin": [3, 816, 828, 829, 835, 843, 858], "feed": [3, 208, 619, 851, 858, 859], "other": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 49, 51, 52, 53, 59, 65, 69, 72, 74, 75, 76, 82, 88, 92, 97, 98, 121, 136, 148, 174, 235, 240, 242, 258, 267, 268, 331, 335, 365, 371, 458, 459, 467, 523, 524, 617, 618, 620, 622, 631, 635, 688, 698, 729, 752, 754, 766, 800, 803, 806, 807, 808, 811, 812, 815, 816, 819, 820, 821, 822, 823, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 839, 841, 842, 843, 844, 845, 848, 851, 852, 854, 856, 857, 858, 864, 865], "carefulli": [3, 273, 620, 779, 829, 856, 861], "rewrit": 3, "easili": [3, 23, 26, 27, 38, 800, 807, 812, 816, 822, 829, 835, 840, 841, 842, 843, 848, 858, 864, 865], "out": [3, 5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 41, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 158, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 417, 418, 419, 420, 421, 424, 425, 427, 428, 429, 431, 432, 433, 434, 436, 440, 443, 444, 445, 446, 448, 449, 455, 457, 458, 459, 461, 462, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 486, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 529, 530, 534, 535, 536, 538, 541, 542, 551, 561, 565, 566, 603, 604, 607, 609, 610, 611, 612, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 697, 698, 699, 700, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 736, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 772, 776, 777, 779, 780, 782, 783, 784, 785, 800, 801, 803, 805, 806, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 825, 827, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 847, 848, 849, 851, 852, 858, 865], "quickest": 3, "particular": [3, 26, 27, 263, 620, 765, 807, 808, 811, 813, 816, 817, 819, 826, 828, 829, 832, 833, 854, 858, 864], "hardwar": [3, 40, 97, 101, 800, 807, 835, 848, 854, 856, 857, 858, 859, 860, 861, 862, 863, 864], "again": [3, 5, 20, 21, 29, 30, 31, 32, 625, 673, 808, 812, 813, 814, 815, 819, 821, 823, 828, 829, 832, 833, 835, 840, 842, 843, 848, 849, 863, 864], "speed": [3, 6, 8, 9, 26, 27, 40, 45, 53, 76, 558, 622, 832, 847, 861], "up": [3, 5, 6, 8, 9, 26, 52, 53, 75, 76, 368, 371, 390, 403, 458, 466, 546, 558, 622, 624, 647, 800, 801, 803, 806, 808, 809, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 838, 839, 840, 841, 842, 843, 847, 848, 849, 851, 859, 864, 865], "12": [3, 5, 6, 7, 9, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 49, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 83, 84, 88, 97, 98, 163, 218, 220, 225, 229, 230, 233, 235, 236, 237, 255, 268, 271, 278, 281, 288, 289, 311, 312, 342, 345, 346, 362, 365, 368, 371, 380, 386, 387, 388, 389, 391, 395, 396, 404, 405, 409, 410, 411, 412, 414, 457, 458, 460, 464, 469, 488, 501, 512, 518, 519, 520, 530, 534, 535, 566, 572, 580, 594, 620, 622, 624, 625, 627, 629, 630, 631, 632, 633, 635, 638, 642, 647, 648, 658, 660, 662, 666, 670, 674, 676, 677, 679, 681, 691, 695, 697, 699, 701, 718, 725, 727, 728, 729, 736, 737, 745, 746, 747, 751, 753, 764, 807, 813, 815, 817, 819, 827], "repeat": [3, 4, 20, 30, 52, 53, 59, 75, 76, 82, 368, 371, 380, 396, 401, 463, 511, 536, 622, 627, 628, 700, 704, 705, 793, 808, 812, 813, 819, 820, 828, 832], "previou": [3, 9, 19, 20, 21, 23, 29, 30, 31, 33, 54, 75, 77, 182, 183, 184, 185, 186, 357, 367, 368, 413, 590, 592, 593, 594, 595, 597, 598, 600, 604, 609, 618, 622, 623, 779, 797, 807, 808, 811, 813, 816, 818, 824, 829, 832, 835, 842, 843, 861], "trace": [3, 4, 5, 6, 7, 8, 15, 16, 20, 23, 26, 29, 31, 32, 44, 53, 57, 69, 76, 80, 553, 554, 557, 568, 577, 591, 599, 622, 625, 761, 772, 782, 784, 800, 811, 815, 817, 829, 834, 835, 837, 842, 843, 850, 851, 852, 859, 864], "befor": [3, 4, 5, 18, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 40, 52, 56, 57, 59, 63, 65, 69, 75, 79, 80, 205, 208, 213, 368, 371, 380, 395, 400, 410, 414, 458, 465, 466, 467, 474, 512, 513, 619, 624, 625, 627, 628, 629, 633, 635, 637, 638, 639, 640, 642, 644, 646, 649, 650, 653, 665, 682, 688, 703, 704, 718, 737, 738, 739, 740, 745, 746, 751, 753, 780, 789, 793, 806, 807, 808, 811, 812, 814, 817, 818, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 832, 837, 840, 843, 851, 852, 858], "13": [3, 5, 6, 7, 17, 21, 22, 23, 24, 38, 40, 42, 46, 51, 52, 56, 57, 61, 65, 74, 75, 76, 77, 79, 82, 84, 88, 97, 113, 163, 193, 218, 233, 242, 253, 273, 282, 342, 349, 356, 365, 368, 371, 388, 389, 399, 404, 410, 414, 457, 458, 460, 464, 469, 488, 501, 512, 513, 529, 530, 534, 535, 550, 572, 580, 603, 614, 618, 619, 620, 622, 623, 624, 625, 627, 628, 629, 632, 633, 635, 638, 639, 647, 648, 658, 662, 670, 674, 676, 679, 701, 705, 718, 727, 728, 729, 736, 737, 745, 746, 747, 815, 817, 819, 829], "026875037000081647": 3, "14": [3, 5, 6, 7, 22, 38, 40, 41, 42, 49, 51, 52, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 147, 160, 163, 216, 221, 223, 230, 234, 260, 264, 268, 274, 281, 289, 338, 368, 369, 371, 380, 386, 387, 388, 389, 399, 406, 409, 410, 411, 414, 418, 424, 425, 458, 460, 464, 469, 488, 512, 580, 603, 618, 620, 622, 623, 624, 625, 627, 629, 633, 635, 638, 639, 641, 643, 645, 647, 658, 660, 662, 670, 677, 679, 681, 701, 718, 727, 728, 729, 737, 746, 747, 815, 819, 832], "overrid": [3, 5, 32, 41, 48, 52, 71, 75, 136, 380, 511, 617, 812, 814], "behavior": [3, 5, 52, 63, 235, 242, 268, 277, 381, 522, 569, 592, 620, 622, 633, 737, 738, 739, 740, 806, 814, 815, 816, 817, 828, 829, 830, 832, 835, 837, 843, 855], "prealloc": [3, 5], "75": [3, 5, 38, 51, 52, 74, 75, 76, 79, 84, 114, 132, 221, 223, 235, 237, 248, 309, 341, 342, 362, 365, 410, 521, 536, 549, 580, 614, 617, 620, 622, 625, 629, 631, 638, 663, 670, 714, 729], "memori": [3, 5, 8, 21, 22, 23, 24, 48, 52, 59, 71, 75, 82, 123, 134, 190, 202, 208, 210, 214, 371, 380, 452, 453, 460, 462, 464, 465, 466, 473, 488, 518, 564, 569, 592, 617, 619, 622, 624, 627, 649, 690, 691, 692, 694, 696, 697, 699, 701, 794, 816, 817, 818, 828, 829, 835, 837, 843, 851, 858, 860, 861, 862], "temporari": [3, 5, 578, 600, 622, 794, 817, 834], "fix": [3, 5, 42, 52, 75, 92, 93, 365, 368, 369, 413, 441, 624, 650, 800, 803, 807, 808, 811, 817, 823, 832, 833], "until": [3, 5, 794, 808, 828, 837, 843, 848, 851, 865], "handl": [3, 5, 38, 40, 46, 50, 51, 52, 68, 69, 73, 74, 75, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 188, 189, 190, 191, 192, 196, 201, 202, 210, 214, 220, 232, 257, 259, 273, 279, 280, 285, 286, 290, 294, 295, 297, 360, 371, 457, 483, 614, 619, 620, 625, 635, 679, 751, 753, 776, 784, 801, 804, 810, 815, 816, 817, 823, 824, 825, 827, 828, 829, 830, 831, 832, 834, 835, 841, 855, 865], "o": [3, 5, 39, 40, 41, 42, 44, 561, 622, 624, 650, 800, 807, 810, 816, 837, 844], "environ": [3, 5, 8, 21, 22, 23, 24, 41, 44, 800, 801, 808, 844, 858, 860], "xla_python_client_alloc": [3, 5], "platform": [3, 5, 9, 21, 22, 24, 802, 805, 807, 814, 856, 860, 862], "jit": [3, 6, 8, 26, 29, 837, 843, 851, 858], "img_jax": [3, 5], "device_put": [3, 6], "15": [3, 5, 7, 8, 9, 22, 38, 40, 41, 42, 45, 51, 52, 53, 57, 61, 65, 71, 72, 74, 75, 76, 79, 80, 82, 84, 88, 98, 131, 160, 218, 225, 229, 235, 237, 246, 253, 254, 259, 260, 268, 277, 278, 279, 342, 356, 365, 366, 368, 369, 371, 380, 386, 387, 404, 406, 409, 410, 414, 420, 460, 464, 469, 488, 512, 530, 534, 535, 538, 549, 550, 575, 580, 597, 617, 618, 620, 622, 624, 625, 627, 629, 631, 632, 633, 635, 638, 648, 658, 661, 662, 663, 670, 676, 677, 695, 701, 706, 718, 727, 728, 735, 737, 745, 746, 747, 761, 804, 807, 816, 819, 827, 861], "warm": 3, "_": [3, 6, 8, 9, 26, 39, 40, 51, 52, 69, 74, 75, 77, 93, 150, 238, 240, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 438, 441, 482, 511, 534, 603, 604, 618, 620, 622, 623, 625, 627, 629, 635, 673, 674, 676, 702, 713, 752, 808, 816, 817, 820, 828, 840], "rang": [3, 9, 26, 27, 38, 39, 40, 42, 48, 52, 65, 71, 75, 121, 132, 133, 282, 293, 301, 313, 360, 362, 369, 371, 380, 422, 432, 467, 475, 477, 482, 486, 512, 513, 514, 534, 602, 617, 620, 622, 633, 635, 737, 745, 746, 751, 753, 764, 766, 767, 779, 800, 804, 806, 817, 821, 825, 832, 837, 840, 841, 842, 858, 864], "16": [3, 5, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 97, 98, 163, 229, 258, 278, 285, 339, 342, 346, 365, 368, 371, 380, 386, 387, 389, 395, 399, 400, 404, 405, 410, 414, 447, 464, 512, 518, 535, 538, 560, 580, 581, 613, 618, 620, 622, 623, 624, 625, 627, 629, 631, 632, 635, 646, 648, 654, 658, 661, 662, 670, 672, 676, 701, 714, 727, 728, 729, 736, 746, 747, 764, 767, 800, 808, 817, 819, 840], "0022192720000475674": 3, "64773613": 3, "29496723": 3, "exact": [3, 52, 68, 69, 105, 368, 370, 403, 408, 446, 447, 633, 737, 739, 766, 776, 807, 808, 811, 819, 837], "note": [3, 5, 9, 22, 26, 27, 32, 41, 42, 43, 52, 53, 57, 59, 63, 75, 80, 82, 92, 129, 142, 174, 242, 277, 278, 285, 322, 323, 342, 362, 365, 368, 369, 371, 390, 421, 426, 434, 435, 441, 464, 482, 618, 620, 624, 625, 627, 633, 635, 650, 659, 660, 672, 673, 675, 694, 698, 738, 740, 749, 780, 794, 803, 806, 807, 808, 812, 817, 819, 820, 823, 828, 829, 830, 832, 833, 835], "were": [3, 5, 43, 69, 72, 163, 167, 168, 242, 620, 624, 650, 806, 807, 808, 817, 821, 823, 827, 828, 830, 832, 833, 835, 837, 851, 858, 859, 864], "function": [3, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 161, 162, 163, 166, 167, 168, 170, 174, 175, 192, 194, 195, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 377, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 544, 545, 546, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 561, 564, 565, 566, 569, 570, 573, 575, 577, 580, 581, 582, 583, 585, 587, 588, 589, 595, 599, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 710, 712, 713, 714, 716, 717, 718, 719, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 762, 764, 765, 766, 767, 772, 776, 779, 782, 789, 790, 796, 800, 803, 807, 808, 810, 811, 812, 813, 814, 816, 819, 820, 822, 828, 831, 836, 838, 839, 840, 841, 845, 847, 851, 853, 855, 856, 857, 858, 859, 864, 865], "calcul": [3, 9, 40, 51, 52, 53, 58, 65, 69, 74, 75, 76, 80, 81, 88, 98, 215, 216, 217, 218, 219, 220, 221, 222, 223, 232, 233, 235, 238, 239, 240, 256, 257, 258, 259, 260, 261, 266, 267, 268, 273, 280, 281, 282, 284, 285, 286, 292, 301, 329, 330, 342, 352, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 422, 442, 447, 474, 490, 492, 518, 558, 620, 622, 625, 626, 635, 661, 670, 673, 684, 685, 686, 748, 749, 750, 751, 752, 753, 754, 764, 766, 779, 780, 783, 806, 820, 837, 848, 851], "dog": 3, "18": [3, 8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 61, 74, 75, 79, 80, 84, 88, 108, 230, 235, 277, 281, 290, 291, 342, 360, 365, 368, 371, 389, 395, 399, 400, 404, 410, 414, 464, 614, 620, 625, 631, 635, 642, 658, 665, 670, 677, 727, 728, 729, 746, 747, 751, 815, 817, 819], "19": [3, 8, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 61, 74, 75, 79, 80, 84, 221, 230, 258, 268, 285, 368, 369, 371, 380, 388, 389, 400, 404, 410, 414, 420, 425, 464, 512, 620, 625, 629, 631, 634, 658, 666, 679, 717, 727, 728, 729, 744, 819], "006431100999861883": 3, "258": [3, 624, 639, 641], "104": [3, 65, 625, 635, 670, 747], "259": 3, "72447652": 3, "13937832": 3, "05874982": 3, "samoi": 3, "wallabi": 3, "pomeranian": 3, "incorrect": [3, 816], "predict": [3, 5, 7, 9, 40, 41, 42, 43, 52, 58, 75, 81, 370, 443, 446, 449, 626, 684, 685, 686, 800, 817], "down": [3, 19, 29, 43, 52, 75, 368, 371, 403, 466, 807, 832, 845, 858, 864], "itself": [3, 21, 31, 51, 92, 269, 524, 589, 620, 622, 629, 718, 794, 803, 807, 808, 811, 814, 815, 816, 817, 818, 821, 822, 823, 828, 829, 841, 843, 847, 851, 857, 858, 859, 864], "version": [3, 9, 23, 24, 29, 40, 41, 42, 45, 46, 52, 75, 92, 105, 286, 334, 336, 365, 380, 516, 521, 602, 620, 622, 625, 660, 661, 761, 789, 790, 800, 807, 808, 814, 816, 817, 820, 828, 830, 837, 847, 848, 849, 852, 864, 865], "return": [3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 764, 765, 766, 767, 771, 772, 777, 779, 780, 782, 784, 789, 790, 793, 794, 795, 796, 797, 800, 807, 808, 812, 815, 817, 818, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 839, 840, 841, 842, 843, 851, 852, 853, 859], "20": [3, 9, 13, 38, 40, 41, 42, 45, 51, 52, 53, 56, 61, 65, 74, 75, 76, 79, 80, 84, 88, 230, 234, 238, 274, 278, 282, 298, 342, 344, 346, 365, 368, 371, 386, 388, 404, 410, 414, 457, 479, 534, 541, 542, 544, 566, 570, 580, 620, 622, 625, 631, 632, 635, 638, 639, 649, 658, 663, 666, 670, 677, 727, 735, 736, 745, 746, 747, 751, 753, 800, 816, 835, 839], "004749261999904775": 3, "7245": 3, "1394": 3, "0587": 3, "promis": [3, 848], "sourc": [3, 7, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 33, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 761, 762, 764, 765, 766, 768, 769, 770, 771, 772, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 806, 807, 808, 811, 812, 814, 815, 816, 829, 831, 847, 848, 849, 850, 852, 853, 857, 858, 859, 860, 861], "21": [3, 9, 38, 40, 42, 45, 51, 52, 53, 61, 71, 74, 75, 79, 80, 84, 88, 97, 133, 163, 218, 221, 223, 229, 253, 268, 298, 349, 368, 369, 370, 371, 380, 386, 389, 399, 404, 410, 412, 414, 418, 442, 457, 512, 566, 617, 618, 620, 622, 625, 626, 629, 635, 658, 670, 674, 686, 712, 727, 728, 745, 746, 747, 821, 827], "modul": [3, 5, 6, 8, 11, 13, 15, 16, 17, 21, 22, 23, 24, 26, 27, 28, 32, 38, 39, 40, 42, 43, 44, 67, 69, 90, 98, 361, 363, 364, 372, 373, 377, 562, 622, 636, 757, 761, 776, 777, 778, 780, 781, 783, 785, 788, 789, 800, 802, 807, 812, 813, 814, 821, 825, 828, 829, 831, 832, 837, 838, 840, 842, 843, 849, 851, 853, 858, 859, 861], "def": [3, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 51, 74, 117, 219, 528, 546, 616, 622, 628, 629, 704, 705, 712, 793, 800, 803, 806, 807, 811, 812, 815, 817, 818, 819, 821, 822, 824, 825, 827, 828, 829, 830, 832, 833, 835, 837, 839, 840, 841, 842, 851, 852, 853], "__init__": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 69, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 762, 769, 770, 771, 776, 779, 780, 781, 782, 783, 784, 785, 788, 789, 793, 795, 798, 800, 806, 812, 813, 817, 821, 829, 833, 837, 839, 840, 841, 842, 852], "self": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 580, 581, 582, 583, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 624, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 784, 793, 800, 808, 812, 815, 821, 829, 830, 837, 839, 840, 841, 842, 852], "num_class": [3, 11, 13, 26, 27, 40, 42, 44, 800, 842, 852], "1000": [3, 6, 7, 11, 26, 27, 40, 41, 42, 43, 45, 48, 71, 133, 617, 800, 840, 852], "v": [3, 4, 5, 15, 16, 19, 26, 27, 29, 32, 33, 38, 41, 42, 52, 56, 64, 71, 75, 79, 87, 133, 233, 238, 240, 281, 369, 371, 422, 430, 437, 438, 463, 620, 624, 628, 634, 650, 653, 704, 705, 743, 761, 780, 781, 782, 783, 784, 785, 800, 802, 807, 808, 810, 814, 822, 837, 840, 841, 842], "none": [3, 5, 6, 8, 9, 26, 38, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 96, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 165, 166, 167, 168, 170, 172, 175, 187, 190, 191, 203, 204, 205, 206, 207, 208, 209, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 455, 457, 458, 459, 460, 461, 462, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 507, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 544, 545, 546, 547, 549, 550, 551, 553, 554, 557, 562, 565, 566, 567, 568, 569, 571, 572, 573, 574, 576, 577, 578, 580, 581, 583, 585, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 607, 609, 610, 611, 612, 614, 615, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 710, 711, 712, 713, 717, 718, 719, 721, 722, 723, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 761, 762, 764, 765, 766, 767, 772, 776, 777, 779, 780, 781, 782, 783, 784, 785, 788, 789, 792, 794, 800, 803, 807, 811, 812, 813, 815, 816, 817, 818, 819, 821, 822, 824, 825, 828, 829, 830, 832, 833, 835, 837, 839, 841, 842, 851, 852, 853], "_build": [3, 5, 781, 782, 800], "kwarg": [3, 4, 5, 8, 9, 26, 40, 44, 47, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 98, 101, 198, 371, 474, 561, 589, 617, 619, 622, 759, 761, 776, 777, 780, 781, 782, 789, 798, 800, 812, 817, 818, 821, 825, 828, 829, 835, 837, 841, 851, 852, 853], "featur": [3, 8, 9, 11, 13, 15, 17, 26, 27, 40, 44, 52, 75, 368, 382, 384, 391, 392, 393, 779, 780, 800, 806, 807, 808, 812, 813, 816, 817, 824, 833, 835, 840, 843, 852, 858, 859, 860, 864], "sequenti": [3, 5, 7, 24, 26, 27, 42, 800, 814, 815, 841, 852], "conv2d": [3, 5, 7, 24, 26, 27, 42, 45, 56, 79, 624, 641, 780, 800], "64": [3, 5, 7, 38, 40, 41, 42, 45, 51, 52, 56, 74, 75, 76, 79, 80, 84, 88, 98, 159, 229, 239, 273, 282, 283, 339, 365, 368, 389, 399, 534, 535, 581, 609, 618, 620, 622, 623, 624, 625, 629, 635, 639, 641, 643, 645, 646, 667, 670, 680, 714, 718, 728, 747, 751, 800, 807, 817, 840, 841, 863], "2": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 191, 192, 193, 196, 199, 201, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 310, 313, 314, 315, 322, 324, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 384, 386, 387, 388, 389, 390, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 431, 433, 436, 440, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 455, 457, 458, 459, 460, 461, 464, 465, 466, 468, 469, 470, 471, 473, 474, 479, 480, 481, 482, 483, 484, 487, 488, 489, 493, 494, 496, 499, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 523, 526, 527, 528, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 543, 544, 545, 546, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 561, 563, 565, 566, 570, 579, 580, 581, 582, 583, 585, 589, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 704, 705, 706, 707, 709, 710, 712, 713, 714, 715, 717, 718, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 766, 767, 776, 779, 780, 789, 793, 794, 800, 803, 807, 808, 811, 813, 814, 815, 816, 817, 819, 821, 822, 824, 825, 827, 828, 829, 830, 832, 836, 837, 839, 840, 841, 842, 843, 851, 852, 853, 864, 865], "data_format": [3, 42, 52, 56, 75, 79, 368, 374, 383, 386, 387, 388, 391, 392, 393, 404, 405, 406, 407, 409, 490, 491, 492, 495, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 764, 780, 783, 800], "nchw": [3, 42, 52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 495, 624, 637, 640, 641, 644, 645, 646, 780, 800], "relu": [3, 5, 7, 24, 26, 27, 38, 45, 46, 52, 67, 68, 75, 107, 296, 297, 305, 360, 614, 776, 800, 830, 840, 841], "maxpool2d": [3, 5, 7, 40, 780, 800], "192": [3, 42, 764, 793], "384": [3, 77, 603, 623, 629, 706], "avgpool": [3, 7], "adaptiveavgpool2d": [3, 7, 780], "6": [3, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 64, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 93, 97, 98, 105, 107, 112, 117, 122, 123, 130, 131, 134, 135, 138, 144, 148, 149, 150, 158, 160, 168, 214, 215, 217, 218, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 258, 259, 260, 261, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 289, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 306, 307, 313, 324, 329, 330, 332, 334, 342, 343, 345, 346, 347, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 378, 380, 389, 391, 394, 395, 399, 400, 404, 410, 411, 412, 414, 417, 420, 423, 424, 428, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 458, 460, 464, 465, 469, 470, 473, 474, 479, 480, 482, 483, 488, 489, 499, 501, 502, 504, 509, 511, 512, 513, 514, 516, 518, 520, 521, 527, 529, 530, 533, 534, 535, 541, 542, 549, 550, 551, 566, 580, 581, 582, 583, 585, 589, 603, 604, 605, 606, 607, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 653, 655, 656, 657, 658, 660, 661, 662, 665, 666, 667, 670, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 699, 700, 701, 702, 706, 707, 717, 718, 724, 725, 726, 727, 728, 729, 731, 732, 733, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 764, 779, 800, 803, 807, 811, 813, 815, 816, 817, 819, 822, 827, 832, 835, 837, 839, 840, 841], "classifi": [3, 9, 11, 13, 26, 27, 40, 42, 43, 800, 806, 851, 852], "prob": [3, 42, 52, 56, 75, 79, 84, 368, 375, 391, 392, 393, 497, 624, 631, 647, 726, 780, 800], "linear": [3, 7, 13, 25, 26, 27, 38, 39, 40, 42, 45, 52, 53, 56, 68, 75, 76, 79, 105, 107, 109, 110, 113, 290, 293, 297, 299, 300, 301, 305, 346, 360, 365, 368, 371, 380, 403, 436, 474, 521, 538, 561, 614, 622, 624, 629, 650, 674, 713, 764, 766, 767, 779, 780, 800, 815, 820, 825, 826, 828, 829, 832, 835, 837, 840, 841, 842, 852, 856, 857, 858, 861], "4096": 3, "_forward": [3, 5, 6, 8, 26, 27, 38, 39, 42, 800, 820, 837, 840, 841], "x": [3, 5, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 42, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 163, 164, 167, 168, 170, 175, 191, 192, 196, 201, 202, 203, 207, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 269, 270, 272, 273, 274, 275, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 322, 323, 327, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 378, 379, 380, 381, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 414, 416, 418, 419, 421, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 439, 440, 441, 442, 443, 445, 446, 447, 448, 449, 450, 451, 455, 456, 458, 459, 461, 462, 464, 467, 470, 471, 472, 473, 474, 475, 476, 477, 478, 481, 482, 484, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 503, 504, 505, 506, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 527, 528, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 543, 544, 545, 547, 549, 550, 551, 553, 554, 555, 556, 557, 558, 559, 560, 561, 563, 570, 571, 572, 575, 578, 579, 580, 581, 582, 583, 585, 587, 588, 589, 601, 602, 604, 605, 606, 608, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 704, 705, 706, 709, 712, 713, 714, 715, 716, 717, 718, 723, 724, 725, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 765, 766, 780, 783, 786, 789, 793, 798, 800, 803, 806, 810, 812, 813, 815, 817, 818, 819, 820, 821, 822, 824, 825, 827, 828, 829, 830, 832, 833, 835, 837, 839, 840, 841, 842, 851, 852, 853], "reshap": [3, 26, 27, 42, 43, 52, 56, 57, 59, 69, 75, 79, 80, 82, 353, 365, 368, 369, 371, 386, 387, 388, 391, 404, 405, 406, 409, 418, 433, 458, 464, 602, 622, 624, 625, 627, 640, 642, 646, 666, 682, 800, 828, 829, 832, 835, 837, 839, 842], "bidirect": 4, "encod": [4, 11, 13, 26, 27, 40, 42, 53, 58, 76, 81, 538, 622, 626, 684, 800, 840, 848, 852], "mlm": 4, "support": [4, 8, 9, 17, 21, 22, 23, 24, 26, 29, 41, 50, 52, 53, 57, 73, 75, 76, 80, 142, 161, 165, 187, 194, 209, 218, 235, 242, 263, 264, 268, 278, 296, 322, 342, 360, 362, 365, 369, 371, 403, 421, 482, 527, 539, 548, 551, 552, 569, 583, 617, 618, 619, 620, 622, 624, 625, 648, 659, 660, 661, 664, 666, 675, 682, 759, 765, 772, 784, 789, 790, 793, 800, 802, 803, 806, 807, 808, 811, 812, 814, 818, 819, 820, 822, 824, 825, 827, 828, 830, 832, 833, 835, 836, 837, 839, 840, 842, 844, 845, 847, 848, 849, 852, 855, 857, 858, 861, 863, 864, 865], "googl": [4, 21, 22, 23, 24, 40, 41, 42, 44, 809, 816, 848], "type": [4, 6, 11, 13, 17, 23, 26, 27, 32, 40, 41, 42, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 526, 527, 528, 529, 530, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 563, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 759, 761, 764, 765, 766, 767, 771, 772, 776, 779, 780, 781, 782, 786, 789, 793, 794, 795, 798, 800, 806, 807, 808, 810, 811, 812, 815, 818, 819, 820, 821, 824, 826, 828, 830, 832, 833, 835, 837, 839, 840, 851, 852, 853, 858, 859, 862], "choos": [4, 40, 42, 50, 62, 63, 73, 209, 235, 242, 263, 264, 268, 329, 330, 365, 371, 619, 620, 632, 633, 635, 736, 737, 738, 739, 740, 748, 749, 750, 752, 764, 800, 806, 807, 808, 826, 832, 838, 842, 851], "librari": [4, 6, 8, 15, 16, 22, 24, 38, 40, 50, 63, 73, 209, 240, 242, 258, 263, 264, 286, 329, 330, 365, 619, 620, 625, 633, 635, 660, 661, 737, 738, 739, 740, 748, 749, 750, 752, 800, 806, 807, 811, 817, 842, 843, 847, 848, 849, 851, 854, 855, 856, 858, 862, 865], "pretrain": [4, 6, 11, 12, 13, 26, 27, 45, 800, 852], "save": [4, 7, 40, 52, 69, 75, 380, 518, 578, 600, 619, 622, 636, 782, 807, 816, 823, 832, 843, 849, 857], "some": [4, 5, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 32, 38, 42, 43, 69, 77, 240, 242, 258, 368, 391, 392, 393, 603, 604, 607, 609, 610, 611, 619, 620, 623, 629, 717, 780, 800, 803, 806, 807, 808, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 839, 840, 841, 843, 844, 845, 848, 849, 851, 852, 854, 855, 857, 858, 859, 864, 865], "mohame54": 4, "automodel": [4, 8, 26], "autotoken": 4, "load": [4, 6, 8, 23, 26, 40, 41, 42, 43, 44, 45, 69, 369, 437, 636, 782, 800, 832, 843, 857, 864], "token": [4, 42, 809], "bert_bas": 4, "from_pretrain": [4, 8, 26, 43, 851, 852], "base": [4, 9, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 100, 102, 133, 142, 174, 238, 239, 256, 257, 258, 259, 273, 313, 322, 324, 331, 334, 339, 346, 362, 365, 368, 369, 370, 378, 410, 414, 437, 442, 503, 571, 581, 593, 617, 618, 620, 622, 625, 627, 633, 635, 666, 690, 737, 738, 739, 740, 747, 762, 765, 766, 769, 770, 771, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 788, 789, 794, 795, 798, 800, 807, 808, 809, 811, 815, 816, 817, 821, 824, 826, 827, 828, 830, 831, 832, 833, 834, 835, 837, 858, 863, 865], "uncas": 4, "eval": [4, 5, 7, 21, 22, 23, 24, 782], "evalu": [4, 51, 52, 69, 74, 75, 238, 240, 256, 257, 258, 259, 263, 270, 272, 279, 283, 316, 347, 358, 359, 362, 367, 369, 370, 371, 433, 442, 447, 471, 613, 620, 623, 629, 636, 716, 717, 755, 756, 781, 782, 808, 815, 817, 825, 826, 858], "bert_token": 4, "sampl": [4, 6, 8, 11, 13, 23, 26, 27, 41, 48, 51, 52, 61, 65, 71, 74, 75, 84, 88, 132, 133, 287, 313, 362, 368, 370, 371, 375, 391, 392, 393, 403, 413, 415, 442, 447, 477, 497, 498, 499, 500, 501, 617, 620, 631, 635, 726, 727, 728, 729, 752, 754, 780, 830, 832], "test": [4, 18, 19, 21, 22, 28, 29, 31, 32, 33, 41, 42, 51, 53, 66, 74, 76, 89, 120, 166, 170, 249, 250, 251, 252, 275, 368, 391, 392, 393, 558, 616, 618, 620, 622, 636, 755, 756, 759, 762, 765, 794, 800, 802, 803, 805, 810, 814, 817, 819, 821, 823, 826, 829, 831, 833, 843, 844, 849, 851, 852, 853, 858], "did": [4, 40, 806, 814, 842, 848, 864], "realli": [4, 38, 807, 815, 822, 843, 851, 863, 864], "like": [4, 6, 8, 18, 19, 20, 26, 28, 29, 30, 31, 32, 33, 43, 45, 48, 51, 52, 59, 71, 74, 75, 79, 82, 87, 133, 151, 174, 219, 239, 245, 248, 261, 279, 335, 339, 351, 365, 368, 369, 370, 371, 378, 380, 410, 412, 421, 444, 453, 454, 463, 464, 503, 504, 521, 617, 618, 620, 625, 627, 631, 634, 659, 694, 729, 742, 794, 800, 803, 806, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 836, 837, 839, 840, 841, 842, 843, 848, 851, 852, 858, 863], "input": [4, 5, 8, 11, 13, 23, 24, 26, 31, 32, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 150, 151, 152, 153, 155, 156, 157, 158, 159, 160, 163, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 189, 191, 192, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 357, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 424, 426, 427, 428, 431, 433, 434, 435, 436, 437, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 457, 458, 459, 460, 462, 464, 465, 466, 467, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 544, 545, 547, 549, 550, 551, 553, 554, 555, 556, 557, 558, 560, 565, 566, 567, 573, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 590, 595, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 712, 713, 714, 715, 717, 718, 719, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 765, 772, 776, 779, 780, 781, 782, 783, 793, 794, 811, 812, 813, 815, 817, 818, 819, 820, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 839, 840, 841, 842, 843, 851, 852, 859, 862], "pad": [4, 7, 40, 42, 52, 56, 59, 75, 79, 82, 93, 95, 368, 371, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 538, 622, 624, 627, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 689, 702, 766, 780, 800], "longest": 4, "return_tensor": [4, 8, 26, 43, 851, 852], "pt": [4, 8, 26, 851], "max_length": [4, 69], "512": [4, 5, 7, 40, 42, 80, 624, 639, 680, 800], "input_id": 4, "101": [4, 9, 41, 624, 625, 629, 648, 663, 712], "1045": 4, "2106": 4, "1005": 4, "1056": 4, "2428": 4, "2066": 4, "2115": 4, "4309": 4, "1012": 4, "102": [4, 9, 52, 75, 84, 389, 727], "token_type_id": 4, "attention_mask": [4, 56, 79, 624, 650], "pooler": 4, "compar": [4, 6, 8, 26, 39, 43, 45, 52, 53, 63, 64, 65, 69, 75, 76, 87, 88, 328, 344, 365, 380, 519, 523, 526, 622, 633, 634, 635, 737, 738, 739, 740, 741, 744, 750, 761, 800, 813, 819, 821, 830, 832, 835, 840, 854, 856, 858, 864, 865], "no_grad": [4, 40, 851], "bert_output": 4, "pooler_output": 4, "ivy_bert": 4, "bert_base_uncas": 4, "ivy_input": 4, "k": [4, 6, 39, 42, 48, 52, 53, 56, 57, 61, 71, 74, 75, 79, 80, 84, 92, 93, 117, 127, 140, 141, 142, 262, 307, 322, 323, 362, 369, 371, 375, 378, 380, 419, 432, 436, 438, 440, 480, 484, 497, 498, 499, 500, 501, 504, 514, 526, 616, 617, 622, 624, 625, 629, 631, 632, 650, 653, 657, 665, 666, 672, 674, 675, 676, 679, 714, 727, 728, 729, 735, 800, 810, 811, 829, 830, 837, 851, 854, 858], "ivy_output": [4, 43], "logits_clos": 4, "allclos": [4, 6, 8, 11, 13, 26, 43, 45, 52, 75, 365], "detach": [4, 6, 8, 11, 13, 26, 827], "rtol": [4, 11, 13, 52, 57, 75, 80, 328, 344, 365, 625, 668, 671, 759, 761, 803, 822, 830], "005": [4, 7, 52, 75, 328, 344, 365, 443], "atol": [4, 6, 8, 26, 52, 57, 75, 80, 328, 344, 365, 625, 668, 759, 761, 803, 822, 830], "equal": [4, 48, 49, 51, 52, 53, 57, 58, 59, 61, 63, 64, 65, 69, 72, 74, 75, 76, 80, 81, 82, 84, 87, 93, 97, 98, 127, 129, 130, 131, 137, 138, 147, 227, 229, 233, 238, 240, 249, 250, 271, 273, 278, 281, 282, 286, 324, 325, 326, 328, 344, 362, 365, 368, 369, 371, 374, 380, 390, 411, 436, 460, 469, 482, 488, 493, 494, 496, 514, 523, 526, 602, 617, 618, 620, 622, 625, 626, 627, 631, 632, 633, 634, 635, 658, 667, 668, 671, 673, 679, 684, 687, 689, 694, 696, 702, 729, 735, 737, 738, 739, 740, 741, 744, 749, 751, 752, 753, 754, 772, 779, 780, 814, 815, 817, 819, 821, 830, 832], "els": [4, 5, 6, 9, 41, 42, 44, 45, 52, 53, 61, 74, 75, 84, 153, 154, 155, 156, 157, 169, 275, 279, 368, 369, 375, 413, 426, 435, 439, 441, 498, 533, 537, 618, 620, 622, 624, 629, 631, 649, 716, 719, 727, 728, 729, 759, 793, 794, 800, 806, 807, 808, 811, 813, 817, 818, 821, 825, 828, 829, 830, 832, 833, 835, 837, 839, 841, 842, 843, 859], "768": 4, "fn": [4, 43, 45, 52, 69, 72, 75, 101, 161, 162, 194, 195, 198, 371, 451, 524, 539, 540, 589, 618, 619, 622, 629, 712, 713, 714, 716, 717, 718, 759, 761, 786, 789, 795, 796, 798, 818, 821, 828, 829, 837, 851], "finish": [4, 15, 26, 27, 38, 41, 800, 801, 806, 807, 810], "2f": [4, 6], "sec": 4, "89": [4, 9, 38, 51, 61, 72, 74, 75, 84, 98, 163, 230, 618, 625, 635, 677, 728, 729, 753], "43": [4, 9, 38, 40, 42, 52, 75, 84, 98, 229, 368, 369, 380, 388, 420, 512, 620, 631, 632, 728, 729, 736], "procedur": [4, 814, 816, 819, 830], "60": [4, 38, 42, 51, 65, 74, 76, 84, 88, 219, 253, 371, 479, 542, 550, 566, 580, 602, 620, 622, 625, 629, 635, 670, 709, 727, 745, 747, 751, 794, 816], "big": [4, 779, 801, 843, 858], "jnp": [4, 18, 23, 26, 27, 28, 29, 32, 38, 40, 44, 800, 817, 818, 821, 824, 828, 833, 837, 842, 852, 853], "config": [4, 5, 6, 8, 9, 20, 23, 26, 27, 40, 41, 43, 69, 629, 719, 800, 807, 811, 814, 816, 823, 830, 840, 851, 859], "jax_enable_x64": [4, 5, 6, 8, 9, 20, 23, 26, 27, 800], "ref": [4, 5, 76, 80, 254, 268, 271, 277, 284, 620, 627, 698, 807, 828], "initi": [4, 26, 27, 43, 52, 56, 65, 69, 75, 79, 88, 98, 369, 380, 426, 435, 441, 519, 520, 624, 635, 649, 750, 777, 780, 781, 782, 784, 785, 800, 804, 808, 809, 813, 817, 818, 822, 830, 832, 837, 848, 851, 852, 853, 858, 864, 865], "fast": [4, 21, 31, 52, 368, 390, 858], "valu": [4, 9, 38, 39, 41, 42, 48, 49, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 95, 97, 98, 100, 113, 117, 118, 120, 121, 127, 130, 131, 132, 133, 136, 142, 147, 164, 168, 174, 207, 208, 215, 216, 217, 218, 220, 222, 223, 224, 231, 235, 236, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 282, 283, 284, 285, 286, 287, 288, 289, 290, 292, 293, 296, 301, 304, 305, 307, 314, 316, 322, 324, 325, 326, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 344, 345, 347, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 379, 380, 390, 403, 410, 411, 413, 415, 419, 422, 426, 430, 435, 437, 439, 441, 442, 443, 445, 446, 447, 448, 457, 463, 468, 474, 479, 481, 482, 483, 484, 487, 490, 492, 497, 498, 500, 501, 507, 509, 512, 513, 514, 517, 518, 519, 520, 521, 527, 529, 530, 531, 533, 538, 541, 542, 544, 549, 550, 551, 558, 565, 566, 570, 571, 572, 575, 583, 588, 593, 594, 597, 600, 601, 602, 603, 604, 605, 609, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 653, 657, 660, 661, 666, 667, 668, 671, 672, 673, 674, 675, 676, 679, 682, 687, 688, 689, 693, 694, 702, 703, 704, 708, 710, 711, 712, 713, 714, 719, 723, 724, 725, 726, 727, 728, 729, 730, 732, 733, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 759, 761, 764, 765, 766, 767, 769, 771, 776, 779, 780, 781, 782, 783, 784, 803, 807, 808, 811, 814, 815, 817, 818, 819, 820, 821, 822, 824, 825, 828, 829, 832, 834, 835, 837, 839, 843, 851, 858, 859], "demo": [5, 6, 7, 8, 9, 27, 34, 38, 42, 800], "milesi": 5, "blob": [5, 40, 42], "2f62e6b1c8e98022a6418d31a76f6abd800e5ae7": 5, "util": [5, 8, 21, 22, 23, 24, 40, 43, 52, 75, 193, 369, 437, 619, 786, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 807, 814, 818, 821, 822, 825, 828, 832, 833, 837, 852, 856, 864, 865], "data_load": 5, "py": [5, 7, 8, 21, 22, 23, 24, 40, 42, 45, 88, 369, 437, 747, 789, 793, 800, 806, 807, 808, 811, 813, 816, 817, 818, 820, 821, 822, 823, 824, 825, 829, 830, 832, 833, 837, 839, 841, 842], "l65": 5, "mask_valu": 5, "pil_img": 5, "scale": [5, 6, 40, 52, 56, 60, 75, 77, 79, 83, 107, 206, 207, 298, 299, 302, 313, 342, 360, 362, 365, 368, 369, 374, 385, 391, 392, 393, 401, 403, 408, 412, 428, 490, 491, 492, 610, 614, 619, 623, 624, 630, 647, 650, 653, 725, 764, 766, 767, 779, 780, 784, 794, 858, 860], "is_mask": 5, "w": [5, 8, 41, 42, 52, 53, 54, 56, 69, 74, 75, 76, 77, 79, 92, 262, 342, 357, 365, 367, 368, 369, 374, 386, 387, 388, 390, 404, 405, 406, 407, 423, 441, 495, 510, 534, 536, 580, 603, 604, 605, 607, 609, 610, 611, 622, 623, 624, 629, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 712, 800, 810, 827, 837, 840, 841, 852], "h": [5, 52, 53, 56, 75, 76, 79, 368, 374, 387, 388, 405, 406, 495, 534, 536, 622, 624, 629, 637, 640, 641, 642, 643, 644, 645, 646, 709, 713, 715, 718, 723, 801, 810, 814, 815, 816, 852, 854], "size": [5, 9, 11, 13, 18, 21, 22, 28, 29, 31, 32, 33, 40, 42, 45, 52, 53, 56, 57, 59, 61, 62, 69, 75, 76, 79, 80, 82, 84, 85, 92, 93, 97, 98, 129, 132, 206, 207, 208, 306, 309, 313, 324, 325, 326, 327, 334, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 382, 383, 384, 385, 386, 387, 403, 404, 405, 407, 408, 414, 415, 422, 425, 435, 441, 442, 444, 458, 460, 472, 482, 484, 491, 492, 495, 499, 504, 516, 517, 518, 519, 520, 521, 560, 565, 617, 619, 622, 624, 625, 627, 631, 632, 636, 650, 653, 655, 658, 662, 666, 670, 672, 675, 681, 690, 695, 696, 697, 726, 732, 735, 755, 756, 764, 766, 767, 780, 794, 800, 828, 830, 832, 835, 840, 851, 853], "neww": 5, "newh": 5, "int": [5, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 101, 108, 112, 113, 122, 123, 127, 129, 130, 131, 132, 133, 136, 140, 141, 142, 149, 156, 159, 160, 163, 170, 185, 199, 200, 201, 208, 209, 218, 225, 226, 227, 228, 229, 230, 242, 245, 269, 273, 278, 284, 287, 294, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 329, 330, 334, 335, 338, 342, 349, 351, 353, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 418, 422, 424, 425, 426, 427, 429, 432, 434, 435, 438, 439, 441, 446, 450, 451, 455, 459, 460, 463, 464, 467, 469, 472, 473, 474, 475, 476, 477, 478, 479, 480, 482, 483, 484, 486, 487, 488, 491, 493, 494, 496, 497, 498, 499, 500, 501, 502, 504, 509, 511, 512, 513, 514, 516, 517, 518, 519, 520, 521, 524, 534, 535, 536, 538, 541, 542, 545, 546, 560, 563, 565, 580, 581, 582, 586, 602, 603, 604, 605, 606, 609, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 650, 655, 657, 658, 666, 667, 672, 677, 679, 680, 681, 682, 684, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 709, 712, 713, 715, 717, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 735, 737, 739, 741, 743, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 765, 766, 767, 776, 779, 780, 793, 794, 815, 817, 818, 819, 821, 824, 825, 828, 830, 832, 833, 835, 837, 842, 851], "assert": [5, 9, 41, 43, 45, 69, 527, 622, 772, 803, 810, 811, 822, 825, 828, 829, 830, 832, 833, 839, 840], "too": [5, 52, 75, 218, 235, 242, 268, 371, 482, 620, 779, 806, 807, 808, 811, 817, 821, 833, 843], "small": [5, 9, 42, 51, 52, 57, 60, 74, 75, 80, 83, 235, 242, 268, 269, 328, 344, 365, 369, 370, 374, 430, 447, 490, 491, 492, 620, 625, 630, 668, 671, 673, 725, 779, 783, 800, 807, 816, 819, 825, 830, 835, 837, 841, 843, 851, 852, 859], "would": [5, 8, 9, 20, 21, 22, 23, 24, 26, 27, 30, 32, 34, 42, 48, 50, 52, 71, 73, 75, 82, 108, 112, 123, 209, 368, 371, 395, 400, 452, 453, 460, 462, 464, 465, 466, 473, 477, 488, 614, 619, 690, 691, 692, 694, 696, 697, 699, 701, 766, 776, 780, 800, 801, 803, 806, 807, 808, 810, 811, 812, 813, 815, 816, 817, 819, 820, 822, 824, 826, 828, 829, 830, 832, 833, 835, 836, 837, 839, 841, 842, 843, 844, 848, 851, 858, 864], "pixel": [5, 40, 52, 75, 368, 403], "resampl": 5, "nearest": [5, 52, 75, 218, 235, 268, 278, 338, 365, 368, 380, 403, 521, 620, 835], "bicub": [5, 52, 75, 368, 403, 835], "zero": [5, 40, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 66, 71, 72, 74, 75, 77, 79, 80, 84, 85, 88, 89, 93, 107, 109, 110, 111, 113, 124, 125, 127, 129, 134, 136, 137, 138, 140, 141, 144, 147, 148, 216, 217, 218, 220, 221, 222, 223, 224, 227, 229, 230, 232, 233, 234, 235, 237, 240, 241, 242, 249, 250, 251, 252, 258, 263, 264, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 280, 281, 282, 283, 285, 286, 288, 289, 291, 293, 297, 299, 305, 307, 316, 323, 329, 330, 333, 334, 335, 338, 346, 349, 351, 352, 353, 354, 360, 362, 365, 368, 369, 371, 378, 380, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 410, 411, 412, 413, 414, 415, 420, 422, 433, 436, 458, 468, 473, 474, 485, 503, 512, 513, 530, 534, 541, 561, 566, 603, 604, 609, 610, 611, 612, 614, 617, 618, 620, 622, 623, 624, 625, 627, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 644, 646, 647, 648, 650, 653, 654, 656, 660, 661, 663, 664, 665, 666, 667, 668, 669, 671, 673, 679, 681, 682, 689, 690, 691, 692, 694, 695, 702, 725, 727, 728, 729, 732, 733, 734, 735, 737, 738, 739, 740, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 779, 780, 784, 812, 815, 817, 818, 819, 824, 826, 827, 830, 837, 840, 841, 849, 857], "int64": [5, 52, 61, 62, 64, 65, 72, 84, 85, 87, 88, 137, 150, 156, 159, 161, 163, 167, 168, 172, 179, 310, 362, 378, 380, 504, 512, 513, 617, 618, 632, 634, 635, 727, 732, 733, 734, 743, 745, 746, 751, 753, 764, 765, 817, 829, 832, 837], "enumer": [5, 40, 42, 769, 800], "ndim": [5, 52, 57, 62, 75, 80, 85, 97, 101, 369, 371, 434, 435, 441, 452, 453, 454, 467, 475, 477, 486, 602, 622, 625, 632, 672, 675, 735, 815, 825, 832], "newaxi": [5, 615], "transpos": [5, 23, 26, 27, 44, 52, 56, 57, 69, 75, 79, 80, 97, 369, 416, 432, 434, 436, 510, 624, 625, 637, 639, 641, 643, 644, 645, 665, 669, 671, 677, 766, 780, 800, 822, 828, 839, 842, 852], "255": [5, 23, 26, 27, 40, 41, 42, 44, 56, 75, 79, 229, 620, 646, 800, 852], "car": 5, "full_img": 5, "from_numpi": [5, 840], "fals": [5, 6, 7, 8, 13, 17, 26, 29, 40, 41, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 191, 192, 197, 199, 202, 203, 205, 208, 209, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 409, 410, 411, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 458, 459, 460, 461, 462, 463, 464, 465, 466, 469, 470, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 498, 503, 504, 510, 511, 512, 513, 514, 516, 517, 518, 519, 520, 521, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 544, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 561, 565, 566, 567, 570, 573, 574, 576, 577, 579, 580, 581, 583, 585, 587, 588, 590, 595, 596, 598, 599, 601, 604, 605, 607, 611, 612, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 712, 716, 717, 718, 719, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 762, 764, 765, 766, 767, 772, 776, 777, 780, 781, 782, 784, 786, 789, 793, 794, 795, 798, 800, 803, 807, 811, 813, 816, 817, 818, 819, 821, 822, 828, 829, 830, 832, 834, 835, 837, 840, 841, 842, 851, 852], "permut": [5, 7, 40, 59, 82, 97, 378, 503, 627, 692, 699, 852], "img_numpi": 5, "cpu": [5, 6, 8, 21, 22, 23, 24, 26, 40, 41, 42, 44, 45, 48, 50, 52, 61, 71, 73, 75, 84, 121, 127, 130, 132, 133, 136, 137, 138, 144, 188, 189, 191, 192, 193, 194, 199, 202, 204, 206, 209, 210, 212, 214, 375, 497, 498, 500, 501, 617, 619, 625, 631, 664, 726, 727, 728, 729, 761, 779, 780, 781, 782, 783, 784, 785, 800, 803, 807, 808, 814, 817, 818, 822, 829, 832, 843, 856, 858, 861, 863], "torch_unet": 5, "unet_carvana": 5, "when": [5, 7, 8, 9, 17, 19, 21, 22, 23, 24, 26, 27, 29, 31, 32, 33, 41, 43, 47, 48, 49, 51, 52, 57, 58, 61, 62, 65, 69, 71, 72, 74, 75, 80, 81, 84, 85, 88, 98, 136, 147, 218, 235, 240, 242, 258, 268, 286, 287, 294, 329, 330, 360, 365, 368, 369, 370, 374, 375, 380, 390, 403, 415, 422, 426, 435, 441, 442, 447, 490, 492, 498, 518, 521, 551, 567, 575, 581, 617, 618, 620, 622, 624, 625, 626, 627, 629, 631, 632, 635, 637, 650, 668, 673, 684, 685, 686, 694, 717, 718, 727, 728, 729, 732, 733, 735, 736, 748, 750, 752, 754, 764, 767, 779, 780, 781, 782, 783, 789, 801, 805, 806, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 832, 833, 834, 835, 837, 839, 840, 842, 843, 844, 847, 848, 851, 852, 856, 858, 861, 862, 863, 864], "ivy_unet": 5, "n_channel": 5, "n_class": 5, "forward": [5, 7, 13, 26, 27, 40, 42, 52, 75, 358, 367, 368, 390, 395, 396, 400, 401, 411, 412, 777, 779, 780, 782, 784, 800, 807, 813, 820, 827, 832, 833, 835, 842, 843, 851, 858, 859], "effici": [5, 6, 7, 8, 15, 16, 18, 19, 26, 27, 28, 29, 52, 57, 75, 80, 369, 370, 430, 446, 574, 596, 622, 625, 668, 800, 807, 808, 815, 825, 826, 828, 832, 834, 837, 840, 843, 852, 858, 860, 861], "l62": 5, "mask_to_imag": 5, "ndarrai": [5, 48, 52, 53, 71, 75, 93, 122, 123, 135, 368, 369, 371, 380, 412, 435, 479, 517, 518, 587, 617, 622, 789, 793, 806, 812, 817, 818, 821, 824, 828, 829, 830, 833, 835, 837, 839, 842, 845], "isinst": [5, 9, 24, 26, 27, 821, 829, 832, 833, 841, 842], "len": [5, 9, 40, 42, 48, 52, 57, 75, 80, 134, 310, 319, 320, 362, 368, 369, 380, 401, 412, 424, 427, 435, 441, 521, 617, 625, 660, 680, 800, 815, 816, 821, 828, 829, 832, 839, 842, 851], "uint8": [5, 23, 26, 27, 42, 150, 157, 161, 172, 175, 180, 186, 618, 764, 765, 817, 832], "elif": [5, 6, 816, 821, 828, 829, 830], "bool": [5, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 122, 123, 124, 129, 130, 131, 132, 133, 134, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 177, 183, 187, 191, 192, 194, 195, 197, 199, 202, 203, 208, 209, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 386, 387, 388, 390, 391, 392, 393, 403, 404, 405, 406, 409, 411, 413, 415, 422, 426, 429, 432, 434, 435, 436, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 458, 459, 460, 462, 463, 464, 465, 466, 469, 473, 477, 480, 482, 483, 484, 488, 490, 492, 493, 494, 495, 496, 498, 510, 511, 512, 513, 514, 516, 517, 518, 519, 520, 521, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 544, 545, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 565, 566, 570, 579, 580, 581, 583, 585, 587, 588, 601, 604, 605, 607, 609, 610, 611, 612, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 647, 648, 649, 650, 653, 654, 655, 660, 661, 662, 663, 664, 665, 666, 668, 669, 670, 672, 673, 674, 675, 679, 680, 682, 684, 685, 686, 687, 690, 691, 692, 694, 695, 696, 697, 698, 699, 701, 702, 703, 704, 705, 706, 707, 712, 713, 714, 716, 717, 718, 723, 724, 726, 727, 728, 729, 731, 732, 733, 734, 735, 737, 738, 739, 740, 741, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 762, 764, 765, 766, 776, 780, 783, 784, 793, 794, 798, 817, 819, 821, 828, 829, 832, 833, 835, 837, 842, 851, 852], "argmax": [5, 41, 42, 43, 62, 85, 371, 479, 632, 800, 829, 851], "fromarrai": [5, 23, 26, 27, 42], "interpol": [5, 40, 52, 75, 346, 365, 368, 380, 521, 624, 650, 835, 858], "mode": [5, 32, 44, 52, 57, 69, 75, 80, 91, 92, 93, 94, 95, 96, 205, 208, 213, 218, 235, 268, 321, 358, 359, 362, 367, 368, 369, 371, 398, 403, 411, 412, 424, 426, 432, 434, 435, 441, 457, 467, 472, 474, 475, 477, 479, 482, 483, 486, 567, 568, 569, 573, 574, 576, 577, 590, 591, 595, 596, 598, 599, 619, 620, 622, 625, 672, 772, 780, 781, 782, 797, 807, 808, 810, 815, 818, 819, 822, 835, 843, 858, 861], "bilinear": [5, 52, 75, 368, 403, 835], "torch_mask": 5, "squeez": [5, 40, 59, 82, 627, 858], "torch_result": 5, "to_numpi": [5, 9, 26, 27, 38, 41, 42, 45, 53, 76, 622, 800, 822, 830, 840], "give": [5, 18, 28, 38, 52, 56, 75, 79, 174, 358, 367, 368, 410, 414, 618, 624, 627, 637, 638, 639, 640, 642, 644, 646, 694, 779, 800, 807, 808, 810, 813, 816, 817, 819, 820, 822, 823, 824, 832, 849, 858, 862], "img_tf": 5, "math": [5, 43, 93, 285, 620, 817, 828, 829, 830, 842, 856], "ve": [5, 9, 15, 24, 26, 61, 84, 631, 726, 806, 807, 808, 809, 822, 832, 835, 836, 839, 845], "lot": [5, 816, 817, 826, 832, 843, 848, 849, 857], "far": [5, 26, 27, 629, 706, 717, 794, 818, 819, 838, 863, 864], "space": [5, 48, 51, 52, 53, 71, 74, 75, 76, 121, 132, 133, 287, 342, 365, 370, 444, 534, 538, 617, 620, 622, 835, 848], "del": [5, 816], "empty_cach": 5, "permute_dim": [5, 59, 82, 627, 822], "usr": [5, 40, 41, 42, 45, 807], "local": [5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 40, 41, 42, 45, 374, 495, 546, 622, 801, 807, 811, 814, 822, 825, 830, 832], "lib": [5, 9, 21, 22, 23, 24, 40, 41, 42, 45], "python3": [5, 7, 21, 22, 23, 24, 26, 40, 42, 45, 800, 807, 808], "dist": [5, 40, 41, 42, 45], "func_wrapp": [5, 46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 614, 620, 776, 818, 829, 834], "242": [5, 75], "userwarn": [5, 7, 8, 21, 22, 23, 24, 45], "creat": [5, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 40, 41, 42, 44, 45, 48, 51, 52, 61, 69, 71, 74, 75, 80, 84, 93, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 269, 306, 307, 317, 319, 321, 322, 362, 368, 369, 371, 375, 386, 387, 388, 409, 426, 435, 441, 450, 458, 474, 479, 497, 498, 499, 500, 501, 569, 585, 602, 613, 617, 620, 622, 623, 631, 670, 726, 727, 728, 729, 731, 761, 772, 777, 779, 780, 781, 782, 783, 784, 785, 801, 807, 808, 809, 812, 813, 814, 816, 817, 818, 821, 825, 826, 828, 829, 830, 832, 835, 837, 838, 841, 844, 845, 848, 851, 852, 853, 858, 859, 864], "mani": [5, 26, 27, 30, 59, 69, 82, 142, 322, 362, 617, 627, 696, 800, 806, 807, 808, 812, 813, 815, 816, 817, 818, 819, 820, 824, 825, 826, 828, 829, 830, 832, 835, 837, 839, 840, 843, 847, 848, 849, 854, 858, 861, 864, 865], "view": [5, 8, 21, 22, 23, 24, 52, 59, 75, 97, 128, 139, 371, 452, 453, 454, 460, 462, 464, 465, 466, 469, 473, 480, 488, 544, 617, 622, 627, 690, 691, 692, 694, 696, 697, 699, 701, 807, 808, 821, 858], "lead": [5, 8, 21, 22, 23, 24, 57, 69, 80, 98, 242, 369, 430, 569, 620, 622, 625, 672, 675, 766, 816, 817, 819, 831, 833, 843, 848, 849], "overhead": [5, 8, 19, 21, 22, 23, 24, 26, 27, 29, 843, 851, 861], "perform": [5, 9, 19, 21, 22, 23, 24, 26, 27, 29, 31, 38, 40, 48, 52, 56, 57, 65, 66, 71, 75, 76, 79, 80, 88, 89, 108, 112, 132, 133, 205, 213, 235, 268, 289, 335, 356, 365, 366, 368, 369, 371, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 409, 411, 435, 451, 504, 512, 513, 534, 535, 536, 549, 550, 551, 567, 577, 614, 617, 619, 620, 622, 624, 625, 628, 629, 635, 636, 647, 649, 675, 677, 682, 703, 704, 705, 713, 714, 745, 746, 755, 756, 759, 776, 780, 794, 804, 811, 812, 813, 815, 817, 818, 819, 824, 825, 826, 828, 829, 830, 832, 833, 835, 837, 840, 843, 849, 851, 852, 855, 858, 859, 860, 861, 862, 863, 865], "inplac": [5, 7, 8, 9, 21, 22, 23, 24, 47, 53, 69, 76, 92, 95, 525, 527, 548, 551, 552, 569, 570, 622, 629, 713, 714, 718, 723, 724, 771, 772, 777, 784, 810, 812, 819, 822, 824, 826, 829, 835, 839, 841], "17": [5, 8, 9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 52, 57, 68, 74, 75, 76, 77, 79, 80, 84, 98, 107, 108, 133, 218, 235, 260, 268, 298, 306, 356, 362, 368, 371, 386, 387, 395, 396, 399, 400, 404, 405, 410, 414, 464, 535, 550, 603, 605, 614, 617, 620, 622, 623, 624, 625, 629, 631, 638, 647, 648, 658, 662, 714, 727, 728, 729, 731, 815], "factor": [5, 9, 52, 54, 56, 57, 75, 77, 79, 80, 91, 92, 93, 94, 95, 206, 207, 208, 368, 369, 374, 401, 412, 426, 427, 435, 438, 440, 441, 495, 603, 604, 609, 610, 619, 623, 624, 625, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 654, 764, 766, 767, 779, 780, 784, 821, 848], "inc": 5, "unetdoubleconv": 5, "down1": 5, "unetdown": 5, "128": [5, 7, 26, 27, 40, 49, 51, 56, 72, 74, 79, 98, 163, 239, 368, 389, 399, 534, 544, 618, 620, 622, 624, 625, 639, 641, 646, 670, 800], "down2": 5, "down3": 5, "down4": 5, "1024": [5, 7, 40, 41, 800], "up1": 5, "unetup": 5, "up2": 5, "up3": 5, "up4": 5, "outc": 5, "unetoutconv": 5, "x1": [5, 17, 26, 27, 45, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 87, 97, 98, 102, 148, 158, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 307, 328, 333, 339, 340, 341, 343, 345, 350, 354, 362, 365, 369, 371, 380, 436, 468, 511, 523, 526, 618, 619, 620, 622, 625, 632, 634, 655, 662, 665, 670, 674, 677, 678, 681, 736, 743, 761, 786, 800, 811, 817, 819, 821, 824, 828, 829, 852, 853], "x2": [5, 17, 26, 27, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 97, 98, 102, 148, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 328, 333, 339, 340, 341, 343, 345, 350, 354, 365, 369, 371, 380, 424, 436, 468, 511, 523, 526, 618, 619, 620, 622, 625, 632, 655, 662, 665, 670, 674, 677, 678, 681, 736, 761, 786, 811, 817, 819, 821, 824, 828, 829], "x3": [5, 49, 53, 148, 523, 618, 622], "x4": 5, "x5": 5, "in_channel": 5, "out_channel": 5, "mid_channel": 5, "double_conv": 5, "with_bia": [5, 780, 800, 841, 852], "batchnorm2d": [5, 7, 783], "downscal": [5, 53, 76, 529, 530, 551, 622], "maxpool": [5, 7], "doubl": 5, "conv": [5, 624, 780, 835], "maxpool_conv": 5, "upscal": 5, "scale_factor": [5, 52, 75, 368, 403, 835], "align_corn": [5, 52, 75, 368, 403, 835], "conv2dtranspos": [5, 780], "valid": [5, 40, 42, 52, 56, 66, 75, 79, 89, 92, 93, 152, 368, 369, 386, 387, 388, 404, 405, 406, 407, 409, 410, 414, 433, 441, 554, 618, 622, 624, 627, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 690, 698, 755, 756, 764, 765, 780, 793, 807, 813, 817, 819, 823, 827, 830, 832, 851, 859], "bhwc": 5, "diff_h": 5, "diff_w": 5, "pad_width": [5, 52, 59, 75, 82, 371, 474, 627, 689, 702], "constant_pad": [5, 59, 82, 627], "concat": [5, 38, 43, 53, 59, 69, 82, 208, 538, 619, 622, 627, 702, 830, 835, 837, 851], "openmim": 6, "mim": 6, "0rc8": 6, "torch": [6, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 43, 44, 45, 48, 53, 57, 67, 76, 80, 124, 162, 189, 190, 204, 206, 211, 278, 329, 330, 365, 527, 551, 583, 617, 618, 619, 620, 622, 625, 628, 675, 704, 705, 761, 772, 777, 789, 800, 803, 807, 808, 811, 812, 813, 814, 816, 817, 818, 821, 822, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 839, 840, 842, 843, 845, 851, 852, 853, 864], "request": [6, 7, 8, 21, 22, 23, 24, 26, 27, 40, 43, 52, 199, 375, 501, 619, 800, 801, 804, 806, 819, 823, 833, 835, 849, 852], "get_model": 6, "list_model": 6, "mmengin": 6, "configdict": 6, "saniti": [6, 8, 9, 26, 829], "checkpoint": [6, 7, 43, 843], "correct": [6, 11, 13, 22, 32, 38, 40, 42, 65, 88, 181, 369, 437, 618, 627, 635, 687, 752, 754, 761, 764, 800, 803, 806, 808, 810, 815, 816, 817, 818, 821, 822, 824, 825, 828, 830, 832, 852], "against": [6, 49, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 148, 267, 286, 328, 331, 334, 344, 365, 380, 517, 518, 519, 520, 521, 558, 618, 620, 622, 625, 632, 665, 666, 668, 671, 732, 832, 837, 843, 847, 858], "zoo": 6, "checkpoint_nam": [6, 8, 26], "convnext": 6, "tiny_32xb128": 6, "noema_in1k": 6, "openmmlab": 6, "dure": [6, 8, 19, 21, 26, 29, 31, 32, 50, 54, 65, 69, 73, 77, 88, 209, 368, 391, 392, 393, 569, 589, 603, 604, 609, 619, 622, 623, 624, 625, 628, 635, 647, 665, 703, 704, 705, 752, 754, 772, 783, 784, 807, 815, 817, 818, 821, 825, 826, 828, 829, 830, 831, 832, 835, 843, 851, 858, 859, 864], "appropri": [6, 17, 21, 22, 24, 26, 27, 53, 62, 67, 85, 90, 218, 235, 242, 268, 328, 344, 365, 620, 632, 732, 800, 806, 807, 808, 821, 826, 832], "get_scal": 6, "cfg": [6, 823], "kei": [6, 19, 20, 26, 27, 42, 44, 47, 52, 56, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 378, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 449, 458, 459, 480, 482, 484, 490, 492, 493, 494, 496, 498, 504, 511, 512, 513, 514, 523, 524, 526, 527, 529, 530, 531, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 580, 581, 583, 585, 587, 588, 601, 607, 612, 622, 624, 628, 629, 638, 639, 640, 641, 647, 648, 650, 653, 654, 655, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 679, 684, 685, 686, 687, 691, 694, 695, 696, 697, 698, 701, 702, 703, 704, 709, 715, 719, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 745, 746, 749, 751, 752, 754, 755, 756, 764, 765, 771, 777, 780, 784, 800, 804, 814, 815, 816, 825, 828, 829, 830, 832, 840, 852, 858, 861, 865], "input_shap": [6, 13, 24, 26, 27, 800], "block": [6, 26, 27, 30, 31, 32, 33, 369, 428, 800, 808, 815, 817, 821, 825, 832, 836, 838, 842, 843, 845, 852, 863, 865], "url": [6, 8, 23, 26, 27, 40, 43, 800, 852], "cocodataset": [6, 8, 23, 26, 27, 43, 800, 852], "org": [6, 7, 8, 23, 26, 27, 40, 42, 43, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 482, 511, 603, 604, 617, 618, 620, 623, 625, 627, 635, 673, 674, 702, 752, 800, 820, 852], "val2017": [6, 8, 26, 43], "000000039769": [6, 8, 26, 43], "stream": [6, 8, 23, 26, 27, 40, 43, 50, 73, 209, 619, 800, 852, 862], "_config": 6, "train_pipelin": 6, "tensor_imag": 6, "And": [6, 8, 9, 11, 13, 18, 21, 26, 27, 28, 41, 72, 358, 359, 367, 800, 811, 814, 823, 825, 832, 851], "final": [6, 8, 11, 13, 15, 23, 26, 27, 32, 38, 39, 48, 52, 53, 75, 76, 92, 120, 132, 133, 316, 362, 368, 412, 538, 616, 617, 622, 624, 649, 650, 794, 806, 808, 809, 811, 812, 814, 816, 817, 819, 820, 825, 827, 828, 829, 831, 835, 836, 840, 851, 852, 854, 864], "transpiled_graph": [6, 8, 26], "what": [6, 8, 15, 20, 26, 27, 30, 31, 34, 39, 40, 368, 401, 412, 766, 794, 800, 806, 808, 810, 815, 816, 819, 820, 823, 824, 826, 827, 828, 829, 830, 832, 836, 837, 839, 840, 841, 842, 843, 848, 849, 854, 859, 860, 863], "improv": [6, 8, 9, 26, 29, 804, 808, 817, 824, 825, 835, 837, 845, 849, 851, 856, 858, 860, 861], "For": [6, 7, 8, 9, 17, 19, 26, 27, 29, 32, 34, 48, 52, 57, 63, 75, 80, 121, 134, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 270, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 324, 325, 326, 329, 330, 332, 352, 362, 365, 369, 371, 432, 434, 454, 474, 477, 617, 620, 625, 627, 633, 635, 673, 675, 679, 687, 698, 737, 738, 739, 740, 748, 750, 751, 753, 765, 777, 806, 807, 808, 810, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 831, 832, 833, 835, 837, 839, 840, 841, 842, 843, 844, 847, 848, 849, 851, 855, 856, 859, 864, 865], "compil": [6, 7, 8, 9, 21, 22, 24, 26, 27, 30, 43, 45, 286, 620, 772, 800, 807, 829, 833, 837, 843, 845, 852, 854, 857, 858, 859, 862, 865], "origin": [6, 8, 9, 24, 26, 27, 28, 29, 30, 32, 39, 40, 41, 45, 52, 57, 59, 65, 69, 75, 80, 82, 88, 92, 95, 97, 98, 223, 248, 275, 313, 362, 368, 369, 371, 380, 411, 435, 467, 473, 475, 478, 512, 513, 517, 518, 519, 520, 521, 620, 625, 627, 635, 666, 694, 695, 746, 761, 766, 789, 790, 800, 802, 806, 807, 808, 813, 814, 816, 817, 822, 826, 828, 829, 830, 837, 849, 851, 852, 858, 859], "_f": [6, 8, 26], "comp_model": [6, 8, 26], "equival": [6, 8, 26, 57, 80, 92, 93, 121, 229, 242, 263, 264, 277, 278, 371, 458, 482, 487, 617, 620, 625, 668, 671, 674, 682, 789, 828, 829, 835, 840, 842, 844, 852], "just": [6, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 42, 52, 57, 65, 80, 92, 95, 142, 322, 362, 369, 434, 617, 625, 635, 668, 747, 772, 780, 800, 803, 807, 808, 809, 811, 813, 816, 817, 818, 819, 820, 822, 825, 826, 828, 829, 830, 832, 837, 839, 840, 843, 848, 849, 852, 858, 859, 864], "np_imag": [6, 23, 26, 27], "jax_imag": 6, "hk": [6, 8, 26, 40, 44, 800, 842, 852], "rng_kei": [6, 8, 26, 800, 852], "random": [6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 40, 42, 43, 52, 56, 69, 75, 79, 317, 318, 319, 320, 321, 362, 369, 370, 426, 435, 441, 447, 497, 498, 499, 500, 501, 624, 647, 726, 727, 728, 729, 730, 731, 764, 766, 779, 793, 794, 800, 806, 818, 830, 832, 833, 842, 852, 853, 858], "prngkei": [6, 8, 19, 20, 26, 27, 40, 800, 842, 852], "42": [6, 8, 9, 19, 20, 24, 26, 27, 38, 40, 41, 46, 61, 68, 77, 84, 113, 229, 368, 389, 399, 603, 607, 614, 620, 623, 625, 630, 631, 635, 666, 670, 725, 726, 727, 728, 729, 730, 745, 747, 800, 837, 842, 852], "jax_mlp_forward": 6, "param": [6, 8, 9, 26, 40, 41, 42, 44, 69, 75, 76, 98, 524, 541, 542, 622, 786, 800, 842, 852], "init": [6, 8, 26, 40, 42, 52, 75, 369, 426, 435, 441, 800, 811, 842, 852], "rng": [6, 8, 26, 40, 800, 842, 852], "appli": [6, 8, 21, 22, 23, 24, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 403, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 580, 581, 582, 583, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 614, 618, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 633, 635, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 665, 666, 668, 670, 671, 672, 673, 675, 679, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 712, 715, 718, 719, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 754, 755, 756, 766, 767, 776, 780, 783, 800, 806, 807, 808, 812, 815, 817, 818, 819, 820, 821, 823, 824, 825, 826, 828, 829, 832, 833, 835, 839, 840, 841, 842, 843, 851, 852, 859], "both": [6, 7, 8, 9, 11, 13, 21, 23, 26, 27, 31, 32, 39, 41, 48, 51, 52, 53, 56, 57, 71, 74, 75, 76, 79, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 173, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 333, 335, 339, 344, 362, 365, 368, 369, 371, 375, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 468, 474, 482, 485, 497, 511, 514, 541, 545, 547, 549, 558, 588, 612, 613, 617, 618, 620, 622, 623, 624, 625, 627, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 780, 800, 803, 806, 808, 813, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 828, 829, 832, 835, 837, 839, 840, 841, 842, 843, 851, 852, 858, 861, 863, 864, 865], "optim": [6, 8, 9, 17, 21, 22, 24, 26, 27, 40, 42, 43, 45, 52, 54, 75, 77, 306, 362, 370, 446, 447, 525, 611, 622, 623, 628, 703, 704, 705, 779, 794, 800, 817, 828, 835, 838, 840, 842, 849, 852, 856, 857, 858, 859, 860, 861, 862, 865], "each": [6, 8, 9, 19, 20, 21, 26, 27, 29, 30, 31, 33, 40, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 69, 72, 74, 75, 76, 77, 79, 80, 82, 85, 86, 88, 92, 93, 95, 97, 98, 106, 107, 109, 110, 111, 113, 117, 134, 148, 160, 163, 208, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 290, 292, 297, 299, 300, 301, 303, 304, 305, 310, 321, 324, 325, 326, 332, 339, 343, 347, 352, 355, 360, 362, 365, 368, 369, 371, 374, 375, 378, 380, 386, 387, 388, 391, 392, 393, 396, 404, 405, 406, 407, 410, 412, 413, 414, 421, 422, 427, 434, 435, 439, 441, 452, 453, 454, 458, 459, 460, 465, 466, 468, 469, 471, 473, 474, 477, 479, 487, 488, 495, 497, 504, 509, 510, 511, 512, 513, 514, 523, 526, 534, 541, 542, 558, 582, 602, 604, 605, 607, 609, 610, 611, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 627, 629, 631, 632, 633, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 650, 654, 655, 656, 659, 660, 661, 665, 667, 668, 669, 671, 673, 674, 675, 680, 689, 693, 695, 696, 698, 700, 702, 712, 719, 726, 735, 737, 738, 740, 746, 747, 754, 764, 766, 780, 783, 784, 785, 794, 803, 804, 806, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 832, 833, 834, 835, 837, 839, 840, 842, 843, 847, 848, 849, 851, 852, 854, 855, 859, 861, 864], "timeit": [6, 8, 9, 19, 26, 27, 43, 45], "06": [6, 9, 21, 42, 49, 61, 74, 77, 96, 105, 160, 217, 233, 368, 389, 399, 609, 614, 618, 623, 729, 759, 761, 832, 840], "m": [6, 7, 8, 9, 26, 39, 41, 43, 45, 48, 52, 57, 61, 74, 75, 80, 84, 97, 134, 140, 141, 142, 262, 322, 323, 362, 368, 369, 370, 371, 375, 390, 421, 426, 427, 429, 443, 454, 465, 466, 480, 497, 498, 499, 500, 501, 617, 625, 629, 631, 654, 656, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 679, 714, 727, 728, 729, 800, 807, 808, 810, 816, 837], "per": [6, 8, 9, 19, 40, 42, 52, 56, 75, 79, 313, 362, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 434, 481, 624, 638, 640, 641, 642, 643, 646, 650, 780, 808, 816, 826, 829, 840], "loop": [6, 8, 9, 19, 34, 67, 75, 90, 117, 120, 368, 413, 616, 628, 703, 704, 705, 800, 813, 843, 851], "100": [6, 7, 8, 9, 38, 40, 42, 48, 51, 52, 71, 74, 75, 76, 79, 96, 133, 142, 229, 269, 282, 322, 344, 353, 362, 365, 368, 369, 371, 391, 392, 435, 441, 479, 542, 550, 566, 617, 620, 622, 625, 629, 663, 712, 800, 816, 817, 832, 840, 841, 842, 843, 848, 849, 851], "block_until_readi": 6, "08": [6, 52, 65, 75, 84, 221, 328, 344, 365, 368, 370, 389, 399, 447, 620, 728, 729, 754, 759, 764, 823], "\u00b5": [6, 8, 9, 19], "made": [6, 8, 26, 52, 59, 75, 369, 371, 428, 452, 453, 454, 698, 806, 808, 811, 812, 815, 816, 821, 823, 825, 827, 828, 829, 833, 835, 837, 839, 848, 858], "significantli": [6, 8, 26, 52, 57, 75, 80, 369, 439, 625, 675, 816, 847, 856], "line": [6, 8, 9, 15, 16, 19, 20, 23, 26, 27, 29, 30, 41, 42, 285, 620, 800, 807, 811, 812, 816, 818, 819, 821, 829, 832, 835, 838, 839, 840, 841, 849, 852, 861], "even": [6, 23, 26, 27, 52, 75, 92, 235, 268, 273, 278, 371, 380, 474, 511, 620, 807, 808, 809, 811, 813, 816, 817, 818, 820, 824, 825, 828, 829, 830, 835, 839, 840, 841, 842, 843, 848, 849, 864], "better": [6, 9, 29, 38, 44, 45, 806, 810, 829, 830, 833, 835, 836, 839, 840, 841, 849, 861], "v100": 6, "3x": 6, "increas": [6, 8, 9, 19, 26, 29, 52, 57, 59, 75, 80, 82, 95, 371, 380, 474, 514, 625, 627, 680, 689, 702, 766, 817, 821, 829, 833, 835, 847, 851, 858], "execut": [6, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 29, 31, 34, 41, 43, 45, 118, 120, 589, 616, 619, 622, 807, 808, 814, 815, 816, 817, 818, 819, 821, 825, 826, 828, 832, 835, 837, 839, 842, 843, 845, 851, 854, 858, 859, 860, 861, 862, 864], "train2017": [6, 8, 23, 26, 27, 800, 852], "000000283921": [6, 8, 26], "out_torch": [6, 8, 26], "et": [6, 624, 625, 650, 675], "took": [6, 74, 275], "out_jax": [6, 8, 26], "1e": [6, 7, 8, 11, 13, 26, 38, 42, 49, 52, 54, 57, 58, 60, 72, 75, 77, 80, 81, 83, 96, 160, 328, 344, 365, 370, 374, 447, 490, 491, 492, 571, 572, 580, 593, 594, 603, 604, 609, 611, 618, 622, 623, 625, 626, 630, 675, 684, 685, 686, 725, 759, 761, 781, 783, 784, 800, 803, 815, 822, 825, 828, 830, 841, 842], "66m": 6, "53m": 6, "That": [6, 8, 11, 13, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 40, 277, 370, 446, 620, 793, 807, 808, 812, 832, 839, 840, 841, 859], "pretti": [6, 8, 26, 27, 40, 803, 822, 840, 864], "much": [6, 8, 9, 17, 18, 24, 26, 27, 28, 29, 40, 95, 328, 344, 365, 779, 806, 807, 808, 812, 815, 817, 825, 828, 829, 830, 833, 834, 835, 837, 839, 840, 848, 856, 858, 864, 865], "achiev": [6, 8, 9, 26, 800, 801, 804, 809, 816, 817, 825, 826, 832, 835, 840, 842, 845], "solid": [6, 8, 26], "associ": [7, 52, 57, 75, 80, 218, 268, 371, 380, 451, 514, 620, 625, 668, 671, 683, 761, 808, 817, 825, 826, 829, 830, 832, 843], "python": [7, 11, 17, 29, 34, 38, 40, 41, 42, 44, 45, 52, 61, 75, 84, 121, 202, 214, 242, 277, 368, 375, 413, 497, 498, 499, 500, 501, 602, 617, 619, 620, 622, 631, 726, 727, 728, 729, 731, 789, 793, 794, 805, 807, 808, 811, 814, 815, 816, 821, 822, 829, 831, 832, 837, 839, 840, 843, 845, 846, 847, 848, 851, 855, 858, 859, 860, 864, 865], "2023": [7, 8, 21, 22, 23, 24, 40], "02": [7, 8, 40, 48, 53, 54, 60, 61, 74, 77, 84, 133, 220, 221, 260, 368, 389, 399, 400, 580, 581, 603, 604, 609, 617, 620, 622, 623, 626, 630, 631, 684, 725, 728, 729, 830], "52": [7, 9, 38, 51, 74, 76, 77, 84, 223, 233, 235, 380, 512, 534, 535, 550, 603, 620, 622, 623, 624, 625, 635, 648, 670, 729, 747, 793], "00": [7, 9, 40, 42, 45, 52, 53, 57, 75, 76, 80, 240, 306, 337, 362, 368, 389, 395, 399, 400, 538, 581, 620, 622, 625, 626, 661, 672, 684, 764, 823, 832], "resolv": [7, 40, 42, 52, 65, 242, 380, 512, 513, 620, 627, 635, 690, 745, 746, 751, 753, 808, 814, 817, 823, 837], "185": [7, 40, 68], "199": [7, 40, 221, 620], "110": [7, 40], "133": [7, 40, 56, 530, 622, 648], "111": [7, 40, 629, 724], "108": [7, 9, 21, 22, 23, 24, 40, 624, 635, 648, 747], "connect": [7, 40, 780, 800, 802, 807, 814, 831, 841, 842, 848, 856], "443": [7, 40, 280, 620], "sent": [7, 40], "await": [7, 40], "respons": [7, 40, 374, 495, 808, 816, 817], "200": [7, 9, 40, 76, 79, 229, 368, 391, 392, 542, 566, 620, 622, 793, 840], "ok": [7, 40, 807], "length": [7, 40, 41, 48, 52, 58, 59, 69, 75, 81, 82, 92, 93, 98, 121, 129, 134, 308, 311, 312, 327, 335, 362, 365, 368, 369, 371, 375, 378, 389, 390, 395, 396, 399, 400, 401, 411, 412, 413, 415, 427, 434, 474, 483, 499, 504, 602, 617, 622, 624, 625, 626, 627, 633, 650, 675, 676, 684, 694, 737, 764, 780, 832, 840], "10472": 7, "10k": 7, "plain": [7, 40], "tx": 7, "23k": 7, "kb": [7, 40, 42, 45], "57": [7, 9, 38, 40, 51, 52, 74, 75, 193, 216, 217, 220, 221, 223, 233, 234, 274, 290, 291, 360, 619, 620], "mb": [7, 40, 42, 45, 816], "01": [7, 21, 22, 24, 42, 48, 52, 53, 54, 57, 75, 76, 77, 80, 84, 133, 260, 278, 279, 306, 312, 337, 344, 362, 368, 389, 399, 400, 538, 580, 581, 603, 604, 609, 617, 620, 622, 623, 625, 628, 631, 661, 672, 704, 705, 728, 729, 764, 813, 842], "109": [7, 40, 57, 625, 662], "634575": 7, "620k": 7, "jpeg": [7, 41, 42], "619": 7, "70k": 7, "113": 7, "resnet34_weight": 7, "torch_resnet_34": 7, "conv1": 7, "kernel_s": [7, 24, 26, 27, 42, 52, 75, 368, 386, 387, 388, 407, 414, 780, 786], "stride": [7, 52, 56, 75, 76, 79, 97, 368, 371, 386, 387, 388, 404, 405, 406, 407, 409, 410, 414, 450, 622, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 780, 828, 833, 858], "bia": [7, 52, 56, 75, 79, 83, 374, 380, 495, 511, 561, 622, 624, 630, 637, 638, 639, 640, 641, 642, 643, 644, 645, 648, 649, 650, 725, 780, 825, 832, 837, 841], "bn1": 7, "ep": [7, 52, 57, 60, 75, 80, 83, 160, 294, 360, 369, 370, 374, 422, 447, 490, 491, 492, 618, 625, 630, 668, 671, 725, 776, 783], "05": [7, 9, 42, 48, 51, 52, 54, 60, 74, 75, 77, 83, 133, 260, 312, 328, 337, 344, 362, 365, 374, 490, 491, 492, 549, 571, 593, 603, 604, 609, 617, 620, 622, 623, 625, 630, 666, 725, 759, 764, 779, 783, 830, 832], "momentum": [7, 40, 52, 75, 374, 490, 492, 783, 848], "affin": [7, 783], "track_running_stat": [7, 783], "dilat": [7, 44, 52, 56, 75, 79, 368, 371, 404, 405, 406, 409, 410, 414, 474, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 780], "ceil_mod": [7, 52, 75, 368, 386, 387, 388, 404, 405, 406, 409, 780], "layer1": 7, "basicblock": 7, "conv2": 7, "bn2": 7, "layer2": 7, "downsampl": [7, 52, 75, 403], "layer3": 7, "layer4": 7, "output_s": [7, 52, 75, 368, 382, 383, 384, 624, 652, 780, 800, 852], "fc": [7, 13, 40, 800, 841, 852], "in_featur": [7, 56, 79, 624, 648, 832], "out_featur": [7, 56, 79, 624, 648, 832], "resnet_34": 7, "ivy_resnet_34": 7, "34": [7, 9, 38, 40, 74, 75, 76, 84, 163, 233, 260, 281, 368, 380, 410, 518, 534, 535, 618, 620, 622, 624, 625, 631, 648, 667, 728, 729, 818], "333f7ec4": 7, "pth": 7, "root": [7, 8, 21, 22, 23, 24, 40, 41, 42, 45, 51, 74, 282, 620, 802, 806, 807, 808, 814, 822, 829, 840], "cach": [7, 8, 21, 22, 23, 24, 40, 42, 45, 190, 528, 619, 622, 769, 789, 823, 825, 828, 832], "83": [7, 9, 38, 57, 79, 84, 282, 368, 380, 389, 399, 410, 512, 530, 620, 622, 624, 625, 648, 662, 728], "3m": 7, "56": [7, 9, 38, 40, 51, 52, 56, 61, 74, 75, 79, 133, 268, 282, 285, 288, 368, 389, 399, 603, 617, 620, 623, 624, 625, 629, 635, 639, 641, 643, 645, 648, 670, 706, 728, 747, 819], "4mb": 7, "preserv": [7, 8, 21, 22, 23, 24, 52, 53, 54, 69, 75, 76, 77, 98, 368, 369, 371, 380, 403, 435, 452, 453, 454, 465, 466, 485, 518, 551, 612, 622, 623, 627, 691, 764, 831, 832, 842, 843, 852], "multipl": [7, 8, 17, 21, 22, 23, 24, 26, 51, 52, 57, 60, 65, 66, 69, 74, 75, 76, 77, 80, 82, 83, 88, 89, 129, 229, 253, 260, 266, 267, 268, 270, 329, 330, 365, 368, 369, 371, 374, 378, 389, 396, 399, 401, 433, 460, 469, 488, 495, 504, 523, 530, 561, 603, 604, 607, 609, 610, 611, 612, 617, 620, 622, 623, 624, 625, 627, 630, 632, 635, 636, 639, 640, 641, 642, 654, 663, 665, 666, 679, 687, 690, 695, 696, 725, 732, 733, 748, 749, 750, 751, 752, 753, 754, 755, 756, 780, 794, 800, 806, 808, 812, 813, 815, 819, 821, 823, 825, 828, 829, 830, 832, 835, 837, 843, 849, 851, 856, 857, 858, 865], "machin": [7, 8, 21, 22, 23, 24, 29, 30, 38, 44, 52, 57, 75, 80, 160, 163, 369, 422, 618, 625, 668, 671, 800, 807, 811, 825, 845, 848, 856, 858, 860, 861, 862, 863, 864], "rel": [7, 8, 21, 22, 23, 24, 52, 54, 57, 59, 64, 71, 75, 77, 80, 82, 87, 97, 131, 328, 344, 365, 370, 380, 446, 447, 511, 604, 607, 609, 610, 611, 623, 625, 627, 634, 658, 668, 671, 679, 691, 695, 741, 744, 759, 761, 808, 816, 830, 835, 858, 860], "project": [7, 8, 15, 20, 21, 22, 23, 24, 26, 27, 30, 93, 624, 650, 780, 800, 802, 804, 806, 807, 808, 809, 812, 813, 814, 832, 841, 843, 847, 848, 849, 852, 854, 856, 858, 861, 865], "consist": [7, 8, 9, 21, 22, 23, 24, 26, 27, 65, 69, 235, 242, 268, 368, 369, 411, 421, 620, 625, 635, 659, 660, 747, 781, 782, 804, 811, 812, 816, 817, 823, 828, 837, 847, 859], "ad": [7, 8, 9, 21, 22, 23, 24, 52, 59, 75, 82, 90, 235, 268, 328, 344, 365, 374, 490, 491, 492, 580, 581, 620, 622, 624, 625, 627, 650, 660, 661, 690, 780, 785, 800, 803, 805, 806, 807, 808, 811, 812, 814, 815, 816, 817, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 841, 843, 848, 851, 857, 858], "home": [7, 8, 21, 22, 23, 24, 816], "workspac": [7, 8, 21, 22, 23, 24, 807, 822], "95": [7, 9, 38, 52, 54, 57, 61, 68, 77, 79, 84, 105, 353, 365, 410, 603, 607, 611, 614, 623, 625, 631, 662, 728, 729], "builtin": [7, 807, 839, 841], "callabl": [7, 44, 52, 53, 67, 75, 76, 79, 90, 117, 118, 120, 161, 162, 194, 195, 208, 356, 358, 359, 366, 367, 368, 371, 410, 413, 415, 451, 474, 524, 528, 533, 535, 539, 540, 561, 589, 602, 606, 608, 613, 616, 618, 619, 622, 623, 628, 629, 703, 704, 705, 712, 713, 714, 716, 717, 718, 719, 759, 762, 772, 784, 795, 815, 821, 827, 829, 837, 850, 851, 852, 853], "track": [7, 17, 26, 27, 39, 40, 546, 622, 807, 808, 811, 827, 828, 851, 858], "properli": [7, 807, 810, 821, 823, 829, 832], "might": [7, 32, 53, 93, 174, 533, 618, 622, 803, 806, 807, 808, 816, 817, 819, 822, 823, 826, 829, 832, 833, 835, 837, 839, 840, 845], "_trace_graph": 7, "comparison": [7, 52, 75, 236, 271, 331, 365, 370, 446, 447, 620, 625, 676, 759, 821], "shown": [7, 24, 26, 67, 69, 90, 252, 275, 332, 365, 620, 806, 807, 808, 811, 814, 816, 817, 819, 821, 823, 824, 829, 830, 832, 833, 834, 837, 839, 843], "8507": 7, "1351": 7, "0069": 7, "85072625": 7, "13506091": 7, "00688289": 7, "resnet50_weight": 7, "torch_resnet_50": 7, "imagenet1k_v2": 7, "11ad3fa6": 7, "97": [7, 9, 38, 52, 54, 74, 77, 84, 221, 353, 365, 607, 620, 623, 728], "8m": 7, "8mb": 7, "bottleneck": [7, 847], "conv3": 7, "bn3": 7, "2048": [7, 581, 622], "resnet_50": 7, "ivy_resnet_50": 7, "3429": 7, "0408": 7, "0121": 7, "34288204": 7, "04077014": 7, "01212029": 7, "depend": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 31, 48, 49, 52, 53, 57, 63, 64, 72, 75, 80, 87, 88, 118, 124, 147, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 256, 257, 258, 259, 268, 270, 273, 280, 281, 285, 286, 352, 365, 368, 369, 413, 421, 437, 583, 616, 617, 618, 620, 622, 625, 632, 634, 659, 660, 672, 673, 674, 675, 736, 741, 744, 754, 800, 802, 803, 806, 807, 808, 814, 817, 818, 820, 822, 826, 828, 829, 830, 831, 832, 835, 837, 843, 844, 848, 851, 856, 858, 859], "yet": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 42, 361, 363, 364, 372, 373, 377, 806, 807, 822, 843, 844, 851, 852, 853], "doc": [8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 42, 75, 142, 322, 329, 330, 362, 365, 513, 617, 800, 801, 805, 806, 810, 819, 820, 823, 824, 832, 837, 840, 841, 851, 852, 853], "user": [8, 15, 21, 22, 23, 24, 26, 41, 42, 44, 269, 286, 371, 474, 569, 620, 622, 780, 781, 782, 793, 800, 807, 808, 810, 812, 813, 815, 816, 817, 818, 821, 826, 827, 828, 829, 832, 834, 835, 836, 837, 843, 844, 847, 848, 856, 858, 864, 865], "broken": [8, 21, 22, 23, 24, 854, 858], "permiss": [8, 21, 22, 23, 24, 807, 816], "conflict": [8, 21, 22, 23, 24, 32, 807, 808, 816, 829, 840], "behaviour": [8, 21, 22, 23, 24, 107, 110, 269, 614, 620, 805, 808, 810, 811, 812, 815, 817, 818, 820, 821, 824, 825, 826, 828, 829, 832, 833, 839], "system": [8, 21, 22, 23, 24, 42, 369, 436, 625, 674, 764, 800, 807, 808, 809, 813, 816, 817, 843, 852, 856, 858, 861, 863, 865], "manag": [8, 17, 21, 22, 23, 24, 26, 569, 592, 622, 800, 801, 813, 817, 818, 828, 831, 843, 849, 860, 862], "recommend": [8, 21, 22, 23, 24, 263, 264, 277, 370, 444, 620, 635, 749, 752, 802, 807, 813, 814, 823, 826, 827, 851], "virtual": [8, 21, 22, 23, 24, 808, 829, 848, 861, 862], "instead": [8, 11, 13, 17, 21, 22, 23, 24, 26, 33, 40, 45, 51, 52, 57, 74, 75, 80, 93, 189, 277, 310, 362, 368, 380, 404, 405, 406, 511, 514, 619, 620, 625, 668, 764, 806, 807, 808, 811, 814, 816, 817, 819, 820, 821, 824, 825, 826, 828, 829, 830, 832, 835, 837, 839, 840, 843, 851, 852, 853, 856, 858, 864, 865], "pypa": [8, 21, 22, 23, 24], "io": [8, 21, 22, 23, 24, 41, 44, 807, 816], "venv": [8, 21, 22, 23, 24], "autofeatureextractor": [8, 26], "extractor": [8, 11, 13, 26, 42, 800], "hug": [8, 26, 851], "face": [8, 26, 801, 807, 811, 822, 823, 827, 835, 837, 851, 858, 864], "arch_nam": [8, 26], "microsoft": [8, 26, 848, 851, 852, 858, 863, 865], "50": [8, 9, 26, 27, 38, 42, 52, 65, 74, 75, 76, 234, 274, 350, 365, 368, 369, 371, 396, 420, 428, 479, 536, 542, 549, 550, 566, 580, 620, 622, 625, 629, 632, 635, 663, 670, 681, 707, 709, 735, 747, 764, 767, 827, 839, 851, 852], "feature_extractor": [8, 26], "23": [8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 57, 61, 71, 74, 75, 76, 79, 84, 131, 230, 233, 250, 251, 252, 275, 277, 278, 279, 281, 288, 332, 333, 365, 368, 371, 380, 386, 387, 389, 399, 404, 405, 406, 410, 414, 457, 512, 518, 617, 620, 624, 625, 629, 632, 643, 645, 658, 662, 666, 674, 676, 677, 707, 714, 718, 727, 728, 729, 736, 800, 816, 832, 837], "980130": 8, "e": [8, 26, 43, 44, 48, 52, 57, 61, 63, 64, 65, 67, 74, 75, 80, 84, 87, 88, 90, 92, 93, 97, 124, 133, 134, 137, 138, 142, 146, 175, 188, 215, 216, 217, 221, 223, 224, 227, 229, 231, 235, 236, 238, 241, 242, 248, 249, 256, 257, 258, 259, 266, 267, 268, 269, 271, 275, 277, 278, 281, 282, 286, 295, 322, 329, 330, 362, 365, 368, 369, 370, 371, 375, 380, 381, 386, 387, 390, 404, 405, 406, 407, 411, 424, 427, 433, 447, 482, 497, 498, 499, 500, 501, 512, 513, 522, 615, 617, 618, 619, 620, 624, 625, 627, 629, 631, 633, 634, 635, 650, 655, 660, 661, 665, 666, 668, 671, 674, 675, 676, 679, 682, 690, 698, 709, 713, 714, 715, 718, 723, 724, 727, 728, 729, 737, 738, 739, 740, 741, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 780, 793, 794, 800, 801, 803, 806, 807, 808, 810, 811, 813, 815, 817, 821, 822, 827, 829, 832, 837, 840, 843, 844, 845, 848, 849, 851, 854], "tensorflow": [8, 10, 11, 15, 17, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 44, 51, 52, 53, 74, 75, 142, 189, 219, 322, 362, 369, 422, 583, 617, 619, 622, 759, 772, 789, 800, 803, 805, 806, 807, 808, 811, 816, 817, 818, 822, 824, 828, 829, 830, 832, 833, 835, 837, 842, 843, 845, 848, 849, 852, 853, 856, 859, 861, 862, 864, 865], "xla": [8, 829, 843, 845, 858], "stream_executor": 8, "cuda_dnn": 8, "cc": [8, 21, 22, 24, 41, 822], "9342": 8, "unabl": [8, 808, 835], "regist": [8, 782, 808, 844, 851], "cudnn": 8, "factori": [8, 52, 370, 446, 447, 794], "attempt": [8, 21, 22, 23, 24, 40, 42, 45, 807, 834, 843], "plugin": [8, 807], "been": [8, 11, 13, 21, 23, 26, 27, 52, 53, 61, 75, 76, 84, 191, 278, 371, 481, 534, 535, 536, 619, 620, 622, 631, 726, 793, 794, 806, 808, 811, 813, 815, 816, 817, 818, 820, 821, 824, 825, 828, 832, 837, 839, 843, 844, 851, 858, 865], "980177": 8, "cuda_fft": 8, "609": 8, "cufft": 8, "980207": 8, "cuda_bla": 8, "1518": 8, "cubla": 8, "351203": 8, "tf2tensorrt": 8, "py_util": 8, "38": [8, 9, 22, 38, 40, 42, 45, 49, 52, 74, 75, 84, 160, 285, 350, 365, 368, 380, 387, 406, 409, 410, 512, 618, 620, 625, 667, 764, 819], "trt": 8, "could": [8, 26, 27, 32, 63, 633, 737, 738, 739, 740, 806, 807, 808, 811, 816, 817, 819, 826, 828, 829, 830, 832, 837, 839, 840, 841, 848, 849, 858, 863, 864], "find": [8, 15, 41, 42, 45, 57, 63, 69, 80, 625, 629, 633, 668, 708, 737, 738, 739, 740, 793, 794, 800, 801, 802, 805, 806, 807, 808, 811, 814, 816, 822, 827, 832, 835, 837, 840, 844, 845, 847, 851], "tensorrt": 8, "doe": [8, 9, 17, 21, 22, 23, 24, 26, 39, 41, 51, 52, 53, 59, 69, 74, 75, 82, 92, 142, 269, 271, 279, 322, 362, 369, 370, 380, 381, 421, 446, 447, 517, 518, 522, 551, 617, 620, 622, 625, 627, 659, 696, 759, 794, 803, 806, 808, 810, 813, 816, 817, 819, 820, 822, 823, 824, 825, 828, 829, 830, 832, 835, 837, 839, 840, 843, 845, 848, 851, 854, 858, 859, 865], "placement": [8, 806], "consid": [8, 9, 21, 22, 23, 24, 31, 32, 52, 57, 63, 75, 80, 113, 142, 263, 264, 322, 328, 333, 344, 362, 365, 369, 380, 422, 426, 435, 511, 614, 617, 620, 625, 633, 657, 668, 737, 738, 739, 740, 766, 779, 812, 816, 817, 825, 827, 833, 835, 838, 839, 840, 847, 848, 851, 855, 859, 863, 865], "except": [8, 21, 22, 23, 24, 41, 42, 45, 52, 53, 59, 61, 66, 69, 75, 76, 80, 84, 89, 149, 329, 330, 335, 353, 365, 371, 375, 380, 458, 482, 498, 517, 518, 533, 551, 568, 583, 589, 618, 622, 625, 627, 631, 632, 636, 671, 688, 690, 698, 727, 728, 729, 735, 755, 756, 759, 762, 766, 800, 804, 808, 809, 810, 811, 812, 816, 817, 818, 820, 822, 824, 828, 829, 833, 834, 835, 839, 843], "390": [8, 21, 22, 23, 24], "current": [8, 17, 21, 22, 23, 24, 26, 27, 40, 41, 47, 52, 53, 69, 75, 98, 117, 161, 162, 165, 182, 183, 184, 185, 186, 187, 193, 194, 195, 196, 201, 203, 369, 371, 420, 421, 474, 482, 539, 540, 543, 546, 548, 552, 563, 564, 583, 616, 618, 619, 622, 625, 629, 659, 706, 716, 717, 761, 765, 781, 782, 789, 790, 794, 797, 800, 802, 806, 807, 808, 811, 813, 815, 816, 817, 818, 821, 822, 823, 825, 828, 829, 830, 831, 832, 835, 837, 842, 843, 849, 851, 858, 864, 865], "quietli": [8, 21, 22, 23, 24], "control": [8, 21, 22, 23, 24, 34, 52, 75, 142, 291, 322, 360, 362, 368, 371, 391, 392, 393, 457, 483, 569, 617, 622, 625, 657, 815, 817, 818, 827, 828, 829, 830, 835, 839, 840, 845, 851, 858, 864], "set_inplace_mod": [8, 21, 22, 23, 24, 592, 622], "strict": [8, 21, 22, 23, 24, 569, 592, 622], "rais": [8, 21, 22, 23, 24, 41, 42, 48, 52, 53, 61, 63, 66, 69, 71, 75, 76, 82, 84, 86, 89, 123, 149, 238, 273, 329, 330, 339, 365, 368, 370, 371, 375, 380, 401, 412, 447, 452, 453, 460, 462, 464, 465, 466, 473, 482, 488, 498, 517, 518, 527, 551, 569, 571, 581, 583, 589, 593, 618, 620, 622, 625, 627, 631, 632, 633, 635, 636, 665, 667, 681, 690, 691, 692, 694, 696, 697, 698, 699, 701, 727, 728, 729, 735, 740, 748, 750, 755, 756, 759, 766, 784, 800, 808, 811, 813, 817, 818, 821, 828, 829, 833, 834, 837, 839, 844, 848], "error": [8, 9, 21, 22, 23, 24, 32, 43, 45, 51, 52, 56, 69, 74, 75, 79, 105, 237, 285, 329, 330, 337, 365, 369, 370, 371, 380, 381, 435, 441, 443, 445, 482, 518, 522, 569, 614, 620, 622, 624, 625, 635, 653, 673, 676, 748, 750, 766, 784, 797, 801, 805, 806, 807, 808, 811, 812, 813, 816, 817, 818, 819, 823, 824, 829, 832, 833, 834, 839, 843, 849, 858], "whenev": [8, 21, 22, 23, 24, 780, 808, 813, 816, 817, 821, 828, 831, 832, 834, 840], "inputs_jax": [8, 26], "last_hidden_st": [8, 26], "jax_forward": [8, 26], "jit_appli": 8, "63": [8, 9, 38, 42, 51, 68, 74, 79, 80, 113, 274, 281, 282, 368, 380, 389, 399, 410, 512, 620, 625, 629, 635, 654, 670, 707, 718, 747], "122": [8, 49, 163, 233, 620], "134": [8, 56, 625, 648, 667], "2x": [8, 26], "ipytest": 9, "panda": [9, 40, 42, 848], "matplotlib": [9, 21, 22, 23, 24, 40, 41, 42, 45], "scikit": [9, 369, 437, 848], "learn": [9, 11, 13, 17, 18, 19, 20, 22, 24, 26, 27, 28, 29, 30, 31, 38, 40, 52, 54, 77, 369, 370, 437, 442, 534, 604, 607, 609, 610, 611, 622, 623, 628, 703, 704, 705, 784, 800, 801, 805, 806, 807, 810, 811, 817, 822, 823, 825, 827, 836, 845, 847, 848, 856, 860, 861, 862, 863, 864, 865], "cryptographi": 9, "frontend": [9, 568, 622, 761, 762, 765, 769, 772, 800, 805, 808, 810, 816, 817, 821, 822, 827, 831, 832, 835, 836, 838, 845, 852, 858], "sklearn": 9, "classification_report": 9, "model_select": 9, "train_test_split": 9, "dataset": [9, 26, 69, 800, 840, 851, 852], "load_breast_canc": 9, "pyplot": [9, 40, 41, 42, 45], "plt": [9, 40, 41, 42, 45], "pd": [9, 42], "functool": [9, 40, 821, 829, 839], "autoconfig": 9, "tqdm": [9, 21, 22, 23, 24, 40, 42, 800], "tqdm_notebook": 9, "These": [9, 33, 52, 75, 369, 371, 380, 421, 473, 511, 624, 625, 650, 659, 660, 800, 804, 805, 806, 807, 808, 811, 815, 817, 819, 820, 824, 825, 828, 829, 832, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 852, 858, 862, 864, 865], "sole": [9, 38, 824, 833, 857, 858, 859], "verifi": [9, 23, 319, 320, 362, 806, 817, 818, 829, 832, 833], "re": [9, 15, 18, 19, 20, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 43, 45, 52, 53, 62, 75, 85, 95, 208, 313, 362, 369, 371, 440, 475, 476, 534, 619, 622, 625, 627, 632, 677, 695, 734, 736, 801, 802, 806, 807, 808, 809, 810, 811, 814, 817, 822, 827, 828, 829, 830, 831, 833, 835, 839, 842, 843, 846, 847, 848, 858], "test_jax_gpu": 9, "xla_bridg": [9, 40], "get_backend": [9, 825], "test_torch_gpu": 9, "is_avail": 9, "test_xgboost_gpu": 9, "capsi": 9, "load_diabet": 9, "y": [9, 26, 27, 38, 39, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 144, 147, 148, 149, 158, 160, 163, 175, 188, 192, 196, 201, 202, 203, 207, 209, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 328, 329, 330, 336, 343, 344, 345, 346, 347, 352, 354, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 387, 389, 391, 392, 396, 399, 401, 405, 411, 418, 422, 428, 433, 440, 442, 443, 445, 446, 447, 448, 449, 459, 461, 470, 474, 482, 483, 484, 489, 493, 494, 496, 504, 510, 511, 512, 513, 514, 517, 519, 520, 521, 523, 526, 529, 530, 533, 534, 536, 537, 538, 541, 542, 543, 547, 549, 550, 551, 553, 554, 557, 558, 563, 570, 571, 572, 575, 578, 579, 580, 581, 583, 585, 587, 588, 589, 593, 594, 597, 600, 601, 602, 612, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 639, 641, 643, 645, 646, 647, 648, 654, 655, 656, 660, 661, 662, 663, 665, 666, 668, 669, 670, 671, 673, 675, 676, 677, 679, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 706, 709, 712, 713, 715, 723, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 798, 800, 813, 815, 818, 819, 827, 829, 830, 832, 833, 835, 837, 839, 851], "target": [9, 11, 13, 19, 21, 22, 24, 26, 27, 29, 30, 31, 32, 33, 42, 52, 75, 190, 370, 442, 443, 444, 445, 446, 447, 448, 449, 619, 759, 780, 782, 788, 800, 803, 807, 810, 813, 822, 823, 830, 831, 836, 840, 841, 842, 852, 853, 854, 856, 857, 858, 861, 863, 864], "xgb_model": 9, "xgbregressor": 9, "tree_method": 9, "caus": [9, 370, 444, 807, 808, 811, 813, 815, 816, 817, 819, 828, 830, 832, 843], "either": [9, 21, 22, 31, 32, 33, 34, 38, 44, 51, 52, 53, 56, 65, 69, 74, 75, 76, 79, 80, 107, 110, 113, 118, 128, 129, 139, 215, 216, 217, 218, 223, 233, 235, 236, 238, 240, 242, 249, 250, 256, 257, 258, 259, 260, 268, 277, 279, 280, 282, 285, 286, 331, 352, 365, 368, 374, 380, 389, 399, 409, 410, 414, 495, 512, 513, 533, 553, 561, 562, 570, 589, 614, 616, 617, 620, 622, 624, 625, 628, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 650, 665, 670, 673, 677, 703, 704, 705, 745, 746, 751, 753, 766, 780, 781, 782, 789, 802, 806, 807, 808, 813, 814, 815, 817, 818, 819, 820, 821, 823, 825, 828, 829, 830, 831, 832, 835, 837, 840, 843, 844, 852, 858], "fit": [9, 59, 82, 627, 693, 806, 829, 837, 854, 855, 858], "consol": [9, 564, 622, 800, 808, 823, 832, 839, 844], "gpu_hist": 9, "captur": [9, 827, 832, 842, 859], "readouterr": 9, "err": 9, "99": [9, 38, 51, 52, 54, 72, 74, 84, 130, 217, 232, 353, 365, 580, 607, 617, 620, 622, 623, 629, 635, 710, 718, 728, 747], "implement": [9, 17, 18, 26, 28, 32, 40, 43, 49, 50, 52, 63, 64, 72, 73, 75, 80, 87, 92, 147, 161, 162, 175, 194, 195, 209, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 268, 270, 273, 277, 280, 281, 285, 286, 329, 330, 352, 365, 369, 380, 420, 421, 517, 518, 539, 540, 618, 619, 620, 622, 624, 625, 633, 634, 635, 650, 659, 660, 661, 670, 679, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 765, 767, 789, 800, 803, 806, 810, 811, 812, 813, 815, 817, 818, 820, 821, 822, 824, 825, 826, 828, 830, 832, 833, 835, 837, 839, 840, 841, 842, 843, 845, 855, 856, 857, 858, 861, 864, 865], "binari": [9, 21, 22, 24, 52, 53, 56, 58, 75, 79, 81, 225, 228, 230, 265, 285, 368, 370, 413, 446, 449, 620, 624, 626, 647, 650, 684], "tabular": 9, "pulsar": 9, "emploi": [9, 864], "remov": [9, 15, 16, 19, 24, 26, 27, 29, 57, 69, 80, 625, 627, 628, 629, 658, 665, 679, 697, 703, 704, 720, 794, 797, 800, 806, 813, 814, 816, 817, 820, 825, 831, 832, 835, 842, 851, 852, 858], "id": [9, 41, 52, 75, 191, 324, 325, 326, 362, 546, 619, 622, 800, 805, 807, 812, 814, 815, 823, 827, 832, 844], "column": [9, 42, 52, 57, 75, 80, 92, 93, 127, 142, 322, 362, 369, 371, 378, 380, 421, 427, 437, 458, 463, 465, 466, 470, 472, 504, 510, 511, 617, 625, 659, 660, 666, 672, 674, 675, 680, 764, 779], "well": [9, 26, 27, 40, 41, 42, 76, 370, 446, 547, 622, 625, 674, 766, 800, 802, 806, 808, 814, 816, 817, 821, 828, 829, 830, 832, 841, 842, 852, 857, 858, 859, 863], "standard": [9, 51, 57, 60, 61, 65, 74, 83, 84, 88, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 369, 371, 380, 411, 439, 482, 511, 602, 617, 618, 620, 622, 625, 627, 630, 631, 632, 633, 634, 635, 636, 654, 655, 656, 657, 658, 660, 661, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 688, 690, 691, 692, 694, 695, 697, 698, 702, 725, 728, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 766, 779, 783, 793, 794, 800, 804, 806, 810, 811, 812, 815, 817, 820, 824, 828, 831, 832, 833, 843, 846, 852, 854, 856, 857, 860, 861, 863], "while": [9, 26, 27, 34, 52, 56, 69, 75, 79, 92, 93, 98, 120, 136, 174, 242, 243, 263, 264, 340, 365, 368, 369, 371, 412, 413, 433, 476, 477, 510, 616, 617, 618, 620, 624, 633, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 737, 749, 752, 762, 803, 806, 807, 808, 812, 813, 814, 816, 817, 818, 819, 822, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 839, 841, 842, 843, 844, 847, 848, 851, 858, 864, 865], "extra": [9, 27, 69, 98, 117, 602, 616, 622, 812, 817, 819, 826, 828, 829, 830, 835, 837, 851, 852, 855, 860], "dimens": [9, 48, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 95, 97, 98, 101, 108, 112, 136, 140, 141, 310, 321, 323, 324, 325, 326, 329, 330, 334, 335, 342, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 410, 411, 413, 414, 416, 418, 421, 437, 442, 446, 452, 453, 454, 458, 464, 475, 476, 477, 478, 480, 482, 490, 491, 492, 495, 499, 501, 504, 514, 516, 517, 518, 519, 520, 521, 534, 535, 536, 538, 545, 579, 582, 602, 614, 617, 622, 624, 625, 626, 627, 628, 632, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 679, 681, 682, 685, 686, 688, 690, 691, 692, 693, 694, 695, 696, 697, 698, 701, 703, 704, 705, 731, 732, 733, 735, 737, 738, 739, 740, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 766, 776, 780, 783, 819, 821, 827, 829, 830, 832, 835, 837, 840], "label": [9, 40, 41, 42, 52, 58, 75, 81, 370, 442, 443, 445, 446, 447, 448, 449, 626, 684, 685, 686, 800, 806, 811, 829, 836, 837, 838, 842, 844, 858], "load_data": 9, "standardscal": 9, "df": [9, 42], "read_csv": [9, 42], "delimit": [9, 840], "drop": [9, 42, 52, 75, 325, 362, 370, 371, 446, 483, 779, 780, 807, 843], "sc": 9, "fit_transform": 9, "prepare_data": 9, "tupl": [9, 44, 47, 48, 49, 51, 52, 53, 56, 57, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 122, 123, 129, 131, 135, 136, 138, 142, 144, 148, 149, 150, 161, 162, 163, 167, 168, 174, 175, 181, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 315, 319, 322, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 341, 342, 343, 344, 348, 349, 350, 351, 352, 354, 355, 356, 357, 362, 365, 367, 368, 369, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 395, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 421, 422, 426, 430, 435, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 455, 458, 459, 469, 474, 480, 482, 483, 484, 487, 490, 492, 493, 494, 495, 496, 498, 499, 501, 502, 503, 511, 512, 513, 514, 516, 517, 518, 519, 520, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 539, 540, 541, 542, 544, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 570, 580, 581, 582, 583, 585, 586, 587, 588, 601, 602, 603, 604, 605, 607, 609, 612, 616, 617, 618, 619, 620, 622, 623, 624, 625, 627, 628, 629, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 653, 654, 655, 659, 660, 661, 662, 663, 664, 665, 666, 668, 670, 671, 672, 673, 675, 677, 678, 679, 682, 684, 685, 686, 687, 688, 689, 691, 692, 694, 695, 696, 697, 698, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 713, 714, 715, 717, 718, 721, 722, 723, 724, 726, 727, 728, 729, 731, 734, 735, 737, 738, 739, 740, 741, 742, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 765, 766, 779, 780, 782, 793, 794, 812, 817, 824, 825, 828, 830, 832, 837, 840, 841, 843, 851, 852, 853], "expand_dim": [9, 23, 26, 27, 42, 44, 59, 82, 624, 627, 646, 800, 829, 837, 840, 852], "astyp": [9, 11, 13, 18, 40, 41, 42, 49, 56, 72, 79, 618, 624, 640, 642, 643, 646, 800, 817, 828, 829, 835, 853], "csv": [9, 42, 800], "instanc": [9, 17, 23, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 167, 168, 170, 175, 192, 204, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 404, 405, 406, 410, 411, 413, 414, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 576, 580, 581, 582, 583, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 772, 777, 806, 807, 808, 811, 812, 813, 817, 819, 820, 821, 822, 824, 825, 826, 827, 828, 832, 840, 841, 842, 845, 851, 859], "117564": 9, "variou": [9, 20, 30, 32, 38, 800, 804, 806, 807, 808, 811, 816, 817, 820, 821, 824, 826, 827, 829, 830, 831, 832, 844, 854, 856, 857, 858, 861, 864], "structur": [9, 27, 69, 72, 98, 160, 163, 531, 622, 629, 710, 719, 800, 806, 808, 809, 812, 815, 825, 830, 831, 832, 833, 840, 841, 857, 858], "allow": [9, 24, 26, 27, 38, 52, 65, 75, 88, 132, 273, 369, 380, 438, 514, 518, 561, 617, 620, 622, 634, 635, 743, 750, 764, 765, 766, 767, 781, 782, 794, 798, 800, 806, 808, 809, 812, 813, 816, 817, 821, 823, 825, 826, 827, 828, 829, 830, 832, 835, 837, 839, 843, 845, 848, 851, 852, 853, 856, 858, 862, 863], "navig": [9, 803, 807, 808, 810, 822], "choic": [9, 27, 44, 52, 65, 75, 88, 369, 371, 437, 457, 635, 752, 754, 800, 807, 816, 828, 829, 840, 849, 852, 858, 865], "rerun": [9, 40], "most": [9, 17, 26, 27, 69, 71, 92, 95, 136, 369, 421, 574, 596, 617, 622, 625, 659, 660, 797, 800, 805, 806, 807, 812, 815, 816, 817, 818, 822, 824, 825, 827, 828, 829, 830, 832, 833, 834, 835, 837, 839, 840, 841, 843, 848, 858, 859, 861, 862, 864, 865], "method": [9, 17, 26, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 531, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 580, 581, 582, 583, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 617, 618, 620, 622, 623, 625, 626, 629, 632, 635, 636, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 665, 666, 668, 669, 670, 671, 672, 673, 675, 676, 679, 680, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 717, 718, 719, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 754, 755, 756, 761, 772, 778, 779, 780, 781, 782, 806, 808, 811, 812, 816, 817, 818, 819, 820, 824, 832, 833, 837, 838, 841, 842, 843, 851, 852, 853, 859, 865], "signific": [9, 52, 370, 447, 834, 843, 847, 848, 858], "object": [9, 17, 22, 24, 26, 40, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 98, 101, 102, 124, 128, 129, 139, 151, 160, 163, 171, 174, 209, 267, 498, 546, 562, 605, 617, 618, 619, 622, 623, 629, 631, 709, 710, 711, 713, 714, 715, 721, 722, 723, 724, 731, 759, 761, 762, 769, 770, 771, 777, 778, 780, 781, 782, 789, 793, 800, 812, 813, 815, 816, 825, 826, 829, 830, 832, 835, 839, 842, 850, 851, 852, 853, 858, 864], "logist": 9, "booster": 9, "gblinear": 9, "n_estim": 9, "learning_r": 9, "reg_lambda": 9, "reg_alpha": 9, "base_margin": 9, "xgb_cl": 9, "ivy_cl": 9, "n": [9, 38, 41, 42, 43, 45, 48, 51, 52, 56, 57, 59, 61, 62, 65, 66, 74, 75, 79, 80, 82, 84, 85, 88, 89, 92, 97, 134, 140, 141, 142, 215, 285, 287, 322, 323, 335, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 382, 383, 384, 389, 390, 395, 396, 399, 400, 401, 409, 410, 411, 412, 414, 422, 423, 432, 434, 436, 441, 442, 454, 460, 463, 467, 469, 480, 488, 490, 491, 492, 495, 497, 498, 499, 500, 501, 504, 511, 521, 617, 620, 624, 625, 627, 629, 631, 632, 635, 636, 637, 638, 639, 640, 642, 644, 646, 650, 655, 658, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 675, 676, 679, 680, 681, 682, 689, 690, 692, 698, 702, 714, 727, 728, 729, 735, 749, 751, 752, 753, 754, 755, 756, 780, 783, 793, 800, 810, 814, 816, 832, 844, 852], "436": 9, "48": [9, 38, 42, 51, 52, 74, 75, 76, 77, 84, 107, 217, 240, 282, 368, 387, 388, 389, 399, 405, 406, 409, 549, 603, 607, 614, 620, 622, 623, 625, 629, 635, 670, 707, 728, 747], "wai": [9, 15, 16, 17, 20, 22, 26, 30, 32, 38, 92, 95, 800, 802, 805, 807, 811, 812, 813, 814, 816, 817, 818, 828, 829, 830, 832, 835, 839, 840, 841, 842, 843, 844, 847, 848, 853, 860, 864, 865], "t4": 9, "higher": [9, 52, 75, 369, 371, 380, 425, 435, 441, 452, 453, 454, 521, 779, 817, 828, 836, 837, 842, 843, 855, 858, 859, 862, 864, 865], "tier": [9, 809], "than": [9, 26, 27, 29, 32, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 69, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 97, 98, 121, 129, 160, 208, 216, 217, 220, 221, 223, 224, 227, 229, 231, 235, 241, 242, 256, 257, 258, 259, 266, 268, 273, 277, 279, 281, 282, 286, 287, 288, 296, 306, 328, 331, 344, 351, 362, 365, 368, 369, 370, 371, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 416, 418, 435, 441, 442, 465, 466, 512, 513, 514, 553, 554, 557, 574, 596, 617, 618, 619, 620, 622, 624, 625, 627, 631, 632, 633, 635, 653, 655, 665, 666, 667, 668, 671, 682, 687, 691, 697, 729, 735, 738, 739, 740, 745, 746, 751, 752, 753, 754, 780, 794, 803, 808, 811, 815, 816, 817, 819, 821, 822, 828, 829, 830, 832, 833, 834, 835, 837, 840, 841, 842, 843, 844, 848, 855, 856, 857, 858, 864, 865], "reduc": [9, 52, 53, 57, 62, 65, 66, 69, 75, 76, 80, 85, 88, 89, 208, 329, 330, 349, 365, 366, 380, 516, 517, 518, 519, 520, 521, 535, 619, 622, 625, 632, 635, 636, 672, 732, 733, 748, 749, 750, 751, 752, 753, 754, 755, 756, 793, 794, 816, 821, 829, 835, 837, 839, 851, 856, 860, 861, 862], "lower": [9, 42, 48, 51, 52, 57, 61, 74, 75, 80, 84, 127, 140, 266, 301, 307, 313, 322, 323, 360, 362, 380, 514, 515, 521, 617, 620, 625, 631, 654, 660, 661, 668, 729, 766, 779, 800, 808, 817, 819, 829, 832, 837, 843, 845, 854, 855, 856, 858, 859, 864, 865], "although": [9, 625, 673, 800, 802, 812, 814, 815, 829, 835, 856, 858], "experi": [9, 15, 42, 807, 821, 832, 838, 840, 843], "demonstr": [9, 23, 26, 27, 41, 804, 809, 817, 819, 821, 839], "still": [9, 20, 22, 23, 26, 27, 29, 30, 33, 57, 69, 80, 625, 675, 764, 806, 807, 808, 812, 813, 817, 820, 821, 823, 825, 828, 829, 832, 835, 841, 843, 848, 851, 852, 855, 858, 864], "substanti": [9, 804, 808, 812, 817, 832, 848, 858], "dive": [9, 15, 17, 26, 38, 801, 802, 805, 806, 808, 811, 815, 817, 823, 830, 836, 839, 840, 843, 864], "stuff": 9, "tool": [9, 17, 26, 27, 800, 807, 808, 819, 823, 838, 842, 843, 846, 849, 852, 856, 857, 858, 859, 861, 864, 865], "30": [9, 21, 22, 23, 24, 38, 40, 51, 52, 53, 75, 76, 84, 88, 98, 268, 298, 342, 350, 365, 368, 371, 389, 399, 410, 457, 479, 502, 534, 536, 541, 542, 549, 550, 566, 575, 580, 620, 622, 625, 629, 635, 663, 670, 715, 727, 728, 746, 747, 751, 766, 779, 794, 804, 816], "25": [9, 38, 40, 41, 42, 51, 52, 53, 57, 58, 61, 65, 68, 74, 75, 76, 79, 80, 83, 84, 88, 97, 98, 113, 132, 218, 219, 229, 235, 237, 248, 253, 268, 273, 276, 278, 281, 282, 283, 288, 309, 362, 370, 380, 410, 443, 446, 448, 512, 521, 549, 550, 566, 580, 617, 620, 622, 625, 626, 629, 630, 635, 638, 654, 658, 663, 680, 685, 707, 714, 718, 725, 727, 728, 729, 746, 747, 749, 754, 815, 827], "22": [9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 51, 52, 53, 61, 65, 68, 75, 76, 79, 84, 108, 113, 230, 238, 298, 302, 360, 368, 369, 370, 371, 376, 380, 386, 387, 389, 404, 405, 406, 410, 414, 420, 442, 457, 502, 512, 535, 566, 601, 614, 620, 624, 625, 629, 632, 635, 647, 648, 658, 663, 670, 674, 714, 724, 727, 728, 729, 736, 746, 747, 807, 815, 821], "201": [9, 74, 75, 220, 389, 620], "20x": 9, "24": [9, 19, 38, 40, 51, 52, 57, 65, 74, 75, 76, 79, 80, 84, 97, 230, 238, 253, 255, 268, 278, 279, 282, 342, 345, 365, 368, 380, 386, 388, 389, 399, 404, 405, 406, 410, 414, 512, 534, 535, 620, 622, 625, 629, 635, 638, 658, 666, 670, 707, 718, 727, 728, 729, 745, 747, 761, 821, 840], "ivy_pr": 9, "xgb_pred": 9, "ivyclassifi": 9, "nxgbclassifi": 9, "precis": [9, 52, 57, 75, 80, 160, 248, 268, 275, 282, 339, 365, 369, 380, 422, 511, 574, 596, 618, 620, 622, 625, 660, 661, 666, 673, 675, 676, 682, 772, 816, 829, 834, 835, 862], "recal": 9, "f1": [9, 817], "score": [9, 56, 79, 370, 449, 624, 651, 653, 800], "94": [9, 38, 51, 52, 54, 61, 74, 75, 77, 84, 202, 278, 279, 353, 365, 399, 607, 619, 623, 729], "106597": 9, "33": [9, 38, 40, 41, 51, 61, 65, 74, 75, 76, 77, 79, 221, 222, 229, 278, 368, 369, 371, 380, 387, 409, 410, 438, 457, 512, 530, 580, 607, 620, 622, 623, 624, 625, 629, 635, 647, 648, 670, 724, 727, 747, 754, 764, 767], "10967": 9, "accuraci": [9, 40, 42, 45, 368, 411, 817], "macro": 9, "avg": [9, 368, 386, 388, 409], "96": [9, 38, 52, 54, 74, 75, 76, 84, 232, 253, 285, 353, 365, 368, 389, 534, 535, 607, 620, 622, 623, 625, 635, 670, 729, 747], "67": [9, 38, 51, 52, 53, 57, 74, 75, 76, 79, 84, 97, 233, 238, 278, 279, 281, 288, 298, 302, 360, 380, 410, 512, 534, 535, 580, 606, 608, 620, 622, 623, 625, 662, 729], "73": [9, 38, 51, 80, 282, 380, 512, 625, 631, 654, 728, 832], "92": [9, 38, 42, 52, 53, 84, 353, 365, 601, 611, 623, 625, 656, 728, 729], "28": [9, 24, 26, 27, 38, 40, 42, 45, 51, 52, 56, 60, 74, 75, 76, 79, 80, 84, 88, 234, 237, 258, 274, 368, 369, 389, 399, 420, 518, 549, 603, 620, 622, 623, 624, 625, 630, 635, 639, 641, 643, 645, 646, 648, 670, 725, 727, 728, 729, 747, 751, 800], "27": [9, 38, 40, 45, 51, 52, 57, 61, 74, 75, 79, 80, 84, 88, 229, 230, 233, 273, 281, 282, 339, 365, 368, 389, 399, 550, 620, 622, 625, 629, 635, 665, 670, 680, 707, 714, 728, 747, 751, 764], "852": [9, 624, 648], "449": [9, 530, 622], "47": [9, 38, 42, 51, 52, 57, 61, 74, 75, 76, 77, 79, 84, 224, 282, 368, 380, 387, 405, 406, 512, 534, 535, 607, 620, 622, 623, 624, 625, 631, 648, 662, 728, 729], "29": [9, 38, 40, 42, 45, 57, 74, 76, 77, 79, 84, 223, 380, 410, 512, 534, 535, 605, 609, 620, 622, 623, 625, 662, 727, 728, 729], "82": [9, 38, 40, 45, 46, 51, 77, 84, 108, 221, 380, 512, 603, 623, 728, 729, 803, 822], "68": [9, 38, 42, 45, 51, 84, 108, 130, 223, 368, 389, 399, 614, 617, 620, 625, 630, 681, 725, 728, 729], "nevertheless": 9, "fall": [9, 40, 784, 806, 817, 836], "short": [9, 38, 52, 75, 415, 624, 649, 806, 808, 817, 837, 841], "blaze": 9, "31": [9, 21, 22, 23, 24, 38, 40, 41, 45, 46, 51, 52, 74, 75, 76, 79, 84, 108, 113, 133, 229, 260, 268, 368, 371, 380, 388, 389, 457, 512, 529, 614, 617, 620, 622, 728, 729, 840], "32": [9, 24, 26, 27, 38, 40, 41, 42, 51, 52, 61, 74, 75, 79, 80, 84, 97, 98, 107, 159, 217, 229, 230, 239, 253, 259, 275, 278, 279, 332, 365, 368, 369, 371, 380, 387, 388, 389, 399, 409, 410, 420, 424, 457, 512, 534, 550, 614, 618, 620, 622, 624, 625, 631, 632, 635, 639, 641, 642, 646, 648, 665, 670, 681, 727, 728, 729, 736, 747, 764, 767, 800, 816, 817, 827, 840, 863], "03": [9, 22, 41, 48, 51, 53, 54, 74, 75, 77, 84, 133, 233, 258, 337, 580, 581, 604, 609, 617, 620, 622, 623, 625, 626, 663, 684, 728], "62": [9, 38, 40, 46, 68, 74, 75, 84, 108, 253, 281, 620, 630, 631, 725, 727, 729], "36": [9, 38, 42, 51, 52, 56, 65, 75, 76, 80, 223, 278, 279, 342, 365, 368, 369, 380, 389, 399, 425, 512, 534, 535, 581, 620, 622, 625, 629, 635, 648, 667, 670, 680, 717, 747], "35": [9, 38, 46, 56, 57, 68, 74, 75, 79, 80, 84, 108, 223, 282, 368, 389, 399, 620, 624, 625, 632, 635, 648, 655, 662, 728, 736, 747], "37": [9, 21, 22, 23, 24, 38, 46, 51, 52, 68, 74, 75, 79, 97, 108, 221, 229, 278, 281, 285, 376, 410, 502, 620, 624, 625, 629, 631, 648, 667, 714, 728, 816], "surpass": 9, "remark": [9, 843], "artifici": 9, "simpli": [9, 17, 26, 27, 29, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 551, 553, 554, 555, 557, 558, 560, 565, 566, 580, 581, 582, 583, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 620, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 665, 666, 671, 672, 673, 675, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 754, 755, 756, 800, 806, 807, 808, 812, 813, 814, 816, 817, 818, 819, 820, 822, 824, 825, 828, 829, 830, 832, 835, 837, 841, 842, 843, 845, 859, 864], "stack": [9, 19, 21, 22, 23, 24, 29, 38, 42, 52, 57, 59, 69, 75, 80, 82, 97, 140, 141, 323, 362, 369, 371, 421, 458, 459, 461, 470, 489, 568, 577, 599, 617, 622, 625, 627, 629, 656, 658, 659, 660, 661, 663, 665, 667, 668, 669, 671, 672, 673, 675, 676, 679, 706, 716, 717, 780, 800, 805, 811, 828, 837, 854, 856, 863, 864], "x_doubl": 9, "vstack": [9, 52, 75, 371, 470], "y_doubl": 9, "explor": [9, 11, 13, 17, 21, 22, 23, 26, 27, 32, 33, 34, 806, 807, 808, 817, 822, 835, 838, 842, 858, 861], "235128": 9, "41": [9, 21, 22, 23, 24, 38, 40, 45, 51, 52, 57, 74, 75, 76, 79, 80, 108, 222, 230, 237, 268, 282, 368, 369, 376, 380, 387, 405, 410, 430, 502, 512, 529, 530, 614, 620, 622, 625, 635, 654, 662, 753], "315": [9, 274, 620], "40": [9, 38, 40, 42, 52, 53, 74, 75, 76, 84, 88, 98, 229, 233, 253, 282, 342, 365, 368, 371, 387, 389, 399, 405, 479, 534, 536, 541, 542, 566, 580, 602, 605, 620, 622, 623, 625, 629, 635, 663, 670, 715, 728, 747, 751, 800, 816], "879": 9, "65": [9, 38, 40, 42, 45, 74, 77, 84, 229, 268, 530, 549, 603, 620, 622, 623, 625, 635, 670, 728, 729, 747, 816], "380": 9, "seem": [9, 806, 807, 835, 841, 842, 843, 858], "observ": [9, 52, 75, 380, 510, 511, 808, 817, 821, 837, 851, 860], "examin": 9, "600": [9, 42, 76, 79, 368, 391, 392, 542, 816], "plot": [9, 41, 800, 858], "conduct": [9, 862], "num_boosting_round": 9, "300": [9, 74, 76, 79, 278, 368, 391, 392, 542, 566, 620, 622, 625, 663, 832], "400": [9, 76, 79, 368, 391, 392, 542, 566, 622, 625, 663], "500": [9, 52, 75, 76, 79, 368, 369, 391, 392, 441, 542, 622], "ivy_elapsed_tim": 9, "xgb_elapsed_tim": 9, "ivy_tim": 9, "partial": [9, 52, 69, 75, 161, 162, 194, 195, 342, 365, 368, 369, 371, 380, 415, 435, 475, 476, 477, 478, 518, 539, 540, 608, 618, 619, 622, 623, 625, 664, 765, 767, 781, 782, 808, 814, 835], "append": [9, 41, 42, 52, 57, 69, 75, 227, 335, 365, 620, 625, 627, 658, 665, 690, 794, 800, 816, 832, 837, 840], "xgb_time": 9, "fivethirtyeight": 9, "legend": [9, 42, 806], "loc": 9, "best": [9, 40, 561, 622, 794, 800, 801, 803, 805, 806, 807, 808, 810, 816, 817, 821, 822, 831, 832, 833, 844, 861, 862], "xlabel": 9, "ylabel": 9, "obviou": [9, 840, 858], "trend": 9, "longer": [9, 807, 817, 828, 832, 858], "gap": 9, "between": [9, 15, 16, 21, 31, 32, 33, 38, 51, 52, 53, 56, 57, 58, 59, 63, 69, 74, 75, 79, 80, 81, 82, 98, 121, 160, 223, 236, 271, 287, 328, 344, 346, 365, 368, 369, 370, 371, 380, 391, 392, 393, 404, 405, 406, 414, 420, 424, 443, 444, 445, 446, 447, 448, 449, 474, 521, 617, 618, 620, 624, 626, 627, 629, 631, 633, 647, 670, 684, 685, 686, 690, 698, 712, 727, 738, 739, 740, 765, 772, 784, 800, 812, 813, 817, 819, 824, 825, 826, 828, 829, 830, 831, 832, 835, 836, 838, 839, 840, 842, 847, 851, 852, 854, 855, 857, 858, 859, 864], "within": [9, 11, 13, 17, 26, 27, 47, 52, 75, 121, 328, 344, 365, 368, 374, 404, 405, 406, 411, 414, 452, 453, 454, 495, 617, 631, 729, 794, 806, 808, 809, 812, 816, 817, 829, 830, 831, 832, 841, 843, 852, 854, 855, 859], "slightli": [9, 306, 362, 815, 829, 832, 837, 841], "paramet": [9, 13, 24, 26, 27, 40, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 199, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 544, 545, 546, 547, 549, 550, 551, 553, 554, 555, 556, 557, 558, 560, 561, 562, 565, 566, 569, 570, 571, 572, 575, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 620, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 764, 765, 766, 767, 772, 777, 779, 780, 781, 782, 783, 784, 785, 789, 790, 793, 794, 796, 800, 806, 812, 820, 821, 824, 829, 830, 832, 833, 837, 839, 840, 851, 852, 853, 859], "x_train": 9, "y_train": [9, 42, 800], "train_siz": [9, 40], "random_st": [9, 369, 426], "51": [9, 38, 42, 51, 52, 74, 75, 76, 84, 230, 268, 281, 369, 389, 441, 620, 729, 764], "clear": [9, 190, 619, 806, 808, 813, 817, 818, 819, 829, 835, 837, 839, 847, 848, 849, 858], "amount": [9, 58, 81, 210, 619, 626, 684, 685, 686, 794, 807, 816, 818, 830], "widen": 9, "impress": 9, "outcom": [9, 52, 75, 331, 342, 365, 794], "howev": [9, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 57, 80, 242, 285, 286, 371, 374, 482, 490, 492, 569, 620, 622, 625, 673, 675, 789, 806, 807, 811, 812, 813, 815, 817, 818, 819, 820, 821, 823, 824, 825, 828, 829, 830, 832, 835, 837, 839, 840, 841, 842, 843, 848, 851, 857, 858, 864], "tend": 9, "outperform": 9, "proce": [9, 806, 807], "95933": 9, "9874": 9, "105807": 9, "70": [9, 38, 40, 52, 75, 76, 368, 389, 399, 542, 566, 625, 635, 670, 747, 848], "77": [9, 38, 42, 76, 581, 625, 635, 670, 747], "93": [9, 38, 52, 74, 76, 84, 193, 282, 353, 365, 534, 535, 619, 622, 728, 729], "wrap": [9, 17, 19, 26, 27, 29, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 528, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 577, 580, 581, 582, 583, 585, 587, 588, 599, 601, 603, 604, 607, 609, 610, 611, 612, 622, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 665, 666, 671, 672, 673, 675, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 754, 755, 756, 761, 800, 810, 811, 812, 813, 815, 816, 817, 818, 820, 821, 824, 825, 828, 829, 832, 837, 839, 842, 843, 845, 851, 852, 854, 858, 859, 864, 865], "balanc": 9, "breast": 9, "cancer": 9, "53": [9, 21, 38, 57, 61, 74, 79, 154, 210, 240, 410, 606, 608, 618, 619, 623, 625, 630, 662, 725, 729], "return_x_i": 9, "x_test": 9, "y_test": 9, "test_siz": [9, 40], "76": [9, 19, 38, 51, 52, 65, 72, 74, 75, 84, 163, 217, 233, 281, 316, 362, 399, 618, 620, 625, 629, 635, 677, 714, 728, 747], "87": [9, 38, 77, 79, 229, 258, 368, 380, 410, 411, 512, 603, 620, 623, 764, 822], "171": [9, 57, 625, 662, 764], "90": [9, 38, 40, 42, 51, 52, 74, 75, 234, 274, 278, 353, 365, 371, 380, 480, 512, 620, 625, 635, 670, 747, 794, 848], "86": [9, 38, 61, 75, 84, 368, 380, 399, 512, 603, 623, 728, 729], "88": [9, 38, 77, 84, 107, 380, 512, 607, 614, 623, 625, 631, 635, 670, 729, 747], "perfectli": [9, 766, 849], "align": [9, 52, 69, 75, 368, 369, 403, 419, 624, 652, 794, 804, 807, 816, 829, 831, 837, 839, 845, 864], "gain": [9, 779, 808, 809, 811, 836, 841, 858], "combin": [9, 32, 52, 69, 75, 98, 368, 380, 401, 412, 511, 539, 540, 622, 625, 655, 665, 808, 812, 815, 816, 817, 819, 821, 825, 832, 842, 858], "build": [10, 14, 15, 17, 24, 26, 27, 30, 31, 32, 33, 38, 40, 45, 63, 69, 98, 633, 737, 738, 739, 740, 780, 781, 782, 800, 801, 807, 810, 816, 817, 825, 827, 836, 838, 841, 842, 843, 845, 848, 852, 856, 858, 860, 863, 864, 865], "timm": [10, 11, 15, 26, 27, 800, 852], "kera": [10, 11, 13, 15, 16, 24, 26, 27, 43, 44, 777, 800, 849, 852, 864], "seen": [11, 13, 18, 24, 26, 369, 375, 427, 499, 546, 622, 789, 816, 817, 819, 821, 829, 832, 837, 839, 840, 847, 848, 864], "veri": [11, 19, 26, 27, 29, 51, 74, 269, 328, 344, 365, 620, 625, 673, 766, 805, 806, 807, 808, 814, 815, 817, 818, 819, 821, 822, 824, 825, 828, 829, 830, 832, 833, 835, 838, 840, 841, 842, 843, 847, 848, 854, 855, 856, 858, 859, 860, 863, 864, 865], "guid": [11, 24, 800, 801, 806, 807, 808, 814, 823, 829, 831, 864], "focu": [11, 24, 806, 827, 856, 857, 860, 865], "more": [11, 14, 15, 17, 18, 19, 22, 24, 26, 27, 28, 29, 38, 40, 41, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 148, 240, 242, 258, 273, 286, 290, 294, 295, 297, 356, 360, 366, 369, 370, 371, 416, 418, 430, 433, 446, 452, 453, 454, 459, 480, 569, 614, 617, 618, 620, 622, 625, 627, 633, 658, 664, 665, 668, 671, 673, 675, 682, 691, 698, 737, 738, 739, 740, 766, 776, 794, 800, 802, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 843, 844, 852, 853, 856, 857, 858, 859, 860, 861, 864, 865], "involv": [11, 14, 15, 22, 24, 49, 72, 175, 218, 235, 242, 268, 273, 618, 620, 794, 801, 806, 809, 810, 816, 817, 819, 830, 835, 842, 848, 858, 864], "develop": [11, 25, 26, 27, 800, 801, 802, 803, 804, 805, 806, 807, 808, 811, 814, 816, 822, 831, 833, 843, 845, 847, 848, 849, 851, 852, 856, 857, 858, 859, 860, 863, 864, 865], "usual": [11, 13, 43, 235, 268, 620, 793, 807, 811, 817, 829, 832, 835], "own": [11, 13, 17, 26, 27, 32, 800, 807, 811, 816, 817, 820, 821, 828, 829, 833, 837, 843, 845, 848, 849, 854, 857, 858, 863, 864], "directli": [11, 13, 17, 20, 24, 26, 27, 30, 368, 369, 403, 427, 629, 718, 800, 806, 807, 808, 809, 811, 812, 815, 816, 817, 818, 820, 823, 825, 826, 828, 829, 830, 833, 834, 837, 839, 841, 842, 843, 844, 849, 851, 852, 853, 862, 863, 864], "case": [11, 13, 19, 21, 26, 27, 29, 30, 31, 32, 40, 47, 48, 52, 53, 59, 65, 69, 71, 75, 76, 82, 92, 93, 98, 123, 134, 161, 162, 189, 194, 195, 202, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 243, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 340, 342, 352, 365, 368, 370, 371, 374, 375, 381, 391, 392, 393, 413, 442, 452, 453, 454, 460, 462, 464, 465, 466, 469, 473, 479, 480, 488, 490, 492, 499, 522, 539, 540, 544, 551, 565, 566, 567, 617, 618, 619, 620, 622, 625, 627, 629, 635, 673, 679, 690, 691, 692, 694, 696, 697, 699, 701, 709, 715, 748, 749, 750, 751, 752, 753, 754, 764, 765, 784, 794, 800, 803, 806, 807, 808, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 832, 833, 835, 837, 839, 841, 842, 843, 848, 851, 852, 853, 857, 861], "mlp": 11, "mixer": 11, "onli": [11, 13, 26, 27, 32, 38, 40, 42, 44, 47, 48, 51, 52, 57, 59, 61, 69, 71, 74, 75, 80, 82, 84, 92, 95, 97, 113, 133, 173, 174, 203, 263, 264, 269, 275, 306, 336, 342, 362, 365, 368, 369, 371, 375, 380, 390, 403, 413, 422, 427, 439, 441, 452, 453, 454, 464, 497, 498, 514, 528, 614, 617, 618, 619, 620, 622, 624, 625, 627, 629, 631, 632, 634, 635, 650, 665, 672, 675, 676, 691, 694, 706, 707, 713, 714, 716, 717, 718, 723, 724, 727, 728, 729, 732, 733, 743, 749, 752, 762, 764, 765, 767, 780, 784, 793, 800, 801, 802, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 824, 825, 827, 828, 829, 830, 832, 833, 834, 835, 837, 839, 840, 841, 842, 843, 847, 851, 852, 857, 858, 859, 864, 865], "retriev": [11, 13, 17, 524, 546, 571, 622, 808, 829], "mlp_encod": [11, 26, 27, 800, 852], "create_model": [11, 26, 27, 800, 852], "mixer_b16_224": [11, 26, 27, 800, 852], "nois": [11, 13, 26, 27, 800, 851, 852], "randn": [11, 13, 26, 27, 800, 852], "tf_mlp_encod": [11, 26, 27], "output_torch": [11, 13], "output_tf": [11, 13], "constant": [11, 13, 18, 21, 22, 28, 31, 33, 38, 52, 59, 60, 75, 82, 83, 92, 93, 316, 362, 368, 370, 371, 413, 446, 447, 474, 627, 629, 630, 689, 712, 725, 779, 783, 800, 825, 830, 833, 841, 842, 843, 851, 853], "output_dens": [11, 26, 27, 800], "layer": [11, 13, 17, 23, 24, 26, 27, 38, 43, 52, 60, 75, 83, 630, 649, 650, 725, 777, 779, 781, 782, 783, 784, 785, 800, 820, 829, 833, 835, 837, 838, 841, 847, 852, 856, 858, 862, 865], "dens": [11, 24, 26, 27, 310, 362, 780, 800], "unit": [11, 26, 27, 52, 68, 75, 92, 93, 105, 107, 108, 109, 110, 111, 112, 113, 290, 291, 293, 297, 299, 300, 303, 304, 305, 360, 493, 494, 614, 800, 807, 811, 817, 829, 830, 832, 843, 859, 862], "activ": [11, 24, 26, 27, 52, 53, 56, 67, 75, 79, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 583, 624, 650, 653, 779, 780, 800, 804, 806, 807, 808, 817, 823, 833, 834, 841, 852, 858, 861], "mention": [11, 13, 26, 27, 32, 806, 807, 808, 812, 819, 824, 825, 828, 829, 832, 835, 848, 853, 858], "basic": [11, 13, 17, 20, 24, 26, 27, 30, 33, 371, 481, 800, 801, 806, 819, 832], "fulli": [11, 13, 15, 16, 19, 24, 26, 27, 40, 52, 75, 380, 518, 780, 800, 812, 817, 824, 827, 835, 837, 838, 839, 840, 841, 842, 843, 849, 853, 856, 857, 858, 864, 865], "trainabl": [11, 13, 17, 23, 24, 26, 27, 44, 777, 781, 782, 785, 800, 820, 838, 840, 841, 852, 853], "fine": [11, 13, 26, 27, 807, 808, 817, 819, 829, 839, 842, 864], "tune": [11, 13, 26, 27, 863, 864], "train": [11, 13, 24, 26, 27, 43, 52, 54, 56, 75, 77, 79, 95, 368, 369, 374, 391, 392, 393, 438, 490, 492, 603, 604, 609, 623, 624, 647, 650, 653, 779, 780, 781, 782, 783, 800, 815, 818, 825, 840, 841, 842, 843, 849, 852, 856, 857, 862, 864, 865], "ground": [11, 13, 370, 443, 759, 761, 772, 803, 822, 829, 832, 847], "ret": [11, 13, 26, 27, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 420, 421, 423, 428, 431, 433, 436, 439, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 480, 482, 483, 484, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 563, 565, 566, 570, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 712, 713, 714, 715, 716, 717, 718, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 765, 766, 767, 777, 782, 784, 789, 794, 796, 800, 817, 818, 820, 821, 827, 828, 829, 830, 833, 837, 842, 852], "op": [11, 17, 38, 776, 789, 833, 837, 843], "eagertensor": [11, 17, 38, 789, 830], "readi": [11, 13, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 806, 807], "deepmind": [12, 849], "perceiverio": [12, 849], "backbon": [12, 40, 800, 837, 840], "TO": [12, 14, 25], "replac": [12, 14, 25, 41, 51, 52, 53, 59, 61, 69, 74, 75, 76, 82, 84, 127, 269, 304, 307, 360, 362, 371, 479, 482, 565, 566, 570, 617, 620, 622, 627, 631, 687, 726, 764, 808, 814, 815, 817, 818, 826, 829, 832, 839, 842, 843, 848, 852, 865], "efficientnet": 13, "include_top": [13, 800], "eff_encod": [13, 800], "applic": [13, 15, 40, 42, 45, 52, 56, 75, 79, 95, 369, 441, 624, 625, 629, 635, 650, 653, 679, 712, 713, 714, 718, 719, 751, 753, 800, 807, 816, 817, 818, 826, 841, 855, 856, 858, 860, 862, 864], "efficientnet_v2": [13, 800], "efficientnetv2b0": [13, 800], "data": [13, 21, 22, 23, 24, 27, 32, 40, 42, 45, 46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 87, 88, 89, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 147, 149, 150, 152, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 176, 177, 178, 179, 181, 187, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 294, 295, 296, 297, 306, 307, 308, 309, 310, 311, 312, 323, 324, 325, 326, 327, 329, 330, 331, 347, 352, 360, 362, 365, 368, 369, 371, 375, 379, 380, 383, 391, 392, 393, 409, 411, 413, 419, 421, 439, 457, 479, 482, 483, 485, 497, 498, 499, 500, 501, 507, 511, 512, 513, 517, 520, 521, 538, 551, 553, 554, 557, 583, 614, 617, 619, 620, 622, 624, 625, 627, 629, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 648, 654, 655, 656, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 681, 682, 688, 691, 692, 694, 695, 697, 698, 702, 710, 727, 728, 729, 731, 732, 733, 735, 736, 741, 743, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 762, 764, 765, 766, 767, 772, 776, 779, 780, 781, 782, 786, 794, 800, 807, 810, 811, 812, 813, 814, 815, 818, 820, 824, 825, 826, 828, 830, 833, 835, 837, 839, 845, 846, 848, 858, 859, 860, 862, 863, 864], "storag": [13, 40, 41, 840, 848], "googleapi": [13, 40, 41], "efficientnetv2": 13, "b0_notop": 13, "h5": [13, 69], "24274472": 13, "0u": 13, "torch_eff_encod": [13, 800], "1280": [13, 534, 622, 800], "state": [14, 25, 40, 56, 75, 79, 95, 182, 183, 184, 185, 186, 268, 368, 413, 590, 592, 595, 597, 598, 618, 620, 622, 624, 649, 762, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 800, 803, 807, 814, 817, 818, 820, 821, 822, 823, 824, 829, 832, 836, 837, 838, 840, 848, 852, 864, 865], "api": [14, 19, 24, 25, 29, 42, 44, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 173, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 482, 511, 617, 618, 620, 625, 627, 632, 633, 634, 635, 636, 654, 655, 656, 657, 658, 660, 661, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 688, 690, 691, 692, 694, 695, 697, 698, 702, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 800, 803, 807, 808, 810, 812, 814, 817, 818, 819, 820, 821, 822, 824, 826, 828, 829, 830, 832, 835, 836, 838, 840, 843, 845, 846, 847, 854, 856, 858, 860, 863, 865], "welcom": [15, 41, 800, 801, 807, 808, 831], "goal": [15, 40, 242, 620, 800, 806, 848, 858, 864], "provid": [15, 17, 21, 24, 26, 27, 31, 32, 38, 44, 48, 52, 53, 57, 59, 62, 65, 66, 69, 71, 75, 76, 80, 82, 85, 88, 89, 117, 134, 136, 153, 154, 155, 156, 157, 165, 175, 187, 191, 287, 368, 369, 371, 374, 380, 403, 411, 415, 420, 424, 435, 436, 440, 441, 458, 460, 469, 488, 490, 492, 521, 533, 565, 566, 616, 617, 618, 619, 620, 622, 624, 625, 627, 629, 632, 635, 636, 650, 667, 670, 681, 690, 691, 698, 710, 732, 752, 754, 755, 756, 765, 780, 784, 789, 790, 800, 806, 807, 808, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 827, 828, 829, 830, 832, 833, 835, 839, 841, 843, 847, 851, 852, 853, 856, 857, 858, 859, 860, 861, 862, 865], "varieti": [15, 811, 816, 817, 818, 832, 834, 854, 856, 860, 861, 864, 865], "organ": [15, 812, 815, 825, 829, 831, 833, 845, 848], "main": [15, 27, 48, 52, 57, 75, 80, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 419, 463, 617, 625, 657, 658, 679, 800, 804, 806, 807, 808, 811, 814, 815, 822, 826, 828, 856, 858, 859, 864], "exactli": [15, 19, 29, 38, 39, 43, 285, 620, 806, 815, 816, 817, 818, 819, 821, 832, 835, 847, 849], "rush": [15, 849], "jump": [15, 830], "straight": [15, 800, 816, 829, 832, 839], "quickstart": 15, "introduct": [15, 17, 24, 26, 27, 858], "capabl": [15, 23, 27, 832, 835], "point": [15, 24, 49, 51, 52, 57, 61, 63, 65, 72, 74, 75, 80, 84, 88, 121, 122, 123, 125, 127, 130, 137, 138, 143, 147, 160, 164, 168, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 251, 256, 257, 258, 259, 260, 268, 270, 271, 273, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 306, 307, 309, 329, 330, 346, 347, 350, 352, 362, 365, 368, 369, 370, 375, 380, 383, 391, 392, 393, 411, 421, 439, 443, 497, 498, 499, 500, 501, 511, 512, 513, 521, 615, 617, 618, 620, 625, 631, 632, 633, 634, 635, 654, 656, 659, 660, 661, 663, 666, 667, 668, 671, 672, 673, 674, 675, 676, 677, 679, 682, 728, 729, 735, 737, 738, 739, 740, 743, 745, 746, 748, 749, 750, 751, 752, 753, 754, 789, 790, 800, 803, 806, 807, 808, 811, 812, 814, 816, 817, 819, 820, 822, 824, 828, 829, 832, 833, 835, 837, 839, 840, 849, 851, 864], "those": [15, 39, 40, 57, 59, 69, 75, 80, 82, 121, 174, 235, 268, 483, 602, 617, 618, 620, 622, 625, 627, 629, 632, 672, 675, 687, 708, 735, 804, 806, 807, 808, 809, 812, 815, 816, 817, 826, 828, 829, 830, 832, 835, 847, 855], "who": [15, 804, 809, 810, 821, 836, 843, 858, 860], "deeper": [15, 17, 27, 47, 629, 717, 718, 808, 810, 832, 836, 847], "showcas": [15, 800], "real": [15, 23, 51, 52, 65, 74, 75, 88, 97, 107, 110, 113, 137, 138, 215, 216, 217, 218, 220, 221, 222, 223, 224, 233, 235, 236, 238, 240, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 268, 270, 271, 273, 277, 278, 279, 281, 282, 283, 284, 285, 286, 288, 289, 329, 330, 336, 337, 347, 365, 368, 369, 390, 411, 412, 421, 422, 614, 617, 620, 625, 632, 635, 659, 660, 661, 666, 673, 675, 676, 679, 682, 735, 748, 750, 751, 752, 753, 815, 860], "world": [15, 23, 808, 809, 860], "whether": [15, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 93, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 120, 122, 123, 129, 131, 136, 138, 144, 147, 148, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 165, 166, 167, 168, 170, 171, 172, 173, 175, 187, 191, 192, 194, 195, 197, 199, 202, 203, 205, 208, 209, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 390, 391, 392, 393, 409, 411, 413, 415, 430, 436, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 458, 459, 460, 462, 464, 465, 466, 469, 473, 480, 482, 483, 484, 488, 490, 492, 493, 494, 496, 498, 511, 512, 513, 514, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 544, 545, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 561, 565, 566, 567, 568, 570, 573, 574, 576, 577, 579, 580, 581, 583, 585, 587, 588, 595, 596, 599, 601, 604, 605, 607, 609, 610, 611, 612, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 631, 635, 636, 638, 639, 640, 641, 647, 648, 649, 650, 653, 654, 655, 660, 661, 662, 663, 664, 665, 666, 668, 670, 672, 673, 674, 679, 684, 685, 686, 687, 690, 691, 692, 694, 695, 696, 697, 698, 699, 701, 702, 703, 704, 705, 706, 707, 712, 713, 714, 716, 717, 718, 719, 723, 724, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 745, 746, 749, 751, 752, 754, 755, 756, 759, 761, 764, 776, 777, 780, 781, 782, 783, 784, 793, 800, 801, 806, 807, 812, 815, 817, 819, 824, 828, 829, 832, 834, 835, 851, 852], "beginn": [15, 801, 858], "advanc": [15, 38, 807, 809, 857], "got": [15, 38, 821], "cover": [15, 26, 52, 75, 368, 404, 405, 406, 806, 811, 812, 814, 817, 819, 820, 825, 826, 832, 835, 836], "write": [15, 16, 26, 27, 38, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 329, 330, 331, 332, 333, 334, 335, 337, 338, 339, 340, 341, 343, 345, 346, 347, 348, 351, 352, 353, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 418, 419, 427, 428, 431, 432, 433, 434, 440, 443, 444, 445, 446, 448, 449, 458, 459, 462, 463, 464, 465, 466, 467, 468, 471, 472, 473, 475, 476, 477, 478, 480, 481, 482, 483, 484, 486, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 504, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 529, 530, 534, 535, 536, 541, 542, 551, 565, 566, 603, 604, 607, 609, 610, 611, 612, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 664, 665, 666, 668, 669, 670, 671, 672, 674, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 697, 698, 699, 700, 702, 725, 726, 727, 728, 729, 731, 733, 734, 736, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 762, 800, 805, 806, 808, 810, 811, 813, 814, 816, 817, 819, 820, 821, 825, 828, 830, 833, 837, 839, 842, 849, 858, 865], "familiar": [15, 16, 17, 800, 806, 807], "concept": [15, 16, 17], "agnost": [15, 16, 17, 18, 26, 27, 28, 32, 38, 800, 812, 817, 824, 837, 839, 842, 843, 864, 865], "unifi": [15, 16, 17, 19, 20, 26, 29, 30, 34, 41, 69, 208, 619, 809, 810, 811, 812, 816, 817, 821, 826, 827, 829, 835, 837, 843, 846, 848, 850, 852, 854, 855, 856, 858, 862, 865], "alongsid": [15, 16, 17, 18, 28, 624, 650, 848], "turn": [15, 16, 19, 29, 56, 79, 92, 93, 391, 392, 393, 624, 647, 780, 807, 814, 815, 818, 819, 829, 832, 849], "wrapper": [15, 16, 19, 772, 812, 814, 815, 817, 821, 825, 828, 829, 839, 845, 854, 858], "unus": [15, 16, 19, 819, 828], "part": [15, 16, 19, 48, 51, 52, 74, 75, 80, 97, 107, 110, 113, 140, 141, 142, 248, 252, 275, 322, 323, 348, 362, 365, 368, 369, 371, 380, 411, 422, 474, 521, 614, 617, 620, 625, 660, 661, 761, 800, 806, 807, 808, 809, 811, 814, 817, 823, 825, 828, 829, 832, 833, 835, 837, 838, 842, 843, 851, 852, 853, 856, 858, 863, 864, 865], "lazi": [15, 16, 19, 22, 29, 32, 33, 44], "eager": [15, 16, 19, 22, 24, 29, 32, 33, 44, 815, 843, 858], "understand": [15, 16, 17, 21, 38, 44, 803, 805, 806, 807, 808, 810, 811, 814, 819, 820, 824, 830, 831, 836, 849, 854, 864], "decor": [15, 16, 21, 23, 24, 32, 44, 528, 622, 764, 766, 772, 803, 811, 812, 815, 817, 818, 822, 825, 828, 829, 830, 835], "kornia": [15, 16, 23, 26, 27, 40, 44, 800, 852], "roundup": 17, "over": [17, 24, 27, 29, 40, 52, 57, 65, 66, 67, 72, 75, 79, 80, 88, 89, 90, 92, 117, 314, 315, 329, 330, 342, 349, 362, 365, 368, 369, 370, 371, 378, 380, 382, 383, 384, 387, 396, 401, 405, 409, 410, 411, 412, 413, 414, 434, 442, 451, 464, 479, 482, 483, 504, 514, 520, 569, 602, 616, 622, 625, 630, 631, 635, 636, 655, 666, 677, 679, 681, 682, 725, 729, 748, 749, 750, 751, 752, 753, 754, 755, 756, 780, 783, 789, 793, 800, 807, 808, 813, 819, 820, 827, 828, 830, 833, 837, 839, 843, 847, 849, 856, 858], "indep": [17, 26], "futur": [17, 24, 26, 40, 625, 660, 661, 800, 807, 808, 809, 816, 817, 832, 833, 835, 839, 843, 847, 849, 864], "proof": [17, 26], "delv": [17, 27, 800], "theori": [17, 802, 814], "deep": [17, 24, 26, 38, 69, 534, 622, 800, 801, 802, 805, 806, 808, 811, 814, 815, 817, 823, 827, 830, 836, 839, 840, 847, 856, 858, 861, 862, 864, 865], "esenti": [17, 26], "abstract": [17, 26, 27, 779, 784, 800, 815, 817, 828, 829, 832, 835, 841, 847, 856, 858, 860, 861, 865], "specif": [17, 18, 23, 24, 26, 27, 28, 30, 32, 40, 50, 52, 53, 73, 75, 76, 175, 206, 209, 242, 263, 264, 273, 316, 329, 330, 362, 365, 371, 375, 482, 501, 534, 535, 536, 562, 618, 619, 620, 622, 625, 627, 628, 631, 634, 635, 660, 661, 677, 698, 703, 704, 705, 726, 743, 748, 749, 750, 752, 759, 761, 781, 782, 789, 790, 796, 800, 803, 804, 806, 807, 808, 811, 812, 813, 814, 815, 817, 818, 821, 823, 824, 825, 828, 829, 830, 831, 832, 833, 835, 837, 838, 839, 841, 842, 843, 844, 845, 847, 851, 852, 853, 854, 856, 857, 859, 860, 861, 865], "quirk": [17, 26], "perk": [17, 26, 800, 812, 815], "under": [17, 26, 27, 52, 370, 446, 447, 793, 800, 806, 807, 810, 811, 818, 819, 820, 823, 829, 830, 832, 835, 836, 837, 840, 842, 843, 851, 852, 858, 861, 865], "hood": [17, 26, 27, 800, 810, 818, 819, 823, 829, 832, 835, 836, 837, 840, 842, 851, 852, 865], "appropi": 17, "string": [17, 26, 27, 42, 52, 53, 56, 69, 75, 79, 145, 146, 158, 165, 187, 188, 189, 190, 191, 193, 202, 209, 210, 214, 368, 369, 371, 410, 414, 422, 474, 485, 513, 532, 618, 619, 622, 624, 625, 637, 638, 639, 640, 642, 644, 646, 661, 759, 761, 765, 793, 794, 813, 814, 816, 817, 818, 821, 829, 837, 840], "simplest": [17, 807, 819, 832, 835], "interact": [17, 26, 41, 44, 806, 857, 858, 863], "submodul": [17, 26, 40, 42, 97, 98, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 776, 777, 779, 780, 782, 783, 784, 785, 806, 807, 808, 811, 814, 816, 818, 822, 825, 826, 832, 836, 837, 841, 845], "ones": [17, 24, 26, 38, 44, 48, 52, 54, 56, 61, 69, 71, 75, 79, 84, 127, 131, 136, 138, 144, 194, 195, 231, 307, 362, 380, 520, 603, 617, 619, 620, 623, 624, 642, 643, 727, 728, 729, 765, 800, 806, 812, 816, 819, 824, 825, 831, 832, 839, 840, 858], "likewis": [17, 22, 26, 33, 800, 808, 815, 817, 820, 824, 825, 829, 835, 840, 851, 852, 864], "nativearrai": [17, 26, 27, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 65, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 122, 123, 124, 126, 131, 132, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 166, 167, 168, 170, 172, 174, 175, 181, 191, 192, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 311, 312, 316, 323, 324, 325, 326, 327, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 480, 481, 482, 483, 484, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 511, 512, 513, 514, 515, 523, 526, 527, 529, 530, 534, 535, 536, 538, 541, 542, 543, 544, 545, 547, 549, 550, 551, 554, 557, 558, 560, 565, 566, 567, 570, 579, 580, 581, 582, 583, 585, 587, 588, 590, 601, 603, 604, 605, 607, 609, 610, 611, 612, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 706, 707, 708, 709, 713, 714, 715, 718, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 785, 812, 815, 819, 821, 824, 825, 826, 828, 829, 833, 834, 837, 839, 845], "alia": [17, 26, 329, 330, 365, 615, 806, 829, 850, 853], "select": [17, 26, 31, 44, 52, 65, 75, 88, 369, 371, 380, 422, 433, 482, 483, 512, 513, 635, 745, 746, 806, 807, 808, 816, 822, 828, 832, 837, 839, 842, 843, 858, 861, 862], "lastli": [17, 26, 812], "contain": [17, 26, 27, 41, 46, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 161, 162, 163, 166, 167, 168, 170, 172, 175, 192, 194, 195, 196, 201, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 360, 362, 365, 367, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 529, 530, 534, 535, 536, 537, 538, 539, 540, 541, 542, 545, 546, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 570, 573, 575, 580, 581, 582, 583, 585, 587, 588, 595, 601, 602, 603, 604, 605, 607, 609, 610, 611, 612, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 709, 713, 714, 715, 718, 719, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 764, 771, 772, 780, 781, 782, 784, 785, 789, 793, 794, 800, 802, 803, 806, 807, 810, 811, 812, 813, 814, 816, 817, 819, 820, 822, 824, 825, 826, 827, 828, 830, 832, 834, 835, 836, 837, 838, 841, 843, 844, 845, 847, 851, 858, 859, 864], "subclass": [17, 26, 27, 826, 829, 835, 852], "dict": [17, 26, 27, 40, 44, 47, 53, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 136, 138, 144, 148, 150, 161, 162, 163, 167, 168, 175, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 319, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 371, 390, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 474, 480, 482, 483, 484, 490, 492, 493, 494, 496, 498, 511, 512, 513, 514, 523, 524, 526, 527, 529, 530, 534, 535, 536, 537, 538, 539, 540, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 561, 565, 566, 580, 581, 583, 585, 587, 588, 601, 612, 616, 618, 619, 622, 629, 638, 639, 640, 641, 647, 648, 653, 654, 655, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 679, 684, 685, 686, 687, 691, 694, 695, 696, 697, 698, 701, 702, 706, 707, 709, 712, 713, 714, 715, 717, 718, 719, 723, 724, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 745, 746, 749, 751, 752, 754, 755, 756, 761, 762, 777, 780, 782, 789, 794, 812, 815, 840, 841, 845, 851, 852, 853], "recurs": [17, 26, 27, 40, 42, 47, 69, 70, 161, 162, 194, 195, 369, 438, 539, 540, 546, 618, 619, 622, 629, 706, 707, 710, 716, 717, 718, 759, 807, 811, 814, 815, 822, 825, 828, 841, 843], "oper": [17, 18, 21, 22, 23, 24, 26, 27, 28, 32, 39, 42, 48, 49, 51, 52, 53, 56, 69, 71, 72, 74, 75, 76, 79, 98, 113, 132, 133, 175, 205, 213, 218, 220, 229, 232, 235, 242, 257, 259, 268, 269, 273, 277, 280, 285, 296, 304, 324, 325, 326, 357, 360, 362, 367, 368, 370, 371, 382, 383, 384, 386, 387, 388, 394, 395, 396, 400, 404, 405, 406, 407, 409, 410, 412, 414, 415, 442, 479, 481, 527, 534, 535, 536, 583, 614, 617, 618, 619, 620, 622, 624, 625, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 650, 677, 679, 751, 753, 764, 767, 780, 794, 800, 806, 807, 810, 811, 812, 815, 817, 818, 819, 820, 821, 825, 828, 829, 832, 835, 837, 840, 841, 845, 847, 851, 854, 855, 856, 857, 858, 859, 861, 862, 863, 864, 865], "fashion": [17, 766, 832, 852], "native_arrai": [17, 26, 27, 48, 49, 51, 71, 73, 74, 75, 76, 80, 87, 105, 108, 131, 134, 136, 138, 144, 147, 148, 149, 150, 158, 163, 170, 192, 201, 209, 225, 229, 234, 235, 236, 238, 242, 246, 254, 255, 263, 268, 271, 274, 277, 282, 329, 330, 356, 365, 370, 371, 448, 474, 480, 484, 523, 526, 553, 554, 557, 587, 614, 617, 618, 619, 620, 622, 624, 625, 626, 627, 631, 632, 635, 636, 638, 639, 646, 653, 656, 660, 661, 667, 668, 672, 676, 677, 679, 682, 684, 686, 687, 694, 726, 735, 744, 750, 753, 755, 761, 771, 789, 803, 822, 830, 832], "data_class": [17, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 387, 388, 534, 538, 675, 700], "low": [17, 26, 29, 45, 52, 56, 61, 75, 79, 84, 368, 410, 414, 624, 631, 637, 638, 639, 640, 642, 644, 646, 727, 729, 766, 815, 821, 828, 829, 835, 837, 854, 856, 858, 859, 860, 862, 864], "level": [17, 26, 27, 29, 52, 75, 76, 369, 438, 526, 794, 800, 801, 806, 807, 808, 809, 815, 817, 821, 825, 827, 828, 829, 831, 834, 835, 836, 837, 840, 841, 842, 843, 845, 849, 854, 855, 856, 857, 858, 859, 860, 862, 863, 864, 865], "c": [17, 26, 32, 41, 42, 48, 52, 53, 54, 56, 59, 65, 71, 72, 74, 75, 76, 77, 79, 80, 82, 86, 88, 92, 93, 111, 122, 123, 133, 136, 160, 163, 218, 229, 235, 236, 256, 257, 259, 268, 271, 279, 286, 368, 369, 371, 374, 380, 382, 383, 384, 395, 400, 416, 418, 420, 421, 423, 433, 452, 453, 454, 464, 482, 490, 491, 492, 495, 513, 526, 534, 535, 536, 537, 545, 549, 550, 588, 603, 604, 607, 609, 610, 611, 614, 617, 618, 620, 622, 623, 624, 625, 627, 629, 632, 633, 635, 638, 639, 640, 641, 642, 643, 645, 659, 661, 663, 694, 698, 706, 709, 713, 714, 715, 717, 718, 723, 724, 735, 740, 746, 747, 752, 754, 783, 793, 794, 801, 807, 810, 813, 814, 815, 819, 825, 827, 836, 837, 838, 840, 843, 845, 846, 848, 849, 852, 854, 858, 862, 863, 865], "fundament": [17, 26, 804, 816, 829, 835, 837, 847, 858], "common": [17, 20, 26, 30, 51, 52, 69, 74, 174, 245, 253, 333, 339, 365, 618, 620, 801, 803, 806, 807, 814, 817, 818, 819, 825, 826, 829, 833, 835, 843, 847, 855, 858, 865], "signatur": [17, 26, 371, 380, 474, 511, 817, 818, 819, 820, 824, 828, 832, 833, 835, 848, 855, 864], "matmul": [17, 26, 27, 43, 57, 80, 369, 436, 602, 622, 625, 675, 813, 832, 833, 837], "to_n": [17, 26, 27, 38, 47, 70, 837], "jaxlib": [17, 23, 41, 789, 807, 812, 817, 818, 824, 833, 837, 839], "xla_extens": [17, 23, 789, 812, 817, 818, 824, 833, 837, 839], "arrayimpl": [17, 23, 789], "abov": [17, 22, 26, 27, 32, 33, 48, 51, 52, 57, 61, 68, 74, 75, 80, 84, 93, 113, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 305, 307, 322, 323, 329, 330, 332, 335, 360, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 401, 404, 405, 406, 411, 412, 413, 421, 422, 474, 482, 511, 514, 541, 545, 547, 549, 551, 588, 612, 614, 617, 618, 620, 622, 623, 624, 625, 627, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 727, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 800, 803, 806, 807, 808, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 827, 828, 829, 830, 832, 835, 837, 839, 840, 841, 842, 858, 863], "why": [17, 800, 808, 828, 839, 846, 848], "underli": [17, 26, 27, 38, 52, 59, 75, 82, 95, 225, 228, 230, 265, 370, 371, 447, 464, 620, 625, 627, 673, 694, 815, 828, 835, 851, 858], "disabl": [17, 26, 52, 75, 371, 482, 782, 814], "array_mod": [17, 26, 567, 590, 622, 834], "set_array_mod": [17, 26, 590, 622, 834], "composit": [17, 26, 161, 162, 194, 195, 287, 369, 428, 539, 540, 618, 619, 620, 622, 765, 767, 806, 810, 812, 813, 815, 817, 818, 826, 828, 829, 830, 832, 835, 837, 841, 842, 843, 845, 851, 859], "ultim": [17, 26, 851], "sigmoid": [17, 26, 27, 38, 46, 52, 68, 75, 295, 360, 375, 497, 614, 776, 837, 840, 841], "z": [17, 26, 27, 39, 40, 48, 51, 52, 53, 57, 58, 61, 63, 65, 71, 74, 75, 76, 80, 81, 82, 84, 88, 97, 98, 132, 133, 135, 136, 196, 218, 219, 223, 225, 228, 230, 235, 246, 247, 250, 251, 252, 254, 255, 260, 262, 264, 265, 266, 267, 275, 284, 294, 295, 329, 330, 332, 360, 365, 370, 380, 443, 445, 446, 447, 448, 449, 455, 459, 470, 510, 511, 514, 521, 526, 538, 541, 542, 549, 550, 566, 579, 580, 581, 589, 602, 617, 619, 620, 622, 625, 626, 627, 629, 631, 632, 633, 635, 655, 665, 670, 671, 675, 682, 684, 685, 686, 687, 709, 713, 715, 723, 727, 728, 729, 732, 737, 747, 748, 750, 751, 752, 779, 800, 813, 815, 818, 819, 837, 839, 851], "divid": [17, 22, 26, 27, 43, 51, 52, 53, 59, 69, 74, 75, 82, 97, 98, 242, 374, 444, 490, 491, 492, 495, 580, 620, 622, 627, 696, 812, 815, 819, 823, 832], "exp": [17, 26, 27, 51, 52, 74, 75, 111, 113, 240, 260, 273, 295, 360, 368, 370, 395, 400, 447, 614, 620, 625, 673, 827, 829], "high": [17, 26, 27, 45, 52, 56, 61, 75, 79, 84, 368, 410, 414, 574, 622, 624, 631, 637, 638, 639, 640, 642, 644, 646, 727, 729, 766, 804, 806, 821, 827, 829, 840, 845, 849, 854, 855, 856, 857, 858, 862, 864, 865], "network": [17, 24, 26, 27, 38, 40, 45, 624, 648, 776, 779, 780, 800, 815, 825, 837, 841, 848, 852, 854, 856, 857, 858, 862, 864, 865], "entir": [17, 26, 27, 29, 42, 52, 65, 66, 69, 75, 76, 88, 89, 208, 238, 240, 280, 281, 329, 330, 365, 368, 371, 380, 391, 392, 393, 474, 514, 547, 619, 620, 635, 636, 748, 749, 750, 751, 752, 753, 754, 755, 756, 780, 794, 806, 807, 808, 811, 812, 815, 817, 819, 821, 828, 829, 830, 832, 835, 837, 840, 841, 842, 843, 848, 849, 852, 858, 864, 865], "further": [17, 69, 98, 766, 808, 811, 812, 816, 819, 821, 824, 825, 828, 829, 831, 832, 836, 837, 840, 841, 848, 849, 863, 864], "congratul": [17, 23], "There": [17, 24, 27, 32, 92, 361, 363, 364, 372, 373, 377, 766, 800, 806, 807, 808, 811, 812, 814, 815, 817, 818, 819, 821, 823, 825, 827, 829, 830, 834, 837, 840, 843, 847, 851, 859, 860, 864, 865], "come": [17, 40, 804, 806, 807, 808, 812, 816, 829, 834, 835, 841, 845, 858], "independ": [17, 27, 52, 61, 75, 84, 218, 235, 268, 278, 374, 375, 495, 497, 620, 625, 631, 655, 674, 726, 800, 811, 817, 819, 826, 837, 842, 852, 856], "good": [17, 26, 27, 800, 805, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 830, 832, 833, 835, 837, 838, 841], "foundat": [17, 848, 861], "power": [17, 26, 27, 51, 52, 53, 57, 74, 75, 76, 80, 97, 98, 229, 238, 239, 273, 327, 339, 362, 365, 368, 415, 571, 581, 593, 620, 622, 625, 629, 667, 680, 712, 779, 834, 839, 840, 841, 858, 860, 864], "defin": [18, 24, 26, 27, 28, 48, 52, 53, 57, 71, 75, 76, 80, 95, 111, 136, 140, 141, 142, 218, 235, 242, 268, 269, 277, 279, 282, 294, 298, 302, 308, 311, 312, 313, 322, 323, 324, 325, 326, 329, 330, 332, 360, 362, 365, 368, 369, 371, 380, 403, 420, 474, 480, 514, 549, 550, 570, 614, 617, 620, 622, 625, 635, 655, 660, 661, 674, 748, 749, 750, 752, 800, 806, 807, 812, 813, 816, 817, 820, 824, 827, 829, 830, 832, 833, 839, 841, 843, 845, 853, 855, 856, 857, 858, 859, 862, 864, 865], "div": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 853], "sub": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 52, 57, 59, 69, 70, 74, 75, 76, 80, 82, 98, 267, 369, 371, 380, 422, 460, 469, 488, 517, 518, 546, 622, 625, 627, 628, 658, 679, 696, 703, 704, 705, 806, 808, 810, 815, 821, 829, 830, 832, 839, 840, 841, 853, 854], "By": [18, 38, 45, 52, 58, 59, 65, 66, 75, 81, 82, 88, 89, 282, 327, 329, 330, 342, 349, 362, 365, 368, 370, 371, 378, 380, 390, 446, 447, 482, 504, 511, 514, 569, 620, 622, 625, 626, 627, 635, 636, 655, 681, 684, 693, 745, 748, 749, 750, 751, 752, 753, 754, 755, 756, 807, 813, 817, 819, 821, 825, 827, 828, 829, 837, 841, 842, 851], "uniform": [18, 19, 20, 21, 22, 26, 27, 28, 29, 31, 32, 33, 40, 52, 61, 75, 84, 380, 514, 631, 726, 727, 729, 779, 800, 831, 841, 852, 853, 865], "x_": [18, 28, 93, 279, 620, 853], "82997245": 18, "44733784": 18, "32163444": 18, "93330479": 18, "52438271": 18, "20438017": 18, "252316": 18, "0827222": 18, "26017165": 18, "88881904": 18, "compat": [18, 24, 28, 32, 38, 45, 51, 52, 57, 59, 62, 65, 66, 74, 75, 80, 82, 85, 88, 89, 97, 98, 149, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 289, 329, 330, 365, 618, 620, 625, 627, 632, 635, 636, 655, 668, 671, 674, 677, 681, 682, 694, 733, 748, 749, 750, 751, 752, 753, 754, 755, 756, 800, 807, 813, 824, 829, 830, 833, 837, 843, 848], "sever": [18, 19, 28, 29, 31, 32, 33, 52, 75, 92, 368, 369, 382, 383, 384, 434, 764, 807, 808, 833, 843, 856, 862], "pro": [18, 19, 20, 28, 29, 30, 31, 32, 33], "pick": [19, 29, 779], "off": [19, 29, 56, 57, 79, 80, 391, 392, 393, 624, 625, 647, 658, 679, 779, 780, 807, 822, 836, 849, 851, 864], "last": [19, 24, 26, 29, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 71, 75, 79, 80, 81, 82, 87, 88, 89, 93, 97, 132, 133, 136, 191, 307, 335, 362, 365, 368, 369, 370, 371, 378, 380, 396, 401, 411, 412, 413, 424, 446, 464, 474, 476, 482, 504, 512, 513, 617, 619, 624, 625, 626, 627, 632, 634, 635, 636, 649, 650, 655, 658, 670, 679, 681, 685, 686, 688, 691, 694, 695, 696, 698, 732, 733, 741, 743, 744, 745, 746, 755, 756, 780, 789, 800, 808, 811, 813, 814, 817, 819, 828, 830, 832, 835, 837, 843, 849, 852, 858], "purpos": [19, 26, 27, 29, 40, 42, 142, 240, 258, 322, 362, 617, 620, 625, 673, 808, 810, 812, 815, 816, 818, 819, 821, 824, 825, 826, 829, 831, 832, 835, 836, 839, 845, 857, 859, 862, 863, 864], "illustr": [19, 29, 813, 837], "trigger": [19, 29, 782, 806, 823], "unif": [19, 21, 22, 29, 31, 801, 839, 848, 854, 864], "detail": [19, 29, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 76, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 128, 139, 286, 290, 294, 295, 297, 360, 369, 418, 459, 537, 614, 617, 620, 633, 658, 665, 671, 675, 698, 737, 738, 739, 740, 776, 800, 806, 808, 809, 811, 813, 814, 815, 816, 823, 824, 825, 826, 829, 830, 831, 832, 833, 834, 837, 839, 840, 841, 860, 864], "55563945": 19, "65538704": 19, "14150524": 19, "46951997": 19, "30220294": 19, "14739668": 19, "57017946": 19, "91962677": 19, "51029003": 19, "59644395": 19, "arbitrari": [19, 29, 48, 49, 52, 69, 72, 75, 134, 148, 175, 316, 370, 444, 452, 453, 454, 605, 617, 618, 623, 824, 825, 827, 828, 829, 832, 841, 843, 851, 853, 859, 864], "constitu": [19, 29, 69, 842], "due": [19, 26, 27, 29, 43, 45, 268, 278, 371, 482, 620, 807, 811, 816, 821, 828, 829, 848, 851, 852, 858], "manner": [19, 27, 29, 39, 47, 70, 629, 718, 807, 817, 818, 820, 825, 829, 833, 840, 843, 847, 854, 856, 864, 865], "non": [19, 29, 49, 51, 52, 57, 61, 62, 65, 66, 72, 74, 75, 80, 84, 85, 88, 89, 129, 147, 165, 174, 243, 263, 264, 269, 329, 330, 334, 340, 353, 365, 368, 369, 371, 380, 411, 422, 426, 430, 453, 454, 514, 517, 617, 618, 620, 625, 629, 631, 632, 635, 636, 655, 656, 666, 668, 675, 677, 681, 682, 719, 728, 732, 733, 734, 735, 748, 749, 750, 751, 752, 754, 755, 756, 764, 779, 781, 782, 784, 812, 815, 819, 837, 851, 852, 853, 858], "5556394": 19, "655387": 19, "1415051": 19, "4695197": 19, "3022028": 19, "1473966": 19, "5701794": 19, "91962665": 19, "51028997": 19, "5964439": 19, "assess": [19, 29, 806, 835], "985": 19, "000": [19, 74, 269, 764, 803, 816, 822], "69": [19, 38, 45, 51, 77, 84, 216, 258, 368, 389, 399, 607, 620, 623, 625, 666, 667, 728, 832, 840], "slower": [19, 829], "On": [19, 26, 27, 807, 817, 818, 823, 829, 832, 835, 838, 842], "hand": [19, 51, 369, 436, 764, 800, 811, 817, 818, 823, 825, 832, 843], "singl": [19, 29, 38, 43, 51, 61, 69, 74, 84, 93, 287, 344, 365, 369, 375, 433, 498, 588, 601, 605, 620, 622, 623, 624, 631, 633, 650, 727, 728, 729, 737, 764, 780, 806, 807, 808, 811, 816, 819, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 840, 841, 842, 843, 849], "learnt": [20, 30], "two": [20, 30, 32, 38, 48, 52, 57, 63, 75, 76, 80, 97, 98, 118, 121, 127, 134, 140, 141, 142, 173, 181, 229, 243, 244, 278, 322, 323, 328, 340, 341, 343, 344, 346, 348, 355, 362, 365, 368, 369, 370, 371, 380, 396, 419, 420, 421, 433, 442, 444, 448, 453, 474, 480, 484, 511, 521, 526, 616, 617, 618, 620, 622, 625, 627, 633, 654, 656, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 679, 681, 699, 737, 738, 739, 740, 764, 766, 772, 780, 806, 807, 811, 812, 817, 818, 819, 820, 825, 829, 830, 832, 835, 836, 840, 842, 849, 855, 863], "workflow": [20, 30, 41, 801, 806, 808, 813, 817, 827, 829, 840, 845, 849, 857, 864, 865], "ivy_norm": 20, "jax_norm": [20, 26, 27], "wider": [20, 30, 574, 596, 622, 817, 834, 864], "avoid": [20, 30, 32, 52, 59, 75, 235, 240, 242, 258, 268, 370, 371, 374, 444, 452, 453, 454, 460, 462, 464, 465, 466, 469, 473, 480, 488, 490, 491, 492, 528, 544, 546, 569, 574, 596, 620, 622, 627, 690, 691, 692, 694, 696, 697, 699, 701, 766, 767, 807, 808, 813, 814, 815, 816, 817, 821, 826, 829, 832, 833, 834, 835, 858], "conveni": [20, 30, 806, 817, 818, 824, 830, 838, 840, 841, 845, 864], "act": [20, 30, 52, 75, 356, 366, 808, 819, 834, 843, 865], "shorthand": [20, 30, 32, 832], "pair": [20, 30, 40, 52, 56, 75, 79, 223, 242, 314, 355, 362, 365, 368, 401, 410, 412, 414, 620, 624, 625, 637, 638, 639, 640, 642, 644, 646, 653, 655, 794], "93968587": 20, "26075466": 20, "22723222": 20, "06276492": 20, "47426987": 20, "72835908": 20, "71737559": 20, "50411096": 20, "65419174": 20, "15576624": 20, "implic": [20, 30, 31, 34, 815], "requir": [21, 22, 23, 24, 31, 40, 41, 42, 45, 51, 52, 69, 74, 75, 269, 282, 286, 369, 371, 421, 422, 474, 620, 625, 627, 659, 660, 661, 698, 764, 772, 777, 794, 802, 806, 807, 812, 814, 816, 817, 818, 819, 820, 821, 823, 824, 826, 829, 830, 831, 832, 833, 835, 837, 839, 843, 852, 858, 864], "satisfi": [21, 22, 23, 24, 40, 42, 45, 52, 368, 369, 390, 422, 817, 819], "opt": [21, 22, 23, 24, 44, 807, 813, 817, 828, 832, 835], "fw": [21, 22, 23, 24, 56, 79, 380, 511, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 761, 807, 832], "mxnet": [21, 22, 23, 24, 789, 806, 807, 848, 865], "26": [21, 22, 23, 24, 38, 40, 42, 45, 51, 52, 60, 61, 75, 76, 77, 84, 230, 235, 281, 368, 369, 389, 425, 433, 549, 603, 620, 622, 623, 624, 625, 629, 630, 635, 646, 658, 670, 677, 707, 725, 727, 728, 747], "einop": [21, 22, 23, 24, 40, 42, 45, 53, 76, 534, 535, 536, 622, 817, 848], "miniconda": [21, 22, 23, 24], "env": [21, 22, 23, 24], "multienv": [21, 22, 23, 24], "site": [21, 22, 23, 24, 859], "psutil": [21, 22, 23, 24, 40, 42, 45], "termcolor": [21, 22, 23, 24, 40, 42, 45, 69, 98], "colorama": [21, 22, 23, 24, 40, 42], "nvidia": [21, 22, 23, 24, 40, 42, 45, 862, 863], "535": [21, 22, 23, 24, 46, 68, 113, 614, 821], "diskcach": [21, 22, 23, 24, 40], "auth": [21, 22, 23, 24], "urllib3": [21, 22, 23, 24, 40], "pyvi": [21, 22, 23, 24, 26, 27], "dill": [21, 22, 23, 24, 40], "astunpars": [21, 22, 23, 24], "cloudpickl": [21, 22, 23, 24], "gast": [21, 22, 23, 24], "66": [21, 22, 23, 24, 38, 40, 42, 65, 75, 76, 77, 368, 399, 534, 535, 607, 622, 623, 625, 635, 670, 747], "wheel": [21, 22, 23, 24, 40, 42, 45, 847], "six": [21, 22, 23, 24, 40, 45, 807, 835], "cachetool": [21, 22, 23, 24], "pyasn1": [21, 22, 23, 24], "rsa": [21, 22, 23, 24], "jinja2": [21, 22, 23, 24], "jsonpickl": [21, 22, 23, 24], "networkx": [21, 22, 23, 24, 45], "charset": [21, 22, 23, 24, 40], "idna": [21, 22, 23, 24, 40], "certifi": [21, 22, 23, 24, 40], "2017": [21, 22, 23, 24, 40, 624, 650], "jedi": [21, 22, 23, 24], "inlin": [21, 22, 23, 24, 814], "prompt": [21, 22, 23, 24, 806, 808], "toolkit": [21, 22, 23, 24, 858, 859, 865], "pygment": [21, 22, 23, 24], "traitlet": [21, 22, 23, 24], "exceptiongroup": [21, 22, 23, 24], "paddl": [21, 22, 23, 24, 329, 330, 365, 777, 789, 806, 807, 817, 822], "pexpect": [21, 22, 23, 24], "markupsaf": [21, 22, 23, 24], "parso": [21, 22, 23, 24], "ptyprocess": [21, 22, 23, 24], "wcwidth": [21, 22, 23, 24], "asttoken": [21, 22, 23, 24], "pure": [21, 22, 23, 24, 32, 42, 800, 820, 824, 829, 835, 839, 842, 843, 858, 864, 865], "eagerli": [21, 22, 26, 27, 31, 32, 33, 40, 800, 851, 852, 853], "lazili": [21, 22, 23, 26, 27, 31, 33, 44, 800, 851, 852, 853], "actual": [21, 31, 803, 808, 810, 816, 822, 825, 826, 828, 829, 830, 832, 835, 836, 841, 843, 859, 864], "occur": [21, 26, 27, 31, 44, 49, 51, 63, 72, 74, 86, 150, 269, 285, 618, 620, 632, 633, 732, 733, 737, 738, 739, 740, 811, 816, 818, 821, 834], "becaus": [21, 29, 31, 41, 52, 368, 390, 759, 807, 808, 811, 812, 813, 814, 815, 817, 818, 820, 821, 822, 824, 825, 826, 827, 828, 829, 830, 832, 835, 837, 841, 842, 843, 858, 861, 864], "argument": [21, 23, 24, 26, 27, 29, 31, 32, 33, 38, 40, 42, 44, 47, 48, 51, 52, 53, 57, 69, 70, 74, 75, 76, 92, 93, 98, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 337, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 411, 413, 415, 422, 474, 482, 511, 514, 518, 524, 525, 527, 528, 533, 535, 536, 541, 545, 547, 549, 551, 561, 565, 566, 583, 588, 589, 602, 612, 617, 618, 620, 622, 623, 624, 625, 627, 628, 629, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 705, 712, 725, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 764, 765, 772, 777, 780, 781, 782, 789, 793, 796, 800, 806, 810, 811, 812, 813, 814, 815, 819, 820, 823, 825, 830, 832, 833, 835, 837, 839, 840, 845, 847, 851, 852, 853, 858], "altern": [21, 31, 41, 52, 75, 80, 92, 93, 328, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 365, 800, 806, 807, 814, 828, 840, 861], "dummi": [21, 22, 31, 32, 33, 39, 808], "seed": [21, 22, 42, 43, 52, 56, 61, 63, 69, 75, 79, 84, 317, 318, 319, 320, 321, 362, 369, 375, 426, 435, 441, 497, 498, 499, 500, 501, 624, 631, 633, 647, 726, 727, 728, 729, 731, 737, 772, 777, 779, 794, 826, 830, 832], "assum": [21, 22, 31, 32, 33, 48, 51, 52, 53, 56, 57, 58, 74, 75, 76, 79, 80, 81, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 307, 323, 329, 330, 332, 335, 352, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 434, 436, 474, 482, 511, 514, 541, 545, 547, 549, 558, 588, 612, 617, 618, 620, 622, 623, 624, 625, 626, 627, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 683, 684, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 780, 793, 800, 807, 811, 813, 816, 817, 820, 830, 832, 835, 839, 840, 843], "201733": 21, "core": [21, 22, 24, 40, 41, 42, 44, 45, 52, 75, 92, 95, 199, 369, 426, 435, 440, 441, 619, 807, 818, 822, 832, 842, 847, 856, 857, 858, 859, 863, 865], "cpu_feature_guard": [21, 22, 24], "182": [21, 22, 24, 75], "instruct": [21, 22, 24, 69, 98, 800, 806, 807, 811, 821, 823, 830, 832, 844, 856, 859, 862, 864], "critic": [21, 22, 24, 26, 27, 858, 864], "avx2": [21, 22, 24], "fma": [21, 22, 24], "rebuild": [21, 22, 24, 69, 98], "flag": [21, 22, 24, 69, 191, 370, 380, 444, 511, 619, 624, 650, 761, 772, 783, 808, 817, 818, 828, 829, 830, 832, 851, 852], "slowli": [21, 31], "norm": [21, 31, 32, 52, 53, 57, 75, 76, 80, 91, 92, 368, 369, 389, 390, 394, 395, 396, 399, 400, 401, 411, 412, 418, 422, 493, 494, 496, 529, 530, 551, 622, 625, 666, 682, 725, 780, 784, 833], "slow": [21, 31, 802, 807, 814], "34431235": [21, 22], "51129461": [21, 22], "06686894": [21, 22], "36452447": [21, 22], "98795534": [21, 22], "15493582": [21, 22], "91630631": [21, 22], "41939619": [21, 22], "78909753": [21, 22], "19475674": [21, 22], "norm_trac": 21, "float64": [21, 22, 49, 52, 61, 65, 71, 72, 74, 75, 76, 84, 88, 121, 129, 130, 147, 150, 154, 155, 160, 161, 164, 165, 170, 171, 175, 177, 178, 184, 187, 269, 339, 365, 370, 380, 442, 447, 511, 560, 617, 618, 622, 625, 631, 660, 661, 666, 682, 728, 729, 746, 761, 764, 765, 817, 830, 832], "norm_tran": [21, 31], "know": [21, 22, 31, 32, 33, 63, 633, 737, 738, 739, 740, 802, 806, 808, 818, 826, 830, 832, 835, 849, 853, 859], "07": [22, 40, 42, 54, 58, 74, 77, 81, 84, 223, 256, 259, 260, 279, 368, 399, 593, 603, 604, 606, 607, 608, 609, 620, 622, 623, 626, 685, 686, 728, 781, 784, 841], "981554": 22, "happen": [22, 26, 27, 287, 620, 800, 807, 808, 818, 828, 832, 840, 849, 851, 852], "wherea": [22, 33, 75, 368, 413, 808, 812, 815, 817, 818, 819, 824, 825, 832, 842, 855], "subtract": [22, 26, 27, 51, 74, 97, 98, 129, 371, 474, 617, 620, 812, 815, 819], "begin": [22, 52, 75, 279, 370, 371, 442, 458, 474, 475, 476, 477, 478, 620, 629, 706, 717, 764, 807, 811, 816, 830], "filelock": [23, 40], "extens": [23, 40, 51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 482, 511, 617, 618, 620, 625, 627, 632, 633, 634, 635, 636, 654, 655, 656, 657, 658, 660, 661, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 688, 690, 691, 692, 694, 695, 697, 698, 702, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 805, 807, 808, 820, 822, 823, 832, 855, 858, 865], "sympi": [23, 848], "fsspec": [23, 40], "mpmath": 23, "scenario": [23, 817, 827], "often": [23, 52, 370, 442, 805, 811, 821, 824, 825, 829, 832, 843, 849, 859, 862, 865], "fortun": [23, 24, 811], "everyth": [23, 41, 793, 800, 806, 807, 808, 810, 816, 819, 828, 829, 830, 832, 838, 843, 844, 849], "practic": [23, 808, 813, 816, 829, 831, 861], "specifi": [23, 24, 26, 27, 31, 32, 33, 44, 46, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 125, 130, 132, 137, 140, 141, 143, 147, 149, 196, 201, 203, 207, 208, 209, 277, 286, 290, 294, 295, 297, 323, 328, 344, 349, 360, 362, 365, 368, 369, 370, 371, 375, 380, 386, 387, 388, 390, 396, 401, 411, 412, 413, 414, 422, 432, 434, 439, 442, 446, 447, 448, 450, 464, 467, 476, 477, 479, 480, 482, 498, 509, 511, 512, 513, 516, 517, 521, 524, 541, 542, 544, 546, 547, 560, 562, 570, 602, 614, 617, 618, 619, 620, 622, 624, 625, 626, 627, 629, 631, 632, 633, 634, 635, 636, 650, 653, 655, 657, 658, 660, 661, 666, 674, 677, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 695, 697, 698, 701, 702, 710, 711, 713, 714, 721, 722, 723, 724, 727, 728, 729, 731, 732, 733, 735, 738, 739, 740, 741, 745, 746, 747, 751, 753, 755, 756, 764, 767, 776, 780, 781, 782, 794, 807, 810, 814, 817, 818, 824, 825, 826, 828, 829, 830, 832, 837, 840, 841, 851, 852, 853, 864], "everi": [23, 26, 27, 32, 40, 48, 52, 53, 75, 76, 130, 131, 295, 329, 330, 342, 360, 365, 368, 371, 404, 405, 406, 413, 487, 523, 617, 622, 806, 808, 811, 813, 814, 816, 817, 819, 823, 824, 825, 826, 828, 829, 830, 832, 837, 839, 841, 851, 852, 853, 858], "jax_kornia": [23, 26, 27, 800, 852], "though": [23, 805, 806, 808, 817, 818, 820, 825, 828, 829, 835, 840, 843], "comput": [23, 24, 26, 27, 33, 34, 39, 40, 42, 46, 51, 52, 53, 54, 56, 57, 58, 63, 65, 68, 69, 74, 75, 76, 77, 79, 80, 81, 88, 92, 93, 95, 108, 112, 208, 218, 225, 228, 230, 235, 236, 237, 242, 243, 244, 246, 247, 253, 254, 255, 262, 263, 264, 265, 267, 268, 271, 276, 277, 294, 298, 302, 308, 311, 312, 324, 325, 326, 329, 330, 332, 336, 340, 342, 343, 347, 349, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 378, 380, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 415, 416, 418, 420, 421, 422, 423, 425, 426, 428, 431, 433, 435, 438, 439, 441, 443, 444, 445, 446, 447, 448, 449, 468, 471, 484, 490, 492, 503, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 528, 529, 530, 574, 596, 603, 605, 606, 608, 612, 613, 619, 620, 622, 623, 624, 625, 626, 627, 629, 633, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 654, 655, 659, 660, 661, 664, 665, 666, 668, 670, 672, 674, 675, 677, 679, 681, 682, 684, 685, 686, 690, 712, 737, 738, 739, 740, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 761, 766, 780, 783, 794, 800, 807, 815, 816, 817, 825, 827, 829, 832, 834, 835, 837, 840, 843, 845, 848, 849, 851, 852, 854, 856, 858, 859, 861, 862, 864], "000000000034": [23, 26, 27, 800, 852], "raw_img": [23, 26, 27, 800, 852], "enhanc": [23, 26, 27, 800, 831, 852], "sharp": [23, 26, 27, 800], "prefer": [23, 26, 27, 242, 620, 800, 807, 815, 821, 822, 826, 829, 844, 858], "leverag": [23, 26, 27, 800, 807, 828, 852, 856, 858], "whole": [24, 52, 75, 371, 374, 481, 493, 494, 496, 808, 814, 823], "full": [24, 52, 57, 75, 79, 80, 92, 93, 95, 160, 247, 255, 317, 318, 319, 320, 321, 362, 369, 370, 371, 439, 440, 446, 447, 475, 478, 568, 577, 591, 599, 617, 618, 620, 622, 624, 625, 639, 641, 642, 643, 645, 668, 672, 674, 675, 765, 772, 800, 807, 808, 814, 817, 820, 821, 824, 825, 829, 832, 835, 837, 843, 848, 849, 856, 858, 864], "advantag": [24, 26, 27, 800, 807, 808, 817, 828, 829, 844, 852, 858], "complex": [24, 26, 27, 40, 46, 51, 52, 57, 65, 68, 72, 74, 75, 80, 88, 105, 106, 107, 108, 109, 110, 111, 112, 113, 137, 138, 153, 167, 176, 182, 215, 216, 217, 218, 219, 220, 221, 224, 232, 233, 235, 236, 238, 240, 248, 249, 250, 251, 252, 256, 257, 258, 259, 268, 270, 271, 273, 275, 278, 279, 280, 281, 282, 285, 286, 290, 294, 295, 297, 332, 337, 360, 365, 368, 369, 380, 390, 401, 411, 412, 416, 421, 422, 423, 432, 434, 519, 520, 580, 581, 614, 617, 618, 620, 622, 625, 632, 635, 659, 660, 661, 666, 673, 675, 677, 679, 682, 735, 750, 751, 753, 765, 776, 794, 804, 806, 809, 814, 817, 819, 826, 829, 832, 833, 835, 840, 841, 842, 843, 845, 852, 854, 856, 858, 860, 864, 865], "neccessari": 24, "set_random_se": [24, 43], "manual_se": 24, "301436": 24, "_c": 24, "0x7f252c392390": 24, "convolut": [24, 52, 56, 75, 79, 368, 388, 406, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 766, 780, 852, 856, 858], "flatten": [24, 26, 27, 40, 42, 45, 52, 53, 57, 59, 62, 63, 75, 76, 80, 82, 85, 86, 334, 349, 365, 369, 371, 380, 419, 463, 473, 477, 482, 483, 487, 509, 516, 517, 518, 519, 520, 521, 534, 538, 622, 625, 627, 632, 633, 662, 670, 682, 688, 693, 695, 732, 733, 737, 738, 739, 740, 759, 761, 800, 828, 835], "keyword": [24, 26, 27, 42, 44, 47, 48, 52, 69, 75, 98, 134, 269, 368, 371, 380, 415, 474, 511, 525, 528, 561, 589, 617, 620, 622, 625, 629, 635, 676, 712, 753, 759, 761, 765, 781, 782, 793, 806, 812, 815, 817, 818, 826, 828, 829, 830, 832, 833, 835, 840, 851, 852, 853], "input_arrai": [24, 26, 27, 828], "torch_model": [24, 26, 27, 44], "159": [24, 68, 105, 614, 624, 648], "state_upd": 24, "properti": [24, 69, 92, 93, 94, 95, 96, 97, 101, 782, 784, 811, 815, 825, 830, 832, 839, 840, 841, 864], "_transpil": 24, "thank": [24, 840, 848], "fledg": [24, 807, 837, 838], "rand": [24, 26, 27, 42, 793, 794, 800, 851], "output_arrai": [24, 26, 27, 52, 444], "0893": 24, "1504": 24, "1372": 24, "0991": 24, "0867": 24, "0851": 24, "0911": 24, "0804": 24, "0926": 24, "0881": 24, "softmaxbackward0": 24, "furthermor": 24, "relat": [24, 242, 620, 800, 802, 805, 806, 807, 808, 814, 821, 829, 832, 833, 834, 835, 852, 861], "interest": [24, 26, 38, 235, 268, 620, 806, 808], "continu": [24, 26, 27, 42, 120, 282, 290, 360, 616, 620, 800, 805, 806, 807, 810, 811, 822, 828, 831, 832, 843, 848, 849, 858], "regress": [25, 858, 865], "checkout": [26, 41, 808, 811, 832], "f705efe7cb5d18df17ce6c1e20f04d0eb4933f48": 26, "theoret": 26, "aspect": [26, 27, 801, 827, 840, 858], "switch": [26, 38, 772, 813, 821, 825, 826, 865], "easiest": [26, 800, 802, 807, 844], "defer": [26, 27, 806, 812, 817, 818, 825, 828, 829, 832, 864], "similarli": [26, 39, 134, 142, 218, 322, 329, 330, 362, 365, 617, 620, 813, 817, 829, 835, 839, 864], "obtain": [26, 27, 45, 52, 75, 313, 362, 368, 407, 624, 650, 766, 829, 851], "essenc": [26, 859, 864], "becom": [26, 52, 75, 92, 339, 365, 371, 454, 627, 687, 789, 808, 809, 815, 817, 819, 821, 828, 843, 847, 849, 851], "regardless": [26, 27, 38, 69, 801, 817, 821, 839, 842, 849], "being": [26, 27, 38, 52, 69, 75, 90, 97, 101, 121, 369, 371, 430, 458, 474, 575, 617, 622, 625, 661, 761, 767, 779, 800, 807, 808, 811, 812, 813, 815, 817, 818, 819, 822, 824, 826, 828, 829, 830, 832, 833, 835, 837, 840, 843, 848, 849, 854, 856, 857, 858, 859, 864, 865], "slide": [26, 52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 410, 414, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 780], "A": [26, 27, 41, 48, 49, 52, 53, 59, 61, 65, 66, 69, 72, 74, 75, 76, 79, 80, 82, 84, 86, 89, 92, 93, 98, 117, 118, 120, 127, 135, 142, 148, 189, 208, 270, 272, 276, 307, 318, 322, 324, 325, 326, 328, 341, 344, 348, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 383, 396, 410, 413, 415, 422, 433, 436, 444, 448, 459, 462, 480, 484, 485, 490, 491, 492, 493, 497, 498, 499, 500, 501, 509, 518, 521, 526, 528, 537, 546, 549, 550, 580, 581, 582, 585, 613, 616, 617, 618, 619, 620, 622, 623, 624, 625, 627, 629, 631, 635, 636, 647, 650, 658, 660, 663, 664, 669, 670, 674, 675, 687, 690, 692, 696, 698, 706, 709, 711, 713, 714, 715, 716, 717, 721, 722, 723, 724, 726, 727, 728, 729, 731, 737, 747, 755, 756, 759, 761, 762, 764, 765, 766, 767, 772, 779, 794, 798, 800, 805, 806, 807, 810, 815, 817, 818, 821, 824, 825, 829, 830, 832, 837, 840, 843, 844, 845, 846, 847, 848, 849, 851, 852, 853, 858, 859], "regressor": [26, 27, 800], "input_dim": [26, 27, 41, 800], "output_dim": [26, 27, 41, 800], "linear0": [26, 27, 38, 800, 840, 841], "linear1": [26, 27, 38, 800, 840, 841], "instanti": [26, 27, 772, 820], "adam": [26, 27, 38, 42, 54, 77, 525, 603, 604, 609, 622, 623, 784, 800, 840, 841, 842, 858], "n_training_exampl": [26, 27, 800], "2000": [26, 27, 75, 308, 362, 800], "random_norm": [26, 27, 56, 57, 61, 79, 80, 84, 534, 622, 624, 625, 631, 639, 641, 642, 643, 645, 646, 649, 675, 800], "linspac": [26, 27, 48, 71, 121, 617, 800, 824, 835, 837, 865], "loss_fn": [26, 27, 38, 40, 42, 800, 840, 841, 842], "pred": [26, 27, 41, 42, 52, 58, 75, 81, 370, 443, 446, 626, 684, 685, 686, 800, 815, 825, 828], "epoch": [26, 27, 40, 42, 800], "loss": [26, 27, 40, 42, 52, 75, 92, 442, 443, 444, 445, 446, 447, 448, 449, 574, 596, 622, 684, 685, 686, 800, 816, 817, 825, 829, 833, 834, 840, 841, 842, 858, 865], "gradient": [26, 27, 40, 42, 52, 75, 92, 208, 357, 365, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 619, 628, 703, 704, 705, 761, 772, 784, 800, 810, 833, 840, 841, 843, 858], "grad": [26, 27, 38, 42, 603, 623, 784, 800, 827, 840, 841, 842], "execute_with_gradi": [26, 27, 38, 42, 623, 800, 840, 841, 842, 843], "lambda": [26, 27, 43, 45, 75, 118, 120, 292, 301, 533, 605, 606, 608, 613, 616, 622, 623, 625, 629, 660, 713, 714, 718, 800, 806, 825, 826, 827, 830, 835, 837, 840], "2d": [26, 27, 42, 52, 75, 92, 307, 362, 368, 369, 371, 380, 383, 384, 391, 392, 432, 439, 453, 463, 511, 780, 800, 829, 835], "5f": [26, 27, 800], "nonetheless": [26, 27], "slight": [26, 27, 817, 832, 841], "introduc": [26, 27, 242, 620, 627, 633, 695, 737, 806, 815, 816, 817, 826, 830, 832, 835, 840, 847], "address": [26, 27, 52, 53, 75, 371, 482, 587, 622, 806, 808, 811, 812, 824, 831, 837, 849, 854, 856, 858, 864], "extract": [26, 27, 34, 41, 52, 75, 93, 371, 457, 483, 829, 831, 833, 854, 858, 859, 864], "gc": [26, 27, 546, 622], "decompos": [26, 27, 52, 75, 92, 95, 317, 318, 319, 320, 321, 341, 348, 362, 365, 369, 430, 435, 438, 441, 829, 842], "said": [26, 27, 766, 833, 849, 851], "otherwis": [26, 27, 44, 47, 48, 49, 51, 52, 53, 56, 57, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 123, 124, 129, 131, 132, 133, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 166, 170, 174, 175, 191, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 307, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 335, 336, 343, 344, 350, 352, 354, 355, 356, 360, 362, 365, 368, 369, 374, 386, 387, 388, 391, 392, 393, 411, 424, 437, 439, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 460, 462, 464, 465, 466, 473, 480, 482, 483, 484, 488, 490, 492, 493, 494, 496, 498, 510, 511, 512, 513, 514, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 558, 565, 566, 580, 581, 583, 585, 587, 588, 589, 601, 605, 607, 612, 616, 617, 618, 619, 620, 622, 623, 624, 625, 628, 629, 632, 633, 634, 635, 636, 638, 639, 640, 641, 647, 648, 650, 653, 654, 655, 656, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 675, 679, 681, 682, 684, 685, 686, 687, 690, 691, 692, 694, 695, 696, 697, 698, 699, 701, 702, 703, 704, 719, 726, 727, 728, 729, 731, 732, 733, 734, 736, 737, 738, 739, 740, 741, 743, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 764, 765, 780, 782, 783, 789, 800, 808, 812, 815, 817, 818, 819, 825, 826, 828, 832, 837, 844, 851, 852], "x0": [26, 27, 45, 76, 526, 622, 819], "normalize_trac": [26, 27], "html": [26, 27, 41, 51, 52, 74, 75, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 482, 511, 617, 618, 620, 625, 627, 635, 673, 674, 702, 752, 800, 820, 848], "fname": [26, 27, 43, 45, 782, 840], "anticip": [26, 27], "addition": [26, 27, 815, 828, 829, 864], "backend_compil": [26, 27], "normalize_native_comp": [26, 27], "return_backend_compiled_fn": 26, "immedi": [26, 27, 806, 807], "built": [26, 27, 32, 40, 42, 45, 121, 617, 780, 781, 782, 800, 807, 808, 814, 815, 832, 838, 844, 851, 857, 858, 862], "summar": [26, 27, 92, 832], "eager_graph": [26, 27, 800, 851, 852], "lazy_graph": [26, 27, 800, 851, 852], "codebas": [26, 27, 206, 207, 619, 801, 804, 810, 817, 823, 828, 829, 831, 832, 833, 836, 849], "thought": [26, 27, 807, 808, 824, 848, 856], "research": [26, 27, 40, 800, 847, 852, 858, 865], "wa": [26, 27, 32, 41, 52, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 351, 352, 354, 355, 356, 362, 365, 369, 391, 392, 393, 411, 440, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 480, 482, 483, 484, 490, 492, 493, 494, 496, 498, 511, 512, 513, 514, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 580, 581, 583, 585, 587, 588, 589, 601, 607, 612, 620, 622, 629, 635, 636, 638, 639, 640, 641, 647, 648, 653, 654, 655, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 679, 684, 685, 686, 687, 691, 694, 695, 696, 697, 698, 701, 702, 719, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 789, 800, 802, 808, 811, 813, 814, 816, 819, 825, 827, 829, 837, 839, 848, 851, 852, 857, 858, 860], "No": [26, 27, 40, 52, 58, 75, 81, 370, 444, 445, 446, 448, 449, 626, 684, 808, 816, 817, 858], "matter": [26, 27, 32, 819, 847], "job": [26, 27, 800, 814, 816, 852], "haven": [26, 27, 32, 844, 858], "jax_out": [26, 27], "ideal": [26, 27, 816, 817, 829, 835, 840], "But": [26, 27, 766, 815, 816, 820, 823, 826, 835, 842], "bring": [26, 27, 811, 831, 832, 837, 838, 845, 848], "wise": [26, 46, 51, 52, 57, 68, 74, 75, 80, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 215, 216, 218, 219, 220, 222, 223, 225, 226, 227, 228, 229, 230, 234, 235, 236, 237, 239, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 263, 264, 265, 266, 267, 268, 271, 273, 274, 276, 277, 284, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 328, 331, 336, 338, 339, 340, 343, 344, 345, 346, 350, 351, 354, 355, 360, 365, 368, 369, 371, 391, 392, 393, 420, 427, 461, 468, 470, 471, 489, 614, 620, 627, 655, 687, 784, 835], "vision": [26, 27, 45, 854, 864], "worth": [26, 27], "differenti": [26, 27, 290, 358, 359, 360, 367, 858], "chosen": [26, 27, 45, 95, 121, 223, 617, 620, 632, 736, 806, 816, 829], "plai": [26, 27, 370, 446, 800, 804, 807, 809, 812, 818, 822, 829, 832, 842, 858, 861], "role": [26, 27, 800, 804, 808, 809, 818, 829, 838, 859, 861, 865], "dl": [26, 27], "cnn": [26, 27, 858], "effortlessli": [26, 27], "previous": [26, 27, 591, 622, 789, 807, 813, 825, 827, 832, 837], "pre": [26, 27, 800, 803, 806, 831, 832, 842, 843, 844, 858], "default_devic": [26, 27, 201, 204, 205, 206, 212, 213, 619, 818, 821, 822], "as_n": [26, 27, 49, 50, 69, 72, 73, 153, 154, 155, 156, 157, 158, 164, 191, 192, 204, 618, 619, 817], "certainli": [26, 27, 800, 848, 864], "upon": [26, 27, 44, 808, 809, 819, 828, 832, 835, 843, 857, 858], "unnecessari": [26, 27, 829], "extend": [26, 27, 52, 75, 371, 380, 474, 514, 813, 814, 817, 820, 821, 824, 829, 833, 843, 855, 858, 864], "infrastructur": [26, 27, 800, 854, 860, 861], "least": [26, 51, 52, 57, 74, 75, 235, 253, 268, 368, 371, 380, 395, 400, 452, 453, 454, 463, 465, 511, 620, 625, 632, 665, 735, 800, 808, 812, 816, 817, 818, 819, 825, 828, 832, 852], "coco": 26, "seamlessli": [27, 832], "benefit": [27, 800, 807, 812, 815, 828, 835, 839, 840, 843, 848, 849, 856, 860, 863], "through": [27, 32, 40, 52, 75, 95, 223, 380, 517, 518, 620, 629, 709, 715, 782, 793, 800, 801, 803, 805, 806, 808, 809, 810, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 828, 829, 830, 832, 834, 835, 836, 837, 840, 841, 842, 851, 856, 858, 859, 860], "therefor": [27, 32, 48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 467, 474, 475, 477, 482, 486, 511, 514, 518, 527, 535, 536, 541, 545, 547, 549, 551, 565, 583, 588, 612, 617, 618, 620, 622, 623, 624, 625, 627, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 806, 808, 811, 812, 815, 816, 817, 818, 819, 820, 821, 824, 825, 826, 828, 829, 830, 832, 833, 835, 837, 839, 841, 843, 847, 855, 858, 864], "wide": [27, 800, 808, 832, 856, 858], "prepar": [27, 40, 42, 45, 800, 816], "plenti": 27, "resourc": [27, 801, 806, 807, 816], "visit": [27, 806, 807, 808, 816], "page": [27, 800, 806, 807, 808, 814, 816, 822, 838, 839, 842, 844, 853], "newli": [28, 29, 41, 43, 49, 72, 147, 528, 618, 622, 808, 816, 828, 832], "randon": [28, 29, 31, 32, 33], "mean_": 28, "std_": 28, "detect": [28, 32, 51, 69, 74, 250, 620, 629, 706, 717, 806, 807, 813, 815, 816, 823, 832, 840, 841], "inspect": [28, 32, 524, 622], "__": [28, 29, 30, 31, 32, 33, 69, 819, 840], "exhibit": [29, 864], "via": [29, 32, 242, 369, 371, 435, 438, 441, 482, 620, 629, 716, 717, 808, 811, 815, 817, 818, 828, 833, 835, 837, 839, 840, 858], "script": [29, 800, 807, 808, 811, 816, 819, 837, 843, 858], "comp": 29, "low_level": 29, "chain": [29, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 449, 458, 459, 480, 482, 484, 490, 492, 493, 494, 496, 498, 511, 512, 513, 514, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 580, 581, 583, 585, 587, 588, 601, 607, 612, 628, 629, 638, 639, 640, 641, 647, 648, 653, 654, 655, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 679, 684, 685, 686, 687, 691, 694, 695, 696, 697, 698, 701, 702, 703, 704, 708, 719, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 745, 746, 749, 751, 752, 754, 755, 756, 785, 812, 815, 827, 829, 841, 842, 843, 858], "un": [29, 165, 618, 817, 837], "partial_comp": 29, "time_funct": 29, "slowest": [29, 52, 59, 75, 82, 371, 464, 627, 694], "express": [29, 51, 52, 74, 75, 93, 216, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 620, 786, 794, 820, 829, 837, 842, 858, 859], "fastest": [29, 52, 59, 75, 82, 369, 371, 433, 464, 627, 694], "maxim": [29, 825, 828, 837, 855, 856, 860, 861, 862], "conclud": [30, 833], "collect": [30, 40, 42, 44, 45, 47, 69, 70, 614, 619, 622, 623, 624, 626, 629, 630, 631, 719, 776, 780, 781, 782, 783, 784, 807, 816, 821, 822, 826, 827, 830, 832, 856, 858, 861], "norm_comp": [31, 32], "global": [31, 32, 42, 53, 69, 76, 98, 153, 154, 155, 156, 157, 206, 207, 208, 571, 572, 575, 580, 581, 593, 594, 597, 618, 619, 622, 772, 783, 789, 807, 812, 813, 816, 817, 818, 821, 825, 829, 837, 858], "approach": [31, 803, 806, 807, 808, 812, 815, 817, 818, 822, 825, 829, 832, 833, 835, 839, 840, 843, 855, 862, 864], "b": [32, 46, 51, 52, 53, 56, 57, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 122, 123, 124, 129, 130, 131, 133, 136, 138, 144, 147, 148, 149, 150, 158, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 375, 378, 380, 386, 387, 388, 389, 391, 392, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 417, 420, 422, 424, 428, 433, 436, 441, 442, 443, 445, 446, 447, 448, 452, 453, 454, 455, 458, 459, 460, 461, 464, 465, 466, 468, 469, 470, 471, 473, 474, 480, 482, 483, 484, 485, 488, 489, 494, 496, 498, 499, 501, 502, 504, 511, 512, 513, 514, 516, 518, 521, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 558, 565, 566, 580, 581, 583, 587, 588, 601, 603, 604, 605, 607, 609, 610, 611, 612, 614, 617, 618, 620, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 653, 654, 655, 656, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 684, 685, 686, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 706, 709, 712, 713, 714, 715, 717, 718, 723, 724, 725, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 793, 794, 800, 801, 803, 808, 810, 811, 813, 815, 816, 819, 822, 825, 827, 830, 836, 837, 838, 840, 841, 842, 846, 849, 851, 854], "option": [32, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 163, 165, 175, 187, 191, 203, 206, 207, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 415, 416, 418, 419, 420, 422, 424, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 457, 458, 459, 460, 462, 464, 465, 466, 467, 468, 469, 471, 472, 473, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 526, 527, 529, 530, 532, 534, 535, 536, 537, 538, 541, 542, 544, 545, 546, 547, 549, 550, 551, 553, 554, 557, 562, 565, 566, 570, 580, 581, 583, 585, 587, 588, 589, 601, 603, 604, 607, 609, 610, 611, 612, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 664, 665, 666, 668, 669, 670, 671, 672, 673, 674, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 712, 713, 717, 718, 723, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 765, 772, 776, 777, 779, 780, 782, 784, 785, 793, 798, 806, 807, 808, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 828, 829, 830, 832, 833, 835, 837, 842, 843, 851, 852, 853, 858, 864], "prioriti": [32, 69, 789, 804, 806, 808, 809, 818, 828], "normalize_via_oper": 32, "determin": [32, 51, 52, 57, 59, 63, 66, 69, 74, 75, 76, 80, 87, 89, 92, 95, 97, 98, 127, 150, 152, 159, 165, 166, 167, 168, 170, 171, 172, 187, 197, 199, 200, 211, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 248, 249, 250, 251, 252, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 298, 302, 347, 352, 360, 365, 368, 369, 370, 371, 380, 403, 411, 422, 442, 443, 482, 511, 523, 526, 547, 548, 552, 553, 554, 555, 556, 557, 583, 601, 617, 618, 619, 620, 622, 625, 627, 628, 633, 636, 654, 655, 656, 658, 662, 663, 665, 667, 668, 670, 671, 673, 674, 679, 681, 682, 688, 703, 704, 705, 737, 738, 739, 740, 741, 755, 756, 766, 772, 779, 783, 815, 817, 818, 820, 825, 829, 832, 834, 835, 847], "think": [32, 806, 808, 816, 819, 835, 859], "uniqu": [32, 42, 52, 53, 63, 75, 76, 86, 368, 369, 371, 415, 436, 473, 474, 487, 558, 622, 628, 629, 633, 703, 704, 705, 708, 712, 737, 738, 739, 740, 766, 800, 806, 811, 815, 825, 829, 830, 831, 835, 843, 847, 861], "rule": [32, 49, 51, 52, 57, 72, 74, 75, 80, 147, 150, 173, 174, 175, 224, 235, 268, 270, 277, 279, 287, 289, 368, 371, 380, 411, 462, 511, 618, 620, 625, 627, 654, 655, 662, 667, 670, 674, 688, 766, 793, 811, 812, 815, 816, 817, 819, 823, 824, 825, 827, 832, 835, 859], "broadcast": [32, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 333, 334, 337, 339, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 416, 418, 419, 427, 428, 431, 432, 434, 443, 444, 445, 446, 448, 449, 455, 459, 462, 467, 475, 476, 477, 478, 480, 482, 484, 486, 490, 493, 494, 496, 497, 498, 500, 501, 511, 512, 513, 514, 517, 518, 519, 520, 521, 529, 530, 534, 535, 536, 541, 542, 551, 565, 566, 603, 604, 607, 609, 610, 611, 612, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 630, 631, 632, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 668, 669, 670, 671, 672, 674, 676, 677, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 697, 698, 699, 700, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 736, 740, 741, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 766, 793, 815, 817, 819, 820, 821, 832, 833, 837], "elementwis": [32, 52, 60, 75, 83, 294, 296, 355, 360, 625, 630, 680, 725, 825, 833, 837], "must": [32, 40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 319, 320, 323, 324, 325, 326, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 416, 418, 419, 421, 427, 428, 431, 432, 433, 434, 439, 443, 444, 445, 446, 448, 449, 452, 453, 454, 459, 460, 462, 464, 465, 466, 467, 469, 473, 475, 476, 477, 478, 480, 482, 483, 484, 486, 488, 493, 494, 496, 497, 498, 500, 501, 504, 511, 512, 513, 514, 521, 529, 530, 534, 535, 536, 541, 542, 544, 551, 565, 566, 602, 603, 604, 607, 609, 610, 611, 612, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 779, 780, 784, 786, 805, 806, 807, 808, 811, 812, 816, 817, 818, 819, 820, 821, 824, 825, 826, 828, 829, 832, 833, 834, 835, 837, 841, 842, 847, 849, 852, 853, 859, 865], "taken": [32, 52, 57, 75, 80, 335, 365, 368, 412, 625, 658, 679, 804, 806, 816, 829, 833, 842, 859], "account": [32, 42, 44, 52, 59, 75, 82, 282, 371, 464, 620, 627, 694, 779, 793, 807, 816, 820, 829, 833, 851], "rather": [32, 53, 69, 76, 121, 208, 553, 554, 557, 617, 619, 622, 803, 808, 811, 815, 817, 820, 822, 829, 830, 832, 833, 842, 843, 848, 854, 857, 858], "fact": [32, 92, 808, 811, 816, 829, 832, 837, 840], "consum": [32, 761, 815, 816, 824, 830, 832], "thrown": [32, 551, 622, 807, 812, 818, 821, 823, 843], "doesn": [32, 551, 569, 622, 759, 780, 806, 807, 813, 815, 816, 817, 818, 819, 822, 823, 825, 827, 832, 835, 837, 843, 851, 856], "consider": [32, 806, 819, 824, 835, 847, 855, 856], "effect": [32, 48, 52, 54, 65, 75, 77, 88, 134, 370, 403, 446, 603, 611, 617, 623, 624, 635, 650, 752, 754, 764, 767, 806, 812, 815, 816, 820, 824, 828, 830, 835, 843, 848], "explain": [32, 52, 75, 368, 401, 412, 800, 806, 807, 808, 811, 812, 813, 814, 815, 817, 818, 819, 820, 821, 822, 823, 824, 825, 827, 828, 829, 832, 833, 835, 837, 838, 839, 840, 841, 842, 854, 861, 864], "necessari": [32, 48, 52, 71, 75, 82, 123, 235, 268, 370, 371, 442, 452, 453, 454, 460, 462, 463, 464, 465, 466, 473, 488, 574, 596, 620, 622, 690, 691, 692, 694, 696, 697, 699, 701, 800, 806, 807, 812, 813, 815, 817, 819, 828, 829, 832, 834, 835, 851, 852], "standalon": [33, 806, 812, 832, 845, 854, 859, 864, 865], "dynam": [33, 627, 694, 782, 789, 810, 816, 817, 818, 828, 829, 834, 837, 851, 858, 862], "static": [33, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 101, 102, 124, 313, 368, 388, 401, 406, 415, 435, 441, 480, 491, 583, 617, 624, 650, 670, 777, 782, 829, 834, 843, 857, 858, 859], "flow": [34, 815, 851, 858, 859], "statement": [34, 39, 816, 828, 832, 835, 843, 851, 852], "opposit": 34, "exclud": [34, 65, 75, 88, 121, 142, 322, 362, 512, 513, 617, 631, 729, 745, 764, 767, 789, 819, 837, 851], "todo": [35, 36, 37, 42, 45, 75, 513, 806, 817, 829], "aim": [38, 803, 808, 811, 822, 826, 829, 832, 836, 856, 858, 861], "interfac": [38, 71, 129, 617, 839, 842, 843, 845, 848, 854, 855, 856, 857, 858, 862, 865], "set_framework": [38, 45], "44": [38, 42, 51, 52, 61, 74, 75, 84, 221, 268, 278, 282, 283, 333, 365, 368, 388, 389, 620, 624, 625, 629, 632, 635, 647, 670, 714, 727, 728, 736, 747], "45": [38, 40, 42, 51, 52, 65, 74, 75, 77, 79, 84, 98, 219, 223, 235, 278, 279, 337, 350, 365, 368, 380, 389, 399, 410, 512, 518, 603, 609, 620, 623, 625, 627, 635, 670, 696, 728, 729, 747, 764], "46": [38, 40, 42, 52, 61, 75, 79, 84, 133, 258, 279, 308, 362, 368, 387, 405, 406, 617, 620, 629, 707, 727, 728], "underneath": [38, 816, 856], "sai": [38, 806, 807, 822, 826, 839, 849], "clip": [38, 51, 52, 59, 74, 75, 76, 82, 266, 267, 371, 457, 482, 483, 529, 530, 620, 622, 627, 815, 825, 827, 828, 840, 842], "a_min": 38, "a_max": 38, "tensforflow": 38, "clip_by_valu": [38, 842], "clip_value_min": 38, "clip_value_max": 38, "clamp": [38, 52, 75, 294, 360, 842], "min": [38, 42, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 140, 142, 160, 163, 267, 322, 325, 330, 362, 365, 369, 371, 422, 479, 519, 535, 565, 566, 580, 617, 618, 620, 622, 625, 635, 666, 672, 675, 676, 682, 800], "max": [38, 40, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 160, 163, 266, 329, 365, 368, 369, 370, 371, 386, 387, 388, 404, 405, 406, 407, 409, 411, 422, 442, 479, 481, 482, 529, 530, 535, 551, 565, 566, 618, 620, 622, 625, 635, 666, 668, 671, 764, 780, 784, 816, 829], "49": [38, 42, 52, 61, 75, 79, 80, 282, 368, 369, 380, 389, 399, 410, 433, 512, 620, 635, 680, 728, 747], "devicearrai": [38, 812, 829, 837, 839], "concaten": [38, 52, 53, 59, 75, 80, 371, 459, 534, 538, 622, 624, 627, 650, 670, 688, 764, 830, 835, 837, 840], "accept": [38, 47, 48, 51, 52, 57, 70, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 336, 357, 362, 365, 367, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 474, 482, 511, 514, 518, 527, 535, 536, 541, 545, 547, 549, 551, 565, 583, 588, 612, 617, 618, 620, 622, 623, 624, 625, 627, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 800, 806, 807, 808, 812, 815, 817, 818, 819, 820, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 839, 845, 856], "jax_concat": 38, "tf_concat": 38, "np_concat": 38, "torch_concat": 38, "85": [38, 46, 52, 61, 68, 74, 75, 77, 79, 84, 98, 107, 220, 229, 230, 274, 290, 291, 293, 360, 380, 512, 580, 607, 614, 620, 622, 623, 624, 631, 648, 727, 728, 729], "mymodel": [38, 840], "x_in": [38, 840, 841, 842], "reduce_mean": [38, 800, 840, 841, 842], "91": [38, 52, 79, 84, 353, 365, 410, 624, 625, 631, 635, 648, 670, 728, 747], "49040043354034424": 38, "48975786566734314": 38, "4892795979976654": 38, "48886892199516296": 38, "4884953498840332": 38, "4881443977355957": 38, "4878086447715759": 38, "48748287558555603": 38, "48716384172439575": 38, "48684927821159363": 38, "48653748631477356": 38, "48622724413871765": 38, "4859171509742737": 38, "48560672998428345": 38, "48529526591300964": 38, "4849821627140045": 38, "48466697335243225": 38, "4843493402004242": 38, "4840289056301117": 38, "4837053418159485": 38, "4833785891532898": 38, "4830484390258789": 38, "48271444439888": 38, "48237672448158264": 38, "48203518986701965": 38, "48168954253196716": 38, "4813397228717804": 38, "4809857904911041": 38, "48062753677368164": 38, "48026490211486816": 38, "479898065328598": 38, "47952669858932495": 38, "4791509211063385": 38, "4787706732749939": 38, "47838595509529114": 38, "4779967665672302": 38, "47760307788848877": 38, "4772048890590668": 38, "47680220007896423": 38, "47639501094818115": 38, "47598329186439514": 38, "4755673110485077": 38, "4751465618610382": 38, "4747215211391449": 38, "4742920398712158": 38, "47385817766189575": 38, "47341999411582947": 38, "47297725081443787": 38, "4725303053855896": 38, "47207894921302795": 38, "47162333130836487": 38, "47116345167160034": 38, "470699280500412": 38, "47023090720176697": 38, "54": [38, 49, 51, 56, 74, 75, 79, 84, 163, 232, 233, 238, 253, 282, 288, 308, 362, 368, 380, 389, 399, 512, 620, 624, 625, 635, 648, 667, 670, 727, 728, 729, 747, 816, 819], "4697583019733429": 38, "55": [38, 46, 75, 84, 113, 229, 288, 380, 512, 549, 620, 622, 625, 631, 635, 663, 670, 728, 729, 747, 811], "46928152441978455": 38, "46880054473876953": 38, "4683155119419098": 38, "58": [38, 259, 529, 620, 622], "4678264260292053": 38, "59": [38, 51, 230, 380, 512], "46733325719833374": 38, "46683603525161743": 38, "61": [38, 40, 51, 52, 57, 74, 75, 77, 81, 84, 221, 256, 258, 283, 389, 603, 620, 623, 624, 625, 626, 646, 662, 684, 686, 729, 822], "4663347601890564": 38, "4658295214176178": 38, "465320348739624": 38, "4648073613643646": 38, "46429020166397095": 38, "4637692868709564": 38, "46324464678764343": 38, "4627160429954529": 38, "4621836841106415": 38, "4616474211215973": 38, "71": [38, 51, 74, 79, 234, 274, 410, 620], "46110764145851135": 38, "72": [38, 52, 61, 75, 77, 240, 342, 365, 368, 389, 399, 607, 620, 623, 625, 635, 670, 728, 747], "460563987493515": 38, "4600166976451874": 38, "74": [38, 40, 51, 84, 230, 260, 620, 625, 667], "45946577191352844": 38, "45891112089157104": 38, "45835286378860474": 38, "4577910006046295": 38, "78": [38, 54, 279, 609, 620, 623, 625, 631, 635, 670, 728, 747], "45722562074661255": 38, "79": [38, 40, 52, 53, 75, 76, 79, 84, 97, 235, 368, 389, 399, 410, 529, 530, 620, 622, 729], "45665669441223145": 38, "80": [38, 52, 75, 342, 365, 369, 380, 433, 512, 625, 629, 635, 670, 717, 747, 848], "4560841917991638": 38, "81": [38, 42, 51, 57, 72, 74, 80, 84, 163, 233, 258, 259, 283, 380, 512, 618, 620, 625, 629, 631, 635, 662, 667, 680, 714, 729, 747, 832], "4555082619190216": 38, "45492875576019287": 38, "45434585213661194": 38, "84": [38, 56, 65, 74, 84, 163, 193, 258, 618, 619, 625, 630, 635, 648, 670, 725, 728, 729, 747], "45375964045524597": 38, "4531698524951935": 38, "4525766670703888": 38, "45198020339012146": 38, "4513803720474243": 38, "4507772624492645": 38, "4501707851886749": 38, "4495610296726227": 38, "4489481747150421": 38, "44833192229270935": 38, "4477125108242035": 38, "44708991050720215": 38, "44646409153938293": 38, "44583529233932495": 38, "98": [38, 46, 52, 54, 61, 68, 74, 77, 84, 108, 233, 281, 353, 365, 607, 614, 623, 625, 629, 632, 635, 670, 707, 718, 727, 729, 736, 747], "4452032148838043": 38, "44456806778907776": 38, "4439": 38, "selectbackward0": 38, "hope": [38, 843, 848, 864], "ivy_compil": 39, "ic": 39, "produc": [39, 52, 53, 56, 75, 79, 296, 306, 309, 360, 362, 368, 415, 624, 653, 764, 794, 806, 817, 822, 823, 828, 830, 832, 833, 851, 859, 861], "numer": [39, 48, 49, 51, 52, 53, 57, 61, 62, 65, 72, 74, 75, 76, 80, 84, 85, 87, 97, 98, 134, 147, 215, 218, 231, 235, 240, 241, 242, 249, 250, 251, 254, 263, 264, 268, 270, 271, 272, 273, 277, 278, 279, 283, 284, 288, 289, 368, 370, 375, 380, 411, 444, 498, 511, 571, 572, 580, 581, 593, 594, 617, 618, 620, 622, 625, 631, 632, 635, 655, 662, 665, 670, 673, 675, 677, 679, 681, 727, 728, 729, 731, 732, 733, 735, 736, 741, 748, 751, 753, 764, 765, 766, 767, 779, 803, 817, 822, 827, 829, 830, 832, 833, 834, 835, 837, 841, 855, 858, 864], "anyth": [39, 52, 75, 380, 517, 518, 808, 821, 832, 833, 858, 859], "affect": [39, 45, 52, 370, 447, 816, 829], "intermedi": [39, 856, 857, 858, 859, 864], "variabl": [39, 41, 42, 44, 52, 53, 54, 60, 69, 75, 76, 77, 83, 117, 118, 120, 316, 362, 368, 369, 375, 380, 413, 437, 499, 510, 511, 527, 551, 552, 553, 554, 557, 583, 604, 605, 607, 609, 610, 611, 616, 622, 623, 625, 628, 630, 674, 703, 704, 705, 725, 761, 772, 777, 779, 780, 781, 782, 783, 784, 785, 808, 813, 817, 820, 824, 827, 828, 832, 833, 837, 840, 841, 842, 843, 844, 851, 859], "original_fn": 39, "100000": 39, "var": [39, 65, 88, 90, 117, 118, 119, 120, 616, 628, 635, 703, 704, 786, 807, 819, 837], "co": [39, 40, 51, 53, 74, 233, 238, 240, 281, 538, 620, 622, 805, 817, 837, 848], "sin": [39, 51, 53, 74, 233, 238, 240, 281, 538, 620, 622, 812, 837], "tan": [39, 51, 74, 525, 620, 622, 820, 824, 825, 828, 829, 837], "comp_fn": 39, "compile_graph": [39, 45], "expected_result": 39, "compiled_result": 39, "irrelev": [39, 816, 817, 819], "opeat": 39, "_layer": [39, 837], "net": [39, 44, 45, 837, 842, 848, 849], "compiled_net": 39, "proceed": 40, "latest": [40, 42, 51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 413, 482, 511, 618, 620, 625, 627, 635, 673, 674, 702, 752, 780, 800, 806, 807, 808, 811, 813, 816, 820, 822, 833, 843, 844, 852, 863], "pypi": [40, 42, 45, 806, 807, 833, 843], "pkg": [40, 42, 45], "public": [40, 42, 45, 531, 622, 816, 827, 839, 861], "revis": [40, 42, 808], "tmp": [40, 42, 578, 600, 622], "req": [40, 42], "tabqrujw": 40, "command": [40, 42, 800, 802, 807, 811, 814, 816, 822, 823, 844], "filter": [40, 42, 44, 52, 56, 75, 79, 311, 312, 362, 368, 388, 406, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 766, 780, 800, 813, 816], "quiet": [40, 42], "commit": [40, 42, 803, 804, 806, 809, 811, 819, 831, 832], "f3be3702c9fab1c9fa97c743813a4bdb39525705": 40, "metadata": [40, 42, 45, 828], "setup": [40, 42, 45, 807, 808, 814, 816, 822], "done": [40, 42, 45, 625, 661, 805, 806, 807, 808, 811, 814, 816, 818, 819, 822, 823, 828, 829, 832, 840, 851, 852, 858], "py3": [40, 42, 45], "whl": [40, 41, 42, 45], "cp39": [40, 42], "manylinux_2_12_x86_64": [40, 42], "manylinux2010_x86_64": [40, 42], "manylinux_2_17_x86_64": [40, 42, 807], "manylinux2014_x86_64": [40, 41, 42], "eta": [40, 42, 45], "tar": [40, 41, 42, 45], "gz": [40, 41, 42, 45], "py2": [40, 42], "495": [40, 42], "nvidia_ml_pi": [40, 42], "pypars": [40, 42, 45], "ivy_cor": [40, 42, 45, 807], "1338326": 40, "sha256": [40, 42, 45], "e5c4205c80116b781373daf4502d61881235c5e3eb0d55096ab07dcc6eb66bec": 40, "store": [40, 42, 45, 49, 52, 53, 57, 59, 69, 72, 75, 76, 80, 82, 149, 368, 369, 412, 420, 424, 436, 440, 538, 622, 625, 627, 679, 696, 761, 762, 780, 781, 782, 802, 808, 812, 813, 815, 820, 826, 828, 829, 830, 837, 839, 840, 841, 845, 851], "directori": [40, 41, 42, 45, 578, 600, 619, 622, 802, 806, 807, 808, 814, 816, 822, 829, 832, 844], "ephem": [40, 42], "njrc_e6b": 40, "2e": [40, 42], "ae2d7c5ce8708e605368a33e08d57d1de8e107e3db157c3063": [40, 42], "4845": [40, 42], "a8cde63eca203d3bd7f900fa32f44dbd038476606a3836de14caf2b0a5ff7460": 40, "b6": [40, 42], "0d": [40, 42], "0d1bbd99855f99cb2f6c2e5ff96f8023fad8ec367695f7d72d": [40, 42], "successfulli": [40, 42, 45, 782, 804, 807, 812], "uninstal": [40, 42, 45], "found": [40, 42, 43, 45, 57, 59, 63, 69, 75, 80, 82, 86, 98, 196, 380, 459, 512, 619, 629, 658, 665, 698, 717, 737, 794, 806, 807, 808, 812, 813, 814, 815, 817, 818, 820, 823, 826, 828, 829, 844, 860], "cannot": [40, 41, 42, 45, 52, 285, 452, 453, 454, 620, 808, 811, 813, 817, 829, 837, 842, 864], "vnd": [40, 42, 45], "json": [40, 42, 45, 69, 807, 822, 840], "psst": 40, "cv2": [40, 42, 44, 840], "pickl": [40, 41, 69, 782, 815, 840], "imageio": 40, "urllib": [40, 45], "_src": 40, "tpu": [40, 189, 195, 206, 211, 619, 818, 858, 861], "back": [40, 52, 59, 75, 82, 371, 464, 485, 567, 590, 622, 624, 627, 650, 694, 779, 784, 794, 807, 812, 817, 818, 821, 826, 827, 834, 836, 843, 844, 848, 856, 860], "tf_cpp_min_log_level": 40, "info": [40, 797, 800, 814, 820, 823], "mkdir": [40, 41, 42, 807, 816], "perceiv": [40, 41], "touch": 40, "io_processor": 40, "position_encod": 40, "absl": 40, "jmp": 40, "tabul": 40, "04": [40, 41, 48, 54, 68, 72, 75, 77, 107, 108, 133, 160, 240, 571, 603, 604, 609, 614, 617, 618, 620, 622, 623, 764, 807, 832], "29359": 40, "29k": 40, "67k": 40, "002": 40, "30179": 40, "47k": 40, "8107": 40, "9k": 40, "92k": 40, "itertool": 40, "preprocessor": 40, "vector": [40, 48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 134, 358, 359, 367, 368, 369, 371, 374, 375, 380, 390, 421, 426, 432, 434, 439, 474, 476, 478, 495, 499, 511, 530, 534, 551, 602, 617, 622, 624, 625, 648, 650, 655, 659, 660, 662, 665, 670, 675, 676, 680, 681, 682, 683, 764, 780, 858], "perceiverbackbon": 40, "input_preprocessor": 40, "_input_preprocessor": 40, "_encod": 40, "__call__": [40, 761, 780, 781, 782, 800, 852], "is_train": 40, "po": [40, 794], "input_mask": 40, "network_input_is_1d": 40, "_input_is_1d": 40, "queri": [40, 41, 56, 69, 79, 193, 207, 544, 570, 619, 622, 624, 650, 653, 780, 815, 817, 822, 839, 858], "decod": [40, 840], "cross": [40, 42, 57, 58, 80, 81, 93, 625, 626, 684, 685, 686, 800, 816, 817], "attend": [40, 624, 650], "encoder_queri": 40, "latent": [40, 628, 704, 705], "imagepreprocessor": 40, "deal": [40, 782, 803, 818, 825, 827, 829, 843], "image_s": 40, "fourier_pos_config": 40, "position_encoding_typ": 40, "fourier": [40, 52, 75, 368, 390, 395, 396, 400, 401, 411, 412, 415, 538, 622], "fourier_position_encoding_kwarg": 40, "concat_po": 40, "max_resolut": 40, "num_band": [40, 53, 76, 538, 622], "sine_onli": 40, "prep_typ": 40, "spatial_downsampl": 40, "cross_attend_widening_factor": 40, "cross_attention_shape_for_attn": 40, "kv": 40, "dropout_prob": 40, "num_block": 40, "num_cross_attend_head": 40, "num_self_attend_head": 40, "num_self_attends_per_block": 40, "num_z_channel": 40, "self_attend_widening_factor": 40, "use_query_residu": 40, "z_index_dim": 40, "z_pos_enc_init_scal": 40, "perceiver_backbon": [40, 800], "perceiverencod": 40, "At": [40, 806, 807, 808, 811, 822, 832, 833, 848, 858], "almost": [40, 805, 815, 830, 838, 840, 847], "publish": [40, 800, 843, 849, 852], "thankfulli": [40, 832], "perceiver_io": [40, 41], "imagenet_fourier_position_encod": 40, "pystat": 40, "imagenet_checkpoint": 40, "rb": 40, "ckpt": 40, "read": [40, 42, 52, 59, 69, 71, 75, 82, 129, 371, 464, 617, 627, 694, 806, 807, 814, 816, 822, 832, 834, 835, 858], "09": [40, 46, 51, 77, 84, 113, 273, 283, 603, 614, 620, 623, 728], "173": [40, 57, 625, 662], "194": 40, "217": [40, 821], "125": [40, 52, 57, 80, 229, 339, 365, 370, 443, 620, 625, 680], "177": [40, 42], "193776248": 40, "185m": 40, "octet": 40, "184": 40, "80m": 40, "144mb": 40, "144": 40, "mean_rgb": 40, "stddev_rgb": 40, "im": 40, "denorm": 40, "resize_and_center_crop": 40, "crop": [40, 52, 75, 368, 396, 401, 412], "center": [40, 779], "image_height": [40, 42, 800], "image_width": [40, 800], "padded_center_crop_s": 40, "minimum": [40, 51, 52, 53, 59, 62, 65, 74, 75, 76, 82, 85, 88, 215, 243, 270, 293, 325, 329, 330, 339, 360, 362, 365, 371, 380, 474, 509, 513, 519, 571, 572, 580, 581, 593, 594, 620, 622, 627, 632, 635, 687, 733, 748, 750, 764, 766, 767, 772, 817, 834, 855, 861, 865], "offset_height": 40, "offset_width": 40, "crop_window": 40, "inter_cub": 40, "ye": [40, 843], "dummy_input": [40, 800], "transpili": 40, "torch_perceiver_backbon": 40, "quicker": 40, "params_v": [40, 800, 852], "perceiverioclassifi": [40, 800], "max_pool": [40, 800], "huggingfac": [40, 851, 852], "Of": [40, 812, 828, 829, 840, 863, 864], "cours": [40, 807, 808, 811, 812, 819, 828, 829, 835, 840, 843, 863, 864], "468": 40, "huggingface_hub": 40, "multiprocess": [40, 69, 98, 622, 840, 843], "py39": 40, "132": [40, 75], "pyarrow": 40, "xxhash": 40, "212": [40, 52, 56, 75, 352, 365, 648], "pyyaml": 40, "2021": [40, 52, 75, 355, 365, 800], "aiohttp": 40, "async": 40, "timeout": [40, 69, 98, 575, 597, 622, 834], "0a3": 40, "async_timeout": 40, "frozenlist": 40, "manylinux_2_5_x86_64": [40, 45], "manylinux1_x86_64": [40, 45], "158": 40, "attr": [40, 817], "aiosign": 40, "multidict": 40, "114": [40, 368, 389, 399], "yarl": 40, "264": [40, 629, 706], "2022": [40, 41], "pytz": 40, "2020": [40, 811, 858], "dateutil": [40, 45], "wikiart": 40, "paint": [40, 800, 837, 847], "load_dataset": [40, 851, 852], "n_sampl": [40, 52, 75, 369, 371, 417, 425, 477], "10000": [40, 42, 48, 71, 133, 617], "huggan": 40, "split": [40, 41, 42, 46, 51, 52, 59, 68, 69, 74, 75, 82, 105, 106, 107, 108, 109, 110, 111, 112, 113, 206, 207, 208, 286, 290, 294, 295, 297, 341, 348, 360, 371, 460, 469, 488, 534, 561, 614, 619, 620, 622, 624, 627, 637, 644, 645, 699, 761, 776, 780, 800, 801, 808, 816, 836, 837, 843, 865], "wiki_art": 40, "gib": 40, "unknown": [40, 764], "total": [40, 42, 52, 65, 69, 75, 88, 98, 129, 210, 324, 325, 326, 334, 362, 365, 370, 442, 617, 619, 632, 635, 735, 752, 754, 794, 800, 801, 807, 808, 817, 818, 819, 832, 835, 840, 841, 843, 849], "huggan___parquet": 40, "36ee951979f9b56c": 40, "2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec": 40, "parquet": 40, "subsequ": [40, 789, 807, 812, 816, 817, 819, 824, 825, 828, 832, 841, 859], "reus": [40, 48, 71, 75, 82, 123, 452, 453, 460, 462, 464, 465, 466, 473, 488, 690, 691, 692, 694, 696, 697, 699, 701, 821, 832, 863], "curl": [40, 807], "server": [40, 800, 807, 808, 814, 822, 844, 858], "row": [40, 52, 75, 93, 127, 142, 322, 362, 369, 371, 378, 380, 427, 437, 466, 472, 489, 504, 510, 511, 617, 625, 631, 632, 666, 674, 675, 680, 726, 735, 779], "2fwikiart": 40, "receiv": [40, 44, 92, 525, 561, 622, 628, 703, 704, 705, 780, 807, 808, 817, 818, 832, 835], "xferd": 40, "averag": [40, 42, 52, 54, 58, 75, 77, 81, 368, 370, 374, 380, 382, 383, 386, 387, 388, 444, 445, 446, 447, 448, 449, 495, 511, 603, 604, 609, 623, 624, 626, 628, 650, 684, 703, 704, 779, 780], "dload": 40, "upload": [40, 832], "spent": [40, 849], "25936": 40, "278k": 40, "number": [40, 42, 43, 44, 45, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 92, 93, 95, 97, 98, 101, 121, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 142, 148, 153, 154, 155, 156, 157, 159, 160, 163, 166, 167, 168, 170, 172, 175, 199, 200, 201, 215, 216, 217, 218, 219, 221, 223, 224, 231, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 252, 256, 258, 266, 267, 268, 269, 270, 271, 273, 275, 277, 278, 279, 281, 282, 286, 288, 313, 317, 318, 319, 320, 321, 322, 324, 325, 326, 328, 329, 330, 332, 333, 334, 335, 344, 349, 353, 362, 365, 368, 369, 370, 371, 374, 380, 401, 412, 415, 418, 421, 425, 426, 427, 435, 439, 441, 442, 452, 453, 454, 474, 475, 476, 477, 478, 480, 482, 484, 487, 490, 491, 492, 509, 511, 512, 513, 514, 520, 538, 545, 563, 580, 581, 588, 601, 602, 615, 617, 618, 619, 620, 622, 624, 625, 626, 627, 628, 631, 632, 633, 635, 636, 637, 644, 645, 647, 650, 655, 659, 660, 661, 668, 673, 675, 679, 680, 681, 684, 687, 689, 690, 692, 693, 695, 696, 698, 700, 702, 703, 704, 705, 726, 730, 735, 737, 738, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 765, 766, 772, 779, 780, 783, 794, 800, 807, 808, 815, 816, 817, 818, 819, 826, 827, 828, 832, 833, 834, 835, 837, 840, 846, 847, 851], "abstract_expression": 40, "action_paint": 40, "analytical_cub": 40, "art_nouveau": 40, "baroqu": 40, "color_field_paint": 40, "contemporary_r": 40, "cubism": 40, "early_renaiss": 40, "expression": 40, "fauvism": 40, "high_renaiss": 40, "impression": 40, "mannerism_late_renaiss": 40, "minim": [40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 368, 370, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 580, 581, 582, 583, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 665, 666, 671, 672, 673, 675, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 754, 755, 756, 794, 820, 828, 830, 835, 837, 851, 856, 864], "naive_art_primitiv": 40, "new_real": 40, "northern_renaiss": 40, "pointil": 40, "pop_art": 40, "post_impression": 40, "realism": 40, "rococo": 40, "romantic": 40, "symbol": [40, 793, 806, 807, 858, 859], "synthetic_cub": 40, "ukiyo_": 40, "custom": [40, 52, 75, 293, 305, 357, 360, 367, 764, 793, 802, 810, 816, 821, 826, 830, 832, 835, 841, 848, 858, 862, 863, 864], "hugginfac": 40, "customdataset": 40, "__len__": [40, 815], "__getitem__": [40, 69, 815], "idx": [40, 41, 42, 524, 622, 800, 818, 839], "random_split": 40, "224x224": 40, "val_siz": 40, "dataset_train": 40, "dataset_v": 40, "dataset_test": 40, "dataloader_train": 40, "batch_siz": [40, 42, 45, 52, 56, 61, 75, 79, 84, 368, 370, 386, 387, 388, 404, 405, 406, 407, 449, 624, 631, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 650, 726, 800, 840], "dataloader_v": 40, "dataloader_test": 40, "batch": [40, 41, 42, 52, 53, 57, 69, 75, 76, 80, 206, 207, 368, 370, 374, 382, 384, 390, 403, 413, 442, 444, 490, 491, 492, 495, 538, 541, 542, 602, 619, 622, 624, 625, 628, 630, 648, 649, 650, 664, 682, 703, 704, 705, 725, 764, 780, 783, 800, 815, 825, 830, 840, 856], "iter": [40, 42, 47, 52, 53, 59, 67, 69, 75, 76, 82, 90, 95, 98, 117, 208, 314, 315, 362, 368, 369, 371, 413, 426, 435, 441, 458, 474, 523, 561, 616, 619, 622, 627, 629, 689, 693, 700, 702, 707, 708, 709, 710, 711, 712, 714, 715, 716, 717, 718, 721, 722, 724, 793, 794, 811, 813, 815, 837, 840, 849, 851], "train_featur": 40, "train_label": 40, "imshow": [40, 41], "crossentropyloss": [40, 781], "sgd": [40, 784, 858], "lr": [40, 54, 77, 525, 604, 607, 609, 610, 611, 622, 623, 784, 840, 841], "001": [40, 51, 52, 60, 72, 75, 77, 160, 258, 275, 332, 344, 365, 604, 618, 620, 623, 630, 725, 764, 840, 841], "train_step": 40, "running_loss": [40, 42, 800], "last_loss": 40, "training_load": 40, "intra": 40, "report": [40, 804, 806, 832], "zero_grad": 40, "backward": [40, 52, 66, 75, 89, 277, 368, 390, 395, 396, 400, 401, 411, 412, 620, 625, 636, 655, 681, 755, 756, 780, 833, 843], "adjust": [40, 65, 88, 369, 437, 635, 752, 754, 789], "999": [40, 54, 74, 77, 286, 603, 604, 609, 611, 620, 623, 784, 841], "epoch_numb": 40, "best_vloss": 40, "1_000_000": 40, "avg_loss": 40, "running_vloss": 40, "vdata": 40, "vinput": 40, "vlabel": 40, "voutput": 40, "vloss": 40, "avg_vloss": 40, "model_path": 40, "model_": 40, "state_dict": [40, 781, 782], "highest": [40, 52, 61, 75, 84, 313, 316, 362, 631, 727, 817], "energi": 40, "sum": [40, 42, 51, 52, 53, 56, 57, 58, 65, 69, 74, 75, 76, 79, 80, 81, 88, 92, 97, 98, 208, 218, 260, 284, 326, 349, 362, 365, 369, 370, 371, 374, 380, 410, 420, 442, 443, 444, 445, 446, 447, 448, 449, 479, 495, 517, 518, 535, 565, 566, 619, 620, 622, 624, 625, 626, 635, 647, 653, 666, 675, 679, 682, 684, 746, 747, 779, 781, 793, 800, 815, 817, 825, 827, 828, 829, 837, 851, 852, 853], "augment": 40, "mayb": [40, 41, 47, 800, 807, 816, 837, 839], "meta": [40, 703, 704, 705, 812, 833, 858], "finetun": 40, "deploi": [40, 800, 816, 845, 852, 856, 857, 858, 860, 864], "present": [41, 52, 65, 69, 75, 88, 332, 365, 374, 490, 491, 492, 635, 750, 806, 807, 808, 815, 817, 818, 824, 828, 837, 847, 855, 856, 865], "percieverio": 41, "ai": [41, 809, 816, 856, 860], "contribut": [41, 52, 75, 380, 514, 804, 805, 807, 808, 809, 814, 822, 823, 829, 830, 837, 844, 851, 862], "highli": [41, 800, 806, 858], "invit": [41, 806, 809, 829, 835], "g4ar9q7dtn": 41, "step1": 41, "printf": 41, "8packag": 41, "share": [41, 69, 181, 618, 764, 765, 800, 809, 813, 815, 819, 825, 827, 829, 830, 832, 835, 837, 848, 856, 857, 864], "googledr": 41, "10_wfp1u4rmzc20eignrdqa9v2s9byjwv": 41, "file_id": 41, "drive": [41, 42], "uc": 41, "export": [41, 816, 857, 864], "tee": [41, 807], "file_id_wget_cmd": 41, "perl": 41, "pe": 41, "g": [41, 43, 44, 52, 61, 63, 65, 67, 75, 84, 90, 92, 146, 175, 188, 235, 248, 268, 275, 278, 329, 330, 365, 368, 369, 371, 375, 380, 404, 406, 441, 482, 497, 498, 499, 500, 501, 512, 513, 618, 619, 620, 625, 629, 631, 633, 635, 660, 661, 666, 673, 675, 676, 682, 709, 713, 715, 718, 723, 727, 728, 729, 737, 738, 739, 740, 745, 746, 748, 750, 751, 753, 779, 801, 806, 807, 810, 811, 813, 814, 815, 827, 829, 832, 837, 843, 845, 849, 854], "uuid": 41, "anywai": [41, 812, 826, 829], "bin": [41, 52, 75, 380, 509, 514, 807, 808, 811, 815], "bash": [41, 807, 808, 811], "step2": 41, "interpret": [41, 48, 52, 71, 75, 122, 123, 129, 135, 370, 380, 444, 511, 617, 816, 859], "sudo": [41, 807], "apt": [41, 807], "yf": 41, "step3": 41, "delet": [41, 808, 816], "xvzf": 41, "rm": [41, 43, 802, 808], "step4": 41, "symlink": 41, "unzip": [41, 42], "fr": 41, "l": [41, 52, 57, 74, 80, 262, 369, 370, 421, 442, 624, 625, 650, 654, 659, 660, 661, 665, 679, 808, 810], "d": [41, 52, 53, 56, 57, 59, 71, 75, 76, 79, 80, 82, 95, 111, 133, 142, 175, 218, 235, 236, 268, 271, 322, 362, 368, 369, 371, 374, 375, 378, 386, 387, 388, 395, 400, 404, 405, 406, 407, 409, 413, 419, 433, 454, 460, 462, 465, 469, 483, 485, 488, 495, 497, 503, 526, 537, 614, 617, 618, 620, 624, 625, 627, 629, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 657, 658, 662, 666, 670, 679, 680, 696, 709, 713, 714, 715, 718, 723, 724, 765, 794, 800, 801, 807, 810, 813, 814, 815, 822, 827, 832, 835, 840, 848, 849, 854], "ln": 41, "sf": 41, "la": 41, "step5": 41, "regular": [41, 75, 369, 380, 433, 515, 625, 664, 807, 829, 858], "step6": 41, "ipkykernel": 41, "step7": 41, "engbjapanpython3": 41, "separ": [41, 52, 53, 75, 374, 491, 538, 622, 624, 650, 807, 808, 812, 815, 816, 819, 830, 831, 832, 837, 839, 840, 859, 863], "ipykernel": 41, "reconnect": 41, "sy": 41, "oct": 41, "gcc": [41, 856, 863], "lf": 41, "upgrad": 41, "cuda11": 41, "cudnn805": 41, "cp38": [41, 45, 807], "helper": [41, 759, 761, 762, 768, 770, 771, 800, 803, 814, 817, 821, 822, 831, 840, 845], "feedforward": 41, "prenorm": 41, "perceiveriospec": 41, "fetch": [41, 546, 622, 807, 808, 811, 816], "ogbanugot": 41, "xmartlab": 41, "caffeflow": 41, "fetch_class": 41, "class_label": 41, "ground_truth": 41, "127": [41, 49, 52, 57, 72, 75, 163, 352, 365, 618, 625, 662], "path_to_imag": 41, "get_imag": 41, "ax": [41, 46, 52, 57, 59, 62, 65, 66, 68, 75, 80, 82, 85, 88, 89, 97, 101, 108, 112, 208, 329, 330, 334, 335, 349, 356, 365, 366, 368, 369, 371, 374, 380, 396, 401, 412, 436, 473, 474, 480, 493, 516, 517, 518, 519, 520, 521, 534, 602, 619, 622, 625, 627, 632, 635, 636, 655, 666, 674, 677, 678, 682, 689, 691, 692, 695, 697, 699, 702, 732, 733, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 766, 780, 817, 819, 832, 833, 837, 839], "fig": [41, 42], "subplot": [41, 42], "spine": 41, "set_vis": 41, "right": [41, 52, 57, 69, 75, 80, 98, 115, 116, 227, 229, 282, 343, 365, 368, 369, 371, 402, 430, 436, 437, 439, 465, 534, 616, 620, 622, 625, 634, 675, 680, 743, 764, 801, 806, 807, 808, 810, 811, 819, 822, 835, 840, 851], "bottom": [41, 534, 622, 806, 807, 816, 822, 864], "tick_param": 41, "set_xticklabel": 41, "set_yticklabel": 41, "show_result": 41, "along": [41, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 95, 108, 112, 117, 132, 133, 208, 282, 285, 287, 324, 325, 326, 329, 330, 334, 335, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 389, 395, 396, 399, 400, 401, 411, 412, 435, 446, 459, 460, 461, 463, 465, 466, 474, 479, 482, 484, 493, 494, 495, 496, 512, 513, 514, 516, 517, 518, 519, 520, 521, 534, 541, 616, 617, 619, 620, 622, 625, 626, 627, 628, 631, 632, 634, 635, 636, 655, 670, 679, 681, 682, 684, 685, 686, 688, 691, 692, 693, 695, 696, 698, 700, 701, 703, 704, 705, 731, 732, 733, 741, 742, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 780, 800, 806, 810, 819, 828, 831, 833, 835, 837, 858], "figur": [41, 834], "figsiz": [41, 42], "listdir": [41, 42], "endswith": 41, "this_dir": 41, "dirnam": 41, "join": [41, 42, 59, 69, 75, 82, 458, 459, 627, 688, 698, 800], "add_subplot": 41, "xtick": 41, "ytick": 41, "set_titl": [41, 42], "color": [41, 69, 98, 799], "green": [41, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 799, 806, 807, 808], "red": 41, "perceiver_io_img_classif": 41, "normalize_imag": 41, "batch_shap": [41, 56, 61, 71, 79, 84, 127, 136, 617, 624, 625, 631, 649, 653, 683, 726, 780, 835, 837, 839], "img_dim": 41, "queries_dim": 41, "learn_queri": 41, "load_weight": 41, "num_input_ax": 41, "network_depth": 41, "num_lat_att_per_lay": 41, "query_shap": 41, "num_fourier_freq_band": 41, "weight_fpath": 41, "pretrained_weight": 41, "isfil": 41, "noinspect": [41, 839], "pybroadexcept": 41, "from_disk_as_pickl": 41, "larg": [41, 51, 52, 74, 75, 218, 235, 242, 268, 269, 371, 380, 482, 511, 620, 625, 673, 802, 807, 808, 814, 816, 822, 840, 851, 858], "action": [41, 805, 816, 819, 823, 832], "fail": [41, 759, 803, 807, 808, 811, 816, 817, 819, 823, 826, 828, 829, 830], "placehold": [41, 629, 713, 718, 723, 780, 808, 812, 824, 845], "pyunboundlocalvari": 41, "max_fourier_freq": 41, "random_uniform": [41, 45, 61, 84, 631, 818, 821, 832, 837, 841], "817437": 41, "common_runtim": 41, "gpu_bfc_alloc": 41, "orig_valu": 41, "tf_force_gpu_allow_growth": 41, "autograd": [41, 843], "declar": [41, 808, 831], "_3r2_73j": 42, "0edf8c1e8ea835f4c456bdf89737d89032f50b5a": 42, "1297564": 42, "05fcafac1e19fec835a9ac61270b3ac6039a5095f6b0f9fde20bacc2a5abba45": 42, "le3bu3_v": 42, "cc6508f5d7e25538c5df5fdae52a41d2bf17b9a517aedd125cfca913bb5b259b": 42, "third": [42, 92, 93, 371, 461, 487, 625, 633, 675, 737, 814, 817, 828, 843, 857, 858, 864], "parti": [42, 814, 817, 843, 848, 857, 858, 864], "mount": [42, 802, 808], "mydriv": 42, "chdir": 42, "One": [42, 52, 53, 59, 61, 75, 76, 82, 84, 95, 371, 452, 453, 454, 457, 474, 483, 535, 622, 627, 631, 694, 727, 812, 815, 817, 819, 825, 830, 832, 837, 839, 840], "kaggl": 42, "medium": 42, "articl": [42, 800, 823], "insert": [42, 52, 62, 75, 85, 371, 449, 459, 627, 629, 632, 634, 690, 710, 711, 732, 743, 816, 823], "www": [42, 329, 330, 365], "your_kaggle_usernam": 42, "competit": 42, "digit": 42, "recogn": [42, 804, 809], "zip": [42, 837], "readabl": [42, 812, 815, 821, 823, 824, 832, 833, 839, 840], "chmod": [42, 807, 816], "recent": [42, 797, 807, 808, 832, 847, 848], "modifi": [42, 52, 69, 75, 92, 371, 380, 471, 474, 479, 518, 764, 794, 806, 807, 808, 809, 811, 813, 814, 817, 818, 820, 822, 823, 825, 828, 830, 832, 833, 837], "forc": [42, 814, 816, 818], "archiv": [42, 807], "inflat": [42, 817], "sample_submiss": 42, "frame": [42, 52, 75, 313, 362, 368, 415, 848, 858], "later": [42, 69, 528, 622, 806, 823, 828, 832, 833, 858], "my": [42, 816], "label_df": 42, "mod_train": 42, "data_valu": 42, "test_data_valu": 42, "correct_label": 42, "train_path": 42, "str": [42, 44, 47, 48, 52, 53, 56, 57, 58, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 134, 136, 138, 144, 145, 148, 150, 152, 153, 154, 155, 159, 160, 163, 164, 165, 166, 167, 168, 170, 172, 175, 176, 177, 178, 179, 180, 187, 188, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 368, 369, 370, 371, 374, 380, 383, 386, 387, 388, 390, 391, 392, 393, 395, 396, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 418, 422, 435, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 457, 458, 459, 464, 480, 482, 483, 484, 485, 490, 491, 492, 493, 494, 496, 498, 500, 511, 512, 513, 514, 521, 523, 524, 526, 527, 529, 530, 532, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 562, 565, 566, 568, 569, 578, 580, 581, 583, 585, 587, 588, 601, 605, 612, 616, 617, 618, 619, 622, 623, 624, 625, 626, 627, 628, 629, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 653, 654, 655, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 676, 679, 684, 685, 686, 687, 691, 694, 695, 696, 697, 698, 701, 702, 703, 704, 705, 712, 713, 718, 723, 726, 727, 728, 729, 731, 734, 737, 738, 739, 741, 745, 746, 747, 749, 751, 752, 754, 755, 756, 761, 762, 764, 765, 770, 772, 780, 782, 783, 793, 794, 817, 818, 821, 825, 828, 829, 833, 837, 842, 851, 852, 853], "makedir": 42, "valid_path": 42, "28x28": 42, "pic": 42, "pictur": [42, 800, 806, 837, 847], "int8": [42, 49, 61, 71, 72, 84, 129, 156, 161, 163, 164, 168, 617, 618, 727, 764, 765, 817, 832], "new_img": [42, 44], "builder": [42, 802], "batchwis": 42, "subset": [42, 766, 812, 816, 820, 824, 827, 829, 832, 837, 858], "goe": [42, 371, 457, 810, 823, 828, 835], "seed_valu": [42, 69, 631, 730], "randomize_dataset": 42, "shuffl": [42, 52, 61, 69, 75, 84, 499, 631], "create_dataset": 42, "num_examples_per_class": 42, "img_arrai": 42, "class_nam": [42, 761], "dir": [42, 840], "img_path": 42, "imread": [42, 44, 840], "imread_grayscal": 42, "generate_batch": [42, 800], "dataset_s": [42, 800], "ivyerror": [42, 795, 800, 821], "smaller": [42, 52, 59, 65, 75, 82, 296, 328, 344, 360, 365, 368, 370, 380, 396, 401, 412, 442, 511, 512, 513, 534, 622, 627, 635, 687, 695, 745, 746, 751, 753, 800, 808, 821, 837], "yield": [42, 62, 314, 315, 362, 371, 474, 632, 736, 800, 816], "x_batch_inst": 42, "form": [42, 44, 47, 48, 52, 57, 69, 71, 80, 91, 92, 93, 122, 123, 135, 140, 141, 306, 309, 323, 332, 362, 365, 369, 371, 421, 430, 461, 470, 474, 489, 524, 584, 586, 617, 622, 624, 625, 629, 654, 656, 658, 659, 660, 661, 663, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 679, 707, 718, 764, 779, 801, 806, 807, 809, 825, 832, 835, 841, 842, 848, 858, 859, 864], "intialis": 42, "num_epoch": [42, 800], "inherit": [42, 812, 815, 821, 839, 843, 845], "creation": [42, 52, 69, 75, 98, 814, 817, 818, 824, 826, 829, 830, 832, 833, 837, 851, 858, 860, 864], "inform": [42, 44, 49, 52, 54, 72, 77, 160, 163, 313, 362, 524, 612, 618, 622, 623, 628, 705, 800, 805, 806, 807, 808, 809, 811, 815, 816, 821, 825, 826, 828, 830, 832, 861], "insid": [42, 57, 80, 98, 371, 484, 625, 668, 762, 807, 808, 812, 815, 817, 818, 822, 825, 826, 832, 833, 851, 864], "ivynet": [42, 800], "h_w": [42, 800], "input_channel": [42, 780, 800, 837, 841], "output_channel": [42, 780, 800, 841], "gelu": [42, 43, 46, 68, 614, 776, 800], "image_widht": 42, "start_dim": [42, 52, 75, 371, 464, 800], "end_dim": [42, 52, 75, 371, 464, 800], "gpu_is_avail": [42, 619, 800], "120": [42, 65, 88, 98, 625, 670, 745, 800], "model_nam": [42, 800], "__name__": [42, 43, 45, 589, 622, 800, 821], "heavi": [42, 766, 807, 829, 830, 835, 859], "lift": [42, 830, 859], "num_correct": [42, 800], "y_pred": [42, 800], "cross_entropi": [42, 58, 81, 626, 686, 800, 815, 825, 828], "epoch_loss": [42, 800], "field": [42, 57, 63, 80, 86, 369, 371, 421, 487, 625, 633, 659, 660, 672, 673, 675, 737, 738, 739, 800, 816, 856, 864], "training_accuraci": [42, 800], "train_loss": [42, 800], "train_correct": [42, 800], "train_loop": [42, 800], "posit": [42, 44, 47, 51, 52, 53, 57, 58, 59, 74, 75, 76, 80, 81, 82, 92, 127, 129, 142, 160, 215, 216, 217, 221, 224, 235, 242, 249, 250, 256, 258, 268, 269, 276, 277, 281, 282, 286, 307, 322, 328, 333, 344, 362, 365, 369, 371, 419, 437, 448, 473, 482, 528, 538, 602, 615, 617, 618, 620, 622, 625, 626, 627, 631, 632, 636, 654, 657, 679, 684, 690, 695, 730, 735, 755, 756, 761, 764, 772, 777, 781, 782, 794, 800, 806, 808, 811, 815, 829, 832, 833, 840, 851, 860], "leav": [42, 47, 52, 70, 72, 74, 75, 76, 79, 80, 82, 88, 98, 160, 163, 235, 292, 294, 295, 301, 371, 458, 459, 464, 476, 477, 478, 493, 494, 496, 512, 513, 518, 538, 585, 627, 629, 643, 653, 658, 675, 689, 693, 698, 700, 701, 706, 707, 716, 717, 718, 719, 745, 746, 793, 800, 806, 815, 816, 817, 819, 820, 824, 825, 828, 829, 832, 840, 841], "xbatch": [42, 800], "ybatch": [42, 800], "to_devic": [42, 50, 73, 191, 619, 782, 800], "entropi": [42, 58, 81, 626, 684, 685, 686, 800], "hot": [42, 48, 71, 136, 617, 800], "ybatch_encod": [42, 800], "one_hot": [42, 48, 71, 617, 800, 842], "loss_prob": [42, 800], "ret_grad_idx": [42, 605, 623, 761, 827], "xs_grad_idx": [42, 605, 623, 761, 827], "batch_loss": [42, 800], "set_descript": [42, 800], "set_postfix": [42, 800], "accuracy_percentag": [42, 800], "naverag": [42, 800], "6f": [42, 800], "_train_summari": [42, 800], "writer": [42, 800], "writerow": [42, 800], "157it": 42, "06it": 42, "475401": 42, "11it": 42, "081436": 42, "13it": 42, "0187": 42, "029279": 42, "0324": 42, "008382": 42, "07it": 42, "00456": 42, "003816": 42, "82it": 42, "00277": 42, "002179": 42, "05it": 42, "00175": 42, "001569": 42, "00147": 42, "001235": 42, "09it": 42, "00128": 42, "001005": 42, "106": 42, "10it": 42, "00112": 42, "000837": 42, "129": [42, 624, 643, 645], "12it": 42, "000989": 42, "000709": 42, "145": 42, "000873": 42, "000606": 42, "168": [42, 529, 622, 629, 706], "08it": 42, "000774": 42, "000524": 42, "000688": 42, "000455": 42, "000613": 42, "000398": 42, "000547": 42, "000350": 42, "205": 42, "000488": 42, "000308": 42, "218": 42, "000437": 42, "000273": 42, "000391": 42, "000243": 42, "238": [42, 242, 620], "98it": 42, "000351": 42, "000216": 42, "260": 42, "plot_summari": 42, "seaborn": 42, "whitegrid": 42, "ax1": 42, "ax2": 42, "nrow": 42, "ncol": 42, "fontweight": 42, "bold": 42, "set_xlabel": 42, "set_ylabel": 42, "tight_layout": 42, "savefig": 42, "summary_plot": 42, "png": [42, 44, 45, 840], "close": [42, 57, 240, 258, 278, 306, 362, 620, 625, 627, 675, 690, 803, 806, 807, 808, 817, 820, 822, 829, 835, 858], "save_weight": [42, 782], "model_param": 42, "ivynet_weight": 42, "hdf5": [42, 69, 782, 840], "deitimageprocessor": 43, "tfdeitforimageclassif": 43, "tfdeitforimageclassificationwithteach": 43, "head": [43, 44, 624, 650, 780, 800, 805, 807, 816, 829], "distillation_classifi": 43, "cls_classifi": 43, "randomli": [43, 368, 391, 392, 393, 624, 647, 764, 765, 766, 767, 772, 780], "henc": [43, 63, 218, 332, 365, 620, 627, 633, 690, 737, 738, 739, 740, 789, 807, 815, 816, 817, 828, 832], "reproduc": [43, 56, 79, 624, 647, 764, 765, 766, 767, 772, 803, 811, 822], "image_processor": [43, 851, 852], "facebook": 43, "distil": [43, 859], "patch16": 43, "outputs_from_original_model": 43, "predicted_class_idx": 43, "id2label": [43, 851], "architectur": [43, 800, 807, 842, 843, 856, 857, 858, 861, 862, 863], "bertforsequenceclassif": 43, "bertforpretrain": 43, "NOT": [43, 263, 620, 793, 806], "probabl": [43, 52, 56, 58, 61, 75, 79, 81, 84, 368, 370, 375, 380, 391, 392, 393, 444, 497, 511, 514, 518, 624, 626, 631, 647, 650, 653, 684, 726, 766, 779, 780, 800, 832, 844, 849], "ptarmigan": 43, "rf": [43, 808], "branch": [43, 223, 235, 238, 240, 268, 280, 281, 282, 285, 620, 806, 807, 808, 811, 816, 823, 843, 851, 858], "moduleconvert": [43, 777, 782], "mc": 43, "from_keras_modul": [43, 777], "compiled_func": 43, "return_graph": [43, 45], "compiled_output": 43, "diverg": [43, 52, 75, 242, 370, 444, 620], "_all_funct": [43, 45], "convert_to_tensor_v2_with_dispatch": 43, "transpose_v2": 43, "convolution_v2": 43, "bias_add": 43, "binary_op_wrapp": 43, "cast": [43, 49, 51, 52, 57, 65, 72, 74, 80, 147, 150, 175, 269, 380, 512, 513, 618, 620, 625, 635, 682, 745, 746, 751, 753, 765, 825, 830, 837], "moments_v2": 43, "batch_norm": [43, 45, 52, 75, 374], "tensordot": [43, 57, 80, 625, 794, 817], "softmax_v2": 43, "_slice_help": 43, "save_to_disk": [43, 45, 782], "12265048989200113": 43, "11038777417100028": 43, "1167045795539998": 43, "ivy_api_kei": 44, "obj": [44, 122, 123, 546, 617, 622, 851, 852, 853], "combo": [44, 840], "permit": [44, 812, 824, 829, 832, 835], "usabl": [44, 824, 833], "neither": [44, 218, 235, 242, 268, 620, 625, 677, 816, 829, 835], "nor": [44, 218, 235, 242, 268, 620, 816, 829, 862], "specifc": 44, "invoc": 44, "represent": [44, 52, 53, 69, 75, 76, 98, 145, 146, 160, 163, 188, 189, 215, 218, 225, 228, 230, 235, 242, 265, 268, 270, 285, 310, 341, 345, 350, 354, 362, 365, 524, 585, 615, 618, 619, 620, 622, 764, 766, 767, 780, 817, 856, 857, 859, 863, 864], "externally_link": 44, "logo": 44, "patch": [44, 286, 620, 817, 858], "cv2_imshow": 44, "envrion": 44, "canni": 44, "original_img": 44, "fn_arg": 44, "dilate_edg": 44, "edg": [44, 52, 59, 75, 82, 313, 362, 368, 371, 380, 403, 474, 514, 627, 687, 689, 702, 767, 811, 832, 852, 858, 860, 864], "morphologi": 44, "hk_model": 44, "resnet18": [44, 45], "keras_model": 44, "count": [44, 52, 59, 63, 66, 71, 75, 82, 86, 89, 129, 201, 334, 365, 371, 380, 482, 487, 509, 514, 617, 619, 625, 627, 633, 636, 655, 681, 688, 691, 737, 738, 755, 756, 814, 815, 819, 840], "odsc": 44, "talk": [44, 863], "228": 45, "352": [45, 79, 624, 648, 821], "nvidia_ml_py3": 45, "19190": 45, "241af6b4a51197474b0da3ee7bfa32d847756c8f0d93b51448655d6458312714": 45, "b9": 45, "b1": [45, 625, 674], "cb4feab29709d4155310d29a421389665dcab9eb3b679b527b": 45, "cycler": 45, "fonttool": 45, "965": 45, "pillow": 45, "kiwisolv": 45, "show_graph": [45, 782], "to_ivy_modul": [45, 777, 842], "image_dim": 45, "v0": [45, 841], "urlerror": 45, "dev_str": 45, "comp_network": 45, "time_chronolog": 45, "ret0_nc": 45, "ret1_nc": 45, "ret0_c": 45, "ret1_c": 45, "pytorch_vision_v0": 45, "distribut": [45, 52, 58, 61, 75, 81, 84, 368, 369, 370, 375, 391, 392, 393, 426, 435, 441, 444, 446, 447, 449, 497, 498, 499, 500, 501, 626, 631, 684, 685, 686, 726, 727, 728, 729, 731, 779, 780, 806, 807, 816, 818, 843, 858, 861], "distributed_c10d": 45, "262": 45, "reduce_op": 45, "deprec": 45, "reduceop": 45, "004645566477999864": 45, "0044566806820000695": 45, "attribut": [45, 69, 160, 161, 162, 163, 194, 195, 203, 539, 540, 618, 619, 622, 762, 813, 814, 815, 820, 821, 825, 826, 828, 829, 835, 838, 839, 840, 841], "definit": [45, 51, 57, 74, 80, 287, 620, 625, 654, 800, 803, 808, 812, 817, 822, 825, 839, 852], "max_pool2d": [45, 52, 75, 368, 387], "__iadd__": 45, "adaptive_avg_pool2d": [45, 52, 75, 368], "_arraywithactiv": [46, 97], "abc": [46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 101, 537, 622, 629, 724, 779, 784, 793, 794, 839], "_abc_impl": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc_data": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "approxim": [46, 51, 52, 57, 68, 74, 75, 80, 92, 95, 105, 216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 242, 256, 257, 258, 259, 273, 280, 281, 285, 286, 287, 342, 352, 365, 370, 446, 447, 614, 620, 625, 668, 671, 776, 820, 829], "complex_mod": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 614, 620, 776, 826], "variant": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 580, 581, 582, 583, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 665, 666, 668, 671, 672, 673, 675, 679, 680, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 754, 755, 756, 812, 819, 820, 835], "docstr": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 580, 581, 582, 583, 585, 587, 588, 601, 602, 603, 604, 607, 609, 610, 611, 612, 617, 618, 620, 622, 625, 627, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 805, 806, 810, 814, 823, 824, 825, 826, 829, 831, 833], "liter": [46, 51, 52, 57, 68, 74, 75, 80, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 368, 369, 371, 374, 389, 399, 403, 411, 426, 430, 435, 438, 441, 474, 495, 614, 620, 625, 634, 666, 682, 743, 776, 835], "magnitud": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 215, 218, 235, 242, 268, 286, 290, 294, 295, 297, 360, 614, 620, 625, 675, 676, 776, 817], "handle_complex_input": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 614, 620, 776, 826], "element": [46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 72, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 93, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 124, 130, 131, 140, 141, 142, 158, 160, 163, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 336, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 370, 371, 380, 381, 391, 392, 393, 396, 401, 404, 405, 406, 410, 412, 413, 414, 420, 421, 422, 442, 452, 453, 454, 464, 465, 466, 468, 471, 481, 482, 484, 487, 509, 510, 512, 513, 514, 515, 516, 517, 519, 520, 522, 526, 529, 530, 541, 542, 558, 560, 580, 581, 583, 587, 588, 614, 617, 620, 622, 624, 625, 627, 629, 631, 632, 633, 634, 635, 636, 647, 655, 657, 659, 660, 665, 670, 672, 673, 675, 679, 687, 690, 691, 692, 693, 694, 695, 696, 697, 706, 709, 715, 726, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 764, 766, 780, 794, 820, 830, 832, 835, 837, 862], "138": [46, 105, 614], "165": [46, 105, 614, 624, 648], "hardswish": [46, 68, 614, 776], "leaky_relu": [46, 68, 75, 290, 614, 765], "alpha": [46, 51, 52, 68, 74, 75, 102, 107, 218, 284, 290, 291, 298, 302, 308, 360, 362, 369, 374, 375, 422, 495, 498, 499, 500, 614, 620, 776, 824, 829, 830], "float": [46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 60, 61, 63, 65, 68, 71, 72, 74, 75, 76, 77, 79, 80, 81, 83, 84, 88, 92, 95, 97, 107, 113, 121, 122, 123, 125, 127, 129, 130, 131, 132, 133, 137, 138, 143, 147, 151, 155, 160, 164, 168, 174, 175, 178, 184, 193, 202, 206, 207, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 239, 240, 241, 242, 246, 248, 249, 250, 251, 252, 254, 256, 257, 258, 259, 260, 261, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 298, 301, 302, 304, 305, 306, 307, 308, 309, 311, 312, 313, 328, 329, 330, 331, 338, 339, 344, 346, 347, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 391, 392, 393, 410, 411, 418, 421, 422, 424, 435, 439, 441, 442, 443, 447, 448, 463, 481, 490, 491, 492, 495, 496, 497, 498, 499, 500, 501, 511, 512, 513, 514, 519, 520, 521, 528, 529, 530, 538, 547, 571, 572, 575, 580, 581, 601, 603, 604, 607, 609, 610, 611, 614, 615, 617, 618, 619, 620, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 635, 647, 650, 653, 654, 656, 659, 660, 661, 663, 666, 667, 668, 671, 672, 673, 674, 675, 676, 677, 679, 682, 684, 685, 686, 703, 704, 705, 712, 725, 728, 729, 735, 737, 738, 739, 740, 745, 746, 748, 749, 750, 751, 752, 753, 754, 761, 764, 765, 767, 776, 779, 780, 783, 784, 803, 811, 815, 817, 820, 821, 822, 824, 825, 827, 828, 830, 832, 833, 835, 837, 839, 841], "slope": [46, 52, 68, 75, 107, 290, 291, 296, 298, 302, 360, 614, 776], "neg": [46, 51, 52, 57, 59, 61, 66, 68, 74, 75, 80, 82, 84, 89, 92, 107, 110, 113, 121, 127, 129, 142, 235, 242, 249, 250, 268, 269, 277, 282, 290, 307, 322, 325, 360, 362, 369, 370, 371, 375, 419, 426, 430, 447, 482, 501, 614, 617, 620, 625, 627, 631, 636, 655, 657, 675, 679, 681, 682, 688, 690, 691, 695, 728, 755, 756, 764, 766, 776, 815, 828], "leaki": [46, 68, 107, 614, 776], "log_softmax": [46, 68, 614, 776], "0719": [46, 68, 108], "221": [46, 108], "mish": [46, 68, 614, 776], "30340147": [46, 109, 614], "86509842": [46, 68, 109, 614], "269": [46, 111], "731": [46, 111], "881": [46, 51, 74, 111, 221, 234, 274, 620], "422": [46, 112, 614], "155": [46, 79, 112, 614, 624, 648], "softplu": [46, 68, 614, 776, 835], "beta": [46, 52, 60, 68, 75, 83, 113, 298, 302, 308, 311, 312, 360, 362, 369, 370, 374, 375, 422, 448, 495, 499, 500, 614, 630, 725, 776, 835], "threshold": [46, 51, 52, 68, 74, 75, 113, 266, 267, 305, 331, 360, 365, 370, 371, 443, 448, 481, 614, 620, 776, 835], "union": [46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 480, 481, 482, 483, 484, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 543, 544, 545, 547, 549, 550, 551, 553, 554, 557, 558, 560, 561, 565, 566, 570, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 601, 602, 603, 604, 605, 606, 607, 609, 610, 611, 612, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 713, 714, 715, 717, 718, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 779, 784, 785, 812, 815, 817, 818, 819, 821, 824, 825, 828, 833, 835, 837, 842, 851, 852, 853], "3461": [46, 68, 113, 614], "6491": [46, 68, 113, 614], "_array_to_new_backend": 47, "_to_ivi": 47, "_to_n": 47, "to_ignor": [47, 67, 90, 629, 717, 718], "_to_new_backend": 47, "args_to_ivi": 47, "include_deriv": [47, 70, 629, 707, 718, 761], "nest": [47, 69, 70, 98, 101, 238, 556, 585, 602, 605, 620, 622, 623, 628, 703, 704, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 784, 812, 814, 815, 825, 827, 833, 840, 841, 843, 845, 858], "unchang": [47, 51, 368, 371, 412, 464, 624, 647], "deriv": [47, 48, 52, 54, 70, 71, 75, 77, 126, 131, 138, 144, 307, 311, 336, 362, 365, 603, 604, 607, 608, 609, 610, 611, 617, 623, 628, 629, 705, 707, 718, 782, 784, 785, 817, 818, 839, 841], "word": [47, 121, 371, 467, 617, 631, 729, 777, 780, 815, 828, 829, 845], "args_to_n": [47, 828], "cont_inplac": 47, "decid": [47, 69, 629, 717, 718, 800, 806, 807, 817, 835], "args_to_new_backend": 47, "shallow": [47, 629, 713, 714, 718, 723, 724], "nativevari": 47, "mutabl": [47, 629, 707, 713, 714, 718, 723, 724, 813], "to_ivi": [47, 70, 629, 719, 828], "leaf": [47, 69, 76, 88, 98, 537, 629, 716, 717, 719, 746, 815, 825, 840], "travers": [47, 70, 629, 710, 718, 815, 817, 821, 837], "lowest": [47, 52, 61, 70, 75, 84, 380, 514, 629, 631, 718, 727, 794, 825, 843, 845, 855, 859, 863], "search": [47, 52, 70, 75, 732, 733, 772, 805, 807, 815, 819, 822, 832, 833, 847], "to_new_backend": 47, "_arraywithcr": [48, 97], "boolean": [48, 49, 51, 52, 53, 59, 62, 65, 69, 71, 72, 74, 75, 76, 82, 85, 88, 97, 98, 118, 120, 122, 123, 124, 130, 147, 163, 165, 167, 168, 171, 187, 197, 205, 211, 225, 226, 227, 228, 229, 230, 262, 263, 264, 265, 329, 330, 344, 365, 369, 371, 426, 435, 441, 452, 453, 454, 460, 462, 464, 465, 466, 469, 473, 480, 482, 488, 523, 526, 537, 544, 547, 548, 552, 553, 554, 555, 556, 557, 558, 567, 570, 573, 574, 576, 577, 601, 616, 617, 618, 619, 620, 622, 624, 627, 628, 629, 632, 635, 650, 690, 691, 692, 694, 696, 697, 699, 701, 703, 704, 716, 734, 735, 736, 748, 750, 764, 765, 766, 767, 772, 783, 815, 817, 825, 829, 832, 835], "alwai": [48, 49, 52, 53, 59, 71, 72, 75, 82, 105, 123, 147, 218, 268, 339, 365, 369, 371, 437, 452, 453, 454, 460, 462, 464, 465, 466, 469, 473, 480, 488, 544, 551, 614, 618, 620, 622, 627, 690, 691, 692, 694, 696, 697, 699, 701, 766, 800, 806, 807, 808, 812, 813, 815, 817, 820, 823, 824, 825, 828, 829, 830, 831, 832, 833, 835, 837, 843, 851], "never": [48, 52, 59, 71, 75, 82, 123, 371, 452, 453, 454, 460, 462, 464, 465, 466, 469, 473, 480, 488, 544, 622, 627, 690, 691, 692, 694, 696, 697, 699, 701, 808, 817, 828, 829, 832], "valueerror": [48, 52, 59, 71, 75, 82, 86, 123, 368, 370, 401, 412, 447, 452, 453, 460, 462, 464, 465, 466, 473, 488, 627, 690, 691, 692, 694, 696, 697, 699, 701, 740, 766, 795, 821], "buffer": [48, 71, 75, 82, 123, 129, 452, 453, 460, 462, 464, 465, 466, 473, 488, 617, 690, 691, 692, 694, 696, 697, 699, 701, 781, 782, 828, 843], "nativedtyp": [48, 49, 52, 56, 57, 61, 62, 65, 71, 75, 80, 84, 85, 88, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 146, 147, 152, 153, 154, 155, 156, 157, 158, 159, 164, 165, 169, 171, 173, 177, 187, 306, 307, 308, 309, 310, 311, 312, 327, 334, 349, 362, 365, 375, 380, 497, 498, 499, 500, 501, 511, 512, 513, 514, 517, 520, 617, 618, 624, 625, 631, 632, 634, 635, 647, 682, 727, 728, 729, 732, 733, 743, 745, 746, 751, 753, 779, 817, 818, 824, 833, 837], "datatyp": [48, 52, 69, 71, 75, 123, 131, 135, 152, 173, 177, 368, 415, 617, 618, 759, 833, 851], "nativedevic": [48, 50, 52, 61, 71, 73, 75, 84, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 189, 190, 191, 192, 193, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 306, 307, 322, 362, 375, 497, 498, 500, 501, 617, 619, 631, 726, 727, 728, 729, 779, 784, 785, 817, 818, 821, 824, 833], "39999998": [48, 122, 123, 617, 633, 738], "5999999": [48, 52, 75, 79, 122, 123, 292, 360, 369, 417, 617, 624, 647, 653], "0999999": [48, 65, 122, 123, 292, 301, 304, 346, 360, 365, 617, 749], "10000038": [48, 122, 123, 617], "90786433e": [48, 122, 123, 617], "310": [48, 122, 123, 617], "copy_arrai": [48, 71, 617], "to_ivy_arrai": [48, 71, 124, 617], "empty_lik": [48, 52, 71, 75, 259, 369, 420, 617, 620], "uniniti": [48, 125, 126, 617, 823], "from_dlpack": [48, 71, 617], "full_lik": [48, 71, 617, 833], "fill_valu": [48, 52, 62, 71, 75, 85, 130, 131, 247, 255, 371, 375, 482, 501, 617, 620, 632, 735, 817, 830, 833], "scalar": [48, 51, 52, 53, 57, 68, 71, 74, 75, 76, 80, 92, 107, 131, 136, 218, 239, 284, 290, 332, 333, 335, 339, 342, 344, 346, 351, 365, 368, 369, 370, 371, 415, 422, 442, 452, 453, 454, 463, 468, 588, 601, 617, 620, 622, 625, 682, 817, 827, 829, 843, 858], "fill": [48, 51, 52, 61, 62, 69, 71, 74, 75, 84, 85, 125, 130, 131, 133, 136, 137, 138, 143, 144, 269, 307, 362, 369, 371, 375, 426, 430, 435, 441, 463, 482, 483, 498, 500, 501, 617, 620, 631, 632, 727, 735, 779, 806, 830], "000123": [48, 131, 617], "stop": [48, 52, 54, 71, 75, 77, 121, 132, 133, 208, 369, 435, 441, 567, 604, 607, 609, 610, 611, 612, 617, 619, 622, 623, 628, 629, 703, 704, 705, 717, 784, 824, 827, 835, 837, 843, 858], "num": [48, 71, 132, 133, 617, 764, 808, 824, 837], "endpoint": [48, 71, 132, 133, 617, 779, 824], "logspac": [48, 71, 617, 837], "log": [48, 51, 52, 57, 71, 74, 75, 80, 113, 133, 258, 260, 273, 294, 295, 347, 354, 360, 365, 370, 375, 444, 446, 447, 497, 614, 617, 620, 673, 764, 766, 767, 776, 808, 815, 816, 819, 825, 828, 829, 830, 832, 834, 835, 837, 840], "sequenc": [48, 52, 56, 57, 59, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 127, 129, 131, 133, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 358, 359, 362, 365, 366, 367, 368, 369, 371, 375, 380, 381, 383, 384, 391, 392, 393, 395, 396, 400, 401, 403, 410, 411, 412, 413, 414, 417, 425, 426, 427, 429, 433, 434, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 458, 459, 460, 461, 467, 469, 470, 472, 473, 475, 478, 480, 482, 483, 484, 488, 489, 490, 492, 493, 494, 496, 498, 499, 511, 512, 513, 514, 521, 522, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 561, 565, 566, 580, 581, 583, 585, 587, 588, 601, 602, 605, 606, 607, 612, 617, 620, 622, 623, 624, 625, 627, 629, 635, 636, 637, 638, 639, 640, 641, 642, 644, 646, 647, 648, 650, 653, 654, 655, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 679, 682, 684, 685, 686, 687, 688, 690, 691, 693, 694, 695, 696, 697, 698, 701, 702, 706, 713, 723, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 780, 783, 785, 808, 816, 817, 818, 819, 821, 832, 833, 835, 837, 842, 861], "on_valu": [48, 71, 133, 136, 617], "off_valu": [48, 71, 133, 136, 617], "evenli": [48, 51, 52, 56, 59, 69, 71, 74, 75, 79, 82, 121, 132, 133, 287, 368, 410, 414, 617, 620, 624, 627, 637, 638, 639, 640, 642, 644, 646, 696], "hint": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 474, 482, 511, 514, 541, 545, 547, 549, 588, 612, 617, 618, 620, 622, 623, 624, 625, 627, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 806, 812, 820, 822, 824, 825, 828, 829, 833], "simplic": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 474, 482, 511, 514, 541, 545, 547, 549, 588, 612, 617, 618, 620, 622, 623, 624, 625, 627, 630, 632, 633, 634, 635, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 820, 835, 841], "nestabl": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 474, 482, 511, 514, 518, 527, 535, 536, 541, 545, 547, 549, 551, 565, 583, 588, 612, 617, 618, 620, 622, 623, 624, 625, 627, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 806, 810, 819, 820, 828, 832, 845], "464": [48, 51, 84, 133, 222, 223, 620], "15888336": [48, 133], "2154": [48, 133], "43469003": [48, 133], "meshgrid": [48, 71, 617], "spars": [48, 52, 58, 71, 75, 81, 134, 310, 362, 369, 426, 435, 441, 617, 626, 686], "xy": [48, 71, 134, 617], "dimension": [48, 51, 52, 57, 59, 62, 65, 66, 69, 71, 74, 75, 80, 82, 88, 89, 97, 121, 127, 129, 134, 142, 287, 322, 329, 330, 362, 365, 368, 369, 371, 380, 395, 396, 400, 401, 411, 412, 419, 452, 453, 454, 458, 463, 464, 509, 521, 617, 620, 625, 627, 632, 635, 636, 655, 656, 662, 665, 668, 670, 671, 681, 682, 696, 732, 733, 735, 748, 749, 750, 751, 752, 753, 754, 755, 756, 825, 827, 832, 835, 837, 855, 858, 865], "repres": [48, 51, 52, 56, 57, 74, 75, 79, 80, 95, 120, 134, 136, 159, 217, 218, 221, 224, 233, 235, 242, 268, 281, 285, 286, 310, 324, 325, 326, 342, 359, 362, 365, 367, 368, 369, 370, 371, 374, 375, 378, 410, 414, 428, 440, 442, 447, 474, 485, 490, 491, 492, 497, 503, 510, 546, 616, 617, 618, 620, 622, 624, 625, 647, 648, 662, 670, 673, 674, 766, 779, 783, 794, 807, 812, 817, 835, 839, 855, 856, 859], "coordin": [48, 51, 62, 74, 75, 85, 134, 142, 223, 285, 314, 315, 322, 342, 362, 376, 502, 617, 620, 632, 735], "conserv": [48, 134, 617], "cartesian": [48, 134, 617], "matrix": [48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 97, 134, 140, 141, 142, 322, 323, 362, 369, 371, 380, 418, 421, 422, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 441, 472, 511, 523, 529, 617, 622, 624, 625, 648, 654, 656, 658, 659, 660, 661, 663, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 679, 680, 683, 764, 766, 779, 780, 794, 806, 817, 829, 856, 858], "ij": [48, 65, 134, 617, 635, 747, 794], "respect": [48, 51, 52, 54, 57, 74, 75, 77, 80, 92, 134, 215, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 277, 281, 284, 285, 294, 342, 357, 360, 365, 367, 369, 371, 374, 424, 439, 451, 490, 492, 546, 603, 604, 605, 606, 607, 608, 609, 610, 611, 613, 617, 620, 622, 623, 624, 625, 628, 637, 644, 645, 650, 655, 672, 675, 703, 704, 705, 761, 764, 779, 794, 805, 806, 807, 808, 812, 813, 815, 816, 817, 818, 819, 824, 825, 827, 828, 829, 832, 833, 834, 854, 864], "rank": [48, 52, 57, 59, 66, 75, 80, 82, 89, 92, 93, 94, 95, 96, 101, 134, 317, 318, 319, 320, 321, 362, 369, 371, 380, 426, 427, 435, 438, 441, 474, 482, 521, 617, 625, 627, 632, 636, 655, 657, 666, 668, 672, 674, 679, 681, 682, 689, 690, 698, 701, 702, 735, 755, 756, 801], "ni": [48, 134, 617], "xi": [48, 134, 617], "scatter": [48, 53, 71, 76, 136, 565, 566, 617, 622, 814, 828, 835, 865], "j": [48, 51, 52, 53, 57, 65, 71, 74, 75, 80, 92, 120, 136, 216, 217, 218, 219, 221, 224, 233, 235, 238, 240, 248, 256, 258, 262, 268, 279, 281, 282, 285, 286, 332, 365, 368, 369, 380, 395, 396, 400, 411, 412, 416, 421, 423, 432, 438, 521, 526, 616, 617, 620, 622, 625, 635, 659, 679, 747, 794, 808, 810, 814, 851, 854], "unless": [48, 52, 57, 71, 75, 136, 268, 328, 344, 349, 365, 617, 620, 625, 668, 813, 818, 828, 843, 852, 853], "ones_lik": [48, 71, 617, 813, 842], "tril": [48, 71, 617], "whose": [48, 51, 52, 53, 57, 59, 63, 65, 71, 74, 75, 76, 80, 82, 86, 88, 93, 95, 97, 131, 140, 141, 217, 221, 224, 232, 233, 234, 273, 274, 280, 281, 285, 286, 287, 323, 337, 341, 345, 346, 348, 352, 362, 369, 371, 421, 440, 473, 482, 487, 528, 583, 617, 620, 622, 625, 627, 633, 635, 654, 656, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 679, 682, 691, 695, 737, 738, 739, 746, 747, 766, 804, 820, 832], "innermost": [48, 52, 57, 80, 140, 141, 323, 362, 369, 421, 617, 625, 654, 656, 658, 659, 660, 661, 663, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 679], "mxn": [48, 52, 57, 80, 140, 141, 323, 362, 617, 625, 658, 666, 668, 669, 671, 672, 676, 679], "matric": [48, 52, 57, 75, 80, 92, 93, 97, 134, 140, 141, 323, 362, 369, 371, 421, 426, 427, 429, 433, 434, 439, 463, 617, 624, 625, 648, 654, 656, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 679, 680, 766, 803, 822, 858], "diagon": [48, 52, 57, 75, 80, 93, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 419, 422, 430, 436, 463, 617, 625, 657, 679], "triangular": [48, 52, 57, 80, 140, 141, 142, 322, 323, 362, 369, 436, 617, 625, 654, 660, 661, 668, 672], "alloc": [48, 49, 52, 72, 140, 141, 147, 323, 362, 617, 618, 806, 808, 843], "triu": [48, 71, 617], "upper": [48, 52, 57, 61, 75, 80, 84, 127, 141, 142, 307, 323, 362, 369, 380, 436, 514, 617, 625, 631, 654, 660, 661, 672, 729, 817, 828, 832], "zeros_lik": [48, 52, 71, 147, 264, 371, 482, 603, 604, 607, 609, 610, 611, 617, 618, 620, 623, 625, 627, 672, 687, 829, 835], "data_typ": [49, 52, 72, 75, 177, 618, 814, 817, 832, 833], "_arraywithdatatyp": [49, 97], "irrespect": [49, 57, 72, 80, 147, 618, 625, 675, 815, 828, 839, 865], "promot": [49, 51, 52, 57, 72, 74, 75, 80, 87, 97, 98, 147, 150, 173, 174, 175, 181, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 339, 347, 352, 365, 368, 380, 411, 511, 574, 596, 618, 620, 622, 625, 627, 635, 654, 655, 662, 663, 665, 666, 667, 668, 670, 671, 673, 674, 681, 682, 688, 698, 741, 749, 752, 764, 765, 809, 811, 820, 821, 825, 834], "nan": [49, 51, 52, 53, 63, 65, 72, 74, 75, 76, 147, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 243, 244, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 274, 277, 278, 279, 280, 281, 282, 285, 286, 288, 294, 328, 329, 330, 340, 344, 349, 352, 360, 365, 371, 380, 482, 509, 510, 517, 518, 519, 520, 547, 601, 615, 618, 620, 622, 633, 635, 636, 737, 738, 739, 740, 748, 749, 750, 752, 753, 754, 755, 756, 764, 767, 811, 817, 820, 827, 833, 834], "infin": [49, 51, 53, 57, 72, 74, 80, 147, 215, 216, 217, 218, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 277, 278, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 547, 615, 618, 620, 622, 625, 635, 636, 673, 682, 748, 750, 755, 756, 811, 820], "desir": [49, 50, 52, 62, 69, 72, 73, 75, 85, 92, 147, 149, 150, 209, 313, 353, 362, 365, 371, 380, 472, 517, 520, 521, 618, 619, 625, 632, 677, 734, 779, 780, 808, 813, 816, 817, 818, 829, 837, 847, 851, 858], "broadcast_arrai": [49, 72, 618], "mix": [49, 51, 72, 74, 75, 76, 81, 84, 97, 98, 148, 161, 162, 175, 194, 195, 225, 228, 229, 230, 235, 236, 242, 246, 254, 255, 265, 268, 271, 277, 370, 380, 448, 518, 537, 539, 540, 541, 542, 551, 585, 588, 618, 619, 620, 622, 624, 625, 626, 627, 630, 635, 638, 640, 643, 645, 646, 648, 653, 654, 677, 684, 686, 687, 725, 747, 749, 752, 765, 767, 806, 810, 817, 818, 819, 828, 835, 837, 845, 858, 862, 864], "broadcast_to": [49, 72, 618, 817], "can_cast": [49, 72, 618, 817, 825, 829], "accord": [49, 52, 53, 59, 65, 72, 82, 88, 150, 160, 218, 229, 235, 242, 268, 279, 313, 362, 368, 371, 412, 474, 541, 544, 565, 566, 618, 620, 622, 625, 627, 635, 681, 689, 702, 752, 754, 759, 766, 786, 793, 806, 807, 811, 817, 823, 825, 829, 832], "finfo": [49, 72, 618, 832], "resolut": [49, 72, 160, 618, 808], "4028235e": [49, 160, 618], "iinfo": [49, 72, 618], "integ": [49, 51, 52, 56, 57, 59, 61, 65, 66, 69, 74, 75, 76, 79, 80, 82, 84, 88, 89, 97, 98, 121, 130, 163, 164, 170, 174, 175, 179, 215, 225, 226, 227, 228, 229, 230, 231, 241, 242, 253, 265, 270, 273, 277, 278, 288, 289, 324, 325, 326, 329, 330, 334, 338, 339, 362, 365, 368, 371, 375, 378, 380, 395, 400, 410, 413, 414, 415, 460, 469, 474, 482, 488, 497, 498, 499, 500, 501, 503, 504, 509, 511, 512, 513, 518, 521, 544, 560, 570, 602, 617, 618, 620, 622, 624, 625, 627, 631, 634, 635, 636, 637, 638, 639, 640, 642, 644, 646, 655, 657, 667, 681, 682, 696, 726, 727, 728, 729, 730, 731, 743, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 765, 766, 767, 772, 780, 794, 808, 815, 817, 827, 830, 832, 837, 839], "119": [49, 163], "1220": [49, 163], "int16": [49, 52, 61, 65, 72, 84, 150, 154, 156, 161, 163, 170, 185, 380, 512, 513, 618, 635, 727, 745, 746, 751, 753, 764, 765, 817, 829, 832, 837], "32768": [49, 72, 163, 581, 622], "32767": [49, 72, 163], "is_bool_dtyp": [49, 72, 618], "is_float_dtyp": [49, 72, 618, 833], "is_int_dtyp": [49, 72, 618, 830, 833], "is_uint_dtyp": [49, 72, 618, 830, 833], "result_typ": [49, 72, 618, 817], "arrays_and_dtyp": [49, 72, 175, 618], "_arraywithdevic": [50, 97], "move": [50, 52, 73, 75, 142, 205, 209, 213, 322, 362, 371, 473, 617, 619, 782, 800, 808, 818, 833], "addit": [50, 52, 53, 60, 73, 75, 76, 83, 118, 120, 209, 218, 278, 370, 374, 380, 442, 495, 510, 515, 534, 535, 536, 602, 616, 619, 620, 622, 624, 628, 630, 650, 705, 725, 780, 794, 806, 807, 808, 813, 817, 819, 820, 823, 825, 827, 828, 829, 832, 833, 835, 839, 840, 842, 851, 858, 859, 860, 864], "__dlpack__": [50, 73, 128, 209, 617, 619], "caveat": [50, 73, 209, 370, 446, 619], "portabl": [50, 73, 209, 619, 800, 856], "_arraywithelementwis": [51, 97], "ab": [51, 57, 67, 74, 90, 97, 98, 273, 328, 344, 365, 371, 481, 620, 625, 629, 666, 676, 682, 714, 717, 761, 793, 794, 803, 812, 817, 822, 826, 829, 832], "absolut": [51, 52, 57, 67, 69, 74, 75, 80, 97, 215, 279, 328, 344, 347, 353, 365, 369, 370, 422, 437, 443, 445, 620, 625, 666, 667, 668, 673, 759, 761, 764, 766, 767, 801, 807], "aco": [51, 74, 620], "invers": [51, 52, 57, 74, 75, 80, 216, 217, 220, 221, 222, 223, 224, 368, 378, 390, 399, 401, 411, 503, 620, 625, 663, 667, 671, 786, 817], "cosin": [51, 74, 216, 217, 232, 233, 306, 309, 362, 368, 389, 399, 620, 780], "acosh": [51, 74, 161, 162, 618, 620, 803, 822], "area": [51, 52, 74, 75, 79, 217, 221, 224, 368, 403, 410, 414, 620, 804, 828, 835, 848, 854], "hyperbol": [51, 74, 217, 221, 224, 233, 281, 285, 286, 298, 302, 360, 620], "sector": [51, 74, 217, 221, 224, 620, 848], "second": [51, 52, 54, 57, 59, 63, 74, 75, 76, 77, 80, 82, 86, 93, 97, 98, 118, 142, 173, 181, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 313, 322, 328, 340, 342, 343, 344, 350, 354, 355, 362, 365, 369, 370, 371, 378, 380, 420, 421, 422, 424, 428, 448, 480, 487, 498, 500, 504, 511, 514, 526, 575, 597, 603, 604, 609, 616, 617, 618, 620, 622, 623, 625, 627, 628, 629, 633, 655, 658, 659, 660, 662, 665, 670, 672, 673, 675, 677, 679, 681, 698, 699, 704, 707, 737, 738, 739, 784, 807, 811, 814, 817, 819, 823, 828, 829, 832, 834, 839, 849, 863], "multipli": [51, 52, 56, 65, 74, 75, 79, 92, 218, 284, 345, 368, 369, 403, 432, 433, 512, 513, 620, 624, 635, 647, 745, 751, 808, 812, 813, 815, 819], "angl": [51, 74, 223, 233, 281, 286, 343, 365, 620], "deg": [51, 74, 219, 620], "radian": [51, 52, 74, 75, 216, 219, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 620, 820], "degre": [51, 52, 65, 74, 75, 88, 219, 234, 274, 316, 362, 371, 480, 620, 635, 752, 754, 857], "1j": [51, 74, 75, 219, 220, 232, 233, 238, 240, 252, 275, 280, 281, 285, 332, 580, 620, 622], "2j": [51, 52, 74, 75, 219, 248, 332, 368, 395, 400, 581, 620, 622], "3j": [51, 52, 74, 75, 219, 252, 275, 332, 365, 620], "35619449": [51, 219, 620], "78539816": [51, 219, 620], "135": [51, 219, 529, 620, 622], "asin": [51, 74, 620], "sine": [51, 74, 220, 221, 280, 281, 620], "927": [51, 74, 220], "asinh": [51, 74, 220, 620], "atan": [51, 74, 620], "tangent": [51, 74, 222, 223, 224, 285, 286, 298, 302, 358, 360, 367, 620, 820], "785": [51, 74, 222, 223, 620], "atan2": [51, 74, 620], "quotient": [51, 74, 223, 235, 242, 620], "245": [51, 79, 223, 624, 647, 648], "588": [51, 223, 620], "inf": [51, 52, 53, 57, 74, 75, 76, 80, 223, 240, 249, 250, 251, 252, 256, 257, 259, 269, 294, 347, 360, 365, 369, 380, 418, 514, 547, 601, 615, 620, 622, 624, 625, 651, 666, 682, 764, 767, 803, 817, 822, 827], "719": [51, 223, 620], "197": [51, 223, 620], "atanh": [51, 74, 620], "549": [51, 74, 79, 224, 620, 624, 648], "bitwise_and": [51, 74, 620], "bitwise_invert": [51, 74, 620], "bitiwse_invert": [51, 226], "bitwise_left_shift": [51, 74, 620], "bitwise_or": [51, 74, 620], "bitwise_right_shift": [51, 74, 97, 620], "bitwise_xor": [51, 74, 97, 620], "ceil": [51, 52, 74, 75, 92, 95, 121, 368, 386, 387, 388, 404, 405, 406, 409, 617, 620, 780, 828], "round": [51, 52, 74, 75, 92, 94, 95, 96, 218, 231, 235, 241, 242, 268, 282, 288, 289, 338, 365, 620, 803, 806, 807, 808, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 838, 839, 840, 841, 842, 847, 848, 849], "416": [51, 232, 620], "540": [51, 232], "990": [51, 232], "cosh": [51, 74, 232, 620], "deg2rad": [51, 74, 620], "convers": [51, 52, 75, 234, 274, 567, 577, 622, 781, 782, 806, 836, 838, 842, 843, 845, 849, 857, 864], "180": [51, 74, 234, 274, 620], "270": [51, 74, 234, 274, 620], "360": [51, 74, 234, 274, 620, 816], "dividend": [51, 74, 235, 242, 277, 289, 620], "divisor": [51, 52, 54, 65, 74, 75, 77, 88, 235, 242, 245, 246, 277, 289, 368, 371, 386, 387, 388, 460, 469, 488, 603, 604, 609, 620, 623, 635, 752, 754, 780, 784], "375": [51, 236, 271], "erf": [51, 74, 337, 365, 620], "exponenti": [51, 52, 74, 75, 237, 238, 240, 260, 273, 290, 299, 360, 369, 431, 620], "gauss": [51, 74, 237, 620], "328": [51, 237, 285, 620], "677": [51, 237], "842": [51, 237, 285, 620], "71828198": [51, 74, 238], "38905573": [51, 74, 238], "08553696": [51, 74, 238, 620], "exp2": [51, 74, 620], "expm1": [51, 74, 620, 817], "244": [51, 240, 800], "918": [51, 240], "147": [51, 240, 620], "floor": [51, 52, 74, 75, 92, 95, 229, 242, 368, 386, 387, 388, 390, 404, 405, 406, 409, 620, 780, 828], "floor_divid": [51, 74, 620, 772, 817], "fmin": [51, 74, 620, 817], "gcd": [51, 74, 620, 817], "greater": [51, 52, 56, 59, 61, 74, 75, 79, 84, 97, 98, 129, 216, 217, 220, 221, 223, 224, 227, 229, 235, 241, 242, 256, 258, 273, 277, 279, 281, 282, 286, 287, 288, 331, 365, 368, 390, 395, 400, 411, 617, 620, 624, 625, 627, 631, 653, 655, 667, 697, 729, 766, 780, 808, 809, 830], "greater_equ": [51, 74, 97, 98, 260, 620], "imaginari": [51, 74, 97, 107, 110, 113, 137, 138, 216, 217, 218, 233, 235, 236, 238, 240, 248, 268, 270, 271, 278, 281, 282, 286, 332, 365, 368, 369, 411, 422, 614, 617, 620, 632, 735, 819], "4j": [51, 74, 248, 368, 411, 581, 620, 622], "6j": [51, 52, 74, 248, 252, 332, 620], "isfinit": [51, 74, 620, 829], "out_i": [51, 74, 249, 250, 251, 252, 275, 620], "self_i": [51, 74, 249, 250, 251, 252, 275], "finit": [51, 74, 215, 216, 217, 218, 221, 223, 224, 233, 235, 236, 238, 240, 242, 249, 250, 256, 258, 268, 269, 271, 273, 277, 281, 282, 286, 620], "isinf": [51, 74, 620], "detect_posit": [51, 74, 250, 620], "detect_neg": [51, 74, 250, 620], "isnan": [51, 74, 620], "isreal": [51, 74, 620], "5j": [51, 74, 75, 252, 275, 332, 365, 620], "lcm": [51, 74, 620, 817], "less": [51, 52, 57, 61, 65, 74, 75, 80, 84, 97, 98, 216, 217, 220, 223, 224, 231, 235, 242, 256, 257, 258, 259, 273, 277, 279, 282, 351, 365, 368, 369, 380, 389, 390, 399, 411, 435, 441, 511, 514, 620, 625, 631, 635, 666, 667, 668, 671, 682, 729, 752, 754, 780, 807, 808, 815, 817, 819, 821, 824, 829, 832, 835, 836, 837, 848, 858, 860], "less_equ": [51, 74, 97, 98, 620, 821], "log10": [51, 52, 74, 313, 362, 620], "logarithm": [51, 74, 238, 256, 257, 258, 259, 260, 336, 347, 365, 620, 625, 673], "602": [51, 257, 620], "699": [51, 257, 620], "log1p": [51, 74, 620, 827], "693": [51, 74, 112, 221, 258, 614, 620, 626, 686], "0953": [51, 74, 256, 258, 620], "log2": [51, 74, 261, 620], "logaddexp": [51, 74, 620], "logaddexp2": [51, 74, 620, 803, 822], "169925": [51, 74, 261, 620], "logical_and": [51, 74, 620, 829, 835, 865], "logical_not": [51, 74, 620, 817], "logical_or": [51, 74, 620, 865], "conform": [51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 482, 511, 617, 618, 620, 625, 627, 632, 633, 634, 635, 636, 654, 655, 656, 657, 658, 660, 661, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 688, 690, 691, 692, 694, 695, 697, 698, 702, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 820, 823], "api_specif": [51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 411, 482, 618, 620, 627, 635, 702, 752, 820], "array_api": [51, 74, 150, 238, 248, 249, 264, 368, 371, 411, 482, 618, 620, 625, 627, 635, 673, 674, 702, 752, 820], "logical_xor": [51, 74, 620], "maximum": [51, 52, 53, 54, 59, 62, 65, 69, 74, 75, 76, 77, 82, 85, 88, 98, 208, 293, 329, 330, 340, 353, 360, 365, 368, 369, 371, 380, 384, 394, 435, 438, 441, 474, 512, 514, 519, 529, 530, 538, 546, 609, 619, 620, 622, 623, 625, 627, 632, 635, 666, 687, 732, 733, 748, 750, 764, 766, 767, 772, 794, 808, 817, 819, 828, 840, 865], "use_wher": [51, 74, 266, 267, 620], "formula": [51, 52, 74, 235, 257, 259, 266, 267, 268, 313, 346, 362, 365, 374, 490, 492, 620], "exce": [51, 52, 75, 267, 371, 484, 620], "product": [51, 52, 56, 57, 65, 74, 75, 79, 80, 88, 92, 93, 95, 268, 358, 359, 367, 369, 380, 417, 420, 424, 427, 428, 429, 432, 433, 434, 512, 513, 520, 620, 624, 625, 635, 650, 653, 655, 662, 665, 670, 677, 681, 745, 746, 747, 751, 752, 794, 806, 837, 858, 860], "nan_to_num": [51, 74, 620], "posinf": [51, 74, 269, 620], "neginf": [51, 74, 269, 620], "5e": [51, 54, 74, 75, 269, 350, 609, 620, 623], "not_equ": [51, 74, 97, 98, 620], "pow": [51, 74, 97, 98, 620, 811], "expon": [51, 52, 53, 75, 76, 273, 339, 341, 345, 365, 374, 495, 581, 620, 622, 625, 667], "rad2deg": [51, 74, 620], "286": [51, 75, 274], "458": [51, 274], "573": [51, 274, 620], "reciproc": [51, 74, 620], "333": [51, 74, 235, 276, 530, 620, 622], "remaind": [51, 52, 59, 69, 74, 75, 82, 244, 620, 627, 696, 811, 828], "modulu": [51, 74, 277, 620, 828], "sign": [51, 52, 57, 63, 65, 74, 75, 80, 92, 121, 215, 216, 217, 218, 221, 223, 224, 229, 233, 235, 238, 240, 242, 268, 270, 277, 281, 282, 286, 333, 365, 369, 371, 380, 437, 481, 482, 512, 513, 617, 620, 625, 633, 635, 673, 737, 738, 739, 740, 745, 746, 751, 753, 800, 807, 809, 817, 837, 842, 848], "x2_i": [51, 74, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 620, 811], "decim": [51, 74, 278, 620, 834], "0001": [51, 52, 75, 278, 279, 369, 435, 441, 764, 767, 784], "678": [51, 278, 279], "np_variant": [51, 74, 279, 620], "841": [51, 68, 74, 105, 280, 614, 620], "909": [51, 74, 76, 280, 620], "141": [51, 74, 147, 280, 618, 620], "sinh": [51, 74, 280, 620], "232": [51, 74, 281, 620], "sqrt": [51, 52, 74, 75, 368, 390, 395, 396, 400, 401, 411, 620, 779, 780, 800], "squar": [51, 52, 57, 74, 75, 80, 282, 369, 370, 374, 380, 421, 431, 443, 495, 511, 605, 606, 608, 613, 620, 623, 625, 629, 654, 656, 657, 659, 660, 661, 663, 667, 673, 674, 675, 680, 712, 800], "tanh": [51, 52, 74, 75, 285, 298, 302, 360, 620, 776, 837], "762": [51, 74, 286, 620], "964": [51, 74, 286, 620], "trapz": [51, 74, 620], "dx": [51, 74, 287, 620], "apart": [51, 74, 287, 620], "trapezoid": [51, 74, 287, 620], "trunc": [51, 74, 620], "025": [51, 288, 370, 448, 620, 628, 705], "trunc_divid": [51, 74, 620], "_arraywithactivationsexperiment": [52, 97], "celu": [52, 75, 360], "formul": [52, 68, 75, 93, 105, 290, 292, 360, 776], "elu": [52, 75, 293, 360, 776], "scaler": [52, 75, 291, 360, 764, 767, 832], "hardshrink": [52, 75, 360], "lambd": [52, 75, 292, 301, 360], "hardtanh": [52, 75, 360], "max_val": [52, 75, 293, 360], "min_val": [52, 75, 293, 360], "region": [52, 75, 293, 301, 360, 807], "19722438": [52, 75, 294, 360], "38629448": [52, 75, 294, 360], "38629436": [52, 75, 294, 360], "logsigmoid": [52, 75, 360, 776], "31326175": [52, 68, 295, 360], "126928": [52, 75, 295], "01814993": [52, 295], "00004578": [52, 295], "57888985": [52, 295], "31326169": [52, 75, 295, 360], "69314718": [52, 57, 68, 75, 80, 295, 347, 360, 365, 625, 673], "01104775": [52, 295], "prelu": [52, 75, 360, 776], "unidirect": [52, 296, 360], "relu6": [52, 75, 360, 776], "rectifi": [52, 68, 75, 107, 109, 110, 297, 300, 305, 360, 614], "scaled_tanh": [52, 75, 302, 360], "7159": [52, 75, 298, 302, 360], "amplitud": [52, 75, 298, 302, 360], "65537548": [52, 75, 298], "49570239": [52, 75, 298], "77637792": [52, 298], "selu": [52, 75, 360, 776], "11133075": [52, 299, 360], "05070102": [52, 75, 299, 360], "10140204": [52, 299, 360], "15210295": [52, 299, 360], "20280409": [52, 299, 360], "25350523": [52, 299, 360], "30420589": [52, 299, 360], "35490704": [52, 299, 360], "silu": [52, 75, 360, 776], "26894143": [52, 300], "73105854": [52, 75, 300], "softshrink": [52, 75, 360], "bound": [52, 75, 301, 313, 360, 362, 371, 457, 482, 483, 764, 817, 821, 829, 832, 837, 864], "tanhshrink": [52, 75, 360], "23840582": [52, 75, 303, 360], "condit": [52, 62, 75, 85, 118, 304, 319, 320, 362, 369, 418, 616, 629, 632, 716, 717, 736, 766, 811, 817, 819, 821, 825, 826, 828, 832, 851], "met": [52, 75, 304, 821], "hreshold": [52, 304], "thresholded_relu": [52, 75, 360], "_arraywithconversionsexperiment": [52, 97], "_arraywithcreationexperiment": [52, 97], "blackman_window": [52, 75, 362], "period": [52, 75, 281, 285, 306, 308, 309, 311, 312, 362, 368, 402, 620, 808], "window": [52, 56, 75, 79, 306, 308, 309, 311, 312, 327, 362, 368, 374, 386, 387, 388, 390, 404, 405, 406, 407, 409, 410, 414, 415, 495, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 780, 802, 808, 814, 822, 863], "symmetr": [52, 57, 75, 80, 92, 93, 306, 308, 309, 311, 312, 362, 369, 371, 421, 474, 625, 654, 659, 660, 661, 683, 815], "38777878e": [52, 75, 306, 362], "40000000e": [52, 306, 362], "00000000e": [52, 57, 75, 76, 306, 337, 362, 368, 389, 395, 399, 400, 625, 672, 803, 822], "30000000e": [52, 75, 306, 362], "eye_lik": [52, 75, 362], "elsewher": [52, 75, 127, 307, 362, 617, 632, 736, 807], "mel_weight_matrix": [52, 75, 362], "num_mel_bin": [52, 75, 313, 362], "dft_length": [52, 75, 313, 362, 368, 390], "sample_r": [52, 75, 313, 362], "lower_edge_hertz": [52, 75, 313, 362], "upper_edge_hertz": [52, 75, 313, 362], "3000": [52, 75, 313, 362], "melweightmatrix": [52, 75, 313, 362], "linearli": [52, 53, 76, 313, 362, 538, 622, 625, 674], "frequenc": [52, 53, 75, 76, 313, 362, 380, 511, 538, 622, 808], "spectra": [52, 313, 362], "dft": [52, 75, 313, 362, 368], "stft": [52, 75, 313, 362, 368], "mel": [52, 75, 313, 362], "term": [52, 75, 306, 313, 316, 362, 370, 446, 447, 624, 649, 780, 794, 800, 808, 815, 837, 845, 847, 858], "hertz": [52, 313, 362], "2595": [52, 313, 362], "700": [52, 76, 313, 362, 542], "band": [52, 53, 75, 76, 313, 362, 538, 622], "spectrum": [52, 75, 313, 362], "n_fft": [52, 75, 313, 362, 368, 390], "signal": [52, 75, 313, 362, 368, 382, 383, 384, 389, 390, 399, 415, 780, 857, 858], "8000": [52, 75, 308, 313, 362], "75694758": [52, 313, 362], "trilu": [52, 75, 362], "retain": [52, 142, 322, 323, 362, 605, 617, 623, 827, 831, 845], "unsorted_segment_mean": [52, 75, 362], "segment_id": [52, 75, 324, 325, 326, 362, 786], "num_seg": [52, 75, 324, 325, 326, 362, 786], "identifi": [52, 75, 324, 325, 326, 362, 804, 806, 811, 816, 817, 832, 835], "th": [52, 75, 93, 324, 325, 326, 335, 362, 365, 369, 370, 380, 419, 426, 442, 521], "distinct": [52, 63, 75, 324, 325, 326, 362, 633, 737, 738, 739, 740, 804, 807, 815, 820, 827, 828, 829, 836, 848, 858], "unsorted_segment_min": [52, 75, 362], "unsorted_segment_sum": [52, 75, 362], "polyv": [52, 75, 362], "coeff": [52, 75, 316, 362], "polynomi": [52, 75, 316, 362], "coeffici": [52, 75, 308, 316, 362, 369, 436, 625, 674, 784], "indetermin": [52, 75, 316, 362], "simplifi": [52, 75, 316, 362, 793, 794, 821, 829, 837, 838, 841, 848, 851, 854, 856, 857, 858, 861, 864, 865], "substitut": [52, 75, 316, 362], "_arraywithdata_typeexperiment": [52, 97], "_arraywithdeviceexperiment": [52, 97], "_arraywithelementwiseexperiment": [52, 97], "equal_nan": [52, 75, 328, 344, 365], "toler": [52, 57, 75, 80, 328, 344, 365, 369, 422, 435, 441, 625, 668, 671, 759, 761, 811, 830, 858], "1e10": [52, 328, 344, 365], "00001e10": [52, 328, 344, 365], "00001e": [52, 328, 365], "amax": [52, 75, 365], "keepdim": [52, 57, 59, 62, 65, 66, 69, 75, 80, 82, 85, 88, 89, 329, 330, 334, 349, 356, 365, 366, 371, 380, 479, 516, 517, 518, 519, 520, 521, 625, 627, 632, 635, 636, 666, 682, 701, 732, 733, 748, 749, 750, 751, 752, 753, 754, 755, 756, 821, 829, 837], "singleton": [52, 57, 62, 65, 66, 75, 80, 85, 88, 89, 329, 330, 365, 625, 627, 632, 635, 636, 682, 690, 697, 733, 748, 749, 750, 751, 752, 753, 754, 755, 756, 837], "amin": [52, 75, 365], "binar": [52, 75, 365], "map": [52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 365, 368, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 480, 482, 483, 484, 490, 492, 493, 494, 496, 498, 511, 512, 513, 514, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 580, 581, 583, 585, 587, 588, 601, 602, 607, 612, 622, 629, 638, 639, 640, 641, 647, 648, 653, 654, 655, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 679, 684, 685, 686, 687, 691, 694, 695, 696, 697, 698, 701, 702, 713, 714, 718, 719, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 745, 746, 749, 751, 752, 754, 755, 756, 794, 812, 815, 817, 824, 825, 829, 832, 833, 840, 843, 845, 852, 859], "conj": [52, 75, 233, 238, 240, 281, 282, 286, 365, 620], "conjug": [52, 57, 75, 80, 332, 365, 368, 369, 375, 390, 416, 422, 432, 434, 436, 499, 625, 665, 669, 677], "copysign": [52, 75, 365], "unsign": [52, 65, 75, 333, 365, 371, 380, 482, 512, 513, 635, 745, 746, 751, 753, 765, 817, 837], "count_nonzero": [52, 75, 365], "diff": [52, 69, 75, 365, 819, 828], "prepend": [52, 75, 335, 365, 625, 627, 665, 690, 807], "differenc": [52, 75, 335, 365], "prior": [52, 75, 335, 365, 375, 499, 625, 677, 821, 833], "expand": [52, 53, 59, 75, 76, 335, 365, 371, 538, 622, 627, 690, 815, 831], "discret": [52, 75, 335, 365, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 626, 685, 780], "digamma": [52, 75, 365], "7549271": [52, 336, 365], "92278427": [52, 75, 336, 365], "9988394": [52, 336, 365], "erfc": [52, 75, 365], "complementari": [52, 75, 327, 337, 362, 365, 856, 864], "84270084e": [52, 337], "80259693e": [52, 337], "toward": [52, 59, 75, 82, 242, 289, 338, 350, 365, 371, 380, 480, 514, 620, 627, 695, 800, 803, 806, 807, 809, 822, 837, 854, 858], "float_pow": [52, 75, 365], "fmax": [52, 75, 365], "fmod": [52, 75, 620], "divis": [52, 53, 54, 75, 76, 77, 229, 235, 242, 244, 277, 279, 289, 371, 460, 572, 580, 594, 603, 604, 609, 620, 622, 623, 624, 637, 644, 645, 784, 825, 834], "frexp": [52, 75, 365], "edge_ord": [52, 75, 342, 365], "estim": [52, 75, 342, 365, 380, 511], "boundari": [52, 61, 75, 84, 95, 319, 320, 342, 362, 365, 368, 403, 631, 729, 858], "33333333": [52, 75, 276, 342, 365, 442, 620], "hypot": [52, 75, 365], "hypotenus": [52, 343, 365], "4031": [52, 343, 365], "8102": [52, 343, 365], "isclos": [52, 75, 365, 811], "ldexp": [52, 75, 365], "lerp": [52, 75, 365], "lgamma": [52, 365], "45373654": [52, 347, 365], "6477685": [52, 347, 365], "modf": [52, 75, 365], "fraction": [52, 75, 348, 365, 380, 521, 624, 647], "nansum": [52, 75, 365], "accumul": [52, 75, 349, 365, 371, 479], "nextaft": [52, 75, 365], "0e": [52, 54, 75, 77, 350, 365, 609, 623], "4013e": [52, 75, 350, 365], "4028e": [52, 75, 350, 365], "signbit": [52, 75, 365], "637": [52, 75, 352, 365], "0909": [52, 75, 352, 365], "sparsify_tensor": [52, 75, 365], "sparsifi": [52, 75, 353, 365], "arang": [52, 57, 65, 75, 80, 132, 353, 365, 368, 369, 386, 387, 388, 395, 400, 404, 405, 406, 409, 418, 433, 466, 561, 602, 617, 622, 625, 628, 635, 666, 682, 704, 705, 747, 800, 817, 828, 865], "xlogi": [52, 75, 365], "0986": [52, 75, 354, 365], "3863": [52, 75, 354, 365], "0000": [52, 75, 308, 309, 312, 354, 362, 365, 369, 371, 431, 468], "zeta": [52, 75, 365], "0369": [52, 75, 355, 365], "_arraywithgeneralexperiment": [52, 97], "init_valu": [52, 75, 79, 356, 366, 368, 410], "reduct": [52, 53, 58, 66, 69, 75, 76, 79, 81, 89, 356, 366, 368, 370, 371, 410, 442, 443, 444, 445, 446, 447, 448, 449, 479, 535, 565, 566, 622, 626, 636, 684, 685, 686, 755, 756, 781, 817, 825, 828, 832, 839], "_arraywithgradientsexperiment": [52, 97], "_arraywithimageexperiment": [52, 97], "_arraywithlayersexperiment": [52, 97], "adaptive_avg_pool1d": [52, 75, 368], "1d": [52, 75, 92, 93, 368, 369, 371, 380, 382, 389, 391, 393, 399, 432, 452, 457, 479, 483, 511, 764, 780], "adapt": [52, 75, 77, 368, 382, 383, 384, 610, 623, 780, 784, 848], "pool": [52, 75, 79, 368, 382, 383, 384, 386, 387, 388, 404, 405, 406, 407, 410, 780, 807], "plane": [52, 75, 235, 238, 240, 268, 280, 281, 282, 285, 368, 371, 382, 383, 384, 480, 620], "l_in": [52, 75, 368, 382], "spatial": [52, 56, 75, 79, 368, 374, 382, 383, 384, 403, 410, 414, 490, 491, 492, 495, 624, 637, 638, 639, 640, 642, 644, 646, 783], "Will": [52, 75, 368, 382, 383, 384, 789, 843], "l_out": [52, 75, 368, 382], "nhwc": [52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 495, 624, 637, 640, 641, 644, 645, 646, 780], "3d": [52, 57, 75, 368, 383, 391, 392, 454, 625, 662, 780, 835], "4d": [52, 75, 368, 369, 374, 383, 392, 393, 440, 495], "s_0": [52, 75, 368, 383, 384], "s_1": [52, 75, 368, 383, 384], "adaptive_max_pool2d": [52, 75, 368], "h_in": [52, 75, 368, 384], "w_in": [52, 75, 368, 384], "avg_pool1d": [52, 75, 368], "kernel": [52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 624, 649, 837, 843, 858, 861, 862], "nwc": [52, 56, 75, 79, 368, 386, 391, 404, 407, 624, 637, 638, 639, 644, 645, 780], "count_include_pad": [52, 75, 368, 386, 387, 388, 780], "d_in": [52, 56, 75, 79, 368, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646], "algorithm": [52, 56, 68, 75, 79, 105, 368, 369, 386, 387, 388, 403, 404, 405, 406, 407, 435, 437, 441, 625, 638, 640, 641, 642, 643, 646, 673, 776, 780, 794, 817, 829, 835, 843, 858, 860, 862], "ncw": [52, 56, 75, 79, 368, 386, 391, 392, 404, 407, 624, 637, 638, 639, 644, 645, 780], "avg_pool2d": [52, 75, 368], "divisor_overrid": [52, 75, 368, 386, 387, 388, 780], "avg_pool3d": [52, 75, 368], "ndhwc": [52, 56, 75, 79, 368, 388, 393, 406, 624, 637, 642, 643, 644, 645, 780], "volum": [52, 56, 75, 79, 368, 388, 390, 395, 396, 400, 406, 624, 642, 643], "ncdhw": [52, 56, 75, 79, 368, 388, 393, 406, 624, 637, 642, 643, 644, 645, 780], "dct": [52, 75, 368, 780, 840], "truncat": [52, 75, 368, 369, 389, 395, 399, 400, 401, 412, 439, 568, 622, 780, 821, 840], "larger": [52, 59, 65, 75, 82, 88, 160, 368, 389, 396, 399, 401, 412, 618, 627, 635, 687, 695, 752, 754, 780, 832, 835, 865], "ortho": [52, 75, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 780], "onesid": [52, 75, 368, 390], "fft": [52, 75, 368, 390, 396, 411, 412, 415, 780, 806, 858], "symmetri": [52, 368, 390], "rfft": [52, 75, 368, 390, 412], "invok": [52, 368, 390, 800, 823, 851, 852], "batch_idx": [52, 368, 390], "signal_dim1": [52, 368, 390], "signal_dim2": [52, 368, 390], "signal_dimn": [52, 368, 390], "signal_dim": [52, 368, 390], "embed": [52, 75, 368, 370, 442, 624, 650, 766, 780, 858], "max_norm": [52, 53, 75, 76, 368, 394, 529, 530, 622, 780], "ifft": [52, 75, 368, 395, 401, 780], "pi": [52, 75, 281, 285, 368, 370, 395, 400, 447, 615, 620], "44509285e": [52, 75, 368, 395], "14423775e": [52, 75, 368, 395], "17j": [52, 75, 368, 395, 400], "11483250e": [52, 75, 368, 395], "16j": [52, 75, 368, 395, 400], "33486982e": [52, 75, 368, 395], "22464680e": [52, 75, 368, 395], "95799250e": [52, 75, 368, 395], "66951701e": [52, 75, 368, 395], "fft2": [52, 368], "vari": [52, 63, 92, 93, 286, 396, 534, 620, 622, 625, 633, 672, 738, 739, 740, 794, 815, 819, 829, 832, 839], "20477401j": [52, 368, 396], "0614962j": [52, 368, 396], "idct": [52, 75, 368], "49862671": [52, 75, 368, 389, 399], "37691498": [52, 75, 368, 389, 399], "00390816": [52, 75, 368, 389, 399], "58938599": [52, 75, 368, 389, 399], "92713165": [52, 75, 368, 389, 399], "078475": [52, 75, 368, 389, 399], "19664812": [52, 75, 368, 389, 399], "95411837": [52, 75, 368, 389, 399], "30636606e": [52, 75, 368, 400], "43029718e": [52, 75, 368, 400], "18j": [52, 75, 368, 395, 400], "53080850e": [52, 75, 368, 400], "58689626e": [52, 75, 368, 400], "24474906e": [52, 75, 368, 400], "91858728e": [52, 75, 368, 400], "01435406e": [52, 75, 368, 400], "ifftn": [52, 75, 368], "24730653": [52, 75, 368, 401], "90832391j": [52, 75, 368, 401], "49495562": [52, 75, 368, 401], "9039565j": [52, 75, 368, 401], "98193269": [52, 75, 368, 401], "49560517j": [52, 75, 368, 401], "93280757": [52, 75, 368, 401], "48075343j": [52, 75, 368, 401], "28526384": [52, 75, 368, 401], "3351205j": [52, 75, 368, 401], "2343787": [52, 75, 368, 401], "83528011j": [52, 75, 368, 401], "18791352": [52, 75, 368, 401], "30690572j": [52, 75, 368, 401], "82115787": [52, 75, 368, 401], "96195183j": [52, 75, 368, 401], "44719226": [52, 75, 368, 401], "72654048j": [52, 75, 368, 401], "51476765": [52, 368, 401], "66160417j": [52, 368, 401], "04319742": [52, 368, 401], "05411636j": [52, 368, 401], "015561": [52, 368, 401], "04216015j": [52, 368, 401], "06310689": [52, 368, 401], "05347854j": [52, 368, 401], "13392983": [52, 368, 401], "16052352j": [52, 368, 401], "08371392": [52, 368, 401], "17252843j": [52, 368, 401], "0031429": [52, 368, 401], "05421245j": [52, 368, 401], "10446617": [52, 368, 401], "17747098j": [52, 368, 401], "05344324": [52, 368, 401], "07972424j": [52, 368, 401], "8344667": [52, 75, 368, 401], "98222595j": [52, 75, 368, 401], "48472244": [52, 75, 368, 401], "30233797j": [52, 75, 368, 401], "recompute_scale_factor": [52, 75, 368, 403, 835], "antialia": [52, 75, 368, 403, 835], "height": [52, 53, 56, 75, 76, 79, 368, 403, 534, 622, 624, 640, 641, 642, 643, 646, 809, 840], "width": [52, 53, 56, 75, 76, 79, 368, 369, 371, 374, 380, 403, 422, 474, 495, 514, 534, 622, 624, 638, 639, 640, 641, 642, 643, 646, 650], "trilinear": [52, 75, 368, 403, 835], "nearest_exact": [52, 75, 368, 403, 835], "tf_area": [52, 75, 368, 403, 835], "mitchellcub": [52, 75, 368, 403, 835], "lanczos3": [52, 75, 368, 403, 835], "lanczos5": [52, 75, 368, 403, 835], "gaussian": [52, 75, 105, 368, 403, 614, 835], "overwrit": [52, 69, 75, 208, 368, 403, 619, 808, 828, 829, 837], "thu": [52, 75, 229, 242, 277, 285, 286, 368, 369, 403, 421, 620, 625, 659, 660, 806, 816, 821, 826, 829, 833], "antialias": [52, 75, 403], "max_pool1d": [52, 75, 368], "dilaton": [52, 75, 404, 405, 406], "max_pool3d": [52, 75, 368], "max_unpool1d": [52, 75, 368], "unpool": [52, 75, 368, 407], "reduce_window": [52, 79, 368], "window_dimens": [52, 79, 368, 410], "window_strid": [52, 79, 368, 410], "base_dil": [52, 79, 368, 410], "window_dil": [52, 79, 368, 410], "trim": [52, 69, 75, 368, 371, 411, 485], "orthonorm": [52, 57, 75, 80, 368, 411, 625, 672, 675], "8660254j": [52, 75, 368, 411], "rfftn": [52, 75, 368], "sliding_window": [52, 75, 368], "window_s": [52, 75, 368, 414], "frame_length": [52, 75, 368, 415], "frame_step": [52, 75, 368, 415], "fft_length": [52, 75, 368, 415], "window_fn": [52, 75, 368, 415], "pad_end": [52, 75, 368, 415], "smallest": [52, 69, 75, 160, 163, 231, 368, 371, 415, 484, 618, 620, 625, 666, 764, 766, 767], "enclos": [52, 75, 368, 415, 859], "window_length": [52, 75, 306, 308, 311, 312, 327, 362, 368, 415], "li": [52, 75, 368, 369, 380, 415, 422, 521, 847], "past": [52, 75, 368, 415, 808, 811, 830, 832, 844, 858], "fft_unique_bin": [52, 75, 368, 415], "complex64": [52, 72, 75, 153, 167, 176, 182, 248, 275, 368, 411, 415, 618, 620, 625, 673, 675, 676, 765, 817, 822], "complex128": [52, 75, 76, 153, 154, 167, 176, 182, 368, 415, 560, 618, 622, 625, 660, 661, 666, 682, 764, 765, 803, 817, 822], "compon": [52, 75, 137, 138, 216, 217, 218, 221, 224, 233, 235, 236, 238, 240, 268, 270, 271, 278, 281, 282, 285, 286, 317, 321, 332, 362, 365, 368, 369, 374, 415, 426, 435, 495, 617, 620, 632, 735, 800, 831, 837, 848, 854, 859, 861], "linear_algebra": [52, 57, 75, 80, 625, 833], "_arraywithlinearalgebraexperiment": [52, 97], "adjoint": [52, 57, 75, 80, 369, 436, 625, 663, 674, 675, 764], "batched_out": [52, 75, 369], "j1": [52, 75, 369, 417], "jn": [52, 75, 369, 417], "k1": [52, 75, 369, 417], "km": [52, 75, 369, 417], "outer": [52, 57, 75, 80, 92, 369, 417, 625, 628, 703, 704, 705, 794, 806], "30000001": [52, 75, 369, 417, 534, 622, 633, 738], "40000001": [52, 56, 68, 75, 97, 98, 107, 110, 291, 360, 369, 417, 614, 624, 633, 653, 738], "60000002": [52, 75, 88, 98, 369, 374, 417, 494, 496, 749], "80000001": [52, 75, 369, 374, 417, 494, 496], "60000001": [52, 75, 369, 417], "90000004": [52, 75, 369, 417, 635, 749], "20000002": [52, 75, 369, 417], "20000005": [52, 54, 75, 291, 298, 301, 302, 360, 369, 417, 603], "00000012": [52, 75, 369, 417], "49999994": [52, 75, 369, 417], "00000006": [52, 75, 369, 417], "60000014": [52, 75, 369, 417], "19999993": [52, 75, 369, 417], "80000007": [52, 75, 369, 417], "20000017": [52, 75, 369, 417], "89999992": [52, 75, 369, 417], "60000008": [52, 75, 369, 417], "80000019": [52, 75, 346, 365, 369, 417], "4000001": [52, 75, 79, 369, 417, 624, 647, 653], "cond": [52, 75, 118, 369, 616, 843], "933034373659268": [52, 418], "diagflat": [52, 75, 369, 428, 431], "offset": [52, 57, 60, 71, 75, 80, 83, 129, 369, 374, 419, 490, 491, 492, 617, 625, 630, 658, 679, 725, 771], "padding_valu": [52, 75, 369, 419], "right_left": [52, 75, 369, 419], "num_row": [52, 75, 369, 419], "num_col": [52, 75, 369, 419], "dot": [52, 56, 75, 79, 92, 369, 370, 433, 442, 624, 625, 650, 653, 681, 794, 800, 807, 816], "eig": [52, 57, 75, 369, 625, 660, 661], "37228132": [52, 75, 369, 421, 423, 659], "82456484": [52, 421, 659], "41597356": [52, 421, 659], "56576746": [52, 421, 659], "90937671": [52, 421, 659], "eigh_tridiagon": [52, 75, 369], "eigvals_onli": [52, 75, 369, 422], "select_rang": [52, 75, 369, 422], "tol": [52, 75, 96, 369, 422, 435, 441], "eigenvalu": [52, 57, 75, 80, 92, 93, 369, 421, 422, 423, 625, 659, 660, 661, 668], "eigenvector": [52, 75, 369, 421, 422, 625, 659, 660], "interv": [52, 61, 66, 75, 84, 89, 121, 132, 133, 140, 369, 380, 422, 514, 617, 625, 627, 631, 636, 655, 681, 687, 690, 698, 727, 729, 755, 756], "togeth": [52, 69, 75, 328, 344, 365, 369, 422, 785, 800, 809, 812, 815, 817, 828, 829, 832, 833, 835, 841, 842, 843, 848, 856, 858, 859, 864], "cluster": [52, 75, 369, 422, 843, 858], "converg": [52, 75, 369, 422, 849], "_2": [52, 75, 369, 422], "eig_val": [52, 75, 369, 422], "decreas": [52, 75, 369, 422, 766], "eig_vector": [52, 75, 369, 422], "38196": [52, 422], "61803": [52, 422], "eigval": [52, 75, 369], "general_inner_product": [52, 80, 369], "n_mode": [52, 80, 369, 424], "tradit": [52, 80, 369, 424], "inner": [52, 57, 71, 80, 101, 136, 369, 421, 424, 617, 625, 628, 659, 660, 665, 703, 704, 705, 794, 806, 828], "higher_order_mo": [52, 75, 369], "n_featur": [52, 75, 369, 425], "d1": [52, 75, 369, 425], "dn": [52, 75, 369, 425], "initialize_tuck": [52, 75, 369], "svd": [52, 57, 75, 80, 95, 369, 426, 430, 435, 437, 438, 439, 441, 625, 676], "truncated_svd": [52, 75, 369, 426, 435, 438, 441], "non_neg": [52, 75, 321, 362, 369, 426], "mask": [52, 56, 75, 79, 92, 368, 369, 371, 413, 426, 427, 435, 441, 481, 544, 622, 624, 647, 650, 653, 835], "svd_mask_repeat": [52, 75, 369, 426, 435, 441], "tuckertensor": [52, 75, 96, 321, 362, 369, 426, 435, 441], "scheme": [52, 75, 369, 426, 435, 811, 841, 858], "tucker": [52, 75, 321, 362, 369, 426, 435], "decomposit": [52, 57, 75, 80, 92, 93, 95, 317, 318, 319, 320, 321, 362, 369, 426, 435, 438, 440, 441, 625, 654, 660, 664, 672, 675, 806, 865], "miss": [52, 75, 369, 371, 426, 435, 441, 481, 784, 806, 807, 812, 815, 816, 819, 829, 832, 835], "everywher": [52, 75, 369, 426, 435, 441], "imput": [52, 75, 369, 426, 435, 441], "kron": [52, 75, 369, 431, 865], "make_svd_non_neg": [52, 75, 369, 439], "nntype": [52, 75, 369, 430], "nndsvd": [52, 75, 369, 430], "singular": [52, 57, 75, 80, 369, 426, 430, 437, 439, 625, 666, 668, 671, 675, 676, 764, 766, 817], "nndsvda": [52, 75, 369, 430], "boutsidi": [52, 75, 369, 430], "gallopoulo": [52, 75, 369, 430], "pattern": [52, 53, 75, 76, 369, 430, 534, 535, 536, 622, 817, 820, 831, 849], "recognit": [52, 75, 369, 430, 804], "1350": [52, 75, 369, 430], "1362": [52, 75, 369, 430], "2008": [52, 75, 369, 430, 858], "matrix_exp": [52, 75, 369], "7183": [52, 75, 369, 431], "3891": [52, 75, 369, 431], "mode_dot": [52, 75, 91, 92, 96, 369], "matrix_or_vector": [52, 75, 92, 96, 369, 432], "i_1": [52, 75, 92, 93, 369, 432], "i_k": [52, 75, 92, 369, 432], "i_n": [52, 75, 92, 369, 432], "i_": [52, 75, 92, 369, 380, 432, 514], "multi_dot": [52, 75, 369], "148": [52, 74, 75, 238, 369, 433], "multi_mode_dot": [52, 75, 369], "mat_or_vec_list": [52, 75, 369, 434], "times_0": [52, 369, 434], "vec": [52, 369, 434], "times_1": [52, 369, 434], "cdot": [52, 268, 369, 434, 620], "times_n": [52, 369, 434], "partial_tuck": [52, 75, 369], "n_iter_max": [52, 75, 369, 435, 441], "verbos": [52, 75, 369, 435, 438, 441, 832, 837], "return_error": [52, 75, 369, 435, 441], "variat": [52, 75, 369, 435, 441, 819, 829, 832], "reconstruct": [52, 57, 63, 75, 86, 95, 369, 371, 435, 441, 487, 625, 633, 675, 737, 739, 830], "return_erro": [52, 369, 435, 441], "svd_flip": [52, 75, 369], "u_based_decis": [52, 75, 369, 437], "basi": [52, 75, 369, 437, 808, 811, 840], "flip": [52, 59, 75, 82, 92, 226, 369, 371, 437, 465, 466, 620, 627, 828, 839, 840, 842], "decis": [52, 75, 369, 437, 800, 811, 817, 835, 837, 839, 858], "u_adjust": [52, 75, 369, 437], "v_adjust": [52, 75, 369, 437], "tensor_train": [52, 75, 369], "tt": [52, 75, 320, 362, 369, 438, 440], "kth": [52, 369, 438], "tttensor": [52, 95, 320, 362, 369, 438], "compute_uv": [52, 57, 75, 80, 369, 439, 625, 675], "n_eigenvec": [52, 75, 369, 439], "returnedv": [52, 439], "vh": [52, 57, 75, 80, 369, 439, 625, 675], "eigen": [52, 75, 369, 439], "namedtupl": [52, 57, 63, 75, 80, 86, 369, 371, 421, 439, 487, 625, 633, 659, 660, 672, 673, 675, 737, 738, 739], "tt_matrix_to_tensor": [52, 75, 369], "known": [52, 75, 279, 369, 438, 440, 620, 779, 811, 816, 817, 829, 832], "rank_k": [52, 75, 369, 440], "left_dim_k": [52, 75, 369, 440], "right_dim_k": [52, 75, 369, 440], "rank_": [52, 75, 369, 440], "49671414": [52, 75, 369, 440, 631, 728], "1382643": [52, 75, 369, 440, 631, 728], "64768857": [52, 75, 369, 440, 631, 728], "5230298": [52, 75, 369, 440, 631, 728], "23415337": [52, 75, 369, 440, 631, 728], "23413695": [52, 75, 369, 440, 631, 728], "57921278": [52, 75, 369, 440], "76743472": [52, 75, 369, 440], "1163073": [52, 75, 369, 440], "11629914": [52, 75, 369, 440], "03237505": [52, 75, 369, 440], "03237278": [52, 75, 369, 440], "78441733": [52, 75, 369, 440], "38119566": [52, 75, 369, 440], "21834874": [52, 75, 369, 440], "10610882": [52, 75, 369, 440], "15165846": [52, 75, 369, 440], "15164782": [52, 75, 369, 440], "35662258": [52, 75, 369, 440], "35659757": [52, 75, 369, 440], "02283812": [52, 75, 369, 440], "49705869": [52, 75, 369, 440], "40518808": [52, 75, 369, 440], "16882598": [52, 75, 369, 440], "fixed_factor": [52, 75, 369, 441], "tl": [52, 75, 369, 441], "kolda": [52, 75, 369, 441], "bader": [52, 75, 369, 441], "siam": [52, 75, 369, 438, 441], "review": [52, 75, 369, 441, 802, 804, 806, 808, 814, 816, 819, 829, 833], "vol": [52, 75, 369, 441], "pp": [52, 75, 369, 441], "455": [52, 75, 369, 441], "2009": [52, 75, 369, 441], "_arraywithlossesexperiment": [52, 97], "hinge_embedding_loss": [52, 75, 370], "margin": [52, 75, 370, 442, 449, 829], "measur": [52, 370, 442, 624, 650, 780], "semi": [52, 370, 442], "supervis": [52, 370, 442], "l_n": [52, 370, 442], "x_n": [52, 370, 442], "y_n": [52, 370, 442], "ell": [52, 370, 442], "operatornam": [52, 279, 281, 370, 442, 620, 625, 660], "l_1": [52, 370, 442], "Its": [52, 370, 442, 858], "hyperparamet": [52, 75, 370, 442], "aggreg": [52, 75, 370, 442, 633, 737, 816], "unreduc": [52, 75, 370, 442], "hing": [52, 75, 370, 442, 449], "input_tensor": [52, 75, 369, 370, 438, 442, 447, 829], "target_tensor": [52, 370, 442, 447], "huber_loss": [52, 75, 370], "delta": [52, 54, 75, 77, 370, 443, 603, 623], "transit": [52, 75, 370, 443, 858], "huber": [52, 75, 370, 443], "kl_div": [52, 75, 370], "log_target": [52, 75, 370, 444], "contai": [52, 444], "batchmean": [52, 370, 444], "kullback": [52, 75, 370, 444], "leibler": [52, 75, 370, 444], "0916": [52, 444], "l1_loss": [52, 75, 370, 446], "l1": [52, 57, 75, 80, 370, 374, 443, 445, 446, 448, 493, 625, 682, 815, 840], "targetict": [52, 75, 370, 445, 446, 448, 449], "20000000000000004": [52, 445], "log_poisson_loss": [52, 75, 370], "compute_full_loss": [52, 75, 370, 446, 781], "favor": [52, 75, 370, 446], "likelihood": [52, 75, 370, 446, 447], "28402555": [52, 370, 446], "03402555": [52, 370, 446], "1573164": [52, 370, 446], "poisson_nll_loss": [52, 75, 370], "log_input": [52, 75, 370, 447], "poisson": [52, 75, 370, 375, 446, 447], "assumpt": [52, 370, 446, 447], "minu": [52, 370, 446, 447], "omiss": [52, 370, 447], "stirl": [52, 75, 370, 446, 447], "describ": [52, 65, 75, 93, 218, 235, 236, 268, 271, 273, 370, 375, 378, 447, 501, 504, 620, 624, 635, 650, 747, 751, 753, 802, 806, 807, 808, 814, 816, 828, 829, 832, 837, 842, 858], "prevent": [52, 54, 75, 77, 370, 447, 546, 603, 604, 609, 622, 623, 624, 635, 647, 753, 779, 784, 806, 808, 816, 817, 821, 828, 829, 833], "1978": [52, 447], "smooth_l1_loss": [52, 75, 370], "smooth": [52, 58, 75, 81, 370, 443, 448, 626, 684, 685, 686, 827], "8125": [52, 448], "soft_margin_loss": [52, 75, 370], "soft": [52, 75, 301, 370, 371, 449, 481, 818], "35667497": [52, 449, 626, 685], "22314353": [52, 449], "60943791": [52, 449], "manipul": [52, 75, 828, 829, 833, 835, 837, 842, 847, 858], "_arraywithmanipulationexperiment": [52, 97], "as_strid": [52, 75, 371], "nativeshap": [52, 56, 59, 61, 75, 82, 84, 122, 123, 125, 130, 137, 143, 371, 375, 450, 462, 467, 475, 478, 497, 498, 499, 500, 501, 566, 579, 584, 586, 617, 622, 624, 627, 631, 637, 639, 641, 643, 645, 694, 727, 728, 729, 824, 826], "byte": [52, 53, 71, 75, 76, 97, 129, 371, 450, 560, 617, 622, 863, 864], "associative_scan": [52, 75, 371], "revers": [52, 53, 57, 65, 75, 80, 88, 97, 98, 359, 367, 368, 369, 371, 380, 413, 429, 451, 465, 466, 512, 513, 533, 622, 625, 627, 635, 680, 691, 745, 746, 806, 815, 816, 817, 819, 820, 828, 829, 835, 842, 843], "scan": [52, 75, 371, 451, 843], "atleast_1d": [52, 75, 371], "ari": [52, 75, 371, 452, 453, 454, 460, 469, 488], "a1": [52, 76, 371, 452, 453, 454, 458, 526], "a2": [52, 76, 371, 452, 453, 454, 458, 526], "atleast_2d": [52, 75, 371], "atleast_3d": [52, 75, 371], "column_stack": [52, 75, 371], "concat_from_sequ": [52, 75, 371], "input_sequ": [52, 75, 371, 459], "new_axi": [52, 75, 371, 459, 842], "dsplit": [52, 75, 371], "indices_or_sect": [52, 75, 371, 460, 469, 488], "3rd": [52, 75, 371, 460], "dstack": [52, 75, 371], "fill_diagon": [52, 75, 371], "fill_diag": [52, 463], "fortran": [52, 59, 75, 82, 371, 464, 627, 694, 858, 862], "layout": [52, 59, 75, 82, 371, 464, 627, 694, 813, 828, 829, 835], "fliplr": [52, 75, 371, 828], "diag": [52, 57, 75, 80, 93, 371, 465, 466, 625, 660, 837], "flipud": [52, 75, 371, 828], "fold": [52, 75, 371, 475, 476, 816], "unfold": [52, 75, 92, 93, 95, 369, 371, 426, 467, 475, 477], "folded_tensor": [52, 371, 467], "heavisid": [52, 75, 371], "5000": [52, 371, 468, 625, 663, 794], "hsplit": [52, 75, 371], "horizont": [52, 75, 371, 458, 469, 534, 622], "hstack": [52, 75, 371, 458], "i0": [52, 75, 371, 380, 514], "bessel": [52, 65, 75, 88, 311, 362, 371, 471, 635, 752, 754], "kind": [52, 65, 75, 160, 163, 164, 380, 471, 512, 513, 518, 618, 635, 745, 746, 751, 753, 764, 765, 805, 829, 832, 835, 837, 843], "26606588": [52, 75, 371, 471], "2795853": [52, 75, 371, 471], "88079259": [52, 75, 371, 471], "row_mod": [52, 75, 371, 472], "column_mod": [52, 75, 371, 472], "ascend": [52, 64, 75, 87, 371, 378, 472, 504, 634, 741, 743, 809], "prod": [52, 53, 65, 76, 88, 369, 371, 427, 429, 472, 520, 535, 622, 635, 764, 794, 817, 819, 837], "moveaxi": [52, 75, 371], "destin": [52, 75, 371, 473], "unstack": [52, 59, 69, 82, 473, 627, 815, 837, 840, 865], "reorder": [52, 59, 75, 82, 371, 473, 534, 622, 627, 691, 831], "stat_length": [52, 75, 371, 474], "constant_valu": [52, 75, 371, 474], "end_valu": [52, 75, 371, 474], "reflect_typ": [52, 75, 371, 474], "partial_fold": [52, 75, 371], "skip_begin": [52, 75, 371, 475, 476, 477, 478], "untouch": [52, 75, 371, 475, 476, 477, 478], "partial_tensor_to_vec": [52, 75, 371], "skip_end": [52, 75, 371, 476, 477], "vectoris": [52, 75, 92, 371, 476, 478], "partial_unfold": [52, 75, 371], "ravel_tensor": [52, 75, 371, 477], "n_1": [52, 75, 371, 477], "n_2": [52, 75, 371, 477], "n_i": [52, 75, 369, 371, 427, 477], "partial_vec_to_tensor": [52, 75, 371], "put_along_axi": [52, 75, 371], "rot90": [52, 75, 371, 828], "rotat": [52, 75, 371, 480], "soft_threshold": [52, 75, 371], "behav": [52, 75, 329, 330, 365, 369, 371, 421, 482, 625, 659, 811, 821, 826, 828, 829, 830, 839, 859], "invalid": [52, 66, 75, 89, 371, 482, 625, 627, 636, 681, 690, 755, 756, 764, 807, 817], "slice": [52, 65, 69, 75, 76, 88, 93, 142, 322, 362, 371, 457, 479, 482, 483, 541, 542, 544, 570, 617, 622, 629, 635, 715, 750, 858], "inexact": [52, 75, 339, 365, 371, 482], "largest": [52, 69, 75, 160, 163, 369, 371, 437, 482, 484, 618, 625, 666, 675], "take_along_axi": [52, 75, 371], "arr": [52, 53, 72, 75, 168, 371, 457, 479, 483, 566, 618, 817, 818], "top_k": [52, 75, 371], "sort": [52, 63, 69, 75, 86, 98, 287, 369, 371, 380, 421, 484, 504, 518, 620, 625, 633, 659, 660, 675, 676, 737, 741, 742, 743, 766, 800, 805, 816, 831, 833], "trim_zero": [52, 75, 371], "fb": [52, 75, 371, 485], "front": [52, 75, 371, 485, 829, 836, 837, 840, 847, 856, 858], "unfolded_tensor": [52, 371, 486], "unique_consecut": [52, 75, 371], "vsplit": [52, 75, 371], "vertic": [52, 75, 371, 488, 489, 534, 622, 808], "_arraywithnormsexperiment": [52, 97], "varianc": [52, 65, 75, 88, 374, 490, 492, 635, 754, 779, 783], "nsc": [52, 75, 374, 490, 491, 492, 783], "braodcast": [52, 75, 374, 490], "running_mean": [52, 75, 374, 490, 492, 783], "running_var": [52, 75, 374, 490, 492, 783], "nc": [52, 75, 374, 490, 491, 492, 783], "group_norm": [52, 75, 374], "num_group": [52, 75, 374, 491], "group": [52, 75, 371, 374, 487, 491, 624, 629, 637, 644, 645, 708, 809, 811, 815, 817, 825, 829, 830, 854, 857, 863], "instance_norm": [52, 75, 374], "l1_normal": [52, 75, 374], "33333334": [52, 374, 493, 496, 605, 623, 624, 625, 646, 682], "33333337": [52, 132, 374, 493, 605, 617, 623], "28571439": [52, 374, 493], "l2_normal": [52, 75, 374, 496], "l2": [52, 57, 80, 91, 92, 374, 494, 496, 625, 682, 780, 815], "44721359": [52, 75, 374, 494, 496], "89442718": [52, 75, 374, 494, 496], "lp_normal": [52, 75, 374], "lp": [52, 374, 496], "_arraywithrandomexperiment": [52, 97], "bernoulli": [52, 75, 368, 375, 391, 392, 393], "event": [52, 75, 375, 497, 832], "entri": [52, 59, 69, 75, 82, 86, 93, 132, 369, 371, 375, 436, 463, 465, 466, 497, 617, 627, 629, 696, 719, 737, 807, 816, 832, 858], "parameter": [52, 61, 75, 84, 375, 497, 498, 500, 501, 631, 726, 728, 729], "odd": [52, 75, 273, 371, 375, 474, 497, 620, 794, 805, 811], "drawn": [52, 61, 75, 84, 375, 497, 498, 499, 500, 501, 631, 726, 727, 728, 729, 764, 765, 766, 779, 832], "dirichlet": [52, 75, 375], "10598304": [52, 375, 499], "21537054": [52, 375, 499], "67864642": [52, 375, 499], "48006698": [52, 375, 499], "07472073": [52, 375, 499], "44521229": [52, 375, 499], "55479872": [52, 375, 499], "05426367": [52, 375, 499], "39093761": [52, 375, 499], "19531053": [52, 375, 499], "51675832": [52, 375, 499], "28793114": [52, 375, 499], "12315625": [52, 375, 499], "29823365": [52, 375, 499], "5786101": [52, 375, 499], "15564976": [52, 375, 499], "50542368": [52, 375, 499], "33892656": [52, 375, 499], "1325352": [52, 375, 499], "44439589": [52, 375, 499], "42306891": [52, 375, 499], "gamma": [52, 60, 75, 83, 336, 347, 365, 375, 380, 515, 630, 725], "rate": [52, 54, 75, 77, 368, 375, 409, 501, 604, 607, 609, 610, 611, 623, 628, 703, 704, 705, 784, 816], "lam": [52, 75, 375, 501], "_arraywithsearchingexperiment": [52, 97], "unravel_index": [52, 75, 376], "unravel": [52, 75, 376, 502], "_arraywithsetexperiment": [52, 97], "_arraywithsortingexperiment": [52, 97], "lexsort": [52, 75, 378], "indirectli": [52, 75, 378, 504], "statist": [52, 75, 90, 371, 474, 783, 798, 806, 817, 832, 833, 858], "_arraywithstatisticalexperiment": [52, 97], "bincount": [52, 75, 380], "minlength": [52, 75, 380, 509], "corrcoef": [52, 75, 380], "rowvar": [52, 75, 380, 510, 511], "relationship": [52, 75, 510, 779, 831], "cov": [52, 75, 380], "ddof": [52, 75, 380, 511], "fweight": [52, 75, 380, 511], "aweight": [52, 75, 380, 511], "overridden": [52, 75, 380, 511, 784, 812], "unbias": [52, 65, 75, 88, 380, 511, 635, 754], "typic": [52, 75, 328, 344, 365, 380, 511, 634, 743, 780, 811, 825, 857, 865], "assign": [52, 75, 92, 380, 511, 806, 808, 813, 817, 828, 831, 839], "covari": [52, 75, 380, 511], "cummax": [52, 75, 380], "exclus": [52, 53, 65, 69, 75, 76, 88, 121, 369, 380, 435, 512, 513, 553, 554, 557, 617, 622, 631, 635, 727, 745, 746, 804, 815, 817, 825, 842, 862, 864], "cumul": [52, 65, 75, 88, 380, 512, 513, 635, 745, 746], "uint64": [52, 65, 157, 162, 164, 165, 175, 177, 180, 380, 512, 513, 618, 635, 745, 746, 751, 753, 764, 765, 817, 832, 837], "uint16": [52, 65, 152, 157, 162, 163, 172, 380, 512, 513, 618, 635, 745, 746, 751, 753, 764, 765, 817, 829, 832, 837], "bit": [52, 65, 159, 160, 163, 226, 227, 229, 380, 512, 513, 618, 620, 635, 745, 746, 751, 753, 800, 805, 806, 807, 815, 816, 817, 819, 825, 837, 839, 864], "uint32": [52, 65, 157, 162, 163, 164, 186, 380, 512, 513, 618, 635, 745, 746, 751, 753, 764, 765, 817, 832, 837], "cummin": [52, 75, 380], "histogram": [52, 75, 380], "extend_lower_interv": [52, 75, 380, 514], "extend_upper_interv": [52, 75, 380, 514], "densiti": [52, 75, 380, 514], "monoton": [52, 75, 380, 514], "rightmost": [52, 75, 380, 514], "c1": [52, 75, 380, 514, 815], "ff": [52, 75, 380, 514], "c_": [52, 75, 93, 380, 514], "igamma": [52, 75, 380], "incomplet": [52, 75, 380, 515, 808], "3614": [52, 75, 380, 515], "2085": [52, 75, 380, 515], "median": [52, 75, 371, 380, 474, 518], "nanmean": [52, 75, 380], "6666666666666665": [52, 75, 380, 517], "nanmedian": [52, 75, 380], "overwrite_input": [52, 75, 380, 518], "treat": [52, 69, 75, 98, 273, 349, 365, 371, 374, 380, 483, 495, 518, 520, 620, 761, 827, 832, 838, 842], "undefin": [52, 75, 371, 380, 381, 474, 518, 522, 817, 821, 827], "nanmin": [52, 75, 380], "nanprod": [52, 75, 380], "Not": [52, 75, 349, 365, 369, 380, 423, 520, 615, 813, 821, 830, 840, 841, 843], "quantil": [52, 75, 380], "inclus": [52, 75, 121, 380, 521, 617, 631, 727, 801, 813, 828, 835], "midpoint": [52, 75, 380, 521], "surround": [52, 75, 380, 521, 835], "whichev": [52, 75, 380, 521], "_arraywithutilityexperiment": [52, 97], "optional_get_el": [52, 75, 381], "empti": [52, 53, 65, 69, 76, 88, 121, 371, 381, 474, 522, 529, 566, 617, 622, 625, 629, 635, 636, 679, 682, 720, 750, 751, 753, 755, 756, 806, 807, 812, 814, 817, 818, 828], "_arraywithgener": [53, 97], "all_equ": [53, 76, 622], "equality_matrix": [53, 76, 523, 622], "array_equ": [53, 76, 622], "assert_supports_inplac": [53, 76, 622], "ivybackendexcept": [53, 76, 527, 551, 622, 795, 812, 818, 821, 822], "clip_matrix_norm": [53, 76, 622], "894": [53, 76, 529, 530, 622, 630, 725], "clip_vector_norm": [53, 76, 622], "default_v": [53, 533, 622], "catch_except": [53, 533, 622], "rev": [53, 533, 622], "with_cal": [53, 533, 622], "catch": [53, 533, 622, 826, 832], "einops_rearrang": [53, 76, 622], "axes_length": [53, 76, 534, 535, 536, 622], "arrang": [53, 534, 622], "rearrang": [53, 76, 534, 536, 622, 831], "einops_reduc": [53, 76, 622, 817], "einops_repeat": [53, 76, 622], "fourier_encod": [53, 76, 622], "max_freq": [53, 76, 538, 622], "oppos": [53, 76, 538, 622, 817], "geometr": [53, 76, 538, 622, 625, 680], "0000000e": [53, 76, 538, 622], "2246468e": [53, 76, 538, 622], "4492936e": [53, 538, 622], "6739404e": [53, 76, 538, 622], "batch_dim": [53, 76, 541, 542, 622, 786], "gather_nd": [53, 76, 622], "get_num_dim": [53, 76, 622], "as_arrai": [53, 76, 545, 579, 622, 786], "has_nan": [53, 76, 622], "include_inf": [53, 76, 547, 601, 622], "inplace_decr": [53, 76, 622], "val": [53, 69, 74, 76, 248, 371, 463, 549, 550, 551, 570, 571, 572, 620, 622, 817, 828, 839], "decrement": [53, 76, 549, 622], "inplace_incr": [53, 76, 622], "increment": [53, 76, 550, 622, 808, 858], "inplace_upd": [53, 76, 569, 622, 777, 828], "ensure_in_backend": [53, 76, 551, 622, 828], "keep_input_dtyp": [53, 76, 551, 622, 828], "is_arrai": [53, 76, 622, 828, 829], "is_ivy_arrai": [53, 76, 622, 828, 839], "is_ivy_contain": [53, 622], "is_native_arrai": [53, 76, 171, 554, 618, 622, 839], "isin": [53, 76, 622], "test_el": [53, 76, 558, 622], "assume_uniqu": [53, 76, 558, 622], "invert": [53, 76, 226, 558, 620, 622, 625, 667], "scatter_flat": [53, 76, 622], "occupi": [53, 160, 163, 565, 566, 618, 622], "scatter_nd": [53, 76, 622, 835, 839], "stable_divid": [53, 76, 622, 825], "denomin": [53, 60, 76, 83, 572, 580, 594, 622, 630, 725, 783, 825, 834, 843, 855], "min_denomin": [53, 76, 572, 580, 594, 622, 834], "_min_denomin": [53, 580, 622], "stable_pow": [53, 76, 622], "min_bas": [53, 76, 571, 581, 593, 622, 783, 834], "stabl": [53, 64, 76, 87, 142, 322, 329, 330, 362, 365, 378, 504, 571, 572, 580, 581, 593, 594, 617, 622, 634, 741, 744, 766, 807, 813, 817, 829, 834, 837, 843], "00004": [53, 76, 581, 622], "00008": [53, 76, 581, 622], "00004000e": [53, 581], "56002560e": [53, 581], "60001200e": [53, 581], "09602048e": [53, 581], "supports_inplace_upd": [53, 76, 622], "to_fil": 53, "fid": 53, "sep": 53, "format_": 53, "recov": [53, 821, 829], "to_scalar": [53, 76, 622], "value_is_nan": [53, 76, 622], "_arraywithgradi": [54, 97], "adam_step": [54, 77, 623], "mw": [54, 77, 603, 604, 623, 841], "vw": [54, 77, 603, 604, 623, 841], "beta1": [54, 77, 525, 603, 604, 609, 622, 623, 784, 841], "beta2": [54, 77, 525, 603, 604, 609, 622, 623, 784, 841], "epsilon": [54, 57, 58, 77, 80, 81, 525, 603, 604, 609, 622, 623, 625, 626, 668, 671, 684, 685, 686, 776, 781, 783, 784, 815, 825, 828, 841], "dc": [54, 77, 603, 604, 607, 609, 610, 611, 623], "dw": [54, 77, 603, 604, 607, 609, 610, 611, 623], "forget": [54, 77, 603, 604, 609, 623, 784, 800, 817], "dcdw": [54, 77, 603, 604, 607, 609, 610, 623], "adam_step_delta": [54, 77, 603, 623], "2020105": [54, 603, 623], "22187898": [54, 603, 623], "24144873": [54, 603, 623], "10000002": [54, 88, 291, 360, 603, 749], "00300002": [54, 603], "00800002": [54, 603], "adam_upd": [54, 77, 623, 841], "mw_tm1": [54, 77, 604, 609, 623], "vw_tm1": [54, 77, 604, 609, 623], "stop_gradi": [54, 77, 208, 525, 604, 607, 609, 610, 611, 619, 622, 623, 628, 703, 704, 705, 784, 841], "ws_new": [54, 77, 604, 609, 610, 611, 623], "updated_weight": [54, 77, 604, 623], "92558753": [54, 604], "92558873": [54, 604, 623], "92558718": [54, 604, 623], "00000063e": [54, 77, 604, 623], "00000016e": [54, 77, 604, 623], "00000086e": [54, 77, 604, 623], "gradient_descent_upd": [54, 77, 623, 628, 703, 704, 705], "descent": [54, 77, 607, 623, 784, 841, 858], "new_weight": [54, 77, 607, 609, 610, 623, 840], "lamb_upd": [54, 77, 623], "max_trust_ratio": [54, 77, 609, 623, 784], "decay_lambda": [54, 77, 609, 610, 623, 784], "trust": [54, 77, 609, 623, 784], "ratio": [54, 77, 609, 623, 784], "decai": [54, 77, 609, 610, 623, 784], "lamb": [54, 77, 609, 623, 784, 841], "784": [54, 609, 623], "lars_upd": [54, 77, 623], "lar": [54, 77, 610, 623, 784, 841], "34077978": [54, 610, 623], "78025991": [54, 610, 623], "56051969": [54, 610, 623], "78026009": [54, 610, 623], "56051981": [54, 610, 623], "12103939": [54, 610, 623], "optimizer_upd": [54, 77, 623], "effective_grad": [54, 77, 611, 623], "3e": [54, 77, 611, 623], "preserve_typ": [54, 77, 612, 623], "_arraywithimag": [55, 97], "_arraywithlay": [56, 97], "conv1d": [56, 79, 624, 780], "filter_format": [56, 79, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645], "channel_last": [56, 79, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645, 764], "x_dilat": [56, 79, 624, 637, 638, 640, 641, 642, 644], "d_out": [56, 79, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645], "channel_first": [56, 79, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645], "wio": [56, 624, 637, 638, 639, 644], "conv1d_transpos": [56, 79, 624], "output_shap": [56, 79, 624, 637, 639, 641, 643, 645, 780], "iow": [56, 79, 624, 639], "woi": [56, 79, 624, 639], "fh": [56, 79, 624, 629, 637, 640, 641, 642, 643, 644, 645, 646, 718], "hwio": [56, 624, 637, 638, 640, 644], "conv2d_transpos": [56, 79, 624], "iohw": [56, 79, 624, 641], "hwoi": [56, 79, 624, 641], "conv3d": [56, 79, 624, 643, 780], "fd": [56, 79, 624, 637, 642, 643, 644, 645], "conv3d_transpos": [56, 79, 624, 645], "iodhw": [56, 79, 624, 643, 645], "dhwoi": [56, 79, 624, 643, 645], "depthwise_conv2d": [56, 79, 624], "randint": [56, 61, 63, 79, 84, 631, 633, 646, 649, 737, 817, 851], "noise_shap": [56, 79, 624, 647], "42857146": [56, 624, 647], "85714293": [56, 624, 647], "28571415": [56, 79, 624, 647], "71428585": [56, 79, 624, 647], "14285755": [56, 79, 624, 647], "5714283": [56, 624, 647], "4285717": [56, 79, 624, 647], "8571434": [56, 79, 624, 647], "2857151": [56, 624, 647], "dropout1d": [56, 79, 368], "droput1d": [56, 391, 392], "dropout2d": [56, 79, 368], "dropout3d": [56, 79, 368], "droput3d": [56, 393], "outer_batch_shap": [56, 79, 624, 648], "inner_batch_shap": [56, 79, 624, 648], "lstm_updat": [56, 79, 624, 837], "init_h": [56, 79, 624, 649, 837], "init_c": [56, 79, 624, 649, 837], "recurrent_kernel": [56, 79, 624, 649, 837], "recurrent_bia": [56, 79, 624, 649, 837], "hidden": [56, 79, 624, 649, 780, 814, 821, 837, 841], "recurr": [56, 75, 79, 368, 413, 624, 649, 837, 858, 862], "timestep": [56, 75, 79, 368, 413, 624, 649, 650, 780, 837], "h_i": [56, 79, 649], "c_i": [56, 79, 649], "rc": [56, 79, 649], "multi_head_attent": [56, 79, 624, 828], "num_head": [56, 79, 624, 650, 780], "in_proj_weight": [56, 79, 624, 650], "q_proj_weight": [56, 79, 624, 650], "k_proj_weight": [56, 79, 624, 650], "v_proj_weight": [56, 79, 624, 650], "out_proj_weight": [56, 79, 624, 650], "in_proj_bia": [56, 79, 624, 650], "out_proj_bia": [56, 79, 624, 650], "is_caus": [56, 79, 624, 650, 653], "key_padding_mask": [56, 79, 624, 650], "bias_k": [56, 79, 624, 650], "bias_v": [56, 79, 624, 650], "static_k": [56, 79, 624, 650], "static_v": [56, 79, 624, 650], "add_zero_attn": [56, 79, 624, 650], "return_attention_weight": [56, 79, 624, 650], "average_attention_weight": [56, 79, 624, 650], "scaled_dot_product_attent": [56, 79, 624], "dropout_p": [56, 79, 624, 653], "num_queri": [56, 79, 624, 653], "feat_dim": [56, 79, 624, 653], "num_kei": [56, 79, 624, 653], "causal": [56, 79, 624, 650, 653], "attent": [56, 79, 624, 650, 653, 780, 808, 812, 848], "29999995": [56, 291, 292, 301, 360, 624, 633, 653, 738], "19994521": [56, 624, 653], "09994531": [56, 624, 653], "30000019": [56, 371, 458, 624, 653], "_arraywithlinearalgebra": [57, 97], "choleski": [57, 80, 625, 828], "625": [57, 75, 341, 625, 654], "vif": [57, 80, 655], "det": [57, 80, 625, 673, 816], "axis1": [57, 59, 80, 82, 625, 627, 658, 679, 699], "axis2": [57, 80, 625, 658, 679], "eigh": [57, 80, 369, 421, 625, 659], "uplo": [57, 80, 625, 660, 661], "eigvalsh": [57, 80, 625], "array_lik": [57, 80, 368, 370, 371, 412, 443, 444, 448, 449, 479, 625, 662, 670, 794], "105": [57, 79, 624, 625, 626, 647, 648, 662, 670, 684], "149": [57, 625, 662], "143": [57, 74, 98, 285, 620, 625, 662, 819], "203": [57, 74, 224, 625, 630, 662, 725], "233": [57, 625, 662], "inv": [57, 80, 625], "transpose_a": [57, 80, 625, 665], "transpose_b": [57, 80, 625, 665], "adjoint_a": [57, 80, 625, 665], "adjoint_b": [57, 80, 625, 665], "matrix_norm": [57, 80, 625], "ord": [57, 80, 625, 666, 682], "fro": [57, 80, 370, 443, 625, 666], "nuc": [57, 80, 625, 666], "matrix_pow": [57, 80, 625], "matrix_rank": [57, 80, 625], "hermitian": [57, 80, 369, 421, 422, 625, 659, 660, 661, 668, 675], "largest_singular_valu": [57, 80, 625, 668, 671], "defici": [57, 625, 668], "matrix_transpos": [57, 80, 625, 839], "pinv": [57, 80, 625], "pseudo": [57, 80, 625, 671, 827], "99999988": [57, 80, 625, 671], "qr": [57, 80, 625, 830], "complet": [57, 69, 80, 625, 672, 765, 806, 807, 808, 809, 811, 812, 815, 816, 819, 821, 825, 829, 830, 832, 835, 839, 840, 848, 856], "12309149": [57, 625, 672], "90453403": [57, 625, 672], "40824829": [57, 625, 672], "49236596": [57, 625, 672], "30151134": [57, 625, 672], "81649658": [57, 625, 672], "86164044": [57, 625, 672], "12403841e": [57, 625, 672], "60113630e": [57, 625, 672], "10782342e": [57, 625, 672], "04534034e": [57, 625, 672], "80906807e": [57, 625, 672], "88178420e": [57, 80, 625, 661, 672], "slogdet": [57, 80, 625], "logabsdet": [57, 80, 625, 673], "natur": [57, 80, 238, 256, 257, 258, 259, 278, 347, 365, 620, 625, 673, 812, 819, 821, 830, 848], "098611": [57, 625, 673], "solv": [57, 80, 369, 430, 625, 764, 800, 807, 811, 822, 829, 838, 860], "full_matric": [57, 80, 625, 675], "svf": [57, 675], "reconstructed_x": [57, 625, 675], "svdval": [57, 80, 625], "tensorsolv": [57, 80, 625], "vander": [57, 80, 625], "vandermond": [57, 80, 625, 680], "vecdot": [57, 80, 625], "vector_norm": [57, 80, 625], "mathemat": [57, 80, 218, 223, 235, 240, 242, 258, 268, 615, 620, 625, 666, 682, 817, 829, 835, 858, 864], "manhattan": [57, 80, 625, 682], "euclidean": [57, 80, 92, 93, 625, 682], "7416575": [57, 80, 625, 682], "vector_to_skew_symmetric_matrix": [57, 80, 625], "_arraywithloss": [58, 97], "binary_cross_entropi": [58, 81, 626, 816], "from_logit": [58, 81, 626, 684, 781], "pos_weight": [58, 81, 626, 684], "crossentropi": [58, 81, 626, 684], "357": [58, 81, 626, 684, 686], "223": [58, 81, 626, 684, 686], "3862944": [58, 626, 685], "sparse_cross_entropi": [58, 81, 626], "_arraywithmanipul": [59, 97], "x_min": [59, 82, 627, 687, 842], "x_max": [59, 82, 627, 687, 842], "before_1": [59, 82, 371, 474, 627, 689, 702], "after_1": [59, 82, 371, 474, 627, 689, 702], "before_n": [59, 82, 371, 474, 627, 689, 702], "after_n": [59, 82, 371, 474, 627, 689, 702], "repetit": [59, 82, 627, 693, 700, 835], "flat": [59, 69, 82, 376, 502, 565, 622, 627, 693], "allowzero": [59, 82, 627, 694], "remain": [59, 62, 75, 82, 85, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 391, 392, 393, 412, 620, 627, 629, 632, 694, 712, 735, 794, 807, 808, 816, 819, 821, 825, 833, 835, 843], "roll": [59, 82, 627, 824], "shift": [59, 71, 82, 98, 131, 142, 227, 229, 322, 362, 617, 620, 627, 695, 807, 808, 818, 819, 824, 831], "restor": [59, 82, 627, 695, 823], "num_or_size_split": [59, 69, 82, 627, 696, 837], "with_remaind": [59, 69, 82, 627, 696], "squeezabl": [59, 627, 697], "swapax": [59, 82, 627], "axis0": [59, 82, 627, 699], "swap_ax": [59, 699], "swap": [59, 82, 627, 699, 789, 852], "tile": [59, 76, 82, 536, 627], "unpack": [59, 82, 627, 701, 830, 832], "zero_pad": [59, 82, 627], "_arraywithnorm": [60, 97], "layer_norm": [60, 83, 630], "normalized_idx": [60, 83, 630, 725], "new_std": [60, 83, 630, 725, 783], "learnabl": [60, 83, 628, 630, 705, 725, 780, 783, 842], "deviat": [60, 61, 65, 83, 84, 88, 630, 631, 635, 725, 728, 752, 766, 779, 783, 811, 849], "0976": [60, 630, 725], "3452": [60, 630, 725], "2740": [60, 630, 725], "1047": [60, 630, 725], "5886": [60, 630, 725], "2732": [60, 630, 725], "7696": [60, 630, 725, 764], "7024": [60, 630, 725], "2518": [60, 630, 725], "826": [60, 630, 725], "178": [60, 630, 725], "981": [60, 630, 725], "831": [60, 630, 725], "421": [60, 630, 725], "_arraywithrandom": [61, 97], "multinomi": [61, 84, 375, 499, 631], "population_s": [61, 84, 631, 726], "num_sampl": [61, 84, 631, 726], "unnorm": [61, 84, 631, 726, 832], "popul": [61, 65, 69, 84, 88, 631, 635, 726, 752, 754, 817, 818, 828, 832, 837, 864], "draw": [61, 84, 375, 497, 499, 501, 631, 726, 728, 729, 764, 765, 766, 767, 772, 779, 806, 811, 830, 832], "half": [61, 84, 121, 282, 617, 620, 631, 727, 729, 803, 822, 835], "235": [61, 728], "float16": [61, 72, 84, 129, 152, 154, 155, 160, 162, 339, 365, 617, 618, 625, 682, 728, 729, 764, 765, 803, 817, 822, 829, 832], "807": [61, 728], "_arraywithsearch": [62, 97], "select_last_index": [62, 85, 632, 732, 733], "occurr": [62, 371, 380, 487, 509, 632, 633, 732, 733, 737], "argmin": [62, 85, 632], "output_dtyp": [62, 85, 632, 733], "argwher": [62, 85, 632], "nonzero": [62, 85, 93, 216, 217, 218, 221, 224, 233, 235, 238, 240, 242, 268, 281, 286, 620, 632], "as_tupl": [62, 85, 632, 735], "fewer": [62, 85, 632, 735], "_arraywithset": [63, 97], "unique_al": [63, 86, 633], "by_valu": [63, 86, 633, 737], "inverse_indic": [63, 86, 371, 487, 633, 737, 739], "unique_count": [63, 86, 633], "unique_invers": [63, 86, 633], "unique_valu": [63, 86, 633], "admonit": [63, 740], "dask": [63, 633, 737, 738, 739, 740, 848], "difficult": [63, 633, 737, 738, 739, 740, 808, 811, 817, 832, 843], "omit": [63, 278, 620, 633, 737, 738, 739, 740, 824, 828, 829], "x_i": [63, 65, 74, 93, 215, 216, 217, 220, 221, 222, 224, 226, 231, 232, 233, 238, 240, 241, 248, 249, 250, 251, 252, 256, 257, 258, 259, 263, 270, 275, 278, 279, 280, 281, 282, 283, 285, 286, 288, 329, 330, 332, 352, 365, 620, 633, 635, 737, 738, 739, 740, 748, 749, 750, 752, 753, 754, 779, 820], "x_j": [63, 633, 737, 738, 739, 740], "impli": [63, 633, 737, 738, 739, 740, 832], "typeerror": [63, 86, 633, 740, 839], "_arraywithsort": [64, 97], "stabil": [64, 87, 580, 581, 622, 634, 741, 744, 817, 827, 833, 835], "maintain": [64, 87, 634, 741, 744, 804, 807, 808, 811, 823, 828, 830, 831, 832, 847, 857], "msort": [64, 87, 634], "searchsort": [64, 87, 634, 765], "side": [64, 87, 343, 365, 369, 436, 634, 743, 764, 780, 793, 794, 807, 808, 814], "sorter": [64, 87, 634, 743], "ret_dtyp": [64, 87, 634, 743], "_arraywithstatist": [65, 97], "cumprod": [65, 88, 635, 829, 842], "cumsum": [65, 88, 635, 817], "einsum": [65, 88, 635], "equat": [65, 75, 88, 308, 362, 369, 436, 625, 635, 674, 747, 764, 793, 816, 858], "operand": [65, 75, 79, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 356, 365, 366, 368, 410, 620, 625, 635, 673, 679, 747, 748, 750, 751, 753, 793, 794, 812, 815, 820, 829], "contract": [65, 625, 635, 677, 747, 794], "seq": [65, 635, 747, 764], "ii": [65, 88, 635, 747, 808], "jk": [65, 635, 747, 794], "ik": [65, 635, 747, 794], "126": [65, 105, 274, 614, 620, 625, 635, 667, 747], "510": [65, 635, 747], "special": [65, 80, 92, 93, 97, 98, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 620, 625, 635, 673, 679, 748, 749, 750, 751, 752, 753, 754, 764, 765, 766, 767, 772, 779, 806, 809, 811, 812, 814, 816, 819, 820, 821, 824, 828, 830, 831, 832, 833, 835, 858, 859, 860], "arithmet": [65, 88, 229, 235, 268, 620, 635, 749, 829], "propag": [65, 229, 329, 330, 365, 620, 635, 748, 749, 750, 752, 753, 754, 827], "04999995": [65, 749], "freedom": [65, 88, 635, 752, 754, 813], "constitut": [65, 88, 635, 752, 754, 825, 837, 859], "commonli": [65, 88, 635, 752, 754, 821, 825, 827], "81649661": [65, 635, 752], "6666665": [65, 754, 840], "667": [65, 76, 235, 530, 580, 620, 622, 754], "_arraywithutil": [66, 97], "logic": [66, 89, 199, 235, 236, 262, 263, 264, 268, 271, 619, 620, 636, 755, 756, 806, 812, 816, 817, 818, 821, 825, 826, 827, 828, 829, 831, 832, 835, 839, 852], "AND": [66, 89, 225, 236, 262, 620, 636, 755], "OR": [66, 89, 228, 264, 271, 620, 636, 756, 807, 808, 827], "_wrap_funct": [67, 90, 814, 825, 826], "function_nam": [67, 90, 806, 833], "new_funct": [67, 90, 814], "add_ivy_array_instance_method": 67, "cl": [67, 90], "moduletyp": [67, 90, 851, 852, 853], "toi": [67, 90], "arrayexampl": 67, "hasattr": [67, 90], "_containerwithactiv": [68, 98], "dict_in": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 575, 597, 622, 834, 840], "queue_load_s": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "container_combine_method": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "list_join": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue_timeout": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 575, 597, 622, 834], "print_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "key_length_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_ind": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_line_spac": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "ivyh": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "default_key_color": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "keyword_color_dict": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "rebuild_child_contain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "types_to_iteratively_nest": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "alphabetical_kei": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "dynamic_backend": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 781, 782, 813, 834], "build_cal": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "containerbas": [68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 815], "_static_gelu": 68, "key_chain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 461, 470, 472, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 487, 489, 490, 491, 492, 493, 494, 496, 498, 503, 504, 511, 512, 513, 514, 521, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 580, 581, 583, 585, 587, 588, 601, 607, 612, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756], "to_appli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 461, 470, 472, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 487, 489, 490, 491, 492, 493, 494, 496, 498, 503, 504, 511, 512, 513, 514, 521, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 580, 581, 583, 585, 587, 588, 601, 607, 612, 629, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 719, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756], "prune_unappli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 461, 470, 472, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 487, 489, 490, 491, 492, 493, 494, 496, 498, 503, 504, 511, 512, 513, 514, 521, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 580, 581, 583, 585, 587, 588, 601, 607, 612, 629, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 719, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756], "map_sequ": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 461, 470, 472, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 487, 489, 490, 491, 492, 493, 494, 496, 498, 503, 504, 511, 512, 513, 514, 521, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 580, 581, 583, 585, 587, 588, 601, 607, 612, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756], "prune": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 480, 482, 483, 484, 490, 492, 493, 494, 496, 498, 511, 512, 513, 514, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 580, 581, 583, 585, 587, 588, 601, 607, 612, 629, 638, 639, 640, 641, 647, 648, 653, 654, 655, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 679, 684, 685, 686, 687, 691, 694, 695, 696, 697, 698, 701, 702, 719, 720, 721, 722, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 745, 746, 749, 751, 752, 754, 755, 756, 762, 765, 816], "static_gelu": 68, "046": 68, "_static_hardswish": 68, "_static_leaky_relu": 68, "static_leaky_relu": 68, "38999999": [68, 75, 107, 290, 291, 360], "_static_log_softmax": 68, "static_log_softmax": 68, "371": [68, 108], "_static_mish": 68, "static_mish": 68, "30883577": [68, 109, 614], "28903052": [68, 109, 614], "10714479": [68, 109, 614], "_static_relu": 68, "static_relu": 68, "_static_sigmoid": 68, "static_sigmoid": 68, "2689414": [68, 111, 112, 614], "7310586": [68, 111, 112, 614], "88079703": [68, 111, 614], "62245935": [68, 111], "4750208": [68, 111], "_static_softmax": 68, "static_softmax": 68, "72844321": [68, 112], "19852395": [68, 112], "07303288": [68, 112], "_static_softplu": 68, "revert": [68, 113, 614], "static_softplu": 68, "53499615": 68, "42036411": 68, "948": [68, 113, 629, 706], "166": [68, 105, 614], "dictionari": [69, 86, 98, 207, 589, 605, 619, 622, 623, 740, 759, 761, 794, 812, 816, 817, 825, 829, 830, 840, 843], "asynchron": [69, 98, 858], "wait": [69, 98, 575, 622, 800, 806, 808, 816, 829], "arriv": [69, 98, 575, 622, 835], "cont_list_join": [69, 98], "limit": [69, 98, 160, 163, 529, 530, 546, 618, 622, 627, 687, 764, 766, 767, 779, 786, 794, 800, 807, 808, 814, 816, 819, 821, 829, 832, 835, 840, 843, 857, 858, 859], "whitespac": [69, 98], "indent": [69, 98, 840], "newlin": [69, 98, 820], "termin": [69, 98, 807, 808, 815, 822, 823, 837, 840], "constructor": [69, 98, 525, 622, 761, 777, 785, 817, 818, 820, 839], "kept": [69, 98, 628, 703, 704, 808, 828, 833], "encount": [69, 98, 780, 803, 806, 817, 821, 822, 832], "node": [69, 76, 98, 527, 537, 583, 629, 716, 717, 779, 788, 814, 815, 829, 848, 851, 852, 859], "alphabet": [69, 98], "__setitem__": [69, 371, 482, 812, 815, 839], "_cont_at_key_chains_input_as_dict": 69, "current_chain": 69, "ignore_key_error": 69, "_cont_at_key_chains_input_as_seq": 69, "_cont_call_static_method_with_flexible_arg": 69, "static_method": 69, "kw": 69, "self_idx": 69, "_cont_concat_unifi": 69, "_cont_get_dev": 69, "_cont_get_dtyp": 69, "_cont_get_shap": 69, "_cont_ivi": 69, "_cont_mean_unifi": 69, "_1": 69, "_cont_prune_key_chains_input_as_dict": 69, "return_cont": 69, "_cont_prune_key_chains_input_as_seq": 69, "_cont_slice_kei": 69, "key_slic": 69, "_cont_sum_unifi": 69, "_get_queue_item": 69, "cont_all_fals": 69, "assert_is_bool": 69, "cont_all_key_chain": 69, "include_empti": 69, "cont_all_tru": [69, 815, 840], "cont_as_bool": 69, "cont_assert_contains_sub_contain": 69, "sub_cont": 69, "screen": [69, 806, 807, 840], "cont_assert_contains_sub_structur": 69, "check_shap": [69, 786], "cont_assert_ident": 69, "check_typ": 69, "same_arrai": [69, 840], "arrays_equ": 69, "cont_assert_identical_structur": 69, "assert_and_assign": 69, "congruent": 69, "cont_at_key_chain": 69, "ignore_non": 69, "cont_at_kei": 69, "substr": 69, "cont_combin": 69, "duplic": [69, 371, 479, 546, 622, 629, 708, 813, 820, 826, 827, 830, 841, 864], "configur": [69, 207, 619, 629, 719, 807, 808, 814, 816, 817, 822, 823], "container_rightmost": 69, "cont_common_key_chain": 69, "cont_config": 69, "cont_contains_sub_contain": 69, "cont_contains_sub_structur": 69, "cont_copi": [69, 840], "cont_create_if_abs": 69, "noth": [69, 835, 864], "cont_cutoff_at_depth": 69, "depth_cutoff": 69, "summari": [69, 164, 531, 618, 622, 807, 808, 832], "cont_cutoff_at_height": 69, "height_cutoff": 69, "cont_deep_copi": [69, 840, 851], "cont_dev": 69, "belong": [69, 806, 811, 841], "cont_dev_str": 69, "cont_diff": [69, 840], "diff_kei": 69, "detect_key_diff": 69, "detect_value_diff": 69, "detect_shape_diff": 69, "among": [69, 815, 816, 832, 835, 849, 858], "container0": 69, "cont_dtyp": 69, "cont_duplicate_array_keychain": 69, "cont_find_sub_contain": 69, "sub_cont_to_find": 69, "cont_find_sub_structur": 69, "sub_struc_to_find": 69, "cont_flatten_key_chain": [69, 840], "above_height": [69, 840], "below_depth": [69, 840], "cont_format_key_chain": 69, "format_fn": 69, "cont_from_disk_as_hdf5": [69, 840], "h5_obj_or_filepath": 69, "slice_obj": 69, "disk": [69, 782, 840, 857], "h5py": 69, "filepath": [69, 636, 757, 758, 808, 811], "cont_from_disk_as_json": [69, 840], "json_filepath": 69, "cont_from_disk_as_pickl": [69, 840], "pickle_filepath": 69, "cont_from_flat_list": 69, "flat_list": 69, "hierarchi": [69, 806, 831, 840, 854, 864], "cont_handle_inplac": 69, "prime": [69, 817], "overwritten": [69, 812, 813], "cont_has_kei": 69, "query_kei": 69, "somewher": [69, 816], "cont_has_key_chain": 69, "cont_ident": [69, 840], "cont_identical_array_shap": 69, "cont_identical_config": 69, "cont_identical_structur": 69, "cont_if_exist": 69, "cont_inplace_upd": 69, "cont_ivi": 69, "cont_key_chains_contain": 69, "sub_str": 69, "cont_list_stack": [69, 840], "cont_load": 69, "cont_map": [69, 815, 840], "func": [69, 92, 208, 357, 358, 359, 367, 528, 602, 605, 606, 608, 613, 619, 622, 623, 629, 719, 761, 806, 811, 812, 819, 821, 827], "cont_map_sub_cont": 69, "include_self": 69, "possibli": [69, 585, 622, 764, 832, 843], "cont_max_depth": 69, "cont_multi_map": 69, "map_nest": 69, "assert_ident": 69, "leftmost": [69, 629, 719], "cont_multi_map_in_funct": 69, "cont_num_arrai": 69, "cont_overwrite_at_key_chain": 69, "target_dict": 69, "return_dict": 69, "cont_prune_empti": 69, "keep_non": 69, "cont_prune_key_chain": 69, "key1": [69, 800, 841], "key2": [69, 800], "key3": 69, "cont_prune_key_from_key_chain": 69, "certain": [69, 121, 132, 133, 370, 444, 617, 807, 808, 811, 817, 825, 831, 832, 835, 843, 851, 852, 853, 862], "cont_prune_kei": 69, "cont_prune_keys_from_key_chain": 69, "cont_reduc": 69, "cont_remove_key_length_limit": 69, "cont_remove_print_limit": 69, "cont_reshape_lik": 69, "leading_shap": 69, "cont_restructur": 69, "keep_orig": 69, "old": [69, 807, 813, 828], "cont_restructure_key_chain": 69, "keychain_map": 69, "cont_sav": 69, "cont_set_at_key_chain": 69, "cont_set_at_kei": 69, "cont_shap": [69, 624, 642], "cont_show": 69, "cont_show_sub_contain": 69, "sub_cont_or_keychain": 69, "cont_size_ordered_arrai": 69, "keychain": [69, 75, 331, 452, 453, 454, 483], "cont_slice_kei": 69, "all_depth": 69, "cont_slice_via_kei": 69, "slice_kei": 69, "cont_sort_by_kei": 69, "cont_structural_diff": 69, "cont_to_dict": 69, "cont_to_disk_as_hdf5": [69, 840], "starting_index": 69, "max_batch_s": 69, "cont_to_disk_as_json": [69, 840], "cont_to_disk_as_pickl": [69, 840], "cont_to_flat_list": 69, "cont_to_iter": [69, 815], "leaf_keys_onli": 69, "cont_to_iterator_kei": 69, "cont_to_iterator_valu": 69, "cont_to_json": 69, "cont_to_nested_list": 69, "cont_to_raw": 69, "cont_trim_kei": 69, "cont_try_kc": 69, "cont_unifi": 69, "concatten": [69, 208, 619], "cont_unstack_cont": 69, "dim_siz": 69, "cont_update_config": 69, "cont_with_default_key_color": 69, "cont_with_entries_as_list": 69, "cont_with_ivy_backend": 69, "ivy_backend": [69, 830], "cont_with_key_length_limit": [69, 840], "cont_with_print_ind": [69, 840], "cont_with_print_limit": [69, 840], "cont_with_print_line_spac": 69, "h5_file_s": 69, "shuffle_h5_fil": 69, "split_cont": 69, "_is_json": 69, "_repr": 69, "_containerwithconvers": [70, 98], "_static_to_ivi": 70, "_static_to_n": 70, "_containerwithcr": [71, 98], "_static_arang": 71, "_static_asarrai": 71, "_static_copy_arrai": 71, "_static_empti": 71, "_static_empty_lik": 71, "_static_ey": 71, "n_row": [71, 75, 127, 142, 322, 362, 369, 429, 617], "n_col": [71, 75, 127, 142, 322, 362, 617], "_static_from_dlpack": 71, "_static_ful": 71, "_static_full_lik": 71, "static_full_lik": 71, "2324": [71, 131, 617], "234": [71, 74, 131, 154, 237, 288, 617, 618, 620, 624, 648, 764], "123": [71, 72, 131, 163, 537, 617, 622, 794, 832], "_static_linspac": 71, "_static_logspac": 71, "static_logspac": 71, "15443469": [71, 133], "64158883": [71, 133], "_static_meshgrid": 71, "_static_native_arrai": 71, "_static_one_hot": 71, "static_one_hot": 71, "_static_on": 71, "_static_ones_lik": 71, "_static_tril": 71, "_static_triu": 71, "_static_zero": 71, "_static_zeros_lik": 71, "frombuff": [71, 617], "expos": [71, 129, 531, 617, 622, 800, 816, 837, 841, 847], "x00": [71, 129, 617], "xf0": [71, 129, 617], "x01": [71, 129, 617], "x02": [71, 129, 617], "x03": [71, 129, 617], "x04": [71, 129, 617], "x05": [71, 129], "5443469": [71, 133, 617], "static_frombuff": 71, "static_triu_indic": 71, "triu_indic": [71, 617], "_containerwithdatatyp": [72, 98], "_static_astyp": 72, "718": [72, 74, 147, 264, 618], "618": [72, 74, 147, 264, 618], "static_astyp": 72, "_static_broadcast_arrai": 72, "static_broadcast_arrai": 72, "_static_broadcast_to": 72, "static_broadcast_to": 72, "_static_can_cast": 72, "from_": [72, 150, 618], "static_can_cast": 72, "_static_default_complex_dtyp": 72, "complex_dtyp": [72, 153, 176, 618], "_static_default_float_dtyp": 72, "float_dtyp": [72, 155, 178, 618], "_static_dtyp": 72, "_static_finfo": 72, "inquir": [72, 160, 163], "static_finfo": 72, "55040e": [72, 160, 618], "7976931348623157e": [72, 160, 618], "308": [72, 160, 618, 764, 832], "_static_function_supported_dtyp": 72, "_static_function_unsupported_dtyp": 72, "_static_iinfo": 72, "1800": [72, 163, 618], "1084": 72, "40000": 72, "static_iinfo": 72, "2147483648": [72, 75, 163, 371, 482, 618], "2147483647": [72, 163, 618], "_static_is_bool_dtyp": 72, "dtype_in": [72, 145, 146, 159, 165, 166, 167, 168, 169, 170, 171, 172, 187, 618], "_static_is_complex_dtyp": 72, "is_complex_dtyp": [72, 618, 833], "roughli": [72, 807, 811, 861], "static_is_complex_dtyp": 72, "_static_is_float_dtyp": 72, "static_is_float_dtyp": 72, "_static_is_int_dtyp": 72, "_static_is_uint_dtyp": 72, "_static_result_typ": 72, "static_result_typ": 72, "broadcats": [72, 148], "_containerwithdevic": [73, 98], "_static_dev": 73, "static_dev": 73, "_static_to_devic": 73, "static_to_devic": 73, "contaion": [73, 192], "_containerwithelementwis": [74, 98], "_static_ab": 74, "static_ab": 74, "_static_aco": 74, "static_aco": 74, "_static_acosh": 74, "static_acosh": 74, "_static_add": 74, "static_add": [74, 102], "_static_asin": 74, "static_asin": 74, "524": [74, 220, 620], "412": [74, 79, 220, 620, 629, 706], "_static_asinh": 74, "static_asinh": 74, "_static_atan": 74, "static_atan": 74, "_static_atan2": 74, "static_atan2": 74, "915": [74, 223, 620], "983": [74, 223, 620], "978": [74, 223, 620], "696": [74, 84, 223, 620, 728], "993": [74, 223, 620], "_static_atanh": 74, "static_atanh": 74, "_static_bitwise_and": 74, "static_bitwise_and": 74, "_static_bitwise_invert": 74, "static_bitwise_invert": 74, "_static_bitwise_left_shift": 74, "_static_bitwise_or": 74, "static_bitwise_or": 74, "_static_bitwise_right_shift": 74, "static_bitwise_right_shift": 74, "_static_bitwise_xor": 74, "static_bitwise_xor": 74, "_static_ceil": 74, "static_ceil": 74, "_static_co": 74, "static_co": 74, "_static_cosh": 74, "static_cosh": 74, "_static_deg2rad": 74, "static_deg2rad": 74, "0262": [74, 234, 274, 620], "873": [74, 234, 274, 620], "_static_divid": 74, "static_divid": 74, "_static_equ": 74, "static_equ": 74, "_static_erf": 74, "static_erf": 74, "27632612": [74, 237], "934008": [74, 237, 620], "99999928": [74, 237], "91903949": [74, 237], "_static_exp": 74, "static_exp": 74, "59814835": [74, 238, 620], "4131622": [74, 238], "_static_expm1": 74, "thefunct": [74, 237], "areal": 74, "static_expm1": 74, "71828175": [74, 238, 620], "38905621": [74, 238, 620], "59815216": 74, "_static_floor": 74, "static_floor": 74, "_static_floor_divid": 74, "static_floor_divid": 74, "_static_great": 74, "static_great": 74, "_static_greater_equ": 74, "static_greater_equ": 74, "_static_isfinit": 74, "999999999999": [74, 249, 620], "static_isfinit": 74, "_static_isinf": 74, "static_isinf": 74, "_static_isnan": 74, "static_isnan": 74, "_static_isr": 74, "0j": [74, 75, 137, 138, 216, 217, 218, 221, 224, 233, 238, 240, 252, 256, 258, 275, 279, 281, 282, 286, 332, 365, 617, 620, 625, 673], "23j": [74, 75], "9j": [74, 75], "static_isr": 74, "_static_lcm": 74, "1080": [74, 253], "1550": [74, 253], "130": [74, 253, 371, 479], "_static_less": 74, "static_less": 74, "_static_less_equ": 74, "static_less_equ": 74, "_static_log": 74, "static_log": 74, "_static_log10": 74, "static_log10": 74, "898": [74, 257, 620], "0414": [74, 257, 620], "_static_log1p": 74, "static_log1p": 74, "_static_log2": 74, "static_log2": 74, "_static_logaddexp": 74, "static_logaddexp": 74, "_static_logical_and": 74, "static_logical_and": 74, "_static_logical_not": 74, "static_logical_not": 74, "_static_logical_or": 74, "static_logical_or": 74, "_static_logical_xor": 74, "static_logical_xor": 74, "_static_maximum": 74, "static_maximum": 74, "_static_minimum": 74, "static_minimum": 74, "_static_multipli": 74, "static_multipli": 74, "_static_neg": 74, "static_neg": 74, "_static_not_equ": 74, "static_not_equ": 74, "_static_posit": 74, "static_posit": 74, "_static_pow": 74, "static_pow": 74, "_static_rad2deg": 74, "static_rad2deg": 74, "5160": 74, "10300": [74, 274, 620], "15500": 74, "20600": 74, "2860": [74, 274], "_static_reciproc": 74, "recirpoc": [74, 276], "static_reciproc": 74, "_static_remaind": 74, "static_remaind": 74, "_static_round": 74, "thevfunct": 74, "527": [74, 278, 620], "static_round": 74, "301": [74, 278, 620], "_static_sign": 74, "static_sign": 74, "_static_sin": 74, "static_sin": 74, "757": [74, 280, 620], "959": [74, 240, 280, 620], "279": [74, 280, 368, 389, 399, 529, 620, 622], "_static_sinh": 74, "static_sinh": 74, "835": [74, 281], "347": [74, 281], "721": [74, 281], "_static_sqrt": 74, "static_sqrt": 74, "_static_squar": 74, "static_squar": 74, "_static_subtract": 74, "static_subtract": 74, "_static_tan": 74, "static_tan": 74, "_static_tanh": 74, "static_tanh": 74, "995": [74, 286, 620], "9999": 74, "_static_trapz": 74, "static_trapz": 74, "_static_trunc": 74, "static_trunc": 74, "_static_trunc_divid": 74, "75j": [74, 219, 248], "01317055": [74, 219], "05634501": [74, 219], "115": [74, 219, 274, 620], "3461759": [74, 219], "524111": [74, 219], "644": [74, 220, 620, 841], "305": [74, 79, 220, 620], "351": [74, 234, 274], "00613": [74, 234], "0154": [74, 234], "403": [74, 238], "428772": [74, 238], "649": [74, 240], "220": [74, 240], "865": [74, 240], "metho": [74, 247, 259], "7j": [74, 75, 252, 275, 332, 365, 620], "956": [74, 258], "08746284": [74, 261], "32192809": [74, 261], "nuner": [74, 268], "413": [74, 274], "335": [74, 75, 275, 332], "345j": [74, 75, 275, 332], "static_angl": 74, "static_exp2": 74, "static_fmin": 74, "static_gcd": 74, "static_imag": 74, "static_logaddexp2": 74, "static_nan_to_num": 74, "static_r": 74, "_containerwithactivationexperiment": [75, 98], "_static_celu": 75, "formlat": 75, "static_celu": 75, "_static_elu": 75, "static_elu": 75, "_static_hardshrink": 75, "hard": [75, 292, 808, 839, 858], "shrinkag": [75, 292, 301, 371, 481], "_static_hardtanh": 75, "static_hardtanh": [75, 293], "_static_scaled_tanh": 75, "931": 75, "71587813": 75, "88367474": 75, "00376701": [75, 298], "2285642": 75, "99999881": 75, "49999905": 75, "_static_silu": 75, "static_silu": 75, "27777028": [75, 300], "23947507": [75, 300], "0900332": [75, 300], "_static_softshrink": 75, "_static_tanhshrink": 75, "36634541": [75, 303], "02005103": [75, 303], "00262468": [75, 303], "_static_threshold": 75, "19722462": [75, 294], "84729779": [75, 294], "31326163": [75, 295], "46328258": [75, 295], "51301527": [75, 295], "79813886": [75, 295], "simplywrap": [75, 298], "54939651": [75, 298], "09999998": [75, 298, 603, 623], "09999999": [75, 298], "08336546": [75, 298], "0379949": [75, 298], "22856998": [75, 299], "42028043": [75, 299], "31868932": [75, 299], "static_logit": 75, "static_logsigmoid": 75, "34115386": 75, "64439666": 75, "24115384": 75, "55435526": 75, "07888974": 75, "00741899": 75, "26328245": 75, "00012302": 75, "static_prelu": 75, "static_relu6": 75, "static_selu": 75, "static_thresholded_relu": 75, "_containerwithconversionexperiment": [75, 98], "_containerwithcreationexperiment": [75, 98], "_static_trilu": 75, "blackman": [75, 306, 362], "00770143e": [75, 306], "49229857e": [75, 306], "hamming_window": [75, 362], "ham": [75, 308, 362], "4180": [75, 308], "8180": [75, 308], "hann_window": [75, 362], "hann": [75, 309, 362], "7500": [75, 309], "3455": [75, 309], "9045": [75, 309], "kaiser_bessel_derived_window": [75, 362], "suitabl": [75, 311, 312, 362, 634, 743, 766, 807, 808, 815, 833, 858], "spectral": [75, 311, 312, 362], "analysi": [75, 311, 312, 362, 858, 859], "kaiser": [75, 306, 311, 312, 362], "70710677": [75, 311, 494, 496], "18493208": [75, 311, 362], "9827513": [75, 311, 362], "kaiser_window": [75, 362], "static_kaiser_window": [75, 312], "2049": [75, 312], "8712": [75, 312], "0367": [75, 312, 362], "7753": [75, 312], "static_blackman_window": 75, "static_eye_lik": 75, "static_hamming_window": 75, "static_hann_window": 75, "static_hann": 75, "static_kaiser_bessel_derived_window": 75, "static_mel_weight_matrix": 75, "static_polyv": 75, "static_tril_indic": 75, "static_unsorted_segment_mean": 75, "static_unsorted_segment_min": 75, "static_unsorted_segment_sum": 75, "static_vorbis_window": 75, "vorbis_window": [75, 362], "vorbi": [75, 327, 362], "38268343": [75, 327, 625, 660], "92387953": [75, 327], "14943586": [75, 327, 362], "51644717": [75, 327], "85631905": [75, 327], "98877142": [75, 327], "tril_indic": [75, 362], "_containerwithdata_typeexperiment": [75, 98], "_containerwithdeviceexperiment": [75, 98], "_containerwithelementwiseexperiment": [75, 98], "0003": [75, 328, 625, 663, 764, 767], "0006": [75, 328, 355], "2345j": [75, 332], "5772": [75, 336], "9635": [75, 336], "4228": [75, 336], "9228": [75, 336], "57299206e": [75, 337], "67773480e": [75, 337], "20904985e": [75, 337], "84270084": [75, 337, 365], "99532223": [75, 337], "99997795": [75, 337], "mantissa": [75, 341, 365, 817], "frist": [75, 342, 365], "coord": [75, 342], "6055": [75, 343], "160": [75, 345, 371, 479], "10240": [75, 345], "60000038": [75, 346, 365, 625, 681], "0707": [75, 352, 365], "0579": [75, 352, 365], "static_allclos": 75, "static_amax": 75, "static_amin": 75, "static_binar": 75, "static_conj": 75, "static_copysign": 75, "static_count_nonzero": 75, "static_diff": 75, "static_digamma": 75, "57721537": 75, "96351004": 75, "static_erfc": 75, "15729921": 75, "00467773": [75, 337, 365], "static_fix": 75, "static_float_pow": 75, "static_fmax": 75, "static_fmod": 75, "static_frexp": 75, "static_gradi": 75, "static_hypot": 75, "static_isclos": 75, "static_ldexp": 75, "static_lerp": 75, "90000057": [75, 346, 365], "70000076": [75, 346, 365], "55000019": [75, 346, 365], "05000019": [75, 346, 365], "static_modf": 75, "static_nansum": 75, "static_nextaft": 75, "static_signbit": 75, "static_sinc": 75, "636": 75, "090": 75, "070": 75, "057": 75, "static_sparsify_tensor": 75, "static_xlogi": 75, "static_zeta": 75, "0244": [75, 355], "_containerwithgeneralexperiment": [75, 98], "_static_reduc": 75, "static_reduc": 75, "_containerwithgradientsexperiment": [75, 98], "_containerwithimageexperiment": [75, 98], "_containerwithlayersexperiment": [75, 98], "_static_fft": 75, "static_fft": 75, "_static_sliding_window": 75, "673": [75, 389], "0507": [75, 389], "79711437": [75, 368, 389, 399], "94867325": [75, 368, 389, 399], "74089146": [75, 368, 389, 399], "25980937": [75, 368, 389, 399], "64958102": [75, 368, 389, 399], "2442648": [75, 368, 389, 399], "247306": [75, 401], "908323j": [75, 401], "494955": [75, 401], "90395j": [75, 401], "static_adaptive_avg_pool1d": 75, "static_adaptive_avg_pool2d": 75, "static_adaptive_max_pool2d": 75, "static_avg_pool1d": 75, "static_avg_pool2d": 75, "static_avg_pool3d": 75, "static_dct": 75, "253": [75, 281, 620], "515": [75, 631, 728], "467": 75, "static_dft": 75, "static_embed": 75, "static_idct": 75, "93732834": [75, 368, 389], "75048852": [75, 368, 389], "29723358": [75, 368, 399], "6950531": 75, "93914509": 75, "88008738": 75, "18951225": 75, "06697273": [75, 368, 399], "57439804": 75, "68861485": [75, 368, 399], "41308832": [75, 368, 399], "0700836": 75, "2449036": 75, "6711426": 75, "514": 75, "501709": 75, "4924011": 75, "static_ifft": 75, "static_ifftn": 75, "static_interpol": 75, "static_max_pool1d": 75, "static_max_pool2d": 75, "max_pool2dd": 75, "static_max_pool3d": 75, "static_max_unpool1d": 75, "static_rfft": 75, "static_rfftn": 75, "static_rnn": 75, "step_funct": [75, 368, 413], "initial_st": [75, 368, 413], "go_backward": [75, 368, 413], "unrol": [75, 368, 413, 624, 649, 837, 840], "input_length": [75, 368, 413], "time_major": [75, 368, 413, 624, 649], "zero_output_for_mask": [75, 368, 413], "return_all_output": [75, 368, 413], "rnn": [75, 368, 858], "tempor": [75, 368, 413], "state_s": [75, 368, 413], "while_loop": [75, 368, 413, 616], "otput": [75, 368, 413], "funciton": [75, 368, 413], "static_stft": 75, "_containerwithlinearalgebraexperiment": [75, 98], "933034": [75, 369, 418], "eigenvealu": [75, 421, 659], "xx": [75, 421, 423, 659], "37228107": [75, 421, 659], "3722816": [75, 421, 659], "8245648": [75, 421, 659], "41597357": [75, 421, 659], "56576747": [75, 421, 659], "9093767": [75, 421, 659], "56155": [75, 422], "82842": [75, 422], "450": [75, 428], "static_adjoint": 75, "static_batched_out": 75, "static_cond": 75, "static_diagflat": 75, "static_dot": 75, "static_eig": 75, "static_eigh_tridiagon": 75, "static_eigv": 75, "static_higher_order_mo": 75, "static_initialize_tuck": 75, "static_kron": 75, "kroneck": [75, 369, 427, 428], "static_make_svd_non_neg": 75, "static_matrix_exp": 75, "static_mode_dot": 75, "static_multi_dot": 75, "static_multi_mode_dot": 75, "static_partial_tuck": 75, "static_svd_flip": 75, "static_tensor_train": 75, "static_truncated_svd": 75, "static_tt_matrix_to_tensor": 75, "tt_matrix": [75, 369, 440], "output_tensor": [75, 95, 369, 440], "static_tuck": 75, "_containerwithlossesexperiment": [75, 98], "_static_hinge_embedding_loss": 75, "_static_huber_loss": 75, "static_huber_loss": 75, "0575": [75, 443], "_static_kl_div": 75, "_static_l1_loss": 75, "static_l1_loss": 75, "_static_log_poisson_loss": 75, "static_log_poisson_loss": 75, "_static_poisson_nll_loss": 75, "06446016": 75, "55611551": 75, "30244565": [75, 447], "_static_smooth_l1_loss": 75, "static_smooth_l1_loss": 75, "_static_soft_margin_loss": 75, "06429195": [75, 447], "_containerwithmanipulationexperiment": [75, 98], "_static_fill_diagon": 75, "_static_put_along_axi": 75, "_static_tak": 75, "69999981": [75, 301, 360, 371, 458, 482], "_static_trim_zero": 75, "_static_unique_consecut": 75, "ary1": [75, 371, 452, 453, 454], "ary2": [75, 371, 452, 453, 454], "broadcast_shap": [75, 101, 371, 764, 766], "static_concat_from_sequ": [75, 459], "30192195": [75, 471], "static_as_strid": 75, "static_atleast_1d": 75, "static_atleast_2d": 75, "static_atleast_3d": 75, "static_broadcast_shap": 75, "static_column_stack": 75, "static_dsplit": 75, "static_dstack": 75, "static_expand": 75, "static_flatten": 75, "static_fliplr": 75, "static_flipud": 75, "static_fold": 75, "static_heavisid": 75, "static_hsplit": 75, "static_hstack": 75, "static_i0": 75, "static_matric": 75, "static_moveaxi": 75, "static_pad": 75, "static_partial_fold": 75, "static_partial_tensor_to_vec": 75, "static_partial_unfold": 75, "static_partial_vec_to_tensor": 75, "static_rot90": 75, "static_soft_threshold": 75, "static_take_along_axi": 75, "static_top_k": 75, "static_unfold": 75, "static_vsplit": 75, "static_vstack": 75, "_containerwithnormsexperiment": [75, 98], "16903085": [75, 494, 496], "50709254": [75, 494, 496], "84515423": [75, 494, 496], "44183609": [75, 494, 496], "56807494": [75, 494, 496], "69431382": [75, 494, 496], "static_batch_norm": 75, "static_group_norm": 75, "static_instance_norm": 75, "static_l1_norm": 75, "static_l2_norm": 75, "static_lp_norm": 75, "12500000": 75, "37500000": 75, "62500000": 75, "27500000": 75, "35000000": 75, "42500000": 75, "0000000": 75, "5000000": 75, "2500000": 75, "_containerwithrandomexperiment": [75, 98], "43643127": [75, 499], "32325703": [75, 499], "24031169": [75, 499], "34251311": [75, 499], "31692529": [75, 499], "3405616": [75, 499], "5319725": [75, 499], "22458365": [75, 499], "24344385": [75, 499], "26588406": [75, 499], "61075421": [75, 499], "12336174": [75, 499], "51142915": [75, 499], "25041268": [75, 499], "23815817": [75, 499], "64042903": [75, 499], "25763214": [75, 499], "10193883": [75, 499], "31624692": [75, 499], "46567987": [75, 499], "21807321": [75, 499], "37677699": [75, 499], "39914594": [75, 499], "22407707": [75, 499], "static_bernoulli": 75, "static_beta": 75, "static_dirichlet": 75, "static_gamma": 75, "static_poisson": 75, "_containerwithsearchingexperiment": [75, 98], "static_unravel_index": 75, "_containerwithsetexperiment": [75, 98], "_containerwithsortingexperiment": [75, 98], "invert_permut": [75, 378], "static_invert_permut": 75, "static_lexsort": [75, 87], "_containerwithstatisticalexperiment": [75, 98], "_static_cummax": 75, "static_cummax": 75, "_static_cummin": 75, "static_cummin": 75, "_static_nanmin": 75, "static_nanmin": 75, "func_nam": [75, 514, 806, 819, 820, 825, 829], "static_bincount": 75, "static_corrcoef": 75, "static_cov": [75, 380, 511], "static_histogram": 75, "static_igamma": 75, "static_median": 75, "static_nanmean": 75, "static_nanmedian": 75, "static_nanprod": 75, "static_quantil": 75, "_containerwithutilityexperiment": [75, 98], "static_optional_get_el": 75, "_containerwithgener": [76, 98], "_static_all_equ": 76, "static_all_equ": 76, "_static_array_equ": 76, "a0": [76, 371, 458], "static_array_equ": 76, "_static_assert_supports_inplac": 76, "_static_clip_matrix_norm": 76, "static_clip_matrix_norm": 76, "849": [76, 529, 530, 622], "_static_clip_vector_norm": 76, "static_clip_vector_norm": 76, "_static_einops_rearrang": 76, "static_einops_rearrang": 76, "_static_einops_reduc": 76, "static_einops_reduc": 76, "29333329": [76, 535, 622], "53000069": [76, 535, 622], "39666676": [76, 535, 622], "20666695": [76, 535, 622], "_static_einops_repeat": 76, "static_einops_repeat": 76, "_static_exist": 76, "_static_fourier_encod": 76, "static_fourier_encod": 76, "classivi": [76, 627, 633, 696, 738], "89858720e": 76, "79717439e": 76, "_static_gath": 76, "static_gath": 76, "_static_gather_nd": 76, "static_gather_nd": 76, "_static_get_num_dim": 76, "static_get_num_dim": 76, "_static_has_nan": 76, "leafwis": 76, "static_has_nan": 76, "_static_inplace_decr": 76, "_static_inplace_incr": 76, "_static_inplace_upd": 76, "_static_is_arrai": 76, "static_is_arrai": 76, "_static_is_ivy_arrai": 76, "static_is_ivy_arrai": 76, "_static_is_native_arrai": 76, "static_is_native_arrai": 76, "_static_scatter_flat": 76, "_static_scatter_nd": 76, "static_scatter_nd": 76, "_static_stable_divid": 76, "22222222": 76, "11111111": 76, "857": [76, 580, 622], "444": 76, "_static_stable_pow": 76, "00012": [76, 581, 622], "00016": [76, 77, 581, 609, 622, 623], "00001": [76, 581, 622, 764], "00032": [76, 581], "00256": [76, 581], "1679638": [76, 581], "395": [76, 581], "16777383": [76, 581], "_static_supports_inplace_upd": 76, "_static_to_list": 76, "static_to_list": 76, "_static_to_numpi": 76, "static_to_numpi": 76, "_static_to_scalar": 76, "static_to_scalar": 76, "_static_value_is_nan": 76, "452": 76, "static_value_is_nan": 76, "833": [76, 530], "items": [76, 97, 622], "static_isin": 76, "static_items": 76, "static_strid": 76, "425": [76, 601], "_containerwithgradi": [77, 98], "_static_stop_gradi": 77, "static_stop_gradi": 77, "976": [77, 286, 603, 620, 623], "49e": [77, 603, 623], "74e": [77, 603, 623], "95e": [77, 603, 623], "024": [77, 603, 623], "096": [77, 603, 623], "216": [77, 80, 603, 623, 680], "626": [77, 603, 623], "en": [77, 603, 604, 623, 816], "wikipedia": [77, 603, 604, 623], "wiki": [77, 603, 604, 623], "stochastic_gradient_desc": [77, 603, 604, 623], "01099": [77, 604], "01003": [77, 604, 623], "01015": [77, 604, 623], "99936122": [77, 604, 623], "99936116": [77, 604, 623], "99936128": [77, 604, 623], "99936104": [77, 604, 623], "w_new": [77, 607, 623], "708": [77, 609, 623], "445": [77, 609, 623], "6e": [77, 609, 623], "00036": [77, 609, 623], "00049": [77, 609, 623], "layerwis": [77, 610, 623], "01132035": [77, 610, 623], "22264051": [77, 610, 623], "2056601": [77, 610, 623], "1324538": [77, 610, 623], "56490755": [77, 610, 623], "96622658": [77, 610, 623], "90848625": [77, 610, 623], "93616199": [77, 610, 623], "77232409": [77, 610, 623], "_containerwithimag": [78, 98], "_containerwithlay": [79, 98], "_static_conv1d": 79, "static_conv1d": 79, "_static_conv1d_transpos": 79, "static_conv1d_transpos": 79, "112": [79, 625, 635, 639, 670, 747], "_static_conv2d": 79, "ey": [79, 617, 624, 640, 646, 835, 842], "static_conv2d": 79, "_static_conv2d_transpos": 79, "static_conv2d_transpos": 79, "_static_conv3d": 79, "fdfh": [79, 642], "static_conv3d": 79, "_static_conv3d_transpos": 79, "static_conv3d_transpos": 79, "_static_depthwise_conv2d": 79, "inp": [79, 624, 646], "static_depthwise_conv2d": 79, "_static_dropout": 79, "static_dropout": 79, "_static_dropout1d": 79, "static_dropout1d": 79, "_static_dropout2d": 79, "_static_dropout3d": 79, "_static_linear": 79, "278": [79, 624, 647, 648], "static_linear": 79, "195": 79, "_static_lstm_upd": 79, "_static_multi_head_attent": 79, "_static_reduce_window": 79, "_static_scaled_dot_product_attent": 79, "static_scaled_dot_product_attent": 79, "39999962": [79, 624, 647, 648], "19999695": [79, 648], "11600018": [79, 648], "88399887": [79, 648], "196": [79, 624, 648], "306": [79, 624, 648], "19999981": [79, 292, 304, 360, 624, 647, 653], "59249449": [79, 624, 653], "68226194": [79, 624, 653], "19603825": [79, 624, 653], "9960382": [79, 624, 653], "26894283": [79, 624, 653], "40236187": [79, 624, 653], "39999437": [79, 624, 653], "59999037": [79, 624, 653], "35046196": [79, 624, 653], "54282808": [79, 624, 653], "39989519": [79, 624, 653], "5998764": [79, 624, 653], "_containerwithlinearalgebra": [80, 98], "_static_choleski": 80, "static_choleski": 80, "577": [80, 625, 654], "707": [80, 625, 654], "static_rol": [80, 82], "_static_cross": 80, "static_cross": 80, "_static_det": 80, "_static_diag": 80, "_static_diagon": 80, "static_diagon": 80, "_static_eigh": 80, "_static_eigvalsh": 80, "static_eigvalsh": 80, "51572949": [80, 625, 661], "17091519": [80, 625, 661], "3448143": [80, 625, 661], "35898387e": [80, 625, 661], "46410179e": [80, 625, 661], "_static_inn": 80, "static_inn": 80, "_static_inv": 80, "static_inv": 80, "_static_matmul": 80, "matul": 80, "static_matmul": 80, "_static_matrix_norm": 80, "deimens": 80, "static_matrix_norm": 80, "_static_matrix_pow": 80, "_static_matrix_rank": 80, "static_matrix_rank": 80, "_static_matrix_transpos": 80, "static_matrix_transpos": 80, "_static_out": 80, "n1": [80, 134, 617], "n2": [80, 134, 617], "static_out": [80, 670], "_static_pinv": 80, "static_pinv": 80, "0426": 80, "0964": 80, "0605": 80, "1368": 80, "_static_qr": 80, "static_qr": 80, "31622777": [80, 625, 672], "9486833": [80, 625, 672], "4472136": [80, 625, 672], "89442719": [80, 625, 672], "16227766": [80, 625, 672], "42718872": [80, 625, 672], "63245553": [80, 625, 672], "47213595": [80, 625, 672], "81377674": [80, 625, 672], "_static_slogdet": 80, "static_slogdet": 80, "6931472": 80, "0986123": 80, "_static_solv": 80, "_static_svd": 80, "static_svd": 80, "au": 80, "aS": 80, "avh": 80, "bu": [80, 848], "bvh": 80, "_static_svdv": 80, "_static_tensordot": 80, "_static_tensorsolv": 80, "_static_trac": 80, "static_trac": 80, "_static_vand": 80, "static_vand": 80, "343": [80, 278, 620, 680], "729": [80, 680, 841], "_static_vecdot": 80, "_static_vector_norm": 80, "static_vector_norm": 80, "77359247": [80, 682], "_static_vector_to_skew_symmetric_matrix": 80, "09861231": [80, 625, 673], "static_general_inner_product": 80, "3475602": [80, 675], "93765765": [80, 675], "58776021": [80, 675], "10416126": [80, 675], "80644298": [80, 675], "87024701": [80, 675], "48127627": [80, 675], "79101127": [80, 675], "98288572": [80, 675], "68917423": [80, 675], "_containerwithloss": [81, 98], "_static_binary_cross_entropi": 81, "static_binary_cross_entropi": 81, "511": [81, 626, 684, 686], "_static_cross_entropi": 81, "static_cross_entropi": 81, "20397282": 81, "83258148": 81, "60943794": [81, 625, 673], "_static_sparse_cross_entropi": 81, "static_sparse_cross_entropi": 81, "5108256": [81, 685], "609438": [81, 685], "_containerwithmanipul": [82, 98], "_static_clip": 82, "static_clip": 82, "_static_concat": 82, "_static_constant_pad": 82, "static_constant_pad": 82, "_static_expand_dim": 82, "static_expand_dim": 82, "container_axi": [82, 627, 690], "_static_flip": 82, "static_flip": 82, "_static_permute_dim": 82, "static_permute_dim": 82, "_static_repeat": 82, "static_repeat": 82, "_static_reshap": 82, "static_reshap": 82, "_static_rol": 82, "positivclip": 82, "_static_split": 82, "static_split": 82, "_static_squeez": 82, "static_squeez": 82, "_static_stack": 82, "leavv": 82, "static_stack": 82, "_static_swapax": 82, "_static_til": 82, "static_til": 82, "_static_unstack": 82, "static_unstack": 82, "_static_zero_pad": 82, "repreat": [82, 693], "_containerwithnorm": [83, 98], "34198591": [83, 630, 725], "04274819": [83, 630, 725], "29923761": [83, 630, 725], "24053511": [83, 630, 725], "62221265": [83, 725], "20277636": [83, 725], "41943574": [83, 725], "83710337": [83, 725], "_containerwithrandom": [84, 98], "_static_multinomi": 84, "_static_randint": 84, "static_randint": 84, "_static_random_norm": 84, "static_random_norm": 84, "651": 84, "_static_random_uniform": 84, "static_random_uniform": 84, "481": 84, "0999": 84, "_static_shuffl": 84, "static_shuffl": 84, "431": [84, 728], "274": [84, 728], "_containerwithsearch": [85, 98], "_static_argmax": 85, "static_argmax": 85, "_static_argmin": 85, "static_argmin": 85, "_static_argwher": 85, "static_argwher": 85, "_static_nonzero": 85, "_static_wher": 85, "static_wher": 85, "_containerwithset": [86, 98], "_static_unique_al": 86, "static_unique_al": 86, "_static_unique_count": 86, "static_unique_count": 86, "_static_unique_invers": 86, "static_unique_invers": 86, "_static_unique_valu": 86, "_containerwithsort": [87, 98], "_static_argsort": 87, "static_argsort": 87, "_static_searchsort": 87, "_static_sort": 87, "static_sort": 87, "static_msort": 87, "_containerwithstatist": [88, 98], "_static_cumprod": 88, "static_cumprod": 88, "_static_cumsum": 88, "static_cumsum": 88, "_static_min": 88, "_static_prod": 88, "static_prod": 88, "11000001": [88, 751], "23100001": [88, 751], "30800003": [88, 635, 751], "_static_sum": 88, "_static_var": 88, "static_var": 88, "12666667": [88, 635, 754], "11555555": [88, 635, 754], "rtype": [88, 747, 793], "respectv": [88, 752], "81649649": [88, 752], "94280904": [88, 752], "509902": [88, 635, 752], "2472192": [88, 752], "44948983": [88, 752], "41421354": [88, 752], "6666667": [88, 754], "_containerwithutil": [89, 98], "_static_al": 89, "static_al": 89, "_static_ani": 89, "static_ani": 89, "add_ivy_container_instance_method": 90, "containerexampl": 90, "factorized_tensor": [91, 92, 93, 94, 95, 96], "factorizedtensor": [91, 92, 93, 94, 95, 96], "matrix_or_tensor": 91, "to_tensor": [91, 92, 93, 94, 95, 96], "to_unfold": [91, 92, 93, 94, 95, 96], "to_vec": [91, 92, 93, 94, 95, 96], "cp_tensor": [92, 93], "cptensor": [92, 93, 317, 362], "cp_copi": 92, "cp_flip_sign": 92, "s_i": [92, 93], "normalisation_weight": [92, 93], "normalised_factor": [92, 93], "cp_lstsq_grad": 92, "return_loss": 92, "nabla": 92, "mathcal": 92, "mathbf": 92, "factor_matric": 92, "cp_gradient": 92, "quantiti": 92, "cp_mode_dot": 92, "keep_dim": [92, 96], "cp_multi_mode_dot": 92, "cp_n_param": 92, "tensor_shap": [92, 94, 95, 96], "n_param": [92, 93, 94, 95, 96], "cp_norm": 92, "cp_to_tensor": 92, "khatria": 92, "rao": [92, 369, 427], "khatri": [92, 369, 427], "cp_normal": 92, "normalis": [92, 93], "u_1": [92, 93], "u_n": [92, 93], "v_1": [92, 93], "v_n": [92, 93], "v_k": [92, 93], "u_k": [92, 93], "absorb": [92, 93], "refold": [92, 371, 467, 478], "cp_to_unfold": 92, "ie": 92, "s_u_i": 92, "exploit": [92, 861], "khatri_rao": [92, 369], "cp_to_vec": 92, "ravel": [92, 835], "unfolding_dot_khatri_rao": 92, "mttkrp": 92, "validate_cp_rank": 92, "percent": [92, 95], "validate_cp_tensor": 92, "parafac2_tensor": 93, "parafac2tensor": [93, 318, 362], "apply_parafac2_project": 93, "evolv": [93, 847, 858], "b_i": 93, "ijk": [93, 794], "sum_r": 93, "a_": 93, "ir": [93, 856, 859, 864], "jr": 93, "kr": 93, "coupl": [93, 807, 812, 839, 841, 858], "factoris": 93, "i1": [93, 380, 514], "classmethod": [93, 100, 101, 769], "from_cptensor": 93, "parafac2_tensor_ok": 93, "parafac2_normalis": 93, "normalised_project": 93, "parafac2_to_slic": 93, "slice_idx": 93, "frontal": 93, "a_i": 93, "j_i": 93, "b_": 93, "reformul": 93, "p_i": 93, "orthogon": [93, 317, 321, 362, 369, 421, 435, 441, 625, 659, 660], "sum_": 93, "ijr": 93, "constraint": [93, 794, 816, 817, 827], "projection_matric": 93, "parafac2_to_tensor": 93, "construct": [93, 627, 700, 780, 783, 784, 785, 831, 837, 841, 842, 856, 858, 865], "uneven": 93, "parafac2_to_unfold": 93, "parafac2_to_vec": 93, "validate_parafac2_tensor": 93, "cp": [93, 317, 362, 808], "tr_tensor": 94, "trtensor": [94, 319, 362], "tr_n_param": 94, "tr_to_tensor": 94, "tr_to_unfold": 94, "tr_to_vec": 94, "validate_tr_rank": 94, "validate_tr_tensor": 94, "tt_tensor": 95, "_tt_n_param": 95, "mp": [95, 320, 362], "index_upd": 95, "pad_tt_rank": 95, "factor_list": 95, "n_pad": 95, "pad_boundari": 95, "ring": 95, "bond": 95, "padded_factor_list": 95, "tt_to_tensor": 95, "assembl": [95, 369, 440], "tt_to_unfold": 95, "reassembl": 95, "tt_to_vec": 95, "validate_tt_rank": 95, "constant_rank": 95, "allow_overparametr": 95, "proport": [95, 779], "realiz": [95, 858], "validate_tt_tensor": 95, "tucker_tensor": 96, "tucker_copi": 96, "tucker_mode_dot": [96, 865], "tucker_n_param": 96, "tucker_norm": 96, "tucker_to_tensor": 96, "skip_factor": 96, "transpose_factor": 96, "tucker_to_unfold": 96, "tucker_to_vec": 96, "validate_tucker_rank": 96, "fixed_mod": 96, "validate_tucker_tensor": 96, "_bisection_root_find": 96, "fun": [96, 359, 367, 602, 622, 629, 717, 816], "max_it": 96, "__abs__": [97, 98], "__add__": [97, 98, 812, 815, 819, 820, 824, 829, 830, 839], "__eq__": [97, 98], "__ge__": [97, 98], "__gt__": [97, 98, 835], "__le__": [97, 98], "__lt__": [97, 98], "__ne__": [97, 98], "__pow__": [97, 98, 839], "69678056": 97, "59876156": 97, "82660675": 97, "__radd__": [97, 98, 819, 820, 829], "__rrshift__": [97, 98], "__rshift__": [97, 98], "__rsub__": [97, 98], "__sub__": [97, 98, 812, 815, 819, 824, 839], "__truediv__": [97, 98, 812, 815, 819], "__xor__": [97, 98], "referenc": [97, 821, 828], "resid": [97, 101, 627, 690, 829, 837, 841], "mt": [97, 839], "hopefulli": [97, 98, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 776, 777, 779, 780, 782, 783, 784, 785, 803, 806, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 838, 839, 840, 841, 842, 847, 848, 849], "overview": [97, 98, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 776, 777, 779, 780, 782, 783, 784, 785, 800, 814, 816, 830, 832, 836], "reach": [97, 98, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 776, 777, 779, 780, 782, 783, 784, 785, 803, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 838, 839, 840, 841, 842, 847, 848, 849, 857, 858], "eq": 98, "ge": 98, "le": 98, "ne": 98, "75979435": 98, "52153397": 98, "13532257": 98, "rshift": 98, "truediv": 98, "66666669": [98, 374, 496, 605, 623], "nested_arrai": [100, 101, 102, 814], "nestedarrai": 100, "nested_rank": [100, 101, 102], "inner_shap": [100, 101, 102], "nestedarraybas": [100, 101, 102], "from_row_length": 100, "row_length": 100, "from_row_split": 100, "row_split": 100, "ragged_map": 101, "ragged_multi_map": 101, "ragged_arrai": 101, "ragged_multi_map_in_funct": 101, "replace_ivy_arrai": 101, "unbind": 101, "nestedarrayelementwis": 102, "strictli": [107, 110, 113, 242, 614, 620, 824, 828], "24000001": [107, 614], "703": [108, 614], "683": [108, 614], "408": [108, 614], "313": [108, 614], "437": [108, 614], "40337825": [109, 614], "56114835": [109, 614], "20788449": [109, 614], "0768": [112, 614], "231": [112, 614], "\u03b2": [113, 614], "66666667": [114, 380, 511, 614], "body_fn": [117, 118, 120, 616], "bodi": [117, 120, 616, 811, 832], "lst": [117, 616], "orelse_fn": [118, 616], "body1": [119, 616], "body2": [119, 616], "test_fn": [120, 616, 762, 800, 852, 853], "repeatedli": [120, 616, 629, 715, 816, 832], "ml_framework": [121, 617], "distanc": [121, 617], "adjac": [121, 617], "nestedsequ": [122, 123, 617], "typevar": [122, 123, 617], "supportsbufferprotocol": [122, 123, 617], "static_copy_arrai": [124, 617], "intdtyp": [127, 138, 144, 156, 167, 172, 179, 185, 617, 618], "pycapsul": [128, 139, 617], "interchang": [128, 139, 617, 627, 699], "plu": [129, 617], "x00b": [129, 617], "x00d": [129, 617], "x00e": [129, 617], "66666663": [132, 617], "41588834": [133, 617], "7827941": [133, 617], "6227766": [133, 617], "23413252": [133, 617], "n3": [134, 617], "xv": [134, 617], "yv": [134, 617], "x_nativ": [135, 617, 828], "y_nativ": [135, 617], "z_nativ": [135, 617], "d_type": [137, 617], "col": [142, 322, 362, 617], "primari": [142, 161, 162, 194, 195, 322, 362, 378, 504, 539, 540, 617, 618, 619, 622, 765, 767, 806, 810, 813, 817, 826, 828, 829, 831, 832, 835, 843, 845], "upward": [142, 322, 362, 617], "downward": [142, 322, 362, 617], "2xn": [142, 322, 362, 617], "subarrai": [142, 322, 362, 617], "incompat": [149, 618], "closest": [152, 231, 241, 242, 278, 288, 618, 620, 832, 835], "xtype": [152, 618], "ytype": [152, 618], "native_uint16": [152, 618], "complexdtyp": [153, 167, 176, 618], "set_default_complex_dtyp": [153, 182, 618], "4294": [153, 155, 618], "967346": [153, 155, 618], "set_default_dtyp": [154, 183, 618, 817, 825], "floatdtyp": [155, 178, 618], "set_default_float_dtyp": [155, 164, 176, 184, 618, 817], "int_dtyp": [156, 179, 618], "set_default_int_dtyp": [156, 164, 185, 618, 817], "4294967346": [156, 157, 618], "uint_dtyp": [157, 180, 618], "uint": [157, 172, 180, 186, 618, 817, 830], "uintdtyp": [157, 172, 180, 186, 618], "set_default_uint_dtyp": [157, 164, 186, 618], "native_bool": [159, 618], "ieee": [160, 218, 235, 240, 258, 268, 277, 282, 285, 615, 618, 620, 848], "754": [160, 218, 235, 240, 258, 268, 277, 282, 285, 615, 618, 620, 848], "smallest_norm": [160, 618], "bfloat16": [161, 618, 764, 765, 817, 829, 832, 833], "unsupport": [162, 195, 540, 618, 619, 622, 759, 762, 803, 807, 822, 829], "encapsul": [163, 618, 816], "314": [163, 275, 332, 365, 618, 620], "9223372036854775808": [163, 618], "9223372036854775807": [163, 618], "65535": [163, 618], "4294967295": [163, 618], "native_uint8": [165, 618], "hashabl": [169, 618], "type1": [173, 618], "type2": [173, 618], "array_api_promot": [173, 174, 618, 764, 765], "unexpect": [174, 242, 618, 620, 817], "default_complex_dtyp": [176, 618], "default_dtype_stack": [177, 183, 618], "unset_default_dtyp": [177, 618], "native_uint64": [177, 618], "default_float_dtyp": [178, 618, 817], "default_int_dtyp": [179, 185, 618, 817], "default_uint_dtyp": [180, 186, 618], "ret1": [181, 618], "ret2": [181, 618], "reset": [182, 183, 184, 185, 186, 212, 213, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 618, 619, 622, 818], "default_complex_dtype_stack": [182, 618], "default_float_dtype_stack": [184, 618], "native_float16": [187, 618], "unmodifi": [189, 619, 813, 817], "aliv": [196, 201, 203, 543, 563, 564, 619, 622, 818], "139740789224448": [196, 619], "physic": [199, 619], "process_specif": [202, 214, 619], "percentag": [202, 619], "ram": [202, 210, 214, 619], "alon": [202, 214, 619, 800, 823, 832], "036902561555": [202, 619], "7024003467681645": [202, 619], "as_native_dev": [202, 619], "7095597456708771": [202, 619], "attr_onli": [203, 619], "soft_device_mod": [205, 213, 619], "chunk": [206, 207, 208, 619], "split_factor": [206, 619, 821], "max_chunk_s": [208, 619], "chunk_siz": [208, 619], "input_ax": [208, 619], "output_ax": [208, 619], "usag": [208, 619, 817, 825, 828, 832, 837, 843, 848, 861], "fed": [208, 619, 841], "fist": [208, 619], "gb": [210, 214, 619, 807, 822], "66700032": [210, 619], "589934592": [210, 619], "219563008": [214, 619], "902400346": [214, 619], "525205504": [214, 619], "na": [215, 620, 832], "noqa": [215, 282, 620, 780, 789, 830], "princip": [216, 220, 222, 352, 365, 620], "domain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 620, 820, 856, 858], "codomain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 620, 820], "\u03c0": [216, 220, 222, 223, 615, 620], "3\u03c0": [216, 223, 620], "unspecifi": [216, 217, 221, 224, 233, 238, 240, 242, 277, 281, 282, 286, 369, 421, 620, 625, 627, 659, 660, 698, 828], "\u03c0j": [217, 221, 224, 256, 258, 620], "3\u03c0j": [217, 256, 258, 620], "x1_i": [218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 620, 811], "2019": [218, 235, 240, 258, 268, 620, 858, 861], "overflow": [218, 235, 242, 620, 625, 635, 673, 753, 805, 817], "commut": [218, 620], "tabl": [218, 235, 268, 574, 596, 620, 622, 764, 765, 780, 829, 834, 858], "dj": [218, 235, 268, 620], "bj": [218, 235, 268, 332, 365, 620], "z1": [218, 620], "z2": [218, 620], "yj": [219, 620], "nanj": [221, 620], "809": [221, 620], "569": [221, 620], "733": [221, 620], "notat": [223, 620, 635, 747, 816], "denot": [223, 620, 782], "quadrant": [223, 620], "rai": [223, 620, 848], "bitwis": [225, 228, 230, 265, 620], "170": [229, 620], "243": [229, 620], "xor": [230, 265, 620], "654": [232, 620], "ci": [233, 238, 240, 281, 620, 811, 817, 823, 830, 832, 843], "368": [233, 620], "670": [233, 620], "202": [233, 620, 811], "548": [233, 620], "1490": [233, 620], "57079633": [234, 620], "14159265": [234, 620], "71238898": [234, 620], "28318531": [234, 620], "02617994": [234, 620], "87266463": [234, 620], "01919862": [234, 620], "03839725": [234, 620], "05759586": [234, 620], "07679449": [234, 620], "09599311": [234, 620], "11519173": [234, 620], "35081118": [234, 620], "88139129": [234, 620], "underflow": [235, 242, 620, 625, 673, 817], "textbook": [235, 268, 620], "frac": [235, 257, 259, 279, 281, 285, 368, 374, 395, 396, 400, 401, 490, 492, 620], "ac": [235, 268, 620, 793, 794], "bd": [235, 268, 620], "bc": [235, 268, 620, 793, 794], "versu": [235, 268, 620], "riemann": [235, 268, 620], "sphere": [235, 268, 620], "c99": [235, 268, 620], "infinit": [235, 268, 282, 620], "unlik": [235, 268, 620, 811, 816, 819, 848, 863, 865], "698": [235, 620], "truth": [236, 246, 247, 254, 255, 271, 370, 443, 620, 759, 761, 772, 803, 822, 829, 832], "32862675": [237, 620], "67780113": [237, 620], "11246294": [237, 620], "42839241": [237, 620], "52050018": [237, 620], "16799599": [237, 620], "30787992": [237, 620], "43796915": [237, 620], "98667163": [237, 620], "79690808": [237, 620], "88020504": [237, 620], "91031402": [237, 620], "95228523": [237, 620], "96610528": [237, 620], "cut": [238, 240, 280, 281, 282, 285, 620, 806, 847, 864], "08553692": [238, 620], "567": [238, 620], "00344786": [238, 620], "76297021": [238, 620], "197948": [238, 620], "53253174": [238, 620], "accur": [240, 258, 620, 625, 673, 826], "fdlibm": [240, 258, 620], "compliant": [240, 258, 263, 264, 329, 330, 365, 620, 635, 748, 749, 750, 752], "potenti": [240, 258, 620, 800, 806, 807, 816, 817, 829, 836, 861], "632": [240, 620], "20e": [240, 620], "72e": [240, 620, 764], "greatest": [241, 242, 245, 620], "pep": [242, 620, 824], "disambigu": [242, 620, 827], "former": [242, 620, 807, 817, 820, 829], "latter": [242, 620, 807, 811, 813, 817, 820, 829], "overload": [242, 620, 832], "led": [242, 620, 811, 860], "subtl": [242, 620, 817, 864], "bug": [242, 620, 800, 806, 808, 814, 822, 823, 829, 832, 844], "ambigu": [242, 620], "semant": [242, 277, 371, 482, 620, 817, 837, 842, 847, 859], "ill": [242, 620, 766], "surpris": [242, 620, 843], "arrau": [248, 620], "log_": [257, 259, 620], "742": [258, 620], "negat": [270, 332, 365, 620], "52095687": [273, 620], "92457771": [273, 620], "49372482": [273, 620], "22738838": [273, 620], "156": [273, 620, 764], "5877228": [273, 620], "189": [274, 620, 629, 706], "252": [274, 620], "378": [274, 620], "1150": [274, 620], "2890": [274, 620], "172": [274, 620], "487": [274, 620, 624, 648], "344": [274, 620], "355j": [275, 332, 365, 620], "55j": [275, 332, 365, 620], "primarili": [277, 620, 806, 815, 858], "reason": [277, 286, 620, 806, 808, 811, 812, 815, 816, 817, 819, 825, 828, 829, 832, 833, 835, 837, 839, 848, 864], "counterpart": [278, 620, 815, 826], "deliber": [278, 620, 835], "imprecis": [278, 620], "5654": [278, 620], "034": [278, 620], "433": [278, 606, 608, 620, 623], "signum": [279, 620], "textrm": [279, 620], "932": [280, 620], "746": [280, 620], "657": [280, 530, 620, 622], "indistinguish": [282, 620], "convent": [282, 620, 625, 635, 665, 747, 808, 813, 824, 833, 847, 864], "infti": [282, 620], "32455532": [282, 620], "89897949": [282, 620], "169": [282, 620], "analyt": [285, 620, 858, 860, 864], "pole": [285, 620], "546": [285, 620, 624, 648], "916": [285, 620, 626, 684], "996": [285, 620], "histor": [286, 620], "stem": [286, 620, 828], "older": [286, 620], "advis": [286, 620, 829], "462": [286, 620], "604": [286, 620], "984": [286, 620], "997": [286, 620], "0375": [288, 620], "032": [288, 620], "57258511": [291, 360], "69999999": [291, 360, 613, 623], "90928203": [291, 360], "98772264": [291, 360], "99591321": [291, 360], "99863964": [291, 360], "69880581": [291, 360], "18126924": [291, 360], "79999995": [292, 301, 304, 360], "70000005": [292, 304, 360], "hardtanhx": [293, 360], "20141329": [295, 360], "40318608": [295, 360], "48683619": [295, 360], "46328247": [295, 360], "59813893": [295, 360], "43748799": [295, 360], "parametr": [296, 360, 811, 832, 858], "71589994": [298, 302, 360], "14324772": [298, 302, 360], "70648694": [298, 302, 360], "54488957": [298, 302, 360], "10740992": [298, 302, 360], "19514863": [298, 302, 360], "6705687": [299, 360], "52016652": [299, 360], "40560818": [299, 360], "45630932": [299, 360], "2689": [300, 360], "7310": [300, 360], "7615": [300, 360], "2784": [300, 360], "7168": [300, 360], "8708": [300, 360], "4374": [300, 360], "1379": [300, 360], "0089": [300, 360], "59999991": [301, 360], "03597236": [303, 360], "43827677": [303, 360], "80100036": [303, 360], "12954807": [303, 360], "76459098": [303, 360], "20044947": [303, 360], "60000372": [303, 360], "taper": [306, 309, 362], "summat": [306, 362, 635, 747, 793, 794], "leakag": [306, 362], "wors": [306, 362, 848], "y1": [307, 362], "0800": [308, 362], "3979": [308, 362], "9121": [308, 362], "5400": [308, 362], "han": [309, 362], "ith": [310, 362], "00726415": [311, 362], "9999736": [311, 362], "2773e": [312, 362], "0172e": [312, 362], "9294e": [312, 362], "4149": [312, 362], "9138": [312, 362], "5529": [312, 362], "multidimension": [314, 315, 362, 858], "normalise_factor": [317, 318, 362], "parafac2": [318, 362], "tr": [319, 362], "context": [319, 362, 562, 622, 806, 807, 808, 813, 817, 818, 819], "38268346": [327, 362], "38268352": [327, 362], "8563191": [327, 362], "14943568": [327, 362], "paddlepaddl": [329, 330, 365, 807], "cn": [329, 330, 365], "zh": [329, 330, 365], "amax_cn": [329, 365], "sentinel": [329, 330, 365, 635, 748, 750], "amin_cn": [330, 365], "position": [339, 365], "triangl": [343, 365], "999999e": [344, 365], "65999985": [346, 365], "52000046": [346, 365], "1500001": [346, 365, 535, 622], "11259177": [347, 365], "3574118": [347, 365], "20097363": [347, 365], "suppli": [351, 365, 371, 474, 793, 812, 814, 832], "217234": [352, 365], "hurwitz": [355, 365], "custom_grad_func": [357, 367], "bind": [357, 367, 806, 827, 857, 858], "upstream": [357, 367, 807, 808, 811, 822, 827], "primal": [358, 359, 367], "jacobian": [358, 359, 367, 608, 623, 843, 858], "cotang": [359, 367], "stanh": 360, "ndenumer": 362, "ndindex": 362, "random_cp": 362, "random_parafac2": 362, "random_tr": 362, "random_tt": 362, "random_tuck": 362, "bind_custom_gradient_funct": [367, 827], "jvp": 367, "vjp": 367, "area_interpol": 368, "01823380e": [368, 389, 399], "15385818e": [368, 389, 399], "36371466e": [368, 389, 399], "38763905e": [368, 389, 399], "60722279e": [368, 389, 399], "80319249e": [368, 389, 399], "05617893e": [368, 389, 399], "21500000e": [368, 389, 399], "24000015e": [368, 389, 399], "90734863e": [368, 389, 399], "10000420e": [368, 389, 399], "15899994e": [368, 389, 399], "24000053e": [368, 389, 399], "81469727e": [368, 389, 399], "09999847e": [368, 389, 399], "4135742": [368, 389, 399], "6779785": [368, 389, 399], "3770599": [368, 389, 399], "8719864": [368, 389, 399], "72109985": [368, 389, 399], "52869415": [368, 389, 399], "79182434": [368, 389, 399], "72489166": [368, 389, 399], "container_n": [368, 389, 399], "container_typ": [368, 389, 399, 622], "container_norm": [368, 389, 399], "1580677": [368, 389], "89422607": [368, 389], "86190414": [368, 389], "00041008": [368, 389], "75149155": [368, 389], "97056389": [368, 389], "87819386": [368, 389], "89381361": [368, 389], "50000000e": [368, 389, 399, 764], "22044605e": [368, 389, 399], "ed": [368, 391, 392, 393], "rest": [368, 371, 391, 392, 393, 460, 807, 814, 816, 832, 842, 860], "5d": [368, 393, 780], "emb": [368, 394], "51285338": [368, 394], "87183261": [368, 394], "2308116": [368, 394], "02733949e": [368, 395], "00j": [368, 395], "49660576e": [368, 395], "68178638e": [368, 395], "01j": [368, 395, 400], "98912367e": [368, 395], "21802426e": [368, 395, 400], "04549134e": [368, 395, 400], "82842712e": [368, 395, 400], "86902654e": [368, 395, 400], "25501143e": [368, 395, 400], "32978028e": [368, 395, 400], "52068201e": [368, 395, 400], "71158374e": [368, 395, 400], "generate_einsum_equ": 368, "get_interpolate_kernel": 368, "27279224e": [368, 399], "44232273e": [368, 399], "70464332e": [368, 399], "73454881e": [368, 399], "00902849e": [368, 399], "10039906e": [368, 399], "07022366e": [368, 399], "69506073": [368, 399], "93914604": [368, 399], "88008881": [368, 399], "18951607": [368, 399], "57439613": [368, 399], "15318303e": [368, 400], "15148591e": [368, 400], "19j": [368, 400], "25000000e": [368, 400], "35378602e": [368, 400], "02j": [368, 400], "65404249e": [368, 400], "17611649e": [368, 400], "24320230e": [368, 400], "79344813e": [368, 400], "22374531e": [368, 400], "45929364e": [368, 400], "14208718e": [368, 400], "07177031e": [368, 400], "indexerror": [368, 401, 412, 627, 690, 795, 821], "interp": [368, 835], "xp": [368, 402, 811], "fp": [368, 402], "nd": [368, 403], "tf_bicub": [368, 403, 835], "nearest_interpol": 368, "window_shap": [368, 409], "pool_typ": [368, 409], "irfft": [368, 411], "silent": [368, 411], "discard": [368, 411, 816], "639999": [368, 411], "516063j": [368, 411], "3999999": [368, 411], "3999996": [368, 411], "99038106j": [368, 412], "33012702": [368, 412], "23205081j": [368, 412], "33012702j": [368, 412], "superdiagon": [369, 419, 625, 657], "subdiagon": [369, 419, 625, 657], "eigendecomposit": [369, 421, 625, 659, 660], "qlq\u1d40": [369, 421, 625, 659, 660], "tridiagon": [369, 422], "38196602": [369, 422], "61803389": [369, 422], "35048741": [369, 422], "56710052": [369, 422], "06693714": [369, 422], "74234426": [369, 422], "56155282": [369, 422], "56155276": [369, 422], "82842714": [369, 422], "82842731": [369, 422, 625, 660], "necessarili": [369, 423, 812, 815], "generalis": [369, 424], "skip_matrix": [369, 427, 429], "khatri_rao_product": [369, 427], "kronecker_product": [369, 429], "n_column": [369, 429], "nnmf": [369, 430], "hoi": [369, 435, 441], "solve_triangular": 369, "unit_diagon": [369, 436], "solut": [369, 436, 625, 674, 764, 800, 803, 806, 807, 808, 815, 817, 822, 830, 832, 835, 856, 860], "determinist": [369, 437], "borrow": [369, 437, 810], "extmath": [369, 437], "ivan": [369, 438], "oseledet": [369, 438], "scientif": [369, 438, 858], "2295": [369, 438], "2317": [369, 438], "2011": [369, 438], "convention": [370, 444, 861], "issu": [370, 444, 779, 801, 802, 803, 804, 805, 807, 809, 811, 813, 814, 816, 817, 818, 819, 821, 822, 829, 832, 833, 835, 837, 841, 843, 849, 851], "explicit": [370, 371, 444, 482, 807, 815, 817, 827, 828, 829, 837, 843, 858], "555969": [370, 444], "223876": [370, 444], "111938": [370, 444], "42649534": [370, 444], "68651628": [370, 444], "51119184": [370, 444], "59967244": [370, 444], "mae": [370, 445], "91097307": [370, 447], "3467": [370, 448], "0133": [370, 448], "0250": [370, 448], "0056": [370, 448], "0025": [370, 448], "0675": [370, 448], "6987": [370, 449], "1606": [370, 449], "3711": [370, 449], "4032": [370, 449], "6931": [370, 449], "whilst": [371, 452, 453, 454, 842, 845, 858], "ary3": [371, 454], "check_scalar": 371, "force_integ": [371, 456], "force_posit": [371, 456], "mod": [371, 457, 811], "tall": [371, 463], "appear": [371, 465, 466, 602, 622, 807, 808, 811, 829, 835, 851], "horizot": [371, 470], "shortcut": [371, 474, 807], "linear_ramp": [371, 474], "reflect": [371, 474, 808, 812, 828, 832], "ramp": [371, 474], "mirror": [371, 474, 804, 806, 858], "padding_func": [371, 474], "iaxis_pad_width": [371, 474], "iaxi": [371, 474], "unalt": [371, 474], "put": [371, 479, 800, 806, 832, 843, 864], "mul": [371, 479, 828, 839], "conceptu": [371, 482, 854, 859], "concern": [371, 482, 808, 810, 815, 817, 819, 828, 835, 836, 864], "regard": [371, 482, 805, 815, 829, 830, 835, 848], "mutat": [371, 482], "elimin": [371, 487, 807], "consecut": [371, 487], "batch_mean": [374, 490, 492], "batch_var": [374, 490, 492], "running_vari": [374, 490, 492], "local_response_norm": 374, "neighbour": [374, 495], "42857143": [374, 496], "5714286": [374, 496], "multivari": [375, 499], "bayesian": [375, 499], "supposedli": [378, 503], "indirect": [378, 504], "secondari": [378, 504], "is_ivy_sparse_arrai": 379, "is_native_sparse_arrai": 379, "native_sparse_arrai": 379, "coo_indic": [379, 507], "crow_indic": [379, 507], "col_indic": [379, 507], "ccol_indic": [379, 507], "row_indic": [379, 507], "dense_shap": [379, 507], "native_sparse_array_to_indices_values_and_shap": 379, "nativesparsearrai": 379, "sparsearrai": 379, "linalg": [380, 511, 625, 673, 674, 806, 828, 830], "aw": [380, 511, 848], "48447205": [380, 511], "c0": [380, 514], "ck": [380, 514], "c2": [380, 514], "nearest_jax": [380, 521], "trace_on_next_step": [525, 622, 784, 841], "recalcul": [528, 622], "my_sum": [528, 622], "val1": [528, 622], "val2": [528, 622], "cached_sum": [528, 622], "line_eq": [528, 622], "slp": [528, 622], "itc": [528, 622], "cached_line_eq": [528, 622], "0353": [529, 622], "424": [529, 622], "176": [529, 622], "339": [529, 622], "271": [529, 622], "391": [529, 622], "417": [530, 622], "583": [530, 622], "0667": [530, 622], "267": [530, 622], "131": [530, 622], "263": [530, 622], "394": [530, 622, 631, 731], "526": [530, 622], "788": [530, 622], "default_str": [533, 622], "46999979": [534, 622], "66000009": [534, 622], "93000001": [534, 622], "29000092": [534, 622], "33999991": [534, 622], "6400001": [534, 622], "96000004": [534, 622], "36000013": [534, 622], "51999998": [534, 622], "67000008": [534, 622], "suppos": [534, 622, 817, 832], "960": [534, 622], "3600": [534, 622], "h1": [534, 622], "w1": [534, 622], "40499985": [535, 622], "61000061": [535, 622], "max_depth": [546, 622], "seen_set": [546, 622], "local_set": [546, 622], "referr": [546, 622], "redund": [546, 622, 800, 817, 821, 829, 851], "example_funct": [546, 622], "ref_id_1": [546, 622], "ref_id_2": [546, 622], "ref_id_3": [546, 622], "ivyexcept": [551, 583, 622, 795, 818, 821, 826, 828, 829, 833], "allow_dupl": [561, 622], "fork": [562, 622, 801, 806, 811, 816, 822], "forkserv": [562, 622], "spawn": [562, 622], "mp_default": [562, 622], "defaultcontext": [562, 622], "0x7f4e3193e520": [562, 622], "mp_fork": [562, 622], "forkcontext": [562, 622], "0x7f4e3193e580": [562, 622], "mp_spawn": [562, 622], "spawncontext": [562, 622], "0x7f4e3193e5e0": [562, 622], "mp_forkserv": [562, 622], "forkservercontext": [562, 622], "0x7f4e3193e640": [562, 622], "garbag": [564, 622], "collector": [564, 622], "get_all_arrays_in_memori": [564, 622], "exception_trace_mod": [568, 591, 622, 834], "lenient": [569, 592, 622], "inplace_mod": [569, 592, 622], "break": [569, 622, 800, 813, 817, 824, 833, 843], "infus": [570, 622], "nestable_mod": [573, 595, 622, 834], "precise_mod": [574, 596, 622, 834], "shape_array_mod": [576, 598, 622, 834], "show_func_wrapper_trace_mod": [577, 599, 622, 834], "tmp_dr": [578, 622], "tmp_dir": [578, 600, 622, 834], "my_tmp": [578, 622], "49999999999975": [580, 622], "5015015015010504": [580, 622], "000444502911705e": [580, 622], "9999999999995j": [580, 622], "00000262": [581, 622], "15605032": [581, 622], "01208451j": [581, 622], "00048": [581, 622], "1296": [581, 622], "00864": [581, 622], "isn": [583, 622, 808, 826, 828, 840, 843, 860], "100000023841858": [585, 622], "200000047683716": [585, 622], "299999952316284": [585, 622], "400000095367432": [585, 622], "599999904632568": [585, 622], "hemant": [589, 622], "unset_shape_array_mod": [590, 622], "set_exception_trace_mod": [591, 622, 821], "set_min_bas": [593, 622], "set_min_denomin": [594, 622], "set_nestable_mod": [595, 622], "set_precise_mod": [596, 622], "set_queue_timeout": [597, 622], "set_shape_array_mod": [598, 622], "set_show_func_wrapper_trace_mod": [599, 622, 821], "set_tmp_dir": [600, 622], "my_dir": [600, 622], "451": [601, 622], "in_ax": [602, 622], "out_ax": [602, 622], "thereof": [602, 622], "summaris": [602, 622], "99999998": [603, 623], "19999998": [603, 623], "00000001": [603, 623], "00300001": [603, 623], "00800001": [603, 623], "0125": [603, 623], "17294501": [603, 623], "15770318": [603, 623], "20863818": [603, 623], "90000075": [604, 623], "90000164": [604, 623], "9000032": [604, 623], "50000012e": [604, 623], "92558754": [604, 623], "92558694": [604, 623], "92558682": [604, 623], "92558861": [604, 623], "60000025e": [604, 623], "01024": [604, 623], "retain_grad": [605, 623], "func_ret": [605, 623, 827], "666666": [605, 623], "333332": [605, 623], "66666675": [605, 613, 623], "argnum": [606, 623], "933": [606, 608, 623], "jac_fn": [608, 623], "639": [609, 623], "361": [609, 623], "52565837": [610, 623], "8418861": [610, 623], "68377209": [610, 623], "value_grad": [613, 623], "42333412": [613, 623], "5333333": [613, 623], "93333334": [613, 623], "43333334": [613, 623], "0666666": [613, 623], "softsign": 614, "718281828459045": 615, "euler": 615, "141592653589793": 615, "cmp_i": 616, "cmp_isnot": 616, "for_loop": 616, "if_els": 616, "try_except": 616, "to_dlpack": 617, "as_ivy_dtyp": [618, 829], "as_native_dtyp": 618, "check_float": 618, "closest_valid_dtyp": 618, "default_dtyp": [618, 817, 825], "dtype_bit": 618, "function_supported_dtyp": [618, 817, 832], "function_unsupported_dtyp": [618, 817], "infer_default_dtyp": 618, "invalid_dtyp": [618, 817], "is_hashable_dtyp": 618, "is_native_dtyp": 618, "promote_typ": [618, 817], "promote_types_of_input": [618, 817, 828], "type_promote_arrai": [618, 817], "unset_default_complex_dtyp": 618, "unset_default_float_dtyp": 618, "unset_default_int_dtyp": 618, "unset_default_uint_dtyp": 618, "valid_dtyp": 618, "defaultcomplexdtyp": 618, "defaultdtyp": 618, "defaultfloatdtyp": 618, "defaultintdtyp": 618, "defaultuintdtyp": 618, "as_ivy_dev": [619, 839], "clear_cached_mem_on_dev": 619, "dev_util": [619, 818], "function_supported_devic": 619, "function_unsupported_devic": 619, "get_all_ivy_arrays_on_dev": [619, 818], "handle_soft_device_vari": [619, 818], "num_cpu_cor": [619, 818], "num_gpu": [619, 818, 832], "num_ivy_arrays_on_dev": 619, "percent_used_mem_on_dev": 619, "print_all_ivy_arrays_on_dev": 619, "set_split_factor": [619, 821], "split_func_cal": 619, "total_mem_on_dev": [619, 818], "tpu_is_avail": 619, "unset_default_devic": [619, 818], "unset_soft_device_mod": [619, 818], "used_mem_on_dev": 619, "defaultdevic": [619, 818], "profil": 619, "save_dir": 619, "arg_info": 622, "arg_nam": 622, "cache_fn": [622, 825], "current_backend_str": [622, 832, 837, 839], "function_supported_devices_and_dtyp": 622, "function_unsupported_devices_and_dtyp": 622, "get_item": [622, 828], "get_referrers_recurs": 622, "inplace_arrays_support": 622, "inplace_variables_support": 622, "is_ivy_nested_arrai": 622, "isscalar": 622, "match_kwarg": 622, "num_arrays_in_memori": 622, "print_all_arrays_in_memori": 622, "set_item": 622, "to_ivy_shap": 622, "to_native_shap": 622, "try_else_non": 622, "unset_array_mod": [622, 834], "unset_exception_trace_mod": 622, "unset_inplace_mod": 622, "unset_min_bas": 622, "unset_min_denomin": 622, "unset_nestable_mod": 622, "unset_precise_mod": 622, "unset_queue_timeout": 622, "unset_show_func_wrapper_trace_mod": 622, "unset_tmp_dir": 622, "vmap": [622, 843, 858], "arraymod": 622, "precisemod": [622, 817], "jac": 623, "value_and_grad": [623, 827], "neural": [624, 776, 780, 800, 852, 854, 856, 857, 858, 862, 864, 865], "feature_group_count": [624, 637, 644, 645], "oiw": [624, 637, 638, 644], "oihw": [624, 637, 640, 644], "oidhw": [624, 637, 642, 644], "dhwio": [624, 637, 638, 642, 644], "conv_general_dil": [624, 829], "conv_general_transpos": 624, "depthwis": [624, 646, 766, 780], "overfit": [624, 647], "overal": [624, 647, 794, 815, 817, 818, 820, 842, 851, 854, 856, 857, 858], "1428566": [624, 647], "49000001": [624, 647], "55599999": [624, 647], "21000004": [624, 647], "incom": [624, 648], "666": [624, 625, 648, 666], "4269": [624, 648], "911": [624, 648, 821], "157": [624, 648], "753": [624, 648], "545": [624, 631, 648, 729], "547": [624, 648, 818], "124": [624, 648], "963": [624, 648], "98495483": [624, 648], "0293808": [624, 648], "0159359": [624, 648], "74752808": [624, 648], "20942307": [624, 648], "3205719": [624, 648], "long": [624, 649, 807, 808, 816, 817, 819, 821, 822, 829, 837, 858], "lstm": [624, 649, 780, 837, 858], "batch_first": [624, 650], "multi": [624, 625, 650, 655, 766, 780, 819, 836, 843, 854, 856, 858, 862], "paper": [624, 650, 800, 849], "vaswani": [624, 650], "al": [624, 650], "num_attention_head": [624, 650], "key_dim": [624, 650, 780], "value_dim": [624, 650, 780], "attention_weight": [624, 650], "unbatch": [624, 650], "nm": 624, "box": [624, 651, 652, 807], "iou_threshold": [624, 651], "max_output_s": [624, 651], "score_threshold": [624, 651], "roi_align": 624, "spatial_scal": [624, 652], "sampling_ratio": [624, 652], "23333359": [624, 653], "03946018": [624, 653], "0280633": [624, 653], "29981947": [624, 653], "29981089": [624, 653], "06345534": [624, 653], "9634552": [624, 653], "19336844": [624, 653], "09336829": [624, 653], "axisa": [625, 655], "axisb": [625, 655], "axisc": [625, 655], "293": [625, 656], "46997": [625, 656], "explicitli": [625, 660, 661, 677, 761, 780, 781, 782, 803, 811, 812, 813, 815, 817, 820, 821, 822, 825, 826, 827, 828, 830, 832, 837, 843, 852, 858], "17157288": [625, 660], "9238795": [625, 660], "78930789": [625, 660], "59803128": [625, 660], "19127655": [625, 660], "31213903": [625, 660], "63418275": [625, 660], "84632206": [625, 660], "70548367": [625, 660], "70223427": [625, 660], "09570674": [625, 660], "63116378": [625, 660], "56109613": [625, 660], "53554028": [625, 660], "32237405": [625, 660], "43822157": [625, 660], "83906901": [625, 660], "50766778": [625, 660], "71475857": [625, 660], "48103389": [625, 660], "3676433": [625, 660], "68466955": [625, 660], "62933773": [625, 660], "77917379": [625, 660], "14264561": [625, 660], "61036086": [625, 660], "45033181e": [625, 661], "02829754e": [625, 661], "54220343e": [625, 661], "12647155e": [625, 661], "38447177e": [625, 661], "56155300e": [625, 661], "26794919": [625, 661], "7320509": [625, 661], "0012": [625, 663], "00342": [625, 663], "000565": [625, 663], "0104": [625, 663], "000981": [625, 663], "00282": [625, 663], "000766": [625, 663], "0322": [625, 663], "00237": [625, 663], "000151": [625, 663], "00101": [625, 663], "00019": [625, 663], "0214": [625, 663], "00171": [625, 663], "0107": [625, 663], "0167": [625, 663], "0472": [625, 663], "0536": [625, 663], "0177": [625, 663], "000429": [625, 663], "00762": [625, 663], "lu_factor": 625, "pivot": [625, 664], "lu": [625, 664], "frobeniu": [625, 666], "nuclear": [625, 666], "induc": [625, 666], "ranl": [625, 666], "47722558": [625, 666], "776": [625, 666], "6000004": [625, 666], "118": [625, 667], "moor": [625, 671], "penros": [625, 671], "31622776": [625, 672], "94868332": [625, 672], "1622777": [625, 672], "42718887": [625, 672], "deteremin": [625, 673], "logsabsdet": [625, 673], "subject": [625, 673], "ordin": [625, 674], "b2": [625, 674], "usvh": [625, 675], "cetera": [625, 675], "driver": [625, 676, 843], "cusolv": [625, 676], "gesvd": [625, 676], "gesvdj": [625, 676], "gesvda": [625, 676], "86217213": [625, 676], "31816804": [625, 676], "615": [625, 676], "ss": [625, 676], "25994301": [625, 676], "16403675": [625, 676], "61529762": [625, 676], "51231241": [625, 676], "39777088": [625, 676], "15413129": [625, 676], "1029852": [625, 676], "01383495": [625, 676], "86647356": [625, 676], "7786541": [625, 676], "55970621": [625, 676], "16857576": [625, 676], "86412698": [625, 676], "37566757": [625, 676], "88477993": [625, 676], "95925522": [625, 676], "6444726": [625, 676], "54687881": [625, 676], "16134834": [625, 676], "35037804": [625, 676], "31025076": [625, 676], "35769391": [625, 676], "transposit": [625, 677], "success": [625, 635, 679, 751, 753, 804, 807, 816, 848], "0x": [625, 680], "Such": [625, 680, 825, 832], "progress": [625, 680, 804, 807, 808, 842], "alexandr": [625, 680], "theophil": [625, 680], "dot_product": [625, 681], "9000001": [625, 682], "64158917": [625, 682], "skew": [625, 683], "6666193": [626, 684], "67164493e": [626, 684], "05471958e": [626, 684], "32684899e": [626, 684], "30496836e": [626, 684], "05393649": [626, 684], "49992943": [626, 684], "83330965": [626, 684], "35667494": [626, 686], "79329094": [626, 686], "512926": [626, 686], "outsid": [627, 687, 698, 817, 818, 825, 839, 863], "honor": [627, 694], "beyond": [627, 695, 820, 829, 864], "famili": [627, 698], "intxx": [627, 698], "floatxx": [627, 698], "rep": [627, 700], "fomaml_step": 628, "inner_cost_fn": [628, 703, 704, 705], "outer_cost_fn": [628, 703, 704], "inner_grad_step": [628, 703, 704, 705], "inner_learning_r": [628, 703, 704, 705], "inner_optimization_step": [628, 703, 704, 705], "inner_batch_fn": [628, 703, 704], "outer_batch_fn": [628, 703, 704], "average_across_step": [628, 703, 704], "inner_v": [628, 703, 704], "keep_inner_v": [628, 703, 704], "outer_v": [628, 703, 704], "keep_outer_v": [628, 703, 704], "return_inner_v": [628, 703, 704, 705], "num_task": [628, 703, 704, 705], "maml": [628, 703, 704], "0x7fd757ecf250": [628, 703, 704, 705], "maml_step": 628, "vanilla": [628, 704, 841, 858], "_variabl": [628, 704, 705], "sub_batch": [628, 704], "40069818": [628, 704], "13723135": [628, 704], "reptile_step": 628, "cost_fn": [628, 705], "reptil": [628, 705], "batch_in": [628, 705], "4485182": [628, 705], "139": [628, 705], "9569855": [628, 705], "9880483": [628, 705], "01766968": [628, 705], "02197957": [628, 705], "02197981": [628, 705], "all_nested_indic": 629, "include_nest": [629, 706], "_index": [629, 706, 717], "_base": [629, 706, 716, 717, 828], "themselv": [629, 706, 806, 815, 817, 818, 820, 825, 829, 841, 855, 864], "863": [629, 706, 818], "672": [629, 706], "482": [629, 706], "674": [629, 706], "341": [629, 706], "copy_nest": 629, "to_mut": [629, 707, 718], "deepli": [629, 707, 809, 843, 858], "copied_nest": [629, 707], "1337": [629, 707, 718], "duplicate_array_index_chain": 629, "index_nest": [629, 825], "insert_into_nest_at_index": 629, "insert_into_nest_at_indic": 629, "onto": [629, 712, 718, 846, 847, 858], "special_squar": [629, 712], "6666666666666667": [629, 712], "special_pow": [629, 712], "linear_model": [629, 712], "map_nest_at_index": 629, "_result": [629, 713, 723], "hh": [629, 713, 718], "map_nest_at_indic": 629, "ub": [629, 714], "tb": [629, 714], "multi_index_nest": 629, "nested_ani": 629, "check_nest": [629, 716, 717], "nested_argwher": 629, "stop_after_n_found": [629, 717], "nested_indic": [629, 717], "nested_map": [629, 818, 825], "_tuple_check_fn": [629, 718], "_list_check_fn": [629, 718], "_dict_check_fn": [629, 718], "wherebi": [629, 718, 806, 855], "ah": [629, 718], "bh": [629, 718], "ch": [629, 718], "dh": [629, 718, 811], "eh": [629, 718], "gh": [629, 718, 807, 822], "ih": [629, 718], "1338": [629, 718], "nested_multi_map": 629, "index_chain": [629, 719], "nest0": [629, 719], "ivy_arrai": [629, 719, 812, 829], "unappli": [629, 719], "prune_empti": 629, "prune_nest_at_index": 629, "prune_nest_at_indic": 629, "set_nest_at_index": 629, "set_nest_at_indic": 629, "xyz": [629, 724], "pqr": [629, 724], "mini": [630, 725, 780, 783], "uniformli": [631, 727, 729], "22346112": [631, 728], "0922": [631, 728], "9213753": [631, 728], "12818667": [631, 728], "799": [631, 728], "469": [631, 728], "287": [631, 728], "0366": [631, 728], "26431865": [631, 729], "475": [631, 729], "878": [631, 729], "861": [631, 729], "929": [631, 729], "789": [631, 729], "519": [631, 729], "0435": [631, 729], "381": [631, 729], "4608004": [631, 729], "8458502": [631, 729], "67270088": [631, 729], "31128597": [631, 729], "zeroel": [632, 735], "guarante": [633, 737, 739, 812, 817, 828, 843, 849], "fourth": [633, 737], "1141": [633, 737], "8101": [633, 737], "9298": [633, 737], "8460": [633, 737], "2119": [633, 737], "3519": [633, 737], "6252": [633, 737], "4033": [633, 737], "7443": [633, 737], "2577": [633, 737], "3707": [633, 737], "0545": [633, 737], "3238": [633, 737], "5944": [633, 737], "0775": [633, 737], "4327": [633, 737], "62519997": [633, 737], "40329999": [633, 737], "59439999": [633, 737], "74430001": [633, 737], "81010002": [633, 737], "84600002": [633, 737], "92979997": [633, 737], "einstein": [635, 747, 793], "117": [635, 747], "intend": [635, 753, 762, 779, 811, 824, 827, 856, 858, 862, 863], "07472222": [635, 754], "00666667": [635, 754], "08966666": [635, 754], "simplicit": [636, 755, 756], "ivy_test": [759, 761, 762, 764, 765, 766, 767, 768, 769, 770, 771, 772, 806, 807, 808, 811, 814, 816, 822, 830], "test_ivi": [759, 761, 762, 764, 765, 766, 767, 768, 769, 770, 771, 772, 806, 807, 808, 814, 816, 822, 830, 832], "assert_all_clos": [759, 830], "ret_np": [759, 761, 830], "ret_from_gt_np": [759, 830], "ground_truth_backend": [759, 761, 762, 771, 772, 803, 822, 830], "mark": [759, 806, 808, 811, 832, 837], "assert_same_typ": 759, "ret_from_target": 759, "ret_from_gt": 759, "backend_to_test": [759, 761, 803, 822, 830], "gt_backend": 759, "with_backend": [759, 789], "assert_same_type_and_shap": 759, "this_key_chain": 759, "check_unsupported_devic": 759, "input_devic": 759, "all_as_kwargs_np": [759, 761], "presenc": [759, 815, 828], "check_unsupported_device_and_dtyp": 759, "input_dtyp": [759, 761, 771, 803, 822, 830, 832], "check_unsupported_dtyp": 759, "test_unsupported_funct": 759, "value_test": 759, "ret_np_flat": 759, "ret_np_from_gt_flat": 759, "specific_tolerance_dict": 759, "ret_from_np_gt_flat": 759, "function_test": 761, "args_to_contain": 761, "array_arg": [761, 825], "args_to_frontend": 761, "frontend_array_fn": 761, "arrays_to_frontend": 761, "as_list": 761, "convtru": 761, "nativeclass": 761, "counter": [761, 841], "create_args_kwarg": 761, "args_np": 761, "arg_np_val": 761, "args_idx": 761, "kwargs_np": 761, "kwarg_np_val": 761, "kwargs_idx": 761, "test_flag": [761, 803, 822, 830, 832], "on_devic": [761, 771, 803, 822, 830], "flatten_and_to_np": 761, "flatten_frontend": 761, "flatten_frontend_fw_to_np": 761, "frontend_ret": [761, 830], "isscalar_func": 761, "is_native_array_func": 761, "to_numpy_func": 761, "flatten_frontend_to_np": 761, "get_frontend_ret": 761, "frontend_fn": 761, "frontend_array_funct": 761, "precision_mod": [761, 771, 772, 822], "test_trac": [761, 771, 772, 803, 811, 822], "get_ret_and_flattened_np_arrai": 761, "gradient_incompatible_funct": 761, "gradient_test": [761, 832], "rtol_": [761, 803, 822], "atol_": [761, 803, 822, 830], "tolerance_dict": 761, "gradient_unsupported_dtyp": 761, "kwargs_to_args_n_kwarg": 761, "num_positional_arg": [761, 771, 772, 803, 822, 830, 832], "port": [761, 849], "test_frontend_funct": [761, 830], "fn_tree": [761, 762, 772, 803, 822, 829, 830, 832], "gt_fn_tree": [761, 772], "test_valu": [761, 830, 832], "frontend_function_flag": [761, 771], "functiontestflag": [761, 771, 803, 822], "with_out": [761, 771, 803, 822, 830, 832], "instance_method": [761, 771, 803, 822, 832], "as_vari": [761, 771, 803, 822, 830, 832], "namespac": [761, 806, 817, 826, 829, 830, 833, 837, 842], "test_frontend_method": [761, 830], "init_input_dtyp": [761, 830], "method_input_dtyp": [761, 830], "init_flag": [761, 830, 832], "method_flag": [761, 771, 830, 832], "init_all_as_kwargs_np": [761, 830], "method_all_as_kwargs_np": [761, 830], "frontend_method_data": [761, 830], "init_as_variable_flag": [761, 772], "dictat": [761, 812, 819, 824, 828], "init_num_positional_arg": [761, 772], "init_native_array_flag": 761, "with_v": 761, "ret_gt": 761, "test_funct": [761, 803, 807, 808, 816, 822, 830, 832], "fn_name": [761, 762, 772, 803, 813, 822, 830, 832], "return_flat_np_arrai": 761, "as_variable_flag": [761, 772, 832], "native_array_flag": [761, 772, 832], "container_flag": [761, 771, 772, 832], "test_function_backend_comput": 761, "test_function_ground_truth_comput": 761, "arg_np_arrai": 761, "arrays_args_indic": 761, "arrays_kwargs_indic": 761, "kwarg_np_arrai": 761, "test_gradient_backend_comput": 761, "test_gradient_ground_truth_comput": 761, "test_method": 761, "method_nam": [761, 770, 772, 830], "init_with_v": 761, "method_with_v": 761, "test_gradi": [761, 771, 772, 803, 822, 832], "method_as_variable_flag": [761, 772], "method_num_positional_arg": [761, 772], "method_native_array_flag": 761, "method_container_flag": [761, 772], "test_method_backend_comput": 761, "test_method_ground_truth_comput": 761, "org_con_data": 761, "args_np_method": 761, "met_arg_np_v": 761, "met_args_idx": 761, "kwargs_np_method": 761, "met_kwarg_np_v": 761, "met_kwargs_idx": 761, "v_np": 761, "traced_if_requir": 761, "wrap_frontend_function_arg": 761, "holder": 762, "current_frontend_config": 762, "0x7fd74b429d90": 762, "interruptedtest": 762, "test_interrupt": 762, "baseexcept": 762, "tri": [762, 817], "testdata": 762, "supported_device_dtyp": 762, "is_method": 762, "setup_api_test": 762, "test_data": 762, "setup_frontend_test": 762, "teardown_api_test": 762, "teardown_frontend_test": 762, "hypothesis_help": [764, 765, 766, 767], "array_help": 764, "array_and_broadcastable_shap": 764, "searchstrategi": [764, 765, 766, 767, 771, 772, 832], "array_bool": [764, 832], "min_valu": [764, 765, 766, 767, 803, 822, 830, 832], "max_valu": [764, 765, 766, 767, 830, 832], "ex": [764, 765, 766, 767, 772, 816, 852], "strategi": [764, 765, 766, 767, 771, 772, 806, 830], "array_helpers_dtype_info_help": 764, "kind_dtyp": [764, 766], "array_indices_axi": 764, "array_dtyp": [764, 765, 832], "indices_dtyp": 764, "get_dtyp": [764, 765, 803, 822, 830, 832], "disable_random_axi": 764, "axis_zero": 764, "allow_inf": [764, 767, 830, 832], "min_num_dim": [764, 766, 830, 832], "max_num_dim": [764, 766, 830, 832], "min_dim_s": [764, 766, 830, 832], "max_dim_s": [764, 766, 830], "first_dimension_onli": 764, "indices_same_dim": 764, "valid_bound": 764, "hypothesi": [764, 766, 772, 806, 808, 811, 816, 826], "65536": 764, "44758124e": [764, 832], "array_indices_put_along_axi": 764, "values_dtyp": 764, "array_valu": [764, 832], "abs_smallest_v": [764, 766, 767], "allow_nan": [764, 767, 832], "allow_subnorm": [764, 767, 832], "exclude_min": [764, 767, 832], "exclude_max": [764, 767], "large_abs_safety_factor": [764, 766, 767, 803, 822, 830, 832], "small_abs_safety_factor": [764, 766, 767, 803, 822, 830], "safety_factor_scal": [764, 766, 767, 830, 832], "subnorm": [764, 767], "safeti": [764, 766, 767, 858], "0002": [764, 767], "get_shap": [764, 766, 830, 832], "1806": 764, "36912": 764, "6955": 764, "59576": 764, "1025": 764, "arrays_and_ax": 764, "available_dtyp": [764, 765, 803, 822, 830, 832], "allow_non": [764, 766, 830, 832], "return_dtyp": 764, "force_int_axi": 764, "26e": 764, "10e": 764, "24322108": 764, "26446279e": 764, "96046448e": 764, "008": 764, "17549435e": 764, "038": 764, "06541027e": 764, "13725760e": 764, "07143888": 764, "arrays_for_pool": 764, "min_dim": 764, "max_dim": 764, "min_sid": 764, "max_sid": 764, "explicit_or_str_pad": 764, "only_explicit_pad": 764, "return_dil": 764, "mixed_fn_compo": [764, 765, 766, 767, 832], "return_data_format": 764, "cond_data_gen_help": 764, "create_concatenable_arrays_dtyp": 764, "min_num_arrai": 764, "max_num_arrai": 764, "concat_dim": 764, "common_shap": [764, 832], "stackabl": 764, "given_common_shap": 764, "create_nested_input": 764, "leaf_valu": 764, "dtype_and_valu": [764, 803, 822, 830, 832], "num_arrai": [764, 765, 830, 832], "shared_dtyp": [764, 765, 830], "ret_shap": 764, "array_api_dtyp": [764, 765], "shape_kei": 764, "37915": 764, "6322": 764, "26765": 764, "12413": 764, "26986": 764, "34665": 764, "000e": 764, "711e": 764, "100e": 764, "955e": [764, 832], "40817": 764, "56193": 764, "29200": 764, "5851": 764, "9746": 764, "9604645e": 764, "103": 764, "41795": 764, "1170789994": 764, "44251": 764, "44209": 764, "433075925": 764, "24791": 764, "24691": 764, "24892": 764, "16711": 764, "972": 764, "15357": 764, "72057594037927936": 764, "dtype_array_queri": 764, "allow_mask": 764, "allow_neg_step": 764, "dtype_array_query_v": 764, "dtype_values_axi": [764, 832], "min_axi": 764, "max_axi": 764, "valid_axi": 764, "allow_neg_ax": 764, "min_axes_s": 764, "max_axes_s": 764, "force_tuple_axi": 764, "29788": 764, "62222885e": 764, "68281172e": 764, "257j": 764, "40129846e": 764, "90000000e": 764, "63426649e": 764, "91931887e": 764, "29488e": 764, "14361019e": 764, "12445": 764, "einsum_help": 764, "get_first_solve_batch_matrix": 764, "choose_adjoint": 764, "get_second_solve_batch_matrix": 764, "get_first_solve_matrix": 764, "allow_simplifi": 764, "choose_sid": 764, "xa": 764, "get_second_solve_matrix": 764, "list_of_s": 764, "sampled_from": [764, 830, 832], "min_siz": [764, 766, 772, 832], "max_siz": [764, 766, 772, 832], "size_bound": [764, 832], "999999999999999": 764, "9394938006792373": 764, "mutually_broadcastable_shap": 764, "num_shap": 764, "base_shap": 764, "dtype_help": 765, "univers": [765, 829, 847], "cast_filt": 765, "cast_filter_help": 765, "current_backend": [765, 789, 806, 813, 821, 825, 830, 833, 837], "get_castable_dtyp": 765, "castabl": 765, "prune_funct": 765, "intersect": [765, 816, 832], "signed_integ": 765, "real_and_complex": 765, "float_and_complex": 765, "general_help": 766, "broadcasterror": 766, "apply_safety_factor": 766, "embedding_help": 766, "general_helpers_dtype_info_help": 766, "get_axi": [766, 832], "allow_neg": 766, "sort_valu": 766, "force_tupl": 766, "force_int": 766, "assertionerror": [766, 803, 811, 821, 822, 830, 832], "get_bound": [766, 832], "get_mean_std": 766, "matrix_is_st": 766, "cond_limit": 766, "instabl": [766, 803, 817, 822], "computation": [766, 807], "prone": [766, 817], "thumb": 766, "gradual": 766, "strong": [766, 843, 848, 858], "collinear": 766, "reshape_shap": [766, 832], "two_broadcastable_shap": 766, "x_and_filt": 766, "number_help": 767, "arbitrarili": [767, 840], "safety_factor": 767, "backend_proc": 768, "input_queu": 768, "output_queu": 768, "frontend_proc": 768, "pipeline_help": 769, "backendhandl": 769, "update_backend": [769, 830], "backendhandlermod": 769, "enum": 769, "setbackend": 769, "withbackend": 769, "withbackendcontext": 769, "get_frontend_config": 769, "frontendmethoddata": 770, "ivy_init_modul": 770, "framework_init_modul": 770, "init_nam": 770, "test_parameter_flag": 771, "dynamicflag": [771, 772], "frontendfunctiontestflag": [771, 822], "with_copi": 771, "generate_frontend_arrai": [771, 772, 822], "testflag": 771, "apply_flag": 771, "args_to_iter": 771, "frontendinittestflag": 771, "frontendmethodtestflag": 771, "test_cython_wrapp": [771, 772], "initmethodtestflag": 771, "methodtestflag": 771, "build_flag": 771, "frontend_init_flag": 771, "frontend_method_flag": 771, "function_flag": 771, "init_method_flag": 771, "testing_help": 772, "handle_frontend_method": [772, 830, 832], "class_tre": [772, 830], "init_tre": [772, 830], "init_native_arrai": 772, "_as_varaible_strategi": 772, "method_native_arrai": 772, "test_inplac": [772, 832], "_given_kwarg": 772, "test_compil": 772, "handle_frontend_test": [772, 830, 832], "alias": [772, 806, 829, 830], "number_positional_arg": [772, 830], "test_with_out": [772, 830, 832], "test_with_copi": 772, "handle_method": [772, 832], "method_tre": [772, 830, 832], "_gradient_strategi": 772, "handle_test": [772, 803, 822, 832], "test_instance_method": [772, 832], "num_positional_args_help": 772, "num_positional_args_method": 772, "geglu": 776, "leakyrelu": 776, "logsoftmax": 776, "from_flax_modul": 777, "native_modul": 777, "params_fx": 777, "rng_seed": 777, "constructor_arg": 777, "constructor_kwarg": 777, "instance_arg": 777, "instance_kwarg": 777, "flax": [777, 842, 843, 849, 858], "from_haiku_modul": 777, "params_hk": 777, "from_paddle_modul": 777, "from_torch_modul": 777, "dedic": [777, 809, 824, 835, 839, 841], "to_keras_modul": 777, "native_module_class": 777, "modulehelp": [778, 782], "create_vari": [779, 841], "var_shap": [779, 841], "fan_out": [779, 841], "fan_in": [779, 841], "rectangular": 779, "firstlayersiren": 779, "siren": 779, "glorotuniform": [779, 780, 841], "glorot": 779, "xavier": 779, "neuron": 779, "w_1x_1": 779, "w_2x_2": 779, "w_nx_n": 779, "w_i": 779, "vanish": 779, "explod": [779, 846, 847], "kaimingnorm": 779, "fan_mod": [779, 841], "kaim": 779, "he": 779, "negative_slop": 779, "fan": 779, "propog": 779, "fan_sum": [779, 841], "Ones": 779, "randomnorm": 779, "stddev": 779, "w0": 779, "wlim": 779, "predefin": 779, "fan_avg": 779, "adaptiveavgpool1d": 780, "avgpool1d": 780, "implicit": [780, 815, 820, 829, 832, 837, 858], "avgpool2d": 780, "avgpool3d": 780, "e501": 780, "filter_s": 780, "weight_initi": [780, 841], "bias_initi": [780, 841], "0x7fd757b15930": 780, "0x7fd757b158d0": 780, "conv1dtranspos": 780, "0x7fd757b15870": 780, "0x7fd757b15810": 780, "filter_shap": 780, "0x7fd757b157b0": 780, "0x7fd757b15750": 780, "0x7fd757b156f0": 780, "0x7fd757b15690": 780, "0x7fd757b15570": 780, "0x7fd757b154e0": 780, "conv3dtranspos": 780, "0x7fd757b15540": 780, "0x7fd757b154b0": 780, "depthwiseconv2d": 780, "num_channel": 780, "0x7fd757b15630": 780, "0x7fd757b155d0": 780, "bernoul": 780, "num_embed": 780, "embedding_dim": 780, "padding_idx": 780, "lookup": 780, "num_embeddingss": 780, "renorm": 780, "insensit": 780, "num_lay": 780, "return_sequ": 780, "return_st": 780, "0x7fd757b153f0": 780, "get_initial_st": 780, "0x7fd757b159f0": 780, "0x7fd757b15990": 780, "maxpool1d": 780, "maxpool3d": 780, "multiheadattent": 780, "embed_dim": 780, "head_dim": 780, "dropout_r": 780, "use_proj_bia": 780, "attention_ax": 780, "build_mod": [780, 781, 782], "on_init": [780, 782], "parallel": [780, 814, 858, 862, 863], "binarycrossentropyloss": 781, "store_var": [781, 782], "with_partial_v": [781, 782], "logpoissonloss": 781, "modulemeta": 782, "temporarili": [782, 803, 811, 822], "from_cal": 782, "module_dict": 782, "register_buff": 782, "register_paramet": 782, "weights_path": 782, "randomness_factor": 782, "with_edge_label": 782, "with_arg_label": 782, "with_output_label": 782, "output_connected_onli": 782, "highlight_subgraph": 782, "trace_kwarg": 782, "_unified_ivy_graph": 782, "_call": 782, "num_featur": 783, "trail": 783, "layernorm": 783, "normalized_shap": 783, "elementwise_affin": 783, "set_stat": [784, 841], "adamw": 784, "weight_decai": 784, "init_on_first_step": 784, "fallback_to_non_trac": 784, "ignore_miss": 784, "privat": [784, 829, 832], "_step": [784, 841], "stochast": [784, 858], "sub_modul": 785, "check_al": 786, "messag": [786, 795, 799, 807, 808, 816, 819, 821, 823, 829, 837, 839, 848], "check_all_or_any_fn": 786, "check_ani": 786, "check_dev_correct_format": 786, "check_dimens": 786, "check_elem_in_list": [786, 825, 828, 829], "elem": 786, "check_equ": [786, 829], "check_exist": 786, "check_fals": 786, "check_gather_input_valid": 786, "check_gather_nd_input_valid": 786, "check_great": 786, "allow_equ": [786, 821], "check_inplace_sizes_valid": [786, 828], "check_isinst": 786, "allowed_typ": 786, "check_kernel_padding_s": 786, "padding_s": 786, "check_less": [786, 821], "check_one_way_broadcast": 786, "check_same_dtyp": 786, "check_shapes_broadcast": 786, "check_tru": 786, "check_unsorted_segment_valid_param": 786, "ast_help": 788, "importtransform": 788, "nodetransform": 788, "impersonate_import": 788, "tree": [788, 817], "local_ivy_id": 788, "visit_import": 788, "visit_importfrom": 788, "ivyload": 788, "loader": [788, 840, 843], "exec_modul": 788, "ivypathfind": 788, "metapathfind": 788, "find_spec": 788, "fullnam": 788, "contextmanag": 789, "choose_random_backend": 789, "global_backend": 789, "dynamic_backend_convert": 789, "backend_stack": [789, 837], "prevent_access_loc": 789, "previous_backend": [789, 813], "unset": [789, 813, 837], "Or": [789, 800, 802, 828, 840], "set_backend_to_specific_vers": 789, "set_jax_backend": 789, "set_mxnet_backend": 789, "mx": 789, "set_numpy_backend": 789, "set_paddle_backend": 789, "set_tensorflow_backend": 789, "set_torch_backend": 789, "unset_backend": [789, 813], "sub_backend_handl": 790, "clear_sub_backend": 790, "find_available_sub_backend": 790, "sub_backends_loc": 790, "fn_name_from_version_specific_fn_nam": 790, "fn_name_from_version_specific_fn_name_sub_backend": 790, "sub_backend_vers": 790, "backend_vers": [790, 803, 817, 822], "set_sub_backend": 790, "sub_backend_str": 790, "set_sub_backend_to_specific_vers": 790, "sub_backend": 790, "unset_sub_backend": 790, "check_for_binari": 791, "cleanup_and_fetch_binari": [791, 807], "clean": [791, 808, 833, 837, 838, 840], "dynamic_import": 792, "import_modul": [792, 837], "einsum_pars": 793, "convert_interleaved_input": 793, "interleav": 793, "convert_subscript": 793, "old_sub": 793, "symbol_map": 793, "subscript": [793, 794], "oe": 793, "ellipsi": [793, 794], "find_output_shap": 793, "find_output_str": 793, "canon": 793, "gen_unused_symbol": 793, "abd": [793, 794], "get_symbol": 793, "letter": 793, "resort": 793, "unicod": 793, "charact": [793, 829, 848], "chr": 793, "surrog": 793, "\u0155": 793, "20000": 793, "\u4eac": 793, "has_valid_einsum_chars_onli": 793, "einsum_str": 793, "abaz": 793, "\u00f6ver": 793, "is_valid_einsum_char": 793, "\u01f5": 793, "legalise_einsum_expr": 793, "reproduct": [793, 794], "pars": [793, 794, 814, 819, 843], "intak": 793, "contract_path": 793, "parse_einsum_input": [793, 794], "einsum_eqn": 793, "legalis": 793, "legalise_einsum_eqn": 793, "za": [793, 794], "xza": [793, 794], "xz": [793, 794], "possibly_convert_to_numpi": 793, "myshap": 793, "__main__": 793, "0x10f850710": 793, "einsum_path_help": 794, "can_dot": 794, "idx_remov": 794, "bla": 794, "benefici": 794, "movement": 794, "costli": 794, "gemm": 794, "ijj": 794, "ddot": 794, "ikj": 794, "compute_size_by_dict": 794, "idx_dict": 794, "abbc": 794, "find_contract": 794, "input_set": 794, "output_set": 794, "lh": 794, "rh": 794, "new_result": 794, "idx_contract": 794, "iset": 794, "oset": 794, "bdc": 794, "flop_count": 794, "num_term": 794, "size_dictionari": 794, "flop": 794, "greedy_path": 794, "memory_limit": 794, "exhaust": [794, 828, 832, 855, 864], "indices_remov": 794, "priorit": [794, 806, 831, 835], "hadamard": 794, "cubic": 794, "greedi": 794, "idx_siz": 794, "optimal_path": 794, "siev": 794, "input_str": 794, "output_str": 794, "parse_possible_contract": 794, "path_cost": 794, "naive_cost": 794, "propos": [794, 804, 808, 829, 835, 858], "intermediari": [794, 813], "unoptim": 794, "new_input_set": 794, "update_other_result": 794, "provision": 794, "_parse_possible_contract": 794, "mod_result": 794, "inplaceupdateexcept": 795, "include_backend": [795, 821], "ivyattributeerror": [795, 821], "attributeerror": [795, 821, 839], "ivybroadcastshapeerror": [795, 821], "ivydeviceerror": 795, "ivydtypepromotionerror": [795, 821], "ivyindexerror": [795, 821], "ivyinvalidbackendexcept": 795, "ivynotimplementedexcept": [795, 821], "notimplementederror": 795, "ivyvalueerror": [795, 821], "handle_except": [795, 824, 826], "add_array_spec": 796, "fn_array_spec": 796, "set_logging_mod": 797, "debug": [797, 804, 807, 808, 815, 816, 827, 832, 835, 840, 858], "unset_logging_mod": 797, "print_stat": 798, "viz": 798, "snakeviz": 798, "bonu": 798, "cprofil": 798, "cprint": [799, 837], "grant": [800, 804], "autotun": [800, 862], "grow": [800, 804, 809, 858], "peopl": [800, 805, 807, 808, 810, 858, 860], "wip": [800, 851], "docker": [800, 803, 805, 822], "pull": [800, 801, 804, 806, 807, 811, 819, 823, 833, 835, 843, 844, 849], "sweat_smil": 800, "setting_up": 800, "awai": [800, 856, 858], "jax_fn": 800, "jax_x": 800, "torch_x": 800, "torch_fn": 800, "motiv": [800, 839, 848], "contextu": 800, "problem": [800, 804, 806, 808, 811, 812, 818, 829, 839, 848, 854, 860, 864], "explos": [800, 846, 848], "adher": [800, 811, 817, 820, 824, 835, 837, 842, 847, 848, 854, 855, 864], "focus": [800, 817, 833, 856, 857, 858, 864, 865], "orient": 800, "contributor": [800, 801, 803, 804, 806, 807, 808, 822, 829, 836, 858], "shorter": [800, 839], "ensp": 800, "customiz": [800, 814], "deepmind_perceiver_io": 800, "sm_framework": 800, "segmentation_model": 800, "sm": 800, "torch_sm": 800, "metric": [800, 843], "iou_scor": 800, "rax": 800, "torch_rax": 800, "poly1_softmax_loss": 800, "madmom": 800, "madmon": 800, "torch_madmom": 800, "freq": 800, "audio": 800, "hz2midi": 800, "torch_loss": 800, "maxpooling1d": 800, "pool_siz": 800, "tf_kornia": 800, "tf_rax": 800, "tf_madmom": 800, "tf_loss": 800, "_forward_classifi": [800, 852], "forward_classifi": [800, 852], "hk_eff_encod": 800, "dummy_x": 800, "jax_sm": 800, "jax_madmom": 800, "jax_loss": 800, "np_kornia": 800, "np_sm": 800, "np_rax": 800, "np_loss": 800, "yourself": [800, 806, 808, 823, 832, 835], "favourit": [800, 807], "pipelin": [800, 802, 810, 811, 812, 830, 833, 842, 845, 847, 852, 858, 859, 864], "hyperparam": 800, "idea": [800, 806, 831, 833, 838, 849, 857], "instantli": [800, 852], "essenti": [800, 804, 806, 813, 815, 818, 819, 825, 828, 829, 830, 847, 848, 864], "mainli": [800, 806, 810, 827, 829, 832, 838, 840, 845, 858], "handler": [800, 836, 838, 842, 845], "scene": [800, 810, 836, 838, 846, 847, 858], "facilit": 800, "mse_loss": 800, "jax_ms": 800, "tf_mse": 800, "np_mse": 800, "torch_ms": 800, "someth": [800, 803, 808, 813, 822, 823, 833, 840, 841, 843, 844, 864], "favorit": 800, "flexibl": [800, 815, 817, 824, 827, 833, 835, 858], "everyon": [800, 801, 806, 807, 808, 843, 849], "plan": [800, 844], "interoper": [800, 848, 855, 856, 858, 861], "believ": [800, 808, 848], "feedback": [800, 806, 816], "appreci": [800, 809], "amaz": 800, "journei": [800, 801, 809], "ambiti": 800, "season": 800, "perfect": 800, "ask": [800, 806, 807, 819, 837, 839, 843, 844, 849], "fellow": 800, "twitter": 800, "sneak": 800, "peek": 800, "stai": [800, 816], "proper": [800, 806, 829, 852], "credit": 800, "accompani": 800, "lenton2021ivi": 800, "inter": 800, "author": [800, 806, 808, 856, 860], "lenton": 800, "daniel": 800, "pardo": 800, "fabio": 800, "falck": 800, "fabian": 800, "jame": 800, "stephen": 800, "clark": 800, "ronald": 800, "journal": 800, "arxiv": 800, "preprint": 800, "2102": 800, "02886": 800, "year": [800, 811, 843, 847, 849, 858], "strongli": [801, 807, 829, 864, 865], "engag": [801, 808, 809, 848], "skill": [801, 804, 809, 860], "veteran": 801, "effort": [801, 806, 843, 848, 854, 858, 864], "board": [801, 814], "stage": [801, 808, 810, 811, 814, 832, 848, 858], "excit": [801, 810, 848], "volunt": 801, "climb": [801, 805], "program": [801, 804, 809, 828, 855, 856, 858, 861, 862, 865], "reward": [801, 809], "badg": [801, 809, 816], "Be": [802, 814], "awar": [802, 814, 821, 823], "linux": [802, 807, 808, 814, 861, 863], "regularli": [802, 814, 816], "internet": [802, 814], "codespac": [802, 814, 822], "make_doc": 802, "sh": [802, 807, 808, 811, 816], "host": [802, 816, 843, 848, 863], "pwd": 802, "ssh": [802, 816], "make_docs_without_dock": [802, 814], "assist": [803, 822], "runtimeerror": [803, 822], "logaddexp2_cpu": [803, 822], "falsifi": [803, 811, 822, 832], "test_logaddexp2": [803, 822], "backend_fw": [803, 822, 830], "dtype_and_x": [803, 822, 830, 832], "reproduce_failur": [803, 811, 822, 826, 832], "axicy2bkaamobaar2waaaacvaai": [803, 822], "decoartor": [803, 822], "with_unsupported_dtyp": [803, 817, 822, 829], "25830078125": [803, 822], "258544921875": [803, 822], "test_acosh": [803, 822], "axicy2baabyqwqgiaabdaai": [803, 822], "quit": [803, 808, 812, 819, 820, 822, 825, 826, 832, 835, 858, 864], "41421356": [803, 822], "41421356e": [803, 822], "34078079e": [803, 822], "154": [803, 822], "test_ab": [803, 807, 822, 832], "000j": [803, 822], "154j": [803, 822], "axicy2zkyaiibibgziaaxqhexsaab7juqaaamteazq": [803, 822], "experiment": [803, 808, 817, 829, 833, 837, 858], "thread": [803, 806, 807, 808, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 840, 858], "pycharm": [803, 830, 832], "offer": [804, 829, 841, 849, 858, 864, 865], "formal": 804, "dynamo": 804, "award": 804, "crucial": [804, 818, 827], "pinpoint": 804, "pioneer": 804, "acknowledg": [804, 809], "collabor": [804, 846, 847, 848], "valuabl": [804, 806, 808], "merg": [804, 806, 808, 811, 816, 829, 858], "meet": [804, 806, 829], "qualiti": [804, 806, 808], "wizard": 804, "impact": [804, 809, 816, 832, 841, 860], "inspector": 804, "honour": 804, "dilig": 804, "four": [804, 812, 817, 819, 824, 825, 832, 835, 840], "bronz": [804, 809], "silver": [804, 809], "gold": [804, 809, 843], "expertis": [804, 809, 860], "few": [805, 806, 808, 815, 817, 818, 824, 825, 827, 828, 830, 832, 835, 837, 838, 839, 840, 841, 849, 858, 860], "steep": 805, "curv": 805, "realpython": 805, "pyn": 805, "exchang": [805, 848, 854, 856], "pilot": [805, 844], "stuck": [805, 806], "spell": 805, "sound": [805, 816, 836], "frequent": [806, 808, 813, 858], "outlin": [806, 807, 808, 810, 815, 817, 820, 825, 828, 829, 832], "broad": [806, 860], "individu": [806, 808, 811, 813, 817, 825, 829, 858, 861, 864, 865], "clearli": [806, 808, 819, 830, 832, 848, 862], "lie": 806, "craft": [806, 831, 832], "fault": [806, 819, 858], "situat": [806, 808, 816, 842], "opportun": [806, 809], "tackl": [806, 809, 829], "challeng": [806, 813, 864], "categoris": [806, 811, 829], "encourag": [806, 809, 823, 843, 848], "comfort": [806, 807, 821], "linkag": 806, "confid": 806, "submit": [806, 823], "scipi": [806, 848, 860, 865], "mindspor": 806, "simpler": [806, 808, 823, 851, 859, 865], "member": [806, 808, 829, 844, 848], "comment": [806, 807, 808, 811, 817, 823, 829, 831, 835], "pr": [806, 808, 811, 823, 829, 830, 832], "composition": 806, "feasibl": [806, 816, 848, 851], "pend": 806, "helpfulli": [806, 835, 856], "problemat": [806, 807], "unimpl": 806, "issue_link": 806, "alias_nam": 806, "notic": [806, 812, 816, 822, 823, 832, 835, 851], "push": [806, 808, 809, 811, 830, 832, 864], "liner": 806, "meanwhil": [806, 816], "reselect": 806, "faithfulli": 806, "creation_routin": [806, 830], "indexing_routin": 806, "ma": 806, "manipulation_routin": 806, "mathematical_funct": [806, 829], "sorting_searching_count": 806, "ufunc": [806, 829], "matrix_and_vector_product": 806, "matrix_eigenvalu": 806, "norms_and_other_numb": 806, "solving_equations_and_inverting_matric": 806, "gleam": 806, "uncom": 806, "test_numpy_inn": 806, "test_frontend": [806, 816, 822, 830], "unsur": [806, 832], "statu": [806, 809, 816, 823, 849], "refrain": 806, "checkbox": [806, 807], "aforement": 806, "parent": [806, 816, 839], "arraywithelementwis": [806, 812, 839], "containerwithmanipul": 806, "thorough": [806, 820, 824, 832], "add_reformatting_checklist_": 806, "category_nam": [806, 817, 818, 820, 824, 825], "autom": [806, 816, 823, 832, 845, 860], "bot": [806, 823], "markdown": [806, 814], "patient": [806, 807], "elabor": 806, "struggl": 806, "assigne": 806, "status": 806, "central": [806, 823, 835, 848, 864], "analyz": [806, 845], "relevant_submodul": 806, "roadmap": [806, 816], "soon": [806, 808, 816, 817, 843, 851], "deem": [806, 829], "subtask": 806, "clearer": [806, 821, 830, 840], "backend_nam": [806, 813, 817, 818, 820, 824, 825, 826], "sometim": [806, 807, 808, 811, 817, 825, 829, 832, 835], "rare": [806, 818, 843, 863], "button": [806, 807, 808, 822], "centr": 806, "predetermin": 806, "superset": [806, 810, 825, 828, 843], "reserv": 806, "happi": [807, 822, 843, 849], "your_usernam": [807, 822], "your_fold": [807, 822], "enter": [807, 808, 812, 817, 818, 822, 824, 826], "sync": [807, 811, 822], "remot": [807, 811, 822, 823], "nutshel": [807, 824], "hook": [807, 823, 831], "lint": [807, 810], "succe": [807, 851], "whatev": [807, 815, 843], "elig": 807, "student": 807, "licens": [807, 861], "remind": 807, "expir": 807, "won": [807, 808, 815, 817, 842, 844, 848, 849, 851, 852, 853], "profession": 807, "trial": 807, "jetbrain": 807, "month": [807, 847], "bui": [807, 864], "paid": 807, "rapid": [807, 847, 848, 858], "pace": 807, "person": [807, 808], "abil": [807, 835, 838, 843, 858], "perhap": [807, 839, 840, 841, 843, 864], "conda": [807, 848, 860], "ivy_dev": [807, 808], "icon": [807, 808, 822], "panel": 807, "vscode": [807, 822], "palett": 807, "ctrl": [807, 808], "mac": [807, 808], "intel": [807, 848, 856, 863], "m1": 807, "optional_apple_silicon_1": 807, "optional_apple_silicon_2": 807, "array_api_test": [807, 808, 811, 822], "test_array_api": [807, 808, 811, 822, 832], "suit": [807, 810, 811, 816, 822, 831, 832, 840, 848, 858, 864], "cmd": 807, "bat": [807, 808], "virtualenv": 807, "tick": [807, 808, 816], "nz2": 807, "openssl": 807, "libssl1": 807, "1_1": 807, "1f": 807, "1ubuntu2": 807, "19_amd64": 807, "deb": 807, "dpkg": 807, "mitig": [807, 864], "desktop": [807, 822], "powershel": 807, "admin": 807, "deploy": [807, 852, 857, 860, 861, 864, 865], "menu": [807, 822], "introspect": 807, "dialog": 807, "persist": 807, "earlier": [807, 808, 817, 833], "virtualis": 807, "bio": [807, 848], "dropdown": [807, 816], "dockerfil": 807, "ca": 807, "certif": 807, "gnupg": 807, "lsb": 807, "keyr": 807, "fssl": 807, "gpg": 807, "dearmor": 807, "echo": [807, 816, 844], "arch": 807, "lsb_releas": 807, "null": [807, 822], "ce": 807, "cli": 807, "containerd": 807, "systemctl": 807, "softwar": [807, 808, 847, 848, 856, 861, 862, 863], "press": [807, 808, 840], "4a": 807, "socket": 807, "rwx": 807, "sock": 807, "pid": 807, "editor": 807, "pytest": [807, 808, 811, 816, 822, 826, 832], "keyboard": 807, "screenshot": 807, "pop": [807, 822, 848], "test_elementwis": 807, "bar": [807, 822], "shell": [807, 808, 811, 816], "setup_test": 807, "run_ivy_core_test": 807, "run_ivy_nn_test": 807, "run_ivy_stateful_test": 807, "run_test": [807, 816], "test_depend": 807, "test_ivy_cor": 807, "test_ivy_nn": 807, "test_ivy_st": 807, "unix": 807, "test_": [807, 830], "test_cor": [807, 808, 830], "offici": [807, 817, 837], "wish": [807, 829], "ivy_nn": 807, "ivy_st": 807, "header": [807, 808, 831], "arrow": 807, "test_stat": 807, "test_submodule_nam": 807, "test_function_nam": 807, "debugg": 807, "studio": [807, 822, 832], "especi": [807, 813, 823, 847, 858], "afterward": [807, 840], "background": [807, 814, 822, 858, 860], "overlap": [807, 816, 822, 833, 835, 859], "test_file_path": [807, 822], "test_fn_nam": [807, 822], "engin": [807, 858, 860, 861], "devcontain": 807, "comma": 807, "postcreatecommand": 807, "post_create_command": 807, "poststartcommand": 807, "safe": [807, 829], "containerworkspacefold": 807, "reopen": 807, "test_fle_path": 807, "slash": 807, "isol": [807, 808, 859, 864], "container": 807, "intens": 807, "headach": 807, "arm": [807, 808], "vm": [807, 816], "azur": 807, "cloud": [807, 816, 860], "theme": [807, 814], "ipad": 807, "browser": [807, 814], "quota": 807, "requisit": 807, "pane": [807, 808, 816], "dockerfilegpu": 807, "ivv": 807, "multiv": 807, "multivers": [807, 833], "dockerfilemultivers": 807, "dockerhub": 807, "upto": [807, 808], "minut": [807, 816], "launch": 807, "quickli": [807, 808, 816, 840, 841, 847, 849, 858, 865], "kindli": [807, 831], "guidelin": 807, "colour": 807, "chanc": 807, "troubleshoot": 807, "ever": 807, "flask": [807, 822], "toolbar": [807, 808, 822], "_array_modul": [807, 811, 822], "refresh": [807, 822], "pytestarg": [807, 822], "unittesten": [807, 822], "pytesten": [807, 822], "autotestdiscoveronsaveen": [807, 822], "conftest": 807, "serv": [807, 808, 812, 815, 824, 825, 829, 830, 832, 835, 836, 845, 856], "aren": [807, 817], "record": [807, 843, 859], "available_config": 807, "cp310": 807, "x86": [807, 863], "newer": [807, 832], "_compil": 807, "meantim": 807, "suffici": [807, 819, 829, 832], "bear": [807, 812, 815, 817, 829], "tendenc": 808, "land": 808, "unrel": [808, 848], "fly": [808, 858], "internship": 808, "suspect": 808, "iii": 808, "issue_numb": 808, "12345": 808, "rememb": 808, "respond": 808, "dai": [808, 823], "freed": 808, "obvious": [808, 816], "hypothet": 808, "frustrat": 808, "delai": [808, 851], "busi": 808, "inact": 808, "unfairli": 808, "investig": 808, "name_of_your_branch": 808, "date": [808, 811], "complic": [808, 830, 837], "merge_with_upstream": 808, "abort": 808, "tediou": [808, 819, 835], "stash": [808, 823], "reinstat": 808, "uncommit": 808, "unstag": [808, 823], "untrack": 808, "atlassian": 808, "wrote": 808, "piec": [808, 812, 825, 826, 837, 851, 854, 856], "blame": 808, "eg": 808, "week": [808, 849], "grep": 808, "commit_id": 808, "handi": 808, "histori": 808, "toggl": 808, "highlight": [808, 816, 819, 829, 831], "approv": 808, "someon": [808, 843], "hash": [808, 840], "cancel": 808, "speedup": 808, "unavail": 808, "tickbox": 808, "span": [808, 856, 864], "intent": [808, 828], "discourag": 808, "adopt": [808, 812, 824, 835, 848, 857, 858, 863], "philosophi": 808, "infrequ": 808, "earli": [808, 858], "wast": [808, 816], "spot": [808, 819, 825], "mistak": 808, "mountain": 808, "advoc": [808, 843], "session": [808, 858], "beauti": 808, "particularli": [808, 840, 843, 851, 856], "care": [808, 818, 829, 835, 842, 848], "undo": 808, "stress": 808, "nifti": 808, "reassur": 808, "local_path_to_ivi": 808, "subfold": [808, 830, 832, 833], "dep": 808, "fresh": 808, "arsen": 808, "exec": 808, "ivy_contain": 808, "test_imag": 808, "test_random_crop": 808, "test_creation_funct": 808, "test_arang": 808, "cursor": 808, "alt": 808, "blog": 808, "breakpoint": 808, "gutter": 808, "caret": 808, "f8": 808, "f9": 808, "Into": 808, "f7": 808, "smart": 808, "fragment": [808, 854, 856, 860], "wherein": [808, 825, 832], "failur": [808, 816, 830, 832], "earn": 809, "straightforward": [809, 840], "door": [809, 843], "elev": 809, "mission": [809, 848, 860], "testament": [809, 831], "stone": 809, "acquir": 809, "peak": 809, "privileg": [809, 860], "bounti": 809, "cash": 809, "delight": 809, "embark": 809, "technologi": [809, 848, 856, 860], "innov": [809, 848], "weed": [810, 836], "tour": 810, "formatt": [810, 823], "conjunct": 811, "establish": [811, 860], "popular": [811, 858], "sens": [811, 817, 819, 829, 831, 839], "unconnect": 811, "initialis": [811, 829, 832], "strang": [811, 839], "thoroughli": 811, "test_linalg": [811, 830], "test_set_funct": 811, "test_signatur": 811, "excess": [811, 813, 819], "array_modul": 811, "vv": 811, "test_manipulation_funct": 811, "test_concat": [811, 832], "nb": 811, "liber": 811, "______________________": 811, "test_remaind": 811, "_______________________": 811, "test_operators_and_elementwise_funct": 811, "1264": 811, "1277": 811, "binary_param_assert_against_refimpl": 811, "ctx": 811, "620": 811, "binary_assert_against_refimpl": 811, "324": 811, "scalar_o": 811, "17304064": 811, "binaryparamcontext": 811, "axic42baaowcnp": 811, "rumwmabaear0": 811, "make_binary_param": 811, "numeric_dtyp": 811, "left_strat": 811, "left_sym": 811, "right_strat": 811, "right_sym": 811, "right_is_scalar": 811, "binary_param_assert_dtyp": 811, "binary_param_assert_shap": 811, "recreat": 811, "unexpectedli": 811, "discrep": [811, 830], "test_asarray_arrai": 811, "test_floor_divid": 811, "health": 811, "test_iop": 811, "__imod__": 811, "isequ": 811, "test_matrix_norm": 811, "alter": 811, "tweak": 811, "array_api_methods_to_test": 811, "test_special_cas": 811, "__ipow__": 811, "is_integ": 811, "easier": [811, 812, 813, 817, 830, 833, 845, 858, 860], "revisit": [811, 824], "_data": [812, 828, 829, 839], "organiz": [812, 815, 829], "underpin": [812, 815, 837], "programmat": [812, 815, 859], "backup": [812, 814, 815], "accident": [812, 815, 829], "absent": [812, 815], "auto": [812, 814, 815, 823, 840], "__mul__": [812, 815, 819, 824, 835, 839], "throw": [812, 817, 818, 821, 822, 839, 858], "imposs": 812, "inputs_to_native_arrai": [812, 825, 826], "outputs_to_ivy_arrai": [812, 817, 818, 824, 825, 826], "secondli": [812, 817], "__ivy_array_function__": 812, "inspir": 812, "__torch_function__": 812, "myarrai": 812, "handled_funct": 812, "notimpl": 812, "issubclass": 812, "enough": [812, 816, 817, 818, 832, 839, 840, 841], "ivy_funct": 812, "my_ab": 812, "my_arrai": 812, "implicit_backend": [813, 837], "__dict__": [813, 828, 837], "ivy_original_dict": [813, 837], "fallback": 813, "live": [813, 814, 817, 848, 849, 854, 856], "scope": [813, 859, 863], "dlpack": 813, "set_dynamic_backend": 813, "unset_dynamic_backend": 813, "dynamic_backend_a": 813, "set_": 813, "unset_": 813, "backend_handl": 813, "requires_grad": 813, "memory_format": 813, "preserve_format": 813, "weren": 813, "vast": [813, 817, 858], "minor": [813, 835, 843], "fn_name_v_1p12_and_abov": 813, "fn_name_v_1p01_to_1p1": 813, "heavili": [814, 826, 843], "characterist": 814, "conf": 814, "cleanup": 814, "readm": [814, 843], "maxdepth": 814, "caption": 814, "related_work": 814, "deep_div": 814, "faq": 814, "glossari": 814, "autosummari": 814, "top_functional_toc": 814, "restructuredtext": 814, "discov": [814, 817], "ivy_toctree_caption_map": 814, "stub": 814, "unfortun": [814, 823], "linker": 814, "foo": 814, "discussion_channel_map": 814, "1000043690254946374": 814, "1000043749088436315": 814, "forum": [814, 844], "seri": [814, 817, 829, 832, 858, 860], "discussion_paragraph": 814, "discord_link": 814, "channel_link": 814, "gg": 814, "zvqdvbznqj": 814, "799879767196958751": 814, "channel_id": 814, "autoskippablemethod": 814, "skippable_method_attribut": 814, "__qualname__": 814, "autodoc": 814, "__doc__": 814, "autoivydata": 814, "mutual": [815, 825], "containerwithelementwis": 815, "__repr__": 815, "__getattr__": [815, 851], "__setattr__": [815, 851], "__contains__": 815, "__getstate__": 815, "__setstate__": 815, "unpickl": 815, "num_dim": [815, 842], "restrict": [815, 816, 829, 837, 851, 855], "enforc": [815, 839], "extern": [815, 824, 829, 832, 833], "lefthand": 815, "righthand": 815, "handle_nest": [815, 824, 825, 826, 837], "absenc": [815, 824, 858], "implicitli": [815, 827, 832, 837], "log_pr": [815, 825, 828], "intuit": [815, 832, 840, 841, 854], "chronolog": 815, "concurr": [815, 816, 825, 858], "despit": [815, 817, 818, 830, 837, 848, 855, 858], "__list__": 815, "whatsoev": [815, 825, 845, 864], "children": 815, "shallowest": 815, "deepest": 815, "rollback": 816, "incorpor": [816, 830, 840, 858], "techniqu": 816, "triplet": 816, "test_torch": [816, 830], "test_tensor": [816, 830], "test_torch_instance_arctan_": 816, "12500": 816, "daili": 816, "huge": [816, 840, 846, 848, 858, 864], "shoot": 816, "_reduce_loss": [816, 825, 828], "test_nn": 816, "test_loss": 816, "test_binary_cross_entropy_with_logit": 816, "test_cross_entropi": 816, "test_binary_cross_entropi": 816, "test_sparse_cross_entropi": 816, "test_loss_funct": 816, "test_torch_binary_cross_entropi": 816, "test_torch_cross_entropi": 816, "binary_cross_entropy_with_logit": 816, "torch_binary_cross_entropi": 816, "torch_cross_entropi": 816, "magic": 816, "readthedoc": 816, "pedagog": 816, "f_1": 816, "t_1": 816, "t_3": 816, "t_7": 816, "t_": 816, "f_m": 816, "cyclic": 816, "intellig": [816, 832, 860], "tests_fil": 816, "file_nam": [816, 832, 833], "tests_lin": 816, "correspondingli": 816, "tests_to_run": 816, "determine_tests_lin": 816, "mongodb": 816, "databas": [816, 832], "mechan": [816, 843], "secret": 816, "db": 816, "ssh_deploy_kei": 816, "suffic": [816, 826, 832], "massiv": 816, "yml": 816, "felicit": 816, "clone_map": 816, "deploy_kei": 816, "user_email": 816, "user_nam": 816, "target_branch": 816, "github_serv": 816, "deploy_key_fil": 816, "ssh_known_hosts_fil": 816, "known_host": 816, "keyscan": 816, "git_ssh_command": 816, "userknownhostsfil": 816, "email": [816, 848], "methodologi": 816, "master1": 816, "restructur": 816, "_map": 816, "t_2": 816, "t_n": 816, "index_map": 816, "test_map": 816, "snowbal": 816, "recalibr": 816, "workflow_dispatch": 816, "schedul": [816, 843, 858, 865], "cron": 816, "saturdai": 816, "night": 816, "pm": 816, "gut": 816, "lesser": [816, 821], "lol": 816, "hour": [816, 849], "cater": [816, 831], "master2": 816, "master32": 816, "synchron": 816, "runner2": 816, "corrupt": 816, "decoupl": [816, 841], "150": 816, "cycl": [816, 832], "yellow": 816, "queu": 816, "redirect": 816, "book": 816, "onrend": 816, "jo": 816, "ran": 816, "clickabl": 816, "all_dtyp": 817, "all_numeric_dtyp": 817, "all_int_dtyp": 817, "all_float_dtyp": 817, "replic": [817, 827, 828, 829], "thirdli": 817, "native_float32": 817, "importantli": [817, 839, 842], "arguabl": [817, 818, 829], "jaxarrai": [817, 818, 821, 824, 828, 833, 837], "_handle_0_dim_output": 817, "subtli": [817, 828], "promote_types_frontend_nam": 817, "promote_types_of_frontend_name_input": 817, "frontend_nam": 817, "upcast": 817, "nearli": [817, 824, 826, 858], "downcast": 817, "footprint": 817, "concret": 817, "aris": [817, 823, 843, 848], "utterli": 817, "meant": [817, 819, 828], "twice": 817, "disadvantag": 817, "relax": 817, "f64": 817, "unwant": 817, "primaci": 817, "resembl": 817, "compound": 817, "infer_dtyp": [817, 818, 824, 826], "settabl": [817, 818], "handle_out_argu": [817, 818, 824, 825, 826, 828, 837], "infer_devic": [817, 818, 824, 826], "deleg": [817, 865], "shape_to_tupl": 817, "with_supported_dtyp": 817, "unment": 817, "_cast_for_unary_op": [817, 825, 828], "target_typ": 817, "syntax": [817, 847, 848, 858], "unsupported_dtyp": 817, "supported_dtypes_and_devic": 817, "with_unsupported_device_and_dtyp": 817, "globals_getter_func": 817, "f2": 817, "lack": [817, 828, 858, 865], "mandat": [817, 828, 832, 833, 848], "confus": [817, 821, 828, 835, 845, 849], "inconsist": [817, 821, 827], "is_nan": 817, "supported_dtyp": 817, "anytim": 817, "84530": 817, "unwarr": 817, "risk": [817, 864], "needlessli": 817, "bloat": 817, "undergo": [817, 843], "unsupported_devic": 817, "supported_devic": 817, "downsid": 817, "coverag": [817, 832], "undesir": 817, "accomplish": 817, "upcast_data_typ": 817, "downcast_data_typ": 817, "crosscast_data_typ": 817, "cast_data_typ": 817, "downcast_data_dtyp": 817, "vice": 817, "versa": 817, "till": 817, "crosscast": 817, "exmp1": 817, "watch": [817, 829], "handle_numpy_arrays_in_specific_backend": [817, 824], "cate": 817, "understood": 817, "consumpt": [817, 862], "dual": 818, "categor": [818, 825, 829], "210": 818, "_handle_except": [818, 821], "1013": 818, "_handle_nest": [818, 821], "905": 818, "_handle_out_argu": [818, 821], "441": 818, "_inputs_to_native_arrai": [818, 821], "new_arg": [818, 821], "new_kwarg": [818, 821], "_outputs_to_ivy_arrai": [818, 821], "358": 818, "_handle_array_funct": [818, 821], "_handle_device_shift": 818, "handle_device_shift": [818, 826], "device_shifting_dev": 818, "__enter__": 818, "__exit__": 818, "mostli": [818, 828, 832], "soft_devic": 818, "eight": [819, 836], "op_nam": 819, "__r": 819, "unsurprisingli": [819, 847], "recap": [819, 841], "combinatori": 819, "okai": [819, 835, 837], "spec": [819, 820], "my_func": [819, 833], "some_flag": 819, "another_flag": 819, "jointli": 819, "5574077": 819, "1850398": 819, "5463025": 819, "8422884": 819, "91601413": 819, "9647598": 819, "3738229": 819, "1597457": 819, "0963247": 819, "9955841": 819, "3278579": 819, "asid": 819, "increasingli": [819, 851], "14254655": 819, "1578213": 819, "380515": 819, "trivial": [819, 828], "failing_fn_nam": 819, "onlin": [819, 820], "minutest": 819, "contrast": [820, 824, 829, 864], "preview": 820, "incorrectli": [820, 851], "needless": [820, 830], "renam": [820, 829], "judgment": 820, "operator_nam": 820, "succinct": 820, "docst": 820, "native_error": 821, "_combine_messag": 821, "truli": [821, 839], "wrong": [821, 823, 826, 829, 835], "198": 821, "392": 821, "_handle_array_like_without_promot": 821, "805": 821, "432": 821, "349": 821, "other_test": 821, "523": 821, "_handle_numpy_out": 821, "396": [821, 841], "_outputs_to_numpy_arrai": 821, "_inputs_to_ivy_arrays_np": 821, "ivy_arg": 821, "ivy_kwarg": 821, "453": 821, "_from_zero_dim_arrays_to_scalar": 821, "truth_value_test": 821, "visibl": 821, "unwieldi": 821, "squash": 821, "hide": [821, 851], "cleaner": [821, 840], "caught": [821, 823], "rethrow": 821, "_print_traceback_histori": 821, "error_stack": 821, "axiserror": 821, "polici": [821, 826, 832, 834], "moreov": 821, "submoodul": 822, "test_jax_transpos": 822, "manipulaiton": 822, "test_jax": [822, 830], "test_numpi": [822, 830], "test_manipul": [822, 830, 832], "preconditionnotmet": 822, "densetensor": 822, "holder_": 822, "phi": 822, "dense_tensor_impl": 822, "array_and_ax": 822, "aaegbaegaqaaaaaaaaaaaaab": 822, "black": 823, "flake8": 823, "linter": 823, "autoflak": 823, "docformatt": 823, "pydocstyl": 823, "yaml": 823, "patch1687898304": 823, "8072": 823, "3516aed563": 823, "reformat": 823, "akshai": 823, "jain": 823, "gui": 823, "cryptic": 823, "garden": 823, "utc": 823, "didn": 823, "human": 823, "intervent": 823, "typo": 823, "ui": 823, "handle_array_like_without_promot": [824, 826], "to_native_arrays_and_back": [824, 826, 837], "handle_array_funct": [824, 826], "inputs_to_native_shap": [824, 826], "rational": [824, 828, 835], "__div__": [824, 835], "484": 824, "annot": 824, "brittl": 824, "freeli": 824, "inde": [824, 835, 843, 856], "technic": [824, 828, 843, 858, 860], "original_typ": 824, "cumbersom": 824, "hinder": [824, 847], "venn": 825, "diagram": [825, 864], "light": [825, 833, 843, 845, 859, 864], "maximis": 825, "encompass": 825, "partial_mixed_handl": [825, 826, 835], "handle_partial_mixed_funct": [825, 826, 835], "fn_decor": 825, "mixed_backend_wrapp": [825, 828], "to_add": 825, "to_skip": 825, "inputs_to_ivy_arrai": [825, 826], "modif": [825, 858], "briefli": [825, 832, 840], "get_all_arrays_on_dev": 825, "outputs_to_ivy_shap": 826, "outputs_to_native_arrai": 826, "handle_view_index": [826, 828], "handle_view": [826, 828], "handle_rag": 826, "handle_backend_invalid": 826, "handle_nan": 826, "to_native_shapes_and_back": 826, "modern": [827, 847, 848, 863], "inter_func": 827, "custom_grad_fn": 827, "args1": 827, "eas": [827, 858], "speak": 828, "val_n": 828, "base_idx": 828, "_manipulation_stack": 828, "base_flat": 828, "_view_ref": 828, "_update_view": 828, "contigu": 828, "c_contigu": 828, "ascontiguousarrai": 828, "copyto": 828, "_is_vari": 828, "tensor_scatter_nd_upd": 828, "is_vari": 828, "_update_torch_view": 828, "predominantli": [828, 833], "support_native_out": [828, 837], "_scalar_output_to_0d_arrai": 828, "_wrap_fn": 828, "dim0": 828, "dim1": 828, "res_floor": 828, "extent": [828, 829], "to_out_fn": 828, "add_wrapp": 828, "paradigm": [828, 843, 858], "expans": 828, "brief": [828, 832], "weak": 828, "_torch_bas": 828, "_torch_view_ref": 828, "_torch_manipul": 828, "weakli": 828, "adequ": 828, "tf_frontend": 829, "lax": [829, 830, 835, 842, 843], "torch_frontend": [829, 830], "numpy_frontend": 829, "jax_frontend": 829, "to_ivy_arrays_and_back": [829, 830], "fidel": 829, "algebra": [829, 856, 857, 858, 861, 865], "dynamic": 829, "mimic": 829, "arithmetic_oper": 829, "handle_numpy_out": 829, "handle_numpy_dtyp": 829, "handle_numpy_cast": 829, "from_zero_dim_arrays_to_scalar": 829, "_add": 829, "same_kind": 829, "subok": [829, 830, 835], "promote_types_of_numpy_input": 829, "underscor": 829, "unhandl": 829, "trigonometric_funct": 829, "_tan": 829, "check_tensorflow_cast": 829, "raw_op": [829, 830], "map_raw_ops_alia": 829, "output_typ": 829, "kwargs_to_upd": 829, "pointwise_op": 829, "sensibl": 829, "ahead": [829, 833, 858], "reduce_logsumexp": 829, "logsumexp": 829, "trick": 829, "max_input_tensor": 829, "preferred_element_typ": 829, "languag": [829, 837, 845, 847, 849, 856, 859, 861, 862, 863, 864], "finer": 829, "logicaland": 829, "np_frontend": 829, "_ivy_arrai": 829, "radd": 829, "_init_data": 829, "_process_str_data": 829, "_dtype": [829, 830, 839], "_shape": [829, 839], "govern": 829, "promote_types_of_": 829, "_input": 829, "promote_types_of_torch_input": [829, 830], "handle_numpy_casting_speci": 829, "new_fn": 829, "equiv": 829, "unsaf": 829, "array_type_test": 829, "_isfinit": 829, "organis": 829, "grasp": 829, "youtub": 829, "knowledg": 830, "np_frontend_help": 830, "open_task": 830, "test_lax": 830, "test_oper": 830, "test_jax_tan": 830, "test_mathematical_funct": 830, "test_trigonometric_funct": 830, "dtypes_values_cast": 830, "dtypes_values_casting_dtyp": 830, "arr_func": 830, "get_num_positional_args_ufunc": 830, "test_numpy_tan": 830, "handle_where_and_array_bool": 830, "test_tensorflow": 830, "test_math": 830, "test_tensorflow_tan": 830, "test_pointwise_op": 830, "test_torch_tan": 830, "_fill_valu": 830, "test_glob": 830, "test_jax_ful": 830, "test_from_shape_or_valu": 830, "_input_fill_and_dtyp": 830, "dtype_and_input": 830, "dtype_to_cast": 830, "input_fill_dtyp": 830, "test_numpy_ful": 830, "test_raw_op": 830, "test_tensorflow_fil": 830, "test_creation_op": 830, "with_arrai": 830, "test_torch_ful": 830, "add_nois": 830, "all_clos": 830, "_get_dtype_and_matrix": 830, "test_torch_qr": 830, "frontend_q": 830, "frontend_r": 830, "walkthrough": 830, "comparison_op": 830, "test_comparison_op": 830, "test_torch_great": 830, "all_alias": 830, "test_ndarrai": 830, "test_numpy_instance_add__": 830, "test_tensorflow_instance_add": 830, "1e04": 830, "allow_infin": 830, "test_torch_instance_add": 830, "_arrays_idx_n_dtyp": 830, "surprisingli": 830, "closest_relevant_group": 830, "strive": [830, 832, 835, 843, 860], "tailor": 831, "clariti": [831, 832, 835, 858], "weav": 831, "thrill": 831, "brim": 831, "stand": [831, 832], "landscap": 831, "forese": 831, "refin": 831, "inquiri": 831, "fixtur": 832, "hit": [832, 837, 851], "eleg": [832, 858], "unexplor": 832, "artifact": 832, "bespok": 832, "_array_or_typ": 832, "rigor": [832, 847], "test_default_int_dtyp": 832, "print_hypothesis_exampl": 832, "custom_strategi": 832, "randomis": 832, "simplist": 832, "intricaci": 832, "glanc": 832, "one_of": 832, "datum": 832, "pipe": 832, "array_or_scal": 832, "len_of_arrai": 832, "test_add": 832, "test_gpu_is_avail": 832, "pretest": 832, "snippet": [832, 852], "criterion": 832, "valid_ax": 832, "hoc": 832, "11228": 832, "268": 832, "wherev": 832, "9622": 832, "28136": 832, "6375": 832, "12720": 832, "21354": 832, "900e": 832, "57384": 832, "25687": 832, "248": 832, "test_devic": 832, "array_shap": 832, "test_lay": 832, "some_sequ": 832, "arrays_valu": 832, "36418": 832, "213": 832, "21716926": 832, "none_or_list_of_float": 832, "get_prob": 832, "103515625e": 832, "099609375": 832, "probabilist": 832, "number_positional_argu": 832, "unreproduc": 832, "x_and_linear": 832, "is_torch_backend": 832, "x_shape": [832, 837], "weight_shap": 832, "bias_shap": 832, "ivy_np": 832, "valid_float_dtyp": 832, "test_demo": 832, "failing_test": 832, "traceback": 832, "shrink": 832, "prescrib": 832, "scratch": 832, "therebi": 832, "test_gelu": 832, "test_fil": 832, "phase": [832, 843, 858], "notabl": [832, 858], "max_exampl": 832, "deadlin": 832, "weird": 832, "systemat": 832, "safeguard": 832, "inabl": 832, "test_result_typ": 832, "9090909090909091": 832, "judgement": 833, "some_namespac": 833, "some_backend": 833, "another_backend": 833, "refactor": 833, "ongo": 833, "check_fill_value_and_dtype_are_compat": 833, "_to_devic": 833, "shouldn": [833, 851], "pin": 833, "unpinn": 833, "culmin": 833, "unsett": 834, "array_significant_figur": 834, "array_decimal_valu": 834, "warning_level": 834, "nan_polici": 834, "stablest": 834, "constantli": [835, 847], "answer": [835, 839, 843], "contradict": 835, "entail": 835, "sacrif": 835, "jacfwd": 835, "jacrev": 835, "banner": 835, "expens": 835, "incredibli": [835, 840, 843, 861], "price": 835, "pai": 835, "intrus": 835, "x_beta": 835, "equip": 835, "simplif": 835, "allevi": 835, "ineffici": [835, 843, 858], "fuse": 835, "hybrid": 835, "workaround": 835, "slip": 835, "radar": 835, "stumbl": 835, "gone": [836, 848], "fulfil": 836, "syntact": [837, 842], "power_seq": 837, "_determine_backend_from_arg": 837, "importlib": 837, "_backend_dict": 837, "x_flat": 837, "wi": 837, "wi_x": 837, "wii_x": 837, "wif_x": 837, "wig_x": 837, "wio_x": 837, "wh": 837, "ht": 837, "ct": 837, "hts_list": 837, "wii_xt": 837, "wif_xt": 837, "wig_xt": 837, "wio_xt": 837, "htm1": 837, "ctm1": 837, "wh_htm1": 837, "whi_htm1": 837, "whf_htm1": 837, "whg_htm1": 837, "who_htm1": 837, "ft": 837, "ot": 837, "reliabl": 837, "scalabl": [837, 847, 863, 864], "sacrific": 837, "hear": 837, "virtu": [837, 855], "pure_ivi": 837, "pure_torch": 837, "unclean": 837, "wx": 837, "temp": 837, "ivy_func": 837, "emphas": 837, "torchscript": [837, 845, 865], "example_input": 837, "static_argnum": [837, 851], "static_argnam": [837, 851], "primit": [838, 843, 856, 858], "upcom": 838, "hierarch": [838, 840, 841, 858], "arraywithactiv": 839, "arraywithcr": 839, "arraywithdatatyp": 839, "arraywithdevic": 839, "arraywithgener": 839, "arraywithgradi": 839, "arraywithimag": 839, "arraywithlay": 839, "arraywithlinearalgebra": 839, "arraywithloss": 839, "arraywithmanipul": 839, "arraywithnorm": 839, "arraywithrandom": 839, "arraywithsearch": 839, "arraywithset": 839, "arraywithsort": 839, "arraywithstatist": 839, "arraywithutil": 839, "_init": 839, "_size": 839, "_devic": 839, "_dev_str": 839, "_pre_repr": 839, "_post_repr": 839, "framework_str": 839, "pypep8nam": 839, "immut": 839, "claim": 839, "_native_wrapp": 839, "genuin": 839, "some_method": 839, "rewritten": 839, "littl": [839, 847, 860], "wonder": [839, 847, 849], "compartment": 839, "newshap": 839, "new_shap": 839, "tidi": 839, "crystal": 839, "ton": 840, "ado": [840, 841], "soup": 840, "walk": [840, 841], "cnt": 840, "3333335": 840, "autocomplet": 840, "midwai": 840, "agent": 840, "total_spe": 840, "total_height": 840, "total_width": 840, "ag": 840, "tot": 840, "total_": 840, "total_h": 840, "cnt0": 840, "cnt1": 840, "diff_0": 840, "diff_1": 840, "config0": 840, "config1": 840, "l0": 840, "decoder__l0": 840, "decoder__l1": 840, "encoder__l0": 840, "encoder__l1": 840, "l0__b": 840, "l0__w": 840, "l1__b": 840, "l1__w": 840, "printabl": 840, "foresight": 840, "untidili": 840, "update_ag": 840, "normalize_img": 840, "img_max": 840, "reduce_max": 840, "img_min": 840, "reduce_min": 840, "img_rang": 840, "agent_posit": 840, "agent_veloc": 840, "agent_cam_front_rgb": 840, "agent_cam_front_depth": 840, "agent_cam_rear_rgb": 840, "agent_cam_rear_depth": 840, "agent_cam_lidar": 840, "camera": 840, "front_rgb": 840, "front_depth": 840, "rear_rgb": 840, "rear_depth": 840, "lidar": 840, "rgb": 840, "rear": 840, "veloc": 840, "cam": 840, "cam_max": 840, "cam_min": 840, "cam_rang": 840, "five": 840, "allud": [840, 848], "perman": 840, "dataload": 840, "_cnt": 840, "img_": 840, "_dataset_s": 840, "_batch_siz": 840, "_count": [840, 841], "__next__": 840, "img_fnam": 840, "loaded_img": 840, "batch_slic": 840, "0145": 840, "addbackward0": 840, "_create_vari": 841, "_input_channel": 841, "_output_channel": 841, "_w_shape": 841, "_b_shape": 841, "_with_bia": 841, "764": 841, "872": 841, "211": 841, "439": 841, "nightmar": 841, "overcom": 841, "v1": 841, "key0": 841, "linear3": 841, "v2": 841, "preced": [841, 848], "_w_init": 841, "_b_init": 841, "misnom": 841, "saw": 841, "_beta1": 841, "_beta2": 841, "_epsilon": 841, "_mw": 841, "_vw": 841, "_first_pass": 841, "_should_trac": 841, "new_v": 841, "_lr": 841, "_inplac": 841, "_stop_gradi": 841, "sparse_funct": 842, "vital": [842, 847], "_linear": 842, "jax_graph": 842, "to_backend": 842, "thinli": 842, "to_haiku_modul": 842, "loss_fn_t": 842, "without_apply_rng": 842, "update_rul": 842, "tree_multimap": 842, "trax": [842, 849], "objax": [842, 849], "matur": [843, 848, 858], "doubt": 843, "grate": 843, "probe": 843, "lock": 843, "dex": 843, "tricki": [843, 845], "predictor": 843, "tight": 843, "dispatch": [843, 858, 861], "ast": 843, "autodiff": 843, "shine": 843, "merci": 843, "compet": [843, 858], "parallelis": 843, "spmd": 843, "mixtur": 843, "expert": 843, "sophist": 843, "depart": 843, "hundr": 843, "thousand": 843, "broadli": [843, 864], "supplementari": 843, "reusabl": [843, 856, 858], "fanci": [843, 858], "fusion": [843, 862], "lose": 843, "pmap": 843, "eventu": 843, "supplement": 843, "backdoor": 843, "callback": 843, "somewhat": [843, 858], "outsourc": 843, "ivy_root": 844, "pem": 844, "api_kei": 844, "asap": 844, "nail": 845, "scientist": 845, "correl": 845, "consortium": [846, 848], "grown": 847, "rapidli": 847, "shareabl": 847, "outdat": 847, "newest": 847, "prototyp": [847, 858], "obsolet": [847, 849], "invent": 847, "simultan": [847, 849], "runner": 847, "principl": [847, 856, 858, 861], "2006": 847, "cloth": 847, "forgiven": 848, "eyebrow": 848, "somehow": 848, "industri": [848, 858, 860], "funni": 848, "comic": 848, "charger": 848, "instant": 848, "contrari": 848, "bumpi": 848, "road": 848, "pcie": 848, "motherboard": 848, "raid": 848, "bluetooth": 848, "wireless": 848, "btx": 848, "sata": 848, "tcp": 848, "ip": 848, "smtp": 848, "send": [848, 863], "gmail": 848, "outlook": 848, "growth": [848, 861], "necess": 848, "2015": [848, 858], "aros": 848, "ourselv": [848, 864], "quansight": [848, 864], "compani": [848, 854], "apach": [848, 860, 864], "onnx": [848, 856, 864], "cupi": [848, 858, 865], "modin": 848, "spyder": 848, "octoml": [848, 864], "sponsor": 848, "lg": 848, "electron": 848, "shaw": 848, "pursuit": 848, "complianc": 848, "convinc": 848, "celebr": 848, "abund": 849, "streamlin": [849, 861], "awesom": 849, "love": 849, "slew": 849, "inevit": [849, 859], "erron": 849, "poor": 849, "spin": 849, "sake": 849, "wouldn": 849, "frantic": 849, "lucid": 849, "honk": 849, "hasn": 849, "spend": [849, 858], "sonnet": 849, "trainer": [849, 865], "quo": 849, "dopamin": 849, "ignit": 849, "catalyst": 849, "lightn": 849, "fastai": 849, "publicli": [851, 852, 853], "logger": 851, "arg_stateful_idx": 851, "kwarg_stateful_idx": 851, "include_gener": 851, "array_cach": 851, "return_backend_traced_fn": 851, "lazygraph": [851, 852, 853], "sum_j": 851, "traced_fn": 851, "impos": 851, "comp_func": 851, "trade": 851, "bake": 851, "cont": 851, "new_attribut": 851, "resnet50": 851, "breed": 851, "autoimageprocessor": [851, 852], "resnetforimageclassif": [851, 852], "traced_graph": 851, "predicted_label": 851, "debug_mod": 852, "rough": 852, "transformed_with_st": 852, "bigger": 852, "hf": 852, "tf_model": 852, "tf_input": 852, "transpile_kwarg": 853, "transpiled_func": 853, "unified_func": 853, "rwork": 854, "vendor": [854, 860], "complimentari": [854, 864], "acycl": [854, 859], "insert_numb": 855, "insert_t": 855, "scaffold": [856, 864], "heart": 856, "toolchain": [856, 861], "assembli": [856, 863, 864], "idl": 856, "middl": 856, "emit": 856, "gnu": [856, 861], "broader": 856, "heterogen": 856, "aid": 856, "coprocessor": 856, "programm": [856, 863], "gate": 856, "onednn": 856, "sit": [856, 859, 864], "tandem": 856, "possess": 856, "khrono": [857, 863], "appl": 857, "coremltool": 857, "albeit": 857, "promin": 858, "abbrevi": 858, "laboratori": 858, "proprietari": [858, 862, 863], "mathwork": 858, "commerci": 858, "1984": 858, "toolbox": 858, "mupad": 858, "simulink": 858, "graphic": [858, 862, 863], "simul": 858, "million": [858, 861], "worldwid": 858, "scienc": [858, 860], "econom": 858, "2001": 858, "od": 858, "solver": 858, "cython": 858, "friendli": 858, "2002": 858, "lua": 858, "luajit": 858, "idiap": 858, "epfl": 858, "2005": 858, "numarrai": 858, "cpython": 858, "partli": 858, "2007": 858, "forest": 858, "boost": 858, "dbscan": 858, "inbuilt": 858, "esqu": 858, "aesara": 858, "datafram": 858, "2012": 858, "polymorph": 858, "mpi": 858, "openmp": 858, "glue": 858, "jaot": 858, "nasa": 858, "cern": 858, "climat": 858, "allianc": 858, "influenti": 858, "2014": 858, "scala": 858, "ship": 858, "forgiv": 858, "decemb": 858, "announc": 858, "mainten": 858, "v7": 858, "meaning": 858, "2016": 858, "imper": 858, "amazon": 858, "traction": 858, "cognit": [858, 865], "grade": 858, "dnn": 858, "backpropag": 858, "succumb": 858, "came": 858, "monitor": 858, "practition": [858, 862, 863, 864], "hobbyist": 858, "tremend": 858, "ecosystem": 858, "gear": 858, "batteri": 858, "zygot": 858, "jl": 858, "workload": 858, "daggerflux": 858, "frontier": 858, "hessian": 858, "2018": 858, "lightweight": [858, 865], "shortcom": 858, "barrier": 858, "inexperienc": 858, "underdevelop": 858, "fanat": 858, "ounc": 858, "infanc": 858, "emerg": 858, "nich": 858, "mobil": 858, "lite": 858, "enterpris": 858, "reinvent": [858, 860], "inertia": 858, "creator": [858, 860], "paszk": 858, "hi": 858, "bulk": 858, "haskel": 858, "dataflow": 859, "trace_modul": 859, "scriptfunct": 859, "scriptmodul": 859, "fake": 859, "proxi": 859, "graphmodul": 859, "travi": 860, "oliph": 860, "leader": 860, "cornerston": 860, "numba": 860, "numfocu": 860, "pydata": 860, "confer": 860, "consult": 860, "servic": 860, "devop": 860, "mlop": 860, "dashboard": 860, "startup": 860, "mlir": [860, 861, 864], "Their": 860, "held": 860, "presum": 860, "llvm": [860, 863], "founder": 860, "tvm": [860, 864], "sustain": 860, "empow": 860, "har": 860, "burden": 860, "benchmark": 860, "precompil": 861, "executor": 861, "julia": [861, 864], "fsf": 861, "gpl": 861, "biggest": [861, 864], "throughput": 862, "gpgpu": 862, "classic": 863, "sycl": 863, "dpc": 863, "processor": 863, "maco": 863, "oneapi": 863, "ia": 863, "aka": 863, "xeon": 863, "gen9": 863, "xe": 863, "arria": 863, "gx": 863, "fpga": 863, "lofti": 864, "ambit": 864, "realm": 864, "bedrock": 864, "flux": 864, "bite": 864, "chew": 864, "eagerpi": 864, "tensorli": 864, "thinc": 864, "neuropod": 864, "fx": 864, "retrain": 864, "closer": 864, "greatli": 864, "modular": 864, "anywher": 864, "theano": 865, "plaidml": 865, "partial_svd": 865, "excel": 865, "subsystem": 865}, "objects": {"ivy.Array": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [603, 0, 1, "", "adam_step"], [604, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [416, 0, 1, "", "adjoint"], [755, 0, 1, "", "all"], [523, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [756, 0, 1, "", "any"], [732, 0, 1, "", "argmax"], [733, 0, 1, "", "argmin"], [741, 0, 1, "", "argsort"], [734, 0, 1, "", "argwhere"], [526, 0, 1, "", "array_equal"], [450, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [527, 0, 1, "", "assert_supports_inplace"], [451, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [452, 0, 1, "", "atleast_1d"], [453, 0, 1, "", "atleast_2d"], [454, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [490, 0, 1, "", "batch_norm"], [417, 0, 1, "", "batched_outer"], [497, 0, 1, "", "bernoulli"], [498, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [684, 0, 1, "", "binary_cross_entropy"], [509, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [654, 0, 1, "", "cholesky"], [687, 0, 1, "", "clip"], [529, 0, 1, "", "clip_matrix_norm"], [530, 0, 1, "", "clip_vector_norm"], [458, 0, 1, "", "column_stack"], [688, 0, 1, "", "concat"], [459, 0, 1, "", "concat_from_sequence"], [418, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [689, 0, 1, "", "constant_pad"], [638, 0, 1, "", "conv1d"], [639, 0, 1, "", "conv1d_transpose"], [640, 0, 1, "", "conv2d"], [641, 0, 1, "", "conv2d_transpose"], [642, 0, 1, "", "conv3d"], [643, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [510, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [511, 0, 1, "", "cov"], [655, 0, 1, "", "cross"], [685, 0, 1, "", "cross_entropy"], [512, 0, 1, "", "cummax"], [513, 0, 1, "", "cummin"], [745, 0, 1, "", "cumprod"], [746, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [533, 0, 1, "", "default"], [234, 0, 1, "", "deg2rad"], [646, 0, 1, "", "depthwise_conv2d"], [656, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [657, 0, 1, "", "diag"], [419, 0, 1, "", "diagflat"], [658, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [499, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [420, 0, 1, "", "dot"], [647, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [460, 0, 1, "", "dsplit"], [461, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [421, 0, 1, "", "eig"], [660, 0, 1, "", "eigh"], [422, 0, 1, "", "eigh_tridiagonal"], [423, 0, 1, "", "eigvals"], [661, 0, 1, "", "eigvalsh"], [534, 0, 1, "", "einops_rearrange"], [535, 0, 1, "", "einops_reduce"], [536, 0, 1, "", "einops_repeat"], [747, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [537, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [462, 0, 1, "", "expand"], [690, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [396, 0, 1, "", "fft2"], [463, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [464, 0, 1, "", "flatten"], [691, 0, 1, "", "flip"], [465, 0, 1, "", "fliplr"], [466, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [467, 0, 1, "", "fold"], [538, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [131, 0, 1, "", "full_like"], [500, 0, 1, "", "gamma"], [541, 0, 1, "", "gather"], [542, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [424, 0, 1, "", "general_inner_product"], [545, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [607, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [491, 0, 1, "", "group_norm"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [547, 0, 1, "", "has_nans"], [468, 0, 1, "", "heaviside"], [425, 0, 1, "", "higher_order_moment"], [442, 0, 1, "", "hinge_embedding_loss"], [514, 0, 1, "", "histogram"], [469, 0, 1, "", "hsplit"], [470, 0, 1, "", "hstack"], [443, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [471, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [515, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [426, 0, 1, "", "initialize_tucker"], [662, 0, 1, "", "inner"], [549, 0, 1, "", "inplace_decrement"], [550, 0, 1, "", "inplace_increment"], [551, 0, 1, "", "inplace_update"], [492, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [663, 0, 1, "", "inv"], [553, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [554, 0, 1, "", "is_ivy_array"], [555, 0, 1, "", "is_ivy_container"], [557, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [558, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [560, 0, 1, "", "itemsize"], [444, 0, 1, "", "kl_div"], [428, 0, 1, "", "kron"], [445, 0, 1, "", "l1_loss"], [493, 0, 1, "", "l1_normalize"], [494, 0, 1, "", "l2_normalize"], [609, 0, 1, "", "lamb_update"], [610, 0, 1, "", "lars_update"], [725, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [504, 0, 1, "", "lexsort"], [347, 0, 1, "", "lgamma"], [648, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [446, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [496, 0, 1, "", "lp_normalize"], [649, 0, 1, "", "lstm_update"], [430, 0, 1, "", "make_svd_non_negative"], [665, 0, 1, "", "matmul"], [472, 0, 1, "", "matricize"], [431, 0, 1, "", "matrix_exp"], [666, 0, 1, "", "matrix_norm"], [667, 0, 1, "", "matrix_power"], [668, 0, 1, "", "matrix_rank"], [669, 0, 1, "", "matrix_transpose"], [748, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [749, 0, 1, "", "mean"], [516, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [750, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [432, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [473, 0, 1, "", "moveaxis"], [742, 0, 1, "", "msort"], [433, 0, 1, "", "multi_dot"], [650, 0, 1, "", "multi_head_attention"], [434, 0, 1, "", "multi_mode_dot"], [726, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [517, 0, 1, "", "nanmean"], [518, 0, 1, "", "nanmedian"], [519, 0, 1, "", "nanmin"], [520, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [735, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [611, 0, 1, "", "optimizer_update"], [522, 0, 1, "", "optional_get_element"], [670, 0, 1, "", "outer"], [474, 0, 1, "", "pad"], [475, 0, 1, "", "partial_fold"], [476, 0, 1, "", "partial_tensor_to_vec"], [435, 0, 1, "", "partial_tucker"], [477, 0, 1, "", "partial_unfold"], [478, 0, 1, "", "partial_vec_to_tensor"], [692, 0, 1, "", "permute_dims"], [671, 0, 1, "", "pinv"], [501, 0, 1, "", "poisson"], [447, 0, 1, "", "poisson_nll_loss"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [751, 0, 1, "", "prod"], [479, 0, 1, "", "put_along_axis"], [672, 0, 1, "", "qr"], [521, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [727, 0, 1, "", "randint"], [728, 0, 1, "", "random_normal"], [729, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [693, 0, 1, "", "repeat"], [694, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [695, 0, 1, "", "roll"], [480, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [653, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [565, 0, 1, "", "scatter_flat"], [566, 0, 1, "", "scatter_nd"], [743, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [579, 0, 1, "", "shape"], [731, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [414, 0, 1, "", "sliding_window"], [673, 0, 1, "", "slogdet"], [448, 0, 1, "", "smooth_l1_loss"], [449, 0, 1, "", "soft_margin_loss"], [481, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [674, 0, 1, "", "solve"], [744, 0, 1, "", "sort"], [686, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [696, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [697, 0, 1, "", "squeeze"], [580, 0, 1, "", "stable_divide"], [581, 0, 1, "", "stable_pow"], [698, 0, 1, "", "stack"], [752, 0, 1, "", "std"], [415, 0, 1, "", "stft"], [612, 0, 1, "", "stop_gradient"], [582, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [753, 0, 1, "", "sum"], [583, 0, 1, "", "supports_inplace_updates"], [675, 0, 1, "", "svd"], [437, 0, 1, "", "svd_flip"], [676, 0, 1, "", "svdvals"], [699, 0, 1, "", "swapaxes"], [482, 0, 1, "", "take"], [483, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [438, 0, 1, "", "tensor_train"], [677, 0, 1, "", "tensordot"], [678, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [700, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [585, 0, 1, "", "to_list"], [587, 0, 1, "", "to_numpy"], [588, 0, 1, "", "to_scalar"], [484, 0, 1, "", "top_k"], [679, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [323, 0, 1, "", "trilu"], [485, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [439, 0, 1, "", "truncated_svd"], [440, 0, 1, "", "tt_matrix_to_tensor"], [441, 0, 1, "", "tucker"], [486, 0, 1, "", "unfold"], [737, 0, 1, "", "unique_all"], [487, 0, 1, "", "unique_consecutive"], [738, 0, 1, "", "unique_counts"], [739, 0, 1, "", "unique_inverse"], [740, 0, 1, "", "unique_values"], [502, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [701, 0, 1, "", "unstack"], [601, 0, 1, "", "value_is_nan"], [680, 0, 1, "", "vander"], [754, 0, 1, "", "var"], [681, 0, 1, "", "vecdot"], [682, 0, 1, "", "vector_norm"], [683, 0, 1, "", "vector_to_skew_symmetric_matrix"], [488, 0, 1, "", "vsplit"], [489, 0, 1, "", "vstack"], [736, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [702, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy": [[622, 1, 1, "", "ArrayMode"], [618, 1, 1, "", "DefaultComplexDtype"], [619, 1, 1, "", "DefaultDevice"], [618, 1, 1, "", "DefaultDtype"], [618, 1, 1, "", "DefaultFloatDtype"], [618, 1, 1, "", "DefaultIntDtype"], [618, 1, 1, "", "DefaultUintDtype"], [379, 1, 1, "", "NativeSparseArray"], [617, 1, 1, "", "NestedSequence"], [622, 1, 1, "", "PreciseMode"], [619, 1, 1, "", "Profiler"], [379, 1, 1, "", "SparseArray"], [215, 2, 1, "", "abs"], [216, 2, 1, "", "acos"], [217, 2, 1, "", "acosh"], [623, 2, 1, "", "adam_step"], [623, 2, 1, "", "adam_update"], [382, 2, 1, "", "adaptive_avg_pool1d"], [383, 2, 1, "", "adaptive_avg_pool2d"], [384, 2, 1, "", "adaptive_max_pool2d"], [218, 2, 1, "", "add"], [369, 2, 1, "", "adjoint"], [636, 2, 1, "", "all"], [622, 2, 1, "", "all_equal"], [629, 2, 1, "", "all_nested_indices"], [365, 2, 1, "", "allclose"], [365, 2, 1, "", "amax"], [365, 2, 1, "", "amin"], [219, 2, 1, "", "angle"], [636, 2, 1, "", "any"], [617, 2, 1, "", "arange"], [385, 2, 1, "", "area_interpolate"], [622, 2, 1, "", "arg_info"], [622, 2, 1, "", "arg_names"], [632, 2, 1, "", "argmax"], [632, 2, 1, "", "argmin"], [634, 2, 1, "", "argsort"], [632, 2, 1, "", "argwhere"], [617, 2, 1, "", "array"], [622, 2, 1, "", "array_equal"], [188, 2, 1, "", "as_ivy_dev"], [618, 2, 1, "", "as_ivy_dtype"], [189, 2, 1, "", "as_native_dev"], [618, 2, 1, "", "as_native_dtype"], [371, 2, 1, "", "as_strided"], [617, 2, 1, "", "asarray"], [220, 2, 1, "", "asin"], [221, 2, 1, "", "asinh"], [622, 2, 1, "", "assert_supports_inplace"], [371, 2, 1, "", "associative_scan"], [618, 2, 1, "", "astype"], [222, 2, 1, "", "atan"], [223, 2, 1, "", "atan2"], [224, 2, 1, "", "atanh"], [371, 2, 1, "", "atleast_1d"], [371, 2, 1, "", "atleast_2d"], [371, 2, 1, "", "atleast_3d"], [386, 2, 1, "", "avg_pool1d"], [387, 2, 1, "", "avg_pool2d"], [388, 2, 1, "", "avg_pool3d"], [374, 2, 1, "", "batch_norm"], [369, 2, 1, "", "batched_outer"], [375, 2, 1, "", "bernoulli"], [375, 2, 1, "", "beta"], [365, 2, 1, "", "binarizer"], [626, 2, 1, "", "binary_cross_entropy"], [380, 2, 1, "", "bincount"], [367, 2, 1, "", "bind_custom_gradient_function"], [225, 2, 1, "", "bitwise_and"], [226, 2, 1, "", "bitwise_invert"], [227, 2, 1, "", "bitwise_left_shift"], [228, 2, 1, "", "bitwise_or"], [229, 2, 1, "", "bitwise_right_shift"], [230, 2, 1, "", "bitwise_xor"], [306, 2, 1, "", "blackman_window"], [618, 2, 1, "", "broadcast_arrays"], [371, 2, 1, "", "broadcast_shapes"], [618, 2, 1, "", "broadcast_to"], [622, 2, 1, "", "cache_fn"], [618, 2, 1, "", "can_cast"], [231, 2, 1, "", "ceil"], [290, 2, 1, "", "celu"], [618, 2, 1, "", "check_float"], [371, 2, 1, "", "check_scalar"], [625, 2, 1, "", "cholesky"], [371, 2, 1, "", "choose"], [190, 2, 1, "", "clear_cached_mem_on_dev"], [627, 2, 1, "", "clip"], [622, 2, 1, "", "clip_matrix_norm"], [622, 2, 1, "", "clip_vector_norm"], [618, 2, 1, "", "closest_valid_dtype"], [616, 2, 1, "", "cmp_is"], [616, 2, 1, "", "cmp_isnot"], [371, 2, 1, "", "column_stack"], [627, 2, 1, "", "concat"], [371, 2, 1, "", "concat_from_sequence"], [369, 2, 1, "", "cond"], [365, 2, 1, "", "conj"], [627, 2, 1, "", "constant_pad"], [622, 2, 1, "", "container_types"], [637, 2, 1, "", "conv"], [638, 2, 1, "", "conv1d"], [639, 2, 1, "", "conv1d_transpose"], [640, 2, 1, "", "conv2d"], [641, 2, 1, "", "conv2d_transpose"], [642, 2, 1, "", "conv3d"], [643, 2, 1, "", "conv3d_transpose"], [624, 2, 1, "", "conv_general_dilated"], [624, 2, 1, "", "conv_general_transpose"], [617, 2, 1, "", "copy_array"], [629, 2, 1, "", "copy_nest"], [365, 2, 1, "", "copysign"], [380, 2, 1, "", "corrcoef"], [232, 2, 1, "", "cos"], [233, 2, 1, "", "cosh"], [365, 2, 1, "", "count_nonzero"], [380, 2, 1, "", "cov"], [625, 2, 1, "", "cross"], [626, 2, 1, "", "cross_entropy"], [380, 2, 1, "", "cummax"], [380, 2, 1, "", "cummin"], [635, 2, 1, "", "cumprod"], [635, 2, 1, "", "cumsum"], [622, 2, 1, "", "current_backend_str"], [389, 2, 1, "", "dct"], [622, 2, 1, "", "default"], [618, 2, 1, "", "default_complex_dtype"], [191, 2, 1, "", "default_device"], [618, 2, 1, "", "default_dtype"], [618, 2, 1, "", "default_float_dtype"], [618, 2, 1, "", "default_int_dtype"], [618, 2, 1, "", "default_uint_dtype"], [234, 2, 1, "", "deg2rad"], [624, 2, 1, "", "depthwise_conv2d"], [625, 2, 1, "", "det"], [192, 2, 1, "", "dev"], [193, 2, 1, "", "dev_util"], [390, 2, 1, "", "dft"], [625, 2, 1, "", "diag"], [369, 2, 1, "", "diagflat"], [625, 2, 1, "", "diagonal"], [365, 2, 1, "", "diff"], [365, 2, 1, "", "digamma"], [375, 2, 1, "", "dirichlet"], [235, 2, 1, "", "divide"], [369, 2, 1, "", "dot"], [624, 2, 1, "", "dropout"], [391, 2, 1, "", "dropout1d"], [392, 2, 1, "", "dropout2d"], [393, 2, 1, "", "dropout3d"], [371, 2, 1, "", "dsplit"], [371, 2, 1, "", "dstack"], [618, 2, 1, "", "dtype"], [618, 2, 1, "", "dtype_bits"], [629, 2, 1, "", "duplicate_array_index_chains"], [615, 6, 1, "", "e"], [369, 2, 1, "", "eig"], [625, 2, 1, "", "eigh"], [369, 2, 1, "", "eigh_tridiagonal"], [369, 2, 1, "", "eigvals"], [625, 2, 1, "", "eigvalsh"], [622, 2, 1, "", "einops_rearrange"], [622, 2, 1, "", "einops_reduce"], [622, 2, 1, "", "einops_repeat"], [635, 2, 1, "", "einsum"], [291, 2, 1, "", "elu"], [394, 2, 1, "", "embedding"], [617, 2, 1, "", "empty"], [617, 2, 1, "", "empty_like"], [236, 2, 1, "", "equal"], [237, 2, 1, "", "erf"], [365, 2, 1, "", "erfc"], [623, 2, 1, "", "execute_with_gradients"], [622, 2, 1, "", "exists"], [238, 2, 1, "", "exp"], [239, 2, 1, "", "exp2"], [371, 2, 1, "", "expand"], [627, 2, 1, "", "expand_dims"], [240, 2, 1, "", "expm1"], [617, 2, 1, "", "eye"], [307, 2, 1, "", "eye_like"], [395, 2, 1, "", "fft"], [396, 2, 1, "", "fft2"], [371, 2, 1, "", "fill_diagonal"], [618, 2, 1, "", "finfo"], [365, 2, 1, "", "fix"], [371, 2, 1, "", "flatten"], [627, 2, 1, "", "flip"], [371, 2, 1, "", "fliplr"], [371, 2, 1, "", "flipud"], [365, 2, 1, "", "float_power"], [241, 2, 1, "", "floor"], [242, 2, 1, "", "floor_divide"], [365, 2, 1, "", "fmax"], [243, 2, 1, "", "fmin"], [244, 2, 1, "", "fmod"], [371, 2, 1, "", "fold"], [628, 2, 1, "", "fomaml_step"], [616, 2, 1, "", "for_loop"], [622, 2, 1, "", "fourier_encode"], [365, 2, 1, "", "frexp"], [617, 2, 1, "", "from_dlpack"], [617, 2, 1, "", "frombuffer"], [617, 2, 1, "", "full"], [617, 2, 1, "", "full_like"], [194, 2, 1, "", "function_supported_devices"], [622, 2, 1, "", "function_supported_devices_and_dtypes"], [618, 2, 1, "", "function_supported_dtypes"], [195, 2, 1, "", "function_unsupported_devices"], [622, 2, 1, "", "function_unsupported_devices_and_dtypes"], [618, 2, 1, "", "function_unsupported_dtypes"], [375, 2, 1, "", "gamma"], [622, 2, 1, "", "gather"], [622, 2, 1, "", "gather_nd"], [245, 2, 1, "", "gcd"], [614, 2, 1, "", "gelu"], [369, 2, 1, "", "general_inner_product"], [397, 2, 1, "", "generate_einsum_equation"], [622, 2, 1, "", "get_all_arrays_in_memory"], [196, 2, 1, "", "get_all_ivy_arrays_on_dev"], [398, 2, 1, "", "get_interpolate_kernel"], [622, 2, 1, "", "get_item"], [622, 2, 1, "", "get_num_dims"], [622, 2, 1, "", "get_referrers_recursive"], [197, 2, 1, "", "gpu_is_available"], [623, 2, 1, "", "grad"], [365, 2, 1, "", "gradient"], [623, 2, 1, "", "gradient_descent_update"], [246, 2, 1, "", "greater"], [247, 2, 1, "", "greater_equal"], [374, 2, 1, "", "group_norm"], [308, 2, 1, "", "hamming_window"], [198, 2, 1, "", "handle_soft_device_variable"], [309, 2, 1, "", "hann_window"], [292, 2, 1, "", "hardshrink"], [614, 2, 1, "", "hardswish"], [293, 2, 1, "", "hardtanh"], [622, 2, 1, "", "has_nans"], [371, 2, 1, "", "heaviside"], [369, 2, 1, "", "higher_order_moment"], [370, 2, 1, "", "hinge_embedding_loss"], [380, 2, 1, "", "histogram"], [371, 2, 1, "", "hsplit"], [371, 2, 1, "", "hstack"], [370, 2, 1, "", "huber_loss"], [365, 2, 1, "", "hypot"], [371, 2, 1, "", "i0"], [399, 2, 1, "", "idct"], [616, 2, 1, "", "if_else"], [400, 2, 1, "", "ifft"], [401, 2, 1, "", "ifftn"], [380, 2, 1, "", "igamma"], [618, 2, 1, "", "iinfo"], [248, 2, 1, "", "imag"], [629, 2, 1, "", "index_nest"], [310, 2, 1, "", "indices"], [615, 6, 1, "", "inf"], [618, 2, 1, "", "infer_default_dtype"], [369, 2, 1, "", "initialize_tucker"], [625, 2, 1, "", "inner"], [622, 2, 1, "", "inplace_arrays_supported"], [622, 2, 1, "", "inplace_decrement"], [622, 2, 1, "", "inplace_increment"], [622, 2, 1, "", "inplace_update"], [622, 2, 1, "", "inplace_variables_supported"], [629, 2, 1, "", "insert_into_nest_at_index"], [629, 2, 1, "", "insert_into_nest_at_indices"], [374, 2, 1, "", "instance_norm"], [402, 2, 1, "", "interp"], [403, 2, 1, "", "interpolate"], [625, 2, 1, "", "inv"], [618, 2, 1, "", "invalid_dtype"], [378, 2, 1, "", "invert_permutation"], [622, 2, 1, "", "is_array"], [618, 2, 1, "", "is_bool_dtype"], [618, 2, 1, "", "is_complex_dtype"], [618, 2, 1, "", "is_float_dtype"], [618, 2, 1, "", "is_hashable_dtype"], [618, 2, 1, "", "is_int_dtype"], [622, 2, 1, "", "is_ivy_array"], [622, 2, 1, "", "is_ivy_container"], [622, 2, 1, "", "is_ivy_nested_array"], [379, 2, 1, "", "is_ivy_sparse_array"], [622, 2, 1, "", "is_native_array"], [618, 2, 1, "", "is_native_dtype"], [379, 2, 1, "", "is_native_sparse_array"], [618, 2, 1, "", "is_uint_dtype"], [365, 2, 1, "", "isclose"], [249, 2, 1, "", "isfinite"], [622, 2, 1, "", "isin"], [250, 2, 1, "", "isinf"], [251, 2, 1, "", "isnan"], [252, 2, 1, "", "isreal"], [622, 2, 1, "", "isscalar"], [622, 2, 1, "", "itemsize"], [623, 2, 1, "", "jac"], [367, 2, 1, "", "jvp"], [311, 2, 1, "", "kaiser_bessel_derived_window"], [312, 2, 1, "", "kaiser_window"], [369, 2, 1, "", "khatri_rao"], [370, 2, 1, "", "kl_div"], [369, 2, 1, "", "kron"], [369, 2, 1, "", "kronecker"], [370, 2, 1, "", "l1_loss"], [374, 2, 1, "", "l1_normalize"], [374, 2, 1, "", "l2_normalize"], [623, 2, 1, "", "lamb_update"], [623, 2, 1, "", "lars_update"], [630, 2, 1, "", "layer_norm"], [253, 2, 1, "", "lcm"], [365, 2, 1, "", "ldexp"], [614, 2, 1, "", "leaky_relu"], [365, 2, 1, "", "lerp"], [254, 2, 1, "", "less"], [255, 2, 1, "", "less_equal"], [378, 2, 1, "", "lexsort"], [365, 2, 1, "", "lgamma"], [624, 2, 1, "", "linear"], [617, 2, 1, "", "linspace"], [636, 2, 1, "", "load"], [374, 2, 1, "", "local_response_norm"], [256, 2, 1, "", "log"], [257, 2, 1, "", "log10"], [258, 2, 1, "", "log1p"], [259, 2, 1, "", "log2"], [370, 2, 1, "", "log_poisson_loss"], [614, 2, 1, "", "log_softmax"], [260, 2, 1, "", "logaddexp"], [261, 2, 1, "", "logaddexp2"], [262, 2, 1, "", "logical_and"], [263, 2, 1, "", "logical_not"], [264, 2, 1, "", "logical_or"], [265, 2, 1, "", "logical_xor"], [294, 2, 1, "", "logit"], [295, 2, 1, "", "logsigmoid"], [617, 2, 1, "", "logspace"], [374, 2, 1, "", "lp_normalize"], [624, 2, 1, "", "lstm_update"], [625, 2, 1, "", "lu_factor"], [369, 2, 1, "", "make_svd_non_negative"], [628, 2, 1, "", "maml_step"], [629, 2, 1, "", "map"], [629, 2, 1, "", "map_nest_at_index"], [629, 2, 1, "", "map_nest_at_indices"], [622, 2, 1, "", "match_kwargs"], [625, 2, 1, "", "matmul"], [371, 2, 1, "", "matricize"], [369, 2, 1, "", "matrix_exp"], [625, 2, 1, "", "matrix_norm"], [625, 2, 1, "", "matrix_power"], [625, 2, 1, "", "matrix_rank"], [625, 2, 1, "", "matrix_transpose"], [635, 2, 1, "", "max"], [404, 2, 1, "", "max_pool1d"], [405, 2, 1, "", "max_pool2d"], [406, 2, 1, "", "max_pool3d"], [407, 2, 1, "", "max_unpool1d"], [266, 2, 1, "", "maximum"], [635, 2, 1, "", "mean"], [380, 2, 1, "", "median"], [313, 2, 1, "", "mel_weight_matrix"], [617, 2, 1, "", "meshgrid"], [635, 2, 1, "", "min"], [267, 2, 1, "", "minimum"], [614, 2, 1, "", "mish"], [369, 2, 1, "", "mode_dot"], [365, 2, 1, "", "modf"], [371, 2, 1, "", "moveaxis"], [634, 2, 1, "", "msort"], [369, 2, 1, "", "multi_dot"], [624, 2, 1, "", "multi_head_attention"], [629, 2, 1, "", "multi_index_nest"], [369, 2, 1, "", "multi_mode_dot"], [631, 2, 1, "", "multinomial"], [268, 2, 1, "", "multiply"], [622, 2, 1, "", "multiprocessing"], [615, 6, 1, "", "nan"], [269, 2, 1, "", "nan_to_num"], [380, 2, 1, "", "nanmean"], [380, 2, 1, "", "nanmedian"], [380, 2, 1, "", "nanmin"], [380, 2, 1, "", "nanprod"], [365, 2, 1, "", "nansum"], [617, 2, 1, "", "native_array"], [379, 2, 1, "", "native_sparse_array"], [379, 2, 1, "", "native_sparse_array_to_indices_values_and_shape"], [314, 2, 1, "", "ndenumerate"], [315, 2, 1, "", "ndindex"], [408, 2, 1, "", "nearest_interpolate"], [270, 2, 1, "", "negative"], [629, 2, 1, "", "nested_any"], [629, 2, 1, "", "nested_argwhere"], [629, 2, 1, "", "nested_map"], [629, 2, 1, "", "nested_multi_map"], [615, 6, 1, "", "newaxis"], [365, 2, 1, "", "nextafter"], [624, 2, 1, "", "nms"], [632, 2, 1, "", "nonzero"], [271, 2, 1, "", "not_equal"], [622, 2, 1, "", "num_arrays_in_memory"], [199, 2, 1, "", "num_cpu_cores"], [200, 2, 1, "", "num_gpus"], [201, 2, 1, "", "num_ivy_arrays_on_dev"], [617, 2, 1, "", "one_hot"], [617, 2, 1, "", "ones"], [617, 2, 1, "", "ones_like"], [623, 2, 1, "", "optimizer_update"], [381, 2, 1, "", "optional_get_element"], [625, 2, 1, "", "outer"], [371, 2, 1, "", "pad"], [371, 2, 1, "", "partial_fold"], [371, 2, 1, "", "partial_tensor_to_vec"], [369, 2, 1, "", "partial_tucker"], [371, 2, 1, "", "partial_unfold"], [371, 2, 1, "", "partial_vec_to_tensor"], [202, 2, 1, "", "percent_used_mem_on_dev"], [627, 2, 1, "", "permute_dims"], [615, 6, 1, "", "pi"], [625, 2, 1, "", "pinv"], [375, 2, 1, "", "poisson"], [370, 2, 1, "", "poisson_nll_loss"], [316, 2, 1, "", "polyval"], [409, 2, 1, "", "pool"], [272, 2, 1, "", "positive"], [273, 2, 1, "", "pow"], [296, 2, 1, "", "prelu"], [622, 2, 1, "", "print_all_arrays_in_memory"], [203, 2, 1, "", "print_all_ivy_arrays_on_dev"], [635, 2, 1, "", "prod"], [618, 2, 1, "", "promote_types"], [618, 2, 1, "", "promote_types_of_inputs"], [629, 2, 1, "", "prune_empty"], [629, 2, 1, "", "prune_nest_at_index"], [629, 2, 1, "", "prune_nest_at_indices"], [371, 2, 1, "", "put_along_axis"], [625, 2, 1, "", "qr"], [380, 2, 1, "", "quantile"], [274, 2, 1, "", "rad2deg"], [631, 2, 1, "", "randint"], [317, 2, 1, "", "random_cp"], [631, 2, 1, "", "random_normal"], [318, 2, 1, "", "random_parafac2"], [319, 2, 1, "", "random_tr"], [320, 2, 1, "", "random_tt"], [321, 2, 1, "", "random_tucker"], [631, 2, 1, "", "random_uniform"], [275, 2, 1, "", "real"], [276, 2, 1, "", "reciprocal"], [366, 2, 1, "", "reduce"], [410, 2, 1, "", "reduce_window"], [614, 2, 1, "", "relu"], [297, 2, 1, "", "relu6"], [277, 2, 1, "", "remainder"], [627, 2, 1, "", "repeat"], [628, 2, 1, "", "reptile_step"], [627, 2, 1, "", "reshape"], [618, 2, 1, "", "result_type"], [411, 2, 1, "", "rfft"], [412, 2, 1, "", "rfftn"], [413, 2, 1, "", "rnn"], [624, 2, 1, "", "roi_align"], [627, 2, 1, "", "roll"], [371, 2, 1, "", "rot90"], [278, 2, 1, "", "round"], [636, 2, 1, "", "save"], [624, 2, 1, "", "scaled_dot_product_attention"], [298, 2, 1, "", "scaled_tanh"], [622, 2, 1, "", "scatter_flat"], [622, 2, 1, "", "scatter_nd"], [634, 2, 1, "", "searchsorted"], [631, 2, 1, "", "seed"], [299, 2, 1, "", "selu"], [622, 2, 1, "", "set_array_mode"], [618, 2, 1, "", "set_default_complex_dtype"], [204, 2, 1, "", "set_default_device"], [618, 2, 1, "", "set_default_dtype"], [618, 2, 1, "", "set_default_float_dtype"], [618, 2, 1, "", "set_default_int_dtype"], [618, 2, 1, "", "set_default_uint_dtype"], [622, 2, 1, "", "set_exception_trace_mode"], [622, 2, 1, "", "set_inplace_mode"], [622, 2, 1, "", "set_item"], [622, 2, 1, "", "set_min_base"], [622, 2, 1, "", "set_min_denominator"], [629, 2, 1, "", "set_nest_at_index"], [629, 2, 1, "", "set_nest_at_indices"], [622, 2, 1, "", "set_nestable_mode"], [622, 2, 1, "", "set_precise_mode"], [622, 2, 1, "", "set_queue_timeout"], [622, 2, 1, "", "set_shape_array_mode"], [622, 2, 1, "", "set_show_func_wrapper_trace_mode"], [205, 2, 1, "", "set_soft_device_mode"], [206, 2, 1, "", "set_split_factor"], [622, 2, 1, "", "set_tmp_dir"], [622, 2, 1, "", "shape"], [631, 2, 1, "", "shuffle"], [614, 2, 1, "", "sigmoid"], [279, 2, 1, "", "sign"], [365, 2, 1, "", "signbit"], [300, 2, 1, "", "silu"], [280, 2, 1, "", "sin"], [365, 2, 1, "", "sinc"], [281, 2, 1, "", "sinh"], [368, 2, 1, "", "sliding_window"], [625, 2, 1, "", "slogdet"], [370, 2, 1, "", "smooth_l1_loss"], [370, 2, 1, "", "soft_margin_loss"], [371, 2, 1, "", "soft_thresholding"], [614, 2, 1, "", "softmax"], [614, 2, 1, "", "softplus"], [301, 2, 1, "", "softshrink"], [614, 2, 1, "", "softsign"], [625, 2, 1, "", "solve"], [369, 2, 1, "", "solve_triangular"], [634, 2, 1, "", "sort"], [626, 2, 1, "", "sparse_cross_entropy"], [365, 2, 1, "", "sparsify_tensor"], [627, 2, 1, "", "split"], [207, 2, 1, "", "split_factor"], [208, 2, 1, "", "split_func_call"], [282, 2, 1, "", "sqrt"], [283, 2, 1, "", "square"], [627, 2, 1, "", "squeeze"], [622, 2, 1, "", "stable_divide"], [622, 2, 1, "", "stable_pow"], [627, 2, 1, "", "stack"], [302, 2, 1, "", "stanh"], [635, 2, 1, "", "std"], [368, 2, 1, "", "stft"], [623, 2, 1, "", "stop_gradient"], [622, 2, 1, "", "strides"], [284, 2, 1, "", "subtract"], [635, 2, 1, "", "sum"], [622, 2, 1, "", "supports_inplace_updates"], [625, 2, 1, "", "svd"], [369, 2, 1, "", "svd_flip"], [625, 2, 1, "", "svdvals"], [627, 2, 1, "", "swapaxes"], [371, 2, 1, "", "take"], [371, 2, 1, "", "take_along_axis"], [285, 2, 1, "", "tan"], [286, 2, 1, "", "tanh"], [303, 2, 1, "", "tanhshrink"], [369, 2, 1, "", "tensor_train"], [625, 2, 1, "", "tensordot"], [625, 2, 1, "", "tensorsolve"], [304, 2, 1, "", "threshold"], [305, 2, 1, "", "thresholded_relu"], [627, 2, 1, "", "tile"], [209, 2, 1, "", "to_device"], [617, 2, 1, "", "to_dlpack"], [622, 2, 1, "", "to_ivy_shape"], [622, 2, 1, "", "to_list"], [622, 2, 1, "", "to_native_shape"], [622, 2, 1, "", "to_numpy"], [622, 2, 1, "", "to_scalar"], [371, 2, 1, "", "top_k"], [210, 2, 1, "", "total_mem_on_dev"], [211, 2, 1, "", "tpu_is_available"], [625, 2, 1, "", "trace"], [851, 2, 1, "", "trace_graph"], [852, 2, 1, "", "transpile"], [287, 2, 1, "", "trapz"], [617, 2, 1, "", "tril"], [362, 2, 1, "", "tril_indices"], [362, 2, 1, "", "trilu"], [371, 2, 1, "", "trim_zeros"], [617, 2, 1, "", "triu"], [617, 2, 1, "", "triu_indices"], [288, 2, 1, "", "trunc"], [289, 2, 1, "", "trunc_divide"], [369, 2, 1, "", "truncated_svd"], [622, 2, 1, "", "try_else_none"], [616, 2, 1, "", "try_except"], [369, 2, 1, "", "tt_matrix_to_tensor"], [369, 2, 1, "", "tucker"], [618, 2, 1, "", "type_promote_arrays"], [371, 2, 1, "", "unfold"], [853, 2, 1, "", "unify"], [633, 2, 1, "", "unique_all"], [371, 2, 1, "", "unique_consecutive"], [633, 2, 1, "", "unique_counts"], [633, 2, 1, "", "unique_inverse"], [633, 2, 1, "", "unique_values"], [376, 2, 1, "", "unravel_index"], [622, 2, 1, "", "unset_array_mode"], [618, 2, 1, "", "unset_default_complex_dtype"], [212, 2, 1, "", "unset_default_device"], [618, 2, 1, "", "unset_default_dtype"], [184, 2, 1, "", "unset_default_float_dtype"], [185, 2, 1, "", "unset_default_int_dtype"], [186, 2, 1, "", "unset_default_uint_dtype"], [622, 2, 1, "", "unset_exception_trace_mode"], [622, 2, 1, "", "unset_inplace_mode"], [622, 2, 1, "", "unset_min_base"], [622, 2, 1, "", "unset_min_denominator"], [622, 2, 1, "", "unset_nestable_mode"], [622, 2, 1, "", "unset_precise_mode"], [622, 2, 1, "", "unset_queue_timeout"], [622, 2, 1, "", "unset_shape_array_mode"], [622, 2, 1, "", "unset_show_func_wrapper_trace_mode"], [213, 2, 1, "", "unset_soft_device_mode"], [622, 2, 1, "", "unset_tmp_dir"], [362, 2, 1, "", "unsorted_segment_mean"], [362, 2, 1, "", "unsorted_segment_min"], [362, 2, 1, "", "unsorted_segment_sum"], [627, 2, 1, "", "unstack"], [214, 2, 1, "", "used_mem_on_dev"], [187, 2, 1, "", "valid_dtype"], [623, 2, 1, "", "value_and_grad"], [622, 2, 1, "", "value_is_nan"], [625, 2, 1, "", "vander"], [635, 2, 1, "", "var"], [625, 2, 1, "", "vecdot"], [625, 2, 1, "", "vector_norm"], [625, 2, 1, "", "vector_to_skew_symmetric_matrix"], [367, 2, 1, "", "vjp"], [622, 2, 1, "", "vmap"], [362, 2, 1, "", "vorbis_window"], [371, 2, 1, "", "vsplit"], [371, 2, 1, "", "vstack"], [632, 2, 1, "", "where"], [616, 2, 1, "", "while_loop"], [365, 2, 1, "", "xlogy"], [627, 2, 1, "", "zero_pad"], [617, 2, 1, "", "zeros"], [617, 2, 1, "", "zeros_like"], [365, 2, 1, "", "zeta"]], "ivy.Container": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [603, 0, 1, "", "adam_step"], [604, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [416, 0, 1, "", "adjoint"], [755, 0, 1, "", "all"], [523, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [756, 0, 1, "", "any"], [732, 0, 1, "", "argmax"], [733, 0, 1, "", "argmin"], [741, 0, 1, "", "argsort"], [734, 0, 1, "", "argwhere"], [526, 0, 1, "", "array_equal"], [450, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [527, 0, 1, "", "assert_supports_inplace"], [451, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [452, 0, 1, "", "atleast_1d"], [453, 0, 1, "", "atleast_2d"], [454, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [490, 0, 1, "", "batch_norm"], [417, 0, 1, "", "batched_outer"], [497, 0, 1, "", "bernoulli"], [498, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [684, 0, 1, "", "binary_cross_entropy"], [509, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [455, 0, 1, "", "broadcast_shapes"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [654, 0, 1, "", "cholesky"], [687, 0, 1, "", "clip"], [529, 0, 1, "", "clip_matrix_norm"], [530, 0, 1, "", "clip_vector_norm"], [458, 0, 1, "", "column_stack"], [688, 0, 1, "", "concat"], [459, 0, 1, "", "concat_from_sequence"], [418, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [689, 0, 1, "", "constant_pad"], [638, 0, 1, "", "conv1d"], [639, 0, 1, "", "conv1d_transpose"], [640, 0, 1, "", "conv2d"], [641, 0, 1, "", "conv2d_transpose"], [642, 0, 1, "", "conv3d"], [643, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [510, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [511, 0, 1, "", "cov"], [655, 0, 1, "", "cross"], [685, 0, 1, "", "cross_entropy"], [512, 0, 1, "", "cummax"], [513, 0, 1, "", "cummin"], [745, 0, 1, "", "cumprod"], [746, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [234, 0, 1, "", "deg2rad"], [646, 0, 1, "", "depthwise_conv2d"], [656, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [657, 0, 1, "", "diag"], [419, 0, 1, "", "diagflat"], [658, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [499, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [420, 0, 1, "", "dot"], [647, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [460, 0, 1, "", "dsplit"], [461, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [421, 0, 1, "", "eig"], [660, 0, 1, "", "eigh"], [422, 0, 1, "", "eigh_tridiagonal"], [423, 0, 1, "", "eigvals"], [661, 0, 1, "", "eigvalsh"], [534, 0, 1, "", "einops_rearrange"], [535, 0, 1, "", "einops_reduce"], [536, 0, 1, "", "einops_repeat"], [747, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [537, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [462, 0, 1, "", "expand"], [690, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [463, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [464, 0, 1, "", "flatten"], [691, 0, 1, "", "flip"], [465, 0, 1, "", "fliplr"], [466, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [467, 0, 1, "", "fold"], [538, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [129, 0, 1, "", "frombuffer"], [131, 0, 1, "", "full_like"], [500, 0, 1, "", "gamma"], [541, 0, 1, "", "gather"], [542, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [424, 0, 1, "", "general_inner_product"], [545, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [607, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [491, 0, 1, "", "group_norm"], [308, 0, 1, "", "hamming_window"], [309, 0, 1, "", "hann_window"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [547, 0, 1, "", "has_nans"], [468, 0, 1, "", "heaviside"], [425, 0, 1, "", "higher_order_moment"], [442, 0, 1, "", "hinge_embedding_loss"], [514, 0, 1, "", "histogram"], [469, 0, 1, "", "hsplit"], [470, 0, 1, "", "hstack"], [443, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [471, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [515, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [426, 0, 1, "", "initialize_tucker"], [662, 0, 1, "", "inner"], [549, 0, 1, "", "inplace_decrement"], [550, 0, 1, "", "inplace_increment"], [551, 0, 1, "", "inplace_update"], [492, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [663, 0, 1, "", "inv"], [503, 0, 1, "", "invert_permutation"], [553, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [167, 0, 1, "", "is_complex_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [554, 0, 1, "", "is_ivy_array"], [557, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [558, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [560, 0, 1, "", "itemsize"], [311, 0, 1, "", "kaiser_bessel_derived_window"], [312, 0, 1, "", "kaiser_window"], [444, 0, 1, "", "kl_div"], [428, 0, 1, "", "kron"], [445, 0, 1, "", "l1_loss"], [493, 0, 1, "", "l1_normalize"], [494, 0, 1, "", "l2_normalize"], [609, 0, 1, "", "lamb_update"], [610, 0, 1, "", "lars_update"], [725, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [504, 0, 1, "", "lexsort"], [648, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [446, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [496, 0, 1, "", "lp_normalize"], [649, 0, 1, "", "lstm_update"], [430, 0, 1, "", "make_svd_non_negative"], [665, 0, 1, "", "matmul"], [472, 0, 1, "", "matricize"], [431, 0, 1, "", "matrix_exp"], [666, 0, 1, "", "matrix_norm"], [667, 0, 1, "", "matrix_power"], [668, 0, 1, "", "matrix_rank"], [669, 0, 1, "", "matrix_transpose"], [748, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [749, 0, 1, "", "mean"], [516, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [750, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [432, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [473, 0, 1, "", "moveaxis"], [742, 0, 1, "", "msort"], [433, 0, 1, "", "multi_dot"], [650, 0, 1, "", "multi_head_attention"], [434, 0, 1, "", "multi_mode_dot"], [726, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [517, 0, 1, "", "nanmean"], [518, 0, 1, "", "nanmedian"], [519, 0, 1, "", "nanmin"], [520, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [735, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [611, 0, 1, "", "optimizer_update"], [522, 0, 1, "", "optional_get_element"], [670, 0, 1, "", "outer"], [474, 0, 1, "", "pad"], [475, 0, 1, "", "partial_fold"], [476, 0, 1, "", "partial_tensor_to_vec"], [435, 0, 1, "", "partial_tucker"], [477, 0, 1, "", "partial_unfold"], [478, 0, 1, "", "partial_vec_to_tensor"], [692, 0, 1, "", "permute_dims"], [671, 0, 1, "", "pinv"], [501, 0, 1, "", "poisson"], [447, 0, 1, "", "poisson_nll_loss"], [316, 0, 1, "", "polyval"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [751, 0, 1, "", "prod"], [479, 0, 1, "", "put_along_axis"], [672, 0, 1, "", "qr"], [521, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [727, 0, 1, "", "randint"], [728, 0, 1, "", "random_normal"], [729, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [693, 0, 1, "", "repeat"], [694, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [695, 0, 1, "", "roll"], [480, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [653, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [565, 0, 1, "", "scatter_flat"], [566, 0, 1, "", "scatter_nd"], [743, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [731, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [414, 0, 1, "", "sliding_window"], [673, 0, 1, "", "slogdet"], [448, 0, 1, "", "smooth_l1_loss"], [449, 0, 1, "", "soft_margin_loss"], [481, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [674, 0, 1, "", "solve"], [744, 0, 1, "", "sort"], [686, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [696, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [697, 0, 1, "", "squeeze"], [580, 0, 1, "", "stable_divide"], [581, 0, 1, "", "stable_pow"], [698, 0, 1, "", "stack"], [752, 0, 1, "", "std"], [415, 0, 1, "", "stft"], [612, 0, 1, "", "stop_gradient"], [582, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [753, 0, 1, "", "sum"], [583, 0, 1, "", "supports_inplace_updates"], [675, 0, 1, "", "svd"], [437, 0, 1, "", "svd_flip"], [676, 0, 1, "", "svdvals"], [699, 0, 1, "", "swapaxes"], [482, 0, 1, "", "take"], [483, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [438, 0, 1, "", "tensor_train"], [677, 0, 1, "", "tensordot"], [678, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [700, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [585, 0, 1, "", "to_list"], [587, 0, 1, "", "to_numpy"], [588, 0, 1, "", "to_scalar"], [484, 0, 1, "", "top_k"], [679, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [322, 0, 1, "", "tril_indices"], [323, 0, 1, "", "trilu"], [485, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [142, 0, 1, "", "triu_indices"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [439, 0, 1, "", "truncated_svd"], [440, 0, 1, "", "tt_matrix_to_tensor"], [441, 0, 1, "", "tucker"], [486, 0, 1, "", "unfold"], [737, 0, 1, "", "unique_all"], [487, 0, 1, "", "unique_consecutive"], [738, 0, 1, "", "unique_counts"], [739, 0, 1, "", "unique_inverse"], [740, 0, 1, "", "unique_values"], [502, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [701, 0, 1, "", "unstack"], [601, 0, 1, "", "value_is_nan"], [680, 0, 1, "", "vander"], [754, 0, 1, "", "var"], [681, 0, 1, "", "vecdot"], [682, 0, 1, "", "vector_norm"], [683, 0, 1, "", "vector_to_skew_symmetric_matrix"], [327, 0, 1, "", "vorbis_window"], [488, 0, 1, "", "vsplit"], [489, 0, 1, "", "vstack"], [736, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [702, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy.data_classes.array": [[46, 3, 0, "-", "activations"], [97, 3, 0, "-", "array"], [47, 3, 0, "-", "conversions"], [48, 3, 0, "-", "creation"], [49, 3, 0, "-", "data_type"], [50, 3, 0, "-", "device"], [51, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "experimental"], [53, 3, 0, "-", "general"], [54, 3, 0, "-", "gradients"], [55, 3, 0, "-", "image"], [56, 3, 0, "-", "layers"], [57, 3, 0, "-", "linear_algebra"], [58, 3, 0, "-", "losses"], [59, 3, 0, "-", "manipulation"], [60, 3, 0, "-", "norms"], [61, 3, 0, "-", "random"], [62, 3, 0, "-", "searching"], [63, 3, 0, "-", "set"], [64, 3, 0, "-", "sorting"], [65, 3, 0, "-", "statistical"], [66, 3, 0, "-", "utility"], [67, 3, 0, "-", "wrapping"]], "ivy.data_classes.array.activations": [[46, 1, 1, "", "_ArrayWithActivations"]], "ivy.data_classes.array.activations._ArrayWithActivations": [[46, 4, 1, "", "_abc_impl"], [46, 0, 1, "", "gelu"], [46, 0, 1, "", "hardswish"], [46, 0, 1, "", "leaky_relu"], [46, 0, 1, "", "log_softmax"], [46, 0, 1, "", "mish"], [46, 0, 1, "", "relu"], [46, 0, 1, "", "sigmoid"], [46, 0, 1, "", "softmax"], [46, 0, 1, "", "softplus"]], "ivy.data_classes.array.array": [[97, 1, 1, "", "Array"]], "ivy.data_classes.array.array.Array": [[97, 5, 1, "", "T"], [97, 0, 1, "", "__abs__"], [97, 0, 1, "", "__add__"], [97, 0, 1, "", "__eq__"], [97, 0, 1, "", "__ge__"], [97, 0, 1, "", "__gt__"], [97, 0, 1, "", "__init__"], [97, 0, 1, "", "__le__"], [97, 0, 1, "", "__lt__"], [97, 0, 1, "", "__ne__"], [97, 0, 1, "", "__pow__"], [97, 0, 1, "", "__radd__"], [97, 0, 1, "", "__rrshift__"], [97, 0, 1, "", "__rshift__"], [97, 0, 1, "", "__rsub__"], [97, 0, 1, "", "__sub__"], [97, 0, 1, "", "__truediv__"], [97, 0, 1, "", "__xor__"], [97, 5, 1, "", "backend"], [97, 5, 1, "", "base"], [97, 5, 1, "", "data"], [97, 5, 1, "", "device"], [97, 5, 1, "", "dtype"], [97, 5, 1, "", "dynamic_backend"], [97, 5, 1, "", "imag"], [97, 5, 1, "", "itemsize"], [97, 5, 1, "", "mT"], [97, 5, 1, "", "ndim"], [97, 5, 1, "", "real"], [97, 5, 1, "", "shape"], [97, 5, 1, "", "size"], [97, 5, 1, "", "strides"]], "ivy.data_classes.array.conversions": [[47, 2, 1, "", "_array_to_new_backend"], [47, 2, 1, "", "_to_ivy"], [47, 2, 1, "", "_to_native"], [47, 2, 1, "", "_to_new_backend"], [47, 2, 1, "", "args_to_ivy"], [47, 2, 1, "", "args_to_native"], [47, 2, 1, "", "args_to_new_backend"], [47, 2, 1, "", "to_ivy"], [47, 2, 1, "", "to_native"], [47, 2, 1, "", "to_new_backend"]], "ivy.data_classes.array.creation": [[48, 1, 1, "", "_ArrayWithCreation"]], "ivy.data_classes.array.creation._ArrayWithCreation": [[48, 4, 1, "", "_abc_impl"], [48, 0, 1, "", "asarray"], [48, 0, 1, "", "copy_array"], [48, 0, 1, "", "empty_like"], [48, 0, 1, "", "from_dlpack"], [48, 0, 1, "", "full_like"], [48, 0, 1, "", "linspace"], [48, 0, 1, "", "logspace"], [48, 0, 1, "", "meshgrid"], [48, 0, 1, "", "native_array"], [48, 0, 1, "", "one_hot"], [48, 0, 1, "", "ones_like"], [48, 0, 1, "", "tril"], [48, 0, 1, "", "triu"], [48, 0, 1, "", "zeros_like"]], "ivy.data_classes.array.data_type": [[49, 1, 1, "", "_ArrayWithDataTypes"]], "ivy.data_classes.array.data_type._ArrayWithDataTypes": [[49, 4, 1, "", "_abc_impl"], [49, 0, 1, "", "astype"], [49, 0, 1, "", "broadcast_arrays"], [49, 0, 1, "", "broadcast_to"], [49, 0, 1, "", "can_cast"], [49, 0, 1, "", "dtype"], [49, 0, 1, "", "finfo"], [49, 0, 1, "", "iinfo"], [49, 0, 1, "", "is_bool_dtype"], [49, 0, 1, "", "is_float_dtype"], [49, 0, 1, "", "is_int_dtype"], [49, 0, 1, "", "is_uint_dtype"], [49, 0, 1, "", "result_type"]], "ivy.data_classes.array.device": [[50, 1, 1, "", "_ArrayWithDevice"]], "ivy.data_classes.array.device._ArrayWithDevice": [[50, 4, 1, "", "_abc_impl"], [50, 0, 1, "", "dev"], [50, 0, 1, "", "to_device"]], "ivy.data_classes.array.elementwise": [[51, 1, 1, "", "_ArrayWithElementwise"]], "ivy.data_classes.array.elementwise._ArrayWithElementwise": [[51, 4, 1, "", "_abc_impl"], [51, 0, 1, "", "abs"], [51, 0, 1, "", "acos"], [51, 0, 1, "", "acosh"], [51, 0, 1, "", "add"], [51, 0, 1, "", "angle"], [51, 0, 1, "", "asin"], [51, 0, 1, "", "asinh"], [51, 0, 1, "", "atan"], [51, 0, 1, "", "atan2"], [51, 0, 1, "", "atanh"], [51, 0, 1, "", "bitwise_and"], [51, 0, 1, "", "bitwise_invert"], [51, 0, 1, "", "bitwise_left_shift"], [51, 0, 1, "", "bitwise_or"], [51, 0, 1, "", "bitwise_right_shift"], [51, 0, 1, "", "bitwise_xor"], [51, 0, 1, "", "ceil"], [51, 0, 1, "", "cos"], [51, 0, 1, "", "cosh"], [51, 0, 1, "", "deg2rad"], [51, 0, 1, "", "divide"], [51, 0, 1, "", "equal"], [51, 0, 1, "", "erf"], [51, 0, 1, "", "exp"], [51, 0, 1, "", "exp2"], [51, 0, 1, "", "expm1"], [51, 0, 1, "", "floor"], [51, 0, 1, "", "floor_divide"], [51, 0, 1, "", "fmin"], [51, 0, 1, "", "gcd"], [51, 0, 1, "", "greater"], [51, 0, 1, "", "greater_equal"], [51, 0, 1, "", "imag"], [51, 0, 1, "", "isfinite"], [51, 0, 1, "", "isinf"], [51, 0, 1, "", "isnan"], [51, 0, 1, "", "isreal"], [51, 0, 1, "", "lcm"], [51, 0, 1, "", "less"], [51, 0, 1, "", "less_equal"], [51, 0, 1, "", "log"], [51, 0, 1, "", "log10"], [51, 0, 1, "", "log1p"], [51, 0, 1, "", "log2"], [51, 0, 1, "", "logaddexp"], [51, 0, 1, "", "logaddexp2"], [51, 0, 1, "", "logical_and"], [51, 0, 1, "", "logical_not"], [51, 0, 1, "", "logical_or"], [51, 0, 1, "", "logical_xor"], [51, 0, 1, "", "maximum"], [51, 0, 1, "", "minimum"], [51, 0, 1, "", "multiply"], [51, 0, 1, "", "nan_to_num"], [51, 0, 1, "", "negative"], [51, 0, 1, "", "not_equal"], [51, 0, 1, "", "positive"], [51, 0, 1, "", "pow"], [51, 0, 1, "", "rad2deg"], [51, 0, 1, "", "real"], [51, 0, 1, "", "reciprocal"], [51, 0, 1, "", "remainder"], [51, 0, 1, "", "round"], [51, 0, 1, "", "sign"], [51, 0, 1, "", "sin"], [51, 0, 1, "", "sinh"], [51, 0, 1, "", "sqrt"], [51, 0, 1, "", "square"], [51, 0, 1, "", "subtract"], [51, 0, 1, "", "tan"], [51, 0, 1, "", "tanh"], [51, 0, 1, "", "trapz"], [51, 0, 1, "", "trunc"], [51, 0, 1, "", "trunc_divide"]], "ivy.data_classes.array.experimental": [[52, 3, 0, "-", "activations"], [52, 3, 0, "-", "conversions"], [52, 3, 0, "-", "creation"], [52, 3, 0, "-", "data_type"], [52, 3, 0, "-", "device"], [52, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "general"], [52, 3, 0, "-", "gradients"], [52, 3, 0, "-", "image"], [52, 3, 0, "-", "layers"], [52, 3, 0, "-", "linear_algebra"], [52, 3, 0, "-", "losses"], [52, 3, 0, "-", "manipulation"], [52, 3, 0, "-", "norms"], [52, 3, 0, "-", "random"], [52, 3, 0, "-", "searching"], [52, 3, 0, "-", "set"], [52, 3, 0, "-", "sorting"], [52, 3, 0, "-", "statistical"], [52, 3, 0, "-", "utility"]], "ivy.data_classes.array.experimental.activations": [[52, 1, 1, "", "_ArrayWithActivationsExperimental"]], "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "celu"], [52, 0, 1, "", "elu"], [52, 0, 1, "", "hardshrink"], [52, 0, 1, "", "hardtanh"], [52, 0, 1, "", "logit"], [52, 0, 1, "", "logsigmoid"], [52, 0, 1, "", "prelu"], [52, 0, 1, "", "relu6"], [52, 0, 1, "", "scaled_tanh"], [52, 0, 1, "", "selu"], [52, 0, 1, "", "silu"], [52, 0, 1, "", "softshrink"], [52, 0, 1, "", "tanhshrink"], [52, 0, 1, "", "threshold"], [52, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.array.experimental.conversions": [[52, 1, 1, "", "_ArrayWithConversionsExperimental"]], "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.creation": [[52, 1, 1, "", "_ArrayWithCreationExperimental"], [52, 2, 1, "", "polyval"]], "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "blackman_window"], [52, 0, 1, "", "eye_like"], [52, 0, 1, "", "mel_weight_matrix"], [52, 0, 1, "", "trilu"], [52, 0, 1, "", "unsorted_segment_mean"], [52, 0, 1, "", "unsorted_segment_min"], [52, 0, 1, "", "unsorted_segment_sum"]], "ivy.data_classes.array.experimental.data_type": [[52, 1, 1, "", "_ArrayWithData_typeExperimental"]], "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.device": [[52, 1, 1, "", "_ArrayWithDeviceExperimental"]], "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.elementwise": [[52, 1, 1, "", "_ArrayWithElementWiseExperimental"]], "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "allclose"], [52, 0, 1, "", "amax"], [52, 0, 1, "", "amin"], [52, 0, 1, "", "binarizer"], [52, 0, 1, "", "conj"], [52, 0, 1, "", "copysign"], [52, 0, 1, "", "count_nonzero"], [52, 0, 1, "", "diff"], [52, 0, 1, "", "digamma"], [52, 0, 1, "", "erfc"], [52, 0, 1, "", "fix"], [52, 0, 1, "", "float_power"], [52, 0, 1, "", "fmax"], [52, 0, 1, "", "fmod"], [52, 0, 1, "", "frexp"], [52, 0, 1, "", "gradient"], [52, 0, 1, "", "hypot"], [52, 0, 1, "", "isclose"], [52, 0, 1, "", "ldexp"], [52, 0, 1, "", "lerp"], [52, 0, 1, "", "lgamma"], [52, 0, 1, "", "modf"], [52, 0, 1, "", "nansum"], [52, 0, 1, "", "nextafter"], [52, 0, 1, "", "signbit"], [52, 0, 1, "", "sinc"], [52, 0, 1, "", "sparsify_tensor"], [52, 0, 1, "", "xlogy"], [52, 0, 1, "", "zeta"]], "ivy.data_classes.array.experimental.general": [[52, 1, 1, "", "_ArrayWithGeneralExperimental"]], "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "reduce"]], "ivy.data_classes.array.experimental.gradients": [[52, 1, 1, "", "_ArrayWithGradientsExperimental"]], "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.image": [[52, 1, 1, "", "_ArrayWithImageExperimental"]], "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.layers": [[52, 1, 1, "", "_ArrayWithLayersExperimental"]], "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adaptive_avg_pool1d"], [52, 0, 1, "", "adaptive_avg_pool2d"], [52, 0, 1, "", "adaptive_max_pool2d"], [52, 0, 1, "", "avg_pool1d"], [52, 0, 1, "", "avg_pool2d"], [52, 0, 1, "", "avg_pool3d"], [52, 0, 1, "", "dct"], [52, 0, 1, "", "dft"], [52, 0, 1, "", "embedding"], [52, 0, 1, "", "fft"], [52, 0, 1, "", "fft2"], [52, 0, 1, "", "idct"], [52, 0, 1, "", "ifft"], [52, 0, 1, "", "ifftn"], [52, 0, 1, "", "interpolate"], [52, 0, 1, "", "max_pool1d"], [52, 0, 1, "", "max_pool2d"], [52, 0, 1, "", "max_pool3d"], [52, 0, 1, "", "max_unpool1d"], [52, 0, 1, "", "reduce_window"], [52, 0, 1, "", "rfft"], [52, 0, 1, "", "rfftn"], [52, 0, 1, "", "sliding_window"], [52, 0, 1, "", "stft"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, 1, 1, "", "_ArrayWithLinearAlgebraExperimental"]], "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adjoint"], [52, 0, 1, "", "batched_outer"], [52, 0, 1, "", "cond"], [52, 0, 1, "", "diagflat"], [52, 0, 1, "", "dot"], [52, 0, 1, "", "eig"], [52, 0, 1, "", "eigh_tridiagonal"], [52, 0, 1, "", "eigvals"], [52, 0, 1, "", "general_inner_product"], [52, 0, 1, "", "higher_order_moment"], [52, 0, 1, "", "initialize_tucker"], [52, 0, 1, "", "kron"], [52, 0, 1, "", "make_svd_non_negative"], [52, 0, 1, "", "matrix_exp"], [52, 0, 1, "", "mode_dot"], [52, 0, 1, "", "multi_dot"], [52, 0, 1, "", "multi_mode_dot"], [52, 0, 1, "", "partial_tucker"], [52, 0, 1, "", "svd_flip"], [52, 0, 1, "", "tensor_train"], [52, 0, 1, "", "truncated_svd"], [52, 0, 1, "", "tt_matrix_to_tensor"], [52, 0, 1, "", "tucker"]], "ivy.data_classes.array.experimental.losses": [[52, 1, 1, "", "_ArrayWithLossesExperimental"]], "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "hinge_embedding_loss"], [52, 0, 1, "", "huber_loss"], [52, 0, 1, "", "kl_div"], [52, 0, 1, "", "l1_loss"], [52, 0, 1, "", "log_poisson_loss"], [52, 0, 1, "", "poisson_nll_loss"], [52, 0, 1, "", "smooth_l1_loss"], [52, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.array.experimental.manipulation": [[52, 1, 1, "", "_ArrayWithManipulationExperimental"]], "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "as_strided"], [52, 0, 1, "", "associative_scan"], [52, 0, 1, "", "atleast_1d"], [52, 0, 1, "", "atleast_2d"], [52, 0, 1, "", "atleast_3d"], [52, 0, 1, "", "column_stack"], [52, 0, 1, "", "concat_from_sequence"], [52, 0, 1, "", "dsplit"], [52, 0, 1, "", "dstack"], [52, 0, 1, "", "expand"], [52, 0, 1, "", "fill_diagonal"], [52, 0, 1, "", "flatten"], [52, 0, 1, "", "fliplr"], [52, 0, 1, "", "flipud"], [52, 0, 1, "", "fold"], [52, 0, 1, "", "heaviside"], [52, 0, 1, "", "hsplit"], [52, 0, 1, "", "hstack"], [52, 0, 1, "", "i0"], [52, 0, 1, "", "matricize"], [52, 0, 1, "", "moveaxis"], [52, 0, 1, "", "pad"], [52, 0, 1, "", "partial_fold"], [52, 0, 1, "", "partial_tensor_to_vec"], [52, 0, 1, "", "partial_unfold"], [52, 0, 1, "", "partial_vec_to_tensor"], [52, 0, 1, "", "put_along_axis"], [52, 0, 1, "", "rot90"], [52, 0, 1, "", "soft_thresholding"], [52, 0, 1, "", "take"], [52, 0, 1, "", "take_along_axis"], [52, 0, 1, "", "top_k"], [52, 0, 1, "", "trim_zeros"], [52, 0, 1, "", "unfold"], [52, 0, 1, "", "unique_consecutive"], [52, 0, 1, "", "vsplit"], [52, 0, 1, "", "vstack"]], "ivy.data_classes.array.experimental.norms": [[52, 1, 1, "", "_ArrayWithNormsExperimental"]], "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "batch_norm"], [52, 0, 1, "", "group_norm"], [52, 0, 1, "", "instance_norm"], [52, 0, 1, "", "l1_normalize"], [52, 0, 1, "", "l2_normalize"], [52, 0, 1, "", "lp_normalize"]], "ivy.data_classes.array.experimental.random": [[52, 1, 1, "", "_ArrayWithRandomExperimental"]], "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bernoulli"], [52, 0, 1, "", "beta"], [52, 0, 1, "", "dirichlet"], [52, 0, 1, "", "gamma"], [52, 0, 1, "", "poisson"]], "ivy.data_classes.array.experimental.searching": [[52, 1, 1, "", "_ArrayWithSearchingExperimental"]], "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "unravel_index"]], "ivy.data_classes.array.experimental.set": [[52, 1, 1, "", "_ArrayWithSetExperimental"]], "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.sorting": [[52, 1, 1, "", "_ArrayWithSortingExperimental"]], "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "lexsort"]], "ivy.data_classes.array.experimental.statistical": [[52, 1, 1, "", "_ArrayWithStatisticalExperimental"]], "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bincount"], [52, 0, 1, "", "corrcoef"], [52, 0, 1, "", "cov"], [52, 0, 1, "", "cummax"], [52, 0, 1, "", "cummin"], [52, 0, 1, "", "histogram"], [52, 0, 1, "", "igamma"], [52, 0, 1, "", "median"], [52, 0, 1, "", "nanmean"], [52, 0, 1, "", "nanmedian"], [52, 0, 1, "", "nanmin"], [52, 0, 1, "", "nanprod"], [52, 0, 1, "", "quantile"]], "ivy.data_classes.array.experimental.utility": [[52, 1, 1, "", "_ArrayWithUtilityExperimental"]], "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "optional_get_element"]], "ivy.data_classes.array.general": [[53, 1, 1, "", "_ArrayWithGeneral"]], "ivy.data_classes.array.general._ArrayWithGeneral": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "all_equal"], [53, 0, 1, "", "array_equal"], [53, 0, 1, "", "assert_supports_inplace"], [53, 0, 1, "", "clip_matrix_norm"], [53, 0, 1, "", "clip_vector_norm"], [53, 0, 1, "", "default"], [53, 0, 1, "", "einops_rearrange"], [53, 0, 1, "", "einops_reduce"], [53, 0, 1, "", "einops_repeat"], [53, 0, 1, "", "exists"], [53, 0, 1, "", "fourier_encode"], [53, 0, 1, "", "gather"], [53, 0, 1, "", "gather_nd"], [53, 0, 1, "", "get_num_dims"], [53, 0, 1, "", "has_nans"], [53, 0, 1, "", "inplace_decrement"], [53, 0, 1, "", "inplace_increment"], [53, 0, 1, "", "inplace_update"], [53, 0, 1, "", "is_array"], [53, 0, 1, "", "is_ivy_array"], [53, 0, 1, "", "is_ivy_container"], [53, 0, 1, "", "is_native_array"], [53, 0, 1, "", "isin"], [53, 0, 1, "", "scatter_flat"], [53, 0, 1, "", "scatter_nd"], [53, 0, 1, "", "stable_divide"], [53, 0, 1, "", "stable_pow"], [53, 0, 1, "", "supports_inplace_updates"], [53, 0, 1, "", "to_file"], [53, 0, 1, "", "to_list"], [53, 0, 1, "", "to_numpy"], [53, 0, 1, "", "to_scalar"], [53, 0, 1, "", "value_is_nan"]], "ivy.data_classes.array.gradients": [[54, 1, 1, "", "_ArrayWithGradients"]], "ivy.data_classes.array.gradients._ArrayWithGradients": [[54, 4, 1, "", "_abc_impl"], [54, 0, 1, "", "adam_step"], [54, 0, 1, "", "adam_update"], [54, 0, 1, "", "gradient_descent_update"], [54, 0, 1, "", "lamb_update"], [54, 0, 1, "", "lars_update"], [54, 0, 1, "", "optimizer_update"], [54, 0, 1, "", "stop_gradient"]], "ivy.data_classes.array.image": [[55, 1, 1, "", "_ArrayWithImage"]], "ivy.data_classes.array.image._ArrayWithImage": [[55, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.layers": [[56, 1, 1, "", "_ArrayWithLayers"]], "ivy.data_classes.array.layers._ArrayWithLayers": [[56, 4, 1, "", "_abc_impl"], [56, 0, 1, "", "conv1d"], [56, 0, 1, "", "conv1d_transpose"], [56, 0, 1, "", "conv2d"], [56, 0, 1, "", "conv2d_transpose"], [56, 0, 1, "", "conv3d"], [56, 0, 1, "", "conv3d_transpose"], [56, 0, 1, "", "depthwise_conv2d"], [56, 0, 1, "", "dropout"], [56, 0, 1, "", "dropout1d"], [56, 0, 1, "", "dropout2d"], [56, 0, 1, "", "dropout3d"], [56, 0, 1, "", "linear"], [56, 0, 1, "", "lstm_update"], [56, 0, 1, "", "multi_head_attention"], [56, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.array.linear_algebra": [[57, 1, 1, "", "_ArrayWithLinearAlgebra"]], "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "cholesky"], [57, 0, 1, "", "cross"], [57, 0, 1, "", "det"], [57, 0, 1, "", "diag"], [57, 0, 1, "", "diagonal"], [57, 0, 1, "", "eig"], [57, 0, 1, "", "eigh"], [57, 0, 1, "", "eigvalsh"], [57, 0, 1, "", "inner"], [57, 0, 1, "", "inv"], [57, 0, 1, "", "matmul"], [57, 0, 1, "", "matrix_norm"], [57, 0, 1, "", "matrix_power"], [57, 0, 1, "", "matrix_rank"], [57, 0, 1, "", "matrix_transpose"], [57, 0, 1, "", "outer"], [57, 0, 1, "", "pinv"], [57, 0, 1, "", "qr"], [57, 0, 1, "", "slogdet"], [57, 0, 1, "", "solve"], [57, 0, 1, "", "svd"], [57, 0, 1, "", "svdvals"], [57, 0, 1, "", "tensordot"], [57, 0, 1, "", "tensorsolve"], [57, 0, 1, "", "trace"], [57, 0, 1, "", "vander"], [57, 0, 1, "", "vecdot"], [57, 0, 1, "", "vector_norm"], [57, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.array.losses": [[58, 1, 1, "", "_ArrayWithLosses"]], "ivy.data_classes.array.losses._ArrayWithLosses": [[58, 4, 1, "", "_abc_impl"], [58, 0, 1, "", "binary_cross_entropy"], [58, 0, 1, "", "cross_entropy"], [58, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.array.manipulation": [[59, 1, 1, "", "_ArrayWithManipulation"]], "ivy.data_classes.array.manipulation._ArrayWithManipulation": [[59, 4, 1, "", "_abc_impl"], [59, 0, 1, "", "clip"], [59, 0, 1, "", "concat"], [59, 0, 1, "", "constant_pad"], [59, 0, 1, "", "expand_dims"], [59, 0, 1, "", "flip"], [59, 0, 1, "", "permute_dims"], [59, 0, 1, "", "repeat"], [59, 0, 1, "", "reshape"], [59, 0, 1, "", "roll"], [59, 0, 1, "", "split"], [59, 0, 1, "", "squeeze"], [59, 0, 1, "", "stack"], [59, 0, 1, "", "swapaxes"], [59, 0, 1, "", "tile"], [59, 0, 1, "", "unstack"], [59, 0, 1, "", "view"], [59, 0, 1, "", "zero_pad"]], "ivy.data_classes.array.norms": [[60, 1, 1, "", "_ArrayWithNorms"]], "ivy.data_classes.array.norms._ArrayWithNorms": [[60, 4, 1, "", "_abc_impl"], [60, 0, 1, "", "layer_norm"]], "ivy.data_classes.array.random": [[61, 1, 1, "", "_ArrayWithRandom"]], "ivy.data_classes.array.random._ArrayWithRandom": [[61, 4, 1, "", "_abc_impl"], [61, 0, 1, "", "multinomial"], [61, 0, 1, "", "randint"], [61, 0, 1, "", "random_normal"], [61, 0, 1, "", "random_uniform"], [61, 0, 1, "", "shuffle"]], "ivy.data_classes.array.searching": [[62, 1, 1, "", "_ArrayWithSearching"]], "ivy.data_classes.array.searching._ArrayWithSearching": [[62, 4, 1, "", "_abc_impl"], [62, 0, 1, "", "argmax"], [62, 0, 1, "", "argmin"], [62, 0, 1, "", "argwhere"], [62, 0, 1, "", "nonzero"], [62, 0, 1, "", "where"]], "ivy.data_classes.array.set": [[63, 1, 1, "", "_ArrayWithSet"]], "ivy.data_classes.array.set._ArrayWithSet": [[63, 4, 1, "", "_abc_impl"], [63, 0, 1, "", "unique_all"], [63, 0, 1, "", "unique_counts"], [63, 0, 1, "", "unique_inverse"], [63, 0, 1, "", "unique_values"]], "ivy.data_classes.array.sorting": [[64, 1, 1, "", "_ArrayWithSorting"]], "ivy.data_classes.array.sorting._ArrayWithSorting": [[64, 4, 1, "", "_abc_impl"], [64, 0, 1, "", "argsort"], [64, 0, 1, "", "msort"], [64, 0, 1, "", "searchsorted"], [64, 0, 1, "", "sort"]], "ivy.data_classes.array.statistical": [[65, 1, 1, "", "_ArrayWithStatistical"]], "ivy.data_classes.array.statistical._ArrayWithStatistical": [[65, 4, 1, "", "_abc_impl"], [65, 0, 1, "", "cumprod"], [65, 0, 1, "", "cumsum"], [65, 0, 1, "", "einsum"], [65, 0, 1, "", "max"], [65, 0, 1, "", "mean"], [65, 0, 1, "", "min"], [65, 0, 1, "", "prod"], [65, 0, 1, "", "std"], [65, 0, 1, "", "sum"], [65, 0, 1, "", "var"]], "ivy.data_classes.array.utility": [[66, 1, 1, "", "_ArrayWithUtility"]], "ivy.data_classes.array.utility._ArrayWithUtility": [[66, 4, 1, "", "_abc_impl"], [66, 0, 1, "", "all"], [66, 0, 1, "", "any"]], "ivy.data_classes.array.wrapping": [[67, 2, 1, "", "_wrap_function"], [67, 2, 1, "", "add_ivy_array_instance_methods"]], "ivy.data_classes.container": [[68, 3, 0, "-", "activations"], [69, 3, 0, "-", "base"], [98, 3, 0, "-", "container"], [70, 3, 0, "-", "conversions"], [71, 3, 0, "-", "creation"], [72, 3, 0, "-", "data_type"], [73, 3, 0, "-", "device"], [74, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "experimental"], [76, 3, 0, "-", "general"], [77, 3, 0, "-", "gradients"], [78, 3, 0, "-", "image"], [79, 3, 0, "-", "layers"], [80, 3, 0, "-", "linear_algebra"], [81, 3, 0, "-", "losses"], [82, 3, 0, "-", "manipulation"], [83, 3, 0, "-", "norms"], [84, 3, 0, "-", "random"], [85, 3, 0, "-", "searching"], [86, 3, 0, "-", "set"], [87, 3, 0, "-", "sorting"], [88, 3, 0, "-", "statistical"], [89, 3, 0, "-", "utility"], [90, 3, 0, "-", "wrapping"]], "ivy.data_classes.container.activations": [[68, 1, 1, "", "_ContainerWithActivations"]], "ivy.data_classes.container.activations._ContainerWithActivations": [[68, 4, 1, "", "_abc_impl"], [68, 0, 1, "", "_static_gelu"], [68, 0, 1, "", "_static_hardswish"], [68, 0, 1, "", "_static_leaky_relu"], [68, 0, 1, "", "_static_log_softmax"], [68, 0, 1, "", "_static_mish"], [68, 0, 1, "", "_static_relu"], [68, 0, 1, "", "_static_sigmoid"], [68, 0, 1, "", "_static_softmax"], [68, 0, 1, "", "_static_softplus"], [68, 0, 1, "", "gelu"], [68, 0, 1, "", "hardswish"], [68, 0, 1, "", "leaky_relu"], [68, 0, 1, "", "log_softmax"], [68, 0, 1, "", "mish"], [68, 0, 1, "", "relu"], [68, 0, 1, "", "sigmoid"], [68, 0, 1, "", "softmax"], [68, 0, 1, "", "softplus"]], "ivy.data_classes.container.base": [[69, 1, 1, "", "ContainerBase"], [69, 2, 1, "", "_is_jsonable"], [69, 2, 1, "", "_repr"]], "ivy.data_classes.container.base.ContainerBase": [[69, 0, 1, "", "__getitem__"], [69, 0, 1, "", "__init__"], [69, 0, 1, "", "__setitem__"], [69, 4, 1, "", "_abc_impl"], [69, 0, 1, "", "_cont_at_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_at_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_call_static_method_with_flexible_args"], [69, 0, 1, "", "_cont_concat_unify"], [69, 0, 1, "", "_cont_get_dev"], [69, 0, 1, "", "_cont_get_dtype"], [69, 0, 1, "", "_cont_get_shape"], [69, 0, 1, "", "_cont_get_shapes"], [69, 5, 1, "", "_cont_ivy"], [69, 0, 1, "", "_cont_mean_unify"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_slice_keys"], [69, 0, 1, "", "_cont_sum_unify"], [69, 0, 1, "", "_get_queue_item"], [69, 0, 1, "", "cont_all_false"], [69, 0, 1, "", "cont_all_key_chains"], [69, 0, 1, "", "cont_all_true"], [69, 0, 1, "", "cont_as_bools"], [69, 0, 1, "", "cont_assert_contains_sub_container"], [69, 0, 1, "", "cont_assert_contains_sub_structure"], [69, 0, 1, "", "cont_assert_identical"], [69, 0, 1, "", "cont_assert_identical_structure"], [69, 0, 1, "", "cont_at_key_chain"], [69, 0, 1, "", "cont_at_key_chains"], [69, 0, 1, "", "cont_at_keys"], [69, 0, 1, "", "cont_combine"], [69, 0, 1, "", "cont_common_key_chains"], [69, 5, 1, "", "cont_config"], [69, 0, 1, "", "cont_contains_sub_container"], [69, 0, 1, "", "cont_contains_sub_structure"], [69, 0, 1, "", "cont_copy"], [69, 0, 1, "", "cont_create_if_absent"], [69, 0, 1, "", "cont_cutoff_at_depth"], [69, 0, 1, "", "cont_cutoff_at_height"], [69, 0, 1, "", "cont_deep_copy"], [69, 5, 1, "", "cont_dev"], [69, 5, 1, "", "cont_dev_str"], [69, 0, 1, "", "cont_diff"], [69, 5, 1, "", "cont_dtype"], [69, 0, 1, "", "cont_duplicate_array_keychains"], [69, 0, 1, "", "cont_find_sub_container"], [69, 0, 1, "", "cont_find_sub_structure"], [69, 0, 1, "", "cont_flatten_key_chain"], [69, 0, 1, "", "cont_flatten_key_chains"], [69, 0, 1, "", "cont_format_key_chains"], [69, 0, 1, "", "cont_from_disk_as_hdf5"], [69, 0, 1, "", "cont_from_disk_as_json"], [69, 0, 1, "", "cont_from_disk_as_pickled"], [69, 0, 1, "", "cont_from_flat_list"], [69, 0, 1, "", "cont_handle_inplace"], [69, 0, 1, "", "cont_has_key"], [69, 0, 1, "", "cont_has_key_chain"], [69, 0, 1, "", "cont_identical"], [69, 0, 1, "", "cont_identical_array_shapes"], [69, 0, 1, "", "cont_identical_configs"], [69, 0, 1, "", "cont_identical_structure"], [69, 0, 1, "", "cont_if_exists"], [69, 0, 1, "", "cont_inplace_update"], [69, 5, 1, "", "cont_ivy"], [69, 0, 1, "", "cont_key_chains_containing"], [69, 0, 1, "", "cont_list_join"], [69, 0, 1, "", "cont_list_stack"], [69, 0, 1, "", "cont_load"], [69, 0, 1, "", "cont_map"], [69, 0, 1, "", "cont_map_sub_conts"], [69, 5, 1, "", "cont_max_depth"], [69, 0, 1, "", "cont_multi_map"], [69, 0, 1, "", "cont_multi_map_in_function"], [69, 0, 1, "", "cont_num_arrays"], [69, 0, 1, "", "cont_overwrite_at_key_chain"], [69, 0, 1, "", "cont_overwrite_at_key_chains"], [69, 0, 1, "", "cont_prune_empty"], [69, 0, 1, "", "cont_prune_key_chain"], [69, 0, 1, "", "cont_prune_key_chains"], [69, 0, 1, "", "cont_prune_key_from_key_chains"], [69, 0, 1, "", "cont_prune_keys"], [69, 0, 1, "", "cont_prune_keys_from_key_chains"], [69, 0, 1, "", "cont_reduce"], [69, 0, 1, "", "cont_remove_key_length_limit"], [69, 0, 1, "", "cont_remove_print_limit"], [69, 0, 1, "", "cont_reshape_like"], [69, 0, 1, "", "cont_restructure"], [69, 0, 1, "", "cont_restructure_key_chains"], [69, 0, 1, "", "cont_save"], [69, 0, 1, "", "cont_set_at_key_chain"], [69, 0, 1, "", "cont_set_at_key_chains"], [69, 0, 1, "", "cont_set_at_keys"], [69, 5, 1, "", "cont_shape"], [69, 5, 1, "", "cont_shapes"], [69, 0, 1, "", "cont_show"], [69, 0, 1, "", "cont_show_sub_container"], [69, 0, 1, "", "cont_size_ordered_arrays"], [69, 0, 1, "", "cont_slice_keys"], [69, 0, 1, "", "cont_slice_via_key"], [69, 0, 1, "", "cont_sort_by_key"], [69, 0, 1, "", "cont_structural_diff"], [69, 0, 1, "", "cont_to_dict"], [69, 0, 1, "", "cont_to_disk_as_hdf5"], [69, 0, 1, "", "cont_to_disk_as_json"], [69, 0, 1, "", "cont_to_disk_as_pickled"], [69, 0, 1, "", "cont_to_flat_list"], [69, 0, 1, "", "cont_to_iterator"], [69, 0, 1, "", "cont_to_iterator_keys"], [69, 0, 1, "", "cont_to_iterator_values"], [69, 0, 1, "", "cont_to_jsonable"], [69, 0, 1, "", "cont_to_nested_list"], [69, 0, 1, "", "cont_to_raw"], [69, 0, 1, "", "cont_trim_key"], [69, 0, 1, "", "cont_try_kc"], [69, 0, 1, "", "cont_unify"], [69, 0, 1, "", "cont_unstack_conts"], [69, 0, 1, "", "cont_update_config"], [69, 0, 1, "", "cont_with_default_key_color"], [69, 0, 1, "", "cont_with_entries_as_lists"], [69, 0, 1, "", "cont_with_ivy_backend"], [69, 0, 1, "", "cont_with_key_length_limit"], [69, 0, 1, "", "cont_with_print_indent"], [69, 0, 1, "", "cont_with_print_limit"], [69, 0, 1, "", "cont_with_print_line_spacing"], [69, 5, 1, "", "dynamic_backend"], [69, 0, 1, "", "h5_file_size"], [69, 0, 1, "", "shuffle_h5_file"], [69, 0, 1, "", "split_conts"]], "ivy.data_classes.container.container": [[98, 1, 1, "", "Container"]], "ivy.data_classes.container.container.Container": [[98, 0, 1, "", "__abs__"], [98, 0, 1, "", "__add__"], [98, 0, 1, "", "__eq__"], [98, 0, 1, "", "__ge__"], [98, 0, 1, "", "__gt__"], [98, 0, 1, "", "__init__"], [98, 0, 1, "", "__le__"], [98, 0, 1, "", "__lt__"], [98, 0, 1, "", "__ne__"], [98, 0, 1, "", "__pow__"], [98, 0, 1, "", "__radd__"], [98, 0, 1, "", "__rrshift__"], [98, 0, 1, "", "__rshift__"], [98, 0, 1, "", "__rsub__"], [98, 0, 1, "", "__sub__"], [98, 0, 1, "", "__truediv__"], [98, 0, 1, "", "__xor__"]], "ivy.data_classes.container.conversions": [[70, 1, 1, "", "_ContainerWithConversions"]], "ivy.data_classes.container.conversions._ContainerWithConversions": [[70, 4, 1, "", "_abc_impl"], [70, 0, 1, "", "_static_to_ivy"], [70, 0, 1, "", "_static_to_native"], [70, 0, 1, "", "to_ivy"], [70, 0, 1, "", "to_native"]], "ivy.data_classes.container.creation": [[71, 1, 1, "", "_ContainerWithCreation"]], "ivy.data_classes.container.creation._ContainerWithCreation": [[71, 4, 1, "", "_abc_impl"], [71, 0, 1, "", "_static_arange"], [71, 0, 1, "", "_static_asarray"], [71, 0, 1, "", "_static_copy_array"], [71, 0, 1, "", "_static_empty"], [71, 0, 1, "", "_static_empty_like"], [71, 0, 1, "", "_static_eye"], [71, 0, 1, "", "_static_from_dlpack"], [71, 0, 1, "", "_static_full"], [71, 0, 1, "", "_static_full_like"], [71, 0, 1, "", "_static_linspace"], [71, 0, 1, "", "_static_logspace"], [71, 0, 1, "", "_static_meshgrid"], [71, 0, 1, "", "_static_native_array"], [71, 0, 1, "", "_static_one_hot"], [71, 0, 1, "", "_static_ones"], [71, 0, 1, "", "_static_ones_like"], [71, 0, 1, "", "_static_tril"], [71, 0, 1, "", "_static_triu"], [71, 0, 1, "", "_static_zeros"], [71, 0, 1, "", "_static_zeros_like"], [71, 0, 1, "", "asarray"], [71, 0, 1, "", "copy_array"], [71, 0, 1, "", "empty_like"], [71, 0, 1, "", "from_dlpack"], [71, 0, 1, "", "frombuffer"], [71, 0, 1, "", "full_like"], [71, 0, 1, "", "linspace"], [71, 0, 1, "", "logspace"], [71, 0, 1, "", "meshgrid"], [71, 0, 1, "", "native_array"], [71, 0, 1, "", "one_hot"], [71, 0, 1, "", "ones_like"], [71, 0, 1, "", "static_frombuffer"], [71, 0, 1, "", "static_triu_indices"], [71, 0, 1, "", "tril"], [71, 0, 1, "", "triu"], [71, 0, 1, "", "triu_indices"], [71, 0, 1, "", "zeros_like"]], "ivy.data_classes.container.data_type": [[72, 1, 1, "", "_ContainerWithDataTypes"]], "ivy.data_classes.container.data_type._ContainerWithDataTypes": [[72, 4, 1, "", "_abc_impl"], [72, 0, 1, "", "_static_astype"], [72, 0, 1, "", "_static_broadcast_arrays"], [72, 0, 1, "", "_static_broadcast_to"], [72, 0, 1, "", "_static_can_cast"], [72, 0, 1, "", "_static_default_complex_dtype"], [72, 0, 1, "", "_static_default_float_dtype"], [72, 0, 1, "", "_static_dtype"], [72, 0, 1, "", "_static_finfo"], [72, 0, 1, "", "_static_function_supported_dtypes"], [72, 0, 1, "", "_static_function_unsupported_dtypes"], [72, 0, 1, "", "_static_iinfo"], [72, 0, 1, "", "_static_is_bool_dtype"], [72, 0, 1, "", "_static_is_complex_dtype"], [72, 0, 1, "", "_static_is_float_dtype"], [72, 0, 1, "", "_static_is_int_dtype"], [72, 0, 1, "", "_static_is_uint_dtype"], [72, 0, 1, "", "_static_result_type"], [72, 0, 1, "", "astype"], [72, 0, 1, "", "broadcast_arrays"], [72, 0, 1, "", "broadcast_to"], [72, 0, 1, "", "can_cast"], [72, 0, 1, "", "dtype"], [72, 0, 1, "", "finfo"], [72, 0, 1, "", "iinfo"], [72, 0, 1, "", "is_bool_dtype"], [72, 0, 1, "", "is_complex_dtype"], [72, 0, 1, "", "is_float_dtype"], [72, 0, 1, "", "is_int_dtype"], [72, 0, 1, "", "is_uint_dtype"], [72, 0, 1, "", "result_type"]], "ivy.data_classes.container.device": [[73, 1, 1, "", "_ContainerWithDevice"]], "ivy.data_classes.container.device._ContainerWithDevice": [[73, 4, 1, "", "_abc_impl"], [73, 0, 1, "", "_static_dev"], [73, 0, 1, "", "_static_to_device"], [73, 0, 1, "", "dev"], [73, 0, 1, "", "to_device"]], "ivy.data_classes.container.elementwise": [[74, 1, 1, "", "_ContainerWithElementwise"]], "ivy.data_classes.container.elementwise._ContainerWithElementwise": [[74, 4, 1, "", "_abc_impl"], [74, 0, 1, "", "_static_abs"], [74, 0, 1, "", "_static_acos"], [74, 0, 1, "", "_static_acosh"], [74, 0, 1, "", "_static_add"], [74, 0, 1, "", "_static_asin"], [74, 0, 1, "", "_static_asinh"], [74, 0, 1, "", "_static_atan"], [74, 0, 1, "", "_static_atan2"], [74, 0, 1, "", "_static_atanh"], [74, 0, 1, "", "_static_bitwise_and"], [74, 0, 1, "", "_static_bitwise_invert"], [74, 0, 1, "", "_static_bitwise_left_shift"], [74, 0, 1, "", "_static_bitwise_or"], [74, 0, 1, "", "_static_bitwise_right_shift"], [74, 0, 1, "", "_static_bitwise_xor"], [74, 0, 1, "", "_static_ceil"], [74, 0, 1, "", "_static_cos"], [74, 0, 1, "", "_static_cosh"], [74, 0, 1, "", "_static_deg2rad"], [74, 0, 1, "", "_static_divide"], [74, 0, 1, "", "_static_equal"], [74, 0, 1, "", "_static_erf"], [74, 0, 1, "", "_static_exp"], [74, 0, 1, "", "_static_expm1"], [74, 0, 1, "", "_static_floor"], [74, 0, 1, "", "_static_floor_divide"], [74, 0, 1, "", "_static_greater"], [74, 0, 1, "", "_static_greater_equal"], [74, 0, 1, "", "_static_isfinite"], [74, 0, 1, "", "_static_isinf"], [74, 0, 1, "", "_static_isnan"], [74, 0, 1, "", "_static_isreal"], [74, 0, 1, "", "_static_lcm"], [74, 0, 1, "", "_static_less"], [74, 0, 1, "", "_static_less_equal"], [74, 0, 1, "", "_static_log"], [74, 0, 1, "", "_static_log10"], [74, 0, 1, "", "_static_log1p"], [74, 0, 1, "", "_static_log2"], [74, 0, 1, "", "_static_logaddexp"], [74, 0, 1, "", "_static_logical_and"], [74, 0, 1, "", "_static_logical_not"], [74, 0, 1, "", "_static_logical_or"], [74, 0, 1, "", "_static_logical_xor"], [74, 0, 1, "", "_static_maximum"], [74, 0, 1, "", "_static_minimum"], [74, 0, 1, "", "_static_multiply"], [74, 0, 1, "", "_static_negative"], [74, 0, 1, "", "_static_not_equal"], [74, 0, 1, "", "_static_positive"], [74, 0, 1, "", "_static_pow"], [74, 0, 1, "", "_static_rad2deg"], [74, 0, 1, "", "_static_reciprocal"], [74, 0, 1, "", "_static_remainder"], [74, 0, 1, "", "_static_round"], [74, 0, 1, "", "_static_sign"], [74, 0, 1, "", "_static_sin"], [74, 0, 1, "", "_static_sinh"], [74, 0, 1, "", "_static_sqrt"], [74, 0, 1, "", "_static_square"], [74, 0, 1, "", "_static_subtract"], [74, 0, 1, "", "_static_tan"], [74, 0, 1, "", "_static_tanh"], [74, 0, 1, "", "_static_trapz"], [74, 0, 1, "", "_static_trunc"], [74, 0, 1, "", "_static_trunc_divide"], [74, 0, 1, "", "abs"], [74, 0, 1, "", "acos"], [74, 0, 1, "", "acosh"], [74, 0, 1, "", "add"], [74, 0, 1, "", "angle"], [74, 0, 1, "", "asin"], [74, 0, 1, "", "asinh"], [74, 0, 1, "", "atan"], [74, 0, 1, "", "atan2"], [74, 0, 1, "", "atanh"], [74, 0, 1, "", "bitwise_and"], [74, 0, 1, "", "bitwise_invert"], [74, 0, 1, "", "bitwise_left_shift"], [74, 0, 1, "", "bitwise_or"], [74, 0, 1, "", "bitwise_right_shift"], [74, 0, 1, "", "bitwise_xor"], [74, 0, 1, "", "ceil"], [74, 0, 1, "", "cos"], [74, 0, 1, "", "cosh"], [74, 0, 1, "", "deg2rad"], [74, 0, 1, "", "divide"], [74, 0, 1, "", "equal"], [74, 0, 1, "", "erf"], [74, 0, 1, "", "exp"], [74, 0, 1, "", "exp2"], [74, 0, 1, "", "expm1"], [74, 0, 1, "", "floor"], [74, 0, 1, "", "floor_divide"], [74, 0, 1, "", "fmin"], [74, 0, 1, "", "gcd"], [74, 0, 1, "", "greater"], [74, 0, 1, "", "greater_equal"], [74, 0, 1, "", "imag"], [74, 0, 1, "", "isfinite"], [74, 0, 1, "", "isinf"], [74, 0, 1, "", "isnan"], [74, 0, 1, "", "isreal"], [74, 0, 1, "", "lcm"], [74, 0, 1, "", "less"], [74, 0, 1, "", "less_equal"], [74, 0, 1, "", "log"], [74, 0, 1, "", "log10"], [74, 0, 1, "", "log1p"], [74, 0, 1, "", "log2"], [74, 0, 1, "", "logaddexp"], [74, 0, 1, "", "logaddexp2"], [74, 0, 1, "", "logical_and"], [74, 0, 1, "", "logical_not"], [74, 0, 1, "", "logical_or"], [74, 0, 1, "", "logical_xor"], [74, 0, 1, "", "maximum"], [74, 0, 1, "", "minimum"], [74, 0, 1, "", "multiply"], [74, 0, 1, "", "nan_to_num"], [74, 0, 1, "", "negative"], [74, 0, 1, "", "not_equal"], [74, 0, 1, "", "positive"], [74, 0, 1, "", "pow"], [74, 0, 1, "", "rad2deg"], [74, 0, 1, "", "real"], [74, 0, 1, "", "reciprocal"], [74, 0, 1, "", "remainder"], [74, 0, 1, "", "round"], [74, 0, 1, "", "sign"], [74, 0, 1, "", "sin"], [74, 0, 1, "", "sinh"], [74, 0, 1, "", "sqrt"], [74, 0, 1, "", "square"], [74, 0, 1, "", "static_angle"], [74, 0, 1, "", "static_exp2"], [74, 0, 1, "", "static_fmin"], [74, 0, 1, "", "static_gcd"], [74, 0, 1, "", "static_imag"], [74, 0, 1, "", "static_logaddexp2"], [74, 0, 1, "", "static_nan_to_num"], [74, 0, 1, "", "static_real"], [74, 0, 1, "", "subtract"], [74, 0, 1, "", "tan"], [74, 0, 1, "", "tanh"], [74, 0, 1, "", "trapz"], [74, 0, 1, "", "trunc"], [74, 0, 1, "", "trunc_divide"]], "ivy.data_classes.container.experimental": [[75, 3, 0, "-", "activations"], [75, 3, 0, "-", "conversions"], [75, 3, 0, "-", "creation"], [75, 3, 0, "-", "data_type"], [75, 3, 0, "-", "device"], [75, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "general"], [75, 3, 0, "-", "gradients"], [75, 3, 0, "-", "image"], [75, 3, 0, "-", "layers"], [75, 3, 0, "-", "linear_algebra"], [75, 3, 0, "-", "losses"], [75, 3, 0, "-", "manipulation"], [75, 3, 0, "-", "norms"], [75, 3, 0, "-", "random"], [75, 3, 0, "-", "searching"], [75, 3, 0, "-", "set"], [75, 3, 0, "-", "sorting"], [75, 3, 0, "-", "statistical"], [75, 3, 0, "-", "utility"]], "ivy.data_classes.container.experimental.activations": [[75, 1, 1, "", "_ContainerWithActivationExperimental"]], "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_celu"], [75, 0, 1, "", "_static_elu"], [75, 0, 1, "", "_static_hardshrink"], [75, 0, 1, "", "_static_hardtanh"], [75, 0, 1, "", "_static_scaled_tanh"], [75, 0, 1, "", "_static_silu"], [75, 0, 1, "", "_static_softshrink"], [75, 0, 1, "", "_static_tanhshrink"], [75, 0, 1, "", "_static_threshold"], [75, 0, 1, "", "celu"], [75, 0, 1, "", "elu"], [75, 0, 1, "", "hardshrink"], [75, 0, 1, "", "hardtanh"], [75, 0, 1, "", "logit"], [75, 0, 1, "", "logsigmoid"], [75, 0, 1, "", "prelu"], [75, 0, 1, "", "relu6"], [75, 0, 1, "", "scaled_tanh"], [75, 0, 1, "", "selu"], [75, 0, 1, "", "silu"], [75, 0, 1, "", "softshrink"], [75, 0, 1, "", "static_logit"], [75, 0, 1, "", "static_logsigmoid"], [75, 0, 1, "", "static_prelu"], [75, 0, 1, "", "static_relu6"], [75, 0, 1, "", "static_selu"], [75, 0, 1, "", "static_thresholded_relu"], [75, 0, 1, "", "tanhshrink"], [75, 0, 1, "", "threshold"], [75, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.container.experimental.conversions": [[75, 1, 1, "", "_ContainerWithConversionExperimental"]], "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.creation": [[75, 1, 1, "", "_ContainerWithCreationExperimental"]], "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_trilu"], [75, 0, 1, "", "blackman_window"], [75, 0, 1, "", "eye_like"], [75, 0, 1, "", "hamming_window"], [75, 0, 1, "", "hann_window"], [75, 0, 1, "", "kaiser_bessel_derived_window"], [75, 0, 1, "", "kaiser_window"], [75, 0, 1, "", "mel_weight_matrix"], [75, 0, 1, "", "polyval"], [75, 0, 1, "", "static_blackman_window"], [75, 0, 1, "", "static_eye_like"], [75, 0, 1, "", "static_hamming_window"], [75, 0, 1, "", "static_hann_window"], [75, 0, 1, "", "static_kaiser_bessel_derived_window"], [75, 0, 1, "", "static_kaiser_window"], [75, 0, 1, "", "static_mel_weight_matrix"], [75, 0, 1, "", "static_polyval"], [75, 0, 1, "", "static_tril_indices"], [75, 0, 1, "", "static_unsorted_segment_mean"], [75, 0, 1, "", "static_unsorted_segment_min"], [75, 0, 1, "", "static_unsorted_segment_sum"], [75, 0, 1, "", "static_vorbis_window"], [75, 0, 1, "", "tril_indices"], [75, 0, 1, "", "trilu"], [75, 0, 1, "", "unsorted_segment_mean"], [75, 0, 1, "", "unsorted_segment_min"], [75, 0, 1, "", "unsorted_segment_sum"], [75, 0, 1, "", "vorbis_window"]], "ivy.data_classes.container.experimental.data_type": [[75, 1, 1, "", "_ContainerWithData_typeExperimental"]], "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.device": [[75, 1, 1, "", "_ContainerWithDeviceExperimental"]], "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.elementwise": [[75, 1, 1, "", "_ContainerWithElementWiseExperimental"]], "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "allclose"], [75, 0, 1, "", "amax"], [75, 0, 1, "", "amin"], [75, 0, 1, "", "binarizer"], [75, 0, 1, "", "conj"], [75, 0, 1, "", "copysign"], [75, 0, 1, "", "count_nonzero"], [75, 0, 1, "", "diff"], [75, 0, 1, "", "digamma"], [75, 0, 1, "", "erfc"], [75, 0, 1, "", "fix"], [75, 0, 1, "", "float_power"], [75, 0, 1, "", "fmax"], [75, 0, 1, "", "fmod"], [75, 0, 1, "", "frexp"], [75, 0, 1, "", "gradient"], [75, 0, 1, "", "hypot"], [75, 0, 1, "", "isclose"], [75, 0, 1, "", "ldexp"], [75, 0, 1, "", "lerp"], [75, 0, 1, "", "modf"], [75, 0, 1, "", "nansum"], [75, 0, 1, "", "nextafter"], [75, 0, 1, "", "signbit"], [75, 0, 1, "", "sinc"], [75, 0, 1, "", "sparsify_tensor"], [75, 0, 1, "", "static_allclose"], [75, 0, 1, "", "static_amax"], [75, 0, 1, "", "static_amin"], [75, 0, 1, "", "static_binarizer"], [75, 0, 1, "", "static_conj"], [75, 0, 1, "", "static_copysign"], [75, 0, 1, "", "static_count_nonzero"], [75, 0, 1, "", "static_diff"], [75, 0, 1, "", "static_digamma"], [75, 0, 1, "", "static_erfc"], [75, 0, 1, "", "static_fix"], [75, 0, 1, "", "static_float_power"], [75, 0, 1, "", "static_fmax"], [75, 0, 1, "", "static_fmod"], [75, 0, 1, "", "static_frexp"], [75, 0, 1, "", "static_gradient"], [75, 0, 1, "", "static_hypot"], [75, 0, 1, "", "static_isclose"], [75, 0, 1, "", "static_ldexp"], [75, 0, 1, "", "static_lerp"], [75, 0, 1, "", "static_modf"], [75, 0, 1, "", "static_nansum"], [75, 0, 1, "", "static_nextafter"], [75, 0, 1, "", "static_signbit"], [75, 0, 1, "", "static_sinc"], [75, 0, 1, "", "static_sparsify_tensor"], [75, 0, 1, "", "static_xlogy"], [75, 0, 1, "", "static_zeta"], [75, 0, 1, "", "xlogy"], [75, 0, 1, "", "zeta"]], "ivy.data_classes.container.experimental.general": [[75, 1, 1, "", "_ContainerWithGeneralExperimental"]], "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_reduce"], [75, 0, 1, "", "reduce"]], "ivy.data_classes.container.experimental.gradients": [[75, 1, 1, "", "_ContainerWithGradientsExperimental"]], "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.image": [[75, 1, 1, "", "_ContainerWithImageExperimental"]], "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.layers": [[75, 1, 1, "", "_ContainerWithLayersExperimental"]], "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fft"], [75, 0, 1, "", "_static_sliding_window"], [75, 0, 1, "", "adaptive_avg_pool1d"], [75, 0, 1, "", "adaptive_avg_pool2d"], [75, 0, 1, "", "adaptive_max_pool2d"], [75, 0, 1, "", "avg_pool1d"], [75, 0, 1, "", "avg_pool2d"], [75, 0, 1, "", "avg_pool3d"], [75, 0, 1, "", "dct"], [75, 0, 1, "", "dft"], [75, 0, 1, "", "embedding"], [75, 0, 1, "", "fft"], [75, 0, 1, "", "idct"], [75, 0, 1, "", "ifft"], [75, 0, 1, "", "ifftn"], [75, 0, 1, "", "interpolate"], [75, 0, 1, "", "max_pool1d"], [75, 0, 1, "", "max_pool2d"], [75, 0, 1, "", "max_pool3d"], [75, 0, 1, "", "max_unpool1d"], [75, 0, 1, "", "rfft"], [75, 0, 1, "", "rfftn"], [75, 0, 1, "", "sliding_window"], [75, 0, 1, "", "static_adaptive_avg_pool1d"], [75, 0, 1, "", "static_adaptive_avg_pool2d"], [75, 0, 1, "", "static_adaptive_max_pool2d"], [75, 0, 1, "", "static_avg_pool1d"], [75, 0, 1, "", "static_avg_pool2d"], [75, 0, 1, "", "static_avg_pool3d"], [75, 0, 1, "", "static_dct"], [75, 0, 1, "", "static_dft"], [75, 0, 1, "", "static_embedding"], [75, 0, 1, "", "static_idct"], [75, 0, 1, "", "static_ifft"], [75, 0, 1, "", "static_ifftn"], [75, 0, 1, "", "static_interpolate"], [75, 0, 1, "", "static_max_pool1d"], [75, 0, 1, "", "static_max_pool2d"], [75, 0, 1, "", "static_max_pool3d"], [75, 0, 1, "", "static_max_unpool1d"], [75, 0, 1, "", "static_rfft"], [75, 0, 1, "", "static_rfftn"], [75, 0, 1, "", "static_rnn"], [75, 0, 1, "", "static_stft"], [75, 0, 1, "", "stft"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, 1, 1, "", "_ContainerWithLinearAlgebraExperimental"]], "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "adjoint"], [75, 0, 1, "", "batched_outer"], [75, 0, 1, "", "cond"], [75, 0, 1, "", "diagflat"], [75, 0, 1, "", "dot"], [75, 0, 1, "", "eig"], [75, 0, 1, "", "eigh_tridiagonal"], [75, 0, 1, "", "eigvals"], [75, 0, 1, "", "higher_order_moment"], [75, 0, 1, "", "initialize_tucker"], [75, 0, 1, "", "kron"], [75, 0, 1, "", "make_svd_non_negative"], [75, 0, 1, "", "matrix_exp"], [75, 0, 1, "", "mode_dot"], [75, 0, 1, "", "multi_dot"], [75, 0, 1, "", "multi_mode_dot"], [75, 0, 1, "", "partial_tucker"], [75, 0, 1, "", "static_adjoint"], [75, 0, 1, "", "static_batched_outer"], [75, 0, 1, "", "static_cond"], [75, 0, 1, "", "static_diagflat"], [75, 0, 1, "", "static_dot"], [75, 0, 1, "", "static_eig"], [75, 0, 1, "", "static_eigh_tridiagonal"], [75, 0, 1, "", "static_eigvals"], [75, 0, 1, "", "static_higher_order_moment"], [75, 0, 1, "", "static_initialize_tucker"], [75, 0, 1, "", "static_kron"], [75, 0, 1, "", "static_make_svd_non_negative"], [75, 0, 1, "", "static_matrix_exp"], [75, 0, 1, "", "static_mode_dot"], [75, 0, 1, "", "static_multi_dot"], [75, 0, 1, "", "static_multi_mode_dot"], [75, 0, 1, "", "static_partial_tucker"], [75, 0, 1, "", "static_svd_flip"], [75, 0, 1, "", "static_tensor_train"], [75, 0, 1, "", "static_truncated_svd"], [75, 0, 1, "", "static_tt_matrix_to_tensor"], [75, 0, 1, "", "static_tucker"], [75, 0, 1, "", "svd_flip"], [75, 0, 1, "", "tensor_train"], [75, 0, 1, "", "truncated_svd"], [75, 0, 1, "", "tt_matrix_to_tensor"], [75, 0, 1, "", "tucker"]], "ivy.data_classes.container.experimental.losses": [[75, 1, 1, "", "_ContainerWithLossesExperimental"]], "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_hinge_embedding_loss"], [75, 0, 1, "", "_static_huber_loss"], [75, 0, 1, "", "_static_kl_div"], [75, 0, 1, "", "_static_l1_loss"], [75, 0, 1, "", "_static_log_poisson_loss"], [75, 0, 1, "", "_static_poisson_nll_loss"], [75, 0, 1, "", "_static_smooth_l1_loss"], [75, 0, 1, "", "_static_soft_margin_loss"], [75, 0, 1, "", "hinge_embedding_loss"], [75, 0, 1, "", "huber_loss"], [75, 0, 1, "", "kl_div"], [75, 0, 1, "", "l1_loss"], [75, 0, 1, "", "log_poisson_loss"], [75, 0, 1, "", "poisson_nll_loss"], [75, 0, 1, "", "smooth_l1_loss"], [75, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.container.experimental.manipulation": [[75, 1, 1, "", "_ContainerWithManipulationExperimental"], [75, 2, 1, "", "concat_from_sequence"]], "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fill_diagonal"], [75, 0, 1, "", "_static_put_along_axis"], [75, 0, 1, "", "_static_take"], [75, 0, 1, "", "_static_trim_zeros"], [75, 0, 1, "", "_static_unique_consecutive"], [75, 0, 1, "", "as_strided"], [75, 0, 1, "", "associative_scan"], [75, 0, 1, "", "atleast_1d"], [75, 0, 1, "", "atleast_2d"], [75, 0, 1, "", "atleast_3d"], [75, 0, 1, "", "broadcast_shapes"], [75, 0, 1, "", "column_stack"], [75, 0, 1, "", "concat_from_sequence"], [75, 0, 1, "", "dsplit"], [75, 0, 1, "", "dstack"], [75, 0, 1, "", "expand"], [75, 0, 1, "", "fill_diagonal"], [75, 0, 1, "", "flatten"], [75, 0, 1, "", "fliplr"], [75, 0, 1, "", "flipud"], [75, 0, 1, "", "fold"], [75, 0, 1, "", "heaviside"], [75, 0, 1, "", "hsplit"], [75, 0, 1, "", "hstack"], [75, 0, 1, "", "i0"], [75, 0, 1, "", "matricize"], [75, 0, 1, "", "moveaxis"], [75, 0, 1, "", "pad"], [75, 0, 1, "", "partial_fold"], [75, 0, 1, "", "partial_tensor_to_vec"], [75, 0, 1, "", "partial_unfold"], [75, 0, 1, "", "partial_vec_to_tensor"], [75, 0, 1, "", "put_along_axis"], [75, 0, 1, "", "rot90"], [75, 0, 1, "", "soft_thresholding"], [75, 0, 1, "", "static_as_strided"], [75, 0, 1, "", "static_atleast_1d"], [75, 0, 1, "", "static_atleast_2d"], [75, 0, 1, "", "static_atleast_3d"], [75, 0, 1, "", "static_broadcast_shapes"], [75, 0, 1, "", "static_column_stack"], [75, 0, 1, "", "static_concat_from_sequence"], [75, 0, 1, "", "static_dsplit"], [75, 0, 1, "", "static_dstack"], [75, 0, 1, "", "static_expand"], [75, 0, 1, "", "static_flatten"], [75, 0, 1, "", "static_fliplr"], [75, 0, 1, "", "static_flipud"], [75, 0, 1, "", "static_fold"], [75, 0, 1, "", "static_heaviside"], [75, 0, 1, "", "static_hsplit"], [75, 0, 1, "", "static_hstack"], [75, 0, 1, "", "static_i0"], [75, 0, 1, "", "static_matricize"], [75, 0, 1, "", "static_moveaxis"], [75, 0, 1, "", "static_pad"], [75, 0, 1, "", "static_partial_fold"], [75, 0, 1, "", "static_partial_tensor_to_vec"], [75, 0, 1, "", "static_partial_unfold"], [75, 0, 1, "", "static_partial_vec_to_tensor"], [75, 0, 1, "", "static_rot90"], [75, 0, 1, "", "static_soft_thresholding"], [75, 0, 1, "", "static_take_along_axis"], [75, 0, 1, "", "static_top_k"], [75, 0, 1, "", "static_unfold"], [75, 0, 1, "", "static_vsplit"], [75, 0, 1, "", "static_vstack"], [75, 0, 1, "", "take"], [75, 0, 1, "", "take_along_axis"], [75, 0, 1, "", "top_k"], [75, 0, 1, "", "trim_zeros"], [75, 0, 1, "", "unfold"], [75, 0, 1, "", "unique_consecutive"], [75, 0, 1, "", "vsplit"], [75, 0, 1, "", "vstack"]], "ivy.data_classes.container.experimental.norms": [[75, 1, 1, "", "_ContainerWithNormsExperimental"]], "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "batch_norm"], [75, 0, 1, "", "group_norm"], [75, 0, 1, "", "instance_norm"], [75, 0, 1, "", "l1_normalize"], [75, 0, 1, "", "l2_normalize"], [75, 0, 1, "", "lp_normalize"], [75, 0, 1, "", "static_batch_norm"], [75, 0, 1, "", "static_group_norm"], [75, 0, 1, "", "static_instance_norm"], [75, 0, 1, "", "static_l1_normalize"], [75, 0, 1, "", "static_l2_normalize"], [75, 0, 1, "", "static_lp_normalize"]], "ivy.data_classes.container.experimental.random": [[75, 1, 1, "", "_ContainerWithRandomExperimental"]], "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "bernoulli"], [75, 0, 1, "", "beta"], [75, 0, 1, "", "dirichlet"], [75, 0, 1, "", "gamma"], [75, 0, 1, "", "poisson"], [75, 0, 1, "", "static_bernoulli"], [75, 0, 1, "", "static_beta"], [75, 0, 1, "", "static_dirichlet"], [75, 0, 1, "", "static_gamma"], [75, 0, 1, "", "static_poisson"]], "ivy.data_classes.container.experimental.searching": [[75, 1, 1, "", "_ContainerWithSearchingExperimental"]], "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "static_unravel_index"], [75, 0, 1, "", "unravel_index"]], "ivy.data_classes.container.experimental.set": [[75, 1, 1, "", "_ContainerWithSetExperimental"]], "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.sorting": [[75, 1, 1, "", "_ContainerWithSortingExperimental"]], "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "invert_permutation"], [75, 0, 1, "", "lexsort"], [75, 0, 1, "", "static_invert_permutation"], [75, 0, 1, "", "static_lexsort"]], "ivy.data_classes.container.experimental.statistical": [[75, 1, 1, "", "_ContainerWithStatisticalExperimental"]], "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_cummax"], [75, 0, 1, "", "_static_cummin"], [75, 0, 1, "", "_static_nanmin"], [75, 0, 1, "", "bincount"], [75, 0, 1, "", "corrcoef"], [75, 0, 1, "", "cov"], [75, 0, 1, "", "cummax"], [75, 0, 1, "", "cummin"], [75, 0, 1, "", "histogram"], [75, 0, 1, "", "igamma"], [75, 0, 1, "", "median"], [75, 0, 1, "", "nanmean"], [75, 0, 1, "", "nanmedian"], [75, 0, 1, "", "nanmin"], [75, 0, 1, "", "nanprod"], [75, 0, 1, "", "quantile"], [75, 0, 1, "", "static_bincount"], [75, 0, 1, "", "static_corrcoef"], [75, 0, 1, "", "static_cov"], [75, 0, 1, "", "static_histogram"], [75, 0, 1, "", "static_igamma"], [75, 0, 1, "", "static_median"], [75, 0, 1, "", "static_nanmean"], [75, 0, 1, "", "static_nanmedian"], [75, 0, 1, "", "static_nanprod"], [75, 0, 1, "", "static_quantile"]], "ivy.data_classes.container.experimental.utility": [[75, 1, 1, "", "_ContainerWithUtilityExperimental"]], "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "optional_get_element"], [75, 0, 1, "", "static_optional_get_element"]], "ivy.data_classes.container.general": [[76, 1, 1, "", "_ContainerWithGeneral"]], "ivy.data_classes.container.general._ContainerWithGeneral": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_all_equal"], [76, 0, 1, "", "_static_array_equal"], [76, 0, 1, "", "_static_assert_supports_inplace"], [76, 0, 1, "", "_static_clip_matrix_norm"], [76, 0, 1, "", "_static_clip_vector_norm"], [76, 0, 1, "", "_static_einops_rearrange"], [76, 0, 1, "", "_static_einops_reduce"], [76, 0, 1, "", "_static_einops_repeat"], [76, 0, 1, "", "_static_exists"], [76, 0, 1, "", "_static_fourier_encode"], [76, 0, 1, "", "_static_gather"], [76, 0, 1, "", "_static_gather_nd"], [76, 0, 1, "", "_static_get_num_dims"], [76, 0, 1, "", "_static_has_nans"], [76, 0, 1, "", "_static_inplace_decrement"], [76, 0, 1, "", "_static_inplace_increment"], [76, 0, 1, "", "_static_inplace_update"], [76, 0, 1, "", "_static_is_array"], [76, 0, 1, "", "_static_is_ivy_array"], [76, 0, 1, "", "_static_is_native_array"], [76, 0, 1, "", "_static_scatter_flat"], [76, 0, 1, "", "_static_scatter_nd"], [76, 0, 1, "", "_static_stable_divide"], [76, 0, 1, "", "_static_stable_pow"], [76, 0, 1, "", "_static_supports_inplace_updates"], [76, 0, 1, "", "_static_to_list"], [76, 0, 1, "", "_static_to_numpy"], [76, 0, 1, "", "_static_to_scalar"], [76, 0, 1, "", "_static_value_is_nan"], [76, 0, 1, "", "all_equal"], [76, 0, 1, "", "array_equal"], [76, 0, 1, "", "assert_supports_inplace"], [76, 0, 1, "", "clip_matrix_norm"], [76, 0, 1, "", "clip_vector_norm"], [76, 0, 1, "", "einops_rearrange"], [76, 0, 1, "", "einops_reduce"], [76, 0, 1, "", "einops_repeat"], [76, 0, 1, "", "exists"], [76, 0, 1, "", "fourier_encode"], [76, 0, 1, "", "gather"], [76, 0, 1, "", "gather_nd"], [76, 0, 1, "", "get_num_dims"], [76, 0, 1, "", "has_nans"], [76, 0, 1, "", "inplace_decrement"], [76, 0, 1, "", "inplace_increment"], [76, 0, 1, "", "inplace_update"], [76, 0, 1, "", "is_array"], [76, 0, 1, "", "is_ivy_array"], [76, 0, 1, "", "is_native_array"], [76, 0, 1, "", "isin"], [76, 0, 1, "", "itemsize"], [76, 0, 1, "", "scatter_flat"], [76, 0, 1, "", "scatter_nd"], [76, 0, 1, "", "stable_divide"], [76, 0, 1, "", "stable_pow"], [76, 0, 1, "", "static_isin"], [76, 0, 1, "", "static_itemsize"], [76, 0, 1, "", "static_strides"], [76, 0, 1, "", "strides"], [76, 0, 1, "", "supports_inplace_updates"], [76, 0, 1, "", "to_list"], [76, 0, 1, "", "to_numpy"], [76, 0, 1, "", "to_scalar"], [76, 0, 1, "", "value_is_nan"]], "ivy.data_classes.container.gradients": [[77, 1, 1, "", "_ContainerWithGradients"]], "ivy.data_classes.container.gradients._ContainerWithGradients": [[77, 4, 1, "", "_abc_impl"], [77, 0, 1, "", "_static_stop_gradient"], [77, 0, 1, "", "adam_step"], [77, 0, 1, "", "adam_update"], [77, 0, 1, "", "gradient_descent_update"], [77, 0, 1, "", "lamb_update"], [77, 0, 1, "", "lars_update"], [77, 0, 1, "", "optimizer_update"], [77, 0, 1, "", "stop_gradient"]], "ivy.data_classes.container.image": [[78, 1, 1, "", "_ContainerWithImage"]], "ivy.data_classes.container.image._ContainerWithImage": [[78, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.layers": [[79, 1, 1, "", "_ContainerWithLayers"]], "ivy.data_classes.container.layers._ContainerWithLayers": [[79, 4, 1, "", "_abc_impl"], [79, 0, 1, "", "_static_conv1d"], [79, 0, 1, "", "_static_conv1d_transpose"], [79, 0, 1, "", "_static_conv2d"], [79, 0, 1, "", "_static_conv2d_transpose"], [79, 0, 1, "", "_static_conv3d"], [79, 0, 1, "", "_static_conv3d_transpose"], [79, 0, 1, "", "_static_depthwise_conv2d"], [79, 0, 1, "", "_static_dropout"], [79, 0, 1, "", "_static_dropout1d"], [79, 0, 1, "", "_static_dropout2d"], [79, 0, 1, "", "_static_dropout3d"], [79, 0, 1, "", "_static_linear"], [79, 0, 1, "", "_static_lstm_update"], [79, 0, 1, "", "_static_multi_head_attention"], [79, 0, 1, "", "_static_reduce_window"], [79, 0, 1, "", "_static_scaled_dot_product_attention"], [79, 0, 1, "", "conv1d"], [79, 0, 1, "", "conv1d_transpose"], [79, 0, 1, "", "conv2d"], [79, 0, 1, "", "conv2d_transpose"], [79, 0, 1, "", "conv3d"], [79, 0, 1, "", "conv3d_transpose"], [79, 0, 1, "", "depthwise_conv2d"], [79, 0, 1, "", "dropout"], [79, 0, 1, "", "dropout1d"], [79, 0, 1, "", "dropout2d"], [79, 0, 1, "", "dropout3d"], [79, 0, 1, "", "linear"], [79, 0, 1, "", "lstm_update"], [79, 0, 1, "", "multi_head_attention"], [79, 0, 1, "", "reduce_window"], [79, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.container.linear_algebra": [[80, 1, 1, "", "_ContainerWithLinearAlgebra"]], "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_cholesky"], [80, 0, 1, "", "_static_cross"], [80, 0, 1, "", "_static_det"], [80, 0, 1, "", "_static_diag"], [80, 0, 1, "", "_static_diagonal"], [80, 0, 1, "", "_static_eigh"], [80, 0, 1, "", "_static_eigvalsh"], [80, 0, 1, "", "_static_inner"], [80, 0, 1, "", "_static_inv"], [80, 0, 1, "", "_static_matmul"], [80, 0, 1, "", "_static_matrix_norm"], [80, 0, 1, "", "_static_matrix_power"], [80, 0, 1, "", "_static_matrix_rank"], [80, 0, 1, "", "_static_matrix_transpose"], [80, 0, 1, "", "_static_outer"], [80, 0, 1, "", "_static_pinv"], [80, 0, 1, "", "_static_qr"], [80, 0, 1, "", "_static_slogdet"], [80, 0, 1, "", "_static_solve"], [80, 0, 1, "", "_static_svd"], [80, 0, 1, "", "_static_svdvals"], [80, 0, 1, "", "_static_tensordot"], [80, 0, 1, "", "_static_tensorsolve"], [80, 0, 1, "", "_static_trace"], [80, 0, 1, "", "_static_vander"], [80, 0, 1, "", "_static_vecdot"], [80, 0, 1, "", "_static_vector_norm"], [80, 0, 1, "", "_static_vector_to_skew_symmetric_matrix"], [80, 0, 1, "", "cholesky"], [80, 0, 1, "", "cross"], [80, 0, 1, "", "det"], [80, 0, 1, "", "diag"], [80, 0, 1, "", "diagonal"], [80, 0, 1, "", "eigh"], [80, 0, 1, "", "eigvalsh"], [80, 0, 1, "", "general_inner_product"], [80, 0, 1, "", "inner"], [80, 0, 1, "", "inv"], [80, 0, 1, "", "matmul"], [80, 0, 1, "", "matrix_norm"], [80, 0, 1, "", "matrix_power"], [80, 0, 1, "", "matrix_rank"], [80, 0, 1, "", "matrix_transpose"], [80, 0, 1, "", "outer"], [80, 0, 1, "", "pinv"], [80, 0, 1, "", "qr"], [80, 0, 1, "", "slogdet"], [80, 0, 1, "", "solve"], [80, 0, 1, "", "static_general_inner_product"], [80, 0, 1, "", "svd"], [80, 0, 1, "", "svdvals"], [80, 0, 1, "", "tensordot"], [80, 0, 1, "", "tensorsolve"], [80, 0, 1, "", "trace"], [80, 0, 1, "", "vander"], [80, 0, 1, "", "vecdot"], [80, 0, 1, "", "vector_norm"], [80, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.container.losses": [[81, 1, 1, "", "_ContainerWithLosses"]], "ivy.data_classes.container.losses._ContainerWithLosses": [[81, 4, 1, "", "_abc_impl"], [81, 0, 1, "", "_static_binary_cross_entropy"], [81, 0, 1, "", "_static_cross_entropy"], [81, 0, 1, "", "_static_sparse_cross_entropy"], [81, 0, 1, "", "binary_cross_entropy"], [81, 0, 1, "", "cross_entropy"], [81, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.container.manipulation": [[82, 1, 1, "", "_ContainerWithManipulation"]], "ivy.data_classes.container.manipulation._ContainerWithManipulation": [[82, 4, 1, "", "_abc_impl"], [82, 0, 1, "", "_static_clip"], [82, 0, 1, "", "_static_concat"], [82, 0, 1, "", "_static_constant_pad"], [82, 0, 1, "", "_static_expand_dims"], [82, 0, 1, "", "_static_flip"], [82, 0, 1, "", "_static_permute_dims"], [82, 0, 1, "", "_static_repeat"], [82, 0, 1, "", "_static_reshape"], [82, 0, 1, "", "_static_roll"], [82, 0, 1, "", "_static_split"], [82, 0, 1, "", "_static_squeeze"], [82, 0, 1, "", "_static_stack"], [82, 0, 1, "", "_static_swapaxes"], [82, 0, 1, "", "_static_tile"], [82, 0, 1, "", "_static_unstack"], [82, 0, 1, "", "_static_zero_pad"], [82, 0, 1, "", "clip"], [82, 0, 1, "", "concat"], [82, 0, 1, "", "constant_pad"], [82, 0, 1, "", "expand_dims"], [82, 0, 1, "", "flip"], [82, 0, 1, "", "permute_dims"], [82, 0, 1, "", "repeat"], [82, 0, 1, "", "reshape"], [82, 0, 1, "", "roll"], [82, 0, 1, "", "split"], [82, 0, 1, "", "squeeze"], [82, 0, 1, "", "stack"], [82, 0, 1, "", "swapaxes"], [82, 0, 1, "", "tile"], [82, 0, 1, "", "unstack"], [82, 0, 1, "", "zero_pad"]], "ivy.data_classes.container.norms": [[83, 1, 1, "", "_ContainerWithNorms"]], "ivy.data_classes.container.norms._ContainerWithNorms": [[83, 4, 1, "", "_abc_impl"], [83, 0, 1, "", "layer_norm"]], "ivy.data_classes.container.random": [[84, 1, 1, "", "_ContainerWithRandom"]], "ivy.data_classes.container.random._ContainerWithRandom": [[84, 4, 1, "", "_abc_impl"], [84, 0, 1, "", "_static_multinomial"], [84, 0, 1, "", "_static_randint"], [84, 0, 1, "", "_static_random_normal"], [84, 0, 1, "", "_static_random_uniform"], [84, 0, 1, "", "_static_shuffle"], [84, 0, 1, "", "multinomial"], [84, 0, 1, "", "randint"], [84, 0, 1, "", "random_normal"], [84, 0, 1, "", "random_uniform"], [84, 0, 1, "", "shuffle"]], "ivy.data_classes.container.searching": [[85, 1, 1, "", "_ContainerWithSearching"]], "ivy.data_classes.container.searching._ContainerWithSearching": [[85, 4, 1, "", "_abc_impl"], [85, 0, 1, "", "_static_argmax"], [85, 0, 1, "", "_static_argmin"], [85, 0, 1, "", "_static_argwhere"], [85, 0, 1, "", "_static_nonzero"], [85, 0, 1, "", "_static_where"], [85, 0, 1, "", "argmax"], [85, 0, 1, "", "argmin"], [85, 0, 1, "", "argwhere"], [85, 0, 1, "", "nonzero"], [85, 0, 1, "", "where"]], "ivy.data_classes.container.set": [[86, 1, 1, "", "_ContainerWithSet"]], "ivy.data_classes.container.set._ContainerWithSet": [[86, 4, 1, "", "_abc_impl"], [86, 0, 1, "", "_static_unique_all"], [86, 0, 1, "", "_static_unique_counts"], [86, 0, 1, "", "_static_unique_inverse"], [86, 0, 1, "", "_static_unique_values"], [86, 0, 1, "", "unique_all"], [86, 0, 1, "", "unique_counts"], [86, 0, 1, "", "unique_inverse"], [86, 0, 1, "", "unique_values"]], "ivy.data_classes.container.sorting": [[87, 1, 1, "", "_ContainerWithSorting"]], "ivy.data_classes.container.sorting._ContainerWithSorting": [[87, 4, 1, "", "_abc_impl"], [87, 0, 1, "", "_static_argsort"], [87, 0, 1, "", "_static_searchsorted"], [87, 0, 1, "", "_static_sort"], [87, 0, 1, "", "argsort"], [87, 0, 1, "", "msort"], [87, 0, 1, "", "searchsorted"], [87, 0, 1, "", "sort"], [87, 0, 1, "", "static_msort"]], "ivy.data_classes.container.statistical": [[88, 1, 1, "", "_ContainerWithStatistical"]], "ivy.data_classes.container.statistical._ContainerWithStatistical": [[88, 4, 1, "", "_abc_impl"], [88, 0, 1, "", "_static_cumprod"], [88, 0, 1, "", "_static_cumsum"], [88, 0, 1, "", "_static_min"], [88, 0, 1, "", "_static_prod"], [88, 0, 1, "", "_static_sum"], [88, 0, 1, "", "_static_var"], [88, 0, 1, "", "cumprod"], [88, 0, 1, "", "cumsum"], [88, 0, 1, "", "einsum"], [88, 0, 1, "", "max"], [88, 0, 1, "", "mean"], [88, 0, 1, "", "min"], [88, 0, 1, "", "prod"], [88, 0, 1, "", "std"], [88, 0, 1, "", "sum"], [88, 0, 1, "", "var"]], "ivy.data_classes.container.utility": [[89, 1, 1, "", "_ContainerWithUtility"]], "ivy.data_classes.container.utility._ContainerWithUtility": [[89, 4, 1, "", "_abc_impl"], [89, 0, 1, "", "_static_all"], [89, 0, 1, "", "_static_any"], [89, 0, 1, "", "all"], [89, 0, 1, "", "any"]], "ivy.data_classes.container.wrapping": [[90, 2, 1, "", "_wrap_function"], [90, 2, 1, "", "add_ivy_container_instance_methods"]], "ivy.data_classes.factorized_tensor": [[91, 3, 0, "-", "base"], [92, 3, 0, "-", "cp_tensor"], [93, 3, 0, "-", "parafac2_tensor"], [94, 3, 0, "-", "tr_tensor"], [95, 3, 0, "-", "tt_tensor"], [96, 3, 0, "-", "tucker_tensor"]], "ivy.data_classes.factorized_tensor.base": [[91, 1, 1, "", "FactorizedTensor"]], "ivy.data_classes.factorized_tensor.base.FactorizedTensor": [[91, 0, 1, "", "__init__"], [91, 4, 1, "", "_abc_impl"], [91, 0, 1, "", "mode_dot"], [91, 0, 1, "", "norm"], [91, 0, 1, "", "to_tensor"], [91, 0, 1, "", "to_unfolded"], [91, 0, 1, "", "to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, 1, 1, "", "CPTensor"]], "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor": [[92, 0, 1, "", "__init__"], [92, 4, 1, "", "_abc_impl"], [92, 0, 1, "", "cp_copy"], [92, 0, 1, "", "cp_flip_sign"], [92, 0, 1, "", "cp_lstsq_grad"], [92, 0, 1, "", "cp_mode_dot"], [92, 0, 1, "", "cp_n_param"], [92, 0, 1, "", "cp_norm"], [92, 0, 1, "", "cp_normalize"], [92, 0, 1, "", "cp_to_tensor"], [92, 0, 1, "", "cp_to_unfolded"], [92, 0, 1, "", "cp_to_vec"], [92, 0, 1, "", "mode_dot"], [92, 5, 1, "", "n_param"], [92, 0, 1, "", "norm"], [92, 0, 1, "", "normalize"], [92, 0, 1, "", "to_tensor"], [92, 0, 1, "", "to_unfolded"], [92, 0, 1, "", "to_vec"], [92, 0, 1, "", "unfolding_dot_khatri_rao"], [92, 0, 1, "", "validate_cp_rank"], [92, 0, 1, "", "validate_cp_tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, 1, 1, "", "Parafac2Tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor": [[93, 0, 1, "", "__init__"], [93, 4, 1, "", "_abc_impl"], [93, 0, 1, "", "apply_parafac2_projections"], [93, 0, 1, "", "from_CPTensor"], [93, 5, 1, "", "n_param"], [93, 0, 1, "", "parafac2_normalise"], [93, 0, 1, "", "parafac2_to_slice"], [93, 0, 1, "", "parafac2_to_slices"], [93, 0, 1, "", "parafac2_to_tensor"], [93, 0, 1, "", "parafac2_to_unfolded"], [93, 0, 1, "", "parafac2_to_vec"], [93, 0, 1, "", "to_tensor"], [93, 0, 1, "", "to_unfolded"], [93, 0, 1, "", "to_vec"], [93, 0, 1, "", "validate_parafac2_tensor"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, 1, 1, "", "TRTensor"]], "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor": [[94, 0, 1, "", "__init__"], [94, 4, 1, "", "_abc_impl"], [94, 5, 1, "", "n_param"], [94, 0, 1, "", "to_tensor"], [94, 0, 1, "", "to_unfolded"], [94, 0, 1, "", "to_vec"], [94, 0, 1, "", "tr_n_param"], [94, 0, 1, "", "tr_to_tensor"], [94, 0, 1, "", "tr_to_unfolded"], [94, 0, 1, "", "tr_to_vec"], [94, 0, 1, "", "validate_tr_rank"], [94, 0, 1, "", "validate_tr_tensor"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, 1, 1, "", "TTTensor"]], "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor": [[95, 0, 1, "", "__init__"], [95, 4, 1, "", "_abc_impl"], [95, 0, 1, "", "_tt_n_param"], [95, 0, 1, "", "index_update"], [95, 5, 1, "", "n_param"], [95, 0, 1, "", "pad_tt_rank"], [95, 0, 1, "", "to_tensor"], [95, 0, 1, "", "to_unfolding"], [95, 0, 1, "", "to_vec"], [95, 0, 1, "", "tt_to_tensor"], [95, 0, 1, "", "tt_to_unfolded"], [95, 0, 1, "", "tt_to_vec"], [95, 0, 1, "", "validate_tt_rank"], [95, 0, 1, "", "validate_tt_tensor"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, 1, 1, "", "TuckerTensor"], [96, 2, 1, "", "_bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor": [[96, 0, 1, "", "__init__"], [96, 4, 1, "", "_abc_impl"], [96, 0, 1, "", "mode_dot"], [96, 5, 1, "", "n_param"], [96, 0, 1, "", "to_tensor"], [96, 0, 1, "", "to_unfolded"], [96, 0, 1, "", "to_vec"], [96, 0, 1, "", "tucker_copy"], [96, 0, 1, "", "tucker_mode_dot"], [96, 0, 1, "", "tucker_n_param"], [96, 0, 1, "", "tucker_normalize"], [96, 0, 1, "", "tucker_to_tensor"], [96, 0, 1, "", "tucker_to_unfolded"], [96, 0, 1, "", "tucker_to_vec"], [96, 0, 1, "", "validate_tucker_rank"], [96, 0, 1, "", "validate_tucker_tensor"]], "ivy.data_classes.nested_array": [[101, 3, 0, "-", "base"], [102, 3, 0, "-", "elementwise"], [100, 3, 0, "-", "nested_array"]], "ivy.data_classes.nested_array.base": [[101, 1, 1, "", "NestedArrayBase"]], "ivy.data_classes.nested_array.base.NestedArrayBase": [[101, 0, 1, "", "__init__"], [101, 4, 1, "", "_abc_impl"], [101, 0, 1, "", "broadcast_shapes"], [101, 5, 1, "", "data"], [101, 5, 1, "", "device"], [101, 5, 1, "", "dtype"], [101, 5, 1, "", "inner_shape"], [101, 5, 1, "", "ndim"], [101, 0, 1, "", "nested_array"], [101, 5, 1, "", "nested_rank"], [101, 0, 1, "", "ragged_map"], [101, 0, 1, "", "ragged_multi_map"], [101, 0, 1, "", "ragged_multi_map_in_function"], [101, 0, 1, "", "replace_ivy_arrays"], [101, 5, 1, "", "shape"], [101, 0, 1, "", "unbind"]], "ivy.data_classes.nested_array.elementwise": [[102, 1, 1, "", "NestedArrayElementwise"]], "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise": [[102, 4, 1, "", "_abc_impl"], [102, 0, 1, "", "static_add"]], "ivy.data_classes.nested_array.nested_array": [[100, 1, 1, "", "NestedArray"]], "ivy.data_classes.nested_array.nested_array.NestedArray": [[100, 0, 1, "", "__init__"], [100, 0, 1, "", "from_row_lengths"], [100, 0, 1, "", "from_row_splits"]], "ivy.functional.ivy": [[614, 3, 0, "-", "activations"], [615, 3, 0, "-", "constants"], [616, 3, 0, "-", "control_flow_ops"], [617, 3, 0, "-", "creation"], [618, 3, 0, "-", "data_type"], [619, 3, 0, "-", "device"], [620, 3, 0, "-", "elementwise"], [621, 3, 0, "-", "experimental"], [622, 3, 0, "-", "general"], [623, 3, 0, "-", "gradients"], [624, 3, 0, "-", "layers"], [625, 3, 0, "-", "linear_algebra"], [626, 3, 0, "-", "losses"], [627, 3, 0, "-", "manipulation"], [628, 3, 0, "-", "meta"], [629, 3, 0, "-", "nest"], [630, 3, 0, "-", "norms"], [631, 3, 0, "-", "random"], [632, 3, 0, "-", "searching"], [633, 3, 0, "-", "set"], [634, 3, 0, "-", "sorting"], [635, 3, 0, "-", "statistical"], [636, 3, 0, "-", "utility"]], "ivy.functional.ivy.experimental": [[360, 3, 0, "-", "activations"], [361, 3, 0, "-", "constants"], [362, 3, 0, "-", "creation"], [363, 3, 0, "-", "data_type"], [364, 3, 0, "-", "device"], [365, 3, 0, "-", "elementwise"], [366, 3, 0, "-", "general"], [367, 3, 0, "-", "gradients"], [368, 3, 0, "-", "layers"], [369, 3, 0, "-", "linear_algebra"], [370, 3, 0, "-", "losses"], [371, 3, 0, "-", "manipulation"], [372, 3, 0, "-", "meta"], [373, 3, 0, "-", "nest"], [374, 3, 0, "-", "norms"], [375, 3, 0, "-", "random"], [376, 3, 0, "-", "searching"], [377, 3, 0, "-", "set"], [378, 3, 0, "-", "sorting"], [379, 3, 0, "-", "sparse_array"], [380, 3, 0, "-", "statistical"], [381, 3, 0, "-", "utility"]], "ivy.stateful": [[776, 3, 0, "-", "activations"], [777, 3, 0, "-", "converters"], [778, 3, 0, "-", "helpers"], [779, 3, 0, "-", "initializers"], [780, 3, 0, "-", "layers"], [781, 3, 0, "-", "losses"], [782, 3, 0, "-", "module"], [783, 3, 0, "-", "norms"], [784, 3, 0, "-", "optimizers"], [785, 3, 0, "-", "sequential"]], "ivy.stateful.activations": [[776, 1, 1, "", "ELU"], [776, 1, 1, "", "GEGLU"], [776, 1, 1, "", "GELU"], [776, 1, 1, "", "Hardswish"], [776, 1, 1, "", "LeakyReLU"], [776, 1, 1, "", "LogSigmoid"], [776, 1, 1, "", "LogSoftmax"], [776, 1, 1, "", "Logit"], [776, 1, 1, "", "Mish"], [776, 1, 1, "", "PReLU"], [776, 1, 1, "", "ReLU"], [776, 1, 1, "", "ReLU6"], [776, 1, 1, "", "SeLU"], [776, 1, 1, "", "SiLU"], [776, 1, 1, "", "Sigmoid"], [776, 1, 1, "", "Softmax"], [776, 1, 1, "", "Softplus"], [776, 1, 1, "", "Tanh"]], "ivy.stateful.activations.ELU": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.GEGLU": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.GELU": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.Hardswish": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.LeakyReLU": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSigmoid": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSoftmax": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.Logit": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.Mish": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.PReLU": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU6": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.SeLU": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.SiLU": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.Sigmoid": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softmax": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softplus": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.Tanh": [[776, 0, 1, "", "__init__"]], "ivy.stateful.converters": [[777, 1, 1, "", "ModuleConverters"], [777, 2, 1, "", "to_ivy_module"]], "ivy.stateful.converters.ModuleConverters": [[777, 0, 1, "", "from_flax_module"], [777, 0, 1, "", "from_haiku_module"], [777, 0, 1, "", "from_keras_module"], [777, 0, 1, "", "from_paddle_module"], [777, 0, 1, "", "from_torch_module"], [777, 0, 1, "", "to_keras_module"]], "ivy.stateful.helpers": [[778, 1, 1, "", "ModuleHelpers"]], "ivy.stateful.initializers": [[779, 1, 1, "", "Constant"], [779, 1, 1, "", "FirstLayerSiren"], [779, 1, 1, "", "GlorotUniform"], [779, 1, 1, "", "Initializer"], [779, 1, 1, "", "KaimingNormal"], [779, 1, 1, "", "Ones"], [779, 1, 1, "", "RandomNormal"], [779, 1, 1, "", "Siren"], [779, 1, 1, "", "Uniform"], [779, 1, 1, "", "Zeros"]], "ivy.stateful.initializers.Constant": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.FirstLayerSiren": [[779, 0, 1, "", "__init__"]], "ivy.stateful.initializers.GlorotUniform": [[779, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Initializer": [[779, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.KaimingNormal": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Ones": [[779, 0, 1, "", "__init__"]], "ivy.stateful.initializers.RandomNormal": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Siren": [[779, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Uniform": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Zeros": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers": [[780, 1, 1, "", "AdaptiveAvgPool1d"], [780, 1, 1, "", "AdaptiveAvgPool2d"], [780, 1, 1, "", "AvgPool1D"], [780, 1, 1, "", "AvgPool2D"], [780, 1, 1, "", "AvgPool3D"], [780, 1, 1, "", "Conv1D"], [780, 1, 1, "", "Conv1DTranspose"], [780, 1, 1, "", "Conv2D"], [780, 1, 1, "", "Conv2DTranspose"], [780, 1, 1, "", "Conv3D"], [780, 1, 1, "", "Conv3DTranspose"], [780, 1, 1, "", "Dct"], [780, 1, 1, "", "DepthwiseConv2D"], [780, 1, 1, "", "Dropout"], [780, 1, 1, "", "Embedding"], [780, 1, 1, "", "FFT"], [780, 1, 1, "", "IFFT"], [780, 1, 1, "", "Identity"], [780, 1, 1, "", "LSTM"], [780, 1, 1, "", "Linear"], [780, 1, 1, "", "MaxPool1D"], [780, 1, 1, "", "MaxPool2D"], [780, 1, 1, "", "MaxPool3D"], [780, 1, 1, "", "MultiHeadAttention"]], "ivy.stateful.layers.AdaptiveAvgPool1d": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.AdaptiveAvgPool2d": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool1D": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool2D": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool3D": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1D": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1DTranspose": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2D": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2DTranspose": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3D": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3DTranspose": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dct": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.DepthwiseConv2D": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dropout": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.Embedding": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.FFT": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.IFFT": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.Identity": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.LSTM": [[780, 0, 1, "", "__init__"], [780, 0, 1, "", "get_initial_state"]], "ivy.stateful.layers.Linear": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool1D": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool2D": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool3D": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.MultiHeadAttention": [[780, 0, 1, "", "__init__"]], "ivy.stateful.losses": [[781, 1, 1, "", "BinaryCrossEntropyLoss"], [781, 1, 1, "", "CrossEntropyLoss"], [781, 1, 1, "", "LogPoissonLoss"]], "ivy.stateful.losses.BinaryCrossEntropyLoss": [[781, 0, 1, "", "__init__"]], "ivy.stateful.losses.CrossEntropyLoss": [[781, 0, 1, "", "__init__"]], "ivy.stateful.losses.LogPoissonLoss": [[781, 0, 1, "", "__init__"]], "ivy.stateful.module": [[782, 1, 1, "", "Module"], [782, 1, 1, "", "ModuleMeta"]], "ivy.stateful.module.Module": [[782, 0, 1, "", "__call__"], [782, 0, 1, "", "__init__"], [782, 5, 1, "", "buffers"], [782, 0, 1, "", "build"], [782, 5, 1, "", "build_mode"], [782, 5, 1, "", "built"], [782, 5, 1, "", "device"], [782, 5, 1, "", "dtype"], [782, 0, 1, "", "eval"], [782, 0, 1, "", "load"], [782, 5, 1, "", "module_dict"], [782, 0, 1, "", "register_buffer"], [782, 0, 1, "", "register_parameter"], [782, 0, 1, "", "save"], [782, 0, 1, "", "save_weights"], [782, 0, 1, "", "show_graph"], [782, 5, 1, "", "state_dict"], [782, 0, 1, "", "to_device"], [782, 0, 1, "", "trace_graph"], [782, 0, 1, "", "train"], [782, 5, 1, "", "training"], [782, 5, 1, "", "v"]], "ivy.stateful.norms": [[783, 1, 1, "", "BatchNorm2D"], [783, 1, 1, "", "LayerNorm"]], "ivy.stateful.norms.BatchNorm2D": [[783, 0, 1, "", "__init__"]], "ivy.stateful.norms.LayerNorm": [[783, 0, 1, "", "__init__"]], "ivy.stateful.optimizers": [[784, 1, 1, "", "Adam"], [784, 1, 1, "", "AdamW"], [784, 1, 1, "", "LAMB"], [784, 1, 1, "", "LARS"], [784, 1, 1, "", "Optimizer"], [784, 1, 1, "", "SGD"]], "ivy.stateful.optimizers.Adam": [[784, 0, 1, "", "__init__"], [784, 0, 1, "", "set_state"], [784, 5, 1, "", "state"]], "ivy.stateful.optimizers.AdamW": [[784, 0, 1, "", "__init__"]], "ivy.stateful.optimizers.LAMB": [[784, 0, 1, "", "__init__"], [784, 0, 1, "", "set_state"], [784, 5, 1, "", "state"]], "ivy.stateful.optimizers.LARS": [[784, 0, 1, "", "__init__"], [784, 0, 1, "", "set_state"], [784, 5, 1, "", "state"]], "ivy.stateful.optimizers.Optimizer": [[784, 0, 1, "", "__init__"], [784, 0, 1, "", "set_state"], [784, 0, 1, "", "step"]], "ivy.stateful.optimizers.SGD": [[784, 0, 1, "", "__init__"], [784, 0, 1, "", "set_state"], [784, 5, 1, "", "state"]], "ivy.stateful.sequential": [[785, 1, 1, "", "Sequential"]], "ivy.stateful.sequential.Sequential": [[785, 0, 1, "", "__init__"]], "ivy.utils": [[786, 3, 0, "-", "assertions"], [787, 3, 0, "-", "backend"], [791, 3, 0, "-", "binaries"], [792, 3, 0, "-", "dynamic_import"], [793, 3, 0, "-", "einsum_parser"], [794, 3, 0, "-", "einsum_path_helpers"], [795, 3, 0, "-", "exceptions"], [796, 3, 0, "-", "inspection"], [797, 3, 0, "-", "logging"], [798, 3, 0, "-", "profiler"], [799, 3, 0, "-", "verbosity"]], "ivy.utils.assertions": [[786, 2, 1, "", "check_all"], [786, 2, 1, "", "check_all_or_any_fn"], [786, 2, 1, "", "check_any"], [786, 2, 1, "", "check_dev_correct_formatting"], [786, 2, 1, "", "check_dimensions"], [786, 2, 1, "", "check_elem_in_list"], [786, 2, 1, "", "check_equal"], [786, 2, 1, "", "check_exists"], [786, 2, 1, "", "check_false"], [786, 2, 1, "", "check_gather_input_valid"], [786, 2, 1, "", "check_gather_nd_input_valid"], [786, 2, 1, "", "check_greater"], [786, 2, 1, "", "check_inplace_sizes_valid"], [786, 2, 1, "", "check_isinstance"], [786, 2, 1, "", "check_kernel_padding_size"], [786, 2, 1, "", "check_less"], [786, 2, 1, "", "check_one_way_broadcastable"], [786, 2, 1, "", "check_same_dtype"], [786, 2, 1, "", "check_shape"], [786, 2, 1, "", "check_shapes_broadcastable"], [786, 2, 1, "", "check_true"], [786, 2, 1, "", "check_unsorted_segment_valid_params"]], "ivy.utils.backend": [[788, 3, 0, "-", "ast_helpers"], [789, 3, 0, "-", "handler"], [790, 3, 0, "-", "sub_backend_handler"]], "ivy.utils.backend.ast_helpers": [[788, 1, 1, "", "ImportTransformer"], [788, 1, 1, "", "IvyLoader"], [788, 1, 1, "", "IvyPathFinder"]], "ivy.utils.backend.ast_helpers.ImportTransformer": [[788, 0, 1, "", "__init__"], [788, 0, 1, "", "impersonate_import"], [788, 0, 1, "", "visit_Import"], [788, 0, 1, "", "visit_ImportFrom"]], "ivy.utils.backend.ast_helpers.IvyLoader": [[788, 0, 1, "", "__init__"], [788, 0, 1, "", "exec_module"]], "ivy.utils.backend.ast_helpers.IvyPathFinder": [[788, 0, 1, "", "find_spec"]], "ivy.utils.backend.handler": [[789, 1, 1, "", "ContextManager"], [789, 2, 1, "", "choose_random_backend"], [789, 2, 1, "", "current_backend"], [789, 2, 1, "", "dynamic_backend_converter"], [789, 2, 1, "", "prevent_access_locally"], [789, 2, 1, "", "previous_backend"], [789, 2, 1, "", "set_backend"], [789, 2, 1, "", "set_backend_to_specific_version"], [789, 2, 1, "", "set_jax_backend"], [789, 2, 1, "", "set_mxnet_backend"], [789, 2, 1, "", "set_numpy_backend"], [789, 2, 1, "", "set_paddle_backend"], [789, 2, 1, "", "set_tensorflow_backend"], [789, 2, 1, "", "set_torch_backend"], [789, 2, 1, "", "unset_backend"], [789, 2, 1, "", "with_backend"]], "ivy.utils.backend.handler.ContextManager": [[789, 0, 1, "", "__init__"]], "ivy.utils.backend.sub_backend_handler": [[790, 2, 1, "", "clear_sub_backends"], [790, 2, 1, "", "find_available_sub_backends"], [790, 2, 1, "", "fn_name_from_version_specific_fn_name"], [790, 2, 1, "", "fn_name_from_version_specific_fn_name_sub_backend"], [790, 2, 1, "", "set_sub_backend"], [790, 2, 1, "", "set_sub_backend_to_specific_version"], [790, 2, 1, "", "unset_sub_backend"]], "ivy.utils.binaries": [[791, 2, 1, "", "check_for_binaries"], [791, 2, 1, "", "cleanup_and_fetch_binaries"]], "ivy.utils.dynamic_import": [[792, 2, 1, "", "import_module"]], "ivy.utils.einsum_parser": [[793, 2, 1, "", "convert_interleaved_input"], [793, 2, 1, "", "convert_subscripts"], [793, 2, 1, "", "find_output_shape"], [793, 2, 1, "", "find_output_str"], [793, 2, 1, "", "gen_unused_symbols"], [793, 2, 1, "", "get_symbol"], [793, 2, 1, "", "has_valid_einsum_chars_only"], [793, 2, 1, "", "is_valid_einsum_char"], [793, 2, 1, "", "legalise_einsum_expr"], [793, 2, 1, "", "possibly_convert_to_numpy"]], "ivy.utils.einsum_path_helpers": [[794, 2, 1, "", "can_dot"], [794, 2, 1, "", "compute_size_by_dict"], [794, 2, 1, "", "find_contraction"], [794, 2, 1, "", "flop_count"], [794, 2, 1, "", "greedy_path"], [794, 2, 1, "", "optimal_path"], [794, 2, 1, "", "parse_einsum_input"], [794, 2, 1, "", "parse_possible_contraction"], [794, 2, 1, "", "update_other_results"]], "ivy.utils.exceptions": [[795, 7, 1, "", "InplaceUpdateException"], [795, 7, 1, "", "IvyAttributeError"], [795, 7, 1, "", "IvyBackendException"], [795, 7, 1, "", "IvyBroadcastShapeError"], [795, 7, 1, "", "IvyDeviceError"], [795, 7, 1, "", "IvyDtypePromotionError"], [795, 7, 1, "", "IvyError"], [795, 7, 1, "", "IvyException"], [795, 7, 1, "", "IvyIndexError"], [795, 7, 1, "", "IvyInvalidBackendException"], [795, 7, 1, "", "IvyNotImplementedException"], [795, 7, 1, "", "IvyValueError"], [795, 2, 1, "", "handle_exceptions"]], "ivy.utils.exceptions.InplaceUpdateException": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyAttributeError": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBackendException": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBroadcastShapeError": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDeviceError": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDtypePromotionError": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyError": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyException": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyIndexError": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyInvalidBackendException": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyNotImplementedException": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyValueError": [[795, 0, 1, "", "__init__"]], "ivy.utils.inspection": [[796, 2, 1, "", "add_array_specs"], [796, 2, 1, "", "fn_array_spec"]], "ivy.utils.logging": [[797, 2, 1, "", "set_logging_mode"], [797, 2, 1, "", "unset_logging_mode"]], "ivy.utils.profiler": [[798, 1, 1, "", "Profiler"]], "ivy.utils.profiler.Profiler": [[798, 0, 1, "", "__init__"], [798, 4, 1, "", "print_stats"], [798, 4, 1, "", "viz"]], "ivy.utils.verbosity": [[799, 2, 1, "", "cprint"]], "ivy_tests.test_ivy.helpers": [[759, 3, 0, "-", "assertions"], [760, 3, 0, "-", "available_frameworks"], [761, 3, 0, "-", "function_testing"], [762, 3, 0, "-", "globals"], [763, 3, 0, "-", "hypothesis_helpers"], [768, 3, 0, "-", "multiprocessing"], [769, 3, 0, "-", "pipeline_helper"], [770, 3, 0, "-", "structs"], [771, 3, 0, "-", "test_parameter_flags"], [772, 3, 0, "-", "testing_helpers"]], "ivy_tests.test_ivy.helpers.assertions": [[759, 2, 1, "", "assert_all_close"], [759, 2, 1, "", "assert_same_type"], [759, 2, 1, "", "assert_same_type_and_shape"], [759, 2, 1, "", "check_unsupported_device"], [759, 2, 1, "", "check_unsupported_device_and_dtype"], [759, 2, 1, "", "check_unsupported_dtype"], [759, 2, 1, "", "test_unsupported_function"], [759, 2, 1, "", "value_test"]], "ivy_tests.test_ivy.helpers.function_testing": [[761, 2, 1, "", "args_to_container"], [761, 2, 1, "", "args_to_frontend"], [761, 2, 1, "", "arrays_to_frontend"], [761, 2, 1, "", "as_lists"], [761, 2, 1, "", "convtrue"], [761, 2, 1, "", "create_args_kwargs"], [761, 2, 1, "", "flatten"], [761, 2, 1, "", "flatten_and_to_np"], [761, 2, 1, "", "flatten_frontend"], [761, 2, 1, "", "flatten_frontend_fw_to_np"], [761, 2, 1, "", "flatten_frontend_to_np"], [761, 2, 1, "", "get_frontend_ret"], [761, 2, 1, "", "get_ret_and_flattened_np_array"], [761, 2, 1, "", "gradient_incompatible_function"], [761, 2, 1, "", "gradient_test"], [761, 2, 1, "", "gradient_unsupported_dtypes"], [761, 2, 1, "", "kwargs_to_args_n_kwargs"], [761, 2, 1, "", "test_frontend_function"], [761, 2, 1, "", "test_frontend_method"], [761, 2, 1, "", "test_function"], [761, 2, 1, "", "test_function_backend_computation"], [761, 2, 1, "", "test_function_ground_truth_computation"], [761, 2, 1, "", "test_gradient_backend_computation"], [761, 2, 1, "", "test_gradient_ground_truth_computation"], [761, 2, 1, "", "test_method"], [761, 2, 1, "", "test_method_backend_computation"], [761, 2, 1, "", "test_method_ground_truth_computation"], [761, 2, 1, "", "traced_if_required"], [761, 2, 1, "", "wrap_frontend_function_args"]], "ivy_tests.test_ivy.helpers.globals": [[762, 6, 1, "", "CURRENT_FRONTEND_CONFIG"], [762, 7, 1, "", "InterruptedTest"], [762, 1, 1, "", "TestData"], [762, 2, 1, "", "setup_api_test"], [762, 2, 1, "", "setup_frontend_test"], [762, 2, 1, "", "teardown_api_test"], [762, 2, 1, "", "teardown_frontend_test"]], "ivy_tests.test_ivy.helpers.globals.InterruptedTest": [[762, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.globals.TestData": [[762, 0, 1, "", "__init__"], [762, 4, 1, "", "fn_name"], [762, 4, 1, "", "fn_tree"], [762, 4, 1, "", "is_method"], [762, 4, 1, "", "supported_device_dtypes"], [762, 4, 1, "", "test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[764, 3, 0, "-", "array_helpers"], [765, 3, 0, "-", "dtype_helpers"], [766, 3, 0, "-", "general_helpers"], [767, 3, 0, "-", "number_helpers"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[764, 2, 1, "", "array_and_broadcastable_shape"], [764, 2, 1, "", "array_bools"], [764, 2, 1, "", "array_helpers_dtype_info_helper"], [764, 2, 1, "", "array_indices_axis"], [764, 2, 1, "", "array_indices_put_along_axis"], [764, 2, 1, "", "array_values"], [764, 2, 1, "", "arrays_and_axes"], [764, 2, 1, "", "arrays_for_pooling"], [764, 2, 1, "", "broadcast_shapes"], [764, 2, 1, "", "cond_data_gen_helper"], [764, 2, 1, "", "create_concatenable_arrays_dtypes"], [764, 2, 1, "", "create_nested_input"], [764, 2, 1, "", "dtype_and_values"], [764, 2, 1, "", "dtype_array_query"], [764, 2, 1, "", "dtype_array_query_val"], [764, 2, 1, "", "dtype_values_axis"], [764, 2, 1, "", "einsum_helper"], [764, 2, 1, "", "get_first_solve_batch_matrix"], [764, 2, 1, "", "get_first_solve_matrix"], [764, 2, 1, "", "get_second_solve_batch_matrix"], [764, 2, 1, "", "get_second_solve_matrix"], [764, 2, 1, "", "list_of_size"], [764, 2, 1, "", "lists"], [764, 2, 1, "", "mutually_broadcastable_shapes"], [764, 2, 1, "", "prod"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[765, 2, 1, "", "array_dtypes"], [765, 2, 1, "", "cast_filter"], [765, 2, 1, "", "cast_filter_helper"], [765, 2, 1, "", "get_castable_dtype"], [765, 2, 1, "", "get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[766, 7, 1, "", "BroadcastError"], [766, 2, 1, "", "apply_safety_factor"], [766, 2, 1, "", "broadcast_shapes"], [766, 2, 1, "", "embedding_helper"], [766, 2, 1, "", "general_helpers_dtype_info_helper"], [766, 2, 1, "", "get_axis"], [766, 2, 1, "", "get_bounds"], [766, 2, 1, "", "get_mean_std"], [766, 2, 1, "", "get_shape"], [766, 2, 1, "", "matrix_is_stable"], [766, 2, 1, "", "reshape_shapes"], [766, 2, 1, "", "subsets"], [766, 2, 1, "", "two_broadcastable_shapes"], [766, 2, 1, "", "x_and_filters"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[767, 2, 1, "", "floats"], [767, 2, 1, "", "ints"], [767, 2, 1, "", "number"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[768, 2, 1, "", "backend_proc"], [768, 2, 1, "", "frontend_proc"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[769, 1, 1, "", "BackendHandler"], [769, 1, 1, "", "BackendHandlerMode"], [769, 1, 1, "", "WithBackendContext"], [769, 2, 1, "", "get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler": [[769, 0, 1, "", "update_backend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode": [[769, 4, 1, "", "SetBackend"], [769, 4, 1, "", "WithBackend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext": [[769, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.structs": [[770, 1, 1, "", "FrontendMethodData"]], "ivy_tests.test_ivy.helpers.structs.FrontendMethodData": [[770, 0, 1, "", "__init__"], [770, 4, 1, "", "framework_init_module"], [770, 4, 1, "", "init_name"], [770, 4, 1, "", "ivy_init_module"], [770, 4, 1, "", "method_name"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[771, 1, 1, "", "DynamicFlag"], [771, 1, 1, "", "FrontendFunctionTestFlags"], [771, 1, 1, "", "FrontendInitTestFlags"], [771, 1, 1, "", "FrontendMethodTestFlags"], [771, 1, 1, "", "FunctionTestFlags"], [771, 1, 1, "", "InitMethodTestFlags"], [771, 1, 1, "", "MethodTestFlags"], [771, 1, 1, "", "TestFlags"], [771, 2, 1, "", "build_flag"], [771, 2, 1, "", "frontend_function_flags"], [771, 2, 1, "", "frontend_init_flags"], [771, 2, 1, "", "frontend_method_flags"], [771, 2, 1, "", "function_flags"], [771, 2, 1, "", "init_method_flags"], [771, 2, 1, "", "method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag": [[771, 0, 1, "", "__init__"], [771, 4, 1, "", "strategy"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags": [[771, 0, 1, "", "__init__"], [771, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags": [[771, 0, 1, "", "__init__"], [771, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags": [[771, 0, 1, "", "__init__"], [771, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags": [[771, 0, 1, "", "__init__"], [771, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags": [[771, 0, 1, "", "__init__"], [771, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags": [[771, 0, 1, "", "__init__"], [771, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags": [[771, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[772, 2, 1, "", "handle_frontend_method"], [772, 2, 1, "", "handle_frontend_test"], [772, 2, 1, "", "handle_method"], [772, 2, 1, "", "handle_test"], [772, 2, 1, "", "num_positional_args"], [772, 2, 1, "", "num_positional_args_helper"], [772, 2, 1, "", "num_positional_args_method"], [772, 2, 1, "", "seed"]]}, "objtypes": {"0": "py:method", "1": "py:class", "2": "py:function", "3": "py:module", "4": "py:attribute", "5": "py:property", "6": "py:data", "7": "py:exception"}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "class", "Python class"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"demo": [0, 2, 3, 4, 15, 26, 40, 41], "creat": [0, 38, 39, 806], "notebook": 0, "TO": 1, "replac": 1, "titl": 1, "exampl": [2, 5, 7, 9, 15, 34, 800, 819, 824, 827, 830, 835, 851, 852, 853], "ivi": [3, 4, 5, 7, 14, 17, 25, 26, 27, 38, 39, 41, 42, 44, 800, 806, 808, 812, 814, 816, 819, 821, 827, 829, 830, 831, 832, 833, 834, 837, 838, 839, 840, 841, 842, 844, 851, 852, 853, 864], "alexnet": 3, "instal": [3, 4, 7, 17, 38, 39, 41, 800, 844], "data": [3, 4, 5, 7, 9, 17, 26, 38, 49, 72, 103, 363, 618, 633, 737, 738, 739, 740, 817, 829, 832, 840, 843], "prepar": [3, 4, 5, 7], "infer": [3, 4, 5, 7, 826], "torch": [3, 4, 5, 7, 34, 41, 858, 859], "tensorflow": [3, 4, 5, 9, 13, 34, 41, 42, 43, 858], "jax": [3, 4, 5, 6, 8, 9, 34, 41, 858], "appendix": [3, 5], "code": [3, 17, 18, 19, 20, 27, 38, 823, 831, 833], "implement": [3, 5, 816, 827, 829, 849], "bert": 4, "dependeci": 4, "import": [4, 5, 7, 9, 17, 38, 39, 42, 792], "modul": [4, 782, 817, 818, 841, 852], "sequenc": [4, 824], "classif": 4, "model": [4, 5, 6, 7, 8, 11, 12, 13, 24, 25, 26, 27, 38, 39, 40, 41, 42, 44, 842, 843], "imag": [5, 7, 55, 78, 248, 802, 814], "segment": 5, "unet": 5, "custom": [5, 812, 814, 827, 831, 840, 843], "preprocess": 5, "load": [5, 7, 9, 757, 840], "visualis": [5, 7], "initi": [5, 7, 779, 841], "nativ": [5, 7, 812, 835], "pretrain": [5, 7], "weight": [5, 7, 840], "mask": 5, "function": [5, 17, 26, 27, 38, 39, 40, 42, 44, 104, 761, 806, 815, 817, 818, 821, 824, 825, 826, 827, 829, 830, 832, 833, 834, 835, 837, 842, 843, 852], "us": [5, 7, 14, 22, 25, 42, 44, 800, 802, 806, 807, 811, 827, 830, 840, 844, 851, 852], "your": [5, 7, 808, 832], "backend": [5, 9, 17, 26, 38, 39, 41, 42, 787, 790, 806, 813, 817, 827, 833, 837, 843], "acceler": [6, 8, 9], "mmpretrain": 6, "resnet": [7, 45], "set": [7, 34, 38, 39, 63, 86, 377, 633, 807, 813, 822, 834, 844], "label": 7, "resnet34": 7, "classifi": 7, "resnet50": 7, "pytorch": [8, 9, 11, 40, 858], "xgboost": 9, "test": [9, 40, 761, 771, 772, 775, 806, 807, 808, 811, 816, 822, 830, 832], "compar": 9, "xgb_frontend": 9, "xgbclassifi": 9, "xgb": 9, "more": [9, 807, 835, 849], "exhaust": 9, "evalu": 9, "train": [9, 38, 40, 42], "time": 9, "v": [9, 21, 31, 34, 823, 843, 848, 851], "number": [9, 767, 824], "boost": 9, "round": [9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 278, 831], "fraction": 9, "comparison": [9, 840], "metric": [9, 42], "guid": [10, 15], "transpil": [11, 12, 13, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 40, 44, 800, 842, 844, 852], "build": [11, 12, 13, 42, 802, 814, 837], "top": [11, 12, 13, 809, 816], "up": [11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 807, 822, 831, 844], "haiku": 12, "develop": 14, "convolut": 14, "network": [14, 39, 42, 840, 842], "tutori": [15, 42], "And": 15, "learn": [15, 16, 858], "basic": [15, 16, 38, 39, 808, 829], "write": [17, 25, 829, 832], "content": [17, 40], "handler": [17, 26, 789, 790, 837], "structur": [17, 26, 814, 827, 843], "api": [17, 26, 27, 806, 811, 815, 816, 827, 833, 837, 839, 841, 842, 844, 848, 851, 852, 853, 855, 862, 864], "state": [17, 26, 27, 841, 843, 851], "unifi": [18, 21, 22, 28, 31, 32, 33, 38, 800, 839, 849, 853, 860, 864], "trace": [19, 21, 22, 27, 679, 821], "lazi": [21, 31, 851], "eager": [21, 31, 851], "how": [22, 806, 814, 822, 831, 832], "decor": [22, 33, 821, 826, 832], "ani": [23, 24, 26, 27, 756], "librari": [23, 26, 27, 42, 44, 852], "odsc": 26, "framework": [26, 32, 38, 760, 773, 827, 830, 838, 858, 861, 864, 865], "graph": [26, 43, 859, 864], "tracer": [26, 837, 842, 844, 851, 859, 864], "quickstart": 27, "get": [27, 800, 808, 844], "familiar": 27, "0": [28, 29, 30, 31, 35, 36], "1": [29, 31, 32, 33, 34, 37, 44, 858], "compil": [29, 31, 32, 33, 39, 851, 856, 861, 863, 864], "2": [30, 33, 35, 44, 858], "select": 32, "As": 33, "3": [34, 36, 37, 44], "dynam": [34, 42, 792, 813, 843], "static": 34, "todo": [34, 808], "explain": 34, "via": 34, "why": [34, 832, 849], "mode": [34, 817, 821, 834], "i": [34, 800, 814, 835], "true": 34, "default": [34, 533], "when": [34, 800], "from": [34, 41, 844], "numpi": [34, 41, 829, 858], "fals": 34, "kornia": 35, "perceiv": 36, "stabl": 37, "diffus": 37, "oper": [38, 824, 834, 839, 843], "ml": [38, 847, 860, 864], "chang": 38, "one": 38, "line": [38, 808], "No": [38, 807, 849], "need": [38, 832], "worri": 38, "about": 38, "type": [38, 49, 72, 363, 618, 817, 825, 829, 843], "differ": 38, "them": 38, "all": [38, 755], "standalon": [38, 825], "defin": [38, 39, 40, 42], "optim": [38, 784, 841], "input": [38, 39, 824], "target": 38, "loss": [38, 58, 81, 370, 626, 781], "loop": [38, 42], "sampl": 39, "check": [39, 823, 843], "result": 39, "simpl": 39, "neural": 39, "deepmind": [40, 41], "": [40, 42, 806, 814, 831, 844], "perceiverio": [40, 41], "tabl": [40, 814, 817], "construct": [40, 840], "some": 40, "helper": [40, 763, 764, 765, 766, 767, 769, 772, 778, 788, 794, 830, 832, 833], "pipelin": [40, 42, 769, 814, 816, 832, 843], "dataset": [40, 42], "download": 40, "dataload": 40, "gpu": [41, 843], "introduct": [41, 44, 829, 830], "python3": 41, "8": 41, "setup": [41, 823], "kernel": 41, "clone": [41, 807, 816], "repo": [41, 807], "ivy_model": 41, "run": [41, 808, 811, 814, 822, 832], "end": 42, "let": 42, "we": [42, 832], "ar": 42, "mnist": 42, "thi": 42, "temporari": 42, "loader": 42, "util": [42, 66, 89, 381, 636, 774], "plot": 42, "save": [42, 758, 840], "huggingfac": 43, "deit": 43, "can": 43, "visual": 43, "displai": 43, "html": 43, "file": 43, "browser": [43, 808], "To": [44, 808], "interfac": 44, "telemetri": 44, "18": 45, "activ": [46, 68, 360, 614, 776], "convers": [47, 70, 826], "creation": [48, 71, 362, 617], "devic": [50, 73, 364, 619, 818, 824, 829], "elementwis": [51, 74, 102, 365, 620], "experiment": [52, 75, 621, 806], "gener": [53, 76, 366, 622, 766, 827, 832, 835, 851], "gradient": [54, 77, 342, 367, 623, 827], "layer": [56, 79, 368, 624, 780], "linear": [57, 80, 369, 625, 648], "algebra": [57, 80, 369, 625], "manipul": [59, 82, 371, 627], "norm": [60, 83, 374, 630, 783], "random": [61, 84, 375, 631], "search": [62, 85, 376, 632], "sort": [64, 87, 378, 634, 744], "statist": [65, 88, 380, 635], "wrap": [67, 90, 826], "base": [69, 91, 101], "cp": 92, "tensor": [92, 93, 94, 95, 96, 99], "parafac2": 93, "tr": 94, "tt": 95, "tucker": [96, 441], "arrai": [97, 100, 122, 379, 764, 811, 812, 816, 824, 839, 848, 851, 855], "contain": [98, 808, 815, 840], "factor": 99, "nest": [100, 373, 629], "class": [103, 773, 812, 821, 829, 839], "gelu": 105, "hardswish": 106, "leaky_relu": 107, "log_softmax": 108, "mish": 109, "relu": 110, "sigmoid": 111, "softmax": 112, "softplu": 113, "softsign": 114, "cmp_i": 115, "cmp_isnot": 116, "for_loop": 117, "if_els": 118, "try_except": 119, "while_loop": 120, "arang": 121, "asarrai": 123, "copy_arrai": 124, "empti": 125, "empty_lik": 126, "ey": 127, "from_dlpack": 128, "note": [128, 139, 617], "frombuff": 129, "full": [130, 830], "full_lik": 131, "linspac": 132, "logspac": 133, "meshgrid": 134, "native_arrai": 135, "one_hot": 136, "ones": 137, "ones_lik": 138, "to_dlpack": 139, "tril": 140, "triu": 141, "triu_indic": 142, "zero": 143, "zeros_lik": 144, "as_ivy_dtyp": 145, "as_native_dtyp": 146, "astyp": 147, "broadcast_arrai": 148, "broadcast_to": 149, "can_cast": 150, "check_float": 151, "closest_valid_dtyp": 152, "default_complex_dtyp": 153, "default_dtyp": 154, "default_float_dtyp": 155, "default_int_dtyp": 156, "default_uint_dtyp": 157, "dtype": [158, 765, 824], "dtype_bit": 159, "finfo": 160, "function_supported_dtyp": 161, "function_unsupported_dtyp": 162, "iinfo": 163, "infer_default_dtyp": 164, "invalid_dtyp": 165, "is_bool_dtyp": 166, "is_complex_dtyp": 167, "is_float_dtyp": 168, "is_hashable_dtyp": 169, "is_int_dtyp": 170, "is_native_dtyp": 171, "is_uint_dtyp": 172, "promote_typ": 173, "promote_types_of_input": 174, "result_typ": 175, "set_default_complex_dtyp": 176, "set_default_dtyp": 177, "set_default_float_dtyp": 178, "set_default_int_dtyp": 179, "set_default_uint_dtyp": 180, "type_promote_arrai": 181, "unset_default_complex_dtyp": 182, "unset_default_dtyp": 183, "unset_default_float_dtyp": 184, "unset_default_int_dtyp": 185, "unset_default_uint_dtyp": 186, "valid_dtyp": 187, "as_ivy_dev": 188, "as_native_dev": 189, "clear_cached_mem_on_dev": 190, "default_devic": 191, "dev": 192, "dev_util": 193, "function_supported_devic": 194, "function_unsupported_devic": 195, "get_all_ivy_arrays_on_dev": 196, "gpu_is_avail": 197, "handle_soft_device_vari": 198, "num_cpu_cor": 199, "num_gpu": 200, "num_ivy_arrays_on_dev": 201, "percent_used_mem_on_dev": 202, "print_all_ivy_arrays_on_dev": 203, "set_default_devic": 204, "set_soft_device_mod": 205, "paramet": [205, 567, 568, 573, 574, 576, 577, 619, 622, 771, 776, 834], "set_split_factor": 206, "split_factor": 207, "split_func_cal": 208, "to_devic": 209, "total_mem_on_dev": 210, "tpu_is_avail": 211, "unset_default_devic": 212, "unset_soft_device_mod": 213, "used_mem_on_dev": 214, "ab": 215, "aco": 216, "acosh": 217, "add": [218, 819, 830, 864], "angl": 219, "asin": 220, "asinh": 221, "atan": 222, "atan2": 223, "atanh": 224, "bitwise_and": 225, "bitwise_invert": 226, "bitwise_left_shift": 227, "bitwise_or": 228, "bitwise_right_shift": 229, "bitwise_xor": 230, "ceil": 231, "co": 232, "cosh": 233, "deg2rad": 234, "divid": 235, "equal": 236, "erf": 237, "exp": 238, "exp2": 239, "expm1": 240, "floor": 241, "floor_divid": 242, "fmin": 243, "fmod": 244, "gcd": 245, "greater": 246, "greater_equ": 247, "isfinit": 249, "isinf": 250, "isnan": 251, "isreal": 252, "lcm": 253, "less": 254, "less_equ": 255, "log": [256, 797, 807], "log10": 257, "log1p": 258, "log2": 259, "logaddexp": 260, "logaddexp2": 261, "logical_and": 262, "logical_not": 263, "logical_or": 264, "logical_xor": 265, "maximum": 266, "minimum": 267, "multipli": 268, "nan_to_num": 269, "neg": 270, "not_equ": 271, "posit": [272, 824], "pow": 273, "rad2deg": 274, "real": 275, "reciproc": 276, "remaind": 277, "sign": 279, "sin": 280, "sinh": 281, "sqrt": 282, "squar": 283, "subtract": 284, "tan": [285, 819, 830], "tanh": 286, "trapz": 287, "trunc": 288, "trunc_divid": 289, "celu": 290, "elu": 291, "hardshrink": 292, "hardtanh": 293, "logit": 294, "logsigmoid": 295, "prelu": 296, "relu6": 297, "scaled_tanh": 298, "selu": 299, "silu": 300, "softshrink": 301, "stanh": 302, "tanhshrink": 303, "threshold": 304, "thresholded_relu": 305, "blackman_window": 306, "eye_lik": 307, "hamming_window": 308, "hann_window": 309, "indic": 310, "kaiser_bessel_derived_window": 311, "kaiser_window": 312, "mel_weight_matrix": 313, "ndenumer": 314, "ndindex": 315, "polyv": 316, "random_cp": 317, "random_parafac2": 318, "random_tr": 319, "random_tt": 320, "random_tuck": 321, "tril_indic": 322, "trilu": 323, "unsorted_segment_mean": 324, "unsorted_segment_min": 325, "unsorted_segment_sum": 326, "vorbis_window": 327, "allclos": 328, "amax": 329, "amin": 330, "binar": 331, "conj": 332, "copysign": 333, "count_nonzero": 334, "diff": 335, "digamma": 336, "erfc": 337, "fix": [338, 806, 822], "float_pow": 339, "fmax": 340, "frexp": 341, "hypot": 343, "isclos": 344, "ldexp": 345, "lerp": 346, "lgamma": 347, "modf": 348, "nansum": 349, "nextaft": 350, "signbit": 351, "sinc": 352, "sparsify_tensor": 353, "xlogi": 354, "zeta": 355, "reduc": 356, "bind_custom_gradient_funct": 357, "jvp": 358, "vjp": 359, "constant": [361, 615], "meta": [372, 628], "spars": 379, "adaptive_avg_pool1d": 382, "adaptive_avg_pool2d": 383, "adaptive_max_pool2d": 384, "area_interpol": 385, "avg_pool1d": 386, "avg_pool2d": 387, "avg_pool3d": 388, "dct": 389, "dft": 390, "dropout1d": 391, "dropout2d": 392, "dropout3d": 393, "embed": 394, "fft": 395, "fft2": 396, "generate_einsum_equ": 397, "get_interpolate_kernel": 398, "idct": 399, "ifft": 400, "ifftn": 401, "interp": 402, "interpol": 403, "max_pool1d": 404, "max_pool2d": 405, "max_pool3d": 406, "max_unpool1d": 407, "nearest_interpol": 408, "pool": 409, "reduce_window": 410, "rfft": 411, "rfftn": 412, "rnn": 413, "sliding_window": 414, "stft": 415, "adjoint": 416, "batched_out": 417, "cond": 418, "diagflat": 419, "dot": 420, "eig": [421, 659], "eigh_tridiagon": 422, "eigval": 423, "general_inner_product": 424, "higher_order_mo": 425, "initialize_tuck": 426, "khatri_rao": 427, "kron": 428, "kroneck": 429, "make_svd_non_neg": 430, "matrix_exp": 431, "mode_dot": 432, "multi_dot": 433, "multi_mode_dot": 434, "partial_tuck": 435, "solve_triangular": 436, "svd_flip": 437, "tensor_train": 438, "truncated_svd": 439, "tt_matrix_to_tensor": 440, "hinge_embedding_loss": 442, "huber_loss": 443, "kl_div": 444, "l1_loss": 445, "log_poisson_loss": 446, "poisson_nll_loss": 447, "smooth_l1_loss": 448, "soft_margin_loss": 449, "as_strid": 450, "associative_scan": 451, "atleast_1d": 452, "atleast_2d": 453, "atleast_3d": 454, "broadcast_shap": 455, "check_scalar": 456, "choos": 457, "column_stack": 458, "concat_from_sequ": 459, "dsplit": 460, "dstack": 461, "expand": 462, "fill_diagon": 463, "flatten": 464, "fliplr": 465, "flipud": 466, "fold": 467, "heavisid": 468, "hsplit": 469, "hstack": 470, "i0": 471, "matric": 472, "moveaxi": 473, "pad": 474, "partial_fold": 475, "partial_tensor_to_vec": 476, "partial_unfold": 477, "partial_vec_to_tensor": 478, "put_along_axi": 479, "rot90": 480, "soft_threshold": 481, "take": 482, "take_along_axi": 483, "top_k": 484, "trim_zero": 485, "unfold": 486, "unique_consecut": 487, "vsplit": 488, "vstack": 489, "batch_norm": 490, "group_norm": 491, "instance_norm": 492, "l1_normal": 493, "l2_normal": 494, "local_response_norm": 495, "lp_normal": 496, "bernoulli": 497, "beta": 498, "dirichlet": 499, "gamma": 500, "poisson": 501, "unravel_index": 502, "invert_permut": 503, "lexsort": 504, "is_ivy_sparse_arrai": 505, "is_native_sparse_arrai": 506, "native_sparse_arrai": 507, "native_sparse_array_to_indices_values_and_shap": 508, "bincount": 509, "corrcoef": 510, "cov": 511, "cummax": 512, "cummin": 513, "histogram": 514, "igamma": 515, "median": 516, "nanmean": 517, "nanmedian": 518, "nanmin": 519, "nanprod": 520, "quantil": 521, "optional_get_el": 522, "all_equ": 523, "arg_info": 524, "arg_nam": 525, "array_equ": 526, "assert_supports_inplac": 527, "cache_fn": 528, "clip_matrix_norm": 529, "clip_vector_norm": 530, "container_typ": 531, "current_backend_str": 532, "einops_rearrang": 534, "einops_reduc": 535, "einops_repeat": 536, "exist": [537, 802, 831], "fourier_encod": 538, "function_supported_devices_and_dtyp": 539, "function_unsupported_devices_and_dtyp": 540, "gather": 541, "gather_nd": 542, "get_all_arrays_in_memori": 543, "get_item": 544, "get_num_dim": 545, "get_referrers_recurs": 546, "has_nan": 547, "inplace_arrays_support": 548, "inplace_decr": 549, "inplace_incr": 550, "inplace_upd": 551, "inplace_variables_support": 552, "is_arrai": 553, "is_ivy_arrai": 554, "is_ivy_contain": 555, "is_ivy_nested_arrai": 556, "is_native_arrai": 557, "isin": 558, "isscalar": 559, "items": 560, "match_kwarg": 561, "multiprocess": [562, 768], "num_arrays_in_memori": 563, "print_all_arrays_in_memori": 564, "scatter_flat": 565, "scatter_nd": 566, "set_array_mod": 567, "set_exception_trace_mod": 568, "set_inplace_mod": 569, "set_item": 570, "set_min_bas": 571, "set_min_denomin": 572, "set_nestable_mod": 573, "set_precise_mod": 574, "set_queue_timeout": 575, "set_shape_array_mod": 576, "set_show_func_wrapper_trace_mod": 577, "set_tmp_dir": 578, "shape": [579, 633, 737, 738, 739, 740, 826, 843], "stable_divid": 580, "stable_pow": 581, "stride": 582, "supports_inplace_upd": 583, "to_ivy_shap": 584, "to_list": 585, "to_native_shap": 586, "to_numpi": 587, "to_scalar": 588, "try_else_non": 589, "unset_array_mod": 590, "unset_exception_trace_mod": 591, "unset_inplace_mod": 592, "unset_min_bas": 593, "unset_min_denomin": 594, "unset_nestable_mod": 595, "unset_precise_mod": 596, "unset_queue_timeout": 597, "unset_shape_array_mod": 598, "unset_show_func_wrapper_trace_mod": 599, "unset_tmp_dir": 600, "value_is_nan": 601, "vmap": 602, "adam_step": 603, "adam_upd": 604, "execute_with_gradi": [605, 827], "grad": 606, "gradient_descent_upd": 607, "jac": 608, "lamb_upd": 609, "lars_upd": 610, "optimizer_upd": 611, "stop_gradi": 612, "value_and_grad": 613, "control": [616, 843], "flow": [616, 843], "op": 616, "depend": [633, 737, 738, 739, 740], "output": [633, 737, 738, 739, 740], "conv": 637, "conv1d": 638, "conv1d_transpos": 639, "conv2d": 640, "conv2d_transpos": 641, "conv3d": 642, "conv3d_transpos": 643, "conv_general_dil": 644, "conv_general_transpos": 645, "depthwise_conv2d": 646, "dropout": 647, "lstm_updat": 649, "multi_head_attent": 650, "nm": 651, "roi_align": 652, "scaled_dot_product_attent": 653, "choleski": 654, "cross": 655, "det": 656, "diag": 657, "diagon": 658, "eigh": 660, "eigvalsh": 661, "inner": 662, "inv": 663, "lu_factor": 664, "matmul": 665, "matrix_norm": 666, "matrix_pow": 667, "matrix_rank": 668, "matrix_transpos": 669, "outer": 670, "pinv": 671, "qr": 672, "slogdet": 673, "solv": 674, "svd": 675, "svdval": 676, "tensordot": 677, "tensorsolv": 678, "vander": 680, "vecdot": 681, "vector_norm": 682, "vector_to_skew_symmetric_matrix": 683, "binary_cross_entropi": 684, "cross_entropi": 685, "sparse_cross_entropi": 686, "clip": 687, "concat": 688, "constant_pad": 689, "expand_dim": 690, "flip": 691, "permute_dim": 692, "repeat": 693, "reshap": 694, "roll": [695, 819], "split": 696, "squeez": 697, "stack": [698, 821], "swapax": 699, "tile": 700, "unstack": 701, "zero_pad": 702, "fomaml_step": 703, "maml_step": 704, "reptile_step": 705, "all_nested_indic": 706, "copy_nest": 707, "duplicate_array_index_chain": 708, "index_nest": 709, "insert_into_nest_at_index": 710, "insert_into_nest_at_indic": 711, "map": [712, 816], "map_nest_at_index": 713, "map_nest_at_indic": 714, "multi_index_nest": 715, "nested_ani": 716, "nested_argwher": 717, "nested_map": 718, "nested_multi_map": 719, "prune_empti": 720, "prune_nest_at_index": 721, "prune_nest_at_indic": 722, "set_nest_at_index": 723, "set_nest_at_indic": 724, "layer_norm": 725, "multinomi": 726, "randint": 727, "random_norm": 728, "random_uniform": 729, "seed": 730, "shuffl": 731, "argmax": 732, "argmin": 733, "argwher": 734, "nonzero": 735, "where": [736, 806, 822], "unique_al": 737, "unique_count": 738, "unique_invers": 739, "unique_valu": 740, "argsort": 741, "msort": 742, "searchsort": 743, "cumprod": 745, "cumsum": 746, "einsum": [747, 793, 794], "max": 748, "mean": 749, "min": 750, "prod": 751, "std": 752, "sum": 753, "var": 754, "assert": [759, 786, 821], "avail": 760, "global": [762, 834], "hypothesi": [763, 807, 830, 832], "struct": 770, "flag": 771, "convert": [777, 842], "sequenti": 785, "ast": 788, "sub": 790, "binari": [791, 807], "parser": 793, "path": 794, "except": [795, 821, 826], "inspect": 796, "profil": 798, "verbos": 799, "statu": 800, "ai": 800, "start": [800, 844], "pip": [800, 844], "document": 800, "dive": [800, 810], "deeper": 800, "should": 800, "contribut": [800, 801, 806, 831], "commun": 800, "citat": 800, "doc": [802, 814], "docker": [802, 807, 808, 814, 844], "conveni": [802, 814, 825], "script": [802, 814], "hub": 802, "local": [802, 808, 823], "without": [802, 830], "error": [803, 821, 822], "handl": [803, 812, 818, 821, 826, 843], "github": [804, 806, 807], "reward": 804, "badg": 804, "tier": 804, "help": [805, 808, 822], "resourc": 805, "open": 806, "task": 806, "fail": [806, 822, 832], "frontend": [806, 813, 829, 830, 842], "place": 806, "checklist": 806, "format": [806, 823, 857, 864], "extend": [806, 832, 835], "an": [806, 827], "issu": [806, 808, 823, 844], "templat": 806, "fork": [807, 808], "pre": [807, 823], "commit": [807, 808, 816, 823], "pycharm": [807, 808, 823], "virtual": 807, "environ": 807, "miniconda": 807, "venv": 807, "interpret": 807, "window": 807, "maco": 807, "ubuntu": 807, "detail": 807, "free": 807, "wsl": 807, "codespac": 807, "The": [807, 808, 814, 827, 829, 839, 843, 848], "list": 808, "manag": 808, "who": 808, "ask": [808, 822], "With": 808, "command": 808, "pull": [808, 816], "request": [808, 816], "small": 808, "often": 808, "interact": 808, "most": 808, "out": [808, 824, 826, 828], "id": [808, 811], "volunt": 809, "workflow": [809, 816], "contributor": 809, "core": 809, "rise": 809, "join": 809, "our": [809, 827], "team": 809, "deep": 810, "termin": 811, "regener": 811, "failur": 811, "skip": 811, "integr": [812, 816, 823, 831, 832], "version": [813, 833, 843], "support": [813, 817, 826, 829, 843], "builder": 814, "being": 814, "option": 814, "index": 814, "rst": 814, "partial_conf": 814, "py": 814, "prebuild": 814, "sh": 814, "extens": 814, "custom_autosummari": 814, "hide": 814, "discussion_link": 814, "skippable_funct": 814, "ivy_data": 814, "instanc": [815, 829, 830, 839], "method": [815, 829, 830, 839, 840], "special": [815, 817, 829], "nestabl": [815, 824, 825, 826], "continu": [816, 823], "push": 816, "pr": 816, "trigger": 816, "A": [816, 835], "down": 816, "view": [816, 826, 828], "store": 816, "retriev": 816, "repositori": 816, "nitti": 816, "gritti": 816, "storag": 816, "space": 816, "unifyai": 816, "determin": 816, "coverag": 816, "multipl": 816, "runner": 816, "race": 816, "condit": 816, "period": 816, "manual": 816, "dispatch": 816, "ci": 816, "dashboard": 816, "promot": [817, 829], "precis": 817, "non": [817, 835], "argument": [817, 818, 824, 826, 828, 829], "other": [817, 818], "unsupport": 817, "attribut": [817, 834], "case": [817, 840], "bug": 817, "cast": [817, 829], "superset": [817, 835], "docstr": [819, 820], "configur": [821, 830, 840], "func_wrapp": 821, "prune": 821, "handle_except": 821, "consist": [821, 832], "prerequir": 822, "common": [822, 823], "lint": [823, 831], "keyword": 824, "integ": 824, "primari": 825, "composit": 825, "mix": [825, 826, 832], "partial": [825, 826, 832], "order": 826, "wrapper": [826, 864, 865], "miscellan": 826, "overview": [827, 831], "usag": [827, 831, 835, 853], "signatur": 827, "design": [827, 833, 836], "polici": [827, 829], "specif": [827, 862, 863, 864], "consider": 827, "inplac": 828, "updat": 828, "copi": 828, "short": 829, "unus": 829, "rule": 829, "duplic": [829, 835], "valu": 830, "alia": 830, "formatt": 831, "functionorderingformatt": 831, "work": [831, 848, 854], "own": 832, "strategi": 832, "do": [832, 848], "effect": 832, "bonu": 832, "featur": 832, "self": 832, "explicit": 832, "test_array_funct": 832, "re": [832, 849], "navig": 833, "categor": 833, "submodul": 833, "unpin": 833, "properti": 834, "getter": 834, "setter": 834, "set_": 834, "unset_": 834, "behaviour": 835, "standard": [835, 848, 855, 864], "what": [835, 864], "balanc": 835, "effici": 835, "maxim": 835, "block": 837, "monkei": 839, "patch": 839, "represent": 840, "recurs": 840, "built": 840, "ins": 840, "access": 840, "compartment": 840, "role": 842, "faq": 843, "maintain": 843, "size": 843, "deploy": 843, "auto": 843, "differenti": 843, "replica": 843, "parallel": 843, "altern": 843, "sourc": 844, "folder": 844, "kei": 844, "question": 844, "glossari": 845, "motiv": 846, "explos": 847, "skeptic": 848, "complimentari": 848, "competit": 848, "infinit": 849, "shelf": 849, "life": 849, "One": 850, "liner": 850, "trace_graph": 851, "cach": 851, "sharp": [851, 852, 853], "bit": [851, 852, 853], "relat": 854, "infrastructur": [856, 864], "llvm": 856, "mlir": 856, "oneapi": 856, "exchang": [857, 864], "onnx": 857, "nnef": 857, "coreml": 857, "matlab": 858, "scipi": 858, "scikit": 858, "theano": 858, "panda": 858, "julia": 858, "apach": [858, 861], "spark": 858, "mllib": 858, "caff": 858, "chainer": 858, "mxnet": 858, "cntk": 858, "flux": 858, "dex": 858, "languag": 858, "tf": 859, "jaxpr": 859, "jit": 859, "fx": 859, "compani": [860, 864], "quansight": 860, "modular": 860, "octoml": 860, "multi": [861, 864], "vendor": [861, 862, 863, 864], "tvm": 861, "xla": 861, "gcc": 861, "tensorrt": 862, "cuda": 862, "icc": 863, "icx": 863, "nvcc": 863, "doe": 864, "eagerpi": 865, "kera": 865, "thinc": 865, "tensorli": 865, "neuropod": 865}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"function_unsupported_dtypes": [[162, "function-unsupported-dtypes"]], "triu_indices": [[142, "triu-indices"]], "can_cast": [[150, "can-cast"]], "type_promote_arrays": [[181, "type-promote-arrays"]], "unset_default_complex_dtype": [[182, "unset-default-complex-dtype"]], "astype": [[147, "astype"]], "closest_valid_dtype": [[152, "closest-valid-dtype"]], "zeros_like": [[144, "zeros-like"]], "set_default_complex_dtype": [[176, "set-default-complex-dtype"]], "tril": [[140, "tril"]], "is_float_dtype": [[168, "is-float-dtype"]], "is_int_dtype": [[170, "is-int-dtype"]], "as_native_dtype": [[146, "as-native-dtype"]], "infer_default_dtype": [[164, "infer-default-dtype"]], "is_bool_dtype": [[166, "is-bool-dtype"]], "broadcast_arrays": [[148, "broadcast-arrays"]], "invalid_dtype": [[165, "invalid-dtype"]], "set_default_uint_dtype": [[180, "set-default-uint-dtype"]], "set_default_float_dtype": [[178, "set-default-float-dtype"]], "default_int_dtype": [[156, "default-int-dtype"]], "dtype_bits": [[159, "dtype-bits"]], "is_hashable_dtype": [[169, "is-hashable-dtype"]], "default_dtype": [[154, "default-dtype"]], "promote_types_of_inputs": [[174, "promote-types-of-inputs"]], "set_default_dtype": [[177, "set-default-dtype"]], "as_ivy_dtype": [[145, "as-ivy-dtype"]], "is_complex_dtype": [[167, "is-complex-dtype"]], "broadcast_to": [[149, "broadcast-to"]], "to_dlpack": [[139, "to-dlpack"]], "Note": [[139, null], [128, null], [617, null], [617, null]], "default_float_dtype": [[155, "default-float-dtype"]], "triu": [[141, "triu"]], "dtype": [[158, "dtype"]], "function_supported_dtypes": [[161, "function-supported-dtypes"]], "result_type": [[175, "result-type"]], "unset_default_dtype": [[183, "unset-default-dtype"]], "is_uint_dtype": [[172, "is-uint-dtype"]], "check_float": [[151, "check-float"]], "iinfo": [[163, "iinfo"]], "default_complex_dtype": [[153, "default-complex-dtype"]], "zeros": [[143, "zeros"]], "promote_types": [[173, "promote-types"]], "set_default_int_dtype": [[179, "set-default-int-dtype"]], "ones_like": [[138, "ones-like"]], "default_uint_dtype": [[157, "default-uint-dtype"]], "finfo": [[160, "finfo"]], "is_native_dtype": [[171, "is-native-dtype"]], "Compiler Infrastructure": [[856, "compiler-infrastructure"], [864, "compiler-infrastructure"]], "LLVM": [[856, "id1"]], "MLIR": [[856, "id2"]], "OneAPI": [[856, "id3"]], "Ivy Stateful API": [[841, "ivy-stateful-api"], [17, "Ivy-Stateful-API"], [26, "Ivy-Stateful-API"]], "Modules": [[841, "modules"]], "Initializers": [[841, "initializers"], [779, "module-ivy.stateful.initializers"]], "Optimizers": [[841, "optimizers"], [784, "module-ivy.stateful.optimizers"]], "ivy.trace_graph()": [[851, "ivy-trace-graph"]], "Tracer API": [[851, "tracer-api"]], "Using the tracer": [[851, "using-the-tracer"]], "Eager vs lazy Compilation": [[851, "eager-vs-lazy-compilation"]], "Array caching": [[851, "array-caching"]], "Generators": [[851, "generators"]], "Stateful": [[851, "stateful"]], "Sharp bits": [[851, "sharp-bits"], [853, "sharp-bits"], [852, "sharp-bits"]], "Examples": [[851, "examples"], [853, "examples"], [852, "examples"], [824, "examples"], [800, "examples"]], "ivy.unify()": [[853, "ivy-unify"]], "Unify API": [[853, "unify-api"]], "Usage": [[853, "usage"]], "FAQ": [[843, "faq"]], "Maintaining Backend Versions": [[843, "maintaining-backend-versions"]], "Dynamic Sizes": [[843, "dynamic-sizes"]], "Type and Shape Checking": [[843, "type-and-shape-checking"]], "GPU handling": [[843, "gpu-handling"]], "Model Deployment": [[843, "model-deployment"]], "Dynamic Control Flow": [[843, "dynamic-control-flow"]], "Auto-Differentiation": [[843, "auto-differentiation"]], "Replicas, and Data vs Model Parallelism": [[843, "replicas-and-data-vs-model-parallelism"]], "Support for Functions": [[843, "support-for-functions"]], "Alternative Data Structures": [[843, "alternative-data-structures"]], "Custom Operations": [[843, "custom-operations"]], "The Pipeline": [[843, "the-pipeline"]], "State": [[843, "state"]], "API Standards": [[855, "api-standards"], [864, "api-standards"]], "Array API Standard": [[855, "id1"]], "Superset Behaviour": [[835, "superset-behaviour"]], "Extending the Standard": [[835, "extending-the-standard"]], "What is the Superset?": [[835, "what-is-the-superset"]], "A Non-Duplicate Superset": [[835, "a-non-duplicate-superset"]], "What is not the Superset?": [[835, "what-is-not-the-superset"]], "Balancing Generalization with Efficiency": [[835, "balancing-generalization-with-efficiency"]], "More Examples": [[835, "more-examples"]], "Maximizing Usage of Native Functionality": [[835, "maximizing-usage-of-native-functionality"]], "Ivy Frontends": [[829, "ivy-frontends"]], "Introduction": [[829, "introduction"], [830, "introduction"], [41, "Introduction"]], "The Frontend Basics": [[829, "the-frontend-basics"]], "Writing Frontend Functions": [[829, "writing-frontend-functions"]], "Short Frontend Implementations": [[829, "short-frontend-implementations"]], "Unused Arguments": [[829, "unused-arguments"]], "Supported Data Types and Devices": [[829, "supported-data-types-and-devices"]], "Classes and Instance Methods": [[829, "classes-and-instance-methods"]], "Frontend Data Type Promotion Rules": [[829, "frontend-data-type-promotion-rules"]], "NumPy Special Argument - Casting": [[829, "numpy-special-argument-casting"]], "Frontends Duplicate Policy": [[829, "frontends-duplicate-policy"]], "Building Blocks": [[837, "building-blocks"]], "Backend Functional APIs \u2705": [[837, "backend-functional-apis"]], "Ivy Functional API \u2705": [[837, "ivy-functional-api"]], "Backend Handler \u2705": [[837, "backend-handler"]], "Tracer \ud83d\udea7": [[837, "tracer"]], "Get Started": [[844, "get-started"]], "Installing using pip": [[844, "installing-using-pip"], [800, "installing-using-pip"]], "Docker": [[844, "docker"]], "Installing from source": [[844, "installing-from-source"]], "Ivy\u2019s tracer and transpiler": [[844, "ivy-s-tracer-and-transpiler"]], "Ivy Folder": [[844, "ivy-folder"]], "Setting Up the API key": [[844, "setting-up-the-api-key"]], "Issues and Questions": [[844, "issues-and-questions"]], "ivy.transpile()": [[852, "ivy-transpile"]], "Transpiler API": [[852, "transpiler-api"]], "Using the transpiler": [[852, "using-the-transpiler"]], "Transpiling functions": [[852, "transpiling-functions"]], "Transpiling Libraries": [[852, "transpiling-libraries"]], "Transpiling Modules": [[852, "transpiling-modules"]], "Operating Modes": [[834, "operating-modes"]], "Global Parameter Properties": [[834, "global-parameter-properties"]], "Getter: ivy. attribute": [[834, "getter-ivy-setting-attribute"]], "Setter: ivy.set_ and ivy.unset_ functions": [[834, "setter-ivy-set-setting-and-ivy-unset-setting-functions"]], "ML Explosion": [[847, "ml-explosion"]], "Inplace Updates": [[828, "inplace-updates"]], "out argument": [[828, "out-argument"]], "copy argument": [[828, "copy-argument"]], "Views": [[828, "views"]], "Why Unify?": [[849, "why-unify"]], "No More Re-implementations \ud83d\udea7": [[849, "no-more-re-implementations"]], "\u201cInfinite\u201d Shelf-Life \u2705": [[849, "infinite-shelf-life"]], "Multi-Vendor Compiler Frameworks": [[861, "multi-vendor-compiler-frameworks"], [864, "multi-vendor-compiler-frameworks"]], "Apache TVM": [[861, "apache-tvm"]], "XLA": [[861, "xla"]], "GCC": [[861, "gcc"]], "Related Work": [[854, "related-work"]], "Wrapper Frameworks": [[865, "wrapper-frameworks"], [864, "wrapper-frameworks"]], "EagerPy eagerpy": [[865, "eagerpy-eagerpy"]], "Keras keras": [[865, "keras-keras"]], "Thinc thinc": [[865, "thinc-thinc"]], "TensorLy tensorly": [[865, "tensorly-tensorly"]], "NeuroPod": [[865, "id1"]], "One liners": [[850, "one-liners"]], "Ivy as a Transpiler": [[842, "ivy-as-a-transpiler"], [27, "Ivy-as-a-Transpiler"], [26, "Ivy-as-a-Transpiler"]], "Frontend Functional APIs \ud83d\udea7": [[842, "frontend-functional-apis"]], "Role of the Tracer \ud83d\udea7": [[842, "role-of-the-tracer"]], "Converting Network Models \ud83d\udea7": [[842, "converting-network-models"]], "Vendor-Specific Compilers": [[863, "vendor-specific-compilers"], [864, "vendor-specific-compilers"]], "ICC": [[863, "id1"]], "ICX": [[863, "icx"]], "NVCC": [[863, "nvcc"]], "Vendor-Specific APIs": [[862, "vendor-specific-apis"], [864, "vendor-specific-apis"]], "TensorRT tensorrt": [[862, "tensorrt-tensorrt"]], "CUDA cuda": [[862, "cuda-cuda"]], "ML-Unifying Companies": [[860, "ml-unifying-companies"], [864, "ml-unifying-companies"]], "Quansight": [[860, "id1"]], "Modular": [[860, "id2"]], "OctoML": [[860, "id3"]], "Ivy Tests": [[832, "ivy-tests"], [816, "ivy-tests"]], "Testing Pipeline": [[832, "testing-pipeline"]], "Hypothesis": [[832, "id1"]], "Data Generation": [[832, "id2"]], "Writing your own strategy": [[832, "writing-your-own-strategy"]], "Writing Hypothesis Tests": [[832, "writing-hypothesis-tests"]], "Ivy Test Decorators": [[832, "ivy-test-decorators"]], "Writing Ivy Tests": [[832, "writing-ivy-tests"]], "Integration of Strategies into Ivy Tests": [[832, "integration-of-strategies-into-ivy-tests"]], "Why do we need helper functions?": [[832, "why-do-we-need-helper-functions"]], "How to write Hypothesis Tests effectively": [[832, "how-to-write-hypothesis-tests-effectively"]], "Testing Partial Mixed Functions": [[832, "testing-partial-mixed-functions"]], "Bonus: Hypothesis\u2019 Extended Features": [[832, "bonus-hypothesis-extended-features"]], "Self-Consistent and Explicit Testing": [[832, "self-consistent-and-explicit-testing"]], "test_array_function": [[832, "id4"]], "Running Ivy Tests": [[832, "running-ivy-tests"]], "Re-Running Failed Ivy Tests": [[832, "re-running-failed-ivy-tests"]], "Navigating the Code": [[833, "navigating-the-code"]], "Categorization": [[833, "categorization"]], "Submodule Design": [[833, "submodule-design"]], "Ivy API": [[833, "ivy-api"]], "Backend API": [[833, "backend-api"]], "Submodule Helper Functions": [[833, "submodule-helper-functions"]], "Version Unpinning": [[833, "version-unpinning"]], "Exchange Formats": [[857, "exchange-formats"], [864, "exchange-formats"]], "ONNX onnx": [[857, "onnx-onnx"]], "NNEF nnef": [[857, "nnef-nnef"]], "CoreML coreml": [[857, "coreml-coreml"]], "Ivy Container": [[840, "ivy-container"]], "Construction": [[840, "construction"]], "Representation": [[840, "representation"]], "Recursive Methods": [[840, "recursive-methods"]], "Built-ins": [[840, "built-ins"]], "Access": [[840, "access"]], "Saving and Loading": [[840, "saving-and-loading"]], "Comparisons": [[840, "comparisons"]], "Customized Representations": [[840, "customized-representations"]], "Use Cases": [[840, "use-cases"]], "Compartmentalization": [[840, "compartmentalization"]], "Configuration": [[840, "configuration"]], "Data loading": [[840, "data-loading"]], "Network weights": [[840, "network-weights"]], "What does Ivy Add?": [[864, "what-does-ivy-add"]], "Frameworks": [[864, "frameworks"], [858, "frameworks"]], "Graph Tracers": [[864, "graph-tracers"], [859, "graph-tracers"]], "Ivy Frontend Tests": [[830, "ivy-frontend-tests"]], "Frontend Test Examples": [[830, "frontend-test-examples"]], "ivy.tan()": [[830, "ivy-tan"]], "ivy.full()": [[830, "ivy-full"]], "Testing Without Using Tests Values": [[830, "testing-without-using-tests-values"]], "Alias functions": [[830, "alias-functions"]], "Frontend Instance Method Tests": [[830, "frontend-instance-method-tests"]], "Frontend Instance Method Test Examples": [[830, "frontend-instance-method-test-examples"]], "ivy.add()": [[830, "ivy-add"]], "Hypothesis Helpers": [[830, "hypothesis-helpers"]], "Frontend Framework Testing Configuration": [[830, "frontend-framework-testing-configuration"]], "tf.Graph": [[859, "tf-graph"]], "Jaxpr": [[859, "jaxpr"]], "torch.jit": [[859, "torch-jit"]], "torch.fx": [[859, "torch-fx"]], "Glossary": [[845, "glossary"]], "Standardization": [[848, "standardization"]], "Skepticism": [[848, "skepticism"]], "Complimentary vs Competitive": [[848, "complimentary-vs-competitive"]], "Do Standards Work?": [[848, "do-standards-work"]], "The Array API Standard": [[848, "the-array-api-standard"]], "Ivy-Lint: Ivy\u2019s Custom Code Formatters": [[831, "ivy-lint-ivy-s-custom-code-formatters"]], "Overview": [[831, "overview"], [827, "overview"]], "Existing Formatters": [[831, "existing-formatters"]], "FunctionOrderingFormatter": [[831, "functionorderingformatter"]], "How the Formatter Works:": [[831, "how-the-formatter-works"]], "Integration and Usage": [[831, "integration-and-usage"]], "Contribution": [[831, "contribution"]], "Round Up": [[831, "round-up"], [20, "Round-Up"], [30, "Round-Up"], [11, "Round-Up"], [40, "Round-Up"], [28, "Round-Up"], [27, "Round-Up"], [17, "Round-Up"], [33, "Round-Up"], [13, "Round-Up"], [18, "Round-Up"], [23, "Round-Up"], [19, "Round-Up"], [22, "Round-Up"], [32, "Round-Up"], [29, "Round-Up"], [21, "Round-Up"], [31, "Round-Up"]], "MATLAB matlab": [[858, "matlab-matlab"]], "SciPy scipy": [[858, "scipy-scipy"]], "Torch torch": [[858, "torch-torch"]], "NumPy numpy": [[858, "numpy-numpy"]], "SciKit Learn scikit-learn": [[858, "scikit-learn-scikit-learn"]], "Theano theano": [[858, "theano-theano"]], "Pandas pandas": [[858, "pandas-pandas"]], "Julia julia": [[858, "julia-julia"]], "Apache Spark MLlib apache-spark-mllib": [[858, "apache-spark-mllib-apache-spark-mllib"]], "Caffe caffe": [[858, "caffe-caffe"]], "Chainer chainer": [[858, "chainer-chainer"]], "TensorFlow 1 tensorflow-1": [[858, "tensorflow-1-tensorflow-1"]], "MXNet mxnet": [[858, "mxnet-mxnet"]], "CNTK cntk": [[858, "cntk-cntk"]], "PyTorch pytorch": [[858, "pytorch-pytorch"]], "Flux flux": [[858, "flux-flux"]], "JAX jax": [[858, "jax-jax"]], "TensorFlow 2 tensorflow-2": [[858, "tensorflow-2-tensorflow-2"]], "DEX Language dex-language": [[858, "dex-language-dex-language"]], "Ivy as a Framework": [[838, "ivy-as-a-framework"], [26, "Ivy-as-a-Framework"]], "Motivation": [[846, "motivation"]], "Ivy Array": [[839, "ivy-array"], [812, "ivy-array"]], "The Array Class": [[839, "the-array-class"]], "Unifying Operators": [[839, "unifying-operators"]], "API Monkey Patching": [[839, "api-monkey-patching"]], "Instance Methods": [[839, "instance-methods"]], "Design": [[836, "design"]], "Factorized tensor": [[99, "factorized-tensor"]], "mish": [[109, "mish"]], "arange": [[121, "arange"]], "full": [[130, "full"]], "Tucker tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "Tr tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "log_softmax": [[108, "log-softmax"]], "Cp tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "Container": [[98, "container"]], "softsign": [[114, "softsign"]], "sigmoid": [[111, "sigmoid"]], "cmp_isnot": [[116, "cmp-isnot"]], "linspace": [[132, "linspace"]], "gelu": [[105, "gelu"]], "array": [[122, "array"]], "Array": [[97, "array"]], "one_hot": [[136, "one-hot"]], "frombuffer": [[129, "frombuffer"]], "ones": [[137, "ones"]], "native_array": [[135, "native-array"]], "try_except": [[119, "try-except"]], "Parafac2 tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "empty": [[125, "empty"]], "asarray": [[123, "asarray"]], "from_dlpack": [[128, "from-dlpack"]], "cmp_is": [[115, "cmp-is"]], "Elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"], [620, "elementwise"], [365, "elementwise"], [51, "module-ivy.data_classes.array.elementwise"], [74, "module-ivy.data_classes.container.elementwise"]], "while_loop": [[120, "while-loop"]], "Functions": [[104, "functions"]], "for_loop": [[117, "for-loop"]], "softplus": [[113, "softplus"]], "relu": [[110, "relu"]], "Tt tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "Data classes": [[103, "data-classes"]], "full_like": [[131, "full-like"]], "eye": [[127, "eye"]], "Nested array": [[100, "nested-array"]], "if_else": [[118, "if-else"]], "empty_like": [[126, "empty-like"]], "logspace": [[133, "logspace"]], "Base": [[101, "module-ivy.data_classes.nested_array.base"], [69, "module-ivy.data_classes.container.base"], [91, "module-ivy.data_classes.factorized_tensor.base"]], "hardswish": [[106, "hardswish"]], "copy_array": [[124, "copy-array"]], "meshgrid": [[134, "meshgrid"]], "softmax": [[112, "softmax"]], "leaky_relu": [[107, "leaky-relu"]], "Devices": [[818, "devices"]], "Device Module": [[818, "device-module"]], "Arguments in other Functions": [[818, "arguments-in-other-functions"], [817, "arguments-in-other-functions"]], "Device handling": [[818, "device-handling"]], "Einsum path helpers": [[794, "module-ivy.utils.einsum_path_helpers"]], "Profiler": [[798, "module-ivy.utils.profiler"]], "Norms": [[783, "module-ivy.stateful.norms"], [630, "norms"], [374, "norms"], [60, "module-ivy.data_classes.array.norms"], [83, "module-ivy.data_classes.container.norms"]], "Helpful Resources": [[805, "helpful-resources"]], "Deep Dive": [[810, "deep-dive"]], "Building the Docs Pipeline": [[814, "building-the-docs-pipeline"]], "How the doc-builder is being run": [[814, "how-the-doc-builder-is-being-run"]], "The convenience script": [[814, "the-convenience-script"]], "Options": [[814, "options"]], "The Docker image": [[814, "the-docker-image"]], "How Ivy\u2019s docs is structured": [[814, "how-ivy-s-docs-is-structured"]], "index.rst": [[814, "index-rst"]], "partial_conf.py": [[814, "partial-conf-py"]], "prebuild.sh": [[814, "prebuild-sh"]], "Custom Extensions": [[814, "custom-extensions"]], "custom_autosummary": [[814, "custom-autosummary"]], ":hide-table:": [[814, "hide-table"]], "discussion_linker": [[814, "discussion-linker"]], "skippable_function": [[814, "skippable-function"]], "ivy_data": [[814, "ivy-data"]], "Docstrings": [[820, "docstrings"]], "Sequential": [[785, "module-ivy.stateful.sequential"]], "Function Arguments": [[824, "function-arguments"]], "Positional and Keyword Arguments": [[824, "positional-and-keyword-arguments"]], "Input Arrays": [[824, "input-arrays"]], "out Argument": [[824, "out-argument"]], "dtype and device arguments": [[824, "dtype-and-device-arguments"]], "Numbers in Operator Functions": [[824, "numbers-in-operator-functions"]], "Integer Sequences": [[824, "integer-sequences"]], "Nestable Functions": [[824, "nestable-functions"], [815, "nestable-functions"], [825, "nestable-functions"]], "Fix Failing Tests:": [[822, "fix-failing-tests"]], "Prerequirement:": [[822, "prerequirement"]], "Setting Up": [[822, "setting-up"], [807, "setting-up"]], "How to run tests": [[822, "how-to-run-tests"]], "Common Errors": [[822, "common-errors"]], "Where to ask for Help": [[822, "where-to-ask-for-help"]], "Einsum parser": [[793, "module-ivy.utils.einsum_parser"]], "Data Types": [[817, "data-types"]], "Data Type Module": [[817, "data-type-module"]], "Data Type Promotion": [[817, "data-type-promotion"]], "Precise Mode": [[817, "precise-mode"]], "Precise Promotion Table": [[817, "precise-promotion-table"]], "Non-Precise Promotion Table": [[817, "non-precise-promotion-table"]], "Supported and Unsupported Data Types": [[817, "supported-and-unsupported-data-types"]], "Supported and Unsupported Data Types Attributes": [[817, "supported-and-unsupported-data-types-attributes"]], "Special Case": [[817, "special-case"]], "Backend Data Type Bugs": [[817, "backend-data-type-bugs"]], "Data Type Casting Modes": [[817, "data-type-casting-modes"]], "Superset Data Type Support": [[817, "superset-data-type-support"]], "Sub backend handler": [[790, "module-ivy.utils.backend.sub_backend_handler"]], "Error Handling": [[803, "error-handling"]], "Exception Handling": [[821, "exception-handling"], [826, "exception-handling"]], "Ivy Exception Class": [[821, "ivy-exception-class"]], "Configurable Mode for Stack Trace": [[821, "configurable-mode-for-stack-trace"]], "Ivy func_wrapper Pruning": [[821, "ivy-func-wrapper-pruning"]], "@handle_exceptions Decorator": [[821, "handle-exceptions-decorator"]], "Consistency in Errors": [[821, "consistency-in-errors"]], "Assertion Function": [[821, "assertion-function"]], "Assertions": [[786, "module-ivy.utils.assertions"], [759, "module-ivy_tests.test_ivy.helpers.assertions"]], "Status": [[800, "status"]], "Unified AI": [[800, "unified-ai"]], "Getting started": [[800, "getting-started"]], "Installing ivy": [[800, "installing-ivy"]], "Using Ivy": [[800, "using-ivy"]], "Documentation": [[800, "documentation"]], "Diving deeper": [[800, "diving-deeper"]], "When should I use Ivy as a transpiler?": [[800, "when-should-i-use-ivy-as-a-transpiler"]], "Contributing": [[800, "contributing"], [801, "contributing"]], "Community": [[800, "community"]], "Citation": [[800, "citation"]], "Ast helpers": [[788, "module-ivy.utils.backend.ast_helpers"]], "Volunteer Workflow": [[809, "volunteer-workflow"]], "Contributor": [[809, "contributor"]], "Core Contributor": [[809, "core-contributor"]], "Rising Contributor": [[809, "rising-contributor"]], "Top Contributor": [[809, "top-contributor"]], "Join Our Team": [[809, "join-our-team"]], "The Basics": [[808, "the-basics"]], "Getting Help": [[808, "getting-help"]], "ToDo List Issues": [[808, "todo-list-issues"]], "Managing Your Fork": [[808, "managing-your-fork"]], "Who To Ask": [[808, "who-to-ask"]], "With Command Line:": [[808, "with-command-line"]], "With Browser:": [[808, "with-browser"]], "Pull Requests": [[808, "pull-requests"]], "Small Commits Often": [[808, "small-commits-often"]], "Interactive Ivy Docker Container": [[808, "interactive-ivy-docker-container"]], "Running Tests Locally": [[808, "running-tests-locally"]], "With Docker": [[808, "with-docker"]], "Getting the most out of IDE": [[808, "getting-the-most-out-of-ide"]], "with PyCharm": [[808, "with-pycharm"]], "Docstring Examples": [[819, "docstring-examples"]], "ivy.tan": [[819, "ivy-tan"]], "ivy.roll": [[819, "ivy-roll"]], "ivy.add": [[819, "ivy-add"]], "Backend Setting": [[813, "backend-setting"]], "Dynamic Backend Setting": [[813, "dynamic-backend-setting"]], "Backend and Frontend Version Support": [[813, "backend-and-frontend-version-support"]], "Gradients": [[827, "gradients"], [623, "gradients"], [367, "gradients"], [77, "module-ivy.data_classes.container.gradients"], [54, "module-ivy.data_classes.array.gradients"]], "Example Usage of the Gradient API": [[827, "example-usage-of-the-gradient-api"]], "The ivy.execute_with_gradients() function signature": [[827, "the-ivy-execute-with-gradients-function-signature"]], "An example using ivy.execute_with_gradients()": [[827, "an-example-using-ivy-execute-with-gradients"]], "Custom Gradient Functions": [[827, "custom-gradient-functions"]], "Design of the Gradient API": [[827, "design-of-the-gradient-api"]], "Our policy on gradients": [[827, "our-policy-on-gradients"]], "Gradient APIs of frameworks": [[827, "gradient-apis-of-frameworks"]], "General Structure of Backend-specific implementations": [[827, "general-structure-of-backend-specific-implementations"]], "Framework-specific Considerations": [[827, "framework-specific-considerations"]], "Verbosity": [[799, "module-ivy.utils.verbosity"]], "Open Tasks": [[806, "open-tasks"]], "Fixing Failing Tests": [[806, "fixing-failing-tests"]], "How to Contribute": [[806, "how-to-contribute"]], "Frontend APIs": [[806, "frontend-apis"]], "Where to place a frontend function": [[806, "where-to-place-a-frontend-function"]], "Frontend checklist": [[806, "frontend-checklist"]], "Function Formatting": [[806, "function-formatting"]], "Formatting checklist": [[806, "formatting-checklist"]], "Ivy Experimental API": [[806, "ivy-experimental-api"]], "Extending the Ivy API": [[806, "extending-the-ivy-api"]], "Where to place a backend function": [[806, "where-to-place-a-backend-function"]], "Creating an Issue on Ivy\u2019s GitHub using a Template": [[806, "creating-an-issue-on-ivy-s-github-using-a-template"]], "Forking and cloning the repo": [[807, "forking-and-cloning-the-repo"]], "Pre-Commit": [[807, "pre-commit"]], "PyCharm": [[807, "pycharm"], [823, "pycharm"]], "Virtual environments - No Docker": [[807, "virtual-environments-no-docker"]], "Using miniconda": [[807, "using-miniconda"]], "Using venv": [[807, "using-venv"]], "Docker Interpreter with PyCharm": [[807, "docker-interpreter-with-pycharm"]], "Windows": [[807, "windows"], [807, "id6"]], "MacOS": [[807, "macos"]], "Ubuntu": [[807, "ubuntu"], [807, "id8"]], "Setting Up Testing in PyCharm": [[807, "setting-up-testing-in-pycharm"]], "More Detailed Hypothesis Logs in PyCharm": [[807, "more-detailed-hypothesis-logs-in-pycharm"]], "Setting up for Free": [[807, "setting-up-for-free"]], "WSL": [[807, "wsl"]], "GitHub Codespaces": [[807, "github-codespaces"]], "The Binaries": [[807, "the-binaries"]], "Array API Tests": [[811, "array-api-tests"], [816, "array-api-tests"]], "Running the Tests": [[811, "running-the-tests"]], "Using Terminal": [[811, "using-terminal"]], "Using the IDE": [[811, "using-the-ide"]], "Regenerating Test Failures": [[811, "regenerating-test-failures"]], "Test Skipping": [[811, "test-skipping"]], "Exceptions": [[795, "module-ivy.utils.exceptions"]], "Containers": [[815, "containers"]], "Container Instance Methods": [[815, "container-instance-methods"]], "API Instance Methods": [[815, "api-instance-methods"]], "API Special Methods": [[815, "api-special-methods"]], "Arrays": [[812, "arrays"]], "Native Array": [[812, "native-array"]], "Array Handling": [[812, "array-handling"]], "Integrating custom classes with Ivy": [[812, "integrating-custom-classes-with-ivy"]], "Function Wrapping": [[826, "function-wrapping"]], "Decorator order": [[826, "decorator-order"]], "Conversion Wrappers": [[826, "conversion-wrappers"]], "Inference Wrappers": [[826, "inference-wrappers"]], "Out Argument Support": [[826, "out-argument-support"]], "Nestable Support": [[826, "nestable-support"]], "Partial Mixed Function Support": [[826, "partial-mixed-function-support"]], "Shape Conversion": [[826, "shape-conversion"]], "View Handling": [[826, "view-handling"]], "Miscellaneous Wrappers": [[826, "miscellaneous-wrappers"]], "Continuous Integration": [[816, "continuous-integration"], [823, "continuous-integration"]], "Commit (Push/PR) Triggered Testing": [[816, "commit-push-pr-triggered-testing"]], "Implementation": [[816, "implementation"]], "A Top-Down View": [[816, "a-top-down-view"]], "Storing (and retrieving) the Mapping": [[816, "storing-and-retrieving-the-mapping"]], "Cloning and Pushing to the Repository": [[816, "cloning-and-pushing-to-the-repository"]], "Implementational Nitty Gritties": [[816, "implementational-nitty-gritties"]], "Storage Space (unifyai/Mapping)": [[816, "storage-space-unifyai-mapping"]], "Determine Test Coverage Workflow": [[816, "determine-test-coverage-workflow"]], "Multiple Runners": [[816, "multiple-runners"]], "Race Condition": [[816, "race-condition"]], "Periodic Testing": [[816, "periodic-testing"]], "Manually Dispatched Workflows": [[816, "manually-dispatched-workflows"]], "CI Pipeline \u27a1\ufe0f": [[816, "ci-pipeline"]], "Push": [[816, "push"]], "Pull Request": [[816, "pull-request"]], "Dashboard": [[816, "dashboard"]], "Inspection": [[796, "module-ivy.utils.inspection"]], "Function Types": [[825, "function-types"]], "Primary Functions": [[825, "primary-functions"]], "Compositional Functions": [[825, "compositional-functions"]], "Mixed Functions": [[825, "mixed-functions"]], "Partial Mixed Functions": [[825, "partial-mixed-functions"]], "Standalone Functions": [[825, "standalone-functions"]], "Convenience Functions": [[825, "convenience-functions"]], "Handler": [[789, "module-ivy.utils.backend.handler"]], "Dynamic import": [[792, "module-ivy.utils.dynamic_import"]], "Binaries": [[791, "module-ivy.utils.binaries"]], "GitHub Rewards": [[804, "github-rewards"]], "Badges": [[804, "badges"]], "Badge Tiers": [[804, "badge-tiers"]], "Backend": [[787, "backend"]], "Module": [[782, "module-ivy.stateful.module"]], "Building the Docs": [[802, "building-the-docs"]], "Building the Docs using Docker": [[802, "building-the-docs-using-docker"]], "Using convenience script": [[802, "using-convenience-script"]], "Using existing image on Docker Hub": [[802, "using-existing-image-on-docker-hub"]], "Building the image locally": [[802, "building-the-image-locally"]], "Building the Docs without Docker": [[802, "building-the-docs-without-docker"]], "Logging": [[797, "module-ivy.utils.logging"]], "Formatting": [[823, "formatting"]], "Lint Checks": [[823, "lint-checks"], [823, "id2"]], "Setup Formatting Locally": [[823, "setup-formatting-locally"]], "Pre-commit": [[823, "pre-commit"]], "VS Code": [[823, "vs-code"]], "Common Issues with Pre-Commit": [[823, "common-issues-with-pre-commit"]], "Lint Formatting": [[823, "lint-formatting"]], "swapaxes": [[699, "swapaxes"]], "set_nest_at_indices": [[724, "set-nest-at-indices"]], "seed": [[730, "seed"]], "map_nest_at_index": [[713, "map-nest-at-index"]], "expand_dims": [[690, "expand-dims"]], "reptile_step": [[705, "reptile-step"]], "tile": [[700, "tile"]], "argmin": [[733, "argmin"]], "random_normal": [[728, "random-normal"]], "prune_empty": [[720, "prune-empty"]], "prune_nest_at_index": [[721, "prune-nest-at-index"]], "prune_nest_at_indices": [[722, "prune-nest-at-indices"]], "random_uniform": [[729, "random-uniform"]], "layer_norm": [[725, "layer-norm"]], "reshape": [[694, "reshape"]], "copy_nest": [[707, "copy-nest"]], "insert_into_nest_at_indices": [[711, "insert-into-nest-at-indices"]], "insert_into_nest_at_index": [[710, "insert-into-nest-at-index"]], "zero_pad": [[702, "zero-pad"]], "argmax": [[732, "argmax"]], "maml_step": [[704, "maml-step"]], "randint": [[727, "randint"]], "nonzero": [[735, "nonzero"]], "repeat": [[693, "repeat"]], "duplicate_array_index_chains": [[708, "duplicate-array-index-chains"]], "nested_multi_map": [[719, "nested-multi-map"]], "flip": [[691, "flip"]], "all_nested_indices": [[706, "all-nested-indices"]], "multinomial": [[726, "multinomial"]], "argwhere": [[734, "argwhere"]], "nested_any": [[716, "nested-any"]], "nested_map": [[718, "nested-map"]], "permute_dims": [[692, "permute-dims"]], "index_nest": [[709, "index-nest"]], "squeeze": [[697, "squeeze"]], "shuffle": [[731, "shuffle"]], "roll": [[695, "roll"]], "stack": [[698, "stack"]], "map": [[712, "map"]], "split": [[696, "split"]], "fomaml_step": [[703, "fomaml-step"]], "set_nest_at_index": [[723, "set-nest-at-index"]], "nested_argwhere": [[717, "nested-argwhere"]], "multi_index_nest": [[715, "multi-index-nest"]], "map_nest_at_indices": [[714, "map-nest-at-indices"]], "unstack": [[701, "unstack"]], "Activations": [[776, "module-ivy.stateful.activations"], [614, "activations"], [360, "activations"], [68, "module-ivy.data_classes.container.activations"], [46, "module-ivy.data_classes.array.activations"]], "Parameter": [[776, "parameter"], [776, "id1"], [567, "parameter"], [568, "parameter"], [573, "parameter"], [577, "parameter"], [574, "parameter"], [576, "parameter"], [619, "parameter"], [622, "parameter"], [622, "id1"], [622, "id2"], [622, "id3"], [622, "id4"], [622, "id5"], [205, "parameter"]], "max": [[748, "max"]], "all": [[755, "all"]], "Dtype helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "sort": [[744, "sort"]], "Utils": [[774, "utils"]], "Losses": [[781, "module-ivy.stateful.losses"], [626, "losses"], [370, "losses"], [81, "module-ivy.data_classes.container.losses"], [58, "module-ivy.data_classes.array.losses"]], "Available frameworks": [[760, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "Structs": [[770, "module-ivy_tests.test_ivy.helpers.structs"]], "Framework classes": [[773, "framework-classes"]], "unique_inverse": [[739, "unique-inverse"]], "Data-dependent output shape": [[739, null], [737, null], [740, null], [738, null], [633, null], [633, null], [633, null], [633, null]], "argsort": [[741, "argsort"]], "var": [[754, "var"]], "mean": [[749, "mean"]], "std": [[752, "std"]], "Globals": [[762, "module-ivy_tests.test_ivy.helpers.globals"]], "Layers": [[780, "module-ivy.stateful.layers"], [624, "layers"], [368, "layers"], [56, "module-ivy.data_classes.array.layers"], [79, "module-ivy.data_classes.container.layers"]], "Array helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "load": [[757, "load"]], "Test parameter flags": [[771, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "sum": [[753, "sum"]], "Multiprocessing": [[768, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "unique_all": [[737, "unique-all"]], "save": [[758, "save"]], "Hypothesis helpers": [[763, "hypothesis-helpers"]], "Testing": [[775, "testing"], [40, "Testing"]], "unique_values": [[740, "unique-values"]], "Testing helpers": [[772, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "min": [[750, "min"]], "where": [[736, "where"]], "Converters": [[777, "module-ivy.stateful.converters"]], "einsum": [[747, "einsum"]], "Function testing": [[761, "module-ivy_tests.test_ivy.helpers.function_testing"]], "General helpers": [[766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "msort": [[742, "msort"]], "unique_counts": [[738, "unique-counts"]], "prod": [[751, "prod"]], "any": [[756, "any"]], "Number helpers": [[767, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "Helpers": [[778, "module-ivy.stateful.helpers"]], "Pipeline helper": [[769, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "searchsorted": [[743, "searchsorted"]], "cumprod": [[745, "cumprod"]], "cumsum": [[746, "cumsum"]], "cross_entropy": [[685, "cross-entropy"]], "eigh": [[660, "eigh"]], "svdvals": [[676, "svdvals"]], "tensordot": [[677, "tensordot"]], "cholesky": [[654, "cholesky"]], "eigvalsh": [[661, "eigvalsh"]], "matrix_transpose": [[669, "matrix-transpose"]], "cross": [[655, "cross"]], "vander": [[680, "vander"]], "pinv": [[671, "pinv"]], "lu_factor": [[664, "lu-factor"]], "matrix_norm": [[666, "matrix-norm"]], "dropout": [[647, "dropout"]], "qr": [[672, "qr"]], "slogdet": [[673, "slogdet"]], "concat": [[688, "concat"]], "roi_align": [[652, "roi-align"]], "nms": [[651, "nms"]], "svd": [[675, "svd"]], "inv": [[663, "inv"]], "solve": [[674, "solve"]], "tensorsolve": [[678, "tensorsolve"]], "lstm_update": [[649, "lstm-update"]], "vector_norm": [[682, "vector-norm"]], "binary_cross_entropy": [[684, "binary-cross-entropy"]], "matmul": [[665, "matmul"]], "clip": [[687, "clip"]], "sparse_cross_entropy": [[686, "sparse-cross-entropy"]], "linear": [[648, "linear"]], "depthwise_conv2d": [[646, "depthwise-conv2d"]], "matrix_rank": [[668, "matrix-rank"]], "det": [[656, "det"]], "multi_head_attention": [[650, "multi-head-attention"]], "conv_general_transpose": [[645, "conv-general-transpose"]], "diag": [[657, "diag"]], "vector_to_skew_symmetric_matrix": [[683, "vector-to-skew-symmetric-matrix"]], "outer": [[670, "outer"]], "trace": [[679, "trace"]], "conv_general_dilated": [[644, "conv-general-dilated"]], "scaled_dot_product_attention": [[653, "scaled-dot-product-attention"]], "diagonal": [[658, "diagonal"]], "eig": [[659, "eig"], [421, "eig"]], "vecdot": [[681, "vecdot"]], "constant_pad": [[689, "constant-pad"]], "inner": [[662, "inner"]], "matrix_power": [[667, "matrix-power"]], "is_ivy_nested_array": [[556, "is-ivy-nested-array"]], "stable_pow": [[581, "stable-pow"]], "unset_min_denominator": [[594, "unset-min-denominator"]], "print_all_arrays_in_memory": [[564, "print-all-arrays-in-memory"]], "supports_inplace_updates": [[583, "supports-inplace-updates"]], "set_min_denominator": [[572, "set-min-denominator"]], "unset_array_mode": [[590, "unset-array-mode"]], "unset_min_base": [[593, "unset-min-base"]], "try_else_none": [[589, "try-else-none"]], "scatter_nd": [[566, "scatter-nd"]], "set_min_base": [[571, "set-min-base"]], "set_tmp_dir": [[578, "set-tmp-dir"]], "inplace_variables_supported": [[552, "inplace-variables-supported"]], "to_ivy_shape": [[584, "to-ivy-shape"]], "set_array_mode": [[567, "set-array-mode"]], "set_exception_trace_mode": [[568, "set-exception-trace-mode"]], "isin": [[558, "isin"]], "shape": [[579, "shape"]], "set_inplace_mode": [[569, "set-inplace-mode"]], "match_kwargs": [[561, "match-kwargs"]], "unset_inplace_mode": [[592, "unset-inplace-mode"]], "to_list": [[585, "to-list"]], "stable_divide": [[580, "stable-divide"]], "unset_precise_mode": [[596, "unset-precise-mode"]], "strides": [[582, "strides"]], "num_arrays_in_memory": [[563, "num-arrays-in-memory"]], "unset_exception_trace_mode": [[591, "unset-exception-trace-mode"]], "isscalar": [[559, "isscalar"]], "is_array": [[553, "is-array"]], "to_native_shape": [[586, "to-native-shape"]], "set_nestable_mode": [[573, "set-nestable-mode"]], "multiprocessing": [[562, "multiprocessing"]], "is_ivy_container": [[555, "is-ivy-container"]], "itemsize": [[560, "itemsize"]], "set_show_func_wrapper_trace_mode": [[577, "set-show-func-wrapper-trace-mode"]], "set_queue_timeout": [[575, "set-queue-timeout"]], "unset_nestable_mode": [[595, "unset-nestable-mode"]], "scatter_flat": [[565, "scatter-flat"]], "to_numpy": [[587, "to-numpy"]], "is_ivy_array": [[554, "is-ivy-array"]], "is_native_array": [[557, "is-native-array"]], "to_scalar": [[588, "to-scalar"]], "set_precise_mode": [[574, "set-precise-mode"]], "set_shape_array_mode": [[576, "set-shape-array-mode"]], "unset_queue_timeout": [[597, "unset-queue-timeout"]], "set_item": [[570, "set-item"]], "fourier_encode": [[538, "fourier-encode"]], "bincount": [[509, "bincount"]], "arg_info": [[524, "arg-info"]], "get_all_arrays_in_memory": [[543, "get-all-arrays-in-memory"]], "inplace_update": [[551, "inplace-update"]], "current_backend_str": [[532, "current-backend-str"]], "inplace_arrays_supported": [[548, "inplace-arrays-supported"]], "optional_get_element": [[522, "optional-get-element"]], "cov": [[511, "cov"]], "cache_fn": [[528, "cache-fn"]], "exists": [[537, "exists"]], "gather_nd": [[542, "gather-nd"]], "median": [[516, "median"]], "container_types": [[531, "container-types"]], "gather": [[541, "gather"]], "cummin": [[513, "cummin"]], "native_sparse_array_to_indices_values_and_shape": [[508, "native-sparse-array-to-indices-values-and-shape"]], "get_referrers_recursive": [[546, "get-referrers-recursive"]], "clip_vector_norm": [[530, "clip-vector-norm"]], "nanmean": [[517, "nanmean"]], "is_native_sparse_array": [[506, "is-native-sparse-array"]], "einops_rearrange": [[534, "einops-rearrange"]], "has_nans": [[547, "has-nans"]], "default": [[533, "default"]], "nanmedian": [[518, "nanmedian"]], "igamma": [[515, "igamma"]], "inplace_decrement": [[549, "inplace-decrement"]], "clip_matrix_norm": [[529, "clip-matrix-norm"]], "function_supported_devices_and_dtypes": [[539, "function-supported-devices-and-dtypes"]], "arg_names": [[525, "arg-names"]], "einops_repeat": [[536, "einops-repeat"]], "native_sparse_array": [[507, "native-sparse-array"]], "einops_reduce": [[535, "einops-reduce"]], "nanmin": [[519, "nanmin"]], "quantile": [[521, "quantile"]], "get_item": [[544, "get-item"]], "nanprod": [[520, "nanprod"]], "assert_supports_inplace": [[527, "assert-supports-inplace"]], "get_num_dims": [[545, "get-num-dims"]], "all_equal": [[523, "all-equal"]], "corrcoef": [[510, "corrcoef"]], "function_unsupported_devices_and_dtypes": [[540, "function-unsupported-devices-and-dtypes"]], "array_equal": [[526, "array-equal"]], "cummax": [[512, "cummax"]], "histogram": [[514, "histogram"]], "inplace_increment": [[550, "inplace-increment"]], "fill_diagonal": [[463, "fill-diagonal"]], "local_response_norm": [[495, "local-response-norm"]], "matricize": [[472, "matricize"]], "poisson": [[501, "poisson"]], "partial_unfold": [[477, "partial-unfold"]], "gamma": [[500, "gamma"]], "invert_permutation": [[503, "invert-permutation"]], "moveaxis": [[473, "moveaxis"]], "unique_consecutive": [[487, "unique-consecutive"]], "vstack": [[489, "vstack"]], "dsplit": [[460, "dsplit"]], "partial_fold": [[475, "partial-fold"]], "fold": [[467, "fold"]], "put_along_axis": [[479, "put-along-axis"]], "partial_tensor_to_vec": [[476, "partial-tensor-to-vec"]], "group_norm": [[491, "group-norm"]], "trim_zeros": [[485, "trim-zeros"]], "heaviside": [[468, "heaviside"]], "flatten": [[464, "flatten"]], "unfold": [[486, "unfold"]], "dirichlet": [[499, "dirichlet"]], "l1_normalize": [[493, "l1-normalize"]], "hstack": [[470, "hstack"]], "hsplit": [[469, "hsplit"]], "bernoulli": [[497, "bernoulli"]], "instance_norm": [[492, "instance-norm"]], "partial_vec_to_tensor": [[478, "partial-vec-to-tensor"]], "batch_norm": [[490, "batch-norm"]], "top_k": [[484, "top-k"]], "flipud": [[466, "flipud"]], "rot90": [[480, "rot90"]], "is_ivy_sparse_array": [[505, "is-ivy-sparse-array"]], "dstack": [[461, "dstack"]], "soft_thresholding": [[481, "soft-thresholding"]], "l2_normalize": [[494, "l2-normalize"]], "pad": [[474, "pad"]], "beta": [[498, "beta"]], "fliplr": [[465, "fliplr"]], "i0": [[471, "i0"]], "take": [[482, "take"]], "vsplit": [[488, "vsplit"]], "unravel_index": [[502, "unravel-index"]], "expand": [[462, "expand"]], "lp_normalize": [[496, "lp-normalize"]], "lexsort": [[504, "lexsort"]], "take_along_axis": [[483, "take-along-axis"]], "Nest": [[629, "nest"], [373, "module-ivy.functional.ivy.experimental.nest"]], "Sorting": [[634, "sorting"], [378, "sorting"], [64, "module-ivy.data_classes.array.sorting"], [87, "module-ivy.data_classes.container.sorting"]], "conv3d_transpose": [[643, "conv3d-transpose"]], "lamb_update": [[609, "lamb-update"]], "Control flow ops": [[616, "control-flow-ops"]], "conv2d": [[640, "conv2d"]], "Creation": [[617, "creation"], [362, "creation"], [71, "module-ivy.data_classes.container.creation"], [48, "module-ivy.data_classes.array.creation"]], "gradient_descent_update": [[607, "gradient-descent-update"]], "execute_with_gradients": [[605, "execute-with-gradients"]], "grad": [[606, "grad"]], "unset_show_func_wrapper_trace_mode": [[599, "unset-show-func-wrapper-trace-mode"]], "Device": [[619, "device"], [364, "module-ivy.functional.ivy.experimental.device"], [50, "module-ivy.data_classes.array.device"], [73, "module-ivy.data_classes.container.device"]], "conv": [[637, "conv"]], "Utility": [[636, "utility"], [381, "utility"], [89, "module-ivy.data_classes.container.utility"], [66, "module-ivy.data_classes.array.utility"]], "adam_update": [[604, "adam-update"]], "vmap": [[602, "vmap"]], "conv3d": [[642, "conv3d"]], "Meta": [[628, "meta"], [372, "module-ivy.functional.ivy.experimental.meta"]], "stop_gradient": [[612, "stop-gradient"]], "Set": [[633, "set"], [377, "module-ivy.functional.ivy.experimental.set"], [63, "module-ivy.data_classes.array.set"], [86, "module-ivy.data_classes.container.set"]], "Random": [[631, "random"], [375, "random"], [84, "module-ivy.data_classes.container.random"], [61, "module-ivy.data_classes.array.random"]], "optimizer_update": [[611, "optimizer-update"]], "adam_step": [[603, "adam-step"]], "Linear algebra": [[625, "linear-algebra"], [369, "linear-algebra"], [80, "module-ivy.data_classes.container.linear_algebra"], [57, "module-ivy.data_classes.array.linear_algebra"]], "conv1d_transpose": [[639, "conv1d-transpose"]], "General": [[622, "general"], [366, "general"], [53, "module-ivy.data_classes.array.general"], [76, "module-ivy.data_classes.container.general"]], "value_and_grad": [[613, "value-and-grad"]], "conv2d_transpose": [[641, "conv2d-transpose"]], "jac": [[608, "jac"]], "Manipulation": [[627, "manipulation"], [371, "manipulation"], [59, "module-ivy.data_classes.array.manipulation"], [82, "module-ivy.data_classes.container.manipulation"]], "value_is_nan": [[601, "value-is-nan"]], "unset_tmp_dir": [[600, "unset-tmp-dir"]], "Statistical": [[635, "statistical"], [380, "statistical"], [88, "module-ivy.data_classes.container.statistical"], [65, "module-ivy.data_classes.array.statistical"]], "conv1d": [[638, "conv1d"]], "Data type": [[618, "data-type"], [363, "module-ivy.functional.ivy.experimental.data_type"], [72, "module-ivy.data_classes.container.data_type"], [49, "module-ivy.data_classes.array.data_type"]], "unset_shape_array_mode": [[598, "unset-shape-array-mode"]], "lars_update": [[610, "lars-update"]], "Constants": [[615, "module-ivy.functional.ivy.constants"], [361, "module-ivy.functional.ivy.experimental.constants"]], "Searching": [[632, "searching"], [376, "searching"], [62, "module-ivy.data_classes.array.searching"], [85, "module-ivy.data_classes.container.searching"]], "Experimental": [[621, "experimental"], [52, "module-ivy.data_classes.array.experimental"], [75, "module-ivy.data_classes.container.experimental"]], "smooth_l1_loss": [[448, "smooth-l1-loss"]], "svd_flip": [[437, "svd-flip"]], "dot": [[420, "dot"]], "column_stack": [[458, "column-stack"]], "concat_from_sequence": [[459, "concat-from-sequence"]], "soft_margin_loss": [[449, "soft-margin-loss"]], "atleast_1d": [[452, "atleast-1d"]], "diagflat": [[419, "diagflat"]], "log_poisson_loss": [[446, "log-poisson-loss"]], "eigvals": [[423, "eigvals"]], "atleast_2d": [[453, "atleast-2d"]], "sliding_window": [[414, "sliding-window"]], "atleast_3d": [[454, "atleast-3d"]], "partial_tucker": [[435, "partial-tucker"]], "mode_dot": [[432, "mode-dot"]], "tt_matrix_to_tensor": [[440, "tt-matrix-to-tensor"]], "broadcast_shapes": [[455, "broadcast-shapes"]], "kl_div": [[444, "kl-div"]], "poisson_nll_loss": [[447, "poisson-nll-loss"]], "l1_loss": [[445, "l1-loss"]], "matrix_exp": [[431, "matrix-exp"]], "multi_mode_dot": [[434, "multi-mode-dot"]], "solve_triangular": [[436, "solve-triangular"]], "khatri_rao": [[427, "khatri-rao"]], "stft": [[415, "stft"]], "hinge_embedding_loss": [[442, "hinge-embedding-loss"]], "choose": [[457, "choose"]], "associative_scan": [[451, "associative-scan"]], "eigh_tridiagonal": [[422, "eigh-tridiagonal"]], "tucker": [[441, "tucker"]], "tensor_train": [[438, "tensor-train"]], "cond": [[418, "cond"]], "initialize_tucker": [[426, "initialize-tucker"]], "higher_order_moment": [[425, "higher-order-moment"]], "kron": [[428, "kron"]], "batched_outer": [[417, "batched-outer"]], "multi_dot": [[433, "multi-dot"]], "general_inner_product": [[424, "general-inner-product"]], "adjoint": [[416, "adjoint"]], "as_strided": [[450, "as-strided"]], "make_svd_non_negative": [[430, "make-svd-non-negative"]], "check_scalar": [[456, "check-scalar"]], "truncated_svd": [[439, "truncated-svd"]], "kronecker": [[429, "kronecker"]], "huber_loss": [[443, "huber-loss"]], "vjp": [[359, "vjp"]], "frexp": [[341, "frexp"]], "tril_indices": [[322, "tril-indices"]], "modf": [[348, "modf"]], "binarizer": [[331, "binarizer"]], "isclose": [[344, "isclose"]], "jvp": [[358, "jvp"]], "sinc": [[352, "sinc"]], "allclose": [[328, "allclose"]], "reduce": [[356, "reduce"]], "trilu": [[323, "trilu"]], "copysign": [[333, "copysign"]], "diff": [[335, "diff"]], "signbit": [[351, "signbit"]], "nansum": [[349, "nansum"]], "count_nonzero": [[334, "count-nonzero"]], "float_power": [[339, "float-power"]], "erfc": [[337, "erfc"]], "lgamma": [[347, "lgamma"]], "unsorted_segment_min": [[325, "unsorted-segment-min"]], "xlogy": [[354, "xlogy"]], "nextafter": [[350, "nextafter"]], "amin": [[330, "amin"]], "fmax": [[340, "fmax"]], "hypot": [[343, "hypot"]], "amax": [[329, "amax"]], "conj": [[332, "conj"]], "zeta": [[355, "zeta"]], "bind_custom_gradient_function": [[357, "bind-custom-gradient-function"]], "unsorted_segment_mean": [[324, "unsorted-segment-mean"]], "ldexp": [[345, "ldexp"]], "digamma": [[336, "digamma"]], "fix": [[338, "fix"]], "unsorted_segment_sum": [[326, "unsorted-segment-sum"]], "lerp": [[346, "lerp"]], "vorbis_window": [[327, "vorbis-window"]], "sparsify_tensor": [[353, "sparsify-tensor"]], "gradient": [[342, "gradient"]], "embedding": [[394, "embedding"]], "reduce_window": [[410, "reduce-window"]], "rfftn": [[412, "rfftn"]], "fft": [[395, "fft"]], "interpolate": [[403, "interpolate"]], "nearest_interpolate": [[408, "nearest-interpolate"]], "ifftn": [[401, "ifftn"]], "Sparse array": [[379, "sparse-array"]], "max_pool1d": [[404, "max-pool1d"]], "dct": [[389, "dct"]], "ifft": [[400, "ifft"]], "get_interpolate_kernel": [[398, "get-interpolate-kernel"]], "dft": [[390, "dft"]], "rnn": [[413, "rnn"]], "dropout3d": [[393, "dropout3d"]], "dropout2d": [[392, "dropout2d"]], "adaptive_max_pool2d": [[384, "adaptive-max-pool2d"]], "max_unpool1d": [[407, "max-unpool1d"]], "adaptive_avg_pool2d": [[383, "adaptive-avg-pool2d"]], "avg_pool2d": [[387, "avg-pool2d"]], "avg_pool1d": [[386, "avg-pool1d"]], "pool": [[409, "pool"]], "interp": [[402, "interp"]], "max_pool2d": [[405, "max-pool2d"]], "rfft": [[411, "rfft"]], "generate_einsum_equation": [[397, "generate-einsum-equation"]], "area_interpolate": [[385, "area-interpolate"]], "dropout1d": [[391, "dropout1d"]], "idct": [[399, "idct"]], "max_pool3d": [[406, "max-pool3d"]], "avg_pool3d": [[388, "avg-pool3d"]], "fft2": [[396, "fft2"]], "adaptive_avg_pool1d": [[382, "adaptive-avg-pool1d"]], "sqrt": [[282, "sqrt"]], "remainder": [[277, "remainder"]], "square": [[283, "square"]], "scaled_tanh": [[298, "scaled-tanh"]], "random_cp": [[317, "random-cp"]], "round": [[278, "round"]], "logsigmoid": [[295, "logsigmoid"]], "tan": [[285, "tan"]], "blackman_window": [[306, "blackman-window"]], "celu": [[290, "celu"]], "subtract": [[284, "subtract"]], "hann_window": [[309, "hann-window"]], "logit": [[294, "logit"]], "thresholded_relu": [[305, "thresholded-relu"]], "sin": [[280, "sin"]], "hardtanh": [[293, "hardtanh"]], "sinh": [[281, "sinh"]], "kaiser_window": [[312, "kaiser-window"]], "prelu": [[296, "prelu"]], "stanh": [[302, "stanh"]], "kaiser_bessel_derived_window": [[311, "kaiser-bessel-derived-window"]], "relu6": [[297, "relu6"]], "sign": [[279, "sign"]], "eye_like": [[307, "eye-like"]], "trunc_divide": [[289, "trunc-divide"]], "ndindex": [[315, "ndindex"]], "softshrink": [[301, "softshrink"]], "trunc": [[288, "trunc"]], "random_tt": [[320, "random-tt"]], "ndenumerate": [[314, "ndenumerate"]], "elu": [[291, "elu"]], "hamming_window": [[308, "hamming-window"]], "polyval": [[316, "polyval"]], "trapz": [[287, "trapz"]], "hardshrink": [[292, "hardshrink"]], "silu": [[300, "silu"]], "selu": [[299, "selu"]], "random_tr": [[319, "random-tr"]], "threshold": [[304, "threshold"]], "indices": [[310, "indices"]], "tanhshrink": [[303, "tanhshrink"]], "random_parafac2": [[318, "random-parafac2"]], "random_tucker": [[321, "random-tucker"]], "mel_weight_matrix": [[313, "mel-weight-matrix"]], "tanh": [[286, "tanh"]], "reciprocal": [[276, "reciprocal"]], "gcd": [[245, "gcd"]], "pow": [[273, "pow"]], "greater": [[246, "greater"]], "log1p": [[258, "log1p"]], "logical_xor": [[265, "logical-xor"]], "minimum": [[267, "minimum"]], "negative": [[270, "negative"]], "nan_to_num": [[269, "nan-to-num"]], "erf": [[237, "erf"]], "logical_or": [[264, "logical-or"]], "rad2deg": [[274, "rad2deg"]], "cos": [[232, "cos"]], "isfinite": [[249, "isfinite"]], "fmod": [[244, "fmod"]], "log": [[256, "log"]], "greater_equal": [[247, "greater-equal"]], "less_equal": [[255, "less-equal"]], "logaddexp": [[260, "logaddexp"]], "exp2": [[239, "exp2"]], "isinf": [[250, "isinf"]], "equal": [[236, "equal"]], "ceil": [[231, "ceil"]], "not_equal": [[271, "not-equal"]], "deg2rad": [[234, "deg2rad"]], "expm1": [[240, "expm1"]], "log2": [[259, "log2"]], "maximum": [[266, "maximum"]], "cosh": [[233, "cosh"]], "log10": [[257, "log10"]], "real": [[275, "real"]], "logical_and": [[262, "logical-and"]], "logaddexp2": [[261, "logaddexp2"]], "bitwise_xor": [[230, "bitwise-xor"]], "positive": [[272, "positive"]], "isnan": [[251, "isnan"]], "floor_divide": [[242, "floor-divide"]], "fmin": [[243, "fmin"]], "isreal": [[252, "isreal"]], "floor": [[241, "floor"]], "lcm": [[253, "lcm"]], "logical_not": [[263, "logical-not"]], "less": [[254, "less"]], "exp": [[238, "exp"]], "divide": [[235, "divide"]], "imag": [[248, "imag"]], "multiply": [[268, "multiply"]], "default_device": [[191, "default-device"]], "num_cpu_cores": [[199, "num-cpu-cores"]], "num_ivy_arrays_on_dev": [[201, "num-ivy-arrays-on-dev"]], "split_factor": [[207, "split-factor"]], "bitwise_left_shift": [[227, "bitwise-left-shift"]], "num_gpus": [[200, "num-gpus"]], "get_all_ivy_arrays_on_dev": [[196, "get-all-ivy-arrays-on-dev"]], "percent_used_mem_on_dev": [[202, "percent-used-mem-on-dev"]], "unset_default_uint_dtype": [[186, "unset-default-uint-dtype"]], "clear_cached_mem_on_dev": [[190, "clear-cached-mem-on-dev"]], "as_ivy_dev": [[188, "as-ivy-dev"]], "asinh": [[221, "asinh"]], "total_mem_on_dev": [[210, "total-mem-on-dev"]], "set_split_factor": [[206, "set-split-factor"]], "dev": [[192, "dev"]], "split_func_call": [[208, "split-func-call"]], "unset_default_int_dtype": [[185, "unset-default-int-dtype"]], "bitwise_or": [[228, "bitwise-or"]], "add": [[218, "add"]], "tpu_is_available": [[211, "tpu-is-available"]], "handle_soft_device_variable": [[198, "handle-soft-device-variable"]], "asin": [[220, "asin"]], "function_unsupported_devices": [[195, "function-unsupported-devices"]], "atan2": [[223, "atan2"]], "set_soft_device_mode": [[205, "set-soft-device-mode"]], "function_supported_devices": [[194, "function-supported-devices"]], "print_all_ivy_arrays_on_dev": [[203, "print-all-ivy-arrays-on-dev"]], "bitwise_invert": [[226, "bitwise-invert"]], "valid_dtype": [[187, "valid-dtype"]], "acosh": [[217, "acosh"]], "dev_util": [[193, "dev-util"]], "bitwise_right_shift": [[229, "bitwise-right-shift"]], "angle": [[219, "angle"]], "atan": [[222, "atan"]], "unset_default_device": [[212, "unset-default-device"]], "acos": [[216, "acos"]], "unset_default_float_dtype": [[184, "unset-default-float-dtype"]], "atanh": [[224, "atanh"]], "to_device": [[209, "to-device"]], "gpu_is_available": [[197, "gpu-is-available"]], "bitwise_and": [[225, "bitwise-and"]], "used_mem_on_dev": [[214, "used-mem-on-dev"]], "set_default_device": [[204, "set-default-device"]], "unset_soft_device_mode": [[213, "unset-soft-device-mode"]], "abs": [[215, "abs"]], "as_native_dev": [[189, "as-native-dev"]], "Wrapping": [[90, "module-ivy.data_classes.container.wrapping"], [67, "module-ivy.data_classes.array.wrapping"]], "Image": [[78, "module-ivy.data_classes.container.image"], [55, "module-ivy.data_classes.array.image"]], "Conversions": [[47, "module-ivy.data_classes.array.conversions"], [70, "module-ivy.data_classes.container.conversions"]], "Using Ivy ResNet": [[7, "Using-Ivy-ResNet"]], "Installation": [[7, "Installation"], [3, "Installation"]], "Imports": [[7, "Imports"], [9, "Imports"], [5, "Imports"]], "Data Preparation": [[7, "Data-Preparation"], [3, "Data-Preparation"], [4, "Data-Preparation"], [5, "Data-Preparation"]], "Prepare the set of labels": [[7, "Prepare-the-set-of-labels"]], "Load the image example \ud83d\uddbc\ufe0f": [[7, "Load-the-image-example-\ud83d\uddbc\ufe0f"], [5, "Load-the-image-example-\ud83d\uddbc\ufe0f"]], "Visualise image": [[7, "Visualise-image"], [5, "Visualise-image"]], "Model Inference ResNet34": [[7, "Model-Inference-ResNet34"]], "Initializing Native Torch ResNet34": [[7, "Initializing-Native-Torch-ResNet34"]], "Initializing Ivy ResNet34 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet34-with-Pretrained-Weights-\u2b07\ufe0f"]], "Use the model to classify your images \ud83d\ude80": [[7, "Use-the-model-to-classify-your-images-\ud83d\ude80"], [7, "id1"]], "Model Inference ResNet50": [[7, "Model-Inference-ResNet50"]], "Initializing Native Torch ResNet50": [[7, "Initializing-Native-Torch-ResNet50"]], "Initializing Ivy ResNet50 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet50-with-Pretrained-Weights-\u2b07\ufe0f"]], "Transpile code": [[20, "Transpile-code"]], "0.2: Transpile": [[30, "0.2:-Transpile"]], "Transpiling a PyTorch model to build on top": [[11, "Transpiling-a-PyTorch-model-to-build-on-top"]], "Demo: Transpiling DeepMind\u2019s PerceiverIO": [[40, "Demo:-Transpiling-DeepMind's-PerceiverIO"]], "Table of Contents": [[40, "Table-of-Contents"]], "Defining the model": [[40, "Defining-the-model"]], "Model construction": [[40, "Model-construction"]], "Some helper functions": [[40, "Some-helper-functions"]], "Transpiling the model": [[40, "Transpiling-the-model"]], "PyTorch pipeline": [[40, "PyTorch-pipeline"]], "Dataset download": [[40, "Dataset-download"]], "DataLoader": [[40, "DataLoader"]], "Training": [[40, "Training"]], "0.0: Unify": [[28, "0.0:-Unify"]], "Ivy AlexNet demo": [[3, "Ivy-AlexNet-demo"]], "Ivy AlexNet inference in Torch": [[3, "Ivy-AlexNet-inference-in-Torch"]], "TensorFlow inference": [[3, "TensorFlow-inference"]], "JAX inference": [[3, "JAX-inference"]], "Appendix (Ivy code for AlexNet implementation)": [[3, "Appendix-(Ivy-code-for-AlexNet-implementation)"]], "Write a model using Ivy": [[25, "Write-a-model-using-Ivy"]], "Quickstart": [[27, "Quickstart"]], "Get familiar with Ivy": [[27, "Get-familiar-with-Ivy"]], "Functional API": [[27, "Functional-API"]], "Stateful API": [[27, "Stateful-API"]], "Tracing code": [[27, "Tracing-code"]], "Any function": [[27, "Any-function"], [26, "Any-function"]], "Any library": [[27, "Any-library"], [26, "Any-library"]], "Any model": [[27, "Any-model"], [26, "Any-model"]], "Write Ivy code": [[17, "Write-Ivy-code"]], "Contents": [[17, "Contents"]], "Installing Ivy": [[17, "Installing-Ivy"]], "Importing Ivy": [[17, "Importing-Ivy"]], "Ivy Backend Handler": [[17, "Ivy-Backend-Handler"], [26, "Ivy-Backend-Handler"]], "Data Structures": [[17, "Data-Structures"], [26, "Data-Structures"]], "Ivy Functional API": [[17, "Ivy-Functional-API"], [26, "Ivy-Functional-API"]], "Transpiling a haiku model to build on top": [[12, "Transpiling-a-haiku-model-to-build-on-top"]], "Accelerating XGBoost with JAX": [[9, "Accelerating-XGBoost-with-JAX"]], "Tests": [[9, "Tests"]], "Loading the Data": [[9, "Loading-the-Data"]], "Comparing xgb_frontend.XGBClassifier and xgb.XGBClassifier": [[9, "Comparing-xgb_frontend.XGBClassifier-and-xgb.XGBClassifier"]], "JAX backend": [[9, "JAX-backend"]], "Tensorflow backend": [[9, "Tensorflow-backend"]], "PyTorch backend": [[9, "PyTorch-backend"]], "More exhaustive example": [[9, "More-exhaustive-example"]], "Evaluating Training Time vs. Number of Boosting Rounds": [[9, "Evaluating-Training-Time-vs.-Number-of-Boosting-Rounds"]], "Training Time vs. Fractions of Data": [[9, "Training-Time-vs.-Fractions-of-Data"]], "Comparison of Metrics": [[9, "Comparison-of-Metrics"]], "TO REPLACE: Title": [[1, "TO-REPLACE:-Title"]], "Deepmind PerceiverIO on GPU": [[41, "Deepmind-PerceiverIO-on-GPU"]], "Install Python3.8 and setup the kernel": [[41, "Install-Python3.8-and-setup-the-kernel"]], "Clone the ivy and ivy-models repo": [[41, "Clone-the-ivy-and-ivy-models-repo"]], "Install ivy and ivy_models from the repos": [[41, "Install-ivy-and-ivy_models-from-the-repos"]], "Run the demo\u2026": [[41, "Run-the-demo..."]], "\u2026with torch backend": [[41, "...with-torch-backend"]], "\u2026.with tensorflow backend": [[41, "....with-tensorflow-backend"]], "\u2026with jax backend": [[41, "...with-jax-backend"]], "\u2026with numpy backend": [[41, "...with-numpy-backend"]], "1.2: As a Decorator": [[33, "1.2:-As-a-Decorator"]], "Unify": [[33, "Unify"], [22, "Unify"], [32, "Unify"], [21, "Unify"], [31, "Unify"]], "Compile": [[33, "Compile"], [32, "Compile"], [31, "Compile"]], "Transpile": [[33, "Transpile"], [22, "Transpile"], [32, "Transpile"], [21, "Transpile"], [31, "Transpile"]], "Examples and Demos": [[2, "examples-and-demos"], [15, "examples-and-demos"]], "Basic Operations with Ivy": [[38, "Basic-Operations-with-Ivy"]], "Installs \ud83d\udcbe": [[38, "Installs-\ud83d\udcbe"], [39, "Installs-\ud83d\udcbe"]], "Imports \ud83d\udec3": [[38, "Imports-\ud83d\udec3"], [39, "Imports-\ud83d\udec3"]], "Ivy as a Unified ML Framework \ud83d\udd00": [[38, "Ivy-as-a-Unified-ML-Framework-\ud83d\udd00"]], "Change frameworks by one line of code \u261d": [[38, "Change-frameworks-by-one-line-of-code-\u261d"]], "No need to worry about data types \ud83c\udfa8": [[38, "No-need-to-worry-about-data-types-\ud83c\udfa8"]], "No need to worry about framework differences \ud83d\udcb1": [[38, "No-need-to-worry-about-framework-differences-\ud83d\udcb1"]], "Unifying them all! \ud83c\udf72": [[38, "Unifying-them-all!-\ud83c\udf72"]], "Ivy as a standalone ML framework \ud83c\udf00": [[38, "Ivy-as-a-standalone-ML-framework-\ud83c\udf00"]], "Set Backend Framework": [[38, "Set-Backend-Framework"]], "Define Model": [[38, "Define-Model"], [39, "Define-Model"]], "Create Model": [[38, "Create-Model"]], "Create Optimizer": [[38, "Create-Optimizer"]], "Input and Target": [[38, "Input-and-Target"]], "Loss Function": [[38, "Loss-Function"]], "Training Loop": [[38, "Training-Loop"]], "ODSC Ivy Demo": [[26, "ODSC-Ivy-Demo"]], "Graph Tracer": [[26, "Graph-Tracer"]], "2.0: Kornia": [[35, "2.0:-Kornia"]], "3.1: Stable Diffusion": [[37, "3.1:-Stable-Diffusion"]], "End-to-End Training Pipeline in Ivy": [[42, "End-to-End-Training-Pipeline-in-Ivy"]], "Importing libraries": [[42, "Importing-libraries"]], "Let\u2019s build the pipeline with a Tensorflow backend": [[42, "Let's-build-the-pipeline-with-a-Tensorflow-backend"]], "We are using MNIST dataset for this Tutorial": [[42, "We-are-using-MNIST-dataset-for-this-Tutorial"]], "Temporary Dataset and Dynamic loader": [[42, "Temporary-Dataset-and-Dynamic-loader"]], "Defining the Ivy Network": [[42, "Defining-the-Ivy-Network"]], "Training Loop with utility functions": [[42, "Training-Loop-with-utility-functions"]], "Plotting the training metrics": [[42, "Plotting-the-training-metrics"]], "Save the trained Model": [[42, "Save-the-trained-Model"]], "Demos": [[0, "demos"]], "Creating a Notebook for Demo": [[0, "creating-a-notebook-for-demo"]], "Transpiling a Tensorflow model to build on top": [[13, "Transpiling-a-Tensorflow-model-to-build-on-top"]], "Unify code": [[18, "Unify-code"]], "Ivy as a Transpiler Introduction": [[44, "Ivy-as-a-Transpiler-Introduction"]], "To use the transpiler:": [[44, "To-use-the-transpiler:"]], "Transpiler Interface": [[44, "Transpiler-Interface"]], "Telemetry": [[44, "Telemetry"]], "1. Transpile Functions \ud83d\udd22": [[44, "1.-Transpile-Functions-\ud83d\udd22"]], "2. Transpile Libraries \ud83d\udcda": [[44, "2.-Transpile-Libraries-\ud83d\udcda"]], "3. Transpile Models \ud83c\udf10": [[44, "3.-Transpile-Models-\ud83c\udf10"]], "Transpile any library": [[23, "Transpile-any-library"]], "Trace code": [[19, "Trace-code"]], "How to use decorators": [[22, "How-to-use-decorators"]], "Trace": [[22, "Trace"], [21, "Trace"]], "Transpile any model": [[24, "Transpile-any-model"]], "Round up": [[24, "Round-up"]], "Accelerating MMPreTrain models with JAX": [[6, "Accelerating-MMPreTrain-models-with-JAX"]], "# Ivy Bert Demo": [[4, "#-Ivy-Bert-Demo"]], "Install the dependecies": [[4, "Install-the-dependecies"]], "Import the modules": [[4, "Import-the-modules"]], "Ivy inference with Sequence Classification": [[4, "Ivy-inference-with-Sequence-Classification"]], "Ivy model inference with tensorflow": [[4, "Ivy-model-inference-with-tensorflow"]], "Ivy model inference with Jax": [[4, "Ivy-model-inference-with-Jax"]], "Ivy model inference with torch": [[4, "Ivy-model-inference-with-torch"]], "1.1: Framework Selection": [[32, "1.1:-Framework-Selection"]], "1.3: Dynamic vs Static": [[34, "1.3:-Dynamic-vs-Static"]], "Dynamic": [[34, "Dynamic"]], "Static": [[34, "Static"]], "ToDo: explain via examples why dynamic mode is set to True by default when transpiling to and from numpy and torch, but set to False by default when transpiling to and from tensorflow and jax.": [[34, "ToDo:-explain-via-examples-why-dynamic-mode-is-set-to-True-by-default-when-transpiling-to-and-from-numpy-and-torch,-but-set-to-False-by-default-when-transpiling-to-and-from-tensorflow-and-jax."]], "Guides": [[10, "guides"], [15, "guides"]], "Accelerating PyTorch models with JAX": [[8, "Accelerating-PyTorch-models-with-JAX"]], "Tutorials And Examples": [[15, "tutorials-and-examples"]], "Learn the basics": [[15, "learn-the-basics"], [16, "learn-the-basics"]], "0.1: Compile": [[29, "0.1:-Compile"]], "Image Segmentation with Ivy UNet": [[5, "Image-Segmentation-with-Ivy-UNet"]], "Custom Preprocessing": [[5, "Custom-Preprocessing"]], "Model Inference": [[5, "Model-Inference"]], "Initializing Native Torch UNet": [[5, "Initializing-Native-Torch-UNet"]], "Initializing Ivy UNet with Pretrained Weights \u2b07\ufe0f": [[5, "Initializing-Ivy-UNet-with-Pretrained-Weights-\u2b07\ufe0f"]], "Custom masking function": [[5, "Custom-masking-function"]], "Use the model to segment your images \ud83d\ude80": [[5, "Use-the-model-to-segment-your-images-\ud83d\ude80"]], "TensorFlow backend": [[5, "TensorFlow-backend"]], "JAX": [[5, "JAX"]], "Appendix: the Ivy native implementation of UNet": [[5, "Appendix:-the-Ivy-native-implementation-of-UNet"]], "HuggingFace Tensorflow DeiT": [[43, "HuggingFace-Tensorflow-DeiT"]], "Graph can be visualized and displayed as html file on browser": [[43, "Graph-can-be-visualized-and-displayed-as-html-file-on-browser"]], "Lazy vs Eager": [[21, "Lazy-vs-Eager"]], "3.0: Perceiver": [[36, "3.0:-Perceiver"]], "Developing a convolutional network using Ivy": [[14, "Developing-a-convolutional-network-using-Ivy"]], "Compilation of a Basic Function": [[39, "Compilation-of-a-Basic-Function"]], "Import Ivy compiler": [[39, "Import-Ivy-compiler"]], "Function compilation \ud83d\udee0": [[39, "Function-compilation-\ud83d\udee0"]], "Set backend": [[39, "Set-backend"]], "Sample input": [[39, "Sample-input"]], "Define function to compile": [[39, "Define-function-to-compile"]], "Compile the function": [[39, "Compile-the-function"]], "Check results": [[39, "Check-results"], [39, "id1"]], "Compiling simple neural network \ud83e\udde0": [[39, "Compiling-simple-neural-network-\ud83e\udde0"]], "Create model": [[39, "Create-model"]], "Define input": [[39, "Define-input"]], "Compile network": [[39, "Compile-network"]], "Resnet 18": [[45, "Resnet-18"]], "1.0: Lazy vs Eager": [[31, "1.0:-Lazy-vs-Eager"]]}, "indexentries": {"_arraywithactivations (class in ivy.data_classes.array.activations)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations"]], "_abc_impl (ivy.data_classes.array.activations._arraywithactivations attribute)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations._abc_impl"]], "gelu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.gelu"]], "hardswish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.hardswish"]], "ivy.data_classes.array.activations": [[46, "module-ivy.data_classes.array.activations"]], "leaky_relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.log_softmax"]], "mish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.mish"]], "module": [[46, "module-ivy.data_classes.array.activations"], [47, "module-ivy.data_classes.array.conversions"], [48, "module-ivy.data_classes.array.creation"], [49, "module-ivy.data_classes.array.data_type"], [50, "module-ivy.data_classes.array.device"], [51, "module-ivy.data_classes.array.elementwise"], [52, "module-ivy.data_classes.array.experimental"], [52, "module-ivy.data_classes.array.experimental.activations"], [52, "module-ivy.data_classes.array.experimental.conversions"], [52, "module-ivy.data_classes.array.experimental.creation"], [52, "module-ivy.data_classes.array.experimental.data_type"], [52, "module-ivy.data_classes.array.experimental.device"], [52, "module-ivy.data_classes.array.experimental.elementwise"], [52, "module-ivy.data_classes.array.experimental.general"], [52, "module-ivy.data_classes.array.experimental.gradients"], [52, "module-ivy.data_classes.array.experimental.image"], [52, "module-ivy.data_classes.array.experimental.layers"], [52, "module-ivy.data_classes.array.experimental.linear_algebra"], [52, "module-ivy.data_classes.array.experimental.losses"], [52, "module-ivy.data_classes.array.experimental.manipulation"], [52, "module-ivy.data_classes.array.experimental.norms"], [52, "module-ivy.data_classes.array.experimental.random"], [52, "module-ivy.data_classes.array.experimental.searching"], [52, "module-ivy.data_classes.array.experimental.set"], [52, "module-ivy.data_classes.array.experimental.sorting"], [52, "module-ivy.data_classes.array.experimental.statistical"], [52, "module-ivy.data_classes.array.experimental.utility"], [53, "module-ivy.data_classes.array.general"], [54, "module-ivy.data_classes.array.gradients"], [55, "module-ivy.data_classes.array.image"], [56, "module-ivy.data_classes.array.layers"], [57, "module-ivy.data_classes.array.linear_algebra"], [58, "module-ivy.data_classes.array.losses"], [59, "module-ivy.data_classes.array.manipulation"], [60, "module-ivy.data_classes.array.norms"], [61, "module-ivy.data_classes.array.random"], [62, "module-ivy.data_classes.array.searching"], [63, "module-ivy.data_classes.array.set"], [64, "module-ivy.data_classes.array.sorting"], [65, "module-ivy.data_classes.array.statistical"], [66, "module-ivy.data_classes.array.utility"], [67, "module-ivy.data_classes.array.wrapping"], [68, "module-ivy.data_classes.container.activations"], [69, "module-ivy.data_classes.container.base"], [70, "module-ivy.data_classes.container.conversions"], [71, "module-ivy.data_classes.container.creation"], [72, "module-ivy.data_classes.container.data_type"], [73, "module-ivy.data_classes.container.device"], [74, "module-ivy.data_classes.container.elementwise"], [75, "module-ivy.data_classes.container.experimental"], [75, "module-ivy.data_classes.container.experimental.activations"], [75, "module-ivy.data_classes.container.experimental.conversions"], [75, "module-ivy.data_classes.container.experimental.creation"], [75, "module-ivy.data_classes.container.experimental.data_type"], [75, "module-ivy.data_classes.container.experimental.device"], [75, "module-ivy.data_classes.container.experimental.elementwise"], [75, "module-ivy.data_classes.container.experimental.general"], [75, "module-ivy.data_classes.container.experimental.gradients"], [75, "module-ivy.data_classes.container.experimental.image"], [75, "module-ivy.data_classes.container.experimental.layers"], [75, "module-ivy.data_classes.container.experimental.linear_algebra"], [75, "module-ivy.data_classes.container.experimental.losses"], [75, "module-ivy.data_classes.container.experimental.manipulation"], [75, "module-ivy.data_classes.container.experimental.norms"], [75, "module-ivy.data_classes.container.experimental.random"], [75, "module-ivy.data_classes.container.experimental.searching"], [75, "module-ivy.data_classes.container.experimental.set"], [75, "module-ivy.data_classes.container.experimental.sorting"], [75, "module-ivy.data_classes.container.experimental.statistical"], [75, "module-ivy.data_classes.container.experimental.utility"], [76, "module-ivy.data_classes.container.general"], [77, "module-ivy.data_classes.container.gradients"], [78, "module-ivy.data_classes.container.image"], [79, "module-ivy.data_classes.container.layers"], [80, "module-ivy.data_classes.container.linear_algebra"], [81, "module-ivy.data_classes.container.losses"], [82, "module-ivy.data_classes.container.manipulation"], [83, "module-ivy.data_classes.container.norms"], [84, "module-ivy.data_classes.container.random"], [85, "module-ivy.data_classes.container.searching"], [86, "module-ivy.data_classes.container.set"], [87, "module-ivy.data_classes.container.sorting"], [88, "module-ivy.data_classes.container.statistical"], [89, "module-ivy.data_classes.container.utility"], [90, "module-ivy.data_classes.container.wrapping"], [91, "module-ivy.data_classes.factorized_tensor.base"], [92, "module-ivy.data_classes.factorized_tensor.cp_tensor"], [93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"], [94, "module-ivy.data_classes.factorized_tensor.tr_tensor"], [95, "module-ivy.data_classes.factorized_tensor.tt_tensor"], [96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"], [97, "module-ivy.data_classes.array.array"], [98, "module-ivy.data_classes.container.container"], [100, "module-ivy.data_classes.nested_array.nested_array"], [101, "module-ivy.data_classes.nested_array.base"], [102, "module-ivy.data_classes.nested_array.elementwise"], [360, "module-ivy.functional.ivy.experimental.activations"], [361, "module-ivy.functional.ivy.experimental.constants"], [362, "module-ivy.functional.ivy.experimental.creation"], [363, "module-ivy.functional.ivy.experimental.data_type"], [364, "module-ivy.functional.ivy.experimental.device"], [365, "module-ivy.functional.ivy.experimental.elementwise"], [366, "module-ivy.functional.ivy.experimental.general"], [367, "module-ivy.functional.ivy.experimental.gradients"], [368, "module-ivy.functional.ivy.experimental.layers"], [369, "module-ivy.functional.ivy.experimental.linear_algebra"], [370, "module-ivy.functional.ivy.experimental.losses"], [371, "module-ivy.functional.ivy.experimental.manipulation"], [372, "module-ivy.functional.ivy.experimental.meta"], [373, "module-ivy.functional.ivy.experimental.nest"], [374, "module-ivy.functional.ivy.experimental.norms"], [375, "module-ivy.functional.ivy.experimental.random"], [376, "module-ivy.functional.ivy.experimental.searching"], [377, "module-ivy.functional.ivy.experimental.set"], [378, "module-ivy.functional.ivy.experimental.sorting"], [379, "module-ivy.functional.ivy.experimental.sparse_array"], [380, "module-ivy.functional.ivy.experimental.statistical"], [381, "module-ivy.functional.ivy.experimental.utility"], [614, "module-ivy.functional.ivy.activations"], [615, "module-ivy.functional.ivy.constants"], [616, "module-ivy.functional.ivy.control_flow_ops"], [617, "module-ivy.functional.ivy.creation"], [618, "module-ivy.functional.ivy.data_type"], [619, "module-ivy.functional.ivy.device"], [620, "module-ivy.functional.ivy.elementwise"], [621, "module-ivy.functional.ivy.experimental"], [622, "module-ivy.functional.ivy.general"], [623, "module-ivy.functional.ivy.gradients"], [624, "module-ivy.functional.ivy.layers"], [625, "module-ivy.functional.ivy.linear_algebra"], [626, "module-ivy.functional.ivy.losses"], [627, "module-ivy.functional.ivy.manipulation"], [628, "module-ivy.functional.ivy.meta"], [629, "module-ivy.functional.ivy.nest"], [630, "module-ivy.functional.ivy.norms"], [631, "module-ivy.functional.ivy.random"], [632, "module-ivy.functional.ivy.searching"], [633, "module-ivy.functional.ivy.set"], [634, "module-ivy.functional.ivy.sorting"], [635, "module-ivy.functional.ivy.statistical"], [636, "module-ivy.functional.ivy.utility"], [759, "module-ivy_tests.test_ivy.helpers.assertions"], [760, "module-ivy_tests.test_ivy.helpers.available_frameworks"], [761, "module-ivy_tests.test_ivy.helpers.function_testing"], [762, "module-ivy_tests.test_ivy.helpers.globals"], [763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"], [764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"], [765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"], [766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"], [767, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"], [768, "module-ivy_tests.test_ivy.helpers.multiprocessing"], [769, "module-ivy_tests.test_ivy.helpers.pipeline_helper"], [770, "module-ivy_tests.test_ivy.helpers.structs"], [771, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"], [772, "module-ivy_tests.test_ivy.helpers.testing_helpers"], [776, "module-ivy.stateful.activations"], [777, "module-ivy.stateful.converters"], [778, "module-ivy.stateful.helpers"], [779, "module-ivy.stateful.initializers"], [780, "module-ivy.stateful.layers"], [781, "module-ivy.stateful.losses"], [782, "module-ivy.stateful.module"], [783, "module-ivy.stateful.norms"], [784, "module-ivy.stateful.optimizers"], [785, "module-ivy.stateful.sequential"], [786, "module-ivy.utils.assertions"], [787, "module-ivy.utils.backend"], [788, "module-ivy.utils.backend.ast_helpers"], [789, "module-ivy.utils.backend.handler"], [790, "module-ivy.utils.backend.sub_backend_handler"], [791, "module-ivy.utils.binaries"], [792, "module-ivy.utils.dynamic_import"], [793, "module-ivy.utils.einsum_parser"], [794, "module-ivy.utils.einsum_path_helpers"], [795, "module-ivy.utils.exceptions"], [796, "module-ivy.utils.inspection"], [797, "module-ivy.utils.logging"], [798, "module-ivy.utils.profiler"], [799, "module-ivy.utils.verbosity"]], "relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.relu"]], "sigmoid() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.sigmoid"]], "softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softmax"]], "softplus() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softplus"]], "_array_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._array_to_new_backend"]], "_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_ivy"]], "_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_native"]], "_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_new_backend"]], "args_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_ivy"]], "args_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_native"]], "args_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_new_backend"]], "ivy.data_classes.array.conversions": [[47, "module-ivy.data_classes.array.conversions"]], "to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_ivy"]], "to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_native"]], "to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_new_backend"]], "_arraywithcreation (class in ivy.data_classes.array.creation)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation"]], "_abc_impl (ivy.data_classes.array.creation._arraywithcreation attribute)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation._abc_impl"]], "asarray() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.asarray"]], "copy_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.copy_array"]], "empty_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.from_dlpack"]], "full_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.full_like"]], "ivy.data_classes.array.creation": [[48, "module-ivy.data_classes.array.creation"]], "linspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.linspace"]], "logspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.logspace"]], "meshgrid() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.meshgrid"]], "native_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.native_array"]], "one_hot() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.one_hot"]], "ones_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.ones_like"]], "tril() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.tril"]], "triu() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.triu"]], "zeros_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.zeros_like"]], "_arraywithdatatypes (class in ivy.data_classes.array.data_type)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes"]], "_abc_impl (ivy.data_classes.array.data_type._arraywithdatatypes attribute)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes._abc_impl"]], "astype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.dtype"]], "finfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_bool_dtype"]], "is_float_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_uint_dtype"]], "ivy.data_classes.array.data_type": [[49, "module-ivy.data_classes.array.data_type"]], "result_type() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.result_type"]], "_arraywithdevice (class in ivy.data_classes.array.device)": [[50, "ivy.data_classes.array.device._ArrayWithDevice"]], "_abc_impl (ivy.data_classes.array.device._arraywithdevice attribute)": [[50, "ivy.data_classes.array.device._ArrayWithDevice._abc_impl"]], "dev() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.dev"]], "ivy.data_classes.array.device": [[50, "module-ivy.data_classes.array.device"]], "to_device() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.to_device"]], "_arraywithelementwise (class in ivy.data_classes.array.elementwise)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise"]], "_abc_impl (ivy.data_classes.array.elementwise._arraywithelementwise attribute)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise._abc_impl"]], "abs() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.abs"]], "acos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acos"]], "acosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acosh"]], "add() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.add"]], "angle() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.angle"]], "asin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asin"]], "asinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asinh"]], "atan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan"]], "atan2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan2"]], "atanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.ceil"]], "cos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cos"]], "cosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.deg2rad"]], "divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.divide"]], "equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.equal"]], "erf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.erf"]], "exp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp"]], "exp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp2"]], "expm1() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.expm1"]], "floor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor"]], "floor_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.fmin"]], "gcd() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.gcd"]], "greater() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater"]], "greater_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater_equal"]], "imag() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.imag"]], "isfinite() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isfinite"]], "isinf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isinf"]], "isnan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isnan"]], "isreal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isreal"]], "ivy.data_classes.array.elementwise": [[51, "module-ivy.data_classes.array.elementwise"]], "lcm() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.lcm"]], "less() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less"]], "less_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less_equal"]], "log() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log"]], "log10() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log10"]], "log1p() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log1p"]], "log2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log2"]], "logaddexp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.maximum"]], "minimum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.minimum"]], "multiply() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.negative"]], "not_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.not_equal"]], "positive() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.positive"]], "pow() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.pow"]], "rad2deg() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.rad2deg"]], "real() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.real"]], "reciprocal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.remainder"]], "round() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.round"]], "sign() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sign"]], "sin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sin"]], "sinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sinh"]], "sqrt() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sqrt"]], "square() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.square"]], "subtract() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.subtract"]], "tan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tan"]], "tanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tanh"]], "trapz() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trapz"]], "trunc() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc_divide"]], "_arraywithactivationsexperimental (class in ivy.data_classes.array.experimental.activations)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental"]], "_arraywithconversionsexperimental (class in ivy.data_classes.array.experimental.conversions)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental"]], "_arraywithcreationexperimental (class in ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental"]], "_arraywithdata_typeexperimental (class in ivy.data_classes.array.experimental.data_type)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental"]], "_arraywithdeviceexperimental (class in ivy.data_classes.array.experimental.device)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental"]], "_arraywithelementwiseexperimental (class in ivy.data_classes.array.experimental.elementwise)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental"]], "_arraywithgeneralexperimental (class in ivy.data_classes.array.experimental.general)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental"]], "_arraywithgradientsexperimental (class in ivy.data_classes.array.experimental.gradients)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental"]], "_arraywithimageexperimental (class in ivy.data_classes.array.experimental.image)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental"]], "_arraywithlayersexperimental (class in ivy.data_classes.array.experimental.layers)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental"]], "_arraywithlinearalgebraexperimental (class in ivy.data_classes.array.experimental.linear_algebra)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental"]], "_arraywithlossesexperimental (class in ivy.data_classes.array.experimental.losses)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental"]], "_arraywithmanipulationexperimental (class in ivy.data_classes.array.experimental.manipulation)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental"]], "_arraywithnormsexperimental (class in ivy.data_classes.array.experimental.norms)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental"]], "_arraywithrandomexperimental (class in ivy.data_classes.array.experimental.random)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental"]], "_arraywithsearchingexperimental (class in ivy.data_classes.array.experimental.searching)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental"]], "_arraywithsetexperimental (class in ivy.data_classes.array.experimental.set)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental"]], "_arraywithsortingexperimental (class in ivy.data_classes.array.experimental.sorting)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental"]], "_arraywithstatisticalexperimental (class in ivy.data_classes.array.experimental.statistical)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental"]], "_arraywithutilityexperimental (class in ivy.data_classes.array.experimental.utility)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.conversions._arraywithconversionsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.data_type._arraywithdata_typeexperimental attribute)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.device._arraywithdeviceexperimental attribute)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental attribute)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental attribute)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.gradients._arraywithgradientsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.image._arraywithimageexperimental attribute)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental attribute)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental attribute)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental attribute)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.random._arraywithrandomexperimental attribute)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.set._arraywithsetexperimental attribute)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental attribute)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental attribute)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental._abc_impl"]], "adaptive_avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.blackman_window"]], "celu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.celu"]], "column_stack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.column_stack"]], "concat_from_sequence() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dct"]], "dft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.elu"]], "embedding() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft"]], "fft2() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft2"]], "fill_diagonal() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.gamma"]], "general_inner_product() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.general_inner_product"]], "gradient() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.group_norm"]], "hardshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardtanh"]], "heaviside() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.higher_order_moment"]], "hinge_embedding_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.hinge_embedding_loss"]], "histogram() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.interpolate"]], "isclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.isclose"]], "ivy.data_classes.array.experimental": [[52, "module-ivy.data_classes.array.experimental"]], "ivy.data_classes.array.experimental.activations": [[52, "module-ivy.data_classes.array.experimental.activations"]], "ivy.data_classes.array.experimental.conversions": [[52, "module-ivy.data_classes.array.experimental.conversions"]], "ivy.data_classes.array.experimental.creation": [[52, "module-ivy.data_classes.array.experimental.creation"]], "ivy.data_classes.array.experimental.data_type": [[52, "module-ivy.data_classes.array.experimental.data_type"]], "ivy.data_classes.array.experimental.device": [[52, "module-ivy.data_classes.array.experimental.device"]], "ivy.data_classes.array.experimental.elementwise": [[52, "module-ivy.data_classes.array.experimental.elementwise"]], "ivy.data_classes.array.experimental.general": [[52, "module-ivy.data_classes.array.experimental.general"]], "ivy.data_classes.array.experimental.gradients": [[52, "module-ivy.data_classes.array.experimental.gradients"]], "ivy.data_classes.array.experimental.image": [[52, "module-ivy.data_classes.array.experimental.image"]], "ivy.data_classes.array.experimental.layers": [[52, "module-ivy.data_classes.array.experimental.layers"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, "module-ivy.data_classes.array.experimental.linear_algebra"]], "ivy.data_classes.array.experimental.losses": [[52, "module-ivy.data_classes.array.experimental.losses"]], "ivy.data_classes.array.experimental.manipulation": [[52, "module-ivy.data_classes.array.experimental.manipulation"]], "ivy.data_classes.array.experimental.norms": [[52, "module-ivy.data_classes.array.experimental.norms"]], "ivy.data_classes.array.experimental.random": [[52, "module-ivy.data_classes.array.experimental.random"]], "ivy.data_classes.array.experimental.searching": [[52, "module-ivy.data_classes.array.experimental.searching"]], "ivy.data_classes.array.experimental.set": [[52, "module-ivy.data_classes.array.experimental.set"]], "ivy.data_classes.array.experimental.sorting": [[52, "module-ivy.data_classes.array.experimental.sorting"]], "ivy.data_classes.array.experimental.statistical": [[52, "module-ivy.data_classes.array.experimental.statistical"]], "ivy.data_classes.array.experimental.utility": [[52, "module-ivy.data_classes.array.experimental.utility"]], "kl_div() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental method)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logit"]], "logsigmoid() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental static method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental method)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.poisson_nll_loss"]], "polyval() (in module ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation.polyval"]], "prelu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.prelu"]], "put_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental method)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental.reduce"]], "reduce_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.reduce_window"]], "relu6() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.relu6"]], "rfft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.scaled_tanh"]], "selu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.selu"]], "signbit() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.silu"]], "sinc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sparsify_tensor"]], "stft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.top_k"]], "trilu() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental method)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_sum"]], "vsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.zeta"]], "_arraywithgeneral (class in ivy.data_classes.array.general)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral"]], "_abc_impl (ivy.data_classes.array.general._arraywithgeneral attribute)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral._abc_impl"]], "all_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_vector_norm"]], "default() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.default"]], "einops_rearrange() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather"]], "gather_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_array"]], "is_ivy_container() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_container"]], "is_native_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_native_array"]], "isin() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.isin"]], "ivy.data_classes.array.general": [[53, "module-ivy.data_classes.array.general"]], "scatter_flat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_pow"]], "supports_inplace_updates() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.supports_inplace_updates"]], "to_file() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_file"]], "to_list() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.value_is_nan"]], "_arraywithgradients (class in ivy.data_classes.array.gradients)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients"]], "_abc_impl (ivy.data_classes.array.gradients._arraywithgradients attribute)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients._abc_impl"]], "adam_step() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_step"]], "adam_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.gradient_descent_update"]], "ivy.data_classes.array.gradients": [[54, "module-ivy.data_classes.array.gradients"]], "lamb_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.stop_gradient"]], "_arraywithimage (class in ivy.data_classes.array.image)": [[55, "ivy.data_classes.array.image._ArrayWithImage"]], "_abc_impl (ivy.data_classes.array.image._arraywithimage attribute)": [[55, "ivy.data_classes.array.image._ArrayWithImage._abc_impl"]], "ivy.data_classes.array.image": [[55, "module-ivy.data_classes.array.image"]], "_arraywithlayers (class in ivy.data_classes.array.layers)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers"]], "_abc_impl (ivy.data_classes.array.layers._arraywithlayers attribute)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers._abc_impl"]], "conv1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout"]], "dropout1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout3d"]], "ivy.data_classes.array.layers": [[56, "module-ivy.data_classes.array.layers"]], "linear() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.linear"]], "lstm_update() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.multi_head_attention"]], "scaled_dot_product_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.scaled_dot_product_attention"]], "_arraywithlinearalgebra (class in ivy.data_classes.array.linear_algebra)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra attribute)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra._abc_impl"]], "cholesky() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cross"]], "det() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.det"]], "diag() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diagonal"]], "eig() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eig"]], "eigh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigvalsh"]], "inner() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inv"]], "ivy.data_classes.array.linear_algebra": [[57, "module-ivy.data_classes.array.linear_algebra"]], "matmul() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.solve"]], "svd() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_arraywithlosses (class in ivy.data_classes.array.losses)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses"]], "_abc_impl (ivy.data_classes.array.losses._arraywithlosses attribute)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses._abc_impl"]], "binary_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.cross_entropy"]], "ivy.data_classes.array.losses": [[58, "module-ivy.data_classes.array.losses"]], "sparse_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.sparse_cross_entropy"]], "_arraywithmanipulation (class in ivy.data_classes.array.manipulation)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation"]], "_abc_impl (ivy.data_classes.array.manipulation._arraywithmanipulation attribute)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation._abc_impl"]], "clip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.clip"]], "concat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.concat"]], "constant_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.expand_dims"]], "flip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.flip"]], "ivy.data_classes.array.manipulation": [[59, "module-ivy.data_classes.array.manipulation"]], "permute_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.repeat"]], "reshape() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.reshape"]], "roll() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.roll"]], "split() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.split"]], "squeeze() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.squeeze"]], "stack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.stack"]], "swapaxes() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.swapaxes"]], "tile() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.tile"]], "unstack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.unstack"]], "view() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.view"]], "zero_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.zero_pad"]], "_arraywithnorms (class in ivy.data_classes.array.norms)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms"]], "_abc_impl (ivy.data_classes.array.norms._arraywithnorms attribute)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms._abc_impl"]], "ivy.data_classes.array.norms": [[60, "module-ivy.data_classes.array.norms"]], "layer_norm() (ivy.data_classes.array.norms._arraywithnorms method)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms.layer_norm"]], "_arraywithrandom (class in ivy.data_classes.array.random)": [[61, "ivy.data_classes.array.random._ArrayWithRandom"]], "_abc_impl (ivy.data_classes.array.random._arraywithrandom attribute)": [[61, "ivy.data_classes.array.random._ArrayWithRandom._abc_impl"]], "ivy.data_classes.array.random": [[61, "module-ivy.data_classes.array.random"]], "multinomial() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.multinomial"]], "randint() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.randint"]], "random_normal() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.shuffle"]], "_arraywithsearching (class in ivy.data_classes.array.searching)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching"]], "_abc_impl (ivy.data_classes.array.searching._arraywithsearching attribute)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching._abc_impl"]], "argmax() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmax"]], "argmin() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmin"]], "argwhere() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argwhere"]], "ivy.data_classes.array.searching": [[62, "module-ivy.data_classes.array.searching"]], "nonzero() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.nonzero"]], "where() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.where"]], "_arraywithset (class in ivy.data_classes.array.set)": [[63, "ivy.data_classes.array.set._ArrayWithSet"]], "_abc_impl (ivy.data_classes.array.set._arraywithset attribute)": [[63, "ivy.data_classes.array.set._ArrayWithSet._abc_impl"]], "ivy.data_classes.array.set": [[63, "module-ivy.data_classes.array.set"]], "unique_all() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_all"]], "unique_counts() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_values"]], "_arraywithsorting (class in ivy.data_classes.array.sorting)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting"]], "_abc_impl (ivy.data_classes.array.sorting._arraywithsorting attribute)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting._abc_impl"]], "argsort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.argsort"]], "ivy.data_classes.array.sorting": [[64, "module-ivy.data_classes.array.sorting"]], "msort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.msort"]], "searchsorted() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.searchsorted"]], "sort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.sort"]], "_arraywithstatistical (class in ivy.data_classes.array.statistical)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical"]], "_abc_impl (ivy.data_classes.array.statistical._arraywithstatistical attribute)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical._abc_impl"]], "cumprod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumsum"]], "einsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.einsum"]], "ivy.data_classes.array.statistical": [[65, "module-ivy.data_classes.array.statistical"]], "max() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.max"]], "mean() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.mean"]], "min() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.min"]], "prod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.prod"]], "std() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.std"]], "sum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.sum"]], "var() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.var"]], "_arraywithutility (class in ivy.data_classes.array.utility)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility"]], "_abc_impl (ivy.data_classes.array.utility._arraywithutility attribute)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility._abc_impl"]], "all() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.all"]], "any() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.any"]], "ivy.data_classes.array.utility": [[66, "module-ivy.data_classes.array.utility"]], "_wrap_function() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping._wrap_function"]], "add_ivy_array_instance_methods() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping.add_ivy_array_instance_methods"]], "ivy.data_classes.array.wrapping": [[67, "module-ivy.data_classes.array.wrapping"]], "_containerwithactivations (class in ivy.data_classes.container.activations)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations"]], "_abc_impl (ivy.data_classes.container.activations._containerwithactivations attribute)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._abc_impl"]], "_static_gelu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_gelu"]], "_static_hardswish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_hardswish"]], "_static_leaky_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_leaky_relu"]], "_static_log_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_log_softmax"]], "_static_mish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_mish"]], "_static_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_relu"]], "_static_sigmoid() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_sigmoid"]], "_static_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softmax"]], "_static_softplus() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softplus"]], "gelu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.gelu"]], "hardswish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.hardswish"]], "ivy.data_classes.container.activations": [[68, "module-ivy.data_classes.container.activations"]], "leaky_relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.log_softmax"]], "mish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.mish"]], "relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.relu"]], "sigmoid() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.sigmoid"]], "softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softmax"]], "softplus() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softplus"]], "containerbase (class in ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base.ContainerBase"]], "__getitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__getitem__"]], "__init__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__init__"]], "__setitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__setitem__"]], "_abc_impl (ivy.data_classes.container.base.containerbase attribute)": [[69, "ivy.data_classes.container.base.ContainerBase._abc_impl"]], "_cont_at_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_dict"]], "_cont_at_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_seq"]], "_cont_call_static_method_with_flexible_args() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_call_static_method_with_flexible_args"]], "_cont_concat_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_concat_unify"]], "_cont_get_dev() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dev"]], "_cont_get_dtype() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dtype"]], "_cont_get_shape() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shape"]], "_cont_get_shapes() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shapes"]], "_cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_ivy"]], "_cont_mean_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_mean_unify"]], "_cont_prune_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_dict"]], "_cont_prune_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_seq"]], "_cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_slice_keys"]], "_cont_sum_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_sum_unify"]], "_get_queue_item() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._get_queue_item"]], "_is_jsonable() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._is_jsonable"]], "_repr() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._repr"]], "cont_all_false() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_false"]], "cont_all_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_key_chains"]], "cont_all_true() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_true"]], "cont_as_bools() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_as_bools"]], "cont_assert_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_container"]], "cont_assert_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_structure"]], "cont_assert_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical"]], "cont_assert_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical_structure"]], "cont_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chain"]], "cont_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chains"]], "cont_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_keys"]], "cont_combine() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_combine"]], "cont_common_key_chains() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_common_key_chains"]], "cont_config (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_config"]], "cont_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_container"]], "cont_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_structure"]], "cont_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_copy"]], "cont_create_if_absent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_create_if_absent"]], "cont_cutoff_at_depth() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_depth"]], "cont_cutoff_at_height() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_height"]], "cont_deep_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_deep_copy"]], "cont_dev (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev"]], "cont_dev_str (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev_str"]], "cont_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_diff"]], "cont_dtype (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dtype"]], "cont_duplicate_array_keychains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_duplicate_array_keychains"]], "cont_find_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_container"]], "cont_find_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_structure"]], "cont_flatten_key_chain() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chain"]], "cont_flatten_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chains"]], "cont_format_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_format_key_chains"]], "cont_from_disk_as_hdf5() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_hdf5"]], "cont_from_disk_as_json() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_json"]], "cont_from_disk_as_pickled() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_pickled"]], "cont_from_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_flat_list"]], "cont_handle_inplace() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_handle_inplace"]], "cont_has_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key"]], "cont_has_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key_chain"]], "cont_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical"]], "cont_identical_array_shapes() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_array_shapes"]], "cont_identical_configs() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_configs"]], "cont_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_structure"]], "cont_if_exists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_if_exists"]], "cont_inplace_update() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_inplace_update"]], "cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_ivy"]], "cont_key_chains_containing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_key_chains_containing"]], "cont_list_join() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_join"]], "cont_list_stack() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_stack"]], "cont_load() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_load"]], "cont_map() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map"]], "cont_map_sub_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map_sub_conts"]], "cont_max_depth (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_max_depth"]], "cont_multi_map() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map"]], "cont_multi_map_in_function() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map_in_function"]], "cont_num_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_num_arrays"]], "cont_overwrite_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chain"]], "cont_overwrite_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chains"]], "cont_prune_empty() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_empty"]], "cont_prune_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chain"]], "cont_prune_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chains"]], "cont_prune_key_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_from_key_chains"]], "cont_prune_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys"]], "cont_prune_keys_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys_from_key_chains"]], "cont_reduce() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reduce"]], "cont_remove_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_key_length_limit"]], "cont_remove_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_print_limit"]], "cont_reshape_like() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reshape_like"]], "cont_restructure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure"]], "cont_restructure_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure_key_chains"]], "cont_save() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_save"]], "cont_set_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chain"]], "cont_set_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chains"]], "cont_set_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_keys"]], "cont_shape (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shape"]], "cont_shapes (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shapes"]], "cont_show() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show"]], "cont_show_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show_sub_container"]], "cont_size_ordered_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_size_ordered_arrays"]], "cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_keys"]], "cont_slice_via_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_via_key"]], "cont_sort_by_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_sort_by_key"]], "cont_structural_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_structural_diff"]], "cont_to_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_dict"]], "cont_to_disk_as_hdf5() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_hdf5"]], "cont_to_disk_as_json() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_json"]], "cont_to_disk_as_pickled() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_pickled"]], "cont_to_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_flat_list"]], "cont_to_iterator() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator"]], "cont_to_iterator_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_keys"]], "cont_to_iterator_values() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_values"]], "cont_to_jsonable() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_jsonable"]], "cont_to_nested_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_nested_list"]], "cont_to_raw() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_raw"]], "cont_trim_key() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_trim_key"]], "cont_try_kc() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_try_kc"]], "cont_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unify"]], "cont_unstack_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unstack_conts"]], "cont_update_config() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_update_config"]], "cont_with_default_key_color() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_default_key_color"]], "cont_with_entries_as_lists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_entries_as_lists"]], "cont_with_ivy_backend() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_ivy_backend"]], "cont_with_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_key_length_limit"]], "cont_with_print_indent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_indent"]], "cont_with_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_limit"]], "cont_with_print_line_spacing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_line_spacing"]], "dynamic_backend (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.dynamic_backend"]], "h5_file_size() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.h5_file_size"]], "ivy.data_classes.container.base": [[69, "module-ivy.data_classes.container.base"]], "shuffle_h5_file() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.shuffle_h5_file"]], "split_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.split_conts"]], "_containerwithconversions (class in ivy.data_classes.container.conversions)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions"]], "_abc_impl (ivy.data_classes.container.conversions._containerwithconversions attribute)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._abc_impl"]], "_static_to_ivy() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_ivy"]], "_static_to_native() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_native"]], "ivy.data_classes.container.conversions": [[70, "module-ivy.data_classes.container.conversions"]], "to_ivy() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_ivy"]], "to_native() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_native"]], "_containerwithcreation (class in ivy.data_classes.container.creation)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation"]], "_abc_impl (ivy.data_classes.container.creation._containerwithcreation attribute)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._abc_impl"]], "_static_arange() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_arange"]], "_static_asarray() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_asarray"]], "_static_copy_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_copy_array"]], "_static_empty() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty"]], "_static_empty_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty_like"]], "_static_eye() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_eye"]], "_static_from_dlpack() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_from_dlpack"]], "_static_full() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full"]], "_static_full_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full_like"]], "_static_linspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_linspace"]], "_static_logspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_logspace"]], "_static_meshgrid() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_meshgrid"]], "_static_native_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_native_array"]], "_static_one_hot() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_one_hot"]], "_static_ones() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones"]], "_static_ones_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones_like"]], "_static_tril() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_tril"]], "_static_triu() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_triu"]], "_static_zeros() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros"]], "_static_zeros_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros_like"]], "asarray() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.asarray"]], "copy_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.copy_array"]], "empty_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.from_dlpack"]], "frombuffer() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.frombuffer"]], "full_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.full_like"]], "ivy.data_classes.container.creation": [[71, "module-ivy.data_classes.container.creation"]], "linspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.linspace"]], "logspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.logspace"]], "meshgrid() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.meshgrid"]], "native_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.native_array"]], "one_hot() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.one_hot"]], "ones_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.ones_like"]], "static_frombuffer() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_frombuffer"]], "static_triu_indices() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_triu_indices"]], "tril() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.tril"]], "triu() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu"]], "triu_indices() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu_indices"]], "zeros_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.zeros_like"]], "_containerwithdatatypes (class in ivy.data_classes.container.data_type)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes"]], "_abc_impl (ivy.data_classes.container.data_type._containerwithdatatypes attribute)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._abc_impl"]], "_static_astype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_astype"]], "_static_broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_arrays"]], "_static_broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_to"]], "_static_can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_can_cast"]], "_static_default_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_complex_dtype"]], "_static_default_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_float_dtype"]], "_static_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_dtype"]], "_static_finfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_finfo"]], "_static_function_supported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_supported_dtypes"]], "_static_function_unsupported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_unsupported_dtypes"]], "_static_iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_iinfo"]], "_static_is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_bool_dtype"]], "_static_is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_complex_dtype"]], "_static_is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_float_dtype"]], "_static_is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_int_dtype"]], "_static_is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_uint_dtype"]], "_static_result_type() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_result_type"]], "astype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.dtype"]], "finfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_bool_dtype"]], "is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_complex_dtype"]], "is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_uint_dtype"]], "ivy.data_classes.container.data_type": [[72, "module-ivy.data_classes.container.data_type"]], "result_type() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.result_type"]], "_containerwithdevice (class in ivy.data_classes.container.device)": [[73, "ivy.data_classes.container.device._ContainerWithDevice"]], "_abc_impl (ivy.data_classes.container.device._containerwithdevice attribute)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._abc_impl"]], "_static_dev() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_dev"]], "_static_to_device() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_to_device"]], "dev() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.dev"]], "ivy.data_classes.container.device": [[73, "module-ivy.data_classes.container.device"]], "to_device() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.to_device"]], "_containerwithelementwise (class in ivy.data_classes.container.elementwise)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise"]], "_abc_impl (ivy.data_classes.container.elementwise._containerwithelementwise attribute)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._abc_impl"]], "_static_abs() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_abs"]], "_static_acos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acos"]], "_static_acosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acosh"]], "_static_add() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_add"]], "_static_asin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asin"]], "_static_asinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asinh"]], "_static_atan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan"]], "_static_atan2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan2"]], "_static_atanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atanh"]], "_static_bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_and"]], "_static_bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_invert"]], "_static_bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_left_shift"]], "_static_bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_or"]], "_static_bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_right_shift"]], "_static_bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_xor"]], "_static_ceil() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_ceil"]], "_static_cos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cos"]], "_static_cosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cosh"]], "_static_deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_deg2rad"]], "_static_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_divide"]], "_static_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_equal"]], "_static_erf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_erf"]], "_static_exp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_exp"]], "_static_expm1() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_expm1"]], "_static_floor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor"]], "_static_floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor_divide"]], "_static_greater() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater"]], "_static_greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater_equal"]], "_static_isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isfinite"]], "_static_isinf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isinf"]], "_static_isnan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isnan"]], "_static_isreal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isreal"]], "_static_lcm() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_lcm"]], "_static_less() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less"]], "_static_less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less_equal"]], "_static_log() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log"]], "_static_log10() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log10"]], "_static_log1p() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log1p"]], "_static_log2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log2"]], "_static_logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logaddexp"]], "_static_logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_and"]], "_static_logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_not"]], "_static_logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_or"]], "_static_logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_xor"]], "_static_maximum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_maximum"]], "_static_minimum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_minimum"]], "_static_multiply() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_multiply"]], "_static_negative() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_negative"]], "_static_not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_not_equal"]], "_static_positive() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_positive"]], "_static_pow() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_pow"]], "_static_rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_rad2deg"]], "_static_reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_reciprocal"]], "_static_remainder() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_remainder"]], "_static_round() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_round"]], "_static_sign() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sign"]], "_static_sin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sin"]], "_static_sinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sinh"]], "_static_sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sqrt"]], "_static_square() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_square"]], "_static_subtract() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_subtract"]], "_static_tan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tan"]], "_static_tanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tanh"]], "_static_trapz() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trapz"]], "_static_trunc() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc"]], "_static_trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc_divide"]], "abs() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.abs"]], "acos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acos"]], "acosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acosh"]], "add() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.add"]], "angle() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.angle"]], "asin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asin"]], "asinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asinh"]], "atan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan"]], "atan2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan2"]], "atanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.ceil"]], "cos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cos"]], "cosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.deg2rad"]], "divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.divide"]], "equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.equal"]], "erf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.erf"]], "exp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp"]], "exp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp2"]], "expm1() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.expm1"]], "floor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor"]], "floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.fmin"]], "gcd() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.gcd"]], "greater() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater"]], "greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater_equal"]], "imag() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.imag"]], "isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isfinite"]], "isinf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isinf"]], "isnan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isnan"]], "isreal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isreal"]], "ivy.data_classes.container.elementwise": [[74, "module-ivy.data_classes.container.elementwise"]], "lcm() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.lcm"]], "less() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less"]], "less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less_equal"]], "log() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log"]], "log10() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log10"]], "log1p() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log1p"]], "log2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log2"]], "logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.maximum"]], "minimum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.minimum"]], "multiply() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.negative"]], "not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.not_equal"]], "positive() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.positive"]], "pow() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.pow"]], "rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.rad2deg"]], "real() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.real"]], "reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.remainder"]], "round() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.round"]], "sign() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sign"]], "sin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sin"]], "sinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sinh"]], "sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sqrt"]], "square() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.square"]], "static_angle() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_angle"]], "static_exp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_exp2"]], "static_fmin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_fmin"]], "static_gcd() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_gcd"]], "static_imag() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_imag"]], "static_logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_logaddexp2"]], "static_nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_nan_to_num"]], "static_real() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_real"]], "subtract() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.subtract"]], "tan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tan"]], "tanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tanh"]], "trapz() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trapz"]], "trunc() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc_divide"]], "_containerwithactivationexperimental (class in ivy.data_classes.container.experimental.activations)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental"]], "_containerwithconversionexperimental (class in ivy.data_classes.container.experimental.conversions)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental"]], "_containerwithcreationexperimental (class in ivy.data_classes.container.experimental.creation)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental"]], "_containerwithdata_typeexperimental (class in ivy.data_classes.container.experimental.data_type)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental"]], "_containerwithdeviceexperimental (class in ivy.data_classes.container.experimental.device)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental"]], "_containerwithelementwiseexperimental (class in ivy.data_classes.container.experimental.elementwise)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental"]], "_containerwithgeneralexperimental (class in ivy.data_classes.container.experimental.general)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental"]], "_containerwithgradientsexperimental (class in ivy.data_classes.container.experimental.gradients)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental"]], "_containerwithimageexperimental (class in ivy.data_classes.container.experimental.image)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental"]], "_containerwithlayersexperimental (class in ivy.data_classes.container.experimental.layers)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental"]], "_containerwithlinearalgebraexperimental (class in ivy.data_classes.container.experimental.linear_algebra)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental"]], "_containerwithlossesexperimental (class in ivy.data_classes.container.experimental.losses)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental"]], "_containerwithmanipulationexperimental (class in ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental"]], "_containerwithnormsexperimental (class in ivy.data_classes.container.experimental.norms)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental"]], "_containerwithrandomexperimental (class in ivy.data_classes.container.experimental.random)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental"]], "_containerwithsearchingexperimental (class in ivy.data_classes.container.experimental.searching)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental"]], "_containerwithsetexperimental (class in ivy.data_classes.container.experimental.set)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental"]], "_containerwithsortingexperimental (class in ivy.data_classes.container.experimental.sorting)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental"]], "_containerwithstatisticalexperimental (class in ivy.data_classes.container.experimental.statistical)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental"]], "_containerwithutilityexperimental (class in ivy.data_classes.container.experimental.utility)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.conversions._containerwithconversionexperimental attribute)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.data_type._containerwithdata_typeexperimental attribute)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.device._containerwithdeviceexperimental attribute)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental attribute)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental attribute)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.gradients._containerwithgradientsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.image._containerwithimageexperimental attribute)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental attribute)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental attribute)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental attribute)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.random._containerwithrandomexperimental attribute)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.set._containerwithsetexperimental attribute)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental attribute)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental attribute)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental._abc_impl"]], "_static_celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_celu"]], "_static_cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummax"]], "_static_cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummin"]], "_static_elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_elu"]], "_static_fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_fft"]], "_static_fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_fill_diagonal"]], "_static_hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardshrink"]], "_static_hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardtanh"]], "_static_hinge_embedding_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_hinge_embedding_loss"]], "_static_huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_huber_loss"]], "_static_kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_kl_div"]], "_static_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_l1_loss"]], "_static_log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_log_poisson_loss"]], "_static_nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_nanmin"]], "_static_poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_poisson_nll_loss"]], "_static_put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_put_along_axis"]], "_static_reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental static method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._static_reduce"]], "_static_scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_scaled_tanh"]], "_static_silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_silu"]], "_static_sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_sliding_window"]], "_static_smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_smooth_l1_loss"]], "_static_soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_soft_margin_loss"]], "_static_softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_softshrink"]], "_static_take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_take"]], "_static_tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_tanhshrink"]], "_static_threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_threshold"]], "_static_trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._static_trilu"]], "_static_trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_trim_zeros"]], "_static_unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unique_consecutive"]], "adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.blackman_window"]], "broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.broadcast_shapes"]], "celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.celu"]], "column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.column_stack"]], "concat_from_sequence() (in module ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation.concat_from_sequence"]], "concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dct"]], "dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.elu"]], "embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.fft"]], "fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.gamma"]], "gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.group_norm"]], "hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hamming_window"]], "hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hann_window"]], "hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardtanh"]], "heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.higher_order_moment"]], "hinge_embedding_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.hinge_embedding_loss"]], "histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.interpolate"]], "invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.invert_permutation"]], "isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.isclose"]], "ivy.data_classes.container.experimental": [[75, "module-ivy.data_classes.container.experimental"]], "ivy.data_classes.container.experimental.activations": [[75, "module-ivy.data_classes.container.experimental.activations"]], "ivy.data_classes.container.experimental.conversions": [[75, "module-ivy.data_classes.container.experimental.conversions"]], "ivy.data_classes.container.experimental.creation": [[75, "module-ivy.data_classes.container.experimental.creation"]], "ivy.data_classes.container.experimental.data_type": [[75, "module-ivy.data_classes.container.experimental.data_type"]], "ivy.data_classes.container.experimental.device": [[75, "module-ivy.data_classes.container.experimental.device"]], "ivy.data_classes.container.experimental.elementwise": [[75, "module-ivy.data_classes.container.experimental.elementwise"]], "ivy.data_classes.container.experimental.general": [[75, "module-ivy.data_classes.container.experimental.general"]], "ivy.data_classes.container.experimental.gradients": [[75, "module-ivy.data_classes.container.experimental.gradients"]], "ivy.data_classes.container.experimental.image": [[75, "module-ivy.data_classes.container.experimental.image"]], "ivy.data_classes.container.experimental.layers": [[75, "module-ivy.data_classes.container.experimental.layers"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, "module-ivy.data_classes.container.experimental.linear_algebra"]], "ivy.data_classes.container.experimental.losses": [[75, "module-ivy.data_classes.container.experimental.losses"]], "ivy.data_classes.container.experimental.manipulation": [[75, "module-ivy.data_classes.container.experimental.manipulation"]], "ivy.data_classes.container.experimental.norms": [[75, "module-ivy.data_classes.container.experimental.norms"]], "ivy.data_classes.container.experimental.random": [[75, "module-ivy.data_classes.container.experimental.random"]], "ivy.data_classes.container.experimental.searching": [[75, "module-ivy.data_classes.container.experimental.searching"]], "ivy.data_classes.container.experimental.set": [[75, "module-ivy.data_classes.container.experimental.set"]], "ivy.data_classes.container.experimental.sorting": [[75, "module-ivy.data_classes.container.experimental.sorting"]], "ivy.data_classes.container.experimental.statistical": [[75, "module-ivy.data_classes.container.experimental.statistical"]], "ivy.data_classes.container.experimental.utility": [[75, "module-ivy.data_classes.container.experimental.utility"]], "kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_bessel_derived_window"]], "kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_window"]], "kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.lexsort"]], "log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logit"]], "logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.poisson_nll_loss"]], "polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.polyval"]], "prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.prelu"]], "put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental.reduce"]], "relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.relu6"]], "rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.scaled_tanh"]], "selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.selu"]], "signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.silu"]], "sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sparsify_tensor"]], "static_adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool1d"]], "static_adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool2d"]], "static_adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool2d"]], "static_adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_adjoint"]], "static_allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_allclose"]], "static_amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amax"]], "static_amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amin"]], "static_as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_as_strided"]], "static_atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_1d"]], "static_atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_2d"]], "static_atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_3d"]], "static_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool1d"]], "static_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool2d"]], "static_avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool3d"]], "static_batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_batch_norm"]], "static_batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_batched_outer"]], "static_bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_bernoulli"]], "static_beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_beta"]], "static_binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_binarizer"]], "static_bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_bincount"]], "static_blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_blackman_window"]], "static_broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_broadcast_shapes"]], "static_column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_column_stack"]], "static_concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_concat_from_sequence"]], "static_cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_cond"]], "static_conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_conj"]], "static_copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_copysign"]], "static_corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_corrcoef"]], "static_count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_count_nonzero"]], "static_cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_cov"]], "static_dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dct"]], "static_dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dft"]], "static_diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_diagflat"]], "static_diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_diff"]], "static_digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_digamma"]], "static_dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_dirichlet"]], "static_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_dot"]], "static_dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dsplit"]], "static_dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dstack"]], "static_eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eig"]], "static_eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigh_tridiagonal"]], "static_eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigvals"]], "static_embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_embedding"]], "static_erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfc"]], "static_expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_expand"]], "static_eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_eye_like"]], "static_fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fix"]], "static_flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flatten"]], "static_fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fliplr"]], "static_flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flipud"]], "static_float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_float_power"]], "static_fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmax"]], "static_fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmod"]], "static_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fold"]], "static_frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_frexp"]], "static_gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_gamma"]], "static_gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_gradient"]], "static_group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_group_norm"]], "static_hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hamming_window"]], "static_hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hann_window"]], "static_heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_heaviside"]], "static_higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_higher_order_moment"]], "static_histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_histogram"]], "static_hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hsplit"]], "static_hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hstack"]], "static_hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_hypot"]], "static_i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_i0"]], "static_idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_idct"]], "static_ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifft"]], "static_ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifftn"]], "static_igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_igamma"]], "static_initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_initialize_tucker"]], "static_instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_instance_norm"]], "static_interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_interpolate"]], "static_invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_invert_permutation"]], "static_isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_isclose"]], "static_kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_bessel_derived_window"]], "static_kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_window"]], "static_kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_kron"]], "static_l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l1_normalize"]], "static_l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l2_normalize"]], "static_ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_ldexp"]], "static_lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_lerp"]], "static_lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_lexsort"]], "static_logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logit"]], "static_logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logsigmoid"]], "static_lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_lp_normalize"]], "static_make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_make_svd_non_negative"]], "static_matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_matricize"]], "static_matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_matrix_exp"]], "static_max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool1d"]], "static_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool2d"]], "static_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool3d"]], "static_max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_unpool1d"]], "static_median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_median"]], "static_mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_mel_weight_matrix"]], "static_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_mode_dot"]], "static_modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_modf"]], "static_moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_moveaxis"]], "static_multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_dot"]], "static_multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_mode_dot"]], "static_nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmean"]], "static_nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmedian"]], "static_nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanprod"]], "static_nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nansum"]], "static_nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nextafter"]], "static_optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental static method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.static_optional_get_element"]], "static_pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_pad"]], "static_partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_fold"]], "static_partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_tensor_to_vec"]], "static_partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_partial_tucker"]], "static_partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_unfold"]], "static_partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_vec_to_tensor"]], "static_poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_poisson"]], "static_polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_polyval"]], "static_prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_prelu"]], "static_quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_quantile"]], "static_relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_relu6"]], "static_rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfft"]], "static_rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfftn"]], "static_rnn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rnn"]], "static_rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_rot90"]], "static_selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_selu"]], "static_signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_signbit"]], "static_sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sinc"]], "static_soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_soft_thresholding"]], "static_sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sparsify_tensor"]], "static_stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_stft"]], "static_svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_svd_flip"]], "static_take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_take_along_axis"]], "static_tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tensor_train"]], "static_thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_thresholded_relu"]], "static_top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_top_k"]], "static_tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_tril_indices"]], "static_truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_truncated_svd"]], "static_tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tt_matrix_to_tensor"]], "static_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tucker"]], "static_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_unfold"]], "static_unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental static method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.static_unravel_index"]], "static_unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_mean"]], "static_unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_min"]], "static_unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_sum"]], "static_vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_vorbis_window"]], "static_vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vsplit"]], "static_vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vstack"]], "static_xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_xlogy"]], "static_zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_zeta"]], "stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.top_k"]], "tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.tril_indices"]], "trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_sum"]], "vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.vorbis_window"]], "vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.zeta"]], "_containerwithgeneral (class in ivy.data_classes.container.general)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral"]], "_abc_impl (ivy.data_classes.container.general._containerwithgeneral attribute)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._abc_impl"]], "_static_all_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_all_equal"]], "_static_array_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_array_equal"]], "_static_assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_assert_supports_inplace"]], "_static_clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_matrix_norm"]], "_static_clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_vector_norm"]], "_static_einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_rearrange"]], "_static_einops_reduce() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_reduce"]], "_static_einops_repeat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_repeat"]], "_static_exists() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_exists"]], "_static_fourier_encode() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_fourier_encode"]], "_static_gather() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather"]], "_static_gather_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather_nd"]], "_static_get_num_dims() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_get_num_dims"]], "_static_has_nans() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_has_nans"]], "_static_inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_decrement"]], "_static_inplace_increment() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_increment"]], "_static_inplace_update() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_update"]], "_static_is_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_array"]], "_static_is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_ivy_array"]], "_static_is_native_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_native_array"]], "_static_scatter_flat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_flat"]], "_static_scatter_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_nd"]], "_static_stable_divide() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_divide"]], "_static_stable_pow() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_pow"]], "_static_supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_supports_inplace_updates"]], "_static_to_list() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_list"]], "_static_to_numpy() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_numpy"]], "_static_to_scalar() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_scalar"]], "_static_value_is_nan() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_value_is_nan"]], "all_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_vector_norm"]], "einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather"]], "gather_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_ivy_array"]], "is_native_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_native_array"]], "isin() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.isin"]], "itemsize() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.itemsize"]], "ivy.data_classes.container.general": [[76, "module-ivy.data_classes.container.general"]], "scatter_flat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_pow"]], "static_isin() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_isin"]], "static_itemsize() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_itemsize"]], "static_strides() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_strides"]], "strides() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.strides"]], "supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.supports_inplace_updates"]], "to_list() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.value_is_nan"]], "_containerwithgradients (class in ivy.data_classes.container.gradients)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients"]], "_abc_impl (ivy.data_classes.container.gradients._containerwithgradients attribute)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._abc_impl"]], "_static_stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients static method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._static_stop_gradient"]], "adam_step() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_step"]], "adam_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.gradient_descent_update"]], "ivy.data_classes.container.gradients": [[77, "module-ivy.data_classes.container.gradients"]], "lamb_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.stop_gradient"]], "_containerwithimage (class in ivy.data_classes.container.image)": [[78, "ivy.data_classes.container.image._ContainerWithImage"]], "_abc_impl (ivy.data_classes.container.image._containerwithimage attribute)": [[78, "ivy.data_classes.container.image._ContainerWithImage._abc_impl"]], "ivy.data_classes.container.image": [[78, "module-ivy.data_classes.container.image"]], "_containerwithlayers (class in ivy.data_classes.container.layers)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers"]], "_abc_impl (ivy.data_classes.container.layers._containerwithlayers attribute)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._abc_impl"]], "_static_conv1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d"]], "_static_conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d_transpose"]], "_static_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d"]], "_static_conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d_transpose"]], "_static_conv3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d"]], "_static_conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d_transpose"]], "_static_depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_depthwise_conv2d"]], "_static_dropout() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout"]], "_static_dropout1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout1d"]], "_static_dropout2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout2d"]], "_static_dropout3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout3d"]], "_static_linear() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_linear"]], "_static_lstm_update() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_lstm_update"]], "_static_multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_multi_head_attention"]], "_static_reduce_window() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_reduce_window"]], "_static_scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_scaled_dot_product_attention"]], "conv1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout"]], "dropout1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout3d"]], "ivy.data_classes.container.layers": [[79, "module-ivy.data_classes.container.layers"]], "linear() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.linear"]], "lstm_update() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.multi_head_attention"]], "reduce_window() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.reduce_window"]], "scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.scaled_dot_product_attention"]], "_containerwithlinearalgebra (class in ivy.data_classes.container.linear_algebra)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra attribute)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._abc_impl"]], "_static_cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cholesky"]], "_static_cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cross"]], "_static_det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_det"]], "_static_diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diag"]], "_static_diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diagonal"]], "_static_eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigh"]], "_static_eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigvalsh"]], "_static_inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inner"]], "_static_inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inv"]], "_static_matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matmul"]], "_static_matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_norm"]], "_static_matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_power"]], "_static_matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_rank"]], "_static_matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_transpose"]], "_static_outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_outer"]], "_static_pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_pinv"]], "_static_qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_qr"]], "_static_slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_slogdet"]], "_static_solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_solve"]], "_static_svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svd"]], "_static_svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svdvals"]], "_static_tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensordot"]], "_static_tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensorsolve"]], "_static_trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_trace"]], "_static_vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vander"]], "_static_vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vecdot"]], "_static_vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_norm"]], "_static_vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_to_skew_symmetric_matrix"]], "cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cross"]], "det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.det"]], "diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diagonal"]], "eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigvalsh"]], "general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.general_inner_product"]], "inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inv"]], "ivy.data_classes.container.linear_algebra": [[80, "module-ivy.data_classes.container.linear_algebra"]], "matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.solve"]], "static_general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.static_general_inner_product"]], "svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_containerwithlosses (class in ivy.data_classes.container.losses)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses"]], "_abc_impl (ivy.data_classes.container.losses._containerwithlosses attribute)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._abc_impl"]], "_static_binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_binary_cross_entropy"]], "_static_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_cross_entropy"]], "_static_sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_sparse_cross_entropy"]], "binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.cross_entropy"]], "ivy.data_classes.container.losses": [[81, "module-ivy.data_classes.container.losses"]], "sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.sparse_cross_entropy"]], "_containerwithmanipulation (class in ivy.data_classes.container.manipulation)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation"]], "_abc_impl (ivy.data_classes.container.manipulation._containerwithmanipulation attribute)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._abc_impl"]], "_static_clip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_clip"]], "_static_concat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_concat"]], "_static_constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_constant_pad"]], "_static_expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_expand_dims"]], "_static_flip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_flip"]], "_static_permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_permute_dims"]], "_static_repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_repeat"]], "_static_reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_reshape"]], "_static_roll() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_roll"]], "_static_split() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_split"]], "_static_squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_squeeze"]], "_static_stack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_stack"]], "_static_swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_swapaxes"]], "_static_tile() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_tile"]], "_static_unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_unstack"]], "_static_zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_zero_pad"]], "clip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.clip"]], "concat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.concat"]], "constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.expand_dims"]], "flip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.flip"]], "ivy.data_classes.container.manipulation": [[82, "module-ivy.data_classes.container.manipulation"]], "permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.repeat"]], "reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.reshape"]], "roll() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.roll"]], "split() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.split"]], "squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.squeeze"]], "stack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.stack"]], "swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.swapaxes"]], "tile() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.tile"]], "unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.unstack"]], "zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.zero_pad"]], "_containerwithnorms (class in ivy.data_classes.container.norms)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms"]], "_abc_impl (ivy.data_classes.container.norms._containerwithnorms attribute)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms._abc_impl"]], "ivy.data_classes.container.norms": [[83, "module-ivy.data_classes.container.norms"]], "layer_norm() (ivy.data_classes.container.norms._containerwithnorms method)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms.layer_norm"]], "_containerwithrandom (class in ivy.data_classes.container.random)": [[84, "ivy.data_classes.container.random._ContainerWithRandom"]], "_abc_impl (ivy.data_classes.container.random._containerwithrandom attribute)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._abc_impl"]], "_static_multinomial() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_multinomial"]], "_static_randint() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_randint"]], "_static_random_normal() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_normal"]], "_static_random_uniform() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_uniform"]], "_static_shuffle() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_shuffle"]], "ivy.data_classes.container.random": [[84, "module-ivy.data_classes.container.random"]], "multinomial() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.multinomial"]], "randint() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.randint"]], "random_normal() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.shuffle"]], "_containerwithsearching (class in ivy.data_classes.container.searching)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching"]], "_abc_impl (ivy.data_classes.container.searching._containerwithsearching attribute)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._abc_impl"]], "_static_argmax() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmax"]], "_static_argmin() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmin"]], "_static_argwhere() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argwhere"]], "_static_nonzero() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_nonzero"]], "_static_where() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_where"]], "argmax() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmax"]], "argmin() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmin"]], "argwhere() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argwhere"]], "ivy.data_classes.container.searching": [[85, "module-ivy.data_classes.container.searching"]], "nonzero() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.nonzero"]], "where() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.where"]], "_containerwithset (class in ivy.data_classes.container.set)": [[86, "ivy.data_classes.container.set._ContainerWithSet"]], "_abc_impl (ivy.data_classes.container.set._containerwithset attribute)": [[86, "ivy.data_classes.container.set._ContainerWithSet._abc_impl"]], "_static_unique_all() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_all"]], "_static_unique_counts() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_counts"]], "_static_unique_inverse() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_inverse"]], "_static_unique_values() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_values"]], "ivy.data_classes.container.set": [[86, "module-ivy.data_classes.container.set"]], "unique_all() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_all"]], "unique_counts() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_values"]], "_containerwithsorting (class in ivy.data_classes.container.sorting)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting"]], "_abc_impl (ivy.data_classes.container.sorting._containerwithsorting attribute)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._abc_impl"]], "_static_argsort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_argsort"]], "_static_searchsorted() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_searchsorted"]], "_static_sort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_sort"]], "argsort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.argsort"]], "ivy.data_classes.container.sorting": [[87, "module-ivy.data_classes.container.sorting"]], "msort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.msort"]], "searchsorted() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.searchsorted"]], "sort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.sort"]], "static_msort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.static_msort"]], "_containerwithstatistical (class in ivy.data_classes.container.statistical)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical"]], "_abc_impl (ivy.data_classes.container.statistical._containerwithstatistical attribute)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._abc_impl"]], "_static_cumprod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumprod"]], "_static_cumsum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumsum"]], "_static_min() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_min"]], "_static_prod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_prod"]], "_static_sum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_sum"]], "_static_var() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_var"]], "cumprod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumsum"]], "einsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.einsum"]], "ivy.data_classes.container.statistical": [[88, "module-ivy.data_classes.container.statistical"]], "max() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.max"]], "mean() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.mean"]], "min() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.min"]], "prod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.prod"]], "std() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.std"]], "sum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.sum"]], "var() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.var"]], "_containerwithutility (class in ivy.data_classes.container.utility)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility"]], "_abc_impl (ivy.data_classes.container.utility._containerwithutility attribute)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._abc_impl"]], "_static_all() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_all"]], "_static_any() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_any"]], "all() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.all"]], "any() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.any"]], "ivy.data_classes.container.utility": [[89, "module-ivy.data_classes.container.utility"]], "_wrap_function() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping._wrap_function"]], "add_ivy_container_instance_methods() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping.add_ivy_container_instance_methods"]], "ivy.data_classes.container.wrapping": [[90, "module-ivy.data_classes.container.wrapping"]], "factorizedtensor (class in ivy.data_classes.factorized_tensor.base)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor"]], "__init__() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.base.factorizedtensor attribute)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.base": [[91, "module-ivy.data_classes.factorized_tensor.base"]], "mode_dot() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.mode_dot"]], "norm() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.norm"]], "to_tensor() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_vec"]], "cptensor (class in ivy.data_classes.factorized_tensor.cp_tensor)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor"]], "__init__() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.cp_tensor.cptensor attribute)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor._abc_impl"]], "cp_copy() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_copy"]], "cp_flip_sign() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_flip_sign"]], "cp_lstsq_grad() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_lstsq_grad"]], "cp_mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_mode_dot"]], "cp_n_param() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_n_param"]], "cp_norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_norm"]], "cp_normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_normalize"]], "cp_to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_tensor"]], "cp_to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_unfolded"]], "cp_to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.cp_tensor.cptensor property)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.n_param"]], "norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.norm"]], "normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.normalize"]], "to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_vec"]], "unfolding_dot_khatri_rao() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.unfolding_dot_khatri_rao"]], "validate_cp_rank() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_rank"]], "validate_cp_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_tensor"]], "parafac2tensor (class in ivy.data_classes.factorized_tensor.parafac2_tensor)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor"]], "__init__() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor attribute)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor._abc_impl"]], "apply_parafac2_projections() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.apply_parafac2_projections"]], "from_cptensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor class method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.from_CPTensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "n_param (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor property)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.n_param"]], "parafac2_normalise() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_normalise"]], "parafac2_to_slice() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slice"]], "parafac2_to_slices() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slices"]], "parafac2_to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_tensor"]], "parafac2_to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_unfolded"]], "parafac2_to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_vec"]], "to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_vec"]], "validate_parafac2_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.validate_parafac2_tensor"]], "trtensor (class in ivy.data_classes.factorized_tensor.tr_tensor)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tr_tensor.trtensor attribute)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tr_tensor.trtensor property)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_vec"]], "tr_n_param() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_n_param"]], "tr_to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_tensor"]], "tr_to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_unfolded"]], "tr_to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_vec"]], "validate_tr_rank() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_rank"]], "validate_tr_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_tensor"]], "tttensor (class in ivy.data_classes.factorized_tensor.tt_tensor)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tt_tensor.tttensor attribute)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._abc_impl"]], "_tt_n_param() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._tt_n_param"]], "index_update() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.index_update"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tt_tensor.tttensor property)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.n_param"]], "pad_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.pad_tt_rank"]], "to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_tensor"]], "to_unfolding() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_unfolding"]], "to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_vec"]], "tt_to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_tensor"]], "tt_to_unfolded() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_unfolded"]], "tt_to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_vec"]], "validate_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_rank"]], "validate_tt_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_tensor"]], "tuckertensor (class in ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor attribute)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor._abc_impl"]], "_bisection_root_finder() (in module ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor._bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor property)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_vec"]], "tucker_copy() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_copy"]], "tucker_mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_mode_dot"]], "tucker_n_param() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_n_param"]], "tucker_normalize() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_normalize"]], "tucker_to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_tensor"]], "tucker_to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_unfolded"]], "tucker_to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_vec"]], "validate_tucker_rank() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_rank"]], "validate_tucker_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_tensor"]], "array (class in ivy.data_classes.array.array)": [[97, "ivy.data_classes.array.array.Array"]], "t (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.T"]], "__abs__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__abs__"]], "__add__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__add__"]], "__eq__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__eq__"]], "__ge__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ge__"]], "__gt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__gt__"]], "__init__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__init__"]], "__le__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__le__"]], "__lt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__lt__"]], "__ne__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ne__"]], "__pow__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__pow__"]], "__radd__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__radd__"]], "__rrshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rrshift__"]], "__rshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rshift__"]], "__rsub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rsub__"]], "__sub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__sub__"]], "__truediv__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__truediv__"]], "__xor__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__xor__"]], "backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.backend"]], "base (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.base"]], "data (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.data"]], "device (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.device"]], "dtype (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dtype"]], "dynamic_backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dynamic_backend"]], "imag (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.imag"]], "itemsize (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.itemsize"]], "ivy.data_classes.array.array": [[97, "module-ivy.data_classes.array.array"]], "mt (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.mT"]], "ndim (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.ndim"]], "real (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.real"]], "shape (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.shape"]], "size (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.size"]], "strides (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.strides"]], "container (class in ivy.data_classes.container.container)": [[98, "ivy.data_classes.container.container.Container"]], "__abs__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__abs__"]], "__add__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__add__"]], "__eq__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__eq__"]], "__ge__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ge__"]], "__gt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__gt__"]], "__init__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__init__"]], "__le__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__le__"]], "__lt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__lt__"]], "__ne__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ne__"]], "__pow__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__pow__"]], "__radd__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__radd__"]], "__rrshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rrshift__"]], "__rshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rshift__"]], "__rsub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rsub__"]], "__sub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__sub__"]], "__truediv__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__truediv__"]], "__xor__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__xor__"]], "ivy.data_classes.container.container": [[98, "module-ivy.data_classes.container.container"]], "nestedarray (class in ivy.data_classes.nested_array.nested_array)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray"]], "__init__() (ivy.data_classes.nested_array.nested_array.nestedarray method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.__init__"]], "from_row_lengths() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_lengths"]], "from_row_splits() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_splits"]], "ivy.data_classes.nested_array.nested_array": [[100, "module-ivy.data_classes.nested_array.nested_array"]], "nestedarraybase (class in ivy.data_classes.nested_array.base)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase"]], "__init__() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.__init__"]], "_abc_impl (ivy.data_classes.nested_array.base.nestedarraybase attribute)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase._abc_impl"]], "broadcast_shapes() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.broadcast_shapes"]], "data (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.data"]], "device (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.device"]], "dtype (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.dtype"]], "inner_shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.inner_shape"]], "ivy.data_classes.nested_array.base": [[101, "module-ivy.data_classes.nested_array.base"]], "ndim (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ndim"]], "nested_array() (ivy.data_classes.nested_array.base.nestedarraybase class method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_array"]], "nested_rank (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_rank"]], "ragged_map() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_map"]], "ragged_multi_map() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map"]], "ragged_multi_map_in_function() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map_in_function"]], "replace_ivy_arrays() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.replace_ivy_arrays"]], "shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.shape"]], "unbind() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.unbind"]], "nestedarrayelementwise (class in ivy.data_classes.nested_array.elementwise)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise"]], "_abc_impl (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise attribute)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise._abc_impl"]], "ivy.data_classes.nested_array.elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"]], "static_add() (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise static method)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise.static_add"]], "gelu() (in module ivy)": [[105, "ivy.gelu"], [614, "ivy.gelu"]], "gelu() (ivy.array method)": [[105, "ivy.Array.gelu"]], "gelu() (ivy.container method)": [[105, "ivy.Container.gelu"]], "hardswish() (in module ivy)": [[106, "ivy.hardswish"], [614, "ivy.hardswish"]], "hardswish() (ivy.array method)": [[106, "ivy.Array.hardswish"]], "hardswish() (ivy.container method)": [[106, "ivy.Container.hardswish"]], "leaky_relu() (in module ivy)": [[107, "ivy.leaky_relu"], [614, "ivy.leaky_relu"]], "leaky_relu() (ivy.array method)": [[107, "ivy.Array.leaky_relu"]], "leaky_relu() (ivy.container method)": [[107, "ivy.Container.leaky_relu"]], "log_softmax() (in module ivy)": [[108, "ivy.log_softmax"], [614, "ivy.log_softmax"]], "log_softmax() (ivy.array method)": [[108, "ivy.Array.log_softmax"]], "log_softmax() (ivy.container method)": [[108, "ivy.Container.log_softmax"]], "mish() (in module ivy)": [[109, "ivy.mish"], [614, "ivy.mish"]], "mish() (ivy.array method)": [[109, "ivy.Array.mish"]], "mish() (ivy.container method)": [[109, "ivy.Container.mish"]], "relu() (in module ivy)": [[110, "ivy.relu"], [614, "ivy.relu"]], "relu() (ivy.array method)": [[110, "ivy.Array.relu"]], "relu() (ivy.container method)": [[110, "ivy.Container.relu"]], "sigmoid() (in module ivy)": [[111, "ivy.sigmoid"], [614, "ivy.sigmoid"]], "sigmoid() (ivy.array method)": [[111, "ivy.Array.sigmoid"]], "sigmoid() (ivy.container method)": [[111, "ivy.Container.sigmoid"]], "softmax() (in module ivy)": [[112, "ivy.softmax"], [614, "ivy.softmax"]], "softmax() (ivy.array method)": [[112, "ivy.Array.softmax"]], "softmax() (ivy.container method)": [[112, "ivy.Container.softmax"]], "softplus() (in module ivy)": [[113, "ivy.softplus"], [614, "ivy.softplus"]], "softplus() (ivy.array method)": [[113, "ivy.Array.softplus"]], "softplus() (ivy.container method)": [[113, "ivy.Container.softplus"]], "softsign() (in module ivy)": [[114, "ivy.softsign"], [614, "ivy.softsign"]], "cmp_is() (in module ivy)": [[115, "ivy.cmp_is"], [616, "ivy.cmp_is"]], "cmp_isnot() (in module ivy)": [[116, "ivy.cmp_isnot"], [616, "ivy.cmp_isnot"]], "for_loop() (in module ivy)": [[117, "ivy.for_loop"], [616, "ivy.for_loop"]], "if_else() (in module ivy)": [[118, "ivy.if_else"], [616, "ivy.if_else"]], "try_except() (in module ivy)": [[119, "ivy.try_except"], [616, "ivy.try_except"]], "while_loop() (in module ivy)": [[120, "ivy.while_loop"], [616, "ivy.while_loop"]], "arange() (in module ivy)": [[121, "ivy.arange"], [617, "ivy.arange"]], "array() (in module ivy)": [[122, "ivy.array"], [617, "ivy.array"]], "asarray() (in module ivy)": [[123, "ivy.asarray"], [617, "ivy.asarray"]], "asarray() (ivy.array method)": [[123, "ivy.Array.asarray"]], "asarray() (ivy.container method)": [[123, "ivy.Container.asarray"]], "copy_array() (in module ivy)": [[124, "ivy.copy_array"], [617, "ivy.copy_array"]], "copy_array() (ivy.array method)": [[124, "ivy.Array.copy_array"]], "copy_array() (ivy.container method)": [[124, "ivy.Container.copy_array"]], "empty() (in module ivy)": [[125, "ivy.empty"], [617, "ivy.empty"]], "empty_like() (in module ivy)": [[126, "ivy.empty_like"], [617, "ivy.empty_like"]], "empty_like() (ivy.array method)": [[126, "ivy.Array.empty_like"]], "empty_like() (ivy.container method)": [[126, "ivy.Container.empty_like"]], "eye() (in module ivy)": [[127, "ivy.eye"], [617, "ivy.eye"]], "from_dlpack() (in module ivy)": [[128, "ivy.from_dlpack"], [617, "ivy.from_dlpack"]], "from_dlpack() (ivy.array method)": [[128, "ivy.Array.from_dlpack"]], "from_dlpack() (ivy.container method)": [[128, "ivy.Container.from_dlpack"]], "frombuffer() (in module ivy)": [[129, "ivy.frombuffer"], [617, "ivy.frombuffer"]], "frombuffer() (ivy.container method)": [[129, "ivy.Container.frombuffer"]], "full() (in module ivy)": [[130, "ivy.full"], [617, "ivy.full"]], "full_like() (in module ivy)": [[131, "ivy.full_like"], [617, "ivy.full_like"]], "full_like() (ivy.array method)": [[131, "ivy.Array.full_like"]], "full_like() (ivy.container method)": [[131, "ivy.Container.full_like"]], "linspace() (in module ivy)": [[132, "ivy.linspace"], [617, "ivy.linspace"]], "linspace() (ivy.array method)": [[132, "ivy.Array.linspace"]], "linspace() (ivy.container method)": [[132, "ivy.Container.linspace"]], "logspace() (in module ivy)": [[133, "ivy.logspace"], [617, "ivy.logspace"]], "logspace() (ivy.array method)": [[133, "ivy.Array.logspace"]], "logspace() (ivy.container method)": [[133, "ivy.Container.logspace"]], "meshgrid() (in module ivy)": [[134, "ivy.meshgrid"], [617, "ivy.meshgrid"]], "meshgrid() (ivy.array method)": [[134, "ivy.Array.meshgrid"]], "meshgrid() (ivy.container method)": [[134, "ivy.Container.meshgrid"]], "native_array() (in module ivy)": [[135, "ivy.native_array"], [617, "ivy.native_array"]], "native_array() (ivy.array method)": [[135, "ivy.Array.native_array"]], "native_array() (ivy.container method)": [[135, "ivy.Container.native_array"]], "one_hot() (in module ivy)": [[136, "ivy.one_hot"], [617, "ivy.one_hot"]], "one_hot() (ivy.array method)": [[136, "ivy.Array.one_hot"]], "one_hot() (ivy.container method)": [[136, "ivy.Container.one_hot"]], "ones() (in module ivy)": [[137, "ivy.ones"], [617, "ivy.ones"]], "ones_like() (in module ivy)": [[138, "ivy.ones_like"], [617, "ivy.ones_like"]], "ones_like() (ivy.array method)": [[138, "ivy.Array.ones_like"]], "ones_like() (ivy.container method)": [[138, "ivy.Container.ones_like"]], "to_dlpack() (in module ivy)": [[139, "ivy.to_dlpack"], [617, "ivy.to_dlpack"]], "tril() (in module ivy)": [[140, "ivy.tril"], [617, "ivy.tril"]], "tril() (ivy.array method)": [[140, "ivy.Array.tril"]], "tril() (ivy.container method)": [[140, "ivy.Container.tril"]], "triu() (in module ivy)": [[141, "ivy.triu"], [617, "ivy.triu"]], "triu() (ivy.array method)": [[141, "ivy.Array.triu"]], "triu() (ivy.container method)": [[141, "ivy.Container.triu"]], "triu_indices() (in module ivy)": [[142, "ivy.triu_indices"], [617, "ivy.triu_indices"]], "triu_indices() (ivy.container method)": [[142, "ivy.Container.triu_indices"]], "zeros() (in module ivy)": [[143, "ivy.zeros"], [617, "ivy.zeros"]], "zeros_like() (in module ivy)": [[144, "ivy.zeros_like"], [617, "ivy.zeros_like"]], "zeros_like() (ivy.array method)": [[144, "ivy.Array.zeros_like"]], "zeros_like() (ivy.container method)": [[144, "ivy.Container.zeros_like"]], "as_ivy_dtype() (in module ivy)": [[145, "ivy.as_ivy_dtype"], [618, "ivy.as_ivy_dtype"]], "as_native_dtype() (in module ivy)": [[146, "ivy.as_native_dtype"], [618, "ivy.as_native_dtype"]], "astype() (in module ivy)": [[147, "ivy.astype"], [618, "ivy.astype"]], "astype() (ivy.array method)": [[147, "ivy.Array.astype"]], "astype() (ivy.container method)": [[147, "ivy.Container.astype"]], "broadcast_arrays() (in module ivy)": [[148, "ivy.broadcast_arrays"], [618, "ivy.broadcast_arrays"]], "broadcast_arrays() (ivy.array method)": [[148, "ivy.Array.broadcast_arrays"]], "broadcast_arrays() (ivy.container method)": [[148, "ivy.Container.broadcast_arrays"]], "broadcast_to() (in module ivy)": [[149, "ivy.broadcast_to"], [618, "ivy.broadcast_to"]], "broadcast_to() (ivy.array method)": [[149, "ivy.Array.broadcast_to"]], "broadcast_to() (ivy.container method)": [[149, "ivy.Container.broadcast_to"]], "can_cast() (in module ivy)": [[150, "ivy.can_cast"], [618, "ivy.can_cast"]], "can_cast() (ivy.array method)": [[150, "ivy.Array.can_cast"]], "can_cast() (ivy.container method)": [[150, "ivy.Container.can_cast"]], "check_float() (in module ivy)": [[151, "ivy.check_float"], [618, "ivy.check_float"]], "closest_valid_dtype() (in module ivy)": [[152, "ivy.closest_valid_dtype"], [618, "ivy.closest_valid_dtype"]], "default_complex_dtype() (in module ivy)": [[153, "ivy.default_complex_dtype"], [618, "ivy.default_complex_dtype"]], "default_dtype() (in module ivy)": [[154, "ivy.default_dtype"], [618, "ivy.default_dtype"]], "default_float_dtype() (in module ivy)": [[155, "ivy.default_float_dtype"], [618, "ivy.default_float_dtype"]], "default_int_dtype() (in module ivy)": [[156, "ivy.default_int_dtype"], [618, "ivy.default_int_dtype"]], "default_uint_dtype() (in module ivy)": [[157, "ivy.default_uint_dtype"], [618, "ivy.default_uint_dtype"]], "dtype() (in module ivy)": [[158, "ivy.dtype"], [618, "ivy.dtype"]], "dtype() (ivy.array method)": [[158, "ivy.Array.dtype"]], "dtype() (ivy.container method)": [[158, "ivy.Container.dtype"]], "dtype_bits() (in module ivy)": [[159, "ivy.dtype_bits"], [618, "ivy.dtype_bits"]], "finfo() (in module ivy)": [[160, "ivy.finfo"], [618, "ivy.finfo"]], "finfo() (ivy.array method)": [[160, "ivy.Array.finfo"]], "finfo() (ivy.container method)": [[160, "ivy.Container.finfo"]], "function_supported_dtypes() (in module ivy)": [[161, "ivy.function_supported_dtypes"], [618, "ivy.function_supported_dtypes"]], "function_unsupported_dtypes() (in module ivy)": [[162, "ivy.function_unsupported_dtypes"], [618, "ivy.function_unsupported_dtypes"]], "iinfo() (in module ivy)": [[163, "ivy.iinfo"], [618, "ivy.iinfo"]], "iinfo() (ivy.array method)": [[163, "ivy.Array.iinfo"]], "iinfo() (ivy.container method)": [[163, "ivy.Container.iinfo"]], "infer_default_dtype() (in module ivy)": [[164, "ivy.infer_default_dtype"], [618, "ivy.infer_default_dtype"]], "invalid_dtype() (in module ivy)": [[165, "ivy.invalid_dtype"], [618, "ivy.invalid_dtype"]], "is_bool_dtype() (in module ivy)": [[166, "ivy.is_bool_dtype"], [618, "ivy.is_bool_dtype"]], "is_bool_dtype() (ivy.array method)": [[166, "ivy.Array.is_bool_dtype"]], "is_bool_dtype() (ivy.container method)": [[166, "ivy.Container.is_bool_dtype"]], "is_complex_dtype() (in module ivy)": [[167, "ivy.is_complex_dtype"], [618, "ivy.is_complex_dtype"]], "is_complex_dtype() (ivy.container method)": [[167, "ivy.Container.is_complex_dtype"]], "is_float_dtype() (in module ivy)": [[168, "ivy.is_float_dtype"], [618, "ivy.is_float_dtype"]], "is_float_dtype() (ivy.array method)": [[168, "ivy.Array.is_float_dtype"]], "is_float_dtype() (ivy.container method)": [[168, "ivy.Container.is_float_dtype"]], "is_hashable_dtype() (in module ivy)": [[169, "ivy.is_hashable_dtype"], [618, "ivy.is_hashable_dtype"]], "is_int_dtype() (in module ivy)": [[170, "ivy.is_int_dtype"], [618, "ivy.is_int_dtype"]], "is_int_dtype() (ivy.array method)": [[170, "ivy.Array.is_int_dtype"]], "is_int_dtype() (ivy.container method)": [[170, "ivy.Container.is_int_dtype"]], "is_native_dtype() (in module ivy)": [[171, "ivy.is_native_dtype"], [618, "ivy.is_native_dtype"]], "is_uint_dtype() (in module ivy)": [[172, "ivy.is_uint_dtype"], [618, "ivy.is_uint_dtype"]], "is_uint_dtype() (ivy.array method)": [[172, "ivy.Array.is_uint_dtype"]], "is_uint_dtype() (ivy.container method)": [[172, "ivy.Container.is_uint_dtype"]], "promote_types() (in module ivy)": [[173, "ivy.promote_types"], [618, "ivy.promote_types"]], "promote_types_of_inputs() (in module ivy)": [[174, "ivy.promote_types_of_inputs"], [618, "ivy.promote_types_of_inputs"]], "result_type() (in module ivy)": [[175, "ivy.result_type"], [618, "ivy.result_type"]], "result_type() (ivy.array method)": [[175, "ivy.Array.result_type"]], "result_type() (ivy.container method)": [[175, "ivy.Container.result_type"]], "set_default_complex_dtype() (in module ivy)": [[176, "ivy.set_default_complex_dtype"], [618, "ivy.set_default_complex_dtype"]], "set_default_dtype() (in module ivy)": [[177, "ivy.set_default_dtype"], [618, "ivy.set_default_dtype"]], "set_default_float_dtype() (in module ivy)": [[178, "ivy.set_default_float_dtype"], [618, "ivy.set_default_float_dtype"]], "set_default_int_dtype() (in module ivy)": [[179, "ivy.set_default_int_dtype"], [618, "ivy.set_default_int_dtype"]], "set_default_uint_dtype() (in module ivy)": [[180, "ivy.set_default_uint_dtype"], [618, "ivy.set_default_uint_dtype"]], "type_promote_arrays() (in module ivy)": [[181, "ivy.type_promote_arrays"], [618, "ivy.type_promote_arrays"]], "unset_default_complex_dtype() (in module ivy)": [[182, "ivy.unset_default_complex_dtype"], [618, "ivy.unset_default_complex_dtype"]], "unset_default_dtype() (in module ivy)": [[183, "ivy.unset_default_dtype"], [618, "ivy.unset_default_dtype"]], "unset_default_float_dtype() (in module ivy)": [[184, "ivy.unset_default_float_dtype"], [618, "ivy.unset_default_float_dtype"]], "unset_default_int_dtype() (in module ivy)": [[185, "ivy.unset_default_int_dtype"], [618, "ivy.unset_default_int_dtype"]], "unset_default_uint_dtype() (in module ivy)": [[186, "ivy.unset_default_uint_dtype"], [618, "ivy.unset_default_uint_dtype"]], "valid_dtype() (in module ivy)": [[187, "ivy.valid_dtype"], [618, "ivy.valid_dtype"]], "as_ivy_dev() (in module ivy)": [[188, "ivy.as_ivy_dev"], [619, "ivy.as_ivy_dev"]], "as_native_dev() (in module ivy)": [[189, "ivy.as_native_dev"], [619, "ivy.as_native_dev"]], "clear_cached_mem_on_dev() (in module ivy)": [[190, "ivy.clear_cached_mem_on_dev"], [619, "ivy.clear_cached_mem_on_dev"]], "default_device() (in module ivy)": [[191, "ivy.default_device"], [619, "ivy.default_device"]], "dev() (in module ivy)": [[192, "ivy.dev"], [619, "ivy.dev"]], "dev() (ivy.array method)": [[192, "ivy.Array.dev"]], "dev() (ivy.container method)": [[192, "ivy.Container.dev"]], "dev_util() (in module ivy)": [[193, "ivy.dev_util"], [619, "ivy.dev_util"]], "function_supported_devices() (in module ivy)": [[194, "ivy.function_supported_devices"], [619, "ivy.function_supported_devices"]], "function_unsupported_devices() (in module ivy)": [[195, "ivy.function_unsupported_devices"], [619, "ivy.function_unsupported_devices"]], "get_all_ivy_arrays_on_dev() (in module ivy)": [[196, "ivy.get_all_ivy_arrays_on_dev"], [619, "ivy.get_all_ivy_arrays_on_dev"]], "gpu_is_available() (in module ivy)": [[197, "ivy.gpu_is_available"], [619, "ivy.gpu_is_available"]], "handle_soft_device_variable() (in module ivy)": [[198, "ivy.handle_soft_device_variable"], [619, "ivy.handle_soft_device_variable"]], "num_cpu_cores() (in module ivy)": [[199, "ivy.num_cpu_cores"], [619, "ivy.num_cpu_cores"]], "num_gpus() (in module ivy)": [[200, "ivy.num_gpus"], [619, "ivy.num_gpus"]], "num_ivy_arrays_on_dev() (in module ivy)": [[201, "ivy.num_ivy_arrays_on_dev"], [619, "ivy.num_ivy_arrays_on_dev"]], "percent_used_mem_on_dev() (in module ivy)": [[202, "ivy.percent_used_mem_on_dev"], [619, "ivy.percent_used_mem_on_dev"]], "print_all_ivy_arrays_on_dev() (in module ivy)": [[203, "ivy.print_all_ivy_arrays_on_dev"], [619, "ivy.print_all_ivy_arrays_on_dev"]], "set_default_device() (in module ivy)": [[204, "ivy.set_default_device"], [619, "ivy.set_default_device"]], "set_soft_device_mode() (in module ivy)": [[205, "ivy.set_soft_device_mode"], [619, "ivy.set_soft_device_mode"]], "set_split_factor() (in module ivy)": [[206, "ivy.set_split_factor"], [619, "ivy.set_split_factor"]], "split_factor() (in module ivy)": [[207, "ivy.split_factor"], [619, "ivy.split_factor"]], "split_func_call() (in module ivy)": [[208, "ivy.split_func_call"], [619, "ivy.split_func_call"]], "to_device() (in module ivy)": [[209, "ivy.to_device"], [619, "ivy.to_device"]], "to_device() (ivy.array method)": [[209, "ivy.Array.to_device"]], "to_device() (ivy.container method)": [[209, "ivy.Container.to_device"]], "total_mem_on_dev() (in module ivy)": [[210, "ivy.total_mem_on_dev"], [619, "ivy.total_mem_on_dev"]], "tpu_is_available() (in module ivy)": [[211, "ivy.tpu_is_available"], [619, "ivy.tpu_is_available"]], "unset_default_device() (in module ivy)": [[212, "ivy.unset_default_device"], [619, "ivy.unset_default_device"]], "unset_soft_device_mode() (in module ivy)": [[213, "ivy.unset_soft_device_mode"], [619, "ivy.unset_soft_device_mode"]], "used_mem_on_dev() (in module ivy)": [[214, "ivy.used_mem_on_dev"], [619, "ivy.used_mem_on_dev"]], "abs() (in module ivy)": [[215, "ivy.abs"], [620, "ivy.abs"]], "abs() (ivy.array method)": [[215, "ivy.Array.abs"]], "abs() (ivy.container method)": [[215, "ivy.Container.abs"]], "acos() (in module ivy)": [[216, "ivy.acos"], [620, "ivy.acos"]], "acos() (ivy.array method)": [[216, "ivy.Array.acos"]], "acos() (ivy.container method)": [[216, "ivy.Container.acos"]], "acosh() (in module ivy)": [[217, "ivy.acosh"], [620, "ivy.acosh"]], "acosh() (ivy.array method)": [[217, "ivy.Array.acosh"]], "acosh() (ivy.container method)": [[217, "ivy.Container.acosh"]], "add() (in module ivy)": [[218, "ivy.add"], [620, "ivy.add"]], "add() (ivy.array method)": [[218, "ivy.Array.add"]], "add() (ivy.container method)": [[218, "ivy.Container.add"]], "angle() (in module ivy)": [[219, "ivy.angle"], [620, "ivy.angle"]], "angle() (ivy.array method)": [[219, "ivy.Array.angle"]], "angle() (ivy.container method)": [[219, "ivy.Container.angle"]], "asin() (in module ivy)": [[220, "ivy.asin"], [620, "ivy.asin"]], "asin() (ivy.array method)": [[220, "ivy.Array.asin"]], "asin() (ivy.container method)": [[220, "ivy.Container.asin"]], "asinh() (in module ivy)": [[221, "ivy.asinh"], [620, "ivy.asinh"]], "asinh() (ivy.array method)": [[221, "ivy.Array.asinh"]], "asinh() (ivy.container method)": [[221, "ivy.Container.asinh"]], "atan() (in module ivy)": [[222, "ivy.atan"], [620, "ivy.atan"]], "atan() (ivy.array method)": [[222, "ivy.Array.atan"]], "atan() (ivy.container method)": [[222, "ivy.Container.atan"]], "atan2() (in module ivy)": [[223, "ivy.atan2"], [620, "ivy.atan2"]], "atan2() (ivy.array method)": [[223, "ivy.Array.atan2"]], "atan2() (ivy.container method)": [[223, "ivy.Container.atan2"]], "atanh() (in module ivy)": [[224, "ivy.atanh"], [620, "ivy.atanh"]], "atanh() (ivy.array method)": [[224, "ivy.Array.atanh"]], "atanh() (ivy.container method)": [[224, "ivy.Container.atanh"]], "bitwise_and() (in module ivy)": [[225, "ivy.bitwise_and"], [620, "ivy.bitwise_and"]], "bitwise_and() (ivy.array method)": [[225, "ivy.Array.bitwise_and"]], "bitwise_and() (ivy.container method)": [[225, "ivy.Container.bitwise_and"]], "bitwise_invert() (in module ivy)": [[226, "ivy.bitwise_invert"], [620, "ivy.bitwise_invert"]], "bitwise_invert() (ivy.array method)": [[226, "ivy.Array.bitwise_invert"]], "bitwise_invert() (ivy.container method)": [[226, "ivy.Container.bitwise_invert"]], "bitwise_left_shift() (in module ivy)": [[227, "ivy.bitwise_left_shift"], [620, "ivy.bitwise_left_shift"]], "bitwise_left_shift() (ivy.array method)": [[227, "ivy.Array.bitwise_left_shift"]], "bitwise_left_shift() (ivy.container method)": [[227, "ivy.Container.bitwise_left_shift"]], "bitwise_or() (in module ivy)": [[228, "ivy.bitwise_or"], [620, "ivy.bitwise_or"]], "bitwise_or() (ivy.array method)": [[228, "ivy.Array.bitwise_or"]], "bitwise_or() (ivy.container method)": [[228, "ivy.Container.bitwise_or"]], "bitwise_right_shift() (in module ivy)": [[229, "ivy.bitwise_right_shift"], [620, "ivy.bitwise_right_shift"]], "bitwise_right_shift() (ivy.array method)": [[229, "ivy.Array.bitwise_right_shift"]], "bitwise_right_shift() (ivy.container method)": [[229, "ivy.Container.bitwise_right_shift"]], "bitwise_xor() (in module ivy)": [[230, "ivy.bitwise_xor"], [620, "ivy.bitwise_xor"]], "bitwise_xor() (ivy.array method)": [[230, "ivy.Array.bitwise_xor"]], "bitwise_xor() (ivy.container method)": [[230, "ivy.Container.bitwise_xor"]], "ceil() (in module ivy)": [[231, "ivy.ceil"], [620, "ivy.ceil"]], "ceil() (ivy.array method)": [[231, "ivy.Array.ceil"]], "ceil() (ivy.container method)": [[231, "ivy.Container.ceil"]], "cos() (in module ivy)": [[232, "ivy.cos"], [620, "ivy.cos"]], "cos() (ivy.array method)": [[232, "ivy.Array.cos"]], "cos() (ivy.container method)": [[232, "ivy.Container.cos"]], "cosh() (in module ivy)": [[233, "ivy.cosh"], [620, "ivy.cosh"]], "cosh() (ivy.array method)": [[233, "ivy.Array.cosh"]], "cosh() (ivy.container method)": [[233, "ivy.Container.cosh"]], "deg2rad() (in module ivy)": [[234, "ivy.deg2rad"], [620, "ivy.deg2rad"]], "deg2rad() (ivy.array method)": [[234, "ivy.Array.deg2rad"]], "deg2rad() (ivy.container method)": [[234, "ivy.Container.deg2rad"]], "divide() (in module ivy)": [[235, "ivy.divide"], [620, "ivy.divide"]], "divide() (ivy.array method)": [[235, "ivy.Array.divide"]], "divide() (ivy.container method)": [[235, "ivy.Container.divide"]], "equal() (in module ivy)": [[236, "ivy.equal"], [620, "ivy.equal"]], "equal() (ivy.array method)": [[236, "ivy.Array.equal"]], "equal() (ivy.container method)": [[236, "ivy.Container.equal"]], "erf() (in module ivy)": [[237, "ivy.erf"], [620, "ivy.erf"]], "erf() (ivy.array method)": [[237, "ivy.Array.erf"]], "erf() (ivy.container method)": [[237, "ivy.Container.erf"]], "exp() (in module ivy)": [[238, "ivy.exp"], [620, "ivy.exp"]], "exp() (ivy.array method)": [[238, "ivy.Array.exp"]], "exp() (ivy.container method)": [[238, "ivy.Container.exp"]], "exp2() (in module ivy)": [[239, "ivy.exp2"], [620, "ivy.exp2"]], "exp2() (ivy.array method)": [[239, "ivy.Array.exp2"]], "exp2() (ivy.container method)": [[239, "ivy.Container.exp2"]], "expm1() (in module ivy)": [[240, "ivy.expm1"], [620, "ivy.expm1"]], "expm1() (ivy.array method)": [[240, "ivy.Array.expm1"]], "expm1() (ivy.container method)": [[240, "ivy.Container.expm1"]], "floor() (in module ivy)": [[241, "ivy.floor"], [620, "ivy.floor"]], "floor() (ivy.array method)": [[241, "ivy.Array.floor"]], "floor() (ivy.container method)": [[241, "ivy.Container.floor"]], "floor_divide() (in module ivy)": [[242, "ivy.floor_divide"], [620, "ivy.floor_divide"]], "floor_divide() (ivy.array method)": [[242, "ivy.Array.floor_divide"]], "floor_divide() (ivy.container method)": [[242, "ivy.Container.floor_divide"]], "fmin() (in module ivy)": [[243, "ivy.fmin"], [620, "ivy.fmin"]], "fmin() (ivy.array method)": [[243, "ivy.Array.fmin"]], "fmin() (ivy.container method)": [[243, "ivy.Container.fmin"]], "fmod() (in module ivy)": [[244, "ivy.fmod"], [620, "ivy.fmod"]], "fmod() (ivy.array method)": [[244, "ivy.Array.fmod"]], "fmod() (ivy.container method)": [[244, "ivy.Container.fmod"]], "gcd() (in module ivy)": [[245, "ivy.gcd"], [620, "ivy.gcd"]], "gcd() (ivy.array method)": [[245, "ivy.Array.gcd"]], "gcd() (ivy.container method)": [[245, "ivy.Container.gcd"]], "greater() (in module ivy)": [[246, "ivy.greater"], [620, "ivy.greater"]], "greater() (ivy.array method)": [[246, "ivy.Array.greater"]], "greater() (ivy.container method)": [[246, "ivy.Container.greater"]], "greater_equal() (in module ivy)": [[247, "ivy.greater_equal"], [620, "ivy.greater_equal"]], "greater_equal() (ivy.array method)": [[247, "ivy.Array.greater_equal"]], "greater_equal() (ivy.container method)": [[247, "ivy.Container.greater_equal"]], "imag() (in module ivy)": [[248, "ivy.imag"], [620, "ivy.imag"]], "imag() (ivy.array method)": [[248, "ivy.Array.imag"]], "imag() (ivy.container method)": [[248, "ivy.Container.imag"]], "isfinite() (in module ivy)": [[249, "ivy.isfinite"], [620, "ivy.isfinite"]], "isfinite() (ivy.array method)": [[249, "ivy.Array.isfinite"]], "isfinite() (ivy.container method)": [[249, "ivy.Container.isfinite"]], "isinf() (in module ivy)": [[250, "ivy.isinf"], [620, "ivy.isinf"]], "isinf() (ivy.array method)": [[250, "ivy.Array.isinf"]], "isinf() (ivy.container method)": [[250, "ivy.Container.isinf"]], "isnan() (in module ivy)": [[251, "ivy.isnan"], [620, "ivy.isnan"]], "isnan() (ivy.array method)": [[251, "ivy.Array.isnan"]], "isnan() (ivy.container method)": [[251, "ivy.Container.isnan"]], "isreal() (in module ivy)": [[252, "ivy.isreal"], [620, "ivy.isreal"]], "isreal() (ivy.array method)": [[252, "ivy.Array.isreal"]], "isreal() (ivy.container method)": [[252, "ivy.Container.isreal"]], "lcm() (in module ivy)": [[253, "ivy.lcm"], [620, "ivy.lcm"]], "lcm() (ivy.array method)": [[253, "ivy.Array.lcm"]], "lcm() (ivy.container method)": [[253, "ivy.Container.lcm"]], "less() (in module ivy)": [[254, "ivy.less"], [620, "ivy.less"]], "less() (ivy.array method)": [[254, "ivy.Array.less"]], "less() (ivy.container method)": [[254, "ivy.Container.less"]], "less_equal() (in module ivy)": [[255, "ivy.less_equal"], [620, "ivy.less_equal"]], "less_equal() (ivy.array method)": [[255, "ivy.Array.less_equal"]], "less_equal() (ivy.container method)": [[255, "ivy.Container.less_equal"]], "log() (in module ivy)": [[256, "ivy.log"], [620, "ivy.log"]], "log() (ivy.array method)": [[256, "ivy.Array.log"]], "log() (ivy.container method)": [[256, "ivy.Container.log"]], "log10() (in module ivy)": [[257, "ivy.log10"], [620, "ivy.log10"]], "log10() (ivy.array method)": [[257, "ivy.Array.log10"]], "log10() (ivy.container method)": [[257, "ivy.Container.log10"]], "log1p() (in module ivy)": [[258, "ivy.log1p"], [620, "ivy.log1p"]], "log1p() (ivy.array method)": [[258, "ivy.Array.log1p"]], "log1p() (ivy.container method)": [[258, "ivy.Container.log1p"]], "log2() (in module ivy)": [[259, "ivy.log2"], [620, "ivy.log2"]], "log2() (ivy.array method)": [[259, "ivy.Array.log2"]], "log2() (ivy.container method)": [[259, "ivy.Container.log2"]], "logaddexp() (in module ivy)": [[260, "ivy.logaddexp"], [620, "ivy.logaddexp"]], "logaddexp() (ivy.array method)": [[260, "ivy.Array.logaddexp"]], "logaddexp() (ivy.container method)": [[260, "ivy.Container.logaddexp"]], "logaddexp2() (in module ivy)": [[261, "ivy.logaddexp2"], [620, "ivy.logaddexp2"]], "logaddexp2() (ivy.array method)": [[261, "ivy.Array.logaddexp2"]], "logaddexp2() (ivy.container method)": [[261, "ivy.Container.logaddexp2"]], "logical_and() (in module ivy)": [[262, "ivy.logical_and"], [620, "ivy.logical_and"]], "logical_and() (ivy.array method)": [[262, "ivy.Array.logical_and"]], "logical_and() (ivy.container method)": [[262, "ivy.Container.logical_and"]], "logical_not() (in module ivy)": [[263, "ivy.logical_not"], [620, "ivy.logical_not"]], "logical_not() (ivy.array method)": [[263, "ivy.Array.logical_not"]], "logical_not() (ivy.container method)": [[263, "ivy.Container.logical_not"]], "logical_or() (in module ivy)": [[264, "ivy.logical_or"], [620, "ivy.logical_or"]], "logical_or() (ivy.array method)": [[264, "ivy.Array.logical_or"]], "logical_or() (ivy.container method)": [[264, "ivy.Container.logical_or"]], "logical_xor() (in module ivy)": [[265, "ivy.logical_xor"], [620, "ivy.logical_xor"]], "logical_xor() (ivy.array method)": [[265, "ivy.Array.logical_xor"]], "logical_xor() (ivy.container method)": [[265, "ivy.Container.logical_xor"]], "maximum() (in module ivy)": [[266, "ivy.maximum"], [620, "ivy.maximum"]], "maximum() (ivy.array method)": [[266, "ivy.Array.maximum"]], "maximum() (ivy.container method)": [[266, "ivy.Container.maximum"]], "minimum() (in module ivy)": [[267, "ivy.minimum"], [620, "ivy.minimum"]], "minimum() (ivy.array method)": [[267, "ivy.Array.minimum"]], "minimum() (ivy.container method)": [[267, "ivy.Container.minimum"]], "multiply() (in module ivy)": [[268, "ivy.multiply"], [620, "ivy.multiply"]], "multiply() (ivy.array method)": [[268, "ivy.Array.multiply"]], "multiply() (ivy.container method)": [[268, "ivy.Container.multiply"]], "nan_to_num() (in module ivy)": [[269, "ivy.nan_to_num"], [620, "ivy.nan_to_num"]], "nan_to_num() (ivy.array method)": [[269, "ivy.Array.nan_to_num"]], "nan_to_num() (ivy.container method)": [[269, "ivy.Container.nan_to_num"]], "negative() (in module ivy)": [[270, "ivy.negative"], [620, "ivy.negative"]], "negative() (ivy.array method)": [[270, "ivy.Array.negative"]], "negative() (ivy.container method)": [[270, "ivy.Container.negative"]], "not_equal() (in module ivy)": [[271, "ivy.not_equal"], [620, "ivy.not_equal"]], "not_equal() (ivy.array method)": [[271, "ivy.Array.not_equal"]], "not_equal() (ivy.container method)": [[271, "ivy.Container.not_equal"]], "positive() (in module ivy)": [[272, "ivy.positive"], [620, "ivy.positive"]], "positive() (ivy.array method)": [[272, "ivy.Array.positive"]], "positive() (ivy.container method)": [[272, "ivy.Container.positive"]], "pow() (in module ivy)": [[273, "ivy.pow"], [620, "ivy.pow"]], "pow() (ivy.array method)": [[273, "ivy.Array.pow"]], "pow() (ivy.container method)": [[273, "ivy.Container.pow"]], "rad2deg() (in module ivy)": [[274, "ivy.rad2deg"], [620, "ivy.rad2deg"]], "rad2deg() (ivy.array method)": [[274, "ivy.Array.rad2deg"]], "rad2deg() (ivy.container method)": [[274, "ivy.Container.rad2deg"]], "real() (in module ivy)": [[275, "ivy.real"], [620, "ivy.real"]], "real() (ivy.array method)": [[275, "ivy.Array.real"]], "real() (ivy.container method)": [[275, "ivy.Container.real"]], "reciprocal() (in module ivy)": [[276, "ivy.reciprocal"], [620, "ivy.reciprocal"]], "reciprocal() (ivy.array method)": [[276, "ivy.Array.reciprocal"]], "reciprocal() (ivy.container method)": [[276, "ivy.Container.reciprocal"]], "remainder() (in module ivy)": [[277, "ivy.remainder"], [620, "ivy.remainder"]], "remainder() (ivy.array method)": [[277, "ivy.Array.remainder"]], "remainder() (ivy.container method)": [[277, "ivy.Container.remainder"]], "round() (in module ivy)": [[278, "ivy.round"], [620, "ivy.round"]], "round() (ivy.array method)": [[278, "ivy.Array.round"]], "round() (ivy.container method)": [[278, "ivy.Container.round"]], "sign() (in module ivy)": [[279, "ivy.sign"], [620, "ivy.sign"]], "sign() (ivy.array method)": [[279, "ivy.Array.sign"]], "sign() (ivy.container method)": [[279, "ivy.Container.sign"]], "sin() (in module ivy)": [[280, "ivy.sin"], [620, "ivy.sin"]], "sin() (ivy.array method)": [[280, "ivy.Array.sin"]], "sin() (ivy.container method)": [[280, "ivy.Container.sin"]], "sinh() (in module ivy)": [[281, "ivy.sinh"], [620, "ivy.sinh"]], "sinh() (ivy.array method)": [[281, "ivy.Array.sinh"]], "sinh() (ivy.container method)": [[281, "ivy.Container.sinh"]], "sqrt() (in module ivy)": [[282, "ivy.sqrt"], [620, "ivy.sqrt"]], "sqrt() (ivy.array method)": [[282, "ivy.Array.sqrt"]], "sqrt() (ivy.container method)": [[282, "ivy.Container.sqrt"]], "square() (in module ivy)": [[283, "ivy.square"], [620, "ivy.square"]], "square() (ivy.array method)": [[283, "ivy.Array.square"]], "square() (ivy.container method)": [[283, "ivy.Container.square"]], "subtract() (in module ivy)": [[284, "ivy.subtract"], [620, "ivy.subtract"]], "subtract() (ivy.array method)": [[284, "ivy.Array.subtract"]], "subtract() (ivy.container method)": [[284, "ivy.Container.subtract"]], "tan() (in module ivy)": [[285, "ivy.tan"], [620, "ivy.tan"]], "tan() (ivy.array method)": [[285, "ivy.Array.tan"]], "tan() (ivy.container method)": [[285, "ivy.Container.tan"]], "tanh() (in module ivy)": [[286, "ivy.tanh"], [620, "ivy.tanh"]], "tanh() (ivy.array method)": [[286, "ivy.Array.tanh"]], "tanh() (ivy.container method)": [[286, "ivy.Container.tanh"]], "trapz() (in module ivy)": [[287, "ivy.trapz"], [620, "ivy.trapz"]], "trapz() (ivy.array method)": [[287, "ivy.Array.trapz"]], "trapz() (ivy.container method)": [[287, "ivy.Container.trapz"]], "trunc() (in module ivy)": [[288, "ivy.trunc"], [620, "ivy.trunc"]], "trunc() (ivy.array method)": [[288, "ivy.Array.trunc"]], "trunc() (ivy.container method)": [[288, "ivy.Container.trunc"]], "trunc_divide() (in module ivy)": [[289, "ivy.trunc_divide"], [620, "ivy.trunc_divide"]], "trunc_divide() (ivy.array method)": [[289, "ivy.Array.trunc_divide"]], "trunc_divide() (ivy.container method)": [[289, "ivy.Container.trunc_divide"]], "celu() (in module ivy)": [[290, "ivy.celu"], [360, "ivy.celu"]], "celu() (ivy.array method)": [[290, "ivy.Array.celu"]], "celu() (ivy.container method)": [[290, "ivy.Container.celu"]], "elu() (in module ivy)": [[291, "ivy.elu"], [360, "ivy.elu"]], "elu() (ivy.array method)": [[291, "ivy.Array.elu"]], "elu() (ivy.container method)": [[291, "ivy.Container.elu"]], "hardshrink() (in module ivy)": [[292, "ivy.hardshrink"], [360, "ivy.hardshrink"]], "hardshrink() (ivy.array method)": [[292, "ivy.Array.hardshrink"]], "hardshrink() (ivy.container method)": [[292, "ivy.Container.hardshrink"]], "hardtanh() (in module ivy)": [[293, "ivy.hardtanh"], [360, "ivy.hardtanh"]], "hardtanh() (ivy.array method)": [[293, "ivy.Array.hardtanh"]], "hardtanh() (ivy.container method)": [[293, "ivy.Container.hardtanh"]], "logit() (in module ivy)": [[294, "ivy.logit"], [360, "ivy.logit"]], "logit() (ivy.array method)": [[294, "ivy.Array.logit"]], "logit() (ivy.container method)": [[294, "ivy.Container.logit"]], "logsigmoid() (in module ivy)": [[295, "ivy.logsigmoid"], [360, "ivy.logsigmoid"]], "logsigmoid() (ivy.array method)": [[295, "ivy.Array.logsigmoid"]], "logsigmoid() (ivy.container method)": [[295, "ivy.Container.logsigmoid"]], "prelu() (in module ivy)": [[296, "ivy.prelu"], [360, "ivy.prelu"]], "prelu() (ivy.array method)": [[296, "ivy.Array.prelu"]], "prelu() (ivy.container method)": [[296, "ivy.Container.prelu"]], "relu6() (in module ivy)": [[297, "ivy.relu6"], [360, "ivy.relu6"]], "relu6() (ivy.array method)": [[297, "ivy.Array.relu6"]], "relu6() (ivy.container method)": [[297, "ivy.Container.relu6"]], "scaled_tanh() (in module ivy)": [[298, "ivy.scaled_tanh"], [360, "ivy.scaled_tanh"]], "scaled_tanh() (ivy.array method)": [[298, "ivy.Array.scaled_tanh"]], "scaled_tanh() (ivy.container method)": [[298, "ivy.Container.scaled_tanh"]], "selu() (in module ivy)": [[299, "ivy.selu"], [360, "ivy.selu"]], "selu() (ivy.array method)": [[299, "ivy.Array.selu"]], "selu() (ivy.container method)": [[299, "ivy.Container.selu"]], "silu() (in module ivy)": [[300, "ivy.silu"], [360, "ivy.silu"]], "silu() (ivy.array method)": [[300, "ivy.Array.silu"]], "silu() (ivy.container method)": [[300, "ivy.Container.silu"]], "softshrink() (in module ivy)": [[301, "ivy.softshrink"], [360, "ivy.softshrink"]], "softshrink() (ivy.array method)": [[301, "ivy.Array.softshrink"]], "softshrink() (ivy.container method)": [[301, "ivy.Container.softshrink"]], "stanh() (in module ivy)": [[302, "ivy.stanh"], [360, "ivy.stanh"]], "tanhshrink() (in module ivy)": [[303, "ivy.tanhshrink"], [360, "ivy.tanhshrink"]], "tanhshrink() (ivy.array method)": [[303, "ivy.Array.tanhshrink"]], "tanhshrink() (ivy.container method)": [[303, "ivy.Container.tanhshrink"]], "threshold() (in module ivy)": [[304, "ivy.threshold"], [360, "ivy.threshold"]], "threshold() (ivy.array method)": [[304, "ivy.Array.threshold"]], "threshold() (ivy.container method)": [[304, "ivy.Container.threshold"]], "thresholded_relu() (in module ivy)": [[305, "ivy.thresholded_relu"], [360, "ivy.thresholded_relu"]], "thresholded_relu() (ivy.array method)": [[305, "ivy.Array.thresholded_relu"]], "thresholded_relu() (ivy.container method)": [[305, "ivy.Container.thresholded_relu"]], "blackman_window() (in module ivy)": [[306, "ivy.blackman_window"], [362, "ivy.blackman_window"]], "blackman_window() (ivy.array method)": [[306, "ivy.Array.blackman_window"]], "blackman_window() (ivy.container method)": [[306, "ivy.Container.blackman_window"]], "eye_like() (in module ivy)": [[307, "ivy.eye_like"], [362, "ivy.eye_like"]], "eye_like() (ivy.array method)": [[307, "ivy.Array.eye_like"]], "eye_like() (ivy.container method)": [[307, "ivy.Container.eye_like"]], "hamming_window() (in module ivy)": [[308, "ivy.hamming_window"], [362, "ivy.hamming_window"]], "hamming_window() (ivy.container method)": [[308, "ivy.Container.hamming_window"]], "hann_window() (in module ivy)": [[309, "ivy.hann_window"], [362, "ivy.hann_window"]], "hann_window() (ivy.container method)": [[309, "ivy.Container.hann_window"]], "indices() (in module ivy)": [[310, "ivy.indices"], [362, "ivy.indices"]], "kaiser_bessel_derived_window() (in module ivy)": [[311, "ivy.kaiser_bessel_derived_window"], [362, "ivy.kaiser_bessel_derived_window"]], "kaiser_bessel_derived_window() (ivy.container method)": [[311, "ivy.Container.kaiser_bessel_derived_window"]], "kaiser_window() (in module ivy)": [[312, "ivy.kaiser_window"], [362, "ivy.kaiser_window"]], "kaiser_window() (ivy.container method)": [[312, "ivy.Container.kaiser_window"]], "mel_weight_matrix() (in module ivy)": [[313, "ivy.mel_weight_matrix"], [362, "ivy.mel_weight_matrix"]], "mel_weight_matrix() (ivy.array static method)": [[313, "ivy.Array.mel_weight_matrix"]], "mel_weight_matrix() (ivy.container method)": [[313, "ivy.Container.mel_weight_matrix"]], "ndenumerate() (in module ivy)": [[314, "ivy.ndenumerate"], [362, "ivy.ndenumerate"]], "ndindex() (in module ivy)": [[315, "ivy.ndindex"], [362, "ivy.ndindex"]], "polyval() (in module ivy)": [[316, "ivy.polyval"], [362, "ivy.polyval"]], "polyval() (ivy.container method)": [[316, "ivy.Container.polyval"]], "random_cp() (in module ivy)": [[317, "ivy.random_cp"], [362, "ivy.random_cp"]], "random_parafac2() (in module ivy)": [[318, "ivy.random_parafac2"], [362, "ivy.random_parafac2"]], "random_tr() (in module ivy)": [[319, "ivy.random_tr"], [362, "ivy.random_tr"]], "random_tt() (in module ivy)": [[320, "ivy.random_tt"], [362, "ivy.random_tt"]], "random_tucker() (in module ivy)": [[321, "ivy.random_tucker"], [362, "ivy.random_tucker"]], "tril_indices() (in module ivy)": [[322, "ivy.tril_indices"], [362, "ivy.tril_indices"]], "tril_indices() (ivy.container method)": [[322, "ivy.Container.tril_indices"]], "trilu() (in module ivy)": [[323, "ivy.trilu"], [362, "ivy.trilu"]], "trilu() (ivy.array method)": [[323, "ivy.Array.trilu"]], "trilu() (ivy.container method)": [[323, "ivy.Container.trilu"]], "unsorted_segment_mean() (in module ivy)": [[324, "ivy.unsorted_segment_mean"], [362, "ivy.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.array method)": [[324, "ivy.Array.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.container method)": [[324, "ivy.Container.unsorted_segment_mean"]], "unsorted_segment_min() (in module ivy)": [[325, "ivy.unsorted_segment_min"], [362, "ivy.unsorted_segment_min"]], "unsorted_segment_min() (ivy.array method)": [[325, "ivy.Array.unsorted_segment_min"]], "unsorted_segment_min() (ivy.container method)": [[325, "ivy.Container.unsorted_segment_min"]], "unsorted_segment_sum() (in module ivy)": [[326, "ivy.unsorted_segment_sum"], [362, "ivy.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.array method)": [[326, "ivy.Array.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.container method)": [[326, "ivy.Container.unsorted_segment_sum"]], "vorbis_window() (in module ivy)": [[327, "ivy.vorbis_window"], [362, "ivy.vorbis_window"]], "vorbis_window() (ivy.container method)": [[327, "ivy.Container.vorbis_window"]], "allclose() (in module ivy)": [[328, "ivy.allclose"], [365, "ivy.allclose"]], "allclose() (ivy.array method)": [[328, "ivy.Array.allclose"]], "allclose() (ivy.container method)": [[328, "ivy.Container.allclose"]], "amax() (in module ivy)": [[329, "ivy.amax"], [365, "ivy.amax"]], "amax() (ivy.array method)": [[329, "ivy.Array.amax"]], "amax() (ivy.container method)": [[329, "ivy.Container.amax"]], "amin() (in module ivy)": [[330, "ivy.amin"], [365, "ivy.amin"]], "amin() (ivy.array method)": [[330, "ivy.Array.amin"]], "amin() (ivy.container method)": [[330, "ivy.Container.amin"]], "binarizer() (in module ivy)": [[331, "ivy.binarizer"], [365, "ivy.binarizer"]], "binarizer() (ivy.array method)": [[331, "ivy.Array.binarizer"]], "binarizer() (ivy.container method)": [[331, "ivy.Container.binarizer"]], "conj() (in module ivy)": [[332, "ivy.conj"], [365, "ivy.conj"]], "conj() (ivy.array method)": [[332, "ivy.Array.conj"]], "conj() (ivy.container method)": [[332, "ivy.Container.conj"]], "copysign() (in module ivy)": [[333, "ivy.copysign"], [365, "ivy.copysign"]], "copysign() (ivy.array method)": [[333, "ivy.Array.copysign"]], "copysign() (ivy.container method)": [[333, "ivy.Container.copysign"]], "count_nonzero() (in module ivy)": [[334, "ivy.count_nonzero"], [365, "ivy.count_nonzero"]], "count_nonzero() (ivy.array method)": [[334, "ivy.Array.count_nonzero"]], "count_nonzero() (ivy.container method)": [[334, "ivy.Container.count_nonzero"]], "diff() (in module ivy)": [[335, "ivy.diff"], [365, "ivy.diff"]], "diff() (ivy.array method)": [[335, "ivy.Array.diff"]], "diff() (ivy.container method)": [[335, "ivy.Container.diff"]], "digamma() (in module ivy)": [[336, "ivy.digamma"], [365, "ivy.digamma"]], "digamma() (ivy.array method)": [[336, "ivy.Array.digamma"]], "digamma() (ivy.container method)": [[336, "ivy.Container.digamma"]], "erfc() (in module ivy)": [[337, "ivy.erfc"], [365, "ivy.erfc"]], "erfc() (ivy.array method)": [[337, "ivy.Array.erfc"]], "erfc() (ivy.container method)": [[337, "ivy.Container.erfc"]], "fix() (in module ivy)": [[338, "ivy.fix"], [365, "ivy.fix"]], "fix() (ivy.array method)": [[338, "ivy.Array.fix"]], "fix() (ivy.container method)": [[338, "ivy.Container.fix"]], "float_power() (in module ivy)": [[339, "ivy.float_power"], [365, "ivy.float_power"]], "float_power() (ivy.array method)": [[339, "ivy.Array.float_power"]], "float_power() (ivy.container method)": [[339, "ivy.Container.float_power"]], "fmax() (in module ivy)": [[340, "ivy.fmax"], [365, "ivy.fmax"]], "fmax() (ivy.array method)": [[340, "ivy.Array.fmax"]], "fmax() (ivy.container method)": [[340, "ivy.Container.fmax"]], "frexp() (in module ivy)": [[341, "ivy.frexp"], [365, "ivy.frexp"]], "frexp() (ivy.array method)": [[341, "ivy.Array.frexp"]], "frexp() (ivy.container method)": [[341, "ivy.Container.frexp"]], "gradient() (in module ivy)": [[342, "ivy.gradient"], [365, "ivy.gradient"]], "gradient() (ivy.array method)": [[342, "ivy.Array.gradient"]], "gradient() (ivy.container method)": [[342, "ivy.Container.gradient"]], "hypot() (in module ivy)": [[343, "ivy.hypot"], [365, "ivy.hypot"]], "hypot() (ivy.array method)": [[343, "ivy.Array.hypot"]], "hypot() (ivy.container method)": [[343, "ivy.Container.hypot"]], "isclose() (in module ivy)": [[344, "ivy.isclose"], [365, "ivy.isclose"]], "isclose() (ivy.array method)": [[344, "ivy.Array.isclose"]], "isclose() (ivy.container method)": [[344, "ivy.Container.isclose"]], "ldexp() (in module ivy)": [[345, "ivy.ldexp"], [365, "ivy.ldexp"]], "ldexp() (ivy.array method)": [[345, "ivy.Array.ldexp"]], "ldexp() (ivy.container method)": [[345, "ivy.Container.ldexp"]], "lerp() (in module ivy)": [[346, "ivy.lerp"], [365, "ivy.lerp"]], "lerp() (ivy.array method)": [[346, "ivy.Array.lerp"]], "lerp() (ivy.container method)": [[346, "ivy.Container.lerp"]], "lgamma() (in module ivy)": [[347, "ivy.lgamma"], [365, "ivy.lgamma"]], "lgamma() (ivy.array method)": [[347, "ivy.Array.lgamma"]], "modf() (in module ivy)": [[348, "ivy.modf"], [365, "ivy.modf"]], "modf() (ivy.array method)": [[348, "ivy.Array.modf"]], "modf() (ivy.container method)": [[348, "ivy.Container.modf"]], "nansum() (in module ivy)": [[349, "ivy.nansum"], [365, "ivy.nansum"]], "nansum() (ivy.array method)": [[349, "ivy.Array.nansum"]], "nansum() (ivy.container method)": [[349, "ivy.Container.nansum"]], "nextafter() (in module ivy)": [[350, "ivy.nextafter"], [365, "ivy.nextafter"]], "nextafter() (ivy.array method)": [[350, "ivy.Array.nextafter"]], "nextafter() (ivy.container method)": [[350, "ivy.Container.nextafter"]], "signbit() (in module ivy)": [[351, "ivy.signbit"], [365, "ivy.signbit"]], "signbit() (ivy.array method)": [[351, "ivy.Array.signbit"]], "signbit() (ivy.container method)": [[351, "ivy.Container.signbit"]], "sinc() (in module ivy)": [[352, "ivy.sinc"], [365, "ivy.sinc"]], "sinc() (ivy.array method)": [[352, "ivy.Array.sinc"]], "sinc() (ivy.container method)": [[352, "ivy.Container.sinc"]], "sparsify_tensor() (in module ivy)": [[353, "ivy.sparsify_tensor"], [365, "ivy.sparsify_tensor"]], "sparsify_tensor() (ivy.array method)": [[353, "ivy.Array.sparsify_tensor"]], "sparsify_tensor() (ivy.container method)": [[353, "ivy.Container.sparsify_tensor"]], "xlogy() (in module ivy)": [[354, "ivy.xlogy"], [365, "ivy.xlogy"]], "xlogy() (ivy.array method)": [[354, "ivy.Array.xlogy"]], "xlogy() (ivy.container method)": [[354, "ivy.Container.xlogy"]], "zeta() (in module ivy)": [[355, "ivy.zeta"], [365, "ivy.zeta"]], "zeta() (ivy.array method)": [[355, "ivy.Array.zeta"]], "zeta() (ivy.container method)": [[355, "ivy.Container.zeta"]], "reduce() (in module ivy)": [[356, "ivy.reduce"], [366, "ivy.reduce"]], "reduce() (ivy.array method)": [[356, "ivy.Array.reduce"]], "reduce() (ivy.container method)": [[356, "ivy.Container.reduce"]], "bind_custom_gradient_function() (in module ivy)": [[357, "ivy.bind_custom_gradient_function"], [367, "ivy.bind_custom_gradient_function"]], "jvp() (in module ivy)": [[358, "ivy.jvp"], [367, "ivy.jvp"]], "vjp() (in module ivy)": [[359, "ivy.vjp"], [367, "ivy.vjp"]], "ivy.functional.ivy.experimental.activations": [[360, "module-ivy.functional.ivy.experimental.activations"]], "ivy.functional.ivy.experimental.constants": [[361, "module-ivy.functional.ivy.experimental.constants"]], "ivy.functional.ivy.experimental.creation": [[362, "module-ivy.functional.ivy.experimental.creation"]], "ivy.functional.ivy.experimental.data_type": [[363, "module-ivy.functional.ivy.experimental.data_type"]], "ivy.functional.ivy.experimental.device": [[364, "module-ivy.functional.ivy.experimental.device"]], "ivy.functional.ivy.experimental.elementwise": [[365, "module-ivy.functional.ivy.experimental.elementwise"]], "ivy.functional.ivy.experimental.general": [[366, "module-ivy.functional.ivy.experimental.general"]], "ivy.functional.ivy.experimental.gradients": [[367, "module-ivy.functional.ivy.experimental.gradients"]], "adaptive_avg_pool1d() (in module ivy)": [[368, "ivy.adaptive_avg_pool1d"], [382, "ivy.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (in module ivy)": [[368, "ivy.adaptive_avg_pool2d"], [383, "ivy.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (in module ivy)": [[368, "ivy.adaptive_max_pool2d"], [384, "ivy.adaptive_max_pool2d"]], "area_interpolate() (in module ivy)": [[368, "ivy.area_interpolate"], [385, "ivy.area_interpolate"]], "avg_pool1d() (in module ivy)": [[368, "ivy.avg_pool1d"], [386, "ivy.avg_pool1d"]], "avg_pool2d() (in module ivy)": [[368, "ivy.avg_pool2d"], [387, "ivy.avg_pool2d"]], "avg_pool3d() (in module ivy)": [[368, "ivy.avg_pool3d"], [388, "ivy.avg_pool3d"]], "dct() (in module ivy)": [[368, "ivy.dct"], [389, "ivy.dct"]], "dft() (in module ivy)": [[368, "ivy.dft"], [390, "ivy.dft"]], "dropout1d() (in module ivy)": [[368, "ivy.dropout1d"], [391, "ivy.dropout1d"]], "dropout2d() (in module ivy)": [[368, "ivy.dropout2d"], [392, "ivy.dropout2d"]], "dropout3d() (in module ivy)": [[368, "ivy.dropout3d"], [393, "ivy.dropout3d"]], "embedding() (in module ivy)": [[368, "ivy.embedding"], [394, "ivy.embedding"]], "fft() (in module ivy)": [[368, "ivy.fft"], [395, "ivy.fft"]], "fft2() (in module ivy)": [[368, "ivy.fft2"], [396, "ivy.fft2"]], "generate_einsum_equation() (in module ivy)": [[368, "ivy.generate_einsum_equation"], [397, "ivy.generate_einsum_equation"]], "get_interpolate_kernel() (in module ivy)": [[368, "ivy.get_interpolate_kernel"], [398, "ivy.get_interpolate_kernel"]], "idct() (in module ivy)": [[368, "ivy.idct"], [399, "ivy.idct"]], "ifft() (in module ivy)": [[368, "ivy.ifft"], [400, "ivy.ifft"]], "ifftn() (in module ivy)": [[368, "ivy.ifftn"], [401, "ivy.ifftn"]], "interp() (in module ivy)": [[368, "ivy.interp"], [402, "ivy.interp"]], "interpolate() (in module ivy)": [[368, "ivy.interpolate"], [403, "ivy.interpolate"]], "ivy.functional.ivy.experimental.layers": [[368, "module-ivy.functional.ivy.experimental.layers"]], "max_pool1d() (in module ivy)": [[368, "ivy.max_pool1d"], [404, "ivy.max_pool1d"]], "max_pool2d() (in module ivy)": [[368, "ivy.max_pool2d"], [405, "ivy.max_pool2d"]], "max_pool3d() (in module ivy)": [[368, "ivy.max_pool3d"], [406, "ivy.max_pool3d"]], "max_unpool1d() (in module ivy)": [[368, "ivy.max_unpool1d"], [407, "ivy.max_unpool1d"]], "nearest_interpolate() (in module ivy)": [[368, "ivy.nearest_interpolate"], [408, "ivy.nearest_interpolate"]], "pool() (in module ivy)": [[368, "ivy.pool"], [409, "ivy.pool"]], "reduce_window() (in module ivy)": [[368, "ivy.reduce_window"], [410, "ivy.reduce_window"]], "rfft() (in module ivy)": [[368, "ivy.rfft"], [411, "ivy.rfft"]], "rfftn() (in module ivy)": [[368, "ivy.rfftn"], [412, "ivy.rfftn"]], "rnn() (in module ivy)": [[368, "ivy.rnn"], [413, "ivy.rnn"]], "sliding_window() (in module ivy)": [[368, "ivy.sliding_window"], [414, "ivy.sliding_window"]], "stft() (in module ivy)": [[368, "ivy.stft"], [415, "ivy.stft"]], "adjoint() (in module ivy)": [[369, "ivy.adjoint"], [416, "ivy.adjoint"]], "batched_outer() (in module ivy)": [[369, "ivy.batched_outer"], [417, "ivy.batched_outer"]], "cond() (in module ivy)": [[369, "ivy.cond"], [418, "ivy.cond"]], "diagflat() (in module ivy)": [[369, "ivy.diagflat"], [419, "ivy.diagflat"]], "dot() (in module ivy)": [[369, "ivy.dot"], [420, "ivy.dot"]], "eig() (in module ivy)": [[369, "ivy.eig"], [421, "ivy.eig"], [625, "ivy.eig"], [659, "ivy.eig"]], "eigh_tridiagonal() (in module ivy)": [[369, "ivy.eigh_tridiagonal"], [422, "ivy.eigh_tridiagonal"]], "eigvals() (in module ivy)": [[369, "ivy.eigvals"], [423, "ivy.eigvals"]], "general_inner_product() (in module ivy)": [[369, "ivy.general_inner_product"], [424, "ivy.general_inner_product"]], "higher_order_moment() (in module ivy)": [[369, "ivy.higher_order_moment"], [425, "ivy.higher_order_moment"]], "initialize_tucker() (in module ivy)": [[369, "ivy.initialize_tucker"], [426, "ivy.initialize_tucker"]], "ivy.functional.ivy.experimental.linear_algebra": [[369, "module-ivy.functional.ivy.experimental.linear_algebra"]], "khatri_rao() (in module ivy)": [[369, "ivy.khatri_rao"], [427, "ivy.khatri_rao"]], "kron() (in module ivy)": [[369, "ivy.kron"], [428, "ivy.kron"]], "kronecker() (in module ivy)": [[369, "ivy.kronecker"], [429, "ivy.kronecker"]], "make_svd_non_negative() (in module ivy)": [[369, "ivy.make_svd_non_negative"], [430, "ivy.make_svd_non_negative"]], "matrix_exp() (in module ivy)": [[369, "ivy.matrix_exp"], [431, "ivy.matrix_exp"]], "mode_dot() (in module ivy)": [[369, "ivy.mode_dot"], [432, "ivy.mode_dot"]], "multi_dot() (in module ivy)": [[369, "ivy.multi_dot"], [433, "ivy.multi_dot"]], "multi_mode_dot() (in module ivy)": [[369, "ivy.multi_mode_dot"], [434, "ivy.multi_mode_dot"]], "partial_tucker() (in module ivy)": [[369, "ivy.partial_tucker"], [435, "ivy.partial_tucker"]], "solve_triangular() (in module ivy)": [[369, "ivy.solve_triangular"], [436, "ivy.solve_triangular"]], "svd_flip() (in module ivy)": [[369, "ivy.svd_flip"], [437, "ivy.svd_flip"]], "tensor_train() (in module ivy)": [[369, "ivy.tensor_train"], [438, "ivy.tensor_train"]], "truncated_svd() (in module ivy)": [[369, "ivy.truncated_svd"], [439, "ivy.truncated_svd"]], "tt_matrix_to_tensor() (in module ivy)": [[369, "ivy.tt_matrix_to_tensor"], [440, "ivy.tt_matrix_to_tensor"]], "tucker() (in module ivy)": [[369, "ivy.tucker"], [441, "ivy.tucker"]], "hinge_embedding_loss() (in module ivy)": [[370, "ivy.hinge_embedding_loss"], [442, "ivy.hinge_embedding_loss"]], "huber_loss() (in module ivy)": [[370, "ivy.huber_loss"], [443, "ivy.huber_loss"]], "ivy.functional.ivy.experimental.losses": [[370, "module-ivy.functional.ivy.experimental.losses"]], "kl_div() (in module ivy)": [[370, "ivy.kl_div"], [444, "ivy.kl_div"]], "l1_loss() (in module ivy)": [[370, "ivy.l1_loss"], [445, "ivy.l1_loss"]], "log_poisson_loss() (in module ivy)": [[370, "ivy.log_poisson_loss"], [446, "ivy.log_poisson_loss"]], "poisson_nll_loss() (in module ivy)": [[370, "ivy.poisson_nll_loss"], [447, "ivy.poisson_nll_loss"]], "smooth_l1_loss() (in module ivy)": [[370, "ivy.smooth_l1_loss"], [448, "ivy.smooth_l1_loss"]], "soft_margin_loss() (in module ivy)": [[370, "ivy.soft_margin_loss"], [449, "ivy.soft_margin_loss"]], "as_strided() (in module ivy)": [[371, "ivy.as_strided"], [450, "ivy.as_strided"]], "associative_scan() (in module ivy)": [[371, "ivy.associative_scan"], [451, "ivy.associative_scan"]], "atleast_1d() (in module ivy)": [[371, "ivy.atleast_1d"], [452, "ivy.atleast_1d"]], "atleast_2d() (in module ivy)": [[371, "ivy.atleast_2d"], [453, "ivy.atleast_2d"]], "atleast_3d() (in module ivy)": [[371, "ivy.atleast_3d"], [454, "ivy.atleast_3d"]], "broadcast_shapes() (in module ivy)": [[371, "ivy.broadcast_shapes"], [455, "ivy.broadcast_shapes"]], "check_scalar() (in module ivy)": [[371, "ivy.check_scalar"], [456, "ivy.check_scalar"]], "choose() (in module ivy)": [[371, "ivy.choose"], [457, "ivy.choose"]], "column_stack() (in module ivy)": [[371, "ivy.column_stack"], [458, "ivy.column_stack"]], "concat_from_sequence() (in module ivy)": [[371, "ivy.concat_from_sequence"], [459, "ivy.concat_from_sequence"]], "dsplit() (in module ivy)": [[371, "ivy.dsplit"], [460, "ivy.dsplit"]], "dstack() (in module ivy)": [[371, "ivy.dstack"], [461, "ivy.dstack"]], "expand() (in module ivy)": [[371, "ivy.expand"], [462, "ivy.expand"]], "fill_diagonal() (in module ivy)": [[371, "ivy.fill_diagonal"], [463, "ivy.fill_diagonal"]], "flatten() (in module ivy)": [[371, "ivy.flatten"], [464, "ivy.flatten"]], "fliplr() (in module ivy)": [[371, "ivy.fliplr"], [465, "ivy.fliplr"]], "flipud() (in module ivy)": [[371, "ivy.flipud"], [466, "ivy.flipud"]], "fold() (in module ivy)": [[371, "ivy.fold"], [467, "ivy.fold"]], "heaviside() (in module ivy)": [[371, "ivy.heaviside"], [468, "ivy.heaviside"]], "hsplit() (in module ivy)": [[371, "ivy.hsplit"], [469, "ivy.hsplit"]], "hstack() (in module ivy)": [[371, "ivy.hstack"], [470, "ivy.hstack"]], "i0() (in module ivy)": [[371, "ivy.i0"], [471, "ivy.i0"]], "ivy.functional.ivy.experimental.manipulation": [[371, "module-ivy.functional.ivy.experimental.manipulation"]], "matricize() (in module ivy)": [[371, "ivy.matricize"], [472, "ivy.matricize"]], "moveaxis() (in module ivy)": [[371, "ivy.moveaxis"], [473, "ivy.moveaxis"]], "pad() (in module ivy)": [[371, "ivy.pad"], [474, "ivy.pad"]], "partial_fold() (in module ivy)": [[371, "ivy.partial_fold"], [475, "ivy.partial_fold"]], "partial_tensor_to_vec() (in module ivy)": [[371, "ivy.partial_tensor_to_vec"], [476, "ivy.partial_tensor_to_vec"]], "partial_unfold() (in module ivy)": [[371, "ivy.partial_unfold"], [477, "ivy.partial_unfold"]], "partial_vec_to_tensor() (in module ivy)": [[371, "ivy.partial_vec_to_tensor"], [478, "ivy.partial_vec_to_tensor"]], "put_along_axis() (in module ivy)": [[371, "ivy.put_along_axis"], [479, "ivy.put_along_axis"]], "rot90() (in module ivy)": [[371, "ivy.rot90"], [480, "ivy.rot90"]], "soft_thresholding() (in module ivy)": [[371, "ivy.soft_thresholding"], [481, "ivy.soft_thresholding"]], "take() (in module ivy)": [[371, "ivy.take"], [482, "ivy.take"]], "take_along_axis() (in module ivy)": [[371, "ivy.take_along_axis"], [483, "ivy.take_along_axis"]], "top_k() (in module ivy)": [[371, "ivy.top_k"], [484, "ivy.top_k"]], "trim_zeros() (in module ivy)": [[371, "ivy.trim_zeros"], [485, "ivy.trim_zeros"]], "unfold() (in module ivy)": [[371, "ivy.unfold"], [486, "ivy.unfold"]], "unique_consecutive() (in module ivy)": [[371, "ivy.unique_consecutive"], [487, "ivy.unique_consecutive"]], "vsplit() (in module ivy)": [[371, "ivy.vsplit"], [488, "ivy.vsplit"]], "vstack() (in module ivy)": [[371, "ivy.vstack"], [489, "ivy.vstack"]], "ivy.functional.ivy.experimental.meta": [[372, "module-ivy.functional.ivy.experimental.meta"]], "ivy.functional.ivy.experimental.nest": [[373, "module-ivy.functional.ivy.experimental.nest"]], "batch_norm() (in module ivy)": [[374, "ivy.batch_norm"], [490, "ivy.batch_norm"]], "group_norm() (in module ivy)": [[374, "ivy.group_norm"], [491, "ivy.group_norm"]], "instance_norm() (in module ivy)": [[374, "ivy.instance_norm"], [492, "ivy.instance_norm"]], "ivy.functional.ivy.experimental.norms": [[374, "module-ivy.functional.ivy.experimental.norms"]], "l1_normalize() (in module ivy)": [[374, "ivy.l1_normalize"], [493, "ivy.l1_normalize"]], "l2_normalize() (in module ivy)": [[374, "ivy.l2_normalize"], [494, "ivy.l2_normalize"]], "local_response_norm() (in module ivy)": [[374, "ivy.local_response_norm"], [495, "ivy.local_response_norm"]], "lp_normalize() (in module ivy)": [[374, "ivy.lp_normalize"], [496, "ivy.lp_normalize"]], "bernoulli() (in module ivy)": [[375, "ivy.bernoulli"], [497, "ivy.bernoulli"]], "beta() (in module ivy)": [[375, "ivy.beta"], [498, "ivy.beta"]], "dirichlet() (in module ivy)": [[375, "ivy.dirichlet"], [499, "ivy.dirichlet"]], "gamma() (in module ivy)": [[375, "ivy.gamma"], [500, "ivy.gamma"]], "ivy.functional.ivy.experimental.random": [[375, "module-ivy.functional.ivy.experimental.random"]], "poisson() (in module ivy)": [[375, "ivy.poisson"], [501, "ivy.poisson"]], "ivy.functional.ivy.experimental.searching": [[376, "module-ivy.functional.ivy.experimental.searching"]], "unravel_index() (in module ivy)": [[376, "ivy.unravel_index"], [502, "ivy.unravel_index"]], "ivy.functional.ivy.experimental.set": [[377, "module-ivy.functional.ivy.experimental.set"]], "invert_permutation() (in module ivy)": [[378, "ivy.invert_permutation"], [503, "ivy.invert_permutation"]], "ivy.functional.ivy.experimental.sorting": [[378, "module-ivy.functional.ivy.experimental.sorting"]], "lexsort() (in module ivy)": [[378, "ivy.lexsort"], [504, "ivy.lexsort"]], "nativesparsearray (class in ivy)": [[379, "ivy.NativeSparseArray"]], "sparsearray (class in ivy)": [[379, "ivy.SparseArray"]], "is_ivy_sparse_array() (in module ivy)": [[379, "ivy.is_ivy_sparse_array"], [505, "ivy.is_ivy_sparse_array"]], "is_native_sparse_array() (in module ivy)": [[379, "ivy.is_native_sparse_array"], [506, "ivy.is_native_sparse_array"]], "ivy.functional.ivy.experimental.sparse_array": [[379, "module-ivy.functional.ivy.experimental.sparse_array"]], "native_sparse_array() (in module ivy)": [[379, "ivy.native_sparse_array"], [507, "ivy.native_sparse_array"]], "native_sparse_array_to_indices_values_and_shape() (in module ivy)": [[379, "ivy.native_sparse_array_to_indices_values_and_shape"], [508, "ivy.native_sparse_array_to_indices_values_and_shape"]], "bincount() (in module ivy)": [[380, "ivy.bincount"], [509, "ivy.bincount"]], "corrcoef() (in module ivy)": [[380, "ivy.corrcoef"], [510, "ivy.corrcoef"]], "cov() (in module ivy)": [[380, "ivy.cov"], [511, "ivy.cov"]], "cummax() (in module ivy)": [[380, "ivy.cummax"], [512, "ivy.cummax"]], "cummin() (in module ivy)": [[380, "ivy.cummin"], [513, "ivy.cummin"]], "histogram() (in module ivy)": [[380, "ivy.histogram"], [514, "ivy.histogram"]], "igamma() (in module ivy)": [[380, "ivy.igamma"], [515, "ivy.igamma"]], "ivy.functional.ivy.experimental.statistical": [[380, "module-ivy.functional.ivy.experimental.statistical"]], "median() (in module ivy)": [[380, "ivy.median"], [516, "ivy.median"]], "nanmean() (in module ivy)": [[380, "ivy.nanmean"], [517, "ivy.nanmean"]], "nanmedian() (in module ivy)": [[380, "ivy.nanmedian"], [518, "ivy.nanmedian"]], "nanmin() (in module ivy)": [[380, "ivy.nanmin"], [519, "ivy.nanmin"]], "nanprod() (in module ivy)": [[380, "ivy.nanprod"], [520, "ivy.nanprod"]], "quantile() (in module ivy)": [[380, "ivy.quantile"], [521, "ivy.quantile"]], "ivy.functional.ivy.experimental.utility": [[381, "module-ivy.functional.ivy.experimental.utility"]], "optional_get_element() (in module ivy)": [[381, "ivy.optional_get_element"], [522, "ivy.optional_get_element"]], "adaptive_avg_pool1d() (ivy.array method)": [[382, "ivy.Array.adaptive_avg_pool1d"]], "adaptive_avg_pool1d() (ivy.container method)": [[382, "ivy.Container.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.array method)": [[383, "ivy.Array.adaptive_avg_pool2d"]], "adaptive_avg_pool2d() (ivy.container method)": [[383, "ivy.Container.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.array method)": [[384, "ivy.Array.adaptive_max_pool2d"]], "adaptive_max_pool2d() (ivy.container method)": [[384, "ivy.Container.adaptive_max_pool2d"]], "avg_pool1d() (ivy.array method)": [[386, "ivy.Array.avg_pool1d"]], "avg_pool1d() (ivy.container method)": [[386, "ivy.Container.avg_pool1d"]], "avg_pool2d() (ivy.array method)": [[387, "ivy.Array.avg_pool2d"]], "avg_pool2d() (ivy.container method)": [[387, "ivy.Container.avg_pool2d"]], "avg_pool3d() (ivy.array method)": [[388, "ivy.Array.avg_pool3d"]], "avg_pool3d() (ivy.container method)": [[388, "ivy.Container.avg_pool3d"]], "dct() (ivy.array method)": [[389, "ivy.Array.dct"]], "dct() (ivy.container method)": [[389, "ivy.Container.dct"]], "dft() (ivy.array method)": [[390, "ivy.Array.dft"]], "dft() (ivy.container method)": [[390, "ivy.Container.dft"]], "dropout1d() (ivy.array method)": [[391, "ivy.Array.dropout1d"]], "dropout1d() (ivy.container method)": [[391, "ivy.Container.dropout1d"]], "dropout2d() (ivy.array method)": [[392, "ivy.Array.dropout2d"]], "dropout2d() (ivy.container method)": [[392, "ivy.Container.dropout2d"]], "dropout3d() (ivy.array method)": [[393, "ivy.Array.dropout3d"]], "dropout3d() (ivy.container method)": [[393, "ivy.Container.dropout3d"]], "embedding() (ivy.array method)": [[394, "ivy.Array.embedding"]], "embedding() (ivy.container method)": [[394, "ivy.Container.embedding"]], "fft() (ivy.array method)": [[395, "ivy.Array.fft"]], "fft() (ivy.container method)": [[395, "ivy.Container.fft"]], "fft2() (ivy.array method)": [[396, "ivy.Array.fft2"]], "idct() (ivy.array method)": [[399, "ivy.Array.idct"]], "idct() (ivy.container method)": [[399, "ivy.Container.idct"]], "ifft() (ivy.array method)": [[400, "ivy.Array.ifft"]], "ifft() (ivy.container method)": [[400, "ivy.Container.ifft"]], "ifftn() (ivy.array method)": [[401, "ivy.Array.ifftn"]], "ifftn() (ivy.container method)": [[401, "ivy.Container.ifftn"]], "interpolate() (ivy.array method)": [[403, "ivy.Array.interpolate"]], "interpolate() (ivy.container method)": [[403, "ivy.Container.interpolate"]], "max_pool1d() (ivy.array method)": [[404, "ivy.Array.max_pool1d"]], "max_pool1d() (ivy.container method)": [[404, "ivy.Container.max_pool1d"]], "max_pool2d() (ivy.array method)": [[405, "ivy.Array.max_pool2d"]], "max_pool2d() (ivy.container method)": [[405, "ivy.Container.max_pool2d"]], "max_pool3d() (ivy.array method)": [[406, "ivy.Array.max_pool3d"]], "max_pool3d() (ivy.container method)": [[406, "ivy.Container.max_pool3d"]], "max_unpool1d() (ivy.array method)": [[407, "ivy.Array.max_unpool1d"]], "max_unpool1d() (ivy.container method)": [[407, "ivy.Container.max_unpool1d"]], "reduce_window() (ivy.array method)": [[410, "ivy.Array.reduce_window"]], "reduce_window() (ivy.container method)": [[410, "ivy.Container.reduce_window"]], "rfft() (ivy.array method)": [[411, "ivy.Array.rfft"]], "rfft() (ivy.container method)": [[411, "ivy.Container.rfft"]], "rfftn() (ivy.array method)": [[412, "ivy.Array.rfftn"]], "rfftn() (ivy.container method)": [[412, "ivy.Container.rfftn"]], "sliding_window() (ivy.array method)": [[414, "ivy.Array.sliding_window"]], "sliding_window() (ivy.container method)": [[414, "ivy.Container.sliding_window"]], "stft() (ivy.array method)": [[415, "ivy.Array.stft"]], "stft() (ivy.container method)": [[415, "ivy.Container.stft"]], "adjoint() (ivy.array method)": [[416, "ivy.Array.adjoint"]], "adjoint() (ivy.container method)": [[416, "ivy.Container.adjoint"]], "batched_outer() (ivy.array method)": [[417, "ivy.Array.batched_outer"]], "batched_outer() (ivy.container method)": [[417, "ivy.Container.batched_outer"]], "cond() (ivy.array method)": [[418, "ivy.Array.cond"]], "cond() (ivy.container method)": [[418, "ivy.Container.cond"]], "diagflat() (ivy.array method)": [[419, "ivy.Array.diagflat"]], "diagflat() (ivy.container method)": [[419, "ivy.Container.diagflat"]], "dot() (ivy.array method)": [[420, "ivy.Array.dot"]], "dot() (ivy.container method)": [[420, "ivy.Container.dot"]], "eig() (ivy.array method)": [[421, "ivy.Array.eig"], [659, "ivy.Array.eig"]], "eig() (ivy.container method)": [[421, "ivy.Container.eig"], [659, "ivy.Container.eig"]], "eigh_tridiagonal() (ivy.array method)": [[422, "ivy.Array.eigh_tridiagonal"]], "eigh_tridiagonal() (ivy.container method)": [[422, "ivy.Container.eigh_tridiagonal"]], "eigvals() (ivy.array method)": [[423, "ivy.Array.eigvals"]], "eigvals() (ivy.container method)": [[423, "ivy.Container.eigvals"]], "general_inner_product() (ivy.array method)": [[424, "ivy.Array.general_inner_product"]], "general_inner_product() (ivy.container method)": [[424, "ivy.Container.general_inner_product"]], "higher_order_moment() (ivy.array method)": [[425, "ivy.Array.higher_order_moment"]], "higher_order_moment() (ivy.container method)": [[425, "ivy.Container.higher_order_moment"]], "initialize_tucker() (ivy.array method)": [[426, "ivy.Array.initialize_tucker"]], "initialize_tucker() (ivy.container method)": [[426, "ivy.Container.initialize_tucker"]], "kron() (ivy.array method)": [[428, "ivy.Array.kron"]], "kron() (ivy.container method)": [[428, "ivy.Container.kron"]], "make_svd_non_negative() (ivy.array method)": [[430, "ivy.Array.make_svd_non_negative"]], "make_svd_non_negative() (ivy.container method)": [[430, "ivy.Container.make_svd_non_negative"]], "matrix_exp() (ivy.array method)": [[431, "ivy.Array.matrix_exp"]], "matrix_exp() (ivy.container method)": [[431, "ivy.Container.matrix_exp"]], "mode_dot() (ivy.array method)": [[432, "ivy.Array.mode_dot"]], "mode_dot() (ivy.container method)": [[432, "ivy.Container.mode_dot"]], "multi_dot() (ivy.array method)": [[433, "ivy.Array.multi_dot"]], "multi_dot() (ivy.container method)": [[433, "ivy.Container.multi_dot"]], "multi_mode_dot() (ivy.array method)": [[434, "ivy.Array.multi_mode_dot"]], "multi_mode_dot() (ivy.container method)": [[434, "ivy.Container.multi_mode_dot"]], "partial_tucker() (ivy.array method)": [[435, "ivy.Array.partial_tucker"]], "partial_tucker() (ivy.container method)": [[435, "ivy.Container.partial_tucker"]], "svd_flip() (ivy.array method)": [[437, "ivy.Array.svd_flip"]], "svd_flip() (ivy.container method)": [[437, "ivy.Container.svd_flip"]], "tensor_train() (ivy.array method)": [[438, "ivy.Array.tensor_train"]], "tensor_train() (ivy.container method)": [[438, "ivy.Container.tensor_train"]], "truncated_svd() (ivy.array method)": [[439, "ivy.Array.truncated_svd"]], "truncated_svd() (ivy.container method)": [[439, "ivy.Container.truncated_svd"]], "tt_matrix_to_tensor() (ivy.array method)": [[440, "ivy.Array.tt_matrix_to_tensor"]], "tt_matrix_to_tensor() (ivy.container method)": [[440, "ivy.Container.tt_matrix_to_tensor"]], "tucker() (ivy.array method)": [[441, "ivy.Array.tucker"]], "tucker() (ivy.container method)": [[441, "ivy.Container.tucker"]], "hinge_embedding_loss() (ivy.array method)": [[442, "ivy.Array.hinge_embedding_loss"]], "hinge_embedding_loss() (ivy.container method)": [[442, "ivy.Container.hinge_embedding_loss"]], "huber_loss() (ivy.array method)": [[443, "ivy.Array.huber_loss"]], "huber_loss() (ivy.container method)": [[443, "ivy.Container.huber_loss"]], "kl_div() (ivy.array method)": [[444, "ivy.Array.kl_div"]], "kl_div() (ivy.container method)": [[444, "ivy.Container.kl_div"]], "l1_loss() (ivy.array method)": [[445, "ivy.Array.l1_loss"]], "l1_loss() (ivy.container method)": [[445, "ivy.Container.l1_loss"]], "log_poisson_loss() (ivy.array method)": [[446, "ivy.Array.log_poisson_loss"]], "log_poisson_loss() (ivy.container method)": [[446, "ivy.Container.log_poisson_loss"]], "poisson_nll_loss() (ivy.array method)": [[447, "ivy.Array.poisson_nll_loss"]], "poisson_nll_loss() (ivy.container method)": [[447, "ivy.Container.poisson_nll_loss"]], "smooth_l1_loss() (ivy.array method)": [[448, "ivy.Array.smooth_l1_loss"]], "smooth_l1_loss() (ivy.container method)": [[448, "ivy.Container.smooth_l1_loss"]], "soft_margin_loss() (ivy.array method)": [[449, "ivy.Array.soft_margin_loss"]], "soft_margin_loss() (ivy.container method)": [[449, "ivy.Container.soft_margin_loss"]], "as_strided() (ivy.array method)": [[450, "ivy.Array.as_strided"]], "as_strided() (ivy.container method)": [[450, "ivy.Container.as_strided"]], "associative_scan() (ivy.array method)": [[451, "ivy.Array.associative_scan"]], "associative_scan() (ivy.container method)": [[451, "ivy.Container.associative_scan"]], "atleast_1d() (ivy.array method)": [[452, "ivy.Array.atleast_1d"]], "atleast_1d() (ivy.container method)": [[452, "ivy.Container.atleast_1d"]], "atleast_2d() (ivy.array method)": [[453, "ivy.Array.atleast_2d"]], "atleast_2d() (ivy.container method)": [[453, "ivy.Container.atleast_2d"]], "atleast_3d() (ivy.array method)": [[454, "ivy.Array.atleast_3d"]], "atleast_3d() (ivy.container method)": [[454, "ivy.Container.atleast_3d"]], "broadcast_shapes() (ivy.container method)": [[455, "ivy.Container.broadcast_shapes"]], "column_stack() (ivy.array method)": [[458, "ivy.Array.column_stack"]], "column_stack() (ivy.container method)": [[458, "ivy.Container.column_stack"]], "concat_from_sequence() (ivy.array method)": [[459, "ivy.Array.concat_from_sequence"]], "concat_from_sequence() (ivy.container method)": [[459, "ivy.Container.concat_from_sequence"]], "dsplit() (ivy.array method)": [[460, "ivy.Array.dsplit"]], "dsplit() (ivy.container method)": [[460, "ivy.Container.dsplit"]], "dstack() (ivy.array method)": [[461, "ivy.Array.dstack"]], "dstack() (ivy.container method)": [[461, "ivy.Container.dstack"]], "expand() (ivy.array method)": [[462, "ivy.Array.expand"]], "expand() (ivy.container method)": [[462, "ivy.Container.expand"]], "fill_diagonal() (ivy.array method)": [[463, "ivy.Array.fill_diagonal"]], "fill_diagonal() (ivy.container method)": [[463, "ivy.Container.fill_diagonal"]], "flatten() (ivy.array method)": [[464, "ivy.Array.flatten"]], "flatten() (ivy.container method)": [[464, "ivy.Container.flatten"]], "fliplr() (ivy.array method)": [[465, "ivy.Array.fliplr"]], "fliplr() (ivy.container method)": [[465, "ivy.Container.fliplr"]], "flipud() (ivy.array method)": [[466, "ivy.Array.flipud"]], "flipud() (ivy.container method)": [[466, "ivy.Container.flipud"]], "fold() (ivy.array method)": [[467, "ivy.Array.fold"]], "fold() (ivy.container method)": [[467, "ivy.Container.fold"]], "heaviside() (ivy.array method)": [[468, "ivy.Array.heaviside"]], "heaviside() (ivy.container method)": [[468, "ivy.Container.heaviside"]], "hsplit() (ivy.array method)": [[469, "ivy.Array.hsplit"]], "hsplit() (ivy.container method)": [[469, "ivy.Container.hsplit"]], "hstack() (ivy.array method)": [[470, "ivy.Array.hstack"]], "hstack() (ivy.container method)": [[470, "ivy.Container.hstack"]], "i0() (ivy.array method)": [[471, "ivy.Array.i0"]], "i0() (ivy.container method)": [[471, "ivy.Container.i0"]], "matricize() (ivy.array method)": [[472, "ivy.Array.matricize"]], "matricize() (ivy.container method)": [[472, "ivy.Container.matricize"]], "moveaxis() (ivy.array method)": [[473, "ivy.Array.moveaxis"]], "moveaxis() (ivy.container method)": [[473, "ivy.Container.moveaxis"]], "pad() (ivy.array method)": [[474, "ivy.Array.pad"]], "pad() (ivy.container method)": [[474, "ivy.Container.pad"]], "partial_fold() (ivy.array method)": [[475, "ivy.Array.partial_fold"]], "partial_fold() (ivy.container method)": [[475, "ivy.Container.partial_fold"]], "partial_tensor_to_vec() (ivy.array method)": [[476, "ivy.Array.partial_tensor_to_vec"]], "partial_tensor_to_vec() (ivy.container method)": [[476, "ivy.Container.partial_tensor_to_vec"]], "partial_unfold() (ivy.array method)": [[477, "ivy.Array.partial_unfold"]], "partial_unfold() (ivy.container method)": [[477, "ivy.Container.partial_unfold"]], "partial_vec_to_tensor() (ivy.array method)": [[478, "ivy.Array.partial_vec_to_tensor"]], "partial_vec_to_tensor() (ivy.container method)": [[478, "ivy.Container.partial_vec_to_tensor"]], "put_along_axis() (ivy.array method)": [[479, "ivy.Array.put_along_axis"]], "put_along_axis() (ivy.container method)": [[479, "ivy.Container.put_along_axis"]], "rot90() (ivy.array method)": [[480, "ivy.Array.rot90"]], "rot90() (ivy.container method)": [[480, "ivy.Container.rot90"]], "soft_thresholding() (ivy.array method)": [[481, "ivy.Array.soft_thresholding"]], "soft_thresholding() (ivy.container method)": [[481, "ivy.Container.soft_thresholding"]], "take() (ivy.array method)": [[482, "ivy.Array.take"]], "take() (ivy.container method)": [[482, "ivy.Container.take"]], "take_along_axis() (ivy.array method)": [[483, "ivy.Array.take_along_axis"]], "take_along_axis() (ivy.container method)": [[483, "ivy.Container.take_along_axis"]], "top_k() (ivy.array method)": [[484, "ivy.Array.top_k"]], "top_k() (ivy.container method)": [[484, "ivy.Container.top_k"]], "trim_zeros() (ivy.array method)": [[485, "ivy.Array.trim_zeros"]], "trim_zeros() (ivy.container method)": [[485, "ivy.Container.trim_zeros"]], "unfold() (ivy.array method)": [[486, "ivy.Array.unfold"]], "unfold() (ivy.container method)": [[486, "ivy.Container.unfold"]], "unique_consecutive() (ivy.array method)": [[487, "ivy.Array.unique_consecutive"]], "unique_consecutive() (ivy.container method)": [[487, "ivy.Container.unique_consecutive"]], "vsplit() (ivy.array method)": [[488, "ivy.Array.vsplit"]], "vsplit() (ivy.container method)": [[488, "ivy.Container.vsplit"]], "vstack() (ivy.array method)": [[489, "ivy.Array.vstack"]], "vstack() (ivy.container method)": [[489, "ivy.Container.vstack"]], "batch_norm() (ivy.array method)": [[490, "ivy.Array.batch_norm"]], "batch_norm() (ivy.container method)": [[490, "ivy.Container.batch_norm"]], "group_norm() (ivy.array method)": [[491, "ivy.Array.group_norm"]], "group_norm() (ivy.container method)": [[491, "ivy.Container.group_norm"]], "instance_norm() (ivy.array method)": [[492, "ivy.Array.instance_norm"]], "instance_norm() (ivy.container method)": [[492, "ivy.Container.instance_norm"]], "l1_normalize() (ivy.array method)": [[493, "ivy.Array.l1_normalize"]], "l1_normalize() (ivy.container method)": [[493, "ivy.Container.l1_normalize"]], "l2_normalize() (ivy.array method)": [[494, "ivy.Array.l2_normalize"]], "l2_normalize() (ivy.container method)": [[494, "ivy.Container.l2_normalize"]], "lp_normalize() (ivy.array method)": [[496, "ivy.Array.lp_normalize"]], "lp_normalize() (ivy.container method)": [[496, "ivy.Container.lp_normalize"]], "bernoulli() (ivy.array method)": [[497, "ivy.Array.bernoulli"]], "bernoulli() (ivy.container method)": [[497, "ivy.Container.bernoulli"]], "beta() (ivy.array method)": [[498, "ivy.Array.beta"]], "beta() (ivy.container method)": [[498, "ivy.Container.beta"]], "dirichlet() (ivy.array method)": [[499, "ivy.Array.dirichlet"]], "dirichlet() (ivy.container method)": [[499, "ivy.Container.dirichlet"]], "gamma() (ivy.array method)": [[500, "ivy.Array.gamma"]], "gamma() (ivy.container method)": [[500, "ivy.Container.gamma"]], "poisson() (ivy.array method)": [[501, "ivy.Array.poisson"]], "poisson() (ivy.container method)": [[501, "ivy.Container.poisson"]], "unravel_index() (ivy.array method)": [[502, "ivy.Array.unravel_index"]], "unravel_index() (ivy.container method)": [[502, "ivy.Container.unravel_index"]], "invert_permutation() (ivy.container method)": [[503, "ivy.Container.invert_permutation"]], "lexsort() (ivy.array method)": [[504, "ivy.Array.lexsort"]], "lexsort() (ivy.container method)": [[504, "ivy.Container.lexsort"]], "bincount() (ivy.array method)": [[509, "ivy.Array.bincount"]], "bincount() (ivy.container method)": [[509, "ivy.Container.bincount"]], "corrcoef() (ivy.array method)": [[510, "ivy.Array.corrcoef"]], "corrcoef() (ivy.container method)": [[510, "ivy.Container.corrcoef"]], "cov() (ivy.array method)": [[511, "ivy.Array.cov"]], "cov() (ivy.container method)": [[511, "ivy.Container.cov"]], "cummax() (ivy.array method)": [[512, "ivy.Array.cummax"]], "cummax() (ivy.container method)": [[512, "ivy.Container.cummax"]], "cummin() (ivy.array method)": [[513, "ivy.Array.cummin"]], "cummin() (ivy.container method)": [[513, "ivy.Container.cummin"]], "histogram() (ivy.array method)": [[514, "ivy.Array.histogram"]], "histogram() (ivy.container method)": [[514, "ivy.Container.histogram"]], "igamma() (ivy.array method)": [[515, "ivy.Array.igamma"]], "igamma() (ivy.container method)": [[515, "ivy.Container.igamma"]], "median() (ivy.array method)": [[516, "ivy.Array.median"]], "median() (ivy.container method)": [[516, "ivy.Container.median"]], "nanmean() (ivy.array method)": [[517, "ivy.Array.nanmean"]], "nanmean() (ivy.container method)": [[517, "ivy.Container.nanmean"]], "nanmedian() (ivy.array method)": [[518, "ivy.Array.nanmedian"]], "nanmedian() (ivy.container method)": [[518, "ivy.Container.nanmedian"]], "nanmin() (ivy.array method)": [[519, "ivy.Array.nanmin"]], "nanmin() (ivy.container method)": [[519, "ivy.Container.nanmin"]], "nanprod() (ivy.array method)": [[520, "ivy.Array.nanprod"]], "nanprod() (ivy.container method)": [[520, "ivy.Container.nanprod"]], "quantile() (ivy.array method)": [[521, "ivy.Array.quantile"]], "quantile() (ivy.container method)": [[521, "ivy.Container.quantile"]], "optional_get_element() (ivy.array method)": [[522, "ivy.Array.optional_get_element"]], "optional_get_element() (ivy.container method)": [[522, "ivy.Container.optional_get_element"]], "all_equal() (in module ivy)": [[523, "ivy.all_equal"], [622, "ivy.all_equal"]], "all_equal() (ivy.array method)": [[523, "ivy.Array.all_equal"]], "all_equal() (ivy.container method)": [[523, "ivy.Container.all_equal"]], "arg_info() (in module ivy)": [[524, "ivy.arg_info"], [622, "ivy.arg_info"]], "arg_names() (in module ivy)": [[525, "ivy.arg_names"], [622, "ivy.arg_names"]], "array_equal() (in module ivy)": [[526, "ivy.array_equal"], [622, "ivy.array_equal"]], "array_equal() (ivy.array method)": [[526, "ivy.Array.array_equal"]], "array_equal() (ivy.container method)": [[526, "ivy.Container.array_equal"]], "assert_supports_inplace() (in module ivy)": [[527, "ivy.assert_supports_inplace"], [622, "ivy.assert_supports_inplace"]], "assert_supports_inplace() (ivy.array method)": [[527, "ivy.Array.assert_supports_inplace"]], "assert_supports_inplace() (ivy.container method)": [[527, "ivy.Container.assert_supports_inplace"]], "cache_fn() (in module ivy)": [[528, "ivy.cache_fn"], [622, "ivy.cache_fn"]], "clip_matrix_norm() (in module ivy)": [[529, "ivy.clip_matrix_norm"], [622, "ivy.clip_matrix_norm"]], "clip_matrix_norm() (ivy.array method)": [[529, "ivy.Array.clip_matrix_norm"]], "clip_matrix_norm() (ivy.container method)": [[529, "ivy.Container.clip_matrix_norm"]], "clip_vector_norm() (in module ivy)": [[530, "ivy.clip_vector_norm"], [622, "ivy.clip_vector_norm"]], "clip_vector_norm() (ivy.array method)": [[530, "ivy.Array.clip_vector_norm"]], "clip_vector_norm() (ivy.container method)": [[530, "ivy.Container.clip_vector_norm"]], "container_types() (in module ivy)": [[531, "ivy.container_types"], [622, "ivy.container_types"]], "current_backend_str() (in module ivy)": [[532, "ivy.current_backend_str"], [622, "ivy.current_backend_str"]], "default() (in module ivy)": [[533, "ivy.default"], [622, "ivy.default"]], "default() (ivy.array method)": [[533, "ivy.Array.default"]], "einops_rearrange() (in module ivy)": [[534, "ivy.einops_rearrange"], [622, "ivy.einops_rearrange"]], "einops_rearrange() (ivy.array method)": [[534, "ivy.Array.einops_rearrange"]], "einops_rearrange() (ivy.container method)": [[534, "ivy.Container.einops_rearrange"]], "einops_reduce() (in module ivy)": [[535, "ivy.einops_reduce"], [622, "ivy.einops_reduce"]], "einops_reduce() (ivy.array method)": [[535, "ivy.Array.einops_reduce"]], "einops_reduce() (ivy.container method)": [[535, "ivy.Container.einops_reduce"]], "einops_repeat() (in module ivy)": [[536, "ivy.einops_repeat"], [622, "ivy.einops_repeat"]], "einops_repeat() (ivy.array method)": [[536, "ivy.Array.einops_repeat"]], "einops_repeat() (ivy.container method)": [[536, "ivy.Container.einops_repeat"]], "exists() (in module ivy)": [[537, "ivy.exists"], [622, "ivy.exists"]], "exists() (ivy.array method)": [[537, "ivy.Array.exists"]], "exists() (ivy.container method)": [[537, "ivy.Container.exists"]], "fourier_encode() (in module ivy)": [[538, "ivy.fourier_encode"], [622, "ivy.fourier_encode"]], "fourier_encode() (ivy.array method)": [[538, "ivy.Array.fourier_encode"]], "fourier_encode() (ivy.container method)": [[538, "ivy.Container.fourier_encode"]], "function_supported_devices_and_dtypes() (in module ivy)": [[539, "ivy.function_supported_devices_and_dtypes"], [622, "ivy.function_supported_devices_and_dtypes"]], "function_unsupported_devices_and_dtypes() (in module ivy)": [[540, "ivy.function_unsupported_devices_and_dtypes"], [622, "ivy.function_unsupported_devices_and_dtypes"]], "gather() (in module ivy)": [[541, "ivy.gather"], [622, "ivy.gather"]], "gather() (ivy.array method)": [[541, "ivy.Array.gather"]], "gather() (ivy.container method)": [[541, "ivy.Container.gather"]], "gather_nd() (in module ivy)": [[542, "ivy.gather_nd"], [622, "ivy.gather_nd"]], "gather_nd() (ivy.array method)": [[542, "ivy.Array.gather_nd"]], "gather_nd() (ivy.container method)": [[542, "ivy.Container.gather_nd"]], "get_all_arrays_in_memory() (in module ivy)": [[543, "ivy.get_all_arrays_in_memory"], [622, "ivy.get_all_arrays_in_memory"]], "get_item() (in module ivy)": [[544, "ivy.get_item"], [622, "ivy.get_item"]], "get_num_dims() (in module ivy)": [[545, "ivy.get_num_dims"], [622, "ivy.get_num_dims"]], "get_num_dims() (ivy.array method)": [[545, "ivy.Array.get_num_dims"]], "get_num_dims() (ivy.container method)": [[545, "ivy.Container.get_num_dims"]], "get_referrers_recursive() (in module ivy)": [[546, "ivy.get_referrers_recursive"], [622, "ivy.get_referrers_recursive"]], "has_nans() (in module ivy)": [[547, "ivy.has_nans"], [622, "ivy.has_nans"]], "has_nans() (ivy.array method)": [[547, "ivy.Array.has_nans"]], "has_nans() (ivy.container method)": [[547, "ivy.Container.has_nans"]], "inplace_arrays_supported() (in module ivy)": [[548, "ivy.inplace_arrays_supported"], [622, "ivy.inplace_arrays_supported"]], "inplace_decrement() (in module ivy)": [[549, "ivy.inplace_decrement"], [622, "ivy.inplace_decrement"]], "inplace_decrement() (ivy.array method)": [[549, "ivy.Array.inplace_decrement"]], "inplace_decrement() (ivy.container method)": [[549, "ivy.Container.inplace_decrement"]], "inplace_increment() (in module ivy)": [[550, "ivy.inplace_increment"], [622, "ivy.inplace_increment"]], "inplace_increment() (ivy.array method)": [[550, "ivy.Array.inplace_increment"]], "inplace_increment() (ivy.container method)": [[550, "ivy.Container.inplace_increment"]], "inplace_update() (in module ivy)": [[551, "ivy.inplace_update"], [622, "ivy.inplace_update"]], "inplace_update() (ivy.array method)": [[551, "ivy.Array.inplace_update"]], "inplace_update() (ivy.container method)": [[551, "ivy.Container.inplace_update"]], "inplace_variables_supported() (in module ivy)": [[552, "ivy.inplace_variables_supported"], [622, "ivy.inplace_variables_supported"]], "is_array() (in module ivy)": [[553, "ivy.is_array"], [622, "ivy.is_array"]], "is_array() (ivy.array method)": [[553, "ivy.Array.is_array"]], "is_array() (ivy.container method)": [[553, "ivy.Container.is_array"]], "is_ivy_array() (in module ivy)": [[554, "ivy.is_ivy_array"], [622, "ivy.is_ivy_array"]], "is_ivy_array() (ivy.array method)": [[554, "ivy.Array.is_ivy_array"]], "is_ivy_array() (ivy.container method)": [[554, "ivy.Container.is_ivy_array"]], "is_ivy_container() (in module ivy)": [[555, "ivy.is_ivy_container"], [622, "ivy.is_ivy_container"]], "is_ivy_container() (ivy.array method)": [[555, "ivy.Array.is_ivy_container"]], "is_ivy_nested_array() (in module ivy)": [[556, "ivy.is_ivy_nested_array"], [622, "ivy.is_ivy_nested_array"]], "is_native_array() (in module ivy)": [[557, "ivy.is_native_array"], [622, "ivy.is_native_array"]], "is_native_array() (ivy.array method)": [[557, "ivy.Array.is_native_array"]], "is_native_array() (ivy.container method)": [[557, "ivy.Container.is_native_array"]], "isin() (in module ivy)": [[558, "ivy.isin"], [622, "ivy.isin"]], "isin() (ivy.array method)": [[558, "ivy.Array.isin"]], "isin() (ivy.container method)": [[558, "ivy.Container.isin"]], "isscalar() (in module ivy)": [[559, "ivy.isscalar"], [622, "ivy.isscalar"]], "itemsize() (in module ivy)": [[560, "ivy.itemsize"], [622, "ivy.itemsize"]], "itemsize() (ivy.array method)": [[560, "ivy.Array.itemsize"]], "itemsize() (ivy.container method)": [[560, "ivy.Container.itemsize"]], "match_kwargs() (in module ivy)": [[561, "ivy.match_kwargs"], [622, "ivy.match_kwargs"]], "multiprocessing() (in module ivy)": [[562, "ivy.multiprocessing"], [622, "ivy.multiprocessing"]], "num_arrays_in_memory() (in module ivy)": [[563, "ivy.num_arrays_in_memory"], [622, "ivy.num_arrays_in_memory"]], "print_all_arrays_in_memory() (in module ivy)": [[564, "ivy.print_all_arrays_in_memory"], [622, "ivy.print_all_arrays_in_memory"]], "scatter_flat() (in module ivy)": [[565, "ivy.scatter_flat"], [622, "ivy.scatter_flat"]], "scatter_flat() (ivy.array method)": [[565, "ivy.Array.scatter_flat"]], "scatter_flat() (ivy.container method)": [[565, "ivy.Container.scatter_flat"]], "scatter_nd() (in module ivy)": [[566, "ivy.scatter_nd"], [622, "ivy.scatter_nd"]], "scatter_nd() (ivy.array method)": [[566, "ivy.Array.scatter_nd"]], "scatter_nd() (ivy.container method)": [[566, "ivy.Container.scatter_nd"]], "set_array_mode() (in module ivy)": [[567, "ivy.set_array_mode"], [622, "ivy.set_array_mode"]], "set_exception_trace_mode() (in module ivy)": [[568, "ivy.set_exception_trace_mode"], [622, "ivy.set_exception_trace_mode"]], "set_inplace_mode() (in module ivy)": [[569, "ivy.set_inplace_mode"], [622, "ivy.set_inplace_mode"]], "set_item() (in module ivy)": [[570, "ivy.set_item"], [622, "ivy.set_item"]], "set_min_base() (in module ivy)": [[571, "ivy.set_min_base"], [622, "ivy.set_min_base"]], "set_min_denominator() (in module ivy)": [[572, "ivy.set_min_denominator"], [622, "ivy.set_min_denominator"]], "set_nestable_mode() (in module ivy)": [[573, "ivy.set_nestable_mode"], [622, "ivy.set_nestable_mode"]], "set_precise_mode() (in module ivy)": [[574, "ivy.set_precise_mode"], [622, "ivy.set_precise_mode"]], "set_queue_timeout() (in module ivy)": [[575, "ivy.set_queue_timeout"], [622, "ivy.set_queue_timeout"]], "set_shape_array_mode() (in module ivy)": [[576, "ivy.set_shape_array_mode"], [622, "ivy.set_shape_array_mode"]], "set_show_func_wrapper_trace_mode() (in module ivy)": [[577, "ivy.set_show_func_wrapper_trace_mode"], [622, "ivy.set_show_func_wrapper_trace_mode"]], "set_tmp_dir() (in module ivy)": [[578, "ivy.set_tmp_dir"], [622, "ivy.set_tmp_dir"]], "shape() (in module ivy)": [[579, "ivy.shape"], [622, "ivy.shape"]], "shape() (ivy.array method)": [[579, "ivy.Array.shape"]], "stable_divide() (in module ivy)": [[580, "ivy.stable_divide"], [622, "ivy.stable_divide"]], "stable_divide() (ivy.array method)": [[580, "ivy.Array.stable_divide"]], "stable_divide() (ivy.container method)": [[580, "ivy.Container.stable_divide"]], "stable_pow() (in module ivy)": [[581, "ivy.stable_pow"], [622, "ivy.stable_pow"]], "stable_pow() (ivy.array method)": [[581, "ivy.Array.stable_pow"]], "stable_pow() (ivy.container method)": [[581, "ivy.Container.stable_pow"]], "strides() (in module ivy)": [[582, "ivy.strides"], [622, "ivy.strides"]], "strides() (ivy.array method)": [[582, "ivy.Array.strides"]], "strides() (ivy.container method)": [[582, "ivy.Container.strides"]], "supports_inplace_updates() (in module ivy)": [[583, "ivy.supports_inplace_updates"], [622, "ivy.supports_inplace_updates"]], "supports_inplace_updates() (ivy.array method)": [[583, "ivy.Array.supports_inplace_updates"]], "supports_inplace_updates() (ivy.container method)": [[583, "ivy.Container.supports_inplace_updates"]], "to_ivy_shape() (in module ivy)": [[584, "ivy.to_ivy_shape"], [622, "ivy.to_ivy_shape"]], "to_list() (in module ivy)": [[585, "ivy.to_list"], [622, "ivy.to_list"]], "to_list() (ivy.array method)": [[585, "ivy.Array.to_list"]], "to_list() (ivy.container method)": [[585, "ivy.Container.to_list"]], "to_native_shape() (in module ivy)": [[586, "ivy.to_native_shape"], [622, "ivy.to_native_shape"]], "to_numpy() (in module ivy)": [[587, "ivy.to_numpy"], [622, "ivy.to_numpy"]], "to_numpy() (ivy.array method)": [[587, "ivy.Array.to_numpy"]], "to_numpy() (ivy.container method)": [[587, "ivy.Container.to_numpy"]], "to_scalar() (in module ivy)": [[588, "ivy.to_scalar"], [622, "ivy.to_scalar"]], "to_scalar() (ivy.array method)": [[588, "ivy.Array.to_scalar"]], "to_scalar() (ivy.container method)": [[588, "ivy.Container.to_scalar"]], "try_else_none() (in module ivy)": [[589, "ivy.try_else_none"], [622, "ivy.try_else_none"]], "unset_array_mode() (in module ivy)": [[590, "ivy.unset_array_mode"], [622, "ivy.unset_array_mode"]], "unset_exception_trace_mode() (in module ivy)": [[591, "ivy.unset_exception_trace_mode"], [622, "ivy.unset_exception_trace_mode"]], "unset_inplace_mode() (in module ivy)": [[592, "ivy.unset_inplace_mode"], [622, "ivy.unset_inplace_mode"]], "unset_min_base() (in module ivy)": [[593, "ivy.unset_min_base"], [622, "ivy.unset_min_base"]], "unset_min_denominator() (in module ivy)": [[594, "ivy.unset_min_denominator"], [622, "ivy.unset_min_denominator"]], "unset_nestable_mode() (in module ivy)": [[595, "ivy.unset_nestable_mode"], [622, "ivy.unset_nestable_mode"]], "unset_precise_mode() (in module ivy)": [[596, "ivy.unset_precise_mode"], [622, "ivy.unset_precise_mode"]], "unset_queue_timeout() (in module ivy)": [[597, "ivy.unset_queue_timeout"], [622, "ivy.unset_queue_timeout"]], "unset_shape_array_mode() (in module ivy)": [[598, "ivy.unset_shape_array_mode"], [622, "ivy.unset_shape_array_mode"]], "unset_show_func_wrapper_trace_mode() (in module ivy)": [[599, "ivy.unset_show_func_wrapper_trace_mode"], [622, "ivy.unset_show_func_wrapper_trace_mode"]], "unset_tmp_dir() (in module ivy)": [[600, "ivy.unset_tmp_dir"], [622, "ivy.unset_tmp_dir"]], "value_is_nan() (in module ivy)": [[601, "ivy.value_is_nan"], [622, "ivy.value_is_nan"]], "value_is_nan() (ivy.array method)": [[601, "ivy.Array.value_is_nan"]], "value_is_nan() (ivy.container method)": [[601, "ivy.Container.value_is_nan"]], "vmap() (in module ivy)": [[602, "ivy.vmap"], [622, "ivy.vmap"]], "adam_step() (in module ivy)": [[603, "ivy.adam_step"], [623, "ivy.adam_step"]], "adam_step() (ivy.array method)": [[603, "ivy.Array.adam_step"]], "adam_step() (ivy.container method)": [[603, "ivy.Container.adam_step"]], "adam_update() (in module ivy)": [[604, "ivy.adam_update"], [623, "ivy.adam_update"]], "adam_update() (ivy.array method)": [[604, "ivy.Array.adam_update"]], "adam_update() (ivy.container method)": [[604, "ivy.Container.adam_update"]], "execute_with_gradients() (in module ivy)": [[605, "ivy.execute_with_gradients"], [623, "ivy.execute_with_gradients"]], "grad() (in module ivy)": [[606, "ivy.grad"], [623, "ivy.grad"]], "gradient_descent_update() (in module ivy)": [[607, "ivy.gradient_descent_update"], [623, "ivy.gradient_descent_update"]], "gradient_descent_update() (ivy.array method)": [[607, "ivy.Array.gradient_descent_update"]], "gradient_descent_update() (ivy.container method)": [[607, "ivy.Container.gradient_descent_update"]], "jac() (in module ivy)": [[608, "ivy.jac"], [623, "ivy.jac"]], "lamb_update() (in module ivy)": [[609, "ivy.lamb_update"], [623, "ivy.lamb_update"]], "lamb_update() (ivy.array method)": [[609, "ivy.Array.lamb_update"]], "lamb_update() (ivy.container method)": [[609, "ivy.Container.lamb_update"]], "lars_update() (in module ivy)": [[610, "ivy.lars_update"], [623, "ivy.lars_update"]], "lars_update() (ivy.array method)": [[610, "ivy.Array.lars_update"]], "lars_update() (ivy.container method)": [[610, "ivy.Container.lars_update"]], "optimizer_update() (in module ivy)": [[611, "ivy.optimizer_update"], [623, "ivy.optimizer_update"]], "optimizer_update() (ivy.array method)": [[611, "ivy.Array.optimizer_update"]], "optimizer_update() (ivy.container method)": [[611, "ivy.Container.optimizer_update"]], "stop_gradient() (in module ivy)": [[612, "ivy.stop_gradient"], [623, "ivy.stop_gradient"]], "stop_gradient() (ivy.array method)": [[612, "ivy.Array.stop_gradient"]], "stop_gradient() (ivy.container method)": [[612, "ivy.Container.stop_gradient"]], "value_and_grad() (in module ivy)": [[613, "ivy.value_and_grad"], [623, "ivy.value_and_grad"]], "ivy.functional.ivy.activations": [[614, "module-ivy.functional.ivy.activations"]], "e (in module ivy)": [[615, "ivy.e"]], "inf (in module ivy)": [[615, "ivy.inf"]], "ivy.functional.ivy.constants": [[615, "module-ivy.functional.ivy.constants"]], "nan (in module ivy)": [[615, "ivy.nan"]], "newaxis (in module ivy)": [[615, "ivy.newaxis"]], "pi (in module ivy)": [[615, "ivy.pi"]], "ivy.functional.ivy.control_flow_ops": [[616, "module-ivy.functional.ivy.control_flow_ops"]], "nestedsequence (class in ivy)": [[617, "ivy.NestedSequence"]], "ivy.functional.ivy.creation": [[617, "module-ivy.functional.ivy.creation"]], "defaultcomplexdtype (class in ivy)": [[618, "ivy.DefaultComplexDtype"]], "defaultdtype (class in ivy)": [[618, "ivy.DefaultDtype"]], "defaultfloatdtype (class in ivy)": [[618, "ivy.DefaultFloatDtype"]], "defaultintdtype (class in ivy)": [[618, "ivy.DefaultIntDtype"]], "defaultuintdtype (class in ivy)": [[618, "ivy.DefaultUintDtype"]], "ivy.functional.ivy.data_type": [[618, "module-ivy.functional.ivy.data_type"]], "defaultdevice (class in ivy)": [[619, "ivy.DefaultDevice"]], "profiler (class in ivy)": [[619, "ivy.Profiler"]], "ivy.functional.ivy.device": [[619, "module-ivy.functional.ivy.device"]], "ivy.functional.ivy.elementwise": [[620, "module-ivy.functional.ivy.elementwise"]], "ivy.functional.ivy.experimental": [[621, "module-ivy.functional.ivy.experimental"]], "arraymode (class in ivy)": [[622, "ivy.ArrayMode"]], "precisemode (class in ivy)": [[622, "ivy.PreciseMode"]], "ivy.functional.ivy.general": [[622, "module-ivy.functional.ivy.general"]], "ivy.functional.ivy.gradients": [[623, "module-ivy.functional.ivy.gradients"]], "conv() (in module ivy)": [[624, "ivy.conv"], [637, "ivy.conv"]], "conv1d() (in module ivy)": [[624, "ivy.conv1d"], [638, "ivy.conv1d"]], "conv1d_transpose() (in module ivy)": [[624, "ivy.conv1d_transpose"], [639, "ivy.conv1d_transpose"]], "conv2d() (in module ivy)": [[624, "ivy.conv2d"], [640, "ivy.conv2d"]], "conv2d_transpose() (in module ivy)": [[624, "ivy.conv2d_transpose"], [641, "ivy.conv2d_transpose"]], "conv3d() (in module ivy)": [[624, "ivy.conv3d"], [642, "ivy.conv3d"]], "conv3d_transpose() (in module ivy)": [[624, "ivy.conv3d_transpose"], [643, "ivy.conv3d_transpose"]], "conv_general_dilated() (in module ivy)": [[624, "ivy.conv_general_dilated"], [644, "ivy.conv_general_dilated"]], "conv_general_transpose() (in module ivy)": [[624, "ivy.conv_general_transpose"], [645, "ivy.conv_general_transpose"]], "depthwise_conv2d() (in module ivy)": [[624, "ivy.depthwise_conv2d"], [646, "ivy.depthwise_conv2d"]], "dropout() (in module ivy)": [[624, "ivy.dropout"], [647, "ivy.dropout"]], "ivy.functional.ivy.layers": [[624, "module-ivy.functional.ivy.layers"]], "linear() (in module ivy)": [[624, "ivy.linear"], [648, "ivy.linear"]], "lstm_update() (in module ivy)": [[624, "ivy.lstm_update"], [649, "ivy.lstm_update"]], "multi_head_attention() (in module ivy)": [[624, "ivy.multi_head_attention"], [650, "ivy.multi_head_attention"]], "nms() (in module ivy)": [[624, "ivy.nms"], [651, "ivy.nms"]], "roi_align() (in module ivy)": [[624, "ivy.roi_align"], [652, "ivy.roi_align"]], "scaled_dot_product_attention() (in module ivy)": [[624, "ivy.scaled_dot_product_attention"], [653, "ivy.scaled_dot_product_attention"]], "cholesky() (in module ivy)": [[625, "ivy.cholesky"], [654, "ivy.cholesky"]], "cross() (in module ivy)": [[625, "ivy.cross"], [655, "ivy.cross"]], "det() (in module ivy)": [[625, "ivy.det"], [656, "ivy.det"]], "diag() (in module ivy)": [[625, "ivy.diag"], [657, "ivy.diag"]], "diagonal() (in module ivy)": [[625, "ivy.diagonal"], [658, "ivy.diagonal"]], "eigh() (in module ivy)": [[625, "ivy.eigh"], [660, "ivy.eigh"]], "eigvalsh() (in module ivy)": [[625, "ivy.eigvalsh"], [661, "ivy.eigvalsh"]], "inner() (in module ivy)": [[625, "ivy.inner"], [662, "ivy.inner"]], "inv() (in module ivy)": [[625, "ivy.inv"], [663, "ivy.inv"]], "ivy.functional.ivy.linear_algebra": [[625, "module-ivy.functional.ivy.linear_algebra"]], "lu_factor() (in module ivy)": [[625, "ivy.lu_factor"], [664, "ivy.lu_factor"]], "matmul() (in module ivy)": [[625, "ivy.matmul"], [665, "ivy.matmul"]], "matrix_norm() (in module ivy)": [[625, "ivy.matrix_norm"], [666, "ivy.matrix_norm"]], "matrix_power() (in module ivy)": [[625, "ivy.matrix_power"], [667, "ivy.matrix_power"]], "matrix_rank() (in module ivy)": [[625, "ivy.matrix_rank"], [668, "ivy.matrix_rank"]], "matrix_transpose() (in module ivy)": [[625, "ivy.matrix_transpose"], [669, "ivy.matrix_transpose"]], "outer() (in module ivy)": [[625, "ivy.outer"], [670, "ivy.outer"]], "pinv() (in module ivy)": [[625, "ivy.pinv"], [671, "ivy.pinv"]], "qr() (in module ivy)": [[625, "ivy.qr"], [672, "ivy.qr"]], "slogdet() (in module ivy)": [[625, "ivy.slogdet"], [673, "ivy.slogdet"]], "solve() (in module ivy)": [[625, "ivy.solve"], [674, "ivy.solve"]], "svd() (in module ivy)": [[625, "ivy.svd"], [675, "ivy.svd"]], "svdvals() (in module ivy)": [[625, "ivy.svdvals"], [676, "ivy.svdvals"]], "tensordot() (in module ivy)": [[625, "ivy.tensordot"], [677, "ivy.tensordot"]], "tensorsolve() (in module ivy)": [[625, "ivy.tensorsolve"], [678, "ivy.tensorsolve"]], "trace() (in module ivy)": [[625, "ivy.trace"], [679, "ivy.trace"]], "vander() (in module ivy)": [[625, "ivy.vander"], [680, "ivy.vander"]], "vecdot() (in module ivy)": [[625, "ivy.vecdot"], [681, "ivy.vecdot"]], "vector_norm() (in module ivy)": [[625, "ivy.vector_norm"], [682, "ivy.vector_norm"]], "vector_to_skew_symmetric_matrix() (in module ivy)": [[625, "ivy.vector_to_skew_symmetric_matrix"], [683, "ivy.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (in module ivy)": [[626, "ivy.binary_cross_entropy"], [684, "ivy.binary_cross_entropy"]], "cross_entropy() (in module ivy)": [[626, "ivy.cross_entropy"], [685, "ivy.cross_entropy"]], "ivy.functional.ivy.losses": [[626, "module-ivy.functional.ivy.losses"]], "sparse_cross_entropy() (in module ivy)": [[626, "ivy.sparse_cross_entropy"], [686, "ivy.sparse_cross_entropy"]], "clip() (in module ivy)": [[627, "ivy.clip"], [687, "ivy.clip"]], "concat() (in module ivy)": [[627, "ivy.concat"], [688, "ivy.concat"]], "constant_pad() (in module ivy)": [[627, "ivy.constant_pad"], [689, "ivy.constant_pad"]], "expand_dims() (in module ivy)": [[627, "ivy.expand_dims"], [690, "ivy.expand_dims"]], "flip() (in module ivy)": [[627, "ivy.flip"], [691, "ivy.flip"]], "ivy.functional.ivy.manipulation": [[627, "module-ivy.functional.ivy.manipulation"]], "permute_dims() (in module ivy)": [[627, "ivy.permute_dims"], [692, "ivy.permute_dims"]], "repeat() (in module ivy)": [[627, "ivy.repeat"], [693, "ivy.repeat"]], "reshape() (in module ivy)": [[627, "ivy.reshape"], [694, "ivy.reshape"]], "roll() (in module ivy)": [[627, "ivy.roll"], [695, "ivy.roll"]], "split() (in module ivy)": [[627, "ivy.split"], [696, "ivy.split"]], "squeeze() (in module ivy)": [[627, "ivy.squeeze"], [697, "ivy.squeeze"]], "stack() (in module ivy)": [[627, "ivy.stack"], [698, "ivy.stack"]], "swapaxes() (in module ivy)": [[627, "ivy.swapaxes"], [699, "ivy.swapaxes"]], "tile() (in module ivy)": [[627, "ivy.tile"], [700, "ivy.tile"]], "unstack() (in module ivy)": [[627, "ivy.unstack"], [701, "ivy.unstack"]], "zero_pad() (in module ivy)": [[627, "ivy.zero_pad"], [702, "ivy.zero_pad"]], "fomaml_step() (in module ivy)": [[628, "ivy.fomaml_step"], [703, "ivy.fomaml_step"]], "ivy.functional.ivy.meta": [[628, "module-ivy.functional.ivy.meta"]], "maml_step() (in module ivy)": [[628, "ivy.maml_step"], [704, "ivy.maml_step"]], "reptile_step() (in module ivy)": [[628, "ivy.reptile_step"], [705, "ivy.reptile_step"]], "all_nested_indices() (in module ivy)": [[629, "ivy.all_nested_indices"], [706, "ivy.all_nested_indices"]], "copy_nest() (in module ivy)": [[629, "ivy.copy_nest"], [707, "ivy.copy_nest"]], "duplicate_array_index_chains() (in module ivy)": [[629, "ivy.duplicate_array_index_chains"], [708, "ivy.duplicate_array_index_chains"]], "index_nest() (in module ivy)": [[629, "ivy.index_nest"], [709, "ivy.index_nest"]], "insert_into_nest_at_index() (in module ivy)": [[629, "ivy.insert_into_nest_at_index"], [710, "ivy.insert_into_nest_at_index"]], "insert_into_nest_at_indices() (in module ivy)": [[629, "ivy.insert_into_nest_at_indices"], [711, "ivy.insert_into_nest_at_indices"]], "ivy.functional.ivy.nest": [[629, "module-ivy.functional.ivy.nest"]], "map() (in module ivy)": [[629, "ivy.map"], [712, "ivy.map"]], "map_nest_at_index() (in module ivy)": [[629, "ivy.map_nest_at_index"], [713, "ivy.map_nest_at_index"]], "map_nest_at_indices() (in module ivy)": [[629, "ivy.map_nest_at_indices"], [714, "ivy.map_nest_at_indices"]], "multi_index_nest() (in module ivy)": [[629, "ivy.multi_index_nest"], [715, "ivy.multi_index_nest"]], "nested_any() (in module ivy)": [[629, "ivy.nested_any"], [716, "ivy.nested_any"]], "nested_argwhere() (in module ivy)": [[629, "ivy.nested_argwhere"], [717, "ivy.nested_argwhere"]], "nested_map() (in module ivy)": [[629, "ivy.nested_map"], [718, "ivy.nested_map"]], "nested_multi_map() (in module ivy)": [[629, "ivy.nested_multi_map"], [719, "ivy.nested_multi_map"]], "prune_empty() (in module ivy)": [[629, "ivy.prune_empty"], [720, "ivy.prune_empty"]], "prune_nest_at_index() (in module ivy)": [[629, "ivy.prune_nest_at_index"], [721, "ivy.prune_nest_at_index"]], "prune_nest_at_indices() (in module ivy)": [[629, "ivy.prune_nest_at_indices"], [722, "ivy.prune_nest_at_indices"]], "set_nest_at_index() (in module ivy)": [[629, "ivy.set_nest_at_index"], [723, "ivy.set_nest_at_index"]], "set_nest_at_indices() (in module ivy)": [[629, "ivy.set_nest_at_indices"], [724, "ivy.set_nest_at_indices"]], "ivy.functional.ivy.norms": [[630, "module-ivy.functional.ivy.norms"]], "layer_norm() (in module ivy)": [[630, "ivy.layer_norm"], [725, "ivy.layer_norm"]], "ivy.functional.ivy.random": [[631, "module-ivy.functional.ivy.random"]], "multinomial() (in module ivy)": [[631, "ivy.multinomial"], [726, "ivy.multinomial"]], "randint() (in module ivy)": [[631, "ivy.randint"], [727, "ivy.randint"]], "random_normal() (in module ivy)": [[631, "ivy.random_normal"], [728, "ivy.random_normal"]], "random_uniform() (in module ivy)": [[631, "ivy.random_uniform"], [729, "ivy.random_uniform"]], "seed() (in module ivy)": [[631, "ivy.seed"], [730, "ivy.seed"]], "shuffle() (in module ivy)": [[631, "ivy.shuffle"], [731, "ivy.shuffle"]], "argmax() (in module ivy)": [[632, "ivy.argmax"], [732, "ivy.argmax"]], "argmin() (in module ivy)": [[632, "ivy.argmin"], [733, "ivy.argmin"]], "argwhere() (in module ivy)": [[632, "ivy.argwhere"], [734, "ivy.argwhere"]], "ivy.functional.ivy.searching": [[632, "module-ivy.functional.ivy.searching"]], "nonzero() (in module ivy)": [[632, "ivy.nonzero"], [735, "ivy.nonzero"]], "where() (in module ivy)": [[632, "ivy.where"], [736, "ivy.where"]], "ivy.functional.ivy.set": [[633, "module-ivy.functional.ivy.set"]], "unique_all() (in module ivy)": [[633, "ivy.unique_all"], [737, "ivy.unique_all"]], "unique_counts() (in module ivy)": [[633, "ivy.unique_counts"], [738, "ivy.unique_counts"]], "unique_inverse() (in module ivy)": [[633, "ivy.unique_inverse"], [739, "ivy.unique_inverse"]], "unique_values() (in module ivy)": [[633, "ivy.unique_values"], [740, "ivy.unique_values"]], "argsort() (in module ivy)": [[634, "ivy.argsort"], [741, "ivy.argsort"]], "ivy.functional.ivy.sorting": [[634, "module-ivy.functional.ivy.sorting"]], "msort() (in module ivy)": [[634, "ivy.msort"], [742, "ivy.msort"]], "searchsorted() (in module ivy)": [[634, "ivy.searchsorted"], [743, "ivy.searchsorted"]], "sort() (in module ivy)": [[634, "ivy.sort"], [744, "ivy.sort"]], "cumprod() (in module ivy)": [[635, "ivy.cumprod"], [745, "ivy.cumprod"]], "cumsum() (in module ivy)": [[635, "ivy.cumsum"], [746, "ivy.cumsum"]], "einsum() (in module ivy)": [[635, "ivy.einsum"], [747, "ivy.einsum"]], "ivy.functional.ivy.statistical": [[635, "module-ivy.functional.ivy.statistical"]], "max() (in module ivy)": [[635, "ivy.max"], [748, "ivy.max"]], "mean() (in module ivy)": [[635, "ivy.mean"], [749, "ivy.mean"]], "min() (in module ivy)": [[635, "ivy.min"], [750, "ivy.min"]], "prod() (in module ivy)": [[635, "ivy.prod"], [751, "ivy.prod"]], "std() (in module ivy)": [[635, "ivy.std"], [752, "ivy.std"]], "sum() (in module ivy)": [[635, "ivy.sum"], [753, "ivy.sum"]], "var() (in module ivy)": [[635, "ivy.var"], [754, "ivy.var"]], "all() (in module ivy)": [[636, "ivy.all"], [755, "ivy.all"]], "any() (in module ivy)": [[636, "ivy.any"], [756, "ivy.any"]], "ivy.functional.ivy.utility": [[636, "module-ivy.functional.ivy.utility"]], "load() (in module ivy)": [[636, "ivy.load"], [757, "ivy.load"]], "save() (in module ivy)": [[636, "ivy.save"], [758, "ivy.save"]], "conv1d() (ivy.array method)": [[638, "ivy.Array.conv1d"]], "conv1d() (ivy.container method)": [[638, "ivy.Container.conv1d"]], "conv1d_transpose() (ivy.array method)": [[639, "ivy.Array.conv1d_transpose"]], "conv1d_transpose() (ivy.container method)": [[639, "ivy.Container.conv1d_transpose"]], "conv2d() (ivy.array method)": [[640, "ivy.Array.conv2d"]], "conv2d() (ivy.container method)": [[640, "ivy.Container.conv2d"]], "conv2d_transpose() (ivy.array method)": [[641, "ivy.Array.conv2d_transpose"]], "conv2d_transpose() (ivy.container method)": [[641, "ivy.Container.conv2d_transpose"]], "conv3d() (ivy.array method)": [[642, "ivy.Array.conv3d"]], "conv3d() (ivy.container method)": [[642, "ivy.Container.conv3d"]], "conv3d_transpose() (ivy.array method)": [[643, "ivy.Array.conv3d_transpose"]], "conv3d_transpose() (ivy.container method)": [[643, "ivy.Container.conv3d_transpose"]], "depthwise_conv2d() (ivy.array method)": [[646, "ivy.Array.depthwise_conv2d"]], "depthwise_conv2d() (ivy.container method)": [[646, "ivy.Container.depthwise_conv2d"]], "dropout() (ivy.array method)": [[647, "ivy.Array.dropout"]], "dropout() (ivy.container method)": [[647, "ivy.Container.dropout"]], "linear() (ivy.array method)": [[648, "ivy.Array.linear"]], "linear() (ivy.container method)": [[648, "ivy.Container.linear"]], "lstm_update() (ivy.array method)": [[649, "ivy.Array.lstm_update"]], "lstm_update() (ivy.container method)": [[649, "ivy.Container.lstm_update"]], "multi_head_attention() (ivy.array method)": [[650, "ivy.Array.multi_head_attention"]], "multi_head_attention() (ivy.container method)": [[650, "ivy.Container.multi_head_attention"]], "scaled_dot_product_attention() (ivy.array method)": [[653, "ivy.Array.scaled_dot_product_attention"]], "scaled_dot_product_attention() (ivy.container method)": [[653, "ivy.Container.scaled_dot_product_attention"]], "cholesky() (ivy.array method)": [[654, "ivy.Array.cholesky"]], "cholesky() (ivy.container method)": [[654, "ivy.Container.cholesky"]], "cross() (ivy.array method)": [[655, "ivy.Array.cross"]], "cross() (ivy.container method)": [[655, "ivy.Container.cross"]], "det() (ivy.array method)": [[656, "ivy.Array.det"]], "det() (ivy.container method)": [[656, "ivy.Container.det"]], "diag() (ivy.array method)": [[657, "ivy.Array.diag"]], "diag() (ivy.container method)": [[657, "ivy.Container.diag"]], "diagonal() (ivy.array method)": [[658, "ivy.Array.diagonal"]], "diagonal() (ivy.container method)": [[658, "ivy.Container.diagonal"]], "eigh() (ivy.array method)": [[660, "ivy.Array.eigh"]], "eigh() (ivy.container method)": [[660, "ivy.Container.eigh"]], "eigvalsh() (ivy.array method)": [[661, "ivy.Array.eigvalsh"]], "eigvalsh() (ivy.container method)": [[661, "ivy.Container.eigvalsh"]], "inner() (ivy.array method)": [[662, "ivy.Array.inner"]], "inner() (ivy.container method)": [[662, "ivy.Container.inner"]], "inv() (ivy.array method)": [[663, "ivy.Array.inv"]], "inv() (ivy.container method)": [[663, "ivy.Container.inv"]], "matmul() (ivy.array method)": [[665, "ivy.Array.matmul"]], "matmul() (ivy.container method)": [[665, "ivy.Container.matmul"]], "matrix_norm() (ivy.array method)": [[666, "ivy.Array.matrix_norm"]], "matrix_norm() (ivy.container method)": [[666, "ivy.Container.matrix_norm"]], "matrix_power() (ivy.array method)": [[667, "ivy.Array.matrix_power"]], "matrix_power() (ivy.container method)": [[667, "ivy.Container.matrix_power"]], "matrix_rank() (ivy.array method)": [[668, "ivy.Array.matrix_rank"]], "matrix_rank() (ivy.container method)": [[668, "ivy.Container.matrix_rank"]], "matrix_transpose() (ivy.array method)": [[669, "ivy.Array.matrix_transpose"]], "matrix_transpose() (ivy.container method)": [[669, "ivy.Container.matrix_transpose"]], "outer() (ivy.array method)": [[670, "ivy.Array.outer"]], "outer() (ivy.container method)": [[670, "ivy.Container.outer"]], "pinv() (ivy.array method)": [[671, "ivy.Array.pinv"]], "pinv() (ivy.container method)": [[671, "ivy.Container.pinv"]], "qr() (ivy.array method)": [[672, "ivy.Array.qr"]], "qr() (ivy.container method)": [[672, "ivy.Container.qr"]], "slogdet() (ivy.array method)": [[673, "ivy.Array.slogdet"]], "slogdet() (ivy.container method)": [[673, "ivy.Container.slogdet"]], "solve() (ivy.array method)": [[674, "ivy.Array.solve"]], "solve() (ivy.container method)": [[674, "ivy.Container.solve"]], "svd() (ivy.array method)": [[675, "ivy.Array.svd"]], "svd() (ivy.container method)": [[675, "ivy.Container.svd"]], "svdvals() (ivy.array method)": [[676, "ivy.Array.svdvals"]], "svdvals() (ivy.container method)": [[676, "ivy.Container.svdvals"]], "tensordot() (ivy.array method)": [[677, "ivy.Array.tensordot"]], "tensordot() (ivy.container method)": [[677, "ivy.Container.tensordot"]], "tensorsolve() (ivy.array method)": [[678, "ivy.Array.tensorsolve"]], "tensorsolve() (ivy.container method)": [[678, "ivy.Container.tensorsolve"]], "trace() (ivy.array method)": [[679, "ivy.Array.trace"]], "trace() (ivy.container method)": [[679, "ivy.Container.trace"]], "vander() (ivy.array method)": [[680, "ivy.Array.vander"]], "vander() (ivy.container method)": [[680, "ivy.Container.vander"]], "vecdot() (ivy.array method)": [[681, "ivy.Array.vecdot"]], "vecdot() (ivy.container method)": [[681, "ivy.Container.vecdot"]], "vector_norm() (ivy.array method)": [[682, "ivy.Array.vector_norm"]], "vector_norm() (ivy.container method)": [[682, "ivy.Container.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.array method)": [[683, "ivy.Array.vector_to_skew_symmetric_matrix"]], "vector_to_skew_symmetric_matrix() (ivy.container method)": [[683, "ivy.Container.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (ivy.array method)": [[684, "ivy.Array.binary_cross_entropy"]], "binary_cross_entropy() (ivy.container method)": [[684, "ivy.Container.binary_cross_entropy"]], "cross_entropy() (ivy.array method)": [[685, "ivy.Array.cross_entropy"]], "cross_entropy() (ivy.container method)": [[685, "ivy.Container.cross_entropy"]], "sparse_cross_entropy() (ivy.array method)": [[686, "ivy.Array.sparse_cross_entropy"]], "sparse_cross_entropy() (ivy.container method)": [[686, "ivy.Container.sparse_cross_entropy"]], "clip() (ivy.array method)": [[687, "ivy.Array.clip"]], "clip() (ivy.container method)": [[687, "ivy.Container.clip"]], "concat() (ivy.array method)": [[688, "ivy.Array.concat"]], "concat() (ivy.container method)": [[688, "ivy.Container.concat"]], "constant_pad() (ivy.array method)": [[689, "ivy.Array.constant_pad"]], "constant_pad() (ivy.container method)": [[689, "ivy.Container.constant_pad"]], "expand_dims() (ivy.array method)": [[690, "ivy.Array.expand_dims"]], "expand_dims() (ivy.container method)": [[690, "ivy.Container.expand_dims"]], "flip() (ivy.array method)": [[691, "ivy.Array.flip"]], "flip() (ivy.container method)": [[691, "ivy.Container.flip"]], "permute_dims() (ivy.array method)": [[692, "ivy.Array.permute_dims"]], "permute_dims() (ivy.container method)": [[692, "ivy.Container.permute_dims"]], "repeat() (ivy.array method)": [[693, "ivy.Array.repeat"]], "repeat() (ivy.container method)": [[693, "ivy.Container.repeat"]], "reshape() (ivy.array method)": [[694, "ivy.Array.reshape"]], "reshape() (ivy.container method)": [[694, "ivy.Container.reshape"]], "roll() (ivy.array method)": [[695, "ivy.Array.roll"]], "roll() (ivy.container method)": [[695, "ivy.Container.roll"]], "split() (ivy.array method)": [[696, "ivy.Array.split"]], "split() (ivy.container method)": [[696, "ivy.Container.split"]], "squeeze() (ivy.array method)": [[697, "ivy.Array.squeeze"]], "squeeze() (ivy.container method)": [[697, "ivy.Container.squeeze"]], "stack() (ivy.array method)": [[698, "ivy.Array.stack"]], "stack() (ivy.container method)": [[698, "ivy.Container.stack"]], "swapaxes() (ivy.array method)": [[699, "ivy.Array.swapaxes"]], "swapaxes() (ivy.container method)": [[699, "ivy.Container.swapaxes"]], "tile() (ivy.array method)": [[700, "ivy.Array.tile"]], "tile() (ivy.container method)": [[700, "ivy.Container.tile"]], "unstack() (ivy.array method)": [[701, "ivy.Array.unstack"]], "unstack() (ivy.container method)": [[701, "ivy.Container.unstack"]], "zero_pad() (ivy.array method)": [[702, "ivy.Array.zero_pad"]], "zero_pad() (ivy.container method)": [[702, "ivy.Container.zero_pad"]], "layer_norm() (ivy.array method)": [[725, "ivy.Array.layer_norm"]], "layer_norm() (ivy.container method)": [[725, "ivy.Container.layer_norm"]], "multinomial() (ivy.array method)": [[726, "ivy.Array.multinomial"]], "multinomial() (ivy.container method)": [[726, "ivy.Container.multinomial"]], "randint() (ivy.array method)": [[727, "ivy.Array.randint"]], "randint() (ivy.container method)": [[727, "ivy.Container.randint"]], "random_normal() (ivy.array method)": [[728, "ivy.Array.random_normal"]], "random_normal() (ivy.container method)": [[728, "ivy.Container.random_normal"]], "random_uniform() (ivy.array method)": [[729, "ivy.Array.random_uniform"]], "random_uniform() (ivy.container method)": [[729, "ivy.Container.random_uniform"]], "shuffle() (ivy.array method)": [[731, "ivy.Array.shuffle"]], "shuffle() (ivy.container method)": [[731, "ivy.Container.shuffle"]], "argmax() (ivy.array method)": [[732, "ivy.Array.argmax"]], "argmax() (ivy.container method)": [[732, "ivy.Container.argmax"]], "argmin() (ivy.array method)": [[733, "ivy.Array.argmin"]], "argmin() (ivy.container method)": [[733, "ivy.Container.argmin"]], "argwhere() (ivy.array method)": [[734, "ivy.Array.argwhere"]], "argwhere() (ivy.container method)": [[734, "ivy.Container.argwhere"]], "nonzero() (ivy.array method)": [[735, "ivy.Array.nonzero"]], "nonzero() (ivy.container method)": [[735, "ivy.Container.nonzero"]], "where() (ivy.array method)": [[736, "ivy.Array.where"]], "where() (ivy.container method)": [[736, "ivy.Container.where"]], "unique_all() (ivy.array method)": [[737, "ivy.Array.unique_all"]], "unique_all() (ivy.container method)": [[737, "ivy.Container.unique_all"]], "unique_counts() (ivy.array method)": [[738, "ivy.Array.unique_counts"]], "unique_counts() (ivy.container method)": [[738, "ivy.Container.unique_counts"]], "unique_inverse() (ivy.array method)": [[739, "ivy.Array.unique_inverse"]], "unique_inverse() (ivy.container method)": [[739, "ivy.Container.unique_inverse"]], "unique_values() (ivy.array method)": [[740, "ivy.Array.unique_values"]], "unique_values() (ivy.container method)": [[740, "ivy.Container.unique_values"]], "argsort() (ivy.array method)": [[741, "ivy.Array.argsort"]], "argsort() (ivy.container method)": [[741, "ivy.Container.argsort"]], "msort() (ivy.array method)": [[742, "ivy.Array.msort"]], "msort() (ivy.container method)": [[742, "ivy.Container.msort"]], "searchsorted() (ivy.array method)": [[743, "ivy.Array.searchsorted"]], "searchsorted() (ivy.container method)": [[743, "ivy.Container.searchsorted"]], "sort() (ivy.array method)": [[744, "ivy.Array.sort"]], "sort() (ivy.container method)": [[744, "ivy.Container.sort"]], "cumprod() (ivy.array method)": [[745, "ivy.Array.cumprod"]], "cumprod() (ivy.container method)": [[745, "ivy.Container.cumprod"]], "cumsum() (ivy.array method)": [[746, "ivy.Array.cumsum"]], "cumsum() (ivy.container method)": [[746, "ivy.Container.cumsum"]], "einsum() (ivy.array method)": [[747, "ivy.Array.einsum"]], "einsum() (ivy.container method)": [[747, "ivy.Container.einsum"]], "max() (ivy.array method)": [[748, "ivy.Array.max"]], "max() (ivy.container method)": [[748, "ivy.Container.max"]], "mean() (ivy.array method)": [[749, "ivy.Array.mean"]], "mean() (ivy.container method)": [[749, "ivy.Container.mean"]], "min() (ivy.array method)": [[750, "ivy.Array.min"]], "min() (ivy.container method)": [[750, "ivy.Container.min"]], "prod() (ivy.array method)": [[751, "ivy.Array.prod"]], "prod() (ivy.container method)": [[751, "ivy.Container.prod"]], "std() (ivy.array method)": [[752, "ivy.Array.std"]], "std() (ivy.container method)": [[752, "ivy.Container.std"]], "sum() (ivy.array method)": [[753, "ivy.Array.sum"]], "sum() (ivy.container method)": [[753, "ivy.Container.sum"]], "var() (ivy.array method)": [[754, "ivy.Array.var"]], "var() (ivy.container method)": [[754, "ivy.Container.var"]], "all() (ivy.array method)": [[755, "ivy.Array.all"]], "all() (ivy.container method)": [[755, "ivy.Container.all"]], "any() (ivy.array method)": [[756, "ivy.Array.any"]], "any() (ivy.container method)": [[756, "ivy.Container.any"]], "assert_all_close() (in module ivy_tests.test_ivy.helpers.assertions)": [[759, "ivy_tests.test_ivy.helpers.assertions.assert_all_close"]], "assert_same_type() (in module ivy_tests.test_ivy.helpers.assertions)": [[759, "ivy_tests.test_ivy.helpers.assertions.assert_same_type"]], "assert_same_type_and_shape() (in module ivy_tests.test_ivy.helpers.assertions)": [[759, "ivy_tests.test_ivy.helpers.assertions.assert_same_type_and_shape"]], "check_unsupported_device() (in module ivy_tests.test_ivy.helpers.assertions)": [[759, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device"]], "check_unsupported_device_and_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[759, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device_and_dtype"]], "check_unsupported_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[759, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_dtype"]], "ivy_tests.test_ivy.helpers.assertions": [[759, "module-ivy_tests.test_ivy.helpers.assertions"]], "test_unsupported_function() (in module ivy_tests.test_ivy.helpers.assertions)": [[759, "ivy_tests.test_ivy.helpers.assertions.test_unsupported_function"]], "value_test() (in module ivy_tests.test_ivy.helpers.assertions)": [[759, "ivy_tests.test_ivy.helpers.assertions.value_test"]], "ivy_tests.test_ivy.helpers.available_frameworks": [[760, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "args_to_container() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.args_to_container"]], "args_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.args_to_frontend"]], "arrays_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.arrays_to_frontend"]], "as_lists() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.as_lists"]], "convtrue() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.convtrue"]], "create_args_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.create_args_kwargs"]], "flatten() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.flatten"]], "flatten_and_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.flatten_and_to_np"]], "flatten_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend"]], "flatten_frontend_fw_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_fw_to_np"]], "flatten_frontend_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_to_np"]], "get_frontend_ret() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.get_frontend_ret"]], "get_ret_and_flattened_np_array() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.get_ret_and_flattened_np_array"]], "gradient_incompatible_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.gradient_incompatible_function"]], "gradient_test() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.gradient_test"]], "gradient_unsupported_dtypes() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.gradient_unsupported_dtypes"]], "ivy_tests.test_ivy.helpers.function_testing": [[761, "module-ivy_tests.test_ivy.helpers.function_testing"]], "kwargs_to_args_n_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.kwargs_to_args_n_kwargs"]], "test_frontend_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_function"]], "test_frontend_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_method"]], "test_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.test_function"]], "test_function_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.test_function_backend_computation"]], "test_function_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.test_function_ground_truth_computation"]], "test_gradient_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_backend_computation"]], "test_gradient_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_ground_truth_computation"]], "test_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.test_method"]], "test_method_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.test_method_backend_computation"]], "test_method_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.test_method_ground_truth_computation"]], "traced_if_required() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.traced_if_required"]], "wrap_frontend_function_args() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.wrap_frontend_function_args"]], "current_frontend_config (in module ivy_tests.test_ivy.helpers.globals)": [[762, "ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG"]], "interruptedtest": [[762, "ivy_tests.test_ivy.helpers.globals.InterruptedTest"]], "testdata (class in ivy_tests.test_ivy.helpers.globals)": [[762, "ivy_tests.test_ivy.helpers.globals.TestData"]], "__init__() (ivy_tests.test_ivy.helpers.globals.interruptedtest method)": [[762, "ivy_tests.test_ivy.helpers.globals.InterruptedTest.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.globals.testdata method)": [[762, "ivy_tests.test_ivy.helpers.globals.TestData.__init__"]], "fn_name (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[762, "ivy_tests.test_ivy.helpers.globals.TestData.fn_name"]], "fn_tree (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[762, "ivy_tests.test_ivy.helpers.globals.TestData.fn_tree"]], "is_method (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[762, "ivy_tests.test_ivy.helpers.globals.TestData.is_method"]], "ivy_tests.test_ivy.helpers.globals": [[762, "module-ivy_tests.test_ivy.helpers.globals"]], "setup_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[762, "ivy_tests.test_ivy.helpers.globals.setup_api_test"]], "setup_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[762, "ivy_tests.test_ivy.helpers.globals.setup_frontend_test"]], "supported_device_dtypes (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[762, "ivy_tests.test_ivy.helpers.globals.TestData.supported_device_dtypes"]], "teardown_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[762, "ivy_tests.test_ivy.helpers.globals.teardown_api_test"]], "teardown_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[762, "ivy_tests.test_ivy.helpers.globals.teardown_frontend_test"]], "test_fn (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[762, "ivy_tests.test_ivy.helpers.globals.TestData.test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"]], "array_and_broadcastable_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_and_broadcastable_shape"]], "array_bools() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_bools"]], "array_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_helpers_dtype_info_helper"]], "array_indices_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_axis"]], "array_indices_put_along_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_put_along_axis"]], "array_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_values"]], "arrays_and_axes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_and_axes"]], "arrays_for_pooling() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_for_pooling"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.broadcast_shapes"]], "cond_data_gen_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.cond_data_gen_helper"]], "create_concatenable_arrays_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_concatenable_arrays_dtypes"]], "create_nested_input() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_nested_input"]], "dtype_and_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_and_values"]], "dtype_array_query() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query"]], "dtype_array_query_val() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query_val"]], "dtype_values_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_values_axis"]], "einsum_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.einsum_helper"]], "get_first_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_batch_matrix"]], "get_first_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_matrix"]], "get_second_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_batch_matrix"]], "get_second_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_matrix"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "list_of_size() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.list_of_size"]], "lists() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.lists"]], "mutually_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.mutually_broadcastable_shapes"]], "prod() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.prod"]], "array_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.array_dtypes"]], "cast_filter() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter"]], "cast_filter_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter_helper"]], "get_castable_dtype() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_castable_dtype"]], "get_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "broadcasterror": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.BroadcastError"]], "apply_safety_factor() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.apply_safety_factor"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.broadcast_shapes"]], "embedding_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.embedding_helper"]], "general_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.general_helpers_dtype_info_helper"]], "get_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_axis"]], "get_bounds() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_bounds"]], "get_mean_std() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_mean_std"]], "get_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_shape"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "matrix_is_stable() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.matrix_is_stable"]], "reshape_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.reshape_shapes"]], "subsets() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.subsets"]], "two_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.two_broadcastable_shapes"]], "x_and_filters() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.x_and_filters"]], "floats() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[767, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.floats"]], "ints() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[767, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.ints"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[767, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "number() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[767, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.number"]], "backend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[768, "ivy_tests.test_ivy.helpers.multiprocessing.backend_proc"]], "frontend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[768, "ivy_tests.test_ivy.helpers.multiprocessing.frontend_proc"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[768, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "backendhandler (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[769, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler"]], "backendhandlermode (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[769, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode"]], "setbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[769, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.SetBackend"]], "withbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[769, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.WithBackend"]], "withbackendcontext (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[769, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext"]], "__init__() (ivy_tests.test_ivy.helpers.pipeline_helper.withbackendcontext method)": [[769, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext.__init__"]], "get_frontend_config() (in module ivy_tests.test_ivy.helpers.pipeline_helper)": [[769, "ivy_tests.test_ivy.helpers.pipeline_helper.get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[769, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "update_backend() (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandler class method)": [[769, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler.update_backend"]], "frontendmethoddata (class in ivy_tests.test_ivy.helpers.structs)": [[770, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData"]], "__init__() (ivy_tests.test_ivy.helpers.structs.frontendmethoddata method)": [[770, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.__init__"]], "framework_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[770, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.framework_init_module"]], "init_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[770, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.init_name"]], "ivy_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[770, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.ivy_init_module"]], "ivy_tests.test_ivy.helpers.structs": [[770, "module-ivy_tests.test_ivy.helpers.structs"]], "method_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[770, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.method_name"]], "dynamicflag (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag"]], "frontendfunctiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags"]], "frontendinittestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags"]], "frontendmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags"]], "functiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags"]], "initmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags"]], "methodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags"]], "testflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.__init__"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.testflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags.apply_flags"]], "build_flag() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.build_flag"]], "frontend_function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_function_flags"]], "frontend_init_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_init_flags"]], "frontend_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_method_flags"]], "function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.function_flags"]], "init_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.init_method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[771, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.method_flags"]], "strategy (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag attribute)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.strategy"]], "handle_frontend_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[772, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_method"]], "handle_frontend_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[772, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_test"]], "handle_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[772, "ivy_tests.test_ivy.helpers.testing_helpers.handle_method"]], "handle_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[772, "ivy_tests.test_ivy.helpers.testing_helpers.handle_test"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[772, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "num_positional_args() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[772, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args"]], "num_positional_args_helper() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[772, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_helper"]], "num_positional_args_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[772, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_method"]], "seed() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[772, "ivy_tests.test_ivy.helpers.testing_helpers.seed"]], "elu (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.ELU"]], "geglu (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.GEGLU"]], "gelu (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.GELU"]], "hardswish (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.Hardswish"]], "leakyrelu (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.LeakyReLU"]], "logsigmoid (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.LogSigmoid"]], "logsoftmax (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.LogSoftmax"]], "logit (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.Logit"]], "mish (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.Mish"]], "prelu (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.PReLU"]], "relu (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.ReLU"]], "relu6 (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.ReLU6"]], "selu (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.SeLU"]], "silu (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.SiLU"]], "sigmoid (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.Sigmoid"]], "softmax (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.Softmax"]], "softplus (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.Softplus"]], "tanh (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.Tanh"]], "__init__() (ivy.stateful.activations.elu method)": [[776, "ivy.stateful.activations.ELU.__init__"]], "__init__() (ivy.stateful.activations.geglu method)": [[776, "ivy.stateful.activations.GEGLU.__init__"]], "__init__() (ivy.stateful.activations.gelu method)": [[776, "ivy.stateful.activations.GELU.__init__"]], "__init__() (ivy.stateful.activations.hardswish method)": [[776, "ivy.stateful.activations.Hardswish.__init__"]], "__init__() (ivy.stateful.activations.leakyrelu method)": [[776, "ivy.stateful.activations.LeakyReLU.__init__"]], "__init__() (ivy.stateful.activations.logsigmoid method)": [[776, "ivy.stateful.activations.LogSigmoid.__init__"]], "__init__() (ivy.stateful.activations.logsoftmax method)": [[776, "ivy.stateful.activations.LogSoftmax.__init__"]], "__init__() (ivy.stateful.activations.logit method)": [[776, "ivy.stateful.activations.Logit.__init__"]], "__init__() (ivy.stateful.activations.mish method)": [[776, "ivy.stateful.activations.Mish.__init__"]], "__init__() (ivy.stateful.activations.prelu method)": [[776, "ivy.stateful.activations.PReLU.__init__"]], "__init__() (ivy.stateful.activations.relu method)": [[776, "ivy.stateful.activations.ReLU.__init__"]], "__init__() (ivy.stateful.activations.relu6 method)": [[776, "ivy.stateful.activations.ReLU6.__init__"]], "__init__() (ivy.stateful.activations.selu method)": [[776, "ivy.stateful.activations.SeLU.__init__"]], "__init__() (ivy.stateful.activations.silu method)": [[776, "ivy.stateful.activations.SiLU.__init__"]], "__init__() (ivy.stateful.activations.sigmoid method)": [[776, "ivy.stateful.activations.Sigmoid.__init__"]], "__init__() (ivy.stateful.activations.softmax method)": [[776, "ivy.stateful.activations.Softmax.__init__"]], "__init__() (ivy.stateful.activations.softplus method)": [[776, "ivy.stateful.activations.Softplus.__init__"]], "__init__() (ivy.stateful.activations.tanh method)": [[776, "ivy.stateful.activations.Tanh.__init__"]], "ivy.stateful.activations": [[776, "module-ivy.stateful.activations"]], "moduleconverters (class in ivy.stateful.converters)": [[777, "ivy.stateful.converters.ModuleConverters"]], "from_flax_module() (ivy.stateful.converters.moduleconverters static method)": [[777, "ivy.stateful.converters.ModuleConverters.from_flax_module"]], "from_haiku_module() (ivy.stateful.converters.moduleconverters static method)": [[777, "ivy.stateful.converters.ModuleConverters.from_haiku_module"]], "from_keras_module() (ivy.stateful.converters.moduleconverters static method)": [[777, "ivy.stateful.converters.ModuleConverters.from_keras_module"]], "from_paddle_module() (ivy.stateful.converters.moduleconverters static method)": [[777, "ivy.stateful.converters.ModuleConverters.from_paddle_module"]], "from_torch_module() (ivy.stateful.converters.moduleconverters static method)": [[777, "ivy.stateful.converters.ModuleConverters.from_torch_module"]], "ivy.stateful.converters": [[777, "module-ivy.stateful.converters"]], "to_ivy_module() (in module ivy.stateful.converters)": [[777, "ivy.stateful.converters.to_ivy_module"]], "to_keras_module() (ivy.stateful.converters.moduleconverters method)": [[777, "ivy.stateful.converters.ModuleConverters.to_keras_module"]], "modulehelpers (class in ivy.stateful.helpers)": [[778, "ivy.stateful.helpers.ModuleHelpers"]], "ivy.stateful.helpers": [[778, "module-ivy.stateful.helpers"]], "constant (class in ivy.stateful.initializers)": [[779, "ivy.stateful.initializers.Constant"]], "firstlayersiren (class in ivy.stateful.initializers)": [[779, "ivy.stateful.initializers.FirstLayerSiren"]], "glorotuniform (class in ivy.stateful.initializers)": [[779, "ivy.stateful.initializers.GlorotUniform"]], "initializer (class in ivy.stateful.initializers)": [[779, "ivy.stateful.initializers.Initializer"]], "kaimingnormal (class in ivy.stateful.initializers)": [[779, "ivy.stateful.initializers.KaimingNormal"]], "ones (class in ivy.stateful.initializers)": [[779, "ivy.stateful.initializers.Ones"]], "randomnormal (class in ivy.stateful.initializers)": [[779, "ivy.stateful.initializers.RandomNormal"]], "siren (class in ivy.stateful.initializers)": [[779, "ivy.stateful.initializers.Siren"]], "uniform (class in ivy.stateful.initializers)": [[779, "ivy.stateful.initializers.Uniform"]], "zeros (class in ivy.stateful.initializers)": [[779, "ivy.stateful.initializers.Zeros"]], "__init__() (ivy.stateful.initializers.constant method)": [[779, "ivy.stateful.initializers.Constant.__init__"]], "__init__() (ivy.stateful.initializers.firstlayersiren method)": [[779, "ivy.stateful.initializers.FirstLayerSiren.__init__"]], "__init__() (ivy.stateful.initializers.glorotuniform method)": [[779, "ivy.stateful.initializers.GlorotUniform.__init__"]], "__init__() (ivy.stateful.initializers.kaimingnormal method)": [[779, "ivy.stateful.initializers.KaimingNormal.__init__"]], "__init__() (ivy.stateful.initializers.ones method)": [[779, "ivy.stateful.initializers.Ones.__init__"]], "__init__() (ivy.stateful.initializers.randomnormal method)": [[779, "ivy.stateful.initializers.RandomNormal.__init__"]], "__init__() (ivy.stateful.initializers.siren method)": [[779, "ivy.stateful.initializers.Siren.__init__"]], "__init__() (ivy.stateful.initializers.uniform method)": [[779, "ivy.stateful.initializers.Uniform.__init__"]], "__init__() (ivy.stateful.initializers.zeros method)": [[779, "ivy.stateful.initializers.Zeros.__init__"]], "create_variables() (ivy.stateful.initializers.constant method)": [[779, "ivy.stateful.initializers.Constant.create_variables"]], "create_variables() (ivy.stateful.initializers.initializer method)": [[779, "ivy.stateful.initializers.Initializer.create_variables"]], "create_variables() (ivy.stateful.initializers.kaimingnormal method)": [[779, "ivy.stateful.initializers.KaimingNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.randomnormal method)": [[779, "ivy.stateful.initializers.RandomNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.uniform method)": [[779, "ivy.stateful.initializers.Uniform.create_variables"]], "ivy.stateful.initializers": [[779, "module-ivy.stateful.initializers"]], "adaptiveavgpool1d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.AdaptiveAvgPool1d"]], "adaptiveavgpool2d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.AdaptiveAvgPool2d"]], "avgpool1d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.AvgPool1D"]], "avgpool2d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.AvgPool2D"]], "avgpool3d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.AvgPool3D"]], "conv1d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Conv1D"]], "conv1dtranspose (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Conv1DTranspose"]], "conv2d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Conv2D"]], "conv2dtranspose (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Conv2DTranspose"]], "conv3d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Conv3D"]], "conv3dtranspose (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Conv3DTranspose"]], "dct (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Dct"]], "depthwiseconv2d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.DepthwiseConv2D"]], "dropout (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Dropout"]], "embedding (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Embedding"]], "fft (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.FFT"]], "ifft (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.IFFT"]], "identity (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Identity"]], "lstm (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.LSTM"]], "linear (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Linear"]], "maxpool1d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.MaxPool1D"]], "maxpool2d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.MaxPool2D"]], "maxpool3d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.MaxPool3D"]], "multiheadattention (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.MultiHeadAttention"]], "__init__() (ivy.stateful.layers.adaptiveavgpool1d method)": [[780, "ivy.stateful.layers.AdaptiveAvgPool1d.__init__"]], "__init__() (ivy.stateful.layers.adaptiveavgpool2d method)": [[780, "ivy.stateful.layers.AdaptiveAvgPool2d.__init__"]], "__init__() (ivy.stateful.layers.avgpool1d method)": [[780, "ivy.stateful.layers.AvgPool1D.__init__"]], "__init__() (ivy.stateful.layers.avgpool2d method)": [[780, "ivy.stateful.layers.AvgPool2D.__init__"]], "__init__() (ivy.stateful.layers.avgpool3d method)": [[780, "ivy.stateful.layers.AvgPool3D.__init__"]], "__init__() (ivy.stateful.layers.conv1d method)": [[780, "ivy.stateful.layers.Conv1D.__init__"]], "__init__() (ivy.stateful.layers.conv1dtranspose method)": [[780, "ivy.stateful.layers.Conv1DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv2d method)": [[780, "ivy.stateful.layers.Conv2D.__init__"]], "__init__() (ivy.stateful.layers.conv2dtranspose method)": [[780, "ivy.stateful.layers.Conv2DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv3d method)": [[780, "ivy.stateful.layers.Conv3D.__init__"]], "__init__() (ivy.stateful.layers.conv3dtranspose method)": [[780, "ivy.stateful.layers.Conv3DTranspose.__init__"]], "__init__() (ivy.stateful.layers.dct method)": [[780, "ivy.stateful.layers.Dct.__init__"]], "__init__() (ivy.stateful.layers.depthwiseconv2d method)": [[780, "ivy.stateful.layers.DepthwiseConv2D.__init__"]], "__init__() (ivy.stateful.layers.dropout method)": [[780, "ivy.stateful.layers.Dropout.__init__"]], "__init__() (ivy.stateful.layers.embedding method)": [[780, "ivy.stateful.layers.Embedding.__init__"]], "__init__() (ivy.stateful.layers.fft method)": [[780, "ivy.stateful.layers.FFT.__init__"]], "__init__() (ivy.stateful.layers.ifft method)": [[780, "ivy.stateful.layers.IFFT.__init__"]], "__init__() (ivy.stateful.layers.identity method)": [[780, "ivy.stateful.layers.Identity.__init__"]], "__init__() (ivy.stateful.layers.lstm method)": [[780, "ivy.stateful.layers.LSTM.__init__"]], "__init__() (ivy.stateful.layers.linear method)": [[780, "ivy.stateful.layers.Linear.__init__"]], "__init__() (ivy.stateful.layers.maxpool1d method)": [[780, "ivy.stateful.layers.MaxPool1D.__init__"]], "__init__() (ivy.stateful.layers.maxpool2d method)": [[780, "ivy.stateful.layers.MaxPool2D.__init__"]], "__init__() (ivy.stateful.layers.maxpool3d method)": [[780, "ivy.stateful.layers.MaxPool3D.__init__"]], "__init__() (ivy.stateful.layers.multiheadattention method)": [[780, "ivy.stateful.layers.MultiHeadAttention.__init__"]], "get_initial_state() (ivy.stateful.layers.lstm method)": [[780, "ivy.stateful.layers.LSTM.get_initial_state"]], "ivy.stateful.layers": [[780, "module-ivy.stateful.layers"]], "binarycrossentropyloss (class in ivy.stateful.losses)": [[781, "ivy.stateful.losses.BinaryCrossEntropyLoss"]], "crossentropyloss (class in ivy.stateful.losses)": [[781, "ivy.stateful.losses.CrossEntropyLoss"]], "logpoissonloss (class in ivy.stateful.losses)": [[781, "ivy.stateful.losses.LogPoissonLoss"]], "__init__() (ivy.stateful.losses.binarycrossentropyloss method)": [[781, "ivy.stateful.losses.BinaryCrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.crossentropyloss method)": [[781, "ivy.stateful.losses.CrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.logpoissonloss method)": [[781, "ivy.stateful.losses.LogPoissonLoss.__init__"]], "ivy.stateful.losses": [[781, "module-ivy.stateful.losses"]], "module (class in ivy.stateful.module)": [[782, "ivy.stateful.module.Module"]], "modulemeta (class in ivy.stateful.module)": [[782, "ivy.stateful.module.ModuleMeta"]], "__call__() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.__call__"]], "__init__() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.__init__"]], "buffers (ivy.stateful.module.module property)": [[782, "ivy.stateful.module.Module.buffers"]], "build() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.build"]], "build_mode (ivy.stateful.module.module property)": [[782, "ivy.stateful.module.Module.build_mode"]], "built (ivy.stateful.module.module property)": [[782, "ivy.stateful.module.Module.built"]], "device (ivy.stateful.module.module property)": [[782, "ivy.stateful.module.Module.device"]], "dtype (ivy.stateful.module.module property)": [[782, "ivy.stateful.module.Module.dtype"]], "eval() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.eval"]], "ivy.stateful.module": [[782, "module-ivy.stateful.module"]], "load() (ivy.stateful.module.module static method)": [[782, "ivy.stateful.module.Module.load"]], "module_dict (ivy.stateful.module.module property)": [[782, "ivy.stateful.module.Module.module_dict"]], "register_buffer() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.register_buffer"]], "register_parameter() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.register_parameter"]], "save() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.save"]], "save_weights() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.save_weights"]], "show_graph() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.show_graph"]], "state_dict (ivy.stateful.module.module property)": [[782, "ivy.stateful.module.Module.state_dict"]], "to_device() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.to_device"]], "trace_graph() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.trace_graph"]], "train() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.train"]], "training (ivy.stateful.module.module property)": [[782, "ivy.stateful.module.Module.training"]], "v (ivy.stateful.module.module property)": [[782, "ivy.stateful.module.Module.v"]], "batchnorm2d (class in ivy.stateful.norms)": [[783, "ivy.stateful.norms.BatchNorm2D"]], "layernorm (class in ivy.stateful.norms)": [[783, "ivy.stateful.norms.LayerNorm"]], "__init__() (ivy.stateful.norms.batchnorm2d method)": [[783, "ivy.stateful.norms.BatchNorm2D.__init__"]], "__init__() (ivy.stateful.norms.layernorm method)": [[783, "ivy.stateful.norms.LayerNorm.__init__"]], "ivy.stateful.norms": [[783, "module-ivy.stateful.norms"]], "adam (class in ivy.stateful.optimizers)": [[784, "ivy.stateful.optimizers.Adam"]], "adamw (class in ivy.stateful.optimizers)": [[784, "ivy.stateful.optimizers.AdamW"]], "lamb (class in ivy.stateful.optimizers)": [[784, "ivy.stateful.optimizers.LAMB"]], "lars (class in ivy.stateful.optimizers)": [[784, "ivy.stateful.optimizers.LARS"]], "optimizer (class in ivy.stateful.optimizers)": [[784, "ivy.stateful.optimizers.Optimizer"]], "sgd (class in ivy.stateful.optimizers)": [[784, "ivy.stateful.optimizers.SGD"]], "__init__() (ivy.stateful.optimizers.adam method)": [[784, "ivy.stateful.optimizers.Adam.__init__"]], "__init__() (ivy.stateful.optimizers.adamw method)": [[784, "ivy.stateful.optimizers.AdamW.__init__"]], "__init__() (ivy.stateful.optimizers.lamb method)": [[784, "ivy.stateful.optimizers.LAMB.__init__"]], "__init__() (ivy.stateful.optimizers.lars method)": [[784, "ivy.stateful.optimizers.LARS.__init__"]], "__init__() (ivy.stateful.optimizers.optimizer method)": [[784, "ivy.stateful.optimizers.Optimizer.__init__"]], "__init__() (ivy.stateful.optimizers.sgd method)": [[784, "ivy.stateful.optimizers.SGD.__init__"]], "ivy.stateful.optimizers": [[784, "module-ivy.stateful.optimizers"]], "set_state() (ivy.stateful.optimizers.adam method)": [[784, "ivy.stateful.optimizers.Adam.set_state"]], "set_state() (ivy.stateful.optimizers.lamb method)": [[784, "ivy.stateful.optimizers.LAMB.set_state"]], "set_state() (ivy.stateful.optimizers.lars method)": [[784, "ivy.stateful.optimizers.LARS.set_state"]], "set_state() (ivy.stateful.optimizers.optimizer method)": [[784, "ivy.stateful.optimizers.Optimizer.set_state"]], "set_state() (ivy.stateful.optimizers.sgd method)": [[784, "ivy.stateful.optimizers.SGD.set_state"]], "state (ivy.stateful.optimizers.adam property)": [[784, "ivy.stateful.optimizers.Adam.state"]], "state (ivy.stateful.optimizers.lamb property)": [[784, "ivy.stateful.optimizers.LAMB.state"]], "state (ivy.stateful.optimizers.lars property)": [[784, "ivy.stateful.optimizers.LARS.state"]], "state (ivy.stateful.optimizers.sgd property)": [[784, "ivy.stateful.optimizers.SGD.state"]], "step() (ivy.stateful.optimizers.optimizer method)": [[784, "ivy.stateful.optimizers.Optimizer.step"]], "sequential (class in ivy.stateful.sequential)": [[785, "ivy.stateful.sequential.Sequential"]], "__init__() (ivy.stateful.sequential.sequential method)": [[785, "ivy.stateful.sequential.Sequential.__init__"]], "ivy.stateful.sequential": [[785, "module-ivy.stateful.sequential"]], "check_all() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_all"]], "check_all_or_any_fn() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_all_or_any_fn"]], "check_any() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_any"]], "check_dev_correct_formatting() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_dev_correct_formatting"]], "check_dimensions() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_dimensions"]], "check_elem_in_list() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_elem_in_list"]], "check_equal() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_equal"]], "check_exists() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_exists"]], "check_false() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_false"]], "check_gather_input_valid() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_gather_input_valid"]], "check_gather_nd_input_valid() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_gather_nd_input_valid"]], "check_greater() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_greater"]], "check_inplace_sizes_valid() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_inplace_sizes_valid"]], "check_isinstance() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_isinstance"]], "check_kernel_padding_size() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_kernel_padding_size"]], "check_less() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_less"]], "check_one_way_broadcastable() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_one_way_broadcastable"]], "check_same_dtype() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_same_dtype"]], "check_shape() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_shape"]], "check_shapes_broadcastable() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_shapes_broadcastable"]], "check_true() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_true"]], "check_unsorted_segment_valid_params() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_unsorted_segment_valid_params"]], "ivy.utils.assertions": [[786, "module-ivy.utils.assertions"]], "ivy.utils.backend": [[787, "module-ivy.utils.backend"]], "importtransformer (class in ivy.utils.backend.ast_helpers)": [[788, "ivy.utils.backend.ast_helpers.ImportTransformer"]], "ivyloader (class in ivy.utils.backend.ast_helpers)": [[788, "ivy.utils.backend.ast_helpers.IvyLoader"]], "ivypathfinder (class in ivy.utils.backend.ast_helpers)": [[788, "ivy.utils.backend.ast_helpers.IvyPathFinder"]], "__init__() (ivy.utils.backend.ast_helpers.importtransformer method)": [[788, "ivy.utils.backend.ast_helpers.ImportTransformer.__init__"]], "__init__() (ivy.utils.backend.ast_helpers.ivyloader method)": [[788, "ivy.utils.backend.ast_helpers.IvyLoader.__init__"]], "exec_module() (ivy.utils.backend.ast_helpers.ivyloader method)": [[788, "ivy.utils.backend.ast_helpers.IvyLoader.exec_module"]], "find_spec() (ivy.utils.backend.ast_helpers.ivypathfinder method)": [[788, "ivy.utils.backend.ast_helpers.IvyPathFinder.find_spec"]], "impersonate_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[788, "ivy.utils.backend.ast_helpers.ImportTransformer.impersonate_import"]], "ivy.utils.backend.ast_helpers": [[788, "module-ivy.utils.backend.ast_helpers"]], "visit_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[788, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_Import"]], "visit_importfrom() (ivy.utils.backend.ast_helpers.importtransformer method)": [[788, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_ImportFrom"]], "contextmanager (class in ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.ContextManager"]], "__init__() (ivy.utils.backend.handler.contextmanager method)": [[789, "ivy.utils.backend.handler.ContextManager.__init__"]], "choose_random_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.choose_random_backend"]], "current_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.current_backend"]], "dynamic_backend_converter() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.dynamic_backend_converter"]], "ivy.utils.backend.handler": [[789, "module-ivy.utils.backend.handler"]], "prevent_access_locally() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.prevent_access_locally"]], "previous_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.previous_backend"]], "set_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.set_backend"]], "set_backend_to_specific_version() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.set_backend_to_specific_version"]], "set_jax_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.set_jax_backend"]], "set_mxnet_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.set_mxnet_backend"]], "set_numpy_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.set_numpy_backend"]], "set_paddle_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.set_paddle_backend"]], "set_tensorflow_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.set_tensorflow_backend"]], "set_torch_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.set_torch_backend"]], "unset_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.unset_backend"]], "with_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.with_backend"]], "clear_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[790, "ivy.utils.backend.sub_backend_handler.clear_sub_backends"]], "find_available_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[790, "ivy.utils.backend.sub_backend_handler.find_available_sub_backends"]], "fn_name_from_version_specific_fn_name() (in module ivy.utils.backend.sub_backend_handler)": [[790, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name"]], "fn_name_from_version_specific_fn_name_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[790, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name_sub_backend"]], "ivy.utils.backend.sub_backend_handler": [[790, "module-ivy.utils.backend.sub_backend_handler"]], "set_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[790, "ivy.utils.backend.sub_backend_handler.set_sub_backend"]], "set_sub_backend_to_specific_version() (in module ivy.utils.backend.sub_backend_handler)": [[790, "ivy.utils.backend.sub_backend_handler.set_sub_backend_to_specific_version"]], "unset_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[790, "ivy.utils.backend.sub_backend_handler.unset_sub_backend"]], "check_for_binaries() (in module ivy.utils.binaries)": [[791, "ivy.utils.binaries.check_for_binaries"]], "cleanup_and_fetch_binaries() (in module ivy.utils.binaries)": [[791, "ivy.utils.binaries.cleanup_and_fetch_binaries"]], "ivy.utils.binaries": [[791, "module-ivy.utils.binaries"]], "import_module() (in module ivy.utils.dynamic_import)": [[792, "ivy.utils.dynamic_import.import_module"]], "ivy.utils.dynamic_import": [[792, "module-ivy.utils.dynamic_import"]], "convert_interleaved_input() (in module ivy.utils.einsum_parser)": [[793, "ivy.utils.einsum_parser.convert_interleaved_input"]], "convert_subscripts() (in module ivy.utils.einsum_parser)": [[793, "ivy.utils.einsum_parser.convert_subscripts"]], "find_output_shape() (in module ivy.utils.einsum_parser)": [[793, "ivy.utils.einsum_parser.find_output_shape"]], "find_output_str() (in module ivy.utils.einsum_parser)": [[793, "ivy.utils.einsum_parser.find_output_str"]], "gen_unused_symbols() (in module ivy.utils.einsum_parser)": [[793, "ivy.utils.einsum_parser.gen_unused_symbols"]], "get_symbol() (in module ivy.utils.einsum_parser)": [[793, "ivy.utils.einsum_parser.get_symbol"]], "has_valid_einsum_chars_only() (in module ivy.utils.einsum_parser)": [[793, "ivy.utils.einsum_parser.has_valid_einsum_chars_only"]], "is_valid_einsum_char() (in module ivy.utils.einsum_parser)": [[793, "ivy.utils.einsum_parser.is_valid_einsum_char"]], "ivy.utils.einsum_parser": [[793, "module-ivy.utils.einsum_parser"]], "legalise_einsum_expr() (in module ivy.utils.einsum_parser)": [[793, "ivy.utils.einsum_parser.legalise_einsum_expr"]], "possibly_convert_to_numpy() (in module ivy.utils.einsum_parser)": [[793, "ivy.utils.einsum_parser.possibly_convert_to_numpy"]], "can_dot() (in module ivy.utils.einsum_path_helpers)": [[794, "ivy.utils.einsum_path_helpers.can_dot"]], "compute_size_by_dict() (in module ivy.utils.einsum_path_helpers)": [[794, "ivy.utils.einsum_path_helpers.compute_size_by_dict"]], "find_contraction() (in module ivy.utils.einsum_path_helpers)": [[794, "ivy.utils.einsum_path_helpers.find_contraction"]], "flop_count() (in module ivy.utils.einsum_path_helpers)": [[794, "ivy.utils.einsum_path_helpers.flop_count"]], "greedy_path() (in module ivy.utils.einsum_path_helpers)": [[794, "ivy.utils.einsum_path_helpers.greedy_path"]], "ivy.utils.einsum_path_helpers": [[794, "module-ivy.utils.einsum_path_helpers"]], "optimal_path() (in module ivy.utils.einsum_path_helpers)": [[794, "ivy.utils.einsum_path_helpers.optimal_path"]], "parse_einsum_input() (in module ivy.utils.einsum_path_helpers)": [[794, "ivy.utils.einsum_path_helpers.parse_einsum_input"]], "parse_possible_contraction() (in module ivy.utils.einsum_path_helpers)": [[794, "ivy.utils.einsum_path_helpers.parse_possible_contraction"]], "update_other_results() (in module ivy.utils.einsum_path_helpers)": [[794, "ivy.utils.einsum_path_helpers.update_other_results"]], "inplaceupdateexception": [[795, "ivy.utils.exceptions.InplaceUpdateException"]], "ivyattributeerror": [[795, "ivy.utils.exceptions.IvyAttributeError"]], "ivybackendexception": [[795, "ivy.utils.exceptions.IvyBackendException"]], "ivybroadcastshapeerror": [[795, "ivy.utils.exceptions.IvyBroadcastShapeError"]], "ivydeviceerror": [[795, "ivy.utils.exceptions.IvyDeviceError"]], "ivydtypepromotionerror": [[795, "ivy.utils.exceptions.IvyDtypePromotionError"]], "ivyerror": [[795, "ivy.utils.exceptions.IvyError"]], "ivyexception": [[795, "ivy.utils.exceptions.IvyException"]], "ivyindexerror": [[795, "ivy.utils.exceptions.IvyIndexError"]], "ivyinvalidbackendexception": [[795, "ivy.utils.exceptions.IvyInvalidBackendException"]], "ivynotimplementedexception": [[795, "ivy.utils.exceptions.IvyNotImplementedException"]], "ivyvalueerror": [[795, "ivy.utils.exceptions.IvyValueError"]], "__init__() (ivy.utils.exceptions.inplaceupdateexception method)": [[795, "ivy.utils.exceptions.InplaceUpdateException.__init__"]], "__init__() (ivy.utils.exceptions.ivyattributeerror method)": [[795, "ivy.utils.exceptions.IvyAttributeError.__init__"]], "__init__() (ivy.utils.exceptions.ivybackendexception method)": [[795, "ivy.utils.exceptions.IvyBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivybroadcastshapeerror method)": [[795, "ivy.utils.exceptions.IvyBroadcastShapeError.__init__"]], "__init__() (ivy.utils.exceptions.ivydeviceerror method)": [[795, "ivy.utils.exceptions.IvyDeviceError.__init__"]], "__init__() (ivy.utils.exceptions.ivydtypepromotionerror method)": [[795, "ivy.utils.exceptions.IvyDtypePromotionError.__init__"]], "__init__() (ivy.utils.exceptions.ivyerror method)": [[795, "ivy.utils.exceptions.IvyError.__init__"]], "__init__() (ivy.utils.exceptions.ivyexception method)": [[795, "ivy.utils.exceptions.IvyException.__init__"]], "__init__() (ivy.utils.exceptions.ivyindexerror method)": [[795, "ivy.utils.exceptions.IvyIndexError.__init__"]], "__init__() (ivy.utils.exceptions.ivyinvalidbackendexception method)": [[795, "ivy.utils.exceptions.IvyInvalidBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivynotimplementedexception method)": [[795, "ivy.utils.exceptions.IvyNotImplementedException.__init__"]], "__init__() (ivy.utils.exceptions.ivyvalueerror method)": [[795, "ivy.utils.exceptions.IvyValueError.__init__"]], "handle_exceptions() (in module ivy.utils.exceptions)": [[795, "ivy.utils.exceptions.handle_exceptions"]], "ivy.utils.exceptions": [[795, "module-ivy.utils.exceptions"]], "add_array_specs() (in module ivy.utils.inspection)": [[796, "ivy.utils.inspection.add_array_specs"]], "fn_array_spec() (in module ivy.utils.inspection)": [[796, "ivy.utils.inspection.fn_array_spec"]], "ivy.utils.inspection": [[796, "module-ivy.utils.inspection"]], "ivy.utils.logging": [[797, "module-ivy.utils.logging"]], "set_logging_mode() (in module ivy.utils.logging)": [[797, "ivy.utils.logging.set_logging_mode"]], "unset_logging_mode() (in module ivy.utils.logging)": [[797, "ivy.utils.logging.unset_logging_mode"]], "profiler (class in ivy.utils.profiler)": [[798, "ivy.utils.profiler.Profiler"]], "__init__() (ivy.utils.profiler.profiler method)": [[798, "ivy.utils.profiler.Profiler.__init__"]], "ivy.utils.profiler": [[798, "module-ivy.utils.profiler"]], "print_stats (ivy.utils.profiler.profiler attribute)": [[798, "ivy.utils.profiler.Profiler.print_stats"]], "viz (ivy.utils.profiler.profiler attribute)": [[798, "ivy.utils.profiler.Profiler.viz"]], "cprint() (in module ivy.utils.verbosity)": [[799, "ivy.utils.verbosity.cprint"]], "ivy.utils.verbosity": [[799, "module-ivy.utils.verbosity"]], "automatic code conversions": [[845, "term-Automatic-Code-Conversions"]], "backend handler": [[845, "term-Backend-Handler"]], "compositional functions": [[845, "term-Compositional-Functions"]], "convenience functions": [[845, "term-Convenience-Functions"]], "framework": [[845, "term-Framework"]], "framework handler": [[845, "term-Framework-Handler"]], "graph compiler": [[845, "term-Graph-Compiler"]], "ivy array": [[845, "term-Ivy-Array"]], "ivy backends": [[845, "term-Ivy-Backends"]], "ivy compiler": [[845, "term-Ivy-Compiler"]], "ivy container": [[845, "term-Ivy-Container"]], "ivy frontends": [[845, "term-Ivy-Frontends"]], "ivy functional api": [[845, "term-Ivy-Functional-API"]], "ivy tracer": [[845, "term-Ivy-Tracer"]], "ivy transpiler": [[845, "term-Ivy-Transpiler"]], "mixed functions": [[845, "term-Mixed-Functions"]], "native array": [[845, "term-Native-Array"]], "nestable functions": [[845, "term-Nestable-Functions"]], "pipeline": [[845, "term-Pipeline"]], "primary functions": [[845, "term-Primary-Functions"]], "standalone functions": [[845, "term-Standalone-Functions"]], "submodule helper functions": [[845, "term-Submodule-Helper-Functions"]], "built-in function": [[851, "ivy.trace_graph"], [852, "ivy.transpile"], [853, "ivy.unify"]], "ivy.trace_graph()": [[851, "ivy.trace_graph"]], "ivy.transpile()": [[852, "ivy.transpile"]], "ivy.unify()": [[853, "ivy.unify"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["demos/README", "demos/assets/01_template", "demos/examples_and_demos", "demos/examples_and_demos/alexnet_demo", "demos/examples_and_demos/bert_demo", "demos/examples_and_demos/image_segmentation_with_ivy_unet", "demos/examples_and_demos/mmpretrain_to_jax", "demos/examples_and_demos/resnet_demo", "demos/examples_and_demos/torch_to_jax", "demos/examples_and_demos/xgboost_demo", "demos/guides", "demos/guides/01_transpiling_a_torch_model", "demos/guides/02_transpiling_a_haiku_model", "demos/guides/03_transpiling_a_tf_model", "demos/guides/04_developing_a_convnet_with_ivy", "demos/index", "demos/learn_the_basics", "demos/learn_the_basics/01_write_ivy_code", "demos/learn_the_basics/02_unify_code", "demos/learn_the_basics/03_trace_code", "demos/learn_the_basics/04_transpile_code", "demos/learn_the_basics/05_lazy_vs_eager", "demos/learn_the_basics/06_how_to_use_decorators", "demos/learn_the_basics/07_transpile_any_library", "demos/learn_the_basics/08_transpile_any_model", "demos/learn_the_basics/09_write_a_model_using_ivy", "demos/misc/odsc", "demos/quickstart", "demos/wip/0_building_blocks/0_0_unify", "demos/wip/0_building_blocks/0_1_compile", "demos/wip/0_building_blocks/0_2_transpile", "demos/wip/1_the_basics/1_0_lazy_vs_eager", "demos/wip/1_the_basics/1_1_framework_selection", "demos/wip/1_the_basics/1_2_as_a_decorator", "demos/wip/1_the_basics/1_3_dynamic_vs_static", "demos/wip/2_libraries/2_0_kornia", "demos/wip/3_models/3_0_perceiver", "demos/wip/3_models/3_1_stable_diffusion", "demos/wip/basic_operations_with_ivy", "demos/wip/compilation_of_a_basic_function", "demos/wip/deepmind_perceiver_io", "demos/wip/deepmind_perceiverio", "demos/wip/end_to_end_training_pipeline_in_ivy", "demos/wip/hf_tensorflow_deit", "demos/wip/ivy_as_a_transpiler_intro", "demos/wip/resnet_18", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type", "docs/data_classes/data_classes/array/ivy.data_classes.array.device", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental", "docs/data_classes/data_classes/array/ivy.data_classes.array.general", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients", "docs/data_classes/data_classes/array/ivy.data_classes.array.image", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms", "docs/data_classes/data_classes/array/ivy.data_classes.array.random", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching", "docs/data_classes/data_classes/array/ivy.data_classes.array.set", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations", "docs/data_classes/data_classes/container/ivy.data_classes.container.base", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type", "docs/data_classes/data_classes/container/ivy.data_classes.container.device", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental", "docs/data_classes/data_classes/container/ivy.data_classes.container.general", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients", "docs/data_classes/data_classes/container/ivy.data_classes.container.image", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms", "docs/data_classes/data_classes/container/ivy.data_classes.container.random", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching", "docs/data_classes/data_classes/container/ivy.data_classes.container.set", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor", "docs/data_classes/data_classes/ivy.data_classes.array", "docs/data_classes/data_classes/ivy.data_classes.container", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor", "docs/data_classes/data_classes/ivy.data_classes.nested_array", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise", "docs/data_classes/ivy.data_classes", "docs/functional/ivy.functional.ivy", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.dev", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.hinge_embedding_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str", "docs/functional/ivy/general/ivy.functional.ivy.general.default", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat", "docs/functional/ivy/general/ivy.functional.ivy.general.exists", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.gather", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array", "docs/functional/ivy/general/ivy.functional.ivy.general.isin", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.shape", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow", "docs/functional/ivy/general/ivy.functional.ivy.general.strides", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad", "docs/functional/ivy/ivy.functional.ivy.activations", "docs/functional/ivy/ivy.functional.ivy.constants", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops", "docs/functional/ivy/ivy.functional.ivy.creation", "docs/functional/ivy/ivy.functional.ivy.data_type", "docs/functional/ivy/ivy.functional.ivy.device", "docs/functional/ivy/ivy.functional.ivy.elementwise", "docs/functional/ivy/ivy.functional.ivy.experimental", "docs/functional/ivy/ivy.functional.ivy.general", "docs/functional/ivy/ivy.functional.ivy.gradients", "docs/functional/ivy/ivy.functional.ivy.layers", "docs/functional/ivy/ivy.functional.ivy.linear_algebra", "docs/functional/ivy/ivy.functional.ivy.losses", "docs/functional/ivy/ivy.functional.ivy.manipulation", "docs/functional/ivy/ivy.functional.ivy.meta", "docs/functional/ivy/ivy.functional.ivy.nest", "docs/functional/ivy/ivy.functional.ivy.norms", "docs/functional/ivy/ivy.functional.ivy.random", "docs/functional/ivy/ivy.functional.ivy.searching", "docs/functional/ivy/ivy.functional.ivy.set", "docs/functional/ivy/ivy.functional.ivy.sorting", "docs/functional/ivy/ivy.functional.ivy.statistical", "docs/functional/ivy/ivy.functional.ivy.utility", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial", "docs/functional/ivy/random/ivy.functional.ivy.random.randint", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform", "docs/functional/ivy/random/ivy.functional.ivy.random.seed", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save", "docs/helpers/ivy_tests.test_ivy.helpers.assertions", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing", "docs/helpers/ivy_tests.test_ivy.helpers.globals", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper", "docs/helpers/ivy_tests.test_ivy.helpers.structs", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers", "docs/ivy.stateful", "docs/ivy.utils", "docs/ivy_tests.test_ivy.helpers", "docs/stateful/ivy.stateful.activations", "docs/stateful/ivy.stateful.converters", "docs/stateful/ivy.stateful.helpers", "docs/stateful/ivy.stateful.initializers", "docs/stateful/ivy.stateful.layers", "docs/stateful/ivy.stateful.losses", "docs/stateful/ivy.stateful.module", "docs/stateful/ivy.stateful.norms", "docs/stateful/ivy.stateful.optimizers", "docs/stateful/ivy.stateful.sequential", "docs/utils/ivy.utils.assertions", "docs/utils/ivy.utils.backend", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler", "docs/utils/ivy.utils.binaries", "docs/utils/ivy.utils.dynamic_import", "docs/utils/ivy.utils.einsum_parser", "docs/utils/ivy.utils.einsum_path_helpers", "docs/utils/ivy.utils.exceptions", "docs/utils/ivy.utils.inspection", "docs/utils/ivy.utils.logging", "docs/utils/ivy.utils.profiler", "docs/utils/ivy.utils.verbosity", "index", "overview/contributing", "overview/contributing/building_the_docs", "overview/contributing/error_handling", "overview/contributing/github_rewards", "overview/contributing/helpful_resources", "overview/contributing/open_tasks", "overview/contributing/setting_up", "overview/contributing/the_basics", "overview/contributing/volunteer_workflow", "overview/deep_dive", "overview/deep_dive/array_api_tests", "overview/deep_dive/arrays", "overview/deep_dive/backend_setting", "overview/deep_dive/building_the_docs_pipeline", "overview/deep_dive/containers", "overview/deep_dive/continuous_integration", "overview/deep_dive/data_types", "overview/deep_dive/devices", "overview/deep_dive/docstring_examples", "overview/deep_dive/docstrings", "overview/deep_dive/exception_handling", "overview/deep_dive/fix_failing_tests", "overview/deep_dive/formatting", "overview/deep_dive/function_arguments", "overview/deep_dive/function_types", "overview/deep_dive/function_wrapping", "overview/deep_dive/gradients", "overview/deep_dive/inplace_updates", "overview/deep_dive/ivy_frontends", "overview/deep_dive/ivy_frontends_tests", "overview/deep_dive/ivy_lint", "overview/deep_dive/ivy_tests", "overview/deep_dive/navigating_the_code", "overview/deep_dive/operating_modes", "overview/deep_dive/superset_behaviour", "overview/design", "overview/design/building_blocks", "overview/design/ivy_as_a_framework", "overview/design/ivy_as_a_framework/ivy_array", "overview/design/ivy_as_a_framework/ivy_container", "overview/design/ivy_as_a_framework/ivy_stateful_api", "overview/design/ivy_as_a_transpiler", "overview/faq", "overview/get_started", "overview/glossary", "overview/motivation", "overview/motivation/ml_explosion", "overview/motivation/standardization", "overview/motivation/why_unify", "overview/one_liners", "overview/one_liners/trace", "overview/one_liners/transpile", "overview/one_liners/unify", "overview/related_work", "overview/related_work/api_standards", "overview/related_work/compiler_infrastructure", "overview/related_work/exchange_formats", "overview/related_work/frameworks", "overview/related_work/graph_tracers", "overview/related_work/ml_unifying_companies", "overview/related_work/multi_vendor_compiler_frameworks", "overview/related_work/vendor_specific_apis", "overview/related_work/vendor_specific_compilers", "overview/related_work/what_does_ivy_add", "overview/related_work/wrapper_frameworks"], "filenames": ["demos/README.md", "demos/assets/01_template.ipynb", "demos/examples_and_demos.rst", "demos/examples_and_demos/alexnet_demo.ipynb", "demos/examples_and_demos/bert_demo.ipynb", "demos/examples_and_demos/image_segmentation_with_ivy_unet.ipynb", "demos/examples_and_demos/mmpretrain_to_jax.ipynb", "demos/examples_and_demos/resnet_demo.ipynb", "demos/examples_and_demos/torch_to_jax.ipynb", "demos/examples_and_demos/xgboost_demo.ipynb", "demos/guides.rst", "demos/guides/01_transpiling_a_torch_model.ipynb", "demos/guides/02_transpiling_a_haiku_model.ipynb", "demos/guides/03_transpiling_a_tf_model.ipynb", "demos/guides/04_developing_a_convnet_with_ivy.ipynb", "demos/index.rst", "demos/learn_the_basics.rst", "demos/learn_the_basics/01_write_ivy_code.ipynb", "demos/learn_the_basics/02_unify_code.ipynb", "demos/learn_the_basics/03_trace_code.ipynb", "demos/learn_the_basics/04_transpile_code.ipynb", "demos/learn_the_basics/05_lazy_vs_eager.ipynb", "demos/learn_the_basics/06_how_to_use_decorators.ipynb", "demos/learn_the_basics/07_transpile_any_library.ipynb", "demos/learn_the_basics/08_transpile_any_model.ipynb", "demos/learn_the_basics/09_write_a_model_using_ivy.ipynb", "demos/misc/odsc.ipynb", "demos/quickstart.ipynb", "demos/wip/0_building_blocks/0_0_unify.ipynb", "demos/wip/0_building_blocks/0_1_compile.ipynb", "demos/wip/0_building_blocks/0_2_transpile.ipynb", "demos/wip/1_the_basics/1_0_lazy_vs_eager.ipynb", "demos/wip/1_the_basics/1_1_framework_selection.ipynb", "demos/wip/1_the_basics/1_2_as_a_decorator.ipynb", "demos/wip/1_the_basics/1_3_dynamic_vs_static.ipynb", "demos/wip/2_libraries/2_0_kornia.ipynb", "demos/wip/3_models/3_0_perceiver.ipynb", "demos/wip/3_models/3_1_stable_diffusion.ipynb", "demos/wip/basic_operations_with_ivy.ipynb", "demos/wip/compilation_of_a_basic_function.ipynb", "demos/wip/deepmind_perceiver_io.ipynb", "demos/wip/deepmind_perceiverio.ipynb", "demos/wip/end_to_end_training_pipeline_in_ivy.ipynb", "demos/wip/hf_tensorflow_deit.ipynb", "demos/wip/ivy_as_a_transpiler_intro.ipynb", "demos/wip/resnet_18.ipynb", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.device.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.general.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.image.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.random.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.set.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.base.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.device.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.general.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.image.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.random.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.set.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.array.rst", "docs/data_classes/data_classes/ivy.data_classes.container.rst", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.nested_array.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise.rst", "docs/data_classes/ivy.data_classes.rst", "docs/functional/ivy.functional.ivy.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta.rst", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.hinge_embedding_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson.rst", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile.rst", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.default.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.exists.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isin.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.strides.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad.rst", "docs/functional/ivy/ivy.functional.ivy.activations.rst", "docs/functional/ivy/ivy.functional.ivy.constants.rst", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops.rst", "docs/functional/ivy/ivy.functional.ivy.creation.rst", "docs/functional/ivy/ivy.functional.ivy.data_type.rst", "docs/functional/ivy/ivy.functional.ivy.device.rst", "docs/functional/ivy/ivy.functional.ivy.elementwise.rst", "docs/functional/ivy/ivy.functional.ivy.experimental.rst", "docs/functional/ivy/ivy.functional.ivy.general.rst", "docs/functional/ivy/ivy.functional.ivy.gradients.rst", "docs/functional/ivy/ivy.functional.ivy.layers.rst", "docs/functional/ivy/ivy.functional.ivy.linear_algebra.rst", "docs/functional/ivy/ivy.functional.ivy.losses.rst", "docs/functional/ivy/ivy.functional.ivy.manipulation.rst", "docs/functional/ivy/ivy.functional.ivy.meta.rst", "docs/functional/ivy/ivy.functional.ivy.nest.rst", "docs/functional/ivy/ivy.functional.ivy.norms.rst", "docs/functional/ivy/ivy.functional.ivy.random.rst", "docs/functional/ivy/ivy.functional.ivy.searching.rst", "docs/functional/ivy/ivy.functional.ivy.set.rst", "docs/functional/ivy/ivy.functional.ivy.sorting.rst", "docs/functional/ivy/ivy.functional.ivy.statistical.rst", "docs/functional/ivy/ivy.functional.ivy.utility.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices.rst", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.randint.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.seed.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save.rst", "docs/helpers/ivy_tests.test_ivy.helpers.assertions.rst", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks.rst", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.globals.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper.rst", "docs/helpers/ivy_tests.test_ivy.helpers.structs.rst", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags.rst", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers.rst", "docs/ivy.stateful.rst", "docs/ivy.utils.rst", "docs/ivy_tests.test_ivy.helpers.rst", "docs/stateful/ivy.stateful.activations.rst", "docs/stateful/ivy.stateful.converters.rst", "docs/stateful/ivy.stateful.helpers.rst", "docs/stateful/ivy.stateful.initializers.rst", "docs/stateful/ivy.stateful.layers.rst", "docs/stateful/ivy.stateful.losses.rst", "docs/stateful/ivy.stateful.module.rst", "docs/stateful/ivy.stateful.norms.rst", "docs/stateful/ivy.stateful.optimizers.rst", "docs/stateful/ivy.stateful.sequential.rst", "docs/utils/ivy.utils.assertions.rst", "docs/utils/ivy.utils.backend.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler.rst", "docs/utils/ivy.utils.binaries.rst", "docs/utils/ivy.utils.dynamic_import.rst", "docs/utils/ivy.utils.einsum_parser.rst", "docs/utils/ivy.utils.einsum_path_helpers.rst", "docs/utils/ivy.utils.exceptions.rst", "docs/utils/ivy.utils.inspection.rst", "docs/utils/ivy.utils.logging.rst", "docs/utils/ivy.utils.profiler.rst", "docs/utils/ivy.utils.verbosity.rst", "index.rst", "overview/contributing.rst", "overview/contributing/building_the_docs.rst", "overview/contributing/error_handling.rst", "overview/contributing/github_rewards.rst", "overview/contributing/helpful_resources.rst", "overview/contributing/open_tasks.rst", "overview/contributing/setting_up.rst", "overview/contributing/the_basics.rst", "overview/contributing/volunteer_workflow.rst", "overview/deep_dive.rst", "overview/deep_dive/array_api_tests.rst", "overview/deep_dive/arrays.rst", "overview/deep_dive/backend_setting.rst", "overview/deep_dive/building_the_docs_pipeline.rst", "overview/deep_dive/containers.rst", "overview/deep_dive/continuous_integration.rst", "overview/deep_dive/data_types.rst", "overview/deep_dive/devices.rst", "overview/deep_dive/docstring_examples.rst", "overview/deep_dive/docstrings.rst", "overview/deep_dive/exception_handling.rst", "overview/deep_dive/fix_failing_tests.rst", "overview/deep_dive/formatting.rst", "overview/deep_dive/function_arguments.rst", "overview/deep_dive/function_types.rst", "overview/deep_dive/function_wrapping.rst", "overview/deep_dive/gradients.rst", "overview/deep_dive/inplace_updates.rst", "overview/deep_dive/ivy_frontends.rst", "overview/deep_dive/ivy_frontends_tests.rst", "overview/deep_dive/ivy_lint.rst", "overview/deep_dive/ivy_tests.rst", "overview/deep_dive/navigating_the_code.rst", "overview/deep_dive/operating_modes.rst", "overview/deep_dive/superset_behaviour.rst", "overview/design.rst", "overview/design/building_blocks.rst", "overview/design/ivy_as_a_framework.rst", "overview/design/ivy_as_a_framework/ivy_array.rst", "overview/design/ivy_as_a_framework/ivy_container.rst", "overview/design/ivy_as_a_framework/ivy_stateful_api.rst", "overview/design/ivy_as_a_transpiler.rst", "overview/faq.rst", "overview/get_started.rst", "overview/glossary.rst", "overview/motivation.rst", "overview/motivation/ml_explosion.rst", "overview/motivation/standardization.rst", "overview/motivation/why_unify.rst", "overview/one_liners.rst", "overview/one_liners/trace.rst", "overview/one_liners/transpile.rst", "overview/one_liners/unify.rst", "overview/related_work.rst", "overview/related_work/api_standards.rst", "overview/related_work/compiler_infrastructure.rst", "overview/related_work/exchange_formats.rst", "overview/related_work/frameworks.rst", "overview/related_work/graph_tracers.rst", "overview/related_work/ml_unifying_companies.rst", "overview/related_work/multi_vendor_compiler_frameworks.rst", "overview/related_work/vendor_specific_apis.rst", "overview/related_work/vendor_specific_compilers.rst", "overview/related_work/what_does_ivy_add.rst", "overview/related_work/wrapper_frameworks.rst"], "titles": ["Demos", "TO REPLACE: Title", "Examples and Demos", "Ivy AlexNet demo", "# Ivy Bert Demo", "Image Segmentation with Ivy UNet", "Accelerating MMPreTrain models with JAX", "Using Ivy ResNet", "Accelerating PyTorch models with JAX", "Accelerating XGBoost with JAX", "Guides", "Transpiling a PyTorch model to build on top", "Transpiling a haiku model to build on top", "Transpiling a Tensorflow model to build on top", "Developing a convolutional network using Ivy", "Tutorials And Examples", "Learn the basics", "Write Ivy code", "Unify code", "Trace code", "Transpile code", "Lazy vs Eager", "How to use decorators", "Transpile any library", "Transpile any model", "Write a model using Ivy", "ODSC Ivy Demo", "Quickstart", "0.0: Unify", "0.1: Compile", "0.2: Transpile", "1.0: Lazy vs Eager", "1.1: Framework Selection", "1.2: As a Decorator", "1.3: Dynamic vs Static", "2.0: Kornia", "3.0: Perceiver", "3.1: Stable Diffusion", "Basic Operations with Ivy", "Compilation of a Basic Function", "Demo: Transpiling DeepMind\u2019s PerceiverIO", "Deepmind PerceiverIO on GPU", "End-to-End Training Pipeline in Ivy", "HuggingFace Tensorflow DeiT", "Ivy as a Transpiler Introduction", "Resnet 18", "Activations", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Activations", "Base", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Base", "Cp tensor", "Parafac2 tensor", "Tr tensor", "Tt tensor", "Tucker tensor", "Array", "Container", "Factorized tensor", "Nested array", "Base", "Elementwise", "Data classes", "Functions", "gelu", "hardswish", "leaky_relu", "log_softmax", "mish", "relu", "sigmoid", "softmax", "softplus", "softsign", "cmp_is", "cmp_isnot", "for_loop", "if_else", "try_except", "while_loop", "arange", "array", "asarray", "copy_array", "empty", "empty_like", "eye", "from_dlpack", "frombuffer", "full", "full_like", "linspace", "logspace", "meshgrid", "native_array", "one_hot", "ones", "ones_like", "to_dlpack", "tril", "triu", "triu_indices", "zeros", "zeros_like", "as_ivy_dtype", "as_native_dtype", "astype", "broadcast_arrays", "broadcast_to", "can_cast", "check_float", "closest_valid_dtype", "default_complex_dtype", "default_dtype", "default_float_dtype", "default_int_dtype", "default_uint_dtype", "dtype", "dtype_bits", "finfo", "function_supported_dtypes", "function_unsupported_dtypes", "iinfo", "infer_default_dtype", "invalid_dtype", "is_bool_dtype", "is_complex_dtype", "is_float_dtype", "is_hashable_dtype", "is_int_dtype", "is_native_dtype", "is_uint_dtype", "promote_types", "promote_types_of_inputs", "result_type", "set_default_complex_dtype", "set_default_dtype", "set_default_float_dtype", "set_default_int_dtype", "set_default_uint_dtype", "type_promote_arrays", "unset_default_complex_dtype", "unset_default_dtype", "unset_default_float_dtype", "unset_default_int_dtype", "unset_default_uint_dtype", "valid_dtype", "as_ivy_dev", "as_native_dev", "clear_cached_mem_on_dev", "default_device", "dev", "dev_util", "function_supported_devices", "function_unsupported_devices", "get_all_ivy_arrays_on_dev", "gpu_is_available", "handle_soft_device_variable", "num_cpu_cores", "num_gpus", "num_ivy_arrays_on_dev", "percent_used_mem_on_dev", "print_all_ivy_arrays_on_dev", "set_default_device", "set_soft_device_mode", "set_split_factor", "split_factor", "split_func_call", "to_device", "total_mem_on_dev", "tpu_is_available", "unset_default_device", "unset_soft_device_mode", "used_mem_on_dev", "abs", "acos", "acosh", "add", "angle", "asin", "asinh", "atan", "atan2", "atanh", "bitwise_and", "bitwise_invert", "bitwise_left_shift", "bitwise_or", "bitwise_right_shift", "bitwise_xor", "ceil", "cos", "cosh", "deg2rad", "divide", "equal", "erf", "exp", "exp2", "expm1", "floor", "floor_divide", "fmin", "fmod", "gcd", "greater", "greater_equal", "imag", "isfinite", "isinf", "isnan", "isreal", "lcm", "less", "less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2", "logical_and", "logical_not", "logical_or", "logical_xor", "maximum", "minimum", "multiply", "nan_to_num", "negative", "not_equal", "positive", "pow", "rad2deg", "real", "reciprocal", "remainder", "round", "sign", "sin", "sinh", "sqrt", "square", "subtract", "tan", "tanh", "trapz", "trunc", "trunc_divide", "celu", "elu", "hardshrink", "hardtanh", "logit", "logsigmoid", "prelu", "relu6", "scaled_tanh", "selu", "silu", "softshrink", "stanh", "tanhshrink", "threshold", "thresholded_relu", "blackman_window", "eye_like", "hamming_window", "hann_window", "indices", "kaiser_bessel_derived_window", "kaiser_window", "mel_weight_matrix", "ndenumerate", "ndindex", "polyval", "random_cp", "random_parafac2", "random_tr", "random_tt", "random_tucker", "tril_indices", "trilu", "unsorted_segment_mean", "unsorted_segment_min", "unsorted_segment_sum", "vorbis_window", "allclose", "amax", "amin", "binarizer", "conj", "copysign", "count_nonzero", "diff", "digamma", "erfc", "fix", "float_power", "fmax", "frexp", "gradient", "hypot", "isclose", "ldexp", "lerp", "lgamma", "modf", "nansum", "nextafter", "signbit", "sinc", "sparsify_tensor", "xlogy", "zeta", "reduce", "bind_custom_gradient_function", "jvp", "vjp", "Activations", "Constants", "Creation", "Data type", "Device", "Elementwise", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Sparse array", "Statistical", "Utility", "adaptive_avg_pool1d", "adaptive_avg_pool2d", "adaptive_max_pool2d", "area_interpolate", "avg_pool1d", "avg_pool2d", "avg_pool3d", "dct", "dft", "dropout1d", "dropout2d", "dropout3d", "embedding", "fft", "fft2", "generate_einsum_equation", "get_interpolate_kernel", "idct", "ifft", "ifftn", "interp", "interpolate", "max_pool1d", "max_pool2d", "max_pool3d", "max_unpool1d", "nearest_interpolate", "pool", "reduce_window", "rfft", "rfftn", "rnn", "sliding_window", "stft", "adjoint", "batched_outer", "cond", "diagflat", "dot", "eig", "eigh_tridiagonal", "eigvals", "general_inner_product", "higher_order_moment", "initialize_tucker", "khatri_rao", "kron", "kronecker", "make_svd_non_negative", "matrix_exp", "mode_dot", "multi_dot", "multi_mode_dot", "partial_tucker", "solve_triangular", "svd_flip", "tensor_train", "truncated_svd", "tt_matrix_to_tensor", "tucker", "hinge_embedding_loss", "huber_loss", "kl_div", "l1_loss", "log_poisson_loss", "poisson_nll_loss", "smooth_l1_loss", "soft_margin_loss", "as_strided", "associative_scan", "atleast_1d", "atleast_2d", "atleast_3d", "broadcast_shapes", "check_scalar", "choose", "column_stack", "concat_from_sequence", "dsplit", "dstack", "expand", "fill_diagonal", "flatten", "fliplr", "flipud", "fold", "heaviside", "hsplit", "hstack", "i0", "matricize", "moveaxis", "pad", "partial_fold", "partial_tensor_to_vec", "partial_unfold", "partial_vec_to_tensor", "put_along_axis", "rot90", "soft_thresholding", "take", "take_along_axis", "top_k", "trim_zeros", "unfold", "unique_consecutive", "vsplit", "vstack", "batch_norm", "group_norm", "instance_norm", "l1_normalize", "l2_normalize", "local_response_norm", "lp_normalize", "bernoulli", "beta", "dirichlet", "gamma", "poisson", "unravel_index", "invert_permutation", "lexsort", "is_ivy_sparse_array", "is_native_sparse_array", "native_sparse_array", "native_sparse_array_to_indices_values_and_shape", "bincount", "corrcoef", "cov", "cummax", "cummin", "histogram", "igamma", "median", "nanmean", "nanmedian", "nanmin", "nanprod", "quantile", "optional_get_element", "all_equal", "arg_info", "arg_names", "array_equal", "assert_supports_inplace", "cache_fn", "clip_matrix_norm", "clip_vector_norm", "container_types", "current_backend_str", "default", "einops_rearrange", "einops_reduce", "einops_repeat", "exists", "fourier_encode", "function_supported_devices_and_dtypes", "function_unsupported_devices_and_dtypes", "gather", "gather_nd", "get_all_arrays_in_memory", "get_item", "get_num_dims", "get_referrers_recursive", "has_nans", "inplace_arrays_supported", "inplace_decrement", "inplace_increment", "inplace_update", "inplace_variables_supported", "is_array", "is_ivy_array", "is_ivy_container", "is_ivy_nested_array", "is_native_array", "isin", "isscalar", "itemsize", "match_kwargs", "multiprocessing", "num_arrays_in_memory", "print_all_arrays_in_memory", "scatter_flat", "scatter_nd", "set_array_mode", "set_exception_trace_mode", "set_inplace_mode", "set_item", "set_min_base", "set_min_denominator", "set_nestable_mode", "set_precise_mode", "set_queue_timeout", "set_shape_array_mode", "set_show_func_wrapper_trace_mode", "set_tmp_dir", "shape", "stable_divide", "stable_pow", "strides", "supports_inplace_updates", "to_ivy_shape", "to_list", "to_native_shape", "to_numpy", "to_scalar", "try_else_none", "unset_array_mode", "unset_exception_trace_mode", "unset_inplace_mode", "unset_min_base", "unset_min_denominator", "unset_nestable_mode", "unset_precise_mode", "unset_queue_timeout", "unset_shape_array_mode", "unset_show_func_wrapper_trace_mode", "unset_tmp_dir", "value_is_nan", "vmap", "adam_step", "adam_update", "execute_with_gradients", "grad", "gradient_descent_update", "jac", "lamb_update", "lars_update", "optimizer_update", "stop_gradient", "value_and_grad", "Activations", "Constants", "Control flow ops", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "conv", "conv1d", "conv1d_transpose", "conv2d", "conv2d_transpose", "conv3d", "conv3d_transpose", "conv_general_dilated", "conv_general_transpose", "depthwise_conv2d", "dropout", "linear", "lstm_update", "multi_head_attention", "nms", "roi_align", "scaled_dot_product_attention", "cholesky", "cross", "det", "diag", "diagonal", "eig", "eigh", "eigvalsh", "inner", "inv", "lu_factor", "matmul", "matrix_norm", "matrix_power", "matrix_rank", "matrix_transpose", "outer", "pinv", "qr", "slogdet", "solve", "svd", "svdvals", "tensordot", "tensorsolve", "trace", "vander", "vecdot", "vector_norm", "vector_to_skew_symmetric_matrix", "binary_cross_entropy", "cross_entropy", "sparse_cross_entropy", "clip", "concat", "constant_pad", "expand_dims", "flip", "permute_dims", "repeat", "reshape", "roll", "split", "squeeze", "stack", "swapaxes", "tile", "unstack", "zero_pad", "fomaml_step", "maml_step", "reptile_step", "all_nested_indices", "copy_nest", "duplicate_array_index_chains", "index_nest", "insert_into_nest_at_index", "insert_into_nest_at_indices", "map", "map_nest_at_index", "map_nest_at_indices", "multi_index_nest", "nested_any", "nested_argwhere", "nested_map", "nested_multi_map", "prune_empty", "prune_nest_at_index", "prune_nest_at_indices", "set_nest_at_index", "set_nest_at_indices", "layer_norm", "multinomial", "randint", "random_normal", "random_uniform", "seed", "shuffle", "argmax", "argmin", "argwhere", "nonzero", "where", "unique_all", "unique_counts", "unique_inverse", "unique_values", "argsort", "msort", "searchsorted", "sort", "cumprod", "cumsum", "einsum", "max", "mean", "min", "prod", "std", "sum", "var", "all", "any", "load", "save", "Assertions", "Available frameworks", "Function testing", "Globals", "Hypothesis helpers", "Array helpers", "Dtype helpers", "General helpers", "Number helpers", "Multiprocessing", "Pipeline helper", "Structs", "Test parameter flags", "Testing helpers", "Framework classes", "Utils", "Testing", "Activations", "Converters", "Helpers", "Initializers", "Layers", "Losses", "Module", "Norms", "Optimizers", "Sequential", "Assertions", "Backend", "Ast helpers", "Handler", "Sub backend handler", "Binaries", "Dynamic import", "Einsum parser", "Einsum path helpers", "Exceptions", "Inspection", "Logging", "Profiler", "Verbosity", "Home", "Contributing", "Building the Docs", "Error Handling", "GitHub Rewards", "Helpful Resources", "Open Tasks", "Setting Up", "The Basics", "Volunteer Workflow", "Deep Dive", "Array API Tests", "Arrays", "Backend Setting", "Building the Docs Pipeline", "Containers", "Continuous Integration", "Data Types", "Devices", "Docstring Examples", "Docstrings", "Exception Handling", "Fix Failing Tests:", "Formatting", "Function Arguments", "Function Types", "Function Wrapping", "Gradients", "Inplace Updates", "Ivy Frontends", "Ivy Frontend Tests", "Ivy-Lint: Ivy\u2019s Custom Code Formatters", "Ivy Tests", "Navigating the Code", "Operating Modes", "Superset Behaviour", "Design", "Building Blocks", "Ivy as a Framework", "Ivy Array", "Ivy Container", "Ivy Stateful API", "Ivy as a Transpiler", "FAQ", "Get Started", "Glossary", "Motivation", "ML Explosion", "Standardization", "Why Unify?", "One liners", "ivy.trace_graph()", "ivy.transpile()", "ivy.unify()", "Related Work", "API Standards", "Compiler Infrastructure", "Exchange Formats", "Frameworks", "Graph Tracers", "ML-Unifying Companies", "Multi-Vendor Compiler Frameworks", "Vendor-Specific APIs", "Vendor-Specific Compilers", "What does Ivy Add?", "Wrapper Frameworks"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 163, 166, 167, 168, 170, 174, 175, 189, 192, 202, 208, 209, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 427, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 546, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 569, 575, 580, 581, 582, 583, 585, 587, 588, 601, 602, 603, 604, 605, 607, 609, 610, 611, 612, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 708, 710, 712, 713, 718, 719, 723, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 762, 764, 765, 767, 776, 777, 779, 780, 782, 783, 784, 785, 794, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865], "repo": [0, 11, 40, 805, 808, 811, 814, 816, 817, 822, 830, 832, 847], "hold": [0, 52, 53, 57, 65, 75, 80, 88, 92, 93, 328, 344, 349, 365, 380, 460, 488, 512, 513, 518, 565, 566, 622, 625, 635, 666, 746, 762, 809, 840, 859], "all": [0, 1, 3, 4, 5, 7, 8, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 39, 40, 42, 43, 45, 47, 48, 52, 53, 56, 57, 59, 61, 66, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 84, 89, 90, 92, 93, 121, 129, 136, 140, 141, 142, 196, 203, 235, 239, 267, 268, 322, 323, 335, 353, 362, 365, 368, 369, 370, 371, 380, 401, 410, 412, 413, 414, 422, 427, 435, 436, 438, 441, 442, 463, 474, 482, 487, 517, 523, 526, 543, 563, 564, 580, 587, 588, 602, 605, 617, 619, 620, 622, 623, 624, 625, 627, 628, 629, 631, 632, 636, 647, 649, 650, 655, 668, 673, 674, 677, 682, 691, 695, 697, 703, 704, 705, 706, 707, 708, 717, 718, 719, 720, 726, 729, 734, 759, 761, 764, 765, 766, 767, 779, 780, 786, 789, 794, 796, 800, 801, 803, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 854, 855, 856, 857, 858, 859, 861, 864, 865], "jupyt": [0, 848, 860], "exampl": [0, 6, 8, 17, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 167, 168, 170, 171, 172, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 431, 433, 436, 440, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 455, 457, 458, 459, 460, 461, 464, 465, 466, 468, 469, 470, 471, 473, 474, 479, 480, 481, 482, 483, 484, 485, 487, 488, 489, 493, 494, 496, 499, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 523, 525, 526, 527, 528, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 543, 544, 545, 546, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 561, 562, 563, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 585, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 704, 705, 706, 707, 709, 710, 712, 713, 714, 715, 717, 718, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 765, 772, 789, 793, 794, 798, 803, 806, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 825, 826, 828, 829, 832, 833, 837, 839, 840, 841, 842, 843, 849, 855, 856, 859, 861, 864, 865], "tab": [0, 806, 807, 816, 822, 840], "ivi": [0, 1, 2, 6, 8, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 40, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 761, 772, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 801, 802, 803, 804, 805, 807, 809, 810, 811, 813, 815, 817, 818, 820, 822, 823, 824, 825, 826, 828, 835, 836, 843, 845, 848, 849, 850, 854, 865], "": [0, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 38, 41, 43, 44, 45, 48, 52, 53, 54, 57, 65, 75, 77, 80, 88, 117, 134, 140, 141, 161, 162, 191, 194, 195, 207, 242, 277, 323, 328, 329, 330, 332, 342, 344, 350, 354, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 384, 390, 396, 401, 412, 420, 424, 430, 439, 444, 446, 447, 463, 465, 466, 474, 490, 491, 492, 501, 511, 521, 539, 540, 546, 560, 582, 583, 604, 606, 607, 608, 609, 611, 615, 616, 617, 618, 619, 620, 622, 623, 624, 625, 629, 635, 639, 641, 643, 645, 650, 657, 668, 675, 676, 682, 718, 752, 754, 765, 779, 780, 781, 782, 783, 784, 785, 789, 800, 801, 802, 803, 804, 807, 808, 809, 810, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 839, 840, 841, 842, 843, 845, 848, 849, 850, 851, 852, 853, 854, 857, 858, 859, 861, 862, 863, 864], "web": 0, "relev": [0, 48, 71, 133, 617, 784, 800, 806, 807, 808, 812, 815, 816, 817, 819, 822, 826, 827, 830, 831, 832, 840, 844, 848, 856, 863, 864], "link": [0, 17, 26, 27, 41, 800, 806, 807, 808, 814, 816, 817, 823, 829, 852, 854, 856], "list": [0, 4, 5, 6, 7, 9, 42, 47, 48, 49, 51, 52, 53, 56, 59, 60, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 129, 131, 134, 135, 136, 138, 144, 148, 150, 163, 167, 168, 175, 191, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 342, 343, 344, 350, 351, 352, 354, 355, 356, 365, 368, 369, 371, 378, 386, 387, 388, 390, 391, 392, 393, 404, 405, 406, 407, 411, 413, 417, 422, 426, 429, 434, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 455, 458, 459, 460, 469, 480, 482, 483, 484, 488, 490, 492, 493, 494, 496, 498, 503, 511, 512, 513, 514, 523, 525, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 543, 545, 547, 549, 550, 551, 553, 554, 557, 561, 565, 566, 580, 581, 583, 585, 586, 587, 588, 589, 601, 602, 607, 612, 617, 618, 619, 620, 622, 624, 625, 627, 629, 630, 633, 634, 638, 639, 640, 641, 642, 643, 646, 647, 648, 650, 653, 654, 655, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 677, 679, 684, 685, 686, 687, 688, 691, 694, 695, 696, 697, 698, 701, 702, 706, 707, 708, 709, 712, 713, 714, 715, 717, 718, 723, 724, 725, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 742, 743, 745, 746, 749, 751, 752, 754, 755, 756, 759, 761, 764, 765, 766, 767, 772, 777, 780, 786, 793, 794, 805, 806, 807, 809, 811, 812, 814, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 828, 829, 830, 832, 833, 837, 840, 841, 842, 843, 851, 858, 859, 864], "open": [0, 3, 5, 6, 7, 8, 23, 26, 27, 40, 41, 42, 43, 53, 61, 84, 121, 617, 631, 727, 729, 800, 801, 802, 807, 808, 809, 814, 817, 820, 822, 829, 830, 835, 844, 847, 848, 849, 851, 852, 856, 857, 858, 860, 861], "task": [0, 43, 628, 703, 704, 705, 800, 801, 804, 807, 808, 809, 829, 830, 858, 864, 865], "avil": 0, "discuss": [0, 806, 808, 814, 817, 818, 828, 829, 831, 832, 835, 838, 839, 840, 843, 849, 854, 859], "suggest": [0, 806, 807, 808, 814, 817, 823, 827, 829, 832, 833, 834, 844], "new": [0, 6, 8, 10, 11, 13, 15, 18, 21, 22, 23, 24, 26, 27, 28, 42, 44, 47, 52, 53, 54, 59, 60, 69, 71, 75, 76, 77, 80, 82, 83, 125, 128, 130, 131, 136, 137, 138, 143, 144, 181, 224, 270, 272, 276, 328, 333, 344, 349, 365, 368, 371, 380, 403, 450, 458, 459, 473, 479, 518, 534, 535, 536, 538, 541, 542, 544, 565, 566, 569, 571, 578, 580, 581, 587, 604, 607, 609, 610, 611, 617, 618, 620, 622, 623, 624, 627, 629, 630, 650, 662, 670, 690, 694, 698, 711, 723, 724, 725, 777, 780, 783, 784, 789, 794, 800, 801, 806, 807, 808, 809, 810, 812, 813, 815, 816, 817, 819, 820, 822, 823, 826, 828, 829, 830, 831, 832, 833, 835, 836, 839, 842, 844, 845, 847, 848, 849, 851, 856, 860, 864, 865], "should": [0, 4, 8, 9, 21, 22, 23, 24, 43, 46, 48, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 74, 75, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 95, 97, 98, 108, 112, 120, 134, 136, 140, 141, 149, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 296, 307, 323, 329, 330, 341, 345, 346, 347, 348, 352, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 375, 380, 383, 391, 392, 393, 395, 400, 411, 426, 435, 441, 448, 473, 474, 497, 498, 511, 512, 513, 528, 546, 551, 602, 604, 607, 609, 610, 611, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 644, 645, 653, 654, 655, 656, 658, 660, 661, 662, 663, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 677, 679, 681, 682, 694, 710, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 745, 746, 747, 748, 749, 750, 751, 753, 754, 761, 762, 764, 766, 776, 777, 779, 780, 782, 783, 784, 785, 793, 794, 802, 803, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 839, 840, 841, 846, 848, 852, 854, 855, 858, 860, 865], "comprehens": [0, 15, 808, 811, 831], "possibl": [0, 3, 32, 48, 52, 71, 75, 82, 92, 123, 242, 285, 306, 329, 330, 362, 365, 368, 370, 371, 390, 443, 452, 453, 454, 460, 462, 464, 465, 466, 473, 488, 561, 620, 622, 624, 635, 647, 690, 691, 692, 694, 696, 697, 699, 701, 748, 750, 764, 780, 794, 797, 800, 801, 803, 806, 807, 808, 811, 814, 815, 817, 819, 820, 822, 823, 825, 827, 828, 829, 830, 832, 835, 837, 840, 843, 848, 856, 858, 864], "us": [0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 85, 90, 92, 93, 95, 98, 105, 133, 136, 147, 159, 161, 162, 173, 174, 194, 195, 197, 202, 206, 207, 208, 209, 211, 214, 220, 228, 256, 257, 259, 260, 262, 263, 264, 266, 267, 269, 278, 282, 287, 306, 308, 309, 311, 312, 313, 321, 342, 345, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 394, 396, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 420, 422, 426, 430, 432, 434, 435, 437, 438, 439, 441, 442, 447, 464, 468, 472, 474, 482, 490, 492, 496, 497, 498, 499, 500, 501, 502, 503, 504, 511, 518, 521, 539, 540, 549, 550, 561, 562, 569, 571, 572, 574, 580, 581, 593, 594, 596, 603, 604, 609, 610, 614, 615, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 631, 633, 635, 648, 650, 653, 658, 660, 668, 672, 676, 679, 682, 684, 693, 694, 695, 699, 703, 704, 705, 706, 708, 709, 715, 716, 717, 719, 726, 727, 728, 729, 731, 732, 733, 734, 737, 739, 747, 762, 764, 765, 766, 767, 772, 776, 777, 779, 780, 781, 782, 783, 784, 789, 793, 794, 798, 801, 805, 808, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 832, 833, 834, 835, 836, 837, 838, 839, 841, 842, 843, 845, 849, 853, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865], "easi": [0, 26, 27, 40, 807, 808, 812, 813, 815, 825, 827, 830, 832, 835, 848, 856, 858, 864, 865], "follow": [0, 9, 20, 21, 22, 24, 26, 27, 30, 31, 32, 38, 41, 42, 52, 53, 54, 56, 57, 63, 69, 75, 76, 77, 79, 80, 129, 160, 163, 208, 218, 235, 242, 268, 270, 277, 278, 313, 362, 368, 370, 371, 374, 390, 403, 411, 447, 462, 474, 490, 492, 549, 550, 551, 580, 581, 604, 607, 609, 610, 611, 617, 618, 619, 620, 622, 623, 624, 625, 629, 633, 650, 653, 666, 672, 682, 712, 718, 737, 738, 739, 740, 780, 784, 800, 802, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 851, 855, 858, 861], "attract": 0, "visual": [0, 9, 44, 798, 800, 807, 822, 829, 832, 843, 858, 860, 863], "graph": [0, 3, 5, 7, 9, 15, 16, 19, 21, 23, 24, 27, 33, 34, 39, 44, 45, 63, 633, 737, 738, 739, 740, 772, 800, 815, 825, 829, 831, 835, 837, 842, 843, 845, 849, 850, 851, 852, 853, 854, 858, 861], "nice": [0, 832, 849, 858], "format": [0, 23, 24, 26, 27, 38, 40, 41, 42, 50, 53, 56, 65, 68, 69, 70, 73, 79, 95, 113, 158, 192, 368, 369, 379, 409, 440, 507, 534, 614, 618, 619, 622, 624, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 747, 757, 758, 759, 776, 800, 807, 808, 810, 816, 817, 818, 819, 820, 821, 829, 831, 840, 852, 854, 856, 858, 859], "result": [0, 3, 5, 6, 7, 8, 9, 11, 13, 21, 22, 23, 24, 26, 27, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 175, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 424, 425, 427, 428, 430, 431, 432, 433, 434, 436, 440, 443, 444, 445, 446, 448, 449, 451, 458, 459, 462, 464, 465, 466, 467, 468, 471, 472, 473, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 504, 509, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 529, 530, 534, 535, 536, 541, 542, 546, 551, 558, 565, 566, 603, 604, 605, 607, 609, 610, 611, 612, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 697, 698, 699, 700, 702, 709, 712, 713, 715, 719, 723, 725, 726, 727, 728, 729, 731, 732, 733, 734, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 766, 772, 786, 794, 798, 800, 803, 806, 808, 811, 812, 814, 815, 816, 817, 819, 820, 822, 824, 825, 827, 828, 829, 830, 832, 833, 837, 840, 843, 851, 852, 853, 859, 861], "etc": [0, 29, 34, 41, 48, 52, 61, 63, 67, 71, 75, 84, 90, 124, 132, 133, 136, 368, 375, 396, 401, 412, 497, 498, 500, 501, 617, 631, 633, 726, 727, 728, 729, 737, 738, 739, 740, 764, 767, 779, 780, 781, 782, 783, 784, 785, 806, 807, 808, 811, 812, 813, 814, 815, 817, 819, 821, 824, 829, 830, 832, 833, 837, 839, 840, 843, 845, 849, 851, 856, 858, 864], "gener": [0, 5, 15, 19, 24, 26, 27, 29, 32, 40, 42, 44, 45, 48, 51, 52, 56, 61, 67, 71, 74, 75, 79, 84, 90, 93, 121, 132, 133, 142, 150, 235, 238, 248, 249, 264, 268, 277, 306, 309, 313, 314, 315, 317, 318, 319, 320, 321, 322, 329, 330, 362, 365, 368, 369, 371, 375, 380, 411, 417, 437, 482, 499, 511, 617, 618, 620, 624, 625, 627, 631, 635, 647, 673, 674, 677, 680, 702, 726, 727, 729, 730, 752, 764, 767, 772, 784, 793, 806, 807, 808, 810, 811, 812, 814, 817, 818, 819, 820, 821, 824, 825, 828, 829, 830, 833, 836, 837, 839, 841, 842, 843, 845, 856, 857, 858, 859, 860, 861, 862, 863, 864], "tone": [0, 4], "feel": [0, 41, 97, 98, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 776, 777, 779, 780, 782, 783, 784, 785, 800, 802, 803, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 836, 844, 851], "free": [0, 5, 40, 41, 97, 98, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 776, 777, 779, 780, 782, 783, 784, 785, 800, 802, 803, 805, 806, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 836, 844, 851, 859, 861], "includ": [0, 9, 15, 19, 29, 34, 48, 51, 52, 53, 57, 62, 65, 66, 69, 71, 74, 75, 76, 80, 85, 88, 89, 121, 122, 123, 132, 133, 135, 142, 215, 239, 243, 244, 245, 248, 250, 253, 261, 269, 282, 287, 308, 311, 312, 313, 316, 322, 325, 327, 329, 330, 334, 335, 336, 338, 339, 340, 341, 343, 345, 346, 348, 349, 350, 351, 354, 355, 362, 365, 368, 371, 380, 386, 387, 388, 418, 421, 423, 465, 466, 468, 471, 473, 475, 478, 499, 501, 502, 510, 514, 516, 517, 519, 520, 521, 547, 601, 617, 620, 622, 625, 629, 631, 632, 635, 636, 659, 680, 682, 706, 729, 733, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 765, 767, 779, 780, 783, 796, 800, 806, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 824, 825, 828, 829, 830, 831, 832, 833, 835, 837, 848, 851, 852, 855, 856, 858, 860, 863, 864, 865], "emoji": [0, 806], "don": [0, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 67, 90, 800, 806, 807, 808, 816, 817, 818, 823, 827, 832, 835, 841, 843, 844, 849, 851], "t": [0, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 42, 52, 56, 67, 75, 79, 90, 92, 93, 97, 342, 357, 365, 367, 369, 422, 551, 569, 583, 605, 622, 623, 624, 629, 648, 649, 714, 759, 780, 800, 802, 806, 807, 808, 810, 812, 813, 815, 816, 817, 818, 819, 822, 823, 825, 826, 827, 828, 832, 833, 835, 837, 839, 840, 841, 842, 843, 844, 848, 849, 851, 852, 853, 856, 858, 860], "keep": [0, 1, 11, 13, 17, 23, 24, 26, 52, 59, 69, 75, 82, 92, 95, 353, 369, 441, 627, 701, 805, 806, 807, 808, 811, 814, 815, 816, 821, 828, 829, 832, 833, 835, 840, 842, 844, 852], "thing": [0, 24, 38, 40, 793, 805, 806, 807, 808, 813, 829, 832, 835, 839, 840, 847, 848, 849, 858], "super": [0, 3, 5, 11, 13, 26, 27, 40, 52, 75, 369, 422, 800, 821, 837, 840, 841, 842, 852], "seriou": 0, "given": [0, 3, 17, 26, 39, 52, 53, 58, 59, 61, 69, 75, 76, 77, 81, 82, 84, 92, 93, 95, 97, 98, 121, 125, 132, 133, 153, 154, 155, 156, 157, 169, 174, 193, 202, 204, 206, 207, 208, 210, 214, 287, 316, 325, 328, 334, 335, 342, 343, 344, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 389, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 412, 422, 427, 440, 444, 445, 446, 448, 449, 450, 451, 461, 462, 463, 470, 472, 484, 489, 493, 494, 495, 496, 497, 498, 499, 500, 501, 511, 512, 513, 514, 520, 542, 546, 565, 566, 576, 603, 604, 607, 609, 610, 611, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 683, 684, 685, 686, 687, 690, 691, 692, 693, 695, 696, 700, 701, 713, 714, 723, 724, 727, 728, 729, 731, 743, 744, 745, 746, 759, 764, 765, 766, 767, 772, 776, 777, 779, 780, 782, 783, 784, 785, 786, 793, 794, 803, 804, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 838, 839, 841, 848, 849, 855, 860, 861, 864, 865], "an": [0, 2, 3, 8, 9, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 170, 174, 175, 205, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 310, 311, 312, 314, 315, 322, 323, 324, 325, 326, 327, 329, 330, 332, 335, 338, 343, 347, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 399, 401, 403, 404, 405, 406, 409, 410, 411, 412, 413, 414, 415, 416, 418, 421, 422, 423, 446, 447, 451, 452, 453, 454, 458, 459, 460, 462, 469, 473, 474, 480, 482, 487, 488, 490, 491, 492, 495, 497, 498, 500, 503, 504, 509, 510, 511, 512, 513, 514, 515, 518, 519, 522, 527, 529, 530, 538, 541, 545, 546, 547, 549, 550, 551, 553, 554, 555, 556, 557, 560, 566, 569, 570, 579, 583, 587, 588, 589, 602, 605, 612, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 712, 725, 727, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 764, 766, 767, 769, 772, 776, 777, 779, 780, 782, 783, 784, 785, 794, 800, 802, 803, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 832, 833, 834, 835, 837, 839, 840, 841, 842, 843, 844, 845, 848, 849, 850, 851, 852, 853, 854, 856, 857, 858, 859, 861, 862, 864, 865], "intern": [0, 9, 69, 100, 101, 102, 629, 706, 716, 717, 779, 780, 781, 782, 783, 785, 809, 812, 815, 818, 820, 828, 830, 832, 834], "releas": [0, 41, 806, 807, 817, 833, 835, 843, 849, 858, 864], "tracer": [0, 3, 5, 7, 8, 21, 22, 23, 24, 27, 43, 45, 800, 829, 836, 838, 843, 845, 852, 853, 854], "i": [0, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 175, 187, 189, 191, 192, 194, 195, 197, 199, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 302, 303, 304, 305, 306, 307, 309, 310, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 419, 420, 421, 422, 424, 425, 426, 427, 429, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 472, 473, 474, 475, 477, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 504, 509, 510, 511, 512, 513, 514, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 544, 545, 546, 547, 549, 550, 551, 553, 554, 555, 556, 557, 558, 561, 562, 565, 566, 567, 569, 575, 579, 580, 581, 583, 585, 587, 588, 589, 601, 602, 604, 605, 606, 607, 609, 610, 611, 612, 614, 615, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 712, 713, 714, 715, 716, 717, 718, 719, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 762, 764, 765, 766, 767, 772, 776, 777, 779, 780, 781, 782, 783, 784, 786, 789, 790, 793, 794, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865], "around": [0, 10, 11, 13, 15, 52, 69, 75, 98, 371, 474, 482, 806, 808, 811, 812, 814, 818, 824, 825, 829, 833, 839, 843, 845, 851, 856, 858, 865], "corner": [0, 52, 75, 368, 403, 807, 808, 822, 829], "anybodi": 0, "abl": [0, 3, 5, 28, 32, 43, 45, 69, 92, 807, 808, 811, 817, 822, 825, 828, 829, 833, 837, 842, 851, 861, 864], "start": [0, 1, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 41, 42, 48, 52, 69, 71, 75, 79, 121, 129, 132, 133, 346, 356, 365, 366, 368, 371, 380, 410, 464, 467, 475, 477, 486, 520, 617, 766, 793, 801, 806, 807, 808, 809, 810, 816, 817, 819, 820, 822, 823, 824, 829, 832, 835, 836, 837, 839, 840, 841, 843, 851, 852, 858, 864], "work": [0, 24, 26, 27, 38, 39, 41, 45, 47, 52, 75, 92, 380, 521, 625, 629, 676, 713, 714, 718, 723, 724, 800, 802, 803, 805, 806, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 828, 829, 830, 832, 833, 836, 837, 839, 841, 842, 844, 849, 851, 852, 853, 856, 858, 860, 862, 865], "shortli": 0, "so": [0, 1, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 368, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 580, 581, 582, 583, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 624, 629, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 665, 666, 671, 672, 673, 675, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 706, 717, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 754, 755, 756, 794, 800, 803, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 843, 847, 848, 851, 852, 853, 858, 859, 860, 862], "worri": [0, 26, 27, 806, 807, 823], "about": [0, 15, 16, 17, 20, 22, 24, 26, 27, 30, 41, 42, 49, 72, 160, 163, 618, 800, 802, 805, 806, 807, 808, 809, 810, 811, 814, 816, 817, 818, 823, 824, 828, 830, 831, 832, 833, 834, 835, 836, 837, 839, 840, 841, 842, 843, 849, 853, 859, 860, 863], "have": [0, 1, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 160, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 416, 418, 419, 421, 422, 427, 428, 431, 432, 433, 434, 439, 443, 444, 445, 446, 447, 448, 449, 453, 454, 459, 460, 462, 467, 475, 476, 477, 478, 480, 482, 484, 486, 493, 494, 496, 497, 498, 500, 501, 502, 504, 511, 512, 513, 514, 518, 522, 529, 530, 534, 535, 536, 541, 542, 551, 565, 566, 569, 603, 604, 607, 609, 610, 611, 612, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 697, 698, 699, 700, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 776, 777, 779, 780, 782, 783, 784, 785, 793, 794, 800, 802, 803, 804, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 851, 853, 854, 855, 856, 857, 858, 860, 864, 865], "access": [0, 23, 26, 27, 69, 800, 806, 807, 808, 816, 817, 823, 828, 829, 844, 852, 858, 860, 862], "transpil": [0, 6, 7, 8, 10, 15, 16, 19, 29, 771, 772, 806, 807, 821, 822, 829, 836, 837, 838, 845, 850, 851, 853, 858, 864, 865], "code": [0, 4, 6, 7, 8, 15, 16, 23, 24, 26, 28, 29, 30, 31, 32, 33, 40, 41, 50, 51, 69, 73, 74, 98, 209, 255, 380, 518, 527, 535, 536, 551, 565, 569, 583, 619, 622, 624, 625, 627, 646, 667, 668, 669, 698, 798, 800, 804, 805, 806, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 828, 829, 830, 832, 835, 836, 837, 838, 839, 840, 841, 842, 843, 845, 847, 848, 849, 850, 851, 852, 853, 854, 856, 857, 858, 859, 861, 862, 863, 864, 865], "now": [0, 4, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 42, 780, 781, 782, 800, 807, 811, 812, 813, 814, 815, 816, 817, 818, 822, 824, 826, 829, 830, 832, 833, 835, 839, 840, 842, 843, 849, 851, 852, 853, 858], "you": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 52, 53, 75, 76, 92, 97, 98, 371, 380, 462, 518, 541, 542, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 650, 776, 777, 779, 780, 782, 783, 784, 785, 800, 801, 802, 803, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 853, 858], "can": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 41, 42, 45, 48, 49, 52, 53, 57, 59, 61, 63, 71, 72, 75, 76, 80, 82, 84, 86, 92, 93, 107, 110, 122, 123, 133, 135, 150, 189, 206, 207, 208, 296, 313, 360, 362, 368, 369, 370, 374, 375, 378, 380, 390, 403, 427, 432, 434, 439, 447, 459, 490, 498, 499, 504, 511, 558, 569, 602, 605, 614, 617, 618, 619, 622, 623, 624, 625, 627, 631, 650, 658, 665, 675, 679, 694, 698, 727, 728, 729, 737, 761, 764, 765, 766, 767, 772, 794, 800, 801, 802, 803, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 853, 855, 856, 857, 858, 859, 861, 862, 864, 865], "style": [0, 9, 40, 42, 371, 474, 632, 735, 808, 823, 858], "stori": 0, "If": [0, 1, 3, 4, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 41, 44, 45, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 93, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 134, 136, 137, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 175, 191, 207, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 322, 323, 325, 328, 329, 330, 331, 332, 334, 335, 336, 339, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 411, 412, 413, 415, 420, 422, 424, 426, 427, 432, 434, 436, 437, 439, 440, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 460, 462, 463, 464, 465, 466, 469, 473, 479, 480, 481, 482, 483, 484, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 510, 511, 512, 513, 514, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 544, 545, 546, 547, 549, 550, 551, 553, 554, 557, 558, 565, 566, 570, 580, 581, 583, 585, 587, 588, 601, 602, 605, 607, 612, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 647, 648, 650, 653, 654, 655, 657, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 684, 685, 686, 687, 688, 690, 691, 692, 694, 695, 696, 697, 698, 699, 701, 702, 703, 704, 705, 718, 719, 726, 727, 728, 729, 731, 732, 733, 734, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 765, 766, 779, 780, 782, 783, 789, 794, 800, 801, 802, 803, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 839, 840, 842, 843, 844, 847, 851, 852, 853], "anyon": [0, 800, 801, 808, 816, 843, 848, 864], "ha": [0, 3, 5, 7, 8, 9, 11, 13, 17, 19, 23, 26, 27, 29, 32, 34, 38, 45, 48, 52, 57, 59, 63, 65, 69, 72, 75, 76, 80, 82, 86, 88, 92, 134, 191, 215, 235, 238, 240, 242, 252, 268, 270, 275, 278, 280, 281, 285, 324, 325, 326, 362, 369, 370, 371, 380, 403, 436, 446, 457, 481, 483, 487, 510, 512, 513, 515, 547, 617, 619, 620, 624, 625, 627, 632, 633, 635, 649, 650, 665, 666, 674, 675, 677, 679, 682, 690, 697, 735, 738, 739, 740, 745, 746, 749, 751, 752, 753, 754, 764, 767, 789, 806, 808, 811, 813, 814, 815, 816, 817, 818, 819, 820, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 838, 839, 841, 842, 843, 844, 847, 848, 849, 851, 853, 854, 857, 858, 860, 861, 864], "ani": [0, 5, 7, 11, 13, 15, 16, 17, 18, 19, 28, 29, 32, 38, 39, 40, 41, 42, 44, 45, 47, 48, 50, 51, 52, 53, 57, 66, 67, 71, 73, 74, 75, 76, 89, 90, 92, 97, 98, 117, 118, 120, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 151, 166, 170, 174, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 412, 413, 422, 427, 442, 463, 474, 482, 490, 491, 492, 511, 514, 517, 518, 519, 523, 533, 534, 535, 536, 537, 541, 545, 547, 549, 553, 555, 556, 574, 581, 588, 589, 596, 602, 612, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 709, 712, 713, 715, 716, 723, 725, 729, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 759, 762, 766, 776, 777, 779, 780, 782, 783, 784, 785, 789, 793, 794, 800, 801, 802, 803, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 853, 856, 857, 858, 859, 861, 864, 865], "question": [0, 97, 98, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 776, 777, 779, 780, 782, 783, 784, 785, 800, 803, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 838, 839, 840, 841, 842, 843, 847, 848, 849], "ping": 0, "me": [0, 808], "guillermo": 0, "commun": [0, 41, 801, 806, 807, 808, 809, 843, 848, 857, 858, 860], "ux": 0, "team": [0, 800, 801, 806, 807, 808, 829, 844, 860], "discord": [0, 41, 97, 98, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 776, 777, 779, 780, 782, 783, 784, 785, 800, 803, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 837, 838, 839, 840, 841, 842, 844, 847, 848, 849], "channel": [0, 24, 42, 52, 53, 56, 75, 76, 79, 97, 98, 368, 374, 391, 392, 393, 403, 490, 491, 492, 495, 534, 538, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 646, 776, 777, 779, 780, 782, 783, 784, 785, 808, 814, 822, 831], "To": [0, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 26, 27, 38, 41, 42, 43, 93, 242, 370, 446, 575, 620, 622, 779, 806, 807, 811, 812, 813, 814, 817, 819, 821, 822, 823, 825, 826, 829, 830, 831, 832, 833, 840, 841, 842, 844, 851, 852], "ensur": [0, 7, 8, 11, 13, 21, 22, 23, 24, 52, 53, 75, 76, 368, 369, 404, 405, 406, 437, 551, 622, 759, 800, 804, 806, 807, 808, 812, 817, 818, 819, 821, 823, 824, 826, 828, 829, 830, 831, 832, 833, 844, 858], "similar": [0, 17, 26, 27, 52, 277, 370, 442, 620, 624, 650, 780, 803, 806, 807, 815, 816, 817, 818, 821, 822, 823, 825, 826, 827, 829, 830, 832, 833, 840, 843, 847, 852, 854, 855, 856, 857, 864], "ar": [0, 1, 3, 4, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 44, 47, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 92, 93, 97, 98, 121, 131, 133, 136, 142, 196, 201, 203, 208, 232, 234, 235, 238, 242, 263, 264, 268, 273, 274, 278, 280, 285, 286, 287, 322, 324, 325, 326, 328, 331, 333, 334, 335, 338, 339, 344, 349, 352, 356, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 384, 390, 391, 392, 393, 396, 401, 403, 411, 412, 421, 422, 426, 434, 435, 437, 441, 442, 443, 447, 448, 452, 453, 454, 464, 465, 466, 468, 474, 477, 481, 482, 490, 492, 497, 498, 499, 500, 501, 511, 516, 517, 518, 519, 520, 521, 523, 526, 527, 528, 537, 543, 548, 552, 563, 564, 573, 583, 595, 605, 617, 619, 620, 622, 623, 624, 625, 627, 629, 631, 632, 633, 647, 648, 650, 653, 655, 659, 660, 661, 665, 666, 668, 671, 672, 675, 676, 680, 681, 682, 687, 688, 691, 695, 697, 707, 712, 717, 718, 719, 727, 728, 729, 732, 733, 734, 735, 737, 739, 759, 761, 764, 765, 766, 767, 772, 779, 782, 785, 786, 793, 794, 797, 798, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 853, 854, 855, 858, 859, 860, 861, 862, 863, 864, 865], "across": [0, 7, 8, 9, 21, 22, 23, 24, 38, 52, 62, 69, 75, 76, 85, 97, 206, 207, 235, 242, 268, 286, 370, 374, 442, 492, 495, 526, 547, 582, 619, 620, 622, 624, 629, 632, 647, 650, 712, 732, 733, 780, 806, 811, 817, 819, 821, 824, 825, 827, 832, 835, 856, 858, 863], "templat": [0, 800, 814, 820, 832], "help": [0, 15, 42, 44, 49, 524, 569, 622, 635, 753, 779, 800, 801, 802, 806, 807, 809, 812, 813, 814, 815, 816, 817, 819, 823, 825, 826, 828, 829, 832, 833, 839, 840, 841, 844, 845, 854, 858, 860, 864], "get": [0, 3, 4, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 40, 41, 43, 49, 50, 57, 69, 73, 80, 97, 158, 159, 160, 163, 191, 192, 193, 196, 202, 207, 210, 214, 371, 479, 525, 543, 564, 582, 618, 619, 622, 625, 629, 682, 708, 764, 779, 780, 793, 801, 804, 805, 806, 807, 809, 810, 811, 816, 817, 818, 822, 825, 826, 827, 828, 829, 830, 831, 832, 837, 838, 839, 840, 841, 845, 849, 852, 853, 858, 864], "It": [0, 3, 8, 9, 18, 21, 22, 23, 24, 26, 27, 28, 29, 38, 39, 40, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 416, 418, 419, 427, 428, 431, 432, 433, 434, 442, 443, 444, 445, 446, 448, 449, 459, 462, 467, 475, 476, 477, 478, 480, 482, 486, 490, 493, 494, 496, 497, 498, 500, 501, 511, 512, 513, 514, 522, 529, 530, 534, 535, 536, 541, 542, 551, 565, 566, 567, 603, 604, 607, 609, 610, 611, 612, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 668, 669, 670, 671, 674, 676, 677, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 697, 698, 699, 700, 702, 705, 725, 726, 727, 728, 729, 731, 732, 733, 734, 736, 740, 741, 744, 745, 746, 749, 751, 752, 754, 755, 756, 779, 780, 800, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 826, 828, 829, 830, 831, 832, 833, 834, 835, 837, 839, 840, 841, 850, 853, 856, 858, 859, 861, 862, 863, 864, 865], "locat": [0, 42, 136, 380, 512, 617, 629, 631, 634, 710, 726, 743, 794, 806, 808, 813, 814, 818, 829, 830, 832, 833, 844, 856], "asset": [0, 845], "01_templat": 0, "ipynb": 0, "pleas": [0, 32, 41, 45, 97, 98, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 776, 777, 779, 780, 782, 783, 784, 785, 800, 803, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 837, 838, 839, 840, 841, 842, 844, 847, 848, 849], "make": [0, 3, 5, 6, 7, 8, 9, 18, 26, 27, 28, 40, 44, 52, 75, 368, 411, 789, 800, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 839, 840, 842, 844, 848, 849, 852, 856, 858, 859, 860, 861, 864, 865], "copi": [0, 42, 45, 48, 49, 50, 51, 52, 53, 59, 69, 71, 72, 73, 74, 75, 76, 82, 92, 96, 122, 123, 124, 128, 139, 147, 209, 269, 371, 450, 452, 453, 454, 460, 462, 464, 465, 466, 469, 473, 480, 488, 544, 570, 580, 587, 588, 617, 618, 619, 620, 622, 627, 629, 634, 690, 691, 692, 694, 696, 697, 699, 701, 707, 742, 744, 772, 794, 807, 808, 811, 813, 816, 817, 820, 829, 830, 837, 843, 851, 852, 853], "firstli": [0, 18, 19, 22, 28, 29, 33, 38, 812, 817, 819, 820, 821, 825, 826, 828, 835, 840, 854, 864], "updat": [0, 4, 5, 6, 8, 9, 20, 21, 22, 23, 24, 26, 27, 40, 42, 47, 53, 54, 69, 76, 77, 92, 371, 479, 551, 565, 566, 569, 570, 592, 603, 604, 607, 609, 610, 611, 622, 623, 624, 628, 629, 647, 649, 703, 704, 705, 713, 714, 718, 723, 724, 772, 777, 783, 784, 789, 794, 800, 806, 807, 808, 810, 811, 812, 815, 816, 817, 819, 824, 826, 827, 829, 830, 832, 835, 837, 839, 840, 842, 843], "file": [0, 40, 41, 42, 53, 69, 578, 600, 622, 782, 802, 806, 807, 808, 811, 812, 813, 814, 815, 816, 818, 820, 821, 822, 823, 825, 829, 830, 831, 832, 833, 837, 840, 844, 854, 857, 858, 859], "name": [0, 6, 26, 27, 38, 40, 41, 42, 52, 57, 63, 67, 75, 80, 86, 90, 242, 368, 369, 371, 415, 421, 484, 487, 524, 525, 620, 622, 625, 633, 659, 660, 664, 672, 673, 675, 676, 680, 737, 738, 739, 761, 765, 772, 782, 789, 790, 792, 806, 807, 808, 813, 814, 815, 816, 819, 820, 821, 824, 829, 830, 832, 833, 834, 835, 837, 840, 842, 858], "match": [0, 49, 52, 69, 72, 75, 147, 242, 277, 333, 335, 365, 368, 370, 371, 412, 442, 457, 479, 483, 561, 618, 620, 622, 625, 660, 661, 666, 682, 759, 803, 806, 812, 814, 815, 819, 822, 830, 859, 864], "topic": [0, 15, 18, 19, 20, 28, 29, 30, 31, 32, 33, 826, 839, 858], "your": [0, 2, 3, 4, 6, 8, 9, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 44, 800, 801, 803, 804, 805, 806, 807, 809, 811, 813, 814, 816, 820, 822, 823, 827, 829, 831, 833, 835, 840, 841, 843, 844, 848, 849, 851, 852, 858], "Then": [0, 45, 624, 650, 802, 806, 807, 808, 813, 814, 816, 822, 823, 826, 828, 832, 833, 843], "place": [0, 7, 8, 21, 22, 23, 24, 40, 47, 48, 51, 52, 53, 57, 59, 69, 71, 73, 74, 75, 76, 80, 82, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 269, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 306, 307, 310, 322, 323, 328, 329, 330, 332, 335, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 464, 474, 479, 482, 498, 511, 514, 518, 527, 535, 536, 541, 545, 547, 549, 550, 551, 565, 569, 583, 588, 592, 612, 617, 618, 619, 620, 622, 623, 624, 625, 627, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 784, 800, 803, 805, 808, 810, 811, 814, 815, 816, 818, 819, 820, 822, 824, 825, 829, 830, 832, 833, 835, 842, 845, 860], "its": [0, 8, 17, 19, 26, 27, 29, 32, 39, 40, 42, 47, 49, 52, 59, 69, 72, 75, 76, 82, 95, 107, 110, 113, 118, 148, 153, 154, 155, 156, 157, 208, 235, 268, 287, 296, 360, 368, 371, 380, 407, 415, 487, 514, 538, 586, 614, 616, 618, 619, 620, 622, 625, 627, 629, 665, 690, 694, 695, 699, 712, 761, 794, 800, 806, 807, 812, 815, 816, 817, 818, 820, 821, 822, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 842, 843, 845, 851, 857, 858, 864], "folder": [0, 7, 8, 21, 22, 23, 24, 42, 800, 807, 808, 811, 814, 816, 822, 825, 829, 832, 833, 834], "next": [0, 5, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 40, 42, 52, 75, 160, 341, 345, 350, 354, 365, 618, 779, 784, 800, 806, 807, 808, 813, 817, 819, 820, 822, 823, 826, 838, 839, 840, 849, 858, 860], "edit": [0, 806, 807, 808, 823], "titl": [0, 9, 12, 14, 25, 41, 44, 800, 806, 808, 814], "descript": [0, 1, 35, 36, 37, 42, 45, 48, 51, 52, 57, 74, 75, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 474, 482, 511, 514, 541, 545, 547, 549, 588, 612, 617, 618, 620, 622, 623, 624, 625, 627, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 806, 808, 820, 827, 828], "accordingli": [0, 52, 57, 62, 63, 65, 66, 75, 80, 85, 88, 89, 134, 235, 240, 242, 258, 268, 282, 329, 330, 365, 617, 620, 625, 632, 633, 635, 636, 682, 733, 737, 738, 739, 740, 748, 749, 750, 751, 752, 753, 754, 755, 756, 829, 837, 844], "thei": [0, 9, 33, 38, 43, 52, 57, 61, 63, 69, 80, 84, 86, 173, 287, 339, 365, 618, 620, 625, 628, 631, 633, 680, 703, 704, 726, 737, 759, 785, 800, 805, 806, 807, 810, 811, 813, 814, 815, 816, 817, 818, 819, 821, 823, 825, 826, 828, 829, 832, 833, 835, 837, 839, 840, 841, 842, 843, 851, 855, 858, 860, 861, 864, 865], "render": [0, 814, 820], "correctli": [0, 23, 26, 27, 40, 52, 57, 62, 75, 80, 85, 334, 365, 380, 517, 518, 519, 520, 521, 625, 632, 666, 732, 806, 807, 808, 812, 815, 817, 819, 821, 823, 824, 830, 832, 835, 841, 843, 851, 852], "webpag": [0, 15], "content": [0, 1, 12, 14, 25, 26, 41, 42, 52, 69, 75, 380, 518, 806, 808, 814, 818, 828, 831, 837, 840, 844], "behind": [0, 17, 26, 800, 810, 824, 832, 836, 838], "exist": [0, 17, 26, 27, 40, 41, 42, 45, 48, 52, 53, 69, 71, 75, 76, 82, 123, 371, 452, 453, 459, 460, 462, 464, 465, 466, 473, 488, 533, 569, 622, 627, 688, 690, 691, 692, 694, 696, 697, 699, 701, 784, 786, 800, 806, 807, 811, 813, 818, 819, 820, 825, 826, 828, 829, 832, 835, 837, 843, 845, 847, 848, 856, 858, 861, 864], "cell": [0, 1, 3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 56, 79, 624, 649, 780, 816, 837], "where": [0, 6, 19, 23, 29, 30, 34, 42, 48, 51, 52, 53, 57, 59, 61, 62, 65, 66, 69, 71, 74, 75, 76, 80, 82, 84, 85, 88, 89, 92, 93, 130, 131, 134, 136, 142, 223, 233, 235, 238, 240, 242, 243, 252, 257, 258, 259, 266, 267, 268, 273, 275, 279, 281, 285, 294, 296, 322, 324, 325, 326, 340, 344, 351, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 382, 383, 384, 390, 395, 396, 400, 415, 421, 422, 426, 427, 429, 435, 441, 442, 443, 452, 453, 454, 468, 474, 490, 491, 492, 495, 497, 498, 500, 501, 511, 519, 520, 521, 551, 565, 602, 617, 620, 622, 624, 625, 627, 629, 631, 632, 635, 636, 650, 655, 659, 660, 664, 666, 668, 670, 671, 672, 675, 676, 679, 681, 687, 689, 690, 692, 698, 702, 710, 717, 726, 727, 728, 729, 734, 735, 750, 752, 754, 755, 756, 764, 779, 783, 794, 800, 801, 803, 807, 808, 809, 811, 812, 813, 814, 815, 817, 818, 820, 821, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 840, 841, 842, 843, 844, 847, 848, 849, 851, 856, 865], "The": [0, 3, 5, 6, 7, 8, 9, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 42, 43, 44, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 128, 129, 131, 133, 136, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 161, 162, 163, 165, 167, 168, 169, 172, 173, 175, 176, 178, 179, 180, 181, 187, 188, 189, 190, 191, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 341, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 418, 419, 420, 421, 422, 424, 426, 436, 437, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 461, 463, 464, 465, 466, 470, 473, 474, 479, 480, 482, 483, 484, 485, 489, 490, 491, 492, 493, 494, 495, 496, 498, 499, 500, 502, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 523, 524, 526, 527, 528, 529, 530, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 545, 546, 547, 549, 550, 551, 553, 554, 555, 556, 557, 560, 562, 565, 566, 569, 571, 572, 575, 578, 580, 581, 582, 583, 584, 585, 586, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 721, 722, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 764, 766, 767, 772, 776, 777, 779, 780, 782, 783, 784, 789, 793, 794, 800, 801, 802, 803, 806, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 830, 832, 833, 835, 836, 837, 840, 841, 842, 844, 845, 846, 847, 849, 851, 852, 853, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865], "h2": [0, 1, 12, 14, 25], "tag": [0, 1, 12, 14, 25, 807, 808], "section": [0, 1, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 46, 52, 63, 75, 107, 368, 371, 401, 412, 460, 469, 488, 633, 737, 738, 739, 740, 800, 801, 803, 805, 806, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 832, 833, 835, 836, 840, 841, 853, 854, 861, 864], "h3": [0, 1, 12, 14, 25], "subsect": [0, 1, 12, 14, 25, 806, 807, 808, 811, 816], "step": [0, 1, 12, 13, 14, 25, 26, 27, 38, 40, 41, 42, 52, 54, 71, 75, 77, 121, 132, 368, 371, 413, 415, 468, 603, 604, 607, 609, 610, 611, 617, 623, 628, 703, 704, 705, 784, 800, 806, 807, 808, 809, 812, 813, 815, 816, 817, 818, 819, 822, 827, 829, 832, 837, 840, 841, 842, 849, 858], "explan": [0, 1, 12, 14, 25, 806, 807, 808, 815, 820, 824, 829, 833, 839], "go": [0, 4, 11, 13, 17, 24, 27, 32, 47, 52, 75, 79, 368, 410, 414, 629, 717, 718, 800, 801, 803, 806, 807, 808, 810, 813, 814, 817, 819, 822, 823, 829, 830, 832, 833, 836, 840, 843, 854, 858, 859, 863, 865], "default": [0, 3, 5, 26, 27, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 167, 168, 173, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 191, 192, 194, 195, 199, 202, 203, 204, 206, 207, 208, 209, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 383, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 420, 422, 424, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 480, 481, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 526, 527, 529, 530, 534, 535, 536, 537, 538, 539, 540, 541, 542, 544, 545, 546, 547, 549, 550, 551, 553, 554, 557, 558, 561, 562, 565, 566, 569, 570, 575, 579, 580, 581, 583, 585, 587, 588, 601, 602, 603, 604, 605, 606, 607, 609, 610, 611, 612, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 664, 665, 666, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 712, 713, 714, 716, 717, 718, 719, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 764, 765, 766, 767, 772, 776, 777, 779, 780, 781, 782, 783, 784, 785, 793, 794, 806, 807, 808, 813, 814, 817, 818, 819, 820, 821, 824, 825, 829, 832, 835, 837, 841, 845, 851, 858], "which": [0, 3, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 148, 150, 152, 158, 160, 163, 165, 168, 175, 187, 192, 196, 201, 203, 206, 207, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 316, 319, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 341, 343, 344, 345, 346, 348, 349, 350, 352, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 410, 411, 412, 414, 419, 422, 432, 435, 436, 437, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 479, 480, 481, 482, 483, 484, 490, 492, 493, 494, 496, 497, 498, 499, 500, 501, 503, 504, 511, 512, 513, 514, 516, 517, 518, 519, 520, 521, 523, 524, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 543, 544, 545, 546, 547, 549, 550, 551, 553, 554, 557, 558, 563, 564, 565, 566, 580, 581, 583, 585, 587, 588, 601, 602, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 629, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 647, 648, 650, 653, 654, 655, 657, 658, 660, 661, 662, 663, 665, 666, 668, 669, 670, 672, 673, 674, 675, 679, 681, 682, 684, 685, 686, 687, 688, 690, 691, 693, 694, 695, 696, 697, 698, 701, 702, 711, 712, 713, 714, 719, 721, 722, 723, 724, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 765, 766, 776, 777, 779, 780, 781, 782, 783, 784, 785, 789, 790, 796, 800, 802, 803, 804, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 851, 852, 854, 855, 856, 857, 858, 859, 861, 863, 864, 865], "text": [0, 4, 7, 9, 40, 52, 53, 369, 370, 434, 442, 806, 808, 814, 819, 820], "paragraph": [0, 1, 12, 14, 25, 814], "p": [0, 1, 12, 14, 25, 38, 52, 53, 57, 75, 76, 80, 93, 134, 239, 369, 374, 418, 496, 529, 530, 617, 620, 622, 625, 629, 666, 682, 714, 780, 800, 807, 808, 810], "without": [0, 3, 9, 29, 38, 42, 45, 63, 69, 95, 575, 589, 622, 627, 629, 633, 694, 707, 737, 738, 739, 740, 764, 767, 793, 807, 808, 812, 813, 815, 816, 817, 818, 819, 821, 824, 825, 829, 832, 833, 835, 839, 840, 841, 843, 851, 855, 858, 859, 860, 864], "path": [0, 7, 8, 9, 21, 22, 23, 24, 41, 42, 761, 772, 788, 807, 814, 828, 829, 830, 844, 858], "correspond": [0, 3, 6, 8, 13, 26, 27, 41, 49, 51, 52, 53, 56, 59, 62, 63, 65, 69, 72, 74, 75, 79, 82, 88, 92, 95, 98, 148, 160, 163, 223, 273, 287, 325, 338, 339, 362, 365, 368, 369, 371, 374, 380, 390, 396, 407, 412, 418, 421, 422, 423, 440, 465, 466, 490, 491, 492, 495, 512, 513, 580, 602, 618, 620, 622, 624, 625, 627, 631, 632, 633, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 650, 655, 659, 660, 666, 673, 674, 694, 695, 726, 732, 733, 737, 738, 739, 740, 745, 746, 751, 752, 753, 754, 761, 764, 766, 793, 800, 806, 808, 812, 813, 815, 816, 817, 819, 820, 821, 824, 825, 827, 829, 832, 835, 837, 851, 852, 853, 858], "toctre": [0, 814], "index": [0, 40, 41, 42, 45, 48, 52, 53, 59, 62, 63, 64, 69, 71, 75, 76, 82, 85, 86, 87, 127, 134, 204, 307, 314, 315, 324, 325, 326, 362, 368, 369, 371, 376, 378, 380, 390, 396, 427, 429, 434, 457, 464, 467, 475, 477, 479, 482, 483, 486, 502, 503, 512, 521, 524, 542, 544, 565, 566, 570, 615, 617, 619, 622, 627, 629, 632, 633, 634, 694, 698, 708, 709, 710, 713, 714, 715, 721, 723, 732, 733, 735, 737, 738, 739, 741, 743, 765, 780, 794, 796, 815, 816, 821, 825, 826, 827, 828, 830, 832, 839, 858], "rst": [0, 825], "left": [0, 19, 29, 40, 41, 52, 57, 62, 64, 75, 80, 85, 87, 115, 116, 227, 242, 334, 349, 356, 365, 366, 368, 369, 371, 380, 402, 421, 426, 430, 437, 439, 465, 475, 516, 517, 518, 519, 520, 521, 534, 616, 620, 622, 625, 632, 634, 659, 660, 666, 675, 680, 732, 743, 764, 807, 808, 811, 814, 816, 817, 819, 822], "mai": [0, 50, 51, 52, 57, 63, 64, 73, 74, 80, 87, 97, 98, 121, 128, 139, 209, 235, 236, 242, 247, 255, 263, 264, 268, 269, 271, 286, 329, 330, 365, 396, 533, 569, 617, 619, 620, 622, 625, 633, 634, 635, 673, 682, 737, 738, 739, 740, 741, 744, 748, 749, 750, 752, 764, 794, 805, 806, 807, 808, 811, 815, 816, 817, 821, 822, 825, 826, 827, 829, 830, 832, 835, 838, 839, 841, 849, 865], "need": [0, 3, 6, 8, 15, 17, 23, 24, 26, 27, 40, 41, 42, 52, 53, 59, 75, 76, 82, 368, 369, 380, 390, 395, 396, 400, 421, 518, 529, 530, 551, 622, 624, 625, 627, 629, 650, 659, 687, 690, 717, 765, 800, 802, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 825, 826, 827, 828, 829, 830, 831, 833, 835, 837, 839, 840, 843, 844, 849, 851, 852, 854, 858, 859, 860, 864], "add": [0, 19, 29, 42, 44, 51, 52, 60, 67, 69, 74, 75, 83, 90, 97, 98, 356, 366, 368, 370, 371, 410, 447, 479, 561, 589, 620, 622, 624, 625, 630, 635, 650, 679, 725, 753, 761, 772, 780, 783, 800, 806, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 822, 823, 824, 825, 826, 828, 829, 832, 833, 835, 837, 839, 843, 844, 854, 856, 858], "grid": [0, 42, 48, 134, 310, 362, 617, 819, 832], "item": [0, 4, 26, 27, 38, 40, 42, 47, 53, 67, 69, 71, 74, 75, 76, 129, 154, 191, 245, 261, 269, 335, 338, 351, 531, 541, 542, 546, 580, 581, 617, 618, 619, 622, 629, 636, 711, 712, 713, 714, 718, 723, 724, 758, 800, 806, 815, 817, 837, 839, 840, 842, 851], "card": [0, 52, 75, 353, 365, 863], "refer": [0, 5, 52, 59, 65, 66, 75, 77, 82, 88, 89, 127, 142, 240, 258, 307, 322, 351, 362, 365, 368, 369, 371, 396, 401, 412, 419, 441, 464, 603, 604, 617, 620, 623, 625, 627, 635, 636, 655, 657, 681, 694, 752, 754, 755, 756, 780, 800, 805, 806, 807, 808, 811, 812, 814, 816, 817, 824, 825, 826, 827, 828, 829, 830, 831, 832, 843, 844, 845, 858], "also": [0, 3, 4, 6, 8, 9, 11, 13, 17, 19, 21, 22, 24, 26, 27, 29, 31, 32, 33, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 163, 166, 167, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 580, 581, 582, 583, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 617, 618, 620, 622, 623, 624, 625, 627, 628, 629, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 716, 717, 718, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 779, 780, 789, 800, 801, 802, 803, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 832, 833, 835, 837, 840, 841, 842, 843, 844, 847, 848, 851, 852, 854, 855, 856, 857, 858, 859, 861, 863, 864, 865], "look": [0, 5, 17, 26, 27, 40, 42, 45, 800, 803, 806, 807, 808, 813, 814, 815, 817, 818, 819, 821, 822, 823, 824, 825, 829, 830, 832, 833, 834, 835, 837, 839, 841, 842, 844, 847, 851, 854, 858], "document": [0, 17, 26, 59, 242, 329, 330, 365, 602, 620, 622, 698, 801, 802, 805, 808, 814, 816, 817, 819, 828, 829, 830, 832, 840, 842], "sphinx": [0, 802, 814], "design": [0, 9, 17, 26, 75, 242, 306, 311, 312, 362, 620, 800, 804, 810, 814, 816, 817, 828, 829, 830, 831, 835, 837, 839, 843, 847, 848, 854, 856, 858, 861, 862, 863], "websit": [0, 44, 807, 811, 848], "alreadi": [1, 8, 18, 21, 22, 23, 24, 26, 27, 32, 40, 42, 45, 52, 57, 69, 75, 80, 231, 241, 268, 278, 288, 371, 380, 453, 454, 474, 509, 518, 620, 625, 662, 670, 793, 794, 800, 806, 807, 808, 813, 815, 817, 818, 824, 828, 829, 835, 843, 844, 858, 860, 865], "instal": [1, 5, 6, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 43, 44, 45, 802, 807, 808, 813, 814, 822, 823], "skip": [1, 4, 42, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 369, 371, 391, 392, 393, 411, 427, 429, 434, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 475, 478, 480, 482, 483, 484, 490, 492, 493, 494, 496, 498, 511, 512, 513, 514, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 580, 581, 583, 585, 587, 588, 601, 607, 612, 629, 638, 639, 640, 641, 647, 648, 653, 654, 655, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 679, 684, 685, 686, 687, 691, 694, 695, 696, 697, 698, 701, 702, 719, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 745, 746, 749, 751, 752, 754, 755, 756, 765, 793, 814, 825, 832], "colab": [1, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 40, 42, 44, 45], "manual": [1, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 629, 706, 716, 717, 806, 807, 808, 817, 823, 832, 841, 844], "do": [1, 3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 38, 40, 42, 52, 53, 69, 75, 76, 235, 268, 277, 368, 370, 371, 380, 413, 447, 459, 518, 521, 551, 620, 622, 629, 706, 713, 716, 717, 718, 723, 766, 794, 800, 803, 806, 807, 808, 811, 812, 813, 815, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 833, 835, 837, 839, 840, 841, 842, 843, 845, 849, 859, 864, 865], "run": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 40, 42, 43, 44, 52, 54, 75, 77, 374, 490, 492, 603, 604, 609, 623, 628, 703, 704, 705, 761, 762, 780, 781, 782, 783, 793, 800, 802, 806, 807, 810, 812, 813, 816, 818, 819, 821, 823, 824, 826, 829, 830, 837, 838, 839, 840, 841, 842, 843, 844, 851, 852, 853, 856, 858, 859, 860, 861, 863, 864, 865], "below": [1, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 38, 41, 42, 43, 48, 52, 57, 75, 80, 88, 140, 141, 142, 242, 252, 275, 322, 323, 332, 362, 365, 371, 482, 617, 620, 625, 658, 679, 754, 801, 803, 806, 807, 810, 811, 815, 816, 817, 818, 819, 821, 822, 825, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 851, 852, 853, 854, 856, 861, 863], "mind": [1, 11, 13, 17, 23, 26, 30, 806, 807, 812, 815, 832, 844, 852], "packag": [1, 3, 5, 7, 8, 11, 21, 22, 23, 24, 27, 40, 41, 42, 45, 792, 800, 803, 807, 816, 829, 843, 844, 858, 860], "avail": [1, 3, 5, 7, 21, 22, 24, 26, 27, 42, 53, 76, 191, 197, 199, 200, 211, 535, 619, 622, 625, 676, 765, 800, 807, 808, 815, 816, 817, 818, 820, 821, 829, 832, 835, 843, 844, 847, 851, 852, 853, 863, 864], "click": [1, 3, 42, 806, 807, 808, 816, 820, 822, 823, 838], "runtim": [1, 3, 4, 5, 6, 7, 8, 19, 26, 29, 40, 41, 810, 825, 832, 835, 858], "restart": [1, 3, 4, 5, 7, 40, 41, 807, 822], "pip": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 44, 45, 803, 807, 814, 823], "q": [1, 3, 4, 5, 6, 7, 8, 9, 40, 41, 42, 52, 56, 57, 75, 79, 80, 355, 365, 369, 380, 421, 521, 624, 625, 629, 650, 653, 659, 660, 672, 714, 807, 808, 810, 830, 843], "git": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 800, 802, 805, 807, 808, 811, 814, 816, 822, 823, 832, 844], "clone": [1, 3, 5, 7, 26, 40, 42, 43, 800, 802, 808, 822, 844], "http": [1, 3, 4, 5, 6, 7, 8, 13, 21, 22, 23, 24, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 482, 511, 603, 604, 617, 618, 620, 623, 625, 627, 635, 673, 674, 702, 752, 800, 802, 807, 808, 811, 814, 816, 817, 820, 822, 844, 852], "github": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 44, 800, 801, 802, 805, 808, 809, 811, 814, 816, 817, 819, 820, 822, 823, 831, 832, 844, 847], "com": [1, 3, 4, 5, 7, 13, 26, 40, 41, 42, 43, 44, 800, 802, 807, 808, 811, 814, 816, 817, 822, 844], "unifyai": [1, 3, 5, 7, 26, 40, 41, 42, 43, 44, 800, 802, 807, 808, 814, 822, 844], "model": [1, 2, 3, 9, 10, 15, 16, 17, 43, 45, 235, 268, 370, 443, 620, 777, 781, 782, 800, 840, 841, 845, 851, 852, 856, 857, 858, 859, 860, 861, 862, 864, 865], "depth": [1, 3, 5, 7, 41, 48, 52, 56, 71, 75, 79, 136, 368, 371, 403, 461, 534, 546, 617, 622, 624, 642, 643, 808, 816, 840, 841, 842, 844], "1": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 144, 147, 148, 149, 150, 154, 158, 159, 160, 163, 168, 170, 175, 191, 192, 196, 200, 201, 203, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 319, 320, 322, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 435, 436, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 455, 457, 458, 459, 460, 461, 462, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 543, 544, 545, 546, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 561, 563, 565, 566, 570, 579, 580, 581, 582, 583, 585, 587, 588, 589, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 704, 705, 706, 707, 709, 710, 712, 713, 714, 715, 717, 718, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 765, 766, 767, 769, 772, 776, 779, 780, 781, 782, 783, 784, 785, 789, 793, 794, 800, 803, 804, 807, 808, 811, 813, 814, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 827, 828, 829, 830, 832, 835, 836, 837, 839, 840, 841, 842, 843, 848, 849, 851, 852, 853], "from": [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 85, 88, 89, 90, 92, 93, 95, 98, 121, 123, 126, 128, 129, 130, 131, 134, 135, 138, 142, 144, 150, 168, 174, 175, 191, 196, 201, 207, 208, 234, 242, 243, 270, 274, 275, 282, 286, 306, 307, 313, 316, 322, 324, 325, 326, 333, 336, 339, 340, 342, 343, 355, 359, 362, 365, 367, 368, 369, 370, 371, 375, 380, 391, 392, 393, 407, 412, 413, 430, 437, 442, 443, 447, 457, 460, 469, 474, 480, 482, 483, 485, 487, 488, 497, 498, 499, 500, 501, 512, 513, 533, 541, 542, 544, 564, 575, 585, 602, 604, 605, 609, 617, 618, 619, 620, 622, 623, 624, 625, 627, 628, 629, 631, 632, 633, 635, 636, 638, 646, 647, 655, 658, 675, 679, 680, 681, 688, 691, 694, 697, 703, 704, 705, 707, 718, 719, 720, 726, 727, 728, 729, 733, 736, 737, 739, 745, 746, 751, 752, 753, 754, 755, 756, 759, 761, 764, 765, 766, 767, 772, 777, 779, 780, 781, 782, 784, 789, 794, 800, 801, 803, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 832, 833, 835, 837, 838, 839, 840, 841, 842, 843, 845, 847, 848, 849, 850, 851, 852, 853, 854, 856, 857, 858, 859, 860, 862, 863, 864, 865], "repositori": [1, 3, 5, 7, 802, 806, 807, 808, 810, 811, 814, 822, 831, 849], "cd": [1, 3, 5, 7, 26, 43, 800, 802, 807, 808, 822, 844], "here": [1, 3, 9, 12, 14, 17, 22, 25, 26, 27, 38, 40, 41, 42, 43, 45, 75, 278, 449, 620, 800, 803, 805, 806, 807, 808, 811, 813, 814, 815, 816, 817, 819, 822, 823, 824, 826, 827, 828, 829, 830, 832, 833, 837, 838, 839, 840, 841, 842, 843, 851, 852, 853, 858, 859], "normal": [1, 3, 7, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 52, 60, 61, 75, 83, 84, 92, 93, 352, 365, 368, 374, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 490, 491, 492, 493, 494, 495, 496, 511, 514, 627, 630, 631, 688, 698, 725, 726, 728, 779, 780, 783, 800, 806, 828, 829, 835, 840, 851, 853, 856], "resnet": [2, 8, 15, 26, 851, 852], "imag": [2, 3, 6, 8, 11, 15, 23, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 56, 74, 75, 79, 97, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 278, 279, 281, 282, 286, 368, 386, 387, 403, 404, 405, 407, 534, 620, 622, 624, 637, 638, 639, 640, 641, 644, 645, 646, 780, 800, 807, 822, 835, 837, 838, 840, 842, 844, 851, 852, 858], "classif": [2, 3, 7, 9, 15, 40, 800, 858], "acceler": [2, 15, 800, 817, 829, 856, 860, 861, 862, 863], "pytorch": [2, 3, 4, 5, 6, 7, 10, 12, 13, 15, 16, 24, 26, 27, 38, 45, 278, 329, 330, 365, 620, 784, 800, 805, 806, 812, 817, 818, 821, 824, 825, 828, 829, 830, 835, 837, 842, 843, 845, 848, 849, 851, 852, 859, 861, 862, 864, 865], "jax": [2, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 44, 46, 51, 52, 53, 63, 68, 74, 75, 76, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 342, 360, 365, 380, 521, 551, 583, 602, 614, 620, 622, 633, 737, 738, 739, 740, 772, 776, 789, 800, 803, 805, 806, 807, 808, 811, 813, 817, 818, 821, 822, 824, 827, 828, 829, 830, 832, 833, 835, 837, 839, 842, 843, 848, 849, 851, 852, 853, 859, 861, 864, 865], "convert": [2, 5, 6, 8, 9, 11, 13, 15, 16, 18, 20, 23, 24, 26, 27, 28, 30, 32, 40, 43, 45, 47, 48, 51, 69, 70, 71, 74, 92, 122, 123, 135, 145, 146, 188, 189, 190, 191, 202, 210, 214, 234, 274, 371, 376, 452, 453, 454, 502, 567, 584, 586, 587, 588, 590, 617, 618, 619, 620, 622, 625, 629, 683, 707, 718, 719, 761, 789, 793, 800, 806, 812, 813, 826, 827, 829, 832, 834, 837, 843, 845, 849, 852, 856, 857, 864], "them": [2, 3, 6, 8, 11, 13, 15, 26, 27, 32, 369, 436, 528, 564, 622, 764, 780, 800, 802, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 821, 823, 826, 828, 829, 830, 832, 834, 837, 839, 840, 841, 843, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 856, 858, 860, 864], "faster": [2, 3, 6, 8, 9, 15, 26, 27, 43, 45, 52, 57, 75, 80, 369, 439, 625, 675, 802, 805, 814, 845, 860, 863], "infer": [2, 6, 8, 9, 15, 19, 29, 31, 32, 41, 43, 45, 48, 52, 53, 56, 59, 71, 75, 76, 79, 82, 121, 123, 126, 130, 131, 135, 138, 144, 153, 154, 155, 156, 157, 306, 307, 368, 375, 403, 499, 545, 579, 617, 618, 622, 624, 627, 647, 694, 789, 790, 810, 813, 817, 818, 832, 837, 842, 852, 856, 857, 860, 862], "mmpretrain": [2, 15], "segment": [2, 15, 52, 75, 324, 325, 326, 362, 814, 819], "unet": [2, 15], "alexnet": [2, 15], "In": [2, 3, 4, 11, 13, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 45, 50, 52, 53, 59, 73, 75, 76, 82, 92, 93, 202, 209, 210, 214, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 371, 374, 391, 392, 393, 413, 452, 453, 454, 460, 462, 464, 465, 466, 467, 469, 473, 479, 480, 488, 490, 492, 524, 544, 551, 569, 619, 620, 622, 625, 627, 631, 673, 690, 691, 692, 694, 696, 697, 699, 701, 729, 800, 806, 807, 808, 811, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 832, 833, 834, 835, 839, 840, 841, 842, 843, 847, 849, 851, 852, 853, 854, 856, 858, 859, 861, 864], "we": [2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 43, 44, 45, 52, 57, 58, 59, 67, 75, 80, 81, 90, 92, 93, 113, 357, 367, 371, 452, 453, 454, 460, 462, 464, 465, 466, 469, 473, 480, 484, 488, 534, 544, 583, 605, 606, 608, 613, 614, 622, 623, 625, 626, 627, 668, 684, 690, 691, 692, 694, 696, 697, 699, 701, 776, 782, 789, 794, 800, 801, 803, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 835, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 851, 852, 853, 854, 858, 859, 863, 864], "show": [2, 3, 4, 7, 15, 21, 26, 27, 28, 29, 31, 38, 40, 42, 43, 568, 577, 599, 622, 800, 806, 807, 808, 814, 816, 819, 823, 828, 829, 832, 834, 843, 851, 858], "how": [2, 3, 4, 5, 6, 8, 11, 13, 15, 16, 17, 18, 19, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 38, 41, 44, 45, 46, 51, 52, 68, 74, 75, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 235, 268, 286, 290, 294, 295, 297, 360, 370, 371, 442, 457, 482, 483, 614, 620, 776, 779, 780, 781, 782, 800, 801, 802, 803, 805, 807, 808, 810, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 823, 824, 826, 827, 828, 829, 830, 833, 834, 835, 836, 838, 839, 840, 841, 842, 843, 847, 849, 854, 858], "written": [2, 3, 4, 15, 17, 26, 27, 40, 53, 371, 463, 807, 811, 812, 820, 823, 824, 828, 829, 833, 837, 839, 842, 843, 847, 852, 856, 858, 862, 864, 865], "xgboost": [2, 15], "video": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 800, 801, 807, 808, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 844, 856], "tutori": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 800, 808, 829, 844], "nativ": [3, 4, 8, 17, 21, 22, 23, 24, 26, 27, 47, 48, 49, 50, 53, 70, 73, 76, 97, 101, 135, 145, 146, 152, 153, 154, 155, 156, 157, 171, 174, 189, 190, 191, 192, 202, 210, 214, 551, 553, 557, 564, 569, 586, 617, 618, 619, 622, 761, 772, 777, 789, 800, 803, 806, 817, 818, 821, 822, 825, 826, 828, 829, 830, 832, 837, 839, 840, 845, 851, 852, 853, 856, 865], "integr": [3, 4, 11, 13, 20, 27, 30, 49, 51, 52, 72, 74, 75, 147, 287, 348, 365, 380, 514, 618, 620, 800, 804, 805, 807, 809, 810, 826, 852, 856, 858, 860, 861, 862], "three": [3, 4, 15, 21, 31, 32, 42, 52, 134, 306, 362, 371, 454, 617, 807, 808, 815, 816, 817, 819, 829, 832, 835, 836, 837, 859, 864], "major": [3, 4, 632, 735, 817, 818, 830, 832, 843, 848, 855, 858], "ml": [3, 4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 45, 800, 801, 805, 829, 836, 837, 838, 840, 841, 842, 846, 848, 849, 852, 854, 855, 856, 857, 858, 861, 863, 865], "framework": [3, 4, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 40, 42, 44, 47, 53, 165, 187, 197, 200, 211, 532, 548, 552, 583, 586, 618, 619, 622, 629, 708, 759, 761, 765, 772, 777, 784, 789, 790, 800, 803, 806, 807, 810, 811, 812, 813, 814, 816, 817, 818, 819, 821, 822, 824, 825, 826, 828, 829, 832, 833, 835, 836, 837, 839, 842, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 862], "sinc": [3, 5, 7, 23, 24, 26, 27, 40, 42, 52, 75, 93, 365, 800, 802, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 821, 828, 829, 843, 848, 858, 864], "want": [3, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 39, 40, 42, 52, 67, 75, 90, 235, 268, 371, 462, 620, 782, 800, 801, 802, 806, 807, 808, 814, 816, 818, 821, 823, 825, 826, 827, 828, 832, 835, 840, 841, 842, 843, 844, 848, 852], "after": [3, 4, 5, 6, 7, 8, 26, 27, 41, 52, 53, 54, 56, 60, 69, 75, 76, 77, 79, 83, 181, 282, 298, 302, 350, 360, 365, 368, 369, 371, 390, 391, 392, 393, 410, 414, 433, 463, 474, 551, 604, 607, 609, 610, 611, 618, 620, 622, 623, 624, 629, 630, 637, 638, 639, 640, 642, 644, 646, 647, 717, 725, 784, 789, 800, 806, 807, 808, 811, 813, 814, 816, 817, 819, 821, 824, 827, 830, 832, 836, 844, 851, 852, 858], "first": [3, 4, 5, 7, 11, 17, 19, 20, 21, 23, 26, 27, 29, 30, 31, 40, 43, 44, 45, 48, 51, 52, 57, 59, 61, 62, 63, 65, 71, 74, 75, 76, 80, 82, 84, 86, 88, 92, 93, 97, 98, 117, 118, 132, 133, 142, 173, 181, 191, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 285, 296, 306, 307, 322, 324, 325, 326, 328, 340, 342, 343, 344, 350, 354, 355, 360, 362, 365, 368, 369, 370, 371, 378, 380, 390, 420, 421, 422, 424, 428, 448, 458, 460, 464, 471, 474, 476, 477, 480, 487, 498, 500, 504, 512, 513, 514, 521, 526, 616, 617, 618, 619, 620, 622, 624, 625, 627, 628, 629, 632, 633, 634, 635, 650, 655, 658, 659, 660, 662, 665, 670, 672, 673, 675, 677, 679, 681, 694, 695, 698, 699, 703, 704, 705, 706, 707, 716, 717, 719, 731, 732, 733, 737, 738, 739, 742, 743, 745, 746, 761, 779, 780, 781, 782, 784, 789, 800, 802, 805, 806, 807, 808, 809, 811, 812, 813, 814, 815, 818, 819, 823, 824, 825, 826, 828, 829, 832, 835, 837, 839, 840, 842, 844, 847, 848, 851, 852, 856, 858, 859, 863], "notebook": [3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 32, 41, 782, 800], "automat": [3, 5, 7, 24, 26, 27, 32, 800, 806, 807, 808, 810, 813, 814, 816, 817, 823, 825, 828, 832, 835, 836, 838, 841, 842, 844, 845, 849, 858, 861, 865], "sure": [3, 5, 6, 7, 8, 9, 26, 40, 806, 807, 808, 811, 816, 821, 822, 829, 830, 832, 835, 844], "gpu": [3, 4, 5, 6, 7, 8, 9, 40, 42, 44, 45, 191, 193, 194, 197, 200, 202, 204, 206, 207, 210, 212, 214, 619, 800, 807, 808, 816, 818, 839, 844, 856, 858, 861, 862, 863], "enabl": [3, 4, 5, 6, 7, 8, 9, 21, 22, 24, 41, 52, 57, 69, 80, 98, 368, 370, 390, 446, 569, 622, 625, 668, 782, 800, 807, 808, 809, 812, 815, 817, 825, 826, 827, 828, 829, 832, 833, 836, 838, 840, 842, 843, 845, 848, 851, 856, 857, 858, 859, 860, 861, 864, 865], "dm": [3, 4, 5, 6, 8, 26, 27, 38, 40], "haiku": [3, 4, 5, 6, 8, 24, 26, 27, 38, 40, 44, 777, 800, 842, 849, 852, 858], "exit": [3, 5, 7, 26, 27, 818], "download": [3, 7, 11, 13, 26, 27, 41, 42, 45, 802, 807, 814, 832, 851, 852], "imagenet": [3, 13, 41, 43, 800], "class": [3, 5, 7, 9, 11, 13, 17, 26, 27, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 129, 138, 144, 160, 163, 176, 178, 179, 238, 275, 332, 353, 365, 379, 380, 387, 388, 421, 517, 518, 525, 534, 538, 551, 561, 583, 617, 618, 619, 620, 622, 624, 625, 626, 629, 630, 645, 649, 653, 659, 670, 674, 675, 677, 684, 700, 707, 718, 725, 740, 747, 751, 752, 761, 762, 769, 770, 771, 772, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 788, 789, 793, 798, 800, 806, 813, 814, 815, 817, 818, 819, 820, 824, 826, 827, 830, 831, 832, 835, 837, 838, 840, 841, 842, 845, 851, 852, 856, 858, 859, 865], "preprocess": [3, 7, 9, 26, 27, 40, 43, 851], "wget": [3, 5, 7, 40, 41, 44, 807], "raw": [3, 5, 6, 7, 8, 23, 26, 27, 40, 43, 44, 69, 800, 820, 852, 859], "githubusercont": [3, 5, 7, 40, 44], "hub": [3, 5, 7, 40, 43, 45], "master": [3, 5, 7, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 43, 44, 804, 816, 858], "imagenet_class": [3, 7], "txt": [3, 7, 41, 53, 807, 811, 814], "r": [3, 7, 40, 41, 52, 57, 69, 75, 80, 92, 93, 342, 357, 365, 367, 605, 623, 625, 627, 672, 701, 807, 808, 810, 827, 830], "f": [3, 4, 6, 7, 26, 27, 39, 40, 42, 52, 59, 75, 82, 296, 313, 360, 362, 371, 464, 485, 627, 629, 694, 709, 713, 714, 715, 718, 723, 724, 800, 801, 808, 810, 815, 816, 821, 833, 837, 839, 840, 849, 854], "categori": [3, 7, 806, 811, 812, 815, 817, 821, 829, 833, 836], "strip": [3, 7, 19, 29, 848], "readlin": [3, 7, 41], "cat": [3, 7, 41, 830, 835, 837, 842, 851, 852], "jpg": [3, 5, 6, 7, 8, 23, 26, 27, 42, 43, 800, 852], "filenam": [3, 5, 7, 26, 27, 40, 42, 45, 53, 782, 788, 840], "3": [3, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 131, 132, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 189, 191, 192, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 433, 436, 438, 441, 442, 443, 444, 445, 446, 447, 448, 450, 452, 453, 454, 455, 457, 458, 459, 460, 461, 464, 465, 466, 468, 469, 470, 471, 473, 474, 479, 480, 481, 482, 483, 484, 485, 487, 488, 489, 493, 494, 495, 496, 499, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 516, 517, 518, 519, 520, 521, 523, 526, 527, 528, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 546, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 561, 565, 566, 579, 580, 581, 585, 588, 589, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 707, 709, 710, 712, 713, 714, 715, 717, 718, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 767, 780, 793, 794, 800, 803, 806, 807, 811, 812, 813, 815, 816, 817, 819, 821, 822, 825, 827, 830, 832, 837, 839, 840, 841, 842, 851, 852, 865], "import": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 43, 44, 45, 52, 63, 67, 71, 75, 90, 189, 190, 194, 204, 206, 292, 301, 380, 511, 546, 562, 619, 622, 628, 633, 704, 705, 740, 772, 789, 790, 800, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 815, 817, 818, 819, 820, 823, 826, 827, 828, 829, 830, 831, 832, 833, 837, 839, 840, 842, 843, 844, 848, 851, 852, 853, 854, 856, 858, 861, 862, 864], "torchvis": [3, 6, 7, 40, 849], "transform": [3, 4, 6, 7, 8, 23, 26, 27, 40, 41, 43, 52, 56, 75, 79, 368, 369, 389, 390, 395, 396, 399, 400, 401, 411, 412, 415, 430, 624, 648, 764, 767, 780, 800, 826, 832, 842, 845, 851, 852, 856, 858, 859, 860], "pil": [3, 5, 6, 7, 8, 23, 26, 27, 41, 42, 43, 800, 852], "numpi": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 51, 52, 53, 65, 74, 75, 76, 142, 171, 189, 219, 279, 292, 301, 322, 362, 380, 511, 518, 527, 551, 580, 583, 587, 617, 618, 619, 620, 622, 635, 747, 759, 761, 772, 789, 793, 794, 800, 805, 806, 807, 808, 811, 812, 813, 816, 817, 818, 821, 822, 824, 828, 830, 832, 833, 835, 837, 839, 842, 844, 845, 847, 848, 851, 852, 853, 860, 865], "np": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 45, 48, 51, 52, 74, 75, 76, 122, 123, 124, 135, 171, 248, 252, 292, 301, 368, 369, 395, 400, 416, 580, 617, 618, 620, 622, 629, 712, 761, 789, 793, 794, 800, 806, 812, 817, 818, 821, 824, 828, 829, 830, 832, 833, 835, 837, 839, 840, 842, 845, 853], "warn": [3, 4, 5, 7, 8, 9, 21, 22, 23, 24, 40, 41, 42, 45, 797, 807, 808, 834, 851, 852, 853], "time": [3, 4, 6, 8, 24, 26, 27, 32, 40, 42, 43, 44, 52, 54, 57, 63, 75, 77, 86, 92, 93, 129, 335, 365, 368, 369, 371, 380, 396, 401, 413, 415, 434, 441, 474, 480, 511, 604, 609, 617, 623, 624, 625, 627, 628, 632, 633, 647, 649, 665, 700, 703, 704, 705, 732, 733, 737, 738, 780, 781, 782, 806, 807, 808, 811, 813, 815, 816, 817, 819, 822, 824, 825, 826, 828, 829, 832, 833, 837, 840, 842, 843, 844, 847, 848, 849, 851, 852, 856, 858, 859, 862, 863, 864], "filterwarn": [3, 4], "ignor": [3, 4, 39, 47, 48, 52, 69, 75, 134, 368, 369, 371, 380, 391, 392, 393, 422, 436, 476, 477, 481, 519, 617, 624, 625, 629, 650, 664, 717, 718, 784, 807, 814, 816, 819, 832, 843, 864], "compos": [3, 6, 7, 26, 27, 40, 52, 75, 368, 382, 383, 384, 807, 815, 829, 832, 851, 853, 858, 865], "resiz": [3, 5, 6, 7, 40, 41, 52, 75, 368, 403, 835], "256": [3, 5, 7, 51, 76, 278, 279, 581, 624, 639, 641, 764], "centercrop": [3, 7], "224": [3, 7, 11, 13, 26, 27, 40, 41, 43, 800, 852], "totensor": [3, 6, 7, 40], "mean": [3, 6, 7, 8, 9, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 42, 52, 53, 56, 58, 59, 61, 65, 67, 69, 71, 75, 76, 79, 81, 82, 84, 88, 90, 92, 129, 208, 324, 334, 362, 365, 368, 369, 370, 371, 374, 375, 380, 396, 401, 419, 430, 442, 443, 444, 445, 446, 447, 448, 449, 459, 464, 474, 490, 492, 498, 517, 518, 535, 605, 606, 608, 613, 617, 619, 622, 623, 624, 625, 626, 627, 628, 629, 631, 635, 639, 641, 642, 643, 645, 646, 647, 657, 684, 685, 686, 694, 703, 704, 705, 712, 727, 728, 764, 766, 767, 779, 780, 783, 800, 807, 808, 810, 811, 813, 815, 817, 818, 819, 825, 827, 828, 829, 832, 833, 835, 837, 839, 840, 841, 842, 843, 845, 852, 853, 855, 858], "0": [3, 4, 5, 6, 7, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 136, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 163, 164, 168, 170, 175, 188, 191, 193, 196, 201, 202, 203, 204, 206, 207, 208, 210, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 227, 229, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 319, 320, 322, 323, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 386, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 410, 411, 412, 414, 417, 418, 419, 421, 422, 423, 426, 427, 429, 430, 431, 434, 435, 436, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 457, 459, 460, 461, 464, 465, 466, 467, 468, 469, 470, 471, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 523, 526, 528, 529, 530, 533, 534, 535, 537, 538, 541, 542, 543, 544, 545, 546, 547, 549, 550, 551, 553, 554, 555, 557, 558, 561, 563, 565, 566, 570, 575, 579, 580, 581, 583, 585, 587, 588, 597, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 704, 705, 706, 707, 709, 712, 713, 714, 715, 717, 718, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 765, 766, 767, 769, 776, 777, 779, 780, 781, 782, 783, 784, 785, 786, 789, 793, 794, 800, 803, 807, 808, 811, 813, 815, 816, 817, 818, 819, 820, 821, 822, 827, 828, 829, 830, 832, 833, 837, 839, 840, 841, 842, 843, 851, 852], "485": [3, 7, 40], "456": [3, 7, 40, 832], "406": [3, 7, 40, 52, 75, 389, 529, 622], "std": [3, 6, 7, 8, 9, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 41, 56, 61, 65, 79, 84, 88, 375, 498, 624, 631, 635, 639, 641, 642, 643, 645, 646, 727, 728, 800, 819, 853], "229": [3, 7, 40, 274, 620], "225": [3, 7, 40, 42, 229, 620], "torch_img": [3, 5, 7], "unsqueez": [3, 5, 6, 7], "img": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 800, 840, 852], "4": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 112, 113, 121, 122, 123, 124, 127, 129, 131, 132, 133, 134, 135, 136, 138, 142, 144, 148, 149, 150, 158, 160, 163, 168, 170, 175, 192, 193, 201, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 253, 254, 255, 256, 257, 258, 259, 260, 261, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 314, 315, 322, 324, 329, 330, 332, 334, 335, 337, 339, 340, 341, 342, 343, 344, 345, 346, 347, 349, 352, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 430, 436, 442, 443, 444, 445, 446, 447, 448, 450, 452, 453, 454, 457, 458, 459, 460, 461, 464, 465, 466, 469, 470, 471, 473, 474, 479, 480, 481, 482, 483, 484, 487, 488, 489, 493, 494, 495, 496, 499, 501, 502, 504, 509, 510, 511, 512, 513, 514, 516, 517, 518, 519, 520, 521, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 544, 547, 549, 550, 551, 558, 565, 566, 580, 581, 582, 583, 585, 589, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 653, 654, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 684, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 705, 707, 709, 710, 712, 713, 714, 715, 717, 718, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 765, 767, 779, 780, 784, 793, 794, 800, 803, 806, 807, 813, 814, 815, 816, 817, 819, 822, 827, 830, 832, 835, 837, 839, 840, 841, 842, 849, 851, 858, 864, 865], "ipython": [3, 5, 7, 21, 22, 23, 24, 26, 27, 45], "displai": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 45, 807, 814, 816, 821, 832, 840], "end": [3, 5, 40, 41, 52, 75, 121, 223, 279, 346, 365, 368, 370, 371, 415, 442, 464, 474, 476, 477, 617, 620, 794, 800, 807, 808, 813, 816, 822, 828, 833, 835, 836, 843, 856, 861], "see": [3, 4, 6, 8, 9, 18, 19, 24, 26, 27, 28, 29, 33, 38, 39, 45, 46, 49, 51, 52, 57, 62, 63, 65, 66, 68, 74, 75, 80, 85, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 128, 132, 139, 142, 149, 168, 175, 218, 223, 225, 227, 228, 229, 230, 235, 236, 240, 242, 246, 247, 254, 255, 258, 260, 262, 264, 265, 268, 271, 273, 277, 284, 286, 289, 290, 294, 295, 297, 322, 329, 330, 360, 362, 365, 369, 370, 371, 418, 444, 482, 614, 617, 618, 620, 625, 632, 633, 635, 636, 655, 668, 671, 674, 681, 682, 733, 737, 738, 739, 740, 748, 749, 750, 751, 752, 753, 754, 755, 756, 776, 800, 801, 803, 806, 807, 808, 811, 812, 814, 815, 816, 817, 818, 819, 822, 823, 824, 825, 829, 830, 832, 835, 837, 839, 840, 843, 847, 854], "5": [3, 4, 5, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 121, 122, 123, 129, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 148, 149, 150, 154, 158, 160, 168, 170, 175, 192, 201, 206, 209, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 324, 327, 329, 330, 332, 334, 336, 339, 340, 341, 342, 343, 345, 346, 347, 348, 349, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 417, 420, 421, 423, 424, 426, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 455, 458, 459, 460, 461, 464, 465, 468, 469, 470, 473, 474, 479, 480, 481, 482, 483, 484, 488, 489, 494, 495, 496, 499, 501, 502, 504, 509, 511, 512, 513, 514, 515, 516, 518, 521, 527, 528, 529, 530, 533, 534, 535, 536, 538, 541, 542, 544, 547, 549, 550, 551, 565, 566, 570, 580, 581, 582, 583, 585, 589, 602, 603, 604, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 640, 642, 643, 644, 645, 646, 647, 648, 649, 651, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 669, 670, 671, 672, 673, 675, 676, 677, 679, 680, 681, 684, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 704, 705, 707, 709, 712, 713, 714, 715, 717, 718, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 765, 766, 767, 780, 793, 794, 800, 804, 806, 807, 808, 811, 813, 815, 816, 817, 819, 821, 822, 824, 827, 830, 832, 839, 840, 841, 852], "set_default_devic": [3, 4, 5, 6, 7, 8, 212, 619, 818], "set_soft_device_mod": [3, 9, 213, 619, 818], "true": [3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 23, 24, 26, 27, 31, 32, 33, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 158, 160, 161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 175, 187, 191, 192, 194, 195, 199, 202, 203, 204, 205, 209, 211, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 460, 461, 462, 464, 465, 466, 469, 470, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 498, 503, 504, 510, 511, 512, 513, 514, 516, 517, 518, 519, 520, 521, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 544, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 565, 566, 567, 570, 573, 574, 576, 577, 579, 580, 581, 583, 585, 587, 588, 590, 595, 596, 598, 599, 601, 604, 605, 607, 609, 610, 611, 612, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 712, 713, 714, 716, 717, 718, 719, 723, 724, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 764, 765, 766, 767, 769, 780, 781, 782, 783, 784, 786, 789, 791, 793, 794, 798, 800, 803, 807, 813, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 828, 829, 830, 832, 834, 835, 837, 840, 841, 842, 851, 852], "set_backend": [3, 4, 5, 7, 9, 17, 18, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 39, 41, 42, 43, 51, 53, 67, 74, 76, 162, 171, 189, 190, 204, 206, 211, 219, 527, 551, 618, 619, 622, 628, 704, 705, 789, 800, 811, 813, 817, 818, 825, 826, 827, 837, 839, 842, 851, 852, 853], "ivy_model": [3, 4, 5, 7, 43], "ivy_alexnet": 3, "order": [3, 20, 30, 32, 40, 43, 45, 48, 52, 53, 56, 57, 59, 63, 64, 69, 75, 79, 80, 82, 86, 87, 92, 97, 98, 122, 123, 134, 142, 223, 242, 285, 322, 342, 362, 365, 368, 369, 371, 374, 378, 413, 418, 421, 422, 423, 424, 425, 429, 433, 435, 438, 441, 464, 465, 466, 471, 472, 484, 490, 491, 492, 495, 504, 617, 620, 624, 625, 627, 628, 632, 633, 634, 638, 639, 640, 641, 642, 643, 646, 659, 660, 666, 675, 676, 680, 682, 691, 694, 703, 704, 735, 737, 738, 739, 740, 741, 743, 744, 761, 783, 785, 794, 800, 806, 807, 808, 812, 813, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 829, 830, 831, 832, 833, 834, 835, 840, 842, 843, 847, 854, 857, 858, 859, 861, 864], "quick": [3, 15, 27, 808, 810, 830, 841], "call": [3, 6, 11, 13, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 33, 40, 44, 52, 67, 72, 75, 90, 92, 98, 117, 167, 168, 208, 369, 380, 433, 518, 569, 575, 589, 605, 606, 608, 616, 619, 622, 623, 625, 629, 673, 706, 712, 716, 717, 761, 772, 780, 781, 782, 784, 789, 794, 800, 806, 807, 808, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 832, 833, 835, 837, 839, 840, 841, 842, 843, 848, 851, 852, 853, 858, 859, 862], "trace_graph": [3, 4, 5, 7, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 34, 43, 782, 800, 837, 842, 850], "take": [3, 7, 17, 24, 26, 27, 32, 38, 40, 43, 52, 57, 59, 65, 75, 82, 92, 117, 118, 120, 136, 275, 282, 296, 360, 368, 369, 371, 387, 395, 400, 405, 415, 424, 436, 457, 464, 483, 512, 513, 616, 617, 620, 624, 625, 627, 628, 650, 665, 669, 694, 705, 745, 764, 772, 779, 780, 793, 800, 801, 806, 807, 808, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 828, 829, 830, 832, 835, 837, 839, 841, 842, 843, 844, 849, 851, 852, 855, 856, 864], "moment": [3, 52, 54, 75, 77, 369, 425, 603, 604, 609, 623, 784, 806, 813, 843, 851, 852], "one": [3, 6, 8, 11, 13, 15, 16, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 44, 48, 52, 53, 56, 57, 59, 62, 63, 65, 69, 71, 74, 75, 76, 77, 79, 80, 82, 83, 85, 86, 87, 88, 92, 121, 124, 134, 136, 137, 138, 148, 150, 208, 229, 235, 242, 243, 260, 266, 267, 268, 287, 296, 306, 309, 310, 328, 334, 337, 340, 341, 344, 345, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 389, 391, 395, 396, 399, 400, 403, 411, 416, 418, 427, 434, 448, 452, 453, 454, 458, 464, 465, 466, 471, 473, 478, 481, 490, 491, 492, 497, 502, 512, 513, 516, 517, 518, 519, 520, 521, 523, 561, 565, 566, 568, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 617, 618, 619, 620, 622, 623, 624, 625, 627, 630, 632, 633, 635, 638, 639, 640, 641, 642, 643, 646, 662, 665, 666, 670, 672, 681, 682, 690, 691, 692, 695, 697, 701, 725, 732, 735, 737, 738, 739, 740, 745, 747, 764, 766, 783, 786, 789, 794, 797, 800, 806, 807, 808, 809, 811, 812, 813, 814, 815, 817, 818, 819, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 839, 840, 842, 843, 844, 845, 848, 849, 852, 858, 859, 861, 864], "cost": [3, 54, 77, 603, 604, 607, 609, 610, 611, 623, 628, 703, 704, 705, 794, 817, 835, 856], "arg": [3, 5, 6, 7, 11, 13, 21, 22, 24, 26, 27, 31, 32, 33, 44, 47, 69, 91, 101, 117, 198, 208, 589, 616, 617, 619, 622, 759, 761, 776, 777, 780, 781, 782, 786, 789, 793, 798, 800, 812, 817, 818, 821, 827, 828, 829, 835, 837, 841, 851, 852, 853], "asarrai": [3, 4, 5, 6, 7, 41, 48, 52, 53, 64, 71, 75, 76, 87, 122, 378, 503, 504, 534, 545, 549, 550, 580, 581, 617, 622, 624, 633, 634, 638, 738, 742, 821, 826, 829, 830], "cuda": [3, 4, 5, 6, 7, 8, 9, 17, 26, 41, 42, 45, 48, 52, 61, 71, 75, 84, 132, 133, 136, 188, 189, 190, 204, 206, 375, 497, 498, 500, 501, 617, 619, 625, 631, 676, 726, 727, 728, 729, 779, 780, 781, 782, 783, 784, 785, 800, 837, 843, 845, 863], "7": [3, 5, 6, 7, 8, 9, 11, 13, 18, 19, 21, 22, 23, 24, 38, 40, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 107, 108, 109, 110, 121, 122, 123, 132, 135, 136, 154, 160, 163, 193, 215, 218, 221, 225, 226, 228, 229, 230, 231, 233, 235, 236, 237, 238, 239, 241, 242, 245, 246, 247, 252, 253, 254, 255, 256, 257, 258, 259, 260, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 278, 279, 280, 282, 285, 286, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 312, 313, 324, 328, 332, 334, 335, 342, 343, 344, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 409, 410, 411, 412, 414, 417, 420, 431, 443, 444, 445, 446, 448, 449, 452, 453, 454, 458, 460, 464, 469, 470, 473, 474, 479, 480, 482, 483, 485, 488, 489, 499, 501, 502, 509, 512, 513, 515, 516, 521, 527, 529, 530, 534, 535, 538, 549, 550, 551, 558, 565, 566, 580, 583, 603, 604, 606, 607, 608, 609, 610, 611, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 638, 639, 641, 643, 645, 646, 647, 648, 653, 655, 656, 657, 658, 660, 661, 662, 665, 667, 670, 672, 673, 675, 676, 677, 679, 680, 681, 684, 685, 686, 687, 690, 691, 696, 698, 699, 701, 706, 707, 714, 718, 725, 726, 727, 728, 729, 731, 736, 737, 739, 741, 742, 744, 745, 746, 747, 749, 751, 753, 754, 764, 807, 808, 813, 815, 816, 819, 825, 828, 832], "output": [3, 4, 5, 7, 17, 23, 24, 26, 27, 39, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 416, 418, 419, 420, 422, 424, 427, 428, 431, 432, 433, 434, 436, 437, 440, 442, 443, 444, 445, 446, 447, 448, 449, 450, 457, 458, 459, 462, 464, 465, 466, 467, 468, 471, 472, 473, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 486, 487, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 504, 509, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 528, 529, 530, 534, 535, 536, 538, 542, 551, 558, 565, 566, 567, 590, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 664, 665, 666, 668, 669, 670, 671, 672, 673, 674, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 697, 698, 699, 700, 702, 719, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 764, 779, 780, 793, 794, 800, 802, 807, 808, 810, 811, 812, 814, 815, 817, 818, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 837, 839, 841, 842, 843, 845, 851, 852, 859], "softmax": [3, 7, 11, 24, 26, 27, 42, 46, 56, 67, 68, 79, 370, 444, 614, 624, 650, 653, 776, 800], "pass": [3, 5, 6, 7, 8, 9, 11, 13, 17, 24, 26, 27, 33, 39, 40, 42, 44, 45, 51, 52, 67, 69, 74, 75, 90, 98, 117, 118, 120, 152, 174, 189, 208, 223, 269, 368, 370, 371, 374, 375, 380, 413, 444, 464, 490, 492, 497, 517, 518, 551, 616, 618, 619, 620, 622, 628, 703, 704, 759, 761, 765, 772, 777, 781, 782, 784, 785, 789, 793, 798, 800, 803, 806, 808, 811, 812, 813, 815, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 835, 843, 851, 852, 853, 856], "argsort": [3, 7, 64, 87, 634, 743, 829], "descend": [3, 7, 64, 87, 625, 634, 675, 676, 741, 744], "top": [3, 7, 10, 15, 24, 26, 27, 40, 41, 52, 59, 75, 313, 362, 370, 371, 442, 484, 534, 622, 688, 800, 807, 808, 817, 822, 829, 831, 832, 835, 840, 841, 858, 862], "logit": [3, 4, 5, 7, 40, 41, 42, 43, 52, 58, 75, 81, 360, 375, 497, 500, 626, 684, 686, 776, 800, 851], "gather": [3, 7, 40, 52, 53, 75, 76, 324, 325, 326, 362, 542, 544, 622, 865], "print": [3, 4, 6, 7, 9, 11, 13, 17, 18, 20, 24, 26, 27, 28, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 161, 162, 165, 167, 168, 170, 175, 187, 188, 192, 194, 195, 196, 197, 199, 200, 201, 202, 203, 206, 207, 209, 210, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 300, 301, 303, 304, 305, 307, 314, 315, 322, 324, 328, 329, 330, 332, 346, 347, 352, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 394, 396, 399, 401, 404, 405, 406, 409, 411, 412, 417, 420, 422, 424, 425, 433, 440, 443, 444, 445, 446, 447, 448, 449, 455, 457, 459, 470, 474, 479, 480, 482, 483, 484, 489, 493, 494, 496, 511, 512, 513, 514, 521, 523, 525, 526, 527, 528, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 544, 545, 546, 547, 549, 550, 551, 553, 554, 555, 557, 561, 562, 564, 565, 566, 570, 571, 572, 575, 578, 579, 580, 581, 583, 585, 587, 588, 589, 593, 594, 597, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 653, 654, 655, 656, 658, 660, 661, 662, 663, 665, 666, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 681, 682, 684, 685, 686, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 704, 705, 706, 707, 709, 710, 712, 713, 714, 715, 717, 718, 723, 724, 725, 726, 727, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 789, 793, 794, 798, 800, 807, 808, 815, 817, 819, 830, 832, 834, 837, 839, 840, 841, 851, 853], "indic": [3, 7, 48, 52, 53, 56, 57, 59, 60, 62, 63, 64, 69, 71, 72, 75, 76, 79, 80, 82, 83, 85, 86, 87, 92, 95, 122, 123, 136, 140, 142, 163, 167, 168, 279, 322, 323, 324, 342, 362, 365, 368, 369, 370, 371, 376, 378, 386, 387, 388, 390, 394, 395, 396, 400, 401, 404, 405, 406, 407, 411, 412, 422, 441, 444, 452, 453, 454, 457, 460, 462, 464, 465, 466, 469, 473, 479, 480, 482, 483, 484, 487, 488, 502, 503, 504, 526, 541, 542, 544, 565, 566, 570, 602, 605, 606, 617, 620, 622, 623, 624, 625, 627, 629, 630, 631, 632, 633, 634, 638, 640, 641, 642, 643, 646, 650, 668, 682, 690, 691, 692, 694, 695, 696, 697, 699, 701, 706, 709, 711, 713, 714, 715, 717, 721, 722, 723, 724, 725, 726, 732, 733, 734, 735, 737, 739, 741, 743, 744, 761, 762, 764, 766, 780, 786, 793, 794, 796, 807, 816, 824, 827, 829, 842, 851], "to_list": [3, 7, 53, 76, 622], "arrai": [3, 4, 7, 8, 9, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 164, 166, 167, 168, 170, 172, 173, 174, 175, 181, 191, 192, 196, 201, 203, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 543, 544, 545, 547, 548, 549, 550, 551, 553, 554, 555, 556, 557, 558, 560, 561, 563, 564, 565, 566, 567, 569, 570, 576, 577, 579, 580, 581, 582, 583, 585, 586, 587, 588, 589, 590, 598, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 712, 713, 714, 715, 718, 719, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 766, 772, 779, 780, 781, 782, 785, 789, 793, 794, 796, 800, 803, 806, 807, 808, 810, 813, 814, 815, 817, 818, 819, 820, 821, 822, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 845, 852, 853, 856, 857, 858, 860, 864, 865], "282": [3, 7], "281": [3, 7, 40, 42], "285": [3, 7, 75], "dev": [3, 6, 7, 8, 9, 19, 40, 42, 45, 50, 69, 73, 196, 203, 619, 807, 818, 822, 825, 839, 841], "64773697": 3, "29496649": 3, "04526037": 3, "39": [3, 4, 6, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 38, 40, 41, 42, 43, 45, 46, 51, 52, 57, 61, 68, 74, 75, 77, 80, 84, 107, 221, 256, 258, 260, 290, 291, 293, 360, 368, 380, 387, 389, 406, 409, 512, 603, 614, 620, 623, 625, 635, 662, 670, 728, 747], "tiger": [3, 7], "tabbi": [3, 7], "egyptian": [3, 7], "check": [3, 4, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 43, 45, 47, 49, 53, 57, 69, 72, 76, 80, 113, 151, 152, 161, 162, 165, 167, 168, 169, 172, 187, 194, 195, 202, 214, 527, 537, 539, 540, 547, 553, 554, 555, 556, 557, 573, 583, 595, 601, 614, 618, 619, 622, 625, 629, 660, 661, 668, 706, 716, 717, 718, 759, 766, 793, 794, 800, 801, 802, 805, 806, 807, 808, 809, 811, 815, 816, 818, 819, 821, 826, 828, 829, 830, 831, 832, 833, 834, 836, 837, 839, 840, 841, 844, 851], "confirm": [3, 41, 806], "same": [3, 4, 5, 6, 7, 8, 13, 19, 21, 22, 23, 24, 26, 29, 31, 33, 38, 39, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 88, 92, 93, 94, 95, 96, 97, 111, 121, 126, 131, 133, 134, 136, 138, 140, 141, 142, 144, 147, 148, 149, 160, 163, 208, 215, 216, 217, 218, 220, 222, 226, 228, 231, 235, 241, 242, 248, 268, 270, 272, 275, 277, 278, 279, 288, 295, 307, 321, 322, 323, 324, 325, 326, 329, 330, 332, 339, 355, 360, 362, 365, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 404, 405, 406, 407, 409, 410, 411, 412, 414, 421, 426, 427, 435, 436, 437, 438, 439, 441, 442, 444, 447, 457, 459, 474, 482, 483, 490, 492, 502, 504, 509, 510, 511, 512, 513, 514, 515, 521, 558, 612, 617, 618, 619, 620, 622, 623, 624, 625, 627, 628, 629, 631, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 650, 653, 654, 655, 656, 658, 659, 660, 661, 663, 665, 667, 669, 670, 671, 672, 673, 674, 675, 676, 679, 681, 688, 691, 692, 694, 695, 697, 698, 703, 704, 719, 729, 737, 738, 739, 740, 741, 742, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 764, 765, 766, 772, 780, 793, 800, 807, 808, 812, 813, 815, 816, 817, 818, 819, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 839, 841, 842, 843, 847, 849, 851, 853, 855, 857, 864, 865], "8": [3, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 97, 98, 105, 120, 130, 131, 135, 138, 144, 153, 155, 156, 157, 160, 168, 193, 210, 218, 220, 221, 225, 226, 229, 230, 231, 233, 239, 242, 246, 247, 253, 254, 255, 259, 260, 263, 264, 266, 267, 268, 273, 274, 277, 278, 279, 282, 283, 286, 287, 288, 292, 297, 299, 300, 301, 303, 304, 306, 307, 324, 328, 339, 342, 344, 345, 346, 349, 356, 360, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 414, 417, 420, 428, 443, 444, 445, 447, 448, 449, 450, 452, 453, 454, 458, 460, 464, 469, 470, 479, 480, 483, 484, 485, 488, 489, 499, 501, 513, 516, 517, 521, 527, 528, 530, 534, 535, 538, 541, 545, 549, 550, 551, 553, 554, 557, 560, 565, 566, 570, 580, 581, 582, 583, 603, 606, 608, 610, 611, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 629, 631, 632, 633, 634, 635, 638, 642, 643, 645, 646, 647, 648, 650, 656, 657, 658, 660, 661, 662, 665, 666, 667, 670, 672, 673, 675, 676, 677, 679, 680, 681, 682, 684, 685, 686, 687, 691, 698, 699, 701, 707, 714, 718, 726, 727, 728, 729, 731, 736, 737, 739, 741, 742, 744, 746, 747, 749, 751, 753, 754, 764, 767, 780, 807, 815, 816, 819, 832, 836, 840], "torch_alexnet": 3, "alexnet_weight": 3, "weight": [3, 9, 11, 13, 26, 27, 40, 41, 52, 54, 56, 58, 75, 77, 79, 81, 92, 93, 309, 313, 346, 362, 365, 368, 369, 380, 394, 427, 509, 511, 514, 603, 604, 607, 609, 610, 611, 623, 624, 626, 628, 648, 649, 650, 653, 684, 705, 766, 779, 780, 782, 784, 800, 815, 825, 832, 837, 841, 842, 857], "imagenet1k_v1": [3, 7], "dropout": [3, 56, 79, 368, 391, 392, 393, 624, 650, 653, 780, 840], "9": [3, 4, 5, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 68, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 97, 98, 105, 121, 122, 123, 135, 153, 154, 155, 156, 157, 160, 163, 216, 218, 220, 221, 224, 225, 226, 229, 230, 235, 236, 237, 242, 249, 255, 256, 257, 259, 263, 264, 266, 267, 268, 271, 273, 274, 278, 279, 282, 283, 284, 289, 294, 297, 298, 299, 336, 338, 342, 348, 349, 356, 360, 365, 366, 368, 370, 371, 378, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 414, 428, 443, 445, 447, 448, 452, 453, 454, 460, 464, 469, 479, 480, 481, 482, 484, 488, 499, 501, 504, 513, 530, 534, 535, 536, 538, 541, 549, 550, 553, 554, 557, 565, 566, 580, 582, 603, 604, 605, 609, 610, 614, 617, 618, 620, 622, 623, 624, 625, 627, 629, 631, 632, 633, 634, 635, 638, 639, 640, 646, 647, 648, 655, 656, 658, 660, 661, 662, 665, 666, 667, 670, 672, 673, 675, 676, 677, 679, 680, 681, 687, 691, 695, 696, 698, 699, 701, 706, 707, 712, 714, 717, 718, 726, 727, 728, 729, 731, 736, 737, 739, 741, 742, 744, 746, 747, 749, 751, 753, 754, 764, 784, 815, 817, 819, 827, 832, 840, 841, 854], "torch_output": [3, 5, 7], "dim": [3, 7, 42, 52, 69, 71, 75, 136, 307, 362, 368, 371, 385, 395, 396, 397, 400, 408, 464, 617, 624, 637, 644, 645, 649, 766, 780, 800, 817, 829, 830, 835], "torch_class": [3, 7], "torch_logit": [3, 7], "tensor": [3, 4, 6, 7, 8, 11, 13, 17, 18, 21, 22, 24, 26, 27, 28, 32, 38, 40, 48, 51, 52, 53, 56, 58, 59, 61, 69, 71, 74, 75, 76, 79, 80, 81, 82, 84, 91, 124, 132, 133, 136, 142, 158, 174, 266, 267, 296, 313, 317, 318, 319, 320, 321, 322, 331, 353, 360, 362, 365, 368, 369, 370, 371, 380, 381, 386, 387, 390, 394, 403, 404, 405, 406, 413, 415, 417, 424, 425, 426, 427, 430, 432, 434, 435, 438, 440, 441, 442, 444, 447, 448, 464, 467, 472, 475, 476, 477, 478, 481, 486, 517, 522, 565, 566, 617, 618, 620, 622, 624, 625, 626, 627, 631, 647, 649, 650, 664, 677, 684, 694, 696, 726, 780, 789, 794, 800, 812, 813, 817, 818, 822, 824, 825, 828, 829, 830, 832, 833, 835, 837, 839, 840, 842, 843, 845, 847, 851, 852, 853, 855, 856, 859, 861, 862, 865], "devic": [3, 5, 6, 7, 41, 42, 45, 48, 52, 61, 69, 71, 75, 84, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 212, 214, 306, 307, 322, 323, 362, 375, 462, 497, 498, 500, 501, 525, 539, 540, 617, 622, 631, 726, 727, 728, 729, 759, 761, 762, 777, 779, 780, 781, 782, 783, 784, 785, 786, 800, 808, 810, 813, 817, 821, 825, 826, 830, 832, 833, 835, 837, 842, 843, 844, 845, 848, 857, 858, 860, 861, 862, 863], "6477": 3, "2950": 3, "0453": 3, "grad_fn": [3, 7, 24, 38, 606, 613, 623, 840], "lt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 98], "takebackward0": [3, 7], "gt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 45, 98, 830, 837], "great": [3, 5, 800, 808, 832, 837, 839, 848, 849, 864], "With": [3, 19, 29, 38, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 163, 170, 175, 176, 177, 178, 179, 189, 192, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 329, 330, 332, 334, 337, 341, 344, 345, 346, 348, 349, 352, 360, 362, 365, 368, 369, 370, 371, 380, 389, 391, 392, 399, 411, 418, 419, 420, 422, 423, 424, 433, 436, 448, 464, 465, 466, 468, 471, 473, 474, 480, 482, 484, 487, 502, 511, 512, 513, 514, 516, 517, 518, 519, 520, 521, 523, 527, 528, 529, 530, 533, 534, 535, 536, 537, 541, 542, 545, 547, 549, 550, 551, 565, 566, 580, 581, 583, 585, 587, 588, 601, 602, 603, 604, 605, 607, 608, 609, 610, 611, 612, 613, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 653, 654, 655, 656, 657, 658, 660, 661, 663, 665, 666, 667, 668, 669, 672, 673, 674, 675, 676, 677, 679, 680, 681, 684, 686, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 704, 705, 706, 707, 709, 712, 713, 714, 715, 717, 718, 723, 724, 725, 726, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 807, 817, 819, 829, 832, 835, 837, 848, 849, 851, 858, 861], "simpl": [3, 11, 15, 16, 18, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 38, 40, 42, 45, 52, 75, 380, 511, 766, 780, 794, 800, 806, 807, 808, 809, 812, 814, 815, 817, 818, 819, 820, 825, 828, 829, 832, 833, 835, 839, 841, 842, 843, 845, 847, 851, 852, 857, 858, 859, 860], "chang": [3, 4, 9, 17, 27, 40, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 580, 581, 582, 583, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 614, 620, 627, 629, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 665, 666, 671, 672, 673, 675, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 707, 718, 723, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 754, 755, 756, 761, 800, 804, 806, 807, 808, 809, 811, 813, 814, 815, 816, 817, 819, 820, 822, 823, 829, 830, 831, 832, 833, 834, 835, 837, 841, 843, 844, 849, 851, 861, 864], "backend": [3, 8, 18, 19, 20, 21, 22, 23, 24, 27, 29, 30, 32, 47, 48, 52, 53, 57, 69, 75, 76, 80, 97, 124, 161, 162, 165, 187, 194, 195, 197, 200, 211, 329, 330, 365, 369, 420, 422, 518, 527, 539, 540, 548, 551, 552, 562, 569, 583, 586, 617, 618, 619, 622, 625, 675, 759, 761, 762, 764, 765, 766, 769, 771, 772, 777, 781, 782, 784, 788, 789, 800, 803, 805, 807, 808, 810, 811, 812, 816, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 832, 834, 835, 836, 838, 839, 842, 845, 847, 851, 852, 853, 858, 861, 864, 865], "let": [3, 4, 5, 6, 8, 9, 11, 13, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 43, 45, 53, 65, 76, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 279, 281, 282, 286, 541, 542, 620, 622, 625, 635, 679, 749, 751, 752, 753, 754, 800, 806, 809, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 829, 830, 832, 833, 834, 835, 837, 839, 840, 841, 842, 849, 851, 852, 865], "u": [3, 6, 40, 42, 44, 45, 52, 57, 71, 75, 80, 92, 93, 133, 369, 430, 437, 439, 625, 629, 654, 660, 661, 675, 714, 800, 801, 807, 808, 809, 810, 815, 816, 823, 826, 828, 829, 830, 831, 832, 833, 835, 841, 843, 848], "differ": [3, 4, 6, 8, 9, 11, 15, 16, 20, 21, 22, 26, 27, 30, 31, 32, 33, 51, 52, 53, 57, 65, 69, 75, 76, 88, 97, 98, 107, 110, 160, 218, 235, 242, 243, 268, 284, 328, 335, 339, 340, 344, 365, 368, 369, 371, 380, 401, 412, 435, 441, 458, 465, 466, 480, 512, 513, 521, 541, 542, 614, 618, 620, 622, 624, 625, 627, 635, 647, 648, 662, 673, 688, 698, 745, 746, 751, 753, 754, 759, 764, 772, 781, 782, 800, 803, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 827, 828, 829, 830, 832, 833, 835, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 851, 852, 853, 855, 856, 857, 858, 861, 864, 865], "ll": [3, 5, 6, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 41, 800, 801, 803, 806, 807, 808, 809, 814, 819, 822, 823, 827, 828, 840, 844, 849, 851, 852], "try": [3, 18, 28, 38, 41, 45, 69, 589, 622, 779, 789, 800, 806, 807, 808, 811, 812, 815, 816, 817, 821, 823, 828, 830, 837, 839, 843, 846, 848, 849, 853], "10": [3, 5, 7, 8, 9, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 42, 44, 45, 48, 51, 52, 53, 54, 56, 57, 61, 63, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 121, 131, 132, 133, 217, 225, 226, 229, 230, 233, 240, 245, 247, 253, 255, 257, 268, 274, 281, 282, 287, 295, 328, 329, 330, 333, 337, 339, 341, 342, 344, 345, 346, 348, 349, 353, 356, 365, 368, 371, 380, 386, 387, 388, 389, 399, 404, 405, 409, 410, 411, 412, 414, 442, 454, 457, 460, 464, 469, 479, 480, 488, 509, 512, 513, 516, 518, 521, 534, 535, 536, 538, 541, 542, 544, 549, 550, 558, 566, 570, 575, 580, 582, 594, 597, 609, 617, 620, 622, 623, 624, 625, 627, 629, 630, 631, 632, 633, 634, 635, 638, 639, 641, 647, 656, 658, 662, 663, 665, 666, 667, 670, 675, 676, 677, 679, 681, 691, 696, 697, 698, 699, 701, 712, 714, 717, 718, 725, 726, 727, 728, 729, 735, 737, 743, 745, 746, 747, 748, 750, 751, 753, 754, 764, 766, 784, 800, 803, 807, 811, 815, 816, 817, 819, 822, 827, 830, 832, 837, 839, 840, 848, 853, 863], "tf": [3, 5, 8, 11, 13, 18, 21, 22, 24, 26, 27, 28, 29, 31, 33, 38, 43, 44, 777, 800, 812, 817, 818, 824, 828, 829, 832, 833, 835, 837, 842, 843, 845, 851, 852, 853, 858], "onc": [3, 5, 26, 27, 38, 40, 57, 61, 80, 84, 208, 369, 421, 619, 625, 631, 659, 660, 661, 675, 726, 800, 806, 807, 808, 815, 816, 817, 818, 819, 822, 823, 828, 829, 832, 835, 837, 840, 843, 844, 849, 851], "set": [3, 11, 13, 19, 26, 27, 29, 32, 40, 41, 42, 43, 44, 47, 52, 53, 56, 57, 62, 64, 65, 69, 75, 76, 79, 80, 85, 87, 88, 110, 113, 120, 140, 142, 176, 177, 178, 179, 180, 191, 204, 205, 206, 207, 208, 223, 322, 334, 349, 351, 356, 362, 365, 366, 368, 369, 370, 371, 380, 390, 411, 415, 419, 423, 426, 442, 447, 448, 464, 474, 477, 484, 511, 516, 517, 518, 519, 520, 521, 523, 527, 534, 546, 551, 567, 568, 569, 571, 572, 573, 574, 575, 576, 577, 578, 583, 591, 614, 616, 617, 618, 619, 620, 622, 624, 625, 629, 631, 632, 634, 635, 647, 653, 655, 666, 668, 671, 674, 675, 706, 713, 716, 717, 718, 723, 724, 730, 732, 733, 737, 739, 740, 741, 744, 752, 754, 761, 764, 765, 766, 767, 772, 779, 780, 782, 784, 789, 794, 797, 800, 801, 808, 810, 811, 812, 814, 815, 816, 817, 818, 819, 821, 823, 825, 826, 828, 829, 830, 832, 833, 835, 837, 839, 840, 847, 850, 851, 852, 856, 857, 858, 859, 860, 862, 865], "our": [3, 6, 8, 9, 11, 13, 15, 18, 19, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 44, 67, 90, 97, 98, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 766, 776, 777, 779, 780, 782, 783, 784, 785, 800, 801, 802, 804, 805, 806, 807, 808, 810, 811, 812, 814, 815, 816, 817, 819, 821, 822, 823, 826, 829, 830, 831, 832, 833, 835, 836, 837, 839, 840, 841, 842, 843, 847, 848, 851, 863, 864], "post": [3, 5, 40, 60, 83, 630, 725, 807, 822, 827, 842, 844], "process": [3, 5, 21, 26, 27, 31, 40, 202, 214, 619, 801, 807, 808, 814, 815, 816, 822, 823, 825, 827, 829, 830, 831, 832, 835, 837, 842, 848, 849, 851, 856, 857, 858, 861, 862, 864, 865], "11": [3, 5, 7, 8, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 53, 56, 57, 61, 65, 74, 75, 76, 79, 80, 82, 84, 88, 98, 218, 222, 225, 230, 240, 277, 278, 284, 346, 365, 368, 369, 371, 386, 387, 399, 404, 405, 409, 410, 414, 423, 457, 458, 460, 464, 469, 471, 488, 512, 513, 528, 534, 535, 541, 550, 566, 620, 622, 624, 625, 626, 627, 629, 631, 632, 633, 635, 638, 639, 647, 648, 658, 661, 662, 663, 665, 666, 670, 674, 675, 676, 677, 679, 681, 684, 686, 691, 696, 697, 699, 701, 712, 714, 724, 727, 728, 729, 736, 737, 745, 746, 747, 754, 815, 816, 817, 819, 827], "st": [3, 4, 6, 764, 811, 830, 832], "perf_count": [3, 6], "raw_logit": 3, "latenc": [3, 6], "nn": [3, 5, 13, 24, 26, 27, 40, 44, 134, 617, 800, 825, 830, 835, 842, 852, 859], "axi": [3, 5, 9, 41, 42, 43, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 108, 112, 132, 133, 136, 208, 282, 287, 329, 330, 334, 335, 342, 349, 365, 368, 370, 371, 374, 378, 380, 389, 390, 396, 399, 401, 411, 412, 446, 451, 459, 460, 461, 464, 465, 466, 469, 474, 479, 480, 482, 483, 484, 487, 488, 493, 494, 496, 504, 509, 512, 513, 514, 516, 517, 518, 519, 520, 521, 534, 541, 602, 614, 617, 619, 620, 622, 624, 625, 626, 627, 628, 631, 632, 633, 634, 635, 636, 646, 655, 658, 666, 679, 681, 682, 684, 685, 686, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 704, 705, 731, 732, 733, 737, 739, 741, 742, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 766, 776, 780, 781, 786, 815, 817, 819, 821, 824, 825, 828, 829, 832, 835, 837, 839, 842], "direct": [3, 52, 75, 335, 341, 345, 350, 354, 365, 368, 371, 401, 412, 465, 466, 480, 634, 744, 806, 812, 814, 829, 835, 841, 842, 854, 858, 859, 862], "tolist": 3, "652289830999962": 3, "shape": [3, 4, 5, 9, 11, 13, 19, 20, 21, 22, 26, 27, 32, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 96, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 203, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 310, 311, 312, 313, 315, 317, 318, 319, 320, 321, 322, 323, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 353, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 416, 417, 418, 419, 421, 422, 423, 426, 427, 428, 429, 431, 432, 433, 434, 435, 436, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 454, 455, 457, 459, 462, 467, 472, 473, 474, 475, 476, 477, 478, 480, 481, 482, 483, 484, 486, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 504, 509, 510, 511, 512, 513, 514, 529, 530, 534, 535, 536, 538, 541, 542, 545, 551, 558, 565, 566, 576, 584, 586, 598, 602, 603, 604, 607, 609, 610, 611, 612, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 741, 742, 744, 745, 746, 747, 749, 751, 752, 754, 755, 756, 761, 764, 766, 779, 780, 783, 793, 800, 808, 809, 815, 817, 818, 819, 820, 821, 822, 824, 828, 829, 830, 832, 833, 834, 837, 839, 840, 841, 842, 851, 852], "dtype": [3, 5, 7, 9, 13, 19, 21, 22, 23, 24, 38, 41, 48, 49, 52, 53, 56, 57, 61, 62, 65, 69, 71, 72, 74, 75, 76, 79, 80, 84, 85, 88, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 203, 230, 269, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 327, 332, 334, 349, 362, 365, 368, 369, 370, 371, 375, 380, 389, 399, 411, 412, 415, 436, 442, 447, 458, 482, 497, 498, 499, 500, 501, 511, 512, 513, 514, 517, 520, 521, 538, 539, 540, 542, 551, 560, 587, 617, 618, 619, 620, 622, 624, 625, 628, 631, 632, 634, 635, 636, 640, 647, 666, 682, 704, 705, 727, 728, 729, 732, 733, 734, 743, 744, 745, 746, 751, 753, 755, 756, 759, 761, 764, 766, 767, 779, 780, 781, 782, 783, 785, 800, 803, 811, 813, 817, 818, 819, 821, 822, 825, 826, 828, 829, 830, 832, 833, 837, 839, 852], "int32": [3, 38, 40, 49, 52, 53, 61, 62, 65, 72, 75, 76, 84, 85, 127, 132, 138, 144, 147, 150, 152, 154, 156, 158, 161, 163, 164, 168, 171, 175, 179, 183, 185, 203, 230, 376, 380, 502, 512, 513, 514, 542, 551, 587, 617, 618, 619, 620, 622, 631, 632, 635, 727, 728, 729, 733, 745, 746, 751, 753, 764, 765, 817, 829, 832, 837], "6477362": 3, "29496726": 3, "04526032": 3, "float32": [3, 5, 7, 9, 11, 13, 18, 19, 38, 40, 41, 42, 48, 49, 52, 53, 56, 71, 72, 75, 76, 79, 88, 133, 136, 138, 144, 145, 146, 150, 154, 155, 158, 159, 160, 161, 164, 167, 168, 170, 175, 178, 184, 248, 275, 327, 339, 362, 365, 368, 369, 370, 380, 389, 399, 412, 436, 442, 447, 514, 551, 587, 617, 618, 620, 622, 624, 625, 628, 640, 642, 643, 646, 673, 675, 676, 682, 704, 705, 761, 764, 765, 800, 817, 819, 830, 832, 833, 852, 853], "As": [3, 5, 6, 8, 9, 11, 13, 19, 23, 24, 26, 27, 29, 32, 38, 39, 63, 67, 90, 633, 737, 738, 739, 740, 800, 803, 806, 807, 808, 809, 812, 814, 815, 816, 817, 818, 821, 822, 823, 824, 825, 828, 829, 830, 831, 832, 835, 839, 840, 841, 843, 847, 851, 852, 853, 858, 863], "expect": [3, 5, 6, 8, 19, 23, 26, 27, 29, 42, 43, 45, 52, 57, 58, 75, 81, 174, 242, 286, 368, 370, 390, 412, 447, 525, 618, 620, 622, 626, 670, 684, 779, 780, 800, 807, 808, 811, 817, 818, 821, 823, 826, 828, 830, 832, 835, 843, 844, 849, 851, 852, 853], "ident": [3, 9, 24, 41, 43, 57, 69, 127, 196, 544, 570, 617, 619, 622, 625, 629, 662, 667, 719, 780, 815, 825, 826, 829, 830, 833, 835, 839, 840, 843, 845, 847, 849], "had": [3, 815, 816, 828, 833, 837, 858, 859], "anoth": [3, 17, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 128, 148, 150, 617, 618, 800, 806, 807, 808, 813, 815, 817, 818, 821, 823, 825, 828, 829, 832, 837, 839, 842, 845, 848, 850, 851, 852, 858, 864], "postprocess": 3, "routin": [3, 816, 828, 829, 835, 843, 858], "feed": [3, 208, 619, 851, 858, 859], "other": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 49, 51, 52, 53, 59, 65, 69, 72, 74, 75, 76, 82, 88, 92, 97, 98, 121, 136, 148, 174, 235, 240, 242, 258, 267, 268, 331, 335, 365, 371, 458, 459, 467, 523, 524, 617, 618, 620, 622, 631, 635, 688, 698, 729, 752, 754, 766, 800, 803, 806, 807, 808, 811, 812, 815, 816, 819, 820, 821, 822, 823, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 839, 841, 842, 843, 844, 845, 848, 851, 852, 854, 856, 857, 858, 864, 865], "carefulli": [3, 273, 620, 779, 829, 856, 861], "rewrit": 3, "easili": [3, 23, 26, 27, 38, 800, 807, 812, 816, 822, 829, 835, 840, 841, 842, 843, 848, 858, 864, 865], "out": [3, 5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 41, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 158, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 417, 418, 419, 420, 421, 424, 425, 427, 428, 429, 431, 432, 433, 434, 436, 440, 443, 444, 445, 446, 448, 449, 455, 457, 458, 459, 461, 462, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 486, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 529, 530, 534, 535, 536, 538, 541, 542, 551, 561, 565, 566, 603, 604, 607, 609, 610, 611, 612, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 697, 698, 699, 700, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 736, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 772, 776, 777, 779, 780, 782, 783, 784, 785, 800, 801, 803, 805, 806, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 825, 827, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 842, 844, 847, 848, 849, 851, 852, 858, 865], "quickest": 3, "particular": [3, 26, 27, 263, 620, 765, 807, 808, 811, 813, 816, 817, 819, 826, 828, 829, 832, 833, 854, 858, 864], "hardwar": [3, 40, 97, 101, 800, 807, 835, 848, 854, 856, 857, 858, 859, 860, 861, 862, 863, 864], "again": [3, 5, 20, 21, 29, 30, 31, 32, 625, 673, 808, 812, 813, 814, 815, 819, 821, 823, 828, 829, 832, 833, 835, 840, 842, 843, 848, 849, 863, 864], "speed": [3, 6, 8, 9, 26, 27, 40, 45, 53, 76, 558, 622, 832, 847, 861], "up": [3, 5, 6, 8, 9, 26, 52, 53, 75, 76, 368, 371, 390, 403, 458, 466, 546, 558, 622, 624, 647, 800, 801, 803, 806, 808, 809, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 838, 839, 840, 841, 842, 843, 847, 848, 849, 851, 859, 864, 865], "12": [3, 5, 6, 7, 9, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 49, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 83, 84, 88, 97, 98, 163, 218, 220, 225, 229, 230, 233, 235, 236, 237, 255, 268, 271, 278, 281, 288, 289, 311, 312, 342, 345, 346, 362, 365, 368, 371, 380, 386, 387, 388, 389, 391, 395, 396, 404, 405, 409, 410, 411, 412, 414, 457, 458, 460, 464, 469, 488, 501, 512, 518, 519, 520, 530, 534, 535, 566, 572, 580, 594, 620, 622, 624, 625, 627, 629, 630, 631, 632, 633, 635, 638, 642, 647, 648, 658, 660, 662, 666, 670, 674, 676, 677, 679, 681, 691, 695, 697, 699, 701, 718, 725, 727, 728, 729, 736, 737, 745, 746, 747, 751, 753, 764, 807, 813, 815, 817, 819, 827], "repeat": [3, 4, 20, 30, 52, 53, 59, 75, 76, 82, 368, 371, 380, 396, 401, 463, 511, 536, 622, 627, 628, 700, 704, 705, 793, 808, 812, 813, 819, 820, 828, 832], "previou": [3, 9, 19, 20, 21, 23, 29, 30, 31, 33, 54, 75, 77, 182, 183, 184, 185, 186, 357, 367, 368, 413, 590, 592, 593, 594, 595, 597, 598, 600, 604, 609, 618, 622, 623, 779, 797, 807, 808, 811, 813, 816, 818, 824, 829, 832, 835, 842, 843, 861], "trace": [3, 4, 5, 6, 7, 8, 15, 16, 20, 23, 26, 29, 31, 32, 44, 53, 57, 69, 76, 80, 553, 554, 557, 568, 577, 591, 599, 622, 625, 761, 772, 782, 784, 800, 811, 815, 817, 829, 834, 835, 837, 842, 843, 850, 851, 852, 859, 864], "befor": [3, 4, 5, 18, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 40, 52, 56, 57, 59, 63, 65, 69, 75, 79, 80, 205, 208, 213, 368, 371, 380, 395, 400, 410, 414, 458, 465, 466, 467, 474, 512, 513, 619, 624, 625, 627, 628, 629, 633, 635, 637, 638, 639, 640, 642, 644, 646, 649, 650, 653, 665, 682, 688, 703, 704, 718, 737, 738, 739, 740, 745, 746, 751, 753, 780, 789, 793, 806, 807, 808, 811, 812, 814, 817, 818, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 832, 837, 840, 843, 851, 852, 858], "13": [3, 5, 6, 7, 17, 21, 22, 23, 24, 38, 40, 42, 46, 51, 52, 56, 57, 61, 65, 74, 75, 76, 77, 79, 82, 84, 88, 97, 113, 163, 193, 218, 233, 242, 253, 273, 282, 342, 349, 356, 365, 368, 371, 388, 389, 399, 404, 410, 414, 457, 458, 460, 464, 469, 488, 501, 512, 513, 529, 530, 534, 535, 550, 572, 580, 603, 614, 618, 619, 620, 622, 623, 624, 625, 627, 628, 629, 632, 633, 635, 638, 639, 647, 648, 658, 662, 670, 674, 676, 679, 701, 705, 718, 727, 728, 729, 736, 737, 745, 746, 747, 815, 817, 819, 829], "026875037000081647": 3, "14": [3, 5, 6, 7, 22, 38, 40, 41, 42, 49, 51, 52, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 147, 160, 163, 216, 221, 223, 230, 234, 260, 264, 268, 274, 281, 289, 338, 368, 369, 371, 380, 386, 387, 388, 389, 399, 406, 409, 410, 411, 414, 418, 424, 425, 458, 460, 464, 469, 488, 512, 580, 603, 618, 620, 622, 623, 624, 625, 627, 629, 633, 635, 638, 639, 641, 643, 645, 647, 658, 660, 662, 670, 677, 679, 681, 701, 718, 727, 728, 729, 737, 746, 747, 815, 819, 832], "overrid": [3, 5, 32, 41, 48, 52, 71, 75, 136, 380, 511, 617, 812, 814], "behavior": [3, 5, 52, 63, 235, 242, 268, 277, 381, 522, 569, 592, 620, 622, 633, 737, 738, 739, 740, 806, 814, 815, 816, 817, 828, 829, 830, 832, 835, 837, 843, 855], "prealloc": [3, 5], "75": [3, 5, 38, 51, 52, 74, 75, 76, 79, 84, 114, 132, 221, 223, 235, 237, 248, 309, 341, 342, 362, 365, 410, 521, 536, 549, 580, 614, 617, 620, 622, 625, 629, 631, 638, 663, 670, 714, 729], "memori": [3, 5, 8, 21, 22, 23, 24, 48, 52, 59, 71, 75, 82, 123, 134, 190, 202, 208, 210, 214, 371, 380, 452, 453, 460, 462, 464, 465, 466, 473, 488, 518, 564, 569, 592, 617, 619, 622, 624, 627, 649, 690, 691, 692, 694, 696, 697, 699, 701, 794, 816, 817, 818, 828, 829, 835, 837, 843, 851, 858, 860, 861, 862], "temporari": [3, 5, 578, 600, 622, 794, 817, 834], "fix": [3, 5, 42, 52, 75, 92, 93, 365, 368, 369, 413, 441, 624, 650, 800, 803, 807, 808, 811, 817, 823, 832, 833], "until": [3, 5, 794, 808, 828, 837, 843, 848, 851, 865], "handl": [3, 5, 38, 40, 46, 50, 51, 52, 68, 69, 73, 74, 75, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 188, 189, 190, 191, 192, 196, 201, 202, 210, 214, 220, 232, 257, 259, 273, 279, 280, 285, 286, 290, 294, 295, 297, 360, 371, 457, 483, 614, 619, 620, 625, 635, 679, 751, 753, 776, 784, 801, 804, 810, 815, 816, 817, 823, 824, 825, 827, 828, 829, 830, 831, 832, 834, 835, 841, 855, 865], "o": [3, 5, 39, 40, 41, 42, 44, 561, 622, 624, 650, 800, 807, 810, 816, 837, 844], "environ": [3, 5, 8, 21, 22, 23, 24, 41, 44, 800, 801, 808, 844, 858, 860], "xla_python_client_alloc": [3, 5], "platform": [3, 5, 9, 21, 22, 24, 802, 805, 807, 814, 856, 860, 862], "jit": [3, 6, 8, 26, 29, 837, 843, 851, 858], "img_jax": [3, 5], "device_put": [3, 6], "15": [3, 5, 7, 8, 9, 22, 38, 40, 41, 42, 45, 51, 52, 53, 57, 61, 65, 71, 72, 74, 75, 76, 79, 80, 82, 84, 88, 98, 131, 160, 218, 225, 229, 235, 237, 246, 253, 254, 259, 260, 268, 277, 278, 279, 342, 356, 365, 366, 368, 369, 371, 380, 386, 387, 404, 406, 409, 410, 414, 420, 460, 464, 469, 488, 512, 530, 534, 535, 538, 549, 550, 575, 580, 597, 617, 618, 620, 622, 624, 625, 627, 629, 631, 632, 633, 635, 638, 648, 658, 661, 662, 663, 670, 676, 677, 695, 701, 706, 718, 727, 728, 735, 737, 745, 746, 747, 761, 804, 807, 816, 819, 827, 861], "warm": 3, "_": [3, 6, 8, 9, 26, 39, 40, 51, 52, 69, 74, 75, 77, 93, 150, 238, 240, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 438, 441, 482, 511, 534, 603, 604, 618, 620, 622, 623, 625, 627, 629, 635, 673, 674, 676, 702, 713, 752, 808, 816, 817, 820, 828, 840], "rang": [3, 9, 26, 27, 38, 39, 40, 42, 48, 52, 65, 71, 75, 121, 132, 133, 282, 293, 301, 313, 360, 362, 369, 371, 380, 422, 432, 467, 475, 477, 482, 486, 512, 513, 514, 534, 602, 617, 620, 622, 633, 635, 737, 745, 746, 751, 753, 764, 766, 767, 779, 800, 804, 806, 817, 821, 825, 832, 837, 840, 841, 842, 858, 864], "16": [3, 5, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 97, 98, 163, 229, 258, 278, 285, 339, 342, 346, 365, 368, 371, 380, 386, 387, 389, 395, 399, 400, 404, 405, 410, 414, 447, 464, 512, 518, 535, 538, 560, 580, 581, 613, 618, 620, 622, 623, 624, 625, 627, 629, 631, 632, 635, 646, 648, 654, 658, 661, 662, 670, 672, 676, 701, 714, 727, 728, 729, 736, 746, 747, 764, 767, 800, 808, 817, 819, 840], "0022192720000475674": 3, "64773613": 3, "29496723": 3, "exact": [3, 52, 68, 69, 105, 368, 370, 403, 408, 446, 447, 633, 737, 739, 766, 776, 807, 808, 811, 819, 837], "note": [3, 5, 9, 22, 26, 27, 32, 41, 42, 43, 52, 53, 57, 59, 63, 75, 80, 82, 92, 129, 142, 174, 242, 277, 278, 285, 322, 323, 342, 362, 365, 368, 369, 371, 390, 421, 426, 434, 435, 441, 464, 482, 618, 620, 624, 625, 627, 633, 635, 650, 659, 660, 672, 673, 675, 694, 698, 738, 740, 749, 780, 794, 803, 806, 807, 808, 812, 817, 819, 820, 823, 828, 829, 830, 832, 833, 835], "were": [3, 5, 43, 69, 72, 163, 167, 168, 242, 620, 624, 650, 806, 807, 808, 817, 821, 823, 827, 828, 830, 832, 833, 835, 837, 851, 858, 859, 864], "function": [3, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 161, 162, 163, 166, 167, 168, 170, 174, 175, 192, 194, 195, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 377, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 544, 545, 546, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 561, 564, 565, 566, 569, 570, 573, 575, 577, 580, 581, 582, 583, 585, 587, 588, 589, 595, 599, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 710, 712, 713, 714, 716, 717, 718, 719, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 762, 764, 765, 766, 767, 772, 776, 779, 782, 789, 790, 796, 800, 803, 807, 808, 810, 811, 812, 813, 814, 816, 819, 820, 822, 828, 831, 836, 838, 839, 840, 841, 845, 847, 851, 853, 855, 856, 857, 858, 859, 864, 865], "calcul": [3, 9, 40, 51, 52, 53, 58, 65, 69, 74, 75, 76, 80, 81, 88, 98, 215, 216, 217, 218, 219, 220, 221, 222, 223, 232, 233, 235, 238, 239, 240, 256, 257, 258, 259, 260, 261, 266, 267, 268, 273, 280, 281, 282, 284, 285, 286, 292, 301, 329, 330, 342, 352, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 422, 442, 447, 474, 490, 492, 518, 558, 620, 622, 625, 626, 635, 661, 670, 673, 684, 685, 686, 748, 749, 750, 751, 752, 753, 754, 764, 766, 779, 780, 783, 806, 820, 837, 848, 851], "dog": 3, "18": [3, 8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 61, 74, 75, 79, 80, 84, 88, 108, 230, 235, 277, 281, 290, 291, 342, 360, 365, 368, 371, 389, 395, 399, 400, 404, 410, 414, 464, 614, 620, 625, 631, 635, 642, 658, 665, 670, 677, 727, 728, 729, 746, 747, 751, 815, 817, 819], "19": [3, 8, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 61, 74, 75, 79, 80, 84, 221, 230, 258, 268, 285, 368, 369, 371, 380, 388, 389, 400, 404, 410, 414, 420, 425, 464, 512, 620, 625, 629, 631, 634, 658, 666, 679, 717, 727, 728, 729, 744, 819], "006431100999861883": 3, "258": [3, 624, 639, 641], "104": [3, 65, 625, 635, 670, 747], "259": 3, "72447652": 3, "13937832": 3, "05874982": 3, "samoi": 3, "wallabi": 3, "pomeranian": 3, "incorrect": [3, 816], "predict": [3, 5, 7, 9, 40, 41, 42, 43, 52, 58, 75, 81, 370, 443, 446, 449, 626, 684, 685, 686, 800, 817], "down": [3, 19, 29, 43, 52, 75, 368, 371, 403, 466, 807, 832, 845, 858, 864], "itself": [3, 21, 31, 51, 92, 269, 524, 589, 620, 622, 629, 718, 794, 803, 807, 808, 811, 814, 815, 816, 817, 818, 821, 822, 823, 828, 829, 841, 843, 847, 851, 857, 858, 859, 864], "version": [3, 9, 23, 24, 29, 40, 41, 42, 45, 46, 52, 75, 92, 105, 286, 334, 336, 365, 380, 516, 521, 602, 620, 622, 625, 660, 661, 761, 789, 790, 800, 807, 808, 814, 816, 817, 820, 828, 830, 837, 847, 848, 849, 852, 864, 865], "return": [3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 764, 765, 766, 767, 771, 772, 777, 779, 780, 782, 784, 789, 790, 793, 794, 795, 796, 797, 800, 807, 808, 812, 815, 817, 818, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 839, 840, 841, 842, 843, 851, 852, 853, 859], "20": [3, 9, 13, 38, 40, 41, 42, 45, 51, 52, 53, 56, 61, 65, 74, 75, 76, 79, 80, 84, 88, 230, 234, 238, 274, 278, 282, 298, 342, 344, 346, 365, 368, 371, 386, 388, 404, 410, 414, 457, 479, 534, 541, 542, 544, 566, 570, 580, 620, 622, 625, 631, 632, 635, 638, 639, 649, 658, 663, 666, 670, 677, 727, 735, 736, 745, 746, 747, 751, 753, 800, 816, 835, 839], "004749261999904775": 3, "7245": 3, "1394": 3, "0587": 3, "promis": [3, 848], "sourc": [3, 7, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 33, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 761, 762, 764, 765, 766, 768, 769, 770, 771, 772, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 806, 807, 808, 811, 812, 814, 815, 816, 829, 831, 847, 848, 849, 850, 852, 853, 857, 858, 859, 860, 861], "21": [3, 9, 38, 40, 42, 45, 51, 52, 53, 61, 71, 74, 75, 79, 80, 84, 88, 97, 133, 163, 218, 221, 223, 229, 253, 268, 298, 349, 368, 369, 370, 371, 380, 386, 389, 399, 404, 410, 412, 414, 418, 442, 457, 512, 566, 617, 618, 620, 622, 625, 626, 629, 635, 658, 670, 674, 686, 712, 727, 728, 745, 746, 747, 821, 827], "modul": [3, 5, 6, 8, 11, 13, 15, 16, 17, 21, 22, 23, 24, 26, 27, 28, 32, 38, 39, 40, 42, 43, 44, 67, 69, 90, 98, 361, 363, 364, 372, 373, 377, 562, 622, 636, 757, 761, 776, 777, 778, 780, 781, 783, 785, 788, 789, 800, 802, 807, 812, 813, 814, 821, 825, 828, 829, 831, 832, 837, 838, 840, 842, 843, 849, 851, 853, 858, 859, 861], "def": [3, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 51, 74, 117, 219, 528, 546, 616, 622, 628, 629, 704, 705, 712, 793, 800, 803, 806, 807, 811, 812, 815, 817, 818, 819, 821, 822, 824, 825, 827, 828, 829, 830, 832, 833, 835, 837, 839, 840, 841, 842, 851, 852, 853], "__init__": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 69, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 762, 769, 770, 771, 776, 779, 780, 781, 782, 783, 784, 785, 788, 789, 793, 795, 798, 800, 806, 812, 813, 817, 821, 829, 833, 837, 839, 840, 841, 842, 852], "self": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 580, 581, 582, 583, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 624, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 784, 793, 800, 808, 812, 815, 821, 829, 830, 837, 839, 840, 841, 842, 852], "num_class": [3, 11, 13, 26, 27, 40, 42, 44, 800, 842, 852], "1000": [3, 6, 7, 11, 26, 27, 40, 41, 42, 43, 45, 48, 71, 133, 617, 800, 840, 852], "v": [3, 4, 5, 15, 16, 19, 26, 27, 29, 32, 33, 38, 41, 42, 52, 56, 64, 71, 75, 79, 87, 133, 233, 238, 240, 281, 369, 371, 422, 430, 437, 438, 463, 620, 624, 628, 634, 650, 653, 704, 705, 743, 761, 780, 781, 782, 783, 784, 785, 800, 802, 807, 808, 810, 814, 822, 837, 840, 841, 842], "none": [3, 5, 6, 8, 9, 26, 38, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 96, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 165, 166, 167, 168, 170, 172, 175, 187, 190, 191, 203, 204, 205, 206, 207, 208, 209, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 455, 457, 458, 459, 460, 461, 462, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 507, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 544, 545, 546, 547, 549, 550, 551, 553, 554, 557, 562, 565, 566, 567, 568, 569, 571, 572, 573, 574, 576, 577, 578, 580, 581, 583, 585, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 607, 609, 610, 611, 612, 614, 615, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 710, 711, 712, 713, 717, 718, 719, 721, 722, 723, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 761, 762, 764, 765, 766, 767, 772, 776, 777, 779, 780, 781, 782, 783, 784, 785, 788, 789, 792, 794, 800, 803, 807, 811, 812, 813, 815, 816, 817, 818, 819, 821, 822, 824, 825, 828, 829, 830, 832, 833, 835, 837, 839, 841, 842, 851, 852, 853], "_build": [3, 5, 781, 782, 800], "kwarg": [3, 4, 5, 8, 9, 26, 40, 44, 47, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 98, 101, 198, 371, 474, 561, 589, 617, 619, 622, 759, 761, 776, 777, 780, 781, 782, 789, 798, 800, 812, 817, 818, 821, 825, 828, 829, 835, 837, 841, 851, 852, 853], "featur": [3, 8, 9, 11, 13, 15, 17, 26, 27, 40, 44, 52, 75, 368, 382, 384, 391, 392, 393, 779, 780, 800, 806, 807, 808, 812, 813, 816, 817, 824, 833, 835, 840, 843, 852, 858, 859, 860, 864], "sequenti": [3, 5, 7, 24, 26, 27, 42, 800, 814, 815, 841, 852], "conv2d": [3, 5, 7, 24, 26, 27, 42, 45, 56, 79, 624, 641, 780, 800], "64": [3, 5, 7, 38, 40, 41, 42, 45, 51, 52, 56, 74, 75, 76, 79, 80, 84, 88, 98, 159, 229, 239, 273, 282, 283, 339, 365, 368, 389, 399, 534, 535, 581, 609, 618, 620, 622, 623, 624, 625, 629, 635, 639, 641, 643, 645, 646, 667, 670, 680, 714, 718, 728, 747, 751, 800, 807, 817, 840, 841, 863], "2": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 191, 192, 193, 196, 199, 201, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 310, 313, 314, 315, 322, 324, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 384, 386, 387, 388, 389, 390, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 431, 433, 436, 440, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 455, 457, 458, 459, 460, 461, 464, 465, 466, 468, 469, 470, 471, 473, 474, 479, 480, 481, 482, 483, 484, 487, 488, 489, 493, 494, 496, 499, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 523, 526, 527, 528, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 543, 544, 545, 546, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 561, 563, 565, 566, 570, 579, 580, 581, 582, 583, 585, 589, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 704, 705, 706, 707, 709, 710, 712, 713, 714, 715, 717, 718, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 766, 767, 776, 779, 780, 789, 793, 794, 800, 803, 807, 808, 811, 813, 814, 815, 816, 817, 819, 821, 822, 824, 825, 827, 828, 829, 830, 832, 836, 837, 839, 840, 841, 842, 843, 851, 852, 853, 864, 865], "data_format": [3, 42, 52, 56, 75, 79, 368, 374, 383, 386, 387, 388, 391, 392, 393, 404, 405, 406, 407, 409, 490, 491, 492, 495, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 764, 780, 783, 800], "nchw": [3, 42, 52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 495, 624, 637, 640, 641, 644, 645, 646, 780, 800], "relu": [3, 5, 7, 24, 26, 27, 38, 45, 46, 52, 67, 68, 75, 107, 296, 297, 305, 360, 614, 776, 800, 830, 840, 841], "maxpool2d": [3, 5, 7, 40, 780, 800], "192": [3, 42, 764, 793], "384": [3, 77, 603, 623, 629, 706], "avgpool": [3, 7], "adaptiveavgpool2d": [3, 7, 780], "6": [3, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 64, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 93, 97, 98, 105, 107, 112, 117, 122, 123, 130, 131, 134, 135, 138, 144, 148, 149, 150, 158, 160, 168, 214, 215, 217, 218, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 258, 259, 260, 261, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 289, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 306, 307, 313, 324, 329, 330, 332, 334, 342, 343, 345, 346, 347, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 378, 380, 389, 391, 394, 395, 399, 400, 404, 410, 411, 412, 414, 417, 420, 423, 424, 428, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 458, 460, 464, 465, 469, 470, 473, 474, 479, 480, 482, 483, 488, 489, 499, 501, 502, 504, 509, 511, 512, 513, 514, 516, 518, 520, 521, 527, 529, 530, 533, 534, 535, 541, 542, 549, 550, 551, 566, 580, 581, 582, 583, 585, 589, 603, 604, 605, 606, 607, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 653, 655, 656, 657, 658, 660, 661, 662, 665, 666, 667, 670, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 699, 700, 701, 702, 706, 707, 717, 718, 724, 725, 726, 727, 728, 729, 731, 732, 733, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 764, 779, 800, 803, 807, 811, 813, 815, 816, 817, 819, 822, 827, 832, 835, 837, 839, 840, 841], "classifi": [3, 9, 11, 13, 26, 27, 40, 42, 43, 800, 806, 851, 852], "prob": [3, 42, 52, 56, 75, 79, 84, 368, 375, 391, 392, 393, 497, 624, 631, 647, 726, 780, 800], "linear": [3, 7, 13, 25, 26, 27, 38, 39, 40, 42, 45, 52, 53, 56, 68, 75, 76, 79, 105, 107, 109, 110, 113, 290, 293, 297, 299, 300, 301, 305, 346, 360, 365, 368, 371, 380, 403, 436, 474, 521, 538, 561, 614, 622, 624, 629, 650, 674, 713, 764, 766, 767, 779, 780, 800, 815, 820, 825, 826, 828, 829, 832, 835, 837, 840, 841, 842, 852, 856, 857, 858, 861], "4096": 3, "_forward": [3, 5, 6, 8, 26, 27, 38, 39, 42, 800, 820, 837, 840, 841], "x": [3, 5, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 42, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 163, 164, 167, 168, 170, 175, 191, 192, 196, 201, 202, 203, 207, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 269, 270, 272, 273, 274, 275, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 322, 323, 327, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 378, 379, 380, 381, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 414, 416, 418, 419, 421, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 439, 440, 441, 442, 443, 445, 446, 447, 448, 449, 450, 451, 455, 456, 458, 459, 461, 462, 464, 467, 470, 471, 472, 473, 474, 475, 476, 477, 478, 481, 482, 484, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 503, 504, 505, 506, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 527, 528, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 543, 544, 545, 547, 549, 550, 551, 553, 554, 555, 556, 557, 558, 559, 560, 561, 563, 570, 571, 572, 575, 578, 579, 580, 581, 582, 583, 585, 587, 588, 589, 601, 602, 604, 605, 606, 608, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 704, 705, 706, 709, 712, 713, 714, 715, 716, 717, 718, 723, 724, 725, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 765, 766, 780, 783, 786, 789, 793, 798, 800, 803, 806, 810, 812, 813, 815, 817, 818, 819, 820, 821, 822, 824, 825, 827, 828, 829, 830, 832, 833, 835, 837, 839, 840, 841, 842, 851, 852, 853], "reshap": [3, 26, 27, 42, 43, 52, 56, 57, 59, 69, 75, 79, 80, 82, 353, 365, 368, 369, 371, 386, 387, 388, 391, 404, 405, 406, 409, 418, 433, 458, 464, 602, 622, 624, 625, 627, 640, 642, 646, 666, 682, 800, 828, 829, 832, 835, 837, 839, 842], "bidirect": 4, "encod": [4, 11, 13, 26, 27, 40, 42, 53, 58, 76, 81, 538, 622, 626, 684, 800, 840, 848, 852], "mlm": 4, "support": [4, 8, 9, 17, 21, 22, 23, 24, 26, 29, 41, 50, 52, 53, 57, 73, 75, 76, 80, 142, 161, 165, 187, 194, 209, 218, 235, 242, 263, 264, 268, 278, 296, 322, 342, 360, 362, 365, 369, 371, 403, 421, 482, 527, 539, 548, 551, 552, 569, 583, 617, 618, 619, 620, 622, 624, 625, 648, 659, 660, 661, 664, 666, 675, 682, 759, 765, 772, 784, 789, 790, 793, 800, 802, 803, 806, 807, 808, 811, 812, 814, 818, 819, 820, 822, 824, 825, 827, 828, 830, 832, 833, 835, 836, 837, 839, 840, 842, 844, 845, 847, 848, 849, 852, 855, 857, 858, 861, 863, 864, 865], "googl": [4, 21, 22, 23, 24, 40, 41, 42, 44, 809, 816, 848], "type": [4, 6, 11, 13, 17, 23, 26, 27, 32, 40, 41, 42, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 526, 527, 528, 529, 530, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 563, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 759, 761, 764, 765, 766, 767, 771, 772, 776, 779, 780, 781, 782, 786, 789, 793, 794, 795, 798, 800, 806, 807, 808, 810, 811, 812, 815, 818, 819, 820, 821, 824, 826, 828, 830, 832, 833, 835, 837, 839, 840, 851, 852, 853, 858, 859, 862], "choos": [4, 40, 42, 50, 62, 63, 73, 209, 235, 242, 263, 264, 268, 329, 330, 365, 371, 619, 620, 632, 633, 635, 736, 737, 738, 739, 740, 748, 749, 750, 752, 764, 800, 806, 807, 808, 826, 832, 838, 842, 851], "librari": [4, 6, 8, 15, 16, 22, 24, 38, 40, 50, 63, 73, 209, 240, 242, 258, 263, 264, 286, 329, 330, 365, 619, 620, 625, 633, 635, 660, 661, 737, 738, 739, 740, 748, 749, 750, 752, 800, 806, 807, 811, 817, 842, 843, 847, 848, 849, 851, 854, 855, 856, 858, 862, 865], "pretrain": [4, 6, 11, 12, 13, 26, 27, 45, 800, 852], "save": [4, 7, 40, 52, 69, 75, 380, 518, 578, 600, 619, 622, 636, 782, 807, 816, 823, 832, 843, 849, 857], "some": [4, 5, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 32, 38, 42, 43, 69, 77, 240, 242, 258, 368, 391, 392, 393, 603, 604, 607, 609, 610, 611, 619, 620, 623, 629, 717, 780, 800, 803, 806, 807, 808, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 839, 840, 841, 843, 844, 845, 848, 849, 851, 852, 854, 855, 857, 858, 859, 864, 865], "mohame54": 4, "automodel": [4, 8, 26], "autotoken": 4, "load": [4, 6, 8, 23, 26, 40, 41, 42, 43, 44, 45, 69, 369, 437, 636, 782, 800, 832, 843, 857, 864], "token": [4, 42, 809], "bert_bas": 4, "from_pretrain": [4, 8, 26, 43, 851, 852], "base": [4, 9, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 100, 102, 133, 142, 174, 238, 239, 256, 257, 258, 259, 273, 313, 322, 324, 331, 334, 339, 346, 362, 365, 368, 369, 370, 378, 410, 414, 437, 442, 503, 571, 581, 593, 617, 618, 620, 622, 625, 627, 633, 635, 666, 690, 737, 738, 739, 740, 747, 762, 765, 766, 769, 770, 771, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 788, 789, 794, 795, 798, 800, 807, 808, 809, 811, 815, 816, 817, 821, 824, 826, 827, 828, 830, 831, 832, 833, 834, 835, 837, 858, 863, 865], "uncas": 4, "eval": [4, 5, 7, 21, 22, 23, 24, 782], "evalu": [4, 51, 52, 69, 74, 75, 238, 240, 256, 257, 258, 259, 263, 270, 272, 279, 283, 316, 347, 358, 359, 362, 367, 369, 370, 371, 433, 442, 447, 471, 613, 620, 623, 629, 636, 716, 717, 755, 756, 781, 782, 808, 815, 817, 825, 826, 858], "bert_token": 4, "sampl": [4, 6, 8, 11, 13, 23, 26, 27, 41, 48, 51, 52, 61, 65, 71, 74, 75, 84, 88, 132, 133, 287, 313, 362, 368, 370, 371, 375, 391, 392, 393, 403, 413, 415, 442, 447, 477, 497, 498, 499, 500, 501, 617, 620, 631, 635, 726, 727, 728, 729, 752, 754, 780, 830, 832], "test": [4, 18, 19, 21, 22, 28, 29, 31, 32, 33, 41, 42, 51, 53, 66, 74, 76, 89, 120, 166, 170, 249, 250, 251, 252, 275, 368, 391, 392, 393, 558, 616, 618, 620, 622, 636, 755, 756, 759, 762, 765, 794, 800, 802, 803, 805, 810, 814, 817, 819, 821, 823, 826, 829, 831, 833, 843, 844, 849, 851, 852, 853, 858], "did": [4, 40, 806, 814, 842, 848, 864], "realli": [4, 38, 807, 815, 822, 843, 851, 863, 864], "like": [4, 6, 8, 18, 19, 20, 26, 28, 29, 30, 31, 32, 33, 43, 45, 48, 51, 52, 59, 71, 74, 75, 79, 82, 87, 133, 151, 174, 219, 239, 245, 248, 261, 279, 335, 339, 351, 365, 368, 369, 370, 371, 378, 380, 410, 412, 421, 444, 453, 454, 463, 464, 503, 504, 521, 617, 618, 620, 625, 627, 631, 634, 659, 694, 729, 742, 794, 800, 803, 806, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 836, 837, 839, 840, 841, 842, 843, 848, 851, 852, 858, 863], "input": [4, 5, 8, 11, 13, 23, 24, 26, 31, 32, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 150, 151, 152, 153, 155, 156, 157, 158, 159, 160, 163, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 189, 191, 192, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 357, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 424, 426, 427, 428, 431, 433, 434, 435, 436, 437, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 457, 458, 459, 460, 462, 464, 465, 466, 467, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 544, 545, 547, 549, 550, 551, 553, 554, 555, 556, 557, 558, 560, 565, 566, 567, 573, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 590, 595, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 712, 713, 714, 715, 717, 718, 719, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 765, 772, 776, 779, 780, 781, 782, 783, 793, 794, 811, 812, 813, 815, 817, 818, 819, 820, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 839, 840, 841, 842, 843, 851, 852, 859, 862], "pad": [4, 7, 40, 42, 52, 56, 59, 75, 79, 82, 93, 95, 368, 371, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 538, 622, 624, 627, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 689, 702, 766, 780, 800], "longest": 4, "return_tensor": [4, 8, 26, 43, 851, 852], "pt": [4, 8, 26, 851], "max_length": [4, 69], "512": [4, 5, 7, 40, 42, 80, 624, 639, 680, 800], "input_id": 4, "101": [4, 9, 41, 624, 625, 629, 648, 663, 712], "1045": 4, "2106": 4, "1005": 4, "1056": 4, "2428": 4, "2066": 4, "2115": 4, "4309": 4, "1012": 4, "102": [4, 9, 52, 75, 84, 389, 727], "token_type_id": 4, "attention_mask": [4, 56, 79, 624, 650], "pooler": 4, "compar": [4, 6, 8, 26, 39, 43, 45, 52, 53, 63, 64, 65, 69, 75, 76, 87, 88, 328, 344, 365, 380, 519, 523, 526, 622, 633, 634, 635, 737, 738, 739, 740, 741, 744, 750, 761, 800, 813, 819, 821, 830, 832, 835, 840, 854, 856, 858, 864, 865], "no_grad": [4, 40, 851], "bert_output": 4, "pooler_output": 4, "ivy_bert": 4, "bert_base_uncas": 4, "ivy_input": 4, "k": [4, 6, 39, 42, 48, 52, 53, 56, 57, 61, 71, 74, 75, 79, 80, 84, 92, 93, 117, 127, 140, 141, 142, 262, 307, 322, 323, 362, 369, 371, 375, 378, 380, 419, 432, 436, 438, 440, 480, 484, 497, 498, 499, 500, 501, 504, 514, 526, 616, 617, 622, 624, 625, 629, 631, 632, 650, 653, 657, 665, 666, 672, 674, 675, 676, 679, 714, 727, 728, 729, 735, 800, 810, 811, 829, 830, 837, 851, 854, 858], "ivy_output": [4, 43], "logits_clos": 4, "allclos": [4, 6, 8, 11, 13, 26, 43, 45, 52, 75, 365], "detach": [4, 6, 8, 11, 13, 26, 827], "rtol": [4, 11, 13, 52, 57, 75, 80, 328, 344, 365, 625, 668, 671, 759, 761, 803, 822, 830], "005": [4, 7, 52, 75, 328, 344, 365, 443], "atol": [4, 6, 8, 26, 52, 57, 75, 80, 328, 344, 365, 625, 668, 759, 761, 803, 822, 830], "equal": [4, 48, 49, 51, 52, 53, 57, 58, 59, 61, 63, 64, 65, 69, 72, 74, 75, 76, 80, 81, 82, 84, 87, 93, 97, 98, 127, 129, 130, 131, 137, 138, 147, 227, 229, 233, 238, 240, 249, 250, 271, 273, 278, 281, 282, 286, 324, 325, 326, 328, 344, 362, 365, 368, 369, 371, 374, 380, 390, 411, 436, 460, 469, 482, 488, 493, 494, 496, 514, 523, 526, 602, 617, 618, 620, 622, 625, 626, 627, 631, 632, 633, 634, 635, 658, 667, 668, 671, 673, 679, 684, 687, 689, 694, 696, 702, 729, 735, 737, 738, 739, 740, 741, 744, 749, 751, 752, 753, 754, 772, 779, 780, 814, 815, 817, 819, 821, 830, 832], "els": [4, 5, 6, 9, 41, 42, 44, 45, 52, 53, 61, 74, 75, 84, 153, 154, 155, 156, 157, 169, 275, 279, 368, 369, 375, 413, 426, 435, 439, 441, 498, 533, 537, 618, 620, 622, 624, 629, 631, 649, 716, 719, 727, 728, 729, 759, 793, 794, 800, 806, 807, 808, 811, 813, 817, 818, 821, 825, 828, 829, 830, 832, 833, 835, 837, 839, 841, 842, 843, 859], "768": 4, "fn": [4, 43, 45, 52, 69, 72, 75, 101, 161, 162, 194, 195, 198, 371, 451, 524, 539, 540, 589, 618, 619, 622, 629, 712, 713, 714, 716, 717, 718, 759, 761, 786, 789, 795, 796, 798, 818, 821, 828, 829, 837, 851], "finish": [4, 15, 26, 27, 38, 41, 800, 801, 806, 807, 810], "2f": [4, 6], "sec": 4, "89": [4, 9, 38, 51, 61, 72, 74, 75, 84, 98, 163, 230, 618, 625, 635, 677, 728, 729, 753], "43": [4, 9, 38, 40, 42, 52, 75, 84, 98, 229, 368, 369, 380, 388, 420, 512, 620, 631, 632, 728, 729, 736], "procedur": [4, 814, 816, 819, 830], "60": [4, 38, 42, 51, 65, 74, 76, 84, 88, 219, 253, 371, 479, 542, 550, 566, 580, 602, 620, 622, 625, 629, 635, 670, 709, 727, 745, 747, 751, 794, 816], "big": [4, 779, 801, 843, 858], "jnp": [4, 18, 23, 26, 27, 28, 29, 32, 38, 40, 44, 800, 817, 818, 821, 824, 828, 833, 837, 842, 852, 853], "config": [4, 5, 6, 8, 9, 20, 23, 26, 27, 40, 41, 43, 69, 629, 719, 800, 807, 811, 814, 816, 823, 830, 840, 851, 859], "jax_enable_x64": [4, 5, 6, 8, 9, 20, 23, 26, 27, 800], "ref": [4, 5, 76, 80, 254, 268, 271, 277, 284, 620, 627, 698, 807, 828], "initi": [4, 26, 27, 43, 52, 56, 65, 69, 75, 79, 88, 98, 369, 380, 426, 435, 441, 519, 520, 624, 635, 649, 750, 777, 780, 781, 782, 784, 785, 800, 804, 808, 809, 813, 817, 818, 822, 830, 832, 837, 848, 851, 852, 853, 858, 864, 865], "fast": [4, 21, 31, 52, 368, 390, 858], "valu": [4, 9, 38, 39, 41, 42, 48, 49, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 95, 97, 98, 100, 113, 117, 118, 120, 121, 127, 130, 131, 132, 133, 136, 142, 147, 164, 168, 174, 207, 208, 215, 216, 217, 218, 220, 222, 223, 224, 231, 235, 236, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 282, 283, 284, 285, 286, 287, 288, 289, 290, 292, 293, 296, 301, 304, 305, 307, 314, 316, 322, 324, 325, 326, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 344, 345, 347, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 379, 380, 390, 403, 410, 411, 413, 415, 419, 422, 426, 430, 435, 437, 439, 441, 442, 443, 445, 446, 447, 448, 457, 463, 468, 474, 479, 481, 482, 483, 484, 487, 490, 492, 497, 498, 500, 501, 507, 509, 512, 513, 514, 517, 518, 519, 520, 521, 527, 529, 530, 531, 533, 538, 541, 542, 544, 549, 550, 551, 558, 565, 566, 570, 571, 572, 575, 583, 588, 593, 594, 597, 600, 601, 602, 603, 604, 605, 609, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 653, 657, 660, 661, 666, 667, 668, 671, 672, 673, 674, 675, 676, 679, 682, 687, 688, 689, 693, 694, 702, 703, 704, 708, 710, 711, 712, 713, 714, 719, 723, 724, 725, 726, 727, 728, 729, 730, 732, 733, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 759, 761, 764, 765, 766, 767, 769, 771, 776, 779, 780, 781, 782, 783, 784, 803, 807, 808, 811, 814, 815, 817, 818, 819, 820, 821, 822, 824, 825, 828, 829, 832, 834, 835, 837, 839, 843, 851, 858, 859], "demo": [5, 6, 7, 8, 9, 27, 34, 38, 42, 800], "milesi": 5, "blob": [5, 40, 42], "2f62e6b1c8e98022a6418d31a76f6abd800e5ae7": 5, "util": [5, 8, 21, 22, 23, 24, 40, 43, 52, 75, 193, 369, 437, 619, 786, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 807, 814, 818, 821, 822, 825, 828, 832, 833, 837, 852, 856, 864, 865], "data_load": 5, "py": [5, 7, 8, 21, 22, 23, 24, 40, 42, 45, 88, 369, 437, 747, 789, 793, 800, 806, 807, 808, 811, 813, 816, 817, 818, 820, 821, 822, 823, 824, 825, 829, 830, 832, 833, 837, 839, 841, 842], "l65": 5, "mask_valu": 5, "pil_img": 5, "scale": [5, 6, 40, 52, 56, 60, 75, 77, 79, 83, 107, 206, 207, 298, 299, 302, 313, 342, 360, 362, 365, 368, 369, 374, 385, 391, 392, 393, 401, 403, 408, 412, 428, 490, 491, 492, 610, 614, 619, 623, 624, 630, 647, 650, 653, 725, 764, 766, 767, 779, 780, 784, 794, 858, 860], "is_mask": 5, "w": [5, 8, 41, 42, 52, 53, 54, 56, 69, 74, 75, 76, 77, 79, 92, 262, 342, 357, 365, 367, 368, 369, 374, 386, 387, 388, 390, 404, 405, 406, 407, 423, 441, 495, 510, 534, 536, 580, 603, 604, 605, 607, 609, 610, 611, 622, 623, 624, 629, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 712, 800, 810, 827, 837, 840, 841, 852], "h": [5, 52, 53, 56, 75, 76, 79, 368, 374, 387, 388, 405, 406, 495, 534, 536, 622, 624, 629, 637, 640, 641, 642, 643, 644, 645, 646, 709, 713, 715, 718, 723, 801, 810, 814, 815, 816, 852, 854], "size": [5, 9, 11, 13, 18, 21, 22, 28, 29, 31, 32, 33, 40, 42, 45, 52, 53, 56, 57, 59, 61, 62, 69, 75, 76, 79, 80, 82, 84, 85, 92, 93, 97, 98, 129, 132, 206, 207, 208, 306, 309, 313, 324, 325, 326, 327, 334, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 382, 383, 384, 385, 386, 387, 403, 404, 405, 407, 408, 414, 415, 422, 425, 435, 441, 442, 444, 458, 460, 472, 482, 484, 491, 492, 495, 499, 504, 516, 517, 518, 519, 520, 521, 560, 565, 617, 619, 622, 624, 625, 627, 631, 632, 636, 650, 653, 655, 658, 662, 666, 670, 672, 675, 681, 690, 695, 696, 697, 726, 732, 735, 755, 756, 764, 766, 767, 780, 794, 800, 828, 830, 832, 835, 840, 851, 853], "neww": 5, "newh": 5, "int": [5, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 101, 108, 112, 113, 122, 123, 127, 129, 130, 131, 132, 133, 136, 140, 141, 142, 149, 156, 159, 160, 163, 170, 185, 199, 200, 201, 208, 209, 218, 225, 226, 227, 228, 229, 230, 242, 245, 269, 273, 278, 284, 287, 294, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 329, 330, 334, 335, 338, 342, 349, 351, 353, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 418, 422, 424, 425, 426, 427, 429, 432, 434, 435, 438, 439, 441, 446, 450, 451, 455, 459, 460, 463, 464, 467, 469, 472, 473, 474, 475, 476, 477, 478, 479, 480, 482, 483, 484, 486, 487, 488, 491, 493, 494, 496, 497, 498, 499, 500, 501, 502, 504, 509, 511, 512, 513, 514, 516, 517, 518, 519, 520, 521, 524, 534, 535, 536, 538, 541, 542, 545, 546, 560, 563, 565, 580, 581, 582, 586, 602, 603, 604, 605, 606, 609, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 650, 655, 657, 658, 666, 667, 672, 677, 679, 680, 681, 682, 684, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 709, 712, 713, 715, 717, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 735, 737, 739, 741, 743, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 765, 766, 767, 776, 779, 780, 793, 794, 815, 817, 818, 819, 821, 824, 825, 828, 830, 832, 833, 835, 837, 842, 851], "assert": [5, 9, 41, 43, 45, 69, 527, 622, 772, 803, 810, 811, 822, 825, 828, 829, 830, 832, 833, 839, 840], "too": [5, 52, 75, 218, 235, 242, 268, 371, 482, 620, 779, 806, 807, 808, 811, 817, 821, 833, 843], "small": [5, 9, 42, 51, 52, 57, 60, 74, 75, 80, 83, 235, 242, 268, 269, 328, 344, 365, 369, 370, 374, 430, 447, 490, 491, 492, 620, 625, 630, 668, 671, 673, 725, 779, 783, 800, 807, 816, 819, 825, 830, 835, 837, 841, 843, 851, 852, 859], "would": [5, 8, 9, 20, 21, 22, 23, 24, 26, 27, 30, 32, 34, 42, 48, 50, 52, 71, 73, 75, 82, 108, 112, 123, 209, 368, 371, 395, 400, 452, 453, 460, 462, 464, 465, 466, 473, 477, 488, 614, 619, 690, 691, 692, 694, 696, 697, 699, 701, 766, 776, 780, 800, 801, 803, 806, 807, 808, 810, 811, 812, 813, 815, 816, 817, 819, 820, 822, 824, 826, 828, 829, 830, 832, 833, 835, 836, 837, 839, 841, 842, 843, 844, 848, 851, 858, 864], "pixel": [5, 40, 52, 75, 368, 403], "resampl": 5, "nearest": [5, 52, 75, 218, 235, 268, 278, 338, 365, 368, 380, 403, 521, 620, 835], "bicub": [5, 52, 75, 368, 403, 835], "zero": [5, 40, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 66, 71, 72, 74, 75, 77, 79, 80, 84, 85, 88, 89, 93, 107, 109, 110, 111, 113, 124, 125, 127, 129, 134, 136, 137, 138, 140, 141, 144, 147, 148, 216, 217, 218, 220, 221, 222, 223, 224, 227, 229, 230, 232, 233, 234, 235, 237, 240, 241, 242, 249, 250, 251, 252, 258, 263, 264, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 280, 281, 282, 283, 285, 286, 288, 289, 291, 293, 297, 299, 305, 307, 316, 323, 329, 330, 333, 334, 335, 338, 346, 349, 351, 352, 353, 354, 360, 362, 365, 368, 369, 371, 378, 380, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 410, 411, 412, 413, 414, 415, 420, 422, 433, 436, 458, 468, 473, 474, 485, 503, 512, 513, 530, 534, 541, 561, 566, 603, 604, 609, 610, 611, 612, 614, 617, 618, 620, 622, 623, 624, 625, 627, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 644, 646, 647, 648, 650, 653, 654, 656, 660, 661, 663, 664, 665, 666, 667, 668, 669, 671, 673, 679, 681, 682, 689, 690, 691, 692, 694, 695, 702, 725, 727, 728, 729, 732, 733, 734, 735, 737, 738, 739, 740, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 779, 780, 784, 812, 815, 817, 818, 819, 824, 826, 827, 830, 837, 840, 841, 849, 857], "int64": [5, 52, 61, 62, 64, 65, 72, 84, 85, 87, 88, 137, 150, 156, 159, 161, 163, 167, 168, 172, 179, 310, 362, 378, 380, 504, 512, 513, 617, 618, 632, 634, 635, 727, 732, 733, 734, 743, 745, 746, 751, 753, 764, 765, 817, 829, 832, 837], "enumer": [5, 40, 42, 769, 800], "ndim": [5, 52, 57, 62, 75, 80, 85, 97, 101, 369, 371, 434, 435, 441, 452, 453, 454, 467, 475, 477, 486, 602, 622, 625, 632, 672, 675, 735, 815, 825, 832], "newaxi": [5, 615], "transpos": [5, 23, 26, 27, 44, 52, 56, 57, 69, 75, 79, 80, 97, 369, 416, 432, 434, 436, 510, 624, 625, 637, 639, 641, 643, 644, 645, 665, 669, 671, 677, 766, 780, 800, 822, 828, 839, 842, 852], "255": [5, 23, 26, 27, 40, 41, 42, 44, 56, 75, 79, 229, 620, 646, 800, 852], "car": 5, "full_img": 5, "from_numpi": [5, 840], "fals": [5, 6, 7, 8, 13, 17, 26, 29, 40, 41, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 191, 192, 197, 199, 202, 203, 205, 208, 209, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 409, 410, 411, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 458, 459, 460, 461, 462, 463, 464, 465, 466, 469, 470, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 498, 503, 504, 510, 511, 512, 513, 514, 516, 517, 518, 519, 520, 521, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 544, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 561, 565, 566, 567, 570, 573, 574, 576, 577, 579, 580, 581, 583, 585, 587, 588, 590, 595, 596, 598, 599, 601, 604, 605, 607, 611, 612, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 712, 716, 717, 718, 719, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 762, 764, 765, 766, 767, 772, 776, 777, 780, 781, 782, 784, 786, 789, 793, 794, 795, 798, 800, 803, 807, 811, 813, 816, 817, 818, 819, 821, 822, 828, 829, 830, 832, 834, 835, 837, 840, 841, 842, 851, 852], "permut": [5, 7, 40, 59, 82, 97, 378, 503, 627, 692, 699, 852], "img_numpi": 5, "cpu": [5, 6, 8, 21, 22, 23, 24, 26, 40, 41, 42, 44, 45, 48, 50, 52, 61, 71, 73, 75, 84, 121, 127, 130, 132, 133, 136, 137, 138, 144, 188, 189, 191, 192, 193, 194, 199, 202, 204, 206, 209, 210, 212, 214, 375, 497, 498, 500, 501, 617, 619, 625, 631, 664, 726, 727, 728, 729, 761, 779, 780, 781, 782, 783, 784, 785, 800, 803, 807, 808, 814, 817, 818, 822, 829, 832, 843, 856, 858, 861, 863], "torch_unet": 5, "unet_carvana": 5, "when": [5, 7, 8, 9, 17, 19, 21, 22, 23, 24, 26, 27, 29, 31, 32, 33, 41, 43, 47, 48, 49, 51, 52, 57, 58, 61, 62, 65, 69, 71, 72, 74, 75, 80, 81, 84, 85, 88, 98, 136, 147, 218, 235, 240, 242, 258, 268, 286, 287, 294, 329, 330, 360, 365, 368, 369, 370, 374, 375, 380, 390, 403, 415, 422, 426, 435, 441, 442, 447, 490, 492, 498, 518, 521, 551, 567, 575, 581, 617, 618, 620, 622, 624, 625, 626, 627, 629, 631, 632, 635, 637, 650, 668, 673, 684, 685, 686, 694, 717, 718, 727, 728, 729, 732, 733, 735, 736, 748, 750, 752, 754, 764, 767, 779, 780, 781, 782, 783, 789, 801, 805, 806, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 832, 833, 834, 835, 837, 839, 840, 842, 843, 844, 847, 848, 851, 852, 856, 858, 861, 862, 863, 864], "ivy_unet": 5, "n_channel": 5, "n_class": 5, "forward": [5, 7, 13, 26, 27, 40, 42, 52, 75, 358, 367, 368, 390, 395, 396, 400, 401, 411, 412, 777, 779, 780, 782, 784, 800, 807, 813, 820, 827, 832, 833, 835, 842, 843, 851, 858, 859], "effici": [5, 6, 7, 8, 15, 16, 18, 19, 26, 27, 28, 29, 52, 57, 75, 80, 369, 370, 430, 446, 574, 596, 622, 625, 668, 800, 807, 808, 815, 825, 826, 828, 832, 834, 837, 840, 843, 852, 858, 860, 861], "l62": 5, "mask_to_imag": 5, "ndarrai": [5, 48, 52, 53, 71, 75, 93, 122, 123, 135, 368, 369, 371, 380, 412, 435, 479, 517, 518, 587, 617, 622, 789, 793, 806, 812, 817, 818, 821, 824, 828, 829, 830, 833, 835, 837, 839, 842, 845], "isinst": [5, 9, 24, 26, 27, 821, 829, 832, 833, 841, 842], "len": [5, 9, 40, 42, 48, 52, 57, 75, 80, 134, 310, 319, 320, 362, 368, 369, 380, 401, 412, 424, 427, 435, 441, 521, 617, 625, 660, 680, 800, 815, 816, 821, 828, 829, 832, 839, 842, 851], "uint8": [5, 23, 26, 27, 42, 150, 157, 161, 172, 175, 180, 186, 618, 764, 765, 817, 832], "elif": [5, 6, 816, 821, 828, 829, 830], "bool": [5, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 122, 123, 124, 129, 130, 131, 132, 133, 134, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 177, 183, 187, 191, 192, 194, 195, 197, 199, 202, 203, 208, 209, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 386, 387, 388, 390, 391, 392, 393, 403, 404, 405, 406, 409, 411, 413, 415, 422, 426, 429, 432, 434, 435, 436, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 458, 459, 460, 462, 463, 464, 465, 466, 469, 473, 477, 480, 482, 483, 484, 488, 490, 492, 493, 494, 495, 496, 498, 510, 511, 512, 513, 514, 516, 517, 518, 519, 520, 521, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 544, 545, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 565, 566, 570, 579, 580, 581, 583, 585, 587, 588, 601, 604, 605, 607, 609, 610, 611, 612, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 647, 648, 649, 650, 653, 654, 655, 660, 661, 662, 663, 664, 665, 666, 668, 669, 670, 672, 673, 674, 675, 679, 680, 682, 684, 685, 686, 687, 690, 691, 692, 694, 695, 696, 697, 698, 699, 701, 702, 703, 704, 705, 706, 707, 712, 713, 714, 716, 717, 718, 723, 724, 726, 727, 728, 729, 731, 732, 733, 734, 735, 737, 738, 739, 740, 741, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 762, 764, 765, 766, 776, 780, 783, 784, 793, 794, 798, 817, 819, 821, 828, 829, 832, 833, 835, 837, 842, 851, 852], "argmax": [5, 41, 42, 43, 62, 85, 371, 479, 632, 800, 829, 851], "fromarrai": [5, 23, 26, 27, 42], "interpol": [5, 40, 52, 75, 346, 365, 368, 380, 521, 624, 650, 835, 858], "mode": [5, 32, 44, 52, 57, 69, 75, 80, 91, 92, 93, 94, 95, 96, 205, 208, 213, 218, 235, 268, 321, 358, 359, 362, 367, 368, 369, 371, 398, 403, 411, 412, 424, 426, 432, 434, 435, 441, 457, 467, 472, 474, 475, 477, 479, 482, 483, 486, 567, 568, 569, 573, 574, 576, 577, 590, 591, 595, 596, 598, 599, 619, 620, 622, 625, 672, 772, 780, 781, 782, 797, 807, 808, 810, 815, 818, 819, 822, 835, 843, 858, 861], "bilinear": [5, 52, 75, 368, 403, 835], "torch_mask": 5, "squeez": [5, 40, 59, 82, 627, 858], "torch_result": 5, "to_numpi": [5, 9, 26, 27, 38, 41, 42, 45, 53, 76, 622, 800, 822, 830, 840], "give": [5, 18, 28, 38, 52, 56, 75, 79, 174, 358, 367, 368, 410, 414, 618, 624, 627, 637, 638, 639, 640, 642, 644, 646, 694, 779, 800, 807, 808, 810, 813, 816, 817, 819, 820, 822, 823, 824, 832, 849, 858, 862], "img_tf": 5, "math": [5, 43, 93, 285, 620, 817, 828, 829, 830, 842, 856], "ve": [5, 9, 15, 24, 26, 61, 84, 631, 726, 806, 807, 808, 809, 822, 832, 835, 836, 839, 845], "lot": [5, 816, 817, 826, 832, 843, 848, 849, 857], "far": [5, 26, 27, 629, 706, 717, 794, 818, 819, 838, 863, 864], "space": [5, 48, 51, 52, 53, 71, 74, 75, 76, 121, 132, 133, 287, 342, 365, 370, 444, 534, 538, 617, 620, 622, 835, 848], "del": [5, 816], "empty_cach": 5, "permute_dim": [5, 59, 82, 627, 822], "usr": [5, 40, 41, 42, 45, 807], "local": [5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 40, 41, 42, 45, 374, 495, 546, 622, 801, 807, 811, 814, 822, 825, 830, 832], "lib": [5, 9, 21, 22, 23, 24, 40, 41, 42, 45], "python3": [5, 7, 21, 22, 23, 24, 26, 40, 42, 45, 800, 807, 808], "dist": [5, 40, 41, 42, 45], "func_wrapp": [5, 46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 614, 620, 776, 818, 829, 834], "242": [5, 75], "userwarn": [5, 7, 8, 21, 22, 23, 24, 45], "creat": [5, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 40, 41, 42, 44, 45, 48, 51, 52, 61, 69, 71, 74, 75, 80, 84, 93, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 269, 306, 307, 317, 319, 321, 322, 362, 368, 369, 371, 375, 386, 387, 388, 409, 426, 435, 441, 450, 458, 474, 479, 497, 498, 499, 500, 501, 569, 585, 602, 613, 617, 620, 622, 623, 631, 670, 726, 727, 728, 729, 731, 761, 772, 777, 779, 780, 781, 782, 783, 784, 785, 801, 807, 808, 809, 812, 813, 814, 816, 817, 818, 821, 825, 826, 828, 829, 830, 832, 835, 837, 838, 841, 844, 845, 848, 851, 852, 853, 858, 859, 864], "mani": [5, 26, 27, 30, 59, 69, 82, 142, 322, 362, 617, 627, 696, 800, 806, 807, 808, 812, 813, 815, 816, 817, 818, 819, 820, 824, 825, 826, 828, 829, 830, 832, 835, 837, 839, 840, 843, 847, 848, 849, 854, 858, 861, 864, 865], "view": [5, 8, 21, 22, 23, 24, 52, 59, 75, 97, 128, 139, 371, 452, 453, 454, 460, 462, 464, 465, 466, 469, 473, 480, 488, 544, 617, 622, 627, 690, 691, 692, 694, 696, 697, 699, 701, 807, 808, 821, 858], "lead": [5, 8, 21, 22, 23, 24, 57, 69, 80, 98, 242, 369, 430, 569, 620, 622, 625, 672, 675, 766, 816, 817, 819, 831, 833, 843, 848, 849], "overhead": [5, 8, 19, 21, 22, 23, 24, 26, 27, 29, 843, 851, 861], "perform": [5, 9, 19, 21, 22, 23, 24, 26, 27, 29, 31, 38, 40, 48, 52, 56, 57, 65, 66, 71, 75, 76, 79, 80, 88, 89, 108, 112, 132, 133, 205, 213, 235, 268, 289, 335, 356, 365, 366, 368, 369, 371, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 409, 411, 435, 451, 504, 512, 513, 534, 535, 536, 549, 550, 551, 567, 577, 614, 617, 619, 620, 622, 624, 625, 628, 629, 635, 636, 647, 649, 675, 677, 682, 703, 704, 705, 713, 714, 745, 746, 755, 756, 759, 776, 780, 794, 804, 811, 812, 813, 815, 817, 818, 819, 824, 825, 826, 828, 829, 830, 832, 833, 835, 837, 840, 843, 849, 851, 852, 855, 858, 859, 860, 861, 862, 863, 865], "inplac": [5, 7, 8, 9, 21, 22, 23, 24, 47, 53, 69, 76, 92, 95, 525, 527, 548, 551, 552, 569, 570, 622, 629, 713, 714, 718, 723, 724, 771, 772, 777, 784, 810, 812, 819, 822, 824, 826, 829, 835, 839, 841], "17": [5, 8, 9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 52, 57, 68, 74, 75, 76, 77, 79, 80, 84, 98, 107, 108, 133, 218, 235, 260, 268, 298, 306, 356, 362, 368, 371, 386, 387, 395, 396, 399, 400, 404, 405, 410, 414, 464, 535, 550, 603, 605, 614, 617, 620, 622, 623, 624, 625, 629, 631, 638, 647, 648, 658, 662, 714, 727, 728, 729, 731, 815], "factor": [5, 9, 52, 54, 56, 57, 75, 77, 79, 80, 91, 92, 93, 94, 95, 206, 207, 208, 368, 369, 374, 401, 412, 426, 427, 435, 438, 440, 441, 495, 603, 604, 609, 610, 619, 623, 624, 625, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 654, 764, 766, 767, 779, 780, 784, 821, 848], "inc": 5, "unetdoubleconv": 5, "down1": 5, "unetdown": 5, "128": [5, 7, 26, 27, 40, 49, 51, 56, 72, 74, 79, 98, 163, 239, 368, 389, 399, 534, 544, 618, 620, 622, 624, 625, 639, 641, 646, 670, 800], "down2": 5, "down3": 5, "down4": 5, "1024": [5, 7, 40, 41, 800], "up1": 5, "unetup": 5, "up2": 5, "up3": 5, "up4": 5, "outc": 5, "unetoutconv": 5, "x1": [5, 17, 26, 27, 45, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 87, 97, 98, 102, 148, 158, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 307, 328, 333, 339, 340, 341, 343, 345, 350, 354, 362, 365, 369, 371, 380, 436, 468, 511, 523, 526, 618, 619, 620, 622, 625, 632, 634, 655, 662, 665, 670, 674, 677, 678, 681, 736, 743, 761, 786, 800, 811, 817, 819, 821, 824, 828, 829, 852, 853], "x2": [5, 17, 26, 27, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 97, 98, 102, 148, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 328, 333, 339, 340, 341, 343, 345, 350, 354, 365, 369, 371, 380, 424, 436, 468, 511, 523, 526, 618, 619, 620, 622, 625, 632, 655, 662, 665, 670, 674, 677, 678, 681, 736, 761, 786, 811, 817, 819, 821, 824, 828, 829], "x3": [5, 49, 53, 148, 523, 618, 622], "x4": 5, "x5": 5, "in_channel": 5, "out_channel": 5, "mid_channel": 5, "double_conv": 5, "with_bia": [5, 780, 800, 841, 852], "batchnorm2d": [5, 7, 783], "downscal": [5, 53, 76, 529, 530, 551, 622], "maxpool": [5, 7], "doubl": 5, "conv": [5, 624, 780, 835], "maxpool_conv": 5, "upscal": 5, "scale_factor": [5, 52, 75, 368, 403, 835], "align_corn": [5, 52, 75, 368, 403, 835], "conv2dtranspos": [5, 780], "valid": [5, 40, 42, 52, 56, 66, 75, 79, 89, 92, 93, 152, 368, 369, 386, 387, 388, 404, 405, 406, 407, 409, 410, 414, 433, 441, 554, 618, 622, 624, 627, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 690, 698, 755, 756, 764, 765, 780, 793, 807, 813, 817, 819, 823, 827, 830, 832, 851, 859], "bhwc": 5, "diff_h": 5, "diff_w": 5, "pad_width": [5, 52, 59, 75, 82, 371, 474, 627, 689, 702], "constant_pad": [5, 59, 82, 627], "concat": [5, 38, 43, 53, 59, 69, 82, 208, 538, 619, 622, 627, 702, 830, 835, 837, 851], "openmim": 6, "mim": 6, "0rc8": 6, "torch": [6, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 43, 44, 45, 48, 53, 57, 67, 76, 80, 124, 162, 189, 190, 204, 206, 211, 278, 329, 330, 365, 527, 551, 583, 617, 618, 619, 620, 622, 625, 628, 675, 704, 705, 761, 772, 777, 789, 800, 803, 807, 808, 811, 812, 813, 814, 816, 817, 818, 821, 822, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 839, 840, 842, 843, 845, 851, 852, 853, 864], "request": [6, 7, 8, 21, 22, 23, 24, 26, 27, 40, 43, 52, 199, 375, 501, 619, 800, 801, 804, 806, 819, 823, 833, 835, 849, 852], "get_model": 6, "list_model": 6, "mmengin": 6, "configdict": 6, "saniti": [6, 8, 9, 26, 829], "checkpoint": [6, 7, 43, 843], "correct": [6, 11, 13, 22, 32, 38, 40, 42, 65, 88, 181, 369, 437, 618, 627, 635, 687, 752, 754, 761, 764, 800, 803, 806, 808, 810, 815, 816, 817, 818, 821, 822, 824, 825, 828, 830, 832, 852], "against": [6, 49, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 148, 267, 286, 328, 331, 334, 344, 365, 380, 517, 518, 519, 520, 521, 558, 618, 620, 622, 625, 632, 665, 666, 668, 671, 732, 832, 837, 843, 847, 858], "zoo": 6, "checkpoint_nam": [6, 8, 26], "convnext": 6, "tiny_32xb128": 6, "noema_in1k": 6, "openmmlab": 6, "dure": [6, 8, 19, 21, 26, 29, 31, 32, 50, 54, 65, 69, 73, 77, 88, 209, 368, 391, 392, 393, 569, 589, 603, 604, 609, 619, 622, 623, 624, 625, 628, 635, 647, 665, 703, 704, 705, 752, 754, 772, 783, 784, 807, 815, 817, 818, 821, 825, 826, 828, 829, 830, 831, 832, 835, 843, 851, 858, 859, 864], "appropri": [6, 17, 21, 22, 24, 26, 27, 53, 62, 67, 85, 90, 218, 235, 242, 268, 328, 344, 365, 620, 632, 732, 800, 806, 807, 808, 821, 826, 832], "get_scal": 6, "cfg": [6, 823], "kei": [6, 19, 20, 26, 27, 42, 44, 47, 52, 56, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 378, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 449, 458, 459, 480, 482, 484, 490, 492, 493, 494, 496, 498, 504, 511, 512, 513, 514, 523, 524, 526, 527, 529, 530, 531, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 580, 581, 583, 585, 587, 588, 601, 607, 612, 622, 624, 628, 629, 638, 639, 640, 641, 647, 648, 650, 653, 654, 655, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 679, 684, 685, 686, 687, 691, 694, 695, 696, 697, 698, 701, 702, 703, 704, 709, 715, 719, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 745, 746, 749, 751, 752, 754, 755, 756, 764, 765, 771, 777, 780, 784, 800, 804, 814, 815, 816, 825, 828, 829, 830, 832, 840, 852, 858, 861, 865], "input_shap": [6, 13, 24, 26, 27, 800], "block": [6, 26, 27, 30, 31, 32, 33, 369, 428, 800, 808, 815, 817, 821, 825, 832, 836, 838, 842, 843, 845, 852, 863, 865], "url": [6, 8, 23, 26, 27, 40, 43, 800, 852], "cocodataset": [6, 8, 23, 26, 27, 43, 800, 852], "org": [6, 7, 8, 23, 26, 27, 40, 42, 43, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 482, 511, 603, 604, 617, 618, 620, 623, 625, 627, 635, 673, 674, 702, 752, 800, 820, 852], "val2017": [6, 8, 26, 43], "000000039769": [6, 8, 26, 43], "stream": [6, 8, 23, 26, 27, 40, 43, 50, 73, 209, 619, 800, 852, 862], "_config": 6, "train_pipelin": 6, "tensor_imag": 6, "And": [6, 8, 9, 11, 13, 18, 21, 26, 27, 28, 41, 72, 358, 359, 367, 800, 811, 814, 823, 825, 832, 851], "final": [6, 8, 11, 13, 15, 23, 26, 27, 32, 38, 39, 48, 52, 53, 75, 76, 92, 120, 132, 133, 316, 362, 368, 412, 538, 616, 617, 622, 624, 649, 650, 794, 806, 808, 809, 811, 812, 814, 816, 817, 819, 820, 825, 827, 828, 829, 831, 835, 836, 840, 851, 852, 854, 864], "transpiled_graph": [6, 8, 26], "what": [6, 8, 15, 20, 26, 27, 30, 31, 34, 39, 40, 368, 401, 412, 766, 794, 800, 806, 808, 810, 815, 816, 819, 820, 823, 824, 826, 827, 828, 829, 830, 832, 836, 837, 839, 840, 841, 842, 843, 848, 849, 854, 859, 860, 863], "improv": [6, 8, 9, 26, 29, 804, 808, 817, 824, 825, 835, 837, 845, 849, 851, 856, 858, 860, 861], "For": [6, 7, 8, 9, 17, 19, 26, 27, 29, 32, 34, 48, 52, 57, 63, 75, 80, 121, 134, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 270, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 324, 325, 326, 329, 330, 332, 352, 362, 365, 369, 371, 432, 434, 454, 474, 477, 617, 620, 625, 627, 633, 635, 673, 675, 679, 687, 698, 737, 738, 739, 740, 748, 750, 751, 753, 765, 777, 806, 807, 808, 810, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 831, 832, 833, 835, 837, 839, 840, 841, 842, 843, 844, 847, 848, 849, 851, 855, 856, 859, 864, 865], "compil": [6, 7, 8, 9, 21, 22, 24, 26, 27, 30, 43, 45, 286, 620, 772, 800, 807, 829, 833, 837, 843, 845, 852, 854, 857, 858, 859, 862, 865], "origin": [6, 8, 9, 24, 26, 27, 28, 29, 30, 32, 39, 40, 41, 45, 52, 57, 59, 65, 69, 75, 80, 82, 88, 92, 95, 97, 98, 223, 248, 275, 313, 362, 368, 369, 371, 380, 411, 435, 467, 473, 475, 478, 512, 513, 517, 518, 519, 520, 521, 620, 625, 627, 635, 666, 694, 695, 746, 761, 766, 789, 790, 800, 802, 806, 807, 808, 813, 814, 816, 817, 822, 826, 828, 829, 830, 837, 849, 851, 852, 858, 859], "_f": [6, 8, 26], "comp_model": [6, 8, 26], "equival": [6, 8, 26, 57, 80, 92, 93, 121, 229, 242, 263, 264, 277, 278, 371, 458, 482, 487, 617, 620, 625, 668, 671, 674, 682, 789, 828, 829, 835, 840, 842, 844, 852], "just": [6, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 42, 52, 57, 65, 80, 92, 95, 142, 322, 362, 369, 434, 617, 625, 635, 668, 747, 772, 780, 800, 803, 807, 808, 809, 811, 813, 816, 817, 818, 819, 820, 822, 825, 826, 828, 829, 830, 832, 837, 839, 840, 843, 848, 849, 852, 858, 859, 864], "np_imag": [6, 23, 26, 27], "jax_imag": 6, "hk": [6, 8, 26, 40, 44, 800, 842, 852], "rng_kei": [6, 8, 26, 800, 852], "random": [6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 40, 42, 43, 52, 56, 69, 75, 79, 317, 318, 319, 320, 321, 362, 369, 370, 426, 435, 441, 447, 497, 498, 499, 500, 501, 624, 647, 726, 727, 728, 729, 730, 731, 764, 766, 779, 793, 794, 800, 806, 818, 830, 832, 833, 842, 852, 853, 858], "prngkei": [6, 8, 19, 20, 26, 27, 40, 800, 842, 852], "42": [6, 8, 9, 19, 20, 24, 26, 27, 38, 40, 41, 46, 61, 68, 77, 84, 113, 229, 368, 389, 399, 603, 607, 614, 620, 623, 625, 630, 631, 635, 666, 670, 725, 726, 727, 728, 729, 730, 745, 747, 800, 837, 842, 852], "jax_mlp_forward": 6, "param": [6, 8, 9, 26, 40, 41, 42, 44, 69, 75, 76, 98, 524, 541, 542, 622, 786, 800, 842, 852], "init": [6, 8, 26, 40, 42, 52, 75, 369, 426, 435, 441, 800, 811, 842, 852], "rng": [6, 8, 26, 40, 800, 842, 852], "appli": [6, 8, 21, 22, 23, 24, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 403, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 580, 581, 582, 583, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 614, 618, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 633, 635, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 648, 649, 650, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 665, 666, 668, 670, 671, 672, 673, 675, 679, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 712, 715, 718, 719, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 754, 755, 756, 766, 767, 776, 780, 783, 800, 806, 807, 808, 812, 815, 817, 818, 819, 820, 821, 823, 824, 825, 826, 828, 829, 832, 833, 835, 839, 840, 841, 842, 843, 851, 852, 859], "both": [6, 7, 8, 9, 11, 13, 21, 23, 26, 27, 31, 32, 39, 41, 48, 51, 52, 53, 56, 57, 71, 74, 75, 76, 79, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 173, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 333, 335, 339, 344, 362, 365, 368, 369, 371, 375, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 468, 474, 482, 485, 497, 511, 514, 541, 545, 547, 549, 558, 588, 612, 613, 617, 618, 620, 622, 623, 624, 625, 627, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 780, 800, 803, 806, 808, 813, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 828, 829, 832, 835, 837, 839, 840, 841, 842, 843, 851, 852, 858, 861, 863, 864, 865], "optim": [6, 8, 9, 17, 21, 22, 24, 26, 27, 40, 42, 43, 45, 52, 54, 75, 77, 306, 362, 370, 446, 447, 525, 611, 622, 623, 628, 703, 704, 705, 779, 794, 800, 817, 828, 835, 838, 840, 842, 849, 852, 856, 857, 858, 859, 860, 861, 862, 865], "each": [6, 8, 9, 19, 20, 21, 26, 27, 29, 30, 31, 33, 40, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 69, 72, 74, 75, 76, 77, 79, 80, 82, 85, 86, 88, 92, 93, 95, 97, 98, 106, 107, 109, 110, 111, 113, 117, 134, 148, 160, 163, 208, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 290, 292, 297, 299, 300, 301, 303, 304, 305, 310, 321, 324, 325, 326, 332, 339, 343, 347, 352, 355, 360, 362, 365, 368, 369, 371, 374, 375, 378, 380, 386, 387, 388, 391, 392, 393, 396, 404, 405, 406, 407, 410, 412, 413, 414, 421, 422, 427, 434, 435, 439, 441, 452, 453, 454, 458, 459, 460, 465, 466, 468, 469, 471, 473, 474, 477, 479, 487, 488, 495, 497, 504, 509, 510, 511, 512, 513, 514, 523, 526, 534, 541, 542, 558, 582, 602, 604, 605, 607, 609, 610, 611, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 627, 629, 631, 632, 633, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 650, 654, 655, 656, 659, 660, 661, 665, 667, 668, 669, 671, 673, 674, 675, 680, 689, 693, 695, 696, 698, 700, 702, 712, 719, 726, 735, 737, 738, 740, 746, 747, 754, 764, 766, 780, 783, 784, 785, 794, 803, 804, 806, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 832, 833, 834, 835, 837, 839, 840, 842, 843, 847, 848, 849, 851, 852, 854, 855, 859, 861, 864], "timeit": [6, 8, 9, 19, 26, 27, 43, 45], "06": [6, 9, 21, 42, 49, 61, 74, 77, 96, 105, 160, 217, 233, 368, 389, 399, 609, 614, 618, 623, 729, 759, 761, 832, 840], "m": [6, 7, 8, 9, 26, 39, 41, 43, 45, 48, 52, 57, 61, 74, 75, 80, 84, 97, 134, 140, 141, 142, 262, 322, 323, 362, 368, 369, 370, 371, 375, 390, 421, 426, 427, 429, 443, 454, 465, 466, 480, 497, 498, 499, 500, 501, 617, 625, 629, 631, 654, 656, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 679, 714, 727, 728, 729, 800, 807, 808, 810, 816, 837], "per": [6, 8, 9, 19, 40, 42, 52, 56, 75, 79, 313, 362, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 434, 481, 624, 638, 640, 641, 642, 643, 646, 650, 780, 808, 816, 826, 829, 840], "loop": [6, 8, 9, 19, 34, 67, 75, 90, 117, 120, 368, 413, 616, 628, 703, 704, 705, 800, 813, 843, 851], "100": [6, 7, 8, 9, 38, 40, 42, 48, 51, 52, 71, 74, 75, 76, 79, 96, 133, 142, 229, 269, 282, 322, 344, 353, 362, 365, 368, 369, 371, 391, 392, 435, 441, 479, 542, 550, 566, 617, 620, 622, 625, 629, 663, 712, 800, 816, 817, 832, 840, 841, 842, 843, 848, 849, 851], "block_until_readi": 6, "08": [6, 52, 65, 75, 84, 221, 328, 344, 365, 368, 370, 389, 399, 447, 620, 728, 729, 754, 759, 764, 823], "\u00b5": [6, 8, 9, 19], "made": [6, 8, 26, 52, 59, 75, 369, 371, 428, 452, 453, 454, 698, 806, 808, 811, 812, 815, 816, 821, 823, 825, 827, 828, 829, 833, 835, 837, 839, 848, 858], "significantli": [6, 8, 26, 52, 57, 75, 80, 369, 439, 625, 675, 816, 847, 856], "line": [6, 8, 9, 15, 16, 19, 20, 23, 26, 27, 29, 30, 41, 42, 285, 620, 800, 807, 811, 812, 816, 818, 819, 821, 829, 832, 835, 838, 839, 840, 841, 849, 852, 861], "even": [6, 23, 26, 27, 52, 75, 92, 235, 268, 273, 278, 371, 380, 474, 511, 620, 807, 808, 809, 811, 813, 816, 817, 818, 820, 824, 825, 828, 829, 830, 835, 839, 840, 841, 842, 843, 848, 849, 864], "better": [6, 9, 29, 38, 44, 45, 806, 810, 829, 830, 833, 835, 836, 839, 840, 841, 849, 861], "v100": 6, "3x": 6, "increas": [6, 8, 9, 19, 26, 29, 52, 57, 59, 75, 80, 82, 95, 371, 380, 474, 514, 625, 627, 680, 689, 702, 766, 817, 821, 829, 833, 835, 847, 851, 858], "execut": [6, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 29, 31, 34, 41, 43, 45, 118, 120, 589, 616, 619, 622, 807, 808, 814, 815, 816, 817, 818, 819, 821, 825, 826, 828, 832, 835, 837, 839, 842, 843, 845, 851, 854, 858, 859, 860, 861, 862, 864], "train2017": [6, 8, 23, 26, 27, 800, 852], "000000283921": [6, 8, 26], "out_torch": [6, 8, 26], "et": [6, 624, 625, 650, 675], "took": [6, 74, 275], "out_jax": [6, 8, 26], "1e": [6, 7, 8, 11, 13, 26, 38, 42, 49, 52, 54, 57, 58, 60, 72, 75, 77, 80, 81, 83, 96, 160, 328, 344, 365, 370, 374, 447, 490, 491, 492, 571, 572, 580, 593, 594, 603, 604, 609, 611, 618, 622, 623, 625, 626, 630, 675, 684, 685, 686, 725, 759, 761, 781, 783, 784, 800, 803, 815, 822, 825, 828, 830, 841, 842], "66m": 6, "53m": 6, "That": [6, 8, 11, 13, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 40, 277, 370, 446, 620, 793, 807, 808, 812, 832, 839, 840, 841, 859], "pretti": [6, 8, 26, 27, 40, 803, 822, 840, 864], "much": [6, 8, 9, 17, 18, 24, 26, 27, 28, 29, 40, 95, 328, 344, 365, 779, 806, 807, 808, 812, 815, 817, 825, 828, 829, 830, 833, 834, 835, 837, 839, 840, 848, 856, 858, 864, 865], "achiev": [6, 8, 9, 26, 800, 801, 804, 809, 816, 817, 825, 826, 832, 835, 840, 842, 845], "solid": [6, 8, 26], "associ": [7, 52, 57, 75, 80, 218, 268, 371, 380, 451, 514, 620, 625, 668, 671, 683, 761, 808, 817, 825, 826, 829, 830, 832, 843], "python": [7, 11, 17, 29, 34, 38, 40, 41, 42, 44, 45, 52, 61, 75, 84, 121, 202, 214, 242, 277, 368, 375, 413, 497, 498, 499, 500, 501, 602, 617, 619, 620, 622, 631, 726, 727, 728, 729, 731, 789, 793, 794, 805, 807, 808, 811, 814, 815, 816, 821, 822, 829, 831, 832, 837, 839, 840, 843, 845, 846, 847, 848, 851, 855, 858, 859, 860, 864, 865], "2023": [7, 8, 21, 22, 23, 24, 40], "02": [7, 8, 40, 48, 53, 54, 60, 61, 74, 77, 84, 133, 220, 221, 260, 368, 389, 399, 400, 580, 581, 603, 604, 609, 617, 620, 622, 623, 626, 630, 631, 684, 725, 728, 729, 830], "52": [7, 9, 38, 51, 74, 76, 77, 84, 223, 233, 235, 380, 512, 534, 535, 550, 603, 620, 622, 623, 624, 625, 635, 648, 670, 729, 747, 793], "00": [7, 9, 40, 42, 45, 52, 53, 57, 75, 76, 80, 240, 306, 337, 362, 368, 389, 395, 399, 400, 538, 581, 620, 622, 625, 626, 661, 672, 684, 764, 823, 832], "resolv": [7, 40, 42, 52, 65, 242, 380, 512, 513, 620, 627, 635, 690, 745, 746, 751, 753, 808, 814, 817, 823, 837], "185": [7, 40, 68], "199": [7, 40, 221, 620], "110": [7, 40], "133": [7, 40, 56, 530, 622, 648], "111": [7, 40, 629, 724], "108": [7, 9, 21, 22, 23, 24, 40, 624, 635, 648, 747], "connect": [7, 40, 780, 800, 802, 807, 814, 831, 841, 842, 848, 856], "443": [7, 40, 280, 620], "sent": [7, 40], "await": [7, 40], "respons": [7, 40, 374, 495, 808, 816, 817], "200": [7, 9, 40, 76, 79, 229, 368, 391, 392, 542, 566, 620, 622, 793, 840], "ok": [7, 40, 807], "length": [7, 40, 41, 48, 52, 58, 59, 69, 75, 81, 82, 92, 93, 98, 121, 129, 134, 308, 311, 312, 327, 335, 362, 365, 368, 369, 371, 375, 378, 389, 390, 395, 396, 399, 400, 401, 411, 412, 413, 415, 427, 434, 474, 483, 499, 504, 602, 617, 622, 624, 625, 626, 627, 633, 650, 675, 676, 684, 694, 737, 764, 780, 832, 840], "10472": 7, "10k": 7, "plain": [7, 40], "tx": 7, "23k": 7, "kb": [7, 40, 42, 45], "57": [7, 9, 38, 40, 51, 52, 74, 75, 193, 216, 217, 220, 221, 223, 233, 234, 274, 290, 291, 360, 619, 620], "mb": [7, 40, 42, 45, 816], "01": [7, 21, 22, 24, 42, 48, 52, 53, 54, 57, 75, 76, 77, 80, 84, 133, 260, 278, 279, 306, 312, 337, 344, 362, 368, 389, 399, 400, 538, 580, 581, 603, 604, 609, 617, 620, 622, 623, 625, 628, 631, 661, 672, 704, 705, 728, 729, 764, 813, 842], "109": [7, 40, 57, 625, 662], "634575": 7, "620k": 7, "jpeg": [7, 41, 42], "619": 7, "70k": 7, "113": 7, "resnet34_weight": 7, "torch_resnet_34": 7, "conv1": 7, "kernel_s": [7, 24, 26, 27, 42, 52, 75, 368, 386, 387, 388, 407, 414, 780, 786], "stride": [7, 52, 56, 75, 76, 79, 97, 368, 371, 386, 387, 388, 404, 405, 406, 407, 409, 410, 414, 450, 622, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 780, 828, 833, 858], "bia": [7, 52, 56, 75, 79, 83, 374, 380, 495, 511, 561, 622, 624, 630, 637, 638, 639, 640, 641, 642, 643, 644, 645, 648, 649, 650, 725, 780, 825, 832, 837, 841], "bn1": 7, "ep": [7, 52, 57, 60, 75, 80, 83, 160, 294, 360, 369, 370, 374, 422, 447, 490, 491, 492, 618, 625, 630, 668, 671, 725, 776, 783], "05": [7, 9, 42, 48, 51, 52, 54, 60, 74, 75, 77, 83, 133, 260, 312, 328, 337, 344, 362, 365, 374, 490, 491, 492, 549, 571, 593, 603, 604, 609, 617, 620, 622, 623, 625, 630, 666, 725, 759, 764, 779, 783, 830, 832], "momentum": [7, 40, 52, 75, 374, 490, 492, 783, 848], "affin": [7, 783], "track_running_stat": [7, 783], "dilat": [7, 44, 52, 56, 75, 79, 368, 371, 404, 405, 406, 409, 410, 414, 474, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 780], "ceil_mod": [7, 52, 75, 368, 386, 387, 388, 404, 405, 406, 409, 780], "layer1": 7, "basicblock": 7, "conv2": 7, "bn2": 7, "layer2": 7, "downsampl": [7, 52, 75, 403], "layer3": 7, "layer4": 7, "output_s": [7, 52, 75, 368, 382, 383, 384, 624, 652, 780, 800, 852], "fc": [7, 13, 40, 800, 841, 852], "in_featur": [7, 56, 79, 624, 648, 832], "out_featur": [7, 56, 79, 624, 648, 832], "resnet_34": 7, "ivy_resnet_34": 7, "34": [7, 9, 38, 40, 74, 75, 76, 84, 163, 233, 260, 281, 368, 380, 410, 518, 534, 535, 618, 620, 622, 624, 625, 631, 648, 667, 728, 729, 818], "333f7ec4": 7, "pth": 7, "root": [7, 8, 21, 22, 23, 24, 40, 41, 42, 45, 51, 74, 282, 620, 802, 806, 807, 808, 814, 822, 829, 840], "cach": [7, 8, 21, 22, 23, 24, 40, 42, 45, 190, 528, 619, 622, 769, 789, 823, 825, 828, 832], "83": [7, 9, 38, 57, 79, 84, 282, 368, 380, 389, 399, 410, 512, 530, 620, 622, 624, 625, 648, 662, 728], "3m": 7, "56": [7, 9, 38, 40, 51, 52, 56, 61, 74, 75, 79, 133, 268, 282, 285, 288, 368, 389, 399, 603, 617, 620, 623, 624, 625, 629, 635, 639, 641, 643, 645, 648, 670, 706, 728, 747, 819], "4mb": 7, "preserv": [7, 8, 21, 22, 23, 24, 52, 53, 54, 69, 75, 76, 77, 98, 368, 369, 371, 380, 403, 435, 452, 453, 454, 465, 466, 485, 518, 551, 612, 622, 623, 627, 691, 764, 831, 832, 842, 843, 852], "multipl": [7, 8, 17, 21, 22, 23, 24, 26, 51, 52, 57, 60, 65, 66, 69, 74, 75, 76, 77, 80, 82, 83, 88, 89, 129, 229, 253, 260, 266, 267, 268, 270, 329, 330, 365, 368, 369, 371, 374, 378, 389, 396, 399, 401, 433, 460, 469, 488, 495, 504, 523, 530, 561, 603, 604, 607, 609, 610, 611, 612, 617, 620, 622, 623, 624, 625, 627, 630, 632, 635, 636, 639, 640, 641, 642, 654, 663, 665, 666, 679, 687, 690, 695, 696, 725, 732, 733, 748, 749, 750, 751, 752, 753, 754, 755, 756, 780, 794, 800, 806, 808, 812, 813, 815, 819, 821, 823, 825, 828, 829, 830, 832, 835, 837, 843, 849, 851, 856, 857, 858, 865], "machin": [7, 8, 21, 22, 23, 24, 29, 30, 38, 44, 52, 57, 75, 80, 160, 163, 369, 422, 618, 625, 668, 671, 800, 807, 811, 825, 845, 848, 856, 858, 860, 861, 862, 863, 864], "rel": [7, 8, 21, 22, 23, 24, 52, 54, 57, 59, 64, 71, 75, 77, 80, 82, 87, 97, 131, 328, 344, 365, 370, 380, 446, 447, 511, 604, 607, 609, 610, 611, 623, 625, 627, 634, 658, 668, 671, 679, 691, 695, 741, 744, 759, 761, 808, 816, 830, 835, 858, 860], "project": [7, 8, 15, 20, 21, 22, 23, 24, 26, 27, 30, 93, 624, 650, 780, 800, 802, 804, 806, 807, 808, 809, 812, 813, 814, 832, 841, 843, 847, 848, 849, 852, 854, 856, 858, 861, 865], "consist": [7, 8, 9, 21, 22, 23, 24, 26, 27, 65, 69, 235, 242, 268, 368, 369, 411, 421, 620, 625, 635, 659, 660, 747, 781, 782, 804, 811, 812, 816, 817, 823, 828, 837, 847, 859], "ad": [7, 8, 9, 21, 22, 23, 24, 52, 59, 75, 82, 90, 235, 268, 328, 344, 365, 374, 490, 491, 492, 580, 581, 620, 622, 624, 625, 627, 650, 660, 661, 690, 780, 785, 800, 803, 805, 806, 807, 808, 811, 812, 814, 815, 816, 817, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 841, 843, 848, 851, 857, 858], "home": [7, 8, 21, 22, 23, 24, 816], "workspac": [7, 8, 21, 22, 23, 24, 807, 822], "95": [7, 9, 38, 52, 54, 57, 61, 68, 77, 79, 84, 105, 353, 365, 410, 603, 607, 611, 614, 623, 625, 631, 662, 728, 729], "builtin": [7, 807, 839, 841], "callabl": [7, 44, 52, 53, 67, 75, 76, 79, 90, 117, 118, 120, 161, 162, 194, 195, 208, 356, 358, 359, 366, 367, 368, 371, 410, 413, 415, 451, 474, 524, 528, 533, 535, 539, 540, 561, 589, 602, 606, 608, 613, 616, 618, 619, 622, 623, 628, 629, 703, 704, 705, 712, 713, 714, 716, 717, 718, 719, 759, 762, 772, 784, 795, 815, 821, 827, 829, 837, 850, 851, 852, 853], "track": [7, 17, 26, 27, 39, 40, 546, 622, 807, 808, 811, 827, 828, 851, 858], "properli": [7, 807, 810, 821, 823, 829, 832], "might": [7, 32, 53, 93, 174, 533, 618, 622, 803, 806, 807, 808, 816, 817, 819, 822, 823, 826, 829, 832, 833, 835, 837, 839, 840, 845], "_trace_graph": 7, "comparison": [7, 52, 75, 236, 271, 331, 365, 370, 446, 447, 620, 625, 676, 759, 821], "shown": [7, 24, 26, 67, 69, 90, 252, 275, 332, 365, 620, 806, 807, 808, 811, 814, 816, 817, 819, 821, 823, 824, 829, 830, 832, 833, 834, 837, 839, 843], "8507": 7, "1351": 7, "0069": 7, "85072625": 7, "13506091": 7, "00688289": 7, "resnet50_weight": 7, "torch_resnet_50": 7, "imagenet1k_v2": 7, "11ad3fa6": 7, "97": [7, 9, 38, 52, 54, 74, 77, 84, 221, 353, 365, 607, 620, 623, 728], "8m": 7, "8mb": 7, "bottleneck": [7, 847], "conv3": 7, "bn3": 7, "2048": [7, 581, 622], "resnet_50": 7, "ivy_resnet_50": 7, "3429": 7, "0408": 7, "0121": 7, "34288204": 7, "04077014": 7, "01212029": 7, "depend": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 31, 48, 49, 52, 53, 57, 63, 64, 72, 75, 80, 87, 88, 118, 124, 147, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 256, 257, 258, 259, 268, 270, 273, 280, 281, 285, 286, 352, 365, 368, 369, 413, 421, 437, 583, 616, 617, 618, 620, 622, 625, 632, 634, 659, 660, 672, 673, 674, 675, 736, 741, 744, 754, 800, 802, 803, 806, 807, 808, 814, 817, 818, 820, 822, 826, 828, 829, 830, 831, 832, 835, 837, 843, 844, 848, 851, 856, 858, 859], "yet": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 42, 361, 363, 364, 372, 373, 377, 806, 807, 822, 843, 844, 851, 852, 853], "doc": [8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 42, 75, 142, 322, 329, 330, 362, 365, 513, 617, 800, 801, 805, 806, 810, 819, 820, 823, 824, 832, 837, 840, 841, 851, 852, 853], "user": [8, 15, 21, 22, 23, 24, 26, 41, 42, 44, 269, 286, 371, 474, 569, 620, 622, 780, 781, 782, 793, 800, 807, 808, 810, 812, 813, 815, 816, 817, 818, 821, 826, 827, 828, 829, 832, 834, 835, 836, 837, 843, 844, 847, 848, 856, 858, 864, 865], "broken": [8, 21, 22, 23, 24, 854, 858], "permiss": [8, 21, 22, 23, 24, 807, 816], "conflict": [8, 21, 22, 23, 24, 32, 807, 808, 816, 829, 840], "behaviour": [8, 21, 22, 23, 24, 107, 110, 269, 614, 620, 805, 808, 810, 811, 812, 815, 817, 818, 820, 821, 824, 825, 826, 828, 829, 832, 833, 839], "system": [8, 21, 22, 23, 24, 42, 369, 436, 625, 674, 764, 800, 807, 808, 809, 813, 816, 817, 843, 852, 856, 858, 861, 863, 865], "manag": [8, 17, 21, 22, 23, 24, 26, 569, 592, 622, 800, 801, 813, 817, 818, 828, 831, 843, 849, 860, 862], "recommend": [8, 21, 22, 23, 24, 263, 264, 277, 370, 444, 620, 635, 749, 752, 802, 807, 813, 814, 823, 826, 827, 851], "virtual": [8, 21, 22, 23, 24, 808, 829, 848, 861, 862], "instead": [8, 11, 13, 17, 21, 22, 23, 24, 26, 33, 40, 45, 51, 52, 57, 74, 75, 80, 93, 189, 277, 310, 362, 368, 380, 404, 405, 406, 511, 514, 619, 620, 625, 668, 764, 806, 807, 808, 811, 814, 816, 817, 819, 820, 821, 824, 825, 826, 828, 829, 830, 832, 835, 837, 839, 840, 843, 851, 852, 853, 856, 858, 864, 865], "pypa": [8, 21, 22, 23, 24], "io": [8, 21, 22, 23, 24, 41, 44, 807, 816], "venv": [8, 21, 22, 23, 24], "autofeatureextractor": [8, 26], "extractor": [8, 11, 13, 26, 42, 800], "hug": [8, 26, 851], "face": [8, 26, 801, 807, 811, 822, 823, 827, 835, 837, 851, 858, 864], "arch_nam": [8, 26], "microsoft": [8, 26, 848, 851, 852, 858, 863, 865], "50": [8, 9, 26, 27, 38, 42, 52, 65, 74, 75, 76, 234, 274, 350, 365, 368, 369, 371, 396, 420, 428, 479, 536, 542, 549, 550, 566, 580, 620, 622, 625, 629, 632, 635, 663, 670, 681, 707, 709, 735, 747, 764, 767, 827, 839, 851, 852], "feature_extractor": [8, 26], "23": [8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 57, 61, 71, 74, 75, 76, 79, 84, 131, 230, 233, 250, 251, 252, 275, 277, 278, 279, 281, 288, 332, 333, 365, 368, 371, 380, 386, 387, 389, 399, 404, 405, 406, 410, 414, 457, 512, 518, 617, 620, 624, 625, 629, 632, 643, 645, 658, 662, 666, 674, 676, 677, 707, 714, 718, 727, 728, 729, 736, 800, 816, 832, 837], "980130": 8, "e": [8, 26, 43, 44, 48, 52, 57, 61, 63, 64, 65, 67, 74, 75, 80, 84, 87, 88, 90, 92, 93, 97, 124, 133, 134, 137, 138, 142, 146, 175, 188, 215, 216, 217, 221, 223, 224, 227, 229, 231, 235, 236, 238, 241, 242, 248, 249, 256, 257, 258, 259, 266, 267, 268, 269, 271, 275, 277, 278, 281, 282, 286, 295, 322, 329, 330, 362, 365, 368, 369, 370, 371, 375, 380, 381, 386, 387, 390, 404, 405, 406, 407, 411, 424, 427, 433, 447, 482, 497, 498, 499, 500, 501, 512, 513, 522, 615, 617, 618, 619, 620, 624, 625, 627, 629, 631, 633, 634, 635, 650, 655, 660, 661, 665, 666, 668, 671, 674, 675, 676, 679, 682, 690, 698, 709, 713, 714, 715, 718, 723, 724, 727, 728, 729, 737, 738, 739, 740, 741, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 780, 793, 794, 800, 801, 803, 806, 807, 808, 810, 811, 813, 815, 817, 821, 822, 827, 829, 832, 837, 840, 843, 844, 845, 848, 849, 851, 854], "tensorflow": [8, 10, 11, 15, 17, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 44, 51, 52, 53, 74, 75, 142, 189, 219, 322, 362, 369, 422, 583, 617, 619, 622, 759, 772, 789, 800, 803, 805, 806, 807, 808, 811, 816, 817, 818, 822, 824, 828, 829, 830, 832, 833, 835, 837, 842, 843, 845, 848, 849, 852, 853, 856, 859, 861, 862, 864, 865], "xla": [8, 829, 843, 845, 858], "stream_executor": 8, "cuda_dnn": 8, "cc": [8, 21, 22, 24, 41, 822], "9342": 8, "unabl": [8, 808, 835], "regist": [8, 782, 808, 844, 851], "cudnn": 8, "factori": [8, 52, 370, 446, 447, 794], "attempt": [8, 21, 22, 23, 24, 40, 42, 45, 807, 834, 843], "plugin": [8, 807], "been": [8, 11, 13, 21, 23, 26, 27, 52, 53, 61, 75, 76, 84, 191, 278, 371, 481, 534, 535, 536, 619, 620, 622, 631, 726, 793, 794, 806, 808, 811, 813, 815, 816, 817, 818, 820, 821, 824, 825, 828, 832, 837, 839, 843, 844, 851, 858, 865], "980177": 8, "cuda_fft": 8, "609": 8, "cufft": 8, "980207": 8, "cuda_bla": 8, "1518": 8, "cubla": 8, "351203": 8, "tf2tensorrt": 8, "py_util": 8, "38": [8, 9, 22, 38, 40, 42, 45, 49, 52, 74, 75, 84, 160, 285, 350, 365, 368, 380, 387, 406, 409, 410, 512, 618, 620, 625, 667, 764, 819], "trt": 8, "could": [8, 26, 27, 32, 63, 633, 737, 738, 739, 740, 806, 807, 808, 811, 816, 817, 819, 826, 828, 829, 830, 832, 837, 839, 840, 841, 848, 849, 858, 863, 864], "find": [8, 15, 41, 42, 45, 57, 63, 69, 80, 625, 629, 633, 668, 708, 737, 738, 739, 740, 793, 794, 800, 801, 802, 805, 806, 807, 808, 811, 814, 816, 822, 827, 832, 835, 837, 840, 844, 845, 847, 851], "tensorrt": 8, "doe": [8, 9, 17, 21, 22, 23, 24, 26, 39, 41, 51, 52, 53, 59, 69, 74, 75, 82, 92, 142, 269, 271, 279, 322, 362, 369, 370, 380, 381, 421, 446, 447, 517, 518, 522, 551, 617, 620, 622, 625, 627, 659, 696, 759, 794, 803, 806, 808, 810, 813, 816, 817, 819, 820, 822, 823, 824, 825, 828, 829, 830, 832, 835, 837, 839, 840, 843, 845, 848, 851, 854, 858, 859, 865], "placement": [8, 806], "consid": [8, 9, 21, 22, 23, 24, 31, 32, 52, 57, 63, 75, 80, 113, 142, 263, 264, 322, 328, 333, 344, 362, 365, 369, 380, 422, 426, 435, 511, 614, 617, 620, 625, 633, 657, 668, 737, 738, 739, 740, 766, 779, 812, 816, 817, 825, 827, 833, 835, 838, 839, 840, 847, 848, 851, 855, 859, 863, 865], "except": [8, 21, 22, 23, 24, 41, 42, 45, 52, 53, 59, 61, 66, 69, 75, 76, 80, 84, 89, 149, 329, 330, 335, 353, 365, 371, 375, 380, 458, 482, 498, 517, 518, 533, 551, 568, 583, 589, 618, 622, 625, 627, 631, 632, 636, 671, 688, 690, 698, 727, 728, 729, 735, 755, 756, 759, 762, 766, 800, 804, 808, 809, 810, 811, 812, 816, 817, 818, 820, 822, 824, 828, 829, 833, 834, 835, 839, 843], "390": [8, 21, 22, 23, 24], "current": [8, 17, 21, 22, 23, 24, 26, 27, 40, 41, 47, 52, 53, 69, 75, 98, 117, 161, 162, 165, 182, 183, 184, 185, 186, 187, 193, 194, 195, 196, 201, 203, 369, 371, 420, 421, 474, 482, 539, 540, 543, 546, 548, 552, 563, 564, 583, 616, 618, 619, 622, 625, 629, 659, 706, 716, 717, 761, 765, 781, 782, 789, 790, 794, 797, 800, 802, 806, 807, 808, 811, 813, 815, 816, 817, 818, 821, 822, 823, 825, 828, 829, 830, 831, 832, 835, 837, 842, 843, 849, 851, 858, 864, 865], "quietli": [8, 21, 22, 23, 24], "control": [8, 21, 22, 23, 24, 34, 52, 75, 142, 291, 322, 360, 362, 368, 371, 391, 392, 393, 457, 483, 569, 617, 622, 625, 657, 815, 817, 818, 827, 828, 829, 830, 835, 839, 840, 845, 851, 858, 864], "set_inplace_mod": [8, 21, 22, 23, 24, 592, 622], "strict": [8, 21, 22, 23, 24, 569, 592, 622], "rais": [8, 21, 22, 23, 24, 41, 42, 48, 52, 53, 61, 63, 66, 69, 71, 75, 76, 82, 84, 86, 89, 123, 149, 238, 273, 329, 330, 339, 365, 368, 370, 371, 375, 380, 401, 412, 447, 452, 453, 460, 462, 464, 465, 466, 473, 482, 488, 498, 517, 518, 527, 551, 569, 571, 581, 583, 589, 593, 618, 620, 622, 625, 627, 631, 632, 633, 635, 636, 665, 667, 681, 690, 691, 692, 694, 696, 697, 698, 699, 701, 727, 728, 729, 735, 740, 748, 750, 755, 756, 759, 766, 784, 800, 808, 811, 813, 817, 818, 821, 828, 829, 833, 834, 837, 839, 844, 848], "error": [8, 9, 21, 22, 23, 24, 32, 43, 45, 51, 52, 56, 69, 74, 75, 79, 105, 237, 285, 329, 330, 337, 365, 369, 370, 371, 380, 381, 435, 441, 443, 445, 482, 518, 522, 569, 614, 620, 622, 624, 625, 635, 653, 673, 676, 748, 750, 766, 784, 797, 801, 805, 806, 807, 808, 811, 812, 813, 816, 817, 818, 819, 823, 824, 829, 832, 833, 834, 839, 843, 849, 858], "whenev": [8, 21, 22, 23, 24, 780, 808, 813, 816, 817, 821, 828, 831, 832, 834, 840], "inputs_jax": [8, 26], "last_hidden_st": [8, 26], "jax_forward": [8, 26], "jit_appli": 8, "63": [8, 9, 38, 42, 51, 68, 74, 79, 80, 113, 274, 281, 282, 368, 380, 389, 399, 410, 512, 620, 625, 629, 635, 654, 670, 707, 718, 747], "122": [8, 49, 163, 233, 620], "134": [8, 56, 625, 648, 667], "2x": [8, 26], "ipytest": 9, "panda": [9, 40, 42, 848], "matplotlib": [9, 21, 22, 23, 24, 40, 41, 42, 45], "scikit": [9, 369, 437, 848], "learn": [9, 11, 13, 17, 18, 19, 20, 22, 24, 26, 27, 28, 29, 30, 31, 38, 40, 52, 54, 77, 369, 370, 437, 442, 534, 604, 607, 609, 610, 611, 622, 623, 628, 703, 704, 705, 784, 800, 801, 805, 806, 807, 810, 811, 817, 822, 823, 825, 827, 836, 845, 847, 848, 856, 860, 861, 862, 863, 864, 865], "cryptographi": 9, "frontend": [9, 568, 622, 761, 762, 765, 769, 772, 800, 805, 808, 810, 816, 817, 821, 822, 827, 831, 832, 835, 836, 838, 845, 852, 858], "sklearn": 9, "classification_report": 9, "model_select": 9, "train_test_split": 9, "dataset": [9, 26, 69, 800, 840, 851, 852], "load_breast_canc": 9, "pyplot": [9, 40, 41, 42, 45], "plt": [9, 40, 41, 42, 45], "pd": [9, 42], "functool": [9, 40, 821, 829, 839], "autoconfig": 9, "tqdm": [9, 21, 22, 23, 24, 40, 42, 800], "tqdm_notebook": 9, "These": [9, 33, 52, 75, 369, 371, 380, 421, 473, 511, 624, 625, 650, 659, 660, 800, 804, 805, 806, 807, 808, 811, 815, 817, 819, 820, 824, 825, 828, 829, 832, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 852, 858, 862, 864, 865], "sole": [9, 38, 824, 833, 857, 858, 859], "verifi": [9, 23, 319, 320, 362, 806, 817, 818, 829, 832, 833], "re": [9, 15, 18, 19, 20, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 43, 45, 52, 53, 62, 75, 85, 95, 208, 313, 362, 369, 371, 440, 475, 476, 534, 619, 622, 625, 627, 632, 677, 695, 734, 736, 801, 802, 806, 807, 808, 809, 810, 811, 814, 817, 822, 827, 828, 829, 830, 831, 833, 835, 839, 842, 843, 846, 847, 848, 858], "test_jax_gpu": 9, "xla_bridg": [9, 40], "get_backend": [9, 825], "test_torch_gpu": 9, "is_avail": 9, "test_xgboost_gpu": 9, "capsi": 9, "load_diabet": 9, "y": [9, 26, 27, 38, 39, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 144, 147, 148, 149, 158, 160, 163, 175, 188, 192, 196, 201, 202, 203, 207, 209, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 328, 329, 330, 336, 343, 344, 345, 346, 347, 352, 354, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 387, 389, 391, 392, 396, 399, 401, 405, 411, 418, 422, 428, 433, 440, 442, 443, 445, 446, 447, 448, 449, 459, 461, 470, 474, 482, 483, 484, 489, 493, 494, 496, 504, 510, 511, 512, 513, 514, 517, 519, 520, 521, 523, 526, 529, 530, 533, 534, 536, 537, 538, 541, 542, 543, 547, 549, 550, 551, 553, 554, 557, 558, 563, 570, 571, 572, 575, 578, 579, 580, 581, 583, 585, 587, 588, 589, 593, 594, 597, 600, 601, 602, 612, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 639, 641, 643, 645, 646, 647, 648, 654, 655, 656, 660, 661, 662, 663, 665, 666, 668, 669, 670, 671, 673, 675, 676, 677, 679, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 706, 709, 712, 713, 715, 723, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 798, 800, 813, 815, 818, 819, 827, 829, 830, 832, 833, 835, 837, 839, 851], "target": [9, 11, 13, 19, 21, 22, 24, 26, 27, 29, 30, 31, 32, 33, 42, 52, 75, 190, 370, 442, 443, 444, 445, 446, 447, 448, 449, 619, 759, 780, 782, 788, 800, 803, 807, 810, 813, 822, 823, 830, 831, 836, 840, 841, 842, 852, 853, 854, 856, 857, 858, 861, 863, 864], "xgb_model": 9, "xgbregressor": 9, "tree_method": 9, "caus": [9, 370, 444, 807, 808, 811, 813, 815, 816, 817, 819, 828, 830, 832, 843], "either": [9, 21, 22, 31, 32, 33, 34, 38, 44, 51, 52, 53, 56, 65, 69, 74, 75, 76, 79, 80, 107, 110, 113, 118, 128, 129, 139, 215, 216, 217, 218, 223, 233, 235, 236, 238, 240, 242, 249, 250, 256, 257, 258, 259, 260, 268, 277, 279, 280, 282, 285, 286, 331, 352, 365, 368, 374, 380, 389, 399, 409, 410, 414, 495, 512, 513, 533, 553, 561, 562, 570, 589, 614, 616, 617, 620, 622, 624, 625, 628, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 650, 665, 670, 673, 677, 703, 704, 705, 745, 746, 751, 753, 766, 780, 781, 782, 789, 802, 806, 807, 808, 813, 814, 815, 817, 818, 819, 820, 821, 823, 825, 828, 829, 830, 831, 832, 835, 837, 840, 843, 844, 852, 858], "fit": [9, 59, 82, 627, 693, 806, 829, 837, 854, 855, 858], "consol": [9, 564, 622, 800, 808, 823, 832, 839, 844], "gpu_hist": 9, "captur": [9, 827, 832, 842, 859], "readouterr": 9, "err": 9, "99": [9, 38, 51, 52, 54, 72, 74, 84, 130, 217, 232, 353, 365, 580, 607, 617, 620, 622, 623, 629, 635, 710, 718, 728, 747], "implement": [9, 17, 18, 26, 28, 32, 40, 43, 49, 50, 52, 63, 64, 72, 73, 75, 80, 87, 92, 147, 161, 162, 175, 194, 195, 209, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 268, 270, 273, 277, 280, 281, 285, 286, 329, 330, 352, 365, 369, 380, 420, 421, 517, 518, 539, 540, 618, 619, 620, 622, 624, 625, 633, 634, 635, 650, 659, 660, 661, 670, 679, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 765, 767, 789, 800, 803, 806, 810, 811, 812, 813, 815, 817, 818, 820, 821, 822, 824, 825, 826, 828, 830, 832, 833, 835, 837, 839, 840, 841, 842, 843, 845, 855, 856, 857, 858, 861, 864, 865], "binari": [9, 21, 22, 24, 52, 53, 56, 58, 75, 79, 81, 225, 228, 230, 265, 285, 368, 370, 413, 446, 449, 620, 624, 626, 647, 650, 684], "tabular": 9, "pulsar": 9, "emploi": [9, 864], "remov": [9, 15, 16, 19, 24, 26, 27, 29, 57, 69, 80, 625, 627, 628, 629, 658, 665, 679, 697, 703, 704, 720, 794, 797, 800, 806, 813, 814, 816, 817, 820, 825, 831, 832, 835, 842, 851, 852, 858], "id": [9, 41, 52, 75, 191, 324, 325, 326, 362, 546, 619, 622, 800, 805, 807, 812, 814, 815, 823, 827, 832, 844], "column": [9, 42, 52, 57, 75, 80, 92, 93, 127, 142, 322, 362, 369, 371, 378, 380, 421, 427, 437, 458, 463, 465, 466, 470, 472, 504, 510, 511, 617, 625, 659, 660, 666, 672, 674, 675, 680, 764, 779], "well": [9, 26, 27, 40, 41, 42, 76, 370, 446, 547, 622, 625, 674, 766, 800, 802, 806, 808, 814, 816, 817, 821, 828, 829, 830, 832, 841, 842, 852, 857, 858, 859, 863], "standard": [9, 51, 57, 60, 61, 65, 74, 83, 84, 88, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 369, 371, 380, 411, 439, 482, 511, 602, 617, 618, 620, 622, 625, 627, 630, 631, 632, 633, 634, 635, 636, 654, 655, 656, 657, 658, 660, 661, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 688, 690, 691, 692, 694, 695, 697, 698, 702, 725, 728, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 766, 779, 783, 793, 794, 800, 804, 806, 810, 811, 812, 815, 817, 820, 824, 828, 831, 832, 833, 843, 846, 852, 854, 856, 857, 860, 861, 863], "while": [9, 26, 27, 34, 52, 56, 69, 75, 79, 92, 93, 98, 120, 136, 174, 242, 243, 263, 264, 340, 365, 368, 369, 371, 412, 413, 433, 476, 477, 510, 616, 617, 618, 620, 624, 633, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 737, 749, 752, 762, 803, 806, 807, 808, 812, 813, 814, 816, 817, 818, 819, 822, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 835, 839, 841, 842, 843, 844, 847, 848, 851, 858, 864, 865], "extra": [9, 27, 69, 98, 117, 602, 616, 622, 812, 817, 819, 826, 828, 829, 830, 835, 837, 851, 852, 855, 860], "dimens": [9, 48, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 95, 97, 98, 101, 108, 112, 136, 140, 141, 310, 321, 323, 324, 325, 326, 329, 330, 334, 335, 342, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 410, 411, 413, 414, 416, 418, 421, 437, 442, 446, 452, 453, 454, 458, 464, 475, 476, 477, 478, 480, 482, 490, 491, 492, 495, 499, 501, 504, 514, 516, 517, 518, 519, 520, 521, 534, 535, 536, 538, 545, 579, 582, 602, 614, 617, 622, 624, 625, 626, 627, 628, 632, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 650, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 679, 681, 682, 685, 686, 688, 690, 691, 692, 693, 694, 695, 696, 697, 698, 701, 703, 704, 705, 731, 732, 733, 735, 737, 738, 739, 740, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 766, 776, 780, 783, 819, 821, 827, 829, 830, 832, 835, 837, 840], "label": [9, 40, 41, 42, 52, 58, 75, 81, 370, 442, 443, 445, 446, 447, 448, 449, 626, 684, 685, 686, 800, 806, 811, 829, 836, 837, 838, 842, 844, 858], "load_data": 9, "standardscal": 9, "df": [9, 42], "read_csv": [9, 42], "delimit": [9, 840], "drop": [9, 42, 52, 75, 325, 362, 370, 371, 446, 483, 779, 780, 807, 843], "sc": 9, "fit_transform": 9, "prepare_data": 9, "tupl": [9, 44, 47, 48, 49, 51, 52, 53, 56, 57, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 122, 123, 129, 131, 135, 136, 138, 142, 144, 148, 149, 150, 161, 162, 163, 167, 168, 174, 175, 181, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 315, 319, 322, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 341, 342, 343, 344, 348, 349, 350, 351, 352, 354, 355, 356, 357, 362, 365, 367, 368, 369, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 395, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 421, 422, 426, 430, 435, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 455, 458, 459, 469, 474, 480, 482, 483, 484, 487, 490, 492, 493, 494, 495, 496, 498, 499, 501, 502, 503, 511, 512, 513, 514, 516, 517, 518, 519, 520, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 539, 540, 541, 542, 544, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 570, 580, 581, 582, 583, 585, 586, 587, 588, 601, 602, 603, 604, 605, 607, 609, 612, 616, 617, 618, 619, 620, 622, 623, 624, 625, 627, 628, 629, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 653, 654, 655, 659, 660, 661, 662, 663, 664, 665, 666, 668, 670, 671, 672, 673, 675, 677, 678, 679, 682, 684, 685, 686, 687, 688, 689, 691, 692, 694, 695, 696, 697, 698, 701, 702, 703, 704, 705, 706, 707, 709, 710, 711, 713, 714, 715, 717, 718, 721, 722, 723, 724, 726, 727, 728, 729, 731, 734, 735, 737, 738, 739, 740, 741, 742, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 765, 766, 779, 780, 782, 793, 794, 812, 817, 824, 825, 828, 830, 832, 837, 840, 841, 843, 851, 852, 853], "expand_dim": [9, 23, 26, 27, 42, 44, 59, 82, 624, 627, 646, 800, 829, 837, 840, 852], "astyp": [9, 11, 13, 18, 40, 41, 42, 49, 56, 72, 79, 618, 624, 640, 642, 643, 646, 800, 817, 828, 829, 835, 853], "csv": [9, 42, 800], "instanc": [9, 17, 23, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 167, 168, 170, 175, 192, 204, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 404, 405, 406, 410, 411, 413, 414, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 576, 580, 581, 582, 583, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 772, 777, 806, 807, 808, 811, 812, 813, 817, 819, 820, 821, 822, 824, 825, 826, 827, 828, 832, 840, 841, 842, 845, 851, 859], "117564": 9, "variou": [9, 20, 30, 32, 38, 800, 804, 806, 807, 808, 811, 816, 817, 820, 821, 824, 826, 827, 829, 830, 831, 832, 844, 854, 856, 857, 858, 861, 864], "structur": [9, 27, 69, 72, 98, 160, 163, 531, 622, 629, 710, 719, 800, 806, 808, 809, 812, 815, 825, 830, 831, 832, 833, 840, 841, 857, 858], "allow": [9, 24, 26, 27, 38, 52, 65, 75, 88, 132, 273, 369, 380, 438, 514, 518, 561, 617, 620, 622, 634, 635, 743, 750, 764, 765, 766, 767, 781, 782, 794, 798, 800, 806, 808, 809, 812, 813, 816, 817, 821, 823, 825, 826, 827, 828, 829, 830, 832, 835, 837, 839, 843, 845, 848, 851, 852, 853, 856, 858, 862, 863], "navig": [9, 803, 807, 808, 810, 822], "choic": [9, 27, 44, 52, 65, 75, 88, 369, 371, 437, 457, 635, 752, 754, 800, 807, 816, 828, 829, 840, 849, 852, 858, 865], "rerun": [9, 40], "most": [9, 17, 26, 27, 69, 71, 92, 95, 136, 369, 421, 574, 596, 617, 622, 625, 659, 660, 797, 800, 805, 806, 807, 812, 815, 816, 817, 818, 822, 824, 825, 827, 828, 829, 830, 832, 833, 834, 835, 837, 839, 840, 841, 843, 848, 858, 859, 861, 862, 864, 865], "method": [9, 17, 26, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 531, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 580, 581, 582, 583, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 617, 618, 620, 622, 623, 625, 626, 629, 632, 635, 636, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 665, 666, 668, 669, 670, 671, 672, 673, 675, 676, 679, 680, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 717, 718, 719, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 754, 755, 756, 761, 772, 778, 779, 780, 781, 782, 806, 808, 811, 812, 816, 817, 818, 819, 820, 824, 832, 833, 837, 838, 841, 842, 843, 851, 852, 853, 859, 865], "signific": [9, 52, 370, 447, 834, 843, 847, 848, 858], "object": [9, 17, 22, 24, 26, 40, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 98, 101, 102, 124, 128, 129, 139, 151, 160, 163, 171, 174, 209, 267, 498, 546, 562, 605, 617, 618, 619, 622, 623, 629, 631, 709, 710, 711, 713, 714, 715, 721, 722, 723, 724, 731, 759, 761, 762, 769, 770, 771, 777, 778, 780, 781, 782, 789, 793, 800, 812, 813, 815, 816, 825, 826, 829, 830, 832, 835, 839, 842, 850, 851, 852, 853, 858, 864], "logist": 9, "booster": 9, "gblinear": 9, "n_estim": 9, "learning_r": 9, "reg_lambda": 9, "reg_alpha": 9, "base_margin": 9, "xgb_cl": 9, "ivy_cl": 9, "n": [9, 38, 41, 42, 43, 45, 48, 51, 52, 56, 57, 59, 61, 62, 65, 66, 74, 75, 79, 80, 82, 84, 85, 88, 89, 92, 97, 134, 140, 141, 142, 215, 285, 287, 322, 323, 335, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 382, 383, 384, 389, 390, 395, 396, 399, 400, 401, 409, 410, 411, 412, 414, 422, 423, 432, 434, 436, 441, 442, 454, 460, 463, 467, 469, 480, 488, 490, 491, 492, 495, 497, 498, 499, 500, 501, 504, 511, 521, 617, 620, 624, 625, 627, 629, 631, 632, 635, 636, 637, 638, 639, 640, 642, 644, 646, 650, 655, 658, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 675, 676, 679, 680, 681, 682, 689, 690, 692, 698, 702, 714, 727, 728, 729, 735, 749, 751, 752, 753, 754, 755, 756, 780, 783, 793, 800, 810, 814, 816, 832, 844, 852], "436": 9, "48": [9, 38, 42, 51, 52, 74, 75, 76, 77, 84, 107, 217, 240, 282, 368, 387, 388, 389, 399, 405, 406, 409, 549, 603, 607, 614, 620, 622, 623, 625, 629, 635, 670, 707, 728, 747], "wai": [9, 15, 16, 17, 20, 22, 26, 30, 32, 38, 92, 95, 800, 802, 805, 807, 811, 812, 813, 814, 816, 817, 818, 828, 829, 830, 832, 835, 839, 840, 841, 842, 843, 844, 847, 848, 853, 860, 864, 865], "t4": 9, "higher": [9, 52, 75, 369, 371, 380, 425, 435, 441, 452, 453, 454, 521, 779, 817, 828, 836, 837, 842, 843, 855, 858, 859, 862, 864, 865], "tier": [9, 809], "than": [9, 26, 27, 29, 32, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 69, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 97, 98, 121, 129, 160, 208, 216, 217, 220, 221, 223, 224, 227, 229, 231, 235, 241, 242, 256, 257, 258, 259, 266, 268, 273, 277, 279, 281, 282, 286, 287, 288, 296, 306, 328, 331, 344, 351, 362, 365, 368, 369, 370, 371, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 416, 418, 435, 441, 442, 465, 466, 512, 513, 514, 553, 554, 557, 574, 596, 617, 618, 619, 620, 622, 624, 625, 627, 631, 632, 633, 635, 653, 655, 665, 666, 667, 668, 671, 682, 687, 691, 697, 729, 735, 738, 739, 740, 745, 746, 751, 752, 753, 754, 780, 794, 803, 808, 811, 815, 816, 817, 819, 821, 822, 828, 829, 830, 832, 833, 834, 835, 837, 840, 841, 842, 843, 844, 848, 855, 856, 857, 858, 864, 865], "reduc": [9, 52, 53, 57, 62, 65, 66, 69, 75, 76, 80, 85, 88, 89, 208, 329, 330, 349, 365, 366, 380, 516, 517, 518, 519, 520, 521, 535, 619, 622, 625, 632, 635, 636, 672, 732, 733, 748, 749, 750, 751, 752, 753, 754, 755, 756, 793, 794, 816, 821, 829, 835, 837, 839, 851, 856, 860, 861, 862], "lower": [9, 42, 48, 51, 52, 57, 61, 74, 75, 80, 84, 127, 140, 266, 301, 307, 313, 322, 323, 360, 362, 380, 514, 515, 521, 617, 620, 625, 631, 654, 660, 661, 668, 729, 766, 779, 800, 808, 817, 819, 829, 832, 837, 843, 845, 854, 855, 856, 858, 859, 864, 865], "although": [9, 625, 673, 800, 802, 812, 814, 815, 829, 835, 856, 858], "experi": [9, 15, 42, 807, 821, 832, 838, 840, 843], "demonstr": [9, 23, 26, 27, 41, 804, 809, 817, 819, 821, 839], "still": [9, 20, 22, 23, 26, 27, 29, 30, 33, 57, 69, 80, 625, 675, 764, 806, 807, 808, 812, 813, 817, 820, 821, 823, 825, 828, 829, 832, 835, 841, 843, 848, 851, 852, 855, 858, 864], "substanti": [9, 804, 808, 812, 817, 832, 848, 858], "dive": [9, 15, 17, 26, 38, 801, 802, 805, 806, 808, 811, 815, 817, 823, 830, 836, 839, 840, 843, 864], "stuff": 9, "tool": [9, 17, 26, 27, 800, 807, 808, 819, 823, 838, 842, 843, 846, 849, 852, 856, 857, 858, 859, 861, 864, 865], "30": [9, 21, 22, 23, 24, 38, 40, 51, 52, 53, 75, 76, 84, 88, 98, 268, 298, 342, 350, 365, 368, 371, 389, 399, 410, 457, 479, 502, 534, 536, 541, 542, 549, 550, 566, 575, 580, 620, 622, 625, 629, 635, 663, 670, 715, 727, 728, 746, 747, 751, 766, 779, 794, 804, 816], "25": [9, 38, 40, 41, 42, 51, 52, 53, 57, 58, 61, 65, 68, 74, 75, 76, 79, 80, 83, 84, 88, 97, 98, 113, 132, 218, 219, 229, 235, 237, 248, 253, 268, 273, 276, 278, 281, 282, 283, 288, 309, 362, 370, 380, 410, 443, 446, 448, 512, 521, 549, 550, 566, 580, 617, 620, 622, 625, 626, 629, 630, 635, 638, 654, 658, 663, 680, 685, 707, 714, 718, 725, 727, 728, 729, 746, 747, 749, 754, 815, 827], "22": [9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 51, 52, 53, 61, 65, 68, 75, 76, 79, 84, 108, 113, 230, 238, 298, 302, 360, 368, 369, 370, 371, 376, 380, 386, 387, 389, 404, 405, 406, 410, 414, 420, 442, 457, 502, 512, 535, 566, 601, 614, 620, 624, 625, 629, 632, 635, 647, 648, 658, 663, 670, 674, 714, 724, 727, 728, 729, 736, 746, 747, 807, 815, 821], "201": [9, 74, 75, 220, 389, 620], "20x": 9, "24": [9, 19, 38, 40, 51, 52, 57, 65, 74, 75, 76, 79, 80, 84, 97, 230, 238, 253, 255, 268, 278, 279, 282, 342, 345, 365, 368, 380, 386, 388, 389, 399, 404, 405, 406, 410, 414, 512, 534, 535, 620, 622, 625, 629, 635, 638, 658, 666, 670, 707, 718, 727, 728, 729, 745, 747, 761, 821, 840], "ivy_pr": 9, "xgb_pred": 9, "ivyclassifi": 9, "nxgbclassifi": 9, "precis": [9, 52, 57, 75, 80, 160, 248, 268, 275, 282, 339, 365, 369, 380, 422, 511, 574, 596, 618, 620, 622, 625, 660, 661, 666, 673, 675, 676, 682, 772, 816, 829, 834, 835, 862], "recal": 9, "f1": [9, 817], "score": [9, 56, 79, 370, 449, 624, 651, 653, 800], "94": [9, 38, 51, 52, 54, 61, 74, 75, 77, 84, 202, 278, 279, 353, 365, 399, 607, 619, 623, 729], "106597": 9, "33": [9, 38, 40, 41, 51, 61, 65, 74, 75, 76, 77, 79, 221, 222, 229, 278, 368, 369, 371, 380, 387, 409, 410, 438, 457, 512, 530, 580, 607, 620, 622, 623, 624, 625, 629, 635, 647, 648, 670, 724, 727, 747, 754, 764, 767], "10967": 9, "accuraci": [9, 40, 42, 45, 368, 411, 817], "macro": 9, "avg": [9, 368, 386, 388, 409], "96": [9, 38, 52, 54, 74, 75, 76, 84, 232, 253, 285, 353, 365, 368, 389, 534, 535, 607, 620, 622, 623, 625, 635, 670, 729, 747], "67": [9, 38, 51, 52, 53, 57, 74, 75, 76, 79, 84, 97, 233, 238, 278, 279, 281, 288, 298, 302, 360, 380, 410, 512, 534, 535, 580, 606, 608, 620, 622, 623, 625, 662, 729], "73": [9, 38, 51, 80, 282, 380, 512, 625, 631, 654, 728, 832], "92": [9, 38, 42, 52, 53, 84, 353, 365, 601, 611, 623, 625, 656, 728, 729], "28": [9, 24, 26, 27, 38, 40, 42, 45, 51, 52, 56, 60, 74, 75, 76, 79, 80, 84, 88, 234, 237, 258, 274, 368, 369, 389, 399, 420, 518, 549, 603, 620, 622, 623, 624, 625, 630, 635, 639, 641, 643, 645, 646, 648, 670, 725, 727, 728, 729, 747, 751, 800], "27": [9, 38, 40, 45, 51, 52, 57, 61, 74, 75, 79, 80, 84, 88, 229, 230, 233, 273, 281, 282, 339, 365, 368, 389, 399, 550, 620, 622, 625, 629, 635, 665, 670, 680, 707, 714, 728, 747, 751, 764], "852": [9, 624, 648], "449": [9, 530, 622], "47": [9, 38, 42, 51, 52, 57, 61, 74, 75, 76, 77, 79, 84, 224, 282, 368, 380, 387, 405, 406, 512, 534, 535, 607, 620, 622, 623, 624, 625, 631, 648, 662, 728, 729], "29": [9, 38, 40, 42, 45, 57, 74, 76, 77, 79, 84, 223, 380, 410, 512, 534, 535, 605, 609, 620, 622, 623, 625, 662, 727, 728, 729], "82": [9, 38, 40, 45, 46, 51, 77, 84, 108, 221, 380, 512, 603, 623, 728, 729, 803, 822], "68": [9, 38, 42, 45, 51, 84, 108, 130, 223, 368, 389, 399, 614, 617, 620, 625, 630, 681, 725, 728, 729], "nevertheless": 9, "fall": [9, 40, 784, 806, 817, 836], "short": [9, 38, 52, 75, 415, 624, 649, 806, 808, 817, 837, 841], "blaze": 9, "31": [9, 21, 22, 23, 24, 38, 40, 41, 45, 46, 51, 52, 74, 75, 76, 79, 84, 108, 113, 133, 229, 260, 268, 368, 371, 380, 388, 389, 457, 512, 529, 614, 617, 620, 622, 728, 729, 840], "32": [9, 24, 26, 27, 38, 40, 41, 42, 51, 52, 61, 74, 75, 79, 80, 84, 97, 98, 107, 159, 217, 229, 230, 239, 253, 259, 275, 278, 279, 332, 365, 368, 369, 371, 380, 387, 388, 389, 399, 409, 410, 420, 424, 457, 512, 534, 550, 614, 618, 620, 622, 624, 625, 631, 632, 635, 639, 641, 642, 646, 648, 665, 670, 681, 727, 728, 729, 736, 747, 764, 767, 800, 816, 817, 827, 840, 863], "03": [9, 22, 41, 48, 51, 53, 54, 74, 75, 77, 84, 133, 233, 258, 337, 580, 581, 604, 609, 617, 620, 622, 623, 625, 626, 663, 684, 728], "62": [9, 38, 40, 46, 68, 74, 75, 84, 108, 253, 281, 620, 630, 631, 725, 727, 729], "36": [9, 38, 42, 51, 52, 56, 65, 75, 76, 80, 223, 278, 279, 342, 365, 368, 369, 380, 389, 399, 425, 512, 534, 535, 581, 620, 622, 625, 629, 635, 648, 667, 670, 680, 717, 747], "35": [9, 38, 46, 56, 57, 68, 74, 75, 79, 80, 84, 108, 223, 282, 368, 389, 399, 620, 624, 625, 632, 635, 648, 655, 662, 728, 736, 747], "37": [9, 21, 22, 23, 24, 38, 46, 51, 52, 68, 74, 75, 79, 97, 108, 221, 229, 278, 281, 285, 376, 410, 502, 620, 624, 625, 629, 631, 648, 667, 714, 728, 816], "surpass": 9, "remark": [9, 843], "artifici": 9, "simpli": [9, 17, 26, 27, 29, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 551, 553, 554, 555, 557, 558, 560, 565, 566, 580, 581, 582, 583, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 620, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 665, 666, 671, 672, 673, 675, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 754, 755, 756, 800, 806, 807, 808, 812, 813, 814, 816, 817, 818, 819, 820, 822, 824, 825, 828, 829, 830, 832, 835, 837, 841, 842, 843, 845, 859, 864], "stack": [9, 19, 21, 22, 23, 24, 29, 38, 42, 52, 57, 59, 69, 75, 80, 82, 97, 140, 141, 323, 362, 369, 371, 421, 458, 459, 461, 470, 489, 568, 577, 599, 617, 622, 625, 627, 629, 656, 658, 659, 660, 661, 663, 665, 667, 668, 669, 671, 672, 673, 675, 676, 679, 706, 716, 717, 780, 800, 805, 811, 828, 837, 854, 856, 863, 864], "x_doubl": 9, "vstack": [9, 52, 75, 371, 470], "y_doubl": 9, "explor": [9, 11, 13, 17, 21, 22, 23, 26, 27, 32, 33, 34, 806, 807, 808, 817, 822, 835, 838, 842, 858, 861], "235128": 9, "41": [9, 21, 22, 23, 24, 38, 40, 45, 51, 52, 57, 74, 75, 76, 79, 80, 108, 222, 230, 237, 268, 282, 368, 369, 376, 380, 387, 405, 410, 430, 502, 512, 529, 530, 614, 620, 622, 625, 635, 654, 662, 753], "315": [9, 274, 620], "40": [9, 38, 40, 42, 52, 53, 74, 75, 76, 84, 88, 98, 229, 233, 253, 282, 342, 365, 368, 371, 387, 389, 399, 405, 479, 534, 536, 541, 542, 566, 580, 602, 605, 620, 622, 623, 625, 629, 635, 663, 670, 715, 728, 747, 751, 800, 816], "879": 9, "65": [9, 38, 40, 42, 45, 74, 77, 84, 229, 268, 530, 549, 603, 620, 622, 623, 625, 635, 670, 728, 729, 747, 816], "380": 9, "seem": [9, 806, 807, 835, 841, 842, 843, 858], "observ": [9, 52, 75, 380, 510, 511, 808, 817, 821, 837, 851, 860], "examin": 9, "600": [9, 42, 76, 79, 368, 391, 392, 542, 816], "plot": [9, 41, 800, 858], "conduct": [9, 862], "num_boosting_round": 9, "300": [9, 74, 76, 79, 278, 368, 391, 392, 542, 566, 620, 622, 625, 663, 832], "400": [9, 76, 79, 368, 391, 392, 542, 566, 622, 625, 663], "500": [9, 52, 75, 76, 79, 368, 369, 391, 392, 441, 542, 622], "ivy_elapsed_tim": 9, "xgb_elapsed_tim": 9, "ivy_tim": 9, "partial": [9, 52, 69, 75, 161, 162, 194, 195, 342, 365, 368, 369, 371, 380, 415, 435, 475, 476, 477, 478, 518, 539, 540, 608, 618, 619, 622, 623, 625, 664, 765, 767, 781, 782, 808, 814, 835], "append": [9, 41, 42, 52, 57, 69, 75, 227, 335, 365, 620, 625, 627, 658, 665, 690, 794, 800, 816, 832, 837, 840], "xgb_time": 9, "fivethirtyeight": 9, "legend": [9, 42, 806], "loc": 9, "best": [9, 40, 561, 622, 794, 800, 801, 803, 805, 806, 807, 808, 810, 816, 817, 821, 822, 831, 832, 833, 844, 861, 862], "xlabel": 9, "ylabel": 9, "obviou": [9, 840, 858], "trend": 9, "longer": [9, 807, 817, 828, 832, 858], "gap": 9, "between": [9, 15, 16, 21, 31, 32, 33, 38, 51, 52, 53, 56, 57, 58, 59, 63, 69, 74, 75, 79, 80, 81, 82, 98, 121, 160, 223, 236, 271, 287, 328, 344, 346, 365, 368, 369, 370, 371, 380, 391, 392, 393, 404, 405, 406, 414, 420, 424, 443, 444, 445, 446, 447, 448, 449, 474, 521, 617, 618, 620, 624, 626, 627, 629, 631, 633, 647, 670, 684, 685, 686, 690, 698, 712, 727, 738, 739, 740, 765, 772, 784, 800, 812, 813, 817, 819, 824, 825, 826, 828, 829, 830, 831, 832, 835, 836, 838, 839, 840, 842, 847, 851, 852, 854, 855, 857, 858, 859, 864], "within": [9, 11, 13, 17, 26, 27, 47, 52, 75, 121, 328, 344, 365, 368, 374, 404, 405, 406, 411, 414, 452, 453, 454, 495, 617, 631, 729, 794, 806, 808, 809, 812, 816, 817, 829, 830, 831, 832, 841, 843, 852, 854, 855, 859], "slightli": [9, 306, 362, 815, 829, 832, 837, 841], "paramet": [9, 13, 24, 26, 27, 40, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 199, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 544, 545, 546, 547, 549, 550, 551, 553, 554, 555, 556, 557, 558, 560, 561, 562, 565, 566, 569, 570, 571, 572, 575, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 620, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 764, 765, 766, 767, 772, 777, 779, 780, 781, 782, 783, 784, 785, 789, 790, 793, 794, 796, 800, 806, 812, 820, 821, 824, 829, 830, 832, 833, 837, 839, 840, 851, 852, 853, 859], "x_train": 9, "y_train": [9, 42, 800], "train_siz": [9, 40], "random_st": [9, 369, 426], "51": [9, 38, 42, 51, 52, 74, 75, 76, 84, 230, 268, 281, 369, 389, 441, 620, 729, 764], "clear": [9, 190, 619, 806, 808, 813, 817, 818, 819, 829, 835, 837, 839, 847, 848, 849, 858], "amount": [9, 58, 81, 210, 619, 626, 684, 685, 686, 794, 807, 816, 818, 830], "widen": 9, "impress": 9, "outcom": [9, 52, 75, 331, 342, 365, 794], "howev": [9, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 57, 80, 242, 285, 286, 371, 374, 482, 490, 492, 569, 620, 622, 625, 673, 675, 789, 806, 807, 811, 812, 813, 815, 817, 818, 819, 820, 821, 823, 824, 825, 828, 829, 830, 832, 835, 837, 839, 840, 841, 842, 843, 848, 851, 857, 858, 864], "tend": 9, "outperform": 9, "proce": [9, 806, 807], "95933": 9, "9874": 9, "105807": 9, "70": [9, 38, 40, 52, 75, 76, 368, 389, 399, 542, 566, 625, 635, 670, 747, 848], "77": [9, 38, 42, 76, 581, 625, 635, 670, 747], "93": [9, 38, 52, 74, 76, 84, 193, 282, 353, 365, 534, 535, 619, 622, 728, 729], "wrap": [9, 17, 19, 26, 27, 29, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 528, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 577, 580, 581, 582, 583, 585, 587, 588, 599, 601, 603, 604, 607, 609, 610, 611, 612, 622, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 665, 666, 671, 672, 673, 675, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 754, 755, 756, 761, 800, 810, 811, 812, 813, 815, 816, 817, 818, 820, 821, 824, 825, 828, 829, 832, 837, 839, 842, 843, 845, 851, 852, 854, 858, 859, 864, 865], "balanc": 9, "breast": 9, "cancer": 9, "53": [9, 21, 38, 57, 61, 74, 79, 154, 210, 240, 410, 606, 608, 618, 619, 623, 625, 630, 662, 725, 729], "return_x_i": 9, "x_test": 9, "y_test": 9, "test_siz": [9, 40], "76": [9, 19, 38, 51, 52, 65, 72, 74, 75, 84, 163, 217, 233, 281, 316, 362, 399, 618, 620, 625, 629, 635, 677, 714, 728, 747], "87": [9, 38, 77, 79, 229, 258, 368, 380, 410, 411, 512, 603, 620, 623, 764, 822], "171": [9, 57, 625, 662, 764], "90": [9, 38, 40, 42, 51, 52, 74, 75, 234, 274, 278, 353, 365, 371, 380, 480, 512, 620, 625, 635, 670, 747, 794, 848], "86": [9, 38, 61, 75, 84, 368, 380, 399, 512, 603, 623, 728, 729], "88": [9, 38, 77, 84, 107, 380, 512, 607, 614, 623, 625, 631, 635, 670, 729, 747], "perfectli": [9, 766, 849], "align": [9, 52, 69, 75, 368, 369, 403, 419, 624, 652, 794, 804, 807, 816, 829, 831, 837, 839, 845, 864], "gain": [9, 779, 808, 809, 811, 836, 841, 858], "combin": [9, 32, 52, 69, 75, 98, 368, 380, 401, 412, 511, 539, 540, 622, 625, 655, 665, 808, 812, 815, 816, 817, 819, 821, 825, 832, 842, 858], "build": [10, 14, 15, 17, 24, 26, 27, 30, 31, 32, 33, 38, 40, 45, 63, 69, 98, 633, 737, 738, 739, 740, 780, 781, 782, 800, 801, 807, 810, 816, 817, 825, 827, 836, 838, 841, 842, 843, 845, 848, 852, 856, 858, 860, 863, 864, 865], "timm": [10, 11, 15, 26, 27, 800, 852], "kera": [10, 11, 13, 15, 16, 24, 26, 27, 43, 44, 777, 800, 849, 852, 864], "seen": [11, 13, 18, 24, 26, 369, 375, 427, 499, 546, 622, 789, 816, 817, 819, 821, 829, 832, 837, 839, 840, 847, 848, 864], "veri": [11, 19, 26, 27, 29, 51, 74, 269, 328, 344, 365, 620, 625, 673, 766, 805, 806, 807, 808, 814, 815, 817, 818, 819, 821, 822, 824, 825, 828, 829, 830, 832, 833, 835, 838, 840, 841, 842, 843, 847, 848, 854, 855, 856, 858, 859, 860, 863, 864, 865], "guid": [11, 24, 800, 801, 806, 807, 808, 814, 823, 829, 831, 864], "focu": [11, 24, 806, 827, 856, 857, 860, 865], "more": [11, 14, 15, 17, 18, 19, 22, 24, 26, 27, 28, 29, 38, 40, 41, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 148, 240, 242, 258, 273, 286, 290, 294, 295, 297, 356, 360, 366, 369, 370, 371, 416, 418, 430, 433, 446, 452, 453, 454, 459, 480, 569, 614, 617, 618, 620, 622, 625, 627, 633, 658, 664, 665, 668, 671, 673, 675, 682, 691, 698, 737, 738, 739, 740, 766, 776, 794, 800, 802, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 843, 844, 852, 853, 856, 857, 858, 859, 860, 861, 864, 865], "involv": [11, 14, 15, 22, 24, 49, 72, 175, 218, 235, 242, 268, 273, 618, 620, 794, 801, 806, 809, 810, 816, 817, 819, 830, 835, 842, 848, 858, 864], "develop": [11, 25, 26, 27, 800, 801, 802, 803, 804, 805, 806, 807, 808, 811, 814, 816, 822, 831, 833, 843, 845, 847, 848, 849, 851, 852, 856, 857, 858, 859, 860, 863, 864, 865], "usual": [11, 13, 43, 235, 268, 620, 793, 807, 811, 817, 829, 832, 835], "own": [11, 13, 17, 26, 27, 32, 800, 807, 811, 816, 817, 820, 821, 828, 829, 833, 837, 843, 845, 848, 849, 854, 857, 858, 863, 864], "directli": [11, 13, 17, 20, 24, 26, 27, 30, 368, 369, 403, 427, 629, 718, 800, 806, 807, 808, 809, 811, 812, 815, 816, 817, 818, 820, 823, 825, 826, 828, 829, 830, 833, 834, 837, 839, 841, 842, 843, 844, 849, 851, 852, 853, 862, 863, 864], "case": [11, 13, 19, 21, 26, 27, 29, 30, 31, 32, 40, 47, 48, 52, 53, 59, 65, 69, 71, 75, 76, 82, 92, 93, 98, 123, 134, 161, 162, 189, 194, 195, 202, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 243, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 340, 342, 352, 365, 368, 370, 371, 374, 375, 381, 391, 392, 393, 413, 442, 452, 453, 454, 460, 462, 464, 465, 466, 469, 473, 479, 480, 488, 490, 492, 499, 522, 539, 540, 544, 551, 565, 566, 567, 617, 618, 619, 620, 622, 625, 627, 629, 635, 673, 679, 690, 691, 692, 694, 696, 697, 699, 701, 709, 715, 748, 749, 750, 751, 752, 753, 754, 764, 765, 784, 794, 800, 803, 806, 807, 808, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 832, 833, 835, 837, 839, 841, 842, 843, 848, 851, 852, 853, 857, 861], "mlp": 11, "mixer": 11, "onli": [11, 13, 26, 27, 32, 38, 40, 42, 44, 47, 48, 51, 52, 57, 59, 61, 69, 71, 74, 75, 80, 82, 84, 92, 95, 97, 113, 133, 173, 174, 203, 263, 264, 269, 275, 306, 336, 342, 362, 365, 368, 369, 371, 375, 380, 390, 403, 413, 422, 427, 439, 441, 452, 453, 454, 464, 497, 498, 514, 528, 614, 617, 618, 619, 620, 622, 624, 625, 627, 629, 631, 632, 634, 635, 650, 665, 672, 675, 676, 691, 694, 706, 707, 713, 714, 716, 717, 718, 723, 724, 727, 728, 729, 732, 733, 743, 749, 752, 762, 764, 765, 767, 780, 784, 793, 800, 801, 802, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 824, 825, 827, 828, 829, 830, 832, 833, 834, 835, 837, 839, 840, 841, 842, 843, 847, 851, 852, 857, 858, 859, 864, 865], "retriev": [11, 13, 17, 524, 546, 571, 622, 808, 829], "mlp_encod": [11, 26, 27, 800, 852], "create_model": [11, 26, 27, 800, 852], "mixer_b16_224": [11, 26, 27, 800, 852], "nois": [11, 13, 26, 27, 800, 851, 852], "randn": [11, 13, 26, 27, 800, 852], "tf_mlp_encod": [11, 26, 27], "output_torch": [11, 13], "output_tf": [11, 13], "constant": [11, 13, 18, 21, 22, 28, 31, 33, 38, 52, 59, 60, 75, 82, 83, 92, 93, 316, 362, 368, 370, 371, 413, 446, 447, 474, 627, 629, 630, 689, 712, 725, 779, 783, 800, 825, 830, 833, 841, 842, 843, 851, 853], "output_dens": [11, 26, 27, 800], "layer": [11, 13, 17, 23, 24, 26, 27, 38, 43, 52, 60, 75, 83, 630, 649, 650, 725, 777, 779, 781, 782, 783, 784, 785, 800, 820, 829, 833, 835, 837, 838, 841, 847, 852, 856, 858, 862, 865], "dens": [11, 24, 26, 27, 310, 362, 780, 800], "unit": [11, 26, 27, 52, 68, 75, 92, 93, 105, 107, 108, 109, 110, 111, 112, 113, 290, 291, 293, 297, 299, 300, 303, 304, 305, 360, 493, 494, 614, 800, 807, 811, 817, 829, 830, 832, 843, 859, 862], "activ": [11, 24, 26, 27, 52, 53, 56, 67, 75, 79, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 583, 624, 650, 653, 779, 780, 800, 804, 806, 807, 808, 817, 823, 833, 834, 841, 852, 858, 861], "mention": [11, 13, 26, 27, 32, 806, 807, 808, 812, 819, 824, 825, 828, 829, 832, 835, 848, 853, 858], "basic": [11, 13, 17, 20, 24, 26, 27, 30, 33, 371, 481, 800, 801, 806, 819, 832], "fulli": [11, 13, 15, 16, 19, 24, 26, 27, 40, 52, 75, 380, 518, 780, 800, 812, 817, 824, 827, 835, 837, 838, 839, 840, 841, 842, 843, 849, 853, 856, 857, 858, 864, 865], "trainabl": [11, 13, 17, 23, 24, 26, 27, 44, 777, 781, 782, 785, 800, 820, 838, 840, 841, 852, 853], "fine": [11, 13, 26, 27, 807, 808, 817, 819, 829, 839, 842, 864], "tune": [11, 13, 26, 27, 863, 864], "train": [11, 13, 24, 26, 27, 43, 52, 54, 56, 75, 77, 79, 95, 368, 369, 374, 391, 392, 393, 438, 490, 492, 603, 604, 609, 623, 624, 647, 650, 653, 779, 780, 781, 782, 783, 800, 815, 818, 825, 840, 841, 842, 843, 849, 852, 856, 857, 862, 864, 865], "ground": [11, 13, 370, 443, 759, 761, 772, 803, 822, 829, 832, 847], "ret": [11, 13, 26, 27, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 420, 421, 423, 428, 431, 433, 436, 439, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 480, 482, 483, 484, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 563, 565, 566, 570, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 712, 713, 714, 715, 716, 717, 718, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 765, 766, 767, 777, 782, 784, 789, 794, 796, 800, 817, 818, 820, 821, 827, 828, 829, 830, 833, 837, 842, 852], "op": [11, 17, 38, 776, 789, 833, 837, 843], "eagertensor": [11, 17, 38, 789, 830], "readi": [11, 13, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 806, 807], "deepmind": [12, 849], "perceiverio": [12, 849], "backbon": [12, 40, 800, 837, 840], "TO": [12, 14, 25], "replac": [12, 14, 25, 41, 51, 52, 53, 59, 61, 69, 74, 75, 76, 82, 84, 127, 269, 304, 307, 360, 362, 371, 479, 482, 565, 566, 570, 617, 620, 622, 627, 631, 687, 726, 764, 808, 814, 815, 817, 818, 826, 829, 832, 839, 842, 843, 848, 852, 865], "efficientnet": 13, "include_top": [13, 800], "eff_encod": [13, 800], "applic": [13, 15, 40, 42, 45, 52, 56, 75, 79, 95, 369, 441, 624, 625, 629, 635, 650, 653, 679, 712, 713, 714, 718, 719, 751, 753, 800, 807, 816, 817, 818, 826, 841, 855, 856, 858, 860, 862, 864], "efficientnet_v2": [13, 800], "efficientnetv2b0": [13, 800], "data": [13, 21, 22, 23, 24, 27, 32, 40, 42, 45, 46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 87, 88, 89, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 147, 149, 150, 152, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 176, 177, 178, 179, 181, 187, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 294, 295, 296, 297, 306, 307, 308, 309, 310, 311, 312, 323, 324, 325, 326, 327, 329, 330, 331, 347, 352, 360, 362, 365, 368, 369, 371, 375, 379, 380, 383, 391, 392, 393, 409, 411, 413, 419, 421, 439, 457, 479, 482, 483, 485, 497, 498, 499, 500, 501, 507, 511, 512, 513, 517, 520, 521, 538, 551, 553, 554, 557, 583, 614, 617, 619, 620, 622, 624, 625, 627, 629, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 648, 654, 655, 656, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 681, 682, 688, 691, 692, 694, 695, 697, 698, 702, 710, 727, 728, 729, 731, 732, 733, 735, 736, 741, 743, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 762, 764, 765, 766, 767, 772, 776, 779, 780, 781, 782, 786, 794, 800, 807, 810, 811, 812, 813, 814, 815, 818, 820, 824, 825, 826, 828, 830, 833, 835, 837, 839, 845, 846, 848, 858, 859, 860, 862, 863, 864], "storag": [13, 40, 41, 840, 848], "googleapi": [13, 40, 41], "efficientnetv2": 13, "b0_notop": 13, "h5": [13, 69], "24274472": 13, "0u": 13, "torch_eff_encod": [13, 800], "1280": [13, 534, 622, 800], "state": [14, 25, 40, 56, 75, 79, 95, 182, 183, 184, 185, 186, 268, 368, 413, 590, 592, 595, 597, 598, 618, 620, 622, 624, 649, 762, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 800, 803, 807, 814, 817, 818, 820, 821, 822, 823, 824, 829, 832, 836, 837, 838, 840, 848, 852, 864, 865], "api": [14, 19, 24, 25, 29, 42, 44, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 173, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 482, 511, 617, 618, 620, 625, 627, 632, 633, 634, 635, 636, 654, 655, 656, 657, 658, 660, 661, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 688, 690, 691, 692, 694, 695, 697, 698, 702, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 800, 803, 807, 808, 810, 812, 814, 817, 818, 819, 820, 821, 822, 824, 826, 828, 829, 830, 832, 835, 836, 838, 840, 843, 845, 846, 847, 854, 856, 858, 860, 863, 865], "welcom": [15, 41, 800, 801, 807, 808, 831], "goal": [15, 40, 242, 620, 800, 806, 848, 858, 864], "provid": [15, 17, 21, 24, 26, 27, 31, 32, 38, 44, 48, 52, 53, 57, 59, 62, 65, 66, 69, 71, 75, 76, 80, 82, 85, 88, 89, 117, 134, 136, 153, 154, 155, 156, 157, 165, 175, 187, 191, 287, 368, 369, 371, 374, 380, 403, 411, 415, 420, 424, 435, 436, 440, 441, 458, 460, 469, 488, 490, 492, 521, 533, 565, 566, 616, 617, 618, 619, 620, 622, 624, 625, 627, 629, 632, 635, 636, 650, 667, 670, 681, 690, 691, 698, 710, 732, 752, 754, 755, 756, 765, 780, 784, 789, 790, 800, 806, 807, 808, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 827, 828, 829, 830, 832, 833, 835, 839, 841, 843, 847, 851, 852, 853, 856, 857, 858, 859, 860, 861, 862, 865], "varieti": [15, 811, 816, 817, 818, 832, 834, 854, 856, 860, 861, 864, 865], "organ": [15, 812, 815, 825, 829, 831, 833, 845, 848], "main": [15, 27, 48, 52, 57, 75, 80, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 419, 463, 617, 625, 657, 658, 679, 800, 804, 806, 807, 808, 811, 814, 815, 822, 826, 828, 856, 858, 859, 864], "exactli": [15, 19, 29, 38, 39, 43, 285, 620, 806, 815, 816, 817, 818, 819, 821, 832, 835, 847, 849], "rush": [15, 849], "jump": [15, 830], "straight": [15, 800, 816, 829, 832, 839], "quickstart": 15, "introduct": [15, 17, 24, 26, 27, 858], "capabl": [15, 23, 27, 832, 835], "point": [15, 24, 49, 51, 52, 57, 61, 63, 65, 72, 74, 75, 80, 84, 88, 121, 122, 123, 125, 127, 130, 137, 138, 143, 147, 160, 164, 168, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 251, 256, 257, 258, 259, 260, 268, 270, 271, 273, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 306, 307, 309, 329, 330, 346, 347, 350, 352, 362, 365, 368, 369, 370, 375, 380, 383, 391, 392, 393, 411, 421, 439, 443, 497, 498, 499, 500, 501, 511, 512, 513, 521, 615, 617, 618, 620, 625, 631, 632, 633, 634, 635, 654, 656, 659, 660, 661, 663, 666, 667, 668, 671, 672, 673, 674, 675, 676, 677, 679, 682, 728, 729, 735, 737, 738, 739, 740, 743, 745, 746, 748, 749, 750, 751, 752, 753, 754, 789, 790, 800, 803, 806, 807, 808, 811, 812, 814, 816, 817, 819, 820, 822, 824, 828, 829, 832, 833, 835, 837, 839, 840, 849, 851, 864], "those": [15, 39, 40, 57, 59, 69, 75, 80, 82, 121, 174, 235, 268, 483, 602, 617, 618, 620, 622, 625, 627, 629, 632, 672, 675, 687, 708, 735, 804, 806, 807, 808, 809, 812, 815, 816, 817, 826, 828, 829, 830, 832, 835, 847, 855], "who": [15, 804, 809, 810, 821, 836, 843, 858, 860], "deeper": [15, 17, 27, 47, 629, 717, 718, 808, 810, 832, 836, 847], "showcas": [15, 800], "real": [15, 23, 51, 52, 65, 74, 75, 88, 97, 107, 110, 113, 137, 138, 215, 216, 217, 218, 220, 221, 222, 223, 224, 233, 235, 236, 238, 240, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 268, 270, 271, 273, 277, 278, 279, 281, 282, 283, 284, 285, 286, 288, 289, 329, 330, 336, 337, 347, 365, 368, 369, 390, 411, 412, 421, 422, 614, 617, 620, 625, 632, 635, 659, 660, 661, 666, 673, 675, 676, 679, 682, 735, 748, 750, 751, 752, 753, 815, 860], "world": [15, 23, 808, 860], "whether": [15, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 93, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 120, 122, 123, 129, 131, 136, 138, 144, 147, 148, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 165, 166, 167, 168, 170, 171, 172, 173, 175, 187, 191, 192, 194, 195, 197, 199, 202, 203, 205, 208, 209, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 390, 391, 392, 393, 409, 411, 413, 415, 430, 436, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 458, 459, 460, 462, 464, 465, 466, 469, 473, 480, 482, 483, 484, 488, 490, 492, 493, 494, 496, 498, 511, 512, 513, 514, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 544, 545, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 561, 565, 566, 567, 568, 570, 573, 574, 576, 577, 579, 580, 581, 583, 585, 587, 588, 595, 596, 599, 601, 604, 605, 607, 609, 610, 611, 612, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 631, 635, 636, 638, 639, 640, 641, 647, 648, 649, 650, 653, 654, 655, 660, 661, 662, 663, 664, 665, 666, 668, 670, 672, 673, 674, 679, 684, 685, 686, 687, 690, 691, 692, 694, 695, 696, 697, 698, 699, 701, 702, 703, 704, 705, 706, 707, 712, 713, 714, 716, 717, 718, 719, 723, 724, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 745, 746, 749, 751, 752, 754, 755, 756, 759, 761, 764, 776, 777, 780, 781, 782, 783, 784, 793, 800, 801, 806, 807, 812, 815, 817, 819, 824, 828, 829, 832, 834, 835, 851, 852], "beginn": [15, 801, 858], "advanc": [15, 38, 807, 809, 857], "got": [15, 38, 821], "cover": [15, 26, 52, 75, 368, 404, 405, 406, 806, 811, 812, 814, 817, 819, 820, 825, 826, 832, 835, 836], "write": [15, 16, 26, 27, 38, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 329, 330, 331, 332, 333, 334, 335, 337, 338, 339, 340, 341, 343, 345, 346, 347, 348, 351, 352, 353, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 418, 419, 427, 428, 431, 432, 433, 434, 440, 443, 444, 445, 446, 448, 449, 458, 459, 462, 463, 464, 465, 466, 467, 468, 471, 472, 473, 475, 476, 477, 478, 480, 481, 482, 483, 484, 486, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 504, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 529, 530, 534, 535, 536, 541, 542, 551, 565, 566, 603, 604, 607, 609, 610, 611, 612, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 664, 665, 666, 668, 669, 670, 671, 672, 674, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 697, 698, 699, 700, 702, 725, 726, 727, 728, 729, 731, 733, 734, 736, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 762, 800, 805, 806, 808, 810, 811, 813, 814, 816, 817, 819, 820, 821, 825, 828, 830, 833, 837, 839, 842, 849, 858, 865], "familiar": [15, 16, 17, 800, 806, 807], "concept": [15, 16, 17], "agnost": [15, 16, 17, 18, 26, 27, 28, 32, 38, 800, 812, 817, 824, 837, 839, 842, 843, 864, 865], "unifi": [15, 16, 17, 19, 20, 26, 29, 30, 34, 41, 69, 208, 619, 809, 810, 811, 812, 816, 817, 821, 826, 827, 829, 835, 837, 843, 846, 848, 850, 852, 854, 855, 856, 858, 862, 865], "alongsid": [15, 16, 17, 18, 28, 624, 650, 848], "turn": [15, 16, 19, 29, 56, 79, 92, 93, 391, 392, 393, 624, 647, 780, 807, 814, 815, 818, 819, 829, 832, 849], "wrapper": [15, 16, 19, 772, 812, 814, 815, 817, 821, 825, 828, 829, 839, 845, 854, 858], "unus": [15, 16, 19, 819, 828], "part": [15, 16, 19, 48, 51, 52, 74, 75, 80, 97, 107, 110, 113, 140, 141, 142, 248, 252, 275, 322, 323, 348, 362, 365, 368, 369, 371, 380, 411, 422, 474, 521, 614, 617, 620, 625, 660, 661, 761, 800, 806, 807, 808, 809, 811, 814, 817, 823, 825, 828, 829, 832, 833, 835, 837, 838, 842, 843, 851, 852, 853, 856, 858, 863, 864, 865], "lazi": [15, 16, 19, 22, 29, 32, 33, 44], "eager": [15, 16, 19, 22, 24, 29, 32, 33, 44, 815, 843, 858], "understand": [15, 16, 17, 21, 38, 44, 803, 805, 806, 807, 808, 810, 811, 814, 819, 820, 824, 830, 831, 836, 849, 854, 864], "decor": [15, 16, 21, 23, 24, 32, 44, 528, 622, 764, 766, 772, 803, 811, 812, 815, 817, 818, 822, 825, 828, 829, 830, 835], "kornia": [15, 16, 23, 26, 27, 40, 44, 800, 852], "roundup": 17, "over": [17, 24, 27, 29, 40, 52, 57, 65, 66, 67, 72, 75, 79, 80, 88, 89, 90, 92, 117, 314, 315, 329, 330, 342, 349, 362, 365, 368, 369, 370, 371, 378, 380, 382, 383, 384, 387, 396, 401, 405, 409, 410, 411, 412, 413, 414, 434, 442, 451, 464, 479, 482, 483, 504, 514, 520, 569, 602, 616, 622, 625, 630, 631, 635, 636, 655, 666, 677, 679, 681, 682, 725, 729, 748, 749, 750, 751, 752, 753, 754, 755, 756, 780, 783, 789, 793, 800, 807, 808, 813, 819, 820, 827, 828, 830, 833, 837, 839, 843, 847, 849, 856, 858], "indep": [17, 26], "futur": [17, 24, 26, 40, 625, 660, 661, 800, 807, 808, 809, 816, 817, 832, 833, 835, 839, 843, 847, 849, 864], "proof": [17, 26], "delv": [17, 27, 800], "theori": [17, 802, 814], "deep": [17, 24, 26, 38, 69, 534, 622, 800, 801, 802, 805, 806, 808, 811, 814, 815, 817, 823, 827, 830, 836, 839, 840, 847, 856, 858, 861, 862, 864, 865], "esenti": [17, 26], "abstract": [17, 26, 27, 779, 784, 800, 815, 817, 828, 829, 832, 835, 841, 847, 856, 858, 860, 861, 865], "specif": [17, 18, 23, 24, 26, 27, 28, 30, 32, 40, 50, 52, 53, 73, 75, 76, 175, 206, 209, 242, 263, 264, 273, 316, 329, 330, 362, 365, 371, 375, 482, 501, 534, 535, 536, 562, 618, 619, 620, 622, 625, 627, 628, 631, 634, 635, 660, 661, 677, 698, 703, 704, 705, 726, 743, 748, 749, 750, 752, 759, 761, 781, 782, 789, 790, 796, 800, 803, 804, 806, 807, 808, 811, 812, 813, 814, 815, 817, 818, 821, 823, 824, 825, 828, 829, 830, 831, 832, 833, 835, 837, 838, 839, 841, 842, 843, 844, 845, 847, 851, 852, 853, 854, 856, 857, 859, 860, 861, 865], "quirk": [17, 26], "perk": [17, 26, 800, 812, 815], "under": [17, 26, 27, 52, 370, 446, 447, 793, 800, 806, 807, 810, 811, 818, 819, 820, 823, 829, 830, 832, 835, 836, 837, 840, 842, 843, 851, 852, 858, 861, 865], "hood": [17, 26, 27, 800, 810, 818, 819, 823, 829, 832, 835, 836, 837, 840, 842, 851, 852, 865], "appropi": 17, "string": [17, 26, 27, 42, 52, 53, 56, 69, 75, 79, 145, 146, 158, 165, 187, 188, 189, 190, 191, 193, 202, 209, 210, 214, 368, 369, 371, 410, 414, 422, 474, 485, 513, 532, 618, 619, 622, 624, 625, 637, 638, 639, 640, 642, 644, 646, 661, 759, 761, 765, 793, 794, 813, 814, 816, 817, 818, 821, 829, 837, 840], "simplest": [17, 807, 819, 832, 835], "interact": [17, 26, 41, 44, 806, 857, 858, 863], "submodul": [17, 26, 40, 42, 97, 98, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 776, 777, 779, 780, 782, 783, 784, 785, 806, 807, 808, 811, 814, 816, 818, 822, 825, 826, 832, 836, 837, 841, 845], "ones": [17, 24, 26, 38, 44, 48, 52, 54, 56, 61, 69, 71, 75, 79, 84, 127, 131, 136, 138, 144, 194, 195, 231, 307, 362, 380, 520, 603, 617, 619, 620, 623, 624, 642, 643, 727, 728, 729, 765, 800, 806, 812, 816, 819, 824, 825, 831, 832, 839, 840, 858], "likewis": [17, 22, 26, 33, 800, 808, 815, 817, 820, 824, 825, 829, 835, 840, 851, 852, 864], "nativearrai": [17, 26, 27, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 65, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 122, 123, 124, 126, 131, 132, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 166, 167, 168, 170, 172, 174, 175, 181, 191, 192, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 311, 312, 316, 323, 324, 325, 326, 327, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 480, 481, 482, 483, 484, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 511, 512, 513, 514, 515, 523, 526, 527, 529, 530, 534, 535, 536, 538, 541, 542, 543, 544, 545, 547, 549, 550, 551, 554, 557, 558, 560, 565, 566, 567, 570, 579, 580, 581, 582, 583, 585, 587, 588, 590, 601, 603, 604, 605, 607, 609, 610, 611, 612, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 706, 707, 708, 709, 713, 714, 715, 718, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 785, 812, 815, 819, 821, 824, 825, 826, 828, 829, 833, 834, 837, 839, 845], "alia": [17, 26, 329, 330, 365, 615, 806, 829, 850, 853], "select": [17, 26, 31, 44, 52, 65, 75, 88, 369, 371, 380, 422, 433, 482, 483, 512, 513, 635, 745, 746, 806, 807, 808, 816, 822, 828, 832, 837, 839, 842, 843, 858, 861, 862], "lastli": [17, 26, 812], "contain": [17, 26, 27, 41, 46, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 161, 162, 163, 166, 167, 168, 170, 172, 175, 192, 194, 195, 196, 201, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 360, 362, 365, 367, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 529, 530, 534, 535, 536, 537, 538, 539, 540, 541, 542, 545, 546, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 570, 573, 575, 580, 581, 582, 583, 585, 587, 588, 595, 601, 602, 603, 604, 605, 607, 609, 610, 611, 612, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 709, 713, 714, 715, 718, 719, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 764, 771, 772, 780, 781, 782, 784, 785, 789, 793, 794, 800, 802, 803, 806, 807, 810, 811, 812, 813, 814, 816, 817, 819, 820, 822, 824, 825, 826, 827, 828, 830, 832, 834, 835, 836, 837, 838, 841, 843, 844, 845, 847, 851, 858, 859, 864], "subclass": [17, 26, 27, 826, 829, 835, 852], "dict": [17, 26, 27, 40, 44, 47, 53, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 136, 138, 144, 148, 150, 161, 162, 163, 167, 168, 175, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 319, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 371, 390, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 474, 480, 482, 483, 484, 490, 492, 493, 494, 496, 498, 511, 512, 513, 514, 523, 524, 526, 527, 529, 530, 534, 535, 536, 537, 538, 539, 540, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 561, 565, 566, 580, 581, 583, 585, 587, 588, 601, 612, 616, 618, 619, 622, 629, 638, 639, 640, 641, 647, 648, 653, 654, 655, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 679, 684, 685, 686, 687, 691, 694, 695, 696, 697, 698, 701, 702, 706, 707, 709, 712, 713, 714, 715, 717, 718, 719, 723, 724, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 745, 746, 749, 751, 752, 754, 755, 756, 761, 762, 777, 780, 782, 789, 794, 812, 815, 840, 841, 845, 851, 852, 853], "recurs": [17, 26, 27, 40, 42, 47, 69, 70, 161, 162, 194, 195, 369, 438, 539, 540, 546, 618, 619, 622, 629, 706, 707, 710, 716, 717, 718, 759, 807, 811, 814, 815, 822, 825, 828, 841, 843], "oper": [17, 18, 21, 22, 23, 24, 26, 27, 28, 32, 39, 42, 48, 49, 51, 52, 53, 56, 69, 71, 72, 74, 75, 76, 79, 98, 113, 132, 133, 175, 205, 213, 218, 220, 229, 232, 235, 242, 257, 259, 268, 269, 273, 277, 280, 285, 296, 304, 324, 325, 326, 357, 360, 362, 367, 368, 370, 371, 382, 383, 384, 386, 387, 388, 394, 395, 396, 400, 404, 405, 406, 407, 409, 410, 412, 414, 415, 442, 479, 481, 527, 534, 535, 536, 583, 614, 617, 618, 619, 620, 622, 624, 625, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 650, 677, 679, 751, 753, 764, 767, 780, 794, 800, 806, 807, 810, 811, 812, 815, 817, 818, 819, 820, 821, 825, 828, 829, 832, 835, 837, 840, 841, 845, 847, 851, 854, 855, 856, 857, 858, 859, 861, 862, 863, 864, 865], "fashion": [17, 766, 832, 852], "native_arrai": [17, 26, 27, 48, 49, 51, 71, 73, 74, 75, 76, 80, 87, 105, 108, 131, 134, 136, 138, 144, 147, 148, 149, 150, 158, 163, 170, 192, 201, 209, 225, 229, 234, 235, 236, 238, 242, 246, 254, 255, 263, 268, 271, 274, 277, 282, 329, 330, 356, 365, 370, 371, 448, 474, 480, 484, 523, 526, 553, 554, 557, 587, 614, 617, 618, 619, 620, 622, 624, 625, 626, 627, 631, 632, 635, 636, 638, 639, 646, 653, 656, 660, 661, 667, 668, 672, 676, 677, 679, 682, 684, 686, 687, 694, 726, 735, 744, 750, 753, 755, 761, 771, 789, 803, 822, 830, 832], "data_class": [17, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 387, 388, 534, 538, 675, 700], "low": [17, 26, 29, 45, 52, 56, 61, 75, 79, 84, 368, 410, 414, 624, 631, 637, 638, 639, 640, 642, 644, 646, 727, 729, 766, 815, 821, 828, 829, 835, 837, 854, 856, 858, 859, 860, 862, 864], "level": [17, 26, 27, 29, 52, 75, 76, 369, 438, 526, 794, 800, 801, 806, 807, 808, 809, 815, 817, 821, 825, 827, 828, 829, 831, 834, 835, 836, 837, 840, 841, 842, 843, 845, 849, 854, 855, 856, 857, 858, 859, 860, 862, 863, 864, 865], "c": [17, 26, 32, 41, 42, 48, 52, 53, 54, 56, 59, 65, 71, 72, 74, 75, 76, 77, 79, 80, 82, 86, 88, 92, 93, 111, 122, 123, 133, 136, 160, 163, 218, 229, 235, 236, 256, 257, 259, 268, 271, 279, 286, 368, 369, 371, 374, 380, 382, 383, 384, 395, 400, 416, 418, 420, 421, 423, 433, 452, 453, 454, 464, 482, 490, 491, 492, 495, 513, 526, 534, 535, 536, 537, 545, 549, 550, 588, 603, 604, 607, 609, 610, 611, 614, 617, 618, 620, 622, 623, 624, 625, 627, 629, 632, 633, 635, 638, 639, 640, 641, 642, 643, 645, 659, 661, 663, 694, 698, 706, 709, 713, 714, 715, 717, 718, 723, 724, 735, 740, 746, 747, 752, 754, 783, 793, 794, 801, 807, 810, 813, 814, 815, 819, 825, 827, 836, 837, 838, 840, 843, 845, 846, 848, 849, 852, 854, 858, 862, 863, 865], "fundament": [17, 26, 804, 816, 829, 835, 837, 847, 858], "common": [17, 20, 26, 30, 51, 52, 69, 74, 174, 245, 253, 333, 339, 365, 618, 620, 801, 803, 806, 807, 814, 817, 818, 819, 825, 826, 829, 833, 835, 843, 847, 855, 858, 865], "signatur": [17, 26, 371, 380, 474, 511, 817, 818, 819, 820, 824, 828, 832, 833, 835, 848, 855, 864], "matmul": [17, 26, 27, 43, 57, 80, 369, 436, 602, 622, 625, 675, 813, 832, 833, 837], "to_n": [17, 26, 27, 38, 47, 70, 837], "jaxlib": [17, 23, 41, 789, 807, 812, 817, 818, 824, 833, 837, 839], "xla_extens": [17, 23, 789, 812, 817, 818, 824, 833, 837, 839], "arrayimpl": [17, 23, 789], "abov": [17, 22, 26, 27, 32, 33, 48, 51, 52, 57, 61, 68, 74, 75, 80, 84, 93, 113, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 305, 307, 322, 323, 329, 330, 332, 335, 360, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 401, 404, 405, 406, 411, 412, 413, 421, 422, 474, 482, 511, 514, 541, 545, 547, 549, 551, 588, 612, 614, 617, 618, 620, 622, 623, 624, 625, 627, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 727, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 800, 803, 806, 807, 808, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 827, 828, 829, 830, 832, 835, 837, 839, 840, 841, 842, 858, 863], "why": [17, 800, 808, 828, 839, 846, 848], "underli": [17, 26, 27, 38, 52, 59, 75, 82, 95, 225, 228, 230, 265, 370, 371, 447, 464, 620, 625, 627, 673, 694, 815, 828, 835, 851, 858], "disabl": [17, 26, 52, 75, 371, 482, 782, 814], "array_mod": [17, 26, 567, 590, 622, 834], "set_array_mod": [17, 26, 590, 622, 834], "composit": [17, 26, 161, 162, 194, 195, 287, 369, 428, 539, 540, 618, 619, 620, 622, 765, 767, 806, 810, 812, 813, 815, 817, 818, 826, 828, 829, 830, 832, 835, 837, 841, 842, 843, 845, 851, 859], "ultim": [17, 26, 851], "sigmoid": [17, 26, 27, 38, 46, 52, 68, 75, 295, 360, 375, 497, 614, 776, 837, 840, 841], "z": [17, 26, 27, 39, 40, 48, 51, 52, 53, 57, 58, 61, 63, 65, 71, 74, 75, 76, 80, 81, 82, 84, 88, 97, 98, 132, 133, 135, 136, 196, 218, 219, 223, 225, 228, 230, 235, 246, 247, 250, 251, 252, 254, 255, 260, 262, 264, 265, 266, 267, 275, 284, 294, 295, 329, 330, 332, 360, 365, 370, 380, 443, 445, 446, 447, 448, 449, 455, 459, 470, 510, 511, 514, 521, 526, 538, 541, 542, 549, 550, 566, 579, 580, 581, 589, 602, 617, 619, 620, 622, 625, 626, 627, 629, 631, 632, 633, 635, 655, 665, 670, 671, 675, 682, 684, 685, 686, 687, 709, 713, 715, 723, 727, 728, 729, 732, 737, 747, 748, 750, 751, 752, 779, 800, 813, 815, 818, 819, 837, 839, 851], "divid": [17, 22, 26, 27, 43, 51, 52, 53, 59, 69, 74, 75, 82, 97, 98, 242, 374, 444, 490, 491, 492, 495, 580, 620, 622, 627, 696, 812, 815, 819, 823, 832], "exp": [17, 26, 27, 51, 52, 74, 75, 111, 113, 240, 260, 273, 295, 360, 368, 370, 395, 400, 447, 614, 620, 625, 673, 827, 829], "high": [17, 26, 27, 45, 52, 56, 61, 75, 79, 84, 368, 410, 414, 574, 622, 624, 631, 637, 638, 639, 640, 642, 644, 646, 727, 729, 766, 804, 806, 821, 827, 829, 840, 845, 849, 854, 855, 856, 857, 858, 862, 864, 865], "network": [17, 24, 26, 27, 38, 40, 45, 624, 648, 776, 779, 780, 800, 815, 825, 837, 841, 848, 852, 854, 856, 857, 858, 862, 864, 865], "entir": [17, 26, 27, 29, 42, 52, 65, 66, 69, 75, 76, 88, 89, 208, 238, 240, 280, 281, 329, 330, 365, 368, 371, 380, 391, 392, 393, 474, 514, 547, 619, 620, 635, 636, 748, 749, 750, 751, 752, 753, 754, 755, 756, 780, 794, 806, 807, 808, 811, 812, 815, 817, 819, 821, 828, 829, 830, 832, 835, 837, 840, 841, 842, 843, 848, 849, 852, 858, 864, 865], "further": [17, 69, 98, 766, 808, 811, 812, 816, 819, 821, 824, 825, 828, 829, 831, 832, 836, 837, 840, 841, 848, 849, 863, 864], "congratul": [17, 23], "There": [17, 24, 27, 32, 92, 361, 363, 364, 372, 373, 377, 766, 800, 806, 807, 808, 811, 812, 814, 815, 817, 818, 819, 821, 823, 825, 827, 829, 830, 834, 837, 840, 843, 847, 851, 859, 860, 864, 865], "come": [17, 40, 804, 806, 807, 808, 812, 816, 829, 834, 835, 841, 845, 858], "independ": [17, 27, 52, 61, 75, 84, 218, 235, 268, 278, 374, 375, 495, 497, 620, 625, 631, 655, 674, 726, 800, 811, 817, 819, 826, 837, 842, 852, 856], "good": [17, 26, 27, 800, 805, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 830, 832, 833, 835, 837, 838, 841], "foundat": [17, 848, 861], "power": [17, 26, 27, 51, 52, 53, 57, 74, 75, 76, 80, 97, 98, 229, 238, 239, 273, 327, 339, 362, 365, 368, 415, 571, 581, 593, 620, 622, 625, 629, 667, 680, 712, 779, 834, 839, 840, 841, 858, 860, 864], "defin": [18, 24, 26, 27, 28, 48, 52, 53, 57, 71, 75, 76, 80, 95, 111, 136, 140, 141, 142, 218, 235, 242, 268, 269, 277, 279, 282, 294, 298, 302, 308, 311, 312, 313, 322, 323, 324, 325, 326, 329, 330, 332, 360, 362, 365, 368, 369, 371, 380, 403, 420, 474, 480, 514, 549, 550, 570, 614, 617, 620, 622, 625, 635, 655, 660, 661, 674, 748, 749, 750, 752, 800, 806, 807, 812, 813, 816, 817, 820, 824, 827, 829, 830, 832, 833, 839, 841, 843, 845, 853, 855, 856, 857, 858, 859, 862, 864, 865], "div": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 853], "sub": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 52, 57, 59, 69, 70, 74, 75, 76, 80, 82, 98, 267, 369, 371, 380, 422, 460, 469, 488, 517, 518, 546, 622, 625, 627, 628, 658, 679, 696, 703, 704, 705, 806, 808, 810, 815, 821, 829, 830, 832, 839, 840, 841, 853, 854], "By": [18, 38, 45, 52, 58, 59, 65, 66, 75, 81, 82, 88, 89, 282, 327, 329, 330, 342, 349, 362, 365, 368, 370, 371, 378, 380, 390, 446, 447, 482, 504, 511, 514, 569, 620, 622, 625, 626, 627, 635, 636, 655, 681, 684, 693, 745, 748, 749, 750, 751, 752, 753, 754, 755, 756, 807, 813, 817, 819, 821, 825, 827, 828, 829, 837, 841, 842, 851], "uniform": [18, 19, 20, 21, 22, 26, 27, 28, 29, 31, 32, 33, 40, 52, 61, 75, 84, 380, 514, 631, 726, 727, 729, 779, 800, 831, 841, 852, 853, 865], "x_": [18, 28, 93, 279, 620, 853], "82997245": 18, "44733784": 18, "32163444": 18, "93330479": 18, "52438271": 18, "20438017": 18, "252316": 18, "0827222": 18, "26017165": 18, "88881904": 18, "compat": [18, 24, 28, 32, 38, 45, 51, 52, 57, 59, 62, 65, 66, 74, 75, 80, 82, 85, 88, 89, 97, 98, 149, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 289, 329, 330, 365, 618, 620, 625, 627, 632, 635, 636, 655, 668, 671, 674, 677, 681, 682, 694, 733, 748, 749, 750, 751, 752, 753, 754, 755, 756, 800, 807, 813, 824, 829, 830, 833, 837, 843, 848], "sever": [18, 19, 28, 29, 31, 32, 33, 52, 75, 92, 368, 369, 382, 383, 384, 434, 764, 807, 808, 833, 843, 856, 862], "pro": [18, 19, 20, 28, 29, 30, 31, 32, 33], "pick": [19, 29, 779], "off": [19, 29, 56, 57, 79, 80, 391, 392, 393, 624, 625, 647, 658, 679, 779, 780, 807, 822, 836, 849, 851, 864], "last": [19, 24, 26, 29, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 71, 75, 79, 80, 81, 82, 87, 88, 89, 93, 97, 132, 133, 136, 191, 307, 335, 362, 365, 368, 369, 370, 371, 378, 380, 396, 401, 411, 412, 413, 424, 446, 464, 474, 476, 482, 504, 512, 513, 617, 619, 624, 625, 626, 627, 632, 634, 635, 636, 649, 650, 655, 658, 670, 679, 681, 685, 686, 688, 691, 694, 695, 696, 698, 732, 733, 741, 743, 744, 745, 746, 755, 756, 780, 789, 800, 808, 811, 813, 814, 817, 819, 828, 830, 832, 835, 837, 843, 849, 852, 858], "purpos": [19, 26, 27, 29, 40, 42, 142, 240, 258, 322, 362, 617, 620, 625, 673, 808, 810, 812, 815, 816, 818, 819, 821, 824, 825, 826, 829, 831, 832, 835, 836, 839, 845, 857, 859, 862, 863, 864], "illustr": [19, 29, 813, 837], "trigger": [19, 29, 782, 806, 823], "unif": [19, 21, 22, 29, 31, 801, 839, 848, 854, 864], "detail": [19, 29, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 76, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 128, 139, 286, 290, 294, 295, 297, 360, 369, 418, 459, 537, 614, 617, 620, 633, 658, 665, 671, 675, 698, 737, 738, 739, 740, 776, 800, 806, 808, 809, 811, 813, 814, 815, 816, 823, 824, 825, 826, 829, 830, 831, 832, 833, 834, 837, 839, 840, 841, 860, 864], "55563945": 19, "65538704": 19, "14150524": 19, "46951997": 19, "30220294": 19, "14739668": 19, "57017946": 19, "91962677": 19, "51029003": 19, "59644395": 19, "arbitrari": [19, 29, 48, 49, 52, 69, 72, 75, 134, 148, 175, 316, 370, 444, 452, 453, 454, 605, 617, 618, 623, 824, 825, 827, 828, 829, 832, 841, 843, 851, 853, 859, 864], "constitu": [19, 29, 69, 842], "due": [19, 26, 27, 29, 43, 45, 268, 278, 371, 482, 620, 807, 811, 816, 821, 828, 829, 848, 851, 852, 858], "manner": [19, 27, 29, 39, 47, 70, 629, 718, 807, 817, 818, 820, 825, 829, 833, 840, 843, 847, 854, 856, 864, 865], "non": [19, 29, 49, 51, 52, 57, 61, 62, 65, 66, 72, 74, 75, 80, 84, 85, 88, 89, 129, 147, 165, 174, 243, 263, 264, 269, 329, 330, 334, 340, 353, 365, 368, 369, 371, 380, 411, 422, 426, 430, 453, 454, 514, 517, 617, 618, 620, 625, 629, 631, 632, 635, 636, 655, 656, 666, 668, 675, 677, 681, 682, 719, 728, 732, 733, 734, 735, 748, 749, 750, 751, 752, 754, 755, 756, 764, 779, 781, 782, 784, 812, 815, 819, 837, 851, 852, 853, 858], "5556394": 19, "655387": 19, "1415051": 19, "4695197": 19, "3022028": 19, "1473966": 19, "5701794": 19, "91962665": 19, "51028997": 19, "5964439": 19, "assess": [19, 29, 806, 835], "985": 19, "000": [19, 74, 269, 764, 803, 816, 822], "69": [19, 38, 45, 51, 77, 84, 216, 258, 368, 389, 399, 607, 620, 623, 625, 666, 667, 728, 832, 840], "slower": [19, 829], "On": [19, 26, 27, 807, 817, 818, 823, 829, 832, 835, 838, 842], "hand": [19, 51, 369, 436, 764, 800, 811, 817, 818, 823, 825, 832, 843], "singl": [19, 29, 38, 43, 51, 61, 69, 74, 84, 93, 287, 344, 365, 369, 375, 433, 498, 588, 601, 605, 620, 622, 623, 624, 631, 633, 650, 727, 728, 729, 737, 764, 780, 806, 807, 808, 811, 816, 819, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 840, 841, 842, 843, 849], "learnt": [20, 30], "two": [20, 30, 32, 38, 48, 52, 57, 63, 75, 76, 80, 97, 98, 118, 121, 127, 134, 140, 141, 142, 173, 181, 229, 243, 244, 278, 322, 323, 328, 340, 341, 343, 344, 346, 348, 355, 362, 365, 368, 369, 370, 371, 380, 396, 419, 420, 421, 433, 442, 444, 448, 453, 474, 480, 484, 511, 521, 526, 616, 617, 618, 620, 622, 625, 627, 633, 654, 656, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 679, 681, 699, 737, 738, 739, 740, 764, 766, 772, 780, 806, 807, 811, 812, 817, 818, 819, 820, 825, 829, 830, 832, 835, 836, 840, 842, 849, 855, 863], "workflow": [20, 30, 41, 801, 806, 808, 813, 817, 827, 829, 840, 845, 849, 857, 864, 865], "ivy_norm": 20, "jax_norm": [20, 26, 27], "wider": [20, 30, 574, 596, 622, 817, 834, 864], "avoid": [20, 30, 32, 52, 59, 75, 235, 240, 242, 258, 268, 370, 371, 374, 444, 452, 453, 454, 460, 462, 464, 465, 466, 469, 473, 480, 488, 490, 491, 492, 528, 544, 546, 569, 574, 596, 620, 622, 627, 690, 691, 692, 694, 696, 697, 699, 701, 766, 767, 807, 808, 813, 814, 815, 816, 817, 821, 826, 829, 832, 833, 834, 835, 858], "conveni": [20, 30, 806, 817, 818, 824, 830, 838, 840, 841, 845, 864], "act": [20, 30, 52, 75, 356, 366, 808, 819, 834, 843, 865], "shorthand": [20, 30, 32, 832], "pair": [20, 30, 40, 52, 56, 75, 79, 223, 242, 314, 355, 362, 365, 368, 401, 410, 412, 414, 620, 624, 625, 637, 638, 639, 640, 642, 644, 646, 653, 655, 794], "93968587": 20, "26075466": 20, "22723222": 20, "06276492": 20, "47426987": 20, "72835908": 20, "71737559": 20, "50411096": 20, "65419174": 20, "15576624": 20, "implic": [20, 30, 31, 34, 815], "requir": [21, 22, 23, 24, 31, 40, 41, 42, 45, 51, 52, 69, 74, 75, 269, 282, 286, 369, 371, 421, 422, 474, 620, 625, 627, 659, 660, 661, 698, 764, 772, 777, 794, 802, 806, 807, 812, 814, 816, 817, 818, 819, 820, 821, 823, 824, 826, 829, 830, 831, 832, 833, 835, 837, 839, 843, 852, 858, 864], "satisfi": [21, 22, 23, 24, 40, 42, 45, 52, 368, 369, 390, 422, 817, 819], "opt": [21, 22, 23, 24, 44, 807, 813, 817, 828, 832, 835], "fw": [21, 22, 23, 24, 56, 79, 380, 511, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 761, 807, 832], "mxnet": [21, 22, 23, 24, 789, 806, 807, 848, 865], "26": [21, 22, 23, 24, 38, 40, 42, 45, 51, 52, 60, 61, 75, 76, 77, 84, 230, 235, 281, 368, 369, 389, 425, 433, 549, 603, 620, 622, 623, 624, 625, 629, 630, 635, 646, 658, 670, 677, 707, 725, 727, 728, 747], "einop": [21, 22, 23, 24, 40, 42, 45, 53, 76, 534, 535, 536, 622, 817, 848], "miniconda": [21, 22, 23, 24], "env": [21, 22, 23, 24], "multienv": [21, 22, 23, 24], "site": [21, 22, 23, 24, 859], "psutil": [21, 22, 23, 24, 40, 42, 45], "termcolor": [21, 22, 23, 24, 40, 42, 45, 69, 98], "colorama": [21, 22, 23, 24, 40, 42], "nvidia": [21, 22, 23, 24, 40, 42, 45, 862, 863], "535": [21, 22, 23, 24, 46, 68, 113, 614, 821], "diskcach": [21, 22, 23, 24, 40], "auth": [21, 22, 23, 24], "urllib3": [21, 22, 23, 24, 40], "pyvi": [21, 22, 23, 24, 26, 27], "dill": [21, 22, 23, 24, 40], "astunpars": [21, 22, 23, 24], "cloudpickl": [21, 22, 23, 24], "gast": [21, 22, 23, 24], "66": [21, 22, 23, 24, 38, 40, 42, 65, 75, 76, 77, 368, 399, 534, 535, 607, 622, 623, 625, 635, 670, 747], "wheel": [21, 22, 23, 24, 40, 42, 45, 847], "six": [21, 22, 23, 24, 40, 45, 807, 835], "cachetool": [21, 22, 23, 24], "pyasn1": [21, 22, 23, 24], "rsa": [21, 22, 23, 24], "jinja2": [21, 22, 23, 24], "jsonpickl": [21, 22, 23, 24], "networkx": [21, 22, 23, 24, 45], "charset": [21, 22, 23, 24, 40], "idna": [21, 22, 23, 24, 40], "certifi": [21, 22, 23, 24, 40], "2017": [21, 22, 23, 24, 40, 624, 650], "jedi": [21, 22, 23, 24], "inlin": [21, 22, 23, 24, 814], "prompt": [21, 22, 23, 24, 806, 808], "toolkit": [21, 22, 23, 24, 858, 859, 865], "pygment": [21, 22, 23, 24], "traitlet": [21, 22, 23, 24], "exceptiongroup": [21, 22, 23, 24], "paddl": [21, 22, 23, 24, 329, 330, 365, 777, 789, 806, 807, 817, 822], "pexpect": [21, 22, 23, 24], "markupsaf": [21, 22, 23, 24], "parso": [21, 22, 23, 24], "ptyprocess": [21, 22, 23, 24], "wcwidth": [21, 22, 23, 24], "asttoken": [21, 22, 23, 24], "pure": [21, 22, 23, 24, 32, 42, 800, 820, 824, 829, 835, 839, 842, 843, 858, 864, 865], "eagerli": [21, 22, 26, 27, 31, 32, 33, 40, 800, 851, 852, 853], "lazili": [21, 22, 23, 26, 27, 31, 33, 44, 800, 851, 852, 853], "actual": [21, 31, 803, 808, 810, 816, 822, 825, 826, 828, 829, 830, 832, 835, 836, 841, 843, 859, 864], "occur": [21, 26, 27, 31, 44, 49, 51, 63, 72, 74, 86, 150, 269, 285, 618, 620, 632, 633, 732, 733, 737, 738, 739, 740, 811, 816, 818, 821, 834], "becaus": [21, 29, 31, 41, 52, 368, 390, 759, 807, 808, 811, 812, 813, 814, 815, 817, 818, 820, 821, 822, 824, 825, 826, 827, 828, 829, 830, 832, 835, 837, 841, 842, 843, 858, 861, 864], "argument": [21, 23, 24, 26, 27, 29, 31, 32, 33, 38, 40, 42, 44, 47, 48, 51, 52, 53, 57, 69, 70, 74, 75, 76, 92, 93, 98, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 337, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 411, 413, 415, 422, 474, 482, 511, 514, 518, 524, 525, 527, 528, 533, 535, 536, 541, 545, 547, 549, 551, 561, 565, 566, 583, 588, 589, 602, 612, 617, 618, 620, 622, 623, 624, 625, 627, 628, 629, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 705, 712, 725, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 764, 765, 772, 777, 780, 781, 782, 789, 793, 796, 800, 806, 810, 811, 812, 813, 814, 815, 819, 820, 823, 825, 830, 832, 833, 835, 837, 839, 840, 845, 847, 851, 852, 853, 858], "altern": [21, 31, 41, 52, 75, 80, 92, 93, 328, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 365, 800, 806, 807, 814, 828, 840, 861], "dummi": [21, 22, 31, 32, 33, 39, 808], "seed": [21, 22, 42, 43, 52, 56, 61, 63, 69, 75, 79, 84, 317, 318, 319, 320, 321, 362, 369, 375, 426, 435, 441, 497, 498, 499, 500, 501, 624, 631, 633, 647, 726, 727, 728, 729, 731, 737, 772, 777, 779, 794, 826, 830, 832], "assum": [21, 22, 31, 32, 33, 48, 51, 52, 53, 56, 57, 58, 74, 75, 76, 79, 80, 81, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 307, 323, 329, 330, 332, 335, 352, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 434, 436, 474, 482, 511, 514, 541, 545, 547, 549, 558, 588, 612, 617, 618, 620, 622, 623, 624, 625, 626, 627, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 683, 684, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 780, 793, 800, 807, 811, 813, 816, 817, 820, 830, 832, 835, 839, 840, 843], "201733": 21, "core": [21, 22, 24, 40, 41, 42, 44, 45, 52, 75, 92, 95, 199, 369, 426, 435, 440, 441, 619, 807, 818, 822, 832, 842, 847, 856, 857, 858, 859, 863, 865], "cpu_feature_guard": [21, 22, 24], "182": [21, 22, 24, 75], "instruct": [21, 22, 24, 69, 98, 800, 806, 807, 811, 821, 823, 830, 832, 844, 856, 859, 862, 864], "critic": [21, 22, 24, 26, 27, 858, 864], "avx2": [21, 22, 24], "fma": [21, 22, 24], "rebuild": [21, 22, 24, 69, 98], "flag": [21, 22, 24, 69, 191, 370, 380, 444, 511, 619, 624, 650, 761, 772, 783, 808, 817, 818, 828, 829, 830, 832, 851, 852], "slowli": [21, 31], "norm": [21, 31, 32, 52, 53, 57, 75, 76, 80, 91, 92, 368, 369, 389, 390, 394, 395, 396, 399, 400, 401, 411, 412, 418, 422, 493, 494, 496, 529, 530, 551, 622, 625, 666, 682, 725, 780, 784, 833], "slow": [21, 31, 802, 807, 814], "34431235": [21, 22], "51129461": [21, 22], "06686894": [21, 22], "36452447": [21, 22], "98795534": [21, 22], "15493582": [21, 22], "91630631": [21, 22], "41939619": [21, 22], "78909753": [21, 22], "19475674": [21, 22], "norm_trac": 21, "float64": [21, 22, 49, 52, 61, 65, 71, 72, 74, 75, 76, 84, 88, 121, 129, 130, 147, 150, 154, 155, 160, 161, 164, 165, 170, 171, 175, 177, 178, 184, 187, 269, 339, 365, 370, 380, 442, 447, 511, 560, 617, 618, 622, 625, 631, 660, 661, 666, 682, 728, 729, 746, 761, 764, 765, 817, 830, 832], "norm_tran": [21, 31], "know": [21, 22, 31, 32, 33, 63, 633, 737, 738, 739, 740, 802, 806, 808, 818, 826, 830, 832, 835, 849, 853, 859], "07": [22, 40, 42, 54, 58, 74, 77, 81, 84, 223, 256, 259, 260, 279, 368, 399, 593, 603, 604, 606, 607, 608, 609, 620, 622, 623, 626, 685, 686, 728, 781, 784, 841], "981554": 22, "happen": [22, 26, 27, 287, 620, 800, 807, 808, 818, 828, 832, 840, 849, 851, 852], "wherea": [22, 33, 75, 368, 413, 808, 812, 815, 817, 818, 819, 824, 825, 832, 842, 855], "subtract": [22, 26, 27, 51, 74, 97, 98, 129, 371, 474, 617, 620, 812, 815, 819], "begin": [22, 52, 75, 279, 370, 371, 442, 458, 474, 475, 476, 477, 478, 620, 629, 706, 717, 764, 807, 811, 816, 830], "filelock": [23, 40], "extens": [23, 40, 51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 482, 511, 617, 618, 620, 625, 627, 632, 633, 634, 635, 636, 654, 655, 656, 657, 658, 660, 661, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 688, 690, 691, 692, 694, 695, 697, 698, 702, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 805, 807, 808, 820, 822, 823, 832, 855, 858, 865], "sympi": [23, 848], "fsspec": [23, 40], "mpmath": 23, "scenario": [23, 817, 827], "often": [23, 52, 370, 442, 805, 811, 821, 824, 825, 829, 832, 843, 849, 859, 862, 865], "fortun": [23, 24, 811], "everyth": [23, 41, 793, 800, 806, 807, 808, 810, 816, 819, 828, 829, 830, 832, 838, 843, 844, 849], "practic": [23, 808, 813, 816, 829, 831, 861], "specifi": [23, 24, 26, 27, 31, 32, 33, 44, 46, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 125, 130, 132, 137, 140, 141, 143, 147, 149, 196, 201, 203, 207, 208, 209, 277, 286, 290, 294, 295, 297, 323, 328, 344, 349, 360, 362, 365, 368, 369, 370, 371, 375, 380, 386, 387, 388, 390, 396, 401, 411, 412, 413, 414, 422, 432, 434, 439, 442, 446, 447, 448, 450, 464, 467, 476, 477, 479, 480, 482, 498, 509, 511, 512, 513, 516, 517, 521, 524, 541, 542, 544, 546, 547, 560, 562, 570, 602, 614, 617, 618, 619, 620, 622, 624, 625, 626, 627, 629, 631, 632, 633, 634, 635, 636, 650, 653, 655, 657, 658, 660, 661, 666, 674, 677, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 695, 697, 698, 701, 702, 710, 711, 713, 714, 721, 722, 723, 724, 727, 728, 729, 731, 732, 733, 735, 738, 739, 740, 741, 745, 746, 747, 751, 753, 755, 756, 764, 767, 776, 780, 781, 782, 794, 807, 810, 814, 817, 818, 824, 825, 826, 828, 829, 830, 832, 837, 840, 841, 851, 852, 853, 864], "everi": [23, 26, 27, 32, 40, 48, 52, 53, 75, 76, 130, 131, 295, 329, 330, 342, 360, 365, 368, 371, 404, 405, 406, 413, 487, 523, 617, 622, 806, 808, 811, 813, 814, 816, 817, 819, 823, 824, 825, 826, 828, 829, 830, 832, 837, 839, 841, 851, 852, 853, 858], "jax_kornia": [23, 26, 27, 800, 852], "though": [23, 805, 806, 808, 817, 818, 820, 825, 828, 829, 835, 840, 843], "comput": [23, 24, 26, 27, 33, 34, 39, 40, 42, 46, 51, 52, 53, 54, 56, 57, 58, 63, 65, 68, 69, 74, 75, 76, 77, 79, 80, 81, 88, 92, 93, 95, 108, 112, 208, 218, 225, 228, 230, 235, 236, 237, 242, 243, 244, 246, 247, 253, 254, 255, 262, 263, 264, 265, 267, 268, 271, 276, 277, 294, 298, 302, 308, 311, 312, 324, 325, 326, 329, 330, 332, 336, 340, 342, 343, 347, 349, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 378, 380, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 415, 416, 418, 420, 421, 422, 423, 425, 426, 428, 431, 433, 435, 438, 439, 441, 443, 444, 445, 446, 447, 448, 449, 468, 471, 484, 490, 492, 503, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 528, 529, 530, 574, 596, 603, 605, 606, 608, 612, 613, 619, 620, 622, 623, 624, 625, 626, 627, 629, 633, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 654, 655, 659, 660, 661, 664, 665, 666, 668, 670, 672, 674, 675, 677, 679, 681, 682, 684, 685, 686, 690, 712, 737, 738, 739, 740, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 761, 766, 780, 783, 794, 800, 807, 815, 816, 817, 825, 827, 829, 832, 834, 835, 837, 840, 843, 845, 848, 849, 851, 852, 854, 856, 858, 859, 861, 862, 864], "000000000034": [23, 26, 27, 800, 852], "raw_img": [23, 26, 27, 800, 852], "enhanc": [23, 26, 27, 800, 831, 852], "sharp": [23, 26, 27, 800], "prefer": [23, 26, 27, 242, 620, 800, 807, 815, 821, 822, 826, 829, 844, 858], "leverag": [23, 26, 27, 800, 807, 828, 852, 856, 858], "whole": [24, 52, 75, 371, 374, 481, 493, 494, 496, 808, 814, 823], "full": [24, 52, 57, 75, 79, 80, 92, 93, 95, 160, 247, 255, 317, 318, 319, 320, 321, 362, 369, 370, 371, 439, 440, 446, 447, 475, 478, 568, 577, 591, 599, 617, 618, 620, 622, 624, 625, 639, 641, 642, 643, 645, 668, 672, 674, 675, 765, 772, 800, 807, 808, 814, 817, 820, 821, 824, 825, 829, 832, 835, 837, 843, 848, 849, 856, 858, 864], "advantag": [24, 26, 27, 800, 807, 808, 817, 828, 829, 844, 852, 858], "complex": [24, 26, 27, 40, 46, 51, 52, 57, 65, 68, 72, 74, 75, 80, 88, 105, 106, 107, 108, 109, 110, 111, 112, 113, 137, 138, 153, 167, 176, 182, 215, 216, 217, 218, 219, 220, 221, 224, 232, 233, 235, 236, 238, 240, 248, 249, 250, 251, 252, 256, 257, 258, 259, 268, 270, 271, 273, 275, 278, 279, 280, 281, 282, 285, 286, 290, 294, 295, 297, 332, 337, 360, 365, 368, 369, 380, 390, 401, 411, 412, 416, 421, 422, 423, 432, 434, 519, 520, 580, 581, 614, 617, 618, 620, 622, 625, 632, 635, 659, 660, 661, 666, 673, 675, 677, 679, 682, 735, 750, 751, 753, 765, 776, 794, 804, 806, 809, 814, 817, 819, 826, 829, 832, 833, 835, 840, 841, 842, 843, 845, 852, 854, 856, 858, 860, 864, 865], "neccessari": 24, "set_random_se": [24, 43], "manual_se": 24, "301436": 24, "_c": 24, "0x7f252c392390": 24, "convolut": [24, 52, 56, 75, 79, 368, 388, 406, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 766, 780, 852, 856, 858], "flatten": [24, 26, 27, 40, 42, 45, 52, 53, 57, 59, 62, 63, 75, 76, 80, 82, 85, 86, 334, 349, 365, 369, 371, 380, 419, 463, 473, 477, 482, 483, 487, 509, 516, 517, 518, 519, 520, 521, 534, 538, 622, 625, 627, 632, 633, 662, 670, 682, 688, 693, 695, 732, 733, 737, 738, 739, 740, 759, 761, 800, 828, 835], "keyword": [24, 26, 27, 42, 44, 47, 48, 52, 69, 75, 98, 134, 269, 368, 371, 380, 415, 474, 511, 525, 528, 561, 589, 617, 620, 622, 625, 629, 635, 676, 712, 753, 759, 761, 765, 781, 782, 793, 806, 812, 815, 817, 818, 826, 828, 829, 830, 832, 833, 835, 840, 851, 852, 853], "input_arrai": [24, 26, 27, 828], "torch_model": [24, 26, 27, 44], "159": [24, 68, 105, 614, 624, 648], "state_upd": 24, "properti": [24, 69, 92, 93, 94, 95, 96, 97, 101, 782, 784, 811, 815, 825, 830, 832, 839, 840, 841, 864], "_transpil": 24, "thank": [24, 840, 848], "fledg": [24, 807, 837, 838], "rand": [24, 26, 27, 42, 793, 794, 800, 851], "output_arrai": [24, 26, 27, 52, 444], "0893": 24, "1504": 24, "1372": 24, "0991": 24, "0867": 24, "0851": 24, "0911": 24, "0804": 24, "0926": 24, "0881": 24, "softmaxbackward0": 24, "furthermor": 24, "relat": [24, 242, 620, 800, 802, 805, 806, 807, 808, 814, 821, 829, 832, 833, 834, 835, 852, 861], "interest": [24, 26, 38, 235, 268, 620, 806, 808], "continu": [24, 26, 27, 42, 120, 282, 290, 360, 616, 620, 800, 805, 806, 807, 810, 811, 822, 828, 831, 832, 843, 848, 849, 858], "regress": [25, 858, 865], "checkout": [26, 41, 808, 811, 832], "f705efe7cb5d18df17ce6c1e20f04d0eb4933f48": 26, "theoret": 26, "aspect": [26, 27, 801, 827, 840, 858], "switch": [26, 38, 772, 813, 821, 825, 826, 865], "easiest": [26, 800, 802, 807, 844], "defer": [26, 27, 806, 812, 817, 818, 825, 828, 829, 832, 864], "similarli": [26, 39, 134, 142, 218, 322, 329, 330, 362, 365, 617, 620, 813, 817, 829, 835, 839, 864], "obtain": [26, 27, 45, 52, 75, 313, 362, 368, 407, 624, 650, 766, 829, 851], "essenc": [26, 859, 864], "becom": [26, 52, 75, 92, 339, 365, 371, 454, 627, 687, 789, 808, 809, 815, 817, 819, 821, 828, 843, 847, 849, 851], "regardless": [26, 27, 38, 69, 801, 817, 821, 839, 842, 849], "being": [26, 27, 38, 52, 69, 75, 90, 97, 101, 121, 369, 371, 430, 458, 474, 575, 617, 622, 625, 661, 761, 767, 779, 800, 807, 808, 811, 812, 813, 815, 817, 818, 819, 822, 824, 826, 828, 829, 830, 832, 833, 835, 837, 840, 843, 848, 849, 854, 856, 857, 858, 859, 864, 865], "slide": [26, 52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 410, 414, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 780], "A": [26, 27, 41, 48, 49, 52, 53, 59, 61, 65, 66, 69, 72, 74, 75, 76, 79, 80, 82, 84, 86, 89, 92, 93, 98, 117, 118, 120, 127, 135, 142, 148, 189, 208, 270, 272, 276, 307, 318, 322, 324, 325, 326, 328, 341, 344, 348, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 383, 396, 410, 413, 415, 422, 433, 436, 444, 448, 459, 462, 480, 484, 485, 490, 491, 492, 493, 497, 498, 499, 500, 501, 509, 518, 521, 526, 528, 537, 546, 549, 550, 580, 581, 582, 585, 613, 616, 617, 618, 619, 620, 622, 623, 624, 625, 627, 629, 631, 635, 636, 647, 650, 658, 660, 663, 664, 669, 670, 674, 675, 687, 690, 692, 696, 698, 706, 709, 711, 713, 714, 715, 716, 717, 721, 722, 723, 724, 726, 727, 728, 729, 731, 737, 747, 755, 756, 759, 761, 762, 764, 765, 766, 767, 772, 779, 794, 798, 800, 805, 806, 807, 810, 815, 817, 818, 821, 824, 825, 829, 830, 832, 837, 840, 843, 844, 845, 846, 847, 848, 849, 851, 852, 853, 858, 859], "regressor": [26, 27, 800], "input_dim": [26, 27, 41, 800], "output_dim": [26, 27, 41, 800], "linear0": [26, 27, 38, 800, 840, 841], "linear1": [26, 27, 38, 800, 840, 841], "instanti": [26, 27, 772, 820], "adam": [26, 27, 38, 42, 54, 77, 525, 603, 604, 609, 622, 623, 784, 800, 840, 841, 842, 858], "n_training_exampl": [26, 27, 800], "2000": [26, 27, 75, 308, 362, 800], "random_norm": [26, 27, 56, 57, 61, 79, 80, 84, 534, 622, 624, 625, 631, 639, 641, 642, 643, 645, 646, 649, 675, 800], "linspac": [26, 27, 48, 71, 121, 617, 800, 824, 835, 837, 865], "loss_fn": [26, 27, 38, 40, 42, 800, 840, 841, 842], "pred": [26, 27, 41, 42, 52, 58, 75, 81, 370, 443, 446, 626, 684, 685, 686, 800, 815, 825, 828], "epoch": [26, 27, 40, 42, 800], "loss": [26, 27, 40, 42, 52, 75, 92, 442, 443, 444, 445, 446, 447, 448, 449, 574, 596, 622, 684, 685, 686, 800, 816, 817, 825, 829, 833, 834, 840, 841, 842, 858, 865], "gradient": [26, 27, 40, 42, 52, 75, 92, 208, 357, 365, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 619, 628, 703, 704, 705, 761, 772, 784, 800, 810, 833, 840, 841, 843, 858], "grad": [26, 27, 38, 42, 603, 623, 784, 800, 827, 840, 841, 842], "execute_with_gradi": [26, 27, 38, 42, 623, 800, 840, 841, 842, 843], "lambda": [26, 27, 43, 45, 75, 118, 120, 292, 301, 533, 605, 606, 608, 613, 616, 622, 623, 625, 629, 660, 713, 714, 718, 800, 806, 825, 826, 827, 830, 835, 837, 840], "2d": [26, 27, 42, 52, 75, 92, 307, 362, 368, 369, 371, 380, 383, 384, 391, 392, 432, 439, 453, 463, 511, 780, 800, 829, 835], "5f": [26, 27, 800], "nonetheless": [26, 27], "slight": [26, 27, 817, 832, 841], "introduc": [26, 27, 242, 620, 627, 633, 695, 737, 806, 815, 816, 817, 826, 830, 832, 835, 840, 847], "address": [26, 27, 52, 53, 75, 371, 482, 587, 622, 806, 808, 811, 812, 824, 831, 837, 849, 854, 856, 858, 864], "extract": [26, 27, 34, 41, 52, 75, 93, 371, 457, 483, 829, 831, 833, 854, 858, 859, 864], "gc": [26, 27, 546, 622], "decompos": [26, 27, 52, 75, 92, 95, 317, 318, 319, 320, 321, 341, 348, 362, 365, 369, 430, 435, 438, 441, 829, 842], "said": [26, 27, 766, 833, 849, 851], "otherwis": [26, 27, 44, 47, 48, 49, 51, 52, 53, 56, 57, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 123, 124, 129, 131, 132, 133, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 166, 170, 174, 175, 191, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 307, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 335, 336, 343, 344, 350, 352, 354, 355, 356, 360, 362, 365, 368, 369, 374, 386, 387, 388, 391, 392, 393, 411, 424, 437, 439, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 460, 462, 464, 465, 466, 473, 480, 482, 483, 484, 488, 490, 492, 493, 494, 496, 498, 510, 511, 512, 513, 514, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 558, 565, 566, 580, 581, 583, 585, 587, 588, 589, 601, 605, 607, 612, 616, 617, 618, 619, 620, 622, 623, 624, 625, 628, 629, 632, 633, 634, 635, 636, 638, 639, 640, 641, 647, 648, 650, 653, 654, 655, 656, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 675, 679, 681, 682, 684, 685, 686, 687, 690, 691, 692, 694, 695, 696, 697, 698, 699, 701, 702, 703, 704, 719, 726, 727, 728, 729, 731, 732, 733, 734, 736, 737, 738, 739, 740, 741, 743, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 764, 765, 780, 782, 783, 789, 800, 808, 812, 815, 817, 818, 819, 825, 826, 828, 832, 837, 844, 851, 852], "x0": [26, 27, 45, 76, 526, 622, 819], "normalize_trac": [26, 27], "html": [26, 27, 41, 51, 52, 74, 75, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 482, 511, 617, 618, 620, 625, 627, 635, 673, 674, 702, 752, 800, 820, 848], "fname": [26, 27, 43, 45, 782, 840], "anticip": [26, 27], "addition": [26, 27, 815, 828, 829, 864], "backend_compil": [26, 27], "normalize_native_comp": [26, 27], "return_backend_compiled_fn": 26, "immedi": [26, 27, 806, 807], "built": [26, 27, 32, 40, 42, 45, 121, 617, 780, 781, 782, 800, 807, 808, 814, 815, 832, 838, 844, 851, 857, 858, 862], "summar": [26, 27, 92, 832], "eager_graph": [26, 27, 800, 851, 852], "lazy_graph": [26, 27, 800, 851, 852], "codebas": [26, 27, 206, 207, 619, 801, 804, 810, 817, 823, 828, 829, 831, 832, 833, 836, 849], "thought": [26, 27, 807, 808, 824, 848, 856], "research": [26, 27, 40, 800, 847, 852, 858, 865], "wa": [26, 27, 32, 41, 52, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 351, 352, 354, 355, 356, 362, 365, 369, 391, 392, 393, 411, 440, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 480, 482, 483, 484, 490, 492, 493, 494, 496, 498, 511, 512, 513, 514, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 580, 581, 583, 585, 587, 588, 589, 601, 607, 612, 620, 622, 629, 635, 636, 638, 639, 640, 641, 647, 648, 653, 654, 655, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 679, 684, 685, 686, 687, 691, 694, 695, 696, 697, 698, 701, 702, 719, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 789, 800, 802, 808, 811, 813, 814, 816, 819, 825, 827, 829, 837, 839, 848, 851, 852, 857, 858, 860], "No": [26, 27, 40, 52, 58, 75, 81, 370, 444, 445, 446, 448, 449, 626, 684, 808, 816, 817, 858], "matter": [26, 27, 32, 819, 847], "job": [26, 27, 800, 814, 816, 852], "haven": [26, 27, 32, 844, 858], "jax_out": [26, 27], "ideal": [26, 27, 816, 817, 829, 835, 840], "But": [26, 27, 766, 815, 816, 820, 823, 826, 835, 842], "bring": [26, 27, 811, 831, 832, 837, 838, 845, 848], "wise": [26, 46, 51, 52, 57, 68, 74, 75, 80, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 215, 216, 218, 219, 220, 222, 223, 225, 226, 227, 228, 229, 230, 234, 235, 236, 237, 239, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 263, 264, 265, 266, 267, 268, 271, 273, 274, 276, 277, 284, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 328, 331, 336, 338, 339, 340, 343, 344, 345, 346, 350, 351, 354, 355, 360, 365, 368, 369, 371, 391, 392, 393, 420, 427, 461, 468, 470, 471, 489, 614, 620, 627, 655, 687, 784, 835], "vision": [26, 27, 45, 854, 864], "worth": [26, 27], "differenti": [26, 27, 290, 358, 359, 360, 367, 858], "chosen": [26, 27, 45, 95, 121, 223, 617, 620, 632, 736, 806, 816, 829], "plai": [26, 27, 370, 446, 800, 804, 807, 809, 812, 818, 822, 829, 832, 842, 858, 861], "role": [26, 27, 800, 804, 808, 809, 818, 829, 838, 859, 861, 865], "dl": [26, 27], "cnn": [26, 27, 858], "effortlessli": [26, 27], "previous": [26, 27, 591, 622, 789, 807, 813, 825, 827, 832, 837], "pre": [26, 27, 800, 803, 806, 831, 832, 842, 843, 844, 858], "default_devic": [26, 27, 201, 204, 205, 206, 212, 213, 619, 818, 821, 822], "as_n": [26, 27, 49, 50, 69, 72, 73, 153, 154, 155, 156, 157, 158, 164, 191, 192, 204, 618, 619, 817], "certainli": [26, 27, 800, 848, 864], "upon": [26, 27, 44, 808, 809, 819, 828, 832, 835, 843, 857, 858], "unnecessari": [26, 27, 829], "extend": [26, 27, 52, 75, 371, 380, 474, 514, 813, 814, 817, 820, 821, 824, 829, 833, 843, 855, 858, 864], "infrastructur": [26, 27, 800, 854, 860, 861], "least": [26, 51, 52, 57, 74, 75, 235, 253, 268, 368, 371, 380, 395, 400, 452, 453, 454, 463, 465, 511, 620, 625, 632, 665, 735, 800, 808, 812, 816, 817, 818, 819, 825, 828, 832, 852], "coco": 26, "seamlessli": [27, 832], "benefit": [27, 800, 807, 812, 815, 828, 835, 839, 840, 843, 848, 849, 856, 860, 863], "through": [27, 32, 40, 52, 75, 95, 223, 380, 517, 518, 620, 629, 709, 715, 782, 793, 800, 801, 803, 805, 806, 808, 809, 810, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 828, 829, 830, 832, 834, 835, 836, 837, 840, 841, 842, 851, 856, 858, 859, 860], "therefor": [27, 32, 48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 467, 474, 475, 477, 482, 486, 511, 514, 518, 527, 535, 536, 541, 545, 547, 549, 551, 565, 583, 588, 612, 617, 618, 620, 622, 623, 624, 625, 627, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 806, 808, 811, 812, 815, 816, 817, 818, 819, 820, 821, 824, 825, 826, 828, 829, 830, 832, 833, 835, 837, 839, 841, 843, 847, 855, 858, 864], "wide": [27, 800, 808, 832, 856, 858], "prepar": [27, 40, 42, 45, 800, 816], "plenti": 27, "resourc": [27, 801, 806, 807, 816], "visit": [27, 806, 807, 808, 816], "page": [27, 800, 806, 807, 808, 814, 816, 822, 838, 839, 842, 844, 853], "newli": [28, 29, 41, 43, 49, 72, 147, 528, 618, 622, 808, 816, 828, 832], "randon": [28, 29, 31, 32, 33], "mean_": 28, "std_": 28, "detect": [28, 32, 51, 69, 74, 250, 620, 629, 706, 717, 806, 807, 813, 815, 816, 823, 832, 840, 841], "inspect": [28, 32, 524, 622], "__": [28, 29, 30, 31, 32, 33, 69, 819, 840], "exhibit": [29, 864], "via": [29, 32, 242, 369, 371, 435, 438, 441, 482, 620, 629, 716, 717, 808, 811, 815, 817, 818, 828, 833, 835, 837, 839, 840, 858], "script": [29, 800, 807, 808, 811, 816, 819, 837, 843, 858], "comp": 29, "low_level": 29, "chain": [29, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 449, 458, 459, 480, 482, 484, 490, 492, 493, 494, 496, 498, 511, 512, 513, 514, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 580, 581, 583, 585, 587, 588, 601, 607, 612, 628, 629, 638, 639, 640, 641, 647, 648, 653, 654, 655, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 679, 684, 685, 686, 687, 691, 694, 695, 696, 697, 698, 701, 702, 703, 704, 708, 719, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 745, 746, 749, 751, 752, 754, 755, 756, 785, 812, 815, 827, 829, 841, 842, 843, 858], "un": [29, 165, 618, 817, 837], "partial_comp": 29, "time_funct": 29, "slowest": [29, 52, 59, 75, 82, 371, 464, 627, 694], "express": [29, 51, 52, 74, 75, 93, 216, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 620, 786, 794, 820, 829, 837, 842, 858, 859], "fastest": [29, 52, 59, 75, 82, 369, 371, 433, 464, 627, 694], "maxim": [29, 825, 828, 837, 855, 856, 860, 861, 862], "conclud": [30, 833], "collect": [30, 40, 42, 44, 45, 47, 69, 70, 614, 619, 622, 623, 624, 626, 629, 630, 631, 719, 776, 780, 781, 782, 783, 784, 807, 816, 821, 822, 826, 827, 830, 832, 856, 858, 861], "norm_comp": [31, 32], "global": [31, 32, 42, 53, 69, 76, 98, 153, 154, 155, 156, 157, 206, 207, 208, 571, 572, 575, 580, 581, 593, 594, 597, 618, 619, 622, 772, 783, 789, 807, 812, 813, 816, 817, 818, 821, 825, 829, 837, 858], "approach": [31, 803, 806, 807, 808, 812, 815, 817, 818, 822, 825, 829, 832, 833, 835, 839, 840, 843, 855, 862, 864], "b": [32, 46, 51, 52, 53, 56, 57, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 122, 123, 124, 129, 130, 131, 133, 136, 138, 144, 147, 148, 149, 150, 158, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 375, 378, 380, 386, 387, 388, 389, 391, 392, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 417, 420, 422, 424, 428, 433, 436, 441, 442, 443, 445, 446, 447, 448, 452, 453, 454, 455, 458, 459, 460, 461, 464, 465, 466, 468, 469, 470, 471, 473, 474, 480, 482, 483, 484, 485, 488, 489, 494, 496, 498, 499, 501, 502, 504, 511, 512, 513, 514, 516, 518, 521, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 558, 565, 566, 580, 581, 583, 587, 588, 601, 603, 604, 605, 607, 609, 610, 611, 612, 614, 617, 618, 620, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 653, 654, 655, 656, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 684, 685, 686, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 706, 709, 712, 713, 714, 715, 717, 718, 723, 724, 725, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 793, 794, 800, 801, 803, 808, 810, 811, 813, 815, 816, 819, 822, 825, 827, 830, 836, 837, 838, 840, 841, 842, 846, 849, 851, 854], "option": [32, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 163, 165, 175, 187, 191, 203, 206, 207, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 415, 416, 418, 419, 420, 422, 424, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 457, 458, 459, 460, 462, 464, 465, 466, 467, 468, 469, 471, 472, 473, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 526, 527, 529, 530, 532, 534, 535, 536, 537, 538, 541, 542, 544, 545, 546, 547, 549, 550, 551, 553, 554, 557, 562, 565, 566, 570, 580, 581, 583, 585, 587, 588, 589, 601, 603, 604, 607, 609, 610, 611, 612, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 664, 665, 666, 668, 669, 670, 671, 672, 673, 674, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 712, 713, 717, 718, 723, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 765, 772, 776, 777, 779, 780, 782, 784, 785, 793, 798, 806, 807, 808, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 828, 829, 830, 832, 833, 835, 837, 842, 843, 851, 852, 853, 858, 864], "prioriti": [32, 69, 789, 804, 806, 808, 809, 818, 828], "normalize_via_oper": 32, "determin": [32, 51, 52, 57, 59, 63, 66, 69, 74, 75, 76, 80, 87, 89, 92, 95, 97, 98, 127, 150, 152, 159, 165, 166, 167, 168, 170, 171, 172, 187, 197, 199, 200, 211, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 248, 249, 250, 251, 252, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 298, 302, 347, 352, 360, 365, 368, 369, 370, 371, 380, 403, 411, 422, 442, 443, 482, 511, 523, 526, 547, 548, 552, 553, 554, 555, 556, 557, 583, 601, 617, 618, 619, 620, 622, 625, 627, 628, 633, 636, 654, 655, 656, 658, 662, 663, 665, 667, 668, 670, 671, 673, 674, 679, 681, 682, 688, 703, 704, 705, 737, 738, 739, 740, 741, 755, 756, 766, 772, 779, 783, 815, 817, 818, 820, 825, 829, 832, 834, 835, 847], "think": [32, 806, 808, 816, 819, 835, 859], "uniqu": [32, 42, 52, 53, 63, 75, 76, 86, 368, 369, 371, 415, 436, 473, 474, 487, 558, 622, 628, 629, 633, 703, 704, 705, 708, 712, 737, 738, 739, 740, 766, 800, 806, 811, 815, 825, 829, 830, 831, 835, 843, 847, 861], "rule": [32, 49, 51, 52, 57, 72, 74, 75, 80, 147, 150, 173, 174, 175, 224, 235, 268, 270, 277, 279, 287, 289, 368, 371, 380, 411, 462, 511, 618, 620, 625, 627, 654, 655, 662, 667, 670, 674, 688, 766, 793, 811, 812, 815, 816, 817, 819, 823, 824, 825, 827, 832, 835, 859], "broadcast": [32, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 333, 334, 337, 339, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 416, 418, 419, 427, 428, 431, 432, 434, 443, 444, 445, 446, 448, 449, 455, 459, 462, 467, 475, 476, 477, 478, 480, 482, 484, 486, 490, 493, 494, 496, 497, 498, 500, 501, 511, 512, 513, 514, 517, 518, 519, 520, 521, 529, 530, 534, 535, 536, 541, 542, 551, 565, 566, 603, 604, 607, 609, 610, 611, 612, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 630, 631, 632, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 668, 669, 670, 671, 672, 674, 676, 677, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 697, 698, 699, 700, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 736, 740, 741, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 766, 793, 815, 817, 819, 820, 821, 832, 833, 837], "elementwis": [32, 52, 60, 75, 83, 294, 296, 355, 360, 625, 630, 680, 725, 825, 833, 837], "must": [32, 40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 319, 320, 323, 324, 325, 326, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 416, 418, 419, 421, 427, 428, 431, 432, 433, 434, 439, 443, 444, 445, 446, 448, 449, 452, 453, 454, 459, 460, 462, 464, 465, 466, 467, 469, 473, 475, 476, 477, 478, 480, 482, 483, 484, 486, 488, 493, 494, 496, 497, 498, 500, 501, 504, 511, 512, 513, 514, 521, 529, 530, 534, 535, 536, 541, 542, 544, 551, 565, 566, 602, 603, 604, 607, 609, 610, 611, 612, 614, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 779, 780, 784, 786, 805, 806, 807, 808, 811, 812, 816, 817, 818, 819, 820, 821, 824, 825, 826, 828, 829, 832, 833, 834, 835, 837, 841, 842, 847, 849, 852, 853, 859, 865], "taken": [32, 52, 57, 75, 80, 335, 365, 368, 412, 625, 658, 679, 804, 806, 816, 829, 833, 842, 859], "account": [32, 42, 44, 52, 59, 75, 82, 282, 371, 464, 620, 627, 694, 779, 793, 807, 816, 820, 829, 833, 851], "rather": [32, 53, 69, 76, 121, 208, 553, 554, 557, 617, 619, 622, 803, 808, 811, 815, 817, 820, 822, 829, 830, 832, 833, 842, 843, 848, 854, 857, 858], "fact": [32, 92, 808, 811, 816, 829, 832, 837, 840], "consum": [32, 761, 815, 816, 824, 830, 832], "thrown": [32, 551, 622, 807, 812, 818, 821, 823, 843], "doesn": [32, 551, 569, 622, 759, 780, 806, 807, 813, 815, 816, 817, 818, 819, 822, 823, 825, 827, 832, 835, 837, 843, 851, 856], "consider": [32, 806, 819, 824, 835, 847, 855, 856], "effect": [32, 48, 52, 54, 65, 75, 77, 88, 134, 370, 403, 446, 603, 611, 617, 623, 624, 635, 650, 752, 754, 764, 767, 806, 812, 815, 816, 820, 824, 828, 830, 835, 843, 848], "explain": [32, 52, 75, 368, 401, 412, 800, 806, 807, 808, 811, 812, 813, 814, 815, 817, 818, 819, 820, 821, 822, 823, 824, 825, 827, 828, 829, 832, 833, 835, 837, 838, 839, 840, 841, 842, 854, 861, 864], "necessari": [32, 48, 52, 71, 75, 82, 123, 235, 268, 370, 371, 442, 452, 453, 454, 460, 462, 463, 464, 465, 466, 473, 488, 574, 596, 620, 622, 690, 691, 692, 694, 696, 697, 699, 701, 800, 806, 807, 812, 813, 815, 817, 819, 828, 829, 832, 834, 835, 851, 852], "standalon": [33, 806, 812, 832, 845, 854, 859, 864, 865], "dynam": [33, 627, 694, 782, 789, 810, 816, 817, 818, 828, 829, 834, 837, 851, 858, 862], "static": [33, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 101, 102, 124, 313, 368, 388, 401, 406, 415, 435, 441, 480, 491, 583, 617, 624, 650, 670, 777, 782, 829, 834, 843, 857, 858, 859], "flow": [34, 815, 851, 858, 859], "statement": [34, 39, 816, 828, 832, 835, 843, 851, 852], "opposit": 34, "exclud": [34, 65, 75, 88, 121, 142, 322, 362, 512, 513, 617, 631, 729, 745, 764, 767, 789, 819, 837, 851], "todo": [35, 36, 37, 42, 45, 75, 513, 806, 817, 829], "aim": [38, 803, 808, 811, 822, 826, 829, 832, 836, 856, 858, 861], "interfac": [38, 71, 129, 617, 839, 842, 843, 845, 848, 854, 855, 856, 857, 858, 862, 865], "set_framework": [38, 45], "44": [38, 42, 51, 52, 61, 74, 75, 84, 221, 268, 278, 282, 283, 333, 365, 368, 388, 389, 620, 624, 625, 629, 632, 635, 647, 670, 714, 727, 728, 736, 747], "45": [38, 40, 42, 51, 52, 65, 74, 75, 77, 79, 84, 98, 219, 223, 235, 278, 279, 337, 350, 365, 368, 380, 389, 399, 410, 512, 518, 603, 609, 620, 623, 625, 627, 635, 670, 696, 728, 729, 747, 764], "46": [38, 40, 42, 52, 61, 75, 79, 84, 133, 258, 279, 308, 362, 368, 387, 405, 406, 617, 620, 629, 707, 727, 728], "underneath": [38, 816, 856], "sai": [38, 806, 807, 822, 826, 839, 849], "clip": [38, 51, 52, 59, 74, 75, 76, 82, 266, 267, 371, 457, 482, 483, 529, 530, 620, 622, 627, 815, 825, 827, 828, 840, 842], "a_min": 38, "a_max": 38, "tensforflow": 38, "clip_by_valu": [38, 842], "clip_value_min": 38, "clip_value_max": 38, "clamp": [38, 52, 75, 294, 360, 842], "min": [38, 42, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 140, 142, 160, 163, 267, 322, 325, 330, 362, 365, 369, 371, 422, 479, 519, 535, 565, 566, 580, 617, 618, 620, 622, 625, 635, 666, 672, 675, 676, 682, 800], "max": [38, 40, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 160, 163, 266, 329, 365, 368, 369, 370, 371, 386, 387, 388, 404, 405, 406, 407, 409, 411, 422, 442, 479, 481, 482, 529, 530, 535, 551, 565, 566, 618, 620, 622, 625, 635, 666, 668, 671, 764, 780, 784, 816, 829], "49": [38, 42, 52, 61, 75, 79, 80, 282, 368, 369, 380, 389, 399, 410, 433, 512, 620, 635, 680, 728, 747], "devicearrai": [38, 812, 829, 837, 839], "concaten": [38, 52, 53, 59, 75, 80, 371, 459, 534, 538, 622, 624, 627, 650, 670, 688, 764, 830, 835, 837, 840], "accept": [38, 47, 48, 51, 52, 57, 70, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 336, 357, 362, 365, 367, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 474, 482, 511, 514, 518, 527, 535, 536, 541, 545, 547, 549, 551, 565, 583, 588, 612, 617, 618, 620, 622, 623, 624, 625, 627, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 800, 806, 807, 808, 812, 815, 817, 818, 819, 820, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 839, 845, 856], "jax_concat": 38, "tf_concat": 38, "np_concat": 38, "torch_concat": 38, "85": [38, 46, 52, 61, 68, 74, 75, 77, 79, 84, 98, 107, 220, 229, 230, 274, 290, 291, 293, 360, 380, 512, 580, 607, 614, 620, 622, 623, 624, 631, 648, 727, 728, 729], "mymodel": [38, 840], "x_in": [38, 840, 841, 842], "reduce_mean": [38, 800, 840, 841, 842], "91": [38, 52, 79, 84, 353, 365, 410, 624, 625, 631, 635, 648, 670, 728, 747], "49040043354034424": 38, "48975786566734314": 38, "4892795979976654": 38, "48886892199516296": 38, "4884953498840332": 38, "4881443977355957": 38, "4878086447715759": 38, "48748287558555603": 38, "48716384172439575": 38, "48684927821159363": 38, "48653748631477356": 38, "48622724413871765": 38, "4859171509742737": 38, "48560672998428345": 38, "48529526591300964": 38, "4849821627140045": 38, "48466697335243225": 38, "4843493402004242": 38, "4840289056301117": 38, "4837053418159485": 38, "4833785891532898": 38, "4830484390258789": 38, "48271444439888": 38, "48237672448158264": 38, "48203518986701965": 38, "48168954253196716": 38, "4813397228717804": 38, "4809857904911041": 38, "48062753677368164": 38, "48026490211486816": 38, "479898065328598": 38, "47952669858932495": 38, "4791509211063385": 38, "4787706732749939": 38, "47838595509529114": 38, "4779967665672302": 38, "47760307788848877": 38, "4772048890590668": 38, "47680220007896423": 38, "47639501094818115": 38, "47598329186439514": 38, "4755673110485077": 38, "4751465618610382": 38, "4747215211391449": 38, "4742920398712158": 38, "47385817766189575": 38, "47341999411582947": 38, "47297725081443787": 38, "4725303053855896": 38, "47207894921302795": 38, "47162333130836487": 38, "47116345167160034": 38, "470699280500412": 38, "47023090720176697": 38, "54": [38, 49, 51, 56, 74, 75, 79, 84, 163, 232, 233, 238, 253, 282, 288, 308, 362, 368, 380, 389, 399, 512, 620, 624, 625, 635, 648, 667, 670, 727, 728, 729, 747, 816, 819], "4697583019733429": 38, "55": [38, 46, 75, 84, 113, 229, 288, 380, 512, 549, 620, 622, 625, 631, 635, 663, 670, 728, 729, 747, 811], "46928152441978455": 38, "46880054473876953": 38, "4683155119419098": 38, "58": [38, 259, 529, 620, 622], "4678264260292053": 38, "59": [38, 51, 230, 380, 512], "46733325719833374": 38, "46683603525161743": 38, "61": [38, 40, 51, 52, 57, 74, 75, 77, 81, 84, 221, 256, 258, 283, 389, 603, 620, 623, 624, 625, 626, 646, 662, 684, 686, 729, 822], "4663347601890564": 38, "4658295214176178": 38, "465320348739624": 38, "4648073613643646": 38, "46429020166397095": 38, "4637692868709564": 38, "46324464678764343": 38, "4627160429954529": 38, "4621836841106415": 38, "4616474211215973": 38, "71": [38, 51, 74, 79, 234, 274, 410, 620], "46110764145851135": 38, "72": [38, 52, 61, 75, 77, 240, 342, 365, 368, 389, 399, 607, 620, 623, 625, 635, 670, 728, 747], "460563987493515": 38, "4600166976451874": 38, "74": [38, 40, 51, 84, 230, 260, 620, 625, 667], "45946577191352844": 38, "45891112089157104": 38, "45835286378860474": 38, "4577910006046295": 38, "78": [38, 54, 279, 609, 620, 623, 625, 631, 635, 670, 728, 747], "45722562074661255": 38, "79": [38, 40, 52, 53, 75, 76, 79, 84, 97, 235, 368, 389, 399, 410, 529, 530, 620, 622, 729], "45665669441223145": 38, "80": [38, 52, 75, 342, 365, 369, 380, 433, 512, 625, 629, 635, 670, 717, 747, 848], "4560841917991638": 38, "81": [38, 42, 51, 57, 72, 74, 80, 84, 163, 233, 258, 259, 283, 380, 512, 618, 620, 625, 629, 631, 635, 662, 667, 680, 714, 729, 747, 832], "4555082619190216": 38, "45492875576019287": 38, "45434585213661194": 38, "84": [38, 56, 65, 74, 84, 163, 193, 258, 618, 619, 625, 630, 635, 648, 670, 725, 728, 729, 747], "45375964045524597": 38, "4531698524951935": 38, "4525766670703888": 38, "45198020339012146": 38, "4513803720474243": 38, "4507772624492645": 38, "4501707851886749": 38, "4495610296726227": 38, "4489481747150421": 38, "44833192229270935": 38, "4477125108242035": 38, "44708991050720215": 38, "44646409153938293": 38, "44583529233932495": 38, "98": [38, 46, 52, 54, 61, 68, 74, 77, 84, 108, 233, 281, 353, 365, 607, 614, 623, 625, 629, 632, 635, 670, 707, 718, 727, 729, 736, 747], "4452032148838043": 38, "44456806778907776": 38, "4439": 38, "selectbackward0": 38, "hope": [38, 843, 848, 864], "ivy_compil": 39, "ic": 39, "produc": [39, 52, 53, 56, 75, 79, 296, 306, 309, 360, 362, 368, 415, 624, 653, 764, 794, 806, 817, 822, 823, 828, 830, 832, 833, 851, 859, 861], "numer": [39, 48, 49, 51, 52, 53, 57, 61, 62, 65, 72, 74, 75, 76, 80, 84, 85, 87, 97, 98, 134, 147, 215, 218, 231, 235, 240, 241, 242, 249, 250, 251, 254, 263, 264, 268, 270, 271, 272, 273, 277, 278, 279, 283, 284, 288, 289, 368, 370, 375, 380, 411, 444, 498, 511, 571, 572, 580, 581, 593, 594, 617, 618, 620, 622, 625, 631, 632, 635, 655, 662, 665, 670, 673, 675, 677, 679, 681, 727, 728, 729, 731, 732, 733, 735, 736, 741, 748, 751, 753, 764, 765, 766, 767, 779, 803, 817, 822, 827, 829, 830, 832, 833, 834, 835, 837, 841, 855, 858, 864], "anyth": [39, 52, 75, 380, 517, 518, 808, 821, 832, 833, 858, 859], "affect": [39, 45, 52, 370, 447, 816, 829], "intermedi": [39, 856, 857, 858, 859, 864], "variabl": [39, 41, 42, 44, 52, 53, 54, 60, 69, 75, 76, 77, 83, 117, 118, 120, 316, 362, 368, 369, 375, 380, 413, 437, 499, 510, 511, 527, 551, 552, 553, 554, 557, 583, 604, 605, 607, 609, 610, 611, 616, 622, 623, 625, 628, 630, 674, 703, 704, 705, 725, 761, 772, 777, 779, 780, 781, 782, 783, 784, 785, 808, 813, 817, 820, 824, 827, 828, 832, 833, 837, 840, 841, 842, 843, 844, 851, 859], "original_fn": 39, "100000": 39, "var": [39, 65, 88, 90, 117, 118, 119, 120, 616, 628, 635, 703, 704, 786, 807, 819, 837], "co": [39, 40, 51, 53, 74, 233, 238, 240, 281, 538, 620, 622, 805, 817, 837, 848], "sin": [39, 51, 53, 74, 233, 238, 240, 281, 538, 620, 622, 812, 837], "tan": [39, 51, 74, 525, 620, 622, 820, 824, 825, 828, 829, 837], "comp_fn": 39, "compile_graph": [39, 45], "expected_result": 39, "compiled_result": 39, "irrelev": [39, 816, 817, 819], "opeat": 39, "_layer": [39, 837], "net": [39, 44, 45, 837, 842, 848, 849], "compiled_net": 39, "proceed": 40, "latest": [40, 42, 51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 413, 482, 511, 618, 620, 625, 627, 635, 673, 674, 702, 752, 780, 800, 806, 807, 808, 811, 813, 816, 820, 822, 833, 843, 844, 852, 863], "pypi": [40, 42, 45, 806, 807, 833, 843], "pkg": [40, 42, 45], "public": [40, 42, 45, 531, 622, 816, 827, 839, 861], "revis": [40, 42, 808], "tmp": [40, 42, 578, 600, 622], "req": [40, 42], "tabqrujw": 40, "command": [40, 42, 800, 802, 807, 811, 814, 816, 822, 823, 844], "filter": [40, 42, 44, 52, 56, 75, 79, 311, 312, 362, 368, 388, 406, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 766, 780, 800, 813, 816], "quiet": [40, 42], "commit": [40, 42, 803, 804, 806, 809, 811, 819, 831, 832], "f3be3702c9fab1c9fa97c743813a4bdb39525705": 40, "metadata": [40, 42, 45, 828], "setup": [40, 42, 45, 807, 808, 814, 816, 822], "done": [40, 42, 45, 625, 661, 805, 806, 807, 808, 811, 814, 816, 818, 819, 822, 823, 828, 829, 832, 840, 851, 852, 858], "py3": [40, 42, 45], "whl": [40, 41, 42, 45], "cp39": [40, 42], "manylinux_2_12_x86_64": [40, 42], "manylinux2010_x86_64": [40, 42], "manylinux_2_17_x86_64": [40, 42, 807], "manylinux2014_x86_64": [40, 41, 42], "eta": [40, 42, 45], "tar": [40, 41, 42, 45], "gz": [40, 41, 42, 45], "py2": [40, 42], "495": [40, 42], "nvidia_ml_pi": [40, 42], "pypars": [40, 42, 45], "ivy_cor": [40, 42, 45, 807], "1338326": 40, "sha256": [40, 42, 45], "e5c4205c80116b781373daf4502d61881235c5e3eb0d55096ab07dcc6eb66bec": 40, "store": [40, 42, 45, 49, 52, 53, 57, 59, 69, 72, 75, 76, 80, 82, 149, 368, 369, 412, 420, 424, 436, 440, 538, 622, 625, 627, 679, 696, 761, 762, 780, 781, 782, 802, 808, 812, 813, 815, 820, 826, 828, 829, 830, 837, 839, 840, 841, 845, 851], "directori": [40, 41, 42, 45, 578, 600, 619, 622, 802, 806, 807, 808, 814, 816, 822, 829, 832, 844], "ephem": [40, 42], "njrc_e6b": 40, "2e": [40, 42], "ae2d7c5ce8708e605368a33e08d57d1de8e107e3db157c3063": [40, 42], "4845": [40, 42], "a8cde63eca203d3bd7f900fa32f44dbd038476606a3836de14caf2b0a5ff7460": 40, "b6": [40, 42], "0d": [40, 42], "0d1bbd99855f99cb2f6c2e5ff96f8023fad8ec367695f7d72d": [40, 42], "successfulli": [40, 42, 45, 782, 804, 807, 812], "uninstal": [40, 42, 45], "found": [40, 42, 43, 45, 57, 59, 63, 69, 75, 80, 82, 86, 98, 196, 380, 459, 512, 619, 629, 658, 665, 698, 717, 737, 794, 806, 807, 808, 812, 813, 814, 815, 817, 818, 820, 823, 826, 828, 829, 844, 860], "cannot": [40, 41, 42, 45, 52, 285, 452, 453, 454, 620, 808, 811, 813, 817, 829, 837, 842, 864], "vnd": [40, 42, 45], "json": [40, 42, 45, 69, 807, 822, 840], "psst": 40, "cv2": [40, 42, 44, 840], "pickl": [40, 41, 69, 782, 815, 840], "imageio": 40, "urllib": [40, 45], "_src": 40, "tpu": [40, 189, 195, 206, 211, 619, 818, 858, 861], "back": [40, 52, 59, 75, 82, 371, 464, 485, 567, 590, 622, 624, 627, 650, 694, 779, 784, 794, 807, 812, 817, 818, 821, 826, 827, 834, 836, 843, 844, 848, 856, 860], "tf_cpp_min_log_level": 40, "info": [40, 797, 800, 814, 820, 823], "mkdir": [40, 41, 42, 807, 816], "perceiv": [40, 41], "touch": 40, "io_processor": 40, "position_encod": 40, "absl": 40, "jmp": 40, "tabul": 40, "04": [40, 41, 48, 54, 68, 72, 75, 77, 107, 108, 133, 160, 240, 571, 603, 604, 609, 614, 617, 618, 620, 622, 623, 764, 807, 832], "29359": 40, "29k": 40, "67k": 40, "002": 40, "30179": 40, "47k": 40, "8107": 40, "9k": 40, "92k": 40, "itertool": 40, "preprocessor": 40, "vector": [40, 48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 134, 358, 359, 367, 368, 369, 371, 374, 375, 380, 390, 421, 426, 432, 434, 439, 474, 476, 478, 495, 499, 511, 530, 534, 551, 602, 617, 622, 624, 625, 648, 650, 655, 659, 660, 662, 665, 670, 675, 676, 680, 681, 682, 683, 764, 780, 858], "perceiverbackbon": 40, "input_preprocessor": 40, "_input_preprocessor": 40, "_encod": 40, "__call__": [40, 761, 780, 781, 782, 800, 852], "is_train": 40, "po": [40, 794], "input_mask": 40, "network_input_is_1d": 40, "_input_is_1d": 40, "queri": [40, 41, 56, 69, 79, 193, 207, 544, 570, 619, 622, 624, 650, 653, 780, 815, 817, 822, 839, 858], "decod": [40, 840], "cross": [40, 42, 57, 58, 80, 81, 93, 625, 626, 684, 685, 686, 800, 816, 817], "attend": [40, 624, 650], "encoder_queri": 40, "latent": [40, 628, 704, 705], "imagepreprocessor": 40, "deal": [40, 782, 803, 818, 825, 827, 829, 843], "image_s": 40, "fourier_pos_config": 40, "position_encoding_typ": 40, "fourier": [40, 52, 75, 368, 390, 395, 396, 400, 401, 411, 412, 415, 538, 622], "fourier_position_encoding_kwarg": 40, "concat_po": 40, "max_resolut": 40, "num_band": [40, 53, 76, 538, 622], "sine_onli": 40, "prep_typ": 40, "spatial_downsampl": 40, "cross_attend_widening_factor": 40, "cross_attention_shape_for_attn": 40, "kv": 40, "dropout_prob": 40, "num_block": 40, "num_cross_attend_head": 40, "num_self_attend_head": 40, "num_self_attends_per_block": 40, "num_z_channel": 40, "self_attend_widening_factor": 40, "use_query_residu": 40, "z_index_dim": 40, "z_pos_enc_init_scal": 40, "perceiver_backbon": [40, 800], "perceiverencod": 40, "At": [40, 806, 807, 808, 811, 822, 832, 833, 848, 858], "almost": [40, 805, 815, 830, 838, 840, 847], "publish": [40, 800, 843, 849, 852], "thankfulli": [40, 832], "perceiver_io": [40, 41], "imagenet_fourier_position_encod": 40, "pystat": 40, "imagenet_checkpoint": 40, "rb": 40, "ckpt": 40, "read": [40, 42, 52, 59, 69, 71, 75, 82, 129, 371, 464, 617, 627, 694, 806, 807, 814, 816, 822, 832, 834, 835, 858], "09": [40, 46, 51, 77, 84, 113, 273, 283, 603, 614, 620, 623, 728], "173": [40, 57, 625, 662], "194": 40, "217": [40, 821], "125": [40, 52, 57, 80, 229, 339, 365, 370, 443, 620, 625, 680], "177": [40, 42], "193776248": 40, "185m": 40, "octet": 40, "184": 40, "80m": 40, "144mb": 40, "144": 40, "mean_rgb": 40, "stddev_rgb": 40, "im": 40, "denorm": 40, "resize_and_center_crop": 40, "crop": [40, 52, 75, 368, 396, 401, 412], "center": [40, 779], "image_height": [40, 42, 800], "image_width": [40, 800], "padded_center_crop_s": 40, "minimum": [40, 51, 52, 53, 59, 62, 65, 74, 75, 76, 82, 85, 88, 215, 243, 270, 293, 325, 329, 330, 339, 360, 362, 365, 371, 380, 474, 509, 513, 519, 571, 572, 580, 581, 593, 594, 620, 622, 627, 632, 635, 687, 733, 748, 750, 764, 766, 767, 772, 817, 834, 855, 861, 865], "offset_height": 40, "offset_width": 40, "crop_window": 40, "inter_cub": 40, "ye": [40, 843], "dummy_input": [40, 800], "transpili": 40, "torch_perceiver_backbon": 40, "quicker": 40, "params_v": [40, 800, 852], "perceiverioclassifi": [40, 800], "max_pool": [40, 800], "huggingfac": [40, 851, 852], "Of": [40, 812, 828, 829, 840, 863, 864], "cours": [40, 807, 808, 811, 812, 819, 828, 829, 835, 840, 843, 863, 864], "468": 40, "huggingface_hub": 40, "multiprocess": [40, 69, 98, 622, 840, 843], "py39": 40, "132": [40, 75], "pyarrow": 40, "xxhash": 40, "212": [40, 52, 56, 75, 352, 365, 648], "pyyaml": 40, "2021": [40, 52, 75, 355, 365, 800], "aiohttp": 40, "async": 40, "timeout": [40, 69, 98, 575, 597, 622, 834], "0a3": 40, "async_timeout": 40, "frozenlist": 40, "manylinux_2_5_x86_64": [40, 45], "manylinux1_x86_64": [40, 45], "158": 40, "attr": [40, 817], "aiosign": 40, "multidict": 40, "114": [40, 368, 389, 399], "yarl": 40, "264": [40, 629, 706], "2022": [40, 41], "pytz": 40, "2020": [40, 811, 858], "dateutil": [40, 45], "wikiart": 40, "paint": [40, 800, 837, 847], "load_dataset": [40, 851, 852], "n_sampl": [40, 52, 75, 369, 371, 417, 425, 477], "10000": [40, 42, 48, 71, 133, 617], "huggan": 40, "split": [40, 41, 42, 46, 51, 52, 59, 68, 69, 74, 75, 82, 105, 106, 107, 108, 109, 110, 111, 112, 113, 206, 207, 208, 286, 290, 294, 295, 297, 341, 348, 360, 371, 460, 469, 488, 534, 561, 614, 619, 620, 622, 624, 627, 637, 644, 645, 699, 761, 776, 780, 800, 801, 808, 816, 836, 837, 843, 865], "wiki_art": 40, "gib": 40, "unknown": [40, 764], "total": [40, 42, 52, 65, 69, 75, 88, 98, 129, 210, 324, 325, 326, 334, 362, 365, 370, 442, 617, 619, 632, 635, 735, 752, 754, 794, 800, 801, 807, 808, 817, 818, 819, 832, 835, 840, 841, 843, 849], "huggan___parquet": 40, "36ee951979f9b56c": 40, "2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec": 40, "parquet": 40, "subsequ": [40, 789, 807, 812, 816, 817, 819, 824, 825, 828, 832, 841, 859], "reus": [40, 48, 71, 75, 82, 123, 452, 453, 460, 462, 464, 465, 466, 473, 488, 690, 691, 692, 694, 696, 697, 699, 701, 821, 832, 863], "curl": [40, 807], "server": [40, 800, 807, 808, 814, 822, 844, 858], "row": [40, 52, 75, 93, 127, 142, 322, 362, 369, 371, 378, 380, 427, 437, 466, 472, 489, 504, 510, 511, 617, 625, 631, 632, 666, 674, 675, 680, 726, 735, 779], "2fwikiart": 40, "receiv": [40, 44, 92, 525, 561, 622, 628, 703, 704, 705, 780, 807, 808, 817, 818, 832, 835], "xferd": 40, "averag": [40, 42, 52, 54, 58, 75, 77, 81, 368, 370, 374, 380, 382, 383, 386, 387, 388, 444, 445, 446, 447, 448, 449, 495, 511, 603, 604, 609, 623, 624, 626, 628, 650, 684, 703, 704, 779, 780], "dload": 40, "upload": [40, 832], "spent": [40, 849], "25936": 40, "278k": 40, "number": [40, 42, 43, 44, 45, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 92, 93, 95, 97, 98, 101, 121, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 142, 148, 153, 154, 155, 156, 157, 159, 160, 163, 166, 167, 168, 170, 172, 175, 199, 200, 201, 215, 216, 217, 218, 219, 221, 223, 224, 231, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 252, 256, 258, 266, 267, 268, 269, 270, 271, 273, 275, 277, 278, 279, 281, 282, 286, 288, 313, 317, 318, 319, 320, 321, 322, 324, 325, 326, 328, 329, 330, 332, 333, 334, 335, 344, 349, 353, 362, 365, 368, 369, 370, 371, 374, 380, 401, 412, 415, 418, 421, 425, 426, 427, 435, 439, 441, 442, 452, 453, 454, 474, 475, 476, 477, 478, 480, 482, 484, 487, 490, 491, 492, 509, 511, 512, 513, 514, 520, 538, 545, 563, 580, 581, 588, 601, 602, 615, 617, 618, 619, 620, 622, 624, 625, 626, 627, 628, 631, 632, 633, 635, 636, 637, 644, 645, 647, 650, 655, 659, 660, 661, 668, 673, 675, 679, 680, 681, 684, 687, 689, 690, 692, 693, 695, 696, 698, 700, 702, 703, 704, 705, 726, 730, 735, 737, 738, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 765, 766, 772, 779, 780, 783, 794, 800, 807, 808, 815, 816, 817, 818, 819, 826, 827, 828, 832, 833, 834, 835, 837, 840, 846, 847, 851], "abstract_expression": 40, "action_paint": 40, "analytical_cub": 40, "art_nouveau": 40, "baroqu": 40, "color_field_paint": 40, "contemporary_r": 40, "cubism": 40, "early_renaiss": 40, "expression": 40, "fauvism": 40, "high_renaiss": 40, "impression": 40, "mannerism_late_renaiss": 40, "minim": [40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 368, 370, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 580, 581, 582, 583, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 665, 666, 671, 672, 673, 675, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 754, 755, 756, 794, 820, 828, 830, 835, 837, 851, 856, 864], "naive_art_primitiv": 40, "new_real": 40, "northern_renaiss": 40, "pointil": 40, "pop_art": 40, "post_impression": 40, "realism": 40, "rococo": 40, "romantic": 40, "symbol": [40, 793, 806, 807, 858, 859], "synthetic_cub": 40, "ukiyo_": 40, "custom": [40, 52, 75, 293, 305, 357, 360, 367, 764, 793, 802, 810, 816, 821, 826, 830, 832, 835, 841, 848, 858, 862, 863, 864], "hugginfac": 40, "customdataset": 40, "__len__": [40, 815], "__getitem__": [40, 69, 815], "idx": [40, 41, 42, 524, 622, 800, 818, 839], "random_split": 40, "224x224": 40, "val_siz": 40, "dataset_train": 40, "dataset_v": 40, "dataset_test": 40, "dataloader_train": 40, "batch_siz": [40, 42, 45, 52, 56, 61, 75, 79, 84, 368, 370, 386, 387, 388, 404, 405, 406, 407, 449, 624, 631, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 650, 726, 800, 840], "dataloader_v": 40, "dataloader_test": 40, "batch": [40, 41, 42, 52, 53, 57, 69, 75, 76, 80, 206, 207, 368, 370, 374, 382, 384, 390, 403, 413, 442, 444, 490, 491, 492, 495, 538, 541, 542, 602, 619, 622, 624, 625, 628, 630, 648, 649, 650, 664, 682, 703, 704, 705, 725, 764, 780, 783, 800, 815, 825, 830, 840, 856], "iter": [40, 42, 47, 52, 53, 59, 67, 69, 75, 76, 82, 90, 95, 98, 117, 208, 314, 315, 362, 368, 369, 371, 413, 426, 435, 441, 458, 474, 523, 561, 616, 619, 622, 627, 629, 689, 693, 700, 702, 707, 708, 709, 710, 711, 712, 714, 715, 716, 717, 718, 721, 722, 724, 793, 794, 811, 813, 815, 837, 840, 849, 851], "train_featur": 40, "train_label": 40, "imshow": [40, 41], "crossentropyloss": [40, 781], "sgd": [40, 784, 858], "lr": [40, 54, 77, 525, 604, 607, 609, 610, 611, 622, 623, 784, 840, 841], "001": [40, 51, 52, 60, 72, 75, 77, 160, 258, 275, 332, 344, 365, 604, 618, 620, 623, 630, 725, 764, 840, 841], "train_step": 40, "running_loss": [40, 42, 800], "last_loss": 40, "training_load": 40, "intra": 40, "report": [40, 804, 806, 832], "zero_grad": 40, "backward": [40, 52, 66, 75, 89, 277, 368, 390, 395, 396, 400, 401, 411, 412, 620, 625, 636, 655, 681, 755, 756, 780, 833, 843], "adjust": [40, 65, 88, 369, 437, 635, 752, 754, 789], "999": [40, 54, 74, 77, 286, 603, 604, 609, 611, 620, 623, 784, 841], "epoch_numb": 40, "best_vloss": 40, "1_000_000": 40, "avg_loss": 40, "running_vloss": 40, "vdata": 40, "vinput": 40, "vlabel": 40, "voutput": 40, "vloss": 40, "avg_vloss": 40, "model_path": 40, "model_": 40, "state_dict": [40, 781, 782], "highest": [40, 52, 61, 75, 84, 313, 316, 362, 631, 727, 817], "energi": 40, "sum": [40, 42, 51, 52, 53, 56, 57, 58, 65, 69, 74, 75, 76, 79, 80, 81, 88, 92, 97, 98, 208, 218, 260, 284, 326, 349, 362, 365, 369, 370, 371, 374, 380, 410, 420, 442, 443, 444, 445, 446, 447, 448, 449, 479, 495, 517, 518, 535, 565, 566, 619, 620, 622, 624, 625, 626, 635, 647, 653, 666, 675, 679, 682, 684, 746, 747, 779, 781, 793, 800, 815, 817, 825, 827, 828, 829, 837, 851, 852, 853], "augment": 40, "mayb": [40, 41, 47, 800, 807, 816, 837, 839], "meta": [40, 703, 704, 705, 812, 833, 858], "finetun": 40, "deploi": [40, 800, 816, 845, 852, 856, 857, 858, 860, 864], "present": [41, 52, 65, 69, 75, 88, 332, 365, 374, 490, 491, 492, 635, 750, 806, 807, 808, 815, 817, 818, 824, 828, 837, 847, 855, 856, 865], "percieverio": 41, "ai": [41, 816, 856, 860], "contribut": [41, 52, 75, 380, 514, 804, 805, 807, 808, 809, 814, 822, 823, 829, 830, 837, 844, 851, 862], "highli": [41, 800, 806, 858], "invit": [41, 806, 809, 829, 835], "g4ar9q7dtn": 41, "step1": 41, "printf": 41, "8packag": 41, "share": [41, 69, 181, 618, 764, 765, 800, 809, 813, 815, 819, 825, 827, 829, 830, 832, 835, 837, 848, 856, 857, 864], "googledr": 41, "10_wfp1u4rmzc20eignrdqa9v2s9byjwv": 41, "file_id": 41, "drive": [41, 42], "uc": 41, "export": [41, 816, 857, 864], "tee": [41, 807], "file_id_wget_cmd": 41, "perl": 41, "pe": 41, "g": [41, 43, 44, 52, 61, 63, 65, 67, 75, 84, 90, 92, 146, 175, 188, 235, 248, 268, 275, 278, 329, 330, 365, 368, 369, 371, 375, 380, 404, 406, 441, 482, 497, 498, 499, 500, 501, 512, 513, 618, 619, 620, 625, 629, 631, 633, 635, 660, 661, 666, 673, 675, 676, 682, 709, 713, 715, 718, 723, 727, 728, 729, 737, 738, 739, 740, 745, 746, 748, 750, 751, 753, 779, 801, 806, 807, 810, 811, 813, 814, 815, 827, 829, 832, 837, 843, 845, 849, 854], "uuid": 41, "anywai": [41, 812, 826, 829], "bin": [41, 52, 75, 380, 509, 514, 807, 808, 811, 815], "bash": [41, 807, 808, 811], "step2": 41, "interpret": [41, 48, 52, 71, 75, 122, 123, 129, 135, 370, 380, 444, 511, 617, 816, 859], "sudo": [41, 807], "apt": [41, 807], "yf": 41, "step3": 41, "delet": [41, 808, 816], "xvzf": 41, "rm": [41, 43, 802, 808], "step4": 41, "symlink": 41, "unzip": [41, 42], "fr": 41, "l": [41, 52, 57, 74, 80, 262, 369, 370, 421, 442, 624, 625, 650, 654, 659, 660, 661, 665, 679, 808, 810], "d": [41, 52, 53, 56, 57, 59, 71, 75, 76, 79, 80, 82, 95, 111, 133, 142, 175, 218, 235, 236, 268, 271, 322, 362, 368, 369, 371, 374, 375, 378, 386, 387, 388, 395, 400, 404, 405, 406, 407, 409, 413, 419, 433, 454, 460, 462, 465, 469, 483, 485, 488, 495, 497, 503, 526, 537, 614, 617, 618, 620, 624, 625, 627, 629, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 657, 658, 662, 666, 670, 679, 680, 696, 709, 713, 714, 715, 718, 723, 724, 765, 794, 800, 801, 807, 810, 813, 814, 815, 822, 827, 832, 835, 840, 848, 849, 854], "ln": 41, "sf": 41, "la": 41, "step5": 41, "regular": [41, 75, 369, 380, 433, 515, 625, 664, 807, 829, 858], "step6": 41, "ipkykernel": 41, "step7": 41, "engbjapanpython3": 41, "separ": [41, 52, 53, 75, 374, 491, 538, 622, 624, 650, 807, 808, 812, 815, 816, 819, 830, 831, 832, 837, 839, 840, 859, 863], "ipykernel": 41, "reconnect": 41, "sy": 41, "oct": 41, "gcc": [41, 856, 863], "lf": 41, "upgrad": 41, "cuda11": 41, "cudnn805": 41, "cp38": [41, 45, 807], "helper": [41, 759, 761, 762, 768, 770, 771, 800, 803, 814, 817, 821, 822, 831, 840, 845], "feedforward": 41, "prenorm": 41, "perceiveriospec": 41, "fetch": [41, 546, 622, 807, 808, 811, 816], "ogbanugot": 41, "xmartlab": 41, "caffeflow": 41, "fetch_class": 41, "class_label": 41, "ground_truth": 41, "127": [41, 49, 52, 57, 72, 75, 163, 352, 365, 618, 625, 662], "path_to_imag": 41, "get_imag": 41, "ax": [41, 46, 52, 57, 59, 62, 65, 66, 68, 75, 80, 82, 85, 88, 89, 97, 101, 108, 112, 208, 329, 330, 334, 335, 349, 356, 365, 366, 368, 369, 371, 374, 380, 396, 401, 412, 436, 473, 474, 480, 493, 516, 517, 518, 519, 520, 521, 534, 602, 619, 622, 625, 627, 632, 635, 636, 655, 666, 674, 677, 678, 682, 689, 691, 692, 695, 697, 699, 702, 732, 733, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 766, 780, 817, 819, 832, 833, 837, 839], "fig": [41, 42], "subplot": [41, 42], "spine": 41, "set_vis": 41, "right": [41, 52, 57, 69, 75, 80, 98, 115, 116, 227, 229, 282, 343, 365, 368, 369, 371, 402, 430, 436, 437, 439, 465, 534, 616, 620, 622, 625, 634, 675, 680, 743, 764, 801, 806, 807, 808, 810, 811, 819, 822, 835, 840, 851], "bottom": [41, 534, 622, 806, 807, 816, 822, 864], "tick_param": 41, "set_xticklabel": 41, "set_yticklabel": 41, "show_result": 41, "along": [41, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 95, 108, 112, 117, 132, 133, 208, 282, 285, 287, 324, 325, 326, 329, 330, 334, 335, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 389, 395, 396, 399, 400, 401, 411, 412, 435, 446, 459, 460, 461, 463, 465, 466, 474, 479, 482, 484, 493, 494, 495, 496, 512, 513, 514, 516, 517, 518, 519, 520, 521, 534, 541, 616, 617, 619, 620, 622, 625, 626, 627, 628, 631, 632, 634, 635, 636, 655, 670, 679, 681, 682, 684, 685, 686, 688, 691, 692, 693, 695, 696, 698, 700, 701, 703, 704, 705, 731, 732, 733, 741, 742, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 780, 800, 806, 810, 819, 828, 831, 833, 835, 837, 858], "figur": [41, 834], "figsiz": [41, 42], "listdir": [41, 42], "endswith": 41, "this_dir": 41, "dirnam": 41, "join": [41, 42, 59, 69, 75, 82, 458, 459, 627, 688, 698, 800], "add_subplot": 41, "xtick": 41, "ytick": 41, "set_titl": [41, 42], "color": [41, 69, 98, 799], "green": [41, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 799, 806, 807, 808], "red": 41, "perceiver_io_img_classif": 41, "normalize_imag": 41, "batch_shap": [41, 56, 61, 71, 79, 84, 127, 136, 617, 624, 625, 631, 649, 653, 683, 726, 780, 835, 837, 839], "img_dim": 41, "queries_dim": 41, "learn_queri": 41, "load_weight": 41, "num_input_ax": 41, "network_depth": 41, "num_lat_att_per_lay": 41, "query_shap": 41, "num_fourier_freq_band": 41, "weight_fpath": 41, "pretrained_weight": 41, "isfil": 41, "noinspect": [41, 839], "pybroadexcept": 41, "from_disk_as_pickl": 41, "larg": [41, 51, 52, 74, 75, 218, 235, 242, 268, 269, 371, 380, 482, 511, 620, 625, 673, 802, 807, 808, 814, 816, 822, 840, 851, 858], "action": [41, 805, 816, 819, 823, 832], "fail": [41, 759, 803, 807, 808, 811, 816, 817, 819, 823, 826, 828, 829, 830], "placehold": [41, 629, 713, 718, 723, 780, 808, 812, 824, 845], "pyunboundlocalvari": 41, "max_fourier_freq": 41, "random_uniform": [41, 45, 61, 84, 631, 818, 821, 832, 837, 841], "817437": 41, "common_runtim": 41, "gpu_bfc_alloc": 41, "orig_valu": 41, "tf_force_gpu_allow_growth": 41, "autograd": [41, 843], "declar": [41, 808, 831], "_3r2_73j": 42, "0edf8c1e8ea835f4c456bdf89737d89032f50b5a": 42, "1297564": 42, "05fcafac1e19fec835a9ac61270b3ac6039a5095f6b0f9fde20bacc2a5abba45": 42, "le3bu3_v": 42, "cc6508f5d7e25538c5df5fdae52a41d2bf17b9a517aedd125cfca913bb5b259b": 42, "third": [42, 92, 93, 371, 461, 487, 625, 633, 675, 737, 814, 817, 828, 843, 857, 858, 864], "parti": [42, 814, 817, 843, 848, 857, 858, 864], "mount": [42, 802, 808], "mydriv": 42, "chdir": 42, "One": [42, 52, 53, 59, 61, 75, 76, 82, 84, 95, 371, 452, 453, 454, 457, 474, 483, 535, 622, 627, 631, 694, 727, 812, 815, 817, 819, 825, 830, 832, 837, 839, 840], "kaggl": 42, "medium": 42, "articl": [42, 800, 823], "insert": [42, 52, 62, 75, 85, 371, 449, 459, 627, 629, 632, 634, 690, 710, 711, 732, 743, 816, 823], "www": [42, 329, 330, 365], "your_kaggle_usernam": 42, "competit": 42, "digit": 42, "recogn": [42, 804, 809], "zip": [42, 837], "readabl": [42, 812, 815, 821, 823, 824, 832, 833, 839, 840], "chmod": [42, 807, 816], "recent": [42, 797, 807, 808, 832, 847, 848], "modifi": [42, 52, 69, 75, 92, 371, 380, 471, 474, 479, 518, 764, 794, 806, 807, 808, 809, 811, 813, 814, 817, 818, 820, 822, 823, 825, 828, 830, 832, 833, 837], "forc": [42, 814, 816, 818], "archiv": [42, 807], "inflat": [42, 817], "sample_submiss": 42, "frame": [42, 52, 75, 313, 362, 368, 415, 848, 858], "later": [42, 69, 528, 622, 806, 823, 828, 832, 833, 858], "my": [42, 816], "label_df": 42, "mod_train": 42, "data_valu": 42, "test_data_valu": 42, "correct_label": 42, "train_path": 42, "str": [42, 44, 47, 48, 52, 53, 56, 57, 58, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 134, 136, 138, 144, 145, 148, 150, 152, 153, 154, 155, 159, 160, 163, 164, 165, 166, 167, 168, 170, 172, 175, 176, 177, 178, 179, 180, 187, 188, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 368, 369, 370, 371, 374, 380, 383, 386, 387, 388, 390, 391, 392, 393, 395, 396, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 418, 422, 435, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 457, 458, 459, 464, 480, 482, 483, 484, 485, 490, 491, 492, 493, 494, 496, 498, 500, 511, 512, 513, 514, 521, 523, 524, 526, 527, 529, 530, 532, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 562, 565, 566, 568, 569, 578, 580, 581, 583, 585, 587, 588, 601, 605, 612, 616, 617, 618, 619, 622, 623, 624, 625, 626, 627, 628, 629, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 653, 654, 655, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 676, 679, 684, 685, 686, 687, 691, 694, 695, 696, 697, 698, 701, 702, 703, 704, 705, 712, 713, 718, 723, 726, 727, 728, 729, 731, 734, 737, 738, 739, 741, 745, 746, 747, 749, 751, 752, 754, 755, 756, 761, 762, 764, 765, 770, 772, 780, 782, 783, 793, 794, 817, 818, 821, 825, 828, 829, 833, 837, 842, 851, 852, 853], "makedir": 42, "valid_path": 42, "28x28": 42, "pic": 42, "pictur": [42, 800, 806, 837, 847], "int8": [42, 49, 61, 71, 72, 84, 129, 156, 161, 163, 164, 168, 617, 618, 727, 764, 765, 817, 832], "new_img": [42, 44], "builder": [42, 802], "batchwis": 42, "subset": [42, 766, 812, 816, 820, 824, 827, 829, 832, 837, 858], "goe": [42, 371, 457, 810, 823, 828, 835], "seed_valu": [42, 69, 631, 730], "randomize_dataset": 42, "shuffl": [42, 52, 61, 69, 75, 84, 499, 631], "create_dataset": 42, "num_examples_per_class": 42, "img_arrai": 42, "class_nam": [42, 761], "dir": [42, 840], "img_path": 42, "imread": [42, 44, 840], "imread_grayscal": 42, "generate_batch": [42, 800], "dataset_s": [42, 800], "ivyerror": [42, 795, 800, 821], "smaller": [42, 52, 59, 65, 75, 82, 296, 328, 344, 360, 365, 368, 370, 380, 396, 401, 412, 442, 511, 512, 513, 534, 622, 627, 635, 687, 695, 745, 746, 751, 753, 800, 808, 821, 837], "yield": [42, 62, 314, 315, 362, 371, 474, 632, 736, 800, 816], "x_batch_inst": 42, "form": [42, 44, 47, 48, 52, 57, 69, 71, 80, 91, 92, 93, 122, 123, 135, 140, 141, 306, 309, 323, 332, 362, 365, 369, 371, 421, 430, 461, 470, 474, 489, 524, 584, 586, 617, 622, 624, 625, 629, 654, 656, 658, 659, 660, 661, 663, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 679, 707, 718, 764, 779, 801, 806, 807, 809, 825, 832, 835, 841, 842, 848, 858, 859, 864], "intialis": 42, "num_epoch": [42, 800], "inherit": [42, 812, 815, 821, 839, 843, 845], "creation": [42, 52, 69, 75, 98, 814, 817, 818, 824, 826, 829, 830, 832, 833, 837, 851, 858, 860, 864], "inform": [42, 44, 49, 52, 54, 72, 77, 160, 163, 313, 362, 524, 612, 618, 622, 623, 628, 705, 800, 805, 806, 807, 808, 809, 811, 815, 816, 821, 825, 826, 828, 830, 832, 861], "insid": [42, 57, 80, 98, 371, 484, 625, 668, 762, 807, 808, 812, 815, 817, 818, 822, 825, 826, 832, 833, 851, 864], "ivynet": [42, 800], "h_w": [42, 800], "input_channel": [42, 780, 800, 837, 841], "output_channel": [42, 780, 800, 841], "gelu": [42, 43, 46, 68, 614, 776, 800], "image_widht": 42, "start_dim": [42, 52, 75, 371, 464, 800], "end_dim": [42, 52, 75, 371, 464, 800], "gpu_is_avail": [42, 619, 800], "120": [42, 65, 88, 98, 625, 670, 745, 800], "model_nam": [42, 800], "__name__": [42, 43, 45, 589, 622, 800, 821], "heavi": [42, 766, 807, 829, 830, 835, 859], "lift": [42, 830, 859], "num_correct": [42, 800], "y_pred": [42, 800], "cross_entropi": [42, 58, 81, 626, 686, 800, 815, 825, 828], "epoch_loss": [42, 800], "field": [42, 57, 63, 80, 86, 369, 371, 421, 487, 625, 633, 659, 660, 672, 673, 675, 737, 738, 739, 800, 816, 856, 864], "training_accuraci": [42, 800], "train_loss": [42, 800], "train_correct": [42, 800], "train_loop": [42, 800], "posit": [42, 44, 47, 51, 52, 53, 57, 58, 59, 74, 75, 76, 80, 81, 82, 92, 127, 129, 142, 160, 215, 216, 217, 221, 224, 235, 242, 249, 250, 256, 258, 268, 269, 276, 277, 281, 282, 286, 307, 322, 328, 333, 344, 362, 365, 369, 371, 419, 437, 448, 473, 482, 528, 538, 602, 615, 617, 618, 620, 622, 625, 626, 627, 631, 632, 636, 654, 657, 679, 684, 690, 695, 730, 735, 755, 756, 761, 764, 772, 777, 781, 782, 794, 800, 806, 808, 811, 815, 829, 832, 833, 840, 851, 860], "leav": [42, 47, 52, 70, 72, 74, 75, 76, 79, 80, 82, 88, 98, 160, 163, 235, 292, 294, 295, 301, 371, 458, 459, 464, 476, 477, 478, 493, 494, 496, 512, 513, 518, 538, 585, 627, 629, 643, 653, 658, 675, 689, 693, 698, 700, 701, 706, 707, 716, 717, 718, 719, 745, 746, 793, 800, 806, 815, 816, 817, 819, 820, 824, 825, 828, 829, 832, 840, 841], "xbatch": [42, 800], "ybatch": [42, 800], "to_devic": [42, 50, 73, 191, 619, 782, 800], "entropi": [42, 58, 81, 626, 684, 685, 686, 800], "hot": [42, 48, 71, 136, 617, 800], "ybatch_encod": [42, 800], "one_hot": [42, 48, 71, 617, 800, 842], "loss_prob": [42, 800], "ret_grad_idx": [42, 605, 623, 761, 827], "xs_grad_idx": [42, 605, 623, 761, 827], "batch_loss": [42, 800], "set_descript": [42, 800], "set_postfix": [42, 800], "accuracy_percentag": [42, 800], "naverag": [42, 800], "6f": [42, 800], "_train_summari": [42, 800], "writer": [42, 800], "writerow": [42, 800], "157it": 42, "06it": 42, "475401": 42, "11it": 42, "081436": 42, "13it": 42, "0187": 42, "029279": 42, "0324": 42, "008382": 42, "07it": 42, "00456": 42, "003816": 42, "82it": 42, "00277": 42, "002179": 42, "05it": 42, "00175": 42, "001569": 42, "00147": 42, "001235": 42, "09it": 42, "00128": 42, "001005": 42, "106": 42, "10it": 42, "00112": 42, "000837": 42, "129": [42, 624, 643, 645], "12it": 42, "000989": 42, "000709": 42, "145": 42, "000873": 42, "000606": 42, "168": [42, 529, 622, 629, 706], "08it": 42, "000774": 42, "000524": 42, "000688": 42, "000455": 42, "000613": 42, "000398": 42, "000547": 42, "000350": 42, "205": 42, "000488": 42, "000308": 42, "218": 42, "000437": 42, "000273": 42, "000391": 42, "000243": 42, "238": [42, 242, 620], "98it": 42, "000351": 42, "000216": 42, "260": 42, "plot_summari": 42, "seaborn": 42, "whitegrid": 42, "ax1": 42, "ax2": 42, "nrow": 42, "ncol": 42, "fontweight": 42, "bold": 42, "set_xlabel": 42, "set_ylabel": 42, "tight_layout": 42, "savefig": 42, "summary_plot": 42, "png": [42, 44, 45, 840], "close": [42, 57, 240, 258, 278, 306, 362, 620, 625, 627, 675, 690, 803, 806, 807, 808, 817, 820, 822, 829, 835, 858], "save_weight": [42, 782], "model_param": 42, "ivynet_weight": 42, "hdf5": [42, 69, 782, 840], "deitimageprocessor": 43, "tfdeitforimageclassif": 43, "tfdeitforimageclassificationwithteach": 43, "head": [43, 44, 624, 650, 780, 800, 805, 807, 816, 829], "distillation_classifi": 43, "cls_classifi": 43, "randomli": [43, 368, 391, 392, 393, 624, 647, 764, 765, 766, 767, 772, 780], "henc": [43, 63, 218, 332, 365, 620, 627, 633, 690, 737, 738, 739, 740, 789, 807, 815, 816, 817, 828, 832], "reproduc": [43, 56, 79, 624, 647, 764, 765, 766, 767, 772, 803, 811, 822], "image_processor": [43, 851, 852], "facebook": 43, "distil": [43, 859], "patch16": 43, "outputs_from_original_model": 43, "predicted_class_idx": 43, "id2label": [43, 851], "architectur": [43, 800, 807, 842, 843, 856, 857, 858, 861, 862, 863], "bertforsequenceclassif": 43, "bertforpretrain": 43, "NOT": [43, 263, 620, 793, 806], "probabl": [43, 52, 56, 58, 61, 75, 79, 81, 84, 368, 370, 375, 380, 391, 392, 393, 444, 497, 511, 514, 518, 624, 626, 631, 647, 650, 653, 684, 726, 766, 779, 780, 800, 832, 844, 849], "ptarmigan": 43, "rf": [43, 808], "branch": [43, 223, 235, 238, 240, 268, 280, 281, 282, 285, 620, 806, 807, 808, 811, 816, 823, 843, 851, 858], "moduleconvert": [43, 777, 782], "mc": 43, "from_keras_modul": [43, 777], "compiled_func": 43, "return_graph": [43, 45], "compiled_output": 43, "diverg": [43, 52, 75, 242, 370, 444, 620], "_all_funct": [43, 45], "convert_to_tensor_v2_with_dispatch": 43, "transpose_v2": 43, "convolution_v2": 43, "bias_add": 43, "binary_op_wrapp": 43, "cast": [43, 49, 51, 52, 57, 65, 72, 74, 80, 147, 150, 175, 269, 380, 512, 513, 618, 620, 625, 635, 682, 745, 746, 751, 753, 765, 825, 830, 837], "moments_v2": 43, "batch_norm": [43, 45, 52, 75, 374], "tensordot": [43, 57, 80, 625, 794, 817], "softmax_v2": 43, "_slice_help": 43, "save_to_disk": [43, 45, 782], "12265048989200113": 43, "11038777417100028": 43, "1167045795539998": 43, "ivy_api_kei": 44, "obj": [44, 122, 123, 546, 617, 622, 851, 852, 853], "combo": [44, 840], "permit": [44, 812, 824, 829, 832, 835], "usabl": [44, 824, 833], "neither": [44, 218, 235, 242, 268, 620, 625, 677, 816, 829, 835], "nor": [44, 218, 235, 242, 268, 620, 816, 829, 862], "specifc": 44, "invoc": 44, "represent": [44, 52, 53, 69, 75, 76, 98, 145, 146, 160, 163, 188, 189, 215, 218, 225, 228, 230, 235, 242, 265, 268, 270, 285, 310, 341, 345, 350, 354, 362, 365, 524, 585, 615, 618, 619, 620, 622, 764, 766, 767, 780, 817, 856, 857, 859, 863, 864], "externally_link": 44, "logo": 44, "patch": [44, 286, 620, 817, 858], "cv2_imshow": 44, "envrion": 44, "canni": 44, "original_img": 44, "fn_arg": 44, "dilate_edg": 44, "edg": [44, 52, 59, 75, 82, 313, 362, 368, 371, 380, 403, 474, 514, 627, 687, 689, 702, 767, 811, 832, 852, 858, 860, 864], "morphologi": 44, "hk_model": 44, "resnet18": [44, 45], "keras_model": 44, "count": [44, 52, 59, 63, 66, 71, 75, 82, 86, 89, 129, 201, 334, 365, 371, 380, 482, 487, 509, 514, 617, 619, 625, 627, 633, 636, 655, 681, 688, 691, 737, 738, 755, 756, 814, 815, 819, 840], "odsc": 44, "talk": [44, 863], "228": 45, "352": [45, 79, 624, 648, 821], "nvidia_ml_py3": 45, "19190": 45, "241af6b4a51197474b0da3ee7bfa32d847756c8f0d93b51448655d6458312714": 45, "b9": 45, "b1": [45, 625, 674], "cb4feab29709d4155310d29a421389665dcab9eb3b679b527b": 45, "cycler": 45, "fonttool": 45, "965": 45, "pillow": 45, "kiwisolv": 45, "show_graph": [45, 782], "to_ivy_modul": [45, 777, 842], "image_dim": 45, "v0": [45, 841], "urlerror": 45, "dev_str": 45, "comp_network": 45, "time_chronolog": 45, "ret0_nc": 45, "ret1_nc": 45, "ret0_c": 45, "ret1_c": 45, "pytorch_vision_v0": 45, "distribut": [45, 52, 58, 61, 75, 81, 84, 368, 369, 370, 375, 391, 392, 393, 426, 435, 441, 444, 446, 447, 449, 497, 498, 499, 500, 501, 626, 631, 684, 685, 686, 726, 727, 728, 729, 731, 779, 780, 806, 807, 816, 818, 843, 858, 861], "distributed_c10d": 45, "262": 45, "reduce_op": 45, "deprec": 45, "reduceop": 45, "004645566477999864": 45, "0044566806820000695": 45, "attribut": [45, 69, 160, 161, 162, 163, 194, 195, 203, 539, 540, 618, 619, 622, 762, 813, 814, 815, 820, 821, 825, 826, 828, 829, 835, 838, 839, 840, 841], "definit": [45, 51, 57, 74, 80, 287, 620, 625, 654, 800, 803, 808, 812, 817, 822, 825, 839, 852], "max_pool2d": [45, 52, 75, 368, 387], "__iadd__": 45, "adaptive_avg_pool2d": [45, 52, 75, 368], "_arraywithactiv": [46, 97], "abc": [46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 101, 537, 622, 629, 724, 779, 784, 793, 794, 839], "_abc_impl": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc_data": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "approxim": [46, 51, 52, 57, 68, 74, 75, 80, 92, 95, 105, 216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 242, 256, 257, 258, 259, 273, 280, 281, 285, 286, 287, 342, 352, 365, 370, 446, 447, 614, 620, 625, 668, 671, 776, 820, 829], "complex_mod": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 614, 620, 776, 826], "variant": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 580, 581, 582, 583, 585, 587, 588, 601, 603, 604, 607, 609, 610, 611, 612, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 665, 666, 668, 671, 672, 673, 675, 679, 680, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 754, 755, 756, 812, 819, 820, 835], "docstr": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 526, 527, 529, 530, 533, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 555, 557, 558, 560, 565, 566, 580, 581, 582, 583, 585, 587, 588, 601, 602, 603, 604, 607, 609, 610, 611, 612, 617, 618, 620, 622, 625, 627, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 805, 806, 810, 814, 823, 824, 825, 826, 829, 831, 833], "liter": [46, 51, 52, 57, 68, 74, 75, 80, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 368, 369, 371, 374, 389, 399, 403, 411, 426, 430, 435, 438, 441, 474, 495, 614, 620, 625, 634, 666, 682, 743, 776, 835], "magnitud": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 215, 218, 235, 242, 268, 286, 290, 294, 295, 297, 360, 614, 620, 625, 675, 676, 776, 817], "handle_complex_input": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 614, 620, 776, 826], "element": [46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 72, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 93, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 124, 130, 131, 140, 141, 142, 158, 160, 163, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 336, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 370, 371, 380, 381, 391, 392, 393, 396, 401, 404, 405, 406, 410, 412, 413, 414, 420, 421, 422, 442, 452, 453, 454, 464, 465, 466, 468, 471, 481, 482, 484, 487, 509, 510, 512, 513, 514, 515, 516, 517, 519, 520, 522, 526, 529, 530, 541, 542, 558, 560, 580, 581, 583, 587, 588, 614, 617, 620, 622, 624, 625, 627, 629, 631, 632, 633, 634, 635, 636, 647, 655, 657, 659, 660, 665, 670, 672, 673, 675, 679, 687, 690, 691, 692, 693, 694, 695, 696, 697, 706, 709, 715, 726, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 759, 761, 764, 766, 780, 794, 820, 830, 832, 835, 837, 862], "138": [46, 105, 614], "165": [46, 105, 614, 624, 648], "hardswish": [46, 68, 614, 776], "leaky_relu": [46, 68, 75, 290, 614, 765], "alpha": [46, 51, 52, 68, 74, 75, 102, 107, 218, 284, 290, 291, 298, 302, 308, 360, 362, 369, 374, 375, 422, 495, 498, 499, 500, 614, 620, 776, 824, 829, 830], "float": [46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 60, 61, 63, 65, 68, 71, 72, 74, 75, 76, 77, 79, 80, 81, 83, 84, 88, 92, 95, 97, 107, 113, 121, 122, 123, 125, 127, 129, 130, 131, 132, 133, 137, 138, 143, 147, 151, 155, 160, 164, 168, 174, 175, 178, 184, 193, 202, 206, 207, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 239, 240, 241, 242, 246, 248, 249, 250, 251, 252, 254, 256, 257, 258, 259, 260, 261, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 298, 301, 302, 304, 305, 306, 307, 308, 309, 311, 312, 313, 328, 329, 330, 331, 338, 339, 344, 346, 347, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 391, 392, 393, 410, 411, 418, 421, 422, 424, 435, 439, 441, 442, 443, 447, 448, 463, 481, 490, 491, 492, 495, 496, 497, 498, 499, 500, 501, 511, 512, 513, 514, 519, 520, 521, 528, 529, 530, 538, 547, 571, 572, 575, 580, 581, 601, 603, 604, 607, 609, 610, 611, 614, 615, 617, 618, 619, 620, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 635, 647, 650, 653, 654, 656, 659, 660, 661, 663, 666, 667, 668, 671, 672, 673, 674, 675, 676, 677, 679, 682, 684, 685, 686, 703, 704, 705, 712, 725, 728, 729, 735, 737, 738, 739, 740, 745, 746, 748, 749, 750, 751, 752, 753, 754, 761, 764, 765, 767, 776, 779, 780, 783, 784, 803, 811, 815, 817, 820, 821, 822, 824, 825, 827, 828, 830, 832, 833, 835, 837, 839, 841], "slope": [46, 52, 68, 75, 107, 290, 291, 296, 298, 302, 360, 614, 776], "neg": [46, 51, 52, 57, 59, 61, 66, 68, 74, 75, 80, 82, 84, 89, 92, 107, 110, 113, 121, 127, 129, 142, 235, 242, 249, 250, 268, 269, 277, 282, 290, 307, 322, 325, 360, 362, 369, 370, 371, 375, 419, 426, 430, 447, 482, 501, 614, 617, 620, 625, 627, 631, 636, 655, 657, 675, 679, 681, 682, 688, 690, 691, 695, 728, 755, 756, 764, 766, 776, 815, 828], "leaki": [46, 68, 107, 614, 776], "log_softmax": [46, 68, 614, 776], "0719": [46, 68, 108], "221": [46, 108], "mish": [46, 68, 614, 776], "30340147": [46, 109, 614], "86509842": [46, 68, 109, 614], "269": [46, 111], "731": [46, 111], "881": [46, 51, 74, 111, 221, 234, 274, 620], "422": [46, 112, 614], "155": [46, 79, 112, 614, 624, 648], "softplu": [46, 68, 614, 776, 835], "beta": [46, 52, 60, 68, 75, 83, 113, 298, 302, 308, 311, 312, 360, 362, 369, 370, 374, 375, 422, 448, 495, 499, 500, 614, 630, 725, 776, 835], "threshold": [46, 51, 52, 68, 74, 75, 113, 266, 267, 305, 331, 360, 365, 370, 371, 443, 448, 481, 614, 620, 776, 835], "union": [46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 480, 481, 482, 483, 484, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 543, 544, 545, 547, 549, 550, 551, 553, 554, 557, 558, 560, 561, 565, 566, 570, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 601, 602, 603, 604, 605, 606, 607, 609, 610, 611, 612, 614, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 713, 714, 715, 717, 718, 723, 724, 725, 726, 727, 728, 729, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 761, 764, 779, 784, 785, 812, 815, 817, 818, 819, 821, 824, 825, 828, 833, 835, 837, 842, 851, 852, 853], "3461": [46, 68, 113, 614], "6491": [46, 68, 113, 614], "_array_to_new_backend": 47, "_to_ivi": 47, "_to_n": 47, "to_ignor": [47, 67, 90, 629, 717, 718], "_to_new_backend": 47, "args_to_ivi": 47, "include_deriv": [47, 70, 629, 707, 718, 761], "nest": [47, 69, 70, 98, 101, 238, 556, 585, 602, 605, 620, 622, 623, 628, 703, 704, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 784, 812, 814, 815, 825, 827, 833, 840, 841, 843, 845, 858], "unchang": [47, 51, 368, 371, 412, 464, 624, 647], "deriv": [47, 48, 52, 54, 70, 71, 75, 77, 126, 131, 138, 144, 307, 311, 336, 362, 365, 603, 604, 607, 608, 609, 610, 611, 617, 623, 628, 629, 705, 707, 718, 782, 784, 785, 817, 818, 839, 841], "word": [47, 121, 371, 467, 617, 631, 729, 777, 780, 815, 828, 829, 845], "args_to_n": [47, 828], "cont_inplac": 47, "decid": [47, 69, 629, 717, 718, 800, 806, 807, 817, 835], "args_to_new_backend": 47, "shallow": [47, 629, 713, 714, 718, 723, 724], "nativevari": 47, "mutabl": [47, 629, 707, 713, 714, 718, 723, 724, 813], "to_ivi": [47, 70, 629, 719, 828], "leaf": [47, 69, 76, 88, 98, 537, 629, 716, 717, 719, 746, 815, 825, 840], "travers": [47, 70, 629, 710, 718, 815, 817, 821, 837], "lowest": [47, 52, 61, 70, 75, 84, 380, 514, 629, 631, 718, 727, 794, 825, 843, 845, 855, 859, 863], "search": [47, 52, 70, 75, 732, 733, 772, 805, 807, 815, 819, 822, 832, 833, 847], "to_new_backend": 47, "_arraywithcr": [48, 97], "boolean": [48, 49, 51, 52, 53, 59, 62, 65, 69, 71, 72, 74, 75, 76, 82, 85, 88, 97, 98, 118, 120, 122, 123, 124, 130, 147, 163, 165, 167, 168, 171, 187, 197, 205, 211, 225, 226, 227, 228, 229, 230, 262, 263, 264, 265, 329, 330, 344, 365, 369, 371, 426, 435, 441, 452, 453, 454, 460, 462, 464, 465, 466, 469, 473, 480, 482, 488, 523, 526, 537, 544, 547, 548, 552, 553, 554, 555, 556, 557, 558, 567, 570, 573, 574, 576, 577, 601, 616, 617, 618, 619, 620, 622, 624, 627, 628, 629, 632, 635, 650, 690, 691, 692, 694, 696, 697, 699, 701, 703, 704, 716, 734, 735, 736, 748, 750, 764, 765, 766, 767, 772, 783, 815, 817, 825, 829, 832, 835], "alwai": [48, 49, 52, 53, 59, 71, 72, 75, 82, 105, 123, 147, 218, 268, 339, 365, 369, 371, 437, 452, 453, 454, 460, 462, 464, 465, 466, 469, 473, 480, 488, 544, 551, 614, 618, 620, 622, 627, 690, 691, 692, 694, 696, 697, 699, 701, 766, 800, 806, 807, 808, 812, 813, 815, 817, 820, 823, 824, 825, 828, 829, 830, 831, 832, 833, 835, 837, 843, 851], "never": [48, 52, 59, 71, 75, 82, 123, 371, 452, 453, 454, 460, 462, 464, 465, 466, 469, 473, 480, 488, 544, 622, 627, 690, 691, 692, 694, 696, 697, 699, 701, 808, 817, 828, 829, 832], "valueerror": [48, 52, 59, 71, 75, 82, 86, 123, 368, 370, 401, 412, 447, 452, 453, 460, 462, 464, 465, 466, 473, 488, 627, 690, 691, 692, 694, 696, 697, 699, 701, 740, 766, 795, 821], "buffer": [48, 71, 75, 82, 123, 129, 452, 453, 460, 462, 464, 465, 466, 473, 488, 617, 690, 691, 692, 694, 696, 697, 699, 701, 781, 782, 828, 843], "nativedtyp": [48, 49, 52, 56, 57, 61, 62, 65, 71, 75, 80, 84, 85, 88, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 146, 147, 152, 153, 154, 155, 156, 157, 158, 159, 164, 165, 169, 171, 173, 177, 187, 306, 307, 308, 309, 310, 311, 312, 327, 334, 349, 362, 365, 375, 380, 497, 498, 499, 500, 501, 511, 512, 513, 514, 517, 520, 617, 618, 624, 625, 631, 632, 634, 635, 647, 682, 727, 728, 729, 732, 733, 743, 745, 746, 751, 753, 779, 817, 818, 824, 833, 837], "datatyp": [48, 52, 69, 71, 75, 123, 131, 135, 152, 173, 177, 368, 415, 617, 618, 759, 833, 851], "nativedevic": [48, 50, 52, 61, 71, 73, 75, 84, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 189, 190, 191, 192, 193, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 306, 307, 322, 362, 375, 497, 498, 500, 501, 617, 619, 631, 726, 727, 728, 729, 779, 784, 785, 817, 818, 821, 824, 833], "39999998": [48, 122, 123, 617, 633, 738], "5999999": [48, 52, 75, 79, 122, 123, 292, 360, 369, 417, 617, 624, 647, 653], "0999999": [48, 65, 122, 123, 292, 301, 304, 346, 360, 365, 617, 749], "10000038": [48, 122, 123, 617], "90786433e": [48, 122, 123, 617], "310": [48, 122, 123, 617], "copy_arrai": [48, 71, 617], "to_ivy_arrai": [48, 71, 124, 617], "empty_lik": [48, 52, 71, 75, 259, 369, 420, 617, 620], "uniniti": [48, 125, 126, 617, 823], "from_dlpack": [48, 71, 617], "full_lik": [48, 71, 617, 833], "fill_valu": [48, 52, 62, 71, 75, 85, 130, 131, 247, 255, 371, 375, 482, 501, 617, 620, 632, 735, 817, 830, 833], "scalar": [48, 51, 52, 53, 57, 68, 71, 74, 75, 76, 80, 92, 107, 131, 136, 218, 239, 284, 290, 332, 333, 335, 339, 342, 344, 346, 351, 365, 368, 369, 370, 371, 415, 422, 442, 452, 453, 454, 463, 468, 588, 601, 617, 620, 622, 625, 682, 817, 827, 829, 843, 858], "fill": [48, 51, 52, 61, 62, 69, 71, 74, 75, 84, 85, 125, 130, 131, 133, 136, 137, 138, 143, 144, 269, 307, 362, 369, 371, 375, 426, 430, 435, 441, 463, 482, 483, 498, 500, 501, 617, 620, 631, 632, 727, 735, 779, 806, 830], "000123": [48, 131, 617], "stop": [48, 52, 54, 71, 75, 77, 121, 132, 133, 208, 369, 435, 441, 567, 604, 607, 609, 610, 611, 612, 617, 619, 622, 623, 628, 629, 703, 704, 705, 717, 784, 824, 827, 835, 837, 843, 858], "num": [48, 71, 132, 133, 617, 764, 808, 824, 837], "endpoint": [48, 71, 132, 133, 617, 779, 824], "logspac": [48, 71, 617, 837], "log": [48, 51, 52, 57, 71, 74, 75, 80, 113, 133, 258, 260, 273, 294, 295, 347, 354, 360, 365, 370, 375, 444, 446, 447, 497, 614, 617, 620, 673, 764, 766, 767, 776, 808, 815, 816, 819, 825, 828, 829, 830, 832, 834, 835, 837, 840], "sequenc": [48, 52, 56, 57, 59, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 127, 129, 131, 133, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 358, 359, 362, 365, 366, 367, 368, 369, 371, 375, 380, 381, 383, 384, 391, 392, 393, 395, 396, 400, 401, 403, 410, 411, 412, 413, 414, 417, 425, 426, 427, 429, 433, 434, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 458, 459, 460, 461, 467, 469, 470, 472, 473, 475, 478, 480, 482, 483, 484, 488, 489, 490, 492, 493, 494, 496, 498, 499, 511, 512, 513, 514, 521, 522, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 561, 565, 566, 580, 581, 583, 585, 587, 588, 601, 602, 605, 606, 607, 612, 617, 620, 622, 623, 624, 625, 627, 629, 635, 636, 637, 638, 639, 640, 641, 642, 644, 646, 647, 648, 650, 653, 654, 655, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 679, 682, 684, 685, 686, 687, 688, 690, 691, 693, 694, 695, 696, 697, 698, 701, 702, 706, 713, 723, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 780, 783, 785, 808, 816, 817, 818, 819, 821, 832, 833, 835, 837, 842, 861], "on_valu": [48, 71, 133, 136, 617], "off_valu": [48, 71, 133, 136, 617], "evenli": [48, 51, 52, 56, 59, 69, 71, 74, 75, 79, 82, 121, 132, 133, 287, 368, 410, 414, 617, 620, 624, 627, 637, 638, 639, 640, 642, 644, 646, 696], "hint": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 474, 482, 511, 514, 541, 545, 547, 549, 588, 612, 617, 618, 620, 622, 623, 624, 625, 627, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 806, 812, 820, 822, 824, 825, 828, 829, 833], "simplic": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 474, 482, 511, 514, 541, 545, 547, 549, 588, 612, 617, 618, 620, 622, 623, 624, 625, 627, 630, 632, 633, 634, 635, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 820, 835, 841], "nestabl": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 474, 482, 511, 514, 518, 527, 535, 536, 541, 545, 547, 549, 551, 565, 583, 588, 612, 617, 618, 620, 622, 623, 624, 625, 627, 630, 632, 633, 634, 635, 636, 638, 639, 640, 641, 642, 646, 647, 648, 650, 653, 654, 655, 656, 657, 658, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 683, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 725, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 806, 810, 819, 820, 828, 832, 845], "464": [48, 51, 84, 133, 222, 223, 620], "15888336": [48, 133], "2154": [48, 133], "43469003": [48, 133], "meshgrid": [48, 71, 617], "spars": [48, 52, 58, 71, 75, 81, 134, 310, 362, 369, 426, 435, 441, 617, 626, 686], "xy": [48, 71, 134, 617], "dimension": [48, 51, 52, 57, 59, 62, 65, 66, 69, 71, 74, 75, 80, 82, 88, 89, 97, 121, 127, 129, 134, 142, 287, 322, 329, 330, 362, 365, 368, 369, 371, 380, 395, 396, 400, 401, 411, 412, 419, 452, 453, 454, 458, 463, 464, 509, 521, 617, 620, 625, 627, 632, 635, 636, 655, 656, 662, 665, 668, 670, 671, 681, 682, 696, 732, 733, 735, 748, 749, 750, 751, 752, 753, 754, 755, 756, 825, 827, 832, 835, 837, 855, 858, 865], "repres": [48, 51, 52, 56, 57, 74, 75, 79, 80, 95, 120, 134, 136, 159, 217, 218, 221, 224, 233, 235, 242, 268, 281, 285, 286, 310, 324, 325, 326, 342, 359, 362, 365, 367, 368, 369, 370, 371, 374, 375, 378, 410, 414, 428, 440, 442, 447, 474, 485, 490, 491, 492, 497, 503, 510, 546, 616, 617, 618, 620, 622, 624, 625, 647, 648, 662, 670, 673, 674, 766, 779, 783, 794, 807, 812, 817, 835, 839, 855, 856, 859], "coordin": [48, 51, 62, 74, 75, 85, 134, 142, 223, 285, 314, 315, 322, 342, 362, 376, 502, 617, 620, 632, 735], "conserv": [48, 134, 617], "cartesian": [48, 134, 617], "matrix": [48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 97, 134, 140, 141, 142, 322, 323, 362, 369, 371, 380, 418, 421, 422, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 441, 472, 511, 523, 529, 617, 622, 624, 625, 648, 654, 656, 658, 659, 660, 661, 663, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 679, 680, 683, 764, 766, 779, 780, 794, 806, 817, 829, 856, 858], "ij": [48, 65, 134, 617, 635, 747, 794], "respect": [48, 51, 52, 54, 57, 74, 75, 77, 80, 92, 134, 215, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 277, 281, 284, 285, 294, 342, 357, 360, 365, 367, 369, 371, 374, 424, 439, 451, 490, 492, 546, 603, 604, 605, 606, 607, 608, 609, 610, 611, 613, 617, 620, 622, 623, 624, 625, 628, 637, 644, 645, 650, 655, 672, 675, 703, 704, 705, 761, 764, 779, 794, 805, 806, 807, 808, 812, 813, 815, 816, 817, 818, 819, 824, 825, 827, 828, 829, 832, 833, 834, 854, 864], "rank": [48, 52, 57, 59, 66, 75, 80, 82, 89, 92, 93, 94, 95, 96, 101, 134, 317, 318, 319, 320, 321, 362, 369, 371, 380, 426, 427, 435, 438, 441, 474, 482, 521, 617, 625, 627, 632, 636, 655, 657, 666, 668, 672, 674, 679, 681, 682, 689, 690, 698, 701, 702, 735, 755, 756, 801], "ni": [48, 134, 617], "xi": [48, 134, 617], "scatter": [48, 53, 71, 76, 136, 565, 566, 617, 622, 814, 828, 835, 865], "j": [48, 51, 52, 53, 57, 65, 71, 74, 75, 80, 92, 120, 136, 216, 217, 218, 219, 221, 224, 233, 235, 238, 240, 248, 256, 258, 262, 268, 279, 281, 282, 285, 286, 332, 365, 368, 369, 380, 395, 396, 400, 411, 412, 416, 421, 423, 432, 438, 521, 526, 616, 617, 620, 622, 625, 635, 659, 679, 747, 794, 808, 810, 814, 851, 854], "unless": [48, 52, 57, 71, 75, 136, 268, 328, 344, 349, 365, 617, 620, 625, 668, 813, 818, 828, 843, 852, 853], "ones_lik": [48, 71, 617, 813, 842], "tril": [48, 71, 617], "whose": [48, 51, 52, 53, 57, 59, 63, 65, 71, 74, 75, 76, 80, 82, 86, 88, 93, 95, 97, 131, 140, 141, 217, 221, 224, 232, 233, 234, 273, 274, 280, 281, 285, 286, 287, 323, 337, 341, 345, 346, 348, 352, 362, 369, 371, 421, 440, 473, 482, 487, 528, 583, 617, 620, 622, 625, 627, 633, 635, 654, 656, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 679, 682, 691, 695, 737, 738, 739, 746, 747, 766, 804, 820, 832], "innermost": [48, 52, 57, 80, 140, 141, 323, 362, 369, 421, 617, 625, 654, 656, 658, 659, 660, 661, 663, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 679], "mxn": [48, 52, 57, 80, 140, 141, 323, 362, 617, 625, 658, 666, 668, 669, 671, 672, 676, 679], "matric": [48, 52, 57, 75, 80, 92, 93, 97, 134, 140, 141, 323, 362, 369, 371, 421, 426, 427, 429, 433, 434, 439, 463, 617, 624, 625, 648, 654, 656, 658, 659, 660, 661, 662, 663, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 679, 680, 766, 803, 822, 858], "diagon": [48, 52, 57, 75, 80, 93, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 419, 422, 430, 436, 463, 617, 625, 657, 679], "triangular": [48, 52, 57, 80, 140, 141, 142, 322, 323, 362, 369, 436, 617, 625, 654, 660, 661, 668, 672], "alloc": [48, 49, 52, 72, 140, 141, 147, 323, 362, 617, 618, 806, 808, 843], "triu": [48, 71, 617], "upper": [48, 52, 57, 61, 75, 80, 84, 127, 141, 142, 307, 323, 362, 369, 380, 436, 514, 617, 625, 631, 654, 660, 661, 672, 729, 817, 828, 832], "zeros_lik": [48, 52, 71, 147, 264, 371, 482, 603, 604, 607, 609, 610, 611, 617, 618, 620, 623, 625, 627, 672, 687, 829, 835], "data_typ": [49, 52, 72, 75, 177, 618, 814, 817, 832, 833], "_arraywithdatatyp": [49, 97], "irrespect": [49, 57, 72, 80, 147, 618, 625, 675, 815, 828, 839, 865], "promot": [49, 51, 52, 57, 72, 74, 75, 80, 87, 97, 98, 147, 150, 173, 174, 175, 181, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 339, 347, 352, 365, 368, 380, 411, 511, 574, 596, 618, 620, 622, 625, 627, 635, 654, 655, 662, 663, 665, 666, 667, 668, 670, 671, 673, 674, 681, 682, 688, 698, 741, 749, 752, 764, 765, 809, 811, 820, 821, 825, 834], "nan": [49, 51, 52, 53, 63, 65, 72, 74, 75, 76, 147, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 243, 244, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 274, 277, 278, 279, 280, 281, 282, 285, 286, 288, 294, 328, 329, 330, 340, 344, 349, 352, 360, 365, 371, 380, 482, 509, 510, 517, 518, 519, 520, 547, 601, 615, 618, 620, 622, 633, 635, 636, 737, 738, 739, 740, 748, 749, 750, 752, 753, 754, 755, 756, 764, 767, 811, 817, 820, 827, 833, 834], "infin": [49, 51, 53, 57, 72, 74, 80, 147, 215, 216, 217, 218, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 277, 278, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 547, 615, 618, 620, 622, 625, 635, 636, 673, 682, 748, 750, 755, 756, 811, 820], "desir": [49, 50, 52, 62, 69, 72, 73, 75, 85, 92, 147, 149, 150, 209, 313, 353, 362, 365, 371, 380, 472, 517, 520, 521, 618, 619, 625, 632, 677, 734, 779, 780, 808, 813, 816, 817, 818, 829, 837, 847, 851, 858], "broadcast_arrai": [49, 72, 618], "mix": [49, 51, 72, 74, 75, 76, 81, 84, 97, 98, 148, 161, 162, 175, 194, 195, 225, 228, 229, 230, 235, 236, 242, 246, 254, 255, 265, 268, 271, 277, 370, 380, 448, 518, 537, 539, 540, 541, 542, 551, 585, 588, 618, 619, 620, 622, 624, 625, 626, 627, 630, 635, 638, 640, 643, 645, 646, 648, 653, 654, 677, 684, 686, 687, 725, 747, 749, 752, 765, 767, 806, 810, 817, 818, 819, 828, 835, 837, 845, 858, 862, 864], "broadcast_to": [49, 72, 618, 817], "can_cast": [49, 72, 618, 817, 825, 829], "accord": [49, 52, 53, 59, 65, 72, 82, 88, 150, 160, 218, 229, 235, 242, 268, 279, 313, 362, 368, 371, 412, 474, 541, 544, 565, 566, 618, 620, 622, 625, 627, 635, 681, 689, 702, 752, 754, 759, 766, 786, 793, 806, 807, 811, 817, 823, 825, 829, 832], "finfo": [49, 72, 618, 832], "resolut": [49, 72, 160, 618, 808], "4028235e": [49, 160, 618], "iinfo": [49, 72, 618], "integ": [49, 51, 52, 56, 57, 59, 61, 65, 66, 69, 74, 75, 76, 79, 80, 82, 84, 88, 89, 97, 98, 121, 130, 163, 164, 170, 174, 175, 179, 215, 225, 226, 227, 228, 229, 230, 231, 241, 242, 253, 265, 270, 273, 277, 278, 288, 289, 324, 325, 326, 329, 330, 334, 338, 339, 362, 365, 368, 371, 375, 378, 380, 395, 400, 410, 413, 414, 415, 460, 469, 474, 482, 488, 497, 498, 499, 500, 501, 503, 504, 509, 511, 512, 513, 518, 521, 544, 560, 570, 602, 617, 618, 620, 622, 624, 625, 627, 631, 634, 635, 636, 637, 638, 639, 640, 642, 644, 646, 655, 657, 667, 681, 682, 696, 726, 727, 728, 729, 730, 731, 743, 745, 746, 748, 749, 750, 751, 752, 753, 754, 755, 756, 764, 765, 766, 767, 772, 780, 794, 808, 815, 817, 827, 830, 832, 837, 839], "119": [49, 163], "1220": [49, 163], "int16": [49, 52, 61, 65, 72, 84, 150, 154, 156, 161, 163, 170, 185, 380, 512, 513, 618, 635, 727, 745, 746, 751, 753, 764, 765, 817, 829, 832, 837], "32768": [49, 72, 163, 581, 622], "32767": [49, 72, 163], "is_bool_dtyp": [49, 72, 618], "is_float_dtyp": [49, 72, 618, 833], "is_int_dtyp": [49, 72, 618, 830, 833], "is_uint_dtyp": [49, 72, 618, 830, 833], "result_typ": [49, 72, 618, 817], "arrays_and_dtyp": [49, 72, 175, 618], "_arraywithdevic": [50, 97], "move": [50, 52, 73, 75, 142, 205, 209, 213, 322, 362, 371, 473, 617, 619, 782, 800, 808, 818, 833], "addit": [50, 52, 53, 60, 73, 75, 76, 83, 118, 120, 209, 218, 278, 370, 374, 380, 442, 495, 510, 515, 534, 535, 536, 602, 616, 619, 620, 622, 624, 628, 630, 650, 705, 725, 780, 794, 806, 807, 808, 813, 817, 819, 820, 823, 825, 827, 828, 829, 832, 833, 835, 839, 840, 842, 851, 858, 859, 860, 864], "__dlpack__": [50, 73, 128, 209, 617, 619], "caveat": [50, 73, 209, 370, 446, 619], "portabl": [50, 73, 209, 619, 800, 856], "_arraywithelementwis": [51, 97], "ab": [51, 57, 67, 74, 90, 97, 98, 273, 328, 344, 365, 371, 481, 620, 625, 629, 666, 676, 682, 714, 717, 761, 793, 794, 803, 812, 817, 822, 826, 829, 832], "absolut": [51, 52, 57, 67, 69, 74, 75, 80, 97, 215, 279, 328, 344, 347, 353, 365, 369, 370, 422, 437, 443, 445, 620, 625, 666, 667, 668, 673, 759, 761, 764, 766, 767, 801, 807], "aco": [51, 74, 620], "invers": [51, 52, 57, 74, 75, 80, 216, 217, 220, 221, 222, 223, 224, 368, 378, 390, 399, 401, 411, 503, 620, 625, 663, 667, 671, 786, 817], "cosin": [51, 74, 216, 217, 232, 233, 306, 309, 362, 368, 389, 399, 620, 780], "acosh": [51, 74, 161, 162, 618, 620, 803, 822], "area": [51, 52, 74, 75, 79, 217, 221, 224, 368, 403, 410, 414, 620, 804, 828, 835, 848, 854], "hyperbol": [51, 74, 217, 221, 224, 233, 281, 285, 286, 298, 302, 360, 620], "sector": [51, 74, 217, 221, 224, 620, 848], "second": [51, 52, 54, 57, 59, 63, 74, 75, 76, 77, 80, 82, 86, 93, 97, 98, 118, 142, 173, 181, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 313, 322, 328, 340, 342, 343, 344, 350, 354, 355, 362, 365, 369, 370, 371, 378, 380, 420, 421, 422, 424, 428, 448, 480, 487, 498, 500, 504, 511, 514, 526, 575, 597, 603, 604, 609, 616, 617, 618, 620, 622, 623, 625, 627, 628, 629, 633, 655, 658, 659, 660, 662, 665, 670, 672, 673, 675, 677, 679, 681, 698, 699, 704, 707, 737, 738, 739, 784, 807, 811, 814, 817, 819, 823, 828, 829, 832, 834, 839, 849, 863], "multipli": [51, 52, 56, 65, 74, 75, 79, 92, 218, 284, 345, 368, 369, 403, 432, 433, 512, 513, 620, 624, 635, 647, 745, 751, 808, 812, 813, 815, 819], "angl": [51, 74, 223, 233, 281, 286, 343, 365, 620], "deg": [51, 74, 219, 620], "radian": [51, 52, 74, 75, 216, 219, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 620, 820], "degre": [51, 52, 65, 74, 75, 88, 219, 234, 274, 316, 362, 371, 480, 620, 635, 752, 754, 857], "1j": [51, 74, 75, 219, 220, 232, 233, 238, 240, 252, 275, 280, 281, 285, 332, 580, 620, 622], "2j": [51, 52, 74, 75, 219, 248, 332, 368, 395, 400, 581, 620, 622], "3j": [51, 52, 74, 75, 219, 252, 275, 332, 365, 620], "35619449": [51, 219, 620], "78539816": [51, 219, 620], "135": [51, 219, 529, 620, 622], "asin": [51, 74, 620], "sine": [51, 74, 220, 221, 280, 281, 620], "927": [51, 74, 220], "asinh": [51, 74, 220, 620], "atan": [51, 74, 620], "tangent": [51, 74, 222, 223, 224, 285, 286, 298, 302, 358, 360, 367, 620, 820], "785": [51, 74, 222, 223, 620], "atan2": [51, 74, 620], "quotient": [51, 74, 223, 235, 242, 620], "245": [51, 79, 223, 624, 647, 648], "588": [51, 223, 620], "inf": [51, 52, 53, 57, 74, 75, 76, 80, 223, 240, 249, 250, 251, 252, 256, 257, 259, 269, 294, 347, 360, 365, 369, 380, 418, 514, 547, 601, 615, 620, 622, 624, 625, 651, 666, 682, 764, 767, 803, 817, 822, 827], "719": [51, 223, 620], "197": [51, 223, 620], "atanh": [51, 74, 620], "549": [51, 74, 79, 224, 620, 624, 648], "bitwise_and": [51, 74, 620], "bitwise_invert": [51, 74, 620], "bitiwse_invert": [51, 226], "bitwise_left_shift": [51, 74, 620], "bitwise_or": [51, 74, 620], "bitwise_right_shift": [51, 74, 97, 620], "bitwise_xor": [51, 74, 97, 620], "ceil": [51, 52, 74, 75, 92, 95, 121, 368, 386, 387, 388, 404, 405, 406, 409, 617, 620, 780, 828], "round": [51, 52, 74, 75, 92, 94, 95, 96, 218, 231, 235, 241, 242, 268, 282, 288, 289, 338, 365, 620, 803, 806, 807, 808, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 838, 839, 840, 841, 842, 847, 848, 849], "416": [51, 232, 620], "540": [51, 232], "990": [51, 232], "cosh": [51, 74, 232, 620], "deg2rad": [51, 74, 620], "convers": [51, 52, 75, 234, 274, 567, 577, 622, 781, 782, 806, 836, 838, 842, 843, 845, 849, 857, 864], "180": [51, 74, 234, 274, 620], "270": [51, 74, 234, 274, 620], "360": [51, 74, 234, 274, 620, 816], "dividend": [51, 74, 235, 242, 277, 289, 620], "divisor": [51, 52, 54, 65, 74, 75, 77, 88, 235, 242, 245, 246, 277, 289, 368, 371, 386, 387, 388, 460, 469, 488, 603, 604, 609, 620, 623, 635, 752, 754, 780, 784], "375": [51, 236, 271], "erf": [51, 74, 337, 365, 620], "exponenti": [51, 52, 74, 75, 237, 238, 240, 260, 273, 290, 299, 360, 369, 431, 620], "gauss": [51, 74, 237, 620], "328": [51, 237, 285, 620], "677": [51, 237], "842": [51, 237, 285, 620], "71828198": [51, 74, 238], "38905573": [51, 74, 238], "08553696": [51, 74, 238, 620], "exp2": [51, 74, 620], "expm1": [51, 74, 620, 817], "244": [51, 240, 800], "918": [51, 240], "147": [51, 240, 620], "floor": [51, 52, 74, 75, 92, 95, 229, 242, 368, 386, 387, 388, 390, 404, 405, 406, 409, 620, 780, 828], "floor_divid": [51, 74, 620, 772, 817], "fmin": [51, 74, 620, 817], "gcd": [51, 74, 620, 817], "greater": [51, 52, 56, 59, 61, 74, 75, 79, 84, 97, 98, 129, 216, 217, 220, 221, 223, 224, 227, 229, 235, 241, 242, 256, 258, 273, 277, 279, 281, 282, 286, 287, 288, 331, 365, 368, 390, 395, 400, 411, 617, 620, 624, 625, 627, 631, 653, 655, 667, 697, 729, 766, 780, 808, 809, 830], "greater_equ": [51, 74, 97, 98, 260, 620], "imaginari": [51, 74, 97, 107, 110, 113, 137, 138, 216, 217, 218, 233, 235, 236, 238, 240, 248, 268, 270, 271, 278, 281, 282, 286, 332, 365, 368, 369, 411, 422, 614, 617, 620, 632, 735, 819], "4j": [51, 74, 248, 368, 411, 581, 620, 622], "6j": [51, 52, 74, 248, 252, 332, 620], "isfinit": [51, 74, 620, 829], "out_i": [51, 74, 249, 250, 251, 252, 275, 620], "self_i": [51, 74, 249, 250, 251, 252, 275], "finit": [51, 74, 215, 216, 217, 218, 221, 223, 224, 233, 235, 236, 238, 240, 242, 249, 250, 256, 258, 268, 269, 271, 273, 277, 281, 282, 286, 620], "isinf": [51, 74, 620], "detect_posit": [51, 74, 250, 620], "detect_neg": [51, 74, 250, 620], "isnan": [51, 74, 620], "isreal": [51, 74, 620], "5j": [51, 74, 75, 252, 275, 332, 365, 620], "lcm": [51, 74, 620, 817], "less": [51, 52, 57, 61, 65, 74, 75, 80, 84, 97, 98, 216, 217, 220, 223, 224, 231, 235, 242, 256, 257, 258, 259, 273, 277, 279, 282, 351, 365, 368, 369, 380, 389, 390, 399, 411, 435, 441, 511, 514, 620, 625, 631, 635, 666, 667, 668, 671, 682, 729, 752, 754, 780, 807, 808, 815, 817, 819, 821, 824, 829, 832, 835, 836, 837, 848, 858, 860], "less_equ": [51, 74, 97, 98, 620, 821], "log10": [51, 52, 74, 313, 362, 620], "logarithm": [51, 74, 238, 256, 257, 258, 259, 260, 336, 347, 365, 620, 625, 673], "602": [51, 257, 620], "699": [51, 257, 620], "log1p": [51, 74, 620, 827], "693": [51, 74, 112, 221, 258, 614, 620, 626, 686], "0953": [51, 74, 256, 258, 620], "log2": [51, 74, 261, 620], "logaddexp": [51, 74, 620], "logaddexp2": [51, 74, 620, 803, 822], "169925": [51, 74, 261, 620], "logical_and": [51, 74, 620, 829, 835, 865], "logical_not": [51, 74, 620, 817], "logical_or": [51, 74, 620, 865], "conform": [51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 482, 511, 617, 618, 620, 625, 627, 632, 633, 634, 635, 636, 654, 655, 656, 657, 658, 660, 661, 663, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 681, 682, 688, 690, 691, 692, 694, 695, 697, 698, 702, 732, 733, 735, 736, 737, 738, 739, 740, 741, 744, 748, 749, 750, 751, 752, 753, 754, 755, 756, 820, 823], "api_specif": [51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 411, 482, 618, 620, 627, 635, 702, 752, 820], "array_api": [51, 74, 150, 238, 248, 249, 264, 368, 371, 411, 482, 618, 620, 625, 627, 635, 673, 674, 702, 752, 820], "logical_xor": [51, 74, 620], "maximum": [51, 52, 53, 54, 59, 62, 65, 69, 74, 75, 76, 77, 82, 85, 88, 98, 208, 293, 329, 330, 340, 353, 360, 365, 368, 369, 371, 380, 384, 394, 435, 438, 441, 474, 512, 514, 519, 529, 530, 538, 546, 609, 619, 620, 622, 623, 625, 627, 632, 635, 666, 687, 732, 733, 748, 750, 764, 766, 767, 772, 794, 808, 817, 819, 828, 840, 865], "use_wher": [51, 74, 266, 267, 620], "formula": [51, 52, 74, 235, 257, 259, 266, 267, 268, 313, 346, 362, 365, 374, 490, 492, 620], "exce": [51, 52, 75, 267, 371, 484, 620], "product": [51, 52, 56, 57, 65, 74, 75, 79, 80, 88, 92, 93, 95, 268, 358, 359, 367, 369, 380, 417, 420, 424, 427, 428, 429, 432, 433, 434, 512, 513, 520, 620, 624, 625, 635, 650, 653, 655, 662, 665, 670, 677, 681, 745, 746, 747, 751, 752, 794, 806, 837, 858, 860], "nan_to_num": [51, 74, 620], "posinf": [51, 74, 269, 620], "neginf": [51, 74, 269, 620], "5e": [51, 54, 74, 75, 269, 350, 609, 620, 623], "not_equ": [51, 74, 97, 98, 620], "pow": [51, 74, 97, 98, 620, 811], "expon": [51, 52, 53, 75, 76, 273, 339, 341, 345, 365, 374, 495, 581, 620, 622, 625, 667], "rad2deg": [51, 74, 620], "286": [51, 75, 274], "458": [51, 274], "573": [51, 274, 620], "reciproc": [51, 74, 620], "333": [51, 74, 235, 276, 530, 620, 622], "remaind": [51, 52, 59, 69, 74, 75, 82, 244, 620, 627, 696, 811, 828], "modulu": [51, 74, 277, 620, 828], "sign": [51, 52, 57, 63, 65, 74, 75, 80, 92, 121, 215, 216, 217, 218, 221, 223, 224, 229, 233, 235, 238, 240, 242, 268, 270, 277, 281, 282, 286, 333, 365, 369, 371, 380, 437, 481, 482, 512, 513, 617, 620, 625, 633, 635, 673, 737, 738, 739, 740, 745, 746, 751, 753, 800, 807, 809, 817, 837, 842, 848], "x2_i": [51, 74, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 620, 811], "decim": [51, 74, 278, 620, 834], "0001": [51, 52, 75, 278, 279, 369, 435, 441, 764, 767, 784], "678": [51, 278, 279], "np_variant": [51, 74, 279, 620], "841": [51, 68, 74, 105, 280, 614, 620], "909": [51, 74, 76, 280, 620], "141": [51, 74, 147, 280, 618, 620], "sinh": [51, 74, 280, 620], "232": [51, 74, 281, 620], "sqrt": [51, 52, 74, 75, 368, 390, 395, 396, 400, 401, 411, 620, 779, 780, 800], "squar": [51, 52, 57, 74, 75, 80, 282, 369, 370, 374, 380, 421, 431, 443, 495, 511, 605, 606, 608, 613, 620, 623, 625, 629, 654, 656, 657, 659, 660, 661, 663, 667, 673, 674, 675, 680, 712, 800], "tanh": [51, 52, 74, 75, 285, 298, 302, 360, 620, 776, 837], "762": [51, 74, 286, 620], "964": [51, 74, 286, 620], "trapz": [51, 74, 620], "dx": [51, 74, 287, 620], "apart": [51, 74, 287, 620], "trapezoid": [51, 74, 287, 620], "trunc": [51, 74, 620], "025": [51, 288, 370, 448, 620, 628, 705], "trunc_divid": [51, 74, 620], "_arraywithactivationsexperiment": [52, 97], "celu": [52, 75, 360], "formul": [52, 68, 75, 93, 105, 290, 292, 360, 776], "elu": [52, 75, 293, 360, 776], "scaler": [52, 75, 291, 360, 764, 767, 832], "hardshrink": [52, 75, 360], "lambd": [52, 75, 292, 301, 360], "hardtanh": [52, 75, 360], "max_val": [52, 75, 293, 360], "min_val": [52, 75, 293, 360], "region": [52, 75, 293, 301, 360, 807], "19722438": [52, 75, 294, 360], "38629448": [52, 75, 294, 360], "38629436": [52, 75, 294, 360], "logsigmoid": [52, 75, 360, 776], "31326175": [52, 68, 295, 360], "126928": [52, 75, 295], "01814993": [52, 295], "00004578": [52, 295], "57888985": [52, 295], "31326169": [52, 75, 295, 360], "69314718": [52, 57, 68, 75, 80, 295, 347, 360, 365, 625, 673], "01104775": [52, 295], "prelu": [52, 75, 360, 776], "unidirect": [52, 296, 360], "relu6": [52, 75, 360, 776], "rectifi": [52, 68, 75, 107, 109, 110, 297, 300, 305, 360, 614], "scaled_tanh": [52, 75, 302, 360], "7159": [52, 75, 298, 302, 360], "amplitud": [52, 75, 298, 302, 360], "65537548": [52, 75, 298], "49570239": [52, 75, 298], "77637792": [52, 298], "selu": [52, 75, 360, 776], "11133075": [52, 299, 360], "05070102": [52, 75, 299, 360], "10140204": [52, 299, 360], "15210295": [52, 299, 360], "20280409": [52, 299, 360], "25350523": [52, 299, 360], "30420589": [52, 299, 360], "35490704": [52, 299, 360], "silu": [52, 75, 360, 776], "26894143": [52, 300], "73105854": [52, 75, 300], "softshrink": [52, 75, 360], "bound": [52, 75, 301, 313, 360, 362, 371, 457, 482, 483, 764, 817, 821, 829, 832, 837, 864], "tanhshrink": [52, 75, 360], "23840582": [52, 75, 303, 360], "condit": [52, 62, 75, 85, 118, 304, 319, 320, 362, 369, 418, 616, 629, 632, 716, 717, 736, 766, 811, 817, 819, 821, 825, 826, 828, 832, 851], "met": [52, 75, 304, 821], "hreshold": [52, 304], "thresholded_relu": [52, 75, 360], "_arraywithconversionsexperiment": [52, 97], "_arraywithcreationexperiment": [52, 97], "blackman_window": [52, 75, 362], "period": [52, 75, 281, 285, 306, 308, 309, 311, 312, 362, 368, 402, 620, 808], "window": [52, 56, 75, 79, 306, 308, 309, 311, 312, 327, 362, 368, 374, 386, 387, 388, 390, 404, 405, 406, 407, 409, 410, 414, 415, 495, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 780, 802, 808, 814, 822, 863], "symmetr": [52, 57, 75, 80, 92, 93, 306, 308, 309, 311, 312, 362, 369, 371, 421, 474, 625, 654, 659, 660, 661, 683, 815], "38777878e": [52, 75, 306, 362], "40000000e": [52, 306, 362], "00000000e": [52, 57, 75, 76, 306, 337, 362, 368, 389, 395, 399, 400, 625, 672, 803, 822], "30000000e": [52, 75, 306, 362], "eye_lik": [52, 75, 362], "elsewher": [52, 75, 127, 307, 362, 617, 632, 736, 807], "mel_weight_matrix": [52, 75, 362], "num_mel_bin": [52, 75, 313, 362], "dft_length": [52, 75, 313, 362, 368, 390], "sample_r": [52, 75, 313, 362], "lower_edge_hertz": [52, 75, 313, 362], "upper_edge_hertz": [52, 75, 313, 362], "3000": [52, 75, 313, 362], "melweightmatrix": [52, 75, 313, 362], "linearli": [52, 53, 76, 313, 362, 538, 622, 625, 674], "frequenc": [52, 53, 75, 76, 313, 362, 380, 511, 538, 622, 808], "spectra": [52, 313, 362], "dft": [52, 75, 313, 362, 368], "stft": [52, 75, 313, 362, 368], "mel": [52, 75, 313, 362], "term": [52, 75, 306, 313, 316, 362, 370, 446, 447, 624, 649, 780, 794, 800, 808, 815, 837, 845, 847, 858], "hertz": [52, 313, 362], "2595": [52, 313, 362], "700": [52, 76, 313, 362, 542], "band": [52, 53, 75, 76, 313, 362, 538, 622], "spectrum": [52, 75, 313, 362], "n_fft": [52, 75, 313, 362, 368, 390], "signal": [52, 75, 313, 362, 368, 382, 383, 384, 389, 390, 399, 415, 780, 857, 858], "8000": [52, 75, 308, 313, 362], "75694758": [52, 313, 362], "trilu": [52, 75, 362], "retain": [52, 142, 322, 323, 362, 605, 617, 623, 827, 831, 845], "unsorted_segment_mean": [52, 75, 362], "segment_id": [52, 75, 324, 325, 326, 362, 786], "num_seg": [52, 75, 324, 325, 326, 362, 786], "identifi": [52, 75, 324, 325, 326, 362, 804, 806, 811, 816, 817, 832, 835], "th": [52, 75, 93, 324, 325, 326, 335, 362, 365, 369, 370, 380, 419, 426, 442, 521], "distinct": [52, 63, 75, 324, 325, 326, 362, 633, 737, 738, 739, 740, 804, 807, 815, 820, 827, 828, 829, 836, 848, 858], "unsorted_segment_min": [52, 75, 362], "unsorted_segment_sum": [52, 75, 362], "polyv": [52, 75, 362], "coeff": [52, 75, 316, 362], "polynomi": [52, 75, 316, 362], "coeffici": [52, 75, 308, 316, 362, 369, 436, 625, 674, 784], "indetermin": [52, 75, 316, 362], "simplifi": [52, 75, 316, 362, 793, 794, 821, 829, 837, 838, 841, 848, 851, 854, 856, 857, 858, 861, 864, 865], "substitut": [52, 75, 316, 362], "_arraywithdata_typeexperiment": [52, 97], "_arraywithdeviceexperiment": [52, 97], "_arraywithelementwiseexperiment": [52, 97], "equal_nan": [52, 75, 328, 344, 365], "toler": [52, 57, 75, 80, 328, 344, 365, 369, 422, 435, 441, 625, 668, 671, 759, 761, 811, 830, 858], "1e10": [52, 328, 344, 365], "00001e10": [52, 328, 344, 365], "00001e": [52, 328, 365], "amax": [52, 75, 365], "keepdim": [52, 57, 59, 62, 65, 66, 69, 75, 80, 82, 85, 88, 89, 329, 330, 334, 349, 356, 365, 366, 371, 380, 479, 516, 517, 518, 519, 520, 521, 625, 627, 632, 635, 636, 666, 682, 701, 732, 733, 748, 749, 750, 751, 752, 753, 754, 755, 756, 821, 829, 837], "singleton": [52, 57, 62, 65, 66, 75, 80, 85, 88, 89, 329, 330, 365, 625, 627, 632, 635, 636, 682, 690, 697, 733, 748, 749, 750, 751, 752, 753, 754, 755, 756, 837], "amin": [52, 75, 365], "binar": [52, 75, 365], "map": [52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 365, 368, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 480, 482, 483, 484, 490, 492, 493, 494, 496, 498, 511, 512, 513, 514, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 580, 581, 583, 585, 587, 588, 601, 602, 607, 612, 622, 629, 638, 639, 640, 641, 647, 648, 653, 654, 655, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 679, 684, 685, 686, 687, 691, 694, 695, 696, 697, 698, 701, 702, 713, 714, 718, 719, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 745, 746, 749, 751, 752, 754, 755, 756, 794, 812, 815, 817, 824, 825, 829, 832, 833, 840, 843, 845, 852, 859], "conj": [52, 75, 233, 238, 240, 281, 282, 286, 365, 620], "conjug": [52, 57, 75, 80, 332, 365, 368, 369, 375, 390, 416, 422, 432, 434, 436, 499, 625, 665, 669, 677], "copysign": [52, 75, 365], "unsign": [52, 65, 75, 333, 365, 371, 380, 482, 512, 513, 635, 745, 746, 751, 753, 765, 817, 837], "count_nonzero": [52, 75, 365], "diff": [52, 69, 75, 365, 819, 828], "prepend": [52, 75, 335, 365, 625, 627, 665, 690, 807], "differenc": [52, 75, 335, 365], "prior": [52, 75, 335, 365, 375, 499, 625, 677, 821, 833], "expand": [52, 53, 59, 75, 76, 335, 365, 371, 538, 622, 627, 690, 815, 831], "discret": [52, 75, 335, 365, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 626, 685, 780], "digamma": [52, 75, 365], "7549271": [52, 336, 365], "92278427": [52, 75, 336, 365], "9988394": [52, 336, 365], "erfc": [52, 75, 365], "complementari": [52, 75, 327, 337, 362, 365, 856, 864], "84270084e": [52, 337], "80259693e": [52, 337], "toward": [52, 59, 75, 82, 242, 289, 338, 350, 365, 371, 380, 480, 514, 620, 627, 695, 800, 803, 806, 807, 822, 837, 854, 858], "float_pow": [52, 75, 365], "fmax": [52, 75, 365], "fmod": [52, 75, 620], "divis": [52, 53, 54, 75, 76, 77, 229, 235, 242, 244, 277, 279, 289, 371, 460, 572, 580, 594, 603, 604, 609, 620, 622, 623, 624, 637, 644, 645, 784, 825, 834], "frexp": [52, 75, 365], "edge_ord": [52, 75, 342, 365], "estim": [52, 75, 342, 365, 380, 511], "boundari": [52, 61, 75, 84, 95, 319, 320, 342, 362, 365, 368, 403, 631, 729, 858], "33333333": [52, 75, 276, 342, 365, 442, 620], "hypot": [52, 75, 365], "hypotenus": [52, 343, 365], "4031": [52, 343, 365], "8102": [52, 343, 365], "isclos": [52, 75, 365, 811], "ldexp": [52, 75, 365], "lerp": [52, 75, 365], "lgamma": [52, 365], "45373654": [52, 347, 365], "6477685": [52, 347, 365], "modf": [52, 75, 365], "fraction": [52, 75, 348, 365, 380, 521, 624, 647], "nansum": [52, 75, 365], "accumul": [52, 75, 349, 365, 371, 479], "nextaft": [52, 75, 365], "0e": [52, 54, 75, 77, 350, 365, 609, 623], "4013e": [52, 75, 350, 365], "4028e": [52, 75, 350, 365], "signbit": [52, 75, 365], "637": [52, 75, 352, 365], "0909": [52, 75, 352, 365], "sparsify_tensor": [52, 75, 365], "sparsifi": [52, 75, 353, 365], "arang": [52, 57, 65, 75, 80, 132, 353, 365, 368, 369, 386, 387, 388, 395, 400, 404, 405, 406, 409, 418, 433, 466, 561, 602, 617, 622, 625, 628, 635, 666, 682, 704, 705, 747, 800, 817, 828, 865], "xlogi": [52, 75, 365], "0986": [52, 75, 354, 365], "3863": [52, 75, 354, 365], "0000": [52, 75, 308, 309, 312, 354, 362, 365, 369, 371, 431, 468], "zeta": [52, 75, 365], "0369": [52, 75, 355, 365], "_arraywithgeneralexperiment": [52, 97], "init_valu": [52, 75, 79, 356, 366, 368, 410], "reduct": [52, 53, 58, 66, 69, 75, 76, 79, 81, 89, 356, 366, 368, 370, 371, 410, 442, 443, 444, 445, 446, 447, 448, 449, 479, 535, 565, 566, 622, 626, 636, 684, 685, 686, 755, 756, 781, 817, 825, 828, 832, 839], "_arraywithgradientsexperiment": [52, 97], "_arraywithimageexperiment": [52, 97], "_arraywithlayersexperiment": [52, 97], "adaptive_avg_pool1d": [52, 75, 368], "1d": [52, 75, 92, 93, 368, 369, 371, 380, 382, 389, 391, 393, 399, 432, 452, 457, 479, 483, 511, 764, 780], "adapt": [52, 75, 77, 368, 382, 383, 384, 610, 623, 780, 784, 848], "pool": [52, 75, 79, 368, 382, 383, 384, 386, 387, 388, 404, 405, 406, 407, 410, 780, 807], "plane": [52, 75, 235, 238, 240, 268, 280, 281, 282, 285, 368, 371, 382, 383, 384, 480, 620], "l_in": [52, 75, 368, 382], "spatial": [52, 56, 75, 79, 368, 374, 382, 383, 384, 403, 410, 414, 490, 491, 492, 495, 624, 637, 638, 639, 640, 642, 644, 646, 783], "Will": [52, 75, 368, 382, 383, 384, 789, 843], "l_out": [52, 75, 368, 382], "nhwc": [52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 495, 624, 637, 640, 641, 644, 645, 646, 780], "3d": [52, 57, 75, 368, 383, 391, 392, 454, 625, 662, 780, 835], "4d": [52, 75, 368, 369, 374, 383, 392, 393, 440, 495], "s_0": [52, 75, 368, 383, 384], "s_1": [52, 75, 368, 383, 384], "adaptive_max_pool2d": [52, 75, 368], "h_in": [52, 75, 368, 384], "w_in": [52, 75, 368, 384], "avg_pool1d": [52, 75, 368], "kernel": [52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 624, 649, 837, 843, 858, 861, 862], "nwc": [52, 56, 75, 79, 368, 386, 391, 404, 407, 624, 637, 638, 639, 644, 645, 780], "count_include_pad": [52, 75, 368, 386, 387, 388, 780], "d_in": [52, 56, 75, 79, 368, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646], "algorithm": [52, 56, 68, 75, 79, 105, 368, 369, 386, 387, 388, 403, 404, 405, 406, 407, 435, 437, 441, 625, 638, 640, 641, 642, 643, 646, 673, 776, 780, 794, 817, 829, 835, 843, 858, 860, 862], "ncw": [52, 56, 75, 79, 368, 386, 391, 392, 404, 407, 624, 637, 638, 639, 644, 645, 780], "avg_pool2d": [52, 75, 368], "divisor_overrid": [52, 75, 368, 386, 387, 388, 780], "avg_pool3d": [52, 75, 368], "ndhwc": [52, 56, 75, 79, 368, 388, 393, 406, 624, 637, 642, 643, 644, 645, 780], "volum": [52, 56, 75, 79, 368, 388, 390, 395, 396, 400, 406, 624, 642, 643], "ncdhw": [52, 56, 75, 79, 368, 388, 393, 406, 624, 637, 642, 643, 644, 645, 780], "dct": [52, 75, 368, 780, 840], "truncat": [52, 75, 368, 369, 389, 395, 399, 400, 401, 412, 439, 568, 622, 780, 821, 840], "larger": [52, 59, 65, 75, 82, 88, 160, 368, 389, 396, 399, 401, 412, 618, 627, 635, 687, 695, 752, 754, 780, 832, 835, 865], "ortho": [52, 75, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 780], "onesid": [52, 75, 368, 390], "fft": [52, 75, 368, 390, 396, 411, 412, 415, 780, 806, 858], "symmetri": [52, 368, 390], "rfft": [52, 75, 368, 390, 412], "invok": [52, 368, 390, 800, 823, 851, 852], "batch_idx": [52, 368, 390], "signal_dim1": [52, 368, 390], "signal_dim2": [52, 368, 390], "signal_dimn": [52, 368, 390], "signal_dim": [52, 368, 390], "embed": [52, 75, 368, 370, 442, 624, 650, 766, 780, 858], "max_norm": [52, 53, 75, 76, 368, 394, 529, 530, 622, 780], "ifft": [52, 75, 368, 395, 401, 780], "pi": [52, 75, 281, 285, 368, 370, 395, 400, 447, 615, 620], "44509285e": [52, 75, 368, 395], "14423775e": [52, 75, 368, 395], "17j": [52, 75, 368, 395, 400], "11483250e": [52, 75, 368, 395], "16j": [52, 75, 368, 395, 400], "33486982e": [52, 75, 368, 395], "22464680e": [52, 75, 368, 395], "95799250e": [52, 75, 368, 395], "66951701e": [52, 75, 368, 395], "fft2": [52, 368], "vari": [52, 63, 92, 93, 286, 396, 534, 620, 622, 625, 633, 672, 738, 739, 740, 794, 815, 819, 829, 832, 839], "20477401j": [52, 368, 396], "0614962j": [52, 368, 396], "idct": [52, 75, 368], "49862671": [52, 75, 368, 389, 399], "37691498": [52, 75, 368, 389, 399], "00390816": [52, 75, 368, 389, 399], "58938599": [52, 75, 368, 389, 399], "92713165": [52, 75, 368, 389, 399], "078475": [52, 75, 368, 389, 399], "19664812": [52, 75, 368, 389, 399], "95411837": [52, 75, 368, 389, 399], "30636606e": [52, 75, 368, 400], "43029718e": [52, 75, 368, 400], "18j": [52, 75, 368, 395, 400], "53080850e": [52, 75, 368, 400], "58689626e": [52, 75, 368, 400], "24474906e": [52, 75, 368, 400], "91858728e": [52, 75, 368, 400], "01435406e": [52, 75, 368, 400], "ifftn": [52, 75, 368], "24730653": [52, 75, 368, 401], "90832391j": [52, 75, 368, 401], "49495562": [52, 75, 368, 401], "9039565j": [52, 75, 368, 401], "98193269": [52, 75, 368, 401], "49560517j": [52, 75, 368, 401], "93280757": [52, 75, 368, 401], "48075343j": [52, 75, 368, 401], "28526384": [52, 75, 368, 401], "3351205j": [52, 75, 368, 401], "2343787": [52, 75, 368, 401], "83528011j": [52, 75, 368, 401], "18791352": [52, 75, 368, 401], "30690572j": [52, 75, 368, 401], "82115787": [52, 75, 368, 401], "96195183j": [52, 75, 368, 401], "44719226": [52, 75, 368, 401], "72654048j": [52, 75, 368, 401], "51476765": [52, 368, 401], "66160417j": [52, 368, 401], "04319742": [52, 368, 401], "05411636j": [52, 368, 401], "015561": [52, 368, 401], "04216015j": [52, 368, 401], "06310689": [52, 368, 401], "05347854j": [52, 368, 401], "13392983": [52, 368, 401], "16052352j": [52, 368, 401], "08371392": [52, 368, 401], "17252843j": [52, 368, 401], "0031429": [52, 368, 401], "05421245j": [52, 368, 401], "10446617": [52, 368, 401], "17747098j": [52, 368, 401], "05344324": [52, 368, 401], "07972424j": [52, 368, 401], "8344667": [52, 75, 368, 401], "98222595j": [52, 75, 368, 401], "48472244": [52, 75, 368, 401], "30233797j": [52, 75, 368, 401], "recompute_scale_factor": [52, 75, 368, 403, 835], "antialia": [52, 75, 368, 403, 835], "height": [52, 53, 56, 75, 76, 79, 368, 403, 534, 622, 624, 640, 641, 642, 643, 646, 809, 840], "width": [52, 53, 56, 75, 76, 79, 368, 369, 371, 374, 380, 403, 422, 474, 495, 514, 534, 622, 624, 638, 639, 640, 641, 642, 643, 646, 650], "trilinear": [52, 75, 368, 403, 835], "nearest_exact": [52, 75, 368, 403, 835], "tf_area": [52, 75, 368, 403, 835], "mitchellcub": [52, 75, 368, 403, 835], "lanczos3": [52, 75, 368, 403, 835], "lanczos5": [52, 75, 368, 403, 835], "gaussian": [52, 75, 105, 368, 403, 614, 835], "overwrit": [52, 69, 75, 208, 368, 403, 619, 808, 828, 829, 837], "thu": [52, 75, 229, 242, 277, 285, 286, 368, 369, 403, 421, 620, 625, 659, 660, 806, 816, 821, 826, 829, 833], "antialias": [52, 75, 403], "max_pool1d": [52, 75, 368], "dilaton": [52, 75, 404, 405, 406], "max_pool3d": [52, 75, 368], "max_unpool1d": [52, 75, 368], "unpool": [52, 75, 368, 407], "reduce_window": [52, 79, 368], "window_dimens": [52, 79, 368, 410], "window_strid": [52, 79, 368, 410], "base_dil": [52, 79, 368, 410], "window_dil": [52, 79, 368, 410], "trim": [52, 69, 75, 368, 371, 411, 485], "orthonorm": [52, 57, 75, 80, 368, 411, 625, 672, 675], "8660254j": [52, 75, 368, 411], "rfftn": [52, 75, 368], "sliding_window": [52, 75, 368], "window_s": [52, 75, 368, 414], "frame_length": [52, 75, 368, 415], "frame_step": [52, 75, 368, 415], "fft_length": [52, 75, 368, 415], "window_fn": [52, 75, 368, 415], "pad_end": [52, 75, 368, 415], "smallest": [52, 69, 75, 160, 163, 231, 368, 371, 415, 484, 618, 620, 625, 666, 764, 766, 767], "enclos": [52, 75, 368, 415, 859], "window_length": [52, 75, 306, 308, 311, 312, 327, 362, 368, 415], "li": [52, 75, 368, 369, 380, 415, 422, 521, 847], "past": [52, 75, 368, 415, 808, 811, 830, 832, 844, 858], "fft_unique_bin": [52, 75, 368, 415], "complex64": [52, 72, 75, 153, 167, 176, 182, 248, 275, 368, 411, 415, 618, 620, 625, 673, 675, 676, 765, 817, 822], "complex128": [52, 75, 76, 153, 154, 167, 176, 182, 368, 415, 560, 618, 622, 625, 660, 661, 666, 682, 764, 765, 803, 817, 822], "compon": [52, 75, 137, 138, 216, 217, 218, 221, 224, 233, 235, 236, 238, 240, 268, 270, 271, 278, 281, 282, 285, 286, 317, 321, 332, 362, 365, 368, 369, 374, 415, 426, 435, 495, 617, 620, 632, 735, 800, 831, 837, 848, 854, 859, 861], "linear_algebra": [52, 57, 75, 80, 625, 833], "_arraywithlinearalgebraexperiment": [52, 97], "adjoint": [52, 57, 75, 80, 369, 436, 625, 663, 674, 675, 764], "batched_out": [52, 75, 369], "j1": [52, 75, 369, 417], "jn": [52, 75, 369, 417], "k1": [52, 75, 369, 417], "km": [52, 75, 369, 417], "outer": [52, 57, 75, 80, 92, 369, 417, 625, 628, 703, 704, 705, 794, 806], "30000001": [52, 75, 369, 417, 534, 622, 633, 738], "40000001": [52, 56, 68, 75, 97, 98, 107, 110, 291, 360, 369, 417, 614, 624, 633, 653, 738], "60000002": [52, 75, 88, 98, 369, 374, 417, 494, 496, 749], "80000001": [52, 75, 369, 374, 417, 494, 496], "60000001": [52, 75, 369, 417], "90000004": [52, 75, 369, 417, 635, 749], "20000002": [52, 75, 369, 417], "20000005": [52, 54, 75, 291, 298, 301, 302, 360, 369, 417, 603], "00000012": [52, 75, 369, 417], "49999994": [52, 75, 369, 417], "00000006": [52, 75, 369, 417], "60000014": [52, 75, 369, 417], "19999993": [52, 75, 369, 417], "80000007": [52, 75, 369, 417], "20000017": [52, 75, 369, 417], "89999992": [52, 75, 369, 417], "60000008": [52, 75, 369, 417], "80000019": [52, 75, 346, 365, 369, 417], "4000001": [52, 75, 79, 369, 417, 624, 647, 653], "cond": [52, 75, 118, 369, 616, 843], "933034373659268": [52, 418], "diagflat": [52, 75, 369, 428, 431], "offset": [52, 57, 60, 71, 75, 80, 83, 129, 369, 374, 419, 490, 491, 492, 617, 625, 630, 658, 679, 725, 771], "padding_valu": [52, 75, 369, 419], "right_left": [52, 75, 369, 419], "num_row": [52, 75, 369, 419], "num_col": [52, 75, 369, 419], "dot": [52, 56, 75, 79, 92, 369, 370, 433, 442, 624, 625, 650, 653, 681, 794, 800, 807, 816], "eig": [52, 57, 75, 369, 625, 660, 661], "37228132": [52, 75, 369, 421, 423, 659], "82456484": [52, 421, 659], "41597356": [52, 421, 659], "56576746": [52, 421, 659], "90937671": [52, 421, 659], "eigh_tridiagon": [52, 75, 369], "eigvals_onli": [52, 75, 369, 422], "select_rang": [52, 75, 369, 422], "tol": [52, 75, 96, 369, 422, 435, 441], "eigenvalu": [52, 57, 75, 80, 92, 93, 369, 421, 422, 423, 625, 659, 660, 661, 668], "eigenvector": [52, 75, 369, 421, 422, 625, 659, 660], "interv": [52, 61, 66, 75, 84, 89, 121, 132, 133, 140, 369, 380, 422, 514, 617, 625, 627, 631, 636, 655, 681, 687, 690, 698, 727, 729, 755, 756], "togeth": [52, 69, 75, 328, 344, 365, 369, 422, 785, 800, 809, 812, 815, 817, 828, 829, 832, 833, 835, 841, 842, 843, 848, 856, 858, 859, 864], "cluster": [52, 75, 369, 422, 843, 858], "converg": [52, 75, 369, 422, 849], "_2": [52, 75, 369, 422], "eig_val": [52, 75, 369, 422], "decreas": [52, 75, 369, 422, 766], "eig_vector": [52, 75, 369, 422], "38196": [52, 422], "61803": [52, 422], "eigval": [52, 75, 369], "general_inner_product": [52, 80, 369], "n_mode": [52, 80, 369, 424], "tradit": [52, 80, 369, 424], "inner": [52, 57, 71, 80, 101, 136, 369, 421, 424, 617, 625, 628, 659, 660, 665, 703, 704, 705, 794, 806, 828], "higher_order_mo": [52, 75, 369], "n_featur": [52, 75, 369, 425], "d1": [52, 75, 369, 425], "dn": [52, 75, 369, 425], "initialize_tuck": [52, 75, 369], "svd": [52, 57, 75, 80, 95, 369, 426, 430, 435, 437, 438, 439, 441, 625, 676], "truncated_svd": [52, 75, 369, 426, 435, 438, 441], "non_neg": [52, 75, 321, 362, 369, 426], "mask": [52, 56, 75, 79, 92, 368, 369, 371, 413, 426, 427, 435, 441, 481, 544, 622, 624, 647, 650, 653, 835], "svd_mask_repeat": [52, 75, 369, 426, 435, 441], "tuckertensor": [52, 75, 96, 321, 362, 369, 426, 435, 441], "scheme": [52, 75, 369, 426, 435, 811, 841, 858], "tucker": [52, 75, 321, 362, 369, 426, 435], "decomposit": [52, 57, 75, 80, 92, 93, 95, 317, 318, 319, 320, 321, 362, 369, 426, 435, 438, 440, 441, 625, 654, 660, 664, 672, 675, 806, 865], "miss": [52, 75, 369, 371, 426, 435, 441, 481, 784, 806, 807, 812, 815, 816, 819, 829, 832, 835], "everywher": [52, 75, 369, 426, 435, 441], "imput": [52, 75, 369, 426, 435, 441], "kron": [52, 75, 369, 431, 865], "make_svd_non_neg": [52, 75, 369, 439], "nntype": [52, 75, 369, 430], "nndsvd": [52, 75, 369, 430], "singular": [52, 57, 75, 80, 369, 426, 430, 437, 439, 625, 666, 668, 671, 675, 676, 764, 766, 817], "nndsvda": [52, 75, 369, 430], "boutsidi": [52, 75, 369, 430], "gallopoulo": [52, 75, 369, 430], "pattern": [52, 53, 75, 76, 369, 430, 534, 535, 536, 622, 817, 820, 831, 849], "recognit": [52, 75, 369, 430, 804], "1350": [52, 75, 369, 430], "1362": [52, 75, 369, 430], "2008": [52, 75, 369, 430, 858], "matrix_exp": [52, 75, 369], "7183": [52, 75, 369, 431], "3891": [52, 75, 369, 431], "mode_dot": [52, 75, 91, 92, 96, 369], "matrix_or_vector": [52, 75, 92, 96, 369, 432], "i_1": [52, 75, 92, 93, 369, 432], "i_k": [52, 75, 92, 369, 432], "i_n": [52, 75, 92, 369, 432], "i_": [52, 75, 92, 369, 380, 432, 514], "multi_dot": [52, 75, 369], "148": [52, 74, 75, 238, 369, 433], "multi_mode_dot": [52, 75, 369], "mat_or_vec_list": [52, 75, 369, 434], "times_0": [52, 369, 434], "vec": [52, 369, 434], "times_1": [52, 369, 434], "cdot": [52, 268, 369, 434, 620], "times_n": [52, 369, 434], "partial_tuck": [52, 75, 369], "n_iter_max": [52, 75, 369, 435, 441], "verbos": [52, 75, 369, 435, 438, 441, 832, 837], "return_error": [52, 75, 369, 435, 441], "variat": [52, 75, 369, 435, 441, 819, 829, 832], "reconstruct": [52, 57, 63, 75, 86, 95, 369, 371, 435, 441, 487, 625, 633, 675, 737, 739, 830], "return_erro": [52, 369, 435, 441], "svd_flip": [52, 75, 369], "u_based_decis": [52, 75, 369, 437], "basi": [52, 75, 369, 437, 808, 811, 840], "flip": [52, 59, 75, 82, 92, 226, 369, 371, 437, 465, 466, 620, 627, 828, 839, 840, 842], "decis": [52, 75, 369, 437, 800, 811, 817, 835, 837, 839, 858], "u_adjust": [52, 75, 369, 437], "v_adjust": [52, 75, 369, 437], "tensor_train": [52, 75, 369], "tt": [52, 75, 320, 362, 369, 438, 440], "kth": [52, 369, 438], "tttensor": [52, 95, 320, 362, 369, 438], "compute_uv": [52, 57, 75, 80, 369, 439, 625, 675], "n_eigenvec": [52, 75, 369, 439], "returnedv": [52, 439], "vh": [52, 57, 75, 80, 369, 439, 625, 675], "eigen": [52, 75, 369, 439], "namedtupl": [52, 57, 63, 75, 80, 86, 369, 371, 421, 439, 487, 625, 633, 659, 660, 672, 673, 675, 737, 738, 739], "tt_matrix_to_tensor": [52, 75, 369], "known": [52, 75, 279, 369, 438, 440, 620, 779, 811, 816, 817, 829, 832], "rank_k": [52, 75, 369, 440], "left_dim_k": [52, 75, 369, 440], "right_dim_k": [52, 75, 369, 440], "rank_": [52, 75, 369, 440], "49671414": [52, 75, 369, 440, 631, 728], "1382643": [52, 75, 369, 440, 631, 728], "64768857": [52, 75, 369, 440, 631, 728], "5230298": [52, 75, 369, 440, 631, 728], "23415337": [52, 75, 369, 440, 631, 728], "23413695": [52, 75, 369, 440, 631, 728], "57921278": [52, 75, 369, 440], "76743472": [52, 75, 369, 440], "1163073": [52, 75, 369, 440], "11629914": [52, 75, 369, 440], "03237505": [52, 75, 369, 440], "03237278": [52, 75, 369, 440], "78441733": [52, 75, 369, 440], "38119566": [52, 75, 369, 440], "21834874": [52, 75, 369, 440], "10610882": [52, 75, 369, 440], "15165846": [52, 75, 369, 440], "15164782": [52, 75, 369, 440], "35662258": [52, 75, 369, 440], "35659757": [52, 75, 369, 440], "02283812": [52, 75, 369, 440], "49705869": [52, 75, 369, 440], "40518808": [52, 75, 369, 440], "16882598": [52, 75, 369, 440], "fixed_factor": [52, 75, 369, 441], "tl": [52, 75, 369, 441], "kolda": [52, 75, 369, 441], "bader": [52, 75, 369, 441], "siam": [52, 75, 369, 438, 441], "review": [52, 75, 369, 441, 802, 804, 806, 808, 814, 816, 819, 829, 833], "vol": [52, 75, 369, 441], "pp": [52, 75, 369, 441], "455": [52, 75, 369, 441], "2009": [52, 75, 369, 441], "_arraywithlossesexperiment": [52, 97], "hinge_embedding_loss": [52, 75, 370], "margin": [52, 75, 370, 442, 449, 829], "measur": [52, 370, 442, 624, 650, 780], "semi": [52, 370, 442], "supervis": [52, 370, 442], "l_n": [52, 370, 442], "x_n": [52, 370, 442], "y_n": [52, 370, 442], "ell": [52, 370, 442], "operatornam": [52, 279, 281, 370, 442, 620, 625, 660], "l_1": [52, 370, 442], "Its": [52, 370, 442, 858], "hyperparamet": [52, 75, 370, 442], "aggreg": [52, 75, 370, 442, 633, 737, 816], "unreduc": [52, 75, 370, 442], "hing": [52, 75, 370, 442, 449], "input_tensor": [52, 75, 369, 370, 438, 442, 447, 829], "target_tensor": [52, 370, 442, 447], "huber_loss": [52, 75, 370], "delta": [52, 54, 75, 77, 370, 443, 603, 623], "transit": [52, 75, 370, 443, 858], "huber": [52, 75, 370, 443], "kl_div": [52, 75, 370], "log_target": [52, 75, 370, 444], "contai": [52, 444], "batchmean": [52, 370, 444], "kullback": [52, 75, 370, 444], "leibler": [52, 75, 370, 444], "0916": [52, 444], "l1_loss": [52, 75, 370, 446], "l1": [52, 57, 75, 80, 370, 374, 443, 445, 446, 448, 493, 625, 682, 815, 840], "targetict": [52, 75, 370, 445, 446, 448, 449], "20000000000000004": [52, 445], "log_poisson_loss": [52, 75, 370], "compute_full_loss": [52, 75, 370, 446, 781], "favor": [52, 75, 370, 446], "likelihood": [52, 75, 370, 446, 447], "28402555": [52, 370, 446], "03402555": [52, 370, 446], "1573164": [52, 370, 446], "poisson_nll_loss": [52, 75, 370], "log_input": [52, 75, 370, 447], "poisson": [52, 75, 370, 375, 446, 447], "assumpt": [52, 370, 446, 447], "minu": [52, 370, 446, 447], "omiss": [52, 370, 447], "stirl": [52, 75, 370, 446, 447], "describ": [52, 65, 75, 93, 218, 235, 236, 268, 271, 273, 370, 375, 378, 447, 501, 504, 620, 624, 635, 650, 747, 751, 753, 802, 806, 807, 808, 814, 816, 828, 829, 832, 837, 842, 858], "prevent": [52, 54, 75, 77, 370, 447, 546, 603, 604, 609, 622, 623, 624, 635, 647, 753, 779, 784, 806, 808, 816, 817, 821, 828, 829, 833], "1978": [52, 447], "smooth_l1_loss": [52, 75, 370], "smooth": [52, 58, 75, 81, 370, 443, 448, 626, 684, 685, 686, 827], "8125": [52, 448], "soft_margin_loss": [52, 75, 370], "soft": [52, 75, 301, 370, 371, 449, 481, 818], "35667497": [52, 449, 626, 685], "22314353": [52, 449], "60943791": [52, 449], "manipul": [52, 75, 828, 829, 833, 835, 837, 842, 847, 858], "_arraywithmanipulationexperiment": [52, 97], "as_strid": [52, 75, 371], "nativeshap": [52, 56, 59, 61, 75, 82, 84, 122, 123, 125, 130, 137, 143, 371, 375, 450, 462, 467, 475, 478, 497, 498, 499, 500, 501, 566, 579, 584, 586, 617, 622, 624, 627, 631, 637, 639, 641, 643, 645, 694, 727, 728, 729, 824, 826], "byte": [52, 53, 71, 75, 76, 97, 129, 371, 450, 560, 617, 622, 863, 864], "associative_scan": [52, 75, 371], "revers": [52, 53, 57, 65, 75, 80, 88, 97, 98, 359, 367, 368, 369, 371, 380, 413, 429, 451, 465, 466, 512, 513, 533, 622, 625, 627, 635, 680, 691, 745, 746, 806, 815, 816, 817, 819, 820, 828, 829, 835, 842, 843], "scan": [52, 75, 371, 451, 843], "atleast_1d": [52, 75, 371], "ari": [52, 75, 371, 452, 453, 454, 460, 469, 488], "a1": [52, 76, 371, 452, 453, 454, 458, 526], "a2": [52, 76, 371, 452, 453, 454, 458, 526], "atleast_2d": [52, 75, 371], "atleast_3d": [52, 75, 371], "column_stack": [52, 75, 371], "concat_from_sequ": [52, 75, 371], "input_sequ": [52, 75, 371, 459], "new_axi": [52, 75, 371, 459, 842], "dsplit": [52, 75, 371], "indices_or_sect": [52, 75, 371, 460, 469, 488], "3rd": [52, 75, 371, 460], "dstack": [52, 75, 371], "fill_diagon": [52, 75, 371], "fill_diag": [52, 463], "fortran": [52, 59, 75, 82, 371, 464, 627, 694, 858, 862], "layout": [52, 59, 75, 82, 371, 464, 627, 694, 813, 828, 829, 835], "fliplr": [52, 75, 371, 828], "diag": [52, 57, 75, 80, 93, 371, 465, 466, 625, 660, 837], "flipud": [52, 75, 371, 828], "fold": [52, 75, 371, 475, 476, 816], "unfold": [52, 75, 92, 93, 95, 369, 371, 426, 467, 475, 477], "folded_tensor": [52, 371, 467], "heavisid": [52, 75, 371], "5000": [52, 371, 468, 625, 663, 794], "hsplit": [52, 75, 371], "horizont": [52, 75, 371, 458, 469, 534, 622], "hstack": [52, 75, 371, 458], "i0": [52, 75, 371, 380, 514], "bessel": [52, 65, 75, 88, 311, 362, 371, 471, 635, 752, 754], "kind": [52, 65, 75, 160, 163, 164, 380, 471, 512, 513, 518, 618, 635, 745, 746, 751, 753, 764, 765, 805, 829, 832, 835, 837, 843], "26606588": [52, 75, 371, 471], "2795853": [52, 75, 371, 471], "88079259": [52, 75, 371, 471], "row_mod": [52, 75, 371, 472], "column_mod": [52, 75, 371, 472], "ascend": [52, 64, 75, 87, 371, 378, 472, 504, 634, 741, 743, 809], "prod": [52, 53, 65, 76, 88, 369, 371, 427, 429, 472, 520, 535, 622, 635, 764, 794, 817, 819, 837], "moveaxi": [52, 75, 371], "destin": [52, 75, 371, 473], "unstack": [52, 59, 69, 82, 473, 627, 815, 837, 840, 865], "reorder": [52, 59, 75, 82, 371, 473, 534, 622, 627, 691, 831], "stat_length": [52, 75, 371, 474], "constant_valu": [52, 75, 371, 474], "end_valu": [52, 75, 371, 474], "reflect_typ": [52, 75, 371, 474], "partial_fold": [52, 75, 371], "skip_begin": [52, 75, 371, 475, 476, 477, 478], "untouch": [52, 75, 371, 475, 476, 477, 478], "partial_tensor_to_vec": [52, 75, 371], "skip_end": [52, 75, 371, 476, 477], "vectoris": [52, 75, 92, 371, 476, 478], "partial_unfold": [52, 75, 371], "ravel_tensor": [52, 75, 371, 477], "n_1": [52, 75, 371, 477], "n_2": [52, 75, 371, 477], "n_i": [52, 75, 369, 371, 427, 477], "partial_vec_to_tensor": [52, 75, 371], "put_along_axi": [52, 75, 371], "rot90": [52, 75, 371, 828], "rotat": [52, 75, 371, 480], "soft_threshold": [52, 75, 371], "behav": [52, 75, 329, 330, 365, 369, 371, 421, 482, 625, 659, 811, 821, 826, 828, 829, 830, 839, 859], "invalid": [52, 66, 75, 89, 371, 482, 625, 627, 636, 681, 690, 755, 756, 764, 807, 817], "slice": [52, 65, 69, 75, 76, 88, 93, 142, 322, 362, 371, 457, 479, 482, 483, 541, 542, 544, 570, 617, 622, 629, 635, 715, 750, 858], "inexact": [52, 75, 339, 365, 371, 482], "largest": [52, 69, 75, 160, 163, 369, 371, 437, 482, 484, 618, 625, 666, 675], "take_along_axi": [52, 75, 371], "arr": [52, 53, 72, 75, 168, 371, 457, 479, 483, 566, 618, 817, 818], "top_k": [52, 75, 371], "sort": [52, 63, 69, 75, 86, 98, 287, 369, 371, 380, 421, 484, 504, 518, 620, 625, 633, 659, 660, 675, 676, 737, 741, 742, 743, 766, 800, 805, 816, 831, 833], "trim_zero": [52, 75, 371], "fb": [52, 75, 371, 485], "front": [52, 75, 371, 485, 829, 836, 837, 840, 847, 856, 858], "unfolded_tensor": [52, 371, 486], "unique_consecut": [52, 75, 371], "vsplit": [52, 75, 371], "vertic": [52, 75, 371, 488, 489, 534, 622, 808], "_arraywithnormsexperiment": [52, 97], "varianc": [52, 65, 75, 88, 374, 490, 492, 635, 754, 779, 783], "nsc": [52, 75, 374, 490, 491, 492, 783], "braodcast": [52, 75, 374, 490], "running_mean": [52, 75, 374, 490, 492, 783], "running_var": [52, 75, 374, 490, 492, 783], "nc": [52, 75, 374, 490, 491, 492, 783], "group_norm": [52, 75, 374], "num_group": [52, 75, 374, 491], "group": [52, 75, 371, 374, 487, 491, 624, 629, 637, 644, 645, 708, 809, 811, 815, 817, 825, 829, 830, 854, 857, 863], "instance_norm": [52, 75, 374], "l1_normal": [52, 75, 374], "33333334": [52, 374, 493, 496, 605, 623, 624, 625, 646, 682], "33333337": [52, 132, 374, 493, 605, 617, 623], "28571439": [52, 374, 493], "l2_normal": [52, 75, 374, 496], "l2": [52, 57, 80, 91, 92, 374, 494, 496, 625, 682, 780, 815], "44721359": [52, 75, 374, 494, 496], "89442718": [52, 75, 374, 494, 496], "lp_normal": [52, 75, 374], "lp": [52, 374, 496], "_arraywithrandomexperiment": [52, 97], "bernoulli": [52, 75, 368, 375, 391, 392, 393], "event": [52, 75, 375, 497, 832], "entri": [52, 59, 69, 75, 82, 86, 93, 132, 369, 371, 375, 436, 463, 465, 466, 497, 617, 627, 629, 696, 719, 737, 807, 816, 832, 858], "parameter": [52, 61, 75, 84, 375, 497, 498, 500, 501, 631, 726, 728, 729], "odd": [52, 75, 273, 371, 375, 474, 497, 620, 794, 805, 811], "drawn": [52, 61, 75, 84, 375, 497, 498, 499, 500, 501, 631, 726, 727, 728, 729, 764, 765, 766, 779, 832], "dirichlet": [52, 75, 375], "10598304": [52, 375, 499], "21537054": [52, 375, 499], "67864642": [52, 375, 499], "48006698": [52, 375, 499], "07472073": [52, 375, 499], "44521229": [52, 375, 499], "55479872": [52, 375, 499], "05426367": [52, 375, 499], "39093761": [52, 375, 499], "19531053": [52, 375, 499], "51675832": [52, 375, 499], "28793114": [52, 375, 499], "12315625": [52, 375, 499], "29823365": [52, 375, 499], "5786101": [52, 375, 499], "15564976": [52, 375, 499], "50542368": [52, 375, 499], "33892656": [52, 375, 499], "1325352": [52, 375, 499], "44439589": [52, 375, 499], "42306891": [52, 375, 499], "gamma": [52, 60, 75, 83, 336, 347, 365, 375, 380, 515, 630, 725], "rate": [52, 54, 75, 77, 368, 375, 409, 501, 604, 607, 609, 610, 611, 623, 628, 703, 704, 705, 784, 816], "lam": [52, 75, 375, 501], "_arraywithsearchingexperiment": [52, 97], "unravel_index": [52, 75, 376], "unravel": [52, 75, 376, 502], "_arraywithsetexperiment": [52, 97], "_arraywithsortingexperiment": [52, 97], "lexsort": [52, 75, 378], "indirectli": [52, 75, 378, 504], "statist": [52, 75, 90, 371, 474, 783, 798, 806, 817, 832, 833, 858], "_arraywithstatisticalexperiment": [52, 97], "bincount": [52, 75, 380], "minlength": [52, 75, 380, 509], "corrcoef": [52, 75, 380], "rowvar": [52, 75, 380, 510, 511], "relationship": [52, 75, 510, 779, 831], "cov": [52, 75, 380], "ddof": [52, 75, 380, 511], "fweight": [52, 75, 380, 511], "aweight": [52, 75, 380, 511], "overridden": [52, 75, 380, 511, 784, 812], "unbias": [52, 65, 75, 88, 380, 511, 635, 754], "typic": [52, 75, 328, 344, 365, 380, 511, 634, 743, 780, 811, 825, 857, 865], "assign": [52, 75, 92, 380, 511, 806, 808, 813, 817, 828, 831, 839], "covari": [52, 75, 380, 511], "cummax": [52, 75, 380], "exclus": [52, 53, 65, 69, 75, 76, 88, 121, 369, 380, 435, 512, 513, 553, 554, 557, 617, 622, 631, 635, 727, 745, 746, 804, 815, 817, 825, 842, 862, 864], "cumul": [52, 65, 75, 88, 380, 512, 513, 635, 745, 746], "uint64": [52, 65, 157, 162, 164, 165, 175, 177, 180, 380, 512, 513, 618, 635, 745, 746, 751, 753, 764, 765, 817, 832, 837], "uint16": [52, 65, 152, 157, 162, 163, 172, 380, 512, 513, 618, 635, 745, 746, 751, 753, 764, 765, 817, 829, 832, 837], "bit": [52, 65, 159, 160, 163, 226, 227, 229, 380, 512, 513, 618, 620, 635, 745, 746, 751, 753, 800, 805, 806, 807, 815, 816, 817, 819, 825, 837, 839, 864], "uint32": [52, 65, 157, 162, 163, 164, 186, 380, 512, 513, 618, 635, 745, 746, 751, 753, 764, 765, 817, 832, 837], "cummin": [52, 75, 380], "histogram": [52, 75, 380], "extend_lower_interv": [52, 75, 380, 514], "extend_upper_interv": [52, 75, 380, 514], "densiti": [52, 75, 380, 514], "monoton": [52, 75, 380, 514], "rightmost": [52, 75, 380, 514], "c1": [52, 75, 380, 514, 815], "ff": [52, 75, 380, 514], "c_": [52, 75, 93, 380, 514], "igamma": [52, 75, 380], "incomplet": [52, 75, 380, 515, 808], "3614": [52, 75, 380, 515], "2085": [52, 75, 380, 515], "median": [52, 75, 371, 380, 474, 518], "nanmean": [52, 75, 380], "6666666666666665": [52, 75, 380, 517], "nanmedian": [52, 75, 380], "overwrite_input": [52, 75, 380, 518], "treat": [52, 69, 75, 98, 273, 349, 365, 371, 374, 380, 483, 495, 518, 520, 620, 761, 827, 832, 838, 842], "undefin": [52, 75, 371, 380, 381, 474, 518, 522, 817, 821, 827], "nanmin": [52, 75, 380], "nanprod": [52, 75, 380], "Not": [52, 75, 349, 365, 369, 380, 423, 520, 615, 813, 821, 830, 840, 841, 843], "quantil": [52, 75, 380], "inclus": [52, 75, 121, 380, 521, 617, 631, 727, 801, 813, 828, 835], "midpoint": [52, 75, 380, 521], "surround": [52, 75, 380, 521, 835], "whichev": [52, 75, 380, 521], "_arraywithutilityexperiment": [52, 97], "optional_get_el": [52, 75, 381], "empti": [52, 53, 65, 69, 76, 88, 121, 371, 381, 474, 522, 529, 566, 617, 622, 625, 629, 635, 636, 679, 682, 720, 750, 751, 753, 755, 756, 806, 807, 812, 814, 817, 818, 828], "_arraywithgener": [53, 97], "all_equ": [53, 76, 622], "equality_matrix": [53, 76, 523, 622], "array_equ": [53, 76, 622], "assert_supports_inplac": [53, 76, 622], "ivybackendexcept": [53, 76, 527, 551, 622, 795, 812, 818, 821, 822], "clip_matrix_norm": [53, 76, 622], "894": [53, 76, 529, 530, 622, 630, 725], "clip_vector_norm": [53, 76, 622], "default_v": [53, 533, 622], "catch_except": [53, 533, 622], "rev": [53, 533, 622], "with_cal": [53, 533, 622], "catch": [53, 533, 622, 826, 832], "einops_rearrang": [53, 76, 622], "axes_length": [53, 76, 534, 535, 536, 622], "arrang": [53, 534, 622], "rearrang": [53, 76, 534, 536, 622, 831], "einops_reduc": [53, 76, 622, 817], "einops_repeat": [53, 76, 622], "fourier_encod": [53, 76, 622], "max_freq": [53, 76, 538, 622], "oppos": [53, 76, 538, 622, 817], "geometr": [53, 76, 538, 622, 625, 680], "0000000e": [53, 76, 538, 622], "2246468e": [53, 76, 538, 622], "4492936e": [53, 538, 622], "6739404e": [53, 76, 538, 622], "batch_dim": [53, 76, 541, 542, 622, 786], "gather_nd": [53, 76, 622], "get_num_dim": [53, 76, 622], "as_arrai": [53, 76, 545, 579, 622, 786], "has_nan": [53, 76, 622], "include_inf": [53, 76, 547, 601, 622], "inplace_decr": [53, 76, 622], "val": [53, 69, 74, 76, 248, 371, 463, 549, 550, 551, 570, 571, 572, 620, 622, 817, 828, 839], "decrement": [53, 76, 549, 622], "inplace_incr": [53, 76, 622], "increment": [53, 76, 550, 622, 808, 858], "inplace_upd": [53, 76, 569, 622, 777, 828], "ensure_in_backend": [53, 76, 551, 622, 828], "keep_input_dtyp": [53, 76, 551, 622, 828], "is_arrai": [53, 76, 622, 828, 829], "is_ivy_arrai": [53, 76, 622, 828, 839], "is_ivy_contain": [53, 622], "is_native_arrai": [53, 76, 171, 554, 618, 622, 839], "isin": [53, 76, 622], "test_el": [53, 76, 558, 622], "assume_uniqu": [53, 76, 558, 622], "invert": [53, 76, 226, 558, 620, 622, 625, 667], "scatter_flat": [53, 76, 622], "occupi": [53, 160, 163, 565, 566, 618, 622], "scatter_nd": [53, 76, 622, 835, 839], "stable_divid": [53, 76, 622, 825], "denomin": [53, 60, 76, 83, 572, 580, 594, 622, 630, 725, 783, 825, 834, 843, 855], "min_denomin": [53, 76, 572, 580, 594, 622, 834], "_min_denomin": [53, 580, 622], "stable_pow": [53, 76, 622], "min_bas": [53, 76, 571, 581, 593, 622, 783, 834], "stabl": [53, 64, 76, 87, 142, 322, 329, 330, 362, 365, 378, 504, 571, 572, 580, 581, 593, 594, 617, 622, 634, 741, 744, 766, 807, 813, 817, 829, 834, 837, 843], "00004": [53, 76, 581, 622], "00008": [53, 76, 581, 622], "00004000e": [53, 581], "56002560e": [53, 581], "60001200e": [53, 581], "09602048e": [53, 581], "supports_inplace_upd": [53, 76, 622], "to_fil": 53, "fid": 53, "sep": 53, "format_": 53, "recov": [53, 821, 829], "to_scalar": [53, 76, 622], "value_is_nan": [53, 76, 622], "_arraywithgradi": [54, 97], "adam_step": [54, 77, 623], "mw": [54, 77, 603, 604, 623, 841], "vw": [54, 77, 603, 604, 623, 841], "beta1": [54, 77, 525, 603, 604, 609, 622, 623, 784, 841], "beta2": [54, 77, 525, 603, 604, 609, 622, 623, 784, 841], "epsilon": [54, 57, 58, 77, 80, 81, 525, 603, 604, 609, 622, 623, 625, 626, 668, 671, 684, 685, 686, 776, 781, 783, 784, 815, 825, 828, 841], "dc": [54, 77, 603, 604, 607, 609, 610, 611, 623], "dw": [54, 77, 603, 604, 607, 609, 610, 611, 623], "forget": [54, 77, 603, 604, 609, 623, 784, 800, 817], "dcdw": [54, 77, 603, 604, 607, 609, 610, 623], "adam_step_delta": [54, 77, 603, 623], "2020105": [54, 603, 623], "22187898": [54, 603, 623], "24144873": [54, 603, 623], "10000002": [54, 88, 291, 360, 603, 749], "00300002": [54, 603], "00800002": [54, 603], "adam_upd": [54, 77, 623, 841], "mw_tm1": [54, 77, 604, 609, 623], "vw_tm1": [54, 77, 604, 609, 623], "stop_gradi": [54, 77, 208, 525, 604, 607, 609, 610, 611, 619, 622, 623, 628, 703, 704, 705, 784, 841], "ws_new": [54, 77, 604, 609, 610, 611, 623], "updated_weight": [54, 77, 604, 623], "92558753": [54, 604], "92558873": [54, 604, 623], "92558718": [54, 604, 623], "00000063e": [54, 77, 604, 623], "00000016e": [54, 77, 604, 623], "00000086e": [54, 77, 604, 623], "gradient_descent_upd": [54, 77, 623, 628, 703, 704, 705], "descent": [54, 77, 607, 623, 784, 841, 858], "new_weight": [54, 77, 607, 609, 610, 623, 840], "lamb_upd": [54, 77, 623], "max_trust_ratio": [54, 77, 609, 623, 784], "decay_lambda": [54, 77, 609, 610, 623, 784], "trust": [54, 77, 609, 623, 784], "ratio": [54, 77, 609, 623, 784], "decai": [54, 77, 609, 610, 623, 784], "lamb": [54, 77, 609, 623, 784, 841], "784": [54, 609, 623], "lars_upd": [54, 77, 623], "lar": [54, 77, 610, 623, 784, 841], "34077978": [54, 610, 623], "78025991": [54, 610, 623], "56051969": [54, 610, 623], "78026009": [54, 610, 623], "56051981": [54, 610, 623], "12103939": [54, 610, 623], "optimizer_upd": [54, 77, 623], "effective_grad": [54, 77, 611, 623], "3e": [54, 77, 611, 623], "preserve_typ": [54, 77, 612, 623], "_arraywithimag": [55, 97], "_arraywithlay": [56, 97], "conv1d": [56, 79, 624, 780], "filter_format": [56, 79, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645], "channel_last": [56, 79, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645, 764], "x_dilat": [56, 79, 624, 637, 638, 640, 641, 642, 644], "d_out": [56, 79, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645], "channel_first": [56, 79, 624, 637, 638, 639, 640, 641, 642, 643, 644, 645], "wio": [56, 624, 637, 638, 639, 644], "conv1d_transpos": [56, 79, 624], "output_shap": [56, 79, 624, 637, 639, 641, 643, 645, 780], "iow": [56, 79, 624, 639], "woi": [56, 79, 624, 639], "fh": [56, 79, 624, 629, 637, 640, 641, 642, 643, 644, 645, 646, 718], "hwio": [56, 624, 637, 638, 640, 644], "conv2d_transpos": [56, 79, 624], "iohw": [56, 79, 624, 641], "hwoi": [56, 79, 624, 641], "conv3d": [56, 79, 624, 643, 780], "fd": [56, 79, 624, 637, 642, 643, 644, 645], "conv3d_transpos": [56, 79, 624, 645], "iodhw": [56, 79, 624, 643, 645], "dhwoi": [56, 79, 624, 643, 645], "depthwise_conv2d": [56, 79, 624], "randint": [56, 61, 63, 79, 84, 631, 633, 646, 649, 737, 817, 851], "noise_shap": [56, 79, 624, 647], "42857146": [56, 624, 647], "85714293": [56, 624, 647], "28571415": [56, 79, 624, 647], "71428585": [56, 79, 624, 647], "14285755": [56, 79, 624, 647], "5714283": [56, 624, 647], "4285717": [56, 79, 624, 647], "8571434": [56, 79, 624, 647], "2857151": [56, 624, 647], "dropout1d": [56, 79, 368], "droput1d": [56, 391, 392], "dropout2d": [56, 79, 368], "dropout3d": [56, 79, 368], "droput3d": [56, 393], "outer_batch_shap": [56, 79, 624, 648], "inner_batch_shap": [56, 79, 624, 648], "lstm_updat": [56, 79, 624, 837], "init_h": [56, 79, 624, 649, 837], "init_c": [56, 79, 624, 649, 837], "recurrent_kernel": [56, 79, 624, 649, 837], "recurrent_bia": [56, 79, 624, 649, 837], "hidden": [56, 79, 624, 649, 780, 814, 821, 837, 841], "recurr": [56, 75, 79, 368, 413, 624, 649, 837, 858, 862], "timestep": [56, 75, 79, 368, 413, 624, 649, 650, 780, 837], "h_i": [56, 79, 649], "c_i": [56, 79, 649], "rc": [56, 79, 649], "multi_head_attent": [56, 79, 624, 828], "num_head": [56, 79, 624, 650, 780], "in_proj_weight": [56, 79, 624, 650], "q_proj_weight": [56, 79, 624, 650], "k_proj_weight": [56, 79, 624, 650], "v_proj_weight": [56, 79, 624, 650], "out_proj_weight": [56, 79, 624, 650], "in_proj_bia": [56, 79, 624, 650], "out_proj_bia": [56, 79, 624, 650], "is_caus": [56, 79, 624, 650, 653], "key_padding_mask": [56, 79, 624, 650], "bias_k": [56, 79, 624, 650], "bias_v": [56, 79, 624, 650], "static_k": [56, 79, 624, 650], "static_v": [56, 79, 624, 650], "add_zero_attn": [56, 79, 624, 650], "return_attention_weight": [56, 79, 624, 650], "average_attention_weight": [56, 79, 624, 650], "scaled_dot_product_attent": [56, 79, 624], "dropout_p": [56, 79, 624, 653], "num_queri": [56, 79, 624, 653], "feat_dim": [56, 79, 624, 653], "num_kei": [56, 79, 624, 653], "causal": [56, 79, 624, 650, 653], "attent": [56, 79, 624, 650, 653, 780, 808, 812, 848], "29999995": [56, 291, 292, 301, 360, 624, 633, 653, 738], "19994521": [56, 624, 653], "09994531": [56, 624, 653], "30000019": [56, 371, 458, 624, 653], "_arraywithlinearalgebra": [57, 97], "choleski": [57, 80, 625, 828], "625": [57, 75, 341, 625, 654], "vif": [57, 80, 655], "det": [57, 80, 625, 673, 816], "axis1": [57, 59, 80, 82, 625, 627, 658, 679, 699], "axis2": [57, 80, 625, 658, 679], "eigh": [57, 80, 369, 421, 625, 659], "uplo": [57, 80, 625, 660, 661], "eigvalsh": [57, 80, 625], "array_lik": [57, 80, 368, 370, 371, 412, 443, 444, 448, 449, 479, 625, 662, 670, 794], "105": [57, 79, 624, 625, 626, 647, 648, 662, 670, 684], "149": [57, 625, 662], "143": [57, 74, 98, 285, 620, 625, 662, 819], "203": [57, 74, 224, 625, 630, 662, 725], "233": [57, 625, 662], "inv": [57, 80, 625], "transpose_a": [57, 80, 625, 665], "transpose_b": [57, 80, 625, 665], "adjoint_a": [57, 80, 625, 665], "adjoint_b": [57, 80, 625, 665], "matrix_norm": [57, 80, 625], "ord": [57, 80, 625, 666, 682], "fro": [57, 80, 370, 443, 625, 666], "nuc": [57, 80, 625, 666], "matrix_pow": [57, 80, 625], "matrix_rank": [57, 80, 625], "hermitian": [57, 80, 369, 421, 422, 625, 659, 660, 661, 668, 675], "largest_singular_valu": [57, 80, 625, 668, 671], "defici": [57, 625, 668], "matrix_transpos": [57, 80, 625, 839], "pinv": [57, 80, 625], "pseudo": [57, 80, 625, 671, 827], "99999988": [57, 80, 625, 671], "qr": [57, 80, 625, 830], "complet": [57, 69, 80, 625, 672, 765, 806, 807, 808, 809, 811, 812, 815, 816, 819, 821, 825, 829, 830, 832, 835, 839, 840, 848, 856], "12309149": [57, 625, 672], "90453403": [57, 625, 672], "40824829": [57, 625, 672], "49236596": [57, 625, 672], "30151134": [57, 625, 672], "81649658": [57, 625, 672], "86164044": [57, 625, 672], "12403841e": [57, 625, 672], "60113630e": [57, 625, 672], "10782342e": [57, 625, 672], "04534034e": [57, 625, 672], "80906807e": [57, 625, 672], "88178420e": [57, 80, 625, 661, 672], "slogdet": [57, 80, 625], "logabsdet": [57, 80, 625, 673], "natur": [57, 80, 238, 256, 257, 258, 259, 278, 347, 365, 620, 625, 673, 812, 819, 821, 830, 848], "098611": [57, 625, 673], "solv": [57, 80, 369, 430, 625, 764, 800, 807, 811, 822, 829, 838, 860], "full_matric": [57, 80, 625, 675], "svf": [57, 675], "reconstructed_x": [57, 625, 675], "svdval": [57, 80, 625], "tensorsolv": [57, 80, 625], "vander": [57, 80, 625], "vandermond": [57, 80, 625, 680], "vecdot": [57, 80, 625], "vector_norm": [57, 80, 625], "mathemat": [57, 80, 218, 223, 235, 240, 242, 258, 268, 615, 620, 625, 666, 682, 817, 829, 835, 858, 864], "manhattan": [57, 80, 625, 682], "euclidean": [57, 80, 92, 93, 625, 682], "7416575": [57, 80, 625, 682], "vector_to_skew_symmetric_matrix": [57, 80, 625], "_arraywithloss": [58, 97], "binary_cross_entropi": [58, 81, 626, 816], "from_logit": [58, 81, 626, 684, 781], "pos_weight": [58, 81, 626, 684], "crossentropi": [58, 81, 626, 684], "357": [58, 81, 626, 684, 686], "223": [58, 81, 626, 684, 686], "3862944": [58, 626, 685], "sparse_cross_entropi": [58, 81, 626], "_arraywithmanipul": [59, 97], "x_min": [59, 82, 627, 687, 842], "x_max": [59, 82, 627, 687, 842], "before_1": [59, 82, 371, 474, 627, 689, 702], "after_1": [59, 82, 371, 474, 627, 689, 702], "before_n": [59, 82, 371, 474, 627, 689, 702], "after_n": [59, 82, 371, 474, 627, 689, 702], "repetit": [59, 82, 627, 693, 700, 835], "flat": [59, 69, 82, 376, 502, 565, 622, 627, 693], "allowzero": [59, 82, 627, 694], "remain": [59, 62, 75, 82, 85, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 391, 392, 393, 412, 620, 627, 629, 632, 694, 712, 735, 794, 807, 808, 816, 819, 821, 825, 833, 835, 843], "roll": [59, 82, 627, 824], "shift": [59, 71, 82, 98, 131, 142, 227, 229, 322, 362, 617, 620, 627, 695, 807, 808, 818, 819, 824, 831], "restor": [59, 82, 627, 695, 823], "num_or_size_split": [59, 69, 82, 627, 696, 837], "with_remaind": [59, 69, 82, 627, 696], "squeezabl": [59, 627, 697], "swapax": [59, 82, 627], "axis0": [59, 82, 627, 699], "swap_ax": [59, 699], "swap": [59, 82, 627, 699, 789, 852], "tile": [59, 76, 82, 536, 627], "unpack": [59, 82, 627, 701, 830, 832], "zero_pad": [59, 82, 627], "_arraywithnorm": [60, 97], "layer_norm": [60, 83, 630], "normalized_idx": [60, 83, 630, 725], "new_std": [60, 83, 630, 725, 783], "learnabl": [60, 83, 628, 630, 705, 725, 780, 783, 842], "deviat": [60, 61, 65, 83, 84, 88, 630, 631, 635, 725, 728, 752, 766, 779, 783, 811, 849], "0976": [60, 630, 725], "3452": [60, 630, 725], "2740": [60, 630, 725], "1047": [60, 630, 725], "5886": [60, 630, 725], "2732": [60, 630, 725], "7696": [60, 630, 725, 764], "7024": [60, 630, 725], "2518": [60, 630, 725], "826": [60, 630, 725], "178": [60, 630, 725], "981": [60, 630, 725], "831": [60, 630, 725], "421": [60, 630, 725], "_arraywithrandom": [61, 97], "multinomi": [61, 84, 375, 499, 631], "population_s": [61, 84, 631, 726], "num_sampl": [61, 84, 631, 726], "unnorm": [61, 84, 631, 726, 832], "popul": [61, 65, 69, 84, 88, 631, 635, 726, 752, 754, 817, 818, 828, 832, 837, 864], "draw": [61, 84, 375, 497, 499, 501, 631, 726, 728, 729, 764, 765, 766, 767, 772, 779, 806, 811, 830, 832], "half": [61, 84, 121, 282, 617, 620, 631, 727, 729, 803, 822, 835], "235": [61, 728], "float16": [61, 72, 84, 129, 152, 154, 155, 160, 162, 339, 365, 617, 618, 625, 682, 728, 729, 764, 765, 803, 817, 822, 829, 832], "807": [61, 728], "_arraywithsearch": [62, 97], "select_last_index": [62, 85, 632, 732, 733], "occurr": [62, 371, 380, 487, 509, 632, 633, 732, 733, 737], "argmin": [62, 85, 632], "output_dtyp": [62, 85, 632, 733], "argwher": [62, 85, 632], "nonzero": [62, 85, 93, 216, 217, 218, 221, 224, 233, 235, 238, 240, 242, 268, 281, 286, 620, 632], "as_tupl": [62, 85, 632, 735], "fewer": [62, 85, 632, 735], "_arraywithset": [63, 97], "unique_al": [63, 86, 633], "by_valu": [63, 86, 633, 737], "inverse_indic": [63, 86, 371, 487, 633, 737, 739], "unique_count": [63, 86, 633], "unique_invers": [63, 86, 633], "unique_valu": [63, 86, 633], "admonit": [63, 740], "dask": [63, 633, 737, 738, 739, 740, 848], "difficult": [63, 633, 737, 738, 739, 740, 808, 811, 817, 832, 843], "omit": [63, 278, 620, 633, 737, 738, 739, 740, 824, 828, 829], "x_i": [63, 65, 74, 93, 215, 216, 217, 220, 221, 222, 224, 226, 231, 232, 233, 238, 240, 241, 248, 249, 250, 251, 252, 256, 257, 258, 259, 263, 270, 275, 278, 279, 280, 281, 282, 283, 285, 286, 288, 329, 330, 332, 352, 365, 620, 633, 635, 737, 738, 739, 740, 748, 749, 750, 752, 753, 754, 779, 820], "x_j": [63, 633, 737, 738, 739, 740], "impli": [63, 633, 737, 738, 739, 740, 832], "typeerror": [63, 86, 633, 740, 839], "_arraywithsort": [64, 97], "stabil": [64, 87, 580, 581, 622, 634, 741, 744, 817, 827, 833, 835], "maintain": [64, 87, 634, 741, 744, 804, 807, 808, 811, 823, 828, 830, 831, 832, 847, 857], "msort": [64, 87, 634], "searchsort": [64, 87, 634, 765], "side": [64, 87, 343, 365, 369, 436, 634, 743, 764, 780, 793, 794, 807, 808, 814], "sorter": [64, 87, 634, 743], "ret_dtyp": [64, 87, 634, 743], "_arraywithstatist": [65, 97], "cumprod": [65, 88, 635, 829, 842], "cumsum": [65, 88, 635, 817], "einsum": [65, 88, 635], "equat": [65, 75, 88, 308, 362, 369, 436, 625, 635, 674, 747, 764, 793, 816, 858], "operand": [65, 75, 79, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 356, 365, 366, 368, 410, 620, 625, 635, 673, 679, 747, 748, 750, 751, 753, 793, 794, 812, 815, 820, 829], "contract": [65, 625, 635, 677, 747, 794], "seq": [65, 635, 747, 764], "ii": [65, 88, 635, 747, 808], "jk": [65, 635, 747, 794], "ik": [65, 635, 747, 794], "126": [65, 105, 274, 614, 620, 625, 635, 667, 747], "510": [65, 635, 747], "special": [65, 80, 92, 93, 97, 98, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 620, 625, 635, 673, 679, 748, 749, 750, 751, 752, 753, 754, 764, 765, 766, 767, 772, 779, 806, 809, 811, 812, 814, 816, 819, 820, 821, 824, 828, 830, 831, 832, 833, 835, 858, 859, 860], "arithmet": [65, 88, 229, 235, 268, 620, 635, 749, 829], "propag": [65, 229, 329, 330, 365, 620, 635, 748, 749, 750, 752, 753, 754, 827], "04999995": [65, 749], "freedom": [65, 88, 635, 752, 754, 813], "constitut": [65, 88, 635, 752, 754, 825, 837, 859], "commonli": [65, 88, 635, 752, 754, 821, 825, 827], "81649661": [65, 635, 752], "6666665": [65, 754, 840], "667": [65, 76, 235, 530, 580, 620, 622, 754], "_arraywithutil": [66, 97], "logic": [66, 89, 199, 235, 236, 262, 263, 264, 268, 271, 619, 620, 636, 755, 756, 806, 812, 816, 817, 818, 821, 825, 826, 827, 828, 829, 831, 832, 835, 839, 852], "AND": [66, 89, 225, 236, 262, 620, 636, 755], "OR": [66, 89, 228, 264, 271, 620, 636, 756, 807, 808, 827], "_wrap_funct": [67, 90, 814, 825, 826], "function_nam": [67, 90, 806, 833], "new_funct": [67, 90, 814], "add_ivy_array_instance_method": 67, "cl": [67, 90], "moduletyp": [67, 90, 851, 852, 853], "toi": [67, 90], "arrayexampl": 67, "hasattr": [67, 90], "_containerwithactiv": [68, 98], "dict_in": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 575, 597, 622, 834, 840], "queue_load_s": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "container_combine_method": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "list_join": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue_timeout": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 575, 597, 622, 834], "print_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "key_length_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_ind": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_line_spac": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "ivyh": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "default_key_color": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "keyword_color_dict": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "rebuild_child_contain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "types_to_iteratively_nest": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "alphabetical_kei": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "dynamic_backend": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 781, 782, 813, 834], "build_cal": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "containerbas": [68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 815], "_static_gelu": 68, "key_chain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 461, 470, 472, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 487, 489, 490, 491, 492, 493, 494, 496, 498, 503, 504, 511, 512, 513, 514, 521, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 580, 581, 583, 585, 587, 588, 601, 607, 612, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756], "to_appli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 461, 470, 472, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 487, 489, 490, 491, 492, 493, 494, 496, 498, 503, 504, 511, 512, 513, 514, 521, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 580, 581, 583, 585, 587, 588, 601, 607, 612, 629, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 719, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756], "prune_unappli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 461, 470, 472, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 487, 489, 490, 491, 492, 493, 494, 496, 498, 503, 504, 511, 512, 513, 514, 521, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 580, 581, 583, 585, 587, 588, 601, 607, 612, 629, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 719, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756], "map_sequ": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 461, 470, 472, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 487, 489, 490, 491, 492, 493, 494, 496, 498, 503, 504, 511, 512, 513, 514, 521, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 580, 581, 583, 585, 587, 588, 601, 607, 612, 638, 639, 640, 641, 642, 643, 646, 647, 648, 649, 650, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756], "prune": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 454, 458, 459, 480, 482, 483, 484, 490, 492, 493, 494, 496, 498, 511, 512, 513, 514, 523, 526, 527, 529, 530, 534, 535, 536, 537, 538, 541, 542, 545, 547, 549, 550, 551, 553, 554, 557, 565, 566, 580, 581, 583, 585, 587, 588, 601, 607, 612, 629, 638, 639, 640, 641, 647, 648, 653, 654, 655, 660, 661, 662, 663, 665, 666, 668, 670, 672, 673, 679, 684, 685, 686, 687, 691, 694, 695, 696, 697, 698, 701, 702, 719, 720, 721, 722, 726, 727, 728, 729, 731, 734, 737, 738, 739, 740, 741, 745, 746, 749, 751, 752, 754, 755, 756, 762, 765, 816], "static_gelu": 68, "046": 68, "_static_hardswish": 68, "_static_leaky_relu": 68, "static_leaky_relu": 68, "38999999": [68, 75, 107, 290, 291, 360], "_static_log_softmax": 68, "static_log_softmax": 68, "371": [68, 108], "_static_mish": 68, "static_mish": 68, "30883577": [68, 109, 614], "28903052": [68, 109, 614], "10714479": [68, 109, 614], "_static_relu": 68, "static_relu": 68, "_static_sigmoid": 68, "static_sigmoid": 68, "2689414": [68, 111, 112, 614], "7310586": [68, 111, 112, 614], "88079703": [68, 111, 614], "62245935": [68, 111], "4750208": [68, 111], "_static_softmax": 68, "static_softmax": 68, "72844321": [68, 112], "19852395": [68, 112], "07303288": [68, 112], "_static_softplu": 68, "revert": [68, 113, 614], "static_softplu": 68, "53499615": 68, "42036411": 68, "948": [68, 113, 629, 706], "166": [68, 105, 614], "dictionari": [69, 86, 98, 207, 589, 605, 619, 622, 623, 740, 759, 761, 794, 812, 816, 817, 825, 829, 830, 840, 843], "asynchron": [69, 98, 858], "wait": [69, 98, 575, 622, 800, 806, 808, 816, 829], "arriv": [69, 98, 575, 622, 835], "cont_list_join": [69, 98], "limit": [69, 98, 160, 163, 529, 530, 546, 618, 622, 627, 687, 764, 766, 767, 779, 786, 794, 800, 807, 808, 814, 816, 819, 821, 829, 832, 835, 840, 843, 857, 858, 859], "whitespac": [69, 98], "indent": [69, 98, 840], "newlin": [69, 98, 820], "termin": [69, 98, 807, 808, 815, 822, 823, 837, 840], "constructor": [69, 98, 525, 622, 761, 777, 785, 817, 818, 820, 839], "kept": [69, 98, 628, 703, 704, 808, 828, 833], "encount": [69, 98, 780, 803, 806, 817, 821, 822, 832], "node": [69, 76, 98, 527, 537, 583, 629, 716, 717, 779, 788, 814, 815, 829, 848, 851, 852, 859], "alphabet": [69, 98], "__setitem__": [69, 371, 482, 812, 815, 839], "_cont_at_key_chains_input_as_dict": 69, "current_chain": 69, "ignore_key_error": 69, "_cont_at_key_chains_input_as_seq": 69, "_cont_call_static_method_with_flexible_arg": 69, "static_method": 69, "kw": 69, "self_idx": 69, "_cont_concat_unifi": 69, "_cont_get_dev": 69, "_cont_get_dtyp": 69, "_cont_get_shap": 69, "_cont_ivi": 69, "_cont_mean_unifi": 69, "_1": 69, "_cont_prune_key_chains_input_as_dict": 69, "return_cont": 69, "_cont_prune_key_chains_input_as_seq": 69, "_cont_slice_kei": 69, "key_slic": 69, "_cont_sum_unifi": 69, "_get_queue_item": 69, "cont_all_fals": 69, "assert_is_bool": 69, "cont_all_key_chain": 69, "include_empti": 69, "cont_all_tru": [69, 815, 840], "cont_as_bool": 69, "cont_assert_contains_sub_contain": 69, "sub_cont": 69, "screen": [69, 806, 807, 840], "cont_assert_contains_sub_structur": 69, "check_shap": [69, 786], "cont_assert_ident": 69, "check_typ": 69, "same_arrai": [69, 840], "arrays_equ": 69, "cont_assert_identical_structur": 69, "assert_and_assign": 69, "congruent": 69, "cont_at_key_chain": 69, "ignore_non": 69, "cont_at_kei": 69, "substr": 69, "cont_combin": 69, "duplic": [69, 371, 479, 546, 622, 629, 708, 813, 820, 826, 827, 830, 841, 864], "configur": [69, 207, 619, 629, 719, 807, 808, 814, 816, 817, 822, 823], "container_rightmost": 69, "cont_common_key_chain": 69, "cont_config": 69, "cont_contains_sub_contain": 69, "cont_contains_sub_structur": 69, "cont_copi": [69, 840], "cont_create_if_abs": 69, "noth": [69, 835, 864], "cont_cutoff_at_depth": 69, "depth_cutoff": 69, "summari": [69, 164, 531, 618, 622, 807, 808, 832], "cont_cutoff_at_height": 69, "height_cutoff": 69, "cont_deep_copi": [69, 840, 851], "cont_dev": 69, "belong": [69, 806, 811, 841], "cont_dev_str": 69, "cont_diff": [69, 840], "diff_kei": 69, "detect_key_diff": 69, "detect_value_diff": 69, "detect_shape_diff": 69, "among": [69, 815, 816, 832, 835, 849, 858], "container0": 69, "cont_dtyp": 69, "cont_duplicate_array_keychain": 69, "cont_find_sub_contain": 69, "sub_cont_to_find": 69, "cont_find_sub_structur": 69, "sub_struc_to_find": 69, "cont_flatten_key_chain": [69, 840], "above_height": [69, 840], "below_depth": [69, 840], "cont_format_key_chain": 69, "format_fn": 69, "cont_from_disk_as_hdf5": [69, 840], "h5_obj_or_filepath": 69, "slice_obj": 69, "disk": [69, 782, 840, 857], "h5py": 69, "filepath": [69, 636, 757, 758, 808, 811], "cont_from_disk_as_json": [69, 840], "json_filepath": 69, "cont_from_disk_as_pickl": [69, 840], "pickle_filepath": 69, "cont_from_flat_list": 69, "flat_list": 69, "hierarchi": [69, 806, 831, 840, 854, 864], "cont_handle_inplac": 69, "prime": [69, 817], "overwritten": [69, 812, 813], "cont_has_kei": 69, "query_kei": 69, "somewher": [69, 816], "cont_has_key_chain": 69, "cont_ident": [69, 840], "cont_identical_array_shap": 69, "cont_identical_config": 69, "cont_identical_structur": 69, "cont_if_exist": 69, "cont_inplace_upd": 69, "cont_ivi": 69, "cont_key_chains_contain": 69, "sub_str": 69, "cont_list_stack": [69, 840], "cont_load": 69, "cont_map": [69, 815, 840], "func": [69, 92, 208, 357, 358, 359, 367, 528, 602, 605, 606, 608, 613, 619, 622, 623, 629, 719, 761, 806, 811, 812, 819, 821, 827], "cont_map_sub_cont": 69, "include_self": 69, "possibli": [69, 585, 622, 764, 832, 843], "cont_max_depth": 69, "cont_multi_map": 69, "map_nest": 69, "assert_ident": 69, "leftmost": [69, 629, 719], "cont_multi_map_in_funct": 69, "cont_num_arrai": 69, "cont_overwrite_at_key_chain": 69, "target_dict": 69, "return_dict": 69, "cont_prune_empti": 69, "keep_non": 69, "cont_prune_key_chain": 69, "key1": [69, 800, 841], "key2": [69, 800], "key3": 69, "cont_prune_key_from_key_chain": 69, "certain": [69, 121, 132, 133, 370, 444, 617, 807, 808, 811, 817, 825, 831, 832, 835, 843, 851, 852, 853, 862], "cont_prune_kei": 69, "cont_prune_keys_from_key_chain": 69, "cont_reduc": 69, "cont_remove_key_length_limit": 69, "cont_remove_print_limit": 69, "cont_reshape_lik": 69, "leading_shap": 69, "cont_restructur": 69, "keep_orig": 69, "old": [69, 807, 813, 828], "cont_restructure_key_chain": 69, "keychain_map": 69, "cont_sav": 69, "cont_set_at_key_chain": 69, "cont_set_at_kei": 69, "cont_shap": [69, 624, 642], "cont_show": 69, "cont_show_sub_contain": 69, "sub_cont_or_keychain": 69, "cont_size_ordered_arrai": 69, "keychain": [69, 75, 331, 452, 453, 454, 483], "cont_slice_kei": 69, "all_depth": 69, "cont_slice_via_kei": 69, "slice_kei": 69, "cont_sort_by_kei": 69, "cont_structural_diff": 69, "cont_to_dict": 69, "cont_to_disk_as_hdf5": [69, 840], "starting_index": 69, "max_batch_s": 69, "cont_to_disk_as_json": [69, 840], "cont_to_disk_as_pickl": [69, 840], "cont_to_flat_list": 69, "cont_to_iter": [69, 815], "leaf_keys_onli": 69, "cont_to_iterator_kei": 69, "cont_to_iterator_valu": 69, "cont_to_json": 69, "cont_to_nested_list": 69, "cont_to_raw": 69, "cont_trim_kei": 69, "cont_try_kc": 69, "cont_unifi": 69, "concatten": [69, 208, 619], "cont_unstack_cont": 69, "dim_siz": 69, "cont_update_config": 69, "cont_with_default_key_color": 69, "cont_with_entries_as_list": 69, "cont_with_ivy_backend": 69, "ivy_backend": [69, 830], "cont_with_key_length_limit": [69, 840], "cont_with_print_ind": [69, 840], "cont_with_print_limit": [69, 840], "cont_with_print_line_spac": 69, "h5_file_s": 69, "shuffle_h5_fil": 69, "split_cont": 69, "_is_json": 69, "_repr": 69, "_containerwithconvers": [70, 98], "_static_to_ivi": 70, "_static_to_n": 70, "_containerwithcr": [71, 98], "_static_arang": 71, "_static_asarrai": 71, "_static_copy_arrai": 71, "_static_empti": 71, "_static_empty_lik": 71, "_static_ey": 71, "n_row": [71, 75, 127, 142, 322, 362, 369, 429, 617], "n_col": [71, 75, 127, 142, 322, 362, 617], "_static_from_dlpack": 71, "_static_ful": 71, "_static_full_lik": 71, "static_full_lik": 71, "2324": [71, 131, 617], "234": [71, 74, 131, 154, 237, 288, 617, 618, 620, 624, 648, 764], "123": [71, 72, 131, 163, 537, 617, 622, 794, 832], "_static_linspac": 71, "_static_logspac": 71, "static_logspac": 71, "15443469": [71, 133], "64158883": [71, 133], "_static_meshgrid": 71, "_static_native_arrai": 71, "_static_one_hot": 71, "static_one_hot": 71, "_static_on": 71, "_static_ones_lik": 71, "_static_tril": 71, "_static_triu": 71, "_static_zero": 71, "_static_zeros_lik": 71, "frombuff": [71, 617], "expos": [71, 129, 531, 617, 622, 800, 816, 837, 841, 847], "x00": [71, 129, 617], "xf0": [71, 129, 617], "x01": [71, 129, 617], "x02": [71, 129, 617], "x03": [71, 129, 617], "x04": [71, 129, 617], "x05": [71, 129], "5443469": [71, 133, 617], "static_frombuff": 71, "static_triu_indic": 71, "triu_indic": [71, 617], "_containerwithdatatyp": [72, 98], "_static_astyp": 72, "718": [72, 74, 147, 264, 618], "618": [72, 74, 147, 264, 618], "static_astyp": 72, "_static_broadcast_arrai": 72, "static_broadcast_arrai": 72, "_static_broadcast_to": 72, "static_broadcast_to": 72, "_static_can_cast": 72, "from_": [72, 150, 618], "static_can_cast": 72, "_static_default_complex_dtyp": 72, "complex_dtyp": [72, 153, 176, 618], "_static_default_float_dtyp": 72, "float_dtyp": [72, 155, 178, 618], "_static_dtyp": 72, "_static_finfo": 72, "inquir": [72, 160, 163], "static_finfo": 72, "55040e": [72, 160, 618], "7976931348623157e": [72, 160, 618], "308": [72, 160, 618, 764, 832], "_static_function_supported_dtyp": 72, "_static_function_unsupported_dtyp": 72, "_static_iinfo": 72, "1800": [72, 163, 618], "1084": 72, "40000": 72, "static_iinfo": 72, "2147483648": [72, 75, 163, 371, 482, 618], "2147483647": [72, 163, 618], "_static_is_bool_dtyp": 72, "dtype_in": [72, 145, 146, 159, 165, 166, 167, 168, 169, 170, 171, 172, 187, 618], "_static_is_complex_dtyp": 72, "is_complex_dtyp": [72, 618, 833], "roughli": [72, 807, 811, 861], "static_is_complex_dtyp": 72, "_static_is_float_dtyp": 72, "static_is_float_dtyp": 72, "_static_is_int_dtyp": 72, "_static_is_uint_dtyp": 72, "_static_result_typ": 72, "static_result_typ": 72, "broadcats": [72, 148], "_containerwithdevic": [73, 98], "_static_dev": 73, "static_dev": 73, "_static_to_devic": 73, "static_to_devic": 73, "contaion": [73, 192], "_containerwithelementwis": [74, 98], "_static_ab": 74, "static_ab": 74, "_static_aco": 74, "static_aco": 74, "_static_acosh": 74, "static_acosh": 74, "_static_add": 74, "static_add": [74, 102], "_static_asin": 74, "static_asin": 74, "524": [74, 220, 620], "412": [74, 79, 220, 620, 629, 706], "_static_asinh": 74, "static_asinh": 74, "_static_atan": 74, "static_atan": 74, "_static_atan2": 74, "static_atan2": 74, "915": [74, 223, 620], "983": [74, 223, 620], "978": [74, 223, 620], "696": [74, 84, 223, 620, 728], "993": [74, 223, 620], "_static_atanh": 74, "static_atanh": 74, "_static_bitwise_and": 74, "static_bitwise_and": 74, "_static_bitwise_invert": 74, "static_bitwise_invert": 74, "_static_bitwise_left_shift": 74, "_static_bitwise_or": 74, "static_bitwise_or": 74, "_static_bitwise_right_shift": 74, "static_bitwise_right_shift": 74, "_static_bitwise_xor": 74, "static_bitwise_xor": 74, "_static_ceil": 74, "static_ceil": 74, "_static_co": 74, "static_co": 74, "_static_cosh": 74, "static_cosh": 74, "_static_deg2rad": 74, "static_deg2rad": 74, "0262": [74, 234, 274, 620], "873": [74, 234, 274, 620], "_static_divid": 74, "static_divid": 74, "_static_equ": 74, "static_equ": 74, "_static_erf": 74, "static_erf": 74, "27632612": [74, 237], "934008": [74, 237, 620], "99999928": [74, 237], "91903949": [74, 237], "_static_exp": 74, "static_exp": 74, "59814835": [74, 238, 620], "4131622": [74, 238], "_static_expm1": 74, "thefunct": [74, 237], "areal": 74, "static_expm1": 74, "71828175": [74, 238, 620], "38905621": [74, 238, 620], "59815216": 74, "_static_floor": 74, "static_floor": 74, "_static_floor_divid": 74, "static_floor_divid": 74, "_static_great": 74, "static_great": 74, "_static_greater_equ": 74, "static_greater_equ": 74, "_static_isfinit": 74, "999999999999": [74, 249, 620], "static_isfinit": 74, "_static_isinf": 74, "static_isinf": 74, "_static_isnan": 74, "static_isnan": 74, "_static_isr": 74, "0j": [74, 75, 137, 138, 216, 217, 218, 221, 224, 233, 238, 240, 252, 256, 258, 275, 279, 281, 282, 286, 332, 365, 617, 620, 625, 673], "23j": [74, 75], "9j": [74, 75], "static_isr": 74, "_static_lcm": 74, "1080": [74, 253], "1550": [74, 253], "130": [74, 253, 371, 479], "_static_less": 74, "static_less": 74, "_static_less_equ": 74, "static_less_equ": 74, "_static_log": 74, "static_log": 74, "_static_log10": 74, "static_log10": 74, "898": [74, 257, 620], "0414": [74, 257, 620], "_static_log1p": 74, "static_log1p": 74, "_static_log2": 74, "static_log2": 74, "_static_logaddexp": 74, "static_logaddexp": 74, "_static_logical_and": 74, "static_logical_and": 74, "_static_logical_not": 74, "static_logical_not": 74, "_static_logical_or": 74, "static_logical_or": 74, "_static_logical_xor": 74, "static_logical_xor": 74, "_static_maximum": 74, "static_maximum": 74, "_static_minimum": 74, "static_minimum": 74, "_static_multipli": 74, "static_multipli": 74, "_static_neg": 74, "static_neg": 74, "_static_not_equ": 74, "static_not_equ": 74, "_static_posit": 74, "static_posit": 74, "_static_pow": 74, "static_pow": 74, "_static_rad2deg": 74, "static_rad2deg": 74, "5160": 74, "10300": [74, 274, 620], "15500": 74, "20600": 74, "2860": [74, 274], "_static_reciproc": 74, "recirpoc": [74, 276], "static_reciproc": 74, "_static_remaind": 74, "static_remaind": 74, "_static_round": 74, "thevfunct": 74, "527": [74, 278, 620], "static_round": 74, "301": [74, 278, 620], "_static_sign": 74, "static_sign": 74, "_static_sin": 74, "static_sin": 74, "757": [74, 280, 620], "959": [74, 240, 280, 620], "279": [74, 280, 368, 389, 399, 529, 620, 622], "_static_sinh": 74, "static_sinh": 74, "835": [74, 281], "347": [74, 281], "721": [74, 281], "_static_sqrt": 74, "static_sqrt": 74, "_static_squar": 74, "static_squar": 74, "_static_subtract": 74, "static_subtract": 74, "_static_tan": 74, "static_tan": 74, "_static_tanh": 74, "static_tanh": 74, "995": [74, 286, 620], "9999": 74, "_static_trapz": 74, "static_trapz": 74, "_static_trunc": 74, "static_trunc": 74, "_static_trunc_divid": 74, "75j": [74, 219, 248], "01317055": [74, 219], "05634501": [74, 219], "115": [74, 219, 274, 620], "3461759": [74, 219], "524111": [74, 219], "644": [74, 220, 620, 841], "305": [74, 79, 220, 620], "351": [74, 234, 274], "00613": [74, 234], "0154": [74, 234], "403": [74, 238], "428772": [74, 238], "649": [74, 240], "220": [74, 240], "865": [74, 240], "metho": [74, 247, 259], "7j": [74, 75, 252, 275, 332, 365, 620], "956": [74, 258], "08746284": [74, 261], "32192809": [74, 261], "nuner": [74, 268], "413": [74, 274], "335": [74, 75, 275, 332], "345j": [74, 75, 275, 332], "static_angl": 74, "static_exp2": 74, "static_fmin": 74, "static_gcd": 74, "static_imag": 74, "static_logaddexp2": 74, "static_nan_to_num": 74, "static_r": 74, "_containerwithactivationexperiment": [75, 98], "_static_celu": 75, "formlat": 75, "static_celu": 75, "_static_elu": 75, "static_elu": 75, "_static_hardshrink": 75, "hard": [75, 292, 808, 839, 858], "shrinkag": [75, 292, 301, 371, 481], "_static_hardtanh": 75, "static_hardtanh": [75, 293], "_static_scaled_tanh": 75, "931": 75, "71587813": 75, "88367474": 75, "00376701": [75, 298], "2285642": 75, "99999881": 75, "49999905": 75, "_static_silu": 75, "static_silu": 75, "27777028": [75, 300], "23947507": [75, 300], "0900332": [75, 300], "_static_softshrink": 75, "_static_tanhshrink": 75, "36634541": [75, 303], "02005103": [75, 303], "00262468": [75, 303], "_static_threshold": 75, "19722462": [75, 294], "84729779": [75, 294], "31326163": [75, 295], "46328258": [75, 295], "51301527": [75, 295], "79813886": [75, 295], "simplywrap": [75, 298], "54939651": [75, 298], "09999998": [75, 298, 603, 623], "09999999": [75, 298], "08336546": [75, 298], "0379949": [75, 298], "22856998": [75, 299], "42028043": [75, 299], "31868932": [75, 299], "static_logit": 75, "static_logsigmoid": 75, "34115386": 75, "64439666": 75, "24115384": 75, "55435526": 75, "07888974": 75, "00741899": 75, "26328245": 75, "00012302": 75, "static_prelu": 75, "static_relu6": 75, "static_selu": 75, "static_thresholded_relu": 75, "_containerwithconversionexperiment": [75, 98], "_containerwithcreationexperiment": [75, 98], "_static_trilu": 75, "blackman": [75, 306, 362], "00770143e": [75, 306], "49229857e": [75, 306], "hamming_window": [75, 362], "ham": [75, 308, 362], "4180": [75, 308], "8180": [75, 308], "hann_window": [75, 362], "hann": [75, 309, 362], "7500": [75, 309], "3455": [75, 309], "9045": [75, 309], "kaiser_bessel_derived_window": [75, 362], "suitabl": [75, 311, 312, 362, 634, 743, 766, 807, 808, 815, 833, 858], "spectral": [75, 311, 312, 362], "analysi": [75, 311, 312, 362, 858, 859], "kaiser": [75, 306, 311, 312, 362], "70710677": [75, 311, 494, 496], "18493208": [75, 311, 362], "9827513": [75, 311, 362], "kaiser_window": [75, 362], "static_kaiser_window": [75, 312], "2049": [75, 312], "8712": [75, 312], "0367": [75, 312, 362], "7753": [75, 312], "static_blackman_window": 75, "static_eye_lik": 75, "static_hamming_window": 75, "static_hann_window": 75, "static_hann": 75, "static_kaiser_bessel_derived_window": 75, "static_mel_weight_matrix": 75, "static_polyv": 75, "static_tril_indic": 75, "static_unsorted_segment_mean": 75, "static_unsorted_segment_min": 75, "static_unsorted_segment_sum": 75, "static_vorbis_window": 75, "vorbis_window": [75, 362], "vorbi": [75, 327, 362], "38268343": [75, 327, 625, 660], "92387953": [75, 327], "14943586": [75, 327, 362], "51644717": [75, 327], "85631905": [75, 327], "98877142": [75, 327], "tril_indic": [75, 362], "_containerwithdata_typeexperiment": [75, 98], "_containerwithdeviceexperiment": [75, 98], "_containerwithelementwiseexperiment": [75, 98], "0003": [75, 328, 625, 663, 764, 767], "0006": [75, 328, 355], "2345j": [75, 332], "5772": [75, 336], "9635": [75, 336], "4228": [75, 336], "9228": [75, 336], "57299206e": [75, 337], "67773480e": [75, 337], "20904985e": [75, 337], "84270084": [75, 337, 365], "99532223": [75, 337], "99997795": [75, 337], "mantissa": [75, 341, 365, 817], "frist": [75, 342, 365], "coord": [75, 342], "6055": [75, 343], "160": [75, 345, 371, 479], "10240": [75, 345], "60000038": [75, 346, 365, 625, 681], "0707": [75, 352, 365], "0579": [75, 352, 365], "static_allclos": 75, "static_amax": 75, "static_amin": 75, "static_binar": 75, "static_conj": 75, "static_copysign": 75, "static_count_nonzero": 75, "static_diff": 75, "static_digamma": 75, "57721537": 75, "96351004": 75, "static_erfc": 75, "15729921": 75, "00467773": [75, 337, 365], "static_fix": 75, "static_float_pow": 75, "static_fmax": 75, "static_fmod": 75, "static_frexp": 75, "static_gradi": 75, "static_hypot": 75, "static_isclos": 75, "static_ldexp": 75, "static_lerp": 75, "90000057": [75, 346, 365], "70000076": [75, 346, 365], "55000019": [75, 346, 365], "05000019": [75, 346, 365], "static_modf": 75, "static_nansum": 75, "static_nextaft": 75, "static_signbit": 75, "static_sinc": 75, "636": 75, "090": 75, "070": 75, "057": 75, "static_sparsify_tensor": 75, "static_xlogi": 75, "static_zeta": 75, "0244": [75, 355], "_containerwithgeneralexperiment": [75, 98], "_static_reduc": 75, "static_reduc": 75, "_containerwithgradientsexperiment": [75, 98], "_containerwithimageexperiment": [75, 98], "_containerwithlayersexperiment": [75, 98], "_static_fft": 75, "static_fft": 75, "_static_sliding_window": 75, "673": [75, 389], "0507": [75, 389], "79711437": [75, 368, 389, 399], "94867325": [75, 368, 389, 399], "74089146": [75, 368, 389, 399], "25980937": [75, 368, 389, 399], "64958102": [75, 368, 389, 399], "2442648": [75, 368, 389, 399], "247306": [75, 401], "908323j": [75, 401], "494955": [75, 401], "90395j": [75, 401], "static_adaptive_avg_pool1d": 75, "static_adaptive_avg_pool2d": 75, "static_adaptive_max_pool2d": 75, "static_avg_pool1d": 75, "static_avg_pool2d": 75, "static_avg_pool3d": 75, "static_dct": 75, "253": [75, 281, 620], "515": [75, 631, 728], "467": 75, "static_dft": 75, "static_embed": 75, "static_idct": 75, "93732834": [75, 368, 389], "75048852": [75, 368, 389], "29723358": [75, 368, 399], "6950531": 75, "93914509": 75, "88008738": 75, "18951225": 75, "06697273": [75, 368, 399], "57439804": 75, "68861485": [75, 368, 399], "41308832": [75, 368, 399], "0700836": 75, "2449036": 75, "6711426": 75, "514": 75, "501709": 75, "4924011": 75, "static_ifft": 75, "static_ifftn": 75, "static_interpol": 75, "static_max_pool1d": 75, "static_max_pool2d": 75, "max_pool2dd": 75, "static_max_pool3d": 75, "static_max_unpool1d": 75, "static_rfft": 75, "static_rfftn": 75, "static_rnn": 75, "step_funct": [75, 368, 413], "initial_st": [75, 368, 413], "go_backward": [75, 368, 413], "unrol": [75, 368, 413, 624, 649, 837, 840], "input_length": [75, 368, 413], "time_major": [75, 368, 413, 624, 649], "zero_output_for_mask": [75, 368, 413], "return_all_output": [75, 368, 413], "rnn": [75, 368, 858], "tempor": [75, 368, 413], "state_s": [75, 368, 413], "while_loop": [75, 368, 413, 616], "otput": [75, 368, 413], "funciton": [75, 368, 413], "static_stft": 75, "_containerwithlinearalgebraexperiment": [75, 98], "933034": [75, 369, 418], "eigenvealu": [75, 421, 659], "xx": [75, 421, 423, 659], "37228107": [75, 421, 659], "3722816": [75, 421, 659], "8245648": [75, 421, 659], "41597357": [75, 421, 659], "56576747": [75, 421, 659], "9093767": [75, 421, 659], "56155": [75, 422], "82842": [75, 422], "450": [75, 428], "static_adjoint": 75, "static_batched_out": 75, "static_cond": 75, "static_diagflat": 75, "static_dot": 75, "static_eig": 75, "static_eigh_tridiagon": 75, "static_eigv": 75, "static_higher_order_mo": 75, "static_initialize_tuck": 75, "static_kron": 75, "kroneck": [75, 369, 427, 428], "static_make_svd_non_neg": 75, "static_matrix_exp": 75, "static_mode_dot": 75, "static_multi_dot": 75, "static_multi_mode_dot": 75, "static_partial_tuck": 75, "static_svd_flip": 75, "static_tensor_train": 75, "static_truncated_svd": 75, "static_tt_matrix_to_tensor": 75, "tt_matrix": [75, 369, 440], "output_tensor": [75, 95, 369, 440], "static_tuck": 75, "_containerwithlossesexperiment": [75, 98], "_static_hinge_embedding_loss": 75, "_static_huber_loss": 75, "static_huber_loss": 75, "0575": [75, 443], "_static_kl_div": 75, "_static_l1_loss": 75, "static_l1_loss": 75, "_static_log_poisson_loss": 75, "static_log_poisson_loss": 75, "_static_poisson_nll_loss": 75, "06446016": 75, "55611551": 75, "30244565": [75, 447], "_static_smooth_l1_loss": 75, "static_smooth_l1_loss": 75, "_static_soft_margin_loss": 75, "06429195": [75, 447], "_containerwithmanipulationexperiment": [75, 98], "_static_fill_diagon": 75, "_static_put_along_axi": 75, "_static_tak": 75, "69999981": [75, 301, 360, 371, 458, 482], "_static_trim_zero": 75, "_static_unique_consecut": 75, "ary1": [75, 371, 452, 453, 454], "ary2": [75, 371, 452, 453, 454], "broadcast_shap": [75, 101, 371, 764, 766], "static_concat_from_sequ": [75, 459], "30192195": [75, 471], "static_as_strid": 75, "static_atleast_1d": 75, "static_atleast_2d": 75, "static_atleast_3d": 75, "static_broadcast_shap": 75, "static_column_stack": 75, "static_dsplit": 75, "static_dstack": 75, "static_expand": 75, "static_flatten": 75, "static_fliplr": 75, "static_flipud": 75, "static_fold": 75, "static_heavisid": 75, "static_hsplit": 75, "static_hstack": 75, "static_i0": 75, "static_matric": 75, "static_moveaxi": 75, "static_pad": 75, "static_partial_fold": 75, "static_partial_tensor_to_vec": 75, "static_partial_unfold": 75, "static_partial_vec_to_tensor": 75, "static_rot90": 75, "static_soft_threshold": 75, "static_take_along_axi": 75, "static_top_k": 75, "static_unfold": 75, "static_vsplit": 75, "static_vstack": 75, "_containerwithnormsexperiment": [75, 98], "16903085": [75, 494, 496], "50709254": [75, 494, 496], "84515423": [75, 494, 496], "44183609": [75, 494, 496], "56807494": [75, 494, 496], "69431382": [75, 494, 496], "static_batch_norm": 75, "static_group_norm": 75, "static_instance_norm": 75, "static_l1_norm": 75, "static_l2_norm": 75, "static_lp_norm": 75, "12500000": 75, "37500000": 75, "62500000": 75, "27500000": 75, "35000000": 75, "42500000": 75, "0000000": 75, "5000000": 75, "2500000": 75, "_containerwithrandomexperiment": [75, 98], "43643127": [75, 499], "32325703": [75, 499], "24031169": [75, 499], "34251311": [75, 499], "31692529": [75, 499], "3405616": [75, 499], "5319725": [75, 499], "22458365": [75, 499], "24344385": [75, 499], "26588406": [75, 499], "61075421": [75, 499], "12336174": [75, 499], "51142915": [75, 499], "25041268": [75, 499], "23815817": [75, 499], "64042903": [75, 499], "25763214": [75, 499], "10193883": [75, 499], "31624692": [75, 499], "46567987": [75, 499], "21807321": [75, 499], "37677699": [75, 499], "39914594": [75, 499], "22407707": [75, 499], "static_bernoulli": 75, "static_beta": 75, "static_dirichlet": 75, "static_gamma": 75, "static_poisson": 75, "_containerwithsearchingexperiment": [75, 98], "static_unravel_index": 75, "_containerwithsetexperiment": [75, 98], "_containerwithsortingexperiment": [75, 98], "invert_permut": [75, 378], "static_invert_permut": 75, "static_lexsort": [75, 87], "_containerwithstatisticalexperiment": [75, 98], "_static_cummax": 75, "static_cummax": 75, "_static_cummin": 75, "static_cummin": 75, "_static_nanmin": 75, "static_nanmin": 75, "func_nam": [75, 514, 806, 819, 820, 825, 829], "static_bincount": 75, "static_corrcoef": 75, "static_cov": [75, 380, 511], "static_histogram": 75, "static_igamma": 75, "static_median": 75, "static_nanmean": 75, "static_nanmedian": 75, "static_nanprod": 75, "static_quantil": 75, "_containerwithutilityexperiment": [75, 98], "static_optional_get_el": 75, "_containerwithgener": [76, 98], "_static_all_equ": 76, "static_all_equ": 76, "_static_array_equ": 76, "a0": [76, 371, 458], "static_array_equ": 76, "_static_assert_supports_inplac": 76, "_static_clip_matrix_norm": 76, "static_clip_matrix_norm": 76, "849": [76, 529, 530, 622], "_static_clip_vector_norm": 76, "static_clip_vector_norm": 76, "_static_einops_rearrang": 76, "static_einops_rearrang": 76, "_static_einops_reduc": 76, "static_einops_reduc": 76, "29333329": [76, 535, 622], "53000069": [76, 535, 622], "39666676": [76, 535, 622], "20666695": [76, 535, 622], "_static_einops_repeat": 76, "static_einops_repeat": 76, "_static_exist": 76, "_static_fourier_encod": 76, "static_fourier_encod": 76, "classivi": [76, 627, 633, 696, 738], "89858720e": 76, "79717439e": 76, "_static_gath": 76, "static_gath": 76, "_static_gather_nd": 76, "static_gather_nd": 76, "_static_get_num_dim": 76, "static_get_num_dim": 76, "_static_has_nan": 76, "leafwis": 76, "static_has_nan": 76, "_static_inplace_decr": 76, "_static_inplace_incr": 76, "_static_inplace_upd": 76, "_static_is_arrai": 76, "static_is_arrai": 76, "_static_is_ivy_arrai": 76, "static_is_ivy_arrai": 76, "_static_is_native_arrai": 76, "static_is_native_arrai": 76, "_static_scatter_flat": 76, "_static_scatter_nd": 76, "static_scatter_nd": 76, "_static_stable_divid": 76, "22222222": 76, "11111111": 76, "857": [76, 580, 622], "444": 76, "_static_stable_pow": 76, "00012": [76, 581, 622], "00016": [76, 77, 581, 609, 622, 623], "00001": [76, 581, 622, 764], "00032": [76, 581], "00256": [76, 581], "1679638": [76, 581], "395": [76, 581], "16777383": [76, 581], "_static_supports_inplace_upd": 76, "_static_to_list": 76, "static_to_list": 76, "_static_to_numpi": 76, "static_to_numpi": 76, "_static_to_scalar": 76, "static_to_scalar": 76, "_static_value_is_nan": 76, "452": 76, "static_value_is_nan": 76, "833": [76, 530], "items": [76, 97, 622], "static_isin": 76, "static_items": 76, "static_strid": 76, "425": [76, 601], "_containerwithgradi": [77, 98], "_static_stop_gradi": 77, "static_stop_gradi": 77, "976": [77, 286, 603, 620, 623], "49e": [77, 603, 623], "74e": [77, 603, 623], "95e": [77, 603, 623], "024": [77, 603, 623], "096": [77, 603, 623], "216": [77, 80, 603, 623, 680], "626": [77, 603, 623], "en": [77, 603, 604, 623, 816], "wikipedia": [77, 603, 604, 623], "wiki": [77, 603, 604, 623], "stochastic_gradient_desc": [77, 603, 604, 623], "01099": [77, 604], "01003": [77, 604, 623], "01015": [77, 604, 623], "99936122": [77, 604, 623], "99936116": [77, 604, 623], "99936128": [77, 604, 623], "99936104": [77, 604, 623], "w_new": [77, 607, 623], "708": [77, 609, 623], "445": [77, 609, 623], "6e": [77, 609, 623], "00036": [77, 609, 623], "00049": [77, 609, 623], "layerwis": [77, 610, 623], "01132035": [77, 610, 623], "22264051": [77, 610, 623], "2056601": [77, 610, 623], "1324538": [77, 610, 623], "56490755": [77, 610, 623], "96622658": [77, 610, 623], "90848625": [77, 610, 623], "93616199": [77, 610, 623], "77232409": [77, 610, 623], "_containerwithimag": [78, 98], "_containerwithlay": [79, 98], "_static_conv1d": 79, "static_conv1d": 79, "_static_conv1d_transpos": 79, "static_conv1d_transpos": 79, "112": [79, 625, 635, 639, 670, 747], "_static_conv2d": 79, "ey": [79, 617, 624, 640, 646, 835, 842], "static_conv2d": 79, "_static_conv2d_transpos": 79, "static_conv2d_transpos": 79, "_static_conv3d": 79, "fdfh": [79, 642], "static_conv3d": 79, "_static_conv3d_transpos": 79, "static_conv3d_transpos": 79, "_static_depthwise_conv2d": 79, "inp": [79, 624, 646], "static_depthwise_conv2d": 79, "_static_dropout": 79, "static_dropout": 79, "_static_dropout1d": 79, "static_dropout1d": 79, "_static_dropout2d": 79, "_static_dropout3d": 79, "_static_linear": 79, "278": [79, 624, 647, 648], "static_linear": 79, "195": 79, "_static_lstm_upd": 79, "_static_multi_head_attent": 79, "_static_reduce_window": 79, "_static_scaled_dot_product_attent": 79, "static_scaled_dot_product_attent": 79, "39999962": [79, 624, 647, 648], "19999695": [79, 648], "11600018": [79, 648], "88399887": [79, 648], "196": [79, 624, 648], "306": [79, 624, 648], "19999981": [79, 292, 304, 360, 624, 647, 653], "59249449": [79, 624, 653], "68226194": [79, 624, 653], "19603825": [79, 624, 653], "9960382": [79, 624, 653], "26894283": [79, 624, 653], "40236187": [79, 624, 653], "39999437": [79, 624, 653], "59999037": [79, 624, 653], "35046196": [79, 624, 653], "54282808": [79, 624, 653], "39989519": [79, 624, 653], "5998764": [79, 624, 653], "_containerwithlinearalgebra": [80, 98], "_static_choleski": 80, "static_choleski": 80, "577": [80, 625, 654], "707": [80, 625, 654], "static_rol": [80, 82], "_static_cross": 80, "static_cross": 80, "_static_det": 80, "_static_diag": 80, "_static_diagon": 80, "static_diagon": 80, "_static_eigh": 80, "_static_eigvalsh": 80, "static_eigvalsh": 80, "51572949": [80, 625, 661], "17091519": [80, 625, 661], "3448143": [80, 625, 661], "35898387e": [80, 625, 661], "46410179e": [80, 625, 661], "_static_inn": 80, "static_inn": 80, "_static_inv": 80, "static_inv": 80, "_static_matmul": 80, "matul": 80, "static_matmul": 80, "_static_matrix_norm": 80, "deimens": 80, "static_matrix_norm": 80, "_static_matrix_pow": 80, "_static_matrix_rank": 80, "static_matrix_rank": 80, "_static_matrix_transpos": 80, "static_matrix_transpos": 80, "_static_out": 80, "n1": [80, 134, 617], "n2": [80, 134, 617], "static_out": [80, 670], "_static_pinv": 80, "static_pinv": 80, "0426": 80, "0964": 80, "0605": 80, "1368": 80, "_static_qr": 80, "static_qr": 80, "31622777": [80, 625, 672], "9486833": [80, 625, 672], "4472136": [80, 625, 672], "89442719": [80, 625, 672], "16227766": [80, 625, 672], "42718872": [80, 625, 672], "63245553": [80, 625, 672], "47213595": [80, 625, 672], "81377674": [80, 625, 672], "_static_slogdet": 80, "static_slogdet": 80, "6931472": 80, "0986123": 80, "_static_solv": 80, "_static_svd": 80, "static_svd": 80, "au": 80, "aS": 80, "avh": 80, "bu": [80, 848], "bvh": 80, "_static_svdv": 80, "_static_tensordot": 80, "_static_tensorsolv": 80, "_static_trac": 80, "static_trac": 80, "_static_vand": 80, "static_vand": 80, "343": [80, 278, 620, 680], "729": [80, 680, 841], "_static_vecdot": 80, "_static_vector_norm": 80, "static_vector_norm": 80, "77359247": [80, 682], "_static_vector_to_skew_symmetric_matrix": 80, "09861231": [80, 625, 673], "static_general_inner_product": 80, "3475602": [80, 675], "93765765": [80, 675], "58776021": [80, 675], "10416126": [80, 675], "80644298": [80, 675], "87024701": [80, 675], "48127627": [80, 675], "79101127": [80, 675], "98288572": [80, 675], "68917423": [80, 675], "_containerwithloss": [81, 98], "_static_binary_cross_entropi": 81, "static_binary_cross_entropi": 81, "511": [81, 626, 684, 686], "_static_cross_entropi": 81, "static_cross_entropi": 81, "20397282": 81, "83258148": 81, "60943794": [81, 625, 673], "_static_sparse_cross_entropi": 81, "static_sparse_cross_entropi": 81, "5108256": [81, 685], "609438": [81, 685], "_containerwithmanipul": [82, 98], "_static_clip": 82, "static_clip": 82, "_static_concat": 82, "_static_constant_pad": 82, "static_constant_pad": 82, "_static_expand_dim": 82, "static_expand_dim": 82, "container_axi": [82, 627, 690], "_static_flip": 82, "static_flip": 82, "_static_permute_dim": 82, "static_permute_dim": 82, "_static_repeat": 82, "static_repeat": 82, "_static_reshap": 82, "static_reshap": 82, "_static_rol": 82, "positivclip": 82, "_static_split": 82, "static_split": 82, "_static_squeez": 82, "static_squeez": 82, "_static_stack": 82, "leavv": 82, "static_stack": 82, "_static_swapax": 82, "_static_til": 82, "static_til": 82, "_static_unstack": 82, "static_unstack": 82, "_static_zero_pad": 82, "repreat": [82, 693], "_containerwithnorm": [83, 98], "34198591": [83, 630, 725], "04274819": [83, 630, 725], "29923761": [83, 630, 725], "24053511": [83, 630, 725], "62221265": [83, 725], "20277636": [83, 725], "41943574": [83, 725], "83710337": [83, 725], "_containerwithrandom": [84, 98], "_static_multinomi": 84, "_static_randint": 84, "static_randint": 84, "_static_random_norm": 84, "static_random_norm": 84, "651": 84, "_static_random_uniform": 84, "static_random_uniform": 84, "481": 84, "0999": 84, "_static_shuffl": 84, "static_shuffl": 84, "431": [84, 728], "274": [84, 728], "_containerwithsearch": [85, 98], "_static_argmax": 85, "static_argmax": 85, "_static_argmin": 85, "static_argmin": 85, "_static_argwher": 85, "static_argwher": 85, "_static_nonzero": 85, "_static_wher": 85, "static_wher": 85, "_containerwithset": [86, 98], "_static_unique_al": 86, "static_unique_al": 86, "_static_unique_count": 86, "static_unique_count": 86, "_static_unique_invers": 86, "static_unique_invers": 86, "_static_unique_valu": 86, "_containerwithsort": [87, 98], "_static_argsort": 87, "static_argsort": 87, "_static_searchsort": 87, "_static_sort": 87, "static_sort": 87, "static_msort": 87, "_containerwithstatist": [88, 98], "_static_cumprod": 88, "static_cumprod": 88, "_static_cumsum": 88, "static_cumsum": 88, "_static_min": 88, "_static_prod": 88, "static_prod": 88, "11000001": [88, 751], "23100001": [88, 751], "30800003": [88, 635, 751], "_static_sum": 88, "_static_var": 88, "static_var": 88, "12666667": [88, 635, 754], "11555555": [88, 635, 754], "rtype": [88, 747, 793], "respectv": [88, 752], "81649649": [88, 752], "94280904": [88, 752], "509902": [88, 635, 752], "2472192": [88, 752], "44948983": [88, 752], "41421354": [88, 752], "6666667": [88, 754], "_containerwithutil": [89, 98], "_static_al": 89, "static_al": 89, "_static_ani": 89, "static_ani": 89, "add_ivy_container_instance_method": 90, "containerexampl": 90, "factorized_tensor": [91, 92, 93, 94, 95, 96], "factorizedtensor": [91, 92, 93, 94, 95, 96], "matrix_or_tensor": 91, "to_tensor": [91, 92, 93, 94, 95, 96], "to_unfold": [91, 92, 93, 94, 95, 96], "to_vec": [91, 92, 93, 94, 95, 96], "cp_tensor": [92, 93], "cptensor": [92, 93, 317, 362], "cp_copi": 92, "cp_flip_sign": 92, "s_i": [92, 93], "normalisation_weight": [92, 93], "normalised_factor": [92, 93], "cp_lstsq_grad": 92, "return_loss": 92, "nabla": 92, "mathcal": 92, "mathbf": 92, "factor_matric": 92, "cp_gradient": 92, "quantiti": 92, "cp_mode_dot": 92, "keep_dim": [92, 96], "cp_multi_mode_dot": 92, "cp_n_param": 92, "tensor_shap": [92, 94, 95, 96], "n_param": [92, 93, 94, 95, 96], "cp_norm": 92, "cp_to_tensor": 92, "khatria": 92, "rao": [92, 369, 427], "khatri": [92, 369, 427], "cp_normal": 92, "normalis": [92, 93], "u_1": [92, 93], "u_n": [92, 93], "v_1": [92, 93], "v_n": [92, 93], "v_k": [92, 93], "u_k": [92, 93], "absorb": [92, 93], "refold": [92, 371, 467, 478], "cp_to_unfold": 92, "ie": 92, "s_u_i": 92, "exploit": [92, 861], "khatri_rao": [92, 369], "cp_to_vec": 92, "ravel": [92, 835], "unfolding_dot_khatri_rao": 92, "mttkrp": 92, "validate_cp_rank": 92, "percent": [92, 95], "validate_cp_tensor": 92, "parafac2_tensor": 93, "parafac2tensor": [93, 318, 362], "apply_parafac2_project": 93, "evolv": [93, 847, 858], "b_i": 93, "ijk": [93, 794], "sum_r": 93, "a_": 93, "ir": [93, 856, 859, 864], "jr": 93, "kr": 93, "coupl": [93, 807, 812, 839, 841, 858], "factoris": 93, "i1": [93, 380, 514], "classmethod": [93, 100, 101, 769], "from_cptensor": 93, "parafac2_tensor_ok": 93, "parafac2_normalis": 93, "normalised_project": 93, "parafac2_to_slic": 93, "slice_idx": 93, "frontal": 93, "a_i": 93, "j_i": 93, "b_": 93, "reformul": 93, "p_i": 93, "orthogon": [93, 317, 321, 362, 369, 421, 435, 441, 625, 659, 660], "sum_": 93, "ijr": 93, "constraint": [93, 794, 816, 817, 827], "projection_matric": 93, "parafac2_to_tensor": 93, "construct": [93, 627, 700, 780, 783, 784, 785, 831, 837, 841, 842, 856, 858, 865], "uneven": 93, "parafac2_to_unfold": 93, "parafac2_to_vec": 93, "validate_parafac2_tensor": 93, "cp": [93, 317, 362, 808], "tr_tensor": 94, "trtensor": [94, 319, 362], "tr_n_param": 94, "tr_to_tensor": 94, "tr_to_unfold": 94, "tr_to_vec": 94, "validate_tr_rank": 94, "validate_tr_tensor": 94, "tt_tensor": 95, "_tt_n_param": 95, "mp": [95, 320, 362], "index_upd": 95, "pad_tt_rank": 95, "factor_list": 95, "n_pad": 95, "pad_boundari": 95, "ring": 95, "bond": 95, "padded_factor_list": 95, "tt_to_tensor": 95, "assembl": [95, 369, 440], "tt_to_unfold": 95, "reassembl": 95, "tt_to_vec": 95, "validate_tt_rank": 95, "constant_rank": 95, "allow_overparametr": 95, "proport": [95, 779], "realiz": [95, 858], "validate_tt_tensor": 95, "tucker_tensor": 96, "tucker_copi": 96, "tucker_mode_dot": [96, 865], "tucker_n_param": 96, "tucker_norm": 96, "tucker_to_tensor": 96, "skip_factor": 96, "transpose_factor": 96, "tucker_to_unfold": 96, "tucker_to_vec": 96, "validate_tucker_rank": 96, "fixed_mod": 96, "validate_tucker_tensor": 96, "_bisection_root_find": 96, "fun": [96, 359, 367, 602, 622, 629, 717, 816], "max_it": 96, "__abs__": [97, 98], "__add__": [97, 98, 812, 815, 819, 820, 824, 829, 830, 839], "__eq__": [97, 98], "__ge__": [97, 98], "__gt__": [97, 98, 835], "__le__": [97, 98], "__lt__": [97, 98], "__ne__": [97, 98], "__pow__": [97, 98, 839], "69678056": 97, "59876156": 97, "82660675": 97, "__radd__": [97, 98, 819, 820, 829], "__rrshift__": [97, 98], "__rshift__": [97, 98], "__rsub__": [97, 98], "__sub__": [97, 98, 812, 815, 819, 824, 839], "__truediv__": [97, 98, 812, 815, 819], "__xor__": [97, 98], "referenc": [97, 821, 828], "resid": [97, 101, 627, 690, 829, 837, 841], "mt": [97, 839], "hopefulli": [97, 98, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 776, 777, 779, 780, 782, 783, 784, 785, 803, 806, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 838, 839, 840, 841, 842, 847, 848, 849], "overview": [97, 98, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 776, 777, 779, 780, 782, 783, 784, 785, 800, 814, 816, 830, 832, 836], "reach": [97, 98, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 776, 777, 779, 780, 782, 783, 784, 785, 803, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 837, 838, 839, 840, 841, 842, 847, 848, 849, 857, 858], "eq": 98, "ge": 98, "le": 98, "ne": 98, "75979435": 98, "52153397": 98, "13532257": 98, "rshift": 98, "truediv": 98, "66666669": [98, 374, 496, 605, 623], "nested_arrai": [100, 101, 102, 814], "nestedarrai": 100, "nested_rank": [100, 101, 102], "inner_shap": [100, 101, 102], "nestedarraybas": [100, 101, 102], "from_row_length": 100, "row_length": 100, "from_row_split": 100, "row_split": 100, "ragged_map": 101, "ragged_multi_map": 101, "ragged_arrai": 101, "ragged_multi_map_in_funct": 101, "replace_ivy_arrai": 101, "unbind": 101, "nestedarrayelementwis": 102, "strictli": [107, 110, 113, 242, 614, 620, 824, 828], "24000001": [107, 614], "703": [108, 614], "683": [108, 614], "408": [108, 614], "313": [108, 614], "437": [108, 614], "40337825": [109, 614], "56114835": [109, 614], "20788449": [109, 614], "0768": [112, 614], "231": [112, 614], "\u03b2": [113, 614], "66666667": [114, 380, 511, 614], "body_fn": [117, 118, 120, 616], "bodi": [117, 120, 616, 811, 832], "lst": [117, 616], "orelse_fn": [118, 616], "body1": [119, 616], "body2": [119, 616], "test_fn": [120, 616, 762, 800, 852, 853], "repeatedli": [120, 616, 629, 715, 816, 832], "ml_framework": [121, 617], "distanc": [121, 617], "adjac": [121, 617], "nestedsequ": [122, 123, 617], "typevar": [122, 123, 617], "supportsbufferprotocol": [122, 123, 617], "static_copy_arrai": [124, 617], "intdtyp": [127, 138, 144, 156, 167, 172, 179, 185, 617, 618], "pycapsul": [128, 139, 617], "interchang": [128, 139, 617, 627, 699], "plu": [129, 617], "x00b": [129, 617], "x00d": [129, 617], "x00e": [129, 617], "66666663": [132, 617], "41588834": [133, 617], "7827941": [133, 617], "6227766": [133, 617], "23413252": [133, 617], "n3": [134, 617], "xv": [134, 617], "yv": [134, 617], "x_nativ": [135, 617, 828], "y_nativ": [135, 617], "z_nativ": [135, 617], "d_type": [137, 617], "col": [142, 322, 362, 617], "primari": [142, 161, 162, 194, 195, 322, 362, 378, 504, 539, 540, 617, 618, 619, 622, 765, 767, 806, 810, 813, 817, 826, 828, 829, 831, 832, 835, 843, 845], "upward": [142, 322, 362, 617], "downward": [142, 322, 362, 617], "2xn": [142, 322, 362, 617], "subarrai": [142, 322, 362, 617], "incompat": [149, 618], "closest": [152, 231, 241, 242, 278, 288, 618, 620, 832, 835], "xtype": [152, 618], "ytype": [152, 618], "native_uint16": [152, 618], "complexdtyp": [153, 167, 176, 618], "set_default_complex_dtyp": [153, 182, 618], "4294": [153, 155, 618], "967346": [153, 155, 618], "set_default_dtyp": [154, 183, 618, 817, 825], "floatdtyp": [155, 178, 618], "set_default_float_dtyp": [155, 164, 176, 184, 618, 817], "int_dtyp": [156, 179, 618], "set_default_int_dtyp": [156, 164, 185, 618, 817], "4294967346": [156, 157, 618], "uint_dtyp": [157, 180, 618], "uint": [157, 172, 180, 186, 618, 817, 830], "uintdtyp": [157, 172, 180, 186, 618], "set_default_uint_dtyp": [157, 164, 186, 618], "native_bool": [159, 618], "ieee": [160, 218, 235, 240, 258, 268, 277, 282, 285, 615, 618, 620, 848], "754": [160, 218, 235, 240, 258, 268, 277, 282, 285, 615, 618, 620, 848], "smallest_norm": [160, 618], "bfloat16": [161, 618, 764, 765, 817, 829, 832, 833], "unsupport": [162, 195, 540, 618, 619, 622, 759, 762, 803, 807, 822, 829], "encapsul": [163, 618, 816], "314": [163, 275, 332, 365, 618, 620], "9223372036854775808": [163, 618], "9223372036854775807": [163, 618], "65535": [163, 618], "4294967295": [163, 618], "native_uint8": [165, 618], "hashabl": [169, 618], "type1": [173, 618], "type2": [173, 618], "array_api_promot": [173, 174, 618, 764, 765], "unexpect": [174, 242, 618, 620, 817], "default_complex_dtyp": [176, 618], "default_dtype_stack": [177, 183, 618], "unset_default_dtyp": [177, 618], "native_uint64": [177, 618], "default_float_dtyp": [178, 618, 817], "default_int_dtyp": [179, 185, 618, 817], "default_uint_dtyp": [180, 186, 618], "ret1": [181, 618], "ret2": [181, 618], "reset": [182, 183, 184, 185, 186, 212, 213, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 618, 619, 622, 818], "default_complex_dtype_stack": [182, 618], "default_float_dtype_stack": [184, 618], "native_float16": [187, 618], "unmodifi": [189, 619, 813, 817], "aliv": [196, 201, 203, 543, 563, 564, 619, 622, 818], "139740789224448": [196, 619], "physic": [199, 619], "process_specif": [202, 214, 619], "percentag": [202, 619], "ram": [202, 210, 214, 619], "alon": [202, 214, 619, 800, 823, 832], "036902561555": [202, 619], "7024003467681645": [202, 619], "as_native_dev": [202, 619], "7095597456708771": [202, 619], "attr_onli": [203, 619], "soft_device_mod": [205, 213, 619], "chunk": [206, 207, 208, 619], "split_factor": [206, 619, 821], "max_chunk_s": [208, 619], "chunk_siz": [208, 619], "input_ax": [208, 619], "output_ax": [208, 619], "usag": [208, 619, 817, 825, 828, 832, 837, 843, 848, 861], "fed": [208, 619, 841], "fist": [208, 619], "gb": [210, 214, 619, 807, 822], "66700032": [210, 619], "589934592": [210, 619], "219563008": [214, 619], "902400346": [214, 619], "525205504": [214, 619], "na": [215, 620, 832], "noqa": [215, 282, 620, 780, 789, 830], "princip": [216, 220, 222, 352, 365, 620], "domain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 620, 820, 856, 858], "codomain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 620, 820], "\u03c0": [216, 220, 222, 223, 615, 620], "3\u03c0": [216, 223, 620], "unspecifi": [216, 217, 221, 224, 233, 238, 240, 242, 277, 281, 282, 286, 369, 421, 620, 625, 627, 659, 660, 698, 828], "\u03c0j": [217, 221, 224, 256, 258, 620], "3\u03c0j": [217, 256, 258, 620], "x1_i": [218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 620, 811], "2019": [218, 235, 240, 258, 268, 620, 858, 861], "overflow": [218, 235, 242, 620, 625, 635, 673, 753, 805, 817], "commut": [218, 620], "tabl": [218, 235, 268, 574, 596, 620, 622, 764, 765, 780, 829, 834, 858], "dj": [218, 235, 268, 620], "bj": [218, 235, 268, 332, 365, 620], "z1": [218, 620], "z2": [218, 620], "yj": [219, 620], "nanj": [221, 620], "809": [221, 620], "569": [221, 620], "733": [221, 620], "notat": [223, 620, 635, 747, 816], "denot": [223, 620, 782], "quadrant": [223, 620], "rai": [223, 620, 848], "bitwis": [225, 228, 230, 265, 620], "170": [229, 620], "243": [229, 620], "xor": [230, 265, 620], "654": [232, 620], "ci": [233, 238, 240, 281, 620, 811, 817, 823, 830, 832, 843], "368": [233, 620], "670": [233, 620], "202": [233, 620, 811], "548": [233, 620], "1490": [233, 620], "57079633": [234, 620], "14159265": [234, 620], "71238898": [234, 620], "28318531": [234, 620], "02617994": [234, 620], "87266463": [234, 620], "01919862": [234, 620], "03839725": [234, 620], "05759586": [234, 620], "07679449": [234, 620], "09599311": [234, 620], "11519173": [234, 620], "35081118": [234, 620], "88139129": [234, 620], "underflow": [235, 242, 620, 625, 673, 817], "textbook": [235, 268, 620], "frac": [235, 257, 259, 279, 281, 285, 368, 374, 395, 396, 400, 401, 490, 492, 620], "ac": [235, 268, 620, 793, 794], "bd": [235, 268, 620], "bc": [235, 268, 620, 793, 794], "versu": [235, 268, 620], "riemann": [235, 268, 620], "sphere": [235, 268, 620], "c99": [235, 268, 620], "infinit": [235, 268, 282, 620], "unlik": [235, 268, 620, 811, 816, 819, 848, 863, 865], "698": [235, 620], "truth": [236, 246, 247, 254, 255, 271, 370, 443, 620, 759, 761, 772, 803, 822, 829, 832], "32862675": [237, 620], "67780113": [237, 620], "11246294": [237, 620], "42839241": [237, 620], "52050018": [237, 620], "16799599": [237, 620], "30787992": [237, 620], "43796915": [237, 620], "98667163": [237, 620], "79690808": [237, 620], "88020504": [237, 620], "91031402": [237, 620], "95228523": [237, 620], "96610528": [237, 620], "cut": [238, 240, 280, 281, 282, 285, 620, 806, 847, 864], "08553692": [238, 620], "567": [238, 620], "00344786": [238, 620], "76297021": [238, 620], "197948": [238, 620], "53253174": [238, 620], "accur": [240, 258, 620, 625, 673, 826], "fdlibm": [240, 258, 620], "compliant": [240, 258, 263, 264, 329, 330, 365, 620, 635, 748, 749, 750, 752], "potenti": [240, 258, 620, 800, 806, 807, 816, 817, 829, 836, 861], "632": [240, 620], "20e": [240, 620], "72e": [240, 620, 764], "greatest": [241, 242, 245, 620], "pep": [242, 620, 824], "disambigu": [242, 620, 827], "former": [242, 620, 807, 817, 820, 829], "latter": [242, 620, 807, 811, 813, 817, 820, 829], "overload": [242, 620, 832], "led": [242, 620, 811, 860], "subtl": [242, 620, 817, 864], "bug": [242, 620, 800, 806, 808, 814, 822, 823, 829, 832, 844], "ambigu": [242, 620], "semant": [242, 277, 371, 482, 620, 817, 837, 842, 847, 859], "ill": [242, 620, 766], "surpris": [242, 620, 843], "arrau": [248, 620], "log_": [257, 259, 620], "742": [258, 620], "negat": [270, 332, 365, 620], "52095687": [273, 620], "92457771": [273, 620], "49372482": [273, 620], "22738838": [273, 620], "156": [273, 620, 764], "5877228": [273, 620], "189": [274, 620, 629, 706], "252": [274, 620], "378": [274, 620], "1150": [274, 620], "2890": [274, 620], "172": [274, 620], "487": [274, 620, 624, 648], "344": [274, 620], "355j": [275, 332, 365, 620], "55j": [275, 332, 365, 620], "primarili": [277, 620, 806, 815, 858], "reason": [277, 286, 620, 806, 808, 811, 812, 815, 816, 817, 819, 825, 828, 829, 832, 833, 835, 837, 839, 848, 864], "counterpart": [278, 620, 815, 826], "deliber": [278, 620, 835], "imprecis": [278, 620], "5654": [278, 620], "034": [278, 620], "433": [278, 606, 608, 620, 623], "signum": [279, 620], "textrm": [279, 620], "932": [280, 620], "746": [280, 620], "657": [280, 530, 620, 622], "indistinguish": [282, 620], "convent": [282, 620, 625, 635, 665, 747, 808, 813, 824, 833, 847, 864], "infti": [282, 620], "32455532": [282, 620], "89897949": [282, 620], "169": [282, 620], "analyt": [285, 620, 858, 860, 864], "pole": [285, 620], "546": [285, 620, 624, 648], "916": [285, 620, 626, 684], "996": [285, 620], "histor": [286, 620], "stem": [286, 620, 828], "older": [286, 620], "advis": [286, 620, 829], "462": [286, 620], "604": [286, 620], "984": [286, 620], "997": [286, 620], "0375": [288, 620], "032": [288, 620], "57258511": [291, 360], "69999999": [291, 360, 613, 623], "90928203": [291, 360], "98772264": [291, 360], "99591321": [291, 360], "99863964": [291, 360], "69880581": [291, 360], "18126924": [291, 360], "79999995": [292, 301, 304, 360], "70000005": [292, 304, 360], "hardtanhx": [293, 360], "20141329": [295, 360], "40318608": [295, 360], "48683619": [295, 360], "46328247": [295, 360], "59813893": [295, 360], "43748799": [295, 360], "parametr": [296, 360, 811, 832, 858], "71589994": [298, 302, 360], "14324772": [298, 302, 360], "70648694": [298, 302, 360], "54488957": [298, 302, 360], "10740992": [298, 302, 360], "19514863": [298, 302, 360], "6705687": [299, 360], "52016652": [299, 360], "40560818": [299, 360], "45630932": [299, 360], "2689": [300, 360], "7310": [300, 360], "7615": [300, 360], "2784": [300, 360], "7168": [300, 360], "8708": [300, 360], "4374": [300, 360], "1379": [300, 360], "0089": [300, 360], "59999991": [301, 360], "03597236": [303, 360], "43827677": [303, 360], "80100036": [303, 360], "12954807": [303, 360], "76459098": [303, 360], "20044947": [303, 360], "60000372": [303, 360], "taper": [306, 309, 362], "summat": [306, 362, 635, 747, 793, 794], "leakag": [306, 362], "wors": [306, 362, 848], "y1": [307, 362], "0800": [308, 362], "3979": [308, 362], "9121": [308, 362], "5400": [308, 362], "han": [309, 362], "ith": [310, 362], "00726415": [311, 362], "9999736": [311, 362], "2773e": [312, 362], "0172e": [312, 362], "9294e": [312, 362], "4149": [312, 362], "9138": [312, 362], "5529": [312, 362], "multidimension": [314, 315, 362, 858], "normalise_factor": [317, 318, 362], "parafac2": [318, 362], "tr": [319, 362], "context": [319, 362, 562, 622, 806, 807, 808, 813, 817, 818, 819], "38268346": [327, 362], "38268352": [327, 362], "8563191": [327, 362], "14943568": [327, 362], "paddlepaddl": [329, 330, 365, 807], "cn": [329, 330, 365], "zh": [329, 330, 365], "amax_cn": [329, 365], "sentinel": [329, 330, 365, 635, 748, 750], "amin_cn": [330, 365], "position": [339, 365], "triangl": [343, 365], "999999e": [344, 365], "65999985": [346, 365], "52000046": [346, 365], "1500001": [346, 365, 535, 622], "11259177": [347, 365], "3574118": [347, 365], "20097363": [347, 365], "suppli": [351, 365, 371, 474, 793, 812, 814, 832], "217234": [352, 365], "hurwitz": [355, 365], "custom_grad_func": [357, 367], "bind": [357, 367, 806, 827, 857, 858], "upstream": [357, 367, 807, 808, 811, 822, 827], "primal": [358, 359, 367], "jacobian": [358, 359, 367, 608, 623, 843, 858], "cotang": [359, 367], "stanh": 360, "ndenumer": 362, "ndindex": 362, "random_cp": 362, "random_parafac2": 362, "random_tr": 362, "random_tt": 362, "random_tuck": 362, "bind_custom_gradient_funct": [367, 827], "jvp": 367, "vjp": 367, "area_interpol": 368, "01823380e": [368, 389, 399], "15385818e": [368, 389, 399], "36371466e": [368, 389, 399], "38763905e": [368, 389, 399], "60722279e": [368, 389, 399], "80319249e": [368, 389, 399], "05617893e": [368, 389, 399], "21500000e": [368, 389, 399], "24000015e": [368, 389, 399], "90734863e": [368, 389, 399], "10000420e": [368, 389, 399], "15899994e": [368, 389, 399], "24000053e": [368, 389, 399], "81469727e": [368, 389, 399], "09999847e": [368, 389, 399], "4135742": [368, 389, 399], "6779785": [368, 389, 399], "3770599": [368, 389, 399], "8719864": [368, 389, 399], "72109985": [368, 389, 399], "52869415": [368, 389, 399], "79182434": [368, 389, 399], "72489166": [368, 389, 399], "container_n": [368, 389, 399], "container_typ": [368, 389, 399, 622], "container_norm": [368, 389, 399], "1580677": [368, 389], "89422607": [368, 389], "86190414": [368, 389], "00041008": [368, 389], "75149155": [368, 389], "97056389": [368, 389], "87819386": [368, 389], "89381361": [368, 389], "50000000e": [368, 389, 399, 764], "22044605e": [368, 389, 399], "ed": [368, 391, 392, 393], "rest": [368, 371, 391, 392, 393, 460, 807, 814, 816, 832, 842, 860], "5d": [368, 393, 780], "emb": [368, 394], "51285338": [368, 394], "87183261": [368, 394], "2308116": [368, 394], "02733949e": [368, 395], "00j": [368, 395], "49660576e": [368, 395], "68178638e": [368, 395], "01j": [368, 395, 400], "98912367e": [368, 395], "21802426e": [368, 395, 400], "04549134e": [368, 395, 400], "82842712e": [368, 395, 400], "86902654e": [368, 395, 400], "25501143e": [368, 395, 400], "32978028e": [368, 395, 400], "52068201e": [368, 395, 400], "71158374e": [368, 395, 400], "generate_einsum_equ": 368, "get_interpolate_kernel": 368, "27279224e": [368, 399], "44232273e": [368, 399], "70464332e": [368, 399], "73454881e": [368, 399], "00902849e": [368, 399], "10039906e": [368, 399], "07022366e": [368, 399], "69506073": [368, 399], "93914604": [368, 399], "88008881": [368, 399], "18951607": [368, 399], "57439613": [368, 399], "15318303e": [368, 400], "15148591e": [368, 400], "19j": [368, 400], "25000000e": [368, 400], "35378602e": [368, 400], "02j": [368, 400], "65404249e": [368, 400], "17611649e": [368, 400], "24320230e": [368, 400], "79344813e": [368, 400], "22374531e": [368, 400], "45929364e": [368, 400], "14208718e": [368, 400], "07177031e": [368, 400], "indexerror": [368, 401, 412, 627, 690, 795, 821], "interp": [368, 835], "xp": [368, 402, 811], "fp": [368, 402], "nd": [368, 403], "tf_bicub": [368, 403, 835], "nearest_interpol": 368, "window_shap": [368, 409], "pool_typ": [368, 409], "irfft": [368, 411], "silent": [368, 411], "discard": [368, 411, 816], "639999": [368, 411], "516063j": [368, 411], "3999999": [368, 411], "3999996": [368, 411], "99038106j": [368, 412], "33012702": [368, 412], "23205081j": [368, 412], "33012702j": [368, 412], "superdiagon": [369, 419, 625, 657], "subdiagon": [369, 419, 625, 657], "eigendecomposit": [369, 421, 625, 659, 660], "qlq\u1d40": [369, 421, 625, 659, 660], "tridiagon": [369, 422], "38196602": [369, 422], "61803389": [369, 422], "35048741": [369, 422], "56710052": [369, 422], "06693714": [369, 422], "74234426": [369, 422], "56155282": [369, 422], "56155276": [369, 422], "82842714": [369, 422], "82842731": [369, 422, 625, 660], "necessarili": [369, 423, 812, 815], "generalis": [369, 424], "skip_matrix": [369, 427, 429], "khatri_rao_product": [369, 427], "kronecker_product": [369, 429], "n_column": [369, 429], "nnmf": [369, 430], "hoi": [369, 435, 441], "solve_triangular": 369, "unit_diagon": [369, 436], "solut": [369, 436, 625, 674, 764, 800, 803, 806, 807, 808, 815, 817, 822, 830, 832, 835, 856, 860], "determinist": [369, 437], "borrow": [369, 437, 810], "extmath": [369, 437], "ivan": [369, 438], "oseledet": [369, 438], "scientif": [369, 438, 858], "2295": [369, 438], "2317": [369, 438], "2011": [369, 438], "convention": [370, 444, 861], "issu": [370, 444, 779, 801, 802, 803, 804, 805, 807, 809, 811, 813, 814, 816, 817, 818, 819, 821, 822, 829, 832, 833, 835, 837, 841, 843, 849, 851], "explicit": [370, 371, 444, 482, 807, 815, 817, 827, 828, 829, 837, 843, 858], "555969": [370, 444], "223876": [370, 444], "111938": [370, 444], "42649534": [370, 444], "68651628": [370, 444], "51119184": [370, 444], "59967244": [370, 444], "mae": [370, 445], "91097307": [370, 447], "3467": [370, 448], "0133": [370, 448], "0250": [370, 448], "0056": [370, 448], "0025": [370, 448], "0675": [370, 448], "6987": [370, 449], "1606": [370, 449], "3711": [370, 449], "4032": [370, 449], "6931": [370, 449], "whilst": [371, 452, 453, 454, 842, 845, 858], "ary3": [371, 454], "check_scalar": 371, "force_integ": [371, 456], "force_posit": [371, 456], "mod": [371, 457, 811], "tall": [371, 463], "appear": [371, 465, 466, 602, 622, 807, 808, 811, 829, 835, 851], "horizot": [371, 470], "shortcut": [371, 474, 807], "linear_ramp": [371, 474], "reflect": [371, 474, 808, 812, 828, 832], "ramp": [371, 474], "mirror": [371, 474, 804, 806, 858], "padding_func": [371, 474], "iaxis_pad_width": [371, 474], "iaxi": [371, 474], "unalt": [371, 474], "put": [371, 479, 800, 806, 832, 843, 864], "mul": [371, 479, 828, 839], "conceptu": [371, 482, 854, 859], "concern": [371, 482, 808, 810, 815, 817, 819, 828, 835, 836, 864], "regard": [371, 482, 805, 815, 829, 830, 835, 848], "mutat": [371, 482], "elimin": [371, 487, 807], "consecut": [371, 487], "batch_mean": [374, 490, 492], "batch_var": [374, 490, 492], "running_vari": [374, 490, 492], "local_response_norm": 374, "neighbour": [374, 495], "42857143": [374, 496], "5714286": [374, 496], "multivari": [375, 499], "bayesian": [375, 499], "supposedli": [378, 503], "indirect": [378, 504], "secondari": [378, 504], "is_ivy_sparse_arrai": 379, "is_native_sparse_arrai": 379, "native_sparse_arrai": 379, "coo_indic": [379, 507], "crow_indic": [379, 507], "col_indic": [379, 507], "ccol_indic": [379, 507], "row_indic": [379, 507], "dense_shap": [379, 507], "native_sparse_array_to_indices_values_and_shap": 379, "nativesparsearrai": 379, "sparsearrai": 379, "linalg": [380, 511, 625, 673, 674, 806, 828, 830], "aw": [380, 511, 848], "48447205": [380, 511], "c0": [380, 514], "ck": [380, 514], "c2": [380, 514], "nearest_jax": [380, 521], "trace_on_next_step": [525, 622, 784, 841], "recalcul": [528, 622], "my_sum": [528, 622], "val1": [528, 622], "val2": [528, 622], "cached_sum": [528, 622], "line_eq": [528, 622], "slp": [528, 622], "itc": [528, 622], "cached_line_eq": [528, 622], "0353": [529, 622], "424": [529, 622], "176": [529, 622], "339": [529, 622], "271": [529, 622], "391": [529, 622], "417": [530, 622], "583": [530, 622], "0667": [530, 622], "267": [530, 622], "131": [530, 622], "263": [530, 622], "394": [530, 622, 631, 731], "526": [530, 622], "788": [530, 622], "default_str": [533, 622], "46999979": [534, 622], "66000009": [534, 622], "93000001": [534, 622], "29000092": [534, 622], "33999991": [534, 622], "6400001": [534, 622], "96000004": [534, 622], "36000013": [534, 622], "51999998": [534, 622], "67000008": [534, 622], "suppos": [534, 622, 817, 832], "960": [534, 622], "3600": [534, 622], "h1": [534, 622], "w1": [534, 622], "40499985": [535, 622], "61000061": [535, 622], "max_depth": [546, 622], "seen_set": [546, 622], "local_set": [546, 622], "referr": [546, 622], "redund": [546, 622, 800, 817, 821, 829, 851], "example_funct": [546, 622], "ref_id_1": [546, 622], "ref_id_2": [546, 622], "ref_id_3": [546, 622], "ivyexcept": [551, 583, 622, 795, 818, 821, 826, 828, 829, 833], "allow_dupl": [561, 622], "fork": [562, 622, 801, 806, 811, 816, 822], "forkserv": [562, 622], "spawn": [562, 622], "mp_default": [562, 622], "defaultcontext": [562, 622], "0x7f4e3193e520": [562, 622], "mp_fork": [562, 622], "forkcontext": [562, 622], "0x7f4e3193e580": [562, 622], "mp_spawn": [562, 622], "spawncontext": [562, 622], "0x7f4e3193e5e0": [562, 622], "mp_forkserv": [562, 622], "forkservercontext": [562, 622], "0x7f4e3193e640": [562, 622], "garbag": [564, 622], "collector": [564, 622], "get_all_arrays_in_memori": [564, 622], "exception_trace_mod": [568, 591, 622, 834], "lenient": [569, 592, 622], "inplace_mod": [569, 592, 622], "break": [569, 622, 800, 813, 817, 824, 833, 843], "infus": [570, 622], "nestable_mod": [573, 595, 622, 834], "precise_mod": [574, 596, 622, 834], "shape_array_mod": [576, 598, 622, 834], "show_func_wrapper_trace_mod": [577, 599, 622, 834], "tmp_dr": [578, 622], "tmp_dir": [578, 600, 622, 834], "my_tmp": [578, 622], "49999999999975": [580, 622], "5015015015010504": [580, 622], "000444502911705e": [580, 622], "9999999999995j": [580, 622], "00000262": [581, 622], "15605032": [581, 622], "01208451j": [581, 622], "00048": [581, 622], "1296": [581, 622], "00864": [581, 622], "isn": [583, 622, 808, 826, 828, 840, 843, 860], "100000023841858": [585, 622], "200000047683716": [585, 622], "299999952316284": [585, 622], "400000095367432": [585, 622], "599999904632568": [585, 622], "hemant": [589, 622], "unset_shape_array_mod": [590, 622], "set_exception_trace_mod": [591, 622, 821], "set_min_bas": [593, 622], "set_min_denomin": [594, 622], "set_nestable_mod": [595, 622], "set_precise_mod": [596, 622], "set_queue_timeout": [597, 622], "set_shape_array_mod": [598, 622], "set_show_func_wrapper_trace_mod": [599, 622, 821], "set_tmp_dir": [600, 622], "my_dir": [600, 622], "451": [601, 622], "in_ax": [602, 622], "out_ax": [602, 622], "thereof": [602, 622], "summaris": [602, 622], "99999998": [603, 623], "19999998": [603, 623], "00000001": [603, 623], "00300001": [603, 623], "00800001": [603, 623], "0125": [603, 623], "17294501": [603, 623], "15770318": [603, 623], "20863818": [603, 623], "90000075": [604, 623], "90000164": [604, 623], "9000032": [604, 623], "50000012e": [604, 623], "92558754": [604, 623], "92558694": [604, 623], "92558682": [604, 623], "92558861": [604, 623], "60000025e": [604, 623], "01024": [604, 623], "retain_grad": [605, 623], "func_ret": [605, 623, 827], "666666": [605, 623], "333332": [605, 623], "66666675": [605, 613, 623], "argnum": [606, 623], "933": [606, 608, 623], "jac_fn": [608, 623], "639": [609, 623], "361": [609, 623], "52565837": [610, 623], "8418861": [610, 623], "68377209": [610, 623], "value_grad": [613, 623], "42333412": [613, 623], "5333333": [613, 623], "93333334": [613, 623], "43333334": [613, 623], "0666666": [613, 623], "softsign": 614, "718281828459045": 615, "euler": 615, "141592653589793": 615, "cmp_i": 616, "cmp_isnot": 616, "for_loop": 616, "if_els": 616, "try_except": 616, "to_dlpack": 617, "as_ivy_dtyp": [618, 829], "as_native_dtyp": 618, "check_float": 618, "closest_valid_dtyp": 618, "default_dtyp": [618, 817, 825], "dtype_bit": 618, "function_supported_dtyp": [618, 817, 832], "function_unsupported_dtyp": [618, 817], "infer_default_dtyp": 618, "invalid_dtyp": [618, 817], "is_hashable_dtyp": 618, "is_native_dtyp": 618, "promote_typ": [618, 817], "promote_types_of_input": [618, 817, 828], "type_promote_arrai": [618, 817], "unset_default_complex_dtyp": 618, "unset_default_float_dtyp": 618, "unset_default_int_dtyp": 618, "unset_default_uint_dtyp": 618, "valid_dtyp": 618, "defaultcomplexdtyp": 618, "defaultdtyp": 618, "defaultfloatdtyp": 618, "defaultintdtyp": 618, "defaultuintdtyp": 618, "as_ivy_dev": [619, 839], "clear_cached_mem_on_dev": 619, "dev_util": [619, 818], "function_supported_devic": 619, "function_unsupported_devic": 619, "get_all_ivy_arrays_on_dev": [619, 818], "handle_soft_device_vari": [619, 818], "num_cpu_cor": [619, 818], "num_gpu": [619, 818, 832], "num_ivy_arrays_on_dev": 619, "percent_used_mem_on_dev": 619, "print_all_ivy_arrays_on_dev": 619, "set_split_factor": [619, 821], "split_func_cal": 619, "total_mem_on_dev": [619, 818], "tpu_is_avail": 619, "unset_default_devic": [619, 818], "unset_soft_device_mod": [619, 818], "used_mem_on_dev": 619, "defaultdevic": [619, 818], "profil": 619, "save_dir": 619, "arg_info": 622, "arg_nam": 622, "cache_fn": [622, 825], "current_backend_str": [622, 832, 837, 839], "function_supported_devices_and_dtyp": 622, "function_unsupported_devices_and_dtyp": 622, "get_item": [622, 828], "get_referrers_recurs": 622, "inplace_arrays_support": 622, "inplace_variables_support": 622, "is_ivy_nested_arrai": 622, "isscalar": 622, "match_kwarg": 622, "num_arrays_in_memori": 622, "print_all_arrays_in_memori": 622, "set_item": 622, "to_ivy_shap": 622, "to_native_shap": 622, "try_else_non": 622, "unset_array_mod": [622, 834], "unset_exception_trace_mod": 622, "unset_inplace_mod": 622, "unset_min_bas": 622, "unset_min_denomin": 622, "unset_nestable_mod": 622, "unset_precise_mod": 622, "unset_queue_timeout": 622, "unset_show_func_wrapper_trace_mod": 622, "unset_tmp_dir": 622, "vmap": [622, 843, 858], "arraymod": 622, "precisemod": [622, 817], "jac": 623, "value_and_grad": [623, 827], "neural": [624, 776, 780, 800, 852, 854, 856, 857, 858, 862, 864, 865], "feature_group_count": [624, 637, 644, 645], "oiw": [624, 637, 638, 644], "oihw": [624, 637, 640, 644], "oidhw": [624, 637, 642, 644], "dhwio": [624, 637, 638, 642, 644], "conv_general_dil": [624, 829], "conv_general_transpos": 624, "depthwis": [624, 646, 766, 780], "overfit": [624, 647], "overal": [624, 647, 794, 815, 817, 818, 820, 842, 851, 854, 856, 857, 858], "1428566": [624, 647], "49000001": [624, 647], "55599999": [624, 647], "21000004": [624, 647], "incom": [624, 648], "666": [624, 625, 648, 666], "4269": [624, 648], "911": [624, 648, 821], "157": [624, 648], "753": [624, 648], "545": [624, 631, 648, 729], "547": [624, 648, 818], "124": [624, 648], "963": [624, 648], "98495483": [624, 648], "0293808": [624, 648], "0159359": [624, 648], "74752808": [624, 648], "20942307": [624, 648], "3205719": [624, 648], "long": [624, 649, 807, 808, 816, 817, 819, 821, 822, 829, 837, 858], "lstm": [624, 649, 780, 837, 858], "batch_first": [624, 650], "multi": [624, 625, 650, 655, 766, 780, 819, 836, 843, 854, 856, 858, 862], "paper": [624, 650, 800, 849], "vaswani": [624, 650], "al": [624, 650], "num_attention_head": [624, 650], "key_dim": [624, 650, 780], "value_dim": [624, 650, 780], "attention_weight": [624, 650], "unbatch": [624, 650], "nm": 624, "box": [624, 651, 652, 807], "iou_threshold": [624, 651], "max_output_s": [624, 651], "score_threshold": [624, 651], "roi_align": 624, "spatial_scal": [624, 652], "sampling_ratio": [624, 652], "23333359": [624, 653], "03946018": [624, 653], "0280633": [624, 653], "29981947": [624, 653], "29981089": [624, 653], "06345534": [624, 653], "9634552": [624, 653], "19336844": [624, 653], "09336829": [624, 653], "axisa": [625, 655], "axisb": [625, 655], "axisc": [625, 655], "293": [625, 656], "46997": [625, 656], "explicitli": [625, 660, 661, 677, 761, 780, 781, 782, 803, 811, 812, 813, 815, 817, 820, 821, 822, 825, 826, 827, 828, 830, 832, 837, 843, 852, 858], "17157288": [625, 660], "9238795": [625, 660], "78930789": [625, 660], "59803128": [625, 660], "19127655": [625, 660], "31213903": [625, 660], "63418275": [625, 660], "84632206": [625, 660], "70548367": [625, 660], "70223427": [625, 660], "09570674": [625, 660], "63116378": [625, 660], "56109613": [625, 660], "53554028": [625, 660], "32237405": [625, 660], "43822157": [625, 660], "83906901": [625, 660], "50766778": [625, 660], "71475857": [625, 660], "48103389": [625, 660], "3676433": [625, 660], "68466955": [625, 660], "62933773": [625, 660], "77917379": [625, 660], "14264561": [625, 660], "61036086": [625, 660], "45033181e": [625, 661], "02829754e": [625, 661], "54220343e": [625, 661], "12647155e": [625, 661], "38447177e": [625, 661], "56155300e": [625, 661], "26794919": [625, 661], "7320509": [625, 661], "0012": [625, 663], "00342": [625, 663], "000565": [625, 663], "0104": [625, 663], "000981": [625, 663], "00282": [625, 663], "000766": [625, 663], "0322": [625, 663], "00237": [625, 663], "000151": [625, 663], "00101": [625, 663], "00019": [625, 663], "0214": [625, 663], "00171": [625, 663], "0107": [625, 663], "0167": [625, 663], "0472": [625, 663], "0536": [625, 663], "0177": [625, 663], "000429": [625, 663], "00762": [625, 663], "lu_factor": 625, "pivot": [625, 664], "lu": [625, 664], "frobeniu": [625, 666], "nuclear": [625, 666], "induc": [625, 666], "ranl": [625, 666], "47722558": [625, 666], "776": [625, 666], "6000004": [625, 666], "118": [625, 667], "moor": [625, 671], "penros": [625, 671], "31622776": [625, 672], "94868332": [625, 672], "1622777": [625, 672], "42718887": [625, 672], "deteremin": [625, 673], "logsabsdet": [625, 673], "subject": [625, 673], "ordin": [625, 674], "b2": [625, 674], "usvh": [625, 675], "cetera": [625, 675], "driver": [625, 676, 843], "cusolv": [625, 676], "gesvd": [625, 676], "gesvdj": [625, 676], "gesvda": [625, 676], "86217213": [625, 676], "31816804": [625, 676], "615": [625, 676], "ss": [625, 676], "25994301": [625, 676], "16403675": [625, 676], "61529762": [625, 676], "51231241": [625, 676], "39777088": [625, 676], "15413129": [625, 676], "1029852": [625, 676], "01383495": [625, 676], "86647356": [625, 676], "7786541": [625, 676], "55970621": [625, 676], "16857576": [625, 676], "86412698": [625, 676], "37566757": [625, 676], "88477993": [625, 676], "95925522": [625, 676], "6444726": [625, 676], "54687881": [625, 676], "16134834": [625, 676], "35037804": [625, 676], "31025076": [625, 676], "35769391": [625, 676], "transposit": [625, 677], "success": [625, 635, 679, 751, 753, 804, 807, 816, 848], "0x": [625, 680], "Such": [625, 680, 825, 832], "progress": [625, 680, 804, 807, 808, 842], "alexandr": [625, 680], "theophil": [625, 680], "dot_product": [625, 681], "9000001": [625, 682], "64158917": [625, 682], "skew": [625, 683], "6666193": [626, 684], "67164493e": [626, 684], "05471958e": [626, 684], "32684899e": [626, 684], "30496836e": [626, 684], "05393649": [626, 684], "49992943": [626, 684], "83330965": [626, 684], "35667494": [626, 686], "79329094": [626, 686], "512926": [626, 686], "outsid": [627, 687, 698, 817, 818, 825, 839, 863], "honor": [627, 694], "beyond": [627, 695, 820, 829, 864], "famili": [627, 698], "intxx": [627, 698], "floatxx": [627, 698], "rep": [627, 700], "fomaml_step": 628, "inner_cost_fn": [628, 703, 704, 705], "outer_cost_fn": [628, 703, 704], "inner_grad_step": [628, 703, 704, 705], "inner_learning_r": [628, 703, 704, 705], "inner_optimization_step": [628, 703, 704, 705], "inner_batch_fn": [628, 703, 704], "outer_batch_fn": [628, 703, 704], "average_across_step": [628, 703, 704], "inner_v": [628, 703, 704], "keep_inner_v": [628, 703, 704], "outer_v": [628, 703, 704], "keep_outer_v": [628, 703, 704], "return_inner_v": [628, 703, 704, 705], "num_task": [628, 703, 704, 705], "maml": [628, 703, 704], "0x7f3cff0d7250": [628, 703, 704, 705], "maml_step": 628, "vanilla": [628, 704, 841, 858], "_variabl": [628, 704, 705], "sub_batch": [628, 704], "40069818": [628, 704], "13723135": [628, 704], "reptile_step": 628, "cost_fn": [628, 705], "reptil": [628, 705], "batch_in": [628, 705], "4485182": [628, 705], "139": [628, 705], "9569855": [628, 705], "9880483": [628, 705], "01766968": [628, 705], "02197957": [628, 705], "02197981": [628, 705], "all_nested_indic": 629, "include_nest": [629, 706], "_index": [629, 706, 717], "_base": [629, 706, 716, 717, 828], "themselv": [629, 706, 806, 815, 817, 818, 820, 825, 829, 841, 855, 864], "863": [629, 706, 818], "672": [629, 706], "482": [629, 706], "674": [629, 706], "341": [629, 706], "copy_nest": 629, "to_mut": [629, 707, 718], "deepli": [629, 707, 809, 843, 858], "copied_nest": [629, 707], "1337": [629, 707, 718], "duplicate_array_index_chain": 629, "index_nest": [629, 825], "insert_into_nest_at_index": 629, "insert_into_nest_at_indic": 629, "onto": [629, 712, 718, 846, 847, 858], "special_squar": [629, 712], "6666666666666667": [629, 712], "special_pow": [629, 712], "linear_model": [629, 712], "map_nest_at_index": 629, "_result": [629, 713, 723], "hh": [629, 713, 718], "map_nest_at_indic": 629, "ub": [629, 714], "tb": [629, 714], "multi_index_nest": 629, "nested_ani": 629, "check_nest": [629, 716, 717], "nested_argwher": 629, "stop_after_n_found": [629, 717], "nested_indic": [629, 717], "nested_map": [629, 818, 825], "_tuple_check_fn": [629, 718], "_list_check_fn": [629, 718], "_dict_check_fn": [629, 718], "wherebi": [629, 718, 806, 855], "ah": [629, 718], "bh": [629, 718], "ch": [629, 718], "dh": [629, 718, 811], "eh": [629, 718], "gh": [629, 718, 807, 822], "ih": [629, 718], "1338": [629, 718], "nested_multi_map": 629, "index_chain": [629, 719], "nest0": [629, 719], "ivy_arrai": [629, 719, 812, 829], "unappli": [629, 719], "prune_empti": 629, "prune_nest_at_index": 629, "prune_nest_at_indic": 629, "set_nest_at_index": 629, "set_nest_at_indic": 629, "xyz": [629, 724], "pqr": [629, 724], "mini": [630, 725, 780, 783], "uniformli": [631, 727, 729], "22346112": [631, 728], "0922": [631, 728], "9213753": [631, 728], "12818667": [631, 728], "799": [631, 728], "469": [631, 728], "287": [631, 728], "0366": [631, 728], "26431865": [631, 729], "475": [631, 729], "878": [631, 729], "861": [631, 729], "929": [631, 729], "789": [631, 729], "519": [631, 729], "0435": [631, 729], "381": [631, 729], "4608004": [631, 729], "8458502": [631, 729], "67270088": [631, 729], "31128597": [631, 729], "zeroel": [632, 735], "guarante": [633, 737, 739, 812, 817, 828, 843, 849], "fourth": [633, 737], "1141": [633, 737], "8101": [633, 737], "9298": [633, 737], "8460": [633, 737], "2119": [633, 737], "3519": [633, 737], "6252": [633, 737], "4033": [633, 737], "7443": [633, 737], "2577": [633, 737], "3707": [633, 737], "0545": [633, 737], "3238": [633, 737], "5944": [633, 737], "0775": [633, 737], "4327": [633, 737], "62519997": [633, 737], "40329999": [633, 737], "59439999": [633, 737], "74430001": [633, 737], "81010002": [633, 737], "84600002": [633, 737], "92979997": [633, 737], "einstein": [635, 747, 793], "117": [635, 747], "intend": [635, 753, 762, 779, 811, 824, 827, 856, 858, 862, 863], "07472222": [635, 754], "00666667": [635, 754], "08966666": [635, 754], "simplicit": [636, 755, 756], "ivy_test": [759, 761, 762, 764, 765, 766, 767, 768, 769, 770, 771, 772, 806, 807, 808, 811, 814, 816, 822, 830], "test_ivi": [759, 761, 762, 764, 765, 766, 767, 768, 769, 770, 771, 772, 806, 807, 808, 814, 816, 822, 830, 832], "assert_all_clos": [759, 830], "ret_np": [759, 761, 830], "ret_from_gt_np": [759, 830], "ground_truth_backend": [759, 761, 762, 771, 772, 803, 822, 830], "mark": [759, 806, 808, 811, 832, 837], "assert_same_typ": 759, "ret_from_target": 759, "ret_from_gt": 759, "backend_to_test": [759, 761, 803, 822, 830], "gt_backend": 759, "with_backend": [759, 789], "assert_same_type_and_shap": 759, "this_key_chain": 759, "check_unsupported_devic": 759, "input_devic": 759, "all_as_kwargs_np": [759, 761], "presenc": [759, 815, 828], "check_unsupported_device_and_dtyp": 759, "input_dtyp": [759, 761, 771, 803, 822, 830, 832], "check_unsupported_dtyp": 759, "test_unsupported_funct": 759, "value_test": 759, "ret_np_flat": 759, "ret_np_from_gt_flat": 759, "specific_tolerance_dict": 759, "ret_from_np_gt_flat": 759, "function_test": 761, "args_to_contain": 761, "array_arg": [761, 825], "args_to_frontend": 761, "frontend_array_fn": 761, "arrays_to_frontend": 761, "as_list": 761, "convtru": 761, "nativeclass": 761, "counter": [761, 841], "create_args_kwarg": 761, "args_np": 761, "arg_np_val": 761, "args_idx": 761, "kwargs_np": 761, "kwarg_np_val": 761, "kwargs_idx": 761, "test_flag": [761, 803, 822, 830, 832], "on_devic": [761, 771, 803, 822, 830], "flatten_and_to_np": 761, "flatten_frontend": 761, "flatten_frontend_fw_to_np": 761, "frontend_ret": [761, 830], "isscalar_func": 761, "is_native_array_func": 761, "to_numpy_func": 761, "flatten_frontend_to_np": 761, "get_frontend_ret": 761, "frontend_fn": 761, "frontend_array_funct": 761, "precision_mod": [761, 771, 772, 822], "test_trac": [761, 771, 772, 803, 811, 822], "get_ret_and_flattened_np_arrai": 761, "gradient_incompatible_funct": 761, "gradient_test": [761, 832], "rtol_": [761, 803, 822], "atol_": [761, 803, 822, 830], "tolerance_dict": 761, "gradient_unsupported_dtyp": 761, "kwargs_to_args_n_kwarg": 761, "num_positional_arg": [761, 771, 772, 803, 822, 830, 832], "port": [761, 849], "test_frontend_funct": [761, 830], "fn_tree": [761, 762, 772, 803, 822, 829, 830, 832], "gt_fn_tree": [761, 772], "test_valu": [761, 830, 832], "frontend_function_flag": [761, 771], "functiontestflag": [761, 771, 803, 822], "with_out": [761, 771, 803, 822, 830, 832], "instance_method": [761, 771, 803, 822, 832], "as_vari": [761, 771, 803, 822, 830, 832], "namespac": [761, 806, 817, 826, 829, 830, 833, 837, 842], "test_frontend_method": [761, 830], "init_input_dtyp": [761, 830], "method_input_dtyp": [761, 830], "init_flag": [761, 830, 832], "method_flag": [761, 771, 830, 832], "init_all_as_kwargs_np": [761, 830], "method_all_as_kwargs_np": [761, 830], "frontend_method_data": [761, 830], "init_as_variable_flag": [761, 772], "dictat": [761, 812, 819, 824, 828], "init_num_positional_arg": [761, 772], "init_native_array_flag": 761, "with_v": 761, "ret_gt": 761, "test_funct": [761, 803, 807, 808, 816, 822, 830, 832], "fn_name": [761, 762, 772, 803, 813, 822, 830, 832], "return_flat_np_arrai": 761, "as_variable_flag": [761, 772, 832], "native_array_flag": [761, 772, 832], "container_flag": [761, 771, 772, 832], "test_function_backend_comput": 761, "test_function_ground_truth_comput": 761, "arg_np_arrai": 761, "arrays_args_indic": 761, "arrays_kwargs_indic": 761, "kwarg_np_arrai": 761, "test_gradient_backend_comput": 761, "test_gradient_ground_truth_comput": 761, "test_method": 761, "method_nam": [761, 770, 772, 830], "init_with_v": 761, "method_with_v": 761, "test_gradi": [761, 771, 772, 803, 822, 832], "method_as_variable_flag": [761, 772], "method_num_positional_arg": [761, 772], "method_native_array_flag": 761, "method_container_flag": [761, 772], "test_method_backend_comput": 761, "test_method_ground_truth_comput": 761, "org_con_data": 761, "args_np_method": 761, "met_arg_np_v": 761, "met_args_idx": 761, "kwargs_np_method": 761, "met_kwarg_np_v": 761, "met_kwargs_idx": 761, "v_np": 761, "traced_if_requir": 761, "wrap_frontend_function_arg": 761, "holder": 762, "current_frontend_config": 762, "0x7f3cf261dd80": 762, "interruptedtest": 762, "test_interrupt": 762, "baseexcept": 762, "tri": [762, 817], "testdata": 762, "supported_device_dtyp": 762, "is_method": 762, "setup_api_test": 762, "test_data": 762, "setup_frontend_test": 762, "teardown_api_test": 762, "teardown_frontend_test": 762, "hypothesis_help": [764, 765, 766, 767], "array_help": 764, "array_and_broadcastable_shap": 764, "searchstrategi": [764, 765, 766, 767, 771, 772, 832], "array_bool": [764, 832], "min_valu": [764, 765, 766, 767, 803, 822, 830, 832], "max_valu": [764, 765, 766, 767, 830, 832], "ex": [764, 765, 766, 767, 772, 816, 852], "strategi": [764, 765, 766, 767, 771, 772, 806, 830], "array_helpers_dtype_info_help": 764, "kind_dtyp": [764, 766], "array_indices_axi": 764, "array_dtyp": [764, 765, 832], "indices_dtyp": 764, "get_dtyp": [764, 765, 803, 822, 830, 832], "disable_random_axi": 764, "axis_zero": 764, "allow_inf": [764, 767, 830, 832], "min_num_dim": [764, 766, 830, 832], "max_num_dim": [764, 766, 830, 832], "min_dim_s": [764, 766, 830, 832], "max_dim_s": [764, 766, 830], "first_dimension_onli": 764, "indices_same_dim": 764, "valid_bound": 764, "hypothesi": [764, 766, 772, 806, 808, 811, 816, 826], "65536": 764, "44758124e": [764, 832], "array_indices_put_along_axi": 764, "values_dtyp": 764, "array_valu": [764, 832], "abs_smallest_v": [764, 766, 767], "allow_nan": [764, 767, 832], "allow_subnorm": [764, 767, 832], "exclude_min": [764, 767, 832], "exclude_max": [764, 767], "large_abs_safety_factor": [764, 766, 767, 803, 822, 830, 832], "small_abs_safety_factor": [764, 766, 767, 803, 822, 830], "safety_factor_scal": [764, 766, 767, 830, 832], "subnorm": [764, 767], "safeti": [764, 766, 767, 858], "0002": [764, 767], "get_shap": [764, 766, 830, 832], "1806": 764, "36912": 764, "6955": 764, "59576": 764, "1025": 764, "arrays_and_ax": 764, "available_dtyp": [764, 765, 803, 822, 830, 832], "allow_non": [764, 766, 830, 832], "return_dtyp": 764, "force_int_axi": 764, "26e": 764, "10e": 764, "24322108": 764, "26446279e": 764, "96046448e": 764, "008": 764, "17549435e": 764, "038": 764, "06541027e": 764, "13725760e": 764, "07143888": 764, "arrays_for_pool": 764, "min_dim": 764, "max_dim": 764, "min_sid": 764, "max_sid": 764, "explicit_or_str_pad": 764, "only_explicit_pad": 764, "return_dil": 764, "mixed_fn_compo": [764, 765, 766, 767, 832], "return_data_format": 764, "cond_data_gen_help": 764, "create_concatenable_arrays_dtyp": 764, "min_num_arrai": 764, "max_num_arrai": 764, "concat_dim": 764, "common_shap": [764, 832], "stackabl": 764, "given_common_shap": 764, "create_nested_input": 764, "leaf_valu": 764, "dtype_and_valu": [764, 803, 822, 830, 832], "num_arrai": [764, 765, 830, 832], "shared_dtyp": [764, 765, 830], "ret_shap": 764, "array_api_dtyp": [764, 765], "shape_kei": 764, "37915": 764, "6322": 764, "26765": 764, "12413": 764, "26986": 764, "34665": 764, "000e": 764, "711e": 764, "100e": 764, "955e": [764, 832], "40817": 764, "56193": 764, "29200": 764, "5851": 764, "9746": 764, "9604645e": 764, "103": 764, "41795": 764, "1170789994": 764, "44251": 764, "44209": 764, "433075925": 764, "24791": 764, "24691": 764, "24892": 764, "16711": 764, "972": 764, "15357": 764, "72057594037927936": 764, "dtype_array_queri": 764, "allow_mask": 764, "allow_neg_step": 764, "dtype_array_query_v": 764, "dtype_values_axi": [764, 832], "min_axi": 764, "max_axi": 764, "valid_axi": 764, "allow_neg_ax": 764, "min_axes_s": 764, "max_axes_s": 764, "force_tuple_axi": 764, "29788": 764, "62222885e": 764, "68281172e": 764, "257j": 764, "40129846e": 764, "90000000e": 764, "63426649e": 764, "91931887e": 764, "29488e": 764, "14361019e": 764, "12445": 764, "einsum_help": 764, "get_first_solve_batch_matrix": 764, "choose_adjoint": 764, "get_second_solve_batch_matrix": 764, "get_first_solve_matrix": 764, "allow_simplifi": 764, "choose_sid": 764, "xa": 764, "get_second_solve_matrix": 764, "list_of_s": 764, "sampled_from": [764, 830, 832], "min_siz": [764, 766, 772, 832], "max_siz": [764, 766, 772, 832], "size_bound": [764, 832], "999999999999999": 764, "9394938006792373": 764, "mutually_broadcastable_shap": 764, "num_shap": 764, "base_shap": 764, "dtype_help": 765, "univers": [765, 829, 847], "cast_filt": 765, "cast_filter_help": 765, "current_backend": [765, 789, 806, 813, 821, 825, 830, 833, 837], "get_castable_dtyp": 765, "castabl": 765, "prune_funct": 765, "intersect": [765, 816, 832], "signed_integ": 765, "real_and_complex": 765, "float_and_complex": 765, "general_help": 766, "broadcasterror": 766, "apply_safety_factor": 766, "embedding_help": 766, "general_helpers_dtype_info_help": 766, "get_axi": [766, 832], "allow_neg": 766, "sort_valu": 766, "force_tupl": 766, "force_int": 766, "assertionerror": [766, 803, 811, 821, 822, 830, 832], "get_bound": [766, 832], "get_mean_std": 766, "matrix_is_st": 766, "cond_limit": 766, "instabl": [766, 803, 817, 822], "computation": [766, 807], "prone": [766, 817], "thumb": 766, "gradual": 766, "strong": [766, 843, 848, 858], "collinear": 766, "reshape_shap": [766, 832], "two_broadcastable_shap": 766, "x_and_filt": 766, "number_help": 767, "arbitrarili": [767, 840], "safety_factor": 767, "backend_proc": 768, "input_queu": 768, "output_queu": 768, "frontend_proc": 768, "pipeline_help": 769, "backendhandl": 769, "update_backend": [769, 830], "backendhandlermod": 769, "enum": 769, "setbackend": 769, "withbackend": 769, "withbackendcontext": 769, "get_frontend_config": 769, "frontendmethoddata": 770, "ivy_init_modul": 770, "framework_init_modul": 770, "init_nam": 770, "test_parameter_flag": 771, "dynamicflag": [771, 772], "frontendfunctiontestflag": [771, 822], "with_copi": 771, "generate_frontend_arrai": [771, 772, 822], "testflag": 771, "apply_flag": 771, "args_to_iter": 771, "frontendinittestflag": 771, "frontendmethodtestflag": 771, "test_cython_wrapp": [771, 772], "initmethodtestflag": 771, "methodtestflag": 771, "build_flag": 771, "frontend_init_flag": 771, "frontend_method_flag": 771, "function_flag": 771, "init_method_flag": 771, "testing_help": 772, "handle_frontend_method": [772, 830, 832], "class_tre": [772, 830], "init_tre": [772, 830], "init_native_arrai": 772, "_as_varaible_strategi": 772, "method_native_arrai": 772, "test_inplac": [772, 832], "_given_kwarg": 772, "test_compil": 772, "handle_frontend_test": [772, 830, 832], "alias": [772, 806, 829, 830], "number_positional_arg": [772, 830], "test_with_out": [772, 830, 832], "test_with_copi": 772, "handle_method": [772, 832], "method_tre": [772, 830, 832], "_gradient_strategi": 772, "handle_test": [772, 803, 822, 832], "test_instance_method": [772, 832], "num_positional_args_help": 772, "num_positional_args_method": 772, "geglu": 776, "leakyrelu": 776, "logsoftmax": 776, "from_flax_modul": 777, "native_modul": 777, "params_fx": 777, "rng_seed": 777, "constructor_arg": 777, "constructor_kwarg": 777, "instance_arg": 777, "instance_kwarg": 777, "flax": [777, 842, 843, 849, 858], "from_haiku_modul": 777, "params_hk": 777, "from_paddle_modul": 777, "from_torch_modul": 777, "dedic": [777, 809, 824, 835, 839, 841], "to_keras_modul": 777, "native_module_class": 777, "modulehelp": [778, 782], "create_vari": [779, 841], "var_shap": [779, 841], "fan_out": [779, 841], "fan_in": [779, 841], "rectangular": 779, "firstlayersiren": 779, "siren": 779, "glorotuniform": [779, 780, 841], "glorot": 779, "xavier": 779, "neuron": 779, "w_1x_1": 779, "w_2x_2": 779, "w_nx_n": 779, "w_i": 779, "vanish": 779, "explod": [779, 846, 847], "kaimingnorm": 779, "fan_mod": [779, 841], "kaim": 779, "he": 779, "negative_slop": 779, "fan": 779, "propog": 779, "fan_sum": [779, 841], "Ones": 779, "randomnorm": 779, "stddev": 779, "w0": 779, "wlim": 779, "predefin": 779, "fan_avg": 779, "adaptiveavgpool1d": 780, "avgpool1d": 780, "implicit": [780, 815, 820, 829, 832, 837, 858], "avgpool2d": 780, "avgpool3d": 780, "e501": 780, "filter_s": 780, "weight_initi": [780, 841], "bias_initi": [780, 841], "0x7f3cfed21870": 780, "0x7f3cfed21810": 780, "conv1dtranspos": 780, "0x7f3cfed217b0": 780, "0x7f3cfed21750": 780, "filter_shap": 780, "0x7f3cfed216f0": 780, "0x7f3cfed21690": 780, "0x7f3cfed21630": 780, "0x7f3cfed215a0": 780, "0x7f3cfed214b0": 780, "0x7f3cfed21450": 780, "conv3dtranspos": 780, "0x7f3cfed213f0": 780, "0x7f3cfed21390": 780, "depthwiseconv2d": 780, "num_channel": 780, "0x7f3cfed21600": 780, "0x7f3cfed21570": 780, "bernoul": 780, "num_embed": 780, "embedding_dim": 780, "padding_idx": 780, "lookup": 780, "num_embeddingss": 780, "renorm": 780, "insensit": 780, "num_lay": 780, "return_sequ": 780, "return_st": 780, "0x7f3cfed21330": 780, "get_initial_st": 780, "0x7f3cfed21930": 780, "0x7f3cfed218d0": 780, "maxpool1d": 780, "maxpool3d": 780, "multiheadattent": 780, "embed_dim": 780, "head_dim": 780, "dropout_r": 780, "use_proj_bia": 780, "attention_ax": 780, "build_mod": [780, 781, 782], "on_init": [780, 782], "parallel": [780, 814, 858, 862, 863], "binarycrossentropyloss": 781, "store_var": [781, 782], "with_partial_v": [781, 782], "logpoissonloss": 781, "modulemeta": 782, "temporarili": [782, 803, 811, 822], "from_cal": 782, "module_dict": 782, "register_buff": 782, "register_paramet": 782, "weights_path": 782, "randomness_factor": 782, "with_edge_label": 782, "with_arg_label": 782, "with_output_label": 782, "output_connected_onli": 782, "highlight_subgraph": 782, "trace_kwarg": 782, "_unified_ivy_graph": 782, "_call": 782, "num_featur": 783, "trail": 783, "layernorm": 783, "normalized_shap": 783, "elementwise_affin": 783, "set_stat": [784, 841], "adamw": 784, "weight_decai": 784, "init_on_first_step": 784, "fallback_to_non_trac": 784, "ignore_miss": 784, "privat": [784, 829, 832], "_step": [784, 841], "stochast": [784, 858], "sub_modul": 785, "check_al": 786, "messag": [786, 795, 799, 807, 808, 816, 819, 821, 823, 829, 837, 839, 848], "check_all_or_any_fn": 786, "check_ani": 786, "check_dev_correct_format": 786, "check_dimens": 786, "check_elem_in_list": [786, 825, 828, 829], "elem": 786, "check_equ": [786, 829], "check_exist": 786, "check_fals": 786, "check_gather_input_valid": 786, "check_gather_nd_input_valid": 786, "check_great": 786, "allow_equ": [786, 821], "check_inplace_sizes_valid": [786, 828], "check_isinst": 786, "allowed_typ": 786, "check_kernel_padding_s": 786, "padding_s": 786, "check_less": [786, 821], "check_one_way_broadcast": 786, "check_same_dtyp": 786, "check_shapes_broadcast": 786, "check_tru": 786, "check_unsorted_segment_valid_param": 786, "ast_help": 788, "importtransform": 788, "nodetransform": 788, "impersonate_import": 788, "tree": [788, 817], "local_ivy_id": 788, "visit_import": 788, "visit_importfrom": 788, "ivyload": 788, "loader": [788, 840, 843], "exec_modul": 788, "ivypathfind": 788, "metapathfind": 788, "find_spec": 788, "fullnam": 788, "contextmanag": 789, "choose_random_backend": 789, "global_backend": 789, "dynamic_backend_convert": 789, "backend_stack": [789, 837], "prevent_access_loc": 789, "previous_backend": [789, 813], "unset": [789, 813, 837], "Or": [789, 800, 802, 828, 840], "set_backend_to_specific_vers": 789, "set_jax_backend": 789, "set_mxnet_backend": 789, "mx": 789, "set_numpy_backend": 789, "set_paddle_backend": 789, "set_tensorflow_backend": 789, "set_torch_backend": 789, "unset_backend": [789, 813], "sub_backend_handl": 790, "clear_sub_backend": 790, "find_available_sub_backend": 790, "sub_backends_loc": 790, "fn_name_from_version_specific_fn_nam": 790, "fn_name_from_version_specific_fn_name_sub_backend": 790, "sub_backend_vers": 790, "backend_vers": [790, 803, 817, 822], "set_sub_backend": 790, "sub_backend_str": 790, "set_sub_backend_to_specific_vers": 790, "sub_backend": 790, "unset_sub_backend": 790, "check_for_binari": 791, "cleanup_and_fetch_binari": [791, 807], "clean": [791, 808, 833, 837, 838, 840], "dynamic_import": 792, "import_modul": [792, 837], "einsum_pars": 793, "convert_interleaved_input": 793, "interleav": 793, "convert_subscript": 793, "old_sub": 793, "symbol_map": 793, "subscript": [793, 794], "oe": 793, "ellipsi": [793, 794], "find_output_shap": 793, "find_output_str": 793, "canon": 793, "gen_unused_symbol": 793, "abd": [793, 794], "get_symbol": 793, "letter": 793, "resort": 793, "unicod": 793, "charact": [793, 829, 848], "chr": 793, "surrog": 793, "\u0155": 793, "20000": 793, "\u4eac": 793, "has_valid_einsum_chars_onli": 793, "einsum_str": 793, "abaz": 793, "\u00f6ver": 793, "is_valid_einsum_char": 793, "\u01f5": 793, "legalise_einsum_expr": 793, "reproduct": [793, 794], "pars": [793, 794, 814, 819, 843], "intak": 793, "contract_path": 793, "parse_einsum_input": [793, 794], "einsum_eqn": 793, "legalis": 793, "legalise_einsum_eqn": 793, "za": [793, 794], "xza": [793, 794], "xz": [793, 794], "possibly_convert_to_numpi": 793, "myshap": 793, "__main__": 793, "0x10f850710": 793, "einsum_path_help": 794, "can_dot": 794, "idx_remov": 794, "bla": 794, "benefici": 794, "movement": 794, "costli": 794, "gemm": 794, "ijj": 794, "ddot": 794, "ikj": 794, "compute_size_by_dict": 794, "idx_dict": 794, "abbc": 794, "find_contract": 794, "input_set": 794, "output_set": 794, "lh": 794, "rh": 794, "new_result": 794, "idx_contract": 794, "iset": 794, "oset": 794, "bdc": 794, "flop_count": 794, "num_term": 794, "size_dictionari": 794, "flop": 794, "greedy_path": 794, "memory_limit": 794, "exhaust": [794, 828, 832, 855, 864], "indices_remov": 794, "priorit": [794, 806, 831, 835], "hadamard": 794, "cubic": 794, "greedi": 794, "idx_siz": 794, "optimal_path": 794, "siev": 794, "input_str": 794, "output_str": 794, "parse_possible_contract": 794, "path_cost": 794, "naive_cost": 794, "propos": [794, 804, 808, 829, 835, 858], "intermediari": [794, 813], "unoptim": 794, "new_input_set": 794, "update_other_result": 794, "provision": 794, "_parse_possible_contract": 794, "mod_result": 794, "inplaceupdateexcept": 795, "include_backend": [795, 821], "ivyattributeerror": [795, 821], "attributeerror": [795, 821, 839], "ivybroadcastshapeerror": [795, 821], "ivydeviceerror": 795, "ivydtypepromotionerror": [795, 821], "ivyindexerror": [795, 821], "ivyinvalidbackendexcept": 795, "ivynotimplementedexcept": [795, 821], "notimplementederror": 795, "ivyvalueerror": [795, 821], "handle_except": [795, 824, 826], "add_array_spec": 796, "fn_array_spec": 796, "set_logging_mod": 797, "debug": [797, 804, 807, 808, 815, 816, 827, 832, 835, 840, 858], "unset_logging_mod": 797, "print_stat": 798, "viz": 798, "snakeviz": 798, "bonu": 798, "cprofil": 798, "cprint": [799, 837], "grant": [800, 804], "autotun": [800, 862], "grow": [800, 804, 809, 858], "peopl": [800, 805, 807, 808, 810, 858, 860], "wip": [800, 851], "docker": [800, 803, 805, 822], "pull": [800, 801, 804, 806, 807, 811, 819, 823, 833, 835, 843, 844, 849], "sweat_smil": 800, "setting_up": 800, "awai": [800, 856, 858], "jax_fn": 800, "jax_x": 800, "torch_x": 800, "torch_fn": 800, "motiv": [800, 839, 848], "contextu": 800, "problem": [800, 804, 806, 808, 811, 812, 818, 829, 839, 848, 854, 860, 864], "explos": [800, 846, 848], "adher": [800, 811, 817, 820, 824, 835, 837, 842, 847, 848, 854, 855, 864], "focus": [800, 817, 833, 856, 857, 858, 864, 865], "orient": 800, "contributor": [800, 801, 803, 804, 806, 807, 808, 822, 829, 836, 858], "shorter": [800, 839], "ensp": 800, "customiz": [800, 814], "deepmind_perceiver_io": 800, "sm_framework": 800, "segmentation_model": 800, "sm": 800, "torch_sm": 800, "metric": [800, 843], "iou_scor": 800, "rax": 800, "torch_rax": 800, "poly1_softmax_loss": 800, "madmom": 800, "madmon": 800, "torch_madmom": 800, "freq": 800, "audio": 800, "hz2midi": 800, "torch_loss": 800, "maxpooling1d": 800, "pool_siz": 800, "tf_kornia": 800, "tf_rax": 800, "tf_madmom": 800, "tf_loss": 800, "_forward_classifi": [800, 852], "forward_classifi": [800, 852], "hk_eff_encod": 800, "dummy_x": 800, "jax_sm": 800, "jax_madmom": 800, "jax_loss": 800, "np_kornia": 800, "np_sm": 800, "np_rax": 800, "np_loss": 800, "yourself": [800, 806, 808, 823, 832, 835], "favourit": [800, 807], "pipelin": [800, 802, 810, 811, 812, 830, 833, 842, 845, 847, 852, 858, 859, 864], "hyperparam": 800, "idea": [800, 806, 831, 833, 838, 849, 857], "instantli": [800, 852], "essenti": [800, 804, 806, 813, 815, 818, 819, 825, 828, 829, 830, 847, 848, 864], "mainli": [800, 806, 810, 827, 829, 832, 838, 840, 845, 858], "handler": [800, 836, 838, 842, 845], "scene": [800, 810, 836, 838, 846, 847, 858], "facilit": 800, "mse_loss": 800, "jax_ms": 800, "tf_mse": 800, "np_mse": 800, "torch_ms": 800, "someth": [800, 803, 808, 813, 822, 823, 833, 840, 841, 843, 844, 864], "favorit": 800, "flexibl": [800, 815, 817, 824, 827, 833, 835, 858], "everyon": [800, 801, 806, 807, 808, 843, 849], "plan": [800, 844], "interoper": [800, 848, 855, 856, 858, 861], "believ": [800, 808, 848], "feedback": [800, 806, 816], "appreci": [800, 809], "amaz": 800, "journei": [800, 801, 809], "ambiti": 800, "season": 800, "perfect": 800, "ask": [800, 806, 807, 819, 837, 839, 843, 844, 849], "fellow": 800, "twitter": 800, "sneak": 800, "peek": 800, "stai": [800, 816], "proper": [800, 806, 829, 852], "credit": 800, "accompani": 800, "lenton2021ivi": 800, "inter": 800, "author": [800, 806, 808, 856, 860], "lenton": 800, "daniel": 800, "pardo": 800, "fabio": 800, "falck": 800, "fabian": 800, "jame": 800, "stephen": 800, "clark": 800, "ronald": 800, "journal": 800, "arxiv": 800, "preprint": 800, "2102": 800, "02886": 800, "year": [800, 811, 843, 847, 849, 858], "strongli": [801, 807, 829, 864, 865], "engag": [801, 808, 809, 848], "skill": [801, 804, 809, 860], "veteran": 801, "effort": [801, 806, 843, 848, 854, 858, 864], "board": [801, 814], "stage": [801, 808, 810, 811, 814, 832, 848, 858], "excit": [801, 810, 848], "volunt": 801, "climb": [801, 805], "program": [801, 804, 809, 828, 855, 856, 858, 861, 862, 865], "reward": [801, 809], "badg": [801, 809, 816], "Be": [802, 814], "awar": [802, 814, 821, 823], "linux": [802, 807, 808, 814, 861, 863], "regularli": [802, 814, 816], "internet": [802, 814], "codespac": [802, 814, 822], "make_doc": 802, "sh": [802, 807, 808, 811, 816], "host": [802, 816, 843, 848, 863], "pwd": 802, "ssh": [802, 816], "make_docs_without_dock": [802, 814], "assist": [803, 822], "runtimeerror": [803, 822], "logaddexp2_cpu": [803, 822], "falsifi": [803, 811, 822, 832], "test_logaddexp2": [803, 822], "backend_fw": [803, 822, 830], "dtype_and_x": [803, 822, 830, 832], "reproduce_failur": [803, 811, 822, 826, 832], "axicy2bkaamobaar2waaaacvaai": [803, 822], "decoartor": [803, 822], "with_unsupported_dtyp": [803, 817, 822, 829], "25830078125": [803, 822], "258544921875": [803, 822], "test_acosh": [803, 822], "axicy2baabyqwqgiaabdaai": [803, 822], "quit": [803, 808, 812, 819, 820, 822, 825, 826, 832, 835, 858, 864], "41421356": [803, 822], "41421356e": [803, 822], "34078079e": [803, 822], "154": [803, 822], "test_ab": [803, 807, 822, 832], "000j": [803, 822], "154j": [803, 822], "axicy2zkyaiibibgziaaxqhexsaab7juqaaamteazq": [803, 822], "experiment": [803, 808, 817, 829, 833, 837, 858], "thread": [803, 806, 807, 808, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 835, 840, 858], "pycharm": [803, 830, 832], "offer": [804, 829, 841, 849, 858, 864, 865], "formal": 804, "dynamo": 804, "award": 804, "crucial": [804, 818, 827], "pinpoint": 804, "pioneer": 804, "acknowledg": [804, 809], "collabor": [804, 846, 847, 848], "valuabl": [804, 806, 808], "merg": [804, 806, 808, 811, 816, 829, 858], "meet": [804, 806, 829], "qualiti": [804, 806, 808], "wizard": 804, "impact": [804, 816, 832, 841, 860], "inspector": 804, "honour": 804, "dilig": 804, "four": [804, 812, 817, 819, 824, 825, 832, 835, 840], "bronz": [804, 809], "silver": [804, 809], "gold": [804, 809, 843], "expertis": [804, 809, 860], "few": [805, 806, 808, 815, 817, 818, 824, 825, 827, 828, 830, 832, 835, 837, 838, 839, 840, 841, 849, 858, 860], "steep": 805, "curv": 805, "realpython": 805, "pyn": 805, "exchang": [805, 848, 854, 856], "pilot": [805, 844], "stuck": [805, 806], "spell": 805, "sound": [805, 816, 836], "frequent": [806, 808, 813, 858], "outlin": [806, 807, 808, 810, 815, 817, 820, 825, 828, 829, 832], "broad": [806, 860], "individu": [806, 808, 811, 813, 817, 825, 829, 858, 861, 864, 865], "clearli": [806, 808, 819, 830, 832, 848, 862], "lie": 806, "craft": [806, 831, 832], "fault": [806, 819, 858], "situat": [806, 808, 816, 842], "opportun": [806, 809], "tackl": [806, 809, 829], "challeng": [806, 813, 864], "categoris": [806, 811, 829], "encourag": [806, 809, 823, 843, 848], "comfort": [806, 807, 821], "linkag": 806, "confid": 806, "submit": [806, 823], "scipi": [806, 848, 860, 865], "mindspor": 806, "simpler": [806, 808, 823, 851, 859, 865], "member": [806, 808, 829, 844, 848], "comment": [806, 807, 808, 811, 817, 823, 829, 831, 835], "pr": [806, 808, 811, 823, 829, 830, 832], "composition": 806, "feasibl": [806, 816, 848, 851], "pend": 806, "helpfulli": [806, 835, 856], "problemat": [806, 807], "unimpl": 806, "issue_link": 806, "alias_nam": 806, "notic": [806, 812, 816, 822, 823, 832, 835, 851], "push": [806, 808, 809, 811, 830, 832, 864], "liner": 806, "meanwhil": [806, 816], "reselect": 806, "faithfulli": 806, "creation_routin": [806, 830], "indexing_routin": 806, "ma": 806, "manipulation_routin": 806, "mathematical_funct": [806, 829], "sorting_searching_count": 806, "ufunc": [806, 829], "matrix_and_vector_product": 806, "matrix_eigenvalu": 806, "norms_and_other_numb": 806, "solving_equations_and_inverting_matric": 806, "gleam": 806, "uncom": 806, "test_numpy_inn": 806, "test_frontend": [806, 816, 822, 830], "unsur": [806, 832], "statu": [806, 809, 816, 823, 849], "refrain": 806, "checkbox": [806, 807], "aforement": 806, "parent": [806, 816, 839], "arraywithelementwis": [806, 812, 839], "containerwithmanipul": 806, "thorough": [806, 820, 824, 832], "add_reformatting_checklist_": 806, "category_nam": [806, 817, 818, 820, 824, 825], "autom": [806, 816, 823, 832, 845, 860], "bot": [806, 823], "markdown": [806, 814], "patient": [806, 807], "elabor": 806, "struggl": 806, "assigne": 806, "status": 806, "central": [806, 823, 835, 848, 864], "analyz": [806, 845], "relevant_submodul": 806, "roadmap": [806, 816], "soon": [806, 808, 816, 817, 843, 851], "deem": [806, 829], "subtask": 806, "clearer": [806, 821, 830, 840], "backend_nam": [806, 813, 817, 818, 820, 824, 825, 826], "sometim": [806, 807, 808, 811, 817, 825, 829, 832, 835], "rare": [806, 818, 843, 863], "button": [806, 807, 808, 822], "centr": 806, "predetermin": 806, "superset": [806, 810, 825, 828, 843], "reserv": 806, "happi": [807, 822, 843, 849], "your_usernam": [807, 822], "your_fold": [807, 822], "enter": [807, 808, 812, 817, 818, 822, 824, 826], "sync": [807, 811, 822], "remot": [807, 811, 822, 823], "nutshel": [807, 824], "hook": [807, 823, 831], "lint": [807, 810], "succe": [807, 851], "whatev": [807, 815, 843], "elig": 807, "student": 807, "licens": [807, 861], "remind": 807, "expir": 807, "won": [807, 808, 815, 817, 842, 844, 848, 849, 851, 852, 853], "profession": 807, "trial": 807, "jetbrain": 807, "month": [807, 847], "bui": [807, 864], "paid": 807, "rapid": [807, 847, 848, 858], "pace": 807, "person": [807, 808], "abil": [807, 835, 838, 843, 858], "perhap": [807, 839, 840, 841, 843, 864], "conda": [807, 848, 860], "ivy_dev": [807, 808], "icon": [807, 808, 822], "panel": 807, "vscode": [807, 822], "palett": 807, "ctrl": [807, 808], "mac": [807, 808], "intel": [807, 848, 856, 863], "m1": 807, "optional_apple_silicon_1": 807, "optional_apple_silicon_2": 807, "array_api_test": [807, 808, 811, 822], "test_array_api": [807, 808, 811, 822, 832], "suit": [807, 810, 811, 816, 822, 831, 832, 840, 848, 858, 864], "cmd": 807, "bat": [807, 808], "virtualenv": 807, "tick": [807, 808, 816], "nz2": 807, "openssl": 807, "libssl1": 807, "1_1": 807, "1f": 807, "1ubuntu2": 807, "19_amd64": 807, "deb": 807, "dpkg": 807, "mitig": [807, 864], "desktop": [807, 822], "powershel": 807, "admin": 807, "deploy": [807, 852, 857, 860, 861, 864, 865], "menu": [807, 822], "introspect": 807, "dialog": 807, "persist": 807, "earlier": [807, 808, 817, 833], "virtualis": 807, "bio": [807, 848], "dropdown": [807, 816], "dockerfil": 807, "ca": 807, "certif": 807, "gnupg": 807, "lsb": 807, "keyr": 807, "fssl": 807, "gpg": 807, "dearmor": 807, "echo": [807, 816, 844], "arch": 807, "lsb_releas": 807, "null": [807, 822], "ce": 807, "cli": 807, "containerd": 807, "systemctl": 807, "softwar": [807, 808, 847, 848, 856, 861, 862, 863], "press": [807, 808, 840], "4a": 807, "socket": 807, "rwx": 807, "sock": 807, "pid": 807, "editor": 807, "pytest": [807, 808, 811, 816, 822, 826, 832], "keyboard": 807, "screenshot": 807, "pop": [807, 822, 848], "test_elementwis": 807, "bar": [807, 822], "shell": [807, 808, 811, 816], "setup_test": 807, "run_ivy_core_test": 807, "run_ivy_nn_test": 807, "run_ivy_stateful_test": 807, "run_test": [807, 816], "test_depend": 807, "test_ivy_cor": 807, "test_ivy_nn": 807, "test_ivy_st": 807, "unix": 807, "test_": [807, 830], "test_cor": [807, 808, 830], "offici": [807, 817, 837], "wish": [807, 829], "ivy_nn": 807, "ivy_st": 807, "header": [807, 808, 831], "arrow": 807, "test_stat": 807, "test_submodule_nam": 807, "test_function_nam": 807, "debugg": 807, "studio": [807, 822, 832], "especi": [807, 813, 823, 847, 858], "afterward": [807, 840], "background": [807, 814, 822, 858, 860], "overlap": [807, 816, 822, 833, 835, 859], "test_file_path": [807, 822], "test_fn_nam": [807, 822], "engin": [807, 858, 860, 861], "devcontain": 807, "comma": 807, "postcreatecommand": 807, "post_create_command": 807, "poststartcommand": 807, "safe": [807, 829], "containerworkspacefold": 807, "reopen": 807, "test_fle_path": 807, "slash": 807, "isol": [807, 808, 859, 864], "container": 807, "intens": 807, "headach": 807, "arm": [807, 808], "vm": [807, 816], "azur": 807, "cloud": [807, 816, 860], "theme": [807, 814], "ipad": 807, "browser": [807, 814], "quota": 807, "requisit": 807, "pane": [807, 808, 816], "dockerfilegpu": 807, "ivv": 807, "multiv": 807, "multivers": [807, 833], "dockerfilemultivers": 807, "dockerhub": 807, "upto": [807, 808], "minut": [807, 816], "launch": 807, "quickli": [807, 808, 816, 840, 841, 847, 849, 858, 865], "kindli": [807, 831], "guidelin": 807, "colour": 807, "chanc": 807, "troubleshoot": 807, "ever": 807, "flask": [807, 822], "toolbar": [807, 808, 822], "_array_modul": [807, 811, 822], "refresh": [807, 822], "pytestarg": [807, 822], "unittesten": [807, 822], "pytesten": [807, 822], "autotestdiscoveronsaveen": [807, 822], "conftest": 807, "serv": [807, 808, 812, 815, 824, 825, 829, 830, 832, 835, 836, 845, 856], "aren": [807, 817], "record": [807, 843, 859], "available_config": 807, "cp310": 807, "x86": [807, 863], "newer": [807, 832], "_compil": 807, "meantim": 807, "suffici": [807, 819, 829, 832], "bear": [807, 812, 815, 817, 829], "tendenc": 808, "land": 808, "unrel": [808, 848], "fly": [808, 858], "internship": 808, "suspect": 808, "iii": 808, "issue_numb": 808, "12345": 808, "rememb": 808, "respond": 808, "dai": [808, 823], "freed": 808, "obvious": [808, 816], "hypothet": 808, "frustrat": 808, "delai": [808, 851], "busi": 808, "inact": 808, "unfairli": 808, "investig": 808, "name_of_your_branch": 808, "date": [808, 811], "complic": [808, 830, 837], "merge_with_upstream": 808, "abort": 808, "tediou": [808, 819, 835], "stash": [808, 823], "reinstat": 808, "uncommit": 808, "unstag": [808, 823], "untrack": 808, "atlassian": 808, "wrote": 808, "piec": [808, 812, 825, 826, 837, 851, 854, 856], "blame": 808, "eg": 808, "week": [808, 849], "grep": 808, "commit_id": 808, "handi": 808, "histori": 808, "toggl": 808, "highlight": [808, 816, 819, 829, 831], "approv": 808, "someon": [808, 843], "hash": [808, 840], "cancel": 808, "speedup": 808, "unavail": 808, "tickbox": 808, "span": [808, 856, 864], "intent": [808, 828], "discourag": 808, "adopt": [808, 812, 824, 835, 848, 857, 858, 863], "philosophi": 808, "infrequ": 808, "earli": [808, 858], "wast": [808, 816], "spot": [808, 819, 825], "mistak": 808, "mountain": 808, "advoc": [808, 843], "session": [808, 858], "beauti": 808, "particularli": [808, 840, 843, 851, 856], "care": [808, 818, 829, 835, 842, 848], "undo": 808, "stress": 808, "nifti": 808, "reassur": 808, "local_path_to_ivi": 808, "subfold": [808, 830, 832, 833], "dep": 808, "fresh": 808, "arsen": 808, "exec": 808, "ivy_contain": 808, "test_imag": 808, "test_random_crop": 808, "test_creation_funct": 808, "test_arang": 808, "cursor": 808, "alt": 808, "blog": 808, "breakpoint": 808, "gutter": 808, "caret": 808, "f8": 808, "f9": 808, "Into": 808, "f7": 808, "smart": 808, "fragment": [808, 854, 856, 860], "wherein": [808, 825, 832], "failur": [808, 816, 830, 832], "earn": 809, "straightforward": [809, 840], "door": [809, 843], "elev": 809, "mission": [809, 848, 860], "testament": [809, 831], "stone": 809, "acquir": 809, "peak": 809, "privileg": [809, 860], "bounti": 809, "cash": 809, "delight": 809, "embark": 809, "innov": [809, 848], "weed": [810, 836], "tour": 810, "formatt": [810, 823], "conjunct": 811, "establish": [811, 860], "popular": [811, 858], "sens": [811, 817, 819, 829, 831, 839], "unconnect": 811, "initialis": [811, 829, 832], "strang": [811, 839], "thoroughli": 811, "test_linalg": [811, 830], "test_set_funct": 811, "test_signatur": 811, "excess": [811, 813, 819], "array_modul": 811, "vv": 811, "test_manipulation_funct": 811, "test_concat": [811, 832], "nb": 811, "liber": 811, "______________________": 811, "test_remaind": 811, "_______________________": 811, "test_operators_and_elementwise_funct": 811, "1264": 811, "1277": 811, "binary_param_assert_against_refimpl": 811, "ctx": 811, "620": 811, "binary_assert_against_refimpl": 811, "324": 811, "scalar_o": 811, "17304064": 811, "binaryparamcontext": 811, "axic42baaowcnp": 811, "rumwmabaear0": 811, "make_binary_param": 811, "numeric_dtyp": 811, "left_strat": 811, "left_sym": 811, "right_strat": 811, "right_sym": 811, "right_is_scalar": 811, "binary_param_assert_dtyp": 811, "binary_param_assert_shap": 811, "recreat": 811, "unexpectedli": 811, "discrep": [811, 830], "test_asarray_arrai": 811, "test_floor_divid": 811, "health": 811, "test_iop": 811, "__imod__": 811, "isequ": 811, "test_matrix_norm": 811, "alter": 811, "tweak": 811, "array_api_methods_to_test": 811, "test_special_cas": 811, "__ipow__": 811, "is_integ": 811, "easier": [811, 812, 813, 817, 830, 833, 845, 858, 860], "revisit": [811, 824], "_data": [812, 828, 829, 839], "organiz": [812, 815, 829], "underpin": [812, 815, 837], "programmat": [812, 815, 859], "backup": [812, 814, 815], "accident": [812, 815, 829], "absent": [812, 815], "auto": [812, 814, 815, 823, 840], "__mul__": [812, 815, 819, 824, 835, 839], "throw": [812, 817, 818, 821, 822, 839, 858], "imposs": 812, "inputs_to_native_arrai": [812, 825, 826], "outputs_to_ivy_arrai": [812, 817, 818, 824, 825, 826], "secondli": [812, 817], "__ivy_array_function__": 812, "inspir": 812, "__torch_function__": 812, "myarrai": 812, "handled_funct": 812, "notimpl": 812, "issubclass": 812, "enough": [812, 816, 817, 818, 832, 839, 840, 841], "ivy_funct": 812, "my_ab": 812, "my_arrai": 812, "implicit_backend": [813, 837], "__dict__": [813, 828, 837], "ivy_original_dict": [813, 837], "fallback": 813, "live": [813, 814, 817, 848, 849, 854, 856], "scope": [813, 859, 863], "dlpack": 813, "set_dynamic_backend": 813, "unset_dynamic_backend": 813, "dynamic_backend_a": 813, "set_": 813, "unset_": 813, "backend_handl": 813, "requires_grad": 813, "memory_format": 813, "preserve_format": 813, "weren": 813, "vast": [813, 817, 858], "minor": [813, 835, 843], "fn_name_v_1p12_and_abov": 813, "fn_name_v_1p01_to_1p1": 813, "heavili": [814, 826, 843], "characterist": 814, "conf": 814, "cleanup": 814, "readm": [814, 843], "maxdepth": 814, "caption": 814, "related_work": 814, "deep_div": 814, "faq": 814, "glossari": 814, "autosummari": 814, "top_functional_toc": 814, "restructuredtext": 814, "discov": [814, 817], "ivy_toctree_caption_map": 814, "stub": 814, "unfortun": [814, 823], "linker": 814, "foo": 814, "discussion_channel_map": 814, "1000043690254946374": 814, "1000043749088436315": 814, "forum": [814, 844], "seri": [814, 817, 829, 832, 858, 860], "discussion_paragraph": 814, "discord_link": 814, "channel_link": 814, "gg": 814, "zvqdvbznqj": 814, "799879767196958751": 814, "channel_id": 814, "autoskippablemethod": 814, "skippable_method_attribut": 814, "__qualname__": 814, "autodoc": 814, "__doc__": 814, "autoivydata": 814, "mutual": [815, 825], "containerwithelementwis": 815, "__repr__": 815, "__getattr__": [815, 851], "__setattr__": [815, 851], "__contains__": 815, "__getstate__": 815, "__setstate__": 815, "unpickl": 815, "num_dim": [815, 842], "restrict": [815, 816, 829, 837, 851, 855], "enforc": [815, 839], "extern": [815, 824, 829, 832, 833], "lefthand": 815, "righthand": 815, "handle_nest": [815, 824, 825, 826, 837], "absenc": [815, 824, 858], "implicitli": [815, 827, 832, 837], "log_pr": [815, 825, 828], "intuit": [815, 832, 840, 841, 854], "chronolog": 815, "concurr": [815, 816, 825, 858], "despit": [815, 817, 818, 830, 837, 848, 855, 858], "__list__": 815, "whatsoev": [815, 825, 845, 864], "children": 815, "shallowest": 815, "deepest": 815, "rollback": 816, "incorpor": [816, 830, 840, 858], "techniqu": 816, "triplet": 816, "test_torch": [816, 830], "test_tensor": [816, 830], "test_torch_instance_arctan_": 816, "12500": 816, "daili": 816, "huge": [816, 840, 846, 848, 858, 864], "shoot": 816, "_reduce_loss": [816, 825, 828], "test_nn": 816, "test_loss": 816, "test_binary_cross_entropy_with_logit": 816, "test_cross_entropi": 816, "test_binary_cross_entropi": 816, "test_sparse_cross_entropi": 816, "test_loss_funct": 816, "test_torch_binary_cross_entropi": 816, "test_torch_cross_entropi": 816, "binary_cross_entropy_with_logit": 816, "torch_binary_cross_entropi": 816, "torch_cross_entropi": 816, "magic": 816, "readthedoc": 816, "pedagog": 816, "f_1": 816, "t_1": 816, "t_3": 816, "t_7": 816, "t_": 816, "f_m": 816, "cyclic": 816, "intellig": [816, 832, 860], "tests_fil": 816, "file_nam": [816, 832, 833], "tests_lin": 816, "correspondingli": 816, "tests_to_run": 816, "determine_tests_lin": 816, "mongodb": 816, "databas": [816, 832], "mechan": [816, 843], "secret": 816, "db": 816, "ssh_deploy_kei": 816, "suffic": [816, 826, 832], "massiv": 816, "yml": 816, "felicit": 816, "clone_map": 816, "deploy_kei": 816, "user_email": 816, "user_nam": 816, "target_branch": 816, "github_serv": 816, "deploy_key_fil": 816, "ssh_known_hosts_fil": 816, "known_host": 816, "keyscan": 816, "git_ssh_command": 816, "userknownhostsfil": 816, "email": [816, 848], "methodologi": 816, "master1": 816, "restructur": 816, "_map": 816, "t_2": 816, "t_n": 816, "index_map": 816, "test_map": 816, "snowbal": 816, "recalibr": 816, "workflow_dispatch": 816, "schedul": [816, 843, 858, 865], "cron": 816, "saturdai": 816, "night": 816, "pm": 816, "gut": 816, "lesser": [816, 821], "lol": 816, "hour": [816, 849], "cater": [816, 831], "master2": 816, "master32": 816, "synchron": 816, "runner2": 816, "corrupt": 816, "decoupl": [816, 841], "150": 816, "cycl": [816, 832], "yellow": 816, "queu": 816, "redirect": 816, "book": 816, "onrend": 816, "jo": 816, "ran": 816, "clickabl": 816, "all_dtyp": 817, "all_numeric_dtyp": 817, "all_int_dtyp": 817, "all_float_dtyp": 817, "replic": [817, 827, 828, 829], "thirdli": 817, "native_float32": 817, "importantli": [817, 839, 842], "arguabl": [817, 818, 829], "jaxarrai": [817, 818, 821, 824, 828, 833, 837], "_handle_0_dim_output": 817, "subtli": [817, 828], "promote_types_frontend_nam": 817, "promote_types_of_frontend_name_input": 817, "frontend_nam": 817, "upcast": 817, "nearli": [817, 824, 826, 858], "downcast": 817, "footprint": 817, "concret": 817, "aris": [817, 823, 843, 848], "utterli": 817, "meant": [817, 819, 828], "twice": 817, "disadvantag": 817, "relax": 817, "f64": 817, "unwant": 817, "primaci": 817, "resembl": 817, "compound": 817, "infer_dtyp": [817, 818, 824, 826], "settabl": [817, 818], "handle_out_argu": [817, 818, 824, 825, 826, 828, 837], "infer_devic": [817, 818, 824, 826], "deleg": [817, 865], "shape_to_tupl": 817, "with_supported_dtyp": 817, "unment": 817, "_cast_for_unary_op": [817, 825, 828], "target_typ": 817, "syntax": [817, 847, 848, 858], "unsupported_dtyp": 817, "supported_dtypes_and_devic": 817, "with_unsupported_device_and_dtyp": 817, "globals_getter_func": 817, "f2": 817, "lack": [817, 828, 858, 865], "mandat": [817, 828, 832, 833, 848], "confus": [817, 821, 828, 835, 845, 849], "inconsist": [817, 821, 827], "is_nan": 817, "supported_dtyp": 817, "anytim": 817, "84530": 817, "unwarr": 817, "risk": [817, 864], "needlessli": 817, "bloat": 817, "undergo": [817, 843], "unsupported_devic": 817, "supported_devic": 817, "downsid": 817, "coverag": [817, 832], "undesir": 817, "accomplish": 817, "upcast_data_typ": 817, "downcast_data_typ": 817, "crosscast_data_typ": 817, "cast_data_typ": 817, "downcast_data_dtyp": 817, "vice": 817, "versa": 817, "till": 817, "crosscast": 817, "exmp1": 817, "watch": [817, 829], "handle_numpy_arrays_in_specific_backend": [817, 824], "cate": 817, "understood": 817, "consumpt": [817, 862], "dual": 818, "categor": [818, 825, 829], "210": 818, "_handle_except": [818, 821], "1013": 818, "_handle_nest": [818, 821], "905": 818, "_handle_out_argu": [818, 821], "441": 818, "_inputs_to_native_arrai": [818, 821], "new_arg": [818, 821], "new_kwarg": [818, 821], "_outputs_to_ivy_arrai": [818, 821], "358": 818, "_handle_array_funct": [818, 821], "_handle_device_shift": 818, "handle_device_shift": [818, 826], "device_shifting_dev": 818, "__enter__": 818, "__exit__": 818, "mostli": [818, 828, 832], "soft_devic": 818, "eight": [819, 836], "op_nam": 819, "__r": 819, "unsurprisingli": [819, 847], "recap": [819, 841], "combinatori": 819, "okai": [819, 835, 837], "spec": [819, 820], "my_func": [819, 833], "some_flag": 819, "another_flag": 819, "jointli": 819, "5574077": 819, "1850398": 819, "5463025": 819, "8422884": 819, "91601413": 819, "9647598": 819, "3738229": 819, "1597457": 819, "0963247": 819, "9955841": 819, "3278579": 819, "asid": 819, "increasingli": [819, 851], "14254655": 819, "1578213": 819, "380515": 819, "trivial": [819, 828], "failing_fn_nam": 819, "onlin": [819, 820], "minutest": 819, "contrast": [820, 824, 829, 864], "preview": 820, "incorrectli": [820, 851], "needless": [820, 830], "renam": [820, 829], "judgment": 820, "operator_nam": 820, "succinct": 820, "docst": 820, "native_error": 821, "_combine_messag": 821, "truli": [821, 839], "wrong": [821, 823, 826, 829, 835], "198": 821, "392": 821, "_handle_array_like_without_promot": 821, "805": 821, "432": 821, "349": 821, "other_test": 821, "523": 821, "_handle_numpy_out": 821, "396": [821, 841], "_outputs_to_numpy_arrai": 821, "_inputs_to_ivy_arrays_np": 821, "ivy_arg": 821, "ivy_kwarg": 821, "453": 821, "_from_zero_dim_arrays_to_scalar": 821, "truth_value_test": 821, "visibl": 821, "unwieldi": 821, "squash": 821, "hide": [821, 851], "cleaner": [821, 840], "caught": [821, 823], "rethrow": 821, "_print_traceback_histori": 821, "error_stack": 821, "axiserror": 821, "polici": [821, 826, 832, 834], "moreov": 821, "submoodul": 822, "test_jax_transpos": 822, "manipulaiton": 822, "test_jax": [822, 830], "test_numpi": [822, 830], "test_manipul": [822, 830, 832], "preconditionnotmet": 822, "densetensor": 822, "holder_": 822, "phi": 822, "dense_tensor_impl": 822, "array_and_ax": 822, "aaegbaegaqaaaaaaaaaaaaab": 822, "black": 823, "flake8": 823, "linter": 823, "autoflak": 823, "docformatt": 823, "pydocstyl": 823, "yaml": 823, "patch1687898304": 823, "8072": 823, "3516aed563": 823, "reformat": 823, "akshai": 823, "jain": 823, "gui": 823, "cryptic": 823, "garden": 823, "utc": 823, "didn": 823, "human": 823, "intervent": 823, "typo": 823, "ui": 823, "handle_array_like_without_promot": [824, 826], "to_native_arrays_and_back": [824, 826, 837], "handle_array_funct": [824, 826], "inputs_to_native_shap": [824, 826], "rational": [824, 828, 835], "__div__": [824, 835], "484": 824, "annot": 824, "brittl": 824, "freeli": 824, "inde": [824, 835, 843, 856], "technic": [824, 828, 843, 858, 860], "original_typ": 824, "cumbersom": 824, "hinder": [824, 847], "venn": 825, "diagram": [825, 864], "light": [825, 833, 843, 845, 859, 864], "maximis": 825, "encompass": 825, "partial_mixed_handl": [825, 826, 835], "handle_partial_mixed_funct": [825, 826, 835], "fn_decor": 825, "mixed_backend_wrapp": [825, 828], "to_add": 825, "to_skip": 825, "inputs_to_ivy_arrai": [825, 826], "modif": [825, 858], "briefli": [825, 832, 840], "get_all_arrays_on_dev": 825, "outputs_to_ivy_shap": 826, "outputs_to_native_arrai": 826, "handle_view_index": [826, 828], "handle_view": [826, 828], "handle_rag": 826, "handle_backend_invalid": 826, "handle_nan": 826, "to_native_shapes_and_back": 826, "modern": [827, 847, 848, 863], "inter_func": 827, "custom_grad_fn": 827, "args1": 827, "eas": [827, 858], "speak": 828, "val_n": 828, "base_idx": 828, "_manipulation_stack": 828, "base_flat": 828, "_view_ref": 828, "_update_view": 828, "contigu": 828, "c_contigu": 828, "ascontiguousarrai": 828, "copyto": 828, "_is_vari": 828, "tensor_scatter_nd_upd": 828, "is_vari": 828, "_update_torch_view": 828, "predominantli": [828, 833], "support_native_out": [828, 837], "_scalar_output_to_0d_arrai": 828, "_wrap_fn": 828, "dim0": 828, "dim1": 828, "res_floor": 828, "extent": [828, 829], "to_out_fn": 828, "add_wrapp": 828, "paradigm": [828, 843, 858], "expans": 828, "brief": [828, 832], "weak": 828, "_torch_bas": 828, "_torch_view_ref": 828, "_torch_manipul": 828, "weakli": 828, "adequ": 828, "tf_frontend": 829, "lax": [829, 830, 835, 842, 843], "torch_frontend": [829, 830], "numpy_frontend": 829, "jax_frontend": 829, "to_ivy_arrays_and_back": [829, 830], "fidel": 829, "algebra": [829, 856, 857, 858, 861, 865], "dynamic": 829, "mimic": 829, "arithmetic_oper": 829, "handle_numpy_out": 829, "handle_numpy_dtyp": 829, "handle_numpy_cast": 829, "from_zero_dim_arrays_to_scalar": 829, "_add": 829, "same_kind": 829, "subok": [829, 830, 835], "promote_types_of_numpy_input": 829, "underscor": 829, "unhandl": 829, "trigonometric_funct": 829, "_tan": 829, "check_tensorflow_cast": 829, "raw_op": [829, 830], "map_raw_ops_alia": 829, "output_typ": 829, "kwargs_to_upd": 829, "pointwise_op": 829, "sensibl": 829, "ahead": [829, 833, 858], "reduce_logsumexp": 829, "logsumexp": 829, "trick": 829, "max_input_tensor": 829, "preferred_element_typ": 829, "languag": [829, 837, 845, 847, 849, 856, 859, 861, 862, 863, 864], "finer": 829, "logicaland": 829, "np_frontend": 829, "_ivy_arrai": 829, "radd": 829, "_init_data": 829, "_process_str_data": 829, "_dtype": [829, 830, 839], "_shape": [829, 839], "govern": 829, "promote_types_of_": 829, "_input": 829, "promote_types_of_torch_input": [829, 830], "handle_numpy_casting_speci": 829, "new_fn": 829, "equiv": 829, "unsaf": 829, "array_type_test": 829, "_isfinit": 829, "organis": 829, "grasp": 829, "youtub": 829, "knowledg": 830, "np_frontend_help": 830, "open_task": 830, "test_lax": 830, "test_oper": 830, "test_jax_tan": 830, "test_mathematical_funct": 830, "test_trigonometric_funct": 830, "dtypes_values_cast": 830, "dtypes_values_casting_dtyp": 830, "arr_func": 830, "get_num_positional_args_ufunc": 830, "test_numpy_tan": 830, "handle_where_and_array_bool": 830, "test_tensorflow": 830, "test_math": 830, "test_tensorflow_tan": 830, "test_pointwise_op": 830, "test_torch_tan": 830, "_fill_valu": 830, "test_glob": 830, "test_jax_ful": 830, "test_from_shape_or_valu": 830, "_input_fill_and_dtyp": 830, "dtype_and_input": 830, "dtype_to_cast": 830, "input_fill_dtyp": 830, "test_numpy_ful": 830, "test_raw_op": 830, "test_tensorflow_fil": 830, "test_creation_op": 830, "with_arrai": 830, "test_torch_ful": 830, "add_nois": 830, "all_clos": 830, "_get_dtype_and_matrix": 830, "test_torch_qr": 830, "frontend_q": 830, "frontend_r": 830, "walkthrough": 830, "comparison_op": 830, "test_comparison_op": 830, "test_torch_great": 830, "all_alias": 830, "test_ndarrai": 830, "test_numpy_instance_add__": 830, "test_tensorflow_instance_add": 830, "1e04": 830, "allow_infin": 830, "test_torch_instance_add": 830, "_arrays_idx_n_dtyp": 830, "surprisingli": 830, "closest_relevant_group": 830, "strive": [830, 832, 835, 843, 860], "tailor": 831, "clariti": [831, 832, 835, 858], "weav": 831, "thrill": 831, "brim": 831, "stand": [831, 832], "landscap": 831, "forese": 831, "refin": 831, "inquiri": 831, "fixtur": 832, "hit": [832, 837, 851], "eleg": [832, 858], "unexplor": 832, "artifact": 832, "bespok": 832, "_array_or_typ": 832, "rigor": [832, 847], "test_default_int_dtyp": 832, "print_hypothesis_exampl": 832, "custom_strategi": 832, "randomis": 832, "simplist": 832, "intricaci": 832, "glanc": 832, "one_of": 832, "datum": 832, "pipe": 832, "array_or_scal": 832, "len_of_arrai": 832, "test_add": 832, "test_gpu_is_avail": 832, "pretest": 832, "snippet": [832, 852], "criterion": 832, "valid_ax": 832, "hoc": 832, "11228": 832, "268": 832, "wherev": 832, "9622": 832, "28136": 832, "6375": 832, "12720": 832, "21354": 832, "900e": 832, "57384": 832, "25687": 832, "248": 832, "test_devic": 832, "array_shap": 832, "test_lay": 832, "some_sequ": 832, "arrays_valu": 832, "36418": 832, "213": 832, "21716926": 832, "none_or_list_of_float": 832, "get_prob": 832, "103515625e": 832, "099609375": 832, "probabilist": 832, "number_positional_argu": 832, "unreproduc": 832, "x_and_linear": 832, "is_torch_backend": 832, "x_shape": [832, 837], "weight_shap": 832, "bias_shap": 832, "ivy_np": 832, "valid_float_dtyp": 832, "test_demo": 832, "failing_test": 832, "traceback": 832, "shrink": 832, "prescrib": 832, "scratch": 832, "therebi": 832, "test_gelu": 832, "test_fil": 832, "phase": [832, 843, 858], "notabl": [832, 858], "max_exampl": 832, "deadlin": 832, "weird": 832, "systemat": 832, "safeguard": 832, "inabl": 832, "test_result_typ": 832, "9090909090909091": 832, "judgement": 833, "some_namespac": 833, "some_backend": 833, "another_backend": 833, "refactor": 833, "ongo": 833, "check_fill_value_and_dtype_are_compat": 833, "_to_devic": 833, "shouldn": [833, 851], "pin": 833, "unpinn": 833, "culmin": 833, "unsett": 834, "array_significant_figur": 834, "array_decimal_valu": 834, "warning_level": 834, "nan_polici": 834, "stablest": 834, "constantli": [835, 847], "answer": [835, 839, 843], "contradict": 835, "entail": 835, "sacrif": 835, "jacfwd": 835, "jacrev": 835, "banner": 835, "expens": 835, "incredibli": [835, 840, 843, 861], "price": 835, "pai": 835, "intrus": 835, "x_beta": 835, "equip": 835, "simplif": 835, "allevi": 835, "ineffici": [835, 843, 858], "fuse": 835, "hybrid": 835, "workaround": 835, "slip": 835, "radar": 835, "stumbl": 835, "gone": [836, 848], "fulfil": 836, "syntact": [837, 842], "power_seq": 837, "_determine_backend_from_arg": 837, "importlib": 837, "_backend_dict": 837, "x_flat": 837, "wi": 837, "wi_x": 837, "wii_x": 837, "wif_x": 837, "wig_x": 837, "wio_x": 837, "wh": 837, "ht": 837, "ct": 837, "hts_list": 837, "wii_xt": 837, "wif_xt": 837, "wig_xt": 837, "wio_xt": 837, "htm1": 837, "ctm1": 837, "wh_htm1": 837, "whi_htm1": 837, "whf_htm1": 837, "whg_htm1": 837, "who_htm1": 837, "ft": 837, "ot": 837, "reliabl": 837, "scalabl": [837, 847, 863, 864], "sacrific": 837, "hear": 837, "virtu": [837, 855], "pure_ivi": 837, "pure_torch": 837, "unclean": 837, "wx": 837, "temp": 837, "ivy_func": 837, "emphas": 837, "torchscript": [837, 845, 865], "example_input": 837, "static_argnum": [837, 851], "static_argnam": [837, 851], "primit": [838, 843, 856, 858], "upcom": 838, "hierarch": [838, 840, 841, 858], "arraywithactiv": 839, "arraywithcr": 839, "arraywithdatatyp": 839, "arraywithdevic": 839, "arraywithgener": 839, "arraywithgradi": 839, "arraywithimag": 839, "arraywithlay": 839, "arraywithlinearalgebra": 839, "arraywithloss": 839, "arraywithmanipul": 839, "arraywithnorm": 839, "arraywithrandom": 839, "arraywithsearch": 839, "arraywithset": 839, "arraywithsort": 839, "arraywithstatist": 839, "arraywithutil": 839, "_init": 839, "_size": 839, "_devic": 839, "_dev_str": 839, "_pre_repr": 839, "_post_repr": 839, "framework_str": 839, "pypep8nam": 839, "immut": 839, "claim": 839, "_native_wrapp": 839, "genuin": 839, "some_method": 839, "rewritten": 839, "littl": [839, 847, 860], "wonder": [839, 847, 849], "compartment": 839, "newshap": 839, "new_shap": 839, "tidi": 839, "crystal": 839, "ton": 840, "ado": [840, 841], "soup": 840, "walk": [840, 841], "cnt": 840, "3333335": 840, "autocomplet": 840, "midwai": 840, "agent": 840, "total_spe": 840, "total_height": 840, "total_width": 840, "ag": 840, "tot": 840, "total_": 840, "total_h": 840, "cnt0": 840, "cnt1": 840, "diff_0": 840, "diff_1": 840, "config0": 840, "config1": 840, "l0": 840, "decoder__l0": 840, "decoder__l1": 840, "encoder__l0": 840, "encoder__l1": 840, "l0__b": 840, "l0__w": 840, "l1__b": 840, "l1__w": 840, "printabl": 840, "foresight": 840, "untidili": 840, "update_ag": 840, "normalize_img": 840, "img_max": 840, "reduce_max": 840, "img_min": 840, "reduce_min": 840, "img_rang": 840, "agent_posit": 840, "agent_veloc": 840, "agent_cam_front_rgb": 840, "agent_cam_front_depth": 840, "agent_cam_rear_rgb": 840, "agent_cam_rear_depth": 840, "agent_cam_lidar": 840, "camera": 840, "front_rgb": 840, "front_depth": 840, "rear_rgb": 840, "rear_depth": 840, "lidar": 840, "rgb": 840, "rear": 840, "veloc": 840, "cam": 840, "cam_max": 840, "cam_min": 840, "cam_rang": 840, "five": 840, "allud": [840, 848], "perman": 840, "dataload": 840, "_cnt": 840, "img_": 840, "_dataset_s": 840, "_batch_siz": 840, "_count": [840, 841], "__next__": 840, "img_fnam": 840, "loaded_img": 840, "batch_slic": 840, "0145": 840, "addbackward0": 840, "_create_vari": 841, "_input_channel": 841, "_output_channel": 841, "_w_shape": 841, "_b_shape": 841, "_with_bia": 841, "764": 841, "872": 841, "211": 841, "439": 841, "nightmar": 841, "overcom": 841, "v1": 841, "key0": 841, "linear3": 841, "v2": 841, "preced": [841, 848], "_w_init": 841, "_b_init": 841, "misnom": 841, "saw": 841, "_beta1": 841, "_beta2": 841, "_epsilon": 841, "_mw": 841, "_vw": 841, "_first_pass": 841, "_should_trac": 841, "new_v": 841, "_lr": 841, "_inplac": 841, "_stop_gradi": 841, "sparse_funct": 842, "vital": [842, 847], "_linear": 842, "jax_graph": 842, "to_backend": 842, "thinli": 842, "to_haiku_modul": 842, "loss_fn_t": 842, "without_apply_rng": 842, "update_rul": 842, "tree_multimap": 842, "trax": [842, 849], "objax": [842, 849], "matur": [843, 848, 858], "doubt": 843, "grate": 843, "probe": 843, "lock": 843, "dex": 843, "tricki": [843, 845], "predictor": 843, "tight": 843, "dispatch": [843, 858, 861], "ast": 843, "autodiff": 843, "shine": 843, "merci": 843, "compet": [843, 858], "parallelis": 843, "spmd": 843, "mixtur": 843, "expert": 843, "sophist": 843, "depart": 843, "hundr": 843, "thousand": 843, "broadli": [843, 864], "supplementari": 843, "reusabl": [843, 856, 858], "fanci": [843, 858], "fusion": [843, 862], "lose": 843, "pmap": 843, "eventu": 843, "supplement": 843, "backdoor": 843, "callback": 843, "somewhat": [843, 858], "outsourc": 843, "ivy_root": 844, "pem": 844, "api_kei": 844, "asap": 844, "nail": 845, "scientist": 845, "correl": 845, "consortium": [846, 848], "grown": 847, "rapidli": 847, "shareabl": 847, "outdat": 847, "newest": 847, "prototyp": [847, 858], "obsolet": [847, 849], "invent": 847, "simultan": [847, 849], "runner": 847, "principl": [847, 856, 858, 861], "2006": 847, "cloth": 847, "forgiven": 848, "eyebrow": 848, "somehow": 848, "industri": [848, 858, 860], "funni": 848, "comic": 848, "charger": 848, "instant": 848, "contrari": 848, "bumpi": 848, "road": 848, "technologi": [848, 856, 860], "pcie": 848, "motherboard": 848, "raid": 848, "bluetooth": 848, "wireless": 848, "btx": 848, "sata": 848, "tcp": 848, "ip": 848, "smtp": 848, "send": [848, 863], "gmail": 848, "outlook": 848, "growth": [848, 861], "necess": 848, "2015": [848, 858], "aros": 848, "ourselv": [848, 864], "quansight": [848, 864], "compani": [848, 854], "apach": [848, 860, 864], "onnx": [848, 856, 864], "cupi": [848, 858, 865], "modin": 848, "spyder": 848, "octoml": [848, 864], "sponsor": 848, "lg": 848, "electron": 848, "shaw": 848, "pursuit": 848, "complianc": 848, "convinc": 848, "celebr": 848, "abund": 849, "streamlin": [849, 861], "awesom": 849, "love": 849, "slew": 849, "inevit": [849, 859], "erron": 849, "poor": 849, "spin": 849, "sake": 849, "wouldn": 849, "frantic": 849, "lucid": 849, "honk": 849, "hasn": 849, "spend": [849, 858], "sonnet": 849, "trainer": [849, 865], "quo": 849, "dopamin": 849, "ignit": 849, "catalyst": 849, "lightn": 849, "fastai": 849, "publicli": [851, 852, 853], "logger": 851, "arg_stateful_idx": 851, "kwarg_stateful_idx": 851, "include_gener": 851, "array_cach": 851, "return_backend_traced_fn": 851, "lazygraph": [851, 852, 853], "sum_j": 851, "traced_fn": 851, "impos": 851, "comp_func": 851, "trade": 851, "bake": 851, "cont": 851, "new_attribut": 851, "resnet50": 851, "breed": 851, "autoimageprocessor": [851, 852], "resnetforimageclassif": [851, 852], "traced_graph": 851, "predicted_label": 851, "debug_mod": 852, "rough": 852, "transformed_with_st": 852, "bigger": 852, "hf": 852, "tf_model": 852, "tf_input": 852, "transpile_kwarg": 853, "transpiled_func": 853, "unified_func": 853, "rwork": 854, "vendor": [854, 860], "complimentari": [854, 864], "acycl": [854, 859], "insert_numb": 855, "insert_t": 855, "scaffold": [856, 864], "heart": 856, "toolchain": [856, 861], "assembli": [856, 863, 864], "idl": 856, "middl": 856, "emit": 856, "gnu": [856, 861], "broader": 856, "heterogen": 856, "aid": 856, "coprocessor": 856, "programm": [856, 863], "gate": 856, "onednn": 856, "sit": [856, 859, 864], "tandem": 856, "possess": 856, "khrono": [857, 863], "appl": 857, "coremltool": 857, "albeit": 857, "promin": 858, "abbrevi": 858, "laboratori": 858, "proprietari": [858, 862, 863], "mathwork": 858, "commerci": 858, "1984": 858, "toolbox": 858, "mupad": 858, "simulink": 858, "graphic": [858, 862, 863], "simul": 858, "million": [858, 861], "worldwid": 858, "scienc": [858, 860], "econom": 858, "2001": 858, "od": 858, "solver": 858, "cython": 858, "friendli": 858, "2002": 858, "lua": 858, "luajit": 858, "idiap": 858, "epfl": 858, "2005": 858, "numarrai": 858, "cpython": 858, "partli": 858, "2007": 858, "forest": 858, "boost": 858, "dbscan": 858, "inbuilt": 858, "esqu": 858, "aesara": 858, "datafram": 858, "2012": 858, "polymorph": 858, "mpi": 858, "openmp": 858, "glue": 858, "jaot": 858, "nasa": 858, "cern": 858, "climat": 858, "allianc": 858, "influenti": 858, "2014": 858, "scala": 858, "ship": 858, "forgiv": 858, "decemb": 858, "announc": 858, "mainten": 858, "v7": 858, "meaning": 858, "2016": 858, "imper": 858, "amazon": 858, "traction": 858, "cognit": [858, 865], "grade": 858, "dnn": 858, "backpropag": 858, "succumb": 858, "came": 858, "monitor": 858, "practition": [858, 862, 863, 864], "hobbyist": 858, "tremend": 858, "ecosystem": 858, "gear": 858, "batteri": 858, "zygot": 858, "jl": 858, "workload": 858, "daggerflux": 858, "frontier": 858, "hessian": 858, "2018": 858, "lightweight": [858, 865], "shortcom": 858, "barrier": 858, "inexperienc": 858, "underdevelop": 858, "fanat": 858, "ounc": 858, "infanc": 858, "emerg": 858, "nich": 858, "mobil": 858, "lite": 858, "enterpris": 858, "reinvent": [858, 860], "inertia": 858, "creator": [858, 860], "paszk": 858, "hi": 858, "bulk": 858, "haskel": 858, "dataflow": 859, "trace_modul": 859, "scriptfunct": 859, "scriptmodul": 859, "fake": 859, "proxi": 859, "graphmodul": 859, "travi": 860, "oliph": 860, "leader": 860, "cornerston": 860, "numba": 860, "numfocu": 860, "pydata": 860, "confer": 860, "consult": 860, "servic": 860, "devop": 860, "mlop": 860, "dashboard": 860, "startup": 860, "mlir": [860, 861, 864], "Their": 860, "held": 860, "presum": 860, "llvm": [860, 863], "founder": 860, "tvm": [860, 864], "sustain": 860, "empow": 860, "har": 860, "burden": 860, "benchmark": 860, "precompil": 861, "executor": 861, "julia": [861, 864], "fsf": 861, "gpl": 861, "biggest": [861, 864], "throughput": 862, "gpgpu": 862, "classic": 863, "sycl": 863, "dpc": 863, "processor": 863, "maco": 863, "oneapi": 863, "ia": 863, "aka": 863, "xeon": 863, "gen9": 863, "xe": 863, "arria": 863, "gx": 863, "fpga": 863, "lofti": 864, "ambit": 864, "realm": 864, "bedrock": 864, "flux": 864, "bite": 864, "chew": 864, "eagerpi": 864, "tensorli": 864, "thinc": 864, "neuropod": 864, "fx": 864, "retrain": 864, "closer": 864, "greatli": 864, "modular": 864, "anywher": 864, "theano": 865, "plaidml": 865, "partial_svd": 865, "excel": 865, "subsystem": 865}, "objects": {"ivy.Array": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [603, 0, 1, "", "adam_step"], [604, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [416, 0, 1, "", "adjoint"], [755, 0, 1, "", "all"], [523, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [756, 0, 1, "", "any"], [732, 0, 1, "", "argmax"], [733, 0, 1, "", "argmin"], [741, 0, 1, "", "argsort"], [734, 0, 1, "", "argwhere"], [526, 0, 1, "", "array_equal"], [450, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [527, 0, 1, "", "assert_supports_inplace"], [451, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [452, 0, 1, "", "atleast_1d"], [453, 0, 1, "", "atleast_2d"], [454, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [490, 0, 1, "", "batch_norm"], [417, 0, 1, "", "batched_outer"], [497, 0, 1, "", "bernoulli"], [498, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [684, 0, 1, "", "binary_cross_entropy"], [509, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [654, 0, 1, "", "cholesky"], [687, 0, 1, "", "clip"], [529, 0, 1, "", "clip_matrix_norm"], [530, 0, 1, "", "clip_vector_norm"], [458, 0, 1, "", "column_stack"], [688, 0, 1, "", "concat"], [459, 0, 1, "", "concat_from_sequence"], [418, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [689, 0, 1, "", "constant_pad"], [638, 0, 1, "", "conv1d"], [639, 0, 1, "", "conv1d_transpose"], [640, 0, 1, "", "conv2d"], [641, 0, 1, "", "conv2d_transpose"], [642, 0, 1, "", "conv3d"], [643, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [510, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [511, 0, 1, "", "cov"], [655, 0, 1, "", "cross"], [685, 0, 1, "", "cross_entropy"], [512, 0, 1, "", "cummax"], [513, 0, 1, "", "cummin"], [745, 0, 1, "", "cumprod"], [746, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [533, 0, 1, "", "default"], [234, 0, 1, "", "deg2rad"], [646, 0, 1, "", "depthwise_conv2d"], [656, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [657, 0, 1, "", "diag"], [419, 0, 1, "", "diagflat"], [658, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [499, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [420, 0, 1, "", "dot"], [647, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [460, 0, 1, "", "dsplit"], [461, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [421, 0, 1, "", "eig"], [660, 0, 1, "", "eigh"], [422, 0, 1, "", "eigh_tridiagonal"], [423, 0, 1, "", "eigvals"], [661, 0, 1, "", "eigvalsh"], [534, 0, 1, "", "einops_rearrange"], [535, 0, 1, "", "einops_reduce"], [536, 0, 1, "", "einops_repeat"], [747, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [537, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [462, 0, 1, "", "expand"], [690, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [396, 0, 1, "", "fft2"], [463, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [464, 0, 1, "", "flatten"], [691, 0, 1, "", "flip"], [465, 0, 1, "", "fliplr"], [466, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [467, 0, 1, "", "fold"], [538, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [131, 0, 1, "", "full_like"], [500, 0, 1, "", "gamma"], [541, 0, 1, "", "gather"], [542, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [424, 0, 1, "", "general_inner_product"], [545, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [607, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [491, 0, 1, "", "group_norm"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [547, 0, 1, "", "has_nans"], [468, 0, 1, "", "heaviside"], [425, 0, 1, "", "higher_order_moment"], [442, 0, 1, "", "hinge_embedding_loss"], [514, 0, 1, "", "histogram"], [469, 0, 1, "", "hsplit"], [470, 0, 1, "", "hstack"], [443, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [471, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [515, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [426, 0, 1, "", "initialize_tucker"], [662, 0, 1, "", "inner"], [549, 0, 1, "", "inplace_decrement"], [550, 0, 1, "", "inplace_increment"], [551, 0, 1, "", "inplace_update"], [492, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [663, 0, 1, "", "inv"], [553, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [554, 0, 1, "", "is_ivy_array"], [555, 0, 1, "", "is_ivy_container"], [557, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [558, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [560, 0, 1, "", "itemsize"], [444, 0, 1, "", "kl_div"], [428, 0, 1, "", "kron"], [445, 0, 1, "", "l1_loss"], [493, 0, 1, "", "l1_normalize"], [494, 0, 1, "", "l2_normalize"], [609, 0, 1, "", "lamb_update"], [610, 0, 1, "", "lars_update"], [725, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [504, 0, 1, "", "lexsort"], [347, 0, 1, "", "lgamma"], [648, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [446, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [496, 0, 1, "", "lp_normalize"], [649, 0, 1, "", "lstm_update"], [430, 0, 1, "", "make_svd_non_negative"], [665, 0, 1, "", "matmul"], [472, 0, 1, "", "matricize"], [431, 0, 1, "", "matrix_exp"], [666, 0, 1, "", "matrix_norm"], [667, 0, 1, "", "matrix_power"], [668, 0, 1, "", "matrix_rank"], [669, 0, 1, "", "matrix_transpose"], [748, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [749, 0, 1, "", "mean"], [516, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [750, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [432, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [473, 0, 1, "", "moveaxis"], [742, 0, 1, "", "msort"], [433, 0, 1, "", "multi_dot"], [650, 0, 1, "", "multi_head_attention"], [434, 0, 1, "", "multi_mode_dot"], [726, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [517, 0, 1, "", "nanmean"], [518, 0, 1, "", "nanmedian"], [519, 0, 1, "", "nanmin"], [520, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [735, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [611, 0, 1, "", "optimizer_update"], [522, 0, 1, "", "optional_get_element"], [670, 0, 1, "", "outer"], [474, 0, 1, "", "pad"], [475, 0, 1, "", "partial_fold"], [476, 0, 1, "", "partial_tensor_to_vec"], [435, 0, 1, "", "partial_tucker"], [477, 0, 1, "", "partial_unfold"], [478, 0, 1, "", "partial_vec_to_tensor"], [692, 0, 1, "", "permute_dims"], [671, 0, 1, "", "pinv"], [501, 0, 1, "", "poisson"], [447, 0, 1, "", "poisson_nll_loss"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [751, 0, 1, "", "prod"], [479, 0, 1, "", "put_along_axis"], [672, 0, 1, "", "qr"], [521, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [727, 0, 1, "", "randint"], [728, 0, 1, "", "random_normal"], [729, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [693, 0, 1, "", "repeat"], [694, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [695, 0, 1, "", "roll"], [480, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [653, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [565, 0, 1, "", "scatter_flat"], [566, 0, 1, "", "scatter_nd"], [743, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [579, 0, 1, "", "shape"], [731, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [414, 0, 1, "", "sliding_window"], [673, 0, 1, "", "slogdet"], [448, 0, 1, "", "smooth_l1_loss"], [449, 0, 1, "", "soft_margin_loss"], [481, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [674, 0, 1, "", "solve"], [744, 0, 1, "", "sort"], [686, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [696, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [697, 0, 1, "", "squeeze"], [580, 0, 1, "", "stable_divide"], [581, 0, 1, "", "stable_pow"], [698, 0, 1, "", "stack"], [752, 0, 1, "", "std"], [415, 0, 1, "", "stft"], [612, 0, 1, "", "stop_gradient"], [582, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [753, 0, 1, "", "sum"], [583, 0, 1, "", "supports_inplace_updates"], [675, 0, 1, "", "svd"], [437, 0, 1, "", "svd_flip"], [676, 0, 1, "", "svdvals"], [699, 0, 1, "", "swapaxes"], [482, 0, 1, "", "take"], [483, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [438, 0, 1, "", "tensor_train"], [677, 0, 1, "", "tensordot"], [678, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [700, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [585, 0, 1, "", "to_list"], [587, 0, 1, "", "to_numpy"], [588, 0, 1, "", "to_scalar"], [484, 0, 1, "", "top_k"], [679, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [323, 0, 1, "", "trilu"], [485, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [439, 0, 1, "", "truncated_svd"], [440, 0, 1, "", "tt_matrix_to_tensor"], [441, 0, 1, "", "tucker"], [486, 0, 1, "", "unfold"], [737, 0, 1, "", "unique_all"], [487, 0, 1, "", "unique_consecutive"], [738, 0, 1, "", "unique_counts"], [739, 0, 1, "", "unique_inverse"], [740, 0, 1, "", "unique_values"], [502, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [701, 0, 1, "", "unstack"], [601, 0, 1, "", "value_is_nan"], [680, 0, 1, "", "vander"], [754, 0, 1, "", "var"], [681, 0, 1, "", "vecdot"], [682, 0, 1, "", "vector_norm"], [683, 0, 1, "", "vector_to_skew_symmetric_matrix"], [488, 0, 1, "", "vsplit"], [489, 0, 1, "", "vstack"], [736, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [702, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy": [[622, 1, 1, "", "ArrayMode"], [618, 1, 1, "", "DefaultComplexDtype"], [619, 1, 1, "", "DefaultDevice"], [618, 1, 1, "", "DefaultDtype"], [618, 1, 1, "", "DefaultFloatDtype"], [618, 1, 1, "", "DefaultIntDtype"], [618, 1, 1, "", "DefaultUintDtype"], [379, 1, 1, "", "NativeSparseArray"], [617, 1, 1, "", "NestedSequence"], [622, 1, 1, "", "PreciseMode"], [619, 1, 1, "", "Profiler"], [379, 1, 1, "", "SparseArray"], [215, 2, 1, "", "abs"], [216, 2, 1, "", "acos"], [217, 2, 1, "", "acosh"], [623, 2, 1, "", "adam_step"], [623, 2, 1, "", "adam_update"], [382, 2, 1, "", "adaptive_avg_pool1d"], [383, 2, 1, "", "adaptive_avg_pool2d"], [384, 2, 1, "", "adaptive_max_pool2d"], [218, 2, 1, "", "add"], [369, 2, 1, "", "adjoint"], [636, 2, 1, "", "all"], [622, 2, 1, "", "all_equal"], [629, 2, 1, "", "all_nested_indices"], [365, 2, 1, "", "allclose"], [365, 2, 1, "", "amax"], [365, 2, 1, "", "amin"], [219, 2, 1, "", "angle"], [636, 2, 1, "", "any"], [617, 2, 1, "", "arange"], [385, 2, 1, "", "area_interpolate"], [622, 2, 1, "", "arg_info"], [622, 2, 1, "", "arg_names"], [632, 2, 1, "", "argmax"], [632, 2, 1, "", "argmin"], [634, 2, 1, "", "argsort"], [632, 2, 1, "", "argwhere"], [617, 2, 1, "", "array"], [622, 2, 1, "", "array_equal"], [188, 2, 1, "", "as_ivy_dev"], [618, 2, 1, "", "as_ivy_dtype"], [189, 2, 1, "", "as_native_dev"], [618, 2, 1, "", "as_native_dtype"], [371, 2, 1, "", "as_strided"], [617, 2, 1, "", "asarray"], [220, 2, 1, "", "asin"], [221, 2, 1, "", "asinh"], [622, 2, 1, "", "assert_supports_inplace"], [371, 2, 1, "", "associative_scan"], [618, 2, 1, "", "astype"], [222, 2, 1, "", "atan"], [223, 2, 1, "", "atan2"], [224, 2, 1, "", "atanh"], [371, 2, 1, "", "atleast_1d"], [371, 2, 1, "", "atleast_2d"], [371, 2, 1, "", "atleast_3d"], [386, 2, 1, "", "avg_pool1d"], [387, 2, 1, "", "avg_pool2d"], [388, 2, 1, "", "avg_pool3d"], [374, 2, 1, "", "batch_norm"], [369, 2, 1, "", "batched_outer"], [375, 2, 1, "", "bernoulli"], [375, 2, 1, "", "beta"], [365, 2, 1, "", "binarizer"], [626, 2, 1, "", "binary_cross_entropy"], [380, 2, 1, "", "bincount"], [367, 2, 1, "", "bind_custom_gradient_function"], [225, 2, 1, "", "bitwise_and"], [226, 2, 1, "", "bitwise_invert"], [227, 2, 1, "", "bitwise_left_shift"], [228, 2, 1, "", "bitwise_or"], [229, 2, 1, "", "bitwise_right_shift"], [230, 2, 1, "", "bitwise_xor"], [306, 2, 1, "", "blackman_window"], [618, 2, 1, "", "broadcast_arrays"], [371, 2, 1, "", "broadcast_shapes"], [618, 2, 1, "", "broadcast_to"], [622, 2, 1, "", "cache_fn"], [618, 2, 1, "", "can_cast"], [231, 2, 1, "", "ceil"], [290, 2, 1, "", "celu"], [618, 2, 1, "", "check_float"], [371, 2, 1, "", "check_scalar"], [625, 2, 1, "", "cholesky"], [371, 2, 1, "", "choose"], [190, 2, 1, "", "clear_cached_mem_on_dev"], [627, 2, 1, "", "clip"], [622, 2, 1, "", "clip_matrix_norm"], [622, 2, 1, "", "clip_vector_norm"], [618, 2, 1, "", "closest_valid_dtype"], [616, 2, 1, "", "cmp_is"], [616, 2, 1, "", "cmp_isnot"], [371, 2, 1, "", "column_stack"], [627, 2, 1, "", "concat"], [371, 2, 1, "", "concat_from_sequence"], [369, 2, 1, "", "cond"], [365, 2, 1, "", "conj"], [627, 2, 1, "", "constant_pad"], [622, 2, 1, "", "container_types"], [637, 2, 1, "", "conv"], [638, 2, 1, "", "conv1d"], [639, 2, 1, "", "conv1d_transpose"], [640, 2, 1, "", "conv2d"], [641, 2, 1, "", "conv2d_transpose"], [642, 2, 1, "", "conv3d"], [643, 2, 1, "", "conv3d_transpose"], [624, 2, 1, "", "conv_general_dilated"], [624, 2, 1, "", "conv_general_transpose"], [617, 2, 1, "", "copy_array"], [629, 2, 1, "", "copy_nest"], [365, 2, 1, "", "copysign"], [380, 2, 1, "", "corrcoef"], [232, 2, 1, "", "cos"], [233, 2, 1, "", "cosh"], [365, 2, 1, "", "count_nonzero"], [380, 2, 1, "", "cov"], [625, 2, 1, "", "cross"], [626, 2, 1, "", "cross_entropy"], [380, 2, 1, "", "cummax"], [380, 2, 1, "", "cummin"], [635, 2, 1, "", "cumprod"], [635, 2, 1, "", "cumsum"], [622, 2, 1, "", "current_backend_str"], [389, 2, 1, "", "dct"], [622, 2, 1, "", "default"], [618, 2, 1, "", "default_complex_dtype"], [191, 2, 1, "", "default_device"], [618, 2, 1, "", "default_dtype"], [618, 2, 1, "", "default_float_dtype"], [618, 2, 1, "", "default_int_dtype"], [618, 2, 1, "", "default_uint_dtype"], [234, 2, 1, "", "deg2rad"], [624, 2, 1, "", "depthwise_conv2d"], [625, 2, 1, "", "det"], [192, 2, 1, "", "dev"], [193, 2, 1, "", "dev_util"], [390, 2, 1, "", "dft"], [625, 2, 1, "", "diag"], [369, 2, 1, "", "diagflat"], [625, 2, 1, "", "diagonal"], [365, 2, 1, "", "diff"], [365, 2, 1, "", "digamma"], [375, 2, 1, "", "dirichlet"], [235, 2, 1, "", "divide"], [369, 2, 1, "", "dot"], [624, 2, 1, "", "dropout"], [391, 2, 1, "", "dropout1d"], [392, 2, 1, "", "dropout2d"], [393, 2, 1, "", "dropout3d"], [371, 2, 1, "", "dsplit"], [371, 2, 1, "", "dstack"], [618, 2, 1, "", "dtype"], [618, 2, 1, "", "dtype_bits"], [629, 2, 1, "", "duplicate_array_index_chains"], [615, 6, 1, "", "e"], [369, 2, 1, "", "eig"], [625, 2, 1, "", "eigh"], [369, 2, 1, "", "eigh_tridiagonal"], [369, 2, 1, "", "eigvals"], [625, 2, 1, "", "eigvalsh"], [622, 2, 1, "", "einops_rearrange"], [622, 2, 1, "", "einops_reduce"], [622, 2, 1, "", "einops_repeat"], [635, 2, 1, "", "einsum"], [291, 2, 1, "", "elu"], [394, 2, 1, "", "embedding"], [617, 2, 1, "", "empty"], [617, 2, 1, "", "empty_like"], [236, 2, 1, "", "equal"], [237, 2, 1, "", "erf"], [365, 2, 1, "", "erfc"], [623, 2, 1, "", "execute_with_gradients"], [622, 2, 1, "", "exists"], [238, 2, 1, "", "exp"], [239, 2, 1, "", "exp2"], [371, 2, 1, "", "expand"], [627, 2, 1, "", "expand_dims"], [240, 2, 1, "", "expm1"], [617, 2, 1, "", "eye"], [307, 2, 1, "", "eye_like"], [395, 2, 1, "", "fft"], [396, 2, 1, "", "fft2"], [371, 2, 1, "", "fill_diagonal"], [618, 2, 1, "", "finfo"], [365, 2, 1, "", "fix"], [371, 2, 1, "", "flatten"], [627, 2, 1, "", "flip"], [371, 2, 1, "", "fliplr"], [371, 2, 1, "", "flipud"], [365, 2, 1, "", "float_power"], [241, 2, 1, "", "floor"], [242, 2, 1, "", "floor_divide"], [365, 2, 1, "", "fmax"], [243, 2, 1, "", "fmin"], [244, 2, 1, "", "fmod"], [371, 2, 1, "", "fold"], [628, 2, 1, "", "fomaml_step"], [616, 2, 1, "", "for_loop"], [622, 2, 1, "", "fourier_encode"], [365, 2, 1, "", "frexp"], [617, 2, 1, "", "from_dlpack"], [617, 2, 1, "", "frombuffer"], [617, 2, 1, "", "full"], [617, 2, 1, "", "full_like"], [194, 2, 1, "", "function_supported_devices"], [622, 2, 1, "", "function_supported_devices_and_dtypes"], [618, 2, 1, "", "function_supported_dtypes"], [195, 2, 1, "", "function_unsupported_devices"], [622, 2, 1, "", "function_unsupported_devices_and_dtypes"], [618, 2, 1, "", "function_unsupported_dtypes"], [375, 2, 1, "", "gamma"], [622, 2, 1, "", "gather"], [622, 2, 1, "", "gather_nd"], [245, 2, 1, "", "gcd"], [614, 2, 1, "", "gelu"], [369, 2, 1, "", "general_inner_product"], [397, 2, 1, "", "generate_einsum_equation"], [622, 2, 1, "", "get_all_arrays_in_memory"], [196, 2, 1, "", "get_all_ivy_arrays_on_dev"], [398, 2, 1, "", "get_interpolate_kernel"], [622, 2, 1, "", "get_item"], [622, 2, 1, "", "get_num_dims"], [622, 2, 1, "", "get_referrers_recursive"], [197, 2, 1, "", "gpu_is_available"], [623, 2, 1, "", "grad"], [365, 2, 1, "", "gradient"], [623, 2, 1, "", "gradient_descent_update"], [246, 2, 1, "", "greater"], [247, 2, 1, "", "greater_equal"], [374, 2, 1, "", "group_norm"], [308, 2, 1, "", "hamming_window"], [198, 2, 1, "", "handle_soft_device_variable"], [309, 2, 1, "", "hann_window"], [292, 2, 1, "", "hardshrink"], [614, 2, 1, "", "hardswish"], [293, 2, 1, "", "hardtanh"], [622, 2, 1, "", "has_nans"], [371, 2, 1, "", "heaviside"], [369, 2, 1, "", "higher_order_moment"], [370, 2, 1, "", "hinge_embedding_loss"], [380, 2, 1, "", "histogram"], [371, 2, 1, "", "hsplit"], [371, 2, 1, "", "hstack"], [370, 2, 1, "", "huber_loss"], [365, 2, 1, "", "hypot"], [371, 2, 1, "", "i0"], [399, 2, 1, "", "idct"], [616, 2, 1, "", "if_else"], [400, 2, 1, "", "ifft"], [401, 2, 1, "", "ifftn"], [380, 2, 1, "", "igamma"], [618, 2, 1, "", "iinfo"], [248, 2, 1, "", "imag"], [629, 2, 1, "", "index_nest"], [310, 2, 1, "", "indices"], [615, 6, 1, "", "inf"], [618, 2, 1, "", "infer_default_dtype"], [369, 2, 1, "", "initialize_tucker"], [625, 2, 1, "", "inner"], [622, 2, 1, "", "inplace_arrays_supported"], [622, 2, 1, "", "inplace_decrement"], [622, 2, 1, "", "inplace_increment"], [622, 2, 1, "", "inplace_update"], [622, 2, 1, "", "inplace_variables_supported"], [629, 2, 1, "", "insert_into_nest_at_index"], [629, 2, 1, "", "insert_into_nest_at_indices"], [374, 2, 1, "", "instance_norm"], [402, 2, 1, "", "interp"], [403, 2, 1, "", "interpolate"], [625, 2, 1, "", "inv"], [618, 2, 1, "", "invalid_dtype"], [378, 2, 1, "", "invert_permutation"], [622, 2, 1, "", "is_array"], [618, 2, 1, "", "is_bool_dtype"], [618, 2, 1, "", "is_complex_dtype"], [618, 2, 1, "", "is_float_dtype"], [618, 2, 1, "", "is_hashable_dtype"], [618, 2, 1, "", "is_int_dtype"], [622, 2, 1, "", "is_ivy_array"], [622, 2, 1, "", "is_ivy_container"], [622, 2, 1, "", "is_ivy_nested_array"], [379, 2, 1, "", "is_ivy_sparse_array"], [622, 2, 1, "", "is_native_array"], [618, 2, 1, "", "is_native_dtype"], [379, 2, 1, "", "is_native_sparse_array"], [618, 2, 1, "", "is_uint_dtype"], [365, 2, 1, "", "isclose"], [249, 2, 1, "", "isfinite"], [622, 2, 1, "", "isin"], [250, 2, 1, "", "isinf"], [251, 2, 1, "", "isnan"], [252, 2, 1, "", "isreal"], [622, 2, 1, "", "isscalar"], [622, 2, 1, "", "itemsize"], [623, 2, 1, "", "jac"], [367, 2, 1, "", "jvp"], [311, 2, 1, "", "kaiser_bessel_derived_window"], [312, 2, 1, "", "kaiser_window"], [369, 2, 1, "", "khatri_rao"], [370, 2, 1, "", "kl_div"], [369, 2, 1, "", "kron"], [369, 2, 1, "", "kronecker"], [370, 2, 1, "", "l1_loss"], [374, 2, 1, "", "l1_normalize"], [374, 2, 1, "", "l2_normalize"], [623, 2, 1, "", "lamb_update"], [623, 2, 1, "", "lars_update"], [630, 2, 1, "", "layer_norm"], [253, 2, 1, "", "lcm"], [365, 2, 1, "", "ldexp"], [614, 2, 1, "", "leaky_relu"], [365, 2, 1, "", "lerp"], [254, 2, 1, "", "less"], [255, 2, 1, "", "less_equal"], [378, 2, 1, "", "lexsort"], [365, 2, 1, "", "lgamma"], [624, 2, 1, "", "linear"], [617, 2, 1, "", "linspace"], [636, 2, 1, "", "load"], [374, 2, 1, "", "local_response_norm"], [256, 2, 1, "", "log"], [257, 2, 1, "", "log10"], [258, 2, 1, "", "log1p"], [259, 2, 1, "", "log2"], [370, 2, 1, "", "log_poisson_loss"], [614, 2, 1, "", "log_softmax"], [260, 2, 1, "", "logaddexp"], [261, 2, 1, "", "logaddexp2"], [262, 2, 1, "", "logical_and"], [263, 2, 1, "", "logical_not"], [264, 2, 1, "", "logical_or"], [265, 2, 1, "", "logical_xor"], [294, 2, 1, "", "logit"], [295, 2, 1, "", "logsigmoid"], [617, 2, 1, "", "logspace"], [374, 2, 1, "", "lp_normalize"], [624, 2, 1, "", "lstm_update"], [625, 2, 1, "", "lu_factor"], [369, 2, 1, "", "make_svd_non_negative"], [628, 2, 1, "", "maml_step"], [629, 2, 1, "", "map"], [629, 2, 1, "", "map_nest_at_index"], [629, 2, 1, "", "map_nest_at_indices"], [622, 2, 1, "", "match_kwargs"], [625, 2, 1, "", "matmul"], [371, 2, 1, "", "matricize"], [369, 2, 1, "", "matrix_exp"], [625, 2, 1, "", "matrix_norm"], [625, 2, 1, "", "matrix_power"], [625, 2, 1, "", "matrix_rank"], [625, 2, 1, "", "matrix_transpose"], [635, 2, 1, "", "max"], [404, 2, 1, "", "max_pool1d"], [405, 2, 1, "", "max_pool2d"], [406, 2, 1, "", "max_pool3d"], [407, 2, 1, "", "max_unpool1d"], [266, 2, 1, "", "maximum"], [635, 2, 1, "", "mean"], [380, 2, 1, "", "median"], [313, 2, 1, "", "mel_weight_matrix"], [617, 2, 1, "", "meshgrid"], [635, 2, 1, "", "min"], [267, 2, 1, "", "minimum"], [614, 2, 1, "", "mish"], [369, 2, 1, "", "mode_dot"], [365, 2, 1, "", "modf"], [371, 2, 1, "", "moveaxis"], [634, 2, 1, "", "msort"], [369, 2, 1, "", "multi_dot"], [624, 2, 1, "", "multi_head_attention"], [629, 2, 1, "", "multi_index_nest"], [369, 2, 1, "", "multi_mode_dot"], [631, 2, 1, "", "multinomial"], [268, 2, 1, "", "multiply"], [622, 2, 1, "", "multiprocessing"], [615, 6, 1, "", "nan"], [269, 2, 1, "", "nan_to_num"], [380, 2, 1, "", "nanmean"], [380, 2, 1, "", "nanmedian"], [380, 2, 1, "", "nanmin"], [380, 2, 1, "", "nanprod"], [365, 2, 1, "", "nansum"], [617, 2, 1, "", "native_array"], [379, 2, 1, "", "native_sparse_array"], [379, 2, 1, "", "native_sparse_array_to_indices_values_and_shape"], [314, 2, 1, "", "ndenumerate"], [315, 2, 1, "", "ndindex"], [408, 2, 1, "", "nearest_interpolate"], [270, 2, 1, "", "negative"], [629, 2, 1, "", "nested_any"], [629, 2, 1, "", "nested_argwhere"], [629, 2, 1, "", "nested_map"], [629, 2, 1, "", "nested_multi_map"], [615, 6, 1, "", "newaxis"], [365, 2, 1, "", "nextafter"], [624, 2, 1, "", "nms"], [632, 2, 1, "", "nonzero"], [271, 2, 1, "", "not_equal"], [622, 2, 1, "", "num_arrays_in_memory"], [199, 2, 1, "", "num_cpu_cores"], [200, 2, 1, "", "num_gpus"], [201, 2, 1, "", "num_ivy_arrays_on_dev"], [617, 2, 1, "", "one_hot"], [617, 2, 1, "", "ones"], [617, 2, 1, "", "ones_like"], [623, 2, 1, "", "optimizer_update"], [381, 2, 1, "", "optional_get_element"], [625, 2, 1, "", "outer"], [371, 2, 1, "", "pad"], [371, 2, 1, "", "partial_fold"], [371, 2, 1, "", "partial_tensor_to_vec"], [369, 2, 1, "", "partial_tucker"], [371, 2, 1, "", "partial_unfold"], [371, 2, 1, "", "partial_vec_to_tensor"], [202, 2, 1, "", "percent_used_mem_on_dev"], [627, 2, 1, "", "permute_dims"], [615, 6, 1, "", "pi"], [625, 2, 1, "", "pinv"], [375, 2, 1, "", "poisson"], [370, 2, 1, "", "poisson_nll_loss"], [316, 2, 1, "", "polyval"], [409, 2, 1, "", "pool"], [272, 2, 1, "", "positive"], [273, 2, 1, "", "pow"], [296, 2, 1, "", "prelu"], [622, 2, 1, "", "print_all_arrays_in_memory"], [203, 2, 1, "", "print_all_ivy_arrays_on_dev"], [635, 2, 1, "", "prod"], [618, 2, 1, "", "promote_types"], [618, 2, 1, "", "promote_types_of_inputs"], [629, 2, 1, "", "prune_empty"], [629, 2, 1, "", "prune_nest_at_index"], [629, 2, 1, "", "prune_nest_at_indices"], [371, 2, 1, "", "put_along_axis"], [625, 2, 1, "", "qr"], [380, 2, 1, "", "quantile"], [274, 2, 1, "", "rad2deg"], [631, 2, 1, "", "randint"], [317, 2, 1, "", "random_cp"], [631, 2, 1, "", "random_normal"], [318, 2, 1, "", "random_parafac2"], [319, 2, 1, "", "random_tr"], [320, 2, 1, "", "random_tt"], [321, 2, 1, "", "random_tucker"], [631, 2, 1, "", "random_uniform"], [275, 2, 1, "", "real"], [276, 2, 1, "", "reciprocal"], [366, 2, 1, "", "reduce"], [410, 2, 1, "", "reduce_window"], [614, 2, 1, "", "relu"], [297, 2, 1, "", "relu6"], [277, 2, 1, "", "remainder"], [627, 2, 1, "", "repeat"], [628, 2, 1, "", "reptile_step"], [627, 2, 1, "", "reshape"], [618, 2, 1, "", "result_type"], [411, 2, 1, "", "rfft"], [412, 2, 1, "", "rfftn"], [413, 2, 1, "", "rnn"], [624, 2, 1, "", "roi_align"], [627, 2, 1, "", "roll"], [371, 2, 1, "", "rot90"], [278, 2, 1, "", "round"], [636, 2, 1, "", "save"], [624, 2, 1, "", "scaled_dot_product_attention"], [298, 2, 1, "", "scaled_tanh"], [622, 2, 1, "", "scatter_flat"], [622, 2, 1, "", "scatter_nd"], [634, 2, 1, "", "searchsorted"], [631, 2, 1, "", "seed"], [299, 2, 1, "", "selu"], [622, 2, 1, "", "set_array_mode"], [618, 2, 1, "", "set_default_complex_dtype"], [204, 2, 1, "", "set_default_device"], [618, 2, 1, "", "set_default_dtype"], [618, 2, 1, "", "set_default_float_dtype"], [618, 2, 1, "", "set_default_int_dtype"], [618, 2, 1, "", "set_default_uint_dtype"], [622, 2, 1, "", "set_exception_trace_mode"], [622, 2, 1, "", "set_inplace_mode"], [622, 2, 1, "", "set_item"], [622, 2, 1, "", "set_min_base"], [622, 2, 1, "", "set_min_denominator"], [629, 2, 1, "", "set_nest_at_index"], [629, 2, 1, "", "set_nest_at_indices"], [622, 2, 1, "", "set_nestable_mode"], [622, 2, 1, "", "set_precise_mode"], [622, 2, 1, "", "set_queue_timeout"], [622, 2, 1, "", "set_shape_array_mode"], [622, 2, 1, "", "set_show_func_wrapper_trace_mode"], [205, 2, 1, "", "set_soft_device_mode"], [206, 2, 1, "", "set_split_factor"], [622, 2, 1, "", "set_tmp_dir"], [622, 2, 1, "", "shape"], [631, 2, 1, "", "shuffle"], [614, 2, 1, "", "sigmoid"], [279, 2, 1, "", "sign"], [365, 2, 1, "", "signbit"], [300, 2, 1, "", "silu"], [280, 2, 1, "", "sin"], [365, 2, 1, "", "sinc"], [281, 2, 1, "", "sinh"], [368, 2, 1, "", "sliding_window"], [625, 2, 1, "", "slogdet"], [370, 2, 1, "", "smooth_l1_loss"], [370, 2, 1, "", "soft_margin_loss"], [371, 2, 1, "", "soft_thresholding"], [614, 2, 1, "", "softmax"], [614, 2, 1, "", "softplus"], [301, 2, 1, "", "softshrink"], [614, 2, 1, "", "softsign"], [625, 2, 1, "", "solve"], [369, 2, 1, "", "solve_triangular"], [634, 2, 1, "", "sort"], [626, 2, 1, "", "sparse_cross_entropy"], [365, 2, 1, "", "sparsify_tensor"], [627, 2, 1, "", "split"], [207, 2, 1, "", "split_factor"], [208, 2, 1, "", "split_func_call"], [282, 2, 1, "", "sqrt"], [283, 2, 1, "", "square"], [627, 2, 1, "", "squeeze"], [622, 2, 1, "", "stable_divide"], [622, 2, 1, "", "stable_pow"], [627, 2, 1, "", "stack"], [302, 2, 1, "", "stanh"], [635, 2, 1, "", "std"], [368, 2, 1, "", "stft"], [623, 2, 1, "", "stop_gradient"], [622, 2, 1, "", "strides"], [284, 2, 1, "", "subtract"], [635, 2, 1, "", "sum"], [622, 2, 1, "", "supports_inplace_updates"], [625, 2, 1, "", "svd"], [369, 2, 1, "", "svd_flip"], [625, 2, 1, "", "svdvals"], [627, 2, 1, "", "swapaxes"], [371, 2, 1, "", "take"], [371, 2, 1, "", "take_along_axis"], [285, 2, 1, "", "tan"], [286, 2, 1, "", "tanh"], [303, 2, 1, "", "tanhshrink"], [369, 2, 1, "", "tensor_train"], [625, 2, 1, "", "tensordot"], [625, 2, 1, "", "tensorsolve"], [304, 2, 1, "", "threshold"], [305, 2, 1, "", "thresholded_relu"], [627, 2, 1, "", "tile"], [209, 2, 1, "", "to_device"], [617, 2, 1, "", "to_dlpack"], [622, 2, 1, "", "to_ivy_shape"], [622, 2, 1, "", "to_list"], [622, 2, 1, "", "to_native_shape"], [622, 2, 1, "", "to_numpy"], [622, 2, 1, "", "to_scalar"], [371, 2, 1, "", "top_k"], [210, 2, 1, "", "total_mem_on_dev"], [211, 2, 1, "", "tpu_is_available"], [625, 2, 1, "", "trace"], [851, 2, 1, "", "trace_graph"], [852, 2, 1, "", "transpile"], [287, 2, 1, "", "trapz"], [617, 2, 1, "", "tril"], [362, 2, 1, "", "tril_indices"], [362, 2, 1, "", "trilu"], [371, 2, 1, "", "trim_zeros"], [617, 2, 1, "", "triu"], [617, 2, 1, "", "triu_indices"], [288, 2, 1, "", "trunc"], [289, 2, 1, "", "trunc_divide"], [369, 2, 1, "", "truncated_svd"], [622, 2, 1, "", "try_else_none"], [616, 2, 1, "", "try_except"], [369, 2, 1, "", "tt_matrix_to_tensor"], [369, 2, 1, "", "tucker"], [618, 2, 1, "", "type_promote_arrays"], [371, 2, 1, "", "unfold"], [853, 2, 1, "", "unify"], [633, 2, 1, "", "unique_all"], [371, 2, 1, "", "unique_consecutive"], [633, 2, 1, "", "unique_counts"], [633, 2, 1, "", "unique_inverse"], [633, 2, 1, "", "unique_values"], [376, 2, 1, "", "unravel_index"], [622, 2, 1, "", "unset_array_mode"], [618, 2, 1, "", "unset_default_complex_dtype"], [212, 2, 1, "", "unset_default_device"], [618, 2, 1, "", "unset_default_dtype"], [184, 2, 1, "", "unset_default_float_dtype"], [185, 2, 1, "", "unset_default_int_dtype"], [186, 2, 1, "", "unset_default_uint_dtype"], [622, 2, 1, "", "unset_exception_trace_mode"], [622, 2, 1, "", "unset_inplace_mode"], [622, 2, 1, "", "unset_min_base"], [622, 2, 1, "", "unset_min_denominator"], [622, 2, 1, "", "unset_nestable_mode"], [622, 2, 1, "", "unset_precise_mode"], [622, 2, 1, "", "unset_queue_timeout"], [622, 2, 1, "", "unset_shape_array_mode"], [622, 2, 1, "", "unset_show_func_wrapper_trace_mode"], [213, 2, 1, "", "unset_soft_device_mode"], [622, 2, 1, "", "unset_tmp_dir"], [362, 2, 1, "", "unsorted_segment_mean"], [362, 2, 1, "", "unsorted_segment_min"], [362, 2, 1, "", "unsorted_segment_sum"], [627, 2, 1, "", "unstack"], [214, 2, 1, "", "used_mem_on_dev"], [187, 2, 1, "", "valid_dtype"], [623, 2, 1, "", "value_and_grad"], [622, 2, 1, "", "value_is_nan"], [625, 2, 1, "", "vander"], [635, 2, 1, "", "var"], [625, 2, 1, "", "vecdot"], [625, 2, 1, "", "vector_norm"], [625, 2, 1, "", "vector_to_skew_symmetric_matrix"], [367, 2, 1, "", "vjp"], [622, 2, 1, "", "vmap"], [362, 2, 1, "", "vorbis_window"], [371, 2, 1, "", "vsplit"], [371, 2, 1, "", "vstack"], [632, 2, 1, "", "where"], [616, 2, 1, "", "while_loop"], [365, 2, 1, "", "xlogy"], [627, 2, 1, "", "zero_pad"], [617, 2, 1, "", "zeros"], [617, 2, 1, "", "zeros_like"], [365, 2, 1, "", "zeta"]], "ivy.Container": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [603, 0, 1, "", "adam_step"], [604, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [416, 0, 1, "", "adjoint"], [755, 0, 1, "", "all"], [523, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [756, 0, 1, "", "any"], [732, 0, 1, "", "argmax"], [733, 0, 1, "", "argmin"], [741, 0, 1, "", "argsort"], [734, 0, 1, "", "argwhere"], [526, 0, 1, "", "array_equal"], [450, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [527, 0, 1, "", "assert_supports_inplace"], [451, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [452, 0, 1, "", "atleast_1d"], [453, 0, 1, "", "atleast_2d"], [454, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [490, 0, 1, "", "batch_norm"], [417, 0, 1, "", "batched_outer"], [497, 0, 1, "", "bernoulli"], [498, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [684, 0, 1, "", "binary_cross_entropy"], [509, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [455, 0, 1, "", "broadcast_shapes"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [654, 0, 1, "", "cholesky"], [687, 0, 1, "", "clip"], [529, 0, 1, "", "clip_matrix_norm"], [530, 0, 1, "", "clip_vector_norm"], [458, 0, 1, "", "column_stack"], [688, 0, 1, "", "concat"], [459, 0, 1, "", "concat_from_sequence"], [418, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [689, 0, 1, "", "constant_pad"], [638, 0, 1, "", "conv1d"], [639, 0, 1, "", "conv1d_transpose"], [640, 0, 1, "", "conv2d"], [641, 0, 1, "", "conv2d_transpose"], [642, 0, 1, "", "conv3d"], [643, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [510, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [511, 0, 1, "", "cov"], [655, 0, 1, "", "cross"], [685, 0, 1, "", "cross_entropy"], [512, 0, 1, "", "cummax"], [513, 0, 1, "", "cummin"], [745, 0, 1, "", "cumprod"], [746, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [234, 0, 1, "", "deg2rad"], [646, 0, 1, "", "depthwise_conv2d"], [656, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [657, 0, 1, "", "diag"], [419, 0, 1, "", "diagflat"], [658, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [499, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [420, 0, 1, "", "dot"], [647, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [460, 0, 1, "", "dsplit"], [461, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [421, 0, 1, "", "eig"], [660, 0, 1, "", "eigh"], [422, 0, 1, "", "eigh_tridiagonal"], [423, 0, 1, "", "eigvals"], [661, 0, 1, "", "eigvalsh"], [534, 0, 1, "", "einops_rearrange"], [535, 0, 1, "", "einops_reduce"], [536, 0, 1, "", "einops_repeat"], [747, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [537, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [462, 0, 1, "", "expand"], [690, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [463, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [464, 0, 1, "", "flatten"], [691, 0, 1, "", "flip"], [465, 0, 1, "", "fliplr"], [466, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [467, 0, 1, "", "fold"], [538, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [129, 0, 1, "", "frombuffer"], [131, 0, 1, "", "full_like"], [500, 0, 1, "", "gamma"], [541, 0, 1, "", "gather"], [542, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [424, 0, 1, "", "general_inner_product"], [545, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [607, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [491, 0, 1, "", "group_norm"], [308, 0, 1, "", "hamming_window"], [309, 0, 1, "", "hann_window"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [547, 0, 1, "", "has_nans"], [468, 0, 1, "", "heaviside"], [425, 0, 1, "", "higher_order_moment"], [442, 0, 1, "", "hinge_embedding_loss"], [514, 0, 1, "", "histogram"], [469, 0, 1, "", "hsplit"], [470, 0, 1, "", "hstack"], [443, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [471, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [515, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [426, 0, 1, "", "initialize_tucker"], [662, 0, 1, "", "inner"], [549, 0, 1, "", "inplace_decrement"], [550, 0, 1, "", "inplace_increment"], [551, 0, 1, "", "inplace_update"], [492, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [663, 0, 1, "", "inv"], [503, 0, 1, "", "invert_permutation"], [553, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [167, 0, 1, "", "is_complex_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [554, 0, 1, "", "is_ivy_array"], [557, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [558, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [560, 0, 1, "", "itemsize"], [311, 0, 1, "", "kaiser_bessel_derived_window"], [312, 0, 1, "", "kaiser_window"], [444, 0, 1, "", "kl_div"], [428, 0, 1, "", "kron"], [445, 0, 1, "", "l1_loss"], [493, 0, 1, "", "l1_normalize"], [494, 0, 1, "", "l2_normalize"], [609, 0, 1, "", "lamb_update"], [610, 0, 1, "", "lars_update"], [725, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [504, 0, 1, "", "lexsort"], [648, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [446, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [496, 0, 1, "", "lp_normalize"], [649, 0, 1, "", "lstm_update"], [430, 0, 1, "", "make_svd_non_negative"], [665, 0, 1, "", "matmul"], [472, 0, 1, "", "matricize"], [431, 0, 1, "", "matrix_exp"], [666, 0, 1, "", "matrix_norm"], [667, 0, 1, "", "matrix_power"], [668, 0, 1, "", "matrix_rank"], [669, 0, 1, "", "matrix_transpose"], [748, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [749, 0, 1, "", "mean"], [516, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [750, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [432, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [473, 0, 1, "", "moveaxis"], [742, 0, 1, "", "msort"], [433, 0, 1, "", "multi_dot"], [650, 0, 1, "", "multi_head_attention"], [434, 0, 1, "", "multi_mode_dot"], [726, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [517, 0, 1, "", "nanmean"], [518, 0, 1, "", "nanmedian"], [519, 0, 1, "", "nanmin"], [520, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [735, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [611, 0, 1, "", "optimizer_update"], [522, 0, 1, "", "optional_get_element"], [670, 0, 1, "", "outer"], [474, 0, 1, "", "pad"], [475, 0, 1, "", "partial_fold"], [476, 0, 1, "", "partial_tensor_to_vec"], [435, 0, 1, "", "partial_tucker"], [477, 0, 1, "", "partial_unfold"], [478, 0, 1, "", "partial_vec_to_tensor"], [692, 0, 1, "", "permute_dims"], [671, 0, 1, "", "pinv"], [501, 0, 1, "", "poisson"], [447, 0, 1, "", "poisson_nll_loss"], [316, 0, 1, "", "polyval"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [751, 0, 1, "", "prod"], [479, 0, 1, "", "put_along_axis"], [672, 0, 1, "", "qr"], [521, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [727, 0, 1, "", "randint"], [728, 0, 1, "", "random_normal"], [729, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [693, 0, 1, "", "repeat"], [694, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [695, 0, 1, "", "roll"], [480, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [653, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [565, 0, 1, "", "scatter_flat"], [566, 0, 1, "", "scatter_nd"], [743, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [731, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [414, 0, 1, "", "sliding_window"], [673, 0, 1, "", "slogdet"], [448, 0, 1, "", "smooth_l1_loss"], [449, 0, 1, "", "soft_margin_loss"], [481, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [674, 0, 1, "", "solve"], [744, 0, 1, "", "sort"], [686, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [696, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [697, 0, 1, "", "squeeze"], [580, 0, 1, "", "stable_divide"], [581, 0, 1, "", "stable_pow"], [698, 0, 1, "", "stack"], [752, 0, 1, "", "std"], [415, 0, 1, "", "stft"], [612, 0, 1, "", "stop_gradient"], [582, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [753, 0, 1, "", "sum"], [583, 0, 1, "", "supports_inplace_updates"], [675, 0, 1, "", "svd"], [437, 0, 1, "", "svd_flip"], [676, 0, 1, "", "svdvals"], [699, 0, 1, "", "swapaxes"], [482, 0, 1, "", "take"], [483, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [438, 0, 1, "", "tensor_train"], [677, 0, 1, "", "tensordot"], [678, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [700, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [585, 0, 1, "", "to_list"], [587, 0, 1, "", "to_numpy"], [588, 0, 1, "", "to_scalar"], [484, 0, 1, "", "top_k"], [679, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [322, 0, 1, "", "tril_indices"], [323, 0, 1, "", "trilu"], [485, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [142, 0, 1, "", "triu_indices"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [439, 0, 1, "", "truncated_svd"], [440, 0, 1, "", "tt_matrix_to_tensor"], [441, 0, 1, "", "tucker"], [486, 0, 1, "", "unfold"], [737, 0, 1, "", "unique_all"], [487, 0, 1, "", "unique_consecutive"], [738, 0, 1, "", "unique_counts"], [739, 0, 1, "", "unique_inverse"], [740, 0, 1, "", "unique_values"], [502, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [701, 0, 1, "", "unstack"], [601, 0, 1, "", "value_is_nan"], [680, 0, 1, "", "vander"], [754, 0, 1, "", "var"], [681, 0, 1, "", "vecdot"], [682, 0, 1, "", "vector_norm"], [683, 0, 1, "", "vector_to_skew_symmetric_matrix"], [327, 0, 1, "", "vorbis_window"], [488, 0, 1, "", "vsplit"], [489, 0, 1, "", "vstack"], [736, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [702, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy.data_classes.array": [[46, 3, 0, "-", "activations"], [97, 3, 0, "-", "array"], [47, 3, 0, "-", "conversions"], [48, 3, 0, "-", "creation"], [49, 3, 0, "-", "data_type"], [50, 3, 0, "-", "device"], [51, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "experimental"], [53, 3, 0, "-", "general"], [54, 3, 0, "-", "gradients"], [55, 3, 0, "-", "image"], [56, 3, 0, "-", "layers"], [57, 3, 0, "-", "linear_algebra"], [58, 3, 0, "-", "losses"], [59, 3, 0, "-", "manipulation"], [60, 3, 0, "-", "norms"], [61, 3, 0, "-", "random"], [62, 3, 0, "-", "searching"], [63, 3, 0, "-", "set"], [64, 3, 0, "-", "sorting"], [65, 3, 0, "-", "statistical"], [66, 3, 0, "-", "utility"], [67, 3, 0, "-", "wrapping"]], "ivy.data_classes.array.activations": [[46, 1, 1, "", "_ArrayWithActivations"]], "ivy.data_classes.array.activations._ArrayWithActivations": [[46, 4, 1, "", "_abc_impl"], [46, 0, 1, "", "gelu"], [46, 0, 1, "", "hardswish"], [46, 0, 1, "", "leaky_relu"], [46, 0, 1, "", "log_softmax"], [46, 0, 1, "", "mish"], [46, 0, 1, "", "relu"], [46, 0, 1, "", "sigmoid"], [46, 0, 1, "", "softmax"], [46, 0, 1, "", "softplus"]], "ivy.data_classes.array.array": [[97, 1, 1, "", "Array"]], "ivy.data_classes.array.array.Array": [[97, 5, 1, "", "T"], [97, 0, 1, "", "__abs__"], [97, 0, 1, "", "__add__"], [97, 0, 1, "", "__eq__"], [97, 0, 1, "", "__ge__"], [97, 0, 1, "", "__gt__"], [97, 0, 1, "", "__init__"], [97, 0, 1, "", "__le__"], [97, 0, 1, "", "__lt__"], [97, 0, 1, "", "__ne__"], [97, 0, 1, "", "__pow__"], [97, 0, 1, "", "__radd__"], [97, 0, 1, "", "__rrshift__"], [97, 0, 1, "", "__rshift__"], [97, 0, 1, "", "__rsub__"], [97, 0, 1, "", "__sub__"], [97, 0, 1, "", "__truediv__"], [97, 0, 1, "", "__xor__"], [97, 5, 1, "", "backend"], [97, 5, 1, "", "base"], [97, 5, 1, "", "data"], [97, 5, 1, "", "device"], [97, 5, 1, "", "dtype"], [97, 5, 1, "", "dynamic_backend"], [97, 5, 1, "", "imag"], [97, 5, 1, "", "itemsize"], [97, 5, 1, "", "mT"], [97, 5, 1, "", "ndim"], [97, 5, 1, "", "real"], [97, 5, 1, "", "shape"], [97, 5, 1, "", "size"], [97, 5, 1, "", "strides"]], "ivy.data_classes.array.conversions": [[47, 2, 1, "", "_array_to_new_backend"], [47, 2, 1, "", "_to_ivy"], [47, 2, 1, "", "_to_native"], [47, 2, 1, "", "_to_new_backend"], [47, 2, 1, "", "args_to_ivy"], [47, 2, 1, "", "args_to_native"], [47, 2, 1, "", "args_to_new_backend"], [47, 2, 1, "", "to_ivy"], [47, 2, 1, "", "to_native"], [47, 2, 1, "", "to_new_backend"]], "ivy.data_classes.array.creation": [[48, 1, 1, "", "_ArrayWithCreation"]], "ivy.data_classes.array.creation._ArrayWithCreation": [[48, 4, 1, "", "_abc_impl"], [48, 0, 1, "", "asarray"], [48, 0, 1, "", "copy_array"], [48, 0, 1, "", "empty_like"], [48, 0, 1, "", "from_dlpack"], [48, 0, 1, "", "full_like"], [48, 0, 1, "", "linspace"], [48, 0, 1, "", "logspace"], [48, 0, 1, "", "meshgrid"], [48, 0, 1, "", "native_array"], [48, 0, 1, "", "one_hot"], [48, 0, 1, "", "ones_like"], [48, 0, 1, "", "tril"], [48, 0, 1, "", "triu"], [48, 0, 1, "", "zeros_like"]], "ivy.data_classes.array.data_type": [[49, 1, 1, "", "_ArrayWithDataTypes"]], "ivy.data_classes.array.data_type._ArrayWithDataTypes": [[49, 4, 1, "", "_abc_impl"], [49, 0, 1, "", "astype"], [49, 0, 1, "", "broadcast_arrays"], [49, 0, 1, "", "broadcast_to"], [49, 0, 1, "", "can_cast"], [49, 0, 1, "", "dtype"], [49, 0, 1, "", "finfo"], [49, 0, 1, "", "iinfo"], [49, 0, 1, "", "is_bool_dtype"], [49, 0, 1, "", "is_float_dtype"], [49, 0, 1, "", "is_int_dtype"], [49, 0, 1, "", "is_uint_dtype"], [49, 0, 1, "", "result_type"]], "ivy.data_classes.array.device": [[50, 1, 1, "", "_ArrayWithDevice"]], "ivy.data_classes.array.device._ArrayWithDevice": [[50, 4, 1, "", "_abc_impl"], [50, 0, 1, "", "dev"], [50, 0, 1, "", "to_device"]], "ivy.data_classes.array.elementwise": [[51, 1, 1, "", "_ArrayWithElementwise"]], "ivy.data_classes.array.elementwise._ArrayWithElementwise": [[51, 4, 1, "", "_abc_impl"], [51, 0, 1, "", "abs"], [51, 0, 1, "", "acos"], [51, 0, 1, "", "acosh"], [51, 0, 1, "", "add"], [51, 0, 1, "", "angle"], [51, 0, 1, "", "asin"], [51, 0, 1, "", "asinh"], [51, 0, 1, "", "atan"], [51, 0, 1, "", "atan2"], [51, 0, 1, "", "atanh"], [51, 0, 1, "", "bitwise_and"], [51, 0, 1, "", "bitwise_invert"], [51, 0, 1, "", "bitwise_left_shift"], [51, 0, 1, "", "bitwise_or"], [51, 0, 1, "", "bitwise_right_shift"], [51, 0, 1, "", "bitwise_xor"], [51, 0, 1, "", "ceil"], [51, 0, 1, "", "cos"], [51, 0, 1, "", "cosh"], [51, 0, 1, "", "deg2rad"], [51, 0, 1, "", "divide"], [51, 0, 1, "", "equal"], [51, 0, 1, "", "erf"], [51, 0, 1, "", "exp"], [51, 0, 1, "", "exp2"], [51, 0, 1, "", "expm1"], [51, 0, 1, "", "floor"], [51, 0, 1, "", "floor_divide"], [51, 0, 1, "", "fmin"], [51, 0, 1, "", "gcd"], [51, 0, 1, "", "greater"], [51, 0, 1, "", "greater_equal"], [51, 0, 1, "", "imag"], [51, 0, 1, "", "isfinite"], [51, 0, 1, "", "isinf"], [51, 0, 1, "", "isnan"], [51, 0, 1, "", "isreal"], [51, 0, 1, "", "lcm"], [51, 0, 1, "", "less"], [51, 0, 1, "", "less_equal"], [51, 0, 1, "", "log"], [51, 0, 1, "", "log10"], [51, 0, 1, "", "log1p"], [51, 0, 1, "", "log2"], [51, 0, 1, "", "logaddexp"], [51, 0, 1, "", "logaddexp2"], [51, 0, 1, "", "logical_and"], [51, 0, 1, "", "logical_not"], [51, 0, 1, "", "logical_or"], [51, 0, 1, "", "logical_xor"], [51, 0, 1, "", "maximum"], [51, 0, 1, "", "minimum"], [51, 0, 1, "", "multiply"], [51, 0, 1, "", "nan_to_num"], [51, 0, 1, "", "negative"], [51, 0, 1, "", "not_equal"], [51, 0, 1, "", "positive"], [51, 0, 1, "", "pow"], [51, 0, 1, "", "rad2deg"], [51, 0, 1, "", "real"], [51, 0, 1, "", "reciprocal"], [51, 0, 1, "", "remainder"], [51, 0, 1, "", "round"], [51, 0, 1, "", "sign"], [51, 0, 1, "", "sin"], [51, 0, 1, "", "sinh"], [51, 0, 1, "", "sqrt"], [51, 0, 1, "", "square"], [51, 0, 1, "", "subtract"], [51, 0, 1, "", "tan"], [51, 0, 1, "", "tanh"], [51, 0, 1, "", "trapz"], [51, 0, 1, "", "trunc"], [51, 0, 1, "", "trunc_divide"]], "ivy.data_classes.array.experimental": [[52, 3, 0, "-", "activations"], [52, 3, 0, "-", "conversions"], [52, 3, 0, "-", "creation"], [52, 3, 0, "-", "data_type"], [52, 3, 0, "-", "device"], [52, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "general"], [52, 3, 0, "-", "gradients"], [52, 3, 0, "-", "image"], [52, 3, 0, "-", "layers"], [52, 3, 0, "-", "linear_algebra"], [52, 3, 0, "-", "losses"], [52, 3, 0, "-", "manipulation"], [52, 3, 0, "-", "norms"], [52, 3, 0, "-", "random"], [52, 3, 0, "-", "searching"], [52, 3, 0, "-", "set"], [52, 3, 0, "-", "sorting"], [52, 3, 0, "-", "statistical"], [52, 3, 0, "-", "utility"]], "ivy.data_classes.array.experimental.activations": [[52, 1, 1, "", "_ArrayWithActivationsExperimental"]], "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "celu"], [52, 0, 1, "", "elu"], [52, 0, 1, "", "hardshrink"], [52, 0, 1, "", "hardtanh"], [52, 0, 1, "", "logit"], [52, 0, 1, "", "logsigmoid"], [52, 0, 1, "", "prelu"], [52, 0, 1, "", "relu6"], [52, 0, 1, "", "scaled_tanh"], [52, 0, 1, "", "selu"], [52, 0, 1, "", "silu"], [52, 0, 1, "", "softshrink"], [52, 0, 1, "", "tanhshrink"], [52, 0, 1, "", "threshold"], [52, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.array.experimental.conversions": [[52, 1, 1, "", "_ArrayWithConversionsExperimental"]], "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.creation": [[52, 1, 1, "", "_ArrayWithCreationExperimental"], [52, 2, 1, "", "polyval"]], "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "blackman_window"], [52, 0, 1, "", "eye_like"], [52, 0, 1, "", "mel_weight_matrix"], [52, 0, 1, "", "trilu"], [52, 0, 1, "", "unsorted_segment_mean"], [52, 0, 1, "", "unsorted_segment_min"], [52, 0, 1, "", "unsorted_segment_sum"]], "ivy.data_classes.array.experimental.data_type": [[52, 1, 1, "", "_ArrayWithData_typeExperimental"]], "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.device": [[52, 1, 1, "", "_ArrayWithDeviceExperimental"]], "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.elementwise": [[52, 1, 1, "", "_ArrayWithElementWiseExperimental"]], "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "allclose"], [52, 0, 1, "", "amax"], [52, 0, 1, "", "amin"], [52, 0, 1, "", "binarizer"], [52, 0, 1, "", "conj"], [52, 0, 1, "", "copysign"], [52, 0, 1, "", "count_nonzero"], [52, 0, 1, "", "diff"], [52, 0, 1, "", "digamma"], [52, 0, 1, "", "erfc"], [52, 0, 1, "", "fix"], [52, 0, 1, "", "float_power"], [52, 0, 1, "", "fmax"], [52, 0, 1, "", "fmod"], [52, 0, 1, "", "frexp"], [52, 0, 1, "", "gradient"], [52, 0, 1, "", "hypot"], [52, 0, 1, "", "isclose"], [52, 0, 1, "", "ldexp"], [52, 0, 1, "", "lerp"], [52, 0, 1, "", "lgamma"], [52, 0, 1, "", "modf"], [52, 0, 1, "", "nansum"], [52, 0, 1, "", "nextafter"], [52, 0, 1, "", "signbit"], [52, 0, 1, "", "sinc"], [52, 0, 1, "", "sparsify_tensor"], [52, 0, 1, "", "xlogy"], [52, 0, 1, "", "zeta"]], "ivy.data_classes.array.experimental.general": [[52, 1, 1, "", "_ArrayWithGeneralExperimental"]], "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "reduce"]], "ivy.data_classes.array.experimental.gradients": [[52, 1, 1, "", "_ArrayWithGradientsExperimental"]], "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.image": [[52, 1, 1, "", "_ArrayWithImageExperimental"]], "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.layers": [[52, 1, 1, "", "_ArrayWithLayersExperimental"]], "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adaptive_avg_pool1d"], [52, 0, 1, "", "adaptive_avg_pool2d"], [52, 0, 1, "", "adaptive_max_pool2d"], [52, 0, 1, "", "avg_pool1d"], [52, 0, 1, "", "avg_pool2d"], [52, 0, 1, "", "avg_pool3d"], [52, 0, 1, "", "dct"], [52, 0, 1, "", "dft"], [52, 0, 1, "", "embedding"], [52, 0, 1, "", "fft"], [52, 0, 1, "", "fft2"], [52, 0, 1, "", "idct"], [52, 0, 1, "", "ifft"], [52, 0, 1, "", "ifftn"], [52, 0, 1, "", "interpolate"], [52, 0, 1, "", "max_pool1d"], [52, 0, 1, "", "max_pool2d"], [52, 0, 1, "", "max_pool3d"], [52, 0, 1, "", "max_unpool1d"], [52, 0, 1, "", "reduce_window"], [52, 0, 1, "", "rfft"], [52, 0, 1, "", "rfftn"], [52, 0, 1, "", "sliding_window"], [52, 0, 1, "", "stft"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, 1, 1, "", "_ArrayWithLinearAlgebraExperimental"]], "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adjoint"], [52, 0, 1, "", "batched_outer"], [52, 0, 1, "", "cond"], [52, 0, 1, "", "diagflat"], [52, 0, 1, "", "dot"], [52, 0, 1, "", "eig"], [52, 0, 1, "", "eigh_tridiagonal"], [52, 0, 1, "", "eigvals"], [52, 0, 1, "", "general_inner_product"], [52, 0, 1, "", "higher_order_moment"], [52, 0, 1, "", "initialize_tucker"], [52, 0, 1, "", "kron"], [52, 0, 1, "", "make_svd_non_negative"], [52, 0, 1, "", "matrix_exp"], [52, 0, 1, "", "mode_dot"], [52, 0, 1, "", "multi_dot"], [52, 0, 1, "", "multi_mode_dot"], [52, 0, 1, "", "partial_tucker"], [52, 0, 1, "", "svd_flip"], [52, 0, 1, "", "tensor_train"], [52, 0, 1, "", "truncated_svd"], [52, 0, 1, "", "tt_matrix_to_tensor"], [52, 0, 1, "", "tucker"]], "ivy.data_classes.array.experimental.losses": [[52, 1, 1, "", "_ArrayWithLossesExperimental"]], "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "hinge_embedding_loss"], [52, 0, 1, "", "huber_loss"], [52, 0, 1, "", "kl_div"], [52, 0, 1, "", "l1_loss"], [52, 0, 1, "", "log_poisson_loss"], [52, 0, 1, "", "poisson_nll_loss"], [52, 0, 1, "", "smooth_l1_loss"], [52, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.array.experimental.manipulation": [[52, 1, 1, "", "_ArrayWithManipulationExperimental"]], "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "as_strided"], [52, 0, 1, "", "associative_scan"], [52, 0, 1, "", "atleast_1d"], [52, 0, 1, "", "atleast_2d"], [52, 0, 1, "", "atleast_3d"], [52, 0, 1, "", "column_stack"], [52, 0, 1, "", "concat_from_sequence"], [52, 0, 1, "", "dsplit"], [52, 0, 1, "", "dstack"], [52, 0, 1, "", "expand"], [52, 0, 1, "", "fill_diagonal"], [52, 0, 1, "", "flatten"], [52, 0, 1, "", "fliplr"], [52, 0, 1, "", "flipud"], [52, 0, 1, "", "fold"], [52, 0, 1, "", "heaviside"], [52, 0, 1, "", "hsplit"], [52, 0, 1, "", "hstack"], [52, 0, 1, "", "i0"], [52, 0, 1, "", "matricize"], [52, 0, 1, "", "moveaxis"], [52, 0, 1, "", "pad"], [52, 0, 1, "", "partial_fold"], [52, 0, 1, "", "partial_tensor_to_vec"], [52, 0, 1, "", "partial_unfold"], [52, 0, 1, "", "partial_vec_to_tensor"], [52, 0, 1, "", "put_along_axis"], [52, 0, 1, "", "rot90"], [52, 0, 1, "", "soft_thresholding"], [52, 0, 1, "", "take"], [52, 0, 1, "", "take_along_axis"], [52, 0, 1, "", "top_k"], [52, 0, 1, "", "trim_zeros"], [52, 0, 1, "", "unfold"], [52, 0, 1, "", "unique_consecutive"], [52, 0, 1, "", "vsplit"], [52, 0, 1, "", "vstack"]], "ivy.data_classes.array.experimental.norms": [[52, 1, 1, "", "_ArrayWithNormsExperimental"]], "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "batch_norm"], [52, 0, 1, "", "group_norm"], [52, 0, 1, "", "instance_norm"], [52, 0, 1, "", "l1_normalize"], [52, 0, 1, "", "l2_normalize"], [52, 0, 1, "", "lp_normalize"]], "ivy.data_classes.array.experimental.random": [[52, 1, 1, "", "_ArrayWithRandomExperimental"]], "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bernoulli"], [52, 0, 1, "", "beta"], [52, 0, 1, "", "dirichlet"], [52, 0, 1, "", "gamma"], [52, 0, 1, "", "poisson"]], "ivy.data_classes.array.experimental.searching": [[52, 1, 1, "", "_ArrayWithSearchingExperimental"]], "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "unravel_index"]], "ivy.data_classes.array.experimental.set": [[52, 1, 1, "", "_ArrayWithSetExperimental"]], "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.sorting": [[52, 1, 1, "", "_ArrayWithSortingExperimental"]], "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "lexsort"]], "ivy.data_classes.array.experimental.statistical": [[52, 1, 1, "", "_ArrayWithStatisticalExperimental"]], "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bincount"], [52, 0, 1, "", "corrcoef"], [52, 0, 1, "", "cov"], [52, 0, 1, "", "cummax"], [52, 0, 1, "", "cummin"], [52, 0, 1, "", "histogram"], [52, 0, 1, "", "igamma"], [52, 0, 1, "", "median"], [52, 0, 1, "", "nanmean"], [52, 0, 1, "", "nanmedian"], [52, 0, 1, "", "nanmin"], [52, 0, 1, "", "nanprod"], [52, 0, 1, "", "quantile"]], "ivy.data_classes.array.experimental.utility": [[52, 1, 1, "", "_ArrayWithUtilityExperimental"]], "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "optional_get_element"]], "ivy.data_classes.array.general": [[53, 1, 1, "", "_ArrayWithGeneral"]], "ivy.data_classes.array.general._ArrayWithGeneral": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "all_equal"], [53, 0, 1, "", "array_equal"], [53, 0, 1, "", "assert_supports_inplace"], [53, 0, 1, "", "clip_matrix_norm"], [53, 0, 1, "", "clip_vector_norm"], [53, 0, 1, "", "default"], [53, 0, 1, "", "einops_rearrange"], [53, 0, 1, "", "einops_reduce"], [53, 0, 1, "", "einops_repeat"], [53, 0, 1, "", "exists"], [53, 0, 1, "", "fourier_encode"], [53, 0, 1, "", "gather"], [53, 0, 1, "", "gather_nd"], [53, 0, 1, "", "get_num_dims"], [53, 0, 1, "", "has_nans"], [53, 0, 1, "", "inplace_decrement"], [53, 0, 1, "", "inplace_increment"], [53, 0, 1, "", "inplace_update"], [53, 0, 1, "", "is_array"], [53, 0, 1, "", "is_ivy_array"], [53, 0, 1, "", "is_ivy_container"], [53, 0, 1, "", "is_native_array"], [53, 0, 1, "", "isin"], [53, 0, 1, "", "scatter_flat"], [53, 0, 1, "", "scatter_nd"], [53, 0, 1, "", "stable_divide"], [53, 0, 1, "", "stable_pow"], [53, 0, 1, "", "supports_inplace_updates"], [53, 0, 1, "", "to_file"], [53, 0, 1, "", "to_list"], [53, 0, 1, "", "to_numpy"], [53, 0, 1, "", "to_scalar"], [53, 0, 1, "", "value_is_nan"]], "ivy.data_classes.array.gradients": [[54, 1, 1, "", "_ArrayWithGradients"]], "ivy.data_classes.array.gradients._ArrayWithGradients": [[54, 4, 1, "", "_abc_impl"], [54, 0, 1, "", "adam_step"], [54, 0, 1, "", "adam_update"], [54, 0, 1, "", "gradient_descent_update"], [54, 0, 1, "", "lamb_update"], [54, 0, 1, "", "lars_update"], [54, 0, 1, "", "optimizer_update"], [54, 0, 1, "", "stop_gradient"]], "ivy.data_classes.array.image": [[55, 1, 1, "", "_ArrayWithImage"]], "ivy.data_classes.array.image._ArrayWithImage": [[55, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.layers": [[56, 1, 1, "", "_ArrayWithLayers"]], "ivy.data_classes.array.layers._ArrayWithLayers": [[56, 4, 1, "", "_abc_impl"], [56, 0, 1, "", "conv1d"], [56, 0, 1, "", "conv1d_transpose"], [56, 0, 1, "", "conv2d"], [56, 0, 1, "", "conv2d_transpose"], [56, 0, 1, "", "conv3d"], [56, 0, 1, "", "conv3d_transpose"], [56, 0, 1, "", "depthwise_conv2d"], [56, 0, 1, "", "dropout"], [56, 0, 1, "", "dropout1d"], [56, 0, 1, "", "dropout2d"], [56, 0, 1, "", "dropout3d"], [56, 0, 1, "", "linear"], [56, 0, 1, "", "lstm_update"], [56, 0, 1, "", "multi_head_attention"], [56, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.array.linear_algebra": [[57, 1, 1, "", "_ArrayWithLinearAlgebra"]], "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "cholesky"], [57, 0, 1, "", "cross"], [57, 0, 1, "", "det"], [57, 0, 1, "", "diag"], [57, 0, 1, "", "diagonal"], [57, 0, 1, "", "eig"], [57, 0, 1, "", "eigh"], [57, 0, 1, "", "eigvalsh"], [57, 0, 1, "", "inner"], [57, 0, 1, "", "inv"], [57, 0, 1, "", "matmul"], [57, 0, 1, "", "matrix_norm"], [57, 0, 1, "", "matrix_power"], [57, 0, 1, "", "matrix_rank"], [57, 0, 1, "", "matrix_transpose"], [57, 0, 1, "", "outer"], [57, 0, 1, "", "pinv"], [57, 0, 1, "", "qr"], [57, 0, 1, "", "slogdet"], [57, 0, 1, "", "solve"], [57, 0, 1, "", "svd"], [57, 0, 1, "", "svdvals"], [57, 0, 1, "", "tensordot"], [57, 0, 1, "", "tensorsolve"], [57, 0, 1, "", "trace"], [57, 0, 1, "", "vander"], [57, 0, 1, "", "vecdot"], [57, 0, 1, "", "vector_norm"], [57, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.array.losses": [[58, 1, 1, "", "_ArrayWithLosses"]], "ivy.data_classes.array.losses._ArrayWithLosses": [[58, 4, 1, "", "_abc_impl"], [58, 0, 1, "", "binary_cross_entropy"], [58, 0, 1, "", "cross_entropy"], [58, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.array.manipulation": [[59, 1, 1, "", "_ArrayWithManipulation"]], "ivy.data_classes.array.manipulation._ArrayWithManipulation": [[59, 4, 1, "", "_abc_impl"], [59, 0, 1, "", "clip"], [59, 0, 1, "", "concat"], [59, 0, 1, "", "constant_pad"], [59, 0, 1, "", "expand_dims"], [59, 0, 1, "", "flip"], [59, 0, 1, "", "permute_dims"], [59, 0, 1, "", "repeat"], [59, 0, 1, "", "reshape"], [59, 0, 1, "", "roll"], [59, 0, 1, "", "split"], [59, 0, 1, "", "squeeze"], [59, 0, 1, "", "stack"], [59, 0, 1, "", "swapaxes"], [59, 0, 1, "", "tile"], [59, 0, 1, "", "unstack"], [59, 0, 1, "", "view"], [59, 0, 1, "", "zero_pad"]], "ivy.data_classes.array.norms": [[60, 1, 1, "", "_ArrayWithNorms"]], "ivy.data_classes.array.norms._ArrayWithNorms": [[60, 4, 1, "", "_abc_impl"], [60, 0, 1, "", "layer_norm"]], "ivy.data_classes.array.random": [[61, 1, 1, "", "_ArrayWithRandom"]], "ivy.data_classes.array.random._ArrayWithRandom": [[61, 4, 1, "", "_abc_impl"], [61, 0, 1, "", "multinomial"], [61, 0, 1, "", "randint"], [61, 0, 1, "", "random_normal"], [61, 0, 1, "", "random_uniform"], [61, 0, 1, "", "shuffle"]], "ivy.data_classes.array.searching": [[62, 1, 1, "", "_ArrayWithSearching"]], "ivy.data_classes.array.searching._ArrayWithSearching": [[62, 4, 1, "", "_abc_impl"], [62, 0, 1, "", "argmax"], [62, 0, 1, "", "argmin"], [62, 0, 1, "", "argwhere"], [62, 0, 1, "", "nonzero"], [62, 0, 1, "", "where"]], "ivy.data_classes.array.set": [[63, 1, 1, "", "_ArrayWithSet"]], "ivy.data_classes.array.set._ArrayWithSet": [[63, 4, 1, "", "_abc_impl"], [63, 0, 1, "", "unique_all"], [63, 0, 1, "", "unique_counts"], [63, 0, 1, "", "unique_inverse"], [63, 0, 1, "", "unique_values"]], "ivy.data_classes.array.sorting": [[64, 1, 1, "", "_ArrayWithSorting"]], "ivy.data_classes.array.sorting._ArrayWithSorting": [[64, 4, 1, "", "_abc_impl"], [64, 0, 1, "", "argsort"], [64, 0, 1, "", "msort"], [64, 0, 1, "", "searchsorted"], [64, 0, 1, "", "sort"]], "ivy.data_classes.array.statistical": [[65, 1, 1, "", "_ArrayWithStatistical"]], "ivy.data_classes.array.statistical._ArrayWithStatistical": [[65, 4, 1, "", "_abc_impl"], [65, 0, 1, "", "cumprod"], [65, 0, 1, "", "cumsum"], [65, 0, 1, "", "einsum"], [65, 0, 1, "", "max"], [65, 0, 1, "", "mean"], [65, 0, 1, "", "min"], [65, 0, 1, "", "prod"], [65, 0, 1, "", "std"], [65, 0, 1, "", "sum"], [65, 0, 1, "", "var"]], "ivy.data_classes.array.utility": [[66, 1, 1, "", "_ArrayWithUtility"]], "ivy.data_classes.array.utility._ArrayWithUtility": [[66, 4, 1, "", "_abc_impl"], [66, 0, 1, "", "all"], [66, 0, 1, "", "any"]], "ivy.data_classes.array.wrapping": [[67, 2, 1, "", "_wrap_function"], [67, 2, 1, "", "add_ivy_array_instance_methods"]], "ivy.data_classes.container": [[68, 3, 0, "-", "activations"], [69, 3, 0, "-", "base"], [98, 3, 0, "-", "container"], [70, 3, 0, "-", "conversions"], [71, 3, 0, "-", "creation"], [72, 3, 0, "-", "data_type"], [73, 3, 0, "-", "device"], [74, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "experimental"], [76, 3, 0, "-", "general"], [77, 3, 0, "-", "gradients"], [78, 3, 0, "-", "image"], [79, 3, 0, "-", "layers"], [80, 3, 0, "-", "linear_algebra"], [81, 3, 0, "-", "losses"], [82, 3, 0, "-", "manipulation"], [83, 3, 0, "-", "norms"], [84, 3, 0, "-", "random"], [85, 3, 0, "-", "searching"], [86, 3, 0, "-", "set"], [87, 3, 0, "-", "sorting"], [88, 3, 0, "-", "statistical"], [89, 3, 0, "-", "utility"], [90, 3, 0, "-", "wrapping"]], "ivy.data_classes.container.activations": [[68, 1, 1, "", "_ContainerWithActivations"]], "ivy.data_classes.container.activations._ContainerWithActivations": [[68, 4, 1, "", "_abc_impl"], [68, 0, 1, "", "_static_gelu"], [68, 0, 1, "", "_static_hardswish"], [68, 0, 1, "", "_static_leaky_relu"], [68, 0, 1, "", "_static_log_softmax"], [68, 0, 1, "", "_static_mish"], [68, 0, 1, "", "_static_relu"], [68, 0, 1, "", "_static_sigmoid"], [68, 0, 1, "", "_static_softmax"], [68, 0, 1, "", "_static_softplus"], [68, 0, 1, "", "gelu"], [68, 0, 1, "", "hardswish"], [68, 0, 1, "", "leaky_relu"], [68, 0, 1, "", "log_softmax"], [68, 0, 1, "", "mish"], [68, 0, 1, "", "relu"], [68, 0, 1, "", "sigmoid"], [68, 0, 1, "", "softmax"], [68, 0, 1, "", "softplus"]], "ivy.data_classes.container.base": [[69, 1, 1, "", "ContainerBase"], [69, 2, 1, "", "_is_jsonable"], [69, 2, 1, "", "_repr"]], "ivy.data_classes.container.base.ContainerBase": [[69, 0, 1, "", "__getitem__"], [69, 0, 1, "", "__init__"], [69, 0, 1, "", "__setitem__"], [69, 4, 1, "", "_abc_impl"], [69, 0, 1, "", "_cont_at_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_at_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_call_static_method_with_flexible_args"], [69, 0, 1, "", "_cont_concat_unify"], [69, 0, 1, "", "_cont_get_dev"], [69, 0, 1, "", "_cont_get_dtype"], [69, 0, 1, "", "_cont_get_shape"], [69, 0, 1, "", "_cont_get_shapes"], [69, 5, 1, "", "_cont_ivy"], [69, 0, 1, "", "_cont_mean_unify"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_slice_keys"], [69, 0, 1, "", "_cont_sum_unify"], [69, 0, 1, "", "_get_queue_item"], [69, 0, 1, "", "cont_all_false"], [69, 0, 1, "", "cont_all_key_chains"], [69, 0, 1, "", "cont_all_true"], [69, 0, 1, "", "cont_as_bools"], [69, 0, 1, "", "cont_assert_contains_sub_container"], [69, 0, 1, "", "cont_assert_contains_sub_structure"], [69, 0, 1, "", "cont_assert_identical"], [69, 0, 1, "", "cont_assert_identical_structure"], [69, 0, 1, "", "cont_at_key_chain"], [69, 0, 1, "", "cont_at_key_chains"], [69, 0, 1, "", "cont_at_keys"], [69, 0, 1, "", "cont_combine"], [69, 0, 1, "", "cont_common_key_chains"], [69, 5, 1, "", "cont_config"], [69, 0, 1, "", "cont_contains_sub_container"], [69, 0, 1, "", "cont_contains_sub_structure"], [69, 0, 1, "", "cont_copy"], [69, 0, 1, "", "cont_create_if_absent"], [69, 0, 1, "", "cont_cutoff_at_depth"], [69, 0, 1, "", "cont_cutoff_at_height"], [69, 0, 1, "", "cont_deep_copy"], [69, 5, 1, "", "cont_dev"], [69, 5, 1, "", "cont_dev_str"], [69, 0, 1, "", "cont_diff"], [69, 5, 1, "", "cont_dtype"], [69, 0, 1, "", "cont_duplicate_array_keychains"], [69, 0, 1, "", "cont_find_sub_container"], [69, 0, 1, "", "cont_find_sub_structure"], [69, 0, 1, "", "cont_flatten_key_chain"], [69, 0, 1, "", "cont_flatten_key_chains"], [69, 0, 1, "", "cont_format_key_chains"], [69, 0, 1, "", "cont_from_disk_as_hdf5"], [69, 0, 1, "", "cont_from_disk_as_json"], [69, 0, 1, "", "cont_from_disk_as_pickled"], [69, 0, 1, "", "cont_from_flat_list"], [69, 0, 1, "", "cont_handle_inplace"], [69, 0, 1, "", "cont_has_key"], [69, 0, 1, "", "cont_has_key_chain"], [69, 0, 1, "", "cont_identical"], [69, 0, 1, "", "cont_identical_array_shapes"], [69, 0, 1, "", "cont_identical_configs"], [69, 0, 1, "", "cont_identical_structure"], [69, 0, 1, "", "cont_if_exists"], [69, 0, 1, "", "cont_inplace_update"], [69, 5, 1, "", "cont_ivy"], [69, 0, 1, "", "cont_key_chains_containing"], [69, 0, 1, "", "cont_list_join"], [69, 0, 1, "", "cont_list_stack"], [69, 0, 1, "", "cont_load"], [69, 0, 1, "", "cont_map"], [69, 0, 1, "", "cont_map_sub_conts"], [69, 5, 1, "", "cont_max_depth"], [69, 0, 1, "", "cont_multi_map"], [69, 0, 1, "", "cont_multi_map_in_function"], [69, 0, 1, "", "cont_num_arrays"], [69, 0, 1, "", "cont_overwrite_at_key_chain"], [69, 0, 1, "", "cont_overwrite_at_key_chains"], [69, 0, 1, "", "cont_prune_empty"], [69, 0, 1, "", "cont_prune_key_chain"], [69, 0, 1, "", "cont_prune_key_chains"], [69, 0, 1, "", "cont_prune_key_from_key_chains"], [69, 0, 1, "", "cont_prune_keys"], [69, 0, 1, "", "cont_prune_keys_from_key_chains"], [69, 0, 1, "", "cont_reduce"], [69, 0, 1, "", "cont_remove_key_length_limit"], [69, 0, 1, "", "cont_remove_print_limit"], [69, 0, 1, "", "cont_reshape_like"], [69, 0, 1, "", "cont_restructure"], [69, 0, 1, "", "cont_restructure_key_chains"], [69, 0, 1, "", "cont_save"], [69, 0, 1, "", "cont_set_at_key_chain"], [69, 0, 1, "", "cont_set_at_key_chains"], [69, 0, 1, "", "cont_set_at_keys"], [69, 5, 1, "", "cont_shape"], [69, 5, 1, "", "cont_shapes"], [69, 0, 1, "", "cont_show"], [69, 0, 1, "", "cont_show_sub_container"], [69, 0, 1, "", "cont_size_ordered_arrays"], [69, 0, 1, "", "cont_slice_keys"], [69, 0, 1, "", "cont_slice_via_key"], [69, 0, 1, "", "cont_sort_by_key"], [69, 0, 1, "", "cont_structural_diff"], [69, 0, 1, "", "cont_to_dict"], [69, 0, 1, "", "cont_to_disk_as_hdf5"], [69, 0, 1, "", "cont_to_disk_as_json"], [69, 0, 1, "", "cont_to_disk_as_pickled"], [69, 0, 1, "", "cont_to_flat_list"], [69, 0, 1, "", "cont_to_iterator"], [69, 0, 1, "", "cont_to_iterator_keys"], [69, 0, 1, "", "cont_to_iterator_values"], [69, 0, 1, "", "cont_to_jsonable"], [69, 0, 1, "", "cont_to_nested_list"], [69, 0, 1, "", "cont_to_raw"], [69, 0, 1, "", "cont_trim_key"], [69, 0, 1, "", "cont_try_kc"], [69, 0, 1, "", "cont_unify"], [69, 0, 1, "", "cont_unstack_conts"], [69, 0, 1, "", "cont_update_config"], [69, 0, 1, "", "cont_with_default_key_color"], [69, 0, 1, "", "cont_with_entries_as_lists"], [69, 0, 1, "", "cont_with_ivy_backend"], [69, 0, 1, "", "cont_with_key_length_limit"], [69, 0, 1, "", "cont_with_print_indent"], [69, 0, 1, "", "cont_with_print_limit"], [69, 0, 1, "", "cont_with_print_line_spacing"], [69, 5, 1, "", "dynamic_backend"], [69, 0, 1, "", "h5_file_size"], [69, 0, 1, "", "shuffle_h5_file"], [69, 0, 1, "", "split_conts"]], "ivy.data_classes.container.container": [[98, 1, 1, "", "Container"]], "ivy.data_classes.container.container.Container": [[98, 0, 1, "", "__abs__"], [98, 0, 1, "", "__add__"], [98, 0, 1, "", "__eq__"], [98, 0, 1, "", "__ge__"], [98, 0, 1, "", "__gt__"], [98, 0, 1, "", "__init__"], [98, 0, 1, "", "__le__"], [98, 0, 1, "", "__lt__"], [98, 0, 1, "", "__ne__"], [98, 0, 1, "", "__pow__"], [98, 0, 1, "", "__radd__"], [98, 0, 1, "", "__rrshift__"], [98, 0, 1, "", "__rshift__"], [98, 0, 1, "", "__rsub__"], [98, 0, 1, "", "__sub__"], [98, 0, 1, "", "__truediv__"], [98, 0, 1, "", "__xor__"]], "ivy.data_classes.container.conversions": [[70, 1, 1, "", "_ContainerWithConversions"]], "ivy.data_classes.container.conversions._ContainerWithConversions": [[70, 4, 1, "", "_abc_impl"], [70, 0, 1, "", "_static_to_ivy"], [70, 0, 1, "", "_static_to_native"], [70, 0, 1, "", "to_ivy"], [70, 0, 1, "", "to_native"]], "ivy.data_classes.container.creation": [[71, 1, 1, "", "_ContainerWithCreation"]], "ivy.data_classes.container.creation._ContainerWithCreation": [[71, 4, 1, "", "_abc_impl"], [71, 0, 1, "", "_static_arange"], [71, 0, 1, "", "_static_asarray"], [71, 0, 1, "", "_static_copy_array"], [71, 0, 1, "", "_static_empty"], [71, 0, 1, "", "_static_empty_like"], [71, 0, 1, "", "_static_eye"], [71, 0, 1, "", "_static_from_dlpack"], [71, 0, 1, "", "_static_full"], [71, 0, 1, "", "_static_full_like"], [71, 0, 1, "", "_static_linspace"], [71, 0, 1, "", "_static_logspace"], [71, 0, 1, "", "_static_meshgrid"], [71, 0, 1, "", "_static_native_array"], [71, 0, 1, "", "_static_one_hot"], [71, 0, 1, "", "_static_ones"], [71, 0, 1, "", "_static_ones_like"], [71, 0, 1, "", "_static_tril"], [71, 0, 1, "", "_static_triu"], [71, 0, 1, "", "_static_zeros"], [71, 0, 1, "", "_static_zeros_like"], [71, 0, 1, "", "asarray"], [71, 0, 1, "", "copy_array"], [71, 0, 1, "", "empty_like"], [71, 0, 1, "", "from_dlpack"], [71, 0, 1, "", "frombuffer"], [71, 0, 1, "", "full_like"], [71, 0, 1, "", "linspace"], [71, 0, 1, "", "logspace"], [71, 0, 1, "", "meshgrid"], [71, 0, 1, "", "native_array"], [71, 0, 1, "", "one_hot"], [71, 0, 1, "", "ones_like"], [71, 0, 1, "", "static_frombuffer"], [71, 0, 1, "", "static_triu_indices"], [71, 0, 1, "", "tril"], [71, 0, 1, "", "triu"], [71, 0, 1, "", "triu_indices"], [71, 0, 1, "", "zeros_like"]], "ivy.data_classes.container.data_type": [[72, 1, 1, "", "_ContainerWithDataTypes"]], "ivy.data_classes.container.data_type._ContainerWithDataTypes": [[72, 4, 1, "", "_abc_impl"], [72, 0, 1, "", "_static_astype"], [72, 0, 1, "", "_static_broadcast_arrays"], [72, 0, 1, "", "_static_broadcast_to"], [72, 0, 1, "", "_static_can_cast"], [72, 0, 1, "", "_static_default_complex_dtype"], [72, 0, 1, "", "_static_default_float_dtype"], [72, 0, 1, "", "_static_dtype"], [72, 0, 1, "", "_static_finfo"], [72, 0, 1, "", "_static_function_supported_dtypes"], [72, 0, 1, "", "_static_function_unsupported_dtypes"], [72, 0, 1, "", "_static_iinfo"], [72, 0, 1, "", "_static_is_bool_dtype"], [72, 0, 1, "", "_static_is_complex_dtype"], [72, 0, 1, "", "_static_is_float_dtype"], [72, 0, 1, "", "_static_is_int_dtype"], [72, 0, 1, "", "_static_is_uint_dtype"], [72, 0, 1, "", "_static_result_type"], [72, 0, 1, "", "astype"], [72, 0, 1, "", "broadcast_arrays"], [72, 0, 1, "", "broadcast_to"], [72, 0, 1, "", "can_cast"], [72, 0, 1, "", "dtype"], [72, 0, 1, "", "finfo"], [72, 0, 1, "", "iinfo"], [72, 0, 1, "", "is_bool_dtype"], [72, 0, 1, "", "is_complex_dtype"], [72, 0, 1, "", "is_float_dtype"], [72, 0, 1, "", "is_int_dtype"], [72, 0, 1, "", "is_uint_dtype"], [72, 0, 1, "", "result_type"]], "ivy.data_classes.container.device": [[73, 1, 1, "", "_ContainerWithDevice"]], "ivy.data_classes.container.device._ContainerWithDevice": [[73, 4, 1, "", "_abc_impl"], [73, 0, 1, "", "_static_dev"], [73, 0, 1, "", "_static_to_device"], [73, 0, 1, "", "dev"], [73, 0, 1, "", "to_device"]], "ivy.data_classes.container.elementwise": [[74, 1, 1, "", "_ContainerWithElementwise"]], "ivy.data_classes.container.elementwise._ContainerWithElementwise": [[74, 4, 1, "", "_abc_impl"], [74, 0, 1, "", "_static_abs"], [74, 0, 1, "", "_static_acos"], [74, 0, 1, "", "_static_acosh"], [74, 0, 1, "", "_static_add"], [74, 0, 1, "", "_static_asin"], [74, 0, 1, "", "_static_asinh"], [74, 0, 1, "", "_static_atan"], [74, 0, 1, "", "_static_atan2"], [74, 0, 1, "", "_static_atanh"], [74, 0, 1, "", "_static_bitwise_and"], [74, 0, 1, "", "_static_bitwise_invert"], [74, 0, 1, "", "_static_bitwise_left_shift"], [74, 0, 1, "", "_static_bitwise_or"], [74, 0, 1, "", "_static_bitwise_right_shift"], [74, 0, 1, "", "_static_bitwise_xor"], [74, 0, 1, "", "_static_ceil"], [74, 0, 1, "", "_static_cos"], [74, 0, 1, "", "_static_cosh"], [74, 0, 1, "", "_static_deg2rad"], [74, 0, 1, "", "_static_divide"], [74, 0, 1, "", "_static_equal"], [74, 0, 1, "", "_static_erf"], [74, 0, 1, "", "_static_exp"], [74, 0, 1, "", "_static_expm1"], [74, 0, 1, "", "_static_floor"], [74, 0, 1, "", "_static_floor_divide"], [74, 0, 1, "", "_static_greater"], [74, 0, 1, "", "_static_greater_equal"], [74, 0, 1, "", "_static_isfinite"], [74, 0, 1, "", "_static_isinf"], [74, 0, 1, "", "_static_isnan"], [74, 0, 1, "", "_static_isreal"], [74, 0, 1, "", "_static_lcm"], [74, 0, 1, "", "_static_less"], [74, 0, 1, "", "_static_less_equal"], [74, 0, 1, "", "_static_log"], [74, 0, 1, "", "_static_log10"], [74, 0, 1, "", "_static_log1p"], [74, 0, 1, "", "_static_log2"], [74, 0, 1, "", "_static_logaddexp"], [74, 0, 1, "", "_static_logical_and"], [74, 0, 1, "", "_static_logical_not"], [74, 0, 1, "", "_static_logical_or"], [74, 0, 1, "", "_static_logical_xor"], [74, 0, 1, "", "_static_maximum"], [74, 0, 1, "", "_static_minimum"], [74, 0, 1, "", "_static_multiply"], [74, 0, 1, "", "_static_negative"], [74, 0, 1, "", "_static_not_equal"], [74, 0, 1, "", "_static_positive"], [74, 0, 1, "", "_static_pow"], [74, 0, 1, "", "_static_rad2deg"], [74, 0, 1, "", "_static_reciprocal"], [74, 0, 1, "", "_static_remainder"], [74, 0, 1, "", "_static_round"], [74, 0, 1, "", "_static_sign"], [74, 0, 1, "", "_static_sin"], [74, 0, 1, "", "_static_sinh"], [74, 0, 1, "", "_static_sqrt"], [74, 0, 1, "", "_static_square"], [74, 0, 1, "", "_static_subtract"], [74, 0, 1, "", "_static_tan"], [74, 0, 1, "", "_static_tanh"], [74, 0, 1, "", "_static_trapz"], [74, 0, 1, "", "_static_trunc"], [74, 0, 1, "", "_static_trunc_divide"], [74, 0, 1, "", "abs"], [74, 0, 1, "", "acos"], [74, 0, 1, "", "acosh"], [74, 0, 1, "", "add"], [74, 0, 1, "", "angle"], [74, 0, 1, "", "asin"], [74, 0, 1, "", "asinh"], [74, 0, 1, "", "atan"], [74, 0, 1, "", "atan2"], [74, 0, 1, "", "atanh"], [74, 0, 1, "", "bitwise_and"], [74, 0, 1, "", "bitwise_invert"], [74, 0, 1, "", "bitwise_left_shift"], [74, 0, 1, "", "bitwise_or"], [74, 0, 1, "", "bitwise_right_shift"], [74, 0, 1, "", "bitwise_xor"], [74, 0, 1, "", "ceil"], [74, 0, 1, "", "cos"], [74, 0, 1, "", "cosh"], [74, 0, 1, "", "deg2rad"], [74, 0, 1, "", "divide"], [74, 0, 1, "", "equal"], [74, 0, 1, "", "erf"], [74, 0, 1, "", "exp"], [74, 0, 1, "", "exp2"], [74, 0, 1, "", "expm1"], [74, 0, 1, "", "floor"], [74, 0, 1, "", "floor_divide"], [74, 0, 1, "", "fmin"], [74, 0, 1, "", "gcd"], [74, 0, 1, "", "greater"], [74, 0, 1, "", "greater_equal"], [74, 0, 1, "", "imag"], [74, 0, 1, "", "isfinite"], [74, 0, 1, "", "isinf"], [74, 0, 1, "", "isnan"], [74, 0, 1, "", "isreal"], [74, 0, 1, "", "lcm"], [74, 0, 1, "", "less"], [74, 0, 1, "", "less_equal"], [74, 0, 1, "", "log"], [74, 0, 1, "", "log10"], [74, 0, 1, "", "log1p"], [74, 0, 1, "", "log2"], [74, 0, 1, "", "logaddexp"], [74, 0, 1, "", "logaddexp2"], [74, 0, 1, "", "logical_and"], [74, 0, 1, "", "logical_not"], [74, 0, 1, "", "logical_or"], [74, 0, 1, "", "logical_xor"], [74, 0, 1, "", "maximum"], [74, 0, 1, "", "minimum"], [74, 0, 1, "", "multiply"], [74, 0, 1, "", "nan_to_num"], [74, 0, 1, "", "negative"], [74, 0, 1, "", "not_equal"], [74, 0, 1, "", "positive"], [74, 0, 1, "", "pow"], [74, 0, 1, "", "rad2deg"], [74, 0, 1, "", "real"], [74, 0, 1, "", "reciprocal"], [74, 0, 1, "", "remainder"], [74, 0, 1, "", "round"], [74, 0, 1, "", "sign"], [74, 0, 1, "", "sin"], [74, 0, 1, "", "sinh"], [74, 0, 1, "", "sqrt"], [74, 0, 1, "", "square"], [74, 0, 1, "", "static_angle"], [74, 0, 1, "", "static_exp2"], [74, 0, 1, "", "static_fmin"], [74, 0, 1, "", "static_gcd"], [74, 0, 1, "", "static_imag"], [74, 0, 1, "", "static_logaddexp2"], [74, 0, 1, "", "static_nan_to_num"], [74, 0, 1, "", "static_real"], [74, 0, 1, "", "subtract"], [74, 0, 1, "", "tan"], [74, 0, 1, "", "tanh"], [74, 0, 1, "", "trapz"], [74, 0, 1, "", "trunc"], [74, 0, 1, "", "trunc_divide"]], "ivy.data_classes.container.experimental": [[75, 3, 0, "-", "activations"], [75, 3, 0, "-", "conversions"], [75, 3, 0, "-", "creation"], [75, 3, 0, "-", "data_type"], [75, 3, 0, "-", "device"], [75, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "general"], [75, 3, 0, "-", "gradients"], [75, 3, 0, "-", "image"], [75, 3, 0, "-", "layers"], [75, 3, 0, "-", "linear_algebra"], [75, 3, 0, "-", "losses"], [75, 3, 0, "-", "manipulation"], [75, 3, 0, "-", "norms"], [75, 3, 0, "-", "random"], [75, 3, 0, "-", "searching"], [75, 3, 0, "-", "set"], [75, 3, 0, "-", "sorting"], [75, 3, 0, "-", "statistical"], [75, 3, 0, "-", "utility"]], "ivy.data_classes.container.experimental.activations": [[75, 1, 1, "", "_ContainerWithActivationExperimental"]], "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_celu"], [75, 0, 1, "", "_static_elu"], [75, 0, 1, "", "_static_hardshrink"], [75, 0, 1, "", "_static_hardtanh"], [75, 0, 1, "", "_static_scaled_tanh"], [75, 0, 1, "", "_static_silu"], [75, 0, 1, "", "_static_softshrink"], [75, 0, 1, "", "_static_tanhshrink"], [75, 0, 1, "", "_static_threshold"], [75, 0, 1, "", "celu"], [75, 0, 1, "", "elu"], [75, 0, 1, "", "hardshrink"], [75, 0, 1, "", "hardtanh"], [75, 0, 1, "", "logit"], [75, 0, 1, "", "logsigmoid"], [75, 0, 1, "", "prelu"], [75, 0, 1, "", "relu6"], [75, 0, 1, "", "scaled_tanh"], [75, 0, 1, "", "selu"], [75, 0, 1, "", "silu"], [75, 0, 1, "", "softshrink"], [75, 0, 1, "", "static_logit"], [75, 0, 1, "", "static_logsigmoid"], [75, 0, 1, "", "static_prelu"], [75, 0, 1, "", "static_relu6"], [75, 0, 1, "", "static_selu"], [75, 0, 1, "", "static_thresholded_relu"], [75, 0, 1, "", "tanhshrink"], [75, 0, 1, "", "threshold"], [75, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.container.experimental.conversions": [[75, 1, 1, "", "_ContainerWithConversionExperimental"]], "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.creation": [[75, 1, 1, "", "_ContainerWithCreationExperimental"]], "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_trilu"], [75, 0, 1, "", "blackman_window"], [75, 0, 1, "", "eye_like"], [75, 0, 1, "", "hamming_window"], [75, 0, 1, "", "hann_window"], [75, 0, 1, "", "kaiser_bessel_derived_window"], [75, 0, 1, "", "kaiser_window"], [75, 0, 1, "", "mel_weight_matrix"], [75, 0, 1, "", "polyval"], [75, 0, 1, "", "static_blackman_window"], [75, 0, 1, "", "static_eye_like"], [75, 0, 1, "", "static_hamming_window"], [75, 0, 1, "", "static_hann_window"], [75, 0, 1, "", "static_kaiser_bessel_derived_window"], [75, 0, 1, "", "static_kaiser_window"], [75, 0, 1, "", "static_mel_weight_matrix"], [75, 0, 1, "", "static_polyval"], [75, 0, 1, "", "static_tril_indices"], [75, 0, 1, "", "static_unsorted_segment_mean"], [75, 0, 1, "", "static_unsorted_segment_min"], [75, 0, 1, "", "static_unsorted_segment_sum"], [75, 0, 1, "", "static_vorbis_window"], [75, 0, 1, "", "tril_indices"], [75, 0, 1, "", "trilu"], [75, 0, 1, "", "unsorted_segment_mean"], [75, 0, 1, "", "unsorted_segment_min"], [75, 0, 1, "", "unsorted_segment_sum"], [75, 0, 1, "", "vorbis_window"]], "ivy.data_classes.container.experimental.data_type": [[75, 1, 1, "", "_ContainerWithData_typeExperimental"]], "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.device": [[75, 1, 1, "", "_ContainerWithDeviceExperimental"]], "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.elementwise": [[75, 1, 1, "", "_ContainerWithElementWiseExperimental"]], "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "allclose"], [75, 0, 1, "", "amax"], [75, 0, 1, "", "amin"], [75, 0, 1, "", "binarizer"], [75, 0, 1, "", "conj"], [75, 0, 1, "", "copysign"], [75, 0, 1, "", "count_nonzero"], [75, 0, 1, "", "diff"], [75, 0, 1, "", "digamma"], [75, 0, 1, "", "erfc"], [75, 0, 1, "", "fix"], [75, 0, 1, "", "float_power"], [75, 0, 1, "", "fmax"], [75, 0, 1, "", "fmod"], [75, 0, 1, "", "frexp"], [75, 0, 1, "", "gradient"], [75, 0, 1, "", "hypot"], [75, 0, 1, "", "isclose"], [75, 0, 1, "", "ldexp"], [75, 0, 1, "", "lerp"], [75, 0, 1, "", "modf"], [75, 0, 1, "", "nansum"], [75, 0, 1, "", "nextafter"], [75, 0, 1, "", "signbit"], [75, 0, 1, "", "sinc"], [75, 0, 1, "", "sparsify_tensor"], [75, 0, 1, "", "static_allclose"], [75, 0, 1, "", "static_amax"], [75, 0, 1, "", "static_amin"], [75, 0, 1, "", "static_binarizer"], [75, 0, 1, "", "static_conj"], [75, 0, 1, "", "static_copysign"], [75, 0, 1, "", "static_count_nonzero"], [75, 0, 1, "", "static_diff"], [75, 0, 1, "", "static_digamma"], [75, 0, 1, "", "static_erfc"], [75, 0, 1, "", "static_fix"], [75, 0, 1, "", "static_float_power"], [75, 0, 1, "", "static_fmax"], [75, 0, 1, "", "static_fmod"], [75, 0, 1, "", "static_frexp"], [75, 0, 1, "", "static_gradient"], [75, 0, 1, "", "static_hypot"], [75, 0, 1, "", "static_isclose"], [75, 0, 1, "", "static_ldexp"], [75, 0, 1, "", "static_lerp"], [75, 0, 1, "", "static_modf"], [75, 0, 1, "", "static_nansum"], [75, 0, 1, "", "static_nextafter"], [75, 0, 1, "", "static_signbit"], [75, 0, 1, "", "static_sinc"], [75, 0, 1, "", "static_sparsify_tensor"], [75, 0, 1, "", "static_xlogy"], [75, 0, 1, "", "static_zeta"], [75, 0, 1, "", "xlogy"], [75, 0, 1, "", "zeta"]], "ivy.data_classes.container.experimental.general": [[75, 1, 1, "", "_ContainerWithGeneralExperimental"]], "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_reduce"], [75, 0, 1, "", "reduce"]], "ivy.data_classes.container.experimental.gradients": [[75, 1, 1, "", "_ContainerWithGradientsExperimental"]], "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.image": [[75, 1, 1, "", "_ContainerWithImageExperimental"]], "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.layers": [[75, 1, 1, "", "_ContainerWithLayersExperimental"]], "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fft"], [75, 0, 1, "", "_static_sliding_window"], [75, 0, 1, "", "adaptive_avg_pool1d"], [75, 0, 1, "", "adaptive_avg_pool2d"], [75, 0, 1, "", "adaptive_max_pool2d"], [75, 0, 1, "", "avg_pool1d"], [75, 0, 1, "", "avg_pool2d"], [75, 0, 1, "", "avg_pool3d"], [75, 0, 1, "", "dct"], [75, 0, 1, "", "dft"], [75, 0, 1, "", "embedding"], [75, 0, 1, "", "fft"], [75, 0, 1, "", "idct"], [75, 0, 1, "", "ifft"], [75, 0, 1, "", "ifftn"], [75, 0, 1, "", "interpolate"], [75, 0, 1, "", "max_pool1d"], [75, 0, 1, "", "max_pool2d"], [75, 0, 1, "", "max_pool3d"], [75, 0, 1, "", "max_unpool1d"], [75, 0, 1, "", "rfft"], [75, 0, 1, "", "rfftn"], [75, 0, 1, "", "sliding_window"], [75, 0, 1, "", "static_adaptive_avg_pool1d"], [75, 0, 1, "", "static_adaptive_avg_pool2d"], [75, 0, 1, "", "static_adaptive_max_pool2d"], [75, 0, 1, "", "static_avg_pool1d"], [75, 0, 1, "", "static_avg_pool2d"], [75, 0, 1, "", "static_avg_pool3d"], [75, 0, 1, "", "static_dct"], [75, 0, 1, "", "static_dft"], [75, 0, 1, "", "static_embedding"], [75, 0, 1, "", "static_idct"], [75, 0, 1, "", "static_ifft"], [75, 0, 1, "", "static_ifftn"], [75, 0, 1, "", "static_interpolate"], [75, 0, 1, "", "static_max_pool1d"], [75, 0, 1, "", "static_max_pool2d"], [75, 0, 1, "", "static_max_pool3d"], [75, 0, 1, "", "static_max_unpool1d"], [75, 0, 1, "", "static_rfft"], [75, 0, 1, "", "static_rfftn"], [75, 0, 1, "", "static_rnn"], [75, 0, 1, "", "static_stft"], [75, 0, 1, "", "stft"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, 1, 1, "", "_ContainerWithLinearAlgebraExperimental"]], "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "adjoint"], [75, 0, 1, "", "batched_outer"], [75, 0, 1, "", "cond"], [75, 0, 1, "", "diagflat"], [75, 0, 1, "", "dot"], [75, 0, 1, "", "eig"], [75, 0, 1, "", "eigh_tridiagonal"], [75, 0, 1, "", "eigvals"], [75, 0, 1, "", "higher_order_moment"], [75, 0, 1, "", "initialize_tucker"], [75, 0, 1, "", "kron"], [75, 0, 1, "", "make_svd_non_negative"], [75, 0, 1, "", "matrix_exp"], [75, 0, 1, "", "mode_dot"], [75, 0, 1, "", "multi_dot"], [75, 0, 1, "", "multi_mode_dot"], [75, 0, 1, "", "partial_tucker"], [75, 0, 1, "", "static_adjoint"], [75, 0, 1, "", "static_batched_outer"], [75, 0, 1, "", "static_cond"], [75, 0, 1, "", "static_diagflat"], [75, 0, 1, "", "static_dot"], [75, 0, 1, "", "static_eig"], [75, 0, 1, "", "static_eigh_tridiagonal"], [75, 0, 1, "", "static_eigvals"], [75, 0, 1, "", "static_higher_order_moment"], [75, 0, 1, "", "static_initialize_tucker"], [75, 0, 1, "", "static_kron"], [75, 0, 1, "", "static_make_svd_non_negative"], [75, 0, 1, "", "static_matrix_exp"], [75, 0, 1, "", "static_mode_dot"], [75, 0, 1, "", "static_multi_dot"], [75, 0, 1, "", "static_multi_mode_dot"], [75, 0, 1, "", "static_partial_tucker"], [75, 0, 1, "", "static_svd_flip"], [75, 0, 1, "", "static_tensor_train"], [75, 0, 1, "", "static_truncated_svd"], [75, 0, 1, "", "static_tt_matrix_to_tensor"], [75, 0, 1, "", "static_tucker"], [75, 0, 1, "", "svd_flip"], [75, 0, 1, "", "tensor_train"], [75, 0, 1, "", "truncated_svd"], [75, 0, 1, "", "tt_matrix_to_tensor"], [75, 0, 1, "", "tucker"]], "ivy.data_classes.container.experimental.losses": [[75, 1, 1, "", "_ContainerWithLossesExperimental"]], "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_hinge_embedding_loss"], [75, 0, 1, "", "_static_huber_loss"], [75, 0, 1, "", "_static_kl_div"], [75, 0, 1, "", "_static_l1_loss"], [75, 0, 1, "", "_static_log_poisson_loss"], [75, 0, 1, "", "_static_poisson_nll_loss"], [75, 0, 1, "", "_static_smooth_l1_loss"], [75, 0, 1, "", "_static_soft_margin_loss"], [75, 0, 1, "", "hinge_embedding_loss"], [75, 0, 1, "", "huber_loss"], [75, 0, 1, "", "kl_div"], [75, 0, 1, "", "l1_loss"], [75, 0, 1, "", "log_poisson_loss"], [75, 0, 1, "", "poisson_nll_loss"], [75, 0, 1, "", "smooth_l1_loss"], [75, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.container.experimental.manipulation": [[75, 1, 1, "", "_ContainerWithManipulationExperimental"], [75, 2, 1, "", "concat_from_sequence"]], "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fill_diagonal"], [75, 0, 1, "", "_static_put_along_axis"], [75, 0, 1, "", "_static_take"], [75, 0, 1, "", "_static_trim_zeros"], [75, 0, 1, "", "_static_unique_consecutive"], [75, 0, 1, "", "as_strided"], [75, 0, 1, "", "associative_scan"], [75, 0, 1, "", "atleast_1d"], [75, 0, 1, "", "atleast_2d"], [75, 0, 1, "", "atleast_3d"], [75, 0, 1, "", "broadcast_shapes"], [75, 0, 1, "", "column_stack"], [75, 0, 1, "", "concat_from_sequence"], [75, 0, 1, "", "dsplit"], [75, 0, 1, "", "dstack"], [75, 0, 1, "", "expand"], [75, 0, 1, "", "fill_diagonal"], [75, 0, 1, "", "flatten"], [75, 0, 1, "", "fliplr"], [75, 0, 1, "", "flipud"], [75, 0, 1, "", "fold"], [75, 0, 1, "", "heaviside"], [75, 0, 1, "", "hsplit"], [75, 0, 1, "", "hstack"], [75, 0, 1, "", "i0"], [75, 0, 1, "", "matricize"], [75, 0, 1, "", "moveaxis"], [75, 0, 1, "", "pad"], [75, 0, 1, "", "partial_fold"], [75, 0, 1, "", "partial_tensor_to_vec"], [75, 0, 1, "", "partial_unfold"], [75, 0, 1, "", "partial_vec_to_tensor"], [75, 0, 1, "", "put_along_axis"], [75, 0, 1, "", "rot90"], [75, 0, 1, "", "soft_thresholding"], [75, 0, 1, "", "static_as_strided"], [75, 0, 1, "", "static_atleast_1d"], [75, 0, 1, "", "static_atleast_2d"], [75, 0, 1, "", "static_atleast_3d"], [75, 0, 1, "", "static_broadcast_shapes"], [75, 0, 1, "", "static_column_stack"], [75, 0, 1, "", "static_concat_from_sequence"], [75, 0, 1, "", "static_dsplit"], [75, 0, 1, "", "static_dstack"], [75, 0, 1, "", "static_expand"], [75, 0, 1, "", "static_flatten"], [75, 0, 1, "", "static_fliplr"], [75, 0, 1, "", "static_flipud"], [75, 0, 1, "", "static_fold"], [75, 0, 1, "", "static_heaviside"], [75, 0, 1, "", "static_hsplit"], [75, 0, 1, "", "static_hstack"], [75, 0, 1, "", "static_i0"], [75, 0, 1, "", "static_matricize"], [75, 0, 1, "", "static_moveaxis"], [75, 0, 1, "", "static_pad"], [75, 0, 1, "", "static_partial_fold"], [75, 0, 1, "", "static_partial_tensor_to_vec"], [75, 0, 1, "", "static_partial_unfold"], [75, 0, 1, "", "static_partial_vec_to_tensor"], [75, 0, 1, "", "static_rot90"], [75, 0, 1, "", "static_soft_thresholding"], [75, 0, 1, "", "static_take_along_axis"], [75, 0, 1, "", "static_top_k"], [75, 0, 1, "", "static_unfold"], [75, 0, 1, "", "static_vsplit"], [75, 0, 1, "", "static_vstack"], [75, 0, 1, "", "take"], [75, 0, 1, "", "take_along_axis"], [75, 0, 1, "", "top_k"], [75, 0, 1, "", "trim_zeros"], [75, 0, 1, "", "unfold"], [75, 0, 1, "", "unique_consecutive"], [75, 0, 1, "", "vsplit"], [75, 0, 1, "", "vstack"]], "ivy.data_classes.container.experimental.norms": [[75, 1, 1, "", "_ContainerWithNormsExperimental"]], "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "batch_norm"], [75, 0, 1, "", "group_norm"], [75, 0, 1, "", "instance_norm"], [75, 0, 1, "", "l1_normalize"], [75, 0, 1, "", "l2_normalize"], [75, 0, 1, "", "lp_normalize"], [75, 0, 1, "", "static_batch_norm"], [75, 0, 1, "", "static_group_norm"], [75, 0, 1, "", "static_instance_norm"], [75, 0, 1, "", "static_l1_normalize"], [75, 0, 1, "", "static_l2_normalize"], [75, 0, 1, "", "static_lp_normalize"]], "ivy.data_classes.container.experimental.random": [[75, 1, 1, "", "_ContainerWithRandomExperimental"]], "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "bernoulli"], [75, 0, 1, "", "beta"], [75, 0, 1, "", "dirichlet"], [75, 0, 1, "", "gamma"], [75, 0, 1, "", "poisson"], [75, 0, 1, "", "static_bernoulli"], [75, 0, 1, "", "static_beta"], [75, 0, 1, "", "static_dirichlet"], [75, 0, 1, "", "static_gamma"], [75, 0, 1, "", "static_poisson"]], "ivy.data_classes.container.experimental.searching": [[75, 1, 1, "", "_ContainerWithSearchingExperimental"]], "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "static_unravel_index"], [75, 0, 1, "", "unravel_index"]], "ivy.data_classes.container.experimental.set": [[75, 1, 1, "", "_ContainerWithSetExperimental"]], "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.sorting": [[75, 1, 1, "", "_ContainerWithSortingExperimental"]], "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "invert_permutation"], [75, 0, 1, "", "lexsort"], [75, 0, 1, "", "static_invert_permutation"], [75, 0, 1, "", "static_lexsort"]], "ivy.data_classes.container.experimental.statistical": [[75, 1, 1, "", "_ContainerWithStatisticalExperimental"]], "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_cummax"], [75, 0, 1, "", "_static_cummin"], [75, 0, 1, "", "_static_nanmin"], [75, 0, 1, "", "bincount"], [75, 0, 1, "", "corrcoef"], [75, 0, 1, "", "cov"], [75, 0, 1, "", "cummax"], [75, 0, 1, "", "cummin"], [75, 0, 1, "", "histogram"], [75, 0, 1, "", "igamma"], [75, 0, 1, "", "median"], [75, 0, 1, "", "nanmean"], [75, 0, 1, "", "nanmedian"], [75, 0, 1, "", "nanmin"], [75, 0, 1, "", "nanprod"], [75, 0, 1, "", "quantile"], [75, 0, 1, "", "static_bincount"], [75, 0, 1, "", "static_corrcoef"], [75, 0, 1, "", "static_cov"], [75, 0, 1, "", "static_histogram"], [75, 0, 1, "", "static_igamma"], [75, 0, 1, "", "static_median"], [75, 0, 1, "", "static_nanmean"], [75, 0, 1, "", "static_nanmedian"], [75, 0, 1, "", "static_nanprod"], [75, 0, 1, "", "static_quantile"]], "ivy.data_classes.container.experimental.utility": [[75, 1, 1, "", "_ContainerWithUtilityExperimental"]], "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "optional_get_element"], [75, 0, 1, "", "static_optional_get_element"]], "ivy.data_classes.container.general": [[76, 1, 1, "", "_ContainerWithGeneral"]], "ivy.data_classes.container.general._ContainerWithGeneral": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_all_equal"], [76, 0, 1, "", "_static_array_equal"], [76, 0, 1, "", "_static_assert_supports_inplace"], [76, 0, 1, "", "_static_clip_matrix_norm"], [76, 0, 1, "", "_static_clip_vector_norm"], [76, 0, 1, "", "_static_einops_rearrange"], [76, 0, 1, "", "_static_einops_reduce"], [76, 0, 1, "", "_static_einops_repeat"], [76, 0, 1, "", "_static_exists"], [76, 0, 1, "", "_static_fourier_encode"], [76, 0, 1, "", "_static_gather"], [76, 0, 1, "", "_static_gather_nd"], [76, 0, 1, "", "_static_get_num_dims"], [76, 0, 1, "", "_static_has_nans"], [76, 0, 1, "", "_static_inplace_decrement"], [76, 0, 1, "", "_static_inplace_increment"], [76, 0, 1, "", "_static_inplace_update"], [76, 0, 1, "", "_static_is_array"], [76, 0, 1, "", "_static_is_ivy_array"], [76, 0, 1, "", "_static_is_native_array"], [76, 0, 1, "", "_static_scatter_flat"], [76, 0, 1, "", "_static_scatter_nd"], [76, 0, 1, "", "_static_stable_divide"], [76, 0, 1, "", "_static_stable_pow"], [76, 0, 1, "", "_static_supports_inplace_updates"], [76, 0, 1, "", "_static_to_list"], [76, 0, 1, "", "_static_to_numpy"], [76, 0, 1, "", "_static_to_scalar"], [76, 0, 1, "", "_static_value_is_nan"], [76, 0, 1, "", "all_equal"], [76, 0, 1, "", "array_equal"], [76, 0, 1, "", "assert_supports_inplace"], [76, 0, 1, "", "clip_matrix_norm"], [76, 0, 1, "", "clip_vector_norm"], [76, 0, 1, "", "einops_rearrange"], [76, 0, 1, "", "einops_reduce"], [76, 0, 1, "", "einops_repeat"], [76, 0, 1, "", "exists"], [76, 0, 1, "", "fourier_encode"], [76, 0, 1, "", "gather"], [76, 0, 1, "", "gather_nd"], [76, 0, 1, "", "get_num_dims"], [76, 0, 1, "", "has_nans"], [76, 0, 1, "", "inplace_decrement"], [76, 0, 1, "", "inplace_increment"], [76, 0, 1, "", "inplace_update"], [76, 0, 1, "", "is_array"], [76, 0, 1, "", "is_ivy_array"], [76, 0, 1, "", "is_native_array"], [76, 0, 1, "", "isin"], [76, 0, 1, "", "itemsize"], [76, 0, 1, "", "scatter_flat"], [76, 0, 1, "", "scatter_nd"], [76, 0, 1, "", "stable_divide"], [76, 0, 1, "", "stable_pow"], [76, 0, 1, "", "static_isin"], [76, 0, 1, "", "static_itemsize"], [76, 0, 1, "", "static_strides"], [76, 0, 1, "", "strides"], [76, 0, 1, "", "supports_inplace_updates"], [76, 0, 1, "", "to_list"], [76, 0, 1, "", "to_numpy"], [76, 0, 1, "", "to_scalar"], [76, 0, 1, "", "value_is_nan"]], "ivy.data_classes.container.gradients": [[77, 1, 1, "", "_ContainerWithGradients"]], "ivy.data_classes.container.gradients._ContainerWithGradients": [[77, 4, 1, "", "_abc_impl"], [77, 0, 1, "", "_static_stop_gradient"], [77, 0, 1, "", "adam_step"], [77, 0, 1, "", "adam_update"], [77, 0, 1, "", "gradient_descent_update"], [77, 0, 1, "", "lamb_update"], [77, 0, 1, "", "lars_update"], [77, 0, 1, "", "optimizer_update"], [77, 0, 1, "", "stop_gradient"]], "ivy.data_classes.container.image": [[78, 1, 1, "", "_ContainerWithImage"]], "ivy.data_classes.container.image._ContainerWithImage": [[78, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.layers": [[79, 1, 1, "", "_ContainerWithLayers"]], "ivy.data_classes.container.layers._ContainerWithLayers": [[79, 4, 1, "", "_abc_impl"], [79, 0, 1, "", "_static_conv1d"], [79, 0, 1, "", "_static_conv1d_transpose"], [79, 0, 1, "", "_static_conv2d"], [79, 0, 1, "", "_static_conv2d_transpose"], [79, 0, 1, "", "_static_conv3d"], [79, 0, 1, "", "_static_conv3d_transpose"], [79, 0, 1, "", "_static_depthwise_conv2d"], [79, 0, 1, "", "_static_dropout"], [79, 0, 1, "", "_static_dropout1d"], [79, 0, 1, "", "_static_dropout2d"], [79, 0, 1, "", "_static_dropout3d"], [79, 0, 1, "", "_static_linear"], [79, 0, 1, "", "_static_lstm_update"], [79, 0, 1, "", "_static_multi_head_attention"], [79, 0, 1, "", "_static_reduce_window"], [79, 0, 1, "", "_static_scaled_dot_product_attention"], [79, 0, 1, "", "conv1d"], [79, 0, 1, "", "conv1d_transpose"], [79, 0, 1, "", "conv2d"], [79, 0, 1, "", "conv2d_transpose"], [79, 0, 1, "", "conv3d"], [79, 0, 1, "", "conv3d_transpose"], [79, 0, 1, "", "depthwise_conv2d"], [79, 0, 1, "", "dropout"], [79, 0, 1, "", "dropout1d"], [79, 0, 1, "", "dropout2d"], [79, 0, 1, "", "dropout3d"], [79, 0, 1, "", "linear"], [79, 0, 1, "", "lstm_update"], [79, 0, 1, "", "multi_head_attention"], [79, 0, 1, "", "reduce_window"], [79, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.container.linear_algebra": [[80, 1, 1, "", "_ContainerWithLinearAlgebra"]], "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_cholesky"], [80, 0, 1, "", "_static_cross"], [80, 0, 1, "", "_static_det"], [80, 0, 1, "", "_static_diag"], [80, 0, 1, "", "_static_diagonal"], [80, 0, 1, "", "_static_eigh"], [80, 0, 1, "", "_static_eigvalsh"], [80, 0, 1, "", "_static_inner"], [80, 0, 1, "", "_static_inv"], [80, 0, 1, "", "_static_matmul"], [80, 0, 1, "", "_static_matrix_norm"], [80, 0, 1, "", "_static_matrix_power"], [80, 0, 1, "", "_static_matrix_rank"], [80, 0, 1, "", "_static_matrix_transpose"], [80, 0, 1, "", "_static_outer"], [80, 0, 1, "", "_static_pinv"], [80, 0, 1, "", "_static_qr"], [80, 0, 1, "", "_static_slogdet"], [80, 0, 1, "", "_static_solve"], [80, 0, 1, "", "_static_svd"], [80, 0, 1, "", "_static_svdvals"], [80, 0, 1, "", "_static_tensordot"], [80, 0, 1, "", "_static_tensorsolve"], [80, 0, 1, "", "_static_trace"], [80, 0, 1, "", "_static_vander"], [80, 0, 1, "", "_static_vecdot"], [80, 0, 1, "", "_static_vector_norm"], [80, 0, 1, "", "_static_vector_to_skew_symmetric_matrix"], [80, 0, 1, "", "cholesky"], [80, 0, 1, "", "cross"], [80, 0, 1, "", "det"], [80, 0, 1, "", "diag"], [80, 0, 1, "", "diagonal"], [80, 0, 1, "", "eigh"], [80, 0, 1, "", "eigvalsh"], [80, 0, 1, "", "general_inner_product"], [80, 0, 1, "", "inner"], [80, 0, 1, "", "inv"], [80, 0, 1, "", "matmul"], [80, 0, 1, "", "matrix_norm"], [80, 0, 1, "", "matrix_power"], [80, 0, 1, "", "matrix_rank"], [80, 0, 1, "", "matrix_transpose"], [80, 0, 1, "", "outer"], [80, 0, 1, "", "pinv"], [80, 0, 1, "", "qr"], [80, 0, 1, "", "slogdet"], [80, 0, 1, "", "solve"], [80, 0, 1, "", "static_general_inner_product"], [80, 0, 1, "", "svd"], [80, 0, 1, "", "svdvals"], [80, 0, 1, "", "tensordot"], [80, 0, 1, "", "tensorsolve"], [80, 0, 1, "", "trace"], [80, 0, 1, "", "vander"], [80, 0, 1, "", "vecdot"], [80, 0, 1, "", "vector_norm"], [80, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.container.losses": [[81, 1, 1, "", "_ContainerWithLosses"]], "ivy.data_classes.container.losses._ContainerWithLosses": [[81, 4, 1, "", "_abc_impl"], [81, 0, 1, "", "_static_binary_cross_entropy"], [81, 0, 1, "", "_static_cross_entropy"], [81, 0, 1, "", "_static_sparse_cross_entropy"], [81, 0, 1, "", "binary_cross_entropy"], [81, 0, 1, "", "cross_entropy"], [81, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.container.manipulation": [[82, 1, 1, "", "_ContainerWithManipulation"]], "ivy.data_classes.container.manipulation._ContainerWithManipulation": [[82, 4, 1, "", "_abc_impl"], [82, 0, 1, "", "_static_clip"], [82, 0, 1, "", "_static_concat"], [82, 0, 1, "", "_static_constant_pad"], [82, 0, 1, "", "_static_expand_dims"], [82, 0, 1, "", "_static_flip"], [82, 0, 1, "", "_static_permute_dims"], [82, 0, 1, "", "_static_repeat"], [82, 0, 1, "", "_static_reshape"], [82, 0, 1, "", "_static_roll"], [82, 0, 1, "", "_static_split"], [82, 0, 1, "", "_static_squeeze"], [82, 0, 1, "", "_static_stack"], [82, 0, 1, "", "_static_swapaxes"], [82, 0, 1, "", "_static_tile"], [82, 0, 1, "", "_static_unstack"], [82, 0, 1, "", "_static_zero_pad"], [82, 0, 1, "", "clip"], [82, 0, 1, "", "concat"], [82, 0, 1, "", "constant_pad"], [82, 0, 1, "", "expand_dims"], [82, 0, 1, "", "flip"], [82, 0, 1, "", "permute_dims"], [82, 0, 1, "", "repeat"], [82, 0, 1, "", "reshape"], [82, 0, 1, "", "roll"], [82, 0, 1, "", "split"], [82, 0, 1, "", "squeeze"], [82, 0, 1, "", "stack"], [82, 0, 1, "", "swapaxes"], [82, 0, 1, "", "tile"], [82, 0, 1, "", "unstack"], [82, 0, 1, "", "zero_pad"]], "ivy.data_classes.container.norms": [[83, 1, 1, "", "_ContainerWithNorms"]], "ivy.data_classes.container.norms._ContainerWithNorms": [[83, 4, 1, "", "_abc_impl"], [83, 0, 1, "", "layer_norm"]], "ivy.data_classes.container.random": [[84, 1, 1, "", "_ContainerWithRandom"]], "ivy.data_classes.container.random._ContainerWithRandom": [[84, 4, 1, "", "_abc_impl"], [84, 0, 1, "", "_static_multinomial"], [84, 0, 1, "", "_static_randint"], [84, 0, 1, "", "_static_random_normal"], [84, 0, 1, "", "_static_random_uniform"], [84, 0, 1, "", "_static_shuffle"], [84, 0, 1, "", "multinomial"], [84, 0, 1, "", "randint"], [84, 0, 1, "", "random_normal"], [84, 0, 1, "", "random_uniform"], [84, 0, 1, "", "shuffle"]], "ivy.data_classes.container.searching": [[85, 1, 1, "", "_ContainerWithSearching"]], "ivy.data_classes.container.searching._ContainerWithSearching": [[85, 4, 1, "", "_abc_impl"], [85, 0, 1, "", "_static_argmax"], [85, 0, 1, "", "_static_argmin"], [85, 0, 1, "", "_static_argwhere"], [85, 0, 1, "", "_static_nonzero"], [85, 0, 1, "", "_static_where"], [85, 0, 1, "", "argmax"], [85, 0, 1, "", "argmin"], [85, 0, 1, "", "argwhere"], [85, 0, 1, "", "nonzero"], [85, 0, 1, "", "where"]], "ivy.data_classes.container.set": [[86, 1, 1, "", "_ContainerWithSet"]], "ivy.data_classes.container.set._ContainerWithSet": [[86, 4, 1, "", "_abc_impl"], [86, 0, 1, "", "_static_unique_all"], [86, 0, 1, "", "_static_unique_counts"], [86, 0, 1, "", "_static_unique_inverse"], [86, 0, 1, "", "_static_unique_values"], [86, 0, 1, "", "unique_all"], [86, 0, 1, "", "unique_counts"], [86, 0, 1, "", "unique_inverse"], [86, 0, 1, "", "unique_values"]], "ivy.data_classes.container.sorting": [[87, 1, 1, "", "_ContainerWithSorting"]], "ivy.data_classes.container.sorting._ContainerWithSorting": [[87, 4, 1, "", "_abc_impl"], [87, 0, 1, "", "_static_argsort"], [87, 0, 1, "", "_static_searchsorted"], [87, 0, 1, "", "_static_sort"], [87, 0, 1, "", "argsort"], [87, 0, 1, "", "msort"], [87, 0, 1, "", "searchsorted"], [87, 0, 1, "", "sort"], [87, 0, 1, "", "static_msort"]], "ivy.data_classes.container.statistical": [[88, 1, 1, "", "_ContainerWithStatistical"]], "ivy.data_classes.container.statistical._ContainerWithStatistical": [[88, 4, 1, "", "_abc_impl"], [88, 0, 1, "", "_static_cumprod"], [88, 0, 1, "", "_static_cumsum"], [88, 0, 1, "", "_static_min"], [88, 0, 1, "", "_static_prod"], [88, 0, 1, "", "_static_sum"], [88, 0, 1, "", "_static_var"], [88, 0, 1, "", "cumprod"], [88, 0, 1, "", "cumsum"], [88, 0, 1, "", "einsum"], [88, 0, 1, "", "max"], [88, 0, 1, "", "mean"], [88, 0, 1, "", "min"], [88, 0, 1, "", "prod"], [88, 0, 1, "", "std"], [88, 0, 1, "", "sum"], [88, 0, 1, "", "var"]], "ivy.data_classes.container.utility": [[89, 1, 1, "", "_ContainerWithUtility"]], "ivy.data_classes.container.utility._ContainerWithUtility": [[89, 4, 1, "", "_abc_impl"], [89, 0, 1, "", "_static_all"], [89, 0, 1, "", "_static_any"], [89, 0, 1, "", "all"], [89, 0, 1, "", "any"]], "ivy.data_classes.container.wrapping": [[90, 2, 1, "", "_wrap_function"], [90, 2, 1, "", "add_ivy_container_instance_methods"]], "ivy.data_classes.factorized_tensor": [[91, 3, 0, "-", "base"], [92, 3, 0, "-", "cp_tensor"], [93, 3, 0, "-", "parafac2_tensor"], [94, 3, 0, "-", "tr_tensor"], [95, 3, 0, "-", "tt_tensor"], [96, 3, 0, "-", "tucker_tensor"]], "ivy.data_classes.factorized_tensor.base": [[91, 1, 1, "", "FactorizedTensor"]], "ivy.data_classes.factorized_tensor.base.FactorizedTensor": [[91, 0, 1, "", "__init__"], [91, 4, 1, "", "_abc_impl"], [91, 0, 1, "", "mode_dot"], [91, 0, 1, "", "norm"], [91, 0, 1, "", "to_tensor"], [91, 0, 1, "", "to_unfolded"], [91, 0, 1, "", "to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, 1, 1, "", "CPTensor"]], "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor": [[92, 0, 1, "", "__init__"], [92, 4, 1, "", "_abc_impl"], [92, 0, 1, "", "cp_copy"], [92, 0, 1, "", "cp_flip_sign"], [92, 0, 1, "", "cp_lstsq_grad"], [92, 0, 1, "", "cp_mode_dot"], [92, 0, 1, "", "cp_n_param"], [92, 0, 1, "", "cp_norm"], [92, 0, 1, "", "cp_normalize"], [92, 0, 1, "", "cp_to_tensor"], [92, 0, 1, "", "cp_to_unfolded"], [92, 0, 1, "", "cp_to_vec"], [92, 0, 1, "", "mode_dot"], [92, 5, 1, "", "n_param"], [92, 0, 1, "", "norm"], [92, 0, 1, "", "normalize"], [92, 0, 1, "", "to_tensor"], [92, 0, 1, "", "to_unfolded"], [92, 0, 1, "", "to_vec"], [92, 0, 1, "", "unfolding_dot_khatri_rao"], [92, 0, 1, "", "validate_cp_rank"], [92, 0, 1, "", "validate_cp_tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, 1, 1, "", "Parafac2Tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor": [[93, 0, 1, "", "__init__"], [93, 4, 1, "", "_abc_impl"], [93, 0, 1, "", "apply_parafac2_projections"], [93, 0, 1, "", "from_CPTensor"], [93, 5, 1, "", "n_param"], [93, 0, 1, "", "parafac2_normalise"], [93, 0, 1, "", "parafac2_to_slice"], [93, 0, 1, "", "parafac2_to_slices"], [93, 0, 1, "", "parafac2_to_tensor"], [93, 0, 1, "", "parafac2_to_unfolded"], [93, 0, 1, "", "parafac2_to_vec"], [93, 0, 1, "", "to_tensor"], [93, 0, 1, "", "to_unfolded"], [93, 0, 1, "", "to_vec"], [93, 0, 1, "", "validate_parafac2_tensor"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, 1, 1, "", "TRTensor"]], "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor": [[94, 0, 1, "", "__init__"], [94, 4, 1, "", "_abc_impl"], [94, 5, 1, "", "n_param"], [94, 0, 1, "", "to_tensor"], [94, 0, 1, "", "to_unfolded"], [94, 0, 1, "", "to_vec"], [94, 0, 1, "", "tr_n_param"], [94, 0, 1, "", "tr_to_tensor"], [94, 0, 1, "", "tr_to_unfolded"], [94, 0, 1, "", "tr_to_vec"], [94, 0, 1, "", "validate_tr_rank"], [94, 0, 1, "", "validate_tr_tensor"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, 1, 1, "", "TTTensor"]], "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor": [[95, 0, 1, "", "__init__"], [95, 4, 1, "", "_abc_impl"], [95, 0, 1, "", "_tt_n_param"], [95, 0, 1, "", "index_update"], [95, 5, 1, "", "n_param"], [95, 0, 1, "", "pad_tt_rank"], [95, 0, 1, "", "to_tensor"], [95, 0, 1, "", "to_unfolding"], [95, 0, 1, "", "to_vec"], [95, 0, 1, "", "tt_to_tensor"], [95, 0, 1, "", "tt_to_unfolded"], [95, 0, 1, "", "tt_to_vec"], [95, 0, 1, "", "validate_tt_rank"], [95, 0, 1, "", "validate_tt_tensor"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, 1, 1, "", "TuckerTensor"], [96, 2, 1, "", "_bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor": [[96, 0, 1, "", "__init__"], [96, 4, 1, "", "_abc_impl"], [96, 0, 1, "", "mode_dot"], [96, 5, 1, "", "n_param"], [96, 0, 1, "", "to_tensor"], [96, 0, 1, "", "to_unfolded"], [96, 0, 1, "", "to_vec"], [96, 0, 1, "", "tucker_copy"], [96, 0, 1, "", "tucker_mode_dot"], [96, 0, 1, "", "tucker_n_param"], [96, 0, 1, "", "tucker_normalize"], [96, 0, 1, "", "tucker_to_tensor"], [96, 0, 1, "", "tucker_to_unfolded"], [96, 0, 1, "", "tucker_to_vec"], [96, 0, 1, "", "validate_tucker_rank"], [96, 0, 1, "", "validate_tucker_tensor"]], "ivy.data_classes.nested_array": [[101, 3, 0, "-", "base"], [102, 3, 0, "-", "elementwise"], [100, 3, 0, "-", "nested_array"]], "ivy.data_classes.nested_array.base": [[101, 1, 1, "", "NestedArrayBase"]], "ivy.data_classes.nested_array.base.NestedArrayBase": [[101, 0, 1, "", "__init__"], [101, 4, 1, "", "_abc_impl"], [101, 0, 1, "", "broadcast_shapes"], [101, 5, 1, "", "data"], [101, 5, 1, "", "device"], [101, 5, 1, "", "dtype"], [101, 5, 1, "", "inner_shape"], [101, 5, 1, "", "ndim"], [101, 0, 1, "", "nested_array"], [101, 5, 1, "", "nested_rank"], [101, 0, 1, "", "ragged_map"], [101, 0, 1, "", "ragged_multi_map"], [101, 0, 1, "", "ragged_multi_map_in_function"], [101, 0, 1, "", "replace_ivy_arrays"], [101, 5, 1, "", "shape"], [101, 0, 1, "", "unbind"]], "ivy.data_classes.nested_array.elementwise": [[102, 1, 1, "", "NestedArrayElementwise"]], "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise": [[102, 4, 1, "", "_abc_impl"], [102, 0, 1, "", "static_add"]], "ivy.data_classes.nested_array.nested_array": [[100, 1, 1, "", "NestedArray"]], "ivy.data_classes.nested_array.nested_array.NestedArray": [[100, 0, 1, "", "__init__"], [100, 0, 1, "", "from_row_lengths"], [100, 0, 1, "", "from_row_splits"]], "ivy.functional.ivy": [[614, 3, 0, "-", "activations"], [615, 3, 0, "-", "constants"], [616, 3, 0, "-", "control_flow_ops"], [617, 3, 0, "-", "creation"], [618, 3, 0, "-", "data_type"], [619, 3, 0, "-", "device"], [620, 3, 0, "-", "elementwise"], [621, 3, 0, "-", "experimental"], [622, 3, 0, "-", "general"], [623, 3, 0, "-", "gradients"], [624, 3, 0, "-", "layers"], [625, 3, 0, "-", "linear_algebra"], [626, 3, 0, "-", "losses"], [627, 3, 0, "-", "manipulation"], [628, 3, 0, "-", "meta"], [629, 3, 0, "-", "nest"], [630, 3, 0, "-", "norms"], [631, 3, 0, "-", "random"], [632, 3, 0, "-", "searching"], [633, 3, 0, "-", "set"], [634, 3, 0, "-", "sorting"], [635, 3, 0, "-", "statistical"], [636, 3, 0, "-", "utility"]], "ivy.functional.ivy.experimental": [[360, 3, 0, "-", "activations"], [361, 3, 0, "-", "constants"], [362, 3, 0, "-", "creation"], [363, 3, 0, "-", "data_type"], [364, 3, 0, "-", "device"], [365, 3, 0, "-", "elementwise"], [366, 3, 0, "-", "general"], [367, 3, 0, "-", "gradients"], [368, 3, 0, "-", "layers"], [369, 3, 0, "-", "linear_algebra"], [370, 3, 0, "-", "losses"], [371, 3, 0, "-", "manipulation"], [372, 3, 0, "-", "meta"], [373, 3, 0, "-", "nest"], [374, 3, 0, "-", "norms"], [375, 3, 0, "-", "random"], [376, 3, 0, "-", "searching"], [377, 3, 0, "-", "set"], [378, 3, 0, "-", "sorting"], [379, 3, 0, "-", "sparse_array"], [380, 3, 0, "-", "statistical"], [381, 3, 0, "-", "utility"]], "ivy.stateful": [[776, 3, 0, "-", "activations"], [777, 3, 0, "-", "converters"], [778, 3, 0, "-", "helpers"], [779, 3, 0, "-", "initializers"], [780, 3, 0, "-", "layers"], [781, 3, 0, "-", "losses"], [782, 3, 0, "-", "module"], [783, 3, 0, "-", "norms"], [784, 3, 0, "-", "optimizers"], [785, 3, 0, "-", "sequential"]], "ivy.stateful.activations": [[776, 1, 1, "", "ELU"], [776, 1, 1, "", "GEGLU"], [776, 1, 1, "", "GELU"], [776, 1, 1, "", "Hardswish"], [776, 1, 1, "", "LeakyReLU"], [776, 1, 1, "", "LogSigmoid"], [776, 1, 1, "", "LogSoftmax"], [776, 1, 1, "", "Logit"], [776, 1, 1, "", "Mish"], [776, 1, 1, "", "PReLU"], [776, 1, 1, "", "ReLU"], [776, 1, 1, "", "ReLU6"], [776, 1, 1, "", "SeLU"], [776, 1, 1, "", "SiLU"], [776, 1, 1, "", "Sigmoid"], [776, 1, 1, "", "Softmax"], [776, 1, 1, "", "Softplus"], [776, 1, 1, "", "Tanh"]], "ivy.stateful.activations.ELU": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.GEGLU": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.GELU": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.Hardswish": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.LeakyReLU": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSigmoid": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSoftmax": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.Logit": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.Mish": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.PReLU": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU6": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.SeLU": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.SiLU": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.Sigmoid": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softmax": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softplus": [[776, 0, 1, "", "__init__"]], "ivy.stateful.activations.Tanh": [[776, 0, 1, "", "__init__"]], "ivy.stateful.converters": [[777, 1, 1, "", "ModuleConverters"], [777, 2, 1, "", "to_ivy_module"]], "ivy.stateful.converters.ModuleConverters": [[777, 0, 1, "", "from_flax_module"], [777, 0, 1, "", "from_haiku_module"], [777, 0, 1, "", "from_keras_module"], [777, 0, 1, "", "from_paddle_module"], [777, 0, 1, "", "from_torch_module"], [777, 0, 1, "", "to_keras_module"]], "ivy.stateful.helpers": [[778, 1, 1, "", "ModuleHelpers"]], "ivy.stateful.initializers": [[779, 1, 1, "", "Constant"], [779, 1, 1, "", "FirstLayerSiren"], [779, 1, 1, "", "GlorotUniform"], [779, 1, 1, "", "Initializer"], [779, 1, 1, "", "KaimingNormal"], [779, 1, 1, "", "Ones"], [779, 1, 1, "", "RandomNormal"], [779, 1, 1, "", "Siren"], [779, 1, 1, "", "Uniform"], [779, 1, 1, "", "Zeros"]], "ivy.stateful.initializers.Constant": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.FirstLayerSiren": [[779, 0, 1, "", "__init__"]], "ivy.stateful.initializers.GlorotUniform": [[779, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Initializer": [[779, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.KaimingNormal": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Ones": [[779, 0, 1, "", "__init__"]], "ivy.stateful.initializers.RandomNormal": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Siren": [[779, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Uniform": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Zeros": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers": [[780, 1, 1, "", "AdaptiveAvgPool1d"], [780, 1, 1, "", "AdaptiveAvgPool2d"], [780, 1, 1, "", "AvgPool1D"], [780, 1, 1, "", "AvgPool2D"], [780, 1, 1, "", "AvgPool3D"], [780, 1, 1, "", "Conv1D"], [780, 1, 1, "", "Conv1DTranspose"], [780, 1, 1, "", "Conv2D"], [780, 1, 1, "", "Conv2DTranspose"], [780, 1, 1, "", "Conv3D"], [780, 1, 1, "", "Conv3DTranspose"], [780, 1, 1, "", "Dct"], [780, 1, 1, "", "DepthwiseConv2D"], [780, 1, 1, "", "Dropout"], [780, 1, 1, "", "Embedding"], [780, 1, 1, "", "FFT"], [780, 1, 1, "", "IFFT"], [780, 1, 1, "", "Identity"], [780, 1, 1, "", "LSTM"], [780, 1, 1, "", "Linear"], [780, 1, 1, "", "MaxPool1D"], [780, 1, 1, "", "MaxPool2D"], [780, 1, 1, "", "MaxPool3D"], [780, 1, 1, "", "MultiHeadAttention"]], "ivy.stateful.layers.AdaptiveAvgPool1d": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.AdaptiveAvgPool2d": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool1D": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool2D": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool3D": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1D": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1DTranspose": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2D": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2DTranspose": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3D": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3DTranspose": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dct": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.DepthwiseConv2D": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dropout": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.Embedding": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.FFT": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.IFFT": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.Identity": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.LSTM": [[780, 0, 1, "", "__init__"], [780, 0, 1, "", "get_initial_state"]], "ivy.stateful.layers.Linear": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool1D": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool2D": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool3D": [[780, 0, 1, "", "__init__"]], "ivy.stateful.layers.MultiHeadAttention": [[780, 0, 1, "", "__init__"]], "ivy.stateful.losses": [[781, 1, 1, "", "BinaryCrossEntropyLoss"], [781, 1, 1, "", "CrossEntropyLoss"], [781, 1, 1, "", "LogPoissonLoss"]], "ivy.stateful.losses.BinaryCrossEntropyLoss": [[781, 0, 1, "", "__init__"]], "ivy.stateful.losses.CrossEntropyLoss": [[781, 0, 1, "", "__init__"]], "ivy.stateful.losses.LogPoissonLoss": [[781, 0, 1, "", "__init__"]], "ivy.stateful.module": [[782, 1, 1, "", "Module"], [782, 1, 1, "", "ModuleMeta"]], "ivy.stateful.module.Module": [[782, 0, 1, "", "__call__"], [782, 0, 1, "", "__init__"], [782, 5, 1, "", "buffers"], [782, 0, 1, "", "build"], [782, 5, 1, "", "build_mode"], [782, 5, 1, "", "built"], [782, 5, 1, "", "device"], [782, 5, 1, "", "dtype"], [782, 0, 1, "", "eval"], [782, 0, 1, "", "load"], [782, 5, 1, "", "module_dict"], [782, 0, 1, "", "register_buffer"], [782, 0, 1, "", "register_parameter"], [782, 0, 1, "", "save"], [782, 0, 1, "", "save_weights"], [782, 0, 1, "", "show_graph"], [782, 5, 1, "", "state_dict"], [782, 0, 1, "", "to_device"], [782, 0, 1, "", "trace_graph"], [782, 0, 1, "", "train"], [782, 5, 1, "", "training"], [782, 5, 1, "", "v"]], "ivy.stateful.norms": [[783, 1, 1, "", "BatchNorm2D"], [783, 1, 1, "", "LayerNorm"]], "ivy.stateful.norms.BatchNorm2D": [[783, 0, 1, "", "__init__"]], "ivy.stateful.norms.LayerNorm": [[783, 0, 1, "", "__init__"]], "ivy.stateful.optimizers": [[784, 1, 1, "", "Adam"], [784, 1, 1, "", "AdamW"], [784, 1, 1, "", "LAMB"], [784, 1, 1, "", "LARS"], [784, 1, 1, "", "Optimizer"], [784, 1, 1, "", "SGD"]], "ivy.stateful.optimizers.Adam": [[784, 0, 1, "", "__init__"], [784, 0, 1, "", "set_state"], [784, 5, 1, "", "state"]], "ivy.stateful.optimizers.AdamW": [[784, 0, 1, "", "__init__"]], "ivy.stateful.optimizers.LAMB": [[784, 0, 1, "", "__init__"], [784, 0, 1, "", "set_state"], [784, 5, 1, "", "state"]], "ivy.stateful.optimizers.LARS": [[784, 0, 1, "", "__init__"], [784, 0, 1, "", "set_state"], [784, 5, 1, "", "state"]], "ivy.stateful.optimizers.Optimizer": [[784, 0, 1, "", "__init__"], [784, 0, 1, "", "set_state"], [784, 0, 1, "", "step"]], "ivy.stateful.optimizers.SGD": [[784, 0, 1, "", "__init__"], [784, 0, 1, "", "set_state"], [784, 5, 1, "", "state"]], "ivy.stateful.sequential": [[785, 1, 1, "", "Sequential"]], "ivy.stateful.sequential.Sequential": [[785, 0, 1, "", "__init__"]], "ivy.utils": [[786, 3, 0, "-", "assertions"], [787, 3, 0, "-", "backend"], [791, 3, 0, "-", "binaries"], [792, 3, 0, "-", "dynamic_import"], [793, 3, 0, "-", "einsum_parser"], [794, 3, 0, "-", "einsum_path_helpers"], [795, 3, 0, "-", "exceptions"], [796, 3, 0, "-", "inspection"], [797, 3, 0, "-", "logging"], [798, 3, 0, "-", "profiler"], [799, 3, 0, "-", "verbosity"]], "ivy.utils.assertions": [[786, 2, 1, "", "check_all"], [786, 2, 1, "", "check_all_or_any_fn"], [786, 2, 1, "", "check_any"], [786, 2, 1, "", "check_dev_correct_formatting"], [786, 2, 1, "", "check_dimensions"], [786, 2, 1, "", "check_elem_in_list"], [786, 2, 1, "", "check_equal"], [786, 2, 1, "", "check_exists"], [786, 2, 1, "", "check_false"], [786, 2, 1, "", "check_gather_input_valid"], [786, 2, 1, "", "check_gather_nd_input_valid"], [786, 2, 1, "", "check_greater"], [786, 2, 1, "", "check_inplace_sizes_valid"], [786, 2, 1, "", "check_isinstance"], [786, 2, 1, "", "check_kernel_padding_size"], [786, 2, 1, "", "check_less"], [786, 2, 1, "", "check_one_way_broadcastable"], [786, 2, 1, "", "check_same_dtype"], [786, 2, 1, "", "check_shape"], [786, 2, 1, "", "check_shapes_broadcastable"], [786, 2, 1, "", "check_true"], [786, 2, 1, "", "check_unsorted_segment_valid_params"]], "ivy.utils.backend": [[788, 3, 0, "-", "ast_helpers"], [789, 3, 0, "-", "handler"], [790, 3, 0, "-", "sub_backend_handler"]], "ivy.utils.backend.ast_helpers": [[788, 1, 1, "", "ImportTransformer"], [788, 1, 1, "", "IvyLoader"], [788, 1, 1, "", "IvyPathFinder"]], "ivy.utils.backend.ast_helpers.ImportTransformer": [[788, 0, 1, "", "__init__"], [788, 0, 1, "", "impersonate_import"], [788, 0, 1, "", "visit_Import"], [788, 0, 1, "", "visit_ImportFrom"]], "ivy.utils.backend.ast_helpers.IvyLoader": [[788, 0, 1, "", "__init__"], [788, 0, 1, "", "exec_module"]], "ivy.utils.backend.ast_helpers.IvyPathFinder": [[788, 0, 1, "", "find_spec"]], "ivy.utils.backend.handler": [[789, 1, 1, "", "ContextManager"], [789, 2, 1, "", "choose_random_backend"], [789, 2, 1, "", "current_backend"], [789, 2, 1, "", "dynamic_backend_converter"], [789, 2, 1, "", "prevent_access_locally"], [789, 2, 1, "", "previous_backend"], [789, 2, 1, "", "set_backend"], [789, 2, 1, "", "set_backend_to_specific_version"], [789, 2, 1, "", "set_jax_backend"], [789, 2, 1, "", "set_mxnet_backend"], [789, 2, 1, "", "set_numpy_backend"], [789, 2, 1, "", "set_paddle_backend"], [789, 2, 1, "", "set_tensorflow_backend"], [789, 2, 1, "", "set_torch_backend"], [789, 2, 1, "", "unset_backend"], [789, 2, 1, "", "with_backend"]], "ivy.utils.backend.handler.ContextManager": [[789, 0, 1, "", "__init__"]], "ivy.utils.backend.sub_backend_handler": [[790, 2, 1, "", "clear_sub_backends"], [790, 2, 1, "", "find_available_sub_backends"], [790, 2, 1, "", "fn_name_from_version_specific_fn_name"], [790, 2, 1, "", "fn_name_from_version_specific_fn_name_sub_backend"], [790, 2, 1, "", "set_sub_backend"], [790, 2, 1, "", "set_sub_backend_to_specific_version"], [790, 2, 1, "", "unset_sub_backend"]], "ivy.utils.binaries": [[791, 2, 1, "", "check_for_binaries"], [791, 2, 1, "", "cleanup_and_fetch_binaries"]], "ivy.utils.dynamic_import": [[792, 2, 1, "", "import_module"]], "ivy.utils.einsum_parser": [[793, 2, 1, "", "convert_interleaved_input"], [793, 2, 1, "", "convert_subscripts"], [793, 2, 1, "", "find_output_shape"], [793, 2, 1, "", "find_output_str"], [793, 2, 1, "", "gen_unused_symbols"], [793, 2, 1, "", "get_symbol"], [793, 2, 1, "", "has_valid_einsum_chars_only"], [793, 2, 1, "", "is_valid_einsum_char"], [793, 2, 1, "", "legalise_einsum_expr"], [793, 2, 1, "", "possibly_convert_to_numpy"]], "ivy.utils.einsum_path_helpers": [[794, 2, 1, "", "can_dot"], [794, 2, 1, "", "compute_size_by_dict"], [794, 2, 1, "", "find_contraction"], [794, 2, 1, "", "flop_count"], [794, 2, 1, "", "greedy_path"], [794, 2, 1, "", "optimal_path"], [794, 2, 1, "", "parse_einsum_input"], [794, 2, 1, "", "parse_possible_contraction"], [794, 2, 1, "", "update_other_results"]], "ivy.utils.exceptions": [[795, 7, 1, "", "InplaceUpdateException"], [795, 7, 1, "", "IvyAttributeError"], [795, 7, 1, "", "IvyBackendException"], [795, 7, 1, "", "IvyBroadcastShapeError"], [795, 7, 1, "", "IvyDeviceError"], [795, 7, 1, "", "IvyDtypePromotionError"], [795, 7, 1, "", "IvyError"], [795, 7, 1, "", "IvyException"], [795, 7, 1, "", "IvyIndexError"], [795, 7, 1, "", "IvyInvalidBackendException"], [795, 7, 1, "", "IvyNotImplementedException"], [795, 7, 1, "", "IvyValueError"], [795, 2, 1, "", "handle_exceptions"]], "ivy.utils.exceptions.InplaceUpdateException": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyAttributeError": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBackendException": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBroadcastShapeError": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDeviceError": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDtypePromotionError": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyError": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyException": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyIndexError": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyInvalidBackendException": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyNotImplementedException": [[795, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyValueError": [[795, 0, 1, "", "__init__"]], "ivy.utils.inspection": [[796, 2, 1, "", "add_array_specs"], [796, 2, 1, "", "fn_array_spec"]], "ivy.utils.logging": [[797, 2, 1, "", "set_logging_mode"], [797, 2, 1, "", "unset_logging_mode"]], "ivy.utils.profiler": [[798, 1, 1, "", "Profiler"]], "ivy.utils.profiler.Profiler": [[798, 0, 1, "", "__init__"], [798, 4, 1, "", "print_stats"], [798, 4, 1, "", "viz"]], "ivy.utils.verbosity": [[799, 2, 1, "", "cprint"]], "ivy_tests.test_ivy.helpers": [[759, 3, 0, "-", "assertions"], [760, 3, 0, "-", "available_frameworks"], [761, 3, 0, "-", "function_testing"], [762, 3, 0, "-", "globals"], [763, 3, 0, "-", "hypothesis_helpers"], [768, 3, 0, "-", "multiprocessing"], [769, 3, 0, "-", "pipeline_helper"], [770, 3, 0, "-", "structs"], [771, 3, 0, "-", "test_parameter_flags"], [772, 3, 0, "-", "testing_helpers"]], "ivy_tests.test_ivy.helpers.assertions": [[759, 2, 1, "", "assert_all_close"], [759, 2, 1, "", "assert_same_type"], [759, 2, 1, "", "assert_same_type_and_shape"], [759, 2, 1, "", "check_unsupported_device"], [759, 2, 1, "", "check_unsupported_device_and_dtype"], [759, 2, 1, "", "check_unsupported_dtype"], [759, 2, 1, "", "test_unsupported_function"], [759, 2, 1, "", "value_test"]], "ivy_tests.test_ivy.helpers.function_testing": [[761, 2, 1, "", "args_to_container"], [761, 2, 1, "", "args_to_frontend"], [761, 2, 1, "", "arrays_to_frontend"], [761, 2, 1, "", "as_lists"], [761, 2, 1, "", "convtrue"], [761, 2, 1, "", "create_args_kwargs"], [761, 2, 1, "", "flatten"], [761, 2, 1, "", "flatten_and_to_np"], [761, 2, 1, "", "flatten_frontend"], [761, 2, 1, "", "flatten_frontend_fw_to_np"], [761, 2, 1, "", "flatten_frontend_to_np"], [761, 2, 1, "", "get_frontend_ret"], [761, 2, 1, "", "get_ret_and_flattened_np_array"], [761, 2, 1, "", "gradient_incompatible_function"], [761, 2, 1, "", "gradient_test"], [761, 2, 1, "", "gradient_unsupported_dtypes"], [761, 2, 1, "", "kwargs_to_args_n_kwargs"], [761, 2, 1, "", "test_frontend_function"], [761, 2, 1, "", "test_frontend_method"], [761, 2, 1, "", "test_function"], [761, 2, 1, "", "test_function_backend_computation"], [761, 2, 1, "", "test_function_ground_truth_computation"], [761, 2, 1, "", "test_gradient_backend_computation"], [761, 2, 1, "", "test_gradient_ground_truth_computation"], [761, 2, 1, "", "test_method"], [761, 2, 1, "", "test_method_backend_computation"], [761, 2, 1, "", "test_method_ground_truth_computation"], [761, 2, 1, "", "traced_if_required"], [761, 2, 1, "", "wrap_frontend_function_args"]], "ivy_tests.test_ivy.helpers.globals": [[762, 6, 1, "", "CURRENT_FRONTEND_CONFIG"], [762, 7, 1, "", "InterruptedTest"], [762, 1, 1, "", "TestData"], [762, 2, 1, "", "setup_api_test"], [762, 2, 1, "", "setup_frontend_test"], [762, 2, 1, "", "teardown_api_test"], [762, 2, 1, "", "teardown_frontend_test"]], "ivy_tests.test_ivy.helpers.globals.InterruptedTest": [[762, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.globals.TestData": [[762, 0, 1, "", "__init__"], [762, 4, 1, "", "fn_name"], [762, 4, 1, "", "fn_tree"], [762, 4, 1, "", "is_method"], [762, 4, 1, "", "supported_device_dtypes"], [762, 4, 1, "", "test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[764, 3, 0, "-", "array_helpers"], [765, 3, 0, "-", "dtype_helpers"], [766, 3, 0, "-", "general_helpers"], [767, 3, 0, "-", "number_helpers"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[764, 2, 1, "", "array_and_broadcastable_shape"], [764, 2, 1, "", "array_bools"], [764, 2, 1, "", "array_helpers_dtype_info_helper"], [764, 2, 1, "", "array_indices_axis"], [764, 2, 1, "", "array_indices_put_along_axis"], [764, 2, 1, "", "array_values"], [764, 2, 1, "", "arrays_and_axes"], [764, 2, 1, "", "arrays_for_pooling"], [764, 2, 1, "", "broadcast_shapes"], [764, 2, 1, "", "cond_data_gen_helper"], [764, 2, 1, "", "create_concatenable_arrays_dtypes"], [764, 2, 1, "", "create_nested_input"], [764, 2, 1, "", "dtype_and_values"], [764, 2, 1, "", "dtype_array_query"], [764, 2, 1, "", "dtype_array_query_val"], [764, 2, 1, "", "dtype_values_axis"], [764, 2, 1, "", "einsum_helper"], [764, 2, 1, "", "get_first_solve_batch_matrix"], [764, 2, 1, "", "get_first_solve_matrix"], [764, 2, 1, "", "get_second_solve_batch_matrix"], [764, 2, 1, "", "get_second_solve_matrix"], [764, 2, 1, "", "list_of_size"], [764, 2, 1, "", "lists"], [764, 2, 1, "", "mutually_broadcastable_shapes"], [764, 2, 1, "", "prod"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[765, 2, 1, "", "array_dtypes"], [765, 2, 1, "", "cast_filter"], [765, 2, 1, "", "cast_filter_helper"], [765, 2, 1, "", "get_castable_dtype"], [765, 2, 1, "", "get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[766, 7, 1, "", "BroadcastError"], [766, 2, 1, "", "apply_safety_factor"], [766, 2, 1, "", "broadcast_shapes"], [766, 2, 1, "", "embedding_helper"], [766, 2, 1, "", "general_helpers_dtype_info_helper"], [766, 2, 1, "", "get_axis"], [766, 2, 1, "", "get_bounds"], [766, 2, 1, "", "get_mean_std"], [766, 2, 1, "", "get_shape"], [766, 2, 1, "", "matrix_is_stable"], [766, 2, 1, "", "reshape_shapes"], [766, 2, 1, "", "subsets"], [766, 2, 1, "", "two_broadcastable_shapes"], [766, 2, 1, "", "x_and_filters"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[767, 2, 1, "", "floats"], [767, 2, 1, "", "ints"], [767, 2, 1, "", "number"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[768, 2, 1, "", "backend_proc"], [768, 2, 1, "", "frontend_proc"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[769, 1, 1, "", "BackendHandler"], [769, 1, 1, "", "BackendHandlerMode"], [769, 1, 1, "", "WithBackendContext"], [769, 2, 1, "", "get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler": [[769, 0, 1, "", "update_backend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode": [[769, 4, 1, "", "SetBackend"], [769, 4, 1, "", "WithBackend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext": [[769, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.structs": [[770, 1, 1, "", "FrontendMethodData"]], "ivy_tests.test_ivy.helpers.structs.FrontendMethodData": [[770, 0, 1, "", "__init__"], [770, 4, 1, "", "framework_init_module"], [770, 4, 1, "", "init_name"], [770, 4, 1, "", "ivy_init_module"], [770, 4, 1, "", "method_name"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[771, 1, 1, "", "DynamicFlag"], [771, 1, 1, "", "FrontendFunctionTestFlags"], [771, 1, 1, "", "FrontendInitTestFlags"], [771, 1, 1, "", "FrontendMethodTestFlags"], [771, 1, 1, "", "FunctionTestFlags"], [771, 1, 1, "", "InitMethodTestFlags"], [771, 1, 1, "", "MethodTestFlags"], [771, 1, 1, "", "TestFlags"], [771, 2, 1, "", "build_flag"], [771, 2, 1, "", "frontend_function_flags"], [771, 2, 1, "", "frontend_init_flags"], [771, 2, 1, "", "frontend_method_flags"], [771, 2, 1, "", "function_flags"], [771, 2, 1, "", "init_method_flags"], [771, 2, 1, "", "method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag": [[771, 0, 1, "", "__init__"], [771, 4, 1, "", "strategy"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags": [[771, 0, 1, "", "__init__"], [771, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags": [[771, 0, 1, "", "__init__"], [771, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags": [[771, 0, 1, "", "__init__"], [771, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags": [[771, 0, 1, "", "__init__"], [771, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags": [[771, 0, 1, "", "__init__"], [771, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags": [[771, 0, 1, "", "__init__"], [771, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags": [[771, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[772, 2, 1, "", "handle_frontend_method"], [772, 2, 1, "", "handle_frontend_test"], [772, 2, 1, "", "handle_method"], [772, 2, 1, "", "handle_test"], [772, 2, 1, "", "num_positional_args"], [772, 2, 1, "", "num_positional_args_helper"], [772, 2, 1, "", "num_positional_args_method"], [772, 2, 1, "", "seed"]]}, "objtypes": {"0": "py:method", "1": "py:class", "2": "py:function", "3": "py:module", "4": "py:attribute", "5": "py:property", "6": "py:data", "7": "py:exception"}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "class", "Python class"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"demo": [0, 2, 3, 4, 15, 26, 40, 41], "creat": [0, 38, 39, 806], "notebook": 0, "TO": 1, "replac": 1, "titl": 1, "exampl": [2, 5, 7, 9, 15, 34, 800, 819, 824, 827, 830, 835, 851, 852, 853], "ivi": [3, 4, 5, 7, 14, 17, 25, 26, 27, 38, 39, 41, 42, 44, 800, 806, 808, 812, 814, 816, 819, 821, 827, 829, 830, 831, 832, 833, 834, 837, 838, 839, 840, 841, 842, 844, 851, 852, 853, 864], "alexnet": 3, "instal": [3, 4, 7, 17, 38, 39, 41, 800, 844], "data": [3, 4, 5, 7, 9, 17, 26, 38, 49, 72, 103, 363, 618, 633, 737, 738, 739, 740, 817, 829, 832, 840, 843], "prepar": [3, 4, 5, 7], "infer": [3, 4, 5, 7, 826], "torch": [3, 4, 5, 7, 34, 41, 858, 859], "tensorflow": [3, 4, 5, 9, 13, 34, 41, 42, 43, 858], "jax": [3, 4, 5, 6, 8, 9, 34, 41, 858], "appendix": [3, 5], "code": [3, 17, 18, 19, 20, 27, 38, 823, 831, 833], "implement": [3, 5, 816, 827, 829, 849], "bert": 4, "dependeci": 4, "import": [4, 5, 7, 9, 17, 38, 39, 42, 792], "modul": [4, 782, 817, 818, 841, 852], "sequenc": [4, 824], "classif": 4, "model": [4, 5, 6, 7, 8, 11, 12, 13, 24, 25, 26, 27, 38, 39, 40, 41, 42, 44, 842, 843], "imag": [5, 7, 55, 78, 248, 802, 814], "segment": 5, "unet": 5, "custom": [5, 812, 814, 827, 831, 840, 843], "preprocess": 5, "load": [5, 7, 9, 757, 840], "visualis": [5, 7], "initi": [5, 7, 779, 841], "nativ": [5, 7, 812, 835], "pretrain": [5, 7], "weight": [5, 7, 840], "mask": 5, "function": [5, 17, 26, 27, 38, 39, 40, 42, 44, 104, 761, 806, 815, 817, 818, 821, 824, 825, 826, 827, 829, 830, 832, 833, 834, 835, 837, 842, 843, 852], "us": [5, 7, 14, 22, 25, 42, 44, 800, 802, 806, 807, 811, 827, 830, 840, 844, 851, 852], "your": [5, 7, 808, 832], "backend": [5, 9, 17, 26, 38, 39, 41, 42, 787, 790, 806, 813, 817, 827, 833, 837, 843], "acceler": [6, 8, 9], "mmpretrain": 6, "resnet": [7, 45], "set": [7, 34, 38, 39, 63, 86, 377, 633, 807, 813, 822, 834, 844], "label": 7, "resnet34": 7, "classifi": 7, "resnet50": 7, "pytorch": [8, 9, 11, 40, 858], "xgboost": 9, "test": [9, 40, 761, 771, 772, 775, 806, 807, 808, 811, 816, 822, 830, 832], "compar": 9, "xgb_frontend": 9, "xgbclassifi": 9, "xgb": 9, "more": [9, 807, 835, 849], "exhaust": 9, "evalu": 9, "train": [9, 38, 40, 42], "time": 9, "v": [9, 21, 31, 34, 823, 843, 848, 851], "number": [9, 767, 824], "boost": 9, "round": [9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 278, 831], "fraction": 9, "comparison": [9, 840], "metric": [9, 42], "guid": [10, 15], "transpil": [11, 12, 13, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 40, 44, 800, 842, 844, 852], "build": [11, 12, 13, 42, 802, 814, 837], "top": [11, 12, 13, 809, 816], "up": [11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 807, 822, 831, 844], "haiku": 12, "develop": 14, "convolut": 14, "network": [14, 39, 42, 840, 842], "tutori": [15, 42], "And": 15, "learn": [15, 16, 858], "basic": [15, 16, 38, 39, 808, 829], "write": [17, 25, 829, 832], "content": [17, 40], "handler": [17, 26, 789, 790, 837], "structur": [17, 26, 814, 827, 843], "api": [17, 26, 27, 806, 811, 815, 816, 827, 833, 837, 839, 841, 842, 844, 848, 851, 852, 853, 855, 862, 864], "state": [17, 26, 27, 841, 843, 851], "unifi": [18, 21, 22, 28, 31, 32, 33, 38, 800, 839, 849, 853, 860, 864], "trace": [19, 21, 22, 27, 679, 821], "lazi": [21, 31, 851], "eager": [21, 31, 851], "how": [22, 806, 814, 822, 831, 832], "decor": [22, 33, 821, 826, 832], "ani": [23, 24, 26, 27, 756], "librari": [23, 26, 27, 42, 44, 852], "odsc": 26, "framework": [26, 32, 38, 760, 773, 827, 830, 838, 858, 861, 864, 865], "graph": [26, 43, 859, 864], "tracer": [26, 837, 842, 844, 851, 859, 864], "quickstart": 27, "get": [27, 800, 808, 844], "familiar": 27, "0": [28, 29, 30, 31, 35, 36], "1": [29, 31, 32, 33, 34, 37, 44, 858], "compil": [29, 31, 32, 33, 39, 851, 856, 861, 863, 864], "2": [30, 33, 35, 44, 858], "select": 32, "As": 33, "3": [34, 36, 37, 44], "dynam": [34, 42, 792, 813, 843], "static": 34, "todo": [34, 808], "explain": 34, "via": 34, "why": [34, 832, 849], "mode": [34, 817, 821, 834], "i": [34, 800, 814, 835], "true": 34, "default": [34, 533], "when": [34, 800], "from": [34, 41, 844], "numpi": [34, 41, 829, 858], "fals": 34, "kornia": 35, "perceiv": 36, "stabl": 37, "diffus": 37, "oper": [38, 824, 834, 839, 843], "ml": [38, 847, 860, 864], "chang": 38, "one": 38, "line": [38, 808], "No": [38, 807, 849], "need": [38, 832], "worri": 38, "about": 38, "type": [38, 49, 72, 363, 618, 817, 825, 829, 843], "differ": 38, "them": 38, "all": [38, 755], "standalon": [38, 825], "defin": [38, 39, 40, 42], "optim": [38, 784, 841], "input": [38, 39, 824], "target": 38, "loss": [38, 58, 81, 370, 626, 781], "loop": [38, 42], "sampl": 39, "check": [39, 823, 843], "result": 39, "simpl": 39, "neural": 39, "deepmind": [40, 41], "": [40, 42, 806, 814, 831, 844], "perceiverio": [40, 41], "tabl": [40, 814, 817], "construct": [40, 840], "some": 40, "helper": [40, 763, 764, 765, 766, 767, 769, 772, 778, 788, 794, 830, 832, 833], "pipelin": [40, 42, 769, 814, 816, 832, 843], "dataset": [40, 42], "download": 40, "dataload": 40, "gpu": [41, 843], "introduct": [41, 44, 829, 830], "python3": 41, "8": 41, "setup": [41, 823], "kernel": 41, "clone": [41, 807, 816], "repo": [41, 807], "ivy_model": 41, "run": [41, 808, 811, 814, 822, 832], "end": 42, "let": 42, "we": [42, 832], "ar": 42, "mnist": 42, "thi": 42, "temporari": 42, "loader": 42, "util": [42, 66, 89, 381, 636, 774], "plot": 42, "save": [42, 758, 840], "huggingfac": 43, "deit": 43, "can": 43, "visual": 43, "displai": 43, "html": 43, "file": 43, "browser": [43, 808], "To": [44, 808], "interfac": 44, "telemetri": 44, "18": 45, "activ": [46, 68, 360, 614, 776], "convers": [47, 70, 826], "creation": [48, 71, 362, 617], "devic": [50, 73, 364, 619, 818, 824, 829], "elementwis": [51, 74, 102, 365, 620], "experiment": [52, 75, 621, 806], "gener": [53, 76, 366, 622, 766, 827, 832, 835, 851], "gradient": [54, 77, 342, 367, 623, 827], "layer": [56, 79, 368, 624, 780], "linear": [57, 80, 369, 625, 648], "algebra": [57, 80, 369, 625], "manipul": [59, 82, 371, 627], "norm": [60, 83, 374, 630, 783], "random": [61, 84, 375, 631], "search": [62, 85, 376, 632], "sort": [64, 87, 378, 634, 744], "statist": [65, 88, 380, 635], "wrap": [67, 90, 826], "base": [69, 91, 101], "cp": 92, "tensor": [92, 93, 94, 95, 96, 99], "parafac2": 93, "tr": 94, "tt": 95, "tucker": [96, 441], "arrai": [97, 100, 122, 379, 764, 811, 812, 816, 824, 839, 848, 851, 855], "contain": [98, 808, 815, 840], "factor": 99, "nest": [100, 373, 629], "class": [103, 773, 812, 821, 829, 839], "gelu": 105, "hardswish": 106, "leaky_relu": 107, "log_softmax": 108, "mish": 109, "relu": 110, "sigmoid": 111, "softmax": 112, "softplu": 113, "softsign": 114, "cmp_i": 115, "cmp_isnot": 116, "for_loop": 117, "if_els": 118, "try_except": 119, "while_loop": 120, "arang": 121, "asarrai": 123, "copy_arrai": 124, "empti": 125, "empty_lik": 126, "ey": 127, "from_dlpack": 128, "note": [128, 139, 617], "frombuff": 129, "full": [130, 830], "full_lik": 131, "linspac": 132, "logspac": 133, "meshgrid": 134, "native_arrai": 135, "one_hot": 136, "ones": 137, "ones_lik": 138, "to_dlpack": 139, "tril": 140, "triu": 141, "triu_indic": 142, "zero": 143, "zeros_lik": 144, "as_ivy_dtyp": 145, "as_native_dtyp": 146, "astyp": 147, "broadcast_arrai": 148, "broadcast_to": 149, "can_cast": 150, "check_float": 151, "closest_valid_dtyp": 152, "default_complex_dtyp": 153, "default_dtyp": 154, "default_float_dtyp": 155, "default_int_dtyp": 156, "default_uint_dtyp": 157, "dtype": [158, 765, 824], "dtype_bit": 159, "finfo": 160, "function_supported_dtyp": 161, "function_unsupported_dtyp": 162, "iinfo": 163, "infer_default_dtyp": 164, "invalid_dtyp": 165, "is_bool_dtyp": 166, "is_complex_dtyp": 167, "is_float_dtyp": 168, "is_hashable_dtyp": 169, "is_int_dtyp": 170, "is_native_dtyp": 171, "is_uint_dtyp": 172, "promote_typ": 173, "promote_types_of_input": 174, "result_typ": 175, "set_default_complex_dtyp": 176, "set_default_dtyp": 177, "set_default_float_dtyp": 178, "set_default_int_dtyp": 179, "set_default_uint_dtyp": 180, "type_promote_arrai": 181, "unset_default_complex_dtyp": 182, "unset_default_dtyp": 183, "unset_default_float_dtyp": 184, "unset_default_int_dtyp": 185, "unset_default_uint_dtyp": 186, "valid_dtyp": 187, "as_ivy_dev": 188, "as_native_dev": 189, "clear_cached_mem_on_dev": 190, "default_devic": 191, "dev": 192, "dev_util": 193, "function_supported_devic": 194, "function_unsupported_devic": 195, "get_all_ivy_arrays_on_dev": 196, "gpu_is_avail": 197, "handle_soft_device_vari": 198, "num_cpu_cor": 199, "num_gpu": 200, "num_ivy_arrays_on_dev": 201, "percent_used_mem_on_dev": 202, "print_all_ivy_arrays_on_dev": 203, "set_default_devic": 204, "set_soft_device_mod": 205, "paramet": [205, 567, 568, 573, 574, 576, 577, 619, 622, 771, 776, 834], "set_split_factor": 206, "split_factor": 207, "split_func_cal": 208, "to_devic": 209, "total_mem_on_dev": 210, "tpu_is_avail": 211, "unset_default_devic": 212, "unset_soft_device_mod": 213, "used_mem_on_dev": 214, "ab": 215, "aco": 216, "acosh": 217, "add": [218, 819, 830, 864], "angl": 219, "asin": 220, "asinh": 221, "atan": 222, "atan2": 223, "atanh": 224, "bitwise_and": 225, "bitwise_invert": 226, "bitwise_left_shift": 227, "bitwise_or": 228, "bitwise_right_shift": 229, "bitwise_xor": 230, "ceil": 231, "co": 232, "cosh": 233, "deg2rad": 234, "divid": 235, "equal": 236, "erf": 237, "exp": 238, "exp2": 239, "expm1": 240, "floor": 241, "floor_divid": 242, "fmin": 243, "fmod": 244, "gcd": 245, "greater": 246, "greater_equ": 247, "isfinit": 249, "isinf": 250, "isnan": 251, "isreal": 252, "lcm": 253, "less": 254, "less_equ": 255, "log": [256, 797, 807], "log10": 257, "log1p": 258, "log2": 259, "logaddexp": 260, "logaddexp2": 261, "logical_and": 262, "logical_not": 263, "logical_or": 264, "logical_xor": 265, "maximum": 266, "minimum": 267, "multipli": 268, "nan_to_num": 269, "neg": 270, "not_equ": 271, "posit": [272, 824], "pow": 273, "rad2deg": 274, "real": 275, "reciproc": 276, "remaind": 277, "sign": 279, "sin": 280, "sinh": 281, "sqrt": 282, "squar": 283, "subtract": 284, "tan": [285, 819, 830], "tanh": 286, "trapz": 287, "trunc": 288, "trunc_divid": 289, "celu": 290, "elu": 291, "hardshrink": 292, "hardtanh": 293, "logit": 294, "logsigmoid": 295, "prelu": 296, "relu6": 297, "scaled_tanh": 298, "selu": 299, "silu": 300, "softshrink": 301, "stanh": 302, "tanhshrink": 303, "threshold": 304, "thresholded_relu": 305, "blackman_window": 306, "eye_lik": 307, "hamming_window": 308, "hann_window": 309, "indic": 310, "kaiser_bessel_derived_window": 311, "kaiser_window": 312, "mel_weight_matrix": 313, "ndenumer": 314, "ndindex": 315, "polyv": 316, "random_cp": 317, "random_parafac2": 318, "random_tr": 319, "random_tt": 320, "random_tuck": 321, "tril_indic": 322, "trilu": 323, "unsorted_segment_mean": 324, "unsorted_segment_min": 325, "unsorted_segment_sum": 326, "vorbis_window": 327, "allclos": 328, "amax": 329, "amin": 330, "binar": 331, "conj": 332, "copysign": 333, "count_nonzero": 334, "diff": 335, "digamma": 336, "erfc": 337, "fix": [338, 806, 822], "float_pow": 339, "fmax": 340, "frexp": 341, "hypot": 343, "isclos": 344, "ldexp": 345, "lerp": 346, "lgamma": 347, "modf": 348, "nansum": 349, "nextaft": 350, "signbit": 351, "sinc": 352, "sparsify_tensor": 353, "xlogi": 354, "zeta": 355, "reduc": 356, "bind_custom_gradient_funct": 357, "jvp": 358, "vjp": 359, "constant": [361, 615], "meta": [372, 628], "spars": 379, "adaptive_avg_pool1d": 382, "adaptive_avg_pool2d": 383, "adaptive_max_pool2d": 384, "area_interpol": 385, "avg_pool1d": 386, "avg_pool2d": 387, "avg_pool3d": 388, "dct": 389, "dft": 390, "dropout1d": 391, "dropout2d": 392, "dropout3d": 393, "embed": 394, "fft": 395, "fft2": 396, "generate_einsum_equ": 397, "get_interpolate_kernel": 398, "idct": 399, "ifft": 400, "ifftn": 401, "interp": 402, "interpol": 403, "max_pool1d": 404, "max_pool2d": 405, "max_pool3d": 406, "max_unpool1d": 407, "nearest_interpol": 408, "pool": 409, "reduce_window": 410, "rfft": 411, "rfftn": 412, "rnn": 413, "sliding_window": 414, "stft": 415, "adjoint": 416, "batched_out": 417, "cond": 418, "diagflat": 419, "dot": 420, "eig": [421, 659], "eigh_tridiagon": 422, "eigval": 423, "general_inner_product": 424, "higher_order_mo": 425, "initialize_tuck": 426, "khatri_rao": 427, "kron": 428, "kroneck": 429, "make_svd_non_neg": 430, "matrix_exp": 431, "mode_dot": 432, "multi_dot": 433, "multi_mode_dot": 434, "partial_tuck": 435, "solve_triangular": 436, "svd_flip": 437, "tensor_train": 438, "truncated_svd": 439, "tt_matrix_to_tensor": 440, "hinge_embedding_loss": 442, "huber_loss": 443, "kl_div": 444, "l1_loss": 445, "log_poisson_loss": 446, "poisson_nll_loss": 447, "smooth_l1_loss": 448, "soft_margin_loss": 449, "as_strid": 450, "associative_scan": 451, "atleast_1d": 452, "atleast_2d": 453, "atleast_3d": 454, "broadcast_shap": 455, "check_scalar": 456, "choos": 457, "column_stack": 458, "concat_from_sequ": 459, "dsplit": 460, "dstack": 461, "expand": 462, "fill_diagon": 463, "flatten": 464, "fliplr": 465, "flipud": 466, "fold": 467, "heavisid": 468, "hsplit": 469, "hstack": 470, "i0": 471, "matric": 472, "moveaxi": 473, "pad": 474, "partial_fold": 475, "partial_tensor_to_vec": 476, "partial_unfold": 477, "partial_vec_to_tensor": 478, "put_along_axi": 479, "rot90": 480, "soft_threshold": 481, "take": 482, "take_along_axi": 483, "top_k": 484, "trim_zero": 485, "unfold": 486, "unique_consecut": 487, "vsplit": 488, "vstack": 489, "batch_norm": 490, "group_norm": 491, "instance_norm": 492, "l1_normal": 493, "l2_normal": 494, "local_response_norm": 495, "lp_normal": 496, "bernoulli": 497, "beta": 498, "dirichlet": 499, "gamma": 500, "poisson": 501, "unravel_index": 502, "invert_permut": 503, "lexsort": 504, "is_ivy_sparse_arrai": 505, "is_native_sparse_arrai": 506, "native_sparse_arrai": 507, "native_sparse_array_to_indices_values_and_shap": 508, "bincount": 509, "corrcoef": 510, "cov": 511, "cummax": 512, "cummin": 513, "histogram": 514, "igamma": 515, "median": 516, "nanmean": 517, "nanmedian": 518, "nanmin": 519, "nanprod": 520, "quantil": 521, "optional_get_el": 522, "all_equ": 523, "arg_info": 524, "arg_nam": 525, "array_equ": 526, "assert_supports_inplac": 527, "cache_fn": 528, "clip_matrix_norm": 529, "clip_vector_norm": 530, "container_typ": 531, "current_backend_str": 532, "einops_rearrang": 534, "einops_reduc": 535, "einops_repeat": 536, "exist": [537, 802, 831], "fourier_encod": 538, "function_supported_devices_and_dtyp": 539, "function_unsupported_devices_and_dtyp": 540, "gather": 541, "gather_nd": 542, "get_all_arrays_in_memori": 543, "get_item": 544, "get_num_dim": 545, "get_referrers_recurs": 546, "has_nan": 547, "inplace_arrays_support": 548, "inplace_decr": 549, "inplace_incr": 550, "inplace_upd": 551, "inplace_variables_support": 552, "is_arrai": 553, "is_ivy_arrai": 554, "is_ivy_contain": 555, "is_ivy_nested_arrai": 556, "is_native_arrai": 557, "isin": 558, "isscalar": 559, "items": 560, "match_kwarg": 561, "multiprocess": [562, 768], "num_arrays_in_memori": 563, "print_all_arrays_in_memori": 564, "scatter_flat": 565, "scatter_nd": 566, "set_array_mod": 567, "set_exception_trace_mod": 568, "set_inplace_mod": 569, "set_item": 570, "set_min_bas": 571, "set_min_denomin": 572, "set_nestable_mod": 573, "set_precise_mod": 574, "set_queue_timeout": 575, "set_shape_array_mod": 576, "set_show_func_wrapper_trace_mod": 577, "set_tmp_dir": 578, "shape": [579, 633, 737, 738, 739, 740, 826, 843], "stable_divid": 580, "stable_pow": 581, "stride": 582, "supports_inplace_upd": 583, "to_ivy_shap": 584, "to_list": 585, "to_native_shap": 586, "to_numpi": 587, "to_scalar": 588, "try_else_non": 589, "unset_array_mod": 590, "unset_exception_trace_mod": 591, "unset_inplace_mod": 592, "unset_min_bas": 593, "unset_min_denomin": 594, "unset_nestable_mod": 595, "unset_precise_mod": 596, "unset_queue_timeout": 597, "unset_shape_array_mod": 598, "unset_show_func_wrapper_trace_mod": 599, "unset_tmp_dir": 600, "value_is_nan": 601, "vmap": 602, "adam_step": 603, "adam_upd": 604, "execute_with_gradi": [605, 827], "grad": 606, "gradient_descent_upd": 607, "jac": 608, "lamb_upd": 609, "lars_upd": 610, "optimizer_upd": 611, "stop_gradi": 612, "value_and_grad": 613, "control": [616, 843], "flow": [616, 843], "op": 616, "depend": [633, 737, 738, 739, 740], "output": [633, 737, 738, 739, 740], "conv": 637, "conv1d": 638, "conv1d_transpos": 639, "conv2d": 640, "conv2d_transpos": 641, "conv3d": 642, "conv3d_transpos": 643, "conv_general_dil": 644, "conv_general_transpos": 645, "depthwise_conv2d": 646, "dropout": 647, "lstm_updat": 649, "multi_head_attent": 650, "nm": 651, "roi_align": 652, "scaled_dot_product_attent": 653, "choleski": 654, "cross": 655, "det": 656, "diag": 657, "diagon": 658, "eigh": 660, "eigvalsh": 661, "inner": 662, "inv": 663, "lu_factor": 664, "matmul": 665, "matrix_norm": 666, "matrix_pow": 667, "matrix_rank": 668, "matrix_transpos": 669, "outer": 670, "pinv": 671, "qr": 672, "slogdet": 673, "solv": 674, "svd": 675, "svdval": 676, "tensordot": 677, "tensorsolv": 678, "vander": 680, "vecdot": 681, "vector_norm": 682, "vector_to_skew_symmetric_matrix": 683, "binary_cross_entropi": 684, "cross_entropi": 685, "sparse_cross_entropi": 686, "clip": 687, "concat": 688, "constant_pad": 689, "expand_dim": 690, "flip": 691, "permute_dim": 692, "repeat": 693, "reshap": 694, "roll": [695, 819], "split": 696, "squeez": 697, "stack": [698, 821], "swapax": 699, "tile": 700, "unstack": 701, "zero_pad": 702, "fomaml_step": 703, "maml_step": 704, "reptile_step": 705, "all_nested_indic": 706, "copy_nest": 707, "duplicate_array_index_chain": 708, "index_nest": 709, "insert_into_nest_at_index": 710, "insert_into_nest_at_indic": 711, "map": [712, 816], "map_nest_at_index": 713, "map_nest_at_indic": 714, "multi_index_nest": 715, "nested_ani": 716, "nested_argwher": 717, "nested_map": 718, "nested_multi_map": 719, "prune_empti": 720, "prune_nest_at_index": 721, "prune_nest_at_indic": 722, "set_nest_at_index": 723, "set_nest_at_indic": 724, "layer_norm": 725, "multinomi": 726, "randint": 727, "random_norm": 728, "random_uniform": 729, "seed": 730, "shuffl": 731, "argmax": 732, "argmin": 733, "argwher": 734, "nonzero": 735, "where": [736, 806, 822], "unique_al": 737, "unique_count": 738, "unique_invers": 739, "unique_valu": 740, "argsort": 741, "msort": 742, "searchsort": 743, "cumprod": 745, "cumsum": 746, "einsum": [747, 793, 794], "max": 748, "mean": 749, "min": 750, "prod": 751, "std": 752, "sum": 753, "var": 754, "assert": [759, 786, 821], "avail": 760, "global": [762, 834], "hypothesi": [763, 807, 830, 832], "struct": 770, "flag": 771, "convert": [777, 842], "sequenti": 785, "ast": 788, "sub": 790, "binari": [791, 807], "parser": 793, "path": 794, "except": [795, 821, 826], "inspect": 796, "profil": 798, "verbos": 799, "statu": 800, "ai": 800, "start": [800, 844], "pip": [800, 844], "document": 800, "dive": [800, 810], "deeper": 800, "should": 800, "contribut": [800, 801, 806, 831], "commun": 800, "citat": 800, "doc": [802, 814], "docker": [802, 807, 808, 814, 844], "conveni": [802, 814, 825], "script": [802, 814], "hub": 802, "local": [802, 808, 823], "without": [802, 830], "error": [803, 821, 822], "handl": [803, 812, 818, 821, 826, 843], "github": [804, 806, 807], "reward": 804, "badg": 804, "tier": 804, "help": [805, 808, 822], "resourc": 805, "open": 806, "task": 806, "fail": [806, 822, 832], "frontend": [806, 813, 829, 830, 842], "place": 806, "checklist": 806, "format": [806, 823, 857, 864], "extend": [806, 832, 835], "an": [806, 827], "issu": [806, 808, 823, 844], "templat": 806, "fork": [807, 808], "pre": [807, 823], "commit": [807, 808, 816, 823], "pycharm": [807, 808, 823], "virtual": 807, "environ": 807, "miniconda": 807, "venv": 807, "interpret": 807, "window": 807, "maco": 807, "ubuntu": 807, "detail": 807, "free": 807, "wsl": 807, "codespac": 807, "The": [807, 808, 814, 827, 829, 839, 843, 848], "list": 808, "manag": 808, "who": 808, "ask": [808, 822], "With": 808, "command": 808, "pull": [808, 816], "request": [808, 816], "small": 808, "often": 808, "interact": 808, "most": 808, "out": [808, 824, 826, 828], "id": [808, 811], "volunt": 809, "workflow": [809, 816], "contributor": 809, "core": 809, "rise": 809, "join": 809, "our": [809, 827], "team": 809, "deep": 810, "termin": 811, "regener": 811, "failur": 811, "skip": 811, "integr": [812, 816, 823, 831, 832], "version": [813, 833, 843], "support": [813, 817, 826, 829, 843], "builder": 814, "being": 814, "option": 814, "index": 814, "rst": 814, "partial_conf": 814, "py": 814, "prebuild": 814, "sh": 814, "extens": 814, "custom_autosummari": 814, "hide": 814, "discussion_link": 814, "skippable_funct": 814, "ivy_data": 814, "instanc": [815, 829, 830, 839], "method": [815, 829, 830, 839, 840], "special": [815, 817, 829], "nestabl": [815, 824, 825, 826], "continu": [816, 823], "push": 816, "pr": 816, "trigger": 816, "A": [816, 835], "down": 816, "view": [816, 826, 828], "store": 816, "retriev": 816, "repositori": 816, "nitti": 816, "gritti": 816, "storag": 816, "space": 816, "unifyai": 816, "determin": 816, "coverag": 816, "multipl": 816, "runner": 816, "race": 816, "condit": 816, "period": 816, "manual": 816, "dispatch": 816, "ci": 816, "dashboard": 816, "promot": [817, 829], "precis": 817, "non": [817, 835], "argument": [817, 818, 824, 826, 828, 829], "other": [817, 818], "unsupport": 817, "attribut": [817, 834], "case": [817, 840], "bug": 817, "cast": [817, 829], "superset": [817, 835], "docstr": [819, 820], "configur": [821, 830, 840], "func_wrapp": 821, "prune": 821, "handle_except": 821, "consist": [821, 832], "prerequir": 822, "common": [822, 823], "lint": [823, 831], "keyword": 824, "integ": 824, "primari": 825, "composit": 825, "mix": [825, 826, 832], "partial": [825, 826, 832], "order": 826, "wrapper": [826, 864, 865], "miscellan": 826, "overview": [827, 831], "usag": [827, 831, 835, 853], "signatur": 827, "design": [827, 833, 836], "polici": [827, 829], "specif": [827, 862, 863, 864], "consider": 827, "inplac": 828, "updat": 828, "copi": 828, "short": 829, "unus": 829, "rule": 829, "duplic": [829, 835], "valu": 830, "alia": 830, "formatt": 831, "functionorderingformatt": 831, "work": [831, 848, 854], "own": 832, "strategi": 832, "do": [832, 848], "effect": 832, "bonu": 832, "featur": 832, "self": 832, "explicit": 832, "test_array_funct": 832, "re": [832, 849], "navig": 833, "categor": 833, "submodul": 833, "unpin": 833, "properti": 834, "getter": 834, "setter": 834, "set_": 834, "unset_": 834, "behaviour": 835, "standard": [835, 848, 855, 864], "what": [835, 864], "balanc": 835, "effici": 835, "maxim": 835, "block": 837, "monkei": 839, "patch": 839, "represent": 840, "recurs": 840, "built": 840, "ins": 840, "access": 840, "compartment": 840, "role": 842, "faq": 843, "maintain": 843, "size": 843, "deploy": 843, "auto": 843, "differenti": 843, "replica": 843, "parallel": 843, "altern": 843, "sourc": 844, "folder": 844, "kei": 844, "question": 844, "glossari": 845, "motiv": 846, "explos": 847, "skeptic": 848, "complimentari": 848, "competit": 848, "infinit": 849, "shelf": 849, "life": 849, "One": 850, "liner": 850, "trace_graph": 851, "cach": 851, "sharp": [851, 852, 853], "bit": [851, 852, 853], "relat": 854, "infrastructur": [856, 864], "llvm": 856, "mlir": 856, "oneapi": 856, "exchang": [857, 864], "onnx": 857, "nnef": 857, "coreml": 857, "matlab": 858, "scipi": 858, "scikit": 858, "theano": 858, "panda": 858, "julia": 858, "apach": [858, 861], "spark": 858, "mllib": 858, "caff": 858, "chainer": 858, "mxnet": 858, "cntk": 858, "flux": 858, "dex": 858, "languag": 858, "tf": 859, "jaxpr": 859, "jit": 859, "fx": 859, "compani": [860, 864], "quansight": 860, "modular": 860, "octoml": 860, "multi": [861, 864], "vendor": [861, 862, 863, 864], "tvm": 861, "xla": 861, "gcc": 861, "tensorrt": 862, "cuda": 862, "icc": 863, "icx": 863, "nvcc": 863, "doe": 864, "eagerpi": 865, "kera": 865, "thinc": 865, "tensorli": 865, "neuropod": 865}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"set_default_float_dtype": [[178, "set-default-float-dtype"]], "is_native_dtype": [[171, "is-native-dtype"]], "dtype_bits": [[159, "dtype-bits"]], "broadcast_arrays": [[148, "broadcast-arrays"]], "default_uint_dtype": [[157, "default-uint-dtype"]], "can_cast": [[150, "can-cast"]], "iinfo": [[163, "iinfo"]], "zeros_like": [[144, "zeros-like"]], "is_bool_dtype": [[166, "is-bool-dtype"]], "is_hashable_dtype": [[169, "is-hashable-dtype"]], "result_type": [[175, "result-type"]], "promote_types": [[173, "promote-types"]], "set_default_dtype": [[177, "set-default-dtype"]], "type_promote_arrays": [[181, "type-promote-arrays"]], "is_int_dtype": [[170, "is-int-dtype"]], "unset_default_dtype": [[183, "unset-default-dtype"]], "finfo": [[160, "finfo"]], "as_ivy_dtype": [[145, "as-ivy-dtype"]], "closest_valid_dtype": [[152, "closest-valid-dtype"]], "default_dtype": [[154, "default-dtype"]], "triu_indices": [[142, "triu-indices"]], "check_float": [[151, "check-float"]], "function_supported_dtypes": [[161, "function-supported-dtypes"]], "is_uint_dtype": [[172, "is-uint-dtype"]], "set_default_complex_dtype": [[176, "set-default-complex-dtype"]], "unset_default_complex_dtype": [[182, "unset-default-complex-dtype"]], "ones_like": [[138, "ones-like"]], "invalid_dtype": [[165, "invalid-dtype"]], "zeros": [[143, "zeros"]], "default_int_dtype": [[156, "default-int-dtype"]], "dtype": [[158, "dtype"]], "tril": [[140, "tril"]], "astype": [[147, "astype"]], "promote_types_of_inputs": [[174, "promote-types-of-inputs"]], "as_native_dtype": [[146, "as-native-dtype"]], "is_float_dtype": [[168, "is-float-dtype"]], "default_float_dtype": [[155, "default-float-dtype"]], "default_complex_dtype": [[153, "default-complex-dtype"]], "infer_default_dtype": [[164, "infer-default-dtype"]], "triu": [[141, "triu"]], "function_unsupported_dtypes": [[162, "function-unsupported-dtypes"]], "is_complex_dtype": [[167, "is-complex-dtype"]], "broadcast_to": [[149, "broadcast-to"]], "set_default_int_dtype": [[179, "set-default-int-dtype"]], "set_default_uint_dtype": [[180, "set-default-uint-dtype"]], "to_dlpack": [[139, "to-dlpack"]], "Note": [[139, null], [128, null], [617, null], [617, null]], "Standardization": [[848, "standardization"]], "Skepticism": [[848, "skepticism"]], "Complimentary vs Competitive": [[848, "complimentary-vs-competitive"]], "Do Standards Work?": [[848, "do-standards-work"]], "The Array API Standard": [[848, "the-array-api-standard"]], "Navigating the Code": [[833, "navigating-the-code"]], "Categorization": [[833, "categorization"]], "Submodule Design": [[833, "submodule-design"]], "Ivy API": [[833, "ivy-api"]], "Backend API": [[833, "backend-api"]], "Submodule Helper Functions": [[833, "submodule-helper-functions"]], "Version Unpinning": [[833, "version-unpinning"]], "Motivation": [[846, "motivation"]], "ivy.unify()": [[853, "ivy-unify"]], "Unify API": [[853, "unify-api"]], "Usage": [[853, "usage"]], "Sharp bits": [[853, "sharp-bits"], [852, "sharp-bits"], [851, "sharp-bits"]], "Examples": [[853, "examples"], [852, "examples"], [851, "examples"], [800, "examples"], [824, "examples"]], "Ivy as a Transpiler": [[842, "ivy-as-a-transpiler"], [26, "Ivy-as-a-Transpiler"], [27, "Ivy-as-a-Transpiler"]], "Frontend Functional APIs \ud83d\udea7": [[842, "frontend-functional-apis"]], "Role of the Tracer \ud83d\udea7": [[842, "role-of-the-tracer"]], "Converting Network Models \ud83d\udea7": [[842, "converting-network-models"]], "Vendor-Specific APIs": [[862, "vendor-specific-apis"], [864, "vendor-specific-apis"]], "TensorRT tensorrt": [[862, "tensorrt-tensorrt"]], "CUDA cuda": [[862, "cuda-cuda"]], "Ivy Frontends": [[829, "ivy-frontends"]], "Introduction": [[829, "introduction"], [830, "introduction"], [41, "Introduction"]], "The Frontend Basics": [[829, "the-frontend-basics"]], "Writing Frontend Functions": [[829, "writing-frontend-functions"]], "Short Frontend Implementations": [[829, "short-frontend-implementations"]], "Unused Arguments": [[829, "unused-arguments"]], "Supported Data Types and Devices": [[829, "supported-data-types-and-devices"]], "Classes and Instance Methods": [[829, "classes-and-instance-methods"]], "Frontend Data Type Promotion Rules": [[829, "frontend-data-type-promotion-rules"]], "NumPy Special Argument - Casting": [[829, "numpy-special-argument-casting"]], "Frontends Duplicate Policy": [[829, "frontends-duplicate-policy"]], "Wrapper Frameworks": [[865, "wrapper-frameworks"], [864, "wrapper-frameworks"]], "EagerPy eagerpy": [[865, "eagerpy-eagerpy"]], "Keras keras": [[865, "keras-keras"]], "Thinc thinc": [[865, "thinc-thinc"]], "TensorLy tensorly": [[865, "tensorly-tensorly"]], "NeuroPod": [[865, "id1"]], "API Standards": [[855, "api-standards"], [864, "api-standards"]], "Array API Standard": [[855, "id1"]], "Inplace Updates": [[828, "inplace-updates"]], "out argument": [[828, "out-argument"]], "copy argument": [[828, "copy-argument"]], "Views": [[828, "views"]], "Ivy Frontend Tests": [[830, "ivy-frontend-tests"]], "Frontend Test Examples": [[830, "frontend-test-examples"]], "ivy.tan()": [[830, "ivy-tan"]], "ivy.full()": [[830, "ivy-full"]], "Testing Without Using Tests Values": [[830, "testing-without-using-tests-values"]], "Alias functions": [[830, "alias-functions"]], "Frontend Instance Method Tests": [[830, "frontend-instance-method-tests"]], "Frontend Instance Method Test Examples": [[830, "frontend-instance-method-test-examples"]], "ivy.add()": [[830, "ivy-add"]], "Hypothesis Helpers": [[830, "hypothesis-helpers"]], "Frontend Framework Testing Configuration": [[830, "frontend-framework-testing-configuration"]], "Operating Modes": [[834, "operating-modes"]], "Global Parameter Properties": [[834, "global-parameter-properties"]], "Getter: ivy. attribute": [[834, "getter-ivy-setting-attribute"]], "Setter: ivy.set_ and ivy.unset_ functions": [[834, "setter-ivy-set-setting-and-ivy-unset-setting-functions"]], "Glossary": [[845, "glossary"]], "Design": [[836, "design"]], "Graph Tracers": [[859, "graph-tracers"], [864, "graph-tracers"]], "tf.Graph": [[859, "tf-graph"]], "Jaxpr": [[859, "jaxpr"]], "torch.jit": [[859, "torch-jit"]], "torch.fx": [[859, "torch-fx"]], "ML Explosion": [[847, "ml-explosion"]], "Get Started": [[844, "get-started"]], "Installing using pip": [[844, "installing-using-pip"], [800, "installing-using-pip"]], "Docker": [[844, "docker"]], "Installing from source": [[844, "installing-from-source"]], "Ivy\u2019s tracer and transpiler": [[844, "ivy-s-tracer-and-transpiler"]], "Ivy Folder": [[844, "ivy-folder"]], "Setting Up the API key": [[844, "setting-up-the-api-key"]], "Issues and Questions": [[844, "issues-and-questions"]], "ML-Unifying Companies": [[860, "ml-unifying-companies"], [864, "ml-unifying-companies"]], "Quansight": [[860, "id1"]], "Modular": [[860, "id2"]], "OctoML": [[860, "id3"]], "Vendor-Specific Compilers": [[863, "vendor-specific-compilers"], [864, "vendor-specific-compilers"]], "ICC": [[863, "id1"]], "ICX": [[863, "icx"]], "NVCC": [[863, "nvcc"]], "What does Ivy Add?": [[864, "what-does-ivy-add"]], "Frameworks": [[864, "frameworks"], [858, "frameworks"]], "Exchange Formats": [[864, "exchange-formats"], [857, "exchange-formats"]], "Compiler Infrastructure": [[864, "compiler-infrastructure"], [856, "compiler-infrastructure"]], "Multi-Vendor Compiler Frameworks": [[864, "multi-vendor-compiler-frameworks"], [861, "multi-vendor-compiler-frameworks"]], "One liners": [[850, "one-liners"]], "Ivy Container": [[840, "ivy-container"]], "Construction": [[840, "construction"]], "Representation": [[840, "representation"]], "Recursive Methods": [[840, "recursive-methods"]], "Built-ins": [[840, "built-ins"]], "Access": [[840, "access"]], "Saving and Loading": [[840, "saving-and-loading"]], "Comparisons": [[840, "comparisons"]], "Customized Representations": [[840, "customized-representations"]], "Use Cases": [[840, "use-cases"]], "Compartmentalization": [[840, "compartmentalization"]], "Configuration": [[840, "configuration"]], "Data loading": [[840, "data-loading"]], "Network weights": [[840, "network-weights"]], "Superset Behaviour": [[835, "superset-behaviour"]], "Extending the Standard": [[835, "extending-the-standard"]], "What is the Superset?": [[835, "what-is-the-superset"]], "A Non-Duplicate Superset": [[835, "a-non-duplicate-superset"]], "What is not the Superset?": [[835, "what-is-not-the-superset"]], "Balancing Generalization with Efficiency": [[835, "balancing-generalization-with-efficiency"]], "More Examples": [[835, "more-examples"]], "Maximizing Usage of Native Functionality": [[835, "maximizing-usage-of-native-functionality"]], "Ivy Tests": [[832, "ivy-tests"], [816, "ivy-tests"]], "Testing Pipeline": [[832, "testing-pipeline"]], "Hypothesis": [[832, "id1"]], "Data Generation": [[832, "id2"]], "Writing your own strategy": [[832, "writing-your-own-strategy"]], "Writing Hypothesis Tests": [[832, "writing-hypothesis-tests"]], "Ivy Test Decorators": [[832, "ivy-test-decorators"]], "Writing Ivy Tests": [[832, "writing-ivy-tests"]], "Integration of Strategies into Ivy Tests": [[832, "integration-of-strategies-into-ivy-tests"]], "Why do we need helper functions?": [[832, "why-do-we-need-helper-functions"]], "How to write Hypothesis Tests effectively": [[832, "how-to-write-hypothesis-tests-effectively"]], "Testing Partial Mixed Functions": [[832, "testing-partial-mixed-functions"]], "Bonus: Hypothesis\u2019 Extended Features": [[832, "bonus-hypothesis-extended-features"]], "Self-Consistent and Explicit Testing": [[832, "self-consistent-and-explicit-testing"]], "test_array_function": [[832, "id4"]], "Running Ivy Tests": [[832, "running-ivy-tests"]], "Re-Running Failed Ivy Tests": [[832, "re-running-failed-ivy-tests"]], "FAQ": [[843, "faq"]], "Maintaining Backend Versions": [[843, "maintaining-backend-versions"]], "Dynamic Sizes": [[843, "dynamic-sizes"]], "Type and Shape Checking": [[843, "type-and-shape-checking"]], "GPU handling": [[843, "gpu-handling"]], "Model Deployment": [[843, "model-deployment"]], "Dynamic Control Flow": [[843, "dynamic-control-flow"]], "Auto-Differentiation": [[843, "auto-differentiation"]], "Replicas, and Data vs Model Parallelism": [[843, "replicas-and-data-vs-model-parallelism"]], "Support for Functions": [[843, "support-for-functions"]], "Alternative Data Structures": [[843, "alternative-data-structures"]], "Custom Operations": [[843, "custom-operations"]], "The Pipeline": [[843, "the-pipeline"]], "State": [[843, "state"]], "LLVM": [[856, "id1"]], "MLIR": [[856, "id2"]], "OneAPI": [[856, "id3"]], "Ivy Stateful API": [[841, "ivy-stateful-api"], [26, "Ivy-Stateful-API"], [17, "Ivy-Stateful-API"]], "Modules": [[841, "modules"]], "Initializers": [[841, "initializers"], [779, "module-ivy.stateful.initializers"]], "Optimizers": [[841, "optimizers"], [784, "module-ivy.stateful.optimizers"]], "ivy.transpile()": [[852, "ivy-transpile"]], "Transpiler API": [[852, "transpiler-api"]], "Using the transpiler": [[852, "using-the-transpiler"]], "Transpiling functions": [[852, "transpiling-functions"]], "Transpiling Libraries": [[852, "transpiling-libraries"]], "Transpiling Modules": [[852, "transpiling-modules"]], "ONNX onnx": [[857, "onnx-onnx"]], "NNEF nnef": [[857, "nnef-nnef"]], "CoreML coreml": [[857, "coreml-coreml"]], "Apache TVM": [[861, "apache-tvm"]], "XLA": [[861, "xla"]], "GCC": [[861, "gcc"]], "Ivy as a Framework": [[838, "ivy-as-a-framework"], [26, "Ivy-as-a-Framework"]], "Related Work": [[854, "related-work"]], "ivy.trace_graph()": [[851, "ivy-trace-graph"]], "Tracer API": [[851, "tracer-api"]], "Using the tracer": [[851, "using-the-tracer"]], "Eager vs lazy Compilation": [[851, "eager-vs-lazy-compilation"]], "Array caching": [[851, "array-caching"]], "Generators": [[851, "generators"]], "Stateful": [[851, "stateful"]], "MATLAB matlab": [[858, "matlab-matlab"]], "SciPy scipy": [[858, "scipy-scipy"]], "Torch torch": [[858, "torch-torch"]], "NumPy numpy": [[858, "numpy-numpy"]], "SciKit Learn scikit-learn": [[858, "scikit-learn-scikit-learn"]], "Theano theano": [[858, "theano-theano"]], "Pandas pandas": [[858, "pandas-pandas"]], "Julia julia": [[858, "julia-julia"]], "Apache Spark MLlib apache-spark-mllib": [[858, "apache-spark-mllib-apache-spark-mllib"]], "Caffe caffe": [[858, "caffe-caffe"]], "Chainer chainer": [[858, "chainer-chainer"]], "TensorFlow 1 tensorflow-1": [[858, "tensorflow-1-tensorflow-1"]], "MXNet mxnet": [[858, "mxnet-mxnet"]], "CNTK cntk": [[858, "cntk-cntk"]], "PyTorch pytorch": [[858, "pytorch-pytorch"]], "Flux flux": [[858, "flux-flux"]], "JAX jax": [[858, "jax-jax"]], "TensorFlow 2 tensorflow-2": [[858, "tensorflow-2-tensorflow-2"]], "DEX Language dex-language": [[858, "dex-language-dex-language"]], "Ivy-Lint: Ivy\u2019s Custom Code Formatters": [[831, "ivy-lint-ivy-s-custom-code-formatters"]], "Overview": [[831, "overview"], [827, "overview"]], "Existing Formatters": [[831, "existing-formatters"]], "FunctionOrderingFormatter": [[831, "functionorderingformatter"]], "How the Formatter Works:": [[831, "how-the-formatter-works"]], "Integration and Usage": [[831, "integration-and-usage"]], "Contribution": [[831, "contribution"]], "Round Up": [[831, "round-up"], [31, "Round-Up"], [20, "Round-Up"], [22, "Round-Up"], [33, "Round-Up"], [18, "Round-Up"], [40, "Round-Up"], [27, "Round-Up"], [28, "Round-Up"], [30, "Round-Up"], [29, "Round-Up"], [17, "Round-Up"], [23, "Round-Up"], [13, "Round-Up"], [21, "Round-Up"], [32, "Round-Up"], [11, "Round-Up"], [19, "Round-Up"]], "Why Unify?": [[849, "why-unify"]], "No More Re-implementations \ud83d\udea7": [[849, "no-more-re-implementations"]], "\u201cInfinite\u201d Shelf-Life \u2705": [[849, "infinite-shelf-life"]], "Building Blocks": [[837, "building-blocks"]], "Backend Functional APIs \u2705": [[837, "backend-functional-apis"]], "Ivy Functional API \u2705": [[837, "ivy-functional-api"]], "Backend Handler \u2705": [[837, "backend-handler"]], "Tracer \ud83d\udea7": [[837, "tracer"]], "Ivy Array": [[839, "ivy-array"], [812, "ivy-array"]], "The Array Class": [[839, "the-array-class"]], "Unifying Operators": [[839, "unifying-operators"]], "API Monkey Patching": [[839, "api-monkey-patching"]], "Instance Methods": [[839, "instance-methods"]], "if_else": [[118, "if-else"]], "copy_array": [[124, "copy-array"]], "Functions": [[104, "functions"]], "full": [[130, "full"]], "Tucker tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "empty": [[125, "empty"]], "one_hot": [[136, "one-hot"]], "gelu": [[105, "gelu"]], "softmax": [[112, "softmax"]], "while_loop": [[120, "while-loop"]], "empty_like": [[126, "empty-like"]], "Data classes": [[103, "data-classes"]], "mish": [[109, "mish"]], "Factorized tensor": [[99, "factorized-tensor"]], "Tt tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "cmp_isnot": [[116, "cmp-isnot"]], "hardswish": [[106, "hardswish"]], "linspace": [[132, "linspace"]], "asarray": [[123, "asarray"]], "cmp_is": [[115, "cmp-is"]], "relu": [[110, "relu"]], "Elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"], [620, "elementwise"], [365, "elementwise"], [51, "module-ivy.data_classes.array.elementwise"], [74, "module-ivy.data_classes.container.elementwise"]], "Cp tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "ones": [[137, "ones"]], "native_array": [[135, "native-array"]], "arange": [[121, "arange"]], "log_softmax": [[108, "log-softmax"]], "frombuffer": [[129, "frombuffer"]], "meshgrid": [[134, "meshgrid"]], "sigmoid": [[111, "sigmoid"]], "softplus": [[113, "softplus"]], "Container": [[98, "container"]], "array": [[122, "array"]], "eye": [[127, "eye"]], "Base": [[101, "module-ivy.data_classes.nested_array.base"], [91, "module-ivy.data_classes.factorized_tensor.base"], [69, "module-ivy.data_classes.container.base"]], "Nested array": [[100, "nested-array"]], "full_like": [[131, "full-like"]], "from_dlpack": [[128, "from-dlpack"]], "leaky_relu": [[107, "leaky-relu"]], "softsign": [[114, "softsign"]], "for_loop": [[117, "for-loop"]], "try_except": [[119, "try-except"]], "Tr tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "logspace": [[133, "logspace"]], "Parafac2 tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "Array": [[97, "array"]], "Setting Up": [[807, "setting-up"], [822, "setting-up"]], "Forking and cloning the repo": [[807, "forking-and-cloning-the-repo"]], "Pre-Commit": [[807, "pre-commit"]], "PyCharm": [[807, "pycharm"], [823, "pycharm"]], "Virtual environments - No Docker": [[807, "virtual-environments-no-docker"]], "Using miniconda": [[807, "using-miniconda"]], "Using venv": [[807, "using-venv"]], "Docker Interpreter with PyCharm": [[807, "docker-interpreter-with-pycharm"]], "Windows": [[807, "windows"], [807, "id6"]], "MacOS": [[807, "macos"]], "Ubuntu": [[807, "ubuntu"], [807, "id8"]], "Setting Up Testing in PyCharm": [[807, "setting-up-testing-in-pycharm"]], "More Detailed Hypothesis Logs in PyCharm": [[807, "more-detailed-hypothesis-logs-in-pycharm"]], "Setting up for Free": [[807, "setting-up-for-free"]], "WSL": [[807, "wsl"]], "GitHub Codespaces": [[807, "github-codespaces"]], "The Binaries": [[807, "the-binaries"]], "Inspection": [[796, "module-ivy.utils.inspection"]], "Array API Tests": [[811, "array-api-tests"], [816, "array-api-tests"]], "Running the Tests": [[811, "running-the-tests"]], "Using Terminal": [[811, "using-terminal"]], "Using the IDE": [[811, "using-the-ide"]], "Regenerating Test Failures": [[811, "regenerating-test-failures"]], "Test Skipping": [[811, "test-skipping"]], "Sub backend handler": [[790, "module-ivy.utils.backend.sub_backend_handler"]], "Error Handling": [[803, "error-handling"]], "Function Types": [[825, "function-types"]], "Primary Functions": [[825, "primary-functions"]], "Compositional Functions": [[825, "compositional-functions"]], "Mixed Functions": [[825, "mixed-functions"]], "Partial Mixed Functions": [[825, "partial-mixed-functions"]], "Standalone Functions": [[825, "standalone-functions"]], "Nestable Functions": [[825, "nestable-functions"], [815, "nestable-functions"], [824, "nestable-functions"]], "Convenience Functions": [[825, "convenience-functions"]], "Formatting": [[823, "formatting"]], "Lint Checks": [[823, "lint-checks"], [823, "id2"]], "Setup Formatting Locally": [[823, "setup-formatting-locally"]], "Pre-commit": [[823, "pre-commit"]], "VS Code": [[823, "vs-code"]], "Common Issues with Pre-Commit": [[823, "common-issues-with-pre-commit"]], "Continuous Integration": [[823, "continuous-integration"], [816, "continuous-integration"]], "Lint Formatting": [[823, "lint-formatting"]], "Open Tasks": [[806, "open-tasks"]], "Fixing Failing Tests": [[806, "fixing-failing-tests"]], "How to Contribute": [[806, "how-to-contribute"]], "Frontend APIs": [[806, "frontend-apis"]], "Where to place a frontend function": [[806, "where-to-place-a-frontend-function"]], "Frontend checklist": [[806, "frontend-checklist"]], "Function Formatting": [[806, "function-formatting"]], "Formatting checklist": [[806, "formatting-checklist"]], "Ivy Experimental API": [[806, "ivy-experimental-api"]], "Extending the Ivy API": [[806, "extending-the-ivy-api"]], "Where to place a backend function": [[806, "where-to-place-a-backend-function"]], "Creating an Issue on Ivy\u2019s GitHub using a Template": [[806, "creating-an-issue-on-ivy-s-github-using-a-template"]], "Status": [[800, "status"]], "Unified AI": [[800, "unified-ai"]], "Getting started": [[800, "getting-started"]], "Installing ivy": [[800, "installing-ivy"]], "Using Ivy": [[800, "using-ivy"]], "Documentation": [[800, "documentation"]], "Diving deeper": [[800, "diving-deeper"]], "When should I use Ivy as a transpiler?": [[800, "when-should-i-use-ivy-as-a-transpiler"]], "Contributing": [[800, "contributing"], [801, "contributing"]], "Community": [[800, "community"]], "Citation": [[800, "citation"]], "Deep Dive": [[810, "deep-dive"]], "Building the Docs Pipeline": [[814, "building-the-docs-pipeline"]], "How the doc-builder is being run": [[814, "how-the-doc-builder-is-being-run"]], "The convenience script": [[814, "the-convenience-script"]], "Options": [[814, "options"]], "The Docker image": [[814, "the-docker-image"]], "How Ivy\u2019s docs is structured": [[814, "how-ivy-s-docs-is-structured"]], "index.rst": [[814, "index-rst"]], "partial_conf.py": [[814, "partial-conf-py"]], "prebuild.sh": [[814, "prebuild-sh"]], "Custom Extensions": [[814, "custom-extensions"]], "custom_autosummary": [[814, "custom-autosummary"]], ":hide-table:": [[814, "hide-table"]], "discussion_linker": [[814, "discussion-linker"]], "skippable_function": [[814, "skippable-function"]], "ivy_data": [[814, "ivy-data"]], "Commit (Push/PR) Triggered Testing": [[816, "commit-push-pr-triggered-testing"]], "Implementation": [[816, "implementation"]], "A Top-Down View": [[816, "a-top-down-view"]], "Storing (and retrieving) the Mapping": [[816, "storing-and-retrieving-the-mapping"]], "Cloning and Pushing to the Repository": [[816, "cloning-and-pushing-to-the-repository"]], "Implementational Nitty Gritties": [[816, "implementational-nitty-gritties"]], "Storage Space (unifyai/Mapping)": [[816, "storage-space-unifyai-mapping"]], "Determine Test Coverage Workflow": [[816, "determine-test-coverage-workflow"]], "Multiple Runners": [[816, "multiple-runners"]], "Race Condition": [[816, "race-condition"]], "Periodic Testing": [[816, "periodic-testing"]], "Manually Dispatched Workflows": [[816, "manually-dispatched-workflows"]], "CI Pipeline \u27a1\ufe0f": [[816, "ci-pipeline"]], "Push": [[816, "push"]], "Pull Request": [[816, "pull-request"]], "Dashboard": [[816, "dashboard"]], "GitHub Rewards": [[804, "github-rewards"]], "Badges": [[804, "badges"]], "Badge Tiers": [[804, "badge-tiers"]], "Docstrings": [[820, "docstrings"]], "Backend Setting": [[813, "backend-setting"]], "Dynamic Backend Setting": [[813, "dynamic-backend-setting"]], "Backend and Frontend Version Support": [[813, "backend-and-frontend-version-support"]], "Docstring Examples": [[819, "docstring-examples"]], "ivy.tan": [[819, "ivy-tan"]], "ivy.roll": [[819, "ivy-roll"]], "ivy.add": [[819, "ivy-add"]], "Fix Failing Tests:": [[822, "fix-failing-tests"]], "Prerequirement:": [[822, "prerequirement"]], "How to run tests": [[822, "how-to-run-tests"]], "Common Errors": [[822, "common-errors"]], "Where to ask for Help": [[822, "where-to-ask-for-help"]], "Logging": [[797, "module-ivy.utils.logging"]], "Arrays": [[812, "arrays"]], "Native Array": [[812, "native-array"]], "Array Handling": [[812, "array-handling"]], "Integrating custom classes with Ivy": [[812, "integrating-custom-classes-with-ivy"]], "Helpful Resources": [[805, "helpful-resources"]], "Exception Handling": [[821, "exception-handling"], [826, "exception-handling"]], "Ivy Exception Class": [[821, "ivy-exception-class"]], "Configurable Mode for Stack Trace": [[821, "configurable-mode-for-stack-trace"]], "Ivy func_wrapper Pruning": [[821, "ivy-func-wrapper-pruning"]], "@handle_exceptions Decorator": [[821, "handle-exceptions-decorator"]], "Consistency in Errors": [[821, "consistency-in-errors"]], "Assertion Function": [[821, "assertion-function"]], "Function Wrapping": [[826, "function-wrapping"]], "Decorator order": [[826, "decorator-order"]], "Conversion Wrappers": [[826, "conversion-wrappers"]], "Inference Wrappers": [[826, "inference-wrappers"]], "Out Argument Support": [[826, "out-argument-support"]], "Nestable Support": [[826, "nestable-support"]], "Partial Mixed Function Support": [[826, "partial-mixed-function-support"]], "Shape Conversion": [[826, "shape-conversion"]], "View Handling": [[826, "view-handling"]], "Miscellaneous Wrappers": [[826, "miscellaneous-wrappers"]], "Containers": [[815, "containers"]], "Container Instance Methods": [[815, "container-instance-methods"]], "API Instance Methods": [[815, "api-instance-methods"]], "API Special Methods": [[815, "api-special-methods"]], "The Basics": [[808, "the-basics"]], "Getting Help": [[808, "getting-help"]], "ToDo List Issues": [[808, "todo-list-issues"]], "Managing Your Fork": [[808, "managing-your-fork"]], "Who To Ask": [[808, "who-to-ask"]], "With Command Line:": [[808, "with-command-line"]], "With Browser:": [[808, "with-browser"]], "Pull Requests": [[808, "pull-requests"]], "Small Commits Often": [[808, "small-commits-often"]], "Interactive Ivy Docker Container": [[808, "interactive-ivy-docker-container"]], "Running Tests Locally": [[808, "running-tests-locally"]], "With Docker": [[808, "with-docker"]], "Getting the most out of IDE": [[808, "getting-the-most-out-of-ide"]], "with PyCharm": [[808, "with-pycharm"]], "Dynamic import": [[792, "module-ivy.utils.dynamic_import"]], "Devices": [[818, "devices"]], "Device Module": [[818, "device-module"]], "Arguments in other Functions": [[818, "arguments-in-other-functions"], [817, "arguments-in-other-functions"]], "Device handling": [[818, "device-handling"]], "Building the Docs": [[802, "building-the-docs"]], "Building the Docs using Docker": [[802, "building-the-docs-using-docker"]], "Using convenience script": [[802, "using-convenience-script"]], "Using existing image on Docker Hub": [[802, "using-existing-image-on-docker-hub"]], "Building the image locally": [[802, "building-the-image-locally"]], "Building the Docs without Docker": [[802, "building-the-docs-without-docker"]], "Binaries": [[791, "module-ivy.utils.binaries"]], "Function Arguments": [[824, "function-arguments"]], "Positional and Keyword Arguments": [[824, "positional-and-keyword-arguments"]], "Input Arrays": [[824, "input-arrays"]], "out Argument": [[824, "out-argument"]], "dtype and device arguments": [[824, "dtype-and-device-arguments"]], "Numbers in Operator Functions": [[824, "numbers-in-operator-functions"]], "Integer Sequences": [[824, "integer-sequences"]], "Assertions": [[786, "module-ivy.utils.assertions"], [759, "module-ivy_tests.test_ivy.helpers.assertions"]], "Ast helpers": [[788, "module-ivy.utils.backend.ast_helpers"]], "Profiler": [[798, "module-ivy.utils.profiler"]], "Gradients": [[827, "gradients"], [623, "gradients"], [367, "gradients"], [54, "module-ivy.data_classes.array.gradients"], [77, "module-ivy.data_classes.container.gradients"]], "Example Usage of the Gradient API": [[827, "example-usage-of-the-gradient-api"]], "The ivy.execute_with_gradients() function signature": [[827, "the-ivy-execute-with-gradients-function-signature"]], "An example using ivy.execute_with_gradients()": [[827, "an-example-using-ivy-execute-with-gradients"]], "Custom Gradient Functions": [[827, "custom-gradient-functions"]], "Design of the Gradient API": [[827, "design-of-the-gradient-api"]], "Our policy on gradients": [[827, "our-policy-on-gradients"]], "Gradient APIs of frameworks": [[827, "gradient-apis-of-frameworks"]], "General Structure of Backend-specific implementations": [[827, "general-structure-of-backend-specific-implementations"]], "Framework-specific Considerations": [[827, "framework-specific-considerations"]], "Exceptions": [[795, "module-ivy.utils.exceptions"]], "Sequential": [[785, "module-ivy.stateful.sequential"]], "Handler": [[789, "module-ivy.utils.backend.handler"]], "Volunteer Workflow": [[809, "volunteer-workflow"]], "Contributor": [[809, "contributor"]], "Core Contributor": [[809, "core-contributor"]], "Rising Contributor": [[809, "rising-contributor"]], "Top Contributor": [[809, "top-contributor"]], "Join Our Team": [[809, "join-our-team"]], "Backend": [[787, "backend"]], "Data Types": [[817, "data-types"]], "Data Type Module": [[817, "data-type-module"]], "Data Type Promotion": [[817, "data-type-promotion"]], "Precise Mode": [[817, "precise-mode"]], "Precise Promotion Table": [[817, "precise-promotion-table"]], "Non-Precise Promotion Table": [[817, "non-precise-promotion-table"]], "Supported and Unsupported Data Types": [[817, "supported-and-unsupported-data-types"]], "Supported and Unsupported Data Types Attributes": [[817, "supported-and-unsupported-data-types-attributes"]], "Special Case": [[817, "special-case"]], "Backend Data Type Bugs": [[817, "backend-data-type-bugs"]], "Data Type Casting Modes": [[817, "data-type-casting-modes"]], "Superset Data Type Support": [[817, "superset-data-type-support"]], "Verbosity": [[799, "module-ivy.utils.verbosity"]], "Module": [[782, "module-ivy.stateful.module"]], "Einsum path helpers": [[794, "module-ivy.utils.einsum_path_helpers"]], "Norms": [[783, "module-ivy.stateful.norms"], [630, "norms"], [374, "norms"], [60, "module-ivy.data_classes.array.norms"], [83, "module-ivy.data_classes.container.norms"]], "Einsum parser": [[793, "module-ivy.utils.einsum_parser"]], "nested_any": [[716, "nested-any"]], "set_nest_at_indices": [[724, "set-nest-at-indices"]], "layer_norm": [[725, "layer-norm"]], "zero_pad": [[702, "zero-pad"]], "copy_nest": [[707, "copy-nest"]], "swapaxes": [[699, "swapaxes"]], "prune_nest_at_index": [[721, "prune-nest-at-index"]], "prune_nest_at_indices": [[722, "prune-nest-at-indices"]], "random_uniform": [[729, "random-uniform"]], "fomaml_step": [[703, "fomaml-step"]], "index_nest": [[709, "index-nest"]], "argmax": [[732, "argmax"]], "reptile_step": [[705, "reptile-step"]], "seed": [[730, "seed"]], "argwhere": [[734, "argwhere"]], "shuffle": [[731, "shuffle"]], "set_nest_at_index": [[723, "set-nest-at-index"]], "map": [[712, "map"]], "stack": [[698, "stack"]], "reshape": [[694, "reshape"]], "multinomial": [[726, "multinomial"]], "permute_dims": [[692, "permute-dims"]], "prune_empty": [[720, "prune-empty"]], "argmin": [[733, "argmin"]], "duplicate_array_index_chains": [[708, "duplicate-array-index-chains"]], "map_nest_at_indices": [[714, "map-nest-at-indices"]], "nested_multi_map": [[719, "nested-multi-map"]], "random_normal": [[728, "random-normal"]], "unstack": [[701, "unstack"]], "nonzero": [[735, "nonzero"]], "insert_into_nest_at_indices": [[711, "insert-into-nest-at-indices"]], "all_nested_indices": [[706, "all-nested-indices"]], "expand_dims": [[690, "expand-dims"]], "randint": [[727, "randint"]], "tile": [[700, "tile"]], "flip": [[691, "flip"]], "insert_into_nest_at_index": [[710, "insert-into-nest-at-index"]], "map_nest_at_index": [[713, "map-nest-at-index"]], "squeeze": [[697, "squeeze"]], "roll": [[695, "roll"]], "maml_step": [[704, "maml-step"]], "nested_argwhere": [[717, "nested-argwhere"]], "nested_map": [[718, "nested-map"]], "repeat": [[693, "repeat"]], "multi_index_nest": [[715, "multi-index-nest"]], "split": [[696, "split"]], "Utils": [[774, "utils"]], "Globals": [[762, "module-ivy_tests.test_ivy.helpers.globals"]], "cumprod": [[745, "cumprod"]], "Losses": [[781, "module-ivy.stateful.losses"], [626, "losses"], [370, "losses"], [58, "module-ivy.data_classes.array.losses"], [81, "module-ivy.data_classes.container.losses"]], "sort": [[744, "sort"]], "std": [[752, "std"]], "Testing helpers": [[772, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "prod": [[751, "prod"]], "argsort": [[741, "argsort"]], "Converters": [[777, "module-ivy.stateful.converters"]], "Pipeline helper": [[769, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "unique_values": [[740, "unique-values"]], "Data-dependent output shape": [[740, null], [739, null], [737, null], [738, null], [633, null], [633, null], [633, null], [633, null]], "Testing": [[775, "testing"], [40, "Testing"]], "Activations": [[776, "module-ivy.stateful.activations"], [614, "activations"], [360, "activations"], [68, "module-ivy.data_classes.container.activations"], [46, "module-ivy.data_classes.array.activations"]], "Parameter": [[776, "parameter"], [776, "id1"], [568, "parameter"], [576, "parameter"], [574, "parameter"], [567, "parameter"], [577, "parameter"], [573, "parameter"], [622, "parameter"], [622, "id1"], [622, "id2"], [622, "id3"], [622, "id4"], [622, "id5"], [619, "parameter"], [205, "parameter"]], "Function testing": [[761, "module-ivy_tests.test_ivy.helpers.function_testing"]], "sum": [[753, "sum"]], "einsum": [[747, "einsum"]], "Hypothesis helpers": [[763, "hypothesis-helpers"]], "Structs": [[770, "module-ivy_tests.test_ivy.helpers.structs"]], "searchsorted": [[743, "searchsorted"]], "max": [[748, "max"]], "Layers": [[780, "module-ivy.stateful.layers"], [624, "layers"], [368, "layers"], [79, "module-ivy.data_classes.container.layers"], [56, "module-ivy.data_classes.array.layers"]], "unique_inverse": [[739, "unique-inverse"]], "all": [[755, "all"]], "any": [[756, "any"]], "cumsum": [[746, "cumsum"]], "Array helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "Test parameter flags": [[771, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "var": [[754, "var"]], "unique_all": [[737, "unique-all"]], "Number helpers": [[767, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "General helpers": [[766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "Available frameworks": [[760, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "unique_counts": [[738, "unique-counts"]], "Framework classes": [[773, "framework-classes"]], "where": [[736, "where"]], "mean": [[749, "mean"]], "Helpers": [[778, "module-ivy.stateful.helpers"]], "msort": [[742, "msort"]], "min": [[750, "min"]], "load": [[757, "load"]], "Dtype helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "Multiprocessing": [[768, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "save": [[758, "save"]], "conv_general_transpose": [[645, "conv-general-transpose"]], "cholesky": [[654, "cholesky"]], "eig": [[659, "eig"], [421, "eig"]], "eigh": [[660, "eigh"]], "outer": [[670, "outer"]], "diagonal": [[658, "diagonal"]], "nms": [[651, "nms"]], "tensordot": [[677, "tensordot"]], "binary_cross_entropy": [[684, "binary-cross-entropy"]], "depthwise_conv2d": [[646, "depthwise-conv2d"]], "dropout": [[647, "dropout"]], "lstm_update": [[649, "lstm-update"]], "cross": [[655, "cross"]], "inv": [[663, "inv"]], "det": [[656, "det"]], "scaled_dot_product_attention": [[653, "scaled-dot-product-attention"]], "vecdot": [[681, "vecdot"]], "matrix_transpose": [[669, "matrix-transpose"]], "svd": [[675, "svd"]], "matrix_power": [[667, "matrix-power"]], "inner": [[662, "inner"]], "svdvals": [[676, "svdvals"]], "clip": [[687, "clip"]], "vector_to_skew_symmetric_matrix": [[683, "vector-to-skew-symmetric-matrix"]], "conv_general_dilated": [[644, "conv-general-dilated"]], "qr": [[672, "qr"]], "diag": [[657, "diag"]], "slogdet": [[673, "slogdet"]], "linear": [[648, "linear"]], "cross_entropy": [[685, "cross-entropy"]], "trace": [[679, "trace"]], "multi_head_attention": [[650, "multi-head-attention"]], "matrix_norm": [[666, "matrix-norm"]], "eigvalsh": [[661, "eigvalsh"]], "lu_factor": [[664, "lu-factor"]], "pinv": [[671, "pinv"]], "tensorsolve": [[678, "tensorsolve"]], "concat": [[688, "concat"]], "matmul": [[665, "matmul"]], "solve": [[674, "solve"]], "matrix_rank": [[668, "matrix-rank"]], "constant_pad": [[689, "constant-pad"]], "roi_align": [[652, "roi-align"]], "vector_norm": [[682, "vector-norm"]], "sparse_cross_entropy": [[686, "sparse-cross-entropy"]], "vander": [[680, "vander"]], "to_numpy": [[587, "to-numpy"]], "unset_inplace_mode": [[592, "unset-inplace-mode"]], "stable_divide": [[580, "stable-divide"]], "inplace_variables_supported": [[552, "inplace-variables-supported"]], "strides": [[582, "strides"]], "to_list": [[585, "to-list"]], "is_array": [[553, "is-array"]], "unset_precise_mode": [[596, "unset-precise-mode"]], "set_exception_trace_mode": [[568, "set-exception-trace-mode"]], "unset_min_denominator": [[594, "unset-min-denominator"]], "to_scalar": [[588, "to-scalar"]], "set_shape_array_mode": [[576, "set-shape-array-mode"]], "unset_queue_timeout": [[597, "unset-queue-timeout"]], "unset_nestable_mode": [[595, "unset-nestable-mode"]], "match_kwargs": [[561, "match-kwargs"]], "isscalar": [[559, "isscalar"]], "supports_inplace_updates": [[583, "supports-inplace-updates"]], "num_arrays_in_memory": [[563, "num-arrays-in-memory"]], "shape": [[579, "shape"]], "set_inplace_mode": [[569, "set-inplace-mode"]], "itemsize": [[560, "itemsize"]], "scatter_nd": [[566, "scatter-nd"]], "set_tmp_dir": [[578, "set-tmp-dir"]], "try_else_none": [[589, "try-else-none"]], "set_precise_mode": [[574, "set-precise-mode"]], "unset_exception_trace_mode": [[591, "unset-exception-trace-mode"]], "is_ivy_nested_array": [[556, "is-ivy-nested-array"]], "set_min_base": [[571, "set-min-base"]], "is_ivy_container": [[555, "is-ivy-container"]], "unset_array_mode": [[590, "unset-array-mode"]], "is_native_array": [[557, "is-native-array"]], "multiprocessing": [[562, "multiprocessing"]], "scatter_flat": [[565, "scatter-flat"]], "is_ivy_array": [[554, "is-ivy-array"]], "unset_min_base": [[593, "unset-min-base"]], "set_array_mode": [[567, "set-array-mode"]], "set_show_func_wrapper_trace_mode": [[577, "set-show-func-wrapper-trace-mode"]], "set_min_denominator": [[572, "set-min-denominator"]], "isin": [[558, "isin"]], "stable_pow": [[581, "stable-pow"]], "print_all_arrays_in_memory": [[564, "print-all-arrays-in-memory"]], "set_item": [[570, "set-item"]], "to_ivy_shape": [[584, "to-ivy-shape"]], "set_nestable_mode": [[573, "set-nestable-mode"]], "set_queue_timeout": [[575, "set-queue-timeout"]], "to_native_shape": [[586, "to-native-shape"]], "inplace_update": [[551, "inplace-update"]], "get_item": [[544, "get-item"]], "nanmedian": [[518, "nanmedian"]], "einops_repeat": [[536, "einops-repeat"]], "assert_supports_inplace": [[527, "assert-supports-inplace"]], "arg_names": [[525, "arg-names"]], "bincount": [[509, "bincount"]], "gather": [[541, "gather"]], "igamma": [[515, "igamma"]], "einops_rearrange": [[534, "einops-rearrange"]], "gather_nd": [[542, "gather-nd"]], "has_nans": [[547, "has-nans"]], "cov": [[511, "cov"]], "einops_reduce": [[535, "einops-reduce"]], "all_equal": [[523, "all-equal"]], "native_sparse_array_to_indices_values_and_shape": [[508, "native-sparse-array-to-indices-values-and-shape"]], "container_types": [[531, "container-types"]], "nanprod": [[520, "nanprod"]], "function_unsupported_devices_and_dtypes": [[540, "function-unsupported-devices-and-dtypes"]], "nanmean": [[517, "nanmean"]], "fourier_encode": [[538, "fourier-encode"]], "is_native_sparse_array": [[506, "is-native-sparse-array"]], "inplace_arrays_supported": [[548, "inplace-arrays-supported"]], "inplace_decrement": [[549, "inplace-decrement"]], "array_equal": [[526, "array-equal"]], "arg_info": [[524, "arg-info"]], "cummax": [[512, "cummax"]], "exists": [[537, "exists"]], "clip_vector_norm": [[530, "clip-vector-norm"]], "default": [[533, "default"]], "get_referrers_recursive": [[546, "get-referrers-recursive"]], "get_all_arrays_in_memory": [[543, "get-all-arrays-in-memory"]], "nanmin": [[519, "nanmin"]], "median": [[516, "median"]], "get_num_dims": [[545, "get-num-dims"]], "optional_get_element": [[522, "optional-get-element"]], "cummin": [[513, "cummin"]], "current_backend_str": [[532, "current-backend-str"]], "cache_fn": [[528, "cache-fn"]], "function_supported_devices_and_dtypes": [[539, "function-supported-devices-and-dtypes"]], "inplace_increment": [[550, "inplace-increment"]], "quantile": [[521, "quantile"]], "corrcoef": [[510, "corrcoef"]], "clip_matrix_norm": [[529, "clip-matrix-norm"]], "histogram": [[514, "histogram"]], "native_sparse_array": [[507, "native-sparse-array"]], "expand": [[462, "expand"]], "dsplit": [[460, "dsplit"]], "group_norm": [[491, "group-norm"]], "hsplit": [[469, "hsplit"]], "moveaxis": [[473, "moveaxis"]], "flatten": [[464, "flatten"]], "put_along_axis": [[479, "put-along-axis"]], "soft_thresholding": [[481, "soft-thresholding"]], "bernoulli": [[497, "bernoulli"]], "partial_tensor_to_vec": [[476, "partial-tensor-to-vec"]], "fliplr": [[465, "fliplr"]], "vsplit": [[488, "vsplit"]], "hstack": [[470, "hstack"]], "top_k": [[484, "top-k"]], "unique_consecutive": [[487, "unique-consecutive"]], "vstack": [[489, "vstack"]], "instance_norm": [[492, "instance-norm"]], "fold": [[467, "fold"]], "poisson": [[501, "poisson"]], "invert_permutation": [[503, "invert-permutation"]], "unravel_index": [[502, "unravel-index"]], "partial_vec_to_tensor": [[478, "partial-vec-to-tensor"]], "partial_fold": [[475, "partial-fold"]], "gamma": [[500, "gamma"]], "dstack": [[461, "dstack"]], "heaviside": [[468, "heaviside"]], "take_along_axis": [[483, "take-along-axis"]], "lp_normalize": [[496, "lp-normalize"]], "i0": [[471, "i0"]], "unfold": [[486, "unfold"]], "beta": [[498, "beta"]], "partial_unfold": [[477, "partial-unfold"]], "is_ivy_sparse_array": [[505, "is-ivy-sparse-array"]], "matricize": [[472, "matricize"]], "l1_normalize": [[493, "l1-normalize"]], "rot90": [[480, "rot90"]], "batch_norm": [[490, "batch-norm"]], "flipud": [[466, "flipud"]], "pad": [[474, "pad"]], "l2_normalize": [[494, "l2-normalize"]], "dirichlet": [[499, "dirichlet"]], "lexsort": [[504, "lexsort"]], "take": [[482, "take"]], "trim_zeros": [[485, "trim-zeros"]], "local_response_norm": [[495, "local-response-norm"]], "fill_diagonal": [[463, "fill-diagonal"]], "conv2d_transpose": [[641, "conv2d-transpose"]], "Random": [[631, "random"], [375, "random"], [61, "module-ivy.data_classes.array.random"], [84, "module-ivy.data_classes.container.random"]], "conv1d": [[638, "conv1d"]], "value_is_nan": [[601, "value-is-nan"]], "Linear algebra": [[625, "linear-algebra"], [369, "linear-algebra"], [80, "module-ivy.data_classes.container.linear_algebra"], [57, "module-ivy.data_classes.array.linear_algebra"]], "conv2d": [[640, "conv2d"]], "Meta": [[628, "meta"], [372, "module-ivy.functional.ivy.experimental.meta"]], "optimizer_update": [[611, "optimizer-update"]], "Manipulation": [[627, "manipulation"], [371, "manipulation"], [59, "module-ivy.data_classes.array.manipulation"], [82, "module-ivy.data_classes.container.manipulation"]], "conv": [[637, "conv"]], "General": [[622, "general"], [366, "general"], [53, "module-ivy.data_classes.array.general"], [76, "module-ivy.data_classes.container.general"]], "Data type": [[618, "data-type"], [363, "module-ivy.functional.ivy.experimental.data_type"], [72, "module-ivy.data_classes.container.data_type"], [49, "module-ivy.data_classes.array.data_type"]], "unset_shape_array_mode": [[598, "unset-shape-array-mode"]], "Sorting": [[634, "sorting"], [378, "sorting"], [64, "module-ivy.data_classes.array.sorting"], [87, "module-ivy.data_classes.container.sorting"]], "Constants": [[615, "module-ivy.functional.ivy.constants"], [361, "module-ivy.functional.ivy.experimental.constants"]], "conv3d_transpose": [[643, "conv3d-transpose"]], "execute_with_gradients": [[605, "execute-with-gradients"]], "Searching": [[632, "searching"], [376, "searching"], [85, "module-ivy.data_classes.container.searching"], [62, "module-ivy.data_classes.array.searching"]], "conv3d": [[642, "conv3d"]], "Set": [[633, "set"], [377, "module-ivy.functional.ivy.experimental.set"], [63, "module-ivy.data_classes.array.set"], [86, "module-ivy.data_classes.container.set"]], "lamb_update": [[609, "lamb-update"]], "unset_show_func_wrapper_trace_mode": [[599, "unset-show-func-wrapper-trace-mode"]], "value_and_grad": [[613, "value-and-grad"]], "Control flow ops": [[616, "control-flow-ops"]], "Creation": [[617, "creation"], [362, "creation"], [48, "module-ivy.data_classes.array.creation"], [71, "module-ivy.data_classes.container.creation"]], "Device": [[619, "device"], [364, "module-ivy.functional.ivy.experimental.device"], [73, "module-ivy.data_classes.container.device"], [50, "module-ivy.data_classes.array.device"]], "Nest": [[629, "nest"], [373, "module-ivy.functional.ivy.experimental.nest"]], "lars_update": [[610, "lars-update"]], "adam_update": [[604, "adam-update"]], "Statistical": [[635, "statistical"], [380, "statistical"], [88, "module-ivy.data_classes.container.statistical"], [65, "module-ivy.data_classes.array.statistical"]], "unset_tmp_dir": [[600, "unset-tmp-dir"]], "stop_gradient": [[612, "stop-gradient"]], "jac": [[608, "jac"]], "vmap": [[602, "vmap"]], "conv1d_transpose": [[639, "conv1d-transpose"]], "gradient_descent_update": [[607, "gradient-descent-update"]], "Utility": [[636, "utility"], [381, "utility"], [89, "module-ivy.data_classes.container.utility"], [66, "module-ivy.data_classes.array.utility"]], "adam_step": [[603, "adam-step"]], "Experimental": [[621, "experimental"], [52, "module-ivy.data_classes.array.experimental"], [75, "module-ivy.data_classes.container.experimental"]], "grad": [[606, "grad"]], "smooth_l1_loss": [[448, "smooth-l1-loss"]], "tucker": [[441, "tucker"]], "cond": [[418, "cond"]], "check_scalar": [[456, "check-scalar"]], "svd_flip": [[437, "svd-flip"]], "multi_dot": [[433, "multi-dot"]], "hinge_embedding_loss": [[442, "hinge-embedding-loss"]], "log_poisson_loss": [[446, "log-poisson-loss"]], "broadcast_shapes": [[455, "broadcast-shapes"]], "partial_tucker": [[435, "partial-tucker"]], "make_svd_non_negative": [[430, "make-svd-non-negative"]], "atleast_1d": [[452, "atleast-1d"]], "tensor_train": [[438, "tensor-train"]], "atleast_2d": [[453, "atleast-2d"]], "eigh_tridiagonal": [[422, "eigh-tridiagonal"]], "mode_dot": [[432, "mode-dot"]], "tt_matrix_to_tensor": [[440, "tt-matrix-to-tensor"]], "as_strided": [[450, "as-strided"]], "truncated_svd": [[439, "truncated-svd"]], "initialize_tucker": [[426, "initialize-tucker"]], "matrix_exp": [[431, "matrix-exp"]], "stft": [[415, "stft"]], "higher_order_moment": [[425, "higher-order-moment"]], "associative_scan": [[451, "associative-scan"]], "solve_triangular": [[436, "solve-triangular"]], "sliding_window": [[414, "sliding-window"]], "column_stack": [[458, "column-stack"]], "atleast_3d": [[454, "atleast-3d"]], "dot": [[420, "dot"]], "choose": [[457, "choose"]], "adjoint": [[416, "adjoint"]], "kl_div": [[444, "kl-div"]], "khatri_rao": [[427, "khatri-rao"]], "batched_outer": [[417, "batched-outer"]], "eigvals": [[423, "eigvals"]], "concat_from_sequence": [[459, "concat-from-sequence"]], "huber_loss": [[443, "huber-loss"]], "kronecker": [[429, "kronecker"]], "general_inner_product": [[424, "general-inner-product"]], "kron": [[428, "kron"]], "l1_loss": [[445, "l1-loss"]], "multi_mode_dot": [[434, "multi-mode-dot"]], "poisson_nll_loss": [[447, "poisson-nll-loss"]], "diagflat": [[419, "diagflat"]], "soft_margin_loss": [[449, "soft-margin-loss"]], "modf": [[348, "modf"]], "zeta": [[355, "zeta"]], "unsorted_segment_mean": [[324, "unsorted-segment-mean"]], "lgamma": [[347, "lgamma"]], "sparsify_tensor": [[353, "sparsify-tensor"]], "vorbis_window": [[327, "vorbis-window"]], "trilu": [[323, "trilu"]], "float_power": [[339, "float-power"]], "fix": [[338, "fix"]], "amax": [[329, "amax"]], "copysign": [[333, "copysign"]], "unsorted_segment_sum": [[326, "unsorted-segment-sum"]], "diff": [[335, "diff"]], "sinc": [[352, "sinc"]], "nextafter": [[350, "nextafter"]], "xlogy": [[354, "xlogy"]], "jvp": [[358, "jvp"]], "tril_indices": [[322, "tril-indices"]], "frexp": [[341, "frexp"]], "lerp": [[346, "lerp"]], "count_nonzero": [[334, "count-nonzero"]], "signbit": [[351, "signbit"]], "allclose": [[328, "allclose"]], "conj": [[332, "conj"]], "hypot": [[343, "hypot"]], "gradient": [[342, "gradient"]], "fmax": [[340, "fmax"]], "vjp": [[359, "vjp"]], "isclose": [[344, "isclose"]], "amin": [[330, "amin"]], "nansum": [[349, "nansum"]], "binarizer": [[331, "binarizer"]], "ldexp": [[345, "ldexp"]], "unsorted_segment_min": [[325, "unsorted-segment-min"]], "digamma": [[336, "digamma"]], "erfc": [[337, "erfc"]], "reduce": [[356, "reduce"]], "bind_custom_gradient_function": [[357, "bind-custom-gradient-function"]], "adaptive_max_pool2d": [[384, "adaptive-max-pool2d"]], "ifftn": [[401, "ifftn"]], "interp": [[402, "interp"]], "ifft": [[400, "ifft"]], "adaptive_avg_pool1d": [[382, "adaptive-avg-pool1d"]], "adaptive_avg_pool2d": [[383, "adaptive-avg-pool2d"]], "rfft": [[411, "rfft"]], "generate_einsum_equation": [[397, "generate-einsum-equation"]], "idct": [[399, "idct"]], "dft": [[390, "dft"]], "max_pool1d": [[404, "max-pool1d"]], "max_pool3d": [[406, "max-pool3d"]], "Sparse array": [[379, "sparse-array"]], "avg_pool2d": [[387, "avg-pool2d"]], "area_interpolate": [[385, "area-interpolate"]], "dct": [[389, "dct"]], "get_interpolate_kernel": [[398, "get-interpolate-kernel"]], "dropout1d": [[391, "dropout1d"]], "avg_pool3d": [[388, "avg-pool3d"]], "dropout2d": [[392, "dropout2d"]], "max_unpool1d": [[407, "max-unpool1d"]], "fft": [[395, "fft"]], "embedding": [[394, "embedding"]], "avg_pool1d": [[386, "avg-pool1d"]], "fft2": [[396, "fft2"]], "pool": [[409, "pool"]], "rfftn": [[412, "rfftn"]], "reduce_window": [[410, "reduce-window"]], "rnn": [[413, "rnn"]], "max_pool2d": [[405, "max-pool2d"]], "nearest_interpolate": [[408, "nearest-interpolate"]], "interpolate": [[403, "interpolate"]], "dropout3d": [[393, "dropout3d"]], "trunc_divide": [[289, "trunc-divide"]], "logsigmoid": [[295, "logsigmoid"]], "tanhshrink": [[303, "tanhshrink"]], "random_tucker": [[321, "random-tucker"]], "tanh": [[286, "tanh"]], "logit": [[294, "logit"]], "celu": [[290, "celu"]], "sign": [[279, "sign"]], "thresholded_relu": [[305, "thresholded-relu"]], "elu": [[291, "elu"]], "trunc": [[288, "trunc"]], "hardtanh": [[293, "hardtanh"]], "silu": [[300, "silu"]], "sqrt": [[282, "sqrt"]], "relu6": [[297, "relu6"]], "softshrink": [[301, "softshrink"]], "prelu": [[296, "prelu"]], "eye_like": [[307, "eye-like"]], "mel_weight_matrix": [[313, "mel-weight-matrix"]], "polyval": [[316, "polyval"]], "selu": [[299, "selu"]], "hann_window": [[309, "hann-window"]], "kaiser_window": [[312, "kaiser-window"]], "remainder": [[277, "remainder"]], "subtract": [[284, "subtract"]], "random_parafac2": [[318, "random-parafac2"]], "hardshrink": [[292, "hardshrink"]], "random_tt": [[320, "random-tt"]], "indices": [[310, "indices"]], "ndindex": [[315, "ndindex"]], "kaiser_bessel_derived_window": [[311, "kaiser-bessel-derived-window"]], "sin": [[280, "sin"]], "random_cp": [[317, "random-cp"]], "ndenumerate": [[314, "ndenumerate"]], "square": [[283, "square"]], "hamming_window": [[308, "hamming-window"]], "threshold": [[304, "threshold"]], "reciprocal": [[276, "reciprocal"]], "sinh": [[281, "sinh"]], "scaled_tanh": [[298, "scaled-tanh"]], "round": [[278, "round"]], "trapz": [[287, "trapz"]], "blackman_window": [[306, "blackman-window"]], "tan": [[285, "tan"]], "stanh": [[302, "stanh"]], "random_tr": [[319, "random-tr"]], "logical_xor": [[265, "logical-xor"]], "greater": [[246, "greater"]], "logical_or": [[264, "logical-or"]], "ceil": [[231, "ceil"]], "isinf": [[250, "isinf"]], "rad2deg": [[274, "rad2deg"]], "less": [[254, "less"]], "deg2rad": [[234, "deg2rad"]], "divide": [[235, "divide"]], "real": [[275, "real"]], "imag": [[248, "imag"]], "maximum": [[266, "maximum"]], "isnan": [[251, "isnan"]], "log1p": [[258, "log1p"]], "floor": [[241, "floor"]], "equal": [[236, "equal"]], "lcm": [[253, "lcm"]], "pow": [[273, "pow"]], "bitwise_xor": [[230, "bitwise-xor"]], "not_equal": [[271, "not-equal"]], "gcd": [[245, "gcd"]], "cosh": [[233, "cosh"]], "positive": [[272, "positive"]], "log2": [[259, "log2"]], "fmod": [[244, "fmod"]], "logical_not": [[263, "logical-not"]], "exp2": [[239, "exp2"]], "expm1": [[240, "expm1"]], "log10": [[257, "log10"]], "logical_and": [[262, "logical-and"]], "floor_divide": [[242, "floor-divide"]], "logaddexp2": [[261, "logaddexp2"]], "erf": [[237, "erf"]], "multiply": [[268, "multiply"]], "nan_to_num": [[269, "nan-to-num"]], "cos": [[232, "cos"]], "logaddexp": [[260, "logaddexp"]], "exp": [[238, "exp"]], "log": [[256, "log"]], "minimum": [[267, "minimum"]], "fmin": [[243, "fmin"]], "less_equal": [[255, "less-equal"]], "negative": [[270, "negative"]], "greater_equal": [[247, "greater-equal"]], "isreal": [[252, "isreal"]], "isfinite": [[249, "isfinite"]], "split_factor": [[207, "split-factor"]], "function_supported_devices": [[194, "function-supported-devices"]], "as_ivy_dev": [[188, "as-ivy-dev"]], "unset_soft_device_mode": [[213, "unset-soft-device-mode"]], "asin": [[220, "asin"]], "set_soft_device_mode": [[205, "set-soft-device-mode"]], "as_native_dev": [[189, "as-native-dev"]], "split_func_call": [[208, "split-func-call"]], "dev_util": [[193, "dev-util"]], "to_device": [[209, "to-device"]], "percent_used_mem_on_dev": [[202, "percent-used-mem-on-dev"]], "num_cpu_cores": [[199, "num-cpu-cores"]], "unset_default_float_dtype": [[184, "unset-default-float-dtype"]], "atanh": [[224, "atanh"]], "clear_cached_mem_on_dev": [[190, "clear-cached-mem-on-dev"]], "abs": [[215, "abs"]], "tpu_is_available": [[211, "tpu-is-available"]], "used_mem_on_dev": [[214, "used-mem-on-dev"]], "num_gpus": [[200, "num-gpus"]], "total_mem_on_dev": [[210, "total-mem-on-dev"]], "atan": [[222, "atan"]], "bitwise_right_shift": [[229, "bitwise-right-shift"]], "function_unsupported_devices": [[195, "function-unsupported-devices"]], "acos": [[216, "acos"]], "unset_default_int_dtype": [[185, "unset-default-int-dtype"]], "set_default_device": [[204, "set-default-device"]], "get_all_ivy_arrays_on_dev": [[196, "get-all-ivy-arrays-on-dev"]], "atan2": [[223, "atan2"]], "bitwise_invert": [[226, "bitwise-invert"]], "unset_default_uint_dtype": [[186, "unset-default-uint-dtype"]], "angle": [[219, "angle"]], "bitwise_and": [[225, "bitwise-and"]], "asinh": [[221, "asinh"]], "gpu_is_available": [[197, "gpu-is-available"]], "bitwise_or": [[228, "bitwise-or"]], "set_split_factor": [[206, "set-split-factor"]], "num_ivy_arrays_on_dev": [[201, "num-ivy-arrays-on-dev"]], "acosh": [[217, "acosh"]], "add": [[218, "add"]], "handle_soft_device_variable": [[198, "handle-soft-device-variable"]], "unset_default_device": [[212, "unset-default-device"]], "bitwise_left_shift": [[227, "bitwise-left-shift"]], "dev": [[192, "dev"]], "print_all_ivy_arrays_on_dev": [[203, "print-all-ivy-arrays-on-dev"]], "default_device": [[191, "default-device"]], "valid_dtype": [[187, "valid-dtype"]], "Wrapping": [[67, "module-ivy.data_classes.array.wrapping"], [90, "module-ivy.data_classes.container.wrapping"]], "Conversions": [[47, "module-ivy.data_classes.array.conversions"], [70, "module-ivy.data_classes.container.conversions"]], "Image": [[78, "module-ivy.data_classes.container.image"], [55, "module-ivy.data_classes.array.image"]], "Guides": [[10, "guides"], [15, "guides"]], "3.0: Perceiver": [[36, "3.0:-Perceiver"]], "1.0: Lazy vs Eager": [[31, "1.0:-Lazy-vs-Eager"]], "Unify": [[31, "Unify"], [22, "Unify"], [33, "Unify"], [21, "Unify"], [32, "Unify"]], "Compile": [[31, "Compile"], [33, "Compile"], [32, "Compile"]], "Transpile": [[31, "Transpile"], [22, "Transpile"], [33, "Transpile"], [21, "Transpile"], [32, "Transpile"]], "1.3: Dynamic vs Static": [[34, "1.3:-Dynamic-vs-Static"]], "Dynamic": [[34, "Dynamic"]], "Static": [[34, "Static"]], "ToDo: explain via examples why dynamic mode is set to True by default when transpiling to and from numpy and torch, but set to False by default when transpiling to and from tensorflow and jax.": [[34, "ToDo:-explain-via-examples-why-dynamic-mode-is-set-to-True-by-default-when-transpiling-to-and-from-numpy-and-torch,-but-set-to-False-by-default-when-transpiling-to-and-from-tensorflow-and-jax."]], "Transpiling a haiku model to build on top": [[12, "Transpiling-a-haiku-model-to-build-on-top"]], "Using Ivy ResNet": [[7, "Using-Ivy-ResNet"]], "Installation": [[7, "Installation"], [3, "Installation"]], "Imports": [[7, "Imports"], [5, "Imports"], [9, "Imports"]], "Data Preparation": [[7, "Data-Preparation"], [4, "Data-Preparation"], [5, "Data-Preparation"], [3, "Data-Preparation"]], "Prepare the set of labels": [[7, "Prepare-the-set-of-labels"]], "Load the image example \ud83d\uddbc\ufe0f": [[7, "Load-the-image-example-\ud83d\uddbc\ufe0f"], [5, "Load-the-image-example-\ud83d\uddbc\ufe0f"]], "Visualise image": [[7, "Visualise-image"], [5, "Visualise-image"]], "Model Inference ResNet34": [[7, "Model-Inference-ResNet34"]], "Initializing Native Torch ResNet34": [[7, "Initializing-Native-Torch-ResNet34"]], "Initializing Ivy ResNet34 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet34-with-Pretrained-Weights-\u2b07\ufe0f"]], "Use the model to classify your images \ud83d\ude80": [[7, "Use-the-model-to-classify-your-images-\ud83d\ude80"], [7, "id1"]], "Model Inference ResNet50": [[7, "Model-Inference-ResNet50"]], "Initializing Native Torch ResNet50": [[7, "Initializing-Native-Torch-ResNet50"]], "Initializing Ivy ResNet50 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet50-with-Pretrained-Weights-\u2b07\ufe0f"]], "Examples and Demos": [[2, "examples-and-demos"], [15, "examples-and-demos"]], "Transpile code": [[20, "Transpile-code"]], "How to use decorators": [[22, "How-to-use-decorators"]], "Trace": [[22, "Trace"], [21, "Trace"]], "ODSC Ivy Demo": [[26, "ODSC-Ivy-Demo"]], "Ivy Backend Handler": [[26, "Ivy-Backend-Handler"], [17, "Ivy-Backend-Handler"]], "Data Structures": [[26, "Data-Structures"], [17, "Data-Structures"]], "Ivy Functional API": [[26, "Ivy-Functional-API"], [17, "Ivy-Functional-API"]], "Graph Tracer": [[26, "Graph-Tracer"]], "Any function": [[26, "Any-function"], [27, "Any-function"]], "Any library": [[26, "Any-library"], [27, "Any-library"]], "Any model": [[26, "Any-model"], [27, "Any-model"]], "Tutorials And Examples": [[15, "tutorials-and-examples"]], "Learn the basics": [[15, "learn-the-basics"], [16, "learn-the-basics"]], "Demos": [[0, "demos"]], "Creating a Notebook for Demo": [[0, "creating-a-notebook-for-demo"]], "1.2: As a Decorator": [[33, "1.2:-As-a-Decorator"]], "Compilation of a Basic Function": [[39, "Compilation-of-a-Basic-Function"]], "Installs \ud83d\udcbe": [[39, "Installs-\ud83d\udcbe"], [38, "Installs-\ud83d\udcbe"]], "Imports \ud83d\udec3": [[39, "Imports-\ud83d\udec3"], [38, "Imports-\ud83d\udec3"]], "Import Ivy compiler": [[39, "Import-Ivy-compiler"]], "Function compilation \ud83d\udee0": [[39, "Function-compilation-\ud83d\udee0"]], "Set backend": [[39, "Set-backend"]], "Sample input": [[39, "Sample-input"]], "Define function to compile": [[39, "Define-function-to-compile"]], "Compile the function": [[39, "Compile-the-function"]], "Check results": [[39, "Check-results"], [39, "id1"]], "Compiling simple neural network \ud83e\udde0": [[39, "Compiling-simple-neural-network-\ud83e\udde0"]], "Define Model": [[39, "Define-Model"], [38, "Define-Model"]], "Create model": [[39, "Create-model"]], "Define input": [[39, "Define-input"]], "Compile network": [[39, "Compile-network"]], "# Ivy Bert Demo": [[4, "#-Ivy-Bert-Demo"]], "Install the dependecies": [[4, "Install-the-dependecies"]], "Import the modules": [[4, "Import-the-modules"]], "Ivy inference with Sequence Classification": [[4, "Ivy-inference-with-Sequence-Classification"]], "Ivy model inference with tensorflow": [[4, "Ivy-model-inference-with-tensorflow"]], "Ivy model inference with Jax": [[4, "Ivy-model-inference-with-Jax"]], "Ivy model inference with torch": [[4, "Ivy-model-inference-with-torch"]], "Resnet 18": [[45, "Resnet-18"]], "Deepmind PerceiverIO on GPU": [[41, "Deepmind-PerceiverIO-on-GPU"]], "Install Python3.8 and setup the kernel": [[41, "Install-Python3.8-and-setup-the-kernel"]], "Clone the ivy and ivy-models repo": [[41, "Clone-the-ivy-and-ivy-models-repo"]], "Install ivy and ivy_models from the repos": [[41, "Install-ivy-and-ivy_models-from-the-repos"]], "Run the demo\u2026": [[41, "Run-the-demo..."]], "\u2026with torch backend": [[41, "...with-torch-backend"]], "\u2026.with tensorflow backend": [[41, "....with-tensorflow-backend"]], "\u2026with jax backend": [[41, "...with-jax-backend"]], "\u2026with numpy backend": [[41, "...with-numpy-backend"]], "Unify code": [[18, "Unify-code"]], "Demo: Transpiling DeepMind\u2019s PerceiverIO": [[40, "Demo:-Transpiling-DeepMind's-PerceiverIO"]], "Table of Contents": [[40, "Table-of-Contents"]], "Defining the model": [[40, "Defining-the-model"]], "Model construction": [[40, "Model-construction"]], "Some helper functions": [[40, "Some-helper-functions"]], "Transpiling the model": [[40, "Transpiling-the-model"]], "PyTorch pipeline": [[40, "PyTorch-pipeline"]], "Dataset download": [[40, "Dataset-download"]], "DataLoader": [[40, "DataLoader"]], "Training": [[40, "Training"]], "Basic Operations with Ivy": [[38, "Basic-Operations-with-Ivy"]], "Ivy as a Unified ML Framework \ud83d\udd00": [[38, "Ivy-as-a-Unified-ML-Framework-\ud83d\udd00"]], "Change frameworks by one line of code \u261d": [[38, "Change-frameworks-by-one-line-of-code-\u261d"]], "No need to worry about data types \ud83c\udfa8": [[38, "No-need-to-worry-about-data-types-\ud83c\udfa8"]], "No need to worry about framework differences \ud83d\udcb1": [[38, "No-need-to-worry-about-framework-differences-\ud83d\udcb1"]], "Unifying them all! \ud83c\udf72": [[38, "Unifying-them-all!-\ud83c\udf72"]], "Ivy as a standalone ML framework \ud83c\udf00": [[38, "Ivy-as-a-standalone-ML-framework-\ud83c\udf00"]], "Set Backend Framework": [[38, "Set-Backend-Framework"]], "Create Model": [[38, "Create-Model"]], "Create Optimizer": [[38, "Create-Optimizer"]], "Input and Target": [[38, "Input-and-Target"]], "Loss Function": [[38, "Loss-Function"]], "Training Loop": [[38, "Training-Loop"]], "Accelerating MMPreTrain models with JAX": [[6, "Accelerating-MMPreTrain-models-with-JAX"]], "Developing a convolutional network using Ivy": [[14, "Developing-a-convolutional-network-using-Ivy"]], "Quickstart": [[27, "Quickstart"]], "Get familiar with Ivy": [[27, "Get-familiar-with-Ivy"]], "Functional API": [[27, "Functional-API"]], "Stateful API": [[27, "Stateful-API"]], "Tracing code": [[27, "Tracing-code"]], "0.0: Unify": [[28, "0.0:-Unify"]], "0.2: Transpile": [[30, "0.2:-Transpile"]], "TO REPLACE: Title": [[1, "TO-REPLACE:-Title"]], "Ivy as a Transpiler Introduction": [[44, "Ivy-as-a-Transpiler-Introduction"]], "To use the transpiler:": [[44, "To-use-the-transpiler:"]], "Transpiler Interface": [[44, "Transpiler-Interface"]], "Telemetry": [[44, "Telemetry"]], "1. Transpile Functions \ud83d\udd22": [[44, "1.-Transpile-Functions-\ud83d\udd22"]], "2. Transpile Libraries \ud83d\udcda": [[44, "2.-Transpile-Libraries-\ud83d\udcda"]], "3. Transpile Models \ud83c\udf10": [[44, "3.-Transpile-Models-\ud83c\udf10"]], "Image Segmentation with Ivy UNet": [[5, "Image-Segmentation-with-Ivy-UNet"]], "Custom Preprocessing": [[5, "Custom-Preprocessing"]], "Model Inference": [[5, "Model-Inference"]], "Initializing Native Torch UNet": [[5, "Initializing-Native-Torch-UNet"]], "Initializing Ivy UNet with Pretrained Weights \u2b07\ufe0f": [[5, "Initializing-Ivy-UNet-with-Pretrained-Weights-\u2b07\ufe0f"]], "Custom masking function": [[5, "Custom-masking-function"]], "Use the model to segment your images \ud83d\ude80": [[5, "Use-the-model-to-segment-your-images-\ud83d\ude80"]], "TensorFlow backend": [[5, "TensorFlow-backend"]], "JAX": [[5, "JAX"]], "Appendix: the Ivy native implementation of UNet": [[5, "Appendix:-the-Ivy-native-implementation-of-UNet"]], "0.1: Compile": [[29, "0.1:-Compile"]], "Ivy AlexNet demo": [[3, "Ivy-AlexNet-demo"]], "Ivy AlexNet inference in Torch": [[3, "Ivy-AlexNet-inference-in-Torch"]], "TensorFlow inference": [[3, "TensorFlow-inference"]], "JAX inference": [[3, "JAX-inference"]], "Appendix (Ivy code for AlexNet implementation)": [[3, "Appendix-(Ivy-code-for-AlexNet-implementation)"]], "Accelerating PyTorch models with JAX": [[8, "Accelerating-PyTorch-models-with-JAX"]], "Write Ivy code": [[17, "Write-Ivy-code"]], "Contents": [[17, "Contents"]], "Installing Ivy": [[17, "Installing-Ivy"]], "Importing Ivy": [[17, "Importing-Ivy"]], "Transpile any library": [[23, "Transpile-any-library"]], "Transpiling a Tensorflow model to build on top": [[13, "Transpiling-a-Tensorflow-model-to-build-on-top"]], "Accelerating XGBoost with JAX": [[9, "Accelerating-XGBoost-with-JAX"]], "Tests": [[9, "Tests"]], "Loading the Data": [[9, "Loading-the-Data"]], "Comparing xgb_frontend.XGBClassifier and xgb.XGBClassifier": [[9, "Comparing-xgb_frontend.XGBClassifier-and-xgb.XGBClassifier"]], "JAX backend": [[9, "JAX-backend"]], "Tensorflow backend": [[9, "Tensorflow-backend"]], "PyTorch backend": [[9, "PyTorch-backend"]], "More exhaustive example": [[9, "More-exhaustive-example"]], "Evaluating Training Time vs. Number of Boosting Rounds": [[9, "Evaluating-Training-Time-vs.-Number-of-Boosting-Rounds"]], "Training Time vs. Fractions of Data": [[9, "Training-Time-vs.-Fractions-of-Data"]], "Comparison of Metrics": [[9, "Comparison-of-Metrics"]], "Transpile any model": [[24, "Transpile-any-model"]], "Round up": [[24, "Round-up"]], "Lazy vs Eager": [[21, "Lazy-vs-Eager"]], "1.1: Framework Selection": [[32, "1.1:-Framework-Selection"]], "End-to-End Training Pipeline in Ivy": [[42, "End-to-End-Training-Pipeline-in-Ivy"]], "Importing libraries": [[42, "Importing-libraries"]], "Let\u2019s build the pipeline with a Tensorflow backend": [[42, "Let's-build-the-pipeline-with-a-Tensorflow-backend"]], "We are using MNIST dataset for this Tutorial": [[42, "We-are-using-MNIST-dataset-for-this-Tutorial"]], "Temporary Dataset and Dynamic loader": [[42, "Temporary-Dataset-and-Dynamic-loader"]], "Defining the Ivy Network": [[42, "Defining-the-Ivy-Network"]], "Training Loop with utility functions": [[42, "Training-Loop-with-utility-functions"]], "Plotting the training metrics": [[42, "Plotting-the-training-metrics"]], "Save the trained Model": [[42, "Save-the-trained-Model"]], "Transpiling a PyTorch model to build on top": [[11, "Transpiling-a-PyTorch-model-to-build-on-top"]], "HuggingFace Tensorflow DeiT": [[43, "HuggingFace-Tensorflow-DeiT"]], "Graph can be visualized and displayed as html file on browser": [[43, "Graph-can-be-visualized-and-displayed-as-html-file-on-browser"]], "3.1: Stable Diffusion": [[37, "3.1:-Stable-Diffusion"]], "Write a model using Ivy": [[25, "Write-a-model-using-Ivy"]], "2.0: Kornia": [[35, "2.0:-Kornia"]], "Trace code": [[19, "Trace-code"]]}, "indexentries": {"_arraywithactivations (class in ivy.data_classes.array.activations)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations"]], "_abc_impl (ivy.data_classes.array.activations._arraywithactivations attribute)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations._abc_impl"]], "gelu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.gelu"]], "hardswish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.hardswish"]], "ivy.data_classes.array.activations": [[46, "module-ivy.data_classes.array.activations"]], "leaky_relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.log_softmax"]], "mish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.mish"]], "module": [[46, "module-ivy.data_classes.array.activations"], [47, "module-ivy.data_classes.array.conversions"], [48, "module-ivy.data_classes.array.creation"], [49, "module-ivy.data_classes.array.data_type"], [50, "module-ivy.data_classes.array.device"], [51, "module-ivy.data_classes.array.elementwise"], [52, "module-ivy.data_classes.array.experimental"], [52, "module-ivy.data_classes.array.experimental.activations"], [52, "module-ivy.data_classes.array.experimental.conversions"], [52, "module-ivy.data_classes.array.experimental.creation"], [52, "module-ivy.data_classes.array.experimental.data_type"], [52, "module-ivy.data_classes.array.experimental.device"], [52, "module-ivy.data_classes.array.experimental.elementwise"], [52, "module-ivy.data_classes.array.experimental.general"], [52, "module-ivy.data_classes.array.experimental.gradients"], [52, "module-ivy.data_classes.array.experimental.image"], [52, "module-ivy.data_classes.array.experimental.layers"], [52, "module-ivy.data_classes.array.experimental.linear_algebra"], [52, "module-ivy.data_classes.array.experimental.losses"], [52, "module-ivy.data_classes.array.experimental.manipulation"], [52, "module-ivy.data_classes.array.experimental.norms"], [52, "module-ivy.data_classes.array.experimental.random"], [52, "module-ivy.data_classes.array.experimental.searching"], [52, "module-ivy.data_classes.array.experimental.set"], [52, "module-ivy.data_classes.array.experimental.sorting"], [52, "module-ivy.data_classes.array.experimental.statistical"], [52, "module-ivy.data_classes.array.experimental.utility"], [53, "module-ivy.data_classes.array.general"], [54, "module-ivy.data_classes.array.gradients"], [55, "module-ivy.data_classes.array.image"], [56, "module-ivy.data_classes.array.layers"], [57, "module-ivy.data_classes.array.linear_algebra"], [58, "module-ivy.data_classes.array.losses"], [59, "module-ivy.data_classes.array.manipulation"], [60, "module-ivy.data_classes.array.norms"], [61, "module-ivy.data_classes.array.random"], [62, "module-ivy.data_classes.array.searching"], [63, "module-ivy.data_classes.array.set"], [64, "module-ivy.data_classes.array.sorting"], [65, "module-ivy.data_classes.array.statistical"], [66, "module-ivy.data_classes.array.utility"], [67, "module-ivy.data_classes.array.wrapping"], [68, "module-ivy.data_classes.container.activations"], [69, "module-ivy.data_classes.container.base"], [70, "module-ivy.data_classes.container.conversions"], [71, "module-ivy.data_classes.container.creation"], [72, "module-ivy.data_classes.container.data_type"], [73, "module-ivy.data_classes.container.device"], [74, "module-ivy.data_classes.container.elementwise"], [75, "module-ivy.data_classes.container.experimental"], [75, "module-ivy.data_classes.container.experimental.activations"], [75, "module-ivy.data_classes.container.experimental.conversions"], [75, "module-ivy.data_classes.container.experimental.creation"], [75, "module-ivy.data_classes.container.experimental.data_type"], [75, "module-ivy.data_classes.container.experimental.device"], [75, "module-ivy.data_classes.container.experimental.elementwise"], [75, "module-ivy.data_classes.container.experimental.general"], [75, "module-ivy.data_classes.container.experimental.gradients"], [75, "module-ivy.data_classes.container.experimental.image"], [75, "module-ivy.data_classes.container.experimental.layers"], [75, "module-ivy.data_classes.container.experimental.linear_algebra"], [75, "module-ivy.data_classes.container.experimental.losses"], [75, "module-ivy.data_classes.container.experimental.manipulation"], [75, "module-ivy.data_classes.container.experimental.norms"], [75, "module-ivy.data_classes.container.experimental.random"], [75, "module-ivy.data_classes.container.experimental.searching"], [75, "module-ivy.data_classes.container.experimental.set"], [75, "module-ivy.data_classes.container.experimental.sorting"], [75, "module-ivy.data_classes.container.experimental.statistical"], [75, "module-ivy.data_classes.container.experimental.utility"], [76, "module-ivy.data_classes.container.general"], [77, "module-ivy.data_classes.container.gradients"], [78, "module-ivy.data_classes.container.image"], [79, "module-ivy.data_classes.container.layers"], [80, "module-ivy.data_classes.container.linear_algebra"], [81, "module-ivy.data_classes.container.losses"], [82, "module-ivy.data_classes.container.manipulation"], [83, "module-ivy.data_classes.container.norms"], [84, "module-ivy.data_classes.container.random"], [85, "module-ivy.data_classes.container.searching"], [86, "module-ivy.data_classes.container.set"], [87, "module-ivy.data_classes.container.sorting"], [88, "module-ivy.data_classes.container.statistical"], [89, "module-ivy.data_classes.container.utility"], [90, "module-ivy.data_classes.container.wrapping"], [91, "module-ivy.data_classes.factorized_tensor.base"], [92, "module-ivy.data_classes.factorized_tensor.cp_tensor"], [93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"], [94, "module-ivy.data_classes.factorized_tensor.tr_tensor"], [95, "module-ivy.data_classes.factorized_tensor.tt_tensor"], [96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"], [97, "module-ivy.data_classes.array.array"], [98, "module-ivy.data_classes.container.container"], [100, "module-ivy.data_classes.nested_array.nested_array"], [101, "module-ivy.data_classes.nested_array.base"], [102, "module-ivy.data_classes.nested_array.elementwise"], [360, "module-ivy.functional.ivy.experimental.activations"], [361, "module-ivy.functional.ivy.experimental.constants"], [362, "module-ivy.functional.ivy.experimental.creation"], [363, "module-ivy.functional.ivy.experimental.data_type"], [364, "module-ivy.functional.ivy.experimental.device"], [365, "module-ivy.functional.ivy.experimental.elementwise"], [366, "module-ivy.functional.ivy.experimental.general"], [367, "module-ivy.functional.ivy.experimental.gradients"], [368, "module-ivy.functional.ivy.experimental.layers"], [369, "module-ivy.functional.ivy.experimental.linear_algebra"], [370, "module-ivy.functional.ivy.experimental.losses"], [371, "module-ivy.functional.ivy.experimental.manipulation"], [372, "module-ivy.functional.ivy.experimental.meta"], [373, "module-ivy.functional.ivy.experimental.nest"], [374, "module-ivy.functional.ivy.experimental.norms"], [375, "module-ivy.functional.ivy.experimental.random"], [376, "module-ivy.functional.ivy.experimental.searching"], [377, "module-ivy.functional.ivy.experimental.set"], [378, "module-ivy.functional.ivy.experimental.sorting"], [379, "module-ivy.functional.ivy.experimental.sparse_array"], [380, "module-ivy.functional.ivy.experimental.statistical"], [381, "module-ivy.functional.ivy.experimental.utility"], [614, "module-ivy.functional.ivy.activations"], [615, "module-ivy.functional.ivy.constants"], [616, "module-ivy.functional.ivy.control_flow_ops"], [617, "module-ivy.functional.ivy.creation"], [618, "module-ivy.functional.ivy.data_type"], [619, "module-ivy.functional.ivy.device"], [620, "module-ivy.functional.ivy.elementwise"], [621, "module-ivy.functional.ivy.experimental"], [622, "module-ivy.functional.ivy.general"], [623, "module-ivy.functional.ivy.gradients"], [624, "module-ivy.functional.ivy.layers"], [625, "module-ivy.functional.ivy.linear_algebra"], [626, "module-ivy.functional.ivy.losses"], [627, "module-ivy.functional.ivy.manipulation"], [628, "module-ivy.functional.ivy.meta"], [629, "module-ivy.functional.ivy.nest"], [630, "module-ivy.functional.ivy.norms"], [631, "module-ivy.functional.ivy.random"], [632, "module-ivy.functional.ivy.searching"], [633, "module-ivy.functional.ivy.set"], [634, "module-ivy.functional.ivy.sorting"], [635, "module-ivy.functional.ivy.statistical"], [636, "module-ivy.functional.ivy.utility"], [759, "module-ivy_tests.test_ivy.helpers.assertions"], [760, "module-ivy_tests.test_ivy.helpers.available_frameworks"], [761, "module-ivy_tests.test_ivy.helpers.function_testing"], [762, "module-ivy_tests.test_ivy.helpers.globals"], [763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"], [764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"], [765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"], [766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"], [767, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"], [768, "module-ivy_tests.test_ivy.helpers.multiprocessing"], [769, "module-ivy_tests.test_ivy.helpers.pipeline_helper"], [770, "module-ivy_tests.test_ivy.helpers.structs"], [771, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"], [772, "module-ivy_tests.test_ivy.helpers.testing_helpers"], [776, "module-ivy.stateful.activations"], [777, "module-ivy.stateful.converters"], [778, "module-ivy.stateful.helpers"], [779, "module-ivy.stateful.initializers"], [780, "module-ivy.stateful.layers"], [781, "module-ivy.stateful.losses"], [782, "module-ivy.stateful.module"], [783, "module-ivy.stateful.norms"], [784, "module-ivy.stateful.optimizers"], [785, "module-ivy.stateful.sequential"], [786, "module-ivy.utils.assertions"], [787, "module-ivy.utils.backend"], [788, "module-ivy.utils.backend.ast_helpers"], [789, "module-ivy.utils.backend.handler"], [790, "module-ivy.utils.backend.sub_backend_handler"], [791, "module-ivy.utils.binaries"], [792, "module-ivy.utils.dynamic_import"], [793, "module-ivy.utils.einsum_parser"], [794, "module-ivy.utils.einsum_path_helpers"], [795, "module-ivy.utils.exceptions"], [796, "module-ivy.utils.inspection"], [797, "module-ivy.utils.logging"], [798, "module-ivy.utils.profiler"], [799, "module-ivy.utils.verbosity"]], "relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.relu"]], "sigmoid() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.sigmoid"]], "softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softmax"]], "softplus() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softplus"]], "_array_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._array_to_new_backend"]], "_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_ivy"]], "_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_native"]], "_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_new_backend"]], "args_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_ivy"]], "args_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_native"]], "args_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_new_backend"]], "ivy.data_classes.array.conversions": [[47, "module-ivy.data_classes.array.conversions"]], "to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_ivy"]], "to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_native"]], "to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_new_backend"]], "_arraywithcreation (class in ivy.data_classes.array.creation)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation"]], "_abc_impl (ivy.data_classes.array.creation._arraywithcreation attribute)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation._abc_impl"]], "asarray() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.asarray"]], "copy_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.copy_array"]], "empty_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.from_dlpack"]], "full_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.full_like"]], "ivy.data_classes.array.creation": [[48, "module-ivy.data_classes.array.creation"]], "linspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.linspace"]], "logspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.logspace"]], "meshgrid() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.meshgrid"]], "native_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.native_array"]], "one_hot() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.one_hot"]], "ones_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.ones_like"]], "tril() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.tril"]], "triu() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.triu"]], "zeros_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.zeros_like"]], "_arraywithdatatypes (class in ivy.data_classes.array.data_type)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes"]], "_abc_impl (ivy.data_classes.array.data_type._arraywithdatatypes attribute)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes._abc_impl"]], "astype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.dtype"]], "finfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_bool_dtype"]], "is_float_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_uint_dtype"]], "ivy.data_classes.array.data_type": [[49, "module-ivy.data_classes.array.data_type"]], "result_type() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.result_type"]], "_arraywithdevice (class in ivy.data_classes.array.device)": [[50, "ivy.data_classes.array.device._ArrayWithDevice"]], "_abc_impl (ivy.data_classes.array.device._arraywithdevice attribute)": [[50, "ivy.data_classes.array.device._ArrayWithDevice._abc_impl"]], "dev() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.dev"]], "ivy.data_classes.array.device": [[50, "module-ivy.data_classes.array.device"]], "to_device() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.to_device"]], "_arraywithelementwise (class in ivy.data_classes.array.elementwise)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise"]], "_abc_impl (ivy.data_classes.array.elementwise._arraywithelementwise attribute)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise._abc_impl"]], "abs() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.abs"]], "acos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acos"]], "acosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acosh"]], "add() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.add"]], "angle() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.angle"]], "asin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asin"]], "asinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asinh"]], "atan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan"]], "atan2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan2"]], "atanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.ceil"]], "cos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cos"]], "cosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.deg2rad"]], "divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.divide"]], "equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.equal"]], "erf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.erf"]], "exp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp"]], "exp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp2"]], "expm1() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.expm1"]], "floor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor"]], "floor_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.fmin"]], "gcd() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.gcd"]], "greater() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater"]], "greater_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater_equal"]], "imag() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.imag"]], "isfinite() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isfinite"]], "isinf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isinf"]], "isnan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isnan"]], "isreal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isreal"]], "ivy.data_classes.array.elementwise": [[51, "module-ivy.data_classes.array.elementwise"]], "lcm() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.lcm"]], "less() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less"]], "less_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less_equal"]], "log() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log"]], "log10() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log10"]], "log1p() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log1p"]], "log2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log2"]], "logaddexp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.maximum"]], "minimum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.minimum"]], "multiply() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.negative"]], "not_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.not_equal"]], "positive() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.positive"]], "pow() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.pow"]], "rad2deg() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.rad2deg"]], "real() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.real"]], "reciprocal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.remainder"]], "round() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.round"]], "sign() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sign"]], "sin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sin"]], "sinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sinh"]], "sqrt() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sqrt"]], "square() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.square"]], "subtract() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.subtract"]], "tan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tan"]], "tanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tanh"]], "trapz() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trapz"]], "trunc() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc_divide"]], "_arraywithactivationsexperimental (class in ivy.data_classes.array.experimental.activations)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental"]], "_arraywithconversionsexperimental (class in ivy.data_classes.array.experimental.conversions)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental"]], "_arraywithcreationexperimental (class in ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental"]], "_arraywithdata_typeexperimental (class in ivy.data_classes.array.experimental.data_type)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental"]], "_arraywithdeviceexperimental (class in ivy.data_classes.array.experimental.device)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental"]], "_arraywithelementwiseexperimental (class in ivy.data_classes.array.experimental.elementwise)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental"]], "_arraywithgeneralexperimental (class in ivy.data_classes.array.experimental.general)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental"]], "_arraywithgradientsexperimental (class in ivy.data_classes.array.experimental.gradients)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental"]], "_arraywithimageexperimental (class in ivy.data_classes.array.experimental.image)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental"]], "_arraywithlayersexperimental (class in ivy.data_classes.array.experimental.layers)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental"]], "_arraywithlinearalgebraexperimental (class in ivy.data_classes.array.experimental.linear_algebra)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental"]], "_arraywithlossesexperimental (class in ivy.data_classes.array.experimental.losses)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental"]], "_arraywithmanipulationexperimental (class in ivy.data_classes.array.experimental.manipulation)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental"]], "_arraywithnormsexperimental (class in ivy.data_classes.array.experimental.norms)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental"]], "_arraywithrandomexperimental (class in ivy.data_classes.array.experimental.random)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental"]], "_arraywithsearchingexperimental (class in ivy.data_classes.array.experimental.searching)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental"]], "_arraywithsetexperimental (class in ivy.data_classes.array.experimental.set)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental"]], "_arraywithsortingexperimental (class in ivy.data_classes.array.experimental.sorting)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental"]], "_arraywithstatisticalexperimental (class in ivy.data_classes.array.experimental.statistical)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental"]], "_arraywithutilityexperimental (class in ivy.data_classes.array.experimental.utility)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.conversions._arraywithconversionsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.data_type._arraywithdata_typeexperimental attribute)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.device._arraywithdeviceexperimental attribute)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental attribute)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental attribute)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.gradients._arraywithgradientsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.image._arraywithimageexperimental attribute)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental attribute)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental attribute)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental attribute)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.random._arraywithrandomexperimental attribute)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.set._arraywithsetexperimental attribute)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental attribute)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental attribute)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental._abc_impl"]], "adaptive_avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.blackman_window"]], "celu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.celu"]], "column_stack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.column_stack"]], "concat_from_sequence() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dct"]], "dft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.elu"]], "embedding() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft"]], "fft2() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft2"]], "fill_diagonal() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.gamma"]], "general_inner_product() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.general_inner_product"]], "gradient() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.group_norm"]], "hardshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardtanh"]], "heaviside() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.higher_order_moment"]], "hinge_embedding_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.hinge_embedding_loss"]], "histogram() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.interpolate"]], "isclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.isclose"]], "ivy.data_classes.array.experimental": [[52, "module-ivy.data_classes.array.experimental"]], "ivy.data_classes.array.experimental.activations": [[52, "module-ivy.data_classes.array.experimental.activations"]], "ivy.data_classes.array.experimental.conversions": [[52, "module-ivy.data_classes.array.experimental.conversions"]], "ivy.data_classes.array.experimental.creation": [[52, "module-ivy.data_classes.array.experimental.creation"]], "ivy.data_classes.array.experimental.data_type": [[52, "module-ivy.data_classes.array.experimental.data_type"]], "ivy.data_classes.array.experimental.device": [[52, "module-ivy.data_classes.array.experimental.device"]], "ivy.data_classes.array.experimental.elementwise": [[52, "module-ivy.data_classes.array.experimental.elementwise"]], "ivy.data_classes.array.experimental.general": [[52, "module-ivy.data_classes.array.experimental.general"]], "ivy.data_classes.array.experimental.gradients": [[52, "module-ivy.data_classes.array.experimental.gradients"]], "ivy.data_classes.array.experimental.image": [[52, "module-ivy.data_classes.array.experimental.image"]], "ivy.data_classes.array.experimental.layers": [[52, "module-ivy.data_classes.array.experimental.layers"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, "module-ivy.data_classes.array.experimental.linear_algebra"]], "ivy.data_classes.array.experimental.losses": [[52, "module-ivy.data_classes.array.experimental.losses"]], "ivy.data_classes.array.experimental.manipulation": [[52, "module-ivy.data_classes.array.experimental.manipulation"]], "ivy.data_classes.array.experimental.norms": [[52, "module-ivy.data_classes.array.experimental.norms"]], "ivy.data_classes.array.experimental.random": [[52, "module-ivy.data_classes.array.experimental.random"]], "ivy.data_classes.array.experimental.searching": [[52, "module-ivy.data_classes.array.experimental.searching"]], "ivy.data_classes.array.experimental.set": [[52, "module-ivy.data_classes.array.experimental.set"]], "ivy.data_classes.array.experimental.sorting": [[52, "module-ivy.data_classes.array.experimental.sorting"]], "ivy.data_classes.array.experimental.statistical": [[52, "module-ivy.data_classes.array.experimental.statistical"]], "ivy.data_classes.array.experimental.utility": [[52, "module-ivy.data_classes.array.experimental.utility"]], "kl_div() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental method)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logit"]], "logsigmoid() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental static method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental method)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.poisson_nll_loss"]], "polyval() (in module ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation.polyval"]], "prelu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.prelu"]], "put_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental method)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental.reduce"]], "reduce_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.reduce_window"]], "relu6() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.relu6"]], "rfft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.scaled_tanh"]], "selu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.selu"]], "signbit() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.silu"]], "sinc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sparsify_tensor"]], "stft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.top_k"]], "trilu() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental method)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_sum"]], "vsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.zeta"]], "_arraywithgeneral (class in ivy.data_classes.array.general)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral"]], "_abc_impl (ivy.data_classes.array.general._arraywithgeneral attribute)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral._abc_impl"]], "all_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_vector_norm"]], "default() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.default"]], "einops_rearrange() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather"]], "gather_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_array"]], "is_ivy_container() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_container"]], "is_native_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_native_array"]], "isin() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.isin"]], "ivy.data_classes.array.general": [[53, "module-ivy.data_classes.array.general"]], "scatter_flat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_pow"]], "supports_inplace_updates() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.supports_inplace_updates"]], "to_file() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_file"]], "to_list() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.value_is_nan"]], "_arraywithgradients (class in ivy.data_classes.array.gradients)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients"]], "_abc_impl (ivy.data_classes.array.gradients._arraywithgradients attribute)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients._abc_impl"]], "adam_step() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_step"]], "adam_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.gradient_descent_update"]], "ivy.data_classes.array.gradients": [[54, "module-ivy.data_classes.array.gradients"]], "lamb_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.stop_gradient"]], "_arraywithimage (class in ivy.data_classes.array.image)": [[55, "ivy.data_classes.array.image._ArrayWithImage"]], "_abc_impl (ivy.data_classes.array.image._arraywithimage attribute)": [[55, "ivy.data_classes.array.image._ArrayWithImage._abc_impl"]], "ivy.data_classes.array.image": [[55, "module-ivy.data_classes.array.image"]], "_arraywithlayers (class in ivy.data_classes.array.layers)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers"]], "_abc_impl (ivy.data_classes.array.layers._arraywithlayers attribute)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers._abc_impl"]], "conv1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout"]], "dropout1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout3d"]], "ivy.data_classes.array.layers": [[56, "module-ivy.data_classes.array.layers"]], "linear() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.linear"]], "lstm_update() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.multi_head_attention"]], "scaled_dot_product_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.scaled_dot_product_attention"]], "_arraywithlinearalgebra (class in ivy.data_classes.array.linear_algebra)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra attribute)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra._abc_impl"]], "cholesky() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cross"]], "det() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.det"]], "diag() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diagonal"]], "eig() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eig"]], "eigh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigvalsh"]], "inner() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inv"]], "ivy.data_classes.array.linear_algebra": [[57, "module-ivy.data_classes.array.linear_algebra"]], "matmul() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.solve"]], "svd() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_arraywithlosses (class in ivy.data_classes.array.losses)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses"]], "_abc_impl (ivy.data_classes.array.losses._arraywithlosses attribute)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses._abc_impl"]], "binary_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.cross_entropy"]], "ivy.data_classes.array.losses": [[58, "module-ivy.data_classes.array.losses"]], "sparse_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.sparse_cross_entropy"]], "_arraywithmanipulation (class in ivy.data_classes.array.manipulation)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation"]], "_abc_impl (ivy.data_classes.array.manipulation._arraywithmanipulation attribute)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation._abc_impl"]], "clip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.clip"]], "concat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.concat"]], "constant_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.expand_dims"]], "flip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.flip"]], "ivy.data_classes.array.manipulation": [[59, "module-ivy.data_classes.array.manipulation"]], "permute_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.repeat"]], "reshape() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.reshape"]], "roll() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.roll"]], "split() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.split"]], "squeeze() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.squeeze"]], "stack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.stack"]], "swapaxes() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.swapaxes"]], "tile() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.tile"]], "unstack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.unstack"]], "view() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.view"]], "zero_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.zero_pad"]], "_arraywithnorms (class in ivy.data_classes.array.norms)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms"]], "_abc_impl (ivy.data_classes.array.norms._arraywithnorms attribute)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms._abc_impl"]], "ivy.data_classes.array.norms": [[60, "module-ivy.data_classes.array.norms"]], "layer_norm() (ivy.data_classes.array.norms._arraywithnorms method)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms.layer_norm"]], "_arraywithrandom (class in ivy.data_classes.array.random)": [[61, "ivy.data_classes.array.random._ArrayWithRandom"]], "_abc_impl (ivy.data_classes.array.random._arraywithrandom attribute)": [[61, "ivy.data_classes.array.random._ArrayWithRandom._abc_impl"]], "ivy.data_classes.array.random": [[61, "module-ivy.data_classes.array.random"]], "multinomial() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.multinomial"]], "randint() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.randint"]], "random_normal() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.shuffle"]], "_arraywithsearching (class in ivy.data_classes.array.searching)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching"]], "_abc_impl (ivy.data_classes.array.searching._arraywithsearching attribute)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching._abc_impl"]], "argmax() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmax"]], "argmin() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmin"]], "argwhere() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argwhere"]], "ivy.data_classes.array.searching": [[62, "module-ivy.data_classes.array.searching"]], "nonzero() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.nonzero"]], "where() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.where"]], "_arraywithset (class in ivy.data_classes.array.set)": [[63, "ivy.data_classes.array.set._ArrayWithSet"]], "_abc_impl (ivy.data_classes.array.set._arraywithset attribute)": [[63, "ivy.data_classes.array.set._ArrayWithSet._abc_impl"]], "ivy.data_classes.array.set": [[63, "module-ivy.data_classes.array.set"]], "unique_all() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_all"]], "unique_counts() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_values"]], "_arraywithsorting (class in ivy.data_classes.array.sorting)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting"]], "_abc_impl (ivy.data_classes.array.sorting._arraywithsorting attribute)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting._abc_impl"]], "argsort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.argsort"]], "ivy.data_classes.array.sorting": [[64, "module-ivy.data_classes.array.sorting"]], "msort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.msort"]], "searchsorted() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.searchsorted"]], "sort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.sort"]], "_arraywithstatistical (class in ivy.data_classes.array.statistical)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical"]], "_abc_impl (ivy.data_classes.array.statistical._arraywithstatistical attribute)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical._abc_impl"]], "cumprod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumsum"]], "einsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.einsum"]], "ivy.data_classes.array.statistical": [[65, "module-ivy.data_classes.array.statistical"]], "max() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.max"]], "mean() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.mean"]], "min() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.min"]], "prod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.prod"]], "std() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.std"]], "sum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.sum"]], "var() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.var"]], "_arraywithutility (class in ivy.data_classes.array.utility)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility"]], "_abc_impl (ivy.data_classes.array.utility._arraywithutility attribute)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility._abc_impl"]], "all() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.all"]], "any() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.any"]], "ivy.data_classes.array.utility": [[66, "module-ivy.data_classes.array.utility"]], "_wrap_function() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping._wrap_function"]], "add_ivy_array_instance_methods() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping.add_ivy_array_instance_methods"]], "ivy.data_classes.array.wrapping": [[67, "module-ivy.data_classes.array.wrapping"]], "_containerwithactivations (class in ivy.data_classes.container.activations)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations"]], "_abc_impl (ivy.data_classes.container.activations._containerwithactivations attribute)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._abc_impl"]], "_static_gelu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_gelu"]], "_static_hardswish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_hardswish"]], "_static_leaky_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_leaky_relu"]], "_static_log_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_log_softmax"]], "_static_mish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_mish"]], "_static_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_relu"]], "_static_sigmoid() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_sigmoid"]], "_static_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softmax"]], "_static_softplus() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softplus"]], "gelu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.gelu"]], "hardswish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.hardswish"]], "ivy.data_classes.container.activations": [[68, "module-ivy.data_classes.container.activations"]], "leaky_relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.log_softmax"]], "mish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.mish"]], "relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.relu"]], "sigmoid() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.sigmoid"]], "softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softmax"]], "softplus() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softplus"]], "containerbase (class in ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base.ContainerBase"]], "__getitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__getitem__"]], "__init__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__init__"]], "__setitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__setitem__"]], "_abc_impl (ivy.data_classes.container.base.containerbase attribute)": [[69, "ivy.data_classes.container.base.ContainerBase._abc_impl"]], "_cont_at_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_dict"]], "_cont_at_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_seq"]], "_cont_call_static_method_with_flexible_args() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_call_static_method_with_flexible_args"]], "_cont_concat_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_concat_unify"]], "_cont_get_dev() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dev"]], "_cont_get_dtype() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dtype"]], "_cont_get_shape() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shape"]], "_cont_get_shapes() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shapes"]], "_cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_ivy"]], "_cont_mean_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_mean_unify"]], "_cont_prune_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_dict"]], "_cont_prune_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_seq"]], "_cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_slice_keys"]], "_cont_sum_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_sum_unify"]], "_get_queue_item() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._get_queue_item"]], "_is_jsonable() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._is_jsonable"]], "_repr() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._repr"]], "cont_all_false() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_false"]], "cont_all_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_key_chains"]], "cont_all_true() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_true"]], "cont_as_bools() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_as_bools"]], "cont_assert_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_container"]], "cont_assert_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_structure"]], "cont_assert_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical"]], "cont_assert_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical_structure"]], "cont_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chain"]], "cont_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chains"]], "cont_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_keys"]], "cont_combine() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_combine"]], "cont_common_key_chains() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_common_key_chains"]], "cont_config (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_config"]], "cont_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_container"]], "cont_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_structure"]], "cont_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_copy"]], "cont_create_if_absent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_create_if_absent"]], "cont_cutoff_at_depth() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_depth"]], "cont_cutoff_at_height() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_height"]], "cont_deep_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_deep_copy"]], "cont_dev (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev"]], "cont_dev_str (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev_str"]], "cont_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_diff"]], "cont_dtype (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dtype"]], "cont_duplicate_array_keychains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_duplicate_array_keychains"]], "cont_find_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_container"]], "cont_find_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_structure"]], "cont_flatten_key_chain() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chain"]], "cont_flatten_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chains"]], "cont_format_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_format_key_chains"]], "cont_from_disk_as_hdf5() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_hdf5"]], "cont_from_disk_as_json() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_json"]], "cont_from_disk_as_pickled() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_pickled"]], "cont_from_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_flat_list"]], "cont_handle_inplace() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_handle_inplace"]], "cont_has_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key"]], "cont_has_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key_chain"]], "cont_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical"]], "cont_identical_array_shapes() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_array_shapes"]], "cont_identical_configs() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_configs"]], "cont_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_structure"]], "cont_if_exists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_if_exists"]], "cont_inplace_update() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_inplace_update"]], "cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_ivy"]], "cont_key_chains_containing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_key_chains_containing"]], "cont_list_join() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_join"]], "cont_list_stack() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_stack"]], "cont_load() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_load"]], "cont_map() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map"]], "cont_map_sub_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map_sub_conts"]], "cont_max_depth (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_max_depth"]], "cont_multi_map() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map"]], "cont_multi_map_in_function() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map_in_function"]], "cont_num_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_num_arrays"]], "cont_overwrite_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chain"]], "cont_overwrite_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chains"]], "cont_prune_empty() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_empty"]], "cont_prune_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chain"]], "cont_prune_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chains"]], "cont_prune_key_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_from_key_chains"]], "cont_prune_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys"]], "cont_prune_keys_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys_from_key_chains"]], "cont_reduce() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reduce"]], "cont_remove_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_key_length_limit"]], "cont_remove_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_print_limit"]], "cont_reshape_like() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reshape_like"]], "cont_restructure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure"]], "cont_restructure_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure_key_chains"]], "cont_save() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_save"]], "cont_set_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chain"]], "cont_set_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chains"]], "cont_set_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_keys"]], "cont_shape (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shape"]], "cont_shapes (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shapes"]], "cont_show() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show"]], "cont_show_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show_sub_container"]], "cont_size_ordered_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_size_ordered_arrays"]], "cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_keys"]], "cont_slice_via_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_via_key"]], "cont_sort_by_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_sort_by_key"]], "cont_structural_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_structural_diff"]], "cont_to_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_dict"]], "cont_to_disk_as_hdf5() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_hdf5"]], "cont_to_disk_as_json() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_json"]], "cont_to_disk_as_pickled() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_pickled"]], "cont_to_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_flat_list"]], "cont_to_iterator() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator"]], "cont_to_iterator_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_keys"]], "cont_to_iterator_values() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_values"]], "cont_to_jsonable() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_jsonable"]], "cont_to_nested_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_nested_list"]], "cont_to_raw() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_raw"]], "cont_trim_key() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_trim_key"]], "cont_try_kc() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_try_kc"]], "cont_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unify"]], "cont_unstack_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unstack_conts"]], "cont_update_config() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_update_config"]], "cont_with_default_key_color() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_default_key_color"]], "cont_with_entries_as_lists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_entries_as_lists"]], "cont_with_ivy_backend() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_ivy_backend"]], "cont_with_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_key_length_limit"]], "cont_with_print_indent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_indent"]], "cont_with_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_limit"]], "cont_with_print_line_spacing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_line_spacing"]], "dynamic_backend (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.dynamic_backend"]], "h5_file_size() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.h5_file_size"]], "ivy.data_classes.container.base": [[69, "module-ivy.data_classes.container.base"]], "shuffle_h5_file() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.shuffle_h5_file"]], "split_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.split_conts"]], "_containerwithconversions (class in ivy.data_classes.container.conversions)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions"]], "_abc_impl (ivy.data_classes.container.conversions._containerwithconversions attribute)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._abc_impl"]], "_static_to_ivy() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_ivy"]], "_static_to_native() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_native"]], "ivy.data_classes.container.conversions": [[70, "module-ivy.data_classes.container.conversions"]], "to_ivy() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_ivy"]], "to_native() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_native"]], "_containerwithcreation (class in ivy.data_classes.container.creation)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation"]], "_abc_impl (ivy.data_classes.container.creation._containerwithcreation attribute)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._abc_impl"]], "_static_arange() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_arange"]], "_static_asarray() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_asarray"]], "_static_copy_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_copy_array"]], "_static_empty() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty"]], "_static_empty_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty_like"]], "_static_eye() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_eye"]], "_static_from_dlpack() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_from_dlpack"]], "_static_full() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full"]], "_static_full_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full_like"]], "_static_linspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_linspace"]], "_static_logspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_logspace"]], "_static_meshgrid() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_meshgrid"]], "_static_native_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_native_array"]], "_static_one_hot() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_one_hot"]], "_static_ones() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones"]], "_static_ones_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones_like"]], "_static_tril() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_tril"]], "_static_triu() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_triu"]], "_static_zeros() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros"]], "_static_zeros_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros_like"]], "asarray() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.asarray"]], "copy_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.copy_array"]], "empty_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.from_dlpack"]], "frombuffer() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.frombuffer"]], "full_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.full_like"]], "ivy.data_classes.container.creation": [[71, "module-ivy.data_classes.container.creation"]], "linspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.linspace"]], "logspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.logspace"]], "meshgrid() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.meshgrid"]], "native_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.native_array"]], "one_hot() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.one_hot"]], "ones_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.ones_like"]], "static_frombuffer() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_frombuffer"]], "static_triu_indices() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_triu_indices"]], "tril() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.tril"]], "triu() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu"]], "triu_indices() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu_indices"]], "zeros_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.zeros_like"]], "_containerwithdatatypes (class in ivy.data_classes.container.data_type)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes"]], "_abc_impl (ivy.data_classes.container.data_type._containerwithdatatypes attribute)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._abc_impl"]], "_static_astype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_astype"]], "_static_broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_arrays"]], "_static_broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_to"]], "_static_can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_can_cast"]], "_static_default_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_complex_dtype"]], "_static_default_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_float_dtype"]], "_static_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_dtype"]], "_static_finfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_finfo"]], "_static_function_supported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_supported_dtypes"]], "_static_function_unsupported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_unsupported_dtypes"]], "_static_iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_iinfo"]], "_static_is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_bool_dtype"]], "_static_is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_complex_dtype"]], "_static_is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_float_dtype"]], "_static_is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_int_dtype"]], "_static_is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_uint_dtype"]], "_static_result_type() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_result_type"]], "astype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.dtype"]], "finfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_bool_dtype"]], "is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_complex_dtype"]], "is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_uint_dtype"]], "ivy.data_classes.container.data_type": [[72, "module-ivy.data_classes.container.data_type"]], "result_type() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.result_type"]], "_containerwithdevice (class in ivy.data_classes.container.device)": [[73, "ivy.data_classes.container.device._ContainerWithDevice"]], "_abc_impl (ivy.data_classes.container.device._containerwithdevice attribute)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._abc_impl"]], "_static_dev() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_dev"]], "_static_to_device() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_to_device"]], "dev() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.dev"]], "ivy.data_classes.container.device": [[73, "module-ivy.data_classes.container.device"]], "to_device() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.to_device"]], "_containerwithelementwise (class in ivy.data_classes.container.elementwise)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise"]], "_abc_impl (ivy.data_classes.container.elementwise._containerwithelementwise attribute)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._abc_impl"]], "_static_abs() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_abs"]], "_static_acos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acos"]], "_static_acosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acosh"]], "_static_add() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_add"]], "_static_asin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asin"]], "_static_asinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asinh"]], "_static_atan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan"]], "_static_atan2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan2"]], "_static_atanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atanh"]], "_static_bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_and"]], "_static_bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_invert"]], "_static_bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_left_shift"]], "_static_bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_or"]], "_static_bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_right_shift"]], "_static_bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_xor"]], "_static_ceil() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_ceil"]], "_static_cos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cos"]], "_static_cosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cosh"]], "_static_deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_deg2rad"]], "_static_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_divide"]], "_static_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_equal"]], "_static_erf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_erf"]], "_static_exp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_exp"]], "_static_expm1() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_expm1"]], "_static_floor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor"]], "_static_floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor_divide"]], "_static_greater() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater"]], "_static_greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater_equal"]], "_static_isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isfinite"]], "_static_isinf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isinf"]], "_static_isnan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isnan"]], "_static_isreal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isreal"]], "_static_lcm() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_lcm"]], "_static_less() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less"]], "_static_less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less_equal"]], "_static_log() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log"]], "_static_log10() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log10"]], "_static_log1p() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log1p"]], "_static_log2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log2"]], "_static_logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logaddexp"]], "_static_logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_and"]], "_static_logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_not"]], "_static_logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_or"]], "_static_logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_xor"]], "_static_maximum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_maximum"]], "_static_minimum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_minimum"]], "_static_multiply() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_multiply"]], "_static_negative() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_negative"]], "_static_not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_not_equal"]], "_static_positive() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_positive"]], "_static_pow() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_pow"]], "_static_rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_rad2deg"]], "_static_reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_reciprocal"]], "_static_remainder() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_remainder"]], "_static_round() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_round"]], "_static_sign() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sign"]], "_static_sin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sin"]], "_static_sinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sinh"]], "_static_sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sqrt"]], "_static_square() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_square"]], "_static_subtract() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_subtract"]], "_static_tan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tan"]], "_static_tanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tanh"]], "_static_trapz() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trapz"]], "_static_trunc() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc"]], "_static_trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc_divide"]], "abs() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.abs"]], "acos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acos"]], "acosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acosh"]], "add() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.add"]], "angle() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.angle"]], "asin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asin"]], "asinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asinh"]], "atan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan"]], "atan2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan2"]], "atanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.ceil"]], "cos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cos"]], "cosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.deg2rad"]], "divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.divide"]], "equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.equal"]], "erf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.erf"]], "exp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp"]], "exp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp2"]], "expm1() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.expm1"]], "floor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor"]], "floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.fmin"]], "gcd() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.gcd"]], "greater() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater"]], "greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater_equal"]], "imag() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.imag"]], "isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isfinite"]], "isinf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isinf"]], "isnan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isnan"]], "isreal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isreal"]], "ivy.data_classes.container.elementwise": [[74, "module-ivy.data_classes.container.elementwise"]], "lcm() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.lcm"]], "less() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less"]], "less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less_equal"]], "log() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log"]], "log10() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log10"]], "log1p() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log1p"]], "log2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log2"]], "logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.maximum"]], "minimum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.minimum"]], "multiply() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.negative"]], "not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.not_equal"]], "positive() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.positive"]], "pow() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.pow"]], "rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.rad2deg"]], "real() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.real"]], "reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.remainder"]], "round() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.round"]], "sign() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sign"]], "sin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sin"]], "sinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sinh"]], "sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sqrt"]], "square() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.square"]], "static_angle() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_angle"]], "static_exp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_exp2"]], "static_fmin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_fmin"]], "static_gcd() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_gcd"]], "static_imag() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_imag"]], "static_logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_logaddexp2"]], "static_nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_nan_to_num"]], "static_real() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_real"]], "subtract() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.subtract"]], "tan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tan"]], "tanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tanh"]], "trapz() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trapz"]], "trunc() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc_divide"]], "_containerwithactivationexperimental (class in ivy.data_classes.container.experimental.activations)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental"]], "_containerwithconversionexperimental (class in ivy.data_classes.container.experimental.conversions)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental"]], "_containerwithcreationexperimental (class in ivy.data_classes.container.experimental.creation)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental"]], "_containerwithdata_typeexperimental (class in ivy.data_classes.container.experimental.data_type)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental"]], "_containerwithdeviceexperimental (class in ivy.data_classes.container.experimental.device)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental"]], "_containerwithelementwiseexperimental (class in ivy.data_classes.container.experimental.elementwise)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental"]], "_containerwithgeneralexperimental (class in ivy.data_classes.container.experimental.general)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental"]], "_containerwithgradientsexperimental (class in ivy.data_classes.container.experimental.gradients)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental"]], "_containerwithimageexperimental (class in ivy.data_classes.container.experimental.image)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental"]], "_containerwithlayersexperimental (class in ivy.data_classes.container.experimental.layers)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental"]], "_containerwithlinearalgebraexperimental (class in ivy.data_classes.container.experimental.linear_algebra)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental"]], "_containerwithlossesexperimental (class in ivy.data_classes.container.experimental.losses)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental"]], "_containerwithmanipulationexperimental (class in ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental"]], "_containerwithnormsexperimental (class in ivy.data_classes.container.experimental.norms)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental"]], "_containerwithrandomexperimental (class in ivy.data_classes.container.experimental.random)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental"]], "_containerwithsearchingexperimental (class in ivy.data_classes.container.experimental.searching)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental"]], "_containerwithsetexperimental (class in ivy.data_classes.container.experimental.set)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental"]], "_containerwithsortingexperimental (class in ivy.data_classes.container.experimental.sorting)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental"]], "_containerwithstatisticalexperimental (class in ivy.data_classes.container.experimental.statistical)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental"]], "_containerwithutilityexperimental (class in ivy.data_classes.container.experimental.utility)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.conversions._containerwithconversionexperimental attribute)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.data_type._containerwithdata_typeexperimental attribute)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.device._containerwithdeviceexperimental attribute)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental attribute)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental attribute)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.gradients._containerwithgradientsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.image._containerwithimageexperimental attribute)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental attribute)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental attribute)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental attribute)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.random._containerwithrandomexperimental attribute)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.set._containerwithsetexperimental attribute)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental attribute)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental attribute)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental._abc_impl"]], "_static_celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_celu"]], "_static_cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummax"]], "_static_cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummin"]], "_static_elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_elu"]], "_static_fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_fft"]], "_static_fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_fill_diagonal"]], "_static_hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardshrink"]], "_static_hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardtanh"]], "_static_hinge_embedding_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_hinge_embedding_loss"]], "_static_huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_huber_loss"]], "_static_kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_kl_div"]], "_static_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_l1_loss"]], "_static_log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_log_poisson_loss"]], "_static_nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_nanmin"]], "_static_poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_poisson_nll_loss"]], "_static_put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_put_along_axis"]], "_static_reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental static method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._static_reduce"]], "_static_scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_scaled_tanh"]], "_static_silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_silu"]], "_static_sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_sliding_window"]], "_static_smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_smooth_l1_loss"]], "_static_soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_soft_margin_loss"]], "_static_softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_softshrink"]], "_static_take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_take"]], "_static_tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_tanhshrink"]], "_static_threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_threshold"]], "_static_trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._static_trilu"]], "_static_trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_trim_zeros"]], "_static_unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unique_consecutive"]], "adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.blackman_window"]], "broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.broadcast_shapes"]], "celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.celu"]], "column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.column_stack"]], "concat_from_sequence() (in module ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation.concat_from_sequence"]], "concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dct"]], "dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.elu"]], "embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.fft"]], "fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.gamma"]], "gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.group_norm"]], "hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hamming_window"]], "hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hann_window"]], "hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardtanh"]], "heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.higher_order_moment"]], "hinge_embedding_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.hinge_embedding_loss"]], "histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.interpolate"]], "invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.invert_permutation"]], "isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.isclose"]], "ivy.data_classes.container.experimental": [[75, "module-ivy.data_classes.container.experimental"]], "ivy.data_classes.container.experimental.activations": [[75, "module-ivy.data_classes.container.experimental.activations"]], "ivy.data_classes.container.experimental.conversions": [[75, "module-ivy.data_classes.container.experimental.conversions"]], "ivy.data_classes.container.experimental.creation": [[75, "module-ivy.data_classes.container.experimental.creation"]], "ivy.data_classes.container.experimental.data_type": [[75, "module-ivy.data_classes.container.experimental.data_type"]], "ivy.data_classes.container.experimental.device": [[75, "module-ivy.data_classes.container.experimental.device"]], "ivy.data_classes.container.experimental.elementwise": [[75, "module-ivy.data_classes.container.experimental.elementwise"]], "ivy.data_classes.container.experimental.general": [[75, "module-ivy.data_classes.container.experimental.general"]], "ivy.data_classes.container.experimental.gradients": [[75, "module-ivy.data_classes.container.experimental.gradients"]], "ivy.data_classes.container.experimental.image": [[75, "module-ivy.data_classes.container.experimental.image"]], "ivy.data_classes.container.experimental.layers": [[75, "module-ivy.data_classes.container.experimental.layers"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, "module-ivy.data_classes.container.experimental.linear_algebra"]], "ivy.data_classes.container.experimental.losses": [[75, "module-ivy.data_classes.container.experimental.losses"]], "ivy.data_classes.container.experimental.manipulation": [[75, "module-ivy.data_classes.container.experimental.manipulation"]], "ivy.data_classes.container.experimental.norms": [[75, "module-ivy.data_classes.container.experimental.norms"]], "ivy.data_classes.container.experimental.random": [[75, "module-ivy.data_classes.container.experimental.random"]], "ivy.data_classes.container.experimental.searching": [[75, "module-ivy.data_classes.container.experimental.searching"]], "ivy.data_classes.container.experimental.set": [[75, "module-ivy.data_classes.container.experimental.set"]], "ivy.data_classes.container.experimental.sorting": [[75, "module-ivy.data_classes.container.experimental.sorting"]], "ivy.data_classes.container.experimental.statistical": [[75, "module-ivy.data_classes.container.experimental.statistical"]], "ivy.data_classes.container.experimental.utility": [[75, "module-ivy.data_classes.container.experimental.utility"]], "kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_bessel_derived_window"]], "kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_window"]], "kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.lexsort"]], "log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logit"]], "logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.poisson_nll_loss"]], "polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.polyval"]], "prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.prelu"]], "put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental.reduce"]], "relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.relu6"]], "rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.scaled_tanh"]], "selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.selu"]], "signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.silu"]], "sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sparsify_tensor"]], "static_adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool1d"]], "static_adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool2d"]], "static_adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool2d"]], "static_adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_adjoint"]], "static_allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_allclose"]], "static_amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amax"]], "static_amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amin"]], "static_as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_as_strided"]], "static_atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_1d"]], "static_atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_2d"]], "static_atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_3d"]], "static_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool1d"]], "static_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool2d"]], "static_avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool3d"]], "static_batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_batch_norm"]], "static_batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_batched_outer"]], "static_bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_bernoulli"]], "static_beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_beta"]], "static_binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_binarizer"]], "static_bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_bincount"]], "static_blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_blackman_window"]], "static_broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_broadcast_shapes"]], "static_column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_column_stack"]], "static_concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_concat_from_sequence"]], "static_cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_cond"]], "static_conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_conj"]], "static_copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_copysign"]], "static_corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_corrcoef"]], "static_count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_count_nonzero"]], "static_cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_cov"]], "static_dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dct"]], "static_dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dft"]], "static_diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_diagflat"]], "static_diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_diff"]], "static_digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_digamma"]], "static_dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_dirichlet"]], "static_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_dot"]], "static_dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dsplit"]], "static_dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dstack"]], "static_eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eig"]], "static_eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigh_tridiagonal"]], "static_eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigvals"]], "static_embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_embedding"]], "static_erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfc"]], "static_expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_expand"]], "static_eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_eye_like"]], "static_fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fix"]], "static_flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flatten"]], "static_fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fliplr"]], "static_flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flipud"]], "static_float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_float_power"]], "static_fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmax"]], "static_fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmod"]], "static_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fold"]], "static_frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_frexp"]], "static_gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_gamma"]], "static_gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_gradient"]], "static_group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_group_norm"]], "static_hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hamming_window"]], "static_hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hann_window"]], "static_heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_heaviside"]], "static_higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_higher_order_moment"]], "static_histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_histogram"]], "static_hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hsplit"]], "static_hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hstack"]], "static_hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_hypot"]], "static_i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_i0"]], "static_idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_idct"]], "static_ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifft"]], "static_ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifftn"]], "static_igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_igamma"]], "static_initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_initialize_tucker"]], "static_instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_instance_norm"]], "static_interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_interpolate"]], "static_invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_invert_permutation"]], "static_isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_isclose"]], "static_kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_bessel_derived_window"]], "static_kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_window"]], "static_kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_kron"]], "static_l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l1_normalize"]], "static_l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l2_normalize"]], "static_ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_ldexp"]], "static_lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_lerp"]], "static_lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_lexsort"]], "static_logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logit"]], "static_logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logsigmoid"]], "static_lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_lp_normalize"]], "static_make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_make_svd_non_negative"]], "static_matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_matricize"]], "static_matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_matrix_exp"]], "static_max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool1d"]], "static_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool2d"]], "static_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool3d"]], "static_max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_unpool1d"]], "static_median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_median"]], "static_mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_mel_weight_matrix"]], "static_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_mode_dot"]], "static_modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_modf"]], "static_moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_moveaxis"]], "static_multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_dot"]], "static_multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_mode_dot"]], "static_nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmean"]], "static_nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmedian"]], "static_nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanprod"]], "static_nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nansum"]], "static_nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nextafter"]], "static_optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental static method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.static_optional_get_element"]], "static_pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_pad"]], "static_partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_fold"]], "static_partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_tensor_to_vec"]], "static_partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_partial_tucker"]], "static_partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_unfold"]], "static_partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_vec_to_tensor"]], "static_poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_poisson"]], "static_polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_polyval"]], "static_prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_prelu"]], "static_quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_quantile"]], "static_relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_relu6"]], "static_rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfft"]], "static_rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfftn"]], "static_rnn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rnn"]], "static_rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_rot90"]], "static_selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_selu"]], "static_signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_signbit"]], "static_sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sinc"]], "static_soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_soft_thresholding"]], "static_sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sparsify_tensor"]], "static_stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_stft"]], "static_svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_svd_flip"]], "static_take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_take_along_axis"]], "static_tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tensor_train"]], "static_thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_thresholded_relu"]], "static_top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_top_k"]], "static_tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_tril_indices"]], "static_truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_truncated_svd"]], "static_tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tt_matrix_to_tensor"]], "static_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tucker"]], "static_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_unfold"]], "static_unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental static method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.static_unravel_index"]], "static_unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_mean"]], "static_unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_min"]], "static_unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_sum"]], "static_vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_vorbis_window"]], "static_vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vsplit"]], "static_vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vstack"]], "static_xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_xlogy"]], "static_zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_zeta"]], "stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.top_k"]], "tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.tril_indices"]], "trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_sum"]], "vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.vorbis_window"]], "vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.zeta"]], "_containerwithgeneral (class in ivy.data_classes.container.general)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral"]], "_abc_impl (ivy.data_classes.container.general._containerwithgeneral attribute)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._abc_impl"]], "_static_all_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_all_equal"]], "_static_array_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_array_equal"]], "_static_assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_assert_supports_inplace"]], "_static_clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_matrix_norm"]], "_static_clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_vector_norm"]], "_static_einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_rearrange"]], "_static_einops_reduce() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_reduce"]], "_static_einops_repeat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_repeat"]], "_static_exists() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_exists"]], "_static_fourier_encode() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_fourier_encode"]], "_static_gather() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather"]], "_static_gather_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather_nd"]], "_static_get_num_dims() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_get_num_dims"]], "_static_has_nans() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_has_nans"]], "_static_inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_decrement"]], "_static_inplace_increment() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_increment"]], "_static_inplace_update() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_update"]], "_static_is_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_array"]], "_static_is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_ivy_array"]], "_static_is_native_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_native_array"]], "_static_scatter_flat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_flat"]], "_static_scatter_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_nd"]], "_static_stable_divide() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_divide"]], "_static_stable_pow() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_pow"]], "_static_supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_supports_inplace_updates"]], "_static_to_list() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_list"]], "_static_to_numpy() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_numpy"]], "_static_to_scalar() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_scalar"]], "_static_value_is_nan() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_value_is_nan"]], "all_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_vector_norm"]], "einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather"]], "gather_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_ivy_array"]], "is_native_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_native_array"]], "isin() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.isin"]], "itemsize() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.itemsize"]], "ivy.data_classes.container.general": [[76, "module-ivy.data_classes.container.general"]], "scatter_flat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_pow"]], "static_isin() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_isin"]], "static_itemsize() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_itemsize"]], "static_strides() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_strides"]], "strides() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.strides"]], "supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.supports_inplace_updates"]], "to_list() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.value_is_nan"]], "_containerwithgradients (class in ivy.data_classes.container.gradients)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients"]], "_abc_impl (ivy.data_classes.container.gradients._containerwithgradients attribute)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._abc_impl"]], "_static_stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients static method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._static_stop_gradient"]], "adam_step() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_step"]], "adam_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.gradient_descent_update"]], "ivy.data_classes.container.gradients": [[77, "module-ivy.data_classes.container.gradients"]], "lamb_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.stop_gradient"]], "_containerwithimage (class in ivy.data_classes.container.image)": [[78, "ivy.data_classes.container.image._ContainerWithImage"]], "_abc_impl (ivy.data_classes.container.image._containerwithimage attribute)": [[78, "ivy.data_classes.container.image._ContainerWithImage._abc_impl"]], "ivy.data_classes.container.image": [[78, "module-ivy.data_classes.container.image"]], "_containerwithlayers (class in ivy.data_classes.container.layers)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers"]], "_abc_impl (ivy.data_classes.container.layers._containerwithlayers attribute)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._abc_impl"]], "_static_conv1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d"]], "_static_conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d_transpose"]], "_static_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d"]], "_static_conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d_transpose"]], "_static_conv3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d"]], "_static_conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d_transpose"]], "_static_depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_depthwise_conv2d"]], "_static_dropout() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout"]], "_static_dropout1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout1d"]], "_static_dropout2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout2d"]], "_static_dropout3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout3d"]], "_static_linear() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_linear"]], "_static_lstm_update() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_lstm_update"]], "_static_multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_multi_head_attention"]], "_static_reduce_window() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_reduce_window"]], "_static_scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_scaled_dot_product_attention"]], "conv1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout"]], "dropout1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout3d"]], "ivy.data_classes.container.layers": [[79, "module-ivy.data_classes.container.layers"]], "linear() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.linear"]], "lstm_update() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.multi_head_attention"]], "reduce_window() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.reduce_window"]], "scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.scaled_dot_product_attention"]], "_containerwithlinearalgebra (class in ivy.data_classes.container.linear_algebra)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra attribute)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._abc_impl"]], "_static_cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cholesky"]], "_static_cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cross"]], "_static_det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_det"]], "_static_diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diag"]], "_static_diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diagonal"]], "_static_eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigh"]], "_static_eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigvalsh"]], "_static_inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inner"]], "_static_inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inv"]], "_static_matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matmul"]], "_static_matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_norm"]], "_static_matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_power"]], "_static_matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_rank"]], "_static_matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_transpose"]], "_static_outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_outer"]], "_static_pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_pinv"]], "_static_qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_qr"]], "_static_slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_slogdet"]], "_static_solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_solve"]], "_static_svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svd"]], "_static_svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svdvals"]], "_static_tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensordot"]], "_static_tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensorsolve"]], "_static_trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_trace"]], "_static_vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vander"]], "_static_vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vecdot"]], "_static_vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_norm"]], "_static_vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_to_skew_symmetric_matrix"]], "cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cross"]], "det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.det"]], "diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diagonal"]], "eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigvalsh"]], "general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.general_inner_product"]], "inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inv"]], "ivy.data_classes.container.linear_algebra": [[80, "module-ivy.data_classes.container.linear_algebra"]], "matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.solve"]], "static_general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.static_general_inner_product"]], "svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_containerwithlosses (class in ivy.data_classes.container.losses)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses"]], "_abc_impl (ivy.data_classes.container.losses._containerwithlosses attribute)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._abc_impl"]], "_static_binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_binary_cross_entropy"]], "_static_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_cross_entropy"]], "_static_sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_sparse_cross_entropy"]], "binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.cross_entropy"]], "ivy.data_classes.container.losses": [[81, "module-ivy.data_classes.container.losses"]], "sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.sparse_cross_entropy"]], "_containerwithmanipulation (class in ivy.data_classes.container.manipulation)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation"]], "_abc_impl (ivy.data_classes.container.manipulation._containerwithmanipulation attribute)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._abc_impl"]], "_static_clip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_clip"]], "_static_concat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_concat"]], "_static_constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_constant_pad"]], "_static_expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_expand_dims"]], "_static_flip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_flip"]], "_static_permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_permute_dims"]], "_static_repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_repeat"]], "_static_reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_reshape"]], "_static_roll() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_roll"]], "_static_split() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_split"]], "_static_squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_squeeze"]], "_static_stack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_stack"]], "_static_swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_swapaxes"]], "_static_tile() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_tile"]], "_static_unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_unstack"]], "_static_zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_zero_pad"]], "clip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.clip"]], "concat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.concat"]], "constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.expand_dims"]], "flip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.flip"]], "ivy.data_classes.container.manipulation": [[82, "module-ivy.data_classes.container.manipulation"]], "permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.repeat"]], "reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.reshape"]], "roll() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.roll"]], "split() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.split"]], "squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.squeeze"]], "stack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.stack"]], "swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.swapaxes"]], "tile() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.tile"]], "unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.unstack"]], "zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.zero_pad"]], "_containerwithnorms (class in ivy.data_classes.container.norms)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms"]], "_abc_impl (ivy.data_classes.container.norms._containerwithnorms attribute)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms._abc_impl"]], "ivy.data_classes.container.norms": [[83, "module-ivy.data_classes.container.norms"]], "layer_norm() (ivy.data_classes.container.norms._containerwithnorms method)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms.layer_norm"]], "_containerwithrandom (class in ivy.data_classes.container.random)": [[84, "ivy.data_classes.container.random._ContainerWithRandom"]], "_abc_impl (ivy.data_classes.container.random._containerwithrandom attribute)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._abc_impl"]], "_static_multinomial() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_multinomial"]], "_static_randint() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_randint"]], "_static_random_normal() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_normal"]], "_static_random_uniform() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_uniform"]], "_static_shuffle() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_shuffle"]], "ivy.data_classes.container.random": [[84, "module-ivy.data_classes.container.random"]], "multinomial() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.multinomial"]], "randint() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.randint"]], "random_normal() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.shuffle"]], "_containerwithsearching (class in ivy.data_classes.container.searching)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching"]], "_abc_impl (ivy.data_classes.container.searching._containerwithsearching attribute)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._abc_impl"]], "_static_argmax() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmax"]], "_static_argmin() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmin"]], "_static_argwhere() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argwhere"]], "_static_nonzero() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_nonzero"]], "_static_where() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_where"]], "argmax() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmax"]], "argmin() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmin"]], "argwhere() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argwhere"]], "ivy.data_classes.container.searching": [[85, "module-ivy.data_classes.container.searching"]], "nonzero() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.nonzero"]], "where() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.where"]], "_containerwithset (class in ivy.data_classes.container.set)": [[86, "ivy.data_classes.container.set._ContainerWithSet"]], "_abc_impl (ivy.data_classes.container.set._containerwithset attribute)": [[86, "ivy.data_classes.container.set._ContainerWithSet._abc_impl"]], "_static_unique_all() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_all"]], "_static_unique_counts() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_counts"]], "_static_unique_inverse() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_inverse"]], "_static_unique_values() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_values"]], "ivy.data_classes.container.set": [[86, "module-ivy.data_classes.container.set"]], "unique_all() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_all"]], "unique_counts() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_values"]], "_containerwithsorting (class in ivy.data_classes.container.sorting)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting"]], "_abc_impl (ivy.data_classes.container.sorting._containerwithsorting attribute)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._abc_impl"]], "_static_argsort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_argsort"]], "_static_searchsorted() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_searchsorted"]], "_static_sort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_sort"]], "argsort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.argsort"]], "ivy.data_classes.container.sorting": [[87, "module-ivy.data_classes.container.sorting"]], "msort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.msort"]], "searchsorted() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.searchsorted"]], "sort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.sort"]], "static_msort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.static_msort"]], "_containerwithstatistical (class in ivy.data_classes.container.statistical)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical"]], "_abc_impl (ivy.data_classes.container.statistical._containerwithstatistical attribute)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._abc_impl"]], "_static_cumprod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumprod"]], "_static_cumsum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumsum"]], "_static_min() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_min"]], "_static_prod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_prod"]], "_static_sum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_sum"]], "_static_var() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_var"]], "cumprod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumsum"]], "einsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.einsum"]], "ivy.data_classes.container.statistical": [[88, "module-ivy.data_classes.container.statistical"]], "max() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.max"]], "mean() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.mean"]], "min() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.min"]], "prod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.prod"]], "std() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.std"]], "sum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.sum"]], "var() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.var"]], "_containerwithutility (class in ivy.data_classes.container.utility)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility"]], "_abc_impl (ivy.data_classes.container.utility._containerwithutility attribute)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._abc_impl"]], "_static_all() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_all"]], "_static_any() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_any"]], "all() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.all"]], "any() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.any"]], "ivy.data_classes.container.utility": [[89, "module-ivy.data_classes.container.utility"]], "_wrap_function() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping._wrap_function"]], "add_ivy_container_instance_methods() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping.add_ivy_container_instance_methods"]], "ivy.data_classes.container.wrapping": [[90, "module-ivy.data_classes.container.wrapping"]], "factorizedtensor (class in ivy.data_classes.factorized_tensor.base)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor"]], "__init__() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.base.factorizedtensor attribute)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.base": [[91, "module-ivy.data_classes.factorized_tensor.base"]], "mode_dot() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.mode_dot"]], "norm() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.norm"]], "to_tensor() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_vec"]], "cptensor (class in ivy.data_classes.factorized_tensor.cp_tensor)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor"]], "__init__() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.cp_tensor.cptensor attribute)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor._abc_impl"]], "cp_copy() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_copy"]], "cp_flip_sign() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_flip_sign"]], "cp_lstsq_grad() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_lstsq_grad"]], "cp_mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_mode_dot"]], "cp_n_param() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_n_param"]], "cp_norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_norm"]], "cp_normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_normalize"]], "cp_to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_tensor"]], "cp_to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_unfolded"]], "cp_to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.cp_tensor.cptensor property)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.n_param"]], "norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.norm"]], "normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.normalize"]], "to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_vec"]], "unfolding_dot_khatri_rao() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.unfolding_dot_khatri_rao"]], "validate_cp_rank() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_rank"]], "validate_cp_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_tensor"]], "parafac2tensor (class in ivy.data_classes.factorized_tensor.parafac2_tensor)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor"]], "__init__() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor attribute)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor._abc_impl"]], "apply_parafac2_projections() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.apply_parafac2_projections"]], "from_cptensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor class method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.from_CPTensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "n_param (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor property)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.n_param"]], "parafac2_normalise() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_normalise"]], "parafac2_to_slice() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slice"]], "parafac2_to_slices() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slices"]], "parafac2_to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_tensor"]], "parafac2_to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_unfolded"]], "parafac2_to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_vec"]], "to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_vec"]], "validate_parafac2_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.validate_parafac2_tensor"]], "trtensor (class in ivy.data_classes.factorized_tensor.tr_tensor)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tr_tensor.trtensor attribute)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tr_tensor.trtensor property)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_vec"]], "tr_n_param() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_n_param"]], "tr_to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_tensor"]], "tr_to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_unfolded"]], "tr_to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_vec"]], "validate_tr_rank() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_rank"]], "validate_tr_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_tensor"]], "tttensor (class in ivy.data_classes.factorized_tensor.tt_tensor)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tt_tensor.tttensor attribute)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._abc_impl"]], "_tt_n_param() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._tt_n_param"]], "index_update() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.index_update"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tt_tensor.tttensor property)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.n_param"]], "pad_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.pad_tt_rank"]], "to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_tensor"]], "to_unfolding() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_unfolding"]], "to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_vec"]], "tt_to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_tensor"]], "tt_to_unfolded() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_unfolded"]], "tt_to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_vec"]], "validate_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_rank"]], "validate_tt_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_tensor"]], "tuckertensor (class in ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor attribute)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor._abc_impl"]], "_bisection_root_finder() (in module ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor._bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor property)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_vec"]], "tucker_copy() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_copy"]], "tucker_mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_mode_dot"]], "tucker_n_param() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_n_param"]], "tucker_normalize() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_normalize"]], "tucker_to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_tensor"]], "tucker_to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_unfolded"]], "tucker_to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_vec"]], "validate_tucker_rank() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_rank"]], "validate_tucker_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_tensor"]], "array (class in ivy.data_classes.array.array)": [[97, "ivy.data_classes.array.array.Array"]], "t (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.T"]], "__abs__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__abs__"]], "__add__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__add__"]], "__eq__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__eq__"]], "__ge__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ge__"]], "__gt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__gt__"]], "__init__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__init__"]], "__le__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__le__"]], "__lt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__lt__"]], "__ne__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ne__"]], "__pow__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__pow__"]], "__radd__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__radd__"]], "__rrshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rrshift__"]], "__rshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rshift__"]], "__rsub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rsub__"]], "__sub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__sub__"]], "__truediv__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__truediv__"]], "__xor__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__xor__"]], "backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.backend"]], "base (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.base"]], "data (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.data"]], "device (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.device"]], "dtype (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dtype"]], "dynamic_backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dynamic_backend"]], "imag (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.imag"]], "itemsize (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.itemsize"]], "ivy.data_classes.array.array": [[97, "module-ivy.data_classes.array.array"]], "mt (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.mT"]], "ndim (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.ndim"]], "real (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.real"]], "shape (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.shape"]], "size (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.size"]], "strides (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.strides"]], "container (class in ivy.data_classes.container.container)": [[98, "ivy.data_classes.container.container.Container"]], "__abs__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__abs__"]], "__add__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__add__"]], "__eq__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__eq__"]], "__ge__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ge__"]], "__gt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__gt__"]], "__init__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__init__"]], "__le__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__le__"]], "__lt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__lt__"]], "__ne__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ne__"]], "__pow__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__pow__"]], "__radd__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__radd__"]], "__rrshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rrshift__"]], "__rshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rshift__"]], "__rsub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rsub__"]], "__sub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__sub__"]], "__truediv__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__truediv__"]], "__xor__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__xor__"]], "ivy.data_classes.container.container": [[98, "module-ivy.data_classes.container.container"]], "nestedarray (class in ivy.data_classes.nested_array.nested_array)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray"]], "__init__() (ivy.data_classes.nested_array.nested_array.nestedarray method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.__init__"]], "from_row_lengths() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_lengths"]], "from_row_splits() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_splits"]], "ivy.data_classes.nested_array.nested_array": [[100, "module-ivy.data_classes.nested_array.nested_array"]], "nestedarraybase (class in ivy.data_classes.nested_array.base)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase"]], "__init__() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.__init__"]], "_abc_impl (ivy.data_classes.nested_array.base.nestedarraybase attribute)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase._abc_impl"]], "broadcast_shapes() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.broadcast_shapes"]], "data (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.data"]], "device (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.device"]], "dtype (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.dtype"]], "inner_shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.inner_shape"]], "ivy.data_classes.nested_array.base": [[101, "module-ivy.data_classes.nested_array.base"]], "ndim (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ndim"]], "nested_array() (ivy.data_classes.nested_array.base.nestedarraybase class method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_array"]], "nested_rank (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_rank"]], "ragged_map() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_map"]], "ragged_multi_map() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map"]], "ragged_multi_map_in_function() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map_in_function"]], "replace_ivy_arrays() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.replace_ivy_arrays"]], "shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.shape"]], "unbind() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.unbind"]], "nestedarrayelementwise (class in ivy.data_classes.nested_array.elementwise)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise"]], "_abc_impl (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise attribute)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise._abc_impl"]], "ivy.data_classes.nested_array.elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"]], "static_add() (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise static method)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise.static_add"]], "gelu() (in module ivy)": [[105, "ivy.gelu"], [614, "ivy.gelu"]], "gelu() (ivy.array method)": [[105, "ivy.Array.gelu"]], "gelu() (ivy.container method)": [[105, "ivy.Container.gelu"]], "hardswish() (in module ivy)": [[106, "ivy.hardswish"], [614, "ivy.hardswish"]], "hardswish() (ivy.array method)": [[106, "ivy.Array.hardswish"]], "hardswish() (ivy.container method)": [[106, "ivy.Container.hardswish"]], "leaky_relu() (in module ivy)": [[107, "ivy.leaky_relu"], [614, "ivy.leaky_relu"]], "leaky_relu() (ivy.array method)": [[107, "ivy.Array.leaky_relu"]], "leaky_relu() (ivy.container method)": [[107, "ivy.Container.leaky_relu"]], "log_softmax() (in module ivy)": [[108, "ivy.log_softmax"], [614, "ivy.log_softmax"]], "log_softmax() (ivy.array method)": [[108, "ivy.Array.log_softmax"]], "log_softmax() (ivy.container method)": [[108, "ivy.Container.log_softmax"]], "mish() (in module ivy)": [[109, "ivy.mish"], [614, "ivy.mish"]], "mish() (ivy.array method)": [[109, "ivy.Array.mish"]], "mish() (ivy.container method)": [[109, "ivy.Container.mish"]], "relu() (in module ivy)": [[110, "ivy.relu"], [614, "ivy.relu"]], "relu() (ivy.array method)": [[110, "ivy.Array.relu"]], "relu() (ivy.container method)": [[110, "ivy.Container.relu"]], "sigmoid() (in module ivy)": [[111, "ivy.sigmoid"], [614, "ivy.sigmoid"]], "sigmoid() (ivy.array method)": [[111, "ivy.Array.sigmoid"]], "sigmoid() (ivy.container method)": [[111, "ivy.Container.sigmoid"]], "softmax() (in module ivy)": [[112, "ivy.softmax"], [614, "ivy.softmax"]], "softmax() (ivy.array method)": [[112, "ivy.Array.softmax"]], "softmax() (ivy.container method)": [[112, "ivy.Container.softmax"]], "softplus() (in module ivy)": [[113, "ivy.softplus"], [614, "ivy.softplus"]], "softplus() (ivy.array method)": [[113, "ivy.Array.softplus"]], "softplus() (ivy.container method)": [[113, "ivy.Container.softplus"]], "softsign() (in module ivy)": [[114, "ivy.softsign"], [614, "ivy.softsign"]], "cmp_is() (in module ivy)": [[115, "ivy.cmp_is"], [616, "ivy.cmp_is"]], "cmp_isnot() (in module ivy)": [[116, "ivy.cmp_isnot"], [616, "ivy.cmp_isnot"]], "for_loop() (in module ivy)": [[117, "ivy.for_loop"], [616, "ivy.for_loop"]], "if_else() (in module ivy)": [[118, "ivy.if_else"], [616, "ivy.if_else"]], "try_except() (in module ivy)": [[119, "ivy.try_except"], [616, "ivy.try_except"]], "while_loop() (in module ivy)": [[120, "ivy.while_loop"], [616, "ivy.while_loop"]], "arange() (in module ivy)": [[121, "ivy.arange"], [617, "ivy.arange"]], "array() (in module ivy)": [[122, "ivy.array"], [617, "ivy.array"]], "asarray() (in module ivy)": [[123, "ivy.asarray"], [617, "ivy.asarray"]], "asarray() (ivy.array method)": [[123, "ivy.Array.asarray"]], "asarray() (ivy.container method)": [[123, "ivy.Container.asarray"]], "copy_array() (in module ivy)": [[124, "ivy.copy_array"], [617, "ivy.copy_array"]], "copy_array() (ivy.array method)": [[124, "ivy.Array.copy_array"]], "copy_array() (ivy.container method)": [[124, "ivy.Container.copy_array"]], "empty() (in module ivy)": [[125, "ivy.empty"], [617, "ivy.empty"]], "empty_like() (in module ivy)": [[126, "ivy.empty_like"], [617, "ivy.empty_like"]], "empty_like() (ivy.array method)": [[126, "ivy.Array.empty_like"]], "empty_like() (ivy.container method)": [[126, "ivy.Container.empty_like"]], "eye() (in module ivy)": [[127, "ivy.eye"], [617, "ivy.eye"]], "from_dlpack() (in module ivy)": [[128, "ivy.from_dlpack"], [617, "ivy.from_dlpack"]], "from_dlpack() (ivy.array method)": [[128, "ivy.Array.from_dlpack"]], "from_dlpack() (ivy.container method)": [[128, "ivy.Container.from_dlpack"]], "frombuffer() (in module ivy)": [[129, "ivy.frombuffer"], [617, "ivy.frombuffer"]], "frombuffer() (ivy.container method)": [[129, "ivy.Container.frombuffer"]], "full() (in module ivy)": [[130, "ivy.full"], [617, "ivy.full"]], "full_like() (in module ivy)": [[131, "ivy.full_like"], [617, "ivy.full_like"]], "full_like() (ivy.array method)": [[131, "ivy.Array.full_like"]], "full_like() (ivy.container method)": [[131, "ivy.Container.full_like"]], "linspace() (in module ivy)": [[132, "ivy.linspace"], [617, "ivy.linspace"]], "linspace() (ivy.array method)": [[132, "ivy.Array.linspace"]], "linspace() (ivy.container method)": [[132, "ivy.Container.linspace"]], "logspace() (in module ivy)": [[133, "ivy.logspace"], [617, "ivy.logspace"]], "logspace() (ivy.array method)": [[133, "ivy.Array.logspace"]], "logspace() (ivy.container method)": [[133, "ivy.Container.logspace"]], "meshgrid() (in module ivy)": [[134, "ivy.meshgrid"], [617, "ivy.meshgrid"]], "meshgrid() (ivy.array method)": [[134, "ivy.Array.meshgrid"]], "meshgrid() (ivy.container method)": [[134, "ivy.Container.meshgrid"]], "native_array() (in module ivy)": [[135, "ivy.native_array"], [617, "ivy.native_array"]], "native_array() (ivy.array method)": [[135, "ivy.Array.native_array"]], "native_array() (ivy.container method)": [[135, "ivy.Container.native_array"]], "one_hot() (in module ivy)": [[136, "ivy.one_hot"], [617, "ivy.one_hot"]], "one_hot() (ivy.array method)": [[136, "ivy.Array.one_hot"]], "one_hot() (ivy.container method)": [[136, "ivy.Container.one_hot"]], "ones() (in module ivy)": [[137, "ivy.ones"], [617, "ivy.ones"]], "ones_like() (in module ivy)": [[138, "ivy.ones_like"], [617, "ivy.ones_like"]], "ones_like() (ivy.array method)": [[138, "ivy.Array.ones_like"]], "ones_like() (ivy.container method)": [[138, "ivy.Container.ones_like"]], "to_dlpack() (in module ivy)": [[139, "ivy.to_dlpack"], [617, "ivy.to_dlpack"]], "tril() (in module ivy)": [[140, "ivy.tril"], [617, "ivy.tril"]], "tril() (ivy.array method)": [[140, "ivy.Array.tril"]], "tril() (ivy.container method)": [[140, "ivy.Container.tril"]], "triu() (in module ivy)": [[141, "ivy.triu"], [617, "ivy.triu"]], "triu() (ivy.array method)": [[141, "ivy.Array.triu"]], "triu() (ivy.container method)": [[141, "ivy.Container.triu"]], "triu_indices() (in module ivy)": [[142, "ivy.triu_indices"], [617, "ivy.triu_indices"]], "triu_indices() (ivy.container method)": [[142, "ivy.Container.triu_indices"]], "zeros() (in module ivy)": [[143, "ivy.zeros"], [617, "ivy.zeros"]], "zeros_like() (in module ivy)": [[144, "ivy.zeros_like"], [617, "ivy.zeros_like"]], "zeros_like() (ivy.array method)": [[144, "ivy.Array.zeros_like"]], "zeros_like() (ivy.container method)": [[144, "ivy.Container.zeros_like"]], "as_ivy_dtype() (in module ivy)": [[145, "ivy.as_ivy_dtype"], [618, "ivy.as_ivy_dtype"]], "as_native_dtype() (in module ivy)": [[146, "ivy.as_native_dtype"], [618, "ivy.as_native_dtype"]], "astype() (in module ivy)": [[147, "ivy.astype"], [618, "ivy.astype"]], "astype() (ivy.array method)": [[147, "ivy.Array.astype"]], "astype() (ivy.container method)": [[147, "ivy.Container.astype"]], "broadcast_arrays() (in module ivy)": [[148, "ivy.broadcast_arrays"], [618, "ivy.broadcast_arrays"]], "broadcast_arrays() (ivy.array method)": [[148, "ivy.Array.broadcast_arrays"]], "broadcast_arrays() (ivy.container method)": [[148, "ivy.Container.broadcast_arrays"]], "broadcast_to() (in module ivy)": [[149, "ivy.broadcast_to"], [618, "ivy.broadcast_to"]], "broadcast_to() (ivy.array method)": [[149, "ivy.Array.broadcast_to"]], "broadcast_to() (ivy.container method)": [[149, "ivy.Container.broadcast_to"]], "can_cast() (in module ivy)": [[150, "ivy.can_cast"], [618, "ivy.can_cast"]], "can_cast() (ivy.array method)": [[150, "ivy.Array.can_cast"]], "can_cast() (ivy.container method)": [[150, "ivy.Container.can_cast"]], "check_float() (in module ivy)": [[151, "ivy.check_float"], [618, "ivy.check_float"]], "closest_valid_dtype() (in module ivy)": [[152, "ivy.closest_valid_dtype"], [618, "ivy.closest_valid_dtype"]], "default_complex_dtype() (in module ivy)": [[153, "ivy.default_complex_dtype"], [618, "ivy.default_complex_dtype"]], "default_dtype() (in module ivy)": [[154, "ivy.default_dtype"], [618, "ivy.default_dtype"]], "default_float_dtype() (in module ivy)": [[155, "ivy.default_float_dtype"], [618, "ivy.default_float_dtype"]], "default_int_dtype() (in module ivy)": [[156, "ivy.default_int_dtype"], [618, "ivy.default_int_dtype"]], "default_uint_dtype() (in module ivy)": [[157, "ivy.default_uint_dtype"], [618, "ivy.default_uint_dtype"]], "dtype() (in module ivy)": [[158, "ivy.dtype"], [618, "ivy.dtype"]], "dtype() (ivy.array method)": [[158, "ivy.Array.dtype"]], "dtype() (ivy.container method)": [[158, "ivy.Container.dtype"]], "dtype_bits() (in module ivy)": [[159, "ivy.dtype_bits"], [618, "ivy.dtype_bits"]], "finfo() (in module ivy)": [[160, "ivy.finfo"], [618, "ivy.finfo"]], "finfo() (ivy.array method)": [[160, "ivy.Array.finfo"]], "finfo() (ivy.container method)": [[160, "ivy.Container.finfo"]], "function_supported_dtypes() (in module ivy)": [[161, "ivy.function_supported_dtypes"], [618, "ivy.function_supported_dtypes"]], "function_unsupported_dtypes() (in module ivy)": [[162, "ivy.function_unsupported_dtypes"], [618, "ivy.function_unsupported_dtypes"]], "iinfo() (in module ivy)": [[163, "ivy.iinfo"], [618, "ivy.iinfo"]], "iinfo() (ivy.array method)": [[163, "ivy.Array.iinfo"]], "iinfo() (ivy.container method)": [[163, "ivy.Container.iinfo"]], "infer_default_dtype() (in module ivy)": [[164, "ivy.infer_default_dtype"], [618, "ivy.infer_default_dtype"]], "invalid_dtype() (in module ivy)": [[165, "ivy.invalid_dtype"], [618, "ivy.invalid_dtype"]], "is_bool_dtype() (in module ivy)": [[166, "ivy.is_bool_dtype"], [618, "ivy.is_bool_dtype"]], "is_bool_dtype() (ivy.array method)": [[166, "ivy.Array.is_bool_dtype"]], "is_bool_dtype() (ivy.container method)": [[166, "ivy.Container.is_bool_dtype"]], "is_complex_dtype() (in module ivy)": [[167, "ivy.is_complex_dtype"], [618, "ivy.is_complex_dtype"]], "is_complex_dtype() (ivy.container method)": [[167, "ivy.Container.is_complex_dtype"]], "is_float_dtype() (in module ivy)": [[168, "ivy.is_float_dtype"], [618, "ivy.is_float_dtype"]], "is_float_dtype() (ivy.array method)": [[168, "ivy.Array.is_float_dtype"]], "is_float_dtype() (ivy.container method)": [[168, "ivy.Container.is_float_dtype"]], "is_hashable_dtype() (in module ivy)": [[169, "ivy.is_hashable_dtype"], [618, "ivy.is_hashable_dtype"]], "is_int_dtype() (in module ivy)": [[170, "ivy.is_int_dtype"], [618, "ivy.is_int_dtype"]], "is_int_dtype() (ivy.array method)": [[170, "ivy.Array.is_int_dtype"]], "is_int_dtype() (ivy.container method)": [[170, "ivy.Container.is_int_dtype"]], "is_native_dtype() (in module ivy)": [[171, "ivy.is_native_dtype"], [618, "ivy.is_native_dtype"]], "is_uint_dtype() (in module ivy)": [[172, "ivy.is_uint_dtype"], [618, "ivy.is_uint_dtype"]], "is_uint_dtype() (ivy.array method)": [[172, "ivy.Array.is_uint_dtype"]], "is_uint_dtype() (ivy.container method)": [[172, "ivy.Container.is_uint_dtype"]], "promote_types() (in module ivy)": [[173, "ivy.promote_types"], [618, "ivy.promote_types"]], "promote_types_of_inputs() (in module ivy)": [[174, "ivy.promote_types_of_inputs"], [618, "ivy.promote_types_of_inputs"]], "result_type() (in module ivy)": [[175, "ivy.result_type"], [618, "ivy.result_type"]], "result_type() (ivy.array method)": [[175, "ivy.Array.result_type"]], "result_type() (ivy.container method)": [[175, "ivy.Container.result_type"]], "set_default_complex_dtype() (in module ivy)": [[176, "ivy.set_default_complex_dtype"], [618, "ivy.set_default_complex_dtype"]], "set_default_dtype() (in module ivy)": [[177, "ivy.set_default_dtype"], [618, "ivy.set_default_dtype"]], "set_default_float_dtype() (in module ivy)": [[178, "ivy.set_default_float_dtype"], [618, "ivy.set_default_float_dtype"]], "set_default_int_dtype() (in module ivy)": [[179, "ivy.set_default_int_dtype"], [618, "ivy.set_default_int_dtype"]], "set_default_uint_dtype() (in module ivy)": [[180, "ivy.set_default_uint_dtype"], [618, "ivy.set_default_uint_dtype"]], "type_promote_arrays() (in module ivy)": [[181, "ivy.type_promote_arrays"], [618, "ivy.type_promote_arrays"]], "unset_default_complex_dtype() (in module ivy)": [[182, "ivy.unset_default_complex_dtype"], [618, "ivy.unset_default_complex_dtype"]], "unset_default_dtype() (in module ivy)": [[183, "ivy.unset_default_dtype"], [618, "ivy.unset_default_dtype"]], "unset_default_float_dtype() (in module ivy)": [[184, "ivy.unset_default_float_dtype"], [618, "ivy.unset_default_float_dtype"]], "unset_default_int_dtype() (in module ivy)": [[185, "ivy.unset_default_int_dtype"], [618, "ivy.unset_default_int_dtype"]], "unset_default_uint_dtype() (in module ivy)": [[186, "ivy.unset_default_uint_dtype"], [618, "ivy.unset_default_uint_dtype"]], "valid_dtype() (in module ivy)": [[187, "ivy.valid_dtype"], [618, "ivy.valid_dtype"]], "as_ivy_dev() (in module ivy)": [[188, "ivy.as_ivy_dev"], [619, "ivy.as_ivy_dev"]], "as_native_dev() (in module ivy)": [[189, "ivy.as_native_dev"], [619, "ivy.as_native_dev"]], "clear_cached_mem_on_dev() (in module ivy)": [[190, "ivy.clear_cached_mem_on_dev"], [619, "ivy.clear_cached_mem_on_dev"]], "default_device() (in module ivy)": [[191, "ivy.default_device"], [619, "ivy.default_device"]], "dev() (in module ivy)": [[192, "ivy.dev"], [619, "ivy.dev"]], "dev() (ivy.array method)": [[192, "ivy.Array.dev"]], "dev() (ivy.container method)": [[192, "ivy.Container.dev"]], "dev_util() (in module ivy)": [[193, "ivy.dev_util"], [619, "ivy.dev_util"]], "function_supported_devices() (in module ivy)": [[194, "ivy.function_supported_devices"], [619, "ivy.function_supported_devices"]], "function_unsupported_devices() (in module ivy)": [[195, "ivy.function_unsupported_devices"], [619, "ivy.function_unsupported_devices"]], "get_all_ivy_arrays_on_dev() (in module ivy)": [[196, "ivy.get_all_ivy_arrays_on_dev"], [619, "ivy.get_all_ivy_arrays_on_dev"]], "gpu_is_available() (in module ivy)": [[197, "ivy.gpu_is_available"], [619, "ivy.gpu_is_available"]], "handle_soft_device_variable() (in module ivy)": [[198, "ivy.handle_soft_device_variable"], [619, "ivy.handle_soft_device_variable"]], "num_cpu_cores() (in module ivy)": [[199, "ivy.num_cpu_cores"], [619, "ivy.num_cpu_cores"]], "num_gpus() (in module ivy)": [[200, "ivy.num_gpus"], [619, "ivy.num_gpus"]], "num_ivy_arrays_on_dev() (in module ivy)": [[201, "ivy.num_ivy_arrays_on_dev"], [619, "ivy.num_ivy_arrays_on_dev"]], "percent_used_mem_on_dev() (in module ivy)": [[202, "ivy.percent_used_mem_on_dev"], [619, "ivy.percent_used_mem_on_dev"]], "print_all_ivy_arrays_on_dev() (in module ivy)": [[203, "ivy.print_all_ivy_arrays_on_dev"], [619, "ivy.print_all_ivy_arrays_on_dev"]], "set_default_device() (in module ivy)": [[204, "ivy.set_default_device"], [619, "ivy.set_default_device"]], "set_soft_device_mode() (in module ivy)": [[205, "ivy.set_soft_device_mode"], [619, "ivy.set_soft_device_mode"]], "set_split_factor() (in module ivy)": [[206, "ivy.set_split_factor"], [619, "ivy.set_split_factor"]], "split_factor() (in module ivy)": [[207, "ivy.split_factor"], [619, "ivy.split_factor"]], "split_func_call() (in module ivy)": [[208, "ivy.split_func_call"], [619, "ivy.split_func_call"]], "to_device() (in module ivy)": [[209, "ivy.to_device"], [619, "ivy.to_device"]], "to_device() (ivy.array method)": [[209, "ivy.Array.to_device"]], "to_device() (ivy.container method)": [[209, "ivy.Container.to_device"]], "total_mem_on_dev() (in module ivy)": [[210, "ivy.total_mem_on_dev"], [619, "ivy.total_mem_on_dev"]], "tpu_is_available() (in module ivy)": [[211, "ivy.tpu_is_available"], [619, "ivy.tpu_is_available"]], "unset_default_device() (in module ivy)": [[212, "ivy.unset_default_device"], [619, "ivy.unset_default_device"]], "unset_soft_device_mode() (in module ivy)": [[213, "ivy.unset_soft_device_mode"], [619, "ivy.unset_soft_device_mode"]], "used_mem_on_dev() (in module ivy)": [[214, "ivy.used_mem_on_dev"], [619, "ivy.used_mem_on_dev"]], "abs() (in module ivy)": [[215, "ivy.abs"], [620, "ivy.abs"]], "abs() (ivy.array method)": [[215, "ivy.Array.abs"]], "abs() (ivy.container method)": [[215, "ivy.Container.abs"]], "acos() (in module ivy)": [[216, "ivy.acos"], [620, "ivy.acos"]], "acos() (ivy.array method)": [[216, "ivy.Array.acos"]], "acos() (ivy.container method)": [[216, "ivy.Container.acos"]], "acosh() (in module ivy)": [[217, "ivy.acosh"], [620, "ivy.acosh"]], "acosh() (ivy.array method)": [[217, "ivy.Array.acosh"]], "acosh() (ivy.container method)": [[217, "ivy.Container.acosh"]], "add() (in module ivy)": [[218, "ivy.add"], [620, "ivy.add"]], "add() (ivy.array method)": [[218, "ivy.Array.add"]], "add() (ivy.container method)": [[218, "ivy.Container.add"]], "angle() (in module ivy)": [[219, "ivy.angle"], [620, "ivy.angle"]], "angle() (ivy.array method)": [[219, "ivy.Array.angle"]], "angle() (ivy.container method)": [[219, "ivy.Container.angle"]], "asin() (in module ivy)": [[220, "ivy.asin"], [620, "ivy.asin"]], "asin() (ivy.array method)": [[220, "ivy.Array.asin"]], "asin() (ivy.container method)": [[220, "ivy.Container.asin"]], "asinh() (in module ivy)": [[221, "ivy.asinh"], [620, "ivy.asinh"]], "asinh() (ivy.array method)": [[221, "ivy.Array.asinh"]], "asinh() (ivy.container method)": [[221, "ivy.Container.asinh"]], "atan() (in module ivy)": [[222, "ivy.atan"], [620, "ivy.atan"]], "atan() (ivy.array method)": [[222, "ivy.Array.atan"]], "atan() (ivy.container method)": [[222, "ivy.Container.atan"]], "atan2() (in module ivy)": [[223, "ivy.atan2"], [620, "ivy.atan2"]], "atan2() (ivy.array method)": [[223, "ivy.Array.atan2"]], "atan2() (ivy.container method)": [[223, "ivy.Container.atan2"]], "atanh() (in module ivy)": [[224, "ivy.atanh"], [620, "ivy.atanh"]], "atanh() (ivy.array method)": [[224, "ivy.Array.atanh"]], "atanh() (ivy.container method)": [[224, "ivy.Container.atanh"]], "bitwise_and() (in module ivy)": [[225, "ivy.bitwise_and"], [620, "ivy.bitwise_and"]], "bitwise_and() (ivy.array method)": [[225, "ivy.Array.bitwise_and"]], "bitwise_and() (ivy.container method)": [[225, "ivy.Container.bitwise_and"]], "bitwise_invert() (in module ivy)": [[226, "ivy.bitwise_invert"], [620, "ivy.bitwise_invert"]], "bitwise_invert() (ivy.array method)": [[226, "ivy.Array.bitwise_invert"]], "bitwise_invert() (ivy.container method)": [[226, "ivy.Container.bitwise_invert"]], "bitwise_left_shift() (in module ivy)": [[227, "ivy.bitwise_left_shift"], [620, "ivy.bitwise_left_shift"]], "bitwise_left_shift() (ivy.array method)": [[227, "ivy.Array.bitwise_left_shift"]], "bitwise_left_shift() (ivy.container method)": [[227, "ivy.Container.bitwise_left_shift"]], "bitwise_or() (in module ivy)": [[228, "ivy.bitwise_or"], [620, "ivy.bitwise_or"]], "bitwise_or() (ivy.array method)": [[228, "ivy.Array.bitwise_or"]], "bitwise_or() (ivy.container method)": [[228, "ivy.Container.bitwise_or"]], "bitwise_right_shift() (in module ivy)": [[229, "ivy.bitwise_right_shift"], [620, "ivy.bitwise_right_shift"]], "bitwise_right_shift() (ivy.array method)": [[229, "ivy.Array.bitwise_right_shift"]], "bitwise_right_shift() (ivy.container method)": [[229, "ivy.Container.bitwise_right_shift"]], "bitwise_xor() (in module ivy)": [[230, "ivy.bitwise_xor"], [620, "ivy.bitwise_xor"]], "bitwise_xor() (ivy.array method)": [[230, "ivy.Array.bitwise_xor"]], "bitwise_xor() (ivy.container method)": [[230, "ivy.Container.bitwise_xor"]], "ceil() (in module ivy)": [[231, "ivy.ceil"], [620, "ivy.ceil"]], "ceil() (ivy.array method)": [[231, "ivy.Array.ceil"]], "ceil() (ivy.container method)": [[231, "ivy.Container.ceil"]], "cos() (in module ivy)": [[232, "ivy.cos"], [620, "ivy.cos"]], "cos() (ivy.array method)": [[232, "ivy.Array.cos"]], "cos() (ivy.container method)": [[232, "ivy.Container.cos"]], "cosh() (in module ivy)": [[233, "ivy.cosh"], [620, "ivy.cosh"]], "cosh() (ivy.array method)": [[233, "ivy.Array.cosh"]], "cosh() (ivy.container method)": [[233, "ivy.Container.cosh"]], "deg2rad() (in module ivy)": [[234, "ivy.deg2rad"], [620, "ivy.deg2rad"]], "deg2rad() (ivy.array method)": [[234, "ivy.Array.deg2rad"]], "deg2rad() (ivy.container method)": [[234, "ivy.Container.deg2rad"]], "divide() (in module ivy)": [[235, "ivy.divide"], [620, "ivy.divide"]], "divide() (ivy.array method)": [[235, "ivy.Array.divide"]], "divide() (ivy.container method)": [[235, "ivy.Container.divide"]], "equal() (in module ivy)": [[236, "ivy.equal"], [620, "ivy.equal"]], "equal() (ivy.array method)": [[236, "ivy.Array.equal"]], "equal() (ivy.container method)": [[236, "ivy.Container.equal"]], "erf() (in module ivy)": [[237, "ivy.erf"], [620, "ivy.erf"]], "erf() (ivy.array method)": [[237, "ivy.Array.erf"]], "erf() (ivy.container method)": [[237, "ivy.Container.erf"]], "exp() (in module ivy)": [[238, "ivy.exp"], [620, "ivy.exp"]], "exp() (ivy.array method)": [[238, "ivy.Array.exp"]], "exp() (ivy.container method)": [[238, "ivy.Container.exp"]], "exp2() (in module ivy)": [[239, "ivy.exp2"], [620, "ivy.exp2"]], "exp2() (ivy.array method)": [[239, "ivy.Array.exp2"]], "exp2() (ivy.container method)": [[239, "ivy.Container.exp2"]], "expm1() (in module ivy)": [[240, "ivy.expm1"], [620, "ivy.expm1"]], "expm1() (ivy.array method)": [[240, "ivy.Array.expm1"]], "expm1() (ivy.container method)": [[240, "ivy.Container.expm1"]], "floor() (in module ivy)": [[241, "ivy.floor"], [620, "ivy.floor"]], "floor() (ivy.array method)": [[241, "ivy.Array.floor"]], "floor() (ivy.container method)": [[241, "ivy.Container.floor"]], "floor_divide() (in module ivy)": [[242, "ivy.floor_divide"], [620, "ivy.floor_divide"]], "floor_divide() (ivy.array method)": [[242, "ivy.Array.floor_divide"]], "floor_divide() (ivy.container method)": [[242, "ivy.Container.floor_divide"]], "fmin() (in module ivy)": [[243, "ivy.fmin"], [620, "ivy.fmin"]], "fmin() (ivy.array method)": [[243, "ivy.Array.fmin"]], "fmin() (ivy.container method)": [[243, "ivy.Container.fmin"]], "fmod() (in module ivy)": [[244, "ivy.fmod"], [620, "ivy.fmod"]], "fmod() (ivy.array method)": [[244, "ivy.Array.fmod"]], "fmod() (ivy.container method)": [[244, "ivy.Container.fmod"]], "gcd() (in module ivy)": [[245, "ivy.gcd"], [620, "ivy.gcd"]], "gcd() (ivy.array method)": [[245, "ivy.Array.gcd"]], "gcd() (ivy.container method)": [[245, "ivy.Container.gcd"]], "greater() (in module ivy)": [[246, "ivy.greater"], [620, "ivy.greater"]], "greater() (ivy.array method)": [[246, "ivy.Array.greater"]], "greater() (ivy.container method)": [[246, "ivy.Container.greater"]], "greater_equal() (in module ivy)": [[247, "ivy.greater_equal"], [620, "ivy.greater_equal"]], "greater_equal() (ivy.array method)": [[247, "ivy.Array.greater_equal"]], "greater_equal() (ivy.container method)": [[247, "ivy.Container.greater_equal"]], "imag() (in module ivy)": [[248, "ivy.imag"], [620, "ivy.imag"]], "imag() (ivy.array method)": [[248, "ivy.Array.imag"]], "imag() (ivy.container method)": [[248, "ivy.Container.imag"]], "isfinite() (in module ivy)": [[249, "ivy.isfinite"], [620, "ivy.isfinite"]], "isfinite() (ivy.array method)": [[249, "ivy.Array.isfinite"]], "isfinite() (ivy.container method)": [[249, "ivy.Container.isfinite"]], "isinf() (in module ivy)": [[250, "ivy.isinf"], [620, "ivy.isinf"]], "isinf() (ivy.array method)": [[250, "ivy.Array.isinf"]], "isinf() (ivy.container method)": [[250, "ivy.Container.isinf"]], "isnan() (in module ivy)": [[251, "ivy.isnan"], [620, "ivy.isnan"]], "isnan() (ivy.array method)": [[251, "ivy.Array.isnan"]], "isnan() (ivy.container method)": [[251, "ivy.Container.isnan"]], "isreal() (in module ivy)": [[252, "ivy.isreal"], [620, "ivy.isreal"]], "isreal() (ivy.array method)": [[252, "ivy.Array.isreal"]], "isreal() (ivy.container method)": [[252, "ivy.Container.isreal"]], "lcm() (in module ivy)": [[253, "ivy.lcm"], [620, "ivy.lcm"]], "lcm() (ivy.array method)": [[253, "ivy.Array.lcm"]], "lcm() (ivy.container method)": [[253, "ivy.Container.lcm"]], "less() (in module ivy)": [[254, "ivy.less"], [620, "ivy.less"]], "less() (ivy.array method)": [[254, "ivy.Array.less"]], "less() (ivy.container method)": [[254, "ivy.Container.less"]], "less_equal() (in module ivy)": [[255, "ivy.less_equal"], [620, "ivy.less_equal"]], "less_equal() (ivy.array method)": [[255, "ivy.Array.less_equal"]], "less_equal() (ivy.container method)": [[255, "ivy.Container.less_equal"]], "log() (in module ivy)": [[256, "ivy.log"], [620, "ivy.log"]], "log() (ivy.array method)": [[256, "ivy.Array.log"]], "log() (ivy.container method)": [[256, "ivy.Container.log"]], "log10() (in module ivy)": [[257, "ivy.log10"], [620, "ivy.log10"]], "log10() (ivy.array method)": [[257, "ivy.Array.log10"]], "log10() (ivy.container method)": [[257, "ivy.Container.log10"]], "log1p() (in module ivy)": [[258, "ivy.log1p"], [620, "ivy.log1p"]], "log1p() (ivy.array method)": [[258, "ivy.Array.log1p"]], "log1p() (ivy.container method)": [[258, "ivy.Container.log1p"]], "log2() (in module ivy)": [[259, "ivy.log2"], [620, "ivy.log2"]], "log2() (ivy.array method)": [[259, "ivy.Array.log2"]], "log2() (ivy.container method)": [[259, "ivy.Container.log2"]], "logaddexp() (in module ivy)": [[260, "ivy.logaddexp"], [620, "ivy.logaddexp"]], "logaddexp() (ivy.array method)": [[260, "ivy.Array.logaddexp"]], "logaddexp() (ivy.container method)": [[260, "ivy.Container.logaddexp"]], "logaddexp2() (in module ivy)": [[261, "ivy.logaddexp2"], [620, "ivy.logaddexp2"]], "logaddexp2() (ivy.array method)": [[261, "ivy.Array.logaddexp2"]], "logaddexp2() (ivy.container method)": [[261, "ivy.Container.logaddexp2"]], "logical_and() (in module ivy)": [[262, "ivy.logical_and"], [620, "ivy.logical_and"]], "logical_and() (ivy.array method)": [[262, "ivy.Array.logical_and"]], "logical_and() (ivy.container method)": [[262, "ivy.Container.logical_and"]], "logical_not() (in module ivy)": [[263, "ivy.logical_not"], [620, "ivy.logical_not"]], "logical_not() (ivy.array method)": [[263, "ivy.Array.logical_not"]], "logical_not() (ivy.container method)": [[263, "ivy.Container.logical_not"]], "logical_or() (in module ivy)": [[264, "ivy.logical_or"], [620, "ivy.logical_or"]], "logical_or() (ivy.array method)": [[264, "ivy.Array.logical_or"]], "logical_or() (ivy.container method)": [[264, "ivy.Container.logical_or"]], "logical_xor() (in module ivy)": [[265, "ivy.logical_xor"], [620, "ivy.logical_xor"]], "logical_xor() (ivy.array method)": [[265, "ivy.Array.logical_xor"]], "logical_xor() (ivy.container method)": [[265, "ivy.Container.logical_xor"]], "maximum() (in module ivy)": [[266, "ivy.maximum"], [620, "ivy.maximum"]], "maximum() (ivy.array method)": [[266, "ivy.Array.maximum"]], "maximum() (ivy.container method)": [[266, "ivy.Container.maximum"]], "minimum() (in module ivy)": [[267, "ivy.minimum"], [620, "ivy.minimum"]], "minimum() (ivy.array method)": [[267, "ivy.Array.minimum"]], "minimum() (ivy.container method)": [[267, "ivy.Container.minimum"]], "multiply() (in module ivy)": [[268, "ivy.multiply"], [620, "ivy.multiply"]], "multiply() (ivy.array method)": [[268, "ivy.Array.multiply"]], "multiply() (ivy.container method)": [[268, "ivy.Container.multiply"]], "nan_to_num() (in module ivy)": [[269, "ivy.nan_to_num"], [620, "ivy.nan_to_num"]], "nan_to_num() (ivy.array method)": [[269, "ivy.Array.nan_to_num"]], "nan_to_num() (ivy.container method)": [[269, "ivy.Container.nan_to_num"]], "negative() (in module ivy)": [[270, "ivy.negative"], [620, "ivy.negative"]], "negative() (ivy.array method)": [[270, "ivy.Array.negative"]], "negative() (ivy.container method)": [[270, "ivy.Container.negative"]], "not_equal() (in module ivy)": [[271, "ivy.not_equal"], [620, "ivy.not_equal"]], "not_equal() (ivy.array method)": [[271, "ivy.Array.not_equal"]], "not_equal() (ivy.container method)": [[271, "ivy.Container.not_equal"]], "positive() (in module ivy)": [[272, "ivy.positive"], [620, "ivy.positive"]], "positive() (ivy.array method)": [[272, "ivy.Array.positive"]], "positive() (ivy.container method)": [[272, "ivy.Container.positive"]], "pow() (in module ivy)": [[273, "ivy.pow"], [620, "ivy.pow"]], "pow() (ivy.array method)": [[273, "ivy.Array.pow"]], "pow() (ivy.container method)": [[273, "ivy.Container.pow"]], "rad2deg() (in module ivy)": [[274, "ivy.rad2deg"], [620, "ivy.rad2deg"]], "rad2deg() (ivy.array method)": [[274, "ivy.Array.rad2deg"]], "rad2deg() (ivy.container method)": [[274, "ivy.Container.rad2deg"]], "real() (in module ivy)": [[275, "ivy.real"], [620, "ivy.real"]], "real() (ivy.array method)": [[275, "ivy.Array.real"]], "real() (ivy.container method)": [[275, "ivy.Container.real"]], "reciprocal() (in module ivy)": [[276, "ivy.reciprocal"], [620, "ivy.reciprocal"]], "reciprocal() (ivy.array method)": [[276, "ivy.Array.reciprocal"]], "reciprocal() (ivy.container method)": [[276, "ivy.Container.reciprocal"]], "remainder() (in module ivy)": [[277, "ivy.remainder"], [620, "ivy.remainder"]], "remainder() (ivy.array method)": [[277, "ivy.Array.remainder"]], "remainder() (ivy.container method)": [[277, "ivy.Container.remainder"]], "round() (in module ivy)": [[278, "ivy.round"], [620, "ivy.round"]], "round() (ivy.array method)": [[278, "ivy.Array.round"]], "round() (ivy.container method)": [[278, "ivy.Container.round"]], "sign() (in module ivy)": [[279, "ivy.sign"], [620, "ivy.sign"]], "sign() (ivy.array method)": [[279, "ivy.Array.sign"]], "sign() (ivy.container method)": [[279, "ivy.Container.sign"]], "sin() (in module ivy)": [[280, "ivy.sin"], [620, "ivy.sin"]], "sin() (ivy.array method)": [[280, "ivy.Array.sin"]], "sin() (ivy.container method)": [[280, "ivy.Container.sin"]], "sinh() (in module ivy)": [[281, "ivy.sinh"], [620, "ivy.sinh"]], "sinh() (ivy.array method)": [[281, "ivy.Array.sinh"]], "sinh() (ivy.container method)": [[281, "ivy.Container.sinh"]], "sqrt() (in module ivy)": [[282, "ivy.sqrt"], [620, "ivy.sqrt"]], "sqrt() (ivy.array method)": [[282, "ivy.Array.sqrt"]], "sqrt() (ivy.container method)": [[282, "ivy.Container.sqrt"]], "square() (in module ivy)": [[283, "ivy.square"], [620, "ivy.square"]], "square() (ivy.array method)": [[283, "ivy.Array.square"]], "square() (ivy.container method)": [[283, "ivy.Container.square"]], "subtract() (in module ivy)": [[284, "ivy.subtract"], [620, "ivy.subtract"]], "subtract() (ivy.array method)": [[284, "ivy.Array.subtract"]], "subtract() (ivy.container method)": [[284, "ivy.Container.subtract"]], "tan() (in module ivy)": [[285, "ivy.tan"], [620, "ivy.tan"]], "tan() (ivy.array method)": [[285, "ivy.Array.tan"]], "tan() (ivy.container method)": [[285, "ivy.Container.tan"]], "tanh() (in module ivy)": [[286, "ivy.tanh"], [620, "ivy.tanh"]], "tanh() (ivy.array method)": [[286, "ivy.Array.tanh"]], "tanh() (ivy.container method)": [[286, "ivy.Container.tanh"]], "trapz() (in module ivy)": [[287, "ivy.trapz"], [620, "ivy.trapz"]], "trapz() (ivy.array method)": [[287, "ivy.Array.trapz"]], "trapz() (ivy.container method)": [[287, "ivy.Container.trapz"]], "trunc() (in module ivy)": [[288, "ivy.trunc"], [620, "ivy.trunc"]], "trunc() (ivy.array method)": [[288, "ivy.Array.trunc"]], "trunc() (ivy.container method)": [[288, "ivy.Container.trunc"]], "trunc_divide() (in module ivy)": [[289, "ivy.trunc_divide"], [620, "ivy.trunc_divide"]], "trunc_divide() (ivy.array method)": [[289, "ivy.Array.trunc_divide"]], "trunc_divide() (ivy.container method)": [[289, "ivy.Container.trunc_divide"]], "celu() (in module ivy)": [[290, "ivy.celu"], [360, "ivy.celu"]], "celu() (ivy.array method)": [[290, "ivy.Array.celu"]], "celu() (ivy.container method)": [[290, "ivy.Container.celu"]], "elu() (in module ivy)": [[291, "ivy.elu"], [360, "ivy.elu"]], "elu() (ivy.array method)": [[291, "ivy.Array.elu"]], "elu() (ivy.container method)": [[291, "ivy.Container.elu"]], "hardshrink() (in module ivy)": [[292, "ivy.hardshrink"], [360, "ivy.hardshrink"]], "hardshrink() (ivy.array method)": [[292, "ivy.Array.hardshrink"]], "hardshrink() (ivy.container method)": [[292, "ivy.Container.hardshrink"]], "hardtanh() (in module ivy)": [[293, "ivy.hardtanh"], [360, "ivy.hardtanh"]], "hardtanh() (ivy.array method)": [[293, "ivy.Array.hardtanh"]], "hardtanh() (ivy.container method)": [[293, "ivy.Container.hardtanh"]], "logit() (in module ivy)": [[294, "ivy.logit"], [360, "ivy.logit"]], "logit() (ivy.array method)": [[294, "ivy.Array.logit"]], "logit() (ivy.container method)": [[294, "ivy.Container.logit"]], "logsigmoid() (in module ivy)": [[295, "ivy.logsigmoid"], [360, "ivy.logsigmoid"]], "logsigmoid() (ivy.array method)": [[295, "ivy.Array.logsigmoid"]], "logsigmoid() (ivy.container method)": [[295, "ivy.Container.logsigmoid"]], "prelu() (in module ivy)": [[296, "ivy.prelu"], [360, "ivy.prelu"]], "prelu() (ivy.array method)": [[296, "ivy.Array.prelu"]], "prelu() (ivy.container method)": [[296, "ivy.Container.prelu"]], "relu6() (in module ivy)": [[297, "ivy.relu6"], [360, "ivy.relu6"]], "relu6() (ivy.array method)": [[297, "ivy.Array.relu6"]], "relu6() (ivy.container method)": [[297, "ivy.Container.relu6"]], "scaled_tanh() (in module ivy)": [[298, "ivy.scaled_tanh"], [360, "ivy.scaled_tanh"]], "scaled_tanh() (ivy.array method)": [[298, "ivy.Array.scaled_tanh"]], "scaled_tanh() (ivy.container method)": [[298, "ivy.Container.scaled_tanh"]], "selu() (in module ivy)": [[299, "ivy.selu"], [360, "ivy.selu"]], "selu() (ivy.array method)": [[299, "ivy.Array.selu"]], "selu() (ivy.container method)": [[299, "ivy.Container.selu"]], "silu() (in module ivy)": [[300, "ivy.silu"], [360, "ivy.silu"]], "silu() (ivy.array method)": [[300, "ivy.Array.silu"]], "silu() (ivy.container method)": [[300, "ivy.Container.silu"]], "softshrink() (in module ivy)": [[301, "ivy.softshrink"], [360, "ivy.softshrink"]], "softshrink() (ivy.array method)": [[301, "ivy.Array.softshrink"]], "softshrink() (ivy.container method)": [[301, "ivy.Container.softshrink"]], "stanh() (in module ivy)": [[302, "ivy.stanh"], [360, "ivy.stanh"]], "tanhshrink() (in module ivy)": [[303, "ivy.tanhshrink"], [360, "ivy.tanhshrink"]], "tanhshrink() (ivy.array method)": [[303, "ivy.Array.tanhshrink"]], "tanhshrink() (ivy.container method)": [[303, "ivy.Container.tanhshrink"]], "threshold() (in module ivy)": [[304, "ivy.threshold"], [360, "ivy.threshold"]], "threshold() (ivy.array method)": [[304, "ivy.Array.threshold"]], "threshold() (ivy.container method)": [[304, "ivy.Container.threshold"]], "thresholded_relu() (in module ivy)": [[305, "ivy.thresholded_relu"], [360, "ivy.thresholded_relu"]], "thresholded_relu() (ivy.array method)": [[305, "ivy.Array.thresholded_relu"]], "thresholded_relu() (ivy.container method)": [[305, "ivy.Container.thresholded_relu"]], "blackman_window() (in module ivy)": [[306, "ivy.blackman_window"], [362, "ivy.blackman_window"]], "blackman_window() (ivy.array method)": [[306, "ivy.Array.blackman_window"]], "blackman_window() (ivy.container method)": [[306, "ivy.Container.blackman_window"]], "eye_like() (in module ivy)": [[307, "ivy.eye_like"], [362, "ivy.eye_like"]], "eye_like() (ivy.array method)": [[307, "ivy.Array.eye_like"]], "eye_like() (ivy.container method)": [[307, "ivy.Container.eye_like"]], "hamming_window() (in module ivy)": [[308, "ivy.hamming_window"], [362, "ivy.hamming_window"]], "hamming_window() (ivy.container method)": [[308, "ivy.Container.hamming_window"]], "hann_window() (in module ivy)": [[309, "ivy.hann_window"], [362, "ivy.hann_window"]], "hann_window() (ivy.container method)": [[309, "ivy.Container.hann_window"]], "indices() (in module ivy)": [[310, "ivy.indices"], [362, "ivy.indices"]], "kaiser_bessel_derived_window() (in module ivy)": [[311, "ivy.kaiser_bessel_derived_window"], [362, "ivy.kaiser_bessel_derived_window"]], "kaiser_bessel_derived_window() (ivy.container method)": [[311, "ivy.Container.kaiser_bessel_derived_window"]], "kaiser_window() (in module ivy)": [[312, "ivy.kaiser_window"], [362, "ivy.kaiser_window"]], "kaiser_window() (ivy.container method)": [[312, "ivy.Container.kaiser_window"]], "mel_weight_matrix() (in module ivy)": [[313, "ivy.mel_weight_matrix"], [362, "ivy.mel_weight_matrix"]], "mel_weight_matrix() (ivy.array static method)": [[313, "ivy.Array.mel_weight_matrix"]], "mel_weight_matrix() (ivy.container method)": [[313, "ivy.Container.mel_weight_matrix"]], "ndenumerate() (in module ivy)": [[314, "ivy.ndenumerate"], [362, "ivy.ndenumerate"]], "ndindex() (in module ivy)": [[315, "ivy.ndindex"], [362, "ivy.ndindex"]], "polyval() (in module ivy)": [[316, "ivy.polyval"], [362, "ivy.polyval"]], "polyval() (ivy.container method)": [[316, "ivy.Container.polyval"]], "random_cp() (in module ivy)": [[317, "ivy.random_cp"], [362, "ivy.random_cp"]], "random_parafac2() (in module ivy)": [[318, "ivy.random_parafac2"], [362, "ivy.random_parafac2"]], "random_tr() (in module ivy)": [[319, "ivy.random_tr"], [362, "ivy.random_tr"]], "random_tt() (in module ivy)": [[320, "ivy.random_tt"], [362, "ivy.random_tt"]], "random_tucker() (in module ivy)": [[321, "ivy.random_tucker"], [362, "ivy.random_tucker"]], "tril_indices() (in module ivy)": [[322, "ivy.tril_indices"], [362, "ivy.tril_indices"]], "tril_indices() (ivy.container method)": [[322, "ivy.Container.tril_indices"]], "trilu() (in module ivy)": [[323, "ivy.trilu"], [362, "ivy.trilu"]], "trilu() (ivy.array method)": [[323, "ivy.Array.trilu"]], "trilu() (ivy.container method)": [[323, "ivy.Container.trilu"]], "unsorted_segment_mean() (in module ivy)": [[324, "ivy.unsorted_segment_mean"], [362, "ivy.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.array method)": [[324, "ivy.Array.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.container method)": [[324, "ivy.Container.unsorted_segment_mean"]], "unsorted_segment_min() (in module ivy)": [[325, "ivy.unsorted_segment_min"], [362, "ivy.unsorted_segment_min"]], "unsorted_segment_min() (ivy.array method)": [[325, "ivy.Array.unsorted_segment_min"]], "unsorted_segment_min() (ivy.container method)": [[325, "ivy.Container.unsorted_segment_min"]], "unsorted_segment_sum() (in module ivy)": [[326, "ivy.unsorted_segment_sum"], [362, "ivy.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.array method)": [[326, "ivy.Array.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.container method)": [[326, "ivy.Container.unsorted_segment_sum"]], "vorbis_window() (in module ivy)": [[327, "ivy.vorbis_window"], [362, "ivy.vorbis_window"]], "vorbis_window() (ivy.container method)": [[327, "ivy.Container.vorbis_window"]], "allclose() (in module ivy)": [[328, "ivy.allclose"], [365, "ivy.allclose"]], "allclose() (ivy.array method)": [[328, "ivy.Array.allclose"]], "allclose() (ivy.container method)": [[328, "ivy.Container.allclose"]], "amax() (in module ivy)": [[329, "ivy.amax"], [365, "ivy.amax"]], "amax() (ivy.array method)": [[329, "ivy.Array.amax"]], "amax() (ivy.container method)": [[329, "ivy.Container.amax"]], "amin() (in module ivy)": [[330, "ivy.amin"], [365, "ivy.amin"]], "amin() (ivy.array method)": [[330, "ivy.Array.amin"]], "amin() (ivy.container method)": [[330, "ivy.Container.amin"]], "binarizer() (in module ivy)": [[331, "ivy.binarizer"], [365, "ivy.binarizer"]], "binarizer() (ivy.array method)": [[331, "ivy.Array.binarizer"]], "binarizer() (ivy.container method)": [[331, "ivy.Container.binarizer"]], "conj() (in module ivy)": [[332, "ivy.conj"], [365, "ivy.conj"]], "conj() (ivy.array method)": [[332, "ivy.Array.conj"]], "conj() (ivy.container method)": [[332, "ivy.Container.conj"]], "copysign() (in module ivy)": [[333, "ivy.copysign"], [365, "ivy.copysign"]], "copysign() (ivy.array method)": [[333, "ivy.Array.copysign"]], "copysign() (ivy.container method)": [[333, "ivy.Container.copysign"]], "count_nonzero() (in module ivy)": [[334, "ivy.count_nonzero"], [365, "ivy.count_nonzero"]], "count_nonzero() (ivy.array method)": [[334, "ivy.Array.count_nonzero"]], "count_nonzero() (ivy.container method)": [[334, "ivy.Container.count_nonzero"]], "diff() (in module ivy)": [[335, "ivy.diff"], [365, "ivy.diff"]], "diff() (ivy.array method)": [[335, "ivy.Array.diff"]], "diff() (ivy.container method)": [[335, "ivy.Container.diff"]], "digamma() (in module ivy)": [[336, "ivy.digamma"], [365, "ivy.digamma"]], "digamma() (ivy.array method)": [[336, "ivy.Array.digamma"]], "digamma() (ivy.container method)": [[336, "ivy.Container.digamma"]], "erfc() (in module ivy)": [[337, "ivy.erfc"], [365, "ivy.erfc"]], "erfc() (ivy.array method)": [[337, "ivy.Array.erfc"]], "erfc() (ivy.container method)": [[337, "ivy.Container.erfc"]], "fix() (in module ivy)": [[338, "ivy.fix"], [365, "ivy.fix"]], "fix() (ivy.array method)": [[338, "ivy.Array.fix"]], "fix() (ivy.container method)": [[338, "ivy.Container.fix"]], "float_power() (in module ivy)": [[339, "ivy.float_power"], [365, "ivy.float_power"]], "float_power() (ivy.array method)": [[339, "ivy.Array.float_power"]], "float_power() (ivy.container method)": [[339, "ivy.Container.float_power"]], "fmax() (in module ivy)": [[340, "ivy.fmax"], [365, "ivy.fmax"]], "fmax() (ivy.array method)": [[340, "ivy.Array.fmax"]], "fmax() (ivy.container method)": [[340, "ivy.Container.fmax"]], "frexp() (in module ivy)": [[341, "ivy.frexp"], [365, "ivy.frexp"]], "frexp() (ivy.array method)": [[341, "ivy.Array.frexp"]], "frexp() (ivy.container method)": [[341, "ivy.Container.frexp"]], "gradient() (in module ivy)": [[342, "ivy.gradient"], [365, "ivy.gradient"]], "gradient() (ivy.array method)": [[342, "ivy.Array.gradient"]], "gradient() (ivy.container method)": [[342, "ivy.Container.gradient"]], "hypot() (in module ivy)": [[343, "ivy.hypot"], [365, "ivy.hypot"]], "hypot() (ivy.array method)": [[343, "ivy.Array.hypot"]], "hypot() (ivy.container method)": [[343, "ivy.Container.hypot"]], "isclose() (in module ivy)": [[344, "ivy.isclose"], [365, "ivy.isclose"]], "isclose() (ivy.array method)": [[344, "ivy.Array.isclose"]], "isclose() (ivy.container method)": [[344, "ivy.Container.isclose"]], "ldexp() (in module ivy)": [[345, "ivy.ldexp"], [365, "ivy.ldexp"]], "ldexp() (ivy.array method)": [[345, "ivy.Array.ldexp"]], "ldexp() (ivy.container method)": [[345, "ivy.Container.ldexp"]], "lerp() (in module ivy)": [[346, "ivy.lerp"], [365, "ivy.lerp"]], "lerp() (ivy.array method)": [[346, "ivy.Array.lerp"]], "lerp() (ivy.container method)": [[346, "ivy.Container.lerp"]], "lgamma() (in module ivy)": [[347, "ivy.lgamma"], [365, "ivy.lgamma"]], "lgamma() (ivy.array method)": [[347, "ivy.Array.lgamma"]], "modf() (in module ivy)": [[348, "ivy.modf"], [365, "ivy.modf"]], "modf() (ivy.array method)": [[348, "ivy.Array.modf"]], "modf() (ivy.container method)": [[348, "ivy.Container.modf"]], "nansum() (in module ivy)": [[349, "ivy.nansum"], [365, "ivy.nansum"]], "nansum() (ivy.array method)": [[349, "ivy.Array.nansum"]], "nansum() (ivy.container method)": [[349, "ivy.Container.nansum"]], "nextafter() (in module ivy)": [[350, "ivy.nextafter"], [365, "ivy.nextafter"]], "nextafter() (ivy.array method)": [[350, "ivy.Array.nextafter"]], "nextafter() (ivy.container method)": [[350, "ivy.Container.nextafter"]], "signbit() (in module ivy)": [[351, "ivy.signbit"], [365, "ivy.signbit"]], "signbit() (ivy.array method)": [[351, "ivy.Array.signbit"]], "signbit() (ivy.container method)": [[351, "ivy.Container.signbit"]], "sinc() (in module ivy)": [[352, "ivy.sinc"], [365, "ivy.sinc"]], "sinc() (ivy.array method)": [[352, "ivy.Array.sinc"]], "sinc() (ivy.container method)": [[352, "ivy.Container.sinc"]], "sparsify_tensor() (in module ivy)": [[353, "ivy.sparsify_tensor"], [365, "ivy.sparsify_tensor"]], "sparsify_tensor() (ivy.array method)": [[353, "ivy.Array.sparsify_tensor"]], "sparsify_tensor() (ivy.container method)": [[353, "ivy.Container.sparsify_tensor"]], "xlogy() (in module ivy)": [[354, "ivy.xlogy"], [365, "ivy.xlogy"]], "xlogy() (ivy.array method)": [[354, "ivy.Array.xlogy"]], "xlogy() (ivy.container method)": [[354, "ivy.Container.xlogy"]], "zeta() (in module ivy)": [[355, "ivy.zeta"], [365, "ivy.zeta"]], "zeta() (ivy.array method)": [[355, "ivy.Array.zeta"]], "zeta() (ivy.container method)": [[355, "ivy.Container.zeta"]], "reduce() (in module ivy)": [[356, "ivy.reduce"], [366, "ivy.reduce"]], "reduce() (ivy.array method)": [[356, "ivy.Array.reduce"]], "reduce() (ivy.container method)": [[356, "ivy.Container.reduce"]], "bind_custom_gradient_function() (in module ivy)": [[357, "ivy.bind_custom_gradient_function"], [367, "ivy.bind_custom_gradient_function"]], "jvp() (in module ivy)": [[358, "ivy.jvp"], [367, "ivy.jvp"]], "vjp() (in module ivy)": [[359, "ivy.vjp"], [367, "ivy.vjp"]], "ivy.functional.ivy.experimental.activations": [[360, "module-ivy.functional.ivy.experimental.activations"]], "ivy.functional.ivy.experimental.constants": [[361, "module-ivy.functional.ivy.experimental.constants"]], "ivy.functional.ivy.experimental.creation": [[362, "module-ivy.functional.ivy.experimental.creation"]], "ivy.functional.ivy.experimental.data_type": [[363, "module-ivy.functional.ivy.experimental.data_type"]], "ivy.functional.ivy.experimental.device": [[364, "module-ivy.functional.ivy.experimental.device"]], "ivy.functional.ivy.experimental.elementwise": [[365, "module-ivy.functional.ivy.experimental.elementwise"]], "ivy.functional.ivy.experimental.general": [[366, "module-ivy.functional.ivy.experimental.general"]], "ivy.functional.ivy.experimental.gradients": [[367, "module-ivy.functional.ivy.experimental.gradients"]], "adaptive_avg_pool1d() (in module ivy)": [[368, "ivy.adaptive_avg_pool1d"], [382, "ivy.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (in module ivy)": [[368, "ivy.adaptive_avg_pool2d"], [383, "ivy.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (in module ivy)": [[368, "ivy.adaptive_max_pool2d"], [384, "ivy.adaptive_max_pool2d"]], "area_interpolate() (in module ivy)": [[368, "ivy.area_interpolate"], [385, "ivy.area_interpolate"]], "avg_pool1d() (in module ivy)": [[368, "ivy.avg_pool1d"], [386, "ivy.avg_pool1d"]], "avg_pool2d() (in module ivy)": [[368, "ivy.avg_pool2d"], [387, "ivy.avg_pool2d"]], "avg_pool3d() (in module ivy)": [[368, "ivy.avg_pool3d"], [388, "ivy.avg_pool3d"]], "dct() (in module ivy)": [[368, "ivy.dct"], [389, "ivy.dct"]], "dft() (in module ivy)": [[368, "ivy.dft"], [390, "ivy.dft"]], "dropout1d() (in module ivy)": [[368, "ivy.dropout1d"], [391, "ivy.dropout1d"]], "dropout2d() (in module ivy)": [[368, "ivy.dropout2d"], [392, "ivy.dropout2d"]], "dropout3d() (in module ivy)": [[368, "ivy.dropout3d"], [393, "ivy.dropout3d"]], "embedding() (in module ivy)": [[368, "ivy.embedding"], [394, "ivy.embedding"]], "fft() (in module ivy)": [[368, "ivy.fft"], [395, "ivy.fft"]], "fft2() (in module ivy)": [[368, "ivy.fft2"], [396, "ivy.fft2"]], "generate_einsum_equation() (in module ivy)": [[368, "ivy.generate_einsum_equation"], [397, "ivy.generate_einsum_equation"]], "get_interpolate_kernel() (in module ivy)": [[368, "ivy.get_interpolate_kernel"], [398, "ivy.get_interpolate_kernel"]], "idct() (in module ivy)": [[368, "ivy.idct"], [399, "ivy.idct"]], "ifft() (in module ivy)": [[368, "ivy.ifft"], [400, "ivy.ifft"]], "ifftn() (in module ivy)": [[368, "ivy.ifftn"], [401, "ivy.ifftn"]], "interp() (in module ivy)": [[368, "ivy.interp"], [402, "ivy.interp"]], "interpolate() (in module ivy)": [[368, "ivy.interpolate"], [403, "ivy.interpolate"]], "ivy.functional.ivy.experimental.layers": [[368, "module-ivy.functional.ivy.experimental.layers"]], "max_pool1d() (in module ivy)": [[368, "ivy.max_pool1d"], [404, "ivy.max_pool1d"]], "max_pool2d() (in module ivy)": [[368, "ivy.max_pool2d"], [405, "ivy.max_pool2d"]], "max_pool3d() (in module ivy)": [[368, "ivy.max_pool3d"], [406, "ivy.max_pool3d"]], "max_unpool1d() (in module ivy)": [[368, "ivy.max_unpool1d"], [407, "ivy.max_unpool1d"]], "nearest_interpolate() (in module ivy)": [[368, "ivy.nearest_interpolate"], [408, "ivy.nearest_interpolate"]], "pool() (in module ivy)": [[368, "ivy.pool"], [409, "ivy.pool"]], "reduce_window() (in module ivy)": [[368, "ivy.reduce_window"], [410, "ivy.reduce_window"]], "rfft() (in module ivy)": [[368, "ivy.rfft"], [411, "ivy.rfft"]], "rfftn() (in module ivy)": [[368, "ivy.rfftn"], [412, "ivy.rfftn"]], "rnn() (in module ivy)": [[368, "ivy.rnn"], [413, "ivy.rnn"]], "sliding_window() (in module ivy)": [[368, "ivy.sliding_window"], [414, "ivy.sliding_window"]], "stft() (in module ivy)": [[368, "ivy.stft"], [415, "ivy.stft"]], "adjoint() (in module ivy)": [[369, "ivy.adjoint"], [416, "ivy.adjoint"]], "batched_outer() (in module ivy)": [[369, "ivy.batched_outer"], [417, "ivy.batched_outer"]], "cond() (in module ivy)": [[369, "ivy.cond"], [418, "ivy.cond"]], "diagflat() (in module ivy)": [[369, "ivy.diagflat"], [419, "ivy.diagflat"]], "dot() (in module ivy)": [[369, "ivy.dot"], [420, "ivy.dot"]], "eig() (in module ivy)": [[369, "ivy.eig"], [421, "ivy.eig"], [625, "ivy.eig"], [659, "ivy.eig"]], "eigh_tridiagonal() (in module ivy)": [[369, "ivy.eigh_tridiagonal"], [422, "ivy.eigh_tridiagonal"]], "eigvals() (in module ivy)": [[369, "ivy.eigvals"], [423, "ivy.eigvals"]], "general_inner_product() (in module ivy)": [[369, "ivy.general_inner_product"], [424, "ivy.general_inner_product"]], "higher_order_moment() (in module ivy)": [[369, "ivy.higher_order_moment"], [425, "ivy.higher_order_moment"]], "initialize_tucker() (in module ivy)": [[369, "ivy.initialize_tucker"], [426, "ivy.initialize_tucker"]], "ivy.functional.ivy.experimental.linear_algebra": [[369, "module-ivy.functional.ivy.experimental.linear_algebra"]], "khatri_rao() (in module ivy)": [[369, "ivy.khatri_rao"], [427, "ivy.khatri_rao"]], "kron() (in module ivy)": [[369, "ivy.kron"], [428, "ivy.kron"]], "kronecker() (in module ivy)": [[369, "ivy.kronecker"], [429, "ivy.kronecker"]], "make_svd_non_negative() (in module ivy)": [[369, "ivy.make_svd_non_negative"], [430, "ivy.make_svd_non_negative"]], "matrix_exp() (in module ivy)": [[369, "ivy.matrix_exp"], [431, "ivy.matrix_exp"]], "mode_dot() (in module ivy)": [[369, "ivy.mode_dot"], [432, "ivy.mode_dot"]], "multi_dot() (in module ivy)": [[369, "ivy.multi_dot"], [433, "ivy.multi_dot"]], "multi_mode_dot() (in module ivy)": [[369, "ivy.multi_mode_dot"], [434, "ivy.multi_mode_dot"]], "partial_tucker() (in module ivy)": [[369, "ivy.partial_tucker"], [435, "ivy.partial_tucker"]], "solve_triangular() (in module ivy)": [[369, "ivy.solve_triangular"], [436, "ivy.solve_triangular"]], "svd_flip() (in module ivy)": [[369, "ivy.svd_flip"], [437, "ivy.svd_flip"]], "tensor_train() (in module ivy)": [[369, "ivy.tensor_train"], [438, "ivy.tensor_train"]], "truncated_svd() (in module ivy)": [[369, "ivy.truncated_svd"], [439, "ivy.truncated_svd"]], "tt_matrix_to_tensor() (in module ivy)": [[369, "ivy.tt_matrix_to_tensor"], [440, "ivy.tt_matrix_to_tensor"]], "tucker() (in module ivy)": [[369, "ivy.tucker"], [441, "ivy.tucker"]], "hinge_embedding_loss() (in module ivy)": [[370, "ivy.hinge_embedding_loss"], [442, "ivy.hinge_embedding_loss"]], "huber_loss() (in module ivy)": [[370, "ivy.huber_loss"], [443, "ivy.huber_loss"]], "ivy.functional.ivy.experimental.losses": [[370, "module-ivy.functional.ivy.experimental.losses"]], "kl_div() (in module ivy)": [[370, "ivy.kl_div"], [444, "ivy.kl_div"]], "l1_loss() (in module ivy)": [[370, "ivy.l1_loss"], [445, "ivy.l1_loss"]], "log_poisson_loss() (in module ivy)": [[370, "ivy.log_poisson_loss"], [446, "ivy.log_poisson_loss"]], "poisson_nll_loss() (in module ivy)": [[370, "ivy.poisson_nll_loss"], [447, "ivy.poisson_nll_loss"]], "smooth_l1_loss() (in module ivy)": [[370, "ivy.smooth_l1_loss"], [448, "ivy.smooth_l1_loss"]], "soft_margin_loss() (in module ivy)": [[370, "ivy.soft_margin_loss"], [449, "ivy.soft_margin_loss"]], "as_strided() (in module ivy)": [[371, "ivy.as_strided"], [450, "ivy.as_strided"]], "associative_scan() (in module ivy)": [[371, "ivy.associative_scan"], [451, "ivy.associative_scan"]], "atleast_1d() (in module ivy)": [[371, "ivy.atleast_1d"], [452, "ivy.atleast_1d"]], "atleast_2d() (in module ivy)": [[371, "ivy.atleast_2d"], [453, "ivy.atleast_2d"]], "atleast_3d() (in module ivy)": [[371, "ivy.atleast_3d"], [454, "ivy.atleast_3d"]], "broadcast_shapes() (in module ivy)": [[371, "ivy.broadcast_shapes"], [455, "ivy.broadcast_shapes"]], "check_scalar() (in module ivy)": [[371, "ivy.check_scalar"], [456, "ivy.check_scalar"]], "choose() (in module ivy)": [[371, "ivy.choose"], [457, "ivy.choose"]], "column_stack() (in module ivy)": [[371, "ivy.column_stack"], [458, "ivy.column_stack"]], "concat_from_sequence() (in module ivy)": [[371, "ivy.concat_from_sequence"], [459, "ivy.concat_from_sequence"]], "dsplit() (in module ivy)": [[371, "ivy.dsplit"], [460, "ivy.dsplit"]], "dstack() (in module ivy)": [[371, "ivy.dstack"], [461, "ivy.dstack"]], "expand() (in module ivy)": [[371, "ivy.expand"], [462, "ivy.expand"]], "fill_diagonal() (in module ivy)": [[371, "ivy.fill_diagonal"], [463, "ivy.fill_diagonal"]], "flatten() (in module ivy)": [[371, "ivy.flatten"], [464, "ivy.flatten"]], "fliplr() (in module ivy)": [[371, "ivy.fliplr"], [465, "ivy.fliplr"]], "flipud() (in module ivy)": [[371, "ivy.flipud"], [466, "ivy.flipud"]], "fold() (in module ivy)": [[371, "ivy.fold"], [467, "ivy.fold"]], "heaviside() (in module ivy)": [[371, "ivy.heaviside"], [468, "ivy.heaviside"]], "hsplit() (in module ivy)": [[371, "ivy.hsplit"], [469, "ivy.hsplit"]], "hstack() (in module ivy)": [[371, "ivy.hstack"], [470, "ivy.hstack"]], "i0() (in module ivy)": [[371, "ivy.i0"], [471, "ivy.i0"]], "ivy.functional.ivy.experimental.manipulation": [[371, "module-ivy.functional.ivy.experimental.manipulation"]], "matricize() (in module ivy)": [[371, "ivy.matricize"], [472, "ivy.matricize"]], "moveaxis() (in module ivy)": [[371, "ivy.moveaxis"], [473, "ivy.moveaxis"]], "pad() (in module ivy)": [[371, "ivy.pad"], [474, "ivy.pad"]], "partial_fold() (in module ivy)": [[371, "ivy.partial_fold"], [475, "ivy.partial_fold"]], "partial_tensor_to_vec() (in module ivy)": [[371, "ivy.partial_tensor_to_vec"], [476, "ivy.partial_tensor_to_vec"]], "partial_unfold() (in module ivy)": [[371, "ivy.partial_unfold"], [477, "ivy.partial_unfold"]], "partial_vec_to_tensor() (in module ivy)": [[371, "ivy.partial_vec_to_tensor"], [478, "ivy.partial_vec_to_tensor"]], "put_along_axis() (in module ivy)": [[371, "ivy.put_along_axis"], [479, "ivy.put_along_axis"]], "rot90() (in module ivy)": [[371, "ivy.rot90"], [480, "ivy.rot90"]], "soft_thresholding() (in module ivy)": [[371, "ivy.soft_thresholding"], [481, "ivy.soft_thresholding"]], "take() (in module ivy)": [[371, "ivy.take"], [482, "ivy.take"]], "take_along_axis() (in module ivy)": [[371, "ivy.take_along_axis"], [483, "ivy.take_along_axis"]], "top_k() (in module ivy)": [[371, "ivy.top_k"], [484, "ivy.top_k"]], "trim_zeros() (in module ivy)": [[371, "ivy.trim_zeros"], [485, "ivy.trim_zeros"]], "unfold() (in module ivy)": [[371, "ivy.unfold"], [486, "ivy.unfold"]], "unique_consecutive() (in module ivy)": [[371, "ivy.unique_consecutive"], [487, "ivy.unique_consecutive"]], "vsplit() (in module ivy)": [[371, "ivy.vsplit"], [488, "ivy.vsplit"]], "vstack() (in module ivy)": [[371, "ivy.vstack"], [489, "ivy.vstack"]], "ivy.functional.ivy.experimental.meta": [[372, "module-ivy.functional.ivy.experimental.meta"]], "ivy.functional.ivy.experimental.nest": [[373, "module-ivy.functional.ivy.experimental.nest"]], "batch_norm() (in module ivy)": [[374, "ivy.batch_norm"], [490, "ivy.batch_norm"]], "group_norm() (in module ivy)": [[374, "ivy.group_norm"], [491, "ivy.group_norm"]], "instance_norm() (in module ivy)": [[374, "ivy.instance_norm"], [492, "ivy.instance_norm"]], "ivy.functional.ivy.experimental.norms": [[374, "module-ivy.functional.ivy.experimental.norms"]], "l1_normalize() (in module ivy)": [[374, "ivy.l1_normalize"], [493, "ivy.l1_normalize"]], "l2_normalize() (in module ivy)": [[374, "ivy.l2_normalize"], [494, "ivy.l2_normalize"]], "local_response_norm() (in module ivy)": [[374, "ivy.local_response_norm"], [495, "ivy.local_response_norm"]], "lp_normalize() (in module ivy)": [[374, "ivy.lp_normalize"], [496, "ivy.lp_normalize"]], "bernoulli() (in module ivy)": [[375, "ivy.bernoulli"], [497, "ivy.bernoulli"]], "beta() (in module ivy)": [[375, "ivy.beta"], [498, "ivy.beta"]], "dirichlet() (in module ivy)": [[375, "ivy.dirichlet"], [499, "ivy.dirichlet"]], "gamma() (in module ivy)": [[375, "ivy.gamma"], [500, "ivy.gamma"]], "ivy.functional.ivy.experimental.random": [[375, "module-ivy.functional.ivy.experimental.random"]], "poisson() (in module ivy)": [[375, "ivy.poisson"], [501, "ivy.poisson"]], "ivy.functional.ivy.experimental.searching": [[376, "module-ivy.functional.ivy.experimental.searching"]], "unravel_index() (in module ivy)": [[376, "ivy.unravel_index"], [502, "ivy.unravel_index"]], "ivy.functional.ivy.experimental.set": [[377, "module-ivy.functional.ivy.experimental.set"]], "invert_permutation() (in module ivy)": [[378, "ivy.invert_permutation"], [503, "ivy.invert_permutation"]], "ivy.functional.ivy.experimental.sorting": [[378, "module-ivy.functional.ivy.experimental.sorting"]], "lexsort() (in module ivy)": [[378, "ivy.lexsort"], [504, "ivy.lexsort"]], "nativesparsearray (class in ivy)": [[379, "ivy.NativeSparseArray"]], "sparsearray (class in ivy)": [[379, "ivy.SparseArray"]], "is_ivy_sparse_array() (in module ivy)": [[379, "ivy.is_ivy_sparse_array"], [505, "ivy.is_ivy_sparse_array"]], "is_native_sparse_array() (in module ivy)": [[379, "ivy.is_native_sparse_array"], [506, "ivy.is_native_sparse_array"]], "ivy.functional.ivy.experimental.sparse_array": [[379, "module-ivy.functional.ivy.experimental.sparse_array"]], "native_sparse_array() (in module ivy)": [[379, "ivy.native_sparse_array"], [507, "ivy.native_sparse_array"]], "native_sparse_array_to_indices_values_and_shape() (in module ivy)": [[379, "ivy.native_sparse_array_to_indices_values_and_shape"], [508, "ivy.native_sparse_array_to_indices_values_and_shape"]], "bincount() (in module ivy)": [[380, "ivy.bincount"], [509, "ivy.bincount"]], "corrcoef() (in module ivy)": [[380, "ivy.corrcoef"], [510, "ivy.corrcoef"]], "cov() (in module ivy)": [[380, "ivy.cov"], [511, "ivy.cov"]], "cummax() (in module ivy)": [[380, "ivy.cummax"], [512, "ivy.cummax"]], "cummin() (in module ivy)": [[380, "ivy.cummin"], [513, "ivy.cummin"]], "histogram() (in module ivy)": [[380, "ivy.histogram"], [514, "ivy.histogram"]], "igamma() (in module ivy)": [[380, "ivy.igamma"], [515, "ivy.igamma"]], "ivy.functional.ivy.experimental.statistical": [[380, "module-ivy.functional.ivy.experimental.statistical"]], "median() (in module ivy)": [[380, "ivy.median"], [516, "ivy.median"]], "nanmean() (in module ivy)": [[380, "ivy.nanmean"], [517, "ivy.nanmean"]], "nanmedian() (in module ivy)": [[380, "ivy.nanmedian"], [518, "ivy.nanmedian"]], "nanmin() (in module ivy)": [[380, "ivy.nanmin"], [519, "ivy.nanmin"]], "nanprod() (in module ivy)": [[380, "ivy.nanprod"], [520, "ivy.nanprod"]], "quantile() (in module ivy)": [[380, "ivy.quantile"], [521, "ivy.quantile"]], "ivy.functional.ivy.experimental.utility": [[381, "module-ivy.functional.ivy.experimental.utility"]], "optional_get_element() (in module ivy)": [[381, "ivy.optional_get_element"], [522, "ivy.optional_get_element"]], "adaptive_avg_pool1d() (ivy.array method)": [[382, "ivy.Array.adaptive_avg_pool1d"]], "adaptive_avg_pool1d() (ivy.container method)": [[382, "ivy.Container.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.array method)": [[383, "ivy.Array.adaptive_avg_pool2d"]], "adaptive_avg_pool2d() (ivy.container method)": [[383, "ivy.Container.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.array method)": [[384, "ivy.Array.adaptive_max_pool2d"]], "adaptive_max_pool2d() (ivy.container method)": [[384, "ivy.Container.adaptive_max_pool2d"]], "avg_pool1d() (ivy.array method)": [[386, "ivy.Array.avg_pool1d"]], "avg_pool1d() (ivy.container method)": [[386, "ivy.Container.avg_pool1d"]], "avg_pool2d() (ivy.array method)": [[387, "ivy.Array.avg_pool2d"]], "avg_pool2d() (ivy.container method)": [[387, "ivy.Container.avg_pool2d"]], "avg_pool3d() (ivy.array method)": [[388, "ivy.Array.avg_pool3d"]], "avg_pool3d() (ivy.container method)": [[388, "ivy.Container.avg_pool3d"]], "dct() (ivy.array method)": [[389, "ivy.Array.dct"]], "dct() (ivy.container method)": [[389, "ivy.Container.dct"]], "dft() (ivy.array method)": [[390, "ivy.Array.dft"]], "dft() (ivy.container method)": [[390, "ivy.Container.dft"]], "dropout1d() (ivy.array method)": [[391, "ivy.Array.dropout1d"]], "dropout1d() (ivy.container method)": [[391, "ivy.Container.dropout1d"]], "dropout2d() (ivy.array method)": [[392, "ivy.Array.dropout2d"]], "dropout2d() (ivy.container method)": [[392, "ivy.Container.dropout2d"]], "dropout3d() (ivy.array method)": [[393, "ivy.Array.dropout3d"]], "dropout3d() (ivy.container method)": [[393, "ivy.Container.dropout3d"]], "embedding() (ivy.array method)": [[394, "ivy.Array.embedding"]], "embedding() (ivy.container method)": [[394, "ivy.Container.embedding"]], "fft() (ivy.array method)": [[395, "ivy.Array.fft"]], "fft() (ivy.container method)": [[395, "ivy.Container.fft"]], "fft2() (ivy.array method)": [[396, "ivy.Array.fft2"]], "idct() (ivy.array method)": [[399, "ivy.Array.idct"]], "idct() (ivy.container method)": [[399, "ivy.Container.idct"]], "ifft() (ivy.array method)": [[400, "ivy.Array.ifft"]], "ifft() (ivy.container method)": [[400, "ivy.Container.ifft"]], "ifftn() (ivy.array method)": [[401, "ivy.Array.ifftn"]], "ifftn() (ivy.container method)": [[401, "ivy.Container.ifftn"]], "interpolate() (ivy.array method)": [[403, "ivy.Array.interpolate"]], "interpolate() (ivy.container method)": [[403, "ivy.Container.interpolate"]], "max_pool1d() (ivy.array method)": [[404, "ivy.Array.max_pool1d"]], "max_pool1d() (ivy.container method)": [[404, "ivy.Container.max_pool1d"]], "max_pool2d() (ivy.array method)": [[405, "ivy.Array.max_pool2d"]], "max_pool2d() (ivy.container method)": [[405, "ivy.Container.max_pool2d"]], "max_pool3d() (ivy.array method)": [[406, "ivy.Array.max_pool3d"]], "max_pool3d() (ivy.container method)": [[406, "ivy.Container.max_pool3d"]], "max_unpool1d() (ivy.array method)": [[407, "ivy.Array.max_unpool1d"]], "max_unpool1d() (ivy.container method)": [[407, "ivy.Container.max_unpool1d"]], "reduce_window() (ivy.array method)": [[410, "ivy.Array.reduce_window"]], "reduce_window() (ivy.container method)": [[410, "ivy.Container.reduce_window"]], "rfft() (ivy.array method)": [[411, "ivy.Array.rfft"]], "rfft() (ivy.container method)": [[411, "ivy.Container.rfft"]], "rfftn() (ivy.array method)": [[412, "ivy.Array.rfftn"]], "rfftn() (ivy.container method)": [[412, "ivy.Container.rfftn"]], "sliding_window() (ivy.array method)": [[414, "ivy.Array.sliding_window"]], "sliding_window() (ivy.container method)": [[414, "ivy.Container.sliding_window"]], "stft() (ivy.array method)": [[415, "ivy.Array.stft"]], "stft() (ivy.container method)": [[415, "ivy.Container.stft"]], "adjoint() (ivy.array method)": [[416, "ivy.Array.adjoint"]], "adjoint() (ivy.container method)": [[416, "ivy.Container.adjoint"]], "batched_outer() (ivy.array method)": [[417, "ivy.Array.batched_outer"]], "batched_outer() (ivy.container method)": [[417, "ivy.Container.batched_outer"]], "cond() (ivy.array method)": [[418, "ivy.Array.cond"]], "cond() (ivy.container method)": [[418, "ivy.Container.cond"]], "diagflat() (ivy.array method)": [[419, "ivy.Array.diagflat"]], "diagflat() (ivy.container method)": [[419, "ivy.Container.diagflat"]], "dot() (ivy.array method)": [[420, "ivy.Array.dot"]], "dot() (ivy.container method)": [[420, "ivy.Container.dot"]], "eig() (ivy.array method)": [[421, "ivy.Array.eig"], [659, "ivy.Array.eig"]], "eig() (ivy.container method)": [[421, "ivy.Container.eig"], [659, "ivy.Container.eig"]], "eigh_tridiagonal() (ivy.array method)": [[422, "ivy.Array.eigh_tridiagonal"]], "eigh_tridiagonal() (ivy.container method)": [[422, "ivy.Container.eigh_tridiagonal"]], "eigvals() (ivy.array method)": [[423, "ivy.Array.eigvals"]], "eigvals() (ivy.container method)": [[423, "ivy.Container.eigvals"]], "general_inner_product() (ivy.array method)": [[424, "ivy.Array.general_inner_product"]], "general_inner_product() (ivy.container method)": [[424, "ivy.Container.general_inner_product"]], "higher_order_moment() (ivy.array method)": [[425, "ivy.Array.higher_order_moment"]], "higher_order_moment() (ivy.container method)": [[425, "ivy.Container.higher_order_moment"]], "initialize_tucker() (ivy.array method)": [[426, "ivy.Array.initialize_tucker"]], "initialize_tucker() (ivy.container method)": [[426, "ivy.Container.initialize_tucker"]], "kron() (ivy.array method)": [[428, "ivy.Array.kron"]], "kron() (ivy.container method)": [[428, "ivy.Container.kron"]], "make_svd_non_negative() (ivy.array method)": [[430, "ivy.Array.make_svd_non_negative"]], "make_svd_non_negative() (ivy.container method)": [[430, "ivy.Container.make_svd_non_negative"]], "matrix_exp() (ivy.array method)": [[431, "ivy.Array.matrix_exp"]], "matrix_exp() (ivy.container method)": [[431, "ivy.Container.matrix_exp"]], "mode_dot() (ivy.array method)": [[432, "ivy.Array.mode_dot"]], "mode_dot() (ivy.container method)": [[432, "ivy.Container.mode_dot"]], "multi_dot() (ivy.array method)": [[433, "ivy.Array.multi_dot"]], "multi_dot() (ivy.container method)": [[433, "ivy.Container.multi_dot"]], "multi_mode_dot() (ivy.array method)": [[434, "ivy.Array.multi_mode_dot"]], "multi_mode_dot() (ivy.container method)": [[434, "ivy.Container.multi_mode_dot"]], "partial_tucker() (ivy.array method)": [[435, "ivy.Array.partial_tucker"]], "partial_tucker() (ivy.container method)": [[435, "ivy.Container.partial_tucker"]], "svd_flip() (ivy.array method)": [[437, "ivy.Array.svd_flip"]], "svd_flip() (ivy.container method)": [[437, "ivy.Container.svd_flip"]], "tensor_train() (ivy.array method)": [[438, "ivy.Array.tensor_train"]], "tensor_train() (ivy.container method)": [[438, "ivy.Container.tensor_train"]], "truncated_svd() (ivy.array method)": [[439, "ivy.Array.truncated_svd"]], "truncated_svd() (ivy.container method)": [[439, "ivy.Container.truncated_svd"]], "tt_matrix_to_tensor() (ivy.array method)": [[440, "ivy.Array.tt_matrix_to_tensor"]], "tt_matrix_to_tensor() (ivy.container method)": [[440, "ivy.Container.tt_matrix_to_tensor"]], "tucker() (ivy.array method)": [[441, "ivy.Array.tucker"]], "tucker() (ivy.container method)": [[441, "ivy.Container.tucker"]], "hinge_embedding_loss() (ivy.array method)": [[442, "ivy.Array.hinge_embedding_loss"]], "hinge_embedding_loss() (ivy.container method)": [[442, "ivy.Container.hinge_embedding_loss"]], "huber_loss() (ivy.array method)": [[443, "ivy.Array.huber_loss"]], "huber_loss() (ivy.container method)": [[443, "ivy.Container.huber_loss"]], "kl_div() (ivy.array method)": [[444, "ivy.Array.kl_div"]], "kl_div() (ivy.container method)": [[444, "ivy.Container.kl_div"]], "l1_loss() (ivy.array method)": [[445, "ivy.Array.l1_loss"]], "l1_loss() (ivy.container method)": [[445, "ivy.Container.l1_loss"]], "log_poisson_loss() (ivy.array method)": [[446, "ivy.Array.log_poisson_loss"]], "log_poisson_loss() (ivy.container method)": [[446, "ivy.Container.log_poisson_loss"]], "poisson_nll_loss() (ivy.array method)": [[447, "ivy.Array.poisson_nll_loss"]], "poisson_nll_loss() (ivy.container method)": [[447, "ivy.Container.poisson_nll_loss"]], "smooth_l1_loss() (ivy.array method)": [[448, "ivy.Array.smooth_l1_loss"]], "smooth_l1_loss() (ivy.container method)": [[448, "ivy.Container.smooth_l1_loss"]], "soft_margin_loss() (ivy.array method)": [[449, "ivy.Array.soft_margin_loss"]], "soft_margin_loss() (ivy.container method)": [[449, "ivy.Container.soft_margin_loss"]], "as_strided() (ivy.array method)": [[450, "ivy.Array.as_strided"]], "as_strided() (ivy.container method)": [[450, "ivy.Container.as_strided"]], "associative_scan() (ivy.array method)": [[451, "ivy.Array.associative_scan"]], "associative_scan() (ivy.container method)": [[451, "ivy.Container.associative_scan"]], "atleast_1d() (ivy.array method)": [[452, "ivy.Array.atleast_1d"]], "atleast_1d() (ivy.container method)": [[452, "ivy.Container.atleast_1d"]], "atleast_2d() (ivy.array method)": [[453, "ivy.Array.atleast_2d"]], "atleast_2d() (ivy.container method)": [[453, "ivy.Container.atleast_2d"]], "atleast_3d() (ivy.array method)": [[454, "ivy.Array.atleast_3d"]], "atleast_3d() (ivy.container method)": [[454, "ivy.Container.atleast_3d"]], "broadcast_shapes() (ivy.container method)": [[455, "ivy.Container.broadcast_shapes"]], "column_stack() (ivy.array method)": [[458, "ivy.Array.column_stack"]], "column_stack() (ivy.container method)": [[458, "ivy.Container.column_stack"]], "concat_from_sequence() (ivy.array method)": [[459, "ivy.Array.concat_from_sequence"]], "concat_from_sequence() (ivy.container method)": [[459, "ivy.Container.concat_from_sequence"]], "dsplit() (ivy.array method)": [[460, "ivy.Array.dsplit"]], "dsplit() (ivy.container method)": [[460, "ivy.Container.dsplit"]], "dstack() (ivy.array method)": [[461, "ivy.Array.dstack"]], "dstack() (ivy.container method)": [[461, "ivy.Container.dstack"]], "expand() (ivy.array method)": [[462, "ivy.Array.expand"]], "expand() (ivy.container method)": [[462, "ivy.Container.expand"]], "fill_diagonal() (ivy.array method)": [[463, "ivy.Array.fill_diagonal"]], "fill_diagonal() (ivy.container method)": [[463, "ivy.Container.fill_diagonal"]], "flatten() (ivy.array method)": [[464, "ivy.Array.flatten"]], "flatten() (ivy.container method)": [[464, "ivy.Container.flatten"]], "fliplr() (ivy.array method)": [[465, "ivy.Array.fliplr"]], "fliplr() (ivy.container method)": [[465, "ivy.Container.fliplr"]], "flipud() (ivy.array method)": [[466, "ivy.Array.flipud"]], "flipud() (ivy.container method)": [[466, "ivy.Container.flipud"]], "fold() (ivy.array method)": [[467, "ivy.Array.fold"]], "fold() (ivy.container method)": [[467, "ivy.Container.fold"]], "heaviside() (ivy.array method)": [[468, "ivy.Array.heaviside"]], "heaviside() (ivy.container method)": [[468, "ivy.Container.heaviside"]], "hsplit() (ivy.array method)": [[469, "ivy.Array.hsplit"]], "hsplit() (ivy.container method)": [[469, "ivy.Container.hsplit"]], "hstack() (ivy.array method)": [[470, "ivy.Array.hstack"]], "hstack() (ivy.container method)": [[470, "ivy.Container.hstack"]], "i0() (ivy.array method)": [[471, "ivy.Array.i0"]], "i0() (ivy.container method)": [[471, "ivy.Container.i0"]], "matricize() (ivy.array method)": [[472, "ivy.Array.matricize"]], "matricize() (ivy.container method)": [[472, "ivy.Container.matricize"]], "moveaxis() (ivy.array method)": [[473, "ivy.Array.moveaxis"]], "moveaxis() (ivy.container method)": [[473, "ivy.Container.moveaxis"]], "pad() (ivy.array method)": [[474, "ivy.Array.pad"]], "pad() (ivy.container method)": [[474, "ivy.Container.pad"]], "partial_fold() (ivy.array method)": [[475, "ivy.Array.partial_fold"]], "partial_fold() (ivy.container method)": [[475, "ivy.Container.partial_fold"]], "partial_tensor_to_vec() (ivy.array method)": [[476, "ivy.Array.partial_tensor_to_vec"]], "partial_tensor_to_vec() (ivy.container method)": [[476, "ivy.Container.partial_tensor_to_vec"]], "partial_unfold() (ivy.array method)": [[477, "ivy.Array.partial_unfold"]], "partial_unfold() (ivy.container method)": [[477, "ivy.Container.partial_unfold"]], "partial_vec_to_tensor() (ivy.array method)": [[478, "ivy.Array.partial_vec_to_tensor"]], "partial_vec_to_tensor() (ivy.container method)": [[478, "ivy.Container.partial_vec_to_tensor"]], "put_along_axis() (ivy.array method)": [[479, "ivy.Array.put_along_axis"]], "put_along_axis() (ivy.container method)": [[479, "ivy.Container.put_along_axis"]], "rot90() (ivy.array method)": [[480, "ivy.Array.rot90"]], "rot90() (ivy.container method)": [[480, "ivy.Container.rot90"]], "soft_thresholding() (ivy.array method)": [[481, "ivy.Array.soft_thresholding"]], "soft_thresholding() (ivy.container method)": [[481, "ivy.Container.soft_thresholding"]], "take() (ivy.array method)": [[482, "ivy.Array.take"]], "take() (ivy.container method)": [[482, "ivy.Container.take"]], "take_along_axis() (ivy.array method)": [[483, "ivy.Array.take_along_axis"]], "take_along_axis() (ivy.container method)": [[483, "ivy.Container.take_along_axis"]], "top_k() (ivy.array method)": [[484, "ivy.Array.top_k"]], "top_k() (ivy.container method)": [[484, "ivy.Container.top_k"]], "trim_zeros() (ivy.array method)": [[485, "ivy.Array.trim_zeros"]], "trim_zeros() (ivy.container method)": [[485, "ivy.Container.trim_zeros"]], "unfold() (ivy.array method)": [[486, "ivy.Array.unfold"]], "unfold() (ivy.container method)": [[486, "ivy.Container.unfold"]], "unique_consecutive() (ivy.array method)": [[487, "ivy.Array.unique_consecutive"]], "unique_consecutive() (ivy.container method)": [[487, "ivy.Container.unique_consecutive"]], "vsplit() (ivy.array method)": [[488, "ivy.Array.vsplit"]], "vsplit() (ivy.container method)": [[488, "ivy.Container.vsplit"]], "vstack() (ivy.array method)": [[489, "ivy.Array.vstack"]], "vstack() (ivy.container method)": [[489, "ivy.Container.vstack"]], "batch_norm() (ivy.array method)": [[490, "ivy.Array.batch_norm"]], "batch_norm() (ivy.container method)": [[490, "ivy.Container.batch_norm"]], "group_norm() (ivy.array method)": [[491, "ivy.Array.group_norm"]], "group_norm() (ivy.container method)": [[491, "ivy.Container.group_norm"]], "instance_norm() (ivy.array method)": [[492, "ivy.Array.instance_norm"]], "instance_norm() (ivy.container method)": [[492, "ivy.Container.instance_norm"]], "l1_normalize() (ivy.array method)": [[493, "ivy.Array.l1_normalize"]], "l1_normalize() (ivy.container method)": [[493, "ivy.Container.l1_normalize"]], "l2_normalize() (ivy.array method)": [[494, "ivy.Array.l2_normalize"]], "l2_normalize() (ivy.container method)": [[494, "ivy.Container.l2_normalize"]], "lp_normalize() (ivy.array method)": [[496, "ivy.Array.lp_normalize"]], "lp_normalize() (ivy.container method)": [[496, "ivy.Container.lp_normalize"]], "bernoulli() (ivy.array method)": [[497, "ivy.Array.bernoulli"]], "bernoulli() (ivy.container method)": [[497, "ivy.Container.bernoulli"]], "beta() (ivy.array method)": [[498, "ivy.Array.beta"]], "beta() (ivy.container method)": [[498, "ivy.Container.beta"]], "dirichlet() (ivy.array method)": [[499, "ivy.Array.dirichlet"]], "dirichlet() (ivy.container method)": [[499, "ivy.Container.dirichlet"]], "gamma() (ivy.array method)": [[500, "ivy.Array.gamma"]], "gamma() (ivy.container method)": [[500, "ivy.Container.gamma"]], "poisson() (ivy.array method)": [[501, "ivy.Array.poisson"]], "poisson() (ivy.container method)": [[501, "ivy.Container.poisson"]], "unravel_index() (ivy.array method)": [[502, "ivy.Array.unravel_index"]], "unravel_index() (ivy.container method)": [[502, "ivy.Container.unravel_index"]], "invert_permutation() (ivy.container method)": [[503, "ivy.Container.invert_permutation"]], "lexsort() (ivy.array method)": [[504, "ivy.Array.lexsort"]], "lexsort() (ivy.container method)": [[504, "ivy.Container.lexsort"]], "bincount() (ivy.array method)": [[509, "ivy.Array.bincount"]], "bincount() (ivy.container method)": [[509, "ivy.Container.bincount"]], "corrcoef() (ivy.array method)": [[510, "ivy.Array.corrcoef"]], "corrcoef() (ivy.container method)": [[510, "ivy.Container.corrcoef"]], "cov() (ivy.array method)": [[511, "ivy.Array.cov"]], "cov() (ivy.container method)": [[511, "ivy.Container.cov"]], "cummax() (ivy.array method)": [[512, "ivy.Array.cummax"]], "cummax() (ivy.container method)": [[512, "ivy.Container.cummax"]], "cummin() (ivy.array method)": [[513, "ivy.Array.cummin"]], "cummin() (ivy.container method)": [[513, "ivy.Container.cummin"]], "histogram() (ivy.array method)": [[514, "ivy.Array.histogram"]], "histogram() (ivy.container method)": [[514, "ivy.Container.histogram"]], "igamma() (ivy.array method)": [[515, "ivy.Array.igamma"]], "igamma() (ivy.container method)": [[515, "ivy.Container.igamma"]], "median() (ivy.array method)": [[516, "ivy.Array.median"]], "median() (ivy.container method)": [[516, "ivy.Container.median"]], "nanmean() (ivy.array method)": [[517, "ivy.Array.nanmean"]], "nanmean() (ivy.container method)": [[517, "ivy.Container.nanmean"]], "nanmedian() (ivy.array method)": [[518, "ivy.Array.nanmedian"]], "nanmedian() (ivy.container method)": [[518, "ivy.Container.nanmedian"]], "nanmin() (ivy.array method)": [[519, "ivy.Array.nanmin"]], "nanmin() (ivy.container method)": [[519, "ivy.Container.nanmin"]], "nanprod() (ivy.array method)": [[520, "ivy.Array.nanprod"]], "nanprod() (ivy.container method)": [[520, "ivy.Container.nanprod"]], "quantile() (ivy.array method)": [[521, "ivy.Array.quantile"]], "quantile() (ivy.container method)": [[521, "ivy.Container.quantile"]], "optional_get_element() (ivy.array method)": [[522, "ivy.Array.optional_get_element"]], "optional_get_element() (ivy.container method)": [[522, "ivy.Container.optional_get_element"]], "all_equal() (in module ivy)": [[523, "ivy.all_equal"], [622, "ivy.all_equal"]], "all_equal() (ivy.array method)": [[523, "ivy.Array.all_equal"]], "all_equal() (ivy.container method)": [[523, "ivy.Container.all_equal"]], "arg_info() (in module ivy)": [[524, "ivy.arg_info"], [622, "ivy.arg_info"]], "arg_names() (in module ivy)": [[525, "ivy.arg_names"], [622, "ivy.arg_names"]], "array_equal() (in module ivy)": [[526, "ivy.array_equal"], [622, "ivy.array_equal"]], "array_equal() (ivy.array method)": [[526, "ivy.Array.array_equal"]], "array_equal() (ivy.container method)": [[526, "ivy.Container.array_equal"]], "assert_supports_inplace() (in module ivy)": [[527, "ivy.assert_supports_inplace"], [622, "ivy.assert_supports_inplace"]], "assert_supports_inplace() (ivy.array method)": [[527, "ivy.Array.assert_supports_inplace"]], "assert_supports_inplace() (ivy.container method)": [[527, "ivy.Container.assert_supports_inplace"]], "cache_fn() (in module ivy)": [[528, "ivy.cache_fn"], [622, "ivy.cache_fn"]], "clip_matrix_norm() (in module ivy)": [[529, "ivy.clip_matrix_norm"], [622, "ivy.clip_matrix_norm"]], "clip_matrix_norm() (ivy.array method)": [[529, "ivy.Array.clip_matrix_norm"]], "clip_matrix_norm() (ivy.container method)": [[529, "ivy.Container.clip_matrix_norm"]], "clip_vector_norm() (in module ivy)": [[530, "ivy.clip_vector_norm"], [622, "ivy.clip_vector_norm"]], "clip_vector_norm() (ivy.array method)": [[530, "ivy.Array.clip_vector_norm"]], "clip_vector_norm() (ivy.container method)": [[530, "ivy.Container.clip_vector_norm"]], "container_types() (in module ivy)": [[531, "ivy.container_types"], [622, "ivy.container_types"]], "current_backend_str() (in module ivy)": [[532, "ivy.current_backend_str"], [622, "ivy.current_backend_str"]], "default() (in module ivy)": [[533, "ivy.default"], [622, "ivy.default"]], "default() (ivy.array method)": [[533, "ivy.Array.default"]], "einops_rearrange() (in module ivy)": [[534, "ivy.einops_rearrange"], [622, "ivy.einops_rearrange"]], "einops_rearrange() (ivy.array method)": [[534, "ivy.Array.einops_rearrange"]], "einops_rearrange() (ivy.container method)": [[534, "ivy.Container.einops_rearrange"]], "einops_reduce() (in module ivy)": [[535, "ivy.einops_reduce"], [622, "ivy.einops_reduce"]], "einops_reduce() (ivy.array method)": [[535, "ivy.Array.einops_reduce"]], "einops_reduce() (ivy.container method)": [[535, "ivy.Container.einops_reduce"]], "einops_repeat() (in module ivy)": [[536, "ivy.einops_repeat"], [622, "ivy.einops_repeat"]], "einops_repeat() (ivy.array method)": [[536, "ivy.Array.einops_repeat"]], "einops_repeat() (ivy.container method)": [[536, "ivy.Container.einops_repeat"]], "exists() (in module ivy)": [[537, "ivy.exists"], [622, "ivy.exists"]], "exists() (ivy.array method)": [[537, "ivy.Array.exists"]], "exists() (ivy.container method)": [[537, "ivy.Container.exists"]], "fourier_encode() (in module ivy)": [[538, "ivy.fourier_encode"], [622, "ivy.fourier_encode"]], "fourier_encode() (ivy.array method)": [[538, "ivy.Array.fourier_encode"]], "fourier_encode() (ivy.container method)": [[538, "ivy.Container.fourier_encode"]], "function_supported_devices_and_dtypes() (in module ivy)": [[539, "ivy.function_supported_devices_and_dtypes"], [622, "ivy.function_supported_devices_and_dtypes"]], "function_unsupported_devices_and_dtypes() (in module ivy)": [[540, "ivy.function_unsupported_devices_and_dtypes"], [622, "ivy.function_unsupported_devices_and_dtypes"]], "gather() (in module ivy)": [[541, "ivy.gather"], [622, "ivy.gather"]], "gather() (ivy.array method)": [[541, "ivy.Array.gather"]], "gather() (ivy.container method)": [[541, "ivy.Container.gather"]], "gather_nd() (in module ivy)": [[542, "ivy.gather_nd"], [622, "ivy.gather_nd"]], "gather_nd() (ivy.array method)": [[542, "ivy.Array.gather_nd"]], "gather_nd() (ivy.container method)": [[542, "ivy.Container.gather_nd"]], "get_all_arrays_in_memory() (in module ivy)": [[543, "ivy.get_all_arrays_in_memory"], [622, "ivy.get_all_arrays_in_memory"]], "get_item() (in module ivy)": [[544, "ivy.get_item"], [622, "ivy.get_item"]], "get_num_dims() (in module ivy)": [[545, "ivy.get_num_dims"], [622, "ivy.get_num_dims"]], "get_num_dims() (ivy.array method)": [[545, "ivy.Array.get_num_dims"]], "get_num_dims() (ivy.container method)": [[545, "ivy.Container.get_num_dims"]], "get_referrers_recursive() (in module ivy)": [[546, "ivy.get_referrers_recursive"], [622, "ivy.get_referrers_recursive"]], "has_nans() (in module ivy)": [[547, "ivy.has_nans"], [622, "ivy.has_nans"]], "has_nans() (ivy.array method)": [[547, "ivy.Array.has_nans"]], "has_nans() (ivy.container method)": [[547, "ivy.Container.has_nans"]], "inplace_arrays_supported() (in module ivy)": [[548, "ivy.inplace_arrays_supported"], [622, "ivy.inplace_arrays_supported"]], "inplace_decrement() (in module ivy)": [[549, "ivy.inplace_decrement"], [622, "ivy.inplace_decrement"]], "inplace_decrement() (ivy.array method)": [[549, "ivy.Array.inplace_decrement"]], "inplace_decrement() (ivy.container method)": [[549, "ivy.Container.inplace_decrement"]], "inplace_increment() (in module ivy)": [[550, "ivy.inplace_increment"], [622, "ivy.inplace_increment"]], "inplace_increment() (ivy.array method)": [[550, "ivy.Array.inplace_increment"]], "inplace_increment() (ivy.container method)": [[550, "ivy.Container.inplace_increment"]], "inplace_update() (in module ivy)": [[551, "ivy.inplace_update"], [622, "ivy.inplace_update"]], "inplace_update() (ivy.array method)": [[551, "ivy.Array.inplace_update"]], "inplace_update() (ivy.container method)": [[551, "ivy.Container.inplace_update"]], "inplace_variables_supported() (in module ivy)": [[552, "ivy.inplace_variables_supported"], [622, "ivy.inplace_variables_supported"]], "is_array() (in module ivy)": [[553, "ivy.is_array"], [622, "ivy.is_array"]], "is_array() (ivy.array method)": [[553, "ivy.Array.is_array"]], "is_array() (ivy.container method)": [[553, "ivy.Container.is_array"]], "is_ivy_array() (in module ivy)": [[554, "ivy.is_ivy_array"], [622, "ivy.is_ivy_array"]], "is_ivy_array() (ivy.array method)": [[554, "ivy.Array.is_ivy_array"]], "is_ivy_array() (ivy.container method)": [[554, "ivy.Container.is_ivy_array"]], "is_ivy_container() (in module ivy)": [[555, "ivy.is_ivy_container"], [622, "ivy.is_ivy_container"]], "is_ivy_container() (ivy.array method)": [[555, "ivy.Array.is_ivy_container"]], "is_ivy_nested_array() (in module ivy)": [[556, "ivy.is_ivy_nested_array"], [622, "ivy.is_ivy_nested_array"]], "is_native_array() (in module ivy)": [[557, "ivy.is_native_array"], [622, "ivy.is_native_array"]], "is_native_array() (ivy.array method)": [[557, "ivy.Array.is_native_array"]], "is_native_array() (ivy.container method)": [[557, "ivy.Container.is_native_array"]], "isin() (in module ivy)": [[558, "ivy.isin"], [622, "ivy.isin"]], "isin() (ivy.array method)": [[558, "ivy.Array.isin"]], "isin() (ivy.container method)": [[558, "ivy.Container.isin"]], "isscalar() (in module ivy)": [[559, "ivy.isscalar"], [622, "ivy.isscalar"]], "itemsize() (in module ivy)": [[560, "ivy.itemsize"], [622, "ivy.itemsize"]], "itemsize() (ivy.array method)": [[560, "ivy.Array.itemsize"]], "itemsize() (ivy.container method)": [[560, "ivy.Container.itemsize"]], "match_kwargs() (in module ivy)": [[561, "ivy.match_kwargs"], [622, "ivy.match_kwargs"]], "multiprocessing() (in module ivy)": [[562, "ivy.multiprocessing"], [622, "ivy.multiprocessing"]], "num_arrays_in_memory() (in module ivy)": [[563, "ivy.num_arrays_in_memory"], [622, "ivy.num_arrays_in_memory"]], "print_all_arrays_in_memory() (in module ivy)": [[564, "ivy.print_all_arrays_in_memory"], [622, "ivy.print_all_arrays_in_memory"]], "scatter_flat() (in module ivy)": [[565, "ivy.scatter_flat"], [622, "ivy.scatter_flat"]], "scatter_flat() (ivy.array method)": [[565, "ivy.Array.scatter_flat"]], "scatter_flat() (ivy.container method)": [[565, "ivy.Container.scatter_flat"]], "scatter_nd() (in module ivy)": [[566, "ivy.scatter_nd"], [622, "ivy.scatter_nd"]], "scatter_nd() (ivy.array method)": [[566, "ivy.Array.scatter_nd"]], "scatter_nd() (ivy.container method)": [[566, "ivy.Container.scatter_nd"]], "set_array_mode() (in module ivy)": [[567, "ivy.set_array_mode"], [622, "ivy.set_array_mode"]], "set_exception_trace_mode() (in module ivy)": [[568, "ivy.set_exception_trace_mode"], [622, "ivy.set_exception_trace_mode"]], "set_inplace_mode() (in module ivy)": [[569, "ivy.set_inplace_mode"], [622, "ivy.set_inplace_mode"]], "set_item() (in module ivy)": [[570, "ivy.set_item"], [622, "ivy.set_item"]], "set_min_base() (in module ivy)": [[571, "ivy.set_min_base"], [622, "ivy.set_min_base"]], "set_min_denominator() (in module ivy)": [[572, "ivy.set_min_denominator"], [622, "ivy.set_min_denominator"]], "set_nestable_mode() (in module ivy)": [[573, "ivy.set_nestable_mode"], [622, "ivy.set_nestable_mode"]], "set_precise_mode() (in module ivy)": [[574, "ivy.set_precise_mode"], [622, "ivy.set_precise_mode"]], "set_queue_timeout() (in module ivy)": [[575, "ivy.set_queue_timeout"], [622, "ivy.set_queue_timeout"]], "set_shape_array_mode() (in module ivy)": [[576, "ivy.set_shape_array_mode"], [622, "ivy.set_shape_array_mode"]], "set_show_func_wrapper_trace_mode() (in module ivy)": [[577, "ivy.set_show_func_wrapper_trace_mode"], [622, "ivy.set_show_func_wrapper_trace_mode"]], "set_tmp_dir() (in module ivy)": [[578, "ivy.set_tmp_dir"], [622, "ivy.set_tmp_dir"]], "shape() (in module ivy)": [[579, "ivy.shape"], [622, "ivy.shape"]], "shape() (ivy.array method)": [[579, "ivy.Array.shape"]], "stable_divide() (in module ivy)": [[580, "ivy.stable_divide"], [622, "ivy.stable_divide"]], "stable_divide() (ivy.array method)": [[580, "ivy.Array.stable_divide"]], "stable_divide() (ivy.container method)": [[580, "ivy.Container.stable_divide"]], "stable_pow() (in module ivy)": [[581, "ivy.stable_pow"], [622, "ivy.stable_pow"]], "stable_pow() (ivy.array method)": [[581, "ivy.Array.stable_pow"]], "stable_pow() (ivy.container method)": [[581, "ivy.Container.stable_pow"]], "strides() (in module ivy)": [[582, "ivy.strides"], [622, "ivy.strides"]], "strides() (ivy.array method)": [[582, "ivy.Array.strides"]], "strides() (ivy.container method)": [[582, "ivy.Container.strides"]], "supports_inplace_updates() (in module ivy)": [[583, "ivy.supports_inplace_updates"], [622, "ivy.supports_inplace_updates"]], "supports_inplace_updates() (ivy.array method)": [[583, "ivy.Array.supports_inplace_updates"]], "supports_inplace_updates() (ivy.container method)": [[583, "ivy.Container.supports_inplace_updates"]], "to_ivy_shape() (in module ivy)": [[584, "ivy.to_ivy_shape"], [622, "ivy.to_ivy_shape"]], "to_list() (in module ivy)": [[585, "ivy.to_list"], [622, "ivy.to_list"]], "to_list() (ivy.array method)": [[585, "ivy.Array.to_list"]], "to_list() (ivy.container method)": [[585, "ivy.Container.to_list"]], "to_native_shape() (in module ivy)": [[586, "ivy.to_native_shape"], [622, "ivy.to_native_shape"]], "to_numpy() (in module ivy)": [[587, "ivy.to_numpy"], [622, "ivy.to_numpy"]], "to_numpy() (ivy.array method)": [[587, "ivy.Array.to_numpy"]], "to_numpy() (ivy.container method)": [[587, "ivy.Container.to_numpy"]], "to_scalar() (in module ivy)": [[588, "ivy.to_scalar"], [622, "ivy.to_scalar"]], "to_scalar() (ivy.array method)": [[588, "ivy.Array.to_scalar"]], "to_scalar() (ivy.container method)": [[588, "ivy.Container.to_scalar"]], "try_else_none() (in module ivy)": [[589, "ivy.try_else_none"], [622, "ivy.try_else_none"]], "unset_array_mode() (in module ivy)": [[590, "ivy.unset_array_mode"], [622, "ivy.unset_array_mode"]], "unset_exception_trace_mode() (in module ivy)": [[591, "ivy.unset_exception_trace_mode"], [622, "ivy.unset_exception_trace_mode"]], "unset_inplace_mode() (in module ivy)": [[592, "ivy.unset_inplace_mode"], [622, "ivy.unset_inplace_mode"]], "unset_min_base() (in module ivy)": [[593, "ivy.unset_min_base"], [622, "ivy.unset_min_base"]], "unset_min_denominator() (in module ivy)": [[594, "ivy.unset_min_denominator"], [622, "ivy.unset_min_denominator"]], "unset_nestable_mode() (in module ivy)": [[595, "ivy.unset_nestable_mode"], [622, "ivy.unset_nestable_mode"]], "unset_precise_mode() (in module ivy)": [[596, "ivy.unset_precise_mode"], [622, "ivy.unset_precise_mode"]], "unset_queue_timeout() (in module ivy)": [[597, "ivy.unset_queue_timeout"], [622, "ivy.unset_queue_timeout"]], "unset_shape_array_mode() (in module ivy)": [[598, "ivy.unset_shape_array_mode"], [622, "ivy.unset_shape_array_mode"]], "unset_show_func_wrapper_trace_mode() (in module ivy)": [[599, "ivy.unset_show_func_wrapper_trace_mode"], [622, "ivy.unset_show_func_wrapper_trace_mode"]], "unset_tmp_dir() (in module ivy)": [[600, "ivy.unset_tmp_dir"], [622, "ivy.unset_tmp_dir"]], "value_is_nan() (in module ivy)": [[601, "ivy.value_is_nan"], [622, "ivy.value_is_nan"]], "value_is_nan() (ivy.array method)": [[601, "ivy.Array.value_is_nan"]], "value_is_nan() (ivy.container method)": [[601, "ivy.Container.value_is_nan"]], "vmap() (in module ivy)": [[602, "ivy.vmap"], [622, "ivy.vmap"]], "adam_step() (in module ivy)": [[603, "ivy.adam_step"], [623, "ivy.adam_step"]], "adam_step() (ivy.array method)": [[603, "ivy.Array.adam_step"]], "adam_step() (ivy.container method)": [[603, "ivy.Container.adam_step"]], "adam_update() (in module ivy)": [[604, "ivy.adam_update"], [623, "ivy.adam_update"]], "adam_update() (ivy.array method)": [[604, "ivy.Array.adam_update"]], "adam_update() (ivy.container method)": [[604, "ivy.Container.adam_update"]], "execute_with_gradients() (in module ivy)": [[605, "ivy.execute_with_gradients"], [623, "ivy.execute_with_gradients"]], "grad() (in module ivy)": [[606, "ivy.grad"], [623, "ivy.grad"]], "gradient_descent_update() (in module ivy)": [[607, "ivy.gradient_descent_update"], [623, "ivy.gradient_descent_update"]], "gradient_descent_update() (ivy.array method)": [[607, "ivy.Array.gradient_descent_update"]], "gradient_descent_update() (ivy.container method)": [[607, "ivy.Container.gradient_descent_update"]], "jac() (in module ivy)": [[608, "ivy.jac"], [623, "ivy.jac"]], "lamb_update() (in module ivy)": [[609, "ivy.lamb_update"], [623, "ivy.lamb_update"]], "lamb_update() (ivy.array method)": [[609, "ivy.Array.lamb_update"]], "lamb_update() (ivy.container method)": [[609, "ivy.Container.lamb_update"]], "lars_update() (in module ivy)": [[610, "ivy.lars_update"], [623, "ivy.lars_update"]], "lars_update() (ivy.array method)": [[610, "ivy.Array.lars_update"]], "lars_update() (ivy.container method)": [[610, "ivy.Container.lars_update"]], "optimizer_update() (in module ivy)": [[611, "ivy.optimizer_update"], [623, "ivy.optimizer_update"]], "optimizer_update() (ivy.array method)": [[611, "ivy.Array.optimizer_update"]], "optimizer_update() (ivy.container method)": [[611, "ivy.Container.optimizer_update"]], "stop_gradient() (in module ivy)": [[612, "ivy.stop_gradient"], [623, "ivy.stop_gradient"]], "stop_gradient() (ivy.array method)": [[612, "ivy.Array.stop_gradient"]], "stop_gradient() (ivy.container method)": [[612, "ivy.Container.stop_gradient"]], "value_and_grad() (in module ivy)": [[613, "ivy.value_and_grad"], [623, "ivy.value_and_grad"]], "ivy.functional.ivy.activations": [[614, "module-ivy.functional.ivy.activations"]], "e (in module ivy)": [[615, "ivy.e"]], "inf (in module ivy)": [[615, "ivy.inf"]], "ivy.functional.ivy.constants": [[615, "module-ivy.functional.ivy.constants"]], "nan (in module ivy)": [[615, "ivy.nan"]], "newaxis (in module ivy)": [[615, "ivy.newaxis"]], "pi (in module ivy)": [[615, "ivy.pi"]], "ivy.functional.ivy.control_flow_ops": [[616, "module-ivy.functional.ivy.control_flow_ops"]], "nestedsequence (class in ivy)": [[617, "ivy.NestedSequence"]], "ivy.functional.ivy.creation": [[617, "module-ivy.functional.ivy.creation"]], "defaultcomplexdtype (class in ivy)": [[618, "ivy.DefaultComplexDtype"]], "defaultdtype (class in ivy)": [[618, "ivy.DefaultDtype"]], "defaultfloatdtype (class in ivy)": [[618, "ivy.DefaultFloatDtype"]], "defaultintdtype (class in ivy)": [[618, "ivy.DefaultIntDtype"]], "defaultuintdtype (class in ivy)": [[618, "ivy.DefaultUintDtype"]], "ivy.functional.ivy.data_type": [[618, "module-ivy.functional.ivy.data_type"]], "defaultdevice (class in ivy)": [[619, "ivy.DefaultDevice"]], "profiler (class in ivy)": [[619, "ivy.Profiler"]], "ivy.functional.ivy.device": [[619, "module-ivy.functional.ivy.device"]], "ivy.functional.ivy.elementwise": [[620, "module-ivy.functional.ivy.elementwise"]], "ivy.functional.ivy.experimental": [[621, "module-ivy.functional.ivy.experimental"]], "arraymode (class in ivy)": [[622, "ivy.ArrayMode"]], "precisemode (class in ivy)": [[622, "ivy.PreciseMode"]], "ivy.functional.ivy.general": [[622, "module-ivy.functional.ivy.general"]], "ivy.functional.ivy.gradients": [[623, "module-ivy.functional.ivy.gradients"]], "conv() (in module ivy)": [[624, "ivy.conv"], [637, "ivy.conv"]], "conv1d() (in module ivy)": [[624, "ivy.conv1d"], [638, "ivy.conv1d"]], "conv1d_transpose() (in module ivy)": [[624, "ivy.conv1d_transpose"], [639, "ivy.conv1d_transpose"]], "conv2d() (in module ivy)": [[624, "ivy.conv2d"], [640, "ivy.conv2d"]], "conv2d_transpose() (in module ivy)": [[624, "ivy.conv2d_transpose"], [641, "ivy.conv2d_transpose"]], "conv3d() (in module ivy)": [[624, "ivy.conv3d"], [642, "ivy.conv3d"]], "conv3d_transpose() (in module ivy)": [[624, "ivy.conv3d_transpose"], [643, "ivy.conv3d_transpose"]], "conv_general_dilated() (in module ivy)": [[624, "ivy.conv_general_dilated"], [644, "ivy.conv_general_dilated"]], "conv_general_transpose() (in module ivy)": [[624, "ivy.conv_general_transpose"], [645, "ivy.conv_general_transpose"]], "depthwise_conv2d() (in module ivy)": [[624, "ivy.depthwise_conv2d"], [646, "ivy.depthwise_conv2d"]], "dropout() (in module ivy)": [[624, "ivy.dropout"], [647, "ivy.dropout"]], "ivy.functional.ivy.layers": [[624, "module-ivy.functional.ivy.layers"]], "linear() (in module ivy)": [[624, "ivy.linear"], [648, "ivy.linear"]], "lstm_update() (in module ivy)": [[624, "ivy.lstm_update"], [649, "ivy.lstm_update"]], "multi_head_attention() (in module ivy)": [[624, "ivy.multi_head_attention"], [650, "ivy.multi_head_attention"]], "nms() (in module ivy)": [[624, "ivy.nms"], [651, "ivy.nms"]], "roi_align() (in module ivy)": [[624, "ivy.roi_align"], [652, "ivy.roi_align"]], "scaled_dot_product_attention() (in module ivy)": [[624, "ivy.scaled_dot_product_attention"], [653, "ivy.scaled_dot_product_attention"]], "cholesky() (in module ivy)": [[625, "ivy.cholesky"], [654, "ivy.cholesky"]], "cross() (in module ivy)": [[625, "ivy.cross"], [655, "ivy.cross"]], "det() (in module ivy)": [[625, "ivy.det"], [656, "ivy.det"]], "diag() (in module ivy)": [[625, "ivy.diag"], [657, "ivy.diag"]], "diagonal() (in module ivy)": [[625, "ivy.diagonal"], [658, "ivy.diagonal"]], "eigh() (in module ivy)": [[625, "ivy.eigh"], [660, "ivy.eigh"]], "eigvalsh() (in module ivy)": [[625, "ivy.eigvalsh"], [661, "ivy.eigvalsh"]], "inner() (in module ivy)": [[625, "ivy.inner"], [662, "ivy.inner"]], "inv() (in module ivy)": [[625, "ivy.inv"], [663, "ivy.inv"]], "ivy.functional.ivy.linear_algebra": [[625, "module-ivy.functional.ivy.linear_algebra"]], "lu_factor() (in module ivy)": [[625, "ivy.lu_factor"], [664, "ivy.lu_factor"]], "matmul() (in module ivy)": [[625, "ivy.matmul"], [665, "ivy.matmul"]], "matrix_norm() (in module ivy)": [[625, "ivy.matrix_norm"], [666, "ivy.matrix_norm"]], "matrix_power() (in module ivy)": [[625, "ivy.matrix_power"], [667, "ivy.matrix_power"]], "matrix_rank() (in module ivy)": [[625, "ivy.matrix_rank"], [668, "ivy.matrix_rank"]], "matrix_transpose() (in module ivy)": [[625, "ivy.matrix_transpose"], [669, "ivy.matrix_transpose"]], "outer() (in module ivy)": [[625, "ivy.outer"], [670, "ivy.outer"]], "pinv() (in module ivy)": [[625, "ivy.pinv"], [671, "ivy.pinv"]], "qr() (in module ivy)": [[625, "ivy.qr"], [672, "ivy.qr"]], "slogdet() (in module ivy)": [[625, "ivy.slogdet"], [673, "ivy.slogdet"]], "solve() (in module ivy)": [[625, "ivy.solve"], [674, "ivy.solve"]], "svd() (in module ivy)": [[625, "ivy.svd"], [675, "ivy.svd"]], "svdvals() (in module ivy)": [[625, "ivy.svdvals"], [676, "ivy.svdvals"]], "tensordot() (in module ivy)": [[625, "ivy.tensordot"], [677, "ivy.tensordot"]], "tensorsolve() (in module ivy)": [[625, "ivy.tensorsolve"], [678, "ivy.tensorsolve"]], "trace() (in module ivy)": [[625, "ivy.trace"], [679, "ivy.trace"]], "vander() (in module ivy)": [[625, "ivy.vander"], [680, "ivy.vander"]], "vecdot() (in module ivy)": [[625, "ivy.vecdot"], [681, "ivy.vecdot"]], "vector_norm() (in module ivy)": [[625, "ivy.vector_norm"], [682, "ivy.vector_norm"]], "vector_to_skew_symmetric_matrix() (in module ivy)": [[625, "ivy.vector_to_skew_symmetric_matrix"], [683, "ivy.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (in module ivy)": [[626, "ivy.binary_cross_entropy"], [684, "ivy.binary_cross_entropy"]], "cross_entropy() (in module ivy)": [[626, "ivy.cross_entropy"], [685, "ivy.cross_entropy"]], "ivy.functional.ivy.losses": [[626, "module-ivy.functional.ivy.losses"]], "sparse_cross_entropy() (in module ivy)": [[626, "ivy.sparse_cross_entropy"], [686, "ivy.sparse_cross_entropy"]], "clip() (in module ivy)": [[627, "ivy.clip"], [687, "ivy.clip"]], "concat() (in module ivy)": [[627, "ivy.concat"], [688, "ivy.concat"]], "constant_pad() (in module ivy)": [[627, "ivy.constant_pad"], [689, "ivy.constant_pad"]], "expand_dims() (in module ivy)": [[627, "ivy.expand_dims"], [690, "ivy.expand_dims"]], "flip() (in module ivy)": [[627, "ivy.flip"], [691, "ivy.flip"]], "ivy.functional.ivy.manipulation": [[627, "module-ivy.functional.ivy.manipulation"]], "permute_dims() (in module ivy)": [[627, "ivy.permute_dims"], [692, "ivy.permute_dims"]], "repeat() (in module ivy)": [[627, "ivy.repeat"], [693, "ivy.repeat"]], "reshape() (in module ivy)": [[627, "ivy.reshape"], [694, "ivy.reshape"]], "roll() (in module ivy)": [[627, "ivy.roll"], [695, "ivy.roll"]], "split() (in module ivy)": [[627, "ivy.split"], [696, "ivy.split"]], "squeeze() (in module ivy)": [[627, "ivy.squeeze"], [697, "ivy.squeeze"]], "stack() (in module ivy)": [[627, "ivy.stack"], [698, "ivy.stack"]], "swapaxes() (in module ivy)": [[627, "ivy.swapaxes"], [699, "ivy.swapaxes"]], "tile() (in module ivy)": [[627, "ivy.tile"], [700, "ivy.tile"]], "unstack() (in module ivy)": [[627, "ivy.unstack"], [701, "ivy.unstack"]], "zero_pad() (in module ivy)": [[627, "ivy.zero_pad"], [702, "ivy.zero_pad"]], "fomaml_step() (in module ivy)": [[628, "ivy.fomaml_step"], [703, "ivy.fomaml_step"]], "ivy.functional.ivy.meta": [[628, "module-ivy.functional.ivy.meta"]], "maml_step() (in module ivy)": [[628, "ivy.maml_step"], [704, "ivy.maml_step"]], "reptile_step() (in module ivy)": [[628, "ivy.reptile_step"], [705, "ivy.reptile_step"]], "all_nested_indices() (in module ivy)": [[629, "ivy.all_nested_indices"], [706, "ivy.all_nested_indices"]], "copy_nest() (in module ivy)": [[629, "ivy.copy_nest"], [707, "ivy.copy_nest"]], "duplicate_array_index_chains() (in module ivy)": [[629, "ivy.duplicate_array_index_chains"], [708, "ivy.duplicate_array_index_chains"]], "index_nest() (in module ivy)": [[629, "ivy.index_nest"], [709, "ivy.index_nest"]], "insert_into_nest_at_index() (in module ivy)": [[629, "ivy.insert_into_nest_at_index"], [710, "ivy.insert_into_nest_at_index"]], "insert_into_nest_at_indices() (in module ivy)": [[629, "ivy.insert_into_nest_at_indices"], [711, "ivy.insert_into_nest_at_indices"]], "ivy.functional.ivy.nest": [[629, "module-ivy.functional.ivy.nest"]], "map() (in module ivy)": [[629, "ivy.map"], [712, "ivy.map"]], "map_nest_at_index() (in module ivy)": [[629, "ivy.map_nest_at_index"], [713, "ivy.map_nest_at_index"]], "map_nest_at_indices() (in module ivy)": [[629, "ivy.map_nest_at_indices"], [714, "ivy.map_nest_at_indices"]], "multi_index_nest() (in module ivy)": [[629, "ivy.multi_index_nest"], [715, "ivy.multi_index_nest"]], "nested_any() (in module ivy)": [[629, "ivy.nested_any"], [716, "ivy.nested_any"]], "nested_argwhere() (in module ivy)": [[629, "ivy.nested_argwhere"], [717, "ivy.nested_argwhere"]], "nested_map() (in module ivy)": [[629, "ivy.nested_map"], [718, "ivy.nested_map"]], "nested_multi_map() (in module ivy)": [[629, "ivy.nested_multi_map"], [719, "ivy.nested_multi_map"]], "prune_empty() (in module ivy)": [[629, "ivy.prune_empty"], [720, "ivy.prune_empty"]], "prune_nest_at_index() (in module ivy)": [[629, "ivy.prune_nest_at_index"], [721, "ivy.prune_nest_at_index"]], "prune_nest_at_indices() (in module ivy)": [[629, "ivy.prune_nest_at_indices"], [722, "ivy.prune_nest_at_indices"]], "set_nest_at_index() (in module ivy)": [[629, "ivy.set_nest_at_index"], [723, "ivy.set_nest_at_index"]], "set_nest_at_indices() (in module ivy)": [[629, "ivy.set_nest_at_indices"], [724, "ivy.set_nest_at_indices"]], "ivy.functional.ivy.norms": [[630, "module-ivy.functional.ivy.norms"]], "layer_norm() (in module ivy)": [[630, "ivy.layer_norm"], [725, "ivy.layer_norm"]], "ivy.functional.ivy.random": [[631, "module-ivy.functional.ivy.random"]], "multinomial() (in module ivy)": [[631, "ivy.multinomial"], [726, "ivy.multinomial"]], "randint() (in module ivy)": [[631, "ivy.randint"], [727, "ivy.randint"]], "random_normal() (in module ivy)": [[631, "ivy.random_normal"], [728, "ivy.random_normal"]], "random_uniform() (in module ivy)": [[631, "ivy.random_uniform"], [729, "ivy.random_uniform"]], "seed() (in module ivy)": [[631, "ivy.seed"], [730, "ivy.seed"]], "shuffle() (in module ivy)": [[631, "ivy.shuffle"], [731, "ivy.shuffle"]], "argmax() (in module ivy)": [[632, "ivy.argmax"], [732, "ivy.argmax"]], "argmin() (in module ivy)": [[632, "ivy.argmin"], [733, "ivy.argmin"]], "argwhere() (in module ivy)": [[632, "ivy.argwhere"], [734, "ivy.argwhere"]], "ivy.functional.ivy.searching": [[632, "module-ivy.functional.ivy.searching"]], "nonzero() (in module ivy)": [[632, "ivy.nonzero"], [735, "ivy.nonzero"]], "where() (in module ivy)": [[632, "ivy.where"], [736, "ivy.where"]], "ivy.functional.ivy.set": [[633, "module-ivy.functional.ivy.set"]], "unique_all() (in module ivy)": [[633, "ivy.unique_all"], [737, "ivy.unique_all"]], "unique_counts() (in module ivy)": [[633, "ivy.unique_counts"], [738, "ivy.unique_counts"]], "unique_inverse() (in module ivy)": [[633, "ivy.unique_inverse"], [739, "ivy.unique_inverse"]], "unique_values() (in module ivy)": [[633, "ivy.unique_values"], [740, "ivy.unique_values"]], "argsort() (in module ivy)": [[634, "ivy.argsort"], [741, "ivy.argsort"]], "ivy.functional.ivy.sorting": [[634, "module-ivy.functional.ivy.sorting"]], "msort() (in module ivy)": [[634, "ivy.msort"], [742, "ivy.msort"]], "searchsorted() (in module ivy)": [[634, "ivy.searchsorted"], [743, "ivy.searchsorted"]], "sort() (in module ivy)": [[634, "ivy.sort"], [744, "ivy.sort"]], "cumprod() (in module ivy)": [[635, "ivy.cumprod"], [745, "ivy.cumprod"]], "cumsum() (in module ivy)": [[635, "ivy.cumsum"], [746, "ivy.cumsum"]], "einsum() (in module ivy)": [[635, "ivy.einsum"], [747, "ivy.einsum"]], "ivy.functional.ivy.statistical": [[635, "module-ivy.functional.ivy.statistical"]], "max() (in module ivy)": [[635, "ivy.max"], [748, "ivy.max"]], "mean() (in module ivy)": [[635, "ivy.mean"], [749, "ivy.mean"]], "min() (in module ivy)": [[635, "ivy.min"], [750, "ivy.min"]], "prod() (in module ivy)": [[635, "ivy.prod"], [751, "ivy.prod"]], "std() (in module ivy)": [[635, "ivy.std"], [752, "ivy.std"]], "sum() (in module ivy)": [[635, "ivy.sum"], [753, "ivy.sum"]], "var() (in module ivy)": [[635, "ivy.var"], [754, "ivy.var"]], "all() (in module ivy)": [[636, "ivy.all"], [755, "ivy.all"]], "any() (in module ivy)": [[636, "ivy.any"], [756, "ivy.any"]], "ivy.functional.ivy.utility": [[636, "module-ivy.functional.ivy.utility"]], "load() (in module ivy)": [[636, "ivy.load"], [757, "ivy.load"]], "save() (in module ivy)": [[636, "ivy.save"], [758, "ivy.save"]], "conv1d() (ivy.array method)": [[638, "ivy.Array.conv1d"]], "conv1d() (ivy.container method)": [[638, "ivy.Container.conv1d"]], "conv1d_transpose() (ivy.array method)": [[639, "ivy.Array.conv1d_transpose"]], "conv1d_transpose() (ivy.container method)": [[639, "ivy.Container.conv1d_transpose"]], "conv2d() (ivy.array method)": [[640, "ivy.Array.conv2d"]], "conv2d() (ivy.container method)": [[640, "ivy.Container.conv2d"]], "conv2d_transpose() (ivy.array method)": [[641, "ivy.Array.conv2d_transpose"]], "conv2d_transpose() (ivy.container method)": [[641, "ivy.Container.conv2d_transpose"]], "conv3d() (ivy.array method)": [[642, "ivy.Array.conv3d"]], "conv3d() (ivy.container method)": [[642, "ivy.Container.conv3d"]], "conv3d_transpose() (ivy.array method)": [[643, "ivy.Array.conv3d_transpose"]], "conv3d_transpose() (ivy.container method)": [[643, "ivy.Container.conv3d_transpose"]], "depthwise_conv2d() (ivy.array method)": [[646, "ivy.Array.depthwise_conv2d"]], "depthwise_conv2d() (ivy.container method)": [[646, "ivy.Container.depthwise_conv2d"]], "dropout() (ivy.array method)": [[647, "ivy.Array.dropout"]], "dropout() (ivy.container method)": [[647, "ivy.Container.dropout"]], "linear() (ivy.array method)": [[648, "ivy.Array.linear"]], "linear() (ivy.container method)": [[648, "ivy.Container.linear"]], "lstm_update() (ivy.array method)": [[649, "ivy.Array.lstm_update"]], "lstm_update() (ivy.container method)": [[649, "ivy.Container.lstm_update"]], "multi_head_attention() (ivy.array method)": [[650, "ivy.Array.multi_head_attention"]], "multi_head_attention() (ivy.container method)": [[650, "ivy.Container.multi_head_attention"]], "scaled_dot_product_attention() (ivy.array method)": [[653, "ivy.Array.scaled_dot_product_attention"]], "scaled_dot_product_attention() (ivy.container method)": [[653, "ivy.Container.scaled_dot_product_attention"]], "cholesky() (ivy.array method)": [[654, "ivy.Array.cholesky"]], "cholesky() (ivy.container method)": [[654, "ivy.Container.cholesky"]], "cross() (ivy.array method)": [[655, "ivy.Array.cross"]], "cross() (ivy.container method)": [[655, "ivy.Container.cross"]], "det() (ivy.array method)": [[656, "ivy.Array.det"]], "det() (ivy.container method)": [[656, "ivy.Container.det"]], "diag() (ivy.array method)": [[657, "ivy.Array.diag"]], "diag() (ivy.container method)": [[657, "ivy.Container.diag"]], "diagonal() (ivy.array method)": [[658, "ivy.Array.diagonal"]], "diagonal() (ivy.container method)": [[658, "ivy.Container.diagonal"]], "eigh() (ivy.array method)": [[660, "ivy.Array.eigh"]], "eigh() (ivy.container method)": [[660, "ivy.Container.eigh"]], "eigvalsh() (ivy.array method)": [[661, "ivy.Array.eigvalsh"]], "eigvalsh() (ivy.container method)": [[661, "ivy.Container.eigvalsh"]], "inner() (ivy.array method)": [[662, "ivy.Array.inner"]], "inner() (ivy.container method)": [[662, "ivy.Container.inner"]], "inv() (ivy.array method)": [[663, "ivy.Array.inv"]], "inv() (ivy.container method)": [[663, "ivy.Container.inv"]], "matmul() (ivy.array method)": [[665, "ivy.Array.matmul"]], "matmul() (ivy.container method)": [[665, "ivy.Container.matmul"]], "matrix_norm() (ivy.array method)": [[666, "ivy.Array.matrix_norm"]], "matrix_norm() (ivy.container method)": [[666, "ivy.Container.matrix_norm"]], "matrix_power() (ivy.array method)": [[667, "ivy.Array.matrix_power"]], "matrix_power() (ivy.container method)": [[667, "ivy.Container.matrix_power"]], "matrix_rank() (ivy.array method)": [[668, "ivy.Array.matrix_rank"]], "matrix_rank() (ivy.container method)": [[668, "ivy.Container.matrix_rank"]], "matrix_transpose() (ivy.array method)": [[669, "ivy.Array.matrix_transpose"]], "matrix_transpose() (ivy.container method)": [[669, "ivy.Container.matrix_transpose"]], "outer() (ivy.array method)": [[670, "ivy.Array.outer"]], "outer() (ivy.container method)": [[670, "ivy.Container.outer"]], "pinv() (ivy.array method)": [[671, "ivy.Array.pinv"]], "pinv() (ivy.container method)": [[671, "ivy.Container.pinv"]], "qr() (ivy.array method)": [[672, "ivy.Array.qr"]], "qr() (ivy.container method)": [[672, "ivy.Container.qr"]], "slogdet() (ivy.array method)": [[673, "ivy.Array.slogdet"]], "slogdet() (ivy.container method)": [[673, "ivy.Container.slogdet"]], "solve() (ivy.array method)": [[674, "ivy.Array.solve"]], "solve() (ivy.container method)": [[674, "ivy.Container.solve"]], "svd() (ivy.array method)": [[675, "ivy.Array.svd"]], "svd() (ivy.container method)": [[675, "ivy.Container.svd"]], "svdvals() (ivy.array method)": [[676, "ivy.Array.svdvals"]], "svdvals() (ivy.container method)": [[676, "ivy.Container.svdvals"]], "tensordot() (ivy.array method)": [[677, "ivy.Array.tensordot"]], "tensordot() (ivy.container method)": [[677, "ivy.Container.tensordot"]], "tensorsolve() (ivy.array method)": [[678, "ivy.Array.tensorsolve"]], "tensorsolve() (ivy.container method)": [[678, "ivy.Container.tensorsolve"]], "trace() (ivy.array method)": [[679, "ivy.Array.trace"]], "trace() (ivy.container method)": [[679, "ivy.Container.trace"]], "vander() (ivy.array method)": [[680, "ivy.Array.vander"]], "vander() (ivy.container method)": [[680, "ivy.Container.vander"]], "vecdot() (ivy.array method)": [[681, "ivy.Array.vecdot"]], "vecdot() (ivy.container method)": [[681, "ivy.Container.vecdot"]], "vector_norm() (ivy.array method)": [[682, "ivy.Array.vector_norm"]], "vector_norm() (ivy.container method)": [[682, "ivy.Container.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.array method)": [[683, "ivy.Array.vector_to_skew_symmetric_matrix"]], "vector_to_skew_symmetric_matrix() (ivy.container method)": [[683, "ivy.Container.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (ivy.array method)": [[684, "ivy.Array.binary_cross_entropy"]], "binary_cross_entropy() (ivy.container method)": [[684, "ivy.Container.binary_cross_entropy"]], "cross_entropy() (ivy.array method)": [[685, "ivy.Array.cross_entropy"]], "cross_entropy() (ivy.container method)": [[685, "ivy.Container.cross_entropy"]], "sparse_cross_entropy() (ivy.array method)": [[686, "ivy.Array.sparse_cross_entropy"]], "sparse_cross_entropy() (ivy.container method)": [[686, "ivy.Container.sparse_cross_entropy"]], "clip() (ivy.array method)": [[687, "ivy.Array.clip"]], "clip() (ivy.container method)": [[687, "ivy.Container.clip"]], "concat() (ivy.array method)": [[688, "ivy.Array.concat"]], "concat() (ivy.container method)": [[688, "ivy.Container.concat"]], "constant_pad() (ivy.array method)": [[689, "ivy.Array.constant_pad"]], "constant_pad() (ivy.container method)": [[689, "ivy.Container.constant_pad"]], "expand_dims() (ivy.array method)": [[690, "ivy.Array.expand_dims"]], "expand_dims() (ivy.container method)": [[690, "ivy.Container.expand_dims"]], "flip() (ivy.array method)": [[691, "ivy.Array.flip"]], "flip() (ivy.container method)": [[691, "ivy.Container.flip"]], "permute_dims() (ivy.array method)": [[692, "ivy.Array.permute_dims"]], "permute_dims() (ivy.container method)": [[692, "ivy.Container.permute_dims"]], "repeat() (ivy.array method)": [[693, "ivy.Array.repeat"]], "repeat() (ivy.container method)": [[693, "ivy.Container.repeat"]], "reshape() (ivy.array method)": [[694, "ivy.Array.reshape"]], "reshape() (ivy.container method)": [[694, "ivy.Container.reshape"]], "roll() (ivy.array method)": [[695, "ivy.Array.roll"]], "roll() (ivy.container method)": [[695, "ivy.Container.roll"]], "split() (ivy.array method)": [[696, "ivy.Array.split"]], "split() (ivy.container method)": [[696, "ivy.Container.split"]], "squeeze() (ivy.array method)": [[697, "ivy.Array.squeeze"]], "squeeze() (ivy.container method)": [[697, "ivy.Container.squeeze"]], "stack() (ivy.array method)": [[698, "ivy.Array.stack"]], "stack() (ivy.container method)": [[698, "ivy.Container.stack"]], "swapaxes() (ivy.array method)": [[699, "ivy.Array.swapaxes"]], "swapaxes() (ivy.container method)": [[699, "ivy.Container.swapaxes"]], "tile() (ivy.array method)": [[700, "ivy.Array.tile"]], "tile() (ivy.container method)": [[700, "ivy.Container.tile"]], "unstack() (ivy.array method)": [[701, "ivy.Array.unstack"]], "unstack() (ivy.container method)": [[701, "ivy.Container.unstack"]], "zero_pad() (ivy.array method)": [[702, "ivy.Array.zero_pad"]], "zero_pad() (ivy.container method)": [[702, "ivy.Container.zero_pad"]], "layer_norm() (ivy.array method)": [[725, "ivy.Array.layer_norm"]], "layer_norm() (ivy.container method)": [[725, "ivy.Container.layer_norm"]], "multinomial() (ivy.array method)": [[726, "ivy.Array.multinomial"]], "multinomial() (ivy.container method)": [[726, "ivy.Container.multinomial"]], "randint() (ivy.array method)": [[727, "ivy.Array.randint"]], "randint() (ivy.container method)": [[727, "ivy.Container.randint"]], "random_normal() (ivy.array method)": [[728, "ivy.Array.random_normal"]], "random_normal() (ivy.container method)": [[728, "ivy.Container.random_normal"]], "random_uniform() (ivy.array method)": [[729, "ivy.Array.random_uniform"]], "random_uniform() (ivy.container method)": [[729, "ivy.Container.random_uniform"]], "shuffle() (ivy.array method)": [[731, "ivy.Array.shuffle"]], "shuffle() (ivy.container method)": [[731, "ivy.Container.shuffle"]], "argmax() (ivy.array method)": [[732, "ivy.Array.argmax"]], "argmax() (ivy.container method)": [[732, "ivy.Container.argmax"]], "argmin() (ivy.array method)": [[733, "ivy.Array.argmin"]], "argmin() (ivy.container method)": [[733, "ivy.Container.argmin"]], "argwhere() (ivy.array method)": [[734, "ivy.Array.argwhere"]], "argwhere() (ivy.container method)": [[734, "ivy.Container.argwhere"]], "nonzero() (ivy.array method)": [[735, "ivy.Array.nonzero"]], "nonzero() (ivy.container method)": [[735, "ivy.Container.nonzero"]], "where() (ivy.array method)": [[736, "ivy.Array.where"]], "where() (ivy.container method)": [[736, "ivy.Container.where"]], "unique_all() (ivy.array method)": [[737, "ivy.Array.unique_all"]], "unique_all() (ivy.container method)": [[737, "ivy.Container.unique_all"]], "unique_counts() (ivy.array method)": [[738, "ivy.Array.unique_counts"]], "unique_counts() (ivy.container method)": [[738, "ivy.Container.unique_counts"]], "unique_inverse() (ivy.array method)": [[739, "ivy.Array.unique_inverse"]], "unique_inverse() (ivy.container method)": [[739, "ivy.Container.unique_inverse"]], "unique_values() (ivy.array method)": [[740, "ivy.Array.unique_values"]], "unique_values() (ivy.container method)": [[740, "ivy.Container.unique_values"]], "argsort() (ivy.array method)": [[741, "ivy.Array.argsort"]], "argsort() (ivy.container method)": [[741, "ivy.Container.argsort"]], "msort() (ivy.array method)": [[742, "ivy.Array.msort"]], "msort() (ivy.container method)": [[742, "ivy.Container.msort"]], "searchsorted() (ivy.array method)": [[743, "ivy.Array.searchsorted"]], "searchsorted() (ivy.container method)": [[743, "ivy.Container.searchsorted"]], "sort() (ivy.array method)": [[744, "ivy.Array.sort"]], "sort() (ivy.container method)": [[744, "ivy.Container.sort"]], "cumprod() (ivy.array method)": [[745, "ivy.Array.cumprod"]], "cumprod() (ivy.container method)": [[745, "ivy.Container.cumprod"]], "cumsum() (ivy.array method)": [[746, "ivy.Array.cumsum"]], "cumsum() (ivy.container method)": [[746, "ivy.Container.cumsum"]], "einsum() (ivy.array method)": [[747, "ivy.Array.einsum"]], "einsum() (ivy.container method)": [[747, "ivy.Container.einsum"]], "max() (ivy.array method)": [[748, "ivy.Array.max"]], "max() (ivy.container method)": [[748, "ivy.Container.max"]], "mean() (ivy.array method)": [[749, "ivy.Array.mean"]], "mean() (ivy.container method)": [[749, "ivy.Container.mean"]], "min() (ivy.array method)": [[750, "ivy.Array.min"]], "min() (ivy.container method)": [[750, "ivy.Container.min"]], "prod() (ivy.array method)": [[751, "ivy.Array.prod"]], "prod() (ivy.container method)": [[751, "ivy.Container.prod"]], "std() (ivy.array method)": [[752, "ivy.Array.std"]], "std() (ivy.container method)": [[752, "ivy.Container.std"]], "sum() (ivy.array method)": [[753, "ivy.Array.sum"]], "sum() (ivy.container method)": [[753, "ivy.Container.sum"]], "var() (ivy.array method)": [[754, "ivy.Array.var"]], "var() (ivy.container method)": [[754, "ivy.Container.var"]], "all() (ivy.array method)": [[755, "ivy.Array.all"]], "all() (ivy.container method)": [[755, "ivy.Container.all"]], "any() (ivy.array method)": [[756, "ivy.Array.any"]], "any() (ivy.container method)": [[756, "ivy.Container.any"]], "assert_all_close() (in module ivy_tests.test_ivy.helpers.assertions)": [[759, "ivy_tests.test_ivy.helpers.assertions.assert_all_close"]], "assert_same_type() (in module ivy_tests.test_ivy.helpers.assertions)": [[759, "ivy_tests.test_ivy.helpers.assertions.assert_same_type"]], "assert_same_type_and_shape() (in module ivy_tests.test_ivy.helpers.assertions)": [[759, "ivy_tests.test_ivy.helpers.assertions.assert_same_type_and_shape"]], "check_unsupported_device() (in module ivy_tests.test_ivy.helpers.assertions)": [[759, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device"]], "check_unsupported_device_and_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[759, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device_and_dtype"]], "check_unsupported_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[759, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_dtype"]], "ivy_tests.test_ivy.helpers.assertions": [[759, "module-ivy_tests.test_ivy.helpers.assertions"]], "test_unsupported_function() (in module ivy_tests.test_ivy.helpers.assertions)": [[759, "ivy_tests.test_ivy.helpers.assertions.test_unsupported_function"]], "value_test() (in module ivy_tests.test_ivy.helpers.assertions)": [[759, "ivy_tests.test_ivy.helpers.assertions.value_test"]], "ivy_tests.test_ivy.helpers.available_frameworks": [[760, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "args_to_container() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.args_to_container"]], "args_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.args_to_frontend"]], "arrays_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.arrays_to_frontend"]], "as_lists() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.as_lists"]], "convtrue() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.convtrue"]], "create_args_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.create_args_kwargs"]], "flatten() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.flatten"]], "flatten_and_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.flatten_and_to_np"]], "flatten_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend"]], "flatten_frontend_fw_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_fw_to_np"]], "flatten_frontend_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_to_np"]], "get_frontend_ret() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.get_frontend_ret"]], "get_ret_and_flattened_np_array() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.get_ret_and_flattened_np_array"]], "gradient_incompatible_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.gradient_incompatible_function"]], "gradient_test() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.gradient_test"]], "gradient_unsupported_dtypes() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.gradient_unsupported_dtypes"]], "ivy_tests.test_ivy.helpers.function_testing": [[761, "module-ivy_tests.test_ivy.helpers.function_testing"]], "kwargs_to_args_n_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.kwargs_to_args_n_kwargs"]], "test_frontend_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_function"]], "test_frontend_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_method"]], "test_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.test_function"]], "test_function_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.test_function_backend_computation"]], "test_function_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.test_function_ground_truth_computation"]], "test_gradient_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_backend_computation"]], "test_gradient_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_ground_truth_computation"]], "test_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.test_method"]], "test_method_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.test_method_backend_computation"]], "test_method_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.test_method_ground_truth_computation"]], "traced_if_required() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.traced_if_required"]], "wrap_frontend_function_args() (in module ivy_tests.test_ivy.helpers.function_testing)": [[761, "ivy_tests.test_ivy.helpers.function_testing.wrap_frontend_function_args"]], "current_frontend_config (in module ivy_tests.test_ivy.helpers.globals)": [[762, "ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG"]], "interruptedtest": [[762, "ivy_tests.test_ivy.helpers.globals.InterruptedTest"]], "testdata (class in ivy_tests.test_ivy.helpers.globals)": [[762, "ivy_tests.test_ivy.helpers.globals.TestData"]], "__init__() (ivy_tests.test_ivy.helpers.globals.interruptedtest method)": [[762, "ivy_tests.test_ivy.helpers.globals.InterruptedTest.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.globals.testdata method)": [[762, "ivy_tests.test_ivy.helpers.globals.TestData.__init__"]], "fn_name (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[762, "ivy_tests.test_ivy.helpers.globals.TestData.fn_name"]], "fn_tree (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[762, "ivy_tests.test_ivy.helpers.globals.TestData.fn_tree"]], "is_method (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[762, "ivy_tests.test_ivy.helpers.globals.TestData.is_method"]], "ivy_tests.test_ivy.helpers.globals": [[762, "module-ivy_tests.test_ivy.helpers.globals"]], "setup_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[762, "ivy_tests.test_ivy.helpers.globals.setup_api_test"]], "setup_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[762, "ivy_tests.test_ivy.helpers.globals.setup_frontend_test"]], "supported_device_dtypes (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[762, "ivy_tests.test_ivy.helpers.globals.TestData.supported_device_dtypes"]], "teardown_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[762, "ivy_tests.test_ivy.helpers.globals.teardown_api_test"]], "teardown_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[762, "ivy_tests.test_ivy.helpers.globals.teardown_frontend_test"]], "test_fn (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[762, "ivy_tests.test_ivy.helpers.globals.TestData.test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"]], "array_and_broadcastable_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_and_broadcastable_shape"]], "array_bools() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_bools"]], "array_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_helpers_dtype_info_helper"]], "array_indices_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_axis"]], "array_indices_put_along_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_put_along_axis"]], "array_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_values"]], "arrays_and_axes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_and_axes"]], "arrays_for_pooling() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_for_pooling"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.broadcast_shapes"]], "cond_data_gen_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.cond_data_gen_helper"]], "create_concatenable_arrays_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_concatenable_arrays_dtypes"]], "create_nested_input() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_nested_input"]], "dtype_and_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_and_values"]], "dtype_array_query() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query"]], "dtype_array_query_val() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query_val"]], "dtype_values_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_values_axis"]], "einsum_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.einsum_helper"]], "get_first_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_batch_matrix"]], "get_first_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_matrix"]], "get_second_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_batch_matrix"]], "get_second_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_matrix"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "list_of_size() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.list_of_size"]], "lists() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.lists"]], "mutually_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.mutually_broadcastable_shapes"]], "prod() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.prod"]], "array_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.array_dtypes"]], "cast_filter() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter"]], "cast_filter_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter_helper"]], "get_castable_dtype() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_castable_dtype"]], "get_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "broadcasterror": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.BroadcastError"]], "apply_safety_factor() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.apply_safety_factor"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.broadcast_shapes"]], "embedding_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.embedding_helper"]], "general_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.general_helpers_dtype_info_helper"]], "get_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_axis"]], "get_bounds() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_bounds"]], "get_mean_std() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_mean_std"]], "get_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_shape"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "matrix_is_stable() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.matrix_is_stable"]], "reshape_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.reshape_shapes"]], "subsets() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.subsets"]], "two_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.two_broadcastable_shapes"]], "x_and_filters() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.x_and_filters"]], "floats() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[767, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.floats"]], "ints() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[767, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.ints"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[767, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "number() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[767, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.number"]], "backend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[768, "ivy_tests.test_ivy.helpers.multiprocessing.backend_proc"]], "frontend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[768, "ivy_tests.test_ivy.helpers.multiprocessing.frontend_proc"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[768, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "backendhandler (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[769, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler"]], "backendhandlermode (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[769, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode"]], "setbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[769, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.SetBackend"]], "withbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[769, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.WithBackend"]], "withbackendcontext (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[769, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext"]], "__init__() (ivy_tests.test_ivy.helpers.pipeline_helper.withbackendcontext method)": [[769, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext.__init__"]], "get_frontend_config() (in module ivy_tests.test_ivy.helpers.pipeline_helper)": [[769, "ivy_tests.test_ivy.helpers.pipeline_helper.get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[769, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "update_backend() (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandler class method)": [[769, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler.update_backend"]], "frontendmethoddata (class in ivy_tests.test_ivy.helpers.structs)": [[770, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData"]], "__init__() (ivy_tests.test_ivy.helpers.structs.frontendmethoddata method)": [[770, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.__init__"]], "framework_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[770, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.framework_init_module"]], "init_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[770, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.init_name"]], "ivy_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[770, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.ivy_init_module"]], "ivy_tests.test_ivy.helpers.structs": [[770, "module-ivy_tests.test_ivy.helpers.structs"]], "method_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[770, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.method_name"]], "dynamicflag (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag"]], "frontendfunctiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags"]], "frontendinittestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags"]], "frontendmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags"]], "functiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags"]], "initmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags"]], "methodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags"]], "testflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.__init__"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.testflags method)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags.apply_flags"]], "build_flag() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.build_flag"]], "frontend_function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_function_flags"]], "frontend_init_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_init_flags"]], "frontend_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_method_flags"]], "function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.function_flags"]], "init_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.init_method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[771, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.method_flags"]], "strategy (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag attribute)": [[771, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.strategy"]], "handle_frontend_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[772, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_method"]], "handle_frontend_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[772, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_test"]], "handle_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[772, "ivy_tests.test_ivy.helpers.testing_helpers.handle_method"]], "handle_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[772, "ivy_tests.test_ivy.helpers.testing_helpers.handle_test"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[772, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "num_positional_args() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[772, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args"]], "num_positional_args_helper() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[772, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_helper"]], "num_positional_args_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[772, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_method"]], "seed() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[772, "ivy_tests.test_ivy.helpers.testing_helpers.seed"]], "elu (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.ELU"]], "geglu (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.GEGLU"]], "gelu (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.GELU"]], "hardswish (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.Hardswish"]], "leakyrelu (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.LeakyReLU"]], "logsigmoid (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.LogSigmoid"]], "logsoftmax (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.LogSoftmax"]], "logit (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.Logit"]], "mish (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.Mish"]], "prelu (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.PReLU"]], "relu (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.ReLU"]], "relu6 (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.ReLU6"]], "selu (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.SeLU"]], "silu (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.SiLU"]], "sigmoid (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.Sigmoid"]], "softmax (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.Softmax"]], "softplus (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.Softplus"]], "tanh (class in ivy.stateful.activations)": [[776, "ivy.stateful.activations.Tanh"]], "__init__() (ivy.stateful.activations.elu method)": [[776, "ivy.stateful.activations.ELU.__init__"]], "__init__() (ivy.stateful.activations.geglu method)": [[776, "ivy.stateful.activations.GEGLU.__init__"]], "__init__() (ivy.stateful.activations.gelu method)": [[776, "ivy.stateful.activations.GELU.__init__"]], "__init__() (ivy.stateful.activations.hardswish method)": [[776, "ivy.stateful.activations.Hardswish.__init__"]], "__init__() (ivy.stateful.activations.leakyrelu method)": [[776, "ivy.stateful.activations.LeakyReLU.__init__"]], "__init__() (ivy.stateful.activations.logsigmoid method)": [[776, "ivy.stateful.activations.LogSigmoid.__init__"]], "__init__() (ivy.stateful.activations.logsoftmax method)": [[776, "ivy.stateful.activations.LogSoftmax.__init__"]], "__init__() (ivy.stateful.activations.logit method)": [[776, "ivy.stateful.activations.Logit.__init__"]], "__init__() (ivy.stateful.activations.mish method)": [[776, "ivy.stateful.activations.Mish.__init__"]], "__init__() (ivy.stateful.activations.prelu method)": [[776, "ivy.stateful.activations.PReLU.__init__"]], "__init__() (ivy.stateful.activations.relu method)": [[776, "ivy.stateful.activations.ReLU.__init__"]], "__init__() (ivy.stateful.activations.relu6 method)": [[776, "ivy.stateful.activations.ReLU6.__init__"]], "__init__() (ivy.stateful.activations.selu method)": [[776, "ivy.stateful.activations.SeLU.__init__"]], "__init__() (ivy.stateful.activations.silu method)": [[776, "ivy.stateful.activations.SiLU.__init__"]], "__init__() (ivy.stateful.activations.sigmoid method)": [[776, "ivy.stateful.activations.Sigmoid.__init__"]], "__init__() (ivy.stateful.activations.softmax method)": [[776, "ivy.stateful.activations.Softmax.__init__"]], "__init__() (ivy.stateful.activations.softplus method)": [[776, "ivy.stateful.activations.Softplus.__init__"]], "__init__() (ivy.stateful.activations.tanh method)": [[776, "ivy.stateful.activations.Tanh.__init__"]], "ivy.stateful.activations": [[776, "module-ivy.stateful.activations"]], "moduleconverters (class in ivy.stateful.converters)": [[777, "ivy.stateful.converters.ModuleConverters"]], "from_flax_module() (ivy.stateful.converters.moduleconverters static method)": [[777, "ivy.stateful.converters.ModuleConverters.from_flax_module"]], "from_haiku_module() (ivy.stateful.converters.moduleconverters static method)": [[777, "ivy.stateful.converters.ModuleConverters.from_haiku_module"]], "from_keras_module() (ivy.stateful.converters.moduleconverters static method)": [[777, "ivy.stateful.converters.ModuleConverters.from_keras_module"]], "from_paddle_module() (ivy.stateful.converters.moduleconverters static method)": [[777, "ivy.stateful.converters.ModuleConverters.from_paddle_module"]], "from_torch_module() (ivy.stateful.converters.moduleconverters static method)": [[777, "ivy.stateful.converters.ModuleConverters.from_torch_module"]], "ivy.stateful.converters": [[777, "module-ivy.stateful.converters"]], "to_ivy_module() (in module ivy.stateful.converters)": [[777, "ivy.stateful.converters.to_ivy_module"]], "to_keras_module() (ivy.stateful.converters.moduleconverters method)": [[777, "ivy.stateful.converters.ModuleConverters.to_keras_module"]], "modulehelpers (class in ivy.stateful.helpers)": [[778, "ivy.stateful.helpers.ModuleHelpers"]], "ivy.stateful.helpers": [[778, "module-ivy.stateful.helpers"]], "constant (class in ivy.stateful.initializers)": [[779, "ivy.stateful.initializers.Constant"]], "firstlayersiren (class in ivy.stateful.initializers)": [[779, "ivy.stateful.initializers.FirstLayerSiren"]], "glorotuniform (class in ivy.stateful.initializers)": [[779, "ivy.stateful.initializers.GlorotUniform"]], "initializer (class in ivy.stateful.initializers)": [[779, "ivy.stateful.initializers.Initializer"]], "kaimingnormal (class in ivy.stateful.initializers)": [[779, "ivy.stateful.initializers.KaimingNormal"]], "ones (class in ivy.stateful.initializers)": [[779, "ivy.stateful.initializers.Ones"]], "randomnormal (class in ivy.stateful.initializers)": [[779, "ivy.stateful.initializers.RandomNormal"]], "siren (class in ivy.stateful.initializers)": [[779, "ivy.stateful.initializers.Siren"]], "uniform (class in ivy.stateful.initializers)": [[779, "ivy.stateful.initializers.Uniform"]], "zeros (class in ivy.stateful.initializers)": [[779, "ivy.stateful.initializers.Zeros"]], "__init__() (ivy.stateful.initializers.constant method)": [[779, "ivy.stateful.initializers.Constant.__init__"]], "__init__() (ivy.stateful.initializers.firstlayersiren method)": [[779, "ivy.stateful.initializers.FirstLayerSiren.__init__"]], "__init__() (ivy.stateful.initializers.glorotuniform method)": [[779, "ivy.stateful.initializers.GlorotUniform.__init__"]], "__init__() (ivy.stateful.initializers.kaimingnormal method)": [[779, "ivy.stateful.initializers.KaimingNormal.__init__"]], "__init__() (ivy.stateful.initializers.ones method)": [[779, "ivy.stateful.initializers.Ones.__init__"]], "__init__() (ivy.stateful.initializers.randomnormal method)": [[779, "ivy.stateful.initializers.RandomNormal.__init__"]], "__init__() (ivy.stateful.initializers.siren method)": [[779, "ivy.stateful.initializers.Siren.__init__"]], "__init__() (ivy.stateful.initializers.uniform method)": [[779, "ivy.stateful.initializers.Uniform.__init__"]], "__init__() (ivy.stateful.initializers.zeros method)": [[779, "ivy.stateful.initializers.Zeros.__init__"]], "create_variables() (ivy.stateful.initializers.constant method)": [[779, "ivy.stateful.initializers.Constant.create_variables"]], "create_variables() (ivy.stateful.initializers.initializer method)": [[779, "ivy.stateful.initializers.Initializer.create_variables"]], "create_variables() (ivy.stateful.initializers.kaimingnormal method)": [[779, "ivy.stateful.initializers.KaimingNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.randomnormal method)": [[779, "ivy.stateful.initializers.RandomNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.uniform method)": [[779, "ivy.stateful.initializers.Uniform.create_variables"]], "ivy.stateful.initializers": [[779, "module-ivy.stateful.initializers"]], "adaptiveavgpool1d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.AdaptiveAvgPool1d"]], "adaptiveavgpool2d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.AdaptiveAvgPool2d"]], "avgpool1d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.AvgPool1D"]], "avgpool2d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.AvgPool2D"]], "avgpool3d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.AvgPool3D"]], "conv1d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Conv1D"]], "conv1dtranspose (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Conv1DTranspose"]], "conv2d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Conv2D"]], "conv2dtranspose (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Conv2DTranspose"]], "conv3d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Conv3D"]], "conv3dtranspose (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Conv3DTranspose"]], "dct (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Dct"]], "depthwiseconv2d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.DepthwiseConv2D"]], "dropout (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Dropout"]], "embedding (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Embedding"]], "fft (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.FFT"]], "ifft (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.IFFT"]], "identity (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Identity"]], "lstm (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.LSTM"]], "linear (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.Linear"]], "maxpool1d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.MaxPool1D"]], "maxpool2d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.MaxPool2D"]], "maxpool3d (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.MaxPool3D"]], "multiheadattention (class in ivy.stateful.layers)": [[780, "ivy.stateful.layers.MultiHeadAttention"]], "__init__() (ivy.stateful.layers.adaptiveavgpool1d method)": [[780, "ivy.stateful.layers.AdaptiveAvgPool1d.__init__"]], "__init__() (ivy.stateful.layers.adaptiveavgpool2d method)": [[780, "ivy.stateful.layers.AdaptiveAvgPool2d.__init__"]], "__init__() (ivy.stateful.layers.avgpool1d method)": [[780, "ivy.stateful.layers.AvgPool1D.__init__"]], "__init__() (ivy.stateful.layers.avgpool2d method)": [[780, "ivy.stateful.layers.AvgPool2D.__init__"]], "__init__() (ivy.stateful.layers.avgpool3d method)": [[780, "ivy.stateful.layers.AvgPool3D.__init__"]], "__init__() (ivy.stateful.layers.conv1d method)": [[780, "ivy.stateful.layers.Conv1D.__init__"]], "__init__() (ivy.stateful.layers.conv1dtranspose method)": [[780, "ivy.stateful.layers.Conv1DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv2d method)": [[780, "ivy.stateful.layers.Conv2D.__init__"]], "__init__() (ivy.stateful.layers.conv2dtranspose method)": [[780, "ivy.stateful.layers.Conv2DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv3d method)": [[780, "ivy.stateful.layers.Conv3D.__init__"]], "__init__() (ivy.stateful.layers.conv3dtranspose method)": [[780, "ivy.stateful.layers.Conv3DTranspose.__init__"]], "__init__() (ivy.stateful.layers.dct method)": [[780, "ivy.stateful.layers.Dct.__init__"]], "__init__() (ivy.stateful.layers.depthwiseconv2d method)": [[780, "ivy.stateful.layers.DepthwiseConv2D.__init__"]], "__init__() (ivy.stateful.layers.dropout method)": [[780, "ivy.stateful.layers.Dropout.__init__"]], "__init__() (ivy.stateful.layers.embedding method)": [[780, "ivy.stateful.layers.Embedding.__init__"]], "__init__() (ivy.stateful.layers.fft method)": [[780, "ivy.stateful.layers.FFT.__init__"]], "__init__() (ivy.stateful.layers.ifft method)": [[780, "ivy.stateful.layers.IFFT.__init__"]], "__init__() (ivy.stateful.layers.identity method)": [[780, "ivy.stateful.layers.Identity.__init__"]], "__init__() (ivy.stateful.layers.lstm method)": [[780, "ivy.stateful.layers.LSTM.__init__"]], "__init__() (ivy.stateful.layers.linear method)": [[780, "ivy.stateful.layers.Linear.__init__"]], "__init__() (ivy.stateful.layers.maxpool1d method)": [[780, "ivy.stateful.layers.MaxPool1D.__init__"]], "__init__() (ivy.stateful.layers.maxpool2d method)": [[780, "ivy.stateful.layers.MaxPool2D.__init__"]], "__init__() (ivy.stateful.layers.maxpool3d method)": [[780, "ivy.stateful.layers.MaxPool3D.__init__"]], "__init__() (ivy.stateful.layers.multiheadattention method)": [[780, "ivy.stateful.layers.MultiHeadAttention.__init__"]], "get_initial_state() (ivy.stateful.layers.lstm method)": [[780, "ivy.stateful.layers.LSTM.get_initial_state"]], "ivy.stateful.layers": [[780, "module-ivy.stateful.layers"]], "binarycrossentropyloss (class in ivy.stateful.losses)": [[781, "ivy.stateful.losses.BinaryCrossEntropyLoss"]], "crossentropyloss (class in ivy.stateful.losses)": [[781, "ivy.stateful.losses.CrossEntropyLoss"]], "logpoissonloss (class in ivy.stateful.losses)": [[781, "ivy.stateful.losses.LogPoissonLoss"]], "__init__() (ivy.stateful.losses.binarycrossentropyloss method)": [[781, "ivy.stateful.losses.BinaryCrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.crossentropyloss method)": [[781, "ivy.stateful.losses.CrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.logpoissonloss method)": [[781, "ivy.stateful.losses.LogPoissonLoss.__init__"]], "ivy.stateful.losses": [[781, "module-ivy.stateful.losses"]], "module (class in ivy.stateful.module)": [[782, "ivy.stateful.module.Module"]], "modulemeta (class in ivy.stateful.module)": [[782, "ivy.stateful.module.ModuleMeta"]], "__call__() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.__call__"]], "__init__() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.__init__"]], "buffers (ivy.stateful.module.module property)": [[782, "ivy.stateful.module.Module.buffers"]], "build() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.build"]], "build_mode (ivy.stateful.module.module property)": [[782, "ivy.stateful.module.Module.build_mode"]], "built (ivy.stateful.module.module property)": [[782, "ivy.stateful.module.Module.built"]], "device (ivy.stateful.module.module property)": [[782, "ivy.stateful.module.Module.device"]], "dtype (ivy.stateful.module.module property)": [[782, "ivy.stateful.module.Module.dtype"]], "eval() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.eval"]], "ivy.stateful.module": [[782, "module-ivy.stateful.module"]], "load() (ivy.stateful.module.module static method)": [[782, "ivy.stateful.module.Module.load"]], "module_dict (ivy.stateful.module.module property)": [[782, "ivy.stateful.module.Module.module_dict"]], "register_buffer() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.register_buffer"]], "register_parameter() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.register_parameter"]], "save() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.save"]], "save_weights() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.save_weights"]], "show_graph() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.show_graph"]], "state_dict (ivy.stateful.module.module property)": [[782, "ivy.stateful.module.Module.state_dict"]], "to_device() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.to_device"]], "trace_graph() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.trace_graph"]], "train() (ivy.stateful.module.module method)": [[782, "ivy.stateful.module.Module.train"]], "training (ivy.stateful.module.module property)": [[782, "ivy.stateful.module.Module.training"]], "v (ivy.stateful.module.module property)": [[782, "ivy.stateful.module.Module.v"]], "batchnorm2d (class in ivy.stateful.norms)": [[783, "ivy.stateful.norms.BatchNorm2D"]], "layernorm (class in ivy.stateful.norms)": [[783, "ivy.stateful.norms.LayerNorm"]], "__init__() (ivy.stateful.norms.batchnorm2d method)": [[783, "ivy.stateful.norms.BatchNorm2D.__init__"]], "__init__() (ivy.stateful.norms.layernorm method)": [[783, "ivy.stateful.norms.LayerNorm.__init__"]], "ivy.stateful.norms": [[783, "module-ivy.stateful.norms"]], "adam (class in ivy.stateful.optimizers)": [[784, "ivy.stateful.optimizers.Adam"]], "adamw (class in ivy.stateful.optimizers)": [[784, "ivy.stateful.optimizers.AdamW"]], "lamb (class in ivy.stateful.optimizers)": [[784, "ivy.stateful.optimizers.LAMB"]], "lars (class in ivy.stateful.optimizers)": [[784, "ivy.stateful.optimizers.LARS"]], "optimizer (class in ivy.stateful.optimizers)": [[784, "ivy.stateful.optimizers.Optimizer"]], "sgd (class in ivy.stateful.optimizers)": [[784, "ivy.stateful.optimizers.SGD"]], "__init__() (ivy.stateful.optimizers.adam method)": [[784, "ivy.stateful.optimizers.Adam.__init__"]], "__init__() (ivy.stateful.optimizers.adamw method)": [[784, "ivy.stateful.optimizers.AdamW.__init__"]], "__init__() (ivy.stateful.optimizers.lamb method)": [[784, "ivy.stateful.optimizers.LAMB.__init__"]], "__init__() (ivy.stateful.optimizers.lars method)": [[784, "ivy.stateful.optimizers.LARS.__init__"]], "__init__() (ivy.stateful.optimizers.optimizer method)": [[784, "ivy.stateful.optimizers.Optimizer.__init__"]], "__init__() (ivy.stateful.optimizers.sgd method)": [[784, "ivy.stateful.optimizers.SGD.__init__"]], "ivy.stateful.optimizers": [[784, "module-ivy.stateful.optimizers"]], "set_state() (ivy.stateful.optimizers.adam method)": [[784, "ivy.stateful.optimizers.Adam.set_state"]], "set_state() (ivy.stateful.optimizers.lamb method)": [[784, "ivy.stateful.optimizers.LAMB.set_state"]], "set_state() (ivy.stateful.optimizers.lars method)": [[784, "ivy.stateful.optimizers.LARS.set_state"]], "set_state() (ivy.stateful.optimizers.optimizer method)": [[784, "ivy.stateful.optimizers.Optimizer.set_state"]], "set_state() (ivy.stateful.optimizers.sgd method)": [[784, "ivy.stateful.optimizers.SGD.set_state"]], "state (ivy.stateful.optimizers.adam property)": [[784, "ivy.stateful.optimizers.Adam.state"]], "state (ivy.stateful.optimizers.lamb property)": [[784, "ivy.stateful.optimizers.LAMB.state"]], "state (ivy.stateful.optimizers.lars property)": [[784, "ivy.stateful.optimizers.LARS.state"]], "state (ivy.stateful.optimizers.sgd property)": [[784, "ivy.stateful.optimizers.SGD.state"]], "step() (ivy.stateful.optimizers.optimizer method)": [[784, "ivy.stateful.optimizers.Optimizer.step"]], "sequential (class in ivy.stateful.sequential)": [[785, "ivy.stateful.sequential.Sequential"]], "__init__() (ivy.stateful.sequential.sequential method)": [[785, "ivy.stateful.sequential.Sequential.__init__"]], "ivy.stateful.sequential": [[785, "module-ivy.stateful.sequential"]], "check_all() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_all"]], "check_all_or_any_fn() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_all_or_any_fn"]], "check_any() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_any"]], "check_dev_correct_formatting() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_dev_correct_formatting"]], "check_dimensions() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_dimensions"]], "check_elem_in_list() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_elem_in_list"]], "check_equal() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_equal"]], "check_exists() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_exists"]], "check_false() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_false"]], "check_gather_input_valid() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_gather_input_valid"]], "check_gather_nd_input_valid() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_gather_nd_input_valid"]], "check_greater() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_greater"]], "check_inplace_sizes_valid() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_inplace_sizes_valid"]], "check_isinstance() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_isinstance"]], "check_kernel_padding_size() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_kernel_padding_size"]], "check_less() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_less"]], "check_one_way_broadcastable() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_one_way_broadcastable"]], "check_same_dtype() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_same_dtype"]], "check_shape() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_shape"]], "check_shapes_broadcastable() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_shapes_broadcastable"]], "check_true() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_true"]], "check_unsorted_segment_valid_params() (in module ivy.utils.assertions)": [[786, "ivy.utils.assertions.check_unsorted_segment_valid_params"]], "ivy.utils.assertions": [[786, "module-ivy.utils.assertions"]], "ivy.utils.backend": [[787, "module-ivy.utils.backend"]], "importtransformer (class in ivy.utils.backend.ast_helpers)": [[788, "ivy.utils.backend.ast_helpers.ImportTransformer"]], "ivyloader (class in ivy.utils.backend.ast_helpers)": [[788, "ivy.utils.backend.ast_helpers.IvyLoader"]], "ivypathfinder (class in ivy.utils.backend.ast_helpers)": [[788, "ivy.utils.backend.ast_helpers.IvyPathFinder"]], "__init__() (ivy.utils.backend.ast_helpers.importtransformer method)": [[788, "ivy.utils.backend.ast_helpers.ImportTransformer.__init__"]], "__init__() (ivy.utils.backend.ast_helpers.ivyloader method)": [[788, "ivy.utils.backend.ast_helpers.IvyLoader.__init__"]], "exec_module() (ivy.utils.backend.ast_helpers.ivyloader method)": [[788, "ivy.utils.backend.ast_helpers.IvyLoader.exec_module"]], "find_spec() (ivy.utils.backend.ast_helpers.ivypathfinder method)": [[788, "ivy.utils.backend.ast_helpers.IvyPathFinder.find_spec"]], "impersonate_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[788, "ivy.utils.backend.ast_helpers.ImportTransformer.impersonate_import"]], "ivy.utils.backend.ast_helpers": [[788, "module-ivy.utils.backend.ast_helpers"]], "visit_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[788, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_Import"]], "visit_importfrom() (ivy.utils.backend.ast_helpers.importtransformer method)": [[788, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_ImportFrom"]], "contextmanager (class in ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.ContextManager"]], "__init__() (ivy.utils.backend.handler.contextmanager method)": [[789, "ivy.utils.backend.handler.ContextManager.__init__"]], "choose_random_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.choose_random_backend"]], "current_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.current_backend"]], "dynamic_backend_converter() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.dynamic_backend_converter"]], "ivy.utils.backend.handler": [[789, "module-ivy.utils.backend.handler"]], "prevent_access_locally() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.prevent_access_locally"]], "previous_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.previous_backend"]], "set_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.set_backend"]], "set_backend_to_specific_version() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.set_backend_to_specific_version"]], "set_jax_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.set_jax_backend"]], "set_mxnet_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.set_mxnet_backend"]], "set_numpy_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.set_numpy_backend"]], "set_paddle_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.set_paddle_backend"]], "set_tensorflow_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.set_tensorflow_backend"]], "set_torch_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.set_torch_backend"]], "unset_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.unset_backend"]], "with_backend() (in module ivy.utils.backend.handler)": [[789, "ivy.utils.backend.handler.with_backend"]], "clear_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[790, "ivy.utils.backend.sub_backend_handler.clear_sub_backends"]], "find_available_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[790, "ivy.utils.backend.sub_backend_handler.find_available_sub_backends"]], "fn_name_from_version_specific_fn_name() (in module ivy.utils.backend.sub_backend_handler)": [[790, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name"]], "fn_name_from_version_specific_fn_name_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[790, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name_sub_backend"]], "ivy.utils.backend.sub_backend_handler": [[790, "module-ivy.utils.backend.sub_backend_handler"]], "set_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[790, "ivy.utils.backend.sub_backend_handler.set_sub_backend"]], "set_sub_backend_to_specific_version() (in module ivy.utils.backend.sub_backend_handler)": [[790, "ivy.utils.backend.sub_backend_handler.set_sub_backend_to_specific_version"]], "unset_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[790, "ivy.utils.backend.sub_backend_handler.unset_sub_backend"]], "check_for_binaries() (in module ivy.utils.binaries)": [[791, "ivy.utils.binaries.check_for_binaries"]], "cleanup_and_fetch_binaries() (in module ivy.utils.binaries)": [[791, "ivy.utils.binaries.cleanup_and_fetch_binaries"]], "ivy.utils.binaries": [[791, "module-ivy.utils.binaries"]], "import_module() (in module ivy.utils.dynamic_import)": [[792, "ivy.utils.dynamic_import.import_module"]], "ivy.utils.dynamic_import": [[792, "module-ivy.utils.dynamic_import"]], "convert_interleaved_input() (in module ivy.utils.einsum_parser)": [[793, "ivy.utils.einsum_parser.convert_interleaved_input"]], "convert_subscripts() (in module ivy.utils.einsum_parser)": [[793, "ivy.utils.einsum_parser.convert_subscripts"]], "find_output_shape() (in module ivy.utils.einsum_parser)": [[793, "ivy.utils.einsum_parser.find_output_shape"]], "find_output_str() (in module ivy.utils.einsum_parser)": [[793, "ivy.utils.einsum_parser.find_output_str"]], "gen_unused_symbols() (in module ivy.utils.einsum_parser)": [[793, "ivy.utils.einsum_parser.gen_unused_symbols"]], "get_symbol() (in module ivy.utils.einsum_parser)": [[793, "ivy.utils.einsum_parser.get_symbol"]], "has_valid_einsum_chars_only() (in module ivy.utils.einsum_parser)": [[793, "ivy.utils.einsum_parser.has_valid_einsum_chars_only"]], "is_valid_einsum_char() (in module ivy.utils.einsum_parser)": [[793, "ivy.utils.einsum_parser.is_valid_einsum_char"]], "ivy.utils.einsum_parser": [[793, "module-ivy.utils.einsum_parser"]], "legalise_einsum_expr() (in module ivy.utils.einsum_parser)": [[793, "ivy.utils.einsum_parser.legalise_einsum_expr"]], "possibly_convert_to_numpy() (in module ivy.utils.einsum_parser)": [[793, "ivy.utils.einsum_parser.possibly_convert_to_numpy"]], "can_dot() (in module ivy.utils.einsum_path_helpers)": [[794, "ivy.utils.einsum_path_helpers.can_dot"]], "compute_size_by_dict() (in module ivy.utils.einsum_path_helpers)": [[794, "ivy.utils.einsum_path_helpers.compute_size_by_dict"]], "find_contraction() (in module ivy.utils.einsum_path_helpers)": [[794, "ivy.utils.einsum_path_helpers.find_contraction"]], "flop_count() (in module ivy.utils.einsum_path_helpers)": [[794, "ivy.utils.einsum_path_helpers.flop_count"]], "greedy_path() (in module ivy.utils.einsum_path_helpers)": [[794, "ivy.utils.einsum_path_helpers.greedy_path"]], "ivy.utils.einsum_path_helpers": [[794, "module-ivy.utils.einsum_path_helpers"]], "optimal_path() (in module ivy.utils.einsum_path_helpers)": [[794, "ivy.utils.einsum_path_helpers.optimal_path"]], "parse_einsum_input() (in module ivy.utils.einsum_path_helpers)": [[794, "ivy.utils.einsum_path_helpers.parse_einsum_input"]], "parse_possible_contraction() (in module ivy.utils.einsum_path_helpers)": [[794, "ivy.utils.einsum_path_helpers.parse_possible_contraction"]], "update_other_results() (in module ivy.utils.einsum_path_helpers)": [[794, "ivy.utils.einsum_path_helpers.update_other_results"]], "inplaceupdateexception": [[795, "ivy.utils.exceptions.InplaceUpdateException"]], "ivyattributeerror": [[795, "ivy.utils.exceptions.IvyAttributeError"]], "ivybackendexception": [[795, "ivy.utils.exceptions.IvyBackendException"]], "ivybroadcastshapeerror": [[795, "ivy.utils.exceptions.IvyBroadcastShapeError"]], "ivydeviceerror": [[795, "ivy.utils.exceptions.IvyDeviceError"]], "ivydtypepromotionerror": [[795, "ivy.utils.exceptions.IvyDtypePromotionError"]], "ivyerror": [[795, "ivy.utils.exceptions.IvyError"]], "ivyexception": [[795, "ivy.utils.exceptions.IvyException"]], "ivyindexerror": [[795, "ivy.utils.exceptions.IvyIndexError"]], "ivyinvalidbackendexception": [[795, "ivy.utils.exceptions.IvyInvalidBackendException"]], "ivynotimplementedexception": [[795, "ivy.utils.exceptions.IvyNotImplementedException"]], "ivyvalueerror": [[795, "ivy.utils.exceptions.IvyValueError"]], "__init__() (ivy.utils.exceptions.inplaceupdateexception method)": [[795, "ivy.utils.exceptions.InplaceUpdateException.__init__"]], "__init__() (ivy.utils.exceptions.ivyattributeerror method)": [[795, "ivy.utils.exceptions.IvyAttributeError.__init__"]], "__init__() (ivy.utils.exceptions.ivybackendexception method)": [[795, "ivy.utils.exceptions.IvyBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivybroadcastshapeerror method)": [[795, "ivy.utils.exceptions.IvyBroadcastShapeError.__init__"]], "__init__() (ivy.utils.exceptions.ivydeviceerror method)": [[795, "ivy.utils.exceptions.IvyDeviceError.__init__"]], "__init__() (ivy.utils.exceptions.ivydtypepromotionerror method)": [[795, "ivy.utils.exceptions.IvyDtypePromotionError.__init__"]], "__init__() (ivy.utils.exceptions.ivyerror method)": [[795, "ivy.utils.exceptions.IvyError.__init__"]], "__init__() (ivy.utils.exceptions.ivyexception method)": [[795, "ivy.utils.exceptions.IvyException.__init__"]], "__init__() (ivy.utils.exceptions.ivyindexerror method)": [[795, "ivy.utils.exceptions.IvyIndexError.__init__"]], "__init__() (ivy.utils.exceptions.ivyinvalidbackendexception method)": [[795, "ivy.utils.exceptions.IvyInvalidBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivynotimplementedexception method)": [[795, "ivy.utils.exceptions.IvyNotImplementedException.__init__"]], "__init__() (ivy.utils.exceptions.ivyvalueerror method)": [[795, "ivy.utils.exceptions.IvyValueError.__init__"]], "handle_exceptions() (in module ivy.utils.exceptions)": [[795, "ivy.utils.exceptions.handle_exceptions"]], "ivy.utils.exceptions": [[795, "module-ivy.utils.exceptions"]], "add_array_specs() (in module ivy.utils.inspection)": [[796, "ivy.utils.inspection.add_array_specs"]], "fn_array_spec() (in module ivy.utils.inspection)": [[796, "ivy.utils.inspection.fn_array_spec"]], "ivy.utils.inspection": [[796, "module-ivy.utils.inspection"]], "ivy.utils.logging": [[797, "module-ivy.utils.logging"]], "set_logging_mode() (in module ivy.utils.logging)": [[797, "ivy.utils.logging.set_logging_mode"]], "unset_logging_mode() (in module ivy.utils.logging)": [[797, "ivy.utils.logging.unset_logging_mode"]], "profiler (class in ivy.utils.profiler)": [[798, "ivy.utils.profiler.Profiler"]], "__init__() (ivy.utils.profiler.profiler method)": [[798, "ivy.utils.profiler.Profiler.__init__"]], "ivy.utils.profiler": [[798, "module-ivy.utils.profiler"]], "print_stats (ivy.utils.profiler.profiler attribute)": [[798, "ivy.utils.profiler.Profiler.print_stats"]], "viz (ivy.utils.profiler.profiler attribute)": [[798, "ivy.utils.profiler.Profiler.viz"]], "cprint() (in module ivy.utils.verbosity)": [[799, "ivy.utils.verbosity.cprint"]], "ivy.utils.verbosity": [[799, "module-ivy.utils.verbosity"]], "automatic code conversions": [[845, "term-Automatic-Code-Conversions"]], "backend handler": [[845, "term-Backend-Handler"]], "compositional functions": [[845, "term-Compositional-Functions"]], "convenience functions": [[845, "term-Convenience-Functions"]], "framework": [[845, "term-Framework"]], "framework handler": [[845, "term-Framework-Handler"]], "graph compiler": [[845, "term-Graph-Compiler"]], "ivy array": [[845, "term-Ivy-Array"]], "ivy backends": [[845, "term-Ivy-Backends"]], "ivy compiler": [[845, "term-Ivy-Compiler"]], "ivy container": [[845, "term-Ivy-Container"]], "ivy frontends": [[845, "term-Ivy-Frontends"]], "ivy functional api": [[845, "term-Ivy-Functional-API"]], "ivy tracer": [[845, "term-Ivy-Tracer"]], "ivy transpiler": [[845, "term-Ivy-Transpiler"]], "mixed functions": [[845, "term-Mixed-Functions"]], "native array": [[845, "term-Native-Array"]], "nestable functions": [[845, "term-Nestable-Functions"]], "pipeline": [[845, "term-Pipeline"]], "primary functions": [[845, "term-Primary-Functions"]], "standalone functions": [[845, "term-Standalone-Functions"]], "submodule helper functions": [[845, "term-Submodule-Helper-Functions"]], "built-in function": [[851, "ivy.trace_graph"], [852, "ivy.transpile"], [853, "ivy.unify"]], "ivy.trace_graph()": [[851, "ivy.trace_graph"]], "ivy.transpile()": [[852, "ivy.transpile"]], "ivy.unify()": [[853, "ivy.unify"]]}}) \ No newline at end of file