From e5fc15aa0571bd4c9a7cde9fff0654311734e0fd Mon Sep 17 00:00:00 2001 From: ivy-seed Date: Tue, 26 Dec 2023 16:53:51 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20main=20from=20@=20unifyai/ivy@?= =?UTF-8?q?c817e4239f22798f5d8fbaf362fb14203d5123f8=20=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../ivy/ivy.functional.ivy.meta.doctree | Bin 95382 -> 95382 bytes ...vy.functional.ivy.meta.fomaml_step.doctree | Bin 34830 -> 34830 bytes .../ivy.functional.ivy.meta.maml_step.doctree | Bin 37244 -> 37244 bytes ...y.functional.ivy.meta.reptile_step.doctree | Bin 26943 -> 26943 bytes ...ivy_tests.test_ivy.helpers.globals.doctree | Bin 33732 -> 33732 bytes .../docs/stateful/ivy.stateful.layers.doctree | Bin 316882 -> 316882 bytes ivy/.doctrees/environment.pickle | Bin 5543558 -> 5543558 bytes ivy/.doctrees/index.doctree | Bin 665423 -> 665423 bytes .../ivy/ivy.functional.ivy.meta.html | 6 ++-- .../ivy.functional.ivy.meta.fomaml_step.html | 2 +- .../ivy.functional.ivy.meta.maml_step.html | 2 +- .../ivy.functional.ivy.meta.reptile_step.html | 2 +- .../ivy_tests.test_ivy.helpers.globals.html | 2 +- ivy/docs/stateful/ivy.stateful.layers.html | 34 +++++++++--------- ivy/searchindex.js | 2 +- 15 files changed, 25 insertions(+), 25 deletions(-) diff --git a/ivy/.doctrees/docs/functional/ivy/ivy.functional.ivy.meta.doctree b/ivy/.doctrees/docs/functional/ivy/ivy.functional.ivy.meta.doctree index 3c3ab8145117f9aff175e55c10f6f4d2eb2f3295..f514e68c1766ba71578954d7f4b6d5f2ca9a6722 100644 GIT binary patch delta 129 zcmbRCl6Bfk)(zK9*i4cQ6Ae-)ZQ8YYx~V7=lso;dKBFa+z4@a#XBCvaY14VEN<_AX cl*3K3p8mjqan<%b%7 delta 44 ocmeC1z|=Q^X+yaon~_OUilNcwTEp{9Q1;{?6HA!zM3dTJ07T#pBme*a diff --git a/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.doctree b/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.doctree index cc9cc4476041b8b265ef9ee73db8609e94a336a6..988e589241a67c639b6614273d0d452ad983f56e 100644 GIT binary patch delta 44 ocmeyfi0RKFrVR;(Y$nNui3X{g(+tlrLD`cnOe|r-gH7sGm9Gd110Ai*NQvd(} delta 44 ocmdmgiE;lW#tq@BY(^$YDTYRyV^!0bq3p>gH7sGm9Gd1109cj{#sB~S diff --git a/ivy/.doctrees/docs/helpers/ivy_tests.test_ivy.helpers.globals.doctree b/ivy/.doctrees/docs/helpers/ivy_tests.test_ivy.helpers.globals.doctree index e4d3db15814556c4909e5e94ced4a3a27319fa6f..a33ffb42ad582dad5d617ab5c96a5f290a6fd208 100644 GIT binary patch delta 37 kcmX@o&UB=mX+u8;he?u2nxSQK(&p(LN{k5JK~Cl>0P>Cu9{>OV delta 37 kcmX@o&UB=mX+u8;hmmobk-24Z%I4`DN{k5JK~Cl>0PI)`$p8QV diff --git a/ivy/.doctrees/docs/stateful/ivy.stateful.layers.doctree b/ivy/.doctrees/docs/stateful/ivy.stateful.layers.doctree index 23af2f031ddd540c856591ff1b600fed5e53496f..fa05de8023ced0df57f42229c847968718d4aec3 100644 GIT binary patch delta 808 zcmY+Cze~eF7>2oIaS_pi;G*bX(C;p3nnA3CgR_VTPHk+F>g3Qta1+77rAVAwE&ifi zECo-;4uXR&-HPbothDIp;(3?*av8t(jwkQ;Tzaikua&xe=#MxB$WWSbJKg>o!6}5g zwS-e==e4HK++sLBAbZv0x5wyQB-;&Z9;eRP`{IJ0{A#y<6z)!w7fejH>+_Qt62qB< zhj+6C=`2BK{ArH-YP=Ij{AvO5PGI7lfLDST?|2G-T132vjPj1hn1b5=p7<4SIpAhMPxJwkKa4i#8%Xtxl+tV4e`u1n=_a1*JC_Y|4djv zN4$s(JS`r!8&=qE*w4`yK&cd z%PO}P9x8mC;9&|6S=jC zG=5kmc%F`04TrWG?u$GD6{Y&IOIKZhH`WO}F?8jw6o%Ww90`dSXtFQ2i^gmhi3I~! Z-j_#`lP|UYxwn)0bl>-` zg2}@O8Zgj<17H?=O|%Kd%#y)g)?~vPjPZgouq+0Q!6uoEzpwtPI(541+;h77_N;eD zyxUdhud2WP`g8sD+2?=i;`9H7*~X2cYq2c>V@Q9}O=q>p|jC zfAl;)i+fd$*SPp_<3Qt*#-)wR8kgh$yFyy4opwFi91SnivoU{P@Srr8{PF zy#oU97+8grCXm}IxU#vdJt(9u90w@kK^sA+YL6FVWmE3t91fb$;a63N-gLIqY%>_ zbi2JUjw`2wUOQ@Uau0?Vc6*&IAPAK4I4EOyF;~-zHX9_()#cUYqxjF-U8N7UqdJ-| z03I40OyPX}!-c)D83r-Xer_$?84WM*hplci=!dZ)PPNSkD)z_G@QO;K-)g$Q43k%rQMVU$dQpFO^mOUm_!Fby2OIr< zH@S-c_+KyF95jR8 zUB~e6U z+Tc05ToH=%!+7bv zc51a+;YgJM&ulr~0i!-317ePl0c|s05XWIZKDycLYy@gVb+i=8#Dd4UgrC=QevEc<#AG9;P z60ETFP^UVeh{n+;XTMaDVm;U)ZH$K4I9ZEG3xzH^&sF$PMuM2ml|rD(5GBsz1J2=AF?=midl7`)EM7CM(zz*rD8h8sNcayHH5`oiU7DIsUVB4~I8e zeG&Q@5B#eG5J)`=YoMIB2hG#LZp>q*I1Tm0pk)c`hU8n@Ln!i-!>f}v(zN;cs^sTd zSPuqG>Z#{LcDDkmvJnm#M1mHjIGf;96sd2y@NgEveJNI-8D5v@wiVEQtJ{a-b_S~9 zdH3FXZwZ>F(;l8t>;rUK2D=a29SnWFQFtr8@YO-o3nBMuvy6skLFaZf+iC;HBW!~2 zca?y=iHuw+cGV`OR9p^7%JN_G@T*R(t*xD0UO#za?bzDM6RYdT)*)eUoA?aOT1Xfi zTK`KvKe>8>->;rLd3=3!_1LMC`1~FGyl#(PnSTaQs=@3Oo-pp!(0P`Z*VoohEw8Pf zT0ORM^3-z1m((>QsKOK<&X>nlkDtWX$Bv&|=9p@wV`E~fJUrMu=ey&pCr%w-Sy?-_ zy2_=#-80u}FPs?e_^IX9W9z5ZkFTBJXTISSo=G|Ga3?UwlPA~Lj<2m8!*@4&hJ(T% zRns4xIJUgHa&qgp+ceLCSTTo^R+K0T& zUQmmaLE(INYIWuK+S&=w)iUwmLtZo3g+A&IcIxX# zZuA1@W8h%*)cPt8#mdTR)`%S*q|`_2JVom#j~!npDf*D!3ffT@iv1WBuP>imT|Wt` zI)3Wd3O>EwGuc)MyE8$``pPmopITmDKYolz@qN+`<9_OsHJB31YnbIK@qdG7ls4E^ zYEi)a@(GM`;<)<8hx=a8u60_efq?g8Cr_>%J9eCN^KEnt%vWLhZ@S;DlKxJt<3OJz z8@SFhL8#cNFEFv?9uMEaim6=0q7FJ(Ut2rA zegZ_i0w$R;9(_qP0^P5`HgKd?K*tcslmDc}U(sQtCyfTcl6 zhg5O*3U=eE6UR;hfom&7pV}+?3H4AYkkM;nAFZsdo>&GaJO=9rA6-qH+m9xX)#@_% zEg1dr;|k&F?yXL30F6IcISvpQG(-bA8K7U4f<8`cYpZL=PJ-htpE$L~-Au2U7Hex_ z`l}~SoIJ673cIp?V&an+ViL>*%Xa6qeB$KV$(8jJYbQ=&P6IIsw6CZlY^$#padFhH zg=fk=oFYhw#5aVa2pz0KJv4%=N^yZVVMA1uKGF_aVWlz}-c~u?3%b^kRDN%>1KT3L zx7-d-+h0d)xJL|($F@eoTFFx5j^WyuCu6!ig>!Y-?x4 zL*CmDkAL{V7oUA(WvBKOKD;AqipMI=;I-Y#PFxA$5rAEH$(dkh{jnG8JI_4}oGfL1 zcf8W*oUZg?~<=s(QDO9dY>VvR0c>Lj~w>MtgQ3w=z9xvHC@#6M# z&DP21>hK#J%^LsY*!MU{^sZhqSbIL&Tzzs7aAS_h*P8=6fVqzbN#Jgk0J8@}t(Y%Q ze*m7|r`}h4^?Bgy_Vkx(PZWCfmv#Hu@)Mi&M?Unxv8TevEhQLJ5;j*2$RXLm@!1ah z>JQBF122S)554+gWuvt`8oo<f6;Th+v2VQ*QnHP5-*?8_L?98dmuf)|7hnv=W zAT}_`cK~o0|F!7V53W3Za_hwbAZ3p)2*M^SZ}%lnKl{W72GL{P6R*OVa%blFtrkur zFdg9(nNK(0zw+?z(QtXUvk9lmL93RBXTmD@0gQxp2>uM;h;4$t4=>W_BR_iXS!W$6 zmrHNJ#%Y(LcIm+mTmD0Q3B%UTHrmw@nII8hyTb67eZ)%uNl4jntbe5lk2>07<$5XAYRu|YOEh}E?2 zF0H6hEM25X;`Hg$W;Kdp>3XXzX~N7~Ey&M8RWsXAKD&DkVP5e1bxz-N2(GE#Znq!S zj|9^P)ZKJIZAb1(_k8@r=Ji>pD zj6%d0v=i*%xEge!O?+}NywLT}UxDBkyyTC8IXp=F9Sj}Atb&bIq~#4g74xTYaKK5d zK|9|rn{RcK{n-8c4X7L4LBA5f2B!D-@~}JDsH8$5jmO`F>#XrK|BFBbe4!v(`W`VE zg@OyUP6L1W3lcOey$f@{0Nt=R2$nqpB3D11-)GDXzK##@|Eix3P&GMxY{v5Hnnh8^P+a<3}F|S3mUH(t7w@?eW3!kM2IcbnK&# z#xJ%v-rZV$qWNs=$>+BE$3ODXQ%^jx{lGntDAgXUJDd}oA_Vb*cBj4D>I^veHOg@f z)42s*8WD|(IIz!tCl{$eyP-3{n0bF z+eKj6n*-=WAh@tSvcF%V6jJCrk(dz|%HQ!Quw8DDy@FOH5L5t+k^}yx*L$5#|IPC2 zrtQtw;mdk60bhc^pnD7UH4Z5>-q)a+DV0U+UpmSz)P1=0;Z05>{bQRdysAA`qqpp& z4zz+8rjPQc56@RRdNS%ooRw zMI&@}|AwGev*reUqA-XW&?3NQ?930cj~H(i?ylQ*72-OT&W55{eAr0WHOX&1l3VGq^J8mhcS&zVV*Mdo92#OsKuGfwT*ppk%Dew!^TS1pn>y z8Y_)e18aC4kg5n2$GwI4jJE6`5$q5LU|v>2m^#o7lQXM+#TiKddX+*QxI1jlex=?F zkadvkBE$%kWrR&N#)s#0caue5+D6U`P^LoMqi3Gsi90C2f#yvf$(v|F!=-Rksgw;B zCrqYw5u6ARsN1`vw^YB&_1{|XU|s6xYtlbsk2fI}b>jshDVzw?ZD|x_g>$ZUtwe7Wy(TB%r8g><|A5+ne|{nXnSl6+mUI4~)ne^-2oOO86=W z&`7Q1yGvA~o@s*O1N~-P0as@BM)K<={Iv?=?ZL;Kz&HS75`)5{;Bw)q#q; zB`~gXey-3<&amjYuRateJ9v%TMRO4e;9qQbuyO~TvlYN!agoYt5N8kc5^N~q42r#l z3Cp@!=)Zz2lLp)aFn*N{(C9P~6?MV4L-aDumovw?AK^z7nP|f?PGwWP%0{qpeSp zTuh^AFPKs@ikYh5e5VzgL>M2pUtOVwg4PTV5@Jj+=Pn$yx7$opuzh4YF}OBl;#SFB z-$m+k80-3XqXEdmR4&%&h@o*Lb5X%kw!QPKo;b+cWS-a$WOm&S8G+79F>PBFF8<># z1_aqg^o)Nn6zqYQ>$7*R0X38bvSrY9NZx)BLyy7A|CM_>WoqOI z^p0JrzNdGLei3?7pn4)dD|(H=uBM$rQ_mE>^=p9CQ*H)Hu`FH82~GHXgJ8ey;I;`|tNP9yI?R%3Q(j zd%^fzhu6vgP^~J1E@D_Av<9U{YT?>=wb8SHq%*Vzm2iO2r{woR`!k~WY6VUt5jP5< zEy^m>EHg>e=%i_DKvLS_e@th|zjAlnwCIE~#9{lI8s4&BNgLJdiYR8u7+Q;0R3>fI z<(>BH)a;Wcqc#rDEBB!w+A(C6oEc6*TU;~L$J6uUaWfDS1w!V>fhXGpu9{zBCnVUr zL8eDNOU48QNp(#6Xw;}aBJ-0r$-d!1pt?(Y&%W5>9mwHo60_AH_~zW$mbMZ+E^`(wq~F+5;6WgJO(uJ`^8t z?@teJcDjP0!-j#93YRGY1iHsHP7m!uMCKMgz1nGr5k9TL9|E(i7VVU+T3CY14;GHo zQ_NbWM~^=8#(}fWGBM^7xDAZ<=flm1&vXw&jyRzu}y3oOPaUWO5D>@9q9$7p!5uQSQ)+8@qU#LQF@)f zy{R2~sza&YDS`sov?(Ns_lZy=di}28H65AK#)0_8PsIy)+wdn zml0{|?Y^K1>Vam{f+~Y{9uBIF!$er=o_p2Tpavd}!$*$1N5Og1B^Uu1G1HtFc#qoc zrP71YUpJ7b3yOg2I4F@kOLAUIQH*6mF%N6y(ubpFv$PSGy7ae#9za8C=zb&Umrer@ zy5|9`3@m2QRDIed#NIblZ$&|H_G8_OWZ_N=!M?fas!0KoFWYzYITScxjm~WG8admj zyg?6QqOz4(&4c7R?fzYA`ZD|HR4xpA+=YeUC?Piids;`d3@&Q&8bXj>Pm$4Z!?C}2 z>5Y+==XZ1NAW%4 zrUwci>Xc50C1tmlu+=3FgT*D|piQ%`xJ0ZTdhFrnA3kb)bn&74)ZP;^(8wusl9ETLWj&nkEottBuxrXQ*4fD&P!)4Rsu6nLHlvk?XpJPLvd z42KXV7>{CkcYN&d9i?}BcN0I~apZ9M&LejmQDDJKu%nte=D-C04O^A?g>VI_Y}$D`1LH=Trl~_Ow-2R`wbKjJbN(vFklx|p<-1BpSA_ag8iCUj z%D|}cU5$S^uttW2BxJ3X#QA)_ay}=viroHS8YR?dxXWTVs}hqyEIRSP(O0JZO{=8#Omm@LS$P};n>lC;T%6d72aqOoHST%$~^7W$xg zdBL%=Zc^qD14b%dq+EeWnAPs#t^4SeNlyWcrUAwR5d1@F|_y+LyNDBLfg-RgCIgkCvhRzDCVk(V%pu@dYU%)Gp-?i zg$e0sDgym{1={J&J7}61L{i?%r0r7EHlR1`E&I(?=65DQRpjnu;t_qDZB5(^VhhmA zX&qG8n{J4V!kfapA;gzDu<34mc>JmRA9(1Y=O2FIg?mSK z3fCrI>j+mr#MOo2HBUY8%%dNC;8A?~)Km92qjIOW>3nu6h6vB#upvMQOYx#^4bFJ{ z0;(i3u8?M{;&EG4IBIwy6X4iUUl24G|1N-k7P;)WE*c1k0|G)EKJwE+`3cup8K0&< zDkFx#|c^HV3Wt=&jV8*yjxVG4SBa?>EX9$Q5WJXQc^;f^t5Cw~d~W z9@j{ZabHdfta4R|!|t4RM^Ec&`B1gdK?F}be1Y=a<;M39oLd^R!aMo z(yju=`hb(>FJdeXKf+;nG1lGb^*X0<+f2T>M1Lbr+Ft-Wkl*$E#CMlOf}~MnTN+iC zy}`DgI(ApZChgP@l3yu1API*EthXmE#s%xr#zZF-F$Ej!@s=|7BSFvQ2_*W!Ed|_| z{LY{_!$WeAN%=ZkTa zv_H}wJ9STcc;Vx?h{k)h*vXT@lV{t*b{RiONLZ8T+xTlM*oN;;&IBXn%3ov;&($%` zNi!6893lm{tcbfRiJ$aJ9QCMO@6bP`E~W6yYE~e3$JY^yIEtLG;VsWX;lMgW%+NZp zX)Qo;k}JiRJ&n7|VH0u}I}|6Z;wm$Uhcg^BZIcJhwD`}poq2+m;YB8BtIz7S21FYR zM0$GEM2_CTobVe=t4gK-E!#U}noKxE-{6)uG7j&BciwaK?;Lvf#}od3nd+rAGW0kP zw`|TN%~z{t#;>jJLbb*OTR25Eh7JLy)Ed+2z!_YjW|kkawv$h4zErc6fvqxrn>F$RNn!yC=*jGX3 z^TYO0uoK(uhNPPw&ct_zXRjpPE>F6t6e#aF+Z%NM*N|KT8VC190`yJ-;$Q*-9m(&# zKu+-XNt|D!#xx{fm6Cx#s;Vvq_?o(Hjb!K!!m|msaUo$x zXf#O@VD63jQIY4B6qD&Li0r7W&dIfna(D!@JTHj`RL~VHGpetI`xXQterWa&CKp<9WulXjt{d!Y1N9(XU zPcAXO5b^|rgn45+m>^ctWderUcgKL6fYIHRl)D7R6?Pa~Iz{wd+#1&7SIN_H2O-h< zCkNKGG>o~GbdXCyG#aRc8dV;FRt;P!AiNNVyZRjrMDoe&758hjCA7Zhz(ScFT;3q9 zfidgoyq4$)5}OejyKY4&)`M&e$VOaD)P2O#0vp9V;!bl1d3g#KTerg-k!Wygf3@ze z^6jZ2NQR4b`83|JTitlme%kmu$*-T4{PVMu4xf|!`nkzJKQH;`=O_RCg59T{D)BT8enJ(*fynDEx;!1lH?-TGYoWj&BvpO^aU^HYC) z0scxHep{bN|M`XKKR<~-x8CA^w9}97QuFWOwMj5ZyBU=nOrWDE7*b!r#)H!!F5Kl) z-UCN9yhc@_l7vpC2v_KzciJyg?VI)1c*Aw70U2~GFhxPCi+6ol!rHD@U5v1ecQFel zPMZB1Ua#80S?T0N_PG(q&hQ6S7idcrNlPO)ILr+5KFgn-uUwb-2Ru%Q`6HWXcy667 zNm8HyU|OV@hHg%yj9+Ih5ZEHxAVv^<r zv^~#5S(oI9fuTzAxMURBIpe-If^IndtrLr&)Ui?iwT%vioSo9v<8)F#!T*?rTx0Ku zz-Pr$7?QS{+>}Tzk?2c%xazWLT{ITXwHA(`T`3xg9I~y(7o}aMNu>_bKbsrIXW}z?b-#PKX?yzg|8DcYx(uH`Js>qrBa zG&A=^T}}1S+zVHFy-Jp|w4pRs(@ukhG=>wwnk!~KTkqiFZgDr`9WGdN-Mm7jN2y>& zTS`H1xhnhCkHMg~v$)9xCt5u`$5P!Y(H?J3^-|Z#%!LoC>CW+m>@furnJ|W=pe_o` z{OSi9NHKyQ&TOGZfUKzoG9FbCp3)|0v0cJ#MWmCIxQ?9&=^;!OLfH59*TDhhYRQ{# zmh8Wg=u=mpC|I~MT~bbK^3c0V@OHp}E7ilWiA1(g#bM#?sx}zVMLrPzPp|Y6Cko%% zD~DfyUH?BOm1Cs9P=_z9F)Idu%R5ms;)(g28RZze*d z@qaYF$L#dht)!wu4k>Nj!9NZ=zYGQ&!^$bj{gMBUk^L6~s*W*9*EFlG**H}c8H+H$| zH@pa1zOuQYA{-umgofCXTZ$wxoAq%Nq@-DuBXXL{2(`hDj7+c9(eNoBEch}Ib@PFd7GxhH^397NNYvyBg#HKF zk20R`^?}m`a(wV~QyG^Rkz7A~(D%8iPUQREw3SVQ?RFM^3QS^vyk^P;)SrVbAX)M6 z_svL(h4|(pEoEfNGPqyE1wD`%y@K?g(+9@OF2@y2x~-(}p!yf~7DZOL~EY*WoN5f~lbAwHrl=|_`G1a5o98`qRM#EQp06{0VeA1FbMn2GP-?G!U zjOlkrLoYH5Zwvy8xGx0^QjLXHE*rGCIR~(zN5dz)I7y08dC`zGmp39+v#N3iZkyrN zb_3z))#brP!w-0eaM7Mka4C#y>g(0(eURC6KCrfCmv7#-v22`hI$Bey(FjJ_+BrbV z>B<0nQURt*6MEp41pfTK_c z13BGj$qA}9MLdzGs)%OLZQ-*99c2*Oxbsl9XKbn2M5*bp4L{cKW;@3kuaV;RL5M2B zs#KubzK47yW!Sn8b*8P%%>PQQ$%@YNNDg{QU=pE9V394g&Os5omL5?Dmt>mSSEp~e z9kgLrkA@q*<+@*?YIPn1ce|^ai3z_)@e_FDAN37_7{9H^=EJMo&Z37%ZW;|g?t|ox zzvL{^2i5IccKRxW;O56@_*m``L~KHP9z4TAt7z$Cxu6X3#OSV9r$a~Bj3GIdHh%wYkZ^Jse%Qs2S z{z$>I;S0X*sWoLY5w}}ebCj;iA@EX+OTNCvxb0=gqP}7qcl#zthKpdO4~lLo)07-u zX;~X8VaKt`WC(l!-K8w?%CjyE>KnoB>sHJIA@*vr35!#CaO}56!$-VpNQl8Z?WDPk zauf_!?10yHkaU^j1cP%#|*R+KB(=t&z%n2%IpRYSV{$f0zBR$Y~G_)aN_bUNyy zA`vRU@unh@sAy^903!_+bUGS-)VsKp)K(QXy^D0Z8IoiPmLAGPW5pS#3`yR7A2j|B zD-@-@D*Pub1bwq}XnhMycqIXVYZa!XEvcG7{1?P(RV~BCNE&k!w&NrQC%TmB2EnhZ z+9HLeVktZ|5tVd_>HuJhumV-NS}-$rdJp@s>>fcMLfrOpy&1t`@Jh0r6XY}_jlSMz zP^XaKooe4Hq`7OU{fGF4(VxgFuF|(sQ>kbAu6*XYIrgs6+25lOP zGz!%GtT~428NQZf#k<_mhgi40Y~*DIhJ@)A_Bh6L$!A8S-e26xi>Dw>U zRz|uTHY#5RyPU=cFhxdg=WT_zXMQ^c>p*1i003Vwhp z83^woO6fn(Q$V7^HySScw!)+D$xRofgnPY{4o~*s#%YGDDA?ZB$H2>!rddRl)#UH@ zEy8YxZ$7rMTxU}AXjt=saH(Vl<-CPp-Dy>Bkio?sa(#!ZzF|D*c2JOIKqdN^Z-EW~ zUeLz1SoJu_JFUEz#65n>=r?Mvf*GnZwNUFmsAj2fq@$i`-GkZ;Xj<9SYH+tJE)ONG zu8%OopJ}(kw+!3J`|zmr)vus39denqyGoR#F>##QHHYwg@ZG*CWgK!BYDEh-<}%J~ z0j??zF@+`V%beHOh*|Mf7nW?xVD`?wd)J##4P6+xiUC`E53Yt?zXe)u0&$s0XAcy z{BlxMdj+eqiau^4u&js*Y8;UdOwDH45Sn8UB|)VTMB4*}HVEi^uac4Iz6qxerRivt zwf+E66!545&e^HdeJJ}uTGyYIBCX-7)8FTgFql)1DA7Jy)Z&mvS!^o~IB8V^9=o}u zQbVw#h)OAm?~ft!b-jFDh^O7e1T@#)^a(+C)8}=OM!_a8F^-1Ed?R_pZQ3Q95rDO_ z$Vaobu?&WU_t{|U>($PqoM;g5Qp=!om3azkc=HF{Bw!A3QGkDVjq(&?J!^N{mF(UR zI4VueZ?_8V`EV#Lu3gTt4ZeZcB(h4BN)?Mh_1P zR8YQfNUe)a@thu6EiOx?-Ty5NeY{063e z$;}Rb!UoS3sv}crIE{#gWDF%dL`6f#`;?=4g$1ZGa3_9E-|VENto-}!PK(b8`MoCv zs0qpLOoIx*?e%Lg#x_`Iu2|UYP~O2b;4bsElq5!zA0#(wzi$yKCTTjB@tj9>8!Xet zaz$}SFiB8&v10~oS6jGV3?iT1Z^`u1BJ#nJ^SLW``j+E}PG!ITSDe2@F^nM0)2pG- zt>c>$f1iwUsiGcQ3&@t>ihC%aZXf-mqYg34qTKeh_O&OBHB=Z{**l zw54pt)$L}IeehB|LT3C1IkZ0Js6#|Pl$s19uCNzu}F~xhu?_oYp5ZGbf$jvrQAaF(3u2X&PQbE`s_ampwt=8v*m87U(DXPpR+el;t) zl9%a^i%EP>gG;l-^=p^&HG14pdAwS)ttg;m|xON_GCR%1$)h_e0 z{waW{!0zG_;R2Pco8&Gh>H15j8+?wD@1ppl^^QpJ;nZnXuDWg$SCuI!tjZA8{wFV@d4@Rd=I9Pu1jv-a7K z0%|L0Thyya+4=1~`JfiyA)bDS#5Aw3t%xcOW}K0n;W(jv({P%3cMYN|KgQ*J;{%zZ z8>ep>CEU~jSnLSAUgOR1D1b+7Cm$8#(@>!AByYhvs8~?DhNRi(HI)QfJiEdB4if})nAn=3hUdzwX54StW9Z$3DR{9YSc;1;ducq^Zfg>L$;hjBsdFiN zMQ%5flpE}9R+uZkic_MWhi24#ERwy9+5)LJl)Vm|TsI*)RA?1t7_L(wk~a@=w85z| zME0JxQH1M@D6WQtRLK3bjr6=?v@Z73P7=%H6_;@PCA&0s(O|x})Uv%@^R9)Z|rZN)&=-E@yQB7Q#$H$vJd4Jxv^m5$E>N zUN}c;jD}D9v&j?9%M zo5=QJ7;Xo3JS5IE>z!#lk=Yj0U7cTeRZ!v=IbA*2E%O>*DmB>acXL!HA2)NF5tGpQ zlipNnSE^4b{DFR6e@=A56yFcJ5ks#^Glcq-pDS+8fp0zTEEB`45m0;Hw2`L#n|;%1 zH^_c~1xo#91%$j$i5Vf1WuZy$kEcN8=pZhUBoX@ZBbSXGo$rHl2q$+RoW5myv%-kE zF;`Im7EhP634ln+0dJDN;5$dJlJJ_Yc!4a^zTDqE;^{C5Rg-MVr6N1#=u^3b?(~)G)U}9rHoQl;IC<)HX`Nf>MRQsO z_suiiqa5#mQI&n#p~u^!&t%4lO+zj)_N!2c@}swzc1w!IYa^zs?}VXxPmw*Hj(Y4V zbdA`X6z<3wJSAi14-vr-VopoGyJvb~2wP0$Y)Qo5t9k4N)U=gh;F($vsI{6Ce#$43 z)V8L(8%HPj4LqWzfKP_jWaj51MAKGAb&goy!@t(DI5IYqQVngzyTP?x6qJH3E7i_2 zyk%1u33Ujt(NMerW0KHC$dn3~x?AYoS%*XU5acwM!6-9WR{xh#rohDKJ9qL|nL zkA&7M^Ha#oq4LcwwLPYz33yf!p7Y)>FdcmmO&h)3Qcl<(-7P?uJUZzjf_tTZh;rz! zlSMLyj?mu3De(&J0<$rutI1r(V}a(@`Dl2HIw<36B{5*G^?8knBEyQEOOb4@0*{9I z=W-9*H?`-wUs)>R;>s(Tfj%dr;R&^@0^UUynWLvhcQy4Z3x3HLflvrnhatI1I@ZMM zn5a^i+?rfok(U;g?axBV8LFJkkn@qKZDiu-UKw=G$@Ri!P5`cIg2=_H!<65HJLDD$L z9Vgwryp1R4dl4=YfndC0yRq;eAWM$l5dc>=kYNu+~v^{UX1H_(;8pmYytB%3zR)+m?LS3))cN1S_ltEpa-c}`xV zjrr6h9FdI7-{&Kx0wR%m0UviUshHV}%$1sIbKS1$60VV{x+1jK_;dy4loowd<2zDJbRgM0SYv_ zAo77x^ab>smCF~x@#QaYsz;G4V$4+u)vHCLVbgaiQY1LL&85nL*ia7ku!u)@O0TQV z7|Jy33ZPdRqDHED!*T`p9H!D(;pJW~cGLWET9MEIJB60U3a$p08f*Gt~;m`LuItW-gt^s+e&DHWKd0`leNJ&LH zE}?E_$=U)mNIQsSW5km+uicM4Q014sU9H|P8l7;f$$B5#=%Q5LP8DxjRbv(~#pI<} z$%Z`a7ZfTE$!t;DYr2BwlE162YDo(?s>Ahe%057@=n^-SEAp!fMOHd>Tw;}qqh{fY zqj5dg-bv;O1Gl}5`_It3yutE zk)pR~Ss~-mn&8Iwmkn>vxVZ7qdIfpW;}Tc+q_T0S?Yj!7qB{9?@0{bGD|DQ`=7|ha zbH=*@Ddi#C%y7GD7a;BjDHGf5k~x;zK%jcS@T?w!RrDl)Lr%ycX*dsX5eculN> zWDn*u`tCPVIw;>LVrAmJ`Aj|qA*!Br8%jFk7)Dv-$VX=U9b^XMMXr)`b5#qM8Tuf) zdzX$@z(Yx+Ron73g^({@B-}UMd4spCjR&)u(cV@xy|pd+W3d01imyRxLKw&E7zX!< zIhrtIOM;A!X!d2ACDrJ%Jg-w6XJJ{L1@0PT5w5pDTfqYt;(1`%-9=Q*+Yb1ou+3B~ z8ex=p-y)M}p$Q|2Rvh_bRN)DtQh2*XQuZMu2D`j!GO5QVFa@pXQuxLwoL2V zc$g0!e4NdBRRnlhDd@bO<2~gFo~K4q7+x+`w-SZEW>iYGb(x{C7qC6);1t0q2{_)c zMgcfgl>XP(cl5Swx{J4q{k2vK%n6dSi3)-4n@dR|t6DS;rneBLE1YwM zx1%ACh9AxqG1HuQ%_r!Ye_rb%V-X{d70i*H;ai%zs6l6vy&YJ&2 zc9T>&QgKOLm)XlM@-XSPqYiQxZ`d%P&zR77f`rcN=5y*v>VPBzjd#s{)sgRI8=Oj| zIpFmY(TcU_#2bJqz^p);EG^h2v3g+`Lie2r(^hVw7W8J170$iVt-w5hCwVtQkSP@C zp5gShv^`xWX_Y2pPSa2zjPm70YOt@t%qx=J<DCoAl#G{ z+y+M8Q|7fX#51}Ld9RJutM^pxIVu|=L$seCPiGqo`1yw)cqhUSwkfvp5F6F1YmxJ0? zN3qx)zOnE%vY@AuYlRQQiJj=H%)27~x-5AvC zObPR9i7ub=L2}zs43F=mXNa);gfE0U2h3LyCX#&y3WcV0Mr?*^o|~YbCSJ3!d<%4s zW0pdd?gzzM-VmE7@@0;gP9;xXsqk>k_#q41Y*POJI@;Vf~rfCVzdm0^(KIA&hxCOzInO-P)%BADtK|we`X)KrrZubyH zlNV;h3y{M6xQoITf1gYUKQ>-_NX$ng?RBIw_t@g5kh!lLA_C{VRk6nrHK)=Ho7@e6 z(}TQCr$kfufl+x~2x%$d+w61?+z@N>_ImzSt3 zmRV_8;Ry0oxD+>f$WRXBrPa!EWxLaBN3a>ayXbP$rCBjk=Oc5ssx#tuUr8o=#!jcE z;BmUU?J5CG<%x})=WJD+CfWe&z%xP+km~Zq0JczmdX=k&`-m(xxZBxWEWp??iXO@9 zh`xxjJp|CY2DC0f@j)&>nRP2ns$51LEO$9`+*VUXcdF{1x;SxC{3`Xwp57OuKoyS* z5#5NP5s6-Bp}R%C{dC)v8H(FB5SGc)$SGP%?%HIeE#{t6Q<#HnG|b&~cXqznyW5wJ z$ea6vl>E9ripRc{U)e}Ae;=;WJxoD2iT8OukGXrP{9+ZJ=L%woNFAG3xsZ1cyvBa+WJI%`e9>@v z7n1mn#9bxYpLa%i9LZ6dRM?TpI}xv>d67K@v_N#Q#rX_t=Ek>hlob0){XyQ4ThCT| z4}@w{pQrvP1j{||85io@E=$?|O}Cp#XWLM&@)XpsOKvYTpGmmjfO2-Tzr1xT)d^D;Tgru3*-?ucDo(Okr>(c zGxfH0Lu?Gt8)j9+mG4c$-3rvQ4aM!p9AkJv29&1n_6aACHpa+nk?3fe{rVVmiX_wB zMVSXNpz_e>Kt1;3^)Bvd&bl1Ui!vqZr!Au)ukxs;aJ{AKreJJvZm!lsB*omKa8JwE zEyLp`pnK`IfCZ*<9&{~JIgxjY(Dx_@tro7ABi;$mF{JNSW*KFpwE6bbw26mb7pL*! zsUW>dJxx_AqKMk8oP)T04f*VwUW(+LzGYnLtab(r{OIQgJowR9hDCSEuk$$F?cKQ5 z0hg#WSM=T8J1pZ&DWn^NsEGvlO?3;LRI?xcMq{15&5oIPyoA+a7;n0LcIZf2;L7aw z8+g2g?3}j);JUDbq!vczhB7Bi%<2sA_Ao}wzdz@=dvbT%>5Dq&A)}DqtK``tREG%T zFvK#v#z*#+ON)t6jlDH0hdZSmr2g2`gmTuEp^z3}6R_uy#It>xPe1KtKb+ab-2f!9 z7d->c6oe}xiQ`mQVh|*TVR<{o$^)q2;lb3nzzZ{x(nxWZ|%ojRa#>NtV(C<&$u*7=3zv2inpi!*ptyaV=vaZ*9e21C|0Js@AX311aQs7 z#oU;)JG2@g)apLGP=}SYk@BDKah-jtJ33*?n-5dq5XcF|DcbbeV6M)(WH_adi@F_? zs?ieyPu;xrmj9l~9>O~Zx-yTq9DzHj+)1aCb^KP5P0a+pygF$Cgp1Th2?*Y=g}AxO z>ZDfjT`a}ak%~S5OBQ`0#RF1*?8y*BHJ_dL@=muD4#{>HP3)JabZs0;m2XR1K5y(U!P4qwL z2g?8FgKD=2rh7dYG;v+9*}2;sD^(z|3=5lnYy(Q@E4f;#w&Z+->DmpBGZQiV-q+y8VT zQ>lbO#e4fmuLGQa4tW zo3k85na{~;f0@MMpn=y=C;$P_KI)GYF-#n*G8gww-!k@rg%UP=l;|Fd85B=(m#Jcw z^`N@CSUVRsZmXiR%DujvJw^LiaRw3Th3!bW1?beQ@?N(rKtQOrh-yi=2ax=*<02R-fqqxfJTgpdhdX;I#|i6#9mtc``Fh~&>Vrzh5O;zr)2F!718z{H z^v9GslyS`0bB{_MMqSz9^aUS80D?|AaRYkE*y*3QTYY%MkS3jx+0yBT2=fFnbm~tX zKkMwX`2YOZPYMvOc{P*e4!w$X9yz$}W$+zUFjW;z_hMns!%Sho4!Y8c9AE9GL6 z7ay&cfD>aq4ZI-KuEoYJHqXAI9w@36qn=5KYPm%c7}MIN4^t`Zr@PyWN2YdbevW8% z$S*yP(sXoQzP;isn91hrR#>TZxcyjNOyroZP3q+{?i6xS;qcOo%RW(> z$mDsg_9(71Km;V`C*ip}lRI0tGs^MxPc0j7&zR35o9mcF1G$!(vDRGkFSY$Tr9NNN zn{RJW4@XWwzQ505Rk=8I`ttcU|#JM=_bs`*mT&ONWr+X+&V;4PejOO87X9Fo~!~)P>p-tPLp*Jwo%S6MB4oAVysAwzNO_goAk@XHn^ti za_u0)h_{E*kidq3As=b_RP-4|#5Mu5&&akMKBr+y}~O zM)qP~<=FL5Zo3Z$WW>5jUzAIIZn)JugzKqrI~y0g`x}FV$hcLP`{V|)s;;2Dp}pM6 z%qL6xeN)*B(=ZoDyheXE32Ul_%Cy6B?cNZ1!QFM$3Ae(2zDfyuxR3bF)CsJw4iKMG zdT_okHyZ`MQ#|o-D3O!@u%Eez<}K)+8prl5Z|#67&m+c-8^C$gATyWggk?K0Z`!;1 z(j>CSyiS8$4U(ld=nYU|sn}jP@UEr+S58tCQa*^}!NtS}VeLt12&aqc6m#E7zBYnpScOGJNeAlB@URv*+x#9}9xtM6 z>6kAT+$H+9D@9&zXYEZdV!2PR>+W=V8z5g(!0;B)>-dlXxf2|xwWN?tC4z?OO%W@A zG2w;^Td7i@UJWcqggVV-JVb#DQ6TDD6j76ZtJKCa|4VjWwwJEvXc=iHgx8MtNDFr=o*bZVXBQ?%~2$gOq9P!hItg z2#nzk#}zoh>hb9&lEx9GA8P=`A=q*y_3YIBfd&5f~tMllE`Z9-C zFU(cPX@Tkc`f$Bb2lC3EG#~O&NV*3f2&B^%IWxX+U>lk9d^1yD(3307hrImA7JKa> ztrWVBqqXdn&S5CMg6A#@J-LyYapdl-DYy(33ErBFg5i7V2d0e$K5?bRi)(j4AEw>* zRB;Paj>@=niu<-q){HjFtn;&o0h?`lq$aBEkeb9FD9wE~n)MrihkBJ3t8e=-V;iwg ztqoh`aGs!fI^vbe@hot)btX!l$Bny zJbl!CGfDR-$51M2AtaHP9j7}N0H>wDeNHw^a{~{P`jdFtgIyOx%B{+Q<9~Aq?dy{d`$QyC1qi@>nn;|v|Xon#x z$y2-Zih6VUeG4;fO6(Z-b4CX56r_k_4b3GlS!GW{!L`8+sIjwQWrA;IwvqlJ*M;oe zsVUYLzslq=?^|6{AAZfSV0X3goC2j}VI?-NP1#RB7;!I;7y-*x} z=tIBLtirV!X$jCWeP83}q&yswIzig`>>(RVE^9KHS_toJjbgP(*1s}GeG^SVR=vv2 zRaLr2-39hPkp?XaPi;ZJ-Uu7ecTuh(+mAYr%)og)3OR>{{2&zt>wnq9#Qwy`RdnV${fq9>Pv-Oh03#hq%TV+vIkH1XyjJFLSC--#YU z1qy1CC8OWHANNWwEuS2VpwbTsL!hDj9b?LlD`}SUH`(nzp3^9Iq||fPYG0T38p=hJ zcg+shNI4zK@)AS-2#!9TJAl&{@8H08!cIM)(3Q<47=>_K%eYMihZblGVb74|Y;4i0 z$t_w%`U^`IizjMURzP8&+?E%YzdNNF@|(4X+^g~D?U~zNW`(m19d8P9hb{n@p4WtR z_RP1xPBZ8S(l{^vxu@AcO&H3RygDv=LpGu(2tm!y?LSE?;OqbPt3_$#)bB_P*s%c=J(Bh?|3Y!$B8T z1qBLfhsryT-qSb*A*l6wy<9E>@ezUB&J=o_ad?x|%|tH?RYxwrrU3*q3I{WCwd~t* zGWvv4%ly+ielvV4xqdKaC2e*GSsu?66??{a+f|TFr>2dDiw-lZXC)!wI!MRCIrh?m z!+L$Y=rkjV1wahmHhis-qP%rnK*_ zf)&?QuRL*Vr{O+ZbEU;(nuHeo>1(wwHyvb6A?jfwPGaaaV0jhFavD3*X|MX6UHYQ1g9Pb}>GH?n)Al zR^Hi~E6|8M0vs4`ENu!If%3bnDyvP%u)t-EUYj*wa250LikbAW^r0r*qg-ut z@Pg?!a!}_@6Nq9kl#ImkJvYlX+MU8hk+{m2TIHRrjQrU2N(!tsYPZSQ^NmGU82jL+ z$jj|qu1APbBmt^?Q_lT*x}kVUvdDcB$FH0_fYTSRgCnZ$)r<@39!Zv|zTT9Njl5&z zTFy@2a#LS#Pbv>2xysNnlKawbF<>_jXz6r=6^A-_CW!svhsaO>oKd~lbo?3W(b_{E z5jCcA6{-I-JDHew9>urd-A`xNeQR=>X`)p40E99-y_Sx3BKkntMwDIMgn6IgG%847 zslxI_jHbNJ%OWq8xo*ttL|^6#mt0=pTe91(i!o&I+9DQ=Jcn$ax$stVDu_JXzk=~& zZZGH)>Lm|%1-UD(J2PgSkNJ{jT<`kUNK-?}ZLQ{^C> zdmxLd^8)T&R83y>5vqj$bv5U@+D^@-fX*^FU@XZAmcGnN9g&Mq_j3 zZjQuc9f(zcg56cIg-9Yi_oRY!H`^ST%lEE zTXj6fo9<-!rEfB}ajY=1{;uuh}bsh@Xj z9YJi=8LvK>i`R6@wKoWve-_d`D1heI|C#LZcZUbz#Kp}%T)+bPGVf&c=IHS7VhGsq zOt}Zo?AFB>pbnbOLVW(=2OfI*;c}}s+N$#Bo8-_Ut%mH{NXM8!($3b~zKw#Op-nyYJ<9 z*{>QoulATPevn^eoKJc_Tbazv&%1<{A_iMy*Gkr zdmu#;%x7=sCg>N`&1hML70fs9BWuCeIkWKx=FB+%oST)I=rH!G zviax>`O&c~BxJmmVLtxFJwML4oNhjT*4ep9M0)cw%%|VaPfuh`I`idE^Z7sGw6B%V zZI-ra{0hR>stIp_qPl)mt>}wt2%}Aq(SJP;ALui}4_LmB$}yP)-lhv!pC1s6*=okQ zhLg}m>oaegn$8=Xlz!FA-#O}-zBiC~^od|!RQ02YF0({I$r7Rw9Q9%69d;OC7ndd+47pIC>A?B5?9$q zxfZI_pFiYh?=&rtufe}?C_7wnc@b3?83$L0pXHaS6w2hKP_v2Fy~@63%s$L11{zf6#F@odHkrff`w#Vr!_Tp4HDW|t}6 zKli2>2W2b(pDuFX_S|JmWW__y zaW0Z^V^sq4s|hoY2kyBga#2Jr_bKl0Tw9_OIux|G&rNnzLDCbsQ#Dxwsnrk{@43< zm|fBRyY%Gj3-1{d;cp|QGbet}pfL~m;KG;;*RZgZeT@2mR-l3BSj%Rl646~kwYdT5uq(%(my z<9*82Ru^SQ1oWevt#}0X4|KbudGL3WqP(TB#wS&1;`L6i((H7)GWGwLz`Z3JX96D8 zD z{1e^=?iV8kLy^V~iOic1TWorRrp~)~jC3K zs{$9A#^wa3t7QnVpW=SbJ~NbqYi#1ei2(aBvG2WgQD~X^r3L47{sjTfe$sLAxY95Z z5nHp< z1dCLgYN3Mue?Wk1_+NF8BSMpg2TlL!~NW2}GjoeN>ajF=eio z5u08Gx8PjOeb>~Z-2(fk$tk>+^OUe13VmZQp z{XVzLlvqd#2n*n|IAN~{EDAU|tGAO3yu5fCSQWfTp+(^z%{w_fR$SM|^FmI}Tfd~> zJc6!4a~DuQG$*8INN!6f#;sO5Y%6Bmh+rf zl<^$rF9%5nbHR)&8y&2z8A*USquRp&xr{uyC6O`8#QUsI{BL>`Tq&I3*6c{T{ zqg1%&dSA~S_xgZy;n88P&@9V5hs&IeTl719)Gi+vHowoQ%?QxTe*Q1+>}=$c)-2p* zzs6bmjq5xb6rg@8{3irE+dg|w_En@CFMD({_k8+_(_9WVw9IJ{lU{$n(>)hjwWGmZ zKycp0P6%^V`D%^x9KO}&^ zoPfQmKY%95c+;?A70N8MEpdi zoioLpSzb`UUA!O6*K*7DejHFh(+A-5d7!+mwkg)CONz^Ke~WwK72MN6jCLZUl3kan z^h^OTe031${rDI$IIny_30PU~mvgyuLp!50=zfmS<`u2Tr`PQAeWnR4y>sGI-S+)Kao|gTBYBTZ=66!u6K+V+%)=%x{ zRIOtCliaI$WeuKgh*|^9GA`Q}h+yFs;!9llykbGUx7ls#JoyLrgAw6z8rD^WTUY4* zV_f;X^K6GGE{(!@0`hmc^m&gb=+fnv|7}0eiHFjoWSZv?ePwxlQOl0go-Vf^Oh1Ce*YItsC)nB+DTipv=DDYV`dfx%UoL89PB`)Iy+2zj6 zD}0hGSD(8dWMlniH`1t_e{#l;^rQQ-)>n<6=W7XWUPUj4$=lPc;XOp&yxb-pZ1Ay4 z?R)ui()GN@*g6WomJ^(JKN7#*GAB1LEn~6W*W|oyaYN>ZhvNgEgn{y&i z*Rs#gR8XCW*=eqR{=ITEZ<*?CqyfJcFwIm`RTbVvnDg)dSiOZWCkFgXX_}e3l^DLA zAiZfEZjp&xLiN>XXzULOG@a@VKf>Ai;{?+nV6v{m=X1aO@?$E%w&KGPE`EN1NiB%O z1n4&OT4kvPzCp^TFx#KyulD~6qn{I-NR-oceE?j++e z27OESCl@?WWCnViRIxZBOkVJk4ZE7=^5RH?R)G#kpTAfh#ew8$GFjNQ+_3t>D6!u_ zQYoIe*1@`O;I6e6KN^TXIo5wk&X~W%y-EwDWSHq#-e{uy1e8y_anr6Df7~NnV*X3Z z21u?dZaS93T@+NYbvXVr7nLtt%-6+-X#_0qsRgRS}Wu`}F3yV9= zM`HVxR)ES1`XRlG7DXoT(IRdT_7I~NuJzO0z(tS=s04%Q^;}Q`7f) z!QD+9tGWOl!LlsrA}HU>p`>i{UM9-)#K)nuPWTFsQF8&yK?b?p2#UkaR)||2tP-{2}2L6ke4-Uco(xxysiLCaS-9CvK4&f)Ye<4T6A zIwB|Fn>kp%z2X3vZZO2)WuPCYzOl%G40Uvhao<^2ga_ks9}Ja*WLdw@(H6HX#4)yH zp#M@#4V`saEQ^;!K!2XA+R8oDvkx`^4{3MWEXX9wyK=E~Si=*3GSENd((+I8tV^p! zn^5a@_2O?N*H|2JATwA8`TnMuY@T&db)$EF85fkV=gvG1D=SshL-w*+2gvCchrqh! zPTxWV=6fAxURV!ytt{#PAqp4A-A&+22Ky8TTimi5yIoVO@6U96T9rT@OzH6i(2bJ}%o)8f{IG&ifBt#M8H7T2uk zYlmn0LEWaUZ!A`XPz>Xumz>~_5s8cAfXGtPBBaJe<=YOkqEN->qWW&?J&`Y7>_I+* z0EbSj{9CSWacF$ahOb}Zl3vQyoOI4Zt}bnJBf{FCs$DX#bBLY%A&_bq!B&g&2QfX% zP;P6L>LBi;=C6??$phi)+WI*Z$@zAy`Ffhsw{|o)e4593F=Om(=`nt@7|W29k6aY$ z%#ffKbeVpNf)sem9Ocngv^)N(&&X)2dbCfI+Vk1rjBA6^q}FCe`xcIt&*!Hc4XIWv zga!%O!JGA(^l#=+ujG>cltYc})pvTJVzB!ejD8^@I8pCXKZGr1B`y7y%_8V7WYa^_|Nw0I& z|H&eDyKZ*-N4NrSNiH`axHR2P0J^@V^ExM=?=hSXyvXK$SP4<=9W``#0kI!-^i|Gp z=Zd0zW>qYtgccHXDA`R^KLFaM={BIC^emrqHob{Cb zk_vMiS_Hr9S%&ggT*iJg6oS_b<);Wg-=drjO);v#kEeuu(IW5^_YLDcMcU1G^{4aH z^X;LC#mxx0jC-A*H#y(Rw;Rmms`LUK z{QLu=d(oU}yJt+3OS#5;SMQu_#Bg{m#W3G5;GQm;qFcc>O1JLR7+S8RZ>;}Yj=$)A zl@z^-4Ill?XF>!Z;1WW`)o15|&&1xUq6NvAKfqEsWw$6P{!+3cScTXa+jrq6XXE{g#_sdj+Y$NeI(&gE2BaM1rQ%L)drW&BR;w<4HH>Nwj=D`#qEyrpQ9YJJqVD`? zG{6OA9E1NiiDjXP)dLzQ;lCqdKNABQhvC;OdMA@d4&z2(-y!=yiP(IhKKo9>7lM}y zd0Wxw5nsU}^YhT=8M4zcPimh{t#qO5>ofEg2oDoXpyL`se1h)SzliKUSlc3aALkC{o2j$!U_F8;OuKr1k7MTh zwB{HS&N`@jvUeX`G&-rnH?`q#7nin3s^nk;EfIg4RGF{A%z;OH)Aa|ruKb+j*@tR` z!468Tnj+D^vgiZXa8CD^ESf?Z4$J&it}I^{oE?+Vve5lHSGCA3Q;wJ_e0wt9S8-wa z{Go`B~Sq57!O!F}s|!zeu@ioF8?2-2Q|^<~wKSS)BH_guHY{ z^LQuJIjVOOvH4EC`NtmMjaze*zQI916AQ*N$DILRx9|lI_%c@qx6l*veTIYPr}EE^ zFJ`!k8(Zx zJH#d`&UT$4euJyX&-j{V6-XpR*_dkRjPk8qNWOb^no;1FV|Nw&loR|bT*^KVvN}G< z|IR`3S<+N1VVzWWdQr8}H01+7MFPlA$(n8n&ds(P2tPjt zFdcmDHkWg93$c{%9zAAX2 zvo+{D8Oz6rzI+mxcDQDEhMx!me~e4&wkoQ_YnuB3qF`}@;Wgi0wG-+~uV-;(`Ps9xuB_V8@y-`W&iMw+%;OAD z#6VZ>czy9hnUMc$9I60+P4;>!x@dryI=Gprb;SQk!dM&*-AWKYzE~W#Lb$QDQ~8HT zf%$6ItdxOk*Gci8UoMscI@egq%D!W-&WVviE~evsbbv0wO1z0R(L~6-w~J9{VF%@A)f%+;|{dB_RL4)op;@~d0-!$ z6;^K(QmL*}F7GEEW}X&6wS$&<#Qhrx>yeqK)eCmrMV`+^K0hloltb*{;nG333!MwP zP`iuLnR@U4W*+oa1H_Okb-1Exk18#+K0!O2Bgs5_YkDF z^m_r?gFmK^Tr{LH^>=Nc{vD)d@ACvjAP#yx7EjwikUFG7WJ>Ej%Xz+UMr_u?dN62e zUFRz~zghPM_ZU0f80K`)gN?MQspca3zaE=$au#G#zTmIPTIYt>#WRw!$sZx|9+-80 z2-@_uSMl%j7(YHEpn7M}i$E*L0zf{l%arqPp{0rSGJ=~`N^oYqupWXP^?2T^ zgI;Xi&R;gqnj1)sV__cI<^RZCo^@xm=rTKFiBmv-0YN`CBRUP}T8MI+$-R>faXK$d zn4T`ovk7xnrefwf=;Dze%~YP}_IRr<6gcb#;0{U{1{-*>G~q6S)?c1y^Wl3@$4EfE zm!M`PcDjk5T9V!mQYY6ea zS!vxqM0bW@W@TnbQFf9Ccjf{Go*3KQjPKz=o|R0H=TU7`wofAiShJiT=XskI`|=nk z9zR4?aT_W=hY-CFs1-PHWZG&cCqzp`upgXpQ@cIfrrkqseGT_#R-|I1k)qba1rVcR zy+Lpf&p1~D&WP)4xZ$&ML_9?#_{4=lqh>uoOwKB02rxWT4VC@M+b0OVC7|C=(6cff zf;J2{0r`#d932JHsuX`V*DhmraCg8MF-f}riW@U4JLJp=4)x2{C?C5aphc=Ug9)o{+J`u?S;aOWnJ82;w+iPrtF}XkgH~5tf!pK_vl^=aa`e6(Sb)VQ04Idu`?*`Qidcc`5r_Yp%l}{0T?c#=MHi%BLp$H=76P8mC2_lLhpdyNZG*Lm2qI3`e=^#q)3IYQ1&Huf* z$|iRgf_KM{U*`Yjm3h-=XJ_Z0tV|!D5Pv{LJ(;UIQ{peMs{3n?ZWpZnq!@~l)jh%F zfnitE;>jnOfVlb`CdOS)G91&J^&om+l$-J^Q3mOKP8<;(EI;@D5@z&=D9c5$dhdm- zH@=G7euAUL=C(oFOGfk5AKN{!XTJyX1w7Orq1>}*7>SdX25}#i_)OL2I9+f%0LJwv z4)=`19?xnyQNQ|oHSU|j9ll~&oe+x9z7#IOQT^H1J?m<)JXfFcq%{;393A4|+Z6cr zBy}#nQ%rEMm`s;r8%!(5Qan>fp)xI?K@z_0^+_iCL z#@3bwqeNTkO`NG;F~*z#vF#;KjkJPix+8>JMl9a}cY!au^R1g^@W2rx4sBWAa4db5 z%U2_@nJBoU`*h&aov4JwXou10^;Aa=m$vwR9PzE9*o?*(rnZ}Cvmu`?(lv6#SY9_B zz{*E=u5syDe5_IIREpm;;NofkZ*=EwmzMAxg_o1D;x}UWwle3eZc24|>H0D&M~Q$? z@ms2fgkka#@B+NnT@5>`=`D;LB?3alXDsq@{9{zN?&RaBYH-f07pm6bH?3O*^t?0J;Gmob=Cf*2%k&qoe z3Wxja4t(h_D}H>{?r700vfm7an=@XgsZxnXC9ZuaJkpL3V!PD9C>UqLHvA;by$Bh<4Tq8mE#_w zVeOJJ!>{%Fv=tdx0wcm~ccNBD31rOh!}qOO?@ZhS%Na9Huw}avZi~{$nBE}zndKyB z6s%^MxX)ezHVbx-DMRU)v;D1 z{VvKcmvoH&h;r6_gmv}dvpqimM}K+f*^E5vj=lB@dO5e}V{bzoSCI34s;hr{6?aUE zmxW@p&3eto&+t`uQ1{3%Uv6Y~h_4vzK6#+Q>JD?Bd6^s>7d+DPokahPsU6$LEHyHwEXA7{Th4z+Sw4Braa)CL z0GW+uq`PG$rkG&e5edI27#aFN9^Uu&qR6ro`vev&0U)2@YB^~kFAV{Q@T&;X<7+Oii;8- znu?b~{63t%!ww3K6rX^|-I}2=th-;BreQWj8K?J4t6)ZVMd-o|ec2<<{fV;)q7=o} z7fR0{Khm6nzNI@wrN^pKoPgxgybf=h=(V^s?OI*caMywQC%>4`O4 z?sCFA-4j4*+Y{g07`gQA8s5k0Yad7nCx~O@Vz3c>(%nx^(~L zvR2}X^c9nIN#5LUdA%G0pLEB1zvY2T3{gpsT4)qHg$Q zXV2EUx}i^c-u7`O$IhOmhrbAGp0|A`Yc}tSqf&KefmCl`Aw~f0)7x!@X>d%p!HQj{ zu-It5d4M?q)HHBl)bdj+?O{u|ak#Vv0qbuJ1)*{17QI_`#LwR%uNJTVLDSHk=iId> z?sy8fewKI(nbdui>(X3;!Sc3lYpUJIwUNlA@Nmlq!6#Gg+t#~D^eWKG3=n7Utycxq zMb31`Q>(mdW0r5Q@4z$NQg`2&-B@@AzUejzH_eG36~U^G=f&M9e%(gzrZqdy2B+E{ zMCa8nuS9WQ4BZ+g)>7=ySs2mnIj)V+Wf^k9Uy$ms;Mxw|EMs}6f8z-p;#)&FV%|PJ-HCxSLv=RWiHZk z%jQ)HRGjWZpm@4T>lzh1c0i~&^=iGCAPg3DpQi0pbe*#$2#ey!QMoGfqu`#@AphDb z8$5s-)$h|b7hHL09lf@uKHzv@&0x8R<9C>QV&^QQ;eKRQztOqxoULw0Wkks(B+8>B zzh{UwOEdW)Bdm!}9J!7BifYh(s!ZdO3(LJ0*5UOJECJGO#j>^^hYq0I)!pzVD%NtY zuptU4y=D@`HDg>di(#e_J=;YZqQs_O0=kO$H5z;pkH0wYA0S!cM=$UIDsK6Z6Gb89 zg(n<$v_}Msvqt!gCtTdWV@QsTA13XbNB!{e6gTWxKZ}Qd)^GIopmyrJo0EvB*bwVa z?R{-)9&RKbIVw*4vWX!<9J{rY3q91ohoWrmt^>5}6@Ag+JHuRX#BCFC#yA7sC`vcD zLXV(I+%5+3(TVuMKUoV+k-FQpNsU8XyC!NjU5T3*r!C8m^afrk?g6=Ss?YID(uAYVlP7;c7ObmA1XP!fAtD1&_gG1e6 zzGfQIwx5->BybQaRnk!5b8oT-!<#gP`L!PnI%Zdvqs32pTAuSlVYzY|Zt%lB8IDG= zr&Wm7v(&N>Yq=_Q{(%(yjvnXp4!o&E-eBgVi6?;2WAn_{uw7nPR9>XRCclQs3i@*5 zgH&-li*)uyOgFvMtwf4l zAgjll;Rmn4-S;CQDa3k1lY_PXDEm_4mmcCr7!ApRVjvNx144vhOG&Ori5IsDgc%I@ z2-dRNIuG?CcH9K(nb>2#P74HE?yflt z@;+i%g2I=#7?az7N@|Rv)a*AdpuY!Er{p#HO*f zD4zbyq$Vv(?)lVA%8n2u{bgsDpxo-}n0%~Wf-K8OR$PM;si32X+NHbDq(6NjSUVL# zV@y(P67IW5G>FevYy;Ala7)j+xZEb#{*tvfV7;u4b$J06JNpC5q`IDzXmFxuirO=b z433Tyr?^?+IVk9+Z&8qfN8zZRW$S3{)KL3C!Pc;CH6AX`jE0K`A2@@xu1p|4wQ|ND zu{gbN?EweTN%cIjJ_d;mt|Z)GBrT^Pk5zOE#j0R;ZUUAL2BXd>bJ0j%DPg?xD( z<4#}D^+a*#bpXqkyAI!^=RslEx}mM`@GL5RT}?Ejm@t{Wn~<%cnx&1# zL0YfE#r0QWY!(whh#^uWCB{5%)Sp11l3o5VtJntMkf_*D%XoJczT103qR61Qv@6*5 zT+W7jK>9gn!&YfN^lMuj3`s+})H9Xq{87R(Nh_hN^HnlFMo`bBdH0)%B-I%c8_%P#WyP<9@O2anP*oh}c zjtaudAo&tA4uZDP-!=;e+MV{i;%LoLNUZv-m%IL$sx`YL_hU@4WyOAG55(ML$&l=F zAHk+=GI0D4z`Z9M_;BI~Qv@A(W)gn-}Et(v1nj9$(jfBODYu~6J zhsoXBKhd~r>8ED7A;vjhg+($+rh-`A;U-*M`5q_kcT5?ZQccYzcxq|UvDHwZGC=o% z$^z8}DhKoePi~r#t}f7*uvZW04WRl!hkzOY z^@2u2pznYh0nG)sG0;1RYXWpxvTpk6=|A=evd1LXPu-2%5S&`&`9fPMtGKhP}1y#N%2xB);H z5jPO%7|K%mB3Yj#)CTy=v|;FpsL_T1Kof| z4A6OSV}TYUE)FOGal?UrgGM~iXW%9Py$o(5&{Uu#pz=T?fL1{x8E6yGNT5q-f1`k& zftArfL%53*5JX9w5#P zv=VXCfqp?6?*PRB%>b$lZVJ#M#LWbH3Fuv*6|gc3C<$@z0sV#?%?8>H-S>gA0et|p z6KD?5Ey#Tc)B;xK0!;v#2lNZjM?fz@V?I!JpanpGBejJ<6Cw98(0s&w0yGzLp8^E{ zEdm-2^cm2fNOv(%C&YaYv>H~v0Qwzh2~az5zXaL>v=rzMpk+Y&Ah#T-KhpgQ=q+$p z0R4(IRsy{W?kb>-h+7Rb4RLFL4k7Mqpb@aQ7N|3+5`vcIoK%0ObA>GYD6Ct++Xg1JRAOo!Y2=pz`Pe7kRcN@@G zK-+=t1ML6`1lkF-7aF^O_QT$8pzjd32Phxp_5$sK2m63t1@~v5yFmMadP4UXpiGE6 z08|ya2Z8=V+#w(ZalZm(209GX9=b<>S|jc#&;!IB11bpJ<3Oc>P5|WqItf$-8mE97 zL*q2iLB#zAbRBVLfaU=G4s;jj51_ALZZ@E?h|3OC0tRvb&4;c6lm*KzV@* z!%9A&XvpOU$^ldW=u^lQ1e%SwLO^SQ3IlzH)QSKNL|jpztU$$p8bP->&}o!u3825h zEeSLos1(p>Sa}9$5YV$g9f3*%ZHI0dpj_~@EKm$|%K=S78s&k`L8AgtamZB!dIfTo zfTn|68E79+6`+rRssa^)+;c#!V6Pg`CqUJK9)Mc|Xai79pugc&EuafPwSgK#BLJu( zP#{nM(x?M;3UPITE+VcTP*>Qi540R{4Sn+5^1;ZU>-C;64v@ z6{sUn7NAZ*e?hJ@&>HA=0a^gm73dAfbpy%`)E#IPGkD)bmirMGas7enAnpYq6&eG83Ih!UdIU5Gs3YVC1KkFC5$GODZ3s|(*n0^m z8QhnFDns`bpejH?K-0k;3bYI;7$_3DAwU}u7YZ~98eu@y!8HI?0}2QF8*&jq|3EGh z=pm31Xep2ibR7N-1Ns9RQ9uX5jRqP7doe(7BQ6%`8c-ZiZfFb#ItMH9Kvxi#0F)oP zi9lNrmju)Vx+8$fA}$$d2hd2MF3=bSR0Op(8Ynw7#sC$A+^ayJLT)V3eWW`Ms3YQD z13HDc@j&wt_d3uC#7zJ?4SN%Ty20Kgpn5=)fpS9Qe?Yq+_Xbc2aHjx8fIAiF5Re9x z19H=VS^=4W;=z3rs5H=9K;Hnp4fHbXnSpi!O$W+@{JsNp25~chf?+QOXfe=Cpl!&< zyFjt9Hw)+*(0f4V!JQ5C3*z1fDg@mRfZj*k9H2!=<3pf-!JP~AHsa<1<%TaG0euec ze4wM?E&!Sdv=HbXxE}+xMBFEY5cet2kMLy?&<(_W2Gjs@i-GDR?sK3Jc=ZL)E8s2x z3PaqNK+_Pn6zCD+mH`bx+;X5XKwkl6fzK;|dcg8Zpg(|C0d)sj4YUSU)&PAD^fgc! zptV5RVDB5CNr?Lv=rzQB2b2OU>wr2VZavWd5cfS$7~(bn1w(fu&_Zy30NRMSO+aH1 zw;5;|;-puCW~08{~S7lBqH?h?>Lpvyq5!My?$33L^xGtf1loABj2P%oex zK$W3;6R05M{vB=pCSkK$(%>e}R_3$|In<(8!cq{CNo|Gf*aIWC0oqxvW4}fU*I-0B&}mT8PU5 zbOE{w(0at>1UinmTtII^BR9}V#N`2MfVjLs?;r; zs4&nxpdvs$frTztx{A0GK-GXs0u6u%rGON~Jp+^tCG;%N4Cs~yIt^3? zs5Iot0(C-MIiNF$D-ZMq;wk_gM_fgqkAW%yH3zpc&}yVx1*j(Csseou^c>JkXjB6# z2~-`Z9Jn=r8bh}xP(yHQ0sVxy+CW2r0)PgB8weB*-8w*>5LXvy9pdT%WkOtipnlM8 z05k@uA<$@`MnHF<(HLkO;+g<`58b9f_ys++8PIZYn*-s;=hPNJ??SF6P&c4fKqn#B z8fX|Sw*hJcZd;&Ff!YCO2e&=Yzd#*;eg%3Ss2xy8ptV4qfXc#hXP{n)>jE?bab1CO zqJFyp;TN3L?m&Ye*8}K1q}vl{8&EHxso?eoYKFKzK)HeX0u_Y4en9(>Mt`77(0BnT zAJ71xx4|6OzEI<)JMxaQbInXcyy$YlP6@~6Fptg{U0_p=4 z4YUYyF+g{LVu5~uMjTLCpy5EJfZ~A;LoNZRJmM08wgV*r?FAYElo==)2=}L}BZ2NC zZWPb}crY61H=r>gYm=#dL1YM+zCJh5H}GBcRs6= zfQlh*GSE5L`yWsrXuJWm3EU|_xO`Zh3WN)TRShTH0O%c{oY0*CbO~`OKq=6e2{Z+9?*b(vZWd59G~NSRin!T8gCX}m zP%FfJ0MrF>bAXJ9`w*xUbmsyU2bu>|3_ai@pckMqA4oym0-$+_TL`oX8Xp7ILEI-m zQHc8#=yjyA2q+u4p8?^zK6Nor1H^p}guC(7FMuu}ZVAxG(ESo92xuwLNN|?{nSquA zm4sJc0o{h&3ZQY|t^~Rav7}j#I*Pcjfo4H>Eznzt`v#~9;=To%i@5KA zE+cLokP&g~fmR{zd!RQFw*g2)8Egbv0qze#)xq5avngR(=60g}4JiB@uTJs5x{G0pW57^;e*05qB7qh&u~(0=nmb$|LSPP)@{M z0Qwkl7l9ff?h?> anjfw(I`A&9#Q^fS;kAbf|bUI*%ibZ-E?2y_#uICTF6(h&C- zPA0CaN! zZ3Qu92l@f10MM_{C2gDWF`4dj{wTbe{!kin!81ry*Ac=oC;{plXmS2ZTfJ zYI&gLh^qk954shB3Lvf$&~wnO4AdQQRe%lxRRuZ%?sGt9#8m?dMO<~DXxOU(R14gi zKzG2c1@txIY7;_S0MLuj2n6~badm*kBd#t`KWNkgItx@E=s4sW01bm&Lm(WMRT}}} zFs#}bXgIh{fN(HXZ3@&MR+<5=hn40)=MmQe=omCw0^umA+6w3t;#vdYgs0jD2!}b< zwm?gu+YTrZa_xaOAg%*Y1*Gvj&}PJS1S$f#PC)MQtpyz=40v&~1KcGH9{ej}4@d6M|zNrI%QlK#q zNCg@MG!|$uP*3Q-2$To9Lx64qy#!Pa=w+anfnEVR0o@>=*AO=pC=MtX=o6q2psSDz z1?mA529yV>8Gy2*T*86!LL&m`b)ZO~=YWhrW1*n}#Q_Zix&jmh^dnF-5KiT&F+d+7 zE*7X3P#lm6XgCngy{Pd(!SE^p=pnd?KsarpCIM9ecLY!opk$yw;nhf>!iXCsP*PHe zIzDrzOybyvsbE4}q%me>fcRveE6X=0(m9gO?TCYDDcv%gN;or(_!KcV2E4+~ zytufOZn;cFoucUq6UdixVyM9*f)hgHjd3EStfnGPTyaV=GNoGErmGP;hoje8MQABWnqb9BeD4TZ<%9QE|!}r@#12khoZYvNhFI*dbn=6^b{cOf@O8 z$i(RvQ%-plHvvasO!R}7?~Iy1xwI#u#{h%=1dYlo`xU1MK07&L_0F&7dnZ?MDd;9NSy5w*(jVK zzDf{>>K$VXAyyQyIJq1Zj+5uZglO)_;Hbo)D8mRtR7$t(rsDYcK%6a;-yMpi@Bv|% zD1jmg(c&2V@T6FAs8$ps?uAZBc{xQLC0vNis(veisiu5U;)q!i3L2*|Q`9N&FE43| zU+aRZuv7?#-bIoz5#pX|8LJX?U-UmsDV8^qD7-<{l%6|A6BS6jt)WJux)SgHp>ae_Br4~?5TXpCPio5F ze})pZhxFz)V#!Rz%Q-EUcs*I~Rt!;hiCVpV3{iOJtSPxGMH7YhtC}({{xzaJw|25# zYvNt|J&7doCRkIRd4qGL5HJ2n0`X>3dS{w)-fI#Sv5swiMv~idhLdDIqK0WvM9m?| zB7-^auTtu#)^XmyBIi1kP^dA@&iH8|VQ$n|=5QSMvQ(o`Isbfyn zlw%L45Dzn*Xm#(uLlov3!OJ)l+|n5l)8Ev$$6SW`Y) z%aT|rh|+!UElL4%zv%BTb9wF{YDuPL#KS2nO^GveYrRK2^_~SCTB*WjXPt5$~IppA&^MV48BV1do`*N%FO->ljOKpxCGk~HR#I)#QUA{cPcMad5KrJ6t{`4#OwYIk3^k_SNb8R z_Y-;6wJ(o0BS`XWyCr0^GfBo5`I4ylB)MYI2Snjyl%`BtyO5}zocGpW6SbPG3`m?$ z)GeZB&*qjqk*M1}-Y4EfvNHb*F0;dAC3$BA@%~4W9be%*{6o~xh;N8jiKzKQzawfO zQ5#-fOVnFrv-0duiF%c69%}ptOKKk=3eOyx@?zT^MD-~6}r#gl`kY}#>{c;!g4NZpG> zZr!!4ye4PDULRQuf-c6Et_R*Alqkkp}Pbr$ReESKa@N^}{y0bqLh36JcsWt8- zQNt+pe~NHh`kHuW%W)my2~ks8zQer(Ppq2qqwE3wh#FIPC0W69l%^D1bc858ZEDKT zuX8JiCo1ntToQN=)ReYwZzRd}M3uO~Wrn9-O*zw$O9{`8n$oWmOX6uzQ1f?^9-iey z{XNU|fahG1qgbvZJn?DDdc#4I#M7pxgn!3Y@{liq#ZD6s&*h@zFV7aEYJ5{3OEF%GJQh{7(BrmX5!jHtR~^NaG8h{Eoe zraTPJOcZw4#H_aZHl=rm^qOmxiHAKTO&R^53{lv9)07X}-yzB2WaWpc`H6@9E=}36 zGcQrtVG}FBT-k}j?v$ovs#S`pS!AXBGdYOD?wzJgO} z!d{rBG{0Gxs8u96Jx5NW#uK%8E8A>DHdl?xM?CCSX-eOT)rrC$p{SLck0?FtHfqYe zHGdLSiX`8xd6OvY^l8eWX}L(RFHvj5t`iSCewxy|avtJgcTiJmpJZRKGpQ-xB;O@T z>=J6qgyOkL5<7OHHfxq33VU#xQesyHqM8%6vdt~h!%m{;e_6OZv3IE{k8)%q$*n{g z|5u)<6(srD$^t|UrWCqveU2#X8fwbY%0-F7KA@(A6k$E=6lzMF51u6+_8c|kW(_V~ z>~3jFpFl1N?A~cgp5@$cu?HsFeAgS~X9=S6+}K7GcAdl;Y+x(0i5)6U*|okLQP^$M zl(%dDL6X=j)0B3DxyG=cC!Qt>{X#tKw`t0Ouek?ck4#gl)c=Qg*cTKl@wq(OV6RNH zmr?(+P2zpBwF#w%y+lpv{~?cH*h>?Ax(4?L?DA>Kvb$$V4?AmDx!$pBs3~jXIY-#V6m4QPkBZm@)s$&}Zl)9r#Ot?#>j-;&nsT_< zL*o5TR+cW~83DVKqL1zQop{}enr`Ge!fvakl>MB?5bW!T5oLF4$}RReu^juHnzEt} z_Z;kSYD&c{JT75JQ&Vm&Np>#DdH<7m#f(g0zfx1GjcP`DI8Tyu zs-7cXW|8FbV=od9Z)e1)_{yPCUG^5oLYnWul^p z%3fg@Q6G`ygsrhe;VqPS3K`gzD7?23&woq8h{78nF_WwvLKNPfh?doA6j6BZB-Z5x zx)O!ARhqK7^YcWtrSxiiY$R$k@#YpDNfh4wXv%^Hkwh&d$qI#|iNc#Mu`1czktn=t z5-Ai9A}WHYOK0MV!aFvxf*;GZ(txO=J2?+VqUJ9QCP}?eV(SAuGf>O8tj=l zk*K>w&3ZnCsG?+LX~%bn!n%Ll$BE!61A2jw{?D#C?lmeEBP&=N)a#L zn=^^Rn_)33?w?N--pp%C`Ax4AHHT9F?i<#_yLwI0+D{-}AF@*N=mMg$Pzo!nv*a+6 zjF~Zyc=t*2nZ(&dl_l!;s+{^^l05tmQ+U%XTF+U|1Kz1?N>I;tN$&@uj<4a8_>IzA zHT(nOoggby=CNmOiC1hhmr@YvT?(5^k~l}8DR(DmMB$CP7+auJGQRhgn`#8>fD5bEn*~i4gn|rZNo;HUlyn)x086&uKUnQ#8R5S6mlU~lX zoIku#*ObWVY^5kk7XE4?NfsmOw`!ao&J}3N2W7b4`*3ap*|P-Vsbx65%tW=C$dWi` zAXY&q-Y1(`iI?v$_Hz@Z(4j7uJWf_<%Bii~dODHhSvXD(ohz8}aJ?{S#69NN;nk<3!=yjHWy&y@ROCM1^a=5tW^&jr(^J^*vcx^3%6O z;oOU+6u$loQL!ZXb@FMVT2Ko6`u#yvKH?Qxe1a&P=Mn4jyWbOqGbtkV{=YLtyb0CU z5p|My9d>RbsvTL`(qa!$?~*T*mTn~KJ)$D}9U^Kp>HSlE4N*9Sq$vj@RuQ$0B!`wd zOcYM>i2cFd`-!?lDco4Z<+7agR*hdzyk5kcRbn4eI9DW|xlVJLttDQq@q39^mh>j= zW$F&`3T;_SyuQR6mYH*llTuc-;RKLab?rVz)DcSIXalazsbr;03VV$cOk$k) zW*14~43?%`tGSG*Or+PX*m9zp5!L*4H>*um<4l6Zqi@BYw(MB!wU*onHz`O8gu z2mg1Jcx{NPkixnBi6ojIE?F5!k`ETtC*Dco-7n0(oF*#A z^@7CvoT%R)RwrsE>8%}Jlc=FYt=@c-Y*r)c{EK;rhtqzV5;(j(QJsiNTKFtcI2S2) z2qJEi9?leMO7xNZ#JfO}Jrn;X9?mL?HQ1CK#A`@Y!LD_Q`jaHpD$kp9s}NO=BvbAN5cLA_rVYMDR*sY2o$VEfhjW>tKfG{{cms&)Umzdx zaIR6TSSFSsN+IguIp)=1&*o$%9!@c8%Gs>dh{{ir;UgZA%^AcSzNY~3E)nmG1HFm2 zi+C3X@Ql8bQvY~Wdy?!zk~ccNNYrlPeeilqqTVCD@2-ZB6?~m2b^%IsB%YBZ$DVwN zs3~OS+>iZ8vOei8pT)C9L!wT;!7I6FqE3H0fFzp{HLR+MsGLMKkLyL$3uN<7#c)bt z08zJcFs}tkej47Lc!P76x3619}{UN6F) zjU#Gzsh7#-3bL|!C$}DaBPwRRR!vE7B}umU^D;@6BFXUbLByLtRA|qhM8!~ghi7nm z`GTk_U3-$=FGO`|@E1{wh`N(lk@UVKYFx>##Ct$Cd+g>hxiY1`^rvzpiF0R~vUp1< zQAwn?s(KTmQb>qb?yt?VRWdP9$nS zQH{orCF%fCpB@@T)Hh^h=^vws`k7LXZ}cir>xegXTT^ljiX&gY3g^Ey zrScEsiAo^7R5CxwRf5z1rbziHFntn$qfWKcaBn zUp%L_?@QEm(tEQu^S&eMLKye4$&}vp3H?cO3EBMi-s?m?B;K=oULoox>HS*HKvX57 z&h_Jws4_|R$Ydnm_e6bJHI}HCh-$iV5>c%wg}pV067>#Qsa=Q5dNWa9E_;o5g-Ej8 z{Dnl#BrC5rTSC+g;*BY=f~XMEJ2G-LQTR$mQ_4ktMN}B^b_9J*6u$KlPuE30BL8q9XtOyQTK>LD81_g z+2$`~vwo2U#ET{B?xDFvwInN-YcC^e5mBYOeM;27Wb;nBMMPC5sz=-(L{%ZGN#CJ{QuXt{2rwcPP~=v_7jEghQxck()WqVMk!n# zbcm>Vq?hI7C8F@Hk=X0nbdRWi$V$MyZ;28!li>Zi_W@CP$V!8SH;H;kybmXTM^r_k z`klB#)EJ_6OyZWcfYMw0?JeTr3r9^k(q|n}DI|H|-(y7mK`9*S!zI6rsE$ph5U(>) zrnM)C`kZXu%zA(*e08NM1*TpnY8mm?x8^!}jr87`c$9ef+Dg1ny~pLbkn~!${GE7Z zNb*>}i$twqubckDJfc?4;`II|$%|{gCf-4^GH~Q}q9&2#qo~6~EhXOQd0a}5NN?PT zzlgVyBx}CQy>TP)-XHuC@dgp^*<3q_YD-pXU*#NCBi@HaR}v53o{2q{H?9&@op=}J zXj7Q<&K=AVgB431N+H*RY(!lnUc#L`MAajnHl`*~5o9GKG=QiNiFzY{R-*8Yr=|?u z{wz_4h&R4bAW_YUx{*HreDoAk21&NW?(Qs^|k6iMbJUej5%h{6}BV!SR_mZ(pOT0Z$1qVWBxrhHYq z8d3R)_erKgM14rxu%MC~HIvrTFfb%iAB z6)Q+o38GG}V4g~ntCnRa-ULda`y%dtrHRV%RXyUBCB2R(iW2n(@#ZeNLZ00t-l<XOcrPB}yk{rs%NfkeK~!L+IwaYOs3A9* z+Cu5Q)~GP?MiFm(<-6nyzUJ1Hky&`O*+G)mvKA-FizL~&Lj$5-p*&>&vNTca$?H6~ z+7R`CczKUkAqro_Ys!ea&4~JotX$4Bn5cY2ZRy&RD151}Dc4JIt>88R@$O|mx9e|7 z^7^ILB-xle`+G09kS0W}oYR^`i&M5cLXCzisJDRD05EKei81?-Os%ORb0sAgXEy?i~fmX7Y;m z#4AM9fJ_yM>Pl4jn1)1sM0$0`mM3ZlQJFV%Ckl5fi1$_Pxi_w%)E75>k$C$^a`YG6 zk}r|X3%mOfuQy2+Jkf-xa>VO3s2x$0h?k`wxALpRTlUop#H&EO#NS#FRgtK}hj^U8 zjS8C5WF(I^8%Xbb;p!xbyB#!T<4JD2FOuGkKFx`@ocuf)+=!@iL=BtD{dOi0YkC`NTUgxHIwMh&p26^cE5|@Mu@!4I-OsK8_&jQ{ojk%Plf1*_<2j3h{Cf^>P=k zu{J~EWaYUrOpPY0!$eN6FzJoi-j?)=5cT((jzrZZD2 zWmeu0;$0&vU*70KR0-0XmdvRiAiYo5F}0R>FV*JO`Wf+h|Bw6T|A;p*km~`r!Dz~* zvRp1xD23{axa4sUil+SAlUqm@veNfGPJJL*XOH1U4x98T0$;+<~DrPP6V$x+4VDY+)`40q#5@@1kbOyqfN6-kVh^-p>=YEQsF#j3;W(*Zkfvic&9sBZh3gPAQlMRj1T% z5H++$G*QnG)u2QWrS~jR9}LP(yz*poeD1`?XuFeekvl3$Ues^ujL_q2)jS)O~xPoy`#cL?R707*`*k)I@Y zk(IsO=9AZfBssvqPkf<7y%IT?^ukH9@VApmFM@a#Hu9;RLqs(i!fz`6CCQ_6r;*KG zl-|vxpGogKqQd&{`;KRbs_}rI-?x*MDigRrd`MK2>60k+xkMd4b(O3%qZD?(!ZX)K zvXZHD0`cA<>e#cqqZ?0p-yO(Gz7!=Yb0m)p&y$sQrFiG-OX9tAe+F6kgm@oECs3^< z60c@=uA|?Gww;v{+In>WbHIil2`mXKsgq7u|GL|q_i z`C2|L`3zBugSL_0vqTmCu?~3_OX+>yjrSub6YraN-pR;MH$L{|Sh1)4L zrA-%JOZ`Qj-5K~E<*yxC`7ojlrB|Euy04|0PBP^U6Tj~*ev>vPRNSDNV#*U58x_UJ z{6U2o!h^+~sbR*@#FQE0LkZkQF77`TtgQH+WJb#5l)mEj(C0-8Z;MYSDh34Lvfx0= z&DFv5(;tD>%fiK%4k@M@Qix(hqwpI=33M|*-B#`-Tvbn)?jm*+G}HNhZ~Jgxl)JZm zxb8_^RM#tB>y^!cbd#+3P=xBOik>W2g}t1aZr$^CDRlLEDNK|eq)}|4@dmzt8r{N0 zRXE62kX7N-&+KK)bX_8}{FpMnSjRfhS(N?Lj6n)_K>1o?dT< zcfIZbzHjnwE#R9f?|P8Kla}bw4C!`fDC6~paL@;)#|K_71$>%^#+XLM*$?Ed#%~8% zH^y%>-AU`+-q6yMhVWEohJv2-$EV^!Yfs9+qY=UVH8Z~N^lnQ~e4rF&%OSxG`yt#+zY*ZwRl+)132C_O zFgv>_1_xO;D$7hiIN{Yb`*&V%1ywv5mY>p)RMit73d>EhAaNayF)=8}EL zLs(*LY*c7)Xrv*qH(mP_SU;d{oq)Ra14lM$5Ex|)3FNzw5G&pZ#El{YwcSe_*DFEZ zOutkFr>p5H#)u#F6b|#wwM}QA>|rj(4*Q`oW4B9jEr?ggm;l+lQATsoUc9OvK>?h+H|u#|QJGuefvtS>+!!7uQ_U>aJ6IO7JH+_PE)VL*wka zvZv#PnSM4A?cGwz4mq_gd_3()X?0-7HA82oGD^h(d!>wB&Cd6k6~G@(Md4Q8*(u%k z+K9P2Jw5(bT7A)>8(W@xOm$rLczZqWfD>gh-e28Kly$3HO}2h!&8>@l39AO@^RQ=Q zMxw)_+ru@6nSL(St8-)}S*^N-DM#|BdSYpyw;gyZt>*M!l)$U9#krU_p5Cy1*4qwj zNzZ8gl2r2kfOJQCQbrD|3F3-wLwHhDV1i+Il2|txgQI8(RLYqj9UGPuCAY6|IVVPf zno=k!(HNBw7=oL=W5NQ(z1-q9aKb_2X7{itUKg3l=}Oy4nCUkWVA$dv8#agoy-CqQ zV(U)a+RY;$F7Je3=X7q}8KdK3;}fx;ha@P+B^}(0i;u-k;gp=IT{=@qG(^Y23j3T( zjvjeMLVcfa+o8wv0nuS%?fjx_(vA*<7-NFt#gS+7t*%fB7-5JR;k*TzU`#aBjuV9~ zt|U(gOdK8-9Vl*}=k$)ts&12B??=U1j@CZoP&T4E;`j(QCv;Y3%u&iPGSm=<>)0s^ zX8IiqR9OiJTT!tQ5i%9C`nB}9yn~3PT{-NNXL!@=??xs(Yw#jJx;Am3Jl?Kg`bjAl zjowtrp;WA$LfkPQX^4swzb(MEFOg4ozm%wt(+{D94pAuY=z5?74*Gq?kXSK}&{M6Me$vK%2)0fT;vI?jDTC40 zcD7w+Lw6~_Ymw;S7-L*glr7;Q)l<}s?h?4(|(f?4hkBsHXq|vg-d(S!xZ5}T`%9~PjQkWogRcGj*2rlcz^;G72rXAL>OWW z@xf6JR^P;ic~5Bd#rMARez7kS_bL7%;bo4H688Nk~`i9w(M8iy^u4d z_hh_546@u#_simOal#q}Y)nWrieKHOwqWVC&SQX+nC>_rJGY~#xa~vEZ+MrM#xQ9~ zk$SUbypeC4QtRQ4Z*)u<-jH1kFyg&RlK44fD!7Je=Z8|_@7GCqqM@~#VjY@3MV*pO>rBNtPRhn-p41tRMNLBM08v>s|S3h zUG|d`Pll{yGGtL@R*%TivAij=j(<_Xqby^4YUdxV@A<7t&Vy#!V{d*rpm~49C?Gv~ ztQ2fhg~{?LZO!as--;BHRy-O*%<3sw1uhylI++-y9F}k{h70@khzrpS7+KOYpx|3B z&mIjzW8>v1i%~w)vA4>O?fr&)+P$`?zsBSg6;2Gv=W>}XaO$jGE_8tjo39O`R>=% zsQYp@u|1U>8$XPVKlxc-%vHP{IZGC+<@mVH7>KtU!SO-CQ4xla zcsh|~JqzcwO45(voXP>fOKJ5MYcsRHb8%Wm*dEBNyE&=#7OO3@dfE3%W0mi@ z^mAGr`@df89re9Fl})F56^l7%46e zG2+5R@#bG|cY37nb*CTQs4d&tD76)YO~Ta@#wux6Z~I<%sv%uUYjCmVAl2E?CgDM8 z+?7dtvY@k^&v2Ta<(DY*GRf@~T~XOK-LUE6bc%iQy6?Vu7PAvGs~hAVhwe50u3a*# zKcuxuV(X#~>tWY+t@|hr%NzFJ-jrEgD~m6k8E|z(!J)8>vd?;}sg#m=^;Y^ndAY9d z$n@Q4KTn~n%<=L-(dg-<@9s#^$IFc`id|JIsM;c-~TTr`4e7lYi+$e&INh7u19#e{5#0<_s%#!(yOyf2d}2S$jdc< z&dWV7)XP0D$*V2DfR}6kRj;=F?Ov|?lU`oo6!mK97xQx4+w0}p@8ji>FTuc%fOWLu zc&&&@eoz#cX39=F@ zdo}g%{jI4!^y(XeSg%%A3)xM*vvHBnt9d^x>)mh0)MH*AQ;+#uft{2EW?8D}ycl*^ zcG!Q}Z#itA*7C+)UUzAe%2LWs&#bodYA1Nt-$v{Aq{H4Bu|~@l~7P~fez8q58yvGnqCfqg0)tG6m_tykxcva-2&EBAL~ z?)_#k?kfw-J9Ae*f9u@^y*d~l@#;i0)ypH>zg`_#*7;k{&LkU)-wZ{~ygYNg?d7>+ zkXPIHjHi=(caLS}_Uh2q#>-9bCt3KOJh9tfQ0LChfW5rCyAO6cX7!3Jq(*vgXms9~ zJa$4!N!?T0>pE`9dhmCQ`pj(pd{p?)|JRr5oizmRQJcP)|1L!EUHwXRuQz5cdo zcsNLR@@@BO`C*M`lY8I(^h9vM4`+cuKWrNfrO*G-29{a<(+?}Qryu(Kv8-4h9p+cd zr)M8^ubixL-(4=f;D_5h$9=m^zUhZWI=~NoKI7ZXK#}hG({ibXAI?xUeSVD1?}sg6 zh99sveXglRV?&{aT zy2!Fh>!v#E-K(kIRA-ZLbyJ;H(yZ>5E~auBp#6)p_hf0NQlnyn)5u9sTxymWNm4D38heW0<7OS`cIhb9_FQ2Uls z>I&IdEI)ng+~Ez0^!tcr^*6Z;Dy!dZtglqe>PqQ?>%;$MwUqbT>I9i|DsDP_x)>uH zmdnOsR=<#<-W(8r@xTYOy2wT5tQSX{)i0%}C;dB>^0oUO%-t1_S$!buEI_{zI(*|A z6l9DsCI$uZKweokO3M?4Q#;qY7rmGq%)Bs;CdqP6rB}un5)wIEDKcB0RETA6cUX%) zetWc=ORSaBRX3{nDO@{TP^RwAR=Djqax6dj>+-mzor)(1J8f!awX^ilqVLr39GdLo zt{a%A(r7M@u?E4p(M{_#!J1ix)%S!KTcuf}To?Uu|@lk>ma8@edxXy5g)m(P26$Zy+cUcVj3 z^ZBjk*JXQ7-+INYe)mNB`X4CSj)CZGE2Mw_SKKB3gwyR3*|q#>+v(vG<=LCt?KhvS zX{EoRJn@E9CBOB&vd=FOzV~?#Uy>gB(k$i9}ojfTxq+Y5Il6_Q1+`z@c& zEg??Fn%w#o4rd)tE~#_UHLEjayY?H0Z^#n1T*H;tn`Wonn$np`vl=2>R5}g(_tpBN z++*|`hr|4>gtz%y3BT`eC0t)R?9LrcP6yH-`CDEa_}ehtLk`34RF1>>VY7PF-|~9T z-zN2Ya%^(v0HNba@L&9`dxcI zW1lG`OJ#T7l-Pe}I7aGu*aq~Uhf=8&yS8I}oN?7;>~zd(eShngugFsMn`fxpvZwfs z!+E5`zCHxqmMy`ZAxLx|`|qkh_qSI6ja*Ruhhye7e_O*X_P0ts?{AwG)BJ7h{X;eh zcZLY3=i!$A)|!U+Tjjj%Zw^oQV8U@~O)pDTU!PNV`iYE^%W6zgg3|0h%R zcJ3o(D@xy)A!|EvDzwMX`k2-3GRMB#qjt)=^j#0L$v)$|9?tXmar1%C*YZCejHvck ze`!A7!}9oi`+X?O(47Un)7?82|Fh!vV0Iq!UpZw~7x;YFKQ6nzI~%4BSKp=lSEZQl z?dNNX&%yISm^Y*g;NLwxLV$4Ne4noDK&EVntORVoPv zc?HxXpKrz+eZJr~$})6o__ls3XjTWwoVl}Fa=1{gt*mLc60}|&VOFcj1TEJ`r`1Ai zw}f5s`RBRn9^@<9dM9CFS&Hu6jA^nIb}Bn|&S#=^uPc)$)t&F$tRowc_dU5L%fyqj z?@q@ptfv^#YF*Ac?!H=g(le{|WYPVHuT>*tYx@tA{7@$8{RVPh4hDYHKn}^G^Ymnu zS#9n!g`QhBa=$6``Tu2 z)JFi6^+keZE?qpk~TXT!Q4Pm2XR=q!Pl#GeG6k5`Pkg2xTKSA8r+mhfEI!jVr~Awp_KMGV(%xs<$@@N2 zCILRm4r&%U5vt`Ph3I9x;zp&I%E=8dr!O3AS4Wzvr2fO}_Lj`*_j2&}Qu4EXrbQT}CtfOuz1~g! zu$)UOrqZ&46N7^iN5vVa`FT=AZa2gayjuVt$O7;rZyDGPdwX{jm@1R^UiCNfnZ-=B z&kRZPz1t?^ygnu@^lkwR@|i`#r#{m=vieN#$l)`dwDIoLHN(4e$5QWh($U^czObx& z7dJN9EzQ%o5YSG_<=Vom7V&PgtLxonciLxmt*&{u1(xt`GdSSgX0TS~-p#GQr+A6N zXFju9_@8%ML;<-&>b-}FDcc8@7-b9zjH7782F4^shZy1$XiL;`g_c9H+R}RbTJd#q`KqfJE=qgasuU zV#GzIftG?ZwM?h8!6BjKXqR;AhsH)l8A20{;#Y72r7g2s+w(SUR%gkPS+{z)B|6;j zkO9?WR#oY#yKk1AzB9AlDdkYVI(Jjp^&$OV;nLA@dd2Lvo^#)G_s(#;r%ZQMY?n}* z+*OIPUNmRYZR0uxAuk0q)ldE9mE$$HhT!rjhV^%9k@n>XnoYt)OSWy^1^q*AU9lbGGq>dE~_4g-1Pv^{i4 z&v7Wy9b;{IbI`O6d!9JzFd%ty@=kc+Fza}dNrxY9FnN-y^TN-Qs$)w|Q6Vpczp zI=Xwctn*k2rTV0iA?v6w8C4$$pUI;}E8 zy79BFdyZ}CXI9I5*!o!c1w5 zY!1!dtX`6P%`V!EtvR~i4}X$nmqsBxHY^m7g-~8^l_Cqy^7A0OWFdD5Nis%-1qOu0 zh9<@v3<-fTAqjC}>u+RWm?1hgAt>1x7i1hUDkwN1NE}oaIZ22!Mj7IRj4_Gvu|bW3 z>IB5aM5LJ2K`g@&6C;yCL~ND%&sS;OLHtiKb$bTp+DmrqJ}yj0iGBN+pu|XYs03qZLQtK?wmvIb@~9y3rY$}= zepFE1I+hB_K%16IHmloZFYDyOVVzz!G9n~ayfLIc7u2wUrAIxfr3Oth%u>^gvedA? zv}9I4lm*t&^8yQwGK|FNgGL+F#4<*tqr4mp)o&;*nbl^NslwJR>IX%~h8e`BuZzy5 z*FV~OZszemYF6WAiFNSY+*9=G6IoWiJ`EeU7~-OhVmysA#D^M;VrMhR7#q}}uC;3w_me6)=l!Xxp&R8LZ%DvsQ&)_q^{vxx zN$GnVHw-*pVWPgo@Plbf*2V5anYVVPLX>NB!Xe6x>D_G#~4kmFNn9#kG* zCj`VNB&L`OGCLy47-mS|sAo9Jc_~Cpv${V0^Q>(6FdtMG4Fzj)@ygGqN7A<}`Q=i< zV_7}92sDa^Jr~pW<72bQZj|@Hkj{*2R{!$;fY;KE@hUQ0o)rs^icJ>NjWIE(v1Q;( zGUYVJghnNW8NyQ3#d$JiQkRH7lT-SpR8ya)Nle{KHK5+7%&ONpGLWgROikp#z><5I zmx-yK%)86MF4}NVcXN<~ManSmAnQF~>Jf`%=E#;D6l8_gG6gzHt13**X1$sme8!Ra zIGDqcud@1AGGN|cOqJ$fKT9^|;9C~C%e;zAt>fTZj{J^;DjZprgZ8X`jq^~8BVXgl zEgbneQxBQdI6nrhZ~$BRH}%N6zQS zKbYFd)M^&F#lb`wu*hK+`5#CA!$Bnu26FHgOTNmIXF1rykuPy@hl3PWD8eFZIM~b? z8_(2D4pf$WgQ@qK>dVy6tZ-eOU83hfg{&*@I40`SfMC4 z=;xTa$X@@z)MgIyu$5X&ZD;kNOoec;n}eS@D9#FXS#mZ<-euEwnD-A;&oVWfMLy=B zH3#ikeHM$<;Ghfh&M>bV2dg-8JO_ZHOi#Z76$dRmIU}`y2zq80Vrn+;mfJLG? z=*=R3uxGz=rhaE$E)JS

pT=z#=0!@=vDB%sbDKvp6z{gK-?WnuE(6 z6yx9~`?86HI;^mjsVKJDgd?Lk_=qD9u*jQie@0X67I}2j8>ELv|^aBU`XSKBf*c?-)lO zW9lSR?O5bpw(=eaqnS5`gKZp{lN-Y&R#?uwUQB(;B5Ro{%e*^G^<}Cb2L;*65muPW zBL8x*j)P3hYsSIbtT%{xGnmTFyfz&C#F1B+dY2`yGBuQW;T&0#BO{q=z`WZW*_f&I zOl4(}c^s7H$mUEP=U^a5o@DAY2cL5=lX*iqsK&t;%$H58~`HkIO$&sZvasmf2toH>6zi_aKgD*LFz><|&y%?vL#Jm)aT**{H4mxwN zhxO`mu%Cki9DKtfKePHerkXNuAGo*c}G|wGkcc6ysS*sW`!I~ ztz_PAj;zN)BnLN{cad%O;@}YT^0In94z4rrI}RqZ-V&C4$ka{dRpOvBM}E)2OB}Rj zg?CtFGY5q@awd!1U@C-pKXNw1nA*nF`%Km6;1LH6SiJ|UA7$zuQ} zmi&VwTXHajBj4s=ItMRvu#i&OX?Q;{s$ovEG7%f<@xnD>Aq z|6vi0gFGzqkg19sjNxDb>m6sk6ps9Z6_#<(nS;++GMq)0G4&er&anDI=9S^dH7rtw zgTFcQAd5`m$fZm@V%|oM+{n}*rrNSdHKwj`Le-fn%)C0RaE+;YOhvHBhaB(^+N+0{ zYR*A!mYmO2JO_{1%G(@l;UG8jim^gYraE%)DF^)Xx@vx=K4iTvOm$;D{=HIl7xS)g zWC;#bj-0>>r8y|eyf>J-#}xl6pxT5L_!sQd(@bUOAO{DnIM~8^qnP5~22*!%38sIN)E_QTbIUZV z{j=(e%v;Vj&v7u5MTT(jHwPV=HPRtNH%t_UzkhD$Oq@1=%!$})zlQiX2mStNTS#l-IfijcJDKj%OGc$8j zW@hgH?mpS_?5^^(emVX>pJUCPnccZ>VBhcz+xYMa>!@^?tTDUtBMbSFnOdjulQAZGn~fHJZx|c9v#}lft;@C~ zzjp;YUdhHo?DrTOXR~oNKe>z_`GSoD*>NTtv)K5Ijf2>T^6Lll3*WObkc~lX1o+9L z+4z88Xkou?*tRR%PUJ^!WJg|QWT(wIEUZ6n~i~N zJjsuo%f@+ZjO7;|;73koBf);X*_gtQT+6mg+1A9i57<`C?|sFNecAC-Hu|&iIU57n z7{o@L-#eUbm0Xq<*r5z>>FYhYv!bPfJ$NE$MN5CSx~Gk3xb9At=twsHV&h&mu4nRf z*>*e|UvUNW6H7Fa9~o);rCPcr!ijLOW>GM@B)BZO;shG_-Uis8AT+@(G&`+Z@N+AEP(WPC@gWNgH??b&uH z8(|Wf{GMaKJhshdzu(!wv=BXlX(2L-_>m#(_bR{lH`_2RM2~b~$8Fi@&M%BlGfY+H}t z>&3Qm_Pd5{m=>bf_h-j%*l`vcm-2g!Y`o3J*ZgD?+b}Ieudl-|tYpU)egxA(3e~83}a&<8^`mL`|*>XumSBzVeY}kZ)~jK7kcp{x3Pg~A$sy4w*A0{ z#ZMl|wzJr_6WcH?L@&I>VXncBrS>B&rAy+8nov9yYa&H4yrmG<ufwmr$OqXMKSQTvhc zEE}jk$Oh$3#%O->Om@VC5jp(71z*by}sIqt*;YA>>(k|1L~8>r35b`0CzW82nj zplTyORBmKE%EnFXxGTSanvVQ_W@8aQf@+)`&tS(JjyS;&$cVssA0#Y{6d&*H?Zv^e&hhQ z&1B;uex!kox%>zwj7YNA*>OE~#Doz!e$Td#*sqk0t=JgOVLr%@G_&K6Y&((tK4Ztz z*>MpY2e9Ld++ii6WF$h{hHZvGCM9!+t|3A zjZfJx#4n`SR>gk%vGFAPVZw;md$VI7HlAm{9r?W^+q$r^Gdt$9?IC{Q33i;uj!&@T z;cR=I{dQp63+%U;9lNkm$i{vA2quh3q&Pcn!!LAW8zzj%?`?L(gb~@^W7|Z2?mx1mde@$NubC&$dn3?-zF5f^GM* zEuSAbpN+xnh@J!m_6{2h+3`KLz0bx~Y@Et|d$Tc|jjP#j8XFt3BPNU}%+J|zBX-=3 zjUU-@HXE0)`8tk}$ZSSz(actX}jStzen2q)Mg$>xKWXDt3_9fe%VcXOE`V4kN zcaa1tGr!hYy&kzWHF=y8#)gpCFKVZw+Q&SBeD z{75m|*5oHE*p|nBm@uLj(0?T($$pqHBHKuQ0TV`KyP5r-WydjW)U)ve`+dP-&SB#< z_QQk`y^aYZGQMNKyV*FL-@AsN{D*Bnu-`B?)@H~1*w}-O@%+Nc{K&&>^kBzR`H}D0 zR?U8xFe3IEwqe4EY-h1;6E^;1V^e;87Qg-$+x}o1207@xm-)#!8{6_Dm$UINKe;v= z>#*@5`(b>5UJtV4RCZj##=dN9!hUe_=O#>;z#ae_HWs^k{vN&L{A>e zPkzjf+p@7cJD$MCNo?%N#?x&4$$OXWu?>SgiNl;Y{P^R`4#XB z=d&LsjL7j%e&iT7%K4Fh*tQlM`?7HnzlRAUdT#|ge#|di&&G5%uHq+a`H}0{b|Cv< zK#N|#nEi&Z<8A!N5H@~g$5;80!`SgUw*AL`53u6{Y}E4&#>Ru?AVVDiyaT)7Y4I2l>Lrm+aGMhgb{_ZCBJ|PBeK2E zwn8>A=thp?*m#8BTgEm_7?Iyo?Dz#c?!^q4Fe1Od*@g)tvi-!5bYlY(M&yVIBQow{ z$1OOpE!l|i>ld-@QZ~l1v679h{K!dZb~Yxl-&t%M#YT62vIiU6vvC3YJ;eqlj7XN- z`1Kdq@k@SkE<3Klw!_%=4cpda+gfa3!iYk-pZzdlM7G`7?*l|Q*2u=iZ0y2MUdFb3ezJ&- z?btYlAGwYnSa$Ms~!65hcju>{rE(&+sD~v17 zsw<6H)$+@A{PJsT{L7AWIQ+ZW7|6zx{K&a%oX5ske&GRrFysZPonVSM1oA9Y1BGKO3L3F_4WxY{dD!!`X(3B}$_O9Lk++9LdICY~0Jn_59wt zY&)I}%n8x!KXG6a`H_*fU#g|3Dbhqo2VfA;-UZT9Ns|TkA&H}6v~4!IqNUJ&g60H9 z9BdC2mL`HrlJOL6U|dmuTT2O@y&A1agkvlATwxtK1XBp}!%H!R&{9FWkW$g6Jp0Z# zno+>(Ek%t%dbo*3r0CgXb+Dx@*wmDWRNEtt7>Ue}&^Y9tD_V*}(O@!30uU~Y1sfQZ z)TA0Smg-<=aUxucXHqT2O~E>NwMm?+wr4J^qlt-Sw^|6+-)0?028nwj87SfK3@N#-qz(YX-K;k-pPE(z{aO0ba}@gD7x-9GLkX{5o^N(r`? z(_jFd(n*mI*9PrEnxa!eywc(gr6h;Sk`&MfkTRnGiIOx-U$;;M3YUiyaWm0>RI)xN zXZt`i(P^7n&@nn!pKE&B_*7s@?B1`cbpp@ZvS%%8SL>wpEu%b4L z#JWm)%=QWev0qyfgyJ~HW~tX#xQS8@Og9U13{Az%!nq1@wo{5zBp1(~P|>RpVU|*a zA#%YOoO62YrWEE?S#wk(J+gcxbxQib<+SJ%iPeS^?dl76t=XiM0_z=wGK!iaYSa`5 zD@nV^DL<(7hUvUT$y8%wJV94vq`y&9SsbsFWm{R6K4`1tEo#$P9!-a{l~Qz ztT`Bsw5EcQAy+8r$IFRO7@@*wHdSv`vgT12LnwRwO>L0nQ+!A%NO2C)uXRQLc_r(a zvI6LaMjA8_t&pO=2zO_=pYV>7eFK@jkF#=etDi5FQd}XYd}RW`t{|np=+|8BWFbwDxz$?h3-oJ{c=z~ZS5s@85p9Zzfq>k?@lH8I&zwK$H$ko;60`kU|m^&LU&PnS;;y{ z);U8mogiw8t+E^RzET>j85i2(Wm6M0(oJi27n_ytHzsw52h;6g?ADQg8p+;J&X#_Y zX!HihEeB@AY7=%-kM$~^};}16eV&fm%NRO!hM;4OfKslp& z%?>t4>S$;?Ru`btWdoCF7Q^^Px+!JA>U|-5@~2MN(cm1Y~mRf-yR_&5&YKr4&EP$v_!D6J}^HK4AF&o2K#I!JGO-gWv^^joThc`Bfkym-IdhX zijtk$p7|?|(q^MXFxoa(XiT(~Q^#>s3I$~N2t%@lv}Bl^YpL3M?{?4az4r=MMQuU1 zO~&P*I$8>FM)iu>Ek)`1%GumsuP4G(yLr7Fg5r6-v=+KR{usK^2Z*mRRuja&iuR)g zhbc4SUAY97qUg`3p0de&l9IVmj(6F@`egxI3z(nXc}nV@a-@4Mq|c5H)(vE-8?RQ1 zu%4`ZDrU_LOj+7UqZD-DzLDv7D9L-t@gJ}=ozxyrjGWgP4n=AsAzKHdLN*J*qe@B2 z5tnfh<6lJ@IW7XBy|?eq$t_Dg$upd~@~z=Xn!=rWUd)Ud32?ZQyJeNd-mY!B zPgxqO560@kfvNFCL(tLWJ6S0Jws{L#ADBh!ry?UcAKDrn*;--eD+Q{MbE6w-fk|QYRcSTEEg^>zx+g7>t%Q2DDWTS9SECBLlbAFr=&4o4-7bq| zH1t5z5w7vr7tCZ|ZNpMHXh0~PRda)hU~MooCeRd)(FJivarnrT%X)+CG#vF78}G33 z9vko5MtV5vL$c6t)E{z^6if^z&GD!2>D~6rJN=TrAS=ZpiZf{hBd-4_X>opokk;kl zhQ=nE9Cqb@*;=|NkCM~5I2o^PY6vbh;@nTk`?8$W1$E)5xps4HB`MCt5E8lsk#)7P zMk|TO$f?|Iek!z>y4W7y(l{mi&$41Kotlb;aF?A~!SA4C{#9nKh{o$^^^->t+eJx! zo}B2#l+z9Ih}p6TD|zS3kuJ0sR~a8vLdkl+%-Ulr-4z*6M3z%a)}xpmsFdJ!IlW70 z*dR$0yQcnZQ4$|3M?F8h%;Y>%$%*rE1XWTxzsW0^FHG z5~5sDOY5CIC+{CnlH=$hfxJ8vZ=@>H{b@a`59P2{& z_+zD#b($RG;!r~)Ee12c=s`-}$7RJ?I;qi1i49jWH_Pc<23=B}s-?BzM)BHANj+Uo z>;iPQ4AO~8(hKF3E^z6NIZD!x<(QT)p*@DQ(987^@1f*=T8?lDwfx+Tfryg$)*MP! z`df;{&GmK7O6s3w>WbMkbx6%GcO`YGlKfDayr3bHtT&4FiCR**gq3;^7oDqQenT!_ zrSm;|Q&%aOkB}3(Vltim8ED;Q+kTGVb|v|rGI_VwWxMV&_K1>wn9N>6>jr5BspHFf zQAxZo2V&aBTwj-P^yS`D5+5%Y@Zum1&O2u$zf$t9LU|py| zTDZ2Z$@Pew#N|y1YFmewhQf`e#_p-)-b3att;aGGYG|68a}6c)Z!&Y)yzo9LYUD;} z*-v{NvY|=6+J<~r$RAnH)?uQ+ghX8mEpW3ej5kHIHYGca`fkp~mTZh=V;kE@kNS=y z3yu2rk_%uNO~J+j^Mgsp`plUWLi@2_ztp$M)C1e*;IaB~ay*m_%#AdL?UhjNGiX<( zC^(H)=<60wr}a;?0L3U6wMyQD<2bIKc<)HYXT4+yXtj>({b4uzpZQm4Z#lq4?RudnWA&CG96NZ5gdKq1LTy25xgD^=C45>Ev*@F)*19EHVngBqj4T zh2l3?HIerCQB@w87jANWcypEf*UJ2TQMu5O{P7fRX`n_0EoDOv7|F1wQjGoO4Cv9; zu&~!zJ2jA{l;C7p0_tkm84y@t4&^UVQqPw2pp>?B)I?l8iNlo4i)9s5JTqQb=S=LA zl)SggF)mJ*dZU<~r{tY4XL7H3sp)KrXhpUw`+%C&dHX%v<2Dh5KLrFbP zrta0&b!n;()Q6*3OKfDpqe>ZeEEE-9&o(U|usd+h()W^5gni^vUp^t(Zd{Hva^P#F2y4nYP&p-$h$p;L{|_boy)u0TY8?AaMrYO+t*dM9 z-6xY*PF_Z*IMVi&NCS=wsq`iFH;aFvY8ratWpHr%_Ag1>CWLqHEp75GMAH2Q!+m&N4|J+xY>2S&wM5C z!!mD=>7?tiad)RM?^QI@JgAhQTvmHkGh&TVTJ%J%E4mcUk>@cb|Aul3(2!|Uq=A-w zIV!w;mDEqlDyJLOvJG?qEv*TPG?)p0l*zu@hOzgS6J!lK>NXk)QC_5%3)zQH;dn$^ z?@t4qhF&_`l+!wq>@=o*G8-${IE{@nY$H9UeHK}0OuM>B{3v_UoQi$&TLaen=Phao zn$7SlD5Umd+kQoORu-W+7LVcF4I}EeDtTX&c`F(dsTgI0dot@GC3#=@!|ZDxw1UK^ zazOuHCy+g_6l1jfkV)W4(w2c5tc#3c8<9Dg*Ih|JNRD-3vdMXr(hw!< zK62^m-m256a4)H++i?xevc6J)OJo6hrj;pu)X?k@#}Hu)r3m9?5$IN6s(G=#iqyNQ z(kCm~C&_B1+)jX4yumqvyrYu)^kT8d_YPvWQfm?L(yMzZg;-w}q5x@c2{yu|ZkJ6uV;gG}5%U5&50EGp_m@|5GW? zPO>~jRIP@CW^G{7!MviQGG`I}s)T0$|v?``6x!;rHTb!(?oe+-J%mO9v z)-rElk_Jl5FRfb1S|YRdb$@BDk;AxBj1lq&UzVjIx1W;wQJK0R8Frj^akP^3COO&L z8WGNq>og_zuJXrK=6jsBL6@7ef~jh}5JJsSNhS!gu+c3BM+(}6?P!KgV3UNFLJU-{+j zC-WA#BHKer8j^Frh|cj!IqKD+O4?WDoUND za*V55m&&I@a3G4Q*SlJhxP!*y?4*hRB`t_5z3lma|23(##cZj$g+ zYf&ZpD{_(-g{iZWGTX|_l(h3?JyJP4)lf|*sd%mNIYLSQW)88QiEe_aJx@{6R?6R3 zQ7F~mOzaDkv{f=~`2<=%%x5B-QNC8m-9zTiwwUZLCG|=b{L5ti z0=g>3RN=2ENgtIzEb4Td;~gI;Ip3Ef+8YUt?M8GcKP?9j)JB7jT@l|Zg}71{q97S` zEROz5Nm?VPb}@a>u3RozU)Ky4#=`YJ@AFQS1y+Mw4 z)wD1jX&8)pe$g8#`9G4&Sbnm}{Ghi{avmVZIo~;3Fhj{XQ|2tjax7>4xU-V?BDq|( z73)wu<=nO!Qqnib^o6sjXK&V!jY`(Ja-k}w`9N2%YJVl~$8x(f-#Ha@jFR(pIfe6^ zgXT`X)0Ld-$?020%Xyn=YQ$NdFHutWC=o}%E0W=0B2^ z`a8}$*_+;PzXaJY@vSm(K2;`0tG_|X`IXFB7>PL#GGDG_?IW{RgqPA4Uby4hxhVcf zCHW6>+pM5A8Zp-*u27ObB$KX@3A0N_jSxKdho= zN`J@64%aDZAC;4#EK2uW(~;?P3a?Sp?^aSrbI|QLrpD1ienLlkYL~n&dHA!olvBJ- zztU`@d56ZUIw`EEOkQYTK4K*Khf3B9Jr7;&MK;JQtg~#f+j=qvX9R zIGlLW9L+dZDM6hqLEmbe|3fDn+VQ8oaI{67jxskA;tZu28_Qx8*AQzwWh$~umAsqE zyk&_v?RliN5RQw@Zckm7E95 zoE6bz6K#D<*;}6t@=ulIU&-W!RGb|Rf}fPEx5%tr_c2@dc_Vc#pcmyb)s5O9v=JhP z&Xr?rPd6p|TQYkQsZiQ%X5{WbC2fIB+c&+#uRa{4zO;8=ay_LO$I96~thJes%@N7P z;U)CDtbwMh6Oj=1a${J@NSaNRG94p#Jqq28qzOvahh)|sHMHNc9+xsuT}Cq_V@z!` zTPZ<*c~&H!2Cs~?-d)MLR4#@EXowr6^-9vm{$YsBP(%U>3 z`4A=P`Z8(dD%wdWDCvKf=}YZJ<8&Xpxw7pXlX5dQ&Fr z60*~9@nvjW!Nyf=Tw@#Q;o|GaLc_)P%e~)1_m;GK=;iif#eP{Ilv#VzzQ3?Nl1Mjl z<1=WWQzMOU@JXc*cgV?Jf-;b#CARa!&XHBq&_+5n7~|^LeJ_-ceoApRm&NJXmKxL=@VGN}ZKVi1%0;wax_Hp)Z<=li z<1_@iAHy;HK3XY9SNW5zvfHXz77vV5@-LRNqSW5GODhV^VTB!(%zw!_P)Yp~TRYT5 znj;P+y^E55s7&9-)={g>{;*PtH{|5+Db!X8r3f#}s;N)`Wpe#dWrbtvfuMj>{N&kVY3W{;IdyQk6#brv~cjYqJw@n+j9Twrb zx8`Q07!%~^cehjDuADsT=m(SnERwUohph_fq~~V(4BV~PXO$8(%Q;aJNn$?SF&q1q zl6bP5_9cjVG~zf3=`$tqQaQ#25n3^4G?RZ;l1`RM%j^LecS3jBNY@a%T&8AyAK`N! zJ&JjyQiMS(GgOmb< zn?vihmCiT~*w)hZ=Xr~kB!Z2!Hz9iuGNP2Lx12jYP)ldO!mn8=K_6Ly*0GiB+UroI z5YNlSWSw*|@sT+vDy7;{RwRRLsd5-Y_>}C$WCMRUD+sLqlk?X+enYqmyw0W z>JOJwZD5;9Zyg&WVGt&;pcxd0Y5glWduEcZzz?LTsZw~|idh&Pg2OoVCiz1dtiNJ$@; zlRT5_HDRw@KTavaHu48pil()l^G10)OUc|#j(ny4>D#k*t}P#zE9u{mv%V-6j5&|L zxkX9)ww&H{R%N=gO<7kQ98A zIT)~~Qi{vuvR6i3Pz;(iI40FBCG{P00;JVy>k?4cPOl|O5r)dS-@R>d1r1!fZYDoW zDZp=X8kE+PdX3ZNspf*Xla$Om$x*LrYhie-FF#MoKTqb*55>(b%U3HoyUU8MtS(5W zmAcpZ-Jzs@Q~u6M>x0ySBV}XOrH?9^kCuzr2n^6;qj0+hB-ZoTH_D|)cxv2*|0Shl z|H_gL2qyV(eAgV4(aBh;l;j>+k`mfRWFKy15Pz*C&XbEpNhqF3gyP{^gZK|6@mQI7 zgG{NQ*&LqZvp1Pb<)UbeuJw0MmnS#3=s9E5)dlQ@xMp z#Ec=u*-9z;%Q;Z!o?f{^$yzVRy^6Nv;81T`Ttc6J)ZB`3tCD|Hxd?QPY-}X-LrThD z|l7G+n2pI5SPAxD_bbWG66td!vPtzSmu-%--vD@VS-73VLMr1^3o>zRz#Qg^$l z9+yE;A#)x?_p4Hb^JNkGw`DqYdr1_U4d*S*Mh4_>qEobk%d74ajCGFO7 z{QE@Xw5SjhDRf)_?L)%)3&)i}LzGgyBTG?A+g_V#S*2r1{rXDgg>teFXum`$du_9Y zQj+)NG$^Wf7l6r1+V^vyZFXOaw4;*tDw(#RI^1Ng8Q4onda9h+rL?#w5~`0n4x(GE zWZqk5reS-Wl4dBCrApf2GHnmE-Y`!ekI|rFkfsg{2@Y3EaJ8Jzm2_NvR0?p3oci6OW4M`O-#KJxwBk*54Ygb4hI+RsZqB4elAFD^l6?(1 z@rxVdwBg24+SXL^E|6ngjP>=@GB#3sl#=(IT=IH!w$$EQ$$p$1Yig6Z?u?wSq}@3O z+NL;_F|#kQKuPuSgG$rRLa%_9G9=wn9p2DFN zHZdCUzE~;4mvX!Z&`fVl#Gdr0U92G+cuc?EU`n#uMxLLMQ;Du8$i6w@VN)*a4zknG z^IdG*!^VAVJYXB?q34IlLPO6_%ep9ko};()0=?RP(Ah8N3^`YD3Tg9bvn~0qlJ;3S zszp0d7cFj1{C}yWJwwjn(n;y_&P>Jko09qG9F`Hzqm6{lLAQdR6S@cIFX>s& zV=8+nB{)hhVHMF}Lv`!MNki!jRg!NaXL!+MdrsG&-9SmZnM~WA${8KT8Kry2;!6Uw zeA*CTOQiq}vH(4>db9!8gnFj@6r}`XWeG|r2b+QctgSHOzLS!Z9*G{yuY)kQi7dj3HpbZqGqSjpCyqd+F{jN-I`@@nNpB#xx;ySfnvU-A3o&$hAuH zCOO8W-?2``qbYZnlDt4BFP&#!XXUI|A6GJ`Wag4diLg7pUr`b-k%`NKH9_jWC7Z(L zbsQfksY_+*@+rIt0Y`NjW&B$ucVAhn*a~(`Rt5W)Qi5W6w6`xlZS2OdFMPxb75d;D zTOdm|*R|-*mp}IY4l%qdoIXlHu9HgxozR7`lh%61C=hEY=?{?UvtA**k&^o+xiA*Y za!#pjqa^)6?m~Fn1vx{>db6C&#pw%9jqKf7$vZ$!V!LDNI0-nUq&-BYEyfLMktXxF zyGA8%O#Z5iJg)!VUrBqlOk2T~iAUvqjFS9inY?sbdPK-f1!qwXJ()vn+61!xYczO?Dbc?#o7hHU_dW z*f!Dw$wSFP1If?HpM3uYdo2oG+kpu^+WZm=)2eponE!?pUi;Byzk-aG1woUU&KRfj zIudd8S?J&d+U9BY9kx=6@scb?d9W!O4kk$sM}uOjlKYihxUqZPKDyJ?L-Ul}cgn@F z2W>Knhaz^?lMo@t=@EM?C3sO*N|}^*%rP`5x$luez z`GVX%NU!j1pp7IrwA!T>S13g|M~-$Tw;grvg-Y(Noak5yuU1uPOz| zlk>i)#=V~RLnZB-@)wuyjOuqv&MvvMXzSz7yXO8@(kA6BE)LdMak?YGXw;T&scS&w z%h9Fd8R}>*1J$S3wUvF95{#5TE)3|K756YDX^|Z5QtwY`VoDRdF zDFt&;?Y2q@o|O~4ytVyI>$r{Lw!M;jjLcn}zQo+%U8v-(mw79j60}hrqsi1vb6mDp zqon^q&h(yi|1K@C<>ihZO^1DyB77mM@Sbh#G3@?ywO$TTiZDkOp}amti^4p(k5zKN zmO}xs7tbU6-B%Bup`@>n^-aOzgkzoSrApFnGASMH7QwzpTBShx#@%wcNh!j2Ib`|b zdK_#;d$NM&zU%vy+;_{|{n{pyA~Bj#YP;Uv&^^y6aZ!gvl7uBQ}W4_N@}m$=rnZ>ppnpTl?6wzfJE zbX=b?LCJoyT+F)B0llHc_HdK4^*CF}{;NEj_{F^ zbyHbe6wm;KnaJNONoUELBHwB@zng!QoNvhyEv!vA#~I4T>Xg$Ta!d>Bmo++uN&9J8 z<Q2d;+N$zOeeiHE=xx0%n9PrO5(UoTo81gq&rSYx~*KKiX+JojbE6voI5Ca zFVBIu#^ZX3U6j24%7wWgoTxRcp0JX1ZJ9LdQq+W!dmWkEb4lERO5P9U4DL(&(`Xlw zJxCa?!%P#kvQy?JsurafUFC6`038@f1683Et^cG+{nmCR--hK{fqte^prD)|mCf-) zHI|?(A;BE?`dp@@pDJfd)`h4yE4i1*++O>e9#GQmn**)KWf0FQX*ZEG8W$2c3;bJ3 z+P&o17NhE_j+m2QpDB6EkdcYd>F z_Ov2O&TVDR!f1`Nr`4=v-Ca)Vg5}Pg8iy)LPmoFTYa`~c$cakMlVr{;i|Nl*GVduf z7eZ&Hj3RuMlJ#kswVy|0*mY0O?MgZRlyzo7q$Xsx3?4B_SKA8Dz)u zyVp&LtY^qhqrA_t@d6t!vGIy+q(^yQBMXi49wL9;MYK4`Iqdl{z1@D4*Dr02Tnbtv z>{!?PgOd3$Il|fZ-2SU1|4FX3ddFznEA27B3ARY~ICdf$Utsw*y0kw+PJ!06cdYE~ zuVk*5i}|W{m8_$rpD9PY4{e&F;}x1|*+Q_{UN{qvIuc=wQi`YLGEkVPt!*+#)W$1W z3*-;3JX?%sD!I>>v%Qc8{v9#iRmu9doX!PEXXD$dRg(TG7qKFb^Kp_&+GAwes$`TF zTE?hMdkm!$D~3;o@A)S=LiQ*!?!$34qY0%s|i*OHklc{If{(Jxoh?<><6 zQ28EX6!2S=q!-EGGTj4BIh~3juN}JcK_&Y;@;6=VbsE!iO5PQ6Qs+C{if=19KbF6# zig|SIdNLev-(dQ=lKgs^+-qC&FG||!GHrg1LuGf}R@WT5N-ojuS_Rp(Sd~(WTDgSL z>gluwb$nHWmE70MDKL;%G~x&%x>b<|YRROVqFqx0Bb1^XC>MZCGsV#r+FZ%~p{!gA zpwkR}I!Q@-v7GOv;fCsPjq6&6xk~0Ca#9zdRc1tYPbKMXa#3sdv9&cw9Zd#HDa8<3 ziXPMn3ufwM>z{iv2xj<46z94{$pcafv&dG50;v zbQm?AOdK{Vkgt`343`t2z;$NDA4<}%<*Kqg+wfJfL=F*lo#E6=N!nA+ZW=46 zjb27=88BH_+i>y5^0!7e&c*5tVKy;^v4)eKMvB*GV?#DZv9Ymjq(_R!kcCEyzm=09 zKkS$+*p6OpKTPbGbBr9(%EduCvX1uHcnoXIQqtGSMU8F}h%Td}QjDbDP04$%%$ra7 zYjD;nIscMB=^kxYjA5Np!kO7kN(o+*V_ilk9n;y;v_i?8<2+bNy|qkTl%)Pn!W@Y| zUP)Uf7w@wAV4@~jpNPcFiww?IQeP;?xT-$bK+8hBM+~n}@+V~ew#;ra`yjU}ssED| z8LibIU2gAea^9x)kdplbnY|$7{Is4|l0K3HDeW>aD~xxPq-AmzmnOmuw2z4n*f4b2 z7fR+nIeb^BA3eUSUzOA)a-@4T;C{*_IR1cU`FKmb5&it}x>|FpEJOF|C|#4-5TqTN z9`$B-r2v=70+hDZB}UYTD4E}tYq5&@V9Yz(>nq7Cz9?(f5`DJNv5i)kU3VQy{{zxR90Ul=z_Qs`x_3 ztVJ?w_f|bZli0!9V8~pkFiI)FI9Y&92h;3+Y^|hzME;ly8(qUE)0M2tuPMig zXA6|91LO}XpL&+YM_jGsd`eE=0&4e}>z3n6(l2sI-bj*mF&R5ui&=Bywa%F)IPOt{s0nE?&915ZRNU&e( zzvT$it{z80yHZK|iyYs4im#F5w<$S)lFL~>?HV&UA69a9lR1lN@kyk?u_N^bCGW2} zq;Flw>?yyiR_pP=kkh;&D0?%TYHhQ<6`T^S8u4oVqb;9-(uDlK3n+)&-=a&F0N1 zO43m>X-Onmi(@s-DaZ?y#NFirT|u$Mg^xJ*%p5?zR!QDNCNHFxWW#8qSl^{&-Ckxb ziX>f1`f(-g1#%V_xSGwcC`q4^Ni*5&Z0&rYBrlcwhBVa~G3&x_m87@HdZU=`rW#Wd zHrwrgDS2OzQ##+dNxEdBu2uD=T#`#X?}zE5B%UiLaygoFUQNlhl-z5`kNVx~VxDKTxg2L_CF@!;YeA$TXnw#U zCF$pK$FMlvLo$j~qmuW2Id^GfBW{-C{gtGBWz}5d(N#D`NxPezv37CV*ht~im8>`9 zpqis0^RTT;l$@W+oW)cHjd9**exs82RJk;jx3%XSqZ{`rxp$Yji)o0?HH`GMlJ{4c zH#4N;tP$QY$yeJ5?Nqq{^l2MsO7L2sWPQZ3-{vb*I_rJ1(}?YdY<$edr)+#~8|e|- zFUdk9w)@Lc^h}1S>ab6U?Z<_)<%sG!Bw5h@ckP0Je1uJ2Y#^0VcX z=vmj8qCBCj2sQ`lPVnleDZ*5(2sy+*NbGj0aDEK)l;m?|-7tVgb#f?^dn+Y5T9#xm zoe2azRTHiarlJJW2k5zrMT1h9&E-5P4AOkLIRLa=$=Vwx)xlw!T}*eVLpJg+W&j_X#CyzFhhX@XZ+&^Q%hIqFhLw^FtphNwE?s=novAWW7R; zZ$Z$xobFg9=@D{NOG&@bkxosHxtcSS%vJIze2R4K|)^4C^{o>(k>B~dB4vu3?>>K-L`i~KEn9gFp(l6II(>;8&gQE;SD;dB2c(y>5X^C}|Ir)7kSB?E{s(Gi6?nVpI!k8Fa>34- zO6JdG=B(|G%aq&)<-nayiQKH@j*=2NwQF9NJp2g*=UFPr2b3ZlTqH7Qz1#6wCHMC- zx7SzwmXda$Oq=B%gwK@BgJfo}OD}#_(gx%r?$xyJGELVGI$EY()g?BSO8O7v8aj(Q z8>D1zk+a#e+8D0n-A0bF*C@715iV}Xtj<0ZX{<+<;J7NjLisXh;^|kmURZ%X#n^vHqK$=JT@+{jr0KU zMP#7?;E+sTI62(l*h78;z1)8M*Dq_WoI7QdDWPy6j&Q&ppbO07Ys&2_ zKmto5P4#wxSuoo%zVnn)px0!9`b>{62{gq6G(8%q3DY8kAT41xyTz|7rTACQkzrF} zH6xqiBgsHvq-_qdy1?8>V>lX#g#(colE)~UA1h^=Q!F-d`?P(!fnaP|AR4Jo1QVtd zKPaWRTb81iDFv2GnyX0vRmw0>mZ5CNR3x;Rj=6Ho8kSGjeX38&#dFAn5S{0XBN$O4 zc9}LY9#1y$7qk6@U5p~pUn$MGvNYYH)+a>6OX)+UucaYw2(XS)fb(Pl`YlY*9(Jl$ z>~cUKEmFn#ZH!UMF;@Ow`)o35^w_|>CM>B8Os0!&NRqg@z;wJ)iU)EimkVNaSF~G? z&s0*MEK_%zGkM-5TWO;PGm62kO7?_Y3@SGnwei@%T&(1zqcRc(eXWwdw@kmrq<8~0 zX}I=^*HUq$In78YFg3mN#gHedlxK=u8aJFAZVpG|nBOE>=;HF`c$Ah~#bd!}AQo;~ z5>G77@~Ir86z*C%u_`kP+|}SXPDy{MoHk_}qo~*)ijgg6DXE*}nD-q$YLl^n$;)EF z1}YrQN$88FhIN$)!LIi*m282NT znW|HfXbrNcDQ=$NFjy&BT-GYxXVRWuVy+Jds!{ivJ+=`_0S=dwrsrtXD>H-3mqD{n zp;aelGh}n62$dyb2W;Sr5Jb0VytIq_*t{&Cc>0x)StHd4_TD_o=Ulnl;!G{z2I0%_P=EIo~_wI9s3$v z!%f!oeVnJ1;dohw@-fh2JH!*QNYLQETFL#DJQP2GJ56(FnWEj3 zN`H;c-uxX(Nq&-b`Jm~kx;m=jreaidemItlCuoEC63Ujyd?QsJRmw6^E|;TBrQS{& z9`aa~UVlj`-blH?6irLf381FBSgE5;wa~H8vAQOFgGqaf+!Q3!F|;$zdL9y80`wQM z@kXHU;Cmm?MsRx?XnVN50dy$PCqQAm`y0TtnmSwKVZ+-^XxBD^}Fzv0#d^dH_h7^n+;j|bWo=xm_w2;~Z(@o>8pC=WIK zLqNrFdmiXag!c~620&i`T>;-;fw}?ZuR%ZOz_&Zleh7I8(2YRr+X&BX0rV5xCIbxy z+7aj_yt^0B7C?)E?!p^OfqutxhXbtzx08YH0XpA)4!+j_-3@dn&^qva3}{`Tmw_fB z|-+0`zkre7gZX0^fl^2g7YWpnve(ra(W!Z30jbY_ox$!W+8-y#!Pb zbOGKt4Cq}vcM?z|+|C2)3Ad|()b%^FT;0jpdaBo z8fXlB#{vBewjF?e1=?Am7hG6>#e^jDEI|0ooksGoVR8*A&vvT%c=#_5|7=z828QKudsT!}luv1u9yXe(nS61#~|`2>|tmav2G< z9^A$PeStKX2J|4@<^w$p6a*>E_OMtcj8V@uXXc9u+ z5$N<{`q>L;eW1laGw|F}pbzof;Xpe8oeXpfe9s3u2+Yjhbpre6qg70ZSyCRf}fp!DB0qAF-dw~|=ji-RVK|EduIs?8R1C4_3 zZ$P&ryn+$*(+{WzPzcWr1$q_FZ2+_x+_nUI6K+$0UV__BK+l0=5zzBMQJ`1gy9{U^ zLOufMO}L!`REbb70ICAI7N`f%T|g`G+~YvYfL;N56rp?o^gi6a1-cUGFQ6LumaI=d zOA$&RpfKFl0=fZi8v%WUH?{#f0B$pYW&-UDbP?VN0W|?t^;}$ zZg&Gk!TSWzmhgSmb_4nl=mPkD2lNWw_#5araFlLHKgR?01$qmA^f25O0*wHw0lFBz`v6@6bO6wK@I4l&4(JS^je#x&+7##}pa{_YK+gd^19THY zc@yYhpihCm0{RK)7NES5^z$O#=mzu_&_JL9p!I-`#dDhi9fLHO0Q3;hY@q%q2fG6; z#T)fNkHI$u^b6iS1ZaJr6M%jPItQpX-nbs6E&jK~W_bs5w@cj&EDcpXx-GI7mL_e1U zRRVpA=LP|V5Xx|%6x=ogs={*8J&)&31lked zoePwN+f_hafNlrc8NQDI<-_eopob93dq7XX_bZ@j@crF(gKzo9^m91e`UAa==hgw* z0d8Y}UchtXffmDeCQuikU4aULYJu*<8%dyl5Tk>D;_y8VXd8rb7Em|1T@LgHp1TF; zZTLQDBe*>W^d8*a2AYUBJ_kAt9KQga0n~Lg{Vd0GRY3a!4F-Awz9WE2P}(;K`Vyf` z0=fau%>|kRw>^O_!y6XR9dKI$G!)Mr2J{=;P6FBqZs!5b1G*ZhJ2>tDdJ~~M3UoBy zcnRoVpp`)P0DTRVhv)tP8Vgi3hJH>!c)fsj!E*tiQ{Xlds0`1I1=?*csww=aRtz;nL={fuv>U^DuOz_$m`QFvo0 z&?b0p1E9@-wghSbngTQyXeXc&phZ9n@NN`nXP{+3+rak-pk3j13eY&PT>!KP+^z*` zg4;W z@*PkY#O-gOB%UkXl78~x))#0bLKy~B1hjpqqfc!*llo-3{~%(BTO0O`vP=?x#Ti!0jiXAMjk> zR`fFrs2kAQ@Er(rAJBS0djM?;G#;T$06H0O%m#WGXm_9<@T~_r6>sbd^gY~;0;z*;xAd18)6n zgz(k|dKvGI28siX1KJjE>;QB*&@Mp#;@vRN+CT}Qb$|{8`Vh~x0Ch!*p9vI%?`1$! z;d?XC5}*fw_62$tXcIj57SLXB`wXZIq5KR~4%B69`uPREl|WbFjX^+nLgwK>-vVt0 zbR~Qz0)2*9&H*|W@9qKgF?=IH+X6KM?GE2VfldHA5$GhKbAk2*x(euNpxc4|1luD( zL7>-x4ncSy1J&TUAAk;n+rL0RL6-7u=;sKy^#`iQyXyeWgxeUPr}5l)paO(46X<+A zw=2-!@T~><6K^DejsZFds2pz`2lNlz&H`Es=yITafo=i12;n^l^bW#%4rm2@-v;^^ zp?nT>J^FWUPy#rK+=e_{ygHV12DuG-6c>0+N)E($D zpdmo-LYDP`D&e*T(76b2GSCdT?Fh63!rKdICEmcT_trCb4tLO7U&9yo!dv}-a8tWw z!56ouTZbSNTxo6%2Ey&))=)f$tG=xx;f9;Htv}#~tFWz4!GXJ}tt}A>?u)kUOP`Ck zBlJGpdIJ>#tqD{FGzw@O(AGeYAiU{7%iy*E$iC^e8t5tb#(}u3kzn--c2zTCDUGWAkp|egx$haEL+6xHxv{{qz94=0?&Vn0m zGqXkk;d(KvJKn`zUseww+`naQ4}>eRtPAiQ?y0h#0>Y(HmVNURZgR42L&&&W$$A04 zB@^lAOT3FKh^)Er#f3oD8gRqyJl0`w!<9MKH*muZHrASO!>uybT0pq!#j@{f!R0H~ z{df*HqFDB|Cb*=;+6~X);t=Zw@ZvfT>r)_Huwk8wH*npBwL1_lps;=g!fg=NR6K{9 z7x?-FT!3KRhaAN91J;>%4wnL0VIZ8xZ#@r$!|<&)z>AaVt+U~V1LCc-;fB-Nt+@yp zr=?p*1L3H0YjgPG_;9NMZ{SdG>q5BUaBZs*2uE967X#sFX=@j}i-Vr6%ixB?m#uuf zixZKpA|M=7Y;6aG6N0T%@CJ_NwXVY(I2hMj4urF5t)6%eC&pU6fN*B3H5zYh3-o>g z{opWD>s!3B5U3xX!{MIRD|ilvZCZE04F_OaSHKOYQd&pA4W~p}_EC>Gq|rJGq2Rbg z%Rck)exR;+1BVD&3-JaH_Op(|b2wtpvd_uGad*}dJeN0xeon%3-GG+EZ6MI2a9a;( zGTb%=+5m3Tfc6BM4|EHBgFyCSS23WG@ZA^abnqSpWWnuJpwoaZ0*b-+dZ4#~?g45+ zcuxWi19}Z;cc71ew!?GZ1FZ|Ue}IyO^iwvKey)ITKcFjt)&_bA&y5Cp3}_tC*+4r0 zU5$5l0a{i>KVhIRfD%9l!uLR+nLsT-vw+S7`V8nYpo4&J28tr&2Y?PPqMv7hz6W{> zXduvMK!bpO1`6QaF4O4eXrM}<4-m>ApcXtg9B3Q3Z3eU}+$I8@h&Sc{-3Z@3fb315 z5unHMTr*G=d=CYB25+1Qv=MwS1_}Y)08|U#dx7fU_7u=-K(7P+3*V1{<`mP<4?uSV z{R=b@2s?nRC-DY$-&p4YVH=Ef9uPL7SYr_iHiK9X;0^4}uucZTJ_##<=dfkL>J5a= z0@f6~ftC5zwQ$2CdFxWRVa>YL1UD=jw?2RyR&ZO@2=76lui%SS%2r?aV#%=eDG-+M zTK$2rfY$mP2uoS5fk0SGY7GLy+D$8t@UV!|Ivj3T%V^mP60vg7S^y3#-m~rm!g4w5 zNFXd-v;G3Y3Nq_nAS~swu19!SQe~|RH!N(jjt9arBgor*@oO^c$DWYdaMR(Kw=Y(H3vCl=A}p@uAv z4R5JRHr7XCOGnWqE-~6?mR!-&BSbqr==97*jlo2)j?R#)&+;-0Q<@0Zh7;jfD4gvv z`@H80I_cQHhQf6#N!9j_#l;jwY&m7)95&8l;{w}gDWNlM!wK5zvErzfBH~XaA}d;^ z)=)}q)OrACFuGBsdD%uabO`<;P{KAU<2ee}HqTKkoc-X6maRR^up$b#%SgC$&r*y)fw(w9RlutT)|rF{3w(&1JcbIm1gs( z%;pgdWC_a7tZwbnWB3STIoPHYqOnys*Ju~hVL-I%ExLjuJDS4rmwcYNZVjbyj2vs} zJ`8!=E(R;olkWj~l*vc=C-0S99BEvXYeHMsa?SLPMTcveW0E1p3!jU{W1Q<$T9Da^c`}R zybt@YPmI<;`GMtEUQ)<-hrx&Ypm)-JXjM7Ch3&v zCUbA@3nY-g^6OdnTBa%57j4o(IHS61ZD3fL+UePj7N$%!^b}`8w)F4BrbK1?s5>;v zPrh>|{ncb@l<$3~m1pK!D=8c!Us`(Dnx(z;ZiVuVfA$;|%9p-Fb}5w4>>#p!Y908} zR^4dq&9!g)6m#TvU??JP(-Z;=T)gKz6-2pX=|CFXf&k7GO8ty=EBh(EjF3v z!Vz{5S(CgIn+qizX@~l_-gj=eDvoP>r;=xeT4z%@Mvk0szU00r1BWGHA+e*a|0e3AD z_Afw=I;Glo$S$3-sG~t-bPAUxl};J2k%D$#Zq&Kmiym$LNxBjmb1ddb0#{LN{Iz>L zOI*ti3Z2p>VXJ^f(e+R&mv=M^GD_tVJBX}Gr4#!cJ)O~asFi1Z=a5USJmovRJTuw4 zlfp6briI%o&KS7$%H#ee$WgC6;yYxQUU|?CqVxJ8{hdRV{9QWo{ZEq0-{poAXY~&#r@^4;pn9} zR*l=70yAvLv|^g{W}^&M&WSDQYoB0HBwM#=FrYn zI0a3KNXl3c_yk43Un|M8thH?GrCUOYuzgOR*XqqyzfrbGMltp1u{_$*bk69JhwLD- z>XA?|g8njn93jk!My~uTwZiezcU@Z52DC(yW;ol281z=BOk-^c}KG zNvyPk=)5YTf?M<+`P+ZC-|x(ozkMi()zKDp=WmsrzZu!xRY6bx+&SiQmG6-M-*dTp zrU&AY(^K?0J<)fX4e@B&5 zx~CDw9+A$Q87W*IPB?DuI?Q)D^(c8A~M!2emOMIu1XI@&TP&h_@w3OKjgL5iPo2mOR^iP|ko;c5U$Syr`c1MHA z=m{=2Dm}5UMhfa6JlDCi9Rtk~2|80ch!G0cRO+V`t<}+O*vU(Iv~BG2>Nm7`j%weH zwFS*_OyZ-CW=Te&yl)5bKcG-Bg48xH(=HJlDyDRf-|TX!m?8>db+kTzp`1ctX5my)UXonW5%Y%Qd4OeMqn13dCD zEkmYJ6ZS7dj{2qAcgQaNvZ$j$Wb_M{D3yL0uaScE%k0h__3YKAU$RWFTt)F&9j%#} zt3kcwKDTmtM{^;gT`sYM_#ephU_@~cNm8|PKWS1%#*3lp`s)WmtN|oemq##vdU#`@7 zW3>I+nkhKKhpsI58hD9OoK{CuWv)V}v{rO!F>@StS=`aw$mo`OJBa@Q-O`#>i;N_2 z=$MmyXO&CG9Pc~Lymid}6ppE5_~Z@moJ@<6=@K35UyK}e%~8HXcIleKI~qhr*KoN~ z>6)-c3eq+9^=+M}Ylfy`=1A`etz)S>?Y1CBI9oGeB)o39F@?QzC(5?q0c%R zL`Dg58B-~t$2C%r5-RH4ao?WUuD1%sGiJxtqj)rXYiP%pKW(!S39alxZDzbgXp{! zZ0&YeI8)A%_lJ;V{+b1@yg$%)`sAAT&fOKxxVTHfe*R_2u@o%x9dedZ(1E%kQ@yZK z=|B*fHBTct8WBiA)yt619hw`Qa|`!DikQEm>{$+5<||sb?dQM!)j0QcG+Q$5+q>-` zver1Ar+x-yO$LYd`Pg@sxwOv*zSGS!*R2;Q9JA&b>RQoY=4e`!Ob7ct|DxomeBSmQ zvP=2A(a|6>%7@FBO8MNOk%E-ZtDU=$suFG6EYpp{c3M5^MsuVkRfw5+Dx>szObY}^ zU}c+jh#f>$4bzEjTFRMB)E!!7s_&d}X_ZO7)5=?`jG=Ihd`TZ^*^Ulu zZGDIAQY2&TAUdxyNgrw1KE)jQog|6;Rs62}ZuFflx#oBKBQ4v6 z|G(#YyCW^zrwe3+1d^ws|M-B&Iq=GM;$t&#&9F@fGzC(5?iCyde5Yu4FnIzu7@#Z6Z5p z77L#l4I-m^xO}N}&(9q#kbqZ!zMl&wPMdZz9k9W4(TeY2|_#Q%W4v9rmM01i!ai0^E2 zX_^ClrWH5p{<``Pg^X zxD?6-eIM}x?y5-vw7RdR<$3Q{HG zJGZ$~7@@&&^E%RD3s#Q?*-kU>VoPO|P>-3G07>evA)hWZ8O<@o4kD}O=)`f-Vml`s zDr2heyl|ApkGlHVPuzcWn$t`Is9L}s*fU`Hd89C|b`{^la` zEGs%!Ql$LpDbIq}qS=+*e&uxTOFQ4`Xm(^;32)j#WNjsMUPaQ+GYK4xhORsN%_>)w z@}KWC^UQ7QTMEZ)H1Mu$&uF-n&ENjT$Wht+;X7oPviY^6L1dH-mn)UBc}*h)^*4$; zxxZ2C>TgW&U0glOT8pN?!BQC|)uX>LjwDs~H@3Ee$f`*?v%g`-*`YdWeCLHrbp(AU zl4o{Wb157nL(=^X&Z;zRroXY5f7%>X#qPdCcBzV8>>xU?nn?FIymI&?62)IV?#kig zeJ4n+Io!U#ktLsx^-rE-J|E>fStfo(^Gz$U?{pO3S z(ilQP_-i|PX0260;TZXn-Za);dUr=+pnvupwMakTA-l9lZ##(2YaO)PKGZ(d9C<#A zr1JMIy7GK`-)WO;o;$Y>wU388_ow-nBgfpI>^tNvx!-{bAXA6166rt?nL6a>j;gYB z9kM~^)**eIhkLoV54HF%zn+CpwSCAu{VBKYLq~VCNM$OOBkUluRw|vRX*io!xqayW zsQVH)Ig0B41#)ig8v=oW5ln>HD4-m297AOngn zD1r!rAc!I;c;EqE2m&6c2qGwgD2U=MUi@EIb$4}jRqxiT>YmBp&&TbAB;R`VecyWZ z>b@QACLzq+hGtCa>B7~3!*?xomyOJet`Thfc?;eM#TauF8d-=jH|RpJ7(+E>6l2ae zu>z*5KH1u-s;QQ9zro;;?2ghuKvi&^qf~NDllu)UIOIP#q`1lEMP2S$RQWA|*ae~r zIEK|cl(oz_4eJ;ooJ<9XI5O4$0$+SMnL$n?2CWx!l}Y&0730VRG_nv!#_B?_I6_rq z6i1%Z)v}wbOlfT#nUgD)YjzDDnTp)Bw*h#KBb=D*2zITcMk+>?b-H?BQDqH**af1B z=cXV5q2N+OyGaNx6*Obgj-!wT96q?vTt((Z*9exY4B(AWj4=f?vJhkXbRk%bp_(#^ zF{@0hfL!I8){cj!Id?HRkJihQl{=v>aYPrREy1ClA78v;FnI`#ECiDW2t*49yzXAP zAY~zs?|wSAH3}Yo6-|t)$7v@bsf6hF|KN>K^!qDl!5q!Vc-1mn7L>!|N zv9;4jDkCZ)`hOAL5JmqVghr0=zeWbYk_g&?Xh5(@)mwCh><(1UY4Ncl|8*8|HnoIS zt~BH{O>zkDDG#-I)NQ&dVmU-Vfr!i@TGy>iH7DCAdx)3asP#qbC65GTI7?0f1+E6mzKmSbLjO)mjdz}^kN~6wS z!0-d8RvbeUlSj6>SIEFn&rVLrlGXo*bzQ;&%!34C7YHzWMUW5*HGe_7O9(YDqgj)O znx_GW^H7uKFA)_HgU(BMLllF~3ut5^=sd3r!GaFemQm2T-^2vE&j5&lr>;f?c z+{0Bq6kE2S-6O=7jcB&yv1JM1@Uew%Rt!}@j43DM4N#0JYthI;Oj)f9!D0&4l2J@q zWMT!xl)tn#k(or|NJq9iAIe;Yp&oH$F4C=ve!v(xnh@KlX`Eao$;#!rw6j2R8G+aZ z0?A}n?@$c+0@^7;4Ea2oD0vLI0dP2{H0iyA%yuz++<`A!F?@UmjVy$ZPX!>Z=bR&jU!}%rn_7& z$}*F`LtWyCB_@+Aut?#UrRAp3pA|mp^&oITd}?oLdsl#z$J0= zkTMo<_>kf+&@l7Gs4@#*ykbUN3DNH-;Eho9`>|-`w)>r5pkcIyd|xy7eFaU9s_!KWG^`?`{|E4fDEhyEMvm~m zMh3u=2-<;YK(Gaxmvp-^#|lUye$?7s9usp`37(U+YIW|)w>#0Il`5{e%wS>zETe{T z9h77sa=Wf}SmtmWf!Gx?hfc5Bp)m3jv`2(4+*%^G+*%83i)~Ww;87jucA3o^)tQwoVQ=}_J8o@D|-7CG;-U$ zJ)7-*i17GgbB`Ya5OE9##FkB;QxoeTdVLYz21TzQghr0=x<<#&as%2$Xh5*s;1*r^ zy1Bs-t<4Q)IXgi6ty;g;U6d|=l+enR2AbwtgDe3i89WmeCmOct%88{5{RAR1U1(ij z0xk+wKh&LEj&_ldHe810OX}sqPQc;QhPm`9t#B2@*m4Qp1jX2L5gJ*DEf?rQu-HQN zWE5L$6Dwfc@#WSotajGRFl||^Sh;Q7z~cu{4cttLRBX+qvXJ6k$sk(-@&2r+_@k%hqVyef#ZG?D*TcH^>mS5hpV96}&=fq3G%DH|Xl6j`>Q-6TYojcCT?k!1tgmxf$}rR?jx5Dw;1j&> zlv>CsSdyutZ23xSV@qebWW%&dF~7~`LdxHv8gYaa{eh2T z7`2NNt0a*8MVE3GNM0rok%6RzTQw&6^$z7Hd%Yd&5g~%i1qfV5CyyXw0f%#nJM!^O z7bC|ke9?-LV>%jHh#XT0MC+!>X3!-IpRSOnSAsdXwkLRc8JZMTPt$$Ep$drpJ^^ol zqQ8$tBe&h(bJ&7Kl+SDCKChsOQS~_;eMl-H`h5UzgreUIXygdLYjp1{L!cdn1_WDn zc}cgsa;$KsMq4|>G3ji(T9%~ow}&&^#pv;UeA$Z8;~_M%5Ir6s5UtA+X3|cU z@fGs*?pfnB;Z-y%s=l5>rozKD5Iz1MyakFLe+7-)c8||xU2LS+7n^(i5P*nd7$COr zy@=OkwGchO2yca==MO?7M|fVNn`fB!KU(ntW zqRGo>wxkX&JPkN}G@)CCdHcnH@)Ev$#enhx8d(S^&l8B&bsTeP_Rez_@_Fh^Y>O0p zz5pQN$VNq<(`-~$3(@oQ@m45$ejXaR?Vg{{GWZd_zs}tIYtZbdw)h31u?SxiQ30#) zmMAJFYd&ImvM6koWapC3gdx82WympEmP&vGD)u>d;)wr;HUNr(t#5!=vi6Z)8bG;>nV7fuBnK8r|^EMg?Dy2h~F!p0k;7=yae$U+Rt z>O!y>L^WmogCA3r??FHDKb4B z3JzxL8q%Jk3z0n2>l*`MO}{BYrb~?h&@}leGJTjXO)QAKUKb*9rl&ykI4NIGt+lOc ziI?{2i4i{E2_oC_^-R$z)rlqkZ$$b}(dCZOzeyJ&ar(z^?zgQ{nJ507#E74ou9NaI z^dpizq{|c|dr%i5d9pWHr5>xsll`#-$*z#{GV~*oeT^e-*2ZjLHfTfwQg-O-_6thTw=5zl(tCO znVM5}W}paVXT<*`I^-E$Hkm`7)`dviA>)==y}dT?g9*9h^2D4|T!#Dp~>X^n_*oR=#9cd9DvmjO*#?94#>8enq|)>XOBjeV{Hx;(SlpY?o@~>dInyd+H55 z>FX0CeSW%5N`-x2+cR&-1b-vaf08bDjQ$gKArhy5+`7}&+jXAzvl8Qda(ZA#$*yO} zPm$@8E=`Q-ZMqPNGd*_M`pqZtL=PuMbZ0tOs&C6UKSY`@*X4-Oe3>pp;xtd#FeI5% z`9fk$Pfu5d=&XwS75VnRVq*s{>n9Q;yEEMjrDdESBF&HKa>Qu< zu`Wd7G>=)cF=?3WQuO7nc#0k`cKg1j;a4x zU5GIKY`s-=n!Y)yyHPB{twzo&61SX($0{&$uGd{$=_OPY4r%Qc(s|2ZWiwxd0p98o zEU4D%)kdz~sPcE^oD+}Uni=^*uCuu6m;kS~awc#~k>09qfvr6b>57NxZ;+Dyzt!@E z@A%hm$E;m@$~tcG_L_LeEnEUP9AnKf>3q){#AbVyIc-`u`TJ4y1YgcdN z`29K*6vs-foL@<=^c7ulm@L1f3z0a#<4!KwOE#?L7=9*Eh7S`J{Io7TjNvDBA;Ju6 zbQVser_1Ox{AfThD{8tGar>KdTf1Lz)_Q9&-vcOE@xKBDSF}^1_TV7!aE-&^= zJ9Rl?G@q>tkvPqhmcrWscBx08`i8`)o}BKcWyurZ+y z|96HGUf<-lQ$9p4iHFm|>j8&Pc^AO;c;ASO*IBtuRuUwSGw1oux)7|597!M|#jJY_ zWXkfPk~NUer8ecyws{ZqK#6f=zoG}Grh90qnHnio2#%I6Uo1GjT^Ay8%I9q!s@N&m z1DV>?Z^5sYIro!=d#Cp#M*g1ZI+UM*@-y&g9sG)1X62MGxZ&Np95Oe&Qx_s}H%wl& zVN0qXXefrczcn%Lr=ZS`JjbG+>wb$CMvV zjPx047~$JR7-#zh3&cOD%Nis8eqD&fiJ$Goc;^D0YPpzlHmY$6%*%<9KgSRCIa)Yu ze1O6Q2fU=q9&^A8x)8}bU`eB1&MeQvepEQwSkH?Se6#wJ>TBnuEvN9FP~n0Drh^5B z+2j;mh{PT6+Ktfm^YDQCA*A13Zq=>SU@b)h(grvl3Tw)+qCCJgiZ>xJu05n1 zcCHG|4AwFb2ibd5K_J6sEL!)6Z6Sjm^dL9F=U|h zk>*TJ(dCc1V3RIH;x5>GNwIEMOAw$2VMg3(CY!v?1^nRPoWvZlPugNOWJufaH#kT} zXG6MNGItE>LL}~v8Os{AdU+sqGE60sPJ?&C#}aeG%yf>FoGG)Cg-zk%BE%M)Sd0K!DOvk*2?-E(B{WhZBg{Cuk?HF6CjwScHkv zD$n(qP+%PMvm)11(l9~K3Ka<7s>>D&l4s~bBu;qe$(4G3K&1Qp#OR)sF0 vd`0H zijloj7a~lyMt8z`BpRVKAea@ibt~fbNdFz%(jIBfy0w`trF`#@v)bkC*|tjgP{6z= z9#u6D_PZtSx~+jC+*L;nfSq%m0bFF2bVpy*rI|_YE&|cQ?r7p$8deE5QuXuG%0G{X z-@=1{!_gMCQTu1+-2Frsf;E&M5s273BiiR%RW3{aACwhGKP0DEvRC`xy8JMC{!qZrKc6JSlD*pdLVzVTLt24A$q+Fr)#&thiHGDsG?i=hlvb zW}ez_)l)rXyOttbEPHy6=d^TsJX&hLR^H)khtji7=~*%^>ggGE>~o5)P*`i;L?Bw& z*-U|*tIkjp?oF!p@LBm#Jp2~=0f+B!royc<`3#IJ-BN{2anPK}nl1!uFBJk2d)G7b zRJg&D?5Jcnh+Z)4+-o$na8d-8-kq5Wa=Lt_ysJGaF@Nlz z9w3Gc5<@b+b4Kb5PSj~G4Rg~2ML5nwr&38^qI0=IKXHdHf6N7+(S-=RKx5v6O`Xs|wFU&UVuNnp;ZB`c z<61ghKSJXD`*?)aOv`6YNba5Wa&Kkz)Z}gP zWY+(N>Ts+zC#LJY8A7YL*LWh7YM4=v(}iG-V-Erm`#j0mHP(&_KS94ZF_yF zLKHkimmen4MY<4)Q#_H}mDp9t^Gi(|6Qj8^O>bv(N))I*S(hh9^;%ts#HpS@sqWpu zg^fmHOhecpuZuu|0?}1nmKf1xU5GHz8r?GM*=g|CfM8bqTDJ>wd-exgdt$e9T^V*X zi^ncL9gmQjv;1y-fEC1bNRn>+R$VbLJ>5(oBD?Xz_%+Zkj<1(<^{Q|FPiYfdO%xDzO zNp*CbG^MZ;KFv2R?k^A6i>r+i+}FOCJdp+qXU-17#pK0C2|ry`|LVhUIe6U~4|%a* zKqX`p3~n^B0$#rRQOkls5h&-|0C_8H642d626v%n948cMe(JQ8LLL5b!D%dohVv`T z<7tk^*As`Yr>j+C0T|~v`73*S`T8iAY`7E?L{wW$YBK7&>+Wb1+#ZpIpI3?FBg0Sh z^#R&fFHGFx48euXyhAHIu9&c$gfDi)M@yOTPedcToUjaPg)RgO-Bde9q5D8$ zMVu-lVj8=p2KOIxIs1E{q&U{+#U?r~-5{k23H!TsDQ1p-r!E9@bV3w&!sQXwN~${_ zTCBV^F`g%-;l7A!B}0l7$i7*ZDMt2QTYoHQ7?C@}6R8NF;VYfhm=m&LK zVnpAs3lSz-BlfWHMY9JD2xi593^UK`TDu>7gl%JE2Vx12Q4`Fta+meSOi_=vvnxM$ z2V-#AsjE^Zu~&)2T9Vh09%tr~YSki%p}#MW>wXT5hu^|%z~M8*hzq+9Fz0YTT?p1d z_R)n1G*jY9vu3IrZyYONfcT5nt^-Y64F?G~+qF>7x)r#LA%kh|k)}ED^ zMsCVjWy9=?ILG|WM7fq6kGWTuD8}_y2}BDc#9pUX;lL?Gh@o<$nksKErQpsF=VJ09 zPPe~KjLZ43$(vY^aV*Gy1+dfJwLnP0e`(I}FLWW8nxCLf+5_hJ-8oHuT4!R^A54w< z1CmMY>A8Z%4oPP?u9Q>+*~|AtzaPBdNhzl{796n$SYeo`cIZMR?uc1l8Uk15<;tMN za_9i~qQrbKn_QRfkPf%z`DF|AAEe72i!^Cnh{Wli;k5(L4SW~6HZk&N`V9cG!YJjh z*5!>+zfu<>aq1VYE)b)*^aZfCn1YLY%j962lTz{?DJSNUMQ|U2Z&0S( z>vaua5bPU=+x13pR8f~@=BT_bMB6>qR$ z9UKphNpY|D9Yk?(;1otSsh>2AlIV7swhQ!>4tDMGvXr!Kq9L4VVQ2s=n){*X;U(&4BE z1hXQc36|GvvWvYLxK|lwSU?(ea=q*d*y5DWk{*aGZl8YNcS3D zu2`#Fr3;Zb-7_}AMmDE6lMk9IiIF`s?QEfgl1IwL2XuL3)E9Ii5~qIejdsRkf29R` zAbTR5@WI5Kun*j8o$>t8OKcd)9q-rWlDXqjU5KzdG&&d7KhXsh4G3n%X5INfcZsah z+Li21XW&Qn;_*Yg@5Q67(e?#%%RG`rvhV83f+_3U1fqpg;QOsF!-e!!I|c1H?`$@4 zp2(n=KBr#(*hg;WdaW1Z;kobx;BaI%_fD6}a1*`LkOe!$&g{45L_ens!5Ysq1S0m; zvjxwbcMUwS?%aiGKXcwk;kh0szgnB`wNuYra{=d%sg-!LI?*3673-P+&-FOv7omL7 z5tG0G!z6BkE=1T78iA0-Qrhk`Aea^3&{dQhOJ}xryTNET8?B5-Tg`?3z60)xNcVCh zc75^a`-7J0DuspD69_~L!|Q|e^5c`F>(#&xBc7r^KSO4oH6? zQvQ%GUySkxbRiO_e8PIWQ7vyM_i$nR&xtV}v4820x&$$ff3FJ>=2#;)V(As_cQqiG z702pU#7(bWt92o&?%u=6>(;`wy?5p`xZ3r)vtsFu6i&KwnSo@u`dYBWFnNECE(G)I z{<;vZUuU&8ZC1RQ>6DnfyjY$+(<`#F-W6Hol6B|qw9%93O}ccmkg|b5v@nU@WA(CS zTp%8dhuwk=I9w}nM~CRig2V2K2cJsJ?qigmgbaXXwz zt)25G`!QiiYdKf*mTKgROs=*5H6Aqu&TxgFn1X$9Ucp?nl;jkD(j}J(?GFT^h26`7 zl~s5o72lj=HC4)9>3xfsq^>*F49frPH9B2?%?AEbchx0%0BK$KF^T>R-E!ndN zwpkK;=%dAwt@)?wvdSE@Sr;Pg7>!k?!=Pb)zxfUP+zPRlTvW9u@}eqcd*Gs~Tfhvh zj*_)Q>OG@&c(I8Ua1MFw1Yq=kt9_O5=dGd+Vrd^MBExMbvL`W$4d;2`><6*hPxSs*rh-kr?0k>d*_%n4` zW5jROg$NU`(a*C~fp#Ps5X_1n>PAmDW#8G_xv6QJ+-Kpu3sHj$U027Ws=&O|2sg2E zU7ciJ>chGUVIsSNK(sJV=-jjoZjFUg6tw{^6T2rKVhgtd4#!&)?pk9-3Jvv(<{aLo z3&EPmodhEG>|h_~g_UBS?0&5dr3P!{Jt7GiKI%Q*92Vz%}_ zUE&z`|JH>_ocpv1WByBid zR~@XCpF$v7m^SR~Tq-YH%?h6$I42&K3)=vPBeJ+;5^|B5a|;?z&tOx8}twcF2MlA8Oc|bTBTA#LM$89W4D-=>1R^qBNMg0{5GazZ7QTLT9?1F(EXvm{=j9KwLU@?szk*>^ z-R^A^vyj-6e~4QS3a&OTam-%k{8#}$!mEuco&sH4hA^*{)=JUzqj-BEv!ai<5KdWkb%u%-MkD zP4IFwUl1PX z=n1bmfCZy8iQnte$UN~oU5Lazv2dwXge7FBXP|eE7u{9A)b@P6KeeK_7nZ8*QjWje zapquBacU6^uw8>PedH2!&!CKBkaM}CXOOURG7YTK%D$MRChI~Z?x-o`J{RfRL2pdV z8&lKd_Lk@egbvl^i&4H<7b0=W7p}8*Uk}&l4BCPDzkHo<8>c1a zjYVmAbJR5`L*6NKcC?p>L4i40#~`6?Y|&+zIclRWMA%UpgBvziLUU&g2xi4r-DvF2 zl~h_gKAJ{%wmB+XSB6n2m#n-$9<^~3CEnnOZfk>bvje1DE~}S}j4ss`2-Dbm2}I<` zC^9G49(?Y-3f||1N&F2~)q>4TFqyoe>eRdLJU$%U`109!h%S5#a5y5H`=p&Wf?*~f zUO=WcWGc)Cp(TIXoaI|bW;xFB=fVPc2x7u2yAI?Y&EG8Y1Hx&c2rt_5d*#W$nF4cl zUB|$@fOBT$IL;Z5k$-3voK4fs8E2l!{mnDa9FFU0UB^I}5FzGtrmQ-=N!{J3^E*dq zB`^U={vfF+j0NdF!Wy~v(B&b+j1ZLZFtJwS1!va&9@K?k(e-}HS=0`8{M`$lgf__} zGd`21wsHS_ z-(XGV(VB$*enNHWWHoM4FsEwWK|60FE8b&b1vIapw>C8!w;Y~B>nm}> zA8?zZ;rrpuX@Ti#QV5qdNYbx@xtjY3M0EOFWc&ke zbp1+Y^)I;ibh%^82b~{Rzz<>Z$@4a5!Rf;Q?N&Q|OU;?Fa+aHEW8&KGk!WG5s$xdE;S@aL zMIUd3(zQBL76uO`5E@}nqY0Cix)-@~*g3*dw9XzP=UDPZ@rBsa5+im#y@c2~zv5Ux z4zYL^xY}l~zHc#Sc%v=^Yhfo-C&f1vL1%)d&|}^?OFZ!Uj>PDnnsyI)yQK=0@6hFo ziMpW+kvQd@?t{qTVh{c`U6vTp_vk`|iPq?6SyxRv3=Ifo#VB31ZqL%Wso$zrQr-E`8>lZQ=5RQX z>J*tFMGArJC0&0pm%pG3kvQ2Cq$~KdhOl|IYC1F#_TE{}3ow%D&*@OAVHz|=7a~lw zM#Erji;hV(Aea@OHc7@|R-@k9iO0zsZAkv$SuW=YEf=OwibqP#IsWux@P&_2XBbY@ z6$ER%D+oknYMsPp`7@wMHVK)QR(&x{24uaht2MICUHuglXWB9)hxIQ=qL>kdlbNb4 z9ZAu@c#s^<-jRc&Nqu&~&P$}^pS(%_ zPX-#rdOqvkRPF!!P#s<;|F_}$t$|Q#9{N6Pr%ngU3mGV8$sJ}e1|%0~TP0^D-}wix zmHz{0BVe|tY}c|doshM9df+d!+t135GR|^-)SMp;=f`&E$B^^m9nO!P&X04QAMbR2 zoDV;QsbjvqVkVF;1UPpBc`2PhK2mi8IoNOm)5zTpqS-VuZK6g2cd3aL5OALx16-r; zPt(njCcrk4TFt8RTfJ_CI>fMDyE(&GChP>E#c&gnlEt3ub?IYq_F7#C)@xp^3*q$L z;KT!4d+KcVDR2s*T+M8%*ttCHBPI6%bG_#eV)7^^0*>bDhjmG2u6~d}L^hY`NqgP) z;=XRPaWlW+=jC|lEj$f49BobSb(^a5II;7(O|>o#CSNjV@&#Q8)@Yt55Ro&kx|EMy zwq^Mep6*#^#}c0;ba$q6jUFrG{19oL4#jG9FifyhbRohtYxGfUTtSeqFt| z5%THQjw>d?K0W7nSQW+=TwpvY9w{|vv#t)dWkEVkO5)nGq_;a!R}M^3D+ojjL*Q(3 zJ6{p*KJH7AC5coeU*S0277wR|GXRHUusMg`&_@b~o#M`Vh*P*Q)zWXytE~&c+DJEn zh&>>VTMk#yz~WtS7w=_IR16uLg!1ulzZ5A>Ao&tqhM0IS(uGKzA??{aFc|n~!#b?~&1t)w)mqF%)Pw7G^J3)J~b;0Vvp=Zv!3XYc2trBoIiStYE zeUD%Z_;F&+*oWLq0|!ir4P-ZFzy`r1Kh&j@dE^lS(ZZPC2|TA(mWw^1u=3Z$NS#El z`=Lb&9RA6i!$0UkFjc=u-4ORO>)cIrUvFwlg=`~mF0F%`hPik??;T0S^Lb>KvD0%l zDr7SO%vQmZu#%%yv%v<#ba#d>MB+}Ey}DLw*ziyhM3lF{FPvR5{K1%`6LSG%F{E%3 zO3v~N7h1s)y6mw?a=0!;*Z~@Y1vcKG@k|4PSwV9t4G3lh&6G7Dm=#NPgNi%qX|`;S zDA`*xeT6$|4zZn1ng@H#|BFZ9P1Ol|E|r%IhTfs8RVMcx1fqo<=h&0iuRo2SoVYd~ zS__u~4o6wDGhHr~c4V9%;*jTRbM`*03&9%56$B#oAsPGgX}%9iietnhqq$VF z;rucD5NZCJE=NqH_vk_-PV@L><*E&D0duLyvxyNs6>gBO+5<({a_4+RvVWz^6eIg7 zU5GH*8vO?AdT3nIfM8ZMbSvU^JuhpmD`}71QtO-r)eK#jaCddWA!PqnJU-Xj=bTs? zb5nP5my5HKu4yl@&oC99OCVaH>bUvZTG7mAFd0}?5pmag)}3Z(x_ zmoX;Zf9OIaPWp_EcCJyaIhSS0o+nG~Op5oJz`I*=^!sEBpm@Vfb-pe{;?z%cp5cJY zK0`CL%Mzo!Gwr;=K}!@=eu6GfOy$SwLL^T0xFxxq9eVAvH!+^ar!88XKypr(Ax83< zx)6zzJaZFV3k};SoJEMWWy`rpn2X^TCr0?Jbd3~EmLQ65(E|Aw>N3a3KVKIjaq=fQ zZ>U+-d@a22b6aApPbN>Md1VT8-=fPEqx&XZh{WlhzpPQKm*Lh)INZUfE&No__Y-4( zZ`j-CnULXA7|9``hjf`_&UioaKQmH!2-jiahfhf;trSsqtf1d zU!y9Hk&aA^d1q-OSgJtz8+G|&nm<$*B5}$mFSqJe%1bMP5$3IlF+L^T1BGV1LIuK4 z(`AbhzC{-zal)sqx9iT!pQ-J3zOO%Y-ueF$<9vF$M9a;1C7X5O`&cgn6c${akUz<@+0Dlf`hT9mJl0QozG-hPAmtm)F_PkYf4ux@f$J4IE zjPDr(9DY)Ensd*XyGb|Vt}$~mA0L^_I44^J%|UY4*oduS_j9qyovWI_O=D=Tr1~#B zBKT>lchea4mAGd6AAHfO_l%*DU0zr?{ktv%3+hxuMnV0j#EM9@X}8?j+&yEm9q&h? zrKPHiIs9E?Ug1LL{zkCCaNKYxfzSwvy2lCUcoET=cw=`c2b0v(5+io59~hkt*sOGc z*)8VGZq$WfE$n3KoVYi@b1qn$@2Yy4*4PKdcK8reC9jV0{dYa2gQIic$I)-B1{H zLDs{G`F`XJvL4j+7jyajx)6zzEx#b^<;18S>4L16bXj6Vzn}{dCR(Fmu(m}9R2mS> zicgzlk#N<=gDo4B)7M(yIpSgmj9$0#XHgfP$B#391_SV|!-Xg4=Sli`ihh1cKGI~c zxfD+O))sr2iB)u7PhOm>+GO(7`Arx5vo7bi-k-sLFBYj?++fh#+ti#`wR`OQ;-K&ZA9*<%*(GOUF<+}^ zfuI4Go+Sh+a#W_#V~*_a8RY6*)&@deKL^YSZpKoTdf^QChm`dpG&iaapG{@~LKP6* zK8QC!(d{)fvYRbdeRf*y?>VrjME8?M`ur9!&d}#Kp@~uT`JTk*l1hkvzX5NAqTjDW zBS-k1B><`ot2wC~x+}P;#R(i-?}5iEFd6QrTcbzGKP>#QwTE=3ZGaB6*UBB5qIXMi zBf#H*NjUvV#n;S{jKW!*%jSw!4fY%?=6(a^*UMFBUr3f(L9&eCU+EJ5N|)2~JBGXe zBx3TO^;y5sbqwpAeobA3zM4;G25{ugW~%45&E!Tf&TEt3iS?S>rdUri5g>4Rnbh%x ze*$5AYO$0=9h_^sLX~yRWv(5EH&-z}?Lm-tg>-T+o`kL}+-#b!XS1O+<4xwyKMc?2 zgnS7y(-Nen7d6L0lHaK2hb7KG$=vyVy~SSY^?17#Rggg=3%%6q2t@0$(LKX*vAT2F zJlvMeg^C#6>jX^=tOo$Qaz4)3aO6omm0TIjZ(#ha}tm0zKe+b)%KNGcU?OjvR*JA#3|9SSt_-esKd%m#>L#ztFW(2dA| z7;R?YYoI8hsc7W3OXz?o3DwKlS}~ssD`>g7f|j6JQjI*D<5ZAGfGD8j@D)%L(3{c7 zZ5L2v4D$F3r_5)WE2xB~NmW6y#vq>oQ9|4BHBgjLKN@+LmJpo~4RvGJnoHKNV#WO!79_aq1 zz1M-~8xO(`0ElD;VR6hl`xO@jvmf4YMZxTYMsB-c_7Mf+#pzI_*=R1AlhORBMw<08 zL>iEcS9MV|Yw@Nlie@z$x$UBvCyGYwna(xW%QeB zrIPON(12hYzB+WL&6yQ+Uy+d&ztr8`nkFwXS z1P^_{J~OLYwT8rPX2C!0>UM18wl8@**$Zs%(O-3S%(j*Ni9kedGK$bOYn3`can+jK1RdcenrJ@?l`=mihh4H8d>P(jwBF~Q6Tn% z40{Oz@i$QgkB6QGW*O?EgeFHC^9!Orj@8nKUr!-0Y{OfsD3E?Ma@z%RKv*E%Rk%J9 zZgzuLPy4Nk9bWLd)?6u9qghf_%5oj0gexpYln>(#Rus$?XympFW_DOG&i-#M`}>}` zM81pWMO7k4>PUoCQHUeo#v7?9i*KNj+b)Z_f-LMo*l@uKhB@9|g zK^lL?o2e*`KcbP_E{!>YH0nbYUKs~oV4Qy(01(LxM~>1`2C1VUjQ#LdDhgvCG;-U8 zv3FP)d3dC)O7jjbaBMV}$H{1VR0GHHI`RnCR1nEpyse5NS&c?+yGVq5qtuh<_Ya?I zu8woiyr`-}E8ieh6l5`kH&Rg+gJ|To%VOVf>?j510z=Xk8_>vY7mCoyxZJ^wmfN^a=5ceC{1i=(s!FsvnP5$YX!0oDRz;Eg0FB&s zk?gacpDXWzi)i{_WnsXogks6K3ym|?Jpdw^O!YXOSi-6*Mv@M^sfr@`@Be=y5vIyK z=A5TdB~m%eTq>`}^RGDRt~FH_uCOSW4BlWx!MqNQ-1evvUZe7(iYFL2_Mi3c-wMT< zGtI@b70sAxZzMTI8O%t?Vk@fhqL9wO8?Pv&Q_;w67t(8l?#Zqct(={O8{6pWcX*oq zQgivd7tNEZd{%08Q$m$R(Yyz5vZ83-jYe*}XoP7uvYx}Gyk9m~$rsSXsH#M3+KtxH z<(};Y_&nZ9MPb~5MsB+>_6$dpMyWer3ZE!>-dr2cqPbDkhSp>~t)>_?euXzvQ5;X9 zkt4*Rv7Ls}}Y{`XRKeuExRPvzTMUNc2C1%ePw@9+9zr1SgvY)KW&*8qD8t@@ zc7sO89-kr*t=k|u zlU|g}_zL;@S+ED!{sdqD3eAeDujde7hif2u{3*NziXQ(t8oBKrpUbXEj`aGBi;TTK z6(Dd4l&aVFB3_r(LiGG3ycLR`pMXY=@VrJh&oTwtU1&hCvCSpA5_U%wU1M9CDU7d` zd+P(%4sIf616r?Au{Br9vIMx$IX_4qjHt<8j0pU3muDN-B}qmX>vYA#5`{GcVpm8M zCc3o_^&B;{PlTSMf~HC8)@p2J(YQUw;H&yrQo^ghs~t`iea|cI$Bd7yF#SEY`ou9sjVo z;~zxxqw4s%p%fv~`S;^ZP;~yc(8v+a*XZ0?en5K(4G5MWtkSKBn;$&d+F8djeRi?I zB?pr)#)c@V%;ZxDf!=?#Tq}TG$(KIDa%JlDI(}<(A5Ff<^dJ6+^{AXk;N&qzOdpa)QY;Cy@B}ZD5IE zLU1~o4^{ut$suODIAA;lU$&x`H=&W+?&aw$36OaDVslSlh~`Aq)3ZVufV@qgk1t=* z+vlN?BfPEAceC!Fb_E&`toz?Xw<2!$|L4{&BusEpy;{Dn#H9e=g-YOpl2m8SRWZyD z5aYORN0J77TbFf~27H4+M5Y0)>nl1vmxMBb7tu~}n+VGUev76_>es?!fWx_@IfcXz z&vLP!cn)8(V&r%RjVwftr*$D%zJL4{hzl;*`ye+%~%^dpquR?~NyX zSR{M|9}J7(?YKHITlM9**Fsec#}}_55Rri;dWkarJANippKTT&j$4OznGjsopsA7v zm!klO4=$2(3gVl9oL{@Rin^w*+ zUdMAOJ#!$seHH0bg3Vv@6lAp9{W^=i(OGz#75!gABMZIJHUiPQd}A&z6#pWe;DtXo zf=z}xxgO1oYIr!&R40Cwg+OsF-e^UkT#ZI?;cZqF%6HMoZ5PUHE~0qPSq03CJJUI|=w4ziFKqI$ZD)Ylq z@vch`iRCnNv1~!Jqbe4qmjUa+!6`S0=^F8t_>Fk873Fd=8oBLqnG=?act`vN=1O@N zniy53tT4=HK`GMv;m^fetSFLm(8z5UNhqe!c9$zxhC(srPIIN)j%G(yDaJ8{Ra@+W zZo`|cD3@E%$ZeO)zI;rfym`ZckYt`Vm&}uBhEye^^kB(I-4I`OQ8tg`O;?o7PtnM2 zm(2p1Y~1ldNHvq2#+mL!fJi3OU1!=QQPo6_jK<+DR}{@2XymqwWxp4skv&4x3xSh_h-1A+;5f8DiT zcgOi($G7xA`oxuu5>b1N+j9N^w7{k6Y#t!la^B@#nraoh;0nx9-*tSSt~A(g@+N_Z z+y_|r?zWDOMeiKmIlQoN>4J`qt;2;TeERP$d>lT_@%3`9UbXGv!j_z%JFdL--zU z9;R4`y`y4R^UlAsio?w=#edaj!%HX5KT!2fU)Ac#Lm|MiYW0iOkX?np|3*cdiusal zRkK#H&+e{Th;quc8VFRGu>q@;uQZCT{|{EQZor0T#+s^s+qsT-xOs>ob_wPq5yZlH zrl&lh?zk!+)$FXrn*!*+8# z=&+inF=>6_ix3$v9A01elKcI#`@P5ge#QNM)%||W{eIp3-s^tvbHCqkzu$Df-*Ug- zcE8_ozxTV}@4DXy-0y?#_j~U5A@}>R`+bCb?dAlyM5V{B)cc3mybAwoj_E6wyNA~| z$LFkylf1z%JFC`qR@X-1oK#20`od1~^9l&$gRZpxY)!BIB4?s z)+P*-i{-wKtal|ra2Mf(%dkT_dCss#*2)kk)xkjDKJMg#i7Ail}oE3`u<$J8H&C?2aO!zdyP(?Uo;aN0I zQnwZ!1su*L-pzNeyWE10IuDY0lF|PPU$A1>cnXaygpHpQh}NYE-pzNEtdN&yzt1>D zm;n&D+*#Gj+|74UzMhINUeVW+(8z7~b@0MFslS()`};UFEvo(&F1(BK`J3@3DEjMlEAOP13ysbL;X?`sYSh- zFn-;~Z@~pmcH#R}P3sHe-cMJa#=GAM?sua5?R3AB$k#6X7XBew>nZ#Wezm^v0{QtO zfs-umyrSF8Sd^vB%qYq}Zej&Q*~eNtNizXfk!uxro0Ln)7J~=k3$ASUhZ7$bdr8-b z37Kyemjg(0vO~aB+?dquo>_2RL?9xAYYW$NI=yO#^0JL+e+YTm$!MOW{bk`ez~Ox2 zUOnhpF3#+(#h0v@nyp473#r*k0@1p(d-@V*^wZ_B74q}BU=6O_34T5Y&55d?=@qrS z{i3&r@Z~Fddk~G>c5lxPEPl9gHstZ!%sqY!nio}%&kHZ$czuOSEE|5^gttM_>o=g0 zBfPHBtFy#_b`cs7Y?|gE-HN!=G?%n?__c>U#ODMrg8jJIB$Zk77?PRm z2Y#!|GD`=ZBM_14K1g?|A}oHv>iNVsskB*cda z_(B!q!&o%35Fd8eg<$c4YQ`u&Jfo{zH$MDtOl!B1Z?4OxW!3?gaYTt^M%HZP+i8_@ z{pD)O8nA~YVPuW2Bv=?(MIi8DB>r26Cv4sJQ<0l-@Edy83uM zSNnApJDXv=t%^Rs9E~h=HkT2I)+G@$nK=Awc7uC(?+1Gfwec-9E2?4O1YK?TRTTol zeRyLP#ql*Xa@)l*mx%*{sr+7~znTl=PiSUT1+r9EAgsD#{P+XjTt$hzh(>O^MCSPt zagN3A$Tlj_D~E?A`+vYVi0lgxaSThu4rZCAMuPPfMY1>EUPY1YiAHX_NT&ND@opFk zb}{SC)o~J<6V(W!_O^wPX+~c%eInjeMPaN!Bez``tb?goJy{64lDkFTVJ?pyXl7L9 zq1(X(sw>8h2HspniB!?ZZI{SwKX&-Hg@uMMpEMW9C(yj83Pd+W^(!mN9>;2?ryvjME#v>eTdF9GSJ2397e*j@KnhoOH$H`;$6|AN90Cx#*678V z9QEoeMvp~!dlf};5E{AdBH4>Y4?lSY_m&xg9a#W*;+M5O9Fow#+tFb7QQ}7lm z3S|=-x$Qy;q^d+HVo!6ixkfHT^P;K|?NrsPtSFE3@y063<2*ES+vTyhA4k}YlF||H z-R3I!9GV_gm8iYZCPtEQokg*H7H_knSU!zLZo60(NW~((IrG=%a``2iAXT}n)=Xc6 za*4Vv^A~ul6$SGI8aYBR8e2Ztt`WL~tO3DxmG$VZC@?GNMg=1)mYY}so8HfA@uqj@ zGNVed!QX(`HH;l4O4~?tm286>;x;4SIBrXXWRuFlU@&gb;fk1TQdvkKc7;t0onEy= zgR{4wz2a7q9Z6h|=1J<4s3n*7z=s)Q|2E3B$^jhkB7Iu zdvy@K{t3JdieCRX8acx28htxU4`>&m0l|`#19dCnZf*T(Yqz#e?yZ&wI!+`N(1R0MnTrq--K_d$hWH$oQx-7xH>M%f9$lFJQLAW+3 zc>4%6EvnuQUUe9#g6Q+Z@g^wx{0(U2w);GA)nS0Nkl*{v{oaG7M%C}(s}2Lz5Pfgq z%~16H+tJ7ozSrpPS;jy+4GjpEG5kum>vA)O$6A{)OmZGB?#R-+X@XndZbFMzs<`Gd z?S#Rx%r%Vbm?Zha4Z7-K`NDMsVpqr)CbNo%0?7ktp9meuchF2p-CDQ{a5%3tr;+JY zX1f?YzKJheF?!sKMi!#SR|!PxvW1!SI6C7iS~DP3vVM3yF|XgDjw=XE)xv;=1fzo^WLVu?#-%G9JdM8QFus2wa%d1@- zv7BK~0uh-rw5~Im=vF!uO_rdYBlIE1p;?mpw~zrG&Li$~3ZA#zg4sP@Z^jp_7(k9h zBMSlKjk*wz`mLX8$0&fzF|h*nI{kWFYwzjlEmu3T#d5jA4L8n%THq2Lslu9Xi7kSF zozzTDu#yn6Q`Z43gq%$vc7YJm>D4+ELvBF3M~ETUp=pwOxbQx};auYGdh#q6vyhMC zOI8dbA3-AvLF7Za5RdvngsR6Vh-^2p0)oio)@C7-Rs^2f4X$rI1NDd_jBFucBzWHw ze+#?wKCInC*D=IP#)E&_#k~qV$~9k4>$-u3k|zlSK9t0N&DY%Zgd{Sb9ObXEAIADi zh%37T1TKS<$CW<;aeQ1^B5oy*@@!W`U0rKgLh~xx!%f9l^q-L(-@^O9QgSl7vi>bd z!6v)dTmpwACV`WTB@n2!AcjSFyA{Q75E@zNn9>BIb)%PbglfoR)48nG(-X=`-UbHZ zV!aSMPDj(E8avjS3x`!)OleNR8?LCFO=#o@47nj4wjjBaMqHqw0KC@Gcju#H9D<>I{4wUA?lD>3RYY znKCUbB=edLJ(m-mW0Lxd$tC&EU4a#}VfTcOCK61q4cgTjyjWiwb~gg+BDpV{4L4Ve z;_DHsMoO;_Rp4^%rA9dRU>@EPF=L0z-cK|!$KFw~tN8)DRJV%5?glDNqWkQUU3E~5 zcR8O&7tJz?Y zk|?)N9|_owdnG57m3_xrf}eZu|z-2Fc3et+S9pK`xXyWd}uFZ!jd zufacqTxX9p9UY6_IlOatVWGL8qoe=s!lm$mhu;blBmSf?HR=zFDLGc*{Q%jNq&d4^ zWjvaAl~lt*ylf}UlnQqP4wv>c)8c5tO#{g5JxfTYM6|1z$pa1aBUMw@A^OX*9Ah6?IM^;JAiD~K1A>-Y`WOT!lt%yA1qPQKo|Lo2%dZ{|UP05MDg?zG!LOSb5&n+1O;HSgK_jiX}n#EB1oZ;+b)7BbZNO8Ze6xZJ=_kXQ_Ll>2~CJ_n+1Zw<+7w4P%|2#Ass{UW7GDhgOph|-CcjApwbpF|BEKx1u)4K06B>i^nd3^jnlvJ0Fg}kw@4-S_mDaX?jM72%6divT z8oBL`cSC=vCqKZ2{uj+%|64R0s;*ZG{iI5Q^Pj^TrRe-;(8w)vKHS^BTZi*M*%4HF zY}8c&Tys$5RIul@#v_6`0FlgyKuHCpN`eYz;*C;N!89~-i&PNpe0Mxp>$l)$ir_F{ zg}L{aqUlhL0ZQXRS|`E%$K$P1bpJ7E%^K^F44WNU-&P%-sLipb1g+ztT#OS1UmRSK;kal)#l}u8;>S9V5A$I3yR4J+G@}b^+P51S0YRvesRzFoD)N zbf3bMj~S=8od6L>dix46#W|!oiHvVuUkM>>Jic7T5H<#lEQGM#bRk&qpvo}{9>3Dn zuNyq>AK%*h&7!BuXivEf=M3nq3Rf(EA4N1vQfC+53OIZ; zd6PI>HiA35{0a(zCyzH#G4S*fUI^n z{^5(7Zs`V->~mRW$N0Bo62roo7=+8RuWj#qlzl6;*K@rzsA%s$$%D z32&;RG+sa>w_O_Z{I~&p^%nD$Y%Skc3h5(topJD301$DENW>gsnZ7>!`idf%kGEG* zB=gY7Z5PR&L6H<|_1alk=QiVzO4gaHWDS}d)hM!DUnQ)tLn1lbTqN7k%&3ZFslG_O>WUJnpj+zK2F`yEM2|)#1x3!o*-mAG=*|oT~m0O^vEP3{q9UzM@F}jki}( zB>zMs?^+_Mm)(irkVv}BMRG7e>~iB7zrLbK7UJzy6v=^TIcB$JxHSu^L54{j&o?Nk)SI5cwGMZq!+f20@cOO7#D#!+ZqR3nCNrr}ps z>`dN-H&#&|hoO;oA$j;?ypTNd=JM!8^OCeY{K|^*$l;Aul*gH9Nr+2@1Qjm zh4EFqrHaD%G8(zdNgzGGd zWggyUMX}6ABez{F3#4M9`}#w2Sz|7jRcL}#W6bIp&GaDBpNN|xiTRus$*Tp6Et)?y#@q3ewWkTWy!3dhc=9?SY~1c90D91*V1!5oxRoaKzF0J*X9rMT!C(A z(pJ)3COroT_Z&FK0?DBrc1ExZ&Ioqp+&}9I7{(nAk(~YefUbnuah>-Oh+W}0$7ELV zQ1JUA+9z&HWk+`ILNg_GYvD$~;k?qEMuH!+UF`Gj#FwoY!fr<+3nA<_0@1p28FQDF zOLZ$>va121hy48<*kpJ%;~6wFs{Y=K_*+&B(eqE^tx)v*lW61!&uhed)@{(>p#i}< zucmHA+~c1ow)X7!nBGQ_zkKI4H)6#qRa)~{{SL!1i3>`Su3~>M6E|3J1;e_EeF;Ql zSJAo{GR|>AC}yleyFut9mZK?>da`gB;Bf9}PNaQ=<0rRNmf$YIm#P>ejzc30G2+d- z5G+Pe)fmNyy-lou)bje)9uXf?wTlhzbohl(0bGYBRhB%dgcITUL6TP1WO-%akGqIr zoHQko;(T4UPwNc97!EoxB_rEf4HH7I7$c= zH{eTE3>DX*k%dt4Q3BDrPQbk&UE<%Lf+e`tCiwSJG#{$|rNae!kEh(rKfsr*=;epe z$ZhxXbe3pKJiW&!j6K}}5V*WZ)zh;=0|mLa|BLoXQ_ zsJe)y)KIP$l4J$PquYtArW5?E;1~iCnH99K>tOW`r3N%ESs7OMI`jV~GjHa$l`t<@hUKZ-h$V zG90PKnoFdSL}ilNH;a>~ByL=<%QuS~*Aj@xxY5GVM5kBnP}sO1?GGVrd<)H!)TM>b z0S@Pr<`j~Lc$SMn<34=Jib3ORXk;O1+(RH**EP5=@_KBA{QOt22G{NcKmQ5MiK?Gz zzDY+Gp8cY?|9~%F(c3Sgk=yR=*=%&-F&6Up{x=zWd|!ZwV}v2L?0KOPhF1sC>wDvE zQ1tqqXygd5YxL?YF`!+91_T>rT&*i#ca(A0xYn*;yO-FO%5`p#aVGc!7ow!`rMXd> z8t4o%=-sG}om{^p$rZNhYKi3vXAp?UT%mOx$t1tpp@?!m+Cf4eavqu|sgDa~z~Ow- zoJt~!Z@L&rcH)ax3?yfxk%d6AT^E7{5~?4gKys>y6)?j1>$sK%lF94sTHWqRS=FjF z#D$V?KtTZb1m*N?(WkOuLZ-{7Bik=JyaTjB$>i}rwBs&CKN>|wj`eQNRg!f$}73y0Si zo+n?s@LTwUHLt?|3crJ2tuMSle!fWldZTbo%K2|Q$xm`|?&Fl`J=XYix;#==bP|2=5oBM*Tq%6cqh1&fEY4{_VJ-PIteXjorNuK*W*8i|&@3733N> z_ZwMd#cp~pys?UYpNmEoy6IU2qIId*zCq5Mje6NC%#j!EQeVBl781%@u+1OdRus%KG;-Sovp_1CTBVq;hxIaKu9rbHL8^L@9OK|(3HO^3 z>MY8ohPPQ!E)_I#gj_Uocs2~6y_*IEn@^y*js^s?g65?f5X_1%p%Va?PIp%0{BbQE zjEot`*ZR3c?OW&uCT$(YTc?O&T$&~si`=IxUN#o_8iCjq@~Ux8l|$X*^Js6la$-C2 zpG9*db!g#Hz~TJiZk-~Ia!X~2@UQTtDh8~l(8xl-`Z_9u-oHkqzV3YZ9^TbhT_W#*Ph;&9X7UQ72 zLAzRmbC>X%;@UWj^Ui7xH`m1hN64=a!Mo1QHL>8?gL&97)Qp9_;7o9HLmcMWJ1TZH z?@TYl8(Gbh;(+Y4;Xt8-7K=Zew>`^N9MTeOBi%fs&atYNb)!Z}Q< znzf33c6Zf^Nqxn#v&1tTk5&e(QohnClH)BgdBeG44a|$BrNPA>J>`LzWLE=Ul5zxCii=@`~9T*y~X|B>V7}ves6QXpLV~Walf~_-_N?=JKXP`?)P)<_w(-e zF86!4`~8CZ{i6H*lKcHK`Jxx-J_P>^mY}27ZsK2{i^%wX0d^Qp!#_c)V!k~0KEUDU z85WDv@P10u#eTKSPacKYh{y1@DUMuzOpr%NBBNXz`?B0Dzy7c&XLZ-I+0b0l_*;y9 zJO&`*m}?MyELnnOo@Kuh>L^Z??}oQg(bxY&t4J87{+r6BO`_=O5kzsgxhUR%CtUhu zYdoTG>L`k$3vZ*MC=Ny=w_Ox7gRRIuOVEU6u8Fs!S&_~l6huu(UTkLJf&D66MNtxO z#ha)oiPO-?yOt#SY(Wy2nM>jlG%E>8!l|MtiHq1VO5!fOiHefA6OG(M7#k1TXRu7hvr396h|V*5&q^jQ5MhOjZ~Dy(`e+j z%Yw@%iel$6=T_r^$4r1oX5gWbPdHT+B{25-ElHHbC{Z?-L=nwOf|78mC`O4q-b6)7^rDg5E(vbRssek2!&6q* zm}}xHG%c!{(3r9!breN$CEi9wQG5`M+;&lLNhT}|igQ*En5*JDXkJuRp^;?LN{X`h zCf-OzS=@_8Zo4ez1!r`s)mnePS4=DZZmx{Kps7(+hUD=wHebblC9S6@j+gOvDvIMJ zG;-U;5xC?yn~l&$`cuZEkQ6{9GYUBxKQ#5KDN17j-b_Vl%ts@)T^f9MQfqVzNyY|q zVXQ;*q8c=Gx)V}KQ5I|PMk>l;6&ktivfxrrnJRXgtKw`lEvl-}NIfG&u^n%tqA2QU z_Z?Tx0ia98p{;~vFx7Co zXc5n&bk~^Z>f^<+w2G_!x{6(19&f9n&wJ6xLYJ2#5Rt7v_I;)^nK-QOTsA*Y;os-E z2JA7^##LxmRKtMe>K8R__*E4G!j*Vq6~*yEG;-U;G2ItODO<6s)&SQ-JYX)3@1QwR zmBw+JVZ*DaAdGL~O;r@ey=dgN3uCq~40scpCRm|9e^~xccJZ3JFAEU`pmB|VtnRqo8h4MqZ#fn0C1dZHwp#(-UF#B81 zimAw$&lo4Fy8%QpiK_NU#;dF-kN=^asQRSdztPBTm&e|I92vBVdAKjc&cZ4I+*`3N z6iMD-u9B|AR3f>_RB4_pTxU@%2jgv4j3o=v$ZZ$P0;yP}(<5&;m&;qx1gUmBt2H~G zpj>FJMZuhgw^~s!ThPc6g3(x}Wh=dO*+&C{t@IwHJK@8upo@z}R_tYB1zdu1VQa6x zoxB_#$Vj;lWN_2ex1gJvw4F2$5SN_8H{Ol9ZhVujM%lXY4Fn=`T`{4@Hr^;!p1V9N z%tV*_`iRM$f%JJrt{Cn&LYYFJHrzCOJSA|0(ZfKybA!<%?)Urd_Xp&QzA5Nl_-D9` z&<$3sjZ+~QwejmrtbjKDuhzElDJ8i1Y7pKA79ZRBGt>mPOet^VD~Qf}8>L(wEqb~6*4*Z@#M8<&@?k|`cta>Odo^w0aFRsqn zE|Qr5fom#K*A{jI9DWzc43g&rtrzo^Y539=^OebHWFcRfNFZ9bSztDK35b(=$lpuB zB3wHZ{Czx{7gc}HBmNfaAbR~6ybX$8KMIZ9cCYWr&M*brO33qNbI%vi+^BkfZ{m4* zJw)&4@pdSBzZZ=h;eCy6pJfiT>(GE;W0c?Nc3_SbkU6AVn>kDVpqr)Cc3o_1&|-2y&-fRkDzIiI<)Xrz~Nld zoJ<0U=PtKkwvF_A_<|K9#&^-kLd5tsfoNTpFpc)Gaxec6j4@0Q{*9(Y)yp#j2|}c= z|A{YN(bs=NBe&hxfnzjse;@o=V}CCMh&ToSVym7TN(&-=ejwfiMV}vlMvm~gMt9CK z0@^ufK(LJ96T0GcGlElFoDmGzwf??pzK5GDETGjY4J}PNb;YI%)Ta@Av$+08k`nak z3WucxJp^J`NC`TSy|#5^ulg?a$-OSM>HBXymqgJ8(@y zgvXyZ_xQ7DUQ|6!CyLl~fma97>%YR=py>6d(8v*9*XY$*VnDkH4G5MPSh^K)6NAfI z`-s+ft7cWJ))1E$9CQaZK1ro!FjL@J#dSfFv>*+Z;*w=oHY_bj5r|zOEtu%mI@DXN zMtj4pBg+a_qG^&kwD3m2;auX*6nO4(3uZF~%kTv&28G zV+?bG8k!PSF9&A|B7I%K7q95+0W@;keI1x7ko)@vbAMllrbX4?;hBO+pMMl@f}+nq zf<}(;xkhi!5(3&eXh5)pV1aH$+=Sqq*4|_>)*h(9<5?!`s+2^DCFmC53Wi0A;|Rnq5GBSrH4X)dKC~NzAkl-SNb1SLCcxp`(VR$v z1o4v)BP@KWin+ww(a1uKc&jc1ixE^cMls^eCRRX<_*QEt7bexKLmgRrN6xO)xlnNv z)FY0JVv{sfz*CCVaxvRmgiG1Wm6~)PW9aX|WmrR=p`2nR0ptc0^^LL?%QT6$r#OIPqh<-m8Z-k=X&p{(c_!o=BtMJ!arJ@FLZ9Q&uZAEdfwu%c>GpKx`)4p@b)J9Ig);k zrk`WTN2`_ueN0%^A7!Km`&Ja${j%)vENnh+iX!kvT$S_pvbcOE;rD@jJ99+&Ygh=IeG9{7Sj| z4VpWtM+=Vv4(G0BnnV(bTe||{a@*QZ;9paFevP+h#Gvw|kNiu5jQ45mE}g^b?_WI| zN(*Lxo=*!@6o15zLfFhfsCwAqtN5E9P|@%)?XhhADb@5*pcU6BCR1T0INx zV!&+`6LgU#bvKGdyPkCbT`a0Q)_aWZ2)9uj2}aOH@e6dLa3PNOA!tN1vf>^SD`3n! z+}drsGgrDtb5l#IeT@O=&G;#I3%CiU-lO|P+CZ8ImIv+XVBX%oxW~3DS$H|bUhEBp z;f$|WG#4DbzO2BS#oIL{S6~tDtpp-6!o@nWeLr-(%?T@ZSa1t;Xf5NN@eo_601n3* z%z)cofkMaef9CwXLl=Uz)ExvOGC$DhO9;`a4dq&%9y3o_rJmGD_R#inwI@Q^H-Zr{ zC|lxy{nHiSkPH}-*+vb?Fr5pIxn7r5ChTim*?>D=k#>U#AO^IQ28v+c3S*U9=;b zz+htB&q~AI5mNL>y07Un$H=efLWIfJ82PcmBOO?1Krky#)9v6KD`4yrdRW4x#{ z%}K^FvsdPKKs{3{t$fk>ZiZIG6Z}X#1Q)&vI2?t|Iq69@b7H?c zGO@7_4`-ZM-kz$LQ_ivt(UQ$&#(zkR)0yf1^7c%(<&h*7#zEeD+14~t7qYpN72XS9>@Dw*<9T&{5)n;5<6^mfM-r+E=mGFHYj#m_p# z)^@Zx=SS#5u-0}sb=w|mIyx4;b9m?Q!a@@!4EygcTnZmpX`LAL2UDZ|fb<_TeVOO_ z?c6pp%N`tro|%|4W-+a^qJ_R=t1fe_Q$9l%B22zUoMNGlHaiUnW<^q=Zk9LRO|2|f z2dui2IB_lVeTj)+cG?R8nO;`5pn|5Z3z-ToCJ>QfFR}yCZCJAzmno+2VAHxiF;*cl z^U2Jx!UbAyGpF?yT?i)Yn{**qjBohenuc7n^*iRWph^SaI!OJ%v0~TQx3~vV*i&Iv2$VB%q=|w zrDq(PrOf`@oY{ZsLa-M0H|m_YbBFzf#ID=QZF5p)FQ{`m-~S6qrOgM3d7W#?2x;BE zV2)uby|*qz*fkoFiv>U0^fVxt6{BPpx_#i`%c?fq8V*g=Dy3G}Y7IM8hF=U0J#*ew zwbZJ7{lrFhs!=0<0cI{>;TyKEahlnXm}U-3)7!&KeXtCY$vehn%J2(l$+b*hzTV&H z&JfdJkO13QsA)nEx=vRCEOP!o>b?X{uA*8$Ku9vlWZxknoiquF&@=3t@E~L%VM$^V zKosos^xT>0PEU8!OOjD|xUy&?2m=aF|2$Ej%M(QqL=;7NBJQH%hA4{i9#5Vdh@uGp zQ&qRSZr!TeQ|H{i-Q)ZH-UP$&)v510b?x<%$3yt@u!w^#E9q zyr;bjk_Vkp&Ey*SV|^iAj%~{n9au$EUGS>bxL_^OSfG@rTKZfQl8{7_>;z}BST{jg zYBQ`>zK!ZO((~TTAqY8}yr>f6%W9CWp|1(vdD!O3lw*Akivgu-UK#u!X$|w)cLR<> zXKlGyWrNJ^F$97@f*X=xhG;|mL*WU(t?h&_*a>9AQsN#bpJC^FW94)y22yhiRu=H#|~f;V|mj?eQGA^gY3vPQFdA|uy-mj<-GW`F7 z3L%q_kT6sd`XaZY62x-Nw&E+R2u0vSjsu!*x2b>ov$I6vbHC?He9Q7XCjgfi7 zQl7R%iOP&%8OvjY<{9g#vdS9abPhqN5eRdJT&%IS?JjEbCF-tBzTer`Q-br~-sQ85 zOEX&ruT9^ztMOaAc8z9lgTE9<_iuuKVyoq2A4aZbF9id(WG~}C`FAh_XabEVnhg~Q z+)u-Lm0-QnbW5X~bs?l~yQmOyEM3eYS{X_M1fE$;mDq<-NvISCdW!0GPd9-T?C33* zdG4-VzTa)3*f*dlvlV+*+_jq3LIVltp(got=*Bh4uc1P8K=NtDlEdr&9^VJ_4|?UE z33AKdYoXK+psBKzx;tLCH~~G=WWFEWuqN|;R0zM!ghVTIwa5zu2x&!Bxq9}xYPnJv zhDCSw4ysn7zuA&8>;k+0c!&ShxlFqG5>g}hd=>l~7+Nhq(Ap$jRLl*8n zc_`BlXCv70&y$r(Yok}oS-W<5f3bxsu0ykEtKzh{?3x~vPe-?_sdp+BLPo=rsSq+I z3m*y2 zApZm1zNY;Ls1O~{ehMsIB-u04%2@x2SMhF`$h*JPLY;qzCdpQ3euZR$_emSs-$%Eq zsry|jgkN1kR*;EB6r2PIX@w~E2@ukXH}kbU0)({U@-S=EutoXcL|9gOX>((lNA%1-`FxZYmF}{%VnOCRz!%r}9pb z^=Pupf$12)QG}_j;dhD{CG7F_Nef(S@m5)0DDp2HIZ)Y%3QvQsi&YL9x2yQBjkyHu z#eMj%Nu0-%IfZ?PSjxkdLRZx$!QD*NQf4%(OMJAo#EtIhv!C5~^DMOdPO=0Mw=kS^L$c2^KL$pH^vn;V*|iNmM>g?HW9M|g z{2<;qOTTwpc6-F^bhQNcvsD6o;YZ`{V!WSDRelB!u*bg9ZRh+Fq9NWYn0z0UC#!G1Zn!n*8 zm)HM}M(((0EP_oZIO0`FrqXa}K{=T#q*J-vh|evK3hx#@k-5cDP29rVJKZM^$6IF^ zEmotEJMI&67;BkAwOkJuK5uwkcyD+unibn1arhYC;O&?02d~E4W$6d!p^-c82h+=N zd!o69d`EZ}xC%{(tqZJb;sTy7>FU1?Z<3|@Z$=|`T>a%9s*;sLvRri1nE|LFpm1QD zFTS8~Z+MTm8%>g}N1SZu5vFeHUUDbiOiM5MBpSKnUNW0`Nj9}FAWr-yyjT1RO^U5o zG@D=ex}|%;FYsnrdcn`o$Q}2Bxs0yiefhwAG3WE4=M^&nBAR)HxJ22!;Hh;?_k?b| zVV0iIg+?A9o&a~!6-NRh!fD|>;S@A2wh>`0Pf$9hd%{V0!z?}Fcrl5! zY(oXOLN2^3WYE0Wx*71l_`{t>7MWa z-Y`o~xF3z&aZi|8&9f0?4hqkP_kus5DY5l})lHIw(ka~o{ts`Ir3d^k8oA>hFk>%V zn-JgtvHL?$9hL$_G*gGenmB;BPrCjG;cc?ie<2zUIjV z0?u5$vAx$qOy7{n!v_s9_+qQ-(r)m9i!UcnUz&@Ov8i?yp9<}sYIx`^r? za-Zu$4iR`3C-{_AxKBF`hj9*eH!_p_+)K_$?Q#0ypW#Uc-}2;}(F(YOLY}y~98H{2 z#B3gL6p?D)<2Z_#J%QcR1Ind%^DG0(2pU-nD0?_W`wqg)s}onQ_KBM#{LjmO5-bXN z3g+WzUThu0yNP9X2-z>)6F!Q!%hD761C88qPnbIZpGzm<(GZ9U$?{OD==dVT&%!&x zPtdg3I)ZnJT6F}iTe=_o5O0>HAABE;+;Kmctq@l6AAIThLg;WX2_RZgW$O9CJI!d~ z1(lNS0|(%Zvh;xoXylIjz`Q}Y(!ZLomZ3-}j|}$}a{jDve0VoF2F;6YFbK{HdcSl} zI1+D{r6(lN$Q}2D?m<{^5H8?L2kG!0unWzHtp|vAT*Xe68VF>6bmcF`+heKxYtYCY zSAOYGs+`=D%4PbKE`w=!9K4(?CB<2A`G&70dm8QV%>3%UAZ=R)J%s?Xt_yu9zSuS0RJTz1`R z-IHTyq{^AJ>d!YrySQ~BcuuAtI;$pbJXyHagtM z-H@RELXfJ$=Oa_$;P_r)g8o34;Z?NHQkj%u+(U(kT#Q3@3>8WhDaB@Zi@@Pe$>`Tl z{~|I$mc`4=3@Jy(XNERHenw?fit-aGMC78(I*+eE!ZY>a-E?(a?EgSi(P?&EEPOV5 zulr>xYm)dEsSuG9AKOta7Qqpn{@8lBNGP@wo>DLKx7643x71Z3Rz@bo@_4y!2*3R& z!QON)dtOvGgsBx^4Q@i<4k{_kGAcym!Yo;rOO?y67Mt_%mNR>9;9RFNROnYl*%X;5 zOXF!_1lIx1Q*a{^!>$oph}uA9Qwnkh6(Vv$Ry2}#W1z&gl?uZJmNsJBt2y7h>boP8 zB`#ljWEW-ep^_-pO@Y@om?@e#LsVv^I1Uvea&cl?s>9nxVmsK^c!XoG*SP_-BEsTqCU{(ykerEbpLlDrLEf3K6+12i3<+Ikvu9%w^K>9#w2x z0scX~-S$(F336~_tdtY|brTXrVS*;cC#XzHG5(VZ;TMCj(jpgY#FU-@A+0!DIVcZMosesrsdxNnWswxm@!U)jgz#J;@>3xLh-P8@#m% z7gERS6sz?|*OyvTo&Od3rLNh`fy>`{%Z)2P4S8)6G#|1GJb(%zN6Q2b(ej0xh3g8# zum%mQ2L-skEI@!GA`@UyJne12nG9>F97@MtMTLl5hMDJP_Q4Fv?EhOMqkmR>n6=xC z_H(G5N!mA4AtI-J;WqJ*Nvs+DrO4=C)OcoOOc@GP4y6n^Dn#Tm%-aF;zW!9MkcUO& zYM!s!t0~~d$TXNAXOm9Rc(ZYEJ(WEvz_nC}$OV|Q#Q_%JithmW?~RQ9x$(T)bTjhr zrZOkVzmp0PIr;O~d7gVTyZ>X6@xK5PaO1JbW)l3E%Ab_rQ7VLA0>ZRI&Rj%wOMsA8 zJVC9o-I>dk?cHXc+E`CggX-Kbx1_GFEj7$q*t(JBjAa&>5wgCX&LP@3W0}>UGmKAp9w0293!vb5P|a*%EjMer&%)JSR7U6 z;^#xdt=MVS$)D#Tzp)ysuY>NOk|!hOHbGwdF0Sw1R)U4iGOYg>`c+@v6B(V;*~@FJ z(FAz1qw`n}&ttJUk1hRTl6&XEI*$$CjO}D~mExf{MMf!1C|pV#{wdyv(%HQsJiFIX zA!L-eMhF!25Ch@ERW8H9TMGGvjTE1aOo}D(JlJ3@$30XoWze{b3gMT7P#ekeN(?yy zgtTIq+7W4m2%w>?7$bpEU2{o&>j+*X&c_Py-g+ru()Csvm<$Wbz4aM6=re zk5oaVbN-GBA>CpOLC6)wq4I5HcGHF+*jep72(P0UpYV zF+woa`4*g!O7C_c_R6{48P!2`vEq6lAew32!nk_{mW;58KGwW8uCJwvAoF023Lzab zA`uo!^4%jXd@`u2aCc-XEb>gQ-LouwUTBcvPAZ2|hEGxtG}?-~K_`87yi({dz%$Y1N+Kf~)`;ImWlcuM zbEy!K6F-N)vB^F=y0B1%Rg6Mux8m=6BBOq8e3(7&$sB$JnobO`rZw`*ROTf4MJj|f z`Q&AbsTT|tVmk}5wPls{nNY|O8d_uqkX!dy-&2NJMmAbbV(=vAr->UIH44k)vOpw1PEzGMCp3^wrVaH+wNQf znYyCRE~kAZs$4xIUW8T?rFyGc^qK-qhpaRYq(Vea`P?1D@VX$6bD2sxwsipB1W@8! zPh`Z;iD|C)V zMrXH3?ZTyX65kb`#CK95q$9tB3L!JQkTS~5P99DN*OxwEi6=H(fC)KV030g}#5S+r zpm@Q9k$J(A#!3j-01L=4HwPOa?Ibd$Ge!?k^^imBeh$&Tq1DYM4zX<`>)`&xVTIKv zBV*Mqn~Njt(#BzZa6J*8#>c4;a&Y~W3LyuV5VHk?ivS_55NnnM2+74{>MVp=0ZY-_ z+k8a1Q46Uvg2Nta$&A2wM7dG*jC}{zp_FE7Y@<#dT8F-ZJV3RkcEa@u}-ba zFh8CuW-J64q_QV-VLufjaslQt0qSR5OqZNo6B+;WIREvdE`fKOyq(IOr2k4PMCA03 z^?}(Pk+E<0f!Xa;<|O$aqeA$}C**xuI*2qwfRI)kLhXoKIy^G5t@koafur^VnVfGG z<$qe^P_?BnpDg$CtKWNJ#iU1E0uQI_MUzUxGi+f0hRUV%t6y=5z``LgRZ(Vfx!8mW zYu+?^+34!5;ngQI)6>3+OEA!=$e*vl#MQTet55?6*>uETQw%Th&JjYN;`Ih023$N(Wcp|6p#Ywn?V)Uxoq>?jG zEoDZtx}x4kSu{nJE@|ra;*GLY_XsqyYn+U_YdA#UXeJzvXzm8^#g~X-J$o{*SC$d_ zz!F>~stxEQnh)Cn9cwnAc~>;qFTxvRDf@+Jeq%>zlNs8 zR{fPt)vxzRU!S@fZ;_=7T!BUoZ~;QeCaXS?T?h~|{=7`BRHPN6QVC_nFTz*>%T_-< zkWzaRf-C>ba4KwYl;L1w-gj30r|2|hK#$H6x7&nwGgGUumq{!{j!j7)-foaI4iJi+$8 z*if^|0Wf}Pdi~ABBwGUi4Y*96=S4w>YU?{Mke>|>Kba*{k|4eMqef~x^HJ!3`~7Q zzC_hky2jtB5Z0oQ>#J2wRWa9FheoE(Va?TPQhzN6n?lYe4&e}ivx&gkmO3DK`IYML z_Z0=}BV$*TU(llNEy4ZLdf_hL>!OtZ_cKXBD=7roGHiH7nbm$vNAs} zN2dGS_)w#1{+%UjTB|&YRPtq<8>T`?7l}gJB%j3X250!k?C05L+S6b|hjL`XBLdB8~Yh3fuSB0l_ z3l&1fhO?;JDz=-!tkPRM3p>N!7VjTJ|WCWWMI3<;orK$&IP<=+Av42B<6!j zA*HI6SMx)w*TTdli4!E^c z2q}B(GPy!{7rWaCrq&g89+ZuY?WycRKet7V>Om?`lIngcMC4RYS(kxTDR@Rv@#||M zW4bGzt~aO={dOu#lISa`5E{`B?{0il;?|b#wQ{egKKBok$G-tySRwYvb)IvTt0{_+2QfjZXB>Nd4FjdW73ZK-RJvn91PpJ$YyAjC9x&@J|U;3R$$lPwaz3;7!#~x$SBqx90Dp6J_KWcIs_X;&pT7h@&z_L|GXEbB!cS0+(N~uu z`zZXK%iRplUG^*RH|=F*f#`eANtNV~QQd=bcrd~`Z;a0aK z|0{*DU$I{Nn*DeRerU8ExSr8HYR6diM-1m__~A0Ouv1LUZTJs+tbUJ(f{c{;jek*c zaw%BbOfsie82K~n#9vHgOl7x%50(nmd_Rhjzez@xcZ!jjjgEtVWCruxMI;;SyZA;$ z!ibvV`F*FDggJu4|C8B`zlYFNF2fti{I9zke?5@8M4@xiH-XM6?8j90qnrJh0Y5ZX zlciVzwlOgtHyhwwk9$Q&_}x;I4hK($CfVhQ&0fDfasl1 zL%y*JOJb14WS5U`OP582t*zi`p?=USmE)hF%KzEJ7RXX=9N&^X0<2^t$XLv}xP?dL zEm;v}g>YMVC$>ZwPn8a^H|vt=T&i4lAj!cYPVZlMI&kv1>%i*TY>}D4XvlvR_$)Cu zTAR`MJN`NFXl+^jFT|n!9(H6g$vVoeV`jeTG?Hz06Yu1f>}L1Rv-qFh@rh84Fv(-{ zMEFwX(TNZlf(}UsE)kFyTc*P8z{BunihtghgxyAULtt8T-O>Nq7X?PY# zs1S16v4=yn-h~(Ka4OXzyXM;UD&u{Dw?XSIaA*Vhi{tPrM778+yLJr-zB2GuDvfdi z_+CL{P>5)~KTm}R`{2;d@NlN0xbv4IV{{sOF0tOE=FMLW&*A5(5Yn4JD`aT(w-l4l z-vKAKd~bdJCNid{#P^heXwwyZzoK#^UG*1Ki0ElH-P1SaTTz9GDe=H7`VNFfLuR=B zsStjeiB*dzS4CVRKu9ab$PmZ6ftp6BLo=s*S?r`LS!y*2w#AOr$@z; z6#T0h_6%uYm^+rLsvLhuQ6a1)A=jM?*p5RcUoBM2{2Jy#!}-+LL?*^UzV{%Sha1=` zPQ7_8*<3)SP^z$#LyU(4^!1SuIx(Ky{cP&t!M`)(?PpLRk*kUOSg=nx>J6(Xk)Afy#y21$UBR-8|*gxpnu z*R=Ptg(+ub@+rP`^R`iT?U=~$zif?92i)D(S8r08+8Wjbeol2w>D`ZUi1vi!9PBU! z-`zHk&)JhOnv-<`d>>3r{5G~Kb(5I9$8A4=z}1-M8wCCUv?=P;R(US|soUS9cS#RX zFQG-OS>F8fcQmrgmmIBsXyA6a1?23-Yev!em%Y(=`rIPyhWBV%`upU6 z0F1${fNS#KkEX;{{eH{M*1t*e$Rg<-xbUf<;Le_Z}DbQ0&-! zKA4xlZ{ubu?vRuGEv7=q@v?wJ1cq#KB{X-#K6sFreb?Zw82Nqp3~0CoK5QU;9(+n7 z+OF?WvbJ6F9=!|B8}L(&r%}n1{GTGoYv11F;*IWQOIu6*4!iKPL9XJ^eUWi{P`rNZ zr{G%PF3iD~D;mSe@C;u>g^(V8p%AIn%b|-l752v117i&dVi&-n!m|2=?Asz!Vo`jk zus6Y87i%bxV5b@lp8jSkiPF94 zh!Z6-0YX~wJhd=)r$8H;-J;X_N^#O!wt}M`9X$HGEh!Fbi|gfgubklU1*5Uw+Uo@q zLYC)8aELZeZ@Ra@HxKZ*GiOvuKHFPEXm%~&s8gKj@jP!d!Fkm~;MVXwoxVG6)u^5Rp?ogFAI>6O=cwJfVKI`<}@7 zo*Cy{Cx+_HYAOCkDr1uL>!}ctlOAuBwJ?!Si-jro0}64j4E$e-GoOo0i9=VaLb;G_id>{*Z zX=-usY-@ZhU^C5;jVg)Gu$lG;DxcD~{*OZtN(9QnT=QM|1)KB5Tq^CHSA@@^oCf#G z@Luo;HnF+!QXbBj3lO-v%D8r&-5+oifoey1_Ee;bJptX)0{JYwVV0XK(>ZdW$gQkO znoGRg%tcTA#VX$p+Ua07u8h&tJ{3=@@c}+v?c*?NH+rZih?DUaTFQO`8rh{!M(ks$ z5HfEF=L?lLrgAF+-L&-ngZ3!`l_gAzng^gIny`(L>5Dxd2(R(K?J9*WX<3oT{eg+|sw(Zy5<8H$AS{d0w)8Q`bu zojsYfAq3q9l!PpTZbh?dTLi%>Fi@ZW1#v%P;Yp( zkBCg|;Hsxt5A{&A25+HdC|ZR^)983TEGDjW< zp=F_0&YsMrF;7z=WQY-t_Rke!rh`vz zW{-vHrAyBbLdTfH0V0}tllK#7b*aYF8!gDJ#@l1*fh#%kI0!O}6hRxK(Kkzab$D&h z!*gjFWrF9#Qrkwy^f0p>Z+MxP6>`n`B!Eu+y% zfi+Kn>WyCNq3LeCm6r0~iAL5!(BWs~)4i!R%CgFttT%n0g&dyKes)l{^3xJW3(P$@{RNH72JUR39Mhif%!rNo% zfm=B8I0!&&awaJViaBozukF9$xwI^Yf+uH&j_G0M4S2&WMc#)-*1}Ac3L(RcaJ4AI zOv{he&*h(|I!U>V;>&^e0WBe8&1cZe+QyoI9S^Nfx+{JfZ%MHIO>XO8hAlO~uoo;- z^>-J|zrr8+lXf3uK$7$@xTJ~cd`>}!jIFtR@%zm8Bew+(Gye~%bH5kGJ>w@|o_+ehi)% zmJ*1s#baQ#R=HJnMunvwj@){vaN z3~&?@Ym4IjqWy$RcA}nowQ2l2!n1o76+%|7Z{rZH{5F~2)Ocu}es)XaMmP7w&WE}M zjvmK$RExzzNqzY7Q(#C79N(bH%6MH1c4=ch#U`M3lPb!38 zAVPeUAyy1R0)(`}p?1U#vA4H3#M(Rr_jGF<4pa0fvBEG3dWy=j^tdNEL>mL{3i04! zZ1uKkd8l{W_BFAcrOe(jr0_iF-iLC zs1SbA35!^A9ZV!10)(_8qM7@&P-bRAVW zDgHH7h{$Q5wGE#4D)hr{foY}cp2&Eg9fv(k-f-~B)Lm58B=L7pAtEP!>ACPSbt;z| zfkP-z48hyfuv%D8{Hpi=Br+8ai4VJ0B>EdxG_t;7Ec}qlro&)> zxjW>sU;V%L|Nh=s$`e^0n>mZPi>Zw%xg;3hUbn(Wga5^mHIPmrIn~Mm0x0 zh02z6)RU+Xe!>Y=jx3bKa3MfQDfWWhLws3#kHF5}=)Un9yP$rG&^yijkJdO;&3MYpZ8_OE zzo_hE8uo=hKy?!7XaCM2+L!@nu6NR~>IN%sG5(0HGF~5Q4ZYdB0Y@RPHY?s=Z#N;@ z)kf`u;n{qE3L(eK{T!m@d2ueRAGjx5glGE~aGr*CTXD`tr+yynzt`JNaNlNaYxF-w zDlT?Vv>7TPXKLAG`^01J@}*{#HTY{5RnToYYP9vS(w z<9WB?VB)t@S(C({LxqT(_(Qg(N|g+3Bc7Yt2P-L!+QuY9H8L5N#f!p>#4s}>QU7!z zSd?lx^Crt09@+B$1n+g#*<#QU>FPeG(d1SoLjW<3DFO5eRD?a=AoI zrU?+ziuX~cFz#~6_3d3Qnd*M46g#h|WU-T4<5o5K*&<{uI8fLJk4xkSd)<#`;FHi% zWtwkTBRL){2|2SlhC{S*jbzD2IO|eBs^=b*l7vBwgzErryiO9S$~TAeHr}6z~33WaQ3@S6RC-^RBn6vH6SeZ2pW2 zA-()3LXcJ;C!H#2-vh3tFn-|AqKn*uao(gx_Wsar$a3W6R*_98RAsFz1`q*4Nl3jtak$PPR=mEO8TiD7#qBY6@W zflC(*n{*W_KQi-PLWPK&;z{TARr8gq!tpJUaXdL*70qdW{B9~klH^e;gr8(WfR{N! z#3BNOv|@}LLAcD1e`vK-u3Oa4_{K7MV}kfvWF7z?{)n4i64he;z%L|=;PmhiRaNO2 z4^kl_mt^(1g_6U*{(*~@V6SS^NU;E`4dqNZc1~fi9Hh=Ok*TvLJ`4sW;42_*P-3WI zP$CBgH5KYGFtLXqpMx%I(QEyiGx2<~xl)C&V=J|0zZJwS`ks*+P!ngiJg(jr{Hc4 zRr{|-rv3Cd+x6+IH>%10UsTPc>|dfn_z5RyCS@1Rg*7(vG7r83?jfS1u7pYDm{ptk{(Z(Wf%2qg9#qa*{^11Bit*M7+0FJ_1 ztt(!?hgHvnOW?Od7Qu_D5OPE;;1Gd3vgAp~@(tpmp^YB$?SmW$-9F8>s_PS+u%2|&))?c)ia&d$oIvsVgCyL)XS^RMd|3h4SyoKL;yd`@hLuMU=aLl_sH&#Ee z8Y^c8^QlU;q)vAQ3z)oNyqh;v)~#w^6fSo} zJe3D;t4B1pcO2}0dSH7uH!PI1jZz^ZbT$zQ7O$(qwQ|F79hbO_zHy*lEyceD9f&5^ z928G;3*aIyVL>AR81`zuPUTUK`>#?V{8C^%)eT^>E*F`O03of2stP%1J*-d<=Ep2Q zUX08o4u%gKnF)4v#|uMHhOSpVveE>Ytms279(hzC`Szd^QMu3o3 zi1LB}A*~QgRRjoW#q*C7(~rCOxO+0pe1p~#0`m!Z1!pqs>kq>GLUHo1wZ_S7OW^EX zxfi|`$(4KALIVG%9@x0&Eh>v>hNZ`csE#Rp`#}y7NM|dTXS}mpWerFq?m2MEB1LLj;Z|!jUG=`kO)jdDXn1F`ox4ega!OYaXxwAaJFxtp}`(YvZ>^?~(2UbMY2g z`oJtSa)1vIqPN7R!JDIM*FVO@d6TtTd|J$mEn0* zmyii#JBJ8N7}?f7Q+nSw_$EQ^WMiImyY0!G?%(vJ%9Z4hlVdN9j@FJx{>S1`;nHaB z4CH@UuJ$Ee3&hKk@NtsUcwjYqDNqLwM`kZ`|NK|}r}u5dFF<#eCsj&%#*Tm6?aOFsw7maCG-Jl_oBagfDC*Qs^5p$`^zrni z9tV2#Uh1{L=kZor)&ieJBWtz5JshHa_2AM0_<$yv+5^X$*_}+y9OU<48gA@r4)P3| zAX^7H!_q;TbXWJ3r}5@mddgF11(Td509#qb;^%)x{fZ@8uR%ta%I^`0B|o3P&m_J55dCD|EgHO_gc^UUTG z&||FJ$Qy@zF0~mtA2JMWMDu4GhF;xDm-3RJyVp8=CoJ9TbTo2U_X_P*v)Q7Cry%h8 z%%1Q*Q$~|w>odn&`i!rOxz|crW>PG*Px* zau&@?Ox@N!=Y4pyEj{NJG;+s1XRcUK42~w>4eux4LepaFCns9^iPlNoE5435($Xuw zibf9b3c})wT%QrMa{`21G`)#h$JZB4+q*t9b#1xqz$LK$-Q=0S!q!wqcdRWlF6E_U zqspw_u;$VYhTw{Q*D>UpOBaV24{I*d;Kic!?j$^6{gDL2`A(L@;)%N_za ziYT>Zo&X}1>uK~wj}u4WZLy3KYtYDAoLI#n+P9!Gzd=;8P)erqBQP`e$)5z1Le5|= zLK9;v|C%x6m%Y**;X=GsmX2^f8oA?+P#^vI5ug0E@bX`cro&eL=A%D9qKke7-WE&I z--1T&xafz7(ckavNy5V>B_~};!o>u`DR{6sKj`y=&xZGdd(aHo`oYo7!hpGZx@+8p zH_y^F?m#1V+%@L7u91PO70avw^SQ%Q;oad$G%L35u&Sv$G`gg_z!P|rEM4GnG;+sX zV4iRRC+7?&Gx=mLQ?B@&VD6KlOM_Vefh(bHonUn{C-8PkcZ2D8qb%KEDjK=tZZO?- zgG=DPRiFN+hu8m9G$FS7FK?

y0k_$#`olg+Bp}+;QP&xWey)f$tCh!{L?Bq8YJO zennH|d3SW_2l3`uO5cx0?zr^sm>)>x%Kjs_w}e;z-DpB=m2W!cd2e*#NAcEJ3jZ!N za>s=~NR0Wx6x^Fqf~;SxR+4*CxlF$=@_#kF7yK8R9a}HxX*T}#uIVoECA?{tF7X94 za>rd_sp1lF{3h5do(u04e?${x>lH^?c!kHf%nS{ZP9p8^hX!}V7xt+;x9rYcU=5~h4>H)a&VVhvYdInQ#NLb zE#V#EY&1Q#F`>6vOfd9KcZyAT+bo@80~)#GPT?*ZW#HKccr+7UjP(VDH-z_veP~u} zeWB^1k?fN00#&?8mM&02BX`^d+_(Twu;iUwvY6`choxj59(=y=k?_9oAv8UsO^1C88q;g^V7fKyd&niH-L?*~_)`LXqbBb(I* zrq1bZ@fN&smTvJzG;+t?!YvWu$|Zj?xF@_D+=b@D)(x7Lh^#ZZ?04Xev6TIGG;+sf zUn!yi9PciaDo%g0>kpmosa2j16XctGH2@vu?`y}eA8uvi^j`kjCpSuAT#;U`yB5be4>Q_;CFC19$ z6m}Y9bj;dnf1w+^EUuCuPUuAHVe9C2R;7UAk>*Hz>Z_az)+JREWFN~iM4{(}D) z(*`u_ZXe|V_cPEm8HLLp1vrW%HScu8AYhN%B|UtchBwJFe4K(t*22e09HM>a+!w%e zRBgy_u+V2J>uqot0_X3(3TQ@kyQ*RpGz|cS4CvtfEEPWz_M((&z%;C2y zz+I7*QYy{9GV;wsZw>Dc??tm>>kr-)YLh?s`=iFa>sq4dmvXR!XbEg zMAhd7-wf{sUqka@>jmD=UyNSR=#{SjLwKt!^?wkJ+;RP+&6Kf-Gxp98!Q-T|IR z6JqNCuNWgOc)F!~z_WO>EIr^4XylH2z>Gq%k{M31J4iLCH+SUaQ zAHxN_{nC9PhPTVo2bQ9dJMIJXV8Nm6B;82L&$;87%re5m)@p`rX)T_B&1y7G?H0y-vMpaZM&`T3Hb@EK)vAbrZQr`4op}&myIGns4)-k(i`;T@JPj zl-r@Z{|8%i8adAX9eSn^SewTxMtCUAl{k^+ZM!4qQT8w)zZt&^48WDFE`(%t5*0#@ zoC7#SD_06R{mbFCl7Y-%wZsl1#moy6YA#8?rBs-j^@ zf<1DO088NY8L%Y5mZl7Qh(}O)mC~%CLPRJ{{jp9qG?cNhozw4qEW-O(XE%G~GP$>u zD#G2~%71sED;s~DbKc491@M!1d4GHC=QwK<*?%>fGCsdqo03cA2dnUQ>L?3Km&Vv7 z-Iwv7du+&RiES%Y^ZrOGdWOj@wxfJ8ALXpG3748g(KSFD>RYMKApPkaDnz9I zoIdq7uS6!8$nQwy*01j9OU|q{@;x4J=uOhqWR9%oKW!&%GB6;2X5#{RSK$q zv)?JV;4Mu(M=Xg8hGd#3C;A&UXbyA*HYwNeNH6AWi z`2Tri{LhUy&T%weEY+t#k5QSECwBU zMet+r##yeT9LbRh8n^sKuO%7}JxTbYJX1*~eM{|WusP&$j9qv_r)2W*F>@X+hqQ{?zqpybf4J+AM93= z;_rRla({Slxev{et+$+t_7-nXbwBwG-cn0H`7|22<9>2zb3fS#FU9zL<$uHb%73GI zvh|gp+{upD|0d^+o^ zhU5PmI_t#%0ylfG^-b^Pi^i(R(sq*==$0>^mEXGII8KRElGG<)j0s(mB>dN3+v znY$NFjqQLxcC2JnAMib%4(eV}!5e7l6_=oq1H6KeJY@b6A&3Cc!Td8FoO2r-irffq zFZy!OUEy8w4zw<|E_uY*F6rr(mWOV~8)oT>ALGb@d8mD1XR)Ge5C3L>J(1|kMURJ9 z`KNd?Epw6SJu+q8&Fj3fi+bq!5#B^gy?=m4)&k9m}8C0K)-61cu9H?mf6h`{jH(r2Xkw!zG8C8y+EQq7bc_VKt%@21w!n>_(= z)D{1k@uJeM9#S@hC-V#{gd8uYafnuC70&w99S(mdBz9g=@#o#p9Ii|?`m=%XX>oWZ zkv&b4s1|jyhp0?R&vmE}k&``ZQ(*ed zT@xUr70aj{aVxUrq|@z$RT!SQX7I6WKG@#@Bq7)Nu6 zz|uPV@b1Pd_wI35_mmAkHgx+p;9%8FOD9aYY;<+@*h42wxOg;sy!hip@yE&Hk5j}S zpJu;*CN!D78~*9y(bZdOF=N+z-MTCZb=ei8fxiV`NhSMISXT|1ZFQ{Y`%{D*u{Q0 z?8hMck%1ph_Ve&-XT1#nm%ShUsiwMe_6zWLS7*NnKd;I@!2kJ6@bl~m*)Q||@gV#J zMf(6LmHiR?k8BS9QJhLY`!Ieiy>?>nP+{2Vg=#MElzR6TO1pa*Z|wg$i46k19qK8S zE2H9@kgW`{4|C4dEf;0J5k4F$-}HvD0#*RN(B6nNWBmx6-^-+9aIynVuP8C;?a-AL z%$90#tpB$_G6HgBce zj%M9;V|kMBV`#3-)7+Z@M_pGq%(HH-3fQCcNv}yijJL^h3G;(!WS1~mM!cU2Aw!37 zu27-lO<}Bn(DB7d5LaK?9N@%3-c2rMW}o3^!x&`4*m{-?y%Yaupf|0E9@eQ?@l?~7 zm{fXY1bK=>1acg_d`Kqw5RK$m6`rsdWPHPA{|e*X|JM@6vww$PDrCY-=Jm=a0a_PN$RE~xG4!({t}L#7y?r?an7MKE1iEc6(VwR4pJhLkS141r*gRwMU+xxq8zM7 zBOyuM1Wk+rl}RZ^jtb!ygHRsG3PZ$00)({U0N#<7Z@0u0mw-W9j_u7

e+DNVgU zGRIi1ItC2Ua>6wvFj4(Ks-*O~zvd(Vfb^jRvU)UsxVC~I~)rQrmcmpG$?1!DkkSXnAg$E=Xriym|cwh4WJ) z<9tS)bC@h;;D!#3@{_21$%t?~6~a$BA!W#{BL)!xLR#?$F%DZji8yGxGw8rda*9tO zSODWEovN@*u6V)j$h_d-c*$b|KcbLeC!V+onoA5(^^`8*P$420V>;)5$L>tA2!UPU z|DBQXKO@ePN1|MBRipeJRK6tTS5YDSloN)K9EGAfAV5efzDrH0ZtZtidlw()uvrFd zr9yqOVP9&v2u~g=UiDCGyvleB9Gh40rs0Ynw`rwE@lMC$@FXq3e97)K`EH_|?VE{?@or?GTn*df`A;uFMWT^zeV` z+0$rK37LjGlcKtX^sLu$h`>D4%J`Rq+X&aZX_OuLQ8(QAVW}zUBII}fg&J3)nRbVt z+#Y``nk4h~co}dML23tkw#OTy^@x7xVc<=8J1n=v{}qkwk|f9F8>kR6ItWh+6&+q1 z#tK-G{8D?X(#h+cJsEZa%e%Dm5cHuH8{r2TRwDb|_7pcX#Dxc`Jj%H60EY;S3&DHe z)cSL}Ad_8y3m+USls?rOO0$mwjzV2+MqE(JF1ux|YPtK#@Jv2Ig^;83aSqYSSjkln)YJ&nx`F;)MB{ct!?X62z>=^vD-|Mg zL1wyRfM0m(UpYA+J)oxqTR97y@txGRQK&1qK%bFH#^x- z&r(WZaz|^J&E5()3UjsTacDHrXjF^Gw}u0;y+L!{1g*P z1X*Q>7)5}PR$NK#h?{|qAXORU^CMHYvPTOuuZR0ll@QtU$CeD(+Dg7u22YVx;3nK0 zUoETuj~@Q6plDi&qK4|?a4;w2^kFrJAmkqkx6RkgCa&#I4J&lN3Qe~=2<3X&7BofX z^|Dg|N0Fnpl&_Z=Wb5Jm(89slcuOo-%r;r*(cHp0Yb)~4ZI_P@u&4Q#DUEHE>Jvg#-Bn*ooN7p ztFvr9?~taRcY*G7Q}Cu(I^BUBIk1Wd6tU$+1WzItG*YfFiJTZ-&g1YLT2>LwlZfn- zuItfwn=EzhMI&p$v~Wq`M2RKt5LlBa>>JBO~~Q=6*MQd!#OyYsD08s;LCWMEIr_hXylH2z*NDOHX-?Q zcDKm-Jd}t2k1^H0Avjz(h32hgA)>{A-3;OYKWd^LkFG1 z0V10DNV6IO`k}epYP=WcZ&6M~A1Gr**f#l>l8Vr+-Fcn8X~V`}J_?hB{j4YTxxlhDW= z_k~#=$|_FLw@y_E?*=(EC$?@7Tw|(z(mf!9x5?522GGa>9zZA*WUV2R4gsQrwZ;KE z&Rnll86OGndmlopVe5NK0<#h8hE`wPhBw60;cn%~ z0^TG`{hvo8cU=E2PL{S%am1fPE58OHqM1?zPZecnv{1eZZ;qwvaWry(>V(8EYX^}~ z2oV0-fdC<`5U0Zl5Ymd3)U#~N3it~CYwdkgVtNs-8mv~F3CaGm3Dmku&H%i(1^0lvFN{=tZaud3!mVqw;mx#SDqTqyQ>D~kDODVD z5ijA0Dsr;YO z+}J8FZrU;TLs$P#csnfB|2-NxKz&&t*p9H;w7zOC2j7XXAfn_GJXTgZW1iZh70>fx zW7nj%UdXkqzgo;?((tXsge1S0dqOgk?|1f1NT!Ft#ntlTL@*KO(nfzYmmhh!Y}8bC zu)ptVSSgGYHr7p4a#_9n$jZ!h9A{R(Y-Z~rS(&1a7UG~^2Wt7r^h264;mbX*Ma$(5 zE}45?ji%11c=k-dQDmwu=eeg@Z}d2H9^M+uIJ6y&ti_?NR0uZkMTsT6EL8aE4Pyn& zb^6*He&(>z?etGb4p(!P4E&K&Ujx1cy3>k?v(_}>X&P~aVZttMmg2sKDD!SA^D@ee za)`j`O#A9uR~FfOUu3x-EsGXe?nBdMjw~Mq97USid>&ae{ag!VTKEj!0?TOfX*9AH zO+H11kkLeVQ>bY2t}s?WH2GG0qsioaArBWO6qMbg7oiWW2q9;fLP*(3mC{3SvzV!J zY5dEcx?PH+8e+%`RK8^ld7eWA#*j9C_|oO}+7~;P{ROLs7CV*zgm)o$?1Ii5JEj4S zB1x@V#17Yuw2-kF->_xKSb#>>LdIMU(Y_=h-Vdt#wom1Az!==9(^TG!ro>j|Ii7Wo z`q0$0-iUABQtNeS1@i^k?g&sj3#W!vlLB5AZ)*{Gvs1P!O2xkfvK|UGA3Yb(ZXzx{^3*aovgd`i# zutEy|56h$49pwl86-ITTVrb<91hul#|hn8THMs0USl0+9DoO44u$J%L#ZREJMq&Xk;z497TnYp+)#q zsL(Pyj1>@Cj%x2ok4bPJ?Qm+JvRrW~bOASUGP+vLxZ>GZk!ZeL;hLp*sv(YyP}!Do zWDkc3j3aGat(YP@?Ta0^qSer1$9vH%83oP018@{YYSVb^aK&=lmCKtqyN8X2e!waWcniy`C5z!nbaz^n+;Rjw?M!PV|nrQ&};BL^r>$m6mU5NUw`A=fF&)Q-686gRhbouZ5F zTTFlhj_Uh*C%%A1%db9_b~goc}fm4R0YR@$suPKM{|hrP!&wA zciUGNycVsCmNQ9P|Mf zpNy_n+Z4J!s9UF`B13ubM=I-b(cpI+Vmy=wU2d;^S!3bfu&QX)!90M#RZ&J^vj+f< zB8hv%p)Qx(uv|8njc?d8aLhm>Yk^}LhiG4M;2v=>tGphJ!Hqpl<+W%^Y*qFiaR}7< zU+~RaYW+$ya>upy9C0w~eMxw|^JrRZ_4Xfe2-JKx-ULg{htS9YniI0REDS_)AVA2% z;J4Hi>_|zZo9G^_!hoh%W&~^G_n>hzRDrmR}Oe~5j2e_ z{5^Cv@DDU2wi^3)5ll+|4d1$@(tklCcU)=TE`p|ZBD~tK0Ekvp`1*)8?IM^IKMZey zrQ(O8kpmPbBSjugs-ej; z3Y&cc;3&e>#3WKNU#}3Z#y4*nMXo?2Yf>{ZnXiY_%6R83uGj*Z)bpA(r|-fkqC{ zpOE@x^&k=m0YX*}X=+E@>fzw_E+iZX7wM*VD@DWV7qP+0=xw!);rAD~ZAyMJ6b>uF zUR+V_x{fRyR&a>%P&iEHdic`E*=R-F9?F7Y6PhHWsM!+$M-ikpRh(w#Qn}5_rGyRm zW-SB88E9lJV4TJw+E*w{7dh6X@IEjlWPwmc6Jo2d_yopdyq*|J_{J@DE})S+uJde} zPfc2XD7@CUp-HjTdLAFmz7FVm--N=ZJ3YT%bt+GREHa}E($ z4YV&|%=UHOR~AhE2UZk!sK~NlB0%73C!?;}XMr+BnVJYBz7FVtWIwzCmVx9Ysw2oD z{C6sZ3?#yrLIsk?!dL+xIDN3afn<(*t&@AD9Pi^lZ&YkGMWf)3KdOG4PymFlhfK8O{SNeVkMJ<+Z^D|IQ5>m zk3dgaQIni%s!4{OO3D;S*x&cKHVKmyPc;OQ4^au1LF6_LF%E*r3~$eU0puHKIkW)s zFq$fJ0Qn5yD6+VhU3;z9OOdbOTel1zUq&Nq!Q+cm2pK$t7ljHQw}!C-g2%e{err9A zXN-JdIOE$Fo%&L1LWglWBQ^s}!9)BTQHQuzDQ;?r9+SaRT!HSoj*K1?IYeOeXyf;3lqDKO)h!#Cwfu_nFJr)CwB8z(mjK_FAcpQdr+%k9^ibmFg$8rwQzIp3hu~z6I z%%}Eiz#v@e*3`ZLO^dDC;#jTL1zq!b~m-@ z#;1p%L%67AbiLX-(}bhx$_1FlZ+vq48-^(v%1}5wNM&CZ4i9jMz`~(@`GiU1>%T9d zJdKt{ODIpF2{WpjeH3sMacbfVPQ4F$RCy9_gJo2C0*$OimB*X%y+MK+kCi1+#i(+tG>?|ZmuimMvp$VxCb@QI00}JJ!)ONCgDQ4t;)sD4fs|qgT)zWWGz^n#v$65BDzJr zZqRohSc1#in!Z&uAGZ3=om1oIGhC%5Mg;)AEG$*!7i;Fu{ z`*pQ%#kX&%_IuID0csPnw=4ieDj-0}X~i;XN8D+}=Jsx2bPp7UQ^PQ`(DpBW4IRM+ zCZn&JFQaa{e<4h=+rIcEm2NqY_&J9N%>V6664N~$_f-Lt;bLi=7+RK?2oShR$*5=c zS)fa;0>lA4kMVlo*bm>hW#D*;>Hu=c{+$XT1BdXTP=VvIFjm0K;aBb5ykMUd>j$wm zqW#q9Wac#p`>SGwVTzX;<__!7PU#LR89Pqr5P`9yjdO>obv=BMBZF2%iyQ-Jo{XYq z&jTDq6ZcxUy5)M&-9$XdN|F^6bhdT_6WtFz_P`6jR?WQMo_&55nf-fQ9N z_Ume2hi~6f?Q77;9ar0PEnJ;3pW+XOSNs7qFSd&NuZ64kL0A2LybYGB--kvHP@Rz1 zWoaN%1OY-8D5p|8;?60~Zf|L@$bI03?HL3=P_h4h*nnm9J@a>5O}8t=YboqkFi%vx zOcg;^3omkrz-pm=sbry%0$+Sti55t!9995CE9M-t0Y|MI#BQju8+wRYhBw19#4JH0 zYawPa6+(s>;a8zT%nMZSc0wcI!3?qs84psamLcN- z4lxcw#q*6%a6vZ|~`dX)NKh<5sEsh!QbY@86n;fv+-zMcg38Jq^p7E5S%y@$Gtz z3>hmp#5f2U-Ll`lm~l2*3N2=ALK9_<87BaaB1%nE8Paw=Xl%f@Z5cGqKqG5G<1{LS z3>w0NLIsUwVXT0l@tgLpeoU+8GjJ_F1dW_}+uhrtAFU`ePBN7l@LZ$mKo$ITkFbZE zqj;wwWL!z5T850ba)`i?(Z(H-ZrO2P%(xw`gcdVChGxnfGj0YPMHM$@NZa+8@nL-1 zmNDalXk;yByq`m~Zz*ezIGrT<@@f53um?BlG_8MxX2n)(aV@I92fE@vz*}Ic_#B@_eewaJRi6kDxbn$X^~Js~Ib<(%<@du|VX6E}tx}$l++}?r(gguR?vA{P z+7V_2)CW(t_d?vs)x3VG-A1&(8l9~LkLJ{^Q<9RQR9J_0OgC`IQsHzCF&;{VF1Odd z+>t@6qUDYOG)+cfv*!VhB8mHGPF*gyVR`&Ijc?d8aO^@OYboPm4$;0M!F@Extny7@ zOvno11~etMDtjNz3Do*JeDjuCUxP;OxYnLWbIf`_7+&uO(6rdVACWHP#0E&R7w+%zTs7)pYd zseH?l;6)BG9!i2qtjoT7U?o})cVx&L?N$IpD`pk50Y}lp{T7Q0<+dt|fo1qsErZ1p zG_n>f7ITR96$9?KSO$H!gC!v=fvsphj6*i7>+Ag%%dGM___i%o-i$`>xXPYyu?$LI z9$x87(VW;S?f(|bto8`LeM`0XppgUACS-3}0EkpTfRF{i3)F<<766OeyK^wPZg8K_&Qq#Z*U@Hwjc$THww4ly3efG)S!zDnSiXjR-HA}fKPqiHe< zoBbBxD3Z7<19iFFhGjAE7`|c4!0}@=vKBZVupytPGg-er0&QPejvVJF5LF1A&?!hd04e^P|zo0h$xCx-1Mt zav(s+!r*RdpmGa?-?w*VU|A+#c1rLqMJ8Vkv6E8o$p0C1 z0k=+Kbh+A@rV!)31IiR?y#JnEbfVaJ`O z@fv_=#e789*!!S&kkYI0ty?M`MtulD(9R%}PK|3U8{#dqK>uvB~- z8aY65LN=ELfk+Dk2ss(~J~c?WlaW|^3xavWsiJQV;_Oqtj(88+agAPQe%8C`3_B@Y=YgBz({BrAjKIYeM((7x0$SL?p7M)(|B7%hL?i{{IyZT7=}qi9nT>l<1Z z^f|`ecoQr`%AIIrEu?&s3L!&^@TX8A<=QY-z#QYM_HKN*6K3Q3hA+1K4SLp!smEES zsYlb;5-<<8h%tYmsv%>{a~xtE#F&EvY4F9GrIWEjX|d)YfM`Xn+66djtU09F$_6Ov znj)tt3-P8{#+-R*WG&{*rb5V=Bm65=%=shL%iS_&XM1DLl=9wGF}2SrE2YatKxHe! z%Vtw}@vdBqxw6qPPw`ws1#=-)eHmTO=MaI>rHyMFQ|sOKMU%_Xx@ghlQZ!HI%4Ij; zD4Mvp*wro9gU1NIWy|2P2aT)+k1~g7UyHDgKl2ivJMJi>>1RTkPt6&{h9F-Udt6zl%l=P@Rz7 zWq}}41OY;>bL^mY#4QjWZ|~&~2f$QRsSOrQ!Nw+|o7Ijr)do$c9?TLY$D%~SCJ07I%dfa$7zHQ66F^Wdk;>No;MEmlAd&h(1%cu3%!5-Ym)3p97niX5Ey>~pw z9_Why7v2I(#lM6`?zrNfJ02uwKGpvcUiIhD%-E{#zvDsnLRbEecq=TG{~a1RKzTxf zmoWb% zTZP3FiXP+jS>h@9#w~R|360!wooCBCAWd2q!fTyFlVYp&JU*Iz9nkg8;0>_UdjO3b zpf@3l%R)dT1OkLC1fHg*CAScm(%wQ~0qhX@PEKdiz5_^~Kzpvy?P}{On~dJG)7&y8 z4H@c!|D<}7tP4KEAp+}y_N9*bppKsaUy<+#S{yBfd>hS}QQz$SfTO5WTU6hK^mjrJ zE#JT!VHsK;Mk8yXgg94b%02 zk-#@?88BXfM%DtxVN?hiFogev3K)~aSOEd!EA0&!6U&a%uN+?}K?iX2BcprOjL%by zy*-=yIT`3 zPB*P*l$}&5J(S50nhr)b{$-D_N^ws^%s2)t4LJ=tl0yW>j5eN&oXq>|ix(H7wb0_l z`Dl{N@nQquD1x|q96~BBRP4YvYZ)rGp^>#vaW02w-$IqU$6-?V3NQtioHd2tf+oaP zVecMCfX;8kH*Tr(WoYD%>+IR%Fll{Pc&+b1lVYp2e~%+T@7wVPSnB;TG;)C6g#0Z_ z0Fe*~5OR+rLG1{$0!o0_w6_G92QNg)l&RI z!!X5V4O5I)QRSE6WDAD~3@2@zV$4!I?+Ye-(Yk2Cq=IJ498A)HqbO4oAM&gA>yhLV zeEXJ>B#%bcBFSzJ(Z1}lK%7ldIrC}$L9huo7B$V^k7mYJbMZlrsTaEP{||44rSkuV zM(()s2g#F4P1S!Sy!zipvtz6NQs0>?wI{j zF1Odd+;I$A2`zUViKfXYW_B6iD3a74)NviiZCLJpCh!eg28&mqk+ooP7>8(Ip-_KN zN08-Hc^4QHvO>5RO^L0_-cPdXLsQfGHTdQ&wY~t2+;OcvpJbUw^)=!3emj~LTfP0C zWCdz|CEf%}&EJYf4$z#C$z?Ghk^=!k76X&19dV0+|C_A$Uw%LQ=~+t7*8>Wv3Z z*lz;+zwB-7FpaDsp2k~a8DpM8BWp3{Nh*YlF~Ye*#h3@fSOGgB?`iL{<(y3;#X@Ds zDQC*DAtzUKO6pa!Ju}t#^2}-;>wYKx_=EW4PvVc~_#a09bB|`bEwFt*=A+Qh+J zp>K3cZE`wQtYiv#_{XWG)Lw~M&0Y%WY)kes{*xb)JQJ`;17=!ZHJ5{J%3P*gQHF|) zoMXGXJNUX7NHSA#hFzqUM60s9`G1)0Y43{7fy3oONnNjbGZ^Bn$;Rfw95YWb?e?(N zg3gkOf7K%_GDgkpX<(Z;B6~TN=Zy`BOF2Yfd~D-3&t%?bU-|VRFb}7L>ywk=CIl82 zT#vjB&6H8k?7IL*QN=w@CiHUa87a`M_-30HTT-|8qLE$WO7I^F@41;n1kQO{UTwR_ z$xJeTA55XhoV~NroA2`8q%etk3arvPr93#vRW*2haG+Ysj2aa79w!UX`CItLEp`4n z8oA>-dybQtw4N|4wATMXlVUrX{m01y^!^*(08739f<_L|8=uE{_7$N)WCa3*j4mV8 zj<_|zXWIK2%H%Vl_)6u}nbT=#S2g-st=G0BWfdSZLP;_8>5?b$p8|$a%D${jASZE% z@sRizt~+o0_6=KhCO2;1x@G5vE$fr(wr<(D`AlU4tq(1QJ1%5~NTNwIs+rvaIEp~E zSF%mtpxLmiX-`luT{~sba1q{4%iwY$8d(c2=W~d_qJgqd+I)>}=4O_pOVwh<>E8(} z4T@J>3)Y0J8)|4yY`x+b8?W&9PVq?8!+Cm5I_SFhO$d>lsLMi2FPvjA_QrP6cJ$XdLa#UTQVj+Q5+Sq+yM$S3ouVf9PX&0tN) z0lyK=iLE~zi}Hth_q2h(4sW2PJDiS29$)Ujw}ZU*6zmD_4rMeak+}o!p5_ikyn&YP zFpNg-xI4^gM2Ac{30G4M71aA}J`mm^{vFMVtwS7-iVw1bnoGP7Z=$73+=52#xJ$$u zE>W%)i?D~|^e6kBJ#e*Ql5dQv%Szu3?;zhob7bov>roC8)LqS8zK%E8(p|oaM(((~ z$oitf&Q1*El?lZ^!n?=c(45%12d=)TcTaPNzu*nDbcg5A$N}y^n48M!t(e{rAmjr2 z7}ML<7rpS!Yqgk66*GJ#(>Dn^eopA3_ZWbPW)gI?P0Uier_X?n#G7a7k_j}j=92Ap zhWUc6fl>ihU-SJYk4T62h+Sx6Y{S$E_8y`1QFn`r@itnz#cR;W9e0bl6}SkgzpytS z6eg|D+X*6r2-D!UzVj|MDk@6mvX+UdX-(cWxy z#hUSIN{iEh+#qEO+HgkT1**HqGXl?Zi1DyUKZ$kO7gLta4PBBh0f<(Vq|*RL(W8Ee zEm*CGh{gC;EknctG_n>V=5mPkt+jW%Z_()bo&%PITxZ{m=EFEpv%0=BSzS4nauotv}^uBKt8k*{`Y#C2I3Vczbo>|X%@1ly{f&qBjt;MXZ>RJZ9n$qb0&kGzuwH{k?zsLl-0|NB z57PTTK~9Dj{~|OawxK-UZ1C56qlNSf@%C71e?A&{9BH4)`QMtUh1dRSG$Xd!FK@0r z^hO``SKzI&RQ@e!TN$#`ol zbw2@(+;QFOBi`AQ%K7$UhQkY=MH6Bxe5~1sXPwb&yg|G%mb&+&k;jehxkAcc+}{#j z_jjWSX^HOtpSmj#kfW&H3%SqDO&}zMJ6y{l$bBRb2uC6j1OZ{0>`t;XnVnf?W^;fb z2!h}she7>$fFg(@D1zdRf_N*4pa_cMi3%bpo+$jPt7@jYj-I@)YSJ_D4@OP+`n~sk z{k_-K-PKVtHt!qoV2He52P3zg_i3`jv#Fjfg!lI6`tzl{;thV`glf` z=iiUVMAX22Fml^9Fk5P%oL$8>d1AX=i3JhE{$C1L!i#Wis7lzQnG%e=Y)5z=kBg{= zXJO>Ft6`3*hG@Gz_6kh4YzSieS;1ET^BBaYxdP}R38Imjt%*5!XhcoShLPK@iTYGn z$*jp5Dp(e-f)n9_P;H^EL;V*!eybVpy?WLrIC`Y zft&G=h#I&FMsB+X>URP7^APrh!jHoh@FTb=tx-Vqh>l1|7Fj*i@h~0|Q32nFk=w3- z`n6)UBwu_rOkm5cf(OD^;i^z2uyeCk(8$R4fdAqV5f$)n7`g2Vm?8T>wVYwEJ-Zsg z-r*Y9lR<2ni-M->1+koL73_w`L{z~pFml^fP=5-9RV-IDJm5{?{GS0=gz5oJ?+5a1 zZ01kHqaiYX3XI%#=DXGT&z_emuF`G{T^UaO<#0);)Hi+lk5eC|BMYqh|D||9MD{O+ zk=xGxSjqkxjrM!PX}<@q1(kO3sYdrBygh4dzVE^#A@Y4EjGVx?$MgB>5r6S0u?K{D z#Q))xpE(^bRJSy1?8*0+aNRuzb3)bKc1@;Do{8l&f5c-UD)09&vZXx1xrc0&^2Cb> z9uP`-pYnZRTE1NJ<8(hcG4Xh|!D%j2$enLKD%&#~y-;%MuC{BFS4^VknHvY!-fM8Y zXtDQ$3vaG9LEnIM&a=h+1?UHwv6XhSc(!t8IRE1=4CvS*oSS( zrRp1sxs|2zpk_PAge!6(%nMbK#_f5{cJ!1i(>VeUiYUWFIdbCYo7hiUKKahpN|0nZ z#c+aGTg;2&Lw6}Q~&!iJGxj}ZPZW)_%*gHM(Z#0bGCfIt$Fo;bv zdpDbO^pq^~8Hoo)l;IW}InjJl{4Vfptp-V>&i>&H?~50c=sV3u9d~xN)X1ZZZZp&(hY&S$LF0jl2;?PSA))OHo}( zn34xX8yEgYzOIxTaK7F`li}OhwDcGM9hiF%d=h5=TxnmlOxwt>Ps}a+zJ{1oOKSgV;1zF#9x_ zVVud?ZnHfe9FgdGFtX(~b2vnL{boC@Xd9VsPi4Ucp83n+5>e0mgQ&_dle87G3=fj1 zkP~6#1ci7s6V;D|A$dTwakw32-^;!_T#i@4d{E_Ryz{FyB9V&Kfv&)VAJoTi`^SN+BKZDnhIN$Ep#9#ERY(x1p9u<+~MdE%Sp8qV>>y`QtHWArt&8|9HR7|;mC=mlHyo9O=h3uE8A=v%<5JQV$)2t z#-1@QRvUTQ&N2g!i%9QO7};``$s8iR?y^l?2j+-p+&Mgs#T9s#9|Kp1dX_hPJ}N0c zTNexQ_=vhV0!B{Ig-5$k9Y>gt2ShtZ*fX=`lDg>5F3G$@8yL*eS z{0(!vy7Ds_L@P$-kqk$pLw@nly{+mr{HR2q>V}ampPJ|kp&UY}CdeV4^VMz?1#^fe z(tUxo`{dkEwva1k=MQ8HL)o(SxYg;bqOCBC1Nl3w;sBM%9r$<1D?Qb0rP>?0gZ!hO zAsI}s3`SF?!zfPmrCb@sat@Jb6v-Fbt$(*@@}f-NYW9`(CG6&4!Jy)Nm*22Yd zT7P~e!_kPTHU03i!D)|?qzqGS$5F+@Bznww966Ed^rqbH^cwUG5A{dyI<64(8$<6c zENbi|w3z=eUQ*}KYcqd*v~Ej0n+@iTtnH!rMm%bw5Z(_XTg~RZz7VR}2ss8dn<9@Q zQMj$QsA;-#*|r_}cY>Z`0R@WnNw~69n>xZ@tUOW6svgHfB`WkWL2S}nk;z@Dm> zwHfa@C0mvMuQo1>nHNm{NCwf0v9_g76_Fp$+0wxlc+^B4yaFrCa;lewlv4YC^l8B8H3?!&BNqulIG?})KcgwJXE4W`#Ew4%;9tGIwUPUzbBmg4R}F`PIVmO zR84ZWXYlLrn292ICyZ>_)H{43luZdKZc3YK`9L;vRkqr@vK;wSvA?&kR9u-`Wn41; zkQF9y3jYCITdGkViHOyat1Z&+;;|A%`YjmQ5~=879tu+;6-!he5UQ6h^PMB3DA=mx zkJ7zwF@nASsa;xhZ-*+{DaYC(z7nbKO+<^4dq-P$v5z9<*!S*Tw=QCT+!Mv6t$jHb zB`302v1=G98nq}njzc7N$P_RCMzM?yci9i-LguILUhEB*$Vq2@9>dY-sEv)>h0`Pt zsumXa#1BfeiQQmi%O-Z=5Q!@}E$<=|7M9ByUMPdzUKU7T?|2hj4l28oIlGO}?N)FG zerO`cr@_c==eRq%h+*5eXUowEVeniF=lM#wBvhWKah|pCZLTlJ4^QO!QW!abYmc6- z+P-K49uTVSkM>POw*7}jvRlnbi;#(C<+JR3ExV~*n{uptXkdPHXVBbx{(CGL%$b~W zs~tqW8(AL{`2CG28m-khI{&wQ%dI;9H#kIM%~S0B(=+8&m0tGM6n2RrT*PpY=V3nN zS)%5EXW@c5Da}90a5QpiP1pKOVtcGqZMXRY9xBmoeg`94Zu4snk$6J3e0rExFIfFL z)R4xU`RJ)?Nn1YKVdiS9V-X%JQ5{FZ$Zc20_)Mj@z%I4T-JFNRHBpAELDj?om|w^Y zZ6%cO2#HE4z{u@a0-GwKWQf_y8UuQ3?MCBez`%Gvxb3 ze56>tHu^C-#>3&7_&!`0swS|GVdrYA<2!h)M0I=fmoMa@%z~FsD!nAz&j!_Az9eesWc&`netLoK@Zj>7$=?@o41}+IzBu!rxt*gF%!@WmK)7Hc}c$h>@oCPDdT@!N~#TqVF zhKGhq~$`_-xscxFTus3YULP6D+vkPI{7>vFi|I;g^}B?li7TihWgT4(q!^%xJ>>4 z*M=$+?7G;UudR~b;qekx@@p8m?JAk2S8Xs`9Vqo1gURe2gRgmJGKfuc&9e})5?8ji zLZ;!-5*5-7Bez{4-J)jl2~R^Bi^HX{2rdcLKCqcpOVifGk$9LyO&kUzw_OuEYQ?H= zfWn?Q9UK~tUdkz%_kGLZIw`?rqUvOshlR+~!IiqLodO;@Q9C&px$W9nplfGUxilQz z8ZHl42bu`zrf>m$0In5PK&J!1@sTNR#X9bIM7D(w^j5v zJbt2zUVxF?uA)i2k2x=xcG)TTf@wzvv1u-t_$PtLPr1dCwDm9_50a>dxiE6u^{{=c zRIahmu#;25HF7dsB&wa9gby_0L~tc;>t-n)I8iqzz{qXa%`S1>5PQ+Z;o`Xvt`t=~ z%e}>ul)bH>^YQ433R(*zw_QOqs^v@{yJwVJ$)004Z#Y-Znk#sBhU?{axGq$^U{B)P zx!UTu4Ud(mj$2^lwyR_A+Hz({Z9LStSL=9TNDJPsF#DiiGfVw0q8y*!2oP1MUH z0{Mmmy0++w{*!+i_OWcQu&B^2076q~z4D2Gco2C+uo4nLmu@ek|fJm`ItZ+R)%&xK>Ur z!S}3ny8O+VdS>!V@9l0(nAfIygOVb?}F<> zmC5UxT~#46sehwG5~B85yB3d~sFtf?)yMdbCpw>wZ(zEyUNhC!P~LT z+ny}kzzd??I7BC05RDZ{8%^o;FeCEpP?tilgRA5uHGc%d(HN;sh(?$mNtQgW8b40L zk4v0QiBUdXq3b#nX`7E9pO%$wngP&uB;IgUqfH;483(TPm2fsxzJ z^fa|ws*~+I!rA^fToo$YGdbI41~%g##Umgx{t*~CfpL#suEqh;7Ca!-IIxRvB61u! zWlXADzD`~?Jh&oTb}p7+SC?Si#!?f%IY6{xl${uzvB=cF-WXr-;A|( z_M5yb%Aq{3)F3f|L15#SQwI6}uu|!RMAO%Y9M>&6y*(mf+oi_h0TW$n6pU=S)Rr6~ zy$NJ=u4swkP!KMK6q;APbLSM9njzJ9$8;dFI!?JyOmyPo%uOaZ+Y|wyfVE zz71BkQqOb1Yrl;wuX^aeSCVcuX8Vp9Lt)@9Ns^ zk`2+54mI|~!@#}ytJx2G;DLWHVCusD%uqGACcALWs*_8l!oL05veI|qx?64LTX4Oc z)aCDGI2t##UHB!B!C#M^kPJz!Z#;;HMD&dNIdUSi>CFt=T4hN3EZ<8kFl*2SdqIk zh*n(i*oq{X4ok=~on7&eh(g?nBX^+b?APBoF^x&}^l*w##p~Hh(~0F~bG;mojmY&f z7}+wN6MZ3+=?KMbUZyjyKH(grO*q%GY6P~wtKouDC!Bfi_9sWRV{GAFg@-~E-W43V z159Q{gU2Lu`C>SwpTp}&G?!hQQ`*SM=JqpqOhj%!4I^8o@=0F^Whz2po2RMlr<=;( zSTzDo6srw_r-QVGx^UC~aygv7Bsf zx58s0aytV?woGNJFN87`p|H)T-%4w_`fu?c_T+o)73QNQ?m6P#Mh{9XSkvqs# zUXy4l7l%`NAzsH;Oe(RQY;MoTVpu?9q@l`|6JJ1y+hc zN4XcSCe=~qI0t2!g=HuA;BgQocNa(Q06Uo~a!(pieiKgS(|8eyUb0gYG8+lmM)DLM z5Rugx(6Qn49*tL%=rMaW@t6j^jm&JbISP-A$n)VavSl`h z_(CYN5o+7K%!W@b#^TCbSSbRhmN&!I44+zDD=X{qIEa#4!;w3{TKLowTY@kg<>TRG zeiSbv(NU5cMl2!QNIrrGL}c|tFtTMNAM}M#Mk2Jec^L_xTJ}qrT7J!H66h$ugv&~G zlx8Aqv^86VKgR_`&C6`~)MBjOE@q_&^q56(HK`txyw>7cx;+w)gDAPfIC2MA3!hqI zYn+Col)}j@;6)6cT4D*=Mv}t=BC@&?Mz)Nk&lf@&iO|;OWh8uRc}>F9@-bGEKu5V1 zE-TehlBbqcHAuB^%vJFjj1ftR{hz%4)c*VUvoPj%6wXctAuEW;t>Pn94Rr5gMnYaW(YbaC&dR zt4TB%_oR}PnQb=LHHU7MWU(f+>FjfMz)#!9gm2}>tA7H z%S`^_3!%(JsB7~wlW~jL?m7Max#BAA;%EQ8g6(8q2C-=_e%$W`sYEP8>A^!G3U3dN z+yRC%qmh2&1T^N9bHXV-3$G*5QrwU5+d0{$@B$t>|C3%Ng>#{2LJ5-r5N zmJ-j#=JQK47eX0{(AMTw~xWdmZ?1A3!zL!C~WgI z72_$!S^ET=%5(;?X=dc6rs8__d}74^vgfF9N)N~D*a}mLsd7dCzUmDL0dAZxZVt{;GqzOH^h-U$W&tQ zQW~c6k#I^sgx9eZrV`7^HkA+JF%h|aAB=37%6ohvl&J`XZC<7_ZRv2Knp=|1^e?Pd zqg#HZqPC{;b5@o>cX>w@SfcuYhoKFX0hz-H#!%qCqKjovqy7akmu?f=0#vW(|Hz7WcIgyvdcJRT4#3h_-U4+yo4d}GMhY=&3l zCy!3`yQ!o5h6l~hs4s`lC8yg3e@0z~rhV_q@h!4t@TnmMtiDBdB8NzHycF+JjulB8 z(^M5^M5cIm_ZD6G8`!7L^5?--a*~=qm*HrP$j_)tvaB{$#E(lfuGKKIWn2RsBE1_1 z@-ymAjz7#|2^>>ygeyYjIQ|*+B&OewADzhbdtv0ZGadVkx|8jP!rA^FToo$Y=4aHC z82>gN0g>@DZwYc0mn^vAP!uwh*aL^b^}9KxgNxBgpzBNm_Z2JM=4AGq8yJ=O5{ zf-B@?EWa(o(b%XNkEzCJ>xuG^k*NKQcE=+j+QhCLIg!E?8#_xp>C*H}7Gz*!KOL{2 zb1BT`(s)AE;IfgDP3oz5NJLVX!^oERFY|>^-Y=vTNL+j(6U$1j#$zF>?kYjnE5|21bvh#Hsnb?Jr#gkF-Z=A&E5WaX z^Z7-*hD0-2un|5RN!fPtIXoyLv7dpFEj#(NFNCraA+OELPDUPQjwSzKg$Q($zrnSn zx`}c3Uw0GNT=D`Q3Q==^=Exl|mvl!IHcmUkOXj~On9aEi0vp4rY#KL4Og0-i*;cX* z9utw)tzcx!N@n;%C@T@-+Pth}+>%VWzruD#8_+Iu&S2FD^pn%zf>IT@V{$iB*;o_G zDR?|Y^_|R-JHS+CG}3RJg@&_S8qVv*cpZsT%AN#X8;RNWav>fVk>K-TWXoRG`a&ps z5i;A%?B%3vX7&2lXN`-WFSBX{+RGQ6IURNp-uxfATAk$&SWH0ICbWXoQj^o3CNB4oCC*~|EoN~=!Etr{%l`nB<8yZwXx zWm^WZX$ENH1)ul;9ZSbDn62@Ei29qwkvqU(W~%&?9On3NW{<@SNpu)vH&-{ajm&I| zIU0|QNbylHvSl%c`$8y-5klJxEvB@xI+$6fSl5L zBI<8FNA47h5&1VxL}Q4#Bb?cf&C6m& zv9_1fw~PKAt3;r?{2DGM)m@t09TJ&X#_~%%7NY8Y&XGI7Sf=pQlRTySfM7l+GKftx zkT$tHq$g$D$v8YHBC(@kWXn!Q_(CW<5%Su+>}2Fpb2WDfD@351EQV`Ib(1D{hj=2E znJmIXA!_bOj@$ue(j8@<aX6np!fQx$ zlO~gio|J7T592`*iTyr|Y}v_od?A#b2zhN@b~4g(lgY0Qc9RJVV$;mUO(qkbh-D^Y z@lc4G8^w`3z)ZTM%#*z2pl~)1z)MKbpqo4b*OKZcO(qkbh-D@Z z;h_*U_dSl>0cO%2WuD|EuY|MtGG0QWmo%A7w47`!`4=7&k=DP%$d;A-)fYlpi4fQ3 zW+ge}X}1Fp47QT}8AR$AIj2O4SXQzx9tu%&Jsi0stb}ErWF?t!HqXIJ*a9nw=Va4* z79JCk);Ge)mX*B07eZNy5ZC5qC1YIAw!M$lB5*Ky4_r>_U}AjaE&c>lJr~PRHsH|^ zm3JLS?f^rXCX-L{ln28(y&tb4(NlI$ek|Wi%eIyK@UV#FehEglY~}O55Xx4B#5Olu zaXioVKURxCTlo)M&Q{n;(!*^3#G@f9?DH?`1s6w(CK`obJRRHqGGK%vOxF zY+KnL4~t0dJQ&%sl{vl;%2tHLHZNNldkUj%s4%SWPjfCSMxd{p4cC+EE5-+$v~i`L zj5V*EiHAef-sv2<1B_*Qoyw$v<*IO2ufWSl99WDmGPzi7xX+!r}=2UtpXlzHQ{ zGX|AEhqL)7yo5wMX|g=4Ad5)TL!h1f36143;E zI1=7)M3ys(f^7ykHQmhs$1ki@vSoWOz=IA(P0{ISwf*>BfCJgWP_|szJGW+iZ#7$~ zR(hg;_Ok!kBmbx;qvFtZqI2vEcmRtHyO5A2R{H|(#~~8EEXB=$r-{USGlfELU!hdV z8h&;bOoU8U?GpG#xL!^!^T#n9jhotm(R$9t8I|O!9BqGl10EyM-(C+RTmJSs4w1OY zTgyLVTh~M-GnnnIt{*Zr@pcwZ;KcGaxGI}S6O9~gO}rJ4k*JBcz{qXa#J18W8ujYU z6#IKC0~t#lpAA>X-Ee)V>R5<5h9g^BC!fNjCFQGg3BvBBs zoQVtqo7$*qIX+M=Dr;Le*7d zP>Bk84UF7&h0NjCb@Ar2a=6I0d@mJ^%bHxcMpnY*p=#tPqDB&vwN=uG2TN4RxiE6u zRWfl+rZCK|Y}gurA&Ym1%i>*dJ*cwSmnaLBovnjw@#u&;xEe-I(1FMDms&v+3o9NF zY6Wd?-+@Z5p#5@Gs$bXYK9$KhS6nq;u4HL1lKdFfvr~+<1F6es(K*F}>8%H&t=Bl# z(thNt8nu@8Fo)=bwY1p-?3%cc?OjuJ`+Eno)qzsK;W7V$IguxdT2cEuTs0@H z`QI`ejiK72W*%dZ+v85xHl4rX;Sx>fFEFxYI?r*4^cL4 z$CgOb>11OPiT>Oc$aZ+JM1gDzBez{3-BKV<^LTx@GF}IlglZlKdzgpF(w4+Yc$7p* z91kP6T@sU|Bpg=pmT*D587>G_5KZsTBv^%Th#R)-+M+A^PyXiU%aZCtPwVkuiMm(= zBez`_GmFE6y+fr+F1o_a6nZn|RTX2}xFcL2ABPJ=)ko8HR#P92Ty5L|?O9v^{` z+b)l79VL^KxuKFL!d3DUxIR>s9E-G-g@Ndrk29x_oZ|J(e;GP;t@n%A|j375q_c#WM;zS$Qo`yd_?C1<jx|doy6YD4*5Nhe{`@Wasa_MY+x=Uvxhsq^=xBW7#VP_Mo9nIIv>h~Tph3Lt% zy(?Ar(Ob4W)+hdVkNV@D=t;ELANTOUw3Qjh+F8k0Hfrsxz#%$e?QC?EvN4t10J9;_ z3$;>qJzOIvq4`S~j>boAT;wQ%D0x(Mk#Y@wRH9YXU}VcGuH+EuEqF~_ST1Kor3`)_ zV37nqNA^{?9#nq2Iln4)yCHlTKQ@u&FTlucXL-ueY|T59D`w05oG_UFOE}Zd!8M^W zJ)JYH$8WR!NBsCiwto*JC$R0&yH)!at-u39wf~%NBC`E|V@#@d&PJFY!st01^&_Xm zYKsE9e-xM2Y#hyh4;CwS1tmqJn*Rb0(Fx6e6wBCfjO8#FGC$S(m%$}+(wRS;;b?T! z#&XAqXp#q2t^Y*)phTNk0wY^Cv6w@o*ZL=j_Gzg<)x$PWxtHx>b{E2X$KL(eC%JVd%?>o7^6+b+Y>ziTZ1g<@LwrcyL33x!Lw!gD) zBC_p2o$gitj8oY?==npLGJCtFnk~;?S;(x?U-bVIO9*o(r{rpfAy3WpHX`a35os;Q zF#$Z|TXr=8{FXy_OaKd7{?5^aW7ZclgSozA85`OoOp}g4$&jas8U)5O2y9kz@|piP zE0@Mf?Xbu~l3qZIZeW?L_QcbafvVwQ3?3-aY({cq52jmA^sHC~l3t=dFr4%K@lraM zl5Nfxhj8A=*q$8s#Umz?-vc9Con{XXk>2DuBd(H4wVbJDSFP84p`S&BnY85#8MrP~ zUkKAkBVWrP&cP!lYUC^!IYA>HqlB79giU!ssA*&io=BonTi?01K2|>Nd8~ZZAet|t zHl`01A7pU_>h*mvM^wF@0DD?;(w1o7gNIEN?FPa1E5~CnkA~wL3mo4H*TaK&VTnENl-B8?k-y#X?#JUN3gbQ)*>bZl zaftL3v}>}0GDAa!_2R0)5YbC4$Uswh5iS+gR8DK5h+-wMb@V)*0#QfL!pI3a@@Q$Q zD+-(QfM{b^oLQIi@x@%#-4XXXGFZI3Gl)%dWw+7ih^#9+cfwXT+!YU*DAt`gawlBl z&3D$K(FqI_J3U+nr{YB=cEZJ$O-!KXkDuN30w1kXk+)=sxITD{0%^N z|NBa~biW8QM3wFmZ|RyTTOIIoc+f<_eug7=LI>O-K>&?DVA$9*;ad1DURGicT;3`z zG_to{>{od7L{a<#Mz&n+XB;BEF1T}&dSZ>h5YUXHg8Sf92C->|=~G)KpjZKH4Nb-q zAZlm=jGUk$k2a<{p|Cd(h&Fb@sm)hKmxjys1ehCY58UX>@b)#JwFGQ+zvJ+5i6T9Q zBX>gg+twnz;rxbetqteDiWijF_fEuZ%jCb2x9wKv;c*j%P=t{!w_431((8EJ*@}r- zy&;-gSa5;Yd>@8OL^X|NEf7sCbz3(#;-M3D^L`jPK{p;PN_9D5V;&G~>~hni#UAs* z=WQFJds6uuq8Heo3YYAYFgsMq9s^6(m9Ew49>)VF3iUCL+zFj-o}&^C&o^vq%)(&X z8p$9w&4|9V6&h${ZoAeNc;rMeyaLP2a;=wzo>IG8yuC{`G1E7Mvwyg7_QlIj9Fk6M ziEv`c+uG^DgC}Zd4;VQ?J09&ybv$8b9uRHpc-_sq-C($2^Dr~iZnx3>tE{U!GgYh8 zt-^yP3bdaicS5Jz#;8KW>kYGdPdN7*@NyE(s_9nE&gXTLvbJ67Iy`Ek2;K=JTQ2nu z4w2sV++4G6F@rY*^B@Z?@M`XUxIk31I0^165urck# zAU4hQ8vcBeGiBS7w#P#zvOf<-wk&CmFNCrrp}|dQNiBc4c;brTT%n&o0BZEkb6GtC zd*|73NvWoEC~Qh9Pg|E~;&Bpnc{+@2>2f149kg5#Td%BdF}+gWad18!e08`yu7Zn0 zl?VQWNkY=LR<6Ka-(aTO*&r114(Z z(=c+|HL_KsWP|*HHK$6R30KK);nGl5g3m+Flx>~-3J;m6lV8BdZP&?^rtN0N(ZSQm zR0gqW2Ih_KHEb>W>ABj24@9vXWVo)%GU16Be{njkQBv8_5k3C}U%7g01?Ic>QHc)mEg0EyhzETkltT#B1UbYlAyF`g=uda2$uWJygVtWt-N&HQvQu2O zV_hZ@+f3SJ6tO?o;SlNF;OQ1SPr6y|Wx)iln!gDy36*8B zE1?#?Jw%>?AD+ndX)tozxt^|epmg(H3+MYvxGYq@XYsSzO2Ov*ay$eg=a<6B37mWM zbTt-;=HLOLE*wVtCL%8!){Rbe1M11c#oT$r*{)vx#a?~8sPC~OcLd6*A*j;O1NXW?QwDa}90 za5Q3SqGxE~+y3zf{P0Bo_#KRF`Nyw0M0)eVOwnMqk{OK8S&W{67UQ!S1U52L8K2F& zh9e1^_nCMQMBb;t$Zh9+Yt?9*ala&-`^9i^sN8RBObl8gHvfz8K#2Sw2_q-)@6q(t z+#ni=2ZWj%9`H3VIX7feUQUP}*5KM&7#9$#B3uV(-HLDXZ`Cpf;@bi{pa zZ|c9gs!&>yDX@bbLj5-e)(@4c1KCQhB0m?({^bLy|MK8)p_*f>U47X~g$GLhH-~aV z*#i57kUS`mBHJ-{xUY)PQFUz24I~-;>nyoOd9wL4g^HHtKf%O%`G#frJLK=3^7oVS z_fzusF8TXu`Fpqgy+{6jhW}>s=Q7|EUS0XI-AD3lcuF4eV4`d5N*|L5q_H&j?D=x*> zQO_Xz^oy?6lD3(*|8~zRkxfIL+SP*NGVTdqwv=W6ghM1+c8W{8lNXgsnf|^^rMkFW zE|s+=`6^7MHPinWu9dUT=AUIa8ZWh`ui$Q+{Z}$8vsJdYZlJa4!hvt6BV-~ zjNEp`Oj}X+mEOugW++=R|-IatakI7M`2D6!BZ>8FAG@V1j6>=b45vqSQ-KdeMkb2&>M)t?!CTe6~7`g2l znGk7&U;h{aSrsmjez+V|fi!*Blqe9Mw5^T|9yC!M=fKEqSI4x$OtqX_*UN4kut!YU z%??8(8^T3$9b6TvNJ6iX&D?FRyc3U|sFioX$Zglklya7zQts81`@@xTA6yfvQbJd1 z^~`OZdo8=25=WXiTO{(y%}RL1XM zT$70eQ$Tl$Hjh=?)#}D*wwst7yJrX-cD`S7V!rf>Q5%spDnLusyX&>OrQAQ<}0f4 zH_xKDv|HegM-wjd6^(i{;Svtf36Ca>ve#8^hq;g^g?g_1Hn>DiI`i*lI2s+bvHVHX zh$eYZ^)SIL_(6#_@nIO*vWXixM0yVsOb`!Z+w4Bh0>K^~ve;I#t{>p^bOB}8JzrOWUt^MB|BC)ln*8wIiE%gr7LSK$7F)x}mRZd5g-~W8WEEr<|L_&JG>ekBwQFOCtfBj%2fLXqI&Olj5ePg1sB}v4u`{)a&ng6 zli_Hr)V9+vFgS5N@l0ea>f+)MJQku!9LSLq$xN^1&x#cw>9d)67HnY8UxioF`PodH z)dd@2wULy)aNLgvMWiTu`d9%ymgny_ghdl1#wUPA--=H*sIseMI!MkD>k`Da`@ z{ve#u@8WeNn#wLs8EvFwTgtcakciYi2qRmTa=$NxvJ@e(7Fdc0go;9pLLLxmxSbJF z3$_W+$>}~PHzreFRVkILnkmjc2{lEhqt%XZu7Z!-1jaiQ2cP5K7 zaQL0ZArj}M6xYMX$*c`KI~3+Zo}OxH{UEqZPCE0uG8~N(xjTEEE~_6MfFGD>TKmDs zmTB$HArdE$mS5Y*-PzqN53pbY$B-;s5-Q8$=BjvRE|KdM_~D6M_rl0+=Q_4KyPNMD z!uh@)E(?`!b9eSc&ac5kAaY)VkrO!g=;dl05Y52@LX896zKKLpuyNqGBU9a-eMF{E z&_;pBSp1kVIaTKW{2Yr%>p6}w;1S;%t2MBPI7BCm0izfL#t86Fm;-q-s1e{LxI|7G z^S@y@8XfiL=NL`$plX%tMf{*ddw3p3w(Q|q4v}8_mygTa?C!J_J;N+^w`UO8986_b zdw$Nv@jU#{M2_dc$Zh91{`{PE7B3Iyc^O<1D$myQb1tq=#1Bv8dI^l2z_mxOR_$Ii z0S^e(?!V`2OtRfSp6;!!5ojz))U`w>m@psMZPi64|`6Su?2mQCEoAyRMqHoH%=K(N8u zV)rSy98`AWZQsf9llY;D96t^tx1Hly+qZe1v@DqC@eHCB2Wvlxy>O>H;*uBD<-K13hO zNk*lnfgBzc(LGjjWDjmzzO=uiNo~){a%r%4Wg)Y!caXm{VT^YF$3hQm{_n=?>bys7 zvwaAeZ7WTC7trC4TRrR+$~RerfkOE@Tqmk691030 zo~Nypuif~U$r5IV- zDyia85>;{@jGUknkChCy7$PpJJRsC!NFQ&a=}pz$jI`+cE6!ebPq;Aef{CFD(|8&< zc3rKdWUKH_JS3tDZ-+lFhI#96gGg z)iS0f4M$(Hbd>cl#Jmec3BE7j`mgu>9%?!?8VKD_x z4ll!%p>n=;Y;w@Eu$liC9tDy4zr)CFXMP*ibM?9z?C-HWnEeF|q7~N(_8BkUFHg$E zR>019Bt!-503#%5QgU zN^rCM8T{BpmOl+6x1HrFs-rrXekPph-@-MaGA*tF^!V*L;8*zZiERG@MowVcqlv3I zK=cF;2sH;}d=rs#z_@hhfbONkg=%i7Tt}bhC$v zi`4{0tYN_f&J7i~BveK42QR3K(6Y28F@#4+l*Ay6oFEC0hM{_nFdz>I)pO?hCL(*z z!Rhv#F{f0^!+pj^?4M;hV0w0nv9>q0*HmN>nwL3x%-z1lRXyfY93rvDBsxm#-$j{r zthAJ++3G;4|CmfQqjmhB!Yo*Q=ErcooJ8gyWH=f(wbwT5Gm_38M}jg$b!qw|JVc_U zJj{_3nND$6vAK338oLY{!^M`Tpr@Wi`m1q#x-=dLvi6q5Kz*mB{|TVPvbJ z{6h#RwQV&QIApT2oEglnEtOZZn_0Q4e7sJxiM_)WvnPYVMt7=BH2q|BvQ4menp|mH z=CKkz{qWv&$bTvaM2W5Ej7u!DO@sV!1bX@<|t2-QK?!oISmh%D3eoQS=9LB$tw#BLFRf6*jsjZ=2pbxAcDpd!vm0YEluykzyZMK_qIkUe0 z?{0KgsaJf3udef7<`A85^|zhKJ;PR$SCmVc{=N+Rg5?VKUT9??Gn6&1|8|0zm8ZN~ zT;85Rv|^f{!f^D9{xh4|=f+5v5=bb6eQ7ukPlITyb6{l4R%dgF#KoePZ*DP3XlO;L zRHzt=S}5wLmknN!f+4b+isogs7uo7`g2_njv(QEB5EuP3Ydtx}0e@ zp9q)E$Kbk9rSrNLNGG1Vt(IHy*okVn8AfiqTIT6$85*wkW(uX^Dwl448m^lk!xf_H z=8P8VMz4acpdaB`5Eb+=jNEnwO%@7TlPL^mO{W?4hTy?wO9ruNM&aXIpcs+0t&mq? z9&1E}{1--UyF#XNg|Jq{E}t^%ERpONE|R@BnMj)6{h(bhsl;ua?1=|X)X8oza@%zx zCYMU@%2K&^h+QVJ=jV)}w>MlWZ-VPW?LaM&5TOvduEe>kVHS43|nCE(=vE%YuBxO5N7VDm-+eR{CM&wrgc8t6-747b6$y z$3rJ-?ON&1=8Bc!LHEV=OW`_s5iSW;Cnp5?ik7ymk>~NSi5htpMsB-C=B>(B zdspVl>@DR=sjw#7yCPGKHcZb{%ei$%E870_;7g);3}Vw<5{2DsY*qzZL38jdhzgnw zBez{av(4H$wX-Z-J14@mq1w$UL3ZQL-&V~MJbt2T7Q@JGSIu@&)hb!O4!Tj}xgcCT z>);Ym#S`}QX45j*8XCsaAZn-#Bez{cTU*6*TF=MA)pILc9IARw4YnTbBoYO%b#pVG z08uwL!N_gb&E!IkjXR~4y_MYg=7Zut4j0Rh;EGVi683aVJZoDa593i274m%;x$O!W z6V=MRpS0y0gU8=j;Zjhg(exFpjXo2@)3r76Up!o*CjJd0w_Ow44Gvd_Gljx>*Xt&x zR`w3p%AO2j(_AWrO)O2zU~6bMJPo3Tc7c)GuA$Lv->ZJ(s`^dgQaJ;z1l3j+28}0C zwzeWp!=oiC;uIJ;K@lGBL#kIQ#Vc|i5bDLwfBC+sCwDu#Ki!@BN3c~!Z6}2H!YwbNoB}&_s@Z4I{UmGm(weW4Or{RYu za@`FhCvff2vsK#{O~3;}wf*aTMJwC>nshfgoO*11JE{47g-oTAt!P8Q>9Ay-zEYdY zhXCFuSm)2K94>6Mr=RMp2-VYK^81^KJzc6FV-Azx!Z1NY`{ zW$d(a&$ z18h8Ud(dRA#prY#=Eu;cSjR=h$9*fO4CtdAB5ecOjwi~KYzbs#t`J2#&lxQ< z>J_C*uDU*MK0jpCN9Oa0{QZ&qeN_HFCVzh{e}5u>AD6#BmA_BO-zWJmY(igW|5~64 z2@waG&__a|U?y~Jy4y>QK1sB=_`Xsj&TNefHSNB#vyRUc`vyv7zJZ*>n7UXfUYsgp z`X47G(U_7q0B-$W&$AXqzOw%4GE07Ov05$-t&hsDjiI~1#h0yAt$*wY7tPs4^3xcO z);Vf>i1iOS@AVWoi9HEf$+*-K$$UI6;w9Bwj-1GGdJ7-hyKB+d``B0xIhnGq$og?GvaFuEggwR=LJh7$dqF*88y-cXN?UJ4Q<_@P zl`Nb~0Y^~RzaXuPWGwZBia;Gy0>>7Yd?w$m4 z8;RLQGX)Qf$nqo@*)p2(z7Wc2gw|SMG#(Ht3UU4B0imY6{{&u>KjU?y!ejf_YuOTf zZN|binOq^-FJgY<0~q=>Vuo>xIi~ZBs2#@FcnDiLXX+94#v;-#4IS6+=lCj6UAv#< z3!%7wqc23HK(-$9o^%(5CyGa+yLzKr2HL{F)duNH_TaZ^P7psQiJxWS=VbolCjDei z`pV%VUnk5IqIJ`~*+yB}OquQ5xGKA%oZ(BU>TmQ!3(5N5=n-LxD4jy6jVotYX3N=P zUsirM`6`2njVB;Xtv0ooB4V0Sy@4K#hc z=jZICSUrpmcsIa)1QLN=j1>C0fwV7R-3}xU@U`rtGki?RdMh; z@PjvPb+?(F<`2ubfT|@RQFjTYM-=rm*NC5ie+r{kMm$g z_@@zf|>*V?y_~D6MKL8^q zaP85#qqZw9ZbTFCfKbhUv2P->`CsI-Ep~_NXBD&t!js|EEOY}PNqV<57A5saL`x<`jsLxN}# z9uR6s*upmvIV5~G-63H_uDC{<55CFb$GpiYvlguoMA2z&$T1px-M8XuH24~a=!DT= z6wBD~jz7YTSX068;SxDX&HtF;XmrRGf`}%0P_;tv8~mU|vv?Xtw#?!w4w2qKAXf-% zc4wV~o^KYr(-{Od8&lbhuMjvno`N5m$nhi?x$PXsRtRjKj}GVgD7Yk4p3M~kC)bDL zhbMA<2#lP-wMXYx&0jPD4+z!#zv635viU!oZu4i&rpR6cioX`}R#>J^jnz(Q$?|}R zPwP020pKmZ@=*i8n>j=$3;<(z&c+CEE6j@3ByNU_Ez|fv4w2pvFiETmxETHs3k4gyEruV43qoaBJUbE#-X8Y8j~|@K^LJq6 zw(~qytp~Wcel?uy|H4I~ay`RX3`jVy|BVMgqAq9J%ds9|8eZz6IS zn3?V{FfqGsh8|M`|iKh(mP3R4^%)xiK4LV0Ns|aSmK6C&Brp3`e6yK6Mxi-tHV{ z;Rh!=$s1v0%SqnAA<~-=^M24^boA9KYh=M9HJ7<%6y8qY}+x28?W( z#Z(TFcs{lKU4)6^3f#f(2`m!qe6#pH4z354-)_#YirsDr$Kb~%vb+#RZad3U)Z&4I z>9yfZSK*panHG0s zOd%UB9h9nFz0nTq!+q?(WUB0w=zO2D_-ewvu!5cPt1WlU24cTQ*E)julO7Ri6lgup zSeRO0a?A<$`07i|33qXbPM8zsH7kWNKRf|*X7!h!z_oMIp8p2J(RiwD&-+WWY-|sD z6px1JK|h3%Ef4wuhe&U(*h%!}W)(E_Fgg=FZ;W6Nt(YfmJ?t8rH=5;StD*~!iKvSI zZGNg)p!#^TDjLdoO}H}l!C7$bI%F$D>}*HN%T~u;cw9tv><%L*c!tN&q2?CRnmi!X z+;XR{%;ns&Pr9#1j$XrVco+{rlwkoo`&8{j=Xiqdz#s$E8lGb?DftRW4JHK+(Fude zSdp}0EH}WsSR=^waFv|Y<}YD58Y8s{yyZx;42;DZ36Y)b6O=Jm-Y?;VnUkGI)LO($!vU5ljY=^f($~*3hoz%3O zqSvw%u<6Dru-c(c1K}UKX|nJs1Jab~aEq&b>#W@3Dh`q87Af8e9V?PHyy7012g@t& zf~(}DGJg}p(HN0e5|S)=Ty-UJCw^R_QQQtATSjpkhe)p($SVma$4|3Zuyf7g_$jy| zRF30U5=l%yi65QF^y4sc+nJ7CNjTY_)ECV5cm{z@NmRDYD~Tk=$KVkV86OEFCot~O z!PO8T+JXm!x{|oUSGw{_;-GYw7aQBWmNUiG+9+@mELf-7YAxO7l}D*{BgcGjyswtj zd~hs>=!E&8zM*TBxiKV^V1}#)Qh-b4BsqT;!_jEb_j2X5$%Cs&A%`EF=q4*+WXnzZ zI7E7rg1(8XgY6HnfC9&b|AWgyWjp>}s$*%`O9)@b!yt11H5fU8dym$yrU%h9JRsEcaI|kCa(XDFJ3Wl5mNRTy z_4uPxWBXB?a%!zbFK3JRw9e!h7)G&}vB6r(M-2>Ha)?eC7{>6N4HMY|W<_SG)*ctY zMRF3G--_XAgvgh(1y%B}YDm}_KP=HSc7TyB)7Xwfq&FnUm$O|AzmbI!I3BzKE(n$3 z_{-S|Jii`4IFaYq!N_grIreh4i|eY-Fag9bZa_rC@VD84rQT`2-lb?VQJ!5@JO&cwZRK`w?(y zsJxp?39&S6?hnPoAaZ{YjGVx|N9$M9gJ>Ea5Ndk(lCN>erG&@QeWYnb(b&=DVpyzB zrPU7ddK4jwM(aY3WrGWSrJ{y|^EpJ~aFAZl7{wAc+~OlJ0oF|LA-FU6h#8dE8hRz+U~i7zz% zn&p5kcsRA?-tkG?00%xpS&vXtslzjV>05c_89(O`iJp<-vrFS-)`oG6T8T1a8ON3k zq7~!ii>y`}CAEqCq3JqZmU+Ai^HU?5$A4jD%RK%qm>+RM!WTftCH=wVq(5l>G0|@M z(xo{243_r`XL;{U#pk}+-G%fINxuA%i^@`ynR-S zi$*I2oAWd95QvJBMC2sIfj_f14j2G^#$zA&~wmswRRW(wNfhgk!t zM>!3qMW3i{gsAl+$AmDQg^dl+QbcM(n8G1CVL}*RPurLg4u-jrNvb7<*TQvj(wpCz z;b@%5PgK_lHH?e^)r;*TQw7GH!mNx}Jm0`qg+0MAol@krP<==L$EuOby5ZKU6Qkx$su83x^GKQV4s?(l**M-VU7OI z^gCh2I_1`)_oL!bYHi6eD!jv2N@`SiJBR3mQDIUnbHh_U4KrkQkx#;XK-1lY{%b^iltz4 z{!=^zBIiGbk=xFB?ER=%(G1=vO^4V(K>co;I0Rm=CLKJ@~G;;gjM)aiDuCcBU@&X;SlK!2l4}! z4u0RqA_<%d-UHWz%5VGwmTs0e;KwGid>xG3c9vrwuyio}t#GCvglj@&+Wdf}o9+AY z;}hAw4@OR4+oOA{0YJ0@4+u2?Ec8u84gkBQI{=KStm$8qDO9vO45L@0p5&BSt6qYX z5o)c+F$#=eQDZ~0l#m()x;R89i~{2%FUB;m8_bN%Q9XpP3tT2Ax%rt4N28?v5~QR{ z9#{n#X(?*)os093s7ep#Bo1D3-zUX)Kt)ncx(-Bvh8Qmmrh4J{dnek?W-} za@)C%zXa*z`_gc}FNVuP<=c7*GKupG@eqidpARD^aPHCB)o>u1g9n5f4*nN79DF3* zTMMJvZaM6G(b{bA0IXG~&|3ACND-jcha989SA7MfMuRVNh)x&{#tK%9p7A@F7kQ4T z$>7&;m7LV(A7MBeBlWLD3bN#J)nM>T{J2Ep_&JPh8OIYGBE7+&{*_2xD}&={h2XiM zn?YbhGL_@_D-6;%ET$*oM<+5p4n}S})3G-foM-fr;cOoUSB1*9`Q}0r;|Jpr5E*|h zjGVx@M@LsffoKaJ5Nas+g0D%*6@y#S9STPEl}ikUKrUj zjT<;bdIN#no!!OoLoAfQb%O7~1)(w=-<>^y=WpW&C-VFa7`g2{$989Tas6^Q*Z+cx zLgm`rojrl?zvBTA`Ti@6oWQq7Cs)IOXb2tP|0V5->BqN|tf$6u@r zl`8rph=&ZK2IW*-?G3KI4&dDsKP2 zvth1evT9s76Rww&?)>o#N8_d@E;q~!>?f2?$0Hy*%&9Q4+z%ZJvizr9dh%t*nU?Z86=KLszqw!PQnj4LiNEwB?V=*0%f@m>Q zU}Vc;CUJ=L#*A%6dv;aM;Qv?_8Fr3Z{2vY1hswWbG|9Qxjpisk7NQCchmqT^g86FP zASj^{u7n}DMpPy2Xp9`Ld~7ug;_(pGkcW{I)Zj5QsIfz|8V?9HcKq45;mNUMpLEBL zG5u`HC=Kh+Kimx~*D1T&Va_=tvp!pP&l&trdg>8rt;;c5e9BicYP7h6Lv+GuF-~S} zbdw*$OjzCIM{t>(WajT@I2tALS;#tF^1y0qAqB(d#sA1sazT%a`!2anD1LMo3To?OvQ*KpJdmgd~>(yy4wIjUd z0Tz^uNozljiD0#_Zq!6Dz#$SRg7g~3ghtxNNN^oYhCDgcJ&bq4b#n5VzmVZ*oYW@s z%Zf(m_7%iC@Iw<#w^ zw|vb>UO7CJ?hr6e?5ShENL7Qi>J(aSne)N{odi^jTKjQ~16TUWNR0!RbBInD2ju2? zj2mMn_!P{J)idsZ3*{s@|9*y}ks_}o6lL={L9}8b zw9oF@#_h*O5;pH6@F0l1cfrUBynA$dH7tlm;Q^tBg-d+}EQf`=(|x;Y1l#vRTQFDx zOV#NuwIwYX6Qby}UgQ`M7W+y^4G4=kL?;Xgqgcj9!&nV7Vl|8bxI|7;^QSW$jgHz_ zZXOX$@}O!c$l?bjn#Bqj*)oe>4w2qaFhTTGo89-aKmx~s8{l$K*%eF3jnHk5ug4Ef zMv4_ETgXElv?d5=M=E9r;ehq>QQO!#?k$^V3A^T zvDA+0{;zP>I-&bdie+w00lUJC$UN1p#+~3&IZ4e=XE+)ya_{z7@V0wwj~|@q9`j&i z%RT0Bi1elbxp#Z4UhZ1eb=&ySaCJEDf9c3-BU?6S((i^=euWO~V61O$#pvP7BYbJ1vZ2k0xi! z+G4@iV7WTA)}oDAM0{FjatsV#@s*Dn7{16MI$>ZK!*e!FEJWz4g*`Br%wWJhE?j6SnW9Hf&uz;0Siv+I*u`5y{~Z87_f#zbix=g^1QM! z1Kb4jAxmzs%JDlZzz!jmgEH>Yb zM{hIzH~i>CreA=O6PWhs*sAFZ`}crQO~2xsh-~_gr2Ayyq`p$IQq2^rUA;pY{jq_A zs;DP9rRM%f{9vY-8yYTTs<~3pwJA#c&wJ`I@({JYtU}0ldK~hO-3fPZBbix!c zIi9*P51a+_BNJ8gz#HLOIVsK`$8a=WYQjz8(c5nF2K?wmH+embY`MwnI7E7r!3@z~ z;}tXbemjdOa7K6=To)?e;`8Bl4mRs=#bY3{{uUUy?X1r}y0ODr6Xrh~&ivhQZK%wP z{q@{=*zA7_kAukm9WZhN`yTCIO%S4WctEHLVsGC>786SX=6BzgC=xQhsZNURV4F%8o zHYYh0j7)bZn8hZ7D%1xwedyM%oVHugXw50J+f3r}lE zjuGKbUpc7};dTzu2_u5w$S8p^Fgyx#WHpl?!ZmZ!oc}7r(fEQ2CEdMDf!>)KdL^bRLBPXcAV`flehiEk(5NhnW%~#fP z?084Ik1*`Wz9CpGmD#ssN?pB`)!DV|pX&z)v(<90udA1hpXJ;-Z3Zd8s&<-Ft-mGD zIEd(3@H}=EdOdQj{W->yoUiQEc(Rg1bi#PD{YI)`_|r8olk${PcSCA$`J7_NU%+rQ zs%ks&JLnrp$Tp}e@qma1bvcY|8Pug5BE6wyS8;P;BSkb+@nsfd;9|%Z;8Ialv3u;f zijAaYYvW!#ETT5A_ttSMt5~3cFRO_T#z4kLRZ&rmu$Fj!-9NmZdcd9z4@!z z&)FODlav17TK4C)QI%3*js9Neg0-l{IrZ0~7dAwETK97dDm$~7u`2;7A2q1#z#$S# zpW=RyV|dPnv789AA~RIu$P&0nPGa*1G8~N%`ND>vN*-3Nlq|*%OEir|FtTMDM{WA|4YvDHJ}qM4&_FkGHN^+$sn*9%1LkjZ>(q849JoHzGvEADu9=Iig0t{gh$?s^jGUkXkC8x46{4kh zKqx2rnXj42sbconRF@b=WOJ*udn6x%73-8+i?)x9qSM-yW0d%yuXNNX@jedG38Ta) zma*X>Uxyj7riZV=C32FQ{}jW~=#bk-Ml{KTs-=am;0Gm|#TQ{@%Pc;}A<|n~klRPv z?7qMP!RB_0-9N+Spt2j^KGMnYpYTHyIerF4Zac@Z?IUfT=dKUtc^d}NifaJ-EH<}~ zbaK5Fet06+GhpNdu01-pYW|`LctEJ;{~lk_%I3c=-RCw(_UAHs_kRQ)6`i-OgpW!PW)&5W85S`HeM@K0e{r@d6Csv1eGh8Dlt@+gqN8>|&ZHf~mkE#ZM z_4rYVhOq`lwhW`fA<`QFf z=bXjw_6!0Ww5j~Y*B;y~&%=*RWO)vZ+;)~@YYz^lmxnXG46X^4X>;wt&Gw1-@ri6N zfsqr~_UPbh2oSBn140b}-}5ymIRxyU?hr7UU(>tS9Ik~0>r`89k@JDZjjcIgiw#%% z>PO81S8<3=m;<`C+>L?Y9+(xYVcZ25%SmkhCWfOA1mZTP7QTHcaVLIwqKn)PBU>(V z8;3}5GMFj%aEvdl8H_*8Lc+#!i}9!6!cZ9(pFVaZVe|eZ9t4s1$6@5Q^S-ru&rmyE z4DKhrIhgzL45Ag|p?$V*YrHV2C1UeG1`mYD|40})fq#$IucimlKs+GS^l*i*kmdC7 zuXLw}ag{9F$U0Ze4r=QNCmEu>WiS4!jERkoNdX9})O ztmPl|u&6{(T63ze9@NIMN3yf!Y_Tu9A%6pV%QJtxA)k%ME96s~+E*GJ%Jfy)M%m@e zs&Zy%Kq4N?5ff*L^xDh#dMylJIS-~traY#==w|hoi5B6~IjPQ{#c(vXYT_#h_3-O% zayI*Wg0$86k(;_ne*<{{MwYc1SIAYQ@X6p`| z?Il0Nk4^NFAHc}6FzT%RE{903WlR&pysDSM^@t16v(MtXi$TOkQqL3E!L`@|)y%+V z{C_YnH6r8xfsxzJ_$+lTlF0f#;jHhq$yndoxDZiU*v#*aM?qwMR~R{gd5*8ORLjo3xZ*wK|(g?J(a7fk&jZA;)k~@D+?24sskK z@j@fT;b07B!RQs&!#r5M;u^R}PAc;kF&vGM`nD{bDtTBnxYh8(5^ds27}>Ik%Q-}P zBSC#zmZ($)!(U~gV6(Wz@R#9&P#M;?WpVTT1^nPdp6`W`6L|LUa@7umL3lu@cCgYn z5!nvzPq!V+7%uWr9IfJI zUk+5O_!oyrY!&Ibi6BVJ-!PT!FG2~jOl2N}XvHPQB!;7rQxl)wa&RbPP(5T09s|)^ zX2Zyqx6Jf~P~IXG733{{_tmxZmd~fVBsDf#>#pR^*Zt&NR?1fRiSK%MBPdO%4i`Dw zmviMJXL5){7fEs89A8h{Fpo=NHZ1eF7_O7ELF7veN8?1UYS$yTuTC$-k4&_T^I>Gm zGS+g4^cuw!v5r%(mcjE~EE?>rvv|G}t_hWA@jR6tzs>gT`0*3izF}n77G2SQ@;66! zwAA@}8+?ei(>_BjMNH4-jA zSd2167GXU=txY*bhpk!A*gP#2rL1Tche#Y9((5a;Too|7%aJfiR(ClJE}4_({2mNP zqes5X=gPu1nS=2th$iz|7}+wJ*Z4vxlM$*4GMVWiQ4FuhZ=LQ%$aKEEQOvUM$ge1{ zy-2O~jf+@5*kt4so_hx|g26-&ZPde~EpJ@l%Ybs1bsVAt+$Ew%Pv5YX55x3W)^a0U zFDJwKs~L`NEwlKoG%E$$SKg0@K=hUO!pN4d+~5nLd`0Lf$XA9#qF}!At#lVo=gNiC z?7BX-(J}jcB>S#YIn(EIn5S80t#Fv-p7+

RTgF5hu-Rp7JF{S#*p zf|<`h(>0&Tx#)sv&3bwDq&-i(2o|qXd9|ZG-6mIwA`{n48-3#MNcc370#g2R7>7vo zmlW4n87nGv!&0&^E0(3KfNSL>Hou(V=$0Zrd>)V9Hj!TZ=)?);O)#=$B4==j^sb3# z$hFF3zOQEyVLjjC`x>||RKCTco1KHrdJT_($oiEqa@$#-9b2YMX8x<;%zqiK4V8JZ zi@rM#oBc1~aS++R7e-EC-=piR!9lbR4+yp7da!RIQ50-&_&~bvAk7;pv(GKCv7u1d z=*sIWEH%u+oGPsOUbgU1qe$`f*Oz@+QDeowI7H%DkzTLaHn|SQjIsSCC}CF5na3bn zaoIA7;pj7lxNJ$z#de=Lcq~NsnGGXb?laRDLb;DnSdjbt-B;(*eO{Zc`%G(Gw)B;X z)ePI?sH|POoXd*Z3dcDv?9xRAr%BjxpXY2}6)2xMlS3r>Op2E;j2(XY(n#O1mrG%G zEPJ^au9vf=p zYm~q+nrUxEX|jx_n?bZSW6cH_0OiFg=9pBV=uTRt<|7ee`r z&{dGn{N7jH(r30z_gSUx!QnzRH&ib5Wh<3jQU46da#qn+_{*`L{$j?aDc9jF%X}4} zoaICg(E-jf)kxm(lqyV(uDR-@e`O0%Q_x~>*ThM2N;gViF`Gp9=YuqKg5qr^o$?C$d+e(mqVmC zeacrO>eVuM9&ssp)>%AvF^E=-oi@+$S0n22+id?2=7ju&2aMcywqtKZ)GKB%zE3#g zdu=kt%{LkYe$9IL16Il0X>S`_!Ey4prt!CWrD_?n)@p8JW8I$WzDfj2r zBZY_7iOs?ISh(@I)WE5=ORs6Hp_P7i+FQ@uyC-{yL?0p~OHo!)o5?;V! z#xAd22*79mlNTNIa$sh!f^D7Li86$61KlA!Gj?B z%VHSW@|Q)v5XxVKrh@!shma`Py5&#PUALUZ{Uv#?sH<5z*kt6CUCs9ao=BF^PEl9+ z)?Ycx6&#`ioFyVh%ige+yI^uGTe%Z1my_T82N;fSD`G2JGXvXGZpR}addh7uvgIka z_(CX85o!wZl*>Y*V4m`5y6-a0luvM+H=G@2Z%ReLV*FD#>0*oyDWBJTS0 z02}dX@^vhLJm<@Ta+W`Ghz@WTK~b+(0K;6Sy$z+vGM8=!flYaCb9sf8O=G7fW)>HV zGKjO)lN)#tM1L6vBU}D5+809ki_lb%zx>`;*-;eCU*@NKO(ZseXyPu*Syfx%E=vNg zh_q8{qt`>re089_!!taJ}5laxTNsokeW`p`~EYEk!&8 zqOYumku6^t@P$ymBJ>pGD@#J6V7_vHy1p`*UkmZImKB+bzQ^S~ER|MRitjtv(HtGE zG4Q}N#X2UHyL{`e+~iIU(E)A}k zKRVGvegGp|9`apZ2<0I{ML`~Ndq@<_Lw=R+Q>9}n)iS%!ThXp|W?tSJ^EkqH9+5F= z0(JPtG!`c|uS?M=-{|HLiN2BILtx`16NYCT1ao0|#sP4d+@7%$!_g?IO%%INNxI~L z&u(1G?1vwiXcv3K$d+B~$sy8PcJCIu9k^M}vS6@wZLz!pE(w)oaSLAy-);@P_~D6M zzX?WeJJ-|I{swNouMg+@8n`S}zQrYlm4eNA4G)3H`IRto0_PsRT#W;wIe0**+qV;a z6N#c=s2ct1MY5Hj2E+TQ6AmJ;SwPT_gqzm+dpiU5hbJU!$~gPIh+#~~6Y zh4dQ9Oh*BXq2VQ%BCDOe2v^L>a{g(CqYn*YE!2^OZ7|Q{K@bh*Ss2+em_PVJD1#B2 z3Nn~)heW{)W?{P58&mk2MJC#D+p!bwYp!UGwJi3%@L<>OJT}_il>4x71Ft{!;t(C+ zDiJZU+zmrH4JO7ilvChhxea9z!_f^zyrH1SZ+pqf`07$sN8B%1?xr zg8ZZw5(V>hO=3e5;s|NbJ7WOHopn{Xom zbh+h5j>st>H>h!$>`t;X%+4&cvpEn%R6wvJ2pd3!+UY(@*`ny1Ki$96Aj@GO=S!hLx?3(dH|m zI)##Yx>qw}>JFq-=+ifg9m`TV6dl9&_6eK1cuZP#IvU1NzQ|R> zIGjr)HjFfHpU6=g4dW!3h1D=tz-e+fjBci*A(6LF8n~=}u@pZrv0wDT%2vPV2aB?M%)xi+1r` z(c}SXvyQ_EOkqJ{mROdHG6EC1#7Hm#qv}I8T)>Vn1#5oT9?p>yWN~Arqw$DZ`6dbu zN*;A#^O9j3{HVkhu_df*wTKUKiS#VMc(Db+!8gw$37r2I!TF%_oyhsB*zKjH4*b|e z%AbanGp9UBZ9H(0J~y27*>Fy%q{WR0J${>Zgdd+s`%G9lfwsq-t)_i36?jOfX@9)$ zK;*Q)Al+%7y}ym!fUuViA7aD6+LE)wV zo1Pqlu(|Jt2SMciF<3c)yT|0N{DGJ#JS3DqxW~6)Nq=xny8b}Cw4zY%ExA9>yArNk zXW0e4v_eKl+xT>rZy_nWa0Zu1vbfn@zEPo$qg_ZYbv=OPM4E!@f%D>Hx25g z74Z?+J>@z)0%A|O23EFu%2mD+s;7u*3hF6e3WmmJpwxAD<~MNn@nU9Lt#wcV;R%CiCDid*vaEB zY+eG5$B$3!C9SZs)k{YCN~m5UDk-R!{N1;nr9bIRcO&I&*-Q8yO8Ll#V|VtUEVo0^ zR1Wf7&JcykgN*G|9{gPuz9pfW%Yj^C1T>df?i?7Fr3Qntn#>7s(%hEiIHsdF8S%X| z_c(0hQpV#THk;#NWvkhA`%0*0BPuJX+3Xh*1v4)F=^B?gef_D&)1TTSO)E|K2#@%mz+GU;?M>R`OvDuAA)!`juk$T$c@;D<qk%(*ZeYu-5An)Gr-*6_>M4suqF@(0C#Bm{Cb0b%wOYQ~(y_Rd)1MM~h>c_@ zu5Y~G&?h1jfob*XxTbl)H|?sG+{YynTS+>3Vw8A4|x$*wtC3(Tq3<$W175niDk^-y}?TKEVOv9%Or;4dd21~ zKE!8_!Jawh;xQ1Z&w`aRr#>s@=ab1F98Uf~I5*TYT`ZEi$6?do508UL|6{On0)3B3 zU-6^j#rkZ;XNO#+>C_QOZf2 z!6g!%M0(T9jQTrg%nTS4%ndLkYl68RPMMQ)@f%D>Hx#qQ!l+{uc9XddkAm1_u7Q=U zCUcdqglaOPs)Cx#mqMao7bnl8``wdG<$_0FcV!v7KY#3*>bFB(-BwE^^keQjeteGv~`h}d@-pO^bamE0$R|^L?$s5 zj`uy5MZF=3_1MA3WVfgBcud6h)CwzG?P-*+glbQs;)2@K-+k*|dZ20PuANM-zl&77 zLCf_T(nDEJhoTYrzTS(yz*4^6i!aFzz755<22|HMkV_Ma}lN~qo;X^yVWs+b4{~zRr3DkA&ECUWApcrt`e7glamXx`LX{Jt0xBrqh?M7n)eBvX8su zOMUFK4CP8$zr@=1oS|tn3p`y9i;agSBGXFOadov7i#G7;>cd=O1ay}=7BzIEr5pug zv0BREaIV}fWiO_qaf!qmbhYs9KJp3t@WeiH5UgzVkpp}sR38y_6x2sH4~c^Hku}oo zBNMoJsrB@>baWN;k20)cBN+<2vX^HUsZZ1_FdmmytBxLWu5Z?rLphsEjDQ|eN75L$ z(Lrv3kyst%$8e_H9poyeqfv<_HLr*o)a1bzHrHf+h##ETKfVtuTm9p^z7nc`h#Cs& zA5lmYtbZJp?#0izzFKZkiJ6ez$};Vx%x|%A3`O_Y)3|+5K;C1LS3W^Z7akJozVIu)lU6+n<`dRT_d27k z{`%&^QnqHn_i}4i;YPS@oi!KvKBdQAcFH0nenIjE-vUx*;d(BSXcp3&MHmz{a-)|# z3PZ7GkcZ(^Ik^_^Vmi88n9MIV;?dhZ1#jR0v|<)^TiF;gweNp+NoTw(-t z6oIHiOMuZ>c7zdGjb(c{V@}G&jhT+#Si~!&T@+;y3!7^h+u%VE`^%QFvejQcRrf{xUu!3f5olNp~${LQk&N+1=7{{IXniNuOp>ma&mw*Hg}l^R_5FvPNK9$vW0E zYQAY#4dnzbF#;M&TYTh3C%FiQVs(-W;8Z!e7Efn78W#B;fq3+`MH#@4PHZ7xgO#lo z@>O36)j~uS1+|cJNEEDv?3?ao&PN*0()9J_s`Y!b{J9mjC8U1!Q|>Bs=GpT$OLL|E z`fsk><+>btoDDhNYg)EyX<0Z>{DAmbOZ=LNG{(NG64@<7pUjLu*zuX@G%kA>1ocRBZjj=IAIl}q?S9etvwN~?s^VNL0 zGe1yVHLsAoMC5i6`yB1dc)g}Uz35OZ1ltzn4BnqxA6d1+Y?`FD!&OU%M`ZO zzx3R}(%2)D_`0vsxJCV?61%&{KOHT`D+*NgNNUL!H#)D8vIjlGDQ?ar>NYFg%eYa6 zCAprSoaV3gV37<(&+8bx=hbpGhO@xFBsO@V#QIZ!wPjLs9g{!C7*5p+lICMkE@?yO4w>kE`e`#E(mCE}w*zWpL^=KAKCU zN4HHrZ|Gut4vPglA1%f!;fzoji`Bn)^!7Az7JhUh=`&#E%t=pCcU_!k^zGraZ-ui$ zr7i9jnj^4@-;75p2h(D(!H3P(|m}KUq!Ji zCiyz#e3xb({>O%eH7jTBMZWv$8_%JMC}TltQ2#OZk*9bk$Oh;SwXDrHpNi+GruC!Z55B@;Nw7?iSL+bTlN<1bzY1h}^a*pT&<% zY#Ga8WvgZM`%0*mA*v^+WgHn21zXQJFkPE6=7j!SxmGCY&*0q21~C*JBj@TE@rBtf z+0AgT6^&-tS^+zH%I&^9R8P5;OCEm zh}>=}Pvb`>HkBt}Wvi(?#wF5Q*O(+$1{&EiI8R!Io|hKq2~1)r{HM)Xd>m4b-=;kl zKR%K6XjnOO+SAm^KmzgI!inz;=Y@J^i}#t>W3Z|3fX6_jz8$QbK;2{3SH?k15grn1 zedFfjX0>X~mNi=H|6zAhUAIu>h~!1bgX!K8S!YSU#%>3fO7ea&Tj?mU_Xzaldn(lx z+I7fDa4kCv(R-q*#U*9vT`Gkw$%5|1q zw4bL>Xxye#(P>kY!!KOmTS>|<3~-5&;1{M^<2PoL+hIPIZ@3jsm=kgFTBf7HiDrm> zTIJpn`veNR+HDk=3_;yuy%`UI*jIi8D_ec#2V5dO|1eujzk`u~frW)Rc#HgVaB`^R z*Wu(724c@Ef5ihK^8XX8oH_q_YAPPA24-FmTm#dX#87xi`|Mwz*T8B9W7olCJQ!jf zw86>=b>LwRl)n%Yi-&~r7hm%&Xz4H3PS;Mhr_u) z2&ab1U3^~1ISiZq{dgEe_V>cd3G6*4d*v6zq~Rf<{K7%L1Cf5=j&%1~jq1sF6>|E% z%qbV5eacyE(eOPtCWF@IE638rL^cr2Ys;ciHex)N7zs9Fj2N^rr)&?il0#I_jco&G z$%(tT0n^cl$mhl+EO}hD2(cx8Tw*i%5Ugx9lg+q9dgehsH|Au#h{Y1<8#>^OP#MRc z8%rYnY5eF!(#OKenUjt^H|C^$b~x<_&I*;b`P^6%@iXxVh{R8al@o}2%<{@8h-tw? zLK%ft-+@S@@NT-_+-}Pk%9UQWiK?3K>SynkIBlT*7`1qc?g2IwtU)>JE%N;|f(We< znKlPGT)}<5iC3=R9xgEwT){+b?1njb4dx=x6=e=yfs^G#TYQ@7Xkg^G5w!5_3yv4@ z!xQ_+^RTkjNB+ho((?$@#nri%GK2WKUq{bGi}+k7fthA1adG3@F$kOcEIbGz_vx^5 z=GdKQNsAesFTA?8ObLgn`)nKZXZF@>l*rOduW-%0K+lw}DCj zP)Ya3gxdJfm2cdaj(do+;OcdjUhu{T6`eL+Ief$!zLlhW#Fx0lNbnKOjStQ78#BxG zFdu7XxeiX46LInDOhN^nWFLq7$aj(`w{pFwaJFwc)#6EE0Iy+C~ z`;Li1pA1TyupDk;Z@405|4?pX4=ynh+{D<%u#GlSfN5A$$znK9PN2mjnU2OpJ`diA z-0m5j_>qY{<2YE^nmZP9iS)dKd>*`!EravRC zD`!qS_B?naV+QfN!-?Ms=Y>k#d>*_p2Alfrcnn19x5CN^)IBD3@nEXKaR&hq`p6_oH_MbYNdZQggBb~H&38%dyoE7RBZSIUrBECHy0g?DNuyO)%k6B(B1u-pnNGPN5W8Wqv zjlz@Z-g%fOpBk=zgREMpe?v9#rTQnr73?g(=&-=IJ2V4TZ*mlX~$?rlZ>kap$w~)VhnR3`Tj23-Dlw{bvAH zw))T4d?i%>5j7Une@+OAg1vI?$#gGNM%SmByzvazQ)~>_qKdQTqT^hhW=P(Y-H2MN zXvd|>5zAq`wsL-`MW zU}8i0H>_+mlz(xF^d^>xVx`bc`9qhW=cGk>GbS+et075jbP=> zSx;4KoNnI7hVwoOP7C#{7SH=zL$Fsi5643wGXDguoWR^;wpWHhOb#9r>VoBA-$o@b zSe{Auf@MafSA37SrGqVMw{+x7_Iv0qglpGXcu{^(|Ip9A@=>U*aDAvJ?laou-)nCK zUyr>Rx;A4uOvEbRQd1`4TrM#ZOhl7kJOzfM_$kcKnrm)>bLK38;x$Z1;}gy1bBz_DXk`)|Adtp_hG}BUh^ymbY}2E7cxt8}|`#5j%TPw6DvK z5MG~O4^KuXg3~56hv7KXw~&YqF`q`Emj-b}}7}O(bs2 zSO8@N%4nQ`M?h>UWmws2D#vq)^o+(VVKmIF8Qia8Q3aZeE8yHvxr_Zf?s3>t%B6T5 zMEV!Q%9+z&M@`6sRKP>w74QI@A8G{%o0&Woy9(~ZVwH1G^QRCMWRXdQ3+{qHd0GT=KxmRD2jeFtMR*4l7#?Wm7JZ zo~ckbM;w%oW5EP^iG^@VsFaPHBW~88#1BtoeKf3`Icxpqh=cdaaNcLZX`%9V+#GQ; zKLZbe$oxyNasqRY*;(Ox}5Q*;rD<=^5n8TF~5YvK(gt7s5`!*?Q15QkL zkHo0X{vPw`uP?);>a4S2eELfUtxZb~qi~vUQ7NPF1uiinjDi@nVHCatv$7_UZ^Kz~ z;x1mmbTlH;C`efHxXLJe3qLNgnS2vgwwlRhTq1R&;AH#<77J#}EyllxGeTt?HwsCl z{|`Spk@W9i<;+RPjDnN)+E)bA{s5C03R`HO(WX&IBK|(iB_b04AFP}}++&tkMnOyq z9umqZoZ>qWX%s%2fl{T7!R;m0*%7g z;EYfin?}J!`m6ZSiKM>*D`!sHFbWp!pNG@F1I`MSw#z8Ei2oFifJponSUG{X$1Jam zf|wROB$QFu#djdmDBP3ojfIJeEB)0%zRI4rD0f!6^e^bNd=u?Z&Vq|R=6Q!f#?}Z; zn}r;{;9cL;D_`&qmlz4YV3Iy~!yjw}laZ&3y5q1ulNgH2j)_c1BNK^Nnd+fp3p^`xp;WSH42;j0eBQd^83Qd znUkNRb^@-J{>kC=PlU5Wr9aPjU_u{>T>;DRNQf0sgOw91z{3P6A0eg@4+-TX-twKy zq>mUgrllou9!qR&^NXzqw6tti|A^lFVl=O%rTeDhO7^pGpxBo52j{Rqk0y(6K-E9Q zmt(KHFE7!Z#BFf(I!n*{Nr~ncsv5y*GnT_k{KU78l$W@POC&N#@%;`{%;6g|%O7Dn zmYaAA&X*H#@jj-bv5`+om?N-z%Hwzh#GdjftZem^hq*-JY3Fg)mDW!(G1;g8`JSa6WhiVSlMbD z6MZFA+Yt2=)HYuAtzv0QZb{dc$hXlg&3D!+Y`>QEHo8x;qz*;<2zncxh>rF)x}$xo zKy{HLxI|(XNpTfJyp1k4e50G34AZf?$%$~j+;*hEbo6c#dmCMB1a?zdhDShbDm7Ty zYAPpiiS#^Z{B3lxtQp*|V^LverN#XkI5$-8@q4WNoocah*z~W$;~>(%0#?qPe(WBr znK`2Z9t*F4N8tQWE5N+RYL3OOf`{-}h*j_atej8<9rotcx^?maaA(oYP5klYcJZz^Qxp7oQzGIxg6IfQ(3&2=ayBZT*V|V zk?1PYn_?y#gEuBm92L2VP6T= zPDCvQwUY@UQLyEWx6-{%Y3*h=KPyYBIb+KP8wF;BoRv0=_g_`qS|vMrOusJ?)nlq$ zBC*G$c;zy#Ic}r9TnrPl+RKG-qMXo+XD}TNid+C`hHf{ORrsNajpbZe*=j6jbBPou z5^?{vnJ$C$JuDpT+_Xsl5>5)0bo~Bna{xB)yYK*rynhBOXU;oz|FxMigZZ1`%wLBS zLuGE>e{BxJ=Kd-k1d;nouyO)-kJ(=t2r*H3NT}_4w^xawvX$VlO!uR!or4zL-QaXk>55JL&CqSeJL88YGTs4J&YbbYy&Lz9 z+HKA~;hc+bN~oO0ms7OxZPrWh!xLF|!O97&J!W%d2*f1dA)ySxbG}oNGz62=^6nW#J8M@s!euE#H*f)L!D_eczZZ46Y50DRjHPdB~{vQh`&<*?t zP70ND{Ki9b05moOkTTLo;Ot^UbaeX8u7YF%=|Exm93s}3YSRF8%&a$5@dNBoNr;#1X_b1!#SaH7OyzfW4^Fk#)(|E;YV+=O+KjJYEsXqlPCs6m8)Riv~Q-p_v@&z5f1ChSq z%yf4&Znn6;+*vDB%Irb#{@&h7wU%ekgm>ka7CQ6HFy!h_hF*n2HV9C@`-ri%yw}b-6^MsYq|e*_4zLqb=`t{O9u~1v?G7tjooW|f3Dv1Y-34{3xgk-oz1Q!h+o@*f z`ug%!_T~!Nr&xEA_r0|np{KJ^VcyDFkI})d8=-{GB%*8v*^E)EZAUNqqAv~Ai$2dK z5_?gK`>rJ`D+@;ZxfW(+wV$iuv^jAXS1}z8QM3+kKS?-cAnF$Bm3Sb;hI2WrY&D!q zxI}uB(R$+YAt8B26+Fs)Ws34 z9@hL$a6Pmz3C!40>*0gOwNk>6?3#ENCP)1c;XAN$LQQzM31vvctBv_KM zjbR(JPafuF%|46ZJUNjU4`n(U6S?Nvh}>=}9r%%n6V0b#Wvi(i%O%n?9dgaJku8Js zxh$GMmvJ_n6DsHUnrkC|n|6dBpGf;mSUGdru{GC5#th;=3nzXXoEIu_bIr9e2Ald% z@EC~HZ-SK*sC&%%$~cHA!b3tChn;)}B8@{!y7ywobXKa>&Pslu zI5fl7CMkz;_^&SyWgOn-5+lMmG=^=omkqv)^0JJ>x=h0RGG*1omNi=H|M_w>s+wQS zK6N=zoWKM%IMP8hhG2J>xp)Y~?lKEjwz|u7E|I!}Xk^O(elUv$J3%er2f{gVp5qSA zaRK@a- zau8y!@Q_dr;!WQfOFD?1({&JAH13MEbo7^z`?j~j740m?=rgX>3BuixM%?kReeT@e z>|1!sVf=_oBsz@rW}W6O_(76lG^eLwl-6|g1e`@@H57ltbadPCA^qNMtVmt7Wnk)N z%42w7#E$g{tZa3xhkPYe#}c&{)UkdL5(T?^dv>}Htj^{iJ7YdI&%QrUW%q8YdG?C< zzQR)d6&UMWk9sU;MS9=8t$$3b8DuO*t-2joJhNHcn3I=frTWnfE-?c7Q5}^l2}b|< zD2&SLKfA(NbJ8wu!E`i2^5$*AKx~J!6CMb$-+TmCw))Msz7ne6h}sJ3H&a8RVEyKp zbZ^eIi7#r_`%G^>r{ALa92*LDA?GZ+Xo05*YJTjKN2V37qqTh2H}R^qEawu5ttG{c zArrN+8y)2en2Xg>E`^ijL|a_RbTlxLc&=6p-|iz90;M} zmNJ9*11u!$OtgsK2PcL~Ts$x37=+FJ9y|yl_g})wnRB15Hhip({eQ#RzYQmc%3f^# zN*IXE|4lp)BLCN6REFsEw&(AIz9=f$%(VLKhx2WMC1AL zM+28Uuv*?Y8b2_xT^s=`TkYadE|H#1m?&mgH|4WfFo6c)3^*lJ%EA(A;oDQgm+-?A zS)U3kC$RSD>uPEcjlx4hO$}T74n$53W7A!HA0-}~*KXebh7AF$Q)iJyyLrwGG9;}F zIVOf*`DR*OOWw^TM#97}Mhx1R7hZx%So6X^;4C>|7XQF>G$PSBJ}*dE*0k_<{J6wc z@fTRxY8B6NiS(w0Hqlp|jAwrzJ=-kCGnfQsk*JI(bH?%L?MY!Oesm(~Nw9L}q^GFM zEGO-K!fEdfXN5{zd|u8RflYi5JOU!|-C*Se;vRFjvH@aR@Q_e8;7;ErC2hbS>Dqu+ z{;AtSd2vN^0;j>%>MS+yH>%XXo63XIW*&zZ_=0cUC@*jdmq_#i=}i{(&kplZ8)o3! zFbr#=_!gWdC(q&l)6tN~t$B^e?UwOP{K&+XaT%;^wTy50N~o40swb#roD>oTyD9bS zloyps`Q?4=6$@I!c#e%Be(CV(ZCY9u4irBlevT7Ai^NYC|8W*rbd2lLL4RO~9lB6n zvSnfEiuT4voLs5B{y*b?ue}~3`+Mz;XtlC!bdso*-zU$PJM#m@Rr6X}ihng=3_cK1 zRT29XTu*PVv)0j@tLE6pwR*dy;-9!;Vt+~TzE!Kth0$Ne-+;1{Lmpi!)biC_Ne;A? z>BQaW;Hh)gK=I!!VHz#D64f9nPvf`QUlYtm;RjxAk9ohTye6zHQ`1^v-&pHl>FJTl zY2ixgO(t?d%1wM177TW_%AC(;|4`(7M>sQ7*zpCaMC9A!hbJQ623D52*}9pVv{_G8 z&fU$sn}rt0I}fLY%6kUC)U<}suoCJtUxbH1WZnTQCooq&VDRQAJH@y~{iPDyt5k0o z+Kho~6;%m7!zZ0w@q9L?ojfqVNDZfWE>A`ArF1Vt+7=f|CH9V{LT*W=%qEo622LF~ zS!UzgEF!FUos}1L4{9xXa^*sAe<@dglhmO8BL0`#>*1^DwaKetHHxZ`zvWwQYGV4P z!1Uh!EiIeXQ#HRBG1A>P6<4yKh3tQ>d4T&*imge1(3bQErS%h}&SA%jCTe3hti^pW zJ8Po32Tqm~fAMCfqk)l|VYKk=rt?eu@WiHb7p!bGou6@u^jOQyFj~qC;%~E%u(Q=7 z{wAClD)IPc7;O+X_t)_th}>U=l{4oa+YFz0NLa5J*BrOeXwHC{S(D6{;6ypG7yFow21R~8ZngO#n;@>wpCo~4lApJ=AbApIj2PN1Fm0h|;n>G=02ngg(Te-96U$oo66 za^}2a-=Aov%wYbfaOTgziJ>w#zdz9&gw6d)JP0E9KfuZf+&$)hWg)~w;US?c#HV}* zA}z$r=`K^ORm&Z(yNC6Ei1sIEp+z0T=pJ~`+8pID4)fSRFyk#tN*RYaTw){`hf(z* z8(n2@n3No#TJzom&XE&#aZ9G7@rYXa8Yl-PkE&LScEgWKY$H3v%2pfMflH)k7siV% zNe;ffERsN{&;#d#%6DRHJC&Pq5kEGO@)B4%bIOy{-2eyaOTtNC1m}cGTD-zWkKeWi z7vRSy(jI`76KH$P>&hC4slY=*S%aCr1CiF?xO8_#%qY}f<-T+Ud$T*+0MM6bU!AB{ zb1Sqv8BehxVJ*s8by0axvmjy+Aq;vaBmS4$3w`xb$U(?4XmgdrJ3Q`-N_mGzxkRFO zNN<9f?nr>)B;JQH%2P}^iT}YFb5=s}MW&Q&J!ls;uE6V;9l69v=s}JI z7(FNlW3+nEXW)#vd(c5l$JK)zgRpzhr|=+%J?I!%+3G<@`bwxCBx)+C2W=k`1?xex z(p@82dr7XRC#U(I%h?Eq!uK38sPCz=?`Bnc26a5*ueFOvwc2&Kn@fE2uiVW=Tq3cv zq_|sSG#|6kOzwvHSk2^4I7#ki@_nYG0g1-)OJ{*f9#*Z5+>RfX*gkHBm96%1GnYuu zx=v_3uEowjgYZ9DDA*Zj5q=p?2$k@p*y2b6=NIsU6FENzD`(DmvRYkmoz3%p6wG=K zlfcXrm9@BKW(>f#1vBvgh`gu4$_czZ=5%EX#Dw4>q1Hz(@GV@qKGL1;rO8CLDpD)t z*e1_@_OMy0OEU-#7J-r zlk~wGlglYEJ!^6~3C@ZcaCWHl=W+T; zBe5&sVLTFI1w05VCscrkQBYn(Od}o=%4;0%I}qtLwoCV3%m)fvY4&2)kI`o3thH$2 zFxm?ivNmx!EX8y-49u0wa#EIJ3YQoOmSU~KRz_3V1*Rm2r*5n42xrI%y0|IR(P%`Y zc~fDKSlMbHTXKo?tixDg9W1upERI0CkcYEDWji5e7hHrF;YTJC z?tqmuC)}ncR*UkgaLVVx8KF`ZZ#0TWZ=cI&<3}fwj$q{k(jN1;vI3(0dq^lNFwu7) z(h9tp?%jw9(#N)RSc?viu#sRr$ysXAl3{cO4HwRX*JdP#KX}L&jq(Q%aEX!N58C2G zH=M#-FgbZLDW~uToGT~%;$N7K#w8McCLX=rXI{gPPV6(Uz{*yid67$`=NYEy%MJBX zH+XM+6MCjvyfiVC4k*9>zd<3o&(gNGNY{pKtS$-eQMzml@jn%hlY{JiDb) zD0k(TYfBF2z=i9qx@gg$=Atj3t9Evi-iX!so9!}i8MiinIef)R-}+L%;w&yP5`4u( zZR|$7xe=yjO*A*a$#Q}(UdD7ZF!FU3TKM)Hb3J}|VwbrNR<^p#HC!S+XCYr#p{2|q z{wxa#y9ls|KMf~_N<99$3T+TJ_b2cmh}<88l{4oadtHT=HiP|yn}gYpWfDVSEA6x0 zd|ib$5S#yKJP;!PwP580{vOsqxeGCYct|LBafWXpOLuX5x+@oJSql~)hwIhZXomG! zQ_@1k{=Oxp48=ZNVk8)fQH~4N3QWqHRZ4JJ?3>~4a8L7A)&0n-o68o)?m$a_fk&jt1Paybkw@5`Mz$p zT*@x~wZ(@qx1jCGS#eQm(8Y)N4oPe~Wqk`8x`iYWwj~S@BuC{5?sSn zYy8H=$rdm}Ia+m(V?LZPXBiY{G93+0BwpET4Z*%F*#r-P*n2jFm95^h9+ybZPs|oK z39PgkH!vi7mKLl3Joc}y^%VV$_I4!&ez5pkPS_A7F z_dTq^*mZCU9t^P#PJ)#a>cGQ5C=Vhg77q#KLEaDaAeW`4oFyml;@M0`BO66t&KqZ3L08dlDn zbnHvWPTKE=(|!le3YE6`CFCUHZ{ZOTiN66WClL3T=ap3u(}IVDvI@(52O_P)F6l04 zOfOYB>#wI^_f&c-<@yUe%av-6<{Wmt741{bvWt!z)H&1--8bkB75=x{dECvgMbz3f z};j>Ur@cAcYOWvlBP?kl0Xj;N`iuCr}O6zpwzPo>*+TD$YPrG>sim;PCSOW7ze zN93%wVf`qPid?H_N4L4ymx<~&7jlWjZj<60^u{&EZ8Vvm!_2HEa|fI#C-&m?OhD`(C-_EDl{$_(ane;Uku7L&kC7nQmBQKIG`Z0^(XAc)+jz{&~SJ?4L9 zA;d)CA)zi@R{0jNyl^=>-8IhH^)C+${^IXX!UgQCzUYKOFJ9u`6BzUwCjOV}A0KeN zHCmg>9RA{H-^x?|;s`F0=r7WndSCliU*fq^F>0Z-}>b7sX+{T80Ste(-4eL!88Mao; zj&Ac4UmB|0+{7gkyG@E$Gh@V{jrQ_Kn3mOEo`SRF1YW$4>1agcO&1AE9#<`qJdPii z*iIgWm92L2FqcSgGLbi3oQ%ichMtiY<5ngy6o%Gj9KY$3M0yl{bRy|BVdcz8$8Nef zY3~$H`y+5xsAsf!(82=K^2$gZ%D#+8)B7GNr zbRy}W!OEGFj#&jK?Ki_|zYb@GO53ywNyJ~pBOnrg306)Z?lI3Rt01NY4+&)zD!v1e zR^hsIt-@N1@-_XlV%y!0wk2nkMTZZ%qKSQ0j0dVsL=J1PH47fQc9LbJtU)`M7zx&3 zRDH;XF*q8gBL}GVTpR)C$O*W(H`CF0$nULlQ1YnC795HnmDoBChLx?>aUhpS&lbpc zU^w`GiA54<3QmRdLFF5N2Zo#S=kQ|_DSsAL&YW`W9T*PMKL{uNJvb*+(&jrb+_b-g zAD>A3+puy1ZI8KJ*#R*Xct|Kau!ZkHq#an5?p@E;u0plY*K!O2dD)21Ra` zYKCs#vz&k*n%GXp!pc@V8OgnZdj#oOuyW43)XLS*ke*oBI+x2qO0`SUG{a$DFThgP15hB$RD< z&Ud7a+IvNpq!$HE5$5kr}zrl}7Y$v~hm92JiH^XC|G*icGLGMHNFx1j{OCl||ALh>Cmp-t;H16T&w^=xkVy>1wSav_n>QSih;M{P zKqS6CteimHW1d%5K}-uC63QxE>07$eD$GyUDon2Bj%QDS=1P_F685va(5JbEZn$cl z4JIlMy3*kPlFj-E!~jJ6+GORh4|(5GQ}$sImlz55f%A)v-tZA$f%(bPO07VA8BUk8 z1d7X;j)o=@*QF*t8Gterr{Mt*o6Z+tWvl6&!X?r(6f?y`TSn3h>bJ0<0-eQ=;nYy6 ziM?4f_4Lk)a zC)9w4V^F3;OeP)@%5-%24n&%c@1(oSp{-D64^NakU9X?m_)fHUISViPyw!jvLnM|lTUwmQmNg8!Naw6tt?>cGhZ^NZ2E zmX_|DiYwXA!hvFI(jT-X{XuE{1gUeFVl+iu;H!KYthWkh{o!F_EtbR05!l2x$0HyT z-xOBPocIj2I*~|yVL0_q!kM9-;j@i}2{j6v{Ly$6MDj<#$_eB>rherf#B|{yq1?k` zzD-NIhYzKDBV^R#QlYn`f7s(2aJf2bZCLkA$gs7^%5l@<>%L{BEX4U-VkB6IF=Eih zl=3r}mSrDqgR|rWUi=Qz(TK=B6B3p@uDZqX6a2Wuc5)M}Y_*dcxkP%45OU9ilkrO| z7R<_9jQ;^=gvvO+XCjI8-|?dpN&f{_&YW~?&xDiq?7M<#&tMWmaY108(dM3sB;r%? z2#CZd!O985J?4336~wgQA)&0odA_A9t-@MkT3Qn4rNqWH-{Yc(U)zl8FY}Mko;Faw zk}9rZ*E_{y;8JyVm0`6CGHh*Pa#)2UealK&g~PZ+B9b&;{Uio$ScT8Rw5(}lIh-XY z@Zu7tqY;r-LBf*9RaT)NKQ6JIRAFVSom99);u+_0!mWOlL0SbT<8QNA02KmkCz8GlR?eJs%qlo(|2~}d|G`6C(9gRqAd4a)_$5riQ zYy7yxcG3^XC9Gnp<;uGx*Voq(22KXHGii8Jx7g z7Eb%Ca8{_aP0x@-{400_MB-nDl@o}2%=5}Bh-tw?LRp1zz5|g~Vas&yM66w{)OOlR zdko`2HUg|KIm?XjO)me(FhtbawB#@f_xrL?M&VvAF%pczXg+4cC;SU$B~KgW6aEP& z$%(u8N2a3ziN^AKoC1|KdAy7tme@*OfR(LQ@*I~)&n8R|xBp#)*Z&22Hd=(|F$v5s zQwdMvgk!{C#!7>F4hNyvpxV$3YE2ZfXWzv&3j)w03z=NuyO)# zkNI6$1Ti6aNGOZ&Yu^SXEyDKcT7;>E^3r^@*3!|NulDrUa;(FERV8j;&=Wk>wT#I~|MtZcQFZMZ~w6U-!W#n;G|!TER=P2iN$4d;Z) zS-jjy$Dv$oc1(jClZKX7*2c@oEIu_VIu7@*woL(V<1vL8&*!B?lJEx z>ma5G4+&)*ruYs-T8D$vwGNYd``LAC())%UV}rpOm9yre!l2i!{uY7_AojwYL2r#e z;>$-FiHEqvNH7w0da=P9)66?CJTGn^ye9C75Yf*3OE>#gjfLw!paF1;NcXM*$~r+hlDa45BN4QX*RA(cb$Af zX&doAfLy6?VqRMzKM$^4XW2!^4(c?J_Y9S`;co;G;cD}jV~OG%->Op1VkMUt3C^M| zK6GP_xd~=v%`rE^xpLwzev|2FTq3b8D;~YwS#H3OPV6k#!^&1?xsFSu=PIU&`8b|2 zgZE!pMA%h;#rs(}FI3**;?*95P5o&+1|sz*VCBrI&r*(JHRLD#I+*+fCNUIl(mvDY z8h#=^4x9d1JPsoL(Xes?eGe<3+=Q4qJS3ExILo(;rJMNi+NnPGH=)#<(<$B zhT2W^0&e2tzE!2%#Qt1jWVngg(2d!p3bV3imkOLKC+^~Bn2ys;#GhO?IZekzbfk-#8Ub;6zM)y_a)Ty~1mZp5lhR*of!F)V(}e9K}|CSq+aF%nEfs~ok_RoY=ja*S$& z{}ynXoS2Jqn2v@d8qcp$8o1HoGh8Bd%iyLw^Ec>OX;GfWBryL>r5v{miL58%hbOXbgOxL99kUE> z-V4Hc?+K@c%Go5X+ds`(YLlX6h~855jq&^49KC#KvG#zaNi* zNc~<|Idkgq`xLRP8RT2;4JQ9CoEs{6>pn$n95(%T@HmL{--4AB=zCZJ}$x&P)Jqsb< zcI;$)Hj5?DJVbCtsEp%pE=(eQCVq4x>C<85%t^=ITOvMa zi&~qP98TeFUl__MyvZd-f>RjH$7~pdb?-x2$@50trkKklFgxYMT^!4FG$8WTg#wj4 ztnvx7@WT>&$#huR>LpXSM0!3!zPivw_&^p4b~ajs_k$BcB^-ZsVFKrm;Rh#j-V0XF zoOA5eg)Y|1!&&#kNujbfUtO5MyNU-uQn_p>Gqp-=h<53XFZviVOoa-J_zj6;^y6})t?%{jBB`n>;=#VNE-@m!gc`WfY0ihKSzh8iI8#pW z#V;@&jY=fEgo@qnFX!OLCia(=u(H)(&f*fOdkK{4IFTrGq_Q!9HWaek&~D|AI&)w&qr+g9a>VNX#vyRhoaIp5o#|+R zqB-KpO;M8uN*RW_-|=xg3}QFhA6B-y(LP)vJ?Ak`J_zYbolya&u+Rcc$VqU5s1>k2 zuYlDI#-5c{;K2~8V`tA4_Cs< z3H9J%F_cRY6OM<3aw#A59f))(Tcqn!S{JcJu}XibRM2e6i)<8FBXd?>bj+Z(1bb10 zidLK59QNaRUk=KC{EbVD1p6_rIc{UZX?p0(`As}g@uEikrwG4;iOPWi`(tS0Bqjd;{gzP zZv!i5&U?DD6G_aw!fGAu-M5H|Nkco0PH9k6l&caJ$=*#@+~N38?N9IBf&PT%|>iY zBlp6btZC%eaEhF$i#IVH4M#MFx0E_2c~G??@eBN*#1`^%SlMbJcW{aHtirg)MZ8J( zEfz?iNq7TJ2bHd{gU!%w#;@UrCNh2nR?eL9L}d@`vv}j*1#{kjNeqSUx6fknDiAGv zoAtW*;fbv0!paG(J?3*|3B)AeA)ze6rM^WgEx~!|t|UzDFBeYe&$o1RR?2<(&i-0q zss2ffPPk~Doh9lSMvEZEpbbHrq8yIlINy3xj$t8}7zvJHnw5gQ*2lak- z%XTd-3kQm~il5uW&mH3DPX6O8!{{)VBWZ-tw`F1JiuT3*<<456!uB7x*Z*hp51aq3 z5om{uQ=8Ztwj*j~JD2m-e7Q3}P+T>SeV$|;HiWp1AAAU+!lKEYm7d;QXRU+nY{;>2 zdb_3KY_2#G%t(`>ksD)HS^!g&DHzS(JCd)m9pNICd%~%7RztC!>1gz#b@;kQgSj!9 zMnBq${WB5B?sy=p?MFK_m3M)aWvW_Bg}zz`OIMFf){a~$J&UrQnAj6?XjDWW3ohAtDBlKn8hw&no|f6$ur2W?4z zP+C7h>Kt~cNMLCU-I#RNdSb}L4zVkjSj{!dJ;yiCYuPkp3;AaKyk>8!>8w@r?3(I)_CMZ z>mE4ZefFPdttF+(qJe{>(Ve;8`b9GPuVbsZWlFQZcoJ*O2NzG~|3AO*J(g*)6Dqad zKVH!?8vo~6B-ngxHU5+NU~)+LIiF`flc8}=~O0a4gBy# z*6$4!YY*eCyt{CC9ujH|U?<;!$Tfid)4hi=itVFVy0yN`av!)(ogF3G#bp;uxfRR| zy3DHhlXe-9W-uIA{CmTtD63id`8~MAYW#d^wr`9Ww9zjLFb6qAb*;Y`&XN;l@kpkl z5s|OFmawcw(TN|I*eH&Jm1S`16kW(A(lhn)mDf(j=d)M>-QIa{MyQPAue?qoeGYzf zBI%W|a^|FCue^5BzB`=uop4sDw9QvuClS9LkAO)0R#-WKxW^2xOn{gcJS0?y+0Az# z(gfU}?gHMZ!*b=WN{_bw|AB|m#^kKC=)*1(;8?>GPiPLhjQ758X4SO+KQ6JFX@9lL zc*PE8@PH+h;$rsq>+5!VxDt{4T&nn!_MZMytx&G?uvdH}te*`kQU43-^X2bm@^^Fjy9NKv7pv?a@}v-k2Q=-d$0ySMDXg41?NN0DV=#U#obfAgCa8>C zdE4f;OD0dP1;2%3i&*ob$Jq~#r>1v^fy$DT`R9 zO-UqQ7VvPE?b{Gddt@BRNrb#ytuEVsO%yP566$!?7&*||^BCM%Y~ z8ev;>+wlVv>23ilC!Dh$epy*=Va7Zpl;u9cw@jtweq$~6I4k^&$NVDxkOzO3WAxz_ z_Imd660Q04!6oXP52ALW;byOe=P_s=&tbQFeTzid?H(?XnBe)v;kmcAyDJlN*siTc z@{ihc)g|@+ns85vAkZWJx$~wN;h*>AbJfo7`d_Ty*mCZdqNvn|5WBB+0fSJ#uXUmP z{kr_Ui2uU(vCd-uEY15^t&)ndmU0~nBhX!6!$%T+59>vHaReoa+|bhw#G^***X(XU?`Q-q8%i zYdso_cnu~o6rS5gEVjDEqqoiXdoT~`lZ*d_l`|(jsy;CpgtrbS+&*lC<-LshTxp%d zTi{0}p2PED<*Hu@}$O_qDT!+u0q;zTQfozWUk= zSE_Tah(6{rp2RKgvCuR#;c(_XzEz~0d67%3#+j$K5I#kqQNuU7$aydudCI7j@pIsO zIq?=xVLBR{NNkcdM__l9m3Rcij&c^PY;}|~xI}sj<+H?lXw0k`-0x&j1zNz{;oMNU z&*c`-Jr0}xt#}+n`ZvSMnbTiq?@GCrE3h|y$Y*;J&-|CeE8qnbKX`QG$!`4upE18ur5)ryJ$zRpmUe?jH)^0`X|7rjlFny9 z2Mw*<-_y~_!t1P5+1uCL?|~zUuracKe}LDx>Os^`S0mYe=Ui{TT7O}CM}MDj&iUoM zx5}QdO)7_dy@t!)-N(vaKb80QR*F|cPo;|$mtT?Aqw4EruQcyi%wFqWsSZSY`o*Ma zIA0PwXhF$1*gNl8^Q^z#(76p{P?=h#*(&{VQmfQ*C9QFL>R1iHkGFUMt64h-dT|n3 zcJ=rXGtaizrj_x35Svye$lo^kJ5l~llE0JX?-cnvRsK$sztiRK4EZ}#{?3xWv*qs` z`8!wst|Ncv$=`M5?|SlgefhhA{M}IgZX|y!at>UGiJQ{I)+fNqnX{gqa5-U6zb2geRd8~s)WxSv5(Z-PzXA`0 z$p2DUIdlG#^oifV{zy3Xhv1x0v5QB__4sYt58%fq(!LK?&Ybqz%-$M^*LXa5;(iZK zL=5q&HCxtbssHE8(J1yIss3tVz%hf1hg?|nHsJr_M<)V)8&=L7@K}~2zM5iCZV#ut z1(O&adp3dJ>S#o66P}MBnMimOSUGdT>m;vt8O%Qw&ioiSKe01=wI{ULACWv3y9$oP zVeMK=>Hs!{*Q20sOZHWS#tz7 z@u%gFj2eL zW{}@CocvC3N~ov3SgO;)w^@G#KRl83wy<*MtjE@qRlg-_U@nAXUJPf0idkISH6phO zcj8AT5|S#Y!)AXD9tM&9N?18__OlcA7#Q^L z4yS)7oE$2Bu@Ijy5S#z)cpyanx5CPq^PjhxO(8}N{4=};UWOAytpVZaRx=p84qm{6 zA=bfjuyW>gFwNe{W8k0nWU!&1!z6~s(9h(C-X4QZeI_0Qk@_@PIdkeW_)e+V9=!Ul zD}(z1;oSFyGebS?XE(W9yMJVI)hh%S;876C?+GhsPJW8HN6w(WES!1`&I*;fSi3Pt zV4v$J;1Ljsmtp11iMPdfL>jcO3a5PqoDnK*`PP&8UQFxUz7#(?k@Ur|a^|Eb8+%R- z*bjxnegIAi74|gI&;{(~rdf;keRu#w-uJ-Dne!gk+#GC>elMK#f8lgcNw;y*&Cu=c z{WgARBI7q<<;)pRG52p9sJD13*qzU362s%p#e8j!z$U&49s!Z~hOqJoAa3lmH;5k- zPW(tXE7X%)5;sO*6F&@(fJpohSUGdzGhEL^7}QS-r~U;vGgRv0YRokXoBSzw6h!hT z!OEGFpXGjn#bE!#aQ5Gab3-aX_VhfV*xcpOCf*TTw~)1PcSab#fsV>tGw;G|Ho z3%_m*z~=op9srT|qp))3yeBLWPfRYbpSd6Zbg+$UWfH?<D-5=Yh`|giP^|!uME2Z@pmnzHFuk`Als#p#etFzLg9b8ZLx<9;C z52m9YOh-K!?U_o)`#}1A%SOEqq{<~ye;}eyd?4XpML2`$XdNXQ$JZg{8Dvd&*Wz15|+!w*d4yEUwwIp6WhzZi&@gd^^P z^Fc){-jFC#Q;#RXc z0=uvL6OVw{S6+sdt-kUCmq_m=@EX4VYu8~riZ^RLe&hQjmP+~XfRF~?!kpNGdm zq(28%&YXViV<%?jj0*Tfcm*5;=ZAXcn;$zd$6{B(0eCFLD%clRPN)J8W1zf+m{L3> zl()Fox0y+Av2(iKqIE&8mRrBJqE~-+`Pp#YI*Tsa%C)HMxNFhHqUhjJXp@uUc17e{ zD9SjT$t6}}9ERuhS*h`oNFnBawJ%jnXgIB7Gy2sJ zZBez7>*~z)u{SI87id*g5)yNBWYTn}+{>~-&*$JcL0 z<(QEB9puDtO6>E7EJ;gqr9xLnm&m*OJ=QeA#vAxLD?PoX{PKq6ey%f?IM{}yj4ouj z4Jn?vMr`i4fMdh0zrtI_chC?FwLhk}M~I#P>VBs*afEe=jzxtUyO9|Z%Hl$KF*|pT z2pCQC#Za*q@zU#U@eJEt=WM84Ef8j)&Ng>@R{#dh7ydg76 zTvnc0&iy0A9LD9elOkl2kBi32*|{afBhGj!hBVJQfYiN~`be`H}qnvHZPB{@yHqZ;`)0 zk-xXf-=E6g+vM-<^7jt;`!o4_r~Li7{Jl&5-YtKBA%A}-`TLao zeVYHmJD{#+|18ZNP;HIxJ=A-Gv6?pR+2Hlm$xLD>)>AKKY0;J{BJr4YJbHWmtPMXp zas6x@tZc2HrA>Nr?1K*u*n5V<-W^Vga}}#-!xoQi7z40*?}7(F)ToH_3?Y%#?? zr_14(kB4(X#VqzVinwjM-S}~dbn~!s=5(j1l{aDFjNW~5IOhxDtWY_Nd!XhBY~ri% z2#Cbbg_ScW-lp}dp#yGJf?e+c=#Z8lSQUdJy5w0 zesCh^*|2ivoTqo%w~-9qhlKO~IGh;jNj*#Owg+LK-}~c15V`LID`(DqX5)UEwiITN zKPjC23OF@X^5PZ6&SBW>m*Qa%+4sT9nX{kRNE%F{LygY55tL}5*Pj5F$kOcgLn``?)SsWnRB1oNLh2G-=Mzc zpMzao3zHZg7dL~?>edi!=I_E}A|ms5VCBr2PirJh-H0)uZxs&x!@~w$ymHzegH3&N zJO(25O=0ECsgHKe;tRt;e-cgwwWp62XLo(=*JgV(epn*gBVgss*^cLI`4%qYOg<|d z@ELGEsDQhBPyvfGSnLaw=~L?~Kfn)5 zWcxi>Idisi6L&ruy#E@``%iFssJz8z9TSIQpWn~mp%81}Nmx1a8kpBi9NRBrY*RI= zVDevrU3nXm7#>$HJ_)m$!Ps>$4iAP{2V-F6%5lE*2I=F&Nq57Ep^_HsERI3g=X4$qg2;UlteiRbiQ2AwgZPEv z#8<&7p%NEssap6p>vQqL6Iq`PD~|xy@y8|%*1rsAeHWY(kaawKoAuA|!xLHG1}kUI zdJ20;V|BO2UJu9pDx4K6Zn1mG9Dz;zB|HKm@qfU|nG>JH@|Ap(WWB!z8}oIT#PAsN zseD0AkKd*}8$Ujg_6%4#bJ|l`w)CgNjDG&{aNzsHX`!Cr;{J#=1e^IjcnC!1d&A0^ zGjC%FOS&DlA{_TpI3rZtVt-;hdYg0~esm(~URXJE(vw-P;*VGw=l0d%u&;!ZLWM1! zBrpbG^S&GpfXMq2SUGdv6Ir?vZ+bo)PWwSPB~;q-Dl8tp&H8@)@I==4!phmRZafxR zzkk?goY^gZ3$|(R!YRR6YvJ3h-@y-0Wc?PboH^^+TC&u0h4#lp4Q}IxUHSjrDIrAEr8c&>SPt%XW+5Z4e3zfaNBDaQM zGyfhQ0+IQ5VCBr2&yFW7dGYN};pCrzlS3sh=J$kw*!-Ww10nMN1FW1m|C#Z$B`wXg z{XN*zk7E+U63>CfDFX0%3&3zFb1d)3OteiRbdHO4(R_FCs zh4VibP7sy9*bBFs!Ps?hHXaPI4kB1N^E#NWr_SZ~?+WMtGdM9+{^I<148rDq8y*Ca z`%hry%(>6iQ@oBjJrQy)~;Dk`2i*@~2@HXdO{NO~+J+N}-oTo0xFV3-dHt#JyDX@S) z@_E|8sRJhu6j#k_X(?VAPWy5=EmYdVqvHmW}n_i zhvPm1&I$GO7EeG}@mstP#Umi{J{VR`;O+78IraTI@ntg)3HAND)A{?}bH($SUpskV ze({#=T3Qwk6mJzjw~3!S#Lu1lM-D`Oziv#r->+M%{teoJxW_ynE>vfgMIUv2sHpkH zTh}+unt#~NgVJ6P@A#74dA=p1zGQa}mq`4QU3%X`9aSH(acTDx7=)}O_0`*(;1oGo z7Qe-GG#pVYzn*hBTPe39U+r`C3-KrIBDPp)TBSM~$D6*%SB>L!E|ExJej)-7 z0;Tm6m~k{y%;6hdWbQvuHdYsz#UzHpW{ze$8kl&cU^iid={_ITBIVw2Y%N2Tj3X62XX zJNs+-mX2kGT6arF)BkJc;zw{9J8LjNldYg8I#OLZV<-F}tR_)-mqzTCP^;s}(wPC9TEGcmefF&XS9^aV>cimab@TyaX;+ zYOnv#zE~Vui8^}7R2Ca%zGbnf9x{nbB=(T`#e0r#USY^9NO?W^O?L5D?09I67GOE6 zxS0L@g#+{5->!`f-PLkqf85^L-@_gQ>>6-i7RLT2L8!04CtN3AVDBSjI(xY=1M&3a zmJdXGhl=ELnK;T{}?0iratnsBN;N@uL#S zt_3S+PIm2{f(dr#aIibTiJ*d&XDqucu+G@+@PiV$ZVfAE&UIA%qQ^L6mxP1uf-^w{ zE6!Mcsb-PQ;YTHs{S2&}IoY+@g{T2`ARO%1;6zZtiZix;^=xtdDt=HR*RR0JBY>-Q z(ev|gu6MwR0J*XS4U6kf@q-e%-U2IU&y_9L80YIN;ap#Y6M=E9uQ6F%pT`eM(0wZbxj+LdGsBWFe{B5u0*}#M=?+-O?0rnqxPb z$R}Vpa-?eeHW{bXNQ+3F_?d?i#r5tS6wPc{yT zf-TGMzILh`G1sc^lhN*7p3Me;E!;Y5EZWJ{Lr8ls2ei_3^o+sG6YuaC%4- ztUr7@UB5B@pj^4o+h1b)94ck4PrSwkG8BDcTUVcO>~ZLc2cngvqeHynn`PA@UgQ#q z9b&jPIXJhh$H(q+U-3V0?<^I12cmslX^sEA!F4L-&RlIEI%p`A*lvb$t)rJc8Wepz zSTDc4x9%^y3O#)Zn=qh(F6IdfA7*d9+QW7q%DBP-RP(+0I)MFx6UN?z+?``zdv@=9 zfs$3Nlu85ctvHZQUvH@}BxCD4p+BELk&SJi;54x!?L2&>2)mbZ) z*x~He`m|zIr4X|{9Q->&Xd3E%HQ?m z@A~q01Npn5{M|_YZp?q-O)z8FKTC5H%&2--Hf-J=ECy@_wQSyQd>G+7U|N`tHm5dh zUcEJ1Hg9MAs6?B$1FUS>ytK)VVOE&UlLp%!HjqHJMK~933vaWP+h4@|ZqZ$WAD2kC z3s%mYZX2W9^ezVDi^3US0B3~CSiDUo9=&}Y58y{9lKvX3oH^+UF;{7T{&hI$U%&~W zf)?+@iUn_T{yBbdBIi3`<;*#cs@r`7@EhTPUxPD21uSl~^NSR#SHFTEl}PqQSUGdD zZSe~*gYX8g1kcCoG70QX1(mSq)$!=?;}Yq93|7vZZmV3bFz|jh9Pe^C8C1ODfq}+4i^aDeKQNJR)uFtqrDctl z`hQ682~zjM)4p^XRbNapD1SSg^0yo*S$!s`l*Lrcm%uE<-^7nfM0^>nocSp{nlJAe zXn!A$_W$5iP|=R%JIlqYq{a4k_+g1`e+w&T&bC#qxEgdn@M^HbdLK>(m9A*djiq9X z@Bi=v6Z!rJR?eL7XueKt(A_ee?uVGf@c3tW?(*eri|uCkVTo)%2rFmKc5I)#GhyKU zbU5B);cQS(-U*^LH}0uegpb0HOeB0bteiRFQT6*p2Hi8m>7EW}f=X9-Dt?#CBKt-B zs6?`#hm|uY+bZwi8E|h3hkGNO3@ThP?>25dT6}N74@~5HJ*=EL-?5F`ss`Y{gadvS z&IT2*=*^AD?PaT{@goxnKLINz5cb&4rFMjgT|yob>Z<#B-@Qt52YM~t9i!t*xoTfa zM}KcuuBN}WbHjh4R{+i`b8qBmZZLQ4TWbDcdp)>DY}yTN$0o7$SiG1al@+8miLJvW zRCLG_{@Tt7v5^}MI^PmE!g-Tm|_Q4v0&Afz%KxAHkl{05PbMH#I zmMfI=)zxsnES&o{;M7pLi_bJWhhek-Ivxg*{rRwR0(*}MUwH;GX?RE|&oJ9}Aks6e zm9A%KJv^VQc6JxaOSCQI&#+Not;$(%(N?aVpN=i$ea$GeImlrRp7hPHvIc+P605NW z!}F57JzcqI4%}s)nt#}yt1jWMk_**Heg|9wz@Tv~>&{o%wpaJ-+h{7~O1XYrG7#+% zkP;C`Y@h1~UK9IV*Ob3&$=|i*?VlfthOO zIbD32B}6+*BXI{^)~GzLdL`Rr{J6wPqYYNJCXGz!TJMQj5KebbI2Slw*Q;W7$B#>- zy9=zGIo+}B9N>M)ID1bB=UaxeLFFqJiW-sIrtf(C$V9^3uyW>vTjktk0KPOF@WpU4 zsDQ;%Z)4K6`tybOfr)%q!OEHQ9ql@O?+d4U51a}rU2%(5xFL(}FY&_?+1>>!C$ROn z+EN#6!peI{s0+5=`(9AU3%34rFWAQHU1g6RnveXBeI2!j&hm=3bQyBT^;%~m2+asO zF4so0z%bJ(%S2tSt;Ho$zg%;E)UGjZ*Hu#E&)CIUuDpa@BJJ)R-G#Umb{c^AD!K{+zG#`kNL7`}Z=T&gBG>NQu25pQVFkH9(`X zBv_+|JwLsqT1fhI0BI~`)=!t_8@29SlOX9-%K47&3VU?gpDmMMk0$%Gt^a$;)?cJn zY1X>`NNUvrtJ0u<-=FYQJP8Inet$=y+*RnTXVkxe)fcLmfd5I)1q74WVpThv)aqXv z*i!y(C4aY;zuU;)ZRPKF@^^dr`w{uOgZ$l5{_Z4ycb31q$lqP%?{4yUclrBK`MZbw z-BbSVC4cvpzYFB=$M`S2h_(UyXK6mv%@)z>bFguhR$x&CE}|{w0||eudp6V2yi;=# zje7^n$amt$B^vqTU}ek5r%iV>wZ(=7e=M=-wSp_f9w&RJvk;MFws!pxurin8^25SUGdP#oG*rzGv_>BEjAjM z9}36(0GtmhX3?cp>^9~5@M9Ax-vcXWPI=T~wwP=1eJ`Bvf8k6}`N~)3)R(ZWKK(X+ zR3h0oVdc!pj;oX9%Z3KtE#3%r(es(a@VMwUewow^-DbQAerO`&4PoWX8INt;MKKT` z6OQ;uI2+V6SZo(+L~av43_miF@FB4B2p}x)aT$b93n%;qI2$10#@#uqPoIJxnMn8~ zSUG#bjXRJA;U9(*{yv-yjBq1z`yBo*eqqI3rZb;^lSm z=xx%E<3}fweiT;DoOG+agKt0{|7Nh`YGo3`X%Tl}a*vRlE*nUft?&ynkDX>mB-PB=`%rB^jsidEt!DfzyF8Zia3%UWp%?$oMQ+IdjIN>f6Q)ymyAg!GnvHjSZ8s46p!8}Jq13m%H2NkfmU#McY&)_nCY$E03Vdcyzw;i1CtL3{6 z&$CanmD$r9@lRA=5zhHiI3rZf;w#8T^wt@DF@Ag^>kDD!1lAtUDyqjF#iMW@66$fs zHGDS{{y*x@1x~J_%KsBdCYd}*AOQlAmq-8^2(Yjyio8T3gqJADqv_1_%yg%xd+6@T z0|gNUQ5r-USXog7QIwTcQ4sNkvLFZ|2#O$xpa`M}f*^?C|JsHlO#~s%sd)#qmwm&=Em7z{M66>tLgFCCUr@7CBH7~7m9nx$5 zus1SIS{B>M?>Ghduy60tryw5`66-kynb-v-vzqNTCW;OI5uEIGk;FtKd(V)!Vo>UG zt)*$YJx{y}GpaLV$3J0ZD|Y-t(oc->{QbmTc1?E~q<0M`y>rJ%Z!Gp87!9y_?}!_~ z^l(WzYLiGEOJsLgq6M5dq4 zp9kAg8jL2r=^GNkc|@M_2pXoL=}5j> ziV}%~g4;#dCLr__`-a1#Mln~V3^sIfj#L_*Cv;>K%hY#5QIW{9T_;9n0zxxcL!tSd zf&GS5vi<#Ht_bGUkRr1}^ByuQ-D@DxNy7rpkY-vg;+u ze~Kz!r^*dfIaQU@RN1Y{>8hNe${tnD6eWB^<2T8iByVV(My~;kx5`AkBJjUU4+WpaH4R!*Jkbh=I0`sn<^mxJfo1tig#c~*^C z@iN?EI}fjx$#yoZoI2a?EIrN|gLeOLwEM!I;0{_f(?$>B7TJC9TA5_`hLuw%J3S(6 z&a~xlv_;qzT(oM`MrPY=^LVvPwga$o>TJ8Sw76l6+DpUHUIKf9i&l-=XkEt|wHM>H zGRa;DE2mC&dPH_N1MThMXm5pG!9}Y^ZDh91_GY|VCfl1}<;lU;jL0vBvwa?R1a;g*cuQ}EHHe=UPW)8ZFI?iAhyyKl z8*J)pa2uG^Yp`c#ZF!1a+ip|760e&{`Epn}b;=7Ho@&`f zZs5K@9QS>&W4O5GX*EY9Z0`5qMliYG1uLh{y_u=eUND3A)K`KtwJ9W#M5Y#PWK*ux z?+{;uX>d;;zXB_#&bd1}gkb<)77n<#V}Ruvi8wl9k=+Tel{tc!!pfF($T5`*wz;e?mNp5P8*IroZtQ>-z3 zFkUN@?18ZIWFT8Mk1m`VPIe9K36w0|Wn+=8;k7c!o&qbUPIemI)ME_UtHQxv2|I!d zRzBZG*9%!(FUKooa{U~voI2MYb?1@6_P%ho_rT8JvXv{!ja#2AzIWjjGx^>DE2qwP zUhGaQgYuNug43$kV3%+yFAxjMG4t)Q{0d$@ll4oma_X$RqYK9j#J%B&cOr?-WX>|L z64#_zqj)J^E0gSYuyX2TXErW@Gw2>4PWM>Y8{7dbzfIn-+#b8f;59P|9|bF?PI$Vw zoX@~}PB`APU{`SQ%2g|Qr=T@@&%~=`vi%^eJQ>*1bzlbD>%!Sy3%dek8(s8hvHcoe zEtBn6Vdd1>&d67z8^a8^kA=g11oj0Nu6$!J?Y8MYgxAZY`v9z*I^Ah>xu}75-oJx$ z=Gi3CnS@F{^+q?MTBEiHuawEP8&*!8Yj<>0s{wYOaIkyBp5TsInJJ4~YAv#R;nOv@Jg9n&x4gy=Q^FZF5A^0dviG1n_yRP$;zi7VYbco`*^iXwl~7clY_0f zm+IMYwok*Zz}Y%>Q$2-O%VhfmteiUAZW;jQZmK0+uM53EaxqDCCQ(-TRCFP|6_Gc= zYh{w%7*?|THuiH1G^73%J2gB~*j$HYD(WdD(;{)-knT+>?l~ZRtyXh!%46g}? zT!a0=g{*SsM*nn-i`1f*s<=nT)qN-+@=ol`}bS11qP_ zxkr5r$r#GVhBH0}b_RDS%Y9gluQ*xb_$a($Cf~zhW#xmd1w%e2+!0TpG{uQj8I^~&-kL?+ZXTL5u+3F#Q&LmrM95*bt33uZ) zGYM}1E2mC)7Cl?e8Se@!r_Ok06) zeXuvUh~+45SZ)(O8Lyd1_(WJab;8r=tDy$m3&Y`F06T&USMC6aK6R>Gr`J2q!z*QS z{Wz?gI@cccAy>ps|)XC1)-#j)3@8S)DbLUM+qBFU(d_K~)+wpm0yly7t`LJ^8 zlxH=+Mr}YoI2`hUusgVeSZ2>n({0B4;Z-vkzYSJSo$++>nQ((|Eu8Nuuq(KHeU8l}|*@?+@OFSIXpi3#^ih%Gt3b@c*XE0gSV zu<|4zdrHOJqO){raIU-^NpvPxR%FR)JA>K=ua!x5OIR5tdr?={l&3kr;KJRIb*^-CLHonuv56hR~`?Q zcH5W_$LnQcJ``3)F;6(%nbpyiwMw?n9K>ga^Zg*~4K81~%-pctCj0@sW+vfvuyX2z zr`g|!{aQHOufmSt!j(yt^YgG@!7F8Q{SvI4I@fM;k@*GDhr+==0DFQ9R!+T<)%J+} z6<#Zo?7gsZ>SU)=Kpr{Om~eZh1!q;=B+;3yN-kaqvu(B;;MFqOcEQS%f$eCi&tSV} zINRM}S8#`IgDshDv)vW1mdSQ!SUGjJb88iHQpWiKl)iApC&M1$B9_ zi3^29*3XL3m4!v!WXEfVw0RiYpv~jkQjcc>@nAQKP|XN^S< zj?y7lz&+O4-RcMRm;0)_4A97^<;$gPahLq+b-NU^>vEN9^sl}8C%w^s%AfQ~+gePk z&&-zkhRT&vb~raSbiLxIw;){R+l%&U^1D<>v?Z{#&<=qIf%QLgFEE>LOc=MoY?Qx_ zY&Q1Cu)mym3*R7}7@PV+aqFeo0z0Do5VwFCQN9N&TM^|uLLxcho95n(j z#AARx^0yQ{pnY5HUa%Q%3$qt2f|c9!0*{nHXBBcv@sQA2#U;MoIkJMXis>^F%_IB)AhhV^IAN@6@7UU(>wU6y``Tj`!_OI=whnNVH8a zlACJ;BGUuLO!FZak(FVb4!g`rxiCyRF+BCnni+=K3OmBQAGd-TVb;RRR)iV#mCzAJ z_Nt%=b4-X86k#r#o@j*G)QB+d$CsO^QCO${HNvL#uJ<^8G`>EN=3kZ2oR5?mpf7i+r_R1SjKSV3if*jetNvW#?MVCwRt zATjgpSh6o(Ju{Z<11npxWN#snT)w(ct|`P^W)QECN!V;}5ii4z;S%4pWnm=N2%CEm zH-gDM4=bn6eKWn15ObTs{<3iPm%`5Bvfsj35{Wg$=6?xp2$TQCuyPyz9tnWXA>;(& zA)(hpHuG(WS`Rrr*&Jfle)QgBbvAnUQH>=Kzom9yAbtoT2*-;R+T+!j${J(b9C+ zE2owp_YUTYqhobvQr7Zo0tFgjZ?T+a88)q{l^-Z?nbA`%)Yj#kI&6QLx|j^qkO*~wQF zUN_@)U1yK2C~Tn0sj8f&%5GIoSLF;<_Na2EDrbo@SE!Ki@_*Amg)05qib75N@2IG5 zwD1AiAH1S)n)qMwuKWc#wiA0D+8vEbW7glAOvl2fmGQlvB(Mh}X9O-hP40+A)Vkd2 zCSr-IRllg-9Iur*#cv8LTT^_}WM?%arGa-vINo=`?%?8;XEB?m+iBc8@v51O4}z6b zXH4HSX-r`TPr=^4Ul(49s5+$NWXuAzaMO zTRt1c+nle!D`#@P3|3B^b9a>Y8GwHo4)_5e{7+LWIVUhh8UMrLA%dm3lWP8-}kpXv?aJX+GiO!_Z@|EKF@_@p zVvB8#*B8(Eb`Smf;u#^4`0I;(TyBWk?0Vx6{r`Ih%EQ^=Vy0Tljf~ab4F7q{AHNm; z<4SI%mM`XH_)WNm0F1($g{|q=-gD^2!V_fv+4SGwJM#x+s}oCRW{ZQ=!gwS6 z{hcfcoaO!|8WWz&{DO31J+7|ax<$vsrQ=n6(QEd9#p`AUzdysuR`8RQJtCJ5esXwt zNa)~qqi;i0@cU-6TjZu6EDsCD9xQjCh4xZ+`0HhcKXqVn+-J*O$u4ZgTXhm00CyG= z2?xNX^|!k`p_=WAf$B%S*B!PmW?j-%8#&z`BR8;PJfw=QyoMk^IMdXrh1?OT;A_0v*AWvu=-Pk8;g zf$V6p=I`oUzEmEm(r(Nw-PTYVBX6#(4uiQ_~IlCdgs_vNaYEWz(ro#~`d`O%UZz-=n< z_2Xc+Hk6|d>Kkh1-)Bm+ll5@VHV)=$nJ8jMJ#<|ZpEAR_;c{i2e}sw@^R?V?n=QkP z?hz@JMu+LJJw4;peM4`gQppYEC?Hg#G1xa+speM)gx;ZSmF5)MmhbIs75y8|Zg#3R zJIEQXYAE*S`siB^(V;{4W^_O*UusJEj_-z5qa*!vnZsE9D9_H>&{>_WEi-DSJveTGj7wnC0Bs&NHh-$4^%0 z8bWXJg%@3P@0|kXtJS`2F-yVGn={3rYW`H}e$GP&3|CN+)Hjq_wI*8`q(SfNQ2DXh zN||OQ^2p$r`-%XDIZ;To!}O7!ct$FD%9Gro-`8P;tX89WeSq$88LRK-X<0)hn$~ zt29h}bMA&pf38#}wJbdj_|HO-SQN;ja6bW_9*I74Rc$Ca&uKA6US!lMqq)&srj{Sh zl}D*_JMZ~mN>zulBPzVACcf8qsE}dRq4JtclnH0n&^^E-H2hk-sqfQo)a2Um2<2b| z)A^d2)7Yq?{!c5a7sv}z1LBG7OwpGpy&nbXIWpfLJ(zk25@Q7*BXc8C^bNMPvdBV2 zXYy|tsTAp9&VPC%0hKQ(OMJswBs4laLV20*;}9t{k_O)gO63yuT;Cv1 z4~#T^S|=diX<90|ry%EjW{hDeHRF?z??fxL^dxeqXC%`)v1!D2PLguQL=xt&_*4>R zm@%0g7UVR0Iyo*-Z+#Pr@5quwnp28z)LWe`(lks@JoF?!R`-22Sv{N`8Ee^r^j=zG zj}FKltIFe4`94)1ugVitd7>&$Qe{S!C#y26%9X0@Q)Ry@bE+Ir<)A8uRGC+0L6xgi zSybh)Dod&?t8zq@r>L@`%Bm`BsvK42YE`aLX@oxBav(dM1>g|@kVEEsnE#dEm_a~kByJ5Kls%g5tFXmr()y!AJ zFT={#tKp;>&!klj@zTveyh}LZH<1MP4%GQ>wqPTchXxv!+k|((Yi1IDBdnY{;aQQN z#7j{F@d@FGkAvO8MXW|~!*rYRd+@56jE{zuQ)fI!K6B*g8+=8B^2fp{pA9>NOIhwo zZZY2G{9(LuCg(F?<J7jvhP za;n~(ITN>lNqjo2JV}VR?58q_zcrlrn_;hT$94OH#`55dNE^~P^ zv7-?-_fO(RFu9)(E2qxAN9`mvSpQ!*>mR|+;Ift%ZZx*QDi`XR`v-W%OupZRl~d=t zpt(IadV-~mz6R*Og@gVp>=iC(IdhvWut)TtaSNElpM;fDCqA#~uV_QIf&2AygH!X( zNuo2Ux%{3$%zT^mrg-&C)(c_fNyIwZHE*zfS2*i;!Y<(sZG*Mg^lwG-gYfE^toMhN zQ)fLx9&IonuMLMh3j2Z!d6r1T)sYN~ZUwKGNw*9ur%rdn_`wr{@)yG?Ujh4sOL-$f zIc~olw=cu%XVShDR!*Jv_N?PUMkn}1cqjNd>?&?2*im)@^=)i@7{Ybx$%+Jb;$|`X z#_h0j>V0E}X5XNFNpfqZ^K6&VJN_NsJN^Ybi`zTi6z?7DZgvY9K#59QlV~?{JYX5h1-@OY9zS25t$n2b=~gr``i* zMt+M7K@S2%~uZERVCp@-Avbq|?H;0?;7;gl<|N4S*b zYD}y3Ht8~6JCk$~R!*Jt0_Cgb_H~2y72&imgT2C~E%!T`EwG7Sid(=WehI9cI`M_d zU#)ix8qj|p4*gEpF=7eOv5aunf0_*$aAM<ZE5kd{yce!xy!w4?OI~@fX8u5m_6VzSUL3`upshVW2Zy(Sr>!+rW*(6?h8qxGr7BbBWAY1 zCcXf-fJuBFteiUWnZjT8>5_xON$(GPgFD9MdTPURoAADP%}m1kz{;r;o*Vh8@ns8R zJXgXgmtl`^DXW~k#d@1`5wD#|Iu9$SPI_U3bj!C#4B(fA1HTk@3>Ub3yX|O%&HWPG z2qyQ7Vdd1hZxp#K_K_Ha`kmp_Z-?E&r7m}zTTQT;--?^SWPUTOoH}!nskMH~$3Xsa zIPw=^uW*s;Os%yAHu2|i3z)>8g_Tn$E=GCmi%SObH!ciL&bK9r&Lro0l*gK2Gv5j~ zfysOcteiUYMNwEZKa6EyKRO)y5wK^tBVE2vakauGe;95Bll*d6Id$^eNT0R;gqhI` z&Is=Xr@>z0_JZxiTb1!zWcP?uaf_HeVhyaEdXJbB`A>a#&VYYSIQ*+&hj8J`Z=$pq zZ*#s1ubj#GN?18{&eKJ_HwZr%PWXP<6k{o}Q5}(MRn| z+2Yta^=`U@WVDhWb9{?Vy&=^fo3=)DFJ3p3@=maF>La>GeNx*%oDD~O66_3ayq0(3 zH@*dK@jV`|n9288SUGjRi`BK7)#ht4^~G}o`1#?$&xO6i1+LzSw)=Lw)dSAKEn)V6 zvtZ@ad%#@!9(#WEI{6rGQ2%Z?^&4Q1aH-4pC#}}oGxl|O?M%|w!pf z+LPgsABUa6g)C#aGTi3-7+x`x?<25s>U`&uo75>l*E80_O@j091tig#{9EouHyU8` zo`)O2Wt^rD(f=2Vl|g3l}qM^v`fP|Ujn;? z%UQ0O#LTx@UyN7JWPKs5oI2|TblX3za?1~BJN6&m9*+A~*ehJz@~yVn0-N~FxCKn& zH^IuO6W>Dmi?QqY#c=k|!~Ws2m*^$Cf)8OQM zE0X9;a=wXp0b;koroIHXfk}NateiUa4W-B0>`gr)ocLj|Pq^boZ_{3m*UzMV zFsz(9?M<||+V4+2Egbr(uxq%`7q<-asMEGI!)Ct*H-pK(1}mq|exYQ)zCEf}hm*ew zb_|!i+?niXgw6d*+z2N3%VFizxvP1-b(g2{pniWi_WNMJaIv?}>#c3Dso#U!z@&Z` zteiS^HQHkvJq_$rHw#YZrjSHu(z({r9&3cn{WX|Qoyq+bSUGj>o5}z=&VJQp;plri zhJN#wDc)>{O@Alc4krDjuyX43-_W4X-m`jAcuzPU_7gYuZy)Ok?b~Gcieqt`n7!f{ zSUL4xF;Dgi_rBG0!#lt^(j^zYu4_tH^iSd9C0$*ojV&$Qut!(diDQKuW$`^({6H2r ziGte`ehl^mm$1BOHL}_!`v_hulk7vVa_VGz_N!E~>kgwk zAjZxb`_R~FV}*+-vKAIB4o=+Xkwj+_cllyf8?KzFH>1zSt7a1Jft6DyJnM)`t}kEB zS&a7$XS@&W4(9tat_E-l*CW(p3)`9;Lfw60puZ(Z%XVa zB(i>1jIJzf)=jbCwL`kPc8Eg5(n6hL!_f7G^QfStYlG$PA1p2OwE0P4Zo3~`K$7)t z`b5L(-TGsZ=ybT3I=fi?E&b)b>MjGLrM_CeOxxpkq0OGV6tnAcm1^{_z4|A;(SORH z^eThuGqa_>p)zf&AI^;pU2k>8_xpC3y_%@j3W>JPUfR~%9?mXqtzOtPs7T}I6Xu!5)#SLoh#-|)v*o6 zcabgCl^)?jGrj}%2$!);+FPx+Q@h*n+L@$pft6Dyz2Jaysg})`auql2SHfw(1bc-` zTkf(kTVNA^0k?oj{5e>;4RMbdTqgl?TJVt25oXl4A(0i71e}>{5-|OkTE3XCt&3#= zZ{8e@OwNv0?{#GXj_H3?*$|s%925UuWEb|3qdJM6`1cSJ>zVj(Th*McRpO=6uq&b` zwah(~FY;Hz3Ip`}Cyp(xzuDyp)ofQnq<++!Ef&Z8|G2bn%$NGCRQ>NCVTd(?T<0MJkC ztME#hA$$l{wnBLFTubIThR;ze0=a$$b_B?k#649S7K7|d;bdQcJ%N!G^PxrdIlNXT*=JzoHe@|= zVVzFPWXnTBr_;-P8=}(b()484)D9JET(N9=uPx9S#o4#&JG*j7M>Z`N)5c;Mfg_pT zgUkv{rk4qc#FOd0U5;QaF1AT%S%15X(&2-=YhKo$sa3M2>PWeo3$cRMYXhv^GN&|L z9jm|1>rX4?d?s7W4^rJndI>~FVRQYN{&FodQYrV3_R&$gW_wy5agV297(L>ipvn_f zd6FtKsytbhSyir7WuGehRhd)efGP)7Ii$+GDhsMyB}({FdIkMil8@5jt&@?!okKPR zK69NVni2ji{SMNJ&75_annz>Ve&{+Aua%j=eGpc*61b$viZ@xy%*U?ls3C!DuZ4Z# zOrQ!jTm2@BW_K$+{~BH|lkQhx<<#jeh(i+f)AN=DkLTGWfjxO}IqUIEd9pR0d+>Uhbh}~Y)ai=x-150=C&wY5kOu8q-%Bj;8 zZih|(DclYw{U>1M)afrU zR~QZMOI{zGp)V$h&SdB^(wi-?iEn~iz$CsgteiUW9<>&1fL#XL>V}tHaTL!1t zOG%MB0a0#H^N`RR5PN-J+^G$S|C8(n#M#;Y>~L3O>rU$>1OEkgUT4p% zzr(eQX0Vd&&(j_s=jq<&4|^ly8n(rDSvdA5j`{W=ec0!dLSjAp6B9c?GN+~GMo_sC z=AuT5J_h=2*i}xng)fm#3`<=;1GE@#$B=K~l`~_=H(+HehWxLPNbaD}M)JgLi^B}s zPmn=@+hP6yyM;?zeoxwJg3bI<+yo}`-@?kNGvDNZ=E>jo+&A7TnEQN^n23zg9_8{5 zUS~6G_H%JFnCxf4%5B(tO!zuykduaogw7ex_wB?gXSg@noT2C7#_SzCw{SGvWu0-R zzN;%?aGYCcrU~O7T{yzGqv+J&Fd?y?)SxrxfDd%}qS}GhaOtOn$<s=LYs!z{NI5a!sLGdteiUkY4n6(uwEC=dNu3_E^GM)IC`v6uG2fS zs(7VLt|PE=>RjivJh&NrzZA~*3$R1DeAV8amZwgO^XKu(nVdfhD^CW_&F5-^^S$Am z?}ij2$D(n?5Y`J&ZY=KSupST4~;{Sk^ zQzt$zwlrnn-Z>oijwI2U5T&?D+u@`Tb zz#Y}u%lH?DNfTo0w~h@t7yEV*{nqV5A(8l7H}?fbqSdbVK1K19-j(@Mwz4kMSE2vR z(3>Q>kBRQn-QV?=ME=EkviA~ClL8duuGhQv|uBbxmnD7oAnEL^-R{!!OE$#UgU~i2J)rb1|#2&Bqkyqw~@F!k}RF4$$8vELg#50_;z8Hr(Kh5o;Fo{-L7>%^&s3?ox#O@ zLBG1$(v?xDAN2}@ViS=gXY2RvE;?t+3W>HkTXK7AU7tn#I1E7z2fcavqp*vd91E*S zCx%1a9O(Wm;z#gWnGxbcu(A~)PWP425kmHwpa^kNh!wO!=U>TwNoDpyYe#aG{4hN! zWQ(!qx!b8BSSI7_VfEczj~4`=EaF{SmPZykqmcO<2v@kgIzCgTcF#F z2XiYc*$J^tt^6DoY};_Qlph(TYq-TN&(52(A)3Rv8nrN7r_;fd&_Rl481Zzx|H9IHFGl|${T=EzOqgRokz)PzOhJxV=kWuq@9Peiz( z*j&q3Yk9iPdm>ue_-0wl`rFeq4@T>6e^uo(s(e*&J1@I5^XcX zrG?ImnYLErkNx)G*QhYEqYa3CB2F18u=1^$Yi2?mZvWj)K|D- z0^G}rqnQDEN-C3W&a+0a;BdA^_X~~HkC+hiNUf4zn~8F>c3<~E2ZNFvDX)ouOsJWZ z`K=nOA2X3HZ(jX5Q5}&!I1{ydVn*DE=!wph8SXfzkX6n{PFSg0EDwt4IWa@GS}xM3 zPTi?9Zrf@){Ww9*T-_gqsELXM^Z_5r?dc;p6E!HLpz_|tprFwZtxQZzq*_hSY0*%a zAhlfI1p01uE{e%2?)6VdKv9yla;CZ}wyn(%b7&%nTY7quf0?;Wr!obM$HHr|;MuXx~5?$ZZM zZo{i(vb_aXPMz&EN<|E^uY{9*33ddRtUNdrRvz^fYXKJ7ZSY!|WVeKsQztvKvBqK0Jtmy)QLs0-bme^8u-qQIhvPLf z2_Fh8r%repE$0*i8z}xf2;DoB1Bs!B&$!8$BvTw!Z4e)B2Y`b9P)Y(p>bz+0;p5bJ7haJHkxN^RY z7Pl>~yW*8Hx$X=rr_Oa&^YxKIw=bOT$*?=PbmhfmP19}0C*oBz8NUx!PMz@#`9{wG zd_g$i^I%_a0n1MpNxN;jAIIxu()}o`oI2e(>UC)JhSfm){cyxL!Vcjgme-%O7;kg_ zHeNZC^S5B-)H%;pt`e`k4bV@8gMI?`2p9BxvC!OVy-oTLcA%wU=n`|teiUW>0w zpSK~2&g9Q>u9e#@Ew)?Y)iT*`0V}7@c3O3{c}MqA;baeo9l;&9ay6Qawqx?4c%@9P zhrr6IbL}A)MehiWQTxGgwjY3Iw+&6x?J@i%ylN)nFTl#FGoI6OYQUiUKse=J!4Bb4maA7S#@n3l#VcoWz8h9f zo%3{Yl*1t0y+d$*wE;uJg;&dD`|AIHY-h-mH3r<>!{P3VdwE8_MCaY2 z^Q!06yDPbY(Mo>Iv7KGMF;pjlEV?`6^)l)12rH*Pa%a#%B0A}0&^$0V}uZ4<7fZ=&M-d)f^rY`U=mTeUIg+ zD?As@Nc1X}Zn~gt_3r(#tNC7rd#~WZ9ot}h2-y;NV)Y%cN1Vg8U^A8*iCV3>djJR$x zvLm-P(>Fx%jf{BfQ-sLD1MGp*Mesx()rkr8woOZ1DGZ1f*wQJcGge8i-i_kdeA zoE>TN4V?8_L4Rg8#d&8bA|jixAKrw~VlA%_NA>vtj{c7NYqmtU1HK)$pz+t0!8Jp< z3SC)*_b??PaNsUz{I&3e(AWoV#7Jedl*{CXM{48)9H#v9$dH!q?YyTq`kl7H!;+D` z!uge^^$O7ixZyq25D~VtToC&Jh2-dh*aubl8&y7}%7<0?TU9=y%HOH-QB^*s%HON< z52}1zm48&_6RLbtm48y@Q>y&4DB&B9?xa6U@`j_0?HR&&w3xY5@T0|al9-6c$NwYe z#2+6w5erau8|-v*DsBTa-JAj|Tj^%f)MqtkbOZKY;js6B-Qmpn3N~!{KEG+Y&3GAJ zHIs2KteiUI*RL<}GO+iDW6#1K;$q)gjPdog#_kCx;npyF!ttOEn$PMHnvpA6@I zKI{)J_j!W5w%w+DE?zg2@;R__>XbKc`)Ff8|3NtP@51ikLVvx2-tH+)xmlk~y8$!IQ9qxV>Pj_4NXg`CI+qaoiYYKX?pQPQ4#YqvuY8 z_oiz$;~Pod+wY&UGVlQT$2TpnOm`<^5r|a7XnbF{-U5 z*v$9EO<*$L2Ubp<`9i~Cj#yp^r(T8~!==8di@H087jYw)-1D$<>f9I5#~fm7sm4&h zEFAi!uvfUy)hTnM1@=h41h;@m{9;%+b>g$t(lM=k8?5gPXMH>D4=!u@oThEJDc_3M z&7^!YteiUK`3+C0Hxvfym%~xN2s?#~dSemGjRx4fpT`Yg@_rUpPMvpSRMRwWpnl`d z!72H+B+;3aJT|JycAN56c->6OOJL>HDKAiiLQdK?>!ZV29|3!XJFMkwZMMKBei&{6 zllXF2Id$T5T3*r`1N)3{*r&k`;lh^t^;?X$IiHGG&g8rXR!*JsLhChnZmq%lnsDA% z!;azdmd{^~M%di1!i`{ZzY zdv}D4^NvQ?+$TjT>mi}HUVl~W!$LmKrW&HQUXLaFDeMgj z*}mA$>nhw;owG{)ZLYnGgOzN5K3A$$U0Vm6KkSWcifz|&oWC0J?J#;X_OOs>yBRyV z13J^F!A53yF^oZVqa*L0(p9)<2_53Q5cZIhWZ_KGiP5Obw{8(7RjGcfegR%7GeVpP zD_arb}vH4j&pjZER_wPSl64FPulkiDPYh z@6tlg@-}}mx7`meAj$e%x~OS1*OkdvyE3J0DHb(;No~T8kvaQX-FZ-9Fh>WPvPEai zkU#1brjcdBuvlkxgpObM0??u3=R%@w=vdm;`yS3OZq)`?3l-ILBZ#~NQ?Y``3$U-8 zU<-dBofwz8Jlq!pXGN3e@YKWZ!VS--0iUGABx+-q<;vk z+=jl#^sh4rIdynQ=x2;OeS?>J#@MitK_rtn%qTAF$`s4hYAj{=q|s$J-b zEEdaR3sE@xTm3z*2aVj?kz6G|Oph9rH$+wEoR1u>zt$^%t+%*L+8Ud!8d*fWhc2X| z(_tn0roGIv&o?^N_|1@=sy@H3JUo)^t7S&Al`K8`j0`EobA{q$$Sr!5FN|sCdYGJQ z^7LY!ZuX*!y`<~D3A@hO0}7ufofxgUyrQ!~QjOv(=+|V$U&kw6Z;1IyQ~4TLS-GaC zn5RQ`^?ULJeuOBQ~8il8=H8 zXNUWCKs{9*D#5*Wh$S`aqTl6o3-NU6X51zGciroh;#Z6)MflFZJ z)ce4edLAFYAN)MLAKVGMh}#dgF;+Po&9VE!?YKG2zHlq7+@>#hq!m$4AfL44B;z5W zGm}Gn8=^9kySfv-&~nq^>?(RmLf^HZwFi{NkeCdMAe%USV9ZdgS-3&W{%|I&+@?Qxq!~I> zkrR%Ggw9l^`8GslD$A11R2KD>OLVXcgm=EuhDuB=TE6gSX6U%!+Lq# zJY_gr%8!f|DOD<$#$7>a{pIMUTWW@Ag>FP_26Ut-Kk;RyQe|Oyuxv{#h#8f#%*Etg88s=>b+pA16r^Bwt}J26AljV2?xSH z;`W4Xja3w0Z`cpFhuIt61}nGe4IY_=PEO=h;~}AwlOOp8H5mWvi5( z>=yqx$k}l3b#}dau7eqgvOO|AHqSZokPrLzFP(>+AtWY49x_`u+=w|}fvH)u&zE3N zIl&h$BApnOx;(M2ZMSEeFW_}EKp7HOudUFCL+JIN4R{xaJ9lF|0>L<&Lsa& zSh)>(k3>M{5^}omkkGlrX}%3nxx{@*=Mr>crCO`x`*ZPJVt=^LI>St7bBSux^w_NB z$R+lL$B*h?I+xf-NKB4gqS?tSs!jYsCqteJFnzq~VC4<+^j4vm^ z%2s?iPDmu5OEmpuu>KU;6PQbU0`>}*bu5=?w!kJ{$1PwI{}`;CI`P(AqUke(`VYgY ze-HKym%5cpG+SYl{|;^ill=9tavSmv77eH)^3iSH!4@pOK+S}phG z#f}b2D*B9bu&+^Tuz2O{cJ)=AT%FJ@kPV228Nj|DCuUO!^1G%Bj=eqUEW7{XO9Q;XPn2>>q9qkZ;J^ zx5e%Sqqr^1UQmIR+w=mD#6jmCa!T=#(7DG8z7w0uJ?=^Nt{(kPWLbP2<3_mWI=fwG z*D>V#oD7*Bo6{Wm#wOsa<8?FR%YCr26<_WV63OKl#yb&<_00bW&Mu~t#6)D3HtX0r#(IcP#VueG zp8_kVPP}y;qvDY~=Mu|sE12YaVdXaDJrV((OUUWMLqg{g z-|!7uDwp_Pvg;T##eL&lnf`M8!|SWzF6-=X^`UVWFp9BLu;Xs|jQ@JCye>VmJ~nST zvWcp157XJih>(~J*~F}7yNytD3CvB6BYi;jV%Skm^o6rXCkCZ1zrWfv-HtC8;#D)_ z%LTBq6<^L163OKf^W}4X(_IGXTgjZjg^HVDr*KKj?|c{yuzBBv8^GlKeONhl-V60p zeLLpQhckZ`b_|!fJpS%zgw6eF+z2N3r(oqa+&z*2okz%t!b3vm5yQR>QF+AP$?mP# zAeSGEoowB0Pc%F^`&oTuhZBg%?$|8lNF8>ewqTE3s#EFI;Y~tfGNcaEsKv%qatzE$ zwNEDvN5L*~;x6n*Ix!sTlHmxGs#GsM9FAAY3?qla%2pUTL`Wo;F3gg%txfk#G9)lj z_#o^KE?t=tHcht~e*mwV$#@;CoI2xqdUmxre=VHzS7DcMIm^r0V&>bdzk*lKWc?*r zxeaTNIbEj(auV>6&}qRAz70`n!QE36y#-@IwLBnh=&B6n=?)C*^3T6gbFkRt>~M8j zzv!#(GB8@|i_VS8JHmHqy=)7-{4+9}ZsUrqUe7I{Ef;b9*_Vq>5uOwhlOaVA)LNTw zee~NPw={#@#X(uWh=h?NJu1?V;FlQEY|-ddjhkIf52YhvUcr_a1sAIZUK|{ z-(cm`i97a2Sk$-w&tU3rAc={1mas>7yS))E@>}CpFv-6jR&GPyBN5QKgq$usBy=uu zxo;O%xy0Vd?z5a)tqsI?MGU~5)fr#vM~}Z;kzJRoFuqkHeyvv+8k?LPDMO!cH_|D? z$wFc>qzv6rlZ}UykHK`*IMK@zXTv^n0xpb_PK-yrM_gzlK&e`Fn($$~R%Ylp16H;| z$7w<$xin$6d>P>2dp%ham>_%;_6L`*ygWqPZYP6Z$LnTNz6MrKo$`kIRe*!^@54#| z4)zI`^hUUoxlRYB%lFEF8)Y4&^Fc znR2B+Du&C^cg13x9=6#VjZn@`*YQt{$d<^4G};lHt{myZmee*Z%U0b^rw>~QiOG;Y zD3&n~7}>-@FiX{5olWcyyUf`g3d=|*hDUvB#D!5Ap_7Y!aU+<4XdhVF3PgJgiR6+C z^{Eku;|%&0GAuCHD8ugI(r^9Lh@&ZX>QTf^VfKMMtekouX!+EL!+AzOxGcOMTnf90 z+Yii7jX0WP_k~MvbC`YMVpzFNU+~B(bYdbW84n4am~7_T5S5s0o$MKodGzJbT0UE( zub++ft;)r}e)d~x3l_+ny{|qz{*pz|K@Qc1MiXMwog*9hjV~gdjr>|jOonV^!+7J3 z5H#h@C_y!>bRzN^>@8;}C_GI%F*0@eFci1njybR3^)qA6OR%yPb6yY<$>ku6|_^0HWbH`q6LtC`ofuca`eC9 z&g<-X9Zxvq8LOxbq6x8S&5>~Ymv3j&3CEa_m=p;|yz$25^L?10m2lh$d&}7g3SS|e z7#Wpt#O=3(&bRUUnL+1Uu(B0&z9A$MPdMT}GnhX`Hertm7V{@y&v2QyCLHlr*yR6! zTfrp%D6E`1`Idwu?l*(}CT|I*zcEQnM7n8@cr)RMx5VxN^KnaD!f6!qJuNMvU(MYAxHhD)y@7J#d$GMw@ze+;xrCkBp6bJw@v;_bRhv z6PP2lING;c>D1x~Au$GS=ma133KdIvN zGQ-ITtZapoVIh%RDlu0+^*b4ViEIf>A-({6gv)roVBBiGJ#l;GVjxO7|Z zp@@c}#rOogY9{03VCB>qx7$E^l z0v-}NE$H!Wh)N5l%t-VeitfIla=Ds|tsvY*O~B%jvy*jn1wok|n~5AN2zU6>(22oq zLZWSAklg$+L$=vS4gLnhQUgb)27iT})5)B=KHWz8Ia#_MH9lP6(iE1Ep+ zE1{!_>^VWvb8P`IWG88|EH!zD^tDzffziFy-uX^>T+3h^Q5@M#QEqM<($nUrhSxzKu9E) zTd2G7Os^T-_aUpW(Q9$v8}<#Cd+XhJW;<;9d*XI5>F*9Jr%u1+ZamX-Mi0n`_kaP| zKinQ*-i>Fr#qI@txGl_Ha5AjirWbf54?6#lQ;LU#&Od(dJF%(!W9MYgiB0V*m*SV= zeHreu&i+>K>u|~;43AA^jx^(ozTHZv8CM92$&hArM@=>Y%pEW-Yl^uI_K_2K;oGDW zV6vs-A_{b-BzUs-N`Ob^tjJ+^}~JD8B*$l9nKNhC%Lk|{Y&QwCkctkkSEM+G~37(J_=J) zgGj$G{Rr$QC-_2@bmFG2O5KiwmvZcY% zVm5ve%~o$mBbBq$b^P^)XhmxyVsn>c-C+qe49mn-f7AKIVj5lJ+e0ig`Q19 zte_29KTCFHbJlQ{qR!f`41Mw|_D=OoY6q4cIXhcD-|2@JVZSgx)~6le=7YXybh!C| zkZ2oj65N+HTY`%kZbX_d!sM(-a|P@vC;Y-ENhd}{efdM%ZpWC*@Vc2X=2BSMiZPc6 zi3DdA^$5`Hz6;)NBmCQ0w(d>Vdd0`w|x0S`^=#J?{Mn> zf<42fZhrYgx56IlFXL7)$-f9Iw;}J54Cs79P8S{$`cY<`Z$s3h%x=l%6VvJS`08x2 z8p|c#wjUa$oSm)S=?&fu+hbFfBawIuwI}eoRI7~`lZBaCGs{V^o1EAS zhmlSUiQ3@Zz@;kIZ%vQKD`tk3V_{`0tQ;dGl1m}f25&dz^U0XN{NY^KC0xp_8@$`H zJ_oO!$@(lq^4jo%Gu%S#SX7TG@Bq=5Sy?ZImADF z0qMnvzYB@UkVDLiwcW@hmh6x6Q)5c6d@d#lEa7r?fkF@I#K6?$91}C&eoWZ}ubvri zHinh0cr#x}B$rPtluHsZml?#DlS$Z!wTK@KJBCYqQ}LqB(FmLSfw&P&?)$;YsdL{< zzh7M+`!(V0Yp`>;?6)vpvc?)>^FIYQgvq}IE4ShAktFCmLrx$b5<1WLo9{HH@{GSF z`=)h4u{_w787b$h)pDsTQ!H2GD;3wnz1P|G>U1%7Uv-xO%4ur(=(t*R)O;6Os?SyO z(WlSo{}EN4V|=Dm{8}%W-LP639h=1*>BTpFJD5%{zAhvtLwXTWi#6YvZytcDS@X@W zV1GHm7j7Y)7#sC&)og(sZ0^M^U|3|;&qX+CB-UD{UJwJnPFv(S-Q^@DkyDPbY(Mo>I zG4jomV`f|IUa&K63$qvO2rIXV0Up_cPB`S0;vu0Ej%$3ovr0Jrl_97Q29DH0B|`9|2e2&QHw9G`;yD5pIA#rvu8h91Ze<$12cogd+3o7bP4Lo&u$Px(>_kn#9@bQ!(mBRbAu$

`U5cq{3|vkQ5eS=(;Mly~8EGh@m-VPz|(93&)?%PSVh z7Y*892J6$wp1_Ra{jgWKtXns5>K53<*Wwm1iI2j{sS|J6z^Q#^Q2(EB>R*OE!=-L+ z;MA?K$$t^If=T`gSh)>(kI7%>4|2NjkkI+VcD@Z!`NOXg-ifg?Tk9K&_FF;o*&3u5z^<5kHMzJPRA@dqI>8M2Cbv9=pwXU;(=KP$1ANfKBJ z=IjE6m&s!>Flr}8%zQiEOvkHd#+#|IvK4Qp2#Mr!3$+s?<}!o$o5>_>#9GAnf*r#p z-ntVb)(D&X9=H)q?#ra|MH_TY>5Bd-T)d>K>$I_@g^l;>>N;_(ut*l0%3`rBwh%?? z9iU}PM$CUkCm0Ox1pT=Goi9o3VQ+59h&9CS2wB_^W=A*)R&K-JBU{i3hnz_~By_^@ zsPBBH5{}u)UY;{`Ri#{tr5Rs>`>QkJbo_2TVR&p3b7U7^@a z0#k_RVSjM>w%)Dhru-~kHUoyG{?}RNx_@(}U0Yc3YJm%t8%V@+Zu+-aS$ zr9LwLYYne z#+QESaVG3AXIChkLOL-xb$K$)YJ&ZE@vOwp#J}gVFHi z>~|f%C`;Ne%#TfOj?80oY7&;kt3IYPk4=R{+sq@mNocliw=wVR2ZK|s)EURyU`ILG z7j`C{7!-9+mbTpvF>k@^W`>ymgq5uj^B=wvI>g8x6cl0>hFC#&@qIVh5VOf(j&85b z(l+sYiT;Josa4ATqkXklxH*H`gk?+4E?2L0_<2XQMK-0`l2|8qM4r=piRs95s*q?K zc@n&$ufa3!10xE30p@8%q0hrkb9RZsCrBp-sJ>WaK5mrC485NES=BZ3*$PPi zB_xuYc9zIT2B+(c9&k6AhK*>e2mB0n5Vr@&+;=^Vu_vaV;>Ixh!B1f2)ce8K`WcAR z7hVnT3;%?j#O(`jFrI^)4YK>gKX8MX{o(Jha-06(k!9#aMNT*#68c$ajc-HLv(Q<| zo}%xG7T|*JuY`^+vi}4{m)%3GpvR!E zCc6W5PG7k=I!w27RBPG3Rk4Sk&rwUTRLR-T7++Kx&X)2c^d*Mq`i^m5^|bzSue4qn zAM4DH0P`7NH2Qhx(?X(cfJyLqXKriLjUe+Qn4A@4egON*3BPa+>BP9y=ZhfIYP}t2 zzKhq+j59aD%2u4YPDms-muxH_2wFX6@ct`VgpE{-_n%?EaCysb?bvOwsXvL^z@+{- zteiUaP4%2Tt1<` z)Y$Nr!TD;kCNP({3ib(?bL*EH8}{3@uf*$T(!Ly4PMvnkml_)$Gl<_GPW(RDFI?j0 zml_*wu&LjJ+rXrL7p&Zdy2s?N^9MOacu45{;YiXjj&Yo7! zb$HoRnI4;_9I3-b)Eq4NR$WV{4jT%I$&fnCkc~FN%ib_C)kMAXV^7#iPUwa0NGC?5 zK1(b{C|Igq{gQQeyk2HV*%el{LdwoUBDu6-u6%@dG9DmX0+WV5*dtuVa>1$9dVBIX z8Lyp5`b1bcbfW5+{Ew52ATVNAE54V6x{Nu248{!^wy-pY8wBRA3 z(}g*{4N>XBw#lXoGy3z{!2x=U5POU93u*)wnw&kY)(DElCkzCrK zRvQ}LGB|JZE_8HSoVO$iEQRKBZe49?*l*L`0f^Q&Xo z!})M;b#}G-G2<^cK%XdCRTQSi<|Rk2aISA((z(JpLSi!H3NvJ*jd=16n20jfuGfDpvR!*IC%kqMg_N+sLY0n^uiO31<5p6Cnv?D$Zw}46fb+B?9;vSQ` z&JX0Y;31*&gR^|QuF4O7kZgXiVRg7%t_{&;-^&~qelLeRtuwyVPn_UHK^jdq^Dg~9 z*tc`(gyBFTF&PpDMXb?yBXJmpiCL3M0rr*?df_emUxAYMN+$n?X? zR*=aGiR2Q9MRJ8d?lXh=f0IptiNt@wp5Zc=S3$d4VLyJ3;Z`uoe-c(so%~|G+P_}< zKMAM*f3SDB^p_atz2Ysgd%%xyOPD?22e5LR9^jE3=mbMfBOVeu!Pw8YAu7Q*A=w0@ zyT3Y8%*WqebRUKWEN6eKXU9z|T8~v=XE2o6u?ftv7O?>}1kt5b<>@p_rzWGh(N3MWg1L~^NwT8nTp zeh=9am_i&4dxXolbuFSD=_ByknWPVcl~X6(vKHZ_{o!!hXTV$e2@%y}g4EI=PcdM@&H)9Ap zT_Ibb8W5YQ9J#{}efyct9lj?dCPVHpx3%d;2JtvdPYo!YK|BWg%Gm)5_mEDEi#oa4 zYQ6nf@(5l#GuAu=D_gPV0U?oG9-&TdwtCFqy!C!LD+$FPuj@F)WQsA);Q_;HGNVOBA2MYiEX; zPs7Sqn7PPTLWddIi-N+;XowYb`OMA9hMD;*E9Go|U$$DKP&1Sr$yH;UuYO0Z!IoN_ z-Hq`m;~#38Eod|#)~_Am=3!q%I@~-cB-)0X1TUdkU^d@~IU5{~60~AY7fDP+dixAH zEykuUmru+V*y+uyFtIu_?)(#0w&Kn|WM9}|c~{pC9~z53rB|m<>J43AIFAbYqFztC zAIxp{gW^_gq%I)E`WE_Ko9Q`&{jTBcckUSbEseKrW?SrDup@2@vlna+E4S$d9#e;& zePmGakkCo){l48y-vrfIIk{ifXa;3i9Sm7cXy@jID z)y8j@>}vJ-edXbiY+o%ilC5M1E7_4DrI;6rlVL8J7xRb_jK*M|s^Qb=jcjyHxN7bv zVFx<%9U|EF+6nEaoBmD}*w2?TeL)n~07Ef#aNOcY3B zvkI=&(j5nUTeSFy=z*hfQL>wVX3(VCpQl71_5{2u*@AUmXU}77|7l4rpfsduc5F6l zWFQ4Sb?q$Nnr(jZo7+7KdXCyrl6mbA_XA3T&%HAn%{GF~(J(JHjPyiv1neg#^1{BP z6Jw%|EjKK;qsw7<&CKYs99FiX%fUh-xvWARTW)yE;Cu#IgN;jz^J%b8xSU&$EjR49 zX`hPM&!oKuR!*IE%dzE##|+}vgcH9S_6wJ|d2G4S2Ald-xD8C|SHj9|sC&%%(UdJ8 zkmMBMA))iw?R^`f5{GA#UB&1w4rYgkv$3?{FVqAqJUM$>J=3w(3uSa{f^sAcfAVFa zlZHPEiOH})F+(=m2rToCL|Iu=$!wBnT_PVpwQ}Mvyh5&u5m9@F6)aV+PU(8^dYQqb z8&hit*dqs4e{*dtuVt$T*sk=_%pok@CkSh)>pkC?Bg4H+an zB=ofLd*4u{rj3=!zIyE`<<{1+1GKgon>pSO_f%&$tFP?X%%Sa$g(}D7vDUY1>B(bM zNKA&wV^*`>#{BU)n3xq?J_9?-3BB-f(uqM)9~5euZs(()#;axqmWyCzE3kY@NF+Cf z%$H|Bo9;45-$CXC&LX$LPT`W?SiDd*8esFj1vh}n`^T_y>bw`~cj@hzzZA~=1=ulM z=JL&jqY*au=WrvK+@FD!+i>@o{dEE%CkhV;VZV>6T^ZP z^T_*PPO5==k@~%`kDRCr?;xERk9v=oM+7KUtA5^mH(o0P*KR!*JrhI)2&kp5OU>2JV3;gXiG zA>#JiiNXKk^)qSz53JmVw#Tfl69YLFcu45Ppx3t{DlzC!c4c8|HDBtBEh;=u4Zs4D zvyXK!F%TxlCL%{-@T@NfofteVBql{-5H;CI3>F=Ya#ABkCk7jl1eQEGQ5RlEIx!w9 zF%Y0stvWH-5U-UPMCQQCRuGvfBoa>y9DENTOR#Zh@qIh&4=&%<#K2AYt$5u`%5R31 zQ>WaL7&u6egp(eIeZnPeCI)WW1-yPH?Lk<%4Q-EET_*-|D)5ldiNRC86Ou{{ZcBK@ zAUm908%qqn26t0uAM0RZAWV);M2^JZtG*pdCk9^;5|bh^h?;C92ETwgSrf<4VIMhB z7k)rGF&-*05TI18Ix)Btuay}@ZikhvAabjaNIWrc@clPg5||kL3-$+>Z);-Uru;Hq zHPS;+rr9iXnV}+Ix&z_fro@n z48G*sZB=6M-wCf6^ydc#Vu`^jxSKkoNe2@HVRCFDawG;rz8y*@200-yDH4OI$wp#u zKFmpt7`cXj{6XT&00|83asuP2A@LHKc#hLNIw})`f=DNT+(J@;HLc;UO$ueBd~HC+8(pI zP7LH!;31(CgO$DwQHjCsUWtLnyHByjpy$ABExT21-AFE$9Bh9K8kC&v{)9OMSI`xs)yTM*o>xJCdv9qZ9k||L7UoBUlO`M93~_tLuNQ#wAn}v zSHq-KkJqVT6?T$ypcht>P7FwWrr3obQK@QmZa9Kh%bZ7sVP$I`DF}(=a>F@tn~96? z7s!;r^0dr%#GGh|6%Zg2wZ4=&%% zUtvIMr09g;&#;G_j0+EvPK-u)ls6d0?Bf`T4o?Q7*@6d$$>&5xd}q8I=Tp-My6mh zxkdO?*dbiPt*ef0IIqDgXL7E=%Bgd1S#@-=zB-)sRj^aItj$%&HoULI4Pf%V99C|_ z+hcau34)vuJS6nP#T$GZq8=_@PWItq+R(a@a{QjwKT!*?pycdj_0A;-(&pHF`^vZjw7lEAVkC+xyY{%#Yc8h$j6QG0xZHF$9c?d;_U8ujMf#%LiDOF{*AX^+GVZEv;}?5Z7PEb;=)-ZD zHThD1dCge;_;JBB{+3@!Ze5PPi?Av;#<;>CS0AFAgY%`qW(&qoKYi*bX&1e(11=)( z=lh6rz1#uuRayEjQzf%9SFPrXnSR>(xjNV1^w-IqtFh6k`a4j?Fg0aOE7&;^ zuquD6%12cBJ5lE9Gw4cy{@h4yXl(hv>7V-4!D4yk*oyk}zU+v| zb63=7R3kzUGuDBo9~ZnzFqI@GVjbvP z56)1jfU zbL!pn70%I0eym`Fo+CCEG%U9X_u@4(3GW0eTWbSJ6W%cXxMFb5hI2j%_KEWe-N9Mz zLyOyQ(>@-rpGo^zSUGjtbB40b2S)?-`QfO~g&o30EmwG3jJG+TgICVvd={*nI_Dmh zAsdXp8_xI!*cn{Lvqji$r1r{%`c2Jsc*RV<*TTxF^L_pLmQW1nPliK(9QF_w`ql#a z`dVX;^v7^(m_6YUSUL5cFi-hTE^Qg;7rrkzA74Ncoyo@+w4zrlbJnPzhgZ*JJsVa| zo%Kf68l%B`|8U;>!fxRX^+kfW)dYKd?}MAbWWG17oI3M4EepN|?Q%HnBJ2<@ZJDvP z7;kgV)!JA=zuW^9cY23G987_XSg_d-}XeZK0|hr##u zaK5*~&cOIK-q~1uZ^kQT^1TUGPMzHIwnv zuyX2*=Nqp84bs~lADnG(MG~FKw&m)#(EywG65IeL@5Qik>bx6cx>hkr9}!OaFxVYl zW13zhTXB0iUNw{P!Lah=VO%p9pBB#eRM;JUjB6I-i>7o<>5Bd-tif$y!mh!}sl%S9 z;-B20U;w{59QakROSr)0VoA(=3wq&7ym}_<%VFizSTO2R--6g4xrQMtCb=ouf z$|LKl`N8!%l)iz`)%6$;q^0VzYSJSo%Y81e(E;FYvIICf&IcIzKM81u-jl$ zFX1*Ysjq^S+fetI^>yMPrw9)TojCl}ccM~>Lpj;RVQQ963CGT|e-rMi&VJUxYqo{S zvB}AiFnry&L+OO!8X++m5{B-m$;Kq|E0~iSG5S``dto0rQ5SwpIx!y254XD381BYv zWd@O-!OB(;`KgddE>Td|Y&-aFa8huR&_xmxkqp{=Td&y`!%;a>uOz(+v*4~D{}WbD zopQ@H+YZvZhLhg8W2DV%w%xRM#Or5{>Fr_VHncrvb)6WezJTNDqp>-Abnic_A?w(t{q=Y9mAV6iiDE z9i1V30(O%Vc;R%?i6N=0b5^R8S<^=yub3H7J_ajW0p)BVkzA56Pd<&iDgTg+30zG0 z9_$h>Ww{(3Gv9uy{0?3{llAqma_X!%($C>;-hT<_{U_KhT;B3@jnxF3`5$o;n9P3< zE4N|pG282eK~4@H5;|cR@NI}n7_Le4afBAu%Zu2GwdKVORmvQf<@;!@FQNIe{16Ogb?nDq(2gQWfjx&3EDz zGXu&&u(B0U_7@U~Ck$@N?JtShi`>a1H51~>07hx7g- z>=rI>Ght}U{0iIzCiBZ+ybe=GsB(QYKiMsG2 zIV#3Oy?PL!RINHmn2OiR3?frtWh;ohCYdL;3q`$paPZwLobMj6Ke&8bUp=@fFT?9* zQtpM7Q>WbW>cK&}Kb&+H_6e7?`Rc(<`y{-6Chg;4|XLMH~l^_`GZ zV(^A!6N6a?6?4(Ov}@>o?pS{C1-Q35yITFwaWB;!@0$IV*AwG@-ShLl-AJbcpA{18 zNe9+@(|+N{w3!vSWWR7b{eE<{es)|xwfJG&i|<>0w>MiX%C}1$%+<1Vv+Y<%^`pCt z$G_vdrQMK^R_06DO8(U73hNU)2BNQADsVnP;M<7Cez>vvKnL3}N|#ud$|dquxs%T7 z&kqc6?v(a*R^#EfgS^EY%DDI5w+RE$7YD}wuz|OHv7D`CM#^hCJ1Pc5=otT#8Q#qh zpP}twd~JMxn)CGs-$ux99(8bOzWFY{b0CWJjS2ctL+9daF;^k|OvhqhQNDBOU<-!J z{S@>%*Md^EB(Cc3+(cT+t*vDT=+5p=#_s6w&B{D|(V}yGsY>5I;(QUpcR*L^qaxM( zz`9H=7kwe3ld)rMu{^l0lfF7NSIds&3XjT6c17VQltD+IWw=e1x2y7}s=Py$cdGJd zs=P~;KUd}5s=P;)zfk49s=QB?zf|R~RC&KDf33;~RQaGPf1}EWRQa$ff2+zzRQWqq zKB~&cM42nRObrzua47tf{%u9!74g6S63usfvEfGgvn0RRFtd^Hn=6Ug@RdZ8n243c zYsn??l|*^ssbRUjhhZvSGjru(3ao6cJS0t+wy0;<8g%yxr@II23Fjk!!KT|IPQ8eS zMCClaPP`1Sl}WZ2R-O!Gt-}ZX;bgP0Cs4Ak!v`nfwKB;b4=blmc2;wV!5Fxo499yu z><%tod0S-DbUQAei&xELd=9LfI^*tWg~!1AgK)gxg+0N=E90_Qm$KsW4S20gve&`N zsgrGYiu}*vbf1L1!KFLiDf0hE-FXK{Qk3t1;qLarUW9`qC)1IRj3_38WDdzeV4d5Y zyPdw-nPqnNxFd)l*+Ebi6a+;O1j&LZ3O`W<$)aGyETSk12!epZuez#csw?!(`&8|8 z@0UMl!rW7Dy`Sp$eY?84>d$z~M8bcBm2)RNtFM}v*)(qAwH5`J&TBA<&Xmq#8JA|h z9j8~rn#TE9cJFwLWwU>}4XK?OU7Pie%j;H*3Le!Nj4*Lz{*+_}zJtX?A;d|wOa`wHw3DqnG$ zO~QDa^GkT+M9we3%DHpyj^E=NfZy2{TsFUrNpz-c7Ll31eYWo4jqp~9WY>q4b0<4_ zar_3|KzndF+K<4lpx(P;vt@3!eb?@fH%nx@53HO!+iA_k3kKd#gyTIK_68NNnAd1p zZWBHMZ<$E=cvv}i!jt*Z5d-gy;ds9WyMl^W+`VGOixru_iZ@GS`xRI@ceW{eQT!^L z?$2RoQ0cbWi{eSVVItoj!^*kyoy?a^8Tanw{@|i&B9rJ$Q6=tOvC_-BcUQriC9-|< z{~p`!c(s~=cKdL&+u%N)QmU}^T9rb1^z24=t+;rkRvJxxhtJp8S!5UBtrE#@4lCz= z*G>`Z1P!)@aJI+7zMux>9zK~N*Ed>pKZ>_YqPuyXEnds-`# z4Zwd52mEK)9aO+#{Y}es`&svoc+*72zk`)?XFOFd3^xd`Q4Fq_S7Q>LshGv{P;*7Q zbq~+N8z%Cd4lC!*w>w^yZ@}F(9PS5UPf%}Pk$d^K1Qyx%;jI$Mz6Vy$o$MUrdk6z^ zH5_sob_x};IA_`DfE}qzxB*1oi(%#5c~9mar5Kbi3#WVu> zxRih2Q~)+TkR6dbUc4jQ9WN&DS*#RmY_{u+(NjlH9*r(qpPiXKWieVJItN!{ueKkb zw%hGuiL_4pJj${0)g)#yR*_1ttDP=Z>ueXjuzw> zhzp}FSjWy}{|_?M3H;jjbvf?e@s4s)%AG6(PxOE_JSMP9f zNxV@I`v-QUX)<;$XKb(m>l|&3C2a#kU#(cEm#USvk)ip+1=e}O{PXu|g-YK*mA zERH%t>xl1QQ=zrSB~}tzGYc{;f=z%iKO^LP0VZgLoX^8Pa}I*&ET*G}oRlM#V~|z= zx(K&|7=S(tD_a5Rd@hmQ#>DH1qX1mDfWiL(W*K$|Tm0{X{X^xyA%8cO-WPimd>^-k zI10WCE9X86Hc|%!5Jtkk!$-ouU>{LO!rS;rSb2Z!(eONO4{zH29JtD6(u6o zcu1(Cr0UxdS(L0gg*`&Oxp!CBrtuTi{HVbmsRr(d&SRHjMpFac{AlVvDSu>U+W)wK zNj5fO-y`>T_4bVn*QD(Dt&Q%pp_@vFF}Kwb38U`ZOfCUA;WF!lh!X6 z#9fg+X>~;PL(7DYN@W|?x4?(M1zZBB=K-(0Q3`HOb;Fgq!pK;M!%(e^bqMS`=eUS= zV>%kA#wI*Yt+YFKm^u(QhZv?7!pc^d+SgY?g()%4g2L41Ay%**cnaB0G|gOAtt~1I zcl936?(ypJT2Q)}bp@-qoP&?BAzbrOsBKJY{&0aXyJ@vHv>hSnLSHEAVd(-cks5;L zr)H2bk3qAvz8f*;PMDb$bMAnh<-{Ic&2%&{4e=4UX1*O`Zo``=#+X}RWh=(q$R)C4 zy|yYOHMbempJ8TUcdAAGPq1^S)YmgAVyz=K|KH<=5c&TGR!-sXkswr#5rM=*LY2bj z`F2E>!h2*pKi9JhD|najNwHxq!MtMt9k$LfHwN2x7ZMg~G0TxmHepr=*0UROiIpUi z&TQY^ekaO=AKK>P#BUe$70V-|gk6Lae+JU$@_lU|ZhYkj3bp>>fm*4ul(O}8NGtV1 zWq`7erf(Z;8_jsn(ayPwHNe(^4OUD2o$SU?jT3Lb&#$kaV*MQ{8&mr>Fx*!t7yEk! z@6O$L!`x3D)Gx(1cISrEaCLFLdFOSG_OQUvxo*Vz&2F^cx7c?~)dyk<44Z)*EK_Q$f^)V4cLgGOmyXEp?u=Ew1Fguf}@p6O`CjXWBQCvREms`um- zyj5Zyz7$rr>hP?|PO`y%ne`$N>=$82IP2fY1}ipxiF1R+^$U2TM6REQm2>AhT~&U@ zefwBA-iKj-Q1OZ*&y?*pa+~nK z@s^2%{{<`OPIxkZ?lJJrF9k>FcQ6U;S)YnmeuT~+*Q^-53EnJ`?S`;&?rf*4M@|Fq zq2YiJg8e}SEMl~>-M)hlz}qHL-VavJo$_S<$Zr5XEgbMEuq&v5#T_hWDy%#BB)nN7 z+ZC{K{%rYdi^2BhaJDzVuE5xeNg|8wb$GKxw%5SQxwD;-nCLPH|2mxTFJXsJ35%^0 z6UN)|`Db|JM9xpZ%DHpyj%OMTz*D2(0;`)zbf&1>n*sT6;gJ6VyMqc@Z2QwP-DdnW-ZYW%A7JI& z8L!rIlzgvhpq{rhxR##FBsx<|ufdn_nLV(H&%rGq5}yexrx5p8c&FCxiFI2Z5^C+< zdcKqEa_!#nUTgO}79sQR9lCcfE-SIm){~#o9tMw8XGCf2*>(v-yKM;ig>l+DZO4MW zgMG)2TK)YIUkL?%e_sg+{zNbE-rp~=O;-7a1xfO!jS=~d?XJ*nB%I>QK#hcxxWr19 zZf5q;w0mcUt6@emP^z67u7thhyuqW-FddCZo1GcHgttq~9+$z&R`$4rOJuk5f2R1D z*tz@0Pna!%OHY0TdxXk(4zCrG*4uT$BY5jX(htJQxszT^edFPz{Z=^b|H59O(iWAW z*#n#SYq$kO;;+EUDa1X>I#n5pwBRA33WOED9gzjXcG-S8*e!STO%@0rD5HVNInElr zZA-&qxfpNsa(rpH*!Dw$#BUc!qqVf;C>eKV9l;)@#rW$%#AKpXq2sWTB9@XY@z$c8S5{2w2$)CWmr~%nJo4<4-eN0txl zfyn%S|M!^BQmKnQ{_dOON@u| zqD8Q^Lp*bVk$EnH30if=XJMZ?2SIcy)6w`eQg(=sK}svsBhC4^6~qA4fR(KPbPkuu zuHZ=9A>QWyeP&tU{Ka=+|4{j_bccB7D7Xu^g*XcCgq3q21uNSj-X00hhmVBkU>{LO zLfakUoulDd+#cd+cm`HZ84Vs4g(^x!s_~FeMM=rGBeE#@x7T|S-=(!vSy3H-0#n!b z#9UBCgP3#NHTG#c#nEncZC}eiEt5Gajm??O*z=kkL8{W2?<=A3zr$BT;{RH<>t`k| z9xN=^X19(SBlPWe1N40-#!YTF8V>j6phm+XTw*-bo!xPljXLvWn3EjtYURucu#cQ~ zc~oLL8V|Xp8wVv@Rdwa@c&o%5QiqkT9C93&$gZxOE@y#kzF%XO1lEyXh5bS0D?Y7L zw%bn+U%}fZQvNcmoIB;&iK#1_^v}adKMDJUN_us3&MM9q);;}WynQ0=$6)0Y+8#xn zstZLb@Q_f2!GXRVk%hsXlQKOyXhywODtGm=^ElX-S9)={<`5d0oP&+9zP5SLM%yJb z%^xm^t!^2u-HMy>E3n3%kYRIRWh>?mC4BI*J3OI%_+B$u96zl|vK08GrvEcd~Vazc-8XF3{`hS(dTWx5?$ zzK=Ie3@qP;m94;X7njH`t;`XRb1ionr2oy#!R}3q^uJ)IP)X0_`NZge&HH)W03z?_ zVCCF-uc69_H0GNe7tDM^CV|!1ROV|LHAJfuHuv>#BZ%DBhLuyedt`rAK!`-)A)yM0 z%X|m0EFiAScHVkQpk_y=Y?BDqZnk$Ba5hU8B(U{e^EK(XwAlS&lm5 zSlWGhWiSbZJOlx-ANG_*?;ErkD&E9{5emn=Pve?T_Ov z6Qj$Cu(B0hmUD^hs)*Sl2{*lEaK4pU6Ievt1p9=_Sxj~6_S>|t$J-~;z7|%_o%UQ+ zL!=P@Z8-6#V82j_&ofGhW*=3r{i_N>qzDfQRY4r#+Ywno{AFUM z6WkN~s+CB4^Syoz4NlH+*67@uZ*H=doE!ziI;- zMM4DogUUDg=9}M+7Ud;)+eFI!uyXE{6K}p9q%RF8{W;htRMO^~Z#V5xynQ0=&%nwl zv^}!ADhxy_@Q_f2!Cc>t$im=LUMnKK_ne$PJXEL+mlm(+>a7E=7!UQr9HaL}>F{5ep1h}2>F^rtF6RJ<{>pST zGz~F{ZFIn{B3{7_AV!>*U}Y=fyuc;0t0Lx!$92PL2K7yc(R9 z5XWxElw_l72IA{@qr}*8GpuaIjvIU>RO}FACMb3^LaZ2B6um#&*fFWxUtF$7k5^d_ z#^Mp>*tXHb_vNRsSsS&E81k|&2^B+LEh5!A_yF7LyA`2W;LI+yEl)rLb}eZ;$M*3Ivf5 zJS5b^#Xo)1l6<)MXtvXt6Hh4C3)<7gZSXjC4zdou=j0}9*~n2I+~PZ+RC#bCmlzM_ zL3i9`qdNE*%*o0fPryEMqK>}LbTl6FJtqexTUAdPkK?TpgUF+>vK2%g;u6^v2l73q zgYSfq;M$;zNsLAHXY)Z&jhslY=*6$W4P9k#MCI6vFMV8Y^(zVk;F9;MD?(Kxze^9HfSS{ibc z1!dpiq{@O4mlzLa!6epWqbm3;OiA7@>J{esu#23aqmMHk4Tqe1j4{bZRZ-Bu8zlyi zb6{mFfSk!CvMUOD#6!1D_q)uH!1;o^V0TdIitp)KrrV6~#G58Ez5`ayo$)O7ux)dG zE}ZkTuuG_%#VH4x`8Mlk@aBoE{{$I;&oa1Z^_JV7@f^1s^%x5-Z&qZ9`Mo?2c2 zUfHs5Bl~;%MuzLv!QSSd?_E4n>8qEjY!BbgyeE#9vG>HCk&a((7Nb81pDm0IV64s@ zT^M~tUJvBgV)PpO!9H)XzoOUKKP`;j;D7%w|6?Q3NgH*s|8_F}`$aLcT?O*Y&Q9KN zrC5x*?_qQ{(b74nNiHk)B@hvW0rz-uk@J5MTPluKB=V~t=`F1$hZ^DkixH=b)+>SR& zfK-SEbV zoIeCB=gv8?Y{bQSSvc!q*eO)j=CY9#-b1(nMBan2atd#cysk2J=SZPv7dr{^Vgr#e#lX(Kq0s>l}B4kKvj%0KHgf+OLl4iLKXimE-Nv*L{bZ zDjsg;662wGXff1$U=$O-fEik;=BKdJoWmgc0n^a{HN?kJZj{mt_1yUr+zet6`Vp*b z1))c{M0Ul+`r({;uOn6x~&*jSZGj72$VkARK%%+g9aW6wXl1=FG~O!+UYoclP~ zSiQ!fjD>B($HG<}8w+nYK9zHJ$Q}<{;06)n!ltlt%6RaoEL3qK5{`$2Do$?j9oVus zc|F_hgC~~y`|8@X#c{^CePn0;#^o__d0bq6A}&wzi!%i^4sQGUrCeB1thN7KPW)^E zH&n}M&7z|*wN_kQtQ9ML#nFhreyA9useK>BXll&qs}2qo`s%%G%DQ1(DDPW6{*2D;M=41R>Y4CQ6byPVQPP^I#eC0Z`ZGt58E-<;$e(@3uZ$r5*}hM0K6q@a zKX`nE`Eo3RNc&~hUJoA3T5Z@m;>iBKqd~=yeYiww9LeFqW7~csmJGw3tXMJxJIWnP zdYO&}MSt*M$gFTOh&N3PClRb{g_9**BD-XvKX_QAuVCh2ccex7a@Z+U(vAlY7w=1P z1Bkpo2P@~!+kWt{m_HiM{2|yeROTrU9xm=b#El?w{{gI=!rde1tFl2P3J(eO;IXG~ zM`YP>dbST9)Auh_N<$;%0{>9!jM4aeGw~2M{X{fQIR{*0|F(}GrDZD?G`|%qlo!PR z%C;OV)=GnH<52b=29qXgnaNQuOl4+c6}22ls$A&i5-TYeR{CXLV{*OPSFaV>Ti532 zd4#Hdda2S^9_cSGE|uA7=<$bo#kPJ+`laoxyl+vPFwb0)edv183FvNymV@U_c zMBhNMZ)rRl%7xk};Q++sz{N&+-#|4!z_GKvsg_3uE9`D6^er82R6FUnYNfAG?_FGD zpV$r;j~n3&J38vW{^23E5Tdh;`laXEAB5>Y4p=fNRMH{n(^ooy;ppoi^}*`0VqtlS<;wQESo=F`sK5qqCzCN- z&{r=N%Dv(?8S0?Jnk|VVk9zCX-etwU(MBnQCPymSb&qu_?wdT=sk7Z1srMGj)yk4y zF%Uo2L08tQ_4lwFx7@)dhO3L~z4d`wad?2m>{4Y(XA?ucu#|;}sDmAfTgVJhy*kv( z3eZkIjn~_S1RnWbC)yiiR@i$ zOlH$2wUU@dSQu@~W;5cwYqpcu?d5d`dEHT7-z~2@$?JRM^}X`Cv%J1fUf(aTACT7% z%Ik;Zbr*TvRbF?K*WKmy!}7X^yzVKld&%qG^16?_?klhR$?N{|x=>yZkk^mM>w)rm zkh~r&uZPI%q4Ii|ydEyEN671u{90^G87wUCFAmiQM)^)ZjfqRj)kUKV8hAb<2}=7nI(a5AI|5UK~@4fCkCT+nT|G_*AVNZ zmF@P6rUu?NaRT}rSlOC@&YJRSg<*Yq&0zgq)}=t!cfnqvvR;F)PcVC66TcI;fJpof zSUGp%(+jOBPJ{Jx;jEv9{Xu0d@9UQBHsxpVwuzMg1S^jp%GP_twNDDZqt|2-*!vMb z%C6UktK)4GDbI$L#}DQ0%(WnUgj3!P_J<#3_G&^pQmrlf5Z*SC^7~=s+$pbSzFaZl z_Ha1sA=oQa)*?rnJ+O%n;ua8zN3e44#Aha7a2d3(2&a8H>=7#MIlLlET5prS6mOkK z`g5>y?xd%P7mNnuN5dIE1p9)@SgZ<`FGj7%{X@K6BHbUr%DK~>*_U{=YcPI2obju$ zN2rYDeVnk~zK>tVTPKo!5mwHf^qOoM(0a9Q5P#Rn!Ik&hnM7wQ@3lqbcJ#s~zcFqF zk^Ba*a_;1(h$RjN>qEj>9|-$`dUuNmE|+Fl5qu%uE|KoOu=04I8!yW-=$;x*_v5fH zP`Z3Mkwy1Jyj>#Q<*;)8bj7kBgYHe?bgzeffzg%Aku18`;_VXYUJWbfPIs2Jpvr*! zR5;{cz%HRe7Khtt=G$5Lr+D*3)<1!jb7wtuu~^Y&P@eMf;F4<+ljuyzHJz7S(r}ya zs(8ahzHj~C<2ywxCN%Kw5RP|S+{@xi-gu4X*^O?tLE1>IH0pR0DXJ{F2-1qwTjA{z z>23il=YIEcx+CTs_M&jQy|6E+AzIO8%TF!3N8{}h=^hCy=T5gfUOH#ox#x$oZNQ$O zvYjddbG+==B6|+rDv|7&uyXEXds+*Z4ZL@SVCCEy zPZ6ue4ZzQa1AYef1r@M}&2qK7bqD_mZBP;yvx4suFH>ikb@cXxExlQ zqp))BgeS2NvkbTog~R_=eb+}Y0_(!P;4pkE&j{aV;3ROs?f*X*}xUyZj@-M<6{}grw6|y+XSbSVB-KV~z_zB)Dk?oIQ<=ok>Zfy@>aGrE(aILl~ zljuyXwkChLwz^>7&u_tGR(`ag+SKm9uyXFqyW<@c49wexW8SJ`n8mwCzO#gNH*bNr zO1zslg_UzBJIB}?!+_iy4*6) zp98ysN?BxPv8#%8FQ17wOJw^=SUGpL)78E(2H-ox0p9`pg9=!Dldf#H@8H|;wuzK) zft7QoJjFRz@=Q44Kf%7B5*F{8v3{`I($HEJMST(4j-7{yV;FAeBh;tU0tdB z-luL~Hb0uWkNZf^XlB~~xM2ORuEyL-vB36wtatT_bE>NBJCLGwZt4y2aCMF~!hX!y z@kP>b&2DWkGsnpU*ZGbzHHmW#m%s^m04i^kf|Qe6!{GoUkNgNmCvPfsl53GCYVIK@2N$HNxa@RN6M? zN~>*PPF7%906WTwI$EFUXi)T{(ik$?w0f(vIo>oeoXm%nt#I-VE|Hq($2^V9*`-!1 ztXLqAy0u6j%ghPf!1AN8Q>dgJN2R%VAAuV{UD zL#!)Uq;d|q#sO{jJa2bcTA3Tk_MI0-YT3zAGW^h&fhrk(z$I2vGOYBtv}jZI%nF>8 z7H!RbAD@r5xUH*nSF}AlO8@zSLVr|ckEN7D5A;8YHngZvXPfTz_f|*P5#W?lOTwCC zn_ZC(6$xu4J_;$`9f5KbQeaEf3>qnx*l`r?PxlJz32S7am%Wiv$4GU0jI$P(70T>9 zhkA!^rX|HnvBu7sDOK3Dcc@nFAL(P*Y8`HNfO(X)SFQE4zYkX9^CU+b?N7N0!&s`6 z;xl#F5k$T9k-nwzJ>CA4o3JLA4#cM(_0|g2&c~0XwJJM%to>PPfjwfauyX=q=XH8) z4#wxS3@_{NtyC+$mEsb9TxI8(@vrHY_p;rfC`UYnd2_JZUu37OvBBSIZi6G`dPy|Z z{`{7}PVuHx*E-!^bJczGrtWk)7_OGtv8n97E>xDV1A5t=(EcQ_FptJJLA>V;<+#zX zmYQGP)CwgQOxhnS71&yBB;MeY)mW^DozFV;dat~>6DNVSKba}8k0R9+qoYK9yfFGF ztIOkqf1a1u7v%LtdHt8Xz9g?N%j>`8^%Z%2RbKxiudm7L>+<@By#7~S|0l0+%IjP5 z+I70HXBBx}RbD5^>qL2-B(L4_I+r4907aEt&P$lc9WCSFb@fV-nc3uJhqC`X%#-_B_}SyO=efbY#P7uJT=Y!^Am^ zx5LWT97fiBXKBxA2IZr|DIX5Igi2ZLNT``_&r2VIH&0}JAgr7_>+bj=*+6_&IO5Y` zPf!tymFN7?-nxrV#aktk{Wz?gJK1T?i3x-5?csE9g}p(gEB0n+T5jLFH{mT4311H@ z=T3MMd(JW7{vjOhZ(&DJ;flQ(;)gTq&V34Rl*siLuyX!f*<_W$b>Z4Y&C&!W$;??S++d=R40i+i%dmD4h0ZVb@S;iyar7-LTo8 zkDEbc-++~KXTOHym5V|C`{Crj3p<8NUaatNbi(F-7j6WR`<<|I?%Y?m-g+6-pAV=0 z9PAbJr> zSHP~J@)kw8vl}-1%W*S^>@S6tb7wzYtu--#KOPSJQP>|;;382g+il7Z;cXKs{}5Kr zoif{YTCDOh82>Mv@$0ZRsEnK2PRsR4(upczzlyg^B>Xb0oIBy3*6Jz)@n&ZQ*W2%6 z5}m2H<>v9Ng<%%sx8qF{8E*_L=gxSxV4QL;v)kiL@8O z%K6jQ7Zn<}_37cXPlbJg(bny^X@4AVpGf;eSUGpvtC>qW4c@ng^S%l83YE8b)n)d; zCVo9`0g?E%uyXFir!|+<8l-<4PWma>8&uMwCTm)56aEF>GLi64VddNj&rB|5HYoR; z9bA@8VG^Aw%fyipN$YLWlknDwq*sNNb0E9cIAiukz4K>gWp)aS## zprRJrT*{AJsj#^Q;=roRE-W;eAf_83?f zH-$I`)`FFD9|IfiR;|?8=dQ&X+ge0K@I)Lm#=*kyaj-A!B5D-agpY%jcE=tId*S8~ z$HIqU<&?4DQAMaiL?jsx2~~(Z;2YRvA@XpxySGlNEnZx&Xobgl@UV4`xyB*w_XR1e zDAtDCZ?(gJwm?{_yhlbTl9h zc^DQSRI*w19P>52Sz`G3Dy(dUkFRiv?8=E5A_uz&|Av_o___J7V24l%&rTE&;+C{H z{~T|e$oWZFId{%;RE~AAo_209>&Z-FEQ&?@ZWh~P8Xd69f{C~RMBb~w$|<}(a=I!D zL_+Y8P-VgCz5`d51rxh7-6pXoZB}A$c(^*_O5?~eE)Ianh&_DAl&TPR;}YYcLYS^P zZj=dSn3TMA)Eq=i9!ATaO(HMo}p4-+nir$ zja{4kJ-8J_@^{0^Ddatpzp5WZy6})t^}~mJJ0k0cFJ-&U@}!bAtuX0RXpC|WwK1Po z5SD7`$uX_4DzhG|vE@KgMZ;Sh;dm$-Ci6ZU(PTc%NA^(F3-5rP=U6lnQA$Ulrvf#ggWx;>5ecLcG zo&nQdHhd2rr_MpvICzZb6S$#T4ssL)|Ic?AsiNRJTw**F1>JF%jhf(Tn2x+pR88;) z*hfyl(c?@<pR?eOBY&B!xxRXB+PI_n9Csfknn={>hoAyq4`$XD1z{)AK zJ#x7!2Sh6HkWl5ow|s+>oF#ZY+f|U=2Nf#))j_QwI2j(O&QaFbvu#1p?hvM$FiuN4 zjw0X$-@&7bfaAHuN{WEa9KLi!TNeozv|XSfezssyu~w;$l*^@2LOF&?*9)VBLpd?k z{!*>fH&8CJBQ@GDR>7o~6b1*G#fOcti-)SE;bC@kOX7rpFSEfDpAc}Ryj~@*Uy;|V z`4!%If0X^PEO*}TX^kGEM!AC-5;$vd8}AFUINTXiq6X8^!ht*~v}L-Tv~IzhCMK;L zVPz|6WzD#IQL$by@cxN)BM|TJVNX!;ibsstYMbnD@K%Xre+4V&PPV5NN)5cT&kM#o zgGr3V6GqzI+cMo|JPmJ}$apfWoIB&mJf|6a-yhERy|62&x35@?C{nR>pPC|gH{L9f z?e?&8?rf*Z!or{%h0|REJA+DB?B?98h%CPSc*8`#1z0(Sug9~VdR!C_4IUEeak1{3 zXyoJKx!FE0&KfSWV>K)6bGhS7?78uH?YZ$fc&IwZS>u?t6?++4wJvRLnyi(Nj;G0M ze8-l0n!JijtmJ7jvoGal>zy}(%Ofx`c^j$8UO2{-}&ia`fpW-tE&pP8#=FGpRm$ahSsx}uj$jEA~{ zZH3$HxRGDZhDlj9#Tl@toUo%h)6u9jnp@#EZMS2}X?WYjm~slNY{it5xI}jKgk1EV z%K973p1@k->#$d-tdoo0RS#_9H{%u%iQfP#=T1Da=w12DxWoS#PW^YVXQ`$j?~(jf{UFkXhlHvhj`r<{tRMcD?fk^lgNub)-vFDT&}Jq!J|B%! z&f(VBr|rx{yEodyE&H^@R@6W%;AzFZG0Tk+*uE|J|+*&1>|F26zLXg7%e zftiHep%(Gq!j7R57n`a&I$?8v3O9nt{THxu?%dZ_bG+K^Vz8fiK`{FsCV|zSRQBr` zQ@mP7Z2nVlLx}t*!OAK8J&FQVSBM1SA))Guvwa7$tSe5;wyv1SK5^MrdpO%499 zMp*EQRTJD$Emt{;h<$vAkt!ngHY($eGn2wc624NpL0Y^tO9gTbS#0DtWL?O zgO{u)ex2=x7n2XJ*6QX9!Oz1Z);Zi7d$p}3+P)B!)@kX+T6{>(epNExG_`95w;q`rt$qE~X;EfW) z#(}W16*d-fiR>QWd&C30P4_HjNMK?(9d-wm?##q=G(xvC2#{-@c!3!kZ_uz8+RiVeOH_RT&_XfQN)C0~YvpM3wFjgvzTvGFk5u~N2kJsOej4AZxSTy?mj;XM#J%!X!wE;Ue^yWYctL5nm#Ot81x6dk zb+*9@n;2MDG}`QBC!GzR+rdsc8tkoC;}z1SzT$B2vO;-;UDy_Cy~6{Ap<;3(W8Q^g zB4aIiU0Yt);a7NKV;cKoS?*M|hGRe(HS1=~BrJZ&h^}hZcky0@&upy9bhNl3&wq7v z!p?bb$BiK7yp3UHE9Yg+eJ$oP$EY{ZAI>@!i2e}RH_q%6+33aV2zNhh`Um265a}<3 zm2;=RMtk(9hoe6gb_^B0SoiAagw6fqxDiC|C&J3PbKl0{vXvz|BOKfsJ|=F0okkrK z+wJ*F$vjE8vE z^^j0A9)I(F;+8WWH)lKJ(Y+tvyG)Bn`@o~rImE_b!)@_yr0oljJ$(m{n&sG?OJqLF zv8e6yIQDv|&|eth^9<^Uz)`{%(1DG_yUld0C-DNQc=2uANbgv?t5z(q35t5LHdHMa z>c!D9-;gKCp;IT^#-8bv_I6CWBkwTBT$CLnL|Ao$jr9Inb*MU0--bD%{nq$i(lNUZ zNyq5MTDmy6sMsIxxHBoV?cLby!~O@;V}~%jETVd0j5A zE9CVAc|B2HPm26@HUfV1F#rH+hZ+C}aNiJItiO*E!$fy$XMmcO=tsy~%TQ!k(l325tm# zF6Zm8vNe~JKlg3>4eozsy$a<1XV@{$iIs@VouzJT4)2e+5k&64gO$e-_hv<6abM%2 zVD76iiLscoZOdJC!sb2;H-gB0I;@;K_tjVtr_KBrH~X&P&_4)!g?h7#on*}(*u>w5 zTR|j_99&~>#3VXXV@s}VKF7LW*T)+ra$N^j&Yf#d z>us4)V0|Q<%x+uIlP|ylEoi zI;=cy7+b~F*TNZp6?TUgV^?kU6})L8<1fR?`7>_4$Twp3&%+r%3A+Ph+%nyc)j!6Y zCNh2uR?eOAB=+XapgZw%!FARuOrn!@R=i|Dx=uY8y$O52LFD=dteiVn*S5IZgo9ns zF|bqlB60?HTbu0Wc&kLR^I_%O$*z;Ou*kTLj}52&QP?}wAT3VKOzVj~0*=5fA&!7U zVddOMz**`(e{R1Gj@n|1?-RclzD&GCYIzx58O} z1NH=!wTSF|@t|~`%GqDXTP2dc8CD(#WbI#W9phqp>3`)gP^ce0cD za#Z7{UG4M1b@nVK(V04X8ZXDhDq8EVosKt4WIGjB&YkTPu_oAn`@wLy?}L3oy>EL2 zT>eRmoo(NPw@akEBdnY|-5H4we+F&qY`R=T3QL$GB{CNpNYsK9lH7X-zrCWgWbA zBI$Xsa_*$paC}Z>)MERG1K$UB4E4sAdnh@+36ri>^C5fUMi9C04lC!*y*vKG%>aEu zIOyYHPf$UNnJ)fao<+8fw@M^?9ITu>*;(2Vss`e(h9mw8>=G(svFER5zFl*F8E>A* z`irn~?yS4xk24L#PlhA@G3*H{VsRJ8R@-DB!&@bieHd2Go$O@(*{y+gl}m$5uQy>= zP|=E6P4Ts`6`|k2n6H>;gC0H5}m29SLd^vy8ZT@JRfhL zNc$bIa_+Rd<1f*T8~LN*jE{glLA{YhjOO3ZTlevyc&kLR2f@lIWIZ;IQ~S?}UC2Bn z)c$k3_d_n+G<+x_Pz^s`)i#^|Y|Cyz!Kt>4uZT?&s)=fE2KO{NCF-bstovy@1T`sz}F_RT>R$VU0s{Tsd;|X zV7YnVj_5pgIc799Sj~^7?vwIIW~Tj*3z%eMjpmj$UA=4%i>~H|pUJ}DFnHKHV@oz0 zl};;E`Ua}CN@1`#>L?Tr_8n%bQ1}R!NJTV1m5~Rc@V*iV+jxDmv_GXyJJfoG6QWXFA7ae|-2aR&Wsm|=m1#Z|C- zsPs4BQwphFvB$s_xGBUja5=1;`xw|z9g)|596S*|4jzYHL>&j4@Nuxx?$~4DQQREj zSa=9lP8kaxRfH-;M3V84P=(0;z8#T;$l`1d0`6&*A8f@{viw->GBk)eM_$KvX^nS) zZBup3VqL(hb~&b0)iIq*jEAZteO2EMFe%whHA}HA?5PCoizalf(iQ)8cB8viTs%@M zjYbEvkK0wVDvVddP3uc>lzD)sZjsW)KHP^qtNR1~TgHu-aKD~ROJgq2gsdsG3c zkPvypLqZi2Q++!k3yGVvozZB0%iASS31HXeF#*ZC;xX1OEO0r;UxsHKw5c*4_T{9i zj0d`tg zx)AtKvl*924L2E1rM5PywLWh+7$#*!n2*4oaz~gCG98VIe3nT-lWnWT&->$T6JyFg zu(B0X_T&=TWfl1>qx@xLlTR>vu#&)HeKPD7D(mF4jOu}1(Vl=?KqP)VteiXX#Iua@ znL+)=aOz)!Jwv5#KFg?H*yO*8TR|lM6<9fiyhrj^^@B(k9un$V=3TxWk2Pd_8LV4EL`|1hh87`4pGGv!aTp!ZR`XUO)${*92 z1Xfi!`9^OrKk2o?%08r-inmIP9Nn<86*(sON~p*oMom!U_>=G0m67ABY+t8LRhu;? z!^cAA%drR_9X#H$O$^!BcQmLNvKN;~jUgF6cJ#C;88yjqFefXLRA5KBBgrvLM~@_8 zNnp!#yAWB5H%$yD1F*6cPKsP2yF@WZynbl8%OL$lW)5~oTBN@KJB3PmZeoo_s{=Og z&*KIVd0zx8=gxZ#_4=gcGK2ZU;mjX^9YbX=8fcaNN}$_9}r zJS5Zu$A^78BFl#Lvz@S<$WIPVRt(d=gvKZ5KpXQ14sNKHmmG7HlbP{YH7$pcDi$Vk ziSbY@bjMvbBFUC89V>fm2K&efI9i+OXgnI?iGzcZt*Uv+cj2uPL&w`;Wh-=S%q6lb z5vGe0!NK<^W=UXma5(G_DqpdZM%ivBh(qwUiIfk7m2;;&Tjf*->9fK~pAP$kN?LsW ztJ`nWJ{51DNc-ckatdvaT&~IikqSH{R5`GUZ%1S~a7VUlDH30Yu!(2q*CF?_9$^v6 zIp{j~bx3o@oNe)@r6)(ZaIY^NRW97aCB{R!&|=rCJYZB0&%*5FZKW1$J_EbVi9h-& z)6wuWjITpfC+xuUC)@~P;Q2kQYz3a*aEa`S3G?d^npdEAu0?-!CV|!0RQk@Z zLsVDnF)$l9g*XOgz{}84n3nh}`WP*qZYa*%l&m;zPH)dXsxECnqURgNLwl{55*}t9`>;Egq@# z)l1b%p}bXT*@~@-%ZG}!(qOStXaAvGSW&DE$NznS`q_f`Uz0yuAbz&MIx1XCagGY) z6yNcsDv*=7L}~?+T_S3C)ce&iG%NpH3A@Y5J^BpO(a)^d@&{j! zt0?kYE|D5V=0^`KZGD<9_a=}#6=~yRILnm$Tb3|a7{5fN({(_ z(UdQ*+I8mW!f2|zPLtOjd7Un=Gvsw9zZRp@nZQ18vA?1-*gq|d&g6eTi_4BgC$Wtk z7DgxYzw_O<-Vpa&W}8e+SNDeTIIuD602b`5w7db67>mckmzYzuSSJ@eE8Febe_gz7 zVnSXER<;sy=9E>OGAJ($r@Sxh4|nmEMp@ZzQ{D@2n@IV?uyXE{XK6XZ0DWRO=;g3W zsG!BBQ=0iU>k+(pBI_EgoIC58$rNs&zBU~7)v!mXsKp5lN$YLWSK_S`Nq-4e9tWfo z1(iYir{Sc30(%4`ov_{}{Uf|}BI!q9<=jcH;V5qn;HzF4T$H^9JBA8eys2??!sh;8 z+z2A~*I?z`xz8*oo;eKQTZIGPf=P6y3YW1wVZBXyQ@nK|>371)DWpASwbaCzm>}_x zP;>B4`A*ZwIryJu`$<91!SzDDG+ZySXK`(MtOAc!XJl#Y*LKdJ-SilnI%!#`Jvcfh z$(H&KBQ;4jz$G%DBrCM_Q^F5zr^*t)U9hNB>8p-Z*oNDkYoo7PtMyfji$@zrcdQ?M z)n%iEmpO^9LvHFD8Dx9Pbh?F7Wt6Zg#`tyOsTJ7NX#2NbzKxWY6qu(v*}`D4 zzf@q3YCqrT+lNY_GFXh8Sk$rM%9{}V=p2iF{! zhW4{83db|F7s~6Xyj~=)7t8DC!j9cO}%PG&k(mDxJ$R!;u2W#;+__E>6{CUn1L0_QhJ8W3Z+iq-2-o$$aptcId{fWVnlp-^BHX`LSKP5OyqkxteiXFY0X)A1Mm~! zfFFmwK?N*ko|~52ckrWl%S6Ht!OAIwJr*CR^$X(NwTFaSzfkm@V3q3^PS5rmLbVw? z+X^80_26n(qotyAkP*J80KXnwwxoF;r}oywv6x{N>jGA)$}y!DGfd|aD_P8t*_*7^ zX6)OVDPsqilh5SBW35oozY`+CphmsoS_q;wv?Aw3dihQGaissM@8D7Czsx08lKwlhsT^UFg}b2bH=x2(3kF6O6>Gimzl=5xZR>vV zhp5_1%f0<2_VMarW30qsEsU&6j{X2-}TEY|JGFl#+a{S0rHNcRa?Id{5KWk59WPQ5l5Z#R<|izg`?uUNO& zjN}&I33$UqzFn|#?tE7>bGHF{$8gZw!Cs->$6`9&?13Gxx5h0X65kS5&Y!qhOBuxb z!ij$j_6kPa?14@E7~BFP@uOhn+=c&1>wBUgMC8fEe;*i?YC*4i?>gteHN^o zJMGoXCk=!5-Qm2y4SR*kTSRoT2R89<;ua8z-wrFM5cineQuAYCmc&Cs&5xCQi%mH{ zc0{(X$tEAl_Vg*$S7@)w{tJ&)=Rj-h)poL=-2~Z)v`%|ebj*;w<~w}U4B0DOBI6md zMzO7nqzl^4V#(hvs1At(bb6N*>%GNtF+M$Kv>o&B*aCo$G^ zb;Ag$TQZvhA9gq6-3p)1=wUkA7;T8v2d-Y&Vf9_O6~wUmc39a8tAe~oOjKc2+*%$I zDy+WbdxOicx{KF>)%m_FR@Y)TpLS+eSMSndty0u??<_Mq*Z_9N+4eyMTapk*j>LIi zP1Cgj?g+vq-@&GW@M12J8iccZnH>Xk_`rxj=feQy?WI;YHejbY$3S!<)6oDm*5zNi zyZd3spmT6Lh%x9)SlNm}pY)YbF-VN8pcvE_Vg*Z{^Sw$t-w-r$VR2Yr0reQOe=Ney zhuhXH?aI1JY??M&9pU6*Uw5l;@_?^|N<8=ZO31|X+(dRJ*PDB{PVACLb;*Of(mw3- zPCPw{xUJRnua6P@_D61Exh83EyAkoKFAFsyUgi?1K;~zcVP+(HZlsm)MSD-! zE$$-1roASoZFRwBzB_ILk@+sLa_-FMsdZ-Q+>a0EUWZ*n<-QK*?(Bxm{y5wWBKr!g zoWkCt@Kd#;NE#jzs*HHiH+9J}V$*DE$Nh`-f>u7<0S{K^NNa@Gj)SpjT1s-%j<@-a z8&xUX;wzz`-{>nLp|6(hq{XCqjUB(OVgI9nef|gdd9s^{%NF9YKwP%w7dLkIhqhvJ z^7ztl(K)-R{`Uf5nUi{BYOT1qSSzxFTSp^)py%%lx3@Q11dYa=zUtsmp|9RMRHzl$ z0S!X~Qt{VZaXeIwles613S#p0dIdr5@MJdiU#zjE)538RnNG53Y_H>_9lglhrLk&E zYmH>(AOduzOLBJM3=WjPkNXn7`U&T~|WBy);Zc5yE*3=RYlOYV2BOVa!{*ERFUWk z-|?d|%;m!GX%l=I&L?%pER4e7ewc>5K~$=^7xs}8X!Lcaqw#1=6*WN&O17%V+=I7D zj2U;s%2v$yHkZh*7ML#6sm=E#W(jt;S$toB{XykBi}O{s+m!!-w@sw{H&{7$%Ci%d zfK7U%8-hu%&m_j8y0`CSv0PBM-=@6|-ae7`JXkq}wny%c6R#+$MJn)+Q0f0t-(f4$ z|39;xFqlv*k7(Jy7apa~U_v;al0BuDma!8@tCeAADX@H~SS!U#p9#H$TBXGT~Q!+Td?Wg%nS*v32uPhL8Y7AZNbU-I=pEj<7;5$+!-f!Td+C*I-K(_ zVV6)jo4YMIS^o@gp2+$MSUH8YM>balfk*-#5~?6L%(o-5AlNqB`GA>A3v4pK*42A_ zsnTCPUaJk(y%CK|&cQ}FM7OV2)_yEjI_EgOu>1bdYBF1Ru+cm>Zc=N;{7|{sbS1Pl)el|H`g z+Yy;QF3&c7Okl6cwAAsQo6v#k9A%AN!{1o8otfN`*&6udu^pEf4=G|2BVnY6qhS_S z&^QuykrQXM7t_(xgV+Z)9zL>Bl^PDi8zqK`gJESWOnih(WS1J`%%n~C9A-#hN;ngC z2bFGeX41*{lX%la#-D(db7!2GnY20I5zhHG*dezF;TtBBQb3y4u?7OZSVo#|X6yDDNWxo}9`wtUzd+&|2$!tPs( z`>wEWsNBT|`0jq#^goE(L8SjaSUGq4>#1jR^S&`gKrMU(RAK*6N5F>0WVP8BdlZy$ zTZp5e1S_YE0*|smRURUxcu1(q<2m2NCM%DhWjo<8tyW;~LI=Bg`-ZfV<5qa!I!7I0 ztrR|GEliFr)-su+%DBmQRH-WCdM=S#Wn`CfdRpB!V$72;Dl5zU81|Esc61NZ(U>&E zgKNulJES~@H%$yF55vk zHeos%k%ridUBZ&>s`<>V@pg$JV@p`s3K^SmiR{wCOi{r*8TT<;0-rxV2783ccuwL2 zj5N~6;H?u$9|bGtPI@)<)ZwIkK{)O6V6RYVi&+M<2X;AdE^Yyl_*t-W3UQBIuF3(C z7Ca=>6UH>(j>spBY1yv2oHkIX^$!o!N|mKrN$?}q4JS2` zWugj(2f4&}C>W-zjvGb8zhGwa9#RvT&%>T_Vvl~ybTlf>BYMgJi*suwo-J#Z_CB2)o6%zOR1}#}gd^y{Bg;@iI z!NF2xiSzr7Pr>8XIp`XNw$%haUn%XTe!y|I@Ay)+#2H*-Jk%1i_0Ajh#7!_YE5}?9 zd&>zvx|HeY^@R9tT({qjGuPtn6XVR)u(B0ruH+Kg)fDTf2Rz+x2KT3!U0CgJasLJE z9V++rjn`s&PwWx!Q`{2b2>1!CoH7DD(uB%1BA9qcs7!O3Z%1UNsb!mKS}(=w`WEHu zd>tLO&N0`?mtxFfEs8mwRp+r@U{$#sRVu&Cu(bt9sD38rI3l*?dWIRQtXVmca^hIpBhwB8OXm*A}vgUZFQvK3S= zj=6H-TfC>R9O?$|N0>#}-DvTC5cUg|_q@c*vz1f7AGd)>{a#o(cj{}Y=aZz@4Dzpq zlYa&F4VAoDw(0JNeb2vy+d-uN0<4@u-=hjpg@i~Q9un%=WZ1VO^4aA4Z0m=KedgBz zJKcr`D(6^h9OEn-#^UP$ZnBoJ9EHRVtQ&!kCEId|@lZ%~$6YqU%12>NRzf)f_K_2H zv?tTic*yNeIVjnxdKx(tZKAUVfa@NVbaFfH9U(*KLT-d6Jn|Kt+mBK^l*Hq!sR z+ff?wzEEpt<}wMaL~;U+CNLe1hfMz*lx$U{|2cT8#85F4R<=S#50}V1{X6*X&Md+1 zHjD2rus^7Llj+}0`2%>{M9MqE%DGccq<;tL)|(-(@-)l;-=%)_{^ttCHYRylG?9Puh4jda&Hg6o3+!A_x)7KdaR9k8d7U&jp~@_rRo&YkxfYVtje z`Ih0#H)9fGQR~}x_gcpKrdB6x?(f2lAaZ{@tenE#Bgd;UK_m(f2~{S1)pr2PGGUF3 zzs6xZN)0%^#wo)i))`_t_%%+#a4lOoN{Ev0;8G>TVlFWrN{H#I<31kNtp344Xg zI{7t@>VZxC4%`AF@!MeK+=(Z?#!)^qs6QJ{{TbLZRO;r}II0&m`9I-S5Xt`@R!$-B zQ3a?%LZk~12~|k+`F2DW5>v9BZ&-b>SY}`16iZ76>Rr8qg?g>DT$_2Ae+L?|oCB}X z@0@u^E=$0_$YHii)0>uS$;(kvyo2=yE63$9QzgYFTw*+w6frx!|3=)|7iK4Wt164V zV23&JNAG4j8k~mM9^LAK9dtg7n?MXYyTZy=(D@*j$gaRxTRh}jZZpU)XJ!S~86&WB zsN}`zDk&YY`PXnmi2SRta_;=sSF;xF#=zC#W8g~ILDVs@kuiH=b;ceCU&4(cj)Ti! z<&<&YQ8}pMLnIat2~~V-=-UxleC&~J@iBW*xzM+CuuyS+3;ZL$jgRilu1C>Y9 zaO%gvfA9sP>W<%XiSbZ(%rSaz}^)wSuVqbHBfj~eTDbq(ARoyRW6j7C$_{>RL;|54s3Md|{k z*qA3$wc#{_`u5?}x51r0rBtaGYZZ1-*V&EkT5<76tu*SOzE0vh3!@u0`vtfeME0A* z%2uAqn*F+}-Y^_z@Gpe(KNfZm^{(H*s5XqQ*kj;mflSsK*JN93Ol@t8txa!S0S{Z}m?IP!iE|eG&SYr&Mfl~uLrWDImvV{mP-OJ9 zco~7_UYM9wUfcsa$_YKXnd#`|h1e&#Wx5?$?#7!Y29|Hb%2r_cCYQ)=GD9x8Xt~QE z{Q@%wdjPOV{{wakm2`5+MXLig@4w*&5PAOvR?eMwV#!6zWd`&0zZJ}U9VRgr4-fX; zZ7#WJb;9O84>y9yeJ-q=!rdeLs{%qK3J(cYKzz=30Lud6H`yNU#J1C{xF;%(hR3Wk z$TW`az(hrCGW9O)#CWJ5W+ZxU#F$fHURGW?33ined9;-2=oQ3l{-}~L z-i|FR@WzR;Wf`n&#g<_%kzEZjPd%U}oMsTeff*H8Nn8iJhDuyaPB^<^v%dy6gUJ3W zSUH8gM^aFEMFbEJ36)n4_U(wwD>JiwFr8MeE*UN@8LXE2wI|cRvuJrp z>?0@8=nkf%@o4TG5QCDfs?P*}fVWBv72kuEtx)m*xI}hkf!sLA!S_{WNnkFMwuzMg2`lGLIk|IyeJ8*D+rgwaW)fpj=G%9&wR3=z_6B(SMB3}Z$|Ag2)M6 zBKyL?=6f5nB(N~J1@;G(uT~g1Dc^{da@lZu}mG#RW9VOf@;^Dv*RzkZkP z!mFvp6~(UJa%ri4%+5`$7uXnf4#37oJCLcE#lm1M+Bu$WulGfvveLC&VmxG}Y0YjM z(dNf6DJug#2K&hgJGz_cXiOS2c(iF+ZpV{{@s^44lq9cgiX1NI4(vv~T^?YC+F2XCK9``@r~?zHEs+9HMc=63}XpU)()x|~W}9Ij;d z!KVHW+y)}`OK+MS)eIsFvV9lc!*?`GtzbGDm4;ZV zoiN^xEN9`36C=y%u(B0dPW6>gkwuK5pvY1Pv0`LV^jx;HX_MHZs*=9U<`LEdtnP7+ zFhWf6{f1Q7tc_krOnK0kgo-KmbBWZLlHnPklX;(waPmA%$_gjX!A^3*j-FyV8j!{` z{v;w$$!687wrBBXiGk!9SlJ3Bf8r7uCJa%=y9lp$H+nBxgx6*gV^NXXghj$g7;h(x zHSxxYoL7gHbLTuq74I(Adxx{$19l4aZWiAM8y&ED?}i&de1s~-vA{aJ?3RwAWW|G$LDwGyJ(&b4^`(lYaG>q$;zg^S~hZ&2WR*WC{-Su#wAkA zgX}WMRM}~xKDZvnWMz+QVJ|sJN1tOl8j;3yULQ1R$%a*ha5dgAF_K&fD_fD|OTH2+ zl8CVr6iH4Av4TBnMA=SaOsdxkLnmlU`u@gxFcyy*yF23u{Tv`+nKnKh5#uku{#Fs= zX)ci(F|vH1;C(g%#*F`m@~{HNG$t_?<>qV5QyLKYKp{|B;bJo0EHPY6gq5vuu?m;S zE*;DeHMxuMdzmTN9cK}KH|!91O0WqhA1G2dZ;v-lya+lx$T! zG2Dx{N(>eEz{*yrxSLC4R{}J@>$Ca3!Ym1_0A7OqLFKD2-*-`d0dJc~`5&-y?v%CV z`_`TOw(ka$-iS$zMKy2V$@cPn7wz@&_KCFDft6Eed*p7F{zWSAkWlIWa^GPq)Bk$e zrvI6>LZ!bt*wtGf>04?X3%m#(u+F&B_?UA#Anb4+VRqAMEh{;ygkIm#rK*IZxkPG} zkXDQpJTb(a1S?x1W`(bW z3Nd0F1%;R+L#$vEjT>b9%3}I(U!fd-5EP&Nrafu=fOQ0`eVjv$aQc_;(gtC=uv{C= zjv(_rUo0xf{68*{8e}q@kDQU{xe;Uj0#mbM%+s)|oZzD;n2v@;u9`|1Z%3Fv;EfX_ z%x__3E5ba*C9=yVtBbkGgu@KlbMHa#QH%B*CNUOOt4&*+@@93xWRoPbYMSVV&3gEg%yAA*`G`@x<1p%4Y`k|AkY39rg^By18|!>V-}I zRon_9`Ilkk6!IRqUX=?XU3f^Sa^ZO2j>vN1wQMIKrVNiPV(+v2^zSO(_dPUBIY(P# z&%k1#Wt^6j9Hqj0n8Da%lpH>)RM?SAjE7QTTC>|m80m$nSjppP*iTNd(Y{PaVwX{QWfcxv%`zX{W55IMgAE9cHR z@oklh^)}(G7j%rZ`E6AS@6B-oh`i^+$|<}(vb!n}L_+Y8PzA#Ez5`bl2&+%&>PpQ> zsX=RgG} zP+2EeFsL5b#J`POKqUT6SUGp%i4_dWX9o3ugj4?;>=`O`a|MIyg-!l1xD`b5Ps7S7 z*gCT7Q`258O*x8( zO<5nX2P`?DRPpdmE|FS1WS3Q@%1#?$HIY70aooeM^^{uEQQV5 z$aTb$Px+EivE*znF%DwMWZq>XlH3Y|vLeY%u#cRqqsy6&#zRh73Q|@axgKwp7)P#! zm902(wXcMVBVybH#gQ{YtYC4ZJKH!iyZPPtP@z^>T?e0%DKH(4Nn@tAEk(@^DOJ2_Vn`{&%2r4z`AVpeBF0ZpNZC8Y z3Rb=RAlolOCJn{!;IwFRJL|z%M3ZCNMibxlp2B8r>^kDft-d5wJh_QWq{fpBU&l=5 zeKvy0&tXzlFnJPok~^5(%XBm#@-axDlFh2=lpo{G5(CL&u(B0M9_A9+O_#})8!o~V z??>-Ni|{H;Vl3)Vn{aaFMhfRQVH)I>8?bWjoD(ZIT&%YVXT6|ftj(1hDZDqw4Itjv z^I_!_-X7Uq6$m0Bcu1%hF4y}GT=~qgBHL$%YNH zp|Up1fE3<;!3`ktei~Lz;q8&bRT&@>f`^1E1D5!9M3w<-XS;xN!f;978-I%*q9MsS z#u~diX9?&#OvQF-8OKoqY|3oK9)aYbQ6<1Txx{!V0Vc5?8wJ1tFbmng#KH>LMNXX2 z&P+$c(U`&~6=O`YQI-Dp#v3Jui9KLtD@^RhC9+HZJ#zC#i|$Fxkig`>0(J+Lu9z}z znQk*)hBr-QJPa%6&UltOr_#QQuM6jV4eSysXR%|oX1>k(D!h3j>nmX86xJR&Tcv%G z1Uw{E+JBpGM`YT6DBITq6Nk;W1Ak>5z@m|Jh&7IJ=KaJvg{^$w4sesT9ONho{_M*^ zl>~p}662vH=#IN=)C4^bpq%6#qiTXFOad#LoT#H$nWHow&C_z?u_aqoMZqMzRbmiX z6;`%_$XkN>gtU*H@Xw=G{(VOCv>co7PT_oafc-(`tDTnPq`WQOHj(mHuyXE{lc(j_ zq>JIC7r{QElD1CEankO^+b7aK8dgrB?UB`0VIWe0hlDB&e&?HzWMS}Z#;*lR!VgMhO0vU~%cXj;#`YN( zj=LXroRfBR8`IHP$u|aqqP$tZ!G0u~y%%qGrIF;WmhwHYvUJSUa%s5U%bYVPU2`{A z%5LUBt{-sG{tq)HS*=rtcl5KCU;YjIg$g?P;vfb0zwpM1xSxlWKhlHvJj`r<{tOxGScC+be z15`WIl&P^p_6KdD~WteisLBiE~PL8J>02~{qv<=YWiF8mjpJ_wyPn7DY*Sb_K()&VR;IY(M!H|I(O z`U*sDn3jwjCBm?0@8=sBjN@sR5cI4Iew zDhpo6TP22yS7Bu%5R62bElkG zZ{Q$(R5FM&s?bBG0he-PWHB^yWbzu0%ssN{bkmlzMpe-i7lk^Aq0S;(70y)L*Dc99cj zbS=}-aLDfuVob78mHO|%8zqK`+hAoYOx(gHvP=E)`vaTqv&;~z&bH`21G|GtH~Ia6 zlkuPMriqMy4=d-+IPv{~&3Vm7f;q3wB*vn`v+rW_`vWKI*?99r)-zz`6xJR&Tcv%G z1Uw{E+P}be(8{#`Qnt$sCk$1O*V6u>@E~p!7ib4Hq*Y7^&@!mMAi?&$|pOJ0apFCJtUK$)3)KdSPN6~=f9A%9?0_XdiwrTmsk^W~gd$D3z z4jz^Md$`1SNdHr1uZSBefHzDG8=J$* zR@j)&C9*36W{FSu-INQ=n7~rtSlA_0$|6N*=G!ITNAc!~tdD?|b7#G}`i$Sr`_tjP zKLxvm%6m<|pNQ23oB7$e2}I^+z{)AiJ#xA#3q*48kWgj86yJ`>vf!1BUji)Y(|00# zl-Z93Cg&&%o(+iY(sGZZ9C*mr*Qy-&A(t2r<-jD?W1|#!0cIg@3RMdH19p)UXY^~P zqv4RV0Wl`os44^ghBrzK6Mun~tuXO4m&mRRkS_sjy6ZoN-f0%yb(jQJ4^!zTX9Jv! z=iyBg8PA24b7!2G4X`=y6V7>0*dnB z-@qi({)5@3{ppKJ_2Wy!#jf7vRsGtI(o@kXC#IvSRS_`)nSugEvl$BUi!7Rvfv4OJr9U ztS+9f6Am+I|B@MmRpJ)ypTTaS(iV@5Ru^pMPv9mHnLiFI=gxeddd5!Y-u8rXyBn=M;hql)*!l3?JkY)|( zhcF!tiaZ*vWx5?c7U4}3!$&WyY^9E)xkPs5!W@xnTkbMQU&PD_EEYZsJB3PGe2{K* zz~+5EZUB*Y16IzR_Zq5HNMru}aOU5I9YbZlmQg6QI$?9a3pawu{Z3dpg}X!0vv3UHL&2%&{ z4KZD*nQzCF4e;iP@nl_C*@`D?af#GhE*k6Yj@J-rS96&`{6J<>VC}FFc8v3;j%?y0 zk2pGEbKe&?g2;U@SUGp@YpeQUW$Zs5&i+K$IaK!R88w8~5u5*V+z=xF5m-5ezef?E z>IjiQJS0>d@gLtbChLfuvaKT~mW#u~+DyaU@OX6&w%{EKxM5muauf~U_8m5=X!s_V z7!O55cid$obNn8rVbu!1fqmoz8a={vG#+w?0uD;Hs#Ylc3U8GdDt-08&3M&uurIWvbjTn zoA&m2`$XE?z{)AKJ#x27{~{H5NT~FGyKiuk>A#Zg21OJ4s(SWc0gqDW5DQ+M7~7>K z8%OeA<~wLq@*n0B<01J^Vm&r;|79=>c~hvxiI>1Ga^j56W;z-Uxi~S#BpX$!|6;sR zVwkuPR<^>#1zaM#)Grq&+H@aeh6K(D+z-2hN;kPU(aHE;ylEoidtl|<87CGe+MHhr z=ll}v5-MkNaiWv;3wZNH*8hN&Q&@ZCY?by!67Y~vX@AJKBQot@nekIUdwEdSp89wA z2^x)@LoE2IpBtuS8b{*amKlpZ@yKDL68~0QVmu`N?zqcF=05_aAv>rt|DmvtoIs=9 znU2OoKJ{}@vQ?G(55ij|hKd7VWh+$d$0f2${qm{b!S@ViNnq|j4fY3>Z}O?%P5BhO zZ6f89VCCE?C!YEpq`w|c`exWCRMO^Cznk_Ac>6@!*TKpuv^{dSO8+7icu1)9zlCo{ zWct54+w?zUak*M$O9%Q(%S!!4tqypR^#qGd&cW8$H*oC$x3FoTmVX@ez(0N6uj+xn zbBXa#56nz<-KY!ZK7rDaH;k$a<}eAYc5(ua{y%qT9w0|i_WuQPk^l*TKnR2@KmuU{ z!Ehf5;YtVu0ufMfoXpPd&SWlTW;Y3^ASlRiNdQIh1wlYS5JeD05k;fXa0!Z{9C9Nd z2nurks*l;~uBUqT`F728Pk#LI=GDlzpW`!6Jyl&@)gg3zd8v)H-z9pjr%MCt<4zBV8OgQ~44#%+LOnQzq5v;o~=!I5o1 z%9d!0Ho*2-X#;9-KHQ&%TrfBv4w5#d*=0h0iO@+h}#CN9qk^%5v5`!Q_b}IUnFezI9ivq zpw$jFe339bbt|b`bEWFpFrR2F!SYy}~l;N0g^X$BK z_S;XhUBsWy%yte|jy>BO$(IHJ8UMC<#{UnF3peA=t0L+H&H6WS8<<)DI;k|$h}#}q8ts8b>!i#6HG*e_{a9_%VrKk_fn}F(0MaxCPlb)OYzm&V zCEB4W7%Dtg#)%<+LUTd-fwhDL);DR>nSE2l$(IiI69X$v?nCA3z{hZ2YRoe60jx~Q z#CuN0*O}MRG1WSiV@kHRMMp>PUG8n-O+SFZ{ltJ~cUSZ5cD5|L-cJm)Io=6>G&9Fj zVCC3z?D@oi=J|8xdHyUM67H{9{lq|<>*MjqGjqKNRu0H@h%s9Z`_3Q`LP8GvPlPQ@ z?yXovmLg=C>4Q7v{P3d)s8SHrYwQLD{0Tp17s3j1vHeB+L$4Y(>SM6wOI(w1n4 zHo(e^>$uVl`~uF5`&*H#13!Z!rA==3R-xm|O3m4pE^Vhx!B6mKGmFUGuretkciIxs ztq*MI%&%p#zClUTDttODKC)Ff#+GP@R$<+`+e#TZ4bBP~ zJeI?8(k3?BD|CE0abF|UEvKcUAAd5lbW~tvQaVbuM09O}`x>DhEhW$271kIw2{*to z;pW-<8li4K&GvQp^O@Pc23C$e+n(15^@u4M|C4#f{|Lv0n{o9uLfr?N^@njAm|0&9 zD+gpf#Mmy|180Z`AtBp?qry7kwg*>5yPhya9B)0t*BWg61X`T5oEaZkU>oKef;4Tx zhQe5^Yj&}bZNUb%L_4$v!z`DT!m%fu4c9@rb}$o;kv5^($wJ4MkNQD{7D4V)<*S4l z_*0psVmho$O2sr=BD!{`@`{<34 zS)lnPf7LwG7sD~(W?DV6K%eaz{(NS(&xe%*vK?aVmczd@6oinF!~f{8j<~~rXSBor zh)ktBQ^-{Pn+zWjPGChz%bD@&z<_bSVMo&jJQz0WvJLpXEzu5bz`Av}l~&*#I4kaN zM79EN!Ew?iHv5dw@#Vx_9jIGQ+krRmCo@aOKVfB3I$pLVqH71-)q#4nlss?!7xdRh z@;pgMU~Mrs&)(I6y8SfU6Y=LWv%M*-9DBAss{{3jDH%V~JmZJMap7iMT^*?VK(l@r zZUZyx2gAw%Sr0L`%l5z-B0@;W_TaZ+iTHM=~ zJ;u{Iax?yLW*xZ^Rwi}idRrp8UctR>*%L4&+kY1ZVa+lTq-hln2@8&F73SCy z?a(R=w|!R1M-I*h88$L-khCey9xrr!32~1wa8l(yR=!#2#vjWp7b#eol#9>X64A8> z?ny?v41ZmiV%Qj50SAPeVeb(J0eQX*e>gMGm%z%g=h<_FfiBm-G0*j{;Gl4GtsY?z zkndmM1~BveGgvtw-yz0u*#R1*^Pvb zFC(>4_U2_bS?+UXE3ggzTxQAG5>_T9V{=;~x>jI)=hFmjju#1A410lva74H{c22nV zT2JSQ3-G5iGd&+xjy=;G%1;us**@Dm+h@X2;bz6X@ zcEA}HLP*GV;6uZ9;F@SR8w?SRpMS66{V=Fn%8d6K+J^ZC9!)Fo^RU>+R^X?$L_4$s z!z`DTC4uMRY`DJ**$6xf$4Hyd?88FGmk)QZp`9rAsj>}t3V$lIR6GeQlTz`7EfHNC z;O;fl`d?juIGv^P$ z%CYBMvzdVA{eAPizYB+koA;p21lrucgPXz3{adhdK<+~f`m%3u28|FBvTvw{b;Ru( zMvmy{2pqKni`kSA2ee%x4tT2#Nu@LXTb1|vJ6ff*s2MLC*oOH=Bu%5RyD%1;GP&5u zMqxKwA~57r0%IN`dS7xQn1}n{Uw3Gy(q(8*|wN{L7YThbCa8>$TDc zZ2Ahzm65Iot$h&NHxbK+Z#q>9Q?w28R$5vMqQm>=5O)1rJC2Hens{+Q`=u+yR5C zrOf>P17VkM?9sFXw}pj9wgb1=67A3qSRZ>Rt-xb&F32G92pl49I`V} zavv(&fCur1GRws8VP#S#erroa*9O$@KOos%>uKW_;A1!(-0b@9KhWj)1N_m<9KQ!E z$DU*F{Rbq^o#uJoNk}xKp{KuMa{qxY*HiGvGjqKitQ?T*5M#C+_MJf>goGUSZwd>o zJM6z2?I#5z3hACCxfL-Fld3Hz#s?M+80Q;tGz~yDEIzUU=&>c*p#fO8?zYkeTmoms z{f)>4feYa{X%m}0P3ZV?;vQI3x16>DU%{WuEFE8ll}YJ1$Cik$6>twMsz*!7^Us7e zhD!oJfn&nWv-iNFy8SfUcjM1zX8TT9IreOO4lJriOv(7G<{5tpjte*A>VZXdA86K} z$8BI{{aIK!AnPHCEWvg~us^NmNE9$|Z7GS)l049Om0TU(+XdW6x^aix~bhcn~4DZ7NZaHO=!&F(35 zd|7dCN0PSF8gdB!Y-SCa11pmnGRu~Tu1|1pN0RYUa=l#GW7sM5!%^Yp+Iu^a^nhl( zf?L4McnMaHJL8wH-LY1O^-s-nO_B_rlKvaa(|;WtB5wNCYm%fF6oG4SE0_pe4J!vA z5MtDqje|38gpiPp!&YG(aT|v%qg_{!A15RWUB34UF9=7lnx!SKX&)z8_W1@WP3!QF zu)&wD!_&4zJG2f1A14UUm4Y(jSu{7KcNi)pur5oR-t0RfUcR&_A17F8b003>H>{06 zoLNUc2}^+d1%K!e5ZQgp%Et*b+cV9xJp&K;h)kiHE*Hdn;=J0ha=N>(oLQmCw(jEu zZO*6TCNOh84OS*&N7Omje4Ie@zSunP2{<&|UwP2S3EJGBh?~L8{RyygK<+~f`m%3u z28|FBvg-UTY~gbIhI67_a2S#*R(gH?!nH81TGY%xPOuE~jYyhC;ag#`k&VJPY>9Sg z6oy&3P&$MM;B1f%;eI$q+Jt7mFLZqQsDGSbC5p5LKgXZSEEPY6l}V}iu`LnZx4-l-Ea~NtG1@p z4m12dL72yU+whsN1j$a|I9s9}I)PCGek<+37vQ{*;o@{SP}z;JWEsr?0##tEAD$8aNfR+F4tF>=lU`@DBN7D7a|1Y z`x4v$X1*_kl>_n}VhopUfHNS3kdSS_n6QqxZNN6swgE#j`K13KgU5vfSWVJGX8g9m zHq1BXXqtdW!$w;+0T0;{?a%}avs_ksfcM~RxW5b81N;Y$kv5^(=Y@_hAMV=%J5laa zWef0c{He@R@h@1Jl#17EiRfAY_iceDzuP^J{@O@>w-FLpBh1aO_iceb%Uj~lW@dSF zSUL7Ad)^jkGQH3|(+l93a5JsGEzoCsKK^`Ww&%ji0oe{QcFW=4845y3$l?DFVT+SH z{J%UT(vu8__lWCv#AYJjet}D2Qni>FA7xax%{S<1nt+SK!Xul23v7vYXaYvMUMqdT zop4UbIB^FYCT&`?*9aY7O5CH2>gjSHEL(xw@CP%?#x1ZiDH}K064A8+?omeiEI%uZ z!Fq3!<)`3~aI@?^$|x|`PvVbf=K2X(Irdz8jxy5cd;J%T^F2yPG^6{YziRa;qrjYx zz)fK0d?>6Okn<2@x@-%a!6Af%Yzxi{3$NQ2+!yU8f+5}cqW_zNBVbasWyN?^z&6Y` z`e+)0d10}U4Z)$dL_0JD!z`DTZlDBbgNze-I7ZrpW=|A4zI?c=0(PR@r^;3!i$9fF zDtcgLQYyM^iRfAZcU3@>->ZcshJC}Ro{>MjqzrnDsOn;^; z?OPNW`6619w3Hd&lI)u18*(%)z%XGh))u?y$QEE7TcRCWfDw+*&WP)xd^Io? zj*>R1*-eFxFC*?P$!@aT=gKxXQJIBU~d)N#n%n|T6lofB`s!6*($ippx+e!GHkqMGjN|R z(GJaky;X1*r5AV^&WHQckiEbQaFDbq%|0e{{Jp@s_C8~4OVKWLXYoJq$1=;s)37or z7k{%QqH6^_TLsk&Z~PMaiz6A{P)J}sF*n2NRzXdkH^3jx%=2hiIrcm&TLslzA84NI z1K^-=bFJGdsLA)fxB<+3?*%IdE zft4orp>ieQTlhnnW#SvKGAR>Zvn8S%{@wcxXm%eFhG6YB$?k)2IJnvM-fy7I@$d0R zGjse~SUL6_d+s-&dH&cu&mX`c;pSPr-$0w|_wdIvbNwG!IUv^|#%ww4JA*(72|4U9 z3+sqG?7tZ8us>YfbT~uY#N`|M_j?&FNLtE_w+Pm4^Nlx};eT&oFE;gY;gQ4t9=1d~ z4F4ltuay?y^KeecAaN2LCT&`?^M#HtCGHl%db->P%QoOM_=A~c<2YEEl#OF;iRjt@ zcZ;At%NGh`3|oP(z#-vg*}FwBFxOwkAJ5G7Ik0lK4Jk zoZpF?z|8p_uyR1oLyYONEpP^h5E8O2_*7U&+_vEIXtxNC66?8{R5I6*DEhx1_@D3t zD^Ob6%=DM}&t}$;aj-I}A!BTb=z4_uy#@pEQgS_4 z*n|BFNv;opqr%O#?_Pre59s319NYqC#%ICGv1iuyR1=Lk#w^UvP$t5E8Oqcr)yv<@O7ojkaGHp3f9A`9A*}gdf4YYGE^8 zMyT878dW^I45M}cpMIsHm%tQgpMyI?lM9>UG9Tr zi|{D^U}o8P2v#O#;}5n(bS;9rjG)i*&{vK7gSCZ3GkQUqW$!XVV6H!bGg4#b`a@Vb z_FQ|G5%l?{lEz7sMj1ZXfX}Af@oKJ<719Bc>OqXqeGdP5hkZr-OVc~V#g8xR_ z7K~n;sV>b_(j5uwdWv&boVDWg70y)iWQEvg4(#YSX+`!Q&L7V^f4u1Y@v{Agb`UYX z<;XSAw$C>h)%%0mNO1>Cx|}Yg(yr+R1*XAGcVMcGO%?N{WU87dCCka4az7SS+!!t6MsZ<>m=NJkUViyGXHB~kax9#3w-vvf$01a zjt)2J-g}TdF3{B9hnv7m{k^cVJG%UIAU;v&+;b0-CumCE|1Hcj%=^FK&~Wpv-hYH?pKm#!wP0^%DwGDOc^o?Nko+B#-&B@Ehb2~bwS`FBgY)y#u-j%&j{Be@_kCENDSI?D`DklO;%~=HJ z%Kbgbv1TD0GHtrEvxSZ?JvHY@bzK@=BV^td;6^Yj&U{#zRGhiCM09zd=-fP@37nGs zvxQ;UFO_8fOgKE;>`$^kbP05Yjyk8|rZ5>;4lBpbz?SkRg26es-JFA4;Sg~-*haZn zLE{c(;k&pwOcri{l>=A^(KT2@zB93M2AL2NvhkQ2))BYyI6d0NW5Y_?>NZMZcH5EY z7SnoVr^Fk=9jumV0n{I<(3S4bq|(zf{mVPM`wFRQrYJ6q?X>=*^EaKsILEfSX}*z6 z(`fuNZ1iQL@v`l}z=fyE+p2 zbYASgDs&{oZ`wDZIZ8yg8Kq^uZbCC?X|b(zjkIhOCfXMIFxFIHvE6hAwq75p{ zgn%F@g{A^0iWHg>95sERNeCTZhH9JJeN2EOwBF=#Lzwj@3oDa)(-T%g)*FW{qk40w zi4|h$dJw-x{}VN^XY>9I!M>Ic>cQ6vdhP+rkdOyHrBG5 z+-ge%R+9)9MurNHmD2GzoC{Jq9)&}sFCF&_9bY=!Pd=?Qxet{K9}nRVWtNFQz{;dd z{LYq$t`T)V`J~xh`*rk}MzZ?}91d=Fy`Ow)bNnIxXl9Q82P?;(W6vj_G|$t`^E^#R zG-IYgf5qx2pW0kc#UIbi_4crGK(0fK*>c!-27wR~a^d2;VWD-W8R=+;{YgF6!bLJC zKJE|;2IBuKmy^pY`k6)n=2u%}YDelifm;C^*oL%6=e~e7E)0b!jaNf zl-WYZmlb!PsmFNQyez;U&MYDGVP#T6=7yD!CB$LKsDw;4u|kxPZ$#U?Y}ixk6B8ye zPfGSDGr8pAoWGE)5biXiWjR<|NCtb|D~uDic}(*WtEnTGhK;_gBNy2cZBR$7)cCwt zipkw@YDh7;6AqWYm|Q1xe5r9?_o^PyigE{T0kfjq1}l?_a!XhVSy3FCj4H|nCRSJ# zCE}(eDT;}`0;9g){jYGO8MWkqP_-mku@_t{qkO1ps>s`6BQC4Ro3=z7RFTorZ>4@r z_!pWEQa{EE39N0?*N>q>$CniMWDRLMtsLXkFs_IMH7W|Wb6p~{G`F~q{{qOd&3in7p_XoHHfi8cgEaXA%E z5-Bdr;F#%)OOMd;7Z>Lv8?76(&h+7CFzZYiRwi|(7*;~o8HX#QIO5yoCoH9~){tCxUUwD2ebo_ zDT?QG9lfc6u~a{OSuce6NKzf3rDN<{({_@oYfT)fvxUcRH5&h}BGv zCJ1Y>p5FyWR+aI#L||2kaEID(+h?VO902FT^-zASw=WzdeF@n~==c&+bM7T_Qsq8Y zzT(*ne=M_H><%lt#>xF8yV(-aZ7^`}CDLU$CrrV{b&}x>91w1Xz4sCYF zSUL7Qd+sID<@)R9xxNAp3OCp4y+i@|z6>{jneR(r<$!#L7{g^7;0y>MBxH3N7uFGX zts@`pdzW>Ri~V~;o)Gq9B}vPe@x4TrUA_@V(*ismHrBEQc+{3?hZbO{@K|X8K7eyU zhKKjy5NXqyeM#u}(ox@}F4E*aR1W|D!5_*j6aR*lNtyVUEfL-DU*DuovODE1^p{4m zyPc50dSGsLeVf#EIo<|;G&9Fr!pgDd*tKo)^L);pUlaQrG2r0seSquIIzb z0l5w_X3JsU83aN|$YKAXu!YGT_OFe0_CL1%VZHde-TERnm-DRztbmc#@}|F`c+h?6 zwrvS(OQB<#Z`{$e0hfk_NVWkN*%Ed$6@E2ia&e4qg>hiVr*3_5;4eGsdeosp$6s%@u(zHEc|xZp<8Vuug=Y+`ObX9>VI^eYap*ECJgaGSRirG0?}drmI;L z76@5x7TOYRP;NHW$3Q7Ir^0C>#by~CG<|c^BXoQTs!jA18WYi!wWzME@%(jX{hYkO zE88TUcZUtVEG>815`m>9!dIvDL-6U9ZGVR|L+Z(2;YjK0$?t@Yzn*Mh*Aq|DNDcWj z{%mFqc??!2HRKUnBD#68du5x9moj#&`!@P3B)J|gB%0Bv(p-D5Y?B_)26YH-0W;%k z!OF2`+;e4{jG2=4JJ2kl>+NsIVWU5%{^{uM*!?bEq)32&}T7khj1;;YqaHN@kRKkKIn}m`r(GE?* zaNB34dVC$u2N^T2fPY4%*9<4Z_=f0Yf9`&ik)U4}oFSuQStl}Wj{(3Xg;%`<%~920J)$JxJRzx_1Z-^HKL%=QhiazM62jNNkhcZPxx z5_0&T8rBha_#YPa@GlxY-|+v2Z~!YvTE@(Wf6Fl6aHARi{~0#ga`=DQmS~URU%0Fc z|6~7yX2bnm$WN@+7ZO;Dq)lk{BM~THKI+52l_>YAa`+#GKb2W3M!?FXR1CExq96Wg ze)kuaV81q!-+kbCaP#XM{e| zneD}}azM62jNNkhcZPxx5_0%|A?$$U4*#>F9sVcvii_EE;(m7j2BrRFIYUmkyBP*p zOJD6M-MYY_d#)WrZ9D6`lm@KyjY^s>;l{9Z$u8k~TOzPah;As^qCp^(-eEPIFfz8R zf+MHRdG;Qmc3|W9|Q$t=yFj82KwcsvavH%UUCEB3?H3)=KfTqIyvlE4mt^hS~h8CcyxG~HEv^}g$3edJ;C1e3|7&9tB>zG&}3eauQZi1LtN|#gO zRlAs`4!&AAj#6sb8E z!BNxZI(xd%@z)&Z%EbUjXuY`rH-uSl&V!Xny*W3mgse9XTSoOJZDNI}H>X5fZ^pad zgA9C#=FEG13$PChmzq&(wEMLOoo6{8Lex*ubItQnteIe~4x0s8XI9w~ZBS>N6xBZ! zbmy8%k$D?V5h*fn!XeWanWu%0FFiG9TcxiGMubj+yw>jlx&rr)YmNh;+HPvIfu+VUJG|iR>tR4}5?J-n% ztW=9da0W=VSO|wmUoB<}9bY=!Q*x{{k>aobe<-s!%!idpahPjMM7Qqdo{~eed$uqH z8?H%q&xFIl&93*99BqzI!ynDe@p4!h%kkwyI@ap2{yAwycI3Q{j;Uv@IDN&GY;B8< zj^4Yn7m7c`U#uVW7rCth{*6n-zgY7emqQbNyLrNIg=51_xO!ZUHtFBRAJ0ts4X|=R z(nAc{a@2Q5gAfw(J2W6( zIxlGNFbcPVSz<=O%A~{$4J#o_j6;=CiFqL`+ir>3HQIMI8`&kM(Za=1BCO4*FNcPj zX;@r>%N9q3=KdA39wR2M5fivLP&sle$WwWS0HOkZ0PLdRcQHnCp^Qy*w$$>TOK zD@ztuCY7Zptc0vA4pByxKPx|+NiTVTKK{HB8Gfw*N z9drTX_OS7mb>voCA~5I?E@0Rv{j1+8J`U%D)Q(5tAn9wz{X)lIJLF0Ky|i3Bgg=&9 zF8%;3lXCGpTOzs^wEiWk_{>Pn@Y?@Fe{m$kpTGg(X4v;7s%1RQ^N0AunR)&ntQ>ou zy-h^YNFCjz6ARMP7xKNfmi1 ztc0v04o5~+WTlA}qKZ5g?aJp!yNdLb`uz1{#{12wANz%_AGS$8L^Y*jx-b*#)Lm+1 z>6m6qv_a`u*ZS>QUMp2&5u6HAH5S5Q(pQbyLdTbq+IsfVX5DgHFc#oXW)_V3ureta zbHhr=g5l6(R4}HRSRo3=kE3lnh9(O=IsXaYD})ElXf})&G;Pa#fNE;SrD5YOYsN*k zL}1N`bV1YdS*aLz!}%Z;<4!n8`igO#(D5atezcyQD)+H+%jO;UW0~dRHdvXIi(71o z=;o#M1x-zcpBJWJzc`ZNXW@WwGwfT?)aUsr{NcYAvIWTFPi2;hEUZjQMUO2JT?s|W|psn zm1EDc_iP=S>DA_$UIoX5n`v^kjyBsX@#izM{Q#^SknIp-w;cYRp&*2W9R3dt>xeu2 ze<|8kfRSSFz4)%Yn(<#9^}{YTa`Yc&O9YPo z(G3yn*1c95fa!25Tp#7(deh)AX|tJ~D0F-&ahDD2meVF+D*j|I5Kvu1qMoI;{~ z{VA$eCZ+FJ?7!)>j6-&AP8Zf1&V8oY5^YdQ#wyM$#bgnj7*b3Y!qL(fli5PYUrd}g zCyE2KoGic%V3w2luretpbHhr=a^kRLR8FRvSRu;E+R?r_S+`oO-_slJB?1dbg!?B(4fw6pj=SM(klJx494LM5xK8N! zYln04$$;s!YTSW8nprh&gOy3uxW$%;ZiQ^DbH~p>xRgvkFU-MycO=u#!a?C?+8HGj z2WY;Z!VO^N`$ZAtdCBl?%cGY*`_?gX5xou`<+pm+${x{3sY!EotUA7u%NkMk38p#Svk_ zk?p}eTcRD>gW+~IlmVjx=YtFwB{)dhlx7n`$Cr@$_DVZd?qfZBEAYoM%S9GeCgq~X zmWZw`sBf>dLZxK*8exiIOK>$D5N?Kj+bi{Xz6yUhGtXDT%CYC!yS-AA>(%DDUIhn* zn`^SYQlIaYxB<+3KL9HSzG&}<`bJl`|@JFN-38SSAcXUQ`KVG zx8PV1o?u;$7Pi{#Pz#Q>U3Ig3tZF6|OTq?S7Li_Cq7913`d-hK5^^b=5>i4gfVBjdn?NgTH)8(qKiJ8%{PE$(G5xSC-&ZYC> z0yXR5x*emQzwUHxtefcLSW|AM3$qPpMbm7Fz;YAeOVlxb=amYx2+k0xFbm;m=_|}^ zq2tR;&6yVY?WfbC1^DxsHDx}mOlrzpTOzti@ObBKq(5d#&d(M$VT}OE`I&HJxH)(3 zkkWZUGk+Rx1vB%@VddB}znOfo+A#aKn`i%4I6B;z1rjYc2^OUx$1p~6gqls ze?PSE!S*$w`#XQka{f5b`Qsq_4=rf!wh;Ss_*5=gsiZ5@eg7d@E+?1UQy1@l-D&^V zoz{^cmSH|p>qVqCvYhTtm(vCDnMw9?aT#fLq_ElBd=GB315j;js+cc{ciM?kvYhNG zCriDq;xJngFD+qicxrsn>ez(c{vDU8_Uh8LE1WLZ_2DAG>2fmXI@}3|P@DGbM4{u$ zT5VT*sU$ebozy}1=e>o{auU1~Ze7FLGkHLHime=&=m^)pCz3dHCX$O&iA=uaKOW~q zVX}9|!lgaC|A5yg*j^{ISBPJabtUlN65MR>183XgCCU4zaXXoLKL%EIe>Wp@nMySw zemi;hmvfY@6kW5i3FRc2%PAelSAi65SNjeI3vQtdPgFw!a2BwOghejm0fhd zApS+CWVHhph2;tscMJ0jvA7csO)Ie|ET>r9fm_JL;x<@001Me=4qkcPx-)8VUoIyu zFty5$TX~$Z3)jj@O1BH^(X--TbU=4nB_k`=F|k7Q%{vW^^c1R5$5h2>FqLX1CEBNR zSDdxtbT=XEtb_i%w7-qo0(%>Qw`KD8&Z%Odn#>f^W!gUv{8eYgW2CPmtM}1aSxGyD z;b9u+tZbw{vU3>NNCl3M&F`2eBnFnstgbmIS=+OFs4TX*`MYY*< zh}34bGuT(xTAAdnaBG=$aSK~HF!vEQ(c1>b!_#JZf3imj(+x+&Bk;J65C@2*%LP$B z&Z`X*v)R6KW`%}=!;LBMcujbihuh8M;ZRuFHBJsp2iX#VRU^bj%8jSlJ2e2uuB53% zsxMzE7rT^}>U3eKAwZ|V;o_E&qniMb-+S6_Eyb;8VpN5dW5;Mm7Dko6yh72<<`mrs zM~h3*QB9>tI8PzE9ygu|(Y3I0>=5lRI7E4JRR5pN33?0;6_=nRnn#fEoZ|BcZaEX5 z2Vv#d@tHC>KALfC$PnXkY%L*y%_6w`9N9d6EY~SOAH!*`F#-AjR*oGYM*X29*skXM zbheD2Ce|PA@U;_eITN2Lu=1LKPk*wkG(ev-$LF(fsJP{)iTDW5Y4tfCx15R3B3LTyQ^)s*w%+Way4iguhx#lC6>ovvZT-<6VHfO`iv17AMaMvRONXM%mn^W^6I7(b< z4r>ZE+M((PxY0~#ZikiI8JcuPe5b5V(_b)$<{xmBB80|qnpT>paif{g{0&x)9hxnJ zD@{JROzCSj9BMqR+CWIOW?FTyd6^L&Q(Q*l7Bg`f2`k5r%T^6=Nhj4C7Y{J!WnVZ( z+zN9@6L=9WQ(*SOO=beKJFFZ#FpcU9S@z4B^OAu>#O0+K^+mVb*Nt1u#3cnQ$Bs*b z`l4Cp`?@(VSHLmi^3sI*qF>&-3^$nx%q6gL?7%drFO{nLdh<8ty!;9d5to-H)ED6~ z9gcp1Tg=4eXRvZx<3c7#Z=2)tCLE$DanZfJd>yx#iOZ|7ay#QfSADk{W;{FELP)gj z>`1%XyBTgV6PHb3`UAtdDPpUuL)G?P|1`w@+-c;9ea>PgXVOC2^p zxjbF=pQX11{()(WX>DFJcBJMU`+PecHJed;!%{3aqo!?%zzvCk+sc~18FeH7>|c|j zi{KQwKU%pD^#V9z+AL>J5jwu?)b?mJ<9G6@Y(aHBbZwNoPtU_`WLCX%ZRNmZN4WcR zk}lbvEtuYor#}`}8}1wY5gtP+kfVWJ^0|9}I?Bn@7FW~lY&0CRr! zg##67{h6Uz3fc=dnMuv=uyX9w3|@a`bjhEfQh##h{AA#eartRV{qZ_a>rXdsJd>mp ztQLsTsWf>=s;qeq+whui%hz z`Dsf1@j6fI&o6M}nI!!TR&H~Wy3(a;uXSE~LVR@FPdcHu%}II_4q0R*sm@c9UdN4R zlJqL996L$dH=L7om5ZffUsY*^wi;nP7285cv}P)HXvihM&V)OacYUVZY=+y+9&BN(+JbqJtKEUl}^79_796LX|HJoAP`*PJxqBouFN+hdQanG8#WKx-K zb(({;laOf5bn95t>6R`4l&C4V15Bc}gOy_^YFb00%IU7YR64OVQ|Kx#RZ#k@IZDUF z@#5B`hM%c(YLd@$%FrU*awbCyVddBv+NU8y6>&6Vx+~FD6i17T14sJA5#vGC={$3! z&V|FrMe0P;>eMI@l(4gLN0@}22`k4=*cMvCtQBdpEc7FDhJFACh|AFaVHt85UEsU;f0*;~G#n}}FAWbrXf%wePE&IJh8xW!=P$5w?BoR3 z7qWD?!Mes%vC%@JH6653ebKEKj>Ju6QZfuyj-8U=`r_U0qO{5Tn)9+39I8m_i`Qvd zUv|fhW|FfTtQ4pQu<;AGJ=+=}|xT#D^J`XF$PDyZm@or~P>dO`8 zyj%u{ipz^p|KfF;)|X3gqnYGf2rIWKIqLQmg`8iRlk*EWR4pe*b()g%Gu&t8i@pJGX-(M#x0cDuMzC^wvqC1+^UPT}6pj(Ms+h8(n^PZzTgzl+Hmuy< ztdPmkQgc?SaEzj2MK?b>8Ml_nN&!}mofZ8oTD#ZgdUH^&g#*L|CG;#hXphaea8sF- zd;?aFof75rW4BZB>@iV#l}F4`c@T~g7nM0-yIPOGv|IT-ZZDIU-@?kV^P*gL#wN@8O0s3HlGL96LdiwQr|=J4h6Cb{cIwKbj&WS~EXt zc$8qHmySM2be@H zfRzJ?3UTV1Jh;s{&MAb1JU;I1ut&Q{E1VO=jI3B}VuiTX_|D;x-fBGhh-4vC>dT3% zjf(}}wZ_-MzdG$trgl^_4w1`yt@IsMra4OPny^I6qvWo(B?3)YmOn-!j z%P9?)Hz1y4*Str}y(w%rJTdHbJh0j$<|qgaH!Cwi@c2!TconytiNs5=G8rbHwN?;j+0ho*PqwXG4-q!r>~fjt%?6e{snYZw!aY7<5?`ElIpPs z^UQHN6pkBrU|QH{?EuEfcAo-u5N zsR{>;OVja9rfDDul&O<(CzwnXVCC4E+J(VXdRZx15Z~rx@)c#gyWSkBYvGu2kvguK zNO@vFiTW1q1Cyw4z{;@`#c7?oY3uZeIZ6-0!Q!IS)Yi#zo-*`%+;}EKzlD`!XNWV> zmD1&WUp1{OOCOuF^Z^_+E=x@v>AXRpOudIY!DQ+`uyX87DR1z!U3fWNN|P>pr}d2| zbyI{yYbJF~?ZO@RDM#Dk<}*3k23C%pBjsE80FElX$&z|L$MNPMErR34ElbBVvs)^s zZT~4r3vv6IBrSlIV<(BzDV2-4oYHikYmU*`aIm--HMLW+oTm((i5t&k=rmY4c7~L* zg0$7BQp#o2rKKO3Lv%YFEiObyH?tPm-cyQh#jR&j^j%mvc8WM-TIJ-vbovx^Oncg# zqrbuN;&Rl~G0pX#lJpncekMtOf|X+@iB*rP$wmhv<|EsJ4HJ)RwXM-lcnUcw7Mj@mpMqg!vW(Kq=q}5(03;F08o~8!yRC7{yPCzd_2P|;YnPd0bO{_U zE=Eo5k6iyLNf+YwGfDaitQ?~xOItVSk~Eu>UN`6GRX9joej1(u!tIPKrztZp;YKr=c^+1dotbSLF{9gqwAmQr ziP+>C{lW9Oz(7cBxfu-!(P)*ot4&p~joxHYFK zU9{JE%Ft}wcqT*p!^*KUq}<@+TdVf$uTc=Hnj>^F94jtD3z|`YJib$c3b^e|f|kI_ zu@ls&Z^1$0qSKU)N57Zo8@SO-X1)e1$IeWnk;}V%MkzZFnzQqJI9ObE znlf^Eou_r@x47|4hJFnz$Ieiru35Wh=mT?l-h;!$rKc%fbI@L)|KMgbx%oG&96L9S zK0$N$$S7rJ%2?y+)^4AHLw!!UYlCveO96LFUIvvfPphf1`EQEu^ ztv5~Sbo6_H7T`uRnVAnO$Igs$rjc)crP~8^wmCFs!cpQv)9`LoZmkK}`*Rv@HItg< zuyX9wG#aDydwy;==jK*8PF!x9GDZdN_4zJtH)I zPQB6Z?fDaKHIte@!pgBzquhz=AEoqrdPZ(&+!PNJ60K>98=j%Y9;jT$={$TL+;Ap4 z9k6oj>@@0%HG6n=H|J(II7r-r)0D1QzjtRB+-N2h| zuoL2VI(fpKbFx(k33<-mPr{yrB&~3cS2MEWDibTjIeYgGiS(SkAqOTaY2W#JPr|=4 z?N6k3{2=G+bthBRVmWh)xR_R4lwB#7r)Tj#F;`hdH1_}d0Imzn-8VP!J>ZEi~h)`X^?pSKz1B)K@1$mB~oUvXF@>@qxY zaUmQXZgJ2Yy~!*Njm}wIfZNODWIn7MJ14ZB&a=jxlB%$!^*L9vI(gtgs+|S#B!DL@m<_hCLcGz%CYmY zIpL#PbbEFMlE0Zl@)tNhTu2N?oB@9+DSyK4Ws>qoSUGl5Ch17&D|8ogU1{~i%#j-z zcPGPyL~EK@%>^9Xf+AR{drWCr2e+6>O9!kRJ1rA*wDhM_N>SO}9F*PQ;Bbq|tnjlP z0g7;zGO`P9ER&I)VdVfuLadOMpis(Vue`h+j(fD zOMN4bDw_tty$(9_^ZyPbqjq9Ntz|TGs2QA zm-tS#CE8)#XH3HKJJH=&NLja?DCO^ZI6*G!a*6L+I9l2qXD<;tzRc8iqvelgv(xV% zt$5$U?PFHFZ@|i=;(g7Qh;DUfaYeu63YIsJ5zPbeDzN=GOZ`9#pWa~J91=N*Omwz znF32u^Itw~n3!z^<+x0>SDTvM;M9<@X%{$N+U#bx6gs}#=*A|0E;}{ex%SByPdnrG zF{{juwsK&aBYg3+ISqtok==WV(@DZ+!=dIgctEw6IMIafM~9k06YlYor2aVEQfBIp zg_T|7WNAOzmI$l`O@Ha6V)2W~2pliOhBw&Wz8FIAT(a+xLS zNrBIsbMh=4qLy+ZU8S5ng`3LcjT_2jWHGGVo{SWGbc}q>oRQ1n z0JWA8*HOyIS8+p`j9d&Ww4P`QNFRUCp zBU@|6nu1u`?oVrH!~Ztt=*xSVLVI1D};_Bu;hc?~y~$;vCRa_p?=R@RDzbfTB+ z)7^3t<2laeLZUTuoKP!kuAh{U3Amk1LdL_&u@j=3--yUnbn~0}=8VjRBg8Ewq2@OO zo>EEh`5A=dT%3LrJStB zO=WVj3RVu_B*gw8xy8uYf)GMNzK7l+?283yg|pwq$co`6R)~#G*=V=ojy`yqI3PHa zPm4XV{%>huoo`c(X2a7&VKFwNa7mUMo;I~5LhOWT{*EWl z#C^8djoWW;N2>&;Yc`xN*Lk@)cYip3+Kgv+7COFM)il?aI}>+remlkS0(Cb%8=``o zcg>gkqxQkgXO_r4ZRHSDG=1;OPO`HOh>K?%k$1b)65)d3R+wHqzS`|l6ps^wdhPId zc)~zHN#l+%L0JqdyT-{;EMZGTx0`Cp;6$a;Iki3iny}Ikr_143ajVU7Ex^f&0qx4Z ziu=GM>0($pc9M1&oFod;ugyXFB^)X)NS|&2NLr5W!(Cui_SV=IeBIQmEJbZO!Fa6O zTu5Lu6E0JqZ4pye94Ju}a6gztjfa(ECu-{8MCFP-8TE*p`Q|vyg@eV#>G&4lWCww= zbO`PQlchPZa_lTI#ykAR3097sDn^AW zm1$3YgE>&w!NKAJ)rtyb2Z6G54ekV!rK@4(HGw4yrQMb0>5t|tJq!mcPL}K-P?lEX zPB2+o1uMtS()7VQr%EcBv(DqC?Rdv##_jk=aLBkseXa%llP46EtM_qNm|VRJE62_i zV=c2nhr6B4f!a|>v}S(SinUBD29%^7a37c?O@@`%2$C{nRs1vNBpnCGid&jmLXwC9 zCFxk)2PR2J!^*Lf#F*JtirrQ1YUY>Cc{&G<7?-D3%K0fzcB*zByf3fzS{M6@Q&g3C-m~UVJp~7h3so!j z7Yqb~GW8_x2$QKNVCC4E`V_#FnDA+qqt>5jJmDK9BwEv-r&=)K8$ipA2PJF-?hli& zp|ElQVIekA%6*v5hN}<~av#l1`xRy2KAM*9*PBx;^ry=eaeQ3xe!WA@sXhqK6}MpW z_UnmbA?t2>y4)b=T~6eFz1g_=Oo;cll>_(d1wzrv?Ro)W@$6IcZr3~6oQ?t>-llHX zgXr*tfpD?}cZA7FFRV<8T{^6UEOrj9YgVz-dIgltZ=-I ze@rSo0U&%lh`Ye#ev18@g1);?%y*#b^e7)10r=5gEYo?uxSkq1} zPxS~;kfz`sFhSZ5R*oH{8H3cPd^(p{n$Gm}RulQ8_!NAZQlUO;PSo*m)VLLj_vV^Q z6bS`IYZ2}W6Rm}?a_nerKL}dZ!2;?xIOmz;bS@kzE>6r91h zv0Gu~*b$ovBbHGK`-eGUPs4%Z5|(T+VVMF2>~FX?Ou+sEE3bKgRr=K1VK>;qcp5lb zNVKMHZ!usZ8WgaRxHn9|hQZ1KfQ4B5l*^~iLRbh1_Pe5{zZMu-D(05=C)M+?4l_sh zU^pe*+Bg%djjo3j#{+Q-nK&K*D-#?ee`)AB@#vsrHJPX`FQvVUr@jjk`^@<$!!hFW zaU_e6uDX++j$iM%n;ZGMu!x(^1Se-J2QH;Yw*cx{snQ0;vy$vxO8-A|F20Eem${VA z`(B65g(n1rkgwxTFbTN=Rwkw8vak|zq;oiJ-B2t2=NZ&6!&k}(dS;E`n(HQwr0 z*WfsKoF`y>h?~y@*9h^&B%V@`CD#0~vA9INJ6cVkO zjPf8(J8mu&Zh8t^kn;rMnYj5(h-cW!fz>U-4G^9~*#hF?`I&obT-qFu#dv&~HIDbn z8p6X91_DX~cZ3PbiLf%Mb|=^p(M<$Aht&iTmCWT*xnf1VFX*enQo}ClVmMyhE{b

U>x^cA`9+v;v9BC)GFB_nFglFB~f_O}q~pL7GGiC`tF=J}^nT z3szn;NFwijUNa}@6*yM$lB9dv^CIp8lceWh<=9E`d~Oz0lNM(R$#O;lG~T6( zePU-;p;)l)0#S<8HRf1d4F`>j)#q6YFK$BK(oE9Q4r3@Aw}aUYl@Jpe1mP7-4^vn$h+%;%E|Oz)e+^e!AOE=-?kL49(= zKzVuxcZ12(Td;EMJTWR$y4;;oVA^3T;|bnmA<>!%UMnh-6$47r*0>K$k|x2*v6JMv zU?Ql0>LwrE9BU5J(Qv4^Rf+eVDb_WK5KxYe#9d%=bU3UWJ4c@5M*}&^6_eFOskoG^ zJe_6E(;0BcxIFPb;sSY+p`cuyio3$(Y8k8?J6DX6uA9DNxy>A?Ti{r6fojD_XT^Y$ zbQA6alcev!%4-HmMfD7}C(TKE0*+O@Bo(_TNsr?`FiCn8R*sz{&z9oAv96q6R#MvU z5nCI#-$R8&Yuaz#mSS*}vw}cbS{rwQ$MmFuD{)V=03-2(@UOH(UqlN|)g(p|U{OqPBKE62_fV~HS_F00-6 zE9NM@2*-+xQY)4StQb&|p2K}$lJpF$96L!n4!)Tnr+Z5`ejDSN-8do9nwi}REqF`k zM1j&Y2KRzV(|WLS>@+dzQoh)wZXcLq&eAM6R&mxPD+ZLL{cs1C{0=13nooHuyX7)F}8>o(#xvJ?kagvceOcCSHS_}0@aEw z;sb%8OkIgP!enX%tQ8uz~lHS67V3PC(tQRDBZZ;F#+ic}_IL^nj&0G@`&lxt}qkNtfob7f0aM zGYJ|BD+dr1Vo;OgqEqBTNW?fUdX6YQ)ZN|J;8s&}f)9c-#T^-WM-FkZdkIAs~b-!JS|d(hDn- z0+$XeAq$+t>6%sGCd$TtZa&!)e46LYB0h#^>)i;4m|NTqVGYk2%Rx_JqYe{fug6Vh zB73c^+y+H$y9NY!e$C#3_Lw;fkKlo27PO<9!-B_kLdAo)@k}ay4=a;G_S>)$vXD7! zu33f5bJqI&Q{BC-TMIuIh)VUBX_&MkxtLjoT>kw%%}X(gcDoX?zZMgbCJXVdXUq ztQjg;mzslh5gfHP0BeTkGv^C%N0?xp2P>~BV2P6l?21Le`nfq+KZT4w6f5%8bpJiQDDi_6n7tmz?Z1RU_6V)O!TKNF*Wz{+a~Mx-ol zy1j8DwXu+B%{;C780m(&4RQOK7;OM6uOS%irnXH7n`3k!9IW`N(QcY<=>Xh*CPw?h z%CTd#ja={43~F5|^}L0$IX^`>N?d;CH*GW%j?-Z*ha1iWCj%?DJ2>4cIR9r3&NtyG z#Q;vX2Ar?shBLvr0#=S49M5i1O~py)7pJ?rGKC&xq1m{gyId*WiZP@RK_{~rX z&-ObQ&%3r260Mnc9nrLg$MT$_vlVVR6P+z!~d>2R20Ku0@Zoq}7=L}w|i96LIb8xC0F4wI^S=hXMi*|`~x z6PF#{##_#Uv+X*qJ2&E{GvT=&R*oGW&j~D=xmKnij>;$%bIGdu^}%1w5&AP6EiOX5 zPgqz8$pBE09>X1Ag7gTi96Lyj-+k3zA(Gu6!>1TG&qIVnYntcgy|j@2Q;gQa?Pp^2 z@&B(Fk#}F8GRJ6FJPph}Y0bw-_wK6`x1Wj8PO$PCQjN&FucSFfpM!(N9o3qTk?!5s zXL0+P7#$BQ$BvQb^e0VsWEJ(kf_78mMdlz~0EdeU(xRrV33($x2e$KY511&O3oFNt zlIK1I4NA^8u8F0YLRWFAvcC9JbC!M#$BWAn?@}^OtL+N`h3QAQ3rv`P04v81Q{y%2 zGF>ft*_@#l;4pC+YTiPlZ4TVH&rfAJu zEwWvw@N9sa&V*+)tQ!^DNCdBd3HIYlRfTh2tM8&(cLC&VYP@+(^BtH=-% zF`jqgB{)+^C(E;QJ?X{eWZ=iNH<=Us9XMNDf|+H|b~KT6JoSE58yEo>7kM<;w{ahs zEdQUa+z#K?dI!s($auao^?qXes5vDM;SpvoXC`^e2QVd`SP)+RfP2H_<#(_$seQk( zC8GP{mIYR_D_az=@07KKPlTz4AKQKi2aH>O60HKujRhT2|A+g+#OlAWa_m@n4wRlB zSg#f*tEt{}SEATQFHxAbqcL1lg+yy6is@Ft<%;&h*#U72K0x7fp?jD=q^hw6)P z#JEs>zE$O_9t;ZB7jS2oV4V&t#}1ZvJ4;}t>LQm7|InPN@5903GR3>QI)@i35eJIX z_i#U$INb~@uNgR{GwL@@&zR%%cQ{zF<0Rrhar!In2NS11!^*Maw7X}^Z(wy2VeCy* z%VJGF*;6bebIS0y-cH8d`np1*HQjn|tA;-{C=|5exKm8fhQP|PgT`8F5Hamf<|+zb zdzJ4#8J@_#Sh} zy5R6}AI4 zNK`0lKgGRbqV{80Id;@oi>gb?MRi}-8|HNV6OI;_u9hvTT7jTIy^K4;1nLD?Id-5} z-B~`lB%P@AcO?qNLZXoFNm{4;DpP=o(~PH>n+l26Ofg&5ooOROk=q#ejEUTauyX9k z?ZO!@^GUIqu`H2ZR#G@S%$&1>;h1qN8Sf_B5UZ{-92Bktad((-9RMrG4j1bsQNGxf zPS6GYK6A9naKyN1wd^HPJs1?MBJKkn|;xO{cDYVzptRSyY;?02|JOvru% zE3X-lm6By^kwU*h@u4|n|AXTeJ7oTlP{{s^yTpX-ZCE*W$XMN%HIeMjWz@!g>dwX! z$nAwhYbKB_>%Qv2pkQr_JHrHPD_A*pu)G%!1-=BYrVEu~S-b{MX4LhsPn*Ma3>-CX z?dodP0O<_~1?(u?Atqo)z{;@$#@Y~FE%y~t;(V+wYcWh|!MWBL8kq*k9pzaS8ie%LYq36cnmI%GvnSgE9gFSH%sX*{bKCnQ=kt6*MeYkTOOT2Yr>Fyu$KV{oIH)UIbMx5G!b z-V1F>NIYMddcU@vWzNHXcxahl+cIyC7@P->^Ms7Oar2pE>;Ws2diE(>BD&9Oy`O$i zgnIiHi@jkv@fS)DmKSCkep;J_gT);onP&$wD3bouVX+6dpNUZytQ{XL>PpZ`bABFxBgN(C zsHXAbI!^(*A2*%}(9dDz*a7msoTl|BSG2BU&r~X6_m*Zbd&iulx8RU*Njjlp# zNWFo3!9?nxuyUItRmZ82%juBXdb)9cG)YLbX4cg_q|_)-q$c8CFp=66R*oGh?+0eI zN>%d3VzoD+AMK7b2kLM*VB8wTJW7kvE%{?WaXJk5fr-<>uyX7;H6HXT#cpdUz1)-0 z4tl4W1GNke85gMLRVXzI6sbPk3no%!SUCWx5NnfidDB_03Lz2W@}}oL%OjG7OsP*C zXp$)w0uLIz(;VhI;AC-O=3UT}_xR~q>I`(>MMW-n-iABC^_hgAmDyeSU z+S44bnQ-8^0~>Es4UU&TA{4S2xJOLLro+myL&mCJ)m%DRsV2yUbZK+E7Q-Rq;?<(+ zH4qC5Rs#2h3D$|Q@)`vexuWi?=3re6hpauo(p^_q!+l|bbv~@TMu9~xt-H@0tb5^* zwFg+b3+(Q}ePM!i7pxpRSi3U%tyD4BmoJEBKABpgypVp)9IaR2pmEXSeWQr>THa{T z;qXP=8zx-O!OF42<=MO(*vyMFjK%KwM0dHEPgK$;_oWLd^^}MSyBg0I#|w$p%olm5 z+~APWs8HC(;a)Le8v`rH4x8sH&Oq3@Dy3XTJtFQ9bG+uj;o{aX-jTd0UQQe+P_uA9 zm_Y3ZE3Y9yX$HlLIZ!1yTyX}<1XPM)41{^FdPQ0yw@Q5d(K&#WKxED;Amch!g!^GH> z*4dj*_Gc<$n~XBz-DXbIEpWuRM73u3)j%jHRyX0UFtPd$tQsYnnBNr0|n}F+z%#DkHX4p2vC}(&JnvAx8*~H#G2HW_uB74DNt+UelUUhWX%I= z2gYmV%r44^H`5%Z8F&(y`;B?u>!3YUW)}+5ble9fNYh~D*eesKgR;-QN{LHS6rL8F z^OS%i#vSci(?Jb{f?{G+oLB!WOux(j!LiP8^Y z<=9c;Y|E=3GTlvAqh2v*>P0wcT&7yHEzcVb3fFVEH%z#mft6#2Yj0Maau0QPk4G*h z`qL?;zZ(B3%2U$#Y+OA{7~+Zfy}CT{D&%CY0-IVCx;*Q)<|`wE(BHpiT^ zS#a36)hyLg&YXBq!1lxaVFI={tQ}_a><;tJRChPXRWPgzOYc-vbbAJ z+grO3-N#C5iwC8 z+ORvL@3+tXsrHuBm0mHe%oKW*p8s8Q#@>NL$YqRoX&ActMM6S(dkc4o$=e&Sa_r@c zvxBB8E(cb~nmp5ZHo3KsXw7W0H9KgmC{UOt;a)Idng}b$4wL7a!@#l73S)4$b+kEG zN5XOARxI8vPH4qa0zwfx9CwI`*kQ18?1*vNt!lB9P``aX!yK$r;b?KeYE8Rkhk@d> z40nTxQy;7xJ5HR#WyG;q`NS#da#4M`c#AnxH^Cv}GS!;HWn?TUSl_{YVS@E-SUGmE zIJ^F|>!(kcL-jZuE-qB9+4UE+Zu%(h2NS4=VCC3>+JiA4>?>r%nG6YWN<$@`>Z@k@ z)wX@;?#6BV+Cri=ZF^5k79D6zXyy6@#-YXp?L$~OcF;JLt6#TYd4@S$(_02tYbuu$ z2MW|Q+z%#DQ(@&b1SrjZ<%BsD^6cAC0i3~yS;a1FBE^Av?9BH&|l=X3ivlJ5&vRs zq8yQrESB@ZHxz!&oa4*kEO9wLgf;3GEC)T?d#S@N74o?5ui_>%k-gYfZinN#J-339 zhx@0FwPni0s+b>IC`|054e&vqL@X;$8iW?7%Y|ZJE|*bOo<1+EG+cQ)362$aRBRqZ1Mbs7 z@iVyjOo)zym1Bo!+eV{N=i+oVsqk~5IX_>4!^Gw1h^7@G%X5m(mvPIP=$r#9$BvF? zGO2J&Y>DU=2|QoN=vnG3l#~7GTq0BGN-tC9de;kM4c7{; zg+s8fw6^gByR;Gc1GnXo=)D+i8}(G@n&!qqWpUpPEtgLilwzPE8P8zLlH z)A-Lfr@-Sj;bAS@a3&8Q!=#bo^+8w(S-c!7*R0~Tg{OEG#VL0UTK-w)=Q69xjxJGdiE zP~L)-Nws^!mWXb|^jxXvIxara)@<1qh6}1qyO$j(! zagKLR6evw6;$ARmIssOWohHUgW+7R~rwL9Mo8wf2!^OpkcK|lljJsi=Je`lb!Q|;n zuyX7?G5RMvkeUK@uQ^fozyaeD)r$UUAP|(PyKqOCO#Kj6j-4sSh-Zb8%jX8CW@Xns_5#sa#a=Y97Cz@%(O_kZ8^Pu0DW0xOgse(@|6`RWrpxGMDH{R}<-6I-e#xUH&L6HryckFdR2-mEqlw#6wCK3p!@5 z#(iPZwF*`apew|HC&x^u0EUoI$IK8C(uz$twOaNN64Hu|ZHZ*|3USK6bz8u`2iw;K z?C<Qcsa&#BNh|+BTsBlqW(w)@^i2QqPVfItY%X#Csxwu$ zu(qx^Nw~LIE+q5m6}@+n3OrF*jZL^*iOC}L*~>-3vYXlx(Zs*;1rg&DbLtT|E>rE* zrfD{uCfDKp2OQoXj+r*o*`0-sFF&UM8F~d)j-8?H2Vp3kFICn0v*iKCgV*Ll0-Gdo@tNC<`eS=d z$(ev#%_L_$tQa$#hXSq2%{cxPP@EqEd+Os@Osj1*LGpQ-T%CS>3Z4hd@%f)=6D_2UUmMER`4d(P* z2gi#`&w^&qBJEVK`7+d^8tw;C*wqaGG+n z8aJBB%_>+qc5ZfLaHDH`I%XMn%^$(h;=-djI6oXbw&#?f_i@Xa1icF@$4=1HK?ur; z+X}_trM5mhn*+3?kZ8@cOLKr74p7~3%FhnC;Y@xe!^-W?Pq9bG&u7f}ISvjMw*WPV zAJ=ip&#}1SOn#1rmD`@5e7e%xQ_iTHaldTN&pB|gBIT#MVY^^KihZ;HcCjerh{(E{M~Yz zax(%qn#s*jSUGlX2AjWIA=J&^_c4cOPdHlKy3>^T`+(<^pqaSkOoC>>%CQqPSmmjf zGwRA=uQ@zvI8a=8no@Zzrztm!aif{sBw*z=ftx;M#Jb#^o3Fxwikh1~%FV^N(M)b? zuyX9&47Nw(lyteMwmQEw2j@OGQe1GFvPZ-Anv!!bZZ(sfdtl|*$r)^qh8;s)v-2-= zd|rdY#l@#7do-l$l%ZE})0qst2rI|VP|$w(q;_xW<_8*2u_g$K)=aVHn7mw z$L(d(G7eUbotA9_)&}Kb*) z)afI0WZs9P#6`yFi_ig&DKYQj7Bh)?2Ud=qn5_edsc&ymYRryvjHgUH2#MBAnGQ1P zfa?xZUMAxPGkMt>R&HNj^!vDuGw0=4I7r+AW5!G1{;i{NgPFV>2`jfPFZJz9N_{!U zoR_oUAVtDU-C7ql@w;~FlXjAI8a<>jNVszou=H}f*Z}` z<|bG7^>Put_U6~Zw3Ys=&XfYfwE<;9N0&9Gy6eV!mnG~G} zE5}aJ76I!untgm)nGJ%jD!PSUGl1g67)|hNIWad3gm66qgsH`L@?-Iu5;v8_neAIaoP%Zi3!U%B^Zj zBRt_?<0;g5A<>#Cl+oKs=`v+z9Bwj`nK7_(05c)Zu9nANJ4fM$kdSAf&J24HowUL^ zgW1T6jZLf&hj15$MS2ML(7E|!Puh0^cNhEv)7I45>_JZ8whw8fr*GT;b!Wyl%XhM` z=Gg6ISa#*H+n=)~0?%L$JW@BzvFDAC-QFNE+d8(=I&zyP<;!qV++V3YZ~GiLSlYa1 zD?-PYnA*;?2lr&rbJdCCmus24+~h3WGG=i*!&b(#n;jW&+I@EYpucFG+zCo@Jts|j zPu9Le*lT!1@@;r9wI^%SH17eW+2bKe_$|1N%!J)8VZiQ3Y zjI8*qi4|frdotS5Y}CQdg)U1o75|v_q3{FyU1@7y?NF03&An~LHqKW-H6z>q!UkTB zZ2z?-@Y>h>k!@pH{DKm+KWy{K9bTm0k@J_ z`o`PJf%%T`Hi<2@`SuJ5-XU+UFdO@6lFT21$5cDy(adXJp*o$-pqcl0OBk4g+skBN z7OdOUVIdl=M zTbY=g3MPUhdCv;!SUfzVp2+QQ9cJ9Vjt~;<*S-o&G(*l%+*T$gYs1R1 zW3sJ&QEhRiYQ3OJBn#?nKtY8Jzh;!>m8*Vf9?k77C_K_}3Q!F; zFcX-&VCC3>*{LxwWTr|gWwO=q$*23C%poq+YcRGM6paELiH zbKv-J>y5#Bp5-cqWEO5J6O#R4<=7z!coj`|wN%U*DZ%04GGg#5TDz$wk6X$_BnvCY zjz~})p?g}cF=ymzI6hoPOzMbmmDZ7~a8sF(TnQ`34oSdv+pcuajB-+4#anI8$tpNR zTux?(-}~fxOHo;gTgyb{0a!V9R3_=CMO~TxOqY7~^84nbybDK&ON!>$2kuPBah8Je z4sI+Hl(%5z*g*++*O)%JFR5PhwZlB)Y0qRK(S&J_X0~JSuF>|DVzM=ED-)ARuyX8} z1hlZ}a<}qA`dD*Fj)ud-EhYvntnic~awKjk6OqGV<+ep+SxG_UEOSK8fWs37BFjn? zkyCL?nTRZdm19RFV3w0!R#Nx1+-A5^#LDBalI#V!28oIT1IN3CRhta_o=Pqaz=8V+f@NgM1m=X(5 zDI(|NmNF6f6096MA^{8bJ>_(=N^WDj*Bq03;1F>!F<7v7y``w!g1*^*UfE^#sYu zM;Om_wiXg?H`lRTrI1X*O=Utd5mt^Jl7J5gt;lH?QI0l8@0ikr50&_TS zFcX-=VCC3>2^x5c>H^9c=A@hohlfjw$-q<8te-5yEoCCo2P?;pNWhdhSM1q!7o|J7 z#T=5G-~e$UF_;qDzS2ta9o$wXCf|mY+Zhve3*-~#m^=;#C?ZTWn;;*>ZDnHe5Ud5Hg;_x(SB{LaFy1QPvBJ6n2>x3E5{DW*7_xTQHGOUU1AfdGVIJS zCuMreNHMruVZdLC%QW0xCN5K9<=Alvn)TFiQ7cQroR<^fC~?OhlUdJz!xWekaD$n^ zd>U4c9hiVKFU0RHlS<|^hr-p&i8&t*6PFl+qb@uiQ)Iq`Tg*h}i?DLLBU31s_2uC# zb6oa=L&PmG277E>Z)tVe8@HB;${w(C+oB?N!BJH5=BQ-h5JiEC<1Iy{2e+1qN*Amg zJ1PNNCi8u{YNnK1t}MS?WzNc#|Bt&fkCUsa)^ss%5YVCP%*ds10f-RGkbSW%@c(_bhJ_{>bhb5q! zt9FOQ3Yl1%v_e0S3U-596u>1v9whl|cQh=I$Fm7ns`6Tg(XeT8R&4@^_6j05V;<5uC zFB6xKz{=Kf38*dEOg>?#Ehorn`6%pB3u;RxT?)&wc(_bhX2Z(XVF}p$l+7&Gdbl5# zbFu`shs%jz^OMSyBGQLP%0wgwD_ch-V17kiIJ%#@ic`bnYjRA!3R}d*L@>Wn&X%I` zWjtCYDqn(?t)mjKv&C@K;}>#Heg^x)3A=0C8qbzlOM8`SlX9P&k#EBG za2XK{k5#4=k#FFUG7-50R<@2vU>!;8Z!rHs&dAHKKU_vcbtG+gxaGHas7y$H4J!{@ zNEVS-bhkJ~Jlfe@Nkr3ol|Z6WrIln8JX9tm8^X%gAqluDBd=cK$mvUhhsiNH1a^p9 zO9WSCl#->O9E1nU1Z96%**YizD?ItWjzZ3f>$|X%a#XrukGQA^R*x&`Qdm0iaG9_; zu(EYn0=lpTa!b?a644BGM3|^tDJCDmV`XBpHLPqMlYmz_3OQw+`BjdO%4sM_&#zSU8b0n-B0F9fxW^7yA`GXUZht6(mTQHcMQTlU4>Ccg+KeN0) zWr?-xj%rJ;QvYAcZH_MffI~=JRF&A$lW-(a{A;#2ihp<#A*1N)NDgeM-1uNlTiagC z2a8?~D0h19ORiLZl%=DNGylVc3Ad4Q%41<2{*N+Ua!% zd+sZ9Gq(ECuMSJ^ZdHjZJ&D$Mo*Hldeo60RY*D-G!|++Y4S$xhTQjPu-Uqv7{Ibcf zDxJD7GcY;mI_}bUY$utKFZoS8HfDwUhNm3(fhPq1szUszhW^0Y>o&BBF=Y&C?d5_{W5N+@#QJ{sSgG}wJ%5V(SM6a$^7WQhLy{~)f$vvdJ?UpV^2ay zMoVZfs=bdxYT7zIXMWAl*!5du(EYdXm!bFom}1>vbrSY zxOBr-adCmGiz#7BO(z~OlNtwB4xlE)IH@+&Ds_iKNYq-!JHj@uwJ1uxZc!8~B~hrM z)~>A`YOQyqlXvU7dH2Gl+y)u5?o$F?wL_f;?Xg(5TTpLY^~Pe_^z*u>i+j-j!~HZ4w&i=+V3)YH$#6GFu_5!O&%8OZ`ni?%Sn*$r|E-!WrR5+zS|%;~!^+la8Ec|N&CSF* z-F~eROUgm%h7IC^a%iY}Q%;mJ(uoJkWW<4$turz%kdeaDtbPRQb8<=sVT-tw81|wU z3r2%-;!#pem2&b~JX9tppMjN!FDLmPhj8+koRjat7DdmAmn!AtyLhNfPQC*xTjyka zP(AU?)4REUmxJO$rlJXZkRwgNbhLx?8qR;IWy^X0Ys&(tOJIxc1 zgLY67(Ts!OxxH$NW%Fyxgdf3!WRkHptZbbOV-4wb)z#jnG0sQjh#U)h6m1QuC2jfrrZEWLH?(Iww2T_hh`WXK^L6 z%Sq++iQTj0n4AGS#4RU=vns`80w;FsGo_TAibu+%9uBP^RvVq+f9^2G#%TM!D*IKaTzLmO4EjT^h}!8gOx`NO?lN! z#S4ApZr4NPG#v!H#w|llqp6xbrD=aWdL~W#!phcZ+C8{7B|6pJ5DEHXPPZJOPS_|e zK!(%X#fsBl097hS)r2WC4jwR*nUBHB)|r{iU`A~MHkY44IX$0+E#uO2f}k<0(o;*F za`YKIbS6iihLx>zw6lpL-?0|08}vOnIp2j%;*w*yl$=p_e92N)zJmwLWaV41vUOIp z-QY!U>yJQbu>4gH%U@uZxUitR!D+UXmOtasGHLlEtZbc@9Rn+iJ}BQ|zIbf)5hW4L z*lK#H=Ey55c}mFEc$`c^J`5`lOG4tAUUgHLKDBqOoRHbDKio1aF!{1Z7ZKZ5Pz z@^W0b!s5-!XfxlGpC963Gx>P}Rv!NR1kJkqpPZlnz;?BcpK98apMT+DGx_-ktZbbh zbL&KI|K00s@t|lAB@xY_2tA2XZk@7ADI2@uK{DAG4=Y<|!?Y3*&$&)PZMN%D7mDZA zYJk?=JwwjPsjyMpsuF4?Ku?%5a}pjflbPdTW$VoBX6n!M6*654nBvjl1Qh zE`ojHB6C!zj!b>Nl$i7Jc$vg3gO#llW2`b&2YcK^caL6Wz9C2E4%jFzGU2L>mM~@J zHauV^Gq=FX)|oNw?(KBltlBU`x-P$!!}4p`AucSTcK22@rIh>DZ$8u6iBYVuoewYjZB^;W09~SO-?N&c*g-E{d!4b!;3Y zXJdcZ9d6|aHP5fu@UkR)?2E_Ae9wKopL-J*c>h%p~l3;Bx&vV z7#<{(jk958>uhMZd6z1#cY~7uWxLPH(fADP4Hpf=yIRFGhTag@X}%@u(|D9jHZFse zt+S!s*jHksFRP9_7pF|T=LU-lg{2F6wPNyJIWgaX9pe&ne3(&iXHe#}!h8#loJrBW zu(EZE_B8ZPx)SNmArA!nMUKy(VXL_K7#^!_TySX0l$$@|Av3x8J*+&uxv4IPXl3Uk z3&g{pt(8PH!yg$p)s!hWAI3vwa`Pcr**Z6-T`gTHr%-Tx+gdbiX3McT5_XDPZbI#9 zAsJI@4#y*AQgbM*Y@HfoE2UGTZ>`M9vB|(zaj^+kZAi+Ln-m^0lbZyrY@HipwaMgq z>mIMrs?C?=*nAOoii=ISYNKaNsrft}F_W5WVCCUSO)k@`9yiG^EIxA5)7f=^M$M1p z)cg>3Dq3pvj43rw;1M&a`MyDU)jDnKv=#qr!C-R6Z12wzr9VfO{><|J41au*`Ak~F z=Rb0M{$;RiXs23-PcdVP&p+^pnfUw-R<=&fUZ#P#|0kGD#22RAP7RzrJ|-Sg?W!cA z8B!e^W+tc0kThjyJRUTYow2a8b#_b_3wbsc#~HCyBCl_0I8{!~Nw7`aaue!eq558G^*)k%$Svi>^)pBp$$2>+wkc9x>eHpXEW^WP^0F9Kw$6*` zIAf3M2dm`;tvR|w4$5t?KU`2kEn=7Rq=ejp$H^q*E3mS4LQKb_%g&Xah}1awwVab* z!Y*++33WWWE?Y{=&+%xPwEPrSwoZ#_LtXXy3XPNvW8x0(dP*Xi4sNIob=6EMCF|gk zGAa3B1Ka9GW+5mVxvU5;O5d!YVfjw4RUT*UoJ72q_3NYI;>_+ zoAT3+ht1??Z&=xSl`&2J){InZ!s@)JzGmRa(fJtc6t`UpHTg?2rqrB`N6e(=Ojy}E zH4_Z;Ff|XW%e-1E^%*%gpN75Sa&t_WX&6J!l$^`(n3?2U3M*SD$Jndsim8W(^98-m zd`Hg9w_u03yoBr3R5GQM+>1xbq~so0**Ybrxw`VCORO*3srK$^rRC3ZRQ?Ft#6>04 zTwQ&-l$YP*;WByo9jt7f7t^s4{pG%`&lQi6KCC3786$-{R#MEcY<=xm$%pV5nOtlJ zD_iGcqM@HsyIEfyP4o6xC(_+oIXP0!%HgnE+;TD}Oi#s_HKpfJJZdIA2gAzN=`rT==>wZig6 zIVPWnE#hK=K7XX8N;$a(50%Nu)v&U4PE1GGQW;0ztMEfPAy2^Oa0v-@gsqq)W#jvJ zkW4lnft9VZVLHOr>twa!@h>?V|A4*Wq7kYGt8%1d{0)zhNyeM7vUM^{Ylh0T>d7O0 z&SY0dJjxlbB%&GRgjzGK%a+nI7LS%m%l5Fcby`e&5PF>@rAvP54$_|_=j3?UA8suP z)nBdUS^f;QG4XMDq)bMRft9T@Vj9)-_N5Am7;SORms7F~b|_j(Dw)zsvKWt)Nl5`# zwoZv@=A=rA+5i{p>PyE939?7~HaRi3z;1Dg2{m(K%$m~k6+CJtJvYM2*6A^giPP%k zXz#$i-eviv9GRcP7IBdYH72g5N;&x{9x9WQAH&MlIWg^C$@IIq#X0qKbluY-+E8e{ z4skbk9VHP>H#gMo6?58@pAX=#Jiz4Vzp%1(e)ciU@0*R(i_X4sfZ8Ji=%Zm~_yh8$ z1nrH-%_L|7tZbd2@dkpjxxTa;b9=J|edqSahsJ$S%OX6}NOtute~u&idGcYv>2ZghD5D2M0wuwz_!LS0xEm^r2B zcX;GXihcttTc^l0{;qndWAov-cr5iHB@xY7D%AM9mMZ0BGdxr#CmX}c);Tdf5?nJc zHgvf;T+Yp*uw~qG6Y7!R;M6Hc2jihLIXVzlw$9NGhEY_`?d&6Gq*HQc60kj7WJTcNcopuBqOHehI_p<-lA6`^5z&)I3c< z-jtxL@wk};T?s2&C&+ZUUD?TOP8}*V!t;b2p6|m}ap4JdxgAZJa`OltGLxH!U}fvv zn4YiCx!#Fbh0H?z9LYcA#QY65iAzkV=j;8+QdZu?gJrVvI;?D+71La>vagWqix>KG zIx6Ek#lxntN+OzJQ>eLMU#^st?eSQdq-+Z-TPMY|Zs~I``0eTA<&W~v?c;4yPOUyDkEsJ4uxU_`Y3tmi;vQfZ;WU{dcR<_QDY1JU_ z7KYjlaf_UjufRreISI9DpeIb3xe*VT$;|bzvUO%mw|M9l>eIeImqYVY*eNbFp>FXY z8B=P0j7Q9*=4n{jIyI*LZp}lTmvvlmfA<5}BQ7tY`n$edDJlQOV`Y-^F05>w6w~=6 zZwy^`rl4I;$lgjKnh{Z`C$>sCmhG>dCzyao$z)@9SlK!o#=dNilXdfTaGWiN<4o8b zZutl`^Iy7FjaH7+@i3WmoB}HkQ#vw>wXIT@$?3QhHit_`xRFjzW-(>sVmwGD8yCXL z*4Z%4>F1Sg)x(Y6`-d7S_sU7R2eyh!N~k$~nlk0)E<9u=H@Cye*10j=K9^4{b7PrY zr>oXu&BsiBF9+v$uvc7gLft-R$eEJ!8$4zvIWNG<*2yvLi^{9VK)q#XeZcdfF7be8 zGbIsCcQ(|%s9LI&la29EnVf6@D_iHpbn3ojUVp+d+~|I&9F>D%m$4g!5(p02{(^Y%axK6$75xZaxScFofOj=T!kP-jTAd?_(k;_)(xSqUp!C&qN6MD{@qBggxS-5^5Cf%axLHJsvBQlxtyS>!g@=$obqW&bjDwxj&WT z@?+R2E-s;V$mt1FW}e0aW-{|6tZbc`fF4Yxy2SdORG+I;^MRb2|H4*rsR`SI(Nd<| zyo-m-I~*l$TTRaGAWE2rFCX#dKy~8JKhQy-}CS zIk_0Nhs#N*opYr$DIXW&VKVtR4_3C$$5_Li3WZ#v*RZ5`kDQRZV1u}X92(|Yx=Nyy zk=yY=nT*^DD_dv8SVMAZ)j6&WmwzWG8AB}7vGeF^Ezx47o1QlM0&!MnOE_EnasQbD_dtKu;LV3sv&MD+&(ED zJ8i2Zq8U4duQ+PZ)R<=$}U^^9jr)5D7%_7(+E;QlWDPO{rnKT|SlbMCEvUO%mcj@|m zcd3MWyC$D?;)%3ABEM0N&h@ZgTy#R+r5lhpCFoi_ZYDviVP)$CX)8;eOVdtoB3|hi z*WKFjV>vQU!v=AYLC?VIiIzV^?OvBB@lctRJPs>cr$jq>)N??rE0I#AMIE%)`Z52N zL-H={4;K>jCD9QlRKS)6N{&ueBRam2ekp9;9b@>SuL=%`~UCStN+xlu3H@( z*u+W4donpS;&cal?kj)x+6e65VaeI8+HU;QlW2|WL$@enV%6q;?Xe+%vPRq;5VMox?aN$#E15n(-Ds)db6pz zpW-nprN?Wiq1QD%uICNhLx?OvlFd5f&H5az2g4O?n)w>k&lSF>4)Sbs2_789xD@-xv;WzRCWnO z#oT|nSkB6YuuEK4hP*p!NLB*-E$89EGGSQ?D_e&pxULxcD|g9Rxg9o%%S!mV64Xz* z6_1sP%FVEH04k!1{?cq<2#MNaTq9aB?l*$bC%NO2Je5}-dzr?ZkE%u+z^&u-*ST|5jYhcIMEnp zk*Cpe!_1;5#ia(*hZ&m|ce=M%5>4rJE1kMeV_I&g`;zT3l3Tfw)Ygu+#iL`Exvf0q zz;E2rR8HG1=RI ziQ4(0p0&yMWwYwZmwYUd&Ze9=SxJy1^E7N17a7BW$cD(6v!?hwiAT-E=W$rsIzGEm zeB!A@HrDH?^ZQF;=}fLyTlN00oSS!HpSau@?n7+Ejh-$A<{dm-CNOWq%EK0zemAbJ z|26?LAtP>^c2^S7jA+6F<4czUvkM+B6PR(ZvUOl~pcSTkxr|m=PM33X3TzLzuo!MP zYgAauSyDVs#G_>5F&9?0j)$QEauexHHm`Pg7adM_>m8Si<(ymy`^4oWL_N{drNEqr zhsy+JDXeTAn4M`osXEx%N4mLp$!WPAHi=7%VG*HGRjJFBqH-%9D-)HQVdY_sO4fDs zi#~oMN96_Bq*kC(%$1_@JRU0(mFHk(>!@sRs47bmd9rtNBM@+9mL7m^U8AAhP8l*jQuhD_aM}ux?y-uX>e{R#D!S z!}1R76Bm{c>&AMz6qvX1aGAio1uI(zW>>>#s5n|KB>L6mF2$X-8ZW!&#ABgdlteUR zA;UXr4aY+D*-~7_;n6a2*%4N@j>|_(xFpgVBd5q2IT7}TTT>3imje^|M4Eyz7Y~sM z#vEALIv9o?NX!5A4BV-9SDn+=4bWQ!l`m(rr=+Kc_!KLv}?mAC?IVL z&?G!;CO{KmW$RVOaBicJ@gA4aO3b-(UKYUiaGRnK=Qhe&QatA4Q8MwE2P+R#JW^`Q ztcJ%*IUbk8_C$+EF-wZa3Oq_C9+$w%*6}bb^r+vJ+QgLAr`aBm^Kn1y50{S+3q6%I zDIja`Fqwed4J%s*#IO@mIj4q;DM#Na`>LFfS73v-JQ>CDc#zSR-vMH<_07{5E)@s+ZmF{v1 zA>q3$F6`m@S``2EZVeMf@%ONImz6Jz+oQE_(`-CTy&f~Zur%w|J&O^8e_Y1;IdFV~ z>*A_wxAe-m>OYkpuJJ;wyNt+iaojm!S*~3ica|p+c&S+6l~K*VIBwhet5%C2>NNG8 z@^v5TV)#Rqf4#N$OD=>>Gk)u2TItk%paH{0K!&fXy;)Psvm9ydD!KFUNSQ@&siz$H z)mwO#oOWkw)eYZOYyJ!6ZdZW|FM_%ichxv~L%;u!cf5BNpRFqXs)N42FJnT&&3MdA z5^jQ(NppCEClOdFntr+5gn&X(eQd$W7k$?HPcNt_h2%UBd&R9BbLmnxP&u^3X>aN| zJa8sH&%(;q@!78tJ{`G?(-~I~mA1|3^T!+Xi9s5rB%09?rzPl&=76MIK#^+0Q(z+X z{>VcrxTKe#f2sLd$Y^zGsvM^&__tuTXs0wAr$UCJGzkx%iPA(^*?M)-9!~Q0hsr3$ zoph{NoHUHim1DF3c8lA*ozNVNDydV1=HsC=5t;`pTSw@iMh#r~<}UU4xq2SbT@vdw zbeC4jdAc07j?2^8&Ed)D1BGh^o(B`IOJHT|a2>#ft1Fdp3P!XZkfU`!Y#bM@vzm*R z&jkwB8axXoSa-w9*1_7dAy|eg^{O1DS758SD1Ed^C>8Uj@T|q-X2SCltUUbT=}M%# z^q%)t{o;Y#7$p(SK(0yfczIKJM&ofa;n@^cwhqtqMwO?lFC8x=GU>{d<8EiEUDIa< zX3Bw@0o%u|MzQ8pqd+exWYh6nn2=3_m90Z|7#p&_boplcAk5No%of51axrt7j2U%< zg4Tm)!vxKRm92x;upgB$G=Mp$C^Ltef_g{J)7!9XT%MY= z(4t#Fk$MYHfr-=`u(EZerZDQ0Z^}iRBj07Qc)&MKNklW?JFRI2%4Yz@X-7N(CQjSI z%GPmexNfI@o{6-17V|_oOmkt!xYemi>vsP1DN1wj@R=wb4J%tmiPLlH3u5U!IZI1n z%eX8xujf?DpTg9S$IpZ*4=Y=TX;PzRF6ZX^QUz~2nbyYLDo5#N*f1_iCpV{!^JPy# zx(Sb-3DOO)vUQNg2Z3bVBKN$Uo#$YWxa`c5u~SNz;_@sWFcX(&U}fvL1a3a5?O*av zBkL32qn3y})@@26nvS(_^NF51Md*F_Lk}A@OYW9EQghcFD$0bA@|E+Sp!?tB3J@8 zh1`wD%Y@}lSb6xuVp=|ZMGnha*rFD}60mIg5*{xTmKR}V>#zi_xvL4(z~$00OT~kx z(MlqkL6dOJy)JLsENzO%&4gzoSlK!}frD;k;!w+@GvxeChuz{99pRu`Pn{w(4G*1( z&;hWrb%X*>#3~Kb$kNnY?O;ZOIEAp z@T`KJ;=&`Gv+<`*(YXo_n~Ba9u(EY@hU)p$mix5A^SGRyM`5eD?8tjQwY(`j594t& z;du~NwhqtkL9;i$1wIX(x8>-(1slahXO3*n&zCg?=M6k+COEIb$^qbnxJRmX6;Df7b(aIIyKBjC8P*{xXlyWC z=D2nl)`Yurzb5BS91XW6>GG@3rrx$s9S=Ucl9YXNMT@jEByDxJE|Ghn!vxHg?# z{-WCMyGoAbC~MbX&Bvo;mcDtOa^UxF;Wb#=LPpsO-<44QORz3iVGFM^T7i3NyfTD- z`5_lFhWzrrYzYIG;PEmUSPm7kCnZwYljRVC`ir4z*jLQmL4`sLx4heW&|X zm_lsUz-Dm^#*p3a2H2EuMsX^6)85nFc-%~U?u3=Cg-ITN85VP)$GX;;ito2$w%F`svHh01a1;v`Zw<;3+H`Nn))T#rU8 z39Qe@#c9ZUK$tk0U7%=fif6$@Ya>|MI$GKhA04fDDv^!#I)z+fNi3bo^=fV03^`NN zVb8cs4S6bq$CREvg=rcdJ`<(`VC4}3Q@@a@^Na=4q0XUH4BbL9ZdfgR%(pp)bP)hACuIvNk23DQxpvUQLeRG@CB(BtY4 zr!AEO)DJtw1*i!XsFXAXCyxis1SbnCTL-7XVo1runD0gU(nIt&%h|aJHjB$n6Ba|N zc~g9Dz~g4(a~-T~9iM%MUJU7W3&mGG)g$%2djID+IYH0DesKvJa{o1Ns?nc1h3FYP zbS6Yk!OGSl()M5L-RB<1d(cq_sO@}l2l{>3D=t7oZlUD?R7sn{^Bx{H6P|y=%GTl8 zcjyXKUOS6*y78Rb>!$UGKPJg3ny4hA8HNpccMy*vl0U_1Pdt7mPP@U%BL$~K+KkhD zIZpFn)3`;ci8xjBr#PL4$Iry+WLVicP7Mb5m0xFHR=sbiFL|txvvdjU7?-6c4Djod zrywoIgJ*(t0jz8tqy~K?b>_yqT1Z>ZUn588ZrCd>LQUu+Rnn&L+=++Hgy-w9vUPYG zjM9n+w)&SE0a_~u=q1=MEr+6a%HiPHM8vUQXi)T4adDHPPQM^}ohx=xpKG!6Ev zh4sjvI)&%}Jai^R`@zcAA<`~>(CbmfNiucaBS*-E-QprNu+k~4G_Y#5iJChQ@q%bj9$1s*#SqXAgiI!2A^Pzj@K zX0bLldsNQQ!?0UihMG}_s)fD@0`zTI**ZYehMvJLKWA1w1`;bx7U|0&Z^?0b z1NM%K(|q}MkRTfJ(msH5aQfhOWR+@IaP&``OPDw;FS{w43 z2woSdoHa#f8$4>Ley#jQh4m~yP7P2o8T51R?k z5wNm#cpB_0QZA}-O3Kmqr1i_`$-`!G>1o2gqH5k0pDZ3X6Q5pK**ZQAW{CQoRG%C3 zrX15+{kcg_&<(I(T!NY~W9?6!LUbJ-IuoKVz{=Jk+S%N(u3mJYk@KvaoM&K@xa0`# z1*zssad`@lmx;>{U}fvL>>7Ye?OFp3nD^ztya(IF1!i{mA(yw3T)M)7BJ*!NVkR>G zgq5u$6R;-cn6EC-@R@j#c$BrLl89!MC0G*+$eyCK8y-CqrJZ4A>nH_`w)7hdG=}EM z89EL2id%vNqb)sc3eU-S*i3j%fR%?eJiZ$WG3bY<`8u%*5swu=23S#&F@nrpv|M<&Bg?G~MN9U}L^$VSPMiCN}HB%GR;j z$vi}NO&2Uolk;)_>=3ui93dz(0T(OmhX>09WiqU69h89c@bz~JXx(8~4onB^6c-r5 zdHDLIX~Pu5gJyzr4yfCKiOYSkvUOZ`GxuElw*+X!ydfv%HP|OEF+;x3 zJoF|Uf65e^Kj9%Wq4@)>Y#o~MW@sum18Bf(cd>YYw2hL8W`J~L_zrI+T?)&Vc(_bh zwt$tb!xFILrgF+Q=mLbJ<%kjy= zX0;HXYTgu|UOa9lK1o>FIz9md?#i#wc)`I9a(1qRo#L`17;x7oO~LsB9yAl2&%w&p z!3pT&sJ(rr3k{x;Bl8sO5f>RjAE%Noh2;l$xJ+0cgO#nr5-^HV?gd?7@SYr)f5Sd; zff0O z1S?xdXGik@Jdsc6+s;pu^Kvrm54X0S}c4$wy&j>yQNXUwxS&XSFy(Y9EFZ_iWx}!qR<;gHKo6#JX@lX)lRM?Wd>!_Q3yh!#<4>7F z^EEtVCNy7#m90awi@6!9I7qHIc~OqcuV9zB$jl1g7}XM{!2ALamebN-1`|zNd;CvHSwhqp?fbo-&nAhaQ{0X**OUz8c;Hi`?Mdc58 zv`kc9hLx?O67YU{(CuSdhj^Py#e=9Vl|(dyD8c*bLFrSNw!p(@!n8T8Y#pY6x}z=u zGF-ZLl$@O-V2fH%cgopPR1U+VWukHjtZW^XfJFplp6Qactellz*ds10f<=T%x)hcq z9xfA>ZdlnmECFW^lzVE1lwPWKot&00z$S5N5u81!=1Xz;93C$dmqA$BIxYcgPX3$3 zw0_J}a$0elVx4 zZLj5nMK1@Gr#<&2SE@hC(ox5m|6xLM>CD9Qlhxy4PAr}(Uc99J5AjU8;3U#+ZnD}S*Y5wnYp?!Od%_EEU=t@D z@5$uSPOm%Ib6=UBvDHuiVHGkqFeyvyR+adWC(#<`Q{&BFG3kAhE$e3l=m(kxf1q-< zGpgAh02^lf#>w53PTj{DIAEw*0PkyR@6MI-BcF6XJVIu{o9rp$UpmB3Z0HX?*6^X* zV@`)!o#@S`>VA_QD&~Agh}u^BjJPT&g{DG$&%*U#>wsqQy{}l*I z)7ws#N4_S;-@$!PrGx#}2{Hf1y*4(cl$dyA#Q5AG?EDkYhsn<0VdZjgwFdXEoP!CUE?C=Mvs_sgc5cFo)MF4W$=ecG**b3r!MqimbdN^copRc~4qL~iE!i5{indVJzJ{m8WbLc4 zvUS!DfmkapJi47R18y(Mar+hQ9v8RX=yCHoLy7wZo*9$4pTWx3iNnSO`2-mgY;>7; zOt8L^7_no5q9v5Eb@7y#jQwxqF^2Wn@|muJvB!3RoV5M$&%&JEXhDyyW(?(RGM*Td zw|!t`>opDIt=N1TdFzn#7K6>>Hli)yt!516?HoKYCU0lK%GP<)9+Pe`uU6>Ex%r+< zs#6;xTp`D80QQcH+rsGkY*k+beNB$kpJ2DRNG*sCDI-yTz%yYI^)jq%ov3|TMAarC zwZ?FpPl-pBTPlfYMwOk>fmJhvR;(@XgqVD74l7&dOM3-0pwCsb(=a`Dl$@?3V9U5= zt0P*vigr-84#U%7vULcoY@IFbA@l&YQkm{VK`UEXIas~0UtF+a(ShZ8L8(gOxiG2f zhLx>T#cL6jlleq^##~8E?N<`h&4kfU!TJhV)8WzD_iG_SGBS^+KYcm zj@A!gzqn{cShYMaC{>T)xiG2v9;`e+Xa!~Jqj)MzrjCV`M+#GPkHiIXralhaH5`~S?u}T2r@~~a4_3C$6mL{m zTl&`;!mrE8`WkE+m#hd!g*8KH&H5^y5R%t5$=B=zEIl!2Qx9ir0xG; zW$Uy-70oo=wVxcc$&rB;eMJkH_1XtdiOJYru=2=a%ryBGlQVV>Y}@c@H3R0r&cah- zGIj>6Y@IRY99ZdEcf&-*fE=+;!LD%;i*gRE<_K*mKZ$3=B(lorb91xE*w@?z%j5H&>C#C8KrE7CM zA0}O!z{=L?;+^=ex@m4OkB~!l7;GK4hDCVdTepR>b_kvpleL3j|!)GD=BAGs@s^BmxNW89`WS!&70h z@;*!`YDl<>Iar<4?dLfN6$M#OC7(F%g>w zD_ciw5(6=JsjJ>xTj*+Rt(3EMIcyl0E&iEtgsqAb6si??CQPUOdQHkYjjCy{q^u?|+GO- zO~=z=;x!FcwvN|QAuh2?cEqo)Z(aqhV$1 zpdHKas|__(q>*=?oV=y5mt69eL`mLICQ%go@g$ij=3!;)C~6N#3{~^$=8-h^Zk4ll zGi)B0y+jMxD@`_1*lxnJV#0O5Idk)26S<9OG)wP8xkKTbhiAux?=)E1I($d)dv6rJgwEdO za`slh9&*{sMp^Gn=1}x5!INX6w;Wa;(dgy-dbP55zZ|_au!qAFJ!K9>?`}LfCVF?m z%GS{XCP?}-xsF8MyvywsIdf}a^SI1KIzdwB3We<@JS!$_FT%>!Vbd;?F%BjC-DRz? zjrpv2q&iwjL^D!#B570oZcw;3#j|0;wGpgr9WL$V!$7$7`>$q|HVboVL z>|8CUZ53=Dm$qp7VJ257Y**n~F=4v`RvwwK(ShdUa@Zb)%^PO08Aq58<5@9bdk|K( z4jbo4OWhz!>-E1ar|d1*H7;e*9BHYugVwS)@N}4Xy#^}>;1%M^pxUiNr8{FnNLajf zZP)tQ<5^C@i4~S+-PudB>U3ang~CY<`Y)B)`zrBZc7l?KW-xmOd)U!gNmRRc$ZSBF zmfDqTyW=S^QQpN<4!n4%byu!w7c3Z!@!hxMXXJD_Bd6d7GjE6CpHqey@mWD=IT25W zNy}VVnH0V`VI^vXuf*)gDtzO$!sqs@)&Ib%_Zel9@Upc}!#;Bx^ON{h&&yITc{FuG z@MU=LOoA`GJ_jl!#u-5$*Hk(`P_&~d*R2QpMwSpI9 z0s;Cjcp6Ng|LiFTR=pNpFFBb7i0^0buYEgQEk@-dN+O!U0RN~UjEc_=0?pQVLQH5r z3@ei=_#scCb%O})zN3I&Ub~Y@#Z#HQeo@=8Dq3MBnhkr#twj7SzBpbLKj<9Fk$65# zx(o6}Ykej-QfN3dyJw4&^3RSlth z{SZ%x$=4IGvUR?gZJ~NaBB`PEe{!_`1N+5AE6TR8=mn+fUwAG|s{R2hTc?WIe~)Lf zOVyj&`eA~-2F3mNJ(NT=!^0^1?-f5NUAyA>FzFf(D_f`Q0N&g~JkzHRN~JSt)huST z;&p}`u~T8=xW$WqJ`eB6*O@{&I|)yU$=UI+vUSdwZDVJmt4qV{6LP#Rg8ky+6=mC4 z^ny}#KAsDcs%5aUb*h*%r=5vzbz{7vf%OeJSa-mdalzv64#MkJ*$&FqZFo9Nwr+uy zt+U0fSZ=N>u7UMiIat4j{o;ZZWyLCbL8zf< zNkr3;=f5O|S1V-&WokV<6(&>bz{=K{((Z8yn%C+|Wt>7Rn^{a|whofBwLfedw_x$_ zx?m5!!Ekc(BZsO? zr`E^%temRPzR<=%+wrx7FJ}!OJLhyJ)DAxlt-r|8`ZMeq7p*8~;wyeoy8ejg!=&r? zu(EZ!m{qH1X*Q#y^^t4DW5cbLL^NZ=D65ud2IcC*crr|`J_IXU=ZZN;n#h~B|IL<@ zbtG&Vw`fH6+;llHW7aW8pj z!-1-z7nG_e@LZTweIHh~P8IKDQ+wJ;(`!)vBj@U0uwz`V_}9|m(+wpzC|Uo&vtg3; zH(1#^SQIfb*i*?2!mF3@>wUBPjoGf72M)m586ch9df{KgRSEN#=lk*?{sOl zP}Xk2(_*sr6qohR%V!B?Y#lr$CSxD`|IZjXTD`xVv3>Cm!n|dvC5)L) zShwRTF&Wz%R<>TpvXdi>U<2ITLBfJ@+T+FJz(2908o)?q0 zGht=xv|+8L;n?+O>3v_H~QY0@kIAEct%XZu7;JZ6Q;c&*od&&DQ0aP z@IyIiPr&YRN$YI^X*Fl)DB$~GW~4tljmumM8c_4G@4w+GF&TRkR<>T=P{zpV?_Iwj9&(OX5+ioV*`@YnS4u_g zMXa%SN=(MKhn1}}wm&rF>@u7MKS>VR@vv{)Le|}a#?yQx{5U)(CS}LK%GN2vmIo>) zp|xJx`Et;f!Pap>Yr*nB#THu87UO9#Su4QG)>*?Un(3VQZF10VfqmnG)`E%_a9sQ= zcuq{pZiJPsQ-)2|noo`YQqI}WVduD_OyBGG3i&_h|a94eywB3W}#iZ>nSlK#l z*l5#y68(>I)_xB=$7QVrqs_nr>A%CXVv_b7SlK#h*f_v&F8#w_6c08(q$HvlY__0} zWx|8S)||BC*jfvExE!}bVF$TYZBg{APntWl9X%M&j!E8uu(EaX zu(`A)sZ94$jklDXw*>4Pm$w$orFouE%DV8Jn3Tm~W$Tn-ZRj$$pg+0wc{ya)z_xKA zYe5@Yw1hHtHJ%cau`6L^>x?n4lr@#GC**W}A2y6jSCm)E2Gp)c@MM@=Jp?OT=ZbkD zm7!?;LypzoV86InMR_5Wxmvx6=fb4wbyzuoDmQt}*tWLw2PY&Con73no19Vlb42OS zk)=Pgygy}$wd;;*ORiG?U&%jTRUD*+kf`n1ee9D(iR7r`+S>M7K3I%nKq>d!mt3j- zEKvXB#sUA593Auzsqtp5?!QAMRzGp?E+R)^5u_Q+bX#S9zGM|T|MRG2XoBdYeFCuO@~5zYS7?I zd(7#G#}d8SdOXgM<8dnPFY}_8bDEEb&jtd@Nq8bmP>zR{Nwqu9lV}}L+QBCyQRTIk zoZHzKceOF*Cse%o4hOH!Gpg13BG@%(zp=EPC873{8z{;fXZ5URfR`^QHj;z8ruD2l!rmF+p7T$zF)VW zi+(v5dE8v)Nc7C+a^bUp5R%1{U=q>`E0Y433@cG9a3xMhR)HH|kMvw;shbP#*4?E{ z5>~j|VV}7b?j$zJDKAT{#2Hd21mB7W&m{O}PdTv0wQ#~s8^BUqd_Qr2m3u+X#`Czn z%qlm(*=+bsAe20Zr@^G;Sy-9Wxo13y)(sFE{>rM;OI=<1>pUBLNnCD5DT!!C2>dBr zX1VbjL8nF9@I;tUy+87xI=E4*RrNBTN^~aD-Lb`qbZ2IShfG@!Fg2G!t>mk6wqAh^uR8PuLdK~tPi&FEK zaH=-Ys`MzH1{0`fC6^o8CbxIzTbn5zl~$(RQ%%NWh2|qZ8#A&4sPv7NZC-GFGEG zcm_<2j)s-3V>F?0HBu&~wf@n0a*me5UU50%?`r3+<0Xm~(0bI5r@#a$4=Y;-sqyxf zM7rSSvYC`q&<~Q`D#z(&*fB0n&EMYQGlD{O6P^eYsvBTs>rgdbM5(Mtk*x;L%b9u( zHjK+u^JlzkK2W5d#q(ey^$e^$f{-GMD5JhC?u54~iD)|E(II78M0p?n@Z3Ae--DG$ z5K?3jWr`fBNh1&`(;~`5JP&4-+7ni`j@0Ca-ST3=?@JqZ*)5PmH6ON&+w?7H`ecFM z3EKG0!!u!GbsDT}9jnH3PdPeiaJd|(6|hxYoSHvrP;`J|bP1jT6Qkv@vUQ9aPZ|_W z)F%z@mvgiR_KM3<^Ct~F3n)l;<0&vfx)WBm4${62o4NWe`r0(qD{`XN!lrSF;$P*) zorbFSf}-^jo(mJL7hz@VXdTuVt%6fX#AAj{`Wj|qZW53CMk|SE#(n(P57?Lm`a+T0 z6wix^+(xkS2u6-fHO!DBHyt*RTiIHNoN4M|8lD#uxdUM35r|x6qL3iBP>x&=Y~b)g zuI3A^axR`16S)pp**bFC-SmcCRpndqYWw=N_H?zJv{kTgT+%w4K0iV1pnzS4r^5v7 z3RrpM0Y*yM<8r_rg?$?~fSDT2hw*fnfISE+k37K0wEf$1z}|v=8#aKMX7As?(_sSk z8mw#`u*S>QIOU!CREqK$|DFWx{m#v9I9tw z$LvF8T+V(5PlO58Q?Rmis2Xp!sr*0=fgy7H(1#^V(hv2%IXH$CO=Cs3BM&e# z7r#ah*xj&i!v-+ZT>PDQI!wU64l7#+tnszA$QYCl-nI#%pjl`oK`#2z_SF6o_p(FocAcHoIH zp^CxE)}d;Au*^WyDmhJ8!B%l;YW~48Ge%e7889&#fRzI<3h|Iv?JcmkSWffP@E7CK3>-%Cl8rf~Z1u(>(1|iSW7i$kmRvQqtu6T^ zo(q%f$35lY@Ish=d@aZw-y2!}hr-^K6Y~!4GV|4)1b=ov6fr(e2s>}%Suxpp3sxpI z@eNO+b?=6;A#*yD8MSnxEg|iGi+Fgsi;{?DcnLi16b`boC$#rA4$p~+*p9HWb;J(R zRw@JQScg-H_qd(0OrN^SO9Sl`IcO)s)^Xdv-l(ftoih}-xp-zw+~&Z_)^X!@D%#_j zwEpVAg>uTygB{~i2290G6 zFwuGzRvtNMxe5K%f(^bV?&^Ve?5N^|`tn7&ua_Yfg zr#q8&Qd$!^RnFNI{JSvcEwWKJk-9k)x=DC)Oz0-U%GT={d-_88+V7` z#%(SmpS~!2LJ^yf=fp&89;|E~G5xBiz}{Gos%vg8mdSOh|K6MFb;)emN;z(q!v=D3 z%ST<>4E|8`R^a(D(YpjzwvOI(Zj+iwCkhECm00G+3Vrc~WcKUEWBLBhSUQuArQL3IonpWKw8vJripQj5lteUR(!Qwcn$aPO-)KBTCVrd3%GUAI z&ol-0=6W49L|qbdmt?gu!%R7IGhpAi6)qV)a}`@CXw&hun4nFAm92xuUMc9!bh?&BcW_BiYvm$h`{4QHJ-6u3w6)R@3M3@eWu z;IdAxIPqbg^>{}P+}p5s!v?r|YbbDU;i)l!djnP;Ilz@qFPe8l?sA)WI66*AL^B+X zyu#I6LxI~7PmKxOcCfN_;AU`})UvB}I{>wY^+Y*#b72R$b*>O~!)h{!!Z!y`kO|+> zu(Ead^t*!shYe+K4Lc>zlQXvzHjc|2@PveyI(ieiCP|3wvO7tV4bUM z5!6cDt#aIMhRx&RmT6Imt9V0^y9v*YiQEmavUTLxQ@rJ0F`avRUQXL{uy0)2BA?=| z*+M~k7Eg-_+B2~7hyzXSx6#VlsIQ9$3~fpxngK(rKvT9*(B6k}U_Sv3D_aL`CfJB7 zM~B*BIYmz0q{ygS+@i)*_lP1m5zmoX>-L0|ts}^u0xq{6%3i~M%LQ`s=EL4`8`f4$ zkd&>Vz|F%`V*+;?tZW^)SzygG>@L(A+sozft$=;x!ndqNWzS#}1@RI*O(uxTVP)$e z9tna-b{lFK-Y>^+4eTNp!zC@kkeEavycxt%Z%_a@VRE zJM#w3m+-upsJ#d)TSx6^u-+MWA!;>m%7AI~2QVcy>(e4uF-dV~4I<1nhWPD2J{GHjfKk zt5z*4-caORJU1qC9k8->*i4CuELXJLU#qM zY#loGVVpW&E5B%syvOC_JqlaMB`@;BI7Wxc_^oPdTc@q~U&-1HmJj2pGC6z@RvvL2 z*6(f9IDA{q;ajkU!;QmwhiDmm1J96&-)pe4b^OroUh!07S1O^O3>$Zcc$B-Nl89!M z+p6wf#T$y;c6e?~|xXvI7Umj18311dg zwhkY!OsrG{H3V;#BX|?+BNxF|E$bR=q9ERYr^y8II#}5{i0oUbD-De4 zUY+OU>^%!x$7L__TdC`up}0MRXU4?sDOlM$ZtUv-D*b1z%C+4o9$UN*yT&Cg^6LO9 zrclVoG$u~ydR%W0bjTgNSHkvE`q&QRP=!!u*zb~3DN9XIxbiJ>d3LAOE<-6gPrT<9X7 zFfsT;(OZt^$3*V}SlK#yQ@A^#jCXIYk<)fJ>=~D~uE-lyZ`ecuyAw}|3E0C=MPRu9y+_NZNXr2M(NKH zr9VfO{><|Jl(U{ueLHj}Y#g`h0I!hns*b@A+LX?~^I;-39agrEnEoI{Fk%Z+vCc%l zhSwrFUTN4gE?&ShyC7aAFDP0I@m!c_^}x#3(bA`IgV9RuYbssW%h|dXc8$x{xy^4B z%cZ<*28C-io(vPNRj{&kxb%Y#L%@~kj%726d|q9PZfGE%mQ(g5Y#*00;6_)lf~7Q9 zC~lAASut^Y6jmNVxK&U~r&1=|-j(C_4s4%&+;mqcZg1mRF>!kfR<@3tzQHoMy5)N_ znL0`r;W;r;+Ywf_jvBuq&1brbn~QSY31dTg ziX65RVf*Y?Hr*A9+gv;=CT??JW$U=siyrzoDolVHO1EUauDCjGG)+SKWTaBXsRgS*Au_fbkBn(n*Pe5x8wNwneF zF!6f-|3|#^LAQq2R5@N#@DIX#IK26I>2Ab;<7&Bt?LqBRdzwvJZghEX3>YjCZU!*w}q8yBwTS1#QRiq{G}8zx?t zz{&x5h1l9v+Z|Tg;S)l_;_k3L>W8JrJLyEWFQs1P&7=eOh&>?(`}^<*v-@D)#@bvwwkv+Kctl{X)BCDgKI@!gb6+DU1x?$~?8!_n=PL^Q+E zT$IJBx~;6v9@-3Vi>Jp#Z!1{YI(ph&Sq;(4_7&8-Qkisj%vqAqw=o_kXYUx;LThK@#MOu29ex z;aM?3OT)_6LDQDc8-tch^v0ICxr|=nz9Pr%M%X?sZv4xzM7UMGq0n8A=f;HYT3FdS zbVu=qmep=cUpld<&yA^PDf4c;uaM~1Yu!)f@ckIJkqaOHg(C@k)FTSv(|C?d2%m(N ztwX5I;ssVdC$A2vgR<;hAwh?j& z$nu$ZLQSsqyRm%S(Xag5`jWhc&Cr#9Z9+KI>Ybs$?T%;01a22t**b9Ss#Zw3 zPQDP^SFdVk%27KVwr!YHwW=o+vQzM!n2?xY#lOg|EwdIaXRD01~cE|WL7itr`o2?NK1~yg_ z(F_Kno!IreLP6UA&x#4!C|KD#Xxja0fg?{fsirRbj&CEm~dSVD~}ks+$C8jt&cVzk;C;6 zY}xRDtKj69;CS3Q!%GTl1?&=QgkJW9_(ptwi<&3=!JI7@#8R-tTI$J1eui|Mj zQF{eewvHNiS8kWu&8;p#*C5;eUh(j9TO|?A@Uk;n$V!G#ytcv!IljlxcUsU{b@WO zCR__)W$SQhm$wA>!7?cwtsCWNT@M?^MT>uAFU-V5mvVzvt!wdYm|(4jm92xNT@@M# zR*&oSC-Q19nbs=)SWef|uxnhpqCE*!wS*$}B%TrzvBzO$>xglCT|K60)&I)*dKb2g z%U86$u96=Vu6OW!m~g!fD~}+!4AZI;?h_9fcUKb83>c$^%RH^R3!V=Xu5qxkb-4Cs zE(j&2XszPua>#(IMSD4m(H@H46g)j9dXr#f>*#5ZQ3v+TD&F>`4OK2KXYO3sIxcey zBkiHp`$Az`fak@8Z9c4Q9X7Pisp=LhWMZXqr`5SD<;<;w9pp0CnmSi!4@K{CJUu3Q zD_~{o=&|eEP?t|VBxmjc*g7tA5!bmoUnp$%<9RV*TLUXwhmCpFWqU4DI9Q*neO=Dj ztFU8S#yTQxOFcU%TCd>gFwt5ID_ckF5av{ecU5qqC+FsS)TlI(?$(;mZNDWRm~N#c zq8XT`BgKqZLy;SUr^ZBXG^{*wkSnNbSK_hSl{Ol3v*gIlgx%v-wuq6_t)a-xz*A!) zHyu_UamZEg8_|$kBu6d{yEnX$t6D>mTZpH|M6L%`9;wKY8(FTGBX=$A-mpZ@bTP|n zJT)eAt6=4kiX6G0SlK#qM{tJ^r4EaJCyCa)zAFds z9oR!Ic!g*O5oUvEBl|XYB#~k zBMmj!|IIO@$aX`>vFOb~)@D7qp&MOnsQ|@mPT; z#l-9qSlK#e-0R@WJ(B9(71}KC19H~xht1=%7VUNLx-+!5wg%6P3EbVVvUT9VCe(Pj z$E$MMUV)wC($mkgtiDZ^W55KJS`?_ zo5IT0QR80DP;M;9#UC@}n9YD)<5sk2FK4J)LL1KMcuGvfroqbA5d(W_)jKb=o?2Q? z+CtboE@>_4sa2h!!1dsnF@bYoW$VCA!$zQ$D=;+Pu9fq)8upIMTdEbK(26k>w^evz zOx&)5m968(eaExhUeGH-o|KdJIBXl2v}j)^u6aTsdlb)!3E9K2vUSM7eQlLPmYJ3cBnQer3;gcmx-JxCvYz8Ah!ZWd$EJj9*W)^JUu3QN5jh2 z(F<7v>+a6b#un$v30w*r$tAF*HL%Vl3SvK=B@@IvtZW@b?rm}9AGzu7hg;>~-3%MY z1uxp$;{2{q&~C!BVuE%9tZW^$nOLunTz8;VyXWQ5JqMe}g|4p^JwD3%tCYhdSw z8EWRuOLyaGF;Tk{R<@2B_mRkA|5qE6z9J`VEo>N}zzDXK1b#WD*4->8{U}fuYO=qqJ^raJv`rKGNlg_*G zzCxm3@A5w`2klYVJ}zjPNY??VH?*QXjOWIL?m<}DI&|EMW}GN{TMpV=uw`7(qOE8_ zGh}bz`7q&n4OSjOa2ck?#yu<^RPLxGq8U_14VQUNY&$$3CS2RV$^me>$!o^8wVgjW zA$jQRwzdU>$r+_TN0j~?S^6`}`%{)!yY8sABylB14m zYuju2U@?vXrQCC0a;5sC!r3_JA4UiLLu!10)RjtcU>ns8$DKl~E0^hwN|KRWOBXv*-Nsn8j-r` zf|DA&bg+nQ>9=sH9GZ)b9<3VHwoY5|zlQp0a_KpNO;5U*tv3Hd9VmaKvDM%6g~l9) z44p~Pd7g6egE{7(_k`Bfki8mk(H?U;;;}?;ww{o?RgyUV;0>&)hY;j@4sax0z$ z6Oo%?Wm05r@+4ZvlJ6u0`eS_o_KRC*&T2AF zH5X{3^*o*hlc(ok<>Aj$cP`VHHSx6ZBVwL5P!iGf-~NSC_D=$Pi?TWb)K~O z23nsIX|;b{^`T8j9Vka?Dr_0IM4i**5>;merD_VE2$QNwu(EZk8ucsNQ~P>6IjO`l zeRLL=Lv=3f7#FIun+%oT2g=j}JP#&Q^I_!?z|?+$OkF8wY9;KLHKu$%P^K=&^I$Ty z0#+UYOqIG)raJYIoT&$3$E-2s^MNvTKb{AZsWq^&b*8k9541;BJ`Y$M@@NCU*X3Zn z3fsm7>)a+cfW!<+*DH83OuE*>$|HuZ+5kwSYuoRMhk;uuiD-s_5z$pMgVHqyPlid? zXjs`gUE0B*z}i(e7SaHlB?oLK>>Rgz@z)89Gja{*$J@*0tIiL~*bF=$CS%iKW$TP- zryK(r^AC+Q#1_dBOT)%-5#w(?g%I=GK?z%kr^6(y2UZ?Ag!u+a8e!MV3A+|H&Ng8_ zJ1AkR@pPDkt%8+D4q?7wlSbIna>Aa3jk8Ud&kjo1<9Iqu!XAZ{0|*PT6{fbErnJBv zLV~@UrukbW#@8=}pW>uDGrfU(B-VRWJhoUzNklWYIEg)S&3RdBbJ&K|%aGJIM|=Qt z#=Xtrzn=1N*c>sj5fQ$v0sj3n?Q%Buj*N}@&1S=A0-!!0-( zOP9%6x)ipG%hKshFHS`VC`K3K889)r5LUL1k+yHkP?tIrxkS7tGyJ&eg}KSh3Sl@7bedF3es=z6qq2r z04rMusc{E9n@QyJnY31yKJgE3%qZb%WNdEAecYc&&t$ zt>dNbh!1WOP5t%n%h7rSwv3C`f~NP^%gtdxxBVeJ6DC#**6_(a}LP%I#E8Ml7@KaqU7w<`=y91XC z_j*h`BHcqtL^C4gPj2KZiE6!FvjJsVYKw-u;wdmu9`7j+hebo}zEq<#z9lpNy5XsE zNKV2XW}d3%?^lH&@mWD|IUY}jiOX@YGO2vWcoMB!Jv@X_awxGr56}1wfBde(GtQED4da8Gb;prUZlCV>FG;B1t zu${ukxRj<|+ziPRh>yalL7$PM^%QIu7cKt&M1I{W+dz5x z0iFhvr^jGr>pUISxE(A{7&Rd7koc7=daVj!rdu z;~ReYN1>O?QCWd|%p8RR3ktQQd8qj8AkbWbC&YwiIjl^o;02z9z0qjRX#X#-Jy!0+ z#QW4C6n%O0eigHDG`a?Mj$4oTugZHVmP#)dvN~62Z|-h9D<)}o!pb9&w1j?0S-O0H1SHpR1IlC}}7 zY@M_ztj>FTMi}4Jq|g=52mRWm~?f(%GT-9R|o=n{_#w|2G(jhSgT;WxL|#ZzxY&3 znAzP|R#2v{!c$=~bp@%j_lJy|0Jd(&F zefhWLWW5DDHeARujTYa)vtg3;8mw%cEbZjoskPs4-3(Zdnw8IV=N$bVwsB922Z}o? ziD(9jQO>Yd4WX55J3JvKU)#XS*7;(#i3!tr;kk0S=D>~(hssrQgOYVLo(+?%qhRHc zLRPQanQ-)()TMH=`eDb016d_EC|P+t8zxy=6aO|WHLwD{NW z;OQ{gx(-&h&K9%3<(X+HT+hkrdKNZ~OIMWrt*RlEuV?Utn0!42D_iG_ z+21PKNk)ooKNNT7--jLJ!WHElM9B?G)_Zt1OtStBD_bXv-zsKvnNDribdnsciAo}x zabm=+V$lxD)}DAeOtyA|m94YITuEHi=cEgXl>R90d^ue6V9&U9E6SC`iXW7&)9`$l zbe#+{Kf7K4?obEe;QF?2oiX1K|6(keM!e}*G|yAR;?kpX)*gnvKle9m<%GOE4W^OCf;o9(X$EU@^&+U{%G{esp%-mLNp;c`gJS`?` zTf)i#tcAGFqIM%j=^BF&5*Ba7(C%S8U9EQ|3QPS1;6eWt2dB&7J_Y_(+&ap?hq14e zrZ#_PO1{iV?G}s^@$i`t&-Ijt!z~!vX(fX%zAGR6cw8vQ<2>A7<_#G9dl=bx_-r7c zEX5OHg3=EwlWLduBwBa#g*IX^5tYdn?_P9Lv2M2zb5m}wOV04#uA&y+eQ_)79k=>) zv!~nmc$qw*?dr{VPE68nf|ae4c6j|7f{C>9Sl?u>)|Y!h4&3vwgI0rel< zb6;|$`lJ4nM+g1GmFnLI);}SW>&@5oJ9qmLTKSE?qJcS`nRtG3r&DlZ@syL#yW0N{ z&!h`ZBJJiTC;FGR`~UCStN+xV_QD(3#7W0{GP$(V>kjtZS9Yw{QQTRDj1A(-61yqW zldF^w$(=lj);OOUAMmZbPqJlwRiz*382AH~vz<}Rb{1@y@f#=Cy* z91)I`TC%ifv>FeViOMQiIRKRq9g13?q*Sg#NYsFx9yXC$6s6`-6vYmbC{)kriPrXv zHa#j+e61j_2FmsQqt{d(*bmJ3>liquLI23f<(#FoZ{+>2i#?=jaCHr^p?CDBu*TPV zM}P1nhC`dVZOk(uR>;KC?&4U76JO}2^)o4(J%fIt@-Mg6L)utLU|mY%S5CgGoU8jl z0|(O@NWQ6R8;f6G%aRtq4e%(L#cvd>Op0HdC(*iga^s?1YAm5OhzF}Mu-_|z;Xv37 zE)09KU?}B9KmSxbF6QT-0xMhp{F`~d7In*bzkZ6SOHM!>_Jd16JC}g8ml}oOTs$-; z1Pfqg>ky35N~Tr|u9lN|P6Nk%TW$QR>?&P}j=4Rm$ISLQK zhHz1s%t67I8^z!OJT@i<_ruE8G1#JFRjGz*Md3|339rMRa7ow?At9)Vcoh$i3BxO} zvUM1?uEJ0&qZ$$0|5)5*+*V0MGk!P-BBGWftr1({F*30j11np{Vk6_=;TSmyvtTc{ zwP7NMgrKp*Ogt>+$DaW!TmSf*Dwm9HLqY!i7r}OLzyBoW_YZ0o(s*P{1Qx=|))CmE zh(N7cYAwQzat^MCJ>hb|>Lb*rM;n7{@$i^1tcH~XU|c8l zfpge_^ORxsRt&wMw@qwjadvlJqRzNL(-`#uBHgBl+HH*F8d zvi#$&?cR7F{>#(wQZgvac#$A$i(w(u+L~mYe zlGe(xc?tH3i_I|-YWJjSlK!?K|Po*+JhPWthfiWsgj6htRw2d6qBW# zY=j5P$%A;XOisQHD_iGe zr+{%$KCABa&_H=h4$2#_LtId1N@|LiEhXhOJX$6xe}a{*lM>YaZD1zXD zAPAz!CGb97-80o)Ro(kMRo&Cc%jaVjN%HhlzvtUeJ#}^s4!a0>WvMwUi^&SLCa>77 zl}TAZ_ZCUYQDn=Bld@M(541kppWR@I({h96uvEz+VPRQl)Csu_mU-!?JB;L|k8C+{ zUV0IdNKovdUoIS}&9_xU5z>CHXTD}R_*^sAU zf^Wiojl5gXZ3y?m*$Hao#cxf#fUUq^9of=rzQ(MnWc&N`r5@il-~sX*rc9;vg(lm8 z*Ec-#Z824B0j}s0%(noSnTfzHz%ASlIw@nfJJUT-%GpH-6;p61$YM zGJRI9x7;NT;qL|S3^#k;L)HjOhT&2H+8y^)6DP8QTYv79xN(H$m^Nd>;f&75&0F}QzRn4BwOBO z5s|XV$Y0ZXB1JZN5163U`K>@il||kq2NHXb`hR500f=Y}b@^!7DW5e=@X~2F-G*>4 zoI#tB7jGGk*`I6en0?ejYcQX)d_(pV$S;=it*9S8%#fW;Aj!jZXI`nx@yj<9RE*S* zC%?fiy?ms8EHe=}ato}*qaUeH;(LA+VX2bC;x?5R-2G&=l#wlDz>Y66!86BB96c9C zxGi&iU-8W<>SYVa|1Kh%)`L1GsJ>yjGsQg;+m@>#xbZuAD?ABJll>d@Sy{JH~lQIzUlj`RIP|$&ienk(I$FfxugC zgUEpYE?2`pq5Fqq;%>6##F^M#${29jmm{Y@#%tze{D-U$mJD*vXtq-3<6m?yk$n7< zY&n1rjS7+%p-y+DVS;C_9^Hm;FPy5#$crT=Ucg3*54Cn9#pspgN=@8HarAGf`BwQ# zM6-NVbshATUW%glz2G!$SnG1ki{itXiNKmEuv3h_C>EBlR6(-HL2}#6E8|YGWXd=f zP6Ru?@Psd4xe*nXuNrN1z2r4=hVCUY^}U~24vcpTYh+>h%GJVCM0yM5PlDTqMNLv*TmN$!9w-K`ZaD@GOo19%!-* z%_O?ZNN6UIEhi35K!sy}yF%t=fjKWnktM?NqPSgvFNB77R&Hx$RF0r~i$vv6vgO24 z5k4cl68L}-YDb>}lzwwi`p5!dK~ZcU#)87yDq~Wh`-;S*hio}d90?5?g|6shHYb69>x)&~pAk@_`@-BcNppU_=J zLUK3Ra^jE#Wfo_9sHz`&%^a5hkafbsVv<=rO_rhg7u{tfH2)-94uD2uE}t(4IP-%V zCivXYsk*~E?u9ceZREu~6E9#=I)74ZjIDj30oC7}} zsf@Fyg;K;Xru&GD_=RN4u5-L2`3N%+_~u8x$l%$7!CsJ#Vs^-?WNcA|QPmH?GebJQ zN7e_M1rCu5WoN6UnhxGbx!Sp%?j#bAZ;>qr;Gt0@@H)duOByCPq^IgOgnMx~GhyV# zJQFXV+Bv?p)y~)@m26kuD%JcI&*`l@F;-Y=?yGlLu)_l@P1&%R{Al<_U>2zGqIsUH}W^P180R6o3ZQhzv=?jbVa z?ZqqyM!JO+kms(irV^eS!CM8b0;di8xfAJ%Dytwl=8Cyyr=JUrxu>O4^q13pMMnQP zvSq2eJBFDE%m|TJL!OT_a7?mY*}hD*W{DrLI}e;Q1mzsEMA+n@2}-lAa$WR6y01u3 zHjphR4vObaI02M_{;q6Iyc+xK=BRv?ED{zK#X=`0r!Z8U*2=JaneHtTmM@YmCk{(m zQD$^B5;kmjujZgC%qYS6gE=_ABMXKF=Xk9GB&g*wM8BbXj)dq}WXp*|q|7+QY+t7u zoH36ZcTOY01g+G^f}@#nJgt>sc@N!NBrNa#e*;UUs)pr2b6Dokx~Fn~E#H@i8(-DLbea>BAuEMVFN%dwOhF?yS;pr5beECXoJzKw zI5zDnY^t?#f2L8|2ouPkG-swxmI=#@;yeR}8DD#4U@oTniv;FEvgH6^G^SwrEUq)b zqhW&2CGV-*yK*m_2}L6>-Z7j@ezvu9$>SCktv(nutj|~d*IWFa{EjJKkot;YW|Ny6 z9OWx6n!nXyd7Si3T`K04f2+$gUrqltGZ8r37&wa*{k-xn{@rIm!FrnUzu9+Fzr4i%f_AVU`19-@=(@;nG2m9-diP?|k#V zzc(JKO$8HCjMQWbj+2M@L<&5umU!5U?l+Q$J;|1(?r}F}A~0)2KKCpf_w#|%IQ-Tr z-mAR|oHU$+K9MXHHianWhsf~omdn-Ea=Pb8e2ybqP8^?UfqhN~EM7Plp61FTKj)eA za}HT6EI*;g{VZNw1b0Ecrpo|*knTDXpbccpi32np2T-pts{6V*L0=_{g(YZ31l^bC z<>{3X`ZC>jBtl;#TTUDyOc&NAo;d!4IY7T7ON9j}$}X&{OUCCnbkC9a{EBQjaeOdc zST!$xbY{#Sj7y-AU?QISIm#{!nl1zM9=hvDfZpBw0K#-(prY7?9cWI_9C{d(%OCOx zEXpp-Zo7=oOuFw#g!U&}-YjwueCS9hf;!C!%8<3f_F+-xAZWS_(EI7GBLO;H}(T_guX`>DU`NPnic0EyF|$d(hw zX$~Hzd}+{i&G1@876Xl2?Lp6!s2qaV!$d(g_>L5H+MXS4(srKf( z#p@0in1gi`SvhQ~dVlm_aUo>5j-WRL3D==y%ZbBLV+Lg=$sw zP?ak(Oa*!akTCU-Ehi4s!T3y7$@lcCQ`NQRR9#J$4olVP(NpD7LdNUU^p+s;+DNvX zI9`NeeS?&&?l;HkXJpB+SjAARg90*6KcTk(iPPO=%ZcNJSVqZN`J&M2y=KnQf5=*4 zIf`%!({8#9(7))eBLVs+*>d6lA(nCFog`ELXgtK*3rxf_#EWnl7g{dkvnSniBtE;5 zEhml-CjXSH;_T&#=KL%tYn4R)fu_p<9Y=Q^3D7ZQ%ZUTD-|*#jm(?=|?ko}duyf2A z`XE^@EJG(oS7N)ZmoeHv_a2GS0NHZl7|lRnlpoA@iHG&SYEIFY$!cLKIw3-eSmR}g zzDRc-3DM`tmJ^2vv7BqI8_0^)^zY0W`VCnuEJG14=d!lT2>pugI})K^k}W5W5Tcy6 zD&0a?Hu6d1a{4`BVv{eYq2)3@?~;Rz{vbHn@@9e02Jvp9Ip+Ax+$`|f&@bb&KizX= z_L)w$oH#z14s1hz-)tfOWXu72KUu6KIxxHKGD4@)eMcg6GTHLxfKYd_EX_>U%@Mko zELH*tv9`+yT}byGiO@&LmJ>&4*6?F7CS#^cH6r_-IZ3yZHN%p0a&#jyuLLqs-=a4G z3Dh^qmJvEU{?adH1|<}Cf0EEkrg2~LLr-6*r1bQ2gNNq*7oH$a#w^vo?`1957d?_#85_*(5 zO-GRR!ltH^qNAzNd>N!e>Fy&zI+$!ZagY!rw>+Ha5@(M3%qc36#llh);nX8*yNpl| z-FGBHU1ZCf2SO$3INR0c2z{C?Rw4*N+hv3{(tSrF^eM9C#1TTQqUEblX^Sf$KQm|O zCuFs-3`Mw#<}_Z0=x)06NQiz&wwyRbh$WC>PW<4|f6NK`7g;JSK@sjKf|kqp{FClE z5}$vNEhml-Vnxt*`_|SyDsO>Y`=`s z59$6RQTjgFa^ffRt!s0gtOXQ02!tV zy#Yv=%4Exl!-OcaD^_1NU+R*MV}H?{rO%TE!?F}%ncZx^jMC@m{v%QPEZK76C?R%7 zR>}j?Cu@FXj?pj4Vqr0gaCanYyNu8;=)NNn`Z?Kh;s_zOwpH^z;wSvxH7DqQWUa6S zMYy%iZn_N68+6x^0R5M2IdOmxBQ!X7Efhuj|HXKOHXTfC@*^~8xs1;~bkC9aw396- zjt?sTNFSj+)tsM`$yz0ne@cq`uUFDtM*?&L+45!q&^qZGYZsaW^bxXFNdN>*mow10 zbk~spolUl!I6#Oq`&GEKxFW8eeajr7Z<5u*A{617eW&pyjkA&zeWXp*|gjn#X z4s_Nk*_^nC_D|**{gJE}7NZCkJQ~fHLHa%2eI!V~C0kA$Bt$tae^GtHUyaM@t-!=4 zUrsAOs6LwRITD{O$(9qx2T@Lgh~npD4mIcJV6s-&92DVj-fp^_e-5C#js$2n*>d6l zA*K|e7wbP$7|{2a6Vyc(3rkRhQ;MwZGD2Cp??{9`K(@SjAT&_Q2?%X8N9a>zu@XTD z+AbsX3A*n{gg#EToH#;=8?b8?kWqaD_TA20j z!9+a6uf-AYqWp~K4s@51z-&vloH#Ihg##lFxQ;O=W)WE=Y=&794Ka$5*3opIk;uH4 zY&mgc!n&j`@nf9>=D<|Q5@CUfqD$)PlDnib-D4y!MY83@aS6*XrJka=I`MgPU_M6{ z2@6aV8OCn2jLc{0J|mI2iflP?WWuT#c~8bK&58L1StBelQB*O?%@{wYyNm?pr)0~C z0~3~GKs~XF`JXv4Z;(a85)(y^vD+-?nE%p!Mk4cXvgO2)3Cl6^Le=zVjYmrRfQe0a zq@-M-YNxx51SUncoH#IHIR?}dFHt<%oS2nlky@E!>^93e<^;OWNMw#DTi(=>5xb?2 zm?Lv8S)>*tqv)2-ru&RU=1j8X#E}WvM$wtCtCPi*`Zd{d;t+)#A8qJZw7P4VYHz+<+#a~q-;FEg(O@E; ziaCPgqp|=pOk2_$fP`ravgO2K+9!CWp`oR8v*y9(5FJ2P3Y(3VnJ+i+hRg8GraO*= zr-N)cad<**)NE*2$@lcCQ&E>WMOm_BSc)RJQB$FSjME3`EkNS*KCWT~(iMObAkFJ%2V-E$;9A0=B(9G{T6!<>~DFVgs-IXB-YYlP({g7pcz$#TB= zF5P7$F#kukoH#HcOXl*foPU_}@^`XCSY9GnGFNWO`77OHBrea8EhmmkSbiy2#c9Kx zpEDk5?Eog?8EHk4U!ciye%Y4pG7^}r$(9obragFU1y_X4fy=UlJ?o3inK_y)6E?>z zH6K{Ht(LKQFWqY-HiwffCyvdO5Nz^;`7Uv9PQ{#>GFc@oHOE9i4QsRvO_A<25}G{O za^ld0tbUcvWXp-; z5;9tXuTqNpa`t)Nc(l|GCN|m8lHFuEzoh6cBZ1k2Y&mgY!YY^z{e82A4r!%1F(;5k z!e*E#Dj2)XGBU^0eMTa4EZOp=j7)d2EUjCfYmUs>WRY5k3~RHD%$anbk;tqkTTUFA zkQ+^yeCi|MUo$7?D`c&(d8*gbcHLa^ei|=zkd3!CQifck%v(xUH74>7aX!#AZLT<;1g0$VFSOfXXkeWzFIF09h<-{}jPRTfVl-2)&Q) zI})K&$d(gFD5SE<_hrRT8hyf?oR5<=!jcm~Wn(v42Iix5myy6+K(?GXFjIpUD)ZHD z_-t=YT&n!OIW*rT>x6~oSo5XIMzdvb{*Uf95}ez}mJSJw|k$HyhGZLAn$d)&4WJ+1_iy%9^U_6f67EHu5j*0{sXtRvW)^wkd$c!gj zP8^w#eKh$h45h?95l5Rd^Ioz_*fbNtJ{qUdGBk(Nokl`4k8C+{XhLRdin%^v4XSKT zOpz=RmY4`;YoNt4E_u4gNL;$fmJ`P%WXx2ws^U$cpEc*@DzZjcULqJX*-e&#xsvWO z5}3=$mJ>eiLlf}(K(eB^D{5gJx1d4BH41{xP%O|i{+l#vxI7<{YB$3QwmIMvSTLJW;w&` zLH8Mn%&uh1n>sT60x~C3B5&2i@I z2F-TM=zM|hHxiv2$d(gFCv5c8Ku63tzcpv)*JP!z>_jnoYBpSk=MlQ&NO&G1TTUFF zkn2U@{mbXFMa3n4TmI9yDBc20#8VVUaJ`79A=DV%;|X_S*g}`U2el=cut`^j)Z45*>d9W zAi6I3W~`5!)ALcXR9JcLAJa}V*|VUWNiLwj?FVL<8!p2$kM1}Uo`cAi6Ne`x>y)gXY%M=1ZbmPfqmw7=gheNU ztkY<=3{E%QZ6r83vgO3V30aPSSqqxsogtmYfKdBbx1&(Yc)NHxivo$(9pG zCnV?em#cY2&iSc1IX@=rge50}oYQEw49;D2w~^r7Nw%CgI3XLk`pfHu>iFO0%)CsN z2+K?a8@ZsxGA=LDJx1d4JlS&MxP;8#z$LPC;96Aynbgb11FAj1L_7nk2d!<#=;ujwNe^O*0Yf%(0s+1G9wgG7^}DWXp*I6EXm=Sh;+E zr3{PYLaI5_9GmrIrLfpUFaYNbm*J_=9Y?~mj%+z`ctXZe6{|0sFLg;*mwd^boiC7u z!m<;=II7uh8J!#Gek0Mjj%+z`bV4?&SIPq=@sgxpn`83`StKkr5$rld8*gbcai$_b&U z=`iPIKQIx`_$h)RH?&yBWg6XMBrbcCEhmmkXnrY)ANzTqIWMP>HEL;oDJeeovzqQQ z5}1?7mN#i&)=3|9{-`-H7mzh-B{0xrIm3LI?lKaX50Nb=4ot}PBvtrgOGR9+{6BMK zZX>INMJ9slNt{N@(0qgLG!mLy$d(g_Cgl3+Y7G{-b8v*ArzoQHj5#__k+s626T$V> z-lod{JwbOJ3DDzY%ZURNvXj_VQSo(-tzR)7K8*(x@sz_6>?HQIT*hZC-E$;9qsW#w z1AG*hpdW6I&pfhJ*z^+}KI*&B52AaH#Ahzqa^m=eEHJq5pnN5I-khFpvQk)jB3NMH z4VQCIj_x=To-@dn6NhK`u1j%E@s;NETuzn>OHXvUM}1rIrF74c_*_D^oH#z|;A;om zSFm{sUpzwoV{?e^A`6CvXr=k}15*3tOmrvRe9Ba0(AL%mIx0ot4HIuf8M zWXk~nS%oY2Xlpxrw-&i=(`Eiu<<7nr{LiWQo@$`E}v=y#^zg74Te1vkK zQ^Ul$O%wlOCbA}8{My`$M@+mJ=q#K&64ZESXZk z)v6`@pIo_AgJT9(WoCYGsKfi`I-0*_|69{Z-=|7@Z+A)BqlrOPm*=TX6aCCYYobt0 zsUuoo;n~GM{T&pntH{A}WjnIj<}1mvDdSzZ0POfeRG%L<)$NIFM{rxEAYV@R7MTt& zWtIbDKP~VT)OZ8KV=tT^^~Am-lkLo9@_qe9-z)oLaJ|~8kpMXbchPlKep6VcAoO4k ziULooB_8gi`;Fw`4zgv}Io>gShnZ*{I5PrYq>hZcXau+NK)Mxb^OwO-Lw;T)tA))X zCm3fDq49E!^*r5qBt*}WEhi3WZE{UNz=uS1=Jpr7q{8(1llI9unIx zqqGy*#(X(J7HF2cV-dw&&9WPF1d9f>&Xe==Qd$bu>3TX+QQ_<~bEP%h(zXm+UD=X%Izd7h$sh)j4-Fw23FZs7#L9ttHqgJAD$ z-PZp#F1g2pi6}~LIp*)xin*tyQuN2teMLrp6xp)W-Hl)-0y9G7^F+I=Fv(W!%qR@- z4+qZ-2l(^I`d~A|;d+!f4V5dRgXoST5t&Q2oH!!;s1WI_l(Stq&@aO>u=v^Qyg4l0 zWTmjMD7J$jx{(gC$uc%My30sx&LCS(9GfZO*wo5Ge!0>dnajy4VUamnFTZePYGoOh zOX=<+ak+$SIdNR}RN<0?JK*gkBcSqQb5!mkD}+VmNIg^p4}Bp#53yA z1cbFy24p9?pGZKqCtKb$0m&->Io2GIC1iPG&LFIvG9U}-ej)*xPqv&mAnmFyCST2T zmdnMAs;gOV4oZzI6Bd*OdR>jLy)rQC=>8&sDUmHF4$Ra5V7iOtY)whb7tD#dfvgjj zn1$NJcp5Ata~<7bBr?~KEhmnQa&QdqT)w0R<`HvX9wMuR1x9ml>}{@$%L85FAk1=KxgXR5R zHy#U30~7I#g%n$WG1Il4*2=K#P4^ZF%M`NZ09Z733h>Pa&N`%q3BKjwaq=Rm+Ys)B zv+ix=#rI6SfGrQ_jcVzZhjH_B@Ch*3XCs}6AirVCY#Pmp2)H7k>7;LkU9tV4s>?Iq z{?N}%1TKmPE_O!0{XsYp5frSe$iZ^a=bIp|B+I6Zci{rC;|o#vi3m?*g%c6pwz}T( z4H1{qy+x+OOPS@s*tc*)gm5Clqlag+fOlKOkHK}r1@F7)x~fk^fE_;tp*sRm6nI)K z@o*>IZzK=vlJm!~qgcL#P1i%~raq>+@CdT8%y4Fs5i%FcC#zF84&Cry*z* zHQO(vv=iNbBud+pEhmmraHrlppj5Q7YlkuwIU^lw&e9UHV%UtdN}hCt^AOJA-VPc| zTmTuSh4cm>VVY02oH$G~{YU*&c?s^v%v8(WwZ7~Ip?_O%PE(C68J4Ei5z@pJka1c^ zZvhgg64`R%I3en!KDmecf;mSwkhQ{c6k(lYH(dtkI=bsffUY51-W&i@bZd{81N0DC zs{{bDn=S+N0Nr&YK=+X?Cl1hl!*^)#*}T4TUi`e|JLU|%MV1T8(23D?W^U_cj9#aE zkHqLzvgOSJBV|pr-Yn3 zyU8*zAELXA1m-NV<-~yzu0QYs)0}7%hV!?XQ}Ye7P*`drSnO!FTSn&=y5C52ZYEn! z93A0vOFvV0*tWM-8&T!!ayy5mTA9wS>$93J7z7Cw0R zG@3xq__vIU=CNQRo}xMQb4^Hkc*|vcM$tV-;xmG5IdObK>Kw(y;XHG04kBxW%{md( zIqC_+xpbG2z|10B-jsn+OcZvT1Ct|b)Iwm?6NG2bT}A?PI@xmKz=Z4pQcnzCZqCf5 zWSOwcEHxjA2TllHLiZYp&Bw@=H)(8?6M=V`V{<22rdDDTGy!-A-D@N^-yvI092?M!B#A?D(QnKRB!abK)sXE4eLnedHVPSJQn&roWSz<-lOK za0C9Hs$hF|p?mkhds1cu9t41`-|k| zX0qkPc@cIV3cSG0*B~ME{Q@;lnN#xwSt~3xp<{ceIRQC_e_z1)V=_CB)4fKr^BCE3 z;_U3I?3F+|ftK-a8|Rp@V1ibBppFH zWu7@D2az?xQleeAG+QgPGMDZxl9gFx%K@xt40rj6*(skjOz`Syg>F*hUN|E*BQIu} zcmd<~UE>(H2M^cBuC%h1TyMVAP6I)K|QnuBUwT zegoZ8WD>lNSq_YP3rFw5*S(u+cm}oJ0sJH2xZ#lOA-bx{0lXal(64(B8-GuWB@!N> z`-~*vKC)%0JG_^f2+S0b595VlnFkqnjFPSN$OjAG0WS^7d5f$SHgkmTCPR?pYq(rZ zy-s%=iO;KK%bN#2`I0bB+wUD?e5QekD8^}W;)xKSd`ZSJ0_#A%^Z%mG?WRtuYdLJy>p@(*jejL=DR*O3UVAX`oxq3HpYZgVQSR4$!qRm7Xc zFEA(Q!(_3r1cmNs#S`SVTn6YvbkC6hokg~sI6%UNXgLR|63}ht_Ha}%f%@bseu+%87l;-o(!&BolSk5(%(;Y_Q@)+6j zrj3hKCXavDxJ(`kCgLfRBfv#f9*?3sjKpOG*>d8z2y5)V?4s(G=9vR?5LqQ`ehEEp zfyyrd9nxI7%SdEqku4{VOyCrtx(x0%CniT02}{f(qbcBy!1DJDy2nUhPA6MV9GJ;L z<0n;ux!fF=OUV*paS7eTGkk&x$S#-A{YAp^F|y?VSTxog`Ld<6dZA&0FP>hbJ8#Lo za8}NYy!fDr7qED`TWc3jN1c={b(Q;kE2mGAUoYjmQ9pW^l~Z;#zr4@cxv{_E_~l!T zQ!JPML6=^>T>3j^B5>g>a1kW><1xM2WVMu$ExZVJe37Zolsidp z96cXfcU$Hr5xz3|7Tq^whI>6cz%5)E-Bk>*XMxbWB)Xq@sHcI6D27~esOJ$w?P;SF z^u6g`B7;7KY+35oCNmR(?|J;$JaOrb3Ss`pP zQ0y@bO$Od}%2PKd(fvd+vVv?maYp0}Vt17AZ6|?`3(WcWFj*ZeABw{;;e5Dll-c+Y z-A5!FXOS%@&PGb=U2NUTeVJ0Z(kEq*+sq0123aF4A&PBR!xPeMsm#eObWf3-+)TEd zI47Pje!2aO%gI0~-wmh;spKhhP@W)*gasw=6Y5Trq`I@i-&C2D$LX#jNqLNHIdM|t z-lp0+(A`}WH$sfx!nhh43nt>JSINDN+eVpXgV4q!uL?t)K$I0GdO6MPcp zRq`m#Z3y?m8IK!z@f#B_U=k)ZvZbGb8?~%lty)#zB+MG}E2T`C(HuB0I{x{F{EEq# zRk{@O$(R$FiA`ZLMmTV;2+^735V@@LjqB^liYcR9=mtB!=!73Qcj77RT6bIM`p73{ zYIGlwS#KS)92o2tPRs}g&K)T{6BpjenJ<9XhC}Zg=#nb;tIJ^zJ-8JTc28R+0Is8Z ziv-{rvSrsf-r;3K-a{3W)*btwG z$g*LxM(DSdLh%U^KrW;npf>ji4!GU{w@#|hSEFcD7{723yV_d?okX%zLv`j zy-xQW$d$2coZ0~1k<;N(utI4h|Hkcrxx-T)*~Q^=MR zCrbE0j+>Pb{o5(#B&{aPg-uGKr)t8IlB(e{K_}52M-sGxY&mg)ggXsgf_zzBD2*;K zN9V(2ov`SHZUYNL$Jb(+nGexDMly32*>d8{sI!hLeGBN^W{%D`$Z}!P(at)mhRX!q zLU$ZV(9LAa0R(Bx=J5$ZXPQ961Ro`qbW1w!g)=i{%zpP7cAzKJl!H07JRRP$-d*O-aG znXAC*i0Jo>?Iz4eFe&CMB9HL_yLuB0G?v?eN$ z1P$a8Y#qG~NS;b$%Zc+O7V+K;-8>J^Mnysq{{?fHZXnBrg(-Xz%2$ElUMPEwKql!r zdIOLoT|>5S($PES7`;VS3yaapi2JrKXur(S>vaE-9KA}moH$3Qv~KHIE=jv> z_uJCAPMQWL;u(EKT_-g(ka^mh-UcL3Q^=MR=LwaUtb9+eke5y|XK6KAt)%jj-F}&) zlj!~5BEK5=6rG^GFPamSU0m;)@WXp;3gc`r) zOC_r!B&OTUVfqGHE-Xw@kKdR8GD)}48-OI~X0qkPNkWa^@+I*D3Qw7H^aNQfEJsm~ z-=O(2MUT_nM^f|{*>d6(i5ujU^GSW#8l09D64LmQ##Q%NFcDAHy*lC%oTGru(kOZh zkSvWLTTYy%*&)ki%_$X7vXbAxj!gIPplhw6EXkdY{W3?})BQ(sv<=yE;v5N|7gDbPuM?*;mzYzukgOFp9i13) zAGfX|Gc=#>J(8g#$(9pmD2=I_s>O1TydR}z4$?ZZU|5h&ju<3Y0-2@~y$MK~){-qJ zP7|s|s+Nm`V&Q#*IZM}(<-)QQb&bRXkV(3R-T)*?pCMaLoFvp5OLeeIm>YP=oTCTG zVqrOodW{8|FH>|M-F+lQ_mV9qP7$tm8|Sas%lzo&eTa{(Xcrx>X~ql3^G+K=*>VNkoCf%6!jhzM**3oo9Qh;vUC&K z@@B%4m6J=SC(K!ToUB)3EHMRSmL8+G0Ljv$WXp-OgsPhctz4~KQSEmcJI1&c9|b1j zsl}tNn>;eeRE?lF14&gI*>d7kEy9fNTsdpyOm(fbK2sg)>$6~AT`uEnuM=hw4l*Zg zE?G!y>MBJ%>KjHHnZ8-{rXlG|lPxDs-#%gV1>94RGso);vQk*QRz!qXqwO+3r_+5$ z@^c#5a^n27hw@_|%NKIfrRMNlLY4^&Px$3x_tZx z8|8fif1&%0YPT~<=$!=y6;GSCXy{D z&QECGQQRxA(43w5WR+T-chvU@97*>Z$<1M8%ZYOnns*v!=!Lwq&YYbRSt%?#QRSUR z+vU8omhL-}pI)-%#Q70FM&LWI+hf7K0oh`P9iPwiSIS)jIdKQTb>=W#LzWE-)B7VT zfRsYWWPOI-5F}YwkS!-pR_MrGbtA+JBvpd;x;_QU(%MQL_;v{o`R*=QQW}c|_WqX=0S3Jw;?jtE$O17Lh zMWH7kT^Ut3N_@y1qqE3rVKIv81f;k9GDkyn|B)OGk}W6B5hfccZjiXe9HX1bVqr0g zI2);Nj<|{LK9Zsv$(9qRDDa54ahkjqW&-oVPbWazfWO6gNW5H3w%FU4P^U zZ=zaLRo?`Wru&WLW(L`E;u$9uw)aQ60pbjEYECC>gzdAIMl=zvy7}QWy4Of%){reH z&P?d{wbVC0Tw)H+$H+oq!C4*=IDt1kTts&rNzeIY%ZbwyTH~nBD&Aqv&UeT%VcChQ z#tFFD;oEe_k>uP;wwyRQhlcf4?#GXmtBAtL>sfQ4{z6s{3sf$uWK_%6;B0|X4|x>! zG`&4Y&YmP&PMovQwK4hTknP7CkHNM96Y-3}qFNhM-WW2G?lzK|ab(MhQxjelDQ^my zZ%)pUWTCK$D6*<3=!THP=&mE_IfQIEaeDR*>)V=_Vh9~s$(*0HWT~+HMD^9$X5-~v ztC#LPk|2w0IdOtQS2R3VUbBso7KTTYyu(7i#*n?7DON9Pr?PFQrJ+8Y#f!^cZ> z&ynoBK(@Szv!lA%W6A{MLDyt35znA2GIj!P^w^#5Ig*`S$d(glC$#SITwx*9JuA!s zT1FNNn|z|GdpymT>z<`__mLDWCRM@Sj3hE` zgY+gLX{(Yg2he5}uH2)o?d*-y3WqOhYdd{o;YjDlQO=K}ogWL?57)%g?-|inxB~uG zVJG(eZVeOXHcf1=`w4LF#cS`e`!pjj{=-aU^|To1EId6L)OcrUTif*WHriU&L7m>) z3zxtTkaWbc>fe}F7#r|Ag^5AGaVeOrk6lv9cIB;7t-A4ojrJ3raQuw?5-Q)I`te=m zTys?q()h6M&iBbGLEtW`_NcR~@!Z@;J*E!x1jbSEQhm3GNwg(w^RkvCz_h%aK zn^11e2WP9D8vPYdAV-oV!zPf>o&AjlRf7^p^8>8D_RF=^VRZkIFdag+oH$Iv3?_#u z+m-FhRBKkh08q&sptWR~umBlmpk|w8XnN^BBcZX#mJ^3YSiBXW8R&FfLwwyRP!hNzFoQBAmE~}b@;Ymgb(S7C+-Afh? z3sLB0*NyfCcV3M@At)dNbq~D-NT7a1wwyRnftje7?dw!S^r|^TuaJepLS&eUJgt_& zd5P{d5}X&vmN#W^DpfT&Q?@oPohO5dc*b7F;51t;gR?u`Ya}?kkS!+;j&P)!cVXrJ zTD~uTrd3hXv%;L7Wn{ImX(x2|TBBzQ?z_aM%Lpx{yN*O?G1+qB2noB_I6}UGt1#|5 z%bcGfvQ$`pLXV&g&yTO&GCYHHzmf1%$(94)(O5&^%Mi|Nq=pGT2lXU*s?===_rjS8 zH}c|#CSJf|NPSdG7ehv`ELUpzQjc$j^=IVwO!<=37Ywr$lC4y-L-H~R`_CQlWjp4W zZ+>010HVvUX90wn2%HKJoYvG?f(oAs-zGEP)?`h-)~gE4^W?y|i1V4tXUTFYV_SF( z?D#@cpDj;)`y$yPx6SpAuV(#)?j17CJ3$;PK8|eJb&hu|W0;A+ED-s6m;#V&rN_>PLOnDe95Y?WAj^YI z2lMEFxUH0{pTp>0BJntcY&mf}c9HW(p8}4OIUH+;73Ye!wk_K1e_*4AZ?_AUl7s1# zu*S-a^bYH+?F-PSyWR0+d97!j{+f*5pE9kBw zLAi`SR)8XRH20YUaxYmMEFcGI00K>v!MKO+A`*-rku3*+p)oY&qg$s0)-b_K zp(n}px!Vx##of$=krzKS@dC!!hqrda;izTVA*caPV|GT~6hFW^$+l z2TuW^_Oww7`e}48kwITWw(L5`JCs$-MBw`$`PkYscyeA6d(-vcY_TG~1l%%&<6~rT zuz4V`;0c1mX`)>4Tts&fNyhnP%ZZcGF69kJwoK4Lxc(aIxp z6?x<^x{F9M4k24koD6jynH!u(O6H8LCCh|mL@SSY8!P9LUb?eLS}d~VO^}u@tH0K} zK3}ymb{#8KCfAtL@)@#BvC$$nR;J|&y0b`HE+bn`oECYGq^nZyhgS2t;rG23~Y4yP>p|gr+bOyV;8dJO_vX8P_x3Ek7Z$3a14>f!NNfv@j6YEdzL}Ei%2r6WXp+@v8Pmd z6sxs9^--dm&GER2tPmEDz`e0Sm8qwlG9x$A{X{ZyJ=t>NjO;5h(l=17#S0MxSIR0&_*=+v%nR zF#}hY7Om>qA)yk#5BxKP=3cT&*sP(rInAx5aL_c`ESFLD(0xWS^CPn5#F?2K$V{bN ztqQ=rY7WdRWQnlA1P|Siz}O9zX?cn6Fp`!R$d(hQWse|Qx-4@?I$z?K_h+?27 z_ee(@_DIlNnUvk>?jlLqg={%-QoPfL-fFI+E1&HV(#i^RRF;ty!lso4rl>%BWmcBb z{YA2}m~1(5Rs!o5o0W1YTNHRX%bb@XvPxK9OzW0Ln`LGO={_Twsgf-x&P-rWWaY*5 za~%gnq@jx2g1f^0c)W&%gh z`4W6rMo2KT%z;VA28`(lnl)IaWd_}0WQN(7Y&mgS0_&E1X;5J0baPftBMXG>j7;km zXs%4k8oIkkQdW^ICr*mz)*xqn&RzKF=*!k%*MR`b$IM~5h^!G7mPLkRXs5+8FXz)e zM)GnV*>d8%>>V^W2kKSw8#1MGrB8t7JLb@Qn=BL-nq$qOX*63V=T^GgNOHbTwwyRQ z`wT-)e|f!B$o$0|ou|o4VbM|C{!Cgsa^D!%Zke4Y>3$>G`2*Q<;_M8Ubt>7?S|RIf zvy<_lX(E`2XV4T;*0Gx{lQWL)Hj*n6LizZk>>auMpg@(c~(TzX*Js} zGjs^ucO*jxk}W6BP~g}bPESf*)>?CLddU)D!7&|svj)qwSagSxv~-d!Cr(S?OmM$E z`2LJJELV^f!op%Y6KuCvX5})vzerX-Nw%CgE8c^*zV+*M;*{RK=A_(1)(1<qI-8>f7ct z-AWb@OVbAo=YofkLMH6%^rj#Q`zqOT0AU(;!tiTloU0`?Oz`^zEZqac+zaPk6C*Dc znRo%0+gv)brQcK^x3ZS4<*T(k+%e_5+2&pH>!*Bo>Pt*+wyAoY^WB=FxYp)>x*YRs zZQfue0`E5oys9GlYi)MmIW#ChQ+72T0Zs-JQIzx(!HzFH^}rizJrVU>XyR?7n_c*Q zHoMckM5ex7nB~BDx9~n2&)DCih39G)?`<~Az-_~eNtV(zRo-SJM?P@##juh0v{qtZ zG2LGz0}IHOrS9)2W+E^==L}&PBuk|13JNkTf%`9phsABJ zTq#xQ-Xc-yCtFS&70;e7Z(afMssrM2hnvhvxsj|8mXyG6vY<$T#>${vPj?mx%C%(6 zn<^+)z9fV4s5vMPlND+KC{AN#P#&Z^iv;CwPM?((FS|~gGcp5A#50BoyqFWg2sBlO zWM8_gNJyrVEhi31P#(#PjGSi9$QrUdt;i#J1tP2Ho+1%Bk!(3}L;~`NVvuu@IV0zj z^}#Y?kVovM%6a5Gx~oV?&LLY)9Fl-MQmu&t;cuHWaw}OLEF%W>2((m2d7`E(J$@S(-J-#K!Q_1g^GI!P&87(5dL-$F0g@dc-TVBmC4qb=UW#>Rh>6W$=*LuA6MGRuLH zZsAg+=g3s^HS{dKd1HPPIBmFgbR%6+6Gi^sgmbmb$yE znTf!R5cwjbcktbKVLGyv9(khoQSi)=l84FqU^BzvdXzW~l@r8+bVreh+)uW==^`S{ z;kE5yjL6$$eOiEsY6|a7x}!)$UL#vh91-vOvp0*Z@3ku8k(RVMBs0K76hkYyw+Wua zYc@+!LD>nDHC4_e`_f%SVltI%IdM#sHA$&lI@79@g=NLl%qdwz76_Y4f(PKCl(;RG zAz4ND6bZ?RWXp*|;+^Sj%Be~u7nvh+K3N_tB7xsqt~T4GN+bbU1wAp4kiUJk8`ijfYpegNZ0AXF2SOJ-(>0d)g`iunXN= zBmg^-Elb_rcFaUzUWk0AW`>#+wo3`l)(sSE`BJ$rFMTI$8Te^9Z?lxF7B*QZ?x;pm zBez?ws~6M#M)I?OY&mg$_6g<3?r8HR@v564b9M&FN@3YieA$P_j@xFLn=0LBBscwJ z%ZYQd|FGPY``9sYDf8T9PS1^Gy|DBguUV#aWZcZ-l%{UWWrnV&dyZu2TC(ND8A@Xq z8Ytzv<*#!*Y7WuEWWlfyEsqEyx9KuP57J#nQglDra^e()_h8lDf$r|2INRJd*|_?7 zo2(QTALAa(ZL`eHn{=O%+`LA%oH#dAl-Vb^VosYgGXqS-GtN>Ryv0>Lp7zST>`V6- z$;(u-<-~bWkIB^)@@eL*tRX9e%`b|*6F61^E8|skUy+=gNVc3fCsUPq#a9;!t6CSC z({espCoCnODe8z)`Er=u zn3eT7=UaYLERIeGhiPLGH~f5YbRT9SaJ?*W5hVJ>QO}K8K>=Dp4v^bkzB;;$ESWOK zg~Py(FFe6FW_cp&*~IQ`qw6JKA6-iK5}EoIGs}VTZsGc<=Mp537M?{z?*i!%xNW%9 zHAvS~xshFtykg+)e2#V4$a`8VF;J!Zi)5gmY}s{=cRYQ}L|}G^e2LVvncWLZk5wEH z24XjXXNIKQNY)3NBLX*}4o`~RRCxq;J>69#B-fHHCk~0{3o%|udb5?T>iT@OS0Lq4 zb5b5Ai-aY`Ag46jE93GY-Craw_meFrj>{CjP1B1@(aNqJ%2edc(zcgzW_g>e5|)?1 zFE$LHS$KnGVBVxVj0EO2vgO2q@qACn2TZvqQ!RJbzgkoCc`Vo8MRyem$%$mkn<^xV zF6bh2NX{qg(*j8Brpl0IdN1xA0hLWw01e$ zUmOs>sXB3r@d#)fn24vI4g3P{@FSo`b7fe@(A`DCGLmdL02Ym<8@~GEOb2V2;8TGM zbO&(*YNG-9Py^Q}FdN`AGJIkf&>v#XP8!yd>xS(jVB=CqQT z2wZ~*oK=o~&1nLk0ulpq7C9j9`^nduhR9MWV_N71JN~t%>GJMmr-Z6nHP0H8-6q#7 zzP2<-_X?TPs?2g=TwA!dw39Eco>dm_n$k_+uIWkvT}$Pfk{sc==m>jSC&l`Dx_`)6 zUrV+ubzfIA6M=7g55RN58z?7%2k8zX z!MLAnIdL$2mzUH!T-|czfl^JZfZN)Q*?5~Q5S9(a`RssR!QVz1k2mQ)BJp^QY&mf} zd{-bf@yM43tx8oql#({*V+NRrVuU33DTk1AhucUQkbUV+A_197wwyR1>ijX7Ee=>> z{y5E?k2Pe0;>#aS8)ZCJ(S1bXaU$7r03I5nO+H|CDqRf|eAwKtn+UlV&N#}*ixW(| zfMN45TKlon)Y8GBRJNMRrdGjWjB0ESG#^>Msf}+h>-vwVl4P zaJBQ}v(As}oFCV-AIdkS-ri;Pm8&z?=lksoZ8F(vCYz}>pPzxl^_8-E+*}`9vAW@+ zyi(5ESh!*j*yj3qf#2bMa`>%plPmZ2!&FwLKU>N6RI>fOuEozWiyEUYo#FJQ(1!Ys ztIDZ?s+Fqs!vC5&9O~2lXVGY1_%_(_k9~J)UsX=SHwJzM*G;udG5h!kygBK?4_I|FdN_Q5}@s3)b1&_R=li?esgjyl&4(HBHpV7U5IJnS9OabLoFl*V4Gofnw3BWo(14EhpGKpAIjrtId{E z8_4~Txf3}SV^>*4%l_8-kdK9(;kog!uvI&Mq6EMW@K|q!iq?t0SKI2Eh+XR4W_R$; zCAD~<#QK$L>gCUE{Jc;6!(tPE_x9Nx>E^qbZu*dBK1ks>L|025jstZ~#2=11-f%3- zcUH2Myk&>u@~eH}_&|)|nBxsc(+3C#_#lPjeY#rmaGauRBKC0XJl7kJnh*n_(W#7sXFGL_Q{ict;9h)Ivzsi~ zUO=5cv$aRGCeG@Zb0|;4KDfRI9!1dU)u;2SepaS)AYX)AvU)O|#d2^(h9A4t9 zYx@E(G;i0%gp>9yN9T8zwzW+^Z=+qU)}dSN~eJ*sPhzakIon&2<06GWpI^_wPM zz>At|?Tb2cp*=MAF|^Iz(Y&AIo%i#kMe`RPzi8N3a3Va_uqGYHOtfySxBG&M1*cF; zJuscIyj-(7%jLBxxF;)RYwDA9b~KU}QeembTJF)FbDc1|g)oHpW_^av!+vrstW8ww8s@<)fJKG9I6gexEgPP3;S00)XMSnWgd0*i)Nu`v5 zxtUC7wwljDS31}3Npn_)J=up}^GGxAO1pJMi#Ge8f@%`ituMGcXPCGHFKSO%pBlWYMSFfV zwX`qWW2IJFJ$)A3q;Ah^r`E%L;cWJM^>Sh7*xk^&DBj z1a5`k+qBycPJ16LDZd3g-LR;9$B`{)To*mJ+bIo7h4-+c{AlERG1~Z@&_+{_mjTbYe{UO znA~o=!Pdx_8)?@Km@9MKkb<&MS5cm%=j)n?Jt$kBoUaaKVXenXF*$ruD8v?pN$t(& zrk&?XviIm}#%1r)H6h9#P;P})S-fI%GM$DA?nPXE%+_q47&Zzt*5bVjs#nDrefC^f zOKm(?ivE?lq2tlNoSA50WwhtgQoaUXqsX6W&s{8sPJ7Twtt!L!pi@$D`n}l1o!stq zBkj16W^SaJ8i zp1I{Bu`hZewoo1D4;Ad;VG&B(g9y7+aGguL&ZS-FqyRpyt3H2O9@8}udjNNG>$bjZ zb*=qgb-OFizMksc*kZJEqjYnhpKd;13d8?&HRNG5o~lhZK4y>N;P4HMi8XA(lg1oz^*;lpU%LC3bMtWvdHSzIiyPjzN< zYpqh3kI&O%<8wRMDb#p$y76cU#M5*s;yGiDu8G*iA93vbQ+#Tl8=Kl&w%gB=D$?t9HRoZwR@a0WHjS)iCq|eae=KZzJaBqNd%|#sV<5*tzijV7?y_=a zm^Ca{{L{3*j3(&ynL$fh2W5K8>oc`-2AqIN@}?8MIbFp>_%C#$#RL9xW}=0|y^*Wo z>rMWBr!PgLZ{bO>A8#58ev~KS`k}b{px{z(BMN?3! zBzB%ANxU^Y(y&+@uWKT9iN`{todY92nGcLjX4pa9e4-@v99^Aw9+;_XB6g|O>*1%w zrgYeP_-b91xX>r*nh=H7>|vcfpibJ?Fu}d}sc!yr`}udm_Nzp{kk!7Z1nU>&H2ko4 zg62#1tjG!Zeya#GS*d)zAGd;`lZzSruF*us`>Ut^`gDL7(jzgf(wwCfbx7-~C}ZaO8sZ~xU*n+NRQ zx+Y=|*wj^)y(=hN8A{o^N9;JkHmTIYp;ERlpGy^C$=#~>0=4_}XzF-5|LqMEZ>}?G z*O@dplXjg+yUs`f+66o^Ec18NH4%G&c3x<8JC%ZcIN6>mg6(qa%ayghpu9J>pzPA# zaG*IS)Nnuw#NoOs@;7Cku8G(KF|}E;Ei0G%oz7^WmM`XOL(Qcv|D;W4Y(arH#Vy{_ zwlhxm<2ut^=c>xHsu^8%d4S%pYa;dl?Que}Tw|vX+++OCYhxcWhF#mf*X4rPBC}_E z!wdGh)EZ%Gcp<$rAJ)~AhvY-LCSniCjw`dUlcE_8SgvRLM|`pPa%{2Ksoj1&kAu~f zb{;PU;fuNo@*sR(*Mt}ZjS;asoLw=xrC*)f0dkNt0R<()kULuP4`6>CO>BdwtqXa`w0OWDVkQEots@_pswbiT6OF=!KZ70rXf$jR>R;ya{ZrQj ze_#HgYl5$TJ3-WV<+v9Qn0Nt;P2X?rTf3eAtz}y7fFcgAb>Y`^rL z-e4~6b-L2(F7{4r+~<=mrskip)F!$X_Xqq2@C zo9nnz*97PI1Sb?x_ZQ=A!5h;fUcJwXP4Dqc@5VEwv@xWs6~}f^*F@}ckG18N2iKpA zP3*0h*v=CrsXwc$6PNlbT@#|z8oes-n4LVOVS;-RQ^%~Ho_i>^c!y2TJ)j#a9`5^e zO^8Bk#EOU886|3%;9h)Cx1hAWfWiLH!}fv)4^wsf#XaWda&R-QeQ^X7d8aHnx?HZ- zoYAUyCS%n8kraIOy#udF+0X+wc){(&_8%B_SJ((}$FK@)(>1}v{Wjw^^2vAQ-6_+f z2|!^7u;ZUD2)R3DA6H0<1BugcoHY;eJ2a)h#w!KFdzNo7j7e23R0xi78Kyq4vUBI-} z0{epp6T`;~nG!uB6}O6KiIwtbAy zylueGkXGH|ZPgB}RsKKSXiVV-_>)nzgHmm%KSUts^TXPkp-%_Lg>80|<&g5zCz;+x zUxBDQA#2?wPUE0@QJ&*{)D1BHlNMOf$J-}MgZJS+Y_8&ix+ZwCx!(yy)T4d(^mO1R z>Ho&2dgJu8{peuv|E;SW&-5?rnuuNetxp(oE{|y(9`{bS?2?Y8YF8AEliJMA0TN`?_a9^B#gO7Vbn6EQBJU01vZnvKgw~{rU-?*Smu5;$; zYRKt7NY{iI21Cb$8 z;X7M!yq=A(?TUy|nFK8r(}e?%Aj88}6lD_oP~&SC<2h zlBH`R_8>NQIj5SDTMR2v_MMtlJ9yIY9+ojr%NIDx~_ga1YgxPA%;LBQ@YcT*S2;V za+1C1IlpLafU_QOCxvi({~x1?YRJrE79I`vFym$(f3F)J9^v2Wn&1)sH8T8M**JsyCZu8G(KFu|TUy3KIe;L|zUt;=3Y%!VH zyqzs=yT$h6vE%E_T;;o?ZMvMOZqZeo2kmBE6JpTxE8*+HD&fe>ubtLZV2uR6XT^5b zxc3@>{Jx<7A)27qXFDtL@{yT&nf10C@Re@n23*nxQx>SZT7IV+Fdp;Y=$ha$|CO!@ zcl2{;*hM{&$9#vm9kUNj!B*$aA}o>SySqVdq4pj-!Y8yT`fLY!>;C&w^GlID7t|k5Ss&E8GTy~AN^d%*>Yw8}uPHc+wrD|i2lP5MdBN7g*gm1O^iu4X(#{9V^X?6R{=!Vg|b z=RLQX6-izW%q0BL>LZ8~;rWJj@Hkx)v5U`EWnf&QKKFS*Y|?MTl6d36YT;+=s>Z4B z&@~ae@Z*R*o4HMi8XYj6Jf_w2{-Rj=<0%l<RX0O4mf}g1g_)U^Dm5 zJ1+Da_r#`q;~N@jXN!cL-c*CwWb9HMS`1 z+Ps?$wy88duwRAi+nf8%Zu|3;ZYKAokmF*Le>dm56IS!SF8j+_4Hu+f9HXlw&moI+O~f9I?H8~d z>RhDXh=?x?rP#u-13P8|ohZAuq4{tr0Bd#C;{oW^H4%FNCM@W+a%)qt$~aIIt|$3a zY|2k;XHQKxo+?TH30=LoAHt_poZef*1ovW?k%M+6HPw0b>;s}zw(U1n zvIgMB4EVu5!UIE!FZqkAyJ7=kZ}(LMXVQ){X~!A(!JL8m3Y?KRxl=dDoRd44i5AvZ z^%C;DCI?BUnDMJ%TKgS)Z@zd#%=yAFx_zUU;(dY%;&%_IOL2Iq;NOzpw zG565sr^W}X_L19KKIeN`>(HbKR_N>d^Ia#iGjId3v(=*Qns=%fG82LCZ15p4-Ceh%-Os4|;tc?;Ko9iM3RG3|}#N#os{&DFa} z*93oMZ)7GSFJ49|ApRvhDguZVDvxGg2*}Y0Tx2n9bd??)T z*q+qUrkkExgM4bOk@IMw)dli?WhsS3`A-lon@=UMGqt7@4em^E(x9IRa*zuE6m8h@hmOF^M+u1t| zx8$;SI1TS`DG=GCps7X*azjMS)Gde_8Hz$Uk{wsneE>1lOIIh2~q}+3s9j)j#M`=c4EPrQ86T)%p_e$f~36WyKTcAX;5 zFW(lMid#3fj>BW^O|^2;`-Zuex9FPS>E>o998s@}PjI$zt2F;jY?{M%eYSZ#Q1V~t z>c#t+U+S8OUGiZs)_6TO;gJ_>ysE1mm;V)A6S2!5da=fC2SqcIm9sVCVvU{Q;f9^w z4!R~{mwmX4HI9r;dFP6r#*u++QGLI|VYABzK6rB~QwwazA*A4Z{h_^ zj&+7zR~KBMYmabdEQD+74z;g|VfzE@qH&>R^&g)vbv<+LRaJh7dg%(^B+Gr#@Lr$H z7dg7%xqa|leuO%cAO0Jz_v-S?Ux9m=iNIlHuqkDdr9`+qtUkT zTd?CFUvAsZo@{@7r1@lN8vd{5iaw)jg1^pBF%yA9dR^(aW!p(@%_gDscRyB@!2+Ydly=jU4kcGQQQ%u`0UYe8q4!& ziTwR^mE*Z&ny!i1#ou9Nxz9@VT1B{_qIpQpe+S`-vFX2KyZ!XE^YrHVIK_vIm+R`s zLvWm~2{8m3g#fQ5oK8i<1oz@c@ua{Vyq&!|3!WPz2%e{hCBn0HqsT!xQ`bc7A(+(o z+-85i-zw%yman$DF*fzLX?}0B`CustUazYf7yepZ6KLVJ>s|J#BztMStGvEcgzt*` zl>cdr%G;N}+UtSM2TRKTSXVZ#{9VjM3rpFp>}J{DXBV!^_*-mBj$_x^x{s7J{Ij`+ zf6_I<>HVVFG$KuD5K!1hK1?~T@$ejJ$jV|-{URy z_;lVsHl4@7SEHQgNjy*2)rjYWeRNHTGHVnwydH8glZFZIMNIXOdP47gu|+#6$~On2*qVF3Zp3)d&(k%*gMN;#2{-6F zws!N&_*wQBkK6;YzUY1{qUd@)bfh{gF&oaVvAep4jqf*gmF4mM8Z!}C*F`=}rp}3v zMx$)u9v6xX3El-dLDWdA+>5W6cmbLDZ(1*@Ze|{Pl2wJn zovGP}_+HR)^CBr&>)Y|Q1GsUp>~_hWe5dR{KJGa73ZqlZRGb7DB8F9iXc(Pr0+1iNKT_yeg!v^7y5t zTBY0tUxyJV#@9q6Yhf|i@x35*`@7kmhf3p*RpvsTs4Jvy+S$k5bqKX!t+!m7+i?gx zApw&w1O05-XRTE!33v3Yk4@oy8@mzHO?TLKY~~J|0d?Jxw6B?KzfRW#PgNx+d{NJ3 z?6sg+E;;wZ!4_f`Ao%Gli&f#?vi`C!v0NQne5SNBPgo>u5A2Qj+!MIV3_OuS^J!gO zd4AcbYa;g0OmDnDp1`;q@Lw-+vfAE(3rjXE{%01C2s z3pR_Oyt8-wp^=o(ih^LrcF@s&Ivh%Z19!o<_l^Y@3=8Q|x+XZ$BbbTEL$Di!fT@t; zhp3c+m>F9jcDDoJMxuErFgP6h>uSkCpRQ{n_Hb<1cq3psO&NxhVhh9e&G!MG9W4I} zUG2F1%XCe|E`Kv2v9pQF01U(y0G^PXlaY-p%%zULqN^VdL0Q*?7y^x6ns@Y0hofPF zd*O8S8YZ|G&iGfu1oxstxAS#pIsP6t%MpFQyLCJJ{KL^!r3RZ|`}_lt??nT6eTp-) zp;$BMgy*v5gJI{eZr8<>lm0DT6Fj=#WF{i-dUtA!KAd{8-zs%kxxDbT+$W-mM&UlN zR+aR8|Pcm-Umy{Pll%( z7XG_46M=K9k>`{dOJRyBU+T6hRw-vWi^40dbp!1GEhuKI)qHn8CkuUaY(nqHzE9kA zDa}S)4VTh_OHv5lYaW8bbxm;i=joc@MTP@{QIQc-H)O}hIUgW`!$*X^mvUWftW0IB zuni4qff$c35+o(v@bC<|R@VfFB&P7}9vGfug?nf=#uk@7g5zR4AqC`9x@z)(d_vbm z>;c&`Fd%Fm$@i*!C$^AG4i1Uqh7^=<>nh5Fa;vThF(?{&&>bo58a7f2>`t}IlbvVV zn{O6ZvVGS2a%F95CG5YFS1tb>O_=K)&XCEzwN$tWadxJ=;X|g{^ubrqE4BdqNjF|R z;mFH2(+dMkSuyL0=wEcIetop>%-plc#_ zsnxsqim@pjwzD~}s}dKwTi1jrv}QkBxB?dZ3Qp?RFu}d}y>1S4d;8tAdVAgNG}9Ze zkG;J*o9fNx*ABQNBe;8%-6C#p1*?_&eMR0EqQR{0etf&}{fIfuuL*!V@BsOT9{xqs8g!x2S!N2kUUzaBAc zNFUS{lZW(vW+JebE8MrXx$y6-_&3)7KM(1kKDt)U)hd>?u|T+LaTHAJ!7YCq3s1qb z>!aacEA|XGY$jMvxN-5qjmzs()w<1`HOINjA2z9XSsO$Du!@5BR6x_fth0V%pv=Vax2>d#{)0ic*WSZE!ymVme*$n`F&8Px4hmyIWbVRU^OIH zhWXEOrOKKR_?HfDCIt%)VGL!8`OZqVGQ|E8%;EQyt21T)4iWwmn_z*zV%5jzOS$3z z+|~*o5oJ*+yasV9ykY?{4&D+WhDG!)yMQ@H^8Dnt#{+G@4`Rz z(Yb6to4;LN-?FDz?%a5BeN=D0tIH~F{AhiG`yBT_TwEUmOPsI_WOZ#k4odP`z6Q@P zmx@F1x3;Qe*KXV1IAPEA%I1Uaqm?k z9RNfGSEx4lS#*f$utaRs{4aL=GAFmUK1ZfUeaw5xdL*1K*9Y2^~7{{gkdw zTzyLgG zBW_?`)b8Q;^N)OeM~m(6ZUl~fUy6n_aqJ7T-~66F82hp%4dmGO1zqVmhR-n*bp3Vv zCG}gp^^wtZOz%Kz{JnqJTRa|~YFIjr)iuH2pHaFd_*?7*(daGyn=VT3TfAE9dI0UW zc*j)(@S^15lP#(FaDs8shHPKIxSMH7G*H#YIfG3&DQOLV?th_fH2EtzpP2}JC8ICL z!)JqfqLHz1GT8CIo7=Rr0X*9i=1xONt5aR(dS-P^@OShB%tT;kq?-&!Eny$f^-ZyU z3?3CljV{YQy4{&?l^0Ad(p88VHL7Iu*!n|Sy2T`zR}@vt`* zh6V5izpxvIM!YwY%v_%l#QDs=zW#~@!-0GWd(BWA_@sp(&mC{;Mve#nO#3bBMm4RP1Y75sj{eBf*YOvf%06W#-B) z)iuFijm6AFm|>cg{7QP)K55(iA}UJ;wjp;Nn; z>FUI#{-myn*rira3Vk;=rNbtL{!dpWF7$1>CPbk%Dl%TwIcZh?#0UOU>q>}>zCtNqLF_Ah(FFV0|go9lR*t_j{@uVE%4A8m|w4sZLXO+Nz9ihyH< z)??hm;)+knoU5x5$MtMo6KI*WCnmyAh~E^O;FuHQH|om9mA{^uXknt*#X0lt+(>AD zAOyb7R?K!w%O)er&GrUAiVX+jlxaiuxedp7zH* z*u@j9KufvZR_f)?UHOBTzWYgE5BXed@tE9hyTO9N+(^4_q#JHXLHV1mq8$4_>zar? zC|jSLuMT93`Kpy-a`>V!etul}eNub#xoPLQlI&yQ;aYVkmwlA32~l>9(v?@gPR`RX z!Mzx!Q`hcoc0L}C5foEPn^$N!#p>Jxd>9-S8wR_yGY8U52hvRkBpwdY4JPN|KxU$a zz0Z`TrF;#xsN~PIM+3{DS{<}ftLzIH-C=>C^!s8{x*hI6;;y6}SJKRt5Y109*L=0E z2~Ph>PS~REj}GxF;u)&VJ;1q12KsHb5NCCz)>!$T-dZ*F%q0TbWH6R& zM#{NYhC7&c9Zb6pN-xg`b)&#vo(;MtVh`ku)zEv{*NU;FTYCp*&bj+%C^b|bs5l*4 z73z$u&-LZC8)6IHe(m5==7)NpTk7K#x0;aeZ*~VZ4I$Y@8 z-3B*oQv)0)X(iuS(uq6Cg@gbhZ>o|giIb2X((|Ug>7DdW@4cjwMiSCU&-eMvv%AmC z?(E*)oy6~_Kc3NN$}`VAGdnx;%yY94iQjn@T62&{vCeu|y_%NJdV9SrqMcR8YfIjI zJm1#ALZo<}-+U)6wMNKY!!|;a-h3oLY&_gvZ)eJQ_>pGu|ED)!MALs5HceN5^SN~X zOyfHLb-gTP^gqqr_I$nhPFh;aoA2;d!?im|eDj^OwB|S8p(JI4+lWc^vKaP`toO}# z^00N?sD;J$W$`I&MZGGNDQs!IETX+o$NNZLX*`kE!9t|qS6Uq`L<+XI*TF)hIHg{b z1f(Euz5lE0x`KMW^``9H+Pr=3woNNnuRXnaCw@R}y{E4kn(-VQ>(a%MUSH*erS!ub zkA758=<}*xSg^O=(J2GGuU;0?saMy_!td0hpWjom!f4>A9LL@_A9DuD9*>?N>2H)^)KqxkqpqE*2`kp)tumwH*xiFDLU07 zZ#-4o;M#Iby)1@Z)ozcx6NXLGX&!mU*Q+HN(@W}Q5mj^@t1el%@zh@j3z6cT^*)^b zJN~tGz2oa$xJ_7&+f>dkm3xW>>($;lGy`csf19du0$%OQ{R@KV&L#SPX?{1?YQ3Hu z9(nEcjtm)Gg?d>?w_aH<3%^@`GwON$4gHK&g-Wrld26r!KzFIf|0FjVsjXgq;}G@o zLU#5;FYBL)=1XD4p>JQ+rQ2Y=Dwd9Zjb`yYF5M>ij!rONzu{|^Za*_Lx>fHbKGrib zFgf^G1}xN6Ys@0~$;LJL@p@UvBlEwS#gH%MCi<>Ur17`kXleWbs&FXQb8(H+_geMG zF`#g&G^X%->(!PF-Mi{#ky+t&A44yIpJV~sKwMB~aGQceEs!YI z15-(?23O*T*ULhlk3%(!A)kuuRWNYpK7lxxLU=XzttJ>*3|_ z+7Da(bmp-2(=iLTlv*GTPBpbSEn1uwh|{9Qp~r;8iFMLx^=eoilauRZG3=eRETNOa z(cIi#?C`%-qhIEqvid7OZ2h%7slP(WS`5kX!v9pf>n^WX@6vUb*2`kpyKb7k79Sou z4AF9r>zcp$*^_MbiS6K>W9ZbcMIyLZlL;OPtbMs>QK7jMfI|Xc0(PT zSlI{j>#hzKB1M(eU)_t5Md4zEoc(*+3;KKJv>pi`7aAJ__Il(~!!|aKmi358gC$8Q z4UH6%CN@$&QExZPNcpH{@jNa`j@&{1*{cd|yXo72vi!52!n=n}(^D5x?Ja)ovf_(t z_KwCiduzQcWc2@lJ7=gp117Ga+mUJcr`<9w&Hs7WG(Tw}SK7jr#)k5<^=eCo^6%

cxOgtf+0er>(_5|v+5FN@(< zIo+00?7@y=Qz`QOl=lsz%7a>4bgeO!zo%Y(iOSzuFN>(k>sb2B?txdPb+8aAc=u2T z3z34)0_tEPQoO2O!y%*~C#*j`zn?~!wV}VWlScJAx_GF0r`J;{l{>mhd&zmHxYK%# zK0P#pd|`Y=3xfwihepjkX`C(rhVw>^dwKRTq6WWXTN&uBA&7{cqZ6rlWTC zb$40$C+qwL{mGkwaaUc13|C!sK;hdr>gMC=qKfR7LGq0gTl9q!Tlm8x5Qm1RuKdtu zd~XGxl4>oN_EsVbE*89&hiG72v8T@~_Y}J5Q!8W2UPphqctHJ?I?6u8I(wm3WecgY zrPXT@Rq{ogfhu9_N9$W4C0UzW0x4tD=P2E%IxfPH;WVON7BXf0r`|y=6BiHaT6FH~ zLZo=25h-Y7tg6d6_~4oT zJX0VOE`9IFc;ow)ddH9q!}B$Z=VMmmDZuSYboJ0ER$WDW>_SZBMF?V7^Pw|FEq@bs`r7l;Zx}Rd#UD+R@CJe!meB>@-YdASvhCW!Y;^Y~8pJtK# z45ogbuD<)4zerWeC0>yaFs6Nk0@rP2oxWaXT-1C!D!h|O?8d90E3@5lr54hU71TY@ z7~k1Eg>SbyA=B+vJmVTST73hI8oSYod#|B~?>&u3(cjuXa0q>(Fi&5W%Lm_&!?JHJ zy;#p5rS7CBlY)QJ{(yqtBeF@I!00?iH*!u7Ih)iSNNZ9DG1|ge{>H&=DDBFiW>f|;Gg!J*9a9L{+Ved~pojb-#!lpCpzwQ z7jf}V`2nZ>iP3BXqtrc|^AzUtWzO<9&a!~fR}qX-U*-Z|;j~2@c{B&Bx%ltUh9lJR z9C;lg$Exoja@k7trBkt5Xxj=UL>qtwqB-OA{5%;nDrMyneUj8Zou%i-!FWSOj9hR6}> zADp(3gNr$MEppNrM9wDla}K`4HC)bV&mkD84xqqzbvUw2RG&w1i261fc9^;zXo7l{ z1BIO9)XRY;skZ@5R@;F_tGiKPw0Zk zAZ@I=8aXGZGJ-K`J{P!!gRdc=4o878>Ie*B8s$Kv)UP0Qllms3ZzC9?CVMQmq`^j$o9!o6%GhXj02K=UX}LZ(u!2J;%)c!DtqvtGV3!IXH)d)m;27 z%{h3joD|&{tdlMo@s2oRr0p$)+)0lM|(q^dp zkv2n}#9ST*8n5nQW_N(gTy-acG3q{!+`+{k23oErGwVYTEK*ar_>)K*ul93+?{a~s zfaa->AZSwU9J!B+dq5-9CxH%8Kjm^S=Cn-+n$&x_KsSQXY8z+y8LRw3PCEvXxRb+Gr2cPBwH*oM94nE7l-JInS4n}eCYEF9zm@js7A>7E!KA%>Zgr-{-XFSOxFk;wK{*sV?9w zO%e0UzfqE1654)An%W8qTthS+C*XL!9;tF3`pW z`Z?zzoc1El`9n^7f@?p5Bah@PcXHYV%%#F;1P2!}vyqIx#RY!AIoEUK5185iFnW;F z&IcN$?&1Qwnac(pC@8)1ON1nl49^=T15!s}kVDuCR|I5LfxWH8$Eau>&oVK2W<2iB^E993Pc>+hC zgkYrlBS&uG;QgHTIhJ!CM_$P2F;068ql-BB2}h3Q;8-qj90!v*@{Nps&FD6uCUq-{ zk5(Hw@^+xH>L#R(QGdqh8Lf(3!z(z;3Z%_dCm|TCx)F?0rz2RV#vy1@7jn*v5HzVX z5jjC!%IIt`Yf_g3O;LT!dK7{&svp5jwU;BuBiN*-at&jlx+e8*=JE;7@?r!N)TcSi zk0EZ8`V1m>s2Lpj5(J}F56T^;K8j$Jx);Gj^&v(dN6@7Hg`6YQQ7Ar79m!qQkF+Dy z0YnmOE^sIZ8#uUwD_X|EJsjM}!IwD8-6%dveU;H^oOTyKo9|$B8fO{HXg=qh$mk$W zdzcH1U`NVN`;Q`BArBh(8y%L*=jC8L8`XA?O13+Mb_&hjPHK2rUTh4=_ZKFtk#H5dOG zBAe7%oc02ad>sd`=imwsZsp(~%&fq{OSpJDr@a(tiTV?2Xi_g@p1Y89mfFPVR<3;% z7kD>w`4>n216jtXS8>h>oaNs@O=0BW3(J-r0PVLk?NfY$i~9u9sp`mXK>`fT<&JhS?09= zGMCqJ@Er~g<^o4@fpLu1aqvM79%l_sX7o-jw~^8LEYg!K#BE4xQom(p(-1T%#RXo% z1!f~?Qgb=W%Q^DzjDEpfPUQlJ^JsmFd5-2_3T;N9>`74gRl54ny zS^taCUl{#~vrOXPuN?V94!+Ehr!ccqIq2cy?`8A>4$kJ_Ne-Gg%j^BxIatkUZ)23> z;84yvg@f}rcn_!jh=cLmqR(^jyEyXKoO2sT&SUgaM$a&s&u9S$zvLEuoztc=&&xRN zlg#rM9K4CMynuthaaCpSA!t%}a_|s%HmSEWdOM?ST<(<|oXpjB zbMc!wOD_lSNgePP>oO zzQ_eW%=NvD(++`pn$#acN2*5=Y*qs(H%2W)@KW^x1QXP`NIOa$ z4K!a>P;RyQFqiuX1)E?nlQ@LxtLqRsL2W`XN^M4P zuzDK7Th#Rk#;Pt9KSbSt0!OMpaPgT4CaGBn#;IoH9Isx9;4JlHu6BTPo(XiAx)i8c z4I;}V^(jP-Q@@5rCaLcuZK65^kz>_uTKmN%4G74<#A!z$I8?3WEFTAIQXk-I`+!EN zA9H=JC^u34hRaRmEWhA#(-9o3eu-e5nu%bvn#E})lpCS`ha>R`a;o7%X8k2*_HqQH z)jt{Cg5VH+@e!3fn$up(Y54UuiTfuoYtpCN6tw8H{(;Fb)K|PVvembG*{a!kZ-ZJD&w1%59}t#jE6uTA>yfz5pTqQzD!YH1o<)%Pn(Jn zzp|gAR)ef1;;BcewTOTHUW$4n$eW0G+HQ>a(te7%8l(c!53(0zKgbI~t_8UckkS9T&B0`$+tNq0XDe7q=p0+zf;P-!+ zqCNofL68rDd>G^-ApZ;UQIL;;d>rHxApZyQNsv#0d>Z64AfE;K9LVQEz5wz?kS~FJ znTV&Y+^GBZPf*kyAa{b?MTAc0d|B_hm7?we`3cC+Kz;%87m(*b#@t3^9LT{S6G0|} z%mFzbBjRbBH0q!807cCMnGdoMWD&?QAWJ}w18D&{0c07-3XqdPP60U$ zVj`Zp#gD)Iw-j|H$WYbJ``g{Zqh?g6ZKxTr>0+|gm z2V^eDJdkFP`5+5G7J?iFvIyj8BA&KQK%RFzPEqd!c^AmLLEZy$GZ9Z4Es*UqPg2xp zK|Tlad5|xFd=cbJAYTUg3dmPMZUOlk$k#!>0rE|dZ-IOp+mAoqaW3vwUG{U8s3JP7g-$ipCyfIJHF7|7#9JZ*SE`%eEg zMV$e1CdgSJXM>yraxTb9kX0b7iFn#PgQ7=1Ls3&frh!ZcnE^5rWERM5kU1c8LFR!p zgUkn60J0F|C?cMMr3Z|go~5XfAfrG=gNz~KX(JGFG6D?wI)tOi*FvX%(Vl)i}Hc#fjJ3GywFZ-aaX z1NlD44?unh@*|L2L2d)N9pny>J3;OOxf|pjkb6Py1GyjM0gwkl9s+q7iH!7m&Y#JO}bOkiUcc1LU6|{{s0p$bUfo3v$rkh>QSf0vQQ13S>0M7?80b z<3PrP98APhFzV?cGOmeAfs6tf4KfB~EXX*J@gN6-Od#TELm-OIIGCblg3Kb~DOd)t zIG~;;P|)^4WV(0)rC$PaDad6YF95k5doMIhILycpy zjUX=t`5%y%fxH~#6(Fw!c@@a3K?Xox1M*ss*MSUzydLBYAa4XY0P-e~H-o$dT-}PK&}MIgIont0BHqj18E2GKsrD=L3V)@K@`YtBAzw~gZtiQirNRVALJU4 z7lOP9f;SfjkcK1jv&h zPZ1&Q`_23QRTT9DkRO8l2;^3f+dysyxdY@*kh?(c2Du01UXc4h?gx1Q!KpqBp z1msbW$3Pwjc>?4~kf%U?4Du5qo;GjO6nK0Gra;)Up_q-kDE&N;^FcO&YzEl^vK3?- z$ORzVL3V)b1i298B9MzgE+OJ6n5w~e>mG{Q266!rPr)LM_~kF8s1+b5f}8|$GRP?) zr-GaYayrNvAZLP{1#&jXIUwhPtOQvFvKnL!$XbwfAnQRkfNTUg59EB1O(2^=wt#E} z*#>d}$aat&AUi=W1i1+0VvtKfE+yhASkuv<-`z-2zX$mP$g?1S1o;!lpF#ct@>h`O zK>h~ucaVR8{1fC~ApZvW56FK(4tgn(5g<((KWw)t`m>=8BXjTAK9)Ufb0d?2eKdJ8ju%)ya?o4kQako2XZ~g4InQ8xe?^0ApZmMGLV;p zyaMEvAg=;>HOK(SYd~I0#8WsZfVAUorl|2C2ZKxinFuloWHJ#?pC%yh8{SJ%Zv;62 z@+OcsgS-XgCXly+yba{-AnyQqC&;^qcnXIO;PmDXQPf*NZUT8L$lE~P4)P8np2Eol zbw=|?&>65$q2P08lK1Q1LH-HyZ;=0jj5v$PNRZJ)JZ-%~fxFM9sCz-~2YHZ)r>$5> ztnz7E7_E>^e0Tc?4#jU{DtY=?Z`sqolhCFqn37&cIbTHKptdOqf^kU@j8QZQ~LIW0xRUy#&Gh zB?xvfK`@93f@Mq)Ok{#!D-#5xnIKrCfId&*pf*hjf{jWLj8%eQwGssLl_1!$1i_#s z2$n5DFmVZjtxFJ$UV>o#5(G1tAlSnM!7wHW7BWFFl?j5)Oc0D`f?!1x1aq1o*v^1n zN8zA0q6vaEO%Tj#f?!`01Vfu3Slk4`^d<;4I6*MR34&El5X^IeV5buVgPkB)?gYVv zCkVDYK``nGf^|<2%zT1i?-K;WpCDKO1;Jbj^z7@PLD)?N!GJ0VmQ+D7sS1K^RS=Av zKzCC(sI8rXU~vTcB87w6^e6~6NI@`03W7-)=w=EBwQX4tjLd>yZ59Nxvmn@?1;G$4 z2o`BUFii`Bjam?l)q-HP76kLPAlR`5!JsYZ`xb(UThd_b76hZWAXvWz!3-`4_HaQk zj0=L56R4BIL2d37^kORwhF_#T{zK%11sLceygfJy_TWeqtizEg*oq@jupA?b*}#M> z2)1NFFe(dzby*P1%z|KV76ikyAXuOU!4xeBHfcdHP78vSS`h5OKVjZg z7X&N2Aeh?)!R{^y26#cR#0!E+UJz{af?%W<1Z%w@nC%6@elG}yd_l123xY`==qw5c zwQXJyjP!zFtrrB7J5UFOgWC2k2u658u*M65SzZwA^MYWg7X*vFAein2!GILBh2k2cC4(g*EK{(S9gu@*{IOP$9;~qgc_Ys5xAVD|@ z5`-fmK{y){ghL`hI4u%{Vg6NDo(K{z`Tgd8l_d!wSNAtRNiB3c?Ak zARN^S!kMig9Nr4T@f*-bDIC=2aDs3kCkQ8Vf^bA92xoPIaA+q8r+0#Ij3)@^d4h1T zCkQ8ef^gI)2xoqRaQG((r+|WR94H9qf`V{BCtjJShn0l!92xpmsaHuH=r<;Os z%qa-xoq}-iDF`Q^f^ZZn2xp>#a5yRmr=)^#Tq+3Xrh;&QDhMa3f^eiN2xqH;aL6hM zr>%l;>?#Q7uYzz8D+njDf^ak|2xqi{a9Aq{r?!G{d@Bg&xPow?D+njMf^ftu2xq;5 zaOf)tr@w-53@ixe!GdrwEC`2bKo3zks87`d;do6D&e;Uvz)cWN-UQ(YP7u!G1mRFl z5KiX=;h0Vk&g%r>;7$-u@C4x~PY}-Z1mSQ`5Kj37;kZu_&iw@808kK40tMl)8)y}U zgZk845RShE;T&8L4#WlFWLyxA$OYl7To4Y;1>y8u5RTCW;XGXs4%P+Xgk2Dh+6Cdv zT@Vi61>qE45RT&o;apx24(J8pq+Sq?>;>WMUJwrP1>rPb5RUZ);e1~Z4*CV*#9t7O z{sqAYKoFb(1i>pn5ZnU2q95V#LLqiZ;H3Y$DLl7J%fLbXW)E*Rq;7TC~J{5xCTp%;F2K-4kJM8C>+$DBZA;UA_%@Dg5Xpl2;L=v;ASES{w9Lpcp?ZMD1zXMA_zVy zg5aDY2wp0J;I1MFek+3Dz#<49A3$p<9MrBKg5U!p2+kma;1wbW?jeHUCn5+ABZA;L zA_y)dg5XOc2u>w};9VjJZYF}@Zz2eeCxYOCA_%T1g5Z-P2+k>j;H4r6?ka-dw;~7* zEP~+4A_y)mg5cXC2u?17;O!y^ZZCr1Bn0$f3J0~fkRZ4X34;42&_NUqYClXtaL5z{ z&rCsZ(G&z0L2%;~1bND!Qd1i_0)5Zs9b!LLXV9E=3P(?}3pjs(H?ND!Qm1i>3g z5Zsak!9Ph59F+vYV@VKPmjuCwNf4Zw1i^_B=pG6O72LLgrcgMj{kH|dky{Wvx&^_t zTM&G_1;IBL=$Su&C!BNz!CO}l+;#=Qe^(H^&4DhUa8SFQ3xfZ-AUL86f`>WKODG)F zuI7T^b1n$Z=Yrtn477;CLGA7=2!79k-~cTMp3s8e5-kY6(SqP4EePJyg5WkS2p)_; z8z~&ru8e}<(h5d0hk!QoL5JRb$Y1yT@vAqBxHQV_f&1;I^H5d0+t!EsU$JSTys zQ8=g_9Dzk5IpGw!KF?ReCq_k$xaZw?F7N?P7wU> z1i=wc5Iph(!8K11eDnmtSx*qW_5{IwPZ0e01i_(C5Ip+?!NpGyeEkH$=}!>6{{+De zP!Rk91;H^;5Ih70!BtQYd3I76jL4LGXbV z1ZQYL@QM}$_h>=zlNJPrX+iLu76cb+LGYy(1gC02@U9jFH)}!gw-yA)YeDe976eyp zLGZ~I1m|o)@X{6pcWpuN+ZF@|Zb9(m76g}WLGbMs1SfAn@b(r2uVSD-y$9n3?!|)O zXDkQ~$AaK_EC?>hg5ZlR2u|EU0~8KwZ*DlOt6Zb5ML76eakprsTJYEN&V50SI? zpmzBd1eb51CJG0&@3$a0feV5+xFGmU16@lYc?MeuUeuBXcWOcKs}=+YYeDd|76g}T zLGZm61Sf1k@WvJdw`@W1&lUuyYoG}f4r(`Pp#PpTiqKTLfLPFU3(d69Yzxh`5PYh^ z1s5?7>Wh&D!O0uwNeTzGx3?g;eG7vBw;(uz3xY?uAh?DLf{%EJ`UfU;c9mMmr(0h- zP&x3r0|Qg|HUh8Riaof!)J-3=!Pi~k_B}A7O$QUorBYwMvcJ2v)OCP7NPhURzh8T<9y7 zdI*kfFSYg1r+^P^(U(4N891a^+3uNnUO6y6-?ppR)n4{`4qS0yU{b!&Q|ehQG5xIr zV@s{dYwN>p3hMe1bUnjC{R89M^tX>I^bIPsXsi#-EaTdWeJlv&@C#BoKT_Y}FeyOf z72koF{(+Hgy}e+m_Mb0{)HU>_|pqA$_(Ma`sLbtC=%O7&8r^t*wV>3~{28j3U9tlmOxH<~h* zR9-InmrShX9~vwk7*nBs>hcZ@%qe@7{;s|}KIgl5N%P`jPcwZfp`X6vQQWhC$pPw$ zJ^OP;o&&o+zon1b{eBW)pxH>!g(>gKa=Ea-x!dd8Rcfd5N20urOXPBtgUjktPalm% zuPmHqfKwPB=jQ3Vu&+3<*cWatecz+d-d3nk<4Ufk9SVkKCaZ1p&6I@3O_j!(xh+16 z%#?sn*bHgjOuKnzDdtB%?BHJ;`R$udElcRMgTafFEm>w6MS^Y-3A8@As~lzL*<~Fq zIKpm$$-~n(lT+XDxS3z9>qN@T1U&YngTDWLN zOF2eI8EoQe(jCQWO69jCnwrx2b8Xc{O9lhrJpXq>`r%tlvl@LKsiT0$x1TZoj;qbHGg)_~;} zv(Fa>`BJ-E&$+Rj0mHwU4CnQhOWmbDPtX5O4NgI`ty}>kd@Ue+q>l;eYb(*4&D)ne z81+2v%pEYs_Xk48E&V;F(yOwc2YFM<1eJ{8uJUK31vJxCWv%CsXh!Devsn^N&Hl_s zOEONVor3#S}hC|aliFenM-n{4lezcFf&;Sz|3wJr{2&{zr1IRx2Bof z;@(+Dv@=OoQqic>|^4`xo*C!gSe{HeGgEjl*=w z+2hKwr%SsWrpvHgrs>iz@97V9$SCUYKM|U*^!N6b%6+sE(3)^g0D2T9mIxGbmN~61 z!b?3LOd7`9G_ttVT6W|Om>z0Qr}K(EdkS4eUsRX2^;Bi$3K*SZjqzzk>RIQKP`@s8 zs?}jLr9iyL^a`0@aPg9Jt&)yD)61MNK4)<76uzJmcG@xKqi;WA5v}S8)|op{$5>k( z^dayRb?8)E9a11w9r2QLt&(B0Wp0S5!{Felw^~b-xmXR*T+?1`^PJ;WPgG_ms|}0H zl2adHeZy_O5( zvCR+xST;|8jwtNbdBK7uu|stutz3b+K4s2gOM+Pu(_STC>YyP^U(0rmU@c`r{*bxZ z!SiVdWZG9n@&(NPWJ)?)H#Of{bPK0nRFWlNG22>JVQjRPN?pk#Hy9g|i#Zu%Lz05$ zG_s(u$A)CLIALr^Qot!312P50$A%PRj-LJw6^#vF$eHxz(L4+du9wn8tR#XAmPB)c z*g%*_v-IwVhkTIJDnCDn4az$jqt{wtd_)dUono$y7LtZ`6)L+5tz9Yma=p2TdWSEoJIFYw0HFu+IG7XGYN_ba|8_jW)8tc!ShsQYo-T)BX7WTfhpBO^VOL6IO}G{ zas~{)$_)MfpH=FiN4cxG+i5}5?F@4;2fyIlFgobM$Pm!4LmmQQR*S=eFgoB6cD9UY zt)4JG7Zzbop8i&vjON*TyPVh@{oG3yOPYBSABYoaklsRZgCwuTW1++cJVMc>Nz*ZS z!g$`{YmtLCeZ?F{bJ})!ZM*Y&6ltcB6_Z}V8F`pVK`pYnxtT_Nm4T=qSv#BEI6Ez9 zU_?o}ajYaezs2hqJ1yW9Dn*nv+g6rcE>PIfR$HefJ{Wq5tWzy%W=a9-nMi|-C33vv zT&tu*{K%Tn;NYp%<^UwEC^ixmewHK3VsV zN)WWKOkai1cjEKq5Lb7u5f=#E$DHw@LQF1lHzZV7X=AO{g6$0!_99ngmmKZlspR+Gi4R4L*xsnFHD&fnV-ui2WHmE0o9 z>X%en*c_=V=_z_WZJxf|-i>>|(GH1-)HWqdY2H8|eD9)< zr4LNCi?jp@k)nsJq8F;y(=G*%&;|YIq+*lxN76~z-Mw_j6IFM(E~R5h!G3I{uJIf9 z>~Gc&bI>A+XyJ%R)``gK%RsuHqPZh?80RVwR%{dq<01tnp@wjNI52QnScOEoimWTs zVG=2fq>>^M87XoYY6(UOji;5{HXaz57FH!GEl7zJJ{X1R6Xb1B@F8I#KPHlSvY%Oh z8(eyXVq2&{5F06U$mZfcuRRoy+QhxDqmzf`#4Y-`CFo1;9gcH%=V4oDqllHDSrw}x zNJ*}3+_qw`M<>B_zBoxMA;gi^Oxad0b{EQ`aB2@f27W?v9Y^fwqX(zZMXMQ8#2LCi zNlRuhb4P!xf7H3b>*}SW#-MLW2%d(*94(x~!Hlj{4|? z)dk7ZD)%`iRbCtiqac`4f5d!@xpY=Xe^*!HT1|5ab1;|1YQ-j+HRp!W!NMW(&Nh~w zVOER7f-pMZ5I%;o^oT4y!y?Ryjs=6aga2|ooqL4ei10+nlcPX|j25|$LR(*{T)YNO z3tms9RL=F%**V27_wj*&)3|U;k=~{?mi14ywQ4ruP#%nT>Ux?NYZ031gdKY1 zm&(}^SZcp8PZon>Up^mby|$J{SW8cx*RYtmKr&0-i}QunwtSHeg~+*}=8lPqTj(PT zTx)-yM~XeaVRpGtHcRB5LT_)^{(LyT$OHq=5-d=LM(H%OV)YX`NnGA|OOi#lns!wO zo%iKeZ{wjoG_B#sBW%pp#v5Y^Y01B{M|Vs2P>dz&R+{zu;N`NhahZL=ENMH!A=FbU zchliTg)IaPKL*hOw6k&f3BH zgygguaS@HWp&V7=8)67v+@WZe#FtQX&>usi@=)f@jqBPF&XRfuB@EdZ2?gFTBmzgr zM3+7~B*#@*9S!9WiM|akYrGLj0&^G8*8%)Jl{y>SqGJ>HA7tW(pF{y3hPl>4h4!{f zlJ*<%yypJmENq~?cD>(PMU2um7%@(?SXmxZN-S3{QiV0%)&=Wy=Oa>;mn>V)s9g~E z9$`bc4tK2UstaUp3eK!YreKF+sp&%T!lW}XI;^czUC}YUx(*4WqF92i!Va)5#ThH$ zQ|gck^;(jwY4`Tf%CJ#cPOC>2U9%<4YJF1Bs4%D2BMc7rEm<}ed&rqRuLn}25}jR# zL`LQrb{=(t719A$bj5q)9j(!{bFaB zpG`k1>)W4r8lXKlB#Whtc@iHeByt{Lcy37E18%mLLdg&?a~ussTsWjm zpqE^*GS^o58I@8;Uw2`j<{0tcn1GS$r(4aMZ5EIoA&w;u z?YQDE#wvp3%(|^!y&!e-RSR3`(RHzjx)wg}E!mE=Emo6X(X`UWL+ZqzQI(LxT3 zC3e58Zd@u{|`c1#@?m1I83d!2s%HP#Z#7vz!Gbw;3L-feF%*b}J=hxAG-dAY*h*V-FL{W68MFuePn!OP*+s zT}~~dO9X9Hqx^D!P?ofLU)tbdYh2>!!aa-8H@T;B5&10Puk;iBM{ww6-_+pfV5Pfe zh^qq8`AqYgtS5oVnrep94BZk*B)ZZWN4eW(C>!ymUd28sWWfxF-?g{2<=&I6R?BX|ov?itl;N&AOv>bEI@At*k?$ zn{|_mr*?ARaMw&L;G8cujHpwzcfL+#;S1{P+_w)}8kkA$uNC^~lhcx;ch5lvO9yj; z*q}2aU8*_f5k z=4^2+Q7_=MhB`VbWxbDyRwqef33!QY8HReQ$z)`YYcnd4CGKTrYHgdaSWU6HF^dBr z`qSS5`zxnhTqG9RQ&-yyTx?u=yZZUGIkLtNkB5-KYVsVbSbUXlEO3LIR{8lsZ19{^ zU*HBMf_6L*tW|jvrhjaZd`*Gggc*4(X_}3MK%mHq-PnW~nJq3y83_RwN3$ZEFr!e= zvInh}&4$I4T>>=MNFV7lM9E@FG*99Kfg;T^j)Nty#bcqw2Rs~&ikt#VnV?Ohtx-3- z%PZ{OPxr98Pf~T8B#R}_Jc$qFNp6$mwRkL)_<%?CHc6SFO{=&~yw#jh?8tjv{x3r! zeWdrwemWN}sGpkd0y8^G<$PDE#J)d~()uY3G6cmZ2Kv-HwPlGrHOocC>+-tk9@)KQ zYdJ8mG-;cbSj60;oxerAU)KuT%ucX|D70NWH@0|A62kPbG3vFt_oB2NQjLtQ%~Jfw zbv1HJ_@&wv{5H)O+B5jE7@A8^M(iCDx1`o8w+I*v{__H-2t5FgN*sU%?P;y)fq{id zW6sQF4m18$bK0mfO42}D5F1EFI{S@SL*;~>j{Q}vNVBn-I;wgNxt&%WC*^58RuX>c z8Luncc^sReCZBbzzV`NEs}HQL`cBN}y{l`lZb_!*fpfIBPH(ts1Ls(6Nk7s}>AGxf z>m<%rZ6~LioKosLE|V_#2gg>8)OU1Cl>0}>DfMM*A2`Qq8#Zmy^~tf?dWNlS;B2*x zp7P$(-r7}}?J3u+t@>!Jl<9p@dxhD?3iGyVJdJ8BS9TRU>gd8;rU4qVx9UBW>aDZd zxD7fssL9A0aJOoOek=X0!=_)&+p3X9P+b*f8$t2RXPVmDReeI3~jbqJOStu8x+&t~nev zfv?r36BBR`$8 zyv2Upw7l%mRZ+{rl(>61`t-Cj0becF1#(3joE?Q9E54<~SJ_K*;t>+M2N||%}xxwu& zX`A2pnM%kk;~{vMKNr+z^;oTk;Bj`f9fHTp56K~ToULWo$#QrRXOUpc*+4mA{|qdP zRn8vcd_`kf4sPS+bG`spNA9G^j;>;FKKv;Njr-a~iyr%AIYo0z7z$&Fc_C%)s`OQ^ z#>JFwV_3?V565uK0v7+Zb{00!q)1~4x`UF)m{rRU7UFt{iJ9dfJkADU2C`T}Zl{FW z+%e+JV=~5VwOLi^@hb9yzCT6WC zy39&eU8t*ZCZ~CYiO3%`l;+PLFL)GEIH4dF8zDIUa)Ut8-k1 zB3S)bv+IP2%E`y!F2 z8Gcon-@U6qyDu^t^Cy#rWcjzHz6T;nFiWN41VqiP!QU{hoY+*H#R(|RMto{~fh=*w z2`DUC|1gcNX*SfS=g@?fVqQ8|6LqGqahq_tJ-ty+pSUErMhTntZF(GX@Py>!al)7iHx!<{x(ZCeZlM{b2$U!US~ zQHd-~UL2-Ydb@%zX3^lY3?-I?7Dy2{{>rgRTEJi<;<7+2t*34b20u@H-Ng!h#DmPL zktat_d`PrfIU~#-fAWoqFIH}jSuUL5WavaDJ}FP~TJCDcCqArg!3V>0;eQ7Pj^pg{ z$281i>BBnm}e5Cc;0&@=CMRlBzi0jn=WFWOf-8XdopDdqxRV= z?%_mZG{wUyqad}9QHST#T9PDi5(-wl){-EjFmd})YC(En!fLH~eGPn*QXH{Txyo}B zzw<7&AjI)&wWL8mB|9#qvJ_eB=%=_x6OG)41*v`H#^s>#61qM;zvCsW*6JbBOR~pR z#ty1oFNPl=P%1^I#-But@T_X&cXR>=$ftNalX=%@r`%< za3NkEhF|{epEbnlu$ISpi)>k}IE!n_H*7i`A7A+Bc&_8@^p`L;D0U^V2P9W}Afq;YA4JPA6CC=1A#K zT;ZU9ULD5UGI;7@s|7Q=y~?gmawOGiiC8@Kk7a`lRvYF7v4J)ty<(hs1Uaqp^Mlx+ zd?>CoL-%YLp9@MbA5XnDu!3rBLl47=5D77bCrJEzALs6v(k)E)) zc*YIw zBVDge*ODb*ak-`RS-T45_6q$1+G#J>Crx1vOYw8V=%D{2MI5^Zl z&3>N4BFxEC&-twhK0`jwG^OK(>CyRUuHs$YPe1f7l2`e_T*G?q%E0?0`L1`%j<9g# zP|H!8HbnX-w~nNo@Cnp#)>is9Q|w2M>1AbP>YpK`XO8S^JavGl_`~(+Q=jMH+rj+` zr$L_irUv`_id_}@l!N{>cWzhkP48wyhwd!?E>pK~1^U(7*SERQQ|P1*65D4F&hn(k z#prowqMqM{pQX(+qlVlp97LzfvQ`?=>|&)`dRE)6QmNu$WztRueZJmeGlIKW)aDbC zt9Np?ntn=Kf4NMfy!LAK&yw7Vitw~5Tp9Tt54m~cgZA{P>g+9Ek=)`$?v@Z|_m(~S zhJ9bY(AMTvD&#)UR_N-A-*K3z^QFlWxLI4(pNc%iQh%j(t?OTLxV0W-YE`+S;?>c| z`iDgB+6;bHMeB_OY_ux9UR$w)ei}xdT%pefXYXZgS*=>Rs}4(`Qy`Ek?5kbZDI+|> z)2i?^BzEuXsYl^@dQNV$#Wh}OPk%Sva#QmJQl(Oht5xagXenJF*G@-4HP?E4@*@;y zYgKzT(s>us(M4_%HCLVT^txGF)$9JH@2|J*s=ekase}CpuWMGkvb_d#WiVF{=lE|G z`hpd`S?JcGJ@i?yVoz^>e9`OA@m6K@RyAJgRua4<@V<(3wp4g(kc|#DDsAOrZ(n?^ zo=~$f#k*@3mR6Og;J)X4slSg}$zRt?nrkh#)K+7nvyyT#j#h;yS;>8gFK~+|RcDMz zE6J{|uWVIzYNyvjSE%<_s3R-;yIV_LjVmQ>)r@dP|i`v9)V|u=2zTLcim(HaT%>NaV}{c(p`mhS}i)N@$yC1R!gHpL< zhFr0y9t*5bT3xf_&jhZ2=Pw`7D2_c9Myjc@<+%Ar8xQp+CGmA4#Ytnv5Rmv>gp;MP zr5!y+ElD~OW>kss7LoXz#V1hB6+FDw^6>h(4uWyzP!t>fXd6Z&E3POb)l}5fjXnCa zniuNZzSnBoA+aEzQhD5@Xf7eQ$?+WbqgR!QJc=jQP<7JG@}|TSW}i*MzbxaS8q$SyfnkG-K16MZo%Qyf>mr~TPvMnn80k7v8-k*5=>y} z9HbrQD=`qIl5@!CZpl>SESC!HZG}qT4t!zU?~sHM=FV-lC&LJHGLa@Fj4)>@cdI5- ztJdgmar>=VSPZR`wqng(W-Cs~GPaDuBE7jjvO2`b?UovSu?8RQrdNM=sgEA?YJK6# zZMGs)UpSaZYZCjyQOez_anvfm9dnX;fzwUNmu1nvE+(=j&LKLVTe^vmF6gEM1M?Fl z4D*;$(w%2~E1`b5Bn+{Ty+~?qGy}%^p$+r8rJY35Zp0@Se1#gXD|=WQnM`?OhZnpc zNGdA=C(Z^^kz3-KT4KG=ip_$i{X8myyM)=6)me1EvB$|s8m7PE?AC&_WO6IFl=?Py z_wrrBUVGS))+vGA%A^uCw=#iIhE^t&bhi?t@1jCifAES(9DPP6vn`oMpOh8x6Gxw9 zc1wIBAA$L&u2_5}tpcTIXcg$5NMgK#mEhC71pF9pJ3h|AwH)~d4z_UQZfp19?;`m} ze>?{1hl!o^i{}Fa(_?GtAj#C|QdlPa1bv4}QuF*g_6paJq~lhbiM5Dc&c@2xDlyjT zK_ziEf%?9{dko%@IdtM%UR^o~lC(|=YNxdbZ;9_#{QNoiJp2FW!&6fKXIV$Dvr$S$y>GLtv$|}nwhk8d6pCGiRyrUs#II8>?Lg^o z9+P##Rz!EbmVlSihKg=2^z!=mivIDGoLBj&Nn<%hGo-@vi~2;>zbC6cEFyJTf?OO)bR8I>Ff=P)=FDs*;(O@!0nV5FKe+3{?Hq9gevrAtA2*yc(jB;L1U5f4jo zCx@)_WGXB4?9X>39!U!`s>Ike076`LyE$InA`K;YW&f%7{dwa-` zO+FlLeX#y@(JX58;AZ$b=zF6>X-V}(AGM zUb)BX(yk-8SqV*TxQz~;R@E)6-Y)X@%2bzemK4(`m{`pH(Fq^zy#;c?32d2I`DUsu zZFD-hTGjjgSHWtw9k#nnb*A;7u(B%hhp)c>I8z;Ivx{|$a^MPyQ!Jf8&T%zs(J-gS z`pm`DYMVbm@axY^O-mafU}7;}$D@xHQYG?rBo_v+6JL??&;H59rO=&iSQ?wNSQAsZ zvpAmGVJ+Df#kZ&7F+TYK?ee;M$#0L&y<(OCS2lAIx1z1kgFDlbbm=H>FAp3Uaz0N> zwdb~#y2<5*XUu%-{(O6}t;SlH%RAgztD^!-gfsPCmt21O%7r$pc57?2F?GADk21Ha zKABwLa947FPmOIh7PQVvL$+3Rr_h_rYu`^(cVFE3KkCpV1BiOorZ1ccd0hc-l~2br~A$%9^6#w z8&<|tkt~L*8cUpW`6JKyl3wwZy-I&q^2*gw4|RQ&$IDd#i{PmX*kpONWwLZkT7i{? z&JWWjEmt;k(mI`t=QKg@Bwzdrc2iY;cwp2<%{1OVj(T!2)|Q$R4iYjk5*xMA<(W#l z4c42B-I(=D^z%6{Pydrf^aBtcEoI^@QmvBdHB-r4ynahp>-W&|vM3U70+1NchJ1t;o)pUmY zI4qTcj1yztOfBIawP$<#yf&Oa&=rOmlpn}1)fD3z*S*<^r^t_E;Q|rhPwGlIr>B{W%jhg(q%KC+1WTwv(qr!&_0Hzd-WM@l0>sPi`%sCqwYUPJHkTL1pPZ@ zo)yAqx`7?en1R^eWI?~p!36G|<24H0!hB`3*x^qB^=gRr;aKcDf9+^wFvUM+WqYAJ z;#uloO4859TfmW&0|#qVFOAM3Nu^{I>%DAJHurq7OdH+tYtP`>Nh&YZ=s}c}O&?+E zM5{F|I*OfGlZu*mt7yAXQbtyw#eXsMcX6gJ(5^2@tS`2>##~<#i)GZ##qM4>X4A^e zt1=0nIDWvvl0DP-(e;MctS62iWOGZNZT#5PB#s|lO*kN})>Iomx(4!ErX^e7etOOl z#}C(m0dMiA9@xI4(H_{o!{V8-2dLgGJ+OU8V?AJ2lhOlJO}#xpHDv1n)Di1}XL_Y4d6*t5m30LFpBStgRLR8^!Krl6dT%lR3t(#?_54&_H~VzIb* z>TXjZb9&4Dbbga~AIl+nR7svd4O7`R#hteZGZYk-FW@JlWQulQ(lQOq9C-t#%YrSG z*6s8{xwE^l&(-+{gApfNx|wAZ36v-gxPC%dv5vCy?6MBE>TwaqTlIVDt=71hi9vy* zK9}?pA$^d+l7CJR8$4N&p<&!K6y&tZ&ktgQ@}ab%g~&}qK?&yLslNrgJs#f`x(>#3 z98}U1sK>XTZb>oQEEMksV|=?xH%Cf4nh+V^78kncCNP`IC@RL!Ca3}7C@S_?^6OFL z7m14>8AXw@dK5`nhwzS36!7rWKP>If^KVDtFD|);lGde_%WBC2D=8QhkwK-ON`5S? z>=vh^t)zgHqj`E25XR@MV$9J~v#cJPMlaE}-LBS+*YgEZEm>wtfq3`m35#2!vsoqQ zS|vj%<>5FSHHPt6wFY&2>S}Y|obSIMXwukAP9gEbQyO2IStK8eQ&8_WnJwVg5x??K zz@-d5ZlW0jcITMv=9cN6D|{d(Tp>o@OnL~LnF2PetqFLJuC1rkO}9b0B+{xj@>r^F zHWGs25*c{GzesA0hE|rDw`` z)<9XuTBCR>H15*UILL-Xt6?+3?C~M2uOnl<#LCSv%Q-Zm-wqnqy>6N2$Be z-IX{*bl)0zf=2(u8X+^&hQEHz1sSZy&k16KE{zNf<24uLw93y9VuSKwgJnoWUUNYS z=HsdJxgETIIffTO8CEcQpgD5~3i_<6<=N?vwC-rh60o@5WHAe01lEJqHMk~WaD_Pn z1}B??eRePdIovU6lF~9rmVm|2t$v=}-&3T8K;Gq?8t{-T%wsX@cAmrsy%p(gJ+bj{ zm%J8_g%Tg|aP;_edlHZ`%*#_hwO+0>$Z;g;#iN%te!3+IDMAXxpIl>U<0{=8DeY)P zWNBk@@ziu48NO<#mP-z2Vd@V(-%en&e?rIg`@ z7SwjDTc^{TnH(-%kGo#6a8ZT+=AHrOIF9MX_(ljcsk*13;UM9C=x^g1U)^KycOcNrt~Q-C;>T0?L8r@ow^+t#iBf_rlq- zLN};|{?{jp|8)(;w4+8r<@~OZBa~^~@I!ZXj(#F_YM|Wx+v(6`rWA;Gj4`jqOU|`Q zIyxmXuNoZa_l3dRpbtVEn?ZSgb%M{5mht#bS(RM5gt{!vAF>fwSeE;H>1P8wX{fL}Z8gr( zLRJ$a?lm>?lE>+c3{8v(5<8;QNYUZJ2$fK~CE_`KcvE!r)UT(S#*1H@ zEdnidaQ9ztQL7~O0;!@X8nVkWXvMC?5?~Fd(UlD}E7I>ZA!Hp=oSaz-t0qg7Ref~b zMtf;5UGG=FI7p_<7Kw7N$ZMG_7fjl)WcwOsReQMGggLfSC zuvrb65oV9CFbty{a#`i(nB^Sni-=K9%6qCUSfA_Vh2_snwoU#F2rnaSf8J=K`F35j zS$m+{Z!#R8ne6C6(9XP(=p2`|nn&*re4HSk*F8$AahH)7lfGrnohjrMt--!O%w0HZ z4b01`p{14V5ae2{XRf3M7~Vm)3nTY{ubZ6D%Hn@qYk#qeH@6uSr2S>wZ6xl*$l|?J zN5MOs-;x=`x1C9&;!_2hn^lW$L0?w=RBM6#fE>>+w5-f+*DPCl=44B*e{h_Yd79*! zk;VI1Z;yZ8nxR{@i8-NL!N=mftc!jRQ{{;QuVR}F`?Lzc&aQwJr+|ETd|dB-a~ZXw`OB#442_dW3~EcX{S& z-TGd>zN=I&^L6X)7DtgmUmf5ciB^epjW5|s&L9~TZNECK5dkiiewSyP9dzyC z8aJgUkKaMS@c@ zN)WBf(!sH{yjSdHy`^N$#^Ssp+j!yn!vV86xluZ&Tc5|*_Rg^P*H$}xMpjFbf4=7` zDjj5R@LYM_tvM^&W9hR=(DqP=DeqxFZ~6>!>}B+Ok*rfl%9zk>EKOz{6I_4To|G}6 zb4Il2sgry!0=9vMc7}-Kxwe6d)u5mrwpPf?d3~;bq@QGy?Jf3tT}6C}T;I|~wskIq zeRkF|<{Em>7%2%Gpv`5^u0uLz^hF7@E70jKY%+&#GHM)M`n!bBEXG3#NC98HI?nTQ|l$ zdaPfCU`5}x4urCVz3^iC^5if`yRjjC<_xJUaW@zVIC-G&OFthy9Vn9-FKds- z*~;5wT@4D1^NGxni~=nJu_$5AflsYR-vcv3C@JH zj7QS;Atn=5HkK;OQJSUr=|N^ni@0QI2R(Mlik6yfl)@k)gAq->;asJ?p2B#k(^Gc@ zPW;-YvZ7lXZBpMD9sND}dP1#K+82>8371NHWyA`Z?~L>5*CZ8OmrmWslE<`_)PqsJ zRi?dYcKqnnuG#8~^Md4HfHfl5nJGgnQLdn3ORPqTcWM( z=%P2V7oV4EP*9pDNUWdy`Ya*N_apUpAn^s&`27Jjh?BP7NfJkDwgfvb5Ns%(ubLkG zXvLOTJEE!ij=lQJvkmEOZ7ma1q6C(p+hW-o?%h=lNvW&1L_E)WeV4uL9zfBtMDLuM zx;R>~CDtWKC29E6sQiqQJ6R9;OJUM)WcoO-77eD05fQmuXfNU->S7PBQKkcLe5)r= z)AJ{Csu-5Y>*)lQMXt&BD`=9QlxXQgJ)gEwjb^9&iH%ws&DN7|{N0x3=or&uLj9JI+t~Fm@bL?HG%^}%nu6TbTOw|; z^YCiD5dqJwrMF#`TjG&ZAY4WL<$fb_)%1{9wORtbz)A`~d&XC{)2!pTGQEc7!{*wR z7wm+5^Ahb}aEZK@#1i}}Tky^@-Ly__r{#XSN!%#Yh>Ew@FMX0YRufqF;Vk87aU;^# zuKP4eEWug#VfLiPHX?oPy00pZ)r7Tr_%uE};J79013^x@^zd_?mN1tZ2}At|o?oYc zE;%fruQY`ojv=tEUdfY$vBcj*UOR2LT&07ShFABKA4U8}m{~iP)+{w`_~TVuqFuO` ze9^=J7rZU>!l037s-}fYiVQ5Qr|z`uT&pwKx#GW|%W3CQ`90mL>UOWHOiVl2MS6+v z|7Ik!@~Txq9iC=quU4E)WVG+_g|fRIA6n0M6uScV%`7I@YSodnX91Bdskx?iAcfRaGzzZpU&SOiH#0YmA)^8ldWdXGK$2__Qri7jy})1-pC>;#dM+z!_pAvxbM?uA*TrGP~e8dN_EF zQho`guN$FXR-0co2%VPvM04aUrHkq5_Pssc$~~RiN~Nx4?e^iQc=vH(YLe}1$kF&d zfX&9z>}iqH&M4P-ad|v*)XCNJyH78pty?}cty^yYjHK4qkrd&{VV2e{Z+EwDanNUp z7hZ>bW`9&5=rg~|*I0d({852uF=>VETNlljF8%Vxq+ed2^i*ru2WiqTUz0BVipHd0 zQJ?fwYbNPeBuKxAUUz$zRTtg<{iENnT-F*hp^o(2>3ClK`a+@YpHNtgLtb_b%wcDl zKKezULyI`=MCS*ZrBZ4LnOHTPQf-ckN)R^Yc-IUS$?a~H?uQHyKw>{cMt@jKT0fXW zKT%6b;~u}B*t2|1sKTmmig#A-&>PKXo^n>66;gh+08 ztBzhn->E6}SMLb>3mX0;?iaRNk^BV>yO2n4{}R#8<(7K!TH0f^({)z#Gd|Ow(=mXY zi=nW%C3)4wP*_Z4cP=Nwd~WF%tXsFUs@%?jPX#TBs}6kB6byX#c&8k0DHm?cBBs9C zEcy(gq$TI^)gDk?S173Mknax&WN}M+%*J*)FsE<4RaL6}i_3tqU)qv5`Flx`Qlehx zRw)q8E&0MtJ9ciaDz#I`C}~MtRmZxnbR8p$ThfzY>G6NFKo@h1tvOt=25sL{685h|9a<@pitXxva%6Y*nJzTwkak=S!LyhrFyB7H=->)0^t*D{beT z6c)F*R-Kc=Vloh&b5fWuUHS~`(=_QLOVq5=o2%3`>5~?!f$lS`>e8f-EbOvMZ?5gq zq)%GjE!&JQ{%r6H?JMC$h_m;qbAr2`7$0jaCI7(9e=Z$zgwKQh1GmHik?To;oCuUEAQS z&!&d2JbYe$kM>d^L!AF5PuO~8t}=6&*0^KVZn`k3pN%r48vC_nq~(Z(rL5%FR-}~7 z7WQi^k}cAm{_g~qtY5o6tL*k~N=^2fi6wpVZ%Sk3ME+xvl%3NRxLdGzeP-p`6NW8F zMEl7TMzolSZ$HS%+`C^1`sPtBGZg;DekcNwiTVO*!G#4k&XPSxCmTdDG zR~|Mac|Ow_-7Q$WIrC(YJfDGwC4aX0OjjL>pFE!-pIiDR+p<6T$@5*1u+A$)8RCTzS}lWc}-m z?iMWGk@?k;tbg#Z#G@YRQFRvSDW6;V<7#@%*_S{W zb8F6LW3}PLM8lDzq%_06@yL-isU@|%+EQBLc&}w_N%W0mN$d(KaMRZddeZ`3^0JNJtzPd}Kk=@){uHkrm6D{A?MJK4S4R?~8i!h{Nk#;Gw zWXwe?v$PzDQYmzMdHe+D`4A{llJr2RxBt{+FWmUx@mc6n{P z^VaW$^u_1(Y3yv;7gujZE~!#Ww2P8*X${uqMJbA*5timmD;X1ol8gZz{k73K0YU#Xo9qW)nGe=E;SL?oloE6uN5r zB}b$Z8dPa>dL(zwQM09`9gYmOI`c>BBni`g{~pQhlF;R{?-aD*q1LFNj&XOE^Mh^~ z$1~{;M=Tk0=j8Knp4uNwpM1d?UE3f3MH8_fN9=P*w1&ZqFnj!PWim>v#7|b@<>r{> z90x0hp==m$l=swk12=pBLZ5>3OPpiDfb5Kxw9_d<&w7DivbmTf!bVHYHcEveNy+Gi zK0%$HdMePYJ^(r;!}=X#JRe@fo~NrDI%y?;a`lzGv!MBkTDN9@PocZmwvJfZrkb=d z6P1O=LE1;6TvFtWimlGr8rhuJB8SOTdSVUrVZB@;n=k*UYFnkROwJ0OTvh1p?b^?eraza|qS#!9CR|wSSWD!YGlaEzVOvmSBi$c8G~=b(D=|8kgqpBK zu%x_nD8`D#UdBnYM}3%2_N=eS}Sqd@=jf@N0|aBOKUt z2N8$a>l>8rp7C0qHIj#^W;@! z`kpH8O4P^p~x?OMHR8Zl|sm+B1s z)qo|RHBK&X4Rn>)z9sQdo3u8lUO7phX7;MiAQu(R7TpVeS6k~zVD*|C7doy|!n?gf5B;b$ernp#gPLY%$|!Ikm?iRs&~R;DYt^fxr!#Gd zU!8%z3QkL9343{Wp|4!rmoHZEt6{pzd}ycg1}DR)aF*zol|9{_VVT7ne1F=aSz_;~ z^tV>L#x7rr%uX~o()KGE28S<`C1`u!-cmk%9qIcRhvR*DQDc)_l8{zYF5SnU7|_>u z4)MH~X7S0Oc}p@D+EYIb{2JH;!!`9$pKA{cO0$|eJ;)s285kZI(NeRGQsK(@|55km zVX|dOeb@lQDiGV$zSrBk`xU*+#!gSq3^UC1^w7iXGbH)4ZdK)dS(P=JRqyp{Z22>v zk+nRGWIZHXmW%{8vayZz3CSO}5n3%FYeNQ02qA3v)XO9^(=kVcoIy&2Yv#NiKB*FVj_W>n+{0-jREbwtQIvqsV4>T8e+Acl-hz3|KxbmEod4 z-f&~-a2P!!v}dPpyxTn?{vOf*Hxea`NPawd?%4-0NMAmAo}i-a*9_SM^F;EhelNtV z757-iaFlO>C82p{qbUa&*EJ}2PIhoV3t*wQ6SU!w$;<|Dsp_AXYqOhJHW*~d5J}Hb zmkw@#?lS0hcM^^WEt*NoMu zzYAi$Ku;cNW6tF9e#)Ghn>#Wvot2W$fh^BaAu-bC(bMJD2k6__fvE-x-28{=FyQCB z<~1LGbhFu*x;dunt$IhU4>KO1Am)72xh4XEcXWwZF6kK-ooRf3rm2C?HC-ZnC`P6C zaXN zh)uTKM|@R(uE@*X=3w6T9x$5~j0ISKWi{v_1E+bLAjtbFrff?1o8(Qk1`DEA|9KQlJ@XjeW z^OV^|zi(TqF5{B{MiZ7lcrc=a%J+w(yL{VW(;>7T9w>hTjt#WUi1W1nM=x*x#tU;fL8*^33CEda?q@(JWUA_e=s4;x#@|7V2mEIX z+iyy#!lcGX;?KC83)(kz;DrKlKg@LGF%*otugvh=?-UZZb>NfWUg9Vh2<^Rn+&LJI z=&bl~KNuiF(MP^(h1$g^Dmv8P3$wBrh_3hA7=N$Hjz_&^C zwv$H_eZ>+EtbVsQs_0NFJ$HN3qrWG-cG`IU(~b5C@h zP-L2CQ)oLmF}Yg2(Y0(K{72aI9D3#-E-%#FPJ5pD+0Qz@9~s> z{m)q7`gg$$U$ZYP*}y6?`QQt@7cV-6kn4}=BKO+JmL)gbCe}c39_f{zieh*lSjwchoLZMyaSy~F-^JUp4I4siouQ-{a{v?{;#U}B?APg*+RhZ2pd`XBh! zu9{aNr@2n6d#~Fc@bEUQgHSt|;yNu8$Ze!s|Gp+vJp3%TvN@<8J>2kpVaIJ%%hEw= z7+>ggRWxG38y|cvJtL?J7@UU@-WT>fU!Fvf?BOzvnVlbw>gr3%9Ue zpvMAj6|hubi&GhVeOZWGEuNy* z6)K1oRZc7(&{h49K+>iD2^~VRWc^%cZY~9BS0f;om)nRpbdKBvq#^T{qF*ZxRlNXG zZ&a_Gy6N5h{&Ai`Nn2Gkpux5(kP1&6MzvK%3|y|N0^wrll(ba^^4zNWS7b*hw}8ci zLI2dM4&FxM3PFmMK%Q5I+D4M$HZ;xg8-H*ss+XQr}NQY+k-cerz|u z&vVVe7lW*83X*HjTgJTh26hXvLGlVOVVRaWXcL*`Cak5R`GN>H%oBM7L%3@{vE)DR&863finjK(2@C5_04wAPw1* zEOTa&v~jO;r^MUSH$?*)Y^wrk?d2{(5d)X2szA6HIwkd?K%QGw|AcO43nz9T z$GHTRc~H0h4(K6Q#)ILZBxT8tL_QnQl!F568kAQh=M+s~_1poyouCcX*{Q?tdmuwq z|0kfqX5*-*!~1r8_IA)l>CBERNQ)xQhsW_7>cJ#?3uTheo$E(9R| zhWsjaOzK1B=|Tzk9r;!8h89VlE(ocEUqn56N5erizMC(1QM6+{gaG8&kY7cPvK~SS z_#OFG@RRirgy``+gzODUxM&wSPogu=#GyC{D;khyTNQ{vi9)I~QpCXJswxmJhFVGR zQy|go&p{0>_S*7cR|rz91oFInsC+oXZD^b!c9IWAd{y59c~{2w_T329ss$f+eK|xa8>oyMY_MQ^?wOIv)gnQl--<+>7fWS z_hKuggrJM`RLCY*i+d_=;4*a-5Ww$N`n8s3&1YPL5ej^(`VjQKeut;1J8YT`4H?}e zwN-h1yu%_!c`XW&ISFViueX7P0=~B`3gH`cj+p?@zJ}lTEVSoe)lY*xR`$sNLu0oK zbw(UJnsShCU4!ztpQsA%~eijafB7D|9{7$E3T$(`AdQMgS#~^$zP*1|l665<7vwPtZ2tRli z;@tFVqL_$4YS-1Z$eT=C26R>bhal<3V0?DmIX|WCduFuc(5+}dhHX_KvLx1536CNM zE>~57a0!-<%_m8C6iDjeAAx2|6aeh;4tHT(3UaJQKwcB73(Jw4fHY)Jx-i9|s{c4h z{kl(>vpApSrm#K{4u`YfEH$LLu$*vvmrpQj5o3tS2}bxme6Oni2DH`99=)h|);)1= zvzTtqd^8c*c}JH>g(q&K29%l__*~N^!sms2IF<}3HA+0^r$9e?7w3%5n=#9z0dwN! zi$Rt(1=L~%`oF_To{_bNG$q0V196^I5_6G%B3LhY6OVB zF{-P$nj<#>Y3P&0RmFjpS3v6B{p$4W=zf398@=y6YsM{ZXDK1*axEq%uIDQaDz46&0;B%tYX zT8LbWZidMcl`~dX2(qpO@?2Pzv1T})I%~0VlCeg7RsRL>sOw{TnasJ98!1m5bXmlp z&n=5W*TC0Fzqz|GbuQ zKh7#$VA$!ORpw?KP8Ef~v*^~ZlZN?oAEGTe>$IdxnFOr}nL(2qTO<+17`hdI7p)Te zaLDD~+?sFm8Q^gx{w_QW%Wygqe$RMS^`DY80~Tz_zVeegf8U86b>m~h3|NhT++TGk z7Ll}#vRQs&4p-@=VycMKQPp$35ZyOm4!Ah;%}J$deh8{&)m5vxy;!E*g#b*tA-{@2 zlS<(>mNcAMus|Ht^8u(n(CBnz3=45cCQJ!B_ z{{bJ6ynIicj`}okq;1?&RXCfl3=tE)Q6f9L({3Y0PsW0l89DHzgr*6QP2T!du4nVB z>TlF;Nw?=XcRMCe->*)F^tVeR6iY^)@-V4I@lV&yXorVI?h+P%&5Xs8GvEjPtna&Q+X7NY0!G6-TEhWTitbp zllm)eM=7DO`*9sTuX#_V!-ez&#aaKjqG>R;K@#9tMuS$EZfnIk#!qA!Vmwd^!#|@L z(p6&Kl6SiH`Vq%pO(bmoz6=jI2(8fFB;;@A8k%3f^yMDiL~pv;H-hp=!;Z?1NBjGk z5YTjUA)pP%O4cBNOI80}UHj4lG)Hv1u6r(4R}=U&t(fI`9iq0K;h0si*W>_!WWuVW zD~baJ-PA}25MyqZxDrP@7akOyFuSLfU8OStw3X7{LdU^Q2n7CCtZn*;JF#RLh-Miwz@0T21KLb?aY%Ru*%HQWRr5Bbl)3=~i~r({Kx$&~P~qvdM+@IW(Fl#^>~+_7OyjRSn6!w+Y(Jy3m)DDD5AS!}<7}P#BYInjW<}b^fL!sDq4LSs zK~1^AT+?-N?OWlQqg6r&cD|YvimBP-qlfZX!?%J20NidSg~BcPcI3E$iwz0TbEWer z+SQvm5(x*TAv?R5H>xHTBmQ;m4$t};o~_pWc}Di5GEhGEjXLx`;XXI*1c8rf1%R+0 zYi+j9Mh`mGfaZ@*h9~Cy5$A|NC5%2zGum)+o*kdk$scp*$x~X2Mwom6A~@x%Jhwty zi!I;uQ-guT^Jt>949f(X2N4cw-Xr5@fX9{idy5~YQ-g^-Rs9*-FfKiC^Do7mlB1(0 z64U%y?a9qxXX5OW8teeAF#S>OTy7^f-L!G{zPk(GGC0eoiG_|_dWgns{Z!IUs#SOBm%Js>0u_HLfF?(bAvAd#58}asd8q& z+Uxd?s?LF#n)AR!2n7BvFI{7%)lZz$MvcDlRFupR3jtVYLw=QZ#kP#GUCrVMCE$1D zSHTBcMjpv5jvzdrs{XO2Ie9C)3qhuxG-NB60Ai-Q63DzaIo=hCVD9?h(L|sCMK{CG zqG@6&HJS*dz+pH1EF275C8LP|5o3KCXmdqetbamxfF09@P-dMBj(IL1qXgNmXT>68 zq9spQ@o#j})#viz+rTk2mryJm4XwA548rDI)t?F4Z*=+gtzvC**QRJdK6;mg<~fur z*1m6oSZ@-$hD;Cq zOth{+xsBB1y@lRR(1w+g$$Q{Z)jtDG@%oTgsOceV=ML4Nm<90Y$RY;aZdnxKl8I}p z-ANV-_};cCgs)+OWOtH<_WY~*EzqQQ-AS`%&u8&yGrM6*2=ZP_OGVbi25L<>MF78B zX{qotbZ5JU-}h3a=>2;kWpJKsUNc7Nzj$)I`KuW;I8P3sNuHdcohNH_5IJ_!xhF?1 zRsElV2Fn$_ifmj=M+$JT^2K1)H3iAVSHa4_ZXwnXJ_%NuM^(QHt#G+_e%uyleKE?e zAg!_+*e%3PmR<9x>Tk_u@4mtgX>}3~+kGXMy@5=WJ;Ac<5j&mi!lSBx6ntj;V0b?2 z)8uS*(ktw<;-mt}K$k06Chan5=Nvuxw>_i>UN^8zco{nK&^7#S@~rC5ksZFASjW7$ zOGB5FLo>H#pAGqILkKcnOG`z{L}L}%QUvh3m6i&>pj`|HNn}fro^MtEl8@+q{%6(o zYi?H=^GzI-b4?-e@NWG_!M!=5DGsN2#Lpe98*qVQo8f2CD6x(o>Nu749#v^a`Ez!LypWy22zDFwqlX@HYzf=@VbFzEovr_8F8ZP`#{%) z-mrXm9hHGrbc=~6&Q;+$=DOQUQR@n2)D4e0!tW7X)n5dC$l77|?5McIo4+3@KOESn1LKisYVErgs~ zUAiK7M62k@b_iB1>1uiYsX!0rd8$Ap)=I3so!_lZW ztPYBL2m#2kA-{?oWj%xv@YF-9&r(HC)$Kmmx)i;C zaxk=n=P)D$;#_~RF?-wzurjD#aStb3EZFo-xftN?N8On)4azN`OmCsL6SQH2WQGX1 zRP`@Q1+p+(2Yp(-btg4TH>t5aKn2?DLQ$bsRTBYn;B*~|gp;9P(nJ8}Iac-Wl|aB+ zx+@0g+`9Fa1Wko;jut3DCV&550Oqx&#sM}5f3K3}U}%)&XbGpP{>M;fi)Y=tW`yMJ z#;y=_SPA60_-eaxhTG6MLul@B!|!_$U)A5z#CSHoY=&=+!*-|H46kXuGTr*XS845; z8hdA~R>+n$XocxASazwnm4=Tt!fqHAV>JSDLIg+w}*|kH+V8+<3uxEwe_Y{Y! zJ_7IFrhQ0feOj(Kr)V}X51MjaAsP6{6)cm+m!u|YT!{3*>jstyub@g)F&P&k&hw

CfO{gVMO$~gm=@Q`+q>r_bEP-m2)WMse4z|uuM%{bWz-@S|%t>zUGk^*t z+l3+#Em2YR89)x4u0xSDORx8Y)yb@1Wkd$h~9XI>4?>A5ck>DCk^_hglx8`v$x29aZ|Nz!x8qpH6WI{3km z4wcb}kS?R7Grz@kXATnvtyijB|1`MC8eQ&mj}AuJhgtoEuuyhA~H7w=SO=3Z{@ zbzC8QdnJ(PQmbAk!)<7sA#u{{M0{0$7etsfIs?(~9S!WqeYimd3Xps={4C8OiK(hV z1ybO!8-5lJh9XIW3J}kUMk=5U?U!&*x>zl!*)QRWK?>S05g>UTD6jW)fTjHs8f%E3 z#7oVis&9hqJ8l5h_QX5&{%q5P4kWso6pCe&x={z75&&?!nG^~)L($~GQv&o{tNOo# zwzAdds}$+jXK8(u^H87y`F5d5q)T*Fc_@$rC)(^y@$y8AVuykx4+WTL`SqaXx_=_J zq$0QSNCHxA#or6cv48o*CDHxs}zRj)?psc=cJ&|lXq=Mz582qoZmB~6Z3k(zSQYF&eJh14pN zh2Bokh8oE#5^$;N_d^ZQ3xIrKa#4e(95v9ORt+rlc7mR)0dT46pHAA)Gt>B(A_84@ z2C77SzoiW+YT$Ft;$x_mwxNt)ReuN65RK=$nnzWC0Ayb}8=iK|Ni6R9xfCR)>(>O33$A+p97!kG719tp>G>6hs{T3fsP)6q z@Z7h3t66Z~9!Ws{t@wMvmsH*!X@SR;_`C2h)JgL8i1ECt`m<3dT17qXyjsz)&%p3z;tnwsSW$jKiIvJi127SvCJg*ZdK*r7Rv&fZbtmbtB zDR9^gKMMy#vt(W;Kt!A041T*%cx-`h@}@HQ{<09~F3NhdK2#NmT30ATUha>>?-5O# zdBE;;i%Xv_+UxY(q<8Q9tgsh~^Oc+w^q{*kO;)*DoO61$at!c%GB0nbq+|?|W2Lr! zsj02Fv*s3U+TQQGZTWN$V9)(kJC>6UjOSDe^dkMn$7$!yQw1VXA@NkTjj{j)?oStp zgnOv{IHXCoQ5G18mHvwNl$v#+c>#6B41XgrOS1^8s63-?{g<2W_2FwzyZzClhnsX+ z(D|VHO0F;2&et96x!rvPchAx@!EL?WPnGj?_BXv;>rE}wH4Bzd-0ejYFd(VaIPCd} zeQ2#wNl^iV?S=slcI_J|dC-Ssz(Qp3ceq#@Xc;_}XHeDel$gU6FQ&vI(UH8lmlqXOVMQY7L;oesDQzCQ$*f!FdUgD zNZ6Z@3|K6VEBi7VUd?fZK)y0QIzKqD@0(#gn{p4L!=BQ0aHU;ssWhr=H$QzgrWabu z^%kjg)qQcbeY2m$md|vNAZ#;ZfB%xxeon{xa!&i8<(Ja&f}GO7BplC+G0!ih{h0+) zDgmxbC)Is7Z_*4c8qEtYfJJ83V)BWV+63~Xq$)mGd+Q*B#An{rg* zxCG&m4wnLeZrtsTdPfdrI~oTKO$6}8(&xN?5?3);U*ZGT%dQU|?*6_Bk42`0@Ok$N z6~(NCO&=)EYnHXV~g9JLi+z9oJSu2Xd{y)gKRgD|Z~*H+us*;z{SvT|lP= zMGi$k0_dgpj)rt9ry6BIjzd!FF|=Y1naGnZ$vEYA^gj2Xb1iy)bbOyh!8ybt}l4ar@hAg z)3UDg5BT0<3(kX^rW`)H&i5GeYfBc6)2~Q^(ECSJc}0mC8c95~s*j}>{RqKbFLg}o z(W91hnOkj22%=m|OIerJ5kiUpetZ{KCe~CV1eE;mfMUk2FUK6(XhMUqmm|}vqWb%NC|<> zW-L83&ug;wnh4-@5%3B1T=o+q+yI3DU>kIMaPO`QHum9R9_=X_0Mo@Q!!f;|Mj7Iu z-&{CgDbEWT1}!kVA=yc9czjCdIsN?w7CTPTOln}bB_wLtIci1{ zfG!=B&LQ)+xD)_SS_8J?l@>fwDk6aK?LY>DwIXZIvs*C0e5v26CYJ)>8qre+A~jX4 z5q2_z7MRg);R#KVT^^_s2IJ11A!Q#$IXnYR1q|HVdJ`Kk2g8&Q*lbfN$E30#JP(0n zz~Ty((fuh$`~X2w9d2+LB{1R_7uy;w2WH|C+9SZ#BOOI4xLYC)%}E!g114Kk*xufy zULqATpbHd_hiCM#TIt3qW&l*c;1(2hh6kiBZTK@s;ym3{pa-TKGz~zvI^YiYUTe2>@dS5fn-%Cmx*M7(xSVA@?k7!ZV0crL zME9{c^7zaq2bR~Im(kOJ-sSu>m&K2Rnn4T9ZsQ1ZVoh_rZovTa<{gfSwat+DDcdSLnl61CSnZ=WaufbGVF9*Entq5<&kTYbv)g3kfp z>U<*`U~^p>#AwkB1b`~9<{j%->ndpiz_Ho2Je zt6=GT+Sg|6MDxNFul&!aTuP&w`z;_9lkQav3Rlz*BvRJxao!!+HCcN$I>OJrHHl^oXG7$52g~)q+ zW}1_EQ&~c6+tCxBA0siXtQ0LmWuCaIKde1-n_?$zo}*Is7_cE+p};;SF@Yz5ZnQY?arcDISJ75^ItBFTVdLu7)FlvV7hZIisFtOoLNKD+ zgG6r;S^)37Tnvy+g78+6j%;X5;u&`jnh4+<{)lSv^#|_Z6b*nE-T5y|Shl$<1oBOP zsEQVe`^RSVVNo>^z?Vl=xQi{(k&WYv0kT5*_EFcKfa3_#lmlpyW~|LM6V}QV0{IfJ zqF7eo$p9_|z{;35j8^u^9~P=92hbALv3)Uw|B5RG!0PyZ_q6+py)?;lXhHz6#nSs( zth_4(@)b&>N`kR2O*w#8-G=m%yRv9P;9*sL2D@2kR|nlaSl(aCKC5Wp70q9b7e0pZSgU$kSDFD{_Cwd&*zV42{6-fZPP(3i+hI0)n1LBPX8jW}M2d9OQ z$N@mn0C?RM+@XD&m6@-wkdXwSiwAVT!m^_8@2C*S*Bp7#8oU4*C;+%RpoEl^GcCdm zNeB|y@NfdGAwU@2dVh2{>YIrne@zGgMsEY0xgB3cm*n1D69IgM-gNC8*=w`x%uP9f z7U@SbbKnYag+RXMerd0OK!HHFwV~)v z-M!crj7_eI0KVj+tcm0H%%uQW=bwrO_l>%U)yKlx5FU&p;G?%Dvv^V*A?yeNLFLuXvYT~7*LLgsqQUEN{%D;K< zgXd3$K)&S2pDkO*mF9pJfe3&C(Pipq&N19j+4>Imc!~zTwk-wzQV9#s%@N6f#Z@UA zRJ50JeAGWM2dTVJo09^obt$)Z$8k`JBmli8zmNKdM=fG-n>1*FSup7mFdxbtX;TgYE${d56)x4|bk!FFWU2Vb ztj`ABgTequZU2mrQ3 z7fGI&F3Hu(r73{UK3N}W08|Qq<^Gr~VJ3jwtb8#*76v_YvYKm$%7A#0-T*ZN3ERmP z0y*7WKOUDWg+py50qDYDXjX_9Yl!u+M8wZLU9=OI0(SXtfMyJ$rN-woixZdE^})qH?x0PKY3FWWIo zglP6DTgnvP&8`?`EmfQ@=4RvfjJrBhp4pmg0850 z05JEqr@J454nbJX$%cs}09`$)=q-xEX@35q5CCkA>ZaV_*zp1d09Q|k<9_S+gaBX* zr^EY}YTQhz42bDi?*6ls4OjrKucjP8i=}|ZA;%R0`8qub)2C%8Y6#Y6*yND}plhS* zxa+PcA6ZDYU7!FU-86S@r^OsixD)`3$W42;>XYZCE0)k*N%biMKt}Xn3Ds zV!t^4g#8?eC#OQ-zD#QaU3-F+I~ZRKkk#?|9Xj{fGZS|9WFY|90*yh6N>dpS(+d|Z zN@t^)C6ed#Rf{`U7?%Qn0?=WW766q3fM!bE>6Zx!nI`h^s$P`kZNDv^7S8THJME4E zO$g%fjsacDs^n7=$-!BT0Din+5XZ@znFU6sZFnGpHw62 z(DvyNUg5YhpPI3VJ=<>m-FmtACQ!B>MrKRcGGIK7b19r5<2@cSOXJjbg3Eu!Vb`6FuL{d>H8LFa5* zwp(aAJ%6-#SPjaPk**N5Ts!KH_Qy0SVa{W4xDFHmq^z`i_W|7$Z-33FD}e-{E?wah zc!k9*Nt1*Iz>CKPSvl0YLL@H<$mFgN$XBS_I3C)Q=-jzBTWuR9+&$-VEzNB@a~4h>H@D6ltBcUNxzaNl z$KB&WablNiQqh1a^gL7xlwB`S0C1D`2)H%u;%9lBu8BOns{cM*K+)W#Vy+>&i=U|h zHs-R7;VE>}TOV{ExF<;q*OvGu5lBR)AB51*b}2>^$y+bQ5E?DlnmgTHocCcv2MRFs ztdF%dml3Ve0`Y9mFgL&rUWF=)%I>6SK-hUd0m=?eXPD@yQRl!+qPV#U0m!n;uP*b0 zVy_ha;dQQsrGy5X^x5ZRQYNxdgusU0uDrzS&Q0CS=fUoV*{qKz`YbNI^XOdQBG1PA z6eF&kM)aiel#Bu;FuL5^@@%WyqPpCPGLARUSnBavlokxg zM^p6WogwUsLI5y6pC-4-SVC}uM$mAp2*BNmJy#OCEsF(rdnqBXkryy&_Xv%9%X;u= zu;HX>ftflp$4+U9l$@DkI$*Ns7AGtu4@O)ekdyVtGy`Yv$Zo9f2@)8^j&b2qdJk&| z0OlTD?HzUQ-ly!%?3=jKG!eje{Nygp8PaM+;Tb$OP(lYxuDkd(O*G{h3yT=oJr(bw znT9FPv6LaedXo%)Mk{P|Ce+^P&DPRH0AH69d&ZN83Xue$+wMRYtJ9&eoVj?$sQ{7z zizi%J#kW+@o_Kc=9EG|PGmft%0I=nIb0oBs*m1jc>@*>;S>@8U{!a)1MwjxPb!b_l zbEj)xLh5To5dr*~!1pV6UncE%v)5rbS{SszjL&PjSi(nrOQs0tHGvWsu}M$eR6Fe& zDe(y=)r7!?<)J-XbV`Hn2dReV<(|)}29&_a-?Zd5<4BU>CA)4oBvyV=sxPeu81_}&vue&sS)pZ54&`6d@14$e6*$60Bq@2f9}SM_TvVri2%MrB?B5K6;)}<0klIuHk(z8pXFXCp#vuLkbz62Pt81@ zJ5V72n7eC>Vs@dw=4qBd0l+Q35oo~AZJw9`ogD_KfC0Vi>%6zUQ{X6(5(1m2eCf0u z19z8Y2(YFL)}4gnU!_RaT(F*!0xP<1+LgCOdhY*_3|P<|?ZRS0wCAHACN(f@&TK;* zxBQkn56=#0fmvfK9n39W%2t{bST%A%Jhyl$xqud!$*pNgK)3kux{ueBo1t<|VEKBX znXL!7?s|a9Q25lvZ*FhKvYY<+A`KJ@yNNiQX(IUk;=SXpxmSjBe^&_P%g?(l%`Z}d zmmN0eND_(xwfbJ4DwsI#O zxY)*K;otTQEMK4=u`kF>WyEvb3cmx7s{S^SofkLSCePiKuKlwIt&`_MqbJW73Rf@k zwgD;wODuFx%ud4-pWwchMLNrG+L=AV6$0a5T2}= z7hepJjluZrc;Y$LNCV*OJloNs7sY7;islPWN>5Spc*!CLb_*x=k!y}GR0hOrqhX&e zb}np^;$9?B0C3M`vF`qA+6CwC9ysq&ZrLV0UpU#s2EnC{y6>h}pjyF;d!&>Q6u9)xs>|H+ zQPqD0+DB_nG91$lp6xk_C($kA`W>3G8_}8posFc;^6tW7d;HFU)*?o0P2|Hva-aeR z*XaoFh(`24Vbz?UC^LvXyQ=;lyycqvQKlS4bn9RBnQ_hWsO@?b+FoDLBY|Wxcfn7~ z^(a8dw(r(gVe`r@8rPRzwDLVG^+$)*oe^y_y6I_eyP=$1W!Y>qN=S7zulA0Hbk^an znPv0Tj1WL=EO9kh=I1#)E(HKR8DUO5acrP6AYR<>x14)%g+RXQei@$FTdP?IApqDy z)i?Kivq)41#EbNUxucH<3$75zSLqiTx!RimStKC<*i!$5_LdgS%B28UptFk>IqN`W zK)g0MZ@GV;^OryYz-3ybqEyQI5GQ%Q7$6(;+o)gOtHWbwMFU{Ba^}D^8EadEhrpT$ z;PP$S(_%iis=w`M0KD6JxY9aiBtx}EA)eF9+pRWk$gFT z*8F>)ltf!FcHck&zzzR%Q6u&TMFU{BDc|1J#D?Hf04(35!^n2kb7S$v38d;3)bbE6 z2FQlmn`W7Vby73{ex@mKv*&lK`&2>i0U{r!9v32I~Zz|43CY_)YUou6co> zJ5PW$qy2msl1zXl!+xFsi&$guVN8GtkE%Y0ysFu*YVT;J<;d3Ey>3Pt?0(hl3U$BI zSg_@~3Z970Nr4qvi0-d(ysXON#t8#^;%L~Qiazc3|e5e>!(R#wOB6YyF7QC(ANp80c_SA z&n`^aa@9u?fbPieEjMNHDq}(iOyv8duBCwfK9K-)x8dszQDDFpNC|<>#wi`IsyfB{ zp*Scj8USDO1?~f_j?YzU&;qj?89~WIcqYcA28Lk+MyqVF0V7ZXBiPLQ{+uhnR3w1_SdK1R32Yk=YR zJ&h8hd{Luce1Ljo@C?0xW1o)aOsgpui9WqY@8+&+P_7h@)V)#`dOJY}k>e5+`$_nH z54cqIJEWFam}_UWHtoj))Gzon&1&E5Fa|AXcGDmblPAk;+`)J)4G?gB${-M~LCdH; zKgb<^-!s5cpMOnO1bl@(ftTt@{cZ1|tc`xD|gF$r2~v zKG16%X@SR;_`C23TEyz+x(L7TMU3e56Nyf=37a=snPW_^Qy>9(+#{?Sn%AP%DbNCs zD>;uKds(N1S5^Pd5Z89;DY{{=?{5pFwH|XHGs~6|f^65)Qn7kcbLtFriU5A@)K@N+ z_Qj}ia)vrZdcIZtH)KxJcP>)d_6j!m=QCm2fT6)Z8)$o7Hq9X65&Sdqn4&HdURC|W zP?u{yaV(7Cc{CO%z}lPP=R&n{*6SNwAO#Lh@-CmYD~kKZpypn}sj9ymTHCY}qg*G; zG?7`5o%Qyz6A?(gu24a)=vbU#gx~i9x~hLn4xIAGclim)W7=R(+muUb4!5C{5Tv=5 zmKGFJZ74+mzguak@CzzMRg*T9B0b-#{sT}$A;#M~BA^Y))W*#k+fbY$Ng{=ghmGGS zJVG0aJPgeWFg6)8zw# zujK%xF+qBqr)~6dW&dz&x?U_%uDw2VuSFlWkOjKu&^7V@J!0QH<2`@uo-g+H= z-$R_}`uR}n+dg*ES{t2ZvuC1NS0n@Zu3(wSSJoBjf!7Tz6J9~5Sh@wO+t4#C6e@?O<){p#UKZk9WYveI zsC9)3LPdioeON$O^`|v=%J}}1)>r9;O|H3Qz`{oM#a`TQJqBl7>F(D|7zpvl7Vj3R9h3hTG7%7i2IQ zeKhIpBEG6W3+idLE#UEbwh(~a8}h5zFR2gyz7Oa^33#`yCB|9X-FS*E=(Z;avHK7D z7UPp2$`@(f()k-*cR(-Lm}{s_zKDdLUAO+LP>t)lx%MXs7i0;+Ar-wVc3d034X(Di(S>L5JFm zo|*&|;8N8`paC8Kp~G+PZZ0=j#@0WktNIH- zUb@zU?p&pf?ypi;Ssc=FM9wHdlj~Wr*fpskwkiL%mqCEz6IrovG!*6)i|~7ib5;Kn z-_CrBuzvT*b*i0F*L-=2D`VG#HPiQ*7 z@W2s|FEtUUO1E|;@VtGg^;%60eCXEFoR48C?lHsfw1N{+VxV7x9(~m#4`8VA7HNbKWR2>K<;CJNL>FYocQU_PTmzM9k z3u?{1!CVKv7-U#ekX!>*2L^TvvBB2SgOWPXJgWLfK=$qN@o-2_^6GsAN!(<6A{pp% z1DzB#gHv!{fh=B>1} zMb%_rl_EvmFK((cZWp4>v*#zY=c@elBq!uRB~t#tK5ZSML$@h|+(%VH4&=az_H`JX zjCxHHa)61Z-zANXg{nH{z@M_oIFH`v>N8NGz`_M0o>wtGpSGQpV;pgqtjH#8>rm zUfzeVJ?-{Kj~+flbKa#>g8Gc%-ab9Z*ExG|N)IVM?J>8F(}D#^b3pOmfvuKap-DUQ z>>!_x;Zm^HY6Rrw;{DMa5%zNACLj%iaqI}cYYtWYdWipvq$QRfcb zrCQO*m=0*)qiN@|_4w3N8wl8MHI!w3oHhd$Ft~C|Qr)LjEqcGxFVI;@9Z$Jtl)z|% z&P&l%d-On!{R|+RR?z@>g)Cb-Z^fo<$`N!r96X@4KTBW+HRS+WqjR_W^jLY%3~Zc1 z1_}V~G(Xc`o$f)m_pJ3*_WXnnn8?@9%=KUW^|Nr4)+fFV*E4g#4!|&GXW*6qi__`s zAV38oyEm=}ZHET^SX&VRoKCU!?RRCGQ>;`90C%GwT}bJcP^&|?wT*6Kx3?(s6t+nX z46o-T_M`z%%2>n`*p2Pi>}+;K4D7b<4M%tACb|g?7^pmhs{V1vh*sUP%hvZ~ga8Df zof-<3_hf2pDU^Vx$!)|N{aG@$6olw81U(kJ6y&Ye)nx7QYHfCK%Gw+9Ty~WsIVzBw zvi68GWKKp!5nt6`4e8EGf83+BQF9}e?-qPHe0^Pma>2Px`h2t@1oU=-HpEZ1EdUp~ z!v!_i?-z&jtU*%_GOTM*s|FT&J3&v@0Jv23zlG#&k)Ad#k4#-5$i5QDbHSC*WVj8D zGek~&CgQ95s>sV}+jBk#o1C`kx8)x`J7wmkK{|O`rK88+>TRx7;NL3KXk1JgJLu!W9Df1;gW|=OyV%nHdN5v$w?=-GAYrZ`LOd>!=Lu zwn49C(;>IwjVPSgDH;INL)tB_;|hU%_K~AZQ(Asdo==^5taqUpzceU4c+9B}mxB5; z&Iev#5_ZP)z`-xnnO#aVON2!`Eh$B>g!^Ao3Ku;5F0b#J92}T-fE^H7_{%Ovyq)&E2*rxMGN}(VZtJVJ)=SWVWz=EqcY5dae&}&{0hQlHDBTVh!J{zKimD=y+kcQ7une2gcnu}#icHmS((Exanrq9Z+;kv?vyfE#+elSjF9oF6P$8merMiTha6734J zAKPX#a47)R9sPuFMG}CnogIxTdSzu`ZZ79(pg;k@-S9I_td#1Rw*sVuo=sKX_l>*e zw%v3zle?z<>K;v*K6-e2%ATpA=N8?qzf}SX2fJB%sGB|#(-ZcgQ_K4fwdkySw+6d~ zSfhVPcC2U~v{VLx`a+phOukxWH?puTmAKh`TOzyWQPtlJcE3<&wyx8;TzoabVdZt( z3ED7zGQj~{s`~R}Uom^mrN%JZYH%YRWU_gHW${UfB8CQdRTT&qLo1%s48QLwkhH_! z1e)cUm&|Ga(Ffz_9tEQl`A@YXC8J0_?pdy}b0fA}OOU~1wM|QrI22yCFyWwZyU>G>r;u9d!KL1Og(v%Oy>0MPAbQYhREHTkB6@cUi@lp6YZ?`h3e zjeE7ZqR9gpD)XRj{ng-}Gfz>i#yPFLW;uWNhR7$kHUSxwi!q;@XZU?jaj5E#Lgh|7 zq0%IBD`Ea67g>ecI1$s}HZ(2>76nd1ZNyjgcY?e#&9^SgjYg+TT9M*V)qfeJp8G=k6WIh=Sh>%&RA<4qTx~_Zf$@2Wuse=W43>lHoQq&Zx>HzC?Ug zcO_+F0oI!Lk?cE}IBEn6kbE=zES*u(wW*XTkOGI@@Uw6*6iHI10FfH_wx%OvWtQn$ zk;1lUo`?3u9@?$<#ihXz_63C65b@nR28to#^K}yqk#G=0L=ICMLO50Rf7Eo&vcLBA z(=HR!hP?hMT`S?{mmfWBR+n#2+F}c+CMdHx){|=old&W_btFNDNbllfzepJHjb zY{ETbGu_qK2!D}lC=qJ6B(HaNGZ{lKf7XWCT=eMA&6?rMGu-LZKrVi^mA^Q@OHjQ6 z>X=yKG~D|2sW8!5-QHwF+^Jpgu4UR9OWOb~*W|DGVt{NN^y$_Icl5FJ-V5hgKm`m| z+#yXm`el8T*EgGT04=*ixdU@&1PkhmbI5sFHwQTnm;A8N7Y_;(%G}?%LioZOy@7YH zKc>g2EnPUu1_}T!AH_3(R!#Zh6jC~K%?3E)BiR6XUH@rIE`Fe-|1^-U@s8IXZ9cIO ztVy5%Al*uIuj;?CX@$hR0hPGaw}Y^c6j<)69GJ4MpwDysY6#- z(<2&|o;-dPK5{sbsexg*Z14P}BoSvU!pV~Xiy#w8;so*^nC4dr-U;~V6=Efw`yBhZg#E^$amZ? z6O`qAEujM@OJ~E=j`=nbYs;koSf>%haffzi4NYI?E-{h-bh+#(+;$BIp$D`3^lWvf zN7J)aj~?;0UjpK(tDF?Sey=^)_~I1O8f@;VU{lrqkDnm(9q%>w7O8tc!KbG~iuGpI zaw=@ldO5oFZ5bE7v&pM*58p85;$ec*8SShW7P1w$;EElqrE;GSRNzq4U$)2JoBaw1hE03pq$j4M z9+oD4!$Z6*nTdDZxsXd;lE`dkz1WRG^SsK28P4n4TxK?pn~IpxMQ;6R65r`>cj7P2 zehp6Zoq4|g;B}5S0a~ueeM%&O7B%~IkY0Cx>#W?Hnk1h-(c>3}!eyzA?w7lDm%knI zCUsj(A^_w~`jVJNip$;}*|3@YnjcnRQ*y$YZ`)w_WiCZz2J?D{g_+HAMNn108@l6b z^jh?(%Sk%jd+r9r;lS>gxsx|&!IN(q1l$_(Nknz=wgCdJPZB05(YV*@Op=Lpf ztpu7Y!E;)EaVF9Nk1O%_mMY%cth9KiZJ)U-1oE~0K0Um7G_apX_Ja$d z0N_&bfC@K$E(O3!bI+)y4^MqH z-)r`OPCA|IcYZchV9{MDDpU;T3rz^){i+tH>n10odXk;`023|06|`KWcx#?#_w&D0 z2s*6<^44hVsN{R!1AP{~vi(Zu{G^;f@ywl7dNjhRB;#Qv)A*$}|y!^f3&Y zY+=(V(eJ0FcVmyA`rwXR)MkI5_TY{Hw6|ZS7rNc+wWrnS`238Q0NE(X7=ta6lY&L) zhN)NFCoDV%>ZV-Oegtl`P*^qRsfBdWd|8NdAL6dZ*IkNQS16;Vl5H*lUDZD?VU{as z>UCA#dDXmEJpH;VpmbGTql5mmDBIBlmaRD;7_?AXH;Le+dBlz8+{cZW7C-i2n;ckP zo06ZO#mv7A%$_%xxk>-#mXr=ZBRcNTI-I|q&=UMPw}d?-9}r^uJuKz>*g(ENyxAMj z((`uz#ND)V>(N7=sn5uO%W4~*b7n>0kyZUag3C>vK@PePsu69gn)bv*Ll16djN>fp zPBl)=2fcP~Vl$Jy4b2QhWagr%>j0)<7HOeYc4@}FJ88n5lb)0i*j!>%7@)QmFrZ8< z5uj~b4Vtm2JY3coai%!Cux}5vd{9otSr=Y!5TI=bKb9B`PwBG##0&zot)PL45!R~X zJJr4$7g(Onz(4`jy+C=11!03w84%By89m_-*3t|26}|j^e%zr)VT&Cy4-ZNJkmBYc zy+*ATmOAv-*-2&Id&H66CI^-?ZgE?5V|mMJoFTeG;Jy@R3X&{@M~G@-pmFJ0Hhnda z4P_8ZG7ig%1_Y$%bA0%*C-7jLCCgdOcLUV+b$}+$9-y|j12l2>OQy{8S)Obxu;}8p zWpZ`~R|vMg^cZT!$)cI(Cg(80FzpkP^u)Mi1w6i-DLOApC~r@hleW07P*bGLg0AZC zhcVk+d+s>*E$y&rOu1&(+;;?lqs6)JNWgANTn)`jbKeo{xmWc840A#&o;`MiIhwet z?sL-P>g;H^Psyk;N0Y>#Fh>)47|IpqXoMGKr@nUm?uB{xTiyCU05`uxvJ)oWo0yq< zh%%W>mM6h8OuR=PlTDWLs_LK98$PBDg5COi!Fw*8w`_)VMtnMP9ko|GkV5;|4L=J9 z!wQ_nhu`-CMB2gzRP2m-!AeLY@@nMX&yV`Ed}2f6f^c!+A(_XI_^SS&3Q{YgBF-=4!jK~sG^8G zysH0C35D!4Q(uBdmOtx{&-$doqp2^5(ID+Vt8`+QUuv)_fw%4o0Vqw^$Bjn4VP)Rl z%`hPV*g|h;K83@hO)3N8<=#0xs$gEt#v3MmaSpMs%M6fs@g?V+Ye!_uA)UrE+YgVN z0|kDod`l#M%NHZ$xS}od=0*XA_+o&p&{Y)S+*s1Mc@DZM2hbY-So##}6es}b?&XlH z2$GMnfW8sg$&B>uQ=+ZA-@@} zg$$~gV;dP%GI9+WRODfF!%5Pa%2U-p;M;%A&Hu@1w}XzWvquk~n6krg#N6Dw^}mxI zirqe>?XwTQL)sqm$0YYs7L?&bnuEsQTYB@vf)OKL@u$HnW}3@dmMNS(J>dr8bFXwN zXI-I;Do<8i0=laIv{;`jd-~~bdRMiYW%}FG>j;0b_e$AGW_!GhAuBD9h50qJXZYz< z2nUycLYKdN`4?%K&E=jw^OEpUhvV+(us`8V;FM52`$OW{>@QO>a@8&*UAsLeOkn##q&*sW24M--nLucZ1Q)uPm@1Sk#EzXghvmX zSbKZYiO>^A-Gt9ymNjkG59K+=r? z3TfCY**~c`RQ1ym#90VBuw-9!#}mJ<5Wc(;$a9g^Xg|YkXq+K%GTM)Lx=Kg}7%cC! zmpd}?vRp5i3#+LPyztSIVI;eQ04D9@P(m@Y zrrmopJ+r}}Z4Dxe8n)pUAAaA1$2zL|4}uH}RLNFr;b9b&f!{3)acfPcD0eGki`|l% z4Ct!NLO>U*7EvhDOIHpMPlE2wRQI=O8 zHktlem2Ul&P{qq*8Uc;W@ez;2d@(4srXaa#)a{N2b_=n=596dF=k($CJXVEuB1S6o4?}%i?zJV>?FPQY)FNB5RTgm~ z-^g;fsUF1nu5WnFr@hAgYdYkA2i=74A>E_Jg(L0kN!%|sL}2|LT_QRrb*Q!@YHHv^ zH|kMGt;Mk8X0jboqr_6*3HnWcB{J9AO1MEeZ&Rw<)>kPrZbRb?|4X{Y2>oO@={f5x_RB5%Y~>xY&?m&_j1JH+&~mnAeO4}k(C z-wZz&+(s?w1XAEY+l%$5ZAFqLod6MUS-@CEUEA!p6Z=?}K=b-g^CXcLG`bRh7o!-y zl*F=#5uH8K@0lPeJuplJMkpz%d+%VsS%L(U@- zCHkp`8Aw61m<9?5L#L!+CY-AJ??PsI(YFhIy{ShHTO>-x&I%+J{>@VV!rX}cI--E_}(r|z;LZ@I#n5^F$njvlZ z!A-lDe8SC*1-)8@6u9w9(KkYB}vlUBffz`yMYCE$1DSHTAz zV({ejGyILo9=SADiuNV|0naf9acx~H#NmEX+iQ7H&cb9w@3Rhh{ENh218oUF3qP}Sd- zMvp^tYNbiG4{>gV-vSU%OFUIaJ9^6rB&O)md`7pjSVw8J3;3#D_wxEGy7+UZ-Fg!| z^rDZEu(xijS4s-jP!rmU7>sgN6$lrjGLueOfjqaW{*R$b*GE;aPb<*0UBdE4uBJ!= z6472=faZRwI^{?UJg&swTa-#V<%kiT{uR{L>iGN)d9i&hD+gC009iKVSCJ%fSruG` z67W0ntKg05NrI~&M2}yHDL zZicsie0-09TznPZ;ng5U(kNM;8M0$X65kbvs{T@WErVHI?3EveZnKwTV$jMSG4pqGZZD@fe!mQxMOEFXi5-$sJF0WctOHuT8&rYO(QnB#2-*pSa5s-_m zJekP=xd})^@Whi92YMk&G7c7E$(?gElMR-dOX1tA5zs1ij@$&~WT_R0s{WJG7qirE z@}j%%-e@&1Kj1o#Bp|<=ywK2G3Dp}!THxU(FA^SxI!SL3F`gG)tOGScuMpYIlhb)u z2r|$sM6szQxsmeu3`egJMVujZ;`0$t?=?XkERaH$w{tY1GLUvzh;wtRXp*8_HMgWa z$--_x(*>Urt=U@^=mq4Wq*R8I3URBXDQaDz45KEJ26R<_0Z6(++Xnl`=jQfa-jUXn zgT!uoWB}z-^SAvhgoWNt(1!HMazAjX>VJV=ao97r*Roeo8A!e?#JSYUD^k?DLK)H~ zwhrj3{!1X~2EAB(zfU{rUm2RKKOBJ-4M@JN3dBQ`MyN)SiWsw8IS{~>rf<|3=Na5Isg+b-wayP1L9-znr4pv zt`H=l>s}i2ypmM(&u|+WX9%7||A?>Z6X>nzbc87`w{t23X_tjK7gn|N6t%8UhNww9 z59q4?9<(gEkLfmSSyu?Mt_1R2SY_D^x1n){xQS&WzN-Igkav?_j-*T9C+um^L?Hi; zE)f?^oL%i{(A2=^nl2GOhF-~@295Iks`_g{za=JNj>$|rXPjILlB`BRUL`6|&XL}f zEy5>xvf@zHe-EXmR})Um6GTmRPo*ez1hh)cWPqgXUOq)g!{mw7ibGX@I<(T&)8V*( zR=A3t=d6SPB-oH&#dL}PurK>yDU^WUkzWOGD3Q#)3BvQC$IYNeTc}2+?K#>|8GLJTf)G7^Kh(`4 zWg6yq(f6@b2;W}`~57 za52@R3W`Hje*;Lp z+#iQzB@vtV>-u8&`kI2|f~)l%~`&RKy^ge>%Sf;PlY=2n19RsR_H(gL}e6>EGJ^h)zk@Xea5$32uLkuHgsItxlr z>k4H^n`S|RuIgWc2(x-p9rEpsmblz=2?1DpLw+p?uJTTy1pJQtDtJSMq~{WZ=Tp`1 z1)o`W1K{$+1N&_x0a>=XqGbOGWyRrL;7 z-|ZWF#*9y#3vnsP;P#C*fV=`!E|eqPJY_^0k|(*4;!xGQAoXJZxNCL^>@%(qWL^p6 zxyZ_AGTes783HFh6Y*93i!f`w(#$1twI#_L_hL;sNKLor@D!@lb>c0m7qigY3EB`p z>BWFcRsSjQdRphQZ{T2yyF!qi*0~z;R*PpiTIY&5L*&Hb5nt7dkmoFyXW}?p_QfDG zz0VL1B;``8Y}vqWA=Z#Q$(A*bs{ROgH@C_13yH2>gclMyYv4BN0lDBwn?xkH$$&J( zHriyvp{oBV<~f6&xdO&{4wZqemxVZ&SLHb=YF(iWS(7{`psV^9K++Y;C!eL9t=Jly za*%jkgL0`=YqZeY3EGf8X^p_8s=o_bqg!I-vAMkn<};i?0(!WWbPdf_(HTyl1s-lC zJ>g*}lx8>q<9Su}M?t3*THy{0qE?J-%0ZHK4a!wfwPK;S6SSd3QY*lPR#6)b;(n5_ zJ}F63q6xP~Sqls~(arkhW7=C1)+Ys=YozkD5|^+(skj)LC3#xLt*YNHt%ilWCKMxj zqwtKbknh_!6m$Mz&`P~AvzrD%p`TM%`57SK`jkN+Tn!5(SNR!W@zj6cTf*1UE?s#< zFAC5tD4he^AZs^4ZbT`eXVj8`ZN z^uqiVQuBx?5*D0io1$PA}rpk9sUL_i%eH798*kcVf@=Q<0sGQZp1UHg@Z0V2HBy7ye|D;$$DJp zMTC6djgm^S`!98A@3%Sg$io{h^~fd!uSP)L2vjPSBR2tQG=wCTQXH!KIBB$ZOrP|P z_D)!)XBC&b4RJ27ZnOz%U7-wF(?%=ks{X^;xptZ`=+4p8Qh_4X`RB!}@$N6*Z#Bd&G>Aa_OGbTZ^7 zAPv#erV}|-^=ClSS#-_H>hO4+>I%VfD}g*0SrFl;x$u zL|!3pmp8?2I19JSM}HF&gnLtP~IO@9o>rVbw~YDKgB2KTQFX^ZvA_7w{ZJ( zzw-137#g!Du!A%fJH0@ zct(51Rh=%-w<&qEtjeneIjOMxS(%%QDS|lx9a4la1Kq^AaGor;td4Vz3~Gc^gtjYC z(l{46&{b>N!FJDvXS6imK3d?8BPA3gEa~dnayeU%@=m%_*-nSK-hoOO{e-TdRYyX3 zsTtDz5>i7T@E-yPU+SJ5+8M8}3|9&!U5$YD%E*wLfHYh^t>_s{b44{ujG)fF|iF zeWw!+%rp&iC6MPL>rN-dZD^b!a2mt|zN&w#uI*K7IURQ`r`2}2l7v7i=?nebYBONP zc-5Mw@qo2JFU)_NcI+)0i!|@gkr0-E?1?}njJ`xmxidvv=NeAvgxRM<4X@GWuyVZN za2hB)ho-JK!_TZsUg0bQXMB5s6gW^**PkX1M%5>aJ^|u6RrLpxRz|MT67pOr$gt`> zF9fb6Kh+^GLv8}nkUVW=kwaB~hxQDbLiNMMay@VZKr*jJw_eh|u{mk>h9~&-`wvt}rd=UlX+&1#2!Dy(fbT3?l@^BKJk^jJ+?m@VbFz z;@3vqCb!HX&dXQTuR=o$lb3^vl853XBlqyaFOq`JLC#n%vL+tPa-!Z513aJ1zbQNo z{kguw?|V5`Z1BJ7@Vt9A?F3Lt=-GAaw>Bny_}bHMfAr|#bsFfN4=R6o@jeYkI{YMO zHQwvGiMBntqWR%9Pk7t;X$zgd$~jJYe`SY__rd#{?tb(UE_PzJ=!lRU6^R7~X-UpRfJ=v?ub-JBu@X|arAR$44Zx#h;+C%TXkRFk|YxN zh|{->%x4r7*E#SwGNcL&`E)relsx>*`DXQXILT)A;0#EpfvWC26ex3b@X@ryG^Du!FHk+mNY+M_~l=K}jLWl=tHM%Z2p4 zg@2Z`w*`t8K6@w-STc?^SlA9-pLjyge~$eURXKXJd@d8aZLHD4ClNb}1`2?+gXtB~`v9=biZ0-2a;U|f;<7Ro(p#Ep^atC))lz$Nuqsmkb=1 zc%Vp_g&S4-=kyl*eR}n$xfO6ep|5QgZkieZxj^(|se|VF@O?Tp>c*DmJ=)p!80zAq zm#m96F+s6+TsjvI1Gulgpv+zZkm_as+g#GXAYa>TT$^{KvVf#)zf1KkLB7k_FX>6x zemYmZM3@NjUB-S|mfU`q>ga-em$6^ct+D-d_W2uaKP?N`@8vYj{Ed_}l?5by=jBt~ zP}N^^!BAu6w(n|wyi`sbB)jO0Ne}{TCbG>Zz+6(cB*utr^J%=7lr3q$@3?e28Y=Xn zQN_qVUsM_1JeuiSF4zi`7~pLmurj!L2>PxI3Tnv%62Al)+dM>Vn}u#m5IjG6%4s1a-8tlPW$sZbM6PEa9C&yVkSPrI))2QKH|BHGgYDXTa7 zQzI%U5}Gv~`gmOaG|y)3!~_LGo1g<+kI|jx*(MrEL5<*0uU4bsV@wR^=};mnDDv_g z#~5Kgrfn8_+GdaqD!ys1gNY#PJLk|5d&$7AAEDnu8a}6(8DySE3)S+06XUX~d=9!cSQQNk^Ol#LX3xEH7v+p47JiNe4x8FC>F2s;nIwNl~_NPao*9&H}J zAhP-1tg3%lE+m?;X5z0K?Y~MFR?%jz@o=$smgaxD-WMBfO8_n^?2w^`5@ zW)w)D&D77y_V6=M7vDtpEAw5w0Y)L!4gG2NtnYO5tJ$UytL=z@NWVAv(^5IV&tL3x zv*r%(MzM1I^)x;A4hC-yXfCqJD<&b-mGaf`{+JgUMr~ajax!ZKNz_d)!XIkn9c|sl zL{_lK|5cfDOvD$uinn#g3^m*AM5ZyAlrGJYDl?3;*L)g{)Ek~Q*M47Cq`Y&OsLx*f zI!aX?pPoJF4ElHN+3kspqoFP$Rs1?g_0EIQ@VK)-I4!Mz%pg|2Epj4wPkkQb`uc-& zy1soL#=3}~hmV6yZ>LRlV=~mG>+dTs(DdZniA2N0-#CeyZ=*!Vw6=UW>f8CnM1P1r zei0kVw?U$BXl{VyZ(lYZ=@4WF1HI`2?ah5RljQue{&PV|&OwrQxFP?1D(WIVN&LE(s;cWL z(_>#{w8~M9`p0yDtUG8)j}77`6XQJZO%w7w{gpkMmFVB&w2!V>cw;Fc&%X#jod6-5>lF&Zv<+WO=U&}alnBNCufl*;U<3xlFa-d*<}?eia{r#rD-SUomcg^0(IKS%2H)md!_a2K4HFHQmjr)hk z!`7^G9(D5=ye-NOI^8)PJ^o1W7;1;bMopX|Z+y&+<}ql(VuL0}&5@N~ham9r`3C_d zJZMFWKA(y`r;|F-qyH(X2T2Wj9J=RlK2`h9C_C!pn#`xFPEmHy>EP_h?R25Vl*b&~ z9zzZtL4jE_q((FUVnb_w;Ms|nS&oYA`YY>kfJ~zYkK|pCo_&}UH zkTssmctNuaMJ|x6w4lTAxEgfsSNsn2 zahIlD?Ms_4Q7^P&P4`ztou*2zr`0Kw9+dl-n?{~`UTVs3Mop%gC!CV&9*YXn4`?%- zf7^Im9l8lyTJ>)p#I$GQFXwCBdHR|uI%sz{Cn-FOa0%ZFlZW5(c$G_T!_IXpUF!VF zuUmQp{aa3lg9r5RHK*O>9WgD6QD0el7RUDB=8NJ!oIbo^mh^!Sp}V)J>B}?Z4-uvl zh!4dC;;rueCC69y-7_vdgpZI}@<%WXGX{XlAxuHUUflckW=tZc{tBcKQ%wX-%{osc zxayyssp|P<(MJ!TnWf%6MpydFs?xdiGBwT&sJipr-BxuowXW;z`%uvzpS7YV^M@*) zs?+oD`n3vOsN9(r7OO$!`bBpI@N5f<8mOyTEiAsx^Zp?5zC>NC4^f3rWjh5?1}umJ zRX^(}ai%YU6HJw2&%{1=2M${mJ%`pClrCO3n#)Wdjj7yJ%RV#l-V@28in`s>vncb^ zWvYeJ8FfitP9Z&}&(>!8R;-i9qDPXc9o*@k(3|J9sbbn`#0x6(7+Opa9X*UDXX?kS z%wwn-CpG9%xs9B(u4rF!JipfR7+Sta4*Jx+;W-WAPKGCL2hU@!Ah&HCw}M~RV6?AR zi4U4}_xlG2k6EF|;BiiB&|`nUf7m@f?mlK!K0N=rX#@vty4C2wKF4ucS9q)u+DQ$1 ze9OV~Q&Ja<%~MT&&cu6UG4KO!rvZ$^ngOL618JBbq^Z%<*fgG5$exJnDnE#jRBd5UNQkr*et_l%&W1+AZ)@U7=|<7Ro{aZ z#!wR;yx)tZf zta2a|Bj&N1b%Ezhh}_5Tny{^Tb`0b)3G>+E+VD9}A^z%f_F@p!c^*{7eWYO2iH z?@I=jaT7%qY1q!$OH`_|ibPZ(LSD7z?5%SlDr?osS|@F)Ef#$;{chJfMWbL9CUmc_ zFlEm_QHy*jZJ7?R^i(NVY?m-`C~EUo%8c59k(FXLGABiRU&R)wG<8z6=8>Is0Ou5G zrDYiW_MB?VFp_W7LRFSw9L8JL8tz zaIxuG3Hrelc5R2Rj78!s^ftZYP?p52qjI=x0 zQbyp<#xlBU7^Q$o89m@x+04V+>lJn<#hH!YQ$aY#uW6K&f6ldj^`w^as z-R%^CU$;|4_;$BbQk+EoT^7C=dmL6-Z5*_z0xD9%;URMAt(OkUYF(BM2?CX{I6K?+ ztv*9YFrQ-~+q~6Bhy-;I4->R;=Aoa%{j>cgy+s!j*;=#jo1XA$i*_A)} zO7-aF!4k4W&)Be{$Cir3COhKiv)Z^?J&zo>UljBQ6R>)$oAb)DOe^byHWQUKm?acQ zp-q;9d2bEQRhhtbxYk=es%M_E>w98Hh!Bn|u!X{U5o;4_b}rk>ngKfu#&kLBpdSUR zD=bIFf;t-ejEYcDLA5Q(cy6VXb; z3|Q*Yoz5oxMFr<@gE}|#RE(K~2A48# z-22!ZQ}Z?ElOzbYDGwIBThPmQT(jev9qiv$=&3EGlqg+Tmd!ei7JCd|EGZMha=_Zv z+#MJ-C^!&iFn7d`MFZnJus?yKdK;ITENCE4a1Mv8wtqRWs-izH9B-r&jyFt5=8)XCPRiU%A>6&`BJJ zu$sHdNnCL95Bo;-Bdbe5@of_aGA3ZX1QcVd9$X`Tg0%7y(DL+&YuIk7OnIU?zTgMe z7RxY?-iRunX}l#AdoW)~s)ssqlr=x7O-ARbL7^R=!| z#j=}vv#1diE8)>&_ZxuOFk6kT2K~~}3NF}nzJ|}L+D*yAq1n-N0TUs3b8d1(qSc-~ z@}=61KA29&9#K+n(3z@PL6>T^2uuA&X>aln2?^qyLsW4hwqjnStF^MJDrS(=?M6Y| zjoHjY&L!a)264rV(=OP`Azv|dxD#05C&e`hpj+rg=;Z6dZ8+A>%!>J^?5svL6;lUx zlm+1k?1o_w&%5^P0xRa9vh!1R5`Q)?`}Km`lb5!RP?nedI>PPAOWOyr-kS^;qcPOO z;(MjR4V@l3RGXQVyRu^Huoxg^Ky)#NWdh(F>EhMZad>_ajtj4ZcEizX(x*B{lL_G( z_T%Z${$P)a`KN7()wFuW)H@uz&ZiZP^u&i@r+h%U0{cZb6(#7od^mQ(XSfoe*DIqWQ ziDNhUEUaDL+mFwJE@11eRJfn6HXAD^LdDcO3^^&AwY4zVh+-I*c&|TRMq3g-VHK`j z#XT&?uJgHid)PI!R|%gWy576GS-GyN)}QEl!eb35yLzxv$vYh{wMW7ytl-k;jWDPdF`41OFY6)tNh0=>TxTWL>NeXr&kOG73}~5N>nvM$Dp5 zx*MVOv4IsOo2p@CGw)L|^-d-g!geI0EXJ*rrPbB2b!l=Agr6);D8uUO0V)D%sWb@{ z!ge%W%wf~g1opzU(sueOO~Qfj>(3_hoBem&R_Bpc)Qt{8Cv2uTjU#V1u5j)}#k^C! zv|2A#G4+l?gRtz)VKJ_E)5Ob2g&`+g#w?`G3TCxJtZI2_BnZR)d@}8>doM08H4LE> zHWAErjk@es9RGHtmsyh(Kj9U&)LVP;&Sdn`=NID$-0fX(z{g>4QDwD$MdeSM!WAC| zm&t>c+s0Mw6X4i&K3A_#V1xJss-Gn~p3FwD=&;IJqWlwev4nD#=uwv5US-~_;#s1Y zI4qB_I!hEIE9)YR%t<*{JxjDSb+QD)YUNmIk~xbW?!#@(un}lBvhCGMvq~Egt5c0j z)9a)dsn}O%lf`tKV^1*>>~Itl)GwGo^#$K*6;Qe82~5J^0a(<=zQq8t1n@n!DR1bRBZ`+@{QV^C`;H+V2Ta;6P~>75_TS2 z=~2x5g>-O@UDYM*7U`2t#cBz=MWQ*~%Kfl_eLPtVhmmc|V3AkauQ)?5VG`k=U9NC5 zMJ3=?Ck=KK56Eb6TdL+dj;EVA(+aS4;4KUeAMsY=ML&Qr8Vv4ao^>U)#L z-(Gaw%Ivejoq!a`vGILXl||4ooEgM92%9<6gxj&(^t+M%ij|$~x(srg>#Co&_7>5YFd-8~AKh*E-j<$*@|CW1Vh? zz!rsr%KS;ylzD!63nn1@i(zQBkUtLTi93hW_4_Boc_Y=GgVOG{@v{I1qOK%cAq!O0 zvy~OKAZ4PQRwr>60yPy9i?7oCNw5KVjxAA@`;){+YCELdpLCL^*`z3W3Q(L@_a`NI z)FL$@kYcTRf09)Wq*u5(&nU5nka0V3Mj3e?9xxvGD$;KI6`(<@-W-F z-0Mc8>F~OpR;^u{W_eCTiS4?aD#_<4bGQt*4o(*Kr#vYtVZljW3uZOLP$}(>Ku(G% z>`i8~-XyfXGqqBlX)X1@M<6GB9_mf3_aE1!Vs%DxrLn%ob477ENSw*qa zGO?N)u1ExNn_TSA4XKo$cPYesD9xNJxT=1zrN`@sOuzPW{+AYK4 zBX!`RjFM0DG*v6V;tYI}f$b8CXOUxcrfw zd)!?O=iTJmaN8Pbm2s-NR!g$1((GiR=0y_@zTh!Cc06!-=gtA@@yl|Zb+Ec=4kycn zvrcaoCMRyZG;i>n5n0vSz1=+`wX@NDZBLS5k;0lOf}-AHj91NQo$S1bW-b*CfvuAy zs(4p@XgRufAKSJLUW;x3(+aEE4W~U;o>r=Drf1ALtqui7BzwPn7vljPnRUfFr|Wdo z2b)M)h?65Du)6|wZ!+BkfzN_X$H>ju5Njz&d8gnA_S>3k46KL7MM`66S3a4E;)^HaR7tjdsK&Z-?pJe5u&otLuR96=j9w8ttmB~2l zu1&Hh!mRT%`X3jTN`j2Qmdzo&%-$waAG3?*kijB=Wpl{hY}e*cVk6L{tYKrzcI ztX#kg$1RBq$;B(sadFJ`~!8>6(Hg;Ex1OhGlX>^v(wM zY66AeTS|vG4b@jdG&h)7YZS}?iqRlNnGOuL1IiQ)L3v!Us9nKqGCon@5S&Zw#qwfh zCFj~A>*7kC8%@eQMMF>?TLC-YMQxXg*~DWc!4Ql`g>CGrxc4-u-U5q;(2adAh1dvT zmO*}0Si9Rnh5`$b;R)5Gb%nA?@2=t@NRNP7<-oL-h25mLNuUsX$E4ZkN{mhFv;;#i zKA3nd(`Kn5R^6rA#G7DXBhVj8UNftYEpLu`&POaw98VeO2>gQ%tbVDww>M}>4Ktr1 zYii!RLPqWR6AsH-B5cw&sdz}~E~OT7!wMyFHnBQVG#q6(7(Z5>r+Y!}JRLs=JsJh8 z;pMI8=S|S5vDBHlo6@DM2UrqCQ*ufgFcaWS6t;AAf zuVh3@;AnXXlqN_@!|a)PIhLlPm(0!qE*;nxEN45nER#)#0=Lx_SO*{wq3sWP#Rs#b zrJ7v?DX7=h2L%`issjwwT4obgSyr!W1Z$1p+86Y*ec6>!H7LP8U4(Q1=Fy8+AlVmT z16eT;L{|F)xWU&=5jM~)z(7zPV5qLVW-$;1*Zu%bYPjOk0t^Jz0fuUq8(0l=i-9n4 zUHMW3T(lIAEl1d&c1zBUx37`r*vqo1fjt-!3X$Cj@gf>;gvDE>>|vVLY*m;X4MBQF zARUHqGgQ15tz^$b}AUrD&&fqqA zr$RM{+*P3}kO*d3t1h|{Yx7zKPzc8Ty)b7s%~A@fcGmCh7zToBpEKjGzP+N`cKh9# zb`2y2<|UETp?d3sSUl$n$g6aT- zjBaovs|H%dKu}yO!-=aNs6H+PL2xZ$5W5c7Su0_B{VeM<+++hXO0W==`&UXfG1*tj z`ntw25LEkCdslo!4-g2ZL#u2nLC(anWjUnnYW=<_fkChxPXfCRTYhu?-I8R7fFU^d zGvBeBCZxW$F$@IN;V52-#?d@`392RQv}kkBbt$V#9f5_s$U}+ z27>A+3vt<))gQ5^NC?7xaPPVs-EUBq6WWd)08BR&UIJlXnDuKUf*`U&T#l^lX1Fvv z8=zisJDXu3(mDbmFrfj~wj2GbKVK$+5PU~vup`+usGCAkRD#CbD^&5`yr^EF8hX z9DP?_ulluA0wMSgz%?Mncfs3N(fT6`1VM1^kE2ybu95os#xM|6`@oUpM$ziG8UTS{ z0!g`A_|rsEV><7+KR)kj4Mqc0fPu*BU<~tmGe=&^`kpP0f*?B_FP7)Cpyy~MNd4YY z;2`Ms!HS?Ot@i+dVA{`CDY*evU&D-*QU{WcH5(-r53F_H4c<~$Wx zXWq$Kmcb(^>zjGXqyX+JUtOM)3|Uj2x70o7+nkl;u+D58%r?6{xK$Ip*W>vN_VgB1 zrkvDMH-DZzm-8X4gER9d;@am7TAl@v2aRM*FdcR$^O$4ftSyO404oRAb|E?}OZxALwN8N6w zt`?<~s_M-~B`*4|qhw0Z?C!$uy=dMDin(2<1PafQ-~g$>g%<5gMP^FS>?vyHipY^h z?xu=GB#!PUQ0`?{(ZW^g^X_^GE!`T74r3@Xyk0$qjxfgrECeZcwG|!0!|D}P<4!3Q zg8ZJs=y7r@W3rRI zc{p#;cZuw+KoK@45;l`@4|E7_1zySSA&W9M4nQ)UMMa+r>?D2SgLsVD`ZO$?N<=ZH>cSnKs!w4V4>){L{umWmT?}ccrCaxs4!!K>Od+h zeA%QGDIP>Pbh4m^ZY*b=e{{e0CXoTb}^ED4e&j)Wa9@2UdU z5>yI+z>$tK?U1Pn5710!%8rW zn{*oHV6RZ;Xubr~VfijK9~(%^bQIbFOEV|v?w07lm(oOF6?=Y?Z5E=qyF8f;o7BZx zh>~mxqWd^la1_nvSSN7=0Df2TpPad(qJl|HCiB|(qVM3)G^XK2SS+!}P~g4!BFDL2 zguy*_iG^T4t#XAO1#rVf-n?NUT>VTQ)5lcwIgz+TL4fjxIw=$x1%@uQC9Fd(IGVB4#_Z-T1m&V}59MS;=f z!@QU2!BKy3sYLYx)b*_ntR!D5CrX=iEMLbD%jgR zMM}HAisMq5B|&nO2jecQZnOeE&lq~S>a{~ktWMX47tnweFR~{Hk8p&G`D6v&GxyMR zo;`_cCpL3AOwo6|@9ojt3BE*vGR9iSjuU8Gf?D_U!*B{_LL-%{GbWMw5=^_X zRKe%gprNZc=OA(rb$G3R=VnD9#1H=LhmIhMr~93`+Tl;7jSI(0rJ(xA?nCw5ri%fmtB2Pa;`a0#|L z_MLU1=8oiYuqJ>al(N@qAks!CB>;kw+j1+zU_K8OW3D<#-Po*S%NZ~T)TG#Ts7(y@ zS^_ly5R}Kba!zI=GPhV=ptAd~B}qMhf-xy{I71v}I^%WlJapIkE3c}K(Mh4}Fv_3~ z;z{;0xS}d+wB)s5Vg=Qm zchzy$8S!RgA)t9Ho<@ZF0$z?9-Jy=RPSa?>AW+X?T~6ajTco)Xn8$mRw~QG;2wXn8 zgRwI#Nr~q*Br5B5Efp2{5=^|YPTIllV%i65y}I-yusZD^&77d)W6x%b0_u!C^)&&! z(@3Yq#AHr1&fd>eq${agsOVNCv(MqZZzcvJGu|GuPPaRlq_CW`Qcw~L7qx_H~ z!NEI!2$jR)CQVnJ&Y$E>u<<4p_HJ`$V*|fO9W9sn5=^`T;#Fik#p;*iR#s9EYge#Dn8{hfwPD& z%wS0iS@2t3lCrwiG3l~F5VU-9JUe0&ffn7Ynb(2kpdfg8Q_L5Y;gxC)L|Sp}9cr7B zGr`3tIJCuX4Y1Xj;Lvg>_;|~s#b{E%b*6~)>$E^=#sn1~`=l?s?nGH<0ZBd(f|}bBv#`G?z0uliKn$--o%wT~Hvz?)N7zCS zZ4)j$7>46j*gG(cMo|;bRh{NB2L-{)J=RIg=`4c&u_@F#9%~Z-LCMz&&EPU^Sp05t zU1LUp%Z{YK4+B!NsSw zu@z}BysI;C*eBBp!;5GnLr{Ch45;RE-T+2D^$j(Dhs|G@r1PSkvVhEN#0$df< zz@DqqBbfjQ%HwF<$I-)KcQS)Rd%}M6F=ZV;aRvf{lN+4rPLBpstYdJd85308bmK2K zqM+f-R2?@E$(vwH+O7$#xnJIFh^$uImF7%v@g7~+8F1t#TeMTXICY0mopGZEg23d{ zjc{CF!wt%HrW=!72_8Pq#y3rt5l9QDj=Z$oi}BT4JKzeRv1EWZ#|nem3kD>_I?b^O zfJl)K5FnC^RRVPe2x`^@8E;PDHMsU>!93@DSG)eTPIIE?656iU~6%Xm}&*=pczYgDA|JK;nkvVhknFTgRF7CQVo!Lz3j3g$GJz4-4L7_5`6KO;+ZP9MrX?sbe5mxw8xDaOX5T zA-B;^r8>?oBY%QXDRDOr^x7q^WKR(CNeP9;5H@Re;V`ydvqeXBCM9xE5WM^Qo8w>< z^+fGy;2x{!w9qmps1C2a3U+kBN?+!4sos+7Mnc5_u9`W4bu3<6tiaJ!-6TeHWEEwm z4DclTit>6ib1zGWc%sk4sD#_ zK%keGMCquBlWcG7&cZ3b54l2qFD%WErOGo32ltWF6O%I$Z!Mw)KJv?3$uXrxhZ?eY z>e-36cK3*ls%PO;w3Ff7?)*eZ2c&p?0V{~nF%l zIdNc`!r3tF2$+)kmzlaT8(q`|WTwzDfe^`^)86;sH1|^LDKjSnYmwVJGX)(h$3o!V zqrt_?(Mu23$;{2bTeMLnGX))Q0)_zA$~Nr4UqxCLT<1HPJu`tjM!i2rNtGgv1)Cngmu`VybS1gF7Cpo`Id; z3-K$3R>Lv4M27{v5RFHBq204tu*rI$eLR_>UWlZV*$a^v%0bvk;zU&od!dqqN_wG^ zuXB2#z3k+%vioQgX`9^AO$27IScXStOa!zKKXZY|T&`S-h^Yn7nqWGa9Fr6;rc;<< z!;^G#_v@8pl1j`R^_G0v$$>$z9_|gJDJ-}KSI5Qf81~6#+7u-@r65h;ZONw{J^u`J z8(|M7Gp-yuC4Yi$PvXyNCNk4ISthb1TY}|q7>y^>7|eh6^>{UV)L4>olXBGaC+H5y zx4A1Qt)ZFyN6Duhl6elUDcl0ytQ;HQVwn?McNT25D`A_Kp}9n+2B!C7*WGyotE(Vwk!FESfeD9vc80b}ogR&fuanT-}Qw6Jia4}M|va7CDv645D&E4Wn(;m@u`IJd0 z&6yxN08=9DI*op`0mmIQ6I69Wk7Q18-JQHDzWLQcmug6gOGLl$^^`tpO-@&6*jt;^ z^`#}Ljh+P#BELPb#D-0jH7n8TL$D-U1557GrxLbl7g!4m%a&ld3jl)Qmva`QHJIvs zpU9V>*$bgiF^2)4nbPOKtl?BQkY&aM&wg|zvPm>BLz}5i^;T2Oo1+Q`FCtTFFSodm z3?~rr{KBo5mETI1##V<1`{)eVT`(tk3Ql2+i`<*iP~cOT3;{SfP2X8YJZ-{FW=D$V zgx$28B$SsZaefv}Ym}yx;|P5~OdAC;6GEmIRS<$P6?4ci4l1N3r;#`~BH>j5e0c^( zcl02J-FA{vK^YWIJE5S%BxHIfnfb(dSrpyQQYsc%7AcYWgphz+>E>YN_PRZ|yN4Bs za{@(MqwNU@cm%w>zDz9cgCoeNaC=!7Pgix$7!*l@z^iu=0l1~y_N(uQM)c%>F6)xZ`*oDPBo@<=k< zpsvu!8}03bPShwDFQGRx=)vk_-vl3WOVC72C`!ePwz1+NHUb-tf#!+_<}JHl$WxnD zbm5wPbtf1J4QZx86u(`H8#6_RNyxxLPFW^O^X$BLJn5u@02Ku!AtLQ9h{F!>@Y5f< zvA0x+goIi{7XDZ`t05^yLStDd6`Xp(c2#)k)r+p~vajX}LPFuFqrsD0TvW7}u^ev3 zXz5&PwWFJ&d9N+8HZ#g~Ttu#?(zgzVLlUv+#H(PgbW}_P?UEQ+G;R+i(xTm$<$56S z5R^yUv~?1qIZ;?en5Lb4#EpII2%l*XA8}(wIl^b!O{by1aA+?{oXrLp1QgN7bMVTo zVI(0pYngOh1oatss~8vVYJ4+)8AU}9pMrPpj07p;W^Jj8iJ)a#oZ1WS#M@YlQ&0r& zNyRj9ht^yxS*2}NAaShWAbyOx+W4gw4*F!y?()`4%H8uKuIilML!I;c%2ytz6qEG8 zF>lT$8L>1EdXf<-q@#9D`6S!y1c^hwsP8LGCC3>rhw5^XaEUGzW@0#2ij==FCF%Q> zxQJXI6c#+1mIaHLEep*6UUa&sCGeaz&eA`cv&h(~{EPgfmNfWn!us4cDGfQc)t4kY zbkg#cJ*0`9dA-0@(zT$&?V1KtL?GI`a;1G0#f1y z>$0z$#50y{OQS)qqIN3m=0=0WMdU1Ji`50zPLUT4|LpWzg+{>NC$wCw#dZq3XiQ}X zT)-lrQ-3kPcMUG>C|ZhLSILX~#dhe$VrYr4n1)=??X(cw(UABE4cSl%wgn5%>lQ`x zhLVCK1Y{k6p*kA=PQ~B64hUETv}|>l=b>;JdtI3~Z*^2?1iYLnff%Lh$?M`TnkliY zz7!pyAmuL>IJ46yohnXq`K!6}URU%*zCSzBr@#nsX~V(T<4&*L@5#Z~>Owb4HViCAg8uv6di}PR-Quhi{uqZiqop@a}D)M;R zRe=N*fh@Z!c$vSPye{VEU6p`EKufzG-a@_3TXkL+b#uF3;v%qR3$HE^cdF;jTX+>3 z0e?g~I2$3Bvm^B##1aU>cg&TCRU#}p+^@L8DNqQ;`+T@kCEohxNe(Q6{gm#MbfX6K zTL>Lb23p1YxGm5scqm%wq;uf~l?qW`wmKey_PBi8*xf0i7VY0Cu4@EL4$j7YO_w+g zN9I8X4onHq++S_k3uYY+ae_Jn-PED_zEz5bl=VReE=dP6%-Iu0CxvX<9xhbS6?l%2NF+~X%P*4I;kgP>bd{bz29ynbC*u@ICe;f*sNo)l&M z;j;#ZV1+Y3N^i0+Z1U1=;pRSL+ct?|AgB(*9U~))gQYEzHPFHY2SK+aTyc#ZoU(B1 zYoUsTpgbzxH1uRjj71CA3k#x?A|VKm6Stt7>RjIrCtwK9qsgnh6EG~*Jgq4WB$@4u zJOc>X?%c+enWvK?t?xom5D{VCD_*#$;X2&IuuILdJFjpQ`xofhl6qfxLL zUfz0f`RZ;SQ(fDAJ6+p-fF)&j=nAF<>$+cAFlB{tv_;sM1u2q)c5AwG6C>-n%_FhW zRxCFKeJyu5_$E>cpJY)A;l*hPx0%7IjqGsmPI+OF50WxDKfZRy)~ywD>jb@dv;l^} zWE@}Kx}{pqxZ%RKffMD0{XWvb=}+EcWiI`1=0p|X(?4IA5OSfdPy7A_Z5 ziblEUn!0naU@8N*Msv%s7Y-LCty-h}4Z|k%$5f$2N^?VyZJR3`*_V4?P9v$x%^ARm zP<^AIx)#j(@!BjJueVyd>)sis#0c@%tHkHQc&%01Q7g0=EkgQDf;2Or;Bc1Kc@Mqw zR+tg$vH^>uM_mKPC=s%zZ-`J=K{r^K>}GtGWf5>JT{;%^W&d%gx+I@cz{eyi=- zz0nG@PtPWvj3o*{G?rxae@VMp<-_1mQJ?pg39`O(MT7rYtvqdYLjI45R6+ zwf4kc$sq~Ki_v;@JB^7yUPyxQnkXi0JM8=oI~6K~<67LBO8V=!83&D(@3Dn!MLe?7 z2NUDe)^0}~{k4!O6H;y$5=W5#E{am!HduqW$eE* z)ERp(W3y`%Wc~M$t&=tT%Z;Sqy>}@(SC8E$_q7`x%-a&Gaxe@&JSGsY?XpgL>TTeW z!;aKrnEh(Svm<+2f4x!4gfJY*()C)blAyn-BuRwuo6F!fv{%yf=W^Hi2)6a+T46SM zBb>$c=33Q{3+7t)$UOEon`>3_t1{QBe5TE{W+M|4#i__TbFEb~tT)$MH5YTP6;|K6)-;lxI>YZA>kZkCrmMg@)yPQ#gxTxYgD8eu zHJ3xk32xAUHD()Nn6*^-tOpZSs1`9I+=ofbmdJW(NeKnQZaRYUybwmKYxC|XfR^^6 z_qNp9*HNW74H|^y%5*Z^gmtdox!vcZRwm#HBjKUb`Ve0P_3^#6hptK)CPRCT5~00F z;)wpGExum*e~k+v`ugN0?QYtlYdsFGQM{B9A$?JjmfcWWj8}YAT$2u=`$+P>s4HrV z{{@fyi}(?NJWK`Rx5wpqrFQU|e+h6xgz}pb%0~ayR>51ZwyaUr4N`>qJfZHnZ`RA% z%cy`-Av8CWcWe|37iaXNUg@sBy7s#xqyfrsw>Hc?TWk2y)_ND~1J@vT)h!>-_TDDdN0KA9>h^}m7 zGFyft5gt8V86iX{ud6MBuR@knHAQ!y)~!Pwl>y<_XKyM^p;qWFQyZk{nDlh-)HEmsw1_|i|+DZYp36yIIJJit3u_bT4y8e4B=W-!TDbk#6v@8n0?EMF!l zAxE4KTdy(AS1C6#(P!dGn-Zouf{^46=W>IeT$RgQZ#<-izCH3Jg? zwJ5r7fT{(4q3eW!g(yT=MLSl~p<4l$-U&kIH#;7z>?OHRH8%o-Ogx90ud%XdKL< zhr?MFL#_cik2OwGp(O`iu0c!WJZdCkL3oXNlj$bx5*W9{&0|XtFZDYXo;HjK(Tt+B}53jD4ebI zTB7E$)EEoGYi*_4T9nGtOglR3<(ZZ9=l}`AYRWHrhtoY<>*=i5+tgq;oCNbOk|8Xk zl}Cm3#aQUPCY82;R~BiilpgEa3XJ~=uffU;#?>t~BGx{V%EId)4Z>`+It%&{jCWfi z=g~S5ObEZh+U9i97CDb4hcpN?IQg{A0jkGdJ0U{Y4Tk+kMU6umgjqBUXKghl9@|L9 zg7Sh!^HE?OGZuu``ZyR@oFuB;FsHqm^|Wo}JUW~Q;Wi$J7w5ssyfs_PqgO#vAq?AQ_WkAkrcV?lV$<7oifH&-^h^N_8QYRNdUo`A2cAsvkn zVJp@$3rDSAwtVSTsMnJ$g{C#nx=z`83r&5>IevDb(*E7;I%oeXZ8+akvc7%rSAwkOkr!Jb zTX4+lY^}FK)>mgX+d%qWVQ&c^ce_@H{~@B_MM#S>Zo!4$ei@q%ePMF6;@8&+`!_kV zy!@hsTX6R4g#FiI)AcV}X#X<+I$QtUkue`2$oiiaXrHVxNgy_{wlP?vev+8SRTXN9;U2c+Fw$GEvvvF?H(p=fN_M}!qUwk0wx#>&wxxX`oSqj9 z8*W)j5W;q)qWhs?1T1fA?G#?)t->MNzFK3Ol66jGdy@6BX4c8)Y)hJn(@SSzf6=S7 zImtR}3`H{BeFcTEfi8`B zDc7wpLrhAc3ug%Ut=R54=;iPb<51~Tj>>hy`usM_lsgESl*CFjhV5H$MszT*w%j2OJo%1oOfCo{V>V!F{i7L0w_-a0eqVC`3_npuSexUA zk(@?zK7XTfz?GA)<0~NTS56M$^7mlY4Th`X@+`Q#_1cO{D7Ej^<#Z8UOL-V`+RZa+ zx~h(#hShcUUOw`rzRE5SBGHq1jn$S^Ot#sQwRhG#-Rk9)vlQ=q&>u{|tg2)c){=2L zt7gActyV^`s0%5PLcOpY%zJBa@#thx@#M#P;!fFGp9E4bqYfcPIFI27t7=PXYRNmL zYHwfE$_TD07}KRTvwjq;uD~>Ko9b)5_qb+(3QnXfNBwFiI@ilPElT?lT)mf4E8F(?0Ug5cVF+03!i}M-+Eh5YdShN!u&kE-3W$pn}mJ$FbSp0 z?|9OVYj&`Is$KNPH7M$E)}74y@ElFp&1!9upINVjs#S+N8T3ejzdjmA^C%d?_SEit z(Oa)}&~iN$Oe?naM)G@kXEBe$*X@ zs{z{p(58Mvew!VqaZ%+KQ?Tz(y_oZ+0lprDh_T(KIC%2&Px(H&=TAxLe2tur9YRN00 z^S58UR?8&nB>W8@fjGfh46Cm|(OaKjU9;m(s0)Uq)Ws>9?eyPzq5C#j1ar-sAV|YF z?FtlkOQeAuDd|gzFd)2bPlI0U8|}1pI#VJJ(dj{?mfR1z6k6)^5`u*MXC%6iF;>3< z6=Jg;b;uw~gz`ut6k`Z~1w?Y89g!GRi9m!!(2~V`U~cb~Vbq4#SFaTk#d{1m;uq0v-o}~F~G48?E^FEsfxdL)%$&*BA5nKvYe8_TW`=hn& z63b3Kl78yCpDCt?{x56Apyn!;;{H9kd$7F)Y4nOIhs~s8nUD zk;$ek=#GcOtDmw?hEPtA4<1b>^R;e^+HAjKwqhB_gbJZ6l{%iRu#x0!HF^{%wN8dm z4%7D8M;k27Df?q8EQ>S6P51=<`V-0JjP=mRl1oMhvh1;{Ng~zWSJ<|1_xk7ErBT6o+g<0dy8#PN9Sz7Pa zR=?9M-#m0evN*~-Ut?Q_<{-Ws`dQa*&|1=zGU=|#A2t{eA) zN>k}IaHMRlXH;tB0&FQO!ufnKABI6Z?^ZjRs|Jpgt>3bhe6o2~JDh9#^VE*%lI2pPnh9kCeb~tN|px64yxtRPG?TuZ$^IOovw$@iB!}i!&dva^3Comyp zH(i5U2%{Lro~@~;S9hbNLs*X19z{Jq=c4m_^z`^^XnzxaQFMK4>S;YkRHyz$*Are- zTt(i41EX4_=e71pI)vq9G}#E-@NCO56|D5KJ1MD7845Op<6s)J*F{*bz^X$Jh!AG6 z*dEksFX(kttTG~8-yq(IRpFEFM%ZhuZhD=M%A`ivFGQ5ZxYe?@-VR+)o%y*(oD<3#TWcdv4M6FzvX#;%)Cl_posw%!$^Di#nMoylhqKB2=Jw18>pL=P=uii#5Ox=F zy~ccP7RGB}<5#@@xdw(*kF8JpsF6#@phZ}}IoX<(PB{5iW1eAKq=2ar9EshS6vo>va+g=wNC8a6J5$Zz0+nJft zOS_F)oiR_9l76)I)ftml7ZN@2KZm84ve&sD$%?48sL^sJ=+RiCB{@R ztxw8n(1HtYg!sjTcnectx`umQ>YUOdbj7$^%$Bq8q5*K|=^%fB&BKc%3W;-)zx-7iTC}lDvLeTYs%ssW;8n&qygeVco!->>d znS0XJ!Rs8lN{mnz2gw>UH*ITx^+B=?`a^>x5rsTHl-(TmDBa+h=mFc}s8A$g5S3s) znRdPJtGE)C0ErRGVxV(n`hhk^cNyy`1nG@d7F+5C-3DpSEVHCH0FVD&Lsy2h;eK9k zW2?4Y&F6JRw6QmPLu<->cUzLC*YTT1im33gm4;dJ^tv*}Y>Lmfx5r*m^g1j}`H)f^ zwbR!~j$U_RWb`hZ<}Uiys;1Y&5=>sST-)hR+bP$K4s_H`&)F6~qpv)hyF6ih9X|)@ zx;iclIF#r>o$m^_$Kv5muc~^u(|9r)!Rf%Staz#u|4cp3=^Q=I=_pHguX3?*jdPqZ z6Oh#rTUp@;+8I9v5K=*VHI8hu%7q-#WPOI7Rnj@fGWGDTP`KcFHmcILT4kB8nLOvT zEIKJ>S}d!x$zpnyaY-=~E-TR(EPvRc@0*VGIcHWy4tK^YunD6Oj&NjY1jCA(pR6)Y zb5W=R6-dchkngeFLWt&aJm;+3B9aAd_I) zf?TZxQwD_KJmF8;6#pEphdGrBk&qxX*mY$R+_INjxN9(W~k%60%`DWVQTOgQxW z(Jbn%4Z}*OTv=x4u|yZr5xRd$jDDLdwLm`A;? zw^l=^cfae#LnT0{O_Mhsn-ZOz^?5iIHB)O?(3-rts_QupgIRA4cDrBRdQC<5bNZ=j zQ$9pp&?iOu4b4iK8CaIqU5)%mGcGeh5j9z_;gYVD8?iF2{T!9D$gwrWCa}eL7HovW zZZz(P7pt^kl|UHhgzu^LfALomd;e`EE!Kfk=S zt8%TMi(GLec1o}B^TsuOUS(=74(CSgCJ+ePZmoJG+}Ayx*@CH;>Y^$ayMI?8mL8$3M}F-h@MnAMOWP?scQlba>rP z=Q$BIur@~%A(s;|)dB0@BpPpovw3$K&PEGnwoNJ>1Z$mrI*zbD8_qgynC8+skYei( zLpYviR%s}1oq0;k+C5^Ob|(Q&*obXTCh1DOl5GVrdSL5ia`rTn-q&PAh>MYv*V5Fj zZ|jj$Wwu(`V&j}#%w>PC7s8EUuoVn1Z{1S0FJ|>U`B-hF`&uKNMr+zorzt^WZC_u~ z&-8XKeWOAnYBQdwIU4sSi*dECyK?!;L6`Mpb9G%7OenwJ zWH#$f!j(#0_qOCGm=Jzzy-B4j-z$qXwZ0y(Hpr`r4_0h$5LWALG_z7C?Jbb%#IU-)mi$XTy8s;nHHga~0b#=sT}&ttulR0zX$7W`;vH8~H$jp^oeHmP*Fer3H$ z`*FXz$%qhkqw|YkJdcKzE`Vr2&!dGYm=JzqPp~jQ{TiAmm|j|#)_a00OH|C*2ws__ zg-!ZsBQ1Cl(rgwXAK0&w*%ddUH8FrvJsROMH-{zps*rOvaDdL0{QEE|_@tuDg zQ77%cE=yvBwo=mmjVqmWDrA&>=R{^~tf$+plh2u{IX{`QDfVF4 zT@B~ma2SrlYR+wI0I3mfeHeyy+MO&Gr0B#A8Ceml)O%}4#4SFDtGS7hdic6JaB`~J!C|l&&TKYp=VO!Zz}ss9OA!eD_$i_vFU{4DU^WXj z*-;U&uqB2D1CDoiNuGw7aaA3;yNmDH>7e8A0_?x-t%u3o-TCKV7)gSvyv7iL5erI! z;nwmZ>hc=)5>moOpc;Ue+5q6GlPqsVJTNxi;7*=uxthz}GH5g5Vg@ARJ2XMm;JnL{ zvr@DK!fnB9HLfr6jz#uL4kYW_#S1Q(8su-Nkb8#s?~(u->HVv#ph$Bfvbd?X(!aza z_Y9rCMQUUXxxd^l&kT{@&azEqP$O@fGN+kvL5G8PlBV@#B~7b(=IG_Eq#@3$>m;(; zxbE%lW)0riXuftN7)R3u+&&Mjbx|M8TMsowXj^Z|k+>SIlbsjQv!$ZW*vvU6Nzx_X zRUcYj$J`r6Q&bK8l3;s;1s$_>A{~Z&?kq~qzAPh$GV_2-4bJwvo z^>lEsuNg*(haf#3UYx>a@NPdE#jb>TcLSgb9D?&8yZFWxK+{CDE{+bvL6Du`>#;+p zB5YFDDjtIL@GP8$LG}VIYXPMC*rd*IBm~_Nb{}gn&7R$>0q@QRT9`l~_zun{!{K(& zK!$@LJCuKja1FWL(LinpgkU=opI?OG!`q@%6DS1VA!rtJ&LVDGcE)jtN8<~@G`JW# zYnb;mDcS@Jk>0`F>G&GLYtkw+90b{s1?zy_m28vNB!NQk9o&e*3)`VJVK@k~qYsC( ziA%esiPi}$9AP;4mdB`0yTlWhu?K^z--TH)o#KYL7ZrPCWJGnua9fuJcUKnUp4@9y z=8zBx!9XEzKrW(mX!4{C4hQ`{bG;-^8hHd3x21V|PyveRtE2Mi6lW)dzxh~I`1u|& zFn;GjG!AE-#9>?D5i{eeMX-l@O;7Vlk)ko1kzS@d%!sA=PLqsCnH((|uvsQZhHGY% zVwp=|b-YQS?rSPd zIsU!P=zT3&c69OW3mS^e1tuY ziW&mm!tqoJT4NqT@viWci3;3RRP)t*jATfC&-2RXK**`(uZ8FZc0*2L>8LHwO`Y>$ z2f~Rk_JB)|$8Cb5sw`xt97{NOGcg2g`l4jlr&V7h;;P!G^+hN7uG}IOOsjX2UP)h+ z#M1hrBqLG?mVHrSfef7v^T*KGGPs3XOn2E5W-K_TJ{80TKawh|Tsi#VNZm(_dlKyX+d(Nnj9c z2S)CYnP#^wG6X?zEvZGH+45SZo%RIvOIF1~Q0{jpyw}#&JBERvI-A(V&5M>N6xhs$Km}+_7o|gAMkyMe@qNN4pZmvAi;wYk$S&;HCTzO=X7|{c>S+z(Z zM;{IZ{a^%rXIM11BugNRXQ~$Ua7h3}V23bxG3^KQBGvg>gXK z1I_HZ!g)BSVu=jntODqWw;CLR`Oq*JEjzipF=l_!YmU3_kwGNjrAg?^8h2+B>c)5~cVD)+L%Hjw__C`_(8oiP)p9n5(!G8I)S7RZAATSzhG0%Kjw}Bf+Pf_X&Ax=d_OhUooR>|34B>~ z!&&Jmpf+u{F(PtTbpc@x^o!Y^?xuR<5c);Bzamwdi__5!UaGA_rC}I}kd9*B=A>7n}e@lkBhgKr|_;Ho9ZM76e?6gM)m=#GuQ_c`Y}@7^#KV=LSapmNAj}k zuPHs_tScZ`37wvx6UA_Gdz3TT)wFRcylbSAY6+NxgskEbcyj#o4DPBpV$6dN2Ow?p z1~!TTBY`iiq9}%1?Z>KcXBBafm*25t$2B|HKXt}N+84uK>9NN)TIBEPDwvn9!yO3$ zlaP=dAT(Yc%~y9Fpu|aNNQIhC;%F|8fXm+*dZiUgz$7H32|k@{X#EbK*asxg>RURb#6ty7?ch^*4Ha0FZF`<{H2?y9uJ zNodGX-3)Gq^E2h zHP2`8>gt$kR-qCy$6Rd`k^9_>PT{c{3UvSy!MNmXM~DPzZtki$-svz*1m$rS;-)E) zFwGN6>%gS_{xR@9JE?OLrGpaJHgy~i#;fJ`=UEvg5~TxKGEk(+jk+sHt(H{jTXmTZLp9ao7-c$ZM)>& zv~?g!ee1+Yms=*JG>cAgvm4K3?U6X)aD}pjYM#blb-2J$k(z(p-O61Fw7I=w?s_=p zYPW+#*}NX<+Z&F#TJ+-*qqdJ>2{1Y~Z=2V3hDp;(XS*z7 z?9*_otj+!21RRm^QZx$OtX7Z$Zmz8i6G3@O>>Y6{*aMA6R{|G7d)(b#7Ae%`{eZc7 z1#r6BwBi(}zDwnV!`&$oXmh(X*^Z*_LOJGY_lbnr+}_i-n=CooW+Fj0ukpsdk~8Tx z4Yzf^xkn{MMr!>rSaRzYs)MrEc8VMajE;7Q$ii>lG9f4;OT_7BD}rO3bnnL!K;L%b z5{8LL^E8Aw+}t50+Wf#k35?)9BZD2w)%=gt*nx=51Drj37QOH-ESV+`JW#zzE*s?slU{MQA>PG`F8DIooz3VK&!SW1q<} z=S%gPw^I5_J&>g9g?cU|Ii@SNmSR^sMqHM+zD4AO!>u6_XLCC)SWR8YxafLsVX8wz5vZnIajM z^C_{J&WYe<-_+bUA#f2vAA=R!Zh*W9WtFh?C0kah|BsMDwh2GLFD3 z+5}>iqC91ogCr7{r*^=*vCVNpRyi6RiYytc6jcr!C!uk|q5Ne-RW!o01Dzr8({2SV z!4`R*tih_14F|)=?bz|a<()eR=f~IX*ebj974H2Ey7SE`Tme{e>1!HOZI_fwU+;pX zPC-g>QH#XyH2{GD0gwnEQlIeT>4s=7-@6zE>|r~A*Y?WJBXQRGuszU5LqPC zdm?W&*4|ls-r>0uQ7tXcCPBXkZ@QR5_7S=kiKp01JImtpj*f$%JeBHX=2~sydg7h?X_vh6bKw!IC$%0RqMs(8e=$mDcS%V*mi`a z##b#FZG^QuO}5CM0V8b==jMeoI8Q|4C>dcXF|`qvk|`-H%Mq4U!o=DsvOld-%dvdq z=}fEPaFMBAnS#p~hcPxO8sJ+ZPu#2wB9XQnU9APPehimemU*VE@-r9|jjpUxl%p$& zlhBZ7R1U*neX~3BRT4!922|sb0wqM$6Q#THWMvL(+q~#h(JuUoOeS#16h}&^$a*pI zrB&|g1%sFk-kU191J585@bb`ESXVHbL}mN=tcu&H(nW{PTBRtfbb>O6g2y`GkV1z3 zr>7>u%js~DJ^pOkHx!+kSg{xqn4}z*oONo_4`dFaE6Si_^kS!Fui&Julu(|A`Pl?rdK)Iw<=0eF#+%WA-|BEHaWRwYc z5gFbqV8YB2$KeocQ5#Y~T3VkH6M?)JK5YO}Rz%aKYbQ!wgoh+d7pUrLp#;HY6%L+5 zT7{Qev9)W8| z>PSZjkh-uImfiqR9eR;3p)@sB<_M2ST^^f1o{S$3XW6q{X`5D>n<4fh`@b|bi9JC_ zpx-Yv-H*_V28Z^*O^F|MR54{AWX?uaD6dXNO+| zL65nrQxas+YSnU(S(WIBo5~{*7TK2N2$k9r4xUSlj~C_|AAEXl21hneMwhoL^!)ydBU7?ra4@gWV)Qk93K{b*h#V^IQFr?$*4P? z%tp;5W7?wSXk^9&)BXh0VjQgitR^DLTeZV;F!UEi1fY_f398-k+G1rT=ca^0s`X1O z$&%v;2iK7`%{ESq;UtbjSk7$W#7Ls5Er;gBIE;xEwH|55%u_3IV(>`X_=M*|L~rTD zC`gX9C`H4^f;4hk7CCpj9F2q7X16y3F?GZ7d^VYutyeC{%`h~J=57npktSvqJR)Uj zD*IwkWGdS*Ah-y0SqAYmn8o3?ErTq0ga{nC?^KCozg0A>Es}i}9)kE7DV5B&T5lCH zD}35W78!v>Pzex%@l2N7T|liX)hs+5aX5H{H1ap(nuUr~VNp{s>juNsaCsJ7-nu@| zM9lp}ZS~Pm+@h;`&kP`N#Iz87ztx#Mvh+3xk0rWg+Vbdovm5 zj7*#qh~qjU024a0RKjSrY=xq|_{qoj@oOiY`ZvILS5I6_M%0rooh7P=Vye1 zyl6Uxm7-n;0H@tnlmss!BkM;z8E$y2^N#BWq9sJ6VH0nZ?E#WFpbC%)@a!ne|K0SZ`1+XWiBmiI@R!e-E+>}x)N~F=A{aNv;4Sc9DAcAW=A?~I&A0i zpeC1Ns~UxOF^B#IBS-!_$1P^w)amfgCOH zlMsn^+^@K0Jz#fa04N{{`ZJDw#!^=tH9Dq~_^fN^u!QW$M9=UBp9SxnQ!lV{%%p}~!@-BhY2r4A8LYyMh!N~mfek_yhZ&@?)#c*a zVFs|Dj3;TgR9vQ6a+raPr!C=@*^#2QJj|dpQL-ky=rDuQlya7W%k>}ed@}8dR7x~a zM2queVN7rrjd)8_lMCGlMk4RyK|dJ5^hsEDwS8%3sY%yN+!7GMc@l#cQ#fe3Y*MrW z(xMSdX)+xJ62U690gjxBdr(Qcu5lO56PDu^F*JCD!^vSVT6T`RnY*Bpv87uP@F?+25QbP737i zqCHe3D>EU|HRf%KPXuFrozorefnz4vH<`Lo21x2d-hl!6Xp(G+aCVQHBYAbz;^|7EIn|_O#)9IrZ`mSRuY~Ly`97 zq?ej=d8M86VTb2PL~@Xab&F>vcx}i@HpO#$j`rnznBYnCCdg1eyIPmeF1pSX<+H1w zVk~Gzb7(e`kD9kBpBr13&y5-Kx$z3hN6nka=U_ja&e!1f0ywz> z<_*y3bS)9m{&bvn7!$QP5hDu&n1y*}IL%!(57i6_s*~j-IJ;Dd(P&=FnZ+azV2%xW zT&&+M(tT1~c^RZeis>V)1XLg*B0ZYFqPR-pDahRVYDKnVt{^^~w}QAHzP!uS>=dV? zuNXd(yJEN=JoCWCD(Q3>8dAQ;#roUrqlW?!!Fd?guR4U-u#^D|L3acKvJbMTQaWiR zX;{h(4Z(LDLh?_jsE4s(Yaq2jreWpY`d=2$bU!8jl)&S-m z7EuqNdHPtDbUGXlDdSVgIz@KGro$R-E*7c^R2)q~(4J1v=C8i3l1*B}O)q_wbeLQj zT=V<}A>G{7wpFr8;kuEovAXu2gol+6%gR7VA)EWGs!$gamdJ=!9L--%TP2eeY{PcS zTs?avclB&NfDL;jW3}v|oYk`R(3wY=R!OI$t&UwPS{+*@;k10sBmb(T)5%&5do+JF zY?ZWAj16_rT>W}DZ&_$Pd=2|beHrLd(K66_2%DC2#WgB?vX4_kT@gr?6A^Qa{Q2o zdW#X;_FJG=rAenIM4la1nnWjoL4!|Ah9&v6k6UqU}+Kz8la%a!f3n=kZ}|Q z*}l9>z<6_9$~F~P-USw=Nx;zQBEhtO6b40eJf$h7pz=Ff_oVwF>(-g6sqTTGS|jz~vMUzKg60ORhZ0 zog0+5HC^6%ao&OX2@i2WBPo#Em0njwu;_C|ROoSEnPZPgWNLpaz9Se8TJ*N!!>q(e zPy4z$aB_OtyJ1OXNyA)-OD^WTwH7FzI}sHkDsBLMBhuSGK$(9#nWlP~r6;A7+x8Vv zVproS7n1E9EXLRF*xFZgsaqvbx$R6LsH{ue_Bs+%-kOfW3fEC&6b}CK+8sL{xV&@c z;5-wS%@s`G1ICNnEUsWmqN=vNb_LT3OsuGxfdypq00uO(UAv9&4Qa4trAbij;8z5Dgki`A_qb+E+rV7*B>cDa|)pn$gB!;pm{}+@amQ@sTtwm zr^&L#GN)kBn@1bq7o3b?&q|3?P>rh^4vJH7cbZ(0<-mxpsV;CqZccoe%6~jPK9g3sX(IhHz&Q&N&a}Z)%mI(|En@c@wfQ`c-*bcKgFdZ(k z?;fyZomPUpg$bpy?+6?mT{w6OaoK%h*<=}7{4_xK{dq4m4zdZ05R?ETvzozw!6~;oEC41Qq!rvc@&tJtjH{tV#@a?~2_$T7;AI9eoVaWf(=L<39Mfluk#(x_A{s;{JR{Z@KWc@}A z`5O#5g3qtR_)~oT4nF@Hp4EZSx`8j<49fV&R{0IL2 zW%%mS;5`_#gCW0$>HH&x?81Wawk6j2-ANO{yvDm_u=oKh7>LhHZWvAhI|#K`N#PC=kfRV;oE=4=O^7c6pZI(}KF{LwvoOvZFwURg^CvLmetiBLJ}+a;r{UZ0$LEhD^0(mcf57Je<9r(a z{u2Cs0)PJs#{6we=i@Qt3HbImF#KK&`CWYb0RG;KZ~p|Je}>O*#kb!E&r5?hV#w#= z^C*U|<5xd`zfWQK58(48K96Jgd5kl|=OD80Swg{Esl@XJPoWG34*?_X&Jn zhtEqGehQzzhu?lW{{DUZeJeg6kI$E2{GY_y z#{U?6_AvZ6F#J{c`vdsO<=2P(b(fIrzhHv8YCo$$9 z;O}q3XCFf@V$2YKe<%L_BYgWN{CyaoUyW}^_*}xbe~cJ@6GL8%As>y3@%Q-qk1+fR z_`DgPJ29R2;@b@j`A7WyIT-$D81jV}(#7YSFy#C2`B(US20s4*^ZhY=UXL+<5`Pad zo!4N<5T9R(A-|4qKNG+GEPVbphI|hG{&Rfp#`r&uzh8pSufdS7#pjn}$SOXs$LA~Y z8R7GN`222+`Br@X6+XWgpTB}{e;c3I;`1{w{L>NJkKyxKD7TCF_NOr9Um(t7;_y%{tH8%htJ=_kYB^E zuEUV`;`2io|M&3iZv5TF@C^*P3qvmQ-}w9neEunh_b}!He?JAo-+<4b#qi(9yq=CB z&%oy|Vfb;3ALH+9@OcJ9J{*7l7{>e=4B3YvKZ7A}$KSt+;fL_|FJt&RhFpWs$Kdlv z@a_L#?h_2T4P!nTfBzPS{|<)y4*vdq{Cy|B{Q~^;9@%Ixk z{0@BnG=}^&{{8}t^EdeWAq-!^kY{1Y8vcGIhW`tO+=Rd1jlVw}-+l!?KNdr7#oxb+ z&$Afv`}q40@cGU7dN40#+rUy3nbhR=`0kk7~8e~G_;0e}BIesustei46v5r+RW zmUV<7m+?ka^8tMRJU;&uQwZ?+HjLlL@K3?t|Ag#56@RZmoJ)hl z`1|KE{926p75MFcW5|Ev+fT>mN8sE4!QY>V&)4Jgt1p> zo|gts#PDZe%*W&JyYcz;`20Og^CR*1mtp(^`1=sX{~*5o1x)R)G2~e3(J@5kWtvG{x)K7Rt^Z{qJ~W6Yn!kiWo?2Qkfe zV`~46zyAe){}aA_GCuzmLw**YKZGGSVG6Io=NP~GYW)3m_-(7}+8!Z;s|&x82E$ze;B?!i*G-Zr-0!XF#K~d z{9*k4llc2C{QWZg{Qy3{7ejs+F}wmpz7W$H!0$_gFTjv7hWrjbw=n+m@p&IU@4)aE z;qMsZel9LDDneEu0e--6E}e)U$2`S}TzN^43QjTOPobt$WAw+2-ZX2Y2MN|M8j~ zgVio9Wqka~Vhrm9Al4)E%Wu8B^)!~`?%6C*6CT|Awrh9n96aX19XkeJcnH3FEMF** zeDg8vn>}&?VhTw8?n}(?5I)?u+8<7X-umSvHewrOVS7Bw2hIZ+lBlDss2`cqP(N5Y z2@IZPB6%uhV0`ji^AiDPLBLGQ!N?DO^9X?X0Qi+PahhQ0C%bOC6n{v*P0)q;J{lC-*@}-&1onE_vIgi8uGLU^J)luG6whlMws!{Gqb*WB10I& zMi$S`ij1hZ4Cp8CJOupTZI(X@Ev4Td5=H(Wn*|OPhl9)e z_+5tq=FgisK93et;pgu&KS!~oAI&GEus%Ku>@!)8I@t8X4;}=d-(%*aRgSDY@zd`& zKYbF*u@{WHOsE9lCuRY}%FY4mAHDZJ0QW{yXOUA{*qNWb#r*6k2y89vt#?<3lYnA- zVHP%Q*L%ZB9D;hl)M5mO1sV#xGwaJ|v%LD@O0XEt;cU~l;KW@yh5wr9a(V|0_2OOGeF=r z6O2Z{{N{G^n~!59D6E)nyqHe$%yeFml+T_lj2}l;M_HY(Dtb4GUA*Ze%%l{_sE>9-IjM{S| z>l;MK6+6oM@-eLGi%n+FWo4Brc>cE==C{~K!Wa3?(djIxTA!7d!0zLK`2WoA0NZ!? zD6dgEmz5`)Gg3SmpMJ0lxqXMp@na47E0ioUosHG?|B8)} z1f#4kP`$WPXMFcOW{G{1S%1)yNNarFm)~lBiTwgBHIyyP`@=52s3^|*2k!}tR&fC(5OcN^8!#sdUMv7*nvX7 zX(j5nWu<_5(-cf$zdh?qR6{&dh+UjDT@&WZ`!0YweTY>Q-NC_~4zQsmo<>7C+|_R4Ho^S^;TUc* z>GY<_FOl4RUjfNI=_tAZCjA9q;+`1uQ1pVtI(wE*VfrN1r?6BXgIJP8&3!F4iFUfs zE=2Qgm!$qwjyVJ$Q$I=GJbc71`Cz%%jbM~O(tid^{|Rt-`Yc*r%!OFYW#v{`fY^JJ zsVqYj`m;;|=3WWg)K`YlvUpP`e$7@WPdE3P zIhbcnSXF=w#oTWuZXT>_l{l|ga4{g>tg*hvPB8Ay0_iQm7WI&sow+I7Dmxsj!^Ngu zsBmD_$Y~VJ=BSyCd5vb}Y%&_B<7P&?EGh=;2_XAjT6_2JZvm6&4zR`s-|)%T?%?K- zjWTJ;b(WIkscD3%?_stcF^$aQ9!$X$XJD8~nA6=XCpuwf-jGr~E8S$mybiFu43p{p z>LsCxt`khB!%ghCvACcOWD|%iAQS4G zIzhWqO!3!P-%q+y8F#-h21n@4Q#bbo0mPp1I#S-#z!-bI-l+E>Q4IQur&q3>uze4b7z9x(2IfLHG+SyqVPnO?V}vwZKcPpqcr3;BU z(@6dDl&ILr?oZIM6W5^4mZsPS`8%`xHX9)tUSxH|X@qI4qN(wP8^H~0;J+ISZR??*Q(pywp2v(H8XD%aM*ey~G(E{R;)?}as*xAOq2(E)#Sh~1 zX*r4`(DWa!Pc!RTDJ>L*-1tKeG`+~0nu=J-F6TyGD0!Kc%x`r9{r0C^XnK`3HM8iD zX1G9;>UM9iwkfSf7PlkSiD=&UHY;o9%S7X<(RU(P^1YE#r+fT|tZvs~F=dkDf5Hlz zSqf`xPR0K}XI<0huX6Fo8n~yO45IlKM9dU%xW$JOAQLZ(ud zH|b^bZ!TX6(?nEmaihoI(6c&O6dRZ1ntR#46vD6hrHtRd7PvKjeS(F~E0t<*q1(6DeJpOH=EP~z{>IXptY~$h(=*zG zEUP*Dv#5tzRC6|~RR;38!l1|OQ5M%6vw7u;C+e~GM0Ls`(R?Y|uY^AIq!Hz(=A)Zv z%g${4r4^E%X;+fj@9D(&|7en$i4nQ{p!F>ltX|Y)t=~lboc*&9^|B_4H)&XdXZ_$@ zZm5*)D|BTv`@gCQZN~nEzHGDv1bT01lA7s9g<8I^YVF5^w6`^B>osAwK6ku+Pm|M3 z{p1*KvpT>tm9Z{znMo#XxIXP1- zBmOCpCMz;d0tbR;8mVpq*M?Yow1n7mSS)|$jXB0Y*=+5^4pPq>4yksM2dNhfi&SfX zht!K$>e!as%T4|u_Y#)dx@GM|5K=E27OB1s{xBR;?F12A|Hx8XcUdP{gxEi^*w!1& zO&lTjFD#cg?8Y4+{>knNlte=G4J>+#mVL}mPa*kcmfVIhoQx21Z)3Tww;hYUlf|}f zV@f)~_#PJBI%6jRh1kEcSRSh6T9uj{+X?a^`R=Y-ES?%QPq$ zXD?GgGeb93h z>)}rTj%eo>RZq3QXq{1qnqycEFYGvy?bLsGm~*e2LU{5PcvoDDrpGhHUw>4TK+JgwtmmKCaYQetcgBQqIUPpyqI{14p;U zI_zl|ZTPAFGMx4Rnn~7fSN_W5&txq2PE; zK|2<=r!U1{i<4>+l=*#yPvt9X& zL`LuCA+*e|SxYh(ePj2~)hT!OV{HB`C=p>C1?yLwH5$fw#39U_cp$dQ9rKRIGXB=v8J*Q@qJ6R)# z>r?`A3_IXdVRsZahj&j~0`M3H;+((zl$y=&G>zYiadRrTub&_Umt{TPbrVU*3;)fpAAsy~`$vpT;KD;JYFMp#|Xo!w`p zpl)K+(y&$i)wVFWA!c2u(L!s~jpc#1Iazr1aJ^S@14Q&PTipbJ&1P6c%)a6P#4gr| zEoroL_4Q{8QSyKElX9ctJNqh;7jZEtT#9cVK>7Ez^5D`fpOuQ`a+GkP_(xiCv~;06 zlP|`jEJ}Z>l}6{3dr~v`d0qMb=pF zG-B4s!mz7P5pD;ue|jTJ0`O1#1rB{4F%`BF!*HQq{h~S!=KE>n zpeaZMG~j}l3&Ahg1gpBqKq7P@CW*nOEZ>KE;~^V8C#&(Z1{)7^gP}Hx<$HsThFY3Y z=*&_!$~r(Pr%^&jGc(D&^s$a|f346by9g=~a+|k=*sHr@hGpN&h5d#Ku47y-zSRie zHw@UBXk!OL5|);HA>{3Vfql!?|Cv@xlw$5-!#{>D4KeSr7%Y<~i!qjQM0{vO_)8~i zq;c8Z!GA*LNUg~3x;;MUiX^tklyOsca40OeThlFKusVZ9j1YI3A+aKmqPNK6EGDr< z0x{GgOBxY=i=ti`etZ5-2*&zI5c2r=LrEGD?Dl7nE!j2$O9 zhFOmcgZ(&~VFaq1WPR437!ZvR-BUJXDT$2?DdZ>}MuOjM+~J@q&-cp0Y$4uy^^jR` z+e${9+1*EncM`cC8e=+U=pyIRIPA7v;XMT+Uo%XYclezymdb zYo*k*n6J8Sb%-V*tqsitU~YCO6YVW9SCl($akwTj&05uLpLfYQD)&Q8PMXI%Ul}3d z$C`-mq}V6eCy`RQV>O9s7B?HJ9P=EnN%&q0C%KS0cuAp}?=fE~>ra4~n~M6}#yn9I zjVWKyd%T_FJ6T zXBF5BlxRdYMaQ57j9Mlzkt6&j7LJe5?FyeHD|wEBTUmiMN~#7L9GW6;6?qMKhmqqn zpcOu(WX;lKDJ~YW^G@GL9$Ole+}<)#PB4pH9k>W3Fy7 zo?qyets`PWle;@Dlhb6Uw6c*sJ3CM1*`vu)I(^t4MpoavQbMg~w;`=G&?leVG#mD5 z(!R}6#O7u)LHWR`iR;(IrMRA{YH)^J9>$ofimYlP8(2@CS?KCjr44G*l))yfZ}1R> zR@EU*5>{e#@0(kw>68xE1S#FYY__ixk!N|F@Ozm_qBfJjZ6#4k?xINO=#qUmvQspc z9pzULI@XK^eze1#Rc2=KbRH*Gb>8eBSOg_2Ts9Y{D; z>&BbJQC5{BFRRMSNLZiCbjl0Hg|2AB8iby%3AGmfG@r(|5%jWT=fs)JZ98Hwg#bc9q^i=ZsoOy?!7QOTZTIXr9w2o=X!WaLnS>*JDU7!iG z5?ZZ}h_0c>I#oXKBW|Qmgbogk3*Q}^SgDkw00c3Qsr0NBhBQe!vnQFE-K(tX z4i4=Q%&&FRJ)?57qhqQpo!x(!T|(OmyYNBr8RoVLHr|UW!GyL|#pxVhW{%&~9cFN7 z0#5ibw^vne_Q2;D&l00^dV@J7+HHb48MrH+UX<>@+}>8XCE869r*nLdIoji%Q(VJBxH7_nlqxm=o!vxpHv zVJy)DVktVK#hFoJ%$Xd#;hY*OmQ?B4qmoxiWO=?wo$E3!aGh4J$rp&=uv$K+x9xJR zaZM1Zb6tVCCbsksvc&-ZOKj;_iq2>iW~6tiU`?ogRDp)$)r}Z`A;%iU&1T`? z#>FrfKJ0HYir*pq$Qs45&nK8l#()l44-EG6W922v9w6Xu(-D2WmPsu!vRZ>3uFf|J z2)R!a^3^z^%h9YJYZJ%6o)+f+Cl$7sTPo|Nv8AZ~vzbdr-)R82@=s)pSD*e$0;qMYJ`JB9jhU87@PR$%n7c!vxQjQgE2lk@${n%NSxqrYO_6E?fH zq9%j--y1P>Qq%gr%%TPh2Zn9~5m%@pEc3Al|5;hcxys0K126W`2iA~6gZ_mDDRFK8{bobfUF^4e!+R()w(R$e zMlq0DQX^&gwhb8jg_!9IuCnLb1i6YK@Ff`;ZHt1>G8!Mtmpsg@g~dkCv3$>$G}H@> zLfgryjx8ZE2se9(>`iK%j|!D~Ae*26G3Zg;sa+gFs~INqqe$dYnD!4=w( zS{y#p%U`9HN7R>iZyJwPT%$oy7ug7qsb4Q4n?>Y8(r5s@eFNckU8f8eesTwHICE)` zp`B6wMy)({)8z)_Hm5GLyD4kVx5_64^F)s&T}q~Kd_cqDvyX=(ZVzcl z4EcSy{UyPuk7zKoLfu7x&hlVbd`>azN zUwudv?W`T!hY16I3T~CpCEB0IVcR>2*jeMF*_UQv*7}On zXf|8G8y_`PAEThBzVj`34Q(6s)6VOxE1eg&g;xc)?!WlHS}> z0qx76h*BZivIk1*HbE(d++?OH^H{n<$pan4AY_)p-WkC_YP3em$}D}*tOdllH?jsV zvs7WXFbqyrDwj+q8oD5OZJ_b8oXW#2^?_JxCzkIym4@1xQJB=Rtv1p)S(7>kF>z@z z)O2=OZ&JsYS&YGWCOujvzZvVS+inkviZNR6v&J)qoxYI3{>8QS#vsJziW+#*Stz+`5h^m|a5g6+0k0RwHV~WgU9MuEO+4 z*5<|K6!1|DwoNKuG6v##4VZ4JF=dmw$j2rK(FbNVX;KCI5M$AQrL&vEH(~!h@}Huo zrZKeouZI~uMKIg49lZXlp~f)^{kM-e&DA(r{ntU9w5%{Xl>4IBe;IQGV=(SiWglx- zZ*WS&cX91R4K}cQ0)knXJ zGZedB0J)YS@T)G_6<#SvsmXf(6Y;@>-m+2x`$C1*`=&(Q4CuU zq^{RUS;>YA*?)|1I(sJdLvLhPK)+@XC%VwFF2C!sQm&Fz`RM=Z^VfQi?&A8f=VF8{kdgvp}2Qz!D7 zc!(t!0Vadl=%XuK<>3ZQtn%kf6(-ZUh8`0iF^dskVx^puSCb`_yR%Y9byYR!%U1dS zm~nk4mg_O`5j!&?U=pv|fysT1n8f9$PZlOCuw0*shggXb=sra`-5Ca4Q2CoiB^Xm> z54uzIL9M9Sg)2vmMQu|>m#x${V50^b zXc{(dP6Os2Xf?+cIec20mA2;7(#oUAT)e{hVf+n^lb9CXl z75PvojXGzp`JdCACus^cZN(hjMY$9xA7!sz@att*xLb&ez0$ zzm+-|@gg-iD;PMF40k0tJZN9u3}qM2zcP91tYFUX7fM}n21s5*kjrrBy$&e5SW{+B z%r_nBdO~GpgmSvwrJC#=+mdY$d>FUg4t}|&$-Je~bS;9YVcZu%q@;zBD>W@Gc`^p^ z$jid0?ilTAO-WkH7D@?+$RL@Gl=KBxgVvJ-wE3Sk6)m-SP>+F&quhV2tZKWj~ z+0pTK(Q+9XqvR}DlG0l=rL9*o>N(*V{v>_3Yx-KR zWTdaDO5UX@9ow>H75}?ele}}Ak{f!+{hGF2+tt>T=^oHjwv^D+ z%>2@lWD@G#tpT2=!K9KrR|=i7W4?Y?vsJM*IoRto{TZs*?>5m=p*1_?T)G>Z!1pXw za9S!sX7E=tGH${GHRq~oS~5#8PDWD_h&^8wJEjS<$gVGQlSO|4{o1khg+{198BSZB z3M~@IjDn0I>9~q8kQ71{Nl@9Zl=h+N)}NqxqG(6(3M;N&0KQgT(0R}r2(zi zn5A3aQ__Z|Ms=#|?krokV?fijnx?(yzn1kj3c9RJpSsI+^M;NK?bmDCr_H~1*;;G1 zTV}Fy&#t5JCQacU!>7>PjFK&u}6#c|UIHI@6$PYvq}d!pH#1SsLwFsztVy-^hwepu7L%P{D#ZxwfL?tsQeHI4Jt zrbrgxu}TklOjDOO@od({j?9ppt#*L=lsEL#>T^7*n_E)JS27|lIoa)o`R5N!uRQ@*UJPFq80 z=sLb?Md_=W()mh8jM8czk*Gn1-_Uf=n4fkf-Aaw$*0j#oaA`inWXj#nE$e8}_cT@J zBF3btdBYZUzW6}LhnkN0YCt(RE$g&?;cQo}B^-L7@I_7Gq}F2hfUHiy4BiFWcWQ@u8ZP zJ2mBX7`bLHzF-SVpVD?DwCISw&L|prsWcQmI|2&xeVzH>`3yHtfWqfBg=T|N3!&Yw zq4#_86c-Hst1)P?D|i~^-E^5{T2osn`k$t##Zaj!>NMYRqFx78uW72%zT!6Sb*Pis ziz-K`qupsx_NJz+#kj21%h`biP48%$=CeBlnT6pKo1S-R916md^XAAt*(hXAl4abQkhc$09Sc^;Foi1kog|w<=_O$P`o|umC z>$8y@5`@fCHBb3o^8`Dhb#xMax+XfU?)`=SysW6nd$M@)C*;|^hSYse*X7cd`aLln z_3P?(k`+Sh$}LFU$2fuWg)MDVN*CNwzf!esYKMKs=y5N!O3MV(6-~7+Eki9jhp`q$ zxV&9hs~gR!Mc(M48^Y3-Q5sjIV|RHVK~vVNDr?1RmgMnf^V+=V%M`3Ohpd*C`uH_r z;q<)~T1rNX+wy6f1bj6nor-#xtcY|MdYmRXz=-$bOWLRVs_c5{ibLV;Ca#?2#+9@$ ztaW(Dr22Nisn~gBf4PRlb4}NG`c+z`lZBE^A^m(K-L+}jNSY!(+Po~Ef#ek|_u(e! zy3pt%pHJJ*ouUp(%)=F78$!j!s*1GaCryRSACl^Fsj4V#Tuo6Fd{@Ua98PU6SCypg zCC5i@JSmr#<%o=IXpOh_eq>IqWhHmA#=W$)8%&p`BEY+A|FY5q9uGNnQfGilcoh`wK8F+o>brTH&Z_58>2;u6O{Fl z)zVg&TT`Ulu%B%>tJQ`|tXoI062V?qWvyv_GPRy);R z(}KDrD;~@m(?Yl!u3X^Pk6zfb2-n!1zzI_Z? zF>UFjIR(1?j^nzdegA7xRg&dSU~OqrJyo0O!)YFP64@?oxujVYy7f-x`lNjVZ(3QB z{Z3P%{&ShO`vsP8tOmzf4pRCpLz!V8i z9R4n3`e}Q5Rr;L+g`zy0<>y@&8`1uxrR7l}nifSHn|TbsRMXUQ&yO@Av1TooYg$@v zl1NKEvt~V4YI@QpR%)Z9nCogyLCZr-F#W*9P)X+htm#Nwnp7*1Xrt>i@o9@rM!YPv z`Rkm|Zz&UxF(S;Gcr>zvC8nc(Ex*^O;q(L2H`Ay#3ae>4OjR5WV>JzFi+i3i!de8@ zc0_NfiB8)voFJMwZ=(rrqSw@a~6Z`HmgMiaLisF$c3Ms5W57PO{U!I=4`b9#n%d|3XAIY%D=%b3-d^rsT78 zhNkB|v)tSQn@EDr<~C;Y&BU5bDfi4M^z@Yr(U)Hs=T4&Y?IuL%eC}zLPr18hUDE_U ze{GRZAVTN!cjlAai^M*KXwU(be-M@AUIetx;-AbSxff0Ko%dfvBDohCu+HIe=8$ZO zUCC#kA`;1#09t49EVD?q1d({2NF-arfOQW4We&-fFk&`$qWk}dM6xA-)>*v9ERroT z!w(^E5{YC>7_iRaot8KhyfF5DD;xwIb2w#Txg*y6S3l*AzV;E5!M*zGXraZiPl?aB z6607MA5*fKe9;mUC4wzvk`5;UNMVu|z7{ot+!gnAlItXr`ilc@60-zRF%t-V?3_^- zpj%}r=928NGqWXk1pW%~NOo8Q);WBYIp9vy$VcR}qIug{E^ZC`?B3HPmD^K3gmob9fRyNBMEl8F} zCgu!iqC4kX^c>l=DJM^ZE5z!(1g!Hc+I-DwfwjD0BD)wg*}W{gMT^KDOmnV)Y0qKN zW)|5TZMkkE(HsnI*YNb%Q`zUC10b}@a$+=INTz$^!M^W!?8?%g|K zLrT;?0AIssbzFNDN2OT?k!J`BatU_?+-7CbJ4(LUC+f9P9nz_!mzJXZ3h3kUKIbnPV+e%$pK3gGX$0V?_gmk2~=eo=-#b!Ha3w^S-Fijq3h>v`M-DqN$VlzjKZnF)Tmm8BD zo4Ep0E4&d4c2iwP@Gf#}&}oH@sh%n3GHAVen=%V`@OM~Dm%VM}KE>*r6C1NKl;9J# z6rI%;%*yOSY(`$H&9`Q`YbDF&P_Z3V(@j?#V*#$$ZwKb#=8ldaEi_CdCT{Mi3DCLh z#9UJ1U!6;OU*4HTrkHszc|F4Q?P*lG6f*;^S8X@uv4Ydwc=adJea&bYH5ZWyhBa!s z@i8dhF)o*tx6TIh;|6xSe)iM9g0#GLUn+&C3(Wr45v+8PRq2#X_K7J zX*uTPPB%h3)$KDOj9jSE3dF^YI6heCuu^LrHgP$u(h`SFCg>biZ;ivIE{C;R;;?A~ zhi@>4RW)}r6Q?mQf%S-hyFOWOhybZuV13q}B4egJt5lV5Cegk`_``-o!(HQaXhb4( zJ{`;_(Hfphj3F9{HA(V^%~*SijHoJ3?-)xo60Nbxgh+&LjV+l^qBT6{+=gf*)+EU@ zw`c7sGNP(D))-GT60NamBWp}zKJEfV-O(m=MH3C9&}En-Zll>5sAt}SK}54^e^t?`7m2%x(DJy^dwdQ1#Y zH98)#H!)C0j|i-D*pE4=zA$OhOhjs?cEAAo1Zo+8cbj`C_ zv-{OFl#r9lUad#Z(FOWQyPAVcu48ou{mekE`;-|or#eQjl6JN32B&KtWX*22T(3JM zn4=K&?AaVxlzZmtD{HXC5Q|bn>J&L&6h8q0=)qJCH4Fquy&{LPcD3tF&CWw&>W=qE z5&^aAL|~o6QLSyHh@!8)t6)wlAH9 zSDZ{_+?jLTHK&pky>(7wR^F7ST&>1S3Cr&#Q=YH5cj$Xv1LZq*D3r35q46?Pt4=J{ zB)ktzksrgZ0Wn`SPoX#qmF^;+JXIl@6C_b>Ao6Scx{5d61Ts^3eVurjOZMWmggP%@ zhR$eJX5=pD)}_f8=UvN%YPDPZZjg>Zz<_AOc?fL+{rRr`@1|k<-t>HT^u#J z$B0-$j*<4u*QlZTEu!u)?hBFarA|%$$}HRgQ4wIiC`4lki2S`BB2hjD5&zIcxTB*> z#eEb7GXAN_NVA7?*$G7aOB3NP`M5Ol)=gcI@VJrS`bHYwe!vI#rx@=>V^@FhTSl%( zbnW@9RuMNKx`HbC9=TIVj*|tR=6K2T%*l;B38JDiYL2x3va~b{Rjqf6V4?pp-d!ojL z(gWUSGHK3JGZ$(rb^3_Kq;(?^6TkKbqkPH&(gGv|$X5`@O}@}f;%54;Nd_JGLT1U- zx2XGF!huiC*Rqa)MQQDJd1tgWPk%>w!?$;q0ck_``>3l7#pP(d+(c(SJH*)}pdIvW z)OBe>(=ZA#V~iL#__!7er=(0v5Rh}nP^XD&;hB_r(zlE$St%Ff zzT!epv?&1P7uCuK(OfcH^SWHQmXRDXC$}6Vm}d!11jd!XJk=%y-Lb!zslqOVlq5D& z)1n4g)Y8TXUA<-5U@<2;?mcl`i7zv>3Lu&X74SjN_6pgjSi?$2LrhkMJ0%#tihgjsyQLVV2tsO+Or`HCr8r(yx-3<;MTxsGUEi;EArg(2`CL&h9~aat;) z5wiTp2d!uP=V7j{=RYd!QHG(tB!LY%{riXF)3^5|#eu*`R{3$8OZjXU4U=Ab`G_1N z&|W5$4ymBM@|t<9_Ob#0IZ#aV4>rEnUIh6kL(pDQP-bB9NemF`)d*Sb<%3q)S4eHo zhWFY_g^gzz`g@@ysfS~xIT|agzdMMN_7h4oN%p|{$9p}VQM(iBcz95u6lKV;Qc2@u z^?0lNKaGLD&vHEv@)1)R0r|xN?*>coIY8rstVb^1lkw9rW=$(>Wj!urVKYb{$u8t& zJqqY32BFF7cLAE5*x@x-<7H(%3hqqv{O7mXR9@DTg!~R8VTXG8{_@cQ> zF&HlTt*8K_{aB-84Hq`x>9Vldnk9R~1wpoB$YLgeIKU0b$7)nCt^{2nE`D59h?H0= zx?0=;Jiq}Az~r)8EcaOH5zKPD#>JXkdYHHJLg*THT5ocxp{`{VJO_8jJKgX^jg#d$ z4q~jCji1Xk_B@9%=Q9QaR&_91tcHbtuCcKOEUWzP2MCv4S*|x=`G^^e2-<5fXR-{( zHm7K8?DldoE6x!{pR(os_EJz^FbcJnuW;3}y!qrN^1sx0p$!6`Ce*L`h1n#oIrb66 zuC3!HGY+*t+T_Y&K{3+zeAR~QLz$Kt2cqGxN|EN^!ZU(X4v zvst$1?Tq;~W02$w%9dm=aQ|8(WF=I+&$YiUEAunMh*0}5CWr4mrCqFk+ z9qN-i2r7jx@BI<Q6+*YfSwU(A9U{SMRx-M(>*3ue^7|kLOn3GwL(^w+_20>Fro^z1U zeS&pi6IyKcWbD(74K@h+>d5j3eE;JaApd?326M%0?gCV|UG z2-$U6BVuPARDUQgYu;0Hl#bSvB7qWQNp8!LFZYbvKtsWsf>@n^-Twq(dJ{9nzQggM zQOpatnr5JHWi))TAUDrD728OoX!)WISoc`rbr?(be32kWG6XYM*{dbrW8#m5Xx@!A zLP7CbzOO20ZXN!cYQ;gQZekBqK2++k02A^SPzxGtVTPek$>N6`uAVd3zK;rZ*<2$B zufaz)bFIGn764FNXef-f=Kd>qnRMckJb&C*jvxF3bZZTY(YC)L&m_o4H*;&2ICqkO z?KAFiPU%ojOw(PhKo$mU&(jLc@H+lz8Wl2CvR&Geb=d^iID{Cz^I1d^fdWdwJ_t^U}r>Qqst}s~e+_0?au;w%>^3WfOu5CCF zcypR$?DmWef=J+4@;SmWL`5TM2N8lTc9JlBlC}6jLrs%nNJ2@J3K;vew z@VS_Ee=NlIX8CY;E4nGD{TLNQse%6fa;0X*l_1sx`)s0xNYI?8(Zp=79)}wUx%D{V zeGW6g4iAfWGh)tTF^FXKyGR_j2Kj?D@@Nr(n5Q=#Z#h&eZMBGp={-hjHo%m;7ST}i z7=;u=%GT3EuFDY`JH&m18t98xN>KG5X~nH1%LmDr|Fx1xv`XO2ygY z(Hb*UKkz6~;i8@~Iqb2l1JNdSAsu%-lu@NrF1gY3CmKHlje(Mh&Pc|1 zF#4$mLmn5v8s-B((*(f$fq<}=(&+gM4Tz==fa)NBss_S5Ck7=A^QUWAv_^nU9_Y{1 zkX9WNhx&6gprtZ-us=^jB54iCrVjTPXkdh{5ZvT|e~~6=Q?r5^cKBdXEpRSzd5!~|Kz?2_jgqX2ivc~bn)f>PXy2|j4IOQhp% zwl}R6crihRjb#{!b(JfXu5!LRjJzOrL<3?zXqiie*tV>}Bc{T}F$~`WyUNi97I6BJ z#>x5~XqErsw?bzLmWx0W2Phx06eEIV#eqKSLQ#-8S|fw8FNm344rIo!h0m3HQM)0C zS$r6DHG?8b@hSu;{iF#>G32y!h0;YVU7_TGE@2Q_p;w0QvYeQRraNHuQ;n51xDe{- z3x(Lbtiu~zbleAwgSiSlS!qJY#eb#|vs%!F?D7j?^&t;kp1BmzCkz6mzPxM*jMkB0 zt6wyr4*LYceMW~n07iJH$4$rT2+@p*`Bbw52_dp|_sS&gM%7xtjD`C~k(!EAhKyw%r zHlo?z?KI*!8Yj0AZOmHd2&t1ujm!PuR@pg>f}g;Xh?~Ojz0U0mA=ohOh!ITp)yB zWQ`i(B>2k=M<4DAzg=Z&L;YTNc|zlhUfeZMk^4hyvbNkcCvT=MHFq`hX$^_-B$w~b z$|Vkt+dik2w#E|=Gx;(x$6oAUXn=g7RPL{4Dss?GHr@6_BLo`Y1x=CVF-hS2&J&Gy zvIV^cNQK|Sa8xk@$r&n_?MoV4m_O*vD)LE_#%<5Kyd~IV?0CkyJp1!mxA|UamZy#U z>FsXYLLN8i%GqoMFNabfWGl|)c9n||0oe0e`6j8+hDtWmGr6PBs$WJneRb`WiGZc-| z_`)K+a>u;Po7~8RR7faPv=O*)}94c%rhM}dybz?K&$tHrRt2y;rRwIf$ zHiYN$a%ZqTT|xUTui;?Lp#2ijr=Ko0{XVw@F6)RxR62et;~mbj2&!;iu}RK^zW7w( z{0-Kbz*)zy$9OnISX1|~JB+-tM%Wqzbm(}qD)~8U^9F$w@Ph17sA>p_uAEPBs?{{! z=q$1i3hwCm;F?--tF!o^S!YNEXL1F-&Z5G0XIMQuFk2HtTB{u-GxA-uv#{1E66`Gu zA=lj~q&C~9(b}s58p|LgR^0`ecKfG!!ECz5%t`=N4(UA;55!#?Z>#J^TS zOA8cGhCvaf0oTX&Zh}$_`Q~jxsh_1Qlsr(CLBW34a(s0cY_y+7$l7DrZ2|WFlhFAG zdj+~~9LfpuPlh0ElDjkpWkX_|34>8qV`QaGg!=togx2S*!%LfV+=6T5X6ZzUK+7@+2O$d^ zJ9K7ibTAIolZ2@F=&OawAGyt7&e)Y=`2hTh0dORoaP6|TpQ63`G&Yta5vuwJA@w8H z;W?6yJDPE*d0%-jpOvYoW2k(>`P-G0)E_jK4LjWpuOdbxOuWCV+RgU8q_FRlLig=ALCg!a$|UthD7Ks z48?+N2nY@cX5`DgtgtzaI;62h9u*oesHQ4m+xvy~N8D663}&0Ok&I7S1{^EoKOk%8 z-WYJOM%+p}b?BTw3gh3gwY;=51^jykJEj%`8#@Q~a!h@g##k}6D&e6&3-K3OcY>*t zWxUKX0#gr|DR)_3x2BGNq(?xI(mbQq3GWy(68bfPO zse^dhBq#^6Y(&}EYZ-G0W03n*oPxZJ4WMXO+pjVUpGzu1UHvA zp-aa<&3NQgwd|Z|?Eo~7(`Z^bl@0jLmBQ=?+@--YVeIb*=3bFl>*2w0T`z>kbLPSqucdo=SP3-}xL2dc6(kG3-tgM_ynp z9=!zMOAJIJT)+ukIod-8oTD+c)^k+krpAUlu`X{tCmFjlW8vP#F<^){Gs7$khAe3` zt@K+1{`?+cc^7N)((gp*y$lUVZjwOqfJP)0;CXin$#YnfPcjL59z)T3#j@;zmk$c^ zsFQ?4ZugqTHK<UHHh5?3UI%>qNjM$1aVY{2*%gwfhuYcB~S$Tt}R zL&=%0LRW7wz8e#aw$m6{h9cA#hSmnG!!wkQ+lX;UxttxV;I)Is%SyQ%#N}5Br*nC{ z@KP?uoX;4nCie%=LO3opQDbDSCVQAw&1&*hTwiZBSwmgJDCij|Rpi3=qS>9FpBHl5 z_(XB{{WWe@>{gNITq6wcW(#<+I~jW)V-W=8Ry4C2Oim#74alAFatbvh``eR*?2#H- zFM~=J@vGZ~^^e#>Xt!d1o?IIht&l?9QJOld-8{_umy7&|WCp1E90(`m#hT2BRGc{!0(UJ~=UZQ;^!(f4a;A*q4niZ~?hLXygzsv$<@a>>SHSP;b01?)1Y9)x-;zI_}4e3-*H=ZtkaAuv=YY2geO^U}$l17p^6>T9(b_ z?+0a#KrYWnv{8PZnRvos@qo18H+Y2i_MJ8(Wj&UHRd2b$*s1UO8e_D4G27Rv)p0`& zVYR%1+v-uN*9pwXYxyMPNsO#BlwxUV9|EG}LC zM`jcL|*qOeW44=-EnFx&F7UA4j>a)u~cyk__w7wD9` z{N-H5v9*(rIQe+2*m!WWQpjIQ`MLJ$JmmHHCGkms>n-=y z$=9l)90`>z#-XmGpOosqDH5#eqn&-cY)Q5gwN>60+!*OV77lGZO|H?%=Vr)R1lcbd z*$~AKHvP?ceQX1Jqh-B;@%FomKd zS=st7ZDXKpE#th7b{(D@Eq*Xhz=b zTcWl?E?CE~^3zDUv#+=ABBWdwH2dyID@MAy)=8#?8F2=wM!fO*0jW-rHv8|9eq?}k z{gX?I_OnR)x0|tgqO94EM7lAi)pgGj|Kh5jOUgHDMtQQZ*-u8=F&6tq#GdTXUq3K; z#wl(H!jgwQPUHDqPaH4LF{pr;Xxi5i!o1|{%RHpH+7|+vrm4h$V2L01fs}k*6OU~eQZgf- zC!!N=tC_lNpb2({%6P+Lomdp^pMFgQ9IENV{5ou>jI!rFtlZP4azD^GAex$O%4X-b zX*tYftDZ#Ceh`Ad}7Q>_d zcK%y}`kkf-O8~OX!|nLzeJwQ@~X+BwJ^V!Uk0WLQF%xOTyXsexh30o_B#8QW~Gu|@Z*4^R`FK#HN^Ws~1J3CU=2 z;^=%%m=gdPW+Mq=X3sc1%o)*tcde9VCvki(2l`$meK?^U#zt3PqJ-IdMXH?GT!+^W zSI?E3(da3o zqu!CSH)~}B0=a0p0qNj-X=)IXLr^g<+mEWfh3;rw`!fT~X+R`aA+Q|nJio_u>1#B4 zm@|Zcig`)aRW;7U;{7zFV~TmPu3!F55RcALCPZkzu6&&D?DV7*J*TJ?gwZ1szB`N(~t$x`5;NCsB@{3aV>sn#Bv2#Gbc8`=j zNn?z<I{vj#5hE^71Gs?<&5&Oo*1q@^b4FcBP)}7;&3jnNj!r3StyEogx0F3v zV+^-1RK+M!n)Ef}OGjveVd`R6bPLkY{wpOn)Qks1$n%xaQ1@43v-dOxh+(FvYvk`e zBY?Y-S(Kwk1TVTzN?xvshSB7KqA}6-(uYl#UPogbm5sXJ`ljvP&=>@@EB8d*Z(Y-F zdum0ISqg=0PCnvBqG$eH%0H`74y+NDj}&ZdddjafK(Gp5?kSjUAJ!1{uCd>P8YKr& zir?Hh^WTE#(-0vk=!k>E5-$s2JI$Dm3Tv=9{s}>xqNzaN?32~dzJbWS);2x)Hm%Y@ zY3Vvv>DvvP$r>AUwctkWVsveL@1s(D7mW&PE1k#e`<6Lg7&b3`L;w>tKrngC%b93v z>*2vqOYs}D;&2JEyX)`8=cN1#T6u`?FINk;_|42HGDa(oPHJ6FoBOMjyf)E_GB|D` zgJf9CMa-CUu_hNzZ^wxV|B#}iw4$(}xky>=P!hKcWuJJn09MzSz$9{dR$jTbUJknH zk5c~d*-E~E&MG_a;*9LDJEd%|CL6q~)?>m~-zY^F(Tc)!Rvx?6T~e~5m8=Vm)7XU# z*FlYIQ1pO!o5D5MO3~Z2q6o%Sx%8+KjR@bkLJE)93d1d`1D)o^?58noLTO=$}G38BX|s0l`;F&Gr}n@V(PBJ_2g9cPoxhQ zhw63eNRu-AtVpBw#V!2q9S!XG=Dw0^Pi>XBm>rUv4#K9#gWmrX(v~^lck)FqS|2|9 zRhdFRVOF#KFE!{Wrs$X`?VI%vDZH(j?E8hWSQ8XBSERd-Umo^|z>d&hk&aCw9Y0-F zeCIlC4@snBlN{^#!=eH!n=hI^wMfUNk&Y!ckiwT~-%leQn<_dMe_85rk!CBb9+~RP zHE?ig=~8lfIv;85TTC<#Y4p%994OiE?*@E`2F8{P&jE{tl3Ab67JKrYmFUh&JRr7f z6D}k#b;XOhc%y487o`P(zHF(`KOi->Hm2bPpl8Hdmiu99?D3WN&LWnJEGaepy&C~E zjJc3Fbo1LyWB%FYi1zUGnBCb?-}r}7^cPo=)}zFgbLA*K`RYUB06U2zTUF9Ja8(+h ztJgZ!^qSdrv8KCFg#`(Zqb%Qs)!OYrfpoaKv>0kO=UJML{HMSUaADeNntal)6{h?U6wm|) zft;;{!vaFjj~EJ*`1%syM>E{3pBKGuG|{VJ{XEbu4D#xi81^bAG`RYd`X#~#81B{2 zi=2Njk<-M?;ncztF>c6STYItc$n?B5zI|2-`i%Z zp>Aaq^x&Y5d_61MuSA2}pEYg>)d4pZ`OySnI66nIiO+Sh(UP$nFgDC+qM;V_uG8pQ zO(_8;0{m%PVf7GOz-vl^Ji-vn7tGZz=0+2zEpOBaK|^3KAN1_^h13977o$dODit=5 zVVId%ud~8Pw`iQ=guBBkzs}Y|=MP+Ac!@uqtFjL0~z4utY*F81Vhm1n95+<94 zk|doObD8o$JWU11`!$Zp-~zWxm2l#Y!gw+}lXrl=v5YA!1EHc<+(3xStJLymU)jEl z4D27!*kjK`z&-^(W((ndEZYqkbL_BEw7o{fLw_heHH@mhcw;@ zaslr|^Z}EE^;T>xv{=kK9ltH(5&7oyW~IwzD%t2xWsrSDBa5gyrxG7CLD7F}MXji6 z1FoJZRT;xnyr@c$%@~4^WD4fV(oblN&^P+b0eN|`T~6nfBUQp0 zW2Abkv3GcVqp^%NSq3bM+h^vwUHb_6Gkw#1nT#I2RZ7)n;VJ(;=#Xgk)e4T+9 z48!0jSc4{JFKNuILneee>bpX1ch-Tp zWm!$GHZIuOfZL04utK24uMSN2ibfDkRBu-(@}U=RDJ;)oZJ3n$ELHHi3o8keC1{Eett+E`lJP%f3IfeymviXus>dj;{ei{PgKG4WPQ{W@vg+n&*!KubWSQGN8 z*h3Pb=Q0#24i=8h3YUqoPNw^@#?qP@sK`+}2+c3JfxVeQGIk;637s{06VnWP^Z14# z*z_}vt(9V=;IkVG=dUtnFU4pi;cF}bOO{H{TR=NrXwB7K$a-c9F^BEq&D9l9i9r~X zdI#jNcBUvxgkg&x@mtYxpEhr{#w3PqV zxsbDV7Fvg~bkAZ6=tu@(-XQlMkhvbzI9c-s4|DE!gw*2fB;LG1LoLZDR7Jj(XX>Y< zncl-1J!|@v1ir&`;ZbY{Z~B!AUz*_{9Fi@`HfgfwqYVfrg2xNt6MV*NH~s4ldEzP>bZKVK6!}Y`0B?)u{tAKq9=H1I^XC+8>Xe2FrCV`jPOsI}$jh;PI;gc91*s~@FI;yoy{GAU}$7ob- zdlKv(Lvku>@$IPtcV(bMFJ3PPz0I1W7sF23MCg5owItBBX>X z#|pgx){;Qa1I}Y0+N!fs&gQyI^WwG1Xy69PEj5y!OCJ5j$$8d;b>h*)U?{%zJD*5gL^o(5|uVtp2Y=E(8IX_Ga& zRxag2Rx}fjU$AN5mGQ(w0iDXAIwflEDGe#vko;Cc>9<^AqC}wIF$fixVF-7}nD^w?LQ>xZR45KOYI2$yY+|X;2!&sSSYocoeurga z86<8IL(9dy&loJR$(a}V_-v+t`5v=&E9Z3L;SOf#(fCmFvLDK{rQ4;otFnh0qHWYC z+=#p{Vks7ZiOyiT(kVw4=gL;Z@?6KG`!&|yDu9Zjww5(Q>VK@SOyCRIPV9B1L2yzue;M-m0{vmto zE$sAXjgaNrK4>x1dULrcJl|Gf2Qmzu9PgEz&oAbpUB_J4Y3!^eLKS)FE<*7tc3m$x zBxA2(ELt;H=#CD2z<4)m^sLsj0SC?$R`0W9uQdts5ks(Glyjee2A^9rKGuSfhuJbC zluqGB@fM6U)GrwY6Uou4Xh$(9-L6rxOk@MzH+;@v$)1S_avnpljiI~XhRnM(F4i^% ztNft@LgfkWNHAs`F@40-j6jklN3$fsmvaDKl)6`A1oH<$T*2MZC(Np>2Z@%&j5Pu| z$VfC?w>4a#;qKR{Sq*0c3T5GR982~Zjvyy61o>-s#rm2FHVW??lz)+89tSm!0 zh!2gSMsuY-LosFp#vmvas+>LjTVrGeB@c7xe#Vzrz891<)Cr7&m5TOhFIedbjgw_1 z2eDX97~RdT>RE{~_b~>2O-{u}-|9iB8n;>B)jZM|&wWtU zmoz$7Rb9x`q7ce(t9t7K3aFDo7{NnWwH0z*G%@1kV8MLzau* zD#bU}PHqMXg`Dt?;^O1iOW9X7(cmI|PQqJXxe$GX{P@oTxK;x|cz?yJ=xujM+5HlU zn4+79o^YEXy`@$bJz7377G(+6uI58G31WE-5rkTc$Oq>1?ZL@Kt)<|~U!>^$TK!-U z^C{PDoWpJtzywV;3}P-7jgG&bb-R?Eu9bywQ`8lH(A5I?iN*#4aP+iPXvNF_B;_yC z%A+Gk<;9eCLoIT-z`m=&zSXG9$O4XgZ|XK?I`t#zFte{YJG?h_{f1J!TST$6+aUqf z5`swGS(I;Kat_a1RDI_fQF^vk0rZgkP(D*E#P3?&aGex?N-K^4+?(x_t3`S|9cTPO zK)Y)oc&J=7=d+q)`pT6WBA9QKa`qRMt&DR_)0_iW@Xg7}%|Vq+r(AC#H~Gs}a=9TO z=TYo1^?FoOh%Bcr!d;Kv;P--AL&G4?=@Vsh&0&IYhgs-qV~xpA)^IR~oW7SE59Hi) zd?m?{i8U{22$(~xVLwlB+6_|r{lwD!<>HW>RS4N!YihBsRvH~8IN&JP_=V+fHXgs7 zRvvCvFE86Pv)$RQ=qJbTsU{(VeBCRW>(C(&v&cTHQ`N{p}2z?gesrlSoW+yMM!RSGn{IDb zA)-k?my*Y7T!NDE3CfGlkdn)3G7$lCm2$tFB8*#b4RgZrBJKOVT|Ta4=0GXGMx*j^ z9mfqx`DGK!=leSIIs4(seb1Ki+iUz$)9$#YcU&kXZ`4X6y^@kqSls7lQnaL*5Bv6l zUMX)nf?{T2VNKDH=J&na4`muV`hFVOHgGcFr*W{8Ir<)<7MNMn3&I4D9{CQfxPSmvh2g zyz$WG+>L?FymyODEfL>t#74U)1AD>Nce!Xc**Lj{eQU-YrXzgpGHEElzCzh}~a8)9_g4Md~r^C5V1MdiSx)K`N)4f~+Zkf`F zt!p=)G-K%%ZbceqSKb{Qcq8jDmqSC(NPNob7p@@8J*HuM@eIkrt9dLth8-R6SDhya z_hO`N8~LTJy`!=8+3!lP30{&wbWUP&0WtYrOH9(_&i*9g&@hcwZaX>TJZb2IT5M?V z>XW5Rzj@Y`VVxanl)o-+tm7`adS{0kNm!C4r0I`GHe|uO3-cEBdlL3y37YkXt|1N_Pw0XeqF%WrpU`Z=i#Ejs0wgeK1*n~dfL`K;1l##y@b z8Pj;SyQfRXO=6to4_0o8+14#w+Vck=aXTZBvj_elrQJE&0qmYuahfYF!IttqP!VJ) zhS(Y`{+MD-W&XYfAF?Y$FgOQQ=9$@gTxT?Q?EZ{dpD{>C>N)|w6mK+xydanW+<<|Kwz!94e)t16NrE;HxF-V@ZE+vPdbT=lk|=;Btj2jC_+QvE5Qd-ZO+-lIB$<!HW6akWgGLT4moi13!a)CkX!87e7Y1AYm~hqbT4sIS9YZ~TOaOj^f!1K7 z-&6cU^8vtB<_$JF?#GO?+l=lwo|C{Wj*NUSa)~jP=b5cA;T#QjBQMUyJ=QwYiTN!w9QI>@W1V zpn7R8?zIR(mSu?5_vDfj?_TTAxV#rH8M6Re$z68QbB0+SC!2%3jYMxSGtb``^EP8F+a+v3x}HIv?Gk`DG0>_J z?_SEX1-u$DCdU{{2k&~?hRb_87_&WNtQktuZmAV*)G4biu;2pbzhm)Mt~XUl60x!^ zB0yT5Rko%?hib9u>M$52O=7=hq_;Ua4gDKNTcKCoX7(&YywIz{o@bah$4S|xwikoF?wzz-?P^AD zV7_Imw^-UK&!Kib*}*ub;W_oSW1Snp!dbo?2NM`(>rpzS>yoq!4$hwtQB z4;bOKyT>>-cny_=e3Fq?l%%)v&NGkexN}M`N)qG(hFD3H|HR%xT-r;Te8i%RuxsEy z%=Z)*_iNxoo@EF)1#P0e=l4DH=#y(EukAI|R*bTyV{%!W+~O1lT)YIhDg!Vi#4e_Q z)?kp8R`3&oC$oomX$50WV~o}2{?mioCfGNwhL0G>2wQ%93oITiyoO7AJ|*9`L&E}b zEh8+SlG4$7IG#B?fs1=SMUayiVz&alj(8xK_gjH5hcL#{!LKT=&E-8EjQJ*GtZ5#~ zdk-ezHO7?~=1ubwp{p>|Y8!gY@gjCbuWbl&2}2wW-W!n1afc!e9%KcESpMrj9r*zB z@%-0EJd}V4B9`{x*S{@UuS;an4XM%i?LSg&{LP6vb%V#Ly#{L zAc6JN7c#pU;$>$ltiUjoq=N3?nShqPIgom_IjI(_#)D>kgc*yl^2Khdw1Aomx zYXM0Zs;|I4%=Yl+D@n*l8L8+i#TP>04cUH1CFt{!RYtnj)Lx+7ft{AEsR1W4P^q0Y z`@{3KzhsUHweyj`VkG)};Ft2P+J4R!kKf*z(B5&buA%N>l&wd3Hg`&bB`iG(Y8OVK zYu4*yUIpm)9^9SICh$gX^_|{X472<~#z*a~-klia`9%V7X9imJ^55&gL%%mO#H*JI zyNzL1q>|pDyb=5oW4uVE<6dE$RV(#<;msK0)k=kpWtcS*`cD&IpWv;r@A-(E5)gsk zX%8A-%8a~xTSHyWC~Ksmr;wNC;@(I_kYyQSSxV06g}LIm4`es*TioBgoWV!D%LvQA zaaLWjozc;}|Gp_&&Sz#`U3|oajIdfGYb{iL_O2*+ zl#6?R*9i0>h)P#Vm~kE)MbVBrO3@5@BJ z&o3$9{S&~h)?&WfTvuL*w|IYMH1{wV=l|nDEYzGJU^WY|GMo@xu7oDO=WQ|ZwF!n| ztsd}t23lt$LTwdXAmCJX+$*9s%V_UxL?a0~mVoPfakjmyC{G3Cs~y=&B|D_u?y}X| zauDnJBQQ+a2eZFtzImmK=*XZscQ4d>$92^TgE-O}jZ6^yUnAIgx_yUs<#uGUon4ti zUw?Gi5gPtyG>ppD9OlV(+yenhA^~;1Q>_brUJ}YUzCHj0beKefX?aN=l z{Zp2{ecJ}|t_*^LFNRftV*Q1Vq-1kk`!x^+{lx*dJ1@!_l0r>a*$gRFc_%&+@!?-3 zxbJze#G7Z%56|Kzg&7Mj9p3~m%u4ffGo5n%O+FqTA#@)RN;iGstGyDz9MO_~i-|%f zhOmq#Y@-B2`oc;$u<6L_)Z}f_th|I8=QW`nO$e3uf2zimeyw{ofn!<_sMLIpCUf&v zWG2+UqzT3u;s))lRQv!<7EbXtmZj9Wrip9DjzX=JP~EwjOzh~;D0&x3t+k@`x<8kl zUYF>7b*weAkJrRqC*s^;ee0xFO_s<5I;h@gWYd7YWgGIdRRoT(GeY_;M!LJbA!&r_ zN}+DBlerR}P_vNd-J@S;9<1LS{?CsjH zNf3k-Z~QmQZ>Jl{bIh6E_^Sj={sfC|$5%vjm3`%D7CyEOyO{TF9D6@EY;vO=zA(lM zEVrGQVqQ;Btnm^{$81>X_4upWP=C}t9(+$?|MG`9v467!Q$}DbW=zP|vNJ_ql)^#a ziXzaB{z+jdRVK%ONMG4Vr}&=~EYdZ|b7;ObRx{$=0bpV~7U_uJOT#GRnrKbdl9Y<4 z*C5tXi=Nhinbu(qNlurpL0&G*n0MpCt^(=nvh<|TkuE()4KRARM0XcT-L6eG7%tHT z61@?NPFe*>H;BB3)F~G>W!Nwqvx=lufQBk$3z|Gw!8$f&9qsw0R6~w(D;hRu4Q(50 zKv%H^t4NxuryEKx+>-CA8FJCBS-~1fF(N-GH<*TfC-bnx+kZ*6Zq0C$CS}3bB0Jc! zsK-s>?<}7s&6g9Taf}7Ur;J>Ru}QOnB-!%!PQ{-!Qr*znDqWcb1=<|J&$Hm9We4RR z&7~$uqik4p8YPLB1-DveVli)?y_0pjsHGvaLxj4`ljQ0R<#Izo!x*E18Y(H(YOKZj z4hZ?18ToFLC5<9Y2)8~PLi$*io|GvxCq4R<0`Xh2`1!C*{Ou3Iw_)M)!QKAs2l3mp z`1vrr^~n#?$FubLAa8%|gZN1-em=-sU-}?@GE1Ki^7cnQh@Udt;$5fQg~cbWvp4qn z@Y9d=IS_T2&PsMn7@(S0;(h~!o>{DC=lRydAMK!P57w2G{xn~w_){Hp?9Do+%y)g1 zFMCk7A1j-GPq4PZK}nXCwBHr&15l8jW9jWjSbucrVd3*Z-P%tA>a$sTQj*x%oxCGY zP|(K;l2&h;P~e=9g8Y7#-+mZ$&N)GRmBqK;wALXf2p=3);qeJ42p?kM?fZ>=x(U(` zX6f@`cKcux#2+@C;+->15Pu|#Pg>n*?3CI$CTKZ|wY1*?_8BHfKZd2Z@0r%|A_zZ@ zg|{CTymLiRZ~`ls)bj}T4?)9etfBpG=A0aY z_%nuAyme>@;?H97?ZXkIUz{Dkfpbu#_{PO=(w15 z%!hg6qd^dUDGP7kGvzEue3A&_FCT94(Saa{zmmnzN8?(Dfgt^Amfrq~2b}?eia)c8 z`S2e)`2!u-v5xjLbLF@Xl-xKHN~|+JP;v_^nJ;U3CwrjdcGfZf*7D~ucd?T8$7Syv z4{CAmuqtp5@Ib-+tf2id(?7Ta4G*w}_8Xgz>p;gttfT!}_{Vgh;Stu*ehi`0IZ*L$ zR?&VX{8Ks5@C0jUe+06Q`kS<5$*)(@;#dcyCe8?7uKJ71M8L)I7Q?=*qe zj)p+i8?LO~T9jpdMYYa|OiW__w%P3DeDL0T*cI}pR#fyoqnbXo{$Tjk+jp}<^M^*W z`w@25@T;}XwLt49taYE^*UA^TLiy*ce6NvFZU-T#Ua+66z5DR1HnYNLOBM7k!g@!* z-lEq#djjQ)v+@zBv~v+G^e*|O=yfiKh2CXY@4my|$jS||(7qgNAAvYxUmFXxD||U> zt-EBQb|qFj0*=jB%R>1oUy5=QMBFQCp?q~#J_5s4bPcRC#;?V?JBQ!HBi-H=w5a|! zm_k#jhIMAjsnU8P&q`aGN;NE5R;n>RK75v#YOHVAx1MUWq%a}X*wCn^R3qukk$j?* zr_Rj=GmV!)@G`)n(AlGDo(iX z7*0OcsCSdIna%XGW_9~lA4BPuthA}&t68Oq*Z)HMHmtq5zL>~1 zv&QUj8hM~(Uhb3_R?YXAj+E)k$2U@d!FXn{|Hv{ZL|0;fz@#smfV@NP1d+*1AnB-x z8j(7@JE2jlDMsiL;p?*XfM_9 zY_Zr?EXVuh;f}M7c6TgoYF^Z$YU@@CsO|fb)Or!UpVf{)J9idJ*-Amq4mu89W!)oS zX~~6WJ8B16?FjgmIecw@@jxRFvFc1SqeE-H)g@2J)iR}W$sE>ns(vu*9|4Q!&rTtk7UgwP+{3w+U2M{iq$qX32CjJy9?39Ht?=vSZh-Wd5cm7mM)gvF|3o-?9 zRG-GGN1)2RL;dkFewg|U);j{xqfq5k;4IcW0yQq?{6;>P^^QPSD&{M$Z=KI-_Za># zUF0ZzAuAq%`u3G`?yz(*s~v&*${r?v7JDfx9)YB*l%H42cGtWxeL3qMf!<^?A2}E1 z#E&ak^9Z!E>;rMf;;UJ0Q_D83MQXW}MeY&nmJ7i0W*Nt+_@9}<2!xS&@>MOmBMgD_ zI@UV^20t)gb91g6S?z|+gprMQ_nT3iOur> zHBVFBr)gygP4tl3L`fI8$rv7g05NA(qEq;=)+4U968Geg6w6YRjnqUd{hO?`OEcaC zs%c6Rtn-9wou<|Ri`gN$bkT9mr(N?jwFVf7v8Ydh+(ZLCM+RzY39Sh=2_||$HBnO| zeKSh4xop2&Xq(Su2YWL8a$U=q=;kiC+)GBiyO1?1>?dg7zWXJp+|+H<4_IYWUvZl;Y_7{q7C#|e^IN@%A1E^~bn{*U+QXEKji9oE?<1o|QkieYrCC{1 zDNi$Il=ae@`=NDN*49)?+LX4E%n9W?XjU#FpS_n{mc0IKwB7QobJ*f$7^=M?YQ--> zr586>{t{GradS0R+0^cgW*XBNcA%t;{%f+*rk0?aQ5wuGGII;1TzRhJL+h~CVGA}D zze}#m%7(2=8f9*m9L?IAnoT!j&}y+@#t6-#8?f48vuL&EjTIZQvZVXgocWI2c$?2w zGTCBJzO&-425c-Mtr>iCCUeBu89x4DT%aZ~(cje6!kNxDwM)jWL^E0w^8U?@ewy3w z*HjMLa?Lxkx!Gm8g3#%PTW~w(Mo4{Uw${}vo0iJ*u7$howKbDyZvN4_4dffIo2qWd zx|{mY+J+D03fZ1+8BCo9*n#yo^_iv}{od!2iC>=Te8Ej?cVg8&Bjk3Xx;G$mEIAeB1hkAg=|r_oMdVP@)U;~nRaI)BNdtERLX7|u@~zeDd*_R z&dF!0gE_MmM4oNvabEpE%D*p@Y3kcZ8)2$1E4_7IM$!hyC-!FsBNeFS`(Hkj^P*)J z>mR9P0oNrEfo>*{AE8bW5Kzrf`0`lDhceSOwSHM-79-^hrdxCu3$8PkS%23EwMFom zP)4w97Za2!|`5O1&|%*gKqjXz$8X$(5T5i_aHRLwaUuJ(|Js#sZC97geYaC zIEb}3_lcuy9<*~J-Jv4Nng})bi34KnsR;feaprS`q3g_inp?raH|n z8#SS{cc4>J3E86Sn(}CFm1#}&(F|DR;IBixZW!oU%gUEm1f z5|4v}1MUb%=3tnedAmFBCNW{}j-Vhx!BJEe6h$x*Oc+2!6crW2*YE=aV#KVd2y_o~sB?>Gw+^IL4-HD<}(YJEg z%oL4VK_RlW$EyZK-^PItv~l2isZnk9V6X`{){)?HJ1|s&i&d^zWu`dkG6h3*Rf2aX z7JvjAtDrm}WJJ(;H-fXEV>QAXRDe>a*uhbzL)*u@xc#ge>A~SU&2m-r+l#P|o7((d zE<`>$=)!HCoo-Rf-G5+);k7*eeKQQN<@7(w;jP9EgL*)@S?kps;DpLWXrfVifD2$X zm>yh!Mj38t5%;lm;DlzUA#V~9f_#DtVwLI|RFF!iRnt}!K0IU4O#P3{5HyUJm2>rl z!av8Mtp@FbDtxR8O|>z<_6071RsLjP381BeApvQ5zQnO}aW@9xfm!8ko(+$VCH_yvw!4j6t(5 z*IW*5wb7%|Y}aX5VjJM3Wa6wgdI&B`GrAnPM&{nOM_Ebk%_C~Ymse=$2ZI`;%HWFfDM{IQAdn-JjWZd>6>(5Rd9Ji?^>S-+>}aXrKgaS zQmj$tX9eT2{k)Yp{q4whUoe1+z+#+C%pm?b4)EgQb6Pegv`B>D*fT*jbDE z^a^UHMV35>g}RZpIfvQCY711y=|%%Y*yDVoJ*+mR2DI@iHjFZ-QFKPI}2p zRh)bpX{A-nN_N#;vYs9=!deZZwX6nf&?OCYX8{kVw}~Ugh?+0uX3GJ(+-$eYO^2S_ z(&f-rTbl+eb-77b0j=h!Rtcd2QG0NN84c%`%^0w@6!A(9oP%>uKqYR%Sq-$~eHF*f zLEDBCpTC5;@<@k#mTgm-b4HZnZ{}d$(|Ct6mVK31RI8JzeOnz)R`HTlIo`K1!Q&w#PZL zeSJGhOnUHEy&x-~h<5c3gk-&Ut1Pq~Y!i;{z&%UFai?4KkC`GK@-A+sT_d_g+M!9C zHsEHZ@AimgqE;6ApDM=i&q)eo5zL+fX4C*9@uF~kT+f2@50Nv|^Wfa!6yGAbI$m)9 z338|1$|DCBywq-&)*6`qj59xJaOSW&xZN#wdaV}pi90ZmYt>3}ag`{=FF8=uFf7uX z!(~{?5-hS;Q>_BwH<=;8bY{2NCV5VQ@H>uh_`u4lIAf(=EgU%r#?NxbgDc0WHkz$Y z5pD$lTQ}sXO#Nm)u1BB_IhXSvT>sThQ8Xt+|J!iRgZm9|25&HM-=1?HJV5%~ zVZOKvd)2fmwG&4;c3{s0god}qohxV;4sd7!0NME$K3U*g2Uj~R$cNRbZP-Sr#oYy* z`w;`n9B|hH&EA~%;4Kmi8Aofd7q&X7EVvYk*^jeNAiBq1xiMPs-kETs0vrulhdm=sxV>2*6cB+9i6Vow z6m}7gfzGXVCr%8X3HG#|6aWi2K-3&>tk#DEDs(A2WxNW@0Jb*=OIDg%sXl4~*e^SP zcE<#;KL?0fE)*z4-AyX(feD2=Uaw+8Ie?=?cJV?B%RQ?S1=6&wVju{q7z;VX&Jk6W zoQ&H!0jlZla2dIhN7_H`L!~;2!*ByB1fxCiR&$anI&2VLJWC&M_0ODZ5~&wfBBcHs=buDsxg$|X z{ZGy{iPQ&2N&TPn{3}kYJFyyW9mCb9lbY85$N5Lq-zZ^7sP3E>7+Z6UsC6h&;$zns4pD)lg@O~fBCxjOSbIg4ha7?zDEy*rpe@-6 zxF`)~RF~WC02IP`7nF~*piv7R?U?iCMiiicFs!**VxU!M~Ldd*&@KHdBpPjbBL7o&^Hc? zk{rNcQtC=Mf>0nV?%-3IZDb7 zlDGF)Ih0c1I2gi@cDa;; zq_m4+&4egUmm^)2uAT9bFq6N^SzYX`t=Apc1Y7nOhLHAjHAjz3c!?9(g0Jsd0SUdW zyJUP4neZ~7-9}h#2dwCTBy#L-=Eg@LLc|@BFB^eGdVU0NajW&(Vi|`7u#TY%*@tlW zAz*e!7@GcyT7wjEcHeL`^W8Y}K?@)*EreuDWC8Zz7z-lYP~CnW*zmb;f;(J(1#yR{ z+<^MMGWuGkoJL33z7p6{*N6%#7M!`82+^-b4CW?LSv4CRT#7}CaVbt@tu(ipz&sLQ`ZNp9r`QGH+=gS4H_M5z_dhYN_?I7Av_w41eXU?=$B z&iP06v2BV#jvNpGcXEIH$dUk;TxQhcsH3U{lT3u?D*2u$) z1;)J`BaNZeh3SI-2RQ#UcIe@z`*JwS6%hAvh%`l*tUBS_X+!J}B?bLEmEA@u)owo$#~ zIJV8YfAR#8`5T;h)I`ZN%;CJ8G39&`A^PK-`=A=>O!UUa9oA)>n-?h_A6 zJ+U)*>3d+{rd08$B~RhUinp!^Hq#S^cjHKqRQ0F@NwGY++X`{thuoRlMlCpuM}U*I zm5q~v{RjClHaTy(f>iMSFy|fRU(?FH8WyUD{VKuzW1M?b)rjW~H@{#*LTvhR&O9no z#53n|Kg3z@6zRa>FlAy7@Y+q`B1*+|_l^FHI4xx|2bfTIjk>;$9V1|HQ50)Si{nNH!k5Xs@WIGSp+J#guX?TKHuOWA42qkXI*+w;>k!&H)4YzYke?)P2;C!Rv zT_j(z&@)`8E5x18+3p&pS?{!jK#5Oo2~vFnR*Wbv6SdDR@@N9W>~UOvLLyycrSL>i z-7t8fFYFXzej7P67m8~5Bc&aN2&W#NAb3A%zi1|!ahqJ-hPrTrP zyyfZnLg*iH?osPdqJ?HMKh3%B5#>zs_=CU)w%7@L>2e5PibF-3NPez5fqY7sz7k_1 zajdA3&9pnYd5jWbUyTUN!J-D4)1#DO5xKHySzuhtBYV{7$qJy;3-|jA{;$cBKkT^E z`QOO-N4BWakY@7^D;*6X{OdXM$m%jZb4MNwAh^Ggb59|~q0;Y{{szxxqiZk6UqV-taF127a zK)8VF+HZkP9)iq_(sV>634(8ji}1CL!sD?$p&&{itDA$gotY z6hUBb7a;5W)zko+Kxq>ykw(5khtgX&mz`J1>iNkzu?F z2M+y$JH*C|c!Iam7K?(O$w9NTWL;P5*?FQdg`UUJ__4T2jo7J<*PGR_i51GcFjqi> z^)BXs`~bJaB?Q1$tw&>6i6iorLxUo+8eick>7$vf>9>?-y<`^t=UxCq>U~{dym5}n zSGEsYvWTkgaxA{{Z(yv5DqiPc=}pF}b}J7QR;4=}g`XrdsNzgjc`_FuLls`jf%qb+ zflFknx>s-{-e;3Yqa~Tu`r=v8ec2mUw&dMA$=9TdpnNV za1qafs&<`vu^99egoyj|1votMHVtRI3teM-0B1X}z>w%O2)vMU<{8L%f%PPsP{g6g zm-W&3p~vy8kqUcrimM!0wlx9AS%_1Y@Dh{`tk5Wj$z%a}I4=rc7M&aqF4H5XK7zxY zAJbbxZ>AnOjJxW(Mc9l~3pz<&@4vVjy4i3{g|nuL$39>lksu$k4Z(a2))Q4uH1 z!oii$_wThkro3M;vUF zbLVNpSoacsi-B;gRMT30hco93@9db%W`u}8!4U=wccJ**b}yWX6Cq<&M!Y-4(Ppzo zU8cc##|H@IK0r?s&3)_1o zgu|2Ih*jnMae=X#W5gvOrqN=E0ZqE8M3-?iJ}+ZYBBf76eECYwf55(h=MxHl>U39e z0G@!hEdXVGO*X8{%{r{~r`7O!&YCYjpI&NUU2is&7K-Tp1`aY{FJ0&!e#WX{wp#dT zA35tSc-$y0%1iws##Qp0cqvjNnd`!vInsdr9baE^8;8)=Eu3$Xr~xMz!oh;Y>R7Qf z+JVSHZ2eY_!KaCRZ9DDZNPG0U%`pJLelnc3K_K4FArciMgqXms(X<$MaEv4^cg1m9 z&}L|Mco%0r;9ywTS06#V7uo8SAxR7Z#u%lE((f@bPvVu8>R5OSg7C`sb8YYi3)6c{ zg^hVWWD+?pn-}Gbl^)#K4%<<1$cg7DLwCs=bQ2AIgqI^On->K(2KV5^bT#hJ7{wfc z9^@!Vngu*j5_W9Lc7Z7DlN=NkKHY@_JR6DCMk26sj zJCx|_^ErUHoo0Aip{R|IaS*<3X!_bXrk12tEw6%uWk_MZ!f}#}UIY%hSy4TTQk3Lt z*&s~7if>3ZX@{B%gl}?$B;ghhG=`8u)bj*qous?!v-Wa?1mHUyAV~ukcIyfA?{Vfy zx=JB)Kkgb*LqFh1Nou!50@sF4CJiA!<{*4W;PiDuf|!HuPdQ8?lZ+K1L8_c}E`0SD zoOzP^WV4p@)euhgosCDNJzxGv}V9b5?7XXqf&R=bOZ+^-{Q7Scv;i&NfMS1GZsT ziB{SFaDXJHghd&K0m%Q5x$csQ*uzZ_RXDhSD(5Bqc>g5+?wuHiDylZv0xe;M4LDE| zm&Bv~MaP($U}MfbNh8pNRs5^lkXj}4U8K3$j3dP@N{9*&W+Ymu%{kP7$!<}Ly@b9~ zZ^^reghjUE?30Y1wfO>~tgSgjlF_pULAA6U$4D~nk{F_!Cj&Ss(2g7|i5G`pv?x1s z?n$zsl6x_(EW2^EB$=|dqh8S>JZlfmIY}LXODmw7hyh*AX^g{kYz5x zoe$M&!+uKx%Dx;WNy6Aa4FCXE(ah+}IR7Ly9rzpb-NT%HlIWFQOy+%Q;4p?!Asd6*R&@l2}@TQ1(Z0_DS+veAfL~WUO~Xl7tJx zxN5P9cOti$XoklNh(NT2t0PHt=m6ia@5g84mU5INL$(eaMqg~U;gBvk7uV3oIhDgC zX?r53zE9)alk}23?vvFL%QBqF0TOvWY>g|9io7U^5NC7tNqRFu0ELSNS@QTi4v{1U z1E-0xWm6Y&)=8untRpgd7iSK^@_8i=k)*mQr7&glDjX$AV+<(fT;4e6pTtptKMW+= zCAi*?II7FpCuzzQ_E^o`)9jEq3S^A)QO z+@aSI&QEpr1`d=Y5D6eiq!vdZPw2>-*F=bT6URtg7#xyEjsvGSP?FBOD2z7>gsD+| zy}?^JNMeme4K?4!F_Mg(m4e_o$3-}`vaF||-@%~<>`+$LHcEBaS7tK(JCVCSVi>T$ zG;yf7POgYuV-l&}lUj8DD50VcLAc+|xepj&#i4nIIQ2fxnI9>p&F|h6i?JSVkr`;)ge9843lqC;a&`E12)QBOl@qskdtf~8s?fm61>`0iGH&wS z4$@Gx*&HXm;jmLDZa*bO+JZwZh^Y=@Z5cRmz+>oWu*6+(jl8nIDK20I-|G&HOV)I@ z_u}pJWV2IT^E3@-?zckp4rAuaa|T$G&27pH24V)ltr-w5J@o$w1+ubT$0MV zSZl+ES-?EPVdD0G*}`~Bd}`2%3C|}LaG&FFu|dqz3&(o$=rMuw1&$Lp$z)wDz~QF) z5(kUhgKP^1{XpymQhR+hC#>c;$NG9cSampKdAuz*;R}QPKaLf*@6lF=rYpAv-nTej z7U8f7UH6G*IOQdvzRRJq@Ogj=$A<#vDUOqc&m#`^`5$tyED8m~-|!4UQK+Bfh7+Dv zB5;1jak6Md@LWo2rC)NOELsr(#Le^@juw}vo~~M%TKnH|h`8M4bPy4({Il7jL^Qh3 zbCfiVZd5Dy7Y>s~We7702kpw+VuVZoouj1b!(toD9qeBmBre4=o%M}v-U}IHnA*A* zv&AsBaqHnN%d`ugCT2#qZ5wi&G?m`erftF@()gCSjhW3s(lluP*eIg5Y{9|ObcBP{ zLA%<6C3Y}>s5RDeIb7VN*mU)VwVT^y&Y!lI+jIVDd>Q07>uD#BlO|L~G?Tk@o<(Cjeubi->EKrsd7E5d!5T zL}A&8xPgoXQjm}6Fm0WJa5Na6ZKLuijfEMB(Kf78E|*}LHC>Y-3b~x4#+`s*UqXr6 z4G$t0h-Yxbxc;6!Vi``Az+wi;5P^0UN4p>stp;;ou$i|7XRH*-jyeH-E{8rZQ|K{R zfDT(enI~Pqf#Zg9_8R6;7v%*78~etn-(13>F3v=q!TbX(kZQHWxz(OdY0N2e_)D^d zhsohM0mirh*;uv8R9)pzamjpp2ZD(pJb=RBvo#KxP4olE=qlResB!0G4ph*n+S%rq z*+g6@DK7rym9)nZGc#w;47r9w#vLkRuUJ^Z3)?_=U*mEP7&q*i9uOK5 z`o57vqzm-XQTJvJmCmDMqwTF6EnROK(4wO3Z5%6I?TL)8w{xV_=8A}_cXFt>ob2>f zC@Px1n*;40*V%CB08`Li5BEBACB|-G>-g?XCE8#}vgl z(s)N=T;|UbEl5U;hC>~JcMQKcF|Jh@5Uecce+1fb94#)-I5=8(9+H4Nfx~5}$x65( zT!5X#!7|ijM{b%IXs2+r3^fU8RFlg&T!w{%i!6e0CJJ{3N6WBqfVPmpos~Bn)#bSy zF7DEV!79OMRfNVOoXtYYcmW4JH>QoXQDbru`l7+ zaU=d@WtI!#MS05{b7kh`ZR4qIh60aq@a#QnjaK3+2hA=tlpVPwLg=@~(XtEadUMs} zU>O#zDKBslMQd}kxID^W?pkri7q;aQCIYa>0ppe(4G37Bgkyb33|hnSvJ30Zr9FA6 zu_)f<948<&zEOuN+%WYJ(3CUKve zIbwF+T7|AEt%Kf*Dy*RDQ%`5Xt$uHA=I@~U-t@2t@57jgxJ=2r*&5(mt##TRGkwQAuRt)hru z%@eWVjFZiD0`cn{F}qj*b;Hnd{67wvomyMXPPJQ==Sqn}ev2b!*H*RUX+#3-yBsXL zdI2NRg)kx|t<_T;FuRD;cFI+_&Pch*Llp9d95Xw&fn(a>_$4?Yi4^lE95TBmx!vq( zdB2}=xa^u_xP_1=Zhy(qvhz?q1^ycjmSxej4EXPIMZ2_3Q77f^B6seu#khLuhMMp^H7eGKBDWb)8QN>gQDnjokwt#xRr5s?q{0g zJemW=ZPl{`;?qZqI8OR-%V%$n=P>DAK%dJzF&7Xmm3lGzv#)_ zQ4W{hMAdqUX677@61TqIE`}PXiYGWy`s&K3h*#wUqfZStI86Gs$1o*)DaT1)h4iW5 zE(b~PYHSL4HAhL`EsdD^y^LdJpf+vF_eu_u-lO?c?^Suh&MAd-oT+U@V8*@nD#~b94q~ZBx=(5raZy)$>KM2uuQZlro*+tz$ z^!*0Yr10Bw0WwSm-@$>>x8=r3;CFGP^iBayY!Q!B)#lXS%dygz$~e({4@XKLo6Hl; z@8?kI3uT;G{t!n>-xBH*${*n%>FbhdBKdv}l)jN->+l}rDCylhVw(Ds94o!knWv{e z&7sowSNOE_XE{uI8?ou=&vTUYeyz_MJjOw?D2g_x_?28x^l9g>ag_8U7Q=M&H#tuF zL`JZ~kB(`b0|OHSea>&r5t|D!O}0x@e3A? z1ZemCr#V7KbX$JGAv04cYp{OJ!P0jpj7vM7;YjJju0Fr{2M&@x?6RdC&vBIW%^_dH z@#lPC^rahr<1p#NZsd}Ue{!^a;x@RfX*qC%6zuJnJ03oLJ?!kiY&AJv;$TZ2!?5D0 zIw>wU2v>Osepga{ap$x_bPr`x`Dw=nEDDiMP(BEjmI%b2!pTnxKirm`T6lV<5afCkgf8W&QEFE@6L4*BcrSoZNT176 zoe^2oa3>_WiAz$;U6Ky0%7qK>m@seV!sPF*ovP-ow{R))ca%$x00Xb==oKFh}QA*T!#Gm3o@6W z1%t=96#2D_QVLT{_zD*#cZKlK@U?Xy1&`#}Bv&`3=BA5lja8F_*+T-=SQ3NlN!q;HezX zX`Sy-_-T2E#o?`|k@=2aU_r}T?FSMd2v%?d8ci1c8HJ$9BI^h>hyaa9-+*JPm za1roM;9+s*aJg3MbezsG)Y>j=cXrytWOy}5`6o&ZqyGQL@vWQ9LGV|V;859iaTHF9 zap2wp$ox)1j5avLOV%)_%%xiR0vROOfJwfki8t@}iTzuG^i;_!>@WGOJTXRXq z@`x6`Hll*Yc3h0rIf`K&J9gx9P2?|^A%yJA1+mWcC-9i~NU|FjCYM&ucN$Yb*@KHP zo}*##(mMTeJkj9q#pTGQwewX0HxYUFAa$H^oO~_T9eKi?5NKa6P%}rxaDn8GAtBGp z*0DStx%gDbGtA}5vqn!g+oNzng`q|t#081FwkmNyEz)%l;R2kWho_(bbeQmRj+{&L z$DLEJEhAi#T)crxqE(Zl)|DW7{Wz8jl1pznx?(Km5*%dfm*K@Kr02T?I4U`n*aJ}1 zUT?@v8V-^; z*2A2Efg|*Ju~DDaUB$u0DAj7^T2tONBV4zHQqZK7^<--T5n#g*u|s8s;kAZkoWtkn z2cy+Ssa=Jui-`(cE<=tMfZUc#;OiVdM;|OVTWi(54Z;UoTm{kfQ?Ntd8(FHlctkIK1^7 z!QcuQ(=vds;^@|S$OP!(5@gs|rbUBSb18B(!I&P8ubW}`CSCsaS`KgBHB4ZGwj)n+ z5gzzDj-O*N9EUA`RmfA2I`{@ILXIk!Slg1PWeXL&iR0%Og{mFiC7I$9*43i$ zd$#*@zXE)YhEbp5Qsh}- zJcSrXQ=j3IG;DKQiA@tdsCtx(lfQY`*y@X13hPvMVx^ddSYPIXBY6MKF7~7-@uB$5r;p(cF;2Jz*22(N$sY!Ddnk{Cq&e#nA@5lVMQ|Xn%TX97V zn#YZ2y)(yN00Z#09N2m>OwiGz2deA<92LK@UJMg*(>=#e@pmG9XFisJ_>OhG9|$zU ze|AN9=08KWbq`OwqRy~8)nM$QJZjAooHXq%MedQB+mmVT+=0ZN4lF`r`xrH5y?m%v zTI;l_)4i0c%zF8d$4V>4se*r`(uSDQtXJGv!bPaX5gs1CV ztUDWnVs~oQO2q!7!?+mMlN+{Tlq#hbUbtB-O^z2^&1UT&I?4Kqbs@t-D#MX8DFdX? zg&s5+j^Q#~U>iWJZDBUSaWe?5mHLDkgg%%W{Ui=;z3tRi;T3r|qv)HQG833utXa-6 zGY_&(eblL7lp&L4XK>`qHLOS0vp8n#l~`({Z)?@6Zq{>W0#q;Q1sv46gJ@k+01Ypq z6&`#MN6oy|tTtc<9Ci|wy0kNQ3CGSnLkEK-0msGcSP_4PV10$h`US$BTLg3l87a;Q#8_rl1Y;JsXiydnVW5PpDT=T!@NzwkZ| zo>##;T`lf^lw)V!{bryKaL~i7lVEU0QmI`m)yAFCHl5D=1h7@+QSAHHgr%O^7Q{s! zTx5p(VJs1uP_dr%uO&i{NO(Vjaxc9MJE!AMxbg|njuhRDE{E!QjcQ9Gi zZqiiJPq+*)`ZMgqu`^l0UCc%OZby+c{uvj_dhKjNOL>Rt6&-C$(A~0V)=OsLf9?gZ-eA_gu29WyxIlS#5X7aTLLya=-*G|ec{@(8)~!O#_VuGm z^X$w^1G~PkZksCh^D{4vKPEDDp#H+8>EvuFUz+HC)Ze*G_9^6KeFtAA)}8tn7sYzV zQNm#3i(>3my}-rEJN5 zE>7NKX5Vn$$pw&8fP>@7n0Y@g(hT(-#cigrqNjpGMIzJwT&5Xn=(=zyuQ+_Y*ln6l zdpLkgmUpT$Fd)w^EabxEJ#;mC^`Tr2>w6m$w*Hasd^ndSZv#d9@ey2@ysP_k4tz8h z$$B?gQd@D)UBsoZ-=NUMOE5^hI3Cz3vpMz~6a*`M7DqgcoW3~`MJLlY_G@SD;3DR0 zPDWrhUt^z-w*~j(%|ve$lB{qZCsp+_ZaMqOvjIg|1vi6KCyAv`=kV6sk+3XqdrEO} zaDB?T)$YWp;-PBo;i9jB+CjYdD>%M=a&A!kCT@?Yb~=zmWp+4c1_cR(Xw+(4kn_19 z_OlTKYNS(dHoFr=lVMhJF>*5uUWy3ag!XvVV3;Bo#C}bfr9L9+<|v0g$9jlq32ms8 z4u`eg=w@3dO(vhU1vtdk z;o$8Ouy}U+cs5LUn6fCu=A-I=eVMxcqx?`3AI--+tB?`eh z8J8wes-+IX=60+K&5Lou`zmf`>uz)+)%YENR<8?-hnjFxTWL*|c7v|rB3U;#X+-M6 z%qsDk>$xD-364~Pw5#?gSh z*29uSmT1=a7vTa4)ivNGklgyk*hOI@EG;^85e=YsK>Yn)Pq`@88z7U|som_pg2uC7a0#pz#3hkHr2o1TZKpE<)kr^1=GQYVjelf;d368G zI+DgbuKvTil|~z0KeukB(MH*S=F(WNc}e8O{{0YfgYCa@nXK2CrI0Cd%>7R;kM)wy zRPszS^!^W*E7uX9p9?mO!2h?dBw?N0ms}26dwO`_Oz6Zg9^ZgVl51n>TL*V8>Vx5p zxhONC6vLQ!vvntlHZ%!H#D#>?BSD@j;H z*^x_<>$uf7kT!bWnM*MfZekup@5Y6(Ugemg?ik0?dvIBDoxAbPqYtU~;$qB1pCuU3 zvaqr*muF3$Q`ezd{C$Grb~qeH>I3YTalvvO)oOwn#@WMMqM1}x^l zsCx((#CnrOiuxWu;(a+6D%YhDzIJfgLDW)+5iZh97_8fD73nPDQCyIjXvYne>)3T8 z$t2IfFJ4!YupY${E=jJlGHj*HQZ7KQ?RQ+AIhD(jYa)+VmeaTdx%MDnHH>M!(3xC} zTqmgvmGx{cLar;Qrdg_V9v3H9jTnN)g)=S!ixwAi5tb(E$xXYIql8GCjP)92u@dx# z?$p&&{UKYdMzdX~E8r@?Pgy>?Y#>hBn#twJJ#xY5I7&_yj9M?d7Gh5a7O_OsMOd~( z)cQglJ7{sP1RNjJu9Jz(I%3mASH{5O?PjmVfmNRQfeiN`$nnvqwnjR~y zxjIwuk8B*LP;}BbT5r>|go|h%--5ubdCVLfHfJ`Py;`kG;`Q6O!OpVnfY=s$RKFVX z9UL_C;#R8dYI&mO(DVM@$&sz^X0R>pc&T2eXUD#Wqgr>oY*GDfU&Od~b6o2Yv@LGX zFd4n;eOv(RPSC&tX!nnPkYndnc(bp4mRA7mR= zI&cJYc|u>g^AK=UngZ)u8*?N zi+hcBY0{|`tBs1YhJ=zwxk0TLs}Ckhv!}GdQ`#MDk5gTpF(5BpUmilF&c4lbX5D0TJl4|# zM(FNIqwcI1KHI}r8_?kvwD2^S#kv6>SQe8qe$E9r*xL8etetMPtR2PuE8wZb9ecA%e!6>0N@Sh-EtZ7D zA^YGh+1mj})UDs62rMpH&-)3N@$_jchVNzN9(2cPWA;aG*clQ;J4)?O>qL-7sZrMi z`70O1I)O8|X-2D!a9H2q>gwEjt zSZ7iPj|CWv98H2Pxdb`-fslY{VIG$uM?Wxx}8>>CJ5ca8wq(Yb@_C8z` z>m}-meZ&yBU%D>jFvRa6E=P{NTi-uSVf;WYNd7)zj^+n*QD#IZET$gD1<6048AIzU zxFptDA~-JzP8V5AI?qP}KV@WVoh9;lX`SY?J%q>+?J+1l8PQs2iL3!5MzY5tG#klU zuZ6RRZ?-Tq1lP%oJKdsFbJ*=wCvX#5@2#~L!>{4fN^=sIW{;TB)40=c+A=$G>SgQC za_^obK6Lo>pKES&qJioAfGKsA-ryu9QaUsPH zxD3b71jn`GqK_be3B-qTLxjBx-DaDt(-MfE$^+4oUR(hHdAI%l6<;dG7Md`lC;Z96nIylL(8?M+CIA7*CaZ6L|d~>YXYggd_Z8$m% zZZjjE`F|WQeYwULw(4rOmzZ@xj8wW_> zmbDUXPG_xV9rg5;4Q^G2V~Zi8K+{81xIRZqKF%?ZJT~GG$0v3N5u6Moj!ij8@|b8d z(wM^mllxxm2xH64k)lQx^Rh$=`}d|1#kL%2Nn)P}k=RILhg@LT2x2~mIVO2&_{d>b z&OdoiK4!$QJI6_04#P-cPtHGiurZGi_TdmGBsN9l$l#?MWl>@jAO0@nFJ^W)h&{2sU z8qNr&os8o+_Y~&nI`xin@~r4spTH54n+9)X;}F_L%u{Ny(Ct+O~t@+uO5m|W~!4wO80`9R*~9dz_`0mnHuxs!?8K`6jQ z93Xj)+-g902}ev`B-22!%mI=I7~=qNj3XrPx|j!kRSuCnhD8qeY8++HIQMFoDpjW; zQ`t{$4wG#kxQfiU9cjZrpWQJsz7H7FS-05W7x0MU&1c?(_#Z_SHuDynah)D1tkQ5` z5UdXrS__8S0`&nzr898p3RkL>;NFm~6W;wSU_QZNVgur|B@-~TlO=#2=0I_qKm(oV zH)Ea{3J|;j8S73Ne9liU5hXstLDQA4R;rJhfIgQ!P`hIS`T_@v&G&@rq8E%xHR6RDX-c70-T!j#X-W~t zM4NJ)xL$3XZ<$)4Ih=jc?xW9MYk9WJ96)p1d6@%f9Q;oE60jU3ddnZw6(x zxy$LS3fJujZNRy*XyaVXCFq zr2RN#+ycl1TE3J9i~TuZ-0^w|06VqjxZczqz)>@{W~W)34D-OkgBEhkjKgAQGCV^; zARfvQv)1io1=}1F7Z2yCaR-hju&8%6Fl1v0?hza}ca?2jgku&xth)HsHo3QO7 zj+t?jHwi};YXRx_{6U?vZr2kzXvTImEMyisKA9uevmI^t$heYYm9x6oSzE6=u-2yR z?-M2dy^Ko}x5;FHdSx8*oX+85NAvb$o-!Njtl(I2tKbJHnjZMi;YhKGcKcG{K!e!p zd=8b7y^Ld;l^iaklCiN&kwaxvGUFI#l*7d)^zCit?^c36;4p>>Qv1Y+4#&=@7VvS? z1jov#7U;daRU9dHKE__7hH+AZgJsn35jS5N#z&WO#EkmQJ|Z6%bvb0Vg=FKQ)f_RS zgo0m4^El`-4x3Sh;NzbwIaWp?jg5P*;!v?Ow2Z99 zd%-twtkG#My;P=$aF`3V0@_bE)JHF-J*s_@8yV2HkE#mq0v2Dir58{FxTRQNsFB4HVa4t;1{*=#4#nv7R%xJJ*aImxm?7)58xEK!yp~eFKnq$U>qL>0s ztITIOR_ru(3|4f3{=h+!7HC@KJ;$;3iK$EK&C|iS>tl0Z0rS2v4X)J3xTOjz53N=% zD>bUE9-IuKTyh}TzYJ&DN!^U|VM_#FPX*R6VzGJ}*M3{$1(U~cvKZ0cL3|NGTstr@ zUb6wGt`NjSIAUDVHvuA)74~wpN@0pyDEH+YH*OR(D6X@n1zAvXrjvjj;jmd6bWAts zQ5-Kz^?G-K;8`>B>?%>tV>xb?j?{M4Ll6YwVvZO$b|2KBZKpF)YK0Rs0&)q5%+i?c zW-XjJ7I;fJUfdkpphYCtstdqVIbfDL?OfV(oXe((Et=%Mt%EDNzm0Qbk;xekXMdGd76&xrF-I-doS8=FJ%EZF% zt2t2Ikj+|ordI4aj+KQ&u-5Cf948AqnOd#aai}cRXKbzBz_H@?CyVR8gJ$U9uftIH zR5-d^8S2LEPma7RoG?5M&q61I+qj(^kv#cuR)~8ha%aQYxC6eT5yY~5vc6G3oXrn& zk4xvl)R=O2_s@0#b$W zKQ$mWQZ$llHx}rU9n+ zV7*3lOgXV#6z!WFEv*JS6TPu9c?pq#d4j{lCBxzh73B-x;Sg~FBMt&-x(|GhvyaPh zPRHJC`yX(SxD78BASRptn4=`sl*!gV;6A%}Ly$Iw1os z`mG4ArzVVV!_+QmR^t49THZVi3h{486cz^KT5k&^KNyzUvwBLm9l{ zzC18AZ}=$3h>KWO<>1#2jS&-m_zIuGp_^}mWqeiAve;1}=ShAZL2&5Y27L2ec{1%?S|0rP2u zvG4pDZ-dt{#GSg~oVtMdEQg63SX#k|YrEwEI|AqP94EeIvQU{g_>LCmF%EOYz;=(Y z$X7V;xQ>NcRX%TnCBDYl#|_wG*_$lzP0l~D_y)~C!P)N-r+K*7soDq^W1sO|2mrsO zgY3A=y<)F#52A`-`g=CejtzUBSbA^?o|Z<-#cI73)>MJ;N8?~SF6R_0eOPIs&BGT- zY5v4V-Lc)1K=8%QMz;j(A=~FxyAvydr+$~qi}i@*gcG--WPjyovCUt=Hy#b%B4zpq zM~NG?$1BgIw10DeSkI3wMxEK@znpz?Ek)X5)|IS1h&y>AUQ4VD>vQfY%7E9m!uA-3 zvJpqwJ1$1ZYhVM1nYTW~iEH6-8fEkp>nxImUZ*96Fn5jO)X>T3sdTdKvO`PCXOa93{^6_~H*=laCW&I}CL>4jJ33A{IQyx0MbojUyj z)@5&9fZfc&VuRyAU`&;_azwalSGQir-EtLwkYqHQr&&0HhHv0T&?OZyKQ{vr@+xKybW0lWyyfV=@1>|+JDXuz?Uu#0@6SqbwO0_Xt~&^}E1 zu@c@F3zWW0Y+H0HW6zYt||0Y4TN^pN9sZZPu)GG+}IZ55S>_vO*r2!ssH#AQ12n%eppgF&jI!4IIT|)DA%1l$7WZNqul1pl(2LuYF^PJMRLZZb5wG zPD%ap)`UH%MyjJMitr7pc^DO6qHV z4Akcd^*xfhUQMYyCrqW&OrTcN#*`qMs6NJSnLgYzE(ch{*hXN&VtWf%*{P{3A*I7JmCM`Sxi^o%?OT zJ&EY~=aTyD^FZB|==oQYdd3q#9VXxYR#IR6U7%h{sK1xgy?zJO2T6JVD5*>5gUpW+ zJ%9X;(7uOE0ClG^)e8TT)T5d}y_Qg4kkkjx1M0A&etXQFA?L%+2I~JRD)l%?byfj& zIpKVQq<-uYpx#Y5pCqZLVcx1J&jOr(5UAT>Xb$;5$e|WP?;Yk)IBunHwbk|qdrNfhilZQ3H3c1 z^}tJ2ZESWgmFks*dXPrFolqawsN1wv&VSLU2N3GK_fgyv33Ydkx`I&m*QhHA^$3kR zL8zB$)VC7q4U)QP1HA6LJ+(wTyg!tAyQhG<{go>97)kA%0My-yKc6hAd&~tkzqm^M z_Dzy{(KbNciPX@oJ`m#GwE{SA-BrKcM^c~rCQvUYwQN#S&-fltHzP7%C#lcA2-MGz z`ukoXTan^&6zT|B}=#b^_|&@gdWWQb@hqV3O*Hwz`$F97{tDC=Ua8`KSyG3N z2I^hJbKDPy-!{5HJ#JF{_E||i@dcn>MWou~BjLBtd>^QX5gV017E(Wrx8_|2*U-uM zJf=~vB-Cd#>Q4#vuNw6kLT%npahI%7aWB)TrxEIP8udIvZ9PCaZ@O0He2qrkfl%L| zQFkZQ+cfG+3H7XxQ`}Dw>Xr{u>hYJUQk|($R}<>%KS95(T&{lm6^;5PLj8|MeTY!E zc!+ZTGNJCMQ6DGNLp18I2=yL~dL*ew4@;`JfctLZ&yRgFluBF`iuc7zpL||Y!+Rbj z^*@p-ZiT`d5heBdheOWdq*uHvLsHj%Dx``dZ}4y+NxfZC#TIEiszg%v`E>YgxVuYI z50g}}y94(rNorM6#S(5@$}g$6OR8A*h-+FU^~;hPE_jpFKTE2ZQp9C0l6ur5q0HeN zo1~s6sp0&Gq?RQ$oEr$KJ@=}Y%$jw|tX_ZpcBeaqxzX32j5$*I949;Bd4D#{t&ZcJ zqp+tL9{BI=+ur~VMTZRaE~joV>-s78{ReHH3dnxf@;#D%n&%@cu1c1rhrvW&}BP%QdqgF2H{R5tMoilobHZ&Imxv z>4v5B%H>XhTZtb4x-d(iQoCJRE0yZQy#?X$2jGfX!iCel4DxLVi9Z0jEWLM(paxfZ z))$6yk4ASF{t@~_3O9tQyGpGECyod=>^6tIzoy)$SE3ur2l#LQ)s$`+@Il&yG+<7d?Br(+SQt87Wl`Md-@8n$OdpS zeQnDB9~9%bzQ@~r68fp)2P97CHj;hlHUY@@5d?n#B%Rwx5aKog z(2o!Ze^CEv+@^UW4*>7D2bC@Nq8U$rSXB6ATa&_@QPHP z5tK-H$jaa^A7&C=MVK%o0N~Q(CB-esp09|1O}RHO2PfIk`y=>2KrGGx!eb8paINPL z%QE08ETf3-{uHYy{(#WOCpLuOIHK~s1~u>N1#O&Cb~$bkApXGNQ5-mIrabZg2)l_V zWd%FsA{N-Bv? zvX(kSV8S8sV9NckXfw#O{v7oiY%@;HQUDJVJo66EGtKT27GS{Ap?4DTMG4*IXgU0W z(wt+mTmrn25{&u)4+a>hT(4a2JJ5hkgXWQ~J!k{66_c>WRkfn`EHLDv3m~*?35Fz( z@kvqr7|nTFN^`3G(50qa1P6=0&$DPbWBy(o(8?h&-3hcS{y?!-rn9SBDq&jhL1V_oSw!FLkvYA z4<8)z3!X!od-rKdjIOC8d#LVL(3JQCC0mts$&_wP1pLy@bNk1ner!m zle)VT^7aMrFu||C<@t50?vBn}xR(0RLvufZ*2EuBXR6j%&=|R5Bq-s9PrA86MvrsVnF@%4> z!0JNq)lI^`#XrS+=%eO=qGfng0X-b>&!2hzY0j@DU@UwyK=M%B%doqKKTv{HEp)(F z^U2_`4|gTP;Sa#2>VXG*LpbS+0m+BF3L)_aAdPcN18Q;v_^}xI+nR~tbIJ}KB2~K(DI`=w5C>dhqt6MOr0V@fqKL|GqvkDKDt0)0bSRr#$6G5Rbp z!lxR;7=?oD3Wxya-^Vk5CjKAF9CpSTwukHf0i!zpK;bUQpu&g9((v#oG&`2n-5bpw z=$z^|RYof)V=oj!6hAO7J`T)&E}DIwff7C}N-k*lGt&&!&4Nw2CBM8FsSf`z8%VDuTssj7bn;;{##oSQ-Q54j3^DB`=X zKvUok2%f6?QwXp6t3XF05dHvADhH!LvihrF#~>K~09cypFL;iqoX-)}-+KbgJ843F zu;roH>9tzo)M>9P=|zKpIuug9z6At_IcI_6?HK)nq%qbQI?}1%KNpU1#+u=Y22MNX zIqmBF)PwCEnOp}QCbX4&%{MjLBO5Kj z-Ey&Rq|if0I=2LlG(RZBkl__cg`>-K02Dq|Y9v55@b=sZ1q64x)N`lHGjS(g4iVIe zL-BW@GYzu1pF@|zA1Hb^3zy=~hCH7P?hvIfMStHmRDsYS`R~e@(dy&&KA? z`y=>2fTU{fLJ*HVnEDFO)Tw&AAy?7dDdM{?L-XMe2%f6BqYz$mrveQl5dHvAs(4F* zWOJv29fV-`17K;IJHc~A<$O81nQwDoo+@_${^Yca!BACnLA{EH&xeAcvUon_{_#w3 zwynh{8p(f38KJkQ%AG|B=LrIC`8v-nQ{~PgFgz#a%JHz>xoBMcfg+~Kof*(a#50I2 z-t@Z5dSy!Zp=O_LBOh+tTO6j~IE=H7x94b&>tn9i1+;%Kv3^SF7{ zxif@M0$Xl~3n(_Pl85-W@)=g%bhcEvc^wCY1zWx=3tQ^kJzJ_zVH+*rxh=FM{y>3J zB^rr(!rqDB${2t<2#h}foGQy_23A@f1NbC@;}3wJm!eBVut%z}t{eR*bYY?4cX}>N zqyX4dD>DI?&)b5-YE!n0&HzW=iap0i^m}yYR4X%ehMq?wK6vy;JdaN6UWO9GfJ#S( z=^H?GU%)&r{y@o6O%Ch)L)RuAMr89vco9Xw9}wZ@1buo#GLhlL#Cx`wpLgNoWr|aCAp^0O2_>Unx{s8<1>D*djE}UBY z9lEs8^QY0J4StkrCKUW=qSTovjn>qyG2p$y)4;8-#FG-{asocnSfF#Knh9kbJ^w}# zz`wul`FC1Z3ks-qemoba6j*8jxbC%RYy5%2rI`t3WfSHOAVZ4_%&(!v&H7C@DuoSg z!L+qk&0s^Doc&ygqqjL=YWWQRl;5C%Q*CHdnR&KFOt9_uJlm#?(OT&|vxW~LTY*EQ zjnSg`1Eon@heF;wYK0^pb~A*_cyk(D(z;X}0jG<`eD#O@XTfL+sU;nTPa(`sAz1m3UEx+a~b9gNB)0)ct)NnqSZVHv0xj4BVs zU{rpFktyw9RC4poim+hTKY3%)|LFc_6jVG%swx#wV2#UCh8+R=h!9{N$(r;;=u z_sHw{T}j!p#NkDC(&V2X+EwT-kd%R|Mosh?ZQk54;EZ_)}unRsa%+G7cNYmdU)>h z7?tn`w3;S2MtG0-f35VDB{b^3C~QeyL^Y-w?GkRq<`{H;T0MWQhfnjYI@BD4o)Xev zK!l5dw~r!+6i;}`6opN-2PH;WPbjedY|r|sCcR^DxF0Cx6N+&wSiSKFid#=HUW$-H z^Np2&kB7rZ%eb3?3i2~T+v(sof^a33_qTA8DR)=gHaS~;6#OMVKo3YY;irLnfME6Q zJgcV)YZ`B1Y2}%R<=&0;9e#*JM8Z3q4gT4@iYOO}GXfOo%LLPY zdj1oY;qHlkgT@Np<5})h0~D3BoD7Diq4)Sx!SBIs6mvO2JPU>MUIvAw${QJlg7uN! z28shc??^S~HX<;uP>Sxp5xoI_pm1sOMhsc=0u}QBG(PH_>o--GNad&`EJeHoT4;Jf z3&O_V@U*n;qsW31im5P7-6e_9DHn-Tm0_ej$v zia^nvM93EogHQ?X2>J?|C&~z^^6DzzFdN1EMH%D&5tk`#3!jC~B#GjAC}zkGJtfs@ zphzKM4F`w=ezL^#lguhlD7(>1LaK-F9*Q9Zf1se%j2e^>L-P=L9{L9s-aP^R0}WzU zd_B!1mdaI*!kK#@DTpRLJm+;g)jt%fAcS&Cj_4uhmixPp0oZ-31rTM_HCPpco zkih*G1`_;%vaZU=NhFBoB}fR}1Qp<(j&6c>iBNy4R#)sm2nKy(B;X}i@cEGcJUoM` zfy|ThzAS@8Ppd3w#T`SB z@=OA@aKera2gwE!X{HLLi-qW-pCPFyaV+evkh-qgKVj?gM zo}wthJsCp`{-g{s26W~bD(8K`hWe8*4V z!e2w;uPL`y2V-t3AM`g}I=QxR7QTwicAu7+#{$f7rDukP(|)l4p{tGYp;oo!)T#|Q z_*6)-6?@*_3I%~z3#SLKf=qi&k5H`~c&u~3*S5AYklTBM!(SC@m%lY0)AY8 zj|<_)06t<5J`on4Sbc{8o6-9_1kh4%(kBj`9y#zQh!5o^6u8-j*#TkXtxcr<)`8O% zj+Y-mArGD&Dkwz2HvpQ;3H`Z2u>v^Z4JS_z0v$eQ+%r7RcldUw!hJqKX^P{J(Rl;x zeXZZ`@4Hm8E;PpqD?I-I)&*o;Ad)VcUeeVQa58gqXtgucaGc7}gi~w528Cd+QXt@N z)4kR&oIA0$P-zxcI|XD^@E8?BM#o?UIAwZyCYr0^+{7U?hBKr)+K@9g=9KYZ;#yE4 z_Ot(>zu!sC)dkRzU|!H&wV*NwVJ(yw2B1>ATP@Xw>eV%%!?4W03-31FYyI8Au;no- zEJH?xCI0q9;dRGPue;G^qX$dTWbJjjMT~)%?aQ{O)w}&YS0Ky9 zAAg(r>`~Kev+WE8?8Zvf8rWA4X7l4->CZpY849qM2nJMyz2iCrBY;&v1^Le8UV)tp z+6x$pW#Ctb0&ULSS0f)|1HMlzJL&J95#8&Nk=BCmAIkzy5-4~V&fz_WKA#(rkEtC$ zES8zyju={D(W1F;K(_I1^`TY(vf#uXZ$|#H4f27p>;wB2^tRZ&6*)&Wy~D9g1EmDa z1Lt`gvNSidC&V&TT1;#PWee*ygF4O~h%->zc~mSsw1@GnooDNJBdk@^xFi-18adf; z>2@a#mxp^d;ttl_9T_V?SZDnPO0;ycb@yw``w`ZrF<|w|#`7K02 zuL%z$OLNn6c&t@qlTz?n9me`I$a=cQ zFY^X{o~&DFPy1Uermq3Yk%OqE(;KZfE4`WnG6 z4e*hS(9upYZ}fMP+B!)LglHGs*fooi1ac}J=u5yk6RoP~6Z#sQ%L)Ct=Xfs{&JJHj z$1_w%1KNmuCVXC268CQ+d@MKD2~#ISvI?sNoCnQa+Wil5Hn{Q2EoBa^0KE+9!S0L5 z*66dQU}usR!(HgE?)skxeyXP~w3N^HNQKqL$V&H3Q*&aHN)}fi7kgge&PMLjxSuIJ zo4|YrD`=kQZiyIXS2I@NCS(Gy*Q z8EN@kVngvvRaH~=NceX_aYuJwbaayk9&M=oAq&p|M?4QHgich@oyZ+V_S5-_sXx!4 zd<9){39<4emne1?-r_DqNE@FRvnZiw(2;@%ODu!XU>lF3SqEs+KAu>Ip;&3{Y;0BG z^d)E#!D&XF3243`q3x}6@E;F_k6}eY4MK>1>?|5P4y=Do&tK@ zArzemC52CoIYINM3%nri8f8dg3-8_6`u+aC#|5nY$)$jG0a+JLkgP#%hYuif zy$J(6XH5wY^@rFm~FpdUV?$O{}Lb!qLg}RO|@RV47Jkhl*S#L8SytB27v{R z%IStmv3|e5@3N3};cR4$DWT=icbRm;9=yjIm0}2yfse@AKN37DXrabkf9 z!FUCYI?-MSgS#tMLmR!3|5tyb(ENs}f1oMEYk`IAoJ=eJ+SGBlCsI2xd=ec*WpN`JehFxIAc0i2}`{K8H^ z*Qn;SLmOz1`&$QvJIQ-7Kp|PZ$U?ycc{yahk^fhJ_F3X_;rTn?b`L6OI+KnBo>5R8 z#=QZZ&*UR&ls1Vr5@Z;pzA@S08BAE)y$N|wXIOPE%7_D&Q>r*(2=#doHzP!h9o2Yc zjGR=k4E#X1KAv*-7Xt?ar9W>eW|2CDQejEJ1$~4hFk;X=)=>373^K!aYNjpXGcl_w z5H$ha`>@;*0+9tp5uC+RE`L8@r;7{JytThm?lWzOcw#A+AWwOdxQpJ81svLk^w&p_$VJKKM~aGJ<&;p>2V!oZ4J0JRVjXpL3QTF6#)%M&1iU(~Hl zr2f_r%OR15A3%1>{{Wzm8yvdY!2V|08G;nqM6(j8cq{h2ztvLz)xt9WRX}9%CeA55 zuNDp^4C#IXoms3E2;EHWGEZx?5paZp@Q;GxAMPW_*5ndu4|96vfz1n=H@J_AI%u~3 zv3e+rRS1S(&+w38QVs7uh8R(HRwtvUFGpa?0x_}sRYWivl?<=r_$ym{{a6w{nR35+ z1;mrhF~G=&{mqv`D1~J@-4ZO^Y-4pH%K@#yJoXSj!uB--{6^AwMl--+As^SV+6UT21F78xT$>5-xPb#9uZ2$yTB23g_f*TE<4y1 z2<{vCfAu$71GaS=N6UnJ zB}(mT2Yk&3ovl9V&t9y&05GQ~D`L6V={6zf0!zfG=LM)c#k|qqX>s^@f%>Uv_Y(R` zuLBeLCAdp8@E7@@zvn6wu}C^T7UYwwVrBD;00d%+0a$J)k7>u=*}Tl)kgNEjHw z)??N2p0@zlhu)k%>~Fr9yaZs@jX8BCT)d_^@Er22KS!)Z4}2Vuta~gJso`|7Lk)|C ztK$>6{!i4%E%nF!Eth*Q!eU_WMSxUuN>-*6eTNX=!*YLwO&D)dY@5fB-3a_k26<5q z_vgr)MSt5Kgk()CnlJdTk+~t*A7|NnP}%$8T(<6L2KRS}U=Hl+LIOM8%MkAA=8wpn z26J_$-;Svo$K5|8Mj5~>Ltg}Cf{1@?;u64I zKCEqnY9IvPIQX-_@iLzf)T2 zgxXAb(%+jQ4;+Jvx<3B1zy6X%XJAE~%U<(4py^s@`$E5KzB&PCK*Sm55OHP_-; z-q-I|?0J7HQBPrkd-y7F+?#U@R0b~B1=q$aCszAhw=vTC+XPyL;DDbLmf$C5?xh~= zTdh=KhiV(7t@>#{q1kPWwEi}W@RQ@UPk_792MgR7h6uQ%3Z}3iu#4gSWJj#Q_13%A zYOpiDQ};`=x8>XYea`gR?k}t>@&uC|v1GRxB0d#pd~$C@7IC3yN5TvujtnuLD&Bw`SnSz_d?vyR z>`Dk@iTCN7@l#`<*`0hIl--Xp1sP-9TaiU%M4@bq0mGBzZGufy=s1K(6T|_pdSeYL zK=t;Dh%20f>g{p9133>8680cqeuWnmJLr1)wa0xovW~9$`w~VtSz~4An$G@lC3oe7+%WU;ge>Ut7z@fW%0V@BFk*vJWp;z-W0Eah~UX2ba<_&Au zYQq9e{DtEB=-U`+{cV;)8Wp?@GBcUXOddj{r>47RrcS!6I$hoK zz@QPY2znI70_2Jy3Zfv0ARsEDa1jv!`Ou4se0cE(%9T&NcvTd|@Bd$G@3Z$gXP>Im zUDcDG`Tb^hopbhH|Fza$d+qn$Nc+_Cv>q2|3s2R$SQtKzEfqrR;*zge;NrMsvdAO@ zmNyw$&<4j#OxHzfUDq%+fS1dVN=cODa*VD#3CpRq-Hd9RKfRuyw~8zTeWWuvk*aAW zk<6Q9B?w15^>cr9aizcH=CpLf(2=iU1%Xvp$=BrK1DY(le_Fa@TzkM|!0Kl_-R>OD zH(~SSQT*TpD+<44%!RGcHyDq+7KeXdngl3OT7W#o)bShJyuBh3|22zKz9hIB&QI)2 z!?RQ2F8(U1lp6BoL0)_tj{i3ac=r3`U=oi5-v*V3e;|oIX6p72XN2lwU`qF!q5-hbQ zuS12sJ>70&=9Icv^U#amdkX$_x&7EnmfvMR!5A<0ypfk&Q^BoX{y)U6x)zY7!<|He zrcvXKh?phqwLWnVM(enA8H6|Y*o%MX5pcKCdy}l(lg4JDywq{%Vv&rd1&`M$kFG*= z@i4Myku`d}iG1cDyhFNN{4G6RUZ8Nc(tDGvJm5ZqpB*8a z*^(1Qq~_GlWJ@N~XHM17>Ew&%EXL4}qv92yEBeMsuGr?2U;~sdED12PRYBTlNa zJa%iGi#8mrD}G4UZ||^$B-z-F9z&E&0G7y!l&nyy7;#c6R3;>9IjlZ)Ar)0K&= zI4uV>0=JsB9Jy|B(jx?@;`kY~-H>6qebN1By1bVhi=Rz$Ig@Z>_zwDoHazTn zKT?})9f8*ncwV<&_>^4v<;UN!%Y69q<3AT2kYu}&%&z)(eZ`RIb?6N{-?6M0wnCiv zh0M*I%H7OxkVd?!@Rr}MV5@Fg&oeQ9l92Ui&w`_OG}{Q zM6pgKtR=2$jany;g%y)2e6I$xeX zC(94mPZfB=@Z`*N?Qn~0;FKrt4eC{Xj^s0l4dTh|^Al3b)8}Nlztgrtf$__MG8X@@ zdvM|~129rds1LV6ud z@=RY89sf5{36=}jxGK;Ri%+e(P$c44kZ6C~e^NQ8+KjLkt!yTwShV#%`tpogN&KYf zD{J0vytN=>YRQ_q$J7~{?t?AHtM;m?e@3vgX50rmwOCF42Eq1i*BjBxGOoj6zQfly zu$k|NyO+%buuAh%+&_(6pVifSt*0{DN)7J*cflD7g157&ED2q{qFA?2elEzpO)fZ? zMziauyrXnViDz8BfiWUq82px8n5hbE639|o9cUa;t>v0Sf!@HpsQ9Ar$K)a_83%P; zq6HvMwhqr=sXJ$`i-_)H7IAl)2#8)gvs9(N7?|JC^<#p!A@nKP;LC^kV@UukZxXT; z%X9WB(n{}5-u-)^0^g-_1ahvZy2oP?c(aH}_Edz0r-M1rKB ziwUBc0$VB{aw2FLYZYrlD>D7Zs z`u}43Y>v2DjC_XFz08Qu{uolaoCvmylyko@2jIQlCHn-npuNv|Y#nqJIsCCxGyyK;{UNKfFVRx=MoMKZkY|hi=_^GD zcC!lRbyE8$+$48?2s?V`$9nCW`m9i?7tSzCa29|!PH5#Y-{>#W@!@VSAdd6pb_igR}Feqayz zSr{?g31f-jPMCA{?B2D1;lyrr#BS{+=iS?Gnh~d~jEP#oa0GfroyvoWWrl=!9%MFF z-|TQ(f~w>Ow%2jk2^pKi5KiLf(*F8pep(MyLYtgCj+Kv8bi9qE(@b;C$x3vlCRWcNSz}-rT;X0MEAHL9 z_n}BW&X;Vv-NX@b2rOCmB3ZF_?~a|3d<5BNg{!_TR#6$P;)`WDwyXbHgD-zMPQV^ zeKLBC;bW?TxJjDlN^Xe<4i~}#A!b4J7(+{_C4?k@#M@OQq^gb{)4!J36p1Y}xj}MX zFF2z*xI8`ZM<+boV=w+-1BGU#_a<4nGmTA}*O!=&OTvmy389F*3_Kx~H#gsp6Bx;4 z<8V#?7-m*yU*cf5tp|5+y)!bAK-?Ro>PNgg-kQcbHHL=t`Tncq`~%~yeWxOgP@ODp z;2J-MiU^#KcdylY$YdlWosUfm;bJS^rgX{@%GMaH|nO)|;#!poB+okfW#0bQManXEo2k+`G| zajCS5#HZPu?&6>z{;|ZfFO${#pD_f#q= zIN%7=K$!H!BI8GDQ&=E+7>(roD+73a@k=Oja{X4J5FH@VXwPmCMeDXew7Tr$4Q$rH zSriDZ?EWk4@#ZJ&mSzNyEvpipgA$)RS)!-mRueCAb=6Is#AdCUgjRL_tK|GW4`CBs zq!B>Yn-uL=kjLAzkJK0#qAT2sWW~0<2k(jGWA(h4KBaEU{Iz+Jf1Rw^cS=2)jaZ%M zBa?F{v6W~JZ6B#;R=5|*ik*0mJplL!g5KD2KPAMClQsM|Y1bmYh7zt$SF0gCHJ!= zx6D++)d*>A8a<|eEul9FAyeU2Q<+qs(PQ$*lKDkZnO3i)a(B3y>?{!jM6B#0sZ=AW zRHMg=6`-a6Hqze^s57gvEVUjQL~K^%ROJYc)&k10t-}W2EBdxynqMbrU2-XleX5 zX`Cw+S2cZ^>IWvL6_+LSVbPbZq^hyQYA1S(p{4RsVMppDl5oo}$|OQ<1FLPM1U^mz z=dd1P`gvv9EtxF4#j^BCQuMRzmWrfNA7GV|)-2Iue(hjMe?~}WDiLyBHj*dH$Hp+N zhHdWJg_JjDl@=P_-;OzSoqd_CzKhG#%#j6shpr3sl_I*67yf~CC(C+#g@l`CkJwdl z!qf8fIl<4(!Vx9)mJDSwxJVFLJdL3*p?0o5B~^Cj8v# z1F|qcuf%6$=^@MHg$fv7MpBu4bdzi4*;x0oFusx`T>iP;5`EIEF4L@wuOW?Wo>h~^ z=80rie7#CzUm~Nt``j|@U^j_On_&_j7XadT#5UH9$ovAv>g*R8y_PS%_>Xw3(M92p z$whm1*Y3B+^=`A|XeedlN2U0RgmU^^$N~c1;pPXQ-f$dkcp z#D1QXdY*&$Ikd6z40p$GSHO8R%^6W}e5VwHOn$i~9~J1y(hTH`Qrk&ter}btpn|qo z?;u~MCJm_^RN?>dZ*F;=GJI9o>{LM#4!ZjN~SWTsy88 zKbeR7MnbG#yd>Hqq#h7bW(6_kfp)t76wJyyMJTJn3cM;SD2-!K0BDuElM1x#Fx4#Q zk3_sfirn(Pb&Taf+8h#}+D|0XdEW`G*Qmcq32${16 zx6No?CR|SqAwEW`)(#d*E;WI8Qpgz#@D8ocuxI>0ce**=!X;EZ+f6-yDf{*Vmo%XD z^d&AkxiI)Gxlqe^?SP>r_l?l{%EtQ2uoVU+`UfEa(t9VJRpVW|f;fl9{xFQMv(N5B zvQB%4`wyBCtr@9;%cc*@Sl%=~H_@muFiYA0f@>L_w42h*bZ74k2C?e4J-r$BrD;O(%ZaffRXwewWC=@1<8|s1 z9czS^;E$5vxuR$i+gnok<*C_q31OR0zxLuL_by+S(^^_HVnp$>2eh(Gt)Fd7x>xA~ zmNmlq@}sCI2XD}F;4SU$tNWB~X)H@yQ`pzG=GnWnPFNtdarCYJth} z);`V(OURugzms$JKA`MHCB-BqVA7d*g|gz}4ak~Z;o7M*X9`8fA&DgM&(ak8n?p&9 zu^h8y^%TFE)NLLvfR4$&_^pPHKxvLTR==ucYAd_PMc%PP03PRik5# z2|d+Du3qF@xpx+Cd-1Ur3fj8jhh+VOyugl;qg^cR_U-zUbbXD&R9zBP)-VcZk1gx@wQ`ENu$7H_ z=2c|;MsZsI6wPH+J+rd5S6DsjFfhxntx3~p6r-ANqp_?TR}I+a6IxV)zVMpcJ8ZUs zF?ypCk~wBvM0lA0$kb(~4y4TL`QSVwxJhhf7m}B1gc>8%GJdqoU6yn!3R=as`7mbu zA^Q6gXIwI}Qlt*AnI5uW@+kf&2^W_(SLfLH!n{9=Kdu}HU1iC5OOfLO)lZUYZUVTn z{J9}xW@h{uk^e5RnVCLt*VFd5zre~sA^SO!4Xz9<=`R#zx237DdRG8GPk?@_cS|NR zi#Wb-3wQVh@CyX2)Zs6gkSZeQ9GB^g3EG#4R@xmZ8B!RGV0CJ(|8EG>zt!jtsTg1h zo)_}RMn#;zB~JO+sCP(z7DP)=ew;ASD2eZ%Mhk8}&6TocFot*zvnK#(!>#+cwBbry z3t^6B?>E*Qn!iddS(AUAtl7b%53rKLM(oqc2{XD0ry63Jo`eSGeE(H){ymIqC{0pT#YK<5*&d(31CGVM!)GVR<1Vfcw&hXjoC&d7s3o8?qv763a;?XU!mr|G^HT z>^@}%Q4kq`Wm9@3@<>NjAhe^pd~b7Zrn9dzL0V~5sLV#bJC-yiLd_8OTSR5eWOoe9 z08_6Uq6O4=Eo`uid|Aa+P+;2{kn`QY&+|MR~17*>RysE*lbwuO&@0E(B{L*^(*PfXHpy z%QWmoY26^&^Nr}WTX0TecMFe@9h2)Ko4JQ04NRZR;K1~WG3Al>nQr#uZ!SdHJU(qA z>)fPl9cO>Ga=KppqBkM8SM8Lwxw*`V0^AE$4gs( z@>H_U0IV80ySvi|Q`!r0qHH`JPX%87yh8^KS1>a?Jo-FWt6C(dX?T-weR_o0hCmXB^($WSIe2 z{`DoxveqqJON@r!*dv(Tm}!m8G&;s>-$Nl7K!{&ivO*k3lLVs?%`sFuI7SV-BBjdN zOXeAX`FETV%$qK~vVR}hX8`t(F6szPeLNjqQRu*!%i^>&*l@?t(Jc!bD$1qq#ou}y z!ytFy1V3z4HI%(!qhpI=134!200c6E!K33kc=Yzu1zcqaDbKHcwzela+{U928Nl}5 zd**QOjVp;5J1GVOi18a|k{E8JN#xi?IT%2WkDWnsVA0OxDe0X{A)lV<#LaPYw!R3q zn}RWbV83|=3C635P}^k6%)OL_0c3g486->EeUKd4PbnBciVvMZQdl=OW*X{UoK+zL z-A{oSK%n0_69q!6vWq)StvnA=9tLM>23dJ9#V;B3A_~Od3>GNk2wqHq7(k#8pP?4# z#+)RN8Wf2EMEb2WR3sUT5@{wV4FgDXCN&FCax#W?lyWeD9PdAaas_ha>?@`u3?Rwk zbe7ZlK{cp*00vLE=9AfHLj{sJvznq13?Rfu&!Fr`yU$j*td&huECvv(yBPh@9Bkb_ z+pgPyZr$Q6UznX)Sf4aa*NdO_tLTmX2|Dmtx-nygff5fdifyF8+5;sxdZ2Gy%;gIi z$SQqLmtYn*^72G2qovPrtb+m6vpBN@4jLyEE{s>NcPUx>Kgl!$Fugd#BO_tj^(BSt zzaZBP!1dzHX^evFv{NEH{}p*=u%tEZRnNlpm&i2(aJ@K#?W53irZN`3zf8UvfbYc_ zY#$NdQuPYUUm?p3!1Cg(RTv4&Gh_a?Jo-FU~~FC={NyBtc9kVubnsOXeAX`Nf%t88!2n z#>u~ueFk8EQ6^$i?r{r{Z6}tt9v7*(JG;QPz&D~im22{34&0Pzu z&0T_{x%+#I+T8UaD>Wh01hcc&qC`u#K}#_MsArLyyD4aBaQqy1re7D*-QE+T-nzQf5 z1Kdf*8G!Lc>R*h2@w6Q#%HBbq87yfdnQmbJ#jL4Vh3~t`Hv{m!bc>|dcoeShA=eC+ zv}vdPA}o$EroESpGXUd@)G-=?Y1?+A==wgg%wTEj8e+S#ZDIT%8D{{-7paFa3SA51 zu7@G4KS@xuSi_^of+}CH*rg>?D{f&z=K0P;%U6%{&W%y}(@w0vuJ&n&|Mgk`y%NMV=apd$c zuS}rF@m1|{EK<|bm%Hke)odn_K3QuM&HX7SbQr+e-g$b|RjIdB%D2}O5dl6=0T@7l zcbypmxL%1!@RyW;!5NbUZfArD@I?y100R8#8Ic8Pi(mNvYx2+Fj4>gvfg}?A4JBXz z3Eq81N(&86EYzk2cee+FleovRPYxpI*^&(oA6rzw%{UB$N{in{NCtpxE-vKQSmSV)N89zv;a>`q`>baFarQjEVjhWM^oH)6PLm1z{Ne{R?+VzE`!s8D`y``2EU)U41hau z@TyM{FZtw^9&Z>$kUvOd2B$;fNvG-GAufZ{g6lN>Vd6449k^{L??;Hs0Jw|pJEl7) zQj`7|ff)dJ(M<~n9y#anheT!odzCL!Re6tB(8?C z)x}>Dn8D%$A8uggq>V8%@!DS`FarP&Tv|1pbsuhU7p0*7HBlKXJ}S?ZG^l?=R0cp@ z6luRoTn4}$UtIS!F?(v-D*0=KWdPWzMTR}qZcO1~qpWRxoeVHo{9JBL zHL$EgwEYdDG63o#S5vLo=2RC4nHuD85}5&z4=t|3r)*E+pNYv}@pasuXyJr8(eby4 z%3$$PXPOP1kSVC&CMpA&3+D+AtYX~R5MNSxilT)X=(0JnwDQ~%{C_=ns<>XUSh#vK=;<%`O=I3&#QPFWAQ_>ZfAN`hMm)coI6Lu ziQ=Mx`(xU`JuqMOIfl(L+`4;X*%jI1AEi3O!t9;5Fzse{7FUPph$%IyFKVXK@!4O3 zGFN5ZC9C#Inn&;*yW3t&kI(rQLTw(5q$s7YP_lhT;x$g92 zYu57i3i8GPyzQEAx%9KDt`ElYRq&r?X)F|pmkv^aPquhtkNjJ&QRYnJ=ux!kryA2nl|Mr!8Gy;9;=wJGbCa_zkJX*EFD@~CT2^sC-q?}3 zwj7piH2g-g%>Zn_eyOnCoStlqH^dz1 zbM3=eiEMKFZDf!E7#!5m_dQ#MhJM{^zh>L-qioMKC!15v_Us9)wXWW?@DgFP<8|m@ z^e~N^oWH{nV?X1CBQ$>xl6)#Gx*MO??#9n99@KzdhtHVT`S4yF6}^tr-3*|aw=Q9J zH)CP5y+Bj)_P>*H24MV`mNMhr*~Tmu%V340QTfl2a|YnNF`&CYkJ9PoZQc9buP8h{ zptr)f6bIedN2rPhPUsX%*ops2 zhB@*~JWZ+D%CIph9?m^(rnE9nYpP3BL2v$XE;O)ly1it@&h(>`%YH8a3 zNKW@nR<~ab7x7mpR2F_uNTMwmIBp$>nRVLTkc8gn%}1M)b0RW-^y15332D!f-{ucw zG|M(DJ1XNsK$Jd|@C{YMeIw(Z8RsO3Kgt@90l0r~q#!!f=|TMgp%?(_MI(hu=Oui} zK0!DJ%$I--%{N=>o+$r7`_jxGh2D-eW+u9*vyX{=rBA*1lJ~MmxflL#01s``DP^sM z2?v||j@sPNd6c0p^=|q`MT?($FY<^1glPWncD zd>ero0C@k97Maqnr@xGN|0%xDy#?6!3@hbiv+>BOu^H>M5Ic8<(WHBO2%z;n$! zqm=vvEcSf=l|0!5wAp)yR(6&F1%=UGp+;-=PYz*2S^8?V?w#VrtC)!lAkxsDF0WJP zV7)H}cnyIW0NCtA8m+9Ja-@LzBRw$TUggFvybi<0Ph*r%sfB^f~Dn< zJlbMxRss$2S;2 zjNy$i2W5;f1Nb`xWB|b7jW7r38DR$W!vtjj(4mb`Dc5cOs~#UzBQ&UhxqoQK1X|OR zb6s_X=Ajoqw+Ay^PH=wgc|QTVdz7Gx1xq}tmN<0(-!h$!tk@Td6i?7qFn}aO_iZfg z6wDc;C{7d^A0;FMKn~p{FFj9bW+8iqT^sNqKqPG$tVwFF3l);38Zk7 zkk&NQnH)PZiRHDO>EKjDKF;Rxsp+wn`VjoAwJ^8wZ*N3)ooAlp2V!u%;$YBw9Y_yTXQImZapoWOY1A05 z)rP=pcV?x;X_n!s7k9YueuaA>zk$z>lz7xRX;@HTWM-n786FNAfv7UBC>l-0jZZR5 z89>1A4LQx>aBZ$Sz#n7AQprxSBedQlIFV$s)0vj6#Y2q`*b;-46Up-QS$;}9=IaBa z%U2&>QIV~$(`*gbgbPxy4jT1RU9-HU6?&t>+Jza$cKGh81J3$2jI%wN#V9HBeP2#Aq?D~kvj zC(KF)5bb+LmX!vh-a7KIDo(-P%#8GvIYOJAojEnuJUQN+R=11Cnm+d8_q_+Xxzc+h z4<H1r}fAbHU5C)vWvn(6dq3*$LTa&V-su}ns1n_Z?uoPwB_Hb=FKNzKt9Q&x|Sa{NJzP#(S7)4R~@jKWNVF12&2FqV{wsB;P zNBJYn0IMEQ-!+U@a);KwikofILu;i6&ivgr0tmDpKpcAiwCX)PsZmkymhE&lQmMxg zt273*mLaqb`u3b2avgt)IyZU&>0x;9>bM41(KYmUFMh_aL+#7#qx%J@9Yd(zK`8{3 z{}-zK@N{1_t{I@hju@GkzL)0(Lsp(l=Ff6~YwwjLaTz#;A zA=(tBebB=(TSKMSi^$cyj(BT>~5#Xn2fWr#8@GR42fwiW}ZZiwO^ zfYRdcKB!>vdkDw?fI}32M>n1HaK+z!G@$PzC(tPO@l}RdRxspJ7>>8l=Q04hcP!ZF zf?nOxTuUvBCP1`gOsPukAxC#iOits-VjYv5=}gu186(}Cc08X^>??g5GZ6qigtBtb z3WsdCLbD+}^H`}Jk)tdH-g~D=ahut~0AiF3@h(JzX?J3C5%N(&G5}=BsK!DeU7;_+ z&JvaZVDDS70eW=n{Qa;s1F@6%a$2Mqi+vBYAu1t49G*LJ#2icN9((ayevy@s_a^fI z*df}Wjw;K8V!2H|F!hM!+Rx@+Nn`^ennq&h47=*73nN<_ZwCFjT=kiTx z$8-+DqHrBQOw}_W#|tl*5FPv2tS;hbQr)R0hUlh~rfUZB$+QBW`8Wz7_UqXf`a5j{ z4w<(pWG^NVa$uY0z%cb(MiiS3rrko6_!(>(F+g4nF%*#1nO7ND22`l{cET|L+%UC| zB^zk{rK}jpXA_bEAomPqZK5|ZIotFT72Zk16SGK7VTh5@$yU3Ic8NCs>_abp9@~J+ z(`WA|#4;!M_aa;^=_J5 z`t1D#+z|fFQdIv&6qwue(B|fo6?3yMRFZftN4pq+`yu?BrJA}NH8=a(fNdZc1Aq%$b}0WB@NFAOip{+`n0(b^F6m?})jjFM%;c|D%n0)Z1aPQF#dkpsIePoC_@aK zcW|QpF|+s)zias2i$6r`TxK8T7b9`Nd5Ez^4@x0mjz6L1I7F|>qbinYo)sZJkJ-Wi ztPfF|^B`(}S*R6+VgRTiidP=WSzQ)x72y~FPLI@Gh`||}b^Lu;vRLvy{&AWa4Zvpm z5PeKg(Z$jH(TfjodDl7e+x&q5LyR9-@=6&d^>b=cLyR9-lGdIK*YS;1IRkRM;N~@{ zQ{R^A8>nkl2(wasK95vtqDLtUaqPq9&h%_+3ior(s6waQX~cmj*zxgy;4!|w59C+g zo2FzTzPUPxQh{3ErfM~YVDb9$$L_d|==0u~XyD>4;qDvYE@l9(_EqOfa;A*5cfzk= ze3KXqfMFbsO}b$AH+P#j_?DSu1o>xzFaU^g$0Gpo0KP>41^_Svu0sQyFwB3Ov>A+0 zLnrdt@Ew9M0LUn;XtFVN*zkYWeIU&Mq(@;zB%Npf9AYpSk&Xl-Z$--p!T=znup$NV ztY{?x7>q0vX5h!9n5`yh1|!P^xH)$KzhJB-27{4h0xA z2hx-S8&!@1yOT-h)7Q)5T4Sy%uL5P$&yhUdF|%8-44WEp_0v8sjhja#M1#yc}J&GFeWY#5tr%+9vj zxc68D_#PrL0FoIA8v?0?)0VqDJ=9QtnA917x^ZO-r_RG@c_jH{i)CB5A0vGRpl`-Z zhM@oG94`$P!iPzi0SKE)Y6!w7!Le0Ilav{Zg5@I(*_tOTA0uG~AiTdyxf3TRQu&2l zi_p==>@nQ-&}vW5&5j*!Otw(R3d$oyVE`1<>RGsA3`%<<0MsTB0|1$h%n(2vj%>~t z86G8R1|V%_K^IOMDw5OZc?okjqpDfLFaXTZMXS}t%<*iaJ&vxhWW)(lXD|vO9%;_B zo0DVHI9wX8VN5TS7MPb1h5=yAHlu~>YO>k2#o(o+%K&tTwj+%5jGbtl8cT1>X&j!k zdU~8d3`UU)-NsaNY(g(;5%v5KsWSlep&gL98$bxZoP-&GusP0P;dx@OjD;r!3FyPX+c-`8y(<$3;E%wVoFjVWtTuOc7=0NyOE+HySX zGO>*t!)~bYa#Pre9>%iLW?N@C&F@}(^shOVZy%FocWNZIfvy=yMw6ofbj2ry{p*74 z8{)V)LGU$Ed^wV2;3oRQ$xxgq2G^~r9K2lWSaWhZFy2`ju@_(eH8lC&3w0;wZ|%-T zh5+S#{*VkPZD`{<)kbGXdR{db61g=s4cnT*D1Vw zki0MeFE2aYyg)%PjSl9?aK(x!%V_9#$Q1){_1Nj=>NqOI*(^UFCO-_o&*M)dKU}J6 zbo3GO!~i@UU1Xk)pPIyFaj5}+jL-}KJ$;&>^M?C}1T-%KvXy3@^ZqleFu5e8sH_g?4gNaG>-P?TxKi27Vn`5YJCpuGOMlDAE{e))#_~s(XKZijOv>vm-_Y;@_fal%Ts3!Ns zsdi%uclQ`zjK;K&V{k3a`-jK^1F$f;II>UAG>=pE#`rioVL1O|9HV3yZj!8j5%C!S z|H$Iuw>ooOs{@1lVj?pDvRS@V-6d61J|~{CIo=>B1AxxkAI}?fY_=mlxOD^;fNbaZ zn2~;hj4%Kri)8bZK5m@MY2YY<831_R&64UGm^#@mC_g4NgT;kz&rM;we>UHz2+aV{ z#}>!Tscw#<;6R=%_B62>0DF;&II(9j{@R(5gB7#*UE(uXT(!@3X2y@@L_bbw27opj z1V>%QF+fl-v{Qs-0NBHeliMd+vw2}3BPs)+KCfRtKG4K61q)Z$NHfSdi9!o!cD}-N z=MLK}8S@KoX%j1upclUjLmctb(RfTY9GE*C8S{!PvyiuBnAXG$2pquCi92GU85V0Z zY~G!@61stwNhszxZe_tm$4+S&ViMt>$>uWy$ok4rWkRvFST@qnEUC|%v^g6?VIKp`@Ob?b5-6E{c3dhT(ZdkY`$p;vgxbVuzUwuW&oC7dU{!= zSM$ulFtm*fF#tn9^@K7MZrey<*-0iDfXN>?y-aFtP}JKlvcv!^Jupw->`}9YvW|BJ zH(0?5t{qHO)55Plu71@la4b~D zJ|mucvafZ9kVlW=s$gN+F!j5v`xt;7vp8nnwBdW(bJLh)pBOvRoMl@gi}Cx!U;vC8 z!g**C)N?6|Dl3uS_SST;GramC8>bh){_Dt;KZj{07i`zgUS!5f!RL+PtjW^QijQ=V zL5XJ2y;T!>HCv9Va*+;)37=nJIbZ8v z6QvioKLnjVj;u~r?~ufiCgv#5lfs(GP*9DM3N-p!)u`F6l{d>mI!~e5Z>H;x32SuU zVXVh7D^BPrN7EgjX-#txfoSFBL}36Fvrup0B1zk# zGdIhrelrCrAg?3{1AvrRVwT;0qGUj3G3X@_2_YDaLR&|h?XkJ`T$l5Nr=|{fCatz! zMHB`=DVd0`F33?<$wJ=9@M=ry;mK2WgpKVJ z83`~#y^&xH0H#YH`({;L*|mPBuSXhG*wIt$JIk78nv2+rpY~O_z@KKdvSEjHfwRZ_ z+1A9j5pdiP#H_JgzML`l3@TZqX zG2WSir$QeH3vR{^pBkHJja$su6O#cjOC}#ejF`E=y<9o1VM`xPNiBqVSXK}Tn2=xnuVgM*}JoIRw zWD#+LtBg{tw-Sp1uwFb$BaxPZ^){w{7U_POhzx*OGSt1WEK@||fSPnbIb(STkr@Da zqy=Jb8u!>Y$2zlIu{YD~&P}qNAkw~zm<)jVoM1~YAguFxo~u!MeO=KVB^fA3p>t7a zNvkjY-iyEcv+#GHg?~;~?r^Wc{B>1mYkGLMKUVKn(g)GA*;9r*r9dcd4ax0Fa`iC=@X~g?w>bUYTg>p z*w@!dn*nH-^;D{5i$^;zz&8lOVCWo?wVl%#$Lz40_jBZ%#9%OVjs!6B0{t_=7y!)d z+FoFx_eJ;?sWJf7;arJO%`^RNl4k(&WrG0KvO2XkQ?|cD$_zlctS358%6aC`Vok{a z5GC^%DOdf=09XE;^woY2NizWH;rxXooo9a;F&F@2I5*yE%X0s`6Er!ok~j>2Q?jhL zvYLW8dBIi_kipP`;W{h~hG7p0mO(U;MZ6YAn(|T)t|bnGp#>|!$qTlDfD8aQoWVhl za~Yp|F-bE3>ER5{krQjB zTX#Q=xrUmOCCyZHudz^$77=cyy6?UC2R;qvQ0+s119d|1QxS`P)L80 zq#2ZEha*sTKl`Yx9&Xv=kg}uLiW1HX^RXBI`InFpH^4fQWxF*2bD?C#y+=}0A`8}Q z7Hl8PglmpkI-Hy{zd62+oe#p!O|)1B;H0D)v=p+cw{La&DnR)uq|5-6!+QiwA|CNZ z?UgC0WCjZDo+G$Qs$_KDe(lBo`UlYZ+h7FA@_i-=)m}0KWz(tYGcELfmFoR@VZHlF zJi||4+aHFNx6>#YfQgdvU7JGe$z^5w+WUc#eK~UkrAY*RC#f?4^^&$&nmU`I>Fe~z z@zzTW)pwIB15hm~qiL!^RNY2lVfeiy%>bmsQ)HHM-To-e(~=CrGPc7VEWp=0EMWX| zlg*k_Yx=ntcfSE!`7&%aS@D2PL}S?$&iOQ@S_@OdS~mB!mP{JYT-^Kd=^5mzVdg6= zMGU~jjlnUIG+{mcRW8W7Ez&9z!{UZ+TxA`9@e|k$be?%i&O4y5fw$5{)>shkSt{H` z?$f5ZHWmvuCu)tBp|#R`ldQa7KSx`4QIi|JgqWP*-rgFZxnIhpUXy>Fthq}gMm8eo zT;|b%=bpv-P?AEf8ZsB;-X<69N~1-L1|nC7iOga5;?df43ui!xZZ7mlxo^pZ9zl5> zF$u_C=#kagw0;zL%99$p zMt*>iGbV2-XAD^*zfdV>zCh}yC}kR~HN=(}A|xmpqLO+sNzKD{*DFTGM3vHEQYsj$ z(WEm=jeLZWvj%GPlG>t1j2SUwl~3BzK?QQW)jYAq=R&Fq|3xpp3(G!|L8WP9IXR_( z%H*|R0{Xo+2#kBJyz(ia@oR#*cwQK4%i+1!r0fvKT!UPmDzezOHN36CzThIiO@Y=G zKP2n!G$bNKj^J?R!uF@k2T!R(*f*)L_sl2prUFm!s^X+O*bWOn|TVMYRBeq6rAYiT4kqi%;Z{S%tpfMA&`qYZKI>;Zjb|ucg>5%OvWgK>0TCL zZDXGp$;M2!DML0nSlP31R%rG$t_R0L8lx|xt0==zC|(j}*n$alBSXrwr)LGrbg@X* zEuNGx;wdBX8(GxD&4w-Bg83Av*xs#seTuyC=)_?L;-w-~%&en>@= zRr#W{1jN5e%!(F%XI1n}&SkArC4Dzh2N?0)3qqrvq(+y?&EFtqB@4a1r1;2SxUQOo zTahY5Ue#pu53hRh<*Y9*$h}Q2*uj~~=x*+ZU^Eobn<`@{QB)J3gaAl+YgjK?=IZjO zn;KHa;yyQiz;QkQmRcyS|^dcwIkS2!N0RjIiN{+x-j@Hxp1c>iFRs| z=%6G4pU3f#Kl2PnC7BAV?)+iZKSNrl{64G6n1Fu~Er=)rUg zu3tb_XJ00(cbZ7i)_uD~+jmzZju!h&lXA$RN9cv7gzdT52JzYoF_UZ26P;;NQXz-_ zrzIDqUv6;NWVVtC0W1Is=!4D*0ZYV!LnEL4^$Jd4WUoThMjY5 znOul=x)ay{SJhn8L zij_#t(?4S%8Fk5#ao3UOuH!G0V5xJyWguy|UpkqufQlGi0_JroSVk>3Bk}@3w*JNFAFvFakN+-~B1DUGCya zx)oj)7A&XWkW@eC5vZE`IxtWo>woA<#BP>wnOKpHa^*D+nR5tIo&b5UC}pAas}#ml7OZsB11yVNJxN_iaNpBAZV9P zO|>vZraJN7BrEsfGY9DL88mCvq?TJ099jfsX4a!vkq zvPMV1T*T^mqO>p=c--cR_Xg7yGUg|rL9=YAF=uhwt*^<}HRLchu*ry3&1R0~)zyQd zC0B2k(Vl1*_rNJ389Io(ysc;^Coo9gIe~79nu&c(mOW@bK)NSa%ap0cc*hbtS09pd z_cX@uJwUT9>pJIDGjg{jkH|_!HXuBaD z-JOz-c7t?|+p?}zE(<)Z!2O|v*+kP;%wt376HcQrYMPs7nuKI_k44yNZ~{m2TzNPXY*%r_Jap@Q--p!g`5ngM=*{>NOH5IEe7j~ zACh&ZJ-^LG2GA|lEQu35ZdOb-Qkfjb!E6R6y?UZlkmV=b1=tV^{9lOBOGTd${PoAobkKy9i-t`k6Q;4Fm+zO zN^5r_JA%tBino(;rTXuw10kgrid>DR^50E_P;EC@mrBr8bn$M{WwwGVnJMscUj>H8 z$yG^N9q%LUD%IEE%(GRMDqxa?{YvYGftvK{tN0-%ca_zX1}66Fsd$>Hy*lc71CzTV zCw*yCvt)I3h*SsHLAwTmu{y!>7Oj3FSN%k+epp9jaVLm7uZpFl)9G1*;wbB$i@yclJ_QAd62GNKf}?Nb(XR;l@K~hzX8VjR6N;Ko9qfU&P^Cz zR%PBLtL&1tyBP(PZ!4+Na+GH~6P+3di*=X{Ri{Y0w(ve#d$6;;6YWM+9U_x)^Rlt& z9EzOv$yVSgObBt%_z{D%KJX=3zlTSIvQ&N#qI1aj5lU1s*G?SkaD*Q7C?XV5HbVdVJdbhPvl*;~bw37TZ0rgg;+$@&Ko8FLp?5N!hbYB%ddDr;hd zkgzfC1da(YAgct#zDrgM{W~>^kS?1U$&sF(o1Db#8}8bX*&Y#Kb@pYldLJTT*3Co$ z-(}6#9P#cH7EGFMbhp+yg28OV{)W&e_#7q>HMM5D(Y=xYa67A+tyFZ}jDB3l%1x(@ z!Kl)YkzdZEFoZrR^^FzX`r@aBt1gce-EBlStYe184aXlMxuD}M8Nl{PTF)BM z=dx>P{9*k2B)UHAV+ZRF&Xj}kse6q-Cc4YI)xq4+L^122PLdwAZZ!A_;ZAI};6qDh z9z3CitZ|i=;-^Tl=rsouqi@7A0N-K8pA}*SFImzC^EeYPC=%1(c@8rEGmIXYv0c z$-EnT&Ok!8c!Kea14=zu{1p-&N$P_lJ`HJ3wYICcx{{1m}X>+vEc6 z&mXkWpagHMy%GW!1+eNBfYk=Tyi8UreTrbJS8o=kKlzy^4i0P1U}FfH=Tw%g3Yx>} zCxf-IPmE;aelNMGPgV#?^7#lUz}-h$)6-zX3YmSGtY+>+2W%vecm2##8S7$^oK>{b z=2T!D(ey*M=^S}E$<+Np-Q>||D!ze4!}jD_0Oe#QPeIT(rTAvj4497_sv1ZTT&9*2 zZzjE>xw!Gga&o>Mh}^Ou!C6Xt3uzCqh$?(jr%~1z;@gDpf(3ZJ?i}Nun?n9<{S$bn z^TZaq7@-!YBpukR0{&DTo)FNKa6x;34~z3AV}f|NCWu`U0WzqoGVhXAdnHOFEYKU? z*q;OL=*!Ss;a(&wcA>&gDS4AlLFR-jZ`G+N<$~PX;*QTI@~6$Gd4fUZ%Uz z$-JKGnpu%3MKdto&(wu%+fZbXK}!*s9xP zKUQtu?D9&tgmLq)eD1}s`v8hTcAE|fxEQ$|4j8%VM*D1X=3&sz@>|m~3@Iwg$t$&- z9GE|eO|noM4Nfpy6Y;Tr0+Z;6afIH{8k$5#vS?tuB$D;rXqI@SFzyivsfeT?<*o&= zh|ItcWN{CfsQluRugS#+!HSp6+dt;57OtH4Jm*oafELtc_Ayy@ulWGsyk!)X>5_dY zj62a}Z;a9R+QNGb7(pPI4WjC+;BEL0T|x0vC0^x zQ6{S`%?0I>d+UlHl6Bjp1&0NlyiG?;8K^rJkWYqqV{W#Cv(Kj*Ggg`F178yJa?Fno z;O8y?_!#;-*k~iSAd8$Uy*J6Kx_grOlZ9w>qSb{EQe(sG%jQ4TXz@d`&b`C!?Gkx` z8kJ5F>>nCu_)8~Xg$K(@8yUll1C>OVC z^1utPnv7q;nmW7T4}L9M9qtV^4oYjoI{cO08EUJsY~3Rg#y>&iN)^@i`QgJ|hbkLI zeKk@0)JJZub|wAVx<`q>mc;#9$SstpM2(!oiMv`w$^Lhe4OTgB+i4~G%o!L{xT;XB zHxlbAQ>Vz1=y0v_?D^%%p+i!Gu+}(qNKHKc1wv(O6E_xLNuEQ8Or2qCh?Mp(k#?y5 z2zBSmtE)N?Oyz;PA*KFyQqR{K&!3-0)Inp_e_97<2E2>3!!^V_%fX>TisAeFRD|~s zrldlcr_~-h7nveJ8#tlXByCX?5O>US4k zT5>`Ky_f$Bc9104B*-S&ls;mCFV3Uki4s#y98WNTF(Kh;W1kqw#%-2I%$RBNXpcz_ z27+TCDLpgth^dhh=nFY*Quvl!h`oD3xZq?&0FEa(vgMi;bOX`ypOOs(JD>@C(Sp+w zIjlCuXETiutJC#?FUk77CVFHyfy%&ZXavmR$XP8ieQ9XN|3p*F+0N~Of)t{GWgsRK zGpdRIjWh@3b!f!I!{Ee13HARZ_0miY%?RY^noNtbOrP}`kS)u;(D1rP)#gvSCDUs6 zToNtGsbJHeL|g4SUTK>SG@7$R-6t5i8H41V5#QqY-^C?glZ&^d6lIoL#*>i@#cgw$ ziwHBINN^XIK`0~-_Iw>10sgt!r#3y;Jyx5Z!9ioKqqwIUTL(BVA=6VLiJ8mq6EC?| z_YFli?gOnY`}W@y9kj$`u8hRMptp$5RXcqcWaHb+I|(N;BcLyIn3>ZgQpid@Wmt2Y z(i4KsIdMY%g4|o2}yk(2AU>CQUY6+j~dQLf%$ zQ+~fA3U0l_Brc;cTT%EP0#$>dYgrd7FA@CL) zSnp$8%tjvFB%48MJn`;Sqm|3+EBi-Eu4Xp#z@`J!jqzr5qoK0JWbjQi#Q8cFECQFw zU0sxb0VWJjlg|@ao5eeejncSSynnoedyX`U&bdpwmE1mPNrAoKWJn*iP2uL0778{8 zbFm`8=Hc4H`(*7N6E)gzq5^Kdz6N&*$!P6FOV1%!Uz2;AT(F<&--dmL8Vx}6_BC9A z;xAPZq%}J4$;Od!ouTCb^VK0wjOgG>rd(aIw(ve#yU#@RYl8V&I@b7MYv?4#W?C?I z+!u*j%371nzbpGkO0L98Kp}!PMwUowM^cLfN5T6T(s;{FW~je9-+z^?-?l5V6B^N% z-}vTl{N}4zoV;bsm0S>=q$x7z$nWGFx;T;w4srG2*k1*0NUqAfOIGWOd}@VOt{L8lzZo4 z171^tcHlK7^6iuO7BW%2@!>X64b*Wq@6cS3c1M(Lcf_|5ze>|$9>}J_5J{`TH3*FM zZ!%_77vu_!htS|?N$#iZ0bO-v+YOQR^alEQgs#*w2n`ICVB5-{)3UBn5Z_6xU^8GI z<&bqf$HM&hgF$fd*IDZf*3y@-*H`=Ui-6tm=AzP$f0BTRK0GzEsRg@r9(AR?%*i zc?BAi={kI4>n|p)LY+L18pYMV%G_ZR%+|xfp-#?pjm@5#HisJWu_lkb_}Y(fsMC9s ztlW;z(Lu&$lOZ_NnI))HFn00t;0H;9ZK7F_23!^zsh`(*8Q%TKgNqXHs0 zx>yQGIKiGs4!4apU1h}8WG?R)CAoYr2=w70*h9(j z(3m+Yr~k`o7jjW%I)4n$A_};oZ=B?ct(F8Dnvsym4(ECY&bjiOW5cY%;>`{i4#*ST+f;-Z~nNyrGt{f=a`-I}@-z5NvouL@)>y+zV0Zp(a=C0nX69c{JO zRSN%A3XUD)$Bl|P+(i zXXqjsK&zD2)F5iS9}+dKxC4uNN!e$tBDC2aK}IGNCn31O0SZ#`{5dicBOgtiVQnqa zEy$E|vawH$WFvA`k~{137hi^^JRE+VKO?U$iQmLJDOZPts@@O{?09l@LHt%y3VQ$0 zG(?bI>KN5w#J@t4Wq$tVK)1r9YWyL2G?p5_ljI7HJ+$5-Kquu5XD!O2A7)kj>m=FF zeTSNq9(B(xM`48b5n+&n4mB@5l+^D!$7&br7;}$5NSJ{h*qw(La=>-iE!Pz{C&W{F z&Nm`68N2%s@hZF4J^k~#3T~A5s`2lWg@riE0hVW{)SQouKSrp6XAJEF@^a0tHcoYi zWA3d}j6Xq&eH`Ebt9CSv?~`(3jp0)y-p|d2I$$2>)_=KdcdMhN*nE}%13X!92cOG2*3fpf`6L zisu-VHnxQF#$wnO>BaxStoO4hSYu_9ruB>v`0hUefuf3^8FCSZOn?6;RL>*Tf&MR8 z^0U0AT2XOVl5R+2;g$jx9%9%NXKC6SfoPw61gPT-o@r@}rMqgpaY1uIjJALfM zU;DTWWVknIgt`Z0KzJY{jiSz*RA8ph0yjt!^dxBtmsfB_Oc>uzA#$+6Vwqlgo4aAd zUU2N~cl`F>vRI}G+?Qni4jVnQ?=e^`)ASiYTrvadkoQiNH#js9PAbJH{iHi5m0Yrc zMKu2@*{}=KAv;ozw{d4A%SCYZFio9dm+Rw>w2scr$T}{z!+9zbFHRhPgjeg0qg^iQ zx@K_1?h+QHu4p>tV-HMo97_T)6Ju0!dA}&h6?f=o?{a61&07j! z=8llhFJT6mfCEdh7I*v<8zFK_3rdP8(#ovuFA#9|O#Z#e9T!1z#2GxMM z^jtR+t03`RBwkjeLgV)-nY2W49yTpa(pr}SAf<_SO4`yC-$Sfw#l_u8)z4Jxlnd|^ z&H5qV>JOpE>Xn%IUIO_agcVY_O<}ciN=HH`2T37sl>jhdT zvsdlNMkVh!U1t0%EF7tO);?FvbuzP9i_S<77{SPF-zW||Oc3NGvp zBXLOtyrMNkfmxk>nXKmePaOa6TyJo+J`9jvxq_p%q;l579|h>5@W8t@+x-TK!kS$d*rOesM!sqvsUheGV z&~QtUKUhfC98~a^kzmkPLJPx-WYr>4ee#;KSUNham6N$e5a(f;1r5D;`ZqYJV-t8^(1^B|4sK1OmwH$eH4CWJQF(n8 z+#_jlY}7($lWuZjj>6&c^f`NZymx!I*Q5_}vq?6Apev4T6kHVXNb?j{0AevkDxE4L z8W=B$_HjRnkdo=Zdz2K860>@RwBg2Zn6*}W8pi|6l6rUuk$6?+U9xHyqv&B}G72#t z@;rOkifPGb-X*Jey0B%RUU5gzbBDQ~;HIiZ;*baG9B!+6bc2- zj$>K%i*x)>#3&Tviu71GZK2Te8~>}&%a_{F-iLr*q&S94oaW)TNqs=U3~lxgV432^ z;)J^erA($HM5Z*v|3$dL1uxhM4{2YEQLfCzXMYwb;X+o?=4~k|2(XN#OZNW;w}hvP zk_AiI+S#mO`quBEX1>5iG|T&v3w9cT-MZLtBirgF1;El@P(*F~BruCI6duzmB*TCf z&dZw72?cXBm$0_3_#s)hPa|g?W^gjc3g)dILo3sjSl@9A-X&$9lS|O~aS5~7!R5ID z?5WmCETps_V3>lrCjUBFvxgD07**x7XJF-tD%K@spRou_&(w+n*x}B5F&9xW;I2XJ zL2+jvSs^bBeoHPqkS58B8}3OKA#G_XXmvj49Q3bjQ{(1@9BzSXv5qa^af&DKQO3OO z`>cqea{#PusKL7W&nvF+4fF$nA{ts*pQC3=lkZw+g7H(tYX!?yXznIQHB)8^w4X}a z{Yp=0d1DSijJZJh>7*PgD;0P)VC-|Iwwl+;c9P}{P8wsUVM-dT{e6T?^rqvNCY{b4 z%arl^{z7J13Llbn79@I*)68ZxHfVvdCKvDVlVyrZ-`c|J(pC2Mjb>SVh>kbx2m4kPmJAkPKRsdvazeL1O?tVjxu@)t5QQ`GaO_@gA>r_cwlp}^@66X-vf3wqM0 zUVOp-iw4jN_aa$wmyJqy9J-ZgOB$P9dnJK}&bz@EQUoU#GbuLNSr&u7Jbg}<--}FV zP7yn}C@@ROjHT7)x;!ffH_-7!BpZdtx)_LS21iV;F=KGi{UpZQ=y(#+T}B%b&cq{A z2SP)~7EzbWk_RqAY@Te6&&{H(!wVwQC}{_-)@>cdjS@I7+c5dG`6o zQ(0x4$s8VSU#7}N2TLsdvhoPYW!v;{>$_~0+b%$PGuPtSjV;u1A2ZyDOUTP&BpbKO z$1=kUb|A9&ygzliGugsIP^>;mzZualDf^sUaxX3c)Pxb{7+pf>JUBw1#t@y`Czdx} z?}>XW8dFUkKw-6hdA}&QWX&oZWsKL~;f{us09bf%u&wGfRg>-rda_}+pUS?jBRF>{ zdp?L|?imY9oIK+$xf^RTI$+PeC+lWws~)NeP#m)FpNA)=RKc;O8b}GTN!`WS<-AHq zt`HD=zGiU5Im zw+|iN>ykT1;rV9!nKyVDx*sInYM%T7TkULdQ*V}HSFQn-mT{dY-)N=*5RKSt30zBSa~ascWytzWe7 zy-fcE5eB%=P>;ou>ehJ+YRCa|(~^@|Og}a^jSa2l1QzoS zD~aV@FMiWMqP4pw|2kQ-OA|-;n~3m-!ELMo5G9KC?|(r6qzf)|4y4=U4?r2txKP2Z zWzcmCw$I20P;j;_M0>n5&5Pl5rGX*7I{Pw_=d?>o^1%g*A@XdYqj-xp&((+I+y~?( z$b|Z1IVzk)W^P59oQc0f8wh1as0ENG>36V|xA>g@2lQn1N2&|(7n=Xb6Qi!2ZbZ^} zIjI%37Fu|gC+8_FUPUraTfuchsB*^aMOE6i#GCX!FsQ!yVHoo2?8{{JE^PR)H+)G; z!A5LRSayW0_-Mv; zTjN&b4WUoT2KIui;AnzL0>A~w-imN1aGoqXI4Ptz1tDT>>=Pr|_@E|t3}pHZ!3$)H zJamuY00zfFzSXGey=p+LY8i^Z*EVrb^daYh`oYjyGja1Iolp>}WM6)wc7@ii12@OICsCu6N<;&T58j z@2BKKI(vS*J2+n~;)=d;k}G82rD0%~Jz(CuB_KG+U(`=(kvyb9R!LyDqd8;?8(Ai~ z+(G5mB!1RX=HyiuJNH$vSbffJyIo3_FJ53%!tGhB8 zCfn^&07Zm-Yxapo>THTzLvBKE;ZD!&60x4bhjS*-ZZ{}6w91vXs9wv z*my-pJm)v#n@N9we+*qdlZ6qd=Rkt4G2Tq53hpm7>7RvD50_T{ri8_}5FqI5LRbG} zNv3Yj9jv0hDLrC?g*d*A5S1KR=q{ivr14MU0j&>nmqiF%op1v^RcM|d3uSHI3FjS& zSeSYU?KT>)odg@; zNP_d%8I5`yL-F1<3e1V67yTjHe(M8YFhS)x8aX>$9C~m@paiiOlRVmjlMn@NFSwAd zByFxmD0~iT5e}}BJ#AS1%l=I}I*kG#Zjj7TH#ZPWb)t-*Ci&?OcV3^$_4dV^1 z6$r4LX-nFZs>xXV2y2)UKOb6%86=)*TMF4nNw(0o9N5gzl2*6M5>D-;o^dkq97*@_ z!NK8}qQ9g{jF%N>8J{BEtnVGzxHJ5cl<}=f>!qZXbGf18-$U9oW)vB3YvwZfwj250 zHvU0^RP?5yA@>ltcudbfsyIJPq>%625g0=bkxetyx=qt`%$VXUiBiEe?imGW-l~3_ z;Pdc!^RY7ZX{ySfB2L!RRV~BLl|>mR7r%xyOPt!h^Ho;rpCoVSbOQb?emx=Q<*7*H??2+^`EocY|o%+zf8!wZQ`YbnkR806Y`>{hz+4n$%Y*! zK~Bcty2}j9w#zLmfPrW>*K*mgDE_kY2+3u3pz>a>Ge+W_x(gVIp{~-Fe=4OMoWh}6 zn@sK(g5MY9OUgbcm&)-f9I~|u_;>d_O;7 zDvI2N4(_%2&l*t*VBK7eY-VCv0_{%vv;@Y#FCJi*U%cd!pjC@S&C zNj)>4->-CH52TilBAcHip|au-T0od;qukKN9^=oDa(|OA8%q<3?G~=elA_8NXmqt@x~MU^nUDVW&1lw7VY%GcL~BZ? zyvz&SUp57w^74O%M_!eAmp)1w7MJ~_XG4)ui~I+K2E_R2A$Z7RMtsGLZ@urF?~(wp ztwn;BeY_#?+X&78;8TkPPA@7K`Gy#H78zgw23|B$>#7?odRXm7Oe_AjlnUPnX;24- zmmC*hH5=Mu(x1Kf@6SE!yOQ(FQ~CpNyGIG9II!IFKPO6jaFoQwW_@|$v-Tsu7(kBi z9XXWRX$J5d0x|$#W8{F&HZ!2h2+9DUdxy44C0)-TtVC}4HgW$bM3Y7J(rTY+%I{wM zsdHe2%j~231;O@=6jGsJha1%nzh|V>jUjqM#s5Ul!2qI+pkgvAvVES-))alne<36T zK#rh>$V2+Z=)?XSVHp5+-w3QxXu}+RjLT?`sht4m-Vx*<4hC0iloP_&(G<_o)4}x* zU|ujfm|jc-Sl~@+fur#1Rsz=DdQLYn;;%7B7(jwi7`hK*3@=q#{B?pc0N5y8t`Fv! zoCEv@0U0oVhPO8mu6w$>k(QR`|9!*fe;2C&wC0sxz4)w^Ftl^^!TyCP_lyuqL11gQ ztF4W|eLFE|Y@R6bGguojfDkVlp%CI!)!clz+X=@2a3gT6S-G6S`H;^hBm+S19@^rB za^0u@Oxm2W2tbS?w{RFz^CeAjZ(aS}i_iXd^j?GYF$4Q3VHp5+_{!Fx*0b8& zNpno?1VE$kf;?+q&5^%wYVUu*7|+Ey5qPkF0W}IQXrUAYX86G9yr8A6M(9L|U&)MN z03k-<1v5a#06n;ba0~!93NM&}^Ni1fd=()X0CEIgkd%2&h&6`ze)WR#1`s3YDRxgZ zrW+^CI(+-kiyv8r3V3aH4%?P@r zR!>rRJ#Ux=y_ld30NNa_3PncGB(uPm5tsph_YYq;8{%~tNHBuRKLew_&;xrn z!59E+1RanJm@_*M@Vx|N!2B871Z_cFrAVJD<=6b~#rL1hffxJe zegSd>Z9xxGpf0OSbTf_X@1 zgjv|H5S9U8hi?lS+Vw2P%V>?Mod9SA)$&W4Go7*N#)McTA8L5$#drN1{NM8QS${Gf z$G}HWE&H&F2CICvTIC3;WuLs5rG24Taf7+V0Md-0TDH`4)v|qUKqm;w0H7nNmM!%Z z)S0IJWPpznm;rzf4DBN=@j8DzEH)wL68{vN{RPs&NhORe|W$7NN1`sH93as ztENRTea1fiCgvLdiM8_i{ww<=322*J!|k1UKq?H(@y%+EB^|DLP!tRF1XG0g1I!i% zV0%|ETPkAU)P5@MVO4@?DgJq8hEY|joL%!*PBu6AWb)$b^HFK7a4+9$Y8(-gn>OFqBXWKLKzT}Ktc!|jOKP{ zcc*T5W;L^Wr$Z7#fRKbvU_oPh3-6yC3g$n0=q;t@o+W)z#ex1;^a3gMG~Oc__kWibzPs`y~}4#;Q|A!fg0B zf}vi{DnWyUJZ|cQ_zrmsjfH2^!VuK^m=;@Nu889O4d0&?Yo&O6b8Bg-$&L10v(ug9 zM{#w2aCk-z<1s;f7@sEnHL`U3$QgaG;Ds&NY0-=&&=G9p?PHR+_y8=yv2M?Xi$L(y zo0&rz#PXC_4yQzH0BMUUr!BU)4c3iJC<`}Ij`7BBEI1$X)}C}W_2cpUJ-}|u#x6e~ z+xn+WS-i2E97+I?shcEI@y2d)e>y=f81b%dVqR!KINI1v<{t})R(480jN{KT3A%7x zf%K-=uzP?CZ^rMpb~4fJi<`5HSPo)drevS6!ZXPD0c%+MVto0DKfpler>JIkcTQrz z@lHoDn8)~Pp|R!S5F;+BB4LKq-Xf_T)KD^POvmvM4(fOcfCiB+PhBy`0W{pnEm91+ zp0+REV)ADQe3?SYa}+5tCLuoSJT?iU75+q5Tu}yhGc{n%J-|C+cAQinJ$*t#IKe=M zzbzS#cl1;7M?P~5@vlC`?9rfzPMtb?xjVdR1NFvMU>1-17v@FE$Q4U`dD%Kq@awOr zxT`(wrrF{Sz)Vtj7PS^%T%?PAYl9sQ+c# zK!Y%ssuBzRkCTgs|8ok)WM^dgA3uHREVpD50RLy|==~spy|^hBu^yM~QrsbRdw)@v zT724ItT-$=xv(?@)je2mX+ZDyr%nZY;$qVJ+6&xVtnsK$k>R$NW!6#g!m1Egb+!m_ymQtn&kG$Sh@*1CEohGl= zvu+O~sDh~eh`FUfIMEg2(_%)lo0qS;3-ilDjumHoZhkz0wWZY#+E4Vv+M^yfE%Ttc z*x_H}9uDVy4jVdd4tal1p`DUYS0gk86)C;1q%>j9L=*Pd$*7RCas@oWQa7+uqd^qs zOkYt8P8%AG7=PO0QO7VB zri^T{#P7P&&B*CFi_u@uAHWV$VUA%Ao{OFim7nspX8Na@J%WoUgm+Gn^4lA^mM`c`k|)SLd84VpUr;~5^ehnnv1Nh6^@iqQ~MB4WgL7KPsZ-=_AY*tzuo0>MSPD6lYj=3Dd$W{k3kp*5Zr=}NdRDnJShGPOlAm2eqe@TimI9TNm~Ci6oB+R@voOu@)5 z!}HhB+gnT_=u%P_Fey@0dEq1s;su6G!r3u>ym(o5>meM($4;4}{z#aTtr?%HK2 zk#Z?-`^5Agp=c7i*P*hp)bKbINFdjJ$#r~n$^`Yt%cu1n&vqWV`ULAO z4T5S;JxYnj6wSB?c@c9iMII~Kgn`+hz3O{1bKW>wtkbtW7}-92_=G+dx?p`ym}-eq z!9z#@Musnw3@0>QQNKF7LuUj{ozI#~gFvRAY8mp{z>&yQ3jfiyjd>rH}fA^dF!w5?bj(XqHl@2#>s8EqP67uts=}Wi}63J&CoJ2H{NK zN=Gmw+4bPAVt!f3vEm#tF2ZX$2GRbWCpIs&cDDP?F1GcsR`1Sm7qj}DX+FR^Vs`Ye zSu5jNXZ-3~z=MJO6-q9Uk# zQR5KY(S)M`TztScXc3-0#)mGuv1I z$%~6kb~oPwO#Gs68W?d8vAt8o7H^@a@u-Dn*=q7?f%TsTl;dj>rv?y#g)oXRG=PaW zpi{%-!V0052}J{_lVU^RNs$_%-@l}oT(03fvGNPNZVydcCP#F?*}_YUFZm@}vxCEf zcHjKj=uxfw*_eiO2wngovyY0*;sf{T{W`JrmMv=?n!22|o(5%@*w73Gp}}(D6(OHZ zNE$%KpJz#oFBD-B_DaIi05&>zJRPbQWN%rzSgREE5$e*&#TGR1O4KrhvDWSIjcl&9 z>n+ciLz$Z8)z=|H-5s?D>|au$@kO|k#_UlLOi1+eBGLG`D8aF>(I7tcG`1o%h$DVI zkO~*5Gz7hnpfmuDPamX$4(T)mo+U61fTIt$Oo{818p3>zQZ>r)g>qtaoVzaOpxu^7 zuDFq@D|mNfZ@q2)Lo|;n=UTi%d0!Xh#itS`XUattIa_rq%bkWyllm$;!&RS+Uww^5 zEQJ7{iDR9?;@bSYd6d^|XX@nrIo7ee`4(Uj$2uO2xJNnvK*~9BtmApqRok-F!;XvYDxCIp4Fd*>f8Jir?CDz9t0{1nBAKqNn&(=hSY^FoWR; zf;x{~Jk7{tr-ER4z9~5a^;AO904m-Cra|T6^0T9!MmQS4ofd1Grb253zJEr2+4RGI zX?b4!$Mw5xy8m`^TQ!08nXp36LN_UYl;#=6HZeiQg*)oJ5YGJD1Z`QJ~kmtx7X$K;ks!v+nG9$3l28f z-FypR@zLq@U;+Zw-B(l>A1qDpS8KsC*MX>$nGqV$kIy_L!pO)h1UrpjGysd=(Mkl% z1s4K7j({`(jJ{Z9I=n{c{V1xX_8!Oc4!IH0n}tTA-k% z3*nwkI2yo>x)7KaZb*Y6TIvDY<{(#K@4IoCes3{O;vLi1k z^(X?-0BD4urw7VaX7ixaqD~+f4Zz};2NPp)g2M~rnUt2xI^2(#aaiB~GQDa^>8(s% ze<%dCkL=k00WhN3ngT#vLrO0YDJ9o~oH9F3kG8sm*JCswJYt|R1!1F8ipU3fCP8Qb zlC0G*hFm~C&=mxt0nlTjedC0|G<>huQ935SWg?J?2CB#1{N+t3Ie<0O9Fra7|0pZ$ z0(`{u?D}E(ekoqTgSK8N+Dfk4MaNnL{y{-fYpmKdh+@Q0Y5FKU!9^f1CL|3Y<7;PF z_Ukn5zF%GIS%q@>`KL{!mk^c)u+ewHPKk<}^!sbLQF z2uN{ny>0%3^Z4`0lf+`2i(g3YZ6di5Q#4bsWh!#U>fNmVG+>+D?b4sivkbjFi1!hK z1`s2zqo?HWNeO=`Wu*R^Ff=Up#D{b6-K5wE zbU^Ck=OP<42xG)BI~__S76N{ffHVMX#RtFXfVtp8&`%MR2B6U|*?HNYusjBou zT-xMWDFBJ=0=WMo91Y+~%dP;I%PxTYF(GLHSyp!9xDoijMa#|{0!HaR&@M*PtGJFo z9)iOg(Jt0+MAOfIkGQCvJWU25Q*;iUeP47oVl*|iUoA36UY&O?%AW>hQ@RZ`)V)iB z9O$V8q5;r|E1k4ha$)6QPa_x&z~Yk_Q(@sHR9Ldde5mi;jAl${9Ii*)C7i-{yCrMS zma&nkoo7Q%d+TlUA3#Q2Z%z*){-LO!AqF@u-2#)S8>iK% zlFE|g!+Ys=YOrb^!&!x}{^T^aQ#gcniWUH++bIJe&Y`NKDr%=JaXkZO$*X;zjFP7T z_0sK>4|BD;R3IjJ zZRDO$_!3(t?!$F_S;88=Z`4`c8JmhVr}&*BEh4?N@!MSYuopMQ!tozP=awgTjCWeX zDa3O&=)zxIl#~0DYj>{0q+fM1iJGyq5!hX>$^!-3q9AT$6;7Dsny!zEEQ zzof+>IXpSFf-m*VH$l0PslD$3dF-vX&41tF zI+s_tG-MmQ5}D9ZN)m7?z^`eBJr5U~W$ zXBe8ZOT7UUr6amC^FxD3Hip5VwcKv5?p(19?nVYQU~ut{pS+*f2PY)m!8cMXUk;(N67ebn(Cz5X_NtZ9OVHu9%Vhep|nYi+_eE z9(X_Da*Ta;9d?Ql^}Q%}_+-%@Uy6~qN3s676ze6Wyp8MQih=1h{Y`vg(2b@|sL$qD zj|Ra#W8>+}_j}#db{Au1UGP_u4Gq{_x{+*ffjeOF6!=_CJ~ZId-#|Wt<`UKu;tPJd zRIVipnvG=vscc{Euc7nREM7nsG#i_n*?zmViU*AGSVD8#4*qBOTu(kU;B(Q&`M)=)Od{0E@=myfE0i6x3&6ZA~_PmU2Xu#$<8=fIomz(oD zShZaty^^$OKx^_*rvavFfs2I{aC$X4(QItu7Vv6to3v)Xjdj#oMz13q8nC%~ z;}SJotIO@p+Q243Uq`w6XLVpQ_+E0N0jFnfTtS7LmfNd~Tt%Se{a0i}14bJtZ($VHv=5L9 z4X9kZ(S>8EG`F^9w_)sxG4=Aw8W)lA0$7*She?kH^!|8v(Oc-_B^q;04B=K6BOGre zN1EMGgs#OJU4(y2dNjMC2pzq3itz8qkp>(mpZl@(Jh)aJGhaFMdtD)dn)zuGp#hO= zHdt>$WK3naiR5TN?ghJt+&X#u2Qs7q!wtObT zd^WK2-qFWLd55|q-C-JHUm`IY5R;FGOfV-@)NjKca1$#M_2^lbr%$Y!g{9us*3zUi zZ06UQdct9t^|=xc4({4?s(9dJ&%;t+#Tn*!zAJM)y%ZtOLM|Pw*haS?>4)b%{GDG zKx~?g!d~sSE%wWZO#^IId!cs*P22D4CgYVvrvdup_XJW)y?9rwX)mlamsgVu&4y$_ zk3r@!-qqNzBQ_1N=j+M>UZ1swxqy|9x!t3Y-#}y%cNvA>PrGytFcHuco%GvKlC-$4d6VDQLEZ?+i%4fDT|&`|ID#EG-HxO1hqy4W6| zcADXczWtLQo-v2$1@Pe##W-%=NKVFus~45JJ@zT<-+^1tO{NYz2V=8$KN%4od;-^+ zx!94N$*0_hamofK%#hh5B(pc~&Vn9u`8XW8EG2h|lC*Kv$JRcUtZkYY zP&@cA-)wu(Y+c;3iTntoqd|0E{Qo05OetbvTCcm{$N4eFNrO25cF&H}zQRyf#7{6T z8pQQ?dvsioC0f$f#ceCizh`JPdwj(kH1UbJ<_g+Ru7;5o^fQc(2GRZfo|-tV#4JT~q1_F;gfB2Y8pQXNJvKgBAA&Gvu}-9`M=p9qGjNy3 zx`p{7gQY>RpV`BM?PB7I6USZj5vCq~nc>mw$@NgrXXy4b=p4Sv*k};jr}os;nb>#* z)5MGO`*+)+1jt0Tq^#4t8O(f6+_)P{#v*%||ROye$zRloh5ZovB)a=QdmcqW_ zy9|s5f$gyaYQ4OvgNcadptrQWjeC@>Fv3Awk7Y)t@;@0U4FdiAo}9`c&>)vTVu&;dagV+HXO?X1fPT(^X!hhvx4gExhDYOe#^wd>HPSB`C=CMr;GUW}c~g!~ z+^-oA4dQw3q<1uir&!BOF5?ya{xrALkP#E$8#uc!16VW7IN|d(!v(WBaFeO~-xss{ zU&V@&T?e1UhuL=1?0&$C!3i_W?w=vE`y1HW4sjW`8f3i^Hgo;jC+e&&?yqqb4-GWF zfs^^w#>Lwd&H2s}R-l-$zR9p?5Y`6HaMu==8<6XyeVftI?8(t_80YRU>4G!4`!1uS zL3AJ6xNfA{+%Y=s(N?q{Fe(~EwQ-$E5L83&xmI;-d%J-JkGaTpzqMo}KIwYBNMl!U zl&OC^86CZ_Sp{ELn3m#dxY~!?5U?!ak*`ZTuN~f}ctyF}~l-)|vgPSzR62KnX zU|sOH^66_Dl=TK)gB7{0vz~2z9c^x{tYF|fXwA1*cQ)r+v#Tz|uQNm%gt&os1*#9x zCD7gV&?)>D6WP!J+Ob3d;U7Ee`Q=Wi0hMkb|P1sTluUG#tk~MA2Ko;M7Du9Rg2|a zz7=K0_`2+-etD>l?Y|fs4Px8C8S{E#GfSj&U_WMHGze^u?iXanv5D1`vJlLO@~4cC z2J!9D1DAeVr!DODe!=Ky5Zwk|6IUx}!H@8d6uj z-!M)Z#JPdDh^vqDVtM*q&uiEu-i~vUGzjkM4V#lJ#MUtT?rLhCE3J=iT#wvc!$_}R z{#r8hld1o~r-{_haQVLLkSAye7dsL$`E!E9R~u8#4u`ztLXzBYA^9A+klek6J>96T z5Y0SZ63OOD7xw>f!h{9|yn$2O1xnM8dkPNlaGH(ie;E-CBHDwqBmtT%-G-kXqd`p1 z+pzX1EaQgkx*9pYvQGYV%<|gOY6tg&u)cUO`Fq3)f0e0+KM_sGi_v87I`oXtBOfgN z!-?C*f@7)sbdI`zz102HGS0?bf)=suv-&I@6XBn*XQDw+lRp4obi7V|EB@R)h~yD@ zDT&a4$f=V`vf#K;*k3P;lZ$Glv(mhauJ^F&Yq?{QX)*q*BD78?2hp#k7@dXm(#QkF&`-mf!@7i+Up zuivJdUuWuXIY4+NI;>rro+KWod*g%$E6&h%zgOCBHF1seoQ!L;?ayp_L=K+0cN^nyFv#yQeM8hwVD@96T&?FX#JS z+Be&p$=?zkgOEWZVbJh=N*bQYZ?2E>IIb0n{>|J@!qR!V* zee`cULSFNv)3HEiG`pV}gp0xL0-iz9%oLf?fZ614(~HKRQf9XKvhRhWW09%QTP8gk z(90%n*XyTOOz;YM(tzg;zfC-4F@s;E15%{{)vI`3-HDZFJD^s~ z^iFc50mm2rmK2{^vf^j?QqrUW&1-faP3d)udA^+FXh7~ozcu8FnSM4|(tzbletTFB z*XS!rlm)fs=l2GZqyfpv--umVe&e})8A;KA z)blsK(SY4`yPw@~PG3!eG$1(n6k26DEw;k1BOMyh*$u-zM<+5yc>}4@ zfZF8u)GI5gt!tg7Ieo!xu7%!AJ~ZI78^=sddod)F0fyY$NR9^Nc0*TSFVtj4#~*3F zgT!cdkH8!;X*Ys0dl#wEfZF7N^e0-5raVcO80;cyy~A zPzsZ;9f;5o=a{iO_?Cnudo1;Z4^CRLF>o4WCDn z4-NQCzN(=Z@&q$sK7CU{LBTXgga$+=zpqja5wARsCk-0Vm~JrR2RLPUV0{l>H8$w* zs~UJvOg{XjtHz^AhX!<>Jyk1JEgkn*iDq>oS<&onR)K;}AuAfNTH2_x8npQ(16?Yo z6Q2h76W_Zn2v|4WNS$j1*J&Z|FL9!E+KdJ4tL^!_wmgvo&kJkYo zK73-=;iuTIb>7SV7!lkt?pgexRlT3Is`t?gkbL}xgK+LNwz@C=Vg%S-axi{xTe=gy zm8lPq_dc?-YoBv@nzwY0i2RBC803x-az{FH`p+AlN41%3a(54M?(`eCBOi}uoi^FZ z)Suwl#$B82?ygPeNasajM@`~MJb>x%3)7=5(-G)a7xH)NktFYfK2AWb2Ds=p7X+T@ z>ulGb>?!us(cfh1?hiq){CX^U+;!jy`QI|Q2Tp+_eh}lMCB}zO@wfMJH}S;FuKn`^ zyY@fJ-aRCxW2SN2nLE}v+>4t9SEo(oYE%)om)1-XzKM%RX+ZPrs(gF%13FJ{B?t{b z9$N{>LVLl5@E7z>1Mg3&&U-P4cM^sMFsD}p<6?LZozuX%dDHr26=h^CT0oAAA-ta` zG(dSmB_S;0ZS;d3ox!4!)87z*1_i%<;aLxiHKESRNsYunC#UN=5U1e(f%aR|j= zK29haK%H4hxh?e;2AzfFUI%@@u7sZ?1PvgbQZYm^oKF#prqXbF^Q+4(yeUqH^I1aB zR2q&z6vO#Ev1ou*P5XuHbZ~v6Bl$;qr-Aos+Ar<`enTLd>H-P+yW8>7ou;}#;+@?-1fl`Z8P${+ zfL4~)aDlJ;yZs121Ar%23Q)|+fkdJKQZ-%PYO8C9x`)s?4V+ig<^ zSOUE3fD_$c@+$fP&>k#;rS}9 zi8g_00BpW$7q1I>j_iGri4rO$z0#V)qi-SdB9Uoo4H@sW;_I;ekhc+-2Eem*BpDxI zkCb$murz=@s{&Y{pjL&UT|^8TV2o>t@?(hAxxwm?Tu=v)3C&Ck1~`5Al7=yM9%9(zI*5mLJcOOFPu9x$dIH-FU#|9U8} zvHd)6Pj^~Ncs=x(7To_4KC*Xb6yN@MMr_wXr+a_RGBmT;@tW&>&zf;@9v z0*ZeeHnG83CywuS3^ZhZ2hhSQl0t&gNP9 z`pWiJzr!!DV8o>{Z%<4bV2&Me1rdyoZ=NsmUux}yDDbIle0fwO-GN9nKx$SLT>+_B zpm!!D4Is~{2om4I?DtmJx*dFBY1xE!H{#F$=V^7|6a)Jm0@46*>;Q9$ta(2*VcnZ3 zG(Z{K#dv=z1G%8F3eI{vqa=A0VQDJN+O}3_88;@o$QeI(q6K+0acC;cT7Xl`+5-qk z1HiH4GOv)X z<8=nT4|U62jvMNdw5L zgn$uY&$bUwpnn?puSy8of3fV&CJ+sP9yVs^>u0Iq@0bQHK0Gy#;l_ujGThM@l`<%w z3Hm@eovHU7jnVJkm*3G3)YoEAlLe|o2>#5G4a!y4265R~mR7d)dBD^EfA7i=>}I_cU-{X5`|&-e727K)*Eb zTV~|q{1%A6WS`sI_BQ;do=zkhAe9mN{Jbsl7Cq9yV;P~tV}Z4rqiY(t{-Y8a>Evt| z=#mC5$FBZeM<8@rq^szg2ENDMI9bp4T)Vs4S;Y%%w5FHomIiLijQcyrZISj0{nL~z z<)y(YW_LB^0bSCREM>YZ(%nwqH1IukjrBUEtbOyveCBGF9|Tyn!>pYIp#eylaVKAl z+QOSZb*WrRr!;U{X51-Gi{)}Tz0<&ZnYIawLWAquXVWhY{FZ5(oZlkxD+xeT4RP0z zT}{6<)es*Zab8ORnreu<@!AXMm!=xx!$Y>~2|!a8fNy_ZY-45wFFHb#)x(V|t@Mll zGyoWTi)@`bs$W_h02IY@1CeNebpJ8)R|3?K{|w9Gq|*3`-s4kMqi3u1=}g`JshF)g z)>EH`AV-d81%YcM(#o9G;lul?&MU?iy_>LC^SGBTUm68Gz4perpHzmna>?r zS>$x4{_Y4=mJdCVmE{asr~_hSD@*QJ{u-5KAeCiOK0)e@yMWI}!AH@6%h+Bz=MvVy zz$sENi_c6qnqO7-Z^@4-akq2H1IxFqmyypx;8)0#X6FxPtiFIoR1yoPwE^m zCo!%+OV>1TJ$8sYg=;R5!f;M&?DOEkDx3E|T^F89wRFj86YrB=@ zztS@eJdeG3JXr+v+}zRbEG+WFGMf7ji9iE{3fhCgVsA%tq2F4;YIE)Xzv!Q)BLBQ{ z^o8_e`lo^au|uB8N(d`HgLdJkbWa2K6;uSwxz4tO^7#b;XaG<_QxAX+E)8_i|B9|@ z;JSkDRlCMACFA`!^iBisW2ayyEBNik?d^D%oCa=BF5OzUu z$F>2Jc`cHDB;C`%{r$#V_-gMBZQ}{PKoV?U<<(l^yCja03uXOUiTuoF4xZ)AW;eax zl)DFduw>CqtySwHvh+2c zdgD`&6&gfi)+<&9+3NROJBP|$0#$DzFb#k^6=swfM=n>5PlVT<=VcZ0_`MeYUyllc^iKeA|oN&9@Mrxy~#BBkm#1&xkZln^wZ3 zDAL{tBYE{eri2ER%{qay07icS%x1#SF!PDB^Ab={TL5(|p=bbgQkuxbU&H2Ar&)cP zigLMzb2H$Xwz$l!JauGe{a>{eGTPVdxeY)(I<2U3h)mHpH1t)`km+DbaMn$`xm!Ws z>MBka(SWbH7%J&r1mqWvdOksD0AkiTmITQgs{rUa0?`2IF-htXca6a7SEwDE;1cD8 z+gwfgCY$a?d24D$_A_-vA0j%?KO}qR57=*-A?eg57s3h@H1z|~RBAp#uexm_d&^e` zq|Re)rUCuL5s2qhml_ppBsK*1RKn2!E^#OjgY(2T1o<>V(g5;|G{xmU8${m{7UB0P zJ}nG;97yJ&lWC=(Z?xc@f33NuyO$%=x4gwO!xJ;^M5aEn22CER|EPG*94`2xO3hS3 zRn&w9q1(aIx=#~DRxqD)iq2n4I*2v0a}zihQKZopaFr4Y9Nqndkl#ek^~J% zT$m*Cm~;79=@zY_Ex8~~$^VSH7x6_@mN-7^nyX{{pQ#tNA@9AoDHg#UpH{-gt+<3% zH+@wXRbqo}Nm81QsCoyxHX6|U!=xO*S0negFF3lm69=dLUZ;tNTo<~!5y9S!-pkZw zJrwQ!`2oExKV=(X=4_^IBLX-9L1Eus3OjM|68O};m^&f}>fsbW4TztfRPfGY16xo! zOUyVwoLOK&<%Kgy)8GI%pxSfIx!!6M9~GX%2OaY&rPCunn86Qb%n$sw{u37>V|O3> z8+$sA!MvJ90Mq7mJ?fbvJEZy^lIk5bl@Kf3I4;6N^;i>W5V84QT-6b4Axhsc0iiw# z(SXnuHI_}@S4==^jihKm>Y}7-GY+I7C$~_GTdd%NPK1(CcW3o7sva%d5hGK5nS^?| z(B9f_Md!$ZUu>RT?BVh8Z98>svpbpk)*@=wes15}M9G*{07d--j;DkcMAViCNo^T1 z5H16u<>?~Q5vp66ZyH23Vot0yq|}H4@Ye}U1K<&JVx@s|4B7TE+gQLxN@5skgJD8v)szmbxRQJK6;@{X8#A=nemn-8BTzp(?1ZMo?o$l5osQh zI+z_f4T7nvQn<3qFH5E1bSbLC2uTCT5!Y4uH0W)Htng}Bhkl8@s-F9zHyJhNI{)W$!R?RV8nFy)Jo{I z7DRE_$keu-klfyL+&2FKYQ&UADwLo=b?1xfM$D+Ey4UT3jzCAFKETF+29cO|u#_Ec z(7P_Qyw&pnKTJRx0Jf@W)B`|IdM;<`MuO5XU)5+2&Kq7>Poerm8o;Qk1_Oj22XPYQ zPNwdw$BYEm`@8mYn}Dup%xGN_S`Z=0MUiAx4Tc|`ZVhcjIzsgYHW)OBs-iKYAC;~N zrdv9(-1qyUQ8uA*A!!{s8( zA>U6(8bDUlO~ZF1_rIO0(|Q0vMcp*KFIvT6dEd96!ETxd(M{|B098>pZJ`7Os(YTO zuA*+*y4Q`9rmmw=pJ!HR5J^SdbO7aqXNph#BLQguSW!0}00z>tpf?kghWV4zCXb9PNweiG{|s2x9@Etyo$PM>s`8OB0`cc5lL3pVC2!6 z*3gSk9nTJn22oYiP5V)K-LyR{MXMf7U>X2d)JVpFa@ zQbx()P8dK?pm z*EZ&Gk0l%p;3`vl9+xjX8{rv*qyc0#V@8An(OLiRqU5X+DjNPQtu^QITK}H3fJA49CIetv!SkZthz|dN8ME4ntrXy-M+-ooO;8$uRy58lfaXn00DL8ZX#o7hN<=E|8v)8^ zsZJ}HO3St1xwy$^FRVVXKg0b@z2X9h^gz&XhwPsI12#7m^-O}{Xb3bk`_H1;>hc)` z%MrAPEU4=D*yzw8ylvIY0DB-ZiU6>au%%?+A4GT>!1wBd55!!ca11HXfWp(NQnbaO ztg*dCB&0Q_Zl$=5(44d?8kd@~U+L{IR}*qzMjy!3+vlP2gMwpr7oWez-;7xrH0@1} zA{9Z0%>PYfK4N)jSs2?uGXq}K>O)L34br?^snYVoW)%yR?i2VZ3DAJRMKux_(z;LL z<0L@?5?Ez3J2<9-zSkACQ@aoOuavvdTrRTedP<_>ot)eJ7M=U}h{~+jqU%Gh+UY%% zLA5Qqr6JIe`v26?qFWSS={g=Au)3Zpra^esw&($HpmPsCBRmb@t8LK(_#u^h6mB2| z8c?XTMJI;SxCi(PzeU%_D=&NZ8ctv4?qH@)UxwBXGc9|5+#YJ?hd|A|VyL33?_86b zFoE>;I-3h^0cj7RW2GOon+Sodz_}IpsHbm}9A~Ybfvt}Ygb)rb-9wb8p zG7D9<{tn314tK^|fiA!z_v(LgnX%$4iIE)bRmu+>bUYVQpn<4)A2 zQ3+rwnowG?bAsH+)HnEy#ol_`{0FFt?txk;L4gjB79CbJn`7N;8RpTbfT^na+CC>z+>Uo?op%w0xYq!iVgXapjdl2xYjHwAg0mvQs%n%8f(asf9f&%E zNufa)72S0+VQ8fr@j1A&2uB0Bs?_eq<+X+m@=1iG0c15d))8PMFTt&poYn&Xs%kE_ z&vE&Z6&<%Tb%$-bo0d}<8eOvm*y?m{VFeB%?28Di>ZZNGj1cqS)Gyd+(IBL%8m0oE z6Ql?GE5gzMwyJKr02>I?gZ>SnX#ibOH!a8%sE2bAMd~Z2qI}|Y^@Cm?j|gk2y1h)j zduMhY~bu%$w2YYZc9AMb^fcc8NhmBkkm>*|d8eZCd_PID0TKC)x~2V6xL zQ`)acm_U&5t3<*TjgFju5pN!ndO4FugJ3EeUWQ<%74{(ijF2>dtZ2*X2dv(Ql7Hv*Km zQ<+vUK&ncb?O8jN-L5w?^#xvZ?Q8bj1|X}Frh^nLNb^J0O49*|G`+agUL3yBAfBqE z8NwN9`k?y~lm?(xNiziXr0E0iPhc7VS0qjCzTs;{eNdz+z?GIO*4ewor}qIS_RSjD ze`0rjpnu5jxrK@qjZp=|(a02`q1n%hW~<9*5G;p^9s?c;&Cs~;y} zOUb~$iSRUluV{=KgAc@9pzu~wpaF$yR!n&eC~M%^HLy&y`V7Twgyy7mO+}rwhHK&* z9fNJ{9nHbcWqjYE-L{HLp)|AFo8fO}+;3*&H<`L*J8Hr`*ZZ0M#YiyTajWQY zNK>NY!V=o3MYl>Vx^CkN)T>#e7z#V}Vz!<%D4G{MV@_mhAAU#R$mltHIP}E|JYuCzDm7t&TKcb2OGnHUr@Ggp zvskeRuDUnXLW9UgEQBuwEtPBxful%(1_VYdgfB%PuRdc)98D55AQ690ateorAmS4l zdDIf#eSk51M_)4~1}Qyp5Y09v?ygAk_T} zQTK?cnyLM2SqH%ilKKiWNrNCpOx2`;iI8KE|4c|4Kqj_Zfm=63%%vNgH<5mWurz=@ zJKD}q6{x%;&=V;Wr+!Y6id=koB!)S_NAL#iQ0zKdIZ@b z8jtA>X4_7N62yZgo2=YfCMDYCASc@y~CbUFxjp zV&F!m&Q}oo-g?{ohhXDh-16N_3?m2-@|{G;@mr-yuB9<{QK>fTenLPR<|o$fPL0>_yx){!1yd@ z$=J+C-TbVnn+Qq+(C8BM1k6T&a9;}0iUTO|LDaM`gVk0S-#2Kd5g!&d zAE%N18SZE5j3!ilpnu5j=|7;RO@M}h|0;Rg0bkl z9gA`!Q~UFqGJET7^B;n%U@U531OYOAlE}1zVUBgJrIJUX+Ds1((-WQ4m?}R3jI^*G z*doDb09HZ!5`g6z^Z>UJkcRmw-ICIA!}I<`s!e17|M3~Ag*IM4Cm$u=oIgdTzeH?K zZSD-3xF67z($eoV9L(Urj6RU5v!BK8zvCa{ZvHoHDo=~1E&*KdAib?3y|^Y49BbhP zv~^_ai1U#m8blEvOQnKIfkq(jNJtt$#s@X2khusWuy-LW4Pc`;!ly)SbTDTMq2TL4 z{Is%UPPHh?A$`Pa+vI?GV4gtT!A$k8fJhHBBF&HUkQQow2*JlMqY}voHUxW-2sYlO zCpz~_)6Q3V`dz&BX|cQOCBy&YyVd@l6E$V+5xGc=Q>D>9Mt*1mospQ#gJ_W@=%OC`bs6AUEcU1byDIh78@Qq@tY|K-FX4VcGoCrpy< zB8cfiLa5s?=QMyy9}Eiy$?=+;Mi%9y7b?f_F0>1uzo$SxI2>cr@Z$a=5m%+R1~LK-GhoMjC_@{XWPfX$(C#3JeU= zXPC>Oas_PiFu1$6EEg8IF6=g!+snPae6|=Tj>H}rJ*N*3`CeSG?W!|k zV86ulv-G3I9A8Z{0h5(}2lrB2OG`s;^>Pw@dIqN>dN`QVSa%)s3v)8+o!W?hD84l5 zOpzHB@-L#0wbb$9I%UIk>7#!lEYv-y78=C6lBkx^APs#As##i!ONS+)zD4OsqDJN- zxfjO(bQQ11Y|dk)l9r4)FvA0wlG(*xJUHfd_1~20#f#vAht&U2QlH$57ai+H!9OTS z>Mcw!4bq$3ffnUs}?7Z=+n+i7A4F`iPkXa!V|pvYf| zB1_jZ6ALAhhbJiN`@E!~0srLdjNGdeMyN$weCpo_M+3Oh;`ibj)}e#^4?@xa@{Gjh zG!HP>pab|N6=-!~q>$cuqFnLQ*tBmb<;oM2k5L(0_t;=Jq=2FTL}TiI7kI>XSPUUZC%jt zcc(b1jA#%{e{^wE390(^LsR(O;rdak!Rd5YmWJwuIcVy`E1r+~a2V@Da9kh4^<4h< zEP&+O`Ycu7ndqL_(ETx@`{djDG3Tyv^-=MSB_OIlrp{;(QR=<*BBtoefLU2-w9U*Z z3pgkMmS*z(2JH-!nR=*$of%Gd;u|X*9q#A$^=4C_0$B3>1|Li?kg|rPEPag2;;<3e zrXi0)eTO3^8ZbY-L{mVQCN-{z)N#xR%gGf^`uG-3mN5;rwKd2`N;ojX0~p_4iHsb? zjJRWZ*ZmD;ki4*q5%}POhwPjz*(o&w^c}m(WDg3GI)@dB22rFgck+XfOaWwzE>MGV z64S*(biuOJ(k~*7qq%ms2dEa_#Ng@?_Gi4~nQA;22|U6k&_AV*YDWH15KF$xY9sXg zNi#_j$m&^=)#QaKBm4)+^{^#)brN$-gV3T6o=w>QQ97P?FV)^rgLx)1&Qgz+Z~8SG z{BadbYwJ>Bq-c+tF7Y}}86VE1hbQ#0&_(HH+#6qHhG8P-B5_QJ6hsyJQBfo=SZ&!C?V0nPr+Wi=}hv zkL@(*g#-<+eM*h(R{HJP4jv^AF4E0GJGNu%rN?%`aT$&Hf6vHEjqQAAW^5;o*0QKL zdD5IoDmwQ?{0fFRTEwNsltZ{y!~O}3DM3M@$uqD*s)<re-=$t-0nR)2v36+<{()D>KclVnUALU z+!9xR#W;gTjnFS7bl4|fR%Z5Xu-Mzt}8@Kk7iMUQUp2npk?(loy8uGUnqJ8j{P9oPBh2o!S2p z%?Zf~u>j&4srYM2Me^D`%}rC*4M0v?{fJYQG$5QlA8HBf9Gg4W9>`A!LIaS;q&6k= z*N{TiC9eL8SvAED$LTtiIhDE2_Kv+_tdF4P@d%Re9OU<4nR>AY?LJhde*^-_Pd}JR zot%I`BJZD+yr-`#7z$12-#;o?s=;bVgFwz)=rE_qH1Vw$7X`%uDvUR`~8Y@7cNLPI7YlNc# zT>9*Q3u3eubI5NJk_M2;Yik^$Q(+G9MM}`*=i27;W3r7$!1(m*rh(bb zw-C{Z$vt2WBmfZHcSLaMHz;zSMr}G6@vol3M9_eC2~FqaDO6O0C6rzE#?+9R~(d;T_c<+2X<=__H@R#tlbRj!AZ+x2TJbFEdYGIMgqoSZQy zadYij$nMUAQRnkhMZate(^tZbAuF7q)E|pd(^sO50TJnr_<=A`uVB_`5b2KODmVhe zwQ8mj9q}_mt_auvh!Q@2Gl!=;wonF4UBGcX@W?9FgH zQ;U4)b`uh%ce$m1#PlS0rXG+0ATtL`W|BKo&!`Lrhk|FFKMBvZ5sXdU zjfsqvWAbV_BCjp4$U}lm8F$d`@rlp<+&(wucT8IHYB}q~wBqt`=h2d_QCwECr?>N+=pYm8xPcBW#(12E&i+5rm@wTUOlyt@H0&!NAS&6z!e+iUWdHmCx0~i9Vmdi>MCZJS&J3&yy0f5w(BdCnD{b5Ei|LPCWniwe`5 zhoWauqJLDvQ~$_((IAlMN4_Vx^%2B@uXJL}%2MRlxok12lbAS`WgaohE?JXnUEWI3 z4Q#$HLLUs)L_Cv^p&mAL+#K@$o@A2OZ^g)9mKWH_k-L47RNGY%)DPaIz%!@9PZ$QP} zdwTGZ1yy~LI-o&ZPcNkd-?`1dIc67KvZPg;X_w+2D%s?rkc7^~@$L~4NhlvhkcUWq z%_p=DDI7Hif=42fAGRGPktw1gwHHZhOZId@d>rqEh=Qgvrj!OLO?~V&bZpZJeEUcV z<5DY3r4(sUg2~TTN2X=A8z4pDR_B3+O@mhjA~V3M2=yvQA#_D`g!#4d6+^9ye?B zkKzl%ju0V)r_9meXB3jJQb!QO4Lp#51g;VZl&l3dihN|73m`Zrxa#{%KMm5K`h-y= zGMju0Y1?wfs-DNxOQ{c+Z^^#fUy|?T-5fS)KbWs1G<|n)#`ZA27Y^@B_T9calERCA zzyLXak>tE&-(7U?_1*p{K~=xtY9<=QRj%*$o!f+)V>aK6Q(ez|o4(us8-KI1akh$O6vKLe=q65IW+TpMCS3V=QIed zTs;rG+qCP0-h&Mq^A%n_5B`efo4mkYS{r?Pz`Jbpa<5MXm+}|#X8RqbnIAf9PRPA7 z&m&33zxp)sm_0@k4}E|Qbnqt8LGr?bG3Agq`9%hTuKtv2ph1iar8@m0fE9#3UbyOK z;OdPOh2$byrBk9qtRwMK(-xT2)iMuX+LTW>MGCiO0=P%^x3@;(wRO?(}x z-N$oW_|DkUG3N80dQLI+MNI$4oBbbewl^8^WD=&6Wl|E8=AG_b2d_+RZf`BE;Xi)n zOV=nZVS6`J|BY$raFfIQ&5Zob4F1O6F#SGm$fZY*nkx;{WJN)cIaF}lXN z?wq>=%|xjWv0@sjP9?nF1c_b6moWyb9o#Eizmn#^-Hgwu&-T{3vew1!;B!E4MXlP; z?R%R@Nc?%MFe5ocG96(7d4EdeJ=ma9U=QFT*CnBjy#R8gLG(K}kcQkTFOYc{$kwJMh?IMi5OW_$hqY_C19`zpJGi_f>Q zy10FB6Le~;F6tIH4#sV?@gA@eAbp#hm1 ztBXa|%3u?cR~LKA5ITW`Xh5jG>S96h+14O8U)I&d9R!E?3{53sJp-s&&k*j@}b{fQ8YYQbsP6^uj zU@7cJ3N)ZlV{dA+UaSR{#(|_k0~*o!nyRt@?OV+6QubPW0FB>@s0MXydAW75h+c1I z>PfGG?)ROQJ+}cGbM=iR1WmdH;-domRJw&arI*L9Q}4yE-tkoAoCa~nZ}V4O{9Xm{ ziM)$MXh5XSzNt_a`8T_LGVdiB8jzV^|1u|WP%UC;7zJuQs-LhvSWyDK<|<)6^F<2$ zM%E3lwp9XqLIWG1QFE2B-$o-os>D9u&?R4UmGC}s=EtvI&*ak}?wYHFN5S+7ULw?+ zNQ4GNYOWF<5pR6tlX)x2(11+6RRUjZ3-Yly)Zl9|zEZ1_W@-_a>b(WL8eDf2ZZA_; zy#W$8J(p zigf-j>Ck}A<@NR84%U@RUSZrhQ$jx@B^pp#s;wJws13Je@Q+~4@l*>MHTEZ+g%-wG zQY?BiQ)j-I{fV4Fe_}R3qsIOury=;LE%&LtKgmJ0LQSALe)SX1nbIKc8Y^spf>e@# z$j?cH21IJ?PYOix>JgCnCCSi$Onv={KsEy8-_`wzIRx|?tHg49uG5l_%F1S@?)|5% z5@yeBfJTi~BBvqvs1gsUy-MVux=Q%*tB0~-q(R&@R*3=ysS*K^N00~&h}2jm3PkcM z5s*2KWN1L9zA7P*jR5&rT_wyRpvM;oRMMSyTixZhsS{>9Q~&k~REkY@H{ZG{Tf2Xq z^I#qsA%U84g4B!}N0}a~t{OIOT?}eK70@6L@mCR4o`?LBJfyOnRA@k@#t~kzJo4%h z(%DHmG@!Fs+i=QY;+CQos^~&Jnl;2J6a?zlhwC^r5AJ2^2e0E*NPfWI2BjLWLL4TC zcR~bJMH4eGR!^~#LW~Od>Ifq3=PQCH{=p7x?(uw zr?XaAQ3Ac*As0RfEgzQz6>ewhp06@PF1@R}HoXNZHQsnM@Y0Kr0_sIq>P5XBsw)6C z-9aI!>!|@6gkJA}DsCkg0L?h(&c|@~UD_8A1n>5Df^`w|c~a zHtdE$zm&Blmnt|+F!)@9<~yr9*Ifu`ez&=&zr5L6YA)bi2JNLb7b5F|u_tD50&k?y zCo=WMSEBkH89kRD_I>e2qgsFFzADqnKz=BG+s% zE$NrWkb4%%(SY1_8%!>*eq#tehXiRr@X~eX3967&!?M}JWb%C?UL8=^vU0kL5TqLn z&x{t~1kd}lmX?}rv;#}J4q|Uc?`7(TFG0oIKR=+i<)^G-CszU}FsMB*m)ev33ZgI! zePwL}6AX0+=932G&##2Mu74tQ2XDacOfVXNB|il3oJRT$cg_Ibjes-&Onn8B^Vz@_ zfcdqCshF^7!ccA zL~LhQ;navgLJ|bE$R%(zV4nK=F%*Q3zJU$C*whx0dNWhOa&m=}Uiaaoi!YeVi=|og zdM{I(Ua#xEJAl;NpO&lp)(dklFi6LH%hrA0tILNMiuwj?2ThsUVNoO_zWet`?XW*! z5v4a|{eBDYi^^MM?%OuGeFO4xpl))^A+wiP%Tv=u9RO#FV93r#B|FJ)9Mf#QfZVL7 z;jD4g?=eF(D7*9qvru*pO4iB-fDa-d4FKZ{l_%*uBY^qf!i!u=QyoK48i1Y|8&gb& z2_+(DuBB$e)JLdAkw`9z_)O^}V1q%skMI5zUcD?$w>~#x&!HLDFJI2oOWp#N-l;X> zv^_KAv|P0rO;iX$$)6V`$EN^F7KWBuoP*%2quD9YAoua9(<&%X5SyjwhYMI|Mm>N; zXh0->1zrIWuNI6gl^K$u0h#FJP&$`}6a${pGwOBk2R9k{9IJ}asrwOnRgp0WB@c0C zTeFMp=De)g&^t5pm_lFHQ$cPY4-%Q*l^Wt$C(@@916u#OXgzs|<2%(|sy!f4sJ+;d z(V&=8hd9<{LvP?iWTuGJ*O-`~aFV-(*`>}(bGe02C|ry;GxlXkCJ)ZYLA>>{znrPr zKSPss*wAq~+@KcCPvfKKk3ioSK9#AY~edWt_W@YfNZ2Jopbi!8cs@BrQ&qm{;&fLc|l?^DcL zT16d|6ZQ7?EWSZs5VagMqV8}MFQWF38#3PCmlw6?OqwBLL)1U7LevH4xv0GpnIfY4 zHd9MeTGXCzrz}s@-f08SRX7sU4-Ipuq4=o<{j>sRA$m3Ekgq-)BhyX*+o4%+kL$Ah~+GyseKVxv>20Lb2Yox?_+8o zFQ}Z|*5+G4R^{`W<~ZI`sgKX#c&1+e=g8|3u~Y7-?}+(Lp7j_(Oh_Qdx0f8J_lY9{ z*L~CQIl)!8GS@T+E&ABxB)##lcRU26)4=yw>hi{L*cP}toJqH(ZhxT9m#IHh~yRqb%`ZG z6}0PtKANC30F5slo1g=X#~4wq2Ye!dX#kx1N!kF{)2j#b`xL7Yjwh7zN?mEUq^}hc z5G9Xf>bkcFO4SEF0(!p^rCI_438kJ^l~S$eP^p@^4o{uIZjz=Fr3P>XrFx)e5tOD9 zr3Ro8rFy_mA}~!AN~K>C#Yz$| zv7Hg`kl}eE!{kZa+@2~7{&Q8e?}M@z@)bndHILaV}3T&YY0UH zsFPBAZjICk{63j#vZ;peN;~tpcynk*4rS_44mA%c9CZiGUvik4 z{Kh2en#N;@a2WuE z`z#Ue3rh=keN1WmC*znY@>3^Myfi45=a&`lc!r*Qy&sMeux58T1?)61L1vS$p%+@K zi*1=~md#Av!s*9-&7RvpIVBG`a}e$_|GT;ng zT7;niO!9!U0F(FZ0n{9!XaJQu;1q|A!0+>^Gn;DoPM!)Dug$JJ@+NyTT|D&mfj2=+ z`{xJjHh#*cH+f}r04Oj})yqUxC6jK$V29{%1VbIlOwfRQ^6=a_bt5`oUMw12ZtC^~ zqXAg*Sa}$%D6$;z4g{nDVCu?fhi9aQd!aU-mr`y<3_J>y<<#zhPsDJIwJx~N%ovN$O*n3|F0pWa)*X=k-9 zE1H;m?%OVPhDeX zF(g@e5vg}GGb|@pILSBk=mcLMZ_ag=Wts~I___EQ9>~<;d~v`*!7;t-{)U-3txPra z!37W5`G{mEy+JQVWviP-6C`y3vqXa^lGjBH6(PY)2jcNCkWVKh4Iq=p|4~S<8ySXe z5tat9PfQ$N`>3Kx6eq^bPATfc6ei^o=p*@F9v$`D^KGmG=<{YR)&mSW+vSc7&f#`} zIfpHCE>jQWy@NZAI<3#doKnc?+mz zwaO#XAyRPAyw@2dL)}DGFe9VNJ-HuQYz^=bP*++m?BE%oE?TV}Z)QK@_VuRzU8#P= z2NMir^(&Iq__+ zaQ7q}4d7CHNb9nJ4UB7D^3^Sr92MZwo;%ir1j z@$h+f$_|+GKSg;Y4{XPg6;9CX_eHbG1KV*RTEnA$APm%R_~J_%L>hfjzyt%^Q4kGt zA|Kc01*>zSzDH@;#6(L!c_d&-&9!Iy`MUwkQA{qHqnUc?OCgTKhfla;m@u?IMj<7) zk5NJb4;}nibdWp>iFywNkVm0IR;O|lLW7`^KSenjRt8-|=OtkESc204ymV{eB8xP1 zqX?Wq0yH3SLE;!}$agMyN6EzdBMRM$EEH5}h2z^?5rw;>nR@e|_zKTYYmIoO%)1v&Yj3Yg}d_x{C5dXQ-#8va|fPx7}YPCP8!5gx(MoyA8ahX8n4m3(os4sjs|;onPyzoWJS!mQ00F2Y0gs7)G# zyi&3ckCbGt7I)IS$!<8@liIP_8kLXqF(W>FtDnS1M|z*mKrUS}b?(a`k^S60H|2Mw zuBojPN>nhA=?6-tldq|Lr_#7tsyYgFHgiZ*O142Uxfwr;Ey1XB2t@;^9^q&JmwHWY(Hb3GQfnocSRO#x1!<3uqJx)nFSoj#m9-^&0=Cy(_cd$&k2k{& z))?uSWfM2yJ`4?FJswZsV;W`yu}<(RLf>~P5n%v@HbkNED`?QlzfoNUtk$q!2I|-? z$TJOMk2i?*kdTHUpz<(Mp#hakqHS|MRPs6y(0L^3(11>Kp0iRmST3rysFkUXV+HY4 zS!;33cW|>6@0ecbbna^opUwTcmY28q#t*aWXZOmA%h@JL4!oHwO*8OhOr+>Y2- zsG_t$q28VVuNYa9b&d0SGgEK9k)t`Y=Qcp3*3q2c$@K;q zpq?y9J*jmxm&2NB!s3uJQ0G$zG>E;{(OiLq>2|zys4b*I11j|nUvfRLzWPzqd6%UR1gn)p7q1Z6Zo}Pk2Sg2A&E7t(7VsaZS}yO5WxnB)LuP=h%i9)*uFv4 z!^BTH_+_A$DFPbAUVHWMNaWSSrbDfe3Js{#UOhZ2VfAoy2Bbp+I(1i%wK-iq9QK;4 z9-_+l?Yydbu-=lX9N5Uz1@A}I*n6Ja=06m`1fQ}gF+4T|1RIs&N~sj}HVQUsT_s%P z>hm0T(;(`42X{UJQyp>||414%piytV^l5liA*XUPsnAddbzX@863^aQ4XWp|5{MA% z&c$N8wY@Xwn5ReGUZ&puH>eEz=Lh_4kgBy_I#d}?kqYWYCUv7$O$5k#Nac=5k*Hr% z6ErAkFZbf_zLoH#`2#VshtRYsO zz^}P_tm0*Brh0G_Z%6uoR1dvJB6%=})BGg~~ysLIWx_SC4>-Up>5%Ih1s0K&Rg7K~Pi=5Br^_dgw#IZ`awkb{;I9 z>Vq?N^m|b)Zr6EmrVW6%)((zz>c7*cE;?5aTSCJGANY#0@;cy#n%P{ynYmld35UF*vz1-X0ZsFBZx^V1H zrXKJKRHOaezPAZNi*@!R7E|gFd7ut`L+Vic(;gMIV?MA{AyYI`8tQ5eA!twnwT@_p zh)Dlp4;wnyk`4{%)VfN+;>M~^SVAu#B^pp#s_|OgGHTcjQzTz!-N{7@7Pa2eUTMjk zFaFQe`#y&XvllnT0zAGVxgxb1Z~;aQ`46cf@kd#!#nhF<1+5Nv8nRAKDB$z33LJj#}sUfuvev06xs^mo`Y}5xh&Y(eQ zJZB?IBd9z>v_4E)G@uoKCtqbPNsb-qSNvi$C3YjJ(SX`ot@SErh6<*4@bx5pONByG zzhYIh3U`u@zY?zE(!ye{0lrGJ+H2ywAVKAmGc&8b8Jx+~qi#Yiyn|ss6P|R(n}Ivl z%bFWbDcAs&K?q$`(1ZR(XZM90Q6Gj_1T{4{EBw??Ik=%gLA_-6QM4Ujq%aN9Uyvvb zh`x095%oLA(PV!`vNRxj%?4EKAhUV>mc#gJOK%J7mMO^tA;>Y+WkY(BHGG`5(9_DH zOl^A)YWX3ymYbvQ0A2#9TP+l9cOz7g6BTBt(07vxUF+4o?J9EkpeCC_&}F6G$UcMy zWwIgNTY*$qcLQo~AvGFM+mODbKyA3T2K3%edNiQ7a|5cWfamoyAahq%ORIZN<{MIO zXdT!AOM?;g!8pSXSk7eXpZ?14gTs?~qY}8=us%3Il|GnsQDq;nfqn20i=gHPXQepR zw<$v!$Z$jY;DChAc78Y5wmiXa4AJkBC=G~iNFN-Ka72e|b?`ew_6H@2L~MT zI*!BA0sA#b{a(-q2Y<@yQg0u;##amWx(iJ=L%OoY7e(UG3=d`MyPPLIq;OOp@cxoS z>+OSwhzc`Q=;Jn`4<3S-nj9P!M(RZz@X?@5>g|IAbXO%z9~_)C)LuerG@w>*UlO1@ zYF=#(eqiYRDe2LG-ZSd#g9Gpew9OZBLh|^}XR7F}n;ojIT3+~S2X#S%z-zsN4=G4R@`*fyL});y z);Y+KNM3DxGMAAI4am&bSX(q^!$&@qHN$8U;I&Tg4SMsd&DF(zd$5SB#7=iXHzqtf z;~&k`oj4jjeE5VM3tX@k*E)|MB`p+Dna-2SRBPW5WuPn8&>7*SzQQpQ4GQPFI-9s5 z0Y4U(h*$;)f3ltcIp9>M6+t0|`3p3K^+D@J%0 z3~OC0vfA1vYgf3Dsbk)S`nk8>HvfS@txt?t0)mZ-H!l^h*2S9^RM)jUa&;|*L4&Ak zT{0CAkQ(LDcmZk9fJUwBbpjfBz454APbxIjL5)>~kPQ#F&H5lh1ahql3yA7nCFzEa z$ASy29Uno(IJ9_Jj(C5}POH}OSA;Cy6AN;vIcrjLYVGMG_^uN9<)AsKKj7$x2E}qs zoxQ;*T6xtPCif_kqXD^E`_fV5!U{J`@B|X10l`aau6rK3u7-tcEh=k(N>kR^V`~P>><{=1FScYy|KHq36184zIT8Yo%Jy8TZ1q-l7dof=GzY;~w@?~1 z2)x#dEf=`1<)%83mLYO0iO_&ZtruG%5wGfaWWG)^G$6B3XN4hV1B|w~a(E8w21O}i ztT!k9&T{h^?S4;IORi#fM(<|o*`Gz-IKVq1JMwGR5>;y}91s&Ws46d(s#32!0%+-y z+#zA2{+;rmK{?brqHxHCt0pGK%US9$_9nzrzojM=s63|9~{Tfyg zD^K8GS!e6M*6m!h)^4I0{vUB)9w6COl^;nmlSx8A0w`cKfc!wTC(I;l#ZDj)$O2hN zfFVUqcXfB&sijj@-7^zp2|Lm(Aq5J8AhM&#CW6XpSOnQ*R~AJ;5W*q|f*`-|JLlf} z?tArm`gXl{JM+hxw^V=MckeytZtuSPM)+{a*nMC|FV6*+CuaC@gw2gg?zoE~3Y(?j z_6t{)2(341XeAw=Y>;>C)=l41W#-0Q!b^kvNxB$qT7hpPT=*4B-b(y6N~D3rtGB-h zrJ4%Eas!z+r%W2iyfR^PHl2|OS8Cdq^LGgk^G3$5jgj1Kh)mkdt!3|&>mfeH_IGUN z?3q7+kfhCACPWn=7T>cC&0Iz+{uAbbIhmC?4bq;pnJb9UILk@7DW%XrO44SoASH{Z zoSd6c4h`g_Z03}-k>h^1G;{V6_!EZ*Uyzm>aLv9x{hW7bc*vX63=j7Tb>i@FLMDa^ z5FQ`jmhf=2HasM;qQG3s*eq$-{%B2#UeG68M)kZ;AVZVQ;kQ_TKWV-TPbP`Q;{$B`D-{j;9mzz4st6jt{Qb6Ztj!b^B6E zQGSHQmo+RR)_hb*H~VT?Rw%bQpS253)BC-IO5^^zx z&_Kxirv0qhbTot&AF=ZeXud@MS1jQV-)EmPQr`IZ?2&;&>+P%cV9v_ zUwLaUD!gTde2_wDASB{pRpq?MVx&aOhbe{zVm5!4IjfdNcaO$K;FjiixWlwF)*T;v zGhdgY>Fy2V`O{EW_6ca1Ta$MzOj zQN6xNw0=P$ah2=m3&>>j~ zE8NRIC>3sa4Ha(iHz_LI0A4Fxs(`ngk*2~e(5agQ7bk}N=2fg(Xix}scSr&@U(eYN zNpQ;wc`b#|KuF!yOTgxZ1Ql*@+lu*filKp+nmZ%`S)+?ZRjdMRheQhGbggiMpV1j3 zrg(<<0OFvx={%?YZ1?{5us>Msb~}OH zG^em)qe1Et)G0PgvlsRyLnU*~sidX>b%MAKs6%)5DZe%8X;`kCc7(R-$>SEB*mFIU z{;STEBA*vJ!_NG2x2+#6@MjbAOFHqc>_T`9A+^`to{52^^zi9cqPjcBCXVf|D7U#S z%a{g=U zv#TJFm;~Qiye+kQJ*~XuXkz~IEpYr}^~C)T;)mB=t$JdmgtM=xv(G1E5=Re`XF%+{|!SbHh2 z3_7FHKtC62k0<8l^0`=dy1vsLLBJ#HcC$c$62qk*uP$AC_aNXBr*`R*1e-UqwxUVl zSw(8Cx$^?vLIE@oP`AN0Q$YxaXKOe_ z%t_S3E1{9gELCFO&zg@0t`YG@PkmxESjr@Qh>~a^DdLTu`XpuHQzq*pltsfx-ZY3R ztHQcxaqWH9NyU@Rvlv&-oiq21cp#1aX2(&nrN7(V>94him@8Qy(;zP*UYe*U zFQf{{Tzo@uPo_8;h&#BspI6Q_4uz1=!i?lz=FJbl?}zIEG&_$Shg z*yD-$@n6EZce>N;2ofSjz7-@WHGKDV>bnuW@(OI?9WIrUXwzebM}wqBENrMst_?z7 z!U`qOKtjZBB2^`1(UF%iq6`|y*!%-bGpcChIbTcP_kIWBr)}O#A7Lj;Jn592+`N|( z{CIa~)Wp!N83O2Bz-SKF=k)rV08h-fxy8-NoswI;It9cUKc?^kJ++8ep$MRNXaGI) zI>|t`10{JPnP{F*$D%^I3^A zvXAb@TD#O4^;W?jJN#d-a4K#>XmfTZq=7p>=Y2cDiPUw;)3L1KC$`_eu=3`P}mi!gV@{-a3 zUuyT;!&bMft+TffXZ4lxNyM4b$VuW{$~B$lclg+t1}VCztn9bShA}oW4!a5Vuw=sL zr}+ZQQZqHo#EWOm#I;rzZ~aS6tCO;FVNM#X{=|H3_w}$?G zKzqTA{u#nHnY}I^iFk`z(4Lkvw!qjD^jzp;b3CcZVhKVMvm=&NX)&f zf-5eZ?nml$GuKBHrUMf?n^$Ze$gHQK+F7$6aE$=-hs;Q$r5J?pF~0$5SFidnVB$)`C=-cN>Un-o?q&9 zTg=Y}8PLJ-zG424PACrIouYctt*$Jz#=2>(xSpO*%&UG2!GA({Nza=02T10FD~CZw zu7vQ(lfEWdxIq_U3wfAfXI>d5&YZ}4f~FQXDbi)0nIpXcNohb@K5e-b-z<<8yfa69 zBNEeq_`<6GsmRttb2QgS@l82O`E&fpgtiZHf24NvU}wDC^nW82zr8ibTXX)_#QgoY zI0>-9U4Ns1$U636RXloQp{fYZeTq7F`NLnIfFsv}8`FrNm)}+e=FOME322a3Q^5(! zNgDR@KFQgASz%fB-=J@}Vkyb}4SE7`G0)r+r{KZFyz-lHfn(&@{)Z&ruS)Sc0>wsQ z-cAei+&Vy|=rZNz6)Y$ks;*E_gv9&JE=SC5Sp=FbKrWxj=g%YhG45y0h4yG3-5%R8 z_%a~GoV_>a>WJMOqyC!v)8g&yP63p$S*fXWj0IeZofwKjd7iH2Sw21O05<8|xu2Er z_#$S;6z;1A^III$(jd9zs{tH-MHxC;a$x0RZbdOP5cAloK3xHU%wEQh_g(iR_Zx_MK$ToFE&cc_{>QeVoCY|W zhiU=McSAF!>g=%pS@+eZ?@OZU~{r8#WtrT*H)kjvbdV`-Y|Uh1K} z!#FSXcP#0zk(8#omwISV8hWX}Yl&}8Vw%cc>XG54LrfI9UYBI*BdwSEAJI`N)d7Q* zai@n3IfkLD`itIQzxrkP>kX%_2bY{s2zp4BX3ld2f+mLiaNh&!zLhGVG6M18;tgdr zJJ^kgXOL&pSkkUC{!9Gs8T%Tz`awcPv`Dg;wO`s2E^rS;9L=HG6u+jd*ZB?&fT}< zPa`=E$SWo0y3w#xUX#jjy z72s~Wb>J{I6Y-KKM5Y09`FKAv8@hv~Ccj_UYaOzp|B%o$fUcCoy(}YML`<5hm_Zi2 zgqSqIoY{4mOQX(GZ_vSHEnU~VjIcD7VRO0qXN08zZ2A0eWP!1;R=TVBJh;ex6>(|m zz(r2rk-p%*mbf&)y=Pe~b7Z-VumVuTt6A+7tAg^S9wpdl6S?c(SZkc#U}3e}<~rbF z-Q<5aG2Kt2A9fjr-Rrx~bbrn2=Z>+F=&{&JDIO}HH)`c`x0z6+n!qPHMO%yW0yGeH z_u1iAIu>t%cr?Jf$Lx5ru0sSa5s;=DV5h%m6&eE40PsE)6t)lQ*TO|*kDxRFZA7}N zFWQDbvJy)iro6LU?tJ6npxa#R4h}X4E9$Et;Key!oWn(Y7U4@AiB4T#zu}qs(^L7= zQ~6V*Xe*8}MXp?M+P_z)jczKexO_^O;(09m>)14yA2R1@pz}dnD9$OJ5*7;GA0X72 zL*~asrvZBTGr8Czklzi4&F)};1ug>qQ-ad~ynG?sR=_)p&31Q$xEAc66PpIu5yuOw7&x3o&(^KVLuYOm_>(I3wCO18~Je?0jBh=U%gbh-0^~JHQg0gBr~l zoMxkeu6tI1loule@yCJ z^tg4(sq6~^Vf0@{U>X3=UZV{9?dCFDa}nDjCJiuWcPU_^^C5r>1f&7r>@G#X(504$ zN>d4SJjjQsAu3I!#N%t4E}nV>q^SysIS|Rs6#~)#aCTpU!c}eo(3$teG$Jq!fM;*- z?3Zvw>KYMgfH-^GB#2?jA0{jfVB`DA#mWTkG;S}9+W0;kzN%m|_xA}+1L(WNcBw3K z!v(Cx`W(AZx!z55#{?^ETg~y|6m~#XQ zi~iHeUzdbOPk`l6v;(DYt1e_}&B^Sg(m-GI;Gh)Q)_)=RO$kl|@aX!l3_K8gGh)&J zGkUBvjk$j~Xf4dQMq}+)p)zFQncpBf4bUrObcQ}2SmfU#G7XTUtJ!JY^R0f9vMuVZ zh)M(0=<22fb-6u%fP>VQ1HKJ`X#gBOZZ84u4n~ONCT7$-3(e3sZbt$d5S$;|lbI%1 zXfL)_yJLJKvbTb_>~j>qO9~oLMAt+cQ-tbw6Pl)4_Bi#D^EvH%NI(OE=&|p{+B;mM z7(~$-gr@=gIn{H2wTORb;?n?s#(I@K-%xUckTigd?)sPH2y>yizcY3re-Gl)RFk@h z**O>M_a-C_Aj@AaDw(*Lmg*iCHAkx}E7-lHZ6nAjKa(^xpecWYaceYqWwM;;EE3UF z%c4$@MQ0O|29Oo%7a(H2iVLIAUCto^4G1a(KX$O0s=Cf6G)+b5QFH$Qvz(#o3kXdE z=nAbHUPvvg5HBV=4bY<}>!$q@=+hO}rNpKIc7+NH*vqZaa%(>()545-B;jcQU!h?J ze6gy!jL0-VuFwMla!C)UMQ|E`SMfqDA1vx#AT&)i=oQRa4Ddbf0@DDvLhZ}f^IgSK7ECLop#e<=hYx8& zhaVB1rdk<<@Y6xNMiLs3ROp0-BtO`DKjsdhK3w&_@r%DgP5P(10Pn9?COVrzI+U z!)D2!5|{?SjjcO^%q(UyUqLh)pv8~;i!#@mt7A^m(=E)a2}uLU_{Jm;SvHoIU!aK> zlGl-h1|;zf;|3&XQnHbBj^-~&Lj#)l?ogg)2|d#mp5Vcw?CfRUQ{G4p8gRr9Itm;s zcmOeKw$@smE(c>am)=5X8bHT4xq0YiETqNgjtlUtBVu}R*a=wPMiv^d%o?Qq)n0QR ziI^W?gkaUbgSa%noz*vqyR^b}gW@)SM@Sk##!sZ>GlY;EmF2sMPXqi}>lN(itZ#IW z%IcN(k%0ybvli*fkbScw`Q-b_LIalgCOw}|;TRxSgMEnLGysq9j!c7xE{Ua)&gnlw zcpAXZ8c)qPD)@uNmv@d#`pXR8KP>jWF1Ws z7a)kgf11cNK#qT;lSk%LUAba0KSxZO3i&%8jPXU#sYdgk2~AT4y1Xj<5}|1TJ*(5@ zhaS01`B%cz06unAJyCOKX&G5Sa$ZvsT}>r;^K(ZxNRUxU*K@ z7~U^pp`MGs?+}s(kY_|bQC3ZjoV3TVqaJjq@4Pjvtlz6qcBSf=VUU;xVUrtP#%0hv;*Mh#1pfq)Wy41gh zpfmuD?sSy76CQQ4F5oL_R`2TxO#|rY8IU7E>t`M;`WuK&1N7(~>ygmAZ44Af%bi7A z#h5pdfd&lGE!UA4*c}r;ek+k_fE+y^ek9~!XK6Vv{;x?v1BzP8^^jNpH-x4Ebfv0t zzRj_>s&dt%Z6bLN(kGc*hBrM; zUbIu@4-1{O4#yLM`VT~<0cxe@2dm>+uAu&rpfmujR8Z|9-ZB!MA15SDWynK#T|^-N ziI6matmLBYLo2TO{R}Z_Dre`RmEImJ^z#IzsS1k8Z6BcjLQoojMn8Wqb0-1Cw$_1D zeVN!aRdaT+=bQC^BPLCC%z^ zjh?b7D=iD#48!$Wg40yZ+D@;vWCeepm^8qQ9(R=q?u@XSsWW!<)enhF1KdjWRR_I0 zSGoL{pfuG%&^(S;HuW26O{(2m0Y$v-?K&aOG45BvQj-tW1C&D9eKN>c}@YqCxvC=EcX z71dzLHCew(Od4QDKg%hLRHVMOfbU~Eu{S0#4S=ipfCF}te~rjAK(5qph2#z<6oc`| z%?V9Y7qqKSZ@}%TFaTOZB@gM$|GZiJ)(WF_ClAZ#xN zV;1(Fgrxy&rAjzx*6%}18emp(uwi??gL!3CYF6$2h)e_IN{%pW_gehgvFnmPfWR~W zuGDG{2djQM=s^UfshYRC?TG~Mxx}OaW+l(c<`^GBNSf+0{S@Pc#H6W=dHK-IPCbm6 zG{CIX2OVK_KXjq`aH7%xwNfoRTHQY$;t`~E)qTXJ0dA#&%H~*`grupOsep9zJNt=A z1I$W}kF>8`Vbk6wC{1-xJSDZD%LJtXXr(d!c*sYuxiS6$V$%RSb~B-%*VqV-t=jkV zK~wPwP<)kj2ulk(eA9|YmilY!mpEnU7 z&zsuckPIpPHc-i;s}KjDI4BA>3xJ!J8NE%B{rr?%xe&gyfT=VAKAMMx^?WlzVld($_tpe? zdIouVO^|0~kZ05cdB+U$jz!4m`Y=~KTpWotWOh!9xoWOq^+E%;jP7Jjfex4Oo(Err z6U+}1lLnZx3k7B$D@8HWA)p^7C=EcPJDJl$vGq$X{U0SP4Pc|6{!GD+M)>5pdu5NW z8?AI@Qw&l52~yBh$zoX{+FZmlO~L#WF=>Dq-QpBw&v!d3&0Y%|4;*Ut2SW^%1pBkZ zrm2j**5JjKY*|Y>3lmMm4Cru+#hX{wY5 z=1P`1l9gQh84+oKICHz8h)s@U1@spLr2%O4;_6}{yVceD0vPIVt|}Z1F)bw=N43B~ z1CE&+Npj%%imPRhCMFFqqX&0oy19~gq0@7ovV*uZz@524qt;;?uUQY<_|^dCI#!1x znL?86*hLDOD%pWIe)$ztC;LQV(g1VjVzlk9TOjY(8e=l-zGK!SUenHKZ@8iRfS_~ zzg6rzg8AdYs_QvDn&315pSikXu3!rpZ1Xe~K=Z_>0sf`4j-3=ATa$Ct);x$O3YbKm z4x~kL(SU2_St@dku~+y)$2Dvn!qNbCriow9iA(laNAD7l27oh94_F^`k1NE*2Lz@8 z@a(m#I=4Jw7Sth8X@ENO` zz?^w10hqb&=4+u;H;F+steX(z`* z3@W{>QGYSvX{zUYNwfY^qSI6tU)Hd{obWV&kA5qtJo7hb+FwZq8ZbO!)}~!^f3&=5 zD!%v~ny+yU%g6P5{;yX3&Ly)@Iz@1IZ{!_8sV3+^c9Ud4zz~4j`MDIiG5p=x;VX^4oPXDpR@^RcE zlfBQ@LaT?zX>IrtG0n~Rm2nz~iw~x9SU007z`sFY8UV+4?52R*hcN4nJrWOg#>@T- zj_BA4$8V8?1|0Fvs-`%Y*B0?sM5F;?^nN$FvXW;??h0C}k?#Mog8ik?4-wh7Aqfpg z;)fAavgM=h0(d(D(g3hRAqF4kwn~4Oz%*5Xvri>!7VIW44S?f2GE-ULKV9oSPOIp9 zh)x6a_+IoBdhYY0Hb>4NG!3BR`;b%6+DiBjfvW5~6PpIuu^X5CNxb&t$Ur;egbp6;~%2LWj+YCU~g>wglO2GG%ifRZ9>+8zUDelTCnhiBpu*Akuv z@X>>qBf%H_;`=0^sgN}b_{iF_Y&yW;@E-C*Lel^`x}_{=UleSSySivA_x zX#gL+fnPy%pNj@W?Dg0H&;TuZil%@z9CWZ7n0y6QFpniB4KSmhEEh02J;NRF@oo%W zw!kVRJRd1!#Brpd0Zr^~KFZS2|7;dq#8xY4U83jb)t8X;rS|?|OPelnuQ_{ZV($Oj zXu?j?ANs57C!HfdJJtPcOC>3P8j>mtnzkos(-z-!OhIWAw>-c*p$9PGM)l@GW-|>` zMh{U-vW7!}`Qd;sunO+Oh)V<9_~0v-ywJvMrl3BYs5C&09#d|hcA>+Utp#=;VQBzc zHGc`quYz0XCZTC+$cJ{v3Eodsni}!}sCY9&@}W&wni}!}u;`O=QxAb&CNvG8tNK}| zk2Rte_W*HeYRF$~ePdDkM5O_0bfey7u4qwm8On-SX*E{YLTB$WEvn> zt(eg991Vu(gIVl9A~p@MtJWWi9p>~O6P*U=RpUd}xmeYILR=c)R;^CgFn{6$?@tL# zQwMN+KFjA<5SXThe9pazA-?x&qSFBVvWiumMd$O>1MP#&(cvC;cprA=?aL*$1YSo* z8Zh23az;KM^bI}rJ!Xxf$Ft{N(wUB*bV7HuZ6}@NaAIC_E17iCGYkv#0K(%Zojja39tB=bJ={0;4}b_Zm>$h@p><(xAm0>!Tt`hX@FfV zlNYm0{vJVTD(40klJ)qcDNy`h1g8ObwGte*^%X10i2o)m4Pc|IiPB8Q{`y>OXAAFt zh)YvBgNFm|Ixb@Wm!LENjqY-lij~dME$aUfm8NnQV5^39o6E#S?XPfiFPiFV$MT7K zK|O}3G(erbQj^7h2U{zxL##0ccqf5r09-93@W~FB2gehXrgGk5kwlOS*C#Gbe2H4TfXdavU)M?3uj{R8z(*SrjpCbz*u+_&(! z8!5G$?cU1RbMBR)qVDe! znP%oZDIf=`e?V*+V8=GPOn-yM`s@j4-?DZxdjBBqWuntLax^jj#9q{~da{1(dA!Yr zcTa3T$^$ACTHd>9%Ny^UUK0B#^5EHSi$ZPYo$R5|K-J#J9*T%+Xrd&ArorsWk{3Py zg$E!DgPwF#^l)N+^;7(6q&-{Tae@4Tc@{nYm4PZ6GVLtQwCKTH1|c05sU`SI9Uq!f zpm{LAeH*&he?fhW=-9?oa0q95K4N z9bu)<{4(B-76NL0HP?ZMCqHCRUOm6j0k>9IacawlKRSD%RwvOpe7nOj`olH!>$GmQqB7QI+A zkfjZO0C}?E$z=V63xgj(cXWq4K+!gk;P9pAsxL)9 z!6@KJ;m@!3xb#y6n|E;fo(A&b>x(Q|k`HuKz>c^%Je8WiBPvZ*RBV`+p}w1_G(e3H zrxLBw3lO32BP0zV<9h*RkZpb*PcYw4Oq$9v*|8AF4-t~4s?4C|KSE5Jsxn7o=S&|X zBu!;V?@6B|Bu!OFY^7y0^V5W+0c7k3&_N(If@6#L9M&ksV2^H(_>uO`7!&Q-``I2( z%-OfV2z#eHUEg`J{)oMo=x$H|tbnLN{z7YznZ!wJ#O@2lnGbQnJPjnx4##Oaf%^#I zXaE=8UIZzWx~)6l^KZfX81ZPT;Eh^buqJq)Bpwa$V%r}puVMeUNPjNv&&64RmRIMx znEo_oy4%)TE0kj@joGRcaR8Y{s0u^jYgDi zrBG~S@jqx5m#+%i0-(=ir`z0{)^vUl$SCz`|JN%!*L<39^`x}myLaNS+X z{+{)H`2=`mZe~!FGBIR^vwdEjtyyC#r4uLtl5r}ZxspXjgVeNZrVL$iiulPSrU7xM zX5ylIPLV&2H?-b*4H z5Y1i%?$s*Lqkh9zfw%t>$;rm+?^KlmcO>@Pc-PIdjV0Hr%%hzdc%>_K5Isvu733jU!9H_ww zasW+YWU6!cxSpj*jO$GDeNNea#H&!c#0kh<~+ zt08sbW!lLKs2@*i8c>%zc3sq2+ZND2k@Pey*D}Yh$d1P=&X3Gp=*;R&U>ijgZf@s* zvbpn6-R}I$u)A9eW`LDzQpwrliMiK3;LtnWX?7Hu`*jIYA@KAEs;3{^&diWOre==n zFn>ocpg}e~cH5=!n>DVqte|&O5Df%fx!r=YKyiK|Ze!j@Q8W;R6`}K^)3PTybk5U4 zZ#*sUjWarLBd_2Aj3Dp5kn#A`d9$BiX2Ak{*-Aq~$zGYWn``{^eh8@R=P&wm{WJCp zFW+{d6GLeTu}d_>p0w=>q{7c-plUL|y#Pm|LB>4ex{;;rP?@;fQXCD$J?pv=mjz&% zz}r(G4FoYz~-Du#Tod>XSFBIT3#P%t`qarO?n%x2quBP$qlS>g0Tu za%kumiNl5&!=a7iZZk%_SFWbc4DKDrFIq`^xPMIS^NzBNx(%1#tE@?Dzo2y&i9f5Q-cVbct0WqWIIs_;= zBIn5(IfLYpV-rq4mA$8!c=HBUrZh-;`syr@psh?Mc(N!%ROg|2RtdhUG?u{-T8yhG=XAZR;USSM&=CwuQA=nNn~4f_dNy)DYvvj?#$UQHB8KN9)JM5N%>8G9h>T4 zmv#ro#xZ%%X2XQ2WQ5{-G!&E9@Ea--=PSLd8qHZ8rqdw9UYI&6N`*+tv;NSaE&YuZ zdp5<=K!U#(8F%T;tqO!POi`C^@-VYS5yNhm)&w#b3m*DlDB~yBtXTY0{FOA0Lkmr z4RlEOm)ui*=BaFbXpmLUzplzU3;i;o&);{{uN=jHQvBu_R7?ZK$*ZdpJ-)Ka;=klq zHhb48mIh*!KkNg!NhBHF*K(Vo28EL9<~K6OX6nY*wd zqCqBIbsd$iZ{jx+c{hrrfym_5(Ugdi(4P8@&CPpKC=G-@DRE#=X=r3uFglj#v9i9z zm=1!)-G$2Jec=PkEsWHg!`49ZQBUV^Ix%zXz8@c4aVPvWqqd*gA@kx?5yJIa4cFwO z(>%SzX?97~nETSDXpkSPiCroqZ|LDZDG4bk^Bp>oEiG3-$=7Hc7~1b9@L*#8>i+PU zW8~QWhg?a%M#G6ve)z}#sDC71qv43vGkgx1-Si0>q&|61HYY-dVp0H77-kQp&_GJ^ zH5xf7Sw}07a|Y$m&@WO)3kswWaQ}n>qRzQp<s9R9_0>D4~iS$d5wFBp(d+S_iOi{n`Sy z4((%?=_TymwbqtqnRn)JXAXDf+?|OzWe;5GCgnHv`V`!@Ot5X35S0vfyOFwE@(H#L zm5A$=-c^m}*EtBJfg2_tv6c$)9b2u{OMhd<-hyIjAU62~Td5E)Hmmnbe`f{%CI!<# z@Us#Jd8rP3y5m55AH!oG!wts9n-%!0jDHEO>neoMEkD%6ihElD@N^ER6LZzQ*)P{` zW6BkG!e4JozubP8(~46?2IySn|x@h zpY`xT#ZRbcR6XU690JL0xnPf-u;fFaoUnPGBlkxA}ox=g1nbd9u4F@XZwpz2DMzbA(npfawJv31BH?6#@DUW750yVF|%gX{a{{t)W1(Zkw ziH}VjsCfYmdzw8FrK6dB5~ul}vW-gKK#T_6HLPtIc3S-35TH^@b<>bDms<}^;h z+;Hl;y%hXCMJHeEUnW{LB4WE5vB?+vmx+*=E#6RN=4W{Z)bj3@m9;=wG?0~g0>V)@ zaIjB3RUF5xF}CQ*-hGo#6p!0|d`kzBjL!s1F6jmC>&tJIeDYkx)`_`m?o|JVF}9Mr zZ(S6rx)5hi)i_JuH!TW~SPL(zBJ(185e;%B`P_BL?;TuYF1%%>y@b+eAT9Y=E#&vo zvL04=+sb9R|5LbA*JoSi5dWK8lN zUb!qAlO^JQNpUm~_pIc#Xegj8D#QC)qUL%GOBx7Fz0p!G^BVq4ovQA5oL--p)*TR~Cyz^R@#+*1BR2VSh7w*TK*b_%U!ifE ze3onj9U8qQc_W!=PGXqQAghwEo<5R98_63A{Z$I3fzaeDVvZyTo9rny0AnQ!>dfSV^ z$LXK~;rbR0*W@E^O|EY%!n`ocY#L~g2gx4@7KGS1v~LJ7Q_KO%p@E$AJvCn>Qga2- z7E0<<5)CAEQwNw3H*zKPX2y_nS!n1)c*hpGZJET&|f zLK!rW5!2JCDkBSrDJiE?3Js*RHxG#!l{AERpZc1(qIoZ4LH*IYV5@EyJkZ5H{rUyR z16_PYVQpew@?bU__KXMo1^xdK>ByB8zW+(}{dPJkss3!DB(3K6S;90(hC%F z$CI80^n=9onV;t*JdqM;AmLFp`?wM{4s`j+2ccu1cyJ@LBAVq8{#I zi=Jb?%h;kzySu(7uRX|Ifc3lGEXZ7d;i3()E6-$*OM0+5aU9 zvNBTXUKMYs5_3bk4o!+6D{}fN01dL@Z7b-WJOLdDGRdVPpqt)QWi~uAS+Tf z>;=3n)kP;w2gCFn^9u>G;_vCdwKwCV-e53ZZid|ny)@^#Yv$qSAiz#4Ty+=RUsBxu zx?8YmaT8I4(7OJ&rHpE?bfzgKu=1Bxg?TESg$8Mlnbz7;m7Hhv9;`u?ziH(>gK}sf zr}m~a&*{arv0sG@YA8R#$oB>5x8_9nNtv(K?>K`+PFxR{Izg9k zgo}9W!;7}H`UUrY#+s}j= zCW#*xIK3y^z$)Cfk`7Q34J6gxCEPH7g5WBb)u${P$f~}iZ$yywTK&!n)`pHdgZ`#-$>EQ8w?@qoR*^2Wb^SwYG-ppI=Aow}$c_)L z@WlO^!Xh5Tgj`jGsTzdW??#7LUDOg}LBb_p%$?{oG{}dDW};p(`ti1`EL756DTxM> zBEqXyNm-Ch<<#9Niw3ebU+7ndszz&sH4N(2>Nw{1jIM(FMl52hqGmLh@5pW$&Cz^I zm-@9Z)nPBr@#4f>{|q){Q`d8svc4VyLl zvb=eqwt@a9>HC(JYHvQS_M)(!zc-94T*=}JC&;C=eaoCMRfD*?bQ|N!<_YKYofEr! zF~3J|q1mpu3dLxf<}*k$$DBq4>X$+&PRZT*=}JC)*WQDooWNu9mhju56x!apm&G4CyU2+Z9)#m|R?WNvo7Z zvt4l&NScl-FY6Fx(QH#(ogT!M7qOU&D_n+{q+_=I!$E6do;|_Qa%-inYwY~RIlVYB z-#d?EwyEpECHwajoOI0QH3WiHAEIteqb})~txSOQ6^l1im3a+kvT2YrNe4wme&27* zoWA%IEAjP|NCSx}2Sr8thQELzk+`1~w8}8Z+|AvDyofpG*#~X-0{#2}j=$U+=W>D5 z7Pv4m&tedqn7d|A?cdP(BQ_(ePoQdo<3C9qKjKZ!`pCuU!z@!Z<`wiN8sx_28`#yO zry)9IVC{>_Jds|cce!4(4d(^eyc?rN`(+1S?n0jY%N zffZVMhXH|6I|ql+fj`a$kkDTi>k(4#A<{F#g%kgLrWqk zF6l^1-!;5tWnDs9G>{eX_H_j}4zi@ADKC-s2uh=Yw4@bppsb-f`0T+uxA`Njc!QtO zr6XR9t&&@OtGT&29Q2x__T{VX{=BV*2fQ)I8*}c)#C(A}cHbBsqv?C@avqBbh}b}; z{sgF2#O7->HY48PtzU$V(djH!b>>#A+G&tW5qpUz5~vU2wNMMCCk1Y9Lzy&?`G-kc zUvaFwhSC_`Fh_4ksWg!K)J+#Z*PEe;Y3jnRAqW~owhbp+)~{x8+tA6UkTH_9ceOBD z>2~xBcX~K6H{sqPJM5W1fRLoUt4xS0KzRPOhG){=RYofT8Rmg`E-QZ;q&?#OtJyuK zAVPyKC*^8Np@Ec$)ory&$;P=kIWM3b8pui6?^M!8j{9v47U!PePaGb;$GKpeody=zhS(Pp$ zg{)4@aR=e1$LfjuALNfpO0Kl<$giqLM!W}EC8->E2gx_9aqCo5FP{0o< zfCd7R)lFK=Onct@ZK0bVQv?k}T$ae~SH<5QsCr}~{ByRp4gnAT~hON)EUovWaNaQ3#;X^dK5!K$0poM_SUC z%-y%5Zc0%!5H(29hs<#{^lYE=1aTL03jNsnjJrcMn|Hh0-8P482RozorV~%WZ+Ex4 z-Fa+Qpbuu<$;7N&4(C12p9hDK6ERU8P|PexRlsL|SA8}jjO(Bkr}Zh9oG^bz*Pub_ zBi5yT6@EgVeDyDmhS93#i}KhQ_)oKcltnGqTd4ULEm_o`BASol<%Z}AZx4N@F2 z4_6PphC?ReI}||!5fM}KwTKA9AQSRE3ZY^7rwaiPHZspMcctsA`++y9+uLb`R*wUv z_dQD89>=7|e@u45MhX;+I%S62pS=xkZ&NHQ&wQ%Q+lTbl?OoQJD=C5o zB9gj&AR=^oFXYJ-Lc{V;==PmH+}^W3(7L_)UBXh>-|4r8oh#bmDq%3axo z@EBQyX-Cw{l)g zIW&+H@vyW$Ia#0-CB2lAXdtPZELuEk!ynl!xrA{Ocx_rwMLrlQBOXl5?+w{z$g%wo z^aYWjfBE2ZxZ8a6s)C zwYi`Qgu1>1+L85D--j$^AR}LpC5!5?Ya9i zjy@8OfQ8#}X&g}$;^-+FM@fCAm_52ECAg|tWZuXTC=D_rVs*%@{hg`I(0Kv-YRl)AMj%ZzkP-&5qZD_|Qf+=nC!j%!6ZXw=^x6moB7RH} zH1x!D(VDvjSXDS{EG~4GTD@M&dcGV_Orr_s z-)V16vLi@orz{IEMI|5#{!F7FsT+D$8wf!rnCG$EL4%}6JRq#26l8Wy8V^?hQXb~{ zltKe32`3Xmhsdw?%***B%AtXr%@^cX%ov15SSl}Pba?-SfQ0Qrd$>3+(ZPd>`7uM| z7&*58fj(io;OLbZ5%K2a?Si9}aL7_^Ud$4wL5dRwWR70jg+RnhDS`$f61EFD5m~zs z2zfb$(6IcIwF@L{1gvk8c0n$HH(_PG*wKf2_#a)eRXF|8JX8znR=Re;QY$Sy{=Mq) z5ufavwU%*-Wqs!pY`(x*85$%v;p|9AuI`>m_#!3HKtjT)iBLl3?3s+OPzDWTJUW@L zgRhZszK5PJJ_pi-k-pd+;Env1!9n{-L(cJ?Bb?(CK0P@83E?GsrhmXuc1pL*OH(-r zh)-xhB%CBFW{Lzxrbd;R6}kltvLWH~gfcNUP^Kh}D2WD=5)S#xBn5#pC2NhcXdr9z zT}EfF#xmZ9DC8%OydRs7GosX)Gxtr{b6UisdFeUvU}8E0_MGI{{)fy+*mH99%8ao2 ziiSP`;^K=$J4U0cv!|5_S8$tvko=Fij5RtMz4MhYo;eEh7n?h(<{^?p1 z5H^D3f0^E|?g!qKwf3-mXhr>=M-y}ROW^p&F3O4f9}?yhI)am+V%!zrD1EKgT=Sv5bk7R?)4Ca!g2mQIE0*pkNg}X<){k8#4j`^61rqa zD_-d?s0Q;loLi(p>J#?n9IKB`4GwqNig_o+&_GPW$2X4Ei^)R7-Lit-LqRkUlo5O6IE2kg&~IKD;u}SdpWN`5$RB^kn^5{T~t%wi#Z6k|RD&yjHS4VVmJO zB{(#dl63RitRZQT=!5~97ocGg%D63M&_G7QHX|=13y4t4?J0!@Qqr{~yEu5pp5n>{lQ~B_JGbq2Z9Q{~oYPK)6&(CYYzw0cg_t zVo`(!MPAA?DTM}75G#B9!qV%AkRagsntg zMivaAl#fsf4Wy)NC4{jN^8Svr5_$#H31^kM?V*mYc`z|&U4RfcMvm=&pielfIhfvI&-?*oL~H{$>lCxH=`fo72!ID_03@7D z$VfE=g7lkfSnM>3{V&V@Y;rX$2=hS-p@ERabp9tg8ad_%& zWCcotq$iwDDT>fw$xG=_3Js(rjNGD>EKu@tx|Bl$Iq7CPEoURoeI-N0`zHh>tjb57 zzAn1v!Ngoo_LPz1^<(5e&?g*cIC^D9L|mm2k+6&DC~Y{nRGY7`Vx&QelLn;C@N9G| z`7Bv)zDf}^5RtGU&E-KD0zNmsP9Zcb|77C~>VWfm*5}gmz27B#Ha=Qu4M&~D!_9G< z`%cRva(8V`uT9K1xof};ikGu1_K&$XHDwbvEmfrmG@4{qk+7`>EbQV-EbMX z&$+Vrym=|Z&^x}n2W1H#xgF{bmJUlv%F)E^zZlVXte&|4AtB)-H!nfS5nq3)@s%*T zJ*PBBLDJ3jIMYLeL??XYmKUHA6v{Z3GH4(pVHYtkBa4<$%5juJ11aeqxd~$<Abdf|1I%^bKKu`pDrxdA(yaKlAzY(L7X(jC)j?Qns{837`58 z^{I%7+bW5q=lF!0o3bNHgJkYY;ve8@WPIOXK}+s}Fi~-?87)ryKQXTuu{e3CHeGRA zTBSsB{#VlCbctkf`h=SIGTdpB6(_hF8Q%}2IC&nIuT<+ozt!E%Q!Gzy4?Em+9~W9^ zNY>;dm?IfL2j>%W#xjcXgz(b(3HQnVfD#_Md8BSpg3_Wmf1$Ns}&#E5pohP9q&nIy$o5$);{E>1aR~ z(Q0fl#w7wr^Q~@sp&5A19Z5<9(nMiD%5wBBWTQ#QCZAgs7rh(VXuy^z?ni^gaW3xf zNlqGYCW=CQf!PQBeMm=>E{SBzCGmdbqyc9$O+_^0{x<07SZ0r_aam!g`rd{_j~T5QelwX7GDl_qT}$JpgfQh6!)XcF^bU@3f$ zBp(gw=&;>tzm?+&>FXz1V1~cPDRRr+%=lJ=T&xMO>IN}+aL)M556|5l!DcolC#12#Ju^@oY4<2 zt)FoJ>ZqheR*p0)Yv^1S7^FL&eO{Gx=C!PWXy6$&bS_I7WxGUS`*X6< zq-0}bB5Z$2HX5+i&_yUq8=fQUCj>3!n@LHNE`gX9F_Y(CeAKTT#ebU8zalLSXcPHO z_7x$?+qaXE28{C)0QG&X<#mb5hK@>joHA&Gn!*=WF)pw3|;{l@@=@Vz9Y zNtZm`fL++GAsY?YYIveo79X+)wvc_0WHcbFVeY4tEZZ~Ky32=2N|P=>bz4?R;z!9w z1GXAw(@K-5J8ufzCrC#FxH}Y&7Xo z=Uz`2zHgF`27HP77QuVHLiue{(tt8iIQX|Dh48y1q)AtT`evH2{eWyVV2fC5HcOAf zy^Q1Dw^7&m5s7I)oT%Ei?>b02e?mH%bh)Z4%!Tb|WTOFF^@pKB&^Ll(8-qj6GZY6( z7grx{+J(q6PP4}o^J|M3qwRF3>pLHyE8{sfJGWL!rNX%EtvW8NVdgJP5dGLKnP!^I zuki6T4N~%u%EM_()o>Xl`DWh2k_xk|hVGy1E9fI@e}>PWt)ZlLWf#_WJ-{v8u4%%@ zW9vAYgeb3fYk5Viw%@ES$>GZ=dXqKIRA9crf}}w~*6^TuT7)cL6{>HMiY676EUgr( z?~sZHRMnsM`$YLItMOPXkJ-vdqABVrQYXf>o;RW@~K;-$WU7_h2aw6KDQ>8AV2eL~R4_UdQ{F z8&+3s+Y!DjpNRe5Q`l7E5ZG$60x zx$+eGIINbNSSrwOW1Wel`-`NeNs_^x1z)3lg+w%Ih%%S?Dv4-7^sw5iNPNP1jK?UF zcV8zH4VY@^#}0zK$jl4T$QmzDVS%uN`Ef0aFb#wS`O^ zbvx`Y4 zEeUBrSjP~(oN%GjT3W;y-IBhGq%A>;5mwYry`LIUartcc^(SWax&V70M zxF)`drK-%_L7ywRr9?kSavG4Q3mA}N@i^uPh4aJYqycBYhCXn4g6-5f1{c_Sr@1o3 z%UJC0i-M0*0Sy#%lPOq6mV9m-heNqTmDawp9cIU8GonW8FyOU&K2#ZTZ1jB z{}kD2z@DaIU?q8AneSgThpmB4^k+#+1KM=8)q&vvT?k3%7f470!W!Nh*q~x2VOv+Y z3+orjN(0t(-rZ{*Xg5b|3(fwZ-|V-SFkoN9nXmG#$2N|UsVd#l}XCt&?1S!uvp$COBU4W_Jx1b>^~`?pk+}4aNJ<0J8WuNfP=n~U zx=3=1YhZ==CnTl;ak@U`c!+(I@GNA3HHl^Z8JTIooUUmcyVvuY(+fO7Nw)i#}6%`rB#%>Cd;i}%+tLMa;;)$yowfEPaPqf$AXm@8i` zk4p6nqe4AEV(WNR>gkjR!>@%C>=ty;OQMt@VIF6=4TI!hM%+npf zYqOm-OZ72Q(SWLkr6f#*EhYL>cTbqCPm+rUTy<1+1+D>~Gj~QKbR2@b{4_~vl8`#W zezzNvevYIxAgv?V^C=zm27~c(GoQKtOiG$0>EtdYc=33+)X8P;mq1Z(Dkc{&H|L^l_Q*s)-QXXowyyi4_2q^C)k%?qQIF87L)Y(ATW zG)W1A3_gd1GzkeY#en@FYzogOAq@y?czRe`qKh4LQ?iLt$=M6YO9S2-9_p3zqOrwb z(5CcaGSVc>T8?$Q7-CBjFC`&OV!~BdmX9PM4G3!(E|lk~>}@9LyNq-+psQi7yOeIZ z-CFC6&}*=H+9D@S!aQ9LYk&n3(j+AeYJepY(txmr_2{L!+PQxw zPbW7GxKp)lV>|@1&iqW$(SWXo3FFeFl5VcJd+}K(Tb7StaSdlvn_2lbW?|&U; zvwnuz$n|5+WJte&hNdme8y zmmXZ***uk!Ae%m`*;GSs*<;Hzu&leoDvM!HsZ5)5`82FLYD|f+Ee!{&D=N$Mbzd^kfT@P3 z@dYOPu-c~T{^X(oSM_JNO4ZQ+EW>vgOM!RSFpD&U|`^+!hx!7sfM$$leh{Pm+R#5vM^c5Olw9mROO7UKgew+!_A`YO2oPJ3&zzVkwR136X0)-wU6QX#ia*4(P$F;##rF5l^| zwTI&-zIE1H9ov_6nLhJG`aKO&RYyG%WTY%qY9FE$O`&-T$!I`Uea{=4#)kdha@+`c zm@BIqrr>2mDNJPzhb{fGx?Y%*3lnp_tKldo=B}-ucp<+K-#%4;g7ns~vZW|Pnc+95 zs^8S`Wi=CLnFMRP*%lgauC7Y08-(rcKO3GlT`Mq1P|chp*@hQ$m81|9Qs`mz(S zrqVo)<53!ouZ=}TE=#W_9}V~tR5WaAvGr+Bz7HY^d;tk*(v_hQ25EdDDQVK>DJi|1zLzcca-G3evDhNjFg(Mv zMl4y>uD3m&m=o|gWqqeRUEg`J{)hwF8ir>9rBa~*yi^;&8XlJi=+gKNu%#bgvTiQ5 z$4$HAs?wUTvHWO|uIghZOWd&kTaHUuZea#KX7kRhZXa>lW?g!_k49^H*FtF(-Ss)_ zW;o||efig?qhwDmyOmuHw?9PAM69o`MexK>9DHG3ec|!jl~K%Rmm^`?MUOd#onIPc z#Z$Ibk_?GA7PgbZXdvtv+bIl-6vlWxvOPRPt{qQtG!S=a(;2GD{?l;Tw2uY2&u`vI zk23oig5KxD5{9_+;kb99JRJF+#b;hx8jiSCA{bX8IDI&(U=@dO9Bx-Q+Keg4w-nFn?Vyg?p4zWW+O_Ep{+UL{1DfA^x7L z@ppJzaz@(1f*Ms~E~5|8AO|k5yN6YvY_KHuy!!#s!1BjuF42}uzPWw%%;e*bRu znP5+KCp%EWxSR$ zXi~;QAY(cnyp%tu6qP5sxTm;*nmEPn>xM8+#fSX5IY`mzUZd=SroFc%8&FAg;Yq3yCvN&d8rbavG37 ztmZBbSQ;7A2kEooL7=MNSr@Ida$oM(zDS%EhaiLnVg1gkgh~cy{ah+%wF#r=FfEce zb3@iVG)P+g&KgkaEJ;RuGKpzGT)(ph#DTN=RNs{3G$60tSr_4~p6Rpdtm-?pPni3U z1!?`7eLCnA?zz6p-=2iWNOQ!>f-TmBj+#OyhV*ddZ>TFrY_U^;O>1AruiWM}e3O#~ ziH-PXU{!kS+yxP@rwAH|sD1j%m#rTL2aaA4@&*c_fsp-m*UgTr;T733_&Qxb@IjEL z3IIFmunO4QZ(b1u04{hT+UHLd04hZ35di<4HUNUbRw3!;6c#y6!T<>9a{=J;-<(Pj zGzkMB5HS@1UdXK}geF}8V7OThK=M3Q3lNO13Q0FNV3E@#41j<>7XU8*&5bC6CSd>sBBlbs3%Ln}(4-3hj4z92 za5PH4;CHnLfd9&$w1fU^VjlG;41nxHc#K@AJpeqDc7aHb05~~O0OZ)D3*@h8(#^fu z$E8UT0G`bEJ~ROQbt~dbil9jm0G`Z?$O6FMvqH|I5Sj!5;JF(9$gsp zMIs`0Al#aZI2}bYCIatMLo59Ap6Z{^*w!3mHM@~IRc3ax7NSAUJh5hH+K9U0ZtSyJ zhX4JSh?!sJ9&|fjz{QN^ob8qMXJqbEqW1H|))B|y0-`zh<>JTiMTVPV<$u{-xe=~g zaUVQ}_=p!?x9Wl$iJus%gae+f4wxW>H=>r>i|<7Qi?3WJh${0Vus^c&SrIK+}WmCy<_ooP-?`dm`efVzIy4XFdy&FCLOdK#8%-L4CoMv%+<)pbb@w%W&`Wa@k0 z#f!Q(ekPpvSh+lL|ARQ)Sg%=;lD%m--sRRW@OU3mkCx*b1RM?{y%kR9w5t6 z(EmX4a*}Z0APC644-!rXK|%r{KnNs+^T9B0cXoIB&CYCQX5SGAA)E>UK?jgaE zZUTrR2!f(0Dj*2r4*@ykzK{IApE|m$=Xkq2)$_Xd{qf!Do_Y2CR@Jx8uC4+U!NNzq zX#|6@i%nLO#>sC%4v4()m8^O4yor76Z;b#z0yf`nVumy~Huh{6;$!D45fR6uduQ*^y#h-xl1 zP1+_;CQp3=i?jHu*pPO0Mo2TrS#v#1PSBpamz@-JskN0zcqKu_SC@G~R)li_4D6kTIj^!j=2by$rrv7H!nsj)9qx> zOKrI*ynV~lnVK-WW!aNkkpF=4zwni~8QVyq$i8qgZiNg$G74Xbo3W)bvLcav>7?8i zDS)IDy%IMg({}Lg~Zsoy> z873%DJMrgpE)T(i5ue(u6M;QBpZ*>&&+-rmu#Lo+jE5rwm}hwiWQ>=GG({eT6kv|! zK}%u?kckE}wIG z2-c5yBl`F!@1!;a=2;#B0r~Qf%6JblfO(dOK*o4^NTs|FDZm`dgI3a{~J( zwgk+j&#=+4JM@^=k`m!>43ls2xK@Yz2KUTmJ^hJ9ZQ%^P?G2Q1r6)j?)uEE{ceZ2{ zzP@*qFzq{e6;?sALEQ+<%a)!m?YLy+!++(Z97GBrDTQxbF)=;zWn@Io6OaQ)POIQ? zMX1J>lM(WdQBrVe>Ke*Q;i=Nm4(UxD+&enva`(f>e8c4ZPf^La=A^IEyJ0{GE_}Xt zieM{F#pyG)I9*co0DTItDOD4`vwD(0WugX9QXDAQLK9eZ1dhqh-19ys<=-)s&%DuW zD*QAIb;EmB^%xCvU2~zlz5>IORWQPB?W+;3P(i557&tjPT4(%#H>x`$=Du@cRuBV7%*91lhdIJjOxB#{ zzITEW1OXDXui(;=G`KtI4-0FwU_48!0Kg>g(yjlPxej%S%4RbGBo+sfWbo zk4Ouz`aG%SQ(^e!oT@%gWXnJr!{qj4E}+;I-stB@ZTHcnq)FW54p0Nn9B$mY_-7M2 z^1$I)+)qOQK+YCzY|+$$$o|4q`{st&3V-fF!1gh*`7}&k_WQE$E_>nsin#E{#3`|* zl!H(DzDdx+9}}lcsfG3El4vHUkdJ^OSokbWo;EYFC%-!6fXE9U66eYDCiViZg#bVT zihfLN_>GM{+lk8Ez)yt_fBWs$l8(sNh9uf}MT6yVqQ7 zX%l#Vrbl);O#a}nRbEaE?&L0%5)Yo-%gjRG9=T;ynYfKD6H|I>vj*>a@jkkiExFM? z)H8^&!U%gXiJt4aheirdL@m39pEuEZtck9$CugA?A zEnaHKVq&6}JULOW0gB9&F?I}{w`ndtlcz!oh;+(=rx?=Eqv zp5<;hH1LebrW_i%4Yuw^$FAGZ@y8uKlDp)irbBHm)B!SoMRazwAw7|$kQvXiW<0;J zkZp~bMI%|I>Hrjh_?E{6*`UB%L$2&{Ly2r<4 ztfTunm&l?B&MJt&1};}Mt*fFdU#U!c^e8sslO8D#Ncsf@NzYlz6Ky~Qh$y;x4C4|S z%99<03=rAg|#E})+3teQ*_!RjzMntqzBs?Y9^ND8Q@EQt+Yjv5qJ zPdWAU$+8$E`{|$nQeQwl6_B`rahh1kA*cXR6;MwFR5@F@yh)x29YDUs`)U^~tMr4&9uRLaPi9$UvOlyYi*K&7c$gY2h)Z$?*#Q)j`#ug~(-_j-4>~|} zQ=VgNy?<@9A#LnKyP?CTV{$f>fG8gnZ8!p!<$~~^kLkQ6#1Wre8+!-6hI?PS?=FVP z13x6|9iLtYABkAB{Q^?UB?G?78Zf>a69jH+x?HT1ThfgI3US3KnXB>gl(&Hr5M}g~ zpU;#@R?O4h9$G-OlTSla<=kxSA`BBUm_b&*f5q4`-3>kX1+p? zFYdj@`bDM|Rtvg*(J=YhU&>s&?1ld;qUecN6Cy;GLjL+k>#yjE*ED2nuq+zM&&dZs z5s0r$(v+fVbQTN9egzpIvgnD|e4GN41%yY@G6Euuop?2THG?*Pl276@=K~QGV6=_S zqBEL44U_NjzOo3o@P9>AfYBV0rI6A7voNFiD4534C^ykau3$wgpa>LTw2;OdjbyT9 zSH@_7$OJhu<=~tl#ME|JRMi{@k;H`Q0u= zeFu$NTl*WF72lt@>?8Q??%=n(7n|)3Q=9T(n4I+vx`gJl`y=`-EXWFioQd8t%h$iK zzMhiLK`i29Oy!%!I%$*7fMR^%@?5u^%M;61U z5l*g24g-pAcm64zb#^le*Fgdx30ruNq=@)uX3u0?9~ppTJbrFo7hf&oJVCjhx^0ee zUv2c3`m4QGXP>F%v&&)fMP}4b4DRGEloqS=b4A8#hjM69S-8F}3kQxAvFYt(T5Osm z=imoGX>joom15h2F+mSO5FkO99#KJAaTybJKB54L(pzhb{W~nHb3+eA-4T`cJ2Z=^ zEi>9$_R;0j^(aH3fu&@QH5vTroQ=O2Cdd7aiqY}ub?{Mgmgk#WUXE3v0(5IzfaYAG zc-pl1*m)&VBDo{834mgM=*Yz0$jFLLAm&bp0VHP5B{`QS`C=0Yx+{VJ2}W`AnM7ts4xLVdX5D&FTfUyP{wzV0Z7Ii8``{#tU!cPzK;|@QkLdc8VqAC!2VJGl$Vnq&7XW3}Bcw5W94&z6q)x*|*u1_hZG znTAAOg{X#v?un$|CNL}wkN3sORf@g!Q9)El+&~)LDZAS z(U$-e={dG1c>%UP31u{p0Z7IiYmU5(tYCyvmXHES%KX|B!&nP>A7oBECiH+ zyP85^KFNoSK6cp)|5p;`SO`)HmRyBkY3_v}I^wd|3wEIM z>AzBeI4Qj4ugrhosoWgP=ZLgnf*ci*zAYki91xE%n}QPDvr3X{U=BdZu!WbqXPt2k zh||7|Ei}P5PSUlJ1W3|T=Ql13h*L>f0Sdl#vaW|LK(a2J+t?)Ft=Z3etWAw^k{)Hs znK`xZl*g|{44C`Ai^Ydw@)KS@I>vlZKKEwhTvQ*5!B*R@K zKS1`+(Um^Iv*AaU^vNZN03>3b^=T*~C=*#~JOv>D`9HtHAi`P@{Y!DbwV!zBY5SHN zS@iW`nDpLfY|m%W^M`29(FBg(GRyYQpTF%LrL{d#G_g)T$*2-gjOS_lklr;6nTSsz z0+5J#+CCH!*gg~TX@mge|NLw(LcOMy=E3uY%seVzTgf=UFj(P zC6|0yW#Po&tK5b3&2g40W2ME`i}uo@((y`LI_B8T&J)`*lBSi_k(^1D2q+EaI7>A_ ziYqUpg3dw^AVG7SrJ5ipC_AH~9)Ku7qUJYCm1(MFA6-7Zg3=TkSW4zO0LVrqc0BU( zkEj6c>YEGyR}$tpKsQ{r#6YeR^Hy78=J?bj<+Oz*i+XY%4geJC`3*-6f6bv`{rJI=826VvRgJyl4sGf z0!o89)}9$}I_9&rXZD2?^c(~M5;Vu!GviGKWwmGar4#i$L;(^tzuGgSHSdR5D?0_3 zo7yw`1wE2E_6rBA+8%wi+qO^3(yL+e*7v9&osiuKKTFaa#|9~%XUp zYUwAJLw`r<30!-GQbu#5Ov9QQCY97&THxj|Ip(b@N>>}ZpSxxLKV`jh1bh|9wdz#9 zK5NU@9Onar1jtg0S(wo;tfu5HcnMId{Qi+m6;t|03Y|+dC+_Zu10?P_C5W3)1oHy# zfj~e4pD_QD=*Y7I*<9LVJ#Flte1?JHfGsc(=;sRYz}UcY5ZVU zZecBZ5dwz^id0f|{m^8~7M__GL2JrOKDn%t^2!!o!)d*@Qk5=$4aw2BMvSq;hCF$f@oY+;TqI_jnbg{DnKIzjJ35FkODpGXv?M|SOW zGOv;+$<^_yaY*2axpbwqMS5$o*|&LPKWj5o9t0fcz8Yqqlo(U?V+&VwY(F&u5tdx0 zyoojC7S>Zl@fj!hn3{+u59Todpy+P?D0OCbof>bF-o`lj4YE8LEKS*n?-E>TEblBhcuP1ZRfgO|)v0;LC`RcaT zS1%|-gfZLUvcRfLK11yTD79Wun$WC%+=Ar)Kr$f7e=vvP+utRM zlK07NC}GaL)7?3jR?w**FK7PD#M{1E1?yz{Ghf>LbcbMFbslls{e_`(BgP<*#%dE;ou~wQ)eWo?_ z7M}ZTzbH*)HpU+N#_CBlD}Iy#CB|Il5iHcQv&w5BH$A042mI+A9wd$hL$?hsI#%w>@@~<+Az2tCWm-& z`K0hx{z~aJm!W0Ah`+256}IzjVVg^%I>Kp+S#Zy4NWP9$07ZTC*VwmjT zVUApWNXA?SavDsC-qy?R^Duc4J6j&-FSAb)F_(c{Ai|Q%0*|v6n9D#e;B(n;62WpO zKPKw|MRy(pImfPS4_O~emZxbxuk2p$wh!%Z_>T5B&;`jjpfGTX`vJRyntOPmavia8`F8YBt zd=ey&#udPP>ySY&^+QVi?63~8$v#&P*lm|wH8Ie@;WlhmoO(b9H2DfmU(VYDMvRpp z54`9Ic)&(K^ngo(kLh)Ffw?nGF60II zlf60YO@Cdt{|!&fWma@doRuSAyxRI=o=t0zB%wEgWJyk;jsTPZ^O%6l#Xs{%DB)H3 z#AQ#A9gmsZoNs;O>%A>=AbI^@*R~MudO_F2hvj_GSw;UTziOXoeRh8ovHKTAV#Aj;KVYr- z(4qo1W1B1n$t&8*7JzIil*GC)pn5e_fT*JD62dhD6v|lUyMXSs&;jI2q~Qown}qv( zPu`EiZ00NU2S%q`*Dlmp?DmJr@BOokbu=F>ir}n*2yEbT)!$oJMOUa&8DxSJpIkvv z2PFN1f}|VYI!pOfO0G;610sq(t0W&6ooLYNsP~d)NwNzvKxDBeY$?=Q7V;->lgV)f z9bZp%`}Tw_5$L3)zxcALr}!+#@<$}`^^_yA;mc9~QB*zU0=D%Oa!m}9&y)Iq)W_FT zAxUZ~PxVEp08z!)Qz2DQPh~OtGIRj>5?fCxSd8VP@;O^iaYLb>A6pienk%RE8urad z_j#B+=<71rasD#HH> zth-7-h%EYG-i&ORz#{+s)cP;FVatNH_A{qES(fCwD~> z8lelU7gF9BNadkO3l#u3GbCnb|_Z7eNS! zF!s9>k9lM`;tX0mx5J+f4|_MtEzhRLTsFFPG$KD$5C zA3d`4BsP3G>dw|t(fvjrux#z9Ul@Hk)%ts?RKt2G9KoOOROQ~!mX_LpKS#l9%fXL!|SGhRlOqRy(Vh8~dM)$7Z z!)9sd_rYgb{zn^ax!rY7pUkIW@_|odG<)Iy7GboM$Wq8?=M`kMG-PA6AR5Vy$qJwd zqvdIAT^5qv6f&R)qvgpmqlJVwhY%>hXeQiR82Uqv(d?bVV&o3cH5Ho)Iz7AjC~S9? z+&y<09J(8QcC!gT5HU>Pl@}Y;-L?3&0a~N@J-t6pVGB$ZUCbq8fDnuLI@mtmg4%Wl^FigJn2|9k< z9J)UuiSGD$5*xlex^6uh-SP7QTW_W@NM6gd03h|z9lsoj^I}HzdZ++VMR)viRDt(0 zx;H`xkS~!PKiF!3&6lK$#cbv)^a8Bawa*il*Sbr?WY7OtYw0s2`a=|=ORWOJzczeX z>ypB(<N`Ca*ha<3o%T>>{t~xi?u3k8%O2sFiq)-Er z9zFLFQdmo6M4y5P5K;7SB_zrWm63fKGC*Xpa~}$|mWBKr++=cGK}V17R@iaRt!8we zhsi6yB2yjbFSAb~jCXHFXo+O7ms^8H*C=6RjL9sQ~kht2XWXO~A zH`8nT-)K;yyHt)L6EaMomPOxWExK5IR0E^Bm>ACFo75nHBG#G@ZO*hg^8bSz5c%4C z$j1zv6YxC*021(+$o4pwtKQ6ea&&LR)81h28!<4TzEFd(&DvfC%D z-J<(cUbHPR>LmIbmMK{za{$F8y3O%nr)180E`pA78A?Eu(RKeAWnjTPZ3|jJv=523 zp$od^>0Q)5jvX_jh$*^*-|DwI_94IdG)xZutIW8|UiiNvihkOW5?Km)@N?FK(f#2x zWLxJEAmPSph~1$wH%LgwKHx5MjL06t0Yxh5j{XH13EXz6aFT(8RrvVLlF% zYq31w*p|IYKMLv4R8(YPNvxY0v?p zE1(t6#VfR2K>1840a3;-%Cs3T(*@!G7}t4Ah$DKEq`kOi`X%~1OrG~O8SZF4S`+hN)s#jDO7-{qASQ8RbZ=(?ibJjmuz+-)b5VG$mUia9NSzHc1Au-V3hH0VT~8vnaKyA+RsJ6 zuq7X(VF8p?(ZjV%ti)r(KwN=*Tf z8PUZlpm4rRiQWzoAfot6BOnT#mXf^-GC*X}?P_ zS03D75fx%ILu4srw1*aGG#dq1gZXGA-=RSP6oDeDmQypD%xEsnlJ7$Xh^!E!Wn_7y zdBPt-2#Bx)q&;;~o5 zEJs=cy31j5N7e8Vaza^6Yc0XQOBKo%%F_&a|G>@+JRF z3kWDmMO1V?`0@JHf8&V%6=FcdtpaLTAACxjGp_&Ek$(nqK;*G|&IRdAJqyzwV-n+{ zn#9n0q^2yP>GJs;-C0%RU#nms^E4hst#n6-*C7UqbZeJgZW-TgleDz09#G(Vt^j`U*}QmMN^Z_50I$!TuU4bU-AO#9YASXSYIKe%=o1aqHCR>7yWQ<5C|36QSh8j7R`QBf2IZrLykK6MhszK!nkg6QhKg zEAyluhZGQL>>DaB)Nwm#_Ab-<%Br7jl+-346^lQ;dlYP5AnJ!l z&YEU{*Yt6Zys-x>Ii??BR}2(*Cb|yoG*=n}9U^b->Mn-K6Td_q>c1QY9~I5$I@E^? zspXPQcm2eqVSEt`W5g_}XR}PnUy@;fViH}4`mj@{ID_UAGWlyL0Z~TRp<|SRIrFq1 zh87TQY#r)ZYyN{v&0~~nd3QvQ2{bKbm$+F^b_ae5W&6Kn$`kapUqQ*|Y&Bf;qtP@p z>r3e5%WGL*M$bCrLbtVNsy=}$`5*ENP<};s{Kn~=HAhIl4k;kg=vjbq(!iV}#NUJ% z5b^o36{iooCI#ubNt3A8#GrYjL|2;Y-F_>rH2uXexig#i9-m$Z9~H&uO4EmH%?X#x zdGmrQ%`kA|O@G72Dmj(R0u+0-}trG=119W#&u&m7~2Iw18-1 zD@`A?PI|S5aU3@@m1cTVOwr@x_3i-^H~k$ZOaCAv9?eIKA~-AdnVciAfy;TPS?5JR zH}%44sZ;UE<;;lyl3qY@wP^!|tpqco4?qNnD7xzr#w9eE%aY`;AOl1eyOLL2vXu|{ zR2*e;TtP?A?&$1~({#LpF_il}Opak!>Erxm_DO`%?hObnkqmaaHCS|aA_&{mY(54i zLdhE_?tr2ZJwh6#vS!N@z6nA=gwc)sC}C#0Jn35@1wLEk%Gn~Houa4W5CoM zqKWQ}r7tqt7Yon)7uoL^^V$6oN%Z1NPclphU#@$IbzSu0OCPYcoO!tvhU5ft0+9N6 zYp3txrZroZSjknO0z?(vd(Fisuvr$ft3n5mFOmH@*lIyk&c$6e^A&o3Vq3P<7&PjG zL+i~uP|q)KbQTA#ZbvUGbD4g*d!y5D4(dzI<%TAl>e^|up)3BIsqM_S3+~$m^X-E9 zc9?wpJ2K$)r~klxHz{alcP2M3sjdjoR+_w9x86N4zvLk)rzW7)k^CVu$$%n#;Upi# z#<^w`Xh&3=hkI-$>Y7}1A|8ifY-ai2g?UYebc;)-R%g10^qqIm#lMt;uA6sI_O<&a zm74~N*vVDJOevX$i{Xa}qU4>#dZ)mmmE$qhVBR_D_f|u)yCdHKitburzDZfeT%&JN z&yWa73(wf>nVbn17U!6aRM&)RhcCTnc70!-xnABg!T0W~RBsk8u6g9V1P>E*$u=9- zHXHLIn&6utibh597AhQoLS2|~GMX{x@KtIZ5+WI39h*y2vLdPg?{BnQOF=7TuDwG} z|35k8r0|xzauuRd<$*ETGeSO0AXL^r*=GIZp2Zexrjf8sZU^@)SMn4x7*JFu&J=B* zt!7x#Oe9LlC1j#a$Smn5k8hWn`&)~XI~wMj-Hm=-ZKb@h-<0o0e?gb(SL|2Gp&xN# zaEA;3Yf9~zlXGi(l$J-?^lY0=lgEVHjR)<2AlAesc^26NNc+UyM7F_FYxMV!7Rni) zR>`x-mytA@JSVUfqK9PVG|?w3bAp>(*R%gd7EPW_**^U+fl#^hLYqrd zI*D7z`b?iOoXe=}u4PJ2qmcy^iHYx{Y%dNbyDW*zG2)ZFfE*i7wbpFLUTilTz4~Hf zakaTrUu&+_yPY)q%y$d+y9Ir>(Cyfatba=xdEIGWyKlw=C37c_{WeXQ!^j*a$Wb=G z%4YLg@d-hOPf=jmlQzW^P!v}uHj|s#Y)bewbAOLZ%sph$9_5iU1Tjxui6LxmOiuGD z&EsZ@{4maDj&Z&pyV+aAbZ%)#POR#Qy7IKET zk;!>J%auHsVht!BlUvB`vFUJEGd?zXNcxy$Ox{Q~`m_v^?)2IGth9Amre^W z)-BChgNn&Lqk^?TDjVKov*Er`p_#4;x{T1||0qm=WKQW_ZJy#b_NJ=t^%`WY5B_@u z4=DHNeX=0GvmO=_h^;xr~xCxMC-xCJ?wpvo1K1t2{MQTV*R-~Lt^UQgl}k4`%rCMp$3rJ4 zA2wS~ddBfU@xRrjy!~gJw^JrKBGZL3JY9#?kUWVJ2Pm%Xneu-+Ma_S;CrbujdAqzx zK7~or49b4zbC^7cO&(2D9Nsv=4+87ZM&HOsVPVp5vajpG*P-->N7`pXu+BhICj))K z8fePw>Xr>Og~n7EJ_RO5G5L~oBoC(&0hC$maVDCeB(PENZD=Gkd>$jE*)>tD)Xmt* zUD51(qun+GV)Oj0ANKe4?Sj5FqiOqX+T*{N`se!7e_+0w95l|Kae#bSxtiIOD0$~= z);m)s5I6JAVL6O(rvAbzNG_u40mzq`Tr-uSrf>9uY+G;1sut8Ix-uHXrvm_zAo(hm zA#MAGmGzB!t6y*IZ?xKty>0s#M>iK*{e|@AFnJBLWLF!zZ*JxOKVEpiY*oo5 zDVA9l_`bEk2Ai-LQyk_uRz>nf`~fJs-I@Gx7>=6#PF)e@kZ(Np zqlII}5tAVD6|x_A|NU$+2;9jq1JSz2_9;IAOVx(6q^aDHsk0IM%5yA zq@jxiE;Qc$xw7i`^xAwhzaxWY9Q}ndwDxiL9U`cF>h8Pj3C*;{OC zNyA2ee8Sy*x4?I~3HOVCEGt}h+Slnfqk&?F87JHiBU9a8$&n#$V+}FmSmZDarif4Z z-m)iO#T0;|INOB#l<;frzNUbb3!@Y6#5}n*#_+i@Da~i>nyvR(xG;TuX1<>`Lc1Xr zx#8h{;=Y|sfK_Jfnr$Lm6M)t(ceZw!v1_&oi?z)31hguW|Hd|eqC0v0)Mj18!|14) z?+!a&BPo(Q;UAk-(=%hnu}rxB&NfMAqFT4rn>UXgT(4dau6`=VTw}sF=B5S*b`_ru z1%FI_%VN`pZ?YuIuUh1Htt}?Mg)n2_#tq}VmNWS!CIA$tJu@{Z<3ZPSi{ALilO57H zxfl6OLi_LCz>74Eh;}%HTk9^_!MRv+V>iASYE-1GzShL=%cZm znpL3;e}K*KDeI>;D}U31zxjHj*H~-ncv%L(v4Fa>wPR_=2_R4w;4N$t2ELtc`!W9c~Kgzi{G^I3T@k1DQ`yXP*wE=Br& zGnU>FC#fH4A3dzt?3;0s#8`|N&4f2CPjVh3R6sE}ceY9(h(OISWVuCDl4Wwsre2U- zGtP#%C}^R-)|9mELt}Gqf#)b%6x7zU_yyIY#GYr{QHtM$;zk7963uftkM|DrA08!1@u%$t!RM{Gm^gBm)Z|DHZ&`kA48e)wdFT&hUo`~1- z**~hkut}>1cRI z@0(j=53OeGe<}1_P&Q9tR-V2nE>9-}ZS!>G3q4s8U(z8@0VV8g{jbr;)O2I);h*7p zq0Q1!A!43!*r;^}W1~=$t>%ld8G>(j?Yqjmqxoo25u5zPJqTe^^n$NFfel-9b|yW zV)rRgsI@HQzrk20#})MC;o^4UvDkHP(g#fl{ZMu~rom_TMzIMWhA&6`i*?lG zk>U&iTT7)eNdA@72c&-TNO5KoYpRUuGf)Adn%o7Sl`61RM)x1k0p!c125OsZHIvsS z-;;mFSvK<(dVF!0>Q&SAfMa!-JpBhU*DibE|B7gGo3hP#7$Qp{e|_2dYx4Z%EFq@` zbJ0ltntT8hf%wWKO)2IT?Tkc_X32*k14K5tot!yNd6W6reH21Kgt2D~nur*i`OyCh zpE)0hAihCdvIiFFjHF@mA>LX%nvWJm5Z@qL0vovO^<8VP_!8oTn_TzelXVgwko5Ql zF{H3{S4z}}2oO=chXbO(R4Lhh$N-T=H;7A1wKTJn?_ejB;|e-HPdY1Z1$2W?nxJFx z+%9|J|B5KS*78J_Lbkf1s9MX1Y-_D78p(C&{{n^Nc%H_ZDFg-6ms}1IlNaA~5j>Lv9kDc-} zlRWV~FBh=27;;SvlADqTfYitLymBPgU>ViTp#nq|-}4Ho0()h2w}cKLUt)V+3RW-v zr>SyPg-Hlr_ILb(pzO9cKP28u4|QC$bds*Nv^e;(J~`OI%!DnpdL%$I|%kn?I4jVLF9i|VO zW3i)0KFiJgQ7q!?Fh^p;m&a~jR2}95wiZLKi9zxSx+;Lw$Jb#w5^J!G>XT3bqKdD> zLaM-C8QrI#1IU-yI!wXVOeWh@yPd7WAXDh^b(jLO=jOtp16FUxOxG@Z;s1&#z7F$5 zmO}ozM^SZ{4>>iMi$?N7@&Ql;;_I+HO=>Yu_F~8Yk;T_xIkLRTJmJeA1Vk8JhrwrT z=0mU9I*j{;8O=483R5-ZhgdOdjJ7)Te~U7jo2Gz5MteYkMzc{cBgrfp$x$>XKv6~u zXi}rOG)s<#3@FNI8Cl+Fp72-*fr5;t#xh8|vs0t3VzlV$d2h>1@2AHPyK8&C@{_+I z)14IFO0WD8xzSbXh=Ab>ZgSL>j^bYeyZrbl>&MCKCblufG(u#mzu?}`@FfqUngEoz zli#+Aq_h)hSC&0l!U2Hd*`K3;d^s4Cv4RXhG7ij9#&~%clae3> zkd)8;!hq&<^ziA; z4}RfWQkNNUSmte(+iF7<`La(xA-{F8m#JNx-^uZYI(ido>i);Q=A^2dk-s^i49ESrCZ zI-ol0f(-s8>Hw*GPBk*P-&$GgwloK2O34)n1S%v@Yw$DoUHK^z2uR>_E0Tf|xZY;t zE|Y}2PzXq&eWgFX1=V`I(Kc&hlO5NKPzOqLg#9h{B7$EJlb`;B-okp+6X`{qk%bc9 ziwH<;-x?zIB0f|^FJdHc)1eOY%5|5*pV?l7IgY$}puV@UxUb3lt%?2~MLz+Q@oowu z3~d{Ir;t(eL|YQ3H%iqDa#HF@0VL(3s8TYc6njF3Q?nN}fYe-4ikh*!Y9a}cq$eC{ zNsZo09}8vqwTc`-a-LL{oLrvmLlGcFPc2Q+SiW_T1xQx0mEDvfMCkuqmR*PvKuX-O z_Q;iXDaqy505L!r{z1%GMjb#AAVpEFV2}Z|;Pc^{ob@=r>J&~!(q>-a@B`^Z_tRl= zlWVK}dv90m-|=Von~J$x?J}z|0wtD0E#H6ImhXwh#c`VRJ$p8C9*OV!72gC7 zX|+gfsO#>Zaz%amCqf8Z=|1Qvy4y1Bv>!yMAtx zGj5I`7xc8Llk7)X@0NSSP7`@1($`j`6F{+zt93KB!_4MnKbjyZ?BN=5*Fzj2adEX< z#yhjPM&BMpZfHgkZ zZq(GyRXZ*r%y#Wtn7{NJ+|~b8eZ0?Vvi7oL&ouv+2X}584x`&ILdsnnc14m6+V<`U zUcI~9*xp^-w0#!t)UKV4ebCa{C?zJApJ!egPz;}3R4Pwv_9rU|`*KFp7tsVrQ{2=+%w253mYgPR&iFQgj~YMDpuqyd zEtJ6E*Tdwb`zflo>+=x(zS;hA@ek1h5?df4Qi1$!TOi{)aU+3GE0y8TvZ5K>bS|e!W)sP2NC}-J`$%wlr;(!XJo!!mH$h$Z4fC?E; z8)~@3I|Fq^(+Nw|bMKHw*Wn=CD?I4?CNM1#XMzgo<(r!QEfC`B_xbDOqLL4A*6{+%?2iJY~@QJ7c zDrCEZ>uaaF#JdD}Ky~ElDM#9zJq3AyyEy5C=$HMQWCIcjeSOy8L}B@_=f|^PT&*BM*?gsuYgyitpUN3w40hRpfD@@>Yjk zXaM5!_q|92B(W;x*Gu%t_$9CotRnF-=AIK|})86WQUd10(W7hy*H? z+a@K`G2KVd2vjd2vw75yArg?tii}IN3q@;f!}l6Kfk2=_0@b0;1bz~MfCN^g&%dVC zb*=Tbwka@$cd?B z@N-B6s*{N8-F_=b#4n%_kiv=#P}aK#Tsip?;sA-ONL{GM4yWnygA@4Q2m~asBAvuw z@cBQe1Ej7Z)l9Fs*jn#()xmKo_;oY_(pZr~+-t5iTAihIBJP_=1SGK{MAnx z*4IMBwtD`(d)ayfef@_;JI+vqGhc~?OmAbAyewmIlYUjEtURZ$5@Wz@YyBC z?NmjKy?1ah?s?n6^=7ZN*6a)#?XA2E5&V3ZEL=}7Lwrl`*I#y(`-WdA70xMCm8H__ z5TCQJL%gEU(5Jo+5yWYCu)Cw)HsGM9k$s9ao0z7gOPcSq{{Wx_c|*k|hp$kWeEkvP z0g3<9s*7JV8}u68KSehn-LI*-?o9SCkPS%opI2SB*|>SN*Xn4CC6nmCMm-?)uipvk zZ3AtzUuj+10cn42)wMI_u1=W|ehk8aonRRWPq#5P>W@P`uoIGf-EI(VgrA6TU?&Ji z_g$S|PDVH&;cu+E(fgWrX)e`+a(Xr71Cn3)2C1Lb?AJs$up@N0I55EY{5t3cq`UGh zQePW<_rn(H`lttXf_hw@Q-34W15#i4p5tIudorwc+nVJw#<>aN0g3;Ms@F5AcvUt* zC4V#G04NS6j5dN@bc4}GaCgFJMpz^r?siB({Vh#umknrSYAS4U}XMm!O-Z@$S8CZQZ)2XS@gWWP|5xrc${Z z;sJ?&^^vbswwmV6Lru4hq)}Z%H6Ya`bh);wdac>6A849G+}0Y}a8l>U82R@^J|OvJ z)Ph@d3|nOSUdz3a3`p`@tLu}EPQTk5sLkm&SD1aPuQgdHY*PIUq5vogZ`nyv;B5*M zgZmK!V28z^&yo@ogR_YNpcp)*#5`El*ya3^VgukGKbe_B^)r1s&3_<}3Eun&Tds$`k;r2!-bS!Nj zhh(4}$-z^Vz!t&XP`oR4OGpMJxrEVJAZ~NXW9hwuctGMyn3~<5_(r?E*zWfAVBFMq z3EBZ^FJa1Oo7&9@Xh!!Mx`CacJ8ieu(GBbbqwj5X8oib_{dQ*QBOcfZiLTLd;&ksv zHz3`WFQA-BVwX%AqaQ*$Ank8H@(tzo3h1I%q7CYuZikKHUE)8H2mm|5G)t{zz3XTa z{t|Qp(*0*uPxz(QN@H!U;iNwW>A+4%a&7ORr6?xJpN?)ox=Wb#*`C*z(=q(-AsdkF z5~d)wDcfw`tX0)%t^RD}13SSj%UKuTx#$LVhVHJPynjBr0qHJb%(hLt^we8-#dC;o zK*B5EjIL;HeoNCnPWy|{4(xOgwlAxi zG=C++0ST}Cps3yK`2zYHbOX};x~g|s+F_67btngRLW-|-mwYGj4d@1TLW=9HzHIvS zO(+MXyz(3wdg!Uo#4KFs6J@&6v!q0dx-*|C{(`Vbx_Os^oFpp`}+|N>;%tT)ExM6=m*ga zNcW45e0#Lg>@<5?be~P0yE_vmpg)3CKvG{-QK@4S&mTiHAklwPRnfiX(gvrV8Yh1O z#efu-@OaG+3i_cZ+(4l}!4;oEE+Dxj)EHZqJLZf}BOH+M$nE07MLdT)0U`Vyd#;6# zFwOOZ^!*$%0m*#%kvH(BGRM;O3kU`zxP-@+?Z%;IFEp>cF(GCD8=-)Nmhjke3qr@z z_J5EJNOB21(yd5tEH&2IE}`DozfxbU# z{~;cb_*WkJI%G?>8FkC|&xbDGXSL^Du*&3E#~{t21^X)a;S>sGw6#2etIZ}fA- z0u>g!?8W{Hv4F%@w0&u=?QJeCwL03K#iZ|17fLcv-Sk~f)Awk^0uuX@YSwBJtDW;q z(jJRipt@>XSwTAiwLpc{W=^;YYJq1CH*Q_VplK_$m>!!C{L<8`A{bEemN1mwlH88w z61DJC8*DoVUjxyAL|3#I;d?%5pYz&i2CA<)?L}M<%|P`vr@e?9q8X6p5?+khilOnw zMkhBS`3+P9QeDDgimj-&Q$zW;P<|8HfMi#+;p=6U^DR&dNNox8SzAivplZGqaskOL z;lbusD?CI?95DP%DC}SdT`?;XC!hXu&cM%UrdL^oAsr% z-CiUDfFiInMh@l-h9CyZ!~jqX-mxR9CL4p1jA#)JV8=v5EA^;h^VMscXaGB=Ku|d? zw_CnMcZmR?2)u1a*vYPxRCiFj-Meb3Mw$z?pi+JfZOjlCKXX!8L-QhO$v0cn0&3AN-FH1BJ(54o!lpM_pP zdP`WYNXl*E-`(v~!vuZ~f&mFG;f0_r3GT9zuGR0WXCGMOc_;^}tK6&ZwA-QbKSDVm zYu)Z(wVwCN3(*Z!H^te4R83=VrIqu_i%||pc?k;+w2@wGeM1wlt!^iH z+7jNL(8Rm~(SSsk(3FSjwjg?}xp_760m(06l5o578~u8pna-x~6}}ezfb^Hpx81(} zes{5D&bzB?-)7%Ke?74Pc1SJ^+Ra9PP)}E|yb=At&eET*W_b(xft{s4UD@(B^aIjg z!o1CPOTl8dy|LC&N!IqIu1oe#VgM)xB}^%AKL(w}#-P63>#k{E$_qD|o%GeH_Yf06 zF)87>-F9QL)L(C>FSWi8?Z8ga9ysVP(GKhk?dnQ2(udW5jdnoVOPKrKu4k58>MD;s zZTv7%02GB1o}_F$3hL)+O2*YbA4NQ{GrYqDW!t|E{c*GdJ4gG5@4fv4+5u@VVO+ay z(_}mM{}ajqDc=Fz{?%qPvWgeY@({ z8@_t~3c>*i-vPrC{|IwAtLDE(3;@O8Jx6|Kd;3Z69>SXKQh4mNzv(xA`36w|6qORr znwd2!8=W9KzD*o}os}KRgt13}-z6%*4#|#PwV*$!n0`PU0L7t%?VGl1sa|*R z+rB~jG137^FJYa?cBPvc^Yj3w>|NNO5e-1m*a02rf!2SyCi#~r2c*1&l@;5~0F;jx zfGdauurmt4pu1l86K+@TNjf0uJ7D5plm2UUcBA&4qFv|*q<;rYv*ntxYV-y2bRlL&cZmfrj zZ;E0-ic5INzj+$BI(jap$2p zyU}j9T(P@5k^xCBVc&zTr1IWuXV-h67N~9lFSUBD#npDxzkGHtBm=fUEtW;lW>Exk9PR(k+)0m&_4ay*r`ncT6u z?Hq&y5?;as^Q{Zt==2);&a&O)X6I z>pGu-azM&UctE|qLaJk()|#pG-$y#I6TEJu2kCwp;(?vu7{sSl%paf}*ddN#lOfj$ z_(P-vl3w`^%!M0`&Y;!yPZD2%c0k%o82{*@re1MPAb-5nG*e8Dx2y3$envzvmwiiiM;$OTK?#r_?Z z8iPiCvEAUE>ik8c*J~WQLu>z`-QjO`o7=m?oUMfyE}OsAJ?5y(u5#btG@PL*J5h5T z{va!k-_eFI8|~)86m{;G!{mg{(OT@hAuY$9Wsku^#{G+uVF^~>ojmiGCP@z!74Xdu zAF-gM<)ivpMKu8w%cqtmCM-WD2R@H1pj=rEy?3Lx&Di44$oe9(0LglKd8uVeR8H8J z5e7)u^Gg(_N})HX_czwpHL=py6y|!n!JB#}^}d2gKq8-2p2$VL&Eq$Uv5)qRy04)Q zsDL^xU>$UO?uocj_YKqmQg>;2X}8o|ZfvwQWoATu8&N>HN!Dz2y6gRVPfs%R_+`c0 z?YpQ0r0$vJC0VM@9_MEg?gvN%Dk5#Y$u_t~+K-V2NZON2Of|iZG0@sWqv>a80;K8p z%G0#m-RQNn6OUd#);4}l+b_`ul$%~Fje#}~b(*d~6Ch0`HtJSWowsgHHePwZWC4=( zjPkOP-fm}OO)u20d4ugj86ag(DNos|w%g#aX_sEdqY99!XP2kSHRAQ9=3=jDccnGi zc@pw~YRJ?J=!xZ-6>L>VCh(a!Tc4PuXN3?lSephyx_Exq6?6&5___mUfFzrLN<;uUzkrDnP1A>}X4s>Wp^7_y6yKEI_hKY{+%CgkED( zqp3cv%f@@543M%1#!M%>S+UB^I6RyU-x3oA)jzo zdRGyCKyhL$iRO|2&CVlVQe4neXOewX!ntIB&qewMigW@fwvjy{AF@gMX_MROk8E%8 zKx?q76#z>u9i71oQ+pTdt+jPc-kKb_G2(zKh|`Ja+R1Ft)W+vV+)WV&NL=JtFHHbU zJ5$OTaelyJ9_#czcmK!VPSPL^62*OAO@M@842Sh{() z$^LMd-0bR#*#CR7{B-Pt8i$&_K88B0APqKnIqDbIQTq!DcUtQ@<-ArG%daYy37{Cp zJz)t_d5XEGC<%RKQvQF@1VkHsc1@aA+s_WiM$oqq1V~Walt-)}j&|wv*SmdL#PfRfYdw574M`VrEAlGBQvn@w8%6hT1AX?3UZwE6|ofD)xGHP;8L z2U>lz`^f&(VZTNiAZc-v$g`KmrCxVkr{%hQywaso1V~X?m8esc)>+4(2`FDvnsdjY z2`FDvS_V%<6Ch1-y{g&WWRGNWW;z)`fCR-&E=CCI57yFQj;X4yhAKd+;-&;E(Lzr^ku zM&xY}2}oqzbIRgH>UeXf^7g0%s^`t@SOk-vcR(pny-YVp-W!ppArh!wrgOHv%k;aT z5~yCLyMyb!(z~M+kkX1(NakpIm!S7RCQvU5rt zPCz>2wi_wD;&g}5+II^~qMnIZKw{%IshXEqt(;*!n^AifYJtiot!Cu3udWgM0K@_k z8@Gq#yplGUKQxNZK`|i36|1c@zmmG(A;<(Ivtm7y^{l!&AC-Vq#yzhrJo_*7<>}#Q z1f(%;$HKxj_S@Z+tTXy3gaXxbX208J8)Q>}_8=3G%!+mF&GG3*WF3(}1v7pBl9p!q zVbWfN0uoxWA+kNgU9&qb$>QI73 z_vWs1?*SqJC<2d)n%&LKMAd9Vn@*qFqB3n}HFBwhJ$QTzv%Thr!{oK+Yw6832WF{+ zy`{)UE|o|%*x)s*yU)(*MlO{|!<{+ADHJfD)6fuM@|3 zw9O>(NV44wd4S}_Jti`#R11SBwSW8y*ub~!HGNqi;}0ZEJ-eitlJ@6&1Vx;ehl zWcITV3P@;NSG-7}+N(+ZaQC*n(fJ&70+li)hcvq!e;xvXO6B-^v$v-CwJ;_B2%&(4 zR;Tpznsz@Bli4psA|Q!z6KqAAve)ddHr6$UH5y-xMxauL>~-6ESYZUd41s_IKDW?j zc3QtWm)MgV!rkt8E~D@jCf1ge#a_MkAM@UgIajuQe*OnC+>|YdrH{m12FTuVe-(= zXykRGUJAQx*Mm9GFaC|GRDca!W34yZu~t8-iAjT<*0$ImWR;D%b`d;T5ljH(Xx!S~ z*<^$xD3jt>Ll7WAaZA@{6l4~Rx~=?-qHCfEkfNw}xQw7$nEE63ikp~pM;UEyaQnky z^6e|+@DEJAl(hJFxH1hkczOKtUzwDPo0!bPon~_Pi_GQrhKuEg6w3rq9>z^f z&a5PKx=Hzupb3zsxK-@4YclJ_JKePwTc#RSA43%oUH)cQ#s6$|G#_9TeF8;*6vfSu z#wqHqx$_vEu1}&1kgmARWutZJ1mb0L=&4DtPazB_F$?>v8_UaVQDYQ+8byEPiaY1qyCev zQRDUy$pt;FQq6vp)vM_}7wOmWNDokK+{ zzL@g*ZuX-|;u^gbbIOcS_9m18RZ+%%Z${Z$Q3gm^+*5!oIbzc6fHq21MPjtQ9c_TL z#l2=+fVNJz!}!Qadl%9GNsDU^3Xm42*?SQNNZ7eC&)id8we*vV`-F;bIciM9>400Q zf2kC2rs$pU6xF;(pRd<66v;D-ptb?4w*4Pl+pZN6==6GH|QPK!BQP7`#-eAh+} zAUSbw6waD7T3@RzIH)9VCMnlL4^Ue2n4RQ&^4t(PfaIJJSN{xD^Gq!Aap#Ws<0rRJ zz8(aseST(ZpSW{J!uU-qb&fmex8$Pw zDRvY96wA1s6Jx}LwUWt!Pa_MEthfz1qhzUP$NzV>_;*AB5*67=&m1we>6n&ryVn9q zpF*l>-)WUb+{{>b zhTazHuk5hbVRFh16wxQBV|dv~=Lh!{?FYrxV_9IfE`vyQ*~z~)X&Tu%&IdlVSOh-{ z>a^^xi~f`790Q7V+!OuLjF?u@W)f7J`S-WO{~YXtX>#aNBm$Bc_xvwp!7DRMT-2Vr z=3qS|@M#DHB=E8#of9RnzoC;wjlO5152%hl9Ws;Ydlvct>5H5}3CtCh!DgPqB;Ion z2T0trs*$<&6i}n?d8h*_lypp_7;%4uIG{R77nIr;q7JA|()9=G6_})ZG2(y;xnEei; zunX)FrOf}tjlu#MmOwq11>19p8-)b{PixrxPqL1IyW^sIKv7Kq#WHRb=9v!DO8B3Q zi3vwxCI>D;79d%1iwHdDOtQ=bkr8w;f`F0*b@Y~p5%gpP0TL87rf>;VbAP85f%T}C z`arL-u6MRqwlD?je>zN__Ae@n@73C%%Z`79`~MWivkOyVDO4KoX-i|=ETk81;y9%v zoc^ZHr~2|nXVGq`X5#vO7DEAwW!!U;l;<$EPk+-`TFTB_(utj_n>&lmy56>1?JjA~ z&1m}|+5l-gC#Dtfv^D=>YDRCmgdshKY5d6H^sC(srSN|9ic9~n?wj~OhRM@^DihvY z51KDK>GUileE6`$FuQqy1eeEBsotaF6 zKM3i7q`$t}(%a3(zC$`hHcj?((GE!a8!E27yHf9Wmj`B;Z4&-G!~@lL`dVg}3s4PI zUv*%VN1_^#>ep7=DE-#TTDPT9u`$VG5Dx4B;W>9d4&i`=zpmmbF5&C#4RxeUk~dHe zNcpBafu#-bHo6e;jb_mDETI;V+KM*uqb<$~k^xD6Wi_oa*3u+s2Bi5_71cb}!mJ@0 zsIHTPmSr8aKy}pyElMA?fYiRcnuf@?B>NEzR9JAX1v!LZK!P{jHn5y}m=0agay${m zfD}JwlOgza1=q$$cM}J_gF?Kxx6wcRNmHr(-TZWzeB@yoh2K(}b6j@JeYl|%IHyo0 zmO|t1Lw4M~=_0UH;o(~5G@fJALFs=t5!{_#2GP9@8v%9XL=%6)d zuGQ-@=hSlD6r3g}EkKb||JPRd+!c zAYsL{G_$#Wx0!9y=?(RLO>Jzns`J%#418yOV^DAOwPnJh7DE}qcSkTF!7nSc5;$DX z*+eSM7jt!3!TsiiPVYU?3rKGjknwvE`4@WZ~&Be@v%t>?B?mP;~Ks9X8 zZ@2VNQEj^~KYP#zNM8kNN3EXAxwMWvpmcdODtcW-FRaj`bcK8`@&L)(bQRq^Ye!T0 z(5G0|j?%tqX`&90x=k0s9uaj}r_v?hDiQ%nEVbv5Cg7mA;nQy);(%(1>(}>oyX+Tk z8s-k-0EsJR=48gY(576!-|U&b;lK46drahW{aefBc0BPHFui3e$ zo3yQUJ3*J%`S15p2}otBGmgf8g5{RZpELF0Wk>@gZPPOBgw@_vFT) zyDWuFK6r@m_m}x zF8(RH0O=~fEtW1iT+ViXhBiRj%CA_KTFc8$*q$?+E~|o4Yi(mqm;gaeI(=3@h?ydNbRO)8_hi(ms{GOeA2-09moW#C3CbLem61! z$t=HnxU3T)bedJxKXiG1IVyo_B<83}KMwc+GJ$F&rgqWGJ=1iF`B$g}s-d!{y$F|D z{e3)ZU0qtfi&ObGs06B~GU@Bk65Ct+TT}v4S zq2*7D8le>Sdb`DDfJWlqBN3>C#8vIvsYlXU2GBMK))|Tah(tgV%kTKCs>G;ubjkP6 zXal6J{3#r#&90_!3jY;_fE1SB*-mHcoVw4T4v@O?$N8x`*9*!$|NRf70+L#Oqn$}r zZ%gwgzBT+$R02}D>5(#X@2F)eN4r4(g-)Ovwp^}jHB5itQ}O?y4v@O?D{faE);HFd z)I)bA=c`BrB(eNqYPK5Tf6)a<*9%L3NRT}S^bd*jRZgav7n>q(crKTNCl z9n=9*SL)+(DhbnLU=WuB{LJIO=NX1EjC~XDcI11YLe#6ODj0mj94yM5E8> z>mU-4$nvL^Gm&QUA?uB~B)vXr0jVv&GD_9@#Jmym0Ld$V!AmBuJ~=gSf?Pmy%YUBV zYc6dp`q9eGkOoLv`E_Nlxu)vUOnA4OofW+e(Qd7^{FK;lp%swU@}G4$t?NCVXOok8 zYh(hFS^n}ScRr^S?(=zmI|Kp}Sbm!$fg|g~cB2oFzVf>ofxhfXjIW4JMJgbv<&U=d zjr~54?~E`&!pd(G^%CBsj@sQ22}or5Gk2pReID0P2}ou6#U)ee_1zPFfb^CBC_Q|0 z=-wy;q^$gQFE?p?2GRgYt3bhB?dr5pGYq^R!T<>?zme-pSUMk}W!+7`u;grH0+Lz& zbauaWQM2CdE$KL+rTnnb#UP>J+2+QwEtJPwUO z)iefc9~x)`q_O;ZJ4na;%7-On0+Lz&;6yS<*FCHt5Rky~>l+EwBxA2J==z2)K_4J} z<#((DebkA*OSpzepeknciCFjNN149PIx>N(Esm+N`|pXsoOr zPOwa9KN0~+EWe8_iM@vJ$sR%)AZg{l*g5F6)`D)s6A=egBi(xH(kwdHU4k?~(#jvt zg`0dl1!aJgmET+4V1w+%eP;cDulSyhLZBK7&AJc-W-n0v9tr^|EPry#>^QU3TyE&G zDWyYN+i6qxY@`B``ohwmqZz4s>8ICf_E{ZECFryLxhMsswERZdDAmH7`d-||nPnc*Qq7;zQ^5^ADa@uKjy6UFyp%t%hdS$+g+9K^stZ z()Cw2mbHUe-D!04UWYtD@=EO`_VqTC-6O(R-ETk|AZZsJ*+!<`>eokl{BJ@HAT|9X ztftpo_k+y0A_I_&%?|n4@><~%xMaCP z$&vu_LovHv1ss#l$Zp};&D3Lmh5(4 zWDJ`&xflHH$8|xEeD6&0MzWIpt^dCXEFJo50iy^sdT@#r+WJMGuV$oVNgjw zw3xEuLbNqBRH~t0dWA{vVrGMVL^iGUypoYB&qvv&!|Rm}37`}xW{6ynzOX(vIrc`B z0#aJclDWc^x@x%5Yjjprml?TlK`tP<1=VFfLpN(X{O=}b{BFNzZ=-M4M?1Z5LoXn` z1+~y#M?reoNy9!Hcaq?_Biuq{V~F>l7N~3j8?|nooss-LBmJ4Wpk4{VtJ#jJ^GB; z4}xpwYf5DiFlHMp>LoQkj`SBaTld?Y!LKqqym+bIyRj6E>ZzW zt=4d2yleggv;vh&RU`PGn4{STF~PPKaPoSd#Na_VeoIL9dTJs-Vr)d27-jfQM zVAVcpjXIkxZ}G8X`um{{y3upT`|Q_q#}m#}C^t1*HY**@D_)o-)04*^*e8$0to={p zve~1@?1%a3W$qK}{_q8FJ?ctF@z18peU&N+P*`!xBy7?%%zijUYxp42Wa0f03rK7+ zZCR!vUaWr>*|$4_8^sSqF(AdSFWzm3d(e>bi+P??pw_TTdlo{0 zDhdtzr_VtsP(`6(U+8%V1thd`LzPK=pg%$|AiZ|F{VOXgy`StGN3`67odBSs2fOy;79 z1TZRxI4r4hbU9H{0A)gB!rA7rIYop6hLWy3{4^Y5V1JnkZ%pkMA;O6~-` z6&agz86ld_Gi39b%oHXNNw38*JE*@QwVtSCIRVMyQlL~Mv)k8-qu+wA9W)ZC-MEUJ zd>$cF0CF;iEo>Zp7Vqq!Js|7l(hYE~3(zMLGzCE4lt_PVBS{u?k$b@f>XV3?0;rR5 zeQi_J_^7;qy_~QqGEhRsaE3^Lei1=aWT1pJ_|-Ro`ZS`Z$Uq4JYF$E3Cv1ugBzCi) z6Z=e}rpQ2I1N9vYuU$vvO=DS-bY*}z|R#+&)ZWNBP;SWgZV;E>Gv=r-#;bphfXm!e%S5<3O3C$pnr zn`5t+CMNwEFisK_Ad!(8yxHVHiQp*!KIJ3EqQirkqTG~;ngXa(J~;P=xix~O$Usup z8oGa~6Ey`;C$n#4n^n;uP!E8Lrjn*z8~J{xi_ zXccsod^urL0Cvi&q*EVPY5fX^@&HU(hclI|g*fQ_%qSdGc+iJk)JQ{H+{@H8yX1&cy{1%Xolcru%zw^{40famSj z@Qs8|0r<&m{M%;mOAYMdz!ySP!e33~6hNNx?xzG-i*Cu^OxP4zfL%4dmbVc$1z@Lq zkWy-(g6iJ>?Ziz1+$rzv%f*T++BXn11wf~Ku2Xgz+B<#|QBweQ%IEh)?P~_#P3#mI zC?>TDRZQMT&=dfj@)odMn^?F&!TtbYQ)C0S9?jlL*c5=B_DWfs(9Y)Dh?)YZlewpQ zoAvJ~BZaXs$4nnSO6U}To^p2;pqGmHn4{-#{y4!?WCwheSIdbp?Og;<0q|*W$yLgm zY0#&MogzC4?>RX?L+}&;pYmByrLehFY3UKmX9=7l1Hdtf@PPk2fl~l@%I7~7oMN3VgDYnQviF) zt7qM*;Nvs+p1XqnpM*{U=qaBO)oU%YJK=|fO##>`pIS6Z6MFm2Pl%cVs8imecpJ3- zo1iJOkkn>>)-Q;fA_J%|Fq>BXho~ulI^{mY1{MhG+Ozyy;-&!Zl#dA;tqsk3p{OTr z|4ZZ)K%Vj{>22ftBSBN7zimDN>xa)rqq1wx3M66e%va-azyzL`#w4#I;Tc>`%B9DNbB( zNO2(1QlvO>trG!HCtQkj!_|#gj&LaeH>IOYy@A_XkeN%+6abyl$%qE++xdSeaZ>pBZ!>>*ps;pB=OE!V>jzZM-wvzFsF3YQDg4j;Xj|?DF8m@HPc)4T13zk z0G-kSr?sR1SfZr>+LVsvz0vXU1WS?Pr1f_2KbL4JfHs-ijuLM!{5$twK)@6LoXkBu z$pf}G*)Abo3gAuYWXax}x{Pos05_#o&D)`W3c*sO7_8Y^b1K170BlN|TfO_A!- zA&&Q$MS^RHnIioO?fKc?O3)Mlozi)o|4_+w1Wb`)z`nyI*Ap-W0H<`06gWh3BN0;o zaY~zJOgZwnytiu38r@9H6zNUnz=4h29W(r_VX(JIlZgV#w zQvh;G=cV>Bn|leDBE4nUI$m=>(NX|yO4~DUH{*i@OOfWJHGB6TB3g`YnQ{0O*u< z&MKw7HPP=9GeznX+FG*vK0#9ebV?8Ms)RNkL+yV10ijc*9(vdG^v8rwk@})y4VeFn zpeX=4rJjqxQOBPXF$EB(ba>>QNB9-NQUGj9XHVAA#@`Sv1<9*3izU7x3VbuzcwZk}@LC4NAw zP>%VzL5#S}D;@Xl%kcfIt(yRF&T{(!QfA#YK`5id7ql+jUVMP?)@>3?&rfJsJm=xK zd1)H=`P8b7dH!!cc~3%8>=LAyOM!IyM79{%-`o}icYzu3iD;8 zLjgK>Wt5J`=5n&30Gs zkOxHud633&s&L&&9u(k_wJA>bAoG)CLjg8f>lYhd;kuhND6&Yy8zbLK8Wf}HYO#XL+p6xpR?_cUK79SYFN zTu;-4U$>aIn&_{P4F%Zzd&UNrs{WWsB^))@$mZ*0MgeA7Yqh&3|KB1R3XsW~bKT^R z8mfJlTqwXLYpzbi#b4IGPf8S^H00HrVvXMwZ-lJgcuzuBZ+=V$6vHoI9?szUllR1C z(6xH=U*tjoE(u-nWv`Fb8_n2jX+?fZ5_u6=NYiSYhN>OEB6tdbAM(&&ql^K*D-V7{ z8Wf;0WdF-RG<2U*_lEz!Clv}%8FEK52$c=xLUCgShif+B3kv+=hH%3Cfn+E^X2`C} zLC82;oP4>o5m&(q7JnuS3a}V*cQ^=($wCEp#!UEgf?hXQ=Q zlsP^z`k<$hAO#5ClU0JguIOoGL;*%a-XAoBS{2nJJ%g+$z$!ySQ&qA29n-VOg#uhY zow+iHVL~~NxlgI+;1lMer+qdFQGif}hNvoYTGd9a-o)Uv;Y@IUbH3sf@Ub?*>~J!p z0J8@(msQ=&c(tY=b`*(G{NEtf;58S5*gO)W0I}>f=+m|OhEl^nO)#;n~ff!D^3k`hI>YD_mJ)3`mKj3_eB$ZOSJNJbQ3 zlp$A1SaY_NR472@1H)|u#tO|szPV+}3Ao~oK4c+b1>sWw{*e8O24)=iT}ufoNrVDK z68cE=OqX-UoN0_EgDiwHBnQqSa0&n)axW4Scvsr5BL#}#Q?L#Z1~R~U5|Rt&kpcxM z4A~Q90gXqYD?eUFG87;)j54~i^Slnte7paK6u8Al_s#PUQkrF zkP1Z>vjkt8!UwTMUAd4vD8OUL+kghol5w*>dogKHfX0xQn`c0yTq`v5xYX11Dz73P ziY%6{ac{`-8uFmXCXbpvh4nh}pa72{&v9o^yy}>(sOtW2Btiiqnd{~!aFuKc>k*2} z8_0zsimtt-6!YYJ{q)+74&lLrNO40%Cr@S4(?D&S1X_?CRr;U)x?H6J7;icC_H zXW;@)$q$nf1t?{1!lL$x6ug1{?W9AIX*$M5`7zR=0G%Q4l$}8xk_9g4sr&>vQDiua zEQjT%NQVM+ve(SXEDHE7?;#}$P~r{<@Wpz`A~pQRtF0K@8_eWM3LbvvYnuhkq-s_i?E;E~Wr&t`fW zV8W?7b$n#T|B)1>4cUo4htMeieaM$p#D?Cr1AR}Dpa6*>FZd2XLJef<&RDCc_n+@g zCKO;YtPm z1^5hk4^vz|g|WgEzBlLO3)2(WYh5cZ)SG)xAQ_4blUbz6Jdb23GDrs7Nkq;VGAEJ@ z1;~74xE)9AViqi2Cy@h1_Bfb)SWXTU+2gQSSBw{t0|ht?`Lf=)WofLa`;XHIo+3lw zP3Lzy!BYTyMg}2HWrH)uZcmM1&m;wk?4-Xp_*hHu6aarqHd@h=SM<*&dWsC8_tO4c zqNf1*AU}olp1_fS-}Ucd3fq>9}65&~!T2T)5r#+wq?~>$sk5D8MEo z!wEekGK1A3IZ$MegBebYlLJNeIGEu?i5w`vVaWHJ$F0~bORcJJ>Qg2Q3b4pX*HHHw z*Ba4N0DVRpSEARAYn|{Z0Ds6UC2@;Ts578N9u(j) z0wgjrhSxb^4I|%178GDH+% z6q%)By7PCF3I(WSWZ_a(`H1$Yekj6iut zJi4~B?GSpk|KCZ50%V4K8fu1FG*&81jAIo`mATK85CsSgdz3%3+!-_X-F=Z< zC^E|hUx-xs@*m_v0WL%S9?}d88ozd#$G2%%;A&O#vB+-cO#dIurQj{Iovi@?2}a~^v@ulL|PP}^&eTzw&;oEZlp*7ibMXo{p{Ms zsQKg`BuD{*neNQ2Y2}m2i2|IylI3#QYj*h*lB591Y`Qp9o6X5vy%UCm@`0~Y!55qrITVHLShfXlFVHx9^UV>v%onpWeT z)#O0|9z(v1kEt7@KFrIjJSi`Juejnah(A1sDzccxB8S z>S~%dkOKucd@vh5rLReLh@S%ZhkQL}+$PyyEhb5T0tAMAHZ*1-!bRp`P4GrCp~w!C zh^DtnCKOO{Vd2stZ8^-?9j)v4EXPF+r36yP=F ztv0ja)vA^*XgU1;L&GVytWDQ#@}mI1AR1+A}flF=2Ell6dKLEx!d3x@}bB!A9KOMTgita+kDI|2iK7gMK){E zhI*|qR%D55Octgb-IiZZRuo{B!CtpmE4M0DIunZi?E+nQ$5-l0Rn zf_8qqUaRCA4!WqS`RdKhep~xy1tIXX(E)?11f;nNq zobvtP14n?6EH6reQZ1CKMJgh@S?;Z^%~2gy)mv#fD{Rk^OX+(|AJ z+2zvGqwG(T3kA3g*0(9=mp8K>?n|3U( z;+M&W0&Ir7HDV@(Y^tCe<*$$k1&CyDqNX>Fk9*zB*U5+ij56q_*NpTA$y$EeDXKd3 zEmETZwIQE~npvrn$IM$*E4#i+P88YBE@V`2jgmfYXp~eVs`W ztk;?+=nnSBq(T8ILq7UC6DnfqxH(yO8k1=JyzgKA7im#sl$QG3LvXd>=cGlEZCXM1 z{I5uh;{OCKHgbrWrLEvTjBA?EgS=6d*U`L!h%D7vj4A zGl@}v*pN@k&x%;2|Nd_zNCAQw^sTC$DLyy;KS_xqxll8tG7Ex+(=7=+7W43a}dT zneSP&cmY59vq*{pq%ycCQk6WP7!CR6 zs#!GmQBLaTkR1isW$?s_$}b+u=ss~WN^TUHE{o0DR9^3WeLfjcfKhh+OTH%Yg``B0 zX-d=fCZ46FM3Hey*2LswQlbE*3~qk24sER<6ACcN;OITPrCUi-6d;ws#bCRMJA+gx zKqZ3{5gg3&AErBtd?>&tgIoH2ZS^{Gp#YZ*9(asA5O@xGQDifZe4WpE^Ge zGIF5+mm5+v*X?nFr$ERQfc&oELax^8mEg@~LKkvHzyx7a0QQitGl>Pe>rw!h1Smk@ z)(oWkJn_{Kd=jc&QF{t2WI&M>1{3vKYszLYMFtdLFyzZJ;uWG&74t`&zOzX*NP+?+ zhJ3kFJQBFphXKWR;8anXCI^bla9GsEVGB7>WQK#R3wAzSNDdU>FyzhY@ye2Nr*ySV z7n2A@#)xz^QLiEq3J@9cXndd?32UidLoO8HGUQ3$KwLr^tk;nWMb@Zvw_E>4Dim3x z(%pQ$fmA3!Wysg?)^UEhRtek~C6ytg*$#nI0Qiuv;f)ErYdrfFQlQ8V1zf&ct+mSK zk{X3vO9~XAaLaIq-SgBqrPL>^g1H(H>fdUjhkc|wOC{!vs z2i`^a6o5bEIcePTqwaN7Md&>wKmh_ncACc}pa+0~s{DR3p#YO1&+GV8>7^g5Y50DH6$PC$?-*B2;Wvm%eIle&16oCBx;kLAWA$L`XFA+Qiz`u9M;A`0L z*WD~hZAiL*jnF9oeaHh2>`#mby(|5{NfHzwG31*z;*%&3gZZ zLpBs(GvrBid^TlgGXtyE^ifiv0EHp%{fJLN^$wBw@)$``fYgv@83U8@XU~twgdznc zj77iEEENmoU_aqK32C=}MhX<5Fzo)?0~(J)SNru#lA!>ZA@AiCm0*zkFdrZ)w%}3F z!>M1B5k=M+neTl5j*KX>%&1zZRt%%Z$%q1shP*^Gc&Xb^supXls_t<9L@pFr&2Qgt~$@Zk_!d6+%e?QU}*VFQlbE*VLQqO9+RnD@LXGeSZXAe1?0jjBWbk5=l^i#E_4G#wSsm;#yguoS$%-d8h1D9ODICPCgXiGvxb?w^AExm7S3uNLA>LyK?Ie*y1-0Tsxm4EfCV` zq#?ePUxC^oz_$}H1pp_rUB<4LGcBWLEszZp_BJ$HQ&ZR! z(7;Zssd9lI-xG!7V+2nD@HeF|wTt+$R$kmiw^^N66sSKz)D$U3jfCDE(PFTpT6S2sY$g}$&ZyPx&VKTh$(>h+Vmlw z#K+FzL(yozNwgF|o6PMRi8jD$Jdq!Bigh&s6vg5@giVod*x0+`gZ(IBQvh}f8#kTW zttreWb>sFJF;k?oJeL}I4k@;%_TooGO98YgY%hQoV{RYfpAsz4SOff1nD+FNv4}h~J*RWY&mH$M zQlzWA2E2495G4grrl|ghc;}u+q!d7!qFHvhSMEfDr2yDBq^GeeHFz#fO#DtFLW-0X z&!$spl(uS@_j017NLTUHK0?c@`642v0Mbr+a$F-d-ptd8lL9zXG{O(_VxCT@6e&y6 zp!f1j;-mo16gel<#w)ANuO(0l08LR7s)72e{@Dae0kA3R>lN4rK87;pXb$`HAT9T*6&m=5+nscrf6;waHfwFB?VBXXi6G%qL&Dh z0x(lFBn@$%mx+`DNY^B>OI)p5jjI3EP_1hZ_A8QUV(Nvl61JK*;%*Gr;XCd(cL(tg zT!O9PyPRUQNQASJ2PPxK_VBqoitXW7CLcx54dR+!aErLstHih!iQ!Tp6%y)NbqpeV zdhHK30rTd(!KPAk68AQ!{LL3O6!WFZ6!u<=oV$%+DF8N^%g?>Ic*tOOU`-E;k3(v^ z3iw9}oFa{>To@}<@{Oi5rNDliU?~7LAy<&e(OIXm0IU5KqEOsLxDGu2M4P2n;8jY0n$RiIn9}7!WrH8?X9$-fop9?7Kitm}E(PEwv{f#-a?CSa z75EG4e$4+)%oMPZNEv#6e)x}=1eswH9V zZu{-{Pu98b5IY61C*$r)u9+CC*QRPMY#kP@!=pq>0i?-zW zVx>qgR?|5AlvpW%HEq3b8JBQyE4C=CKO;~I08M63YjTCP+-O$Jd{v`sJAks_#FLs;3G?n0;( zfSSxEx7pWr|A=)C5mEqQTKpLbp&6;}NsJWf!)V%~y@`<`eHcw0-vuZhels!hE2NNy@;3l)}a`te;MxM_kP72^m%K$&d zi1QG_rU2|SlUM+dsXHqFQ={^r&;51D_{7C*FkdK7I2-DPn9EYK!s?eg?wlRK|9>yW zn!p|_g}t1z$F+g8w-HVmEpJ4WYXr$GVEU=`+f)(=9au9ENug6hCej~~NG=5uCYkL6 z0SNt;5d7KQ1F*fKAoBMwgiZnIw{D|6?YS;90Cc_3Fj*@*jg2@aFBtrt3@E@Lp?R$z zQ-X=F8PsbHtVj#^{~~+}z)$9C#cfx16#OxMiC%zz0$1)S06v+!E4DrOQei@&-;wAk zvQzf)jg<-BMywb-i3}*Rlm1R=Vp5^sjp!+|lm0-Dy|4|1@I?xrTaE-JAJp*iVomFlAr*I z+cT31_0r}%E?_eC;OS&Rk-4nE9)^voJmpA&0wnItR909!F+`!7OC}Uxl95&w3&o~1 z9ZL8VfS-{;(UjM$9zpaJK>xmM6r&4te|9vnQvmyivVpx(u1$F3>G>o;k)4v?sFkO& zg-TT1MTAcQ_!${bG^VljM}R+;;3+axc&5iV8dU_2Cjkl&_;5B#KUUQ7ZFwyFDhkgf z1qx8e$e2h{uxr5!NP+?+GSYpa2jOqrd}B+c;@}KfME^F?UFV0yI+I zB-(D546t4%f(V3YDu zjOQf2lAtLvP~?5i;j0Lo0>D$gMJ?zQzJ|~#06pa+ux@AYTM3>5;8Wg-+D_o>2%7@1 zQ$AYvIe)JwZi)=xww=B=5;sNq%Xqi5_hy2p0QgU*yI+du+Z_A?8sg`<0G+`y5?adDMJ5V-y;jEg9szs>fl~l@GCRe#WuiBx$|c>% zuOxDcOca;K1ue(nN3%q#pF!*t*+}(fp@{Q40{K})P66b}xVg7!dD&E$Ds1LQfCTt; z1Wy6*=^u+VOJ!YN&LMD$OqBIj72_FGV$LIWicFLk+*4n(24XKGcnW||=8}hPQQY|% zZdJq!1WW zDz6YQMXF0k$Y^|uz$pMcy|vLd3U3fH1t2H0#b;X-YX9hanwTk4U7)Q|_Z9-C0O0Gl ziF2>ldXg_gqTO!u?9ujxL`;$DV&NZUUrfvt=}u*9tn?}(rU2q(b{qNfy3ZX!zOcQ@ zg@0828iJ+(==6?}tkLxA2$&+(W!XQ9{x@Q#NOj2wjGo^>&=dfDeiAzr>=HU^|4^gf z@a2dckvgoq_gruEa~icI^Rz2+erqDj0B4~FPDormnPDi81ucl z5gEweP6(YMeg=rU6v+K#uKS!FEPH82Sd-fa1=@JdLO%Tt|cyKzK$H z6-WRa6*9bdCbN$RCk)1Fm6*$*GH}QJ;nP9(?pJaj&spOA%u?1=5FzlmbYT*=Uq3(pp8dOeSR?CSD5QO=j4aINnyZG%gxb zk-%RjV2TtLg~nuSe4OrHf%GdxN&%$F+(SM4r0uR+UnfcmpiHLwoIOff@T%0eh>!vZ zli8(}48mYl`Yv%&0B16v>`4r#zY2YyKq*p`<^HPk10tjV!bEnE$&?(G|Ec;J9Hb=k zwf6=-jZ~a0RVQMOn@sqQd-Xps(RefV&9!$~qpfiCl+4%OO+*AHBf|jd{c-?xWg-&} zUlhH@P+ma)Fv{pvV!Vwz2`P{Y$$ahI#L#c2m=`btqCKP%Irnygr2yDu+<_j3K0Y5W zU?f;Iwkp&oDuvA|d2b+MinJpx;X_y=jc+1i3Ls9#uk9sWl4-nY(y3z{ATYn1m??lc zndO6RfVo<$((R)lzmJe906Cda;WmJ5r||~}m;!*4nII$x*jMLnB~psCA~kjGHX@|} z(qwiOC!3~r{(qEMDS$PZ527WA)nB(hPN)=sn#?dUL8x|`-bJ7k0D5*3ZYzUx)cmE| zn~*_IJ)sdvGxj(PgQ8u^7=hi*jX&I^tV zG~GKv*QEg4*A5ksJ)#mh@kv6X0JLNrX$?n~htl+xd1HlUAzv&P#9>8j3~3f{a; zLAugvUS5r#Fq6U_Kzz6ct|@`>ZepYW#;b>%e143@TC3W`ra1xgUc#gR%w#6fNhKw& zZE|p)OyRtrI4M$>oVfkA#XX23IUgiU3cyU}GfFc~&aM*q5V27J+rJIBL@I2)lK3#; zQ2<^$74ZBe@XN$Uk(%W5mAtPI9tGf?mQ1hQM1QP%17GL2HJR+G)tdwOLuBZVd*(OL z7yk^aX6>EVC>CRmsQdP`Ws&o{F1AO6kwlF2cu%`H{tCC z&hD#4PW_rNDF8DeS4|=?J--KT|3)bnV1Gxj6abr$t0qaXa(GO<4$hJZ#E%m(1rR4R z!A%sgm$rW*QVJk_Q)(*HJWRr^0`OOYqyWf-e4j}qXT^f}4??6!SB{62&FwA%QVJkV zW(kSOpu3D-LvzQs7lhPe)Uz! z)Kn5`fK#CyciQc}(Q)_Q0bTy9@hSH9Zfh((l49+)fF~nF*T4PF;x?FsyfGf~zH1Ct z&_EgXo~UGbEk9FFfz(LIi|oab2vB=SAae5cgiHa*$s7q0ow-%MdbJG}yU4UP)B0ko zGF7jkvlYOvAaDu*Pv%I-wgld2VWXMA{YK)Z0PbWq9&a<;6}p)P=&K2u0-%$*5MrBw zwu;D`iJBt)N$r)7w-Gc&`aw?@@S!bHKHg5y6abyjT9nl^^qT`&L8Ds{f9r7r0aE~Q zGF!kBFVFz&m5Q5)mm_w9mZ`$OOf8BZ8Y@&=%WNnkz%lB)bnwIrARMWuQ$7k zU?~9hyhP@AUfVTlH4Uos44q6Rffd<}EF`{CAT@4QZ0;4*76 zZe0tKj0khP5jnR@#;t2b(95l>gZW1cN~@CKLArM+z&;tbu8y@&52k~Kg0tsvBBvfA zObWnEW`3;WpB+q5)QfT*RsemNKq*oRw2G@p1<)@OC($Cjq!sYo_e!NvJ@-|Mz|27^*r2z9}Hl>;P`ZP!;Tw!c1 z566?&e&TyyXpX8yCy%cZPsD zSYCceV1Ab`tt-g94TXl&v%e32rQ`l$Zxr3DkP_`Do&*~#w&(XNwq3RcK`5g{5nd&W zaNi}fS;f{p7U(i3)6P@NL{}+u4GRhd(xtC&*RwH`oQs>wUMv#nygW*IshQ6!$ZsWN z3PA3=5!*BN{}*y$Lor{fOkt~*D1g@yGewG%xl$X$O_2OZwSas*AyWWy-wU;el+5y^ zvw(Xe;ZmfyRN$k#zRGtqF;f6@U;p!vk{Fm<)$v++jQasZO23z=DS*1KS9Ex&@eK?G z_!a`D0N{SNNX!`TD0?Usp})J?Z~mB5sWs-;ox)hfnO7N`D}Hy}+_TXu?I?e=cU;Cm z?4I@thL<7Hqm0WQWh5A2ZV|S*YCTdIsn(j#hFWdo2oA1}(6)-_X+6WVpSDz)$Q5#@ zD-$`G$PpG%?JaOB5~JdWwCp-SWx+qf7f{Cvvl^K&%RuV=jeNgv{0kLn?wM^i<}X-? zs)Y8n&~)aNrnXc!%x%_2a1T`(Uw9uKX_lHi3w!xVNZ=>0J!9mo<*QdNS-O05WUY8W zT~6zAQU{99=o5uBh~eM8hIQ<&5H=c zut%#$pcdJRk>0;f1iigOp0xK~uB_w`Tx6jrSx@g7hcpO!7fX6aNqXA82WV8Qgmn>0 zzU#h%{30TMeq`kH3uR|>)oBX4DmO7$7*T3fihnf%wtKCBehGq~?lh%dsB%h`BN&#} zqX&tsDzlzm9tfd?6kqySm|D>j^ij9CKn^6>IjDH#Yq+Q!FDeALah~{+6-Xw#01Ed zsyP_|u$Bx2OLm*%<=Q4-QK%G{r>u3V*kN+A|5@8oBVPRqA|4$mVz;olE5_YVU2=}4 zZ1cB2j`IeJ1Cw$Gr_MKz9L`c-tc^LM@z%wk!$_xskIIPLKSI%-x5T`~+%RwH$`O34 zZC=P7&fMV(q9xWbR&Dz*l2Off^rq5>;4MKv6*5*RnBSg*7EX*Um*T?b@|S z+Ps1`=lH5ue4MOExvq-jzDeK=t2)bK;v3B@$>BxROYcQQ|Ge11=OSaUk58D#46%iw ziHdpe72QwTN-5&h!4Y4NMmI>8wbb9;37(>Fi_zU-yB@Nu5mteMF)`mweI40UYEF(c z92~J?k0%aimBz81PlSKa8e&0mNG z%Xd*-Wz1N*`)Uzg+`f94dF+Ad&8UW{>>+@RIm>D@5RLTlF9y@)(d<1lZCf`Ms(C?n@f4A*>O-y*$$jK(pdo8D4%c&@lFXzmf ztg6eELSrLy##?tesqW>`I>a>{TQK*fh~a9J~JF5Yl{WCOmhgPEiPz4uzr zho+yjEoDwC0b|*$VTb{U$kZL+IqS5AgypGOTh=}XtNU-4#1zuC&mwK@j#5`eG4-(P$KE1s?S3)5--d%N!h_Vmc37hZG0$i9l$F)%uyd-z z*1f09fc=PW#@+9kGsmpzLRa@GVI4?Vy}H=q%wtC18ngS8SPmwZ!8*;AGe_t3mZtlY zFrGyi5xwK{XC9yF7TrS`f$kMcGq-5EL)q-~>ZPo1v6Aplb>H15MRIqSXWEOQ97_}MayvIIZhOv7N^I{M(JskV^ z9QCm$!8t+j2Ci|eVx#A9CVh`5N;5u67vD20_~%s^Sdi9X&OnkK_=Pp z1H7wOK*Y#LVf3#7b}tDo9>~5}$iSFJ&^N;w-@s;|gzff=$b?-MZ^?f7AmCB4urokT zQm{3KW7~3JgHzUYo{Cx$5umM~iS_|6bG)ivM*f~U2#kKt50L;#I6s~{2r4ty(S8mA z!yD!(b?CsS$3&;Ac+Zv7LvL+JhFE-zDpLoD;g09qP!$W$+wzg;$W{eQC7Xz%XPebI}@jl#M z`?UC&zJ3kgt5!R<_?Q^JjTaBXvCCng796&Ocnk!qBfC5X(QmXF*gs~{fkS-;36$Yu z7xXT}cpg=T@hIssY|!|MXIL2~E?=OqGAt1$QHGCQFuO9W-$!d5<(rEt!^bX&QHJLa zQie-o3st7?z&{5qbAl5B#%<7k?>>HM ztcd!#E(DuRj4g)i;+R-bnx0#GDMTDEXB=Mlt)3wtqUT+9*$}<7=a9fAUAtd&FQ)aL z{qZTWu-hH6-y0E#@KQ$Dw~>-Vf%6BCn*Ko@V_zqPNZ;2IP*gh;tFJsG7R;`he{?S< zi}G~@HelyBn=+yM8TZN_WkU8I$&?8b;nlIqgp7JtWkPowXhl?y)8&{FW#TQp%7ixJ zbz328Lp>In#rV`Wxt?p!kVmGr$Puilxwb>#&BtS=dWg>vsSsdOj>-_D|F9=b7@c!S|T1ZJxl9kcMyW z?@ML%-14{Vdo+^w>AvJW=aiFZLU*A3&waj?9tqlwspB$MB2xw8g2nuyi{#- zv@H0v*z0Lt&iSJE1rtX{7`;!+=|T_B5W)wGF)E9KRm9`Ac!F&y`bE7%g_&0zD0v-TFD`w*q6ZQcq*QT6rW^A{s;vrk z3DTVa@9g8L|Kc>O{2VHuwV)e(r+-75j^4`?j3 z>7R@oQ2XqvY^+Y?*00Bdh*p37deQKTApVwr{d!pz-JcN2EZgwtnYs@%^4c_CqEfp* zW8}d$`}lY%;5F6(qrak2tHm~tk?+y-cOOzcPSee=MEhGB4r_>`XC6MQY=OfXQfd8h zTJP1^zBFFCc&%(sw@5gYs+v35%CZvcRyJq1vhJS=ViqlC^zH#)N^}D=O(n5e73J>) z6t^XOZoCxonm|V8YXaTvc0qj6?cD*Yt(|CLowgy4>dHSm?k7&h5PB!|tG&}HA_P0h zCwILg17qZS1Y$#oeI#!A?x=0hJ)C$fV=wg?6X&AwsnNz1Zb++6Ac3IFJ?1@gDi$^?Om7v7Rl_Jbz}aH3v{4-txTw3f>FR z*`jZz(B-o?kB&=V$dl7#o*Wk_kiFlwDzV@fvl2%c4P>*Is1a-hcK1}~wVkpt6DlTC zs}hr=yPDDYDzQE*qf`7CtgTEtZHk6?A zWC>DxY-8HM(K?+}eK5k2E~9eKWeyBX?l6_#C2TF+ECvb97CL5}LTCs-jNW?GabNrb zr1gFgPuu&g)vx82;9`&E>Xr|t-(JBeq%EY)m`s~z1_R73<4fP@=CM;6ch`tXpNM_0 zENgFq4(xk zvd~A&v7Qs&estF*+&qe!E%u9e_1%3v+Y?#oeRW)Up!%oIsK0W$Z=^wAwTzF@tB-^! zGu7<~gxz&e`3qwpG?mY?`c_))u5r(cotgls{a~1ESyjz_J55K`Eai)fftpn+7pzk5 zJ83+u7AaRv48uh3RiB)xKJLx59Z_9Q7${+MJ+X|xkH$l5M*O1YP03j$+z-;EZ#1uG zK;5aZ2*=w?WI#JhTE z9_L+aRwgh-&B`Ks2Ak-ppeQ*AitfWqGRf0WQwspS(OEMo;&Q(-K-!BbBd%Ds(jJ}? zUJ`@M=(wACmB6l;U2Bc{VE{&_eYa(44r%{rzqIdu*GhYVY2dWCO>#b5bX3~YocleI z_JXIO7Mb=wQ(n0jhJM(U_R%AsV~i&xnEt}urt{#JoTBalY_`@?7{JkEzwnqkE=?mp zekJoGx*H6C-^vq#F)B|YJDH$aN4x)kudnXt~}Dq*xmK) z*nGLLbxVG_k#}%TwXTNe)L|iaMCdy13wVHM_mxVyoB=!XH9@jjchOiX&{?^$=uz3SJ?8h zCAJMKKinOK4U-v>6(fiPHtbw*ccC4B@-K)QTLf)+b&Tom?oLxO@zsLE%E*j7EwuISChEv4%5qwR%I4ZVirXz9Ny_<;)5%rGhCEnbT2mc{xoE?rB{)t#2so?m&+Z_6v$-BQ^0lCF%P`d@ux$i!zGk~HDM%n_dF|mC2GAHup9OX%3)oQtG4K~ z;UuN|T4k~HTo=^BtF_Yhi+RZ1{iO@r|9A!bN$LsKssv~M`dReovJV=3vjDLor^jVZ zs~tN7uu`5mKP<47mR*M_CrO1vKSYgsDy2qoKE7d8RLR6Yg@2!YTgSbYK91ebShi-V zaPKdpQvMd6Kk*xdX}@r5@_o>(Nt*iV-e9D_JyO7`+z2)xRU9sbs+fgyRy@I`OZ7y0 zn+gr^@|3`EWH^R!|F+;Yn1B1w2>V@bY+*Z|8@pG6c`5}_0%TcFE{!vz0;iC7dtXpOM7xmUxPt~HW_bzH)P9$8Q=DAH85Pse6 znl?9xfL7ElP0z1Q8t!JAiSlbdBWS0~eJyNUNE>19>rgg2UkhdFNERk8F>FpYD?NIV zMcfG7nD0*$T|X=vucnPqXS7S}#D!8xX+g%kPG$loX2TQ)&rU8+XAqBk) zLBTG*qFlOf6bM+9bP};N9Tdz1zNt&Ee6hn9gXQ?CVeeT5*nKPC@|Rp)hc0N9iW`x_ zb$xZLr|7s>bFj7RnI=fb_XCLa76|Vp*>%ZR(b?RCm=R9ziwcIDJAn&3#tRi})-2TJ z!79;jiir0;rR(7ejsmF9>6hfDdFm03?iRYD(W$Ig8-@Knyz(bk8ZCt`kh*K`vZxEC zY_x^FIct2Yh~{TsTP&PhMV9V#X$y^~r)$qqKaF2gyVSdIA^BwYZ5LW$a&;e-~KVGUZ#C>fK;JQ#IJ3hE#zUW};hc-R5_h@cazILez{*)lu*D zQSVP#>fKMXw%N6YB~w;WFYG8vexMMWlJ9<&7NU!}YO5_{Uip@dBq_L`qm_^{tvW61 zbzPXPmmlWKT}8P2RaJIn!4wUK`yb-fV2M4XD+Rz;_IJUe>VAzDqT1JP3~VNK3aC8z zmcW2=={-O$sHWLs&R2aU(ET3Y47RWbc7f-MR*7>T<7@sVRyE63Y~GAnWYCZKj?Xuu z9od^oQ}Y+(#g1amoHmqeXr!T8AXh=v{9wVn1*5pf6KkFwcj+-~s)a_m@x_mv`~mKI zzf>&K(jMCHopuxL_pz$t#d_JA^$Ju`RY|#x``8>MC){FaSh_m`lceggn5d$1PFTR4h#Tc|qj{XCOBN9dL+o&1^8Kaml7g(qed z(kilIKbaN%ibxQl*RBb4QJJAGrRWO^*|BgGwcTRu?#pBpv~8Y!ve)3W91TS19@Ld7 z+Q}9L&fC21Wy>PmWvgc;_`<*;$e2AA%!3x~l3LG@3QmEP0-2-FV#JP0+D7&qDzitQ z#fWXdsx1O#R0b*cTnxL&qD7+|@hVz^z58q?t4IPrV|Ah;j$NU45C4G4XBAjsIjX>_4Nd*a z!YK0^*Y5e&P-)sdmL)7A*R2-6cY^4ZRAKSCwCJtASZ!1vBfd;>Pox<;f2>;6$50?+ z+@&;SMD%m{$a4nb9&Y^z#Cp`U9%y8wsITXN9<11XbRe;NSkbjs z5a_P8+P^Uy8J#!;Iw zKrm$ox3=p7Aj*z=F3YGWKvAW{8j8e8E?vJ#!d*}6Uj0@}9@)0K0zNgp-y&5n0mTA#fLt_CdA+bVE4m)hJCI{iH@sMuqtK=OpgEMq~%z62~_K(EQhhpwgt0&I7k z)=NV1?V0=+7ERXs3W5HVUwo@pF%WjG5)dd2J-YeuB(yqXVLGZ3Ki``l^~oC4U*xXv zYX*vgdoc@JRPINQB7(?ug(YD3HMHqf*yygW%Ze|r+{TdHt}7P*;_UYU|!3tTvF@#u(p$X$i< zVaL6W^ZxzB(`E8iKBXtJRK!{!ALP^n4w}^ircZQ+MWT?=p~Ai!q+p{*PaJ7ut|FnJ z@2tS#%Ut>|817NWq7D0!WG9^j`VUxrdOR_HRA0>t)z>cK?#*mjderdfaa2eh8db5#;^N*y+jfnN zZcf9D`EcG!TUIsvM`T|VW=hn*fis=;FLqX~UoW!V+zlkMe*OBR?aUYTZ~%*5_8YS( z0_)eS`sm)yMEO5aqV0}kk=nC|&oj?o1fS2wTD@8-sBz{ZI(ww1<4!L{zqOlCohAZx zGAxauSNbf{6z{2fjiX;1WwbdPiF-e@L%^{B*yGW~aw}6~{$kLY za_U6~SH|hB{)@@XC_Cf@~;bzjbMR9J{n?Rh5&A=^l{JM$EI0yB{|w?JFLx5igD`(=TGx zmU@mqU@+(DkqEX!JVxv?9;C%LWLj85+n#SDNdQ2i&IM4rUuVihL$nh}95c_?khU0O z;VQe}-4f#Yi1*xD*1m~_{;4PNvVoB^i~$*dOW5jJ&U@xt-qyRSShD+|=(vmviS(Z` zk?g5ZpI7IqQ=I&&-&OZWLpW(!Maq?NU4u}1zwvcG1VS#_ZqL3k$UDVh>$*!-1astJ zYTAbmmzB#PFpr-wuRjkSgS*&eCg!u89+vQd$V%CAX8rbt4!%_=vf^1tbUE|oG8sdz zS~=pmwM0lhSunSRJZ_sOyojQb7yc zR4OYl>Xk_iKu6#w%5eTTxy+WC#H z33_vjf~QB!gEVTGU$FM7O#z~PnX^plR-wj~(WuFvIr(!y^ToP@y9@m0mr9*BFMoRG z?df^H5~j@8rf@T2X)AY)3I=h0(8- zdhGC{O3a^>3Q-Nxm6dCahPN|GQrdkbm3r?N&tT%WxnP3jZIBo+k;K;yFrhEkcwL}K zwB6Tgg4%LHsX44A7^lD;{Trz-y^F zoc8r^63m|nW@f#kwR#*~HgvZb?A>JSe`D;udO&s3qc?Zdx2|3)Py}_?=l+W^#_!kE zdA;88(~G6|bDIQLEx-(`0x563d?MSaM#+ z;vOXI>E6ZkCiX~9u8N46X}&g&)jpZJdV8drz+0g>-6+Tl@T{J4BRv?;SSq%831c$Y zNn+~i^__MIPAv);MqzU6>rL%tK`Y*9bRCzmWA3^dbkXV9%iFOG1ZS{zrSs0a)#%b1^KOPM=NiZpkxwL!{ z_vnZ`Jy1;nZB**BDlE~t!)2drHz5e!w z_v#XTh-B9%Y}*T#lO{3!r%7|Ot1t<$gO@^8K-4T!HYut|=xLt(=}q$nk3{yXdM+s= zksY)?<~B$5*AmBUnE2|GVj^{Bh+*oJJ<*rB7Ox|7^sT+B6z!=BsZqDJM&}S~uRa$Z zzq*LeLW<;)pM~r$oz{@D4*}e}$F^Cvi=yikJ+-OZl8So9WLksQYH4{E-165zEzGOI z8)QnN-OI=rDvY5|XQaO187EaF9>?FM$e1o*Op$%g0A*fuHl`nu#;>69?mB#W{FIW& z(OvZF2V`Vh7+LI&V}KH%a?9#5+>01j*92|=n`+`^+kB<48SEAYu&Hob{ek-$8>i_7 ztZ8w-lB!FNx=~%#smp0Lti?aW8as?R&Qt|AW_ydd`BF_yk5~Y_^CKJ$=+K8Xymj6Z z?qvAZahN9^zD$J2yiA<9VEARQz6#b6-Yod8IHRM2niCi-IbKk2Q5HebLFwbHtV0?= z2waH*^QC*i8?V{!%O0=Il}of@wMk#kEa*IWE!Su{;q&fkmO4)Hj1Do`+ZB7oB(k2# zf>j7T>JU-wy^IcW|C6>+iUz@qK;lLwUcjgt3zodj7)!J&oAzE+gB#xeq%DBQDwYEv8jKy3td&XE+klS}n=tDScpwG#dOe5O}PK$cQ3g3V!X~85l7yJZL z)zQ&WXd8X|=XAKk8s3Hz z-8Q=Suq{4PG?1aK-j6PMTO-)+S^hC?+t=)k%1tC%03afk0Gxbu?^A z&o<2(3(0YkJ?`Px(I%!^9rxrDF#I`anHoyjLmdV=W%W8-YNDUowVYo+<5LuxXUBpe zqrwI)7g$`BoYJ54aXXv&Lh>ympfMT6Om=$$RnFY>MVx`;MqS&j! zK>`-C1V;WZnxzJOZ&MhR>iPs+B1f^6^sGc8S#KACxi`4ZL!3@ z4Qz@hWSYciN&q}Ur=i6o;)S*jD;x*h+l_ZrSS;san>UOLykgX4pGxd*w@g{8x8%2i zSoP=4!#-XCYtOR+>NYhZ0v!-(VsDS=5e3ZhLsjw^fbnh1i1rPC*w%W?(($1~+XWu8 zg2S$g)%zlvcBIRw59$@9ZJy@5Jk+n%d;1L zzB)s5w<<0bs0!5hFMV5r~E*EF7ZgId(>ZXa;uumgbM6`F%8g`}qI~ z3v~3OKA zHynr&`Km2XPu9v0A+oJ zFIx&Qh)EgCY_&S4s_J$x90ySpmB-%yNc-`jRhKdG1;jov6AJjOUlVRO`8igOB1~e7 zzO^vobyHqPBhr7-%06$d?d~Dl@+I|AUydtubaK0%@4KN^k5QNrwN1`Qq3)<}Q&y^_ zhTMKlcgc9IjxiHXAnNb`sT4o@Z2O&6r>|JER&3e!y`w*?h{H2yJ2^z5?$#B-#a3(t z&mjslQ8-y=f+LS!G9w~QheZUJdmAj=530_fVK1fh%ZOY#WUUFSCUjyLyG)&SRbks+ zu$-Rvapb3hVHb@s3BdMAg7`&Ry9dO$6jjzNEy}8UfX|VM8aQ&g{Eld+Z61l{9glMQ z(acj%w%db%ZHFj;h!NxzHotQlqZRJqm^ z?E&j!Q=>N@8W;Ke^wm8Bwas&pj@pR%S~(Ka-i{GJXB&lSVA8mFTBOF^+A?4FTN8XL zTsAma%?BP5>`Rpo0OL$=d=mr3D8i`zfnGJ)oSQZT%{dC21mnJx-BaA=f5~7dOp|T3 zz#<9U4UE-mx2@;kx_+=&MAO`(t@N5^Go+Uw#tGsWw9mp{D8HZ{zp*`cFqE6@CQ!7p z-A$msm33X>8@TN}YcO1<(KK+_!l_16w{SAOs>Bn!NwhX%$0@P8EfmEc#nWu6ka5=; zch6RDP~N&)u(^wBn`GS6lDB@LPh)o4VCk=0F|XQl#Nunk+^q!Azp1iTCMD>ZOez!v^$j7&CpVhL9_(lxoEUfa~*(vP6_e0eweOpUbV`#HRy+u-10 z0u4gUnhgkUBPWO)L2&l3L4c}tvrsqFQ7d!o$&{Bl?mJip`sKmPyy6}biM%K~28Z?Q z$pXjPgFHlHy6+;C*{6uznWK%7R~Mm!l$RRTF~@>ySFP9MxjdfcJ;!v(cKv>IE=n+G zMl#%5V`s$Y{}n;xc7HEO&KCrkWuL?C1FhpSW)$gLWs$aha(!OK%_HK2R%&RXc#lep z_=b1*Q$7%%v|{h*CC4bIQ+7kpH*zn9kdjWF4TFmMDPGbr_0+SrrDlpLHKMim+4YSU zw}r7m#gIp2*)D610ypxQzhU)cYarUs>cV;E?iHN6RkzOb*k|V^70*EkVrZGeVJb)) zPtD?`V>Y)pu%itI2E?++#v-pC#%vc@uD(`dK@bniO7RgS6Qq66A{&c&3M?=HEK3JS zm&G;~(WMYb`;7|70eJ2K5#w9+yp2azipWQRfL8&*>f9o8W)x3kMQfUp2Iobv&bl9B zYa;ft2d>)hs+E=xHab>pnCAE1f|WxQHunz3)uaAcjdYI~e01!J<9?j>BdZDa7*%T0 zhup)usR9!6r)bh&F;0wQ2L;-syEnm;1zK9ZmzMh#{8(|JzC>%8hT^9zqx-HiM_vhethdmtA+cR5Q0 zphEwh!{4X@2S!_w@1jTeA+R9m)4l96@r}yAXiUW9{(!hubTW!od)Gp>RxKAcIORs? zqR!#&q4#2$mtykH%R26S{#u}a9m`)7;@K#FQHWp9=dT@KhHq=V0Ds}tC0ZdKFV(-? z&S~QDa-(>QRGeZI*Gk0-qfi!CQt{YJ5ydL}g(y~Qg^1!T{mXrwG_ckvRQR*0SiJ@Y z&cROYh$vpJf4NH~#*2*NWU08=D3pO$QE~O@ zuy`r{g2l_ULRfsA{^kBaLVCSXsPI=%aUV1P4fqQN-lP@6z}5Pfd%Z+(jZxev6>l+$ zo2BAyMxiXeor-^u^*itvqIjoPh$wE-zueQMft!s&g?}#EHO;h#vwMXO<8NBji?PtpouU|0RieO#u}9HUU-_Y{hkz`$Pk3kLSl3SnSh z{mWf15$taiD*S;|EIA(r4#HnBaIjVg13CT6ZA$~sG71&`*;IV;3>Y{Rf5E^JS|JP^ zrGL4_@q=UH;TKZ;uND$7Eh((U99$};V(pSx>krNR_kAGSsFOYC{*}$RIGk6 z47?bB!N5zjLKrwt|8h@|2F^E%=SfB0C{C1$f>9`oV^qvpizpoYg(xPqLPX)}U+y!c zfwEDk@HHyVF2KMP{(^yqRtN(v{mcD~G_c7iRQRn_ELsNxFUMan@CvOE1}@RR+@qv{ zR~f}Tsd%+fER>4Nj6zwwoQhwcg(zN+zYxV0S|OsiQvY(FEDgNLC{*|k6^}5LuEAe0 z@K&u52Cmh=+{2`Sw;P2De*+aevR!&7{(^ybX@xNGZvD%hk_O&u6b-3(zfnv}#RrT+ zS-h2sC1)av592RHal2NCC_buxxqp{6;!dOZmsEVhD3pOuQSlgCy1VfgEZ(aX!s31U zm-|5p>9a=hVX1h~C~lXE&l!cX_ysC1;<)Nz{DmmKtQ8`PNAxfE)zZLMjY5V01{I5# zwco^FFz_9%5C*=df4MtL1K&4_U8UkNqu5<4erOcR;!mhJn?2)C@fV`_nO2A>exZN4 z56E=KMDMS=c)W6){N{l-hg$ln56_2q?*cE@l!0uWh4D6|YxnmN+lZ`@!e+m@` zvvc1Uf5E^3S|JP^sDHWdkqDk<6z`XcgN@>YQjs$XWpOSQkFbOvg1->OVOk-gI70t& zcaRv5G71%b9u@Cmw>2Ms!N4M|5C)FXzuY%U1IHPK3V#9>f8c0!6o0|M^R+@4I8py{ zemEM6lT?RQQ)uQLezih4>2wF4hWR;FbE9`zrbP zHAZonR9tQpua}A|jN%Pa@g}3VN-C}~iZ@He+l=B`sd$G`TrU+j8pTag@ouAdk5s(h zC~lF84;jU+QgNG6+%6R#Gm1N<;*&;kmsEV(DDIJp`;0;**8@hO66kYAp%Ul|Mxheu zOGcp*=n9`o&oc^T<3yuSHcm1MWn(!Ntrk$7 zjK6?tg;oeur|DnrO8NKT zg~CxW3Wa0JC=`x{Q79bKMxk(QF$#s_LZeVPE~etbO-P+f@E20&QmqiF^BVn2KYkq* z8=DA!xeVXd3K9Md`j>m9e0-HrTrCxEHj1}M#kEFpom5;Z_`Ov8!6^PH6@M{`ze>eFjN+eCvHfQ?%qQS4 zz}(R&c9M!+jAB=**xe}hkcuZ8#okh}uTd!O2N;E7dyr8mwg(%9V*5;^P;3t|3dQy? zqfl&*Gz!Ib#3&To1xBIRE;b6q_Bf+ZY)>!>#rAndq1c{C#nF?<=@;TJB;iu65IMbE z|8h^3k5?GQsZz1ZC{CA(GmS!7Tx%4{#@R-pY@BNp%EtLr?7({SGW-Qp1+5UMiu#v3 zCLd22#iUehG>WoR)Qmz|tQ&>0(J~5UW3y2x8!x9~!8lM|h`)g9VyzIUUa5b%uab{n zV-%N3#pOovda1a=DBd6yZ!(Ijq~aQ*c(YWz%_y#wigy^r^-^)8QQRaI?>36}NX7e& z;ufj+kWt(!6}K71?NaeEqfp#GVHAq(r;I|ey~ijN+xv_{v3rCMk^4Wx{hu3z z`!m{Rm$P`t-%;-W0{3S(2>0i(%`WHiu(*@lpBwk*GYIz=u+0_3}s1`?&0Bx|C3!$+~3C_+~3bO_aiP3B>V&zLKq4dP8b0g zO&A0Cg)km4kuV7`l`su3lW+}xMW0R3bI&8_Nq-~gNf#6Jq`wpNq$>z|($xe#={ka* zbOS+8x;a2!d7)cmk`G|JL3p7%ZF9SDc`sof;2_};;0WO;-~{0$;0)m`;5^|1;4S z?gK7I+GF>BB$M19l@JXOlMoB=G2sZlJMjqGnSh`zi3r+~grF_S3EGm%Lp}dPGqp@| zu+I#_gQU03E@$-cKmV_kGU5I&48r}{Y;)Oh`71(BKpuhymQu}t#jzBLHPY;K!t zfy=E3tpVQ?+5$QdIs!Tqw4xh9Lwgc5v=2c;fAp}y|Hn@KWs+n5WDt%y*fuu=mwzS< z2aF<&28<*80+>LU2$({c3YbBd37A8e3s^w-4X~K71h9;-9I%S88nBMA967(g%A?Qo~kDxC(!e0A==}Z2Ipf5QpL0@tVg1+R~1bxYI z3Hp*h@$lBk*EoSp@-{Y7&>jR0?M=|oejcv) z-@bm7Nsc+tARKd$ZEi3w4 zKEOf3A;1yBQNRhpNx&JxS-^S11;Ay(6~J}E4Zv-}-++6B`+!FTeX=J6eU^U-`YbOA z`Ydk<`Yitu^jRY8v-hXZ@)1FwB`QImB?dvCB{o5yC9a2>9ppoaCzE_A2@JxAlF&An z2$z!(k^)i?QUcNt(gM;GJ_lqXWCmm<=pnu&Xl+h{*5)B-ZGM8*79wbEQ4jTJ%A>}v z6dtvNL3q@!ZF6yPxisMuKv_aUz&C`%fC_|UfJ%gvfGUJEfNF$vfEt7hfLesifI5V% zfO>>40SyQ_0gVWG08I$_0pAh|0h$wv0=^@Z0JI{M0ysih!1sjmfOdpRfDVMJfFB6@ zDRuGi>PPw5isA2I-3`LW*3&ju5|?`uN(1^5$^m{PQ~(ShR0jM+s0J8Js0kQKr~~+! zP#-XY&S$1&=N47-~bZ{Z2^-A9RO1Z`nslj$gx!3-!Z)5Sq9<#&9Tj$ z#N~N}Gk^tzzW@sf7Xgb2R{%>1*8$52w*V^$cL1vh_W^4Nj{xfkPXK=q{sn9#yaa3} z=(BJ0&|s{*jGPt2&w!l<;brW$&E>)6y@dRL{e(h*gM^}hKM5rOM+l_=#|UKsCkW*M zrwEk*X9!gR=Lj_b=Lxj|7YX$MmkA94R|!o3*9rP|Zh6T6v%Ie3_;%ef2(Rm&ZSE8< zKOme1JR+P2{6n||cuKem_?K`4@Pcp~@QQF3@P_aJ@Q&~p@SgA#5MjSP*>gZ7!Ye>z z!dpO8!h1k;LPWg3n1slH*o0_+j|uuh<9k>)N#5`$GRg112@S#<{?s-%4*^LCzX6gF z76Vcceg~u?tN^4TtOk5WSO-W?*Z{~t*bK--*apZ#*a^r=*aOH;*bm4-I0VQ^I0DE` zI1b25I0eX0I14C9I1eaHxCAIlxC$svxB)0hxD6;pxCwF!{{bqV@?YT#k?LivIp>|5L1WCS!POapvJ zm;()U902@8_!BUgpf7ZohbN=u4gV~Yyy1}s;SG{|oM)U=Z$~WSi@U z!YPCSfN6w5fEk3LfLR2snCl_xPtw^LKf4wfgwBPwxo)_;n9vijl+XvTjPN611z{jy z6=5)74Ph8y9bp9E55j1`M#4D2X2P$4t%ON{?S!d-orD>H-GteIy@Yvy{e<5D2MPNA z4tsbqQC{eH{L(yT5MJmB+uTH4K1G-UI765YI7iUL3m*PhCKVTDlJC_OgHUnJHoJV& z!|aiA|1I2q#~|E)&o;aK&_l9ea{nXT|HL5N|I9YG3-91LVK3k%;Q-(@K@;D3_;j^Y z{3nwgwoNh;zRgo^mKxdC|12?&D# z2?;|1pAs}NsfSNTNkuZ5q#~t3s7P&_i;aM^gt&logiipU6ErcChm*faMP`|#BCA2D z$Zne(fnVS`2%`Zx3F82{37VMC!>{wCBEL*hQOF=v6tT@UK|nD=Ge8N#cYv=6npnoe zN&lkC$|M!#4MIgl+gu{NhRTE_fU1P#fa(NItmUEcP^qXblT_3*2o()%lm895aJdm- zGoT4!8{k`lCbsZUc)V16CzDjPHV74MY;(4-iWc2~FWs-n-1|eX9ZEget783OS zB_7tUl7OW$Nx*W05U|oV_XU1*tS0FF>pWDQF9GXil7Ni{Az-s@&fy(wCFuP-JQN=y z0Xt=qfIS8wV4rPn2|mUH1ik-H52O7b9S+MR0mlqNzzN%2YP^F}1ik;PhukYA;G9en zaKRu1T(Zq2#XGn{NCCJ;NDa6_(8Svw*8VCLf6F8l_Y6YC1KV78obeH%7vLX4U%*p> zCO-G@#6QIgnWW;iL8y3Zn@fi?{zuUJBOH`~x&DKQD3b(4HV6SxZF9@mV& z1;i$3Vq6bz#z;jxnWQ3tL8wS*o6C-e{FI>gC-v~!|5!;TlLVwR2mz^WbL|k2me3K9 zj?fwKIYARMd6+j>Dl*F?6hn)U5jl42RVgZAYSjaZl z00Bh^dVg^bdHuh=Dd3IZw;G_i_@BL0)9Dw9;yFbEa3 zY;)=H+UgK80_qX602&aG*d?QD>}j?CS5;U=ohltCiqOVL+(cd6c47AO?!x;w= zJ^+RgBB5d!K@&%K*y1Zj$|MzI3_`^?+gwxxj3>kZOd!MtOd@FFR1ekt5B_N~NySWq zP%+y!mk|MT33~qm4~3sdz=J9wV39!xSYn%djLW|ho&uH=oAUIA7U-U8MV-UHSX zB32ED*g%L3*hGj1*g}X2*hYv0*g=Q~*hNSH*h5GJ*hfeLI6z1aI7CPVI7~+a6M0m&A(r z4DK3)#QV0nD!BZRP#y4?Pz&&cP#5rw&;an9&=~NN@Gamqp#|VAp%vgiLL0ybLOVdj zL-u4H0Ur@M1ELVR0iqFl0%8#Q0Adk-1jHc>1jHo_2E-=}10*1f03;-g27F4;4<)IG zmRIFdN+y&1@=j?GKBd&Q+2zkXq`xcouSVkM2I2mUwz+ki0hi`NVgYaZu+vY0Za%nfI0*Rs7GiEXh7%yXhi4)XhP@;_?FNE z(45d4@Et+lUuzG`{8uX%UitS1;f1!d&E>`A4uk@L9|(m3oe9MNT?r)t-3g@uJqhIi zy$O1%ejffgEXUl02N_@xj`@>qZYwSiChPzVC1}8K50f8A;yHAVG6;!dY;zZIc^pCS z|J6ggEfVk}Dkd3(fGM`Qfw(-4Fc>g{Fbpt@Faj`#Fd8tAFb=SQ@GD>;VG>|5VJcuL zVFq9sK_6tLha9)%$$r7JuQ3Quw$3&;0hj+EOa^QuOap8t%mi#D%mHjC%m?fwEClQ( zECK8#ECcK(=(!Jhh;&>Yy$#18|XW z8*rI$7jTvE0C1h~7;uyD6mXmH9B_y53UH6`7Vv=Z9`J||5%2FGLS(>GLNvg?gqVOA zggAg#gm{2Agam+hghYV%gd~6nf7-{E91w}1pJNmc{f@{7y9dt_-5`9hF>Q1EaXB{O z5a45i2E_Mp?usOSj?VuXgv3O)xlFj6nD7N4DM15LczC&25`RNyYJ-rN);6~om(vk` z2YgOg0mw*L4aiK;imVbpMm>l8-)Ak+UDlr@^6HNfF*>bfaQc0fYpRGfb|6J z+(^)tEd*`ZPSBQJ1Z~+%(3S%plKCe)D3iR2!v^8Wj@o9IPk89`kKBI}_n$Ec_n))P zE?@AlWv$$Q5%*s)2=`yJ&0WXkTZG$yyM%jyhlEFfCxoYf=Y$u4*Mv8K{|N5^5f9rj zBgrJMAqpWXAO;~OAPzyFEFM9hB>_R7B@scNB?&>FB{@N#B^5!RB`rapB|Sl(B_lzf zB@02HB^yDXC5MNy7vxj=N+x;y+y>!O%4?g;hsy;Cg#bkf#Q-GHz8!8UPv-ngE&+ngd!AS^?S+z6Z1?bO3ZBbOv-IbO-bz^ak`J=nEY{ z&{sH!ps#Q!L0{o;g1*901bu~L3Hl1h6Z92MB?o6*yR$(!cURk7H(c&X=mqFY(188~{YQQx=sz;V!^HK{IaDU; z9BvRgN808_;qq9*IKZ!j34qCjDS+vO8GzY@Ie__u1%O3_#em-l%K$40s{m^W>i`=F z8v$DgTLC)=I{|wL`ZD$t^zjc7^zn}n^zn}q^zly-^zqLU^zqLV^zknd^zp9}^zm;H z^zm;K^zrW!^zk1M^zk1P^zom1$m9R2_)I4GF1#=Z--TDUx!1V-j_@BK!chx|D3b(4 zCPV>5Cul`1f`)!f(9rk<4gDWMLqGNK%Ky4aER)nGGYIESVVg^d%V`K{0qF^!12PdZ z1F{mb0df$&0^}y-0puqX02C$^0Td^c0F)w>29zUw1E@%-1gJ`=2B=A>1*l7?2WUuW z1ZYb57SMvAFSHdwUtt@9zQT3{eT5wf`U*P}^c8j^=qv0=&{x=pps(;pg1*9m1bu~r z3Hl0$5%d*~Am}R`P0&|3j-apbSAxF6Nd$d`QwjPCXLv}vQ@)ckWs>jY9E0$koM)Sx zkIM@QivUXrzXMhfRsz-#)&l+@YyfN~YyoU1>;UX0>;dd2902@DI1D&OI1V^P&__K> z(1$xu(1*K3(1*K9(1*K0(1*KC(1*KA(1&|K(1&|W(1&|U(1&|Y(1&|P(1&~L;k5r( zS?^?$&+&sn_#7i1v&)fWlFLyDQ2{XsF#&N1ni!9u83_oQk%*ufNdi2QQzey2YEu}5 zQ>C)arN-sY2;&u~>;)Vk=(+zS=s$9lpeH>+(374f=t<8J^rROEdeX}TJ?S-q9_*%v z4r}Cv-jYdP=pBRbLhsq;?&I>N%$I2hM=eVhM?!DNYHasA?P`(6Z9Ol2zrjX z1U*Lsf}W$XhqZsn+i4<`yq#tS;qA1r&3%WHnV?6XM$n_rBo^ zf*yUDhmSAIXRur*`3zPWgwJ4&ZEh_t|3TOQ*i6_0*iP61*iG02*iSeB_>*uLaEx#q zaEfpmaE|a7;37dEqEzXUz{OM)K#4MC6o zpNEqXBZQ-X6NHn1Gla8%^Mnh4%Y-X{>jXX3ErOoo4nfax zpP=V>M9_0QA?P{&CFnU`67(EzJPdv=Z|AK{@^;=Egtrsnq+QNgHC&EF$ODK>$Pb80 z(8L%X?nj9z|MyR1l8QJ6p(3trE@HKCIX)pWAORs7AR$2$6MHxuSt^pqBo)aGLPbj3 z+%udpHQ@yyE#WmF9YGT_c!=*SGRhZN1Y{>X0OTM%2IM4YVjd3>V@gF{ znWUnCL8vHXo6C*YP=t^VP>fIzP=cU|r96D}Mn3M+GD$@_gHTc4HrEDctVn1Fs7&Yx zs7lbp8Xoe#lZu)$NktulP*Kk|Hw*y{2qOTE2%`Z_2%6Z;Lz`&wqMFMj6)g=yMQht! z0=$McghYV0gd~9W1Wo+GL*5Va6rE&}imnEsqPuPGcbu^&VFjQ!VKtyHK@S4Vvs?o7-E~df`DO!>ww{eTY!-SO&sH)%xigyu`)@;c!N+e!8X?v0h0*L0aFMq z0n-SYIMc&3|DtBeBo%WFLdAUB+aUc(ZZBw(3A2v}j8D~XS46+!P` z>tX$Wa)Na-Nx%k!5U|NMHx(z?LeTrSdpP}G0(QtG0lN)Cz+T(jA_VLw=>3NRM3hJP zQzi*GY7hdB+vW}<;3PrsKjWdy3pv4AnIz!6K?t~Ln=6cf%LKjunukvQ1lMJffLjJ3 z;BVX90R-G7==~2o#PGkQ9?B#E{}_aTr?$Dc_!Ryn=>0D}4D&zbU&$l^Zw*4gf3~^* zaDop6y+6_^3CIv#0zQ&S0-_p(fatcl6gWXlg5Dp;!*5X~;A5F2AihBeNMM_bg@A+v zy+5&sE&k_k5}70*xj_g>X`3sGfYb!N|1%FY{Wme4OcId6AOvKx%}vBR$U@Njvw6rH zNluVmCJFe;AOz&H%^gQT9)jMV-@`Ni!?%D;5>VJ61QfN+{epnv1ik-j4>$a;#!@m# zKv{zj@QrP*Jl;VCg5F=*!y^Axt|F5JR5u6#HEomsdwSt=ZGzrk&%?f#5>Q_z320;x z0-D(7DkI=qg5KZ4!-bFK5x$d20$Lk{fHt5GsM2sT=y=9Vseg+|+ziqBAPB4(5_Yd}v>6N^LAu>t8&jul2gl(=mPB4m~ z_mA~3%>QBDvCEpf*61P9naXbadx(8R4CdcBpW*d~)y z>@)}!yKQs*aK^oa0f7C4L4bnaw$&P~2?5CoTLCEvI{>K(n)sQASpElK zI+>&*gF&dsWSc96fGmWvfUJb_fb0ZK{K`YA*zy!PWs-_K2B9LKZLTst%mRdJfI@_t zfFcA%Ms22$`dXCDiSoYiiZy0NJUkdq@spFsHkO| zOH(Ucu0u!%s7J^EXh6`!#vZm*k%}fVNkub*P|?CR*AD?L2?GGF34;J_2%6Z=!}+hJ zqPSP3kupie7=utT&NkNz-qW>(W$s`ps4MN3i z+gul%aW0`dU_PN2;5ULMF7^;BfmAG!Nh+2Zgo+imxz#x1D#ALz8o~y^I)Wx{@Q~7f z+#6+*iY*4AVw-JlSIuyF2VpN@7vTV44?z?6duWnFDh|jb6@MCpiX*nUsWtp%`R__N zMw$`GogmBxoFZuESr0`%my&ZbNy!C+P;$vO_po}ne1-52;2Pl>;08exZ+j?QSStRO zNhVQ-PO-$=yLRqQ!OeU%L+#pnBw9Q4W6)tBc!~lFjhz-a_(8L@b z7T1xAuVj*n+yg!wvtlwu($rQQaU^)U?f&sueERCX@x#C6ou$Cum|L57o*^MPr$y z;#-4I(cCr{uU5GH9U%dr6(JG85j3%_hsY_UqMb}q(a|7Obh6FW#8x&E18|D48*qlO4{(lf5OAJw7;uqr z3~-rn5^$Ap25_CA--TNqD#ep8#~}Q1;*LT1a@@1c4aMaLgyDckgi(Nh2x9?H3F86( z5+(v(5T*cL5vBv)5M}}15#|Ek6BYm>oV6!g1c*df3W!Wt4v0$7ml4B5VgF~&m@>)F zm^cRE?ZmasE`Q=7UJbc_b**rJLW6Msr?$CuxSWKr0g#Na8IXdo4Umek6Oe|m2k;qT zKOjBf5Fi8L2p|*TI3Nq*6d)_%EFe4KJRk?*5+EnxDj+xE1|TotHXuLYE}$Uc0iZD9 zF`y{nDWEvvIiMur6`&O1EuakHJ)j&xKgS9lGNzXg_B?(eRW=A8Y*pLbC0wpfxC*FA zxB;k5xDBXFxC^LH(9T94?w687oWpMoO%1{!n%U+q;BpJXWk5^9H9%{^O+XvM-+;D+ zdw}+Yhk%ZRe*m2b&j4KrF96*LuK_&>?*P3B9{_y_k?;}qBk0Q*;Ngw`>%vRCzd;7! z?F_Nay}{*Sg#Q4;2@&u&l92>W9OEH(HL3Uohxo-HRQzh2n}Ev`36lYn2^uiX!*~8q zL3MG6nFb+owr#EfF3%-22FxdX3;2!D0gIv&(rrOz^+W>2fChx^fJTH}fF=UJMwEXy@Bbg3c`vSf z%UcfsniKv6d`CD6Xhk>yaD>xu4eFo5tH@Dt%3U@+kWU??FHzWF~Bq5wt^q60<|VgbewJ_d{<#0QKg z=(lwuLBEbuJk+lw-{-pceP+5r_&(3H%{9Q~*@VV`xrA>4^9d~gzY$si77^M2mJr$j zekXJUEGOtOS9$o@|A!SxamQMNaPIZCxfHm(fuQ$q_E0#n1jN8^``Zjczz*A7Y+T+& zhzr<5_yn+zkPvWykQi`?kPL8`kP>i|kOpv^kPdK?kO6R-kQs26kQMM3;Y+{;LQcRX zLLR^sLVmzCLLtBnLQ%jiLJ7d%gi?UJgtCD9gz|uggi3(NgsOli1pV0l^{_63e2$Uv zE9<2}_#9u`=Az;9TS830e}p)I4}^Gth<{l{0>DRvM1UxSB!Fmy9Dq*=xd2HBc>&1?1pp}sg#oDu#Q|riN(0gp$^kME zDgZJODg&|*ssXYRY67wo>Hu;O>H~5T8Ub<>nga3?ngj9^S^^3Z9H20vEubi&1E4se z6QCraE1(pi2cQh0H=rD$AD}#80H7ja5TG()D4;4~IG{RV6rd(yETA@FJfJRNBA`A& ze|QC39kV&3GV>22_FD+ z36b#Adp;ow;5UMPY>Pd7QC>dBEc!nx6Nh4<&}gSfYpRtfVG6Yfb|5e*y!O| zH|g9Yll-B5t3l}8Zkzk9PPn|2uo$qL@H=2HK@$&n*wIcZ4$34IhYdo-QQKS=1RN)1 z1Dqt}0GuXh;yDj9zmZCyW3@IBx-?0g(ur z7{$Zr7E%#aCaH*F5GrEX=9c3%#3AVY@jUctF9Gpol7Rmign&f0x!gEGVuIeE%)_20 z5|CUb2}orS0@B##+T#SD5q|_|i6a0RdkTE(3BA zt^x88G%>%2k>5*20hy$tutBIOYMYCL*HD}g4^Wbj08omciDf-BY#qluP=la}wLP@yAr*CGl8X8Up`xK}ZWGSfn6MSll&}NPjG&3%c}VX+ ziD0nWSQzA3in%gL#R7v+vCuYG6# zgzSLZ1Wml_;rH*P;+{-W@z5YtJhshkLBJEjcEB^jF2HkwCcg4eznN6LmPsn!8H9@W zwz;tgh;YH~9}kE`m=rTz~EQ3%H$2RvV-gI0-Qb2q{3P1vaCMNQ5 z)c?l)sZ3Il)F4zOx6L(0KuSV$Kx#ruKw5$(ruT5g|EBo4Oj41_AXH?r&E-cxRze{_ zc0y4=4uU4;@-V!UROFUPD)JeGiUPK|HV7z0Xa^`l=m;oA(8Q7+p7=i-d@Ykylrabu z+NVA(K?hHV74SZF5r*FrP33@Ec(^U=cwRmwM>m zR4RU#Nh($tgo;(RxgH2uL+A}yN9YImgP@6Ip4$;W;1;K@-z?Xx&mO(#s?j84W^3 zX4~981bjg_2*^e_4EU0ui8(!#=`0nwWRi-!2B9LqZLSMmLqS4!Kw&~JKv9Awmhe!q zu~d|lNh(Skgo?7Zx%xQcH-tuj3WTPBN(4=;>LG^z`)Dq3VxP(Nrd>Xl@WHzO&6Gs2eV~A|wJhLK49D1Wj!3p?!a;=pd6+bTSAP zU2Jn{5YUZ~4$y<30lht39W04`WRk=m4MO4o+uXMZ_=%wR5Ao1slmrZwNdkr&gn*H@ zxy=X|P1pt)OV|ncg`kNOJfs^Y6%%EWiYW%6Vw!EPHv(o5`T=GU1_0&|G;zL%s6(Y< zflN}d$RJcKvCXwZ!0!aTe}#wkeI;O}OcJohAOx(l&Haa81Ah=AAaNt%Bfw^YCT{aE zc$`#hmq{vi8H9>Gwz&rg*hkR&4|-@aKmrcQBmqYZLclTG+!qKqLD2h8d&tsH0?x=J z0e=~UfD5*{Xb8AO(EG1?h~vM%*JP4_n+74^wrws20`3s>{`(%Tj*x%{GD*N=gAnk< zHn$i7&j`N*o)cC8UJ^9%jfb7RrQ)qjQt{p(R7ALBm+#<{j6}E(h)j3{h)U4J7#>Ot zk&2iyNktrkP!ZQQ7Y~;c5Wd5q6B0BaF+u;4WFD@LmWt#uNkuAyP?5$qmll`P6ON!F z13?2a6Z9X+>S5Z?Qjtw2smNgvDstN9#vm~_LGRD!p}v39`DK!TLIxqAh;8mB-eWO> z-e1zg&Os9JwM-IF#vlZgv(44O3Ca`n{z@JS{3HRDWs-nu1|gt^ZSHFX)FSBpbv=yq zzar|%BmoT#LO^5NToYVwMu>&P76c7wMbLkwjfZLejNi*773~c|MMvA*54hZgP!<*4 z2pZ6np#Ml84^8}g>?@O0^fw3<18s9vkT{5-_Yd_jZKMPYlSu+b7=(aPwz<)`JdUsi ziQ@?xFp;4D$P^EK{TF(wOj0q!AXLn<&CSN;d4z+gSU}K#MFjmvmU@^sMk;=nNh($t zgo;(Rxid&yL(u!zd+6Io0{)Om0yY_hfGxJUr}#o|BRmJ}AZWnu00Sj)k4%!d-ykF& zw9OU3k^UqU1{@(20~{l0;zcJ(Cg3e$ z4&Xn6CPujIEBuR!D3eq~HV73_ZF4sf5S^g+$MVq1{~;r`OcD^+AOys>&HaFY1cWYt zgoN&ZPYIfs)WbagJ4-T|q#~t3s7P&_a|lRF(EHPS*y;a_@VQJ9kjWqfWU0td z_&==ml1T#k8iar!ZF3nBFo2-<5Au-C|ABR|OcF56AOsAz&D}x3NP^x!#zP$chw8C1 zNx*o65HP_u_ZmMwClU1isUF_@-#e$tBmpxGLcna>Tm_t9E=uoe*E%KuCJ$iu{0QW04usfcC}Dq`5?<|7~$VId$6 zVF@5EK@&gmFl2#LB#=oe5*dVw#J0I72uMo!7m%Fr5|EOhiD^7k{zWR%$|M!(4MIf* z+uU<}B{LCT0kRO@0dW6e4J1Q4ja0 zNkuW4!hfkjNuy9w$~M;t5oHKn0p$oi0ObkDbd@~Zohv1kWs>KpW)LcB*yfHSpcdg2 zpbp_IpdLXJ8+tfARVo_EBo$2!LPay%TnhxWAhZIsB(wpvCTQaK9#YMeincOIMF)dW z@q=w{ECMG_jY5qvNHbw@gye&mdIvx6MUEz(7Jwz#u{#zz~8a{_Nqm z=~6LVCaD-@5Guyl=K3ID9N|a6c)~!y1cD|`_V7^tHwxSonWSR6L8zE%n@fm**@VP^ zxrAhZ`2?ZV)O?+U7Fg zAx{%B1I`k%0{$Xs;zbW_{TJ?%Oj2>xAXHqp&3%M3-X!S#e|u;)Ljvx|BmwsgLcl}Y z+zZMFl@x~xjytB>SK)`##Z9s&p7H}63iJ*y5Jf!!( zT||{hDq#of|1$^yiEMKh5RjOl_b2mEZkYrmmq`Lr z8H9i|wz=B)BtIk61EeQtKt>OT=15{DnI!QGgOHfbHn$5$`jW60@Da!v+6yy_QT;QP&_;)VIw|#TgqCW&j!!W&@fMG_kpdxc;+fA(K?JG6)sU zHn#x*-xD?i+7Y$^IuJCmlZTxChec*0X^<7+>eBw&C+ z2>8i1R|)}x33~r959j<>_-C0UV5C6^7;T$tgn+Sxrhs1v%>lm>G;xxLO$()BvP@Dj z%^+0Fu+7Cqz%0TifH{POfO!N>{LRB~|C`rBnWSQgL8$oMHWwcs#Bze(zskc9|A(E` zGD*NXgAnkCZSF7vHWKvyEgs_gKgw*CNdk5lgn(VPx%vp$LudrpM`#K-K+wcLJ!J8} zst(H}6~_!h#R=P7IlQG)1ik;Phi;1`;G9enaKRu1T(Zq2LBJJ4a=hbCf@cC z%m3E&w@gxT&mdGhu+4qIpPnBP^!_IvCQp`tr!q;vbAu4@(l%EHZ|ODR8^BvaMZkXq zO^k3&Di%$Uiik2vMP!3e5!E)A3IWjxX#p__=>f3`ni$tZN&i>Acrr;v0)tSI&^GrL z0iP1y1CkIT;!P(bXktna!~EX?QpqG0X$?X}I@?@(Bz{iN`!ji{IYk08%On9=4MIS6 z+gw!yBa%h4cQE=I@&C_%^z_?n=JWjw53 zAr)n1l8W*Mp`xN~t{dKCWkOFtRYD&?b%G|=@^EIqRMeJ9D(V@8iUzj1jW}Z?!WKXi z!gj#71Wjz=VaX1u_)aFNXl)QG+SummBA_jy0iZphF`y$s6FYnOY?oAYkx44L8-$9U zwz;+l=uPMV=u7AX_>rKA13lDVFBLz@Bo#vpLd7uK+)=#g;e-=_k%ZHL(F9E#=i&E_ zQt^vSQZd0GR7|qXy+yzj!h66pLPR{p41y-k_E71dRLqe{D&`x6ir;K=M-Z@xa2&9N za0>7{K@(SaIJ8MBR>~w5YYalgI@??f1pGmW4cJJC3)oE1#BCljtd)xGGD*cQgHW-@ zHn$S*WglS;-~eGg;1EF*k9g>`QYwzhBo!wNLd7ZDTz>?dA^Ze5M;HP)Pte3m9y0Hd zipw%d#WjOaal*POMAHDf6|tbNh-cE2o)7^Jh0q63ji8A&J$&k4R4tjLqOL)x zsBfG53$LLe;Ub_h;R>KBK@*#M$i7M{TF4|7tqekiv&{`h!1shvfOdqjfDQyr?Bt=_ zHmT?=lT>sw2o*hSa|Q7ldJ&2M`Vfi(`Vlm7fQOieq+*~Dvle3ij%gvhxkgKCj0|9 zOLzwOi=c@YJv`nn6_;d^imL{p;<|0FGR}CDPz`XKP!n*6po#ZA?Db#T2Qo>;V}nrf z#5Q*w0nZ4x0M7|`051ue_{Kv{{}gX!l8W~Rp(4T!yIcwZkqBi0kqPAiQ3;wD!^5}( zQV~-osfc3`D&pGab|WA@VILp?;UFL(K@$^un6p8S;P=ug~#XY?7zxkJtNh(Sigo-k@xd`}`S&r}#pgbWepdvvNt9U56MJlSwBo#Fb zLPagxTne1A4k0z59^o@U1A-L8usLn_Gc14kD}u z3?Zxo3?pdb2oE#YNySK+q+*Ogs2FFP+k-QXC+r7IARGcrB52}N4^wwb#Wb0uVx~c; zm~ETuk2B6C`~;X!(13*=UWEVbM{KG(qn_=i%`&3HVDU3Aktw0xsL;GU3vlANdo>h2myC( zbFaS*m+uqa0Ui=Q03H)G@u`QdpGn0tnWW-{L8y3Tn=6ZeHw3-^KM#*z$V0xDNdh9? zR0shd+2($194<#83v_oWk5tr`Nh%r{go-A%x&PtI z@-5+0KyyM;z;^^qZ0+ItWvOs7NkvM?wrhCqisM7lI~s_mCr+yy+e? zNkwmiP|?>m*S|@){3GEfzyQJ!z)u8C9O9wS19^&}GD*d7gHSQjHg^tZ98J*s$9Z_@ z&-jZ>5-`Ca1WdBcjlv105XJ(g5yk^%5GDd<5vBm<5T*m>5oQ4v5at3F5*7d!6BYrM z67)fqd-(p8yqZS%maQ@fPqxN3*A$o65t;-3AhZN*BsjokLR-LAf_CokFyxXPVy8^< zdiNNFL+rE7Jww0&!VAD5!fU``!aKlG!Uw={LL_|XCkc9pGaiyWl~bLSNlta%Ae`!= zZ7vsn@mwb41zaT*09+>&2HYeR1KcK*1l%E%2HYc*13Vy906Zd82K+;)26#%S3HX;# z2k?SWAMlFM2=Io`6!4DF9Ppmd5)k2*y-){;L}&|$Oy~fJO6UZLPUs4VN$3HHP3R5y zn4q6yd=E3O$Orq0O!C1dGzcH;r?$BS_+}&_BmyKOBmtx#BnPA-qynTNqy>CNNDoL) z$Oy3}YTS%7W?{pHlt!%P21pI$P_udlua;n&xXwz>Ye{1agkel`y#Oa%-j%mDmMm<<>~ zm2QW9bTQWHJ~q$R`$ zq$B(f@HydAKt@7RKxRS;z!!wnfNX@%0ACV52Yf}y1jt4B0+5H09gvUk6`%kiH=qz9 zAD{@KAfOnb2%rR^IN)o-*MQQ5GJvv#ZvfvADgr7HssJhxsspMJY5}Sd>H=yI8USh$ z8UyMOz6I1Hv;Z_9v;s6Dv;j0B=ugIG9?toHBh_3c`BB-@ApEFoZJS;G-b0C4a(`Rg z-@zc<|ATF=6E1fpbOZDx^aAuH^aBha3qx; zPdEvfKsW=KMEDCZg>Vrtjc^4pgK!-%i*O4thj0flk8mHbfba;gknjYsnD8%PDd8nx z8Q~3J1>rxyDnf*&;ft__@DX4gAu8YxLJYu0LTtchLR`RB!Y6?3goJ>dgv5Z|gk*rd zgp`2&gfxJIgmi#E2^j!K2$=!L2w4Fq2wwtD5pn{~5b^-d5%L4h6AA$?5{d#Y6G{NC z5=sHC6UqW^63PQ^6Dk4j5UK+15o!P)5NZP+5$XZ{Av6R$B{Tv2OK1joLHG{viqIPH zhVVV$9ictoJ>dsHgum_QO&35ULU%x9LN7p6LSI01LVrL^!cTzMgdu>B2|okk5k>+& zA&de1kMIj15n%!#F<~+wDPbBQIbkLsC1DOAHDNv=Eny)b9bpOJbHXw}M#4%!X2Kf4 z7lieIYy|zWpM#)3lXH3aHnsf5kXt7CjU=Bz_>G}}Z7vD^b$1~`azGJ6DnKzpT0jXx zdcfC&jDXUFEP%3vY=CbFIRF(1xd4?2c>z@j`efBTluj;>T0rr+5jdH+5sjJIs&E;Is>K=x&dYodIDw<`T*t-egw=T3Du+0@gz#&3$z+uAIfTILWJmDe2L-`j7CuNd~GX|mJ zoNev~{sq=~!fn7s!d<{+!UMon!ehX7!c)La!gIiF!YjZX!dt*S!h662LPY!}^ARC3 z;2%OXz*9m@z`ukzfER>#fL8>4U2i=^jwv6}JDKGDeJ}{`FXA1$yaIpt{D`m`5QVS~ z5RIUTF+J?gEETb2l8TQFLPb2=+$Ma+pAfbJ{zupWNJQ8TNKDuVNJ=;eNKQBmNJ%&b zNKH5iNJ}^aNJsb!@HyckAS2-lAT!}Q;0wYnKsLf1z?X#kfUgLT0J#WH0C@=dhVy$k z;Xl;^GRZ41Y!F^~QQO=Wd}hT7djHoR;-8dXR;6T;fU*W5;2YaqdHkEc3WQ34N`$I_ zDufz&<8M_fD$*#L;8EtI$9=q(s2f%bG&VC1Ac@}AZ!Lq zB5VUpA?yT9BkTdpAnXUsA{+wDAshkBBOC`TAe;g$BJ8g3pap>Iyy?>vFnkOV+ zzf2Nv$RGq9w#^m6=XsP+9B`cQHQ*#c6VG_)cSb7C$|M!%4MN35+gyJHTqgVkxJnoT zxK7Z-TOLLxl~;dTCaJh<5GwB5<~HFyJ|t`fJSOY_JRxY}zaCabk&5RsNyRIJQ1Qk# z*B(Fp-VuHPyeD)4M7aC^5P#a#2D*KyktV zKuLlomiADzuvCLqY~XV?t&?Q-UTo_prW*RJ4#uDq0zY3TK-;hBJOoI0@rEkR|cUXmu>Dm0`d?p0rC;90tyf`v9O0h zxuv3rOj1$YAXJpJ&DB6aDMD>P8A3fkIf5ou@UWf`Ac(>3~s$S%5JFP5i|}j1p2YUM8uSXb>tU+veWkHB2RZ08A%DLd8siCeHED z^h>FjE0a_#FbEY3ZF3(ZaWNr2U@75$fMoBS=puHicC^*-5^xlw9Q4vo4!qm2Dn3r3Ajhl#D^aC z_;1uBnWW;0L8y3Un~RDwJ}1Ngyd=a1ye4SkI}iO!O2vONNkxSF3ZWvBZ7v=HA`=n- zq7o7Tq7yVRmWR3({*Sf$4%6{k+Xk-7s6q5h5Jc~th!!n~XwgjuW6T;eW12onv|t3$ zB8UhgA_$^I5J9wP(W3VtqedtAuC>l}owD~n-tYL{_j~srv)A=o>p8D=ujhV>l0;f$ zkdd^=tl(N?(aMZMKsLe{Kz2eRASb~m=CSb9eih6sBWdxPf@_gqE7KDv{W>8WP>2u- zc!S^*i& zwlb0y9TZ%PPFk6g2H^uco|8+LLa%Sc+RQ*bTT zYh@;4j~fV+0hHJZPbC zZ)tHzM$+P_f@^V1EAvSYH+_OI6>y5+1I}7_sjnoSlaVA|RB(xZXk~68;0oam;7`JR zz%_zTylG*pZE;IR(&CPSYjIC2^B4gS2u}fz2+2ZSz!QQ`d}d)-q_lW0BWaQ1ng`b+ zl~!f|64MY8051`S0@4wDVnz$2dq|5+GLjZq6kLmJTA9=c$WC|(kdu%ekelEWU$w9x zR9XbeNLu7qa4lZf%49=8Awmwo8w4Lv%tG&INh~fSNi3z{63b|1<{_XQ;VVD|!XiK= zf={e!VPh+4QB6kD;!OqD;w`PrRlIC!6RrX35^e(CCiujL7Jlw5EgH#4S~O8`Et+X% z28X!m=7eE@7K9OiRs^5;zJ>4Y3#+Y+q(uh>*P@eFW(JO-3t<-E1Hv3YSAtIru~0Hb zTJ(^Svjv#yoh$5^6L=${soP{*@pyFjDE&3_A76Y_0aX5xSguZ~m zgaLq|1fMwE!r3j+}z}B~ubM08$fv0;DDQ#B>%O+N($}BWaOI!L@i1(xQffYf)1xa~LOGi|{+34&el# z9>FIzu<*n_-3?_VE#6UZEt+a&wj$tN!gj!W1Rv1K!fWqKVrv;mVp|25*j_7>0SDWW zkQvaKkQER_@QGb5H0vcTy2(gd^iXgudTM1l;b09R2+)hr6%a}AiP09uwvZMvGLjbY z3a&+8t;}v5Lw~|vz(B$QKmx%h4z&j*yaM+-mO7xM-g zNsFHpT#KKzGW)Q{t%TnIzYq=sb`X5xZVQvbrNyr@k{0_ET#Ex*nU)ARNN58%OlSu< zO7MxtE!4B$yHChSTAWsJEzW9XG9%zT!LPq$;kbS6{vjg?xT@d+lC&~8aE{jre*G;A z^J698wu~g;u7V4=ua()19XurX^-nBR>?r|%%SZyAE4YB0VxUj0jUWE0ci5L z6KVq9B-94HMW_d;O=tk9OK1#uo6r={fY2P!h|m)74xtU8DWM(UT|!5|dxS24mV{tH zYeILx`-D(HJAwgpAVdH<5qbl<5d4!8Y@xD!2YiON;qD6VS?ZycPKQ|tvF|nS;x6c= z;MPZKrPI+CR(v4qV`LxB{3*NCGS%+yE>j+y*Qn+yyKqJOC^qJO(Ty_@{n_g`D>HhgQl+?uFF~?p|1{ zl}V0U>j#2gzrjNFJ`%7|MiQ`D!3Av5%KU+VZG@|U?SyN9odlowtA+Mcq{SW?NsIjo zuElR!nQwc#=|hBNfFpzzfZqwL0LKYy0VfIT0jCKY0cQ!D0p|%@0T&6|0e=v70j?1C z0RANG2V5f@1l%AT0o)=S1N=oe3Ajr*1GrB(4|qtp1b9ri0{EMd1b9Zc0Z4XJpQYP? z6ok8gRD=hBG=#^1mk3V*=?KZf+;f|OkP?uIkOuHFApnq-kOA-t!QW3gEgTyzH&`wi z$qklQ!QEhiTA5Y&jof^MwSWSI^?-tejex?0&440=t$<>L?SK-5U4T-AJ%BQV{eW_W zgMbQzBY;YTV}L4zlYnZ3Gk_X|^MIO!OMqI0D}XwLBtSjF4M2UuZ9qf9T|i^P13(kP zV?Z;)Q$TYyv}ZDH6#d8XUQNS^6-3htTipq1H;Tcs0WFQ5zI0N?|{AwXBc zQ9yUXaX=5kDL_wx-&MGUyaQ#My<{ZYj8bshjMmDOz=g*WN(15vd;rhqYo=74d8mVohuHh>9)c7REQj)2L8E`X_o zV8C=jcfbrnC}1YR0A>>+0CNbv0donlfO&*IfCYs9fQ5uXfJKBMfW?Fl0ZRxY0m}#< z0hSZS0ag+|2CO1X0<0lS0jwiT2dpQ22G~HD4cJ8Z0 zy;Ccl{?)>%MY8@H*6&kr>knw9(}yhF`9jtomXW+}ephhok85Q@5O2q6t_IMO{CJwe1L#71iwDO!l?xk@Exu*gMtglq?Jx*v9NHG ztj{VVX_#HXt#C$T6#Mc#EVj-=}Gz7dsm;oqCm<1?K zm;)$D_!3Z>umDh&;5SjhLc*7_tBNv`T~$$VyQ-#@8H{7AK^O+8Nf-gBMHmgJLl_IF zM;H&NPnZa3NSF+0Oqd2}LYM()MwkU?PM8B|LHH8Tir}yPeGBRBE4ZzUFi=Im|k``AKT#G-oGGF7v{2E~~;09qS z;1Qe`7Lbw zN?H_v=Y2nl?NvtU&Nvy5l66d}6SL-1f7ftBj;Yh=OYos+D;MdkiBq z1B4Ua14IyfVs8ttjFT48GLjZ?3a&*Tt<39qBKi>u0|pR^0tOL$;t&f@?W<&{jHJbI z1=nJvRwg%&VKl+7A8R4NesLcsBMJCe!39jz%G|<5enPkdm_oP@m`3o4Gb|Lax6@}b zk`}WST#GqcnL-GdODF=EM<@ zOu@BC_LokVL_i8c83*x2O)64(tVu)gnE@7NjgcnlWF$>8D!3+@wKACykcE&1kd5#P zAUnY)=CZJMytK$IBWdxff@|@bR;Dom@)Mc@UMDmM6e9S&GLjbU6kLlATA5S`=tM{h z=t4*b_<-OOyIH8QU0QUPk+cX^a4o{LGBF4UC&U9H2>k$21fLjVA*FpTVr3*P`Y5;- z{j@TDaMA+^{Q-jrg8+jGK5>|Z)$63ihcc2DBNbeW(OQ`;2pB{71u%}V6EL3O6DL}D z{X1zfNk-CQih^q~O)FCm0iO~Y06rr$2FxP(#5oq4Y?c;Z$VghuQ*bR7Xl35ONiQT6 z11utx1S}@_#HAJ*EtM9_WF#$CD7Y5iYh_AckE;o#0c#2606!3X;sy&V7E6nbGLjaX z6?HWaUoAY^AT9RDNLuVya4mk*$~;EEA;MF@5kfK?)b9kJ zc*4SM`xWJ+jHJaG1=r%7R^~ZAaxM^3pv5IZYQSZJPyExuxE0bONk-D*hJtHxODoeA z0e=xf0Cx#J0rv?$@sWjwE2YI_8A*$$3a-U-txPWjB)_BUqW~!hF@V$rpZJo6$Zw@Z zfQ+O?1_jq5lU61h0$wKM0AwZP2E0P>i8(EtwlBS0GLjZ~6pgh4RR0|X-?s30t+c2wBWck{!L@itE3*y(O$k2&-X&}Tyhreftt@QW zCM{aaNLsX2a4p(vWxC)PIue2boeA9mK?I-J)q#C3y2(gd^iXgudTM2=Bft=90(uc@ z10o4NG1|hxP0}JpM$#f)!L{hCmC1^L{)Fs+frMOu1cFZ-YT<$XU>znSX)!{bLL>RPB`Z>M@PlEelIF0qkTW(oq{AxsA} zC42^Wm*5jySmaM*jYvr@PUF0=&F^ukAUt3 zzdqE$I(uwAWh4RN3N9c*D^myoQG_CZXo3%jv+$FBp~uTe68kB*!~t5FS_l|K@auA4X zWF!GI6kNbetxOkO!fb+H|AmEU`}sRpMiMYz!3BJ!mC1x1d`;_nu|J0~rU$w*q9RB$a$Yh_L# z;4I-Z;5^|R;3B~%UbfKminO>QBWaPO;96YQ%2bMQ(>DoK0k;V?0CxyJ@xFyze@Kf5 zGLjaL6MINn84V?6=gtq{%5$XW)6MSMp3qPHf7KLOaEs7|( z7R9tOD-lqFuo_T`untg$;1kPR*ndJ=RFILhsI1^xRMpCiLqK)H$AC8plK^iKd}197 z?T$-}x-ya$^%Y!;hFY1v2xv?g0BAx;05l``#P=-xcu-ojkdd@#t>9X`uayZzKs!Qy zKnFrWKqrDv46=~Sw)j9s(xRJ!YZ0QA$%cSXLJmL}AvYkL;1eS)T-zlrqGTj3Via79 zIIYYA+>(6=UjzCP76S$ld}4xyPM4&`U>Qk^VG6FraIH*6ys$QxmuZ&*yB7x z8o&ZV0AL}(Cw^n$<^9rPv5cg}QU%xIJFQF-_PBy@1MofJHefZuC$6(_@q)DYK}OPI zgMw?ZNh|XR_seF&-+(QI=YVYlpSZ)q+25tbP8msyUlm-7y;_-W2-r{P0r-s&1~^3U ziAOE;J0vZBmyxtMq2OAa(#jM;z!^euz&S!Gzy*R&{KLY^9n#{mjHJb%3a-U9t;}eg z^bNvTz%9afz+VKPc+bKs_HFRKjHJaQ1=r$?dL@SHFjko^9?C8n}4@v^i? zEhB01l7efIPAgLaw`2xFX+S1IIl#*VpP0?UulA;WMMlyhr-EydTPt%9$B>us5D-Xs z0?0@3iLYCzdRAH#l##S}L&3Eus+HM}V<=A81t>|_11L@KiRCPOy<1w8myxunq~Kaq z(aJ2t9;*>n0BR6c0csL_Vr>hD>^G1)GLjZ=E4UU7v@!*7(v1j(0Phfr0GbkfVsi^c z?W_Ae8A*#)3a&*Pt;|gvLtDaMfcAuYfQ|&8*u_F2`|1vok+kTl;97Lo%Ctv74?-tE zPeKsDyZ{+VVuXd(`=muAAX>q-h}FuR!%4>zE&}=zE(7`#eBvMrW$mY4f{di+PzBfG zL#@nA1dJej4j4t43;2lO6USM&Yj4^_8A*!?3a-T@t;_)&!(_rCz*NFfz;uF7{LI3v zW71-#jHJcq3a-T$TA2t0d`ajHm`{iWd`0kyi!8i!Ra$%_BWbZj!L?YXm8peWayg+c zU?rhGU=_h9uCm_R(&C|lYw=hsQy&3; z6B+@Y5t;y!J@~i8loke^krt_BBrVb^xE29gnGFa?PxuLtk+21jncx$%TIh9NT4a-v zw8)|0TIABoTtYw|!WF=)ge1Ug1fN*ILPh%vvDalJEeb2R7Dco&Ds;C?_LnQBlFQsH~M)hg-5L;YUDq!Y06*1fN*TLMr=fz1lL87WEWdi~3rb zMc89Q!nc6Ngk^vx1fTe>g|~l`7R_ZOEm|tL7Ok~10SI`XkO9z+kQvZ{;1fGr*m+Z0 zbdiy?2v%?{x@l!T!3!&d;Me!Gknpzzgvm$(dMUVoNUcoiNH^V^;Md1mNd1=t#K}kk z`YO19{#u!(*ug-8Uq9GFof{G`L`D+up@It-p_Ta%0iy_h{TK_W?HP=fkpzraZ~+sv zGGh@i=>=f@6bonU8B7Iys^9`X)5?^`8O$R1^>Zu)U6X(>WF$M7r{Dq>Xk~g~2MY;) z{Wli!K9_*SGLnF$3NGL~t<1aF!3u(3zsf?L2NJMaMiQ`2!3C_>%G|&XHV|$DHWBUu zHWPf}RttIUDQ%OHwAi8GTI|xw6vrNaCHVFGES$M60sCbn0S6Uaz+tV-VC>*1!LL8= zz@E|x8A-rt1s8BuEAu{faGv1TU$T&3ckqXdB;cxo3rNz+48RVq6a4yH7UtP|^|p*8 z;I4uTxUZENg@A_yzy67Zb@wFTZy8Cza|IWW{Gm>tMnFn}U!TUpnMV?kRz?z#PQe9a z(8^@O8Dt{(^;s;`c`N~0Wh4RF6llu&R1rL;1CAfODvuP<*QuMMamBMGRi-~y^@WzHj@I>E26X(8yL z1iU3938-qp%9$8<}=LnO8)_<*(q|Bwz2 zlB7jP8A*#S3a-TmTA7|m>`L(KLo6iNS4$5WNkEu_3kcWBw8Rq~LGbH)TbOrS0-|Lk z0dWd0ppRDO8|IMzafeL0Mi zk+k?&!L^vEl}U$yPY8bfR152pr<6a8k&y(6|F6mXny9B`806VF%}c}H5Dm65c#px|0u(#rgVfXjp}fUAUG07(R&c*DYG z`#FD8M$+Oh1=r%PR;D)s?h|4G4+(t$j|o2UsfBs=?fIFEq($;a9$br*TA3VpGE)mVMF zo%W4*q>QA+M+&aRSgp)z977^u9pGcakAR5;pE%h<9s8j^MMlzMx`JylLo3q-0W%4~ zfZ2rZfH?%8_@#v!`Q^vOVXnmj1=nJsR^~FM7ZLshEGAqBEFs(iEF;_jEGOIttRy@F ztRnmkSVMRYSVu_lq1*R*LTbPUg1@q#EIj;G?uqt;+(Wh~xJ%upmFa}(?Svq}PC{3} zZbArP51}VuA0ZrYfDj2dNQed;Cd2`b68Zv;5&VUmw2&{mT-n+vcV%Z3+?Acv%B;uq z1;R$aCBkOFWx`g#Rl;^a5@8qMI$;msCSgC|HsK)P4&eyk9^n|^0pTRz5#bEr3E@28 zDd7^}IpGQ*`Qv{(u2dEd+>`UmI>en{S_OB00a}^tm`+c~1;|Lq3&>1(4UmOU0FaGP z2#}pn1dx+Z9FUt(3Xqpj77$3N0LVwE3@AXT1}I2)6Hu7o52L7sphI#xzvKQZq2NxZ zlvd^hrppjc1IiK30V)tK0xA)Fi>emVH;|qsV%;-RL&5c|sg)^>=~{$xfI5VVfO>=~ zfck{$fQE#cfX0N{fF^``fM$dSfaZk8fEI+NfL4U&fHs7dfVPA-fcAuTfR2QYfX;+2 zfFMFJAehh{(2WoZ2q73iC?Nt6M(7O)C&U6G2z>xig#LhN!XQ8_VF)0e@FActVI-hG z;UmC6!Z<(z;bXuM!X&^j!W6)8!gRn$!e@ZdgxP>Ggf9T&2=f5r310yw5EcO@5xxaX zCM*L?C9D8UC#(X@Agl$lz=^iG=P1C0Kfr42Eai=X24;Bf2;i6LaAKx-gyn5cPA9wd*>;w z%wL#3L%0VxM|cRhKzIVUM0f_cOi13_UFuarDnJq;E#NvK9pEM*Bj7gSWxyRmHo!eX z4!{FKZonhLtAHnje1NBf*8$H7MFGj5=z*31q$HFBq$X4Zq$N}V1Q4nN(i3U|G7@S7 zG85_nvJe^ovJn~svJ;vDauQksaueDB@)9}%0tsCJ`3T(s1qh*lf&>F7Oo#v!A@l|m zBg6tq5c&X05&8ql5C#Ft5rzON5IzJ{B8&u7A$$a=Mi>XELHHO@lQ0QTi!cRHhcF#b zkMJ3wK4CVXA>j)^W5PT@6T(-3W`sq6=7etnEeOj1tq3asZ3wFXZ3$}u?Fs7v9SIu& zoe5h3L4@sqV8SjyH^P2E2;m?glyD3XMmPxwC!7aF5H10t2v-2ngd{*L;RYa{a2wE< za2L>@@BlE7@EDLlcnTOoNEYqh3x^R>0)`XP07eo50HX;R9LT@0U<@fU){G-$1&k+T z2TUO30!$+01xzNq2AE1H0GLiF1eif60+>lC4wy|S1(-vq0GLat446l#23SCN6R?m_ z3$Tb#7qFO6AFzbb2(XOM1hAa&E?_001z;7SHDC>)Enpp?17JO&GhhSZ1HdLiH^62> z55N{e7+@Qr7hpRf3b2z91K3T72kasA1MDLV1RNj?0~{ob030Ta1{@`f1so%c2b>^G z1e_vF2Am;G1Dqqw09+u<0bC+{3AjvH0Juu{8jwU-47g5M3b;vF4!BMD9&m@S25^t? z1Ko<^J0VxUl0I3PT0n!o<0|E%Y1JV;t05TFz z12PlN0kRM-0JZ8U>Jcgd>JzF08WL&%8WY|EG$GUhG$XtXXij(s(1Oqm(2DRLpbg=DKwCn4Kzl+E zpd+Cxpfe!^5JU(E1QQ|w-3ZZu5JDUvl+YItMi>AHCnNwO2txr;gyDc_!YDv2VGJOi zkO=5Ym;mTc_yjPJFcpwMm zepJETg2%Knc`$u~5C}L$$PYL}CZm%~J)J_*^UV2d0xh)%8~aDGApA zsR=g$X$gM;0toj2=?M=383|7SnF-GTSqRDT$9CBWsQ}ptX#qJ2=>WM283B0-F9QMz z*#P+nIRFI+{`?AA==_TO$b%I{6x@Lp)5-*5x&$FVpcJ7XpbX&+KsiD&Km|fcKqW#M zKovrHKs7=oKn+4wKutmoKrO;sfI5UafO>?t0rd$D0SyW702&jT0h$or12iMF0yHPQ z4`@MX4`@Z`1ZYDD0<0>%->1I8030wxe9111rs0VWe>0HzXV z0j3k?0A>)r1k5BX0L&(Q4VXh%446w;3YbS&4p>0=9BEFYfTM(O0mlf-04E450H+A6 z0A~nm0p|#QR~H?;F53*iUk|yg;I?^HE0Y1!NrcRR>x8U;n}qCu+k{+zJA}M|dj!9U zhZc@xmLGfYf%!zi?dqvkWY zIL*uoZdX~fGJ`RljW7(5oiGBBlQ0^Pn=lrTmoOd>NSFx7N0sd!DvmVp+2pa+Q2|l2ag^>>>u{K_|O%z;WGp$TLOgASq0JI=92DBnH1+*bF z2ec)$1hgl#0dyp^19T>I1OySf0D=j@fNq5DfDl3`Ae3MLVT1@kIH5Nnf)ERcBJ=@7 z6Z!*U34;Lf1b^iHENpEp&%qn`+#aalo`VFfOfgIkA(R9RBa{IQCzJ<_Bvb;7CR7EC zA=ChjBfJF|PpAW!KzJK4iO>)*neYx^Dxn!*I^jLQ3_>fwOv3ws*@X6hIfPDtxr89V zJVIB%0zwF2A)zN=5g{C~m=FnALWl+|Bg6rg6Z!&H5(WTP5fT7v2txtu2*UyE38MfT z2x9=72#J8rgb9Exgiiq52vY&u37-OX5@rH+6Fvv*AaGQ^HlibHX)1^5^;nbQ6%0@E0I8;T|9@;UOS^ z@C1;a@C=ZVkQ~2xmYI+WkcE&Ikd2TIke!ebkdyE-AU7c!ATJ>YAdrw7kdN>xpa3Bs zpdjIOKw&~*KoLSwKruoIKnX%=Kq*2wKp8?sKsiDcKm|f|KqW#=Kovr5Ks7==Kn+3z zKutnpKrKR3KpjGJKs`cBKz%|RKtn=1Kx0BjKode2Kr=!xpgEyCpamfm(28IHZ3q#7 zwuIh*_JmkKM?xP!XF`8K5MdA?m@ov;jqo8LgfJ2iO85v6Mi>VOCwvTuAWQ;85vBm5 z3DW_wgwFu+gxP?;gf9U73G)C0310yc2#Wwi2;TyR5tadl6Z|)tQ5Httm9IE|4|cx_ z9;4vC;*8VEJje8SLW&`7{RBd4z$C&;fXRgPfT@H`fawIkiO(#QdP{b-0DssqTfyyW zj#lPtOwT1O2FxQY1uP&e2P`Cf4_HK416WM>0kDLy0kDkl6JR-E3t%PT7r-jQPQV(% zuYh%geSr0Z-vAp3hXI=izXLWCP5`zLP6M_P&H=U)E&_HEE(3NG{sinHTnFqU+yWdR z+yNXU+y@*cJOUgg{0%rpcn&y0NP*vLKSf9lI74^|aE_23aDk8saEXuwaGCH5;3^>} zAc>F%aGekcxJmH0@n04qn0`cP1b9Md0(eSz7x0|W0+2je zYTvUpASIzKAT^-_AT6OYAb{`zAU&ZQAS0m%ATuEhkcH3-kc|)p$WDj>fyj*Hm!#Q!TB`a7@=Bi~`gni~-aqBmx=|CIA`}J^?f# z_)WZP;p#EjRpkV?s}>4wSFN-%)iB+L@Ft)wp%$P$p)Q~!p+2B9p%Ea6&;$@nco)!( z&;k%bXblJ@v;~9_Isn26odFSq4**ewZh&Y)4?rv-3=mJ~1?WqN0`w=u00t7`0SSbD zfFXo|fMJBefZ>E;fRTg|fYF4}fH8!zfN_NJfboQhfC+@jfJuaDfXRdzfT@I8fa!!e zfEk1@0W%2;0J8~S1LhDG1LhKz0_G8x0~Qdz2P`D40W2c?09Z`e09Zo!39yW?1+bj( z3t%N-CtwxfSHK#=KEOJ{Z-DiL!+;Hh-vOHlCjgrXrvY0C=K$LX7XjM|mjOEoe*$(B zt^@WEZUOcY?f?!D?gI`I9sv#${stT+JO>;jq`=qM6NJ=&Q-qfQX9(#5=Lneq7YJDZ zmk6%_E)#MBt`hP9k_dr->xBG(n}mXZ+k`g&cL>D*_Xs5c4+v!dj|k-fPY9I&PYG24 z&j~dE$&>55{9AyOggSuKgtq}{2@L@Ogm(bx3C#c*3GV?i6IubX5Z(u5BeVx(Cv*bj zBm@C+6S@NO5<&ohgr0zWgm6FsLL{IdAsSGa5C|3i~&?4Bm$}sCIG4tJ^|DqOa;^=dMOL%0i* zkAUTbO@Nhzp8=}~+W>0_I{@nly8-J7djT5=2LPK0hX9)iM*&+1#{t_2rvTdt7XUj6 ze*kt9t^xKCZUXiZ{sJ5z+yfjWJOmsjJOLafJOdmfB=6_$>l1`jfK!CDfHQ=2fOCY5 zfD43|0hb8b0GA0l09OgQ0ZD{c0oMun05=J*18x%v1MU!t0`3t?03HxZ10E5|0iF;l z0-h480G<=71CpoE_llZ;l!V%V)P#C~w1mch076qhdO}M;MnW4vWM_2@?PxuzlkgyEU zn6LuSgs=+GjIb8aoUk6yg0K8cL99~4*>lMj{yS-PXP&p zWc}Sc?hrysz%W7@z;Hqaz(_)7z-U5Nz!*Yyz&Ju)z<9!IfC+>`fJuZRfXReXfT@JC zfa!z^fEk3!fSH79fZ2pM0doko0CNd-0rLp;0SgF?01F9C0E-Ck0u~cm0G1G11C|lm z0+tgx09Fz@16C0}0IVT&1FR$T0IVm30X7hN0X7k$0GkOhfGvc0z&1iZz;?nwz)r$o zz;41Yz#hT~z&^rgzyZQoz(K-zz+u8fz)`|vz%jx!zzM<(z$wBkz!}0Ez&XN~fD42L zfJ=n00hbAj0apo20ZD}Afa`?s0XGRh0B#dD0PYZe0^B2P0X!i50(eB&33x*I74Vd> z5AdAu8z6Z~{r+(nkdp8_AT{9xAT8lEAb@ZVke+Z6kdbg1keTo&APeC-ARFNpAUoj> zASdBIAUEL=ATQx>Kp^2cARi&c0QUx4fRGwcknj?qFd;pl2q6=o7$FOw1mP7xDMC&_ z8A2XFIYJ-7ApsCY7z&6c3!Y05>!q0%&gl&L1gdKpngx!F7guQ?Tgad$ughPNugrk7PgyVoEgj0ZJ zgtLIU5O83FqUF9Qw`vH=bfasUn!as!SMUIiQ@L`Q zP=@dopd4WlpaS7rKqbO5Ko!CYKsCZDKn=orKuy9%KrO;%KpnzXKs~}PKz+gpd;ZfpflkCAc*i75KMRq z=tf9}f8r*DkP;9|NCOBX1OUPb82}N4%z!9DRzNf%J0O;j3lLAp3+PLD4bY!Z05FhH z2#`Q10vJLl4j4u#1sF~!3m8eL02ocE3>ZVG1{g=E1sG4L3z$Ht512$~1ei?le+)Fu zLel~A=R#lMZ#~UWaDOf|Q!BFw)3XWR0_G5w0p=1`0Ok=^0TvL}0u~b10~QfB0u~cC z1C|iB0+tcB1C|qZ0agJC5?%u&5efjV6AA%t5{dwB6N&@w5J~~=5y}D{5Gnv3 z5h??o5UK&565a$nC)5HYPpz-Ox`32~`he7gMu4=0CV&9KyMXkB7J!U|)_}}}wty^z z4uEWg&VcNM4*)p{-2k}>Jpg$LVSqqFFF-zme*=2m!jX*fS9cfVAGa;6;NFpnXl0gS zx)@Vf7)Qtp z7*BW&Fo942Fo{qIFqzDh!wfH{P}0don@0rLnc z@IqQZNDWv>cnPqGkRGs@kO{DakOi=e@Csl#AtzuZArD{`ArP>JkRPy)P!O=5@CIN5 zp%`Ejp(J24p$uRPp*&z4p%P#_p(9*i~&3+Bm$DB(O2LEKuW?VfYgMkfV6~90Re=W zfb@jV0T~H%0htN&0a*wO0oe%tts#en9?9js;wWC(xfR@dMP9AUaZCpiP66@}&H@S$ zE&vJ={s0svTm=*%Tmuv%+ys;$_-&T9up)zesusn&U^xZ1?+RL(5}2+;C=IAWCO^?0;#gDSn-vpy2MfAzGQ{m>x!G2^daj0~ks0 zi62=w7bq{rAMtN;8K>Y{jMvI+!t?~f&wxpUZGg#y9e}BX-GJ$Yy?_~n1Av)?Lx9{!aBeK!jFK1giV0Mgr5ON3EKe22s;2L2)hBN2zvo%2nPV?2>wDYT4-@tuIvi# z`O6CK%C2fgh zNV2qYWm!|om5so!F;XhHD@(1F8I9?*gt34C!gxS>!bCtu!el^Z!Zbh@!VEw*!Yn{` z!W=+O!k2*Dgav@Sgs%aCgvEe-gr$H2gyn#Ogzo``32OjF2tNRd5&VIcw2Epfh11 zAc*h{Aei8{+1*0^!t!YqA|v?^Irda=`!-sca7;%M{Q78uUlC_vOkGKg$3yxlxWoZk z>2!jH=e1=0V5}de;MNbKmkH-433T}O(R%Se=ClV$BrVyqAJ|)Zm%p%MN zd_kBCm{0JVSV-_~zajXxO9;O0cLd*dCBe5{P4I2kS=dosuKfoY$+NXV!Cm_%t;|oD z-a^<4*iP61*iHBqu#d1GaFB2aaFp;n-~_?%>NLUc;~c^7<08TD<1)eT<4=O$$900= z$1Q^2#~lm%?Y(?gMshk26x``N(#kx>^i#q!K=PL~Acc%1AT=QkAb^k#kdcrHkcE&H zke!eNkeiSP5J-3pP=N3{pfKSLKrupbKq-R1_Ob+jwG{~dYAX}`)m9_;t9_H;ueKJ! zUu|82zuNi)f3=MW{%V^L{MEio@K@V{;IFnd!C!4#3t8=ZMmrhF6V*|{J=2}F(&-N@ zG_Nh|gR#E5f?MB1D-()oLkI^%5~2VxgjhfyLSMiD!a%@a!VtiRgyDcugwcSpgmHk6 z2@?RH5GDhr5vBt^Bg_PRPVk2@m*6jdKEYr9LV~~iZwUVKmk|8re@F0_zmniDe>K5h z{yKuc{2vK^>zfGv@_#1y%il)um%qcpw5syd@05|;D!(eYr+%+iI(@)G_L8#xH>^Lb z;MO12%KVP$6NHn1Gla8%3xtb+%Y-X{B*HboO~Ng}9l~9}1HwbV6T;ts=Y(Vd?!r^b z|NYCAr6Krh2_X1u$w2Vel9}MIB`d*SOLl_4mRtmXEqMw4T3#dgYbikR*HVb!uce5E zwGHH1Dk>v+R!bE26N$@LbTUhy~B-X)0 z-d1pl4Ybnf#uh%XJAMc2n<=>U&9yS`VY(H;uYaH5SG2dVse&YSz(YDKxWpi>bh@jB z_urEB-LSrgf?MBHD-(w4UW5ohZ$dO6j^Gpf5`4x0g3m}G_>7?z&e(GtCL?(!M<}>m zjnYb|$5BCHNJ`E%dWryH4OCrxje{S*^@DOkX7U^_K~L#h(_E?46y2hulzbiMO;e zw=sQ};MYGO_!W;Wyk);IJi$YrDY(RB>2x}|jO0*K5mEzQA_M?35HbQ@CioWF2tG6i z!H4E1_|R7gJ~W?&(?w+8`DG*4@nr1iwC*;8%3F@MmdB48cQsD!4?Wl}<-k_{_d?BC$SN!L5(g%EV#1FQFe`AYl+- z2w^B-IAH`}G~pw_I6@*|0%0OxGGPi}I^k2mOoG3V&k26(a|wRy^9g?I3kiPf-w^!P zmk|8cza#jquO#@buO|4duOs-a|7c;dy$d$TNbakj6x?(0vsPvcrhg%92kav32J9v5 z1N=rf2slDG3OG(U0XR)K12|8(0QiI8_kES%cY2NBcY2fHclsB>@AMwQ@AM(T@AL`5 z@AMhL?=*ROJy5^XR2J%0loL)ZBRS!h6x<1?)5@fG(}@|nMfD2qTB>V&TwGM-6qBb~ zs$~CWl97pz@}XG>h%v8N_}P9<&+c+fE(O;%k5(oxre7oY^#uriMIj423Q1yNJfx_C zODwLHDS_$I1i!uRvhNNulBc7yg4=hHR^|gtcO!HMgc5oJ!U??qQ3T&2hTucv z2|lzR!G{hc_|U-?R@vW493msx_lF8@-y^g#BQgCEVGJOVFdi_GFbOb);9E>5_|VS? zK6Ez0hkiluq4O-vv@fCgGLn5SRB-!Vq?P#w(@O|T0m}(10ILW-aV^1TtS9)4jRc>u z*+QRsva6qEB)i(C;C8iLE1lkDp;kFrzZ>iKD!BFgwbJQ>7IN5+$3s|uRKcx3rj<^g zwD6_f&nc`wtKin3*UDVL^dE%FfIkUIfE$FHfWHWL0QU(G0FMbz0M7`|0Vy)*HdD$- zjx7x#Eg&5sJs=YyGaxG=8z2WECm;_YFW@zTKb-;ue;$Ph{yd5h{CN~7`12@5@aIvM z;LoE1!JkKEf^zTA4POZbxVj=tSrY_<#@$=uQX$^dy7F2fGQpq6G=e{m83cbGvk3k?<`DdOd`a--JiaIR^H@Xh=kWu{H^&yO%vMZqC+q<1Cj1K6 zN7xTINH_#IO86acf^ZUWhHw^efp8IUnQ#S=M7RdHN$^+p7r|f4J%YcMhXj8uPYC{6 zo)P@DB+sbl=dUFd!Cy;Sg1?q@1b;0V3I1AMCirW~W}$(6KQyn%NS>vf3hr6Tt(D1x z=|IA3fC7Zq0fh-~0E!Wc14a zPMZ?^PMZ__PFoWEPTLUtPTLXuPCHtdQ&dj4lZ@nqgB08e2Ww@zVmgG-0}w_qfCxe) zAes;Zh$r*`^d}4eBoGDzh7tTWM-cqRMiczT#uEI-#uNO;CKCL{CKLR|rV;$cW)S?w zW?8sjU(Ro~jO6^jP;lq>rB-GhroSTi^@|98#kUr|FDQvi@R08mT;d9?%t}nJCaeMc zKv)mhNZ17UnXm=$3t>B87r}3055c$HPw;II5`5bu1mE@;!M8n0@NLgnu)iKOXJsU( zc|pNl`z5XXbi5gwJXx|P$r4k?g~UX}PDz+jH1Vb0VZB3og++!;F)RBgOJ-hcYX1@O z#0+75`seQ&+$}sLvU{wbN`|S7cB)5ARAk&g<^nJm&?6=|BBXCrOt^o{?ItcRlYLBF zOmJju@33AWF@7@ZKLWc+Ua)LK=hFORAKjuN{`s(!n939y6WqIJ{(qZ%jE3oa!)^@B zj7Md4yN{3T78e#38Qd#>aPKg`n+#Zxg_n@OXK-Zq7rVWSlKg1lIe-CaRsSV&~I|6FqeyT}kJ z7u+W#e{f7paDRWAx$y7+d))u@r~aH`{SrjPC2Gc2-S>G-&?UQ-fZZXmZ(q}*<8BEzEJ4(k>-W%86_!=@B92|1D_n;`#h z{|3v%#8TZuBBEl0Lizx7eVvRf72TFE7FVLA}Dd#>m@WP`R=%p5s3M zpHcs~T@rni{Uyu9#G=?$->}~DVh`yZ5hm{e@}AQzMBcSxg2JMLDwcb3L7)1E+V9a5 z6N~)c9x9J4|BwAo`|mxn{EME`|9g-8$AwP)?>(~ei=MImk@nl{#Kg)ku2VkNgW{rs z-2cVMXL49%XpnwO2nvgIZ%-Be@g}m=2idQ66B7%)2Lt?Z9* z`=gotF~I(K-~NcSKYH39LH0*q`7yC;V%qM#ddTOLe7e^aNX+y?e{EYaf;OUuRrg&_CvL{p);iuU`LX z`EL)#j^r~fCJb$J{Og0Gx|+EDz5lBzZZJ}Rt)J?vUg@*i}(ygU8 zav})l253cQlhq<|;eZ5M5E|#XffEOghzN1vge;Hk8TX7IgCE(t^@niT4 z2)?h|)#G_M$-*J2iKnZ&-Cd8bsw+`@ub*WrI8^M%RL$_t=C5T?R&hDD562l)x7CL~ zML(OzKiHuLBM|tG0I;$m2L@aCMV_u8^TXLRlg~%kG{7R@2CA^ZZ|@*2Qk8jJtq`$q z+d0Z*2l|-10Svt$%mB2;Npgivnfg_j#CGpr&95-_dX5Vi{D#)zH`+`Ot{Z!_5n!VN zO1##`Q-Up;K%~kTK=meWG52xaWD~e6;!1y#7U6w*eqcp)1s|EGp@zXwRe#V?nm!=x)!6cjtsY;v*8(Y%0+0IH;^G%)$7}rgl7WCW*lJIsn1gDZY$ST>u)j?8k8;0V3&NT8IoNhIys`_oC7WDqE$WiFJ@0b~ z=K;5J0}qT`v6RmA_rvHohkAd}De1#o~VSX4WHhc}4*Ewe{&s~g1> z4$DfAf|e|fiJJamJkn4(hX?zp#v2*fB2)FzXM~h5_ z{Xtz6X|0y+bz}bP31SHrILqJ6SN=!w$`xAX|3DJt6Fxvb(SVabT%GHo0^ikKL=^D> zL^0+&QBN$tTuSXiWDx~G7Na@{qcjKuF9?Gu2%{nhLmdd?7YG9q2ty1AgN0kl`&U6E zqnAZ7d_XEg0SH|>2%R?wy)+0tF9>}p2z?_6ogE1M76|FYW=Il{?7g!8MPjR0BR3#uZjlnU`pQd+EcVJK$AyW<>lP0l$NWS^Sa~LD Rdt-dA%NUVE1hma${4c=Q&2j($ literal 5543558 zcmc${37lltSs$v^8jZHmE?JUY8f%%6HP!3%^hh2pmd3KI#j@m0mgMs7s#{&RyEfI* zJuPVfLjVg3ct0qIB!m!NLK4Cf_Jo9eCy?+6OF|wYz+(v{Y)K&O$^U=8bIv`t>fFA! zs=EC0p2c*XbHB5F=i9&Ue9onxzUYDrFW~M4jQ_1`VU%i|WNvJLuKw(Z+CasPsaw z^Bn#feg!_faA7#Oq}FPL!@*lR{bn=7hnMWOI@`m+#nH~*uy*y}5&-QE2bXSe^x@$0 zq8_9>>=G_- z?S!39R0+FS(co}+t`|1DQLEV&b7LLAzBCTg~C%Cg+>Ys8{Q6v@t9;=oV=x z>FJevd+iX1*hAB`x~bf1?``yZJ;Ko&Qo@3xP5gaDW3Su8F?G5;gG0>?`DQq{o%>%b zVMB`Lez(_Zs1dsTMkDC#VGVI}CF-IFH?71q5{~n6cROmggN=Gvs`i^|o!G1RW1M!W z67+&$i0Ss*?M~S3mUe?qGiq+~35eT>UAn!X7nS1$T~?A`hJz2!H1{zCTCjj0 zNC(W*T~PNH-4#XA=w?0+2Un|UmvPqBs17vdWxE=GE(op_@lW2zL+wt~>O{T0;WLGc zyI(LIe5lszwYv{2EL22xEeH~`rer*o4v5}z|!L4{mb~@ z3jWs#H~aOVbN@;Fdkz0Ph5xPNf2S80F;wj-86g~8rKYwO&unnjR(D}LXa~h0DsFLJ zrgJd3Epo$#qSk)| zq=dKVM0Yppm2135S1Uwuez;b?IT3-No#1UFn%rIsgG$&@x362;2&=75SgLed?MiF6 zIee-zxEU0t)vVy+mbxHyoET8Fq3+iq(vcHA5Vl}&Nxik%QuDteYT#!;RQK!?X4m`e zdMl`OPjtKW;%>N6t+#g7#;>ieR5w@+@ZMj@sSzfIM8|&p@VeRDV@=AHR94=MY zma3Itb!lzm4``b4f^IkLbx&;8TN{BIQC%&CGMVG9 zomxFvUfft+4^~fAs;i5q*DIkr?up$RHbF+egj=aDlVF!jEQp5v!6ADZ>Rk01l|bUl zHA7PlZFNEX`W;a3d(G4hhy`^U^k-cX4d4(calfxIO`nLu_lxekkGOJ;+yb7;2{P7U z&^5Fm>H&8K*Mbxl9&eTVWYM_#r0iEJRICO&#Eszq2PbP0ZlShI%_)c$^#3jDrl_^B zfgN6G1W|J#YHTi$3wD}8y}l)l$=qOAPa|w>01aCm zAS31z)Y~<%G!Ui$8*{7SWhJ?^CGJbF12R8+b8w4oZ1x*%a0J`-slnT9ThuJq`<1X1 zHKSe$ccjLC`1;PV9v~Y#Ao2Tm>bApj6x8ERpBmg{A@#dqDX27B7>bMyR|>2!0OtU) za!2&^Yqr2#(CME2fOW!Z*a@3u)f2Z`_|F}#5!hiDa$EdW(Cc+dK@&4q$kfF^@sViuucZ_%7`;a`^PpZh zEBgX!t^d^>f>K{U-lIFLeF<7_aatbjbb>t#K{el+)~r9j-D!t3*8|dqog|1m_Uod- z-27w{JQ4>`cqRnrt|TGclG3U_zC-4n(n*&2wtf3(KzGI~*caH*%zhf+k@vSDkoH<5 zJ96#l&(b{{+-l`T$Y;Fpul9i;)hMh0b8ZXjyTM+U*Gy3w%85b4BGxVOx3-61TrjW%%}Q}ML8-`6-*n;OE`s`!tv)-rDVA+Z z!23qK2f^(eM8iuSdg!47Bu%G1Jg3M9@U#eWA2wSU`eq~WmOA09{iqXy?^9oJ2i zuy>7p24XEJ3<|CPC7-V^pW^q+>+5T)%gZNEujBK#@$;&^dPV*jK&S?>Q~QK*uZPUD zxVXBqdU|nX`SkM1rS;Q`DPL07j35e=eK=p9TwYtp*C*H37dfU{>ByLvDlZQX&-rd` z`PAvPrKOdV%gbEqZJxQ7JK@-HYo`~NPp+O`U0XTD&wRtFeJ19(!=1t$*Vk89)>f8I z;=5Zt!$IJW%E^yTom^aAT3=pUUOtVFeESJ?fn0Srg3jQqZhiUW;yONFTRF{XzTGoi zcn)_jQY^WyKV8NtF0bONuFw14` z|1F+Tnjlw+MPcU`Phpf(Yw8={-gkm#rPW9bgnd7`zP@zw!bdu_yRO zov-}{Bn?73xQcsL&>K&mI=PMwTv_7wsk5@5P!5Fv8ND|0(bCHDsYOu2lhA(f(e>PO z`_cHdT3!Ub1)*PCQyZS_-e^_&koe=3;{t&|gEf$n0s3_b=%dKCvb=I~9Tacz)aezT zW^&EcSQ}&0Up{qe{nX-VoXYB{u}`{SlOQHowmYZAQ|l}1ORJ|=PMyY_`l1qOTTw~K zR!=SB@~Bw}&lNkkMc@#zZ3tHpGFXXnXarN0q5|ikLzI*}(hM45sWcqiRod+YZEHv> zzN_AXZqa?H*bH~=ufuLIC{QJF&1w)1!fJHRN-_{|uh?t#d;N{jvh*XBu+i!+Kny5v z7`$cKi5W6}WzhfcEu&AhY`bR(EL7MCzD=#r4!_ex^oyQ2Q$ zM@k=F{n+-4XIq$e+K0=c0-KLse5!Nq#dn`r`e?M@M=PaXCn$&Jqw1^8+S%yDtBtKR zIYc`cKAT}r{efA2@P)AU;a6WQZ8R2#gS(}N=cAw=o^!r>^u_l*`{LevHlBMLCv!UW zD>1cn!%b^F5FME4+Xpy||626whnAjP-+HkRNa^Ft2H}vEwfl-^-v7Q2_M`WyBvbbnKor6=&%%a#{0->hb==fr zM`bIH-d{M1|1BLaoIiiG01C4i_RbtFZPbJ2_R)vb9MwEwf+@hgk!PY}AX`u?fpxL6 zsSH{g*t-^jhYqWqc|v&%a%_pmSR`}*|8MbXRZWoi-h%q)0_|H1GSP?m?=$l6dzAkq zvGmvPE<{yzROkkOP|+dzFFA+yO5yJF+@~>&sjU{ey}f#P<|w=#n^6-Mx%LBv;^N6p z*m&^hLmvj&XcayPUef_XeAhy4RrY%fPE>{792Rz?O0Rb2=*hLkqlH>X+v=I4VCP3i z2H9xASJQZ)u%t$@c#%Mf-Q8WY8ilbmy;T-8VrH!t=x3p-nQbVW-I=497p#7*-7`mF zn(FMedtv271Ae{W!9qJK_xhdi1U5ncQ}?CWpbNz=Yzhj$Ye814|Jvw0bQtFVBR7r$ z+kANRn!cft^DyqVcATw%w<-S}O|BP1p;s#R;iyUV;u)&v@E73!A6$6XaO;C`UWWYR zqL+^i@t@kb@`j#@ z`O_FUU?kR{oo^S-x4OxG?Ed`*#Eo{pR|=p5)B1aL*zRwX5-yP1ljmVNt3AX2!Vv*m zD3F%6M@&X-!DU*efxY|%aT*rx#@ye6Za5n_%iaSdS3h0aqt6Ytjt}zxs-F&1G&zBb zTn2SM{4_=J<|bSEgST3u8k<4f?Sk0W3pbS`X0Xz&1ll`@i z?LE10@?%eQUu6`zwdq9kDdWXDR-dV;hx|Y!HE|%Tg|;j ztIxr2P=;%$&JD=Y@Mx68fPLXRu&|w=-pBC)4{9s5)xpKMw8Lk=a9BH4Ti@El!Q)>+r zOR3uE4WG5$4uNEE_8|`e;lk$7{(glLNFnb;qDEXMe|Lw0?Q)Bp6{ISGpd4W29I!XN z-f6XZ=ZmkKw)3yUmUTV`UjW0Pc?(3?N=dMEBw4fN%n&y z7zVxpMKCIyFdQYt2E6!(Kt{KfS8DKQa`Lfq30v8-VZ>Z@?XZ(Ey!j^|*&HWoq97ysr>HoO8ZX0TLHEkj2jS>h_)z z2D|Xkg56=Q=E7W81DjHAK#Q>;GkRm<8C)B8i|K{|Uwg3jE(`D)<7zK$AnXD+C?4yo z?J#V|&VM_-+EQ)Vz#80yO;rer>)wEWMr(H92zH3WP%ld%R2@i%@tsw_;tnK#y-sZ% zs5^AdUa49S5OolrBG?FoWw=fCjt?$s@5PJ0vWb`%Y?*R#51)OOH|~i12Anr>BmxvQ#c2Dz2+U@ z7x)*niZ+<$Qx}?D+zNS-tL|;SqY<2o8tBWokbtb7zCZjYY;NM)c*2TFmjIQ%J`f^j z)N9E!OW~_PK*P1-@2*gddZzIfAMVw=B~WEXZ^XY|!C%Wj-VSWcF^t1dCNU^13NAIi zqKh-?z1mlPw;0BC&d()U$>|oo_|?b5_ylioyJ#vR4*bgv4OZr$i?#yTD-Nlc1~K+P zF2RAq&!EU#7?Z3!1piBjGO58l0OeQd0JT;fUQzeXU8VRxwFO1}Ypb>IQh1_%Hf-vN zM-HjbtP2L0@OMSj533$3GGMrM^+h;H{)gXQ7q>Xk2)0>&s9eakRr~W5>MJ1%L-17t zO(tmeVYu}vqKj!1=>=1&M_q<0INxc(CT7NK_N!~uP>`BoL4uD7>fB}h=5~`|3bv0- zrwghLp14(T*LO&L4rN{cZX^I%n2N<39yd6SU@i(+O1F1@)e{GLo5&OUfy}PmA|cRG zDW+|!#KnKY-2vHb!+J(P7|8B{mg~EBu>m!Z1+t~zc2M4a(1jd>mH(i7J7sFLU@7I@ z#iJY4GI4vQ393AljNwx;pOzIX%8w8Q@(&TD<1LpSG}H*||CBw9BMLZ-Bjrw{!dpg8 zMA{*(i`@=^SIHB*R(((F80{joq(JmUd{*=ton3W1h1w&vM=kxnMhS!p!NnOD)Arhj zY9BWJYCE-E^KTOe1<>#S3Wmpx5=S-4+AdeafE~1A9#lJ5+cPk0Pt@LP|NUI;1NPtV zu03Y{J&?JA+;@V}xejiW0U%nH`fd2ILP!ltjMU7v_G+zT0ZC^_4JzOOu1|^YgY;)u z@%0Lva3UTQTwCN-rdehZi_vk@R-dS}!~dAh5`X2MxM|S=W$?rHG&a0xzmhhJ*(DLo z;xV)oudqzoD9bzTH>ugjO-5`STvF^oK(u4XDmgRUf~J^eD32%S$LnSw!~%rOj{}dl z30yV5SWk#|?-rRJMP$``?kSt97;kjje9!k z3h!=1R=?9}W?+rdU`$7HU!3pYR;LpT0th(OJ=o|Dz<>#PV8$7FBR{5=ffYr>-F=;j=%BJ%dfor@+%9Q_ZRMc`Q^Lrx%c>kg@uK}UH23k zAq?OJkd?wNxN%s3JOU*#)YrfUUXEkOk3Xp3oOcmM z07i^7=MFrmPJ5y7806Ot1nL4KU^)&8M9+fU*Fx0AG9j3Um15x|QN3Q+2n%i6TY(S2 zAvJWb7W4|c*azM7FjfW<)32*O%>sPy8>+X$AQ=0xZiTWir-dNjJapBh0LholdwU!T z6tF^LwpfjvV^r3l$1qVjO04EFQk`b+el>lW{c|c7hCS}bLU5H3n}9Q|!dnItHE9hY zNUx_!Xn5c_-~08!NK5=HH|8u!OR_U*3P(32N@i=JHq^n!tt{#2w+2_xmFgCjG(TCO9 z6Ee1uQ|2Twi#zZ1&DibyUYWM)>n_30O@*+8dIh|zpjFhCK;RgDq^1K*gnmxz8i!Nh zc@xY*n4RENke$GAaAAV*D3W*Y$B*4xc&GO?@$s)=I;yaZY0 zfsUfe@iFMKYV17df*>L{lW6hMEAi>c%HPxK<0LeW#f_V-o^t>S0TYe!hC6LCA~)}e zR!?xz8Ive+Ebd}15ziRcpxCACa_ruhoA(}fcUs{Xpb%4cFg%a*_X2snkGBYE!=aDJJ{$v2;Vs* zfv%SG(()@w&|_%BZ~6bmz8_zL&{gSPNbHi{TbTO09|1E`%jcoE)ZuvH9`{ZvBsQ?P zV0Aj$G}k@m-a!4OIfTTQgn;vkap}(ZFWXTsnxow5p@5^?nXwfPv=QQnQ&Ov-W$D=Q z!kIH?3isYSDRjBrmg+o7;Xr}yYDNzhB$xwI3F=c-w-1b|S=d6l4)?eq)^dw-TaN9JiQ+$)s^aqQY{{SW)xzy@cV!DURk>$!qai`@AV9#MSF9Kem0n(q zzDe@NS&(1`JFTdqA~a4grG~AF{ermyRW|KBoq>^&rg7@%%gv*SYwh&H^qjwnU2yO4 z*y8<#6H9{q35mez31MJZ`}W#*^sSO1E(uv{DKxPqftLm z<|LVsV}Tk6qHm|JHUnzwN77|D4g$fy5Y-rTM%Us?bS=Iz3~fIP4vYvco!Eq6y_n0! zi)l}D>ly0c&$^2EHO8f*u?YC{SwHiy(;BF5Hr?PEg*An7L+~%Ppwr#@o)10!bm7@YpE+B2*V$(tee&r? z9)0}r=g+?I!b3wlg&X6qwTG)0B6VSK!_$vG`^1MHeFC38{q!UCsMzXkI-gyMA;NRG zY;X`lQ#{nJz!;BTfR)^gYoytVcsv&6jv8FX062Ek34$i^?=7&;B9ujuh^lNQ<`3l^?>CymHxqMWpL4Lsz=AKo-zr}qR-lfU zl{yRx%J>Z0Hhflk+#o$hZ8-_B%2Xi+yNjAFJ+15IL)AtD5iISn1~OiRXCDec!vyK)%o3r?IrL|+_!gu(D~th?3ew04ngCf{74zY!zt&x0Ju?|Ob> zyNf+R(x`V^8da3N*=;>_oUZas+NmEQy;6EW><$rFx5X{S1nc6)SSRH%1sUuxOBv@8 zZ_m{+B-+3&2HYC|PNz8CLy~6~e|oLk1?(R9^VEehw9|wb%Mh%@oW0Y+R8l$xp1O4G zBV?w)mI-zuEw{uY>6Umy1{Zz&PJ`oQ^?JjS{Zs}MiTrT^czfItfqC@xz|I59sZ8~W zM>;>C{0`Fja$F^CkF?iL_EwmZ2K z^pq=mk-a?EcX3bZp_t>~DL}F!a#dnG>9x4(QM1~jeM%*z@Xl&dAi3kK@I{Wv0O6AMImdQ?Y@UfW3yoX2LTbyEamNGU~E3u=*{JJ zTa4!8&S?YgTGc0Q7j9tde*17IJLH|u5q8EE>ThCIt!=oQ^gX;jZcxaml1z2mv8`Yy zkn56rpj&C#Y&))F8r2{)bZd@x_)bZYR{_EOrp+@`>0~-a!n*ticj?Y~mwHt9*HRlv z4?ICI1TbU9WUSdUy%F~sG$yRKAtN=Bj;+QYBEsl$+oF7}*V{i$M~GX`ZoLljLaF42 zxEVx{hJEE^zBFu}06DSUZi&0;;f#NGaN$zi?drIj3W4&Dv%Nv{e+9ucz;RGt1VHb^ zAdbW!(2?}s3xs9`5dCEP&GEMqU}1RBn|2|$#$6hW-bKt-93Wse#o05|jcChl74Na> z;!IN_q_lV0v|kgCBhI|RAu^ix;=tmy-WGSFqQbZZkQcg^L3H9}JDYF2Nt_2nUNhiL zF)X!qsB20<8CWpsK2i0lKELtq}~} zf_paJZ6qY@2#&@<0*t*;KPvRRmTWTF1>W7AJ@7`&P?UbDdiY&taXSS9qoZ1lWpK@_ z5Z8E3;we}a=!kAp@l7hyDE{tB-KK;+MsK%Jxgb{5Zg87@+S;{LV3aUOEsAzM=839M zO>>KDuhm{R{~p}T{#bTNzOg|p_^J_|3lTA32(ayGqPt=-)%Ll~Km$Z^+QhWY;b(E? zJ7OxKVYfkZ5}K4+1!rZ`Ucrvyx!LjVGUM5PAlp`CDT$5-1&84__9HtwKeB1va2T7F z-ZBnVoNm|@MIYm?H<_-w^a|ouAn$jawZ7H#h?=mlu^ExR>qdlPJ&48tZ$x6E?jxEO$SCH~ZPj-Wm#6k(>mFDm zVhK*2ua@0aygfw(iEyzdpV}MtsB7o#r?t- z$De(H{dI7It#m-0TuX{E4%fcWcCCFXp6(abzSvxu+M6-le`;-2wXcuA`-Zr~H^%?` zrrI}K5dSRh{4I8n!Oii_=Go~Hu}+AYW_XAF?J?tGo#{zF?19KL+A_0 zc(4oPLN1@O9yp@m4XO&21avY)xJ3KB(|(m|->f!98*Wk!h@fMEDKb)Byz9$i(ssS- zVwi1r53^w4q&cs_&8i)gl}1iPpBr}U41Yv*fwWYTuryMGV~jBGvHaPk%5;f;z~Tg- zKca~S7gyO52L%cMhDC~M=*Be4_*K>dfi9vIVmQ%<&KjhTR=6lsAZZ9JC&6oE50$t? zaw4`0XA#oQpLzL>Z0E#@$zGZc-8!@e(p`vBhM`=o_CcxUDtFrDHLA&Ivtl$)|hwDs6wzQ(m*2*{pq(uESmzl|ixLqWk+TMGOJ8q8(5*(Bl!0egK zMY@1=6Hm1P+TQ1ZtV?3VKv1Q4Ts(@LoH1V;MmLx|>%?wQ;@T+t+D3~^&Q59TNgAo& z$N!jx++cG=V6$Q=3<+C}GbQ3A5}mY%RF_R_qOovpv~XnGm7o#xA=_$fQQBl0SLz`C z(`Wi}ixO2Ae$<@Vn+;{6K zZp72>Zp3MbV}a)J1fnJreqNvu%*?$}*Hb(+dErW~SHW@?Hup@z+ug%>n+w*Y zo0ll`C=tv^O9|)=S7hJ%aVYe57Pq_LM5>47SgKpa(&HV8UMii;Bz#azcdjpZk13GI zfH4FGwNYT^S3X!nh!Ny)Mhn#fL`~HY@u-UM6gGj2%>uF&5l&LzI(8z2hcH+OZr|5m z2L+VWlJn;a_TLEfsj5#DETl{ql+l_r^!@^@9Z=v3)iA6hkS$bxSXjHtH9B+=4}|~I zDZIpq!nXFxvDaVM|5QBj{Q2XIMB>;lB?pIz5g}D|exUzpKDaZ+^DA9g!@(WK)2Dwf zZf-7o?86_Z>}<8ZGeC9$N4jvl)4AR1a?$TX2b^7!=ib$-TLWz~rCs7+=3AvC4 zKvX#&Gm+Xqul);i(pz^Di;g;|v~@54IOhD)?{5sQ5+9!`UkJO-Qx`JikzPOji2CTrG(qMQd%o>^W_BHq}RKH`H$0`YI0g)%?%b@IPOR|Io685Ok)o zh$L_Ha@B8e2vWY%xgjDP8*ES!TQC|@P*-&+-BL6QR?m>e(E>tl-=fpE*bGnt7RjG5 zmOkzsB(9XB>e|I~P=$%KeVm1KiWsA@G#oU%V4Si!D5dEZknw_bx~oD?alM%$t`|#F zlzM%{?SVCfnd8ABVavy4j^=hQ2B^eG|L8LE+RkQ<1Eb8o`;Gt&SUBFT;J9U_77~A` z8dGYT?$5gPlr9>Bk_aAz@Qkl3kqqAB>+derw=Zrxk%l>?Px}C=iBhxiL9vZR6rnMu zf>MRuhl9sv*$h*nCgo`IV{R90jG@cVWXy)#OqHS=KOWnJRhkk#v#rh)#2Gy5+j3K7 z%eUjEjW*6@35F>eWO?!;e%-#i^iIZnzR8( ziI9+4*%pAo2&&0)%-%SY1=!&cG2)$+YAHfpFO}PU*sq~r3-D^>)u~ zLCCjne79Rsx)rNcu$Q~Xj~2CF%SaA|lvsi+M?>YNEsL`owHHtlCoXifR9dEqA^@e< z^?Zf{??mmf_@-wYi+$wx#AF`{+UDF;{qO}+IjNYd{#8We4*a;7-y^=wv9#4Urfn=D z)R5%-Ngs&JBjt3vtt#it!`BII*%FvTi+r<79GKG=@o(pPK^5*H7D~#;)eQ+wVaK|L zpl=qsNuLV+dvK<;@P8%tYu3Aj(_3l}2QT>6;cmc$h#ghv3H8b_Io677EG&WK3lFTBjBbCF?Fa#1$Ftf z326e^Qbmu>m!s{dxc%W^O`X8#-Df}nV)PW=3N_Hb6cyRx4e@T1xeh*rH*G}}@I!2C zJ=(@*&+jtBi5wvDl~c`@3>-boH+A>IBy=`Nt8jp`^2>8ROir?0ALL{YCQ5XWbqq{| zfIlrtBRi^%9Dn8oqRK}H!Ju9WZW)7bUbeAVW%w7X^CF0$yD(afFNGty8#W<@sgQMw zZj*j{tcV=DaOQcD?vJJsRvkZJKz-vMO0+x2T(nwY_!=3M%UCz~Mbb@1ovV^Yw7>vTs`w7sR2wz6H5` z-AdHOu-+dI5QaCMjCg?-9%52f7*u`%*Y#pr)&OpMQB>f&91TjFvKLrGt13y! z!c>NX*gJu!c>R_Nou+&-trESaRW>hYn}94M<`P2shcY*EGP^Ddvvy!s%K=xZm6=B) z+GlaQPRl=@5zCyfyYHFM-OiRUimsGR7HB%~%7+QuQoV`@S?52H74%vzqmDbV$yUKM zRm2^#;JW9Ih$GAgQCi>lC3cM#LQWAG1 zj6fy47ezlaq~2T*D&V!US{2K;NZVLMC12!zX}`$l9x52+)f8Aw__w?L2ooo5{I2IvS19-9gkZ1T14t8sVUHbop?Gzk@^I z0^=V@2b7FD17u28W{hg{+f&f@G^x(rB;ShNb~i>~7Jn#=qzJJ!UQvDTCV0W*xKIr9 zG{&-o^g=A5tP;S;7j5@Nfyv_?p7t`pX#~?}0|i4;EGjt!X7Mr_jU0hvzlcRH_1wym4^E zYm~KPdKD6C2TO9~qZajr#nbwIn?Md68Jt7{e4QeyS*q_tcH3AKJ#T~Y(mC8N)`jZ> znm7^L6Ryk-0xRo=f`}c>-S7!aiS7{Yb}G$*j}~E1_^`8n6)0tEa^oviJSN@cVFQzi zjHrvFQUG>=uq`}gvoaF4ax zCG%&RdBqW*e9+v(*TGGAYSBs>vEGp9xTYnB2zrMFNn!*?c&Q`td8hA~hm`n|?d6;d zrx>(JZY}Cai!oj);XK(QMY2b+-iN*>B}Kiqxg0mjY!g1aPXjyedL(P4nx@o72nq`hAm8sAyA)L>q*2%U$hTLhC>&N zF*fu3hG1t>h~l<;6|)n`OduUJw*GWdn~MiJSUnt^^z9mL!RB=FLOB0SqECuX)PbCJ zU+{e9awWu)ymr|fhpxQe+K(>Y@4TU4VlSKZ!b65a{UqV-@D!F8T9qy&)wjngA&(IJ zrV?ABOMHQDp1Qwyn~ARh%&*!{YH%{`Sv2qcPh6a=b9Kl(?D6)YSHu)R9}@r6j5wRP zC0^E=nDAs|R>eAbJ&Vp_vJe_im?O)P^*4}J;k#5haGFE}8S1lZ(^cSI9_i0W+1|yu zr)oNy5M*ZDfPX9xwOAfg3xdj#Z;+%XMcD2uGzuSd92+gzDKsX5FdmBMwj&N!y?H#i z-9w=9t+9E2+;{LUAk^H8!x=Jn-R%s!9<((H{utS9x0?^9+fH4GMpz`!5ngMK6UInz ziBc89^CztJgAbX3lE}e^)PT%4=kYwmiAI)4+y7kaKDvjzzxZ0b@CaXs&cx1(P z-`3m4A|iZ=DB5J;wLv8Bgb!S@2OPJwII4@|H6rF9IjR63a;Z?IkLu?Ek!u`1oUUD! zX*{!Njhb00@_CN+sQ^?%mqpe{XGQxa0wvb;0UwfOnh(sqMM;S1-b;u%Oa4Q7nLR{`8u-u^CBbcFNH@K_kA4 z;4~MJ*_tw$bTL3$NDOyYAlZW=AX%Aafn9a5Q$;;+p7|pxn8?8TwR))G;KN>&$`_C9 zM=Y&?iM!Ku(W#7vq5C%1v>^jdLZugdQ}eJ)V-A1>GfOC{rjZhxpW`St>#Yrx;7_q- zy4=sVTDQH}-3{6SbN2n5c3;d1 zd9^u%$G+V#ZAAo*RO%?Rg+OdC4|OyT9~`H-Xl?3Vh8T|QQo2Tl!-Bc-Hw zC~<7kVA`l!;v*u{6HgE(3KY19pF2tz_8R86Pf~S@@=F+F<;obI*IZ9X9F% z;WQVuHRw6tG?IMX2PxTu7Lqv8Cp%8UnTHQ};$WP4)fdJ0K z<=bx6_Yl~U$E5EHZ<*_KJ4*^yS;a9;Yk~%!6h^ip*rdZ|wMP{|{Ro45?G zL}QNF8}wxxk>U)k(dcMiVv>Wb!a!fHm9|m;5-$J`gg7g%;!T$1O59ciT|+`ZRcGXE z!m@LZ&_EMBp|X9Tx0&FHUe!cS%xcSp^PKfnN-Y@Cy|&zRlB5}Mrxmew=q9YNpYWZT zd;g{mLPJ%w0Iw;guo&l7dvAtgr)M7O>`<6ZM-)wARO=&*iu@XP-0Oq3f`@PBwh^%* ziTF3KcRWc(eejY!iiocQRAB1^zJsIl$OnYKgQlQ9yU4V0^sCfR<~NdND8>c^A_KX+ zL+q<$vM8hq;Y!)L9Cwl;6UR{cfk;iK)KYV(+GFNIuOTeQB=7_{Y|x0Ik;@HAiYE+! zIUU^dW7ZIs;5;gB8Wt0qr-?IKv0X>E+4fR9Z}i&|*jI|3V1oN%)o1uW4m$NKlGHC9 zQ|2iav51n2ukDp~;BDelB`Nkndr5rAY8#6*5vfvoEL^V0EH>3k>?hbB5I1a$H!m#* zX3%Wu#|tl?cA2_wt!_J?HdXr8J1yEIFbuaBk2X~I=*efc0DLtx1$lAY?xAl`+n5OD z$yA;u*khm|Y)vQ^Nv~OU$}RC94{7le-+Wzmlt_HXV<5_v=#9e8rkGW%oZ*{} zZ4@hk5kj&#sS)6PKoe^;9gEumi*j3SB-=S}zRW)ajQtWF(+xM7w8%W8;b1*4$u)*s zWm;A)8n2FR%y+XKuQBv+k-QG7ZUF|UZ%yXB<;(>+IXK1PeUZbki90e z{r1|l6;Y39 zxDK;*KeIJHu>M<6gB(esXOwa;?ao9IgHq!GVZ%XQ+nS9sovSjXLjLX(N!1e`(`fLK z9Xzs#$2eN0Ek^ZwF(U^zvxYvrErPq}wNqzqEPThho({UE__|y^=R0_}y@=Fsh~6hG znkKlQ&XemvB!duzm=wH#?9a?PBV?3%2(&z%L#a2)I|-=JUPXaUj(6*r5?!1 z+ZBNxP0F@~y&xC(LILd^h^sUY?(-=U9<3dM`EXG4b#`y<3?U?_{mTS2lQDUvT!81# zKKl4GXNLm>5@ci}CN(7=mbnuhi5XO{)`Qg|U;+PapkRFy%asf}MeMvL0kR2W0Z;?F zT@&^JH}WjyzD|H+%twL{8_s!8Oi9&S?NuZ@<31xpUzKn~6$slF2Zbhm=)lGKih!hm z*_L3(xSxp|PG1U~Ow96($Dc%G}hZVg&H9Hriq+E?Z? zHV2(}CSsCKhDyuWj+3Lnd$Oe-m%(MO%mKK zM0QA@N45q!t`$ejVnwKY@)u3R0 zT-7Fm4Ma#H=?%gQ9P22xto@gtxdJZY=C<)-b8?)nfQ!s(01OaHnnLcfD5%@6Do9G4 zvcoDwJyGQ&O06oAW|7Z_2S<(Iorhj!$$`#=bfrqEi5-i zVyo?0L_y3-2`^*tRTJ~8vpd;E0^~|(jws!VwLYU5`3K%&Q6X=6qWIITRW3D*L$FzG zAzK837<*6lJvXQ9b?7Gc z)AlUxY$5Q<>w9x=pbrV$b{N!ke2Q0WrQH)|B_9;s1hJA)CJ*~KbPnqZ1LmY|X|~iq zIpGiYsEV<2nwKEvn4gXi(Ee+mB8SImAOz9&Mo%2>&|HL}a@z_+PN}qI9V`SV$HFqI zrERx5%?KCG>t}HUQQvtw&7vwOXRtTy(8b6Ji&D`!#29fY~8V6tl15FsjWPcA2$f zj`U%ITU6!Q*aRHgmc}x(OYNwQmjUq{++fYxq7o)!(H8MYQw62?to_)!;DJ`&*o;iW zx2oR=kJ(u6i8ooo-M@v&q?r1W7Gb94L}k4C6_%iOJ(Z%a2&VfKW|B-QD^1O!xd4N-h^qDRUsUuVy=JwIAwK;sy zRsWD|8)1Fvpk0Fh5<-B|&H1&I~u9#Nz&z z!jvaiC(4lnRs7rrrC=f$zrEIr*kED)1uoVtGm6SYg?Xd%CYYMJNA(adP<3k&HO%Ao zHpkKfO+I*9yVWPn>V=q(JUZe{<hYWA;+Pvy)(aqHjyqDB9bh(|2d=S}v zOm8C-k@jOz2_!NdiyL^ZX&a+j6SOXx-9XqH!(6>i#|h3E-t_isNFuOD zn;_JP>p)u4CPaAFx1}QNHIBI}_RZXFSGFxh$8v{PvmQTfLDq^feF_ue2(XB3U3)S; zNyYy)V0J@jl-PV{Wn(6gRk5+VQ$w=OZ6XE^rO?=6c3i+oGZNC9+mVCqYe9NAxZfhv z{^93Z?DQ(ZF3M!0l!NbS5lVc46uDwx@ooiTWw18&6xHMK&dY>iP;r<<%?qH9TsgqoA=WdzkGNa|M9R zeQ`S@^IwX{dy}&rRPjP}OpZ}kB|^5!WiN}cVjF!VY$^4RL0UccYI zD6D+MI)%;45Ho39nHoI`FvH@StVrZl1&rd5p4qh7Hy$077O zd#V5cf>&rb_ezr)1j}hg&U~lRMN%plgV#OhBBl2_Iy@G!g7Oxk+-sLzPr%YG3pApE z!4mB?pMXBJSuj~Aj+*S=Rr0a0-r^ex2=ajZveU#RQ^y0LAVy~GJiG&SU0z|z@zao^YRr0?Y&+X?_ofq88Q!HVUAUO#72%N^t z$PykmxiBG8giDXJWvtmYSxa>|hZK1^$Bom8Xe^5&<}H2ivK{`eY?Fx|ZfE4n^iCsy zH?|$bW}#-VgEV}lwX>3S8BrW*@htfbT`5VuId(_vyM|F)^LmQ^A(Pei+I>6;SqgUW zwiAVklw???T~1md2bLDt5L!Tmd1s#VkaMZ^iIxq7sm__81eL88423CDzU7`iM6`|2 zo;MZA&5ps&Vz&)1+#*I-PPWtfs!AflxE# zGX~vltivmgCJ(^3nq&`_$}n=+jF_WUqLerhmlpe`<+d}NUOhjcY7UBVK7DdppH8t| zxvfQcHpFXoQt-3YC=k-bYaU+JBI_PIYIRU#iK=1LL+!K_YQ>`>KCi^)e;UBL~l> z)d&&<%Ju1BT5mR>s!Ux)qDTPXy zdQR28X>u_14aV3x)@C$eEv(HrtF2b?aM1wLQ6q)Qsh?rT#xsz^!4=|x(SiKlX*tN_ zyF5-aGCQ%hgAoUmUY3$nG6}Nkx+x5rI1t^=Slg$QQ{Z!~)N${TT&eB$B@k8d<;8P1W0+gVv@o5peB11Vd_D6lGjL_si>es zi9*Eu4F!#08wZ9*7-86h8PmK9UddD^Tq(u38wsxCcE-ExP%^tJXUJR8Z(n=sSh*Dm zSI%3I!^$=(LZfZ>Ey*_80Ap&xNN(iC3%2okxkrCxYg4xogtz3e5k^|@f6)zOE$`wM*Nhd6l~mI+ zs2tOK+L7inWVTR(yn(F!jt$lGGOr0x4G+dGW9$?wL2@sB`;+WZ?1CayLWoCRJ#$|Q z!bUhBfegFwOau45Qpk6DPAU`SSZMPNC!Rqo8niWeu4~z)f4n? zzBS?bmT4P{f+Dmn^S6}Cnsf8vU&iakq0mB>u>is8GwS%Xq7w>=w;mbJ10{f zrrB}ESyarG*POn^x~_44(5d7dl}auK>Kt(v)&rU-KkXIhbK^UnLXBN- zAxmxE;gw!cX$I+^BovYZ=B_*GJsvC1HNH<{U9`i^D_Cc$xl}2k>SAhMe4k*$r8c3L zvAI&sgoP}OK){sN*xM6Fm54e#92^nD(X0KaybY>L8F8L*F1=Q}g!+E*OO$So%y7`2 zqmqJrwO)jR=6L6ZQRSv~+th>xK`ZiVNOpeWK3czf#3r8yb@WT!TXGAr7b@8A=Esj@7x*qR-ZU7w=>9az29h3a^XvVk?$Pbk7p>dYY^E4&-*d~ zHZThm%fPe9Jw}eXF_aJsqaBr6xUgH>(-`Ep945^fzWqq{08T)h9uD3XTcb&FV5WB7 zsOJ;)UfY-zgna|q#^P20e~?$7n}Fy>-6}(6F;_q5f%uGC#$xf24gZCVGYhW zXh?zT?&XCL{u_jN{q4bp1b3K@L`nG%<>|tXwu#4+}Sc7w=U1O zlRu|i6UAAwBcMdjH+4u7!BDMCv`Z2*-?9?7Fxj1nbv4)%qPYCIw`|P>L<-YK1gk0L z=zU$&olxe4-J6|<85&lf3D|TTm+sZU&ohH;M>AZ%-6i{-R6&?zg2k(unBvwh$lM*b zGmVKR6w4`~km3i)iS)5Q+DP@@-IxILV56jr3?*mw$RTB&&i1vXhsU}&ZYuV4LOyq4 z3joaO_kn~GHMm&s#--Z{q=gkx@gizT1r(Q%^NSZkkv}x6jH2jxyADXRE^iarkqCiH zi4@P&b(4{A-ZYRL90eDZHa(S!<=y7Yc_fLubWf2b4Mp-@PSd8U|AMQ(BbHW`7aWS6 zPTZmd$XXoCzRs&z(eHvv`gtstlc9WoL*!(_4xTT?ai%zo^!UDo>!xBipfi0llgdpt zKS2SQoaGf3W!aMKcW;pHzV94XTh2>|-p?T^`Id;E!Gx3ysI2KYUT<;sJopM(3`yJj zI1Faz$S!M0$poE%YU3fDCUm1$G7mNjrlZ{?QaRu!LG*u^34b3POb~N}kaXm?notv% z<*X-{qIunbTc^_u-x}DTSCdJna?(Nr`_2+x zhJbp7=K}cRx;Lvl3xk}9Ce4q{HtE{)CNUXlx@su<>~O1tCywc(gmQGyUJXR3fF+A( zL%bUP#W^Iwx77)(bwVZbOxQW5Owdl>B7{_xy5i)My{vXjBO}R|fR7q|t00iB<{v)l3z@ z5tFRXyd1v#&J%U=J-rK8XaqImzMK>>HwQV!dg}-fH5%rO#Mt@`yk$9ZlG6E>7xb#vQI_-o$OJ36+Fu8@psYR2ghwEzXF*=y~7mWWTu{F%x6Z! znpOP-{)%?}vCKPXbhGS5Ql-V#t7SKB*f{k#khv2s@2F2^!;2?y$HJ`%(NYF41=#H)xzI@P795$UO2iPQJTHYhf=lK;IDK)M zk+I}GF?Z`SL26CQaDfpHo(G4NHauDqqoD2_=R0oF*ZF>4ncKxC-`w5yVznMYB=RRA zXGJx#dNRVO@ywj5xZ;-O^O^<{`>GbHhyM1#JPzMMly=i-dOCZi_ zk~F_5t#f7M?^8m_b_|%^^X+Wn7MhMG38xII;XU#knkVR2s9GmGaTG!B^5WuYGJfsJgPr*)3@QBKs1d?M!>mwMRS*K_~z}l7nO4-#WQ3BbA3>3BcpZ|T4uA;eU_d$F5M6J zMqah|5*c&feUme7MLe;V%hfT{TQzj~OL+;oN9mk&UwPH&TW?p`Pm#?{<#8WY$hHES z4e)JFVyjI@+J5VCJfBzOOx_|N=wuHhW#gWCX-j4li*!)p6oW$M8ADLR-DS{Ttmh{v zru)iNoZ67+vWv%xa3;tCQ69t!8k7->u7Ppa?S#Pr< zTx@J2fx*?npi+8lWIZ|2WF(YAs!w@U^-P;?1-^wE3J0sG%N^Dl$_|J(OviU{iLEvr z6?a0BR!k}7A;I@!Ir-JuQC%g`rK7EsbB#Sk?C5EblTgCk|(>2lXt z@{d}%+rK#0rHCyK@awX*W4zUKA4O<`DDKq}Cs1b%~qpi)rFGa0N=`mo=}W;H*?R-#!c!*~wN8BlC{$Fff!ugPTH1dr}D% zzUQTxsfJC}AYqo;mU*>0W}d53Nv8KB*VN;FP281-eVCI2%hf9g$`hR})?{5hci)`8 z#j4U}y;Rw~5SeFTIFGT5xWp!D4Bl5MbdEF+XSG=dne($fi(5ND#CatkQXrUGGf}Tp zoK(n?zJ0_@w^h79`OU2EsiqJq2S2>~>d*iwnd2f@l6Fk zn*c}zVwv|rMr{c?Jxl>mZODaH31g5 zd!vjOUY~}0K$!=aAhTYpsy$*KEZYd|YHVcGqjL7b2g{weshWC&Jr=S+Ojcx}x2x^q zL8{|JC={+Q>7jk!PwaRud7OavxH?OoasbJjo4K}Rccol}ph7TZc?B_dHa^&Hdr^Wm zSVDwFXODXCpH=%1vxhr{{~VH{7&s*I z5rI1t^=+Xa@3NCK$T3H8ZYwiv9x>jCgFeWK8*e%mcUqkdnDcfK-^AyO#EG7MlgGrM zF@-k89qQn)cXII!K=xYHgzgUi+4$?g96y#(RFwgJPSdCIQ>*o#q1UnN?xS}p?wtZ` zt^}#S-38A(?MrbT9%Rwi&4ZUBDx{wR6}`;odW=FW@>P!FK#H!@9Dx{Oxbop^;=4!w zJ&2FXy9IGG>!mI&&ZwR^CWI8jP^Kws#D?V+I@2w)+8E3KqpYIYF@}?giHVG>tkd6D zlS@*VlpyZ}3QsoEZjUcZ&uWGOQY@#OWDc^+3u~h$X0;Ql>ce*{T0`+{Jj4u_4FUJK z5x5NVGYB9F5c;tO@ZrpbrIR9e{W=H<#fw#LjT<-|D^?38(FeFu&m1^8U*C!n6G(Q4{{zW^ zxJ0N4!$)isYg!I)lSf|Az?~d|c6%ct!DLNC_#i zd^zRL2oeY)gtD)ai?^AZ<#sMMpll&z9Yp0?btsf<3;~+W?N$aeq>2U{j&u-Du3)Fs zFxTXXt8T@h5+Iid!2zZKDvN^dM@DTOWvtk1s!QiX(!!Jj<@q};;#7Dpz&n%rlFCo& zyy$(?qReW=D z+lyrtyF6ctEWs;c0+~@TRb^3Cy(n+wgo|wx)}uo)Oo$cU4b6#N+FQc}%>Qd}q@LWYd%}&n(j}IwleZrubTYkoA}L2@|#txVV~!X&2XR1 z#c3^g6nXh#@NNg0pDL=2(c|W;Q_fM1f8|yKHedXAj-wBE{0p@}*k{}^{*0FZ+pKJxm=$0`TheERMD^iSpWi5-H==HNp;hUYP2QY1O%m-iVAUi)GBV`S7n%+=+I^Z)kQCZdA zRyIsS`nY#ak<0OFfu+cjr&l=Jgj1Q+*s^%(QPyEv;`W6<`g9@F6`xF4E2aoUTeks5UPMHl@vpIqf2 zeA*{VO0YoyqxtBqoVlh=X&=S3%6|68{4CvMw&=fIKfte6<5i=+0p2lI2+>_wLbY!j zU>h6S%tZhD2wshRyDa-{FQxhHKah4Trw+MNGVdaQ5-1tcV*WZ$;GX!)Wqo5&g?M2Z zd%xZ4G^43luYoiczMMIJ1s!ds`EH(yBv4JcXl=X^aF-F>OotMCwACpeYOh37F7$|TGR3g)lPd?XU6C2O8p~ zW+%^ZHxFdGW305x=^jYs`y@;KBc7NGjF;@uCFC5&QC8tf%p8tJds5Z{3kB|l($k910 z`|Ss|4KC~cADrrepzjC^|8b&k7Ng9C6PA_#HFw}ZZg7I7f8xM6#u#h=<^!8?g2jI= z!5#=BO0xQ!XoYCCEeKk1+sw#wfS7Gsa=hm+1vNU zn1Sen9LpOuPZL@UP>l!b3W|ifJF>-J!Ee0|fB(0M>Z1bU8t&yv&dDc*++QI-$UAd& zHnAN0!yI-g=dh9pDD(ZENj7`zU@zx}oys}vxWM_-9DF(F=Lwne5BO!?y&4f4Kgmhw z-78m!`yn2XH}}Yc9zGMwM_2dgdBeA@ob?<0Dlg(DM5(Je*Sy4SOj`OFzs@^u zLLfTBFTM4s915C6U^h{NQqK5OJS#EZ#UxeH=n2577)=yPs0qy13DcV{F#$~YjJNmj zqOO_fpYo(c!JmGj2v{xYT4OTRuO!r2cN0!#z4AZjjhPi(yyh?DS$pFdC)mhtwApAy z6zx^*RBO`+#5s!cGyS>nOjxi{r&~apd5@$3>6?{QphxVwE4=8C`nUM`EoQhHwS|^I^$+W(L(-K$1Gzfug(_E%ES0mRlby|pXJ0Bpx>2EsoFlvT_{47s&dei_c&FDVDNllL$ z1mvK`@6QH}@zKt8`r_FZ$qJEjl)ubrO}|^L#U+5gnFM2coFE{R7$g9%A;9TLta|%M zAU!x6iB*uCll&dtORofIZ5uugXB$~F40^YuCddriJWj8$Z@V*)1V0r|#aUUm(m` z7z-+EB(nWvsyA?By+*m5XaKNdROKHMw`QR#0E*gqHF?D+zOY})J(z_H0`3Ss`E5>h z7LfuV$3=>NI4ctX)KSX!UpdoR5H;~csGRn!EiVAuu=U{Ir>hC4z|A0$qAO(A(e88%{|{W2%!Cq`=ceI{0BY9*Ajat-A#8eyY^tVB#f zW_gaY^x7CRXK6^MbQEx#L?>?zqa5J$lzxm;@|sujz$noZDwFws0`fX^G6DJIWwp<2v z+pskuy>ll(W-A_4l&Std1nB2BSpaLOS;Z%R;nvg3M_~{==wV_1E5e@c0yX=MQW+CQ zwzApOpC>7r4yy=lvu!+&7Zb((LSojE2`J@ceuj&k?tZIGOK99k&>p|v$EQD_HVP{3 zi%nle*nSB-YbRVmKyY91>C1`wehnlKNEewJ%-C0sk6-4|PlxrKrz-kXk{C<@_^n*H z-$8SAhDl@Mm}~)19;TX1_*wUh?Qf?)k(5 zr@0txXrA+4?xa@^aJpwgL(Mutou4E)?_wter-Np`j__t)Y(@LxdZ|Y-$?Te&h6}!Q zAe)C86|#Ak9?0eaoZh_OJdo)jbXKNUJdoW3xMhL&I|l_%FZZ)k8T16F3p=iQ)dxa~ z%<>*?qSuH$1yp$=LjZptr|T6ZrvO|JAx(8_QB}K5p5d&$1ab=CEgeYk%{(x#0b>fF zooKU`nDTFM%3k?u3h3v|oZo#AcK`(~v}*A|iC_Tt-=cf%r>Yu9tC70x{wX>;mv|0-TjUgs=7keI8#+l$`ZE@G_Ik?%TP6GebM4 zBj~>4AW#qS^qO4$&_R$(fNLztV!xNt@vKJyyOOzSKSy|8@o55FQSkKpRx-`|4&shf zQ6^Eqh1|tiuN)t(5^(?gATVaLtfAG2F|%IaO$K$D*soKZpI5z{;7~Ngl5_8#JBU+Z zLauD%xAIiH8s!AjjJoigqHddjyp=PY6}?sEcY*i&2Lli9Qwh9Z<&tM5tx*?;tw~{< z$TKVP!i&~2y)Qn914c1atrz?=PHt9tgy38xEOQHIUU5s~;7f!yE5fMa^0I?}d=Lmj zc$%I3D(UO2lnd}QJNZja&+AE?;K~79P^o~a$dbR1TR8J68<={c-$$Uc%7vI{1XBrL z5tpg{6cO^EpxTK1A3vZCP;)hm^}7#ps#Y+5kx*ylHFz{GYVBu}^V=vtm#DVv?--H;Fy7 z9(5;dpzeId$bJ8t6P=Zrby|HxF8?v%&AN|q%GI~=SY|~VYd2fw2F^Y?V>Y|74*7Lc{}>f{TKy-S+8-ozrn|$^c=s3$2;qJSVQ5{2eE;Grp+3c@OWp% zWh}P+n%uV+4&rX8hb08wS+%iG*6$~n z1mt*Khj(&k{rqDhz_#MUP3a725`b|nh#%l?`UU@q0Jb^}Z7%qggTW@Ze#Dbp_3UJC zq_V_GLiO{eNtTXq1G(^j#D&j(;S<#;K6EgcnRu;A#aBGe$<9vo#tLBk^1*CEqBKU2 zFauu_Y=W3%)J|~wCOB)^)}nZd7?J(H{j>wwajxPxn{!)G{Ir@N=0!{q2+O6?+^@7if`^%o#f>`3PeAz84=)R*e1N0z zt+DQciCzxs6u1{$APWXarYLSY7EwCGNfN)2!({Uo^L74VYC!{z-_69DelZ{RPcv9E zxqE+)BYk`hyQkj-l{0#fqjcvm%61Upf%wt}oNghK5W^0PzLmsQUc_^&%x`FU16-E* zQ(R^?mzn(78d%(JsDhCi0V*q;lkt9$Ys(fvCLa$rTKEk@yr!kid4E1HG~v_G@Xg73 zB68_@AY;2#-$Oc$jPi9{OSbSk`L2m3huD4@=kvLmY)U`%IHt6%j8>iVs(L!U?&pYe zbKJe27J7e;>zT*B)u$wNZDsHNHEjdsInW4}Wl0u6`AQ;%lx;p(ZpERrO!!S4qdte_ zAc9;ng7jmth@m%;A{TJX?a#=VCQ9n3i6NhnA-l$hdOue=52V~_bvBT|fQ zDhbK5ewP$ve#?R%V@n452lK@Wmc@%bpjUGbw=ysFw0l^F>$X>Fwwf%+B+L7cT;BZl zu@Y5v6m2KpO`djXm1q-Uy{=yTE%U{BLzPf(y!)bEh7Mm6b{e zxG=Zt$@yYM)l#P)i8O7*a#vEl+6u(JixX}7QL5T!q!@0t*Nt|{$% zc&FyKCWN_J@$4wqG(Vo-4A1p~stsHJPsG3Z;X2tc620UG-!b3QLX?tbA*&=6*}B8D z7^wVnQFSlzO3EwqrMlc7zcVOQ*zQV51F#Gjg1H^{jw&1U(Q|I z$sPishEa%zMY0DmJ&O=-E2VP3+e6J?!%5-?!j)U~FcC6ak2POUGWynzriMSk70zdj zoh?1awfRVfgnVRfp^gj*DnXm!rzl9V2|1=!U()9IYe?U-3Dk_EE$h*~eXeVR(4^L8 zM*B2TKAX-@xHg1Zu@D+KWD9TBYt(;;i1A7$>Q6Y-$XVUY^~`G!vuVG@BbwJBD;f{h zIEX(b){Xy|Y`ZEZEOUeVbl}iUj_@Cn$!61l3FqEvwOjq3xs_kT70hW2bI?DRkCsif z4s*_z@SG2N9bsc5tiVXGW7W^j1DC4iw11JO?Jdcb@a0XmOMtGkbZ#N}&9)d$23~kG zs=9?J_Kq4lOhD}6O?MI89^tu12TZD1NXa3JrR}iO47GQo%L6*-EsX4K|FwCX5Ues< z&b^JZ_g0jf0RaeJAIJCes>=g&`WJq{Ihv5K*P`tS^OQI z#X<8XGl-#!KRM5p7{Yid2gwc*nCwuvl77>b?*5Qxf6&rh6ZP@%pqYE$1=F74Xa{}K zxf}ssBlv7T-(-8%QTj{5&9TC>Ip}3{EJ68`c@PwW*97H4Zd0~tXtHhU)+2J<#6F#! z$8mRihVcFck0IOCpNvz_)`yZ$Lq>vZUjA5SrXEoF(&^t zIaqce+iWX^!$u3=Kg;2A$Q&~*vl0cHRp>{uvqPR`4mvd3kjCWuC7+4W5c?u)dml&3 zjwG7x^cZPVfj66r{xz@2xjA1EZCe6^X(EyeC5mBU(unjX z$Imt~&9>P!Y&HgNbr8K(YP1@#RmoBRHYr|j&Z}oJjtEupUkgiaM95$A)@H{|&bIRH z8e_Rioj^N3i`?#cQ>N{XQBA&$_?&I(opFsA4zHyc;`{3ybKV%;2)0qWb*Dntaw(ay z{sY|Nd7rC<=#{Lm?@Ku7yjcJoE+Ir*eRuwvcW2&btBMxHWBwV(e09$ERmMy%_G^e# z^Bx${b|e%DD)D`!67yz8-BulzWDp9x$k?w3I^g81x#oG}6z@>A9%)ng63@3a=kx7_ zj4{J*y4Jw#*CyqRCGSJKo1r8;EoGWw@UGjiCCW|HAt zj`zDf-5lD!dJ8;T43{UvYyAx{b!MQ-s;=Owa+qHx8e|)R-;plQ{tm9f`vTuiegk_ODAVA=DJ(Te!At0_nn-bii(_9H|04 zC8V5b0(l2n`r9c5oS z`%!LeHdCMeBw-7|%Z1EVG;+kpi9FeHXtNC2vJqQ^ zGpw)GEF)S`y^q|5?P_<=49waV!TSqd{%lod z`V*{1V1-Fj&u{YRvMp#cj0s~M#63B?d*+QOl;P`Iak%a?F<4)7#DB}P%a&kf*hib` z`llQ!J0^Mhp=x2UgHo%eNc0bqR?qXo)tuXXfO=epoN z-%@J9o+544|o->*$vAm3uUU;zJ1=S+;Ier-zL7yb4zy|LE{8hmK`MDWXZKmLy78D zRQ`VWeLA}6@n4cv9PALAs5skphS=jOvLn7GSp@!58Me?9`DrIP#ayaoL`csm16jPdY%GZTGL21@7?8pK5w{>)w3&7=yyn{}w?dut`uB)t+0nDp z52pQ{T`nqHfth-oK8hIV${oK)GBn?zjLZKgI8+Y$8lUwyKYYt)??Gc>TH55RdvYa4ZI~&PYa-$LBl-a{w1VZ@0og9onX&h zWS`KUpB5U*A$IU^X}{fu%mrDf*+%J1efD3@HBY;J? zqP8c9@*>wg6G#|Pdk7(mLH-_*-CO!S2kyZh(?cv8!kBt{)=~eTxo&Tr_B;^#oeqMW zOB--fhZKlRX}!xS4!wKI-K>PwpkLSW^~Z^ld~Y> z@&*4d&v|BeZ9F3>crzrtN2i@1oHjjeRV;Ato}3a;wbk!Lz!gLRARbp{_PHciURf{) zvY0GIbC(gJC~ta*FkNww^8MTaufJ)MaZuw=sK!1ceHm9Y?Ox*nF~s}J*1XESo|gOy zppr?nxto)EVajtOzap1W+9T;DN*gv>9bGo$hq<%UQcRVs+Y2>$`w`Cai5X^zx~vFR zFmF)2$(c>dB{;KASPemrI=t`Yey3~A&U>@0xrWd<7Uq#t{^40pMzbz+G8Q=n^tA;2 z^px9aKvzQ4V2$%m-olm73KOcQ3-i}zAu48`{Wcy6(nRHTPSRU-A;)Dm0C!NrFxbG0 zr7?ApZ9U29PK)rcy@(M;6^glH7KGPk90%M@oY}PEfd*$;x-9k|b1SE1<{Bj5nE}Cc zCfeY-rxiK?RU1?sh`&w_{P486ZXcri_1VtW4IX@CCQzV>T^pP67X&peT|}HmxmMcV zMFg-WIp4rDop$%-G0sk_jH=?+Roo#&?*nQ%E*y!rI>|BC^6$9r4^4Tf?GCbO_u*Ur zigTWJQ*qD;QR^T9#E4km!nvNEa;^rPVb|w*Kc*G4@D!2kClUsYnDw`~*lGDc0fy(w zq0(QOeFEoO4Ehf_*J+6kK^uY_gZ%$^nWv?&3ZxY&UYv!(5)_^vfHGprD*iZ6d0KL4 zz@dJ83t$5%VnSqZ;OR`uR0)+7mb}V2mhUFaS&juy(UkFifCKWAT>LE4gbN=|{9e=u zk#a6e{}();X(FWDrTg;i#v zXCs!MlE{u4^ciCLw0wbH9lF-y1Nkb>blNooTph}{9BqlaH!a%+B;$pO=k|?U>a=v0 z5c`d`)&lDUHLbD=P_E?kSzPF}INa;NQdn1k4o!V0UgO-RC52G=aaWam;*i1)K~5`~ z2*`Af`nz2JGgHz60Y1)CA0Qr1D^dv1BrANJ0KIPq<{+^#z%gd{pUM2EWw8R+!w&mA zu-W!>oFNu@P_s?d!xI0LQ}w<>ntNmYOz}$z*c-t#0pKjQ_L)wpg7cle5}-`F68_NCAj*0pC}*Q^_L@?3pk zw8Iyvp>SP9po4FxU)-YDnY7RCO4PabV%oLb;uU2CKHTA8_81CLd)@DvS#hEu+S-J; z+B?Ek?eW+(o7}Z=X2#Z*Zo$!JS`%mDSBx>oPi%Y1QzJXzndS)Lk`c@AfOV){&H2_v zGkD;L6o)n~kDfhXFy($(elDB`@6l53S8eejPe;Fsz+lS#viz!e8j3yTe${!-uThD% zFqbMoyrmcKHO1TdU<2+}mZQ~Gv@p#c=AKcfG8_xDDa(AY*p>+!iU)NxVM{HqLSxZ< zoJ`iwV7~vCyXk?HH#)u=iOsY}{xqKsl65CMHZHjy>$_^hSVtm>rH`Qqf}F;1aKc9mq13$1gTR3 z@}@s&I0W9NPRpW;{Mg;^Q?F%-H4eCnsm9yI|D?C0RM0{i3vPaw0UYRAs?jP@N2z3Z4o?8r4kqtY`YWnyVM(g_$SuZI}-=Pa_Wo|Y}u}a zuch9?fnH8>y%mJj)EO{`h{sIJsjP#kXjUI&E#J`8E8pjiczy=kVW~34OWWA6AEX}| z5IZ~~LN9)K93+pba>>_5>((BJ61^e~x2=h@!t~|P;Q_S%6Xyiu#IuN8UDiXnYrbw{ zRn4)OjcQo?7uHhdqWtBOhS9HJRP!k=xgS2;^Zju2mkY807F3#Juf2j+&h7cw+YrYU z*koq313^mbceTM})sVq+*cDne@>V2&R(4ICJ?d}^gUY-u)*WNksf`i-Fn zu%lV@F4+;EzeQdxUd@Fy&3VpMYvPWl5bG};YoaDKU*#riE>>@OTUQCym$H(I4T}#6 zvHT!-Z=yq>^==Za3bZo)#Myi6RRPmbP?`gURX%xRmfv8{MlorYy6eX5#==L5_C^=Y ziI0k4Rmbz99@aERX&0^8d3F+uZO!%|I}U=P$=jiuWi0RX`@eugd}|12tTpUtzIsgJCK|~?t$5FW|DaYLLIS$_D?y;H5dtyWydA^m-faX%9HI3?-Le+vOM;Q^h&U zXqXTCWiRTSt!|eguP<71v2pU~$U3x?7q(_;CL>d$;KWZHxs7y3PBot@lepxDew!A1*fi=(0s|0WE$K zkH0wY?4(GQJ^86@re3p;!~#RWUo zpT)yJ>u>b-pg`)lnv>A*s6gwd_QpY#n}-X@hYgPwUpCRlietBya-oO%@yJ9IR~?{b zujq>ozcXA9M_e`$ZHU(6jiPjeEA$M!aJd-7k50q~|70z6a;r9}afoZzL`}+H3R-@D z`48HZ%ej!1=vbEh;mQbC%kude!3dpLBYs|5ED>-4i$iUuf3+UaT@H>O zaFS4rV`8x5KJyF>wqg+deC4N#K2`R7gUF&%LoXX_FP^*M2nU+`)50 zQkEmcCp|6Cc@t5T<&$uOAMVNU5R^$$g=jrXEekO>7AHw5@CQ=x9X-xxC8SV}yur-J zxBL=%Zl0M1(bAft@**8Jc?5E0wB^JPQpN2o(%G~StfVOzJX~DsB;NQMB5-{Y+x-(& z!VSdPRbGmUZGLh8q+D%Wfbr^@#;wxgHwO-lY7KO>3&Z+DD(U-q)S|Yi*r$#b7a)lV zn*9!d-`eFS4wi^7X34XCC(w$t%S}vC;u|TJtQCcuWi_)VdQ@OktiiH1mla;}oa$U; zvdU-`&Gl`mM0{w;hRm{tH>-WvT0a#Ks3&Z)kF`b`REyh%Y_F z3^C}3`ip@?oDK*ShAkyI4B0Md6$sYr@grEvYHL5#^VxA@t!H8nLov6N6`~u=Rrmp_ zu&^~A*S3g}&-Uc_2TG`bjgQj;I?LTPzk^xG%8ZDzjFfDn55T&O^|L^rn$^60Y4``m8^Y;3=3=Q7fC^-lo=CE?wu-omMqJ%RjH0hVPXD^`LpWi%8~yL1DOV^*0pSf zhh@C@x|(Q4k-;*1%^_P=!vhCd`=UOER#GYv4N)(0l3xiit*qIeC8)O=6LTO^d?QNS zOGXtf#sk|WaOT7cLkvgg9inB3Wtydp7D}w?iR-V#*eoW1Kz*1CT zMgt)y^A?h+>!O}@7-HSK=ynZU)U`Y^1c>pM)qiwsc(w`BU!1uRXSKv^YF$hPqwH*@ zVJ9o>Mh5F*f(;|=hPu))Z5wLr#D|6r55UVH`4Y1L?Ak_u+bryFciQusqcuk%vFfv4 z?y6uJu4&CK$uAu%)_!L9$J}JeknD1wBXQeg;vgOr6@kQK#8@vXnD-OnE$^PsK+)D$ z9TdetDyI5Su^B`Io=mDQJhP1i4jR@5BxOH#tPlrTF&ssQ@tr1?<;*TL6@P0}aS#`^ zO~r$*h#cu6t&a-7A`gudQKLfuL&V@D7B1G3aQ3q@^5my&LF!`JZU_-i9isGQ?o{Ni zj%!+$q@`*rBxqYSIplO`m^d^N93`%OqkbGLcW>t-wd&fbS#F4N&euj!GV!L|Sl!_! zTwM7cE$(+r7?n`jm|eJFEH2uj@sf}-mH^5CR1zp$q-HDy^gqaz2D&Ax$5;kP0kkO0wf4bn$&#=-J=qyk-ARXko1MNaw51_vh z*AwUl;(7tCg5};o_Yv0zXb9r^0u4r7KcN5MUw@#PhNW9Oy&nE&(!uyA)_5;+6ru3$z@lDD15ON)Ne}K!t(6 z07?LN70^7yeF^kBbXNm?2DAofEVyfdK7qzpKr4X025JEG4aq^{TcB*v_zq|W;{FG8 z3vug!dPC!TphbxL0q8p7)&uQ8E;j(B#h;D%(+J!jff@sC0y+TQ%|Ndq?kAv|KwE$& zf%`MiDa36BS`A-*0m=pRD^L@lZ9rF$?r%WR(A^Hy6uLWrE<!`{{Rg`+&!RBSh)|h4RQYhZ3cP(bQBs7frbJ- z0_p+oW1#&&Pk=T6{ReayzB~m=56jPh_JNxwi}+IoC@s*(KkpbD z&?Io{0yYaN)CF;! zfiA*I7ocZ|>k70Cs2kAN(C7|S8*)8>${?;M&?i8>fVLs$y@57Dw+~QPaQgyffNnpa zKH&BTYKOSjfW8HKowz`60EGa(3A7Dp0MJV44g@m5@>@V}BkpaWVvq{}It=sGDfrbGs z2O17^7ia{~O`vyy9>UX+KxctQ0Sy8g4b%&03{U}}u|P+l`yS8&p!b2A0F47m2f6V; zyAU@4=m_FI0D6SD4}lEuc_Ppf#C-%b0dXo&2;wFI9fGb2=p5oE1MNh8OaYn=jj2Fi z0-1r*08Inh4UOqQ)e$!X=sHjWPzP9^2~-nuvw$WbZZ^EM0^ zloh&P18qm#H$Zt1_bpH^`0^dlH;DTm&`ela2h)7`xWRMpb zn~}zLpt3+afF443C(sqh?E>0?xZOY*f%X91hQ?l?Zb18h!hrSz)q&grp!=|L5GXCU zhk)7v9R_*~x!-|iLGB39Q+Rq5=m5|$pajSr2bv6Y0;n_4NuVk~r+{|C%4wjFfX)D2 zMrwZmJ%PQmKz`t!1Ns`e=Yh@x{R#9FxEFvX16>4q3M-d@9s*qkS_qB5fHuMM6`)TL zcNM4>J2M*fu11lAD|_O zy9e|-;_d^jMcltYC1B+NPz7)w0&Rw;kBAGo$3VY=`vmB1X#59sALuDiUdTNIia=bN ztm034m8ZY&Ix8F58`x&Rdgih@Qlpi+n{4ur2t8%qGyKwL?nC-9{d&~U_+2ATxjGC(T0 zWr3;#l>zh^qh;1ym6z2e_4hmcw3UpyEJPfHI+6ssgowMl~QKxYdEO1JwZP z3@d&>{)qDj3IwVNlmS+10WC#bZJ-6vr~?#>xVk_$kVZYA?LhT`_Cl@!&{4=W1S*5L zMnF>#*BA(2w=*^Y>WjFhKtBOB1HyOPjLm^MAg%>aSD=P3G~$5bf#QMM01W~94`?XRT<8u1ibULSphiF=fP%q&7pNI5j|BP{ zaif3&AU7Il6}V%7!hyyDjRyBUpb?0BA1DTB9MDy8#{)Hny$L{Vfj$7joyf)yf#RVt z5y%f39|1i;oC-7rXcEv3AQR9Bkedwj7viP>^@8Q8KxQB_&`zLfK*J$79cUWR44|$+ z2|$HmZzj-bpjkjGp*tJs806*vbwu1;pj(KW2ebom9|P&2J0GYA&?i87(4!Ur6#-fZ zGz}VyfJOm*3Un3rJ_8yHv>0d=tb7i10B8wNdvKQm9fa;OpkTx;2bvGG0%#4mD}jbV z_Y0saK&yb}LGDYSIfz>gguC91Yk-PCcP-G@koyWKBfS3_C?+7473_I3c(gWOJ_e}Q%ZeFd}| zr~pc14^U?4?ga`5+6VL*tn3FG3XKCme*zr@`UP@_fbv4_Fwkkl{SIV?+!3HCprb&z zl)-omXguVO1C<0i0kj)dP6A~DItA1Ux~GBu2e~squOaRapz@GA3-mp>=YS>vod+5U z?w>$=p>Y9d9MDCelR%e%YD42P&>^6|fK1T60<;rySAk9#S(0sRc_ZJ<3se*^sk?j4{l(6|d!9_SyS2SE3L<^tUZstMhHfhs}w0nlEchd|RH z_Xub<wa3sewj59A5~jRPtSG#=a{K48cC<$-Q#pzJ_pfJOtA1v(13azM{ur94n^#8m)#AE+WwTA)fm zI1g>C3^Wl|ssIgvZdIV%D79)pl@M1QXckZnpd&zjKxu*ef&PT$nm`v2R|{wjP;H>| zNTUu=0OaZd;ViAO9#B!p)d$K7xduS{5!Vn12UCrWfN-eP*cfOSz6ErB{it`*R6#I**>0@MbmC%A2a-hq{NKzD)K11$vV0JIqz9f8_F zqZ3dBxSfGAf!hTrKTuboO5k<_ssWAeK;047185NBdIJ3qs25Nl$n^&L5ORHhaD2|# z7pN4t{eb!b^#}SB=ry2P(0CoFD&pP%`T}up0$oSk0HEeT1A&eq-M4^N0=*4n1UCT4 z4BdBt3IXYW%0Vs=s0>gLP<3#Ff!0A+5A+t|LV$1z$ruXsBe-Ee!O%4Tl}4Nqr~u*y z0bN5}IFN!i83FVq>_q~74sI0C8K7vOzTgf9`WRMXfN-S67z^|(D-Pu zh?dYLt*MYR(}3SeMn!^`*O?a`ozNwVDZf)RU10+GB2EmWZip^6D8>*iQc7>i=foAK zB*PNAq%#$8ijN*17l!mRJeNL>?+FEGx5Q5vMRZtop^=GgC3I;TZ^|!DdE@jKp9vBd z3sAN`GUauM7iWcH^a&rC6j@~A^ouF8Jc=8OqcEnNx_EIi#tRNSU)ZSzo?i{{{&M`NYa-+#dm3iZg*4m zn2;bl-HH}noWaGBvq9ptzd;`tLI%X)9{;eoh;Uefo`a>F;xuQx_;?yVc#B*Zmxy*` z$|-c>3~}Oje#3CKOJpN&toT)eI8^T#n+LI?fW^t>@DQ9lA0$MxhUvoN0>bq}^x+9z zGMWnF#|PqUnf%?MND4n73>GDjFE&CPgC86pB@We!V#K}Bu?cS_7>5fN!qOYpi{K+u zj&O0rEFJ}o)0hdyiSREwX$G*Wu#^Xf-bIp;q2gB=;o<`UaS5H%oV%AX-jo^F6yazv zooV_)^c_|Cx&0s|G)E?StEnm@%NmKABzlvo6#SqYQ5{J#Y*;8!tBD#L)q^O!Ayt)J z;|)Ze5!3- zNYv-VtJi|9Tqdf1gAn3fBWhe8_H!2L-EK9Icz8>#DzozrAnGPbK77!XsNYF)@w6bK zZWC|&8Me}rc>8As5HC0Jc4y`?izc4gpZzpZxtxCeHInQ=yz8qtz4kn`gH{7Zc zU7vG=H}0zP?c~=dJVcFjJ^X)n!a!UQ?A8*M|`g^PQ?3S~Zj?%oVD#^wSAMVNOz& zlk49j3iGCDt?A>5!pcNdHa=oK%wwu@t2Ikvt)eQAejG`Xn2A*7-+^osGoz~HJv54V znBi0{w>dq`imLKjCzix~s4C5mGKJY&RTlIbLRPRUQk5z1 zvlXm|RONrKbGcyFR+a7thLa@bQdJo|kjn+Lqwvg+OBZvrsvH?MmL##}Qk9teY!fRh zk$NRg9doX#tSZO(!+ftQUEUi_dRRFKn^ieItQ1sb;EEB%!&*XB-pRB*N_yG=wLAZqEzWkjtYz3^GniMmcy!qj<0%_hk&OLAFfBkFwa znZ)~$QYiJ-heZ8NdKI2>@4$&7RT=i+Gvdu7y{{wLmx-izva?FOkBCZtm)pxOqCy|? zST~Vuc52A2d=XiRT|I~NdK2&PAG3*?L3&Rvv1f&e7rvI~fTBcQ9l?1oOjhnTpGCdOG4&>dktekuOz0o=UtCM6H~` zqs=YS+qr%g@vue~Bg4kuiNb1Ij7t}`6NNRusx%$<15tP?P?er1*Aa!)xEN_4>>vuy z6RNV}?=?i>c}et#g^P&7Q-Z4eQ*I+sct%o{2^+aB;Tb{ne!~{x;n_=78g-jb6rN1P zd^G19qVP*PRr$RXr=FElzsXkcJfJFBSMDT9Jn5-Qsa;&tcrH+taR>JjFFQ#F-C0Ex zo`*!<3$7*#&p%>ZO86g9cs>zh-GX0gO@=Gq3#8Z;0eE!*w#KV)4sx0pR6H$07Rh4;%xi;}!s4696za$=>Q&nX| z7w-LdR#lZ{g}IdQR4GRNE!-mU)Tb(6Ze~3^38_k07}qVHg+*Bx<8r|>nV8k`aE|bt zrz#n)d{61&sY+Ge?6aFFJn5=R%_*D*JWY!6^AV?jXJl2mnSTLE;>l2y%hvTo;kizD z{q{DZ@NB0lri@%Jcmh_H4>rtYJ>o@I%AFbOEbR8EN{>z%h{A4>s+6Djj3ir8dQaNl zCJK9FsE4L&qJcH@1`nSpPeA8CQ1IVA{V7Fl&A-%?hy|= zWvY^U;~k=~XCzwB{5&LyJvLRTyX7YFurDV3eCJ=Hu!E&4_0p#$$@0Y8**P;&TZsDC zKNC^duTqu%YF47Kf2JxGi#{SN*cB9Yq?{&dCrO5%eoPd0qr^&}aADHJewC_ZUsr%A z>>;Yki9gSfB=+u9rJDIZQP{f@YpE}akfe$9))Zlz*l|>q1{=&$*ppM0``HQ+uO#KRpXn0uurI1AePS*Wg}qF%LaM;E zIh*uuEX_}P*bh~eZY%yK$?u6OF!mp!u&1ReYSpVmVJ}Hl)*Y%$de}8nm39~R5$`D3 zZ2O2?BzE#trSowfHL&|8O8)FFlEm(qs$8$b>0uX6RW6#?3U=63yxt_|^Y z7Y`5*`--ZvCo7Lc*n<=){K&okXQEDY;}(g%NL3l$X#?qHC%p#Q{~`+eajKH-G`Hku zB>7cg?zh+vRF#!`Iq&O;>TBS61v`nV@_kEg<^K|Or`SQV8AMi;HG7E4N4#1&z9R}d zq++GIndc+yB&v$inCm?Ujc%hJaev32p{hLFosr9vs3k+0hrLo&8GW8-F6^tS%Gf_Q zQ3|7p_ayoXQD@1QVvD#Wh7dKkZB??_f~XEP_LC%bAywsQjS9pYM^?;pPZ4h!N!B~Y zt<>h=-kHRVj3a=glib`M+JCtl$lhs{A&H+aTUfs7kGmgNS#HcxgHgBx*kK zKG{`^D7+UDdY`>P)Cr;njOE8!M2TPI^4D;pz9z|L_nHxfcT=jet49l>@K#Fnjv}pz!rLHG zx^o8*m7A#B|MemYZ<$2iTlFCdZ<<6;ebASv14K34z%`AxMxyt34j>-h7pclu#{!AM z`ztZJt?o$_-hZh|;1ez-yh#&O!zRS5M^-{k>xse}FfpEe)Ptxw#H+EdAyIgHC&q&A zwTZ&pCRHiA$VgN$r8mDl*K`O`nO3zV9^N;Jb@})xqJ|M=x?PtjyfssmUst?F)I8E# z{-6O-cvmM%;$l0Z@UB@rxvlwtD7@2Fl_KNE64i!mrmZ`XsBqG2{$MImSBclfZ#q$U z@2x7~+s6@go2Y%G#}hT0s3CXEM8%MmlKZC-g}1?Cm1mkk)On(Me>svUyrC9jR@2Eu zeNR?uMt(?CF!?#PiHWEYBv~|?ZMGz;>Jzr|2I)nHPasLWn^u)86WHq;Bzf^k0`cY$ zuTfR@dKK}$x;}+?c)zYHPiAsStR>#3`uB3MUN2 zjDC*ufVb|dGPk}gU7`lG8bXr!DTVx9x!$L+%_W?|GU7d3&o*&xLRHe1izmHEq87xc zMEyp3cTaKYenEOUSF>l0NV4O)NhBFhRP66uN(V`AR2R-4PQ|Fol6-4P5~o5`W%?fn ziRwUlVSjHR3THi3B~$z3L@gj{+_+DP!busi3ozhEq6QOBEwhiP$z(Hg%}qpYC91}M z`-$34)aeY%iTZ=|qD%fl)H$MRls`&TUrJ%w@~?<`pQxta>?SIKtOT9kLDWygdn@W2 zqHqdE>{iU?^fHlTK-MF~+samE946`)qP`n*fGC_uQk7HZJ|XHP>6HrEPEI_CT7I&cD4h2Z^Vs*>h#F2dr%yUW6i)Vt zTB*uII$#hw0A30l*0ZyONh!wk~_PdAZjmJ`Qx9JMB((4cxpYso-HNG zf}<7@FAq^?&U0D6K{iKq|Cx9di7Hd^3Q_q;vft8wiBgFdvoc>6lrB#2;raGD@o-L0 z?0$WGi>NN7cjaJOlEmpiu|7L^iFi0Wrz$%?PDi}zr1#~P{6w85Ud60WNb(8ss=b1~AxDLz%Hl0PF+Q6yQfLlL5IzD`woFD*?J&eN$%rFY5^6-asy@0TYE zXYy2K)YMW$O(Mx%!}Ah_bBwBTuJ#>DJulfb7QISTKBCUFzfV+8(rfqSL!!12mA%*v zqNWm+w&G)=jFkF`y=5qc0%T=R?wiEBNYug^mx)?RRJQB4iNfhcF=`CXKzjaUWua1@ zD4fPrmAK#8N@k*NJxfEptV9j?_5oSRPE_fAWr)WSi$^5{X-nXT=~ zikWQIEK;AW;QW%RM1IzYcsM5|p0%sXRf+L8;2rH+m73g>2q@u#O~e5wG4d zUe}E!>b}~WBtIZ4Q{SsilE+A|TK8(i(-Ciip)FDPEvKp&%atc87g_1Ft~=>qhtp|d%`l}4QLmBYFKSkzaH?B8bDix>)Mlct zuMQ`wGg+BiuP#wRhpCqSlgR!tF4ka0XpfN*G!a^^hdDW$i%J*Ce^) zuU16WBHr=L-0FH0Z_bZz5br7R#&qF!jT7^#a-nlg;*}uD^LZkP8bDO@7Tt-;Mx|8D z(2ppbuUC~kS!xmWm?S&gu1-`0r7*8>EKya6wrx}ezohQ92qgoS%v+$}?KYu(?RY`AI{?~~rM|wqm=ugxV()**w zTSVn0>KpNcC(NmSq&Kw%w}SS>JCflu;#DRqr6;T<>N@f6ulRtdFNqpi=zXF(5w&pY z9HQPKz2VDe6IGL_g40Yy)g>z9=Szv|Lwe^v`GKfnL``n9pQzm=IkfV4rl|G2(|iF@ znaS&|^XC&~AjzIpe<3O>@xGk%HBl>x+LVKNZ&3>GPFhC14#W#ztP=Gr@#2QgB`PQJ z=4G2sRCVILRb&ED_)U=5Qysa8sCy(iyVR#dMUpSArYPM0cy*P`g5R%+@hRbX*rT5>6kBK*(c;Dvc6w(lN zw(L0K9VY5>z5_&+Ae#-v&z;Z;W)m;q&{(2Q5HT3TM^p`>LYgil>Ne@E9R4R!ZAtI@ zOJ5R&-vx?2q|u)cwV5PKZ#Yg=AW;QY?;t9cZ00WaJ5lwC>gKndsK3eP>iOIT>ycj2 z`%I-Js`8erB$Iz9-dUl#9 z{00(lIJhmfBVOG>Tq_UBv!?}4k>oeT>rwS5qN)+E=6P=O_$8LAbU1jBcsq#K`Su?~ z-6uVD+!dnQkuM+BzD`spqI%!vdS6J?((ZeRhhJ@pXYE}_h&n_zcm2JWsBR>Artt-$ z3KBJ7AlE}7qUPM>wp)x+zghYiN%kY^X?N~%b;xGj{ANv6)@(XN zR7;Zl-|)jkm8Cq??RbKyzlo|6_L!(al)}~48M7kwBShUeT#%@CWaY-Oze(~g>FwE> zhIsx&<^J>m@g5P?>b*k5!!LEk+yBzni1#g7xtHxOQD-TIXQ$JXqvQW2DhKiEMcgN9Bc*qIA-6jG=2bk|yqk`!d_t1b zPjdS#K)i3qXCdAK;(b+veK|+e)niN zvn%OkJ$Zxl`VepVvfD&0A>Pdmthbz~63d?vFPd!L2z^3SZK8(iE)mt6B0Cq& zAiaJGm591YdetwMB5D)yrvKzeR5V#R*{v*5$B8Ogm|Nt}BFKOT5 zR+ojS=4H7}v?c1;LGE#*iE2=(Bk4UMD-mU?6SanTbNZJj3bzu7w@FGKqP`{G$d7Xn z^_28#HRn32N>s%R?Ahz&XQMuyNU{s*b&Bmw)DJ{e`Jxd~lSnV2b~&PQk=`?1YohiL z?`|4yFK3CjyLuVo;T8h1Ze3HAsQ<|36=-Zdn(ImvLKfvQm<4R?St9sEfpl{JaBE8Hv(mYfsb?qQXMB%=VGZ zw*Rr-CbBZ7P!E!9M!eqL>k#!7>4oO4P1I51RjkE%??}8uD;p56GFd6phjWDcN>s(1 z$)9+*NkvtrEn?m&vhr39&ff;IvU@T2%~K?KeiG+4jwGk7Z$nnPk>ti!J&D>()CZfn z&4*Iz;jOC?Zz$>YUBQ0#Aj#pmIfW6#`!KXVNp2%vp4ZsQ45C)O$>oxsY?klGdALG) zEem%cy#XX?T*s|-HStQn+lzP&Nw4_`F0&mZ`Di=0!N$Z}vz$|?NW7MpyOG{LqMCoh z>Fp;f&pYgO6{3vQxt)a)Rd{t>(!(uYsx0SWT%x)Z<<&(U(yQI<7QHF_kMt(A9>5gwHvGAoM(Afm zjXTPIHYY2^whSRj+*BssntYXkQpe3-s`B34K9t^F_EXPouq;vA&+r@RQDi0CTs|jo zpLl2IcPE<)rT4}Ge)su^ct3RExA;wo_v9?kajVHn$mBpu?;VoNKX3q1-w`kL2Y!>? zn)HH}@OhixNYXDZJ$b#JBwKIhw}G)F`S@8q;te5cYw6zPnM#tC)90WRo)VSm-`9wm zNj4w#9!Qe7FHTijwKz#sF|rayay-xDu4S($l~TRHB2Q5Imm&@Cj)}y>&4ywxwnhx47eKsh z%@0#a{6tj$$^1lHhMbypvc}TAz`7-29ZmoBS*QMclN}&buu8J$vur^Ic zHdhXxNGX&i$!e1Z6V-rtLreD}Nrm*{yK+x$NW2oC7b9KXxiS!zk zYft$rO4QA@!>By-l9d+0ONjR-=^fmYhVt+wNzScTov7`^>zH;CrKeDO#(+L#n+9tk9g+c?GP_8pwR9K?HXSrF-cO4QcZOOvF5Qi!?s1=5Q*We*nL_ZHuz zjSLbus3w@Q1&Qxy^D%!=!TJ!LxHC1_5EPd%L;O$zw~>qcj|D3|eorzZVM0Q0aeL?& zB892qrxRuU{BT*Yzvbp?9ew)4-+EcN_@zUFse%-u*r0HHqbQc|S@)-#OT`ZpNUn;O zob@_k2U#!b|ZWx5vvM+T&$la_5=hCAGy49xsLV9`^vh z)pdDTd`b0yUkH2JhhIG2Cu@2^kH9amU9O3jGB%cUrygEXd&FhW zz~xeSDIUDa;@Px3<0Uy@ILo=rQ?PR&sO?ncgo-; zb-usc@!_R3{dc7Ym9;ht#y>7jBI9CJKh@VFoZMd5i*9(YZe zJeHog*{)n}yfJo-*G!*HLJcI*!yV>=WE!o5tPAsonZD2k2i(nWL)W^UxDrh#dT?#K zOq-hfix0;8hegH4>4W2g z7(9#FhW>Yx(s`v*-s?^+*lCKyoEj4q9uN{9H8dcK?(q{dS9&=#S(?2|N(ZEp$6Cq? zPdC-;o_1ii*Gz8NJlz;R^qNKI-$}I!+nUxgc$kuT&a-Op423JkJUTqiOUYO<(Q9gF zm-NK)mRsXQ4~^F-ZBs$J=M4Txy|}g%49&TL$9Yj-^72+(k}3w*iC!}|EOM$khrC}pjn1XD#cQrL6bHvsbshef^jfo{Yc2v!{#p+%4x;*SeS|(T zZm7YsW3Wo5QZrdqdpn7bK=xApmI=m8AL6xd1};^>Sf_e>$^Oh`VkFBHE$TBM@%Pc<55FYEV7e{8}BLbqu4d?-3`tWFRQ8_id z653KR;`VHw?}|!u9aH!;ZitAEiiyJ`Ivk-iTc^-eoIWBNmwS_u!VZo{$3%f6eg0F9 zHzgfpf`>=yA`C$R>=7C1nnF)(nX=#GH`7-e&^3!VBrFyXfl;xBIJqlPNtUQZC|2B| zt`CV1_m7AQj+eQ!REw1ts~;RM1{;HpiqLG#F0+_jq}01ztG3Fp;K}8+vP(Lh4AC1fJ`H)<14=aD>13vVunU4m3pSV#KclxO{M9E$k+rCpR6& z1-CH#T<;Sbk>Zm75pvKp)3;k7n9?p3H$2+Xg&eC-jMCBk+Xv3-1zCL-kDLZ`+c1s$ zaN&`oImb5RZv9nC!J5HRCr;CQjA&?45md8DOpNvmKr>zAYhN2qCb2r=LW-1Qp{0-# z6>Q~Hnofcd`Zyh1#J#{sT62kRd$fwsMH-^x!=L}9gtK91In5P3KX5wRG}9-rTq=j! zvc8fnhhLZOryqHd67s@82c~HRCKCOag z`Ys)srw6ip$kl4e>rJh0r>m_FH=(0sli93|)$3w{#MiC(*MOGVb*g?xA*A-cS)CA+}Y%ILo|b zO-(#Mh+Sr}f65Oc$&4!2rwuBHB=(`r^u1@SQZ;uhtacnvOJerOXInd!*!$;%Zky-GbkEFBNJZ)r4mWz{IavS=37O%f^@WOrmt(G zJU#Ep8CfPNJ!YwojOPtK%i4$cCbhPflj-2mhG;!~P?h@(s=!R297jQE7Ot(~**7W| z+MT7?H5U7Jmdy0|a-^P!=QI?C#E8>(;srpgW8X~m&YqGXRc?GIHViwyC9srnV$$OE zOuYCQFLjN2Ne{eKFgVOBW*zY+HY8jZ%6f?uq-846YyxRz3$-*bYyZa2YQ&o`>xR7b zeVbJxTsPb@7AAV?Cy61&Z0s)=i<%9_*8EcO88f}iZ5vU-F1#(VO>zDP(G2n8%wHS> z)yaBFg~@GZx-{b3$Ks#KePcBG+0T@T^`s;lz(2AQQrhU+rEuQG=pe6!qDJq2<27|~ zyB6^hG)^BX-f}sNCuZY@q?)3fX2dIY%W5i-QBeFM#wwD`m})0#HZFIXIyFX4J9+C{ zMCTbcg{hBED(^3)8@7@8b!!AQ8#Bsvpk=&p&cEY2Ah};iy~qlqqEnH1&Xc#j#*^%_ zcG{$HK%g=dKSANS3?pxSqI;kv+Z zeLx77`9q^(2GOu+HU`N-Bbnue-Gf$Q%LRK8%Z#eA@URmz8}m8!bq)EKxKR1SYv%tv z(i8W4R_e6K;<6r++!1qUgGxM%Nt5_7se6w`K~XV$Tr`;_yw)CLG80W`cvPTHt_YG5 z_0$9ONUv#>_(-yMYK@;om*3Kui;+I5_)wq$ymeWy&V1!pothvwGRGFjf1$;)#KPkb)i zzURH#X|c6aIXI;LQl8(h$P_I{e;rcf-4g6I>tX_Q;i3A#7&`H3vK$(8swWLe&EEyt za`L=}*|BXlN1?mY5AnqdaIMvMM!EIi zMRUOSFS*E4@QgCp`&xN!?{jIB_f?$U`xb%+q)Q$ctPgr$X?*5=&DiLD&A7WPC3iL` zE&CwO`zgJ?QpOgiI%s`*e|gXO5N`5m3)2QJIcnG)MEv>OJ^#t|NF zXDvOP{u>^y>&70Q;cs}j{O5Q$|EoNl|NlJP{?^L;duEOCo`*|+?u(7I;vz(kE>iqF z+<4l0xbuGO;q+rXoc;q3cb~^H{a3M2Dd^FG>QA{7?5W3rKRlfNd6~XvriuI>?q^dx z+|QQD{JU8CsoO}+#t08jGm##hWPkH;<$vMf#^1=Jr62F%ws+9OwZBmgyz&whf2Vi7 z4yS*de>E?!jd0ut;9b)s^%`lN!cXMHkyDyx<45j|RjIsX+d(!L%NwVpip%cTlXOKp zuJ+Q{V0I`fdmYW=4-fxaJ)Hh_ znZD07);~PlyU%&Fx%QP^)n}^feUFYU2_Bs-fAY1;s^HPe%H+|?+Un7~{~}XQ-DgYJ z@4?I)FE>>K?7pv#58uPEGPkOZG;ys#r7Flwhs=53go)4#bxaCff>HEx# zc)_E4eZysE@lm2|&(v==S-+myS=#Gs-JzOvICaMb*PlU_`dW9)BOUfsfxY3;$+@CT zy|EjwGn~IZX>#Rx^EoBW&vk3OcyU$~mpIBA^Ch2ESGNwZvBh<(%Y8Mf$G~Hr*~h*mNKJVB3h2v!E}v=jz@)M4a})B7NfBMVdwysaunR z*;rf-B9<=@B{i4WzGQ5w>&DbzrzUT0tvmMs|k}Ok0QCq^1x@4b2A(jYkp(Ewiz+ zY@)6_Dn9>eGEg?3lxb&@FZaB+A}6I}Az-b%^Fl@@8WJAM8LEebDEnKIrph zAAA_`f1!2HJRe+iXZAs#v-+UV*`?2J4zZ?`4&|2D&B?7*9ftD?a+vYbZKO*+SnuV1 zaO7St%h`LM-`GDeKOAbeD4H@nC%ckwQ`rqjVl`zfaN=WrK_?~S3mfCe1GM+z2F+=*ANG}xo zLgI(3av(Ar*C*Y(>|g(EOj_TRxa8#~HM^rZJ^Wc`%U_C6>^uZuH8MRFZYbE+eUXD-`r|Iip+bhIHdly2Ki zWDamxI=bHOFUTS*uI+BDUbd#K($hpzC&%N4N6X=Cg|wR3=xg`ovz1;@XT78ko*I1e z$hS6$6_@qPNvXda9+gZ@y~LzX%YN?3-r84YKaqJ_7Zhh0Lj6^akL6@HD5>3D?B2vR zletS|l5)5~<2~s`BAv^jYnzQZleX-zFH^*GE$cOzDVIO%VK#1(V<$cg?#lHg&wn4v zdUVQZwsV*?G}K=7t5ln%=f3oAt+Q-LmOVR%$%l71G)l_l>NLG*nZ7L>kSj+Co_}Pz z|3cbpW!d;reLnHo-t$n_mGAZYuVp*&J%j26(#jWwpswQqwmE)T) zt&XbrY+p<7gJ(K3OP_sjUG$M0*L*@5f&BF14Z$+LzT(Y@ z$v*3Og3q?+UuBuU@+r}5yzH}28?Sr)AaK=Z%XX&E4gx!U*7Hx~@RhQ0-)vmyv%}vk zpRKbB((_k7aGO$otx5?WeEvHBf_($^Lo z6JC8OnO^9LZM*C*DVS;U$h@XNb(>7p{imnXzP4uh(brl;h#M`!=_iqkeXYArmwDA3 zg%f%Fw_EC)+Frb6VK*9%)1tM6uXU2yGOw?2KjuVIZPgn$ z1F!npP#xoIC0y3my3O0tVOREJp4(hr>ua;iVqa@db9}8m)$lckZ@aM}WcT~_S9t2U zt!%WG)kacVPtRXW`;#2=EjREarEU8W{bsK(l|ZleFjjU2SGF2$Ez4}IpCUceD{PT} z%NA+*-FQ-M%KA(Cda}Y?c{p{tb|S6U*L8-J)mf_Fl5r_ze!RlAGtwOo?e0sM>Gf?O zEJYrgjaS?$5$mr}US)sZC+85?e*>M;^A+v9zAPTfvCq9x{Z-c1H(p75`ZjXk>)S}X6pf~@vY&Nw!$bSK=N7u5XImGh{uMaqyuKeDN?AWj^;K23 z6xEp7SWxP@^6X{1fwfSIQhSvxznIsL9{r?;uDlL#xHzaz%9>mX7SNW(l*5|`+ZzsB z&o>)$$yd|fJL8>_#pcR3;&XRaW_)F3ZdsNlQsxe)JnbvsjP%fQWl&NNymohC#Yr_+ zTA{uW>O zE?NDr@VLScvbKC?*iI)a^%a)UPT9BI@0B4b?$66)Ha*{;8~NHG+9bt=K0$T{_bd9y ztM9qTeXU;7$v7OXnAVF1{ahXQR$339~WCYf4M+HJ;q_ znzr29YewHJUgJqyukmEG*Ld>8Yg+6YuPKv5UbEKz)@#b-sn@iVs$S#C>s~YObdl{O zuRKCz|DoWQby(;JuW6f;yrxCu@|qU0$7{;utk;yuS+5z_|MQx@^QqU=PT0$8u`|=9 zNt*`$+&&Lk>t(s*wkLJH#*;U^rs>xAnlfqNHJ*GWyYs7D2<-Bj77^w(o*eKRPd@aT z0sdoICYJjn5;>JVG)5O4ZHNr@iyod}Dy9A9dD|VmrV5Flnzy%PHdd1bk;rG~$(y+0 z(RxbPMXM$^@?tjnc}-P}@tOf^s>f@kiD#STFwZ7GU6#Ka4LLPCHvfQitVUj)z*p zahbg53gDDy+u{b#_QX@3t^PP!_?|y!+0ARlgw3995uu)4zYX(vPHygJ|>q%tH z{wBn3vNsl$JNLK)E7o5>EJz<6XNZc7O?(4hD{-A1Zj-s|#_2jE?bilc_J5U`vmB{) zC^|lh>u{Car?QqcCn8${b{BuS?#oD%0DVP&OamP0i^pB=!#QI0ZM+E9)xJ@-py4W1j4mU*Vbuj_D@KAkV zjELJ-JNMSvtysAo&YI$@VBE=* z?dCtXe04e(Z))I1BXj5@raEqDTCW>)OUpJexO4K~>E=eaa_DfSzgy)h`o<8^ajg@A zJ8i(>_@g@`j@|dZv@h37q{rHi=I%5Ar_XOalY?Y3PpEdCR`Wfz%}Lt;-#n>lN&ce5 z`8v4m$xnTD88;h$lk&-|G924PY7Fcym%?4S^l(wZluSj~hC#EjtTdg(l;~93qhyt& zMhPU5szY&`jrXOWn(Gs82u{PV*{H~NnZz2%zUQPuhRnuC(of6fs}2(<`}zDFZ8kQQ zuBL(yCe0$UbuRlXyV#)2#?`XYlUc4hkGU?}eK z`WRZnxthG)`b~4Gs8L|{b*MSXY3Mk0ZIk7*JQ`K$upG9n99-3~wgi_ywrMw)Xs>EC z^5ZbLxtx-H&vmurMBi~(kGQJmygp3Ptxv8d<~(e;nwZ0a$#QRXa&1C><4OCfT#dSN z{-%e^l}wIUkLGDElQoiam~CC|)3&Dov7Sk4EaeoP3fyd5FUQDaRt|RE-R0poRt~7i zOdZY*)n)rbqaf+0 z*?37VYLl4stb?Q3SWK2->BJ{J>!;C5$qZ_)-E0}O4Wuq-aj?vyrh=@=7`+a=Z8S-x z!aQp>7MEF1B2mW!x#^^rol>~96BHF5t`DLuLw{Xh5apy<3T;{RHOIaXF>6M}7)I!W z1LE|NV%qh$Jy)HRnMia2pm{)r>)^QoF;(gzP&TV1+PAGcihJl~`%Z!Lg*GJI%u04-CPLwX! z%kQ$CX)XwDMWC^)cR7hFvKE^J>m#CK{f8Q&{VOzRjsJDpRH$8Zh%QF_jS;*!eL$ct zSZsQS8sfs@14V3wI_)YnXe<6Fm>RpREk+cblXA1bctd!wzh7`vP+W{&AL}0(7#kgC zh#clmRs)1j0bwC>TnGt|8X6F+H^c=r2&m~79T}QnHohhE(8>iv!Fqjkgds9GKs*)& z=?!AN8DNMCs9P(bmNa%x8tZ1uQq2G|EPgN%5Evd6G$=MDMbz~L>^)y-W@CW#vwbp| z)(_J~M2G8R19T$OT%a-f*hqaG5dpR8iefZIqZogZ7CYEHtrZX#hI)@R1SOm4=bbcl zOqnH(7G^dUlEXpEWb%vF@_Z$WIIupK znRj|uT6&j)4x|g$53}~5hOz^hIwaFFHF~0hp*r=fUGX1TuWf7{s7^pcRIpyW#Z6{- z*64<9-M6CI1^*|#D$4f4#oN0`y8*&4CN?g?l$)8M@rGc1EJqdRsOR%fY_sv0oJ75| zo#d3mqIcEBeCbuMWE!1wB?Z)M5D+JJ)ncO!;d(JA3=a@*b7OQd!+9p4@i7%`+J>sE za*g?73ymJhWEZ2qUQBdxQ5?kR43U_(qYcq|ERzBZkpYGw!vpHnw@d~vvUD*Ui^wj~ z-qyux%Mvw+m5lp+)vgb?VMw#P7L`rJ+gCDqWy=_lOx->|egx3AKtQZMls35WoGMm} zabZ-&@fe|NH?q|8OR;WkMK8m89qWSSWmvCO+cIyx4C{4kS{KxBTGlA;SMRXUz$kGX zg;%Qe>RMJ#DVS&-EY)q4YL*(NmZf@itOd4R7TAl8lrJ)_nd&7|R~TmHQ$#IM1a)L5 z6YmD)qN=S61~3lm#B+&lJ`&Gjk#R9m0hVrMHs+A_ynGCcH)S?N28G85>w^=FE3&0Y zV_YTvOi1XRP}%qeWx-gNYSlQ224!PMj$F;bFSGzMo??+LEHZ_IZ5#|?UQ-V0bL8ht zUFP5#2eX)WkZs=N$lp2gHd8H`%FR?XQzrJM15@oe$VOwc@gf`hg%xVDWKQOlMss9vgD5(6yV5TncBq)WjL}N2d&tp zFF7!>FjK4+>gQ-wJAofVFA@D@jY%+!1iuCd-9Ol9Gq zGE0_bUUjDKavs)k^>!C!2pC-aVRWNxmNJ{*~eBd;?Rz^32f-~#h1F;$91`f+fN zO;=*-9}Xf}vK8xXWs#E{S(`VB$}?{PQ+t@&&A}p${F4JcN0#Jd z$8#`&gW1gcA5-6Ru%3g79NgjHC`;DipgWsB!&Dpxdss3pQ~g;aJyZWMwSj}>966q; zHcVw?^@<$%GY4;Tkezw&v*a_5?8MYMX^ew^IS68rd`$hp>UlWG!Og8W^ZIizl6m=< zH=3!lY-I=sEjYNtwKZaF*Tp5MI4;qpdjqd2(D z!DtR*SR|f<^Bgqe;CmJcW}728vLy#^Ft0K5ZgAurrdBcaAB(JI>OBtTvPb~){5WXK zksosq!@&bqc+5dT4*uja`-6k?9OP$(DJ-&#sR%Y5$-!^T`+|9mI5M7tgUs8=#y(<^ z4$P~^yagO|<;cNIO=iih9Bk*{59XcYpf4-D&p`r<{KQlR4l+qAO#Q+^25to>nHSGN z7LLr%rl+#x6b>%1^TS!P2M0%)H=PyU<;c=ZU1NoTOqJmvmKAO=?*=PmIGQjA_q%3xXixzv&cLS zGINlXgX|nsV1-Lem1k->Q*SbLjMMv>ZQf#DVGeq5U}ni391LfLolH&R;60X{!PI)D zHgfP6E4<0nRi?7AaO75|Rxq`a zgI*lu;d&Uw)M+->m#K2B*Nh|IVd^It$w311er4)1 z8+)Cpt4z&gY9|Muu);zPW^rT%4oa}XdFB;lC#o{99P^eiFE0mv%xlk7Wfr;4)R!D| z;@}ovAeJ{5_70WGfSx z+Rh?*nA*nFX-@V>jtt?*#jH17+T`Fc2PIf?Hd7}!xXM;ym@3O6Z*#DgjV)&09FDBP z!ENTXW!_J0Wiv+xauCas^*Q*PCF?OSEe9ExcZq|M9L!{17zbB4av!JAj;V)i>>H-4 zF?EDRb})6HdF|LrCk_^JaE>Jpv1B)nEXYA24vMjQKMv}!WG=3wQ%q&#;0y{g9)r~gsI~k@V9x5IhfkWdJj4Hgd+bI_Y3GcffvQ#Uy%!@))79b#krxhvxUDapJ|OhvQEaSndw$et`xgoAH5 z_>Fn%msRXKQ_ZFXVa4;)NlUM}YC zVd^YXd=<6vKbHKIBg0sv76)}Xc!NdiGu42DuUKIh^TIedz`=*i`|@DIEYggrub6j~sg6ulW)Z%u$;g)`8Beju1{UF) ze2j4%*^MJNa}dhvLz&luBS$c`jj0(Nq-V)1%p1UwtC?!Zyd50bn5l|P?c-oS2UR!- z<$!-QEq~o??8bUJw#mN=Hh#*Ib2+HPJpOU4{Kc#B8Amo}5&lV){H2ufF54{2!6+8F z&y@0i=B_$EisOp|aSv{VUL7j5Pzo(o99mpTjlw0lB)430>0K^B-8F4#ONF|-y9;%t z?(SYnOI?2NyYG_A?C$Yy^Z4-V{c-ah+4;VaeKR}C&;7x+o!E9G2bs@~cd%^~`#s5y z_p)Q09h=xVksbeG<4g|8D_fIGR;~5f?*R5&kDu$rwvX7T;2^wW(BgG@)}9=)oP+R^ zGwU@DIgtJKV`DBGtJ(OS_2)dcJMc9ax6|{eeGx zs99)St$Xpr{rE!<&q8Zz;S<4HjX!kMEOgT>bkeM6@b?1#(8sXe0YY!z+89ATh7}!B zYah6w7ixWnzx`ny353rg3%yOdEw|7mve4VH@bPTzj%V>TW}(+%?E-WJf}p=)p|`Q5 zxd$yAs9X@CRmsW4iSz7D@kk?ma)kBmn+$SG_*!A2AN?Zn0~cD$TzU$F5F z8)vZ}riCc7@7eJ+c3jD}-Pl&nwg$E}vn=D;HjWKU3sEeX79!&@eqb98iD@Bn?9Yyv z79ty_g~&LJAK#HfVp@nCuVLHm>~|y^W$bu48<-ZNkYBLvOE&K3kPooYogE)%8>WTm zfeqMkBQ{2|NH?%yamZKMz_buOa4h?s$PZMp@jeIHosA_NuiEEkw^j zkCAaa`<=kXvuqsCAur}2GuUF`;u+fvjOEteuuLy$Tnyuay*cY zAK33&whiVW-Pl&gw#_-nMQpo?{kCGqK5V;_jZZkpLu|ve5D^t}$m`f|Gxpns9gA(p z=7NRMSXE^-QQt_~V?c8btnsCjJLNRz(R$=WV<^6KkK9Duo-m>qNAts&Fe2M=95E)0 z$o67V5)Se)8&f#Q0`@zLjYaJDI@>z3fe9muWg7dv$&Q#XBFCBRn9GjevTYtmJ)ezF z*>5wpt-vuQVv^;1KDvmHuh$}5$yLJJD$U~>)G}<2f3MTN3ekoGo^1H z`we1a3_G63MvRT$_<=v!=)ndijOcMp7?FVqBQm=21E+A1tJqe@QP;EaB>P>*emk&Z zf{mBi4--Zd*$EtEJo|0OeiyPai5(AM+sPdAQ8u1p;{*2lh>cnNz>#b$Qg!7DQsZEi2N3F$f<0+!G5Rn0|&8VfNhvCq6hY4 z+XigJ`2kEAk>7XxKoL8>z(KZP<4Shy%*Ngva#J?Cvg3(t!-Nq<_AA@=U_VS4kzW7}VB>%g}4_<_Z2tj`7}jOcMp7?H7nA1L7mw&EaBb{xqDJ|8G#1^Z#bh-@dZ zBPNW<)`dfMWn&uqJ;KJRY*_qwcMkFy8&|S{2_uSSYYuWQ8~JP$vQf;&Cj7wXY}=S^ zSF;UYM-FrtuU9Apw3&#~VG4vDW|3UV6zeaeoHvh5nSUCYLF zHZWmC4;;d__c*dyY}<&R+nF8l;YT4$*@g)tvdv*fOc;?36Gmk0&O!EPKYZ?z#*>4**hO&Wy5@P7f#&hh52_tgM=cvQ%Sje_( z*_g`@jAz^9Y%68kmTbd>5ygUW2Qun8mSfoV6bI?dwkOzz2_p*m06SK*<7NEZ>B%_R zc$JNQ9P(_oz0C$Dj3|~E+cxAN`?GN~M|K(eox_e>v9Xf<#;_kIj3}0e*s+2Qj4zSn zFgAYVklV3eM>ewA?{hW|X5&out7YRWcEm^&MK+dgzjI`_v26>sVZw-lJk7RW*l#Sy zGLemo*uaDlg?xoWPG-j*Z1iNKFF!t;jcqw3CXDF0ciEQ1#`|nEvQfzo?7}uo7|{b5 zz#(HdcHEE|eq>_-KkzymV>!rA?6)-=f3SfGBZ}pA4)P&C@GSe?!;YQU5u2?JYJiVMNcBuZ4DgcEjE_3<1`M^ zn~mGpc#{3@Vp}EKLTs#N$59+h0UKl3IFyaQILJ+G!-Nsah;9F{-{x%W#c}Sze)q6( z68n|0-}7wykZqVSqR9T{ke9GyEe9FQ#!xo)<{-n^Hk^%H_`4#)^%Z@j)ZF}~6 znjJ^5ZBw?bVB?O!%_ z;UJhWB0n6hN5)Sa=Z0(?!a;svTOL362itaH+l?G#K0DsQwo&Z&Bs<>Aj&XKuV&g=1 z{D+M*IV2{GNQk~1WPSEKfc@5E$4+efh>Z#kf(avf4iiRX?8za^IS3|<$niA}IgtJK zV`DBGtJ%PW5rv$`wujm1$+1jlV|$Ke729@YTPF?~V8`KX%VWRo*_O@50~};OHV)$; zyRzRZwjIUB+wAx=+wNoob3G(rDf^wz2IhLmF~V{7=8&J;e(6TtcJ0_^)U6YZy7l3x zFegM&?Za{0z>ZI`Esx{BjU9Jl8|H-QffBY|!baGBAkm!L7;dDU_ZaW9cY!pQ(qsXS z;EE5br@g%KrOi2Z2$~ZZc!WJFSP%;?j7Jl6GQrZ?JDc+>Yw2KwSg3yKTp9xGhbe?v zp+%TNXzreb5~>`_LH zK4yh!>~ZeW=Df;CFdipK2lo!%B^pweieTk}Sg0Cd63uyy!5VnAik_&jr!cG& zh=~(nH5078(>j?9l6wgm&Am)vX_t>Fv2`YevM#4TlGZwlOyt=)WKs<0vT;5e7qW4& zZ6vHq$+Rw`KN935DjGqM!p0~uM;a(i$;@KvTPOw%^#m$;fx5II7R50d9p<5^;s*VL zO8OgR`fREI34`=mB`Kz-gfw?G%e`$S<$QlrDZ{(;stGb6;SnR@pD9Tnk?UD^lyQf7 ztwnC1Mr4-xDy0;s$Wn9-$2-ic4aRGO6%mrgo&EnRWq3lCp|@ED5^3K3;{Li9ut}~6 zeQ|Om_6T>F7f&=aL}PT$c`{SXlIg9KWhYsd&Os`fdO9Ag$+KKGRZ1{SE|>1%`sz@O z((l!R@XNWaQi{vvd?-f^r89kko(;loN&&u*1t^68Y3k%;CH*%teHrM}y%YN=`OlJT zLATc8PbWl;QV1+K5Hxi6Rw2^Xghr(l-^)c&7_ARcVMM|UTKZA^7963ZeoZa~yB5$^ z_lTE{K1IpDQcilG)^^J7nsk^Kt;S2ykZ3d&<9SL^c9XNB$Zn)M%&Q1HxUW`nm&@7E z-`T0IjN<65MP8+Hhfm#aZ(xIV20I9*A9q)eaV*1s1iSPwcgp&LVIr+KN-lqnWS>3;)r2SH+?b+Joui=IJP$|d# za*gjYCl+j=(}4ryVl>cA%XAl*A3@)lBD8xf-5$DbnE{~D>jz}f$|p804$N!}HioJb zk-*4l6OF3TAz*gPR+FGKeEusNzq9ct8-LqIa`^mTvXB7X*^w z&uDC`nGK=JaCNxSt_pONsiQEaC?&aJjgr`Nad{Ei{u2vET4(Q!8LuMxa37Swn=)Xa zkw^2Bl3|vtxorOYHsR*aU&>0MHR{%>ungYi=4>2rx^zl&ZgK{33ajpYi7?S-RxN|5 zcvdZ`7A*PQEP!5`MPDoC8?jJX2(QY_xnn}{a813D!$&J=u@xx28kk41Cnq}F&Ty8Y z99s|8b(Hziq(pX^cjYo~6Sk$?ty&7_r^u}+Jut;;u>b8T)YAxR3j5eK)_Z#{H*4I; z=|+BEO`L7#PW@J}6J^EI&H2_-+h^9bJCs6H$wCxQo)j3nsDZxAX%5NAf#pi__vMP- z6HOlUTwr2-b&Pswu|#EKB4!R%uTaXdyDUfHJ(d&&ZoO{MmqOJK6Sf~9Q+lq>mPlV8F7@wk|kPAfNZzMqo#Et$A*YJDhx z_SMnP*j!0HSI%?0aUB_p1LZ60OM=Kvp%4E0l-CJAvROq$X&hJlLns)vJxd@8J zQ$L?n9hONLuUkTy_XRR{@r+P}zH+MqbLjKiAU{$`K0toq0+VUTJG>QlIa=$^jAZD&CVL>L{V zTWq0&4fZ>g?03lp(6u!K=)<3{&M;+oR4Kzj@+*-ak5)G}L=tAF<3*Ertqn#UEDKaH zt1-ZL^%=$Si7AowCfR8e>TNdOW#fG|KD3SGDAdPfp;4&sWaiG}T5k*Vl3*o8)b@MC zuLKv!Z$yqgDQKkoZzXH9Tn+Q+Q@1V}Hnnl#hPu?^&%dQK@YmLPARFeKCC$@-g zu3129A7Y`1xomY~CHJ2)cfqWfSH&8vWF9V8tfI?M@-yy$NWz&MOAYH^c z#4GK4DESYU`Ex>b4UJ|ecP}OD4swpuQ9be6nwaCQ3Mq+4$iyWrGfeKnjw#u3po{QM z=hMeboR-0xU(kmsi7%6rojocTH%Xh7qzB2Q1-1BGU+7e0%aqJ}$(6dOF-GrmXi;UT z!CXXhrII^KR%3aUbqzF$YW5gzQ}Vtf^XAh^N?LawH52@>lK2|AnDc@(HsJhFeqPD@ zt;}0U({Z$R)3tQ;Z6)>Da$XllqBXRho%)7#!9_+J{e_aeNG30`HMU2>e^zoIC%;(P zu8u*+jdVSsALW8B@cslTRWjqSEKy%aYux&}uafv&xs3C}v=*4|oiug!044G9aslUg zRqE}OyeG)K1>=(2L`=OoO3D1J%$zgQrM#vpS&x_NbasuihrOSY^kTVIWkX{c>ME=x zogt^Ru$p$@RV1ou--|)rq@+GWF50ZnV)F$$O3B$vPHw^I2Cts{5+!pVnb{tzaLvnJ zpd{`kSF6HgkEh6dbPi^fJmxcZWMwr2HuOv!z{%w0T% zCj4oL*4^WJNlCs`&h3KgDD7Q~M57HxmcOrLK3qtt*hR_ygIwChXfkL6 zj(f-W`bzR^<)jawVdt$T(f*eam<0Ry@MZD9=tR6RT4zsvC+C1^4U(yLwloD>YeT|= z&J@Y>Z%IC)-Gl3-3Y}8W-*+=U3S%+SX6Y!vZry zjaVgMyrYvSnzp0De);R<}I_SPZqdl7Dl#vUYCGetQY4GY6`b5?mzbKq0LU zs1M8v#vN;B<4WqA#&vINcQbY`iJCX z7bbN~V7A!Qwh^L27* z7tp%vsxb9*%@^xSCG%z(74!iKA`a6^-?rVZ)k^AJ!(Y0p9 za+c>}qk&_(xlBp>lT6!r0_kpSZg*hXnkp50QZ7hQ$JcsjkD{8)aOl#*3>wY zJWa{_qWp>%jf^*Xb{Xa>xj)Gf)7+)C&o(kvlfbvUneCQRgpXwr3R^3kNxe`>Jw>i; zJK(Zd?i{(h8T5ed3!@<+oB&&zGr7$HrpOn0Fs;gp&SKxxh zeX_S({*N|B7oytF(yj;hN_&yLkB5k*i24-c0AEQ#@-4*=d~mbT*c&VlB0)^@JCx+O-%DtXbK;H8^LLjkS>KU!y}TvY zgRz>0wRBsjp$S$f1sEdNzHU^`bgoF-+7~jHY`v=#;xSo>+*qg~6f}oRzf#g}BWHdY zO`29=CJkHSY44(u_rECl7s~ua^s3_^Kjgl_owb?nU7I7nYjia%^*%9w>U!DAmFzFb z1)dkLr4=s`v$pqB^5)7pUVsCm=mg}Txm{s%CG$~oey>jxLG(!t^^ViNjTg=}Q!!jA z&x>*i^k|4B>Z$Y%K^$-X7^N5+%h^(7w>I_BI_F6CbS3vA8E{8}i*eX+z4O)IU&;NO z%$*0-Lsh|e?H4F{U&)}@-Rj;|`xYt1=pw&|d31zdZLsxj0N$&9jFR^mIopd+-OlD?29=5fC@XjzAH zdqOGA3R#*W>Q~S-9o05RPQ0SzZkEfvOR^iEu8Z-ZQiLUP@^j)1bQ+PN;l5L{o+h)> zQn(uDu7f|6w9DoE?&Z~Rf40A0r}DyKg$PE{^+pxL$RrsRD`=FM_`Fm9maTqbjt zwshdpggd6f2Px?{mdm^wz1Q4>LX+b4-M*tzhzsRBXl>G*`9DF){d@));2yegXxZ6H zA)b?k$fJX3U7zk1O5Tg*j4w{U@$L2&GI`M71eM7GBMI&jRj*pcyU$)Ll?rml6yvjr!mA;wg z{z~2{a>J6<6g21Nwor1uFQ>JvWhO4U-pNpG+bj7SW&SMZXuwz{=ks!fE^l38MU&93 zdAJ!$0XoWw&YgtOFSB0HQ_}7!*RQgcZ(=$@p6JciJfh^!l9OG++abKx;xAUR|177z z8_uJp-2gbmoA$^Asv|+iipFD=Lfj_{Q5+8iW0kdW`>r|TT{}ZbezlzcId$MQST9zx z9xW%iw58TnMib7(j5jFhN6U#WOtYTuUL|#otY@<8LP4|3_N0<@Q#reHsqvz1FGeZ9 zs-#^m)8@>^HMR!pM@rWHWmX#aFegmES8^81rCK&VL?_M#Bc2O{|5WlHDOc#?iS=P@ zK5#Ey%imnrE&Er_aBOIzw!^i@u)C6aqMYu$nf4LKW*ys5$$OW~n-y;~dxBdlIgge( zyG&Tz5T)gr@o?O;n(d?%;a6FNZX=s$nH27c4bbt@UiV&1R0>fkSGO$Z=>48b&aQI8 zvt5m3rIPdmS*hfPXi&kSwHuVQon_jRF}T>pvx*&}WG~4VXN)?x9w+R%kNrfY1nbFV zork?e&Yt+$O5QzX-ZJz>u>{epFMPR@|6sY?vz&G97A0p_xwNzD9OG9HDmf38(^)zt zQCC5IeXneOR!RS%tiJM+#cXto-c<57$-FsJXimm#C_huO?kclp$AgX?sH>EutK^ye z+(~r)yJLL#UnT8Pa>dG{bLT69jt+0}7P|h|RT<>5Yh0?glJr$sTjkNTuB%bpRLMI^ zPHgL!Bi(nGaFp@3O8T#4`uxh;C~eMIV6Il#%_LrH*(SOLJR4CaUG4P z#KM(WwoIn^JvN`BZo6{XuT0;_xl+Uj!Nj8xhxVyca-T2fM^?Q<%^s-ayf_2Sc#~P~ z$0<4AmO1m{bgE=k$Q(Obs^skt^ZZN7{oM zqf?lTR{Tb#7_((Diurx=SR{F$lKfw}UCpiv2hFYKPqmZu%#Iy8cEHa{>X{C5^O{8? z)JAr{)=u&k&P(MwUL0CPR|w)_W#_E^$4c@VIl;N4SgRao)cv5Oy;4qdNlO)Lh%R*O z3;RpS{;OQUOV{vz6>O<%IPx>db816rhTo`XJ(RRB%e2Ljcq8^b*n1!i@{N?_- zYKUqtUpzDBvxn1XJYX7e?q_ce-SRJ}Zp^|6EDkTc*xO zA2(X>SiJm`l6X70ruC@6nIm)!#2Pw49k$YSfWDRc_^lrpw3OStRINlwevX_6SqwJb(H^-0kCGy5e|l*9|=I+k7S%=CSgq>E(I_2ZSn2sR~9$Ar3_w2qK2=1rIT zwMu!8l`DOYdt@x3WIb0d^Bh~X85;daCF|BQYc4fsROb!aQE=|LgQYQLjP-eB-u)DL+c9Ln zQbpu?Q(*54r&Yh^Am7tU=C9@a=tnzfLR36_ArzhZmOdX|S4wk;EKL#VE@~yPG20wt z{zS>WQs(ZPX+Eq}%5tbIOQAi#L3-RVRPwiyIwn`eF3AdEzp5T@L*XFZ+mMh&=$;e- zdoR)`w4O>SK9;4(4%6NXLz8c;B;8pi?GsNl;Phx)N7{##wT#r6V^@QfqTDUlL2guN zLn(GK(_wWX=O^(lN*Su;#v>00zg9V>UiVP)9w-+>8DEk|mrP;y!*NX5UP}JmWd8hc z9KATl+aFRA?=2U4fvp6?jUjUZZ%oNNLN4lV$(KINXY_e!p2L(vd?)AoW=SD@^$(hr za-Ab*PPtty=~VJEr2yB<8PnPBpwL;kP4q^%kMForDZ$@z%`CCApb-~HR)x)>n%k7@ zH_PcSY3-QMwheP+@L?tU5i)xhJM9gzP^G>0!qvThUMa#dxd!IA3;k^+>pZ#8^HJ?0 zVaE|!Unq$O$;2(%D1Dy)tQ2C5oag09ZA1$fJIt$a-cs9fYh6d|JXwHJWPiAc1`6G! zU#g^!$@FFR@KKt5uzi*Mzsav%OFwiCeV_qKDgKnD$VY1&r`;AtUvxVqaSxfeG>l#- zO5bjH4Ej+@`cLH1VODzSy8}~|B77i=(6j9eSQWxiWpqcjW1?U`r5qp2a&$&Xq`#dz ztdyXe{3>?0TOeBzrOSsVr4*;gHL`bW_l(XDOIAydj^a^DNv@Lfqf6_%K{Nb~bRvUe z-foFfggUv2>d`7f>%nHO+gdMBicv3%QQGp2UKMVlPc=hJT&tviQmzuEsfy`pA@5Ss zUnkcCEMTgv?J#e_Lab3X691TzeFr)3i(2xYmQNYnFDbbbGIviqtvL1Iyni<+xwg(FOIv`nnL!=$d0jznRQyZRGs~xo(!$U|`qI9@mn>qHWC1 zV+XR+NP8zXvf0RGBi}ZXBkhG`p^^6Sas}xTweJlI(y+fRNQiHSHR@?EimmO?x?eH2 zlj{c^3z!^7qth+I7*3?NG&#!VI0$?br8F1H(&Sf0W3kF;sM^SeAxh#&a%mLW^Dm(T z5{}gdyDF&PKbj_3R3t$&6REQkbV? zVXz_Jx%Dlsr2RlH_43w^5se2lE~ zI3^L!Rni_Q)0S076Lg~x&7y_sE1grpS1I|I$~CT(HWNo1NX>d2?S8wG{$V-!d6es} zZEBAwc{h=H3t7*R&N1gMUrs2AIy8ez*gh%Dn7t{vrk5tFmbYCi&AIpH* z*0!!Wi`7czYSi5G%O;_iH`rz9_si>P~LA{L`%XBa@W@13DCXf&q}1}dfKCbvZe zc3&i1Uu_5k=FK zyr0USYMoQ<6RKu?jrmHF&jy1JmzXFFO+d%FCp_72ARvJTfu3`3IBl#(1I7fo4f2i9Y+)`d#` zfSeP#p+z+FW)5myr=g1oZh^uP<4@>^wp4hPLs0)AK07Rk9? zfYExpBV<&s+#$N&-wSf}DyXHmI7$~8n@f7SDw(&)fVnbQSxfUY)#i|BK*@ZioZI=d z!NorA(a7wrl*FB7;y$f9+b(M=^VU|?5M_i?l)dGOo_yC@Hdwjdwed<3HkC!l!(tiQ z^kF1@mdU%;M#Q_yrBg=dD&Xis^o6UV5%V*>#+1w2kL)xgzCRoD*{EQn$~KZi;?-oK zA@LLC{3wYGrqKcWz6$4jej`QFb|l;{`){)H&2}aE2qo#Sa*{iRw=qip6eZ;zaw!+l zno*h(!X*V}=jA*l_n&eeQ=bWkI2cL3T1gv~HEpg(eZE6UyQN&XC6OWN>hp3X`+IVt zyTqf_^j+Uriwni*ZFZiNzd|X(UvdT%Rq*t$OS!(QQcAI&{Icb^Khl0tvM!cci)v!g1nw?%Uf-9stxk=uFLQTIohMDXUYWp}SmS*! zSIY3btY$hl1{YufOe9)Qb6i3CPBSFvrE4h~CHqqLSN^@8AbR}(6&ffw$t+GCvh(y9hh1y@qJW^(+!}ely zej_O~``S8#eu0vHce#*LtEr5!d_#;yN--+rV(;!bqhLsJj8ckRdC)wsAxaxiqGrGS zbS3Xeav_w`A;ffA4t8O>H2XzL`eHfR`E}8zkV~0fuO#jw*L_==M$B1>dz7?YW!he? zpF@0-4fUmHy*CZc81?N5r6AMfaxZU4P)9CZYxas#fJbBj3h0D_Cfe`kSikt8lKE7b zIVTov+`;@r`cBDe$!eyneFF>SIbS75`+6KN`yWafy34gMx7K|}Xx>m=_w6&8wzN8o zo#>uNuXIz=Un$cU*yAyk&d>i1l+0gb&|_y3d=xmDXyDapCABvj#C zU8)I6+WZV?8>954V)o=_D`^X5+LUr9h0dCtwY;I+E0ls1%Yx)ZLW^9dH%FDco5*ik zNhJA!XkS%gr21eb`{#11v+;#yke;9<-8h3Jw>Idmp}w<}>{rW4E}(sx;mX>GCT?){6f3gBwcHR%x}sqdS|SAuEXs(EnD}EYVfEjnRPeWX_)z5HtuKRK{g(? zjpQ)%ad3(vcSys^Ov3{-OoGNp6 zrq!)YgK0sR_qlbyDkWGV*ZIO=RggxxQS?NxE2mt$KwP zVX%!p4Ht$RX~zvsXjX-3VV61b)n6&dGji&SIpaOnWNe`%KTRgjMb>X?4!doyq&-5e z?!}XX^)%c^vw6-Bg|SNVGvqWEj7}b+YZmnkCG)*i@XR(rgA34=UGaIRT(X~W0t6?PlSS9z@a?*R?wZc9n z`({0S9a2?y><&6ZDMo=@(~HLP9w}V0VPwI@O70)zEGSQwzP(Ht%GD6y2BiRp%L4Rr zl!154daqKDW95oS*VNj38$Hh&c~Z&$rd$gOX4-eOI;S&VRWb+Vl-sS#V6)^uQqsOA z_gAy0&_Q2Db^BgPS|(Swa%xrRT8#+Z!y8=~pzSJ#0Dme4m?R6(yQK$%#n|ymdyTqB zry_rtu0QvjT&G zYPMDqpC%W7woAwEq$K@R&g`t2j*s(+O3p{+gcghmHU)c%jDTjbwTrk@DL?wXL;hxZZ{maft{$NJw#5c{Sm%x+K=$F zl@h#{f#!?^>nc2p`f?@tEIIi_BWYt#ldZhW#_JX(_eSzd?Qz57gG$z&KE7o?U7HzsJ`pgA{RJlyD$t+mnRhh({mf{l?-Fiumq4t=}6 zDU;QW>@=?2gNM%R5pThgO#2bKMD?k`t^652sfxq!ww z-N&Kspk)6=X3wQ7IGuNrj8oFyEN65Pwo>!ax8}##OeObUas{KU)b|c${WRpTLgG2QSew%Qd~!Uc8N)GU#M$hlamVN#9S- z`;;bkjOX8{L(g)wcqO@S0kEQ*OjI(~tUgE2qC|5A!EP)<8-wy&Y-I-KL~ zb=y_J_PQ=amfV-kt#U7X>Y=2~muX8IV|4TarV%Lf9akoAq@+JVe#v^aPG;DbBevcI zWW4O#DCIa=F8?g2X5U%K`InsbF0CzEJ=XfUnzh}PB0MaM(5uegp<%b|bb|mbfeX>` zK+dfqbCiOdEDKW9vH_HKrWs{lrQ}{Jm%V+#o$J8#1C+#%%Zct>5sL<^D(&wi`^X)$ zTXU#Vf-hw4+r5_59vZo5jP7*AA+;D@Hwxe+r4)O~`H;?FMrV$&*_f(0Jxrf}}qHdmRd3PTr?dEcE z=VMR5OR;XIB;H6a>%0Z_HU@Jc-cTj)6>w+ff{YuiI z8IaO-f95*!rWpX~Oh^{l z*G2VJ%JHf!N1DZq1C-4DvAOA%iEpHUB-F1{jagLywCb4*Tnc2&6A9IXl~NjH@17_QuL_O_ao zwEN4nX?N}&rR2U@R-}1V9w+55QSx4vLHW`G6U(Sn7br>3kuy4{I_8|nzE;V)RR*k) zDktk*O4gNf!P4cDi*QtNLo^z3%q2Z$vahvq-!XEr7tf?qM&hA>`!Mr2Orfmj$WG(G zFR<|<8!xl*s%<34e_tmHjsHF@Ycuy&!B6Sgwxhm&NgtBSA&2x>qxl{Aqms2kX3eUq zG+WAll$>$7p7-Lbl&zkIk%GwJI$WoAxh?sGILJMRk?RnvS!QWTTm5?Hqf$LN9j&dGJh^Jr)rjC z1I6A-?t^7+uMLUSO4>8!BJNHnme83*P4qU~EehHbN8;m3DQaaYvO#Nf7Y)T04CS;@UZZmZU`gXvr){a88a1);i%P?hUc^sAK2zsm}=h*sUSG$2NS->&4o zO-^;2y58D^IO_T%N-4IGb0GbBIWH*5Uzh7$7AbTi+uu=gJ}oCW^`1F0`%5MFFLIG* zqXjb(yjn>*R@P=^@dzzw$LZ@HD-k;Ftm`06l=*W#jwUKo(q1IfwzS)h&yn?%%pb|M zIy>y_4-Zt5z9LuamgG7r^)My#WI3a|)zcv`bSw&nt-O`#Xr&N6WFg$=Do#_9_LNCe z9W+NJo2%sRn}I69m!6?YEG6k|nKaL9kM}|)@3wN~F6D7>PYrgolDA!SovZ1EmBje?`Hkz`dMy{$ z`MD(9)|AW|Kz14`-kgms*%-veHnx!*Djq@>8Y+HWmY{1LE|Xb^?We6AEnXW7*PEx#@1vyNTBgpg4aTbI3YS_V%{5Bm zKV;&f`l?WUqAnDpL2HA%QOW&;tYmZJq-kO%?GZ}a+vUnd)7n(Ia9C-R^Wu_Il%HP zmj~V3lW-g)@s*Nw2RYe=RQG5ROo?-Eel6ps(I*%4|yOz&n?W$`+kC9)u!j_V* zG}j=OE2&?XlU!CCtfM8K-eY|Il>BeW{Mq!Po12X`SCV#;d+&v4!96+;!2$f6 z%PS&uZE0Q5JHxM63J{jti#%$k=v%aoux(HGNV8IgpzrZT+Ugf zNes?cl$>`HUed^7x~IV4{Z7eywal9xckcTALrK~oSL7TF znhZ0Nnzx&-yEQ~+&7xhf24^=V=L|V}i*dLoK4n}32OB8Kv*iTSMQx7Jia|=!Tjdl} zg>r06+fhmSy-b=z=Os9jIzh?0fy_!tb&$?hl71!^YGEu?8E%M0oma_JD5+nOHDjv5 zHyeVelKKJpn>>fsDAx@(-rj>v*0nYQysupFS@f-H$a1PFi*+>FY0URnHjZcGL^hgj zBRS@K3R!5(_j|eAbLbA=dUMag`SftxQC`2S56UUUS9!1sE5yxVh-;M84RUSE4aaGU z$!rksRMNgB)8yIjucY*!w?s3e^xSE|w)ToHl+N6aXhdHtS}zPC)D zAC6b!OlEU@`D-QdZ8C8d?MF0T;9r%TPs#;cjKNjX+So2-elTT^)V;@d$qA-?>QQrC zt+SG}QciJEga&lIs#bp`cSz=@1Uq_rTPR6a%ejp4^TFE~6>EDX>nK@c71O>$T&vb$ z-lC}4FppJ|7s%wf9#b?kl(b`HS{eWdo9b$wlJroSG>c9tG72}M)84(Vp>vTr1)|rd96&IRa0ql-lF7uN#@LN zh{oxTsU~wo<3T0yadPn%Py@jObw)Nnt7JY;PI91uR%22#K}Yb>dhjMX1JFJ`fj<0k zH$+v)JjMA;O|fRL;Wv7=?dYvv(!*q3lLJz-hmQ8v-JiouGAsVob|==zTD$|cj2RmGZ>b`PZ- zjdHPM(YKUQD>qVdPL_+JTWdoR38B$)caFAE3h|IEL;=-7>ao*h^hWY`Rx;Pf8meqf zozvZw{0rqG@1JTSNIk5%k(i?tXR2Hf{q6JWGW)2mQi^k+oI70-@il(J9H1282{}iy zoa*sVCFdD3XO~7aQn-~T*c1#$Tq^M-r3hK_dr@FFmNg9tvza_c$^4aE=JxP`Ir)5r zl67A>%X8>fKS#rJtCICbIju#l%Gc33eMrf@yAS|yDcPTv^E(^gXNIzWOG!FH zPBLzi2-zQI$uT1CiW_2lt`uWaIqj*XGtTkppOoY)Wb)qji!F|rb{MPcb-gG{(uK6k znzUSrQiOrB2z?tuu}b^CB%z_{qm-pamZcCAaUKguo?0HmHy^{A5xw3nnTXc|; zcbUwaGm+*a%@RId$+~ThSi)Y%)SjuN{aY^FG_UogT4p)H#bXzdW)0&iI>-9%o0R1L z%H&?TeZP`+7rAPsy|LhFCHGTuNqfFduPb?U%m9!hmv}x{o z`CG|+h+MtWWOd;cgSh>IJhySWE~}!aQYT9rX+t-&g!(qe3+8^UOBtH z?oDl0(#GZdE*c%hJZPLI9k*~`zg80^F;NLzJ`UBvZxexO|9eJ3PpYDkHV3s!~#vqHE#l~&^{42%hdXBmoZi7Crk8}{8#ma$~& zn3CvWZ2Eb&~}X2uV|}f(Mq=&G$bXNIe__q zlKyx3r75I5p;}YvT*&y0l6sz;^77fVdbGx_6Ei~bDUROc8%hBlmIdfCc+fT@0+WIV zE)F!s17m6UIA)aor%Dle=7|ckFRCH!m#S)81q0Fg!1!si4OxCv$}(M+WsA12M=&sL z@vLa9vNnJWSy?PU$yWALDDM+C+!uBVISD^XfA8)=Q3 zd0cqW1l`NJO3tEQg9i;B5f~Q>)`b>EV+#T^Ly?fZ4AdyAUP?iBmGh${eXZR@$=*qR zamqHb-`Y{M`q-_`hbZ|2axs*n9T^!3Eh426sB*R^yD9}3E@wdLoEV)lV`qX(b52sy z=gFnN{^)2OHDmUb4S{HNAQ+(8O?ofJB^MD5bblmZHb31Z{c=2P5&oNYZO9O3rvwzEq0wru^~HbuhkNMv`(R)k-@r zg3g^dtCcd8$`z$_TXf=EKj4fk=rmE+BRpTG@1D}`!TQC4NVp;vjG2c3lqsbs%ojf+ zHX2)BwN+zuD>CqrOXn{@*M}QI^r;&P&|5QI{|G9Gz`Am0$mQb-GIIT znhf*}&^|zCAzTg6%iwJU`X0VV0KEp^Q-D^&?L45};C3}oIo$35YJl5vpk}0F1<-i7 zy$duB=qsQiGRElt$1NDdRaGQad9pO#~Iuht2pfdPg4|F-uJwQL>*(ZR$fZHoTUjlsybU&W` z4(I`(4gvb>4&M@>$Kloo=vlNYNCa8-Vr&vheIepjUy82FgP! zPXjs@;jRWc5wY9>R0Xsg=zTn~0%&)jcY&7RiLZbzhubeev*4Ds0sZv^DhGNEvGfCa z3utqox$qqhbROKs0G$ss9q1dxw?EJaa7zFc038W50MDKZ6hOH1fwqL(H9$WhU+x6D z3%-v69fW6J1UeY#6QJ*aRsvmsXa5Fj#uJ4b(%&D5r6T?V&ipo4&x0quonuLQ~h$8A6_0X+_y9?+`xIG4RJDKz9ON1@sA?xE<&rxIF^&VmAG~091%)-vPP~;l2dg4B=J-?E>FUo6uh| zeAm3UCwoG)&g}1h?`Ru_Qk*oCI*g6&*%-mbPPUPpN!^7kG?V%hNY?}XXb3V8=#6ap z8wPY7d`APl4Yz4PFGBRWK%eB$p9ShQ?xy&IZ&#pi;T8az2MM+Unh!Jr=u?Cn z540KFW&y2_CxSq;f$D))LxO{VHiO&oKtBVW2UMR+e^&#IM0|GuJ&Grm1HA*^6+lDq z#JfO`0euCu4SatAS_qW28U4*cEagBiAY4D7T=;GdbQFAt1HA~}F+dx`Z932+K>Gvz z2DAX^6@*&^)CI8|1N01hPX~Gjl3oP#2YjywdJj+B1N1^3{XGG+0_YW>W`z3?XbIfD z13C@p51{4n%^N^}QMh#jdIx9&pk+XVfHp?B9f2-{+XSHJ;WiuSIiL!li{Tpu`UL1; zpb&gd0O}7(&jLCc=rW*VfNlml8{r-Rx)W~C0NoAr2GG4gp8_2Z^efORpzMM4_XeKr z474p!f1oLlU<;u4;kG?cBhXl&=ke?eppI~x2ec=ihyZ25Z86Z#a61<0KAZ$ zKu5#v2B6V!yB8=2F+T~kDSTfAS`PFP(EdQ*0~I6OpFl_A+5FAv?_cI%0?pbrpp15jt6Lx4*1>F-3K^$_lCpgn;u2RazxZUO3w za1R0<3b$v0J_N^`KutiO0qqL33TPGTM5WOkm@y{ zOY!W-Ks9jt0q9D&{RQ+Zo-Npt{_^451L$R-jey1>+%`aWz-?!s2+;08x59T0P!961 z3g~XQ9RPFy!W{}!4s;UGgYZ2ECO{Xh|fdm89#xV;W^2+$`$D}h!59SZa}Pz+BL4x+yV zP*0$bfi?!(8E7!j-FRXbpepe00dydI_X64tC}a44A? zKvRJh0=kla&^L(XZlL|(_BhZ6KraKu5z7Za-yz($HbN}F z0~NtHcL@ExfG4^FZ2=Sjx)Q!y0d)o%0kk)s9S^iA&@7;?@T~zl5pIn@zk%%tpkLv3 z3eX-1cOKB6@Vy!+3bs3dwnVt)K<~kA1<+q`dl#q!+`a-@53&3Lv=}IBTl!lcs2u2d z#M}?)1)$A=79f`4KqZJ}4A541VmeS1zWW1>1X=*JJHjmjszA77fO1i)rvse?-;02X z;dVVx7d(3pP* zTjPlxfzAb*0F)0j8>kSd0;m`$3bYAgIT+}3xSasBG2G4qx*Bem0qp~~n}Obhe2)Sx z2k(nOKOo$DK)ryz2AT@=E6@@=o4pQnM8g6F*72w&6fqsD74M2wj-3xRqo_G@IO@wH)y4nV&EjRU$FzB7UT!V~j>eur-z(5>)25NI&m zjsuzjx1~V;!0i$n;n^F3`oZ@;pnZX!0xCj^UITgw;XVfX6TUwH)ghL@fCj>?V0-$@ zLfU!&W5f5>_C4XBU}kk4@ln!XmfS8wzv&@Lg#ml+52i`H-M+1pS5K+Y_h|ZW{w#3p5yLE@IgQXgu8Z z0D2s5djXZgEd;bB++si-kQ;{qt%h$iP(3)70UZOkD}kQE6So0%hTFqHPr&VYp!Xo@ z+dvP%_Y0tE`2GxZ8RF}>BmJEYw^E=EKz)H;1sVX<56^A~bT-^Z0lf`073gbl><1Ks zTNr3VJkbQSKhRM?H-l{n&}9gB0nj<{y%uOIpu2!pBHUv@V-W5QpohWnDbPdk{Sl}F z=pUdso-Nvm{)Ped0{RipZUVF&!VLlH2(&9uHo{E;`W$F)po4*`fzCv@I8ZIn;Xq%( z_hg_IkmX#Uv2eQz=y$N)4s;vb9s$|{ZZ816jwjv$dKzwD0{wz;tAWOXqtnjxHxZ}| z=pvx?fIh;r1A$(_v%`QU!*?`L51?s4J%Q!|^+n7U&}^WEK-=Qkqk+m$uTBGc7j72< zDF|F!=>d`7!u$baqC~W z;aYEN62jrKZEGgnZ~?Y;1>A5YwRJTR?uoV<@NC|0^fv^k8_*2+ZUB@Gw?RO+!fi*O z?|~)&Z2&YI=re??0D1*%QJ@EqlLrIsi*Tm`eUEVG13d`0Yk(T?#GOEI0X+(|9KJ6C zO~VuK0rdv@8t68lUxA)PINZKy-32#XiD*^A4HpzzAt2luXsw1XZt}B6fdkj-Sp`72 z>CPGhgzM+5LxFH9ob?x;z)fw|O>o2YX_kEl8m=_6ZigE#8ngaEI9&f_Z4QL1xU9Xv zi_5XBJrE8zR$2D|;r=M=B!t7QPF5Mh;hH7udAQ||qQ4K}hWm)D50QVkBgpz2&*I7+ z>k|0l8Xc<^PvBx3YcLRQnX!ff;ocW(Z#;oZSgc`i!>uURa3I`MV%>sRaCwOJEW+U? z533dk_iI=$0pY?6>o|nN1r*kKaKp_H))sKXbqjoF0`5St4nxeim%us|zPJ^@+7VCS zh<_dieJh1gHp1?u9 z)_r&aXXIM;LAN-i)@p<=&W^Pv!xsm*S`Pv33{-=dakQzm5aH$kO@(h2(1CEnxti7! zaKmYr))_!JbkfSgvp59O`U>H2Fr&3Ed~sN!btBv!0@@zoaEze!G<@Fz8UZ&PuV-xv zH=K26tpMsUmi}G@Dghb@)CZ^rXfq)D5VN5`_TgdUfhHrqSwO)Y`~lfVUeyC#f@co` zS_X7H(6%}BcP7x^+4Og*jo@|@(7!IApGKpz1O0II+f+X2~oYDWRtn_Q;??TKgi11is>zc7%!A+rhSH9UJ1&_IM+0<<5{ zWk7R*ZU$Nn^Z<~(FYOtid2o9J=wYBwfqLfA-;Y4kf&Ky79vs-@_XzF5sUXmB0A^duBR<# z@ukh3D`{H`9p^uE-xdq>iUVjqFn-E}mm>%N|{-5u+M zDXrLn%EtL@T*$`7w$YqVN4$q(v|nNA@y)p;NFo+q+B~I-vTW;?bDx8et;0==x2~c~ zbLN2(wm~V+L9n)Z4zi`BQzGs2OOtmBH5Uf!D{E;fEA2O1T6-r?);70Ew{<2-V-=G4 ziHe|g7FkeU=dh$}5I-4{M}~8Z*>;T9KU5Js%Q%btJv|E2d6cH}m={PBRhz;yvt__Q zV}aOEirLtsn`!FvB2+(PRDzu5!4!|bT=c92R)31eD7fZc8=w-HKzif9ebs$12}3 zyA;O{?TsR(IJo|(6vqmU6r?yN;2Uh+DUQ;HShOzMNcTA5%f;M*Fk+9jqdX>fDUa3< zA}{UH>NzMWUQ#-vx_YRP;Usapx`-(iGSrU3e+jI06;fs--JwS2`Ysxm8rjEpUU{pL zi4>1fF3nwRHDZYGRwZ-%(`TqkX8DfUrAnr^H;R-h;d-P}C4)6mkSe)x-Kvu8##lIE z^ghm~1gwqT$Ie~~q@{=9r9WEy2H7GRwbMguENgE*r?kddb`)u~#sF)b4W#5E$qsGt zkneJEX^Z=P=aILzxQ^m6%A>h}I~}MyN!HXi<~{ydGgK0H`i|M9ByO{#Sa&5`JTevw zF1D+*qkO+5N&LNMuJZlLcYb7AzGZg#ret@Q^5_1!Gc4s#e8>EMFXeJN<+_m$b_m71 zO1k$XbxHT2DE#%2GA-$@c1fG^yGy&PfBpt4q!;T_tw_x419VnvK0Zu#ljwa+F-$mqVLKgYXFV9l8YA7C~Y?^!6ip7-#w{A)J z7a>F467wCiOSeSZ8%0XDaD7tgmZ=&kNVmL;iQ{#rTkug~-Y9%8CBR>2$FrI>t3E0s zON|=pp*`+uZ$78A$L)3$X)}8re^f*q8sk0R<>1m7Z~M+8&!V)Rrg)6{1dh*-@;!h9UJ);Vj?6$$sB6SNY~q6lQu#`Lc zj`{yy%H~Ifv!sXXOM0m9JjwJ;_V}pqDDA=i`7|%0cfTN?Z%y%)l8j`bo=a^?nTgOm5M(HG%YhzxmEDZ|(90 z#bat09=LEN!Tn9L+P?@H>Xuc$V|MA5AKDv5O1E%*Qt6fz8YxJ(Jh5(dOK)>fG?8Zg z=ZGn5N5f2COGBfOGeb2qoJ9Bcb(gGJDK#_Hj^aO{X0TYdb$m3H2M%2`*LPvLbj?1# zGtFDqOr&^BUDMY!NSaEATj9*{FGq$7XO{1nT?%J+q1u2}Sbvshp zw`Ipkhk5ZtLqjyy7^+J4Y0S^2^C?|xqf;|Wp>kSeO^M1%hc*X!ZG~yGN_1I!OC_as z&a$KU4``j%B6DSfL-9Q1yU1LM=YHS$=B;?Hqj-!mYVL0J=|ifX7K1l=en$O6saYEuXLp6h3C5EG zX4t#=v%Mvd(lfu=QTzw=3>A-&c!ze`V5;BZacP(S6otROptp7@p?FN~(#_T`js&>- zGkyIFkfBcLC{j9w>yk>RtZr|Oh7_bzhOOHVsP5r<+Vx947~U!CH9Rw) z@^x+K70q^DTgnz8Gt@0}+gl$}x@8|bivNIa;bJl~z@cA`@?A_W{c^bP9P`#MQHsaZ zFT7{hs}z$$r1~v~_!lBW9dn@Xm|Z$%VSA%U=@_n4DjhRNBL(T0%hzqcr5ppmbcJ@X z(M!E7r^Kuc^)gY>ZK1J4TfPi6%R}wW|CDCA-;N@!W?6@;PN;O+Cf=b{KJ#5VF0Jyh z@7(g%DlbtyrdHuuYg2xAr{x3x{23~gcYVj~QYdfPQLMX}#2&mv+{`manRl7y_ltu?@ z>_&99l}cOb-HPNq|Lhqml5>2=>{29W+EJ{#PDHoX<~Ln=zd#cC>(sl-`&r-ll4*JO zG`kS3X>gbNQ~qVhu+$&-9rORa)O#7tZfmYN-t<59CI6f6yvelWdG^*j9q!U!?O%=z zOMjK`nA4PgJ6ir!=YgA!c0`ftJS5tikYwlKn|0fHC`0D~6ZT#M5hJGi)mfg^u32*s z2Q@-%))N@bl*ba+;UuxYudHM>N_8KG+EM%$x(`$~ZPM=0Dsz38jjKJ`$9HCV7Oypt z;xP&)c@l>qzFV2h@lT(jGMVK&W|uOVZbz~1IuPAkI}oYb?kMpSNhDe<3m~_al7A{C_X^-bT}#w(RfHm;LR&GbhusU(Y=RkxGcW{BQ9uNQUKq zqwkp0lz%&V0I5y{Hz4hZBGri)+}?yFI}vBC+bPp-t#hR)cdwqrFO(pEy34cjHBVNI zL$n-y+@@|Ct(Hf3;-~hOL#jKm(vBi+cVgYOFfE0YzDv=2hTlSRbt!sK6#n{Op5<)i zP&`KAH1j8_M;Rt%2(<2(>FQsG4E0O7@0eZsrKG)4r1T5dD3yNsuD$g-sb5~k9SG}g zGk*70{gQUhbT7)+wV_}%OEOw2r=N+_+3l?lDGf8jj>3O&to4%vTZ(B7lcxvyE+&_X zS>!v%yj4sM#bc@%?!$VOqD#jl{0otxj*0n>*`;Hm?TsR(W4KPKbj(zZ6tpDc`*k}I zQW&id(NIVvyujRwcP}MlZ77!ZpJWWdST3WwdURLrYHyaOl*#RO6ls;oI$VWO)S7O` zckp|@OT?u^-u9hQ-a6!IipMCF~fTJ;Y`2po~xwuD2lbwA$6BDFA#Plz+K+i{sqXeygT}i`Tt(t-BY6->B@Y#zRZXE z&X`Q!Ztfv?B*ILGAL(T*rmqa3%iS79Z;LS9?9qa5~B zNkudo@fzT0@?C8`>zsC~1mb15WHa90YLx0MG}ux67di`=DoLf?(TptfT{f;}{2=t+Z#nn>2Tdr zDV>2DDQIkSw{`pFQe>Yn)?r>n*r8>XQab$glRWEO^H_zJv1Mb?jB4wlSWatiwx<-! zDRvb90mV|BO1DFo+~vDaT)O0T-x=juuGVD~k5MSid;o4rcDMSt#Xon3>f=V=F}u{q zb?uEJr9QX@sno|w8YxJ9l&{-9OMmAD*SJPI5?bUn4)O~nZEa|jJrx?oya+idY=)yE zKee}LQYvPp9mRh@#q?W4MmTg%@7aEf&82gCP!#@pecn1JhvG4HPQYGYwuZ#Gl~7mz z!epp~%6-S|QbHx|jUuIlxQ?lm(0A>v>B$eLhIQMADaBDgbj`V!(%FkLbZsad%`P`O zDTbuWP|M72Zw*LknHhEz{{byS1(Qm-L#-U-yI@>uWs&c!@>VM~6pyJ^c#~UO>D_uH z;h#N2JreUBvrCUe+Z#nnk8mwg>5-`#DX25kyl!ucEUAb^gH@HmIIUA{j2fpd-%Ba^ zf2)yJ=^&g@Up>Bu?rLw=r_{*pb`)vV$U0o_QQ9`?4n6Xo?~-xpk+*&4mA4*wn&L6a zrJ40eTj||;s9l~?i`Wc<4Q2I<B3ILLmhb%XEM@B$ipT6q@VyQ0 z5=@E^Xx-y-hJO(<)GbSV$L!KAC$~3>ly2erq|z;Q8Y$?zWZb&dEq%;;8`5rcd6Sa0 zHa=1`6T@vUE%3A1<+b(}NlMYYY)A1QP&Bw_qxJOBHksh)&;04TxLoSyH{ZGDt!}=c zcuaM}6T@i|;_lF__Af|=N@tbtm|aTehxSI1QaW6>R7z)sMha3oMfvM=V_i;|4xlv$ zK}O73JNjie#RLvZWz5Z9R0|%)9g?lbA6YEOL^?$ zJCnSX$3%+9D3IntJ|oPoKuOwE|74DT+6-02EZ;G^RK;{Vigni~ElD1Wfvj?r@QEaf zzt-GU!pHf}kW5RsyzQxA-sOC>fAS2=`3T=J|KH2Gb82IV*V}xTzN~Neohg}?HScEn zA9Y^>Cs$FeAIv(F$-ZyU(1Ky<35&7_0@+DOLd?PZy$?qU(ws|LnF7`+tb;k8shP~xyP$$UQ|6!pLU6T5WU`q zw?WbCMKp4V*EJ?~mK)G1LIZ;31~2MPR8DU2-DD4bPV}C4kORM5f^ZL7v{JK!gUA1UDe32D={!DugnQ>fWs#lv~G*c zi;fW~?|9aWcq0^J%=2huA;vtb3&COx)s#_;`M!x2uzuM+*{zU{npN*F*>^^uYzG%w z4*ozip=E`^(uEpFZR12MS+y(zdkt4D2M~zRkdol4WrDBgfmpH`?H3`IY(P^bk0px% zhjUAlK3ew~FXkyH;2T$rA#2dcLJV0&Ad;IqrqLYVM_9ny7l1*y310B_xoBEcy-knx z3SAI=em33&MV}9#kz4NbSuCp$_xs)Ee!mM%jjG@01{Np2Ziv3W18;_+?>~!14)MLl zgwJvYI%!BDt{ypJw-NS#TLz0aEFd4Bq8~Sr55b&$b$jG2Q2vta8H@2}S+$C+xcE!Z z4_wreN>6^uB44v|jY6fo2=1kKcK4U__FrS0M2{biw?NV3??EHC+~YG@(h%zPZRTF@MKh!7 z^*Mo@f%QW4yoI+y(eqo;$RVDW&i6x4^DJec(}e~E+sb@KchYh)h3Uy|WlptU$2vrL ztvk`umFmvuIVset#?{oiT~|yjakz~@>w$uHm=AhK(to)Mc8*l&cBEE)Y}35;p{* z$2ZZA5TeI7&>Ts9S-cZ)_~=0|98>iOapG(EW)2l2?#Xkr{XrxH+A^TX;=Rl}PZNd6N z2o(ze0+*u6Lq!MRa1L>56Hr$Pp<*t+S;bH>3ymyr6$yN|uxkiqht&=Sw zyl-~;>uBLN$iJ$qFP1HQnLvbQ3&~9=^FnC|BoI%aT_#K~zd`dR^?LCUz~K{!-N{q9 z(5{GkrN6|Rq8NN0Ln8~p=cl?5Ecj4;83ms&npgqB=PSwXl};>_L$4FeI~|)ENrh*0 z`Pnf~@gl)&uo#zXJ1Sx!W(I-S1wzauuIquYax~gCLRdKx&6U)<#r*(>4=c{geyOk= z&pFMfye-ee@y#oSlJ}sIg-~*^E(8lDR7XakWU7f35K1mcHk6DO%O{)zJ-{ulq#A3Q zY-OmGO*l)JYZf_n5Qxyok>pke>2n}t+=TXp5HfB=lO%O#u?aYQ$e_EP)Kx;LxDMZ} zVyO588d(Sxg9IYE%+uM*ka_sWU4v++dR{_=|}Qt<4`cya3ygFf!G!DfrEt;yTT%}fe+4-FbVBpeKnKK_@(kVp#hCIm8d-=bPwGOjm_oH=6jQ!s zVg=--uO)lRrX$~L<+qKYOY)d;J>YO2X^tn4+8t*(?WVkkVRzu$RSXxOMI#I0;#LBYT!uN3UIv%? z_zAEDH{t{z{|3#7s*mX_vi;VJ6T>g@tt)!^F*I_^Jw26OW0!inEobcQF#v(fmsGt? zZRNJ7I%cpu!or)O7;Cnok%d^3)rDZOhU&^F)*NGE1;m>FO7>9A)RSttYSpTxR@8ER z){aVT8~<4CPUwz5A$oleQdsOC^y8oO<4yYUZ}K4(UUOk(yH(p>uy!n}S*09Ym(JR4 zE!sg_&vvucIeEG(jb>ZT>b7cDId2UXuU-JJcfCEp^YDgI!8E7X(JGg3WUIMat_Rxh zbr5eOh@n9x()Guc(1qr><+&cKwtgVR?HK(i8pexX2ON$|*jKRZ2CD-Z=hIClz5zc< zS^WXwAXmHw>^o<0VNsRU;&(iV?`c9b+e(FcBU@-#eU3vOB1lmNb3*%=h*&XfK! zG!=o&C8T$xx7p2Q$XAi@7d6@P5&pa`#9!bSsoUdXdQ)$qoadRIwlzMc8+LOU@>OJd zGBoVZ)HS3%K^G!+rrS1I<$9&ICJ;*wjg9Q7=>}=BG>~!sAX0vaE?+E~9Hvb|$Uz2kF)~XRB_C0^l&N`Zqee`~{cm;fH zfxnJ~Rk-Xs#kR0-Obq)5NdU&Kt#tL50_Vr>iH7Ck&49zFUE|VyPJ7Ohg|T3$=3idwdO>x)`eh$XC;A%e1cl=^m#X|DnlIv*mHRLyc<&+d#zG;W=)~nN z8Ee;MNGL6ods0j7&Bt;fkbHhF8hJJM_rfZ-%i33>aTN?84=ShuTwHKBT8k_>{ZCz* zndCl0AQB9+ZSU{Tm0@wy+u(-pqtWnNydQ8l+L|G&@<+_Mdsr8O4V3Q?h{)q6T|eb& z9K|m|TTw(vImHKy5%C3GewaL;(}jqg;xQ-W8qL zVT}oc%{ep-X+SV5Zqb#BGv_=y3KkP#TO6SybfNAR$Ap#kgRRu2S}q@4e6NZ|M$NQ* zt|3pbrD#VpQLu3lTfj<0#eLJGrp&Kd~_lVZ-)q z1{xHI{%>8D7|}n{g$NR@F)g#1od$mm2xi5xx*c(5_C1r`nVYnvzfkJ3my%0Lm3-i| zPP-LJcx>+B&F#*kqODG&*{!ruZibS~>tn$X!_;vUfk<#(pSL8J-)5D&QY*Z-{Mpaq z>cVEwe$lX8oC7!6S+b_Yyz$HH;Ba#snC2L?AptFf^^*&74B zv~7|4K3(1z^+jEX*r^{+7j5D*fvaMpd~BMo*F>hT)TN0reT6PWkZFxso+S!&Hqn4! zR_vzR5hqbdCz~it-PjN3dZGAgYKhgG+g_;j^Gm5mqmff{Z(pupRkK}CS78yn6p1vQ z-Rd>XO>~ls;SpVSnbIC65D8`sGnem#!*3)RYxG+737&FSuErk-dm$Q{i;n{i$6<3; z+H#wRGmlmV&h60Vg>?Tpb8er}g<#|7X#x>>t}x@I-drP9sHcbv9O3a#ttWOzlPZWl zn33KAt!D~#>H(*9F^-N03k>t&ak>z(dtmnB)VfMJv#h^bD&*l1Tgr_*+)DSL*qksY zoy(NLfG*d7j2nMMM|A44$imG2x)8BDVvai$%9X|t!(mg5o^Xc)STM|xc)u=<%oFQ$ zA!7H$!X>#7vM0UjHn0+Csb_~k& za0X>;gEAH~NSHkux-2tCov8~EyQ3zMBRR`==Ij$W{3*rjV)MpCI1vh`Z!EV}f$~r2 z^2I10)P;zh@`Y=2JMCkN_TboDhZ{+$N_T1Odm+VUxOt0wbhDqcjjeyRC^Z7AJO*q+k>b)QJ-EPf7f`01-XP1v*_{)s{0>*f@Gb!ZBsoSJ;%=PvdQ zGX|bSbL;4Yj1r>uC(t~pyT=>4qI-UWZ+6HkDNOjkL?b(#u%P*vE(8nRR69nY`^&_N zC{;!R>S(f_$1d%-mD7|Bw8c( zu<%8*2Mq{j#pNbJ6pB0*M?)f)+-dMO`#8-es~#A#S4E?v=6o+1?6TY^z%V^#8>B@p zuaWFyT&XJxrmHImL@1%r9|50ilWFf?t}j$AJNxCPoG(YiYw;Gq;n;)smDrp@!gWftEiMwdft`6tFpwm|=By4*4PPtk>lo&G8AIB?y-PoWpYM*dW906B5}SikaISD5(^bjr zurjtG8ES}k96>U5JgiG9^UHU1A!7H-zQ-|HJYPoH;fiXLFM-DBk% z{k6aexPxNzPCC8SHpf41=wWu-L#`>pxarhomyMhKbs>Td(%3&_Taa`)ssX{Qh-ri6 zog3{MSn$>n*kOUY4UH7sDFBt&C%X#`vTTAyEw>$TMr zvAIaP+qOuO)8-`K^D(>d_ORtm-_jKU)6ts*B6P#MICeEWTN>M_bdPy^ADFb$Cdm0w!)ig zx(1Jjhj)!a1DdOpVO@Gzv%Qwv!I&U_b(<)@8%*dg+UNC--;W&FYaYC)x6)@VvZIex zTSVTL1G_SI_ZE>?b_M#~S@R0$&$h9)YP`gS1pq1^qX6)Ru85rgFm_y0&&YiT)cmJ2 zCjr%+p4tK@G*1JL?FWwJgy!}3xy*=8Xr6+0p7hL`ufnqLgr?V)f1eMBtNftt~r@!4^3v256yhT zL2_Pm$WiebG|7%?dhHQJ&TQU-=1QvnqUfiI6`2JBFnzQ?>UGsSMghDIf@e=qAq5@IZkMtTvzrrE^I6O zTGssZZ7k2V1JS6ItP@J*J2~9S;?sfsc1^Z@f#Ln~rqfIYsU10VNb7o)Hg z73!R*-!{X!U`=6bEk{ye|LLXOOL1wNcR|T(U2wrXFhMJ4Wa6H!3lX~uruj#K?Bzd; zV{^cCZVZIJ2OutR*O(yK977|V1_ZNWm^nr_6owsKug2#4p%1S2>H3Sg zyr>HiJK6Gs>sQ4_^-u@buheCU5q*U&M388Wfx*TWT~KL2Fe}#UPLs}}{Nlu}Op^ON zBUdbbKer|KXfz6Hc6hrd-MKS|T?{{>>wc!7hY5tnVpuoa&0m{?lRWT$JM(j^Ii3jD zH0>7-ah$#o4X4G&0f%21FM!G#o)Hh|o2Tu0tj) z8z|@cpw7fbctacSfr)+51!RiJ!4G;NsojnjpQo$^_m2C5c$f(@6} z;7?0?t^76^51jlDijDl)=?1h<9$Lc*2JF|&af06w8|hQ*H=SA~ zIAZNJED+z&WsMPkrY=P6#7}o)JRG2D)GDRaic)0ARuZamX%H!e8f z6T0j%2Mp>$#P5K`{ct98SpiO8+Rq;g|A>aNs6PUem*$CZ=LOhb8AyY&pT zKGe4G2r$7gH~sf6>wdFo8=U{dw^a?mn?OVtzWuY{-zY0rx;$8-x*& zHg`u#7b5l%F=c6gy;12)odDN8$fUuq&{oCfgsJH~X*pA2Eeq7I(B+KVn68MM(&bmq|{7#fw8Xw z7hg%rx(MF$Zr_fgt#ad95)O~il?DrkN9jT^zaF6r;rR9U$zBtfwY1Vl&Yq`MmAh*> zZ@I+zxEzs>GoFvR$uIAikS*{g4CnA|x>PfV_Y#N%=f6>F)||MOBln}xkXt+la5%=o zDu#c=oVH7KA=o&%h(JU>*^OGeX4M9c-!DN!QJk}s^DC+D^aWjVm@Gf13lTfNV@@br zkQ{Ri|2$TP4-xZ-pXt)W82*VaM37;PB!J}+H2i2lFe@zGjyUtp>SX7e_O;&Z&S|Kl z8p$YaPV=T1mPQPF9HtE#H_S`N5Qxx;q&OeWDTQ81E2iMPh}&qzciBHb51K44gg=o> zXv61E_T{n#5_%RvWtJ>0be4T|CgX<6!&CyWxvfJQ)6+ zTsSKp0)J|@+h=upYL)(S*I@BI@GqAY4~4In77rtTJ{-OtKcaX9`OACZ>z2XdQSebb z48WWVWE1EGvO`rbkTJu3m&npKp4lZb>SUwgI?}`nxJ7zpvgg&Nt%DbB_CPZ3++|n_ z&zZP!yBYcu!R*@H#}g(ixmxzx&cfy>D;Ok4{4 zi9MB?JGlHO>HDMMx7Yf z-RIJ`PJB(5BS!PRx)8C`Jl;Jb8>IU8u~FUOz35y@_iuH%Vs!sn7b14L=dy5e94)aY zuMf7{nQ;Y{dA`6hd~vV(Yvi(Q^-2>Z4G3n%8eI)JtJm9-UA<0#VCuaUoqs@hS~Q~a z)d}JDNFkzT-9=b^*ev)IU41Z#ok$=;v*5_{v8jvg3Sf3(;1SFX+OwnKx3~>(_(V9Q zApU?khud`_*Z`^PLa<>HHdwzvAVLRg^h?&!C#+j{GXG5Z=h4twd4Odll>kq5=m>((t_!PEQ?Xek2qN@<3|Oz@s)_#)E$ znl497q<_gH3TAb`Uwq-+SPUDt%S05P>I{Vf6-^bvGdgWn%(b) zU6aqhk5`L^=wc3V_(^Gg+Af`!qn9p-4VfylL0I%v%vmlC&2p5J{6hLF({U@U29Wz+ zJ}`cqa9Z?L)$$jan_w52JE{)92+s_T=A3aY`9)e{t~uq5Gq|5TRc@(mjMVQdiaCA;XLil<_fQtwwP}HvXEr5G>4I zMmdYFR*);9jWP*+A6lz#4U^CmTNuDxRxYETkY9FWG=s{B`{@X!WE<*AX*9V2#wmK} zeoV9b(O>3l<9_`qe@|x7o&pmrzU#@l9J0B5Gl2-trDHfqRD>qkL83XHfLX^E zK^e)sMaomN6GZ&CX}wtTBT@wSfDt=4bgtd(`SzC&!p>=9!g`5*Yvymr+nC-q3 zLNzc$YaFs*O1)BEtwrCgm~-#!!#&Bc2FhnuFFlgWir@>-Tm zp0q2hTpl!M^8sB5HgDZeAVT*TbZ@*&-CQno57_74=tfTP)t-NbW+M=|g!yS{5-aW8 znC|7+O$+4zQI|O;<)?HZVkdu^{TOgg!b@8tF7~IV;ZZBp)3Doy zf*MZS0{vsa0Ij)#(LYibB6j*GuPWQmn)6m_t<~tQbn!9gfY`X70&nr84QF6SjWjF} zzppN9jQD+YA%etf%=0W&pc9D(1he8g-2v>R?AIrpvahgrYwZ_*@Pg`!Mo_*hgxmvJ zxYp*j%1v>Sl~_(!8BAQK6Nm)!gRyHDZ(6f>3BN~sVKkH$>wv?N)|?0>FdL=Z)(rg+ zC#LhwIsA|=1REM3BoL8j1!Fem3+o4Xu5X8?qR0e9t~=88e4#p!AzwwNZ_}lTsr6=E zi1?Y_RH@~Ad8U6DBh&Ei_IxkA{}#TAOn+aOCdTx4bs^$sdR>2CP}48Q$TYl93N%f= zicCMROA}-ISzUL=_^6o@Orl3KZy>xR+mlY zkZW`yVt2@xr8%gL%lqJ4vH73_E=@vn8S+(R`oDB(VoZNs7b141$1UxJmmk1cD{d$5 z>DaiQoQ6Z(c7sr6o_vaYKdDO=oURVgT@~k3gRF@-0^G9?cVyAi3>cxSZNMDJK z<#Fj^Zf6GmFG~4Kx&$$fzn}{dJIDT1^zmdA=#(0Q%~y6HBwy_tDahAS7zzzI)+o&!8;;ZYc${Go#f)4 z&hCKLvv%uQI0T-}b#)DUh-(oTWVq@$fIuYpkamc|0UM&>x40N^f{$wLqb#gyfN+-L z1al_W=t8jZvWh@N{-}29Nwr)R?u4a6P95|^vr#;@6?vbQ-a(tr_>LY3SD?x6(DR?J%K6o1b8?o^{G2LUgnjt5{ zWd{_$rpp(j{9av%*eM^n!o=@mV|_~6EiYleYl@VY5CY3@by;J?|5_I!cH))lmG8DQ zuFyUkuI|%%>6t*Wa={I6>2k>2@TM+A>~2V{?JqS78T#6klvhJOBdbj_k=IEkUyp1PuIYo&KX=-e0>j61N|TL zj_~kNSc+iO&s9VwC$VzCmCsy7#L^ zeW`UbM-s`2>7r`5L=s@b}gZ@^o$ zvTy==t5qAkR2T;1(8vx13#6lUAy_!4Ix-69&rm6b6_wE*wUam3?TeXkt~Nyn6BlGx zLf@m<*b~R@lytw{uzjG{+4m4-u}qhF76um+2#qkPd)IZ&a(J#(OTlZ+OS!WKoaLPO zrum-Oh@G3ZYzyo+ncEgP>o{tGqwR0x+)>|U&Tvi_f{n1#sguIAt?P;j^rm+nPIU(F zyj~s~{S(v9J#VK~f$~dq`C_8JP!}S0%G+03aL6zRM^*SG+UH~Adpwi~^O_XMzEhVe zM)vKx5V4azZlnG3x0}q6CIy%OpRT`{%m1kh5j)xAmha5RL12Z9kjUl$@sw8p?-V~egyH6WN3|E0UAb9ObJO!h#? zc&Pem*Wj-;tS&A}e;^tqHK%(gL7-Bm{Z<3g61Pm2>@S?8D+i{iO#~vr#Ckd@qyZOo zV6{S)4ykIP%5i#DG@KR-fWtA^oI#6ekj67~-C{Q`jMN?Gyf$XrT)l#BC| z{$OmR&+_ZsZa(8QFF4@=T?UyG?$?D-c7pb%$O1UM_w;$!)}1X8QmhtsM`&F>egyn6 zHfPKyZ(FN7yCbBwtIr0(BTwnl$vpBq0+C=$Z?{iLuBeo{0%2w32jdDW;|ZzVv`K-( z5zww-ruA=KH!xNIi@G7|?U0!pX_esA<|^6lv+IIEVJ=PUDvq;Tid&jT8N;duM z^OSb;f)mo_PDtrO#O{RYtLpWBI35f)>r?NCKiIq1{2F6bY%YK-hBQt>$(df`f&*6Q zvd1FHQeB9k12h&3Y`sC_nFa*2g62{h5X=giDQiG5E8edgRGd{$Te7R3jty1`cBZ;g zCqaEOF1}n5jkudLyk(F70Q|7W-7nXbB~$h#1R`{fjN|3xH$aoDrf^!?^+ga)eJ{1M zUp~H2{)5hW>a6crm;KZ1o#%c=7X^MQq;c|mK1-h;)k)oA_6}+e&OLGIz0k{UIwLpK zJ!+E;oDQ^q0yKzrXyK z`bzZe@GuV&`{+3qyA|at9T)pv7yl(&8DF-)+-rZi&;Igt`^z`%FAvyXzGZ*;w*BQH z`^&@dC0HK1$&XjHV$t-)@{a(VQ#N`DEgOBf>Wk(5y6_c_zRgB7d$l|rqDBGtLK7>X zaP-1t3rFLQkp3Au7r~-kdk}JaE0W!*KkAatqV!V)A~Z@zUs<}{sb#b2#I@XnH|Fd} zxGug99pZR{!!J&~n#T4%F^L`t?P?7p#^DHE2$r|}o4O(DmCVSK*DU5(-ZwUuN2Pa` zaw5I^=yJp8P3uC$Pw&d5OF4Si#7J*XJ}=U{N|zf(?+RUrAiWy%2+RFx9MXVbR{Tyk z8alauDzS5%WS4jnJnew0akZ|(S>mae3!@Q|@5Ro2l}2GZX=o8V{NNhq!lh)IIbT;H zOk^J-5J^rm8@E~2Mj>CQ_i-ciwrGegUIjQDZ!pc&S(Cz6!Oi9zeo7aD4Uy{!MC1=V z<}Za6M5)kcmEp14fPJLP{s*g30Lk$?^4|voBFLyD^e-Tnq&y?+Q(g8#!!<&1$ai(w zWTO7IE=24OnYygvz0kZ)HW&Eo_0PxVhN;}7oE@!HW((pV|5{dPSBY5S?WON77Yky#RqlO}~d!KKLSRU&(ZX z*~F>>sI!T+2i?S4uDXd8N}O*;>ognQY)6Yq#V8gWWnu;FXuUcL=znX~h!OjqKWJaA z;xDO$t?;#9J8QsDS-$jI{J;P4j{SS zsP&V3G+em-LNq)VZv-5Ux#k2&YJH6gN$ls$dHhdZ2sV3uhCoEVs+hRJs@AN!y{NDs z{&JN644RBU+7ikqrE7e%0_i`|WsHgUQC*1GNuRR8%JN1c%KTqJ1vL5 zhwE>;yfNxu(uIhf`nDzgg;E1beDKE{W_>6wskf)MdMyenpAOAxO~#DsDY_7`Q$1#J zK5qryYWd#ScpjV1(dGn_57T9ck^F95h}cP|nmgQup>i;Z=7O@XgXf$np3xngvmr3(=| z-E)`r*Bh0-!dY;ZhfiDhV18?C?9WT*Jrgo~3L`1Oa+5BT%o#W8Ld5Qjw#{`bwKP`` z+)4UgY}~iQ6>a?jO?SiBbKaE=259Pp4s~LAL%&vL{)8iH-FcPP_>;E;!)N zy6iCr{81Mob_Yy=RcUvjrys5o2iHg)=f;&dPPCV$zE%aw+n{N~Xd*HrHO5C=eWW)3lU6nAQT}U7j+%R3Rq6XX2P@FNfqQ6XbO>-r?=2boQ z@~5x6om&dt84cIPYXOI&vN;DTG*c@w-JTU8B_eM(C;2vA2sVyxCJ>SDrq0?>DOssX zH@VRSl836zq91+?ZAY=KD*9nsx(4lMD&0fYG5Vn{eN5)x*M*4P1G_`2w%w{V>^%{8 zMq69yvPzNx@p5dAm}}>5ju{zug6kt@h-;S@b;)G@cwQGG=nsv_iOp{`_-Q~eE6&&L zh%>)^Fxjg`?>{U&k00Q_hH{Ww28)l=k0T$s z=J>7sr4p12vV#UUZ{V?tOoV&r_UJM4i^a2(%_Q13HB$8byxf}YFJKH#xKhVc2sj z-`CYKJE!tp0ug$SVdy$q&9RM2zEQK_M6UaO^5KtBH9HFBe5t?7>Mq!C2;4HbuzB(@ zR0(H!RF3;>g{!xN@th>eSG|)&`8Z6s&m}{j5B6G#=R8y`W_(B->A|CBE)JF&{q`Hx z+%~M{Sf~nAD^N+TE4~cEhF1d=|K@zY;(Wg9e7@#g={(zb^vDIBi9k!?{!j}xKnBF zMT8>DQ09T1TK;D7cQ%0tkH2BH;WXZZJM=NZv82m^+;cJ75sskQDZ!)B97%my%m5DO zk7hf`J*lUJ>%;b>$bd3=v91d9_?H%4({hKUsrCz{D#&K(QYM*AuS{!Osw zK_77E*QDxdu8>6v-{quX?=CsEaSD}0jB|83Kh|3|oJAl)BSxe}4u=jIZH`9*LE~1m zPlTXx6PhNeTZv&XOq29}_9*(*Q z8=0gsYc4g+35a3b>?27CjsRl~mk@^%h+QEe7-M%iFi&LB-Vo-A)6g7A9a=mda5#T7 z+eq9Xj&fRMi@Q_stty6!6Vb>*sMts#l1l|T=v*rCZxbvr%mXe%^P%eBNxnQl?&XW| zZ7X{D!)WA|dwDXOK_#C4y1A#nisnSs)ASxXZ@)PGe;MDtqPM?@Mh@||#@x-Oe>xRt zK(Oim5Z#VA)BhWz6P^CYm#o~jfe~4FA!Q>Ts=l7#%MMr%M2|1QTcGIiW6;Pg z_xMaU$1=_WUhg;edJWBts@LZP_6k@pM9)|7Rw#PDghmeWyvAhD@&!6wXh5)h;jg-r zmXj~MIXcmNp>0!5cIe|PXvIq97SC~mhWC)0o2w)l#Func#WIL55QxwWB6Moed0Exa zj~B*m+8`-h@+-8bgc;@MXqKeTEB5`NsfJ_SJGU-N>qbd`%Vgq3^aeFKZC6BjQ zQ7C7iky|bl-%5szE-@9k##|#;p?Oi&i1tdx?W`z|EAhrE%Hs+&a?9m0&x<4M;(bk4 zUhg4ul{|>1M^zUy&a-Ib5W#3XuVs&X>GK~A2=>VLQQgN0 z%nJIH(a4I=nOFhW*A5$#=!56+`AQYespae|HQYh9BQL|Q8l}TTeq7zX&?>vX=6kGzuN7Psk zM2}yDw?NV37od?_?s4A{HO5)M>t8eX`n_moRJ|TNqQ-h5dj1}~6^fp}8;u;|d5vkF zWeRk<(12k1%E7uFagM0nJ2ufwVbXf1{EO_M+CQK#xM(F6T{D@wHSM`_zPAEz0qU~` zCE3Jlx{hJl#NP-+Xf_c#%|w4(ZKCTo$)UBmmt(yqD|Ji!BOb9fTGqg{ciW*Hca8?u7)7vtHK9%B=of4s_L zp`o4c^;?{rj>g-qsDdNW$in1wIDrU_5RoUMvx9Q+PJ8)JFP#Zi8LFj>=0-JCtcgM` zUblsyu?=syqFj2>$Ss%4{sFn#6> zi9kW&Oo$QallYz}O6qDfa?2&Pdq7g%wMt)h>3W*51XT2>xr!b^Go-4b^%1Cu>%1tO zhw;WM3gVFl9d1TtR1}X;M{C zq%p{2K$Oq`z6XjD+Kxuvr6nXiFmac;gziAo)G7&u9iI3sz6XjDx)qJwatZA{#5Crf zf($IWeq%18U!sXp712o%&txtKVkCMD-v>n*{S=Mdav7zDkdb&QbWGDYn;r=e@nq8* zB36*}*2)OH`HJHC_y2$5nHvxfO#jl^>kxC<9Ej&#@fk%FyUt$6#b}ek8?Gpr{m{rQ zk2do~!MJfcFjt*nE}1Q8epKhGbrD1wkc``PQ8XXGo31FDlhDX57tJhDG~g}GiX zM^mG!7o`)$Rd*|khS0z>@J`T+bV9lWZ?&RSE<_`@Tq^qpq~aar50D!OHusy0=RP!9 zs^U2{f?yNIgBW?fg71f-oW6uc4v~|_X)Si(i=OY$fM5r{ChBgRGb`x1A|oqa(mmbe z96LKN*<)v;t-fl5Kbk)J3hZJ+I%Jyq?_r`gap#pJ=g8gxcH&knj&RvIvbTx$Lr)bY zcS>X|>2e_aEkrxQ=^#6gzBig9sV|Gu0f+O4^ByMZDW_R>4s0)cvx?Db4>Yn6t>)`O zusA_=V-zR;PdDs3apH(%FS3m5v+BJ)wZMy*dVosYu_dXzoVRAO*RrXP?a zbm@AXMT;DP2#ppAomrZ^YkTUHDj z=cAE@pz$FBk=%qZ*?IMXGwK3StP%pSNH1_LuPOD|-72XylfA zdpawx?2eCs$NyyR@jsw>QT6yNGP1=!h+h9a-Udal{}zoL;&qK#oh1fziqL>y%b3%3 zJK`h;?@cx_m{5lIs&2PrcU;pS#YQQq;F`;2FJo};u?~61mD;9w%QXe&8m=c65QtqN zLzw9AdLWjpK>J0QJ(i-mlDf8dFyQc6!W0rq{ML(6EmnlrA zGp(PofWPZtkzuw_Mf0NSZ#s8~eGt9ghqpn|>qRtj%e_9E&9*~${w8zJ--zZ$)${WL zS%beHqW7=E+o9eAv% zfW!I3*-~&V7lX$C;agS=8vjHi3qj-W1R}Xa!P!!9*$Vi1k-47_00>+Ht?Fn0mV#@) z=6DXyg#DYs~5_ zF`!d~1_VnCeyJO*oW$VPWVaMXEy>mSq~LnARHZs=t|L1M{&L8RxWAOGdc*3X`vqiU z!T;S(|93mL+BR~tkt9R-q^^QkhHy232+a^er;q4MT})a>*da?b!9(9fdq_wVzJVr7 z>g3{`fWtYac?el)4DHL#VDB9J*h9^);q6llH1`tZP#-7wU}gd{I?%{17sy^gfo!c+a$Wgcy^*c= z=Bifk65bMXr5uB1Np<2_rV~km9Tp?XQFwzD1#<)%x#fbH9u$l{Pjg#B6?2J{(7dQh zwq<}Y4Q5M~37yWwhwxS^3gbaEa?6D=FDQ&cxop*F z-oXWqznjbBRWv=S@{qh^wmfWl>hGx_l9%zeDvIPqG;+&DBIFz8u0kKDj`V*RFJ4jr z5zpd9E8iep6lAdgZ=|9u=Aw~XE{olRvBN*+0=pmU%>}X+&5&yNki3M)-xc}l*8daY zdSx}Rg>u%tMHPrM zqdsn&)b0il@g%j9%C72h#vLvG&Wl2N3+?WvqLAK1Bez^g?-Zsdt6GASc-g{s=bcc& zZTf@E<dZ?d9j7NU_`E*fFmjXclcQr^?eRdOnt7}Xg{Yuk3x(qGg z0U9|(92&>T*oicHTtx$dok+V!_v8b!f*y=Avf|?=R=~?7KbY*fxVGM0t*gGHQ19h} z?k~{;OFAl=$H}hQ<=|x#+u?>Eyl_Hx)6VzpPG%i<`bu&v?lD~%vtw~TB@ny9k*V=s zzXJj9pJ=~0gO!!<_&b^?scVbR01oGr=0uV*d8Ug&>{Wczib3pUG_nxHUL+97oqC!= z@27cm1w6gaRmN+pG(beLwh}!(op?IX0ny(nya9^-UVuh!xxZ(y+jU_+-)Qdh^=M*L zNB3;vb4e#ezpup`q3HM3Xyg#TYs~R1O`sEn1_Vo1eykg?oa6H+CtK2Me4_@hoVIr6 zt!jfy6h4lYtW zf(ccSQ82m8#0pq*j2xZlCEc<4zUqis$NWkG7(i~6H6316gyKGNw3cg*%;4u-6 zECi47x)3aQP~{i}j~8_H>trH7OE!3ntCXQIP;Z4#Lrw%Lqlg~IN~1^3BD)o`%?h_< zP$!s0tm4!u2^Sl6ozB9=dIAv|E)u-j)#mg%5HJSN-Vg%Db~H`W>7Zx<4(F0)2MHLi zyM%~Q$2Y7PF{)@}A!76qh~$#WNpy)X_wr}K7~Gf>ynHK~5>+ox_3coE`uZk(^NPN{ z5sln(Ur%F8d%3?KGxzsT(X^=gduCvFBGl(U#+#t%^B5WENN4PmM{7)_JZp~XD`hjWRO5V-Dg8fHs~Mfipl1I7VpWFcVeOCS-@$|+)aRGsO;Ggt z#c1RZpKHwKEFqwig9Zdk2-40$CaqxHCe6o4Nc=B#a$=1ROa5XMiNh3{jsVr@9<#Z2KRfN z#4@$Lg{5d+I+26r3&#?OT_IoSU>y%kAO*BfgbAb@&6L!w#m#`jrwfxvAYrzP(Iby< zTQPc^fkqZ)jx7Wtxolx7ooX3h0bgGO_Ta{!;OncPD$n2$ylLd6^c zkz88PK_^v-e>Z?7h6%w5Xg;I^wkZ0SCV$L!aY9&wZ(GsJtI)_T_wrB1Nin8y}ccc9O7+_x!az2=|%ya3N#?t^#4!Y3CXqsrvJYsdjz4) zb2*m-d=srzsnD87kZl70%V+p^4nfJKPXBj1^Kg?gSAfFB!(M0lhOT1R%>Ok4F~rP2 zf7^%=`<_2|&fvo074YNxuI${dj_Y{GNV1 zML%AGpWiaL(7E~L?>0}0#{tQZ{6EL&>GWkvgHH7d|4(Wl(w92XYiWj1(1Yz(t!@|2 z7;LT?MgvOSb+?ZOn`@(hBmE;q#hdg2m|=&zXzBWBTx*rAKC9e-S|{+5t@TlK*V{9|dHO1%uQ^i^Ly2wOm&L%mcZsio&`=U#+Fv3U$s+Pbxl-!`^CIyER2uH8^hG4QI`|^r zTPXJoHdjXB-MZC?Xn55twFa>(l6YKifII7rLO!zL-`^;d3XOq?qWg|ou3ELbYZd=a zC&_iir(trwcyL|ukIv_xoX=;R&p$h#&pMyaIiG)VKA(3!UvNJE*ZF+W`FzRw{Hyc% zvh(>j=kpck^Ht~bHRtnn=kxE*=Rcg!H^`?|d<#0T`fd2H_%{4$U2(*P_SfCu>lR3; zD=GVLRq~Y_Ncjc)ntii7GL;|?kwk{MHuBfg`Od*-;f-zeY&Ni$wA|dsOYl5O zUtB2q_%Ni8;iZM7kK!uz7`%;&zCH?#EUZ$GAP}MBJ!VmKbqS)VfkB2FP!%*S($!)y z8d2DN6h%?O+o&jt0vfsHqL}JMN*G1fnSv%hZLWzM(5$Fx;!u2`u)8Qq;#$0kijuen zjl63~qQ?>>@gs9d`~b~LjFPasC`#gccoP*R@emq$7n4LokiuLZ1!&}! z%Yw@%O5)_P(OeYk(X7N6DeNwal30s3QBe}B(a5`)B*Zvzp1CB>L9-I4B&3taS$Go_ zC9wmIylY7Us*nY@Cq8d3i96A(#3%{7i(-_x9dDwdByK|^w_Fn3mQ@vs=LR+LxVa{N zg{DPS6B=7qq>rK~evY?MQ4~KzBez@>T#^Y72E{$AvDX_XnWF$=mq{{dCq-H8hBs1C z7H|FkCkx-DtZcSctM?YV#kAtx=E^t-PrBk3_mTLWE3coTI6ComDvD!&G;+&hhVK+U zh(oT8oVhkmM>C^3mq=d1#1^FNPyVH;+f7j#r{c|2l*Y+uvs`wh37FAVfq@E$7xEF7uqA2b` zBez@>T#nJG^;=zq?LxSC&RiJJps7(6hDMIz^;3)(Pvh-W6vvZjy1wc>qXh5)A0Q6Ls1_ZN$9!}SQ zU{>5q&X(m6XVe`!ox2FTje`U3Z>^G_Obb22qH|>JN;pN|90x@z>Q#6XGj|o?4D_Iq zhRWt*a=_DlL3plYAFf~I9xIpKMRdPsmpGzkafi|*ml3z<%9mY9_yB864vA-2}0P46aMIn$fsIH@wra z1lOT18nkcY(aW0iZ^Q;Dsn(oZGr`0_=Z%hqZfYerCrR>zIbb<1$#-1;1z~MaNyhy?ImecSN-YwuG@C_>lkVDbPLI62L z7lH*4svV;MGR?#axbAXkvPDkD$||US2>O6aaHRTbu8=J(eAjbjYYX4EJ6+p2jY^`% z2X#4TQDY~82#p#Et}fb~UI)U)&1jzpVdGP1nxt+mUI93qOPsLbx=RQf*W(*j3>%+B zBMV{UY66kmwBWpuP44BNfHAm{CwTc$G$pED_P>86)Yp&Tn^*Mp!)WA|``WiJD);xB z=Kg*IO^d3(gYRDn_4(^~6BK>^3K}`Y=NfZ5OAF}apaH?w75%y$an===C7Twst>`c3 z8>C8we_`?7PhrE8RBO$>B#A*MTW55_2IR0+P7VWG43`S;CJ>>MeleaRCkIP9KTIYx z*gR12m*6}ETxloeA`Vmkl}4>n%66CFlwqX`

t3{-*O*U3K$()kQLjjkpCwRB7XC zgdC#S2ww)IQ}MUFN*}7;VZ}V)WedBFu>WhS^57QRc#ooS!Fn3X?KmYfRH@^uV(hPI zU7yu}8Xu}ZUAF2_KH>mHY^SJ(YKPsr8LCe7mB!dl(IQg)LRD2>feTf|b2ThfTXD-& z`07fW4&l(QE0J|R&u~6-&gWL=Gw*zMIiHsE+3kGxIG?@FXTkX_I-lE|&yw@m=X{o( z&x-R|bw1B@K5Ncr-T7>gPjp?0_rtGgO&lyCpc98tLU53Y6|hh6XtD{xX!1mX+hx21 zdVpK2$ddsY(EKGV_!3=0CA1uQRV=pxm23)pR+nJ5DR3)+2+a=`#*`ooS8#{)pJWVv z(mKgM^VQFckRX*{rOK9(Nat^lchZnHxzCFSo6AjLe8~fSf1jo~Zbo6m4wq&eXVNV` z_n@y2(CnF)kQnjIvJ~fNfTlH0sWBs8xmnL}6|#oZUoaIiv&hMhjC{@~P4obUCd*E? zW7H=%1u~M2FE2XAWIT{$$!HjO8I;io=h7-8d)!>BX%t0erNDj+GnAdO{lxkFZ|C!; z&gajZ&;M~gA9Fr`?tK2j`TV8x`77u1*Usl}oX^Ld&)+(qPdJ~yb3T9Xd_L)XKIMG= z!TEfee49?lhe%+hYVPPlZ5`2s@mh`=I6PL1fn)`D9*nGLSf-j*zf;Si9 zEmHL6-e_cD_jNAK=Isr(lxZP{6fqT%5sA^z8wLl=R+;%tK zEJX?2g+|_WBp|8U_O!VKo|Cm+Md9hr6_^lppkbW35Yl1C*5S64s-xSJej>> z6zGu_*J;C>r6_?hXylelz&XsH%}T4X9c3clf%4>PNS&9-k1C6{3NkE(ot}&OuRcJ<{mVk6JxDs!c zq6Dr$BkwvAkW^WF$Xo&sq8W);0`kgg58%yGl)(LH|e6c)Juu@GKg+<+AO?biZYmvMsB$b zrn#F$UNy16wTso}N?3`eMKvBsUjC9J&wc1up>N^}VHw^wMKLT!Bez@(&Kv4OtEBBP z*Fpo$imDbm)s~9kmC??`o2Dp*G8(z%Qee}Atp3$)=0dm`&55cIRHuiKqF0~78>T3O z>(R(9mw}fm%2e<(a~1pqO^K=s6jQ|z5j={wOHl-mppjcH0xw7Ks(}S^gtyFv@FtoT zRUs(m2wvaB9N`VTZHi)e9gW;_F?bO{R^@E}Ta1?t3jrdYWrJcw2&rtgH{LEq5$uIV zZn+31(9C*kF2BtxcX20-PBxdoW;7wHu|P=zZm%4c*{QJ&c)JuOZ~_{+|AjExp<=#oqskOc~^11ePEj#{P&nU|86uJkvgArNpSvM zc%u}Ze+L@5<<9S*Bj341;=djJq`CW_K=YyMex;{~PNxI`{0489q5yu0MsB$P#ybLN z3{?5p-*KyP`qu^!@uYwIs>J>-(kH?FWAIifx_=}Zx#jMk;kbXGoa-y(vu?WN4+KY; z3*k^SF{**!5G5f5dM8NY5WIbgk~k2J+;T}c$)J7TjmrnR&2^ARv!SX3rDTwFNpSud zc%u}ZzXgrla_2keiV6*@uUQhMpOl$v{CGJOAx^oc*7J$a5);e&0g&4(K?2v~?NXG$ zC(+0u63{5g#j1MI;sqKItjs4ZSfK&Ite{1wG$5E2H=*l0ICMJ2MlT(c=-Z7(^;o5T zZV>%1dJsuRK$BK&VTDEQqFIZ46~>1tyV*$$<0@`Q3XT0mSG>ob2Q**30KWX0Knzi6 zY~<>YS538rePd$SH?pY^DDtMMF?N>&=UXOy#yFkr0Ej5k**AeG&L7P-vWz8;5&~8m zzE#D5H3p3=1gwz+BDu;K&T}h?e~$u749j91f#yRxV2h%EClUYB?G?F~55>2w=;cGu z$SwEsWcD5)iKh$Zp6*6-qUve-<|^KParY^YZ(q^dXP}Woysa^Jv+18s1sV`+`v0Tu zgyc;BH;qnq`tR;9@%tzL37)_OB&o)l?;~aC0@J@+j8ZoDyWfLa4ats1vbX#Z?9kwUsqaHGM{ zk%Ae<2~-j<#)7f9B-jxTix;B^L}u83gek}ec;Bek(jw1oX_L9>m zODn&MZ&Wcpd>M@_#D_2HLa_KiHDeSXt~9X%(#qLm5?y+>Ev=>+RvGGrb6Mq^(2FRd z#Fk;opm)PobfpG|#=5f93X*C1>%eykKhl}6IzK#Y73y0g>kpb&Uw<4sfyJTnM#sDBe&PfT;W z-x*SI0OHz);HFURvZu261RwK5#=xwJW^W_9=13WG(_)yL?$+Uu)0*(|}^s_64$ z(8$7Ma}f?oy$etrvRA z0e$?pxjue`rbbmCOZD~P^;Z4vRARJKkVLnY@ZdZn;cm`eo8r>9Vq2l}11$`~IhK9Q`$XYaV z%LT&LF_4egFYXJdBkx)wX;hqz;DAVeXD*V*(bOa$60g6aNPdO4 zS5YKCM(2$0ra?yi)&tl)yC{SMt)C)8MofYMA5Z+itd32(YTP_dwM8;kI1=P`H zu8tg<7FBiVK9OG;+&D!7>eR zr5Bh>UNBe2b7)>vm7$wyc%2m|lV|Y8D$3(&H1aMa4{wbZkjLyhjTb9303x2nimp7o z&WiGwiZ@nK9+S|>Etdy-^5R?D1q8C(Tp&x(%&5i>-6t=;?ursQ25+vSM29CfH|DEZ@W1tSFX;(8w(p%L1ub=(+xYT>fb;m%pP4QkBc9 z2;}12sc?M4c1m8wTdgRVm(j=}g3-AC!fw#e@htlscF`yuBh8hv%YKL|Ql4?#^$^Luzr|oMZi(uMm|fU8 znm~kJ=t%C!e!JW2K+TBh0g%A$=8M(It3m6=Ttb1Uc04305FT$;s%< zdiSvXN1W~hyKzHSkib{)q)N*Xh!Qwn+`~gkz}IU*3}3?Attf^spphNp*#6n)2t;!G z9O)3%)El`5ydE&u6+CzSCos@ZIDbIXq#8TcmTwM129&fm!a(;_O4pELqKEhHO z8q72xn10XK?Fh4i&ZS0Hu9#n)ZQCRQDE5T;0C!|mfN`aE{DNr#G4@XcS#XA$=o zc(FjI{~tR2@pjlsO$UILhHJ2W3B(Zd==^P7-Tx~Vj2N+Hu-Jr;-meyKfsf*|ABHd2 zz@N?;Tv+_|p5*(F(~l?U$M5OKQ}p8{`1vh^3!Cer%Q(r4$D1*wuvYQ!)Z%r;jlk5! zgX@Z$$fs3&3%;@XZTPSFHvDN_am0o8*WKXj7KmUKcwNG}VwHR)?`l{ zAd*WnclUEMiLs&U~s&A8AR?6fGDFXN3?6wDXV z$SoJl0;yo?)l#7m)XSgE_3}qFL8^L@oL=H$3HO&F`Yg)jDZI^!a`_z^IYcfRIXqhi z(AiA`f-Od9uA>3Lte|E z=Mv{!ifg$T%GTjqRt#mwqmhMBcAPE*3nElKMnPnui4_n;&P#SjV+_=eD);bDiLQb! z;PN`DzM98KBM7|mxlyQ;rDsu`?{zvxapIK3iz{`xX3vAJAP~DiyckFO9EcWQMY}?X z7GFk_B=u(T7Qo>g(i~4xY{yqlyGMAhWcnh$UBy`Oc{H*REAG^VV6lQK$0$}@Zej(* zid?b@N5`^UBbUmTa`k%P2+Hfwktia@Ug9oaaKm%hJLvaqqk79B+H7Ufz2p}_(r0*;JXq7hft-- zLEvXPiKS`_iz9WVz+%GT1R^{pB({ay!TKFY7IJ783CY6gXrkoF!dk%LlLh)hG-kWF zxHuKxwqn9?G8$P(7&hxduwX(JWE4!^V`2pale3ZyCKERG=eJok*{g4Ef}TVXPIALc zV8VPQPNTw)bT)|Ds;|GfQP(LfxLijdLW4{A;iTxF0(MZJN#23;5ZYxzczF;_l{~!M z4LE#wQ7X2?`L&blsADQyzC3_8RWTafPmnd79r@G1S$+za(H{sza+{emd7(%TD$f0)u})?I1TJG& z4G)s1fjFIbT^0hxbiC1uLYaa_Zn;qSh~m~b3`CTb=1N(HrbbmMrV+*Mvlvkp<84+H z%F$@#mJ4M%7g5}jhyH`l4Re*8iRMLBB`d_!1*mx9c36leWxUCXBH4yUZn;Qib0UE{ zMA9l3H=7IPQ)q5fgXb9!4X#TrM+$auI8}y=ktLH_*hWDn+SoeZ#+v!LNJ5YP!9Sw^&gm zub`1zE|Ne@p=?TC{J8K-#w(w_0V1B2k8w<4-4sJ*zi_~?n1fCss&Q6ADFB6duR`-s#oJVn7q?s)O!eTw4z`iL?a7=rBcyQ z8xt%&9H;@o1p5iyBS+35^uH#1DXqi4gFhnMRjTIl+qlcEqRlmSbGZcM)HX1p^ z_ZrhZ%NXdS!9!dStCT*>aK<*L07;x`FmGC9PRP};9K?gWPhj^sZ_Lvrykz~QI(wzSK;JJx>zKSSyK zBk4S=Jf})$@d*#&DNTrGTd7cQWD5a&R8l}?n-U0=K{rS&WTME zu+(6!XQ1^=KWSZveP`*qlPO|{E=24u=&*C{T48Iy?E`K!-V_`26Vi4G3$Iau@Edj6 zVuW9(3lTfv<2F?KZKd;7-yVvM?6!2xZZOkd6=U6lx-2oGAJBye60H%Rs?au_wrGm1 z0l}>JhGv#nw5@=<`3EIi%x9vT+@v-QR0HLF-UN#xm`9s?x@oy@Ipk(E*#>ErOXR&R zRF*fsp(_uju-7TSZ>{p`k~;;-X?gPS%k{dm(vnka8*J7n}3$jfCA|JK%8i zHK(SlwB?M;vLrv54ZmiXiOAa>#^zxGqHOZkV*Tu+!=ap+6TJ{gcyucDqB-e!4DajP_G?A!4U}*7{tn zQ2^Z!MgN7d(LXy4J5P4|nPJ^3rx4w3(hvGG6CUKzTr59NaAb@^j1cvcr8=mL#p2V1$&>{bJUS@DW)j_s^m zrYHM|XVMZl6=J~>c%#*@_q@4HhrPcVNp9ENOR{v?O54rWop!n8Te5c93v4mWwD%wo z3GR8%S~gJ5^%e4|p-5gH4avoK0}e-Gb9TCmwx4mx&bVX?n>eQ_^1Wb46pI?sCwr$|U)Xz`aFB)=lYvKk zwlSHyV~pS+OP5_1Vz=r-1RbOiA6bZ{gHQv4SutO?BTk6zOLlW;5;;JVTD*Q$Y7^u$ z{QkvF(I`zCVo6EkY_3{>QZIJ9Ty&6x*c)|uWg5GVKxl+m?WeUa6=2_o%Ltx|jm}Bw ze!JNW94Dd83S9oqoXf{`Az1MF6?I316^h9-*$I?%Tg0oDE$28Nd0#Y>ktpGbF6Zzl zw$NpXk0eGw(}qdczoVjDW6EH&4jn`q5X|xS#pC$78>}7+%E!ZFS2F18jns-_-CXm{f$h{X*_(pXc|~xn7B{Yg^1k&lf5TW zGV+gzjr=L>c~s~=-J!ayG36hk3lTfZ*N%(AC))?^vx)8AwKjB2Uo0K{Z z_VM9H62DlyB{tS4rtKS1nO?V5f$~r5^2I2>K^G!+%BL>hnYXIsfV!0ThhyV?8r;lr znjV7u@8~ke$p4luMC|0xTwAE;tx_phwkrK~dE)t8Yz~+O$I*Pv50QL6qst(3!qd7C zK__VJb+GLcx|r60U{+kHn?*a@C7(|AQCa&5RjZuZl&iyCAph$tQeTfGp>C$UeG-_p zoI4NYo<$XCHQOMqa?5v`0K#TtqAH?o<>XZDcQWwNl`SY?(2d~9n1oLvQW zq!89;#d~SvbV(T+r|Zj_`TEh}1G~C;U|YTjGL4?2E0WTSaY=spdq-q3oz4!>6-n*Y zXjv%)&I%vUH`+>cd@u~IGtdmU4;Mkiy9g={G!d_J=9#^bw* zD~W0`L0w6t#5Nt*6=k%2CVb34X=_4^wvRE`TK#c)x=ZtPzmwicPqTW{^F5J)F+*@& zG_3^xF5Acn!ry6Y!XJDKof1;VhMk28;YCzZH^cps#SiZL=e&E}8kOM9bWiR#4vdqw z6&Ac?3!z}a3)DnlX%?73Y`Cd3Hq zW8k#9c37emc694Xi;fKaTxrF$!p=V)2crip} zVVeUFSxavUg&~?M#5PtcH75qU@?ogb`^HYlR5#SRV{~sQObSkO@=%ml<%#z9BIC?! z;%V+2TuGA15a$xGOP`G7N}?}Q?XPviJtZW8reIxzyQXB&@7OXxkmy^sCj9VOFhG!q ztz21{5MIo&Ez*b=aIwSZ+j~4}#`;X5Qp?9mscL_$-^oFSmZ$muYYq46E9o7&aPLd5 zLN2-MqW{$8(AMD&x@v#2(Ymy}rdgrT)6Fb*ngR(v*2N%edVN*N1sbn75!PU0Koq-pztl2o4&J4v z*J%n=XQC~0B@?4}8a2_%X;5?cXOkNsYE>s$$(-vXy9eMB$h4meCxK76g*M);1K>Yo zG}wTSj42IXGZYOp{Zl!y9`BzaCyql~?l>o=ll%IUbmbfF=Y&IZK5f_oT?)yE8agVb zd{{LEAN+k&xlqRYX2^vi+H%LaFtImRECCm41-~kMG&~DFgpP+P3-%w11#YiY{NIoF z$`Jqepe=VC|4Dsi$LSfM1(Ht&?g>wTyU+nKCBOkg5Wv$dl>v9+-7;jrPtcY-&Vb29 z*bbCW<#ZHyIXnekL`TGw0tXI30dK!l4m^+d%a8;AMqBPU2WG-eNfjr_Crgx0wfJF?huB&9=@}MTQ;v2&A;&gO; zOcmltBVOowsq$kh-b+J%Y(ZP@I6r3BNv9qf+SYQ_icc{v4bO~=(2+4^ z#!$0LUH?>0ycO@CAt%m9TMpoa#ZseKtz@fM7AC}c$J4fJX?(RZ(caUhKA+ytO+%c3mKWb}2jGKq4 ziB_%?QZQzcJ9L`DF!nZVp{HfK28LO2_;zamz$owlS0{1|1et02SyhEnKb?t)^;%eSK7u-gnzlMiO9o0)K#3DBa6P-Rh%c;Mot8OgRKdF@GbJb zC>>auu`nUL_?E4T^3q{mdp~rJ-BK?0W^zth+I4hkYY0_esQtQGYBVV&JWb(nku50% zuii>c1Qrf~smf++c=K;s`bd8g9ci96#8<43p`)bFeb<8>36c5&&rGxdT9->0r3U#h z-Vwuz#RsV6KoncLfvh=-GaKFSf>#0x)g;tqzMK8-1z$schq@ad$g$)Zoie$$?eh9) zcnz;s&cL^Bup=Y7vKgXMmlSk=j(5rs-JhZ@bLWKW{)n0g9L*Mcl$z6EqDzBanR6xS z9P#bY@c$n=9;O32))aoy6$SSH;hiyr{Xb~S9fy5}3wtt|DP*e2q;L5s5gz>mzyxk0 zVT%6prsy|%q*7o7-XlW_EJIrkpnyfmCaOM`T`Wup{dun~mxULsQVHe7`C+_(O?J1m zxAq*f&e@eo`|dm3gC0Rz`q$@a)~tGXds0r+)SWe3T8g@}Oii?>Vxem!lUOign~FWP zoV-u=U9Aae_A;;|g|0psu0tabCi1LRC3{>SK9cXWH6cdl)zm~Qs{w>m>XYha_)Ul3q>LngPz>3P(;;!Lg~-L}1oxrGh4#?*E>` z`kZ8W#aCn>iH_=IATI|y5-#->o+4WYuuJNbT4uin?~`Gf{c5yj9xyRz z6SgLVbTD#-l8#AXynq7tJMArS$MeT^{O`=}fo`;*90faaR;Pk=XC z$qj_GNhR1{w~dq_^;d08L>}xhTL#wlr^9O(BK$^Cvg!v)c7>O`HU~9rS z%r@U~D5+zoXUf$YoXB?yyE5=x6FHw>i6vs2i?MY@csfn~V7AxoQBi#{T>MBKNq8Me z6p9I`8HpPTE-%>zRp9ahHPJ>*pTeF&ffryhu(7BoC9!)+WWk-vA3_oBD$!g7jfbqN z=i8bPET2nFv|hPc*x{|mT~fr?MHcZ1JmR!TCD?0hBPFQ&I$IO|U|STbqSj>t$ijs1 zVu)mIEo_UKe8GMy_+SWW6n@5b!;$uwF0oW1BSMVKc|pHm)ynlFLHtMrCY+Kjw1ORZ zYNCz8HfB4VS}g9CHw|7FSyacyck}j?v2{)O=v`%NLa_Sn41iYOHZp2cDt*dUNyBc5 zEXbqd`Bb{7xq$D>w($`J{erED$U{7OTQ?lHtVuC`FtQkriPu+&af8#nxqZ$@SaoTEnIKbajW~kl$-xYfA+oB1cdY z!C_pm)4iDQs)Zv)oHdxO!!P}}WIqJI)W=kd=_;uzvp2xMo1`qea>1d~#>~{LWda+ife|4$mukzbrlYII~|K7fu zzn3bPQvZX-x}{BE{om6*^u3%8z-cN5@SKe^g~d1Lk}aFA0lZ^);r zWX?}}K3~&wxTrD-56V;nqwRv?Zce0sRU3n1x&m}4^aW!F3&rfOB%M7exNMboQx^`3 zNfJ)%Cdu2{%;bWA9*Dmoo(B@=+esfAPf;*CI;Kj0%hRTgg6>0NNq3(h!C-%ld*pC^ zrci_Dw&0jS)#)Rz#1{)RhPvLspZ8?Q_euIUba8=~j@V1{WJeW`UqaJxcP*16*Jjgk zN8+9=Wl9cU%?6;BS(!aa@@zc)uXxa%`ov5jovZaYGi zPkt21k8{Y63i(kZKX#KJ1LVhfmHS_kL=48y9ckRkM7U(^f(1L zOEro2ga5`A^|6Ioz8l^N=@~o;_JmY3Rp?)_kQ;#iYJ54hTWA~o*G4PZcY_zTY%w-s z#7S?+mf)BAp{x3fd1qC*R)BjOR_%uEB;*2E`hODmRVq4NHkJA!3Y-5bUwE98w<+x) z((J{$%{H1Mx8F)l1n2e^E*Ui6zd1Hdk4O48Za#sIG-s{YxcL}5NcxSNcYz%V5V&sx zh9AFw*#)hO^+TOV{}%6u;bzU>pe^$ti8}k&wkCu+FeZgkhp&b40@UHt?cL`+?gTfB zdXEh(y`wei&^&KTRMcq0V(`LB?}aujpe6#fq4oPT$DRVih`d@WsqJyCiD&j8up>pS zJ}%x!nd)#oCVc#kvNa*b<&o4x>nEy9*0Z`ewyl!tgJ%?a>8mFVJ}Xb3IN(ML5}pQv zrSS9#tf23pDOmF$B0kz}b!BK9RTs##B7 z!2k4AO~tmZnJUoP1?{ zP+r*IQzhOkW{Yt(E1) z5f%kZ-q7b~b$B047up~Y@MaMWBik+HhS5FsmJpsPt8s6meX*#U1=rqUYeMM2n^{C# zSB-H}PFqum@d3zRPLUXT8#G(#4$siCY@WUW1-0QHCq!Al8q_BzH4ihYB3*kv&``zRAiMx{^;^g=s+~NW?no^ zJxDYZz!d<^&aA)L#!-y>Kiit{LxEwcGHYj<&ccN7BC0B6-a6Qi(gz2jhbTW5e?KZp z%!h-x#09guV*&UPvZmgbnrLH9J?E5KIaVs>GU);GT2_Pl@|Zg&vH;JG!@_xjwND)q{%>D}?dA03)n0E>Ih{3!gU^U(#YR8oXnM2)`O_nbS{*al+PwNC}K*p;E#=;k{tu z70QbzY$cQ@rq_*v&;LOS-7Qs5y5Ku$BfOn{Je+?gFPh79n~NcyEm+#|++q^6`$m#L zOPOpF z!vB5S*a;ec*VaVj;h(p?oS_E^T?q6G#($0sh57N_%mr8|VS3hV#rO}lkrZG&X=@^K zFcxj?hpX(wXxP|fWn|J1qZ$^A;}znDfMdudkn!LPuCC^TOn@@R)Ox;$fRp4x= zd#k9F6Wh_VH-6O_ycTBL>~Cq)>?^N?Fg}72RpK3r;(lH^mZ|J zpQxNBwnhfTk~r*AXO1Mu*6;+~(oSy}V;78SK5T8Vjj8}k$!8Wo2oa<~&L=H}Db1lDRzYS1ZAnTUdjQZK0oVB|sjH z43PQmSg9m>8ZPj!xavyM!?uwWU_5AR!ViYUN{d)BVpDnx6T*x0Y%6%aSTk{Slf|0W zuPKb)3Jd%-S%T;Ms3qlleH7d)qfZ|MOE@Xv1&DMm#Z89~{@+E}v+X|W93@On! zN<(*bYhs+;5A4V*HgH`YYci3_s6+K|+enF_dWfwF<6v7KznyY|LysZG;A;md&ZUr_ z6yj zF8Xm)Lu_2*1e0d1Z9cRbvbLRTYr;6t*7d<8xafqWGV&4Dcf0wT$ifZermez7g0xkI z+^@3@m>~CSsfoZ+tL157zwP}_AqJl|YPp`+MmUJ$#2`h)Qm~{PtCmxRN{PI;e2gR? zsmLO{Uwk*XlVI*7GH@`@p@&#fl>{s>yY8q3#M$8^f2OSo!S*w3O^AHL@E?x(WFqWv zg}YC>;m!cKZN<9>?V8B=Fey$h7jYX^2HaJ)0T%=A?Y1Ta>=7mKapaW}m{I#~fcSD` z(H;-cZnUU``U|#k5~2RAt%=A(J$7vd7Nf|mHC|rdA6cZw#nX)jl|bKX8zm9wyKPM< zfo^)gR`yJ|Gy!p|OSYT*eKJ$Xrs1E?8my1p0JqA(FBK=(3)caqvNzJ-&)x*T(5r8< zH^V<|&b|kJUXgt-{JcE-KKjq^ho2{n$bNwS%Lm~nT>bTb(Crkzw`L5xw`S!K_twyL zLeEt-d?-iTZMaBmX5;k#DpYP6uN=W|L{mvU`&@=*2zlipFf#=bV!&7wBb9eA5w$ z$3*sLeKj~-!LE#&%YKI+b*&`fWvwLrEh$oqNH1dK$5QyAglp6~66Qfnq?Usn9;rE< ziqs63H{>(sE^*V=EcXw}P7XfW^d!moE-4}hkzl+=7mV@b^if~ASS$3PB666B$dXP) zWQyBycAOHrytyu-A=MA$k8~FqlHZ@^+JS4eDwR}ufLfa9{&sKb94VZ~k#MdfKaM9q zHjp1D!ViUNqHrpfag5sp<~ZXH=tz7w*9GB<1&7?D2Nx4U7+j@(1Gt#-YtbY)Xc#-y z>4lre3Te1~(M-On9KA_&`LMQhnPr^%QhMg3aTQ>SojMW!+C^5eQao*K&h~?sBnTo; zkuGlL*@~qj2Ap&`MI?GEb%1OyNb)@(^x%y5H#{BKHS9XDvObMM0D}yG{06(fu#4P_m?ZyAzmp@EWH)k*5zg|jz^^Q*jY8F#6 z{$2H%X5Up?KB1qs0RjQXreOS4;QX`yUg>v33|g?>TVLVoqE}&85fq^DWZ7+8`b4PN z4*xE2DC9cT^|mHNx%*CA6CC5Uqd@)JchJFG?0IJ_KWY)W;*L=XU2?xIFU^L6_4~E~ z6|!XJ9eNdsGbV`Iv~gzzGwygg}4Ek`C8a3cY^x89pMz84wplj9|5HBoM~ zs*Jhs*rFz6>|3@bA`khDt$Em&Mg=bePkW!z3rC!#!2dq7z{5jrq;0Br&^Fu$MA}xu z|F~`JMED=IH4%CE*#pEWIRCtheIQ>)-vb6b3h>AwEQ(23jQv?u;CWsSObBzo)~-~tHz2o_KSBfrU)}Va4yC8rPjna`!}#71+YGo z-1r68i*tw*^c$lp#xI1A>VIubh>`OgHPP~lXbDvNy_vpRIn|wWVw>P?GWurr)++3t zh@A#Sx%|4ok~>>73sAvWO14G1oc#`lQ9o)#N?L)jPa@d+0|j>LckZkSXn> z74@;XRH3g1FOCcnSt75jNt*BrKS5FL2ek&B?b@^yiiH}g1e)c&zJ}3m*L!Axv;zZ5X zM1%xl(Vqpmq5|I+VFT1aEK`WBFPF*gFYi+6XDJYv{+kZt*(5(ST2Ex)SrFE`0>P(j z<0r=O$8AkS4#D&_a2-#X7Np1X=RTzP-yK=}XT-@(K(uN1);2XE|J*imBKSYGHQ^6F zCYf*+iMbA|gDp%5FYdD~`uJSuvbOHA8V{>tjdy^(BYN!5TT=1qpI;VDN|m{0YBLJl z2wCavZEHe6`m!xIIi$a7@AP%d$;CdhBSMmhLs|sr0$9?ltn$CMn&T}Fh37%GUgd1&3HO_*PQp9zVGb2_j)@z}{_ue;uiw#$MGe3N#=?YP;(@ju;R)mJF>PJ%oUjHyj*v~8 zWY@X33b+IMf#a{1eD&4Zq`{x!p_}^|4f*eM!G(3nhCh;QX-b6KZDTD`%5BtyMM|;x zHq~5HroolKa3v}%!4)d74wm*GoT0Y-mRh#J*y7&v<`6GX;^4k7;Y%M=e}Nr-3fhyv1g?NKMf*rB+HNn^ zlrkRgr6KHN(3X{yGLo8TUsh9p}li<~)HbbMro~+!&rKgXlP!a%D{@u8`iUe7P3yts!6DfwmmL7mK-xnBK5L z$ijq}-u#BuQe-o}ZmWIktKxC+N%Z7m3f`oYrYCoY=jPARn3!^NZmTT<2j~YJ$wY4s}TS^{!Bi=DXDsHEi z1M^V(WM^L~1YNxVaFRTr;S-*>he!D`d@v1j(P2Xik07t;qAEQX<6Shw`$Dv3MS3o< zH6f&jv91NuV_`yg!B(3sOb7wI6}?Q#!%4h=9eGc*_l}S0jZG^7Z>-%1(Bf9Fv;wHz zPfd0Jl8rOT#&bB8A>Y!t$Chd0i^5&hM4-O4em}MTzUJpz6WHvNU`Jl-Z+2hvzrx4w zAGRjM82KwT(aKChKl;NHLa?p|gi7V;Q*|df18_ZE(CdM7?`{dRH2^G$mt02@NS26hy+90+nNXR6INpe@nI!u?X^Tl*}6-?-Ho z1??O@sM@tp741VkYo9}+?esP6gzEeLgWobzEFANNa{r(O!>szNIQc&YSA5ugv@eKKU?`x$`fyPYH00qYNg zJ2HLRb5D4T@50B^Pg|@87&;GV1g#0kty|UzIHeqNPHan)_6x7!KR7q3%6d*Jq zOP`(S=$a}}&;(51Ek%U-@s1gC(xH}zfe0)TXuCaB zrRbe_4-H|z8f{sTqPndKAw`UQuPiB=3_M-u?8>Ay67)+5Nk|F$1v;vx60|HZIeNRJ zNYBsk4jFRr$JFvLkRGz%%@YH6K>8%-h4AS97avSR$w`=?>-J2Qn&rASW~-Z4W? z9!M<@1L+}Ek0uuGK=nz`+2PSX6CYGV2@0-yn)OhXqBHOw8p6H}ZCR0`Q*BKMDPrV% zWl7Ok;HfG;H$pH%);ojfc$(Hbivlwu>xd#Z*Wz6<qNg{C$ZW^^ zW5~eMsO4cGGIJ$B-O=cqC0!OC+l%qBG%R9*=fnbAw_~czT!?qf5abKcmKB*f&(?&H z8Ai2NmdwnftlX8#WqOqF$=;g-Z-?-N)STPU5jNGF;Efv_3;M1p0(2|hIYVxKjanWC z0<=6BYIo53)acLQQU3!zu!d^ny|7N+t`mT|+e=lNp2T};2>tvdDQYSk*0unxP#Uw zO`F1_ej+}wp`~f4UaHb`0^UnQ_}8H=E7G*a)`XBIM#5K?G?B^K>8V^z^Bw(Ch)Bpn z=^}JcO$(*q$(g4&iU7S8?~fq^&!?7$fdG-onFv9U=6oSMwx7kv(ol1PCuf?DsWS5^ zykmwSe;jRDk(rO!nh-L>s1~Knw0v9r4CPfXUk>~ege9cbJcW*|sn!I1@lg7tQt=7A zPli-{3~gDVB0Du>!6QLMb~@0)gg8O8ZQ&ayi_^c{Nt zJ3<>;6ZY)kU`L8)eF;4EMqEjhz!P|^5nlh~j?gFRi6cs>u|9mnkFzx)M%OXaMBvFd z3!$f@fZTdZF^~^F?}XNHDy}8I27&QpEuIEjb9F?&ZJY$T9a|HThkCNRYM=_uJ0gqs zlz67GSizcA_1%Y(5I}4omMO*))jXbVyA-uOY;83$f7zFTpq;iP@@gvdK@I%364mcCCM4d@Zw6R28Oau!a8INr( z!Nnx8mGFvp??5WEic8i0(pXp>S+o~XtpYz172-#NyAdo?hlh{#A+{#O7&wT*74%qx zZE*@ua#x*lK2vaLi5go=rcnf>?ZxuW-ds`6=4VBQ%940b!x37!CeqxI1YFC>98m_r z8*QU1#A&;&iO7MOx~Z0{X5brG?9^JJ;D6EYt&ssSEuQBMC(68GCGh9lMok3%Tw4>7 z2Y&LYM4e#eqKDoOE2+|lBMbYKc$tV1tXS}7m7ssXHew>^@3l4I54y!7mRJX4iO0f( z@FJp_`V@NWY;4VzjhgxTJ&|D#GZ}L6Y$8?41kKv-vPDjSf2Xa9$iqH$i&M@NdopS5 zO4W0b#eG^FuG*vx2d_;1%Qk8v@c*zi5qaPjZb}tusa$R#wk`w3P&M5TtA&lkFRxb3 zeITmpcTqggy-4)9UbtCbvw}4XTnSnGPPa8-42kueWcu2Tu`QXBlOrYB8Y z=z1y(eXFMr6SvfIx!9@Xy4*@t3iJh$1$q($I+sh7d8109be?Ur1X1_cn(znQqRJ74 z5*scSCWIFe6-wjQr7Hd1#Z({wZ6u1mGXHHQ^7n1zG}d_SMkB zgz#dq?P?qG0=^LMZ10oxU~B5QXQ5m2ci(9+M62*g1_GO4ul}jIaBpZmWa;*@ zEhJ)$yvQI4%7xaY+YAwT_xcMd_$wm|{!CBsOO2~H)c7wCAOEG)L?E97zn)u1b>fz? zlg?D&lUA|Ek;1tlvT#C)!5Sq@cGNho4 z)_w0}YylDEyxrD>pv4e?Sm(ZFTWh6Ku?%OR=r)3Fg^K&{Zml5~ z&VPywndNb}ak`73CY(vQm7iw0?kU^w3WT1ZCfZnYtTKsv%)QiJhG5)pqAIapZ3ICg z)wpb5gT`oZE@TD14>f^D!&a6iZiR<@Gq5>hZK@(yEBi+l=}B?&dN4Gafa`lT1>k<+ z!x*{1pF4Mk<>Bq zaob1=Fg{{y!ViXpwh57DYls#mgclFnE}IcAU|slzHm?h>sZ^XYIV>a(^2b|4t$^3! zQle35ZBuhb=uul@2yQ)0O$63aEnNX>{*u@P`0$_JnS`AHzLSQd9>Qieo|wc7aeIRa zT*0Y7=JGT|O9G|7*mLESK(5Q}iz)~&qd}`1o-lk7ZJ7s3jL_#99a^~F)Ex9#ZlIFI zaxzsINcI+d@E;r={#B8|?|mUh2fyf*N`zP8y)q=i{%Fe`CqiTN7Y2OrC&R=4CUiJj zGx`eyD(G*(`(g1fLx2YnG6{qXvCGF>dg$Bt^Uw^+`@(g9SrJ|5J=^WX|}giLwh zeLzW(0e$yWYFvtU&yX4yp)Gfu8q+y7GO!9;Ar+X94&Mk*hg;B5F{Q(P&5D8^w@WGo zzKnOtkOE&oTkbdoW-fPlYGJ6X>{@l3-;s5_mhM(%>ShF&+8dtIm~bz@gnypxmCf?yvDZVu0a8`04*WkFXn)tS2FDy=&DsSxk{H( zCXmjkuzv{ej3MmrM_cYV?0n`>EI7&Csexp7xtQu9Tc^l@6Q3H~7oG?ApaW#egQhbF zZSPcK+=chfkQjHOEq9z4yiTa3@=mgcoE7x3Vedym*NiWtqhiX2rgehol1hOW@h%xs z;CZy=j#GfIFjo3g3i_+UqyH)}5zUOD=?Ww5jSBq!cyA1W-w$oM_!(G+S%4;3ln0y?1Q#DZuy4xJ)=g92;6%e!7T>l zDU5Qa8>W=-0D||4&F9dh)-tj_%f0G^JbU3bCGDBkY-InJEg{54_J2?l!NFXxbHs@K zFC097aAo$Yg(F6sHJGi#Fa5Vo&{P`iv=${|PemR2uvYP#J6#J!{ z{QZ%S!jClk(^-QnH`im@uCIcVDkR#;T50go!N9)-pF5M?sY)hYp?_>0hpoTL({#z}}={(zmqHV)^f?RQz_QUX*iHX`nk+)&r5_=PPq*Gyy-hUgo2k2I@udp z0JHm&XwD};7Lp%J$&Y2^$A0j`$=(Ei?ZlVif7zSipXw7ODresVzjsCUz3}t$?EC0H zzaM^{G$Q)}`Y#`ZpMdycu$0Pv82%-@Km21YTa3Y9T9GZmFZCl<^%wKbDt6!ODstg3 zjT?y_4WhO~U1hj&EPFkn&_rUfJB45o7d4?sjKiT6>94jUi7V3m?LA^MhM#Pd#OMTw zWDAZm))!FR==vFflCPxk!;FJNY0^4dJcTB$p(fg;NqivHS2ydn8VFcgtR~4ICf7UH z4@3UP>`ATiVEs7ce^{w?gW{!kI`GZAVZ?FOG`kZ*2Rf3?@n7@wSFa3^A-|c5!R9O* z-)uZ@ro(wN8Yt{IZzKD6ZkQdndG zQQa}wu`nU#o0r&jgjaWe90`T$OB(~&7`sSc98-UU|rz}->3m?OhSj#~BN@YCk z4CybH3-I-4P%{^u2mV>r@gl*@p(X+Y9h_inBHdhECX;!Rv!@D|tiyvUG7`t4kx=C1 zXmqf&U}j$hcI4dRJz2}^#4cVZcKQ0my}IwqKyEq}TaEY1P)QD_mIIM(U((oDjzQ3? z(OK{}WX9;j2UGiMvq7uMf0y;eW{RT))qVy+)A#oi%7mj6<3bBe16`MgD{I6dW|9$g^n6 z9jC}#xDa?35sFkAz9dwVxni0;4dl~{1AZ5pA1lBFuF5y1g?G1}UoZ5%Q#r8=@0}qh zmY^+noDv^PnT5mFTlHGi2iwK%N<95i6>OaYB5Q##_fe-0xAe{ zL5xonz8IbnpF;=9lo6|&h{6!vR9W(AyqktB`2^Z>$5}FsgfE-g6QC21glEM==%ARg zqS-{l*DaL=58&N0WWjxC%N=LI3=*#VoZ=DJR&?34n>E>R1t<^g48jU2?ygHGi1UlwB?R7VJ6W8avn5C zcG}T>C%%%w2~UM?bX-iSkQhP~JuyV4+aN@c)Pc&7{*@C4d& z#~CnrccvO71N%M^dg?G6OhhwvSka_P@b*c?e+J$sL;Ra zS2Jxtr|`{JTiScrXWDW6v`7q2i^SHE(<0szKWCtMtW}}9@lh3Ndyi({)izt6h<#V5 zQWJr@b6UIaitgQ9qy#xugWHGtNW9^m7AfL;S`+bXAJ~zC36D@TP6j0a>jc?gouF=z zezO0SXVQMg7$UV0(%BdykP# z-?(cac6^!aKQHvePIKTEcS(WPw}xo-{oIqe?$Ks)$}!o?o36l8A8A{vnKT9Hake}W zR6B;6uqZ%nQ}M)&aLT^eQ%jRq>ZIs8t%+{-G_WH@u0AQA@iwX`dUyCZCT&fK!SW_* zB2Y_hPFhegoh>mswti14UxK^%q}X2$ZR7SY>LpZ-{hWA%)d@oCgwtqVLE#eH5DGTG zjfF7iyio9T%9hRJ$SG~OxYhSz<`a>Hb1YdeNkEHgk@(T@@%xai3Bls`GYDE;!H*|_ zhD#g#532kuvPh4kktR*5q5iRLoCH;WU~3}sP%kBkkIa&`^OB2Ao@hFZou10oeA@B% z$RLQviDZB)iAK@I=CkB?D+zdIfw-dR$X{$DE5P}qt%=CNnX)FANmXLKwE|6`vWidp zeN-wwH4aZ&q$&x~t`hdi(0ItYcY>`6f7mUGR#Eq|Bw}GgcripOx6L+-+)TcaUl$(R z1wcXGL># zn$%xAY(p$iI*XbJoJ|DQwzdO;mS3<###eq_6j^jx`2{ViY3Hrs!*{-|2|@C6ZA}RM zV;~Mk{hPjFpj3qK1(i%Cwt?UO5%Kj=n@I36ya!hZ>FzSPAQZ6`yzv6e<5_e4Top~BK0DC@$fjL0CkUT zlm$?C*_!YJWiimiSY^vM7AAxjN7>f8e2s4E*tXu#G5(ZNHIs+ObKveT@7SO8R7+~# z`f{?!y9%z{uR1XIqnD30{-vuZnwA!rG)r^i!JUxR@EB?$FqsA~X4q6R&F|zGxuz$T zm%{yObh!B-6t_Gj&>_;VIV}J?5*+n~bW@22wl3NaMGg+Ydt$hiWCgWsfuTi3)EvSo zr0edj6uyG#jo>D3`AXRSaGTV6!aB(mL2xxOSa z=MSOboCzjyWwR-q&69}elZxv!yibO>PDWc+#AJf42_YtoU9T)L8F})WO~*-EvIPPW zQcE_WV`)mh;0X!shmyZe#Cu{$xf7`6VKE^gT@R9ybHky~~a6B4OQs*+UkE*Zjl z4%)J!Bn4`sjk$yd%Pro0x#Z*EO~~Q=5p+yUhjVZ)k^7`F;DdOd3>ok~wB?R7U_6VK zG9md@cPS++<%6)9Dut;0U&A!mR2lGbZ|lfHN>e~r5a+= zA47}IcrX!70o$yGfPN^H8-w@6ka8ob$bd7^mOIV>s3AzS zlp5mN@Yuft9Su|Lo7E6*Zxlhl67P>8?w6x22jFf|0Eilbr4I`1Jl5dmWM-qF&TOuR9Sp6JeHrs zhtROHSl$dvw?`_dpT>J+2gygA-R@MkK%wtKI%SE_Zz7PF>TE|qt}$nsR8-4*|V+TP<>xbu1T@xB&pQom#1x`C>Zs3YNCz#W#VQyA-cO*YfBtm_Vt%=A(J(-3%Mjw!e8dYNV8zYPNlsKhzf<81( znpG0~cH4-Fpr2-IBJ!Ze;Wjy^kDNP)SwXs1sTT9GbS_n?I2C$hWDNK(A#r|WNGv0l z%r$&TFkcef7kYnD0!D@k&$+g-74Yn~HQ|THBCCtSfF%VZRba)t2K))1|}R8t{jSi8v@Z&ylqno{9QwgeFz`#d$#&QgI~_L?g9 z)$;JTt~7-2YfWUc-v>KV0)U>AMyV} zi>)XZ)QC@xlUAFA{5jir3F`jK)e2CCv^9m*bD_zQ1@J6e z6aEleqz{pSm_}Kc5MF%7mMc61B}cb)YC0b7fh#%cRk~YS!=n0PdKpTsn#on@O(^uA zy5QEgMx&B`YBJ9jTVjaeyNQ};Pv&WUg~BvgNlMako4(~+@qNSFg$_C&isDL?3OZc+ zCBSa5BSBMVpK$&7b@_UvmZv4WM}{AB@@UIETw=6lsfku*!sY~+(p&K0?}Put;0!KF zD)4^*9THRc*^XlceyKky`0vI0V+j7uXv+cMTd2KA7))9$Ob7~|XxkB_x)0i#;OIWt-j(V}>mfDQ^088?T=6~SH2H6>L3gRPB5-KC@K`NvcPMNpfG;5n z&au?Qa3~7q)5n#{)g)Q{Dd(KjE~f|nxm2tA^20%B1eE;Hg$|r{h-Mdp9SNlR!E}cg z%MTKmU4h+G)5U>!_YBj;O0;DqT`Z?2+E**gYy_@S>t=6m`Rm2A!6TgDDug%_9T!tV zu)_q+2qF5VGT{uoUxrNBhPK>sCd}x~6nc`dvILrttn{Z!j!zk`3{Qm1(P1$q!U2KG zpma;+!6kUN40-T2wB?TTV44)LYT3tvuZL&BSJ6Q+Wx+}_7F0D4H+~84lpzN`kG9-# z4$SOx3dvfbR)Hd+GLY{s=KNXV_u*;qI65w-GziWLYQI!9cogrKArl@(Tkbd$Ciao5 zI4K2uLNNXBq3ePvU;5SB0mmox#P$$>`zsa@OVw8C&?q2 z?uUs}vRKFs_^5D9cq$x)4v;Ao4hhT&O**J@<4C-NhTJ#|ZMoyzn4Qs3!$*o-cv580 zkufDjB9Iiio~dl;#d~JRhBVr8=h={R`amZtPD3c1JtcqHcvE;b+<=ZucsA&Irn2EW zyk~}NxCU*x<7}8;Dpo3)?%Y7Kv9wSvCJVKE$)7cT7@iV$pu=NIiQtu{!0xHMxE=4F zAun!2TMpob#a9LKVS+7hT9^<^*Q0DpV!m{}!s^3>&9%|=%Y^(0I63JP+mb0cxlBR6 ztbEizu*I>KnDvDFl|nqh+sz-HPQnvINwUtJEHzw^R!cRXEA|Gra0NG~jrd&gGG(5{ zlD2isV;hRQ=>yx)*97gnQ;xyYO5ISF_QlFI`FY;ut%-bgCfJd}Szi+GFYZo2(8-(H z4M!50N`g9)Adc{8-S=hKUUB_G_^~v6z!y^!?F{(r)B2ql74JgEDZs`-wlFO1Zd)H& znCHYvh&|0Gc=Jkdj|(5%W10uImFw{AP!eSNT+*oFWFHQQUVGZHmwc)igSSK%}7I1Z!A< z|61F?i%jqiTN46)7I+Kn1pG`MEldb67Bq+7I&m!`i3@i2KmOL6DlvegLb4W|&xJ?j zYh_11?RQ6HY*~@B@oa^<3Nr3l zgIOxHjD+Ra5(9Loa0=M7Vnh;~@ zH`GKcr8EHGDX@#9nn~rzEVH+(Bp;ud@lU3$6y_N_cKH5o3&EZWE#WF^Q?RGTx!3fS z$OQCIfqW9WaRu`6wkA3N`Giv0q4j@PrC%yWkM+Vm1>hEcuZ2(_jSiJ5)Dz9C1*&@-3T+Q-=g$dzBRJnTET6QXL{hq2*s3;}+F3vFX#9)g3^f*6* z=ZKaS22^a}6WU&)CfYQO4AAW9tgFdXty+W)fcaEemhGE(l&Ngb-mydd>n$A4H=tu` z3h9gnq~3lim|ll&Um4ZcG{>|JS$N{={!EXPsHVDe&T2`M@9<(db;l0xUu+?Yx1*zI zisFR0=$fj@x1rlr(7V;vgiyn;*_sfV%s3QEldqy)w1I8YdNLKz1R~E#SaOBwtwgyO z!4EQ{rt&ds#}4Ihw~%+wqa$z1yXkS^cY^m)5s!bPn^)-fjI9YlzqSECy|Ob?DiM)M z_SOpOL9+dy_8KC>rwd@2K}qc3)vQ>j+u!t8^5JLJ{} zIlSL(O?b0k06S9f>Ql%nfu~)yDE)T$V1CoqgcvVhrzToi4$`QP-|AH9{W;r8QYLs3 znrp>(6gA)z;&2Z#X);kOsloo8ZKMQqAF(wNd9bI_Z|+6%bv?!gviEAjG5?AxBo|FBW3-1g!j-_<+cwPOdj0ttRN{*NV#Z z6}IsbTwi8uBJz;W+TIVc8mks#smjh+FFAPZ-Rr~)>~1Eslnfu zlw!3K(ML|}M2JprJh_%wwU^kfrP>TNBZTdCS0BI5C!&a$Z-2VJ;1j6KZ)i%m>=WNGQTe zTNC~;TNFN`c4E3@VM2H@M24_k6IsaTEgLJ9TH{h%qG{x}eVTSwWE5D`n8#$O7wkIQ zW-|9iTT}%xw%eL8hQvB)&t3~R8)XW$VyzO}*tqn!C~ud4Yh+-|0WccPC&;Zc^!{UL zUQxmGZ9^zfIG36j4h853A`9rqc&6uIHG1z2AHADxO$ZL($N*?{s-8mYd{K5vx#W(> zLOqq$`l8xY!+yJM%mis~vo+xlyG23}IfV@!3lqW%mQyTD2rt+S(!zxB;?1@NCtnqK zZe&|8MV+y=)*b6k!6yAePmEqT=iAOO=Gm51r1j&-uJ2X!jwH|RsJvzMce>!lq$K}S zb`c)cgHdg9=}{p0{NG(72vJ5*Po zBc}hlJR9st=+uw&oNebg>M-q6d#S42GQ5|DCs>!DE%OkH0l$cv2wd#2C}o@TVj;a5 zDYXkeaMG1tbiM93#mNp zRw@_s$z4vFZdoJOQD=HH=_LPC--Q_$hv&?N=unw*=44aOm~>oa&jonL4cT)Z+H%L) z^BN=ec=MBwNnZ@lq|c$lX3C^9TFE4D5L8xu8s7;+R(%3(x#O&w1}o^^aQQg%NO;aX zgbs=+XAU#ujIWC-BObuJXvm2B(3U&Sh~>U;CE=nLH%IZL$b|AQFylvnX@to7qgL>7$H$W+!t>-%bXZJza)cpIluoLwI2iAwAuCp) zEeEi|VogOX%dkngg$XfBd&zc{i!aNpXzyl?krl^xG=H~`%h&8j4~4&z{W8dYxqi1j1sI!t34HD$Vt>*_-H|5vjpdj6xU$m=dxzkL zmO*ygOx4Gkp*>}ssZWDX&!tqlO0LFF!8(1ZpIbbKS`1v2Y2Vy?G>L;xWZr`YhIe;N zE(4d~r*gcLH=)C(1vq;t*pZN`(~bTNLOwb#hrh$Xx&hy6Q|Y+cwR|1gGLOqRxWo@$ z2&g)F9+_)wEludI<#JGO5`z+zgp`<)Gy7e)V+BihvOlK(VfNYfO37@5N zkn;fsMbOro_9@CNO#plXv)8||;P6rYN$4aSV{Rf>S^ z1-ui6QuAN5Wga0hsGqYnK?XGoGUHSzX}K?q7jVd@FuJWDkEW9$?DULC=4-iX27XD& z8 zgIp7Pi}_SOHzEm|BJ0S9pd+m)Pma>*NZzTYbma;8{VwJb^GM>UMnc|i8*U*X@1Z7! zfrL!*blj&NKR|<_sK@uvk;?XYEI(eNpap72RM#D9cCL(}efG)53N#{$Y%D_uNiQ2Sz>Wk+9j-KlwJrt~Z&p+q zOYqGa3dSO|WkoRNQxol*uTEN1E~j{?d%N=Y2x*1R4}2X*`CE*7YMs>@|Y?@2o*Bz}dUNpafB! zDT=Qrs-pZB=?OSss3^ZdTUHe1*S02vqA*g0Qk1WS@dBn62ezG1uoN%?+z zC1rHkDLEDq0OSJk4y3!=?S&q<&iTBUDxN{O)HA-@!ZOlc5asf3Fs3dJ% zuNccZ?bDBsqcKtR<0I%OX<^M?2X-Vx>JzAbaIkp0V#VTv_;w9N<9%q$ifFu>nrL4E zI+;!SwHW^je8G)71>;|$BVvm2G>Wm;do?}$0^hnJ(mz96?l{uZ#gt!*_Fm72M*Agn zR7}xk-#z_3P!WFt?|~uW|3zC4K-?mmi-Lfq1q%~m)#5zcju0=PAb53qS1qQnJ(eTj zsrw8$>n%+$jzx1;OSt-4U1c!jwompKT*sswq^Syy24_RgFIH0%!=WmeDtF#j9i-8? zD4AmiI$Bz2v!{R^37Pr~Rvpkyy)JmXeNiQxg>T^!+=r5$` z2lYf{z}N7e7&721Xv+Z%uqXjU6~WSog$Yqb9B$hYUPbI~Zxu0tKFY_|Dy0hIMd$}k zwX~$GzgAa4G+m&i9?>PrAy+1!w+*&fPxv=A5m-62FO^Ib{q{-7;{Rcx;A2DV%tl*QL}P}n2_YJcL7_zB8CxE6(b(SJEtivE zo?Ol39L=7~vmu_Xkd32tve9(UCHKi})8(1AunXZhgPIry!ZF#~bDwlvh=xOvjtkJC z(o07k?8wr=R;s+-tKxAUzI8+K*n_sLh)2!Vgb)wLqEO96(n z=Hv@(Z-+j#LN>HpwTE1Sp1rrXkR@!h3{Hq!SbOz^#$yB zQ&64+CR$NaswhwQtVuM6rh@f&eDj7_k3n1RIMy@76kb27j}DLbYIImkM>X5kpmaek z1`fx&V2Jr4Xv+bZTV!%k46x*2VL~iFe9cy<_)KDSdzT-^o$Hi~BjDzS9%=F6&1kx6 zxmMq(okd_aHW2@)dr~6O)CL2#3=*}$E^1;p)CS`l-S(x8_oH!9(#CtxaneGYy%Ow5 znA9iHw9)WfRgatSEgP!G4QR`XdR#|Mw68jt%Bq7#w0t<<3Etq!aRuj}pkrc+Gy6;> z`>&$?Lwx&&Xy1Xh+;OyLisTxA`19cr|2H}=rijm>BU|l*iuyBn9}H3dC)#oV>K5r; zR0u3ZSeOtMLdCWtyh6CBy=#q&GjLm5nO;Csg-U^ZIS9Ux=7<-ux}~LH{bXI;FvLd- z;w9Wg1J@9ezlgb*=1}k&HgZCTNtQ*2EL?O_}Xr9G>{cmYe5cei(`a&`$`a)qxP zlIZvja@-7E!j(!|3R>KOMV<4Cjlofl8*Kp)QZq$P&Zuz|wR=m6osJoiLP^ub?d}((*-H6GB=Tr$R}~wPCyfX<63ZvStFk`>IgP zXW%AB@AK3zLO)ueC)(qtLw*VIdL^+{v*Pi*ZN!C^{F|Bx)RH!S4VmQWxlcqE{~s0+ zMMM^W30#Gz7m*2IM}mdlT;p+G6_0)KjT?%`Y_w%XJZ4Z6?W<2`uyq4Zzb7U zo$b>UzN@-%AHHov-M9yBS<#KVsEPK~3Da4U74h<6J@%#0Wx^;h(Tbu_#hM)o^!GqT zd~du5hKRrX%0rw!ILxlD3Pk~*0yQxl%7byd*S>slBN_>%HW);QNegE7BCsPt!naj6;NlHm z?ry8R7T>U;SiA#mSrLmXsfqR#27Ftk9_81 z?l{(-ZIybwpAL`r-_c<)#oNEFG7$5>;9W4p{EukM0hn84a#0Mhyhqasb)K;a?}VYWoQSrpNXrSfCWN#wPKA<| z6=A%950}&1yJLGy*{SrWO7iiocS0X_Sz>RUqz#$h{%`FVbTJd{UF$pAZg4wI9$A8G3WR^zF|Y* z_zc>zA{?KjCfb)U8gmXU%8!FHxUr|8{3tpkrYK8ujv%Zb#y4+>^@C{39mm=`=g{Ik z1+JkEiT6Y>fh(p=@mA&>L70!jyI_dm?-+~s|e0P zL!sn~0yp@dfAsF289Brhjjv;-t#y{!F1yH<57vu#0&m(Nm)tpS6v((2P$}6M>r1#yP|o z+Gn3$+>6FS(Tls$LDIsR{SMfX0O7B1F{pU6V*c=Re6xm9@l&*AMJj$oO|&l|@YlC= z2#?qcJK7Y4{|_AyQ-r;*Zw27|KYZhcIR6K2x#Ku{Uf%MR0JqD3Ob5$!U`U|Yx zMBls$a2=EKj;0XE*iuIn0=?A4a3}=EH@fYs1+GRTqGXCXI!;w2@`(zL&I}* z=5PhRWkcDx6m40Njf<#>_LT$t?uSOSd^mp#yusDq3eMj^$HWw8@7)g#|5dba!MAUS z_LtF?JC3&J?uSOie2D)kJmOEG<6?@q|L%uIA5_$z!24i``eSIz0jOK#bx|6y6k%aP zlm=`067T}=sPeA|X77txkGj`CD-G(dy&N5doiA#_Yk zk!EF|?7xck`|<4?qWvDU@i<({g1c-81L>;jg-W5a5dC8U>Vzj?tYeHxa<5wun zc_@q*@JaHn_G-=qcu((~8r=Gn^36StM-x}ey84kig{e4Nfq~!dV*XHfB(iGe8*9;Q z`18aZ4AP9RWs7~whc972ih_Z zjL?j;sEPLF4SvvC#LI{E4d4$huPazzhmMLV*4~5Gq6aGC*Wf)cMEokW<&GonIcP0n z=0p9C@TlL8j*Kbl{)5({7b^0%;k__K{#LZ*0OT!_yQmLXy09=I6z6E$j_^52y}jQn zr_;-K$dshV*~8`}(sswaM`8s_%e(p-U765yB0?Qwe$i_ohg_a~**5Z`TzHY12rL)c zm`D7*_bJM9G%QLUSqdgvG3}TJcI29Y}mR5e+Q_rOq17N9LFYO=4b385y8O`+7} zd0S3%HMyp}vyD-eQZ6H3+Ry`W#8o_c0XbeLAl}1Lx)lxYpLa3eB&upA9VuJfg^HX_ zO$4e)8z&uOXrF!BaTyvBMLRA=2T2QRwgPq}K=?LD1{H7ia`!XGh4^L-1>*v=WkoQ~ zqbAyyBKS5)9l~D$S8!uaLHLX4fS4le-3A$e^XKr58{+(FwB?TD?AZpX!}@pOv3>*{ z6jQAI+aLq*ehBY?A>I$5EeGIjk;O$Jz!HLm2{ElW)3zhL5V*Fzg}`Xo*pg4}k){%{ zQCL;d(o8>&yRrU+OFuHtHAP8(4K%%diTLlHo>q(Y~CRlr&_8cL2h79Axm zpxISmM?$1NfquB)9OCVYGT>-@yM}VH8f{sTi^Hjj_LTvX*^U7%#wGA2WF3%4N5m9k z_Fl5rdv%7G#kX#VbRXJs$B~{cb_{6Ies6fRZ$?MO6m7O9;O~Ko_>FiE3=tnhTMj_n zB9DtwfTaZs6QUHDW7`p43Vg4&(0|KH$4oU!bz2ud3EhFLDO|c<;fDG8=M}r z1wm8@_fr#r6+-(`$Q*45eD%W1Xn^?e5gQ#|M8`~varQ4@N3Ivxjq=)Vs1ox$-VH;E z`8V3KA~Da{nh+Ahcoj-w?hWGwY;q{JceXL60$UuMbLCr{UN^cmiW2@7r-pYDXEn2q z*Mi3(XB|gS6M>r2#-+z`yw^S%Nug0uWaMmgnDjET3G7Ia@LQZ3aPfx4yyHxK!-m3f z2HLVB9NVag_9YE|i<2JZcYrgvY_6buB|0RgD0^>l3dH(yeDj7_UxK#WajZSJIO*~J zW_Y~6jt+|{-u_#h0x|z8-UUO!4i+ZF+~ZK&j_|q1L+vdL_JM0X zr8UU^f&VyR(z2|6i0*4-(`g3rM9Mar0^mQk(G`=5XQ_$60-$~QVH9-Om-`ov!3JN+ z3iH4Ou0+z}mmLRoBsA({>5?Nsi8m_p{v3RxhPp5lZCTNUX|^VWE-=o7(uJpOnag$I zruOQ>WO93WG0)zh@;zDkCJ1ONB;q)oM6h;sTNT)!bg^IPLsa0GL{W`kyulWHAsDAq z6M=%!#u>vDsqa4Rcnca8MLXV%4wha!c7h!Vm^!N{CHGYo8NfGhs3N=2mK7DLP!sLT z4zu_-5S+kJ?C23*38Lk00qq61@!ID73_(+L&#kKvs##Qno)%N@skU-1P%8ZJKU z9}JKE{pjGBV!wb^3IQEa@xK@Eh#~%Wqb&#EZ;|>%^}rH{g$XgM*lODmUOg;p?-z}k zaF&W~l_nR&!p>>sYsTEMSnbl1Pk-N2(`g2{Mt4g)J+5O?uF@0{v%pzgP0eW}iiqjd zL|_rozPv)9@%7&)Ew4pGqokE1&;iq;n_U5RByj5NdKk42s;V4{_rXwA4n|v6RArT| z385;CQK3|2N*FKTBgXsMJ122(oc6C-oD2QH6+&9N+21&AvUIWAHrPT$s?@|V5Rt}> z)9MPwd(luR;&C%NP+ByzSAZQ^JlF*yBs+lkYZo$Z#J6oI8iQ!difCMGYeI+yV^Ap3 zI46u3AR0e!b14Exs+->=@i26#73!f~&S+YSfNL}rCsS2+jBCi{j0bIlFGS>iYGN3O z$PA_XzCz?>G%$*myoipMUQ7N0c4RGK-%OM)sCCHmcoz&M<=<$_iljVaYeGm0<5MU} zxi^d#ASrjYS5n5*3YBUqy;J&b^15-YQIYVQDH`5MeAUcqUJD+FoYfpbO$2I58<$4M z@m~8RB!xyrk&v^|VbV*;Ca@zx!Z%Yi;NlHm?w;j36W_3*aGZg*tO&<8YNCD9R=$}+ zkMcXf8C(WeP`(l!5>u4Dn<)aZz8v4YA=a0mEq5Gi&t?ie-ro$5_t(*3F~!@znIaJL zui{-W#QaNW%K?~MWOY#(u;gH2LM(e8YTFUw1r!D!Xzv2WM81*R$(O3~n^^yYj^GqZ zOSk$_x=*G}=NN3uFY`!BKbnf*Kepi(vx{e`iNK1WeFHB#~hTN(%{Ih~pal#(`1 zE+%`s?h})@pz%?}BVFx*pYClvlE0~?^QJ!z_)IwCcDs<6*Z|)6Ya|yGueg( zZ^V3fe+E3ljYkFVPom>uiZ}Z@ruIQa{bP6^3{n3u+H%KHpDVU1G(rBs@W|hfj*Thu z^L<+`y!}wozZdU^A^LZtEeD`)k^V&m!BU5X2{HB9YTFTBK{#z*lPnYq=Q`!0R6ER_ zfYmB3-Rjye8;18uH2jhhlcr#p1-{}cYEB$cFifW=hC{(Hj`!M^J6?;%L&+USpu?nv zG`j-qNRaT=$Oc@z;mh6C$V2fB8%oB(Xv>OZtfD5`S0?b)NIlB^;7rI0!9j<_6lL#f zWFXev_~s3Nq#p0I$;k)4e+3=DDU+6FEqG0fx+dixO-b-e+jxtT;1|@ya3~2z zlP>$}f&ZZK;3Gra81XDRMp{U-Pk5B{1K1&X&Sih-x`ts08O-_e#8vG@x$(Y|7U zzow6W` zY3b2E3E#dU+8fZ81JJg}-l70tsldX7C;)zDD^9!sxVXIqz}U*}R4KK`kv}M0gQlvM zXZ4MtKPb5FNr^{O2wY`LAW;asothX9g~0emw|&LHm(jQ=$>Iy>IBB8Hz8~yJnDFq-gYBmKEx+Y3XS-9Fwu%KP#xL+_qH2-P*ER)_rVbLk!Z^Ss9R)r zQ6R7sVPQfP2$$K?mlp_^w6{Q5+*5K@(F4pP+8iz#fe^lpDFl69Ryx&`cGolf zeiw0w`6Fc=O&!o@%NbDz^iUIlbwK+P#RRw8zDnRKG!RObcsn{yS}d~zU`N8FKAGQ4 z*+7gpEsBB5@J$;E#>HsMieOx5YeEPH<4-8TNQLnN<_=$PvtXo)C0MQ?>ju*N;ZEoV zuA0%3OfMKsS1E`?%pZxI8o~I9ZK#D{{E(U$4uau!+b0x&Ms~l4{)pFHLsa#Aul}e`2C&@?G6j?t0x{|{EclOIa z*)RWMzdTES(NeB{IITDOogD1LuaFueSp}u4bdjG)_}4D}M_u#{Xpb`zPaE1%A6IsI zow8F%JA>Kl7mgT_JrMl#*5E_?$;eZmmM-Q?sdP12N|jT6C=Yc$dT54Z`I;FQ)<={#z!ZAse@V2tT zo#nPY`V9RKvzNCwJ&oQ}?5X+o?S2nD!SPy4%K8$TmEi88s?%G`(W!6aU%K+FSxL+q z`6nwh={vU36yozO7T1?Hju^53g@dH@sY6QZza@JW{Bjoj>pmw2{mHn1KgmuG`h#Rl zZ!3EZG*;II`}gQz^AR9Kg<@G540{$8SaMw>ruQPhBEOmwLBcE zg=wtwUCCsc+zOlY6%13RVuy}`=0q@otF=tgTt?R|^k}*rQq_MP-XTL+N24t(>c0;) z5jcjktscSx|4boMRq#Iw+`&nwg8z}|ptJ~o)*%)D!|)Cn;{O`7<&NV&nUDYOS}#nI zw08S!)Q?ieCJ6K%QU$TvoOPj#Rq1Ak(8;7>ruqa`Dr z^+myb9o`#5+}EHjcO3V|hFcjnd@68Bc>Ldn4vZ=OE1Ri+w^J$)-hy|^kOyx@TkbdyW;A%vU)-If8`*p;_)>Tl zd>$PZQx-H`1FpDTQaSJ$yi0~0_$1nL$2rjW3P3-ks1t=p!!zJvbWmEu0J24gb%+O9 zd;xqA?~)+{?nhhhI0G7U#cDCh)=+&SFmXocf^Zy|h^8Q1-YgZkJyJDbG~Oda2JC~j z+;IlXjNVG;i10<9THRMo9_Oj(39@) z0E_&872Y93^xuxQ+;Q~Ba`bmeAA)ZW5BqKCSeU}TuvymMrQ&@n-V;N-zlOFPfVai| ze6qQoopNDYi7iZsE&dO(-N-@v##_GUbUb6-CO9W9@$UKXy!$sA6I0$TZo)g-6GdsB z!TVy!ynmuCE6ih-t4fGCs-VuJd5PNs(8;0TByI}Eqbv@c9866F9$0AKe)Z9s z&)H|9LE!xpM^4T_he(TK_5`pa!NKo=*MGO(hHuqSAx=eGRutkCTN6Sd7;8c)#Huh} z!0G5;kA~yEL1(1`X}i)Q=g|{U6V{}wnO&)Brs%u=@n+};?jVJhVDfC2m89TakoY(Gk)jmi;8yk~qUU8En} z6ES7^8r~B_nfMB|90+0H_^=or%})|ehK|FLE$tbkKY)|Cp`&2=BtC*;GjLA2T!3w6 zm)A$b{QABr?@NRaOSelZsK3LzWC-dbXv>QBKV)k{Xg{M?DDD3u^&*gjHX_}e zg`-Ybe}Yd)VzWY%Zy}h#m0zYp;+vCr$;W!4NXb0BFNUm}LoE*jDVa*U?v6a)7mX9c z<9Px;hK6F|`?#&(>2^w$lXZBf41ryPwyem>>ugO3IbrmAWy#6N6Z~b#MG%OPsqC%j zSemNIB6)>FW}mJuIUnzeA?MDemWP3uOd$}u!_KEApAC=Zr|=;()Dqv9F+ZAapHwON zINm2iSU-ZctVqcRZA}O%VdQ#cNy)eksd7(ccc#)WO>>@tXoS?0C(r>k)f3+dZ7%~w zZg>?CP689rRGqI1&J$|KRCyVXcgzsrF=)$* zyo|IpA>@V8>=h<2Cp)Q~1E)H^$Ch!y%!%yLxo8M z7ciQhsSwhAc;9LJhF%31KAph@%2oVnAhMvGlclnXv>PkBy3FxiD5*0 zWl78^NDdkKEPWXw5wd_OqJwE#z%=|YOs0^Y2WiR6;n92%A3{SdY4UYQ>XRxZ&*ObEg!SKO%Zijd zV{1Z42_x4lOG-v9xm>XJ44h0j@%zK(tCafolm>i7v#gKKYsO4cGCR1tGgVdxu zJf2B>3=P$!No68;N|lp0;hi!B_6=yuikzHoYeL8gqt`1-PDUzf@@@#k|5JD60df@8 zdy(AN=7azN!W}>txlaWW2n0g7QPD6=c4xCQnVnf?W&=SGxeo_H2;K*Zq96!@f}$vb zH-aFF;)OSgq9`8tL-AK#RWsFf^z8epCOs4XV8Knke(!x>fA4j7b#>rm@@}}6ZJ11W zB9@ulfQLfV+;tqe3(TZ9$~?(Sz822rgLnyvUeaPR(Q>k_|}v2gt8MMuZ_!2#+_^~QOUAG1iHx?a4o5B z(&C;8PsB2lH{ziXHTQas+y!RR8)cs4C2tF7^9sC#;ggA$lWirJ;xQ3vy$D9OtmFb; z2xTQgTpOE}(GZol4M*+*Lzyj;Px6!#!#Q1nSCQx`yCtt`Gt;tdheag!lQ6PnE1&R%P_`l@wsG0Yq>~wKBgIkuTd&WtVg&livv57BzG8g* zO&eDl$yoEsGk7>e?fr%$cY(3YX;7Ioux!3nFspMJ#D*C{jW4{oSZ(HITgxmwE+V}% zU}Vc$rusrCYY`&bxU6N|DcO?#g7OKh5P`OG99&DPt+cp3%M-CIXQ@e9%{aYNNm}bBIK9OWr83?c2;vmRTFV_IsEUd77#XM1KpH$w_PB z`wT~;q&|(`*J;pY^`u|n2PT@=(=f7SUO(j!i95Kpo!{QWE0yfJhPDls=Pf|bJd5So z45A&wu+8#p&axK1-Kcu;!xOol1|xTz>p4rxr5gKOMXr*-_u_EA4~5G@J*zk4d|N5l zoF9URK;-;D7&(D+kDji^0?`~iAkRFqc9g%llU-PA}5`NYZ;D4M|~1Ejff_B zP_;+!2l0avZQ^|}vSkzR<`C(P0aHaEwb^}~1%eIV7Q2ta<)E@VBQ^p!Ier*FG?C+P z!pI%xxL5T~o9CCqd435l36*Ct>S^KI=ktsB;fY-T14d5Z+M{QywlA812ZU<-=lCWf z+y2kfy&KSbLVhGyWb^96pr*$kcMxTD33wXNLV} zpZrzdhzuqpgV7p|qwgQY0>rL-q-s>(-=9Nx^!@g4^gUy7wtr2oG;nmbG*C3CI1{GA z>Jcm9Vma9?EN3_xG4+F@9zo=^&qz{+sb+@L@i2)V^E!^4NOgLXz_xk~`bI|vqEExF z67(Ch-&HK?!0F&}yrj5USY-IR-VGQ+O1K z!fn4r&DNF6KAD!&E*c+V0R@Wn0l2bMn|iIkSb3tBRo#z=N>u25g4m=_1f_U$dTX2U zzLRq``TuIJD-o_!A*X3(N zF2!uQO|V^T&LFT6kZKplgxN)3JZVcZbMdf=l9>e~CrHMlGpXh#49o*UT}h?i++vJH z7s9!7^nKM%4p-|5FgaAULe0&QsHM>3@KA{gJ%%H9!5qG|U5BJaCg+E9e=c57VsASN zajF(M+cWstc+5l*)L>-Grq1$(P&Or`xFKz-?frG$>Rc@|Sc&|pG?3{pmj?5zjZ4OR zSYZOE@VnvKQjO|RM68ZnZIRxI$4V6G?J%+>Qqjdc6sANfZc%was9w5{?;IIL!5&7| z(!DFWX|}XZyR`TRtZ1hk>j$|WMiRbg9L1yE^K#sb{F|>>)Xm7haEQdtnBryMc$Tr@ zD)YAuc9nSyq8-EfIEJIqAs<3UG+BepZ2X`^d+3FcEqj>8A=0}#lMf+nc8_F%1on)@ za5AC*M{i+x;WsQ(b#BbLnV_eI>kHS{OYM%$HVcz5mm&Vx4lUA3%Ky zIVhvyPqdIl8nED;bSB;QKHi@+?v7k{^c) z=A^Xn0K?J9skgihViMbDrD{(PkK&;c-R5B!*>an2a)|V%huMvSHLgDmX>77Ec!+oz zt_oEeuW5DRnJA4$rnWL(!XqUr<3$*`V<#B7FwV1=oeD39Mt-x!UTu1CN!cj@w}5j;mwxU@==`PdE%o{3=`$Ps7EaN@5?V zVaNn+9sCpzkf?*FVC0VLV2&(PhOLQ>E=o%yh9Y{m3%=x-#vnG#SczSYTB+LFn2d)? z)W!rDx#QZH-6&YX6~`gr(l`*V3e_yIt5GvkTN(S|krI`$H;mkIWo%{ED>Hbu(>?Ox z5*dWcLzT!x zKLfROBRTVi>e=B6slf%JD&%Oa`7}-hJ84@lXW>B;^-_Y7JFb^4#J%?Da+u$GFJ+uJ z-#;3zl@G(kp=#v_NGk~m+dBCm9xzcS?}L#$u9NwEcZSBTwWP`9@o%(<&DqJS2g{<(fkj4_@RbtPVcH;jONmC0bK;wiYlO!0|bYhRX`pNG-m#`ik`yb zC#vX47`fvrn$G)}^MYyGj=@v$WCpQers4zeW+jre^)LYslBkDGVdReMVY`?f2ov#v z;TqWwE)vyFmiubNmAI{&z45?_x_LE>+;QFP9M=u87Y&Asrys5qRXitpizg|2TR~^y z(GwN45=QR0g67sL*?#uSC_l*7F`PA;ujI@-c-M#Ps;H zFmlJ$vGv)N>_}`?VdKt)}hg%dgEHzIOEq<#KUP{o8cg?-YDB zv@L^Z$JNjbhNE#)-#Hpq`V9X1?1bcLskS*^fQLl%j4e2FBD3l37O=o7L(=Yw%UQ^Q zn-49+>#25EykV1`O?smLT~VJdX*8cz3<$3*0|2qRmjlJ|vBrXm!! zahl5Bx~Y7MRU^<;J_#4JEvCW}u}tL?cql~SeT*Y_k*VyRXevJnr}PJS9ou0lv7Bsf zzlX;}|`n) z2T^j9IC2-*$t;n3(tvVsIGG3FMI?I3jxES+CS)7QzIZ@HR`-IDEhE{(7eX0{(ALIf zB+*v)%t%hDWJ}eNa#jBrWsTJ&a7H-`E-Q6LX(d9Hj%6(+JRqV7*Kp)6u$C(0vKcpOB@J<5^0z*_j!61xRqILaoAg2{XtFCx)Vk{d=WA=^k^ z!UH0*`XY>M8Oc9 zjJvlVV5JD0THXs+Gkj`s-MW1j9tTl!>p5~4SPP$8V)r-=NBKrLnP0_=NOY9sh7n81 zHj=O40TEgK5{zsa$rpSfl#vK+ZCpmer zUmUp$tc6c4F;0`FmfgbX-GxDHn4vUzYH?*|o6U}RWJI2~gOM$>*~S+_nT=4}#$`5} z9?@UZmd5q7Is}d^XTqhV8q9p>-M%OV$){TPzY-6ED7Mo%au=A&43>D3kz5^4<5hSC ziNnfvNi;UIvH83lkA}$SB`~sO9vAvTDDx1i+PKW4_lVp`ZRqTLH5WZfFz(oXoz*1J zNFIXAN;MMqq++IHnaTrrKtvJV&yl;pRJJsV&^#rLtD)z^>3t5bCedKrlS)!%w%I(3 zM@HoN85r3zo8S0CD6y842*1<$x*%#%1ng1HZC)n zeB|(|+`vHe(fLc)U%3AK^@SU@?&&GiSv3M@mMh_cQfC(TdqFA@%TO-ELm>+9VvgJe zhBCLAe)9x0=9GKFDZLx7BhgaaOZe@aY*V=tkBP|b?J%-sD!2MVC{qy%+qg_+)1^yK z(d^_etPX*8@+Y{IR6B9sONmmjjN}h^5Ja*4jw5%0k<4I;Ct1iAy9d*_8H3m`L#F#) zN<15z&pCKBL_TN2$d-9b_k~dAAyl<-na8+grhA;k3K8fY$HTRxy2lpIVVLJ&*~fA` z3ZmSWapW$rkKQQrB>y-soXB-}35g@f_K8F`)3FU?EglY$(JG8=8OVq)gfbAJtBuP* zCM_FapSjD|)@dWiXIU`UXr+O54t9+r{Zfk#4=-EADX3yfq=gT?0AXI#%b z9Zu*^@iG$4#Jx|Bm6B~JPvIdEnSByQwhZM7UkGI=LSGw~p^RI8@+rq@W-|Yk!Dcd# zL2Q^o*gcW(94sT5jYmP0TQ5gWG?GQ>?aR~~rJm#>i^G{b6t5xCMcgBamX7Tphv4B5 zDLoKIwj5+X4v`-B^LeqN4+rN<`C2|(%QV{7&$==9?d}Y6JawR5NfB`)HeW}usmPNWh+`o`9!z`KL!&*m7x2zE}4bZQ$B*n zL6qEwIC5f7NzYbhiQJQ#%J;&_{4QQZVpDOi_%IT(jpRFcKtxu*1tVKV@^xPbWh6pd z8<&wxJ}!F>-@jPj*kbCdg4@|72C-qLQ}@F=m5600o`GL_iN+QwziyTd8H0k2~_OeL0+Z7SE{F%h}F21d3_rS1!%OhqVc z<1`iHwa~{|H3CiLQMjOOF%{RFp%3Gs5QX?VGmXmEN z|G;A+a{D(J*)o;C_(CXC5enP5Ol9_Qqs3bO=v;Q-@LDZ;2)MIk;;Wm~y6`yfIdN2WCW`tYz5Eh!UQ z0Soa+hzi&mMov(GNAp+ngJ>fj5Ndw7(O1fHe%LhK50*~nr~bmBTyezwZfOoyuG4ht zYx(pbj}VOvndr;o)jt0H@n~d_zv>%WH&U(*<*NB=#_Lb_Wg|0g{N43hb90Oxt9&J= z#*Pe!=!UUlTakOVG>}n*+cp5}Qy8uSE4DCD)k=`&fU1(?(`;>0gP|RmpD1kG~U2s9D zifQ?UZrfCxis4Dy`nUrRny8Q4VC0VLV>``XGXu4CBRO`FH&~XIYiQJxLUT+)iN?#%Vdk?(rTA(4hh%IfpCSWmh*-->PD}Et)Ttz zEQku)8%FN9f@TN>t<4rkbEebe!xb|KSA?pVWo=N5$l6v&KOQwvA!owK9aqRKt`OFW z*yU6997`nc3>V4ua8altSspGDmAI{wYw^H|I=LD~?zm3GJxgU?6sFwR++Up6A20@*G?hs#cB*vK2FP zTPe@tkrS2j42;}yrEJz;W}RmsTgzrv=SuF&>8zAu%;tFX zM8(X7kvp!K9r`P|Y%P~zrR!%uOZ;B1oMQNm8PjZz375}NaG9uPb4Hka#wvxar6cfE zh*~-vM(((l=1DD;*khU80K22dt}czS=In6w)ZoHU)pJ5S)DutM*2`IV@I<|oVC0VL zWwyBU8(l0puc<#8E|w3&RiTO{Y_2ggx0UiiJaVE^-UlOhTq$#8z4&ukwoI+E&hVAT z!=>^lTo$TSRs{KqmAb8!hw;#fTKOi7+;OdJZWSzY7eg;EhwJ4fxHMF~oYY>uMCsd_ zc@YnvsF{Dj$Q{>=^cT^ETn_|x-z)f{X%U0iFc(ej@RwNXwpMn+Lnmrwdl+=!*y~hToS6U924X#TH3ZoPQt?`YUFqrx#JqyCfZ_XFkh+GGSzZ%Z7#Da zTk9Xn3}7{YiJ9rcuwn?ws-JEJefgkn2Gq5VC&INB2fTaHxuv#h`QMnM(((7W)$;m z+$j%cs`+!xh2jT>i)BB!B2=phTOAY6+E&Qkc+^CNyc$OCxI!jIwKAV44TejjA1(z| z8jFK`gr{q3;!HeTq9#_t$Q{?jw!@>f(QL7}&h@&9sg>))wQ?<7BC1xxCYF|Eur+iw zo(54vSHZ{~*U*HKN_oJzs(v6`D)+;cpi1TNAX|yDwH0w69xYK3_rk~titu>qD{g76U<6^Zho~AsX)kowP z;DHj&W($t&!E|BrF$uKINcu%5H$4?Z-6EL#nW{+`*L?3DUT(nEFg0dqc>_!g1DlkMedEa1DnZO`6 z%y4`fJSdS$VC!g8JO!eTdSK)P9eK1g)fI)!c|dfqE6!_hxr}`g%H0tchl}@6m>+6K zTX$qo>=;}ey+#EC+g=~7&$>d z9<57tKVfSg5FPA(n>S>9T&^}$9&q=+?}bbEyD&pk>9*XotEF_!l&uc<9Xx2FV86wY zyP*SapCEu{A2530f5Nr!Z@jF;9@z5jVMGhf>}?nOCmuaf6feNYmWw^lA=2xDJ0+Ago|Nh%dOtZA=2x3+uDkWS-l~e&$HkHuleqQOGGt|mTwKxOrtNB zx~-eL@z9C7xf4cC(2YlnQe95imREm1ugtVOtCK54No>7{rDd(Od4j;k2z*ncJ?l86G)N z40B*)%e7{5i1fPMcCOmROy3aBG8SH7zgr3yiE17#clRL+Cziaeoh5kiMC}{~BPVFb zqg|P8NcUWeP-tXs_Bjqdgo3oWp_JqZ_x zY8EYbZzc&Qmbk5%C-A_Dnt2RHPSA`;TT-1(*p~-H2Rqy3Q=IEJXCDwO(_RL#VW#(k z;GU+Ew7S_eJWQe}Cv)V)ZkC=sZQe{jey_zarbEIRKM*e^v6JEJlbk8rmb4!pGLikg zVPwmaUhNB^EJ2i#h4%)7WEe7Q~2bn?n#KE~d_#@%+_z+wisyy%&CJ9N~T6sSnG*K(>fss3| zm3hsw<=IVYr%t{bu9NS;g`w&MzdP+n*w)Cm@PLUL`8tf;agA)=EZHz$u;x_Bf5KJr zZ@4s6mEiM`Gi6&R|HMNk>f{9&x#K#S*|Od2dSLK0vNMC&FqcS&!qbSJtF4S3@K}k; zSO_C`Tp4qCb7|oor-h5-WVkF;_rO>BSn1mOH~|lrsE^}dO1ehod&F%?odV_39Lx+;~n6 z1=M*#M5Hw&$Dr_LU%{wB;T#T;SnL!Bg^4_8qhov+=0TnkYC`xRTqGxzg{v8kMo4`M z_YFanJggcG-iIHSXcO;-ku96JfkPyoNo{{hGF`M)7sHRTPy!#EJq#Cw%J9tCOpw6y zH}QiLdHx!V+;N^~sV3^;`lWELUxbT7<$A6$1tjqO4?F-O-+zOV6ZrP%-KzbIhTs9A z+W%;)L~humXOo`je}(54@l8knCVu>#|BxBUIpC6XZy(GUE#=v_7kk*Zf=5d=ebcyu z4n}Rtsk?-MAXjtVJjm7hL`aQ@wEp852=-@DVpm79;A$Y)heLG3K+vn@ZVU!1VLoK0 zYA`q*E|!zh!ZL=V5mTSdtwamozK(buet4phoB|_TMsgyDNN+%xCk6zqWCr6`v5*1> zh0Ec>P#K>e8x*u8Y~C-ygCO#LA&lH{-nUQ#gH|?!`+LK={|sClD)$SF!9h#J=Ks@p zAVmH@1tTZ$@6r9$03jNP2ZS0R_Vi6e&J9b_y?-#}@M<;39s!g~`poc8mImfnPRZ5x zqV8UwRdHwy$uTLs;9FufDLl_1x?xh7EfUYL&#Ywni{+~Mb*3#2L5Z-2h0PcQHd#5j zER1J38aMU*Bm2nI*i!duU-ZvR^w?o2R~*Szs(p%4`L8NR+gaw|F%q3+CX8%3%XAKr z-bB&RM3sG9B2!y8VrpV3iw8S7Eln(etFnPK(ah1-#9?@hL`}Q~M((&K7D%6H)+>`O z4P>fASxX(&aCMBp^`WYx<=1s=$8cn8>tq;@mZ*~gjNEaZY}r4Q>tB-@WuL(w8R3fw zG6T7_`F_(wZVXq+2jJ>ZRnl^qT}&lOx!M|eFCHsVBkzKdJFbx(lj_DjWx&yK9tl^= zx8XWb)zb2PT!LCu*0yfGfk#c$%~xUMj_YO%hi)8V`M+?n{0lA)RV=S1j;sl(+6wtQ z9x72Ge}$1du8^(xRY1J?G@c(DcSUx2P4Ec2BZJs5mo+UncZeBEVzRbMw!?!Zs$?4& zx#KFCwl-TFWmh)riqVk8DdDm>5v~W-I`$-5hsw^@!3sP&q7IIQkrQ;_ar;Z%K@&Gt zJRsB^wC8+p@5no72obJM#3H_tP)zM*X05~2Ns?$&EM>^lwQ61j7@J9W*Pll$o9LET-+*dkk z1X#u)x?u#EB$76UfC|irJUi47P=>4IB(-n`!_gS2PvzDj$&$xaV?YrkLF>5c>APp##P`cj&y zhoZjZlv#ZSp9Z287Nh(aS`%@!^-1iw*sLohpxXL)4w2Z_3k%lt^z0h#Prs;e_11hv zbe;Vex~K3F_M<+rR_?D=a=G<|ce4MC{?MPqdg(ulAFf5z^=bK1e{pmmH<&Nxs_R#- zUsT_g=go8G0}ubV*y@t?^##s9u`1iYhJ8?beSK^9uk)pBCC`pg-@*C&fpw+qaK1m2 zAC4ZQuCH(J{8PC+d(b+Z8Oc`IGOG3UMXmo(Z73sG$E;6CD|b$RZbU4{O867(fFrs7 z=#L~NUM#O(&EDxwN_?bJj*82o-NqU1+FWH-xtg!7Tc4{>%#~`qNQ{UTg*}-ZE?d8% zu$TO~xBR(}{JF3Exu5*Gzx;WC{CS}Kd64{hF#nmWPa4jiGr-awT7S&{*#GL|Ru{{w z)~~2f?9cLAuz#IW$)2rZ87-6-_VlbMjPQTnz|>XPo?&^ZUAdJ|dyrebA|wj7>A)H3 zy49wv@Y$MpHI}~(`qoARNy! zHm+IfFc;Fl)iukNaEY9B7S3Tf8XfgXe8P!nk_S~6ESKR2B@Q(g!^qZ9^HvU#-UZ84 zdGF6+_wy_e>`b%Ry$3D_mE9Sf-Dc=E$9Ln0CUSfyjNEaKd)1|ieHQ;NoabM|C86>x zUiQ(#x4HfWet06+KZB7Ixc2DTs_ly=-~pj7QqJ^EL|&v!OZSmw?@>9n=S8--urZ9r zKQgt`VW=@V)mA@;j{x!rQNK@GCqA@pq+A=yRrA%xaE$%wzSSa|#@`-uaM+$@=rt;; z!C_kt(G7#cjK!65cA!67tsPmZlq=dacQj0;)nkr?Yvoi!VIPL0PY^A?6=iF}WVz4C zTSl(Nki~f9MB6$PMz(D05Dt;v7&1?MK%$x*%+=Oq2DAOOa>W=oM_EXL14#ug3{@;A zMFR=lKrFF1(zhF384sVRm?DhaamCDD)$kSZl0nsw%SXcH@*%h?RJj}Jw#TPyF! zV<&3mJuq_TwUQfNl^Ymf_nc%8Hnj5HaIJg?u1Z>3F>|-I@+~}eqE@~RBX?XYI~dbi zhQDr*$(IJpZt?slTs;4V%S08=nSn+#W-)9v{S!}ysHPWS`rMI0L3SP77DZ$#6ZW>S*~k z6XCi@Wo_%@1Uzb@K8}NtJFbrzQKh0~hM8(@z?fJr4p+!q;fhcda%>y?qmj3*k@NAm zi5fWq!q$V6rI!N?s~#+J3S%bDh#$*A49y<{L;7tNYcAtr=N;jKc{^MZs$g1vJDuPyTH>}!-i8NGRLK=Ea)L@cRwk&$ z4dOwy2ZUPOu)z1Wpj_N=QMx-CPFu!4P@2yc^XD?9YmdVpgLUo{X?+*IvVl$fwcOw+ z|BO;!<3IYMFS<1ku08N}tk8bMS0ZX5!nZku$3g_3FHU6Ga$C9FTdwn#tG@ZCC?>IW zM63=a{c992z(tp*fm+4*JX|IxZ-u8Bjz&p+ho~F5$?I!oBjZsk3!cN{A$rEM9NB}- zwtw|tP9y!k40|@izWAFln#R^kg0EP%WDxDRVzGIBC4tvwVs=y591o00@LU+#Y6`PB zM0!g{wrVP&zmj8?ms!hRn~0`QbBs8K1s1q~{8W)5Cc|fRf;Thp!n;zrt747dky-V|zYHfLTU9NI+zLL}TV!1e6ly8NZp^9?1 z7NRthvbxaucvwU!p39LFyHI-8v!zjlrezzw==N}uZ^f%QDPLk2Q>AQi{T1~I6*dZ1 z^6MQl#@=+2oB7$s^Km>rBHJH@kuBr-urGu%9-+C7%Xp?ARV-J^wNp#^!E#040pfS8 zB7wc|*Kkp(wzH^(BK4Fk)AG*3yxa%LV8Oz?CDv0=tvzENGm zWsN&K+i<4f(Gi)R2qRmDGtL)68II7~#$`BDW4AW6I~&VbJp%1!DO^&j-R#`LZsG}9 zX0rqji73ItIC2-5%{H+D^qH3*hUHYlNglx~N}O`|mmm@>r&W%&@eJcJ5?L?6$d>V} z_JvT!Beb`18PD`%v-x4Ryn6+kbJ)Bae_iZ0R*^vKxdkpN)p}Y@I(kZ$`P_^LMU>%9 z968Z^Qhe!rzE*>zQRm5UhM&NTN%WmoqmDZ}+i@Plqa#xN2#jnw&bK*4de__w^{S20 zlQumv`0Vdt5F2I;KCs2$(K<_8Bmae&tP?fze=u@_Mm$=I>Po_tJRmxF<8R#YCANJ} zycr!5F2@5mm>jolAxEBx)r0oKVe;j+|&NDGs=s$4ijpGT#d4_v?5qi7xYMBEQY#Y`1v`4~|Im12D4XHurOg z^!m-Vnj*%SZvV-G3q12*fJ;O@^ADgZ!%Wgv$n$uRM1?#DBPS@tqnW6FBn-&|qJzWj zc>7uQ9!rDe_(}$`VJ@~7wveMp#p*!2;=vGQw=+jh>_F++%}kzp)0~Yvx^D<4^fbJN z#LlzpScEpSvJK^AJSrlyC&0*-p&aK6p$tXnYvVGMiLU3=*RfgzcDQTca#B0o_AM0H zNX9aiIvx&DdRKDfL{mv|teq{hZ=QjMuY56_)z9N)B>KwkW3$@K%XXG~@VJQd-VGyL z&T=P*NUytW+0cPG;u(7Q1B)y0EdL!`9qL)$YJF5vezq=tjmJmS#V=sw1YLNv3)OLi z`FKEda)doSS1Ic^XtzHqSc%&*i1bHTk&4xA7U01UWw!-KPV6@6naoU{def2(Ygryn z=rX*9#8%U4gw?aM4P_}F6_ME`FtTMRhxtM%LlOFFgQ0jps3^qiOCAu)*1iG1jU&q$ zMZvb*|6jUW?oVN_Q?M^AM6Y3LkFMUuD8+iTv%%JPYVmSfzdE$`9+czNwDrCUQ?I7I zgF_@bSn|Bw{#OKM9#^YfX&braDe#1h?PBe?{U*dIjb}XCigY=7| z7HnH-+AZwoc$h@`e*z=R8Yqxlc8*W&8S-_vyKiH$_xh4j#eDIy_FIQm%oKJFb-NEmx_PGjUfo2HLNM>*PVWN>rT~Yj9f)v__V; zO1_LoNmR)fVdMmrc-+ZQH$%ill?Q~Hsy~(TRNc!+i@wa^>~$}P3-cwI7^*Ohx6)$5 z)Kaol_#z$>QHB42ku4Pp{yik5R48uSct9u>zTNloP~MVTmhO&G6Hl&HM*C~}{kYdG zL$Cgv%B$}|{R~!B2BF>laom|Zhy{jSQ%aSnJ9GPUh{U@$i5KPVzcDv^X{F3|Q78=@ zm#Ynx2ad?rvf5qIGhr5Fvg+2{O1NH5A`8nIj>b)Wzi3=e`Y4g4v(J&B3{h<;bvhm* z(NbQ=krSCtz6aa(`*d5|g-Cj)bQKFa@DAPOctxFe=xovt^&`ERtKCp8!DA(|e<6%) zHI%n-h(t$dyG#~2WHMOE4(HA;SJsG~$i%Fn*~Gmp%0R_@2Cfy=CR*-bnQRm62Cpk^ z%RD}f2TqjFr(ooc%V&W@KKW?-I`%F1oF2>@i+0~@8ZWE?9Z=Uzo@>}zbMfZm2^YgE@59b zYCZC+&(-xQ9$0*Hx}mK4IjLoAeD8UE{p{2ZT^eN{X|FV^ohuw7_+C-SGnrksenp`m zf3A@~i~MJP*Xd~G&gjJ~R{uzA~8e;)aEmJc?Lxh?Mys^GGX zh%&K=v>Ds+aPn=wRad5Wg)fBac9;4>$Zpr4?kgdiW{disn)kJdYti1+RV=^A9j)by z`P#bZ-^~kL`K!Jtp0Sv|*SE%s>CbS8#P*ir!^!b1V`D7-8O(unF?DhKW4J`lQ?~Fe zhNIC@7Zt%X(Ulvw>>KHC}nJ~|rPy4%(7<*)j9Kw5`! zjCNIDxu}Le!Xdh$;ZKNCHah-$U>2;N@J_f!P9h7JG8~PM`eboCJ5r83s%rVy<3}Z0 z#I-Q8Wf50%i1b?iG$x>}ouRNN*IG z-k+`3GK2Xd+w;wsHebs^!OnC`AP2(*p$g>aAc4e^w)JrU9yC!O`@+Z_*T>vgspRqu zLndp&WikZUg({Qd+a(j3yRDWS9y?Jjt6=2Lt7UbrmWdP-Ef&de12)w1?r^o-0M{iQ zwb;4aYPk-Nov4;;VC0UgWm;4*=WOz|aFsj=*Mq8(qk=p|8cNyu@>qa&76r1e?+7OQxt zBwNc3j*h)VY7=&7Y<8E5P}eyxb5SK;=WL)Az&rC?qqm`=Jo%I3#((r>*$Y!^*=the z5?irL-E4UK7J$uFxVyCYL(zMx`D`(NZnP4-zFmtySPsMV=HqPF$F~{b9a?LcauMNmp@-Af4)lo?2|wD zkUw87f9}bD!Yg^VVt>s`z{-z=fP?(#C0}EeezYLnD|ai#-pC_ti|IY4lh+0*&1F(d?A!s2w4T0 z#R(x%ux0x9cSH`|@NvO);JM|JfL&H2ombN7J!lNWgVh7&T(}@s!3CiTV*ge*;S#LE?GPC}Mxq?v1S5A`4)fTHxS5f1mEF*YHlE33 zE33`t#@B_*;u^RxR9Up#0MnF(BUjrk>UgX~d0Yu2cU&F|93^u<75s9zO1=o!hpLj6 zo6-?flK3$2^LWTavD^bAcc)mKqsO1Z#qtNZKB1mJPsOWisX_fb3` z)N{YPd@sl4efIOxT|l|1`7*`pVF^3^DST@{_L7HoU&e9g>{MUTs5@sTafoiXb2gqa zVcY|GGt7lNDb&sPbKnv==`5^fI2s*t_k>73@}TMt`zU@;qD@p_WXmSX93s7&U5%{) zEp|V_0>N%fTkL)eE(ev}`0fc#jz5AQn#l2oVC0T-9NRs?K8t@4&hz)+l2CazcTaF~ z{ayUobnFKa0hRjmT0os_oC<5M9ysS;j`&-yi0}Y7G0pC34bP*n#0_bjY?J(IgM5+WwyS zL5Vie2P0cHu{(!Iz3toV4zNH1+kO@<2bJA;+jnw&27YKF$8Us@JI-;e?b|%RBb?{A z!zH2eY_@$T*KflQPvrUv7&(D!kDjgCzGwm-5UTA@^-V;!{kNohwLfD8-@eqjPUbO| z3g$~rv2|`QR;^Dt#)e0Hxl&`pw>d;Nj17|pi{)(1eB|{4%%ME5)D45@;VL<0P>Xk~oiyYmDQboYFoc#2qStKG_|!_s!@vc4@}@SD8Q zcg*_~SNf_#4IGzoh{Sy~^r9Hs7n8rm6u2e&0n}qQHs<7u?AW63_4JQJ zuP&BXWsB@xqo6NVkQagvj}~kBkxIEgSFQ3u$$xVsKawl5FU>U8Z_rb0e*coe6@%OIoWa5q9yZW^Jd6)coxBU4T`SY{#=RNZ0z4GVh zFZpYVHEH?hBl4K31?m7|K&FUV0Z4vB)jO0hOwM;*U{zm0e4`sih$0{;@lFIfid zxG*HV131PzS3mcyr83l?aEL@hO@33tXQSfQZ(U7YoUQc_MfKk62(5vQI|VJcHL!2O zATaGadtl*tRxbT2Zd?7GEB^9kUpx~Ti@GiRGR#_?ICj0%n#}YryEcmzp!tn*W8&@$ zXLa`t#_FOmSZyX{Pt}X?posMD1S4Bh_4d9Hss{*>1@(Xzg-(;+=WM^VOkN(nza3eN zW-O~&H83Z)jAZ~WDAicDc1cj>VcAL+kA$eZGdOZ$k4Vo}<~GxBo_~g^yd#{^x8rr3 z#BRIf*v53l^;gsmHc`~tJt|Eqs^3TOL-d}5|P>~U}VcuF7<^_mLde!221gP zP*I3c$OA&%F8C4L+GRPTDA;g&Xu8AgxN3H7PIJVcGBPnoblREwn-PR>MDc*M0n72= z;wfLnsj>G-4$%dcHX+K`FtPu^Bv@_fKX8ehJQn`Qa5Op^pNxovW3`}v<3}a>)IVWl z%coxOg-{M5R1@S7PlQCl9O7@|Qr!k=!g8^xP5k=zwWqenBUb2Evc~Nk1W+H<&kw!`89*i!o|0|;S9KFZf`h_;ppD5 zyFTC)If;D}G;?&$tv1kjVN)FtV(kn&&R?g-|_1XfLQ|oXVp}RB8J!muI%Lps%uU0#*4HxUN(S z+R3R(D<8{zzJy0al;IZyd+;Y=+P$x8Z^&G!)i_pCwB#2Orq7i(rGmbiP=VTEFKt<<)dL_%V>`D zg-}K#wAKcr@qkcKi0d~G2sP#H8)CZbn*8E)7cEabN-o=oUzER}@rey(PK%>2tZ1$s z8RHWDJ-$Lym+0^05Q(Oie2L!n5o+@#r=E1ukt*&0kvTbKyitSh#+I~~TBP23C0wY^~Gt40phmN*Sq%)fZ8!Tn`rxD{<1vj&30#Epx z;F?fRc>Vx^dcyZL(z8zd8}R^%a`*s@++A|0RdV|3jwiz9@EBZ^4JHSko+XDz@BoQ& z_%@8(aXHLxx7AJi{Yf|exy4-b(jiGRV!9hbzyrX;GP zBO~PsyH?E%hewp;RWPz8$+X2VPgJY< zft~0?HWcwdxFYU{3qw^z%MT(nx|kzJTNd}>F%o5QFO1xASBvXz1I*`*|#crIKN z&%$M)ih^{n#LCc?#4~t=L`nPxM((&I<~Ix0$}F~gL+~}x<_u!PjJyX?+J`$$TO4!o zFp1)r1tTYj!(%K_lZ|+8>;a)Bo9p36S~8I+3br)h<0-$;!**8~(5~>`0IS()QS~K! zJBr3$6IuTG-aVqv_vYD`2K&W-_o-j^H9kZsf8ECe(;h`TUhFx|S2k*`z{wn<8*bK5 zh*CBNk@H|Sq@2{!fOT+>q=e6xoWC6B7!Szn7Em1q@J7}>Il5e|{wJ@;vc zS1Q?cT+#-=x3EY8@3-F!*MrJ$Z`3>bRP1&`xCuWtk>wj<CI|61K&{Hm`Jlh$k;&3`tF6C0YPXjJp>v#x6&aZ@#6FB$i}ua>(p z8T=jQL!KjQGWaW8EGMOfUoaevn7Zg0TKIO)_%nWZqJR7mMz;Lp_Z%X<`Cy)Cuv*Cs z#s)bGDMn7FXw1RkE((LH`qd%@DOt z)fge_li4nOxk|3opOc&RUS()$?C6D->a+UG!z0;#u_g5CN_J#OB3{lByJ4`H(kO=E zGIzm@$($z^^Xx@7ww$YcsjX9%*G*eTHRqZsthojTSS-XwfK|!TB#)H1WBfs`J8^o2B_VTpB9f;=Z&V zzfJm2@Z%Fn{}GHV8_Exx#Yvm(xoV(DV0^}#f*GI6AmVf6*rK5_zPT|=G;*+6pM=Li zWPLo0oWQ!80md$nbc?C0MvKKhdRpeU%GbgZwORP#An z(2(>xbBY@p%r?_E+R0fkH}c$3?W6?P%SmrxCBxCUsn6r)VrF1l%NjfaqO}ac$ddi>-pM;js`^@F0wwpaPGPAnNDhN=dX74+u3?9O;{goGSK8cd^3` zYjgdza-}CzEB9ooYjS6^f36#5A8o4S`+G9OS@!cB?FPn_m8hpV#6?k!6F;>{51W3>n8Ey5SDSc4Jh-=uWSKnY6moZgBaWVkm6Ea5Spw zJM!){Mnbkh?ScnHG^ib6WXqto;}Gc$DZ7Z~K1LA@Rh-U(44heB2bYSfirr!}%NS|d z+BgLdi>QqgVdRc$V|Uf|$0($skITdLaS2>5sy@WFw&c`oja-O_M%2h#VB`dicuXg1 zz!A;L140croA@Ro2b@2qd)s7cEmvZzIjiNO@sXCVvpg`PbE>d@LR$uzc$8WvbPO#I z`7)q}mIpXQHw-P)W0@OP^9PtAYe4xOTq-BYg&!~+jh6aM-il(u+h+1>{NO}0`2~z@ znaR&MM0&%>95IZ<3TCjq*%|2hXt6zqL15E7m2I*9&q~4Od?p?Ok@M*=a>qH}Ty^4P z-j{^)ei&RDD(_qJv)q}6&HZceFo@hA1S2PK@6q|y@F1Fo2ZS0P?)Nn=IXt{S-Mb^3 zmWK5OpBKSmbtq3s<-~wN%sNvu|4v{zqGcKiQe#j7}@fM_xM66ZxEUZ@`iOGQLwkf zZ%o-6s%!Npu)ksPx8s81=(b!?MA2#Lba=%teJifK;^!P9(JNAX2s@r-Y?#Hw49bXQ z7ULL1J4VVESe-OFq*+8XS!S^beo&%WyzI-kYT+*l#*;of-S%y&ri!WCW_O=(cK5^! z?cAo*>%IeG8GXTg4 zwXWkB0zTj?AvFZNmqT>J5HMNtVhjQg!OU2LzyolZoa7enU^p5j@{RF^psZowe*C~h z^SBR2w#?&R4w2p!p?qW9&GPds7;FHySbh#J36&wKZ_rp$n`TYa>u!jy)o|Q zd+RfU`QDO2v}3%t&ua6H@kGuy$3q};J{Lw#;M}9LtKmR22M-7}9K6d{ymC0$EZs+r z<7<^Hdu1yA35hqsQg!-D{g}3l1|mMK3poaZH~7j&4F;!ih;A4RCi0w(vETxj6{}&K z2N%gnY+((<(Fmze5f2!-l;mO6?ZkEXVTq=(7Dl#Aqsk%D8w#e&=Wb=Y3+^sXB4re6bl4Y&!N``y?7<<@8yyzNhYS21 zZOQ)-i!5-G$ielY@-N=xNzTO{ELP#M5LJ+Ykvpz}g=(;HokNBb+z_sW>);wum9T>` zXSnjQ)o=|S4^a(u7&$==9y5a)J4CDTfKX#cuWur9>^L>uv16Keb*m>+Dp!WJTM^%9 ziC{+N)Lxs`J&Q0!lv+=7%p8yVQlMszM>#|{%pB8WnHvW4FPI^D&Ztr2?{KM{Bo}_o za5P%vy60H%wwwGFKRD4%{tP2qZt_PCk=}$M*FDDyX0W~ED)fA`*xrsoV8b|-?fAOq zSPC}h+u$J(Io}FK?l|YMbn|Uy+`X; z(}QRl9uR7Jc-Yst25#5BVJ&PLw>V zx&?7NepI4i+zKOGhVgL@k$6sdoKl&EJw3Z#xc>b0iwbpib`9NAxSIW7yFT)BO@0T* z!S63vB-o^G@%uBl9#nqg-@$RS{A2vsM3#RDBX^wT*mrOoOi%9*W_k*PXvYj_pULKT zaNKN9#E(y8dmN0Mz_v#RS3`hk1s)J;2)Nu=wsHvQ8K3G9uxY-uR+|Bq!zy)}NxeNU zI7HEDEypneEc2C)8UdDah;A4G#>w7rJsIqTADrkU+r!9~ zlWfZ&(whwAvx8W{47Oj-0t%cEPKC=tWjp@tAeMs7`AK*PM9z zhVy$4@v!dV|6YvGmW$@!VYSj4+EqV8b(& z<5`^Jc=UFQn1LUi$n;bgx#LXFR!bF~Y#$!Z_G{s)P}vrrnlLl489x}0fXMg(FmeLp z9vxi`1)?o@K&YYM3%({LZztTG?(GD*+N~!uQa(FZ(Vi;26;`ZMZuJw}G8@Q+E+R~= zA2}w3^L^E%CWLc2L^n(bGvcWmbHYt9NAk2$cNK1gYvrW5a1F!Jc&UpX5|7??ln>xX zCpyY|VPwlu-o+u(n-=DZejBft!S`b73xIJ^limXp}Ru?$Ba9K@qdEqvQW-hdyT=pv`V$d-$o%pua79Oj9xtCh@Pyv{-j z938HN3qxgme(ZLGmW0jwWq1%o-Yj#nmcu`MYpzCzzj26e7#${wqzxC@YBkD?{jGVx@M>kgkfoKaJ5NaU!i*Iw1 z1Ht#&JP_RQik?k+qW=|U9Mkd@tYWn`+>;p{8OYZ3eH%XmE7vKz`eCm5V9f8mL}4|e z(%O(?F!;2uh}2;4DGt#MgTeGz=EijJLzoe(b9^5zm6O!MLkvfwMJ{lR1#e$hJdPin zXd{op$d-*f%puYn5#$2LSiuao#|;I~37as8cFck{+wldCu@r31Uxt~f6FGkgM(#N0 zu?3E?q8YsJ8P0p(2IJja;22B8=6-iP3?lc7VB`euJ$k+x8${FafKX$@Cw)aM$A+cp zu4R}|e9MGPabUY#waez4!1AOg~Qkz+&{_7#j85egil8%Bglf(64ju7`QBrh{wY zDmkevT)=QNM&!K%sUCS;b?@M6{J2D;xC%zLjN)<*k=|e+?;SWfet^Xic<_S`nNK!&-EZCVtbi-IMS!Qj_1;@k8$Q;!=gynFVoa7b`W;hxp zjSoOcLCFKF!C)DFV4`^}g^?}uSi&LF8w?sBfD*+rSU!&h6F3>HgG)kXS^EG~64z_- z!xOo#!pI%xI{pDDC*QY(^L;a17AoJ?2cVKTzX=b4$oY*hasuZbom~wFqB(d#sNrA- z-$dkaP)v6?n9iOdRcqN&jlJ)X)jtybdzJ}iQBJ+pk8|B9Ko=bF7ro6jOQV3dBK^mN}X2HrmrvX@U(v8X#XpH#iQE)=^UaP z+W&+oWuyOJ40B?2h_}Kua?)BTGaQW%`Sk@(lsu{$0M5scN;HgfVPwlN&gKy54FK}% z3l4toWRV0;0Jp>Spz<64`huI~Tk&HPS^hYT+;Ns;Ute%A{j+eUe+<`z%C!0Q1vlG2 z#E(y8`};6*0^1%PTnz!D6?j0XA>ehsiO3<~bLrjzV7vX7jGdAe6j4WVimZN&>)C<6 zc!03HK*XoD9mg231&bLQj-`Cm7_b?K=!P+1BG1{F0}h2*kr}Ed28X~!auQqEo#AMN z)Ti*5o&{C%uxb!E5I-!@H1>m$Ez{VWL!>tdOcz@lxEL<7Py#1`JX{be!!u)B8YJ*M zh##EDb3csSah_)_DVJ(lwqUx_=i>T3;atBHE((?FxyBX-34C9V2SDWeS{ONjZ;wu{ zh5^wKJRsCCFvm9$ISibY?t+5JwOpxMu9({@|A=LQ8Ix0K^%ZRy2vm$(4{{6zKk%)- z8VbJ0A-Z8GnA*(S7z|#5*^wuU8Vp{93*{uZ@C?JzNU4ik$j#90#{~bt4^1?Yzro0s ziTs5_q&FPQ62n2WTn5vNhSBrTVtOYAfz8QOrbW{*60rH+9uI)X_qH%{$N8S8hJ+-} zPYvh%B)BkC&c!}gjwEc}kH>=`^1d8KPT<|6)2m@YGzt$0H7tDB*RbTUFf-j@VSIVC zX52Yg4~x~Qv^L#25blqB99YdgfHk)@268N5q2SDU|5{#U{w?`*e!+>ZA z9uR66c$=?qEw5Zy2eOo&o8CV?uz=@JaRfE7VepI4i6kue_FjjMj z^acUBmcYU9jVzMDIp70uJ*fP~*Alo{elLD(BFpcBkvq=z>iO4`>QZ=0^1%PTnz!D6?j0XA>b(AMC1^VOZU48uQ*Hpeo>cMZ?Q{8J{OClc-wGoqFzwN?Rnr&t?*XBj z{-(Z($fo~zx=nxLK&3pw?(=9D|KDUeU~c3TS^W^_ih=C9T&3z>+1*N8}KFphTr zHQ!3BcK;xU=!SMbS!QkY{6E4>$kRgg{NKZ6a*|p2A;ZxqkvkGK=#mFkjsLg!fr)1E zD;U`_i>En6dW~Q1NaSXD{s?-$SuD?E5ZLTXWjVehQ6kr~@xv3j?uC&%&UI`@A~)Yh zhV#7`E(?`!b4Q{?&JV>yAaZ^PjGVx^M<-XqfM^aL5Na6svaeCeVc>h|4g(X`W=jLc zqJT?atvZEPKh`-5@GXgf-3n!ZS|4(Z1{eAYNR0+>;Sk+08cY&N8p2K|FI~Na%+dvKq*laH*Um7mjB*8ZGiONU`AU`;9B{ zgA?84bQsxklh<*G^d<%Q8KhXj47RUj0R@f=SHoqYvK{{nQY;0V^Q-U>h@4*zBX^wh z*k_PpMKgH6Kb-gb;L=ceH$Q_EOT*^=UOWsU_n(206S((i{c3s;O~V61O%MC~CL*VY zLb@vpXANg-mHat9nOY@Vs*aSa`j->`!?M9F%c;Biscjh{M69t;wT9)GBmV76hMFV( z$sxL7j+kwxZ`jPX6_hJ$m{`Cdu(``gcVQ~S(YUFL>k~5r+hMlABOp4=W-zklFmpIW zdK1Nbu^Pdwn!)>W78Q1mTD&iVYeVH-Y=P^}!)AXe9tV;AB`|Ww*RwF z3)hFLfNhQK4$NF^6;$z9h$^bl(8b+dlXZOqdl3y zY;>POyF>9gSh!BrwQ1{v;%FmAt#>)*iqHD$NX->@afrmZBE2RvwVAfjSAGJMWA&9E z!F6)-TlfaU(KwMiA2dU^P2>mop@}B)Js8PWxmxYXC z=Excy{t4I2Nps=13`gUqz6HOf;UrQjNEY*EL5$TpoEjdm2d)FBdQX1Fm7(T z^0C!$93Br*4adO932N||8PwPzT8#&U8ap2GH8(kS{ApaOAA6Z5?rQgB*i+Os+OTmQ zEMKSg+O!Bu-hAg#YCX*{b6n%AB{g%@IYc+i9MfZ&8?ENEFhf?WxeG3pljOpO8IDGa zT!a-1-gc8a@PiZGYFId$Lv+Ki zFrH;>*vDBgBUale!6kB%T3E?&G&H~yViC&%x`4^8Cw1{k^H9LK&BYxDeYIM3gNOG4$@{7$Ts>#yO5 zCvyEDjGVx=N9R_}Uo-&^2-Wf3a$QH z=hEx3HhEz|$(XcO8 z0c?bE%By~)%PxkqrToZfF&7ZH`~9)k56R# z7cg=H+aBFp4FIAQctEJDhJN2f1!K*EzW=XYhXxi!5-A7=`OYKRJ-Shx~C0@sMD1aqB}D<4}8AHw4ys^R@Ga)KH> zW(GBOh*skPp~jAFeG`#m$6&f+$D~|-_1bK)I;0I6zhOyWCg#*#o8G}{hNv|&$FT8B z-`cBt5I^S--7suSX{2q~%EWU}ZseJw?p%&z5ZF-Wq_^+_E0)HId>aE|#SF%?;f$XF*M)j!o9|#Xap8ALnAd;3f_A5OU0-W)$Zk?pxKast~P z-CGR+q7`^Rr~%+zzOt1Az&Ys-0NYmkv&9^HE-_H9^<+jW<$=+D_Al@=GC ziLQkU#j&1Jh)APA8*#?M)cTTRPI!Z_zSNv>8i(kHIboYtr7-4)3t-Ny{&F5%J16ah zH4I1NslFY5C$m*H_C?4#JQ|`0t%Z>-52|vA^yZ2k#hcBoDro58HWp#vym1R$C#oKH z;d&T5CtDRa<1rCcaTAQ(aaAl*Z*2q0cq&{OPr|jLDr0x!?d?{1+3I)#kBg{|$6(|H zb$ARNYHks&$pb>oEhqaXBIlON(p`!@zFID>)i=PNe=h25PVv=`aZV@b=e0z9TDxl8HQLqu(41vm!H84>b;ei{vD>unWV{2&qpI^9PrbJgmBb zu`hmDqG{{}BU`4i2Zu;+(3mcpa#SjV;UN}E;6#yw3qoahW_+S>^SlZ_IFaWJjNEaa zXT?Sb2iG@*bA26L6e`zq%^AVX_ceF`M84}VasuBTom>qAq9J%ds9~VjHxW4uyf@vY z4&(U_a@snF@3RarQ*x@TO~ZhQPwPF7Vc>D!s;gn(Q4Y}+!vN3OXchm0S&=7*8V3Fj z7s*L%;nxgDBSa1Zf+~4fH4OX}KP=HS{tP2qrtwD(k@_&;VtB_lqvxH)@OBIWn~A9m z$A^Igp0~jdPULwj7`fv-$A$qH*C&Q^y#g)@m1}btNZ|WeJOCo!N5jYoe0y|qH4KP` z-~pkAfrot!N)7{iq&o~uU_0`#HLuz) zfk`51V;;C0=Edq3cfwV2Qd{^C!_gR#U*48v$>XYl;CB4DMB}&>Mz)OO;~XNrfk1wF z+sW}SSS;8iZgKoGxFS@J<6quRV*1DU(TPm|5Jv7e)3GmaJK3IoUNGBJ7(_efKl_X} zzr3Bq_(VJcBIDy=0I-G1~{d|~*_;>Rb%k6Xo$+xQQs#kjX|Tb(QAD%qlII|liyJ{DgyJQ1DN zj2h!XeKK3QovY+Z{kipp8`x6w!ZJfqV+Sr2RiD*g9v)%e`O1uBE7{eR?8uNrT*?s> zhlcdJN<^Ao6k~ii3noqGKCzf*YvI{acu~U=Ttg@Mg*P%BjkdbjCDh8J@q}_E`wJq3 zHFyXuEoY#KJOm@lB26yltF;U()UYg5&KGIws?lPRaTx(>B2yMbm2Kgj&BT^?hEw zo`4JIhH;%&079QuEIYj-tQWT=AGXj6MCI%Jq5vpqOKVQ%;Rl@ z8+}o{Ki6VHidoTYmO%VMVr&vG|n{sot^|9ud)&_JENsTY9B0gt8@}wjf)Y77_)srDD1_YbV#r?6Pch*!b+% z*({58%s+>ET2HMkgVJ>Cn09Kuen@Z%HN{t}GbakgXcr8g>OF#h*&#{UY}h03`3UV0-3oAp2AF%Vh*BaEEDx<^x2 zbAf0P9uVrHspOkT6a||Lo=x|1W$V!rzhKFo)1MoOcFRk?OxgP_sB1X|=zXt*N1AB{ zid>+)nuQ*Cf$}O2kvKi1*IE`N*TFEI(_q4^HghsuI49?Y#SBLuC&ayysW;|rn8M<^`Fe0B?of|<|x>6*_}_Hq&1rIXznDGg}LNN!+xU;~mfsrlK8S;ftrX$o9WI9KOM8U37-jc5Au)Fm=88%ZEvlZjz)_7 z9$7PV+czG=4^8xqM_^>jH@?jw((4?v#8}@fm%;R=Z$-~Mi|HN)(T)k#W?H-tWh7wp z{a=`sI+5@HgONMV_dGSwCvpDjaL!+~!8o69yb#|^!sdN9JP0E1yTHf^yn8fvH6MsZ z;Q^s8N^bQPu)HX#q`S0YwtR$=jh31^R=k&C6{V2~lLEK~K(b1N36@7)I#)UkG zNE{c^>m-64vAULLZ?ux@U~;That&NAC%=WaFdTho5VyE2{$vCzo2xAAcmzaGxe`XU zJmoT92<0h4O+lVA7!n1$<`_-aQ|3ueY4IY><1C|gTz)ur;UcUW6|!suNOP7)eOXY> z@-TYMb4uX>X$p1R$apmi61!@Xa#8;ADh`q8 zA1U6*m=L9Gj3cMPELe_lGF&6KV=QJk8Xxi_1e_?#B2K`MO0LW|3e`+v4}Fa6PE}#y>*fX8C;l*hH4kg^@eXa_l1n4yNx6XZm)yCRC=)j}W-o zz7;<{k?oJe$O&wF^la7kMJw=tP`4^}^Gzg*g0=nEq}%qltd5S1lq)s6hk*sXq%b12oLNuMpFtTMj6F5YAgTzAd z7@=|2j-i7?S#;Q0Yw6$+xJFbRh_B_g&d0u6ejpwXQ4RaS$Q@V1j_N51Q4z&(MdaZ+ zQ57M+K{0ktwkihkn24(AhmjLh;W1UH!9=tm4+u4w{LZ%#%E9Dw>8`O5+XkIAnj2*k zNi9E|E05N+iR6>8lASUP+BS%X*NjeUbB^7_OI-;lh0kN8={8H;|Ts?JM8JLm>Lf*I;DJS040*P`)Dc6yz%(35kMT@C>B8 z7tq9Nt&$%wu5PAZjLu0;rPW{Sd8@M#lcrLKgG^y@VnewUjdGBQ93s&{QoP$aS!Qh* z$E#s3EaP|;TqY--g#`>pqoh7fto@V{k_T3oD!btaCfda=FtTMAJ93EhT12lL?M1N+ zmRGW10dK7yj&U@8WTImn2_svMvDg7)mb25K(mGAL<>G})TpD%Z3 zzM5sxj+w*PGNLy$c~F`@9hPyGZ@JaDaXE+R2FqwOm8&!$i?W|%IYbxO&yM2MZB-A$j%qN0mK~i17tn1-XEGe! zj>K}1v2(IVpAsGu(Vo`8$d)|~`9dgr5{e75r=vrnVD|LxbVr|={Awwi@Ivj~ESYxr z(2<@#6b<1#Hrh*Xcly>|dCu(|q6<7HA|{r*;V)0Z#903F1Y9h)zdXorbbk?R-u3ux zFL?|ATPN!Bnsvwx1~Gk%;H}@$ky^}*+ZY|PND@M z_L#|1Pcva#MU;4OGB!=Ljti*SEMDw-K*~tDNiT=!0ykmQXvrIPasW(?WheW>)pFa( zjtoa*rY^R5F%q!-WG_4bqMz&mBU^s*N?!=&Cqhd>eljg23g##OP4`ajbUvHZhDUlb z19^Q%u(Mev?HEiJdwNOK+*n{dE={ctAF26PUHQma9HI++B%-8|xZxr1g(%#mC=$>#V%vuN)%LJ5s#(n8;Z$9AnEXP#!GD*qlMMV+x(Xa5O^d zQ^bu6PL(|D%H}PLx%gp;HZcoEwrpYshe)q6OqZj2R4RkvqgW`|nPxG31Y8hzPp}yl zx29sj+wI_R{NO~MUkf8A@a*B`svQV}@PJSw=AV6SN{*PBbZ>1>iXN2}^Hu$>)McICugtu~tZs-Z@d+j`H!!vGyxv)IrX1GjFItw>29E}qB zx^#msd0^ESZo&^t^otu|WXmr;z#-D>3-WboH_K15U;;bC6L3kWEXQA$PUQMA{P0As zAAylO&UNf{X*b`SUKz}H4})mOtY@Fq=Ihdloc|YQhWten7&(D+k7lms0nr>hAk;i? zzHcIO9_UMV9%#IQkbKi=F|1st&D6u*K=^;^&OAVlqU`_6k^4?aAP`PL0!X+-L2kLP za4Ld?VX`~PPP03+%*=)aL<9j58$n&f7hjP35HCbf5J3b*P`B8H-i% zB7kHb>0%ONAde6f*>f$6Yz0FxvdCLuSJ|`3T+&gq2wzf@w%)8q-h#L8m_s&!m5m&- zp|6C@Av}tLa>#!Jb4VlK95SPSu&-4eXw{dUh?Qjlq0^I1a#Y!fVI>k z72gPud1NV*7z24^mezSKm3$0FW2BM`U~kz|$!VmckP({%v<{frr-XgKPdyP?iC#-ydC-@F%qtHt zi7}8@#P|CY2WYwF&oCk*xBL)4mci zzwnp}$}jhYSV8&a^?dWo#N^PXX7zM+*5qv;8<~{idzw_oC?!%Yd1NaxH1Ij+txO^_ zkL0*~XL7sSTJ|^sreS1{!(czzv&U|vqcCZoK-Z2U(ejecBA$csmK{^Z0kE=>GWKN> z`AxIWc%XWe(#H)DoT`Oc{(U1;X!q{VpFgo?#MWp+F!ivg=xrFeOH* z7=y<|lE8{7E7<5&a+tzJY%WY&Zzhp(c~kxC=EAhcG~T;}^WGWui!1N+=E8IzOzJ!0HaJq> z4puIldTMiF+G`s5N;vtYuy0(+>zfPH{V?g5a6267p9m{w(DxYiW#Pbw4i5=gI6UP$ zfQiE4*|od6GRLmWC!d8L8I2__zPT{_q}l7>;I&3x(B?wuoY|{=14$MTS2774f(L`u zk1A|)VY>HPW_b{XW7H52!0xj0jcy|ywT6(J3)4L?bIN_V1&%r89$4APDc|&!kU51% zQ&3L%Y={-~F!EHsIc44S3a_3@txijd%B{M3WYYMH(E8UJc=2JL+YRMnp|pic2wNUc z)*`F1l3Rq7%r0F_Vhm&#j)|@JO1VHwF99GN!cj5e>f!*WEeWgq#d1 z`F13+f*xGf$#*H}Tz1kD+nAE7h?SQqn|~ZlVb=JIeHU*fhxH^oG}87dqnG8OWmB>_ z@S$ZRCXrcKNwZ(xjB4d=<5B8Xqa=gC#-Db zm)(3NWPaf>6_j5#2(g0l%g6J5OFLgojIhlr;*rI2pxgP>E38biMqhk*(9{SsGWE%a zAtjJ4Y39SeFy!;ghnU0|NHgp4Nd?^pTBf-f24!TL8(^ndSx1+Wjshs=Z+7hcFq6%- zxE+qk<|wlSFo?#N1`6b8s5u&4ZUrQ}hE=K7XsbwNbU}c{@wY*AB zQ`p4()sEf+GpUTjEpSXKYr@J#QhAfdLT*b$*6U0yC}FR0-zA*;&aiJ>x$_~#-Vc-h zj<_9;^tXeRGw6Ga2XaW^$;3lKJ|92jo6^MdaeuzY!p!RoDYZ(oRq3(Kx}OFIur>O; zACN^>;s%P`N?FQ>Px=Os zEFUgr5}D;gej`c(CF@kVZ@^HDq2zYhRaUOib)=(UX@6oZWxbh0zKXZ*m_xn{D;qiF z3%(LEhwvy0${}%x74!^pOTP2w)B4M;?%uA_DW{bi%bUu}|5vFeBk>60yOWYx);3Iu zRZ9x_hp*dZ3i%t87z-&R-E*xPUH=m(6eESKOA;edjgBWB1&c@_Y3t1tvJT$5V+xrC zD;p_fy03&xAv}tLQpjI?V_B3TyXHHMF@+bNU8RBgX-Wb)p1e5{31pwJIgG?CB~C5r zqZ-Bkx%9_7Z)q7x$7T4kyI1;}K zRxX_QJY&+rr2g}8>OX-!<4S$Lea0e5(8j&~C~k!#`5(c`8RR_%d08j$;le{gPFEc1 z+YwPG4CY%Wtjne=hFJ|b_mgPWvIbv#sBg_c&%gRQxM8b@*<>_UQHzL@)x!)Xky$}J{<}Y*)Xl2AMFeK4m`L&ImVV7AsN1Kz5T1N0BW9x;PWOl@@a7;4W!OBLGd7H0< zOfo#Gf|AVC5G!at=z3)k~5;{qZ|E|{(3__BkDBj6IL2ogU>t3kd1t; z2Ca&#wGC9F*z$A52ec$}ISk22GMB+FvvQ8kCmjV(%#)0*7iN+f z!mV&jGM|8zjU@ANUkRCHcvJ-?nOcYylw|JCcPsX!TDjI=>8X}$%6!KY)Qfal>Dr#1 zzO^R5tj#au`DG%zSi>z|YO7r;D+el#YJY_mH}`Ev5BM$merdIv{+-rWE?PEN>uy!+ zwQ}F0>7df}r@TOOrbN<#*eg#$*&Y6^a-L{k*H7eZmGE>U0vYo}J8#-Ro zsBilz^zIeObPD|;_xjfKZ|UcN;qMk#;Cz$5)&Udymbd|q*f)ojg?HZ4@lM{n=gR4l zEaoSWaahJSm>&l_#+5l=+hgg3$^BT|2uJQm!O9ujWqmOGUBM;dDN6_Y`sitteHNSF zVSMz!wIUgYk9sDs=v?NC=%e|*pq;+F(xP);lBb%UYQOr1_Hwca3twyOc`x!H(-OAt|%foBwgkkNpkEN;so9}*nT)^jo(m7llpVG z4UW{GhLsDao;vF`?KO@3xhN=T|etK-4B!gEZh!9`qN?M4Ei3Uelle9 z!hsJR9ul%}_=Im5i^Ac+d|$WBs}Jxgfvysv?sO z(!=qpVP`AE?=5N@pV;0pT^Y(OCB`wnp(aa=Bbmfln4akHOS?czK&xPW#?Z3@_L(&V zq6+CKe8e276{N627KcsT3di&_04p2mr=LmWS8^=i&-pgbY5Z>>%K}S}YhnMm^52+E zQf2qW9E7gIZE=i(D`4fqqhJ&HYvb;ja!`NS)h#xI#pW@yzG-anU%vs8i8Du+F(~IzuWyn+}ky(c1Hx{*# zl`M|X2BV!}WTM-00)0o=b5`onrlg}#iZ@{?XmwPDF|sDv4mZXz|GW)WHuBF_z7jJ3 z@E8lqKa)bNp!c>{dgPx=*X~-QEBR*$edh@OvJv|Z$i(h?qtRWjEK_n$i+Y1qQ`YE< z%eI`8ekbew{L4xhId3TW)*_!?-u}~Qin2yqytl1%aClrH zvxHU3C}gP&wk1mgA5OMr5@Vqg$on){xp3a8 zWm_GWY0SSE&iwPRV_cc*%eFe5FuC7|8{x?PI#@Y_yT{-z>jOSecu2_lU`yYQi2C4E zj~Rx5iG}gY%dKAR=;;@!3s{D-hFZLbXKf%%QpO-lVeo>lr{$Ev^Gsqa6b2J{r?tE> z<1&2Ua%H#=X80GHvkq2}&EE3$cRUPu`zz+E~CAYSIJaushf%e+I2` ztYH@);rmQMt1^=Z+j65(UN!tKc3HdWOtdRUgOB3vIwq6zVPzwke3(h(SEh zG#K9rd&HG-dR8Ng^c{HXj-+pcl?x}Gn$@t;|dUx*O)^)C;LQ zSj}S%x%eQ@gwozDAgxmZ*OF2`;tN1NY@Ev^GE+*94;yog{%cv~i!dJ}t9%}Im=$sK zKcu6;iRUT%JtRV5f_wzI5jVjxuUrQ!8+qkwCXwGbGM~R#9gh4j$t>*7G|2w~c8)7~ z{#mSyj+o=hPjN#W`9B6L7tVjfecN?JX9Ha4*3s_%36}@Qz}h5%RbZ|$z;}DCrZZ+7 ztbrTj7zb~RR2+B|2eQ841B-`*d|Wx(w+U?SlJjoOEhl(@OjP zaN6I7z2Zt+pV!PH{w>@BN8)$E${EBxMtNB%@L|D2LKX^p_;y4T3g_foD9l(^A8b@B z4cgdM>#l1bVqf#KXoj)|T)e;MEQGMFZJII)S?Yo}eO)i>g8wjyu}~MxR6DQL2V1~o z#O)%_o7jvbM&b!%7U?KtV!ka{wcmW`*cfl$F_$cWm5p37pGo9bC(Pr|?5fW+=0}rF zf%U=>uxG3{bYwE;ABC{>!X$qfZiOTHgJI>u$*(V;)K^RYtZ@1tfW6~NpD(1!>WLWv zt8hykBVYxroDl&YMS!d$_%PxjA?t{L`3`2Hju^^!A=UIswN@XXBdr>hfl66DY4aX9 zbggk0@8?-YaMRkBDPxtTiuk5)1j#Dm8%$y>R1q_jzH0-@(=ZpKi1-ccEGydRN2H^G ziD$Ey7>fC39(fXP-Z76n4l5gZm-Pc5 zKs+R5{cyW)0u%MaxAUEcm_Sob1C6?R5a#J{$XeqqKG{|{jL1stw$;kmWhp97^9?Im zRJ54HSSTuzPrxOtw87;Hn3hpaTn@X*3OxEK=_p9zsjQr6;}Q+amll`d4Lc^3Az0Z+ zD4$>w`4ti~_!w-b{4g04I1BM0>=IYXyl7O+HwTXg@a7#^-v=uf&U%gH={ZUB_J->GR2)z{=pmuv1(~ zr%$8nbim~OA>05*-eA#j)=3a^NG3tidB!LxJR>aX7q@%#mc35<}VCIz>xCxGVWh$&} z$iTdLHeCHn~ z^_FS11I?MKr`&xB4qR*0#e3OaSvc$jC#$$o%7A65CT{VK8(B@<#3aT-H8Hu}Z7q#F z2GcNxl1E@aS%F61A{~W^_)1ROax-WA0B_kbXM7)4Hgd*ynM8iIgZN5L+glpvH^`d6 zlHqmOC$5~+U&(3PZ_<7ZZ{LyjE3k6mv{PTnX?si~zRl-?i7zCHk$5~X?`-`mIqg1} z)VIKGaHPH&teipJV^EiM0UshfBxGH1y>Ix6y5NDF>jHL;Wwll5R}Phn;CQvB7w@_t zIj)fzrHnzAx?s6)+{n71he>4C1^EpcliR)4lE+0b45KW#5O$N5XS9lR6eOZ7Xj^Wk zjE~?gJEn|tVPzv_ob4+iQwEQopp;P#v4ReRS$kqv7aqReU*vp8t=y`vsLQS!?VsmoXeWR1u8LfdnPx>Sl8 z$!*-Ox?U&HAXYKLv)zT(iU0WqzO}Y(@4)?x0=uvT{SWZEqK!ivrGwSODfuiti_%sLH5bA^t%!2`eoO z;%C5)aV2iuG-Btz5;ww;`yi}bICtBo5exfU!r9*hJI9rM=B5!l|Lbu>9Qj`ZD`)Wc z82n}Zzy}Zy2|3rYg>Og1T+3j-^}|&0pk#iN_>a^PEN5ARE`GP|ame8{3^UB}tHi(e zb-Jt_o?{YYp>~*->bX`qOuHIoVvHk`NdhagtXQLek-yZ+VJ3SC$e)%@6 zY~+`3`AW$A!ec5Zzg!Vw1iyC8tch1}%lG(dPZ`H~9o8GfD|n zOClLZhGONlh#Q$m)?^Z6Adw`Wp=G_+vd1OqtfhptSe3y%C(|&u}RT``{2L}e~jaG%;@b*+z@b|v# zeQ%HX$)Sk6jXhskgD^hHvruW{(MvcrlJxpQ@ouZ|r zi(r&SO1cpCqBR<#RivX3i{Hi`nH)Q2W~`6khB;=eb75s8W1a0QAu|?_y`YR$4zYrY zoR8<5v67Q|`YUDio2fsfK8!>*8r73}nAJ*jTk_FEzBFV$`W}>vhx0xFc8e=-%Sk&dh8Zrwm7y3gJB8IFc2@IZR?KR0y;6?rWvOEifHp5V;BVmlbey8R;l&V*c3@ zy$9w)$o04djydHTSlP%apJNjF)eP(L*Pgo9H13a+Rail9aQ_+X8&~cduxCV-Hyz@8KUgYY1F{9v3m{sf;1^zk59ix3-(_HJzN@k<0n8X;!Mq4_$M9WPN!5EF)^gY;z)<}qM zCml66ZLPkfSuJT{mYh+&A2-V}Q+*p&HZs+>d?jS2;&B(0sjdjIf-==F@_j`!zPh~J z-(ObBpo!OyOd2ZL(olNO?{>`=ZD($_s@>(j;r9p2-(4h(RwCO{7mcHiU=I}{sAMKu zlSyP|q8wk)Oyr%`a?Lg{D)q$rgCKj>%**SlLJ>8#9Ug z%3ksHXDj3Pku6wRU@(3U>=9SS>90R$kvM035y6(DR-`;Z}Bx?AWLbOqNpNKHspCrNTW-Vl0#jf|cO~t#~JBG;?uAzH_WIMEOCh;RkxkE%i;#hu|Q# zMqs?ZZ3@F-Q@^mSZJIK)S*njSePc*gAEz^ku~2=?R6DPwmuq1%;&zcAdAbVrmKAPv zG3h8|Vt)RvYQLFFuE5)O%q5q@%0@1^j7j8IYs}-dhUzno`J-f0-~`5xV9&TRpPwo* z)Lxk6AI7b4B>y0+TsZmlWo4oIO{4$caQgp-z2i!ML#?1tdtyewtGFeO5%3RKIU@o* ziU3(h@L|M5Le>$d`F2Fq5u4;Yu`#}~l3qcmpJv$oMl@kr<1OC9vwRRHDT9-xY}l2| z#GboE$jGwc9ZX^@lnoPkr?uo!f=P%j%5vdE*h^NJ(V?WH5E1V;1T4|6oRT;mZ`UzZ zycbqBQpGV$BEK?0yx*`gj>(q5^5CPeM_d`F-*04*J|A!0k@SaQ<-$p)-fviG-x*H( z4%jQMwDtEJS;TL{EpR0M6<9fgxW^bS%K$zscu2@HU?<;>h%(?$`EEU#cyZRjR9TTn6G%s4B9826TW&sE%*9)FOe(WsWh1G~U=sNi4B{(JZEtCu4we2@)zZ-Agk@jA&a^bX7UvX-COd~!RPP_s8#g(}J6{mI|OzL&q21n|B zuyO`&1Acm7~PPi0wou&<>oq5K*gt=3SB_q5dw4(}h@ zHYo#;r6{=7H)v#0@FgZO7K(yNqSspH_yx?u7%P4XyUB_(x}S6uB;p8*HZIYyoI`jF zZ`d(iJOV2l>EZ`WBEOPA9AROny!Oq(6~P)LF%p%ZNjZIlMJDSvU?Q&D4qu0rGgy1% zbvZQfMByPJhlX2xJ0gaLP4gWZ#`jlxs@m~K`@(T*O(pT@Ev^?vD|yN?bnFe^Eh4Do z(6I-T7z;zkMBZs_r_+IfJ;zC@%{IJ}h`h$U@;=z8w*TLNni8cx!dnS18YqZ<763R{*q9_n;+bPQ=_okj ziEL#{f=M(gi-QGtqmBt=KCEmckag@VX!-_w{c|Bot|2? zW@UUZ-n1j*17PLC8PAYQ)lAMG2otpVqK5@KSWu#Ow2 zj6If8;2XYyBujzYnZ#Hq1sI)l_qDp@?$2EUy&eALe#ycai4NaaK$i@Bu1hhG`XiwLe%?V4k_bsI~?h+2`d*) zKXnqK?l~<2b_tJwonimD-ue1Th1H&dv9BAK4lz)zYm(l~#ZtO+a)J_P&3m2-OCd)t1K_L+G5jAlDt?A|m;?+!b~ zmGnBP6%CyZn7ntz4RGZB4p_Nx-gD)`fR4*F=6&JJtFU8SnXjjvzSHT1$$c4agd_KE zSUH2c$LKE$2tH7FNXP=>dEenm6cF3wTtIY}yL&5LrDf{(p>Kf$)*5Zz6AR3$#3*GT zvQ!5*`NoZ`4z6bsnbkpl1IOfcueI#)2n@p*F@6BM$;vaji*ytuVqT$bxtTJ)kGJfY zGQJBd8!6*Ez7jHJ@aPFj8P|kZL1%v65HKm}F&8;;X|>i}AFQdHZKr(+Eo-b1Hj0OI zbj(%)*pgEwQ&+G;S_GENDHE7PW=_fRizSoW-PV%I_AoCascZ}T$%;H$KspK&kyP52 zn@MGByk*CvvL&o+B$dsXM1I4Dn5=AjOXIwRtOU!3bI-el4n&CZAKl((7>QMa&^WsSc02;1zX!?_*p<7e6X)@I5`WstHI z4&U?TAq$85nM7vckl(1%hQ(j-ro5nKn-^hNMji12>^3X!=yB3f5XJmp;Y^;w61h6+ zdE64mobxQKY~-BZ`bx;0!=o!G=X^WF3VK*MKHsI5Vh=}uxz(tywCv&7=F20KYYz0x zHEj7Wx6W-3$3ikV@Zn?&CXtzAa(p=9dpJ_v*OJR(n2wQL4u$f_J@^?r1EYik>9YA-oug2{S2}Ss{jn{D`DTbayRyHr21i&v4glBj`SO_ za^dv#Jsc^|X?Olj;Sq2>>>t+%uWYj9f}qu_I}az+$*R0XoI;6sXsgnXFU z%(o-rVdky*78Vnh^_5$#iu&5*_tb}U-a2tdwzl&memR+6mhwvvyI4ccVckW4xmFz* zBonIj+OS`3PXF?vw%y8L)_$0YCp9X|Dve5wz9<=8N-IyJ=QJ$CcZtVWJgd9jKTz&& zl?KXn~mnZa9Ta`w+Pjqw=>7+}w;az8qhUlN< zFol*lu&_;1+|aMluW@GM@rGBMZQkrCuLUa$*G%f8g-RuIPrq%uBFx26I^v44?c&rkJvHu&=MuDkTX+88L9JNQU5V*q~F6K22j< zviZW*oamFx715l0r%GqgpxLUH`{=uhwPp3b9%X*?CNc?&UTf&ZRok3}vbr-}IAB$V zu)l4-GJLg*jYy7I*ZT&X9Gb4-px!vxzK$we{q04y z7bf|aaVs3jzXU56PCoVRMb&Q_{Vi?{roS0UjKrgadB^MDUQ~NxM!?3nC5{oW09MY3 z0FOc;8RdB$&xa8Y30Z4=&Nq}rt#M(#Ga1wRcHl2Y%6-+-)h{pgz>#ZBI`Q$tRvO9S zTFqfg4E9@#`gUNiO1Qbo_+_aq%Dz!0D~pqu#8{ZHn4a#smSsKyvogk*b75auaYs$k zQMknXz=E{(W@b4XZ{0Dod=OSPGRqlEBEPC)9lnVq?J;qwPpX;So<_)1nNNXjM)~?18uHm`2_OD;sI# zolGLX(qSqeb}f7d$dbU4p&#~#E8iKZt*3U%5#F{V<>jz);gn~}A=X0rig41G!#;5( z%~$=a_M4@_WqA9Jw1;5j4B8&!x-1R&P~agUOM`WNJ0ePhSM!}{ShKpl@*d+?WImRT ztPvJ38FqHTzc3(^m0`$I7ChlgL6!wSXA)zfELgj`y;c;w2~!exi!2KM1AE8{I{Fjo zC^X^;Y|tP`qD@&6{0nc>F@5|KRyNYd-yCBbA~5*TdXb{l#J8f>>B39Kk~WjifZ z5ZDO66>r&*@LOQz!U<28!>K{}_;AYag+1a*na>QStvB!GWAN4;NgoL-XOQ+7$7LzN z)4zv=ECqhzo0LQ;aA>~k8>Y~9jQ+0D>6J#ksni6Yfn(JgXmMo}Yl6gfVY)IJS!#nz zed9~k2A^aSW1%*fDm$*#2;YRM8RN(|U{6`WM>mp=LM7%8meO`Jzub{M;#9}5f7D|YTywlo{avDs_7*blW zm#n~}ZqiYRi0^3#SfX7y&2TE-u46i>!OBKDIfY5&S2~FAX;>LwN45l(4Ohb+ab=wT zo<5I1onz6ZT)*1S;T*UTi{6i`>=8bagT9cmI{1W z@Q{$D!lAw$5v4*s-_tI~TXs{-yd6zU);Js0QbCxl3`~|%VH$M>tFT2_$x>l5lNb}F z0`Ig|D(nQ)5?z#UBesXVWCb2=Ogah?Q7Q;nqFq@kY>T(+m`=8am5p?=C6ma#RIoBW znQRFx6_&srab=t?6|zX5fVb{Q`Z!p*aMGz#!Akq0aM~BbUU8+ZmkL?LKZ0A}Nc>z_ zIfJ;zI4?^DJ}h`h$Wmc~Z%0I_@V0yxD@^O#F>6=E52+_uezJz!Nbic+5!e;+kS`2b zDSVGfjD<>JdS9yRTD|ZR%u3uovR-%*_LUWP^d#x1^@7+Hk+R;LuY3V--7&K~4=Wp) zjSq`x<;oI&5C6p+;fA38iFWHoWWZ}Jk=#IN(6c$nR+ zFKcy`TD^@*vzHd$S8L0aWe*p?!E24YxNj7fJtSRFd!USFmidVDe4|ZP8RsyGu~22q zG5W71pj%*u#?W&U>@aH>M3<3{0w?B&${1ZRbI)Fz##uK*g3A`7o?U^8XYnD{}?yKk^ld}%7ydaP_8L3T&KmrxUUDtz?vj6 z5{0LE_iw^tU^SgF#|>M2Ag4SqYgczBwwzht2flGcM9Dg1PbM)I>Wrzf<64SY4s$Yw znI70vR@Bikq@xxXe3hlN-OMOuyluyfauTd;WR&+aiTo-HvC2~VOJhAm_5_v`pMbsM z$~wKuQue?k{&Cy_N8%rYl?x}HT4gDHrcu8yoccYmXI!c4t1M+NO!D8vt#Bm&4OlsY zyvNWls|P+@cu2_VVK?87i0Yv$-x-X#ef93-JW86t7^v5p^vTd{%ec4rAq8trbJ7=Q6MwRiA*9hv*dWt?F80mEt#AL^D&ai zIk1zgh@(?UM*$K~W)mSCm61Nq!kcwWA0L2~jr6gKN#r+dOyg6ZHo{*eQ?NVGApB+6 zA+CgHrlvbHIDY|e+>!ImuyWy?XUSPX8|$aSS^o-liYx1Nv}w%@-cR5LIP(5EtenBy zV@#K20Ur=NB;>=$@xC1qWx=X^%YrG(8}-2f%Ol7}ccQ7u8fzmwmC3Aid-B+TI)K&D zBBEq{upW~b3-!TN*>SB%*azlh3?X~Mp0c8jwj~|4NZ?bM(spxtV>i5Q$BeQItZZbI zotZ>_m4cYcl>X9K*T|m0a^V!%E3T~5Q<<^{Ch=a}0!QK%Sh;ZGsi{oqGmZLZ!>NA; z_KYiaeJWG-!X$qwZiOTHPr}L>;R;CG`i(Sk}Oc`-h!k@ZUYo`=E3|8O1Df55MrmBx{SGGKsNJTdZR` zK+8b?g((^}#=l{YSpy+@fpio)F<%O7_QA|Qui`d1=AVDS%0~YA8xm|C6Egxf$1QP;fK6fL!XscKIbShs6dV^G1;@f3a*cvb zwaE*!H)bRpgq$pJ6Z7d)9iK2jzE!;qH^4FJd<9lElFk>IM1BRxx_sEyoTgEKo{Ykt z9}Mcx!me?pzJBTjiPjBs!1*n1h9mo5!^(xT-$0fgn&UM7bG{kOen?K-BDK3LgECsihqUpXO8%(F7ShHMF}B0dLu#FcUS7@RE9|BJWoNcw+Z<-$p) zj={0g{=abAKZL#FN?Sh$CyV$)xCM^HzXvO45ce48WvRf21rG^XDje+F5m73flJBOm zwFb&+oiP1wG%HzyEIw%zXCxAvl_AMeBut@xU$LxG2cEC=rMO-`a5*f!tQl;c-4 zTjlOkls%f~!+~mzvQd4RAk0>VBTISkVc)Ql<-v!T#8@Z~Ch|^e1;WiREn@(=0rrv= zcyuZ0C`81|1OZF5D@%lH@pc{4$yKnjkxs5)68V(~;$?!B@z2Q?tVA~${{;4kE93Ob zge=mJ;;lQ9{t>KPIO){O1S{>e?g^&dMG_-X5}J3k{xTtp_5OzBY4>Vyi+$rwYH!j7_{j*cQ71xm~(ojazRFBVF8(~bkkiLkPf zPL5|1`IQQ@_=|;(yEM|DBy$3*g^OXQxRU0}R<#b8ykpz|N8TTWl?&%RSH5J(Vt#Kp z^SfckxH9L5Kv_Cra=#Nd!jbzOuyO`>k1=1C4Sb;RkdS4=uD%@+Wy3!CmJQPfYmM@X z3LQRIt@Tt^Dz(EK)DxK@um?hQeshs9T-dD)Se7c{bzdy9 zig=AljD;#&(Z$jUllwuq5suvVhm{NGK3@*Vt7Csg zIQx~bb6nZ;&m&}X#NgVmeQ7aGi9{>zK1&7>Ei6QU2wz-Fm9zU~`yvf}s}lgO+%avX##4$uanU&9!U zLFkvT$E=YMJw!SRotO_omQI*S=oh#Vj!EdJu(FYa9`luuNr=Z(P!hT|#EQYC(b9Zh zqRy?AlT&C`mxC638?B(MkvFP2i1z}^LG!6!SRpS$PUfI_OkynLAd3UE9JCjV(a1r& z!ydCnLbMI(*m97i6J`$D6*s~$2fYJUHgeETz7jGA@t6wAL32W^pd2)QVpkU))C;3Y zhjevqb@tGiLkpvL!>+F0JEDu|vScWlp7n!E=;!f-fqJ#stk;yv=Y!M-?77VvYw>%B zt$eVhoo!o{__b6xXZSLZ*<~e@$OMt&dE1jjueFqNHO$CJDObX7vSN-dA{_-uJe6=swv{Bxp47fj}_;3haSe;HQJVD2%-%QArv4jvM6 zzGTq1BVxYfWBJaPOt02x!Dp?T9#)Jm0KMxzG)GwjEDUG%r3{m%0_lMib>>G zJ&3n3ipwg$f{xo-;Ri?VrssV4-@btZ)Z`E~GFus!&eZxwY z4PRgqW1(zdr&;zjw87+OFfC&+`7!JzEAZ$((ou+{PO~IfqFwp^;{Wh=t?A^_HM`d6 zO8&V(G$HBz5N^WAD-SV={A!2Pv6cqxHSZ6u9NvUI;tD&x6II-w2J-*lty__sr2hpg z7fw306P5c*yS29qr~NjP7>VZr^VZgPqGl1_3b(+K_*-G+4B{RGzN{Je_~0QSYlfSB zLs!%cbMmbj)}xh^t!kOJl(Z_fX1zhzdRJ*hrCX^YYH;vc^GrN2iqj9GBcdPF4b}@~ z2(uIwr})O59F}^S#8@aQ*0uUTOGKZ5S&BPNo`Usp*lE^qh|VM(1yIbt$zbh~ zH^VU-T>vW^+2}kbkzb{;p;&XkZ)f!`&?4X-GA(e*;+wF8Tq9r;<;+Z$o7B#jaqtb? z7{@rc9ab(p4mOp~{?^+_i-kXh$HE_AC%MML=Ek|2PVw+N+#ttzcm`I^hzE}nLslt# z!10ifRZ7LTBce(hem+hAKifaWu60LInPtWE}7sgGj~JJ+!#bqOo= zMWD&DWOF7l7Rr)@UaIq2209$3C%P)@kwai_Spy*2m2}j4gioNW_L~FHfq46l31>f8 z*+@A1Fp2yMk$IvJSsnA!$)>;xxUm=SO_Zi!`=F%}ApDV=_6wZ)|GqRfoi zVmwJ;m6#QK^a^=Pfg%p->X>e(mbLJv9aBpetZbx~|8n|kW$mQG_g-LSHeO73J5`OQR3<0XTQ@XKThR?HiOUxFRtN_b}K6-Wl>7xBg& zIllla7tVQ>d|J1$-uQdLtQU~PNIV3XcQY>ywGNmi!hGBSN8a;bPMidXtu?}V^;i8Kj|oRV!lM&?1Pzg z&cJPO%sMM!Wh3hhGKu`EiH&5EHhrh@{}S02SYF%$d&rglrrKL|vo~fW+=N@>7zx+I z${CU1F?h)FhbI>g2|50}$G0P5{F$5Y!oTso&4IpZOL<29Gj#zATWidX>Sh69wvy5; z1I{0PX~+TR_e^3e3^)^cr?n(A^FfrBG003KiIJ#l|3j`)h=|Ps0+wi3KBi8_+jUGQ z6JTW{ovh6y@*7yh9sw)kJ;)a9jx-p*3-*ZhrjAU;={*8jq~D3R?nwIWuyWy~Q+oug zw4-p^%VDp$($@C~WD)PdEpQ}WhLtmjdyMn4RN%vchlDH@p7R}?M5*w*d`pGt%c^~} zL7=BvUY?xQtdtBl!y#*px43r{r?nIFrS-}QG9 zXACY6!OpVckG?@V3K;S63B`Q#vE+Mr^NzXZepuPaHQ#0u`PC8P*dxVd8u5RTNrC0W zKViqX5>Fp{q;$gM{&(C6NA7=xl?&&dI`&9$o5udF-w$U07Lpi=#|86l*N;6?I%4wQ z1UJNy|Aw$~27iwNLDm?20P&EJHO5uGfh=l_8}h9&CiRzFjcRxGbal~P1rAzkwi(q$ zchYiY1hbSDOMQb&mKG%@F&0XTDV=_6iRJ>BnNe1p2Rq7&J!+AT0!1vk>zHn)mUHl? z9aGC$u(FX_KENdMD=EaHyNPAy6bepT>um&Hb8sh2<)1=*6cF`*I`bYnQgqlqqAE zrJDGqFECk6{DMhjRulORH|x>2A}v19ii@s?QJCUhlf}htqZ{p=!cOM~=B@zxzl zpARb+PCE7MV!fm94yS!5>=jqq`m;+G@jGw}9EslsD`yb*80TfFz=s773Hj{u4&RQ5 zXP1dNmkO==KvzjE6<((MkIPZ@)?#TJwuyWy?Q=5xztXGD!9)z9Z%39xCoWZ++8{o*h4l8Hy z_88!0jlc&44+&W#yzDzHi5g*YzBPh8)tydq=SRBprHc5PZ`{c$;#MXx7OIHOsqTsow5sBlFiT_1`33AWYdA#TBOL{hcB;G54Rdny zr??r8+2}D?*~mtZFp2!C4DD2R#dTT)O!#4N)v-27j6_{&Mu6>9ccn9C9ISyG;}{2T z{QnmRmQ&po_i3^4_V8HP0eAnzYOPgiBs+vIh{rc7%LW_OAxk#MI@Mk2kQon)aDyD< zVH;REBQJQA7_v&?1CED;tWv(@8`z>snVN5vGNG@sGC6xhDN34f=vqgi_OU^iJoN9T}^f+U{GUZ%EjiH7Ct zj!W={9TUk#u(FXzE@Tq<6&N%48EJOP_meS!6B*xzUE)f4cIuS0OxEARn|EY=7pz=3 z>pAiS8$0j6hV%Y2>=swv^R#1YGMWDoH^Gtl?_uQ(<{qQGEEM?Q;2|Lkg~+!fqEOf( z-_2pu`sj^Et={M__vstNw)+v9qO9>2A3tolkhI_2uDW8?qGf}%?&P?(a^IrlKPxNg z2)Al~rPiYVgZV@g)u4_fZ(J(8~QMm%^ z2-sIv+|iz-qi~7&>+`hr<|D{qca@Q{$z#9MtkBC3h!^PP5ByH!3#-DUnK>HwCgtg#lChAkrc%eCsjU>`f} zb=X=W{mYA((aMlzDJA~kOG1_szhe?(p_CY(bXglxrayv`GD?UkB!QJ%R@l+M$x#ZA zcoKU;VW32-a?)WU-l}6783!vHX=F_%kzeUBl@GfXzPphn*qvzb-39iCE8iKZ83#M% zo$=AV63?Kew}v`esZ25paVU6uxXDDaSw zrNJ}41Cl5WHqUvYL3}c~tF)}%*Q30bxDk$5Yp})3N3lj|fAEtTc?U3$+N&RoQ4UW|R0xK6zJvHr+_L@e1^ZyGbzbQ$K z#M6O!r|Z)W>3*2>H^S|3q`v{IoI&5CFp#wcA38iFWNmS!Zy1Z(;--A39VYcu>43Z5 zzKXiup&O1_YpQWr@6agMdg}ed&N}d4TO_Sj1}sY;?oZucWI<=BXa`l zhp)g+aV4ET)vnV4llK>K0~~pO9#$@#cj{ETj>|OWzYS;pYuGWa%=J_4I-M}N{}MOC zk^3)TA`47LaY}@_BgM zc$CDmy6gP|4W9EsS@!`6_XYt(;2!|3%B{{pJ3?QnOVV z7>eHo|9R?<_kjPnQ5k5F>AdkuJb{*`G^)HOi=zX{q2~`Rjt&yngW0tbPwX$R?4dvG z9XjMq`X^p{d0&0$(BgPPcbU}a7mrDPdMq#0Ajl1|zTSY)cQ%{vfXX_f(&JP!LENmO73`*_FE|O!=KYbC%!RGHA z#v2EBDm77}@q#VKv%6;N-Pe-Kg2zxo;trBy$b6E(N?w-Y+`=qkKO|_!OX)g za7-|BU}Yo0%w!VzP4=wECwp|SY1|JctFSxM;C=w?8&~f9&4IliCjEVJI~?in4J#K; ze}P=XF-!!k2#>t+%*jU^9qW8s&f&ttX$0+EBl{2EiqcBKDb^c_;hZGM9SzG+o zcVH8>#dmW4yuo4RRh33lnF_ic4q9u(#oO8n3d>YbA2&f6mMkU1SA9c7mJDBJ628+u z(Vj`5xX<`R`_u0y^E|uS9Km~So9W>{S=3#xtr&`T^Zwf%dWPct1OB?yqL+5ffqJtN zV#SU@R_xd_GFI#qWW`R36$g9!w6wfZOD2Knv!S$DyFxZuYi_5==xC)V`O#+6bEj3C zl~NLM2`}rsa$_jo+snOu%~pTs*~5=e|6pIMTI#KodrIXN z9SOvyC*xhb%&GM^hvGfG{`x^+ zgeRrN(G!#mlPTL@itCf&`YUn$wYdI9T%Qux--_$g;`)rZJ}a)ziRSFD9{WOC+{GI|e8;wRu1I1)b& zRxX@4yPtQ|@8^rcIbR6-!j-eUpQ-LLvh_#sb{*-S3o92+m)+0l=K<}0zAK#b*I}=? za+ddVx(6olui+Lr62BEzE}S^KpLf#l=ii5Oeh&79D`$B>(-Wt0KR=DP>qz%EuyWya z+5Mb;vexeBb$$|DW6vUq(W$ZJ{haQBNqjnPfg|xLuyWzV=Oy(_XWl~0foRnC38%g% z>>1a)dw!?-)_Y-+-wn6Ik^C;Oa^d9HQ^*usT!=IlFo!;XCKg_R5EJCRS;Yj|G?$NMtu3s=0nG8Zoy47xAj?K;wZ5mqjo z?zGg)6b#+K zd3mhSy*Zrj4X`_0>GE9+9n($5*Wyh(GQJ8{E}Zd3t9!q%VgGqJ_MgBWa>c$WyQx># z8#59f#jSCSgdf4m8Ijh7x!l={oG6L%#$96nHqzLwOgH-ypwzBbkA z(0W?U*C@4C4J6PG@f8|u&^GW^X=%CpluE6Kb{^CEKPJ2Ov8U4As3f2M2$!NW zC)!fJ_jlVWvGp`QI2KZ*>3otWt7Ff_=z4K1qQp!nTU&jnXpOt1=Yt<9XM&Rgz)NHv=`3VJ*24O8uBch&`2a4-K;(D;S9wM%XitAzGdbqeQ7S|)h^+<6&N?eZ?*JH%> zSaE%ixV~3hj}zDTiR#7!A*a<1TwJ91tMD;Lgre%ZdT zKx6)yaORi7&T(bFfG2NzM@;^o#0_!ee=)3FIRDA*bs!q>?}h{a4(ttA;C!@hTW%7* z7jM~-@ZGR-;e==F>vS~IFNc$U3HFLBX|dT^Uuh(qDz`|zh+E)D`~_Hfj1W()r_zXT z{EOg9d;v*}P9>fqp6Y>lkI%;~a3nqtRxX@4eQZQo_oe|qEFAd3uv1)basB})tpg_S z18@TzdG8A=7tVVwtwGY4Cu+=Bg)?6PJI0kc{{WPw6DId2ZiFNE0a&?k?vunyQjPTu z;jFKPo#Dz_Y;G1yV1*0i$bA*wup{3qVCB)~d+DsMHM)|2=$lR@`pD2$XAdPGa8kY< z5M7ddzpzVOanELt--`Jr>wn|TJFutkXZ%q=TQ=Mz9+3J5I zrEiHh@5p*{Sh;Z46Zswo4e|-$kdK3X;d(>!^D4yN41?~mc)N~tkAjs8r#n;Kfud3V zNI2zlVV}5Cp2O0%YQLGc&&Jz#r2Royxp3NBI_(qEg5Yc6L2xVVD%T*`ng;N{rU zjwf-$9OL70Sh?`{n8^3oY51o<5nR|$A&Jo`_IMp2_7)m<|3ti9N4n!+<-+Ms>Fl7? z0PhwKco*0muJ<=z645c;yn}bfn|5TpBdlCFp84f2TQZy-E6Rymd#?cf!hrlb)aW%CfCrgZ@%D^cP|0xI*U(pE5dP@_zw0 z#F78=uyW!2C$~>w(10)aWpG74pCm@7BImihZMjK!9^SGe;W@B!;e^+3Z%kvWK~qOQ zXv7Z=Cw>6z9oJi&*K1ilF(Y7K+!DtK*c(ku14=axy=AGkbH0IZaGrtOUiy!k&7fj|?;3haSzZ_OBocYZ5O~TI!(ttl2 z4*W;3Ph5fXw=k;xChdpu_8nHpz{@<{JT+wf$_~W1Sh;Y*)5%Yr1JX3g z$Awcq7WRnit<7g+($<@#kHTAbB)u3`E}Zmi;j7LvaE^mB#>KarCW5 zxDrlyDeMi9aQo0+;~p;IEjtoE5mqjo@bvW2#2V#KhEu*6_J}KG{)Cmb-n^G%ymd#? zABB|*Cp}9$K3ao)Z#e9`VW+sl=5?3W0h9NgxB-s5?|_vH=RMDM%C`pn#c=2^z@Bl1 z&cCo|>xD`FdE5#|^3TG`g_B>9eImQYfBvt7>+pFbF*!?h?~S+aNO})gxp2}`+rFyxXq=njoCjck zxN@Gs?r&+kNx2_y+mUhvD;G|Arg{*#M*6C7(pSJfaV5>)ajW*5v@gfoccgt8tXw$l z^%HN|4r|xA|0taM!?1T;x%0JaSv@f$;6dCH#|U@;RxUgOW+#4YuXIShI--&PcR2Z1 zVXwH7=WoRH9+<@cfm`56{BN*w;lw91f6=^^MtaNN1Xt;slf>v$>3lx5ZMjK!Q@mwI z!W+TLg%h5h_^JJg3yt!z;gpYpJ>q&li<&%Ty-9j8-nt{{Lt*8@NzZMQPJM(#1AcZm z@DIX{aRtubZd*EGaz6t%!jbz*Sh;ZSa}t*+UyISGe<_^$EwEc$sq+=*Mi)%xH{m8Y zGQS>HE}S{5)Y2dI(U3nGj{I@hE3U|8rIzl2N&IKH1&+jj3@aB-oZaQhrGG7xn!IAl!|Nk+cm!w7g3t1ZWox`#3i2HmZeSfvmsFnMME{Mm| zj#m04`jF)-HvD~xtrsTw?Qkm`$-fO&F8prajQcG6TV`4mEDeu>66__{e7^;sb!D-f z-6Jz1PQ)#8jELi5<-#LkS`rcB3v?R%i^Ji^utQwo^N*vXj5j%d6mQ&-^ZBrH;hZP1 ze6JC{JDl*Huq#{%Pv*Bb`&_PYpIp6o2i~kB+uLB}!r9JHJ_@Wcej%Lk^RP=?8S^t( z74yye_*uMpN7lcEl?!J*RXB^j+^m6~_uJq?eGW;CPN6Q|kjk%48+Y_fylqFy(_rPo zDNhpL*47a38;*Ey*cq<(GCv%@{ZVj(?;d!=j(pz*D;Lgp{j5))YrqG>f%n7SaRn~k ziSh$NX?J67ps(Cr>3qc9h=2&U#4!Sv!^(w6z;yaBd*@U28ucr}sb3Cz#FaXKf0DM| z9I-FMTX!Tq1S=O#dJ_4nuiDfXu00$M`9atju8?^y7lxaBAHW-Sqf>wL zwGC~{O~M=DEjtq409G!X@D%bBE#~YiH#EdYg(F@JyTkQf<|iO`Og9-HiZ|`Z_#jxh zaK8UWqsF$a)Y~E}ZpjI_;lkx%rp0 zE$a_&3CDdC>=jqs{H?a$1C#jmxCM^HuYr{dC%%CD%VE{=NH!-4`u}GtCnhX+{VsvV@b=eCLvkxZqH(@rhBlZ8l%7s&( z$vu{_Hg(5v;@gcHalX4mwcn)uHoSdD+FQZOh0|VFdMkTl{{aWZ0Ur_{e0XANA4enl?&%C#`W|n zPwhed&T#B^z=9Sge5FL%dXw}J-nt{{Pr%BB zlODgKzdWF2^9RETKLC5el`ubFHL=EDN_VwcF&J<9TySB& z5lM_rVa|7vq)j&{Z-6)MNO?V2IfHT~`ZV25XAUilzVY_1t|dd!UHo!4zudzw-)0vf z@$92(bn$y|#?KPxdPtnpk(kOP%6?W1E{)ckK)K+JgS)!6N>anZD5l=@-Vt3y7wXJf zhuD9xFq)L{lW2O@4=y3ec&(`1t)!uo;Sjavka*9YdUtcXWrMZuR<%x>7`LMZp4%;N zlzXa`TC17-*CP4DMah45ez+*HDV|)eb@$e3|6_k;sP_&d6qoo0%sV@%PGAzavpsxW z+QiN+Vi3krhqa;p!!QQnp{Ucn55XR?l8ox4qtJ*avIn<>l7Zz+yivytaXPFljFb1~ zX}%INL-3dh$`HqeSV0-$hDh+G0;6GW!ZA+P^1ga%%-0SOnnKtfb5}9dZVP=vZ@w_ox@4l8qeh0HLlE^c# zzpQwp$4EzE6Z5q^dJoKu@)T}?V@CNEtZZbICzwQj#MfgbxDoam_u0Qg?@5FE43Zd$ zGSlSF=YQ?}FzHXl?Qo<&305wg{(^n$wN|-Wt2Bm-fW5*aV0YL*u6I6P$(7v~GYWRa zZE=i(cfiUSQQ%P$$f|-5DIOBCwz<9;nVTn#fZhLbB{M_I8( z7mW5i;-0iqaBmD@OgB9}z=^wyOaV5?7 zXK5WUd4C@_z>)WNVdcVk&y}NW7W3D`nZE`*#+5l=Ct~S@$^8}F2uJQO!^#=lJqCDL zBk+O3LqgUFgT5URHNr#r)(C5N)69cX9lYy#G(TAbE#B2u9XL%k3_CCRPBIaDa1y~H zOMstsMOKQ@!K9-W1NUS(yad$3jMDxFqs^>&py<-L+K{+Bw1)il;< zi;uG9j82oQf1(hEGCNadD#2@cy!anq9x|7Fnn{d-T+)W6`9RAq_rkD@>~c5kG%N4u z7Sd4w#eC)}gQbyg?!@hI%r|$y%0|Aq%~wL^8y;Cf`Q}q0R#3iqINy3?YEnXXi8Fna z9P^zq*dpb1U&qVD@*0!KOe{IR1(}xWxt2~g{XNRXNGBVS z1Xj=4)5$c_QPT-uZ;>+Ie5Tm|Z`?75tOqL_Ib<%A$gdimlX~>$ajwx`Oa@_hp+Wml z*e$NK`RUw77fj{{;U+jT-yc>kocX%iqra8=8R6Vl!me@U&UZ9gyJ4~)#LaMI-++}f z*n154vS#3ehKGcl!+6Da=n``npUAgnV2{u{^(fWCU2wcwgDu|8RxLQqVvs?~SY&zj z__}Yv$P(deOkymQ2osYjft~cvX#N`JV2l^PguP@%89hWg3XymUTVuuTHWS4!@OB*& z#ZO^nBT+oYB=Rc^rt?wN%6Rf0f@^{aBry^dpvjnTibz{;l3p8c-I4SfuyWy~XUlQa zO8cGRwBHVU#r2Nn3!d~In8bI$EpQ~h2v*J@?lFSPB7hGI9ul$$xYajFi6Y?ae3wv8 zJ-l424h+%RU7QA0WtJ9-Blf}&L>-nSo>GzimEwnEtP50e4U7P;-qVB%xz)*ak&8_L*8(ybg z>n^v3;=@NmiH^IkwMqkJs@@I@)~l=>DA#&QJ=Ol^&ewx!4c7+3I zR0b*ufP;b^)~K-U>LcN-M!m0ZD7Mb_LDAJ5=&O!M-T7^8BI2(Pzc=f5r6* zalKMpKPRqNiR;zkdX2bVE3Vgx>-FM#gSg%(t~ZJ6&For!?h&&OMLBs~vSE}ZnV zR8^^gJ}eyc!LUPIZ)W~3E@iyQ`2f6eN6!1g%7t?tpOpI=;8o#(SHPZd1L%W*BiR91xp1=6(+^-8;TysUUkiK0l`zlMY3t2<_$s`0N77fo%7v4j$RCY0#y<&X z{3z@TSH`^N5|8x8ef%T5T}QeP!^(xzog}6!G`wAZ3@*3+3p>LVFaOd~d!EJM`)|Bq zN4~GZ%7ybCpUfd?aJLPIyERFSPA$zxU^eq*klhk*)sgJxuyWyKC$L#P4ebfxXpe(k z;dEGA*cq;L#kWkw46(uYY`kGdz8{2@ z3+Fq5O%H2yzZOpSR@fD;bj7{PX0;8rU&5PpWP1y&TsYgw?H3Xn-lxOy{s#7jD_;Js zySC-#6Va1+%Z`K}hm{K_JU)3%q|u%Jr{IEl3Q3G+O~qbr8Tal)yj4fC<6z~&$xae4 z?lic&g~Qzic82S%%g5dJ8%Klh&UnL)e0PME3+Fqz{Wett+#3$K0(-+1Fwf0x%gx-p z6mQv)a0yn9eNBT<2y_bERLH!<0ux)I)}Bh?LH<>IMU zYs-{d^{8;Fi(xmo-m08xVzNQ?P`pt`st3W!g;SkStDII|Syii<4~COH19pWgS^iMf zHrt@P5^va%?jWq3LD!>RmL)eY#ylis$$h2okRnR%yYk(8G5%;;!;(3is39R{FVZ8}o z0RBVLQEu{>uPaO$Zx$3UPuYi>cr#(I?U^K>G2xojV>@6CGx&Nuqszy9 z{ut;XAs_R<=36|9$Nal3aRPO6z5mZjTo7?Pgvwksd zSR&prU>ro-Y z`n*Z;rQgcdqbr=0($UbLeBk-gHM-X5O8&8*u;M0~tgA0AD|ff*jiGoSFRE-yK}W;- zairmG;dam$T`7wu=a*PN@j9$btKP|(es^%I-YWMg8QfFH$OL}iDcf0s=uj_CT+0X} z`{%5Nb+vxmrRIlsrwSsOAKpV;_Y~K?#C30R-A7#CEw1~D>we<8zqlSCt_O;|hl=ZA;(EBaE*94##PvvVJxW}U7T06M^;mIzkGQ^P)gEa2oq`)|v2W>@7)0DPrRpY(7NVZq9|AhPUnbMAd?ojVG$SDbFBJ$%0h_{dww7 zAm|%mmslTcA`>*9k{me3o0a-=zHp%p`WC{W`2%IPGy%b7_co z2uHkV)DZK9Y-F^_bsM})YQSh;ZG8?NTH zjRt?OaQM5!4syNkH(~evYC2=a!LGP5j&bk~Sh?^xn4!FD)5!OQldr-qaV5`Z=oIr! z*30nb9a(q7%7wF@+34aQ2*^%%iuyWyq*G>FnytLME ze=i*O{jh6Xar3VPTDxJg|2A%hBl~Z`%7wF^pRvY3qyP7C`hSI;<4T{;zh`vBf z5J&!hgp~{Dzu{^Yg=jIb$=`y@`3*^8bjo>N(XFO4W*n@K8{-%U>%z)~$H6-0A`A`x z;oesutXw$p>FGs`8ttEk z(|!#0h%0UWWrDQzCh14;)*VUz09G!X^eo}4_EJ*~_8Kn-*Ku#aPH~034o~RXT3O*z zdF0dUxB-s5UxSqk=RKvfCRiiAD4g^*Br!S_`*cRSW4d`yFT|U6WV{8eTsY&|`m${e z_4~t7zYq3`>rKtaYrO|1@%P{sI1)b^RvrVywFUMX@e9I>F41 z8?fQr-Vc-huW&mY=|2H07fyecw$Vt#KI8Af_4-tj7@aDP*XvpbOx}}l0~~pehm{NG zJ#9a}`FTHc&;9P>YUXj-+>jl?x|5@yJGf8GRI^p`4#s z4Tro8_Ju2C{^q=6x52j?Z`qOW$*^(;Uyp-3 z{t--mGm;pI+TXm>`6HjbA13{caXTF8FMyRZ=zEO%vT)!-hlhkL96sk8#-eaIA>Tv8 zrX16vW2Ks{DxGJd6u3Qb)LN5Gyrb<95X%R7=$k+tJCwo5QY4gpgGCkzCozfD6bYkq zO85abZ=||ztD{msUerCPecPu;gmv6X|@P;u*gX8p@Y5BXRBX8w@-3*&PT=dLUH|=xW?jo zk+^aOT_gP>3$;h^b{*;d z09G!ZE+3>cx@)`=O!p1g7Z_bJxElBF>v+44bYFv&3#U7dN(T+?qHwg^ki*;?eGlHMBiW;2<-*C1 z>#yoyF9-*F9_$ELu;PxT#{%PyJqK^pk?UEoa^YOZCl5W^9eaB?*ssE#a0ScnSoWx9 zko_{=sw3Giz{-V_9Y+tM8rWyT!9E2$!WAsPW0R+6gX^#GMjg360V|IIuEs;pjDH4~ z#ZyUQG;611!pYz|32)Sq>v&kXc&;>EqusB&hjZN(b_906CUZ;%*LUEJI&%Gg)SY>N z97Wmx7nAIfY)*0zNFW?SKv+&eZXuij!hHzBFxj2moyqLXGBX=Ua(;86R(GwC%b)ZG2Da>Ln-^JKb8Jd%O4^MD9qB~yH03E~Cr2y7ycxHG8DVaQm8}T#hNKcY!pL6b6=7;V zR?tFy&#Y8WL(Mt1To|E`Zd_WdM?Z)3OKJzUqU-E%>`l!=$c{({b;OUKCH1k6A3qin zvGHSdX=*k#of}l4rn@3-=*NBe_4KJ0=Z0J8w}Pr#Ln`DLZ(|z44z0H_q_W@S$WWV{9|;0ruP=%~lcTR8jWlfk*4}^aga2fNl^mL;9ERrOj3Jm#i8N0fs;jKQ(&QQm+dbE z9~kqEaUwc-n^LV)e|4TA0q_kJhW4xFYEbw(x;T;_8gDv33>*Ppa4AyyjoIZmT%reW(DVXWhOdVVwLJ7q>L@gf|+Qt3=`R%Z``JH7{!s` zfTXt&1xO*}8*4}Cle)#x@@D_8MIkarceBuys{S)Tr7$EuKkPqts6Vyhldr2rtMy{= zO=SNZV6=Lve;1&ndOu38{bvF>Df!L>wL*W9_O^qA{oVnuRv4l8Tn2&!$9F!cRmXw{ zW#8GdUL2wf(szavYa{-qOvchk{gU8$-#4SF)3a2K288d>s*kO2)aZM={w@|PKE5s{ z5qk3V?RwOr(aR=7hHho^f1+yCg3I016IJNDv|IgKo~?hLDrcy2rYdKtvQw2^s_a%} zk1A)Ya*ir{RXJCc^He!sl?zn4P?d{RxwR@6t8$4dm#T7^Dz{PPa#e1t%I#FSLX|63 zxxFfPP~|FB?x@P0RJpS%cTwf@Rk^DwcT?qRRqn3JJyiJuRqmw zhm|vDJB!vg46?ib$2%JDN)l5VjcMQ2ipD$Rl`^@mf|WDp+LaG>l?}4z_>(;ob_FZ3=IL?PK>KQcw6B6a!9}ZP+TbDFB6~SrE0gSHuyW>Py8^Q2 zO#3l^v>$<8!9}ZP+Q4j^?FaE{nQY$=D`(EOGf#^f#;EC}uhwjajpW>S6# zR?eLAk{0FAF>+&YZ}VU8yn6{rOikXsO$2wS5jOWlxDib5^I_%8xwkVlItym-KGvW2 z(Xd0f!#kR(1qa!z@qHv-Ig|5YuyW>{JA;=n48S#iz*X22T)=XTM7%m;kuBr3GRYQU z<;=;>vNwm{;Sct0up_u&<*vVTZ}=^ErA)53z{;6(?R0Dn-|r9hKG+jnuxi8xZ&+C) z_FlYJCfU1T<;=x=*7TZ(s zYME@;!pfPmokefJ8f0JPPxf-y5nQq|mkM6nwYXk}SIXpiDXcsVxNaIXxPHW+>jz;+ zfL!VAIE(B1@k*Io-vcXW&b2dmPuu|eGk>r@hCRUrD|2M=cDqIP2Y9VavfqW3Gbh_6 z-rYCQc0KK#Ld_(JsY#*KEGw=Yu-I;eSIcDk?Ei;s#Z3qX+XMXB?u$FQyI7$+2P*V} z-?h!oT48XkRvdR6XqRl|JrEY#KD=5c+ZVvfnUC9f;ae^Y#CdAPua!ymDp+|skhN|h|C~SB zPs5%-$@v&eVaesx4_=u(w!>?aLaOg?B0Uc%q09qSUGdTUE*>+1MhwQc<+T>!Nn_AHsqax z*66((ua?R7E?9Xwu%+w347N}Bvwa+P1P7+x)t?W3@A=4`u*_29-Z1Mbex zdZ*8;NMdTzXSri9?Y8Nz#Or0!-4<5PobD{TT+~2&nm^i8U`KGrt$gYYZbY?4?OME2 zCfDO(<;=Nu1~;`DU@!Lvdl~ErE?AiN|K1z901G`+nFT zT)y(16K%Uae&2)F&7}M;SUGdbv*=D+1MiRh@%{jI1Q)N0%XFo)HG02`SIXr2ZCE*T zu3f}+-+c_SGoSNLrnVx9sY#~fQ;;y*X8SBmpvh$W6s$Zw*qUdl_Vs7mmjYYIX{s0C z)iT+xhLtmC+erh!JWX|xKiUgmPjCaW%BO-0>8*%-9$qVx?Afq#=49s(S$W;Q5tXm= z$9pa84ldq#V(GDMy3P11ylN)nD`Dl#8TYmwWsc!b`$N7H_6HZT%9&gJ(=n3o!0TpG zz8zN1obp_v-17a}jn37jtwpJ8xMS#4BfV?uV5#=iH+{hGazSxA-%@1$G9Pu{?*> z`ihfsp}qm@jd;aOzBj_k(}1u1MwP+$UVpxK!_ENts*h_~eDA_5X7c?4teiRD*{x59 z8Gs-62mBc94K84LLZ@Z9Jrh5Q*UTjR2&|kr;a>eoH-qu2t-RCfl_W7WX|>F^wCy(K zZSlI9l$XKEnNyzK`q-Yq_!NJ}YhiC-O-yu+pV7Gonk!; zJA=zsJ_onHKx^@R3a^;S_dl?5=6vZ@dF!-npFi9eki^vF&vK_&d==OtyBe>RN%r}$ za^_@v^*4`=!Fz!}-}7L9a0jn^KGL?^@%e1LZYJe3VCBpy&uM>++JJnmKjf=mcW@!g z?73~a&G<^ZY9`}X!pfO5?h>B~H~8M^&-V`46+^$$`GY+e_5?a&D~{Wo55#L_lHDIxo(5zushLM~ivDB=VNZZ$ z$!a@;>c?wklD!yK&YWy_{gSbK&HU8wE&goZ2>XJ|R=yP~?Y8OOh}X-cdp)e2Io;Xy zvGt8wzTX_Xcl-0b3-$(=uUuVjS#A^l0$wwd@MmG=%n8r3KMVVqKio%QM{wcFT*~=X z*hgfgH+Oez)e-ztx@BcY$K~UzOP@ZVqvOKy(r0Dyd0Bi>7I%q)`!doW;C5vWxRZQk zenE8QOz&)YTauWXY*{`A1y*GUEw%tv}l1VOMYmuUxzk zX4`C!!K-DmJqlKy4s6FN{RZ1h{n<8PSDhm20C&>wD&uH)p$^`^v7@E4(se~%@YTz{q?;EX<#&pRk~|@@8ZVIdk3`@ z3zbGa_^&?w!@l4@+du3R1_t&?^P02smHy!>-B>V^aMyLmm6Kd? zrJUbfs5yg*{7GM6V#~sifsqdEh%86LomKUB9a)YP64M~E2u!vQj0iIfV^S?HwPR@k zcAArP=`7NT0BUY0-i?o8X+@g#xE;($lY^C&aXQkxG^vD+G_q%TMViBWte{A9byupH z%lxrQz0jZtGcwvi>2@s=VBSw{sjo+}FlV=G9^(oyD!4h*78&>Ygl&Oo!m>!mbwrl; zB=x+GEbkH$(;%`)EUl&+0p%Mo7Av594fd6jZ0VDv6XDX77j;L;S#jj6c=gOU@?}`r ziX&f4Dxu?u>_=X46&K4~uRQua`-85LV8d?ra(ZA}$%D_ig@s z-vWDs%U7N$XjyI(z6GzDN%)Pha^{44)ZAqNzRw@H zD`(EP%QbwT@TdDY>qtH>75RQ*cWBV5Mv6hqj0JDqzaUOSWY%VFirNiSMctu*pQ+OBiczQdpP z?XXw4w3moIAhQKF@ekt`Fp1v=E5{H|FoWwPKu!w@By6rSP7T1qlCzgJU*Jjs91FIUz<|gEncQvB82R_XuZ%a>!q!lwg<6A*XjDaua{1st$fEJ)$&)1}-FyHnHlqCzYY;edm`qyCz&Y>ruq-=YPrzgA0LNqU%) z5IArbwEkLnLTDTY_k>Y8uUg0zMn)Ut101IO^T3c$_dYJ66(JefE1Y{Q!EePzAvzP_ z-$M-%VM}PAWl6W(XIZMsWvbjpmCIGRttz)u+4ve656>+zoHcOeOE?}Xb6R&A*lh|FKPTEAnoBW?_{A8ZdRXWkEH(Q~K4`z(Ln zr^Alm@|JfD1P{v=*L8TMOs*%v%9(TBnp_lpk~Sz`;ZOM$uv@s4mx@tsHNj^7GTa0v z^G&dF=FFEE4s*ovkNQ*p5bPK(^=(|#-7)+FxDib5?}e2!=e|gMJ0-N1Y7F(C`$PW; z>=iC_xd~{tz#i#8#4TVF{~oNIIq_b#bWAJX2J7zG-pSf5l9-xgO??GMui7g|>fG#k zc->6O&;9>Ld0~sP`%vx+{Za3SyStk<#0vEOetG=bCS9XGI94l;J67Npi&$t<4Z39Otsp-=EUcQHffE4{ds@bpMf31g)P6H8ZzGI{7JlWCg=Zy zl{4qO#Ic)h@cxrO@883Y;qsQxUyerD+<%K3!Q}pHSUGd<%Pf~Up1haN@lMRQCW)y@ z%(oTUnzI=;`vtfeO!jkO<;>Y{Z5%c!Y%)gt8h`FDhTXy)@p7HbYJ$!DaNGnY^Fv_e z%$YAS9OfA9qyE%KV8?K&%Q)|7gw4H#8^Pp01S`jIPjGHpAH9~xa}!ADqt|~-dPrCu zy`G=$6<-U2^Y*oBdDURKdg-d_XgzWa`*yhBIy+tSAlDH>$1!YrohL9R7Z{TZjENlD zavaJ2aMEt0k7VB_BvL<;eX7ePX8T!*u}isY&@CRvfb>pI>%ebPh+tF>IY zTBVc9r%jq>aWGdX*XjC>Gbc^5QQMp=Z0awJQsXC2_0r*DxgeV#I(qtj>UzNyA3sp# z4^{aiRsL9&KM^H-B=lbTvow!{cFUe-7e_m?S3SQN{+Wj(!TjK|r$@FT|^6GM)!3 zXU=$bD@YrNkMT!*6zmOWDp9f#%L_kRmfM7nz-wj_J``5YoN$ktG7Z3&_yexM&fo%; z7k;$ndTRu4z$<3*9fp-N=i96E7X$IF{)pcS`-6*EZW?LZ?NR(@yly7tn_=bbDeHXF zp!`jL%3p{5fl=1B+m!FY>t<5^3alJMIl=0HUSN<9n+YWJ0>k@~rjBZX;pB7|7?!s# z|EGI>3-x~bL_kMwY;=HL>y4~5%$|!TkuMGD>2S9dcpZ*oaeLsxv-14yAu1`kKiymBdXL>STBsFAC>x=Zi{XzX-AfI@BAT=NHTQQdNIP~s z3SmPcvzQ~%xI3wrb)s>Xkcdq*rs%G4=M5?0rn@#e!awh$58DZmY6W50WEe(?aX#1BJW6{S$Gf@^WY|DqBW*^JzbL#ZYVZ4iuDHF{#BlgmX0-w-Ep7{EI3dRpnn*`8QQQrpmvo@*k>vT$TS+<-b(%4b#ioG9U~-(S+7C0dfuS)t4nyt2YC_*g+Z*C(X=@tAq_MwLE4)tXTv zdEx%^CMPd+&Yi6qCs>~f%+uCQlq~K;7ANWgI$7LHNW>+4ou?lex%*I-a zIumx5Gwm-OO*#=U>O)i!^X(_h)9~tm_o@CgL)K_^Zhz>?zG6 z{wmlpT;lRPrK1rx_sel3nA|Uel{4qQTrbURiT%g?*?$Cf4wt=Ld5&p_&HsbAAx!@7 zhm~XaCrAKv4k0Iy1QL2>X^*50Q7cQoO7|+`?lrB&fbgo)->4B-ymEH9=H9MnHOHz_ zf6Iu-T;y0$`b$#p>LlS$LShR^!qi-8e5A`2t#-TCe_B7IkI&^RL$r)>gogs%M;vp< zY^$0rn^4aOR~pBBypAOyZZlLW$y=gsign%(%`!s>f zuh=FRp$o`ceLZ_uTJk_luE3hodda64~G{pZ+foCbHiR4c0kAjNaLDj3@ z6gUB|mzl^P3oBcReA;xoL|S6NeVISpO|UDRS#-&UD?d6Xvnh-17+x)tZ4Fk=oNZ5D zrmhCv5BSr4FYF91U3q?78E!v>zZc-R_=o<8zX$t+i&&l?*S6b~ zzk}D!qGwI<6r0m~7rZMR48?s(ly%DckKnNyxs*jzC1zSJM@OJGNE@yd&u$!MGFIe4W^ zu4lr^nRA^RTFWx{zSf`b)v!ajeC6d}A>(b%uf{89a()%8oH^%Sz1V1A{-i(V|AYO( z#Vn(=w%w-uF}!Xj<&VJ1nN#iz7K07GzxC()YuFQ9zCGfMyja3k&eLlgzr<^0lKmO1 zoH^M!fse$pp@Db7LhmekE=f#Hk|l3LXq#@2-r0E7OvYWXa^{R@w{}qs#E1JMJ_Pm# zcLdAZ5L%Yogb%`NW)eOCR-Oig)gG5Yxa3cG2=)d@xV1ZH#pwaOW+vf0teidJ)()gW z_)Y$V$6;?^gj<%|WB4Y#W+veqVCBpS&kOGl8GXCa zF*WJ5d|C>uwny$Zc&$vbOJL>9$<7IU&MdBx49~@@G5-y8~m~Hr-}i!>eX8uENThGwuwIjTv~~>yP){uqU{9WrP-o-IVk6 zde%GeTA5_u1}jesvSS9>@A;Gc4(th-?3g`f@5gIplD!XB&YbML@KH;H@N@ozpN2ic zB`lwh!q(fQpTuitl70eK&YX0YILm4v-g9g31bTOpn3@Dyp6ZZic&+%nD_$*=?ar`r z=4^ZQIb{RzOZ)+!1N(zJhUI>tw%s1VXX14;DW3)_XHI$EI`J{gGYglD6)N=hM))1F ztNl5@8ukd6^VVW5%dp-W(XYbmXR^K=R*qqv;9W)ix}$s*E`fx8-SPKHU&vFhJKmJ; z?VdA(s|zCC^d7jII{R4D`Fq2s}hLLxREte&FV^$vD#N~O; z7YHZ*^I~OVfi8?nT>Zv;d5jj_Loe)|M6M6+b2?d-r>JtBDB&04j-WqF^M$xx&BO@f z7m+2NFU4IT8sq;`+<~MM4dXJs*S6c~{dsuZ%wT>ttZW7Iv?`#}o9m zuuGg_wPb@{B=Y-+`8MmT@ambYuY{E|XT3lnD4R#orIkIthtXXC3Pg`q3ez(NY8g9%RJNb z?S(|@>ACY-;&#JbNqYN-effHhyp|h~H$pq_y>9>Vgi7kDnG$ne48s%+y$4 ztL6v#^YunfymudWVK1!KsK#6e!c^+dS8{<_F*gx&RfY@w8-nlH=1FLshnxD#Rl4@M zk)zOD9B6d}=ND9&mJJjJ^JC>kuD?1mS}tsANjfhk1tnF_@@a0%I^nsNZO-fCLEDOz zMoZ3lgElBP7SeNGNyOEY1Ic+i5+adXUkom@_c3L#SQ(_TbCySE9UQCBJ^j^6u0A$8 zO4mylRF5Ug&Y29^v5GD1)8wLTvQLL4g+h%!F(e0-8Ua3oi5?ijL)}ZNo?Bm~&uJ^G ze4=%+ZUzkJcN3UhmeeL~fRom6zCN5^PajxT4fUCENiHdWX&x{h5 zRUOX9hhe$MpzxXG!=jO`$H&}XKg2_hc4kEKyzh25uf zMg=3_eR@+=HiX{!Eqf;VsAw3z&o~cHbD@>|6X+=|Sjj(8m1|Xbk}6MD>pm3dXJS7pB{ z2UJ;5<)A8uR5`55qAE+O+@Q*`Do0dVQDs$?qpG|_l{HbqJ0OSBpQX72GB5n7Yb>DM zMz(k^jlWMc$A1rGf6|HWfyiTuVe9R+(*MP4XRe>U6IQm?&(bEnkbD(Rj11U6q853= z{yyv!=PFjohP_zqgBT64c|U*~z~uccSUGdv-L#lO^Spt1#!_$09VCG*334&dQJ6&z zYORJp12bqc>HZg1&YbQda~;p%ypKQUy{3%w62aMQfjyr0z%5`B-wjsIocKKLuSV6N zeW5??^I?y0N41=(!`9oR&&6wJl0FMo&Ybk@)>^nh`E~x3uYtY6r7SN%X<2R)ehpqT zlkgR=a^{5R_UnBL1M;W*A%6mP2p6)vZZ2fJ&H3Ya=rKdrIFa)Zi3DH4Y&zR z=C6m9GiScI#awU17|`$WhyE4VFI?!$BG7dkZ0cXaZD3OWJgl5K^)A;e{tti9e}i4Y z1ub9hms_REefmW4U+`*~Z2tr+XU?`)I7uAgGDh+a+jytuD@bB$QgiwCkG9<&!OQWw znUt5p%9&H{5(n%Iz$g0yJ`r{WHiG53Kx+gahgZvFy9QRyob7h8Cm#*ooBerjgx$mC zy}g*4W1C`+?>cS@vk#2I%9;0pm2Jn-c^TvUtI-SI=idwd7j_W07p#i*0=qGGKX@l@ zjI$ry+|jXBNAS=-U-x!~exggvZXPXpHB_a_Y2=lioh7j_AEbSu_j^KI5=;ng!)pAIW$ z&Uz8Ot+Ay&vTOWtzXtXS7q>jdWVXO2eg$p;llUuO<;;mMAb-X0mVCmW_s3zMaCyrM z8lv{wv_Fd1&!qh!SUGdrTa&kJj}x*M;ZNqQEnoH^-*bQgEn0>=(gK;f`(j zN`cV;oA(QG1DL$`gOxMqJ)hjAcMgrAJ?u}r0K0@syPcV9^KI7a@#>kZbFgyutXuDg z1}|fnp9i|xpYZ+j~l||{~1_0bN+Kf@BSOi|K`v9FR(+n%;jKjD=#IsYD3&Ybghv2W=c z)K_fhou)4*iK$7`<#uUoQ|vyl6gP$02eyWlGw%aihaKlS+;pNp`{Q7@a7Vm+BDb1g zGhc(7z-0bnSUGd%%fk+fUwqr>PreR2hf7}0?=cOr`H$j;F!_(b%9-Z+gd4)-{{dJzbN<^#-4>hs|H{7u{2cZUw*#ycxqn>ltF+!AIF z_#v#Ec@LNyy6e-(`sb|l&icAZVrsHJxvn2F-sU_Dubj#Gd9ZTkoVPwk-h;kIep}!e zaerR;`ywy$r~N|ME!-h4pYdExP>$8_LhOed!KA)7teiRZUga_ycflX`de|Ra-13xF z#CD5w4zHcb`K7RO=A0KQUmX{G)x?JV27lPEhn>QOE%$5e23W+KxCu<+uZ5K}Cq7>} z?8J(L_m}*6e;#%Tm$y7sXPR%({tRvallCWJ<;-a>Q0_XLp3v;!{TF}Se}a9&#Vy}} zu~2f<+tQsUSL^hFtjOo3 zU$8y;OyTTj&AnXTEOLCsjy};9m=L)a-tmR$)npd-oT9pjehd2fLL&7~*g3!TBU|nI z>YV&Z-}+)DU)!APuaSFlg-WAV9o;(wH+P1Uon39`07$~Wk<*GCrj5;ap8EWC+-LH;(m}@6(e;cDK?k7 z9Bn*iUraW6-l~70XqNvc6b>Ps$WUo67i%l7R@l$m=i^o|Blx+nvK7J8COX)j5lmL> zfO1hIrS!m79i^KoGbt@62`uAvqAhikP6SI+uFQvww`0gsymDp?*&0^1V#op^QA&;T z)<@N9`OV>eZqPoF48lgCMf*6|EnM1i_0DR7&3p}R0+acRVdc!3FI!WsH1fqtp|%C? z8~wT0Vb^fE%hR^bX4vdUaWk0gM_}a`_6a6@oioTuBY}j@86HbIb*Y@;^mKEEnHxv) zqmf+UPPn%^yIS*5*CNDFfrd)H?93G8kNSi`k(tPmAl#9(yXXYrb|Dd)Afz{MbOtRp zri!1y5Ui=yB97|s%od}L*k623(oK&rP*YBZ77B@2XRl5#NOa3a8)4!Qn1dB24uZYpL|NLEbRtBW z@(Yg&mK7)t!0TlOihW^aD^TZ8?qbbayr)EX>CIlEl*Sl2THD<9Z@AY@u(9&%&` z4WF|9&ifmA8rrWK`bJ~x5e%SYjIncz2JCQIi?pRNC|XSA*YlC5<08+M$%xW zvWj1JrMk308~hr6z`-+69Wj;!ZyST>XPAe~XXR!B^TjDj{S+buUHl{;WA z)}(Sf>?$YP(ygQuO(t3!mTlwh81iAfa%K#<4OX^d$oqsudU-^9!?Nu#gZ6`D5SG?k zw0{A+g-biSVcBki&HSgh2~6fcf|WC89@(&LJI&zUyOTHf9+H@h)X^U0_J(D<88-V) z+zclB8L)B;`veod&KcySkw8M{3|A-Z#42YvE8UfdIY;$3iW~EdVzm-Ik$w`~X`PX# zxu0td!f_%!AF?Ad4>=YbPDt8Wbb4^Ckk~?cuwp}dM@SulR!5@W9UK!nA~-N~3;kPg zR{GNih(pq!mBr^}@kLqOC5vO}_b(h@-CX1HMyTnoo!rom`-TeTvGL{!o+`un+Ccr% zVtshL={%Mms&OKN%7y%f&AFN|YpthQ=% zsTK#u-T5=%?Y4K0_qB-JJX#*3H$WysiP~2g551L8rNI@vl`yKxOH^4?WnGmGRgS50 zqbe^|s=?B;s5r+`J@wxsOrRl zh$U(k)h7{JA=H>0DQDR;3HvAaL2Jc{U@?ji|k=|txU29 z!^+u{4RUdVY}KD^8TJH5Ry;viWQ%yMOtOQpa^_@v)bo)6_ig@g-vT>>3%6I~Sgi*; zi|;LX#Z10$gq5cOU-?jP@V(EU@4c`yK)z}mY;-~yg22XJd0#3K9{UNe*Mqp&T5xr2 zV^o9%k>xhW21YJv2hkfCFBK9gZ(uYJcez2d*|kw1en4+>(hDfL;NQpdrL|%sWL@cM zGXHA&?^Ef&*FH!8luo06TUR<={O=j!x5i3Uxi$H3mgZjFEaG59@}B3TV?+fkeWJgUBqk$?{SA2|GIW~V;xQ%YJXZcX z1Fw`B!aHDPD}<-dwX)gZdZ0ho{b5Hq!)Ga$D~)T5>ppm;Os;#u%9(TR45F6-w%;G@ z#jq#1VC8zgh`AQo3-MZ+WY33{vnLzOEC$&d{mEVrdjcaX=0l6@>+o8cWUqmhW5_1R zg>^bDldS|2I-R~x%=F09j%tWXr>{u&U}Vqnt$Wxa3H5j29_s8~&3#;Hq$8njU-&lR zUA^}w?I=2>zE4P`o>Cv<@nX*R_9>A){{kYo6|5PhnG` zf2>i+U0Q4m=h~HzH;?qt3}nWeXLu?EcM9eP3ibY=Y&G==57AP--_Plx_hNj7LU$pa zwm_eja#JYo*4Y~>MYGoC9PB}bw``6z$NN5Bqo&g3PVvOKdD zGT!EVC|)^}^NV2R%sFr4o-_^Q6@TO#VBc_&%NOw7?Xc+&<90CV7hvVg>30TGpuzgB z{;b~&dxFbaKH-a`OgT@Vp1&Edl}YvuuyW>Pm$#A|BkeR`f88JUJ+O1Qu;o`&V;W+Q z?62U4F!_H8R?eLNEP6sPSpUnP^*>-oa9PW>_TaI`8rOfrD`j&13#^dJ=53a;ZQ+aj_H z%U4w=(fe-mg+%K6ZqCgg)ojv;1p*H#NdU_}18^KuTxpVtfdTK{nH zi-ov@Z5)-L3870X4kie}M#>?oJXDp3i4xur*^~Y(%?*(rMa78kCzBc20Z`RD_2IS? zMN5$2;T(9ST}US~n40n>x>k2m73;;ce`)*^a`>nX{c2j%Wtr_xU6KU)UpD#PWLuVe9Sm?45Y+OwwOWm=X%LMPt6NgJXLy)94o z<3!@S1pCE)mtfKE=yc=kW**-q*bn(G!F)2;Gc)fM5?jd3Q+pFle3u~Hd?Sjy5N4x> zj863SgZ<^iTiTIyqKTgVE-~E`6ZQ|c2e`gV5N?az3to%c z!t4cC!^$zeAVEr?vkEz-B#_WqMNiU(sI21LbdS={JDI-do3E|Pmxl`LYx&5k-nXeK zSom`GyygpCOHq#V^krd6u4PJOnsO}eeKV=2_2S;wg~S$8h^e`0_!O5zqOEtW@kM{5 zuYb5&F4Q;B+o#UUeWSn4(W_PKbm^?~R5dI%P@pwP=LN>NR53p^-kcnt4Ukr~lBd^w zC#RW(BAGTh%_J$h^LcWbNm{fs6Wk#^IbEYzp>G*amd}cnjpNOAlQIO#W4S@PqPa@8 zIbSV+``SppF)~KIpy1k{lQA~DS@;i1>VnO}$5r`HRsKtrPpI{exuDrc*5jw*Xq zIaihQR5@Ri@aE^kWOkaHpR-$es_|%iFqw}%U091^2a*J~i0FJkDgBaM5_#Ha%KPbB zmfH`)`{Ok;AB6XTm8}QivVWjGLo2@WJ<>5V5!WC$&2wynOqmb%9(TR43+>5u*ds@JqGp!cht(599V6WJqoXt zN%ja>IdihJ$wy*A)}Y()r+W$P4K7_7lUtVCge!Q>Ou`#r<;)3pi6wFa@4Ni*-U_>d zi&s7a$(4O8F25D8mdWXXVE&bLH67JWWNbJf=gD;x547J#r5lWrA)5(z{;6( zozvbvGUz_#Pxn8tJGgY^JwNkr+2#ie3F=&ba{?E zn=f}Ftr5HvUN4jG4zP0ObmxY4SPjHy`y)OBb_jP2%eUY|#@nO#RJ?K~=aXUO%sJ0f zt`ghc2IwpOLBA6A2p6<`2_tO1P5R|{?M%{}Vdcz8w?=eu7{LI2yFcg;!w%tsj*Mt= zlERAIx8apDIlm89&YbfiH7438L=4!!@Q3|V*ehJv^2of|0()ft2)BSq{QIzS=ES?i z*&PFO&tBe%SSLwLO(G_rkmZphYc$Wmt7Wq7fR!_6+Zi0CGSD9Ak9L396WkFjS1!c? zFpKOyc&$vbd%?+p)1e6N9(Gw0hS&Mg{rzu-^zv#=|;bmd$tk6T)7KZRGz zWcvwNIditN=n$?!_7Q)we}EmqB`a5>gOkG+*WcllGP(W+R?eJj54kAVBQ)49>+{Z# z7n8))WXLKetE1c&--UR^OuqAA<;?lcX&+HH2p{85_$b&N+|es{8``GZWB3TXY9`}D zVdcyj&kembU{JoqpK=9u2$!;4y$Ts`bKZbg&g47{D`(EROT5Zq5Wdx)@LOS5a0$!& zO1^<&#pyTW)iT-M3@c9s+nYN&w(1D}DK%GibPRv8bUhUpj+b)u@#@{L7{7dcwef=+ z>F3RE`HGD}`J4WfzYaTvOIdCms#k+7%=h5+GBJMzR-OvX2E>WzidUWty8rQ~`!CoR zAYJ*YmPPj;c)d)ze}k1Xr#m?H2+-bLQ1EZ?1sebLbx_b1~9G5f=buyRa)NN}NwzLQ1X(UCwx z-^p^1c;ykfB~>*<-O2LBnUp#_dtywo5O>Yk>Qc|zm_L~p_XCl5%pc9u70dZ@N3Jo} zzky!zy=pv2Qc5>dR#Ljj=)#K+5~<8mS!^SVZDp}S6wdzF9C5vtTi7&Os1--(E0p>2 z-V?tAAO7{e=&$#wHnf@$dA+iAnM<>$Rv0YQ3Ke=STDI;6qsvX)I!UTYx8seB(p3;S zsy9!c1R5Pyiq{FnSbD3|yEAM-)Fnn}`XtO%wY;lbq&pGlN)ze9|ARf~>>s6fl1>C# zQ{MOz=OCI%ntAiSXqVfpSN9!_hiHY5$qR5=}W94$8 zkqd%JWNyK=O1eW{o3u|KCR|baQo5(gy{}oAFfAF$ zSBj%!<$R-9t+;MAizFrCU+z=32c}16wpKb)(zDp9NjsXJu1=PK;?l+x6OUfqaAVRL zgQ=?tSsQl4}oRGRZe*wMDzfu@Sr%?vbUSlJ3RMIn)1lCelm&)Q!G>vxkq z*a)>)zXSFPm$f`mX|}*7{x;kKCh@nx%9#^is;A^w>fiCFen0FPE_In!x>{kAzYn*9 zN&a3~Ifi_KL?D>O<#UsqE)q!ST;jx}4N zv@V>`iQNnEN||9~HLPrfk>?AE^iqa7a>AwlY~%_Tks+SB!UeE9xOC-_l(y;iRB;|& zHIwn#uyW>%=j-X!=6sz$=WAh?a5>A*iAKz~Szm=$&t!citQ^BS!JMws0yzmJkkDzt ztfUQ5X~9M5-bg>Uf4I=Up(9uC&zJMjy^n8DOR%uy>}$=T2@{0yy1|6$LHL*HR(7(! zWqf2>a%2f#ONvHk311Zwu~|ZTlgYer%Z>TuQ5c++Ej$9d%E`X;Q__iGY07tW!`9nj z<_~!7%rNsiSlJ3Qzey^g!;I`jUSa0TK333$v`?fPW;*F|*J`~Gc>vjSzsZR&`6-Pr z!t6*Fc0`ulsVSb%AG->PX%JbuB`PDPoC?FTV#>*|liV@oP|}G2Y086ms*9<5^+U*s zc)iSMavZE|MUyp2C3G~AJ;y7W?CfI&MU#)EyOuF0U#E_Mr`>wOwEcdAB8>TjxBE|od}iIzDV14 zJ6rh>UN&x5M0$B?YhR@8FN5{3$R2EjTC9H#dxgt7vMfI!PrC40**1kx)6*l=xq&-e&7sm*R>5yG)ZMEMBK_f6nYvL)v4s&*e(o0Aunq({$hcB!q*zsowH-Q;{ z24H0?{^W&3db!4OxhrA0%^?3jWR_>j@g~?gT=FYIXFaWk*!;(FLzw(;f|WDpzf$j3 zSgterz}Niyz*k`har?k3Q88?R6555R1$Mk~)NrcWr*K33A0h`$ORvU3omJO9)LzKXSZt(PjUVs%oo;2rZ&f_#tdo^mdUFgrt^*t zAu%2Djydgi8xd!Bn44;)KJ2+G>?kMt(h|~%KxxWN{kG|LeAyYVni*eK!OB*ASt%sa z%QF_rJfrO{gY-FMj%R*xChQb0>BXV^qTK+S_i4BROx~x!%9-s!}A?hVR&SoawHF5O4_Y-^6+^fF&&bJ z&Y;OgWO*2-W#tVI!9H>VFMXGEB0QS%B3A)Q)vC8yAH-{AhLT^v%2p`(sgOu7W$2YD zgM;s)7kXz4^GO0rpt*eIOF-Iod&20&>t<5!ft53-yg(-k4$?>ZlRgag3752dy*z5a zP5WTHekSb$VdWUw3Fda49>}R6frL&EK9e*!sbz+J(_Ll=?!D~D4VH_eksRR_a9?$H zG{#xa=(YvA%R$yl<0JEuBTsl)(*C9MgiS(XI^+qnTg^6dg?GW!)F9Gp47b95a)K{i zPdX7M>Z9&0%k9|mR=j3rY1+S`-Mwi>Y1W2h&X{B`~y zr-%d+I)4~T+7OjLoRRMG!Xo-2Ku2!0TCCTrm5yAwTCYbEi9-%VLzT1FHEAbdqQwTP zx=^1ufe^peM`pLImPSV=D@Oux5H$pQ$Wk3lClCh+iRq9)1k@tUHzt@1VQQ+eI*~XZ z_LmcU=|s|ruxZLud1edjU~?{R0W;W~1uI*@=5!&EUP7^roRCeg8Qfn-R(U2C*TBBv za^Ehrbz!!{rvDn;4krC8VCBr|uh0pG={chZe9FHEd;<0lw+HNCBpPO0>|XG3+!kgp z_$aI#(+d)03p(MDQ%V8}op9`%v>__tcsAt)i;?O8oy;_kMLa>Rz#^Bk(@pt;MPNPa zRK(*+vFLo`F(EM>@{QT8W*gCF`9UZ(E6-R;5?Eg51Yep(I?+61u81}*%k9{*HC{6_ zwk&{^t=KYGNTiovs0E9bw+zn5ku})pv^cMUeZu7&Ua)A{Z_|D;UO$ue;jnV%v_lIP zEsq(*>;A+?VZU&Rn+q1LHrUiha2uG^OR#bb^#qf@&L89ykw8M{5056Ds9O0$y6<<) zTc2;xZ3DFFAwMk}K3jPQ+-aRXu34UVv4Sq8&DV1I@=#%YEkE(1Mda7}R1;JSBD0ob z<>L0FJxym49~KhRA(NONX}b}0ehBlkrkU@-&T@8v(w9jm0;VZ1)QOmH$D8lq)idMG z{jjnXZ|)Nk>E#ql{<;=M+*Q*s< zV!yXP`#niwG9Di6(JtTPiD`(DfBa@gTyV#Jlf9dRESV&BV?4o^F_x|Qbes6-QS*gVh zu&12hOP7;Qgi7m93VAtvj-aW!^e;G-|7s(#a z)r!x-Ug5Hi+)2@Hfld6=xCKn&cf!h<6A#}>(e{}^{m=f?{|I}AOWnGYqTLFc{KL2v zO!5!G$}!{jsGJ834iruJDSX!?7na(M85falOrT?!rVP82rKl3;KHt~IM3z)?Bf|WBT9$KH! zJ~OEI`%}Ld_6(Q0xjvy=VUxcQw}MIjd{{Y#e1gee=MQqaNFbr}hhHY0v{e4^-E_}X z%A_o)c3YJmJeBVD#mstRFnWpQMQ}HDMw8~56R#`eHy3J*w?f6Q^$9~G z(~lz^xFBga(&@l?LSkB^13{CGbl?h@jx}Ap0``#;aA|~eB0N+&AV8^Fbvp1eyjEuD z*aRzEp<_%)q@E5q_>enXDYi!!l|ZmR+k( zr;~@pLSi~34~k^e1x7M)I80JCSRZjX1ooM;Gn95God}<%T()$AR95KZ;vn1#W*|BM zR<;7szCt3s&wRwT>LO{1LSVi)PLa$jD3l?!^pR5ottZ-gD$7 z-%pB3=OqsaiRqA+EHayKM4~5QifVA_oa71EU(SwDdYE(~Y}EBuW((}t^Ehq+Gxj_N zD_gPWQ6Z6DKBBI-GQDPS-}P{G^jh3^CJ8Km=W-8UZ)LW_roRfegGqlSteiRh(DhcP z=Zqe3rhgAO4fYSW2bkAenQgIq!6~>c%wDh-R*vZf36ck$f5<5%frQRKzLhkXsr+L` zcdAD*I|u5cul-ZG~%#miiK54hoX+~2>Ooue1TQ=GVF?YhW ztV!k$*h@~}rFW4|gh+Fac+63-RK0qM<957WW;ppUtZapo+k`}VDaAawEZ}7P5ZQt~ z23U+AggwG#yihO>TW?Pszrbr}lKv^IoH^-5dKtq>d;SsLw0lWnGSWtSM9cHGW(#cM zJ-7u-;+?Q^4Dkf>yiOJ5w2(kTrwXr4+I3Z`(4B6oFt1UgZ*S!r!Ch8#<$7eDVjbLN zozZ2=Z?bAPL9`$;S2?nWlalr{ojsf&B&I|5FhA0EBZ;^K=4VYX71&wME>OCVbRuBX zO;!=}?Rc{RubvrihGAtZ-V}sHdbxzU$tvP9gZQmvl4nZsR@gCI;^CXDB8{-QzZo}z z$^B+nIdkrzo2(*kGuVIApZ(Wi=WyAZH(5m*V)MTTH-yRmE3k45{{%^b&NJi$l0ZV| z8OJ7Vh{`iwo9^48%Z3WH!OPXWDnSB&Mr|}PC5}l z&27aKt{bH?LoaIVhMU0*NV~wwRzTWONTipDtdz?FPS+Vd;CwR8Ga)$_b`ZA*tO~7h zI2&V6OlRT7F#EyjuyW@8U`M@R;B=qS7q0Q|3$KBl#O({ah`umEgY5or1#S?tKfD4~ zj_D5xvJ9Q5$O$KbgichpO4<;Ws9c}!*^L?IM?vl-`>_z_>~qcaQ=F6pc1LD7M+$Ox zQWiP|xl2e)hZJNMwb%$Te}Y-5L8B9n-@`6);x7G=bRsyK-6F&Um{g@Yz4$F&DKm`x z8dkQ#$S;LNdg;X+wd-KfUHW2lBwBR0CJ8JD=hB@QN+z6)7vNPh8PA24GiN+s&$RX^ zUgOXC#js1boaGJt5%cZwd^lb`ll396at!MPbGl9olcgK zUni}UX%WNvMCp}qpLKS)N&iHtGCN0B^RBvjWzr6&Q-qfbiRq9cw5YY4Z{!Q_g{fIH z%DZ8IIl-51BAsZyAU9<#fXV`$JiG(9fEjGw1}j^^<}E@Zz2rfi;WWKwaQ_}zh2``X z_wT^I;c^e3;WXP}Pc`@Bb};GR2P6qd9&r>J$eev}%6CkH#sqB%nxb10neQCS6^Bymu%|WE_jE4uA|Wvya*<_D9~faN z5A(Dpri);wIlDyZ6w-+RQadKjX4nzw0^AH{L^=;vwj$EmLL$AaMD3V3U1#)w8^|=z z)Z{wYLEIh?-Z61D#_k8#;>Ixh!Bwzw=KUbFW8!q5(HB1F-xod&JBiyD%pDVFgY5or zCvFh4KimN;$MlB;X@<^Jc|x~jYiIo{+HT; zg)(Q~YZj+?=S12s%#TcXj*R5rNzv$x=`a~^CEEF3Y+{TxD`zD6<9fje1c>^=M!?e zNFbr}iN7bEv{XJZp6&^Z?%>jl!E!!&HuRHlhjsS0=Fk);6K&%ola?cu_`jsxOQ#Ya z6B5%Qm6+XXwh?B23RANtmmk4?a)K}2Lpl*A&AIYGMyt1}n)SxY_wkyUq2&Qs*$OS+ z5)$d95ew9*4CO6@bLSfGBw_|hOh&?JbC!2RM(wvJk`BCnChceb|D(M)bilz)e1Cu9 z``{k$E>;?aT5zG#waw02VQ{Qg9CwUt`4u|54L0??a2uG^_kfjS#(09cU#Aapibx=# z(}#~F?Y=5~xF_A^h=uEG)%-wzzD}2e)`#<>g?eOBq6YU{=XApO)@k^jPwZ0Ab_-e! zh|F7#T%ww^ujyQ(EF`8wF0sgLzA@L_3=_0+iZ{Uia(05!6{Hhkqb}YuTVThX*W(s2 z<4zM+w&Kofg+zL}MQGdJ^qj%|D`c7HV#SwW|8Uux+xBK#>|XGB+!kgp_zbKZ(+d(z z9eVbWK_!8No_&f*8=_{PKcssv^^#$_G%`Kah{oI(F|GR$)}S_iww84OA`{p~|9BsiL4 zPev!ox{t++>eWGdA|A=thKh8W(0YO43veHHcECx0fgvzk zS9Qm`*`HB_yUp3L>b5n{Py(U&GYYXwok{{u1_=6MX4@(uw9Da`V;#s4URQ z$IoyJn8D`9u(B0wejp^$OFq;K45rr%?sJdz&OBz5#AM{1Huvxg3}!p*siq6JgGqlT zteiRh&`OBuIim+0;@<-fg8joC`Q}Q9*%rGO9Kf~Z=B+xm>InY1aJ;nQprB|nyTiWR zD%#31-628Rpfe9Sw4Mdq9 znb#c49vhQ(EuC}Jg~W8oIl5(|jd=4mn3x(pI@5Ry>?J4k(zT=$A);=iR~FPkzRhGZlrcHzK?A2T+g@{_6V18_(tkD(s$#vGfCeCD`!qRbR)Hs z_7ncJABVldrET6w9Y_2z+yW-?M`7g{;tA$@oi4~}A%TQW7e}!$ zB9?;Lj#qw-%a@zN+Vdh2wIYBR9o$c%v_FKVn1pd_FSg=oz5lp z7827TmssNPfRR|72eVY|)rrN~u*;m?p>z!CMDVCB6h|ZMCzvyEBbbrsR9M-HL?;W0 z^s)@Kh2n6WLH{Z;%roV<5_S)les~MT(GE{)z{*xw=@t^{r5W?(NewsUqsSO+WLlJu zfL+3+EUyuam~T%ZhvL;US-%KY&Ybnu`Ur!Ycg3Ig2G}iJ-b;;B7_sAf7&n2*yZ|f5 zFi$Y&>$E{m4hbZ5+VIDuQ@-k$FJj0@}4@D-RE(@V|5QghYWblm9? z60vb-b$WqE5^Oi#2s``11g)^MH|#BECn#-CIuSBW`P!`kPt~uVXZFPFX9k_!VPz}m z>?$PEqrFr<5JY`uFwc=qo{u#zg+0S%E^qE|wZfimUV>Y}B!3R9oH_Yz_0!E3={No9 zzZUimm;OrQAt%}ry9Zp2Tf*!CuZERldO(6~K_?t?8c86bpLIHuHbgz^+>-JVX?~zo zrFZlrdB!)X4Oql-cDN~DB5m0onZ_Im#@CZF(Fw*qLSi~37(J@h#w_z!n3)2okkK+QOwO)+xmw@rs#YfI$^1xIIfi+HIbWv@ za&kx@q0@%1Bn?z5ZFqjVX~Ud+qg)U-w(L6)Ngb|%JFK&}G0ur6zpX{to+HyE)087~ zcums&r89>sgv4~n9C~%bjpX5jFg0shc|YtaC-~AWq!Xc{u8-BW+m9vh!Ruzmmv_O+ zR(!ctNTioPsOw|3zYNwtCVQ~t-eUa&*ehJt;p<~{3vA-w#VueG|2C|gIq}f-vD#+_ z^_gqEsc%IRlaV;uBiy_`R=2_?|18Xh`?}dvuyPFf1c`voCFFFGKtksduSnVul}oHl z_jR*{`Fg$DUliZUp&Q`(^OZw!5n$Ti{Y`P`kKxw4i^&B zA+K0uHs6RngD^pB#_5Oso3yJh{4E4^t z={1A<8_6oqOyfq_H(c)Fcizo**z~W*?O@V>9ju%={m?t_rss?vaF>4%_yX)7ZVxcu zc{kf)_kz#jwlI6ar(ornUXUPh(7A`4QW8k$+~bg>4Nk4$QggyZR?Ty(zYBIMSPa=Cqq_gqxjCLa|wi#ttMg84o%0 zNGHOiDZe-0Hr-#qeI0jvt~?nHP0pUyJZHjWA-G<&P@nLt7xLHo%KP%J_S}~2 z$FgbFn{^B%NrAAm2@G;Zhar9N`eWVrCpU z2v)Y@$N@qky&ORuymC_>A!9s~gc9r$F6HpSt60`Uc=b%y1F&-DtV0K{+`RwCpZA+! zw{Urz2d`q8kK-mVncoB}$1qPY$?H5pP7Vnqbe^y{X+u<=uyeYbrCl4!^j=tTV`NR? zr_=^4I5~S-^Xy4Z6E>8EsgWtkv5xSgqzH7D@O>dM9kPUO*=Qq4cp4_8hKoL({Uq!q zC*;x}Nhd-?ts^K{s$QKVJb~BCj3JN1%2o_{Oh}}cBdB!*C*$2uK}Vs*cvq6Z@?|dL z@H#>q>7DV~nWR_2%9)c6ts^*TpW{#aOxP=2+U7b!9P!g|3z)=Dft6#3Cz#xIejulX z1QI$wcpzzzQu)Dq)7{WqP#>vQ8^g4g;95_(8Sb>s9@o5Zk`o1KG}+8sR(M0w&ZQHE z*9(d1kT57>t;QRP!>3_l)}(SL>@6qs(tAiJnmEW8#tnF?ew{$vf!EIrGPlFZR*?Cy zkVr3qP%n%}eP%F!m~6t*d5if&uxGf;!!L|STVd~LKZskwB>xLoIdk%%7sjK0Gw3f` z=S_b;NlZo>X^(jGh4E-h>>kjITf*!CJ+N|24@i(5=mbMfBMBsQg3(Ocl~sbVDBT2O zZhy5rHbNgHvyV2M4)5ym43pd?} zISrVcHRD_Y`^pKwbTR2fxHRRXYuI`_&Q$Q)nQ>+VtZc=ZVIh%TjY!ZdDe=*iX3+2K{q0+dt zST9T%SVF(sCrplX-Bvtl_S6c4g<7G~Ur<+smJJ*ew?_7>=EDB!$Y{R5ksHm|@IuTUO9+A!phH41E zihf64=z0TQ>lWk7HEreVU}fc(o^r9?$dPYGlxMCLN-0hz>M}~3_1$C%Hd2+t-_>@@ zU9elYnCFL{THLU|fY;50{aIL9Ip#BM$D~bpfzI+Bqxvzj%ain@uur(8<*rB6{#NRs zhxQ|Q{Y=__fR$rt>v^9&OUzk6RxTGBxgbbH<_BD>q&weW(iUxdT98DSR;POgYvyHz zMm~~5>_c{7{ngporZ9&PCPyZwRt{0peReP5&V1<>dU-8)J&xNgN_yVeLlTL5$1crm zA!xFZEu0B+vSyIeU>`YAmyRTz2oIGg2vDk4P39E5R%SF=3oBdEo z8;2I(%VB?T`GzwDH|5Llx|x(Og_Sd>9Lf+Jq(9PS;?}3$L zXeXG}gDF`)+{mdQfrL&Bc1zk2l^Fab-Nl7@8>_YT#d=5X(qd(xdTAs@_zN`!3r)`6 z*1UMaCCvU>f$q|(Rwi6yX#HZJG`nSWWL9!y34cloMP~`W7ZTH9O<{hd?MAvV|8$g@ zHJ$X5M0lBZ;*`pXz4R1$ECQw}U;2rdZ$E|f;MFr@Oed^t#h4jFBE7s}xqfDgxXqw` z7@38QREzq-uyeT7R~TPxh&06Je;{rMlmGs(at!|j6NH{)WFSc(q34+2CJkq5j`>Ks zbIdH-AS;hWrk0n%9oE^~n&(Zy)FQ2oL@vjavMFh2(o@QqkeCirN|$J}5mau48CgN) zt+11vm`krCod}TTY!Or>Dpjq1^n5d3Ei;7N3@ck9{5Zbq% z@cA?JyM4lRWqD+Ba%2k!P;0PfD%HPqwy>{|m=4*(+)&GnoZ)rZFl@omF zIMRt=Y04QTWW4?GaTZ=VGs2t>D_ap}osdW`bJ$vD4k3pbw67t9JoAUwz;5BvmN!mV zO|Y3?ft$c&{t8$*bLPu*77@?=6aL&k4!efSeOn`!2sOiI|54lwCi@S;$}#K{qysvm zkdsCN37t{&C2fexC@xNSr+da=aZ_Ze;c>Db3sTOW)_m#IB@$$DWTtW?5RWCLpc9Bk zg~W77AZ8IGV=7sCCQ8Xl9JVG2EXQ(!E4eBBTTzOI50u8W!M{G6Tq5SlJ37 zvxP)@3Bw#U+gfzjkRjL@wCKJVb_bWPyyd!Wy3P1-ylN)nLty318P5+T2o~p2f6gPY zOSqin?o-5kn{^4Vp2>O$R*qqvU^dqYft&;qNa%#%k)%_RN(lBzHzAmrAIV2Eg4^L< z>g-}uc=Sz}9GQb0DZz)6b|{?^+$JQZLrTyYG}*`rz6W!%W{vN_K60WieUWq`Jk-%Q z0ZP@XlY;y4TA4xQK3LfbBKHc3^pb*JIkP(WK1Y^#W(7~f{^0TrAANIEeiE;nN%;v_ zIdjUPqi+tz~FH|<^V`kAzMhLvMzCz#cBVj!o21QI$icwf?P zs}h3)Qceu&#Y%rwzMmsYJQIUY!~Wp% z4JQU}%6H;*Gb!HzD`!qQlo&Wj|IwfH!>~`dq|L;@P5U9dekSb)VdWUw31)Sj7|5w0 zfrL&B)+cRHna&-rE*NrXNQ-unSp@WzMP_>2zR6A+d#YV8w>^r>xYM>C|`X z-W_~YuB%b)Z`2C(!ax5ty=E`X`{l8L!eFsnsE=PbzM7F%h1@dXQI62>_VpL&d@5sy zC-gUvzL4*qka|-2;e2hNK3pqSHjFnX{>YwBEscC-c)WShl(nQ>9V#})n^Wg1s-RvR z8mSfsrm`8MH9>sp{1oUPILE6m<*iGH22=rUcSU+WhyD?lV)Q78O8hR7oYL&D{wJV|CD@I|V*+p|^ttcmv zb){2iF1vbsU1^;vPgUhEEL43?@k9A^dW(!Sf;QGSLj=<$Y&9RXUJ#B3Y1n2p7}3N@ny!_@#KQ z%!IuGD_aSB+GJGbFRHQCp5BltYLZYJfkVdcyzcZtOS1MqeJfUkvJ!38Wwuw28iM(|a5wM@2G!phmR z73(kt+fVzmy%Tl?##SyLS#0mXt7Wpi9aheq?cC53m_hhqf5H#J4&f4(Z@Gnxx8w7J zc;!sazkro9=iFJhAAuL0>zzN(CyA-apXKemfz>wIUc6Q&*&bMV8jz*cUt{PV=}-1B z*c05LtH=gx)>dpj7_XH{_CQ!UbF#g9-QD0@_UBuK{lVocGiPnPO?eQnn@PDJR?eJq zm)Q3(0Kdf_@GY<_xPWEmEVpZ{5&TBHS|-~YVdc!(_UbJs1Mt26fbWL=!38Wwu(sVE z!FSa>6IigHMz9>>bThgoA|c41x(`0VC5L%2~OzgLw@prR{{xr$Zz|ki|gu;-*)L9 z^6NUjP!S(fxoZ51@ypeR0djC(b;gwD2@{^7nCO7tkg_hat?fA6_tK=@M<4EciI7No zxUX~!aR<)zl}@7Hzi_;H?u0H}vY&D*d-O zYf&1de_L0&MEq|}{FdWz#YX9m)DBm4OT&$@c_UfjxeI^2Xo&yuiVEpO`eAd9*uql| zSMf+6uy`F_FEdzP11np>QqoNj>2$D^115ol4wmO6ZHNk%_ow@+)Y7p^y;^G&2Iw2g zg`waKaz}2YScx2t{th(>>#*+FIq|2ITbF=O7#Ui>*w-?@WxX&y(xn}t_5P%cbZEU# zNNgdrrWRz{1j8;cLe4*6f@*Z>*Q)*o`^?!1O1~nV2%qM15ptX$tpM~F+zMs@`V*{d z1)$#xiS*9yt&s0uyF6#`-{B?b2)6jIAc@Jy)NTGd2>$VHv2*t2xGl_HuoPC#ycev} z_nt6%!pZ(U;Y8R++(@vq=m}eHkKG%N!|h@AhBdHqOm9e#QRt*ZPBjT6bW(C}(%{xg zN@mj0#v<(?hIfQ#T!028XD@3WKjC)gL_5L*(zwXPLzLgmNz@QU32Y(;b_7sitNh?`y$=fF-zT$)bVJP&c_J^cv8ZGl% z)=$)1K06_&7(BYSd`d{fPD&|mg)B5$Z_Go#hUr=J&@W+kIRirJe$t7cY04)fqXG8J z^E2E4=FIbBSlOC+ejp^$%R-jPy#>Q*2KBiwMPs-{eKtv8i9eUR{Gyt(88-Va+zclB znXq!^?6=eV3|r=Zh(G^>VE1tOZ*Ls9Fq&fbfdg<;n0;VhSUIK-BuE=|<|!wW1QI&+ z_(ak`rZSG>6J?%>&sucn%Vqnp#b&tII=dX>&eEirM%(PjJmyG9Hzw^^I>o39iRqAH z%x*Q?m}TAu^Ri}{x4?dKA}?J_IuRyKc`a1SayzKpg4fIpDsP09t)OzFkVr47SRiNP zmbVPf_mMT&6QRZVUf3sG&hl3EsQotWyYc#&wC{qIGpD^+rx7v4pYSLCIP4cL@nuH- z&}xHC{W07ICiO>Q(HR55eV{QBMtFGPcrv!5|; zgHM_?2$Lg|lOti+kD7r!ZmABX6NbHo#B@j)I)f$~lgN26Cuf@9-ymJM0rKY4amHZrUHl>u1uw4OWh!onThiiGiF75=iL8V9%rt zQHjC4lvfn`tD~FgQykHkNdHcaz=D#qpH1P4Lfh=fgycvN{+g7BP7wYqB&I`xFuT=k zBS~0%5z0%A9=&V6kR-4~%89(xK{^p8YDJ-Cx&5>;53iXSROZ0SR#52{66qxhYDJ;t zErat>WDPbhEzU>4KH+i>uPC(aw`m`W*UzN=B3Ld<5>i z&YssypG8O*r3zedg>0rO%U2 zgiqXE6ah$Og_{--T@=pVunTSvvp4JrE64PP1Q~@+ zO5{|NKtd-a?@8LNRZ`N?o$9NlGs}hAXe0$G!rj&xeWq}mLzo76WQk`Y@k!VpT)yFL4maih!|P^J{ur#BIpxqchlBL*{Yn28_6e7?xy|9G z{cF5_ChcFs$}zMP%<4KZkW)bd37r^RoU|b-G5A-y+Z>(cq5Q~5K9U+d|6(*GIeS?% zH)StqD5E2jks~?Si5i0C)v8nJZy1y7WrY ziSSSh&H|LGRX>&N9Kj}wcpKwW=3(juZf57W!(*7N+978+7tgaISITa+3(22oN z(uSzS;OprgkDF227~P28b3Gc5oL#JW-h`{o?K|jz+v);qBU6wgCD@%>fITXyuB20f zU4=w!N|4^XF^d{(Bm}3zfUF7QWY|Ma#-&3^CqkpyEtVexN~%(w51fcs%8VVy!OB+b zSd&yj#}3(Nykf`BK335EatqUasF<;_6pbA>ko{OLZt$Ty1B==*$+Q6nZJfSfpC@-flfl&x<;P8cyBP3m_YF&+^T zu@Pf+X~l;2$8^+JbksL>-c292O87 zd%s{=mJK4wN@TGJA;kS|#r?WQ?@aGZpY7=$Jw0nlBrYLD6OutLL_&}VA%qb35JDsp z5yHz$cqKw2gb*V9s;jEIPF>FS^R1dbXMX#KgPr--Q_rW)^E{_covLE4XX!w$)O{S= zR=9lJNbSfrG?G6)-(4&$&5sbi+iX}y??OLYfKe#*HG6P$8+y>6D=8Np(S`v9sJ8#E)rTi;X6F+t9=S>&kKYLSKKidmvY> z6qb(=UVY-DtJIq>4G*xB#H(!hwu3wa&)Q(tw?lleTs(eRt~gRVstp7xITkVox_ela z){f95<=Ixaxh1)t1#Rs^wbEYs>ImV)L40sZ7gdLQmgZRxS}z#Gn_zcVvAY?aT2B)A zwJHC9iA9>zeX9TVB_a*R|z!j=ZiTuj|U|TzUO~ysjs&>&xo~^7=t}-B4aX zB(EQq*N@2SJbB%SU-MC!8NS#1>`yev{%v7&EdOVPcV{>%v!f3eMuYsH=hq9gF7|7z z!cOh*?wLjvW;_J$&CJ1yZ0jL#58k6(bOGyL{fNgwvDbM;T&m)tZGi562z;MazWPI; zctdS;zqkb562o<$hNftBS z=KK)eIFa)MuyW>{C(1h5VEleK<9A_aP#McpuI2QCbfJ35^ETcvk?)(Za^`&Ju4tmf zfWC2Wa8b4qlfd44QlYQU-|DTXH};+WVcZ(xNcbSEocTzYE`28^unhEvhoe6Pb_o@| zIPY9D-)4Ov-aL`@XJF;bS+8czBpSR=59fU<>=r6-ao)Mr1)KRvxCun&C&J2^GoKop z)-`C~5Kj9#*dbKfqGF2~Z*#r|Z=A^aDp)yl&J*SAy21F_aK=x=&Y&_D6T+gEviNd={)cb{JO;#&?G^z5{lLALFXc z_*T4WBIBE3<;)pRmtjw=J}@}H63+Q$*dE!a{5H4Ivt@SDxoVE=BHRih`ES6=W01VP3HQU{LWApnURNt`ndfsz8^cu zkK3Ofm+Cg_6HEE!)!dRQTg-mi$jKuojzoMt?zVmC6NYn~5x!FJJyKTLt*wrAe6YGT z>kIa%BZrpy{A^1uv4YRfQd_t@x!G?cxEu`=lf6{isvZeD$_YK%i|J@kYGNv{X}TR) z4#S%!29|?iWh<~8z$H>#oG$hzZMw@KeHJq(aB=z>uv4g{#q_+<0h{+}xB*1or@+dY z^PZ&+qfcUfb2#%GVaHIJ&*skwj!xLzug8rba=#Wj zExx-k7>cOFEu2db; zih~>Aq3RrGwY^&IuF!J(nx=hP=5bU4*ZGbhRS8_cdHmZW}e?%7x$>;(gdp&O1JOh3RNaYU2Co zhUNCd=DT>y#GLXrtZe0!H@QT5b>a*$C)4nj!FiK#&Kom{(RdcHIg1KHx8J6{5#BzL z_J?8R%xSN#W@8eF9~DmgaM&-@J9|xIMyb&UoBAQR4Mge(!paHMJ&Hb6H;NSDA)yL~ z$9#j8EF8Y-RX2Jc)YMtY_YU{uwX)$`@L+Y0wA!I9%Z9#uiS0aAY`GVn{JHtkSS>L* zO31JK4klGBoX;i3La{JGblONEcfgF~{i0q#-3oiji8;E8>1agcxqcFsY*$Sv-Hf+O z3?ete%2p7$o=c=xD9CgDoQz*)wggToy$E}R$~bpM#Y%C%vjF5}dSW zN5QmbF^SPA3hg_3mQf-k5nmOzfJl5gteimHBfF~tL8Ju_2~{9`)pzL10-+<_0-?F4 zwxfF}-#3siRXe%|>bnfa7qA=(k6mY&Npp|HNx4!_f4Nf14dh20CB#9#!%dYC`*Vr0 zP(m~rHV|@xMn!P~%uwE7s-id!cA9e-L`#^CUQs~nqN}(W#2|DmtZW6L5|>D?z*tv2 z$=mCS**$EGfGe44f%V4sU!={k7L>OVL2)9C@Sg+N&{@#x}lhQE<#)HeyKT{0i^n{852CwFS{1SRodpp4fvK7g$g1%KI0-uk!{>N4o=S8}J;m!tU4^ zWGCDlVg~s%tZZeFw8w(uD7azPi$LNP*b&ay9ofWJa1>k_ZdJUI*;kP2yc|g^&7Bq0#}c6O;vm%<9kS`if@u{M`XpfZn_JgyM_vVrNxD+HvRM` z)(0%?IL8*@j0xX$E)A=-9ORgG`d?ofstWucF0q0tFtuV~qU^O%7K|&RwB)U$CYn}a z5?Hb91RlN0e5E0&iOuU8xMaiX-PLnQ#aACSrL{sY<=X5kr_=>-^x)>g^&heJQv1Bdgj=t$Twp7({ zA(t2nRl|z5;<^haCT}8DI@}KX$_YKXn(64J17$0&pW&?&nkEk<Q89r@ zU=^4Xdh{0amIg&`8P+u24lLvGrip=NWmwq?Ebj~YsZD&(6uG$RE`#*e;iR{OokArY z-!iP(0h{*%+yEl)Ok0Fc7K0LqZh>-|`){vM|^n-KBJ$rCh0g#z6d)_%ZN6 zb;c9ID{=7#C_!baJq_4tTCz8Gr zR?eJsYzqh{?WeyUs|rkti~#7IgC_kum+b{ zL21yQFD=`*4`;4e>?xKR-ZoC^*cIzuM_7^yLNya_tusNWv7D=R z50;N(uczA>I+pOzadi8-QOPeKZ0Bv)_+osd*1k^kA3s>GjWy-V8J16kL%F_AWpU25lGZG6Jl#;7z@DD{jG_AHC#cc>N^ z8q8IO3QLafuI5WaWfoxDci$~9mivxxX9PbXU(Ln$zu19Q(DnT;me)h%^-y^| zOkNL{*CXWhNPdO)@z|XG+VJA^=A0%q3Vw4=k=YSA-*gi1O8Ax?A7eWDoTAu)zG1n& zcHu<4W#Y`k39zy?^N=>-&idn)LH9b=jX=8Bz@BhE@<%q^iF~Cie@K+hQ}e}F;jI$M zUI{CY1+oQm>%OPM$vz2t0wwD@$^3D=RU+9(Vdc!pCaxWwbZqF2d;UrtD|OWWL|se^ zoBpD57U#~cU~$ydpsJ2`VcO+_4)z9>t|+b=mfOYE(Rj;5!bif&nG;^&*MsMUV?GCV2^BNx>%p_| z=83G&fR!_6?OK_6M>yhJVNXyIi#Y9G#dR~@Dv|7suyW>PC(8MKBTT;>4);aa8C1Ap zf2zid3F$)hp!5RXFp=+buyW>nUB@ubu7p<7(JUs>o&s9jx$YxdSH)W;lAR7KXHIrJ zd#z>MwY!Fc-3fLC^{y3LkJjJCS$FKG@kWVUKLsmi&UNY%^*+(yTM6e|h8;rXJA=<% z#f-N(7xBi4oC~mW=A1k0FLVvSmxKep2=)XOu!zk3HMDgHe*Yml*@Mvx(9~S{S533 z>dh;jb{p%CEWZ2V4HNn91uJLHw~McxGU%QZPWMFE6;!(7-W5x}EVd`$%@Wxj2P`_RZ}}2ai|k5xt3Rg z;ed~Z-9Zh^V*O3ibbAi+NW5tx_8PzkpCZ-v_WLTr2BA)&UuSj~4;zTEoa zy76oY`+IwKbZm6;$cZEKqT0G09sM^&XS2(qk;Lz(=0y|tO8Av&Nq=!JldN?$R$9e3 z$vPPxpU%P6#xHdnR%_o+Id;kVyzj75TVZ^bOC%zhm&n8eN%wjQ5IL)a<$T|RX~|nh zof-9A*iBC0(YZ`VLn4oxY~Zp2%D3@`i2>zXu(B0UzRo4m<13Gwl+H48#_yOhfuFYh z26hRRa{Rc-MApB;n)3IVZr<;O^ZpO)7AkM^xXDE3|He%qGXEE>oWR^8 z+pB^>BnJ-(RWK~~?T9QGE=zg0ZT@{!yjs|985)_K!>o<_7>GTGTAVSt4eJK>up|eR zDiyZk5@VrMaD97s49rP(P}K>GU>`YANBb}xy-pBM9qw=Mj=)jDU9M2aC80`#*SW-4C=Hwo*w;A@C1uqHYcUC|esaQ&CNLchNNt4+*w?_D zB?gk!U}YEgf$AJ(Z7dMvew{7m4zBkdQmR0>mP?F@0>QP;{*N#zD}DR{ zc9IizbT89!6$lCI>>t6KB?gj*VPz|jJj5kZFA!XW$1e{q5LRXqqfr9dgyRK50_XQ( z8Z{#4cVXqsImZeF7wZM#tT$;JYqLN|;Jq_S7HWrSafcZ5(-*)DWxu;5iqAe!$9!~I(>*_j-9yE`CjZ{c?t=~gPTU3}{M%qF3dsMH z*%wIuAFywzrkm_69|bq>DTzAY<{R!4yGHTC&!VWO6} z8ns5G($ps0jcSv6>TrluKH6B2NLq_JFIwRlV70Dlxu;smv#RF;R`t}EvbMINHidoC zQXKBhFDVrBLnDhu=G96q{TBC2%epQ8!}AM6-OTCT@&7kcJGQ+ImU7j?vb@n|J3HxY z@XKxNq@%&^YPq{m>Miu-hq{;Lio@)ZEA@5{_2&ljBl%hvJA1EE5Wp8khp};2KRM%Y zc|Ag2kL1^UZ34?Sz4^gv|HxkNvp= zFdF3li@V;@37h-9xDiC|cf-n=bKlJ2vK6I3BOJUHJ|^CPokkrKTkuQ(cF-O# zui*v~$IC0Qa^~Y@=0aW+9>||T_&kL62(sY`!RcXrCJ}!#Lny_an{L>Zf%p`_?tpZv zdLo&Nn?NK!2UgCU_~azk`-ih$2)l!N?~Au^anmizd*h80DenO*Cs6j7*QifQi0NPP zQ0yV0rbagM4N!7w37c9QeXj(){-G$3*buRvwxj3@ABi8v-=p^vo95;Z-dsA3BfwxB?r)oiw5IiJQS#X1IfRbgw;&jV`ReF2$T5vf$Or2w_ zcEBhX1$8^M4CE*bhkXZ;DhVoFVl0#d<5`c5g5X;)8+ntcg5c}0i=23)FEJerM@<|U zRL3M6RTBm0h6KJd_yz0^DqXQrXVY|>@z3$5 ziHz@rl{05NT`fSdIsYr1^FLviP&tczUo`V=*8jkpC$jzVad$x$wB#=3(&I?2JN%7yt{BC%XZFRRo6I(%Rh5QoA5Wsg+>aS-e@=NO1~W;z<6 zns_bk?uQ+N_Q&lY#-N3;vK52&_LWdENQ|tY81%6aE7)3^Pox`zCg+y*b#&K171&(= zRNw;E53De94!PRlqa1day$y4%62 zr<|~(%bAWwr6xA4QMTJLfwHC!USjIydI_LaX3)_-R9V0Wd(`gzzZ zRMxX%9{{Kx*uGL^}OQ0oJ*{rLR{hJ9npUEB{B3bJEB9_&o3IOEpF+gp$4SZ-*Pm5a{h3sl3SK9 z*1s{xFCWQ8NAboMMwhZap3eSzG5c@+u|U+r{%v8@%m10@Kjrv3;C$hlRg!j2$M;%a z@y6cMHT#VmdMz_1uyVSZ_b2?jfU}v7HZp5s0#GyGPM$x&n<+XDZwoubc@sxA;rQ~P1kPLIjT1R<2`gvLIkr5=#d>Kt>wefNRMzJ5 zpakA|+yEl)#jtV$Z;za=$^wxPJS0?E@Pcnzl4ZfTbm!zJ_EyS+<>9I^BYzbndtqfOoZQVN(kl~Y%C$F*`_Ul%4l^gPRCo(^3YD}-A4Ugk-f!Rr z5P81_D`(DomYR%j-XaF`k9;AR`G!nlG#&u#yIXu|?C6BeeSO>rBKNtlasqdcoUh6T zktjSQRN3%d-vKPkhCioUHmFzm3-nj{OW+~vj4^F{mCwx8l9Z!z=s&Y7nON@oe zq4_F*L9Y>9&V)%>rNim4r<|~(VWy)|F<#{}XtHfJ#c(R#HZi801S?xHR(4={tV+FA}CRVb{(C00-N_YJ~ zMrsGQbieo|s`k=icW+_YNbQhO)-7%(4elOo;c|V|XklomTxwGb4fRs7C|g)G%6%9b zD3`1K-EH&HP(0vc)_2BV#y-<$Tjz_9X4%YWe7fvvc;q^V9btJtwnV34dEIdS z^(?bnd!%&Cr2W8mn5mhxE4ai8X3|ny%iClZ^MDa`9){V;+e&?={}AjlC;sSGrlaAJ z2M4$?N+Z<6;RCo4#K3bOtZW6Id$>e;FX86M?`h?on@s;*W?0~Cz}v8UsPyN?KdiO8 zVke(BaZ`w6;B{Cz^D*!NwI0TC0~t|Zqf>&%!H1c|XgpikQD6h}Q(MYd_#kc$aV)F{ zD<_Nvk19eHA|lCnNT@>OGT%Wh3z7bG3z2d4?K-r&qaPl%&d^gku=Oho=v+^3sFukb zg+|_Y7^y;IF_%azG}6mAo%J3YA>}L>j=W7&VQ~iRA}8PIIHsfFs7>S{g>#avs!HNC zyj5c4I0aU=BF7heB~;`Pqb4YFbca~M-gNyn-B z@w~#!)yAzOjNI>wLWPlgxkO?ZNprU!)o~-5{2eA`MU$6cPdQ;nPcR*gihMDtY_}`Z zzu;{XW6J-*%2rJI6PHLYTgWAX%3lWSwNFLwN{jWHOky;OQJZyqiJesLwIJ%gMM4_oJ$tL@kF8KmV>L2hJs!$>Vf zISPkUeFu{&98TgAD<~Y=vt)2dOIH;&SF~Q&ut&m0W#uC3fu|tdx6)>!&MJ+T3hE^C)YtTG^M)M?)KQps`dN2c~iGL9SoI=%UB4h6mq4$;bM-3k#;BT`c1H; zSYQKkX`9(q^QED3g>^1hV8Nu_6;`z}TloJTF z`V%czWvYpNwr~}z%j=&l{7_!6me*_K^+)o0t-M|*uRoU8>*e(ZdHspJ-YBm($?H$$ z^=5g!MP7d8+^ zi@}svV-lk=S!q)i8*FOk+w)a3@aBoEr^3pav+k@vBpZl#4oAEL>%CFhqp>3yA7 zO}Fpfjq#?5j5mUnGiSV}b9IBkyE~lsQLt;M;ab$<&TiQ3568_QvOfe?&Yb-ewZy~# zUJD0)ChQL?aFL&t?Kb7p@wSPSPlc5;r#z{#0>)r`OE}}3U~f-d}nTY~p>m1w`V#uyW?aCpDJT8l=A& zPWnRF8&uMwIBQsL6CS}^CK5gmR?eL8wD?kHgYy01l<$Q-LZv*D&w0nKw@KfPw@xH| z2dtbq>FL@sas%}n;izAOT|z}I7JzEz+pJ%~nX9SnxbD2bY zN^$WT)6of=`yAW|BKO&_a^~D8h|eet)C7Uz3=3#C472ZFQVG3p#(qkcfL zvR3=_#IY5@mwgA6+KS*yTw(=V5u~=~>f~m>jaYIW%t_uhYD2VZU`IJoM;9?24T?M< zxoNtcEUv_x9}Q*y!Yu6G!GnwRJl>`frNPW|u`Hi9yVJ_oB&cFPnU2 zu*~*k$!mqfp74-$#+cd>tv?xuc0Y{Ut7R!i>9Cvcpi-s7&Ril9NQ&DZPL1{42rosL zl~p_xU{^VDM~5*T4NGl?TtumcnQUA=jV!?%Cx(?CSlJ3I$8d?nJI`a=u~Dva6WDvy0IG}-Ny9@zl@UAmc0`sDH>5lJ&^$||qdT{(&v_2a z_%EYj%Q^PicMc3QoO%w-%B(L~F)oLhDlFdTfX6~%(PURgCp};k81rCuvcGC};zO{@ zocN>FnT}pyi07B)F&3&5cHr3nH-Z>=J^(9QfoB~qkzS!;o&%#CXV5>G85US@900qA zO5b@7jOvO#2KK{EA&!B4VCBrmfa@F>C0G=g{2^k6!1{tL@uz zLZj7Q%mZ-~wOr2Ar$!&fa>LUVl1E z3dLf#+G2ch8;5m$19-N;u)SRB8`c)t=D6+TQg36JabX)9_Y7^agzY9K8 zN`9!H4aWLHytXEWDm$NGq!zW&XZ03R15_;!cC!MsosT2zfpMVwgnXsUf?hkzg2wII z`s4xs!8TkfunM}HZS6ah?-{NZmbE#1FH0eNFB922wpaZNZ04fASN)&m^)K@JqP+f9 zUSE>em*w?u^7?mqeMMgXA+N8>>ud7*PkDV^Uf+<{f642c^7@v%{##z(me+UW^*{3Z zuDt$NUf+|~_vN+YEYYu(6LZ8LS7wSx2x}sI0~3t!58w;(fRUMB=@$a^}RRqr zaLTX2{_vyBUO-rsU%}fZQhpg$&Ybe9<|`BC$!8O_YurH{r zMFf`%FsumvF5WJY?%S~PSfE>9LSoR}B%JQXOrkv%cY`ip`eM=D2yd52_rtJq_H@PK z9fR&s;dBp&eSzJ(a?z1R_Yk~YBHaUF<;>|$*OpBgkk1T#QCt>BWL3h}k!=7}J z))&YbckXuKY`1|uLA`UuX+(TkpG9^nyj3FEEnwx$$xd!APd4yI;duLCcTn+)Qx2M@ z+m%%>-ZYVM4pz>b@dU9p+yH!GIN%Z37gWF^^U5{t)*XBv-Y${uIk56rpzE05xHp{c z-LNlEy6*XnJMeaibZ>=~Gp9SQu&Ht1z7|gQ71$3{vRz^~s!i>P{4(Aqk?M=Ea^_Sg zH@`wL;LiO@aKSu>NwlY6mS+p)*g|jq0gV-xXX8y18P9^1GiS_B2os+G8Ho1|N4y8@ z4eI^dI3Y}aykrsH6>phHcqdpnbHd}<=T`>Y<>7FLVMkEmPT;}0{>_-hwSqTFX*ch5?E_o``o`x5SKk{kiS|_A`kk(I!@ko$jGIAZ|3O$ebM`X^wJ)I!=!b_x zKLqv(c&BUj+q4hF+b7cg46K|v?JoW;x&it0aLA{^uAoAm#OreL3B47?Pr{oevON)2 z&YbOP)+PW3=NrN~UkAH|%2{mQZFRxEpRd79ATqxSR?eJxXMLXp1M{=tn4g9{LB%ZI zJ@Wk{th@P1yj3FE$6@8n$<8!(z%U?BJukQ#o5UpAQ;ms}e2fm*cXAhQ0Fn1NSUGdv zU3?P~gYq`vl(&LiLA{klW)^#=SoiW4c(X*do59MNvz?-Le=z{}g#+$|{XqpRzDZZM z+jnpdZ<|Q@XjnOO$`hP(B_rX4&x3tIB`j7FB+ZeWgSShhdlsymIo;LmU5|`=`R;Ji zcffw3l3tTPM%jI^@9A4{8;I0zhLtm?K0)j~WsrU)ob=1EFQ}x&JuUalk`7e!o-g9< z66wAGD~|=bj@3bPz8YLw&t?+sDXklH-K&FU;q4OXt_mwB(DgVFK%FTdc9ZvzP-hC< z%=a0~MHjI1&gy3zKC~@A-0(Nz@>_9vL|h)_7ugYcxY1+dQavMal_g86+ED^Wz@yU{ zIBEy9+`O>}osC$xQ`@S{ah|}TzJo}eCvXs#SiyM$sU4?0p7q$s3n#*COo;y&7Rvk!Y2_4Ax7SJ%Ob{59}2xYq4dW*#n#SF}MXp;)`JA%!#j|Qf?ykuZ2@T z7xoO5y4V28)eD>a*|-%%@?VCP6Ucice^oz-bm1YP>W8Vm9g+3Jo9UjBJg!oI@QWWw z_z3F&7NVRZt#;rj7Y^J|Ejc+R5+3&TzA70W;u2$_WazAS*+?M&g6UYr!ardjIRQt1 zVmca+npnfZLCIFtRKh>-R*9kGZ?LizI{wNf(km0Dh$QRayTJ&0_gQ>Dz$CD;naWob zgUWV0L9BzfO{BaQteiRJ87iqdNbeU;dLP&)RMKLtyl%fudr!Q5BJJH^@6qs=wha$k*SFoquX!Cm>=Tp z6JyNxVPz}ET+SuZs~gr3xmWj@!Tf)jO<4VIG5;UfGgRi{Vbj$MoBSVfD~RO(04rxs zer=VDS4e;I`N8xjFp1HqAMHDSUB1>RsVDXb7>`>*904oC$_XRDqc~9Yg-9bF5~{v9 z&37ov`eM&?>x<3<*qPDg0j;dq3m&r0Xj9w0<%9z}0eQYU5P5$6KjQ}?&#wsMv^3=? zAa?g1JgR`$g-fiUfLLc~N5@7dkJJ~UoXr-bEE2e42jI)wfF zqLF#E!&+c7&Nln2Yh z)y;afC&p#)Aa#x~!qWvd5v{D%YDUK+Tw(=}kf|+rpWN)X5lp@TbCS1> zTG@61>?kMd=rpFIL6L=g({#HO_!{0cF`S$WD_h~@Y%Y=B%=1h!XWMj_LHa&sPGC)c z59|~wX|d~o(E*$HUAO^6-nYZbne(2dW@(d{zaGx~RoF39=Ch5d=4K~s?tjOPAaZ{R zR!-pVk@HpAAQFX#gen^bd^;k`hCikIZQQs*Z;!sHZNY_Td~yyn!Yn6NF>ph*yyPer zHetqNk4thGsbXPcE-@C0h0c1HjqGtSOhf{K5_z%c4Rsl54os~gOaVPC(8Zs zR*9iwA6VH69eZ+#^hyM|sLjFm6lO_ab?^n)A5^~aMQv`%pTpZGQa&D5&YW^=QJaJG zwc(_%hJ8XMZ7yna)BXY8K9TknuyO)zk6f^*zmaRqA}r8n z5nf@vz@n0KptWljfmy31B1d8HvM&c!7`(_O#zJAxm_=A%o(?ec>nJCA+onK{@UX_4L*b_$iW zV-~^1du!YPBJV9><;;28vj`URrQyu`VaHIJC(I(axaV;rh};*$$_d;(a=t1XM56GJ zP-VjlzUfMq4g041@?rH-K3B;PRXe&1rE0!1ST5$OdF?&KRq)t#4!qjpmTQKvSp{jh zX1A8M9JR!izN1Xl65rzziM2#}X=awg0mhWWuVHjns(BFhn3H~V3)9i))I`{Ebiyt# z?#GQFhMjw1Wh?C5?JJ?eju=xxVduLcR|+1oI;)qvR27lj%S3%EpLW|@~>YMG)s zZe)}rVNzB`ISlrc^G=U;XF3{{nwaENw%dv1V7zT&A~^t7wi3yHTp~TnavK-rFN5_N z%$~pp)ze_FP+7;faZx?6iJyX7KqUSJSUGdzv29$G&kX7}hEu;D_6(J}xs8kJg-!li z+zKN3t6}8?@*WkRDjG$)@Q_gT!zR8Rk@drzl(%synA^C#!8(A2DCbBU{WsoqL$&1O zs3BkT^}Z?@Uf~jBp=9W+voS)+n%_j}SjEEXOaiO3oq(fNn2yGy@y5FjO17$|vuEP1 z5<|x{SlJ34let8CWkTbPx6OAKW(jupS$ubd{Xylcz43NZ-X3q8NO@aWIdjVKH{Les zW5Y?8V4qM)TW`Fbw3p)T6KVIu$_cbRa=9u8L@Mx*Q02hOz6nW|0|%#D4s;z@u2k7J zF4{cOb?``a4zt=G!ShH%(mE~eILd%)e20%J1Fqr{D<}in^PzQ5OCL!ewEWUq{@naR zX<5Ef?Hy3YT`H^yAO6H_B3t-F={^vD_c=JZR!){z%@|M_*O9L zsZ3%t%4{38_?oS8$4M8eN_!ICFp+N;ten8tBc-aWEF!aqgv!cS`VLf?l{Zg!9on=? zzIV7M@7!B$KX|0Nlk-t66A$((S(r@ST5TWSk);y$o?K!D2|Kk+GF|Jt5m_oQFL@8C zMQLT&Sx)59(M(5ABH}Cv&3rq56!GSX@udJOTk&NHmq_nPewO$;Ommq*{1RqTVA*gH z>=-I>v0}i{37h*ja3hG^FMyRZ=f0Nu%xy*N9|~vx0PGwp`*n;@-L#I_{O`jJA@aWm zR!-pWQ52}ULL?9m2~}6@=GzfjS4^Lf>ZYx;a=p31YGE0xEZAEg=Q4uH7oow+Ir>I@ zrCP)Cy5ZFI1QS?au!>v`GgV}a=MrO~$Y`>QdB8|K^I>+fzpB*u80<19{%CEcqn8>Y z@whNbBh&-UJlqIk;Q0`&Yz3YTxI}sd#~hKX9gZ{TAIS_0EIST^-9x26m#3b@uGq=v zVB8eq7&rh{&U_4fKouXY$H5ul7{fs3KG$ zB9e@UgepW<20L>8xQ>-N>VFnB+$}4Tr_!D2n0#P;ih8J8=*bnecM$ip4q?&EIRtC_ zw4CN>wU%`#W}%kS9Pc6S1u-=qXn!J>~q8ky`6%E#H3hl$VXvy4&Wao?*5t?DBTEP+%{ET7N|1>!N;kCztyw zxq)_eqagRsZ6At(d~YGg9Cb|FV3%^GfqcD*_Oakih<>!sQ}ssbL#nNw8myGr7tZYq z9>)&nO4UL!AAgtmGK<3XcbR{a*T2i_EAsjed3{x0Uz68=%IoX$`i8vzOJ3iU*SGi; zenApS zNqEb|a!zz8=iw+U~Bw@f6w1+1Jo;qk0+G2lkwaQk3K zP~lGCw{N}LlCD#CZZF;_k!ucC&YbH6Q85~5FAPUJ0{eoBcCtV#DqV~2d3d`-y63>k zV}ov?WYE1gobKJQFL1i7B(&(>fwxPfdn>G*Io-+4CnW>$YvF)jf!#p`EcV22nr<_G z8E=}%_(fPbbH)?IgQ@{|?ze+0=Q&KGJ(aVF&+-A=x`Suq?GowEf|awUD<%mHx_gJy z-2?Uo_4XBX<>ZD%cUQb!BHf)}<;>|$loK=t-sRzVhhb+>@rqTVjhQ8jZv}6d$hQnD zXU=zWb9T%ie0ezGOJR3V35)#OG~Ld>m*7nk8D9h|XU=#+-BDHr{YW_Ahhbk(0gDJN z?6&DXgttqi`v9z*Io*1Mu1^db_wW1Rc;AJcLB-pQ(0oSQiqLQ44HNmk2`gvLcT!_k z-T=JuCBgOcMogkT^|P3HZdh*L!5_w3CKCQ2teimDV-a|2PP#)oO+ja7VIe}?C1ohqfwFDF)7>am~sZ*HZi801}j@Ju5ae+E`gAn%d&w>4cQC7Cwl+VK3CQ?2FR?eLAbS-BXpzjC= zeJkt|Drm9Ufo8tV`ewX&BI_Gr<;+=6i>Gh{^~>R?UxYnEMLm-*G>cnrlYRkjok;pQ zSa}SPjulh}>Dk{6j^4AF1on&ol8#w#lU@~Xok)5*teiRNSw*|NHGuCL4tyurF;w8< zJ90-SZ0?`NjUaOW6s(*%_i4r0Glv1Z5)Ql!dxQ#H#`2i;Ht8bXI+1h%R!$)8F{`B} z#>51PhlH9Ko9mmDYjRTxKx#G$99%3aWFsM9M*R z9^rFuY|~BG_9^Xeq<-LZ>krpGd(wFSS#PBEhwES?m3&S=>$3G553q&U?qu!Ku6w3k z+Vy2Y2eiD8F`xAIu)RM*z*XIzO;D-`iV1 zA7Io0)(@B%^)rK*=z@`2-zX1@zI-WPVMqFQ=h@`(@IZH-t?(54>bI_vv0J5H8pqBM z?p~U&l=8*V_fvu2lLwBnpZL*IwS(HA%C;Cec(i5tQOzT@)-TjCgfV=hAEq10u^ypD zI|Vef+mT)x+VvQ9_^)vFizq}qGuLsKOLGpUAydEO2hsx_=@_M+u9wDzs%Ii_`x=3D+me+21 zJw{%0^14`Fd*roOUi174FHG5*{aTs}QwW>tewCRNIGOVm-mCD*oK2aIKA8h-s$0X2 zAkO8S2`gK3IoWexV17wu zHQWLs@fomk=ESF{a{>(3yM?pf8TJR2wK#EA*=|$b0dJc~c{^Bn>`=DC_)s|ILD(OD zlwDbS0B@T}If9kP4&}|wBJDfjlrM(;;YXQGeMm>D+U%Qn+eFG2!pfOb9?#|^jZppT zaJ&z~j-cWd`&8B^QZ26ccP-@EJMO%oZWtBaK@j9-QmU9Ra<=)Z<@$>Ijo#L5BTf{t{8TPCXa>0dJJZ^$}P(bFQ7t zMGFkD6D|)fvBoor_LNu?`Nwy4t8KC?cMeDR<~_DsB0BH7bnHXV8eqYg`drYp=#6+EZ)G6FbCOW-BJoz}qF#oeC>wPIqc-WwwEM=WxV3zz(6_ zzca-B%Mq80>@x)WF5V7roXB|_SUGdf&7FQXGv5{uhGQOp{XxYnR(>>Abg>2g*4-T8 zZ4)W?!OCNYvh`}>;&95}g#F=1+4XMXLcDDv`=B|PCOV+`F_|Rew1BrC+@}D zCQ`l|R?eLAwD>1HMrwX5obwy7N2r{|)--YJ?Wp}4-a3)=E3k6rq-Qxkr!s(Vcx7<8 zy*`s@Pq{6=w{UdA<~|oUg2;UiteiRb&iWT_2I&36K`(?oLA|rZOc(zyPdZP%o!T33 zl}L6ESUGdD)3vV*4aA=hNBmjXB~-*>J5bGh`z~INH&0|e3@c~Oy0iXqrh)i};fTKv zdxDBs+{OGuRqHOk9B-9K_EK0mbFy9hvs(l0AH&i90d@ryt(esmUkh7oAHka?vV9m< z&YbNG{o7{)^7!uums=|{iT0FRtMREX-F`bpzYjC15ox~*D`!r-v;HNz!FWM9<4xMe zSj1@l{k(M_Z;ZD}B)bu;oIuuN^EkEtoY;lTLqhF8H{17POu7Hu_UUfxIkWy5V@G_C z8*PKnW8snN%oiza95#s^o6=vdlyU?45y!rtCExL-wy0amB@(x&OYu-O^V3r!yo|um z&R64TLlNT7Z^dk$^^G1Qy|D_f!F3||QqYQ$&?3N`&9Rh_1K6Z zZ^CS>81g#oA}8MHIi{oGsL3z=Tq~7d#TzAtjlaXnR@iunOQgqj@{W~C?)dpO-4Ff% zz4I)(>oJMZc*wBnim!#5rrXaK>*7rl8Ltg1XU=%~&gD`yS6~|=IyiqOob$f0OQ?6T znD5ifw^{FnH&0}}JFJ|*+9QXnGC(8&4+-_e@t|*Dl2077C!|^ijAL__3$!}mEAS|F z4zW?+P>&m`WgbT%Q1cx|st`DnON@m=!1Za%^)MYPS6mDG$O$<5Hq+5~)Wl>32PIoo zuZ6D0TP22$AHd31=(vJQq*n?|5&5+4DWlSRhFOAD;TGSgV1H2gibYt;b~`~lfwxVh z{1~j9K-nX@s{|o}gNKAl5U2ZgL?(zG(w&lOeudQ`_jhL3#s<&v$H%!>p##@B>QdaD zy2TvT9M&PMq?Q9trIOiPA~BVu7jK#n%{{t}=(8gX(TYCX!)|kqgXrT-N6#+kr*zxm zmJnmn*08b_i?;NYP_amiuAo>nE5r&mXSKojREyP4u|{1hS5IPHz!Ii&ytQou^%ha) zL|+0b%ACL@#z2&De;{%h49JQp-+`UvWE_2k>F6WZw3C!u_M-vaz_#7ne=>#W}cYN4MOQ zJ=aq$EaOLG47EHKF7~tYh0WT)Z9MwcCbCb@^Obz5CoiY*pD}>6?v5B)wV6HTfkD=6 z_h7D)>#O7j`=#PjTrn}eq&PF)#XVuvEL}fD`N%y@!6il6&2da8UhlPboO2vR zuQ7LNtZHI0j-V)SMC@kaWz%Vqu7VuU^d$NZ0&_ zE2USiP8E-sF4~{)q#do!eo=UQbKK+3%^qyf;#;(s@r?&$g?m%HaU$-I!^(0jZrt=t z+MH*q>1G$}9%dL8nPra@>tkT2P;cth`Qj_112*qPxB*1oN5IMnyjA`uM~KObhl@pa z7*jn^XjuZ+iq!CX!ZTn+XLDCXOVd3pa%Q!^k{{|X7kl%)9o<%4aTzlT8@5FzODoFZL){8@Gix3f6>`6GnkY z*-+29^dpG&a(1&EZxduwSj!Gqx-mgp|8K%(LIo>Rtn3tIgM_31Umyz zt+!?E(Zd!j*AM$_Iib<`!THQ~X?nwQEwwqyj-z~snJPOD=MrOK4x`Ra@4u0MPJ!83 z`R5C;!<_h|64TM()Yjn9$LfL|bUufhKnyy^!^&3BS;i&OD?HW`3EOg;LH=51R$%3E zHS8QJ`E@w?gpSz!e}Ef8Rq4@c3_KM+2A+T&L>&X`8MTMi8G9T&h8sg1 z2fv4v6UKo@<)DfWkytz=RPk|$Z%1VDv1_^uLdI7s!=)ar+?aC>8n~PzuC|M_+$iP; z@}=r=g`vE&$WVVhUs$GPEJrypn^}w1=5pYua$**j7z^b@7w@x?NVbQ0$R4VR(`{iV zIgv&mWjY!V`8GtLlFh0armgX2iQ!^PSlJ2}3%EpjWrKVT;v&41nG#qk^urFJ5{|zH zN#LBv8z*vJ3@c~OIrbXF#ro^vtj~v?LS=2f21(%kRonm~@2|kh3A{aWxGDogLhz7K zWx%Sw9g$_g>*=nfm^4&gQXT5A6iQ3ATHtZk4J*eV zDmAg_T-k0vW4wX4O$;ut!OB)}d4)@)S2V0D9?_M*4Avj{5qf`GtT$v5SOHCCEnaJx zJ+O(dk6S<_J{MNbocJ1Qb|I1aLE+T*hdo23zLqhqpn74GUx-^lB)>PToIu{A3Q&cF zNEaRws*w1NZ_tv3#3tz$5)=A!mELNu)UTBhUxNp%bF|fRZ7U<1W^3unQAC{UJFrv{ zaWcU&LFGEUWnxgd23EF$%2iw< zy#iu}NWTql8JwSI)?nqm#rav-CsfX2Lp0rfoA%Rq`$XDL!pfP`UR@Or3B+ey8%%sE zlNgPH(Y~|SG)jj?A8hKAa2tr!yI|!6>K<8N6%Harcu1(i;mf|mR~8QMq+2*lF7@V1 z!vkyyKRfgz{weBy@Q8H=7{V7FjYSPD=N}qBI6rQ)mZTho!#=(POBD`#a*4#kA-$|J zHP&$>rBq;CR!S+uo^le8j%GR@bA4t?oOlK%je?4ECrj1fZ?D&zd$5rh3 zA(u#u9Vsr=o*+7H#EnN`B39h^9qc71)aWjzqY&m@B0p2`JnNWbXPo0 zvd6hF z9V>gB4g1OoIQksZ(YVw^_J~_=$C5AOtrKI(mtbWpmVA**q*o`bE;4Q0V+QZrnMGKQ zZt?yZ>=!C;F;!*v!KVIG+y)}`pTNqQQ=hFe?h44i6i)sxuy3g3#YcPYe%SQ?54VFz z|4*=T0)3C%5m`Sxo9^dY6Pw@YY15P&{TPi_&H-0j?5rJPtDn4A zN-4Xw)a58CKFs=pmECe^sgmM@Tw*Mg6qB3%HuB3pFfl8?>1a@DVx#V+ z>2_e*4R4wlSayb$t-!Jamq@Rem?;x+V+#j^^zqD`z)E5n>=Y_#vF6t3fX#adH-N}{ z5LV8d_pDg@O<;aSIP=S3$55Gzqg5T9u(^K+H-gChVputWyGQm{1%yZx9ulg6SkJd3 zvVizix^FtCEzPm7pDOH=??S1!e4JKAyuiAGMJnfzs~yv_ifFvUbiSd8l^gRLKR92Q z-LP6qSB@IuIbSHMhIoccjD;Fvy4H6iyG*zqWoFe8i{@0W1{h`e8fl@oXe zRSF^@cu1&vb*XPhWPz}9y3^So5JhfB_u~A}P<pqYZ$QJ9bNtoH z?Rz{G-Dvcp(FrYeIckZIvyNd8U~=@STH>QzVl31WbLDf3(-lUEaUe|8NPc4wArA?azdqvI5t+XpOm}tnv`UW6q7HO)SBHC+ z<}2E4>Yc1B*g$rU!nVw&3bPwlYjMw!pKkMoqVm%%Tp}?)r5BW@Yh5?;(Q_~|D<3@r z`^rf@`VG_3xX8&=&3ronJ%u+<3^7l@%2tSZ%vVB%7%`55Ld;DeRaEUPxW@Z|l zHv-KrFg7dD>5%N~lmH#!^tInH^#U z3pH1!`!qhjQXVe#YDLVctOuh}#Ds3gDJ;{*sUw1%f`^2f)HuPnBXUyXlj%NjOk%HJh6;TH<$_)dd>S6D&Y{-E?KoqGYnjPW zDtwA{Ch%e7lU!mflnPT+$BlYnG0e=$Cf%^7oYCK^ zocb-WXQ49#lydSIjDJte{qS#;vv1PGEsKg2rF}MLNQr| z!yG1ol~_*F(Ilp$5vfh#uVEXsWW#EzVK&|{F_O%Jm90p!s;`8KBx39YMUsE|j$j!{ zPD^(o@ubE}ke)#;m@Hz>9F1UdR2zbcoIqz5YlGJjPLA*$5-OY=$|c4?IGNn+wh>TH zf>Buk2=mWyfRb z7AMpDa{~i~QlE3F;hn56qY+nHZyDZrTS|YeD($8&F1*bbiwZ8caEZj=lHxm&8G7f9 z5c3>N%?dHkz}|9)nBOoRJ;aC&rFHx5IP(xvy(18Pt1XkAR7|CBzZX2`eXz0FN}GGK~l(9un#?_$J?>EQ{AC z(#17UpCHmJ;kEC+cVs)6sa;Ci1|-LCIFt6Yx^JRbmk7hn1}$lIIfXrI9IOdlLuW zZ!=4qm?@ z&b^#;Ga8nhBdv`u+GB=mNy$+pbg|B0m9-pPsz?~eB@)4;`20CVb=)WwJ`OXpQprbQ zPdTwiYcU;-ihR+oY`25UNAR|Z!DT~O*$OV}bBV-dXy)dQROLAV7(;`_tOnG=t_XjeWnsDCM(`WIo(P^p_Q+Ep)X@+ad~5XpZY zR!$)AQ3a?%LZk~12~|j}`LwZkd!NOcag+V0NR4(ebzXCa{edVbS5E#o)}fG_wCA5{Q+j!TS%0$@_3 z+s1RnbX){0TcP6{Tq35VZTlLA-sJe?FV4x%xTAtyKZ>QApU+h@poarP>GwzT{rq* zQ-2$`fk^#LSUG{ZM{ZZ;fk+V^5~@5n-nS#NJa{|Z@?cUmSL%1Xc-a1DXozx-wl=V-}IM%)S_`Rifj1o9qLfGQ+Jy6})tg~XP=9g&5^ z#p%9y7&mlmMW17Mhjjo8QO=Q8+c|WOp>CL#j2tDxTfW{_CBhqAVl0#hoplyQ=venw zl!jFttj#2_GRg@wn#goC9*qTzbx^WZ^@?Flyj5bTSRGcjLd8rjkzQHQSiorW-HTa* z-E9`%-C=)F`DzOoos@UM+a^-p5mwHea(n@!P5QWS(pA_eRMOT0MknoK@%D+dOR#bR zZI9fo(!WRr9ug}3zvi2eWcr_#?mWW8{PFpY?qXr7evz{ zzsFl9#*^Q|%2qu2HJ3=QMv(6w8s0KEcit9UC#=FGMxze2Imh2UH0-x&ci`<4Y5({C zKiaW(4-JnQ#5WHozA5f;=Lvx}ar50nqYpOqkK;BFsecq!PPoTC627V#M2hf`P&LCf zzQb464Bt+7%787QFO{4h-B;it>&zsCqXF@

8zwi~F+g$WoO4loc7Ex7mwt7Pt zm6cG|XA-0Flrn?qXiW4iq8KqNq|C*eCWe$bu(B0WX8TI0kRrxUP)PZ=?j zv)*N+P&pmuWJQuwVIMhBM-`@{@sRJmI4CQKoP@VZ3?e7O%2p6LflH*9DCB!D2j3f* zCD?sv@x2cA2bFL9y_cKvHF(=Z%2&b4nNyCv_i~VaHk|a+uurI@&G%kz+E3!`6KOvV zD<{zQ$m*&v5UIdJLOp97;oA{e80??!d#@Rbi@Bbq13C9R)(7rDgOhW-)!K0;U&C^xh~Mc7nNCN#)b9yPW8w`AkPI8pLTlMhEPNkWb+T z5M#|JVPz}Ue1c1)S3j&NzHc?0W>7CPqXJ8bBJ3I}bup*q?1s(0fSW;NzXVp!oc$a% zpSfcG7lrfx2J9Xx|GCDTrqLC93|xSlLL38MgOwA;fJdRAY7LQ0JS0@Dv4(F)WUWz1 zckBBuc7{f&H@{q)hxi}X2P|kgM_gMD(P-GK?J4Z=q0A35s`;zG-%0&)fa+h=y8)eI1uu{cZOaiN(oH(NiOh>~Z zw+yUfl8vgTi8b&>iD6p+D<`n_$k{6GizMJ7q0;`VzNtv2 z{R7jT9T?B{3miN_OZ+#&!_+y(YP*Ccer}nTYaFTndf$PgQvbDFVl1ToE>6Qp{(ppd zSn1&pu#=ofqkEZ-2BbELKQo9yB%4*~{}H@dVz_u1R<^>$LtG-g^gmTROuGn=zdN`9 zSeZ$TMtNrw7N1najJM0Y_hA|}BIkEu<;*$HRI>ms)(gT}Z_+l_V%Ep#fX#bj+yEl) zjbP;j-X1wzl>s6lcu1%+;A-E2E6ae((|!8y8Y~x&UzRIsg}|}!P<3XFw!Cg^*sEnD zM|n{49Z;$~Sjr{FLU}Mz_Sz^AMqp0zrdj=mD|d($?&ra7a-xn-VmcZU`M$A%OE#=Z zgmdtQiJ{~ySlJ3CXK;!1N`%!^oZ@PFC(%k4cQiqsMfnqw#2L6;}skC60CRR*6AmZCKd~B5QJq^b$v7 zt2mqQXP6~{8Dn4AAI@7jviZh8nc)${qP!R0Hj(n~uyW>#x@fG%!<|nkL%G=;^>KtT* z{a$Uo=c=x9LR}h7vU-Q1Xl+WnZ#&Re>UOx#B&1YPP}m<=T%_k z%sIyuv4gavpMmczAVdVtg9@$+L2qGbPNT>qg2HyZB3xoyf z76_{h74&6i%i&?_9Am-D&gyn)8OKoq4EqimRRUDF#8@Z+#do>d6)Jy&c_bnPI;+J+Q^SXjF0zwOX%p^;vuudEe;)VY;wf zOG%CjVKden?CD63FI6GT=MrO~LYNxsxlt(`3R9E)RF%R(u&bQlqn(+KhNUJRBxA(J>3XwECBveK5G2f2J zieg;46A9z2O5#=40W3;6hg$HNblfm4BRL9%zx#Sy6$&qLiLp>9bk@6U zcCbIFeB%oZ+?2P$+a^-p3RcdXa%`c2gY-Z+=?L}-m9)9gz)iakZ=XoJ7gkQ7?UB1x z`WLCdLqethzxXC3nf|X&cS3=!KSjD*BJ_%wN&IN z4f4K2N|gqSxkO@VkY4`i;$1dMgR@{z@}5!e4$gpmjQ@K%YT;{RY} zD^&c6OQe?unx89KeAm7oz1u9lYch$^C@yWj`eTHP^6GfoM9MQ^<;*E-j}aE>-NQ-m z0{et|C)5T{fkuKA)y{4?)D8%@-gCtbYCJ)s^ohLgOxH{ zoTM#EIvpOY&XHEz)43=K*(|$ho|bwXrNF7aLr9eZCvl0fPzp>@T#Sc@AHZa+gmDGz zDJR_Me5RvOsfmQ4Y`4pT%kZ{|A>=!-vK2xu<`U_Z1*?ihJIY@M>&KWqSSfC?{ypp! zD(hK%_Y1QJHu2x$77&U58dlDn_!?@%lSJyP{4$t&2a_0$lF+`x*E04zQN6Iq{}<*% z-6icESUG{bN3K`pf=Cx05~^G{(YGVAT=;#un`f%S$Mv%{c7lhjGs?8}@bOB^$%IeC zca0oXs)G0wmq@H2(n~GP!^bN|PRYZltemnK_LGx#v_I3)>j&`>OyjutiXBqA@urE% z#^UDVZHq#zHzQ=kHFMGbY18@3taXCX=zAP>^esPYk;Qe@o zW!eaBJa^RCAwx^@m3*luFON+BuHp99MvL)No7qzy7-XMjbPwh#xjwc9aKBXiHdjnU zk>bQ;7x#n_NFIPG$qsiF3)OsuJ#dPh`0j%p=cFCoz;rZL@>PbQC~wvq*$;_k@4=g0 zVI;Y&seBi#EFCkkSQx5yGv^FQ*WAvP67M;WTdsS(gqxJ#i*n-x7wvyDQ?Pqddi=4b zU;YLAg$g>paY6#_f8vc3asLBWmY#W~>6x@S$2LxIvHs8l!K^o667dI+*3pp4+T1uH zf%gY+1BkrWft3?@t1REzJ2FB{UOZeZ=BwTHK%r#`Tq{z;?_0hjct7rn=*Z+(mgle1 zu~J9^qE9qUjdyPpZ{YED*-C z9vkJs888bgVVnlL$cZzmG93+v+)AO2Nj9puoPsw>3>;s8m94<>IWCc2K_ItMu<72& z48iU+i|+NXJE(NyTPZjhUyC34jh&G=WvNJF*m^bY$X3(U>;U_*b#P;6KS+5)6sy)X#s&sHmlPA_IR_z zaIr0{Y=w)hxkP&DU(N@(2p`K#2`m6gutTVXg)Bhw^?&W%W z+5FD}trmEibpwk`&Y>2(bSY+@mVX=t!IQq8R|Uc2Tw*K~1XEPUjjEvIS11{Ir>HsP z|H7Vf!j1mMbTle*>5{VDo*8%tZ<`oG-h!2_5b_3>NUt=IOP7?t4AvhHXZ=woftATr z*72oFss}dlkKh&%iEjuiXHGn}bV>QlpngO+^+RFLP^p_smsBro@(1Bo5XtWkD<_cm z$n~mR5b450LX``T`UWjoE(~_2y3U}pFjUDKtDL_94_D_{tL+-N%2}GGB_v0gaDng8 zQDwr{xWrf}6DEjG8v*1tn21#(+yZ;a2{rmY)6t03CiAtA5|(UN%^ci>w@VBeH^9nP z$heM6q*oqH6YGMVjQ`4P!3uPX@t z-?yNW>(!vc)j$ zCMVXYm+5Fo)VpiD9D*D_dcs$R*M%38ssZz)ksbW=vpBa4GB(DrNDW zSu@{G5trc26IovbD`(C+cCNFV_aouFABNpRrswxHM0hJ*4+)k2C-`jxAA3i@K2GcC&L2B$ye#-N>k1Z{ zoTII_PvGQ$G*McpWgtgI@SraMRT13JCB{NUFkS1rQ5w7o^O5(ADh>V)JIjeUdWz|2 zU~1wKQZwIvgnS8ao)}O50xMhb?bGK=<7^JV^W(cmmJ8^BwJR~3RmDQ6GO*k zu(B08zQZNbD;Z`q799w08JwSB)?oF!#rZMVCsfYjfm65NP87e#+b7cgEv%e5?bTJG zkZ@;rJ{(MZ6(%tn^`U)duW8f>jXv1aJ8&C_)c-qL)ID;$Di1`8@Q_gD!AZUyk>$Y+ z>6QnpX?VdaTD z>>?-5=pd$};gA~_)G^6MRVlC-Z<;{u!W&%-(23A=>K+1$9m$@(_Dc_QmuVC4kX9ywd3eUSt_ zBvjh}ly665+P^>D#Rc^*;|gr2^^WdRxvI?!tn^znDmjN*ZLh$Y0cjw&PfI+GI^aED z=c_v4KU`ug)B#gtJvZus4PiF&Zc*1bGL;!F3K@pfG>7jK*xN9MrF zRveklCDN-4RuhldF^3tn_h$wL)&~n=w>WR+$fhk8rdeIEneUC8KxDoLteiRXHPu8x zGWXAibN?*t8Y=g-jk$tYH*EIHaWjbQhhgOe_8v)J)eRzPcu1(a;orWgOV$lPO?SFr z+>(K^{-MI{@Mv`owctgG+%PR8ISPfJ`3@UZDEyR5jD

v)*MRXFLnjuquS7VIMhx zMh`I^jfY&6$U(_g)s(@Lc&o%v@i?q(g^EYHM0%xxT$JeGJN0+LHNhk%F&Y)1%{RU% z(M`DvZ<|PY9ITu<<=CP`2kC9XNpA)FgnB2NixS4@1!T#mTRcMPdoV2DeMg<4=r9gOI> zQ4w4OlaaTInltzY>?tSQ=nST#R|FzsDBJBvhzszxi817Bu(B0H&gBy6)dh{6j*?hE z!0ZW}F}M%*3YE3C(^0brHt~CK3y8$;f|WBT9^dJx=`-UFe>0r=>#%32)UBP4n!T{e zzlvKyB>#67c5}LVvkC4*r*a=6D~0pN(44tP$(Ip<1mi5y zwyLHJ4!~O_hKl`QWh+$d!zI!y3!2jf7T?pDC4mLODX>4NeD&!97v(SDZ4)Vf4pz>b zvNl~{k-k2h^tG^0sHE-b0vGM8@%D+de*h~d(DumPD*cO8;31*X|Hi%@k?H?m>Ao$f zpT)D;rds}gjr9PFNX|hPd_01%OiMV90^k*2f2#uEWiBxm3V<%&XQKjG{r4yjd26T& zU?!8msw5}UsDtTfK;-cV0+no5l>pQ5W{KfqGOTQciwRsJy%InkkKiJ_BQpiN<1E74 z!w#VmjvtSZzEG|@!D-7j3x|f&r!`iQb$E$O&1ur&~26Fqf6y&H0 zuJRp4swTLSON@n@U}~)AMrH6@n2nV;ehs_Ii8s29>1bHwV#Ap6_7uT`c;m!4azCtW z#gTitM0)jsTx=L~m_hr$%%H$3;T_m5RNC>yhOsW#%-_OIAToagR?eJxY_Va?X$JR? zJ{rvZBTQm6>VNw#Hy0bmx?!{55I2L!etlRufxSo4S9OC(8Xgj=Zup+>AeME*#B}S1 z&fdbZLa)AY!T;m#%md^qs{KEZoj@Qgfj~mS9<~WvAP@*k*aATog9s9vo|&GR?(}pI z-93{8K?Ok;JA#lPg81;ED2gD8Ac!Ief@lOm5JgdxeP2X)DEOdu^RRrkF; zKmK@m8u{L{eEQU>x>a?vFt6GoWBr{3-?Y%Eq-hqqP0^9fLZ>Uy3eCcJ&uOKCRN;(} zKH)+*O4_96mJ6LwM*Qz2_{s90E0+*Hk3W}LGCl_@laldSS0cU^!T(NzHpjOMTP(YS zTj7Xsa~%9mLR6-Ih(Dc~>F>kJiDx?Sodj*RpR>>QKj5fvv#ow7Au8j4!!2ND{4cO_ zM8*xqa@h`e!-9c?YzIy=b;NH64vn`R7~Pr4=0h(NwtEaMOIpgTHxsyqg$5o?E3maN z7HgAzY-B4i!YTU z_YjU2+eG#Vjr&)_lxh*Pp7pzig+?09z<;GFHge$qvMbRF1OHgZWo6|5Ih+mucOggq zpTaTHCNy`0&)?2B^BWrewOPIve>OAA*TBk&XE`|h(@Z~ZpXo>8m~b;qhJS6gAI6{0 z%=Q{sIU?HzW49dsy`jKBLJt4OnL6SR|BsGtYl|FD z95_hYl;*Y-I-!L4CkVY%`Hz(?z#jNxndM?OtW3(qF0Mp;x%E#F>N1=Wrdaj>9dJOn z84jKxjL35ee>gMGr^3pK=Q(hKP?zgV?Q?xG929P@)f0pf`L5yyF!OyOtQ?VVgE3sT z0p5UMAR*g;bxj@d+kji*T?H5=zIq*61o)k>A1g^(#;o7{J9dRe98C-GThmy}7U0*e zL@TraV}!>_1Mp8c7ygezHUMwJA=0KZ_cx&vN=NN0MIuf9L*?-Q8vambnRppiCS~FU zS0cXQzxI_PlHINTi2l+@cDED~SP#t2Zt&f|^HU@_-U5F#Gsm03%8BPV@a~`fia%nX z=cD0}aPzFb``70BNc{24TptE2N95XI%$CExHwYL=$YK8h)57Er`ya;p?tfHgF}(J_ z5{6VunDwyl*cBRQG{gQyrqIY?|9n@XC5CKuurr57hwq2V3X|r2@VH0yTM^!o8v#=k7nlh_pox} zISvf_G|%h&$vV&DghV6SJNheDhkb3XN8^uY=6WqyIU?5vW40Xjy+Oc0LJs@qnnLRj z`#Z%u?62pp>$Ii(qn+oiayCEbR*NmlxrH#U+L}^5+Vbm!u7x!NLqm_I6FA(IBiRWo za3xxy6POfqU1pkxLMN1$s&`C0Xg%!>y78woYe^@pOlrw#u0(vj z!N%U#{elrw^8FQIk!6!`IUE;mzP+#7Qy*y7FT-tMX8jUaIq|G-CO=U)MCN~KpZQGYd<%sMX4F0lz@P-Zp3E4j!Wa^0DKYTpiuMUhWrMvd% z%JhWZ7>s!mtyNmws)t*44mI0CgOjFdSXVH8YcK&E91v3I48c3 z^3B0^aG11d&221nLMf@P>sFCky8H*rw+CC}4`!B)8L%=b8`E5g_*#YayfhN=Q z?K3?OjtMu@>QMrHw&&u{XJ&g2tQ?VTgRxr<|K3nwAR&kUADb2@e^uc2c!&Rq;>c*W zGo5csDF+J9f@#&FX8-MC&pyYz(AcBt1ovk2%TekUM~0hq^6lcf7c}$##I0av z{!LgpBJ&1=z3dmf;le;d_6rqLNBn-_3-Rtk7?tnr3%x8a`OvW|G!$tX zguR8W*hI;PMm7k0x)QC>AdC?nD|O>kI2XQuvNJdt4v{vUxg&*6C>{RhLnlrCL*-Jz z$MAMM>)ZA9OfX$vl zv*Q0oWEZfBkiZ%xZDMnyg-$3Z)%D!{12xNOE3hH{WM=7DA66!%V_jDwzE)rZ?+tt{ zT1uV|6V_nAK9c7{;Fxgp?5!t1+xx@HiD!Fb`Tjj3<0boy7vZ>YGw$sy zr9RNC=W!dDSz zPCUzjO$3@>a=U$|cNP+jXzuARS=~gS&-N_*`OIu@2P;Qp+hFXL!@oBa7)Z$B|J$b6 z`osU<;$0mWlPwq0h0yrl2Xm?|C)W27dX|L-98Cj|GX+OB06nfmD>MM(T%VN=;1W0= z{!c?L3ao^Kq)ln=OraA>h<_iUmnt$iT!cTCSuW0pl}Wic*OiE`1@P}9)Mfam!W7Hp zfIHxTa5Egdk1!(7x8V8sYy-MX9jUbeF<(n8wtej$zL9XpzoA7*OPO^W;8_+Lbu?|j_QG1M zGxoueZNN6JL`$>*uFpyvun5kF@1bl17Q#W&rZhKK=!6pDw*g+N{Kv|bfWz^}GRwsR zSecZIgItN&+W=jLR|r!q+kinhAlwWG+kl8Xm+^-)^V|M zAMi#70}0s=%rtex?*~4J_iVvBg<_>Gl{tMtIbis#a04q*TGXmX+HM;tR($J1)uScoM?#O`Kh=O%)Flr zD@WwrV33!6f;UhYNXTmQXVZe^_X%H*`Sk&95xx$?swK^O-N3UfG!kjrgRhx_BinRLT zh<)8am*F>sDOgiZGW;4G5N?Kp>jn{dei?r_GtV!;%8BPWux_Bs^_G9P&h-{Tq7jWg z{WYu01rhn)3^#z8?@eIkh942jAb9tc?N{N3# zVJ%($gJnB#2L51X*;ocEld@59CE{xb{0j>8S^l0d#&F z5x*_iJ>IrpU9q*WEmbMDr3y-KF!dj3h0@|?eMONlP}t|17aEH+?ZFgbGS)Wx5Xtsn zBUhpo+5;yuzT--Vus@s`-%a@@VP7~>+T`YD37t?@{40v2?R05*Z~WQJBC;o}Op3^E zu0(uIf`3JkjF*z@tgy$jPw0lD!p(K?iX!O&&3Gqn0W;&L!ODqeJa9#kjG2=4%k8s% z85|jI*3~PDq!%>vm*7?~Grtm6j>x>hXfGQEZ@4g!kPX8IrjGax!(Q<=4CDH;1+tFt znD7CsQd-#T*AaZ%LPL_KQFz2O=CV*4huKmWE~+Y=ZkO?m^ohvD@WwqU`&^7fj2l9 zNXWL}H>QQkZwpS2cQ<0~Lfy91a^xgSw%jCHPJcI^udMw4IG z{@@F)L@V?M>jgYlMvq(I+>p`ZW;j&Z^yaP+I-#^wz1PwKXxgP^7N95jM(3gFKH)t40$iCqMQ;7Y(VefdC z6UO%q12FJj}YRioE)rWQCLL-x=VK~YZAK5S*;YzeZ!>~@xZDsuEhqFS) zk3Kj~+QjBg6*{4u_*Wm+ET^R-hd-HFI(lGbQaZX^iTGLt|LVh9w3IwwEv&KZ6Rw0~ z!p(E=>cg7-G}~XspU=$pDp)!3YzMABtVK-8_=ENtzaNeZH{J_D<_`o zz}p6WzCUlD@6W+u;pSU?+Yp)a&*CO9bAA@A9FcQ_F*>prF%j>!F|F3tTJgav%V48H7qpxXc~fhOrtFug1cOaR%i&uIxZ{Szzc9T{NIJ_ z2A+juq)lk<_d+L>5C2AFH&OmmWh?M^{He@R@mE-xl!`yQ67jVH{*B0*{BH6*`fDTk z-B3tiO))pW!5fkFSzaH1HZ#lX!pezfIdCJgCew%5XZk=mCfrP`HzMn^y+8hZX14c* zl_RokFm}t~-x~@HB;@dar)hEWhyPzEwb>wD=nAy~XT!K^S!>v41IND5=%eWdK5a^o z>;^vNO0+^ZP~U7IJXe~6Z@{@BgT~k4P-)YfyF}=O(xPlOaMI>KT=oWE!ynG9BUi!7 zq>fzSO2pS2D4PvvwtpuK!Wwdt?cc&-;bvR6*+84~U*je)bN&FVoOsSPn+<5*KeW&L zzv0ku^B%R?K%4vba5I>>e+O2M$i2a!FZ%{>&@hmYeZz87NBq8_H{QNsR8MEPT{z$c zv`A@5v;MrYV^?TA(zFTt30tuVlMjt-6ZUZ>TA@uCBRp2xgVW$#kO5-}93pKxbBlyd zC>{Rim7O&C50!1fDfmN~W#S}QnUsmeu0(uof&Y1Bn%$Mc5X*MpA~+n}>;^xttj+QH z_@kLQJ{ML_Jja30E7LsRVV~#Q;E-_htbSfuo9kQf$1`(%GprnuYlAUc4*T99U?3rf z{k=>b@rV82#XIbe?=P0KC#McV=dkkyQQu4e|ScCogNS+UeW5UgIaF1clewytC`16_BJ_uG$JllaihP8+( z86ULIco~ihH{;1S5%&hmp$`M&N7~5rg;0+N560$vb!*rnX+k^At-Aph+ z963pMb!C=^Kd$s6m{%=q*56T()`bQmO@r_QQ-EZHaFZ+13Jt=>N0895$< z1Eo!E?p~o2N{as-g}Ujqd_00bnpr*`f|W`6_>C(OUyI;>N1+}rCDUVGvhESq77~r< z1!<;(-%+SLK=b`yI4f0VzW)O&C!X)XcNFR&Q*yqCea>e$E$8ZY6zWdUyzhb=!OZ)P zuyRD+4aRucCU^sdfrM-mZZHMdZxgPHcNJk~e@T2{r7e}t=i5@*!4=~FE0xkK%5ABl zxIwWiGZ@;4aJs_r-wts<`1N=1k7v9;p7Z{A!Tm!!#8i*d-FhG%mhH^U7Dlvp4-`5p z*`oODOS|(Qy}xO9O?51F4E604X1Z2}2CP~aQJo;Z7?UYw3Z0o%-YmMHU^cu19%j|a zoyETXbY~^ipDv|)O6mSyUva6c7};CIH|$IwB0Netx*SfUABA!GtT?tJKE~rk^D;P^ zS{!np6*{2=R%g2Br-$&UR-4Wd|Eg!qCAcv|)}{;V$}3@IKU@>?*>WW%Le}R8>>^X8 zi5&y^e5R6e1ViA-TE#^<_mjF~y@uxG?s5Oc+|Kb%Y1SP~=d)d+DpgkWXF_%931Lrg z-DUV#XhGDUo$5+g(kbVW+R{|}%XZf|-?k9UwQ7`;tUhKMcnRerUJ5>3*w(h=*{ht7 zA6CUOVehTEmEw;jtKzFW>jfNF>de34wD^Piwc=m&e%0^6kKb zly~rlGfT=_u(BT+`Qv@vRKof3dcpM=vMM1D*;p~qk!z2)gp3wH*Fvat?DukGO2-0S zOOwfG`Z9&evTRvfJOY2+?iv;%R8u$h5yl25e#6%}9~)UW_Hrd6`;}So6^^lv%Sy#q z0%wC%j8otk=_|%Up%co7f5gH~l>by&(NDsk$}AO&VP#S(j&~*E%dCIILX+Q%geBNO zP4as_91m`OgGVg%Sw0tkHZ#j-!^(+gIdH^6lj+;+Gkpsj6K-;6(>ne7{4 z<%nz>jNNkh_l5!k3E70~Zt93*g&6)n6Ys?fW1K|yhQ|MY2@kM}q=n4-tC5~%p#ewJ z0K9D)Z`lC6;YzeZ12E3@S?K_#zJlh1j1W_V1lA>KQ<@tibV3R7zZ&VK%73hE0XD)P z%Pbcgz{;dttmjI^*8;5P-Fc|X@ZrJ~>=#EeyZ{aeH^afNMn>fMApGIXJRblnC!XiP zS0i<~F5Bn29}WsP*XmazBl6vc8^FwW4pxrHx4{@L+W>DsFp!XKz^kUilHUeg9PcW? z76XNHM!fXs%5PK~p1I%?r*VdY;uBFUH#+yv(lD)zW zu0&+75Z`dJc~lgX?%^>wVPtH11P+@v=efIuPPluR?!MHB@`NrwK7?DsEIhw~l}X|G zm8pa*JRV(Eh39%3E5!U`Uc7Hx*G-ETtL|G?_08(WucA$nmb&VJ+DbFro7HsLeWmIc z6+%`s1DPxg#hPm$9a&W-xe_f!ek*lkA2=PPj_d^oN}JK#HbN(q6#rv%(so)o zcE_L1tQ_sIGN~Lpn@Y&a;Spq2IVRdzAu7l6cq_*io%u|<)RyW@clKt)JJ7yNpMHzR zpzsTuU1_naE;1@4u9d!#j*UZZ&j`E_Et_UTR+WBNq6MnT)QBJ`CFUz|qDYCk9FCec z*SYhAPPoKOb6b@NM`*pd3^#;XZ!UqANxfNVDk1BQ$Cg#S>9esy)SFA=og!@fs% zVEXd%ywC|Hr|KO{p+3;c@(ykTv$DJeE0fCdx~YV$EFMu-mE|EDD@0{^Cf-hFla8#r zA)+l+%J%e%#g}q#w!0E4E&ILJn9_2BuCxR;UFbG+1^&9-x70J#w=)E?rpoLiY`2^r z?d3{DR+$*LXw-5QjDS*SmcY3pb>(b~OaZY_N)JeDz%tEsm zRwjk!cvm96<+d%nw>O%=DcQeB7=|?gB>U&X;o)X~OSg%QbcGH!=i;U?88{nOPMm=m z@*`Zsb8wqI2e-f>;&QOH%fXQDP!?{+&0(@|Bdi?3f#IZs& z9$Ut{`D3F>v62?2Tq2iF{w4guikX(c>S4OJ!<(e&Iu7q|+Fk3AHIuhZ!!PGEZ@3bX zokn~E&W5V@$~ZIibu=|(oS7mdu*OWA-P{xyc7%tlYZ$L1RkTZ*8O&#&ufHCp50i&IP zC$xgO@f&DO(n4na;U3qp(3qoX0wxP%vCi1XMm7PHT!~g_0>(NnDRYvpMB`mS*0Mc+gxcLp8 zD${29llZflS^fm9oOqUlr^;xizhs~3FTye5W}2KT(`Ne%`16_Bz5rH^$hN`QEr)+^ zC@_$a!~aB6NBrUcoAD0+W73_)a`;r)!@>isB55JBKUL;h78-Cg4Zs@Hc*_RhL06&` z8h~+bHk1zFZ8#tPPea~B@dg|uZAx>06*{4W)K&r9RQZpUEx@bzW0~dRC0Lo1i|1X5 z_*#J4Du5FzCBrk{M1OH4!_$QX)(3Ml99jj?=XrDd;mka53M(g`=in-UCfCQ<=lUo( zDBN6=RRDdykH8IJ=KD}sIU?T%W4LSsyaB;LLbd_-n-(a)4R|QtEt6CIQ)T61w|lnC zxy??zZ7g<$@2aZ8@M_7c9<6&pFzj1K@AQ#lqS!v@Sm+rT8jv&{!iAD*O9CzPP-7VaBIy&rTH;dZp`&lfgfzeAW(itbr3l29*clXlZksyItsnGE?;yLe%V$@#KEo z0A@A07gi?K#iIbX;_ew#T4X1__lwII(X|tQ#Lg<82 zQ}y;)s~*t)WJlZrW<}W^Rwfl?8&e5cQ9PQgD#|DuD?~;4L%jXTwAu$j#A(ri{{CXA z;@pAZbq?iFZ7B%HuxXZ-zUr~M#gAcIm71B-%DRyulr>dmscA-JmFaaQTA<3*(?#Q; z)SEBC=_2*!i*Vqy8PA<1bV5n0&TwbNL*&%A<(&GK?JwZAFe}dmurjGU=b1{#%Ht7c zRe3TtR*1@TWW2r1sB}lTz&tGMZ$yDPL|0&d)m6u?5U!e)L!_@Be-%2RbX3Q?)x${>DHE^a4`r5#mtbX5CZ2aC;+x`5^lu6# z*`4`M^p{4mJ6%X%tvffnlL9NI+8l3=Kbo22O=0E4bG*J>T%^C^W9;*M6dV$6o;P&! z95SE&o{zvE&&>6quyRDM4aRIa?0bWNfrMNTz2CGjIaY{ae^$INSf}}WIqEkAcjt>~ zXIBUL^jH<9SBqYCv92F5x+2&$m3c?-g{FMT4&n2zL}Z5$-$3Hs>Ri7SD-Z^yZMX?e z85vk^fa9jkdhRNr6K)&4OG~`19X@@jfGf24T#uW=EI!x4%B1*QYbqg&kH?o)@%fyM z6{7h3eso(K4*0Cxgrg!p&NnIQFD?-u@2jp~7!a3xcJ>d5|5Gew!t;;UgfC5-e+;|8 zAuMwY^X&?etC@eiY#Mi2U0!e{@ZcN7J~cBUTlJ(!*OiJg`5iPVq@qj`5{+n8KM(;6 z<)!MiFyYMkk3XlraxoEqJhO_7hm}bc8DlCTtBA*uRTX*GlxDw$`D46Q#Je&-@R5Uv zZyX#ag4>9KqP=X-sDTlNGTWD9Ou>)^<|tR91qzI}eYoDf)PtaunlhX&Qfm6)sOg)R zl+X#68t>ZRaPv}kgtjhyxFO7(djXjkVVI1%c|%cVPl18UH%;Ji<V~Wag+Vz*=KAhqi>e}g)73Vxn-O3Qk zni4ZvSdMl4K3%fJOmZb!pu|icA`nW!*#}M-DL8whw8P4z{OoKhA>HuN#RLE%#)nwf=0b;sQVg&yK7 zo2Ee)oPJlL1q#j-T?CX$^A$Knq|#gthfH5-&J#M}O5+{5(0M^i%w@P0%o1}6tV~MG zN>d40Vmzv>N=%=P6{5sc;+-drN_TaI=0;Bl`x{YCv~we5TZynM1gfTSdCWA{vW`6B zN<`L?ShtmQbt!e@-*7HS-FOcUk-ly`FLXlbsBJ3|Y4RU>PJIpc9sHrpGVvCyOv=RT zu0(uq18dt#NOotvi~iC`cDEA}Sm(~oZfIMHF2`Hrk7nk02CSTTj)U7uNS;r$&+`dz zNVs_>+e&n~J{EsGGuMk?<%nDxjM;M7_XYt23AwH0A=AR-SRsb}W8z)d*tmXfKc8_f z389}pS_M<9MXq|hZdw8K0k!krj-9+OAFW=iZLK!vpWK&B>5~1y7hQ=~=nrZsOUXzm z?ZRzv%E*9n3mh?R)^pbiop8J0eQ8aTP2UFDJ=~1jz^pbm!pfxDeAktTuY1@$e4;-x z_s?3NZOSYYHX_iAJ=P zv;u6U>|mwdP!cBM)-XvJ4=YEIV9++m&chpC3?yXd@dZ<){m$dAcsq{?;_XCRYM_!0 zpX@&lCRba0st4%WjbUHOivNLUQfSQ5tT-HFN{#F&j&da;JBs**mUU`gD@CLXr-BS6 z{cxDH+03PcPADbS_1q#-vz!);KK#kdf{}xjNx|qbm5>F)qsOXX9ARUHn5y)|y90jx z`qp>vXB=9s{DJTVYkRby=|6AaJx_PLnD;mBwQbS9VIfjA#p5Q^z{}!sgDcSj#bbl8 z?@9@I3{DFvA&mbC-aqWvfgb9#T{|7%QL(XM_BTUTm^2JQ5Bbqs&jcCs)XYv6snWR;oZ zO0+1)n5LML2vyt&VidG)P1r~VdYcib9g1!{+tNd?;3 zR6K4`qdF*DYeZ-B z5u*u_Fx0WrG1IqF7|GhNS~g9IEI<9OL<^LkEh599)Sj=v$s)DqayV}K+H;=J3D+L) zAYY^_wDq|RH-%YvE`gOv;aO=aAq$VkmsR2Ev#~-Ho-^WYeKs5@JNFbtesKB;;Z7rp zjrLoy!?rt)ame?kA2SWUEHRI`5-m_-CM(V>h2`IHVn|_m4~~|;usknx!iB}VS5a|* zmXmjI1DNIHEm)b9lh;ipWI6FzvMMJJ*;paU$uHyWV@8RebZ8l7zxNwcKjs=WD~>fG zGBs;2`v?myXGMFt5|K3{&aGm?W2I0mfipk~#VK%z^o3%f&* zlvx}W!^)&M9PdiRw<7Ov6{Fd`NEm{R&m_C&!{Oj&H@HBJLHmsa@jssi8 zXr6Dg&+{#CNVs`cw~A?VeKY=eX0C69l_PR(FjC9G-WvoAB;*U*-Ax^FtPq3!W$_O7 z8&;hAKeA$(B0ZSS=E=FYe+hT6+N1@}@DgQVoUkomT4?0aGy-p%Mqf@I-f$%%8-e)7 z3nw)p@0F%t>c7#{kYQtrkihyTZFX~Ggia_m{w2z)2ed=j2)BS)Q8s{;Nkv)DR6tW)z^DIA}IQ$Y&HayU%-!qFpiLMidLfYdCf1!DkzGP7WmU}aJ;il!2>V0iRc z6^vtTtPm~8i}5aBj!9S2g*`$m4tEF-8c{5?E0)0abkDL7pqiR-n`yjd&A7#th^!eg zu0D)&eO4;QU*LR@it#5nNcxKLE1?rgNbS4UE=2xg&#Av={R943X1Vx1tW3(q?_7!a zI?CF2t({OQ8D8f<=r4|Bc$|=EL^DY<9Qv-cKF_1^hcolM7Ob3jo`c`D*5rC0`&{n@ z2Zj4((91w1XLv4UQ&p*c>&dl>q zVdcd09BczLxqjO|*Kfc<;pUpO0s4HuiW|Vp_e-#HM7|BiaM=cU1A>8sYyF4u!}3v z3LU|^(s89NI1$ba88l9SBc)Al?qH!4%1U*8_ehzvovtVzi$9xLLl(ixq=qbXCF1K1 zHVmKRE|!#BpCjzCY!E&JM}?bf@5`O42Q=en;ubJ7z5-TGJmXX733QV6o9wfG0~{G{ z*1aq4bY9TRUyobC%=~q*azy4027B2rc*BK(gzOh~GrJi%&} z7P;!dM*9|_k3YX`8g$tyyx>Yib_($gA(MihE5pa+57Cs6R$-Emz?v#;R&yVSc!gVq z$!@CJc_Ie$g`#_`vv4z@vb|LPInf=TNREIVQfU* zSfHyLz)Zt6EQF|Lj&Y1>&Sm8|%9V($95KFp9P7BOl#DW*4N@}t;TY*lMoQ>}@==}O zmJByh{!`DXzk2M$pUNy1IaryLiXK-YzCmGKuPfK&_Zndd_G=^gy&8@OH^1KOQQA%i zge&o9Gqe0vHO{Uk_XZk@nCfrPK2clvq9sa8oqp-jd)^TD(1gEp<(n58 zhBR%#1Yt7PCHpwZwqUF)5!n{RH+Fa_66e#q(*t?&%{DhdN|!JjP7xVJc7a2t&2nxF zp%Y3^)mx#^=Fzu8b`3k?Rxm5f_OLRkFx!|)$O_|8WmRED*;pa=H*O#A1f#ZaE{<3f z!ng4kgd>i5nbetsO(kTV@wl?8Gh5kMA?7C!$6IGM6bB=RIs#r5?qI!<7Cgfv;KI1j zA?RTzC>NSWUrtay?@F{lZE;c)@?I$`H^HePW#tAqT-xmBt`a)ovf}N=Q9Ym)<$Bx# zW<|LURwfnYT2l#GQ9PQgD$3_8{%fV*Mwh?kWmRvUH6`4iDfPr#Z`P?4-79w0_cq6gU^b$> z%r`18m7@QuV%V1D7}KQ7f^w8A5m``TTvMG`_gkqUWjGt8hV;XM($|ob&9lI};g4okjU22@sz#415#OA5vbPvn50{eZYlJ!2?~Y{pYB(s|OnWDb6bER&ufz>t z=KIUAa^m^kM6RVq<$R5O&L4yW!_E0-%1Ub837Yr&aU+;{zZX`H$h*PNF1rJ7pfHe- z>!?SVI^uT+?~WE<@BDCKTicFjuR3ehtXy?^TU+m~xs~FNC95Kf*sR=yqayy5Nl|}s ziIA*LI8Z6vC7zM$%%{uc zOnG+bKXeugm2|d{DY;ubf`8Rs|EqTQzjjRw4NJB6uhj{qOn0V~DTs|Jxz)m{+yr5L zu$vyQ9%_J*9Miudg`PRg5PushJU(bQ88|s$OnR%2s+06`@@$ zvKQW@yE~jdKLF$M*-ECA&iih+!-3RdklRA&gmPCsz%4q%CA>Y#S^vjBUFdo#-x;@b z$jY>BU3r$P9GUtUo5!spqS2m8cXXz*ef{C@3Z5zq4>lUyUqNnu-S?AS-_yCv#jnaK zM#D>R^M8a@{sSHp5hphB$GJ+8)!d+%4_!27MUqpl zq$}CZRJ!ccSEW7IPodP2Ni#ZBNw+YKFLAnKw8W*IGH3lR#1Qe;8aTl0K-3Tiuj#Sjh-k$P* zm@=M~qJq;i_BcHaM~sWp35~|7Qluz7g`3Yr=}A~Qag=r%t~zz53n`~KDHu&2WnGmf z2?=bX!Nuq!jlrnqIz?zAZaNd8@vw5@2<Ui&h{C6s!#H1rw|e zSUGX9b{G~c4N6zoqqG_h6&IzW8-$YMH-+a?+-@d37sJY}4^MZt(5-gf_u0d94;-qP z;c@+@@Z5#l&4lMpSUGWc<_%YQ>YsbAe{9?v*VOw9-m(YkbvS%npi+&gMv<|gkiCNY z!i4NaSUGXX4q!tT_@=!cvl*kUr+U+bM02Kk=>}s)qd`HNihIKZZ3?WMIB3K6QCZDU zxX2!b02m8(I0lQcym3R4-kp9xbxteiMZ!@g({!5nG{>NewlUUS z_y=&rxG**7y^D-9> z5x2}Nu;az`m%=g!x0eaa9A>w}!jgiOTNf7H>(kZt zuv`jFbgQmYgkHo=XCm|*teiMPktbqB90P9ymHE@O zan|#vsY0ST^C!y_v0=w4K2vbRnfPo3D<_Um_Eh4%0q4o8YxeJs~(f^JiE z7T{(x(K!fKP8^+~Iv@GEPboZu_Ux45P;uF@?|h`+6rO(EZYDf^uyW$?Y!|h96L`U= zpmVJ~I@iE~;-a(AZVe~kH3jEt+-fE`SHj8>;K-Y%hQC?Glc-MY7|7={m6UU(h<}@i zcS8-Xm6JD0Y-f7xdyNQ%cPWK;MUs^jqin1YH~HQj@7-BrPY~ZqDfWfFhW5IM2X@tk z_NP)kWSEPy+?R^<(k%DCZZCOug>GD`-IkS;cbvRpim|*L=|xu}@^Yle8*WVQD;xTX zn+;O#t%c5=SemqKI37)l|BID(A+0YY8qv6aC_)y>Om#Lbg26nt6VH6xWG2_eZDW?Y z39fQvf@8e>YI8LVflHvyTjgAq=hdP8?Nhxk9?tQi>(7)5;^wpqs$<1{bOWXAsvJ%A zzF?{YK9Z#Gja$h~`kt_|Z=4)Zc5@{nfBy}?;c81lN1xd4l`Rzevgy3i5oLvKSdAvd zpc{^mw#;h?nTHY*@RRmHow%J$Moxp36K8~05NDtiKU{^6%kBBN42}+$k9|-+d><(r zm*6%s*;olHC(g!9Qa`*VDpe?!`bY)&g*_oZhhxMgM02&~knM!uF8ZEQPJW78%H-q@ zSUGV{wu<6pppfkrs3@i64SP^tg@eQeWxh!%DfXp&S1Bnk;ifW4c^+0yoD@3RlzRud zyYuQTo6{#)cO#n%iRMgA;L*nSk+QKVZX=V8jbY^oHVoD-4=S)`x94o{k%rWtPqJH!t>2mn)@?Q7{r7f7%BZpansb5e|mtpFE)!yM)7n<&C z7Gg4{1j~h(4p+ipp5FMCnDy!xl#|qa0ZxtoQgQz@nM`H?W$a+3W6Jf7NR7@F$+ zuv7=#q$Ar+xS7nf-vBFGW`=W~R+&!RcqU7y!ODrVv>U)uIdi(w z)Lw3n(q(YWxF{XlNR)){l%z{=+nFS-gq0H~X`YUx&U8Ls`+`MZrqWyNN-YyR62z9` z%<^nUJ|n)5(xV;)|AjqNKZnD|h3XU|s90g3eEk%6gUQz&uyW#jZLQ_2Sm+cZpR)qL zLa9w}*kkl693?JB2b*CO@Rri@5^gP%mgiyR#A%tXqeZOEIA2*-K$$+#dVaOJkZ8{Q zYJVe8d`BrGo8pEt8QB{am$J3&1GlpOQPDK11Fa>+B-YwzNb0Pl?(Nx1UMW*06Ho zMD2+YMVEs=ZV%LnaM-xzXvhn#4S>?F2%mtP&*bS?SUGW?v}0L0pY3!jl-duUXAjRg zaE!R{n2lx9S6X>KgWJj^$-on=j6|Dh?>Sp*j38OA8}KeoIDOIC(g;1;ZDY# zdpd6-yVLoydfs5&^{l(#2|}VdU9jftlH-inlukH6TvE`Niy=oTBd6hpG8tI{E4L;i-d&#R z%;z$DMlOK^)Lce#sz1{FZF2FTfE{jl=qaTJ8Q#H1UV@_*J56=( zDNWDg)-!2(23Ag-rtP9@Q?@HpsAR>SMx`8WKFN9}wW*M3&P-~^k3S7lj_M9mW;VtR zW->DwR!*Fm*$igHZeV@+Il`WvL*bBd%g>OPQFG~$u2YT<#!Y8(G#^$@oTIID90ks| zD0Qb|PtNIZkhtU=WHcKOI7?Y6;KnjpSqdvB&Wf@v-0LC(;ZrADU$=+lYjBjfu%O$* zskfAtt8i$jYK}@>_dOehtTm%ZcVvJO_ngmWAD4MVS)v0B$Ffko#ce zmLx=cL!(2ixGTfXzwHTm4~|b$3Gw};guH{>$t2`0SUGV*w%61U5xKr%A+YgEVP)3( z)>EVHghX?uMu(ZSD8yq*&DOZZOloGp%864mRZC5wJKGc5^n0Q`C?~+d;T9G2niywH zauzQgC;bG-ZNJCjW-{qm1S=;_$If~>oDsd88fppn9D80q1BZ*t%a9*YiJCP#&``H2 zKWE}*Gx=EoE4MyBQL8RD+4FM)9Ip8Isk=@2xgIy0$)oI2Y55}@ z94;;BkraP)>R&?_g8uqWcId4W=}Xy+|n}Sr?n#+ znXtcc%B19cSUGV@rf9|@aSKdn+2yD9 zbld?)hD!%}0jt~CIv)C=muoJ!;Wje4xCK^DoQuu%TsUv(Lu|Zc&&Km`bhvC7y$KR* zxLy)Ip26*8^6@mRoH!r4IdNCEyIW~oH=S%f*V$M|G-s}3G$(ePq_tx*ZX}b9Nw9L_ zY$(@ydllEcN-20d@1gc+91O>XTRAkJ-gDd-`WirK3Bn^;^K3-2|mmHsN&(K?lR@( zKHOv`H}}BGiF2dd)zY0$S1OsnwiX4O_w2EG2aXgM8>3w<#A8a$Te!tcYF>wx6Q@Qy zN~zSSTPwHQ(0azSwUB7ejLB@2A}&*IX5c0>xtRtlC(ezw+Bjd99b)J93HI0=3rDKC z)kgK0QnLuRm`Tk-Sh+Q+DTyzzc4f;;ov)qrc6HBD#;DKOQ*$O9spe9ndQ7QVfm_U^ zW)N0xeQI*$VnLzi2779*ha(jqHIB!Wn(J_jnbcehD<@9Pj=K4G@R!%0?OdAAbSdEc z(H@+~;b3vWInrnbu5p^O^C)gKlbwfQ<;2<1-6z!TgwdH^r1IIax|3n-M%EqiC?V0D zj@alvp|HD@mp0s7CNCfS|G`Udy3i%Qk0d_imQQ!8N00Wj=VdoM0nCrd8u1c#m-4bJ zZZ4CTonYm}>x=FbW3Om`#ajhsI6BQ9lqGO{xWkdryKCQ1O2{d=olHVbf|U~|M0YCM zkDT|3NQIM?_MBVIqc=>%V@k~=++rp*6Jh1VshOo&hmkR? zzui?vse|pgnGeT`TXK#tS%%U0Ov#yt+sq_qF07n5IohtKJ0(6mT&}2freM#@QaD0f zUd+0hnx~YKUffb9B^g*baY}S+b^fADYM{SMY}r#v%T@NMTmgrPi;B_OOW0k?%WB+Q zCNG!5%8B!$J58c~x$gmcMDBwl!$rjCG>PM(A9{J3 zY3|nQY@tUfC-2y^@)jH|E-MR7Iu)(gl%CgdtC{q?0xKs@kFHm7-V>#A#jN^ndh1QB z=R`AvM04guM!ibiQ%cD++)^ebQ(@)ADN#O?<99B-86Wz(Rd@-%=RXEe0kQH!nxP%y;TyvbHYz*Q?GTA7@%89d~ zJGs`E?pKP(_4a672ginshEWGAe57Pti`&Q~;~H2waWZu83`NxH2aeP=lgI5Dc@&Nk zml30Ph9Pe$Ef3??GHF=@D<@8iZVy6VdbxMEPw4#os43R{YMYQ~p?+2R>8C-?i9did zS!FWvKCGNLBf42l-$1^SP0#3|9OoYW~18{ksi z1BK2?mh919Vo%H|aJ0DNkI~AB)@w@7Nx0QadKSaViPNK-6Bopnquq1%YRhtwJu>IR zA>txqG$)p>QcljrO=WU&HmsaDC%WA$#lcKzSxJ04+PRdlzHF&Xg>JKF<`y_yTxN`R zujt*T{M?M2&E)4sSUGWicG0Zw>jSA4ooDO;dK!)w7oej}R`?_QrUX5O+s!2CNmw~? zf@W$6>MsoxGO0{oe?{H7J$X~>S<@sT(VSV+fhN=he5IsJ#BF7gG9Fe=oD|*dxnA_5 z2C4b>w9JF!#H}$#x92MUQex)f_A-f?11l#^jPCYaC4%a(wA3D%UN}%(WQ=alRUM|x zWN?F-%yhuYi8G_Sr%Z;>J-}BlH!3_=*u%3Lju;mnqkGCCJ*O01id)X4=wetoaf)>F z?|Lj%Z0@ti<{mgiTx^Wy-_lje$z8aqOiu2El@sSg_ibPqywuR;<}G_}UWY@*<;LjS zz|pQ#j$Xk{XL9r+teiMUTWDrcrA*fVIU_w|GwTV|G$GNP36#;7)I2vSA5(ENnS4xv zl@sSfw@y>a^ob=4cZDyXDfCo&#jdHota=HmvGxXDaz`eEh7xzT;KzLarK#EN>e zR6R#>ojozv!a?E^WAxSfptF>fYj9(ktXvH%C(ep)Em(xFQX1&243tz<9<@j1VK_!y zRE*Yw1HMvH*5I}>NqG=fPMj3od&@xd=)3TG0XwGcOXfL?qBxPd<+(;%H+rr9;v!Q!yP|j3_+6{4v zJtrr@f#OybqqhdC!<3oDxWPKXGV96hZ;h4C_3LBnsebuaiKA~#e;ZEsW}_B zm`Tm2VdccB(e=ABhAJ<&*zD*l-Ck`m&biqaS{Gp5RH`N+ugmz{-iUq3vaR)BTxp2#!gcThDwZ3W?_QvPLWa z-nDA9a*W5#WYRGPR&G%`ip!M!yz}hom=~I4H zOjg^2b157vE;vTF&uM(7d4XsXi?y(2vE;vM7V2t)f zNmnT+cjBfpIk_EHPMj0nse3PYgW0s^M)%k4QF#T95*HPtQ}-cnDJ?JJ)-q{%4pvT_ z7VSDpu~bQQtkAGBZ42v(&{QGOoQaUxI*Rm_k}?Iil}XA*uyW$0=+2PT-Y=)~;)`kI zL-q^pX*nE@6SuM$ogq>DrNk`2?PU^k5UiXyF}fQ)Dn&s`r@B*a(4Les93L(zMqd^2 z{iKBS<90F$>4TLMCq!3M+{i_Keeqg*Qm%pH#3jY3rYQbWVy?#RWfF5Gtla9vXuiDo zustzr;5fxajQ+ce590PRiMbzEPMjFsN?qVLr~m5W2lmjs4~L2ijnPUSb(vP0cX5-M z-24+(PMjOv?pqPWs4p(=G|hTyw1bdn&eX_g_ifNw%F4F5u}oIBf|V0zMK_BU;S(3Z zl+u-ANqG%$l07Pm;TUm?i_t7P;43BNc-&SdDIbBA6DLKtLoN_KXU#=j%RSc~m$TtO zad9!)A*VV_nfWwsFq4^2!ODp<6Vbucs!M7xogc`k)ZA=O&5dxVxYU?-FpA5RoA2T# zGr9RTteiME5u=hbXGnMC)eYNE*#q+=93w6;rlV5LS4zqgxUEc59)pz=Cq?(oB2lCZ z;sB9&C9V0s_{8bf-R^iH(VTAA=$l1hcPTGpaC4cwtPLwC&WrBMya-?^t?rGQYtP9X zI6T~lkJ+$t;(Sck+^JA0W&1R*6f^dObie`P60*O^wRAN{DI+P| zP$na%!pey=qOBn%@z%LhnJ!;yPsqh^c({a^)ezTB%10G9lgY=0uyW#jY_6#x1BGn2 zdavbO_ITV0M~91t(awF>OG?M>xRp#gZiST-r$e{PX`tYKw#xl9o;n?V#h#KE;V5w_ zG1}!6@|M!_9BwU>mVdy?tx1dfEmj8>@tJUC$eFsO_4Hg zYyc}KPK)k_gk@QA$x~ORJ1xG!;dHTrn><9V_~qK;8zdwlxgXmRl|`u>R4Yf4WaZZ(sh9ITu;J-RnU zZXCrYlT#hyvz(cN`rXBA?7_Jj4ipz0qc=pV!<3mTaf6x6d>K|woSDdqtC{rN3o9p1kM0Hz_Xp_RPM9rpiGfS$kl(i_=Uq5bTyl(V z;2<7TYW|5^%%tW`SUGWOBFCxdJ1uvZVLh$dR!B5wT4g>?1stZ#Y=s-lWM)fPIdNum zcj*RxcloUNc1^iI-I*<@GxEju=o}Bni(7Au?$V9$n-cU9+-@d8N5jgA6QsOZ>RM4q z_hmb4eR1g4jeCH@f|CXV ziO;TGllY7)ksEbXTicFjuX60D3gzBgb1TIk!kh_Fe=#ZQFH$ojq%IMP)k&#rIaS;1 zs1&b*?ZKRnXMDW)u0f_$Nat5wP#s&!bPtrWt8&XkSgPx!3!S}1@mGDBRn=XG-Cz^+ zjIuZnw~Wc+Tv(aZs<}ycUl}MXa!hw!ldW@)rA1;h2J5i-=mO*WEOW4GNJ1g12bR}CXgfCzG9t^OS zzUr}E#m@5Vu5=}x>ddFh<&5$l#72OMduiKj@uHAtRx{GZh5&w?i^o;l za!?9}T&!bJ5b&Dt@K4-sCJ%4I%D!>3Eq%?Eh!31uLx3Z;>Q%(TT~8)Ipfs#IY-LT) zwnCy2Gbu{Xkl$ux(i3o`$epk0Rts5f2eDlf~HdliZn+f#Hr95C)k z^wFXEUW}r;{}iQ<;Px|7IvQ3^9Hr<%y*=gsAoH2@(iLJ3MJm$S_AGrGju@Av#f@W0 z27to!Dck`jOv_>A#9^8}d|k>Hds5|Mccm}AT&YYq+SBx1IAmO!PHZ4eG6EE*Z{r>? zar!2#Y>U(Cwc6HdbN-PFe1_|IjE1R?4s}o31N8(PG%ipLY?vI^DM^pvrZY);1Xi{s zDGq=%B(Av1^Oo0A7@&MX-_>rxg?ddCK)jh~_>>1hvPXu$$ ze|+OcHQ#%R(QMp$CPur!%8Az@4o2GMsKXwk6dW$@Sk_34Jntz+r{dN#F*+GmP8_3M z7}ZDwvOhndo~60io}(%pFD^$XG_V}`?o*I1#LZ`d^m$l0agb(4gQQu3ywe_@+u;~- z;TiJoEZ*9Y<1z*2R@`JJFh7Kq69;CyXkh9qZpys=MSE(Vg9F8-rU7p~>V8vn{(;-g zMCWg?a^mQ0AB~P&U{lzcvW@i&Y$GAjoEg|6`{7DDPT|=AH=GI2da!ch@a!-IJaRov zp=W_TJqN*|;#Qtx8bFWqoZ@o;ZaEX5{b1$9@fo7e(JUPH+jG+g$B4^K1Nt2Of?*Cf znF&k}tlY}LXch{uwg=`)I7Tr7qhBEWGHx;xm{qWH;=l~C8A!h{_@F&A_rqc0GBe~E zbKYbsazXH3+-fE^cf-mpjg598@LhXs{t1UEPHdtU0N=!|W@7UiteiMD+eWv;&dYVp z!r!*rTF<1m5)#dsNey`i6SLezF8FPUo6Q7g3s^Y<9IHL?-iBBM3Aq9CUei64a%aA` zCELo1Z`fENcIMwVI@X=}<31|Bktt5(hqm|@;h&kdwpJGmvnxMcDy3J@9r^Bm-Cp($ z3vKh(?8MKT@+)`ZXI+WN-Pn9l znO2W|;IX3J^^u~n0d6A`jrCyV#L<{Z(I{uqrOsZ5kBqvjYk@r>2f;DomJiL%7sHj0 zpsN&=18`HBpzH@LCl1PH8c^u?(r*t)9~>JlAbaB_#Q7CaFmkwwOfY(2vg^c5^`$&dDBr+TH(#HtgPs^u|iC(zdknJsr8AKthi8SMQCdM6Zj{k{XJBV9%gD? zKh;jB*Y&?@AMgzf&Eqsv>>rzQET`B%awQ_CUy;pq8b0+_UV!>PocbZsbUv?4 z!ROcmvj?64?HUaQX2`3O{o=1L6+w?_$21$an2F3TuyV^IQ&7KY)nSiJ3Jw!@bZG=K zg%uQ;Q*n!#$eau-CyvY(`XPx{my7LDslwsmqH=)wa3nmXh+K$U%0%SzuyV^HLaND~ z_K4gLhbIn1bXDY5+)^eYKZKPd5HXnH%1N@1t*VL44-%aw?nw#7J2 z-zYpr(gf`UC&>3!PSSUP1E$S!Zi>(eC8s)PsIk$_rqXwN{`nTl3Hr9Uh0KDtm8*6%0b=BvTk`C?(S<@?U#@qlV4TQubd8l^noDM|iEa9f$lKN?o{jg#Zdk){%I zobeE}8fUh&x56uVR#tpy+B`V15To6m@!rNdc2Uu}AvHAI{f`JF_S4dq!s;Qz40rB3 zJh~?Bz1qurc7;l*W}N$~Y0~95_Z3$HuYQeRj^04NiPNOz9yl#zkh=?xmNv7w8--3N zGu7F&;sx^<*ze_gMk?H$xNXb|ce|?`ncx`LpEp+%94Pt0!R-}cG4=~2seTa;r*?3o zsn)!77&6rXA4$@m!>wc{{U5NhZ=4*~{^m+V_PGu3es&;qbYu(ZlK2F1Nfg7B^HJGi zzq*1rb(S?MQ-lOISKw9!&8OCeMn&f^T^-s8H<(Gy2C#DC)CBhVc%`*{C|nM=$7KN= zBQ7qQRm7oj33*C6IS99u$;kn*a^jrO>LNbCS1M9ZqadCmGi_T$6O&@MB zlbRf?96^o23`I`0ymrVyLXM2Lnhvhg3a{(7vf^?ZE5uamgLseEOgL10l453MMSpm4 z@n`T)O#Az&9%eJ!a=(J%nigv7H50C%m@+IUTt9XtBKz^khO6-tu8m~JwpT zbWNrM6O-WNYvPX99rbu2(TI+k=3KL~$jEuXQ@JtcGC_;4%3{!yzjLso`%&r#YD?SUK0L}WIsoH!!e>k#QE71LdvB7Q0N z*Qj1nnX!kZ1CA6I7R~)ToRXrtOtDGfCNr@)6;@6ho2`e&rczYu%cb_nTntBvi_9Tr z^+h66DNh(MwVNHk~GV+e@rCk139+)gGS8^Fq~2}o80$l>;YEP%t)!^8zeb8d<=*$Meef$78TWdf6fl@kYM+X!H~ z^Tl*UOUyO)#9R%>iAzl6Tc)9#6G2SCVT#O^xWPiTj*ND4EFzdK=z&>d56pvb zl(@hcPL6}_Qe5uG&1K?pFRYw6E>T0$Kol?U+w<}+940O==0lS7mjd%o++HRyZ^Fun z1GANGNGfH@1NllyGg;nYXY0ApwnCygb0N*g?KvGxz*`E-R=BlHShj?fBVaMuDIhl+ zc<&(%B;=Nd$KaQwz9Z5K@4dH`6+g1E!rAf=@9y$-4_n@!DP{Y_*2Q!_w8y*z|HQQA zw0hhyyB_M7BG7&2^}lM*1g#9cW7lkeD4G&2H$dcF34_<-jo$$gdGB&$=2pX*^M43( zOT?vc2(`)2oh@`i>8hSgUrgxJ+|Id#ITQom3%PCLV%!U6(X6`427EMpOR{n@?cmNz zb}(JZ77M}91a=n$_fgy>ys+HFekUGc?Iv~#N@vqR2}FY+b35)26Pa6KW#2eC!u`;d zh}?bEaJKdgANGr4t6UMlb*4JSr|gvXUats)EdhHG4jZ=;bvF^PKuBmW_Z;pLld*rm z%84_!2gDdfZ0au7h)od^jhG408kT83V%qOVZiIWpBy0m%IdQ`Fg$Q#$t=L=27M3ct z>~MR~7Qn&d*0Ox_L6d=@740D0F(z*Zz{-j9whzo(C0*!MXe-;()(?k{OIt1;+MKXZ z*7|U_n5^Ys<-}Rr4`Qv{na*drQX1T@vB&LdIC@;%`kIehATpG=D{;@5#C;i7PMkPw zPEgL0Il&rx)EJ!uct6L8SDV0ASQEEy15u^z)6V)FF}teiMsv)O!UmdD1oTX*(j zghX>X`;O+)<%EN>wKnb!ldb=bJhpaWv6V0OWYvSAbL_#|1J49=2S%!SV7alNRL#bH zVN$gVtekko;*E$RlI3hqUoopr4?FD9O2I*Efe}##gz|MN?huo&lVRn=`QlZr{u1rt zFSbXk3df6!Ruik18w*O+g}5(Fsy+`Zj}WRHsPXx*d*J3sB|8f>L!W?hBKu zAHvFsQ^ngQ7I=%Ru=S!nThGB!BBj^9{Nst*h+`yAlo? zm#`-8?+S*5GWKQMB_?C5VCBRavlh{@Og!pe#BwHvFl)k~U!*Aw=5JqE{&i&qoxNvX$! z()9@L50kEkVCBT=;+^=eM^iswj@jLM2C%k}XwD3vi6_3*uu#_i3lmXgvi2WXIf6BV zE92y?bKYfA1`_gSpbOoLUm|Y?YWl5Y3yOuoOsT9~I~BT5ZoWO=^P0vt|5h?_S()!? zS-E;EA_hJ&@>a6BxED;E=eWv|w~|HT(eR6-Sdj@_!xg-gtk<5C3?5wsT&Ap$Y`2FsU|S1`=1gAs3vdWvNcPpinKsJz+w%5LQkc zDrIMfc3A99_w{89J^Hfs8GE$Ogu})~3z%#2oAUN>JSbo*aDSM94Z_Na1E#z-hybh* zF(}?(PuKNu%(!%&){H5ipsOAXiq>_wGfcFug_RRW>tM!!xHO$DXG*D#Oj&H_NOg(t zbPS4j2igYgkM^uR4hNCT8vk`WGDr>;9SYy0xOYtW9)^_@hmSL#^uw#AZS0=b?fxhs z(VTX_IrGU-I4E9ixI0X|J{Wm;?aiodeWIc*%Vc|cE2+M8rIcN+%qaJ?M{GAdC(P9_ z{)R}TpplSJ%yz|HVq&%vtekii<1DrI7xOCy(|HB1)9m3|0>_IxTAtdJ&dd)4Md}pX z5hhY6!ODpvHIGrb{Dnnj{YN2er9EL6!QtZ)#y^~blrMc;C~)WFeldYN7gkOjIL^|m zAK2QWkV4uW_N3hg$Bj!`bCzC}fKbG4!5v~Eb~CJ;IAY2-BD9Mbeni8ILkeim+k^HD z96c^*{0(XbB`q8lirdq;TTI-Zf|V1;P1y`NG;a0PB89b$_p+W~P8Jf)nPB!br9rFz z1nV)OpiRPkVuCgiR!$tWBl*4BP)kJ$c?a8*Hy@5Ax5_PVCV4{ziJ~|Ucan+XTv$1A z6qOH_3{~?&>qrWF1$*|E!olORmyLlvZ?TcW){A?^ge?OrCl1>I{JKY0loa5uvIp)8 zIDlN>_@DhUXz55~D0HiF&zR6%3M(fL9p_cM-@)jY+#aw;?LIhcT-2KLsy!SJ3fMik zKTN>xf|U~oOt}+gs3BCmEy$Ege>4vr!hzNW5}gu+wvN**r07Waxt-8Has;?ya(%4p{l!M<6kaF6q8 zi-PP?IA~nR(oGp$gVCUHJ&b$9gli3~oH$&{ClDjyQZL3DwYT+jp-o6MXS#4o)2Pzi z75@R8bnd+#@59Q8 zhLsbCjdQjoG>KBW{@d&+y9JIKm$K%ZZ3%^g*0P&%cbItH2rEb6WpHRCnge-g>vm>kU%~T3sW>9Pch^%@a6+yDR_~7FwWx`dZ z;6(+20R4U34JOdvbCn~jUX1rl&Sn7;_}K?*-{0&}`3oLnX6@sj8H7;@go8lyC)^<> zG=G4VNfrFPD-qu$Lb>=T;+NN+&gVPx#j<*1+j?`YE73YaqB-*j{$5`kuUb6l8p=4_ zA0}O+Vdcc>QZ8O5?sTsrn?WoH$j=9-^pP)sZcvOW89rCFO0xDtolP1P6_aRx>-T zdO#>&U&I|^^7RE+IdQ(2W1;w*L{35LZhN$T2FHtwRx`&!Cl-{dpWwbQsroUjoH$j? z{=KuHQ^d`LM02Ky{DXRUBOeM18k zZUt-R*yzN9QgsOK3zMn?VdccBVy>KaWqZWc@o5FD0ei4YaLBk|@plK|b;}P2Wvht0 z!(=NDD<{qtvtngR-JJ?p|7#D{|G@F$g4N85<-~$g^;O&#CRJa7l@q6GXI{V6O)gP> z$R4WSz~SOT#s8!jUadqZC{w?}U12iyOISH^rj!d^qSm##^Tl)})n8mjR<{0Q&({CJ zVdJvJzo6TIEg2HZ*uQX>n2fy*D<{qvb2RLx?|F9I&w6^ey^v_m^st$up%V*A)i$^< zOsZzW$|HxWVwcimeaxP!kHYcdmaOJdRqUcv9f$kEr0N)0IdQ6#ZPStCVJWk`U%~2g z_E>!u4j30J{janWjK)pCPDx%va{43n$h!^(+s z#atuJmUY|z)|qGBypIzS&1v47xkl=TgR(UmcZbQ=TCj5BY%yzAzKeER``DAU7aXuw zs9A0>C|A4V&M>)Zhm{lOin-d5&y>^#zRMn~G#oE3R?VCjIPDN!2G{<&i>F zU$IMl2mK{`s=f%vs}-nnVnM0;0`3cwstaJ{#Hr$)Y-%s03-lV4pV@Qu6F6dAuK3r| z;mZwPG$>g=#=T*Z^&?n0ak7~El?$2Wm2`K7yw!Qx9aRKqz0&;tnzS z`a7(gIA6?}p|h*BBde}CY_`Ak%y1JSG4f`HemE#w8{+OT*;*e~PMj@f2Vc$>)ZH_O z*@JZm94~I!YGw!T#DY?FAnps3s{LW*#Hms~NEr2Ir`(?|m9yO|Qk9JJ(FbKAzGM$r z5e^*}F#ffgc+;hXg|e2%-D0wqg_TDPYn5~*+nK5z7gkvNAA8om3Wu&GSPO@Rvi23+ zEhcN1!^(-X#@xZ>f2$=;H`)Bgp0i)UVdHYv%pF{TkWj{ciMzyP>=&@|h+~W#t^PlI z#{LC|t)&>#ov?lzcZtc^8?bWXj45A!i|o(5!J&SxSQ#|8Kfrowxs8x$&eU>g6K{s_ zi&;G`w4%+#{bJHK9ac`9Hf+??9J~IgJ!r?lVQZm^raygs4DJ$>v7=z+#2MqxIK7Hi zJ9MlRw9ndeb`~5uE@w@hafZV}>)9E&TTIrL!ODrVwmTI%*s6Ai}s{_0gfJ*w7wWflaZmbfD3TXn8ck2D<@7IHg0N;dH=*7 zwI9P_V zY8Jy=fm&E-XSP4?7L&DoVdcbG!z!BYczDqsv^*R)E@&}Sw1`vUS==WkW!X_vvuiIaxaGu_egU)gi^OE_*^&SI!%5huuh zf&0Xy?B}p@;*??Q8JdIS|FVbdZ8&UP$YNN}(4QxN19yqZ*sHMe2xClhtbCh;tf!hY zg+z0vnlUh@KV3c@cZtc^=CE?&j4{8@;O`029x^}9p0Z=$z;P>CGr!Le3JRTN9)&x_ zv5s9EyMj{(pG_$6Q>QEZR!u8f5)D+ zZ^4n{vKGT^Gx8kzH*l|*qcXN-B1tgeK8!Je)Q;DB-IYUb_N5w+_)+!-cU=fKK|bH%)eN>j9cY>(BC z;COMdYUVvu`fBw9+!rQQH^IsgRAq9PPj72GYt^jW{)e@-Em@VD@BML*_s1dLABVbs z_!4WzjcUuS7XMc6d;2(Dvw_5C*RDxixU(aX8+BA$+m2_ia_p!I<=$I!E5#p6#DAO+ z@i)0iQGbz|sn^O~A|$I@g(n_IWD1#5I)B*m{!A&`C%!}88@E^@e8hU?!$%pe9elaqTx^|Ul`QHr9GAI=uBn% z`onl^aftQQb2A~)oT=xjjmIMp1_H_^xFbwZHiVT)wOiknh>s}cypxtF|6NNd(>2hU zQRbLO3VX{PX}mhmU%OUX4}+t|tvmc%j@fmmJr#-u?fehHyTI61>z^j;wJpF1RTZSQ?hVPdr%VzGlzHRd{%rRqm8V zvk?daq2vnO4JIY4VP#V1E_Eg1n;;DPE2}Rrb$6>D<@vR+)w0|?07r~lZum>M%yJV9 z1YH)n4|jwK)jhCs;!y27+^AKLWjUYi$`*Q3%d&;8;xc6=_dR>Q-hqS1<%_>t2<0mr z6N=hfxKB*fUWb(vM@`w=tr-r}UFrTxb}*Al5B8+`i^crzT?%L09co?2wiXi2nHcgv zUB~526A%j74BR0mWYb{fkqFryDr6_vLv}12Ic_nF0kS>1C}fLphnSEpgq24UWa5iF zZY3j-ea0TLGvUa!0Aw;C6tWe#Lrlm9VdcajQ{D&YhRdi?@&E)YOrS{ZxS8cc-Or$;-c}Q(P?2<%Rr@Fqir#(x%;W=O~nJ#Ylh$jL-hq_&H2bd7; z1S=HgE=rBBN+JLhqFZnW zm=N6zD<=-o4#W0GS=t~yZ%@%PaHzNxo!IaO$%z2P=xN*oCPq)e$|C_IT8uV6+X>odyeMAvEr5^{;qcJd%Ua@0$Pve z;Vv*inhPr@4$|=3Te5{prqo}|rz`3~vVuKMOW}xdaccbbmOvmVRK2((OsF!ja^g@8 z{}QG4K8kELxXPZXE8u`}nQHvKYaYBlZ$6RAsKMuHB0({N9iSWShM6US=!wWktYG&t5Cr$un6xHYQriv~^vC`Jo$ z511Go4l5^)(eR4~P7u{agEQ?pS^>w3%TePO4crh=kOpxVm>`v5<-|eSeb`|xyhUGG zhPvLKsO#XMaf#wz<;Gox3de$?buI1-6Rm4t<;2lCV0g4D=}NXUrP-vfVD`8@W{<)F z)D*BDV%s9>K_wrG`;QTDS0RLZUe>e0<31mL5KU!QfsL{ywZc z0+FjN6cXfivqx^%5saLS3$1cH;eIiz+zzmE;>am?(`$BB`M2cBef`RKy2PHeQ{cF9 z$J366uTPM0P{2;Y-C+W@7*-y6fRR#mkv(AN!*OdFz;uJ=xwtz_z|Mx1M;>5g+5R?r zz;1!#)-r(UR_|}d-O&QJdUV@bZO%Uz_?T?FcI~d%8{tPJPTKJAul>P+?)ZDg9FP{QGMe2Rb@Fh5Mmpiz4+TtUQ8{A_pWUFSMRiP7)H$nN&6pDcy4ZMBEQ1QsZIe z#F0|I0~FoS*Ut$k4gGw3u;#&GP_1WHo+gU?30_stoQ36RHkac?3a4Uua)p57lZoV#!0LeXo5f?g$gAi(%!& zp&EYIP3;G&dA)s~JyrL>A>&fj_+2-_NYGk!7w!oYt2<%k#Ic&geH9tl7_M|!Z`s53 zIvhAIT%FBYG7ZFoBK8XI4->H$VdcaTV=v0rUUQKB@-vRIo*YgS63v+$Hf>Q}hJyk& z6?caT*c4cKDOsF1&l@o`Gy)2>Ib>DWhbzlDh95OCdOx*3FR`^tydX6nB zI)RU61-}^fQ+s0Wz@yB({x-{B-8Uj85EH`AZMauVc5Z={Nlm=jm5A>HVr;h=HL67Y>DGsygy(C+OS+$SbtPs7TIBesw7rZTdQb)+kuy_v35 zaX{SZrGU2SB5Tk#781>w8}v21nuQ`mahr^L#>8zBteiM*+@_+vvsh3+KX9l$We39% z~wp;3UJi8fb}-JjMaid zAzO+&#e}RER!$r;^?*m@fZ0`4`TCkYUsu5a6>VCBTo+K)Rlict2ZDkbsd;B-&1kj^VZRP6hDwev$|LrUGWyosT3HG=h3kQ%}+RDu?ZJPK{ z^cLa%G0|HHD<_WLJnoR1Eo3X%bUu4VCRG{eTuN5YK4TBwnQ-{H;GN!V@JMthb}Ml2 znAi=%%86sgUO`)0DysK!-e6DK^>DpI*aCS2FT%8A2uAh)LVrI%(> z<-x90p;$;2GCks6#XCP;9P0X+C^~exU3bLK5&LYLxDRVcZ~_$xv=uc z0j@t?auz=Hs~&gQ19ux7yOsei92yGTEx2n;;BJPMM-FiQ=|%l+$mi{Wdj^hO%K#S+ z4F&FL+%+a}Pr=HG12>;Lr20_}?Eq8;){T#~o{>%#63v;BR+>Gq>Hagl{6O zoH%^y-9eGl20yl%ostLJGdCX&9JkZ~-;!`$N6(|Q2jW6en}_?wL~SmtoH%Oxf_1L8 zMNlbm1$*3R*b2{)nY@D>&1OzBA0=c6Gx7{#Owcx>Dt>>_Ox9A$Bj!{)0cQ< zSSV<#akrSDT?#9YIMBp?8>Os0U=P}TaNJrAG!YgG+C8{iOwjIvl@kZ;U~mu>5glrW zlZYSI~W~JK!R!$r__VMZ3Z@IR2Q5kBN*fVzu96jz(+w|kpYH%oYC*jU9 zp<4_qCk`F^Fit40wO_PC-bME0{Xgo?JWh_P+T#NekVTMvF@XR9LVzKFY=R*n378nx zutR8SdTM5B(#xc~XObX@Ajsk%hzTMHq9BN}%OVJ(D1so0q9}qWh#-ifxPbV;ce}cK zs`{RLd(N*;I*sE zt9e6_dk)WyiQF@=vUB9vmq}EIlaik+<_qe!952w{v|j&6@r-s|C6UaGHu1|O4E|8` z*2eQ=qW4}{**SXXiQ`gXFqig9>ONNW+t$X~8FKdagB|3Symp;9t}}?jw-25m6TUrR zW#{mrySb%Os=Aa{%BLztP(yIB9Kk-=M=pZx+RZiCL_zfNG?^fF!OG4-WM4*I8(>V= z>0BmfZzXIUm%YR;XI}CS>=)%FZFvKSF7Jou|QU;te@yufxu9LCYk)LmM}S!uA@T7!$TvU}fj9u?Nt) z_E;-xTP+mNT_-AuWah4k51@6!Kj7wWj;sa_pZK8k`@syZ=4ZzA4z?%4& zVDvr0%GcwXkZ|}t!pR!v`C`#8T0ca1yPWG=;77&f`fxtiVV3$$r!@5{B+-`#Z^VOV z5`06bJQlt@IBhf{VxQNGe{%3yIU7&o_A>9RJE7HV#7rQRJcXyhq~u9hnbf%_LW%Z$ zV^BZ5PJU&bsp^_i-(Z)zJ3XWR7qs4O&7;HiyEeS4WAK9xr4#Ucn22@2 z%FYqfzXM@MY;h*l9SmuB?Ip)+57;#Bpay(h7sRXL1x0H*o(mJLU0`MBXz5G1cC<3P znMzk$&ekcgYh1QYY5kyBE#*}+C|ry1WSDTB04qC(OMkzi0bKds)IdHc7S(O&h5_PlVwwGb^xUd0V=>lt8y(bj47xA2!s67uWJ4cN_ zkQVbj<-U^7%mI14U{Eo(B`D{a|J1NbNZ4qN{P~Vu>859BdXBr(;`=lWoajF`fex zr9N2MIZC6i-A04&WL=`T3{Qdy(@I#`IZXODX6R6-Pr|ju)yL#i zJp$XtrOInPRiiFRJcMV%#Opy=c^u%SPr5a{-jd_>FW5GBc>ob{_2FLrtTmrm;FIDN&`{{826bSzrYKcn(zX64U;l|OUBKh^YStU95if2I1r>i-?= zAh$Rbk}OUm$I9yLp~LXAczR6qo`#j3qo-YwH7a@ogC+GjseGJV~pz^D`syU zC6UZ@g8vFiQ>Cu@)2#Q0!nY=#9}~XSVP)s=X(wk#g|Fl-_O)`izZ|)JVdJ>vj=!HN zL9Xly1#K@pD<)`rz{<`+)3(n?2dxlfQ>Xfcyk6k~Ic`0$eO%o5mtl!;8}Wuhm&S8r zLU#(R>>Rq;ys70#+cKC7mJIqS^)dR1V+gU>mvc@jq-NfscAbA-ovR zkqP02u(ERqwN*T8<@1W_C6z+Z?dx}8eP0gUcVXMO(D6^FH3MDb35D!_JSQe(_rl7~ zA=3^*Hh`>{PX}soZOBg*)1H3i-{0h@{RK9UiyHshgyvAIcZLG@DxMh=xR+sN=fJV6 zS}Egu#ZqcFy{b(*PCQfHLP;buQ%$(4jd(&K+Z4}<3E4)l^0x#bZR6In z_CU6KH-&5to)Z(YS+MfBgKQ5SvZZp!O0aEX3$i^7kS)P;VnUXKm7PPz?a#Ujd9OQN z9x#i2-hi(!eq1X@?aQ!vT-1{7&va*KRl5q$j0xNou(EUDxC^`Kd}c74D_@V0UaT$b z{!9+rPhjJ?uqC^&8+V0*_86WO6SPNQW#^!2_orEBo@!A|UG|;oDde-MqOX?Oa%p{a z?Oi!=|Ah_Y0>}S^S~IgxlRFf=xA5$k;Qb3$b`IXI%*EaA;y@-SX|-*q?4$p@P*EX>7ID*SCa2_Xz>uA_AZXHV+uCgB#t|Re$m~b5iD~}tv z{AB}PPM>X_BZuoO*s`$!SH%ws*BN*|Ot?;im7T+--PLXF$Lfw~X`|!qa>j0fo#Qgr zpXdp;I$J1eH{xkAQM&rgc`AgB6cC35)-itU}fis zal5WQ)3WM!<$T=_TgK%p*@3a*2ZifiJRc@pcf-o#2rk32>R;q=y$V}4R^T!(tGGxi$_&n+265BNBKYMrGL|F{?T14?Y`w;XXXew;OWZ}UzS65 z)u_hlesLk=e`BJVAySz^`MLs6hRN4uu(I<4#yx8|;1x=Nmr0cudbAeoCvv_XgN@_z zmF!u=xGNO2NARqepgjaDI|q$>OH0kt+EJzWSo=EpoJT)eAyTHoh6*+P>OInWHDX@EE5;@ZiEsOBfn8=*~E00&?$VDv|%aOYf zc5h4~XS%QD0z5S)a_7Rz&XJqRojz1X5B+iyZFs$34&J@6hg|SV$xb572GK$GZahII zes{pi&hgtH!!LeaiH6>*a`aw?{o|rH&<^zC=1}Zj#FJxU_dKlZ9J@IvcB5YDvgyg< zx$H(tBAL1Dvi9IdO`;gCk0;5*a9vp0IfmR<*sC9WFkbL7M-JXB*g0<9OZFA^I$J1e zGw`&SsO<+Uk3ZB5?NDa`kCJSJ!D5!gB|Ysqfn*ZV?;(1-B6n6NzvD?5h`?ADC8 zb-X2K?O(8ST-Msst=TT^cmq$1iQ4P1@_0mz+}*KVN<1UoMoA6mxKU2q4X|@u+S)RN+AjOJ4o{1T z+BLB9_(RRGw)V6fwWna`#u#emwY4Ylw3w(p0V_L4jeAQ&b+8~efUJIscv3JyNhC8V zNcNV75liU6*@36TMC_gMhZxwYja+`Ab!vOaNt=#8miGp^l3&PqnHA>^uU_zb1`EN8 z{xf%)&@sH0mrM8M)jwtZ6~k@m)JB}4!0m!(#sqE}tn9p|?SsugYj>Rx&Yhc~o8QR=pmYl#Du#sc32G+SmLEI0|k_qBIu(ERyxwpkt zf8?gSA98Z=7Q@DI!AthGxVS46v_3p5CTKpa>>RXNSl36cJJ71#6>{hVcmmL&B$Al`Bzv2$Wsdm{48SlGt+!!i=V);cCzT38Hg&3B$QQLDHeJrwE{XA# z?BS%y6I#Ef;W;rO+W}T~4jK2$x5gEWMRLGSfGy*WlF5Gg*0ywUES?V&uA^XO=Wy-E z+zS}Y1xp6~R63t4`su+^Fr>Hq7sx?77q*WJT0YTz0O}2`XlLWOF`+vXR(1{@x1t#r z%I=nfb_Z-37qnz6nr(&bHas6DTsOnY;|MOp(%6e~xSoeC8!K>`*TkN~^I^jE46JN{ z%kRH*Qb)(>E2j4EKR5im>5R&snUz1LkDWfg#)OXkmFoYh|Ey!m^Rp%-qVJ`iuijW1 z?CPH|zoTQvGgp-37*@)CclBSW{;02qu4(&+b#4EUnrxA}SSb!~qK4tLS4#C1^4V0; zR|9h{t&hi(y2UfsEtEtuGuQdejmM_6=}@~V9ySx$jbLR0>?o*AZ84 z++_p4nvwdsl6v#*oE2qcE5C*La%c{QJ>r(XL)p;e%1LU=J~Z*_vzfGNtrE<^LuZ0B zD^%`(cb@rIJ+*zMW5-c&=uCNC=~R#%s0X7Y2V)8DF7x%!<5~+w%mRW)4o`xK$YNNT z)Rw+bqJ1oBpY0~Uu+A>8lbw*IC{)H#Pr0NY=**R6C^_88O-9nzcOmM0`DVyqx$Gz>8 zL^6}I6I%>b+y~0kHh3OPrnZ8W#{pBjTbVjq&eV~xW86a3a;9QFP^J#U^I$Ty09GCc zOjTMbQ=K|X&eR#OW6qe0`9PUE4bOwg)N)waIaAts2ij3pUjvM$Jle$X7CBfq!nSe2 zI;F(}ATfi|bpxIZldkJv<#9t-Gy&4+dR9)?)39xh>59ytbUlS9!=&p;SlKyU+WSD( z+Eq6f(g0htN8G=!t|XG_-}!sbKPoQMhqGs{g)mEP4cm}<6_V(1#P{*wnFN0~R2~b5 zBc_c;MC@ol{MgJt%Tnv>(ufTd zs1lwA6R0JyvU8xOj#`&`y=+!5OxMd{x)%0|3)3+zFHE5Y6r?ZXDKJ603RZRw(&!EN zKt3oI^Es_9{X&k?&tSK>DDjUcGbd-ARTC&oKf#k=!t@xd>>MU-v)VAs)i!7?UHB?} z;x7DM*fuUz{9A0eROxO|y#9-4!^Gi}^E>|GQkX1L zYd#fEgbCGlu(ETg*fndUHPuGK6Xj$b2ixYnW{tQ(Yu3?tHcY&Zgq5A+rJabk4~eFJ z{X98Z=fIY6(OT5FcF{|rAZF4O$Q zjbbfPt=lylP^Bf>H2f2u0u$vwhRS1M(@?u6)#yxY%PhWcxLF{cU~a4=l9>kZPeVhH z#H=8=Y=9@j#AQ8LnN+@YLW%b69)5^Xa%xk|!Cb)`@-wL**X=LUW(0Fp+`@OQ4}{(0 zR-(o1(G`QN+HchPLgxkt;CV55+aFeT&YL#%G}o~@Lp9I}a?tXyZCud069TQy5K34E zPl!oa04rMvYoZa0db!Fl+=PU~UT%_JSWDI}?i+HXzXm@iF4Fu zVP#U(e$=c)RMaYjj<2G&wN}*f>I=OMrl;%ni<`o=l|(W#k0bdQSJKprn<04u@q6*` znGmlQDq9O&8!!9XX;dg;Kl6B%+eePap18lvD#zcSDsu6N*+4+q9Z!S_%C4|7sdhVu z673r^wU;Ot(qCF>3v|{^2ti zG;2kB3D1T}*B@YI3tdf28KYTeW!lh$gu|t@?KH^C{a&#Yq`i!FNo~8u;_h!7C6Ua` z6BweSRQ1_s^e=TLRGEo3N4LV$U;;fcR2~a6Q0>6cLbErq=~sLfdYBxQ1-Qq|Stzif z5GBn+C1wYKW*(jp6PklyWl{xahZ62)qmj|^UtVXb+QXy=)k`S)_ULIUX5nmfIqV#F zoaKK^K1{JvdbyC*xk9_SAv`N4X+>ChJdzgZFR9!hC+#}exv@rCkfWqsgJ;Dg?P^$g zypfjka#=#!Q*zRtgq<5pq*Yv@q&R3D#CR0bj%FdbM8fltE zULeQnT-Y%#R={d4j#cOeCF^WF8zxz2!ph@`EYi#0Ehp;^*s-xfmT9(l8=ei5teatF z=VWPb-YtxNzjZ5MeQH%c-&^qX@36fnhwFLRG%j38uCR_6LMzvEctT9Ro`IE}^Tiw! z1JnD$>u1F?#C4TKGBd;^$Ha;ol&rP!Y?x%d7gioGWM%#Cz|&V!XUNIg4|a@Owvr^P z;szyaA3Pf-S$o3D&dFl#IhNN5eS+3vIa+n|i`j3L?IbhBhvaZQ2s_4wE6Gu@ z;szz_0X!QfS@*%p&dK7BiUWmwx3+5fh8(TeVavE^B|IvY?VxPEhNr`1>lIkpIa|z~ z#3h4Xt`ubSkK%5X6VDSTDv4y~iAnAx*8HG!ZI0)|q-zsc**RT%^Y*E$$C+x|vswjP zAct%oY#q0P^(VORquD}PI|xsU$=YmKd7QCU+pN`CTP|m92)1qvu~xHX#o)@0j#WC! z|LOnAB=ujSv(H65KPGeou(EUL^jAeJi}=-FGTqa@PR`pkuxni2fEOyGyqVLW$PrrB zuEsNB5_To5?3}QDpdoZ*b406aPs%xa0``u}8E}(Svz(3iLTP&(&x=Xhqp-4b+O)5r zE{y!H+mx*SdX0NW9eMGb;2qdFE^2+rw`;a7q_^>;n4G-{D~~hIj5|rY$T^#)B$AnX zwt+L-hSCmrQcTXKz{<`!(=WYfT+hO#ZnCd*f*iDCVduC7Ey>r6s#U(~3LQC*!n0zM zb_A^KoHVRY3q3XLGMy`D?QGaPE^BS*(?)!uw4I6P#iZ@yu(EU7;JRkm8Ms5v+HJ6N zT-MrC*UTFPH{)3`N&5z@?3^@g3AeT`u1!Cmm!tL^Y#kT1HZ0-RY@t={89Xf}Yrlq- zEvz+huSIkB6gg3&&XF|Mws5};~!_Zz^GWZg^`yr0U9627daDSOsVel_xWaAODfq*gt zPlO4|ey}pBcKd`9?Yja)n=zP($`6z;Ve~SoUcZ#`Gk(@5FY_)@Q424@$id!mht^*9 zavL8nlP7dsU5w|%B&`otc23#>^?L{=(yDWPletq6k6>um4iDyM6kKsr~!U?dVvv zqJKu^&&#gnz1bmZKQ#>i^$rYFGT-c^w@)p1Gp@e?P2r`tIt#Q2kLd6Xu)$ zVQT-HmVfDA*Y*z=E6L&27vzgYzgX9Jz5@RejX$H|`Q7<+ao29IJ0~(H`$plg-buKYS<~)z?+SBU)#PcywM z>gsrm%&IpbRJK0sHr~j-rRibEn%#KMznA>6?}1xt?D^?qpVj1JkL5}Ln2txw1Yj3f zxf)zl>ZgSg)|%WzNp4&gw9heBel#Oj*{M^GUSWAET~GxxrTY0oeqg!QVx?8U!k+#V z*f!(X&`JC`hIZ@h@ zXmy-pjBl^XNqQN!i%ZgiW{Z+3aZ1pOc;HNeo`;p46Ewv*t~DCZHZ6!-qm7hAG83w~ z&7xD6F=b|bJYps@>%z*;nK4%#Q~B1q>N#?BX2EtPUUf`~Q-WsTfinr(4_3Ai)Wm9D zv>;enCTKz;nk9BLTRx*GDl1c>D1P7U`dD>Ya>nXyU6x#XZe>$yX;Ad*)+R54e{9BI z%J9LXtWA1_g14NmONRgB&gza?7+l@bmtkRYxLJ;)g~{_n3F}&wbpfK8Md8LP5F4jv zm3=ujDD~MM(CzR8s{U?gj4Z_70$XN$#{E|*ow~;}ye}O{$rJ4~=U9z0T5-M+kCIvX zZU~jF&%2FllUo_Rh%MN~7bl-pVGCE6p2j^jE>6-XKfCECAIp|7@Dv^|lYu8;WitFd z5lUFAL(7*ZKVXK%>ndsu)0#ywD61=pR`l8wln*x#iprFBNE7f#nTT}2%FYp)Xh9^M z*BRMM&d46HKipwthJX>3DurY^9x4-(U0`MBkW8{e(x+9Dw49PtV1u}n93Z2lk7BY2 zkClnZ39zzrOl-qVw|-O6#d1h4gze!%A{lPF4VMsIfJe$i0QaDCGq@bBPEf{{6>LwYEh&-Lzvsv)nFagP zj#{EprI5_PLuEp;AFS*g5?d`%&h4(vaF)m^$-xG3DUsBYa;_AU#dxetO!{Euv5bj6 z3|B1<5*beBp(Q6uoC35J9yk-AiLkPB zfVOE2P`;q`zemc!ISh7*TXp8ht4_W^fmwhD%mij0tn3_^of-pE2zvX>CFcw|Ij6yP zamg{fp@5d0SmqR=<#^;wgoa>c=Ln6`ATJ|D=SDd?H^4S=(P=@0tTLv^T!%-@MCKY; z**P+nWxTW>WV8Y5X*nxT!TxYr5o`&RQ>BnRiHFLBoh!*wP|n4JWrA`xtn3^V%NC=rZVc5s*n8!i+zlJV80Jbb zxdV@tiOFrSvU5x zB>TY1&LOdNB+CY}yJ?jqC#PgFY!H_cNk>x7m15F|$I8UShn2@FCOw%vS*E{2j>%=P zL2bY!%#~uY5|5RM$tAF|b4;d~C&Hn1DdTkb5jian!9HH7{jak3CHe%yQT$E-(i-->B5(OtBflV`gGggq59RW9d|atk%QcjgZat$6T6OyZ8W#^DgHrJM**c0S}lD-}IlpK^NVUM_=9N2tWsijL{ zc>)iY3CrWKvU6B0%Wr{tr&r(WnXp{k*mfw1WExw+@>`fI#pE6MVGc7fc^g(9yO^ji z=xQU+bU7xwj7>~bt`w7Lc&toJc7T=G9h!Fz*I!W5Y2 z@PL`XJOe8`2gWw=snS#H0&W zc8-ayjm`J!hafMLQ?e5Fhf9g1ja8}AT5<^Ok`%m%FdCo4@+T{AqVxB%ZV9+UE&fW86LSr06PK74)EMIpOjqL(Gm*IxR(6hz<&16CTNY#o_07X4 z<+wZnTg1ghaK^TpEv+t(D3d;_7xJ+24z{<{Hv9!7BbXcmC zPvyucbb=h0V_}!LrA5%@MhR13j=}?G0&@hc>>LQYOW!g3}aE)$lI!^+NKv1|pX)d%B&mOJFM+yW*1Sea{sZvO~@KBkMq+n&|kXRn7J|JSgYo0oWuiFM|2cNWK)8 z`|x;~xZDFPJIBRxSi6uPB;PlDU5?6Yut8i@1c$Z5Tq!26;IT3>c?ni_j)|pLDF(gz z>&p{AE}r^qt|XF~`UrZJa;g-PP4G~ekZcGmJBP$FJyusCXidsIIU@(b_HZkSV0x@F zrHIVNBV{5o6IOPPh_#O7^bfZT$r&la{%{!))sdXx!z}}Ns7y$*u=1FNWC{6r?lp2q zu7>?-2P7(0T1l?NLuEp8Ijrm)63bN?MfD|)g1#mAgdCH{VTZVw2(HSgBuhbg6c3gO z%EPd-b5JZhJjKDTQo&2>r?B6Vqw+TF5f>G~4o@vz3d@^#xJ+372`f8?#nQr-$SqCN z&Ja&?c2E+@OmhS+tjd%kG6j#6iOANlvU5Z%Evzz5Z()y>GjbH{54V;GTG(=`6p|zG zP??Y%3M)H@#ImfWMx23DwaM_=a!SsG4dPNFSXK*jrI>sikClnZ$6)2Li^*UvtzmMT z9Fv=2gW7_L%9UdB4LnvRCSQY#gnz0MkFPPIqkpCPzv{oC zQ0^F;kod%^HHqs&2~QHm`SK_}C5d9NtN)SrC^z1n*U_=#nJda(4l8&1?&`l#{ZW=q zm~Z}vsr_qO{-u9i+do{aB!|~Hx)fxB(()DOtSJBgt2~SyKY`8wjK7cJ+1>ecao29I z@2Arj+=VkpBeRoyKnKbg)w^zYp zbB(IRlo5$-Ly7jdo|x_|H=fQRvpKbp>N~iA84DV*U zk-PdNJ85p@VIG7>$1HQRLuKnTo@)JRHSx=8{ETB0@#-_~OnF`DRFECW)cp*HRLI4y zCJI{gw2Qc(#t*#Hr@bHiv}0M4=RSbP$$aivSh*TpG_drC672(IQ}RRU^fLNssB2VE zLO8C5t>Kn}J#jcxhP3Os5|5CH#pST_n8YHdzkv9J9E-|jbi-%!l z3l>duvQaZ!8LOI*h-%i%W)q2`sB}f5C?-pyP|fhe?QMqFTjT)x?VAG7xx__F|se3@fhMfz;Q|+|nS&cNB_w0j5$}EC= zhRW8b-o{pWYl|DPRx&4sf+NynfMID z%Hsnca_aLzIX(}-UOB+WbO`i5Ja8sH_rS`|@tMY`K1=(2a*XSBIY6($ZgBxRv}N@t zOr2JsSMbo82)zU=J4a~8(GbezbEo=+yf%VOJWD)+ZLTD+2?Lj)Ls~;nHFFBkCV1pb zfHs7coddMPXaJcC&^$Rl2fk{rafvZp1C0=4ZGYdy zBW42gPgprYU{-c?tkO~bPwg~R<1K@&Y{kY@X{LQrJbl_hNhC9UGF%pcaAPSmQ}B41 z)NBnaTc~Mb^D)}LtZZX6ArbAO?%wS3K@>%03r!To29hY$F6uwlXzP)})sOUY-T7?Y z7V04U^D@@d;rXrDLM>F{tJ|J4?4K5zr8qiRm=7haJ89Nkk=E~@Zd6|k4UgzD_z_iq zw9)42O4u>uQ|>=o>C`=);k_HJ092l*wsTs|uo`2uZF&hFBeUvV6e?REb{n@%w=_NM z*bZWR&-6hRwQ%R_0o+pKo+*9ohKu^5fv>@1kL5}LxDSt(3BWzDG8y*n3MH&{q2;@! z+I~glN7I?A?ihx*zUT7UfZWCQx{6as&1}^|AIn|`IsHBKiD!%1*<4AqqSdAqr{O6L4m;JHDL0$oF*CW@5LR~1&Ca88lh3Ad z`9hXdo_TV54ubvSR-T6YTwHoaGN%m9#v^AkG!s^K&d@F#h6Zy%kHSdXEFF?VRD=!V zLey}(9e}8sI;Cg;51mO-7FKpnQR5M;*f-eIlhH5Txkir9)v!}se8eMIHD}7rm3Yid zZZ3zFopYmYWgHo}49mxp0x=e(Hb<|~1rbi@er~7d{RwgGOgOx3uG_j)?ZAwdpwnm4WU960v zsO*l3qR2?1P+Ozhw0CQC&4bnVg91NSD%S0e{uKUo8GjnXb4S@7ZFt{G??`BMTW^Mq z(H}RC`=(Ve3T; zBTqAS>q?YgHNt3D^ff#}X2E+URJK0pHtveXE-oB#BDPT&-xQtrDRE1^xsqr_OHH4- zVYsW@nAGr@$1){Pe-k`b=F{I0Rwl#U`$Gw9MQHh!XzVk05hh-@msPu>{(!cSJWmBD z+y^}fwuoCCngnGeS32vOjmOFaWhSib9F*ASs5DRp2h@FL`l9iW9F-z$5*HQ2K?_bz z2~nwJOJNznqh-R9g_WJdvWub3=&Tj&RJUJDtFAC*1m_w#I9J1laltX{cyhq8WKJQv z5|5k-(dDqRbBK%;C*x(i%-}pB2j_9vBrZ5jR-9P26qZNvXqm7)3@eXSSPDfmEbqu+ zc^ft%40wPf=Jg%80GrwV$smi!=WnDP1c-==h!Ysn)| zGq#o-mB%h3YR(6g^?0c|v zRm60U!H^u1BJ2YXVNORt|9)V8u#s>p<-Tmt*Utr6Cl*65^^Q>D9D7vZ5YAsL31okJ2khZBdS&nt8n zmj=Z?jg$xFq&xtd#3e;gQ%3ToxZH=w%f#g#SlKx)+ZY>;&W!IZUY;t@%JRCLm)BsI zxV#u{)vnCWN3SeV!W5WS@PL`XyaX#d2PSr`B3@rI`QB79-&3NWFPeCPcr4mnNnkBL zml(q1xBIV45cpEf{JPL)D3fQQP2BnvA$hr}{nE(X2Xe9*16w%5oxxf-^J%Zc@f z`RJ`mHCu|xm3XvFR4#{=$1Ezw9_0x+Dv!e!wF8w(wiJ~|@o1T-JPa#4M`f~k4peSu z2Qq_2t*pEwXXS0!BQ7fkHogAZSxc9~@+KZG6PAC%$`)9f*t&^!e=5ttO-Mvbfx9<5 zk&B|JY(j{l*gz76+JjnSwYHuTUgKb2eNf!X)ZI7nkx!%3MdNQ{c(!E!ska(f-R6d2 z?`f_I7Mqw>`Hl9T4h$u%dlA;v<<{>#tsj*^(}P(IKbUH+(Y{k3Y?txb_8+Ts>K@JT zZnnBteUh;~r&?~+=%W25ACHb%=DI><>oacSepBp-Mb(Gc?n`{HX{8ETx`TlGY20g~ zPuqIL!uqshS(4{|5gsS=xevq2)!?Fm<@`{>S_N9Z#}qrLRRhG!WK#Z;L2}#mgDNy3 zA`id@aSK8dh>YY(JD~gUIGKpt11md6BsK{jL8MUdmKz~?T@J}>uti)*tf%?xbtGIJ zu4GCvc?FM@iOEZ_vU5y!BJD({S1kI4QmQyOFpw{lim4zsknz&`Wh4`a#dT$KC4u#2 zTx90KjfO32iq9r^)J%Lfgq5A+Glk-l&IALgtXC=o%fj1cwTbyWIX4HvK5@CRPR#A4 zMo*UlGaC<=3Cv7bdCUScU5a$-GkX)i3*EGZsW;!!g3xExk?j)!3Y@`GG{ps0?;l)J!Ouim&k zA?M_A*e5P0O$(2$QdFkku`*HF8di3W$`*7U z;|M%RCLD*t%Ff}4o!+etIX(HoLZGfi^KrzTm&1{24qI^rN|89 z@iLJ)A69mbjA3$I`_&o0W$}QVm-}FsxV$tmIj&EZ!g3EDEEATyU}fj97uDUn!DRQl%93+QjHtZ9(qBOB@tfxzXnTdzX1m?rAvU6Z! zH!9So%gVu=x|?mtHx`$ooR|GOim9Gd zP#MTC)#f@!$vHU!b|}euGLk5TEGZse!=q&4 z@l{xPjN*||CuOw}=ovX4zlQBe7LRh46pvrxQ8MxPIjrm)55xYB`dz8BO9RU_KHmFT zaVNW)l1QeLZDN0?mL>&cRXj{4ApaYGfEW%yD(BR6G2`h6WcQR4vO8{la(APQou>gMKPpuFq+8q)Sdo3igOQ&NQ*W7EhIeauOaY6O`j&WeX@x zT&)(}&Q`g?sR@bbDxXxdcX&imR4xk>MR9;63Ux=^+wJ{M(YgzQoO<1MvX|-gy9!?2 zRdF}LzcAy^V|c#gs<=!TU#b>g-L+(f8{@v-EX~o4ao2|u*4xCacSW`S#<)$RIeq0Z z%`!ZtC*Y@4{ryJw#yt+3W_-~7_bHva2Q+N0gY}O!c70rZqSa8NOXMEKLuJ;%heKuS zV{hXna9F^U1@0rtR z=}1)0m$I@e9xs!Xond9?RmD0IDeu(UJo&O~mz{7c%qFTdPxyt9y|gm|@r=E-=y=beJ%u<$OF~CM}*eg>^>XU`61G+17d!}1dB5f>Kg7l4^_=t{&-`ndq?rSDLWs=<7Tq+Az0ZtJEK({b%*<6ZKxWMqmzY= z;-b@{s#8vzlGBfe%_OH6R(4L#v{9-~NqJZt$QSij53ZEsb2;o57oWpgQ+Y;mrwn}_ zkDbZT3Ru}WL)N)>eo(!Vt<{}J<={LFTf_xNI`<9}rnLM3512{I_h4n`v{+Yy2k7Mc zO*t(8gdO6-B3%hC=Sx}nJ035SmA}Hu&RL1Q%Thm^TB4VgDJ#X3sI8SmGLtClO)<<# z)RF?_WJ^3+CMO?&m7Q~9J*QdBE8_ahMbkJ!3J?z zk?t3$bSWuc#lvNi@)cOwIVtv$XsElqcdgBael4fvm#|4(TErt!C1py?&+(9%#QYRi zc1}#}QpEZmx8&!F`9gPIKhwL~rQ%k1RV9&3t1ErWWF%=y&HvzMJIti!|6pb3)L2)1 zD+ZdnnBC>v?3x%i(iPuW+LWA~@vxcX>CTj#nUi3PxZ{(w^9>WG zv>cBI%%tTQSlKx(*7FZTUap%g?heawIUn|ji;ML9LnUL%%ct;&nY?@wRvyE=_-We8 z+#~1ZF4&{C@e*cCdHE(DF_V{DVP)sMSo@eEKV8ZfQn`E~tIe5Sl0)+c*eEVE(mp1Z zHYMlxc-TyGehVu*Cud*V&UMwo@?AfR{iUhm@@&>G6@qlCa-c+`X~WNpXH)N263NV_ zP8O~Ok75NS?0tADOv2WJl`VudaVJc4txV-=i6$hX%WZzp?3Dyj6qS2TL{VHTi9%g& zv;S%x9o8E*td}J;bFs?BlR7$v*Qj2p7KcwpKHoDa29IH`A_t|_5kCIvXmW9gJ=iSEpY_>9b5xd$Yew)oVRM^7XY`%tjYJ3fkK6%68 z3+9uLWlI?NDjqMBfv>>IWcd41C}FM5Ex*WSM++?K!uXQvro2oh$Kz(=^HW$kd3;u`(XmQL`9J-Q2brBl;iypXmK#Z0?J_Y* zt15|BwC1z`9YR}kn4~Ck%F_SfC(hpOfR&SHX%vL^9t9!Q%N0r~{knN=rnkEsr(F}n z>G&4lWOjj~wKJXtvrO#>D?3MPdSkTGnP8y0a9~=CO39fz3HFRT*c~ZnN>87{bUYqD z6Q*Ne<#7R1Y=uuNP{VSV&WAl~H%zhgDNLWj!)L>ea%0A7-l^at25E=h)0z0fwi zE_aI2@A24~82uJj9yb^b_~bL38-77Nn|r^KNM<(IN{q_6Q;gn+$IirPEm+w(M%#~4 zjh3m;{OCtzXUh5cFzgh!3>l6+!euB-nu7BoJZL63d&A1k!7(r9cc!Xqb3OUNLZH3^ z?B~*X^5M>`9H4&KF)l!d%jatK$y1Pe@!**tb;HWeK^mn3^?Ic~a=PtuIY6I>o#F!2 zf(legnu4Qt>cFzApW+oSh%QW^vhR!LG&wLxuq~BDG7~Vvxk9@U&AOV{Vi5&9JD78juf@=_EfP67HP9yk-APr%B~0UG5Dk=ldp%BY2-U??Da zuXo8A`X+1`m!TFM{;12HVstAWI}@XuU}fhRjaG*$7^%-4XzSO1kTdjq*exzYt*ApI ziBo`niwDjG=r^#kbAa|4Wgr_I7|0h&YK~T2%C0OH>DwXi|Dt%N_C6(%Oox3!3x+j| z4HT}m@HCiktpO`Lhiiw%aH(4*GU{-eR+>I6XX!(*Rov1vPtH;`Yl_a^c+^aEJ_sv2 zM`x5JM`fbg+8@xD9Q)<$^uk_o*=fO&V=Zk8Pd6Sm6CMv%b`H-d=ZchzYMzqu^n33= zFQ;b(Y!;WE7Mv>@$(!QySv+ngKA(Y=o#Qjg3X!^cc+gL&#aneQL>s$)ASdX1uwPt) zTCidrPn|;a9Xxax%aW%^ze5%Ie&#s;*uk{AY>$8ip!tzc$v8T308KF z%eEF=qH7JbQnTfi;wje$lteO9F2nVp+!JWwPIBc63yREUc*IO(Hing*BV*YUD__Pn z`UMUjmE-df*fMUt5$uUsvZpA`#iM7UbRewk93{(aOTV!|D?!WT3=P6waTyZKw)C_q zJOw;#COmmqc}&9-yP-gX=c{sfz5;vIE_h;TQ+U3Fhs}iNi?H%og=geFa`S}@KbOPv zQ`oCEz@w*4;rTHhHWQv7!OG6z+0NWFkGN>KfZ=~~a{doCic8MH&95%kqYGb-!;dnVO$G{G8 z%gjtcnXz1~un-TH3CiKHvU5-@@59&MDWJ8(pOORfN!TeaFoO5t>yxGf(=b8$4bnF2916o#Qga+_}VW3DAgn-WuOACd#JH|!Cx+%mt>FE`{ZTc(_bhc7v6j!(uscQ#&^IW_r|Y zBlBn2BQ7$69;cQrh2>9pxJ+372rD~>#WIVEzs0Ws^MR|yv#8CK#F(2!#Z#uxY>bD@ zgk}R+**P?pS74Nb4K6JBh@6|buvOebBX|Wy%bKEdARaXnodaNH=jco{Pr!p>pdULQ zl=D)6{o(R5qxs#Ya;g-PJRT|&k_@cu91>dxQ}VOL;8guqudm2K`4a3A7ZgbcQ%#q` z@0oM?HW;ov`KcV3AHzOzff1|&$5W=z{0I-33C#~-W#`arV;+WT z4w5TQ{!fm~e_)rm$joVeFp3hU!2BBzm~Gc%rnul1OHv zBsgAGmovp?TRdhaHj`mx=h)cl%*ah18Z*bpnOO+C)Q&nck}w74a6DipFo(d(&VjMK zGN*oX{=~g*5H^EkM zu@S7sXjxNqzK%!DMCW=~**Q9vJ*KLO#Zp0C)TUpH^jkSOzk!|Nk|Wq-s!y7N^D8`P zCOE%=#q#cfa!;+0 z(o5C8Bd6utut{861n(Y<f$X?@I}<;466_K8c3V9zO@ zGKJ=kc*sm>UVxP?(D?nAPU`45eZ|!N{pWUcELzb&qw;5F<@DmYcDLXhZfb6sFzuB&WiH?&&mVY>l$>bY5a{0 zAJ&~u7k5>k5c5*$O!@jH?Y|j$(_&ZkouAJ5|6b?FKXryH3e_No*Ya}dzI-9)W&IU> zcU4K6G=jk%DsXIqTa}nHA~8LbXwOqfO*TK#{_yc^UcWkEdsxTA538EJca02c<@Y! zegP{xhe+E}H9?dm2bR~mR$PbHP!d=d$R+5IM%x@1K`L{K&wKF5nfR;%D?7(WyLr@v zk6|3!Th7l1VXwISG`wdW>ZK=Ct~J8jqZb&v~%2b9@?1;mtF!@5s^lHf$3Y zorZ_Wcq3OeYl_Xc@Ti&C+zBf?$3{Er9PfIRfpon3vz(eg!7g#BX?T!~O^tD=`Xe4R z6Pg!b<*^Kny8V|zv)Nb0ldO%EL^6}C7C=);npT<(@SvH{tOqMQhekUE6t6T{Z<)5R zGgnT`fv`o~GSl#YJg>~Cj43V$;1M%%*&kMRj*E5@s16sOeD16u=Oqt&#O0;oPCb(s zl`;h;gNMunCV-Wl1JkI!kY&Fw$$9xAY!R22R@4{Ma^Dy5h?%%t3M)Iur9pi$Ec5+X z&dZNrkGQb_tk7-=UKIZnu5NRdPTDwN5@ew3ni>a60HZznmH8Q_(4kgC7i=n&#}V9Sipx&J1mQ}=j=_icD~qmqq&47HkLHOlCm@wf3PnWgVr zp|bUPxA6$7-d@)nG9EwuvkF^ydhk!Ur^e%_^vO4Tm8V$CYj!?Y@`9XSI5sHtRZCE# zW2b+_<7G1N0<27izu$!t*6Psm^UC^Bi<+t7Vp=-o6?)4)Yir7zT`z`aVCJ|$JgidbLIRT2>ZnyZWp!^6n zhzrUAO;3V4!(1sQKg45YV)A`h**PYbVJJS3Yd!FPJ(0OriM)9x@Y} zzro7Rq0uh$uk|j5(z5;6#1p1%l|(WVriPdKmy=OTdgk?&&ho!fNG9WqO9hka^CWr?Lsp*aK(nF-B&SlI$i6Kna=c0gr)unCE1Q{v8MmzSa_ zDy!0>C{{|MP@58Ww)d`#)eg-Uvc>u>3HS$Q{B;b^8f8nuD-^ut^oES^f83c1!>U{9 zHf=;S%WiBVB9yQ$Ok0;4TfY&pUTRj^k@7MveJJ09A4>IC8ry<^%`!gM{+pCe-Gdq4 zg?8Vur`W0IRgEmR?SMzdENm7i_4f>=;a`?eO#Y{A6NBf9JNEAg#9x<@&1C+se4w#hKrvo?NI#rc6w2ou@1?W zJQ+bhfrrm5k*9~sO;FMDfpMo%p@{Vu@h<9Cm4dK~x(WB!*hNu1PO^=Y&EpZXfq?RL zJP{@+*Tc$WEWI|AXkV)}b#$WAer8Z>yMC*p6yo$7*eh{oaWOp<;9 zD?2A?htWx*Ag%RvF-U7DiB|OQv@RW!07yoT-h-#WEP1&;jj3)qQy%OWm#GsI zVyf%|CF*264<=D3!phEx+HrKEGWp&>KMVU=IZmH}&En#8Tmm?SCQz0>jVHlm={#83 zIZKQ&PuW-udb9aJKOFlVIZ)q*9peI(#F!U3L8lK!Nt;f0hIF zC)g}5P)Ss%&;-iTAMqrZEWH3Lj|Y~@DD9;+Pn&&1JipsmNhCABOM<1)1j^C|coIyO z)`OLuv$X5zom2TUQhs;J(2mcQ6LlbL8Miu}oIw8+vx0JU0G;WYygXh2`DS(y71xW!}75|c)q%Xo=IVDMXKuP)no&%GlOJQZ_ zBr#@o#e7f6xSIK6IZr==9pmzp#LO;of>QNEJQF5W--ngQ16AeL$w<|InP}|=qp66|=B$AouC2_uB#0bjNWIPcg zQ!7{NSf!)u&8ZzV;iVY9$4a=!MAAVL` zs(A$g@@0C_>-Zs_28ZriX_kNS!{_NSc{+AyGu^TH*tGg zdTtM*BW45P-svink~Y^`x^e4#70{Ayw$_S246xXo`8Q?ZGXNM`21 zI|0a~B4z;LV?#UzCLiyIl}T-TUntSO(QVRI`K zv4Wy?Ii3m=tdr8IiqOM&_)LU;04qC3 zXs=Na8qAe%VNy$qMZdTF-ft>PKkD_i9H}>9=eS69wRFrg+CdTfC!P)yvA@I0&Jo)a zMvQz0Y=@i0UHTLyk<7HuOPDazC&ISIvta_ZC9FLD0Ha?%JxUJP5wLOG5|%Jv#_#AJ zif6+F?4z)<1+XU8KBMK+%0gHZ670RAmTwEJIgrmRAM!HVjPpV{x);EYgp2N;SZ%Ck zNC(t&@d%kXo((G#9NWHWxK%Ww&hbiKs|eG67ET!4jaww*mw~8l{A;C zG-HL$mOO#@R6Kkp#7jeEYjtbm0f^Y`Y!+W)Kl6Bv`??&D>v4aXHIBDs4dD^9fq-%? zo(L0^FT={D+Fcb&v~MC1yS2tfl$Xh*Gx?&vYyB$~sj%Yw0``krad@}ZU`W+`peqeO z!}DMg^%GdxIZ?4gT2`X6p1x!Ko?FEB)KT$bvK}4=73R!q0n{Nz#8|8jSGIcbp?3^jaIHz7r=+|)iv>d1NV6V71B{9yGJ)k6=gXh2`=`2{;IZ2Ej zJe?m{t}bWGX*7LHPSc&RUtF4!=)r3~P@-$C`X^eQ($s*F|6#Iqu4#9R*o`xuap|dFC{BaKa}(Ieb_QCPrR47 zK%OEiC|BRbQ(K*<4RH-%Ux{0?&a-(x$MobCP05imhW^L49veYrhYXqck5ji(8a< zM~cBwu51Ej>0mqwCQEZ*W#=q0R>XS?UU#5Q#c4R5D#vLl>=zfOBv!<0K2V}ccpglm zmcYu+iDFczzU2dX9jEK%I9&^y#lJ*wlS^6@b1e2w!U}fhlG1e`EqUp%oFXS}+ z47Q6)QxfZzRU0TzKf%*r^7I(2?3^b?ZOU}h&S{lzikt9vVY9e2B~hC~6DUjn#gkyN z^cJk_oF&G}K*lfVO?amqrJa<-_?gd@J)k5_#dBbiv>mMMoTO=^pCQPYHs?;1vveHn z7Pl-NpTOo^#RW>!(Rdb2nvR5(ozujqOKOQlKQ(ZkoTYPMuedBFv0_>FfRc0;o&%Gl zGhk)sBr)nz&dbs3TJDsybUW-8m!%}?QpE*I(=B)wOqy|H^Tg<#ia}04*R;PJrhQ?rxaBE{-l^;XC221_2PR2-z{<`^+GF%N zU2(uu-;?QCo+|m}Ydp2>l|T+v4{RG3D&Do7*lwL>2jwe`r^Dpy6j<3gUyPN^Wtn{M za*e7>(TzTpD_NS5U|+@A`U}b?MT76be$Fp=8SDLv|0k#TKk#$n zQaqovhT2<6F?N%WDd{R3(cO#x#=~ZU`;Sn0EZpJ~J6&$@BzAR8{05)x?-b7sw^b6! z%ngrf9TKth2^^F01ekD4f|W^C+ai=`-_1R-tL{t`75whOw0>vLLKUO%&Yr_zr?_?H zh!#Rr$)1jjhv3mO37QWpTL@}mP>aUJN|9?q!r{0WyP5dl>Y=`(bz~ft6MR1Wq__n0 zZYHjs*ek}zMq}cn0DcM&or&)!LuKpe*uJtBn?f3Ch>Z{N;qfjx7vIFqWnOT{n?ka= zh*>}gxfM@>NytsGGAVFhZ&o5Ia1~C+SAqLL)cDWKdcF2bJYQG-2#4p_V2ioM?I70h z9F!A`6*ihMLG~3qWG1pNh00@~sBPDPfY`4&UeGqbOU%M1N+Owl|M1qZ5KEmP^hru3mD;e*K^-P#ytdtp2 zCe$v#gJx1YFI2YHvNm2q9GiGjOJYCicr`ms&ckxtT4sC3yPlfCLo9hh#tlAM$@SZ?vU9Lv>s_Xy&^7{2m-DnsVmvKmO%GWk;7I-y zqiJ~j%=)wgtUOLIB4ufj9HSFpv$*43>oGD7bI0QGGch^}Rvsr9?V-0#7sxR>7dFcs zMtc~#rL*z)nHZf3D?7(%n`ph$FsOB>^=lUHmh*E5>=Kus1uYxRRN{0PyA2PV3C_*1 z@>mC_M+fIcIXKV5E;#_F#{kZAc;HNMo`IE}gA+R~YN$AVw#)DC4syNP!Q=J6C7zY7 zt0a<{m9=hJawL6Peb&aqXF~K|SlKy5jfbrsQhjE~@!1b{sr}VQB~HQF2M?SH&YrNc zb8xn8*zYL+cGn8eVmUc|uuWWY4ry7#Q_h^C5tMT}m z7+nb~JI5$?`;(zNDi`&^obgcOlX8%rfbHUfbaczsgyIg+f$ecT113t3!phE3ihTyb zfKufh*VNJ=*PUOgtuJ=mD{i&lf&JpL#QPQ*r`4{rfWq`Po&po5H(_PxFg0GIF3{DY zUE~Z+QxeHc*IKtmUCx}MvjZME6P+orvU7AAuNIXJ)K`m6kh60v>=U>Cv~IO1Or64W z6dpPgo+Dso=kUaCSTzh{#Y|A%mp6}M=gKKM8#atf5$`f5&L~#z0mbP|JO?IDABUBl zkc=mccO5lvl|#{!*>gfhsQ1)nG5``)-^ zf#r4g=hgO|ww5qQg(`g6b{1?HxBR4%0;}o;9a3lDxiGQX4_0=LRqR6P1=f1i<(1NX zes?NANI#;mL=IODwv7vypA=kmj!?uF;~6m#>w}e@BNjhxU_~sQ&*|?ZT_q>$3fL_! zS|4-}_2@I06}y$&mn51jl! zf2V1?`^4?~HcBFyd0=8VDIX|KTj6;yaheD#JI86S*pXjrby7C=rAh_0Chzs;b6!Rp z{*IKhbr|d%w^a2dHT>zOP|z0ONijj22P-=VjkVOEJRR~fMUAgBplF9a>#Cg?c+k0O{$0)ouSBG zhiAq_?iyIxIdc1Qkn2-JreZB$=vMzVo6q`W0rhD)a8JSJae-T$6mSM#C~i;Uc`tn9pYvAVOYx7be=hq_a_d@hyq zd%f~4zuFYw6ggpwVEed(Wn$f#(HV-|33z5qqXcyE?J44@ygcRplCghXTwD6Iat{_S|8-2 zRr|4OgW^Wt5lY2@>3xY?xY6DxFHm6}im=;@RX@N+Oxr zhAFpa-$dybrkvv6yf8{y0^ zM~u!xEO|o48F=_iGERe)Nj+O0O0@6w+W4y<6rsMsE_F66qy9nb!ERS!3SX_g1vZOY zRhT!KGAN4jr^Dinc>GL^Zh)1YW3*jt1)pNHIFsrQhBSnJCr9Ynicu>&I#%f@|EK@b zNgW-hubA4u|J;s_MJxJeRQ}AY{5i1lXHNKs%hF-IZi~TE#RSUH)9}+CW^(ittn8el z#v@v0H&ZQI=ey!sw5F0srdvO}W&Bi=rvR;v2hRj(0<7#Dp!hB|Ekv1o`Mc~vv8ax5 z8Ai2z|0o9(Wc^q^85lV;rd(PPt6RgjA0lsWfa^`;pRJph%s9 zXTd~j5v=SSsrZ{_v`Q7T`FyD_WghK5CkN_c*f1_o%saIh-BP^=6sHUE9GEy=04qDk zsqvs!%=eVn)C;|VanSp&9H{$Y%eX+bZqUDobU9w9!p3p&;+?L+@v3)(LbepohzVH=z z$d~E9F30P7*fK6&301EVFDO{o;<+%v`ZBCMuD~MSs{553tY5&EjSa9&->v%@o(mJK zpTNrF3M}&Vy7xRN?zdJ^63O)O$yO}Wm+an!A3t{&@xQRLbFg+}^jqnCW-yym&AgXh ztnEziCP%9?F|>FuE26zt+zmP$?u2KsuZj;8sB`cj|-sG zB{m-U%)uY!K)nFlg=F+t%Ik-#A{7h**RXEox}3?Gt{ex+O+ThIavF{esK#H?+QT}tcnp7 zseSQ8m`LpfD?3Mu)1;U0d&m?tqB3%#0@yAtQOPvv6(1;2J$N2Wpwh7NxB+TV--P~x z9H>iSyW9gcX!vr}=kPq3KwS(gI|nNEmY2P!%4c+(ekjN3`>@!r=#d#GSKtxP362PQ~MU}fhZaXP5* z60EfPT8hTg^>UuBg&pJaluQRTVg<$O%XlhGtgeEUonsYytI#^j%jSoCZ&{$<=kW_U zRX>9b<5IPV_2x5LrD{%4sD6TH!i4HESlKyLQyGKafTyn}t@T$Y$|*Yzc8^=R`V*>L23sg@N8@QRaXS)Lc8*)@x@2pwRr~c0 z<_y*BJUM6Qz_xKYODD=%#SaSDS$IB7z|Me`odbr{GgZY>w%d~Llyi1F>>ii1Wb0X- zEflv~@U)n?-3Ti?$Bk9b21_X~lh5_03^T|V!<7eP&|`dM@b~p^`DT)I2qbNaat2kgNf7Xu(ETU_F}aA;gvt7 zzJg!uQ?tn+*Q>Sq`^(YV7j}+YvUuNfLKnS=B^0y0@RXRC?Ex!0$Bc7urldX&tdSMS z$?Ad4;*yoj!I`oP6s9zu1rw%IU}fhp#XfUr9RkZX+MBFPTc&6p1k<^pvULrPuFQ1sJ-rC>;J+vm&SIvBQ&Td{f* zS!}TOn)0{Em(t&sU(Qz+Wui(+drfxTcj>lio>z9r<9*AuaxdfmCe=`-#;ivXgB;RFu!nlL~H6vXOul{ zuR8JQnGEd&E01l4dJFl%0TV->oS~Cpuef7Us~C#1rwpBlN6%#FI9S;^L$Ns@twTXh z-65*(cQj%2897FuhV9~F#QPk{=%ZPk0hFZk@C2A7odYX7Cn>f+LrGE}{3^TcW$0U9 z-GL`Zikh}I7ho%Ir@{Fqd&rKwVk6_{*QO9z%F%jw{7jD4ft4*BHL+k6tvOYe5t@*2 zxaKr5T5~#5-8h=hT0azbs2t#r!jFkt2tUG_Bo@L9W2;Vvl&fGw%T6D`gJx1YH&h-A z%TBS6h*L{qi!bqYr)6>;261bdiv~xwiicS8gp2|nK9h_*tW4@zCX{I3r{H2MPX>g# z{6a22n8^g%%F|a>l)`VoeFgT4TU1&H(MbAqQ2Y`eJ`>QrPP4qxMC>Hbj4e7_r@i_)|id%npo41TfRcAGM3eZA4cqTxH!^#$bnwZZ=O9GWC zUK0`ymjt$oir_-uE2R6>dw|weflK57Uj#oXF2KC{SF9x&TNp4WUL_=28yLnzXX1N) zs5}ysrVa3UTq6V}Z` zW$P%}zQPt;xLWAf*%2EX;=|(tIR*1@TbaY-0yzb-vvnohoVR;(1id$HCi}5^)s_E0V{wX|sCPPoc$`*#27}lbZu~O!mkZ{=6Zyg&M zOI|4`mV&gGv9|Xc|5yz121+8C_MQoGlxBQ{jQ*!}$&*639v(gu;&nphu`o);&bKc# z`w|-};v?k&ay<6O{bi1n%teeS;nDGk*+4+q7f*x<%3iQCsdjsW673r?V_(^|5!Dss z()q!hK5S-Gq{3k{fc@eQo4nWL)%zf|!pcCZ<^vr+d+9UP==|OeYM&AMYha9E9!ESL;;$0GojdT?kC{2IC zvtZKnDy%$SXbSYRHnX;sT}V%Xk({ny!MCozuiv$;^4VtWR+I zg&e1!!FF+R;$47^HRDwqC{I7Z(_r%S7_97^Cr1Ai8fhp{tNcXVkiQEX#w99={%OPr z%G7`HM3_vy1uHveiqSuntt2zNPB~CJDT(nj!>hPJX_|^>!K7(BSlKyEyb*7pkk>!a ze4-qu<6yhE^(mnduWSS5>1aF+CQnDg%FcOW?A$FG^m3&jqu-u>o*bxiV86IPC9!i? z^MMj|7M=%_s54+?3sFrRTZvA-RE{n*A>r`kOYBVO(Td)nv^>7mvm$=1;d^qDzXLxf zF3G$zq3ZJnDg+wfU0>>Zm1ekEV04tNK_PbD`eJ5OEA9FKNlpiPs`J9(Y_4=ihpYgLkIq9<5 zPsJ0&jg>?){XFmcNIaxWUeGaf13VWdUF*Th7P^`k@S-uZQUIHf(8tUsB%&x5-B2c` z35h6*6G92E|59~Dcli$R{pW_4f6u7=nOXUBVCB!8@K4pwaukDI{SU9v(P142tUutX zP24UXULwABY~!nLluyIIKjRQRd~kO@UEHX?=Dh*PidCpDXUKC=wGQGSO20=qCM_6zT16c<3Z%Q z2lOfU0aY!VF_P~mVatrqxWAxu>K@PVzP7VAu_qeqzTyy)2m1*;N@nRhJyf4@P z6TgQcegMhqN~ePCK&I}=->SkE9s<1y_te~NDV_Q!KfCEC->A9zIvy{Rf$L%ADxgux zzc!Sx*5)QkbK~M*fkho4GAv~MRs|=7@5f7 zgRn!~k|F@5k}L&fH#}G-D4npfb5LR*E{k<-o%8^2x116Wwuei}hnp`aDpQKc$#|qp zL{5a2og)&vXS@y(damTNaz;J_`@>~qhJX>3Duv|Jc&JQB&V!ZzpSyE`lcT8i|6)QO zkc5O+AS7g92_(R5Uda0u5(t5W#5@3jIGN1!?#^U(W-^aW7C{i?Ar6X~AP5&l5iVZ5 zC?Y6|;sY;=qC7-FkcTK#MojXEYJ2wA>7F7H`5M`B?1=c}5yc?qkLHa0fvgXf5raIU zUXlMD-Blzc&yy|34v9}5sn*0D9eX@%JiOTrOhhxhF~}p(Qn{A_ zfz65Lh@3!{2b)Gr5K#?(kE45vMC53)@2M~dl%2}j9_Y{dp zj%?Wn5skGvzTD@`|7)1wbHC^6&IxiaoK+_yFU~UY0u~+b8P(B6$5D%{!Cc1jENa|K zezBBqMdOrV)*CaWVlAC3S`~TCvGrFyS;s%m6r^Iw@g7}@`I6(^%!Ka}l<%T~&Vq07 zs=}_Rg-vPB$kqB4A$pb^BKM``D~?Z-6;nnz{}Zs|iB97%d9*IZvq#xN*GIm~>q)wg z$gKBEX4yB`9b9kRTO~!?0$ls%t{omRE}Tb$i7*OhIqZrRBvjbj+A0AslI|@MfbGbZ zrEc$ShoO$$GQY2y6t<3^NkO6%3Z%o#X*q+owLc7V`pcIk{vn6eB7Lt zkCN5F(sGn8EznMxkB`v(MDlSt*>dcBB$Rx#-Yy}heA}FoZ;~~_QleeAv|1~(@^!km zNLIc^w(P@-#weE$l%4Wf!vr6$KSr+Y-G*>4oDrLm7k8R?0mJp`_8lFr?+63KL90@Q zE&El^n0@S{)RBSm^=K>)W6TbPT+2z%&`>dO9|exn#v?8UeBeHUneZLUb#UOmr#CD5 z1?ymPu-rED(fcg2Y|41&_W(Pd5H$kRVOwN{A$)sVU2pj~et){R$aL7vEc?d3gX8#a z-`KYeaN7s-r-SQ;+d)^+bye;imMJ(jsB}V6(AH{+hZS_ckvuFTTXvn}9n&eygm2ae zeGl=00pRda3w)L#6jc|4pN9NgNLCA*MHH7<0yWNbFPv7|>L2{GNc)ft8ZXya=hK}> zLUb3$>8*^X@42OW*!H6Nin<++9lp7j#C z?*RA086X;Y(PiQV%o7Z5Bl84n$nTo+MKSx9xUK#h_FLkWx*YTQf#uA^wlGGVoMInS zr|gViZAz_AXEs(C@9co@*Tiixg^{2ACArW_Ir&xS zULuoUiELR)eg$TtbECkqwp?;e^#yRlaFF*ovKUwx4w7ps=db_|3{Jb`@PCHx7c%_U zlP$*{{&DPWQ4P-?F(=?>WIeD1^k50_8+rYN?ivz;ACWD`4#6ZLWeO8M|28M#Uu03R zB+N&Xz&k!UC;Wr%9}a`60Ka}rJ`Yl2M*^C%?vbrGxR?jd1VLAD$_47;^p;AvFoCN4E6 z;$pHeSRxdAgXNM@(MCB(TuAp3iN*P3%dulIMmc!+syPW?CToEu;Xq7o@EbdPiS8CM z_+KPjjy?E0f=bH1;aT(eKTVbc8~-FS{(jxUlXTCJ2>g<4Id%jl+6ege2;(0&t`>Iy z6VX(Qs2aiBJh?L%O?M9o!$`7a9~d;IpZN^7Gli*Pg3qHb)g1uYUce0Y6&?OCZE1Q4 zHoAE>xh*AgtV~AXe3({n{PRqYD)zT6(dCEFU!TNG_|9MZ&QV7GVVWXDC31+|*M(1B z7s!e!qntk*?0BLR{9&3CPhmfb+d|hzzM(Bg_Ys+IdYNV4V0UmsoA6 zs#Vg(YPnPuH?94}oS#?8l41D?-28~=hc{j(>1Dd}NRnP6TaKNi;q%WtG5;ifX`Fwi zfr&7NL~@4}O8%LrIE!cs-DM;-lgXB2r)K#4GcU_uL1B`0nK?hFkR|JA{%LQ#oPQS6 zokx-DM;-8_AYqr)K#4Gv7b|++xnp zO=QWi{De~fv^QSPKR42yN0M{{+443{Qr0Th`ZwjOR>~fUNtMuJ<|I8#maJnWiH(;@ zdWh~klB5U8mSZPr|G+U>wo)pW>NTMh+U{4zrS#imrLX`kHXX{lZI-!tlkPK;n>Wao zW9LRVYDO5#yBbQ9Kt1N<90Vq!8H5EMHG>(%w^}W;Gn4K$lARf3%kKnc!>^%xjbvvf+44Js9cl1&xj8$RkhSVGJF4;5MRc!`>|8*$96LL~qxJ$E zOe!5Y{55lM?jQ?=1;=>Q?lf8Mt!}5gjHKo^vgO#R5l(9mDxE^LHjt{9;r>i)rY49zE7j-8>S0vW1i(giD<%9d&=`x=~jrskWSa^^_& zlI6o9b&e@gK|;ucW#|n-61I+PId;OPDG5{V4Z7N#p-++p!ZM_|LJHTzIZc%*xr**8 zl9DUQmSd;nfB;H-*W$l#&dYsdsj$2Ro;ws&T06Y(M$6>fOLrPc&OKzyv6JJUU!1 z$x(l&rQWOausJXfkrl!MbDZwf6>=!t(;TdpnHpC<#n>7|U7697XD_1MG(fvj8ax2+#?7SSL zTs2Z{B@w`R#vGid$Z}!9S*kl6QZ-yA=n1;xNP-?GTaKNe{gecGc900@jC;zs<{b+r zqN#aL)J4bBVwssybdQnDj38T%of-8`zMw540zyZaBXlTPHf;9M-pLmvfK1eUdIOL| z%^_R%Axh)aHGXiLbDWcg34U-}M)yDt?uB!Ln2{F?O}v2PC5j>sB6w=kIRkg3ZbI%Z}f^(ju$rK02eNdNQesJ6em>gtAQ@u0I*;zwY3!8HS_v4`0aT_hevy$#K5}xH` z%dx{VeBK#M7wVRncP=q!=OVILSa!_wj?-otoeStbBhfjJY&mvxgbg`%-tnz(?l9-& zcCtcPUXG^MH@u-TB)8EWMM82b*>dcV>?7ATLG{ct=A1l5775Eq;KnU=pX6z)jLH*q zUy-OhPPQC7D#CJTTRu_OFXMh=T>Fj%6VcSZ$7|;l-@0WK-B~0oBgmFxhs8gyDC?CY z%vm{A&#jj48Pxlpx${ey~A5=7E>G?#zGaIO3f-g5*r#nZ$y>RB8jl6iji5IZk zuyu4-m+z#g@06F$#P?Oxy1E*p7FmP2jOAT%AirA5_o8t^wv?&PZeL08{tLT5PhM?s zuGPyretBlJRf`R}^tLTFFcY28JeBC`n)Sgg=Wm&rZ-D&$cjd2yA8WVdSuiH17TEWX zpOLHeE5dRMIV|pr+P2m}R!bS#{3pSVCo&D+t5cmg_DC&reQR53p!dbmOqG~` z8wDLX1u_nL#+ZzmU?P;k6Xv6OMmUjlYKfob?&4$Pw1RvS6(ay{c! z@F(e>A(Pux%rZT?p_e&(3c+ow58G?t?}NXFmCk*1F_ks29A@9!;FV!+YoQeId+9zR z1AY(LvecX1t!sk!BMx>({m7N(UO1`E$cq6JFQ7NuYx|D&X3{>=3C~jBCuPoS9B0y( z!J5jj`$u;KM`=~4%PsH8#xN7~To-;%Hl8OtSpM)#v&|(3#BC?<$9l+8DPx+S26nvt z*et(6K3f%QO;g!zl2Y11bgz&pZ6>qq8`lobqU z-@&>R;kMREv0g*>4;kx~WXrB|d>FKxneeS!L$7SwruX2*@ZUReIrwGB#U*5Quy6h$ z=r_NufpQYKi0&W~j0?z?V+UiJH(Pl25D3#aUo&Up4zfU4HhjxoIcIpq0gJk)z6o;T;?8L~oHJ`N}64&S{IPtl!30`dgea_oSp^M`U@#7@r{_bubV z1g!wa@+WCLcCCm9B;fUj59_<(zxrjH8Ua*xtko7&cGu z?B|!;pH`|2R6XOgv&e6h@^xq|8D`+z`pQz?64Cmro+5M4Ggebf2A`qJFdss%W+r@x zTE0bf_(SMjyctI|Obj_9ulmRvuYB zM0Xa6%7bLfKB#CE6uc&J(v^k@UKwrFZ3y?m=^l-|c#nw}P#JCP>`u`!3oBOIzShlC z98G_o`gSQ_jmDy3iX*neOfHO^jc1vrXP&NCQ5Q`GZ)qbNmtbBO?a55|_Lja`F#Nh` zXFhA749yAT(727|WzlhDy_C_-_kbNwY#P3^&&^o2EtR)g=laKsqNC~lA#>dk%(8Eo zJ6II8?Eq^E(N-z6*F**I*|4X}(FIl3L~_87k?UaZ%c}@@TRWxD_tHH@hCV~K>^jFg zn03sAZ!QSEB2qDut}=avYUo<<%#e|*$@*ZEg5n61;Tdt;DHlSYr2B~^dchBoz6iw^ABNWeeqWW`oe{Bz|k$>r4X^w9*|5 ziek2A_=M8dR+*G3bYGFAOeR~7os_o4%~t)|TQ3w;31yi%C#R4V!g8Wj!M0i|Q?i)u zDUy;!WXrKr(ze3cq6ChduR<~rd!2L5A=yM02n&hgR1+}iF~{T}FcHldM{8!yZKq7gOuC;)LS~RH$4-c9d;`i= zRpXnp%^5k9tPnPpXpL`LEtM%*L-!O($x5>2*ePlI=&?1vsa0~~snM6419Ayj94sKd zyL&V4`m1UQ$8My|#zk}|k!)N*w!E#fQ5QOxubH!P2U(n`*{I8G+)j5A$;NGD%dxYe zTDLjZs+5%7%k$=hJVTZUONiFG4R5N<$y0P!k(@k1w(P@+#{M9_#mL!$pkacqLm#TU zu)w|8lbJB`Vs{fSV58I2&VD&P=8Q_ZT+S8yJR6;ozoU)PTf|IsZl6mcoz14;dMan0CI#yQwRACK zr3S28e<>>-X@5R=XSmnpT(U-3GJIDZTVw>cRVHN<-B%oY! zrC;e;Z+q*>e~O;z8@eIjJ=0yxgm2H}n~uWYf;;h~mQJggOrDbA8FH|sp6MyFTFQ9m z9|Sv|$TSqEc&a1XBel`>l5fL(g6<_U^E}Qh`-ZxM+i>?1W#~yk|C6hwQbIj4_V?6R zREqj2FhQ%{uu(rj-i3>ddaJo|$1{TNE;9UGWXn>=^Oi%HZ=~xsz-;c2f3M zky0=AmI_%*+#B_hIV&%c6~eM|qJ9wztTbCJ)A9n{V)&5&VXCP1fOJklsp^YHiUcO z%Tb3^7%JqW$h5dT+8>Y;ojgyC&@?+ZuOlr~2ByZEF{!?Q8V*ukLRLziCtQQt)r1i>mzUUJkyZ zRFYq4pWwH(SHj>{y2nTiZYEoHo#P$Q=a~uL91;50_if)Ud3ebba%G`hdJ0@Kgyjjc zK-f&7D3|cC*o~FTrN`;cA~|`KY&mvL+V*mJIVlx0X>mLG*gqJPG73zDQCQ1qMKSG1 zAcZwoW@QB3T_h`AWXrL$GJ}7kBC=xdd8nnzX>rVcs5vq7$wFas%gOSXokUEl(K0u4 z=uRWKNs=wc&dq*4+*q5->0&mO%?*gVWHRR1tRw4$#b&VyHf?Q|saZ?+8A;7qWXrKr z<5$7-$`#C2=D1u*76^-rQ3Yc+R_5diy0b`5E+boxofE%asccmS>NQxsl+(+-=DgfP z77ELYQLohAXqlV4=}sfLxsz-;3U0QJ?Aor&{ztgTI(T=4UkO~X%5b=(Fj#uY9Gw@* zT4B*KDuJEm%Fw((cNYoGb7ad=Ktp21ZyKfopYx~7;;A5$|JQiDv@4j1X1t_W-NaYF zZhK`~Cei&x(lUW;Id)q7N|;KiAbw=I$Q+dgWPz}G#i)d_8!K~iEZtcoCr6Pj$IeOH z=h~iub+uf`i5<{Jb5M$8g|MJ3Fc})L*2<)8pnHoXrJrm$c2fNMpX$cCWt}VbKR1}O zavfPCEGtI+kK10EmTTz#B5B!5wj4VxzIml4ABXs$IV%s46~eM&mRIc7%B0*+_ZCUY z_sEuGC#CK9A#V?~DP2x)w#50lH_Tyqoh%X-mPJOLklSFHm)GbHBYAm+Y&mvb{3_d8 zt{`?oGhQ+t1nmnZq8S7kRkn6xWlpBkokemom25e7PW2ZxbU6~Cc-GZM}Zyh4&d2-gES|OZQDQHmbpoU z@A}=9?i(`0O=6aP1Khz~zf;5jx9xvz-|xE!JT~0IxqvRGa=)(}YQ?Dz&O(zlcSVpw+$h@pf#{F~`kz{<2Y&mu^)Olnc9Khw1 zN8T`JZB!^Ll z!EPI6Hg2Z-h-BmQWXrL$(RNdkJ452?CQXt&VNS>6WPPx7kY~_Zt(5tAlV1U?Q5LRhJLd__vGhC6bS~{y*YF8q~};=VK0C`KV^#-Ta{%*Cgp) zBKbIwY&rJ)A&+?B+FUDL5jLx=Glyd>SsZNVLLTutO_Y0m(l%1GV&p^<=7cHKw704s26Iv zRKJzZrqVSyFjaB2%su9?+)b7W3ybe&CO=qI4VJ07lkPB*ny-*8$4<>`iJEFAU4Tn5 z;F#`Ixl+p3Gc{j&UNooY1+rvVdX`cL!9fj|DSD3XIFh2@kS+UAq_LBXZ$@*rt!S9w zTjD0@E;?{8oZV4IUi?XSkCyEPY>E5xNH_uD?Ik{!EBM{IptC*eD!8euF{XKWs^>0+ zd4Hk~7?rO{W9cxP;$T9wmWHBJaT`wSuX>u7p$@w}ZZ>#L8>6};^X+j5GZUTBKlosW z-BSyj;+&DI^((`)h8!lh!Tgxam1ND7klF!4TbJBnE?I%dT_0 z1FA9;o!dfpfFCdLc~UKxfjj-u#XfPob{jZph|R5JsjxZY6uF2ZVB=}FTteMUcN@vh z=gF31XJ_Vc>{Qt{S79#b33GTJCu@a;=hRT(aoR1@^C;bKBt1VTTaKNcgNC6eQ!2Yx ziV6UYdc`>Vi~tj~Dh~_LX<-1wn=UidMRy&^&|B|3hV~zZA#0#q8xruDZ;sC#dJK>? z&yq0kVXcknW3}jt|J*bgKRl= zhV~mS`wWTjTxkx^6=a>T@FFd&)sCbu=FesqvvXCyPSLOr2CGf=qqH)u~Rf-IEw1h35ze9veO4UL$LTMJSZjFSp$?J+ILHM$+?tWXrMBGu-$cR20t~-uKVOL$K*! zBAOvsDC2j#(K0tv=}sfL*^_KJc5a3nzuOY3#_!9`;aN&n3!8UB8Nat$E)%qb?m3d6 zlgO51Cuq3LQ>)~}yIIaNhi8Z^6c(OPGLPM8nVUhn(@1WrWXtaaZtB8P`>p2O+)Ng# z)7;c$Zaz^$1ZJ)uZ z$vR=7G1@uU)@GTSuh4x)QuE(r%du1A*E`t?uCMp@TH>)QFPKB~99bqTG)BD>Z?eqH zZ|E)~nfW!@a_r3P>r>I#Tjf+kr%8V?9y(0`6VVKvjJ^nMwOA%*N4m#IV#bgy$4<;X zKEyP)HwhinvF5-WMHUI0V-&}+;D=1j2Ftu0PInl|%e%>zw_RS;`?xlk^U_ZisWZIz z?%%TL4kLM4Pqw_x^3vSCB;=QC%z4>L7O5k=G#f1Emru|gM)LA8vgO!$@msHK->M`q zbH6z=-y;i!WyWZ|vc1tVH{YQ#q)~*sE#Z3RJ@i=KJnAir#Nv#&k#Oz7;7)i|TWXrJ=6S2!OuWlqI(b>_rf`Y*~p7oCSJfH+>^(2_7LtfD(P}LSM2i~ z!o8XNjw#b>IEQd=YI^87HV`(W+2d`Wobk5O{X=HFPmnE38Si7vMCZ<1-Y=ca zrgDQr_C21?vGp*-he2;KW2FYHT7M}kehcvccxZUo^8I9;u!IEe{Av+0e4AxzzDM^N zNzHf2mVKzv=w5gaK#6TF`+={Cf@CgSw%JK96-cw)gCfGd6MYivE8)abua30LCT zSRTer5muX%o@}V-r$&O~wDQv>iT6|6F%!Q1ly73vxvV4jvWPvs^GJTdI*=SJslz&e zESoak`Q5>eCq#_}K^<0GWQ8ju+S}@S%Zriy=-wg|(LT(wZ|pmGYlJX%Yty6cB8B#g zBUXd!hMm%T=(;KoQI;tPJjMb=L0hXO9!{hCjpX4}vSrsf-X)yOO!#Jv{Mb``E(Mz4 z_ZPuQL%2S|1CBeDpI$FkG#>;f4dM9!St@J_30wg~!oyoG*ER2_dyd3sGud+N_y}j{ zDDlZiUkCrUIY0kJ)(Xo{;OCu0exT_xK>ta19SP7E$d+RVNH~nr51@Ww>hag+1pSIE z7M7sE^;0@Q{W3zop!<$Q=n=Bz*b%~XVOjAs!7+a~?!vYQ6STnt7N9V@uxwVw=UsHq zk@)=kore#m3#;aeLIQfXIY0C0Q9#zuVRm8AbQz%8bk~sp9Za?yd;Y<6VW6Veg{?Oy zC`A?vn}NdY!tA!o2%SUs9f{C;$(CbB2$O?gido1(A2TPYLDmXOP?$Lgnl1zMVY=%` zfG#CljvXLO4gwYD2?Tx1oS<)z#ljL4W)8C3E+cdo-FGBHUnN_9rywMDWB+T8(C^7& z#e|Te8~ZKYcO*j3k}b!M&}`ooh@O-?rM5oDmXA{DqBtVk{SD(0*)Curni1I=<8=v@ z0&+&0NN)iWr}1RVvEwukk5jHVXjR0cx)+)gbv#)$Y-&0)e4-o?WT=jzHv$ROkz~uU zLv<(~s)E&9OI7=Gy&_m;bFc=;%3;AeCw#ED5HehOdP9(K^^q;d4wwJ3w3Pl!;#oic zVGh-&$%nn7QPQ0YWU}$~#HkW6sZMWT~)uD8yx4 z7FC;IhkxZc6>1Tr&JYZFF#<;&-=+*VfhI&|3K5_{Ii+vIuf8d*>dav36~Y9 zb|Pi1zIm0jIC1%3<_!HOSuQL??+LHOc3UrF^aZ;2NQ^#5wj4V~!l^P!jB1z9aDMS)jS(ss0ES>t7h9-%vrgy?5v%dta*SkARJ*3;rOU)%rFxSDda%AAv0ioVPNt&7dhB-oak;RGuA=Y*op|8??MxHFhWq33-n=gaZM|U3yQkHBv zc90Mww;X)YCC(gu+MJ?Kk;TGN6ynH@wOvMN3*C1lLLVnverF(5ls;$sA9I9$Ko%<& zgrMy*Lf@tPjzs9&WXrK5gjhw(RiV-rS3v%1&d{I9YGD})aTU#JybRHw=*}Y{`XkwL z><}TAKnj@wVbs6Rzl=v}dxME+Mrt9>VMEJheDKmVvgO$ELF_0hSXJ?CtkcZ- zIhCvxHUovYqsVT$4A9AR*O367NVXh1K!~qFY!#Jb{P&wv`eb}QNB10w&u7S%W5)+EtS^-M=FSlS z`h___kC4T}0u$0tIB8 zzD#cc5~nYbEys=%W)jKGPSRe;-ap>(|Q@BEZut~MrpF;*fBzEfgGq8 zYPoV@NSNjRlsQLR$a-Np3ULc$v-vVeAE&#I1nHw>%kKn`idJ8`mKzlJ(*D34r0R`r z96L&g&aGUk<`g+;?|&N)+x7wz(G1%{?A)5omqFTt?miNv-N=?>2MMu{q+Hr06iBC< zGjuXpDr`0iaUTh^T*l`_y5~rIP9R&39UsJyA5O@c2WLeI2yHe;s7{s(i%^I|ez)~9 zMisjENQ_Ek%dumGnANUWnOwP2f@L>>q%WA0^f|I(Sdv1V)#d`oFnxyJ03=M;lP$*% z6QaznSOe)?F)MwS{fIeBKO+l9uo#87O_H@;M(7`O-;oIYjchq~gb;h&s<}S#F294jMw(u!J_}4lGfE3_kDJ|e z8KC{?t|I~JCR>gjAjAj_KEM`=qW7Bfb2?cnYz7K(ga$2_@mWRp9Er~gvgO$ELFFIm zHrh+g`MH>^6_%e+^G{K65cY+1*O367PqzGy0BECh+1gjl0s1mot2h9Hrpp=VOLW(f z0DX~cId*^$AMaP;^x}%RdiJb2LQj*`!Xgyn$NNs>Wr&`nJCB6umt@PaLxfoHsMgol zD(Q^4hj#pS#-;QQU?Q4QI>ZH!X7go`M$_F#f;5tBId+f`<+OaY`jO@g9Y&T4n~Fj# zr^`;J8D>txHZBZN2#yH)`i)kk6f$(*D=k~PDU6yj0X?Gng9{ej*DBv8L2TaF#5 z>HZ&Jr`L;zV(s-V<007|U?Q3!*@@<#TtkaxTy~>-jKpPUvgO!uNd({`U+a0YIWH%Y zHNxhblS1G{d7tMAbeEC997nbsJ23kM10xQ&>gL2$$Rc5hSsV^Aijh`{?lTgZ0@-rx z$OLssS@G7+&zS@B8L~uJV8ZB`9GX7;w%supd2GFRGn^4%qp@*oy;-H z6{;0WQZ*UTjXxg=CSi#DtM!>^93e=6t%(NMz0>Ti(`@5xb=? znm#31J&WTg&B) z^GmwtNPHe6TaF!{fIWdt5p%^sOWIbt!${+bcr=)ZrXmhuPoTH)GDIWk&Lbh(j%+!0 zhyuPEZR%LCdTXg_f38>D6?m9ANQaOW!=|DTz8aMUkYSojZvYae9Zzm%%tY~hLKyqrMRsFV2xnk?s+q zHP@3>!cuc`2-L7f%g|g)cNz)J)nv=DLldz4X~9?KV)gqIb7p=-775Et2+NUa?vgO!u2^cMbc;a@PRpz{`AZvt8FComv*iDv!Sw?pm z3Ct;E%drC!RKaX656l%hqzlc7IiD;NmY6Uq7`x3fGUw8LMk2F`Yt}vhS_}?aR&Gh zb6)1s#UGO^)~re~UD$GYV^qcJtygke^1J_SL|0>nbTQLkg1;KDwlqQ*Wx79K>XVbk#Vsj?ha_rayoUi2y zsJvk9qvr5@ge(>oo)FI0^0Zw>=yJO6NQ5pSTaF!}fXXH}kQQ$;`ldNKUngsXB`1W+ z#%{6<%-85HBZ0YtY&mvd_VZt;%vF2gw%(e!RQU&UXnsf52@B0B=1Y~$X3O9_Pj?#$ z&NF1ov4ayZ)t7^Bqs6tS-NqOXqIL!o(F~$OnCfF~mXXrbdQm^e3EQAc3c9+Oa-ed z9sv3yb6$Q()(Fc>2xBI@$ucnCr@M><=039J*ntW7-qKc2IZ5+3b8P-XRtk$v2;W=s zhRg80N_QLy&&y=XvBMM8IhDi-n(nd2qoxFyh-TCjM(0#g%+E}tdyK?o3fXe(xC9Kd z3#GofbA)PUg*h{*iOgcM(8IG^geFJ4#o)C@~X=}NR&p~w0 zk@(CcTYe|tQ!I(+t-a42pR>tQVLPr6@qw1h_?$`i9Er~wvgO$E3GTXB_K`kV_=q_@ zmy?yk(i2YC)FTCQ9e5~g>KGw0@LvQF4^6T-I8 zX0v5*j-b1Z1m{q)<=DXqD3M{eTdGz{6{Vi4V2)0XtP~cV5K3g;a2cLny5mTAGGxoK z!xNBoidJ8`mKzi|qhD)|&edd{u;_%4b(+nV!TBWJZ6r8XkuAp#PQY>m%xWk%t%!3o&NRW5B3s^i2s<5AT#FcHnDDuj((&|(>vDRhsKxJ)KnjvbeP`5QPy zb{-t7Dj>7W9GO$dGGWt92m^7q)iO4V>0TqTSwyxRJ2nA3a}=MyoNLa^CbC9YWej_rbc%e3Cu>a<=BA<7=Tx-Os-rh!6LbkYHl&d<|eXISZqQVfb)jS@Z3mu90|`2 zWXrL`6EKddSOe)?F)JNi@|Zb050iz$vJ=8Ms?}~8ormatBhh(~Y&mvx0ye5wO7)_6 zNYZxWjSJ$p$s%E~31Oo;YqN~Zn{=O%$h<+e96K@rwM{kGCw>mzV@}LLU?Q3!R0y?= z-DDY z-DM;&w~;N!4otxDBvrVvr6Mj@K5vf9Gh~&p$b@h_iPLBqny2VaBcXYMY&mvl0*nnWm6Y^KhA$plC7#5;c=Eo06?UysrOLYH{ zD7{Fw{0=~gZ`&4TmZ$AxJQSM(CZZXNg@+Pvzl_pky8lR&b|qVm9i`zrHN{q)Q_LY+ zOqL3pkHYKJ)H`+-(LG1vvw&AByw|1OuMX)O>wt4s8LEffF2Omrp=sf0SFc^054-U)EuaQ%=RE?2i> zTaErcSvO_G^LKz9PmCH1gJ!$iW7`wZS}D%=(fvi{#Cw@#-|)}$eGfHW!{G1>Q$_9J z?@6WCXHvO=a>4W7z6!oqbrKK<;bpq8%FC!_5CW$eks!3STSDR`y5~qFUL;#~o#P$U z3(Q34*b#0Q_Oj!y9%TwS@!0NZlZ*kH0w!pkAU2b%2qBa7q}m!Ums*qQ&LbJxm25e7 zh7R&i$Xv!!F_RW&tWPngXfatXEJZ6rrHD0O=4cV!eI!Q<$d+T|XzRPWw(GM0aq5}5 zIH2GSE!I-ywD=X_CUdN6Wc9FEof$G#EfHk6Hqsk`gsVul93xx~Q*#hZ!3NoMF$+@* z1LFODH<=@KBUv*nQfGvTRGS7eQ8&=rfF$ZVvgO!`!jw+Ea_RK2IZ6+a#loT#YUyM* zUS{Y)y7Nee9w1weogqw5SGFnx^_rzhOK+RA^d?y}EK8yGbnPO@Oua#G1d^%O$(Cbh z3R8|(tg zc8V~48hoy9S?7v<+B4=HJw?_F%TcI(n%jPvq$lY9BT0IkY&mw4Q2D5q&TJ4iH;voH zxX2z0CZZ{_!_7x_>t%{Y(Y;4fG=gk7c8Y{g*Obd|)lKPgdb1@?NgiPi(xGI*unB2( zs2!UtfXvc-dIOLw%^_Qkoh3|_UCT*Fi1eCslp%|SaSd2ogkKFdlBwb1OA4$>`WXrLWgz4GNwJIgW`t5z@DBVjI z42x2zJzG-%nWcN^4M4JVH`#LRED4{Sc&a4D=A@U+`FV*f5|*F9^VG1@k9MPFW?rN_ zjb!EpvgO#B5pLG-GNamzG-X%gf!Sm*5zW9X@bg(TH9nh=cBQ+Gp_(~D8_8N> z5n3L`fWEEmGC@VU??{3+kS)hfP*BCA*i&?)IXX9xMZ%&JO2wnzOLQIGX(Th(kS)i~ zOi<6&zI{eWI}e$&^B`F)EIXm}TyQjchq~Zh}5RQ|}R)xtsBDYX+EzX1Eo2Llkzn<-0d%U%KB&a;B3l z$4*XArK8vrw8k8pm1L2y`6iS~N4*zlIo)X_GfT;qV`oOVV8JuKQtbh{$Q+sr$SPr> z3A{8Fn`?ab{+vhm8cEF%*>ddE1octsJwLabb8{P6CoDIi^ijTheQu@ujU?x0vgO#x z3CuT&wa}-`xp{)D5|*2A@{M|L&*OBjk<>g&wj4V(!nLX1UP`^EXYB6AMe!&w5lvAX zcp^T!qw?L$GlK3olASKH<=EK?s)`kRcn&q^WKpZ*os2m)>&QA`u?eNV@!hMlmhLx_oU_Q5V<#u5r)q9d5oV3AGDqi1vQSubLg}fR z4VPz(ub?}QWal!nWgm7l4$0%^>^Ub}X_(;07~P|L5)${qIbO}ki%*+)0q5-fZDdE! z*&DmKlFsI=Vy)^qtn1eR1?{jd<$Kat7RDiaeJvL~r?)9i*!z_(%lw4BUoaECN38jt zlBILfVek=alf7S`sRQ*kIZ*D~%THB%lPsDt*7=vfjwe8kV}cg&TTvCx*5mDTJ>>@| zzCrgCnFL>FmVKk%!GraLD!ipe+v#%cr(w>VOnp(M_|E_nVT|77_y?X_JZ${iS}c*U zFWqM(3De1zUFUd5G?kg~%@m=Z#W>q1QM3+1tJX^8R8w!Es9FQg(lWgS&`Ppo*aQ-| zhrZdMs$T+8w_mQUmec)5!nBlZId+(Y)p(wN(%JL?98hS9$1+}I4$uW;nXmvEW}sG^ zWoXW$`;3HUh-^7_XoSI>08PCNrzeZwHs5ZJ&240%u-F97R}Y_e7&cC;WpHk#dyNF= zX0qkj!4b});@~tzPGzlX28JgoB}7k|L-Yh$G%Q4GjH=%r9|dHf9;dee3Dl!x%drFH zn~4hPf%R&L#_nNU0gVC^(Uj1JnW(MRGB_jXUL(QjB3s^;!KqZ$;2dfW&U~^^*z98r zPOH^2ICJP;Bf&|MEyoUya3}}w!b;^@ZXgF!x@vkd=Jc#1tA(W}@ZOka&*VSw5}Pg~ zw3hBV5}~ummSaaqxVDue6f|(Z%AB7o$x>nY30z1Uo*z%UWq7Wj`;CO>GO}eKcr?}! z_%ehu8>wM}&q2LLo+@=4!o6^2!i~Im#Ka3&4Ee>VjxL5wSPJ+3q$`PZq0d@hNqbjB z$gi97U1_WgV@0IE{7g0d^vt@emPK@_Zd(>%CVVHzeJ4A^Ul!TRJKO1mY=I(TZ<8bD zz5;DaBV^%}LC?Pgc05691l}9!4X-f0>20v7uC@=;UE zN~tQIr+1M#Oc#*l!on1I>W~ghwg56o=g}L0Bx#6jId+nS@2S-!Wi9c*;oHqQx{WLr zmZQK^^ffqw=F1e_N_QVg(amJbu~Q^WN%>HeOZN$V+f(KkJwa9ri&5ZS03D2={W3?7 z)BQ(s^eEYK>>Q!$q%7!IDyGGQ^v6yyu9HTAiD(M$ue8?DoqX&7u2`&S{>SqeKZ zH8qfVT1#&OlBcuCmSg7$HGaz#;VyU~Fm$I{z@L*){ovK3# z*{TM5R?DTT_`S*v=4f3Sd(n99z8hTrhd~GFLj-4;m{6PusQy1qC9yEvQ z0kT|JsKTBe%_U*_mFy8lRy zULjkKog?8k2=%CMqnM6nOf??t?F%NN8SDk#6RI)T+gOnqnojo~$3mV_YepqJz-AL<7C0GB!%9)ITFY;JxXr^lBS=NEyqria0HXOR;pRWYN?Vf ziMw}4O*1aLM}UcF%I-5mu9jLN$V7F~8-XP1t#=+#sF`p_OjXr1-<+vA^l*&H6=9MK zHiK@tyfLa`_0}u7EsBrd!k!6llR>5`NpA*{ssqWEW6x8lDjcSLGh!9K&YY*UWVx_? zUf5MQ6F?^EEP4ZwB%MLF96L#isZ9o%s^{pw*ln^M)GfdLD4KxI73nJ7F!a z*>;(qqv*aP`8k|yId*=8Go8J&QyIm%1VwXrHjrh)!V`GY3I!hZc?A7*$C2b%WXrLW zBiu&dB}ZQOz0RDQYseyDxe2_Po4}3o{DG}>w~^F*f^0c<5zP=Rth}Q>PhcwDZzMN+k}b#1O<>+>enT(ho#p22 zEF~+|>AcfyyPS8H(0xbpa}wEd?EK6R8lU%BaBe`lkYb5e1G`7GIT z?BoQF+~p5Q9yjOaQL;!_Zo(S5E5950Io)j}H9sX=j-49eK5y^HU3ucfh=g$s-32D1 zsiBvJ)OGotH1QTW!VM%l|0G+Eot?ma+3r~YiW4U0m;;oI44|;~Ww$k7u6PclyN{&k z0J7!SDGK}o(v?wlqQqKrjLssfh3&w?`U0}O{W3>q(EUepw3=)=c8)OFNO6M173LUS zMivW;QOMayeR9Ny==Xr_H0i#Lty2<&8KS$*QM!|?7#5|lPMQ=okh9WP z=xspq^xtI5vGWu-o>!d^@q#%-&yi)qLKN0`-sfb9-_RXLlJje_<=DvyT-#8b2r+3N z<8j#pFcHnTEUdK+^+^yr()~tqGlpzAc5V_ubJNlZ5XYKRa}-%4Y`O`&(v+|guR8hR zaJtt>X5LM<96K|C_iL$7eAr+PPCr>FEI5I;nG(S9J?X)syN;x1J=t>X^aR#8s&5sq zF=uBhStcwyVbwT3Cp&zC?l_X1kC83MPR@}*eU*ESmU0zQ7S2M(gfu4| zq=!5T`wqQ5NY1`Rwj4WWfoo&($swOtA#;WX$zov{3Ts89t@$!VRl55~ippfm zu~QT{I#ZqeakDu;pC`+No3<(fK)9CoDQ) z?G5rf;p3-t&yno>m~43)XGe9iM_0FT>HHR1r;fAZbE3yT>7FCm`8(Ni?Cb>AJ#9x= z2z5`=9H0ZiL^NZsu-Ccok125o0@t< znqC}65}CHu^d=!`dk@*N4{cWd>SAx#~CHw$MN1USmi<$YcK7W&+;P)3-fyu^RC)fM>a>c%r;84QEYIcNbZ=tj)vB=7; z-g3zn+Xp8=Ul3l)YZfzyKJEOt-uZEZ^W(GZhw`0jOwC#YrRwZWx$^A(-jp-4w4a#D zTDjVm#t!Ks96JJsTn<=U`tNcuX^e%#F0G1H%vi27pA(oJ-Wk`@q)cg`oX*rz<#Z+8 zS4o%qU5lS#7U{y%b)T7M!p~Z4KRuC27ZdBP#9*#kPZx6MTG<2~>X*pos^vm@$o{u# z!V`x7VPVLp5-ko~GMLek{k4ID=l36S!)9aD7_)Aj{R`{XZOMPm{`b*^92_VL=ZUu7 z8H|u6c=l=eGW(OgyS7h2F7sewqBmEt5+!I=rL?JPRXpA}-t)J7_{S+B%HIi3^q|r> zwwvjh1U-}Mtt8ho33?`5dM4A=q%A?x_A*(5-*vro6VhE^*x~&LtWi9h4DYII;@*~t z?`oQ8j4kA6 z<%?D=Oe`53f~+=B@&LK(e%^7=@KII*+1Sa+Y6H1yW_BrC&8QPup5rwM9^7914*y^Y zuL;bAZ_1h(erK_>ts!KjbmF86B@{7@cn7pm*F@y9vrKYQ zy_l)xN^qcgV!?_f9_2qBnet91;g3$*kCw#$l&*4I{4KgBA{T$6opM&y(lt0jUY7pe z$fTdd@=f!>YT@tERgDXOx2}oEg&*hC{HyH~;JtpLqq<%9xCO1U~?U3>6+ji@9%^n z>{@9@Tkt||eI;EP^60%XGQGz!y_?UJWZ#TT9E66TbDIZlSXCBC9u7v@x&s zTZ)YSFL-QqJ!Ps{ISHxIewXg%qm%IHq)%%9hpuuQ=fCNih+h08+Z*Do^$tr>h_5|7cwkVhA)U0$x-∨DD?!}j*NrAhyclPQmxG_Qy+MXVi2#dN= zh%U?~ZHTvs(N{6}?7poQ1o zV=>X5>#th1M7Ff4SSY2l9_8<)IbmV%DLEZQ$4 zQ*uYPT;o1c((o~J4IkDu!RdX-2}9VEK4Tzvvf|YP?LQ-vdTe*=fs)XF*Hwwb`d3{O zkqbR~wN#%agCwrtFFK(#WDcwwpaL2@jOQy+k)w{H;1k*MumvMy%Y~tk;8PvwVm2+I{+jIX(0E z6qdJ^+8j<88?*R4)tuD&dajU#^pIL#C}lQOXU|E^OVygINyE-q)pY~JV_ab-e7kvH ziFId9)UU`j;b@z`4D5L4se)dSt>*H5Le~U;MLwo$f@ef0h#GGh_o8It1#A=j$H*Z}{rn#j zFW~)5b+#j&xTb2)jN4n1R$A55teWR7ojEhqx76C49w-;AY6|vQ!UqTThX}CeuLv8Y z?SC1z7o7p#7#7C+G84XUssFN@ZZ|q^2~2#a3x%}3)6S#q$>C_5KMd@6U)Ay5o`*^m z=ZWSzo}g=jzplqI6QS2Fqn8YnOBG>xZ38?jgx*G>^_cGF^CX%3bv5Fhilu7;Ewgq7 z&SupTD=L=#DUSsAMS%g9U@Rk#yZiHr6#E_*C<_i_3Pw34HMjpVLEl~-ewPH8^MyI z`yr}Ztj<5ggF*MKsJi(*yPeGhEeDcLwG0kOJS4yi!!mUmGtt4`XWu2oTrFpR0&9;3 zPJ<485WYud>y@pBwttSiFfygPp?Kx4Bpp|h%#{Gmk2lx+7+n*b{v(~Rh20+=-mXa7 zP;LGpiA}j$zg>jETn8*EXA@`G7vk2ciRW*-Ozf$8BMaFP-jLa!3O1oh+72eUgGtxH zr0byc@?>ovsyX5qFRj4_@B`H{!>MG5Hb+N7qF<2Vi7Vr6-e5+xCd(q*Z z@7;4egnT_RLi~C@a6sbWYr4VYJlw%dY)d_#p!BaIQ+oKGPo?=U%r$>R*952kXHM8U z)$_f34yEUNGqRBR_I&T2L+<(B(2W9rd0y8w5qThWd%nF7jH;p^*`3SIl~dSW@Ib@j zeGgp|ViYv`Bi^MsiB!V`_rmGYG)!o_Nk- zCOX(_Z@;DpRkNoAx+olB^BcjAN3zDKZs%!Iy>o%Na_8xq;4jD!GZFqm%0f7+3qF;Hl~?CwyVg zbL_LQP%1i8!#VqmKgccc)A?Yynt(kP-eVIljVwOsBYHPnTP80x+cU>Y19n7>~Qj^h6(P)k*p!U<0kE%Yp0d~(M`1+Stq zn`#HbjYR8|bpLSd0gf0}yu0a|h&&v-G~bAPdb2VN$3_;0U0d%1JlkLXqja_7dFF6k z6Oqf`N=U`}KzT?RfOKR5;0cL6-9H5H)76iM;A~wJVhA*PY2ML09gc62nYV= z=a+r;T-Ji`xnPmQowl^U!c3=FhwPNS!+tpOIbD+Z%kUXy!gm71w~EvqwyWnV?+-`Y z{GDLOJM|GXSNT12`M#rTg1677f9L zF1d`oAZZ`}oXdF1=eM9qA*|^%4(8L8!iwblRMzppUX+B-p==L4_$gK;|EVi9e`o*B zO!&UD;g3~DyFz>9ot6wm-uyVQ;}NYfrn~t(X*@Coe%Y`9o~&zvzp}eB6QSqEQ3{BU zhew3~u|nn1-R|Qgk&n?;h$DKWu89amc5g_^tS&8rV?wRXa1~On2v;Pfn;*hd6Px;n z67DO_4pdC!stNm>C8!HlSL#+`J^Z!Ro30mX@T(To2)ygIf5)ERWOHYp7bU|&=y$i$ z_N?Ib{0DhA=InB%vFp~c-)P>hlz-eln!I@>8s>f%>0%|@AxPQm(A4dj)1Jo<<1Z^v zJpaLYg1_uHBJ%gBgP}sJHG^_ex&S+mBZ$fld`7_2)Q`3|b;7!J{MRCCFF8IVU<70-%_~T*qEY%4w}`-sVYnt*!|%=~80mdcliPr#jIv!M*saZjIy)DPQaCkaCZ? zJ#&xbcUL7=Sp`d8-u z1*u}2+=!lV3Z>VeEgs4Ix5;(EBMpnuw{*qlFUvn2@xz`RAKl!x);z5Q{Woq8JYzX$%Na9C;_;B@iw;a~42Zh^m1ml2NH4a`Kmeftl> z(KY{7u!HQ|ziY1Cw{=bMSL2(^MCcPu+rt_NTzcK!v%d&W3S*v0C9(4~X`1N;U41y5 z&*_?oTw*2Y$;{w;~ z0>T+f>6+ltJ%^bHy=$7>+?Hw|Cy}+vaDBCv$q5%IUmi|0@-?vItq1mKZ9;|T!#p8> zzSMnPqN^bf!$rC#A`ipP&gp;6Lp|znxTU9D_^-$!02e8LB70^c6wT1RZLUAL>OjdiOC zCpa&3PO8ae-jhHeC~u3m#mV{~|KcF_rlv zx~g&Ef2M09a^YDA)66-oG6;$@=QLMO26`j1FgP8I>qc8OmMc0Zxyrr%>$-~apuDDQ zBJ!Z@x|)5nc2c3ViI>TqQ0z4~oU&L>L%YF6bH!?@Vn3WmLJq(l;DKQsyqm6x$OAC` zlm%z{D1U5Z%1`Kqrv^!Wl&)T!`NMThL@s&Hg0ej+nA@C~X_rCvHB5=#Ql(W7laP<(Zu!UNTKy`A>@g7>Ff2sJ z>zasM{+;Z*)8Qk`3Y=?Jhr91QdFIf_q@Uw5T%5m{m>6(aKd^Qbge?w{Y)@A9>i%j}S zO#0@7)xrX#M)HM;g@ahd;pNUNHpbcNw>#D?szE;ft#LNS>2P*e;W?t%`-?g z<;t@&>@;ll_*AJE4j^F{O{aR@PG#8h44&1cm%ji{GZVgp%J2t8YCt0U+e@T^bEd=U2+f0P33yc z!|?5q={>&Nc_^$l*$w%(&UqBmX0j$-h^( z<3h6O0=q}iy*@<>#?N$>tqKd^dQsVa>j?t_e|c zjZrfncssqfh6(P)Fe3-;N@_pn)w5SqsyTZZJ5jXi6`1XWJ%F1^l?^bYxW!vkEshL` z8SblSFS0n!Bpqkq2XhAMD{w~QWRY%=`K!5rndo4BHO}pSmf4pAcv4+oWcrS8_BhT% zB^|ToI;M3^aMIuBgd+3`YhlHL*<|Ot1CQWWL@2oPQ0Gn#8QjZs)#BiONY_O4g1dyv zCGD3Y6x^+;d`j9c>Z-*BzeU$X4E&`k!e1$RX{bLDT1Si|FN!# z$Yl?xo&FM;=sp+GzN)Jd7y4yg6Qa->tD1oy(Jm^4gqFPyn^4HMjpCv_){ zZ7=MjpSAYf=^h|H3r-VZw>;YQU^>yC&TXi>U+M*&-hSA-Lm4A9S5BIzx6cz!Z)ffx zPj5d2TrwOx%+)o)qu--z!j1k&t>|kH26jGiGnYDYzE$45UnZFX&Zr5(f+eZcW-l`^%8Wo;px z65JS7PFG-?<(7N}p4}J?|FdGBy0CW3%+nhC`Drm5#>LR1I>%OAy5+QhZ?@R?cW}8u z3Qj-WV*l!azD5TI$`uPvWz7}afBy*I-_H%ebeW_G!wbyEl%M~+)dKTvC>;n=&to#)qU%p}g@lpGatL#5MVgIoO{;(Qj2GX11 zREb*umQ(%>|1?Ht(q(oLWJ3jZV`N{Uw0_Hn8>9Mj*{oIEa(QFC`$YHu@!`f8IHwlQ z4zaRZPK5=>TCN73l!}ER_^)=Tq&M+EvVUzpF8^t8r=GWuhCX#hz6?JaN6qdp4Op`) z^oOGC4^JC{P&O_((1n~+#d38>59v<+c%gA|Lhj_uv)!c=$UY& z%|8ToybJw7+l8Jom+uK(6THuVT-OADPn{qdy{C7XcmeO}Ia=?jZr!=xf=mX^RIb1( zDiofcYlGn40O)TL@Ku!O<(+(JI4`e%*X8L{JrF9+dEOP=(Mrzz&7Gucf}=M<*MwVc zUZAx*OE>5TFR})$LaFSGH8Q2*V5v~I`|GyZ=X%xtTiEL03I4*6f)8gz~ zYOSV6uvg3W$S%N|_0F)x>G8Vqa|n*nHNhb`QrCnF!Est+4qXT)J0E$a-BG4G-ldS@ zJ=cl1{I%B+?$=&vXLOljZrC;MurV*_s?B4b(>1|k-m7cEjrnU@FTVCTbB8s>T(9$a zr{}%CE~GfSV=6h$^HO#D$+&9l8eLI&Xty#GaaUvC3`f@d7r~CFBWwg!V_!Fy?`ygy z_?vNut_fa^IYBh4#y(-<1yo}fYrUVkIeF6R<%yLiu2{NY;fY5kR@;MK&s+KzXiOO6 zCU+JnU4;u|oVyw=Sb&B#x?z*}AVVR4f=9 z!x10s@H3w(d-`GFgqkuR<;gILQhO@+WLRqNscV76_SX;doocEI|6{IwgCjgVm2EwIxHzAzt1y4bPt-NR z<9vdy2{+DnX~kK)vf6!h9mcIWxVbH{0Pf3c&gXj~y(y$f@90$1IXFak^ROwqrmG{5 z=0;}1x0nk5OO}aCt#k$MA%w${*>^kM#gI>hBV+zju;Y0b8k4$N<;pfBx(}9?)VG-H z`Egwn{O$NCGvPaJt6PAKTFmZm_E38dJSv2$Lm~I*Zf62O-k)=~u0kBzJ9SNfS^rM{ca=G8>==tT^jsyQ}9R*jm~+=kHu3?Ikn+)zVA1z^KG|RDQd|;khI1 zKeo637!7||`D@@WPu(tmE&Mnwe;xe!;r#XR=jHkTVE_9D`191R{Abv|d=~y(3sGRp zR^86BRS#;}iuC|(D^-8h4ICeHIe{}8b2+(5!vy!j>2Wkn@Rzq}q6Linel@bASAXv^ zw`bmwi3P9$0Iq4slwd->T zLgauu7OT1%@s6ylYa())eePnqHZq|D?_#=IS0^s@Cv{CkF132C{acYK9W=Z94PBME z(0A#Y5QWz0pm`tfq<#$(+=~Ns8{*CpOz7xD;Dq@-bB;``uqqiVHz=Ir_1AD%YOsUL ztFwhkpgE~>>#3d|O3|tRSyxle*PnDv@W}pA*Mu9{>$M`QJ)+x}^!c6#9aiLcj>U?~BI11-ygB_1( zfvauDn9Fyht_l9W9Hwi6=VK>`M)`QMi5D>D+F?w)D`eS}d=pP+e_%S{oLJv$AD6E>x8&QA#b)2x+WqI-@#{C3HSse;cV|(cG{9vs}or`)D%|!+4=6Z{#-TD zT)Og1`#%?1*pl66SV?dy$(%|ur;@Hy>~weAsbtG3>3#c+uG&0czt%ModBFBt4SO+Q z{;e{Uun(WL;{?b4CKe49(*tmRUZIrE3PXpHM~2cVDe~V8xQxPeCh0oEmJM8IlCCpS zfVKmV3@ggFx7h&g!9H}hyCZvf5-NnmY0eo5p10?K$bzz`bC!VJC)t;|f&15zON zGY`Z*x+XgCrnvP|Vri*Vb~+>2#azhMhFXUUc^8gPi7Y7arnt@|ZD*YB$91N4%urQc zXC5PbWKDaplK@#r5gLLz`jeSEUCb6wPp0*@S!y%2koYVlte2HfZrUSlOh{fhbq%D#(Lyg{}!P z2pS_|cM__g^(l|`B$R6N#<#)=X2ZKU?inU2<`BQ3t340jUCf04lv3cw!g?DB9)w5o z4Ft2=w*$B6bv{yJTR7S7f&IO|K41LxUib6)_MHRI+7Eml{&4mSuy1GC zmVrhyl(?+}`Om=)g8c7n#hgt9lblTivr(G}oDC0cy9ge&4ViuK>O@cD&EYTKS53Tt zxuiX{_W$W_oZ4}oJ-2^qsZz|PJ%!+iqe7|9+b8ztxl_9^5i)yTYEEi{^VH#9$}aFk zE3Evbd`mYbJgooJHR0ye-*@Sq3vNO2sky1KwTB&BiDFYkWq=T)g=OtMlj->fx!H(xOXiV$Q*r$)#qos7R=sLkB z8SH#57vxLLWnQ9dg1;mu>6+lP`A)EnGVuN;UO)z((%Dya+#GwWy?Ydw2d~SZAz@70 zx9zZ>lVX#Oz*TB}p#)nDXU~DH_8IpOSr3DX`shQt%JNkFL1vn*uy4^k3K>~n1rtJ==Bai(tU znY1-9ljV7HpMlne@#Y#Fv*W>1@h(558vy<;Kfz4+zRTe+e2#W+knm{z?{Kuv{|W4P zL~D#`-dG{`xBoI%?;pA*_^bRkX2N&rQXBT*d)4@bCb?LGtt2wX744%Tn)bB z&7Et{Tbu?n2e4kUx>U*Z%f;z0BNKNzT&l+1NIGsLnHxz~BiFZfb#2#W|HBT)%-;oP z);fn3K4vcZ!@4Fo><>9{3%mO{q+J%a_HL`;j31y|W{Z2Urgesu>+7#o6VKmvnb;}) zGqRYy+Z!``UEX%iSqkRPC0*x|u5;2`^LJhK`CIc>T@#T9aI#y#4Wz3Z>=&$c>r4CR zuhWi+sxIE6S;M){Z!OKs1CuG>gkgC+S=U75VVJcBY6W{0n5|#gH!!*9%qE6P^@>wP z*moL!`a(}FaeQQfIj|c%Vg()Z$ljFedX%(1a_S5FhDq>9dSi~!)tSFBN9vjoL#0t7 z@G8UU?KDhqFPthv!vy!jnT^me!M%7qcs#AU$hNbyo%1BWou==PjL%(QCtR^ws@RYA z-$}Yzmm&^gUDrh9;*Ssy0=*$JwMTZ_&ywEr>vXl@@?N8BB64|WFDRGcBY@oIBU}3l zi%#{)E{AFz0&ZWXEKQSsH?mO7>2CSO(z9LGIDSD+hD)njekDu2ZfPo3q~F%noQLh3 zx+cW1X=F7!F~U6gSwY(g!k?j?<~cO%%*7|zC$u|-uJ|6l98T~9PPz9S5bv4VRm_LK zq#G+9?iY1U@NmDtO!&^|>h?g&iSvoahEuQp3w-vd8#Hk~9v*5~pYEV*B669xUu{)| z+YskRCh{og+wG@G{mmR*eK^TUT@#T@Jkg#)wTEE#Fu>m2@2T`pk4)`JZ0;5w%(@fy zU`hB@x~g&ESLm8R3$L*#G&6sdeUr%!_8x_F#TMTq`VbR6pMq;Eyw{+x|7r?k;Z$#> zRIEXn&;vcf!U7!Nnd{97pMzZJhR(h_rLp(Ab^ia^x^-KezWQ-{_ULN(ef#Q_YZkMs zS3d3hxZe43gY)CF?1!_-@HDo^@HA)E$#xw&N#^MG?1L3T%O-(~0S)>@dxLgk4f6hW z=Pi2Qu+M8`Iixpakm;>)B?*5+ zs!qt>Uecn?y=}+2dnf#oW=AMolphFw!woQ=K&RGmzCgKS8H>B8kXwql^b_q*wY#9dt6lI`X1f(^Iv|L+G2PX{6 z_o=!j#4u30JGUp|vxQDKqG5u25z$!f&=UvKg*w~&%TIS$og1(cgVmnIY3zP6dp3m) zt?goLWvO1wdcRA1Ph_kd*3I2Zu5NxjXuFpL_mYl#_M}SFy`<}&R12J@%K?9*Pt`RM zc@SIQRVG@IJE@Y+*q7B*?chlxms(^I+ppzIvK6M5FLtEVgPD!G+Vb!ebxlMbp55G` z4BX9UM`M}d)6P#t7LeVWB{e+V*1!35=?&SUs~-=+$8}AJA<)Q_?hNFYI=h{|2a;0T zjkNqE4ZdjT90>xUua(N4F82H3#Jqw1sLnHMrkInwPd9oTfP0w<-<>F-&orv{+y6Ek zVe^lG9gk>%`|Y1Km+xs^6a4*oQr848R-7Peyn@_|drZ85DUt_*))7LdXzWUMm2G0~ z;hy(%uj4~0fg8IxAHCY=Sh;uR!h<|qDPG1s;Nga)?{2y#cpP`uHQ{FC(W3*7D)Wt_ z#-yP;XZRj|ka_!FnZ+SRQa&zyxG*l#6_DrD1pYKOO9NG;HkN4Np%tpYCi7gY{H-aF{ihHmxhI?#kGNlj=oQmct#A3sx-g zNP1ahlJ3;aADgrvE7g7Sd=v8^g?Bpp86Woi4I%f5x&Br5)chEf%AJvT&5BEoOO^8Bk#EOU886|3%;9eZ7 z+c~;}{jYX*>UEb^M-N+RR2k$);Skk4hg`l(;PBS*WmXDYaL+FD3}+QHJ3rLrg(LTU zX2Q1y3B5;j-`Ki${`!Bz(Kr7qu;US}HO&eSloIss&E@;8t_l9GJgaMhzp+jbjo#S% zOuT?;)}uQ+J;%O96vhYeNp7uD%GTMeh^GM9=Y&wI+eSB^e$5RIIk&gf+*KQ^0=Eai z^M{>|-5Z=SEO_@~CVXGo2J)1>vZip96NhFY)B=)g?H* zymgXk>+#YneXO~-M+J);dPdx})%jFxf~`t#TKK3u9htDZ*-PxMn($?L^Wl=L|Btxu z4y@xi?iN8(Bt=oZuoEOjiIl`A7WK|5Qmhh5b?NC5IFN4%;6d*JEOK1sZrFxxI!@eM z5+|{f*p5pQm&7HG?bvaXd+)ueSnl8acJ6L=?)DD%3iaWSIsCTF%+BuH+nb%+yQh7# z-q|V(nJI5;m4(cd+_`Pdl$TpAIz9}h?GEsE&v4=^Mq?zc0|zpBepK{zxmaSV!=K-( zsbyvH+*VmghaV$T&skX#w^DcH(8l|>M_;dIw6`BKW+VD z)t1s7Z)ugqvG0ymZg*_8pYo!kR;fE)@^aN3pFf7(vC8d^SO@A3(jnCypKaBa(jA{_ zmBlgdj+v|7?$|~i?|$^f=$Pt@-yXBRn6-Gd+ZU_=bp$Dp>WD{MwW4&yL#?t%c0>y| z6}d0*imn9~qQ%Ts8xlTq|Kjoe{_-hXgG!wundoh(y_H7t`vfc3b>y};n)Us0wZ8N` zS(iwDn~U@dEQ`!V`my*T`}HJJ4pd*tPb+C>!^-lZdUZI!r_SgERocPir^wD`kDk5rzrB9hX+i@3V2wo8N=}xE17fkUK%{1}TG7KzfKIPor<{1NIm3 z+4ENvI(t6Z3g;C1O{7UnLtbVv9`bF?VoTf6g8UFO9$!Di2`g|6{T}>4)a~&BYDNc^ z?a@2p2>9}yfV_f#o8$T%p3vX7v-?jgS&e+wwnE0rBKUaq4s-|3v1(zYX(C0-JJU}Lz_Zyyz2 z{5~}o{=PG|H9sak`Zs$L9RbHu>G^=9rk)QTYu}QOw8}z$xWBe6I_@z#F+5b79?o9z zfU@}f^&J__9*fV2PL?KvlhBmG=aA%<77;RZXST|su)$l7N?H_0CE<==#n-&HcGD|K z1HqwM{Q&$&`uw&v$E+U~OOR5i%JOYnm&dA5?~p2~-nq6_(@O7LWm!Cq6U(x7`zwR{ zg6_V^%=Bg4Bi%LnUbOvaG`$3c2Z-)(|JAG1PoQ$lOn?4j)@ZqCw0!T8<)jgPvzQ3I z7zK@%L!(p=+|zy!+}SD%`F-4GS#*3tI(K`mdoZA11)Xn5KM4AwYGrS2WY~WHwtM)< zkoD=k;7zKZo_@^w>Ac0;Ys;Yy4mY&wEVt^|FW)Y=>d?=G)Jb*HQ(LvL{7jzIDvM*@ zNh>otDIU$;z16<(Xk+;OUi?B~duvf@iy_AFAN&87J1t+J5Oe~M+%@ukLz_M_l5-f5-PuPlG{F|+&({t$SO^$p!C zTD6u8U#R z$IR%bE)I<@f>V?BlUuc#82&F>WpV5czj<(o9$M&@+P%9{-Q!&|}jM7mIL z%J8pm)oNn+*R;ywm>Yh^)>@+xhvTS8{eO;`)lZ`1F&m9I04IGL{cx-H5|e+RRTjtI z`67k)IqxlSfjQTdAp0{=-)7B_{t~t1OZxZ(->#PY=8@ZGnYo!A}n@ zun;YHFQ5e$qQz%gb%H|++VrWmbO=Ywk49&1svUw83K7e_K~Iggerk1n(AY&AJF-9@ zZ8{D??O=E!Pc9_I+FZ6Tvn(FR2cpT=F`#Db9i6eSxt91SlZ_tFZiw_uy|sPIZElr? z{8Tnt79D@!nM`wLA}qX4k~*+w=`}G+OU=x+R_!A*bAPKWj=71aQKLB)UXA3J9y2pj z1a>SjW$G8VY9}%E3tMGz%uVeN?s)exvvl5jo9}4VN@D1@waOxC=oW6$a-ZjEzXcYe z#ks9EgzxhsqbCp7ddh<%1Lc6;g`yztqd4LGA1UNxOP9Hr76Ej59=+R1mrb1bPq<7n zAEMw>O8hE{Ofvt)MP9&{|K`gU|H)NKdY?f=ix+ye>1JCH#nsoPorN=E+?BDsJY_ zIq&Zo{VV4^4VOvgWF$^BZ{)m(S?eDFO)@{^#P^`&@#ei;;Y_aZVMZTEg~?_i5+|F* zxJ)%`Sf#h%a=bApd8+vwE)&cYC^*eL6L}|@=Q6WiTqc;WGtV2jeIwGP{}Q z*?f7BD}0GBcO!AKc?HlJ=9RciH$OqW6U;Y&rkZJ7aw%8uM&4v|AS-%4nPBl-#rORBwiC6OFqg?L| zK&P1}aN=!Taw52NnNKs%zvsN4^5tcmIGr!gLWN1@SI9fvOyCjna<2Yt&U+3n6U@hP zS!ABgTwcpXZU&lYUV^+XGZSd0nT-n}E^;fQAF{kR<1*PC<;16OkqXcR^LplTKQ5=6 zUvPzg0Geu6qR3Qp2GB$^0Cc=LA4R5{*8rVp{uy~EnB^>CHqd1APFyCL@1RJRc|XwU z=2I};1aksQ|3~CaH|HU5qPdoNo`}R5<{?}rm~}`z$$SCzrkH1O;+KIYnoptLbn_h) znP$F?%WSh9MNT&dkT=8pB`#;1!^oRpJ`Xg(Ou%KL`60NRW_BX)c=JUho@h=%Kb&oL zA#sv99*L99PZ^cLdZM|PmH005NO_=>%>w4K2bUAfBVaw%oCnlp9_Gs+N_LqwsMlpa zh$55BS2%GM7x@q_lgtVvPBMo$?^dqxNzOZ-^B&;DPjS6-fN09&%VT``Ea#oZ6+Xrl zzQSUE$BAEKo}c8r|Kob2EOw01i}>;ZPOLHd3NBsduNj@gd9UWgPcZslTqc>wu=2$*4ZboXd$Hz-5BDhtY}1JJ~!9C1;sG zBXOG93^c{OD`bYt1oIod^l-h?Iqw_H`czzwH#0EYCYZU%>oT|CGR^!27df4$geNij zCM$6em&xWjT)ND!(VJ7u11NH``8yW$ITo~*(U17@X1=WAyq_?7C5wG6Cw`ePXK~(J z`Lc&Ef97Fx9P9FWF1e4<-!l3Qmz>IppW(|!&U*)=e!jeo6DM=~-p%Mf&O3!K@8iUP zd48HNpW(~vxrpH++kv{wEKa@xkF_hUv+U%AGyfC08KJa<;1^6k%^|v(o0-qJ=c2$U+R2$j4S+}tDnV}@4#kV<{NzZ zHe2uvuJ8h`@OMCT4`9}VEa)Sg_m5oi3Qip1BA?;B_b{{PpvWY10~fi3^Inb1B(s$h z?_>0QX7)k8{14ar23PnN7un4fp2nA>T;x9)E#b@YocKXTAHt=}Ou{JWGGF1m5xz|0 z#4}jJ3%TSAxZZbJ`6DRVWp?o83!L|2*5wJzrJK=DxWZjP6U{oUjlZ|r$o;Y3EKammy9vXk@vi!U$a zi$V2?=1eZ~J-+-cUw**4T*MMy&Pq(>%L#lrkuOWQ!uJ`S!{|+n?qKvqmiGbhJk9(9 zdArO^T&Qokz*KvT?naG7s@$P(@Vnr?o~ z)u*B4R`Ux+PvOfmQKZX!k-1cWCYcAJ*%{_!6q#bS;xftnFY+dsO)UNEC^Fl;h`D?h ziIdF-fmWKo=OX{Wmz!|uGN*DsJdqQ>#)5VOO*e~~%QZ-xY@Uk56U|ACW^uh+k+{IT zkNe^Me7TXi+=IL>^C(~bg%kh4MShFKN#<>wxRTM$jQ+&vPh4^yC*H}I>D=f~bKdVc zaeylFR9o648xaE0e{-X9qKXPC&Bqn!6)po!)O%<~3aJ zFFA1uU*>UzZ*!5eSc&sFZ!zcn4c9x3FD2x4nT?E=a*>|`O*C)e#LaxUm-ANew4g**sHOY!!*Lux3I3fXf7PH}kxKi+q^TNsKOJbQ~-H2ofinL1z67 zF7iJt?^K{J^WQ*co3F9h_i~XwBu+4I;Ce3(dGh6Re3{23Uj{VMe3=t}%v|b>7IBe# zaG7WRg_*s9^ZttSmhUgyG$R~`#Uaq1v9&f6Q9Ale4eX+iSxR+eKQ!nhwJ^8FR$XnGa0>_>wOECF0+O6 zZsNQuv;H%qt(>=u(cf^rH*w++YrTpuH*?}7MsH*Eb6mR2LPp=?yw8GJmw7K6{75X<`#Up~NzJGsa#zPz0;AK|=rG3sFy@Z}LsT+3Xh@nt<o{>g7g@=di}`Xp7rB(tWqf%n zSNJ&R?dQv<`SL8zdj(LJxd5oklsNIpT>XWdcoi2p%$FB);&++Le3a}m-(xhHFMq?A z|KpPHV`kSddMom}%oiAK;*v|5%jbB|eu*z%ec_*7c6595x3Fgm8oo22@nQi8OkU80W z1Q&9^fawgg2$vJg6H#QUc@*eGGX?d|F~0-qHdh0!GyjAlr<;3`INiJhXp&iryw91B zAaREIcO*_R4J1x62XUEho{PlA=1;gxH!nrW$>#e|VxpPDB^NNW`;d34nTy1UrVD7A z`4%o`n7t@+n)wy#Ei-5H)OQO?zRaA0B8$zV$eV5+M9FK+GURocyKtFq?#AUr^9U#Y z7A3n(8R%s5pSVmmXM@WL<|bUa%;l`ouYu@!9B8uXLdmJ78;MiQWkA!+6y%*^E(e-m zCh_IH%;hdzCYUFq$OLm8=lvR}%RIn|U*^Pz8NCyiN#=`CaI!gx^InNdmpK8Ao@V-) z=Pa)9ea@TBm(x(>B>P=#YVBJ%@qf7F6x2Jxyqy!T2AX1UpaW?(1E|ZscS%jDqQc~n z(Uah)Zv;K$tKS>Y-uM%ba#CM)pObV7l^U)GbX34#Pya}7=+FNgiMgBn`sW{@PcmEx zQX&$V8^iP!LzJ`%@=tD1(o;bmAQD)QFw)=p1WI~4$U8vZ1@dno{{iw| zkoSZ97sv-eK1?LA&STWCK9Q0RfD8}`tj8GXzkGm_eg*PtkcU7X26==?VBNPU_U*r- zr0;-y7vy^&-v{{t$PYn&1oC5$pMd-n)nxDX9!{FGvMsFGvqaFGv8=2eJ=jKS&kCfE)nn2N?hv1gU`xf!qgD2Wfx| z6A7$O8twiBl0FIYe;}U%`83F9Kt2odIgkfIJ`eH*kS~IK3FONlUjg|l$k#x=4)P6< zZ-RUau*M8@BvEN2T}z&05Skl z1Gx{R0Wtz|2;>OJ6F{B_@??;wf;<5743KAmJO|`?AkPPRA;^nBUIOw`B7r$ERB^^f zDd}X8`5@gOi$GR_tOi*NvL0k3$R>~*L2d`x4{{LX=^)Plc_xv-dbq6>zClTIK<0rg z0yzidTq1$>fTP#}B=v&~*z^yCLuuu86X;h5vKr)KkV`-=1-T65a*!)Pt^~P?NMN2G zwy?T|k_^ZJkbWY8b#g-J(jAnv4CH)}3qUReSq@SHxd>zh$VwuC`DUoszwDx;~Bbatp|HOOl~UJLR%kk^B}0pyJ!e*^NjAb$t)CXl};5?JpK7=P=h zl=N+o?|^(4b4t1f;~Bbatjgqd4%?O_QRC)9FXUNJP%|PT%mbMZvH+wTWFg2Rki{V9fGhzy7vwx5f%Q^C&S$4n(&s=P1o=G37eKy9 zB(UyF6#MZEO8N=NPeFbL@^g@1fcz5VS0KLzc?jfTkVils1^ErgV<5i;`5nmbLH+>p zN02{({Fz8#;3tLH(@&b0+4Qyg&>PS7K5Av zvIOK@kn=#6f-D0$pGaWfnuP*e&Y+~NAlpE;6A7%t7MYvQq@>LtH-c;d*$T1^WIMH)dqBz{_kvVF_JZ_)^nwH+eIWZl z_JdSG49EeHevko>L692A5XgNXbs~ZFM5BE>=2Oy6kei4E27YIx*A`LI5XgNXb&v+g zFvtkVL6AcrhlvE%SAF+U^UQO)j;ok!!U^nALgqIhkAeJ_2+j7PkcXB~(!(H+fIJHF z8<599ehczDkl%y+0pyQF0_y;Wl2<(~<17RcEkGeKs7%m$eQG8beX$b66mAl)DfK^B251~~_03COu1=YcE* zSw$+z7G-WGl!v zknJElKz4%M1adRTE|A?Idq8dhxfSF#klR7-0J)P$VBn^PQnwvJCdeHicM=J#OPZ|t z`X|Dg@Ij;G#-~vJ4IrC9HiO&AioBA2;^aqM?fA0`3=ZpAio9q9mwxN z{s8hvkUxR^8RWR<5t#te1u_w263Aqb<3Xl?Oa+++astS7kQ0dn1`c~PXz-;TybaudkSAiF?zgX{sh1>{zc+dysyxdY@*kh?(c2Dt~M4010>1!ONs z4@fUaKqRm}FlhVSOX%>zQIHpajDfru zO@yAk!XHM_6B9>9PwA`n2MrwbSP$%Xk!`3cTv9J2)~C>Q%=)GT!AT_uP9vb*bRDza zBSCN@34%KdXbxS+tY1qI99)9n-~uvq9kZS;L2!8qg3Al&m2@4mzAr&=f(e2*Oc2~+ zg5Vz$1V@=5c+3RBbtVWtG(m8t34&J$=-qT3v+f~5@DmAw!$=T3M}pu&5(Hn8AUKr- z!Mh{~ZYDwSHwl8{Nf10xg5Zi01fP^3IHv@`OC<>IDnamD34#Ml5Ik9e;L>ss`SgH3 zLDwnRBCPeJg53WBQ^=u31Rvp!ovaNY`n7grG6xq{%=6$D2k z(6w|OvmQr5@HhfZqU)G-Jqm&kQV^Vxg5a+O+Dz9m>$nvJ53V4%as|PsD+tbALGbbl zg1c7`{Jw(V02TyKupqdE1;IBg2u@-_@D>Y#+gK3%$AaKU76gy7Ah?zV!N)8J&SpXI zItzmP66hAXj#)pZAUHGy!Q~2c?nh7(zE_}UUPd5S+<^0&;Q#ZKLa$^|A}9s=NaV4JcGo2rhZy(ohIaddY*gUJ%^&g5bXw z1V_H0Co2TkzT`ci&@&W**I!CLN1^8_^n8V0s1UXYgv(15!lr@b!KDtgo33Nlw=M`y zc0usA3xc;D=ybY{S+~0&_}>M=5ibZHc|mZ^3xbbc5S;ab;I$V7_q~H?lK^NoU1{~B z5H=bl4?7Nmu=OAadk})K86gO}5`wTjAqe{vg0NvB2pbDPub}Ig-C+=ftp-8Za}b2h z2SM0{5QOarLD-iNgbfNo*r^Z%j|k8mbRDy<5kc^g2!gXj5WFUW;64!qKZ+nYR0P4Z zA_y)PLGb7Sy^pSA*0m=HK0ZNk_6dU5PY~RHg5ZY(`qN3^35T2@c;*DbMJEWpIze#S z34-@d5Zriz;Lj5T$DSZ~_yob#CkQ@2L2&*Ff)`K_+<}7N7Zd~sp&)n)1;J$~2);u> za3TtVH&GDWih|%d1X@kkG3!DU1Ye>cI28rKyC?{5MnUj53WDQN5Im5A;EEIkpQIo- zCk4SvDG2ULLGW7&f&)_!Jeh*v(i8;WrXV;u1;N`X2yRb7@P7(|BUBJPqJrQW6$Brt zAUI0}!D}iA?o&bVqY8pURS-O@g5Y8m1YfHlI9&z7`zi=-SV8c|3W8%+5InSk;Hnh_ zpRFKlQURSu*D*Pzu6Mr66os3c}u{AZ%g^!fvJ@Y-x`UKB*vVm#&!FbP5=lOTjN2|{d>AOtxHLbQ`0ggpsD{F5LALJ2}dlpusg2||pNAOuSZLe!KX zgii@V9F-shR0%?4l^}#z2|}!uAOu|rLiCj&gkcFnJeD8?W(h)smLP;`2|~=4AOvp- zLKK%EgmVc(T$dmOcnLzJmmq|E2}10bAOwL4LNu5lgoO!0e3&2viU~r*m>`6X2|^5+ zAOw>MLU;kt*XcTD;|v5L;6M-}4+J3uK@egQ1R*Fv5TX+VAxuFK;uQoTa6u5F8-YGV z*D)LBCF_D5094QD(VK!0#wiH#oPrS8 zDF_jsf)MH{2r-|65d0|!QJ{hl4k`$7p@I+~DhQFHf)J4mRHEyc4NVq=7-d0--vc_1 zu46WkPY@#d1R=Cf5MulUA=pn4qW%OS{7(?#00ki+P!J*m1tCOG5Ml)dA!tw#q6Y;b zj8G8b2?ZgrP!J*v1tI1O=svoR*;rek|E18{F&lI%2+_BK5QZxV@wkEzm@5d;lt44- zI%dNv1tGpt5CSa)A>vXHLj8a)rR$iD`4fcTKS78B6of!CpmXR-D^-OMdM0^@K@)`V zU7!YC$7~$0AO!RZLS(NXg!l?Vtgj#h{R%?#uONg03qm}wAVlH;earR{Lh=M5Hct?O z^aLSL4d_z3j@gJcK?q$FgcvqK2xb$6s5U_eZxe(#H$ez^6NJb&K?s2pgjhI12#OPg z=r}`_tJSPZIbb=60CkSzMf)HRQ2$6Pz5OOC7 zv3G(HgeM5mc!Cg?CkXL*f)J=D2%)AxFQx04jX4#B;8Q_}LKTE?R6&SK6@&m)L5Nfp zgpgH1h+P$gAXY($W)+06RzZkw6@)-nL5O%2gwR((h=CP^U|2zjiWP+LSV4%B6@-9U zL5Q3cgb-Rmh@};T5MZE{bRDy?z=9AIEC|uTf)FMw2=TI8Id(YipNqU)Fq+ZBZP zT|o%s6@-XhK?v;?gcx5z2=*0(s9!+{{}qHdU_l577KF%PK?o5Rgjiug2pSfI=wU$! zBNl{sVnGNj7K8|6K?pS#gqUMN2tF2sC}cqhM;3&*WI+f}7KBJ;K?qqEgxF<42x1n5 zXl6kOYZip~WogcxW+2!@y1b+)c6u2OSg9}1jxF7_G3qqv0AcTwyLhQI8 z1d$6uG`S#zhy(p6UB_(DHBg;mtjBEhwIGCH3qm}$AOvO$LWH&;1YrYxoUZgdrVygB zk#{{^$Lxpf1>uYKg79g3L3b;JkKIcizIrdH$3-KfGxqh@_EJo@J#?UP^o2)9Pvz4H zf?kz+LT_z=K3vgT8LlAgdvrpNy-csyYQyEmk%7In{-frJ(~moD^!QzjUUGEVQ*DI! zOXnST-1gBE8`Zt^wa$HO_SOytM+L79`fG;>PpjzYt!I$F z_j+`@sdaXxE^hH>hG zdCCMjkm0zI(P=&QJEsl$-V9naC4_E~sXf(U`w?r~5Uxn|!bE$9!;A<~RD2&&Mn)(0 z3=P=|M{cCZ$)}J}%>DGAHi&r=C2coP1|6Md8^5EzV~ARO(r_>^)L$76c9Ina8kBNk zl(MG2kFa^Ft@<=etx?Pa^#60r(}~hs4$rg~YV~9o&TX@K8MU1n8`@xWO7hTXdP!jP z_y%=Te{ghk$;coXr`#L#RYv;hiZ6IBUDmy{I@mo>>mBJ2x~m6|EIT@SHeE`dvPbv7 zbNleoiamy!7@IeeUZdx^EUSY#Y-fS3w{*n#dEpBvmhl{VF`>7Ah&~eM({Tov#U&yJ zo5EK}EQ19@_1ZvfI4IjMmHL>R3MQ&l#OR-xQP{?_=p^nDAA_k@3(DkrVewgUabmxw zUauVK9tei_*LumeC!vN-E1{ICH_xrNt~NMKKhU5qbx%XxINhlq*weq`E?MjvIkT6~ z1h-Vl$N*pE*H0V+^ye9%Uo`{<;NnqZr4iZyx*iM=*NYn}b<+k2>j(D0^Vk4O(BtK( zV=L%^hEIDt&^=`%BfP*JkBh5~^8QL=e`Rlfkp0`SR!x||d_ z@rd=o@O>dW^e^Ze8SELZ)&|Rsk)feleVAr{I}p5PmKbB6b&x)nTX0_Tl#Q6aQH|Md>V>}kS|w*jvg1h?V_xB~N0%pAq(}5j zw3C0*y1e3bp3bwwk?MIy`CRae(@VM@^9;-nR9oj$q1*v<3V6DOlx_>%oJh08#C4Wx zWh_kbS>odpw?ux&b~wlB9=!td6V<*2#8`&B@2701a#c!cwn$}VG|^56aYu?g#pzrx zr?@fF$T_KQOmd_TO}IaUbD|rwl=HRJc0{@;D_Jr4W`j(GQMu$O_TBM4Wh16PSG_TZ zzLVQ1_g4>iR}c2i9G6hGn;$1<^njf*xCi2*io>EfIpW~4yzR$0y%bkrPIN#7TRr@d zV{GlM)%vsN^k{5JDXmkQK{O%AXwYLTgA>MXXX|A^^bUz&9%3d^4_YSpS|Ntk%+}9u71n)a>y}o0mbf_)pLp2I&`Zp=ZY|~)m>XO(EsiFFc#`+E(JpjSB_o4vbQvyl7dqq2 zM0W6Hl#iI>gEBPuLUW#7r6qy48>V59*j#0|*-|0>J3Se7!g~Pts+#jvO^>PV{1vCW zvIG158_{}pPi3%-A>^~|iBKXcpfs2lrAGao7&mrB!|F#RRsDrgYE(Z~R>q6H!Nlna zJ?K%x{oO8zMnL9chMhcBDORXrR;VAP1ci+SK;By6Z4Xu{#qlTndD%lzZx#meM7?DKRjh4W6oE1=y~;^ zfk%AI_C9WQlsjdV3A>$)sI}HoVm2Kam2S(Dxj7mphHA2Ar00{}X?%J7h)6fy0*{sU9-UK%g;dN{uG8jhYb>jI zVvTBNbDJAg#3#YTif8xb-Un>1ve#^>ke(l$`#`$pd{r~3R-n&aEo z;Xuc-soTnY_|#~z+gt4kysKTiR&xufHY{;-a(+*VHI`e8`33gtbTnFd+Q$=jA^%CD zT+}uA#$C*8UeErZ=Ky;ue7_t!mYp&YlOHHc&7{Rh#_i$++}JoMqcAJ)LZ4yf|IS5A0|CVgsBPtuMy?1=-t;w{&Eb_t-&iKNLu=_cN`D%!fG<9}1+z zg`BvUFKg_b*Sv*qz@w9fD%JYY(fK%0XLvce)}tBlDtOoFnWfryWGOjGTN{P5Wlhu1JE8EMLud^sVZrY4-kvDSUZboPG zI2K;63bD7h*M$`ww;dB zKEhJ-4K(fSb@Z%PYgFN_tn|kpuP0t}EiaWFe`UUL)O?$23!5{okilv&*b}%+W`|5j z1J2B5F>NDl&jg2R^#eG`8|{#UgtSxRobFAP!QTFWdi*S1WqFj5sCx2R+R+FGd!^zT zwqlr^Rqdo3>Xo7WWbA<rWO zwm;Q!N9j1tS0NVcREX0O6=py}{Bu4!dRi<(5`9%R)@dh%3`SZ>6-i7~ISo=ahTd-) zPiuB=rVXuFl;kW&PNMP&sBAynOa?wVt`w#u3ZE1f<_{jnJwmC=+|AS7D|miRRFXo=(TOwi*$`m5d zpy%LHU!`ZbR@F7UMVJ^ z2@{K2m0?=>?j0Ep$WYg{#G(}Ipj6vcreQEx9zp~~>sF&F5zCf%Gk#5rDvB;j$=&pr zK~C$DA?iA)q?T)2)6!K&skte%W2>D^TLU!R4kJ?Jn$}bc6;N938miDwez;8Q zR}T2-i0xYJVMiCGlvO`uw>zmz!KMqrBV>YtCv^_YKslJl+#^r$hBHUm0w!TZzgfmb%v0 zY16#5yA!oN3thYO5vOY|f%#qJk+uu(vj(aSdL~E*SlX~bWGdZf#l_Q#J5h6~dh^_R zv1+o)Nkq*_{lGk?EIzkCs2n&#aj*T}U`MNi6j8b_ko0JNN|@f+TamJg$6`s3cz9Zq z*jtf0%quXzkJ@xC9)6m7(x|ueq!HKBPZ~G3^rR6nEBd4nl`riM zO{{7YE8`UVRG+u{JGOnB9F@+>xZc!5`1pDjS{bL43szv<%E~LjnATrKZbgY& zC9Q!n`<}?>8X0|@yJS9VxiQ^XVCK)~nHDQceUS=Y?W2h?(L(u+RE#8@)++-Yj`gt zc1-SQzcETlrT^|`ywBqdDrc>|xqY2|>+Zf-gTY#TfI>7IMIHNbMZOaxW`@+ge0Tf$ z#}Z>zmEnUppB7V%eu{_c%-~7>6n1s6C6T78A<`#N_A&ZVcd}1nRkNGI1LfFsN{5@m zs;Z{!cZXNB1U@#6xuvrsEK*iAr^jth@m0Ij;?3)wdPS1_t=!bvmL%8ox6r8T#5!+l-`0+DO6y&e(XlZSD_rC$B!9g5ybt~HV^yMVXUv@( z;diue^(=+C3j*^Leh}ecm$T`th2iY|2Aj(jE9MIIR5qKAR@lFX-Lad^wJo{-aJ-6!H}5bPK9 z+NQ20MtNaRDNghVyejqUO_eGoL@1+e%zfq^mzO-`Ue&xJ{-@eac~7pp z*3Z~;*dwos(fJZX;fo5%0GM&PryeTSwP3ZRDyl!%!e`-e2aK0= z@8Aryt57Rr2Xd7rJKaV^)4B4-xdrSDoSfyl6E2gqD}G!SCAWmqZ*!P~P`Gvt)=CdL z;+0;T>Xm)_=*Bcq8EVmL@!B>WIOtl#Yx0svS6c0f(&>fQY8$#GSFWv0o=H`dqVy=p z=8F`iDByDRc2J83O)8ys-4(a1Pc7AeTk8RxV@84PG*9vB#P4_+S7ho&wV{QXFRhGH zc3np%z*eSYD_H5Weq?Yjh2yr^$MKJ*m75hyW^DrVglGk7uhe@Rhcbec?CWH4 z3DutYadOn8#A4dM|7z1paZ$x#QJfrc@GPh8JMVFNl2c%Ab07TX4%d&AgTp<+koQOh zyQwBcSec5M$iYJV>^QS$V5nU6zFlG8faL6`>ZhYPBWuf9^dd`nf6Xh~MyrMS$_jJc zO6j04CtA%{yE{=kwv;TJ6VYml3%!Y~M#HR1!#;7?4oPfD+7^WQx&>~f+!pw1cPDC( z-vY%YFh5l-nA11X-=BXjQCvc`Vt$+)jmGTp92Zp_7RAXC2TxlP<2kOvoC5PQHKOMA z*Y=h1BF#YMu&+<-i$+cvrBAn$5owfYlXHfHQ&@31$H|Dec-oaX!@;Q(wQRa-*<9;| z$?PcmQe0a-VQ?nZ^Jtxj^_2R7`Bn5=vEGLZGrbQz(ZQ3Y_`jp07i9S# z;xbNY*8_2dD4Fxhm4^#?A4;iJfv22UK^b^WnI7~T8LwF7vXR;I(&pro!@-J7>CxN! zxa$FtN{{Qy<>0>d)JVVimTN~c2P7u7*cUwBT0mk-i>$Zra+@SWqj_8GBZ*3jwYk2r zf_kK%hjT0XePT2==txul+laaB+OY>DDtkbS$Guk|F{uSDy>t=uja=n%T$_dAWiCx{nfrUhsc#p&*`yPrO$fOrvvJwAL(*`aP<3) zq$+LDPmPhi?G2a~`pL>vn$XB?Tao5RZdwl-FT?ebptpLkJ)<-~UShFHyBx07+ta0a zyI7H|M_?vIhmP3=>ug%4kF$*y7EtZLQ;AedFJ9ekG++IN$@=S}<)++B&cbgrPA^3@ zqISI8eP*9k?JEcUVN{mysWr^!$`$i$wQ8T0^L%BWdBc2Vg1K&`v;~}}c3k#cG7k~~M=1%+(MhkhuD)V|E6caFSb zeV1BdL)tO3W@;%-(lVFQZMQA8WTszT_L4bAT(MtydTC5!C1+`zBe2+5@hpL_Ac@iH zFLGR|UCSJyX;(_BFxHk4do@Nc$Ko<)<(=Xrce3Wtewu1Gko3YlD*-HcT2~gCEYuH5qTkN z)xK2-nQC@fao+g4aVVC%I$D(x4wE*b6aG>}QYzf#;>>WDTvIe77UF27g3fx&$59mn80^_V%N#Lt2w>m3& zAh%HkG%KZ}16H*%CW_b(d{wJ1Y0&X(y+NZ{6Be0?L)I)WFwc&5n|OC@U$kwNctoFy z;f745=d8GR`tjP?9ZS`l=hpK)SSNPJq<&yt>pB(A!q%+4CHvGxCaYU9H>+mO#cOYS zNBZb%R=(O+bt$5nyjaqswScDqiA_nV6Pf)b>=od6hBJdB-XQ5IFgoQ$jhGoV!nzWg zIWeVYD1L{xiL)7{mU}b3K63b6 z6;a2(N7Lllj2^Yz(B*WvVlmCUFWYV+VR$_}8n^11qzGTJSUN1QNc~c%fa=KIl-So_ z9V*kAPJ^whmJF~fa)d?N_|Py`Mya`na{3#?jr(wdtUp4mhzU{=b?NBEB5a_iXrmO} zMOoxMr0@NOK~6M>G~d%na~65Wo&<;Q&_=&ls2S;^l)RZT!q<2^*X2cyR`KiTd!u*< zRHS!_JEvdkKN{$v?1vvs`1bJqMPCn2H$62NTmR9-%B0kc-yiIpAzN27Rz|6L3ry4W z`-}zbS>$+{G#mVC9CehcH*sF^ml)IRQ@!5eO(xbvDY!ZMy|>=ov17l*`*Ng#(yOWC z!aPQE90M)>j(wBNhW2Kd*iz};&q8;R)Vy+I{5$SI_q8~#Vii>XHGQy}rw?OuwWyhY z_GsZ?wLINgywhe)7|k85mZwHD0jser>q)MbUD!GF}9v}gBG z{9b>p#_zuRZW>Vmu3j-uac>$k>GjXSeO`a;2{1BeM^!6UvU$Dh&YgQ`KYjWuQw8f? zmLd_S`&FFS<(WU=^g3pEgg#UjopO0}^s=lQ$#^y0AM>W&mg(+RKEmUwL%-=Fk4vfv zC090^C%lu~l>5^jr+td8{KC^iu^B%8ANsDmJ6<#F)$K0*8*heH#=Y()8ZFKE3bT8v zVQeD3@e0=t7i8W&dcf&FLGIKMWyvKjv96us@7Y@zv7jw4R@3BhCp1Yj~#t!OQ z zhTBq0l4gc~DWRWI{+=+ixh;eoYbSNz+7aD-9>04d)%lpx!ruEPlrQ4@$YvKA-tUHs z)Q=~X&X1eUs2?k+2F~87-A#M@ql$c7eaR9{9o*SOLy8;)o6Syqf~t&a%AWFG zay{AOw&|&qJh6TF7GXLhX1x7lC4pA_%`aH|im{DrPKOHT|A0SLT z;@R^SoHDA(-A+a{b*;ghH*&+ZZ}r$Te%xe9ipx13E}kf$#CZ!&rKn~9U?2L-N`8tw zgV6w^^KGlmYZ(1=_;?t7nRN+2<%J(BAFlQ{N&%g>I5I$osSocj@3)`Yr7!G;FC1B? z&PZl4e)JnXzCk|uesV^x?x_sM0R*mnOPM^V-)&4{W`R=3GqU8m9rW3!>wD;v*z_Gz zivGAiDDOQ|?ydHu&t}P$Y6DAiq6|Tmpr@)v&d<+;z&)acPxX~rdH`(Ho%$4X% z`}%8$$r%}JvduPtF-K_3R*Ac8Up)wVaoqlJ`g3R5ZJ?gD@yXfp9KK56<+Y(<3a{;N zL81+1%$DdfRwA#Z({dX@Is7eD2WfCM*Pko$`!mg6iQmZiL$yYuN?-MEeOTE8t+Lyn zEk>zxJ%8i2TpQj`9-?~CptHl$8ydM?KhDp~CxBH5%yOQ=W=Ec_>+p-8ou0U8Z@rH^ zX7p+HS)A$2R&ieFowBpWxjVxe2|qL2E2=`{c8+vrlv;}FDnqRvs#gbx%UH^VQMZ~` zTuXUm&dXt6ayTkc7aXkK&t8loA{OL{AWn+)MM?iymV|gG+`grmQ7Ylv3d}qC{`4Jt zM_Rhn*#7KJ_h%HwPhY66)raXT@2Or*lyLj@Vy=a_G1@}Q`t524)YIpRopfGF@r#D$ z`?)Ef;xD9%8Oj~xJ64Tvj|?)GS9?u0m* zf`Bk0BYppoR{`g#pHgU7UISq01{CsKY6SO<(5_;YBIQTtJC^qqa1~y@E3TOMS$S%b z*7g-*PgY6zsKJ?fX*0jBEXeF@75RlzL-ksodQN1sJ;axFocIOq^k;G6m!m_gZQq9z zkh`p+*V^~dvgqjOOvjkqTTzy4#ubfVn0)`Xjtzdy8UbOM$dZa9b)sgXEV*iAFquET z5a*X3N-m|@M8oY{Mo<{InD&31~|O^<>N+Lajy>WQJpR`IYQ zvt1-Vc~5~-inX%gI{#Ezh>;9U=Pq5SW@4N!HTHJ4ji#ue-l)-;>U3tOwTSJ{cwt$H zw`gVKBQq_RHVmf7gnVVI8xB@!?klrF+tSR&5H+KjD_QBZ#m(7B`>Ji}Wdj~s)eF*< zZmTvQJhHV`p-1T^Mzgb)@OF2^Qc1e1iBTLeka6NHb#q1fNA0!2;h@L8P3I5SwD{HI z{C=YvB}b5I{iS5*o%AfT(Yh^~u(iFToR!O|xKF&3Uf}R4y&E+CSx9`3blwFF& zu@-^(4&TDQtrjeE(+d_pU=`m{qeXD)zUAb)v+-G*2kp7Rdxq$Rfnb9@qm@|Dse;l| zQni#(+U0nie|(P1M9g(@6Qcd&^i&!pYlbPpa4-28Hq`4idd_fGi>@xIf^J)`9KS8e z`qB*NUX>@%--6Sr1#9`;>t`8teZIpaP-Bw&(q!meF(vFq>?nvwBZ^>CuuTE2A z4=o&a;S&mBhh&T}e`&Wp1xA>ci8Lu=gn4WETXhn(YQ6o~K-ikaSypmOxvjXYNUu1R zMf(d2i1KTVzF3d163_$jKn;$s@%qA7+HFOlzVI-S)@1gDrj&9JLYAXhVxy` zR~E6qttPr=&LOs(U%L~bUG!r;I=V1Z!?=vAB^?OCN7Lw=kDgFs_M)llON$uWnIbOh z*LDVJyP0+b4u=M{Pkemq(lVVwuD+=!zWlnPaOP|vg8UlKwi??Vn&cd&o)?np`)jyu z$#`BU#7G+EJTDZgncd3mwP9M1bEI$3yCLez_zcyrL!GcJ^Bw zU=P+`swZ{NO0d#s1a0JwT!a}3an?JME<%Kx5*M{(F#WB$rdu)?htSx^_UpJMbS?|I`RjGs zNG-#MLGN#qyC|#YMRjVDvzn6hut|Qls%@)71*-HGK?7_3LPDKgy0p-kl@fFb3qp84 zzJ)?x*Uj8i5th_G=b2X0!}ht%l&~oOzL84$YzJSTb?1yea%swmA-2~p3fpp+8d1z( z&Rsg)3d_c)e_zFS+GVr)TP}+IRjmI$dhVqy9lOC*K1d%t=2sOwbB*XsJ>s~nB|Wrw znxztatrARIrp?NB+znZ>HCH8mMJS$*fEo71DDc`s7*k`NJBFl3jb%Pc#MLZ<+GW3< zgDvSs6Sj4Bf>Yu=JeBD1r%ZmfLGpADdOn)y8##GDWnrZRg>9sO@xcK5vc0`{4G&E% zG*}_bfQ8s@@7YM#*v*Jui-wj8I2aK==eEOedc4T+7=EF zoQ7AZX?X(#Oce8t+%nqppgl?YI9emvhnMg8_f0>9dS#&4uyoe&sV3%fXLSN|n0-zmznOSX!cpw@t%4R-pdRi$2~w-r4b>~WsE{tJgQUX+RQvw9@T zr}@?y&QWSOTwO-0SFY;m4=RHrL$na=E%yb(J^Pyx=-kajU?#)J{y$VZehbsi)6l&1 zAuBBB$z2%kal7K!9Tyi-#zQDraCmrIWw5euoIQY01R2j+-X`SRBesQ~vR{TfFQ0=v z>NpF~{3`wj9-1v`HHx;O?Ymxjvn^ziIa0LEsLjr7kreOcteSpV&j>BL=@;CzSSOk( zC06rP0@p-=1z{xw_t1WQ&T1sVom%YK^9YAP^6*39u9UcTs2&_dt1CS{bPuGR<{o-V z%Y3*=YvA1H5}6dS;$yAEUyd@>+6dhnxHpS;w&R8J33iz(k*l%S-Ly1!F4E)9?yZOX zl%N|NK{$W~+dS1iI`NV^8IM=Rn`*xnq4#*AULHq=Qs^=iHkHH8w?1ctCwMA>S0HoX z@L($jcf2Oa?oDw`3mqI87@}2Mvtw!;p^B>#dL?wi>X+O#O-prr?!KmKwo2@^5X%AM z6#99ndC@t)UO#Ik-uCZst&Y2FhfS@xDxsHfm`T$D9p^#P%8H{BcJZMqML#z!%W=Ua zWw{JlRA6@U3hs;Sf;%PpUWbh!@&{$vcvX7Hs?!?G8nZ~6S}9*(%v!Z@Wn(yqKO~>aK!jzE zgIF=@s9;FRId|6$>kIXejq3L)LJSngR6Kk}CDGeP$!3)D_lJ%5wKekk15F$Mw@9Tj zej^uJ3E6i!@OOS9nPb>WkY7k(cJWf?cwWl)zClMy){Wb1(0{ zepk8N)S530av(Ux7AQ$hSc5tb^pPw3{tijfvm>Lb z@GGWy22Hb6B3JCg^4rQPI%=HlGNlEb`ya7VBG&A$gxh1$>vlc+>E*j}Z7|y(r5IE5 z9DkU~BFAbbZ>7YQRZqF1Ep{H{wR9g-Ew(?{N1LwlreSb+sPGud6zgNE#9kM^Sa>Az z4#H1my&OfGoH;dQa%Kera~{up3-}hXhcAyPU;6TFUphXk6h2y)W50U%adVGf-B;Y5 zBR68-pl-hd6>`n|MMV$v9+or!o!y+Af~B-L)h|2jY*IN`srF;Tu>*Rok)Vb=y>jF# z1#hRD8GXJdDBG9NLx-k#IK$kmL6oBbnQ%)%Rf}k#lnx3h?Haqa2He`g2DsX&#;mi8 zYxxzlrmE-d0nfPRMWo15irkt|q!m}UMx7N{miC@EH#kJ(Z&_I>?zC#pZl@3Lq=38coa*+vExqZEudcy7N;IMDJ*ds?$B_oC( zVuqoKX4Zot3W4&mIRQ=NY-O7{PL;G-PeCmbCO_OOWb7oBE0ZOZ0#o}X9T7U5@|qj7pk*JJ$xbI2V< zbLod29JXEWYvxH%P>MudeXIK$oKL2w6I*CCk?|w6J?9pR*nCorm|2be^rChw0S9YH3R!STAR57rxc6Xw7Y&tQi9rJOz)*&#*t8p`%e0Mc$*ZE9&B2QFiQhG9ptZ z=5{+8xGS8(ipx1pM#RO_A&EnmoJ!0sF#n}mHn+cWgaT=C+?}ss_J=A(ltv3AJyIyq zEIT)Hv!txzu~^b09-cblu^t1){Ahzcm(=S8W}Z!7WpbnXCANmYMglp59dG$L^ah-xsO zzJi_fapJnz&{-`Ph7WGeZy;^Jx3+ur86B~@>pThF7jZFihrlKO%9q&wg)$hiCX zZz*>FJF^BitYZF8O;vMgkw@p%cwaS&hO`t>##tcgQTHUe*O`8$tm3g)(jy+RS!Cu) zOutfxc?D+FUHUDu_Z&Rg#lo>N>N zf%$;jf#;=`MOpVByV&rSj=Hj@j54c1V?FS^YY{KSIbWG&u3IT>7w5(t7F4yn6SX~- zN!*wf7kW767Vrc5nRK)Djl?Nfgi~JB?7vpcUVwW&1qkz*!oK>p5vr7G#3Gdy{ZbRZ zcDtetCq!4C;&iT;lgB7_lQ~Y09{IQh%rP+MxTEGAio>D95fi*(V*aIbc) z9o_FUjPBm=9ov7x)oO9V+2o(O?FdMfjCA^6W*9!i&msp|mRrXzF2j6fcADm;QtlY` z)$UHzj=M#s=)@RSTlMW8cxSe(+|dOigN4dCR`-m2%t z5n^NKE4Pp`$U-+KV?f)X!UNhZt@tc)b0R(-``9z);`EYRi}?j6(A_*(8^qJB@7HR( zIm}nu%ylc}cC)W`ccONzZe}+tE`gb^*IIC%_|&&+Eo3U)XT`2iv&M}|s`?9~)Tq9v4T&{wRD<~h z<{9p@Td8-1RwO+*%dCQvmBWP)?G4k?(AOO{s5P$=i>a8GsR3#i7}a!CKK=CK1x7Xe zFkCow*#$;eCEdx11xBK-U0_IEkC8kJjED!Fo#~orPOfi#2H#6V?|anvcPj??oG$$!+VFY_o@`W(CzTJ2IucIV2dBxURAmMZn>0qjEW# zD*Sb1y0!-)`3uFok`nY0H~z{+B`_}~VfkKihEp7VB9@MA5jNTlrPJ}gs#qyxrTAa4 zccj`Me>ZSE^>sjhk~=X{yjNJ>_EgcL>g&jBj{wU}NwF;$E-GNW7Q~OHc0^uC$6CX` z1c03uz=pGD>lZbS4&c?6ci1U8m(+uObgBk<)A@%nPMhL*SQ|8$VXXv9CGYY$)4skP zL~ml!4b0C?>}Nxc{Do)-Gi*i7RY^U+K>?XXo0iv4;G;ONLQ45iP~EpbjJPb&5*v`1 z(Gr)RlC+|+pWZ&(SFa55hX4x5$(u-oTS5wMTulwTTq!X(CFLRtf#bQLXs75PZ#}kS zW=h6Nd>bNY&R}`JAcvija{*<@8q?paGKljgFw02sF4-hn#TA_b@^0P{FD2o;gGE{E zmyL7}98^4)ZL>?5ZNYG5++~bChRSa=)Mvhd`E|IGwl}1+;>kDRTeS~~GL=@$7ow*R zyFgRN-p4ZW0g;0=Q`>V_!>DjQ)wm_xrP_HLw(iMlpi_qyYua{BUWr&J+hxBdl&B>` zO8@>6#ZoUoSPL$@VZ#kYb=N)QvbRi>_Ny{qQ%uzp{q<~^D(G*)(i;jJU%%p~`6sNO z{fb|*ny9bmjAS{#_RBX_>b(v6i1_|u<3}%OT^TVW)eot2^n9be6xWr;T!1IZ{K6S6 z+8R_29Jx6tI;yf;6fl>zRo=&uiIkniTP>py^ncpfd?QhjGGE$WufBf%UJ6%C@arS&> znW(lDo6lHy+>Gq`%og;wVClBPlR@@;1|CZPV)L059jl)`pP`&z`(-hF5E@AL;WM< z^DJ^x(@ro=`>M+5(q125S%1GQ-CY?hxYW)5eSn8*MX_JE6&(+(>|Zy^ zCA1IB>gWN|J~qwjp(Bs#HE&3>-Cqs!m6mheO0>F8Z1p*zAimn&iQ1k$ti(3D;u4tc z(GIw6!I=ju=~o_UQ8Wd=H_B6*&x{JEwYJ+;yv?1gHP@--(bl#%P8XSh`Fdn)`>$P=p|})OW^T6Yhx!_$97!#1xuH- zL}mWl!|ybP8)2cRtTo2nJc-0VgH0`~SkhW4jW_AmkQ<104czIgpz>tHYg$$iQk7P_ zcLl?tV%FDHP>Dp>*v8N~;rvY+(y(3%g3X~(^8dIHzgJwMSDEWR&IS8n=oLSPvXWB?qqMpTl(?Na!+lrubMuDzM%3n zBCl;iMUP}QVPJ-%d6@4Qblkt4dJ?`?d&i(WW%!v<;oLh$vesOuR(xj=%O~y_aqYl- zLhZk=9WwR()|}lpPJQR4+E6*VQ>gD^ssXuu^NQ4KT76i}Kr1EN{$v6rxhcM{SOPfb|r;-)MW3e;-QNIK{}Q2SV^5eZakZ0)hf?NdM)jqd}8aCzK1DlJ;6 zwx+M2?!-Ylj;sj-t!}2DLU~GwEn%WP1{+6uq=T%RP$zG_lN!e<$x5*sqwG%nzMA^s zCj~3Db|rJmeTVE(C~etoLkry~x7pV$ z{p21$m2=flD&IgcAgnSLG3{uW_n;bCzz!r@DV3B|rO=)@i$eHEhVTJ->UA5A)z&TJ zhNk*FGD=zprR+_7E5poV?`(q|xVNoqM$ruUO39rzsyCXyJ2D!Znu7e|m5SSS8TKr+ zGZ?RL#)v-QO1&GnM7Z27U@1rUx+_#ixf-`W{#5V=)AF zwyJrSGD`ie6nEHz_bdBoX?WjAweC58tBIMesR#bFXrTG<-BKN&ljOD6@;IXfZ?%HX$fu)<4hCxu?%P?b^{>o~a^lM5 zoYH}YoQzKuXg12iS0p^KNtM#o#qU@0G$CEy?^#W@ZdGSmw@L@;H`_YWBHn>1(z;c> z{?;vx`YiM8?YPhMc52jTVVAF0eU-hPnye`l=KH~^T%aGE(y@hw6L#$DR>o4-1K-p2MFTRaBfV z7;nV^N%3@~L%@WkU(3>ZI^A(Uh3yBJlnVTOy}g@YqO>2^_KC{U67O7;DD7|6x$Egm zIdtg0-njSJUw^|RG8R`>t;qg{hpr^r>({$n)VHI<$hj`zE? zvSLMbKw~%{P{gn4d7FF5hhH5&GOkhet5^}^u(r}T`&Fz&Eite62`N&|uleGwyLN9I zS8K10QB!F=u8pm%d>f;PU(-vlt%A4n={(Vluf&Ch(PDJas8hs#q(U)Nty!{_qA4ng zC_K-!;_8a)xN}lmO$MTO zPKwLrYhU2LmZyDUWm;5wcX67heb)LkvVDQYT%Puc^;}Wy-6dU~_F1dCmD_Lz{HCDN zy9R*`*bW$XPVmb~@lj*x%JF7lj~?;w;Ub?yCS4&hx&m{H3PGlW!R+agReaW{;XUlh z9)F~Zsa8ZMK)Ni_5odPJl z|Hx2ncz@8K@7F{}_}Ja@2pt_=%Utq8)W&7<(%HvNI1YcV4{#p~qG;#x-a4H?(Nm$@ zxcwH2_sHEWFYS23>7o4g92fI=)hW&mM^a^IsRqU#F1nZenZIMaHnM%~4Y3O|uit{kp*v?I2+-wszb zrFx%M9bYx8^w$RWb-WR`b*>RwN!6TNxH)uk&4}lCx;DmAUf_Gd9|J3;)Vk-S4?BkODWBxy-}twW0Z$z(xEt+PX21!AMHvtrTQK5jL+Zh>*&vPYda%6 zshCpxo}L=rt$HiNl`_7j$CFYgZJxIoI__BUDW}vw5Jt9AL7cWYXz#Y+$Zs-WYCL7= zwsm(q-7v1Es$qAB#lxfQ{hz*U<0rhM15I&tQ_A0AO>d{3&QF(Z{T7mnDYfqmbM5ko z4xz3WkFYE-c=Ezp#;aaRX{Hnp*ARSzvWl0f4xL z+FF$5DXE%sZ?a_P8m#+J)bIQ<9E^4YTs2#sk@`O_pHVnx3t#5$5&fzX31)!6x>JW#E;Oq zxkr4Sk&dpF+ZyG$TB-(Z_a0o(s>R6QdGXrg^;ZeXuzG=cIC2l#=(fuWxXf%oWPH+R zncmmgN0D!rj_)S(R&+gL8`mG9PwrNGHWEwifX%X$k0n{>s+{5It5R|VtA5*&@Ypt^ zhs#v_nCsh6E#cb@-(%j{7_QUP%s$$EYlC;U`*wX>N=E7^L+;)f9vi+f4D;MgZ_l8g z6GyBxV_@p&ymgPaqchb|+TPtxw`YowL6EmfXijbakhr%pG(?l9{b|~TefI3!oH%L1 zo@U2drddjkvZ@z$MpZV`wr6L?OWq5Mxt35WC@pXA#8^@6#mIRssN(AS$H-ld+1nW- z8LH&C%G{77XvN^>$`-YPwQX?kZT#z#VcjF3EsSu-m8$H+a7 z`P&&Ind;}Q%$ri*QB+xfYiI8_dFx!izRBC2(r!;%V%-c%; zCxnQ)dHaQh)O8e7)?L55BhMUpuOxf*i^VE!b~nb8E#Ks^aZN;%~N^MX+yuJSAQ9LC}nSo3svbRDY6a#$BG;om>TZ66!i{_OH|+T(skw&c5Bs%2w~%VyLN_OzPm`y;I-du1 zODjH0+?GeQ%1Q5pDa<9zfH44Vy+2W69A6nT=cQ; zT5xMramDFel@)RFv@Y=>VpT2bn{`p&Shx4`0&ee0qY>1@57k^azO&mY?z*_wb2`4> zUhe6qH!4#DBI{X17?RO1&AFFK!BSF~vS*}9qcRYbhmQ=Blq%apMdMr>4bo^T z4py2?_Q~5Gk%EzZJYto4TYL5gJqOC_Y$N+szScS~@3!M8mnBrGc1u<%Ye5@J(VCKZ z4-EyB6!A*kEgp4SA9~jm`xRu!REll0cP+PvqkDa8=F595bj+72RVjC^4Jfe_Lu=Zs zC}t=T!{P%oIXdIj-onlr2rB7gAL-{d)!xAi^GE}p)BorD_U{VQ2-o?Fi|zuOlS z;`9l^YwffP~Jg3BfDyLK*NQg_n=F!=1DAR1vdOy;eqv|)C)>bucHzKIoeHA4k zlKNv~yKP{ll&ZHt)x9`kudN`Xw6b}tsRH9()Kco&6JK%rqZfkHpG9fCgUPyiJ4gi; zjucZW@3G-@O)c!l7f1T$Iq$}2VBdwdj~hzayEqiFOfLuWt9hOM6}CB}B$ZRD-%$^2 zdphuXNqRK5dH>X^DYbVsM)o!WkE5Zj!JOxbEHF4ios^=z!-r}e4^B*5`j+-4xhy4B zQ*J+OAJ+P+{q#BT4$pgedpQLxuQX$&1M@WHx>@KfJLPx+xI*cm1d7J3Q*2`R>EY#A z1II^Ys3PtfZaFQ2snlTRkt}XantJrdRNYLR7GyaoduM+h)>~Je9xlk#KNjTQs=GFP zJ&3*yRmD3`+{szSh?$9G9M|u+TwJ)6l%d*u@kYEvu(fg|sPCdPC^KKLcP&7sU6w63 z!B9!NCb5m0p?ZRaGTuMO`RtkSEA13Hq`uM4&HylkP0ooeY-#agNu zNIT&c@at1jHT3kJTcE>CwQx;xT-keYrrr)4X(zm;8SQk+=a1l3TPoE7 zdc$-(^=PHPV0&}=RIyVnF4(7vfwVQJPgMGx> z{A`KfqU@XfS=Fix=tjv(=WVO}UndIst-11MIyRv;(A1F8=ZYweTyCmG+2@L6)|bxG z=Za)j@V9VnbK}KrfoOokr89n>ZiW2Oa(*-Sl?B-nEgNOs)y3vmmLCt8rQ?Y3+w;Qa z?iu==F4cD-Bh`}Z50Cn)N(bpPq?r zmZ)L%tf^M&(>$n~AX%j(H)XCZ6xuO>sFK5F)-ZJw&*9XKC403;h9d&7e9cSgP)dqb zN^P~d`zzH0Bc0F+;Z03w<;wM_b%31WjsFj7xpI|S+pM*QD!ue=)=ub!SG1ZimlCWL z<8CBBJ6=q-L%OZO)nqria+O-^=o2@tF`H5t?ff ztad`dJg;Pq9nmaD6Q$-ho;W&Y!@Lm092FfcSiQi!E1Dkov$nqd3i>_TU2V!!jhY!1 zrW-~gZp_)$PS%?1)LNGg-%IRj$F(W`jWsoP$#qGAc`WV6JUV*u_*0svnw{PLA9L>> zZ+nu}g*7tr0TBr>=lwqS-QD*v-SdEf@aXBD7c6F*>lu zLzo^oq{XNVTTF;sTP#OyE7ar`i)dGU5%|_>(=p4>rk-=;3qjV6NL~u74yhEl9gQ=@ z%?_y~ysQ3!oSR_Fu7~SaEaUPal~4>aZz)JAwK}9?VD}JfNS+;1(L7xB1tL3lk2!DH z3|IWb6Cd;4u!&4`Vo=|`#{>)QXFwI??C)wBQp)aJU&BGj53jT+3XGhNAne=Xl8~Lzijpg+wn! z1JU^i1xvhCf1dFO1zOvS97GDDy6W>j`-vw$`D(Q-;h00jwi-dxL?ib7tu#=UrMgq! zeIL*5-sJ`twA6u#et{%U!d*G(guq1P{ul^cKS|#@b@9hGX)hohT6-p`(bQvej8^Xb zr?gP)AHJ0@n?eRPwR>i~N&U9WEu%iND+dRBUrytBEFfN6az05sUk<{(qZV#qqxsqP zl+7nb3w44xFVx~JXri_w{tYH7Ec4#;t24S9bxfP#!*e=hIn&d6StaCDZS&KN`pBpm ztn^`nVAcU8tCJ*bn^R@fmW0-@VG6pit1T+1;dfs#b~8Ngm|25t=Qo0;^?qMfXiiuC zc1a2Ashxe`I!x`Z&cF%Q<#cwL#plKm}+RiOP7}$SS#h{t9d{p=AO4ZRVYP$`gK*vI|9qX#?kRY3``3AU*8cQC2K^v|a3KCma@a6>x$d}Q+i+kR!XSf9MJl}EBP z9)xQJWp=LzoiCnQ*X(gNHsVpv1+@IqNm}OUq@N!f3ZvxYwq|$VJEW(K`{VKO{Jqn( zAx_Y0Qz8%0s`=QYiA_4;u}PCS)5ul-9*n=!>}K5`4DWRZ)9q#nt?ml%c>bdw`q0~7 z{7B~=AA0|bA9?$WFLa)N|BLT<_d98)K`*&B4GJ|&>Kkp>Y}8ao4RwLNKmXn5bf{o- zb#dwVdbL+y@y9VH)PIzNK*h{2XXKSywC#FNQ85!FYvH;#zU3n{mz;j%Fd5nV)FknR zH(2$nX0(AYNy@)zhN^9?zv|?C@(z*MF$$pX2lZiaTJ?|W+RzO2B5oS@Xn|ZB5wCx|~z@u0ni1GgM)x`zhdC@uMZ_4XMwfTi=%b*LP8fpg-zv_~D zN#}$PZO_o`uopX%ztpv%2=r0N)dhWB*=M(#I#;gsrLg$S6tZI_AixWuEH2P_A?J{y zZBa+s#;6HIdD|sjlyW?L`Fs&`OcOr79HKyhMfuosC?{r8X&^#y~dm$x%vp1O#h<>-e z_H|FZvLnB;ZA#VHSL%xe>IwjVkmC)7RA0>Tw zCpaerxo+g84f^qINkP9H0sQXdrNYn9mzM;xQW@umsHqEvR8g}-(RMw-9?YWvaO){Rq6vg-HX3Z zr=zR>ckrYgdPs|+7e7YARq5#pS&wh3QZyj@zA6woGpleM3RY3Xz~#Cs5H3-xr0oWF z5Csa{T=ky>U#ZwtR?g4L-BwbF*N3SrfV$Ox3J$h1erWcku>Sop9&O?()`hr?2zvcH zLv1URp=Q4REofK$U66ERJQ&_Tc4ZnvI`XhnmxHOdHK>$Y4LcTkKSLYRXTuI~an&lg z-Wol8&@)%B_)0Y{1?e{vpp;!*sa7I)0cptnMVWJX$;7R`2c*6^rpGhJuG90YULAUF z*e`ooJ!jpsw1`2cI~IlXf~+rb$P9hSLIK~q7KQLN48ZF-@%I+FUG-70$4>nryI;4o z%)srUXh6z+RUpD;N~-{(h=I#>RUllVDvbd|fdV)BU_%y3xqGi3_l;{)seAF_sxJg7 zHX?cHoGKA5a61}jh@B;(3Gb>WWSuKSJbKdEY5|U2R0h(n3vnr|id{KsTcHe5v)C2U zuKLd)cI~)F7ye1&#9Jw7#d}RjsgX4uDTCxuuh}- z@z4y)d>k+ogCtuDQZ|M<4rpNa5Njxq9S77rT=kvMD!X-$xEQ|d%4?6v?^za21bQ6k z5;1AkFr4Iu2&Sol&kbE7d<@MvDUH7$X_U0huRx^Qn;5d$e}M`lJA@(;EmKiVbATK; z-Gn0H6qQLaE1Tv3Otk!L^uQiJkIFo=T#h|36oWKd3exI<26hjz&zEPlGY`}}T=h3W z_MO4_@~m@pK~L10c>%`-MFU#ws{*lT);4M^QN+OIx+)MZhEiEvP#|fQcR=4-r{|4n z-KVitLNQ3Pr68@XVqo_WYbcPliss>}{~B6lgA!JnSew~&$TUMaNbj@U2r9+bnWll> z&(MYfd8VnkxM~0z?2^;*O&%Tk5Y1`>j%=C;bUDx^;uM){smP|OfzJ(HB7B}NdrTJD zG%E0O)%SvTt+;-9zq`zJs0^f_6YGJvY!x-~=csLkGDOZs{)nbKDCN{n$f>C0)M^3F zseB>Gx)I4sVO365;C3|55I4)I65dt+9awg)e@>UBSpxGMg-b!=%>*b#R&$gRxeG`` z=xmOnIJoL1@b|4SIc`WqxRoOXNWU9@7Wd5DoMqtOjv^^=IE+6F2SXDcBjfKmCs+Mj zpv~IwincNv+ki_!hRpHU7m_PyqcD5AF9ex4B6%sY z^7I0?qj847nWrbbs~luUuYbuj@n`v2>`Nn%b*&~XCFLd5;2s%fD`5;NIsV4qV|}jr z36OE)m?qm~bITWaB&y3n+HDOgMOGt`h2GE5QOM*I*+>LjD8m5_)*sTm$9Cp0Kj31J ze@j71@%8+m#O@*15I)NT0)42TW^K?9cWCn97hhXv`icg$*jEJ-8M4@-vNJ^tT&}AE z;bJJ2WoHT`npMzO59`STtrDG&>A7JK{? zSo)GhJ?ak+tftkAdY%TPltsM=E*n^N_1aSlF0!bnxfm*DUA^Gus_%f7UTIh|=S4Cq z15MV2xYR(U$~kIVp$v($R5_wu^=F}Tj)r}DXQF@KJmt>SM~WbHw_3qmyEo`xSgpqy zh%W?XHzIkdt;#?O+>XW>`eqqO!n^7iqVUbLtHEWT4!n1dJ9J!$me%RB7fXI#S+|Hm zpF0+Xbe85$XrX}bU5i5a8v19Q&_W0Pt~vpGY|^yEPod5E5(ify0QvmfC&9|LRKZm! z0e>LBw&;`vS3!s#FGH7GJ!$hpUkLSYMDkL0<%b1sN8^lk$ow$jUG)g$JsS7A14paV z!^@68_CeR2wEN>e@AR~QK)+`uvM=@KYvn>--G+vG-rPpn(zbj$JKC?+7}DOq3zCAh z#?54&Gjl0Ox|sl_>T1qhB6k59g-*G7HeXX5T=fT`x2^HoD%&NSu(8x!ic%*)tJEcO z7m$;sRvcXQ#UM4k8F5Jw#S)w66QLO7-cpcKa5bMWuzQF#M9=0Enun{tFZfA1k8_Pq z%XR1i#!J5bg1$R3GjGlo3d*2VxBBz-sQGgrr;|EQUySGr9e$sw>z~&e(`74kPV{Uz zGWTdX`D%tp70-wGP;nK{dP&Bo!J(+m+){SJxTtn)U7JW3pBifXR%^5~IBK;6CcyC|F)j6FNX;JO;% zajoQG7>%=+_`8pSY+80Si}yAh}+#wV81pcSS+ z2mN`qPp1*BfX!*SF9bVpMDo(aDjh0tI~r#gHcN*R-c?@#@;+G~GWVhMVnF9&>J2(` zKPY%$I1^t0K(D*4Y)f4^jjp@jH2j~L#NV(9r&;m$qb3eP585iw9hHZ&m#*9uy~fu+ za}BGMaVP^yag<}pqd1yv&>da<fSBY{y8rB5jvja1fDTKY56{hEk;MTjF~wJFMw|3qT4RjjAy5be{t4YQ zn?5M?FP(WliQz&Z@GsLj#r4p&#rvCvcpeN(QepW|wL)(SbhBm=?4OgNQssAOE%qlz zMh*!`CanInmY!1sy43Zd3-6Oy!HlE7PY4v9F#C1gI6J<=%d-nQ3}kLVaQ?4ogvoaY ziEf9;zbnHi-BN3A4{%K9RGb~z~_d=Cw7+9iLxDDjSBo+^-bF1 zhu#1eBiHLwXKHdl9@uh1G1nh}(6VMf&Pl7jVT$Ho_yNT>6QB$#dWx2iuIfOhu|eK2 z=o{bNP^}!!>T;-eTZ77)RXDTI`x)A3i7cD}7grr=Pp#v?q-IcYK$A*Cya1gtbY{9b zqI0inZ#!_OL^5IZhcqjnkI_0rbC2X6poxUdNV7TM^(k8R=((}~YND}kXLQ2sUun0k z6DSz#EQTt90$O4EtI*dseJCH(<1iMhFdEbZ0blp=9e|a-q$Wf{3HSr~RpNu;P1%G< z5P=V!e+E5v>61d=Vw|p8x^RnWqD-C~Uh1S`RwJJqx}-(7EM{qx==Z;dO@ulb_n~Og zpc!M9CJgMl)j!beZlykO?9PYOWxBK(X_<|;1WamS{ByF|!FkpJsZtM9jZMMBSw;t~ zaXl*(L-K%;0zb)*LmhD18p&%Y(*?T;?g1@aGG z_8&%CreZdlNZ7m;Y)-Q$UWue5&=!}lfD}o|H*|^ciAp5z%7%H368+vOeTMbBIppylXB;$HNn)>Yd@w){RD(O~#Bvf*{;#xL)!_lZWbSIXfIR_R3Fv5=fDvDBDZlHP4W49pt{>kua)F&@+=e>q~Vh+Ga2D)6sGBIz~U_8=> z219z_bqmXcS8S5x>fBx9??;G}c6t@MtAD6qcrosb+=a7OWO?=iR3P0U6p3(|qH6X6 zC@S0{_4)SbkQ0b6rP18c}XJ|u@Y)uom zxatOIP>(+iJLVks!ze=(pv7+dSuC2hjT(R>DR4N9KMMy#muvuz5NVIk0GN82F`A=9l#4?8Drhk6ir$y}!osGPrzx?;-X;UMs<&8cmpOKFU^S^*crZ`CF2%A@NVyy90 zVBHi4BZD$#SaGo6l;WV~WHeS&984T(jRCaW307`Qkqn+tS?`lL3o?p`TOz(m7E^}$FIdcOTw1H{2dcDpE zH+`<%KR+2ZI=B!B{9ASZc&k5m#z&}V4K=%dF!*)DTO%~ve9Alalz6H9_d<~IL*ALQ zmu6(h^W_0uPgnhr7eQt7;*eLM{g9{8MzfYfUgF}apO^K1p6a9?~ zCIp>sLf8)Ev1Jx)qk5 zV4;7JyN+oO-*Q5Z01fnkdAEAMX8tA7r)KrYJK&LRXsP&bgFmkK?|0A6x|S9^FAT+C z=`95*ol(uX4eTCbV;iLQ&L#w!hpWB~rgC?>bm8`hmS?jAO_nm;Bn|YS-O~+3;!c@+ z@*~vz+ff4$xWA!+NVppY;rq?w@9nj?>feEZWnX5L&6h%OdV*viam)!7i?Y?#l&OW+ zEi7wMI-4>fF39Jqeei~L_lS;1n8_P^awrDfwiKk)NqMq?-9v0_phi#DJm?xZh^d>j zgh$`&49sZ4IhzoG{5$fiSTb`?m3j&#;1A?i!5dm+siz>M4ZZ=|VB^@Gbm=oB=9eXf zJi688AO(H!l|W@PsL>73t~!9a*PHh|!dZUa5`mhx6r`+JwSS-k>>gqb%Vm*F^KjJ| zqVP&@*nIaCl|jwxLR^Z>6V4Ega@4j$8N#xaX+H*pCbcb(i!1DTO!Wvp+-lciC>T|)n==^8%t~y5-ApjZZ2(*Hg8mQ%-0e*O&o>I1&fqg$xfF!%|XAvcHGqucsFOOFW0sKO|Ql-MrFsBu-6jIE3v(`Hu1fWkr`9omlZH>ltxk&cl>*)}{ zwg#1*UX8{UdOt%O>SS|G;6ksIiIcN1`?Lsk*{8knE1K>P%&(HzVUY~lT&?FGI;Je?^?M*nc3N%DV0jo?!>2kJjz8nLJ`>B9QGsmxyGUmfSJ-%qD^|Ow{H~RG70J5&tq@|=Bh=av5%vQogX;O~DZ5@9<60ED<1N~#0!rEEq zQ;sgvwPa;GB@&RCzAgc1DLY5SAbX+(9@o(Z-}Z1RsJ58^rN^spdrBnj0n5@WAq{)*v?Tsc=Z}b7Oz{|` z-o8H?(i1_g&6`L-{=M|OG);5!CR*TeE&VP$qSz^rX3d*0qSGGeL>~3bG`Y<*0t z?UxOU?Hp7}Qjm|nelS^;4aSLE81zaE@O-K)Z_%AEIf*toDzRdNzXpTh!DaV>qjOziCdmXWZRWON|u^{i0D%$iw!T#*5Q+wH7SxJBhsgJ&OCWI)mQuY<-LL3S|hJ zE#pPBt3D3~!_|B4(%kgnWZV~mtQ(QM6jmkU1#U;<3~{q$JmFn+7h=KsLps~vGcQx) z#3~en%v%alO0B%Y!0sW|kUaAW&4ZFc@QN*Zhx&YYH5l}*-pg$rDL{kW__Oq}tjDTl zt4InQ4&%?l!B8bzwu+Fz$yLvRHk5OY=waM}KM>-~^-%UfphB6TNaV^iW0@ojtNMV` zO_P(MVRj+|V4~&MKx#n?k+iYesb2x<##PKL^s<-+ZD881?gb~VLcU_0h_O6^nHsdh z^t0reI_A1@5uTm3IPsQCT@IGp)}XR;s6`$Ny`P~Ci)V{Gz{OR+2V&7)pKlkZn=zWw z7nTR8K$}A-n(R?P4xH%R8pWA&Eecu3&@b~SfCY}O`pwWz^k(=&*EEFlGJz0)L_6|p zgIa36Rww~~AioOUP$pZi6@=*Vh0y)vmcsLUK@o^9@JZ2Z=@wtYS&ZZ)Y-zp7+RW>g%`2*w(#w32)!^x> zzX-Z+(e;=Q>9QXCi_oxzBov_GE&@yC)L0xzfx}_^xuq4eu{c7c<-QfPSsM*6-)gQ> z@?4cmL59r)C^b-X)e^Z2NTV^bxvJvestR(s>vVa$Kej{HzMWlN(gi2>HKiPtN>b40 zsj|GqxY-=6#EO+yAZo0ijxPp%^GpLryig2sZ7E1;Xch4c>>gqbQ)dxR^KjKKfb4rG zefp+IZf|DWWGM`ftw05u972&8H;Zg4TLW_7bQ6k%lc8QVwgOCA=sQ76e?u2t^Oc{4eExiQ@~J+W>Jt;rn(mOp(d~R5L4At_T zo`RpN{t>j$s$Xcd+>{r$d?Dzw5y?wE)Z$iw+tD~f?rd=@;aznd+e32wxS5xY(Hy`v z5y*d_OT^`~&ZOEyQv;tHx;{Uv`f$D`IQ?&4ynOX`I;lg47S6h71NuD1nNJRI#8)(;>d>bz`&%wOwcS445pzOdGwVBH+`O|r(aDf`-z#PC@}4_kcGJCge>-&3t@w0| z)mJ&vIqmuPNWgaMeGP5tk#=VM}DH9r#rVU)CTcG&(lTbJq-;cGmAT#mF;X zsZs;y{hF4AUG_I+!2)uW+iGIttaq)*;%Aq+_QgNhU^a_g!&0lXoDYI)X0v{66s(bd z?P;|M$H<%zdh#M4rn4N0!R$ADFoW5?cVoz6H>fa+Pv4iSbt8XzKi94+o$V$nHq1OX zfiQ5{H$T-XY|1SUmVa~15d!e*UH|J`*X^+~%l%4PRFV5G8dVVjP-WSlmekV34`SnW zB9>UZ9wVQsL`sk^GKzOLO=J`)fze`L`Et9xHrMV+`_VFQx9JE4yP^<)TJvA<%qlH@ z>n*cc&h50dB^JFanI)S31r#Qq_4S9?XtQ1u&b7^Zm8=*jyBFQ+5xnS=(ShSE>vGjv zrq|+8teW-w?=G;h=XlB3^NAH4|@f&|c>~S_oD*YBO}! zHm7?Yu8^)OMfs{S>Zqv8Q_KnrDB3kn5i3X*mYY|87(*@S^X))ofmiCkt!V z%Xm|&X0@N5x@fvYpEvT545HZb-qxsPTF%RPXe<4gjui%YhcGCqNkP%&JV;Z^wagbU zYL=glcfsna=oq{o`&(Y#;yrz!0$c9#MT#9h0b||)!TE(I0{H5~v#z;S$U8;85Xjeg zzwCXKMD5@14d@aonlt*fWxCUjm#bqjpf*1c-pn#_yeFv$0@79MVI?}Ol&@4>^L#CT z5kqAGM7N>I@-;`WC2dmO@S7md?*{vRj z-Q)nf?H>7${aoke{^e!U_odmEnh4-K;X;AN_f6O-6%Bw_ z{pSvru&kXg1oGW*=Grw@#-eH>fUh@SN6y9x#Q@pxpWD-Oh?b1}c~V^tpw-cEU_Q#u zTKPgCUrPsAvo_|_m0SvdjWJD0oqfv+3ssi`Xf2%wHEZ#wMFFrmez|+mePlmaz{{RO z0I=1jdjMH^UkKzIlw!n#s+nM{OI;42O@C!ble@BLLJ(lC`u!4axXWH|>9XSJbok|3 zbAL@#y0d-(r6-h_1X!J){6>F>3U&U%i+)MR7qeXSLC-Iut8Yt6PClpvN$E!622v^k z(zSE}s zzI};U=$@e*Kzl)o`nC|OXLIfgRKQ@rE~2mCPlhA&HaDJgAsMh(9XtE*4fhgX2;>{% z)2ovc`+m*P<3o7>x$66;ZnR_fknTlqZM2$1H`+E`HBWv`PY9aFy?9L~k$@_Dd`tbM ze?GVY&DIAhU_f_|x$daLXA+M6(_@{Xf6LGmgulgTpa-V=_1&DF5!u6X3T{#)0~RX{ zGH`dLG9cchA3Ag=ggH!b1QP;)JuSyI(?xT&#Ab%c#{!!nz`FHbaLXQWe3WiDD=u#a z_D}hZS^q$gcbl%?O&hng8{fRphycci_b;yeG_?D$OGnyh70{BE)47}w*xWs(Na4?t z`dfC$_T&WgR=}v=#F3Bpw_t$zp5Kw~k(~4#mOY-b&jS@O*z`ptzuC&{E8Z;p`d$M)Fui**q7Xj4bFk@KFu?q}U*^DGYdHunAC;uQ zDy;S^|DbW+^fo>~>6vL~^2ET7H#0c7>zs6Z4X@e8{UJ>VY<6{tr5fkNnh4+rbqPHx zKq1vmTY2`K(E$^`)*JeaB>+$SBLx5tFNc?O7`5Gz*akUa#%9_WaG4PT8@iC8bOB2v zZeWWT*vSgv6duD%0fAww&m2tA@3^%xI*@Dog>Yf@3moN&1vL&uKmzEs4~&NNO`{tX zK#oIF8ZfT<-{7eIf~$rHdOeXFrkwe!Pen8}=x{@q2%qQ61tV^j`1_GYiGE)PnN~f+ zH$SbQY0f2G0Nkfu_UbD)nx__;PUl=3bVqXQYg2VOXzK5M9$%R$YFH28VuaAa!8S-J z2FQxs6P?X{IQ5}2AYP4+d1Ta_`lg3F>Xqu1hWFkA?>^3gR+|jOynP{vvNFCjS3Hp6ern_xkS-;ro58bzVrKZzfxzfF7 zCMB#Wm4Q`OyFL4+Pi`Jx2;^)2ms87(yfDJ009ffBH@7F10r46={$gi~fx9mSz-o7F zKRp3wCmN2#oijR@}&Z6`A7^l>zq^T9>vo z2*i(Y@p+Yq&F;n)@`b>Ajea?M#^N3%_oWCp84PWwU;vi_V3&WQweW`x_rY-HuZaM@ zdeShmvOc~rCm)*4U6bcS>;0Zd&8DR?;JtBwM9+lUPbafC)#U)9i$58po{r00gfm&7 z0tT!7v+jMXfmkD72;_7S^`w7JFB4i2&V7XdU~6<;&$;Q6+^k%h188yAs-yy+XMow?*{~jv^?3TJxySoL;J-z`P?FIQQ+O5}DFC<~e>Q6i78BlB z=MF*rjKV)?X_w;4}u#spXi_2 zsW``qx*TfUplH?(3grOW42QG_;Q^Q|ws40R0)Y9~4*hi_w3=qM2pcAm0Ce-*(G#}~ z7X^o9zM24FThunq9gZC@QUGxCVmR)%)+Yo2TcLB7mTKHhi!+#%B|J;nfCb?8s>`8< z)uw>PA;%X2`L;jjL$f>T2v#+0@{OUd7oqUwmN=kWcK(#PKCgIo%WNvBXiv20VWg! zWOICVkG=`-nYFMd3jx4ZXb#e-G?f7{-ILOybTOM*BY7@9WpU>Q<5J*H09qAo0Z=Ib zb{Q}!A=5+wPM<&PWq|##&O{NN&ktDw@XQIx0;_KIJ2k6iex%>6epguQ3J0C$KS9{7 z{thfpwC%=^X{)byN{=11?#3r7y)>~-Utl*ZOtIUBVrW5z*!?a-vaaVp4}ba8+1-OZ zT?nA2jq~BTKcrx_E{Das96)Q06|oC*X#lvYD+`l6Et=!14L)F1-_B7kv+~>`9k6-^ z6M8;im9TLMHJ!!dMg90YAFvW0uKJ(ho|3lvYR=vGvh}_iCeU7S-ETtrUugrYeiYnl z171`pNufE&LKlyjm&Jj{jz|H(qvI>OvyRSb(cSodD>Ph2-RYguNMvT(yw}uL?Bdci z0Z(ca4S;Wi0$)L^<8zZ5w7~3ELD1wO;r>CETUG6;fnofPu2r`9-I`+Ma0`aN?o-80 zaYLiXxz^)5+Vp`lABF7KNzTW9aS z7<63Y{L3;kXVhE@fQ|0B5yE}DE(Z`jUQLN&BaS<0A_3@H<3Pp&aw!0|`KQjHZ{H!x zbtMvjuDHjh@i>j5G9cbL84b@m$AgQ8cWro_RWtzJ_67IoNUOcB;`ztaO@X?3^u$!0agv90C(vRlw%MIWQfqcvV(%t}(0)hU>SfhJ!%S8$R zuF_@d%^urvW9JPs7dE*j0{EJr^qc16{>-HS*yf)a4ai+3 zkpOh(Mb7j;OuM9x9)&3mZ1E}*(geJ#exF`NTJ^(GqlJ87fOV^%m$8h8%=#KxGs;s| z`RXh5I*h-8)C%yvT*vn9`pLP5BZ_Q>L;_G+sj6Skqvys=)ANuDRKS3~v1SH*lEF^v z*px^HEJOxgvzsVGpb89J^}~{=P5gF+61HyV^6>>7@Dz`-ESz}HJY<5%WrMV`@+G`?! zZ}w=<#|vTA&f!}K0JhURb-f3EQe=O!$786X0WiJkJ{F2URKVbd6tQ)he0wMu~XlTu=g| z>r#Bx%86GGOHyF9)+h&$1Y8P$ZT_i4M~ut>!XYq`0CbH`E}WQt&2@1p0G^V3TYqTc zJ z4p&eDBfdqit``HRf0uSiRLFq#rq717+TZBr z%mAo>!5t{-3{Oa1dS}e+j654}pa-Tq^exiWfGz=P81Q-YQ8WO4N`EOa(dRfoG$Md8 zFLF-oka3X{D1p%(UEc(EW}7w81JhfYD7u_A>hm~hQUk-=nk2c8#gV^8u*ret4d0+0 z@c^D0nvTLj&7cKlckwfqi7n0Xx&;Hw>kE0H4K2-CQe;~8QhLx@8)rg`vqv@}K*~Ev z*4paqNDcJB^hqRYZ+U(xun7QccP5NL+@}={fDc~?9|k=ia=;h7ZxoY8ZVQ7DIBnGg zHVY2fngX!dfKmNP2e1Kl7l47t8%Au^cam?+l2tW-MJQt-@L) z$#}#}nrQ^^nFG`frvm1}(P}2tf&JIuy%`W*(Lf z#=7bntc2G0?3l~T{wa2Hy87stwZI%Gw7YHdi&l-VxCb}z?_x1YP{mbWAswB&L)*(W z{<@F;<>S_uYlKG2wbHQW&D(NR21Z?JIQbKZvm-yNlwvh6?E6CCy*lnbG?#|i0eztu z<(nWzv>ou2oo;HZmL=;%r46&im(evnI>#M8Qh*{0U8J|n8~*BVoTuGjsmWiHvl`P~ zby-WW(0H~`Mz^HL`W8NBvB)89SN)c$gNA>qm5)EyGYBh`361U>8+7Wp^_kbY9QwuD zSrdepiMbR2yW!-uN7>g|ac-%J0KVE(T?i<|HITb%15#j4BlQz|oX})n=)^Qq6GHWz zM(R?@i?Zx0OCvP`_;DJkONF12XBlavMvC5F3xV`b%LzL=jo`1v>JIL^dn0u9+m@~<+kyR6b=4(8Wvs!^2hf4uKmt~oIWjst#84$1f2jDH{>?Xbt z$T!>Gi)S5#0AMSwZ&ngczx1(=RU$UiOcu!(0`E=wg;rhc%#=kE0)Vac&*`;BOLI0W zmjYmgHWw^%)`7}^cx!Oga`O-mpOFH9>+}LVozk@`;u&Zt2FMOS8vm#!(7+xX#jj!vu%Cgl0!{S2yE7dbSH3gOL8dyRxcWw zk{!$!0{QD-GMV$Gk}u&c0vltRvov(Skm84O;J-E=4(!~IJ&{WRurhvVW|r)UR0hNw z^n>pnmPZAVLOFo8!h7z=_VFcl-$((#o$zy`M(huY2EhI+GW$#z8-hy#u>O!fLCfu=XFJHe-|X5k0u zC*VRQuKI!c>}Pr~dS71MzP#!^u#Lkzj7TOz|ArpDUVIJ9SjKW~ix(Ti3J}r*uUl9q zyo_O+SK{OEM~D-Be^Ac4vY^}DOIkdja~k%V9ZxG03COjVeixat)Py5X&@a&fk8A07 z;SuFet6FTQ`1?`9h)!Q487u2F?O4gg>om4W)tUI*ON01C1afaHR1_=;%&XDy_oIk* z)o%?cQ^j@fhSM`+`ZCzQkco#5O%#OaR{v77S*Ns!4%@I6S(+KvT)9}F-wn3%ccqT0 zHyzsrD|yD-@5%HE%3Nj@`z?j=FHnaKU;9CM64WJjK2@J}ev71R(bgz)IP<{vf+h0{%dL zm8OfbCLQ?LSN#1*5P^@YJ_L3@^h?JV!~S?o_ZRyOJ}bI#|IP_Pt{Zu&$j7=Q+0-O9 zM*zP&d8zP=dL^FOBsNEi-v0*Mk0z#c_p_b0ar+4Y$mP!pCs=Fy2_@kD`U&6-eX{lw zMAQRf;NHFNB@Gg0M+*UJ{Qee)7Y7^vZa->gz$L-H_aOC|S3^ z_2;BO6M?l4bcq-{Yc}?z&}^C-_}tJX!pG2#dv5&wNTa09K36tIczoJEy}C!c6iqRO z+bofQOnd2fktowlwOOJC9@oR>kCodNZu-Mf!ooz$?_(=tIi-Q`@2W!LV^x| zu{Ey07~$s2@?Gw07BT4KmqKlJrG7k$guY^-fbU(4qQ%P&{kMb9OFR0r358UFzpL&* z`yJAZ;*=spU)BmOTX0{<2|?Z)d8x>n^(r+w=Lq0;CodI#QODH7ve7w5ir$|oOY32> zcFY%jTiWtWClrHBTMAOPF2~Z)x(0R+v4$3GHg(E<;;42QS_@B5>wje1@KXJ2F7P^=X4ZxEjsGH-W_8o4LE{6gy?GIqv$jwSGHoeH+1FIo zW?=UaYiN;WZJLLxz8%`^#^q(b&*X1S4YOOePZl`XdktF9>b5~3#?Bf~d9MKiu1^~T z!qred^Iiiit@z_$i4988Tem^$a*)mMlSEM2kero-K5C)&Gqj-%uj0qw{Z5OoPBi$# zA@YY6pF`eL^|L0rXoa3VHTR_1HFCnhu3P<47)bWR(zUF^Szf_|0+NAwu3?$9TILHp zzy&KIJ@C4PWx^}kCUxR$n-Fngy8j3pzk6H_=~EL+N!|mm%R!=T4Qg$C3r$Y~rz#0; zD3UckaB$`q))zl!{TG%B<*vtksW9CcnYEBgWn^XZ?ryF^xNSJA<29z8D{O;tX!p~^JETzbiqW90~j=bf! zU+8KAduyKONRc8i=vJ#R7hgYaeAcyIN6-(>hHW(kDScUuNP!LvLhA_e6YeY%1s@J@C4P zWx~tQF$?;L3p`!*g`g|Fy*;=(JEu+lhFi4Q?wSZ>JJ2N}S*E4hiO|%*hYrGKV%U9% z!&B6pR#Ov7^g9YYDdYp&4^I8`vNP(McTez$kVpcHZuO4ZMCrKDDrErX6B@jj?h8eo zKXXh+gEk_0>BwsFzrgt|#!!u|ezy3Z@UFTo-H!!W{gk`xa(iTs%kug{lsA&M%3I)e zG%hwv%0e=E6W&$-MBI?&-FrA3-J?qmUZ!iU?5q7bd;t|`a1)Be6Ah8Fbr;?K=+#%=NFk8!Z!^EZ(^s7y z=`TEAc{ZT#8rOO@g6eM+LUiple5lEG@`a%9N&_`JY)-t*Ux=R4gT&@harT2m0`+YA z-h=~NCYZpzQkaAsIiU3dl7OT56fJ*_e z<4;=B{#%nBIPNJL0I!Z4nksaFyshZb6MJB&`%C5r+kPo++}^Z_1O!{7{LFr8gw4RE z0ND2Q6Y5GN0NuJgr8{@%BO7xAlcQ#&0N`Q#ne5-x&YXwmgn^B#wqywVHJ?R&@wA=0 z-sF4rm7^&;wg7aeULQHy#%w-e8;V8JzY2l#CS8rfU!Zly?!I6A?lin?#~Hsx42Jag zz1Zx^K+BWsFb-QN;Ono_Y2<4J;_U2#g^u=+voaz7?T`7sKdayJ{IxCz>9#efR8-Ah zEi_#jmZ~JQp-wh`1unFcFEen~VD0qrg?&JfI~IN`Lj0yHoa;nx4B$xB5->42uo*#dNXDai@1hcW$4>Tf;kYU!LUv zyg1#83Wn`gf2yvCm3wB|Xpn9fedP_)>KCsqtyTP_1R~avo~WlQVEQMITQ&!{kuo}P zkn33?o2GOX&W1yO&H%vec2+3d4ENz}hWPtY1`J$X^-ggAP5P=ob*F3&$*F`8fK)s3 ztB8|L8aNXT$_XXl59C+DN3qj%A=^L|gy``j&~o&|XxE%9@CfY-q5h3XUN(%%zzf`t z#u+ka8F<3ehuCO$e+hf*jTAxva?_zf1uJD&b{9&((=ra?4IMJO3qtJvG}yfy5E~wJ zw+BQb2KmYXQP`Ebwhf3m-*P}yd<`2+8W1CYS3Mz%(HueO1=ErFh6nqhF9dxzB6+Ew z^1}kRqj84(nI9&+tNsP};rify_w3AELE`1xPz*9}DM%@`TE5j-SDiy5wf2Z64(6xd zJnV8Q)Vi4fWunxEyNZLWz8S1V^L+alH@B`Y1es}`Uz3+2tJW=WG|x{s zL*T4+6W&#SCG^gUopGglX!;`0N2x3bOSgUnC2P>bsu@IO0{T&j13YNg1MuXGBtEAh zS^vbzc|_@8Wo=kSMWkavXJfzuMv-S8PxHb^5 z->WH``EgngRKVcc8AT&>W(f9wylu7r@&c>7PNCCiu`e({iyC>b=vsSI_ z`57HBk=ifKa}&Du%lJt@hm;63*O34ikK8eEuNFt0=gHcZ9R#RAWL`3-lgJZa!|=zI znF!!BFYezeXTi?il;=#|qy`DfR7s+IW(Ye~BH{_`B&C^(UCdx^hp<2Y#thv+2x|gc z=kC#E_oU$x3U-l50UGVbpJi5%%_`Wf!>l5b0tb57PghN&t}%M@>8|+uQG^6euKEi& zvGVGomrvR8}`Ae7w@J--!Z%1>E z87V-f-T1Q@y*Uqvq`=`Y{wy2}jj}u-LPVPpv>DwDchY*GcW8%``3Dv+&}7iMekKTyVnM zy#ak8w%W9LtwE8W+Q#?Jb$I(;b^lbD~Q=Thg z>Uvf52W6OIS6id`+@<*~A17^GiaI7hYxpUVyMQ!$XcjaT2Upz#saKBedtNvPrZSLt zU5HD0Iim@Sw>fHCp$u7hD2~4$MYOBNA-q>?-rM)xC3!M!Hqa&;?f7-*L&9@sZpCru zv&n-x-Rdneaxm}h?n8fV;&9M*AzdT^lk8>C(lR_94wgx@z~fr_y(Q}MW>KIyHD^E`8{hqjX{x^#oac`UYC|`KDfnT4Pb~hqHbY!R3&qwq+ z3@_U`^FSCo7Ep<$K0{;=9e32)ak&)QYcm1L=2qEGiQENbY|NCRWgS;>aMkO;XSa^& zaXz{x(so(yj*$YS-;F zvir~WT`xms{g|0Si{DKf*yJ}uSy>FXcuojDypNyKT1u1^~T!qw<7*`*~0IB<8> zX|P1-(W_o}t3`Mj&ld(*xB5ltaO@g%?^UpyJ&EF}b0Pu7_R{a7Pje7Sw7`Szy@Kj# zY%pw+1(AdiQ~V9tTj3z`mTA-2>;axv-aO@yp5b&*+0b`+WGh&_+6Py6NH~TIfUQ>K zaT%zO~U7X>5%~@Ui_9%W;5%>Jq%jrJ&w$9S=WFu zvt``y&y41|1E6-#>2Idznr6SWq^@U~HxmY((+zo+E7rk{wxs#uJ?K%J6bjNcg_NnZ@II3?wAhSnh})eDUkx&Z#VwTtzXWx)I24U0*Ax+vv4rR<7}Q1A%PP; z(;+MQY>6GU0%18N&;Aq*$U`e&arr_d%CZbz8VhqTMGRc7s{-L-=#|~Upg^M8pM!Qv z*{7^5Op|>kT97eipNT+Z%`~>M&jbRlDf>(W!qu=qQ}&s_Vu`1ujXC9-daas1O6XtE zm2{VVde1~IE||Dh4Je&%&G)DeyXE3niZPq{Zd*gB?KM0+$;D_gVXh-=tkqu10BCy3 zA?Tf7X3Fl6jc_~}%n8A<=6%trR$!KwoNCDYmo%~7%ez^h+0n&n7xav@WxV=gHD3%S zo9!;PPz#*`puLC2T0$|@vUk#_3$6W)y2Eq(vkRU~02MIU@OS^x{hwB)JcX&t0krO4 z0vecy+1MPRxP)9a>*gU>@i_@L$LdMLeGELy^@UKw)~V}0?2qZmFH095MP|hD~4RAu*8vbiLV8xbGSca{cPO|I(G~^yo_w*Sqpdkd}e?2ti4TwLfeRHla9& zv<91pD%iN{r(|`EW9SO)+*qQ96MX4CoG|_faXFRXpcB$=A_DQY70O65v)#*xcGZtb zQpuIawaJ$JNY(!jxgvZ%xs)2y$p6fyc!JpmNRhQiWFdh z)q8DsTKYmD-#YHo1Hz{R`W$IJxR)A;zxu<@`oAui{?r z3&GYKk-Y2|s+SkI9gQ=D&U$&myXtR2q!sJifmT~z;+o9KYD1(D$z3>g!_xX02eE$Q zU?^f+UpTqyeR?bG#<}a#)opO{#d1n!YS4zJp^LO@rW_llJ{m@PuGl!15`^lrTR#AhWtn6ew;_iOpVYEv&_~pFlDmxtf{GlqVDMGg> z2ERz&-Ys(6j>Z{M=iMUWUG-6smm7WRtM~j@pnN`O+N<{jpoaunqbW3(nwx3aUSZA{L@-LGFHa`obRw z*YyFXn~zFbDc14p@dYxgvkGj7A@E?&pMa`86xo2>7(E#79Guw1-N zTn!scTD%qRuKF2iZ+7#kzbKyIKN-BA%zo>Q{r zkUo(A+hXon^efbRAAHjkcbMDutCRKQ@D z-oWrOcLxm%u)M&ji8A=J)4&xG!0Baq3b=HY@c6~21C>Dw%ytLCh7(j#L;>!q zOYoVgQzKd$qkWLa)89%g0PQz7hjhr#Z)bG;5%u~TWvkz_=Uc?0MGq3Z>5rRsAG^^k z$4vvh)?umnM#;>cy4lH#Oq}ZEB{7poF%7ds3l4TjbFZ%c=)h_w4sA**VGL* z&G_-S$knYUzlt@ChRN>x6hz?Ts{gx=p+O#X7c{fXGEH_7MH85G zs~?pSkh!dnDdQfQOKzMFAsO#1Y>>gqb6R=an-;Xp8SN&JerGlUPS6my8 z5wa}o-8B*DaiB}2Q8E`*_l#(2;6v9fQg_p0*lwELGon#}pR4{M#Lao$x#C9Mjd8g_ zEw%LDC6X+{}H;~#GBT?{oskuc*6gAg_9!l%5_%nCKR;@ znC(0POiccL;8L?ZHOI1S^6PUVL*_jyN;4Ulco&e-jLE!NlvW&E^&7xZUb{Q;S;sfm zhHJip-*)&X{VH@+tW`*9jUNxeDI_}cU%lR~PIRbT?CSY$^<7|XI_!C6pZgB;C0`0H zy_o=Iyi`8IWPscSWHe=?k0=hVdMk9l`QAk2_TMAdqx)*lhW)UiQ!1fG@NOP1}cri`8nT6Ra{j5f`VbR;}QF`44B0P{U8%FsQZDPf+Ng<|EQ zi5B#@mVR$(hs;A0M%v)>pbe&dS(UX|m$yC322cwOx&5~l$}oSnz!1@{`hJLNo8zl{ zmm_+GmX*(PN#1=G0`ug)A!;gjoDvgC6s}D;m5gy*Db- zWZEb%O0=NQwe-92Ff_`%C}BjWKMY>9I)2GMFcenHs1Rh>h~%Xs>7Jb9b~MhAI`7F5 z@2VAOgW2CFV*BsNt3_hD%=*fggc9^VkY5FF=#cr6AjIx}1nfTVYe%fjb@dEVi$K|j ztqLSE{cMma}|^oC{5hgnaON#Id!Z52h2rJ zdYpCrTTtc)f5Ab70+iZCVAQ99;D$z`pclz)VkoacA1sAiI^b>xAJUF<1RbkYV~q%0obkZZ~~N;P_em0?gG+i%`7%64zBuoaX%Jfg%-LjnK?F78A!Y?#HG9{Hs>h6 z{MXV}S(X#g)WgK_Skg7Rvfp4){s0CM1T6N-eBpU8mqAMn^cZLJxK{Eow8_V~jF+n%=tON`Pg?6XNV8TR5~&T+1T=FbXoCz#ZIEz= z)I}Qz-c|nse8!(1c&7OpAT9;V`_lt8pftM5j!L9IJ&=%w&{_7WIJoLxZ#5qzZ21)2r zj(D1=Y!a0t8Q49<8VY1NlIB5=41w&lOy4&LYW96!2y)XheNA3Ut$e@0?P#1KapwC8 z@2YPEc~>rmFLTpbV-}TxwCh4#3aiGf9JQ@bhN#(?716HxHRz?Q)ECTo09)1u3znt#1IOmQSwUVZ%;XjFc6oE$PON4+c_W@~ERiFH zVUBn*7}}A9=ZIVi5^p9zDYA-!C2|*#hLN)2E z9nfS)I?yFDEM$X=I-sek!3H;UiSRMh$_{91RN&{Tk3)X4L37w=X`X2L4bNlia*$?Q zgUVK6FJL8)EcAYcHq^-GvB1Su?*Xr0ZCXR%*y0O8_Kiqh3a(;df!onIL*y(LCcLY@ z59IYLIXvI60}RWMNI-VKlB1!e20F`)w7|o!z#oF>q1x*MbOqT=mz$;`AoR*xXtQxfK;c{q%roOScH7gs$48f;T1@|P2z+e&cMNF<=gUi!Vk zk<>VqXo1JI^tEHyF3Fxs=uku@Ju#eT{AO+n& z#G4x;M5cu5`4)OVLmMh&J_cM|^*s=ASNmsOb3(wmg)aozHzIlIPAa!3a61}jh@9mX z2~VG8*?pqnEd$OL#Q%r}q>p_42iS6I-*_m6Cmm4#cPuNWwlF(pDeR;-0_8CFDBoJgIHUgk)635Iv~OPw!+qDF4P0*r1Ku_W zB)DZ+fx7F}00Gyh4Fch6cvE)Qs{sz&U9}r}M3DXPa(GD_>FrI%seeu=hW!OF>{>UT zHq4Us(81E_!rFM73DDlb3gj*z4U^;@EODSqJVEMJ&#F0$Q6V(VMkFsq)?qBi?P#1K za301Yo(|B1yldUK$YWYLE$T!oM?fjE4r2v!H&sPQL+ISfiG!>DhVI9=Lsa6IWkNUZ z_$Mae>*~Y;B^bjgqLBx z>6We@2_<4nanuBrm}#l{eE4DORrZ6 zc8=OsD5K4?1UsT#bz6tlr*IUejh$}GxXmL&BSK8^ll4snJc#YlI!~u}aYb(q(Os~X z&$FaJC5(PrGrEKIw&oW+d^gYw^PkZ^u}8VXIj`S0Wf&|aPzj?yuYL6{eWiFja2*{$ z9(G6l?mheRW=@M+FjC3SXj9x|Klg9aPY6*Q2rOb@dl`&SJK_pW6RZ{rUV9v;h1{^~ zLfr1P8ERXhrtn%p(_w4W=5QDNw`X+LHkqj9kyDG*R_N|8vDNP_;l(wWa`0%EG9e{A(^mx zS$CeJ7#*q0O%qaC;Wm&|^M0-HQ~nm^spp#pkxRT;?~ZTqv+gssKQQqvLPU%UG@95T@NoQI`_w&?!#_>&=jXacAXK5 z;-9G5~fl=WGiHqxvbkv#j2 zNTX-wX=CC*->E=ruXWGw+YvrU?MtD>Hxr<2b1ij&+y&$mQYQ|s`ZHkbZHYB@PQ}xN zL;~{frQapAWu|AB!El-O4Y=iEHd|M3yK%M`lj;rfxav!_`|VCj6!~C{CK5ONF=)_L zKc%qxZ&);hj>Z{nna{Q&-c?_w)xL?@4)yhh6$rMbMJ#5x31)~V zU}XV1o651LN|VI(<~pjy36FqF+o(10CN6QTS6mEBWozICH=5|_sCUbUsi{^jnXySN zCi|Z><3oyl(}mNVP}tqk?C#LRN481>+0tZ^u(N)`hKU*%30+TTXtwB>BpO_O>na7E85E zAg%Y}lrJpLybF7A5(?z~uu2V3JoU zKJGq09-h7W%Jo2Zw~z+N^kT;CibUr-m*Pl1$<88Y@v5S4#jMAuT!8p(P_M{MC`sb9gyk$mN z>MB8wcLu+zA2nY@nsUFURgK!A>xx09chxdoo%c`VdHFe;>nr9k(eSKO*9=lUH$J^O zIjN5`%qh;SEml_<5Ofh($$P_EtX`buQDBZtYNR+b4 zCx{Yi1UbkmbYAh(Z{Zir3JkI#U%<(l7QUDL2iG1U6zW1 z!8$KfenDxtd(@{>z4YnZ{YjeVR_@DhUAMeKLr5K~J{2*J6-qThK3iPTd3Ar2+ZBVUqld z4K;1MDszaRk2ZDp84u{(rnmm5z5Aq^!K&{MRvpu6$tC&hTrnrs55m36r_i03uH2RD z_?&TpOk!54uwszvogqD92M=L^r}M6)em@fk<{LW1iBncf>^O6lVQ)_QKX z0Buwb(!C=R(9_S07;MIoAF8z^3TxVn^u@U(s;dQwzCH*`hgnCL+$VVkKrcSZf9hw= z=JT|+jY=cBO_pU!*~ir2z00fmnf3o~WskCe>>t&-(rfDHbP%CoVa-#9GsdOKisPMa zd#xqB?%SdDqZA-$2-N=^S)eHhX9|ZC%pbMC%+}-wU+mnp)oYvO{S*|W< zp@g383K!4$K|O4VEYRoPJI7#t+$0Cs?*l9|o#~>Zvr8I6+fL{;MX*wUHYww%wSY+% zk}?VaQifdaWI!J%I+e`LE@a+Q=E>y>F+kM1*>h1BNz~^uXdwVd`TpRXbov1H7H2nT z9RBCBWL`hWSU38J&MO@E#}E9D=jrjun`f7CDUF_sF-g>FJPh}?EfmS;vZ@xF zC)$}Gbn81H7i#u-ghUxY$dK!tQU{_TbM|JAeSDr=r>+&`39Bo0NjTQ9fK>CWu0Y)& zTgd9;O4{sl<9c^;|A0^@2#|<^6UZXN%Q?Xd#K^GODEaVDWA`<9;y5i&Q@d7v}SHv*r@= zs(I$~zGe_8IR9BUJ_|H`6UP2HkMmQFAV(Pd>DM?dUL<^%vP5oF_asNCEPO73-QZJl3DvsFm3@@r?kSin=s&t`KFj2&L zk_uZ0kT#r*7VZ@xND@Y*G5s9Z2>8Un0&>kWB9#Jwlpo~ee%$|*>kLQ7jxvG8=aloT6B`nM zoFU;%UwSNH#d#9WR53^uQnyg}u-{#9XKJ2hAgCK;t78|v64bf(ctOeLie0H@kSmPn zl4sE4X#UX7?9G`k2+cEZ%!B|j!*-*;wtKM;l;_!QtZM~%!aSQx7CA-`vy6G{mDS!Z z-+X5WmL*?tWFUlNrNP_>2BL`bgyT{Guws}X5YaMD3CuG=&{czEA)HV#E$xlE@|4+p z8SXscMAZy(g+y1C`cSt>o;FXSn^zAKM$Z$=b?DvKtBKbDmy3nz{KuT0mk9t;#`g6+ zC%&cgX>DJr8RQC^v1H(LnwwH~;&-ZMA1z{^oo6!^D+lR9@=FAx?ji~2JjrjU6r`!g zh*AG+zVSXEQ|I{tkRD&)+Ci||Oe4xedJ8n(TxQ}*L7EU`m-J2WJd-G{8bk_-B;8Bx zw}5#keUT70Pa+9*Te9&n2rn9)d|99k=aNm=4YGw~l5aJUtNnT9d^kuCGtIF@JkRow zEd)p#j!ZBieWo(%J9@fo%n@yo)}CjN(UbvX4dW`)(aDd_J@QL;KF2YD7|%Ao;xwJ8U+hbzc^12h`awq3;>%e;pS#6X^&nx`lu%j> z=wnTKU$@&^?9kCXn-UFDfV}TIeth0Nqubx>-m}2+*o=!7S;ZjLdr#loIqCbCUTM{5 z_DG&52{TS`b>$$|`|Er3IyJ@OlFewdtbP#gh4Ad2Uo2ZBRL_{es7gVaFZ0g{NVd#& z(r?=}y~pJz6m%ib)057(Yvxex8#^O+F`Bi$8x!mETth{!>dGsReBbKP6t^eRyW0JS z^v1&Qd`!0*PQFA@)9bqw--EA|J(t){cdw%2OIB`6a};IvG@7auEdR0TZu6UpF`ql* zp+VcNQd4n^8bmokjrjJ+z;z!yroQ_cwM5(7BeUs|1O-J-q@@N!dK`ux52rJRuZd56 zq$O0%s7aC(REhoK?6vZ$<@F0MqAmPu=1R*G-irvr$467f{rhLb{-l}ARLxy<>9)Iw zrs5d8bS-6r3a?=wSfUC+N>Cv_BjmgB#h`v_yLpvyDx($6(01Y7R2)+?)MA1XA6VL; z7AMDT3%b)uT#RBLjibU+Vr3L{@suG723Gx8ivG(Lxb1<6>1>-M1Bt(O+2c{PaofSo zDMfA=fIhIafhP*PxbGGt%?Fk?!YonBVo3S$GKZ2VXxjqRbZu{q9Uoq1-n2|vjX~lg zOC21dux*RFQyLaV16TbBJPuM{;NSQ-$e0d9&^pzt@`}jaBHIjaF$kTWoPK$F#N)$( zP1~dt_|RnZ4ed3lr#))s5a!;|Hu;3AN=7i*ELVyqpc^Ka&-;7J$qME$F@a^;LoGLM zCP0tsYQZ?qoh>d&`9azwNw`vw<6UFd9raGVFb$U=OyHReQ!blLfF9|(L8`A_+&FKZ z)pw74ok0p${jtw_;)zebdb@s%WaYpFShmEDH%c!ZaXwo3vY|n(33wVGkbce!0gS_3YjlT zx9yHh5Hzszml1<4lc?vDKD}zKpqQ*ILDX~nGW(s2S~CurZ6AQPYI&5K@15NR&9)4g z#7?gI0}vN(PZ1aTXWjesN>BZsPdRocPYskhCVUmfgm-&Z(?ta4Me*QGMHI~H%eoy` z0si|n)5QX=&|(I0pzQ!xBZoW&xay6t*gxrUwZV`s2&Ogu36HDQWZM4fakcj{lQ!dr z!7gwi%Qro)76??v6F7s-r+8egfel!@91OIKg$TKwZ&!T7?Td7?ZI=$i^hRWYjz53U zbem!;_mn4;+q?fSci$aoNmA84;KGuVAW>ZbVF`QL0J|)^uwiy~a!wm&_in#?`@Yxr z-8476nOU+Z&f=H{b55wJm=y)H0*az2=7gVOjwlKWe5X%$RoAKN?t7}cs^`tlAN_jz zc31s=r%qL!I(4e5^utzO{zP2cok26(t#W82V}fZP%q~x7;f0f0Uj7Nfu>VOi{wQw6 z67m=a6Yqpr(u(PCsf{ifQ>Nx-7FG#ZlUdF%l#7%523L zDHPPM+e;3#W~7?cDl_Je@p&uf0P6$UvCEi3{=79K@eG^k>0x}{(s7Ui-IM)Va9}kf ziwvO|-pTk}K{y{1bUVa>(7DDbBk2rT(Wpw+k38LPiTnwwZN&#tTR|!skC#I-H#Xf? zd;oO=c+3N*w-p~a-2fi*fa$#ut+C{QX)9djD2(xWi+~{dv=4q-b~H01hfLRtEQ4~z zq9_Q$J@8xkQOs8OsxEeVFJX+q!qaf7Su_OOH5hbj$3>{#@fHUi8?MwD#C8(-GSkXUakzGxL#c(9Cj z4q;}Uc4v7YO+A*nGb{ARRG~ylGu}`h$u`Zk>z%6}81h;{6{n@wrqO8G9(-;~cilVV zj2J27SF6P5!Dv~On_JpZBeY{$g!JnK=@}e_1M9rSBfw8$Z9xMy-bF1Th@AX>pBDB}M zn%h4<<&Lt=&wC z`D-CFCZya>rS2a8U0id{EtL`>`RCi*>{vA>am!HduqW$eE*)EWC5|EG-2u2GQn z-$OP|*6c4gQZab%Qgp5!yUoP?Y;-VRkW!U{VesL_0`b}|>$E4{tn&hPq#ncUS0kPs z+0**#jWQ;L;ZT;Y*J70f{Y@oFB81;uK5jyLB~5=Wcb$)5TWzit93gOs$Sm2>!FH}y z{kUYVb*s!{TfMnfB|n?FR^>CztCNpRNEAaktIW09W>{^m)ixJpuJx^#Zh6R-_@6pY z|8m=TdOVCBH0S)e>ntbf<(I0~+)HQZx5h`kL+W*PCQSwurfl;B;*k*WbZyB&M06#p zFfVVB7f}=Tkjx?jMMKnrnMrT|)N;gWk+-o{gY9v&$V9F+hYjJh(e!8qPGVgj2BY>V z*e`79mgZIUrGm%UhMz`)Xy%$?vjcH_?Yiiq(lLQE}SFZ=rES$DiLRe`684OKq&sKSP786(1dkiOXv zSuZUqp+MM8hESfT!f17E4(AU-OS^0Xq52ID+v#CboCXcTvNstI&cNoY1Jq&|oCr3MD?q$r7mSiq5B7!#-z8N(p zfw9N3Hzg2_cmkL$hE26>jS2vG5dny6-e5kj| zfN<-^zgW$sT6CA04RWV1QZyK8Zq{FqO|vXAFQbZFDx~aY<}3bMVM*4DIhn^~30IE| zZo^#lCU!uYBJT~37sni-AW9M^hp)Gt;FD{}VUsk=8NTdObtdUPI>mPzY;A%orMK0a z7nYg9B;QePdnZ5AX8CeK2|41F@Op)5KC9fwL?7ELZ z7@Xb!nqV75qJFHZLzk+u~Ii@$;B)PuVDwaON8YD zR*tP2+&s1>7C#)0#$s-MTUC1yc*4Z6`P zL>>hVl^uJaXkT_I5yCDCr@duo2VVrG7PBC{)_QiaDAv-U$3N3CDBdJLRT(#cwU!HbX<`z-kPL+gY+j`z~A zwwO}^S>Mj-3qe+MRm-Ip@v$-fJ=Qv7_R@WiS8&58F5*)gagFPI*|BkzOF7R` zF3Q)xzg*|*zX3D6=VIq0?@n}`D|_do%4Ms&)Ws5-#ysmfW%d%9>XZxo>_VmeyW4fn z{#Dv=zGq~8``|AGSOk z3%~g?HXZuHgNuM_rfa^!jWMF}_H?AHnVuf?Y8U$oHvX8?4z{<|Y%K0uK5KP}Ka zS!0qwEMje9u0W^jF%~Mxs+}`)Ae=nX>)vdSsD(D66zm3kDV-WS& z|5Ss{*MFmBOgxCS*_yk)S>pctWF$rC3iZA}oO=#{ zY+k)%PK0c~fkKt59z90Gn8gV548F@x67v{+pq3b}VM{k7z2P#h<99V2h12+y({%OQ z6}BI$%a%^iWlP(Ww71n;;FuzW zT!;!BcS@k3=&jeM4}vqWy}kYV^z=Km@U`{ndobmirJrO2#m`=!o_wK|zlnt?K$Z3B z%zTInu-8&E6E~G0S!gVJ^j^;@Or4pl(V4SN6=nvqD+m0foK6d3vjHretF)^%6N15! zJ&t5%AURShgzhNl29r5#``ivTR$ccLhF8;N zK3N$;03Vj&MawWFK*}&|NICD~_MdF!l$9!no) zjM|a!N^!(>>l-5`rO<{w1pHQP_Z;+cxG&~lwJV2ponY_Z#!R_|kV#4Oq7f|Lf<2;x zxs^MRnPXPJoevxo;Dk{qY!}Z4wDUeN!=2CPVzW^MAKgX~&o4F`CBse1XElDl7&S0t zV;?2Otehz5z~$Ckznl0_STs>9}}qrNSTTAv=qNX z6E%*#=Qd3FZ z8CAZ0Q7I!hreH)vZKmBQSna_yaFgoGUVB`zKm{jKmcy>yj?UHc&We&hf~!`PK!@@R zBfC(YO4&BY59knn_rrs=Hk=q5m+p8J44Twf_Nlkkw5FwVBg{|2uN%Q&)+AxyJxof8 z@O_9$Ep;<*1N^&9d# z)50S%JA+_03um!8Fb_bG(^jag&TUmJ;aq}52J>M64fyFcqauTR~x%?mrzW*7`h}L=Ym3sUc^8&YvH&R>>r4 zrTh)ofY`WNjHWL@(X%(MuGn#>)CEIQ>SFWEX8Lcv(0!XMg1P2I5Ts#vb^(gJA<{sO zl=RtD81TGl2ZLVh8_l$JI#VJJ(dofU4S5}ODKymSr34B2FG+PFXRLk!D#V#))FFo~ z5y}IpP>dn`1rW)pW<+98B?1u^K|@Xpy?!)g5g0CvFHQ9zcc6a(bm7&_=t3@Cq7PyN z$VS~8x>oph;K{bd&A$EKB22m4UU%gf|)G7#ug#H(%%95N%2$PrKY`*|{ z;Co^#hb0k%@FdNri%|zwoOk1CkP9G(hCE4xCJ}@fUCih0)Kr*{D;!o?&D&vYc-7G8 zB8Myyia2Sgu_;fzh439;B&r8a=@RNw(P}hM8Dxy5?-?S&i7?%0xCxYO*FBFBR9=Mf zDbfryS-`&anGhqKUz=0cn`G|0qsyU3_)i*Z!=!$*k2|Q=X|xhXf+dDf+wVX+j-w4K z>_D1)r-n@HJCNcVbz`M55vv_Y@e4gj*}x*ChFf-4+JTgp4~c^2@2JH~yddm(E;j01 zTdY8|)<-s_DGU4V#4@RmsahZqk|2Af+}DG}i}hIE1kYiu_1@ONt2vLhq!YH@K>? zB4lrr9qSYXDQSx&@S$4cWf7(v2*LX$!EwC5YBZZc@KsaF$`4SnWvY?Mr!44>27`;A zvQCCj&UOtRj>q%0c7xi?50tem;~Aks=t`xYjeGG(a=IEl2$WhULnwz?`|P6)mgW?H zcM4{4X1EETz+ZnNxg28;eVANwI*=8QRZS9M@2k)4G4gtfbvU`odk-Ng@psfLa!3{@{H^Tf797DoiggXpI z(PRP3)FOzgKX*g&`4!yujeM<+CVSMj+^giGT9_5iG*PpJktKVHw)&lB`4*uQlEqQx z$qGwvE96N=oNO0Fg^UVDpKlUoeJ=vzw#tgI3RsN6=*cPy$ShSksv!(XS%0Ar!ejv} zt_Nc{Eh9J`Sq;NoNP+EitB{$L0;NdAAg$p!EU>X@BrD)CRDeCitB{!_9}^>#-yljJ zLNSKz`@`wD@lt0`tJWee=@I&81^vY+I=Kkj5V|}II}6+OR27gJ<%@_TegxRKU}cu};$jBp=zXOlr>wKYKn99etJp7W}ZODo}`^J`RtJ@bpX zP=2udJh0o>r-Eb~D!+sa;WsBk#>N^V_Uf$)!fX*rgzYHay$GUk8so{{IieEJgbZOg zj3Z|U)5ZvTt&a&8li#Abv5R+p3%bYFdT%^vjvd>RTS+~E2`RhD8XP_t&0y@=n0k73 zH%dB$<#6pm)Z-^ybbb$>9)At(Z^AE%u53&_*>gly>R)sv;Wfc1@(yem)fhdmwNKI^ zEXTv~M%aXBTaKw9(u=oKQk60kYzW8xBxtUSU`Jq8p$9|=vzb^P)Mzj0byTb}B3xf1 zei2dOH~osY_;M%XXJD~nO1WzAj=T}_>neUB1Ogs&`ZDC2geg*+7iWy8uw zN}Et4>=$%Ot}!L|TiRqMmGB)*$Mfr(Gb7kXV^q+g7E&SXPGh{rd~F)e*1*QMJodQ) zhD?vyyM0v1rDf0}tY4ol&B`X6e5-MiVN>MO(+TDDU_N;{BlDmnFWHrn_do4)K}tR) zuT4TpwNHQcKNoc&$!jxHVllElmD9BHvlk;*YW9+vuX7|-Kx|o|&ha!Y1ooB{HH4t@ zBLWcH8s$y+G%X1BwnnuCv1DRP?Ecow{FdG(c%45;GHd6|c4efSaDiPI(#8~+Al=MN z*o7dSGcP7~?P_SkNN4SJ;F9WhN{uvgqO6;lMbcR}QLA(2lvL9GrFqEjL?Dx z=9_fN>|G^lbYQVpiKw>NIz-OeG~I1`4K_+kQ<5Xpg@QLTGo_by6SX>Lo+=~#VC}1O zCa+GVdf6CZ_ zQ((G=dkuBYXc4+%+%0BHnwTrmc{efcR{0SDyhREoJyIeZ&BoJs2Bm??GF=j z8Z$RdYXEyA*&6+!L6V3s2!F)VvdtX;^Au0h9Bb3EJ z=fd;@O^ohx;wc2_jYfhkwSs=@v$i~BOZ@L#6YLX;xkbJK!2B;C(%3gd+VDfKH?d}0 zhV^+3jW!l(Z)k0r@BT~D^g58!ND&ntG}1y#o?b&_%r^OCbBpaIMX%%2j1MWrVKbeM z1DRNJdMWFA#4-;Qp@d~lF!tAo$jFfI_-CmQaWo4NKPu}6QELs_6 zS}d#6@nUk3amg?fF1=_3mOm`j_f3br;TfyQ;qZ6`HenRPUXF1Z!N77A6f5IQ*Vr3_ zveIp-s5L%UUzB_l)Eb|p>RfE)qo5{yP9`JgcGg(9Z{YO7IeWbpPxlN4xdgKol1iI&(UMd+ z2$Izf6`8^oF5{v7p(5#b>Tp3jROAq*TywmTWMgxvNb-d?Vlc4?sZ~BygqaT+G_Vg9 zVJ2QMZ0N#KBBSwQFoLxKW%}|jy>?UW~a3bqU>Z%^P!G9J6~ldNszLOoeuM;)ArVC==4sw zZah>1gxVzi#bZ;VlVfj;W2u>1!-Cf2^|r3(Sr|+^Yq0G7{JED~x}UR8Rh#lY>ViHj z(ywV&%FMvBWOp_4Bh9$X1x3_ky@E^HDmP+fvi%%ZSrpisVl~)eGz~VwK|30C!_zix zm=y?P<8bzBFsp1@X|*P#NQsWfPyYDIX)^Y9iFQN@4Z#rW{x$Y>e}4Yl)z-CsE^@_@ z*b%+H&uiE8xy{tvESwv)n?N9F+m-6|k{n1~KFsaPmI62HFBbE4*2O%AaPzoG+}Ayr0mDJ9(vUkteA@u^(hhFZo0-dJ_&QemE#(rPGdvlfh+|JI{%z0oxo+ zg}j`IsSa5G#?fdaoX*>ma5`MXX4}|mM_6|D**Jo|NgO+EnC8+skYei&LfEHgYBdyR zXPyybyGPh*w^HDQjactwlD6uVxD~+Yf!Sele41(RYce9l#mLEPY3kNDd*o!zRx4X< zoYND!_y>F;+!+kEg2DN7udwZlqCz8T zGp^ETXX)~CB#k%UbhFK-pb?ixIdvA`r?a!hZ6O%#0eiWNqN_Zi%7c6oTBKA7<;bqj zx>zVjqkPJvU^ILXQch?Q%EOgt)EO^Ec3ro1`N}~Td$QSHmjx5buQQ%bJL9lt)pc)5 zeu4?%x7Hb3o&9bt*3A04hi#DCiVq?-HwdfsCYo8PlY9%ro)~r)CO6-WOH)d#C>1b7&&&d zk+pKPQX+)i2p=|BcpmGWq(T_3$B!Qjt!Bc5aEoVuA`3_xc12v;WsERpAX#_P}!2CJLs)QvmLR;)p*o2X%7czUFLi{jsDl)x1 zX(8vBe1dQjmS6LPbL>E|Wd~XrzRf|Mu}4QI#t}@-u&WX&}u&3ME$rsGjoE%T$DfVE{UJd8%a1ahdJLfhV zKxTxqH^X43-O6J@icTDrk@uoay=Ox*rlr`&4$CEa?kn8FYjaJ ze*q)bW-y-3LRh_j`SQuz^i{Qj-$JKq_h4eYI-R5jwfNc+&w28aR&SGBNO|w!O|q6G zN9yCv)gTpAx-dRkJ{}suU@@4UX?La|rZ!Z(>3DKxi8huY*1OfR*sYRuq&a%JtjksdVkFE@(Kc&nA05h<#DWlcRZLDJaYS`}77bH6=UndPbu z7o4n;H&#Xl5Qxxr1f8)XP_L{G3NR2eVh{w^jsUjtaij1xqy-oVs+}>a ztKGn=p<6Ks6W4_=MZiT%asNs*k2}CN>^R^?YNkcQtUWCS3X$C*@k0{T>;~rc%8e{V zLy&?+n@DpI_U7%`TGY!Aw_{2qb3B-~7c&Vd)C>_pyiXt=Pu<9MYi+rXrv%|~fp8kF zt~nK|IYhG+ssf2%mbL1%E3wwERRD!x+|dc6ftxa~-hRgz2&(PQjJxUh=MGAh@=N)BMO~YjIWAdw`%}Iz4gIK-9o=dO|Sm2v1KOnRnIeVvK>H+6hmFSGkc@ z4XuhnP+Yyi*i{cy9T$QixDMc>w#!yxTjf?l#X?Z-=oJMbT35>Ix)x&~sJ5?m9JTq? zYb8J+n0BvD!(bjdG9jz?MJWt|?O^(_?Xcy)y|S_qFa+n0Xc(-zX+o-NTa1CA+7r!S z$KGh}s4u^zvfu;`f^KI7ZV5;IX7%e(W*1-iJ2(Dex3@WN4^QXF9mY^WW zwhub_OG&Jo+Ul(uKp>cQ48qw3_cX^C2&#SY6PJxy^$~l9gdp5L7&~gnYLw-ewqrX1 z(^Xeq=o*P2h^!EoBP+XlOA+JJ>}+^+!R_oA1CiEVcmfj|U~Ri8$?EfE5(vS!Pd;`e zyBc*;2d`5{-LUvTL2&JuMXQcnBh~dS#z0VQ z2S<_{MXTOw00e>wB;_jbr;emXbl!2t>}0|If7W(K4OD=E$ZFRN=JlqI`t$0Ztpo)@ zwr93jnNNd`qoGW7TTS2~=(a;d(1q4}fIu+qh@+I;fU2%xMx@kED8$MAZeUe!PZ0!> z7T{WpIu{-nfFQUIAg)a^$ERXRP=@{YUZTdHKW|CwdAhdg{JGCBT3wVhf8sqg=KO{% z6#QtiZg6?Ld72KynqOHkXOh05#F?jwlVZ4id5n2sLL|2Q6}B)6V#;p{24yB)F&G(3 z{!(iskR=hyO~I&a==#0?3_Ylo{aiQkHal3OcF~ey~?o59E+>46zFYj$t3%An+ zZimHr0A;$ElO|}SY2xI(r>%68*^z=cRHmI4i4sjUXJ;)^D$v?{#Cow{y1IN{P+43> zLNL}?ngO0xnA1gL2{w>yT)8sUy>X#GE66I zRw5;76qpyX(Zvas(RdgY_&r&f7@c%kqgx6#wJQ``F2-K$rE(CFu~*<6(-6K$q4~3Vkt(dT{2vL+oYNkOlS> z7y&QUWVW{G^$M1LR@3adYLX%%aQ7Xxy!oyec4)b=trl@%y+x`pw1E6**pt=KKaNHQzB zqPf6wF%dV^$A~?-Z09cspNKXfVsktKi*m`%U+TMRJEQFUbxW4qa;s8F589fdoxhZ~ zl!~ZiM3iISa@%rgf~3tUYWj_#t2K3Xr(YT zY%cYz2DStS!L}!^1Czm`Y<=fa)|udnqVkp|(GoZkbYcHevhDG*sHD{pqC?^XYnMbN ziTBk0P>D*~o+PupFHF;cey}JiDSbof1JlHb_!&`2g$a>dq$XJtOos#5UmFfMpDiX6IP-eejz*I~&?)ux zB#LEfLng5u1p|{3eEBd4);*m;G-(fm`7}C>4(SqGrZA@rWKsPt{IsR#pM!2A?99j0 z3x`h0pP<{?4SNABFsmoBB15@YWNEep%bqYAjVCiOsbZ}ht=3dF`*PItC+K#{U%QLC z^`OubTU3QwB=Z7X6WEufUOCpl6=zOx-5Q>Tb3@De+(PZh>f&|Q4MvhHL9(kiUQ8qK z5QcCna_LTG3`9li1qwfH(cB5LTVZ7)guB%%GskPVDQv%Cqa+tz|v8`hcDM0CBiR*QTIn!RbC4AUGPSQl1w zBuX+wD`cCMUC{`+@Y9w7ARix`Mt))ONdN@jE&+e}^iWZ|oC(jqU7)!WWVc1LHWpjG zmcd@nM7{*g4tNS0>jIH|T~zZXs9?7$L?vSw>dDI9TF~<+=yt=eBV2awLTp9j;gXt3 zvnSYYjyJKYC#{!Rw_tIe1jUY7Cz!)Na_!!ruGwO*RchV@)$QV!x*cKB987VMWjPZ> zJ0UJ_We_f3TveEI)=1ggcO-Ly>-O}g@+J5TP!%MVNJL+Ge?%Xwrc=T-d+VLnx?Y5X z$Zsp`n$asdL7ClW+mF1`Yz-^}u-5A}3YDv5(Irw@oSL`N%0(BKG(-fl{h|& z&M)94Rp13Z*jXFHrhe;Xiz9g%Wc`a7p_^CiMUrd@L`0Rm966t1?C71YSBZ zP%(c+&>l^HfYFXq#WdH6S@qQ_DuP!?7iMtQ9jbvF>BgW4+B;Jou-D3H27Anv%{lQ3 zGE<0s1p`N3Izk~NGJ<>Gcu~FwKQEIEY|VBG;Shv-CvF?6ns!HwhTz+M(q%JWQjZOg|A5jlFNlzwppX;s|jz=N4mCUyix52Xc28$9xKbt(@^q5wQHw= zubhUAXmwf$?r2DSgobP=1>2Iy+p0xTzoDey2mx6KAOHsqf2ZQFUk3y%0$R2@@GI!4 z2jKNv9Tge@zalFzjc9c$_yhH;FGWWvNcoEh&%%h;sybg^{wg#AUhXL^-Y5u+tqQ$t zGi+Xml>sBbr43I)Se>d(eIuA)Bk(i1%V1Zh*d54S0wciJMTISjf^|yc&e}D%2qqzQ zmmmdR(ZWF4s#U;T70XOXnm#Ei0$Fxd@FOgwDu}0L=42Q=^}8woi-4APJ^Tvwx+v_n zD(d=ny~IUe%NAaZkaeo(^;>uq8UepoIyh?~mYYykcMwY;1mAvF9#)CaoZ?|BRN->@ zyM4G)CEn`hNdYV(-y^zH(v2EaZy|I%IcOE{T&OkSHsJf?* zq9J9y%YjQ$7IJkN=J+7@N*|va@m23PB@iOH1F9#_4Ma1%h^vDt7J_n*aND^-XohHU z5eggx-BIBSa^p6XidfwcH2~$~mHsz3Vy%x?0wQ=12|5lOfl|2D+aZdEAdQ!s*Z25I zjMep2;2`J@sQxoIMP9wGt5^ui!|=<}Me)q~nstoThtC=uf)zGBC|D$K4bWU)$V{ST zESldF&BNggw!3yy#x=As#X)3tK)B*+J2+)Msjh`87J_o0_@$;NQ(`m&FS+HLAt4A4 z61Sk6qONX-6EFnlzVxS}EdZEe$f|M;N#;8vj{(9tgf7;u%t<;K(&{b*1rZVEUE&89 zHC%^Vy^YjR5y*F@Kh7XL6pmV`rKmdM>YX?RMF8)1fmGIebIk`+;ae#Tg6%|+Bf6GY zCD`f_Q$@H4`rY6dt?d|>V5>_ug+Z|Gfrs@y;1XQ*PE+6@==Q=>=m+Y$x+T2o!$=8) z;5(o?j@{^D^-f*IlAsLxKSWNjXcg{2kyTD?A!g7o#JlOHTUK0AGLfXduf}=rrg7ef z0bxG$je;$b>Q-5I&;cQV ze%NJ8Bm3VnQ=6wIqG@^S)mt92CH|-OIfop!EfRB?vCYP;YsMj%z;UI|4v{9Ph$6tI z6{nY2HY_P*{Y=^Lkd+jy{y$AH9vFr}{)S(+6->&q%nW0K1WW|wepelb1nEGMT2FDn zSq~vW)|aHwCG4Ng-IzcUWPM2jBwE_etG5G;TK@!#nDh5}s9bI8W0W0H*uRf#pT}98 z3TyG_(P*{gXe@aEgjlN@)lu2eieg!=)`rS#AdIQbV{bC5c;w zM!+8zahA@7UD`zRK*L)E>~0rIA)DvY;eRQ>JT2HctSv!_%-l8DXkqd-zJ(x&%nqnU zU#m7rc-2c*#X?Z-a3{R7$-g)kXvzzO7yn979Y>=K_F<@vE=edeS8IqcnO{)~I_&=h zamYQl&>@G@>2P-CbO;AMKBxTX@Z>GEAGp`SiBXfHxz9h1qwZJY$+Ir#cqko& zO_{_*t}QW6HYpQ?O_;33v-4rM-9RHyv>{q`S+x}KgjF!}-{pAdIb+lskLY5w0A_%i z@BsHxZ$7(7`_2qIS*QVhNj?T#Usk!SzJ=o9^I$<=FkD-xkp!->I zZye|h1V8&BBY3tp!s#p;kH9BkGh|dhEEqCw&C=dheaNU}#2qp!pC|*l0ysi;i+H$g zJ7l!V$$rRamApA*M0I$njRyhFt%R7a@#y@yYb@Lc@+(ylj%B`st!b)tv>;6aRKVQH zA*T@%kksW)uwZBk~g*{Fxr zVlz{1X`o5Lw8JwYMBA?CuL7xF`WclYoHm+EMW7`d#=~&XJ{6x6Ghe>3FtLA`*&5SU zEaRG)c*{Uf$enSH9Hd z{Z^WzP#-iOUS?xHbc1=&o}Zb7kh6vTkbR~a5O-t-#BCzo8Wx1i1jJ&_=;!E%{6MiG za)AhWVei|qG$Po!5Ho`1(qboV8WLFaS6dZ*xDj=r+^@1J_v9P3&<`nvj=$C^aZCV; z+YI;2D{g#SEo&oxQqcF<7WDG;NfEO;z3%cv3kuh2Vlfv6Pszln36HQdo}7Vs#r$Azz}XU z9)YrrJr_{CziWx+o!tHN&)_=H)|je0%LggmrqF>1o2+l^L( z;V|$_#oQ{jt}?@6&Ip{a3BqZww;6Fw_zXC|d5ce<$g9!dsb6DHkg*2I9!Lob;ECu~** z-HWouAZ)?}Vxy+MtGV(OWY+fuqz;2u3VzOL?m7;=) z5_4nyoNh)QOLR+oz^-zJo(e(82xk-8mUCmQ9LU7TVUFXCm2AO;$lcSh@KAuNGRoR` zb6>8iX|@uaLj3k~_F@%yM zIeT_4L}gj6EIVmaZL#Rn>33f16b*w_n9#k_V#+@GL@n|ISE z+JP@C#cX6wiui8J7HMhfq-f1e>Z$-PC{n913|zGgRoNyCBmG7#R3!{!PrUNFP9;u~ zhhk-gVI*%WfU(+Zl|7-kI4d?i;p*7-Ix5J(=U=(xKO0m{J>(?YqD(~KAmp1?;h>ydAtG$TY+|jjSYZxP>m?K{m(HZ6#p@!L) zYPiF!>&6`r!ZK$ENLkfGRwz0n#TG&&lD;<@f%hGP`hz)p=+?UW2Bkw2`oJKbK4JPxZ^3kNw>Kt)P8+?P1` zEEjV!vdro+D=v$XV(N=bp%NCyr<=ajj}a2gcf?ONd8>~Q3F=@rh+?bJr^2x2SvU$q zu@WAz`=cil(wUtQBNUj?`}&H+lgjhH4x&*QOxwX=HC&kn=g(bl;fB?|Rb6*M=8xTj zIoy(DP{S`va|2Hvulxx=)uUGgOUM#EV*^W%Ed|NRj`;al3s>#)C~*5lLAO5!tA{<_ zu$E=ky5Gy0DyzUOr9cX8yb{biYp{}fys!xTu+KbW*Y(7X5Fs3Uu!Mr|wy9BYJeRF? z2C%|lMBO?4ZWOE*o?)3cShdbHD=^lQ344uz*!+Y8DXXx{4+gc*Gb6L+MThc#$J|LVXb;D2g3k5mDBBzze=Z$s=dkt`8%{ zu-%YpB7fZ^7 zuSm*7XsN={>)zWRRaYF!VIR2;@!}|CJ*=fUHw^hfjk-v}*I*6?!KbNOZJi@#PndONVxPb3j zTdct75%yf-`vjI}mh~FEx$WgCwlbVV{CBPo+R(7E&6wpmW!U$z`h?{vwi1j4_g#al z{0W^E2p$(X>=dKS)8GTOqP0?x1UW1Rk3)o`*$l>U-t>mGI+R60Lrb{`9;3nFBH*H< zC0v5pa6F!`wS6iUZ^n(GSQIPa(TR^WfRKslYIHH^myT9&!LIY=$z&>TCKmR}jwTBT zlfs?P)147nOZCW?YBzdsR=f8qsjGF|axIja6?Cbr*emrLrM)RaBqWI4Yh*e9YMB@5 zYFRdwWd;S^ZWPSm%vG3hC^#fG#}#jxan_Bo{P32kw=(>sxW=&k*tip+Z?6r9;IMs| zmicGwSfd)t)PWskK{x`tK^V;DZGJeQW&RmEKV>KJ=kwx+32shaTKJ$WFMjyo=H#U< ze^~E~2aDk-KD)WI&NYB5Gh=xvEmMaWfQ$jr#Ti5gfODkXn~sODAO6WjIO?z`3oKD& zwT(5`W0`s!=U^})T*K~cGT`s$VVQr%jy0QZnR+Y1uJdU`BR%nnu~R-UeG~9wZ7e0| zxqK4rgwLQC!Dz=e)S)sh)~u9e>McTnu?WTD+vUCa_$+ALTBm1mEL~+bEQg3?>a7?#DVw#mFxZG@FfQ?4f4q#gBz(du zT)T*S*aW-I=i=>Q*U(-ie1hmo@9M^KUD?*3=t{z44I?Ew5TN9pj+fda;S*M?!|_HK zoQ~KN1eQ|FdLY(`&z7mT1bV`0WfJ)BfLL4Y*wO*ugvq*y4``$p@-hlk84zxB@r#&6 zAGbF`_HKcelFigG;>`P4rrye>Lf8()D~nMhWyv}bwkpkp1K}r26Uxv&9>5YvL#0Wm z5Vpg~Vh*dS#;^pgk+#!MX%Y^EUw1m5U+=%$W^F@isT(bXPS{Lv8b=;zY_Z*iW!{-y zvf{-oQ*RkG2+PhKVsO2iCSFD=F>=CX6hCRQg0UjRY|Bd{K^S)D<4N1UW7kU!L+FG} z1hZYkc6=C)e>>94tVxES@CqC1t-W|Vb9(8Mi%|sb_BOb!XJKby6Qpmc{8>}j^I>qA zJZQOXT*N+s1iQ}X;`Iq^5TAhk7NVo^bO=F*Hd}}$pQynS$`+#g;`C}nNnqj-9>Ll| z6kk^2B8<#QIooa_x-@kX0>O$LTbg7+(8JxhniU6xAY;x=wMuHu7V1oJu6R5u6v!Z~Oi=MzF4DNxTw)lHo{O3V;SW&9W38*MF{8wKT z_!X2I{zUaRyZjZD0>6C-`xGX7$3wdi_VgRIJ5fT|4`GTm`jaGiZU}qww$h`R`3vb( z3SnoYPdXJ=2sq@5`4JU)kE@!oNS(?jp zB1+8ba%_?>Q08z24jUXV_?tT^D#7414Cia(E|d&whQTWBmOxI5DC~@<)6O_#AC+pA zXI4u+@Da!fpZhvv_WI+BR9IUhTcr)l5;h2nPG>QM-JjVlrj24}Wx|>pwj_eMO)mU> zL#*=i&LyJzX7$#fbsxilY;2!-MLHhZGYOrRPGmIzuSmy(rX{#3mthDCDcFk*HV>Bs zH{sHScQUMa11mwbQs9J54<9yAI3DVagiaX6$8rxZ##SxCO}NCm7H`t&xx4YB zYcX)b2G%DAqj@x7$5vUXch=*0uxJEw!N-1-3?U-0dhv|i;lko0b>N|ll8+{7s#d<` zJ_Tt8+);A+x?(QpKoBy*frjlUnUw<>V6aBXtYixY7SR~ae2lj{Zm)*(c6wSkw??uu z&QzBblEq51m4`Yhny~+#OSf#f=ltcD_fd~uxWrkfRKxS4B2IykM-Vyrt;o;mr6ZI=OH8;CE?)L%D5KKFk*svC$URfO!*wF;l z_HxV30#pr2X+z5$?y6#SNg2k}_SwA5ENnzl0D+dCv+7s9^z>F?`$kZcGM8mlt)s#;a<-drNz(Na=VqU%L$xE9-Xk z)S%bB)~Mh5ORcvLJjksjCV(^zQ~^tVUi&0%0}pbfIlHSAc4UzQ}28FQvt zz)Gj3pdm86OZ))4#3owd5bTa>g)G5JOa$__dJ>g3%quFQgX{^O-4bRE(MeQQwNQdc zu!a5E!_-zGoeD2)6+n|V!s!ggB@obk#qy>>eP3-KcGH@>HA|M)NGRz-OHn2eVx?Bljs!{tg)Ek+7%L~EQ88nXAf2?UV5O+mSO7^R4x4Nz z4Iyag2zRIR!oiFquE8O}NoX7b_^#wHEBp4^N|T@>NRPS|v;OM{GAwnvWjSzYf&r}p{q3<{H%G%GL3g%mY&P*{>2G3&~#&yq9>jJe~&7K)q8f<0{Er_}T+N#8Kx z%;k=(bfn>y03wo&|xq5qzvF_i2Yhu&t?~dB$s4UQ`txAslxmU69TvXGtXo#{7O@TqQ?O2`#=K`p? zs+wmR>j@q4NV{RSE~aX6gw+~<%E_|C5^DK>aRbDTrsByX4&End5uscLRQ#9v+(RFnI4 zfv5ba7;dC{Nd|+#5>3fX-Ee_!wH1?evSdJr^=D&CQT)nR%R>f{r%@LjddY-3SJYaFfV4!9w8Po~cPCeU-iL z4c3a9Q>l)D_LBVb}l)+P%;;v1ah7~_uQgRh`gruLDy$XYHnK^)~luhJy20}M1n?HLzART zl;O6r{zuKnNQU%2MQeEqAQbdHuY}igD{navS>{DiDn%&ZIT6NIn9)z(t%Jf=7BbTW zOW6O&C29a^s!N4B7Y&0|h$w$fxymJPsTy}(rg1ytB+6`_ME;lt=vz@-2L7(-2_{Pf zeCu*;%T0vnT2UZO?w7izh5cue(6?t7+LZ}sXk5>q`@C}5#_y<-y(W|F;c{D2<^fW@ z+~{}YuZm0|L6X<2mP-`i(FBMzi|UN=l`hFNxa?JFdtPKG7LdpS>#yPR7Ci^#L_}~4 z>FP>qu0bgSQKVDGCjvx{g?B6M*{T7#&Q= zSqr$;@cDDkFRE+$n`(`_iH_j*#ao$|wP#vdQ2SnL$X$C!8^>W5L=AV9)kH>Oq*j($ zFX^7lTSd51yc7uG6x7gN=#VMi2b+UUcClslUNNu?K_arSf0Ec$X`$!nN1~^lX$Wz% zQ zpcH7uwqS-?mo!r)iDoUQ>33Ml2#%V^cc_p$gIjzC63chFEG3<3yy+lV`f*F-tsxq(UN}T)-W1U=oUN@+qq4=wEUl^{Bat^j zv@413cGEDJo!9b`Q}ZXtwv9(&du^N_Kesg9Or5GUplQ|w&vtk?yI^%rW==5O3I|B# zyN@jdRAdsDC}Jzl*FdtU+p$zcvLHxy;CWz93aUz%lI5PD3j5C@1L9?-*r{nSncxn= zOH48OqS`Us*p45!VUO&N3?W;#7)K-omROOeOT5ye$rHKn3A){Q#aFsEOdh2L)5?82cvGjRJ9?zCO-fm#?_Z$ z`EzC}1=jo?7&V7+XyAnwpTI%Hw<8`Ix0p)E;&^1+CVu&LEoPRz7yhW!l3|q!r^J;@bmGu}+ZRnzED4u$kQvI}zBl zIz~d!#WA7~voL}{@F2fwU?-npG=m7(iNqKs9)k2>czOZ{fwjBQFh6vFoks@LjLu*u z(o*0MoV$9PL=$5i1lgfUI2|tL(78JlVV$y8@erhYrr`wKw65xNojQ{sA?Wr_!L<=g z%Dg{}Ha62jv$yAKVG4!d+cg~*L|U=a&A^#GDLWB3C|;Xi+r8}2U@N(q(YAbO2!u#& z?+ngu4)5O-rJ6z^_;y3H*eN^DygAv$KnS*dvs1w&I9(9a#V(ah>&y^8b|Ni-g&^Fu zWPfQZ;nk@VF%E)k?;`H-+?8yd)+B{O@a@`&!u;iJ>>|m^wT|Rs90b|E*a79zZmFYn z0!xB0?5~hn>t)eiNuc}EXs`4&b+n*Fd+k}eUq@16Nh&2iu;c~BkWW%3!e>N#6(mDO z0;bDH#b`h%u>NlbtFdVPUuk-oX1>grwJ-fJwo@TTB9dLnvnA{ON|Vj-6xEahp{97U zya_UtPr>pVCY~zt(bn3aeAG2`CH7qb&3f`t^ETyEums4Xe6;mGC?9o=T+{MV^Ct4y zrLT!=5}BSiL3T^odOT*)6~!kN=wK^v{oPi%^sSC)Y+FN_DUpf5Qm?{S#G=)Cfu&yM zs)$9aUpJSmr(>#$Z7Z0wer}txaIKE66uI|`v{uQMXv@C5^=Wm06?btEd9l6Kyqr*w4VkEW-)s4eNg#u)#b0YHELe^PqTyDLsj(o3SzO&Pk$TM(6=5j+L z454$3yKF-vuEY@+fh^^nMg2L(?LyueI09a-77Wk0u9c?0-(E`q6@h!7&}}7@(Xp`i zIZ$o|9f2r9*a&nf>%!39>Zo1F+KBvB z0p~{mUvR)QKv@7on4r&h>IwNG+ps09}4Zlbj`pK@O#}1%j6O{b1sjqV7V)! z4rD`|n#v#{mhEu5tP{!55GfwW1_qk}Wrl{JJg8XIu3**~pD1t$&I9oeD~nz)%s=mr ztx?(BOPw;$&=8dSrN!(@mUTQv5)8q(PuRw;Aex?1c46c%1KT%nW1q{~T?=8JLB3B| zyPH9V0t+eSL#j#Z3S}L0M8!jp?gg`|aM>7Jld@`Er?*L=5PbWk+2=}(b?USPLonV8 zu{ZGvk6E)+6Kj%QCe%9Svw@93zc2k6%+v*}c4y=CJPMOgX zZ2dPE_{GTTn)j}dQG5Q7!?KnL>$FWO9#XmoG7Gt8g_1bySREOf1ZCKN>Lb*hkvQ{o zVmV&P%8pFwIz3621(%y1R2wU%cs3g;MEN6I<(G#rG(a5Rq(QDL2Xs=lulk#_Fswk+AQ^*5PJ zlypHXW`uI?o7$YJk}0WE%yUl_2*nAL$<;Dv8Y{JeDOTy53Raf&Oss4Szj0aT%1Tkr z{Q*KEYw3mvI%7ZB%iIu_*a0E|FQ=qp@M}xjUshg*dwCq$9mY59e4%G%A61it;1HWu~wTUqj_?hgXJM*IS4rLDz3HVI* z@XOU+&^xTMF~(x}n_hJQK2@Ebn3!FO(1d8iLPIZQaHM1=pVc17W>Y~*N+Qy!;I4l8 zOX=#iqsN`INx%|9^3Wo|co6pH?b%w?^Fyla(4uNZlmRBhJ)QpDVw5LLH-!K4DLPd6uov>gdrMk_5yY4ZD zNWe>z(3dst&Lq^0@l5W%Y;lKj*G=&iQMJ3_>ebVN9Rlj=%>ifCIYmiSM@G_gqm8J$ zETWLrAR0|B;aaFLHONG%-dZc?rKa7<=k*-N8qU1pcaMHt{FeZ^K*5 zbJSVesX`@WWFN2^uPa#^MNq8;a@Pl>C<%o%Q6A}!ZGTPaF=quruo5~QK_{B^;;rud zbZQ5kF%d8c30cJ>@Z|XE8QfKI#8?D>SH0Lr?uLSo( z(+NLZb)^^Z?%E#2SPb8fVeJ+^HLbJiJ6`qUsdqP^2jNpkeOH(c@C(ex!zOlK)aQ^h z+d<+aDkS}K@N)!**dj)AZl~KXgyLCG>cP>Uj1&|UdS>KSBil?EQ!@fZRB}5GM z+Wc-`Q6{?ESB~C>!RctY@M9~v8@;6{NoiyhV6bx$P)JY`3Ub7Tn_Wx>XS}q!?nZ0^ zWJ{jllFj%+C zb7z7BLIPd3NiZpLHB38rsn713)f6S6Abaa+*oh|7F_=+aSh(x0GoXZstkTnP7(gJr zCl{r=DlKsm8gf)O9WOkEpST+qAw~jU4vS{d>ShnWiXjs4vLymvq?bzIt|bD51iB)3 zPeFU`hNHzXd$W^MKjAzM!2?7hdFexi?V5wBA8W{+4>bWv2uLGhwpf`@;RGKqs_)J! z6)*`2S#=?*&kKHcRTmHv=(6g@0f}C)yVHInW>R)npgEKKy`Xp3T_Hvydj&q6Ahzk@ z14aU0&M?oX@YBUH!>mFjWcIsSA0pR^l`RxyO;ES=1tABVEd-Gu%NDdTLF&O~2i>js zkTA>EcJX1-fb0F>dv;RiBuWP*uC3)b2-`vq-1O=ar2|>Uph)dG5V$g0B}@mJshg<> zW0Y<>ISJE&G!2XNK;X)bkT4xcQ@0!r#wguPK1rAkq#1)Ex`{Y9U#SC5+8!MjG5D?) zen_d-w;mN}M7DQ{9~`dmkg)5IJ19DW{9f@}wlczPXHeheWFjOCj)~tL&2UM%m+gee z>ufV*1aVtDSC%@s6?*;o#TtyOV~Q(v5N$l;-R&*ty`!L%3fP3au6^&S|K6}zkbVvpolCHr<Un20ow!V`y!JETPG?-MA25xmFbW5=>}Q1^u-sf3RMVyEj)q>Sr( zA{A&v$`Ug~6uWJ=++hZ21aqtzDCf=RXU~uk#8S$e&_^vG>ptqkF4u-gO|C!g%3BO_ z7zVb^7J<0LnzQQTh*(D9wz}0H#RyzPbB}=;-ky)!BS(vbq;TuE!WlAx_=s5HvDxG+ za1pdeaO?NV5*WdIM6B6x3%9=Z3S0#3ephQqq}tZE#`Q%bhg~ifkvQwOvw5pS z4mjHuLISNnYK$?FQa_e03302X_1mlr89{thF8*)}xPB`jff2k1-K|EEico(9X)ZrG z;B486gjru-jddpbormhxZ>97|J&>g9Ks^_d9MOoa1I|{AxGZmdiO3;`OG6~i`ku_3 zwIE_&2zNoR$pJ9gNjUYV;L;;y5F%-$#3??`W{q|1^+&iVc4H1%KzBBY=nc9trFc)u z$<@rFj=X*!oB_;L7iUvpI&x>~VoZ#6Q%W$DPdt2XJZ3t9`fFVcoTLNU_etm;U#g^!5*nh&M>cM9(8IHS) zL3qPuB^!1PgHbeD3}DNb@#y@y^faz3xF4veYwc}s9gpU)M?*M09?jSGDhczB*HWRt z`C4TsR;sUR=U}P%k}7;hJ6P$oqv2$5+2u@rB}tPrw#r&^Ce(scw&XJO&LCPgh04sy z*dV-YIS4aNxy5-5lSo}ILx=5NI>EBJDQ0#Cg|cPn%rr9!2$YbJ=dJ(==*36#_GIaH z`OIt$DrM)cFw<12NVtTM+%p-5EU+pHmKYD0ZC1+6+u&2SXEHNQ$wxs;=*U{qyEtk| z43iL$3N{I+!^J%GSs*SIOodAb$!b3hC$O>jlD?Cv2ZnCBto8{|LPFVlXtowimMs^q z%A#yM#!OSzkZFiW2@P30rsKh~U7(ox871Me4~bzC0&+jD*<=v;(xtNfxR_FrrGPjI z1*uBloeRVJF9uagkrEnNNz8-Jx~E$0v?OAjgo4}|ZFVY{1gDoCtIaHXqehf1Q)Q-^ z=~D`o5Ruh-9xdI;fSI8|!ezCNVG;tePAp=h%9}d5Y+h5Ogoae8_#A4FhM`M^5>N?| zLk`Cna#&tApTX41mNBR};&d<}v6lI_*jUZc!(ARm4HC198mi(W8gZv$a64-3CGfI! zFkE3P@Cfch4#xo!unSE#4F9`S3);1aUFe32kI49lQ_EgT*+m`9G36mL!=(u?;g&^a zaJ4wkWaWPh7d0R`^l3*0)6KLJRWD?ZYnZB8k?CYz@2m zm}7fd!Y!LAW~)M;0e#4!;VjX*sAGnueAKOlEWx_a+dPx_n6NKh_h>G3L10UIv#|fM zOVl}&7c=HeRw1S`3P7ESb!Z?`bm` zGCR_xAL7lBEKQWmjg-wFE={RmRz!{*XY=u-EmB#cY~r<9kt~eSZ`sIkX=>TvUByV` zeK6<-@d@bRvYDNwnPq`k^~5a!5uAtd@nX`26C!I1SvEdp-Oy6PEd>(6Dz%~A4QCyw zq;1!@%eKN=j$6E;!6O_F4}#%}bKLdhtw7STPG_4AtAs?b-Z7rcqhSOcfOEiQ)A^#v z3mcx6j*Fl^>b8-S^{=e+Uk;goO7MpL4?SG%O0Qycr2_~T2&U~|uo|vRgY)OET;88* zpQxSc0otkV!NhM#(&lxnG;!!%%c6AX%UZWWGA9LkH?N!Jr%w9YvOzyT$%2ko&Kq~u z#;|gJec4e*{0xoGw`|^+pRDYK1z=JV(skRJj+dU+$$2@P2)@XJOpSi0F{4JwXHMF1vrWXlzeAl`0?QC@?K zy0aijn9w|8t=CJ(QACI!J2fvhM+m*m2RMy2>A^2??oo@-sFXusch97yM*ZJ_0i#HPA@G+FhTO<}NR+5Hz8sm(?^FEsM$E3$>xLiZK&X z6RoTudVDm4RpHA#4>g$G>!rLTa6(Tu++zsyyLcLIL`#TByI|tA<#ucr#9#>x8PRmo zV_}p~DGRdZCo5~b zL`(?D{y+KIbB%Fqt0|ZXDcJx(|Jm`_={s%!5G^4h2L&6j!op`)?|4vcDz;_ z*HjQLp(5+dM%bB;rx(}wM!`%-yJ0{MbfUH= zQ&`-+^i*fQLS`W(ce`oJbKw$3#~eGarRq3p0Zni95vRTmiPupJsQWgKyLLxQz-0^G z`6}1S@jsvN;&+z79gUY2kVK>JNq=zcV3zP5dBaqc1iz5JTTilt?^gPT>o`bxNzbc? z7T(e1o{p51!ZF9bVJUw{?V{-nKI+y9ECD;RwG6NCVVB-siMA}l&Z1S++`D%;ck4>P zWl?Jufb;yg#~gd3BxXlCY&vY`u-IY_L*-n%#a&C1~C$HR;{PrKo|K61R`Qzl_eh%;CIBCo z{Ps=BpGQ3c84Z#&pPsz=k>s~$B!8ZiymD9a+YcrW-<$mJ(&W1zOCH{s{O@0rj2@f( z@7t3<5q_{(oO@`0cK)^JFYlk-b;*|3o%ZY4Tej@pvN(4M3_I4;mma$o z%-Zou$MN=m$>(o}WFP3i6jFVl|0R(91N|NNWUx3%gwn@qe~b5j zhu3%EJMYHpQ}D^J;{9*no1ceIo`ct0F!vwCYaieFJ-l9uNZyRk--2&;@%rcZ>n^;0 z1^)V7cz*=%pNiKH;hTSi*L(2EH{$&_;q@Q!{lCEbN8D{~h@4{doOXeCPY|{wnO#4_5eQrLwxcCl;>f5@^F0ePk7(P zyzay6U*q%VL8u!S{a|fBh4Day9$(!)WZ^M(fK6MMUM)2=}{&Vr+FXHuo@cO&>$&>JtU&kkZg4ulnpZppA`dj$? z19&}$&%XlizY?#%gipqJ|0j6;db~atpMMM9|0dqQAFtnrPyQcXLwxc%n9CR9^^5TO zwfOue@&2dr`ZIVvi`W0a>mT4d*Wh&@ruOG}Kga8D;yVw)`(ya)XW;#R;{DI!^?UKj z7vlX^ynh&e^*ns?OL)B(uaCj!Ux4p?8lUXM`=3fu!0UhGwS&KYCf@%Ae)UAWJ{HyE zS@`@IUSEUHKNFw74)6aGzumy=O?dqeEQ>ecuW!RAzlY!6iuZqy*B`*^)%g4$@&23e z{@d{S$9VlLeEuVNJ&M;)W6E1F6x)1N4j@Osrum6Ooz7Fr-fzO|U^6BFH zJ-nX6Ur*!p&G^nY;PaQ@^_}?SXYslf-x=WZf57|K;`QI~`Z~N$@z(`j{|c|K#OqJv zuU$;%etdE>Uhl-`ufXU3j8DD}?|%UAKZ(EoFy6lruV0V9w()rjueafoZ^Y{qum6K@ z{x4oX3$OnV*sXYl&Dc>PWM>bLN^j&D8|-@F2U9pjT*@VX11ui*2Cqh!7WpF9TdpM>vx zCSDKV^Iyd4m*cgMUp)nX{TsY~4_^Nk^L+{a`VDw}1YRG7*T>-X^YP7(;Qe#){(JHM zF1-IkO#hcKoqxsWPs8heynY3~^FF+u!8d;$@4phSZ^U=L8t;Dw@85;jzr#20!ux-~ z`$xh%XZ!z(_iw=KoAK8_#BT$<{}5t$JpQ@|ukXj_JMf)9hhNY3zY?GSH9q-ey#GGD z|9-q4#Oo7Lp0CCGKf@G`;Qe#({a50XH{z4W;r-L`{p0ZDZ2#vF!_VV&7yf!LzWFh{ z{xClIKm7IM_~b|N$yIoN2=6}y_h(|{{!B?74Lr?uiuPsek)wh_P++7d_G=3 z8{hmZ{PnXi#~0%B=iu}2#^+DMYYU&>j`x@2um6PiKZw_zc)bswUy0Y3;`J~-en!)y$9dij`zQc_m9K-7vudFMEGC$WQ5;-5#GNSe|;j}{~F%^ z8RqhCeA2@w--+*kRgw-~e-E#pjqiLd-v2RP{{g?9;{CJn*L&f5w*SMJ!gs>+v;D8b z=U3qM-|+cu`2H{8w?B_hR`5E*cdo_jzvDYE!{-md>m~U7BY1rcT+jC3iqF^Z`uF(! z1CZv~{x-b-IHvGpc>f~2|9#ByeR%&de7+68-HF$4#p{Rho!`ZG_TrPz!s}D<`b_-l zC|<9@cOH*&{!_ev7+(JzuXDV1@Xc4@{l8(#Ps8_b#wX9lH2)p1>-gsH<8>SU`cZuT z61;u_ufK*V{5bylm-yyy;PZFllZWDyU&nWP`2217_d!Cya&*WGwMh|eQT?bCR_2cI9t`|rm4@5So`-?kktf42WG_~i5O{%`R4?_vt?MizJDum6J2e-7^_`0F3x^_TF;0sQspc>OWFz6YQG z6yA66KE&&P!IQK7Tk+dR!u4$bHoSiwUjGk&eFxtEZX##A{}iV4LcHFA>Fmbm@5Jku z;Pc1h^WVh#zr_2$#1uY>?|eHxS;Jqi!s|=%dMEyRE!>~&Ux!bA1mFA(e7=U)-@)q_ zv!Yz1NhF*;jgd6`yavQ ze}MNp@cwfA_4km=AK~>+@znUB$0X;q(3Yi*I{yu#23cP>s#@ik6@0^#9u!bpP$6%&%!4U#rqHAbp?O@cYOb; zSZ9ynJ5Ru0ww7yOYPGaMm6~>*4uxPnk{D zqS5JAcRYj>LuReXnfY3L0Li2Guk;}>d)sI}J#+r6!JGN1$31jQ|C->EE$1H5gX3B7 zn34zP=ihk#+-Jr~-ZGsAYQp`yzTlEAm-pXyXv>!V<9EYX4^Ji+&L`hIHU4I+IHp7a zq<;4#^E-qOQPthSB;HRteH*b|n}_WYaXt`uJs_`MpZDtHG8*a!@7n_m-UF^&jlq*B z1LKolH$M?z76ii7?h2V zceDZE_nYPR$oSKE!#A4Et$EpCLEyWIj;e*cE$@RT$B8EjXnyv|y8zL`MD#RDrr^WV z=7%Ua@Ycik?e6@{Bou-LO%ZMtG z0sZ6~?~7H&q=7=qYGBSs?<)9cWjYSJ9r&Of#Fbu_DDofVfkVYfz!iP`oI3&LJ!X!d zLyM{O^ZU%tQ7qX<^D!x`aUR&uigVP#W*@%qC;+|2%t@;pd3oZe*P5R`CeE<~=fcNA zB><;+0I{+s0QHX^b_amlZ{~oUvck^&?2!4{;}O_e*jaD)2IGKYTjXKGcD*xzRpOu? z5HAwJkv4_`pU(U8>2Y4&uoo-_^LA$pr$dFObH06b-nUOwzcurFUEVi{ROE;3a&miP z-j`2NbBkbOJ2S^G%=-=tLFBl||L}|RKE%e;%;YV3?_!Z9%0a$3cQ0thx0ywZO;e^B z<~QGIeuE7(zS&-hVDrtifyVm(rFo!`Krb5gX!ZMwymu7>E(s+7-H=VAO@@;z+4T9(4s)%@Z&8)pL9uIPA&v)c~g9sDF zj`F_zqQfAKr<=^48JAV2;KkoQ%lsDmNcf_-Ir{EAs9K*@l)yXh2E?y7bH(-@J}PRI zzBeyVG-srEaz6c?{gB(=n|9!{4EYp&{7>e`*c1X(h+bF=Rt9;d&D-E8NR@;x{;Y{iS?8KSR?Z@-Jp}K8;x$_{9 z`=p7`)a`>ao92|+$0k=Pjk4{R>os;YE z{_n<0q&q~gb6wh$T(*Rh1HLwV_>z=Iu5~ z{j~|^5PVGCH2IqitO)34Yh-XYTS&r*Vp15KiktldP}gq_(?N6^Na~rb~sjtBP7~T;c)G4YSCae z?=-V9ms472lhZi8%gpF%M#YGG0?7Vqt-X8rTfiiGA6Rewx4r3-Ey*MkN13$bS_jhP zscD3%zdyDOiD_i6iZumOo`GQ|VNM^2bD|Sw=E5iYtaOtJ^ZH<%mtiuUurCQsbgf`A z8Jxk68;c9tz<5Ftmp7#PhWUTUd)^ZP?Hzn%5-)7pN_=}+RE^tS&< z{k)_`rLFc%+7+1XpPK{^JIoXs!r1`k3q>D|d4AZ;(fd0J=h(%0$?IJvrvJ@x`bL+@88zf&q4gY?!MDX3=sib8 z3Pz2?9KO>O5yx7}!JkvhFo*9kbKscX`8g;x3lsl7GjWc0Aun;*d6Ie;FoPd3GvJK> z^E1dVf_Io%a0cgvS?FyY^7v6Rld5_IO#^A-F#Vq})8`CIa!AN#4SrJxC78`mo7r%h z>?PUIo(MDgSu-P6y9qNI#FzR%Z-935W=PDo-4qG6jvS%wCZ@PGhG*Yy8i^Y1CZ>M7 zNuH%FImzqoCZ@kLPTy!ZS?x|v7W27Yb1{=WCJ9!}HFJQtI0!*WPAwFjD`v6Z%!1YU zn^|a052k)7PF-*OD+*~6z$C())F;g2sL7yWNgHh&rhkW-e#JtN-3xd}NFm&9X2I%T z%tD~e8sfj#OuQ<7$WOOrwx&+MS|4b*Hd9b!QG9v;Z9F+46Q!fza^XWJrqid+iNcZ<+P7mD= zIZ@x5d9mMRgSj2 zn91YJOzP4}@>i#FF{dY*IdPm0Wr9m`%2m53o4M_=ZCPkVN`d5Q-&4)ZI5QK=sTuP` zD9LB|$}V5yKikaifD=&`DgI?r~6nc6px5Pm#M<`mk~G0dDn@Gl(jAff z^xyxzm-OGyF8eT9G(bN81bj|A>E|v_p>>3$@yR$1y(@VkBbhcFZ#>HaaFEXyvp;7h z)$M9YeTJFT3s|ValUhm-ubR?osHODC$|)(4N+_tum?^!8#g0ZjVOozj)8a`A0%~Ra z6sGi~$|>pmo>DcXk&fwUW=cGjg1xylde1bI;t72k80z^sW?C&)0Zym0wWz1d>+{Uy zuHYq?m)dj9)R;tPixo|1&o|TJ$=^)sg=SJbna!t*up4b?$gVJx;~_f@=K)d0zp`3V zE3im39LabktV7qtN$KtB^BHBi5@a*2n9{XXQ;Op~NgIECUP_!cq8n}~bFql(#=NvH zXYeEOvzXLPc}bZ;8cOGxE}ZM083jYw!Z}a=x8^0vk$*IV1HS)1Z&w~5*>t@}>{|#4 z5kzbumS%=ngA6kmW(Kp^Db>~0-8EC2s_LF;OAuQK5<9VPv4@aIBz7Vp#7>AMgpeO0 z_8|D3`@MSa-Fv_DURCvU^9SASe&>Am+;h)8_rAL{Cyk&tQIph8KPoixrMk5r57Ktj zq^;S8-Ae9wy|X5#o%+c!+-MUb7)>3nq*^{39e9SM-84z<_=Ftmh!40z)C^5jJJlnD z@1aR*CqUF?dsI(+UIDcB)`W4gm5Yv?M?Zxw_25~O?_KKVdmQ~DSXcbhcA-#5)a8`> zZ9>iz%ZPu9q{)hmlfZ%CRYt12d@&5M_Gk&Q*Rojt%o}rzf3n%yi5;X~KN3>yBo9(= z91*G301v4*vD8gFZZ9|agWQ{0Zs(S@6G2G5WkjU zu-MKU%uO62_fIUBH|)k8ApXhj3Y0`b^q*Pu<{kT(pPoYUUs&=mjNxR2koySB?Y!++ z?Bgu9a~o6A3C2&c=*}5C2`I!q!(w@;l517WG2$Q}vVRE&hOMuaG3IF*s;qAU%+5x3 zIloMWg7M~*l_T<5Gx|9n1NbwKBgpy1l1g6z!1x6t-W_yyAis4)I=|TRu`#nIGrwZK z+}G%jcJx8dORR@K0XU+aUsOHyYSB8Q4mGc^8eZ6OB-^R~RX>q7Tt(c$YD3P63EpL~ z+t!*%K-_A^yPWphGTpw0kS~$i4x-m&$K~&&E!pyC8wg+92&d0Bd|auu{P?~Mq@0mo zK+U>b2aay7b=cD`$n7$6{iz^F9UAZt6Lc>-@gBz=cW16OXd$Anizpqt*KkM4`y3`8P zvVDCrR+O?;hyHdmMKlrCqj3#4Ov*1=ou+pj^WLk@gq!b>%rI!$7I{K>Tqeferp zULwy(AM$Pm}s_cUsjr`dp=j}}fxa@{>oBgiof0U2t?ZCa4A0bel-XyD)= z#hiGauzHJY?Xyx)?=Wf!*hKY?W_@7%xKA#s+mGmi`y2L$ouF4O5{ac3<{Uyn+H(-39UT1^vY+YVxd^NfU0f6Td0dxB0G7;wUq6UC%zZd7AYjhHpEFl?vegxg*0pWeul0Q>_3Vc>kJDhK+TpQFHR35^-5g0g&>=~5cN zstUtqo+(v1l?~=qB>{K_0~a>Fk{@!tY8j0ehEuHGD0lCEO+#42se)VnMybk1ybH)1 zPLq(EFcPLV<+}%ZKtn3{qMjzSG{wr!a5U5O1ZvJm- z<*fvcP|ul8b{IFJm%!<`A2JR>QJxpB%U#N@2dt`5vqlad^yW#z?CY$-8#z?iiVO>g zRr;9N8m)+Vpvt*I>_yh#6VqTXGYrH^`Fek!e1UWvY^@f=e9+*DLTmxn;1N?{3o{HC z>NPK_<6ypyMh=>SL_h6u+dOuMxirH*(mD(r42Po=xAmpnU_A+RjD=#CD}z#i;ye*Q;1!-tK=&S$tK_d zxhpJ~Ct|;$g6kUJ6W?kC@FfQ9Oti5BAqh)Mz7X>BfPsC>*0)WoB}y^(u;G7(E)6kP zvKTCrCyOzbaYS5WMEFZ5E2nYU!@*xi=18r`9=bhl;EE)+$mH=;wsk1{nkXc;h{5U% ze#;CJD*`Eci~OF&B(_K(hFat{Bf@Wy6l+YI?pWi_POLF)x^9hoxEd+e5GlGf{>Wld ztYO5EHSX7}v1*ck?hm`u@-7XJvh1PA!CBZn4v8+TJ$F$`0Wi&fN z40w{o1eaBE5bT=1!vx1LPm^J=A4fBcKy{Nm%lZ?$pAn*a$_p$dv5_H#9OWe=!S6Qi za8Q@$du3s^5O2Nu)mR`0RlokXsO#+a_@I{a9Z=Q;y|>k_I2vL%=t&nYt| z8v~6(u`Uk{)a8mY`+A183e4T2^gEgMK)H-?T@vZ952Yox`Djc+^|ldLgqI$nefg8 z1IhkAIV4UdUR9HW9d!wE%;LKF*itOS&jopy zIRIPE7v(CAo*r|NoxR%=0=Llwu98yIV!rOW)wY_1v^F#ofH~QrOtiPaTv6`0#Y9bH znzicLl6T2DDz~F1C(YxXuZ$3}vnFDL6#E4GBvL9jRg;)zakHVyG0$$Agw0Yo$%V|p zOA7UTpZQAJd;-MWR8(>sbA~1wQ@)`0css{;e?i8gy#!;8MVLo8rOj(Onf`oHF58T> zJ^G*^&vyr5%dAa3HnM9{$-DdmIcgEMCsbU{DzFzQ(THq{u0aVHjZ9!7NBC7N93P>FD|~xd$#WE3%L=Sf zQZ>-v&}4b5$ZNpsjT|SXvVuse7`@?cWL_J!Xt`$w|T=W!WG)q>03ASg*7ZS*Q%ib1v>VEeJbA6K0Lgek+@) zpC;!pO%68s>7*<<=IR#X`GsCN%OoZ=xx3RcKh$KWw6c*sD?3-^d9)@=>GWZH7+Iyc z<%C-QXc*GU110(7rrGevnzZ#eirCytCMX{`HE}0t;!<4CR5dt5E)QeOQAM7tiELp# zd1fKkuSz>jlco$dVSR&#D731csY$|0jP8AN3Jsmo&on_wcQBjnn?&SU9w+=R_nw5` z6?SuyC?$7MBy{Cu-%U+k%8F!1`4xn&Btj|L;m#_zmX?5!Trj?52eXADUJ$a1xH?wR zbnMJNXbFgQl;ss4$=vZZvDuO1p4}V#->_$+MyqMs_838JwlN*eYigR65nHRL=_uCU z9l2|3awoM{BTsHxT!i)3)pTvzp01!TCDo!!lZ-EuO;0P7v$aC}G3PupaoA7#jx}+x zdrh-=a|z4r5RpBaEa3pH_gU)^AqX9%JW!QIte#A7zG32vCNHPS!}sW*8sQM`Ch=?D zE|sZE=4DmJiX|?nE5Lf$B}5FGKmVpkZl+R8vf zp03I`lX1xURFh@J{}fpb*I;8be@(1nU%o7N77x_LTJ@n)ccmDGK+u|B6J{+rxwQIB zFn|=t=nH8=tZdR1A}_l&C-Kd{=VX6qJyR*isUN5@FLcZ0^`RF_8i?G;p}34D(^`{=YAge~wsKedT$NgcjLb6WzjZ zf@@GS6|AxcPwGXn34Hg{gj(O1g1wRU$B(g(NH4fkVAg16W$ZDaYf`Z2J+mq&xbhRR z$B?>?g zbH7T@T46|&q%(Vvnc2O{s_x*>w!!>bH{HW3H#<6}%F@|A#_ST>R@j9PicdGUO|bEv zR0$@uttw9E_%w4|U3Zwlp$RzQ$K0M(x!D7sV?0ZY&gli_lxVjJ=IzB@@${l}2j=#Y z$}Q1uia4F)E6mXz_nZndtJhRkiJb}pbRMrW59>>%+oN>Xe^cdRj{6(rldfR6>a!5KGY+eaMUwW6q@D4d>KQ@v%zJ9+kXGBFpnd>RdnVfa}ys zL%u)+ht={udfSdMIXsOBiChyz>RjhHvfWW3v88v<76+7|wvb9Mv87`vI-^CIk=~_( zHKFEF1saZ*Fk<|fp*4z|&BDQri(xL@{f3O<{}PxriesNoFqMn}U9uh+?B~bIOO!o8 zz#E!g%cPbVS*^hiSLd4qguJB*`AQto~ytRV{#-4*$08GWmG=q|C|A%d|Q9^0C|^72Njse4Enu)~ZhzrmL_J|whJ%9^7H_-4}%sDC^_pd;Pfkv6MAyU$-!LoxsbYn<$D{# zW!hq2X9m=-8MO#lRpQ-jp!6G!5{{fSDOrF`za*{qI7>#4wv6OMo?^(Nh79g7aT@J+ z8k?m|*?^6Ms4pON{=>4-M`AjRd6zM0vbyYa%*W5!!alcZjI1W}FjE#1PK&UYdQGOG z7H3porH0IM94pFp7hwA^48AS zeD2fuSia<8rYtIy)?@jeFKMU^7=^ZzQymqvm(6jf2Q*q%+xeg$ek9BS5Bky@YHQ zkqb$q0dUMBa)S4C?MN%Q;moB$hIU5zv$XQqP1iFZw>jm^?xw6c-zuLJ%o9DbBrW-& zBjOxQ1Ux!`kk0cp0A{r!y7?tTR)K|TCTl)xh+aqGMH(K-Py(K;bg3p`VH47=J7Qp; z%e9hlb}5;{@hT06&psZGxLvCuG31wU`%8jRuh(E`g{HU2R&U3OH);R`;1E#jn}v{sf`ETkZ}4>E!4w=0Y3$|xFPsc*5e&$PC}l_$RItI zFUi&<1nmB$v9rcUvoFoU9Qm0ryOia7nh{Bs3q8@aYkHnVUY!w`#Bc>WS&tPO_ zb@@)^5PU}?806pma>6~%;b8aowbGVP)LqO&A4@$NOvUpF4K;^Rm|JFRebzNQUtdVN z`CKh7SaVAkvcZDl1s}6?Z*Hl8K4nlusSs`11Equ8pcF%HT~a9ZvU4evJWzo_$Sj4u zGlGHC4>VF%X6b_to=<4q&z1HvOBMDY!{AiqO4($hp$mf75gIScsXWYDW^OQnEABa! zhT4HqnAEYYj?y?;lR5`+`xs$#2iMq})G_96#$Y^?9xapKjCIy+ldp=SPuGr%TjLqS zX3j6nUSciYc$NTsg@I_6W^sHvk1}E~++Aa6#bp&aX-grw+!eX+*8KtV4g>B}}U`h^ZHsQ^0iw+a{GS83XaW22A(Wn6gP-MUG}l&`h!zSj;T)5Xd#{k>3{}&WOHG+7HjfWX%nIAFf>R7 z{B}H3BZqj@BxeDRo-Cwx+?^Z@{VvW>>~;ZUXNJJ9ale6SJ|_>q;r&D}=G402V`%CQ^yh#^M6 zrAzs2l!t*zNuy%9v<jv`T&fxu+bnVU)u#!S^VrJ`M%wR$*C;YXW}8wU<8;9W}}a;aFs(^FtN)2bR}UjmE)Jk#7FGL2r#iy z&KJ!R%3j)-V6~1_{=S`s$<|y$kBN^M&xn9YylMv~`?g{dmtSBNVbb6l`b<2;97dq~ z6y6z$fEnq9bZ)JSeL=raG#nB~{z=3V86j0L|Zwb?cZGWLB> zo3tgRDbUO%GP$ChCk*L9>_j8hA7VQbjKk_?kC-EPM@_IfsoT2VA>&9ejyX6VRl$8{ zO@+CIy$uz?T_W(;YO7(ZqUM;P$={|u z`EXI&RMBNC%?;S7!5*514cpUz`3G9f@u9snksG9mjLvuU%2fdQIhES%XnJ~{iB6kJ zteLg!3E?$4>!!#GD+yZGex5r_Y&lpWg(WAgp?o=VXKG*F9Bs;l+Ze(+L-G$y4Dvgq zIX<7{)QR%t6q+21iEo03_#-s&X?;c!FQ3Fv0ad|Knu3ix;xDIu?aN-k``CFFE9M@w zubzO|<2A7znInhmR^&sWH0ta*=08qzo~S9ITXK3Ol4#Ozsq$PYj(>up>DX$u5YkIbwCq1m>Tun(wwlXKE zqKee=(b@`{;sQ&VnT=y;W1%c_pKs z6Q1Eu(szfZuk%Vq`r4}G-I~%(JGQLifA?yVcOItXmL77Srft{ZYHQ1M4`?boN@&dK zN^^|5R|bs(2MV?Lb1}UBAx%L?k#$Z@whu)?B8nlDIz6gsGCSv!B5Pl<(k)l~g#*FW zyGx?}tefy}(Hh>h-OOpzCQhA^*?!tCQ)f(^Iw7;&E>pLkw1Xq|1+!+c0A6|v?p_|( zhTut(s?=%&Rhezhum&vfe8~u;VRC4yt|b;ZSK>wWS5~i!Foj;vR*T? zoQ?fy>Af#X=l44EOG}bTsCTypc)kgfO7dJQbjyzU=2^{7#Wv(%uhaBzt75;~MoWd( z?2>coZfpYI_f)}YsRWt9U(Lw42@BMGsH*A6EWtP#O-Ug3V^!?fHq0WszRXP))dKpp zW9v_iP=7Le8AI3+JjSd|`-0nX#590a*%}WiN3wxs3oCGN2)-bG?)V)y^7CuYUzsm^d zZ*CQLZtj4_b2N?f)TT%l;IT>%IbTzkHt}rPrcHG?VIiB{YSA8jRPQ29-){3_P|{~E z2XdU~QcdRw)G;t82e`{MeUs*;j?L>@ln!#0rfZ(!IF>C7HTis5uM`K(6^!N{GP%OO zR*1HPpee7_RHv;Wv~(R`wW9QTP3b%(BSvXGk4V&_!Z&KVr_W2fl5VBOH)&euX}C0> zVKS9o=azM}=*^lca}i_G)VyVjI$wOC;}%WFJT;)4o0fM7^$sUBPoT*9FT3iF!6?K|sHZVin>{Kajw zeoax@r$fcHB?rsbs6+DgdZo14et*I>({X|pLVW`v;b(`-vQLlrlQ#4g+ zUvXRaI@HPRMU^Ae(e5-TJ6%)OVO-YgmI(V%nf!L zU=(+I!R4B^w5<|~Ipv1bZaM1f4LvWI{nD4p&}I!iX)EU~1$W66@YYpCkbk*0bat5a zy7ar`_-te%=(tMLF>f^qREF6Gv|OucStrHcaGY3jSo0=>wYap^QeyT&Ia6nuJ?%TK zC#Ea>`fMbJ1R?Vvb574+&fTnif?d%%I*C416P;G~YN48!6*YNJ7Ek_!JSVR#b)PBU zD6P7uE%ke1x|-M3?I3m^J8qlaz?OIt>1U6HOm*QRMBX^Qx0 z^Rj#fl2@?YhnrB7m5eU(`LzAqDe9oaJX{gAp{dR)s*1GaCryRSACl^_nyM&mTuo6F zd{@Ua98PW4RF$OdCC5i@JSmr#<%o=IXpOh_etBat(7m#PW5xcowHr-V*MuRlc_FvG z2o9-2?tNxu$nnw%DFa_C(d4Vp@qp3c`szF>krt7UBz@5mK9oFUl#r9A1!lD}VW-}{ zx#@3)e9SjSixMX&dz7q}w!++*BHe~hunlK++E9sg>k3vP*z5kvTGRSuYDFhWbkVK( zH?n5htgd|}x+S0II;E}Sbf7NDiZ8Opv>{fFz4_WiF-RY{h6m$ju$^;B)952tzH2V}dn z<&t()=+^s)>y!2gylrJk_WK{}OG|-NeQCD)oNSji4{JxfZnrO)brE+oPRktIQj}z~ z1zA_xtX0)DLmhz^F_N9UrQ?Aq5}Y{vEzb1Q_VlXsy9WwIc{a<>yS{8h`;(TAM}=rw z6m4wgG5jlNYx%0CrQ;@vv@|no*0a2(Cv9S-HcE=QzM(1Tc!&w6AD9>_ z$^6QijZPCeymxVTeo%8-(Wa80~xr{aOXk`gYOjq+-ey>r(=?A3G zF*7B<8?*|mX*x_*91RC)8qyZ`JY$5l2(0ahK2#H(wqZCyG;uy$6Wq$lZL7#CtZdDb z`{Csnk$gI}PdmWuM`{XM_0|>&ycJ96Ic7BUC@pcErl-|>+pdp&Q6ZS0ph^6?%(%MD zs{#4mfnt|=7irvaz^)x- zr+s}+p&mV`24nt{h^*UMg3jh&ov@jl&(0p2miNr^Mh9#n2|Am%n9b^mHJe=Nn_lQE zRSMCUUl`{dqO)EbB6L3Qcgm;I+pw-_0-yhO$R`k?^ZA7NB=;h*Pazs~K;<){lH7}c z)>+KQ3+KtbXo~N=3((?zaxXGqox{S+A=whUlFu$iB$6!ww9aBlW|3?OBC#})NVbFl z>l~J44#}1tL}`K)N(c9x4< z!#?}-9VC_eP-arr|dq5LC#-zXVBzm@N+LV*0!4+c7?grNLvuN`*s{_{ZhKcNA z&}1*fvOBbh?7=kW3YhkyEZWQ>+oLVlZ6w-b2^Q?8{g!`-9MP%KTgpiBC(>Va2ztAi z`pxXVBrwat-Tb%-XnOaK*pL$S55TKNtK-@$I4aFDh&)43kW08D;0xP|-mBe?C%Z*8n&0K-06@G{XyQ!`tco#V~=(NJ4RL>N18MI!#Czyph_&Y47 z$=s5P~c`WNR zH(vdTbbonG88x4jG}aoe-S`-k?;78emAB3Y^Wz8mc9p}~W1}@2NO+pk=`KYn3!yqd z+OwQix5H_i%jtz-aT?d7b9#w6xzml%PEGqv2qPD2^a^otBaRQ&IlR^xhjA{4*E`}c zZi3F?&CWP%q))+S- z5}{jT3Feb%4bM53A{vP`N%G8PSbK_$s49*%zD6_>t+7!nYkZygxC<0bN1Kp~CPMJf z6^Vnp2o}TiR`@3CRqZfA9?15rK6M8!`vg7q;JihNFEW(ysb~z;wNv zuwM6rXVZX_e8roSVmD#5aJuI2v1a$HX(*vbE_<~eJx3SVhP10W$fPD#XRs|ZQ0qQ< z`iv=#(I=92weAL|Yu=GHyV-KH?vP-PLNv2yb6`>KnQN}B!4f;OC^e)`mh(mN6A*w- zrD~{QAVBIB*^RZUU1v&mE)r9Byq`e?)UFeObq;%U#=#3@dw0YkX`tP&GY;O^c0flQ zl7_b&bI{FcUb@{epY0iMZvD0|orPEQ5*c^q+;q(;Bt>tX0<-d_Je7JqUP_oUQ>Hxk zx(k$E*FgEMZ42dWZD>20snsWz8xr1!Cd-du*MOM&Xra*ZwY#Zh7$3S{Fx6PBbDGkz=G)`5HCUyhYR<#(g2Oz0|46Pnm@~ASwdP7lmjn z0g+ROLnO+_AmR*7ggZLARNO~VAmeOJMw&gG%T6HTTup?#U`}r2Ne~sCQFEkS z&C=2=RJYzOf`xv;cz4CvWn=J}Ir&0ge|(A)a(>Bj(tN+(UzwAU+rq2SH)lxsRfkec zBF4@28zaT<%I*l^)=EC^DLvqKOeW2F8sF+3S_|J41kZzDc%o>nf zWhgF3>*Xdo^VuQJCIS654W+J26Pkumi1{rKqprmQIg`!zL&GAhFu=bj4sLhwusVa= zm;pX4_k?Q#=5e9Hcv1JBN5pV5_cPuf?z3+WWEjtbR~eJQ`|T^>P53cCSYB598seAv zT30H3bA~T&+PTMFGyu;%HJ)EFrJFom%u^MixAmSh9(b>QdYXV5+W9&_76JR1Y4 zeKb-_$D~}yVg17C8Ll%LDK?n`dX7O$fl|Fu$^=(Agzf}h`)j;V^}tv~#@*c~-6Q9w0Kz@~GA^M%}8NakYBEk#_yA{I90 zEyqCyTzfRGOPZ3kNyRJsnlV$cYSr{}?jn7>v_WztRX<{^NtbQx{URxVoPIsIU^l&|Z?jhMZ16QhfTieae_= zwUSo;L8 z$1`dvLY)8)DwLxP8CJSm<70V{ReqnGusMypjORf<;!H+BesRFN!4iD#)%YOmk&E|a z{B(?YpH|q)dR)i_2Mhma*)Cqzqkvvu5Spxc7of?B9bOM;ysWH8!TlpEL)4$bn_${f!RAJQno)r0V=0e_MgjyJF-BFP0 z-sDn4y@u^hJn_7TLct>ac;9Q-3F?X)%8@IM+mE3hlLC-xJ5JFyMCz@CJh z!bo^K7C)U9eOKdVdAoy{eSokkvTV=W8B<{llAJ-=lI#WU4>UqnlH)>7tqP+Zxjnoj zM*;23pny_7=X=*jttdH=$9ja)6_l69Q|6f;W|euVwU(A9;1x4(Zm?awwX~KZ z=CB9^=493%Ypf9fgP^G*ckUIsx3HnG2`x5zGWK@H1{;aw!&yC_V&qRXx|WgaDFW6q z(~Uva>>0VGh#?k%d@ollL{GLK{hH{yV1LCUtbES~96Tt1Gr0M@e2*Y!GXxPVhc~i9 z2L+vrH9A&Mbs-CzCFy&)s$K+BK=&~STBIn>sAc42qC@O5jhHnr(|{kEtl~}9H!3VKzUvYTk$IDa5PKFy0j!M=Q)KxaG|la6aqt!fX=qB1Xc^dVM#$TBByUnGLvZ zu5kJl`;6yi1o;g^(5CVvfP`B2+4?n}5FLNfmd>p<)qo%VSb!JqMay+wn@n^opYivy@8ox-{E$lQOpatnr5JX&1m>yL2jORD)x*<(egzbue+Mb`>0Tte`w_3HTcM8uGM$n0s!it8VaMWx&I1YCY`t}&mWg6@q>SW z{!4>mw5`_UnFRUhW^Tf1`MEjSl_0mCWiU%)_ExV`5S4TjDJm~;ZCvwfx&54=OP z$mw8tzc4;&gnG@Vjdj7k|0YB>uvY|{wVsIrasdsA0o-siks8l{QJognaFHphwR}#_ zd$1`M(_oQ0d0TTJpJ^0IdFyxvXfCPYg4|eW;<=xsHeXtU23x5Bm0etBr%7gxY~_-T zlSysAtR@Dzkug-GRF&i?T1*7zuR zM0DWG3=CHIWQyJsZzo5CuBLIbSNL4aN=FK@%~?L&-HL7s>U)d|qSQdOTB$Y6xDv#g zV4qF25DA)VYBVvMYsTRgLOwGI$hyn`J3K7j?TG1OF^FW%yGR_j2Klu$@@Nr(n5Q=# zZ&_C>ZMBGpIo))exlGAx5e;=PqmW`q*=Bmkb?MUBA?_R0Kq+1+LDk1<#jPaE2OV>$ z)aG5Dfp|%l3j2Uz!4k5pQgODpvBnJ54?Id#xTw1h6KYGb$q;Q~7t(RdFb+-Hs10TE zMHyAfm9iT>H`VwdXbhB1bVf49gV7cm40&7tYncyhr3rxf0|8+#rP1^I8W2q#0M$W$ zI}L<+P7F#K=C{|dXpI1yJkU?lkX9WNhx*AH&{CN^*zcktk+cS6Q-}L$8W^D~1h+Zh z&(s8MWL8ka4j(M41; z?#Xkd_}T?!t;~uEK4_(1NXOe_A6hH$VuA|Wn_(c9tJG?_O1?LYydbu23t~R#NVz?4 z)^dBdBBsJtU>Lp!<|@$!7I5m)I9cBVt@2;KO6aW06-J1u-+{K#sXu_UlETrz@DtkGYhWZ1e;8!S1w%ShPW%(7MUOPpYy~oLi=T|!JL&l*IP3gFMpb@v% zh*^H+LT3IhQ^*RIgybT8bACQw%$MXVXK1@SE|M{N zP$Ox5d`lCMKTQZP!Y1)PzO@vwIEz5nFiVknscy7c5;KhhwG}3-YY=LiGlb^1Sclg& zblmEULyOBouH;O;mC%@=*3hU0RgvQ6=|6X}J4Y*zg_9sJg>dz^vdtx=^Zr z4OheaWR--xj*(bC$;z?unyg-V6KTgDhiYtb4z|fQUB+W(RCwg>t1@&(!3gn{2x6i$(}E zz$uy{%VUzjXI>&2A7GdE8Xy(^5W`W$2qb5yT(+lcY+?SOH>=34O!T>!b$Ls$$=J&n z>+-DTvu^X9)h)C%&kATM)vZ<+mkjT$nEppA9tSB&xYXKh&ajU!kJILlz{91D-phU1Jm z;+G%9N(HubaFDo2tHHWvwby%j+}`qoCc06BAi)m&TLWHss@UT*o+5c)q7$L>u}KhB44{^mi%@EE z7mEBOgIHZQi8w>iO&VWVq+jlsmwA&LS#H*fTT>1nbnE$2wVyISZ_1&bk(_@%2F6)RxR671R#ygy4 z5me!PSDTy(efHVHc_-GHz*)ynVLTintf_n09Y+3xM%Wqzbm&ihE^OanZQdY|0)C&t zsA>p_uAEPBsy}JG(OG046x`AA!9Q!otE0-!fUaW@606>VOuPNlykPcyjhU4Is>t8|Q3zhQ zFRh(>iB&T82F4+ChC0;(`5qBP+8*rYZn#gOdph0 z)(Ba940|oW1~&+uli2>~x^XBc$jJ;r+9Y>r49bSYI1>h=T{K2k+C-@L?-5$ZbA`RM zNynYYIJ8}Vy;>|p(;E<*rV+E;$%XvyUSV|^OZVDN0bRkMCZ&eVvYl=>vn3@PGWC9; z^ax8QN(6eGK{yCm*wCS~r$z_kKr=~*iob4L=`8jOm@{^zSUv#fFaVB(6RtUH`zhLM zAB~OWNQ7$qNl4wyRrMT6$KAp>)Vx#~%x7gP>KJN&jhZzA`k)0(Z0cqW-Uz6|@(jaw zQ0w3T%$3zR!Ms7^S>;#0Md*B$+__X9U_?zKEMAdop(50Hq#{k~L}2fH(a` zxGiZi4EOpxZ_mz1;V_tO z(pEBtSOy#`H6$ueGJ8G)$>%#^z#uUk{cuWH0?Q>)O;%?NimYx7N=3_g;<*i$Mm zEo~kJW%Rka#?abR>L7mk2O)ME%SM!qy_PX&G6uO{UEcM}H2Q0KxhJvMV_oJ4Zi5;( zYZ97>KJzBwc|W_GH=#?%Kgf9GRE_NHXzc(rhcud2PGti=eo&ar&oRf#sR*(VLtu1M zFvPl0=O7j{J^61e+jBq0 zJkJ=kk8G+fW#r|!_yHa?=npkg$eNmlBiQ9P3bTvZVbIm%j=}l>yo`a!0F~H%v_{QJ zN?ph*zZP0Iv2-s3R6sW~2m|pzxgcBe%yo=)Sx0MF%V@CNk2HD+TY=@0;s3f>sD8j& zap_!a!4?8OVgaz^AgA{~)~H&RbRiqwC-m-SH}Wj0fbL~blaifw!+IyRq+~-*zf~x$ z&C-byf!1XZx|%w}sao5`a%J5cK+Lm4T}B zIT-W~XhDx*>lz_GIk%v z!o7=Q!4Pj|hFKO2*{jjC(r*n||D~`ziY?-$--*y;85)ormq4=6ilhSkn+bz=uqK~m z67+6{qVD&+c$@!gnUbhpOHG8Ca|4+*X1InnbBrQ^QAIHX+8j#cow zSL0=+Tn^&E-wLOf*#Ethi!rY-2CK={;8_UArS8)hS*yt&=EOUM(^PH?Z#7v%?ZznR z87SA}!uO)tou8i@ay#)*arf!kR(vaVtH>p97lz+sU0&=?#%{w{1Od4f&1?pf6Nse& zxf5Pap@w8{|Cx|oOp6{~29+$LWR@_`XU%B0Vt%e%8x^gPLfw*@I;-70%nu(B`ERj& zuiZ4%JB&gb$TuK!g+lY%k*s}J01i?ttF<2Dq9BzM8lg1-UQPo;Z7bvo8nWqVNe4mq z)J~FMu)tA~3rR~liDOsn;>MCjfOML-@bWupsRKyH7H9KvO` zCtH%8WBI83^J|Ll7PMQ9tZ+%F6JL><3>hu%%AXf5b=)D03-*H=ZtkaAuq$fp;J85! z3@t8h$ybHnk6DkuACxr$c@iVxxcRwe;w6t$6dL{J6^5RIY{-k2n?bgskwq(+@}ZBT zXiY1MFcpfHeL(e`+4JYt4(I_5ZS6a4A!CIlrQKgUfLhSociN7W*I5cyy=P^kMO!eQ zt1(8)7qg{qt&Rt42&?54-1)0Yy}oU5u4j5JpM?AlBby9m`-;*EKWNF2aEq)W3>RQM z#85{r%t*`!%?|XEe3z+dG>_0|!li>QlmuSHJod05r#Idv%vAVB3`aPYqej)J6FD8@ zD2=T(?yJaczbt0`fL+lW_mi<7F&0T_5RT1GJnF&6YD8h1a35Z_*k!imWpjOu5Tn&Q%=OIPHkjPQZ$d2RBPT4LN-gfp2QDQDQ@zroyK1u%;V* zO&A{_6s($JF*rCY+uWsX43uqToY%3=c~6iJmxR3kP75sM;?1Qv4m$I`p#Q3&;h!#g zfZ%t&A@HgOM>Lf#Rgg`tW@Bqu(O3UZ5PNC}bo>dy7WVBbrK;qp6Ko_*^fI;5hDs|% z=Iv@n-mE*Lwn8r0#IW*LNx8GHx9K9JTo*L!PmxxPbWN?>n-*ro|B-6M8?PUb>J(|S z9*XoM18nM_R93YAo3yXjj@1)o&3ZD@jWMmMd#3moSN%VveEoKmCkvbPT%;Xiv2R4| z$qxN>tv4kCeX=yakS(i1!|dP=i?04}aqWiY+8771$5n<0d1Nfc+-dsXvl<4y zH&>Li7V^-c9PH^a7hq-NN+b(?w9zh0-=YS;h=zxw_EiVWBr!XfEfmdlOrhFy#>_9_TZ7?qXuo6? z#e4?eLW9PTy9sIqTf*ueh~mF%b%*nq4d6LZF30lYgG8U2(EqrGLHiht5RS~-_lXq$ zrbZIoz!Xok%jTwn`)XMDsVtTR^Ow5nr=J>hkA{YM;>+3+^&f7AjTu^1F&8%ze%;$& zHC^No4Tvuh252{neL=|4rb%AbpzsAi&5kzj$&3|^7vHAAFuLF?nFsmwQ-OS6vkyXZ z6JqYhlEv_-zuo+fpnj(*!V-XN^Kd(UW2T%`9A^D}FA}sTvehnE;y9YUjKy;A=Fxu;qa6p|6^Lzl5d|-LE-7O>hD! zhK4C-t;R_k*Agd=&gXF*In~V1VWImIk z6Eu5cMcovQo-%sjKT`H$O>97*Ct7ZK)%4icw330;a$g*>kN%&OT~A{WkhN|OUEL5k zD_N`*jmY+y-g1&wHV`Y*yU?VQUYDZ#YDELKQgmEc_CC{_R@2xgR9D<5@*?v^-FZ4$1+LwGNz;`qt z5~~nciFTfkH{o#;jUMIK zkfLL?qVP-0+s}PkN|v;efl$lY?|5E{-l!GD6uT$iH_lpL?0G;+-#lAki~SGo-Gg%< zm%?jlqTxf%0sZS=l(K)*%A#)hTC^T8;~^>eqDCPoIX7B@{`+60WKNR_E6A~q$lbs7 zpcK7Z6BXnfbl0}o5l_chY6T3;^eo0DIYlHb)_7!J{AmOkP!;_LsE(#vb5F^)A$ zyEjohYmEJ%#sxJjl;T$aA2;Gx)x=}OD%5+;gX+G^4pWIr5_o@0YUY zq?EN*st$QU%HFCO8g5^xi&3I9>54x~;p;TPFm*8(-Ga2^b5imGO)Lx{&sRo6UH?;3 zbQi5CVwfrF8u>?$2;lQ%7M17`!Nz@3@?@|-%;VXRw zv+ctgqJH|SAlB7XIEZrm=FZZli@mPt2uVRl92`z~Rsg4KwRTikgT;j}3u1na6#8aK zRzphzk$V+ilG3ke@`KXSb*$1a|3gZDq?JZj3vSddM%T9Q`-&7_Qlo;}O6M{AzGaRV zhRwB&{I?S2m-BKa+S+=!fEkyr)QZC;#O|)Yzh}Jd5v@GvS1a{`Eq)Q>LEC8b(Mhe# zY5!wJ-7Pi2u%Zl(<7AKwYx&i`N$DfB(r|h^PCRUi{#Yvt3!00Rxj5u{flSgMSQznUbrNy&vMpLZ6vs~Z#F8T6E%#FgX2~A5 zFE6j2#xQIjD9aZ+YdQz7#dpFf{#6=T^A*RL<*uR3a+^AW$ADECv(ETgIK@Rw-8HzL zoXYl)K3p8C*QqN_%B=GujoKHt@Vj?3u;UAMuY9hv45O_Q7qdfh(?Qtuc+h)O*PQ56 z@lbBY^m&>o&1vpYNL8wai-pj}#FW!Lx&fCX79>25vV0p>Ym=`EWLMYpS`0Ot^DIqktSzt~yA{(`)8vzW zqfl>{Y%|nYe@|++zq^{IX*8c#3XLeqd(oJ3cUL3EmSA^>5F7AZKgguz=80F+JVY2b1{v65ut4d-e08*D_)ZPoGjh5A-z#dG$*Sd*?G$sb3=e zB8GeQ^CIWzY!Ib>9_TCvdG$*SxhpY2rGAO2K5#$PnV2Y6KnN^W5&0$|W{YVjiW#VqqfRBfHW=Fy7-9x_TZL`%- z`!NbjGdQRtU(YJ`E79O~jm8b3I^d=v@7z=v*4YC1To)TH89T_>Fr$fvTF|>rqh~dx z1egf$%PoY}IV{<0N`jov5X=|M)h^~n6Q?b2&U(cUk41*hc8Q$Q6c{Sajl*4j^7;1R_OVR>dXS7W`XqKKp(Zj4>3^7P z7Rr)zX3S;E1MxH!9PiXPB7+M!rb<}BH2PC)5$^zfYZ=e541|h)aRVVPuTsmuOBMSv zGO)i#V~;%(0s9pE(i4RHH`s2-m}7@+C1GWjfc7#g%5s&3YCmCMf!#R@92B zHsFzsr7Al!6)&n1WGX`tl1#xoS^8m(5&A~S9FUh6+vRj#Szao07YJ7ex-c8YqnZLlZBRQ{qh?vm zg}gRdX#JEc?^#R%oys808|3~2GS?3@PS(7^!>ngW9mDdyd4q;Jj!~$Jd@Ij1Pf0Vq zBQ$!}^eYKGX%pd@;imDXU#akJhJ$cOwk+GE$(~2GAe;m~`TIinb=K$+PKCe8aEuo9 zQl%otG`&WFOCGDywMKd!dg&A)`!jA&Z}?0BpT}U>7JF7p^4y9%9Za@8UL$KcLlXD_ zGyPhFHF~y9g|EeML?Jn|AkR<8b)wO@gG+Q)&@K}|4TI5cBn*I`rc8a?o3?O?ojbyP?qg3b$GUJrDR*20HZOnpD)G*46zju2Rm)!N}fPMQ%OtPIsby8*5}?{vcwd3HXj#?7WT}-Fq6WrHC6?1e&9VFHYN3 zqif|-F65%Egy7vQ9bOqvJQUEq3~ExM=H8+uB^y%RStuRCtwodwbQptBaT$hicZ_*2 zB}|Dw?-niZ=jAhu`l&yzx(2?cDBwMN=^IXS6HuWz;HdeprUsi>nlnP-7a@+{O=SOt zYl3AEmzIlpgfUoRlQS>!@!3oP^L=LRR?g|f!yU}wjl3n` zmi>kNNvydQd0)iIECLgq!Ah-Ljx5fRt%#L5jz=$`vG!I0RP-mi3gthtr(&%~4yffM zw~coEty`7C$7-sqwH_bzqkRQbj|8HylpFa*Ax zt5k>Vt+%k#85$wWw|&qU)8UWerto}Qg&oTYjBxAc7i`MKZ^hO6hV7zlRdRA-NfE&xgs?L(V)+ERvL$F}f<30fmJ{M?wtOX+v z^V0#L^a9KG7K}91ON@evup&zcCUG*J}+IXt=92YF5M9fC>8vr-Qh6dksgBLm7hnwYO${%>j-uz!*f%aG$jkn|`TLvLdGsdeeCK>a4+woGR?w41=NihpO>L8W`$V z8Y|0C4r2Gch0?Cv2%e!BGo3LAN`*RSPruO^SwYFe{A@4bv^~rBf|7=s#3)#)XrK0i zm42sjvaIAF?lJE4DYt-UCB}>~Yoe|TqOZxR_~=_b=-jH&vHF?~n41wcXK_uvzDAI9 z7=p=i(YcuwbnejTSo3!mvhe{z=wg-KicgVb3lWkSi2K-jDbsa0X%EDd*=lvc1+3Sg^WJV`U|;gxaZ3 zh%L@KyyR8KeVK9S%qCZq)9Fsodq87mb!HFqpV`7|D$DmevxeG@QSc}^5$0wX4{4Mv zkFo&=%@95xuzPqOMUameg66=rvW4Cu?@1ao;-eZbjMBl_o`8K|AEDUG-3gzXp%zS{8gi4HKh&M#!TaH z<#zF!k|1|51i_(}x1ZTAn?;%L8s7fGh!q@M$W;Y_tZ!!CGS-}9V z(f~;C48T5QdGRl#_*kuYkWk18?zT+0C@mp6Jo?iLoe4uy!@KyGIa{HAE0o(3muNA;rnru|kTq+tJf1P8F_RdNaZi>3Xr~FO;f6|0w z0FIuP3az-=FQxo+tvp8gsJxicZm1is7TBU1>^rTxj4a@|_om)uW(q4w_nURo`Qg2( zYqyl*-6D#m-Mb`$Swax0yNmKIOwQqXi>h6>iPBHB3ZRGNhw_4H3*Y%02cMmBozwleN;gf^T+KZVswt zy5)KcxyfI)lFJPNJs!nvZWIw^O$4%>rU-XE`aR<^`)L^DIVDjx#~daIcbJ8)R=!4X z%W627Lr&kzjR$h>Ilhu)e{%qROAP^Yh&Alz3I5MC>4I8cLFsCxI3#BkLNacPrapOq&mAn3jDvy0bL2%7rF<%edW6JN@kpn(hU1%NP-RxFTAP zyUL|!NU4r;!^m2#!btOsMpzx>LE~I5EsYZ9D$$otWFA|)Oj;VnJ)@3ucL$k)a3PuR z#TQXyh9h_D%e~^Vw>LXz_N!Hj@eY-5oGZp$Q5!&YWW1T$bz$0(e(r=m2731BVG+8z+~HPf)&Os`-jmO+`gHj$65}Tkz+{Zd=&V% zGmX5pRw2+VSgkzX*!HQ!8p-#OC=k#8Gb#G1RuoB{DH`o~`}09kb{&lYre*>4FeLrN z)b(Snt{63~dWMKSj}yd~G%9fWumi^~_w)}1aIVJ30mMGH=BWnIQbX)?2VEe5UA0PJ zerYHTl-)>n_*{W3sF6ZEGIu%1We0XUhxNbtEJ41mu|oqJHDS>?rsij9N`m1NlVmSt z+W#EEd_}7Z#MdmRc+uGD=Nc0@g((_2#ixf#**!EW$S~`2IXh>V=ba{?>oo;ktwuim zIt=Xn|GBW3waW!zF5Y_Ra_+{!X5Il;#ComRXcuK*FW7QYIg5*SlZ}&G*tce^XacufsNZ(0g11=0Rf+HlR_m^xF6TZCyd$``IEz(>miBZn*T5TPzjJHRGAE&% zHt=@Wu5MMd*Bu;VTGwu5jeAaZ@h!6}?+y;Uk+raEjFz5(l|M;!=qanET{4(^OvU!% z>5_%l^H_EaJ38L4T161<#YkJX@=IHLS8M6B-jiMvyd;6>oWx``VzOCBOw#1e`Xu7e zGL2SlJ9*M%kZZb))Uu(yt55E@NMzJq8P?gMR{85U1?jCSdS{1PNm!L7r0I`GHe|s| znSko9YPQnvNmzy@X!^sUI7TCvKG}Fjd-@Y3oW>H6iw8^b390o5Od31t;#K$r;71Hp zw8fP~US4L33EDj1feci%#kmKP`iTrm(B=VmWFYe7z>-$3h#A4ATpEc)Y(gKg1tVx$bF zvz{KdwXVy<^)b%UrO%i?VT`9s$9={)%O9-V60@z-*$SRN_=vL@fh0fh2Py5&(cWSA zv5M1N=^2*peV`)9a}2RHSo|@?8pDKq4L)RkhG1|Gs?0O9^|=Yq+_C#JW<$mxA!+L1 z)elV47Ua5n`{3Bnlhx7a~0r&$3T7!*#Pw^6r@dg_mw-n>-HlsU^4>unT+)DXvMwlZRV|kw03KP!J za5r*}DS4hpkY0vZL#BVF@)M_2tWAh#t_gaS_A2P)9FKeR+w&whXOMCw1BYwvS zYfMSl&~q(=yfGyKcs&EHeyQ#T+L$3;zf@tHGR*Qg*&O6;B7Go^iC2T-C zoWjTvV~N=bz6Kw%F+(huOW5MI z4%6~nE&;ec11)W4BvJN!{h2|Ywgli`7zk$y2JL7ASU8|!!`SYO@e)oQw-@6O^F3YK zX0s(2ibK0`LK3Oe;7c*w+MJxWN$fL5dYhBe(DSk9SfN+lX7&Or^g^!+dx>G*94BR$ z+PMt&`gziBwSO^k9rGG%~GkI)*M zK-+t^4ts_bki&QKtOtzn+TFLzn>X$h%xkD5>BtF^WDV7{Tld?n;8O5ffs4-`Q4JxigDX(sM{H3O~>44XYdl>I!p{h zf~CfJ2oIq38Dymu{Dk21T;5A781o`ytTy+b9(h{P-4FJXqMvY<&41 zqQD5tr{rsRv>uLU4)0|;o=*|vK8Dz>K(8Yn&*lAAAk2x3v2^gOiu-b{Jsph6FvgnZ zp}hBC5?*6Gh+*C|FA;huL#?)<#~hd7;$GVjWGRL?8oW0k|I2134IbnZhFJdVKOMQ5 zc~s4f?w(En|YcNHx zbqKOn0wl1W`aM2vwA2$u6aI}_j)K}E@F(MLk?<&Sv(%)yo0@;boiLN z8DouH%4424Fez{3Qb50EkkxDaS3oajPF}C^5tlK-@+^8gbQ%};Jc}SR8Dh=h5}q9W z5`(-sTmo=G2HN)W-YY$gt?S#%L!8M7%d=$V#Czp*Ip*Ve7GqXmjHe?yi-Ffs@8|N0 z4j1zvW9)YKUsc_ai~H^FLw05eSOpP9YOOrRI+>%8H=EXRyD-l7u~1i(!Qdg+E4V3r zAJc(XGtio^2t)N1*e>Si%~z6;V;QOFE5{c?;0@U~nPq}LANe*TU2AGD(4NK3&DPX_ z=P*#Ioi+Qz^R)}HO%iJ7BNt^P`h4J*@~zr_&K8f~zLvl+o^oiY*BNE&QJ&5HA0xbc zM2^BvAGNo7-(h;5UnBtEXP{Lt z|Gf@8^m`3Myn3my>lkK5D(M}{8^Mn=#*0)s?kUDuwNl>~-j>bo)k=j;WSBJ)`cD&Y z&Ahyk&_|3lLJ!pIsBRv1sP{%UL8mZ_hS8U)#iAy)QdibrR{U-*xxxQrQj*$-o`V2o|0p6JN_s~?Dl*SWNB zB@gi?BkVeq`-;&;lSltgG;F|i_Uk~Hag4EB!rHsBx-ru^Ov!HvA96lJ>{>|is3rQ| z5)~(NdA}BfIgK%PE#ym0)cIZ)6&Wt>*TRQ%GsLci6pzxv`#upBYqDMaS`cP!#&|j+ zOD*_@=qNBJMTd(iGRDf2!nJOBjW#scp`VMUnas?~lai2oG7H)vUK@Kf#c`urdy8I`Ur7WNy-l%!Jy%t_j8&;uh_#RQyd%7EbZDmZjABZB1M|b`)ymgzCPh$;6Hh zjiPsvRM$(=>+U?%>2-U{fBaPfCVz!R564$Tbe(dR^rAEFY)#$ z3E0*QH)&E9d@ZtrEsHwV#C~V_ENQ-+AdO=zC?0R*QjATS6(q@)zdIE_kw>ad>B=N1 z(B=sKDGN?oc2MroJijK5vihLYC`r65xYaTfi+S_xovhnMEe)aH7NKtQB)NJ^x!h3D z@ExOp8Y(H(YOTfk4hZ?{8TsyLm^6yCA>8_G26o?q{S`k7w!gK;Hhy2k{d| zTDJF$`-5(cRDmAKykp=S!~*?FGz@JBo7+Ld)Br9bW0 zDgIOk9n)FIy$O*#BBPu*T z;RN9avhd;ijeWWa(i<#&9?WhZY=ZbXBPrfF(**GcvG}Cbjn+=7onwNQLs`r4TfjcU z1nGyf^x=D^b-W0|k7VJ)4-4M8A}Bb96>LB3Ax1q)1U1L8n&CHreT)dwPhjau%LJ|6 z$Ui;=4L@NG!|!I!$sve8Wn{%$hlU{jbQVAS*zX<}g8Z{s{_wkibyf(%&tc)icOCnj z5Tu{a(ubeM@#!GwxQKPkgL&ekK@ff^3m?8`%2|;3BoV}4KGNc&13?gf6^oyT#&AP>Z`pRDpYd2MYec3Wh&s`UiKQ;ZLk#_>IlSb)e(VtYi4K z@Q>+0!(Uj#@M8#_&VhZ82%t3 zyJVuz?2!H(OCP?Q@};8C@pslSd?%v2M4{pztYY|iK+V2J6ypEM;)mY`_7$R#{x6n3 zeE;-Um)~IF^Flp7egf)mji_|%-cU$?houicb9ZkHh5Ywf{_sPOe^V$l{FgNhziIuo z_fJ^(@S9eIyKCd0vGn10Dd%=jSY|%nojfn%t!qIcegPIg{IwPBDo|)yn6<2)w0>Z{ z(i46!tz9V}JMSBEK6Y-<23|WF0$C5ZvUclGmh~0YIwLYMiTOjK&HbXf&xkAJPpzov zqeeA-YTbS0)jM~yn&x`KXm&rs&K!BQ*0~nc_phvV-;vkK7q~+C-&pzHqodpoLQwrY ztKMVeRhwC1w51AqUu3vEKbgzLAxy zVxj%ttbG*Xh<$A=)c)s-QES~L3$^dE+EH+9zFHQ_KlnnFn;_y|Q48fCvGP$EuA*yT zoiYA@th;;UJv`FwT|tZLf6f%zN;RxAQ%;q>bdZy_w3TXDvaD2NyZG=~VydyAXd6bV z(UHQ0RAUjNno^CVGe`1?Ql2_D8_?u+#_&*zW4Og#!zFIf&;;35YaVz>G})KQWNqas zA?FsV5{&f~)mUxyvvw6H+;1XZg_OCvM(&brcTf@_{MarMk?)jOYXfG_K4Vvm-)A~frj(CwqyU3&F@pm}mq8)A z5(5NQ|Dp-VJJe1P`8E?sIx3<@q%QAHXw>REM(85p>$1(`^GRoE9kJ2QZHMG~BG1}e zJ*Ax{iX>U_XM!AT!M<$Vc+wv{DByKzP>4Gl?0nO%!H`^RDa@4Dtn z+#_fY3<Pl(V&hoE>x=dRNvx3YL~!c$TAfI;$N8-!g}kawsRr}pG?u-BXWS^FrMy4R1Jv%es<@eT8^b(z(+m3nn( z>zX7_j%OXndPgC6^~neMf=odi)eTlX3RUhOs>a9oVd^=ocNC&Wq0XtmL9BTcYFzB` z8~ISyI|^N?n6J6MbvUctbL7Kxk)!mHtaudaTdMT9!_qOVb`dzk!L>~XAk6q2rT zer_Y%+wj8l39Ne*dXvd~HvABZ~^pTcU}TDIvdQp=?*a*tTATmY6g z%Q#NOPiF?B5Ju+8SGDMlFa*xCSnntp{Gfcp&AHBDwd=MMM*8yQd@bIlg({pcvaF?) zNgc?s=DRxtk`w2;7a7LRGRpK3Q=96EK5x?QWLFo6Ip4OcDxBx)08Aw=VsM9ZLI+ovqN&}qT`ykxaMhV4KNU6QJ)OC zi3Ylz4Aj;VS{rH-OmvrOqP9l*c9dp&vQ@dzHlN83_GPMaUCY?$<}SG0AB=i;A#3z> zk8^eZ>5I@UQ$f_*)BR`GJ*}Od(3Z`0Q~%`)Q0dk3kuN~yMsA}%&MMpbirbE1dvb2F z_|$0Xim&oUM|p;IjaX#Jm%8&kJ%w_g6Yid4jU#5sUaxk4XI+Wc3D~1gJFO;rNlf&Y zHnni3^KI>taVyb|)`Yx&S)-rk_WQS$gLYi=u58b&id;eHbi?Ji9eYMeeRsBz>z7SS z6?xafUG`dmNwhcr=-dYKjn_?8S7P05eP|tq5A+nWeZ4Z6It{Q2>u>8b&2aR4pG#Kz z;#B7gZd$u0tL_^mw-eR<8QG&}tY0a6tA=YckJ0LV!ecO7bQd$$W%b2TGDCCCRIWLd zwbM+sCXeHI6R9pHGi#K{^h=uvi%P9W{#~k=J&aDL7|T@pM~R9YeQy-9McHzaX$;6y z9ByRVn2C&5WSU*8xM{?utb4Saqm-SU&(sHd%vKP2wxQ2?^#dvY7EGqCZzID9Q>Co* z*0~u;8yuh5iW!VnpqB4{`Am-&Ex*tDM=M#tbqPdZJ0_4HrA`qLP|dLY7soGly()TF3wVH&fPSz--sZM*#Mr|nVALy1;Lbm9-rtINXnc7xAZA0a3x%Ivf zT^Wv1vX9lZ^=ZxUmRAkq2M8zQ4|eNy6~}V*X0g7u_NBC?PaegqRtojHqy%Kw(kLnp zm6pxJJAQ*!S#f&{1#MWkUaC|Y{Ta>BbyhoKhBik*C9>7}3W}izS@DMLIB+RjE>s6( zvMDdtIl*N}1X{tRt+irXnB}BXEFHG1I{FSV6>tJgTS2))l?g%TFr%D;PFpj)P6=e| znYx)}=H2n}hunT`4bq*fuUB#f#_fA$5bmie-EuRaWZ9;(5;V%n+lYS!&tce375$s)ovw_d+{-@^n7olZpBm^*ZZ z1j1#nN@g(cZqxrGGimFpn9iFZSbiLkclo?ncRy1YRbz+=%p=#zqSu4WWOR%%(2$Sz z71?<}UE*P;(AGJTPTQkaX>9Jsp~qNrTPxz7YQ_vbx;x0b4Gglq#I$hIP+pwDsYnwN6>Z{2|sVSaCl=F|qbpam0kit+ZPcmpndlQyghE|2M5>-~Y7RH>Zw6mgR3)yj~2Y}HzX zaw}EKX;|+J7E{5Vhp?oAIi*P5p}X}~X~L_)(myyqLb28WwbmjxYpFhcm};jbjyx0# zbz*IEB(aUt7O1w@i3fabkpu$U zfnxM@f>BRSk<$&f=54?i6>mKeLDg>1p-vj@z`SU?gO@=m{7zP_<0ie}B`Z!mjkVIL z#7b_}T(F)VFveP^8?EIuSc5KUs5=LEIK7P>DW<6TOlr0qpv#R`tK9I^b6d`#&`w*M z`YUz0p{@d2MNyp+LVcok;RrJ|oUfiSU~MVlMHDy(=N^Mf+<>zh)QCihwt+Nl==X+l_gp`I?(1zu7w-l-Q9@R8b_^El_&_H_eFtn}cW zdO=P=G41M05R&xXowCqwunjo21NSTyN4-ulIA%)mkSnQ~_KxWiX@@4Qeg$0B^JTc5 zNwQ4b%EI7N$r!;oNuex^+1K!@C&d6mc2Ouls%OUe8_1dHxqt3(if>W5I-YTVlwMJF zT;GD1TCLKgf%$hS^Hck04y%J(onpJ&Y(k&74FkDmtt1v#u~Phi0>ur(V$C^NhNUdw zB6~U2$`F2(83Igab{Z`u&&d#eN)e9fTUixvq|~iNBL~L#=ag~(%JHi8MzdXnTLHk< zb#ZDFL--{{IKFSuBLvu+7lmWS{x_MjZ+c=ADr5gU%KioYOAl)$I?)sdtO8!n+zo>7OU~^FK zj>DQeF{i}1|C4fmVc*=xU@bGAMX9LdKa_La6{Ydif$9GM^GJdbIQMe{a4#X)|@E%-->eX-*133c!PoaY|6d=02y$H z`Qi@jRnw}}wiMyTeS0P#)cG2Bs-PVxz|jc+MCYIR1QTeJJm^K|_43(R)ip zUR~9wwjV|6zsCV9vtR|Z8VC-^h;a?tR3#1^L>c!VVL)PNKAO=mjcNV)lym=$9&pBM z1WRgrI!IafUyI=M1Xzv2LO_%cVS*n{xfkMUQFw%CsME);hhflKXn3SyP~1I1)?-2y zhIMSol%Y^;)e8lZ2SegnX}DahjyI#cH4}Foawo%~WC(CH#hz7x0%_W2F%(3p7&lOeJ!7h> zax(7qKZ9yIb%jz*53zkHRVQ{BZYTv~^afz0R?o%#@S<4?#`R6el~l{UVmR}|zCy9K z{5_QKf-9Bs4O+jH3V4QcN-kq{F|blg7}u=D96CnJ$oO80d`TJO`dM+jp@%pj_6Rb@ zC1mW@F}HKYgA(fPrgT>m<6oitlSnPL7Ba4*lxy5@!Y1_*l^Cgg%0G$JVn-sAdYp1i zBK47RQa97{uXxSQ*m}5i3|F5{Xj*Sm{&Dp;PV1FcqY3AbDb;U+vhBCh1Z*|mp3ID~ zrihnj##r-^mr=(3`W-)2Ls9TGlxtiEGtO?cc4u5`x|mB}PgyVRFMJO2GjCvbS*6JK z63RR08OF;gM%+4-IPtM-42P(|(L&(~TrpU$pjZdQl}9-QFI4!$uYm^TXy_PA{o1%L zx7z_I3g=_6%dK>9;}$%+F{jN9E5NY`Lzb47qt^AyXULLpMxL*F>eN^%;7 zNvSL82ttOif+D2U6`nMx=;~|=ky2N|A%ZH*N(z(GciACR?I7%A;htw*b7m_06} z2q&eh=&*ehg1SwG<;|7-;IAU8fLn`3Fa>t&7rYtPJZYKwNsj z5ugoMMCpx7hoYpkM!QiHd&*cz)>Dj>VMaQzjv-u55z^{vq9Pyc%22MLC@DKgeDAMx zC?&(WisGcK`W%N^=30uB()v*6#Vj`~%?%VIWfL#~8*0Qv6a%>_dl0Xz+oeZAQrg9^ zW`Y&x7K(I9x^^Z&!c6{JZ+)>nIX>>eCfIVYFhprjUrW(r6JG2Dw(#o*7Qy)B>83J1 ziA{K!&u&v#{R3F31CrRWyO|pufiMyOjeN-nB-Zm|c(YrrCyQkq62Ll!4rCvq;Rl2H zAHt~VuedcxF=zJ;#xtL_jxg`H0PNC2NXEn#U^9xbFvbn#?dPEl*F6F5umA?V(r`5{ zHz0p6jlNb$r_m{F_r|fbGFFWXDh`~fn=sM$MGWF5aalDN99)W}6k~sy5{PRWo%lEK zv@Qi<5k-h=v>Xv&`WU8Uq_a$zvYtnA;)X>oI37FrN?8lTUDke1gTD>b9}a0c;03X#Sbtwt>x*fIXc zQT}m#Y?mS^M-DK66DU9$9kt#`Uwvl{B_- z3qQ@AS%zL&fy`Kc0a>g4u((9n;qq<{!A49%GcX3^mA$J zHpYXKClr~Vpv>bYN~U2B=jDt@=aVqepQPOT)ku4+J2E1cmoc_~q-+Z@-R)?fcv$N9 z-w3XHGc3fA`r2_zo}!N>Z(SK~rdJrg5?6L8z3jLJNmicJZJD^QM()II;}#s+5#Xe4 zY2zeg|2n!XB{^@gf|T)oJ>?zeU(?FH9u}%c{VK-&Hp)G&YS_8M%`e!HC^o&FGLMTC zcIH&>w@}u5#5!;^Oxf$_;JSCJ%YY7w|4eaOmC0Ml5}>&2>&P(z)J2(CZ#ORgInq_S z!Qiwl*rOEMfU&(7*}8>PDrt0rSGO*9W-zw*QMPdnXe?XEbHnZ2kv}rN_fx)c@h+Ax zTj&|B(`9VmN7?Qjr&)elLa4+m_Xn5xq?%}o+vgU0G=akGGbGg%TPe6GvKxj^^o5;F z%+DK>O>qr>th9p=;pD>;81FC93{$LOLLs9CohySUgxEO2lztCo9@p*#JIcd|a?Djw@Hx=Sl6v`Z?OyC=bcNY=*kx0C z_;KxCEI%5Sn3(gBGwI#OjY;CUOMNHCcW2tkOu)1rP1P`_yHck6#IzpkTcswf28b3= z9rtUn$={(XBiSS_Nf3TJSj2x7N4oX0ydsgY`X}~^wvI?Qb*8SK>ctJaB8H_(r3eD^ zU4XEc9HKCuIti0}V~tAG?P37`F##M%N*nF?8!Um46R<-Mj*Ja`=iver`bubWr9#sd z$H-!^xHQ~Lh}%k*#4x`a+jGS+=}MbE`BO(_#kdZUh@;YD>H0=vEnyjsd8l<2z1>K= zD)i*fq-bNMR;3M#ti@_FG}X-%k{+ay6cX+ST003_=(S?Ll47oM^Rjps8N{n_;LtC) zLu|B&CwNP3F*D|?DQI?<9M{$Qx;)W{LSIkO=&`s-jo7Y^jyI}N6U&r&Tdsfx>)lQP z=>cwuO9+6?T33x>Z=r~ENv3Pl&R_gf&ThTl4C)+V#?KmVd@ zHlKBn&m85Q6qN4#>l-wtioctJr8gO=+7IM`LaOxpDGEJFreDRGs`3YO0WwtK4^tqz zNUHA=nX2x`C=%_n38dkY$ZDi(B0cM zW`jjM3#!`j#*4+Ur@%z~2b~e1`JHJv<6Y<)+kaEGeG3eUK7+vjqnv35(k`%`L}QAW z)iCwZ=%L4U)<}iDImNXeEZZ7`<1E;zOLz%N8&+tPqhvCJ+zcVr94%cIog5D?(^E{n zC55}t(py4rRy}eMchz-@uoFsSx1oy1K42bELEeTU+q&}c$ZYXZ z5hu)|!4=cwTna!ZVjMJy2jo<|XoCUcy*=ek6Bw?%JCkC83*)|HhTN6qGmQH#lsg^g zIm*tst9IRuvhTMpGLHf;RQzQD^4%JeJ+Qb54h4)GpgIVSM^PI5Wp66DZG05#kj+-N z?zvU=eJP}^78J0`o;UCcM zDGoM3xzn_v)xDVCVjvtT)wEXsFv^@RymMnNnh{0(BPl|k;Vu%t)9OYuaV%sk&WLxr zINWH|RF`=nbmzQvQAR4Y*H8 z{8gtrodVDVv}*xW)@NqJy4)CtmHuiqJcqKT%g?8m8d#4v>QW1(=zbLi>9d#4bPqox z)hJudd~`K()?0AfC@s!QgCg20`9-u8sgcZe;S!3}XMZQqm)OR^v~?NfnD4O=vSTJJcxiJ_p0hzWNBFfo%24kR%2HV~o;@(px6xNxZUB9f@v1U|!j!+Mo*- zruUc%8S`u~iEPW}#W`c83pcjIb`%_P;yKFDUE+goMME#4<*;S*;=o4W9vn+oc(8!1YnqToGrv5o)D8G*E55pbp2UW<90 zvC7ENioRZ%1Bl;lM5h(9+W2Y;LbnY~UmHi{k~FL3wQ#VEQkd6KoFt(XHj0oW+~R@85K8=K>d5%y4cnbwc(!fRCdWHGh zDDxy;rHFYDcMYkbcTl7xwOb&8YeOef4I%HOAaqCI^mRgjn1k-SDNG`hj1(b3DxG!C zeDwj!JV|{sA1=)h-cJ#d^lJ1Z-3O7a-m9@qEyXpgBFPbs;-$4OtOOsXB}ifbj6_Ah zAr`1H<{zWX`^;mZhp{k+S#hx`jB)=2<({N-R%?{hF#T!DH;GZlOVMs&Chq4b+a%!) z*hXC?waR{x0wggdEXptpK)!;^b(c)U9&UoD!odZqavq_wC-HZFVjQZdS|MJw_ptjGi?JRZEXkj3nbOfx)_YB7iFe`V|FB;>8h| zT9hX!_as?R!M$iJ%aar>Nv5pj$yc;6&-x?foTQGxr4>+3*nqC))kk4Ewgx9QtGSb> zC{&VhT>#Z=!G22v%HJqTl7w+^8UO&SRWqZ{Q2t43I`B84I}{ z4Sk$lDNK^KCuZt<56V4BFPU?nsFp~UVJ`}h$n#-yTXC4>MU@CqpzM?MX2Jjp7Y&l+ z@j?obBn1PfiIHVf2U6Baq-U&SGI|GR4ngvHhfs(l)lDjeDVujFMM=^a1ByA9cLe31 z#8H7i3?y15xZY23)T1f;Bu$yb9;=$#3>-r-5*i{bLQ&m`%%bbD6eXde(39|XB}Gxk zQ}#)+NT8@X^ot;-lC13#ijbs91B6ydZFo+ioRh3(fwKn3NgzFi@=hdm3xa4_(fDbU zbCTWzUCX$FGEUOC1Sb@+l$z@BXJ-V!uCYV@`sDvg3Xr4=%@&mg*K+bcbfc!lhw~{? zl8g*P!t)iY9^9eVX3nqb>_Q5ZBoHwmNTe2rAy4Ruo7Y%~SVJ)q7Y2vqvE#rZ1xnI+ zXNBRTK$sfU*BcB|ki;5`8)|wKBgxoVDhQr)T!d3A%X$iWj6(IX^x0n;JDOc5SH!Nd5~=E`MGuY=Dh3b=_jQzepAnWFnrDbp9m<&=DW=Wt;5~1~ z268>qu(s#*fa#XM!e%h4N|C-zp%z-I16x}LP8{-B@+a`&Ti~=n$%kzL zEBsz}U|h1MvwbZdLa2DJt$CV;Gxb|0`mKmT{MOb@nHDGT*b*G~CT{s=U~i!g~FwBJkO$_-AU1GT^3g~W&VX}@U0Xmi()Y#CB@9p z-cHeMNh;@JO-2nfgSnT&*!F+9!tfh&g)UNLL&^#&GVZIJQY9 z=VAd4HP!nlm~At%D;V?xu@|V?>jODqHAX4cL-}Bh!x_t?EwKro8SJAJ%i4fDI)>@W zZHD(S#mgcbHlXW1)`+IO7}TdIR2DuDP|^61;e3|jWa0COLw)`W6fBEE!SFXaLy#5f z%emo1r#Qnk`IC{Pxy2m_*KdX%Es^3>CXCR1zwT?%2#T}}rP)5`xK zTa=ha_eT^ZO`{vv3jUPBq){2d48uXY;eJ&Gq!E}GsQ_$=}m3gUnxWy-!iu`f2Sa68nj?+6jNLNNx{-| zgu~Q9tJ;Mnb})aaHP-*3aJEUY>FNz>H=oU%zuI1I@-i5^s^>PMS~| z(@btfQTDeaA}Xa$sVHwLTCgc(BHC~&h?I%2t@(@?Xv6E1fbl9go+0WoFvjcgxDh26 zVQZA8QP|ZP|jV$6zZ0|pkQO)i0U`5rBIhCVTWWKut!9)-qKw^&5-v|NZX+z?uvyays!;~_BHOOfVN@R z^nlQiNXJ64fc`#;k*?(uZKR=P{s2X@&4f%}B7vs0$PZB@TbFWrBx6hbQHo+4giVh^ z9sS{~A!sY~sjMMr^!+S_NEhhiqwW_dR638gM%yn_v~;~`K#PmAU!z#*YENu*{RTx! zZLXN8`Y466h!Yup46u`Ee$E$hcu+$BXKaZSn{xjf&yFeC0azdMo5(~`}PmW=} z8>UDUceGV|C;rqiSuqwM5^+ph=Fbr=OhybxLmh^|(hnC&x^A9L2pj zbKIIY(kZsbsv|1)2^8Bl;!jp)u^^t6_e6@hCiC*P@KiQKflsF3*?ZOot;DBN(Ck7( z*%M15n0`;EXxW8yy}3G*f@N5=hPc3m73~~~X3L}W=dKlR^oW)?!h`{?qJXw#M|}cT zC*W8gB?hggc-e(@Z(UbhYRrmv5rxanRlHVoRv!bqBv-Hv(K#p#>@o_Lp&~al#}8NR zR?ZU+2K8D%8KH2t^l*P}$>3m1D{;;$Ma{1EjpB+uu|kCzu|@&U&#a{g0E@I%G$^bs zCEcHPt8K`l!7fb2eOeSTJ8!K*S5>Wv-F)HdT3>Yoh0898R@>k>(V9T!HZP%g*+sQl zIXb4Dfn7<#vTFcqURxcDUQN-m>#rf2p*mbgF*8(WBRZ6ssq;n(mR(JN>(UNCOsRM` z6S(d{y=(#1cIlM_u$Q5`G)C27+p8&>ZK|ukNCw)3`xZT|;e8#2%&vnCka*NQ8M?iG zCP3?A-8OU8+bC#;bulQZ*6`m>F|*gMK74r#1ddVgb|*L(B01h0IQ^%|^T0sfu%@SRvm} z5wmNnn&LDf2KGS;mR-Gok?0XHB2`+e4^zPGB2LRISK&G%=_U_W$d6IX?A!*9X@ldJ z;DjWln4h4K*)_?nMpw)GeVW2$*CfL&glgjUa}+H*57krPU!-7J7EQ~5e1;Eq<{|_lz zc2yiS*}PoQ75wc!3rDqI&r9~;)uPBIZag-y7 zo>hK=qS%(SyQ8RH_#}nNKx5jZ=N~CZ24$&_iqo}NczTM$WMCM*LHQd+$)GS~F7+7- zlR;thkoPZ&l0jj}-06Swf>E9MISP}$wTPQ5-SjG0gQ0HkN#FQ}V1_x;Eht|4o^Oa3 zGdH?5#k8%@a|=QtrZ%phL$T72>qD%#xzOz>Xm%c>ClTgRu=G`$%zf@mQPM|ry>;4^ zf@Dw>eXes4ieg(C=jMK4$#tletSMTzV5#$4hEv?j(w0TVL-MLyc3#r%WpOz1d zJ~h08!lZ9|3{%2qQ=IfwNS_K`NkP)P8kqtrR zTg(eao!}j&Fc~<3KC$ajl=RE(%@ev~6eN*L3YNa#V44)ZJQpCtWbhRfD1BRQoCLm#BBgfX!eQYvMFyBO>(ih4&vD~9b>03g5LirX7lD;mPCX!!EfzmfpWF6kE z6eYcT$4pbdkz%EHI`j1On<-TK{tBIzzLUbFw-K3+ek(;u@7MaQ!P_ZF7DdtK6z|Oi zMW1%QkD{a>u^6VC@25EF6B*$SM>2c#K8lvU%MhTEjME2l1S83lhbUP3AQY5L&!K#j zVr8a9l5%*Mf~8-W6BH~O38>xkPvr<1({1@Ih0IK)q`~?E1xw$ZFfQ%*GDS)scJ=wq zuThZnVV5lB_y$Eu-yG5<9FOJ$qc7d~E`>=Sc4L=p{D7h@vTbnL(DdL2DcIXDc064D zeAwB4^g3l{|B;S724Tffb%I@P5UuiH{Ekui+0JQ$=pM-=^V5zESP~(fEPW6zEn%R? z0;qa|z;J?cIN{Qh1(*cKqXgt+0WUu(f^b{*YSHPLOpqlgh&sJq$z2Lvh?A%gYjYQ3 ztkkNs$KcxD=w1M(kW;8E)ftgR4tGqF)2Jl1+$Cwls$976jtH}Y3X{LLwyT=Ao=v65 z-%;9)k&eMpR&ESg&@Kj9&Zn~Yxw}ed3{Ei`Yt*9IJ?6C+Qc*6+O%xK&)=+foj(@3z z=(|Z7)WcYjf|qkEdQA8lrZSXrm4QSGk4j)WE;LoEK8P9jXel%EzcC7*pAi5a@*Lw0 zafJwzVJ(#*KNU1vx*yhO5+2bPE4{0A6h6N$MO=H;p+e*rhT6IX*3T%q-b!9h(etYU zF|FejREGTe3nG`G1%s=o6#2D_LJCt%xR#2NyFzGaxM3qmK_kRXREiuULNl0zJ-^L zD5`wBs!HoBeYu|>GSl^l$HKtno3UEFmuS(sN6`mli~{d7D$u!W-KPnjqMXdMOaf9O} zxTk1?5)MC0rLZ3Em@p&`HXF6c32j#33l!VApWTlJg2-fx4_~ID-5XVk^0hebi4*RaK)<8{ zHF8u86-ewDV)FcEBg@kki%*$6zoYWxS)(T!tzo#J!ce3CKn1Z~Ta~z<7VElyrUG1; zho_(b>M-H26gijXk2mD z6{Y99NlVG8SPwvvd%Y1iZAf-fc&TP=DqwR!R1+%BW3awJW0C<|Aw0>Z3_5F3x#ER| z&Dp97ttTufDvZA+C02Rc66HC^CCgnYGF*(>b}*{VIi)9UrBvK+CslXOg^~Da4tO%Z z`D8VWfaPK-sPl;yorgJn1IOrdccVU?yNdmbQL5F-wT8HBhPm#ZD21Aoa-M8WAOdU{ zQtYtL48v;;%YGC-M?V;@)=RA_TwScF-~cK^juwF2mao7cMB#Jv!E&QHDerAyKKOhp zg7a{te;+Kv!GfJ)y-~+Iq!m>RQaN(8M5Q_so%YSta5#l`?p*Y*hDvo5(xfFt0Y^~@ za#R4E)e#-X#uV@Z3hz8e(7yskv<%=7MR(3aCO~JGAj8HoEgHOtN|B=pM)Y|6;u(f- zsLS7$Qh4XCVFDYpJaLi>^T1^kKgVD=3S0iFkf%`U;BqQLjw%?NY>LyenF`LJ_&G+Q zYMXXR&Y}|JsDYY%GCI@1xfDOgDp>Pc(ZK`^{=6B5A8%CDR_Fo>@0@w*zY4-`B7KZ~ zF%=-kK3Uz{&?${b7n(2|TuNogu@Yd12+n|0!a#{ikfRgAMo_gWu26XABvk)i&~BDm z?dr&6vEyM1S5d_1%u2$SI~j*cK9wZL4nmOAF6k}w_{Nb!8#pzo6wXtY3H*aw#XNp$ zQ&I9a3mHaDP$}}PFkB(V(bOcBr0$yAN^F|=LDfsCIQg50jICZqrEpGVCsvASh;lIX({Ov-9U$5FYQfQ;F*H9^(mpvpm z3>l0~Q8Drlsm3wc8>l4tD})Zs-bBU7KZuz|Xm?OS^4A9)sNF@y$iL2#@!H)RLkco% zyN61VV-7XwoEk=N@1k<#-!U`~;@(3=$-lao#&Ykag5>X~WJvcQmBM*3PU5I;8`*t` z3Y32o*#MgkqZ_{1SpOqbjQp*0xz|xs?;od9VE z+S-!Z&jUYcqlonaAbCbU;HAwdpTZGhXOq8#(knYeoYxLJ1IElEe-)w0Vg~1oT_5m4 z%x`&>ZaKOYm(`%JQ{y@B%yAdM0Q@Zq?7SEz?C7Zns(c4HN`B+K7$)MTdrpwzZ^!!1 z_puC$?>N`{zCdIA=l>9%_|JfA-NVzaRA=~!szK|aJaWxroHXq%NA9tj`x(*P>b}ID z4lG7vzc6addHGPSH0iZer~9?4GUw$(oRwCLGZ_C^rTvyD&3VO*BV3Hyes5HpbDVSr z55m;Qh?-CT6T++OT%0=_{bILk)k@6%qrXrwoF_M2#VA!uO}uckSeh6uHXDuF;p!yo z(;GvEBUBmwF_SVt3Z3aeli}Y~hKpPSh_fxsCiveBLTja-)g~1ow^ARe8htYg?Y!;O zRpAwJHzVttY&jE{TCCZIVrCv>z42kMf>B19ESpP_GuN;lS+}Q{)+@2(M&H${Ro$#R z&IG7l(p@O1a|hA6qyQRSM9VyQH;S5ht68nX3^?p0Ds|M(+yaW7d9Vnhv(`%OJ%i9% zh}?Gup|udXKZSPQpY7^msPJyx&@ospq@Jp`G)2efplc7kN4rAoCtapmx%+J97rH^`__?ik*4m z816u}ngRRH~)X5y-D7 zhPjT);ojya(?vzw?sMbJivVYEDO$Lhir{=GOG0blF>{3x(BL5v!kny}7r(5e( zp=MM4`0t!~X<*kE)@@V8e)r5v6O4&W9jFJWH0_)%6-X1`k9t3q$vuUftnU!WM7mQS zq@pI9liGV;fBpy^r+?D#^smc(Apr^=T?r-XSnBm8r+| zIV#QM%qVHPj@K8dWX>mmrmJE0{?}KiTr(7eNH^>eD#}Y{#(2~B#=c2q%e&tkxOq&c z?AuhJ8H(7(zQ^~dIC+l%L;bK0k=9rAe@NxYyGyUgV^q?QH=0nEe%fPHs2Or39R7^d zs_NMpk5h5-9y14q<0ltDP5};%SH{f0q9V;u-;v#B3M+alI8;<*dVlfSoj(dn9SF>=i^<$gLpI69fl+;oX4rEdTW$I-KXF_dDf>0YvE>)>V#tHITYS` zI}(-!ZciyL4X;mGUG0pW!5+%i9xMhLs2xs=za7PQPtNs=-@xq=)pi?_sKgHQW>An& zh`bbxD-!sDr4v9jQX|Vw~_kmYUhQ8=XisK?k7O?ZD!p2HezE+E7)y zLB~^(oSU08B6VP9Rq>i7R1oI`M=C*D)$t;pP_63aBr1+`9zTsZ-FkIh*DJ!*PunYZ zAsMD>=@crKb0;NP zd8Kxzs4b~Idn1XVt*c$Rk;Kpz*Pc(s$kjuJTa8ksjAm(%m73bH`a&v9u0gKcsCCEd zIQ%NFRf60aDv0y^M3Q;~VWeE@6h~T(akyC;0!v*xQKU!(avq2$5vbB`*0ck7hi6;_ zVis?PMS!I{C2ghT7!|>JE!X^%(w_7MqNck za2_Hjafa$)iV?1*@VUAIo4hK+YE(sv8>ke{$LS_f!gyoCBSWT}s1VMn+ay9XOKPp` zQT$wcGvTcCh#nqpp@QT(zzzio=gb<#2~Ryu|Fu*i=VdaC$Nlk*z06f(t* zxj#VVabD7yN}g$k-Vaf^avkvnxnRQx{G%I764J?ic;iT77>|F7N|I}18CVB*F6x8f z&r(rl!ch!k;xBAGNwlHym#HMqE5=e(YSPR58kHm0G-u!@=7I7zs4z3(D2DO!qZ>;S z5>dWOCCPQ%8W>0$J^z48F%xcL9z_3$3gf)WF-6@mj-`J}Wyy8!CNPgar2aV-VV9jPVQC&+Gx!(pU8!2S&tEZ0%3CYWKI{W~hrOsXn=xcvtzSgvWB zKvi_8`)4YM^CpWF_1!+={VNqJ*QF4Fc5vB2+){|YQ;}xEV4X&@sLm4plL|5u?YN#Ph}DYH2hAlLTWR%f=NvgDe`qm^Ygl_1w11gwTJ ztryysijnIim7%ikKt;%P1=Tc5m3E@yZ#sKHE{nkoDk zXMYjJcW#3EDu2AsznF^P+(GI~gjm;KI%5*V)qrI)CP7?9SWYEy-lo}trFsoDdY=L8 zq^8k%nFI680BbcBm(9?wN!(mZAk4x2OUjc%=0RpRw|)L^Sz zJ0Pyb9@ejhynupcUffExRV|OzJoUW4iz%}6-3+e99W9NIt7pevN>QCVUaqLYwlBrF zC5r1jf_B9X8z!T7Rj2^YouIx2(C!}{rPz5D-t22W6~Ot}=RONhU2dF$JFjBw6Wru^ zO$vXwYglQ+5zOT=edSIYI7&@{bFGcIX|2J^5GA%jn7}e94T5u@t}oD-W?>THNweTQ zH{PEJK`rjqTcruFR;<=5-UcOYE|wK~P7*BbBQN-u3g@f6CTCM}%%NA5z@ybbuWQqA8$ zk)2cC?#My3nMMn5qOv$Q;C;(tQpO!rfFqrKAI;kCRLj~?+;;&_DekzNRq)f@TTo)_ z)ZJJTB@VdZSU)CdhlKAkGP#{!KGnt(O~J?I`vKXHdQ#Cx zD7t&R>${d3s>R1=Tma1rKS>41F;0y^d~U#v^J>cJGgO8gtx%;Sx6jY00OKAUprP&w z{Spep?A-?bVG85Fr-J0~Bj#xSCo0N}=!C@7zfeK) z4`{~F`ZSfqIZFiRCBf+;lS=3LAHYu<**a&50$y6D`8PtDKmWFZBo}_U(v3JmR$ED1pjLaK0TJ zCZs9pEr_OC{fzWbtyXE$0QNQtW?MfM7}ac*=-|E*9IFfI&vv)jgal+8rW=~Ik~lDl z>GT~G*cMXUfXi_FOn6*7F8T-q7(;w#ZiujVq0?w7>$Di+yYoQws`W;*U2MVp7EI)g zM*V4q_y9#bGqvwTh?TBp#P{b4*Yw2gldNP@fjd4F$NVP6OK-nwyNDq&>cui;ew!kt_e($mA26VOkD{HO-doTu*$JMs zct50o>5B&kg~DF?7F=GV#p54Sw9``;FGSM<%3~BOeai;@u;Ciqyjh))&Pro`@;HUd zplBSf*;uc5|F0;PZQjr=dg-07BCmF8G<$*~pPJf$u-ml;O{!AFCn-?+3JyTf8Z^}k z{zrPQryU5(@8Q$OkSp_e{UL5Y(bHhCH9F3iHsz+&IN{y zAm&h*6OxyPjvTh5{FC?OEhC0`6eoE(3?qe|DgWfb#ympUl|r1H*c7oNgFPt9lEf&+ z5y4&*A$fxn_L0pafkGZo<`KX`3YFZE!%`V~{s&T=tj>Ba>q&%F@JI3Q@EX z$*~k8dCM3-5;>m2q$rAc1hRx;B=7hI$!+3WCsB~(RU`y4x!5TbD0%D(fcWJd>gee- ziu2;+PR4ErQ2|y^faE!Hrvc&F6ft>`OasA{6d-wkF%AIFrwGZrF6M#Xg%l!r42vD` zt)VFU+uW;Fs#LwYNM%1cA12#QzFL`aJI;lHKD%RNd@3+jXWgv9FXR!&o6fv3@lQt- zGV^B5xK580RcSad2-XKOt%XBvhI%HVsxxru3RkL>;NFmq7v25LV9ud1)_^!|$ry~< z$znjOD3EOvXs8qYX3SF}0m3&RW8E%;&jraPMTx5^Xu8tXO5?*Opo_8xYPC&3mrx*U zz9&+bdcmkrBTl)GLkFp4Lc5HjS;rOAqQPp|7=JHQsDdR>RL4tV+Hw9OnAd-@sYIEh zru$fn0?P@*KLSHFx*VT`Cygph+^3K`i7NYA5Nf4KuN5`U7k?kh{LhyvWnMh(*IJ>^ zpe+9bEY(um8ecAxkt;1X6Zu)>Ps(j;x~v#M9EAgQCd3t93}}-p07wm>w)rD>6uhp! z-flM9(fkp^+nnNMQ7Um{IYZfsqGVC3BPubanoaStD3v(+oRw-@ijqaCj*KhS4%y>X zyk=)?eYMT5`(rn&S4%4M_9A zeJD^`Kj#LR)gl~MT`97I&E-9% z4D%q0X@^fN zW6!PDVJnSN)axl`#-0m@woL!O|p0l{tXm9+n zsit0&?x2vi1&|4}yiN@kcTqsw@p=gW+qK51-qhVqQ8Tt?yHT5n^1#f4?xC0&hsE|p zbcO;$d>2K`TDKDwY;%;j_#TRCJ8(3CMfughkd0Ar-%D{b4ow`FTJ}MToUu1SOcJ}> zm~B5qF*9!RCg8|oEg*d)e^9Ti+x6oVG-JCO7BVv(f081PXFJ*mkZ~o)T5o-^Jvlz^ z!CISguuoL+@6S+aY@1B_s8_}@&*v$ebu{lj<|&i0&X*{bZN+#WMbiWSS1FP;(e7R< z9B3%^`Z|Tm$X>=V&9^9AMkOO-neR}jj7nx4!+f8@Srhv1HVbwu!5(lJ!-T1Q#fbk$ zu`{X#blmh4ij`3<(0h45qe#~I7Ws$*v*%Q@zJj-Vn+Su0FjQ1eoG;< zEhHHa{hlIblu!r?X&wjtiNa=7A?Wz$FBB`IkVeKmPg5xC47q!a(8fFepg^{DT75Ki zrg6@{DOyI>qP^h%QLN!?dP_l$boyvL>l(7OC!+|e53M$%NLiWDFr?a&qGgn6HxH$@ zp?DcZv$!GDT#A^Hqtc<%_7p3l*3U3x+A%*cI#k+)f@Ng4xFOPR6w%A3()TkoT0o_+ zE|`S57B5O#{IdxQCbxp~qom2Q#kMlAuk{%g%5pXyNu|t=S!cZCxzgz{Ci1q(pG=2Y z6Aw0wAjrb`lcm;Vk&V&dIG7HsCX43680-!Rt1h3k)*c7Uc(9!)SlR-%;XZC$jE93z zV*%$=Olv5z6mVK)?oP3+)7TcQ_yX-oL6R0|TIKCSu@+hCl6>=YIPQ9I2dIiazDlW& zwxtR(53N?NDAlXYE}RS^U2?$KKL+g8x@q%aM+90=8P?;7Me3=o{dUF+Cy(J|F-3d7 zLP)ia+S-A>@fvkFbwxpZf+E_Iz6lVatgx4(S&CBJOu0`|T-zw9UtDiP6SAPnnNAG$ zj}$gbgO2D1eTw2`sa}2;2%a?~&aPtR{2Rs1(ve!8dnZfD)b*uiX@lrAGR&SgLT0H}*k0Bk zF?}Azv@NZ5H6@;oqqJE&Qyg2iz!`_Oj=NH%EF1-vh?`r*Jt&?nLGN0!xYlql3YUe! zNGn*NI9aGMw)I;`@v?9bL#uZnMY3f&T@7Yx?GC0;Ss077a)(eHTSnEjNVIi3lmca; zJ5#H61cl0^OeE|cO@VAfHfQCTTCrm&Ru&FHTCZa%P8N1DwOYqhs4UcHY^|11EZhEM zcHMW_3{@Y8)YAuH#kZ7tvh7cfy(?T{_+eZ^t|XppJ2_%`(%~!<_hZPN3}F)09t_7VgU9afWmd@i}Yl(w%Da&QRQq`(0ooC@n^~ywE zj{J#UZ8gM-5u^s#Mv8i4yed{eGqf`hP0bM4HlDgb;X74vuNs3ni^A9vEv_()app8y zna-tPwmF$Tz`FJ7h;(8*E82M!Ev*LIW8IMvaS0KFxq!mhl3}(&#reX;6v7rTY!FD( zec)2c-j?H>j=kCTB?@BO@ZtbsvU!D~B-ND3)}xfY?NFWQYU42aKksS?eG7nz)STE3 z)rlBr(QjpVJ+;DkZUcA%sSM#RL?FE(Th7TUeN>yE&BGU! z(%emtbhLI)Lcy0d>YWm-hit8`cE(nQPlGNOkM)SMVkVUZ({`VO~ZVm3U$8BnvL_{Aovm6=MXENZhc^ zz_R+<2HlowHngBx!v*g0?V=2`N-bcUo#`8}-HooyV|X=+XC2_UsWT|xxah4jum%OQ z2FJd@h$>qYExV%WdhF&2HX*L1VS3y^!K|&BlO9dp_!0_a?R>fd>Ds$84;;9PM8~&RPg8CID7fSl-S>&RRA(gvA{ z{UhV4zBXT(1|?{xq@g{-`6=S4^Ew%T)T1Tf4CLn&#Fl2ZmqahYFEeGXN&Xwke4(Y6 zxV}|t!d9_pD0$=G!2{>KOz9#X;qd)n5jhn{y7jWW6q&Kx4%qd!jz~9krmmjq+42{m zP=lpPr3m0fSO&xgV6cxB+@cQ0V!|%+u|_4zUofC~CZI(``jHae7Yqk~!x_0=9s1dW z!zGb$`P#2R1JA*DTAY;1em3rrx-o4<+cd!VWsCJ4)1z-yV zP^$*5<<1EDaGjN5YlI-(?&Redhs${J)KR4zb7(o}Xw9`8I5)3w-;Q!mt|d6vfcuaF zF^@vf80A_3faumo8nueZFECT=OhIVMs}B&^j-(V~SHi#Rp9$NLu9!N=zvo)09~a=B zq&X|#wAh+=GVG(7oO&IQX5Tw&mcRbY&1a20H1-gy>;9J4!P_tY#OAXO^0&Mhs9!ll zrY;xM&)opjDTR8Kp#JkJpuSk4eo9c^`(B_vqu|cIKEnOTok0D^3K{n`g8KD00`=_* z^(TUQ{QW@vKZWz31@*pLfVz+J?cy6E+{yO<^%3P;@5YF_=Wl>|*V(dEpAppmd>*LR zoh4Hr5!Ao@2&g+M-!6K2#QFT60rf(K`aD7X_Sb=Wr^5L>K|SQ>Kpj=Syhbro_xQlb7yP&KFX9#FriaDI!RK8l*WT9J9v z*F@hwwGyZgD&JoJ#)x{+ew)tn2Zm)U+$5+E{T{yk)}=D_E;`S5k(vK2PS=eEW4l{prE*?K_ljza^+cdjs`prM%w} z)a!o>oNrgk`+Y$j{1#C6QE>lHP-krooL{Sy_a}n7ZhxSjrAYNNL4D*8!1VF0GxnZDw)|06xyd~m%*Tq0BD%2ANbw{MGR;VWn>hqgG zy-vYBRZ!~}0QCsv+tUSgzqLR;UitP+K|SnkK)t*w%lvIYz4cn4-ZLswzbB}NUj@{z zLj9qje(PqS&L5M%{js1fxDBX(R;Z5&>RT=c>VXR9#|3rqT|m7^k@;7Gdf}}={g}e} z2|<136+k^(;ryhamXLaeLj9wle(Fs?-AciIN>G9+#4tx$hwW}vNKglV0o2c2Aycmq)UO`| z)UDRZ)Q<@2>mCE@b;`G26Vy9fKwUT?fBWn^BB@&M0_s;FK_#TxisZkG6s5fcUqZR6uMm=7k?sTsz^PLKHKaF~yLLJbkA5f^rXw-)l>fIW3 z+n31NnEg&ws*4rs;Tm;Pp?*uF{zakwO{30L{A$N{skr+q)O|JTVG8vSjru}`daOo0 zS)pF8QM(HDCP7{O3h=rwD>Y@e`y!biyB?@(73v9sdi~FUI;D8~X@a`t?}2*3m9iCH zBd8C*2B=4Gkf}SoJHmYc?@fEUDN`2->bfU@xHRXCieReCL{;)1{ ze!HN)|3;wRtd#e2g1XnwfqJJ>-p2&>%Kd@*Nk!&=32N(`K)pt>!XfX8%6rUJK%JxD zo*<~lVb1IC3hrrw`fvfLS1P!72f5L)t3Zy$)A9Fi=t=$ zz0tP|HU(;1;rvHIedJM~-luTh`hC&2^Pd6gE-#aQ5BvZ5s90 z3U$?oRNPiuF46W6snq8b>bV;Ah>ra2D?hA$yH8i9ep#cQp-}&$QQHc2yN{@xuTiMG zYt&aL)T1=&T?+MHjrtFT`Y}Oe7jVCRgIuC7d^D1ZT@{M=#fsMXDM5|yc@)(D2r9c3 z3U5Rd)Ehn~IPV7k#Je&Cb@Jm8H98zfP;VDhwnZ9`DiPF04@cit!`)qix>!)J3->7r zYE@9#5^h||FQ~T*DqHr5Ygz^MOM)6LcoWpW3M!jY#APmm`l3%nGDmZ4f_j0VM)Mzn zS{Br3ZXlv|{i`;aHS6?Q-QH%cc4rE6qc1-VbEM)qPIkic-W-@)9mP9GVNWwW2;MuW zw>cb&4jJlQ&)9s{4O9N{ZAd8X#{d0~PlD9{I$b>fH~%+#zNz&7X43mlO7H((dVh}e z{#@z(=cM;%NzeZ)J^!D?=Wo*Ur={mxOZ>Ny_-r9P-%@)1M~Tm$BtB0`&;KGl|GD)1 zaq0OU68{Af|6fV(|5|!~JL&!HrT6!ep6@L^-&uOTi}d^niT`gU{_~{wca+|LMtc7r z()$JJ{e9WLyS*)IrC|>a9Y?p>8V&`7E8x5hQ~rUULZ9w!+is3k>l+4Z4ZO5%syDB= z3U>Rn`5{1Ow;CHT5r6R2Q~r%}X3gqt6&xx!)!Sk@V{_xw@QqWwtzqVcvjxYT9EkoJ zd&oZ+V8YM+=ffYpxje~VkQr>r7u!wwM>DAmU(H#`cG(op#`|hHssiN?@$&3+_9V>Z z)e9O(@0>#`jdJ_YaN@93I~1n!4lTDlcG?mCF(_z*_-9BPY}CDWu~uE{4MMG4h<^>> zUsL{9&IOfhBOdU7vsXdH-YFSDPThL#EQky6A43GCo&aS9fb%i}U~{@rDS5g4x!_jp z2Y@cl5~$Q_l_rH!1Gw!G4u1fym?c~^-Af>ML`eJr$Q9|mV+b|4hFhN*%0C|6o%u)P z6DiyfrtT`WCY(6J+_2La;D1f|Pn?EsC?4RygI80!VZ;X^IS_c?nW?=`;mf=)dcsls z2cX?!KdEdJaUJS3)`Tiy`tnyW+e9yfJdJJ7TFw5rmsx}|AS(jnB1$8 z6E^{J1`}M!O>la8mR$Rh)c)sD@%RH0r*YOmV#c1=c%}}f8vjcOf7rMra~sBeVMSh7>8mc4f5J_EsnDgV?WxY1k$j-K&9!*9^7PRkCSBZ7Oa=kArF zw}3*2QnHeTZWcb|SpL1(bmI?{#LKQEG>}Bn1i<$pF#Z7W%2b{amWX-Cn((gxW&&M> znJ^*%;PT`p#VyF(SJ=O%{QK5`lWf8N2>%ZdOEZAr%)uY7lIZ@8XbAiP zp-)O|2*z2=o-6dI-LFz*gz%Byf4*-@j1r!Yf0o{P0_yeG4rSm z&;bqRzY5)udr0II7aGe~DRoN4&ScXwjbS6=V5!X(zgF-~7FkQ}0WjeJdobmXo`-FQ z@(lkJ-(Z_@MwS9_Oz_M*xo4W)B`QFlr9FG6#f8|xi6XwO0)tZsHt^Gu&#F zDrMkbWFsry9gH3h@P||W!VAIWb|BBCN5S_PL(Wd)h7pD&5XT3H{2X^kbMHP)iP1H6 zWRB`zgr>wFDB0SqOD1(=V&E@9c>DqQMlSHeg=0jx3`M{n5aE&(&aAT^iXN;9y@xrP z|5@~K;cX!i;8S&XBDi9w!MZ!qgMkj5#q<@{-BF(P=0<tZjGBe&dA}09tx4B=Z z>h9>wnQO@pc?tc)(3P*!d%eGG4st3iKF;upq20kN|36B4*6<689ol+&O$i+0k~8>@Q`l= zCwws^1(4?=B>n)Tac-$kO%4J7HQegVA^e}C|Djhzu8^u%RUY%oYl|bbMk#PV{Cj}? zJ>|a;JE3#fE5W1SFa81gp?N04wU8<}2LxAqio0Su4^eq@Zxqismj57{3xA*}#Cpc(8jUMbs4i86EY})vH&>?!$3Ru#;+3#lzc6?{z@CR=!=GW#ZYL8d zdMYzQyPES~uG%mQH|3)sVBi06`=;t?#VLTb6cnFh`xUe|{y-5cDVhlb`cUv}4Oe9} zZp1SC|3(K0EuiZX5tS*5w>|!QH&sBEl5UJXQ zSRto;6bD>l%TF_#r0V^~qOi(uq;h=!)94oX0|gyR;TA@Wq2MWmac-l?HL&dd7Ep4F z-ctp^P#zHmiU8(c#Lb_H|3@-M zopFNAas44QJ^n!9F3X_8N65nP@F+4nmeoHH%^vDp)o-edR#?VvBm^sdXk2_8ntcnb z`#Tya(ZizPf`&gg%~0Je7>tH^#Xo{uzM4IR66d7?F=T&pv_1Yn`GzyFy#Nr#$7hlC zvAq7_X#G(2nwC?Il%xinXNh~4f|0l2ZBF=qDC)_n^c;>NrhH@%_4Y;FdZ{Ligy<|# z3-SFs&_?(Jf~V_VhJrJn;LC@C<`@g&--ST<13;;=i)vX!5JVJA-># zdh0~2d3-=6a=}@-{Qc27_ygrQC#`iDV{W1~GRWy@D6T>N7{F3h|B))3-NOPt``45| z_Y$oB{EzVe0FtWuM>-KozXDBxKOlIj>aRlZ>MsMm3W4wkfKoY_ z3M8t(4E7oX!yf=kQ~epwA(`{}torjOz`UI%)Q4LhitTQ*$xfZ-T}d7dLh3+7<$VhX z4(~n_9B=pd7X*#4#?X;Y{lU3#gfrF*E*d!P2zT1``Kbrnu}}j<7A}YXBV3q(KTzmq ziZ~OCGZa$R2oZwLNMI)4Lx+iMC0+|mjrPb!OK`WG)r};2ZHGAqEVu2r3+1 zrURhxsZt{$vVk{uClnCeX&rZ`mt^8jv>Ys`D-K29fwiF^i+?Rf7W{#tcd~FPiX=Ie zL=MV2$@4{ejGxvNIa9sAdmzkD?|cl?j={{WJzxr;zJdocA&xv5k2b|bE= zxs$~APek+K4+x&Bxl2_kDXr$n&$_TwZRqiZCI4%gdEfBsS@|3BfKHSQp zO_&8w!sN;Ga9q8u`Y`%i2$3owPK2295f)7SdT#1e330+bFtSu|j_2Qobr*lYylE2R z3L+SmAw?F&qWQO?MMJd;HKwy=yExov)HpX@o!bNWB(&xAE14~ohaiOf8CKqOwv@T? zjswDiE#I1jEp_hPmhw}`bpoD0A8m<0P@q(aMnyeQ?<8nt48Xf1F#Z5=sw|%wSZZ|) z;CmuC{s8y|DY`@o_D~hpb)z3eF3dE17k6Pr3V=0oHwZxn`HTyeqX{P6g(WMQ3lxijv{AjGy9xDyknkkRRM7QZ=h87BZ}}FpFiQOZ_wR2H zuB$x8C)sY{)A(^8MsV=q-*6vJ>r(P&y2!j5?v#(1{sY*(!XL0}nk{@9cV=2`3m?P# zHCorC)3k$8u|yy=FFpy4yZjt5E(|^gq=#%UDn7%=ly)#GxN);0ESU8#+^lJRSmhoL zM#WP|r2?M+Z>*~L0|iPuS`f@5KZ^QPf))V(4}tLqfYS~}1@j14iBEzafX_ll#vcGr zIT#hZnH%GuQHWw1ehQr!QyJn-^qy2M3?~bYH##2MQ_klBgC_$xi4K!W%kh|+ZPka- z-~6-GE=+{ru;9Y8KEpJd%7qDc=EBNTj^{s!o`gT3)ik*=h4)bK*P1|COr!pD%$CZF zsK!*IU4>h*F#_G6W;a;t5zx3*2O1;LQ$pI5zXTV4>>5XoC|r2K6opN-2gM>R7YeLD zhg(0@q_+i!`hiqFrWn6~)f<1HxZ^3tOEFStzOe@I@o*Sn8GkmYAU`9tyf$tlh*nbZ zznPPO5%AoSIr5|MFZKa?K&lBp4V(jl)#r1orwVHtZ)R!f8OQR+(7N~oMM;%>kXT3U z25+z=N&vbRLGcGbQ?-*4>j+ddRuVM;t|Ku10C1XZPZH-L{%;=I0+?OUV*|H|93@p1 zZhNp`Id;bjP@@^UAh8y9zrKtMrgo2ifziyY(YsTPSgk@&`6wFr`T^Y6Q?1CbA~Da8 zeS^#4--@1rKTzm(DWY5~&Ja+bFB4At>G@AohQB}h4H_$ak7l`34NzpxVlo(>M&1)l z1&`u+j`JviJ&T0nFN4BT<&BI&!6pWN@Z(|JJ5r6gjR?dmq@w$u#$FKqK;hEljR>;l z1v2KLXnfQ;)o-dUk<3v_Sh9Etw8->~7KV){a0|t*ab!k`#FUt(?h;vqg_IuORB=gjH+o4#<@o-67((y| z3R=ymL5VOl4}s^Ae_-MLlhHrWAZEpnr>j+1ck9KNCYl&4tJ4t`M{7SMk*YW!2dov3I0G?*Jk7-0z~r?Bt&k43h>WHH$l6^ zs6SP!%XT1ygFZGA;K>zyJ`g;Q&S1J8C#rTbk@(Z1$_RZU)!MTd;h^sF>8dr{F;a!m z7!2kW1{%lqzkx1+KTyOpYtIY_L-=e>s7i4z5tiA%7=3|RAbdeOnkZH099Gmy9;Pe> zU{Qn7qn1M(zifdA7cH>85>O)-RshgZQjMag5gzvY@l%dQxx>69O(dBHi#d+v9WIN1 z5Oz-R2a4WJ5mPKkLyTq_&7e~J5%ef-x_INH3NfmPtTS!!sGyU*H+E8XVxL6L#!11` zNJ#!PZHS2xZpueNpzUd85Mp9544xt>!M_JX4F04HF$Q$v88YrV7GexvVJ&_Bp^XWz zHBt2-)_7jCSb=jt@eEYBA-)|XaN(~3_ScmEwlOf~HsV2Vo8=Reg;n?}GTV1rW}F3> z;R;Cm>!{8IXqyx8UC|3 z`_##1qci5UtE^N`9F7nij+p9ge-fOQTR6q5do6bF3o7T>=>=KesA?Y^3ST)>YD@Npsf7{G_z!N;P)D^}kv#3uCKZXvYLoA8OFr$-L` z3F1S!0R?WfV0M5Rc_$O8w^QhJg_FbwP{<>vhYAZ3@(qFJQ9^HCSga6^dBbVbgFuJR z8|8+_`HsL2Rk+UwC=GTTGCFUFeUS6}y@Qqu)`iAMVI}tuU|m4g1x3;&(@VO33{GZl z46OGC>Yi5_81rgP*q{*ZRSE^%XS&yVh1Fw|g-WBa-YX!Z0%uf+7@dF>;PmO`8EdSE za}x*97~X*HXanBJh*!pgiECknIN1Gz-od9f))zoWjCnzK)q>0%gmq9}6o5*tPPJ4U z7_V*s9Y$piTzH@9UhC}>g)PpgumTwsmId1nnb(~(z3zq^^)4($6Sddd(DC5%ED#AU zpXx%sJdkKVhc|ospNQ;+Bt0!EoE$JLEDITeqLxiBS=+0Pz#8K^#8Z%{Gf=8m2D}Z; zTD4s5uowd|JCJREr+0h%uSAwhBbEhV3F2{_$q}8rWA4W(#bu^cI}!4TRXs z7z0&=18p6GA;2o2f&ypqUy7XzwHGj8We`+{g4&$>*B~Eb1HQ=0PWU@FqJIN2(pvCC ztSs;(fdap94(~Y(_}q+qOzrq$E3=>-F|@+0Me|>UZ0&9J(M|xO;EFw7i~Ow(@?lo? zp?wQ_TkO9cImb1D0 zI8$@O?f4L)#5G6u8W*$>1-&MG3|X3+o@1<55lu>gw>pINCz17Zjmrt9_N`u;sE)!o zsXkhSQ5Q_UR`}H+;`snPhaN-)27i?%<`Yb$-cDymj0*5UVJUt9Ew^!uD>x{i8~_HW z&p>hDTjRhf=G%p39IQ23)yw&ykITB9_O!R%QuQ@JIj$eIw7bLOjY_xX!FZ`%9fbyq z>0}4;ytl*3@KqQou~*~zF>xgV{~0JXs{zDT;h(*&mP0>a$=Sd~^-kcNp3n6o3_cBgep#eIQVLIBw@}tje+<;5~kI4{hg8ToXXL$88jweek z2*%s%k9*sn6@HBOBg2c}&x=e^BKoozfpDe}fDZmWSFN|=FR3B6JWZX6u$ zcA))YD%;cgPH&%67>glnV+W55m>gdaTtJ*lUG;*W3vq-<5QI@gmKTnmh6CPEWs4Jj z-8*)rR0LpBl!^gkbu1XqNQ>tJ8;WPDs+zKgqQ480JNgHqqnkYNcth=vSa1g%;vQ0n zoT#8Xkw1v+r}Gt4f1W@E3cBnv#mbjmCfS*Ji+=<{y7sxLAu(th9DEwyJRY5;Te6G{fE)G+&U==Ib1S#{<#hDgQ?vM4%nR4Ax`syE^HDj??$q39GSDST?o37S7$$cHSL48pE!y90_XwJL$U^JA#J`8>r2 zpRvY#W%wC@8+*<%;OoaqodMYU!=M8#1kgJhX}w)m!zYDmo5Kd5u&k{y{>I>z2I|n~ zsdO<92mJ;-&yCqJz}_vE-rH?S;Y|4Sr0~R znLq{bDOJNtcehyx%}}XcM%(kOQY{z|46Ltq#xRQwiBGRyh9oxg-h-Uq?;Uhv$U2x@ z3RxGBb>U>e8q{`7A0m%8V1VasDB+?05c`>2+o}(H+pd6@U|=1*1PJ{oWxTYZI$pgT zwbE^uMm?Mv2{s;vfd!7r=|oC#e!q9niimaLJYn35Utr3B>-84Al6!aLVqO*Yh{QNmgWKkve(@+-H@Vc7$k$$x}{fJe+>fn zRUwablLM61@>9Z*x--lNBY7hfz?0iXU$QlmB=3_>D&A$p|l~^97vpjUT zTdh?f>=cJ-Nc3j*f|g}9j)LP_wT z_-3(!11jqPct-=J zH-9;dwN<Md`&7Zo&}NrytuD98@u--OO*@)0>on?xH5GYmrCm~7w%W7hU>LEh6DR-TJ8;(+C( zDvlUTeH`L-2w}0K9IuSr!%_q$lvuw3S;tyVtI>L0fUD}!Xxutn)HfqP-D*m1mI(;O zEy4}NrQ!&V;nz1>Ygr&d|AniHO9Rp4DSy=!IB+mfdOI%1EK<8rDl7}RppPgC3=0}( z4ORcWATxX?XWC*uW3#FZQ4`RA0LvXCkg}jChBI5r73>FWcW{9kU;8`dKiG!yv!z^& zJjEw*m*8ECSlYu$m4I(G-KxwvODOk8c)69)lACzgVQ10|lxw9n#62eD_WI-A_NySf z&qOUOWiNujN_xf(u3N8;Ok#(W56#)KBZj!6fzsRYyx{f1SuDGSuLJJMeJg4q)Ivz0 z)z^BHkge*J$3TRjs5_ZRy`3PILm~}7fb3N80YIPFKXkQ@{mrsB04cJuMkQ474&-@n zhvmVmg%!c8fJowv%_+E7Glyb^^goQw%+?A-ZYFn`r#0FTI6{H>M?vxr{}ag8!Hl55DdTE@Q`7W4ex&eG2-kjPexB)j?k0^#l-$s5W#3v zWq57lFKzJ+VoCI5%D)5S>9!bP#KYdU%ORA)GM!Ed7H+n%x+u#5oxwPJh%G;bQuO2b zku0nofWKg=Ko{1K;W7^<@m%FuZ!QQcUI8TMu%aThye2HTg2hh3Od!MBPJ7zh?p*aX zz&pjYPV0E(F3dPhNEMqw&TDx(0j7V$XL8k6@=MN!S%@7Y$Tig=k}$w+#Dm^8*n8$g zC>iYn$J7jv19C2~L`?O(5OojB z8@)Z2MxPf{KV|J+LVxMDVIsc-cZr7nA|CX%Ij;?q_KXOHRu!90hn`RuDTK~Ueg?SuJWumm#sw) zeH@USdn_ta-Roe78WsyzN5^peAFGku>yLZepUGc@#lZYUfRuAePNrmihX|iz`9HxX zj5aB*&11xF2>vC4JS&I)3*=3rziSUduvRNtAoy>Pxgpq}=-7LZ*$3fVwC-pI|4BqJ z2X=WOft&6{2XAx(b7~H>UA=(zC@au2-IY3e4uDtTn&9ug_ z%B`^_@{bL${f7mxj2>J4*@!^{YX4z@Ed*A*X*=XiBB*PxU-(fFC8L)%Id=mHSfkm&IWGY;m> zQ?&0;Xai;ve;G2Dt>Ic76rPIGIpfoiF;Ty3kWjcwdgi>(MBbXlEh7@hK-Sw$*j>R_ z9$@WZ2}JRH%D?SpP_ft!HJ!wl$+LtWB$@+8IQl&(zE%j%SdTe(s7^(Y8$PrQG}I3l zj$jscxh3PMNzrP+@>H1N#nc^;SPGuu?`WX( zc0Ctf$4Mzn@T`)Ozff{ZzgWYBXbX$q*m|q5Qwomj)u5g;=-uOA=)dlG-Cu#&w5;vY;I;V~2}-vLM1!@tU7 zUU@A`doam&jU)GVT?HSqp7u)ou&^}z5McJEFr&>b9EcBddV=>{+KwB z6@mkPQdowcn7Nm_uy3_eg&nFbkhU76{g`HVHqv@KFTqbv(mnz1QXedIV;Cafk}8e0w}7&4G?@_ZFQSuswuXm*oj2+HA>gjV*%>`GQc=>{loh zti-^(JO@S^%9deP=3UIh-YzToM+NvOYG#<{4^WGhYOruMSR=#=%?Is#D=ULpV0)#v zV2NN*V5M8hvcHT0lxZP_8Y4YJBo2djTr{?y;=+=g_Np z9KhjCsaKe?j&Mp{8fJs zcu{37^*-SqjOqj%GBDZ1pHuz<-0nPEdeWP{B6=Gu3 zNmZeY?E##N4kVaI3B4UpYG4nEnXz414KK6ZOwy`_X~1xR#@8ZZ!x`cRi1TBpz4tXSO(96Y{S@SG zvEw1e$^%Ej6xj+wR&DUWH1^k&e?l3;#5UqVZ}w_9J%+6&WF9Hyz9fkicK=V^o50C+ zROjLlFWN0j^1jiwY-1Z*!iIq9uvn`tTas-_UIKWOvgnhItv1GocxXqX+T^A#DZ;i{CM;dnCq?pvy=@Ew zVH?W6p3l?q@TZs118!aCJP)?vVdwkd>U8rkyoSK@y7it{$(3Jw@f&v87hikv8!P+e zv)%a2t@`(U#hBK$%A*2eJ@BPr`q?SvpI?FFQQ)RK+=pvq!t;k590& z%||Ee5VJ`VPDsKVZltFThTvkxaGF|vs8N?(j4`>$;?w;72 zeW{2N)2=nE4<%wnJHIDBIsZQCQqx!2q#z%(SEA$_*#0=jdV0G4BCf=p!5pR?ix$=| zEl!YJx`Q9nt@C54rrpOt4%}W8S?kKlx?RpLXlt^O$r`O0T_R8&qpXRl5{F7^9A|2uClAC9KYur_agq{q9u>o-jN)H(Nc_Ssw1REm2^?a-fWv8+YTxVFqBN*e+|j;a`l*6{CX(Er}Pg^u~*sAHB_M z+il=M?P|%qSe!t%sN9tHJA1y@(WJoiMbYN_NhMk?eB-KzmRNjh)jdVR{1A!uxBVv; zbE?e=MY8!7IeMy}85>Vwu(5pAUgcmFYP zhJq06Y%2PME?-fs+ZTS$%f%+=9Y~Y8^;5x7I)%hDuHM2}kuQk8OD@P%1@05bQdk{m z8d0s|nnQuXz`TfbVfe+Pcd9SrRTT4MR}&wyu;v-$OZL^#gJ$?r3Oz6<4GbtW!Zy-&Z9u}vD)Wxj=< zC)YKkfO2p(m_Sm`b(j)YstOk})~27B3c2oq3aaFgz-F}fIghP_t|CV`c8Vsz!;i3C zmyJYAIT$IGwLpO__NT8DA=phSSkOuB|KUct^F!FtJ3rQI*ED2>O1)r?S%R|wf^kA8 zhkZwXk&X{{x)E`_FE3`Q7C|sKQv1E?@uR2x=yBt9hHq7t*-WAZ;s$%}GNiTF)R@B! z(Kw+XU63JJ?A~D$X!x#czMC^Z7Z<%wF5V`i6Bu#8h+jaIY7b_d%JQLjFoox+DHPeL z<0mGH7=^H{MsfD;-S_VyKZ_%VJ7F9#+zE5`p543lEuPp@J+Y^DlXLHGHSCDfRn|nE zU^oIjqfX_)rm{mqJP$IPs&97qEkR{+1KaC3?1YTXVF)MY*|fjDnV;4JrO>9Qk74B_ z6>YYWbed_tIa!L%%ybj$QiRU!LdWHoUsP3!4yqrNWlQNUQVKFF*m95|);KYV1+hmO z6Id5HQ@0l{xk#?CWMtQTlK%7jp7`Ya9rk;y4AG=8+Mw?-5KBp;^c)1k_%>J>Gw|Du z?N;kVm4Rh&g^x&9+`V`2gB5u>EZJ78fg|D&II=z>S+RHTj-3^G39`?OSACnEqB2^= z6+;b7OY0v?dQCQxyUFGnn5?#m0CBM`WsW4*xdnM*Uth|2kqbB(}`v2FV4z;Ed|v^7OzTo$&CFUDKIIp;;NkBrA8OsY&y?0`u{ou%c5! zC?YQfPxvaBoA1X7jAXigsH%S~Gi$PuIM{8=f!$lSR%{{=4+g3F5${YkXR%I=p(VX4 zj7nDRpKRW9vZ4vflf?~OlSgq86GBHejKV=oe1$tHn4mn_*1`<9mC%t5qmos77iPe% zCIH!BvVMRP9>zsN(~bHZZcLkOrVke6(l9QYAh{F@x~n-~+0BosC;u@RD4E3=r>hZoC3Q$krIjQ;%jR?k2L+*4!g+aj1+WDxV`}VY*qbO6YPV zj7nDB$pjTm0J3+LDk(VN2-85A^u;3MhpRJKAbJRm?Ud*0Uw`Kpj zyvRoQ$JC~e@kwe zdrX$yx#htMUx3u`c5+K-2I!Xvuc4jf5@hV;me5Xa8G?bS#tBSBw~j3Eyx;J_F%ZUO z6C{^z-|=8&xBVD9GCUAA01u>fSF}EyxG#v~-OLrD|TnW=M{V zUzJ-#MyvD6qxu(38fxAApfqW0jZazpBCaArsF!9>Rvwie?k+M*E zRQ@vBisH9|#eZ&LB+Z1j-`HEl)eY!NK2cOA{wlja)8=c{Lu z9;|h(VIil~w2s_Qk=!y{36~?JwQ1#1{p$$5SqRw*x17qP`m8)Ee;k>g5tV86N-B56 zo5|i1F+jx1t|FCcMJm%Y%dsrA9vb7U{2a-j7nZeFB$a}`M!>SI z+CWF^I7jI{q_o^sfTT6pVtiGFdh1dDRK3|zeLtzL$<%M9eF5X4x$zNuxf%DkZI1DvyS>gCqTU zA)Tp2$aT?3o-7}mz_c2+xoa0vV(cm{G`t_2;?Q+AGFfvwm#5hy3;GUS_t000=uTen zzoa`^)Z^>rD~e!DhsU@J|fZIoA?qmhY(h}qKDBQvckG&2+N271zBjWBnh8?ez!!Q z?^Ty+)|snGBb#UCq;Yv7*=4R%XVjz?@^&4|n|V64u) zk1@$b=4QfUnUps*6ayy{}8J=If_nT5&u_MY8j?F!q-4wNh_{=*!w zY0%4$+pesVGU%I5SM@Zc-r0fb}%meN8{VAALaEee?g(Y}ZR!|xz zpa9S+bSEWfxnZh#&L4?{D{Xt4G095Xcs`(0fJJ@oQW`!nUAGWt@n>?@gS)q|gpEY> z$mFCW%Ad(uw{P1riGlffZ)*T413lObY>fqO8>R z?~4K|d6cM+foWK6u+cnIqM{$mB`xV%M$73Mxb6N+{fZiNag5^_J;Gfw;beuXWPRif zbfU>~&FNsvNeQvS=AUT4-@=IDG$z9s>G+BYGI+o&*vwpleYgH3U0E*bG>SswcHvwE){@jo;Gt+!t5F}A=QhVb6mDFCTL$JT48snU`Sywg43z9 z{y!y5|5l?vq+)<21YRf{8x?W>f;h!vqroBlSr9Ef`EkNXqr`lqjuzZ7&6T2MFqU`@ zvnv2-!>#+YwBZU{3vrHR?>E*Q+P_LIS(}ee*6!fZ2Utnr687oj#2MX)Qw_09PeKc` zDvU~2-Nghr2n}JsK2!nudE62>i6w>z9r-W{OEUQi%L|zR+!r=P?tkp&ixbdm9UL?R(l&q?J~M%4{Wc$MTI$ zP_@Lv7Ew_%*&o9)z|?D&Xb-A6A2wJ-zNq5rQFqOnSmjas1A`ir$y`M0%bg)o4F!WF zy&A2FRaG99KaSpIq<5}b-Eh>zh`4|Tw&bW?CDhc&NUg}(_R8xl%8d(6bJ>tcd<|*Z zaUoa}$ren(MnrDWUS?r0O6z*jUT8$G+l+G>JDYig?1Wqw*~mQ{u4DRS4hN=BO(>7N z&va9mep649O_Q@WvCd7()^YY{OMlljE8l_KKE9W-Z^H?RQs5~2p`~Y7!QoDCgSr6u z<4X_8J7-HP2kN!@c9?M)OmCXNrn2Vz#DvY`?!1Pa_ zzD(B-O-}HPFw6Ce$u$FT{g%^~Ym~#uHg`QpY5G3$%m6(9?CH$&;pyh=1aJ7TjK7SG zGXUdnKb;w$?#y={;psqdxT5lxlXC{({B5T*=a_?UU@#Jkl7#Psd@}&wKXW?s-J0MT z?UUBXFV6D(W8|3ucs{L5C3%)R!7SsiCF2ZEcgE-2wl!iI|8X+T z0F1xmbT)1C7XY3tfxUIOp4{3$Tb6SefqXbaxU<#WSRk( zK7D;j*8jbYJTm~#Z#-=+J8*vQAj1q!YkSUnzIT#q2B$UGdAIj&a?Jo-pT2F8UZ3|~ z^34EzzxlK^>WssCKUrn~mVfcIWm)SMt|dmpZ{lIhZp<|&=IU+hwLeH97(j@hJ8gwH zh9(I{BN`K^ba0Fsc122+^AR%70L=gV8Ns~m(kuJFO70 zEe$r@F?4jx;)aTHUw6&9ufQz#QwxQm^SrsDC|Diw(AkeR#i2|Wj*}Q+8Jtbe#}Yo=&vaf1Bmp?XQ)Ur7A4YrgVHd7G-pz?03|15 zX#baTFn}B%JcDuta^&pmA1Mg~NU}7Y<+OfK4eB0%!4t0e&)l=60!h4C{WFDN03kkk z24zRueRjfSt?b_@76XXYS&DvW4z}i=UDs_uw{B^cFU-#^u1}hNhtmRIhTdowio?>4 zIVTL1cxXv%BL&tTD8bPKebZ7dU&ug~>3jMQ=5Zr0Pt>wndOdB70o1cJvjZL)CloG@ z*PwSPS^JY@ngN(zn&FYLFzx%2!u1=;H3M+HG;(`#ofw0T^GJ>GSb1?wguoD(@rf48Z#7>$NGqZCeW0A0XEZ!1dBh#Ee7X zX-g8sbRtHW|1gp)!O`6PpG(@@4IxW4A=3}$=bc4~mbTHN7(hKs z)Z9&>%Qkn@4;-&Sb61$&Nv0Wq=_PWUDGwts?VG#8^)7PF09-FoBWxU8&(Hg&f$+VX zd@}&wOVl(N1K-USP86J2nC0xd^#FI1aRy-gElbnW9RuTOJ4}?lk32Itt&L>1j{O(& zwqg~&?<3y~!1w7}B!kAIaQz^;W^h`YcG@q(;uve%&nM#y!1xk%jK*NvuH7iQej!S2sS*TT5(VF>F}WSs$6KaESJur6I_;ra-zOHh%9e{-p1im!@M$q9>y2PAL)~`HqqR_abY0? zSlhc#jk-$pmJ0a}dLkmge^LMj5a1Wi3;}$vL?rlcO2FWZ$%2`5bC?M5ZFfTe1`yy~ zXG9jHEq>wu9P-cLj4`30fg}^kM#pHSl!vMnk${8t4rfYE{#bE$(PTQ9G#Gz(K zw;@c-wXy5%Fh{Ym5=k=T$&`QrBxo7uY%GO45JA0S|T$z6%tQ-O|K^|gHwX* zHGLs*8Jr5-mY4Su;xYj4lKYO?_VLuDFDEbq057>|;lLyBJgy=#10Xk-+Ih^)b&fU< z`+UBd;0yphaL;c+v59t5!?L8mCnj>(*Akn-DN%W6;ZT~{Pb4w}ATPO-o8b##HlIDs`3M3{HjACvY{Ct1g~GUbs7qXqI!EhiIXXaC21_q&U`!7X zl>tzfxB~9rl%A;uHc*R}pGRN@0RD~vLl*JoPEA@fmfU*u`aST7K@DVuH*CpjJ#B)YNQu-K*c%cqO4DUfx&f-(;{&nP+qMLVcoPYu3 zSr|>8-tmwK>?R+VjvG+T=AC4O!DGURb_IlycasqYU}XMOYedHtgpc=<4+f6~A3Dw; ze7v80FnCP(kY1AT@j>#z0DK%f)%oI1e-=(YLQWVw78=oU3E|^c$p?eSgb$xHzeYY7 zJQjTDxP|EB6Xb&d_&DXh%#LFSBcCE848X`KH&r*TA)NdMIbi@!PM+#Q6O3~RGoK|h z48Y8ZQ_f5}<|4fOHhE$2m}HS1ju1}1Ku#EdlT&WBAtS#>Mi@L6wi1k!h*rKtW*9sc zTCw9M!pQ$7BMiXEwqYBqX=A6B{<7_^7qHQqZB9Nobdl)2#Dc?sKGxp((luZHKHkRI z`yyGlGrcOq&FMkTo#Wv|anZnir8aQ)534@Uuw8~*^D&NHkWmAscW7Z+jm|u- z4$%=)YE&btw$t&PcSD)0GjYl4z4A>(lR$-AMn>%#0zrFS)!y(Pvqz4e&QvBv~wS9@%DA{#sIwS8n#@9Syj^qYxyepYgih4io|yhQb9K3LOz4!F=r0$w`z8VJe1bFh~?5!LqhUEK~fF%V&xqX|K+m|f?#(>fz z+EEQisnKz9k^dT2XAB_yt4|Nkf@xl1@j9}|04)B<>B6F44=+64Kpq)@$Jd`GJRX{B z*QX}yo%snFTSQ40R-Z&x8GzMSo+hm7l!>sniR>`|d#^fO*t2sh!r;whkO3G>P8SAs z5=QuY8u?=Y{(kH<;jh`kXsVi_wZdnRO9rQr73y?@D6vNN7=XRkoF+;Pt1zp@XOm3^ zr%_&8Hg%1tDDyUQ$pBpb=xL(Nx%!bKXw%QsXRRu?kx2$%@^tawj>(1T`DVcCPO{1X ztPVUZDzuuiji~>)}Q=V1ak2i66p(Tf9TMh3b+YG?=Pn<4h(3qXBPc|kXv34$8 zExDV_G61uui9cxy(Zt+(!l(fWbi>{UL3%7PMcp?e}rE zXByLunMP~=IM!O1?^y&NbT=u;)Dc6eg!XFP9=<{v)k5IMO`*zLQ*g~JI&cr3FwyJ&sDA`OHTLwtmfWYF3i^{R2F_uOrp&gIBp(;nYCM; zn1sRWO-CBj3nDUqbj^Rf4bq-1zwIB$XqRm`c2vg2fGB+^;hU<2d&kB-GtNt3UdS@V z0Ng(?RuCQP44~?SVgRV;j}nT&6Zjq%HPqxH1o%yx1;sBsSfJw zqhep_Q`da`$5^C%MED!PBinRJSu0_}!RG!;ZEoZ|%21bjH;qxz%>8U{F@P}jQB5Kx zE?T6Ws|lv@7W6v_$^f8^@q>C}%mY6}U9@7uV@ivMKiD9 zQ9%qKk6ltZRzNk>9@tkAmH}Xoj5!ZkKD?>+K>rA#836je5pC5IugTAc)HcL)%xYv~ z-egAhJk#wX6P@QIPGANAwmXr=D{El6JyItGX8`aAMm1ee zy#_HKN{vLU$Xrh2r75NHz#O?&o^dS!{^**!et<1a`ECCIWaO5n15x@g%_pg8j@;68 zgvBPk1m?x`C=8e_qn57>hiY=A08k_Qk_?o$y8!NGgk!*b8PVWKwieL7i58}r z59%YER$7H?<-Lw;!_SuA_76oEHFF$D*N{F;t2QRna)iaSyaeVaS>hRh`;kp61EQuC zK)sPr3;;El2yE!HGt^M6K zul{}**fRI%e*y5WQOzs>R3KQ|F156gjUb>c#^xjtfy^-$cm@z-j2E?Mi?~u(gxqF-Y7<>uet!VzW_M8 z5qiL`ArOr4!EqU(r>#b4`4$}Ww{#5*AjarMn1ixLm;wAI0T}>rbR*0G21b|x{Re_F z0O-g@sFZ6i|5c9oV*;(&>4lEELi^A)&%kX7$#R18WjFW<(B0z%RV-NI z5w*mT`~QyVbY#UvD3bYhx(Wu6WaPe$qn(0zV-&@SBF(LYWB|yKyW~BPS#u0vzk{$0 z0DI4VLY>X!9 zh^O9BSQn|x|K#v5gE3_kNlQir7z=4eNhFZsO+s4JTzh)r@HCd!wr8VL4f!;iCTC_R zn(9OFv)aVm##vot*SYpdejo+MD-J}xN1kMCh9jRQfK@zX*-JFb;srZTU`P7_Ij(P9&Lb zw`V15@lfSM*WC6Cbf)RE{FHRe*Zaq(?+{*5k*%-SY>n51i&Ae0Bf07#6w~|_GnE0P zd;Zum)q<~~|aDAv4=SxW7uDvdXK7bR=+@I+(UE}3Z_uJU)+JW09@?lD+$l>2euBwC@~SR$7c&^YBBWT@}x~l^Gc-bBs1S zKX-DXabmJDt8N#MRekK5x4s6Yb7c@C4>mRP)b3o%4S*~vPqS<&HnR2InyvAfoG}1N zDfQTjYYsAV89>H~v1P7@!S#73k-?&M3;8Z)F?H>t0X@cCK7O=`4dkf@mPhM@_i%;H z${@x*q)uauxtwLAYlw|p{_xmyISVAY?4uOd`~$r)gR$nahpEX==aDI@`Htp6KxyXcbKfNw~pwlMg7?|Kg}BTT>F&%0L=DyZ8{u`(npScQgbXm={GFz zIxR*~l)m`}bA|!<-We@_<=MuOF#+XIFaw-=Kz-LJTFD(+TjjuQdT6cmz?r|>#sJYZ zBo4j*w(31TsZmnzj_q_dQmLCc_R|^AT1L=1=(}@z$hG+#cy@XL=}~y^=(q+~(be^L z*IfNtsC}7x^uGYLV+7TED20IXzpToSPxqBmzNaca$#E@0m^oHE48VFpr>2zM=RxFj z0aQ0a@sB`h@%JxOF!LG$G63KR#oyCSCp~=e_b)Bz>j=sKpo=g5 zo~#-m+V-h&n8zc#@iW%2MEiI7Ko~;msioAV$Fu?_xBV zb|*IVLOzv{3;Az6jdFxaC`&lCNfl9X%rrd(1IRE! zoe+V_nnwn-O;82^jjod@UFMXm7)J)-CYnZ=UqHHj@qYX8!t}H{EBxr15B)5x;cP~B z?H`ceIy!l!jJ&^9^L~T@s+40o2jNt>Hb<#?2IP401rwrUADh#Kc?Q+33IW{_y6L3p zn}K|?t-wF#SOfO!xd{E8wgE@X+Z3{E2!tHira3T5J(m&1WrJbUz%iggneQbW1Hg?^`#7?Z)?dnsg?uR?831z6NY*BL6O(gIKT+XU8lIR%Y6>Ha zj7~RO9kffd`R5+G=I?$OwzoWe4t_$cor^E_j-tAKqQLO>so{-KjfG^z>AMJ(#9YWs zVF2z&X!1C!sTpXm!$n)LO9;jQU?X&L9Mu%e*Dmgr1-zVq3;=lNqD{^bt+^kT`n|L_ zZwf!yUAUoO|4peX44W|mgR>7^(|&^(oO=eK`#GY)1#pT2gR75jZ~<90ILEF?V*U@a zgu#dgmxr+imj(M1f-xA;;PPOB!DRvejDQSAGdN3>8+XJcG=I!NH8>Xuj1m0XOrvx3 z2<`=tQsf@G<`{>!mZ#6bPr!}f-yB8tZ$yE)&5mqtAz3ju7on1v$1_71fcp{ro1>b# z95pu=ZNbha7z2Qf;NKk86wI5Odu0Ka5s(1@7w_L3(VF{Vskg=4(nw&8(En&*9`#rw z7}eJZH?DsRtJT$+IQQs>aqnDw^_qw88Y033zgJCggeF&>w3uNSsaR$eGm8NfIYRF$ zq?}ranq&CNf}TfE1^{i0PkkbzH_Hg{Is!8QupUU1U!PKDs39a=(}#4lpBZSrhc;^M z#v95A1Ltj=Xn)i$e#Gx8es@iS%U74VNBPA>9B>|CY%zdR2$A zFh`j!48Zybr8y6x_Lqfvm{1G=HA3;qLwT#q!nFv;0C0Mw?qUqi(yZa{Lz2ak_vTeJ zGa7))_7VD+prVVT`2&N2IJPP|TYlR=5MYGy14mvd!=&D*CN;wNfg|bc$#QLegX0Gb z$nm0^*Q8E;JF0J>u2mt-N_AR1QmKI+r7Xm851ZPv^UWFD&o!qCo$;p;N0M~S6@Lzo z@s@i)e&yZimn_6Ll?PEOQ0qHXt=146USIy$9d`*s-s@9!T)ZXR{S3G>48YYr<++la zDIy)5@GBT^Ck6vxSV!YNT{QcfIt?6r%S^I@{2W0T0K~fEF@OXB?;-#L0N4T7kpYfd z=HElw492LTr3rf|0kPUm*ws zfQ-Y66eO^sj}d^u*fL=beoTtl$4Q#O*fIfb&L6-p7{5*o24l+vVB|C5(*$8KwoD*M zkO{v@00scCd$&d^%4xM=bK-NP&j9r8AnthR=dc^mTR8of zY5&@(9Tt!(C-~{TvS{NKL}D-?+dPGu|Jg^Qw`qfLVZJ%7J2Bd?YX(e zN=bJ6udn^K6MI;75vLj(5AT@E?a)+mfTIyGmIs;I*u59ttc^EB^B%f|_ z4TErhE$K4=eLH3{0{ur8cxkW@ej*7o0AX86jX?MWICd(ziIf?PgXP0@*_tOTS4o%w z2=6OX?!?K7RAFJ)B6Orae-yVpG+VO^^ApGF(@oT|g7OriFaU~e^(60eUKd z7y!t2WJUnuuwY}(%J6iOW&qN57Ig8Xp&~hbo|iCpGOBteVHf~rSq|RU*LOk4g{-b=a+K-bP%EuQ~{R;NA3>-##5BRtPviy6#yu0G=o z>Hq;50PrSh)fVGnmx*iKSaxHLmmA|w^bnSnHd;EvX@7Uk{a@u+zI#lTZPi3<16@6k zjDC&=&=sE*_OFeyZ;9jL1i{yj%;oqb12@$dPKM${F}Q9`<>2K~M;p_#k@3#LgkAHy zpF@-HO=yiKtG0CJE0zG|eeQ@1C~autTGd8-M0!Cr7ZbTTGYi|A$40^q8%L}pM7FoG zxy=9~ojAoT1ien-BtiEbnN6bE{jVI_`QT?0O;9M1f4hB_mc+(;GuJ> zcxaqxOipNj)#kzn$p!BFDL$Gu}9X)3{spBP^~Wh++GM0c4mNL54_m=eXh| zx5o|2sxUA^1{i>Wp$mzF;O^}{f*)|19Ad0KTzA@-JWz1g*y` zaEHJQ06cVCqnzARCtLLy+}&e=F&fi4hQYNo?~joM24G=&X=Ie>^nk z#C%(PaPu%M0NKv*F)RH`$p`~5vP3pd=}rAaP6IzcU-_Q12ZRDJ<9(fLNi!e z=+?pv_QGfL{gs4f0O+GjW9C#hM^SJfPZs-!iOm4mOH{;(J&*C%_M9B7n8p85;xkxU zwa>TbCXePs?-H5;pzQ|1ahGun5cC+@>j}#Mu!oi=w~sgH^TPflQ5gXBIsN+aktUWc zSh&JQnnBh{^t5p1hZUx?aL8rJL|AwWn^=(#y5^#PLUZfVd(qt5uz%rD#hO>eF$;MM zhG}ieh`T>xkoD!`%7ot5 zQh=Ohm$c;T$Lh^#4sFJmdjgqb0OnqEikWLopncPrV87SZaK6ertZ%IjuOXWZz~-Az zLpDRzT9&UP%M8Hscb{68>D2;rungTmh8TdMAAL+2innc~usn%OG60j`duo}~+Mri& zo5&Iauyp^BzB!=g3S|v(J#Mgsn|xM*Hkz&aT+^=N?RCxeZP&aJL(S#|s9}=jTU{gs zx@Is{{T6=p#p+k>0>_@pIAkPnPcB+#2zm4TJFnUl@-YEdTTn^8DIU7P17~k{Tec*gOQcwyzScA ztJtwp@OeW#YqB)7;v*eoP@)-hci9hvnk`3Fxk!h@gwJCf24Vo-Zi(tJOQdEWok;zq zEtoEEVE%GphI2NUdWkDFlcZ~|{04OTPsr+I%?|mvq91dV=ZSI6WGJXcNd+2xoodwX z*2Yg(Nu2?x+Z`#3&x@mVyM|!G zax{sXD?1bI7RPEtWh)5B0B{8p!{vo(M$jzIYT_^$2hMck2-c8b=+Cm&I5F!?U@dVN z0B7XVIos}Znun%Ox)C{pERM^o|>^sYvW|~jf zH7kAvE^rI0l?^+b3!Fb1&bC$uI6_ZN-61K$9llT9VZrK`2ruHXePbY&VzS=Cfy!8# zC0y@dCBp!!J~$MUG2a`AG1;Dhr$QeH3vMP3ot&6zPCCpxh{*t$1(Odk#tZybfGOUK z!{>9n0-NJ^BI8}eV*tE@WqOOmn{Lm-h8J2+vb{uN03^G^uF!G=z6VQoWUkSeI*Dp| z9#<=hQ1=pw0if*h(BpxUMZ|TkGD@)y5Q_n@UN}x8k(PqwyfBjYjhT-*-j8?UqDO-ztlZ(F!ThylXzTazZoj48t)LI0XS1ga z1x_u6++?EQ7yJtug>(MOBt3l`Dh(MI0lTmJ@A!nqUk7W_Mfm6h}|980^?d ztoxm79)jy^%+0k?{R;WtBzXoPU(}pf4EekmpCb+f;1sOHPSvc263>@oC+%=zn%WBT zI|N_=fFfU9PLMo6UX(8qi2;yCF)@fThXosxm`#^vcbF}IKnw=J7{$b*7SZdy!%-Gi-kv0R+F6yb2%a(w4UVyI>gu%!;B5ONmF^<`0H6P~4*NDMj zlo^0>QBQP8%6aDho)8QGQ815@a@D^KaOKa5Q0@Oj(hNX)G=Jeq=h^=kVlV*4 zXl}gOlI8w+Cunox--*KjI0egkORFi0lNan;1Y|I>V7LwogJIZ1f@Kg5WD&2$k*2)V zgOB522ZNCXE5OMMb`}8{0B|&egB}+$KKERbW&qNo8Js7bXMY7T7yx4gU!t>z_Ffz| z$+|eU@bQo1KW(3^CJqDO#FuraIoYZCpVnMsP0500D!SKLC`XHkH&gxlt~vC#VDGQM zRI+kc`Wc5M3!16^TkVANdo)we{Vfs8?wicF>argN4nBB+l?Hk~jZC+p)i0d=Ep^5K z92J;WKqKpjgBO^%lM`6%3PK_MO_F9%m>r%#&HwD9vRb@)!y#oyuoWeq7xrb>Y~w2Q zF1$msY`1>ETqsy^ACS~9kp=5D3$_nt!Z$}99Zt^K-yC1Z&Ie)V_4HT_z)3+h=qO}W z?_zcODnj`uNtppC$M*=>k9fozwO6E|f*B~Zdk*6&se;jY_qJe+E-4Dx3gL+{ACJM%P-4|j{J}cAc;0H$b<;)S3 zCK2=~sWSleg0@)tbv8rO==8_2=8G)Vhe?$Is1}sb^s7Ns{YGJ7xJA+oKsr7}<|x

9CFn%^Sx9L18{LebW9}uu$KNR7G&LKX_bj#aYHw*vNqR$8oPnc zwNJ^p`!yPPD}7>31>v5l!d>WJZCq$!v0!7WT5nofD}$J1<$e0PvSk-Fd0FrwCMUSJ zw+d+Pm$F~4%||C|Z`Xtsmk@L=4d}pg&trWkNg-D)ne%e7$$7idWECa@ktf87EMWKI zk?L#{XF!N+8sw9%?|je~==C+t0)q1B|ugaFCS^8^B`MPq6lj|P<(TWnS?5cn$6;`Qt zD)ovd`dsS$;(!$y(d76MM6!shGjYl4Z5;G;N$`1?Z5Xznffdg?Yg*wWk`>$1m-s4F z`eZYcW6RU$WcfDt3ZJZ&GFXGrrsdDvigFc}z4JAVElCwuw#;*wE?1^5)U>wTq@_fR z*KFknu@VHUM!$m19$R>%ROm-L`O$fSeba!!`DH!dc*EB(@8p+-C1b6XO6;CA^`pJ~ zC|epfXv(b3YwCSW-D~|Q@RTPtbWMCe6K71`QO+2$CVrk$&b)!tPgcq_SZ9b$F+@nv zYluqfg(NkE?XFjhjEO3xL!{JWtX7lWEH&|ACe9kD)k|uNn$R#|#wwqwS@|+iFQvkhlVeD;Ksuc^EvU4q@M{!rnE^#~XWi zf>#wM-NtrUxKiQ#ssX8zt9rzM`LgPPL?nYe*fA7a$^6NQ!FuacGk^DbhRwD7HE(K9)hwN91vy+j>g#CI$T zjdqe6T_!hwiI}A<^wxsnBZJ|(Y8Gxqstk#$%IF`Wa0mlN#FF!JvB`NmI8#}8Z0KR-`TrXMXYVxR?8dAp0Z&C#jW{RpwF7&~%vJ;q$Z!gSY!=1=% zW2m0N`1BQaPtJR zw|W>GD)@K4AqO-GPZvbrB^T_JPbxe0lga`41bjZD9OBXT@#=iLnl`~OTqtnsdS5`v z?cEkTu!JWX(>SsIujrU83zf$`MD4eXc<{ zaA+C z(^-&qIF-_=9ziQ};gIdNU>pcHmri2=nC0}AMSPjuvQ6$yK>wxQs_Y^h+v!l}6FZgL zoAYR?+jd?Ze$T=oXP*?WQoW9Ga41}Q;PK5Lu@cF7`fnddMqP5ny6Z~duFcm-u+TZ* zGLSUfFC9?cFPlHt+AijZHw`4}98SgiVDr}`*z0(=4J0O}*WXEsmp6Y$gpxkBpfwa^ zT`Gfj9}4pigeh>JPa7zWD_9lpx72dYKa*~eqby+~F^8ud|2rucdc?t`QSK_CGi0_} zrvFPw)A7Vy-_r-GBXw-zzzF1Nf7|E4cCm{q=vD+-*kd_84oUTME`iFqul)lha{h;| zL_8N=2?T>HQO}jSlC0-4E6K&viagQRUi=e%eNj;p6tlD(%$Qi1l}5OItS(?G;s>$W zDp?uC@UUS?UAa%D9g3QuS(-`+P0*)80C>f%1s*>8)kfI=!>sMlxv5T0w_C2}n`_Lr zEpJ!!O_N-KI-Vq;>8Xk(A!Z~bz)4A+;A{}IOJ`=9m?Bf11To3Vd+?eA^mq-L)pF9! zp5)FI9D^kUm$}De**zz>$qSI$UXIkU=G;6^X00|__|gI~Zg6_HrEQ=+{iM)kL*1RkuQ}%||C|bp*^OET1Pz3xk2jT%H6mn68j9 zKY0zBMMI4_i_>m>Rkp4nhp~Z8My#qXb2P7>Feq8_gzYlgQ`yBma7svq4k|(3mNb*& z7^H6>M>j>y#62d<9XUcxr`Z;DopUN$ID|bH3znU8 z?Nf5@eHslq+sZLx$->P@-;!m!*~%&U%KnLxEBB|)NP3$r>CINCD$r?ms#qq{>E-K&(&>{M_JDL{yCq$@BPCtg4bnMoi@H|1EC{p$_lFK< z15H~oj}5U`IE})pX%4rG)@oPW2rje8Y$xSX_1{wlLP{-E z@im&te+Lm_wcTJ{DnVb-ncbqxYz0>^QxN373Ji~vtCF%hzK68SR9}NL&s9~bfN2sA zE3NAXYBH#=%!B;gS5{9P_;FZInOS}v)KSkF__;4~(wDY1OIBA0Np)}?v}+(3s}n45 z(dwt-tDg$1AJ!3B+$rJ?Rk0LwIs@wnlAa8Xhl`XwF6~K9k-b$A?LRXh8+Tq zY*#4nvdsySiTmj4KyKiQD_Qq!9wogVr(D!A00Ep7)oD)Zc)hrGdF+}$;8exRASPLP zfUaI&!_gOYma;UJ5IRf01jhPQJlU@{x)p4ko3OmB&cr3F-IBIDm;{ucUQngwD9^X2 z+Eoq~>o6OtPLcHdp7`Ya1MThY%5EgpAu<^^FB+T9p~zXEYz3aggb)XfAGSE_BX5%R zdw4V`OXYVWIfslNrbH!k?fB6)N9Zw+Vlh?*G0DmYjw66C>vi<=i#@xjWM4N)XT8$c!ikcWPBy5a3j$=YB$Z7#`amgB?zg3e6 z>7tpD9O>DG>1oWq;jSH-?GXXiWFwO`_aG5w-E1Q8UDRyN5%0`k!KCd*cdG5f7|gcp zZ-~8u&*2B6rsjO7a<_Z{xSi$9Rw_DfMn9%w<+jttVaz%-?o_80V!w2WcH=aOECjT@ zJ5D|+DR5OZhM!Zy+(JvoF{oj5FYFzJW+!{(zT7j?V^1K0sc=UFTCx$GKRe`r2VqU+;6cChZ?OgR{z zx>xfl(OuT94(5&~idhGBlJuxGtHI9*cVe?WKD1!wArM-~T36{PevTA-z2;zI^o>{s z5IRir1tHesC7(7hhs6tu#PoN8gEYTSl12WopcfQ~9JoS`Guyt8%;*HJ(0rLFrJP;C zsC@uwU71cqp&c9eIrGQFDRyd49;hhE!qA_YKOxDy8++D3Laum%@r(mXJ(&4A2@i5q zgZ+ST?EI1VM)Oys+~b+9_O6%f-Enryv4#xG^Qp?GuGxbZHj;=pg7~B`6Ye*C_U9B<&O_9FeZA`0L)LnM6RM=bB`yyHA z>R*~kx~e5;J@NS{!=}&&HfrG;ubJ!Sy<~fxmtAZA=`pIHl)+a@B*}mX&QJ<_3lFx?`Qh+-T zH)m(Th7&RynXF;%RQ9_>An*H`g)-K}A~~z*rp>89Q=#d{Y|}gPVv?!*gSyG1)s(rO zMC114TL8smB~L*xG$nHrX-3S)4^<5$2rg60F`G!Q*IfMgVllbU4n%HQkl-!F+(Oy| zETRnG)M+Ja4Cd*=caH@Gz3v?2fty19ob@;GPUng(bTC3KPDwhjS4I4(Iy@nuU&00L z0X{4)n2d?y;hG?JNd(BEuFk|ItM^Khim*U$ctd{`YY4Y=RuIE@X0{GvA)UlrAqB(>39`iB8ZqmPwjy+~o;Y zlprQ}g`m!~L2Rn7(p$;dywhTDGv4f`@dTOfM_rDQg)Yn~=8gnV?ecB|gRR@tu~7q$>0AW9U)a}FZFAf6j5OOfw3+9O@7d2W=+ zi;G?-7jL)6+eVn)T^8Jdaxlp)Gpb^%6tBjpb{1xNBb!y%wWZP~*E)7M^#^*>MC+U8gy}bm4BTWrBrB7ll?A(Ed|7o{6(-m#LT9Bjfvvg?_G8ud?Jlo$OBgr*%ImJV;G3w5vfFe> zz^BOVaKOk-r*e<`oOu|vv;5Yy3`2^Fa`JL5C;Nvdu~8OkqrnMgt0F$uPhb-L5RTA0 zQbm)&+|E~&`+ZZt~*QW*EB2&oE5LCRf=U=f*tA;{i6WTNtm3f?9c9RMrAXTkol zV6|}RyyrQOas{-YE_08`vb*gI2p24)C{35_Lt)&BCVOM7zR&N8$AA$8g4rOc?mDAB zgRO9-A(@q^Ca~xhz*s8L!Or@*g~@re`LMZOisoxDv) zOc|&<7LiYuczt2MjkC{Z>T^z+>mzRx8#xgs2k^5O0elqw9c;9bTaZQ0l|f9hy5^r` z{$w#4ooaRft4Jeq* zC~ZLW0yt(BYyAXndHS62=Y+fhX}|fd4CUUfnmq6#s3y%1v8K*$_=8`|R)>3Ijf2A4 zum*qSc80oYEL-=8gyx5dT&kklJ{&&Wb*!>c)E^^ipZdtJ)h?x9SNACK*O7Qw3;Bf- zrKpi}IB{RADA}JR*=UvHx1E-v&zylV#j6U%dK0m(vUQ3qiH_GQ-!WXC96TsB2y2al z2i3&QPZKIzoA|N#Qt});XzL7DL!`9dPTH~hBi5ZOuC8i8u$2euhLrj{Nj+a{Ja;&a zsDs9;|FjO!4EP1oj@J-FmV<)_6(jWbsR-{QOhJV(q}3ig7`pou;e$lzsR{gUl#)5z z*!A5URECYtI^K%8jLtk^T66j)cDQvU?0XFPm#j0r6u zoh#SjAph7kzxS)??W_!9l9k)i)MWCSSpDwPOG{3up!f1mUn*`ZUHl~kQ;EVHU zc%sBiWBzD+3S&aT(`9{9B$sV-JYvR7KdL^4?@wR(-JwX7RF~YjS#2P^^rHp`n@)J#ccwW zf!Ejwn8%T`T4egt(l-A{Q_R`Ut&xHhqk&~0HWM?dG531enVu3!>|B1IbjdZkZ>Vy^J)pJuo_#k~4me^mS4LuB zFjz$AtDQa!vhi)_orDva5zq)7X67`B6tY538Q0v#^n_r0PMnZGFBgk*ys!sW4ieU6 z5Fy&}?IQyA?Y1%F-9Fx`@_;C79BcE@n4-gCz1iw^B*Y4CBm~yI!ywSj4VKDgo545I5QlXvSOhMUySgX=156m6CZET#Hj8%_TcvTa zc>i<>_Z(>wopYCVE4h8Zkpg?s$&fy3o59T~O%!Yn=3+&F%fs_~;*<0D*rb(xHYwnS z^)abF~ADQ8VC|E}zxD7g|V0fh+G z7&#)T9Z4+`9R=@WNRv%JnW6q_RT!15-?ppbCNwHvd(&IL`QcZyI0eg?OSvFANn2#j zmfy+Qba5mV9pdW4akvWFl3bmMOIC+V{s=K_r9D;e96i*o&tc$P>~DpSz#6RdB`Evd zK7-UCtz@mrWu>!gGYNvZgl)P$&8po6t>@mh0dUwPs@y;|Z=Rh)U6;0FSa{fuQOv7| zS+d#V7l{s(6D=OM(uT@2*APZ#)YGO;QC}b;O}0|9oL^6pk(P}=H)r!NUH22Jpr-aq=Lgc4idiW>j}+4?+OIM%LBp@Zx3>O5((0*`hp16}?W@ck zBEf7u93AT9OxMKx$ys}-As?&q*fsz3haBn*Vv?2H@w#$=so7+R4s~V;Diw@fyaoK= zlW3bL`^m->5&Lv_6M^OA{GRya{OyjP${tM$i0J5IAq1{W(96Lr$_9_(UnLtn&^_q~ zz}g(^6X&onr7?-Saw&`xWpySF`L0PQge;1WHc$)5rd+xSV#&6P9YX$fa=6GNm;&h$`=gL`^I1z@c7T z^ct%OUA9*sBR>=;A-K^23Q`LEIWiL?9}S#g?JUwS$dqz&S)UZiWyo3i+*@C`_%b%- z;qhzySqbVA^JdmbxjH0P^~Pvm$CIxM%+Hci)ceP#A)@qB$EXg&{2WOZ`T3h7-HL#! z^@rrqTB>76wJ3{zm{sN%NwS~&jx{L*>VaFX#1TF~gh38E*1QZ* zQorjRt6QvN&E0&2FatfXKMybFfNQW@t}AX#iKh&lZ-vZc?Czt)EA3kM^v~-uxRtzD zH6JGni*b|#EYD4;c^_#$MW`On7~2OFNllKR-rW_*>uz^+vos?$d8nl(ZEr&}*`hxaLJZ2-?5V6{z}^oym7iA53Rf zdso=d6&{a>`?XL(JvqT;S3-I&JWEd?w*#IPsM z(sVZh(MUIP0h&bPyl8hrR^zW>^y?#UlJ(nNa;&el$&p1jMT>$j*Ph0Ir9Sf(HNH_7@PE_r6( zW3*VN-)8{3hSVYNR+Tq8G!Xw(ic$JXcTOs~WCM$6{#CMJ7p6mYq#SSK&PbMv=xY!QosZ6{$aq?katv88wxv1;v!3mSAw*|zcza=M8?k6#|X;v8uVeUy|gC+w^sCxiiM*9R)CRTg>MdFoR6Mfu&fBJ9(0g5V@rV zB}J5RVf7iX3XAxqIC^vqdHmu^KdrN)e6xsH)3#x zXC5`@WQCs+O3us0CTlSy9V8R>o)+_HaS*$=Sk9prE%ZBwK006+r;9x#Tr>yUcPk`? z`uRQa$@$zxf~9asYNrXIrs%@%I1-mcz$-dK6qq&H$Yc%If8zLm?|P%7^>Kjo$`u^7 zC6%)t{wP2f#$P5EKHzQ?!bjqR+!184E?5t44KdkUMsS7}0nNOWft^vSj186alFk~C zqx&M#joDHuQ_7s3EPQ?s>E+H&jt#f;@&^manu7}dQWA{XN^D_xFIlyS)L#jcFC)!f z+lUPm_7Y4lwQxD?&BDBbgo|w;+7CdpZwA9}Xk1Bm)<1Sl_aE2~2x5|zJJZyx*Q5Oa zpI-X`qyk6uR`7;TqHDRcpKQb)$$7oZ32hux{`O_H%;F7}k$tC;wX>f5>ct&FxmBR9|)>H47P?ZKTdcTBy4gEyB9G-2F?xcw3V9UM{V35AZzbb$jf|X|3t}^+tgLc z?Mr$UBU}`k}08HK%T|S%D+;Z|U}!XLN)n$GF(H zkF)gF=A)CfV){E%23QJXU29LO=6@uETuHt$GD7D+tdS4BN6nT<^9d5k7sS|_ zj)01kG1f}f;rNpSnLp;8B-yvL4UjY_R#G&~FNmZxBVWL->o4iC4pt<&vSr>!0%5Tl z@U<&K3jaa*I=B@i*4FjvkX4qvEQlA7*&@&*(l3+d;KCBElT*dBzXFfX-8*PZ2U~O` zA3jEiKI=wfgHnMMVk`dH8r}aQ(U|o{2X$Oub0Qrb*2>A=B8c;_?1F}_`LoY+P{(}` zyg?({T{^fWOZPF~DQb*FOLsy?+%*uQEoQM zCJ=PRv5kU@A|7s>#0o$xrbwkzWmE>HODgwpKZ%f%>A<^`6pj*edWE#{#&DdqW@{G5 z1IvZBl6{s<|T6ACzw-#m&VF7_mG-23_gH7qUi{s_W{)v(+_bL%~ zlkc`f($N^ve00XEz>LK`U;wVeV{oyH)^V|}_eHX97kvp1o!OrzMn()%z*|^Mp5Ixj z1w8VmXuo2tzuzle%|!*dC5CIhPFGdnJYoa;j*xc%7|C)I4&>ha4Jj_);Ub}w*yv7# zjxWh#Ube*daQscuFIA?aotBR_K{*f3xg}5X=7EV_vwEUWX5qkMj8{7L3 z(Tfzvc!|?I{0~weP%vYg{UcbmxUo3lZb2!N=?IZ64d%ZIH@M(MJK-_yYca}|Idj$* zfD$icC2ii7q8m zmlU9DND;O16TvLXP<%|Q=Q9jw;k>Llolvkxa|vtfdS4{#?$N|qhZ&vBae@V_$I#03 zB{p>2f_HJz>*Qi|e*A}7?CA2`2=+|#1Qt@d7cfl0T$_(h*6v}#EJj)R+!_PEoA2}f}h`viM*q?rq6*u0K?1gltrAMp7oO95> zvQ3Sf6LPo(s>wRG2ai)ck(V;&?c%c{#?Aq7wxI^=>%XA5n(OHYB1JT|vOY)8mZs3P z&;-qs#cM^&Rc!7iM>SJsdT2j|wELBw*z(34f*5lT<)@KytgMva*_H!b6ULI};HOKJ1tYvVD0ZCWTH16zqH@!%&|-vzu`kN%hK~AS?5414{(~9iBYY@Cs~}1La?qO zX;escu#YeM`<3uZELF2}WmWXxcwLP!xi%lo)k!vCMH2$1e}g&$BRbb}WhGvAbqmyn z*sElNWPyC3I^hR^?C-=fkj>U%ObpSB zqjmI`y#-nGJ-;VDIe$Nsa{s3HLQ zuy0l2$Y23!);~!WnZqO-^Id)WDJfBJSrv&(-Ig&VT;!$tRzfN9)D7inw@ACdA@!~G zQ_}3sx^AvtRZU-H=19EI^F*g8^Y&A7&Lv0s7)eLnOy3@E%C+?!x#mg^ujx(f^&@lvSheYu&CCy$JQO;IU?~teZGEyyAkrW-}@5#(e zQO}#=D@eXip^siefzuzR(0{NO^rTN+bMq(B09xTAk`=eRq;$uzTZuNOsoAwx5@_hW z7kuH1=;UJNi;ZrU#iB1ypOfWxBh#5v#Evcs%u=#rY1M@e&&t6KbUYEsCE>9y7UJr` z36rbs7+mE(660-jJPGM`tBnfI#3NJtV?)OdQJ2e-2QETvoM=og%%iQt3nJ4bX$P*_ zX&%9i5;!m0GI{gxA0|&d03HFh$%0J~Y$64_;l{M3Uh!}cW6xkQ>R7;{qmocB+P{5d zvI0D5m`{@G7A)0LfQnvk(@zfSKHAhzWtDLzdw8^qOqGoemRS0w#R-y2x9Q>5x4SHN zU4Y_duETK~Td3ncW_TGcAumdiT((_a78zc&1Chn&{i(C<=_VF}V)aq_&We6<(d*>m zyKxDieptaAqyG>(k9H{16rywY#PY`LJ#lYEeWt+!D4f{FF!~6{hVa1 z=i-UGU*tIN-W1>q1Q_H7_w_Xj>%{yG8q`!Sq8Fbx(>oc+e6rF90(VlG2@?tn$X<&)3$wnsf zoOVe`KDuBrMxHHn6mQYyIr@;CbH7A_OsqeaqrypK=2j(>Gv>c&1F_7AwE*%Y!w$Cc zX3qXy(3904sV=}@Z2lupjJoo=5lPK*QtQ=PY~fj+T%a(snq<7TqU(lGJ;Y(T?*F_bVC$8jR!dHSdW?-qWcwOHd4wAq{>pa0( zIKsM~AdX7{f=5t}He!2)Wk<+~k7it_Iq5{+5POwuU@yoCjwYCV0J!MbTQA&koF~f; zP6`=JL5NtF^+}Oj_JDrw8OZb-q8G^Y^3XYo0~kC9`BtN<_o@M@lB@QUjOS!mZ{ssM zXWYxrLTjPJ!+6rwO3K0cJ@Lu;_es)pft46ubT?fuN_qfthI8v?#7!krvYWs zC2q7DlWN;}X2k&>tR<^Jbl1CZwY8jKyZb4*kj|ao?hnovi@2h1n&b-EcWD{e1iX_$TH0(SHjOVB~m8Wq(vlE5!O-LGrMqHFUg_Ql(bl^ zeL*GT4iR#O;?Cr;d|fplRZ_uQD9FjJ@98}`>l_>!30&{ zXyoj0ap=(*fda&?A$ha~ry&a5UUVT{!MC{K2u0!i2`Ri{gNJ+EAP4`)`+s4RJ4f>H0uM{06Qy;x86SbZ8BNG#qpB~m8WP-`Gpc|gfw zeuPhq?Nshpaxj$W;CvB>_33846AsRc_-pggIFgqMgCQjV-8rxk7brNj3FiZCJI?I@ z7Tl`_q)M(zEhyKP^JOf0h-8uYeev>keSOK)$@P7?9L?_K1Q}75*gYR{0Uk^gztlp9 za%)FV&hoG<96?d#7FC(U7wYRHZ<6(Qq{%DXvuqb0MK4hqsB%9Z<%}Q0QF=gwc4UQ* z8&ahYN}t@2sy!WN7qeg?!7zJ38pa!2D-dBh)0T86Rg*FEFl(3sKOb9&86}=+TMF4n zNVcbKIk1_bC9UR^C7ilRJ?mu50!jDr!O`KEUVllIST8Hi(wrpStnVGzxU>9{l=ZDj z>$^!S=W=7mzsIy`&8T9%t)0tcY^M@>Tk{fvl=P;tA@>-#c+9{*syIJDq?qsA5g9{{ zkxetyxlP-2%$VZKiBiHf?imMY-l|?j@F6_jFjl5MO;!1$#L0TPvSrx2vP#Cunb(qL zfm6GCSY@UDN%DqHC*se{PY`k_PgOXA!#$ib?+e4J^1)sMZfDlHL)Pu37r*|+_oKOb zUAe@`^}9fHH;C5k&ER%Uo?F-5Hhb&-D@E-9$6(hG8co?xKzR7x=;B>kzxyCqm?BIU zEleqF;-!QdCvYMY@}gG}8)C1L4Lj@yIT@qtE;B5>P%d+ z8uh$SQp(ik+6z4AeAe>4Jbg}<@8c^>MUlJM!M!g3StCjTtl6uP?My67pxa5GmO%4y z@c_HR;w6_P7ZU0Ju{!*uXJJ$q?V6fHa|;3Ma3bufH2iYv7w7S zn$MGRf0Hj7OB0FZ5Eu@nrA8}DTyR>AXyA(^-`BE>S|>t1uv@Xuz^KiaNV?d9qZ3fp zfMqv-)_BcVNUq0Z`{uS-CnoExtY0OCjGazw=8=$_T^`h@HzQv*&(vE@T$Lq7l@Vxk zwPd=eKD~*L;rmT!*3V$M+{9FKMyI@N1nw`JflqmO<>SG1CN6!HZ&+ORjh_ugMlJH6 z5E>AZlOj~Ve5(>!C}*^iR|u+1fcm3_Q1@EXAx0DNYN!0AQhBHtJT&n5#5z`*mz zYF#yJMGvXnh-sPs_+6HY&Oi&Pw5Z9?H(tb;=poO zeNmM7z&MGE&4%)r`|d@4F@PK|7(0~OX$J5?0x|$#ee8hVHZ!2lCny7e?j6}Gm2@qG zuoAfy+Qfb15KR`csht4m z?lI&a4hC0iloP_A@olKv&(_ny^$%d~93KoW1_J^t@J6-3ad>qn0qbr(r<)k&3(OG) zkYF5!9>Q3|OI2omk6;V{HV&5?f(0h$0l!2*2F#z)?G1!$f$nagrKS0Q@96p8!72c) zdF5Bvbk2sMoud!#FGRU(j8F;!Tf0?lZ4B<)i$P-xL^0oBelUO#&mW@@;#Ae#Lb(4+ zI0k?lgJaFg5s+6iv=NGB?xTxf0BOe1C3Sj|!W($QEa-y-WdP8|cvUDe1}2#Wem;R20C?Z% zb+aX2b5dKKPSG~K$pC8%9gz9vwARr4(KUa%iX9O7ZT|pf3>^>$qX;m?c{Rl`bU++w z$s#X>xr>>?01}L$^3TAiFATu;5{v=B#?S%DfO)eE0PiIr1Ln`jCP%`xfO?0fre*;8 zV`vNFDn{UiHGN4&-#4~b2PxtJfNd5XpD}03hPNAMVB2?E90J-ok&4opnQkHeLmeUxeZf5AT86XFC44nfhwHkjp z?UQZu^VGg5Csjy68?|2+V-|>Q5g{Rk!A95|nE7{%mSe2X{0 z7C~72S+5Ed&s@nu#Q?HA7|X*U5ofo0EVN^t{i)419@(;`1n?F=j%1)VXgasI4%G6kN3oK6cG2R+1}&82cc_ zoN%`dpCMT|#Xt`KspfFJq92NXY=9KJ{S^gwzAa=X>U;p0%@n>xsl|A zh4*1q8A68soo49FVl1Q&eeupJZA>CjhxrP#n*jtox`^y9z(?-$4a?^|I&aJf6j^yr zv%-9X_F(fP#vxc5pH9-oQ$haoeb?OnpD4zc_eN*I3zg@Fp8N9?< z{HY;iedeM`Dmi4`*}o@Riw_(0H4ev|b}TJ}W-TjO24L^jp|b)s(V29#&H`_#tnsnh zK^#ULG3e(V@XcI)x~}(y#AQj);oiO|wP)#Q+lau(gteLp@d<-Ph-kAUi-;rdfM)Jx zSz!P{9#~8UWvMc|B7Rh$&ijAdeR+UnRdv1!%&;$lyGD$-MAL)2v0OnA5D`!im64*R zySlsXbaypX)iVr=$`1w6A*eiDqQptGepG_j;V){BhR+azMc7Fvxa}dCM+MS>mmwild^m)@8vu)wo7mI z3F$uorG(?9LTHv!rU;L`-dXY*Kf^jrUae={A4X6GQN4q?r9n8+JH)5OjAS=&Uv($u zmyH~2&iJ|c@dVbE1|9UD7>TtByUM|46`WB>9J$mB^-&+ zFHQ=zR&aW&KhR%(;7hYsc4g{Ww?f(ulpp9Vc7?wtT*8q^2qzdw(gP$(2@~Vcp)R+4 zllWI3Vq$2(dHN%f+?{?!eR~e`Puo1|SmwgCk!_avRad$hd3w%b^cM67u!B^XZJD}> zH$5FDKjmx9^iMOp1qY{Q3!*%6`XY)@5J;rwk&>Q-5k2BH$dTo&gHxw5Q8WnQ%&9A= zfR$$}1Zgm3rWu1qORpaEsD8?@nyD*z8r4=0x7d{?S4vfnffEd*=Lu!2$2jyeLy|fM zbq`JuY06X&+_`+v^)>sVbKyV1IMFX7?gv)Fcw`hH{WIJINzua+eXG-XRZf4*23?*0 z@eH@yO-=Xrq>(Tl#b^jBl69seD`7l}xeZdLM-UgGdL*lf22o5u9u?8@^buyORgww*Sy|tBgv%S1JkO4`r&**g=0`UpTgZxcqP5yxCN;obmKne^pwN)~e za2Q_jsFUPv69n~O78VU?M=z%`1tW(H&tF3?Z#9jeTS=YEq)1ccjgv5m7Z@@L&yMNs z#ly0<^Q6a-v0Y}XKkvkeGzLEXNHu~|rU;L`ElA!HCh;RYd-)3*LJ-vztTP&fGyNn! zf@$+fu;64D161?OtTgg)b5;?wJ9ZgLq#R28U_Vsh?czJlcAuF3BQ#CI@H*5smRhDr z0=e!p9_6OOy&S3}9sVV##nq*A?}vvpcj$(A2${SsDZ~{i&8A zuMKR8oN8fU>N(6Pn{~Je%ZKWu4F7&UMNvQc347_-F1^(!r2hbokuE0u{Exa^LL`)E^OwhMK4dD!-|52<~-+qXAre!Z&GP4ec9!3;w_~+si39(SS>P zJV!me6}-C~6PoOi^II$3OVb3S_=kh+qop&6-!Bp}heBy#@HX4kdzbA2O01;RS^Jc=(04CmnP7RX_D};J0p=bbgLToBLDN-Z!`xg|G%Qc)Q z7Qevj{?PPgvPF-ZExfdNJFn3m5^l8X=FdjYYUR(ybfiP@0tlI1Co+pq+^6^J#MWK5 ztaWJWNX}?!(1wW}%}@{;EEir8^7e$J0c8Anmc;l%5f)+ZL|7WYM$a8jhpGkHU6vu% zDn)&ax-@dJ4Gp{!RfaIuRyuqmo9pem%QI#ZP8$9Ko!+5B-EFlS>|au$@tbfbjoG6h zn2_jABGLG~D8aF>(I7t6WG_O4IO4|xsc?ZxL(pvmr2%OC^g$}SgmEqIpa?*Wwk*`-Uhlekx&d zro5>lXR98}cBdiJq_K+5aMWkxS6^onOC!K%;#{Y{xHdm;9_2O5xbDWAKsVdfdn+B8<=Q>3IDdrGnKo}apB=*8Zn7n*LsGWqO z0aV&t$M|c6es7_QT(03fo{xUJ)tgw48zZC81~l6(0f9pmK5f z*-^hC91Y-3j`dAbp)~^EKcl{E`r*H{ygDm-szQ(sz9n)kA7s$}vE~*4R9apFBnXh# z=9_izF)M4lvU=5ZdiUXz^pt1jn`~ z^P*9oWX01|pa2(v0Wxy);XXw;8oGWU%0@dA1R2QEtP48E0!7|r@sN>iT z(13pY%tIoK%*;Zt69`5Fu=o|NM6g_NA>c^_qyb>`#VXU`HA3&lP;E{LfQVnto)9Ci zSfl8V@m|aQWX1jukocMOX+bhY_mJ2_L}I1tB&W^+)T6JiWx>;cc&WZKgb;E0K-Uq7 z20*2B90KLS^1-er7!AOlP-1GPeKvg052mC{&fz?M{D>=v@p<@Q3y$~kcE2VbCf1#n ztj=IHQ)ll3IUVS2u`B#FPZz}x)h7lM1Ssn9qNq`G%1OCXN_jZqU44@+PXoTAdc|n~ zL`Xw0-zE$VU`9>*rh&<2Gz9fsLeT&!`b6_Y3BXHsn0VY7WK*q-ZHh-#`FgR; z;^Q3yd4gGhW@JmIPI)9$bx63;t~bq(5Lx^T#rmP;zybw%Jw@b|n*H3P9t}-C{BYDC zoQ;&wfcU7sWQrD(g9=W-VqlLX7!ANijfqo&4XG`N?lA&DTkVX>%%)8J)fQ;)(85-`0gplGzZ`w5!}@W0;DQGEwGba# zZq#5lO*~!?XUXcA)bd$K5e8wD<@* zA)-@Z2yi}SXtd!=A+-mTZ{GQXs{IPyKRwgy0nJ8N0A?LgruKk2aHa?a39gC+Q+vSN zqu&D>rW!;2&N)aA4Tz`qfCZR9e*xG%2u1_2)E=+^Hl)4)@E8Kp05Gu!6n{>8f%~rC z1DZWVil39{_V`J)=zLCg@q|<#i}nN?mos$?Rkzvf%JL-u#job@&n5>F0BG%bqO}oa zGnG$sCPD`z{?$>;1Py49=uuN3%*l?trPLh=L<67^f}S2ISDDR&PK&xT!Ds*$KRlQi zizhg|FrG_kxvazeh%*lB`(LJ4Eh)W}sVf^0)PAyJ{|CT`ZfgnvaSbW`p-3sY4syyI zI6c~G%h_mf8W0{a(U^j;(J4jbgFKKRGyqA~Y8XQW$J}bf)w}F%jQ2gk3XM0Ni4>>_=V*D z9OU6}#3`C7*fJG4V|C)w(C{>Ho;>W*pUbmMy*!AM2|)vh5wplC`Fm2rUrHOPQwc-E zc2Dfc$hzTCe+MNaNgYjofNwM6OSQA|!N%hE8S(OJyL-#*+VX0zD|fM&hm@U6QP8-Wf;9rsjZg9c%Ym}aL#iNr#{ z69`BHz*c2oXL^1v+&AX2gtRs@VE#a<3ntu$Zay z9s>z(GHY%DVDZ=YPZyK{6BOw0Q=-2SlbWPB^zh=vq886aUT7}Q*6us%q((B7lb>rm zwVi-8XtWU{buwHaz8rFekTigdU)`J*kG^|6kU!Gn;@>dJMETqv^Z2E_^Hmhc}{KsNaaDpZ^|lP&;{=3_zyn z96Gy2bT(o(HML(YGDlwZ&qn*xplwP^*--Zm338wv1fl`Zh$Ee}SaM zjH$5j5-QxX$9$;o-HdKbXB@6aTqT^sce^F`o-Jb`Q*V4UetI(x4)g|iFW*m@yXf>SjrV+t?x%P^<38K~fb#v60Az~Jp{h+^)Xh@9pYm@1 zbL7<@ah#w5_456c2Vo?|+y5AddL4mi093x8@_;-+Ij}z=7!ANm_fxo$F>kN^zNq^t z$#v;|${l8MAybRbU_Ygo&41uux}UNj;vb5-9b$mv(*2ZmtjDE10(Bryb<+T(bUzh< zh^RcMLkL9!sM7sZ0F}$igFBpXG|WrMeu{4KIuDz7brh8)$%psS{ZxNo9>Wi3?8mZt&r(*2YVA(CRF=vGp{Paqlq zmF}l}pj=Qn*s%no0a)373SRM{OB=>LzsP=y>u_COOy+=4A9gOBsl|jd5&(b&KzT6< zK&I#%VtO#>!*6*p8RA+@JcmO6>ZNRU8bFj6lLukM#N@zUK`FHCJ?M*COp@!;V%pK_>Dev*&(urrN-=R!EV!2zlK~Lt5YzFX55J|wWQkKu zj=VaRCl_e|QCdtsgor5zdNP4%090B`K2R>E9PCVj(EzNhnBcXMdp=H!iR*A3zb#=6 z-#6+EcEwJ`nqB-(krt7@weiMNDIzY4h2zIY&n-{xI8$^A@ti5*iHmY_e{$^3`!MNO zJ@RR2UK&u1&myOF%`eBWRSdvm2tWgX_(X3?fLtUw$Z-Ur0Z8;o*~u{Y9VA2hj4!gM z;W}KVi^II6SigRE-@9vZ;7z=6Ebk*u7l$~`6rDmG=YuYYri;T6Wsl;>stZ_qG;p0R z4&SwigD)c{aWxE`Fhqt|%maL3j#>y8p--tIzTw78TD1&LCIcEUxNt+-z%jrZnCAp*3S!!*= z_h{#PsPUcM-gbGcX@ZV6@~4@49jEvY$Jnv^sN?Jpj?R6v^EJ27P7=5EP+%u8=!Rb_ z-LSmND$!x1Wl?;dlLWFlv39HgwGwb^qCS3Gzln=~mZ|GFhkZ6?mb(vsf)Vx6lskN~ zX&+sRk+?^*zFC^}*`>UV8{>+B>3jN{_{5-_O`A}k%b7F{g1czr>CE@KD}(k5=E}O^ zFCiNmuzAi#vcUmvpUqR?^8)gr0iWIm^6591a6ciw;HO*Va%3ikBX-O zrs{!Od-%?5MpwdOkQ6@Hs{w!6HF8@lzJ&dqyuyS;_nXuxgqDR^mREm&@xsF-GY8>!HM z$_qCzg_eqcbf6EHY`6Um5~BgJOE!*}3>~aFJ(8@1W68TniUy=MuuIU#QLg^14on8$ zLryf{^xTbWsF2fgd$7p62(-N4PewFgw1M&#Mq#CWkW^?u4IEG4dTWfYZ=B}7i zFR!lgCNdrX>z4X3>Cu4ROZODLg&tm_G1tTtZm<~Pcr7{7?13h9J=W+ZypHr}_COOl zdh0ad_2ftcj+3AJv2`9CtByHeIrMv75J6?$Kq53Ca>WMgO^A#sh8sza2IT&5&yZUu zkDnn!8Zg|z!_GmkHH!&OXCAYj3)VV4zSCECA2*Q?4ft%};JvelkMa%;M|!|C#6C}A zG$1A)51HVcP*J}PyTP4Uk*G(XbvbWh)hsM^x3!igJ;P>xovC*`4QGA+ktfwQpClf5 zvgaWwu;L8oc>YDs@pMz1j61NfABuNE(-WOM!VNr zTg8cb_DKf%+k~b8^yFvoY*_0YR@t8wptm$JG4BkTO~c{4z*e<4 zdZ*vCTrUCYRU0J~E zv(|7fV6|f|_h{tb5Sa$Z+v`Pk9j({b-HJDD(*VB4ns4>yx;s~jvF}508h}rJnR;sV z8Sq&6o5+9$3?4q|#Wq8rVg5G~8XA3{GI2H+cdd2@i|szD(@aP7<)3`>jM<#2vv@b( zZ6kYj-}YqZXNz+abW z#&P$JFN3%EAp+29X`_Eu-_+!RKgV=7|TT^FZ(=%_pIKPMIWwb8ez~E>Q z+-Lv439g9*ngHL-0BQFA?1?J<`Pf?-91Vi|+r2e=@}{M5Z1^(S@-G=84MN;&5C3>;bF(|&>~}80RUBP~A7WfIi0j(DHFf5e zZ5_}@84%6hTy)E8gEc%Fw<~sD&>kawjDgZ1(2wq|nUgo==)`@3@z5Zi7fgCZWB3$n znUl+S1;2lqTPkG43GfX(yDt-1bDD9&=WB)=W=r5EQ@_FMKh-mE{ciUmC-7mmJ#=(@R}v%0yr@|r0PG`@i+^Q(=EmnoX_oh96X zV!~=NEE>M) z#08HmT)c7GDln5lh3qh>G-XiPz+NiCX3Alu=)s*d$1Q+e^ufB}pU+5JsYjqV9-+pVpJ=oQpZ_N%|h?g=%8icrkR|TpM(IwDb_0TE2jPcRz?eVpj zx3%ZyaH+}-q&mJU7#|Jd`}!X34oVhaK@qVl|2p8^444K1Z{RexKu;erOm~|~(F4a< zx#q9qx{7hpAg&ws?nDln+xV;w<_$WsmoqXNM7Dt!Rg3Liz87W2_;&23etD>l?Ha~L zgV;9kjCnn=nOmfEV6S3eGze_39v9?{V-t5%%8g(~l&@iYG>C7np1AbdI&I;o_s5Km z2GMQcF>&>>?5}OZjncL!c>}|uL0B7j8K?TN20ObWPDASAdo$ytL7W?SiMaYWFO;X> z^?41O#J4gy8U**E4Lc`Uh^=AP-O1K6>Xy);fNOo7cvERxQCNyZ^ z4Lr47pfvrwr{Dk&r`d@9j1kcwqP;jv5}?V_I~fxVV!CX@`lGOo8?x#ua(uB){&dXp z+R~td>p{4`xIg)O#0r0vsYf4%u44yYp}PC9(?XAYu=G(A_l*U|Qu}m{+JBkU{-BJr zafhHqZ2PP}TgOCr5#JO`gPpCFS=ewR>hx(Ot!48;-*>NGNj+}VThee zVl*H&`TMnsNTrBDH@Is;H`94!L$l|aiEOsucq4447Kzb-*ku!UPn9>*mYto!V#sWc z%xE?;fgTOq!8B-Jh^xywfeU0q12&VtAgyFO4YTo{CD*hRY0-ez@n`hB|jHS&K7`tl<&huXdQ zsp4U}H%@r4;tYNF2c+*-6IYz)WL%$Ze`eDokHE{D4|E*2=Y)_38R~Bwy02R{=bcD{ z1~i_(fi&FPcjX-vq5_lRyOI+PI88oNvn{^PNMV0AoR}^8Z5Z;72A!h2lLrlWOg?g1 zfD%0L9(K(oXqDe38yc{ge5z5Njd@p**Dm)W6B;m?_z8AH1fRsxwLhwwCx0V^ew)H- zi*Ja={VYwq{BU8?9wqjtnL6|#sD~SH8{6)q&ceeYM?2p~Yv1f^CVxwG3_>Q2gh9u1 zqjWrzUtAyMaa=DH{hPU6$Yp1iL7AX$4rr1{J( zD}I*0MVd6AdBvWiDWh&N&)*?A8jySWZwne9IL`74v!< zUJ<7OyDRrRyWyPfM}jmUIQc2G%5qxlh4&{N8qnDT(>+HgGDkUx)M!9$@@wjqwbZt? z&eEJd;5NrXhmsEs`0T+sQ_~&{$;kji?g)~j0l7Ue6xahbIiusxG>;-Nnmr>hM@;&S zpv~?;YBZoW`B}lr1QyNXoymy?oc6$EjU%Udk!jFWcOxwt(0cBk>Q)0rN0Si^7)|^U zvRLjK+&FX^Y?AY2lV9c~M1H&ZG$-)9zsl67PRF^s0ZvKoKI|;<== zy^i^GSmSG^U%(_yJDY9=N{;uNv!j_*D%&C?+5N z(xq`J>Ck}A|Cy?ns+Nv>tVFZAjI3z(G^;>CSCADASS@W-TlL%gl7ViO-NdH>{>0aA z3j)?%H&W+%!F77b`%0YXowncx_Cb4oZAo`m?lRrX>=M87iCgrJL|41}h~XW(k9dOp zTIbRB$B5weanIrhz3RQCSG}jc0m;X2I0)xXW2<}NFGhgfDF@^Cwq-ccOPRX!W5Ihr zS=qhc+1$-bI!8wSM1Bl%#|pWl969~x4bP+6LN>X(-*@ix8@D4Lk7iAqY-Q>-PX(#X zc6ImWvt;lhv12CjBp$%@4}|G`EYlI_Ru}Sj>ft2sgPtm&Rs+20HWvh*=h1WJyZU?FVYd6AWM4O=ZC>wOiYF_43;IArWXQ3&tT7gZXzt(E#f7 zO4@CyyU_0}EO$E?`*jii7a?c>@$`xzisAf(STvP})14nIxA3Mo9nQ}QK~rfs0#OX- zSHz+LRyF+>veUuwjgI7h=$!`MtLeYA_hJyY=6!oKfT^bcTF&c!Upl9O^J@ApIxmK> znJ6@s^E zsVooLdohSR5r(F+JoNLSo_%9@&QnxMLd^PY>*9_i!Wa=tKMbCz<-wlW=7JGhAcXec^C2uaV>WvD2#XPkGO4e$K($CwENe8w}H5@{$M*7|u=3aAKG( zxR|!gi!c{9g@M8S4RL9J+pZ0FvDMkW76RXj=MZUX1>TPLk>Trp-MO_TJYS_Xu@8Z1 z0BpW$7q5jpNA|kNLBpn_-hs|(_ra%lf6X>DXR+gz>wA%YoSx8-*Gfa4J}v>pKMuRt zU@w#e0xLKI*G%8VzLW<1#-17poR}+Uxq5=V7Q!3QHP(BGMFXt!D-LJNtbBcCN2}N2 zmsj}K17_m=#H0b{*cn$4!T9**`6BWz1i9`dWW<}8zkctiZVM5XX z@~ny=@h!|=cd)k7!55a6O=#B=hXy#$sspDO*mVS?0pQpP<`h};erm$Ho+vax89T&y ze<~BXptB10dMl$Oc>`f-D$LsUR%aO(CRdO%e(ppI@fE2zlp#!03Lg-Z3^HnK5b+g^7C|0Q(?mBzSw>@6Nd&kW2fy?gwez647$sK zF1}0{8o+F=sG5D4Vpv}z9u4ru9wsD)HLA|OL0lT(jy=CJ1+L%We~bQU;D7A-m1+GK z8}K^>q5;s@YgbbMg&q9&h(H5`vDdDqM<@pKuY{rjR8_;I31*ZKendzbKvpFL%m}-- zfA|mjr-A>fgrNNw+wR8%q5;rD#!P+vEH(TU)1k$ur{*!-`1Dk!JNlqfCgn517%01O zZ}7b^=lUYf+3eo*Bt1dmy!YPYI+@(D{5590Kam;l*i_|z7S46e_SRf$6}MHiTRRr` zmB0*f#0#mVC!YV`YjT_g#a|w5O*#A1Nx<@hWK!c{~G~lsv-VhE1CbKUz%!& zKX^zg|4jfI08HAMM0$}eJlWwY_GffT1E*t8Caj|qaat6~FX^4867P7HeWj0EMRD3r zcLKkmcN%yfJE5D1yYpTQ;#Pb@il%~gcQW6HPH8G=nPH7@qIa4~yt|e$?S25g(^Syz z51Mn{i|u|eVQ4C7cUPr{(J4&@Ei+uAx21QQO1!(4G3|akdZ($N-5)%<-S0>k8o)fJ z#E>*Mi?d+5Q13#IH1K#*Igdq={0?2ylx*?2_Ud2}x0~_PgF9T6-h>i2pt{^tkuKlng*^PTS6n9ob4m% zk_Ilv-u=6dKY9{W6&ZfW4Q%)Gy2+!kpcPyaL} zTY0HJz}a0*`9!*;DcQ<&S)_Y1ebd1A*n6zkX=Ux3FXl5xv-}{yz)rJHB?t{b%FH|Y zV$>Gi{Ha^z$#hBsr)B1y;la8qb-e0vuC(!g(-zRCG55fnKK;^ELwtD3HcJ4SvH*Ph^I{ukM)0B|bXi?oxYA0W zCjboq#$F;@r$+Tlivxh7csfL)0n&ZPoWByFhWuw(7EdaTFZ3>-sv3Q^O7G6pX=kIy zzJZszH$6!eHO^KwzoO$A-@Ca#E1VmV?b|vlt=_I#oKfr}GnmcnTEe2? zcO$QN(}3GE$BwHhAYO`eYkY=iG(a0aCmWA8BAA=#o(As6Ua@2Ym<)!e2xNQFeKCyB z6Nd&kWAD&f2M4#4uXa2Aes{&o$jx+41LtF}PEO^#7{Zr{LIaes#iCoJAy^|cJ+@fn zeD26%k=>d4d%WviU4nb{cW*jPZqxy>vBi=*mcK@^^rcuPEzm{rfzm~3P;Q9&UhJeXvw|DR!0o@?4r)QdKJmU*0RwZwwXBv1OI}@FZ zv;3+#*Wo!EP5mtdpaHo`itG2&4pfT6?dC!|L>=N znu`4M$k7+l2kD;%{>M&vCTk(w@fq|BAEtX6xUZlPaL#qM9kkE21fT&x1zkM=Iyf}Y zO@AF-)4+8F!>e|U+mwv=>*<{a-p8JTnXKV=7`HdjEe+hBSh}~wODtN(@r`s$1IOcL zWJ0$g|CzrnPMpS`A>-{jqmN$n-c0=mUUHz`i}~U1{hrL<^Gf@@#)a#=%HLu(_70hi zjXeS3{wka|$>wdX!R#Uzc^t0^eSou88n79w_DTJE(_#(qR|KE|z}QpKV*&J`C4XUP ze}rCX;B{;tFqzjP>A$9X8o0mrm;+z!y`gP9!RJbX?W??6OMI8av2viSUn`OC*}}=Q z?AhW@?>FV@fu8KUjWhO=!n3yGy%~oOZTB{rzo*tre~<&FQ^^#OA;^!4AkBS2Rk+rw zbrD(m8c#j=9At$C(U|)cD}!wHdaYeU?Jj|;hY^?tz?}*+%8VnI19af+-YD=#5S#|! z=V&dK4Z7jlcWclVWkR~$m z*RXljX;z=2qFk=w+)Q|;Z7y?Go;tE;{hzl88ErCaZUGRFOKYkeB2)AY4SiKKWCoZL zoORc3u2#^u`Vxzp27JxIP)YY9Air_cR|!G`5ObenNszp=3V^;&AQ}K2pQIjf*9g3R zh1#(RF40c7%+*}e-(=InC@)RT$aQ8v^2%# zJ{v^e8aClA6rUD`-3}!4(8;t?&=*?p&cD`N(_PDv)3?0DGs7J-Zbzmbz7v`}O8-%D zpV?gSMU|RU1yxZK7Le=DMXn2Jed@@_DW}*@!Bwy0a72U1mTQ0(C66KSCnP`v0vFUk zAlLR75^o|28jv_YN#rr-^0CsbT0>iNL7JBT8Feq>i>NGdezszcj`4q{UUnYjy$=_~ zBDhDVwXkt3E}_-UU)4>O*kN0el%^x9&SXbJ1DcOY$^m>ea(|n^(Z!uOIqh{jO+4hf zu%bH=tj*}POxv1N9#i^s>e@6y#~S2Fe5b5U9QyLE37Eo1HiDC#G0 zJSDUsqFR1ms%6APxD14rr;A8OsD6**6AhvoaZao>q*O!!`1c7+1K<(o#7YC_$}fN) zOK=*1KP{^ARP06p>Hd^*E+gQLIC7gBkarJ>X1SE9f4&HU-A~^rliB|PcY3^MNrn?3 z==71I(`QudUqqURq;6u5M1x?eDhk(j`C+LvoNh(+c|y_va>OxPa{Ebq?xd{`doy8a z0DDF?s$`%IAEQA%8kGQM#Pn<0=;qo3Ek*o~Q{HP3;yzpy3z!iT)kGM9fCQf?60E4A zY!K9h3q-w;Nufa)6^%GPko1i?+=~cD1GtLR?!)ChVh;HdLec>8NtMVBzHyDfNI{)K z$!R?RV8rR}sg=-aEr{ZlsqS^Zpd--H zsLMG-(I67@4wkah4SLs&miKxd;EM@J1He`_oq7Q1Nzdg>T}e*-XV zNCOyERWLyKaS$g#u4L->`kXToT(5hJfUaoHXuT6!5FyD$kz`dJh98~o4Q)g^LbbpS zg9cGmG-vdq(v@KP#SmB#mLD#qvbl_aSJ5zy z+qkr1@qeb?r#MV=Q7m988m0}5KtP>4MV%E5(>4eS(*>e_!j6OnVN_J)K9I;Uhx<9< zXaHAH)%kF_2y@6^5t0Uw)eO_{-N^m#pz5?908r5|4eyIqak#y&yPd-{H)5F9{{gC^ zVcJ3o3RHKQsIH=6+Pc@BlcuhtQUA-V&>)hEhUoyx3C}d2x(&M_8UR)_Ob390^epIp z1f^lVDjBAUN%2{P7gBvr6V+8PZhgkf^?BVNV0tA}KjsCp{oT5^i0~>Jrmc4wrilni zUL%sMuEWTqGrge~p?WKmMuVs-8m9fIykXjImZnvIMqnBMS2Rpp1f5C78pza-`ke%) z0eCgTw8f@eeWZ+%&1D34e zcAS5$7%wDs0CPoyU@9t#5KMYcAM#*A(g3oeQ#&DKE=(WxFv8LRwwhBr+B;tM1*u5h z)SIYBqY}VWG-vFr>@ZTq{nqEsa?XfNm^0D>rlL8cfe{Eu@O>h|$|}kPfu4iBbs*|x z9J^@{Mnxlz3B&6fbGVFfG=Qs2?Ri|j@N9&yBqR+WtC=$*9Ei^Pe=j9xl~B?2XKAfD zkJtKlr3YMEn~}9leX3Q;}8*a5AC=p#Mlv8h}$t?#f=CYn4Y$dz=|5n1Q_;vI7>k@<+*L(9V04w@P8qE_!_nrV>c`7kuYb2g@YORY0UAWRR%vJJkm7S2x7!feN+L8Mva4ny zLp4z((=>YX3C?NGWDiqRK$L=V*f|n6`eqJ zZ~_Fu-%$i#(Fs)NU#r{;N!^V}q(Lwhol*+Hq-Xabk0vAyAS;@vhLE{(eb{>vmIkoZ zoIusy8$QMzs7s>~z*KZXY1N(+>FsXvhhFe>Vt zE|Bx67vL(vUHIVqZLp*bAk5o)%8va4A^st{hl%JaDj&n2hf_8N^+2YA1~F9B$9ga# zHwX3*g3$o1B6WLUxzrrs!wE z1PJmxOXOKmpXL0EI2oKEslR0xLW5u`niqy(MwlMt-w~1qkX2QKOILWuhvZ2oPkoxO zG=QyUUZ}k{e2k}3j=4Ij>b`c&i4=F>U0OfZ4>k9(xO*R3L{rg)b$F9waY8_Xvm(K& zD#`@G1d+E6M4iokf(Bt!bk)s-p_OjL=ir`BI2yoJrFJhauQzm%=Ms_zkkwpRM}UpI z1-DUhRtZ&g7dz&7`;rwMmoxRqjvl6ESB6g4EFrGybZ%h<4kGM{2&)>Vy}*nR^WfCC zm?|2CR8_}R0Ca-%V826H8o*XHOc!7SVS3QtBQy=5D;lN+nF952E}%$##Z;6}ysp0A z?cot&EmgOcsqgVVxC8PH{xV{%=!nDlmwuC=knANQ*@_M~0}S1%xh)c=I+6n$O?CQl z5V~DiDI#3A-9X=-&@_Oq=&FH(aL~DU-97_G95z0Eg7umQ^KC209k2< z^I4N1n`y<(&w`K-@;8NRpi$8P?O}+V2@N^FRODRI{RIUSPtab#>Lm6{G*#;=Z{?z> zefTF5o(Aw0U5$#xT@hDpVF4iPWB|_2wvZ6Ul z2<+z{sehQ$(v&qo$^sy(lBR>qY8$jktsq$v!4;oR+rBpSWXo^WIfI>BQOnD3_Yv9>?V3}z3X^Ptj z%}MKuiUw&7*TgqE`rF$(oBdtO_`XB0GuxEAqjWxm(#)Vc!{5xf-^|Ew@X9|Pt=)aS zpV?oG1mj8FiXMkFEjlhNp^Yl~npDx18`q#-WsPDe?9`*#d(xn3uHIOJK?SZu^Kqm} z1DdbgSeiqXx(?OHlPV3UzNnHT%yqQpDtge}s*4QPR@qilW+vNTWucoo8e1hJ4tey4 z@1n2O(|fkaXBC_JbyrREVMSfxvSUW?m@zvt^UvPAWBFfhzr1 zsnQW=ic{U|*;%Yv1Xo?azMck=jkpoM6tooC7y<(lpaFpqH^P@9keAOG5<5wP1|;I| zNlxL=5JY?;gD+v*Y6WRp{`;&2BfepkjhI-iM`Kv|1<9W}56K@AZZzwT9~$ALcpo=4 ze5MEpb^k)tJ>pc&)PA+BgJ1ayZrv0ymu|4% zMEWtp(g60%Xg@zypz@ADPozwo`Z+}^a`EMn7-k8YDTfdyaW`5))O&eqsphAORW> zNbH_t-W`ElMnQ^rl`5vvZ_$lq>)=Fn}ZK=giZO3LQ z{{AhqOPy8S3|z?6v-#%ref6^W55dO2xaGT<7)B5vK zM>tr_)MkFNW|LWS3xJE?4Ln^u4o+|&xO;wMuRor~nWc+~amBWNnpfr~>!8QJ-O zHxQ5pfbp}OC1W!mb@Q{PZX_rTK%=*yCtx-LgnLndRvbWyPok!U=?_{f_`X3)Zg>Nr z-Y|m=nfe)TKsq?smap<}IIPEC%2kSnAVZ)J6@kVlHKib|OkMbbseZsT(jc<<38C_^ zPO?SteoZ)>)E#(*=OBNRUDJO+O~-Gqo2u~(6a*HMK0zd1LBCW$(2Dl9 z38H!pQ%Zxd;#1@@VR>EfF!Uc2ng-DE^Yx{nb2Sgczk%>HfRDbXCl$RRSol(g)028U zrEEmyWK_Xibl%QIxqwG0F63NPFPr}mTm^Gc3nK`S=~G3f6-;xiYb}*L3iTe&)@YcX z=t+&K@)N*F59@)wpI|fqtDt`gz;X?GfFC3v4f9jFC#Bh-$Ym%z(y~G zPl?*-;G8Lhg0BPd)5?-L)uJee^bxPN$pQ1gJb}86fc`^>^l&56d^Q12s&Ezai)_75ygk}GN6HYi_m{VXc|C2GuEvoAm?f-qODR< z(L|Olo|SfgfKR(gte&uByX^oky9(Mm(r7E##jRRiz9V*r@gaZmR`LDu98{)A0wQ~^ zh^%bBi~fC``TGP{{T=g7gV0*#^6h)iQ!ZOwN5Wv$#Z3FC29DprH(3L(;QZf?c9?b9 zW;4F?N@V;nWIWi+ElvNAndwtY41B&X$ufbFR zwkh1>G9JV|2tfmg_+iWx4Wbq83(K~>I)*SbZ1?0IvasG)LS4;7 z(13aTa>69pE`pdLB!qeep=bb=J{c%Nd9@wFy_#?|fJ>H`aoKRW*11>j5s6tqAS55k z<9^85#pd>%t=@t>MXWc>$c9X9dKsj~mpjfb+HGdl{7tDt`69UBL3SS(*(D#!7aeQq z`5OgEeU(X~K@&#rxR^kFzFWQ?ZFX_1Z5!Qu>N;ji+R*MOBSHQBc6>H^w%te1FCTv@ zY{N9|#mL)X#m&Q8KqPrSTJUb>qX0$%KO+fDo{vU+OAgnT2Aw>32~@p=X{13o(eHyy zlE%<;qrku*eVVx(YFEG}PlH$1mgT?#$Av4+<@R#7C!a0G4mrBOd9;-o*@2_0mm{%9 zMfd5=L%vv`@kdZ5Xp~Xpga`8cCCPL0TznLOPIhdkAgdoT<1~m4kKzo!=Qc681~AP` zoTsW*aJQ?@h=Khg)6dqAHgo)LnhBV!_Byzh+FDu~a;tAA(Yt4`JEDhAJO_HX^O#?l zol)=9M*KtZrAcRs%%G5Oi$c~?=ZEXG4ev`I{S#rKZsAFF8pOMrsFu+n4ZRDhSz3xq zhb^JLMd?VQM&=@U6vqT~fY)O-=W(Z!mWe z`s7i(=va3O{zgGk=d&}QL3)!%9N({QLMlrplKw6OIZH?y_CKl8_We4@d_w8(Hn8)A zr2%Z}e8qR$Fe~_Yh!cwXA(d*?;^dKhEN1am%&U<^sxvFNPvp(dg)R>?Kj0R((!>g4 zd_vi#6;MHfB7ZH4EL~?N7D^-!Pf*nVu(P27|K#J0+^Z8ts72d+>eiG54d68w8ZW-4=~rD1NapcXmw$vklu^5F|_h>Q**gHXWkUo9>`ES!%Y|@UI-l? z+7Gwt4c=c;kMS$!6AYH{?YUx31r?e+=To(Mt4l+5VK$n2c;9Z+!{Mxl zV7uOgZ9Ug+(1-srOs#&QR=nzBBtoe zfLU2-v@Ogj8#rhHwr2A62JH+dGxbylD>FRZnW@+6>kV#w_x|>G1WUf&V4X|Q?y&nka#Xn5gx&$hdcDP&_(HP+#vg@GT0no9vLxpw%;}FD5u_ zASSa+H)gSPF8#Tk20fpk;jvGtx!r27J=?*f#KA$j*=U6P=F9EeF4!)!5&!QQd8xUb z?@T%^Vx!Yq78NI-G-r~E&V3Q<5J!u+)SPk%*J{|`fk6t9D#dP+1}#};PU*WA1)D8a zz#46dTGDe$|M$#d@=4A@JNxq0kiB8~mgxuhYgHO3ujx zIe)R_JpN(835TO-^xi2k9rEbDEBPAnsNkIBio`NSD(V)hjs`88dW|@SEyB~Fg>#S^ z_6mw`WQxx&ar9S=)9=(Y^i_lo$K;F4oPFyrc6T=U3{Z1tueG|03yhKTlKjyOe>7u$ z6r7(t=3;btN23{02V;Jxe}eiNjmP@fT4yj&4Y;CKUMsaSUniJ9=IbUJT{oB1%EQh9 z#x}if8TCU>YiW>)i%ZFPbe3&xb$8;DBs8_vDz9*clWnG6L%CC1>k23J5rp-82Ng(4 zZy2t?w-K3HDGQ=$10J=XCwGOp`f#!LDKv99bUy=MP_)pAl9;dsCThQfH46h^5- zIM1)^zs)wmQCrz<(;$TC3#%s_u8dbv6ju1yt!X&*PNs>iS513yS|D>iF5%w77a=+O z>FzqS|09~?k`rP9#5Gd!AxTB@y?dIQrmQ=FoVHqF^V5KE`uR{xSm)SWx%NOVAP5aW zj!*4M=&vD-tXo|D6|-uZ9gfp=D(6(@Iy*Y{g0bF$%HtN?i^1o+4v|wYcB5T~%Jh#w zAo=MBb5bWKAdtxW4U+ft`wE6a)A{$e3YPi|Q$&M6(hoa*$4+iW5B@#_dJ{ou0Gd8i z_Z>S>?|ue`Id>08PKQCIA&ANb_cqX8N^Z!k?X;9s@|Y@@LN0!6y! zQ{N&S4dBwx4!9sjYcYrX4k2j(nS5`JLv$+40lq*98eLc^qz@x_@A6#Re11%pGj-QX zp}fs~vzjj0rdadKeQy1KK4towtv#Gau*?1fl^@ z`X#PHEPik2gFT91Gyr=-azCd%LR-G)f2OWn*5N+=PMEdT)oyRV`{Cts{o3kWYhYDo zcFvfcGiGO|{)bOA-myPwf4-~emz`nyoiJm_3MVM_$D-8qJ5k1fh;&E%Kp3d|GV3&m zbZ2r2j=*ren(0JG{LE0fKdI1w%Cl>u;>mwJoh_t813D_T9!5YktQPqofmZU?W}sH} zU#uA?S^F#ZBXCOYdGJbcbU1RxQfCOS!p8R|As}8d?nv^L~y}F zA>8I0x}}r5xuRn&et)ANsmqyG8bpzL3Cwrf;ET}Fe0UGK9L2Ex)U6TCaH}N`rT|>( z^vwqnyE9zQ)HOVm+>Au&RW9itF+ItHsRtwg$jl*+VI zZMHi&hG&xwD{khN;E$=gGV(4G!6{b&Lw$D@^(D`-3q0MBRM;+f>gmiI4Z=x%kwd|= z&Yy(m`Uu9R?!rXI+A;ZVIU=tuugXJ$Oc_^j?u;ke_jl`Dl;1IF$#=_HC(?@(1KGNd zWGnfo)pu$;3oi=wA3V`a1LnymafU!-dSW+AgQ*`AiUv@nO3Y=1JyXzO_>ujTa5R8R zy${evAd<_IukKB$1!*tSo8tiu`w9q%O4e{cKW{fbAm6~{rrC*@PE4KAIWHnK!a!&b z6QL!aK@YrIrTL+#gV`0(fP9(p!fUNyXbQj%BNz?9lJAunjww)E0C-yh(g5((^Z`nI zYP|*SA427yFB@;$+&k01_wr4w^jwj#gIWt&l*z{IgF z^N87Y$(meS;iVMa!RGfx=#9ZW5zl=-Qh4~#cC*R*dy+}Me=9~NQ^ZCt&yZXupU{pu z*XbWcoRh>Fwn@cV^lPR5wAGaBr_*t9LN(G|2m0sZuVW2k9TieKu7f zIf%7&^8LQj*1^*No)qkMbC3Q%agKMS2qD~Mwhlj|kbIOnf>@?V0us1fBv7&nY!vy- zHWxs!PjJ%e&cZ(taj8bu)Gc zd+Z3~d*SrHpbu$IVTC^{B@Po`H+7v z>A}8C5m#NstkWR0a&;bfw`tcKy$2gK=4-t=5B`enn|y=4^fvnPfOpvFwnAm>0x_H5lBqxHP1w0(V*Es9xE(gbsHzqhD3u4 z%UYjq4A3{Fh^)67U1Q(MoVx`ud`5k? zyS5_ty4V%mc=;|=)&6eXTSP+Q&trud$sv;I2n)#jMv-@agIa+jfQwwWggWb7$dLxo z@7h2ba;3aL<{Xlt0h#zig_Wm5S8{%Jvq0#XBt!#3(OdT_<&Osek#L4ozlx=*Qxj7R}W&& zX%Kh(GJn<0?-hVgfO@+3|zuE1R`2&)n0h#&r4|5VH)gp$5QJ~hN`U&g7 ziW2BGmxTGu7b)-?S(a}>q_`38R(4HCbAT0JEpf(kiGDx^kvx>$8nu+w&1goSznJ4qTe zK>R_q>Kj1M-K12CbWR~18qj%OeIvMob?uTDjN4~g=t-nR14>J^4I>V<;g$^kk*pj~ zwV+Ysc+y#DVU8uuq8BrDhqrJ%ksTOM%mQfCIG*G*1RvFM&)Ub698@dR1ghg#Ut`Zn zgScxf*a8J9l7PrJNQ4GNY8+1rMDp?o$b5@rXh5dE@kAgS0rKza@x*KbdW|Kq+@9;S zY`L3K&^@vEcQG14IJ8cU);K}sSZat9Kj z0g)O@qCg}siGa+VNrnbw>MIF>Yy`*;)Fojy0X=?$KqbTZN^51gZEC_S4f>dZg zrN$Xvu|4wg2Ck}AVr|nYgNaLuTBxE6^*C0DQz!`3tq(VFXdYa{ijMSfS58Cl zQ7uiWmKx7$<)E%qcvg?`t25bo(je}d3)VZCBvURw5$Y@wp#hN^r(A`$2+PB@$~h!M z12XkZxrB=@42OIktHO#B==Dyy@Ih$#xFo1>Ia61>)=atdsvg?(5~$R8;nBd$C_)OT zixsJhdIwb30PMPhMo?X9fCi!0JK+jQxYE$guJfUKq(TEK^-j0~DnW60bk<0R26Sqj za1oQ`;bAYcJ~-jh+d!bke)EF0*2Bu~}bl}v4Z8%kt}%zQ&H*qRNRxceUJZHe@!D3=PQCc=w1!b!75VvAYbR z14xJlgzCF{#DX^Lf%Wn+9gGi7D1fR3+d4ekB)Ua%}GMRjzh*tyZ zB`i)?2tm5R@bqXCPVl@>YiX(3MnABmYY=NQdM#6reFX~dfP8~qmY=f3POJn_U{F1; zk?Ki)1yLA=KC-rf35L2G^GO5p&!~jFu0IjFgEwGD6O0C6$q&Ihr;%~P?K6P)Bp?j{ zQ(r;kd^WHI`B4?d{U1?$6hkh6(~{e;w}1yR=DQ-e-U1%~nD62$8_(YE-?Hm^QU8u= zJE00N!GPHQOvH9(6;6!^BqTvlA7nCUz&!Q!V`vB+eFF=8v8in$^>(I$?c^FKz4qZ` z1z#|i7fZA0^;)Jr_)1;-ZUa(pe_F2gtrzBAV33Xvl&yW=tILNMih3XuLQ|$XEQ(~r zcmIB=4*LT(QF=$#>$UK{sJut!y6uyH@h8a3LAuK^o6K5XmM5i)IsncT!H}KnBss65Hw83D{E7hdGjn(EyI zr2**au{p(bm{1~e=6Y%-Onr=66p7@bh@UB)1gzh0_we1H!mF31>(={b>^^kk`sK@+ z`Ul>xafjB3-FDBA({g1qny3(hl5Y|v$4>#2Yz!^6I0wO3-(~J;ko)+l(<&%X5L=|_ zhZ|UDM%_XpG$0Z`06~@I(a-nkjXPV_i1%0zO1$nn-<}iIH|Pjgvei%r13So69YHLg7NZnXxCgWOCz- zY{XkHd&`+>yc?N0d}zCD^8cQhN`7TxjErC-W8asIC67fh=aRWX69}T(#thORqWCr6 z2}*Ays2-WN6n7iwHlb+%ojf!ZeMb(Gia#;%i-e~EeCo?0i>@2ofOp4erST=8R#oa2 zidjpmsH1YC-qD`LH|PtZmW@W#pW-7~B5HrTA>;jhc~N`LWNJ@ri2CPMh`QiB7qzz| zQ$$qvWol_ki`w(;l;w%q+ijrlPiUIbqV{|{=zKiY%JY6=;I|N-rmUzv*GAN`#fnoZ80=DrdL1`4*6Yd|uOR$6G4(_8Dx?)Cb;xydD|b<+l2cnBU~H9wUee3FP>; zlH>F-aYW!eM2KJuu6iGHO@q*)k4;W88V@7mAsC$ozQSh3!POB=x@~p)1HHdY z{mixJTWd>lO~))}>Uv%U-E3F$B>+7>wU|600YLKZCdo?{hv!olre&-HP=~OSr2*}; zE1<0*WK;=(4kr)|fS!<8`Nm@-^n6$5+$93;lV>6A&PsQ+-|V#+z{-ML_m+(_Zeyli z`6kXnhPK;H`QMkCg~Z4RHbikh5k>OUI_6xbuDC-G)s3uW8Z>WmH&XQNrUIgu;%)=| z8A8(lI(cec^zESC;IXCn69az};b{Q>j6~fQT{mRIR!=EfROtGFdkz>wI1+W2uuUu)KAg|xSn1;m_MLcjc`1nlvnC% zyCq|-kbo$;B~zb$O`uf0(IcSOD^aQ?Adpb%$yF)UdJdJUnd|UWo4KQ@M5zH>L8%_- zB0*^?QEC7hQK|>Loxn6zD3yLarFt+Yg-X?XN(tpcJP$3G7~6U=Q>VTa+T3K;+yX$3 zPn}eWFZMIy9Wp#eWSD#sH+L!e^SG;DFcmaRMS0E|z$ng#`88o^0F&NRvm3HQH@n+MEY|7LT?D7sR zY;_yVUviq6{K|pb*FZ_XlZV{RW&}S#gGj!ZAtGIls6=i_h)T`By-38FgQ>%P_ZDn@Q>8{u- zOzk;*>0pO`M=D>AI+vgAvcI&KRNHei=9l`FsPapkE_gFkey_=Xod0etJZmC(re~Rq zMUbAE)KMyHQYtU0ze(BQO~g-{Regyvqd|jQmMXJJ65g<^+~vtO-Y06(ZQd^GCtMAv zOPBSrZOv?!Z(F>;S+1K-AXx9WQOWM&yORaZ4LB!H zI12zW;S6BzM;IEwBu_XCF!{(HK+O<}22iOJPI1@>{Jxkvv#Eyf0r>{IjGwaWO};Za02COg>W@TKC6jK$;DG3G1Vim&CTKuDd3x@gx*44> zFE)*CH}xEX(Eu!Yt~?A@6j=`VJOa`HF!j!8hi9aQYoRutS5t0A4BQHo<<#MUPsH#Z zYu$2v+=p`}MAY+?N4I+&`wO)cl1LQDM5-bCts%naMfHBRycJvzbH$D4DVWjW1-4g6gE3^!!z?N=is2M62q zs{0#e=HxPE=z|L$vhy*?PI`x4jLMdqMH3|TE4~>whg^}tK3py^`>a$b@Gcu~(lgE+8Rv!-mtw_&>6+8p9f?n&| zKjt{%*7c(PU8!-z2NMir^(&Iqcz#K@ilH%o`2zmV8iSeHNy-cC&$cDWPZp zm3*bv`gBlvuVi-_xT^_A1Gv-?(zXiD-XfY!p4g59(Hb8017V=f;|)SI zh&1}5fC(nHqaYe)M?SC38&>B;eUH+xiHWv;@=U;znrqMY@^=H6tvI=8wr1+q?4XVq z-r=_4grWU08Y#Jdj1m%f=-|hqgXCFA)O#R+JPIAMx|B6fgP@W>ML8N)CS61OC17m6uC!c;Cb{**1k5T*mcWTFGYg9hc=ZyI9t$q?41L-|G zeK~Z=)bafO$Np}ei}Jft$JEvdB`O%m^!+8%$;Z^bQ|a6+RUL(T6pue>O35~8CU?fq zVoNaUv4o-lRPr&k_38RfuM-O+JDzYffJ;55wrGtG4ym;gOf2`K?1Hq%XVJmSxtCij zoz=A^d;+$+vhHiv{2${Ezg660q+^!FOwGO@8pQp0+<}j2m<7Z-!K(;;->F1|0TkL0 zg~pGdK`Z}8brrB$!+sm6w=>T)h&|pR)4tNrwh> zqUSj)WrN#AwHCE9)gxFSo+@i?j` zW7l144G)nNTBx8?q=KGTr(%ZCbs+^?g^&94trRf~8svo=Pf5xuM(o`rMgw9KyaqA7 zw+X-_15L2swAy<~jt1m*#^yp5)mnhv;2JMF`8ro8v-Gss^F3e{zt~b0EsSb|w!9~0 zUY0ZUQ@)I2vt7-XKqh`DQ#~0Wff{?d)L8tGqIz7ZF25nvGJ9hhgukoSy7F?7Uw*Y| z&{t^^OF1#mJJ}*Ep{iGxhOL za5iVw+yaQyI-3(bIo==x)X9R>Nv*TF9M+Txn?u?_b=Z&6Aof~ka|IG+*zwY#mPmyL zRO+3+E9t&iC9z?u-j z0*KUJ9zsMIpgeYLP&(9v+FjJZw7DfuuqMDz%q~MHY6R;pnc~1grjC6tN@L%7E}Q?*026%5ro{Bv5D;t> z#S5h<>g^P4)Vd^GE`1taDdbdMMk+MaL7hh; zfW)(RR)gvVECLZ?-MLt7w{~>;9rN_4Tg%i>{szTxK)%6W2B})>(xJ+Hid0Y=nbbzD znh22fl*(<9CQ+BObEH8d)H>aF!0xbFO2utAgkDTSG$3?IoyQ*z*b&N$#_cntt|TcM zkXos+avW~MEg1$^vxYqVf=I2s>SBKt-~7-`Ba4~(^$nbAnKicnBDGGnaw5V2mGdU4 zoLY}Wa#$%F-5kO|y^(65LG1OGZ=QtwaNSRbdJC!0fJ&`XtwMWvrQ)~D+en87bn2XH z37baH6mMjOSa|}!=JFWeWoxE9xR|LYe@emIns-%)rKDbRpIt%pAzgj}Db3C{$1h|5qxZ*8Vs^*5iWPB0SVzvIC?+Bh-4d;ee$d zayOp1?S{~YNQef6YCYO;z>ZK}EN-76^-+?d0jWBVHXLrlEg1$kv4TAPf=I2i?d9%{ zb_=hT(v4$RGPNJCeeCbny+sgOtaBW(m{LRJfg1Xz)KL7>9u@UtKCqOKX&Pw_)uc9P z&;qs2XoiT$_+mF3I@?Hx26Sq@OTpsC$|r20HYw47(o&7b>XuQ%E|@0y25To5Em+ig zNqe;==X~*hrtbDp6wE$c6btb99my4`)qo2yD&*g!LgJ6IR*R{N!v(F5VAg36a;;sJ z30cESN#rDsA_*FhsI`~yN#x^5PUH?GLIWb(YODbuHgeP-QTbYZfUWgLhSgSY(7^|0 zd6HT82xh~KoOS-o&!G$s4z{^f{WqK$F4Z}H6bWXEoKPXZkqW7G@>2virII(9uu%s- z3o4;OYh1dKtq~N@5UoQ4jLAQzTf&|4Udu9gR8SKf_#n+<>Z)e!gggf2# zX5fx>S#!rJ4I7{`2%(DtJ^0%?yH{;QJq)o3DmBlh zC=H0dde0H{2glK5caba&$X>AlWgTQTuW#9mueNlzvbIc19t1&-DVGfyN!IXj+QLXH zoA8C#zd)5AYOCCAbsO*!K;3JhVOKUn1vyb+hJwC}6m+de_jahr;e$#xjiB2~?c^CT z8nnrV3~vQeVeJOgE+RD=P}`8Pq(E)BS_66)lO7G|?b?7c74W=112T7JSz6tDGT)GP zL+`)=SUQYg48|S~z_KS(H+m7rKhzc_l^dmN63?71)N)9#)BXu#wMuRq~cMJ~DT}hZRIM`{ZJ)hKQK&{@fBtUo6 zylM@8VCY>+dNiPSQJrIO0N#MM`65n89{)Mbt3QxIIQT7fzP--5X0JPVgk0a&OPPAl z-=h5XlNI|vNYr|T-H{M@)Y!>VW3^sxcBs0vyzte_s0$hdUh5HjNI?q8Cz6o}4T#iw z4l*Q?myJ*6l_Wz0GV?W7i^gpD$S1Kfj3xnI>*>9IcYe?uEcV*{MI0q|Ru*(;!mTs@ zR(wG2FHtB*4DXO_feTh~t>^Khq=h1i=^QDhTE~Vc16^1{dxV$zBoBaS&^TAt*~JYJ zaKnQX+|YhQ@KYp61A;HxGX(QO97Xc8BuN93&#SR0hwvNRg4v~4DW=_?#%k4t5$*-U zTJIGZw6@E=D_qFbFF%X=+*dD~|3IMDCq^s*!A9ZDOX1ae^QHyWwU$S&ZpE|vG>E#^ zTc!d6Qc)g_eMo}_G-|zHC!mqnjYnk@snAddHI@n?8y;?(^&mn7a;-NO5Y;3uQlll!iS{gLV6?KjV zqiE%&HB9bSoSM;qT&-j2C~{%J4HMjl1ZhCB+-83u&uH!^EBgQDc9N*|V9SvZcof?Uq}b{$b{9HN_h}A-uf9xa&>-+y z54K$3y2?#Ck(MFyH4>o#ky;P7LLy%2cx1joGBhBwP-npqvjIk1T{~RL+Mp;!jP>TE z*I8~})b4fVZpi^wXY^{O-ugb&#(~}zS&?6}N>r`Aa6nAhpj57wQmI!S0kjNBZj&%k zujgn)gLbHQM&XbPM@>wO$%RgpdLt>(fKt8VwnKK5yc%*lO-sFnv}i!OpyU<=#5fCwVn{kVRilZ zZJ^#qMbIGjS`SGIBxJ-1sQe|V(11#$7$X0E@7sAOkvTWeQLcKZJ2=@BW(E9Fq3)*qvK&G47oCk{qox_}f zHUjLA>0!=n0)EZq!3U&u54giTK7Gx#QXcxrX_kk5gu3SPutYLN1}Kl4Hl#c(tSJv2 ztY)C@MG?@{UmgJoTOJ;j`;rPx{pAr*@yo-bbAQsIsl7Z1it_NVKWEBAZvy_p`Xlj5 zx3}D1_x0ZTS6jBV2D6JzF6*Mut2121C-Xjt!Z^^|VpjC8Ij`GVCl$d*S$spvVuE`< zO2o~%THX|bt^S@f3mU{a!LeCMcqxM+5?>$*8jzUa#8XKUc>xR&`4WlHfXM8+^Q<%; z4ULMA*f{~JuT%e`LMOb6Yha<*U0cm-K(Cq_nBlR`f!-Fg;;2+y10j`65g#@1qgrYp z1k(dTzDcmv_nCE?>T4j!DjbpII}C{*k_1ilHIQRD5_t{eI}MS4ClQ*;YaoYe=tWxt z6oC4nu7Ug~?0hGfCQVa=ofQl^E3@sq4D1$D38#DguJY5yRR$-vd=A3{AxtQQ!qGT@I8!lp0o=z$>pfbV1M0qNCg~aHbOFA^5 z)2Vcz2+;7AAd##s6$(TBilyRY>SS5*>|yDF+H-5kz8q%hfx1lehD`O}gIYN_*v8fT zZ&<+RRa+^(dv;~Q0)=wWKkH0Pa4mBhVHDwXo%kCCUtPi;lLir2Jbm%eT<0ybD1VnB z@&Xc}0g(wVR+Vmx|3}<+21s^P=L)paYL$=?U@`&>CU{oTN&?hmBq0eDKtdp3MbkUo zGt;#_)1&U5*ID zTVO@?GM~4I-)org`i#47dtNvBTSUw8y^>q@Y95GkBbLi-s!}PJJ2sSt5W2gDP{eyu zHLz+VO)63~=Bsoa8f3$2t-TK^fqY&!h(8;fN4^iSu_L<>9z)1w8+X$y2vK?j#TgnD z5!FHkHi?NWrIK`WB8#2|iH#UdSEaYpoUSx91I#Xppn-^psH`d?i-lrtoJJuu5VG;s zT2tz16j>j_7zlhYjo*!0*7rxPvH3FhlH0bYgJb(2NH4A5*_BlJ;O7^qpSMyGSr>OH zG`C@S(javS>J*!$*$exUp^~}g_N1l(b%MAKs6%)5DZeA>X;`isc7!(T$)gsW*mFIS z{;STEBA?scL3ehc*U=9a__MJYe42H4b|E~5klO2R&%{7ddiZoJQQe(m6UX*fl-t~l zFYwSHv9;ITp3HY4wC?uTt%%>J2pWi}z3%p8UPR{X{+<Imd*D>52Ov#E-4JTJ^+A31?qcXP-^RB#s^=(|m&? zIvOM};&sVsb2h8PL-KEtoCf3(k6fydXO0~T_znfoK)~Z_uEvF@5wi8^%+{|!SbHfi z_q)SkUq2UXkH_Yk>)_1W-D!3N0gtcS%>n^R43~bIx^(T`gMdq%+NDquY#z?`nI?s2 z6{)r6&I`DJ0%#zh_QsEhnoKpW9!4LhyD>;kqv z*l@Jze~G2PgVt)N*X%B}JNu>evR7v0%Gez9ez^TH`HTKs|15GO>`AN0Q$Yxa7ic&{ z%t_S3E1{9gELCDor)$ulj3VCXsZWdsOPQqmQ4$R#MZD2dpQJ2&%49u|vS=V{<2QOL ztHQcxaqZpKNyU@RHH<6g&YAm0JdnnIv!kfk(%ly(aSTz z<*`}hN6l_pa>rc^Q5bCzpB<=2u4+TL{h5YajEC2hPgqPanT4vyyn?PogS?1%X`-II zkSZW^@pZ+$isEP>Zr_HDMRjdhVn9#ZopTcLDf3EtyLGJGZAgoF`m$MVz0Q9Ai8Lej zcx;~j3HF=ZX?6q&5hLFU5|kRg`zH0>h+cUGHt`OZN=dZ2o{m6+q(&@ks7kI4LSDj8 zD1inNB6bt0Dj|!Gyo{ew1`T9v`~jvZRW$OPZ=~;gzXS2r8~4(O*vS%4IwdDJ?xh4j z-q{^CF*Iw206G^ioWb=Oy*?wrWAicgsgCcK+~U;6NQDOhU$nis6_aQpbGp4I@LU{B<%%6qU(U;h3M^f*Nxj4dRt0_f(rXn=VNMmwaYImn>1x&}$RE$UHNjk_xlruUM9kDGl)X z&QfR4>Xo&1_7^IAXF*Y&^y9q90$%M~O z^JSLhWF}rRZ6>a^dU)$!YFeF?l?yY{U@hSr3qMEYaCGjPJ+*(s5&#q5PnT-%iXdg#f8qi)e zrGJL74LLzC4L!A`mh}|#ZF;A=OW+@8P3<3xt!1fMR&g*kAG!l7lx=cs|3hLPR25ut z;dK9@PB(RZL}5BGp|g3#=BPc$dK#*oHtPY`2rz%njMl6G>c!=GFle>AouyIfo1pXV z=FV2Twb&evI;x##Gd#n?k?$b(cVrjzSblntdfVZaHXZI}o>Zw&0>9G|Sf@#Hf4m7~ zX|R0)mB*|;0p&r1oGYIu@tLz}Dh^Y!#96`vB%}dh`MQ^>3A30lrt--or2*-MrCztm z{A`c`9SrXq=C^c0aS-nm)r)Rrx!oG+rnTaFdX6Uo--9y9h+jZr z8W3Mx)jt*4dT5U37!==xqm)0#k4$K1KlexKH1~B!3r+twQt{hcGrTq9Z;j2HzYE{J z#X5KWjRGR;*hg3K==FuFA~^T$)Va$a{`v$QycS%aM*O_|wkj~sq!Z8}t)_w#l#?{< z<=v9AyR*Ww?6;+FxMC^E{dIZ*aWT)_6Q|(8*nIAI_Fd%I{)Z%=S*3U#fnuXD@1})$ zejT7vbeVEKtPMmtx0;qEMcvXnB@TPdk7OI(P18B|N@} znK6a?s=<7RgIXFSw|q5#!>=eqM@tT@T+H_=h6ZAuQq{*x(kza`abnhL9bC{4DToGw zN*zvyWe&l`wQD;}lCDYQ6zvBO~>32blZ5G(V&_MD-DpXuRY-FepX4Xr70Jc&^&}%L332Q2z z``YPMcSP-URCr0xf-I+} zS|zw+N$*Nh8jx1%^9InKG^;&=yO#LwB&Gpzl|FBP+~9FmF|Yv5dGtjdg)-8 z_tL@8d+8CJmH}OMNzVfEie8!{9~%asN&|e;P7qKD7 zAaqrKG4t2YqA@#e;(Bn&35B3XRB7fsM<58941T!pUUlC}6;K(0_;B%tvYHvbAVGta z?X5dyLag4r4*f}_rvZJXzJ3wE#IK7#u{m%GCD1^^Wfl4ZMfirl5V$!C+8DZd=52v% zRcc;`{1}1jU`q0N#ZNkn%|nhwt$a-WqMrLdW587!El!9~S~&L=>fGx*Q;8eUO`wZ| z<*q89`8j*yG)PdTc*=o$r&6EJ-Lu5MBry$$%h$lUBHCaKkOTL`SuLHrZ^?f}avG37 zrh+Tyup2zfrb;Z;0XnfbQ_guR&7SMiB)q~ckdkJ(G=odx$7A!eZSdh^3s>!hru$2J z@dZ`tvPmJz3^#tRx^bmeX%b%iIDc6gO_xPVgEW=C>l5itd2siv4mqYJYuTQ|Qq}Cu zK0m$LVB zz-A&|^1X;m1LX4Yeq=WE`twbGzi_d&--G*vN!EO;O>X@EJk z>oS*y-TB3S7n8MgUGosa(o}}c)%LgoW*{7rPtv);9}k6e}{!g zKSV$5GnfNf+i`~bYgRv}#YUpXVk@P1sC?e4mCt>rLXm0$pX3y6|IA4$8i=~z^l-~v zi}wZM(E#uM)8omy4iWfe0@73i>@Lk&h5tf88UQ}Hg2K)|{aU!F{02d30NRLjRbR9X ze`F<=I81qGx!n0igMP0$*X!?V_LtRHLBNYMyf}l4WAnbF&_o_LaeeK$GxVn?@TVv6 zr%2Ie9Ako9x!|-PRHuz@Dy+DCN|@qVEd1-*G?;&4zl8=mAGV3&oX{y@q0mcxgc@_m ze4gkuKreqL7h44KyZ)fr>-Vw1MZmvAa2kM@FJ#*ccz3SZ=?xLrg8fxu(*V1C3T!jj zqrrh@Xa8(x+2zaE2~SfC{Jw>5uM_6XHwjO}oQV&oT$wVecp>v-&6y9d4JdW<`1)$l z$zJ`NwI^fqTaJ5=@aJnsoZ)UE8K*}3W&p03h@CHK>^yK95OM4lb_bY;b5Nr>gpX8d zpz8q@AmzmfK|GX*G(e2*u(_P_gU;4a#=BPK;l!i?W_0Ij0&}*%e89cKAyRh`mZnnT zJB!OBycHsdM-!2zl2Acx_PYF9w!q$murz>;uYm*a(T4tj!@DW*Xn+^p{hP?oxj}!i z+3qdlV-Z&8&527>Dfz_Rvobf=!SZcM{w)bh1K8;zQ){?h&jQ|tfHVMn$kbjxhke|_ zQo21+X@DBvohX)44;xA&OI=ajk)SlyK>PC{=pPW2rV{94XSgsw;7~x5I;7X-rSzXyS706cw-(qHN{7ucGM*coEd0CRem0wy{i0(cSuX#hCAOA#=1sZ)qb zQwep{&xh%~h)Po_@%Wmii>K2GNK+LMb0CtN_ah(;0H^mQC|uzd0Nq(%Ob;Y54S=U_ z@9dXwMe0L{NCU*_+a^H_Oa3gv(f~HTpIod=;7+4Xd)UGE;qX-jo4Mx@ng-DKiS1HZ zn;O=#B|i*tVLZ1IxP1mS;0O8=F&Zj?UAL?84fPGja0-xe3Y91Lhoo z!lM6l{C6bb(Gy@f6zxFi+p6tMt(j$((m-GI;Gh)Q)_)=R9KmS-9$o*Hfd_)S#H0ac z^jK*UbI+jPYR|TYBkfnAGGyVI9?@xlULm71^ikg;_lZmc1A+@onrd0p z4YKIvgrosvh57}ESg+#3D0G)sl7I#T6@ni-*i2MiuO>82Md)F3Pam_Kq3YKXng-An zS~t9qT2>*xp6E0{kDjcX^h=;mR#VR9L`XXbl%ydoY<6X3U!jPXqW04Kv`2 zRn=RFOatT!Js=>L^nl(*a2kMD@j@&gEb4v-p=qi?FJsQ4kN0s{ExL;3U4*6q^dqNl z9dgjk{v5J?dBxYe?;!~dNGfz)@UaiJ|3TaKUINnqxI*pA_v~H8QWi|tk%k5|6&yaK z2_61}gr})i1|j@p(0+s@G$5(a2@6SzZu&7&(14eBrpwtD|oGSCtF2@W&Ldu(14&qn`sF` z+3n3j67 zPD@2U-BEhcg-y>|i=7c4mx#0-*@d+okMK7kF#4%PfX;TMWoNuPt4d*h%|#A00F56- zW?5-LU02WJ{*Jgbz%5@+S=P+uac8kSZGhRG*#(UB7CVd0{t|j1PWg?w1qlrp;_IP2 zgLPV>!Z&P|97bRo05>-82r{#n$vlE+G(d|V`4?rbHdjWRq^Db$qXXc|DrH@SJ}1uUe+=#C5UtRrH2aL^4{ZcP>%uuL1I zODl`bStMe%j}d}Ze>>vR0C!s7B<}n&*A0r>oIpq#K*mp`y_o5iBALkY3mj2 z=&Wya56kM6yOMzh4AU0r@_>D_gZbp$$wC8`_$ED{PvICKSA+c#!D#><-yN9*4_y*V zBc0QqNO&5+Pa99vK3wi~N6k4b>FnDU&+H;J4WOf+!D-t4ijxx9(+Eog*!Z4bAwyIx zmaL;m;sONm_xli;2FUS`bn?i2sw-D4=6#7tQz3sx{Sm$hI?-r8fY3Bmpv$Ym2NRkG z(9=3ye&~_QlrsrW1NivSK|Z4uejTqqn*=l<*6-CQyGr`~xgKzI?a=9U z7P0LCUZ2p;e{hc7X@7|kz)|6)wWH3;{$NvYl>{iPixeCKf{*BcAi9JKIQpb|4;omC zHCMBQXi!4Y6;3JSY~Nu%kC-&Tj2>C6hl!U|MCdgHrP+*kmV&miFi9X^L`a&-I+y0z zg%i-15|pNLh7P-U%Rw;zn3yz`g#y!M=*tO8Q&}ipc(6iWNlco`LV>x1b7 z-8oyum^YJw1`N?H*TERr9TPu(3z2Dn96cX?FyujZejzXZZKR+9MJ?sJ->ZKIp=khJ zsj8gqaO^EP@-AZ10JBn!p4GnZAtX&@nSH(?C^FwmOd4QL-BNOfrrnv}CHrd$>~(~t z0c`Z5oicxDcUQX{PYCJe$F*EReT1Mi0IgI|odMo55}h9-Bu!<={diqO zAU{D!8bDTZ(a!#5SN(pPm^78MbN}+<$yVq;5tODXC?>akfPS8!Gysi${$A!z0*Y;| z1E=~Dv1zL2?A)Sn*1t+jn(CN+*Z6#$m^8qw8o6`aOcvRL$D%Vr$+C{x@RM05f{rRVKJQ#A>GQ$kkUrA}$SZE7ezB z^zK~c@>7D+R0ow8Ev3kQPEZcL)T z=tecaCMFFqD|L&AnRC|P5t*iP2K1e;-k5L4(EzfNPvOP;lTWg_dKf`z>Hu|3))54y z0cf?N>d(6->nLK<05keoPFbWP^{qC(kLko7OJEuRSMvb}>?Hplk!gTjsox68T}&tj z4bT zT^Nj6*!vKc2C$VX;hA2Vs>}3KjOP=RrZVQ`12;SM z2x8Izvr->)h|&GPh3dsbr2%TCT6VayXEeYgNb9PPCN2$dD-~2W$NE@8(p1eSsgraCB|l3LI`1f>CJr7`|!z(=pSF@A^GG{BDCOep9zHiBcT z_QQP8RD1#yUuEsb(t<9ZHep9IJOa8iI->r<*nFP5!ylcyws!Pc;ZKl``^2s|3UTy# z6Y=r9sqH-=J150lHJ5X9R~oowbSG;9bTE(i zJoqY{V2+4M1I+1#0&@u~MKRMMp!*0)1JLMB=A=+;{gO-n6@;Y$Z1mHg3E1HfpFDT3 z?D2J@<(_PcAVp{mrHR07E6g zeg?5=Dr2v9xa=v!em1dbfE_)fFrgb8B%zCpmjLYxOd|Wagr)&>^xB*W=#{~M-}cyp zZDKmuXLUG2H(cP?2u}m}=uT4+-mY-5kS`=8O_hx9beFK(8TPm2%PX=~lE{4tv1x!E z-L@CydhGTJR}KsCwFIWA1$Y^g?-uxF1f~IS^kx?miuZSieA`T#k>Oet$6_IIxeAyI@xvY0te|fTOEh}#rxTL&>gft**RwgW2sys>gI#SY9 zDG$t*EN~<%x%L-Cqygg8?SdjUIg%C7HxZNupwWw~i-qh~SL+L4sK2?Yus^`GlyLkN zIcUH!bt6d*JYR9O>|2RR1I*~bU72pKByM*Xou|B=xHQ0>x2j2MQS5TeocN3Eam{S*{ZFk)QdA}at7USQMg9aSY5BG{$?l{^V zY%arLkOhA~!D;FM?=I!RKR|FAfKOeMIpyw?5>l2QCNd3>qhEnoFHhW({-Ns%bzGEw zlr%J;nL2{_ZUVo_XmkAI#H0b{)Dgs&!`&+t7WY%cr2+2LeJhL0y&R>hVzEC z1M@Xv(p17k9X-S+QEZ9*D=}$+IklIelRdl8+`F$en0FQ4|06C9aHlRReSCsxXgs~` zE@9$avi7@#rU7*H`zghuVzaVNbNB<|(*QsE?U5pW_WH;=EZ38Trb@=cJw{mFfxRny zKl3NVr2%gATy0Uk!}Z;epAnS?s8iR_d|^a#qp5GANNN6p$TUEnx@9D?ZiI_Z5i~g& z+zC1UiySoIn7Ya%hihX3{r^L38emTy=z^Vfo_^Eojrc|< z4REKfo*izxv(yKEOWynu_-%xz0sPb*5W=(Sm+ex5eBMrQ8h}?S!(~3(!s6io`$%Hb zR27b`{Z_E=2>fQ}41*qWT9w&p%O zQNSefWFQ?+E*fx6JxfKd5%vmicU{AF3&PR>cB+YA&WTI*SVzAV0cij@_4I)CLHD>q zT>Q2KrUCHuwW~U}JYg2pI}nuys8dhAU@iyiab5d+CqmKya{6jj-}v=2e)dyUj^i%m zpaI9!)fAR7u!kC!-ra~xQzbiq+rwmub%=Wsk_M1dcSpG5LKa8l)b1oS4WOrP0CX|O zvg`YwOiUVJPCbZ(~^?3<|F8pNgn z_SBs*#Xd*};r?Wy0Za7jBgIaWvXpcY9z=8+pikX-QuIQDeg=_gfE@isWw~x5Pd4cf zB>@cxrtUGQ^s+|%T*A{-&-apM{XC-6R2N^?uwO`c8o)=t6;z)2>on~bk%0ybkDIn> z*W4d2Y}mM8LN*$(OQ zfp|2)o4VGO8Z78rwg^fC(5bsj*0}@NHeqQ1d#}hhbFJ?+?Ef~^i(DKKKE99LhT6du zp1PZ>37FsOCcabSJ_M8|DxvkPC5tybbaQ3NW&4Q;AmL};3dT6a0EXAqF4 zqSjsQ39Sz$G)+aVr#P+W5|E~%)>9_6o=0dJKt~S(N{Xy$dkmQQ!F)9zo{2|XNO&5+ zM-O5S24D1xi%39IA#2+B$l8KzI>6xY9&!nxX#gGFQWmtg2mNK4E|lE3l!!DyoHpR_ z*&?i$vDy200@465ddjLGu{Rto`ldi+K7pt-K%Len1<^}fG$3NzM56&(^b}12ZP4#xH!%4Ms$k9&lLna4PnHXqoSxwh_;@!4FI!+0 z5}uC~GQyCC1~jp|`6x?6|Fc=}D7IQb>k>UbufBw&&v*6=TH17pd(GHOWAnAUqi=q! z{?K1tJN7*J*$M7vn<`29(~wkI(6n8tO%k zBWiK4BQ8x1`HQV@Eb0e|N(0pBPWd{1)?4x01WHbPgxEB|jviaBgN^kEXiKcJyJnGCm0@;{S>0G(f*FdU$bA z@j+ipC_YaL8cNo1NDa(CG8@vT`YwQm!b2Dnw5so^R*_JaC7qSDln536m~qZaw!h)e_I zsudGDp2PkCeK3ptBVyA4yK4QR*kMlpl;|`-uNoh+&c&+!IdN%#TeUh}#r%m6yk8QS zrVilFY?jZzA}~!2`J8(bLwxVoM5h7z6Dn497M;&i_jdL*hX)q1!~38+YhNz0CGa~k z(tz>I$Qk*3&^Pqd_n0+`p2nVgNoP8K(h1$sj-7Op!?9`H9zFKM@gY0h7-LwV2M``V z>EuBb4L$P@YtKBsRrC$Kh0J{*zxIpkdZV7iJ#54EMi@ zO9R|#W#d!613V5dgZ~ZTX#gKRb`#YNTQr*d59!!V?r>%>I=&ZMOWoxa%(Y-(EhD$^ z!q`0P`I(KdD=<|cWAzAdxtRW7`6d!)^IrWR^=Cuf<<2Ag@rHJO$eDp;FbX2d3kiI(!{xz82uf2qZ?Q-s$c2v)m!@(q z@Wa(XrSk~_(*QVjD}m6%8sUk}*?(qRG|@;zKYmBYN#_uGFg80sgBEC;9ItIVpO+x@ zq}UeTfhi7Jn%`(k6FtT20HlSP>o2wzd-fSVg_%2Z?v)0jq9^xrm_@|95|IXo@qX#@ zjE;^9k1iR?ygNZ@n0JvKPpWLtXx^D$vsirzL>DL5bVW?@OAZry?DI6eo8A;04UD`>)PZpShMhj?iqTRCCa?=$Q((Dm5=7A`K9u z7dPY(+bj4o1-c?`c{evm+TWaAz`Iqb(nR(vNJ0aW=;bsy5(VWY3;8NS(f~4g0b2o5 zb_T$gQm`}@z<7MY-0tkR46h*r4H%*qtHdziQ%^2qUPlfZa71@ja~!e)OfvZ|h(!ae z=$V@$R%uSWiO4iSj_v>+3^~Ywzalmbu%nyNJT~{K(~=7v`>h0~0q}G_M;1h2YY9U+ z$>FyXk_M2`eYBib2RWGEhj*{hI1BDOiAz&eYUT{@CM3<&*=nWgbIuI-?+8o-;OMq0 zmj}z(NU788EG~~+zP_KBG{BtBzZ8=+#VGy&v1x!EJtJ14H^2_O_rpY|0s3??=Uy2q z>i#H^X{OGT0&<}G+oDjLxrkF^G*GoGvWFs~8k#6cp=mI? zvgAe2f8ha0yT2&i6g?c9Ph8JMSN3e}@QdUZ%(LkEuMAYtkZBLqOp6}OWf0O~ky?VU z)bXJy1)A@&|4sv8(f!W?Do@coTf`p_kp_s-wQmVxe^H9pE4`k$G{B8+fy!}Lmb!DY zS&wAFPY6r{;ONzC1>j+aON|8XXN04vkfXzemAN?%3I*{OM5F;?>>Qu!Yv_L#=PWvR z;E2)9?GP({W*6{wv^cmw8=G4mj#^`IbF}c-0MVcoOlLna4L0O7vI~s!eRHD)VHF^j)iHg^!I9j(- zuOcW7K&LEuR=lCkXA+VIkg&hT<0pNk0mNiMX9n_+DY9_P#S>ljBKNkq3{%2s%DWs;tDmovc|L5 zk*~e<7%!&W4PLU{-WsoMzu4Zmdc1PC`0XVFXoZB&JWYKjKF9)jEM;zSflG>KUcinG z4Kgiyv1TAk8~ycr?I^ef`M7 zHSGU33!h4_2?{v=fdJ-EM|i`Rd)RCJlAVvu@ITPQJ1Y3ec8A=dEq;}P2J+(Ti!51^4|G$&4!Jozm6|qDX{w@P!@LZ2 zo~SfHjSr_1t?s>%#Xen?E3sxpTo z=S-`Fq^S()J?Q`;X{thED=nLuPbMS{AY(Ux4g#qW99zT}vPLNedvtrmkFOx+~$4iHsudSqT#gt zkypKlYp&!_mWE2pdVo>LjV%4dve=nEng%%b34NEa1!CnAAq8~(TLKm z6pD>3{+MQQ`Kq8z0QyXJy3KPqFr$Iq@~1_cg_l>(#Q{CZ^GQMjl1oa*SDPh4ZtGTm zd7>APhz3Ltnc8ViZj0M^`5&d@xB>?9BT%igqN*N0?ob8vDtH2_( zZ+XKT%4c4|BBMdZR;U6)WXV{1dgzKlzDYvOt4K@(;tEw@DRI#~C&*tzavG3NUj>HT zQU&g6=c+)ulKF+N0>huvk1JGxr({(iUwi-9_xKQx%{I>b0Vpa|fl8s+@XEt}AemL6 z7icxRD$waRFJW^;1HBchzyLn;J5O>gNoYV)p$ZI0@;>H?UPdAs5KUhNo}yKtN8N_p z56iVe6&UVn;H$t>a#i5B*rG}mn7i&S1<`~=R;U7tQpSeNaJHMNvsLH?7NLC=7~W7m zb1PN`G)PT_DlkMYsRF~>miV?LrU7wHDfdbwB)f--5b^{X2*J*Cf1w5cS0kyyhcB&KXt-%R$ z1iqRpNs#1&S>!AQ4bs=H?g*Z}=nDRZ=D(StGe{wnNQ0KkO0y#Tg5QbjXMFfGHw!r& z&Dn?TI2fD7`@#vf@#5J22h#FQqC>PPNtF);eYzHOD_QCo_mV0}p?U2rikAkdE03@m zQYT)foveWR^`xc&b-82LMV+;60sR|DPs4I8bL@)jc)a5L$lQm{tj+|sVMO8Pb`B_; zI}g?E%)bn~v(+|ztXz{y&K{4=SI&V$Z+EBJQDpAdB}j$9)6Y>)-?x>SA%jfK9MxeS z(}ow&ARC^t~8dq9Y(BmkG27<2IYC&0`I6o1$F_%#k4Mbr@=`4xt^Tf~_ zPt1Gcl+N48D>$1GU%o|Zaq_VCLrSb#5EX-Fv9D>HU;jlaJ)0_vFjMSre;#(v@D zTP}2LC=DU@7!9#!Y`Frd@N*fcn#?jQT^eM}b8i?~+76Y88&Vt%#9ed4h|2=7OyDX7 z(m>#o5{F@qzhTdITelVmGmmCWx&X)=elc~{A(Q-c7ACXa)?iPK7tvFb|ByWkTO~sI z5o~iBY{|pjr{0d>Yz~;0(K%?4`s9sjPK2L6b5dSGDKzxctttpNl*t~oIytYR92)vX z;;>=HaA@PWJB$(Ul`E+;gL}vEi&oNJxs$Q^@Iw$HNBHyL5LwdON>Qo>;j*IPa$qaT z#YKEBNUoT}*|niTP9*PBIBqE(>5NJb&|TKdF*_)U29lDu-HzK!g7exCa<{CkqbZ99 zvX&Evk)v+71FK=gaLODRN@7NimBudEc1fd&+gyGAfe55Sxf7FG2#6Uq*C9a35joG) z$mu7K9Gh_Zsq8()#G9|PGNnP%(^qGK1Z`z9A>X7B8VE^Wiv&V~0C6s1zD+SS5HpuL zHu@vHm13RIJcAJ-9trB?!GJwEB^YEQ(c7KOVBn!z2uL0bR>0Vh9KrC?EeZyga0Y`< zytyTdod!uy9t@!b4Tem}Z775WLXrnVC?pGpOw8>mh6Z9%2Lo6e8S_gd7UU zT<}r|4)Yp@twc!fCL|`GDu*O)j_N{JH%dL^Y((sKdkgQ-xg!YLiWb%h!d?dug0Os> zhGp_meV7?G8nX;B4`lzJ2HB8&s=O%0H+X@dhfoj=eR&H)&Xr4HronlKl$JS*qG%v0 z^;EfKW?Ti?@>WJu=(EXdO!sjT*;d_sk3mApEv=9{GxkdjV{|%cryAg{!==B-7KBL#i=D0Ia4IE!~%U#U@u?k4u2CkC;6^jbs(^>%}uT$62 zA>m(gPxYDKXX`_Qth)AwD(fut%Yl?@RM zGU>%PQ0e+6em#-*rbrryOkN#Lh$so|iQm}VY)~i-ggzs2U{7dhWLGdcmgupvzQ&ji zg2mm1%H)0Fy$daj)SH7=U-D5;XK*?;x4jTCd}MINo$%L;+NIPEnHQ&u5UxMca7{is z&C^SqW|vfrc{AGz8sx`HVwcLu8+y1~N#eu3dXE}$G5`bFw!L4h;^?*C+fsB>;rxpaINi8|zLY>s_6f@DW_Av}h#Es0q# zOywYEw*TAK`G{xtffHnnSz(PzgUrBJr;@Hh^`#(=5~?^H`B5mD=H)l_`UKpTOt7t+5S0vfyQ#Wc@(H$e zm5A$=-c^m}XRNAd;D*UZtffMH$5w0g(%)FIzo1weh)q7hRw~4c&FcNq-&w)`MZq)> zd`;pYFV%rhckJ!#W_avoxWU+XvjTsQ@h_ouLxm8!<@=jhac?UCp3dNOY<6&&-;w%l zOu6Dt`0Fj{m)q}hT5+lfL48LJ>g4_MJiU!%mtCsH{F)9%0|!gKx~@c!i`jy#-%%C~ zWF?=iDUlUMXF=MH+3wOnTI!KZrVMdN9lOPM#kI`|3_a`L&ZU!25H0rG_yU(*|HYFT zS$uUE-~KqlpX(ui$2d#Aq&5^aHq?SBJ4vG~`OH8_t}$k_NR^m5x-t!NBKeZq2{AUl z@{+ogL<33bgFf^aPKF1um6z3{EE>qVJauDdsT<5Oyn4+QgmfHpBBM$?*|~4>p{ah> z!v_^Vp`uZBbIud&klS*>9y?*lhd?=DV?#LztOsgfB_Af|*fp}`>oQVS)M6e$hoOPP zBwz9{DaXcELDYjOiUy*RFS?r)6+~A-*qIbY17X9|;pMm+qRP#z8By>RP`PUID1vLNwdN~D3rr*27LIsq;^d2VBr zo@UNxjA}6Cd_Q@h;v2|(a2h;(ytBRJo{XA5Kaqi2xauzi&xDc(>ZI7Qs6(J$wnc$D zDM1`Ae_2(TZLI%kwjxmT3jC~x25SDMmA9SpXtp9y^9sDYEKu`5uo91?L>fqZO5#Ax z3uxHW?1?DD!0eVd&Ht2bRPqL5*zc`kZNs43TAIgq!F7FuT;!^LdvR?3j!TD+o49T- z1%FS`$rt;ViB^q>*q%mg^2PpTA|z&uH&mH9myH7rawzo@^`ZoPVFSf1Yt(Z^YWC9a zv|I~?n0x|)^Zxw2xWp`{`t@7m*PI4VJHnsKq5N)3CLlslV?!rjkDx^)1m;0weX@UGS8$J(I8in&s~T7-oZ8I!dq6_)s#j9Y01ZGA-|WF^{~R* zR^Ia{j|TD%B<^2@^bI{>L+2gdJd1H?y*_jEPmU5Zb@MrP_+R7O-FtY$~4xhe08#V3o zIDDjDYYdIg(TrZ78TDuMI==q$P(_ zMsG>pNM@STI1r*iRwZ9OeK3hOlGhb_9}1;`(Bvy(4kk2cYu6QfUy7xH*ypBhawkLn2z-4c4xMk?iISWyJxIOa+$U2j}-u7a~hAI%Q zZ`W{5KH}Eo`nDp>3v*Ap4-N7l`2)d%5F3Z~4FP6~*-1GxkdwZr=8HsXt{~b%Nhebh z4J7qa2bd5yawYUPj3MW;(9n(W)c$bT8E(8&sr+o`!pa`J+}Oj3xQLw2@N{f`!GYtE z!4-QVzh;y7gtTH*0Yc>i8Y(dl%&VlGs~fWHPstVAsn2_;e%AkRa zn4U&e8Cf_?NEuTK4Wx874v8t1G=z7z`kJ_+`FqBK`lENjR^2YRw}*ZD^$U)Bd-#gN z>ezh$JT@Elj0gM${r_?4$dwho|5^3@PC6>7{%oQot>zk5dNfGm-o(V}?>YJxk)8(h z{lxT{pXVgJloDtl;j)^2T!|Wcd;DaCbuaT7spqW*kj~bf?%v5+CEq*Q*6@Es&))7% zdE^7@@d*Wt4T<60|EkU%v(eh7s*y0Utkqq*gx5TSg-e5cuDwkuQmcRG1w5MqXdob_ zA6zNznTO{^JeMM9AOb6SHhKYN8V!x!$*uxtftzp8$wMcL>HKbvxIf=q?stbnyjtS> zG`;@(jJ;_6{@i=P?~j|fE|+qD&sx4+dnA;I#5aAR2_f+l4T+e?PStZpVxyo&m6+XZ z4jCSsAHx zuZlNRiTOTVhbBdk6*>JBfCgFdww3flN}@>-WJOLdDGRdVPpqsTQx;8vAS+Tf>;=3n z)k7yu2gCFn^BW1W;_vCdwKwC##eRRZ&Mx|p>@m;rHpE?bS5b!u=1Bxh4~Y9ZD^48m}#v|Rmpiq@4*^W`I}bGpHdDD1C_bDX#y%y)w>;Sd+` z*oPNwYxN0k--R_%h3k4L{QD%W6?sDvmgCq^6GG~?8d9})3Cl<|s0wOSiMb=4h9-$0 z7dX8q+rTQ^wvzsUl4u~Q_AcSN`4a?JxvW2=EE>qFyGvM9g;joY@)U;7>{=^&j=2p( zOk6s2E&6XnkS(^By31G_I_mb9Hk?Zif4s9bY!0!CwB6D553S*hJsq1r+l3%IGPuGM z_iGA^cn}kERS~9Y5MK9;4zIeXCCGw=OTL(Uu!}>3e28c!>J_6OZ_CO;CCyM04J1W` zSFMt=Ae+dklPHS@vNm4mSBI)bYlt-r>ecEv<{pf$g8N1+VymKN*q`mnZW+ztY)hB= zwJ_CTFV67d*j)55He?gmbC=}r8E+BG{^}L1`Ve&ujk<`X?)3_=vFCG5vqEys>}9o0 zgPe(2kCH-|jl)uTOO!_gc@e8T637c6_J#oWk&2D(L z6>*NXf&M4y`<9k!S3a(GK~U?YFs^VViz}QUm(unvbHY>&;_A{Zj4PWboYQws?DEAN z%N`TWR>f5)M%y%>L7F+{_b7>GtKuqGG+Pu`rv!23Ma<>m3YQ@!>6mTLpxXMGx$^=MXv3NsOnd8_GqCw6i9TXM$eZMht z`r=Ql#N#QE1`<;aii-3Ne*r@xaX%|)g<+7no4W~l5p&Gb58Chr`q{l4f4Mi#xM%0uRULzMN7%+@ARZsa*c^5)U+FB(+G@DZ8#BBy<8F-2-T9T+n;|zR@43r)EG8gg z1DX00pjr`|Z_wC`c!Rfo5jI9Avsl%czhu=;gItQ(OFWT47qjci{A>7fgL1f!-vSs}j3~n1b`4lonlJ>6J!{uIA zzi_9AWAmE(vv+0B`~id{?OkO;Q~|>CT^gQAdsi8)1Z0>8<~lkI4bmR*{?+szQxKs+ zmy_~AN}++2h}CViNy!?=oSctP4h`g_>~|_@Bgg$t28(k~@Fxxr-{WlC=6IPOIRU>k z&i(*G5{HKqGB#9z@c77bU^zd!gc6ZiJZ}P&7y)ZU^ z+2e35cTG>-->_MWc*Vx?ZMfvi{cu8W35%pz4`E}4T{&>-~@ z54vj-lKE(fq)RD@29g#x>=RW}gsow^SX!U+67xB_tGJ540V%T^_avv&vLanZ3RxMO z=RFc`dYGQL|3Q9PQgWq*M}A8^GU7eRDoN!NtRT7O+I-$AHHVQJXY&<q6t+XM@c{Gr>H9;H7 zJ4n!G5?@S-G?2I@K?~}#pv@E=3qM=m_anC8+I-Ej+8^xc4x9Th9PRIuXw@q-dSz_> z=Mf0gWAYc>x&1Q+X2d2^Hd^&U=JE4-O$GVxl^rm|BjifY07jeKsPD>!1~<^(mK}FpI45Xps7d zbt?7A(B-> z#A0i|R3|MQjLrKlMwo1qWBVWIBX-WHO0UcajfRFs#D;rSDK#v7s?85rThbuK5%X~M z&}%qkBCe+h8ihZ_d?!DAv7%igl^wmg4=u6bFAB|-z6-CJ>8|&pnF9}zjfx%#^yg45db@~3*j-c zB4H$YPK^f&K|EZl@sQ9La=g+O_$!(nW{y*^G{}I6XXw+`#h%vp>UBu%uUk1?%AtXr zh=-;1$;kqxD5*zDG?3Iw7A>B&;g4*VJce--cx_rwMLrlQBOZ*+d8=$QxrBQoQ&{wCDfmRkn1Ug zhUK3u3P{LBlh*UhoU|Eo0lWzZ)U*BN1Hn{Jq_yFo*`hgNu42c52B}Xtpq`N7!XhW;nG{0!*?xG@p1VKe=p*3> zShyXR#t}s!j-I7)l+X2#sI}@3q^8zwL$=$QEnv_KY zSrIEQ>Xj7+*kq3Fp)?vu+xXp_T9hHwpaXlvs=wPjdL{!-UEJS+ri7!2c6V-0f{h1b z^Y$h7&E(kr2l|A4Ge@t?2&AzFQoV>o2i}NPh114jyF1@nTx?m-m*cT{(F&Y@yS+8e zjv%FzvMjt5m4GPtUm68T-O#hzKnOCy{0mE;21$>2Kv+j9$n2Ul9jcegzZ9SFgGjF!Gp0me1YwP9NYgu zpRiqU^vaBg_?zVIf}@mh$Wm=?$`YqRiW3H8j$Ye^K*Y@{f(9ZIwhK8CS-TJjxg~|r zu>6y?3nXj=tZ$QcK`wwdVP!nm)rWfce{62dXL^V7P%Wri>DmEHt+ep?zgLfs_+;O- zwTw$F>pP!d^9?@0qCs*K&W?oS>h76@Z&3mbBqW@g2qk3Bp2_$QWzayz6O;Km_!=4K zb@X)cIglod^toOiZ{#oc_t{4pa*ppD;e2c!dJ!D|sPK|K(?8%SJEdFZrKubQ#Ah@h z5>65oGerU;Q=>}E=jj$S$cBW^6UxNcK$(#AB}$@!q=ZBMGD$(;Ovw5wWzj&^#=DG8 zU5#bD4N=HX9C<%BpJqgMOAa%}%YW+d!6IeKMA*nC67 zCgF(MQA*D#OSRd@$x9j*f5L{-Wq3A(2t-^#5i}5yvOWz(1To=#z&wRQXjuN~S`!d9 zg5-al-mmTl-jucWptFBj{hmi-bHqM4{$X=+;{Jz(*@TYZBq%w2|Htb42`3UHeUfZx zEV87VpR%V+gG8t7#JEID^w|a?knwZMpn;5pL-~9@1OX68`6Z>$KuSAZ1dy?zekV?7 ze#98Co(SrMo!a?9tKG%oTX6_?GB!Wv==lhL9vnhW!bg6Nk#bZ8V&XR%6A4{1q!q7p z7gU2efqp=P)FDBUAJN7`@) zmi^a^mCRM4Az_=baA3Kwu_8xf^XSL1&CnC~KO`hRpBgy)NZHDKR;0Tg# z&SxKi28m7>pm_lr7NLwsPzDWTBy2PCGO~aOrCdxYG?0?6%@D>$$a@sLAn?G1-q0Op zuU**VvH8=-A`rH_)9eVjkZ|@ZkfIV04!6;8NZ5Z5SS27_swET58FT=ew7ysrp+S+C z@=!{lfs}-gB8pP7z{txvmvU$zC*7k6%h||t-MzrCw*CqiY_F&Hg6Zhi!6f{{wx(StUoW%<%uy z)&CRDDmhAZf1he|Evr2mq&Q)#l%u!KpNV)GMbJP*!da!9h`{wTA+Mki8kT>uF*S8G zXteyzedzbJ#DmhubrM02vY6z)d^FtZX`rCO-n;91VbklL;BA zhCq;h^J*45O=ADcvOk+#4GY4&mO^MCWGIatb7;yZCxbCgRyz) zg{*w#*!~Clgq5$OS7!L$CCMvaM=73{rP{oePjqOI;)IoNj$SL@K*ZZAf(9ZIR=znA zS>+oDc_)R?u>6xbKM5NF>!YOdl?&iaSotosmfVgYdN?-yJ}X~)<_{nvVdb02P<{kJ zJ9*`skxB@J={Hxf<4cp){|XW`401xALLoE|l5irmAS4TgoR}*qh6ZBNwFFAp$T81K zOJFa7Jz>SP)Y(63&5i7$34b;=51U6|?8q*J$B>k;aq^tnJ)sap$WS9BVfC2f)gW=1 zquF7OphwUk0}{@cObW4~Qjl{L<1H}DXCu#j6+^`PCj=y{%7@)0 zU3ATZvAN<=9B0U}{SWjB#~F@ZnGq2$)`&>h#dMT599*i+&)Ku4L5h9Ii6@}2S{F99{r~}ULSzkoYSN8*N!e`^d<ojcGRb-3@e zJR*13X7t+FeB$v4hMN>GXIJbWb8TwMCTvowN<*~#xkgLGE_TySL%Gz48AZ=6TvtVA zmQyn{$daqmt-30Z`vnfRUCC#dl{QCdG?4cEt(O)AS*g4(<|@iq1%15aq$xJdnG%Zj)pCALtYI#vHve!~fr>{-3Zn<|xJevs9b+u>V1W6esMB z<>=M<0}=0~2pWh;*c;1<$Xq`Vavg=xu>6y?4kT;@tna1YtNVdBqT-$JV7r}GZ^KPj z?eBIDI_(wvSx!A1n>Tgg@`u|qe*pU38@Jih(UsH)mIdBYcb2t$l6Itt`!sx_#ZMiNBc9U(C2)%(!2S%>y_Px!u8kr1#gQ z;UFcV`F7;BCQlQ9==v9pu9x3X+0224w#9?Rmz%^V+*@QSSCG zgYU0epRqE(O7|7FIB2m)yg)on63nWu4#NM~N@fo{^iUqEMaEs0rj#wMQo^Ucr#{t5 z$|hB|PpEkh{euR{+?~Wfz}3k3zRQA^+y!Bx;#@UaocMoi{!EIKhiiw@rYlZMtCT3t zpCv6$%O=IibV)+Z`&gVb$%+$Pjg0T#r8s#Wm#?h0TalBJ-&5(%MlE&i;TB9=UPsY*K>KqBwt}#re3}8KekjJNyzNQ)q6) zGNeIz9-D?OBilwY8jw9P4cS6#&>k)fx=VX)0=JWs2Aoew$2n>(Em+1Q$w&jn$ERV$ zoKF|8iAf0_LpqvtnF=~QX<6)d+m`bVTbOrUCP%8}=PHLEH%2c&$=@&5lN~wZF1@4r2gMpBZU)1Iq$edYze#r20P^n-AdS zWOG}L^w)Nr;h@+Nxv*ww%7kvnU4AV2{iw?M?GwT6oiz{EPtId%NRIuwx%BJYN3q7{ zckG`Z;m_BOIK%#qxp+anw91A|+^LxuG5@@wD}<@ykN5QODfq?KlKbqGB+z`Ap+bX1 z)ll`h?DCHbI|n+=UUzRtQ)oU)IvUW`&|FT?Enxe{?$UfdjUOi|4M=O~)|HSh6>{}c zWTXLO4Gr`JBjzr;vz?*M)X$QQ25kL$9aB0Wdt3PE*r2(mGeobT*~Xw~74@zA3?Ade ze2x-mAfbj=TlhjbcKwmGeuca=;7#F9 zOYP3m$|5HDM=olZO;MLd7lbSVy6 z_3ivU`4t=V0c^#^37Nt?7P}7nUvn`Um{~{L+ zxE2y{xo;0=UqF^Gn+x~28vdo}cneV{XFhXg!My=-Pz_NZ?G;)OE|7dLf98cU# z6D7U2<4i!EK&YBVD4vD=P-Q~rdQV*=6c69vkqTcoIagGV-F9ac-9713$7Zwq#n{}G zdHfjW@!@CcCHUESbt+O0B&11~ zJl%j@*j`IE8nD&yM6WD9WDjg1dp*f$Kvu)tPbpcpXRr;&H;|MjU4H7etdhhxlZ^&! zHO!`!CQ*0Z6uP&Njs|pzg5IrKvDx`HGSZ|=pxv%b68H|%(SR;d`1uX6gz#M?q)C@P zyU~!)y@zx(pi9*D>h>yQ-mpXKZv2%y8eUNN4=~Cxj zPZz$AkdFp@iTW17d%Z&WF;dciGEq4AwQS=6DoTz8la%fh=Q%GV9S!InRcqACoXaep3P_>7ggi89c;+0>wdA1zPYolzf^)P7{pJ43 z$jAH3$VQWr&AY}c$VQWr&3neH$VQWdt+TkN)5da$dFvmqAsY?Y>i5Gr?;o!t4-I%~ z=r9-j13XxXAP)Z*B%%RP#8v|vb&Lu`+Q}Ssnw>5;8EkegUy+w4Ecu&AP6P59o-0p~ zkHTuXiKPNd9jr5vbpI8pX_91cx9w|`w~~k^4N>MYZzmBAh#p;g6^TzckMI~p^6s5v zq5)G4{n$dWX-jIU-c2eRP}ML;RZ0~$+J8qr8t~QMXuFPyubAIYI+~<(zGnUa>1dMD z`KtNDq@w{{4f9il!eeHxEam#OA0;6T2rnZoY!(NyD zg?ui4g_JZ&a&b8F{f4iRhz3N}mtJVn8v37g!B27+9t?_Wc-GtNGPIhl-h5}zKsRI2 zOEdP;*j)PzjLDBJTwOc%Jo(EL+|Q8cIyz+&a+Duq^;`W!a<+!mU?pj0->TI%eKded zXx_*VUeF+6HM}yj4(FcMXm$ZBxG`ejVoGMU`Aag>fVqyUdm>9^h5{=WFu)VSza}9K z2EzXI>+Dwd+#)t2Y4Ba z-F;E;_f$Xw1-)bn7Letj?ho+xMRT#wm(nf&hsaL@ev^#9yVMr6q||s5hE+$t-uM=& zX+WK>p&Iskcp8GLqqQ`@(rdZC&UZ*o1M+m<#fX~gb@ASjxb*i)N(0gw7B{R@gXp%p zNOFs7V1@XHB&Gpzx<2J-fPItjETqkv#4`Vw%rsz5*EEjY>v_#l-!JQsl>a;VX~18{ zxUW34a_!-Nkdg+J8}F~S;pA$Lv7u$|2R~Z8x5NmgY+O{wqtZTJ__U8o<#23HzEU2Q z>KR6bdVs{%@u<|(DG!EUkJjN=9TRgNTm~WwD|^t9>fxetnf)v{8l8^RT}BJ+H)9MhjLm1Bhg#+6+_kl%&kz2Fi!m;$KDY@PbfFNLQO_)D zJyS!36e)CJ#;`f$c)5d?k&Nb63n)Yyq^pKb-#Vnj{%lt|^G$3agzkV)-bsGe2Gli-#Y;;T^MFl!;-JBa>$ATfAop+XIU8+wdJx#)FZV#7x+$&D9`Q9X? zNlF-GaD#+22?;U9fc+qB3hz%s8W7g-^sux<=ep>oWD}*5vkxLK4R~vKs8`O5#ukG? zo6ufgW&h2*43n5PS24R8?&X_68KHNYh#qyb?K>(NVdwR@7y&Pz!~lduS7VsjR= z=9csEP10(j+AeIxR0CAq@y0SNUzdFn1f_i4D#kC+8;S##U>X8*`tnBM3+P3p~0eSGS`m~G<@i9O5VV$3QSoQ4X=a<%%UPCr6VZo@prW%=z{QcOx`U+&@ zT`{Swk_Z;=}Z0?XU}Y zo4NGx>dxk=lmyxI1Ja7tU78;iLlKN`YX#J+Y`w~ z1GX9(o_yNyx(9Zvp6!H$vm~SeVGVt>JRu&%@Pe#Kve`LDKAI$ayC(R$Az+do3Sa+q1R9FOpqhS%cK@;5wsI9#kPes;vsiz_kv+J5BwSUazZE=DqBF&>$%_ zyooTu#!qB2@62^1q5)A2byb0=-5qpi7kVAEg~IkhveAI8hL-~hZ1dP9+@O!i^5P1VQ9MFXzt&u*2fq5oNi>lsUdch@kBHpEi>*#(S7C7%4**j)1zgw&4g z!rG3D-A@@<7glf3JhncpB_U$#ke^Bh)-Yhp;Y)a}EDc(#*!SD+hfPLvF`u~8AW_x# zJMf$hf23Jye#f%Q=i#W1Jls@&bjT2FG1=#_J9_BFI7hnAtxbrcqZp6WVmzmEivr2W z%Tn1j)QI?U{m47N9*@oY{}isj-QF6nZNJ#wKu*=L^-MsiRLHI4HMeSbOckJu%XgPn zJA+XZ-#S}d8QGV0nLcwQ+kG0Os*ZXj$VgeJ)Y(rdnnH67$!I`Uea{=4#)kdha@-Vo zm@BIqrr>2mDNJPz1}*)vx?Y%(3uE)(18|h1bJy06zL;N#@0_4NL3(Rg*;16D%FPQWn=iMeG8!nWVJ5q@ zU{smj3L?SWf!s9UuHiL`QtnCCJCT(Jtkq}eLehqw*ie>eH+NtyGZEu847f4C9(9MK zF2;r070b@Y<_oVxMRQc}lkwV77Y9E;(rcKO3GlT`Mq1P|r)e!y!(xU4gN}K+OR^KN zrqbMvO$80ol!$S*KN!sRJJ?#12{iX4BMlhqXbH1&@v%JH$MRqy+etDSkkv42QkJ2! zD;WRab1%YoGWlrI^6`BH;X9RlG~lbF0WQhR1%yc-8;fC{O(^e8N}6;@?AkG<@HNOs zla6n(gGEIyOYcuU8t^5kXxP+Z>(fQ~K8PgnK_sL}SB63ur11<=(xl5%QhGOiDEVlT z<|*GLwN832328u>s9M8jJWHc)4-a~!6wf0g4H&EM3>s84jo{ctJzK?Mi&Vq#49^;| zWKp}`_IPZrdku$Y?sRSYCHf-{WNR3n1(ZsK2JljC0Bd+$9-vF(*TDNLTeSlO=B0|1HO3SZ-kkK5665tZpB1;znJ1yN^a|a@Rs>72Wk2>}ELQ zc73@uyE(^~-O8?p+aDrlBG%W}B6w^l4!$s}zVNiI$|&Zu%aJhcqQ~5ZPC|pMc-EFm zk|FW>!fsDtG!XXOtrUhu3M0H8*%=%p*X~GhG!VCc!x^f|{?l;Tw3`LE+i%`Uk1~50 zg5KxD5{9_+;kc_^9*%s^;%0nt$4m2(id)%LFBn%LIDI&(U=@dO9BfrM+Keg$52vvIC^0>p)eWlds`w*8d z9NkuOHs@T0F@x*UI#S>Ny($-u!L1-1GoZBLnDOXT0mUI4uSy+`d0y#5xy-`rl-WkX z)MH-2sUe!A;h53-@xD$NuP^My6h@OY97}|igk$zAbulxhIGU8O}fI(Ii$ z=EE`jD|+`z?fr_v*3a5B;^IthKj!omyQi_atrnAWoMv2I=p(e!N zi!}ZYY)Q^YTUbz|O3XLe!=gbBTwZq%t3cUcN$k$$yJUxXA)QCcDR&c+A{NSSvQYf~ z-Rd*Jpyq5Wa$Gwy80N@{>jXkf#B@LvF=Imo@QqifZ$vzH$P_+PlNOh zYj;l1R;+;i4J+f9ltBX-`?f$vP~8@#{EAX&Af;1xgm|(>ZoolDFn`LZpg#sKm@FP# zf5yfG>-CkVh4FwZnHZd;j0Y8?3J?!(N*oVCFWBX_OTXF6HkKx3JcI&td|(UR%UGfe znw0Sn$e4@=FXeJdp-C7I?EAX`xF>#NE*@|h0+PkUDR#JR*CC zWbK2BQ3Z&HcPEYqn|A3nSVwf}HxFUy(;&Uc+J{g;E*`v$vnYcGGLp3qfsDy`@KVm9 z6dFiL)jpgO#DgdP+gv>0G6Y1tm$tb+12)u`wpupUzxqjtfJ1qx7K9O-G)+Y~HY9_y ze^i}4;t}OkJkksDi8H6NFlktrb@w}5UTSxoE0r?hdy|+3#I;vyA#vu(8F_=`G$4O; z&0QR@G%}`tpwEg2fvSFIowLr$eYwBI!QY{69I6Fj{m!a{N(N{BVk&2~38UvQMUpu4 z9gf{-khJ=pHK5d4l8pHKB&Gpz{mvQ?2hQqK{X>$|fV_5RorAM_rZ1?o;v7`9Pni3U z1!?`7eLCn_e+h9YPnqW0-4U$%Z295{MG$UjpE4TS8eyKZ(|4X?O0f6CVu?+qr3;^}JQ~_Xz8CC(i_wRmc5CFK~13)|ZsRBTS zC_MsT+rLYmr)mL$(N!Vorp5j!O~L>O=yL(!^53*6f+k@A1R^E^zzdnD5SnxWfbnIq z3=T!<7yPdF0PtV=lXlRbjm;~c!vM%GgvZE*+5^BdX%~p}2!P`g1wf8XxEp$M830pQ8Jh%5m7JuBq56hf0A06bU2A6eF$N&sY6L0yW$eY0jp1(c?p|x8YHdu0c%L9 z4xJHSOJW)j*FInki8Ck8$X`Zs8j#mLUu6sYbHSwWa zBqCx5!p*se(@`X2BF2VV;hzss|9tM2<{+!t_0*{{^GiAt4RYq`H9OOK)D3rIx6LyA z@4rOM{4)2a+xY@6W-RC3uBtyHbDt8mpC`7CI0_dK&A2ZYpTQ@8x4_E(vb%C4T({yr zcnt9oFT8Hn1=kZlHdF}*JXaksK?tu$EwvZliwG89xl9mM<^k-%(I8KrTD$X=5ySOH zxur(C^NP-)Za`(}246IgA{2*69oAzeai*mTS!}Pnt%+bupb; zoe6C9yDs_(>bf`>n?t$l#x{PK934OTk4db%nkKL|tmK31&Zcr*pE@+6k{n5)`3(z@ z2C1vxbwg6?y3A0eK7?&G4XEpP-HvmnxG=f~-qpnMGu+=^eCDW4k zUA(CK@hjlGhsou!`ya#+uaj@Cq4vZ|3I83a|3>UkHzkwSy-cujntQO-r9lE~ANBeK z24fe^R>@;CLvk9B*S?Z9Po8&Tm->?^fCd6K-fm)wJQp{1Y?srItzUt#{swjlABkR8 zPnN^6c_9Z!hiji}><^gQ+UsIZuB`CptJIr2>8RA5gS49eX1zp%H14juUJ{~)%}vQ$ zb0y2vWiUAFuZo4Vk8gx@f|8ZNJXHu*R-_zX-YfD z05-vy2IV(5W=l+iB-j2dKA_VwfCSqhPY5}TLTDhQ_BS`mgakF)gqR~Jh6ZBhl0<`) ziw%juDb4d47e!yJy@7GB5S^?madGNjKmYR65gJDZSL7sECSUtX+`O2vp#sFkD>N=@ zZ{PBCQWIvEl-<0N?HdiszxI{58CxMJvKv;$t0{v9GHPFmo3VKrSx96zt(4bN3Js*x zy%IMg!*=lYLx+P0Dx(1mxqv%ea^_Xi~;QAY(Efyp%^%3QfXzz)Bh)51#mMbMb)75RjzLu(G5( z^hj&Th;SG1w(ow#1U~K?T$9tL{|Q7zd_!+@17&)pBcLeNfynr%Mn>)Hdy9m=@8ndd z0&^Jq3N)$Q(((C@OBNsQmX&e@rO-f1?HgB==0`q83UZF392&^!);z8V)o7d)$p3+n zLNE1R!&s?3SC+6tdIulwEsnYD_3$wtmP5V_k#l_6Eq^rxqTt%+i`NmX;t)<>)Np!Q z-2?P>cqOVz?x`O0Lv}o9kQMuCcA*khd;&*`GxxmDO8EjE$`xL*m}-Ag!rE5?o(E&I zkK@#Ba%}%YhSdI~#E~i=oZ(yQ47JZeIwC3kEQRJ}tTAYqx|)mo|5JD70n!|G`41*9 zxwr)62GO7#x-TRk!oW`i5<`FxAe{Q*Fz@c{?({o5vzeKFk3d2=!|`$iCxC|gJ`#wc zAc!Cc$So+!eJQ70f?Ue=dp>n^SI_b8?o`j)z3(5-PWQ~)-%nLNRb5rxT}_x;5bH~n zr_EADD||w#*Ie4r+j9DBW){kHpWGysL?{TP@FepjldUjZ%S*n*l*DoD)J0R`A?4tc zzi%?M@XN$$q}0N?bV)LkhjRKxl)%DgY4Tw+6Z_zQOmIZO3m+2agXc}`0UiMWB7mYV z6Px(P#y;9fD&4?Og%5xG?becBlM{Ae+^)0-^MawQeT|X5>5kwOv4uB7Y;Q7P9B!CE zBiG-^y1wwMd*dOE{qwsmMRFzW86qbXKH|(rOuG)YLgc@6IBx_85l-Rbx_rbGC#xd) zA2_5pfrL<53vTiA0c&nE>&#%3WK>I8vZnwUD!tv7E#zK-KVIqnV*C5GbNf_NN7Z%C%;Z^mdNUZkL2vFuxw}_ z#hdb2*LDJ~Y3b}Gt(~no)l+&+w>3=e`wp4)#B4|SS%J@vw`vgBhLcn8WSu(Y@wi!& z#X}8QN=(v{6Dc)BiJ3CSjtS>&n#<4RY6L|Tbjl4+F+oF<<^x}oz=#4raAJEqLtI%j zALaLPXy6$IoAT1gZA9yCbnJZ_di`-nm*k%P*QP^lHq-$!e--GgXhZryHiXQ0rZwZa zg&o&_gXkFy@$Y#fx&+d;>aj#e__#pQ9^4LSH#~x7Bfo-QWO+oTV zDn26m=#zz~4-A%NR*)81FC6bI z8SCPIl(CNO>%Bx)72wQ*0@#DgRZZ)v=*Cx+X^$Ra1E1W3oJWNI;DXR|mhyqlAP}NJ z(amF+me5c>*u4mbDA*rG`w2VwBQN15Q{p;w0qs<0)f9>Xtm?M0_u6(!pK+}IC`bYA zlnr8!FGmduYo{DNeX=YCNr&7=L|;HV6$Ehu<2199^9Y3~Q~~W&5GrRYS2oFja0ulR z@2gde<&WKW?UXI`cx#>4vor5~eHbPu{++QFpJgrn6k;tG#2#PPdVEpVatF4jKyXb8 zl7FEaf)rw{Fo?5O7V6&!g%o0~FjQczEZipvhZJEg9k!O0d-6DIErRLj@%L8}>7kv?NS2L~+>PQuiYfgx!)PkK z)q-&MARMA_Q?6rdy?AWQrBfhvc_6~Xt z_q=r9Z48r3-XiOrkZuPbNm#V~f}l2*4EPdj!1!)VaByqET&j|{Q$$E1t{4sGY?u%E zPC_CI89n9a3uTfO^I_jjSVUnbzb$ba_IHP_`S7;fk{4sh%qWT!Js21?Y@b?xhsg>5 zAR`{jN2>}DJs5BS?7`){E3NaQ2Lm3Q<|u_vu0!_*5qflW4MSL~Wr40oAVh(pYf%^| zYwNOLHzXLMV6lS%9krGn`3*SAl(-HZ-DA^n?O=cp!{nFmrpIPJyFUsNJs9vo?D6HO zcUVV7cMAN0O*@vQAbAM6kBB~cFpvw9n#yHX@^C^S3KcyV$c4(;%7@!SID~SEJb@Ao zWBFsh9cS6X*U{svd#|y6zG;PZ23e}K4u?BKv0KY*}t<;8DVFGgRB91W0J(kH{DG&zg1LzJrM zE9Mh}1_sTCzAvE>g`Tn$!q&U)6GM;KH6Q*Q!Xpa*@Ys_ueszbp=G~JI_DxJ|UFE-+ zp5X`Ao4poynl#$C)u^?#zrnlW`x9^b2!6Xe`0eh+W_!c5rhFJCy}zeRXg<3?3crOL zvVud-6y8RbuYYQNJ*Aw3RK%y4({GmQbE67nK>cAnN~Ne``O*ZO$(Pyz7nW|Lt#O`eXTMRiUS}t3{;Qg&rn^mE%wP zACt*jxC3_9O6C)b;nM^se@zJ^N^W=lIh}QOGlVyTfCym=&yf_7{>Z#l2nD*61Z>hi9YjyUSRzBMtCO5?PCk1l z)`bH{E3oP9WGpsMlGow~M0s$*QAM%mgE62h073-x*rN)RRhKcSD}h1;rKi>w`?pB$mhk0{Y|te|-STP;G26)+HC%<)8<$H*!~h?0PU2xVz* zwZTNJg>mmlJ#bE(dtvBC!L@G7-jpl|w>eDi_cwIEf<3tnVa>7ol|{APFIZGN{>avj z`MM&^4+aGpi_MedVqAeJ59ZitXK_u>I2)g2UpSzr0)z-?j@_>;ZVHsEHaX`cPX`JS z)cm?%850#KPjCjcC^WE0=6F6??`ia8a>jfbCf{Qn+Ff?T{}sX<&nGE@4XzsV;JKeq z(wOFa5+ptOB@g%`O7tAhCwTySJ_#{?1tTKDm}AS4$H*#1h_VY5L@4t+pO}cXFz$oQ z`NZx~=s8vb>cAaMB`}|~;P$(y1a`y!6~Y`VL5g65s}d~Dy%MA`O(h7Dp4^FxmxvNQ z$4Za~u$3UhxCeZ@)%hq2vPn36htWVs{|&Z9_f-Dtq+n#Qwi)Ig`VT=bzhIm zHkaz@h|6v-*n!SHxvAykaF^dQ|ADJ=bF7~uXnHx0a8yP5wu;PgKs*xJRFq(!B}wj! zIS^&T79Q@Nb;dOaoc3jGr3t=qNauir23f{1>ZWX2ZDtN>%6&*O@g>J z`+1MGsWDE{qfR+9r}mw4`L&1vbKiHd_%KW!@n+Sf{pze%9EdYfGYJRg+8B;C$=*sCu)TYqD zBAMp^ARCp~@yG$5xZTw^8~(2l<~Tq%v22YYxN6KBY>k=YRgW~Ltt?s6lY}-DQKIKJ z95wN4HkT7poxGlMcloZ+b8JRQY|xBmo5SSnx6*nBdvY7Xnq%vkMYUdlMP7L8+*{9l zU}K1Em(7#peY6XR@?egwXBIad^V!xj`@#Wz5FkWAb8J1cxG7N9dS+ibsE+`J2x@+< zXBO5xA7ZWS2;O2^&+HfUNaolt9IR@2^wnG#b|i+3(J(8h?fxM%2SSRu9(_CQt4c#Ik>9j{)fBw zwi}E4)*78~d0f9QT_1P%+f^^GIl4RB6D&Krh0~pn9R)c|fKqk*nyrpoILj0g*BIXC zgip6&Nq&lv5E*F;{j}n6Z2g-I^$Va7K|OKv>Q@|8R_`W*U4_9HBC!6Z)h?Q=<|(q} zb1_izRjONRZC{{b+QLA5`%uk8&3e1F&px!LjRiJ_$$MCz=!A6Jd^Eq~Jhz1xP{o1R z_^L`jvQ=pdWAV6vrVjb6u+fvx;!^}W%)_TXUOKq3wZ`vu7+(Mb5yo8FTOTjQ$m)sz z%Ax!RD2Pxte|6{VB~nw|J=Sf;h{+GB61Xw7;1vA?oD1P^*njC$;fo-zFQM9PYAPfq}O$ z=Nb()OaPI4uWj8smu8k!x^$&YT(HkFBwxiKhzzoYIkxDen;I0FHidLR-v9^^(B^L> zisF%7JDtp{lu7cdc-1&0@WfoY(pnr%xHRTrWr-+JYoZwSx5}sT_*&|Bs=9f}uj;^=Ho2<7fPHsk#r+Kc>m&~Kr zv#+5yJ@o2(n|OaKi)~)s^43 zb!9FCpYbeVMl-k9awLzyT8OMQmwA+2(6pB_X8*9Pl1BoC2&y|jzuTCp!E*?A#Lvz% zfk);t^R=e4#ersPWpz+rYYcj=gC?7_cfsymuzQC|=W-eOSI56F`|^k2Trihem5Hzx zO{PBGntBV@eYSsUpBUM+`eWZ%p5!|C2vKItWj<~!aB6Tn;W75T1G^qzh`_dR5uwPu z%4*&;xElh82=3qvgIuJ$-VxE5D`un#<5Kh={)|h$`E;wzAFTq&gDQRI^~8Wk~LVRS+e8^T*h?Z{r|h zE%@xBKM-@|%0n1)8OUicq42g{cAtmIe{rGac)yu_62x2vash-5E(`prwZL2kazQ*- z{3a7@>|__06c8nM9s@ZSUBwe2Aoc`6Tb8$ggb`OZbtJKuwHPgafZ z{62-AOO5L_ba&TUeR17%Bkb0~;`%UYGiP*Sw!?qcPwD72<}q@~!B_-2aKClnTu#2Z zh{l8I9veTol=BUuM6b-DYm&yR*-v}OV3YgF1`cpV;Ie%#LpO)8-sm-!8;hrfPVoDN z$?bTX-8Jn`7t-B+Pd(j3HqFr+K922`040Y!);eS^Bc(~1!^n1Izs;cJ5N<(~4fD9_ zJrXtbjL#N_aS_gOg_SFsdA1<~_i9elqAU!0!{h<)3)&FvNX@Lzb8bT{j75+`4$r?0 zamf$7;j*~)V+TlOf^?BYN zFfbND9(e9i@PJKz=mD1n$+u}4kU4u`ka@s|eooE@yFSWjy=czTwlF%DLwj>+)15pOdV*)al{>&pG z!b|XpE1sY@{$%p$eCrEe?`@eElGhJ*?HR&tFKBz1yzO7*iIc-!=@$P1Kb%uAfDNjW zzrvRMl%ezN38ajJMB8}DP1`DAWV*%ULc03|v)p!pZ%$xDfu~H+#s$s>PUERQh2V&S zKXhXMd8XJk7io_%iE&YKIsWxl^5!`^);x>NmK~P!VVKPUC-JpzJ@q(V=fP$e2G&GBJ}7s)8|cg5>0a{`7(hJ1&a4@ke0wyX{x?PFhs#( z2Lnn%Elb9)VJB1KI&{354%!R4dJ)Pn`Qj&yne$^Pd>|V_{<^32SA6fvAK4qsCnLF-azK=TA{rByQ^83v%d_OE1Va=ozIT;N zQ_f^*>Yh$OL;<6FSH#0+>Cx|j&zuhwAlhil?XJ7}WIhd(TX0g`WjFj^1&TIW8pwu_ z(H>Zk(b6LuqXo%G9?ppbQ39fkmJegwvM|^lf*}ePZM1x_%xGc2Isp*{j5V4$ZY@0e z1B}t^p2AY(UZ86lHgo9o-OUgCv}|{^+&;G%ymUAE-Oc9s0mLvNuDsZ=UW}e-8V!(H z(kH`2Ob$?Xh_ZIdZDCuV-I^FQFlavX`GiIkdSC3|d}8PkyXM1RKzKyqW8d8zMz`k8 z-rY>WCXd9#)>WQDVWT^K%UZy}dRQNZ$?5+>$B&&u_eVjZJAOWhJ-$4;Zao^^@$(0^ z-b_=FoJh$aqL1$Q<$^dbW}&V|C`6&6JAS!Pf%md-*CZT5xkPsSh*m>vxg=dIW(!|O zFTh$|dp%)!t-CZ#KJ-y*Eqx}4{*Z*|TB`%$UweF6>oJ8{%hA&p%Tkd1kUkM2`U0#K z1o77LnU(y6P>4bmV67ljXstBdPYH)mF45NNF3DQyu`hJivZa2X*iv6vw9eAsVRGNE z%UH+q(W>yH=RRBjdvLkx8P-+j6a|i{QuyTe)|B&z(4*%*9J*-|t);R+cOnp?K+(O( zFi>WwEZAKLhA3F<+=q@@%Z~hX++<2zhmIcIt+3*ryPMH{9ws;Vs!Vmf-^@NKV7z;? zfHsf}_5y3L=oTeRj4_#wW#c5*r$`VbBf4Wh8p@e17w|>|L=-T(M>-lXFkLR_O$mx9 zXzZm=7qjO6x_o>-229el=CV-ZYKmD_7$CLiXEgeYOrcQxh$m@aQN%aZ%f1^+0)5d~k1ZuhN0 zgW@Iln1Nk6njBC56#zs4e-e2<&Lz;Bc~36f>+rNUSZ1i`ZeVMzv0}4ZABM@tX;_bA zr@DdWkCGSN4fH|m@nzP(vu2I14*tN#qXyTcAo&g27)12Zjdm`GZAODow;&XP4`Pj& z3zhjV2zN`uA(Ts`?Ko^LIQCodSX%1QU7c2cxz%a8hwA;tFnQibWU&*{?ck%5bl>P4 z41(HNvfBr&-J<(c9y)EG{0V9t6jfiC2y35h6VblX1`GO%Di z?B@uJDD3@XZRieN^Wk06-j5wKqbO2z2fx*Cb?ilc^GOfueL!a1WjFj^1&W@8P6OEx z^5Cbe2c!GL>5*-lM}lmOOz-XO@ow;lE^=X(q`U}=*Y!HaQ3RHm6Tp$}lM*DhUMsr7Y zMuXTSBl&w~xez6w0HcLrywS2?|3ENA!3r>17%Vhe7VsYlh$vvZ(R5rHEj#+xoYB~$ z0P#JbzWT22feiC;n7sOfvf5Q!b}RirYT{3>KA4RnxBb|I@F2C6=y zG{kqYf(#2?7`);tNzGjPISZU!5QGC@X3p)^N7%+tsI81?O7J+ zr36A0D7xtk17*g_g1v%Zh=RpV@#(0w?8v)R8fjTak3rj7Jk`2MABM^5CuFDN*r_q7 z`6K@5F{lq>k1t34nsrok3+xYU+AV`?QjnZO?jxd)9)sqBI8&vWl{}D8h(bj-khxHS zt+H?rCLBV!M0Wm(Rts|Nx;QH>_4q2H!w1tk1oBgMPyU!}c2cm%Ze(*S_lrGUa_lVl zFd?FhcMEI0=*~?3@TvV=0!*~zmz-D-6;<@`a6-V$in*}Afv+S#~vSCesr_nY&oKB}#iD!`f1nP~&q zgUgJ!w`Pn#uR3sZUiI+FCD;$4FbYC925`Ph0}Tm;C{TQ(5u_z>S{m%R1Va=o`n=j* zsilRToQ9`-Sr<_zr{2zRs)NlYlV{2G2!<$Fe7j95OtIvzGK2wdNI*mZV+Wz;xR}ga zAh|m>b3RajLX2h~cOZ%$c(~ISz0vf@g9&6FdMLzbCXfvwqdlNNquC_57R)Cj`6r43 zDavSBn6wp3gMENtNKr=1g5_GWG~kB`h!kYBbz?MVf#m+F(MDfqEPW8 zg)mgkUOwD?2!~KEv7IqR!(9H@b-ZN@zo2|;ENQ)8TVWK(ZVi)ne?ulaG20P-R^TE$ zodvexMcQQ!y0JJKE-Tjrv4@Mho{1uLRgYGb4=pxYcK-{LCPNh!o>!`y~~#}8$F0!?rm zQ7*mEy0nNcQJ6N@KIYPwynj;e~ z^n;4>s%b;>aW25Ep?wsuh=!-N*l5?a0HGg(u)Uz|Ve+i6$*?EOu<5RJi~qn#w}?(@ z2w;QCvro64jh@+e^l1W}X?;u^FZmtX8$?MeqM`GLA8%j%H!kpQ0wW6CD!{k?@M+*& z8|%My!A~VPqTsP>&IS2QJ4>WJ#w5l?$zjavt>n#9n0q^2yP&AIs0Sq5gUY?nFW9~A_`YXg%8@jfL?+*)1wx8+Zx}M|9gGD24uO#(-5UlTcW;*J z?-3j+(7if(=H4vSWjXh7(G- z#-%<5CPB$pXl4*4Bf2FY4Q1V#5BPNgA_^EiIWZbAb7em0HwlU;XzUXz?#Q)#g!f^@ z)Ex>FZ$jN_otn^o9wuM@Phseta20>+y#3upt$gr6+RgxRsJ2_3gdQ1ZVN529qm zn{XtQGhr^^&j^SpV7v)O0tP0`1^p#K5e1Dlp*?cVm%q)&PgoPWs0tH(g?4SDJ!q}B z^=_8_;1s_xO!j<5HasES4n8Vq^d0~HxCFJaH z#Xx~)qTA3;bEPrROXRIx-NrCEj@86Z@Lvvtk4k2A8|sfsP#a4&-SuOWhw)V~OcArB zKAMe`yoLfpl#=K+)E_%_iZf^~Ba_Psi6~@r8#)#;FlRpO8wiUiY-}6qqt^Tfmz&3_ z)bj3#9usI<%HHB;J=q=jTPT0PZ5}7;Yq!IE&hCagJ9gSR7g#SZS2+3dy4IJ`vktkV z+t$-3)W%9aMtLDBujr27csOUxk)R(ZD59XzvjF2k19Of9{se&$1wJ>n;q=F@i6Fgi zk^)SwgF!J(W|ZhgbG_SdrH!WF7$zrh>HdUtJNT$1MmL)NxVF(GmdtrdL5*g3aN|wC z!=@^^8{IKPDT!`0{jog^X@A{jt-KnJ@iUF6)it;ZTdS*{+o9e9m_|n3UFp@5?vH{*-+bwV3=@to*WKT`F8bz6e_(4l^KdBx*pq4nl% zY3G+WI*Wr=x1)!Z*-XFOz0v762lb`qazhhNb*;47&=&vAw07p(1^4ZO`F6p4J4`P7 zfed)V=|6DaO*%BQJCjc?DOUuvMU!{y*1HGhmpx?V)C{y7$w%oxAxiXllY9`H=9(eU zim0{>_t-+zHl^qw{uIO5!t%ch%bEh|7MD$}&U6pyJMWEI(}My# zxv7{bC)49%_+bK+ypve(6j-%#aZEFqcTW1fWk^1WZxAJStuWuDQN~=OZ&J^Y2}ujj z*y5R7238DYNYz^0ohxLrxBN zxh>ZqDpw}=&$rlmj07Jh1XR&qWQ%@s&tkS?o6-*A*;vWLC}2cMnK)Cl{b)54B`rjf zlstw)v>BOY-Q@A@QgeT6adJn)e6zdJuj^bXFYGt|w+I znp%7M1no@&Mo4grhEcela^#a@gQQKxSGf|a;w(p?;$T#GCr@8r&2B> zc{F)WU@L(-=5j|^GIozGoOg1HzPbu0*vWQ1`)?G{AG`sO70mq~x=d6{18;d>&Z~7aNPK&87NU zbFJR(q{U~xTd?0P=(~k(#}?!hsb$xn_O<(F{Gb%>crFJW;UC0{F>Rn$7SXoifE6@$Qgo^CojejwlpT^`IOV+W<-7% zXA8$T-;dqwE>*Cf$OzXM*_-abNNUL`_Q`Vzn-=>xf{m%tzTB4flr!WEX`_(y@ocQ* zn2yR8Q934{A-5MzFLyQLV^fCYkIBa5brhq|%OLCSKAWGFx30)^T0HCjR8Gfgm*%Wd zrR4ub9o8OF#qefZ3}-|g&7At+GN8$|$Z$lMQ+ijM=eSM1X{vj@21V-+e;p2w=$bJ_jZyF@YmFj%FKCVXeoRXaY%Kqu|@XNQU7v7%45TiLj!Zv6H)^ z+4)AhZ3e{V`dL5h@9WzIeQQS3_S>w-kBM$L{Rif|$%n@IGY*iCh^wBr_0HF}H+n#}t*2zw3hEPG84cpI0RXoBDwd&erWe4B z-Q<<^je4tJZ|rZh+Ks(!dl^SN7h3&=bf>Ng9CPe3hp#oZ-|Wi$f4p$-*_x6`C^oX1 zkMCOxOul)>oui{zk8rmahGNf$!ZpWWj&0X|Ert8MyJ0e&WBK7=YrR zadK%BY>Or*{Mx(kvVz=jduG+JpJqu>fF!?zbbFZG?X|}Wfh7)F-=Nk)e1FGy# z_=(B#8Rz-Nj%!Lgx7S8WK2G@}O2lmQe7U36w516iT7Vz}ljD_|3Ar}o=#PkMMeImJ z8w+dHu+1lfBbNiT0|C4#2Y4ns0eRn zi*Uw?=IP02d^ho18#ⓈUY@h(#(ZBmNr|`+C8CLMT(P~Qu5^gxV!Hb_%1i${&TEw{b^sP-;5p`Lc547)i*xU zPu#bY17MXIyJnkU4-?STe%!&@WyY@ACQ+3R@4zDI7+4!=>-K;GZXFID-KDcqi_*XV&@@PzeC{252I-!gox~5(9#z(H~kjKd% zP~K#;|K1I}$kT{qheNov?vfpxD@tzc#uu8WVBB`yiQk#sxgmo2FG9QD>?JY@%~Ghq z?`;cw%KcND)jzUv(&0~8Z}b{#O}$>$CHKT^$Kez2pMI%?O@4@VOFo_$nGVb(EDMr+ z8M`40-I&>KqmixQ*qaRkv%*f!!gG}PSZ3k6*)C&FI$ABuW#h8s90KR_d&bEp6K=iT z(v8H8#erM@N;?<&>|C%rhslk(G;*!6{bpC){M7w_587Bzt{uPS`zo(%j_!7Q>RfO!|Cx$+R#d6^ zBiU<4gjK=yY{5-_uxRtv+-7HZWZP@V@3)Ce-b$@Ql$41J5o|YJT7m-L?jE0=$$6Bb z&C`4iPJZTR)3{nN!~VuJELtzaZt1f8RWznNG26lCpks2+*$ON@hAk?BsHiTmMK$AC zGNa-G%jAWJCg{XLDtjOsh(+1c+V3zK8q4p69QK%VDZ0RA>P}w~s>31$%hj0jW zXr^`}Jz|X&FT&DK9*x)X#XfVA23j9@}yS37g_7`wj9xq58B+ZFu(h;y|$dT=Of zL?X+GhpiE3JXcRTwDV&=`NM>G$x~@H5Eb6TXDqz@fmMduF*++@f<2AGw0Rq(o{XHe zOh+y{8Mh9`F8=Le3i(=N`^~Pgi&iuCzjXB6pgYED=G>V^Gj_p&p3FSc6d|NlfJZZllxKJh%)_=GgaY92OoRt#W%~OHF*ie zZnJ$t{zhfM=qNHMe7g9ST~yzF}_{_7e3@i_(e#l+#|{b%bt*qoY#s0;66kqNG_ zCfHYWfWQW$@ontna@ul4MrcMDVf66c3hei%XSMHU+J;0Ym*WOo3KKJX#t#0Z>knhs z9lpkGKi3@HZTF0vWM=H(Pr%SDoxQQ=Z*5`E*ukH0WLwJl3okZWay9BXqT-#na;>eQ zN4Se*Bwmf}(GxWZOWsU@noJ$Z!pWC*o9*VBE*KqX^(Q_P6@0zBvDaST)!$+A1?EML z<)c+4Z1NTN;0TkF7kupl*n_J&{-Z6Sb0${D;6HBhxTbtk_~gA*IYj7_uT9Jv!rT#_ z1$sY$5CxiCon{P__3N`>A0il{V6p3z=%}^q$nU~fro?sV$-~9%q+_w`+@ud0jr>A( zIR+s*CXWNz6%$s@&?gIH5#q0S@}qEM5& z;IoDbY?Xz(H{lSMrV4)Ab<6s+yDkmbrG>4gXhx zCZAKbnGO@khLFF$Wc@XH{&JQhrv`J$NM1_)MwEc~#w5)t<`wOXM3866D+q=t*yQu% z%xTJ-%%|?v1Vj`t_GOkPA;xC@=wHNV&Ibw*e?nZcFD%kKl60QuBG|Efw5kB{Cqx^- z9$fbNZ)>mk8sflBseAb3>tsG6^!O8E7{az)X`pWs2vMMT4+nt)Q>DSaLoh_aqECoR zOSQDHlkZ|DQ{p;we3^7s+#S#jKI!V-&rGXjHso6KSApVNEg#5+kga}MRIBBWY+Efu zY?6`uE@uy_vE~Yb-Iid8g2lI5xnP08f`F$H5K+MBR*U1-0t+O+u&tJfrvULi zuYRjz&yM<_8+ti89@pTr`=cQ7Juer;9$y~2#{Zh^iSK!Ndee5LDM+42HAh4r-}A}^ zu?EXRT}CKGq2ha9VW_}fS-2Mx4xwCPdtN%M9{l&^o?Km}l9hUV8>S<>o)@2VdoDBb zy9l_dw>#UvN=AGe<^$Of^4CqRzv6pd{>Zis%aV~igK|KWfcUdkK1^ycmuJZ(1Va=o zz75L-%bUyx91;*w!00xNc*bV_=r_SeVSJXG`J+_Cw_z@b zJ-$5lyG6BO?!eY!;F=U9dnf}$^zm(2E{HW)7OGAtM4{r_urO3$uPoeN!XcDPY#XM- z)=VMWT>Bl{h7n9hk8i_tAp6c$V(1mp@8=5CF1z9XDo}hI<^$Of^4DF8YQy}IQ-ir= zB)>^d1yKUx+pv6?)M7r^ZxIYpu=qAC7c6fwAMjQLL=-T(4I`ehnLm2Xwqfiq%xLap zsbi|8+{Jov#%ShbX?7N6G&fB_2pR3(1scsJ!Su$mWF*T}c%&$!1z}R7xjai+1Vf54 zS{5vCG#{`{K%^j}>0}w?-C3#8R;OQI-^Rqt-jFYa%fBKw zx=9@Y7+(78$6VzY{v|}0A0KZ0IQhPbh?L^WAh;HD-~#9aX(kYrUNiRELU4F9s4^A7 zI5hai1%5Dr5e06|BXH){@!$_5IHKSaFG0Zj-?e!@%BC-bK+1X8RtiTYr*c)y^vf|zQ)MjbVuF&Od0UNqH;fjvC(DbRcq$LoRx(zr}KO^*r>^s zG)RcjHu>uH45d2~*iH{m4F5*LBMRRwK5I?7$Gz=})0BGhCJ+!IJR-7(nNMTp@La$Z zOzyoFSgWv#-EQg``u=KbIq!9LFPPoK>cc9(%kbt55Yi$abS)ZS?s5Bcw>%uFnZkKtEYQr!`q*iBj24{{7(w@q#JriH5Fj;?PD`k z02|y!l<}WrjUPSC8A)5%f$`}}?#P)OQF=!y8&`^QlYZ8BSuw>=E}|7fl+?*j_s-zEAk36*d+-Yf z@_0ZHfgCETWe>unAmcS5_?3fs5-^BhCO)Aamnm7@Frm}d-IU0XTH-xA>c;&xXUw|Z zi|t0g-_*%i!`r&wFy~Km%T~BMz575fXVWsz-HyFGXsx@n(QdMSg?$f*JIMI2hskZ8 zqKD^Sc0gz+-(BwyaYvzoxF?IlaI+)XK&lllv$f)hg{F7&gzmOWd>m*ER`oDlnoOJg zS1S1lqEtV#5@5pJyI60nt?PjM1=UPYGj~R`QCS^-pjJ_uV6&Pcu7SVyDR1f=e5Q`myv%1BvKtGu4Tpix6mQg zp$iK5@1R3O_w;HMaKE*()@^AH%G8p#1Bg@zQ1{?x?t3SIhyb5aksK7@dYgs2OcuTy zLPUi2k^cBIsP4xbJ!efkWykd*)Pd3*VSkIgh~U@5Wa;DTMg04t=|$W#J4$>nA_!vp z)&x>7;+;kGB1R5wI@DoVx$aWitIa(AR=+Y+M`$7 zMUpG6?*W69;U8ee3hDZoIUeBy0|n>bH0zBjhsi)`);K-L6p)bmB|y1 zmQ6|g6J&_Uo=_@Tqi-f|oI^eU7b32UOXXVZuDexF9omOMLrO<$uB{Ia)!VIox|`pW z=0`z8g!bf8b8WfTU8^s(*VXTHZ2t-yBDQkt!19LPArR!+ze9$IEN-^VSNn9PHEhp( zCwY2nvAf;s^p$14I6nm#Qa)IBB?S8{U`Xj;Yt8=ZN{>;wsQ_O93=!BmILj+fDTifk4>#JQ|Of{MI6}S*_m0L5#)emdt*C9hh_SjO3bI{{$QzpB<2^3NV zD9tMysP6!U2&&xk<@wECH&=+?0}T<{+2$^RuvOg7VBfWzHQ&s-w2${Ddr@97c+S*d@J>Ak3Ua6+Y?XM^{AVhSB@*qZqc9_6P*UIvpNJ(-*(skne2?4Bgh?k z+SEz*qpWw!K2oQNJd@~?l;{LeYU5hnEZPxfbFv>zKni=f2JY&>A%cr*-Lkkd!!`Q$ zMf8U3T96?ki@VTL0NLJNx3RP+KAWe$Xs-h!BF4i7)~YE(sVpIriZ){$be;9C2OlE7 zxE^m7dgjtyY;?31BDbrV^1UH!h}h!#l?AXZ1;)DxU`Q3fmRp@=Uz)!T7*YkWRsi;! zfFS~lyBt+OQRBv(KxK_XPE24`20k^MAQ;=a%6x-2Nt{+{O{_NV12vy*m!C-rcQj?=EiI zK0EHzuANPNaHh3MN=zy*rrVAvg%=f-%hOK#lS#t9oMCz@Oo*7`uGY<*JN8Y?hUV$e zASLFIE-Bcg3~i}B3noNNcER186LT9|uqAI3Ht+a02_7|moI!&d2)9rJgI^Dm7xq*Q zPub5!^fR*c<>D`*2SIFwB#%@&5d|Isxf0k9vV6RL5Z!7r;qLPlg6)!lp zDTpbRH2m2_u&}zC61p{rh!Eq(g<=#UC!p6Il~fN|dG;33t*^JRM`c!==gZt5+p&GS#Lm}ieo z9^M;BM3BR%ZgJs|{_#=6c{ZGgIGCC=ga%UiikCCBDC;4<;g9RpXb7ei1E*> zm7lqXcMR-9fJFpbv6^%+&C!Pgi3qYH9k9hFSNTj9?tu;wT}Aq?S?{n898#gIGb`bm ztlJA6BD%QA(!#3qQgh|BUc+|~n*bsLjGKxq4zRVq#j6fY2Cl+~h_51@|K@oc4PQ0( zfrkjMB2}Z=TXuQZ0S>7U+`)ARcOGzv;40GOH4m=)?%@DBq(ZhkxW0C(%e({NA=Sat zRgUy@c0PEB@Sa_b4uZj}FNICZ1yCZ@ap3Y=I{3T@Iz)68X<1el{aNGjz#)RG$Z2hb zJ7RcctT}Bw2|z@Ee^w0#I>35(`gjVMNOdgOT5GJhOgs!7BD%N>sfG0oT76w3Zw-9! z;F%C2BCJU7prsiae*%6scu1A-I_VV6rQjjLt4QCk)mJt4ovY`;hlsBtO<;R*%~g)e zfI|dVk^W1&+1I^Fru};%bcpCGGK~OTuJL;bj7Wuwx9i)!mjj0gt|Bc!{0urenWQV5?4CGsYL@HIS9s+W=3JnB1uLuoJlU@FV|AVfr1k)}~yYO}gS zTFf7W5vfitcA6`CLV3R*Iei2|M1&PN2dX{H^$$M=B2t}9T<`WsR%a=li2F|v5g}G&9M$V?u>6iWnS2#Iq&gnd+FJe|nr}ddh^`{-OLlkE zw}3;cly&LNQQw6QsSw?HJ>TK~K6HraDl+rd*Hz7)?;ZRQK16&K=>_&T_6~Yl(acrc zpFoI+up(6>yZ7ywLxQ^68Q~Yog|iE#vZ3@i#HZ}z5HBk9=u@AE2-37WSlv-i8?cW2$U4QE zO-ysrWz9b;YZ62m@|ubxhmTO0a{U+J5y8K_>hOzZfnLM?Z*U{xep%JIGwe@-jR^a- zRmV09H?Q_u9WAkBGW|2qBcgxxPN26ZXv6+_*b%Y6qU!8SxvNuVz`q1IvJ)&L@N^kt zL;q#yk)4q3>vn-?1O7F@k(~ez_Z^*I{tIwK;IFH?(fgWrX)e`+dirhf5#d+HdbMD&&KISy8}Cc|pC ztyw-}oSy-Y2>!~dw=*fc8k?Yz|0QWal!g*U8^J2N!Du7cJ7Ki3>wF<2<#;B5+Z=gp zv~dFPh~Oh1atg*_M|`L}{GDIdEhKkqzD>yKYXFM~wuB+Z7GcNo_*cP3N-~Jc&`t7q z_ujUaZe7zg-UGU_!SyxMs9YC#MDQ;?`i;s~^SpVe>6Vc+)Ypd^5p@Y&uB}q9HQV(A zP4g1BwT2d))O%zM{*Ay#gkMH0xJAdXM5gbx+!SO)$Zx2wPc}OJZf~G-PQSUr>|1@U z$&JD$*KbY|5GCRDJ1Ge~O<_`S3MoK#SPJ^wQesl@+oS+d3LaNt8LW5PhxT&?+ECpZ zDnwM59epaZh7SvG1x`ZwY;E2F4Eg_#LFG@8bhwlU^ zBG3{VXt$PCHXm+xgrH-2dl!(Aa*%_oDuFG6y&=4-c6SFE5poHmu>fv!VlQFJXPfNi4QPh@-f$y3gF8KMpA9#%6O6vM)oJuv zTJ+nQ<^I4UJ0a6GT237Ixo{)mu6zaMoh0^_DP#19z>bLhilcv`++GD;)SYO9dZ*iA zp?H`14<`Z0PB6_ z62@%Xv`bIDbyq#l0~`@}UM+9E^K~cNe^A+?WxDj!`vg%!ycGzQiJmknu$nmxAlJ6uw z32tO3OGLzNDh4V-wFW2O1Id3#$s< zYc6f@)>Gr;S3!)3xP;4Veo)X4J>dol{RytP0$fD6CA1h@#vOCUm4G7xk6bP;you*X zZ$Jot$C_*5B}}tDA%EWlCL+ui9DM_CiaD0AZvhw)a0!0I!vV-7H^YHHj9@zo# zn*TF7pTd6-ctr3oKKgCQmTWWXmXE-URG&G`=a0dRRG<0w-q;_984+^{_q=Y!8%sO^ zZu&-_02Zk*?6QabG_Z(ZD|&uuuI+6uEwwsYp2g(v=RiiPo4?Cx{(ccyM6iER%~nmY zS~<^T?SDdxRF}4uRkW`{i&U64bHX>EMJ^t0+^UR0(^gtBT{a*1TT{OUFrw@&VJN*N z+>YiFb>pWN*me&7F3^aeE82_jJ)gAC`F)s?>NBUkh#$g?RG&HRMf?P2M9d{T7_k*Y zmz(I2FJx09enO3LL{r`hP$8|{_m-d-b^>1>-X-2Mr3 zM%RKH5qAks#aO)UaF0zPU56APO2OqN^qRMw^Sc{MNmnm}cfFA7!HFWKzg&&Z^Dl37GJ)zU`NFMH#?&4@;GW;Pj+IUZYO;N?p7oOQ9^b`BdUbx z2|m3l#7su~4*ZDt-?}3T!d;fGw>r9DUDt}Zx?<|9^KMduC^dh(BT};}TPYdco)*om zuXTC$)|JeuqyJTjkcbFsSh?5_oeqt-+`1MO3BVR#qH~L{RGYL1CQ*O z3bNMN*R1#VFY#zeJzMzQRQDRGL6n*jZcLitd}kK`sH+F=>c#&f35b%gGx{951+rOR zO3&MWNCFTgU}uaR%sUu@6x@>(AWFd-cSO@1-S12xcEC1#Bn-ocW)gZ06r1yNc`c+zZ!b6u|2^f2%d;g@muRJY%6=I)*{J0{G8 z{VAY`K+Cwgy*cRE)K>#!M95`az}f=x>c(D;2(D4l|I}^b#t60NOfxLt+aAp*$+7)@)B-1&_a5x^$ktHwz{3* zYD>6#!YSs_KqG=K;Zz>dZ2@}hbn_VS5#g6GNw{77M!()?rnBjLg^z@5ED&X#AukBGm7 zd7JIlg2iroW38i_tmR8xm+TT!fG7neOet?a1)aslpuXJeu4!G$^ER5D^wFpxDM6Hy z60X~AHziB`^>+GD>vLg8b_#popud0}*%|EWN;J}o)h~b@5qk-9-`n-fa!Xz1k*kd_ zCJBg=P{NgzZ6`tfJWa{C*5_rwBRj)8Oi;G{)6lPk9oaeT8@~7U8rTuBmoTo~wrR4J z`!9za5%~`2_OCV@`&)hWo1Nj`06wxaOtTuEr2YzaWT&tPC#k=I9T9s8lM354eCu}3 zFMkU+vNP;%rrj5Hwcp|Y9r%dwOL#%ccC&r0yT92u*z(h>Z-*WceF;ymZaL}@5t`KIk!s@EOd*`Lt< z6?8=CCEO>nU34>Jp1y!7dlvTJNd}^1?0^pRK=*&SQ}U-EM?_x2ofX?H0LaHHz-LJW zvNI~cpu1l86K-Ds9TEBtnE2PE|5}~ZsC}pCKj25izXPV(a;LGcz>bLhudCmy*yyx0 z!&%qE75(Po2J5D{I{bCgf$WSj*dLA}zX?0CQ`m!14#ip2J7ejvxFe2a*)?wQm*gU1Bo2PsJu z`!$deA(yc3!B%p4Z?>}Q4WLD;o54%1UTbl+-SiKi-56v<$R#Y*u$2rBS46)VxQK8| z=mc#A*WCc=4E!4aBjx08UuzyLu4;xOXwuSs6I!)ff{O^Zgvs#~Z8O}lw(T~6BLXks zg8A0LH#)t>e!ccq?-*|S*WE4vj|l#mM}Gv{Zw_+#J(ysO+k=P*v4k}PkBB&ChC2d_ z2)2Y3wt2(uNR_jDCgkf~K}CdGLI-|JsAKtiH=q$gm(cgw8g#pPkRQ5s_#Pl5B_R)V zmui2|TFfoHuA!0NJHZ~ib2k90bXx(H1Fth zUb!Fa$WCBi?Dl$#-KKx_$^&3W#9qSsX4}j6#jbyb=s{p3!Y<*;%Qmq$^in~8?tUob z$W9?oA7uSw$PtlOzI|C$>)F-H|9-0O5x^rmA=`7Wp?oCd$W9<%YwE^Se_!V!i zxIn$VN~+g7tu<5hWzdnG;B|u@>Lyqha$FRtd>jZQ`M}%Ja4$OHQ zjn1Ie_E!>nup?qGVf>?untBN0P|)#md%_;0%jSciB0?=;{Iez0vCi$IfJOve!qxt* zL3i~|4%RQLuQUgB_oA@jrPn^@D#!58E(&%b2|<*Q2QPIO`?px*tc7tcC^Bav` zuW{(Mt^J2~hriivcJB^Lwia%#qeP07VSGg*45r~{vJ^m$fuSExu~ak{6aDI(!QblG;~M>=yU_?pxbj-#0}l& zphHCW*z)pjskz+PXlu&MKz$J?q}(iPwmRMQe!ZtF8M^$k;_ddI&>^C`xV$V&>Fn$L zOvZf`G^8SE>rIxyHE7=e4H4Q!CFYtQ#~A3|L&Nkfm=G~Nxjd%j?nbYrm3Z{X^O{6C$P(PwJMb&QrIh7=H*BBCIEsSB&&_I~!|ypmxn0>?e>R zB70nUWUE?kgO^Ra{Q4(S&2PIN2VLI2U_hh zZEmj)9U{7?lvqz`JnUOG8Hl?=y%unY;4Ul^jwwIWZd?ZRbo$8)9ZWNTE4io-#plE3iBqQAth&-MO*J4a3=e8xDatY zyTqa#841_zX~3W1e-lbXlqHVp^xUeJ81W~k-vSCL9jdJ{fGf{i0fh*v#2%V*N?pfw z-?;t`REVfb>}ZQhZAQD{`~SPaLWEV~iCpiN&|^$GX{t}_it$v)5Ru&{W;)r;V%GAr znPU^Ty|}9HUva;C3p2?6x5MP~Pt+XpK6Q)_pLk}vR|&p%aWFQB=8^x+&LcmjxI<5! zN%lzz=aT(Cm*@^d0z|2e>sk)pzA5^3YIoWQk?akv|03K2eyk0+#cM*7q@Sat2qq3U|lxtd5rk7`Y zJdB7KpI$bjZaP}8dq+A8J_$fXfagS=<$PVP`3UMcPCLCMQCZPiYpgW4aGo>28zxWu zg3fWn3v`a#br%1VtE7Ka41hhj&TZed=Qdqsj=1ierE5x4Xn&BMK*9t*R|!lIrS5_f zFv4?~$??Ac2ocbk(b-Z9(>hX^?Wp9sHtm=h z3u3T`m!p1a9ksup<4!xfPI+IeOXZ&^l?kF0#$90va(Rlmr;vocGCBXJFd@-KpPfn5 zYWrE?*Z?&ELIe~yGz8q2E$G^FIb zV&!I&S8D(vCFj-c$Mb3(G^9kdrRMrz^+2m{Rv+1)I;;;GBDA#ROfOXQ zZ+{)bd>WXDFwctVF9TcJm>zyFnQZ0>O}vZW>*hihj~}0@ zi(0TwQzQoS?qDLqjJqec@UmZGbqxb~I*^DU*qX9I~;uh4n7y({$lLy1(c(A|scJ?XiSA|kC=gJfP!?=tiuU?SD?W~-y; ztc^Dx4kRMTVYN;}T4i4SQOCIlPDGq>%Z(J?aJrY!+Gh()rq+Q)1RJ+V)x2PJ=M49= z8QQ(jB9+Zr&B$q8T?5+$77=XR8j|zM+F<_B5U)avh`3^{mF8Dc7wiKQ5oX1DChJ*q z)qxTbW!&}3!i)brU!Tr{5fNkDiiL$U_S@Z+tTQ?Q6sevw``tFnAe#zw08B)f73q{vuEjp;qjiZ&5>+J|0*^uoY|O zbw=W$Oykohfr$vSV*S1ST52^t9X$n3q=KBy#mu9J;Y6zE(cDv|rtqH$EF#z|s@2(d zu-w|ZuX&)}KeV>i)Jq8#-IKe{z0W2Ah!XJdsM+1zOjOODXw&IaTUDmbtVZ4{VP8DH zh1p*7!(sCJTWXf~2kYim3A;;)kGxePWw3|WtnNNLs~dT%M0(t*Gm!Qd!OWvgl1=50 zmC6KB3L~%b%}Nr^)0&+BKbR0PMP8PfnMuphHF}5YX0}t0qYiXwRFks?@8{ql!i#%` zr9Cs=B(7u56Bklqw)OSKF)nR0Nj#Em$AX6lFYYpt$+eozyeXCSU{q6^dzH@S%|`h1 zVRGKr)Og%jm%|QU?d(RUwZ5UJpSY%{WS?Cql?|na}8gGaK3jg2X(-+&SkW!wd}A}Lux!)4&fpol=@y5dEGYON;q!`;*JhI0WKyj9pR-UCLYTDfRn z6lMs|fDjR3+{|RI{El#6MDBOf%K1QJy>YOq2|ojQFCY;?R;N#47pF9U_W=;8lovO6 zPt~F>I~m6N!H85U6Zf~8dH~)4J^(K|mscj9OhXtOm7k!{x^05l`F` zQ}!)kn-9Ru?}o`0uhz)xZLD&+>wdh@FaC+C6u=%_W3AWOu~t9o6q6oy+PTI4AZu*Q zwoBkUl)wa0iN@XAI~ztgf-*V&E`SgL#of9-Bapda)Gg&_h~5JcBBH2gxC~G&%>5C2 z#Z64QR~cuYc!;)+{bHkwOsAYL{vJvABjUw|Pc7GZyNV|ke+Y7Ei0 zAwonHHCtwWUwhBjkrqJlDUWjpj6N4Usee z^OQD-TGW5GEo$5vBDq6PYgDrzW$kLZ&n5clJUovmwQ*~Rq(?r|tZeq92}ofZYf9u< zz#)Q*TUjTIi!Y`;zMK7M5?rIVV%{=i$o>p6q$*^r_h!hR0~sQ+xT^qJcEse_0WFlO zhQzS_Ic$j7;vO?DfUVQ*Fg|i<&j$?=THNWN0JJdAUIZ8-uybOrxu;yU^pi{bgobZ9 zYD~l10k_irs!_b@7uE8<@B+2G$DXUlG?d8GiwJEGtk(7`wzXX=;-J&pjgj{?x@5gX z$x0BV>cCM22wPH_D$-7sa8SQ~=UylH4eg607Cg0-TI})aE zTCH=jgMLdcsqf@A6-23wTRAZXCTx{V3A`IDL|AbPaz>8>zQ`Grz+6!U zY~O}U<_&>E1ozZx6s~&zVD9Elk1spAM6|enoZhhnnU&e8NNB|EDsZRTzm4q1yQWY;BC2 zh4kPijZ-?p>2KB=FVcX zuBYu*yGxpLGi*PF4H4VfF=qiEw&p)fE$B^eVMt%YH2%ur^sC(s)vtJ^^Gz$SYd!}4VTduLyd^~Rn?|mZS;UkbyPpp@BJfvMJjVsT-ri70 z%4GSAAV);L=}KVf33wY_i1?FcaOQa_w1{XcdWs)Cr2H(?ZDqME`#ETc&^EnaVXj%0 zy%f{bs$;qWLj+dLnPxWE?>4hddV52CUsDSkt?K>idJTMMePd8>^tEKdqHcyVz{diN z2>AJhHUdZLIh#bK%F6z5!Fg+W{S7Y?4I6& z-aOdi?cUsa=Fm?B9TEDbs}`i0Gmj>SgOlG{)TPd|NxBST%y2ab5fN^Br^EaS)lll4 zq*_Vaz+DqKL~xrf6n2#028UQQ!{A*TJfu2!ZcPt^_iNxG!rSyFprey}2G3WH8^DK% zuiO@$#B&A5mFtZGL#mN+++35Zvp0he5nnL_^r!}Ly|>Y6Zg$f74VV!z7c&nsC+6(D za|@7>YS^IPZt0?;&h5Vb+!8)Sd=+RNb@yD(rMCeODIJfKiXKT_s-t4-wv` zchSwWbu^6+eTrqRDD6)zw}TE5-KICe9u>N*Q|U7B_8=lcEVbv5X5gT=;q&i~z#-Lu z>(}>oyQ~*(PRw@(4iQ{2Gbb~)g*NB<{btYf4F_h((BIgbUAK0`cZC?KEOB3jzc|?7 zu~d`CcY_!a@uurY&A$TKJZ>#%rP-DS5DxMlKq7*?tjv*EXoM6}gPeSxo&hc*+)ZzL zpMRbP16`M&_W}?RV5!3`o1X!oulo0a5E0>~cPJgDEc9&mgAJ(!+hTW3Yc%`n`~cVx zv2D86?A-HBY-`<4(B*ahdk~a}C`+AjH2#w;xAguw(;hw)G(>2dzN6wOWMF6d$>xti zMXHB7+9EyzR79wy4q;t^vxd1T?neTK2(0|m-(s)X(6X(qWj#pM*D26JE&_=Na?^!T z=kLjlL3de%OhD-s-i~n@Mx+`UnKG{Onn9nDEg%s=mOqwRYBtx^gG{~Hh7J*3sTVs; zCCO$NyKo`mD*s$8E;?M!c0Je-v6bJjEVY)G9oPn7h`=^|YZQ1-MI;Zm!= zk87=~OUu9KD4z}`Qa#F~ua}nC-r}>ML_}H40~0Y#=W>{r>#fCoZI-4m-P%6`6cK3o z)1n5H%3g1`SPal0J_kgk5{Ro>w^Ns-bsIq2ys*w7{yB(<5X!% zp_SiO_L^&IF3p5@yV+UM(-7^}TFXy~{Wq+LSj)fG;aJyudY?@W^MAlZgjxRWP44}i zBHZW8{6_#H0xbWWBfydS!~PdOM119UH3GiuN{nxaeg-Nc)bdAL{l zL_LHzsiXEQJV=WOvizC5QAl6LyP!lwS$=iNC_Uc^@FC(W|5AGR=HU?RdSe>%J0I=@-(_LlTI zp{4w=_4;rk;w---JNE3&jle^MSN`Oa#oOO%1Q*h73LzrG3bcND!9acQp@8q^@FC(W ze}L+{GL5#b;-@z|odP2w#_}(e4!Yq}+`kPQQi=RCY-4vn+!{utYK+0X55Ef|BF6ID z?I0iXcRt(}OhlOF4^D(Rdf&ro03re`zr7KlCK-E;LD!%7eh)rGeC2nn13ubB-zB^g zkVsX`=rghI-ydcAI(GpRsY+Q>pBq|x!S%)d06s)~*WVfm9=X2qGM=5j-qO{pDXZKtQYhk%L* zwft+R22~IJ^jgh6cgNBQ`eJ`Lq=-n%KPekh-FQ>qD|D_?*1frkjM)KT>6@70%Ex*M8VCwI>7z=o8ab^XuDytMucy=2cRKBJOAk3tWj_E>mxn>1JEF%=^tg9UUS_KGS3GC5yoaO`PlNk z!ZjYIaE8b);aSWJJ_N$Mid)^zR$uTD{EuOBgMZc1qW_@RTOB_6p4pL#d%;H#%)Yyl zfLdtu;$NC zv&WjKX}L}X4PWqKO7guRBSL<8AvG!FnD{!KZ6mwY7nww1(Kf^Vez*~FzpC=w9W5Wp zHD81NAVJk8sjjP;a|yHfUqD8LT*%VTK@Qh~&qrzwH+>O(S`Uu2 z0H|3@L2dOG-^JvAK1}ZZ9ktWXypXqn-IMhgbPO8l2NY9R+!1XHO(?a{m)RD&nAu>T zkWE`XPcqWv`6SzXc((E(L6if<43P`s3)^E;VwXaSh_skn<_aTq&2XdF=&YzMGq}$K z7ZGkjZJ967&CVVEcasZ#w_mfj(Kq);JKoFSMZ{as8QOCc#LG$=_S(2Zej&(+kc+t^ zwP;7U8HAr~|DFFb<}`TF)MSP`)nvleX8toCv4wq`8! zsFTUx*TRg5`OgbK{T#9H?(60zZN&0MTWj7w7IeA7k7FX|7)CncUj-DY9%#M;{tZBp%7Kn_yuSq~BG78}2`6;8 zzY8oP*lL}o@*VB(!-AdxCU`jNm@9wSIZkkx9gl#`>yejKofV5`+z9UA}~ z4=N(m2N&_?S#Qvq|KK`B!da6EVjJG%Z};qhslk9Mb{nsdU5CB6HnJs zZf=%rRz5ticrY7GS04Z8mnN%=x%WR!%Vw7zvmfTCm)TFM`@>7$aLiSX;h)Ww1H97| zDXh9>2%Gc_vmZ`j4KGBRB0L{hM6ku2%QA*|Sbr_DZ&w62#1}w}i1^jTyX{C98nUEK z&0a^mx2L7n78_ct&M(_!*e`+|5qmMW;bcgK<#xtC=(>vjc(@U97t?>31NWj{s7RJO z<|o07i1~`D`o!PtuXoR^>rJzDxAeU+%Tq`Iq6ECI>IqoZ+Jbt=Mo>==gO3Qmm&3js$2UfJ`%z$Z27FM%Bq z`ztG)>Eo^W%OOWZUfG_Da-HSB!bbg7a3dAB`Nk;tYXL_D{<5lCMXPb~sA6!|zXEJT z*u~7^6?oQH=g_?8-JE!?gcK2J<@&T)A3QgHcq7b+n2Wi2qQKnEnA35?o8U#nTg*kW z0(nQq3vYoH5o#_S>l)iu=lji%hslRNrpf-->N%^!S3TYCQVyI` zFpmwRY5uz$vx^)qX0a8$fYYZ}PZjPqIlkC#=*{hY9;I{-Rk~k|%<6`zzk)~25RnzL zuw67+IG1lq=t>w7F&48>L;;L$LR?33K6)dRh$su{6ULTt`V^5KFtkZ_tZ#x95oH;A#>1>NwcQ$fSV)s*CoK}LjJ%)=HT$0ir=!k-=i*f1n# z>;Q*|+B;+cY-9&y_MqW2`*u(xJ0P<~eVX&g?ZHNN2DbOe9l=I~{hDew*?U{2b5z&c zh+UrF8F)nSm+uVt7R%|l-cxc{_!046xik3N&E-M8zuH>%X}B9{K$M1Ju8+>`?CA}} z8keSBzX$Ay*o(QNVeag`*2-$W0L~y0h!U|wYVg6d1nvbqBKV5;7#Ev7m}z`-AE*&g zSG;qcb#w0rG_nJ-y4&~Xrw2fdh`N~jM&?#Umzpc5^?2j0@yLS!M+9EX9SrjWZ|&DB z!5#NQ;YP$=@zGH8yp4vhl79>~BJ7G+$!2fa<@F?y25l{X5D? zVR+av(}$Z0odVEP?yds#QV}0>^c>EwAb5)GfUojuIWeZamEb7=KJ6{JN_jI4dJVBt zWGCT0C+F)3o&w-gJ`1W8HkT?Bdc^WZ0;k9Ta7-dR;BO{y3II>}{HKBwEv4}?zCa)< z>D!2$BK^p#&ZxQ_Um$-6ky8M9%KId=iN0~--Gok&{zMWSNziJSt+ zQ(h&#ZG2xNXo~a~Zh+R?4Zca#6hNKwt_CG!{7ThBeuuCrvH%-5v?$o$Cu|D9PWj?y zvkut)#myfQJq6GwbI)PoPPl^En*S4mr2yDuu4hjkthZO`=R`{Zw8@;*+#+aotMMzs zrATo}FkA3{ORy9vPTT5eS$Ery6D~!H3$8a1{S(nrq&RV{69RuFT#6JYt~aFkJJC|4 zIB~5L0skUgigd%(jo5z)mjZB8I?B`=xV;6LZLS4q3V=@OWJH7Z?fl=KxG8`;rJf{> zyKTq+PQ*?D?8)2)l6dE=v77ayU5S|jm{Ypys4=(i@ZX)_DF8m@HPc)4+KZqm06L`u zPHRX1zC=p_v?(3Sd!yq62$mwnN$c(4KbUAKfHs-ijuLM!{5$ubK)@6LoXkBu$pf}G z+2)9s0(et8S+e)0&Lvz5z)fjY^LFSTNw5?t25Yv~97C`a0GrY#7yE$p9;V}omLkQ) z);d2hk8ml{3)en3u#j*m05_$JPa)?8P9$oI^p@a}in$ixWTK@2+LX3rqeXol?NoxL z0N9jv!~P=}rxP#*0H@RyA9nO&F=11rw+NRi1-+wTDbZ2@Z8EncCO*~)91uB+h$(VgM3#t4}Lkki^e=(8t!&bg78DS$bpp49e3Csl%`NIz)ru*nq!O_A!-A&&Q$ zMS>z#)=riI@V2Q`$6R z%8|$Ay;XD8=sIGiNN*|!4!k^{h$(ckL`#ukwB9kAJBgM8XjAHG z^&OwNi+Cx3H>C@T`aXJV_wc)kngXa(I^kESt(Eb637R7HpsmHw`v{r>pi|m8tCaTE zL_bK(6sb>WYsu~bf~ElIlpf?&32i)v+Wq!XLZ?VQ^tS2g#|WJw^+m-RFn^MuDF8a9 zo{PXy$4?V61rVonc;uZ&_zb~P0BlNUPu9`K&l4>L(57@)Zy#y=65&#$8LoGf@vDSO z0k|n09)%oX{031|0QF@_d@jq{{V``en6{Gj`_Jk zjJV7z)9!PQ!}qgJyaE8{EVCaVW!7yGgfdEeLF>A$#RmxQ-XgJd{DhXpa}dYPOOv?I zr&etY`oH<)Jqby%Q;}jW1=8sQ*EuEIE+5Jo7d7T8I^_vfm=}`{1?b$L zQ92%*rDQ_^HVQHjnWB??gbSVk!|aBY$^ zoVQr5A}b28%4*ZlD4C{VHR(`fxH2_rBTZjrT0>G4879Rd=Oc9?Nl}2*gBh((%`tr3 zdaPE)R&>!sTtZG1;B;@sI9dJcGf0C1H15e54Xd@y4y+WONCBtro*@6R9^ ztH*Ijg#uLGn=vZf!-mVNL}ec%4~h(yFYv(9U8PpiE!Repp~zsSjMu$NUnLKU4Duk2 zlT_ilf;=d|BWqKf_CaQoY$(7cYyD!wD_omMgCdJGyfN~Xq(K21S?d_v#>Q8Z3cWb;xoqX4t4wc2fy|Cf^t1;}L0xo+}D4b^TT7YcC6 znyb@r@t3t%krD+c^?CKCSmSra8zHMV-jk5ko7a*7MgI$!hcmeT-?l_P_K* zL-#3lZ}@)~sZfAQpF5IXsB9<~iW@69T(b#ZP~aCggcIi7Btro*eRfs$LdKbL^5xP- zTm>sw+)EY|VA1F9uoo6%g$nMB8TIGLedIy`F7NB_2&^|Q)j-kuAc;_bNS}w2y%5=0 zC^ejVegi%k>6G*M)(F0-Gwjcz2gr;9%rexNDQ3R<|4~w*0F^#Z|9i=#3bJOCQyLv> z<|~C}y|h_11Ro3ift0WKfTT$#f#p`6Fu zr&M(C33JiY{(yuiKqx~)RFyds)kdw}#Nf2yjBs@ILn@^5%7KK>;3p-UifrmW-J7*&))P0F6E`H_w1ZxmIZAajB>2RZb%viY%6{ z5pT%yH1eRxCXbpvg|&n{D8Qr7bKDseuR3Ncs=6;H5eg8=TsJ?8t7J=9k5F7zkPAf? zGi7XQyrzk)BoPV_$y~QsYS?qF^GSswi+NHW_A1H+BtiiqnVU40ow}~@>&Sy5i##f| zVLf!bm^>)Jqt9zTy|=))+t2e{Uq&VrV3IjMQPtVpEQ~bGK;@YvLjf|GYq~gP#5b^2 zcTyk~iY(R?+@P#S^uy#q0Umu`kn6psG{y@!Q!+A@Z#vwBpt5F^lqfPuNuGrZI3-khhXQo6 z*UZT*3ivIjNQnZJKGENW;2D>?F!$wEq&r(|ey{1f$cQ4twa9Xw-a|SRpws7rTQeT`g!@q6M`jdYmenEMW?YXtrF_C4ARmeh z7rZN-rruBVA=04$oy_epu=C|3BtiiqnOiuuGUOrhpa74AK6*CO(*UDR)v4nnGyadH zC~e42^oI$Z0?_+>Sw(EZ%_jYzn}>D+93G()~vyKmh`MJ{eXnOySnWKa5^bs*tW0DeXW-=!*cr{j9LLerVP<*Kc=-irU^S;s@jh5~FdGMvyuA~RS$ zj2tMk$H5FIoYMr;MHUobk&&*U?lrE*5P$wYPhb%_QDmQ!X?9N{CyMNH z(%qrqbP739fK#8(pY>Yyf{ucxk_ts;shC_jgH$LoOU3l_XOap9sAOc!sJzeK6lxhc zP-KsTaUz^e4iwVA6B_j)$s>+AV-istd0W#U@Nvuiy2uVOppf!c=Y*i6!KnK3F1yETkf)N0_f$cF-a`g|gHhB>sM&@7JO1244+?<${XlNAM6^}B1FSuWvr z2))|>9Fm~`nLeL}nqd|VmkOgJSjAFh?s+6c0Yd#A<#F`CN~Oj>+`9#85Y7)wbU#X%D7lP-<&9JH22HBg3Ktu zESsIu#(GUJ_}xk}6d?0xCW~ODu+hmkCWm=HdA{n5;+yl6`k2dW$c_T+`h3U23=5(B z;%^>fa#gQhM@kf+l+95D4v0H>ujhRu2~mJhHs=*1XJQ@qSXG$T}r&&iG+cq5!4OX1TeD zm^wa4eiY!B%|2O`LjMf%BjL93uN1O$c`fG>_R7?-zPhYtXDQV;YP|O?Wy`9c~O8@Hoe=bOv>** zU_GK>F5~|Rxlw>yrf1j9`b4#eb7{kLp(+>S&q|Y&P?%Yirj0U+?%8DN=x9 zHkZqF*|b+CeoIyqV3keZaG(i!oP;Pq=%GvwBSYGbKamtgX3Jh!qw!a=q5!LGw)WAj z#ox(|0^It1%kT`RpuPpne~}Ia==A&Qs9K}pv|Sw~lp)*DwrK)51%SV+&&@$R;BEWP zwkHJ&Q0VubnYa{GS2H%T0gL?jh`rvvuoJmZfJ?u3H}=S7V>v%unpESRUCDz2Jon(O!|CUtWv0!#wW13y;Q3PPRH1fLS`i=k^}`v^m%q@ zBaKO-ZH96(=}>^q!~N|#W<*Dgj7LfscLny3pGs;Jpw?#}#cZgJPc(6kt5zM&7dDsl zWbAZuqX4%)kNs!Et%=>dYFf6Kj3~gU&x??=VpK0x@>e?bn$D@E$Av@0{r?s!zO4LjgX0UMrXxpGK`%61(E_ zjbcG>{9i>@6dBE>X4xq;nt5}#!D{lM$TlBy!ND5xp~yBLbIZYnRxaYwi1myi_&SY@!+E!N5tl`5Ty#f_@heFhm(ykL6b=zec&nn`MK$pv%5f;r_qMlKZK z(&z2&Gbv+X)25B2L;*^DKJYjrN|@AR8D6z-Rg$5|W?AF@s&ZX%xq@6Mvdd*ckFuNO zLIEy)c9_nnkk!hX$tE(P0Fw;*gT|b~WT}Dqk1AwWk`6^S3)z_6XZ0@@w%Cpk`V6}HIZq0)~LqZfFl)>FJswxGYnO_z2zH|QR<>or`o91>9F;j>pvqy z3NXyzx_jHNQq_D=tvj3~gU&o@`iqPdT9QvZ?c zD8Md*Cr(s;@lZzliIcyO8%3teVzV}$*Lz?8Mn)81lwJRluSxtTDN$sa(xknK=Rc%G zk#S1a#ANFUP@({(3~qk24sC5mCKO^@`e4cr+PMWQDkkOM_#ILNwS=fhLTfdU-*yg5BySyJwlwzg@AL?|*w zq^*fMjYKFwq|c-Ao^m9trFt5`%qNm7C1`L<#rQ%rG(Kj$$MhX<5@Q!R`z-XaT(K+x;!lwZI zKF>+xmLGMmqbfoL5}*KqK0D3h63_#{Kvfvx4LD8Qo6=fis}RQ_r{P97BC(dTBi;S}n{F&se)jFgN%WUw?z_!NNO z=Six883%sbkZFoUC_tpod*FK`qUy#(wO*KX%K1`t*x9VQkgLdv0-XAMvrTWD!pK}h zG87=wXLo+XX||QIW=Q3@o{%X3`R)B}X}dyhs}L_FcnW}jYoEc_u-~t}S(4h2bbkq< zQviCO2OQX+7!P_|`rkwn6d=*(n>ON;C{-t&dNV)n)GHG_rC8JVQcaT$1=#d?QXQX7 z+1bp%sx^HjDNukypZ9*mr=WU=$b7ktq$ohD&$Eo4N%^zqb~2$zK?!5gZ!}BALOIw^ zcuzvwtvg780u=h)Uwc5~QD|$w-a;}IAk*i)yrL5Hk{{*+M8yes6!dWF?PNrebw=hp zpYJ3iiYzm#7OEA)=v`z)0Y-gZqUpWVZ75ZXwTY_kaPA=&iY#&|*6Q_Q%^6Xh=ljTo z0$lFx^Juc?rma}h-%|SkX;6Shzq`xcY1oa~hscB?t4vIl{|K2-fJx?h%`uD?M zeDOvx9~e`9i>1D@ZJ6GgUj$r>&E zfs81?D62heV9@YqQlbE*KCheMvvv5Q&Q!pGtF$5h=YJ471)%qN-7GfrHox<~NrD0- z`g{a5K8e~m*UAdz{HW8+J7uTh7%$*fli))EK7GF5I6fcMBzK^-Eoo7J*5$*sVq@NL zp;^cm%Y{b63H-o`xn`kMb?WmHr)Td+Lqm+)8bDqU;QGK&nDdyOmdNyOsNj&A_$eS<(U_txg(}jA-mW z_m$gi&*Z)#=?La_CmU#k{7G;tlE9?^xSLZ0&Td&mPQ8XODFE};DT1jgTLE7L#s}e0 zu4Tb`9pO>{?(HdrTdxOUe2_PnzcYSOxWAdm>3_&rho=^T8))iNN4(v7Mf!YJ|HNt zewbJ(fHj33w#1s}w>1Ua2MLz~a9^9g;=rj%b)u3VE>&~^{x}g+0P$_+KkO9iY62*V#Uq4Gk#5-7yW)fWS;D3O>=ZU`I<+UpF`v|p z+ZTwLBAw;A)W~y4F{RpzFB2^V(5A4x09uT>eTctC#1ugMhV-=;KwQPn%}Lw_X(jVF z37R6E$=tx_z?$t2w>vRX0Aq?glc8R|y@-_}UFqrb?(IvA6u_9Gjy34jJAg1L0P_{;DVibPyn~69 z0!Uw;9;5*;-V=zD0w_~7VAcMlp!Y6ExD@Gx8}!=EC0q)?O;IDIQ`hIMJCax_(p6pq zUbw^Hk!b0L~PR@WZ^ArxPkg%91qbyYlaHd~260Uy{pJY+CCu%?H_$04;{1^he$ zr$}Qe7lsR!e52`%E3i)|SPFnm$Q5LAbk?aXz-oVmC=_c6mjZB;IT@xiPc|^KDiqoj zwx2bMXtUG`yh`bd2%RF0DP1m9Hu&LQO1Kp1gj;X;;a*O-6o8x1R=MQLG0$*S;4i5A zF|Q|P3Sds?bV+iUai>mO%T^>{3IM(+k)edfJEZFlCM!|>_GBWRYN=8fbz%-CMA&I} z|D$lm>{sI$NNm4?Z}WuNdC7v2kzfFEh8#d#m#q0tot;b&f3Iv4|1F5S6kvU03Sil1 z%0$jQPJk2uczzP4Qm`Mg(;$%fn-fWfa$(A;#~s(oz|-z!Uq@N|+f^uwJFFD%voM~Y zFdi8VO5?e*G(JCJ`<;rTN)>;3^s)aZ*t-;9p3FkEinGgjr2{g%Oo|-(4>3{zV=~^h z1Td;GE5_fG3vggU0Nwg(0HpxXWcH0F4K&}x39!a^tpRttfV>?cQ=~L)7wWX#kw7U@ znzjpv+tPLyLZ(P*+Ah**yBmR0q%>_8wWsZ#giMh_$ivQfb8J(o;jrDEL8xP1qEGoy<|537p~la19@*z=f3)#b#S_4-!5F;3qR*oIQNskaqzAQUG8wn+uWx*ftzHflw(@ zmX@YhcnSehq%18%hPFe5N|Ca(G`-eo1W1vxvk#Q_ZKGP6Bo0=e4#w*Y^WDvE=$P@t6#!`*@56cieBv+ zxFXF8)*yTez)$9C#VuEM6#QX+iC%!8BzOvdPv-85Ef2m_7**(}h@K)lWgp*I8Rc!n ziosQ6K#`sFcS@sU3jH-iPm!JU2YT#yfiJ_X=sr0v1y zQWf|Y57jAjQa9-hmG4WFXe==9PZ}GO%cT2740A4~86d-X=W-_5(+MLG) zOr{>(L>3g8%L?pa*r>|WG)Yi^#C@5{3Tr2ZC{(W`6ACcNNUMs4VpE!KBYXtpp5IzOq zXJkCln8el}0sid-Pm!U*GdaxBs3P!A5}*KqcV(mWV?`a`mdCQMqVO(Kpa6x8jEN)# zyB6F-5)>ejk?spUFmIL@_27MkPXYKD8COphs>7!H{Q&V(WC*`g^yb|Vq(K21DQ^;Ox9xWc zn*y*?-XwZ{g~te*0-)cN?jqxJ)BcFKDS$iWbJ}+I>`w`v0^n2bic;Whx9l&7o+2|z zZ@FWCP4E-|pYnxumGnV3?C;2c0t`~#I@<2nKM*zrV5fZSWw~AdOw<%WoyKiyrZ+9}d$@U_)*!G;2CQa+0D zoW$D_G(`rAyw5qj1A$Wjc*?h^1)ah>6FLQ;r+fs~?hKwo@Du=_@=nxt0`EcC6o8%b z(Ynw1yEk!DWB|AA^xcoRDbioY+nv1!5mO!QamT`AtXcrLWM+je)~M7Lvom7 zwo}V>m#CfA3Ec{V9j8w0TVX`tY4>mAxD{r{NpUNTR3SkUx)sLYkPuLWIozS7C zStoOcQgIOBQUGp3hni*$H!N8XB~FSIC2NOL@I=C;0Ni8_Gl^6kDvSRjx{Bu|G8m{7 zs-^J>d_xs?FT^~`WWO@)-m@pTf9G0sV{=wnws?$b-4;P8qePcBPj+d^To_}M>UM<5 z7uMgs*^gA(d>?7!QXoZ=ahchXB!t!O_C${Ukf(^EkFP z;rqrFZ1NNMe@pxnnJDxlUZH=Sz$r3Oa>ku{1zWo9l>ZY6P=G-CYi-?;-(VDl=C6cK z0qDu>>E4oszV0-}3gg(0D6s#X*eNnm;On(A&i4r5{~~Y-08eJ8*p^K6#(24;8~Ohd zIYlOlOXG?O$Kgk_M5=GYH4=(!q`v?ynJ6*1r@m$l#P%Y13V=`Ml7}r(-1!-9 zRmArtU40tgp9`L5;z5br?)oxM&U;iG6f(fv&Cmi6l(wI`xs)TNOgg>M%~8~Fa-d= zc8fUoI;|)9G9=pVHfWEw=MgbQs*8nxl)aFcDbk(F)>!F8BBlW1WOf_*^190%LB6n^ z%7uSaeKJ8)0CalCNY-fjR05_*by@b0qE9Dgid2`3!034~K~n(qm@ z!qI3#3v@l0kP4^9{i*D5iWL1o}+_j%W$wk+AieLNS4_mlg&lZQt}gZgqqlKXf( z`<*I`3gxdcQmNQ42YZ(S`JK!@o>?QaYmLaE6~ssZjLCeqApwkP`BGd%Tdh?}yn9Zd zT}iYQK%30BTarUdOQkCO*#hbLL`ngq$!s)A7HO>_S|*dS7Z5K6@Fp|tOC0Y+wKO6c zQ<1>y2$&*;MWHb^F)~7TuRwY+kx~F@GWSr=K55&l)@4LV0hGyfpR-3v3tp9aCJ|Bq zVKTe4l0g`(N(JJi0M2AS*^?Mfe-#=gP>K{~xxea+5+MZ;CbEM}rsRb+A}|>l22gL81E`lKGU4z= z(P<3j1@sT2j9w+iVJrs}NQGp+_HJV6wo}Xt7y;29Qi+^<62VdcY%=aZ4?`E9j~6f! ztQuPt>Z6syW|h205HUsC5tr~GERn`X5itc2C*#-lk}kjD#OkkGPbE|eKuu^U;P0t`u3IM$*3AdHOIb{A)?M=v_ zr=HM=q#1i0hC$KI-^B=Q13Y!DZP(z#10cRKNfVM#h!5AmH6<`^Bt{Bgyt&WG=f_yAO;nrMG$&wI36laalbJ*(m6W))$-#Lt zh4TvHq)1(I;`ZAK?m-mE*(6K~z)a>dN;6K*wi3CC*eHPQ#r-Xj3Y)JaUP*WqfY(X| zJbwwin)oPElYG9CcP-&j0N%OD^vX^2$GSK0b$(YSlRdS1vj=~O3_b1M^%nHSw@slh z-f@l6f%594A<2l)C;wFT$u}e&LC1bsB~75e@g>3SNCKAv>=Wu>RIJ@5yq&<=eYMD` z*ApfMU?$|MNd%_n_rUGnDCGj|9Ry1OunDE8Kqln-Od>fe7Q}ZEB1O7#Jfv*iL!=Zyn#>XslR#*>Y1za<)DK>p{M?>l#asq*%Kp;K>Nl^>4kSxD6&DZ;Xe$>l%XjfA|&UL1)4wTA>ECr1dG0+5qA5+XWtt9*588!UE_X=|qS#fi#zy@t+K051_Z z1%M}WBxFkhZ%kmLnZR8pZVKQ|X5;Y|!(E}9S%9t)GzCB>b0NeQ18o(NI#E-kKdHU) zF+tE2=?6Voz=yU(`PfX*6abyjT9nl^bejWNL8Ds{f9vrq0;T}qWVV1MUZ4TkD;3Ws zUW)YMbxKta?{kQk0(cXeXM(93T8i{0ZKJ6NKrbU$iWGx2qn?`ymLk1iz258<1WN(1mnAa4^V+T< zt7%Z3XXs=q8Mp2P&SI6CQ!(dxD)hAb=#w$W`|3E|y6dC`F0&@%*0mtXh%mPskaN3a z+`3i-o!q)Qn195ev?>X{fh2G#z&;tbu8y@!52k~Kg0tsvBB#Dhm=u7S%=}o#KRcMB zs2AlrtN{8w0;NbP&?>GX6+nMLpcDX_%z>&zQdF#H3xGc+K#G(BG%5Hq0;B-IM0{i_ z0f*H8QH|79i8!G))eGbJ7)RXw!8-V~`+~oq<=piew46I#q-?P1e0t)jWK?K77t6LY znX5H5k#4>w6E4rc@*@+~B5&hV{C5X`mjcX_*_3AD>(U^ZaE0OFJRDD6`-$&;p*gA+ zojktcI940RCIOLGdl4%Iu&zs@uh$TU^dFIhqU*x?NTJxQ)k{}8!+H53fq8Adw6-9F z8ww4lV}Bq1%C!5LpQ7mg7mL=d?aqV^7Te3a727sjy&#lPq6n{&MY!vd*{ot~9}BdZ zlWFIvWumK;+2+|OC=^JSuD)H*#!PZ9ZZ3PVNTh>#l=4zDpI4B#Cu9mh?z$1%Gxq-% za$!R;U#g5_tClE$I}tNQij%og8^%qL{7AKcyelD70CLw0wfmIJ@}#qXyF1}hq_|Yz zqr1M!w-+%}0CQLWbDxqJm?x?uwem3c1BjH~m#8U#x~o^Tf2i>d35c@FDxO0-hG`wTM48AHa_1=%Ihe>17E$dj za4Hf*;)k^CIzVN?KgJhO#|pC=nJ~*h>ivy;zia#p6lw06Z8ql3Ux2EF_O;M-220~p z)eUo-wE^5iRmK zAq^rQCS^VxE19+<8fw;Z8cWW?;!coic;xd{-XgQ5M4x;8o1Y+2u)dNtAY{f{g zej@1Y9rC2L_cCQAhu|U$MagA^+J_XsvNx9}WYaEfgZK+2 z@l$$vd9E0Nm*u_v(o$>A3XaOPF7OlRdP@p!79SW#c`DRV$vGX7NwJjr)t0`sCsjFH zg~-nBjg6J=rRoTdl3{W&P^u1K$X*;%Q6FaKf-lrs5vs)iCQnR&T&bFq0RU@pPq1XS zIa01|0v3fzf!TMhQ^gLG<^E?aOO1H-D~Ncgr-6lR?EDQJDRz}7eq^} zt4{C*B-Ke#Er74a4gobj@+7LTtbn3`x-Vd3zzSo^E2jR@a~AUWKqqo=l@#8B=8O zUlflM%6*&R+iAGHu&<40QJ3-@OSxD4bioN0Kgs0{jB*Agw?h-Y!KwRtnz;kOGeE8C zXqxlT(d;pI03~_0oG0(LXgd@VUqs?Bf&WF+-fd&_u<&_lou>Eu|E3 z>fng4L!%p{%UbI1?gUTKx5eo0uw4(?)d;IV!I+ruroIkrDmBLj8V-(FvBwjKvq~e_ zPAI!vf#FydiNG6c^czcfoXdNo#lT(_%F%pI2hIfoBZXG=hMSZ1auAExD5xx&OTgWN zwiqfWLIv?!1_5z-0ua%zC~SvDVmk+6T6`Q1ijRTj>;%xL23lmU7}SKPl{KgdPbLun zn4&v2Q}%}D=1O43->S1@?C$++=)#(q=>EVnsfM6!60(H74pGOLEU-(+-R2o#` z^K4l2s8VoK;rOid1&Cm1%)MZ;c}K7T2Ag(&N8d|s1& zY|0TNCxW2bKW(;vB_50p{(>ax+_uF|0ruMHss+&*A#PBfaeiWn}`YefegaCKC1-gk+7#_6#4tfkaqmh7pK8u?j+Dc1_aVw@z4 zpBlmsJpQ^@Jn;Juyi~zDY-Q(AEfGL8w8BhInaOE0fQl_Ev&^{3Qe&b}E;TTb0DT68UoRtjVgnTq!g*GH1Ni zchROCpsI7*K4x9) z7g`Lfhg41(?t+{$o}+PD;~J>=Fb*zjX3fPL&JS$B_jNFnRG{}>>-o_1la{5-X(eDR zoiz+G01=tGEj(w_Eg@lfeAbq=j{z$H$TC(KRlhNOwR~s;wGq3n&(p3n`5Nm=XxXs4k8*Q{M8)8B#DBkVeqF}C17nXd1XwY19H#GAUAl~T7e*Y`-OnN>(Pnx+1=-lRyNj4Yy7pP5 zt=&=Tswk!&cKz5}q^;dAhWFcWutj)~y4MbC)F9^htedL4F7b=bQ1lo_x;(apH~ zefrEXtGdwEeM(pd6IQ1#wm9>c(YMCz{v?*eh^4nqbLGs@dA+6S{v?dU2_vF+JZPC)b>@(@%E{X2HD>&mS$DDa=C;?M7Q7;sWPTAqQ zCPsW-AUWD<$kD1umq9M&AGO#HzG@W)q-!|__5~M13SY>a7gBl@8?r_+B!(S&XF_zqoPM5_n zNj{r)pK>%8+1Cj@$3Yi34dDinDls2WD$qVII=|cElBSVl8)TB5+{3$i1w@Q|6h{9V zVEdBbqMq!Fg$#^o1bs7{@eOQxO4xS4h)md}@s{kD^#UFh3p)ekBn4YzIJPYpHaKNX z=OEOQhyX49OtcSpnd4RUGV=GFUSM={euxA}!ufG(FR08|NBcPh3~!jD)S&~P4ilZW z;yqVR552V^8Dh~1s!SayhC7~bLscw1Z^=iVlOrc97#<-D&g+G&JqXe>7%>RK#wb>O zgXVC13^X8p7X#9{VIpt&0{I6@CJ+z~&ln+QF9ujwpN7b{lYO|o_G!@xUHuxqSFLtz z(Frkp8yEJ%vCUzi796HRJO+Z*v27lM=r>vn>>o4fz@a{a1j_J<^E;PeJdY~Fc$9P* zHfVgsGpq~~moHFQ8I}l>D8nbtpIsT&@1wPj^36q+;S=Y_D8uu5DZ{1V1uE0G<)6Kl zy66Q(*${~_$dDL)h)I&v${5`OhdiOnI%925jM?VTPAo9g;QdT%k3aT~PXxsP8GE23_$3&Ca+V~gRs zI3ZS)rsvjP3K7S%7>Cz=t7piE=y{i2HbgJ&IV7-2*X|eHYiPY=e|%Of>~=@&_eKOF zyp9oeZKUK-;PT$1rhib!*wqOk()R@f6xGhe>MPHW1+#7DAKi<|qWo$C>#_5jO_|XB zjQi3KWkU8I$&?8b;mxtigp7JtWkPowXhl?y)8?2GW#W~c%7ixJbz328Lmd{H#rV`W zxt?p!kO#)6{dp*s|IbZa? zVB+WqqxWe!UFhH$Lik`YMrHBVGDS}9ilS*$E&ej@TUbA%r-bxez{a914$Av04kYNc zQSB0@(vGr&=O~1bZt%2K8Q&hdZPV(O*4Qz1nC*qcRH?yh4Kq&vGDgpVpF!PE%C9lKl#ij38^gyD5lq$}^WMgokI#IzcLAtXr){VuPJ!OJwEE=^cLE##Kda0<> zct2H@)x%ZlVaw7pVy#CCMb9Vf1oC%+>WS<)MDNE8cE8NtuX`6GcI}7m_x8moH?S&V z?l)=M^bx=vdDv~9&x+M0xZkA>uRn-BEaS7FIs(zUdnLgA0gZ(={bP{>YM)(|jn&cI z`t^7a(dw^XFB)DE#NYC-UoXp|`x7FWWg8wnQ}zx|gXT(bvua(W| z772$^RdXj>Syp1*%I54=*8Lkn%%a7N-aX(;iFRP7sU$Y5qWp`1;BCWUHK=Df)8N`y@UGI+Tkn_f}P}EZSTmy82KK9*brhL ziCexqWE*skCLYV!GknIxxoCW9v@wnw(yF8R0;X0tx0x4HB7IQWdyezsdb}Y*U?1eb zhKW*ncmTaYvo=2MzV~>LI1b&DHi=jCSS0)vUuYcr_D#3A$4x|#tMPc;IFm!4e3mq0 zFp#K_S_@@r>BC;J4a^lqd|*QJ+e!5B1M9}8Tk_8w{sgjhb~bbbHiQDKQwW@Ob0Jcw zjk8EpcL6ifPT4qVr4E?HU^*l?<}^q5DU8m??$SWXS(vv-pyZ4dN*gCSlpOKg+ZX9C zH_Lf8{TP3_>GXmxEK)**mDA$3^b097U9nHQM1(SPrYtjS{8`)K{Xo`s0w&^c7c-@8 z>fPxCEAgU0Ry0RC7j`ZHs#Ie-%JmhS~n@Lq_{7JV~?E}xxwOuGbz zJULh9$w`3%+4*g&5(|DYD{++3KsI}c8o^dzch6y7+bJ6}p<*(%Dls{_s~MfI66>=v zI>k@G+RCI;uJM{T)M0#EZjzfm^dTA51$bf5oHI~^eWRPlPHEg-BPM+!_C4G5n3yoAn6s#$i1C0n zgEHL}iLjB++_qOVbNgNsfufgtO%9ihxk%k1lXhaJqwPyjZjss7Ar%j`Es1onNsHWZ zOSBQ1B756!+lk>;_>MJdJIoHLG1}LuFb&)*_*TSqD%!IuK<1H&d6_e!bhYK6`?Mt} zS8;Rp5S2|~wx@+D6szX~97@4al1VV=kWly%j}YAFL?+(p5s`A-wW(feI^vKYudPsx zm{5w{YgA6VuUPPG6mFy0Mv@6cy~|1WME^Veb=!WNbiY1qTN=ArEwFF z_ghD^q{oEjWro_(IxvQ-i?B6RrP)3}K5(Wyv@&qEdeover?fe(1wZZOjm?h}%z;L; zK2dB=V8v8Lx(7XK18Y2WOK5VI29arZTkOclQXf)6k6RcosrdFL$>r+SQ9N0^dIc`t zB1cb|qY|;|Gp9Yp%Bzc=kqJ9aaih{2trszhJ6p6$$JcYA_vTo#&_~R%o)X@EwAUrv zJc^nv_KSG+-F*?;6ItnfbzFI%x~I;NzjC@Sqd{M_jE~T(kAx{R)twdy+v}k67sfzn zDxYQbRkYe(l;+&9s7M0Gi(r-ae<#4`Ri8V{`*@r#-_C1;gz-$|3c(Y&4kwWq>D9B(g;@aA9B z{|SY-_-Wd`lSA}f)-j0Gs2}2<9X1zwuXY^E(j5A`&jKLc)kE_*?^?4mfhlTM7TGh{ zM27@L$w5$bKf@%GJPkFq0MHqoHIpJP_e(vby_hoMie)S9;VI!IG02Q*_pzgx_LyC3 zjrw5#MyGwdWoZs+|J`nB-~O(Z_5xGSX>Xh4e7NYSw5K`uJ0k4`PeUy-?R}=aaxV=1 zur2MQM?NPQPe?HRg}Y7X!RP62+8x+zt)(!4qsM;XF-^NPjr{nH%#Y}9F#LThPXxxO zJc;aNf@Y1MLgx+5y1!A!!8z5s z8lF>!h1>z5n|ALVL=Nq?QYn`);I#aWW!IeijkabmvSA2~McPI7{7Ys}bW;`j`drb# zC~(`0=5xBG{_oiEgWtMY9m29zFam`ndP>?k22p0jQk94xs;(}JDuWT$ zhfrifa$gh~H^+j>auX5)85`LyM8&0ASrTxMq;0P*_iW3`NB3A^OJ*i;MUL^Ka0PPD z9i%-g3t=;Iz7u8BtK)+1LYjXv4FM(Hd9q))j#)mq-9K2vAx>R>GWA#7+f6t{l!n!p$viXWca+fhH zyp#&2NMue&#pUHRIk@Mx<+Q$`u)PC4Igrz0oj5d~#gpk`KK|^M zVJxknCbh_;=rK_T7}FvqWb}nHqoX~B9gJAnEO4uA#+tOQ68IAc)paB>(A5bbg;#5( z?b)2hA0S=W{>LlePf|~?RwX$5*UzFymtD|IyNne%JtA{j?bzvomGaE_VS%l*>^e+2 zNh%!r5o**^DK(1o@C~D)N+$j({QKu^Ft(0kfTnM z{6nm=!bR^@S+~miFY2wYo~lJ#?_JcqoJhDp&2yVHApE-RHEnJX0j;QAnx0>qG~CTJ z6Xn-_V$e>T`&!tziZ;UB*P(25z81>Tkt|GHYuGF|D?NIVMcfG7nCDLuT|X=v&!de{ zXS7S}#D!4D?+ievfG$loX2TQ)&q5+YTAqBk+LBTG*qFlN!69`z8bP};N z9TLm~zNt&Ed~upD2Fvk5VeeT5*nJh>@|Rp)hpw0?6*nS<>-y?gPciLY_%!r5yFA?l znfCnvV!Z{zdr5X(@>O&;A3@9rr}sq#!_6JVg&iY>3N~vN>hfTf=r={g`<>PHa0N#J z)aUd|a??EZh(>n{ZPDmd)~k)e{_bA+lPisuLKjHgHMd#Rg;F-!!rq)UzEwo?v#Tu@ zPOc(Lce=EN#?#Za=BS^>uc=+?ZMcwpvir6RtuWbJa~(+>WzuS|C0G<>PuJdF>!!aA zENz+cElhQ8u%DzF>`+6hzzZ|cEw*m++e~(nkPE75wwUu( zUkP--!#9I1?7?l|`Jz?g+{gHuzll}NvK5;*V-^|oW4`0_jc7;qrqcMl`FXLUm@}sh zbJ~45_c!e#G|G)He&pm2aM$~#Vwslq(0=c*t7yMZ zR247Q%hs${po*$W%5B`m<`6mI7DL0*-5!`ERgc}E%%E;#8KGBrVn!jYA}jWnS<$VC1QB}e znm`wo8R}AsuAq<|3x-hJEynJCOh!T5=Gi5C4Nl9^K!olgZJDB-Y*FC6&FfyaEW};5 zdRBr@^>T@N_xXd+qFqw!8B)P1kWwIX^jVD9QAyj#o+D-U=(8BH4Oq2Bpp42O<(`XS z7g@A$h$CJ_OR#sJ%w!cw;AgB(RK&6C)gB^sk88^)y%UVa@O?tFClf#Bhpv$>U<(#l zD81rXUhr(H&YEIUbNnccX>d0#Kk2%zl?GIXgiJtm)3V1?zV0;@JObuSA;%xhe`=UYRiY4=2y zu!vl@TKvulqE}Ld#Zzg~TYa(Gs4hl)ndF{9Gj{%1wWy1sK*qRBXv)eRWVTwHjgfL* zjTG$8qAi&pYC%=spBG|l0glKjKOXM8E<562wi;P1V7F!-^?e>*d46sS}O>&*IMo0?=hiFu@GiW ziSU&TyZh<^uT@ZlajT33%8TAT)FXCpWFYKE)nj$NPh8`u%@`nt0j-v*nQdQ4%3*)QE1|NRwlt(bpPIl%d4S+ z;7v5HFOh~UxNv{Pi7+f?opdNBpp?o;)&S8JNzj(S-zRIWc zM3#zJ3*>{GdcZ-mdcgFF&ag-nGCEY)H-i*xbm)mAZOm096!aYxIDDB){{_Px>R7a4 zUy|&glR*CgtACyWWqekBxHg2lf$(K@T(mw}D(HKHa2ea!l*tnMf(A;+7x=8P6AedZ zaHA`A{4V2p*Yci|3-ad>Uhi&1?wFH~Qd=siMHUzLPTIC>WOQ>HX3U54ZrZY{;lCsM zqA*jU{`H*ctbehyYW;eV?dEPEk@f4>A8%*AsE0jR^s?WWMG;uPUe!nU9wy5FM2WUL zl7(u|9zM@JZy|g>8*BAysi4N03+e2UnrU}$x=MEys&hr4Y56Osexa)9Jrk@eoeWE3 z=#@T>G{t-BUgPN3h8S(mM&f>q*&*Oq0POMTBDs~RF>euQjXU+CgDd0oR{uq0W|Y(J zw%n7ryU?!IL8ql6=P3ddJH;SPg5qZ-MXMtVe{G17=K_%2&yc0S<%eO<87zAXI0V^H z#(wM4$Ov|6)v78d7tuW+pADF2)9$4_yT6}!xJJAcR?S7Rh6AjT$AaTq*UqjkrjD@T0f_F=Z=L6nzYgzkO zT%r@1Dvz#85@PWum*>Yw*{<>*=t59Uc;Yf5j^W`!bL#|pm;JLL#NL){?*C|z? z+^Ut9>p}zqz_nJL?8d)1R;c2;yT(b<;83wvb+8x?fm;Z<6JX#+uex2~JZ4Gk7g{Q; z=YeUk*Mf1Zb3)*LFB;F$I8f`GiQ^<|wT8=4kVY7~Vq0JxDYv19fvVVZ*PI%6n0GIE zn}U4gdGSKG5D*ulIQTMLEho(8gjsRrSx%Tm8Gu=U)wcxA0<1}L(QY|)e(PS8>Gvqy z3nFlLc(H|dLMfPcM02AeV}*GS+1QIE-3pBGbBJlfm{S=*J$w?<`o?<{<^xzTr$QdL z%oAQjQOWT|#E%ydzuvwZCpEEDFY5^!f$DIf%(5D&R4rYpo@^?W6&Ur(qz0fPaEsxj zpTP^qs%63fDZ&A%KAaK&KpR`u>h)~jK=*Q$1HL*5jA44+-cGA=>DE9lj`r?AJew!^yL%aw${r! z*t5HCks|KTX|AnLU+zr=J6O}L1lvG#(YZ?5*F@;f-2FAS?L zRrEj7$7l6F?moh5SdSB{6=hfBZ8nr8@Bo@@?_Xls(;Z9B>sZ`FggxE6nBK%5$;nj_ zF*D8AMzGo^Q&(?~R1nc>$i)Q~q%wW~xtIBDQ%6V=~y8V(RMkopuOLEeaS$ zVRGy1P3>htE8b{ySno&dn7gh9U35D3@^&l(!5OR|V>&YoKhe#FbZ+(*fSB?4=CL9g z-N_-A(0Q!wN$4dKb{qd%J(KULMs;tot5qXM$;61m6I{|q07muhjdp?L+7_g+hjV@`1+zkrDa zGTb;PYv~f7vbCG|&5wAAK!|5u&uK16a*W<6i7c)<6LssR*T-M?R$ZcxknFmIZF#|R z(j=z;G-+;j6(#|;_fn_|h?+&pCPftqJzO`4CqCHe0HR_hu=p170)#t+FR~PYFNReFfvyknj z(;8BCA%J`L*fz^{QFNW6r#5w4QgP2`mmjB_wKfu2mcx44p}>TXgxqyvXraBlX2NG} zpz3PXH|-NfFQHN0BeL-qu3T&K8_%Y?^U&`5+{(G9%^XehhWv`{WBni1BQa#vLE%m0n-O@z1L8c_yy^M^Z!Wg=A zM(PWmaZ*L%ar|A1jOhx-6xrwWQ07HvWBL(k{6-pYufylXPbrBU-9@K@e&&;}zVP?Jef!OEon;Vgc~Zk8m`gLm$=f)_F^~li|}(#ysihr6N4$ zW#YsI!!L#PRj`imX2EyG`O_+>If22F;|28=Wf2q|ls?YNI-~)Fz?CR4U-~F`<2BoT z+2OUha*0-~HtFk`1)aUta*dV~KJT7pspAyS=n#{=U9nS4BI}tfScTA|4iVMfOX(o@ zKWQ1IXb{W@ByMEl1&pe(V9D!@u|%t~Y424vxZ(XzT2hJD-wF<9_5`I9vqlYHYa4UQ zSj;uEXN+Y9x&79JK7_*t`kZ{pG_sB0w5U_8@C}%f7EDre!A~GnZM{EX?M04GvFb17 zjF-k8t|cm(d+N{O7=25taz=$DjT;U9nw;$o*EUu8u`nIY(xASzr&8riP(-sJZXJg? zn&(o7$gW*zjo+T+^%(XK7@Zf>sCL>YlRIfw4et9ff5M!-2o2;MV}#KlyXE*ZGAa!#5+)Hv0C@>2OCiybUM1ZFE1vw)j}lK!&z@ zKf3nTMzGzp{A1d-uh|=tn@Ge`w%u~MpI~I+O_jBQH{7OfqpZ3i%7y!B8jWa^x>^;D zk-v43RzEAOiWbTL7+Go!D8sR`)oE`)q~R~paC8&X)wb2Pv?aw?g>95%-TGJ|fZOsA zhvU|tg)+^8g#1mK4Q(^JT2zgN*8)h3-xU_anulY%mhV8j;QoNN0`0-k-K-!LMZYGi zuKN?(@HGMIvk{S9`;f2hyT70TyV`d};B7-^eRqE&5Qs{zj)pDn*rr)yAvsR6$36Ty z+UWSiw7c*)41W$;s)kbbP=`UzTD=aJn&_u?E$7$I_!Nca$+2L_s4&LaZ#OZ<(H}An zPd@{`RBhI4!+I1T(9T(5>o7aDe*%xbg0!n;u^)<`j~lC17Y&{)7PQfCO^l0C&PJzR z#hSlNp(EA28efj<7`mkc;-hgYpjf96W<_07W`XmpSm`#mDE4Y_kbs3Ofsy}%+s8==h=qQdE9Q2SEIl#=>YS6!XCA>HisAN=z2_QdG^B3S0|}Dn4uqfNi9za zXg%^*jEWlbqS_2RmW`-AKw=wc8c}y&v};}4O7)T6$Y|P|JNIDPZENJzZMhu`iPnwZ zag?oFcrzr5hkF>K=%M9$TBpvlR2vdaR>xLG#(Oy9jn^i19MvL9)fmNSFJ#n5GV0!1 z8SA{dE)CwG77)<9_*xAa(Xouk*P{IB+PAQkwN|=A&8a#QXceTu=_tE(6=RG8hzYa^oL%xLZhk)se zt)9(+=Lolvi~rPEFRzES`BK%o>=Z$`Wmf#B_l4<@12|HKz6qCz@WjB}WilxL)6>O) z)oQlQpewjX+zQ1Rl^AB`bSOB2x$rAW$V|{mBp7F1j-&u(eT6Su3NVOC8Ov<7I;X1Y zb}t+UQ52QO-v3DZ@u5|hG4Tb&J~|T$_^e+OZa4WkR*oV}VvD}DFyM7lUPmL+f8ok5 zZ?0|cAzSh#^-*7rD|B>nyPog6p;nJkm=U#2&Oo8=sBcqNs-=e9eoc4DNUe@B6HXxN z@BgV3KmH>7omJhQu<{?t{kz}gjEwdF^pZRPP?kGEiYJ3&-*y?Q^Bx{MwkR( z`y@g9BCXv6VqA(UYnB#e)jiPX$V3esI8S~@bh>38iRK-Ta{AHCQ%|=e+#4j1kKpsA zeC1EgGbd^cJi}HdQW%qcw))egl>tj=+Hy;`o`TT^{ z9Rsz@bCHhPi1}JM64Ty}5kF@eg-Kx2xOiHm#@*U7U-w@Vd@5WvI9bgH9un+Jl@9>p z>E8Gz28tnsQT+qGYO*;uZ3vok6gCOQeFnRyxXu6K-cXn(+iHPD61W=}tJiK@&%t$l zZ?TA`xkFp&HO*#7FF}kD#0hAhg}+dKK|OwBdueYdH`z^~Xl2`*Kz}Riy2RIW+j&86 zxJ;vI;IM^LjizqlWO`MJCw7x)ZN!dKVs%?6ia&~{*;FCpt~2hAtzNIZb+uq~7u7b& zxF;oV{X&<(1)C9ElWY%=7-HIe?_9e1&Xz%zGl(@3TI!V6!p&zrwLg_E zo}!`9cffKW83jT{gu&-)!3gizW2C5e=E|$ii-qdI1_#$OG$smVoL?ChV}#*S19t^X z@mFJDtjQBgxVn+9$qn_|rUsXO1hv!T-RLtl(vt7z@P2NCgNq3?2r+9mAh?a3AaVr3 z*}nz>s@Bay?M#QP%&{j^Ugo&BvkY|0gJ*ihJtPu&QFaUt>(`S7jAPi-wtaG4Ud7EL;)7OdXrg!zNsIV~clc925TCSS@8~7R z5T{diL(nyHFNKhjPMr;dih5r!X_$KIS<6y0#grP++WYLfMvL3R*q~y_BeHDgwMKy( zdCcFiy4)IwcC)%*(A>R(Q@85Yc^>`_H z_kf7;t$NOSf~`L7%mGAn`k+{Pamf-b zi=~X{VMf%k>>goNAM84>I?eoolT|k(e-A7;dD=aeUq;yZ0ug`;{dW$3qXrxtZAHF| z9^r?;f}l_EvdhFbB>$o@5tI7^;#SegC?;CF6somqxv;@0H>R(iKH5FnqPRf+a_>GzJYH)QD*Q!MJhBo7F2-LlaG6#J1DESx z?kA*yyiq(X6$PVsR4R%_p)8J2@s4v5#VGzl6s}f?D9ZYmd!IB=HHr^P#kf&CAQg3^ zP!=bsI6IFhCh-@dn9>Rn#k2G;_pLG=uQrN1rQ#Z+PzIh$#huT9#q01FEIwZ=gvA%? zU+xQ}ffpHt3V$ON|GpFkUV^`1;3lmQ25#2B+`2Syi&0ES#Vd_svsBz_6w2ajs2E*` zC~n7Jh~o8HA)im&Tm?tE$Bn?|unD!y$L zCrQP3jY3&`jEe0qMif85Ux?zzS|OtNss81zlm>oo6z5CDFOA{?sra=~D2ucDE_Q}x%Wr|e>Dmf{_j*g#+3dC{(^yjYlSfIU;WD+mIk(dFc5w_DlRI( z!1nkH26oa4VPF^i%Y9H9m}3+w{2o+1#8lc7f5E^$S|JSVr+>K@N&^QNg$jQ#6{Bo% z55ZqBaF|vI13CT6-ANia+$dD|CsT3#g)nd={(^yHv_cp-PXBU;q=5mWP~qoOu{{wi zz+W(Mf>sCvC+T1AcGAGfMxnx=N=56LFz{6T1p{Yjg)p#K|8j4a29_Ab>!o6uQQRRF zXBmaEcn%eJtVI;(;x9yTo>qt`R_kBx5z@c~Mxny5qhikGFmNIMf`Lo4LKwJA|8id} z4P0&%FOiD8QQRaI1*1?FhpBkSd5FTnUx;E%D?}8o{^fpKHce%tP~mG-oXrM&9Dl(; zLo0-V3H{5xP9oT36e|3cRIIoN2A+k#VBpzWAq-rrf4OH$1J5;zWm54xqc~eCo^KS& z;tf>P*#5o0j>8WU_tSD1IpwpEQc! zNX5fOp)5X1#m`qEiqGILMDcm85K(+l|8l=94Sd-sRQRt^apP(j_&WZAfp2MrFz_Ay z%Y9rL_?}VxNh%&QioZ(54~;@u{0SA`;GpNH_zO||LMucRztX?lyJb55#wb+y-&3*T z=`ip({(^x&X@xNG7yZlqheYsyM)7Z{_`6YTC8PMKQ7DW55ekm|{)@j5#WoKyPAEha z+v#8KJ<{S1Mxny*OvPfhRlDFX7}!lKgn>QuFE=L<>}3=x{JuiLaoB$N3kD9<3Sr=2 z{mUJb1`aifjZ$%#QBl)G;o|zsPKbSjB*e@ z4}ZbHLah)6PSC&H2W2XqWE3j=DOCKN-PREPf`QYtLKrwh|8h^42o@WK3cr+!>p72D zhQDCoY^@Lm&e6ZzJ0*gZMxnx=PsIwh*Q@at46M-#VPKv9<$hfnxX36}_)Dp{o;B_= z`~?Hg)Cyr>z5eBXUK-e76e_$!#r7PdBC~1W-uu=bVkCtgrF$xuaoQlJk23O!O z7-(vRFfgfqxo?pOHXDTs|12urI0ge(;V&4tMk|DY=jdPVbLHdfjpF%Iaf4C3NGfhL zikC>mO-Au@skp@`ULh5?8pUl=al28xRw~|L6mOJ@Hyg!Uq~h&Hai>(=WfXTy#e0n6 z9;tYrQQRjLA2f>lrQ*Xz@e!$b$S72DeZnYI0zGULDuEs~3Y9>gGYXYJUo;ApKwmKm zl|WxN3Y9?LG76PI-!%%AK#v)PN}wMZg-W2G8ih)rUl@f-pkEt>N}%5vg-W157==op zKT|P0j`H*u{Dt!LH?0um=^y%+`%n4!KSuFiso3UY+Q7E>3kG&DiXEk57o*r!Dt0%D zJ)~l9qfj9BGYS>$fkvUCJ;W$fw1*jmiuOrHp`ty)C{(mZQBkOa`_cFd(2vs!!F@pg zatGz(1xB$@Do!+tlceGlqfi!~Y81-G8AhROoM{xw#xg3t?Euws`~_4iv_hadSO0QX z%E#v$#cHWoV-#zp;v%ECSSl_vif2eg-YC{fMbRjRrDD`56e`y!6po5fC>-NPp>Q;e zLgAP+3Wa0JC=`yXj6&hKhKfBmB6Y6CUr3$nv_hoL_4=27{6Z=YVrt$X!?(0Tgnx}3>tOT~Uhp|~Gt6pHO3MxodqW)zC;lZ-;KJ;Epy+oOy^u|3u(6x#u#P;BQL zg<`wNC=}b1j6$(J#V8cpry7M~dj=J6*npgV8va5OF3}2+)64WPce#AL!YIy>id9B& zo>V;DD3ryuMxkt6WE9HArADD_Tu#NU*8tTs@fT1Pv_haN>R;}#d^~CtV^XovD9Tb% zGYVy~ZWPMKgi$CPn~g%*cor4kE(6t7_zS46(F%d;Ir^9TT>1EVqj6x;6_g<|^{6{RbY(?7sp$mt(zg~;ij>R;~9*;Og~G9$Q79aH8im5Kk5MQb z`x}MAaS#=!vsXJ9e<5|ApcNu@o~VE6$A?pK2uHJXW%whtLWDnB|I&|-qvGi`gg;(} zpQjZf`~v+;KR$tqo3BFn6J_|5wL*j+(!bnO<>S+h;tZ)c(9H?l&2QLi$#tP)P4I z3WfA8qfkiSZ4?UWy+)ys-e(jF=?9HMA$@>~D>zjCF#bXYJg5~SK|iK{xgVF0KV=jT zOU0u`@foT3yit5XD!yzKUy+Kh8^t%I;@d{?9jW-fQG7-ENPb`x3g(ZELIL}kQ7B-) zGztamH%6g={oW`Pus<4w0`?c9P{961#XClkTz|)3NUncrg-EXd=wI%C<>PHWsl#uJ zzYu;0qu5a@b}@=wrDAuZ_?+avr%|Xl_c00;%l<~8VmZhtR4j)Yg^J~gRJ`U{AdFx#r zk(8FapSjkUb9{K-Pjeo7JI31kJh`~^fB&Ahlx?mwE`LQR2dGG>1gJ`=2B=BUirNGX ztw+$%h6D|5;$gRc6HR53H`l@-9J7^et~D;VCA0%{Aan$DCUgOGCul`4f`;}bXy^cf zh7R`7t-Bm^h)i^OkZ+jg1+Qv1bxXd2>Oy^6Z9p=CFo23#6!JS@-6VU1@JjRJ984WB{xA^@)5M9AVFJ-c-Z29yDBP^JV*(H@E|2^bER;( zEa59a1wutY6+%@&4T4tGB4}t`f`&FAXlP>(FZ|yNO=OZ|Ha7^zY-yWoh0ARSZ2|2G z9RQsOodMklTG5lBp?wG%+Ml4IgFKx5R*pGXCOPI%gK*5@wz(0wJc=+HFqSY5@Do83 zClNGbDnT=*dx+wH8JHoH9AdUXIK*7r+&o-fNLU0|O85n^g77O~H9;%Z5j1ooK|?na zG<2(nlD*`Z+hmes?l1_)++~~Fjm!H8e*z8?4gro5jsZ>*P65sm&H*kGE&;9*t^sZm z{sP<~{0+EAxDR+l&?kFB&}Vs0&}Vr?&}Vr=&}Vs1&}WJ8r@cRYmdFHsmS_ZhmKX$m zme>S+mbe}^`~QhjJelM}Nnj8@lti|<#JHS{kQ|VTkQ$JVkRFhckO`25kQI=fpojQ^ zptX4jTAQDswS@>;Ta=)+B|OAjB9GduYIxLA2H{c5*yj4;@>hfbfbxXFfQp2nfXajs zfU1O1fa-)XfSQCK0ksGd0CfnH0rd#e01XH;0F4N<0Zj<=0L=&s0WAni0Idki0N)UP z1+*os1~|exKnKD`z_*0WfX;-ifUX4nlzMoGHd;Qm1Ne8?-Ui`g>uZ}kjLZEA#{dHf zCjo;AX8_+3&I5)KE&)amt^&R%+yIOw+yaat{0$gKxCaHbI_70ci-)0O<%Z0G|?K12Pig0x}am z0c0U00%Rj31!O0r0OTa32IL~71LPrO0OTWN1{5G<1r#D=2NWTE0Vqbu11Ler4=70} z1Sm}?3Mfk`0Vqc(1*kwM3#ddW52!+@1gJ)+3aCM-0r;9w3s9R-7f_eb08pQx-={_% zj!cs;SYw&w3)ajae8F1S=9b|5)QYeS@D1TtKwH9UfFrB}bRcX5d`s92=uFrO=t|fQ z=uX%L=tR=ubEb7)Uq)7)&?~_>OQ6FpO{!FoK{jbd-k+L*)&RmPy|5 zScC9}f3(dmPw-IuSGj*8?w?{1?w@9xyNr)?I^h~%CgCPvHsLm4Em zEH((8OKo%Mad{abBVYyLGr&qhHo$5^4!~MMF2H(1Ucg2|0l;sB!hkJ=Vt}oLF9ClL zN&|Kfz5?tbQ~>NDR0ixLR0HfM)C3$P==(e3q0b6=p@;Fxj~j#+deSy`43|$6P6Eyn z&H&C6H1U#$DE=?s%QDIL>Y72QxM7=JzU85U|EuIS?!Rjg?!RZ7U4H1{?LxW#5$=Ct z5bl3wn`?ptz92LQydty$ye4SkI}f)fNX2`Zq+1WhdG;m2W8QC=pgsALc-s@Udw;*8Y@eE>BG{Q+MS zG_j6{v9qM2u1r$Vz#vpKvdulf8JiFu1DX+@0$LC>v9*T+{@)S4kx44r8H9@Vwz+&b zV@EGKo^20cK7i0a;fMclT`FJ2o-&8b35<{t3N^SALJqOBncQSlLQPk2m!-w zbFJ`@BMEx{Xb&6w34V}C0>&AHfbq7uJvhMxg5E#b!1V2Vr<@UuY(m|>gy2LZDP zdjDJx+59ItPbLXiXb=Jx+ve`#5tb74{^cI#O_YEYGD*NHgAlOBHrEUR>j--PMh{i| z570!Qq2fJjFfV~DG;7{A!Lj)Wk=>3O1WcPnyj>sed z#|=WjN!wgke34EQ^!{@m(oL3t^D;@mC4&%f#WvR!@8BAt2jB*wH{dUVCf@N-agl0Z$2<_`*ZNu~P9;CaHLB5Gvl<=H4UVJwfk}a8Lqj zPnCd(GD$!bgAfqSHa8v*8J#c@5R)(k5SyThaXlfOi#!I$Uw*s$VAY@EFO~iGiH@ZDzY1dik!B&4me{j zLMK2Tf(GRGuxXJb7LZ923mb&QqPDrV2q;d_`%8Mb;=iD!WRifg1|guFZLUAwdj-NE zKqbO=fGPw{tnT5_IH{;1lT_3)2o-f~bBPd8kB}75fRF;vh=9Z%pSh-`h zOM_6-+BSC;5p4)J0PP630PP8y_^pSY{!c+CnWUntL8$0%n~R8mo`fiX-h__;eF>U4 zz(a2Tss_p=6+;X{#ZcQ^ECdWEd<+;#hz}S=(8MtwTKm75#>ylW;|)T^1lwF&1WY2d z2TUP+3z$aG#2Frv_}{%}$|MzY3_`^`+uVM9DHjm*{>2_r-jRU0)kDB91|eX%ZEgWB z|4LX4SVi~+u!gV#u#T__uz|1^u!*n%u$k~1;CI6BfNg|70NV*W0XqqM0J{l)0`?LP z0{$c%0URJ42OJ`t0vsWn1so$>0GuFP2Am>X1Dqk;1e_!2hjP)w+dc9r4a3j7D+b|H zx@MajiOV+#qXB;rG~kYhCl@906LkJ#5EAd(<`UuZLqbx(V?qkR6GCdhGeSDR3ql6K zD?(<#YeH7QTS9igd%_oh{}J*4A|A3Q%MXZ5CP!*NPz#WRpdU(d4|T4|r<6h_`Qx41Abd(`ZL`atdN_GR?w_rHFB*jV zKeNrv!{w}mg@DfqO8_|t%K%>xeg)(vtOn#ItOMjHYy=b}Yz7o2Yy}i0=!2B-@cDIl zvNm{Er3}K8m9fn^T>gsC5m27c8BmeX4N#fT6Ht}V2T+~RA5fDp2vCdg9iR?jIG`Tk zdq4xi4}eC5aeyX-p8(AWlK?FUQvt0A(*fTQ^!>H-kodX0&}22jSF3|Tc%k3g=2GHv zXF?i4S3-I~cS1%$Pr_$_-h^y`zJwfr{scYMAP=+rpMb`Aknaq_F^Adan&I*YLQBB+ z1P%DXL&oir*bU#caRwoAylt*0E>9rn{gXYUdME+UQ8CRR1WdQhy~5?0gg1cMg!h2C zga~*I^9hjw3klHxiwQ9RO9`<7%Ls7+D+r$eRuc3<)_92VyF6J*Jo|cs@MIfpb7gV) zH$r*97D6S!Rzg+4AA}l!9fVqdU4*)TJ%k2;eT2q<{RBPtArHAu$b;;}9Y+nqgB-Wb z?ZM@fgg*hN2?qgZ2}c0u3C95!38w&;31Y>F0`C$LS9nlTK2OHBi_W+k;6CMLTCTKu>52gKInUnA!2@OJGV%ywQTuw@u z4oFVWfK(nPZt`4>yjW5BC#6A8wL|DE{xu$ui03IL#n@j?-r zg!>oR<`&}e62elza>5G0D#B{OI>LIuCW3ZuA!y4sg0}1+Xv=Pbw(KKl%K;Bh{Ev!* zGRd1bVi2C}m~D3Xq=#h(`I3j6o8|t?xc{0#xc`Q2?j|nZCfou1 zL%0WcNO%NzLU;;zL3jyxO?U%%Pxt_cc*KqwNhWy>Q3=riF$ggMaR~Zk@d)}X2?+Wu zi3$2F$q4!^DGB;4X$bl(=?VHQ843ClSS2&!Yukd?uuLpu^Qw6ll2{uAjUlbpM|K{$6$+gvYP z?n~$g7)a27Aq4$Lh7t518R;S6W9j@}Ch7daAastk&5gt5p9m8GlL=D*KNF?{W)Wrs z<`L!t77-Q$ejzLa{7P5}SVLF~*g)6_*i6_0*hcsRu#>P0u$Q1OV?RM3{}4eR|0qEp z{{%rF|1?1#{~SRd{~|#j{|Z4L|2jb*|1W|*{vCoo{yzkL{09Vm{Ko`+{HGpHZTYvJkQYvJ-LuauIR^@)7a_3K0qeiV=zfN)k!| z$`ZZ;R3KCYR3TIa)F9LZ)F#vc)F(6mG$u3wG$*tGv?k~aZA;Ks*q)%T@LPhu!Y%}T zh207I3VRXs74{|QD;z-3S2&oUuW%?qU*QOXzQR!ieT8EP`U-y}=qsE+&{sH_ps#Qm zL0{nvg1*Ap9-g0<@8ler0StfE9#a0jmjX0P6`G0KXA71GW;j z0d^2}0`?I00`?OQ01gw50FDz*08SJ1QO^J! z$2Qj&mj@6A0)`O20}LmO0E{Ax28<~Y4Ls$#gK-dV_OxOb0M)(7;lduc0m#`0TfS~6-OwfPi z7(q{ZlAtF&L(r3+C+JBp5%i>233}2S1U=X-54VoV3%xCqywJM_;f3C_&E3c4M})_K zr-WyKmxNbASOYN8Hb<;i$~CdB_Qa*5)<@b$q0I| zlmtCk8iF1yJwXqa(L>A)^8PZ(BuCF;5Z+%l+uY~4oRjbcAP*rgpa7vDpa`KTpakJd zKxsl5Kskb*sv<$pQH7xAs7}yxd`-}E)FJ3O>J#)FjR<;pd;a1Ko>$+Ko3GsKp#S1zyQKPz!1WBfZ>D@fKi0efUyL9knsdP`b2^r zeF{O3{xd<3K9itFpF_~2&nM{77ZLR6O9^`PJOxJbAJxJtMNxJl4c-6rTc?h^DI_X&EAM+7~`6M~-OIYH0yilFCsxdI< zBk27*JYI1ne;g0sCxosc?e*1ik-|hfDqu4$C9~#|%Qi3ENy31e_x1{bxNi zj3WW(WRif31|i_GZLTQ-t`hYA8y;f$cW_fC3Ak+#0{*tmwZl93hoJXA@bJw4czY<5 z1pI3d0-oCDE+ODKLGOR%q1-z;!GAJIz*~b5@ZL5z90C6$=>3sSOF)c|1py@qdVd)Yqx_$RvNB0Pd4mv8(KeS3pF(AV-e1i_HUIOV zx=a%AwLu7|ZJR5C6VxT>{S7?C@V}8Xlt}`b7=(akwz)hwK?{Q3-`c}3{+sxXOcKz} zAOy6x&5gndIui8$&K~YZl@oN4NdmeXgn*v5xrjJHZ-U<6FMxlE{biDXK?WgUh;1$- z0)`Uw{t+G?zK};4DU$?@HV6S@Y;y(h2;&HP|4$zNd@lhLWRif%1|eXoZEh+8ekM!@ z%plAH%pz#wTo18)#XOm$Vxd8(SZtdci-4ts@qlH7iGURZO|J2zolT_?72o-y5a|!TK?IR=x>?b4x93*Js5f9Z~ z%TpYcNh(elgo;zPxu!Vd8A1!dIYMi|1%f7C_AtVKU#`d`71s?y#ZB8>9t7MX=>30t zIOhNUxGR$c+&2gT4{dW@5b&7L9q@$E3-FAfi7!3m^na>e$s`qT3_`^_+uSPzd?365 zL^xvs?*Wkrni$o?HviXXG?}C#hC!%^Wt(e>k17t~8$et_J3xGbCMNXIFQQZ=l1VC( z8ib1Ewz)rX#*~DEfYgK|fV2cn{M18c|Ep&PnWQ4KL8!=Ln=6SkW+RjVWG9pZ6n6Lv-l&~96oS=y%J=BgY6{Td7in0cwqMU8+8UiX1 zZUQP1ZUd?iG_kse3Pq%%hD=gX%OF(LvCS2%9WK`+6ah3K6bCdSXkt?jzvYmMW->`d zOM_6++BVm*R=C`T&>7H<&<)U@po!mlxZXf2I>{szT@6A-ciUX*y5Vw9LOMWiLIyxz zf+h~|kil0Blu0Uv7=((Uwz-4|7*0q67)eMD7)8*;F&@SimWr`5NyT`BP%*(am!o#L zJc*DCFolp8FpZ#zGd!FqBo#Adl8QM7p<y6aU=blJU)W9zjNh-D(go^F9xsqRp%R32W0J{n0 z0DB3VxZgvQ;!<%yCaE}V5Gsz^=GxZwm*xLf!f{gjK<*^rTfk|8W}fp0e=xR@s5YyC8XkSnWW;LL8y3Oo9k9PTz*983HX=L2k?}j zi7!0NFD4Z)Ws-{52BG4uZLUe}aQQuh6-f+2MKar5O#JChL5KrLMTiGTL(s(Z9;Q{4 zice*dicAKf;xpS^mO9~bR>J3i&j~pJIS87V%R`$QQjuFGsmNy#Dhk-<#@7j#3lSy) ziV&s%iV-yNOAq5yN<~STq@s*LsQAh@R|$W#$`h&rDiUe{DibuZnui0Gq@ub^Qt`Dx zsHkn5D^e$1u1hEms81*fXh_h+CLW@sk&31=Nkt2TP|?aZ*9B+%hR_|*me32}2%6Z@ zL%D=f@vTf!(ZwKCbhFJJ!EYEn2zq~S5BFdWc$7 z0!rZz)(C?T@V#xWEG~~Gln0C z_kalJ?8zeFZ=6Vk$bcw>Xn<%0eHk%4)bfASV#*{xW8xTuw-eVkyZniV?m6ZDUie)+ zkwLgWiEXYgE+-=l0Hh!c2Babk1*9R20Hh;~0(?ps1IS4D5s;ZM0g#0-8IX-I4UnBM z1CWz28<2}I50Hnj5Ri|s1W*L#1%^-ZRHEeT@aQSOOQ$TG(3qV~$Ye0QMTR=mCb~f>l_e(j% z0Q}X^+#npHrEP97F1IEO1+*cI0JI~F0<0m z;z~tN{8BQ}AXH4Y&Gp6Qse}Q5p9vZ;(?jJ{l2{u*pywEb#Cf*4dbqrR&=9bQ&;+oA z&>Zj!p%q{`p$*_yf&;7~bOfv+=rPv^s37M~fOoaYAe?)%Z7wk`|4v8-*hWYR*iJ|T z*hxqa*iFa?*h|nu?Dz0-UOCl1{5d{k5KeW(Hg^D*j}Z<7P7sa(P7zK5&JfN3&JoT7 zE)XsOE)lK*t`Kejt`TklZV>(k{6)A2xJ`Hn_?z%A;2**>zNZEO3<(4bPtQm$@lpcesat* z2;b*9wz)UBJdf}muz(N&e}oqiA_JBXq5*y(!~iTO#0LCIhznRn&||Lk(ANK4=!iQu z7=&|gvdwkI<;?`Wf2)UUr6gcE9%Q>g2-sa5KaOv5zYXv5Y7Xx5iS945Uv9LBHRGnCfox2 zP52w|58)o*KH(wYA>m)ZW5P4Q6M}wh&pmvcQ9j4B_|CsF2%qC?+uQ|QeoMFvcu%+n z_#fdWAmRn9xDAL*xC@9%xDWV<@CXot@B|Qx@Ej0_@Cp!@@CFc{@E(wW5COljBqBrx zBq2ltBqPKCq#(owq$0!xq#=9)NJmHn_>_VJu(}VLV_6VIp8CVG3Y4;b*`|!c4#@!W_U4g!zE6ghhZK2}=P#5taic z5>^5x6V?Ex64nELCTs%CAZ!85B5VW9A?yImBkTq&AnXGyA{+oLA?U}p%)`I__wlv( zq<=LCpW`aq+y-1;L--A_j_^BR1K|(ACW2OM@zA)Dbp9@r{L=o1LFn9Jo6A!-T;4^< z57ER|98^ zL(u!MIq6Ws-_w2BD&a zZSEM(SdwrOP?~TCP?n&HVuVMbN~$9_F-= zih43hMMHy7(bzUO60e~tVKksQVJx5}K@-36kfobcw2?_FoI$AQV4G`$Gk!~OfX;-D zfUX2h?BQXZlZu`)Nkt!nP|?pe_X1}eK==S5DAAKM~Dg-Pte4P9-jF>{F7voim3*n;%D335(La3ECb9U{0f*u(8T#3vUQM( z1u{v+VuMhz)HW9b0m}%n0V@b`0V@fbxW+@nmQt}+CaKt95Gpp==6=G9+Dw=P_?<8n zu#KRJJ3Rc^RVsGMBo%uMLd8DYTuYpBKSA$5tM z+vZjw;0a+Z;2B{9-~~Yw|MM`fyHvcENh;nMgo+Qgxqf&J5iZ&N0|Ai;LjX|-n)s22 zSpLI|E|XNmG6)rMY;*My5SP#h5TDQ#kbt0xi9IanC>2R$l8WR8p(3SiE)@b&6Vd|G z5rC8H9chZ ze{Fs(lT_3(2o?2gb9-^d288{9MubCvCIn4v?%|pL4X1@nQqkHVRJ5_p)y5gy5$XZj z6B+_K5;U>1ha&ByqKiyY(cK_a^t8?0KtON8EkIww-+=xEO&sLmZ~vouuuM`h)F4z0 zx6LKMYZysL3>Za72Ka%XiQ_z+X)F~#$|MyN3_`^u+gv%EaSEX#U>czcU^+n)XL)Gf zOe$u}Bo*@vLd62xTss6TB6I*OA#?)#LeRt&9wv5{ieF`tiq!_8Vy$hiEMCKULV3VO zLM6a&1Wo+i!>LwMu~jCi*lrLicG~6^;f%WpO96Wc%K?89H1VK^YF(t_kW5l>)F4zG zx6M_<8BY>w0!|ZZ1I`jO@q&kB{^PzVlT=(W2o=|CbH#AR8-yyjG=!f4=?I#b!NW)XUsp5ABo&_-go>=Tx!pM9=Y)NL9E1aaF9@2L z$HOcCV=%8wQc=JlR1~t!-A6zX!XrR2!V^FVf+m*oki`GdD=m{$d}R5H38AfQE!kfW`z(Z06zB4^q)wCaGv; z5Gua0&CRMGF1IDj1vtV2KnH>*b_y^~Dmu#~72OO%MGxEDP6YHK>;d#4Xh44tBYu>` z0WwMAV1tnOoo#ME0)`Rv{*fMfjg^4!Ws-m&3_`$I+uSMy{76^}_=&IqFp;2%Q#_O! zA{A3*l8WgDp<vH0*>3}en7xUg5H0|!-xqIa8@P>xL^_s0Ivv|_{PJ+ zfl~2SCaL&f5Go>EvCAKD#z=&SNQ^>=0*FS?#26lS4VQ|TGD$@ogHRFIHWv?<6A)@4 zF%dxnk`nYEN#UW{AgM?xlT@TJ2o>pUbLnw8BOy8}G7~f)D?$H}>>k#Qk%}BLNkuM$ zP?5(rw*-m#2zq}(4>SEAxT!8Ugm z0hI`Pe^n28{Lj;BGD$#9gAh>5Hn$l8bqIQYeGd)&7rKE=642Nn1T?kHHN)kWgj@Lb zv?gdkTY~;0?L90UDHR=Ll8R0Sp`wdzt}8D0AUGVl7eNF167(M#;9<*mQZY~_sTg7q zDu&wTawBm#LGS#Rc2kRRmlj+yGo5+yY!9XyQ!|DThkMUouI>9fMGD*EW|Q0rv=n z01pU70gnip_{75p|2x7{nWW-{L8y3ToBIp_uL;=zZwWa7?+Kb1;i^<5@_&6slu0V0 z7=(&wwz-iAh)&S^V|keDzaFt=l7P4dAt1hOt_K1V5PAa=5&8j=5HvBlhYbEJoI)n4 zNNo@*(%R&P4w#~)H8H*C)0*Vtp0enf&#L^zl`!8G>nWUneL8z!;oBI+0l?Zx&RSyFP zOF%W5B%r222&iS7ON@Xz1iin$hf@Bxhz2rAKx2at(9|~f25+f3LGN$n;e-Fnv9(MR z(AFRXINMxhoS*|i@9*Sc-6#p@ERzIuGYA1aY;!{q(2Jn=_w|s-|7PD$CJ7j55CR6< z=9VMiJA&Rn+{1PM5=Y1+0iz5;zz?>$Ex9-8@I z_14NH0UHcLz$V*Vbp&iC=>1zgT$&>R+hme}9R?v_mu+rFgK&8dLGS<5L&}vBuwNz# zIAjn4j@agEH4K-J5$Xa?5E=kZ5j63vhoSO6q;=;4osbN0 zlc0&WJ$$@OD(=W675^B7iu<;?)HvfqLOQ@>LI%JSf+jxqFk-n>ypTyM{xb*_Z)|h9 z5%7+X5AcCd5D?+o|4WSQq2DyAh$53zd}I(RV%X*i;Wfk}6a~Z~lmNsfXyPXxKCF<6 z1TslQVuMhT)He4O&X}A~0g#eV8IYQwiRnBfStJ$dWs-`F2B9LeZSE4zn1yf^kd1Hy zke#53UwEkbi&W&2Nh8g6T>wht>CX+lzO@mNT%Qp7}fBfqZo&)L;UI7{qG_kRV z+S8??iA++_+#po6w9VDP8Cw%-0ooAi0@@KYv4e+EGo_-VOj6O=AXId<&2>URcS2V{ zPeKnsZ-OTF^YGD9spv10R17i*6+>)uk@0a3B}4-ZC&U1ZBxvGj53MIj#Sbz`#W;gd zG2S*86=$44hz^)Uhy|EJ(8QlTl$atF(`Ay1Sq7nEj%_X#0_G9Y0u~TH1uPA= zV3$D%*khaf1p)gAD**cms{jWHns~&+DgP7Zs7z9E!XQ+fvd!H_z!}0_z&XNwzy*RP zUiPr%SE;xnlT=(c2o*PNbJg*6x<%0Y|MpOLl?2?CNdoR0gn);(xfTd`OlS>wLTC$k zM$p8U9uE4y^j^s%6>khe#XH;FX9)N}$OedT-2!p|A`vt(s)qtUOGPx9q#}kvsEB2o zD~woNzmPrD}8iar!ZF89s@Dm{`U?L$qU@}1yr+FwlODcYrNh)RjBUnWYxA2Lb6PJrAXGfC z%{9Rfz()kV|A~i){)|s$l7JTmA>fs5ZYWOhnlJ+JmM{wNo}h^lZb-$?{_l;5GD$@g zgHRF8HdhV-(Fqj+F$q-wu?d$YZ{rPBE3PV$Y7g`i-1f7y+4bGQvTnzvdSa@*$qNKPTO2jd{nszB>;H{r2zQ| znpn_7%k@%GNG7Q$Y7i=l+va{jz?Xy-fKr52fHDM4Ea&03Kc%9)Oj1$FAXHSb&8=t@ zE>|P00@NU^1$<4=#5x{c`rnr7$|MyH3_?XC+gwMSu?e9wpc$bXpanq_TYK2KODevR zNh;bIgo^gIxpp{XM?wccCqgGc7lI~s_t5-zspuh-RP;6o6@6`UA0ePWAtqoTAr4?L zK@*31$hlT3hRGxqBMm~uDBIi*cnv=g#sS6>eggbR(8LKIUhI*Ii84vW6oXJP%{Dg@ zXPizL4VXz73z$vN#Caax?URc6GD*cEgHW-=Ha8yuzYrDymJ^l&ekEw)Y7bQpO2rzP zq+-26sMu(mJBonc2qyqr2&VyC37WXw!+rl*?2t(+b{m9>y|%f@c+-CprU4ERW&jQm zH1Vj1?)#C{MOj5DXAXF^2&8@o-ydu($% z@TT_>b_4bk_5ltOH1UXs$=jsjs7z9E!XQ+fvdv{gz!}14fOCXwfC~goyzJrYO;T}1 zCaJh?5Grok=1$->+#;L?+##F;+$Ct@eGl3FXYoKLsd#J5RJ{W|G2!Gk-+IS6-2=xF_2n_+z2$~qfL$@_j5mP3qh+_~c;@akh z;EeGJ!vF~gBLRsBnwZqXCI9ClnM_iV(jZi%w#{urKw82MKzhP%Kn8*)X7&*GH>vnc zCaK6~5Gu0U<}M*1CqeJe?V-5;Ihsc%3CM2{0t(vZUgA9#CcFj|CAkUf zic&I3MOlMTQO-7(69E+nxdD|3`2bZ2npoY#1^-)84Vk2(mO-efW1CBXfO>?~fChwg zfJOvOZ0e!wF{x-KlT@@c2oU4z{A)bQZY~_sTg7qDu&wTD&aK@CsYNDB-8+mB52|m4{^3j z#aNl7V!T19m|&YLgn&teqJSxc5`bw0O`PGOqyKlHnKDVm9D`6X&o(y$0SgGT0gDJ4 zu++nMhb8eBnIv(AK}cL_n|pwO)r7}@wS=dD^#o1a@x@f`)zXv5pa;8_aE_)&42huWs-ms1|i^-ZLS;w&Jgte^By)v zjU<28WRif(1|i_8ZLUkRaQQkx@Bhogre|`3TQW(&-v%MzAKP55rs48^LS4W^LIc2K zf+jxouqTb2@tI6g@zNkv{AZhs)goMeL(u!*dl-9L&iFwl35a-0Ap}IW&Gl>&E=MKw z0enR04~Rj~#MmC<{4Eu6WRi+_2BG2;+uZjENJ#hrkeDzIkd&Z_DLgE{BNZuSl8Q72 zp(34aZWsbSCFuQ`Je*D-?=iDX5|Gs(1bl9rtK2+X&Oy-ob9qP>M*?!oBmwyhLO=oA z+--bW3K8xCiV*GtiV-yNOAnoH$wQWuNh-=1go>|hb8YdE1M+^6`md`-v%s7=TMs7uhq1|FjO?_)!mq@syIsAy)Ji->?0geZVkgpUB<5Hzt} zfD`f>oJ>;D(I8ZGvdv}3Up!q1UjVuh@&I}eG_kjbQXk7x^pQy_`Wu9bfwsA4_^1XG zUIM-&yao&-XyQl@Poqf1_cBSv4+f!PtZl9x0)8au{S!PiNG|~sWs-m?1|eXYZSD)a z$LWMTfSH8+fZ2pXfVqUCfcbz0Dlm)bEk(tV#({>C6m0~y$0bBf7<3w;`2E` zI0HCDI1e~NxCA&xxC%HyxB)mt&_kT{@WFpE&&edGx@Ztib=fu-0Y9d$5+Vbx6QTib z5@G;u5n==G5aI&v5>S0r2sJrWdX4XQ{P`Men;U}5!wB#27sLp{{{Y_;BH?%Q(S)dgF@)%VafDca@q~{7 z6A1AElL!d`QwT`_(+J4{(+Q~nGYM${vk9L9<`Oai<`c3277{)OEGFaxEG6UyEFvPaHHxh}538Mi=31b1r3F84L2@?UQ2~z-P2|okQ6J`P~66OFd6XpZ1 z5*7ij6P5yQ5|#sQ5mo~35Y_q_4LpTO_M>q-iKsW=4aK}FB^MFW%OMobZtAJ>P8-VD9TY#8^zX7oc_W&Og9s=SK z{snwOcm_yFcnL^McnwHOcn3&M_#Yr8ArgM$OihRiNK1$gNKc3b$UyiQkcki<@EIW? zAS)pW;B!K9Kn_AGz!!wHfZT*n0eK0T0Qm`700jx30}2yz0*VrH1Bw&!0lp*@1e78a z0hA#W2Yf{+2`En}1E@$S2dGS_2&hV^0;o=?4yZ}^8c>T+2T+GlA5f3b2+)Ag6wrv! z0?>re8qkcOKN(wkIOG3ANGqA-M`as>@T0PwZFaeXhYV-rM{7si-`ODC-_7Zk0Nf))#Bak72vGo!2p<9dCBy_gCBy+dC&UB1BqRX*M@S5KLr4aAM@R|yKu80K z@VEWENe_rb$Owo+_zVz@kPQ%>kOL5tkP8r-kQeYVp#UHrp)lYRLNP!>!k2)=gwlYd zgs%X}2^9b-36%k<3Dp2;2{i%f3AF(k2=xG&2n_+B5t;z95}E@(C$s|OAn1?%Tm=1@ zoY%wEjPe&rKAGe%l7a@|FNVUlxpw&Ph(!q<0L2NN0ACWi0!k5j0Ll=01HK~k1C%EW z1XLsp0aPXo15_o91XL&JlYQ-BkN;2FwPcb+xh0p}hjnEv>gU|}li_iwphu{GH z2>Sj8dbpBBzB_|tk{9}&L3p9VY;#NTiHsmD2YgRh2^dXS0~kYC4;V+-1Q<`)0+>M9 z2AD+H0hmJA4VXsQ2bfMc0GLTQ446$g2AE4Y37Ahf16W8n4_HjN1XxPA3Rp(C0a!t} z1z1V=8?c&i53rW-5U`%`FJL3#8Q?dman>MIoVU%*!H>s_g!zEW zghha>gr$J%gyn#ngq46>gf)OWg!O>CgiU~Zge`yvgl&LFgdKo?3A+JL3Ht!g2?qc# z35Nmy5%hJv^^oJZyuWuc$@}}CL3n==@7m>0@e?63Arl}fAq(Imf+oiF5FxsJ3u4J6 z6(1Xfig>oU$@n*)PYBZh2?;X*i3zg-NeS}+$q5SqDG5sesR_#fX$ijq(i2t#G7#1Q zG7&ZcJ|k=fWF>3`d`{R7$U)cz_=2z(kejd{ke6@>ke{G$xR8e~8RV50mPuZDF@x~R zOW5XW;!kc#g5F=o!{G<=wJ0l-1e7-j0Tpd?cksQcO!x;-mGA&io$we?lkgN!i|_(a zhoFb3?;&Y4d8`I9$*CF}gi|%O&Gp86X-?<|Xh|3dXiXRbXhRqVXh+b_4j%F+ltXls zNeL6&>C;s1QBkV&3wl|gv2HMY6>cs1(?jQ|@6 zO#zz-EdZMdTCvqb1^+*#*(Q^8?l1_QyKHlV@$KJ3(EI=NQ05~!^nRHn;E+KGIAWXo z9^c$!gdYGW2;%^!2%31-!wLVtggGaZR9rL&6_;&u9dO30gie6#gsy;_1Wml{AyZm; ziaRn%#Xkn2;=XMzF5crq!Y6>oghYTR1WkPIA)Wsv^@U7Q@t;Accw?KJfq-{}*?|>s01=eMPh?c zk<>Pq3};MENC`+uNCQYs(8P2eM*IKQm-I48MMi^Ak=Zsk7=Mnk5cK}fJ=F65OTO$f zNx&BdAt1MHt|Pv1c?o)d0S_IENI*fEB%p{v2qSYdg|p2~LqG?@48XU9*?`UjP3-1jZz-whE|XOBG6)rY zY;)1@8u}4p00t0Z0|pT^@jDM^N=U^}nWSQbL8$oNHg^?g98I_Z7(=)P7)Q{=pFE_> zB^487l8VU&p<=3SE-3rZ*8v0X7rL0)8iG;vXK8`OjjzOj5DSAXMzJ z&7H;>_Yuwk_7g4w4iYr+h=+J(q~fSdQgOl{RGhL+{!fdC%V!A50p|#*02c_Fc-ce! zJW_E*CaJh?5Grok=JMi=Kth8Mkk~f&6embZcmYUG_z#ehpowWb#PB~~(#j+ipBjXUjJCOV z2*^zMA0P`M5}qO(K@)R$i0Xe3=afk*avOw-ytcV-keHv)4p5NL0Z^EriN!o5@*ie# znWUnmL8vHgn=6ihvV@X=a)dH~3It88>>;)P8>@;;Qc>L?RMfQ1Rl#ehMW_y_L--m{ zkD!SSJuU=X1mU z0-2;@u|cR zEY5h2FdlG$FcENxpov#KeC{i*$s`pw4MN2&+uTqD+#!qr+$D?x+#_h>Lk|`5OT{CZ zq~eJ|sCZ_ZYlPSEg3uK3iqHb^nxKjAJpA;fRJ@l-Dk9uh2o;fRb9WICg>WAbjqnH% zouG-aJS?mt6|rTKins=$BED^IDqceZ!gN3)!Yn`%f+i;SaM=I)kwPY^NNo@*(%RhFpZ~fINgR0Qm@-SkObwic(QX zCaEZD5Gsn>=Gxq@t2RsHkF_YmR_wgjRqWgf@V$ z37S~PL-Q}BqOMF*(ZC>7G_uWojMvbF5FgNtkPy&Rid)r)J z1au?}0CXY@26Q24Vs{TiN=ro#nWUn(L8$0!n~R6n(4UY1Fp!`DLp)sY|GM&>Op-X< zAS8~o&85eYMiKP>F&>KeZ{S#&Bw)Nj2$*1-%Y=YQ1igQ%hh|kJV46%4FvB1O%(BhR z!z0WgECkFWECDPaXyRfIS^U2+Es;qomKlVK6}Gt*IO9sfD!^*OTEJR@CT{RBub5P9 zlu0T!8-$AAZF4&iu#K=Au${0Eu#=#PdpvaZzhm!}Nhq$6GZPp^dNd~kDMI?EQ3-7B6KaEz(?fU|Xcq%BvY@ zr(Ywy56DQU3&=!piCGP-`&3$FlaaK@sbE{=*2)`$fV_k+0Qm_M00jsx@l6BIT1$&U zGLjZW6l{yPweq&%q>B@F0Nx?EfYJs=c9q03GLpn{3O2EVR$e%^K+BrV=our2CnO6JdCRcJ zR)l0g8^TIJTY^jMVBk@>wCE@!Y4M4IZP8ULuP5%nPYEG_&j?|F?gW<@XrOs-Y0*0hjR$f=^aSXu^FqY6AFpl67zci2>AuT4#NLox$uq~!(<@G|q zSA-bAOhRwK*94b1$H4eFX)#wu(qg`XZLvTr?-T+S63zk^6D|Oj5M1Ii1Fr>3i{&zs z7C$T47Av*#av|UsLSDcc!s~!_1edtcKpOMW+ax1tu~osg*shg#79Xq~gbRROgv)^4 z1edtaz=t18i~TZ^7QZXl7KgR+jv(Lnv9xUFDY+||mvjg!7lxCeMhcnEk*aEZ?h+%#|Z z-!hUGFBNQy)Higx2m;a)iUHCS-T`DFxWr5bI(#B6GRsI>WK*y$a%knXz%k?^vBD5PLp6xPaXfPkWe4*|spO#vkcF0qt>ZRWiwEhB01u7Yh* zUMue@j-evqIiM0DRgev+LU4)I4fOGo7ByrfEov#)7PYnVCS#9v3DW@e2r~c;2rltM z164kg7L8>jEk07PEt+fP%|<{=!dyUWf(vMCV4(S@$n9h#i5(SeVrQ+qW%wL*AtVF3 z5mo~H2rjX^fyhW{5g;RJ(Nn>;2-eE$hm-aQ34k!dU_b=HB}N(eC`ejF%Sc+pDcBbA zT6q}}(3g-I(4UYEkU(&WgALpcl@>!}BrS$1*cKzSlK=Cwc6ubCC15n64Iqi&62}?n z*G^iDmyxuXs9;-6*2=qwlb%X=2$)WI0+>N?iC-Jo(?wd$mXWlWt6*DvtCbgk`{g@A zPr&zt5WpgWOI%`LtGP#il##Spu3%dvYvp~1fE9#=fK`Ma0ILZuah-v>=81K^jHJaT z1>0haR^A#M!#2Wtz^{Z&fSm-FxZA*@5NWYTM$%%xf^Bh7E3XXR%tM57fFp#8fTIML zc)~y(^In{kk+e9YU|XEi%Ikt-xIl30FB_=UT>`GiNCK`Y*nkwRyfp~8L2&DD8<=GR z?#M_2?km`Uhgx|X5b&7b);}{)t-S>NEh7ndsbB+A-_+^U2uMpv2S`uI0LVbd1n?nb z1!N}V0AwZP24pAX1LPzW0OTgT3CK$*49HJ-8&H5y0#J}p3Q&kp7EqW_9#E9vj;pwV zE#}wvo483zD%kTYt(8u{Yv84M!^+7>&by+5U0+EnZ#x=RA?yTHBkTs$AnXIYM>q(0 zpKusZhj0||0pSFoKH)T=A>kb0L&8Ns6T%h1M}%vD=7j5jmV{e?)`Yu&j|mR|?Ff$n z9SF|=od_=gpAb^xE$T{02l$lW-V}cW-_{JYW!EB47w%3ScNK5&w#0fReZD=qfQNLn0Fuq}Sq z%1a2b(}xLz0e=vN0*(~c0RAL=4fu;N z2XLM6E#M|$0pK=a5#TOi3E)0q8Q>uy8St2}67ZC;8t^w^9pD9FBOui+eV4WX(h#-- z(h+t7UL))VWF+hZWFi~{WFZ^|WFs5}@C8 zv?AOGv>~`Rww(dr!SYVGmyx{FofPal{fSmy9|UwI^ap%O7zp@`Fa*$@FbvRxkO=5W z7!3#}xLt)BI51ka873pyW~74MW|UT5fnYlwLwFMqM<@)4C%g^lODF;8PbdXQAe03R zB9sRVA@~A@5~=`(6RHCe3GV?$5o!a*5Iz8mB{TqxBYX&$Kxhh>NN5h2OlSp|O86Ks zozNaIgU|^ui_iryoA4=M4#6KVkI(}!pAZCCK=1$y3E_angkFFpgc!h5LT|uwLSH~K zVE|wSVGv*y;d8)h!f?P^!bre+!Wh6t!WV$e1a}*6Gf;54+}F3TVuymguXkys(|Zie z?kDTt!6#+Ef?a=5E1f=UpxQUG{)mj^b8}3=u0Nrb*A2f3P7yu>oFN1N&JlV7E)YTh zmk42iD}+eEp9Ht76a$?n%QmmeNVa)P!EW=8R^ED?(mlc^zyrcoz$3!1fG31qfM*2P z^M!%239^ZoGLlWCx$VGiBAr%VTO9ps1h?MDfWHZ7julxHY(O@xbULSjjbF+7Tr!e| zc@^yX{91XLaBKw#SpfwJF5oQ#_4-O;VHru{+X^_nZ15dIK0ql#0YDkTn}Bx- zg#qOWZv!e4+$Jg;_+zH*s)~$cSJf5lu4-!KmBMA!B9sNxCX@%%CHMmB5vl+h5UK+j z5#9qdCe#KrC42yAMrZ(NLHH2RiqI6$hR__)mf)_vgMm$Rweor+ z;8TKI?{DA@bDG^{Bmsd6HXukVuOI?K2yX#G2}J?n1ee&$KpykkHcCd)B38k+=&hBP z1s|n8gzSKRgj|3D1eZ9-z}g|wVz7*)#ZU#?Vz^e`7r3bs2@?RL2$KL~2rlsp1B1Vp z7UN_jExuH+EhcH@oyRduA-MI^4Ky}i&R@w$0%j@LfZ1Ak_i&MO2oC}C2u}d>2`=$_ z195|-#X=cLiysthiyyV}LUEDH2oZpv2vLBa2`+J!f%yZZ#V<0F7Hbu3i}hN0^%1a< z&34#%QBJ{e=67(e`)3I#hZDZZ~$YNMOCf5Tex4U6Yc_P z5?sLh2Ffjx#M&~F#19l~VtuW=hX`m$aO)czXkb37O=Khi%@k}v3$465IJQ;CHfmkYaUv<%Sc)TD%ci5T6xbA5JE_W zs}3ck1%wk^VlM-`%|mXKjHE@Zf^E@TE3XWWp%0-PpdXOYY@@8U>%LuapKN02v zekQoYRR;RamKMLrNLs8_ur1bW<+a91ZzQw@Y$kL7Y$dqFUkwcIBQ18wNLu`+U|a0b z%1e)9*hk0+I6%k@_?_Sqj~G}zOnU3_Le~NXjH5X_8gJHp#A)*AWMilkf>3 zH=!FKFTo|gZeZ3VX;DB%(&9}8+u|*)yk*#95kfNHZNf@Gae_-MX<+gWX;Df>(xR+_ zZBb4uuTQ9*u0ZGy@FffcR3^B@Y6hBblor)xBrV=kur1!#%JV@$9YPks2ZZc^`UIEQ z$iSCBON$R>BrTdM*cQ#S@)A5d-GVR}(26h=(1zd=+ZkB9U0Sr4k+kTfU|W2mmG>F; z*p(0f_>|BS@EO4+1{g@(DlK}*NLmCb*cKsLdG!$xN@xTKCo};>5?o@mf#bhQix?S6 zi{1*hMIWua2n6&aL;(g6VgUmQE^&wfpS9BBa~VmC;R?1zqE_DTIO$P@BY-i4V}P*) zmpIBSk&(2Rr(j#m*UH;~ zfCYrjfQ5u@fW-ut_@jZ0o21238A*$u6l{y1weoV~q*oI10e&GA0IVUn#PtSVZj%-p zWF##%E7%rWwemV3U^}5RUCt9?lG{nG;wm7eqR|qG4kx&G1nNSRHmEaQpGB9A7v`CSWw798YTin*l zYl?uogyw+zgjRru1ef^4K=gWP@l;0A;<3ZNpPI-nB4B~~>s^e1UiO-9n9rh;uz zODnGj0%{Y20Cfo-pdP^`HZ;(3g|uiSBWck@!M6BFD=!fN%?YCcEeT@*tqCr%t${n{ z*}t8Pq(w&s+oH2p-b*|ubs?ldVmCs1fFHpnb~mtli?j%kk+kTkU|R%h<<-Dv*CW&d zgc0fhA_y)q%0L729ThDjX%VMjTf}SSHAg^SLMuRj!pDFFf=e81pxY{GF+@hvVwi$$ zF+wZv8yv$(!aTre!gqiqf=e7{AiFuJ@iLMY6BTTW$y#~kvB#+dU%+%i6~GLFOZ?iv z74tPXTSn4iu7YjxtyW%1?D0E78Nm01a)3nym$<}0ym>tMQAW~Yxq@wxtd-|sk1Ggn z{VxVutdW4#GLnFG3N~PaR^CqRU=v|CU<+X%U>m_D?l4eexwP0RBWbZ)!M50|mDd&l z`w1NY2ML`4hX^k54+B3fmKH~4BrQ%T*cPX>@_Z0*hL8ntj*uO2f#4D^8z{d)T3nHl zw78~VTcl{^Jww0^!VADHLTbDhcL*-=zJcxLLF|Eyq{U+e+v2HK-YF#hO*jj9LAU@& zb^qTI(;C>fQd*>wk+jI5U|aZT zglm8|2ri(IflOwPZ^=j!iz?W}Vp@3<5Kw~P)|WC+H(3Ho%SZy=Rj>i&welhmP>~P? zs6=o9RSn!Xw{SHXNn%X}n^;RLuNwkt6FvjfCAfh41|oit#0D~w#19p0ViT>r+z9xH zkPpzDPyo=9;1b&y_|!afe=H+u(O$u}=%|%f3jv)8Zhcn+f0cEF%dBRj>i!T6rZA5J@Nlh$6UvSOa0^-iVWtB=%9TiT$+lCgYk0 z5ZwAf1}d6Acn+441PoQM0mHTO`XV5a;MR{e&}OFujFFK9e4$_i#%tw$j!XEG;MPwz zki$GyPLYuWOjoc0Gqmz^@|OxJ0t-= z$VdW~D%gPKT6u-S>~u1r2w(-F7+@8_C9W}0<%qOcDN+BT6y6JI7sLPI7Em693i;GV+J;zkru~gBrQ%U*cNBB z@{$p7j<6DNfv_5IiQp2i8tAb{TKp*^X_2B}TinpfTaDZ47GWLW4q+qU9>FC(G|=a; zw0I;VY4KFSw)k5suO#;Pf=~vK>VXE71Ee9i#PkN1otGA`$w*rGDA*R6wen6PAS>Yv zAUokaASb~k<}uK2zqH6JBWdxvf^G4JR^E9W!<&RlfVT)&0YwNdv6z8#$D~DZ8A*$h z3bsXQt-Jv2u`Hn{pd29tP=VkQD;X%VS6Wn-k+i6$U|ZDC%G-)PzDM{K@IGM|pbo($ z)-#Z7zM$&MNLn;fuq_&EN)GtvnwD^d@8h^dV#i^dq>$1Os~xNQ;3ok`_Z0Y>S~X!wHW8iG*i>Q3RKm zWT5$<(qgQPq{Vmz+u}>DysF`LdJ>@qU<#oYU>dQ=Dd3$jTKM@W9ekL3OtR%R^)dmimt5_o= zX|Z0xw%DkZR}_2POehZ6N+=1~PH>4k4NTi7Eq2LBTI^A^0GKm51EbOxH7 zmKNz{BrP&3*cO?z@@8X?SqO6h*$DFiIS4K>w}IfJ(jt$Hq(y!O+oFJ0UMmC?Bzz1g zL}(8vOmK;B8yI;|S`?F!w0K9swkV~Q_Y%iYhL8q{?-J4j$`f3ouYuTI(xQ@#q(xN) z+oHNw-UPI$NtgtvMVJbxO>l`H7)WIvIP1wsS~OI!Ek4xB%Z)uYA>;#mL?{4gPH>5> z4AeL$En3S+TC`QLE!u14?La_B!f$}iguQ?+1ef@!fgk>m7Jf347TpzWiym5ejS$e2 z&;$@nXa?{IE-~D|wrkQNLPpXeO2M{>(aLLzZ=g6rb3i*MFY3ZKRxi3k+i6yU|Uqv%BzJv)*#dYyho@9c%R@B>l(;&Qd)cRp4Ou+_3XyqM4Krez@A7fzibqR=- zkp#pm*nqxTdA$(OpWxOHG;sAV2^b_J3HV&W1`N~6>x6(21h;;afnql#V6==RV61`- z7^jsNi+~9Pw|pKV~c*}*q5l7M*%HekM1ULOQ3 zAh`953~YWZ0gGiM0Y56(fMr^FsUqz3PXxDqg@L9|C19nDBw)3I4Opv{mjeOo3Aq6q z3Hbn<2`+J)0Y9_H?J|-UI~8n;-?Z}n#zpQSxb^!DB;1pL12U3;Lkc$Fh*sVf1RN!} z^(PDzdm;fRWh4P-6l}mbt-N%&gbM_>{<4ALCg6&UB;cBY4M@?-%ZPv*1h@XSff=dN z%D=>wkp$dVumKOX@;*brV}e`%%s{b+vV*^6BmplKY(VPAI(-gjke1-qzh>aM`M_t8 zkpyH?umM@L@(v>)8^Nv5X&~sC1mu#D1msn)0r|D^-ohmmAh`8!8mMW`ppc9tpooGE zcv~y4D*}oW-1?FRo|}MDGLnF@3O1meR$dPTR3NzZl?)6v-x!r;BmvbFY(NdIymmN) z_Xuu%Z39=$=e3TEB%q#x4QQa1Hvj>R2yT571H;YR*i=Rm&|JX=wA9LLh3St8mypZM8O7xYUO=^V-6>{ z^}P(NzAFJyGLnE;1sl*?D{l>U(1+mG_c!2|THfdZGLnEn3N~PfR$ef6Fq9Aq7*2=) zBobWWXanhQ$sWhZNLqZMU|WpW${US6eo1iaCtENdhbc0WfawZ0V1`!S8`!}tf?NNM zfr2k3V2+F=;9CV7@SRp(O9XsRaO)Qvm~lq}evpv_ELE@p%eC@;z$GNV0<2$Y;Hvpn zTLoC7U<1}^MRHW1wU%?8ezTWyPsWCz<7Y`_k!ykD_{U4&hL-Gn`Wy#$wdz<}Qi zX>m|S(&Dg!ZSjXzUPJ8h7@;xX1mPpVDS}HpYvAl{X>m?Q(&D0mZE;yEZ!Y$Dl`tQ0 zjqp7nh2Roz8n|jc_P1mtE$%AV7WcLC{zSk-LJHt9;U?fI!6iO7F#K<6@j^z@BJ~po zwnbX4ymxU7=?N7883>gCJ_MJT#XvE0P+4UpEpjN>7P++YreTkH2r~fr2wwwUC%D9d z27=7T@=X~@i^2-FMNzH1FAz|SFac14FbPnS;1bIiXqqA|%F0Mulvl7VDr)6*ML;Ej zAD{}MJD?iDCDt^s%X~MyCnIT5Tfw%dtCjaQPP!hU1fT(-6rd5oB{ngT-aI`wm65b) zu3%fV)XM9LJ+>x<06r#!0ooBu1>2&VR^G?hqaUF?z@N|w5bz3Q zB#Au@JU3rqK>$y|wg}V8TZTPG5Rw7C2rB{61eX|RVBRBX(OX8+v#)|}(O)a?E&>t= z4*-J*j{!pnE^(NFdgd4Aa2ZL9kqWlOXsx_zIEExbO~4m~_W|PxE^(rPrZ=U*y9YsP{1t02*7NDOPp(<%qaP#J1^e0n6F@4EYQmP4$}(>3jvD>KLC~x zmI9U%egZ5ftNLtAe;j1BAf;6CR_mQC0qvVC;SOGNJs%3BHRQVA>08RCEN!bC%6kaWuW{8xw6d( z_R7vG*eg4)mA4Jk7YRE6mkGZCt`hbFt`QCZQV53tHwb?KZV`?H?hsA^?h(!c9uO`7 z9uY1Bo)G>7JR_t4o)c~YUJ~vAQa}B-<4R{>Zz(yy3{m#{GAP*d^U=!7gz3zLtbnY9 z9DwYE+<=^fe1P190)V`PHv#zxg#iT!ZvzSvN&pHGN&yNJ$^wcK$^(iKd;uj0?l4Lj zn0Q7`XBf_}tb#qAa$0$bn65w=4e%w51ym-C2UI1v7Bvif9W6bJ^|tRwEd|@NwpQLd zn667G4X8(W7tnxE0nmt03DB5O70{GW1JI063($g42hfU85736t5YU#;7|@>Z5uhWX z1)wvbHJ}TjEub5r1Hg~a8Q@Ro3J4(h0Rjo#0YQX7KnNii5K0IIgcBkFk%TBf6d@K6 zLx=~&5&8k*2?>C{gu#IRgrR^0!U(`1!YIHHLK0voVH{vM;Y&awVKQJ8VH#izVFq9< z;cLJ+!W_T^!nc5lgav@fghha+@2}b}I3C94J2`2$p314K9%x2DT0%BJdO}V>20|Wy z4QcB?&D6r3tM8WeIHo

=B6$qUHzJ#uT$^<_^RYG?_bwVJZCLtJ5ix3K^ zO^5*0B}4)05n=%i2=RbMgnod=gaklS!eBr%!cag9!U#Ys!YDu+LK2`YVH}`6;Y&bA z!el^a!Zbh^!VEw+!W@7f;ah+|VF4h3umliDSOy3ptOSG*Rs%u_8v)^jEr3YEc0d$i zCm@Ef8xTj>2Z$#e1oR~w2J|N!1tbto00t3G1BMXJ0frJT0)`W=01^q;EXe<0!6?#o ztQkYN1sF@X3m8Xu0GL2{446oG2AE8E0hmfi-QRv2PA8-T%pha{%pzn0%qHXj%pv3k z%p>Fj%qJ88EFioISV$-gSWI{uu!K+ou#`{=u$)j9kW45KSV8awtRhqatR_?ktR=h$ zSWl=8*hu&Qu$j;Ru$Ay3U^}5HUBhkU^n4oz+OUozgU&4JrWx^vsRl-w1b;5H%O+u;x_(vUt zw1C=#*8p`1K7e|J?0^P@T!2P|ynx1p*8xol1p&%>V&}mViJ)8$b}D9Uz3z5fDoF1Q1T>28bkl z28bdA0AdI|0da&7Ks+G~(3cPi=ue0SBoO)l1`+xLh7bk5lA6V3r<5H12{5v~Ac6RrW~ z5UvB}5pDtI6Yc^Q5FP*)5*`B<6P^K<5MBV55>ofEAM53Wbbw?+2EYnJCcr8}R={dP z4!~MMZoqm%KEOso0l;R$n}Dr^!hr3Bw*fl{B>=k!r2xALWdVB$dy;I|}wf?rG&s#q&>N7O&=-)GFaVIBFbGh9@HwC$ zVK|@=VI-h1VGN)s!JS`m1M4QpfmX%cSW>|rXlbpy8kjCis0AoTr~{}#s0Z*RGz3&8 zGzL^9d<3XYXaT56Xbq@EXbY%K=m4lo=nSYw=n7~+@B=g=bO$sh1Ol28f&tA4p@0^I z2tX@B6rc?u7SNUu4`@&52k1yh0CXk{26Q0|1#}~f0QeC`0sIL`fB?ccKp^2uKoG&* zEuMiNOQuaVc}Y?#`~STAz3c}wTxaZk6seW>2-8u7r+^s3b3hy+75;r(JRvQhFTwR3 zU?A$M+{^`WyAM*Zn;4>%_ZFsy5{d$b6N&>82_*re2xS0c2;~4{2^9h32$ca72-N@+ z2{i$e3GV}@66yk`6Y2wI5E=ny5t;yI6Pf|$5LyD}5!wLe6WRe55ZnnbGO*-(Ir4S* zhsH}3?2#|k%G-$P<%BJOWWsj93W7`g#lVXU(&8BYddOM@+hV;|-bqYvB%A?kCY%Rs zC0qh*CtL;WAp8Z`MYsXjO>n!~XJC1vY;!bz9UfG$+dQO|Hx|=J2;%`q2@?Uw2~z+k z3DW_m2{Qp_39|v`32s-H3=}#i+x$Ageo(I}*lk|Z%A14f6vDTF8-xXbTZBb`JA@^G zdxT|x2L!i?#|8!#mtAeZr~jFP-PLogyv>+?N!SKR{XzqF0MZhE1EeSH1!N!`0QeBx zCbAfa-Y>iQe1JWx>&lsBp@$g3?M(@3qS$F1VBN;BtRj;R6t?ESAe2~ zS%6}MZvZ6-^8h6Y-vLS!+@-#2pvGXi_RP4GDk#`%_tnbFhUvzi{D7JS z*W!Hx?_ZXl4-)Ko*Hy4R>uKdZ#&iS1Ge9GP3ut0sT@gtfi1)aef=z6pl{W;_tq8*a zZ3u~gwuI4u_Jpy3j)d`m&V-48E`%w7ZiMLoKf+9aKVdc?fG`&jNSF@@B76@BAuI-j z5`F}P6P5!a2|oj(2&(`wgf)OTf;;j)2I76>J-CCf&i)GaJxI{XyN~HXghzlOgr|U^ zgy(?agjA9C#z`ck1&kuR1{g!|0gNSN0gNML2TUO30!$?21xzNq4wy0nZ4_0nZ6P16~qV0aCxzFQ7Gm zw1oA5^n^`-41}!!AHuJI%!FNltb{#)?1cS*oP^&2xd}%Ac?rh=`3WZh1qf#V1qtT? zg$S1bg$Y*yMG1caiV*Y5+PCY5_VE>HxYB>H)eD8Up+XjRF3Ij{pIL7JxuPYd{d8Eg*!@ z0T4>)3SD zaRcpB(JTeKtJzw4Ut)R=VKQJIVH#jQVFq9U;cLJ`!W_V2!nc4Wgav@5ghhbmge8Dv z!ZN@LLNZ_#VI^QSVKrbaVI5#SVIyE8VGCe0VLMNLP?c~PP@UjzpZ5&xIVktjB7Bq9R6a;i6yanh?C<^F8C=TdGC<*W* zlmYk?$^ilh6#;>S%77q3H9!cVCLomXJ|LV>7Z6FP4~QZ(0>luS0OAPE0P%#DfWCw_ zfc}JbfCNHEz#zgWfFXo#fT4uX0K*9ZfJ8!1z$iipU<@G)FqRMr7)OW(Od!MoCKCDp zCKLJtrV<7MrW1w$W)Ow}W)Ttrvk9XCa|mMr^9bVs^9d6H3kXvH3klN!iwQFUO9-<8 zO9^uU%L(%V$%O9#D+r4Ls|Y^=Ruh&3))IaOtS77jY$U7!Y$mJ+Y$a?0Y$t35>>&IK z*hSa{*iG02*h|#8Ngpd>P zjF1QLoRA;zlJEu~b!z>VF9b+SC;~`NC*cPz#WsPzO+eP!CX$&=63F&=^pd@DZRWp#`8Ap*5fcp)H^!p#z{ap);T?p(~&q z!4FV@&>i4Q2n19n1OuuPLIKqY5rCS6C_pVjETA?a9#EIi4^WSg0BArM3}{3c3TR9i z0cc7X1!zV{0<<8E1GFN131~x@3}{Q3253*10q98h8qk?A2hfG^Eub4=0l<&22;fgx z0tg^10|XM10YQY7fDpoJKqz4yAe^uf5J}hqh$3tU#1M7@;t0C|@q~SVzJ!B-{)EGT z1j13kAcA`+{M^8hvhtKz6@MvWxPpC3Ow`J&h3Qd*I)E{RdVsNnhJbN|#()Wgj{p-1 zEdY}VtpQUBZ2{8>9RM>3odL55T>-NRet|zzV`(z$(H}z-qz>z*@p6z zz(vAtz-7Wdz*WLQz%{~QKnmd~;0ECY;1=OD;11y&;2z;3-~r(Z;1S^(;0fV6;2Gf- z;5p$g;3eS!Aaxr3u6PVcOLzuIPj~^yKu8yDpPPIL8336HSpiuIIRM!S`2aZy1pv7T zZvyfX3Ip;J-UbvPlmHYYlmZkYlm!$flm`?g_yUR%ssKt5sslVrXbPxIXbz}KXa%TF_!v-=&>m2W&*G17;B(0cI1P0_G5&1LhG@#n^Al`GmB91%%fC3kg1e#e^(?C4}sN zrG#97<%GO|WWwu!6@-F-RfM+ys|iH`YYD{x>j@_7my@4iXvx4iTCFju4swjuKh|juYAdP7>MyP7^u;&JsQWoF{Yx zTqJx3xJ(EDTqX1bTqA@4QV3yy8-z%}EkYdN4xta=9-%+r0bwBE5n%}631JxE86gqy zoG=>jk}wvKI;}o`j0dD8Oa!DSOaWvdOb7T7W&$!3W&^Sk<^r-4<^ysPz6azcEC%Ey z{0PWTSPm#a_!&@;unJI!um(_=upUs9unAC%uoX~(@GGDsVHcn@VGp1zVLzZ8;dej< z!V!Qk;TWJY;Uu6c;S8WU;XI%w;S!)0;VPgu;V(d4!VN$@!fikU!aYDE!b3n~!V^GK z!ry>qgfy}CJGliRJ)jjKBcKf-GoURY8=yTQC!ixC51=z4KcEZY4L~TM30Fi`RfG9#8Kn$TCAdb)w5Km|f=u7wr(4Wu( zkU(e+7({3b7((a(7)t027*6PFLH^ew5=nkoGm6k1FoqBa7)uBSj3a~sCJ-V36A4j( z$%I(IR6;ypI-wt61|b13i!c~4n=lkGhcE&#k1z@_pO6GtKo|#DNca-4m@pZzgfI=T zlrRIZobWXunJ@>ig77V16=4BjHDM88Enx{@Jz*JOBOw{EnXnSDm9QGHov;qDgRl{> zi?9W-o3I_Qm#`DCpRgNnkgyMMh;R^agm4&elyDSqoNxkgl5iSuns5$qmT(bpo^Sl(g7Y3G60?sG69|u zvI3qHasXZuasyJQ()k{Rw9Q z34{xPL4?bIA%s5xLkTH>;e?xjM8X}wD8hZf7{XJ)Si*C_I6^A?uOm(%qy6o5Hm3M zgkyjmgp+_>gfoEMg!6#CgiC<^gsXsqgueiX2sZ#n2)6-83HJcU2@e4$2~Pm034a65 z5?%t%6Vl+n$a|5H9&nkE5pb1|8E}n|4Uj^}3AjPX1Gq)V54b~k18|Q}2=IVV1n`JZ z4Df{T4&WJ~G~hYmUBF911wiWb`U$KANK2>+NKdE%$UvwC@FCOzWG2)DWF<5NWG6HR zZsuMl~)FcD|Y7yLp)G?4x{znkJ zzwqA=sHb4BtbtbE4NNy8+y*ozxPXrgbooOPALDO_wotH%t+eusL4d`C&jCva!vRYPBLT|^V*ts7F90hD69B6SlK`s;QvquU zUjfz=W&t)5z5#3|%mZvCdlgjAo~Ux%q*(@$VpKw83Ufb;|( zKn6kud27byR-*G4Lx9NNp?7k~&<(t`V3ynIrA#_!z(1$)O0(#l(f z=^=zQfT4u-fZ+s}IMTqdq0*uO{#RATDA*Qbwemj1^f*FOzyv~bz(hhTz+}S5fT@J` zfa!!zfEk1?fLVl30kaAIfH{O7fO&)5=mlBEs zmJ^Btk_jaND+px(s|e))s|ghWYYCMB>j~8W8woW5n+fj&wi4C+gu#IG1a~2q z3@rIhuIwxPQSz#Sy|Qasd9yH`Lih%7gD?+pi|`%b4q+kS9^nVT1Hw|kBf?LBCxjJ% zXM|q>&k62AQe}`UYcx-;>@%!Lt6;Azy;fcTrZW(F0(=M|fXsw2KvqH|AUh!%kdqJx z$W7=2$V=!C$WIsuC_oqjC`cFvC`3pE6ef%Y6eWxW6eElWlpst5lq5_6lqR?Xeb>Nm zCFFz;+kyc(dOgARv1T-bMfaV5voByS(m-rO5Qm~0_wDQv6zjoc0kRH&UkP*<4kQvaK zkPXm`AEIE_57kPiM;Q3JqO4EE`q2t@eUet*SWJ&6OaM$G zOa@FNOb5&)%mREvm;?Bh;5M;<;My)CxVB3OuI(~{Ynx1PZC4Up+tmhQE6BC4k&(Px z>lN&^Z`8`$gz2q>ZGatwoq*khJ%Ig$1As$>!+@iNV}O$cx2rP*w~zA#w~tE%w~wm? zw~xOFZXY)YZXdS^ZXfpy+%)&{eHqE=JW{Zy^F%A}DW;zjUI0>O)POWHl7RGt*8o0* zOn|I}Y=E4ET!6fUe1HOkHvokQZvl!D-UgH)yaOmrC<7=*aMxau;I6hZ!Ch@Ng1g$9 z1b4OX6WrC-CAh1tPjFY;h~Tca3Bg@$GlIL?mIQaTZ3yma+Y#K=b~I4le8+T>k-Sk| z6zn_QO)H)L%s};0vfdx-dnnlTJ+<7)=-h_<}GF@Fig)U;48umz}EzK7;^~j^1mgx%U?inm%oVME`JHZUH&qH zyZmH=yZn^|cloOc?()|W+}1Y|+~sc}xXa&8aF@T+z&q9Ct=}ahxmETk*tdS4Ryuvq zz~8lH{qI^0gnie0nZ43 z16~qR`Pd6jEC2B?SN0mgU5gLFT}u{%yO!((cP+UH?ppE^+_k(;aMx0h;I8E@g1eTY z1a~dP3GP}-8rc1wyi28IB=2fj1^X_Q(@Li+8uDcD_&&`PIA8JOuS>qle#SOvR&oL1g=Oiv_C0!$@L1I!@I1k5IU1DHqn z7O;TuJzz262f$K-+vZOMx3Lujx3OOcZewc+Zetq=ZeyDXZe!aBZeu$LZezb0SY+;+ z-7=E%-lt&C?|@d`K};Vexb;T~Zp8@$XG==rNxbBYf=xW9m3JP~mk4hCRf1dbmw|oe zvz3CE+*GiMx3%)_VER76t$##tE1nuiE-#7C@RAn_HZfHuolY$yIh1sS^ni>6A3zpD zRzMDdYmuAaLh}(^XaRx?eUsoq3md5Oq3pYejAUcQ6zslBXyv_w>C%KUfO3TL0AE5S zKvjZkQG?(@YY|*%9fAw3M{uDH4OFNp`)(v7*>@8KyYG**@|t0~CBdz4LvSnF88}u? z65Hb?ofK^1Ct7)3F#RdPt@kIm6+H|LG@pb(yd+q`CVE=wbhv?H#btd2)<-GW^)Xs` zv6zl0^a1oI3;+xw3?7<4{7yIo_=9j1aDs3WaE5ReaDi|UaE0LZeU0FDdY#~QdW+z8dY9mK z`hehe`k3H$`i$Uq`hwtgnmV%{sM~2e17Dio$LVDxC!A5io^U3uyv%kwDN8_Pn1AQVG1Il!8qxqm@?{)8z?ny)VJ7sA3?hj3idYOKK?C#P_uFYGJw#p)R04p#k7S zLSw*31lOVk!G*RaxX`u)7utc~LOUC{TTb@+gx`w(1ce}W4gXrO)#+4mqB$-X~Vu=^gSl{XyIBMGAbNrbV0@q`J0 zNd(toD#3+*MR1|B2rl#+f(xBzAd5NgZ)GI=UZ7z2y-+J}5vG?AegrHh`~+A*aEZSV zT*g|0%h*708Ji8{GM}(5GLl_wSFpR>nJ=2tSbt8zuD_s_cM;Q92v-4r5mEp*3AX@u3HJaG36B6z3C{p8 z2rmI?vgkI`%1DmwH9`hJCPHRFHbQnlE<$cVK0=TVp7&Z9oTokt^rJC7y=cOK0M?mSu= zxLZl?mR2&7x8Y+2d$+XH%4?75PK3^Yu7qxY&j|j29)v(ZFd+mGMhFM=B18dV32}fv zguZ|Qgap7~!VthP!f?Py!YDuzVJu)g!JW=Tf;*2X1a}_O3GO^*65M&rCb;vMOK|5g zpWx2pdxATU#RRw09|`U}mJ{50{7i7?v5Mf%V-3Nb$9e-hOUTW!K}K?OY*w&0$5ySp zZJ6Fc*a_H8*aO&4H~=_AI1D&SI0iULI0ZOMI0v{$xCFRL_!E#qxDL2Qa94Jh;I8EX z!ClK^g1eSy1a~bj2<}=^XVvp_*OHFlt|bG(T}vi{yOyj3cP%*x?pksis8m+or93i{ zcPYPueU}Po<-LLFLWH*fMG0>MN)X-wlqQq`lp~Y}_!24ssuHRJY7*W9)F!xne?V|M zZ9s54{gB{x+LYjS+MM8a+KS+I`Z2-nv^~M?v=hPYw2Og6^DDcnjO2v<6zmE6Yvpyv zbReN8AcWun!U++8C_*$Kj?f#>m(UN8Ko|%ZLU7w0MsOQTB)E-@Cb*4_CAf`^C%BDG zB)E-DA-IiAC%BExH1KmVIloyllJomU!Jgk-t-N`d{*K_*FC@4XKNzT3UlNz#CCe0S z;!j$6$(UYASOr)^SPR%d*a+A{*b4ZSumkWL!EItM!L>a=aBU9}T-!eguI+JxYkP{| z+MYFF{ygZNlaZX}MFo59m$h=!ao*t6sZupdm6SdE^a>0Mi3ptJ z)rmwJJv5$br@PEGSxyuZS_U{#3 z_cpeLL_KFS(_m7s7bbHbHg4jlWb6t@! zA#R)hzUs2uOn6A2z#jjRksTR%Vq)bA{KFz60{>&lTkbd_0%cM6u>V|;7Yp**D~JdQ zj0pJ8HGg6kSt8_udj}TrkB;{5>rOKlUhZR#`=9>Eol{I)_wdLband+AFsxT#^nYxy zs11mVi%WV<4k{=xW>Qk-m|npl5q-+X#fF4UO3Lw}+)5F0yS0x9iE0=U5Ibq&q|!qs zmGTDVOO|%3~v-)vnh9{eCu9s{$=*~r2qO(=@ZmFGBU>9X;o^x+Q7X3tALuX0_OkU1XQj3 zDq!yaRX~+j0pneO`BxF+lWO2*4-52M1wW9q(BK@lP zzPg}z_fqp5JwB=AfA>;(Wu<@YzxV&_m6cxgjQyXz@*fu(_dk1OwO2hSx>uT~+3`u$ zUR|gBTK9{M^t1mFEx(gPB7*$%DZwu!!hStf{>PU{unRJeb>owYzX}TO=_k(!F_F$7xk+Ve>7d_UTvO!#wWe` z>ecSE>MNhJ%4`;Aejh}Ylcyy=^P`{nG1&ZQYTnWv<{KC!0G zBfmKOqXXo(MMRIlK7O$wu_jO^^8f3E>27{Y+PS>{Iv4KWtCzgH=2Zp%b;ic|{bT<1 zf1URa3;RdQe|s@@B)`+5L(n$gzrHxKyBFKH*MBv|%@)9~d%1C9LV_av0%BtP0_2e_ zD6q$*QAwG@`^p!poJY@)Ah~8+_41F735+feEFUhn?xdt_Eqb)J+yG1MGlF^W%`OjE z;gJ#Y3>NAa84=c3GBXDC4A*f^IW&1JlII3<3)|}B*t<~U-^yQXObs>OCnWL zE^`|43>|77Gvv`)-bu5=xacsyn1J9woP8-z{=sdkmY)2>cKIovIr%AnyCzl3IJ~tz zq0@2I5gW@J9N{t*Gek)KE+3I*iQ~nz9Hn_as`GN&G}D_ z>E#~~`0q=5$Ok6YEX|FjJtE`GyA={)|0pvmDO+4G`QQY~9UL3%$s08?DZ3l`1%&y> z#K_I(^)&m^_gUVjfY9!dePm)(uy40XNqK`qf`Y^3|C_t))rpTx${Zq(^bxW0nYDLt zTz7eAy1QG|oSXcrmrIjd%>EVaq_^x>Qw7sAHl{*FU-?Ru2T|Eu`H)_HBf3wrkE!nK zufl&mrB?XoQ>wni{QYG2OYQ&k61hw8tfA}8gJ@D+Y~=sY;{WYARAbCv2TiK@U&e%o z_lgdb-}3S+LT*Jlb$y+AyhMRYAYC9(hgyh=&S;4lV;ad z7sk#s_r5#Z^Z-__yBPMKxoHDcmcgkq2T92Wt~w+&hv68Pd6z>y zy)WnW7K&|4I;uWug0zG>+(xi1X&B)b2xHbput zVC0IqmczatHxK*QU(SbQ1FM5;R23_1>cZwJj=K<;5$!N|AfOePeKb0`{>&d+i)1w1 zxnFFUapyxqf2vO|4Is$Qdw`fpGqZojJrD4ktXLSkEEf8bjUDbq`0{I&!H1M-Ug}#m zB}j)5ESphsQDs~2M}ot_Uq;~$2*QQ}9m^18jN|te9D&#~APpJ&{KFhmVSn?6nIEe)xL@8VPTf38>d>U^HdNAW8#HsP>2=QD-HnFA|d&D?A|oUNu4Oc*BBH7l53mqvQ(q_cHAC44R@k2h>36ua8N-@!ZA^E zubX*}=4l$t)T~Z443D%wII|kd^hS!vu_t6Vf-<3TuNs;9`HV&~hiUK9Ul4MN8YLMIABuLwd{2SWb^LWcxG7Xw0P5k+};6+{`mgrfTZSGocansg8v zZxC8(5L#Xk+ENhOMi3f15ZWye+941c6%bkr5SjrHDmDn!6@=;+#Xr4VB5|pZ5q@vU zL`4XpsiG16uZ0LPqtZrZrxhavr4~o%g9;MjK(&q>{$7-*A(eX;75y$-ULr|AviCN; zwTHUm(>Nflz9A*tyK}R#H!G7@J3N>eKDQWH9RIVli^6!XZO-s}nXlkE#9&`toc#d+ C09VTZ diff --git a/ivy/.doctrees/index.doctree b/ivy/.doctrees/index.doctree index feaee6bdc615b09b76a12a514bc3c9ad8ab01a39..19f450d42b5a23d10e178d7e0ed7440ef09a042f 100644 GIT binary patch delta 96091 zcmZsEcVJXi^R|2M&2Bb51kz{;y@Zg^OMuWjNvKl8k_5<-MiQC|0a4TtX$D3CrCCuB z>>^U^iU`;XRqTosv0>qRo^$SQ;`{sl$v$^ZZ*%6%nK?Q3UaMp8wOV?c;~AsK;pq8% zvBUUixRhQsCd>IGGg^-SXtW6`D4ylX&COd_(m}S42#A$K?;71@ZX>gv9It0KGiQ5B zBy*h+D`#IdnoCHo5yG_fWN8<(we*g+Ld3J&h>=Tu%|zK5Z8mark!_pY?Ik@f&=p=? z6;eDuuXKKX-h%csJ#%H-GGmDBYGt`)S&}(Leoix;QXZ{y>m$pP%t@A~(6dku_c3E6 zVwKs^xv;pjx++Ri-w2435|1%aI(}-U$)#rkV&wdDMm@Q-z-%d7zY7eLt=|NO8CBh6 z??I!Lytm1yDpz(G&1CvnGg&6TX4H{auNevQ^bX{5eV99dh4$F+ zuHlqNFB{}QN_lF-n!jQk>5I|-Dn#YS%N zHESZf<@`0HpPZ>NY<|??NGecR`&gDG?2Yl%_fM^ z!IiftFS{UrjyQH0gB`Qw`ZGqV{4&AFv`UJL3uNv69I6VVooilESvhOHC&KI_O(r|* zN?C&0M3(M0yUCQt%|K~TY)lErDK7F>OIBSgT9zI(+R7f&bj#ixBhfKTPE0fhNP2ff zUEaiO;g}>@$IT4+sfQUV7W?$zdZVG7?O{13xu+FsR#zp+;SEN#tQqePk~OW&+0u8H zv%BPEvY$~UDT>BySa%~nx8$20bw?#UWF*Vm3qV`@J6iJeDI?v)gq6LgjDF^G`#E}O=}IHX%AJ>!C-23WGvr(dW~iF}yT8ZuKu1lHs{UyBQ!B8Drau?h$5Abp zH<*2;=o=$Q#vC%z13cxPqH2lE!y+khgZL%aTlOrovt%7I`Wc=aIp;RxkAs)V06dg z{G`!BHs4`}qd6G!?(#;c70xb1J-FKElp0}r(|As zPH|}-R!Squ7-lvw@{4O`o6Ol`xE;w-G6GE=IRd?T-&~Aqov!9s*%FTlem2Vpl(I`k z6Dc`mw3p*=)zo4A4@RWC+J`)XeX;8`#N6_g5uj(_Kq=g5xE#&I@hPU(!AuK$U_?M~ zNk17FDO=~*OHCpgn?a7wx^pizMB-z^+joTfB{-2Qv zTFN-A_w+~1L^H3fTs)aru0B$NT%3j3(EMghu8Rh^->4p_b%tISt*4s7=*8oYIa7?P z5sKzsQ0gfu$uF8^FDOj%_7<33wIn`7UYr-uU79?Ec3zr}nO>NJ`Sn3VEU_jrX0Gml zJ#S!@jQRp~1E*}VVT{qk$WIYR1jc9U5u>S9Q0&oztrmn7uSLvzCZSW4%8mYHoOa&R zT3arw)KfG^E>AEM<2G5l6`@eq<(6}VsV3|K7Ix(zoxiDr%h)-S#iPqJjRKU%)5==Ix*H{ zqOAYN7${G~n!)nidq#??Fgcl2yn=y`x+f6B+QjVS%qc9%&M%WQA!w~yi|NIt#cf2* z_wHtX!90#nKUaQPX`ZLR?&KOKw4|pMj%CxA%O)+bsJN6|eW3c1q<@THM+42_3)#P8 zel?m(`fhB5%NC=NTRz9<)Nc*9oI4dzS8~T#by!x6r0+A@I_H(-ddl-;ZLZDg&79)- z_5>pzO1lH;I1CuDH1LJ;yduTvH~ePwRqIePellE|+wXY{i$P7sExoOlvZs#~pck2H z$2&c(NWC;QJ9ZW37v&euE7S`O%%yF}Y)@%!*@FDC+0|8wLk}ZE>lcuRVJwhyjm?qr z*)QliJ4j{EN?;T^*m60f9wrL%U9*eXl&_ zY~kbMOJ*r9;ICOwS#fDOIY59N%XI26V`+uEMe-J3TE}CTfS;v&BdZ%*~shJ+C|;gPml?Y5}h_FDJjG zv^WPdK*?2lO?0*5upCB{HDURE3yDW%GCa*{tv4h!C`B(~uWun)W85udZh|@8Dk;b> z*E6)_6QhN*Oz*mo>(s8@T?h!q**z;(gicA%#rYIcx>wqR=8=U}om`o;{A zip53`S8m=+&%AujZJg_Gu;IfFUP2?JX0c=4g3Yu(e>< zrPOk9lsl9?Ksl_R61N1hNm?zAy*e54hU(yyE@lT;X>l1COmps*&9yAUZF$3w;4YAH zvN6;FouzyaDn#Bb2Lmv#6tl(-*j0k7ulT%_+J*OG3v+xO=0qc)jmaY?uYa`S4V}iDxkMtZ|vuu8@tp43-Bh%Mn=|x1E zBgpug$n{^%b~3pD8!_tAUs6-e##&(T6wLxx;Oti%de!q7M92VxW$lYtVAFRP!=>{H z%mfHrJtX2H_(?r(%=It{4vqxpFWT!4Q}T~B6C6ekk3(E?A(N8V+#s``T)YkA2cFOk zf_OdI@ug8j*{mM-jL!0SD9Tgvq8ifSA40}&DCZ_v4N<_{rIf|mnql%n9kabm{~cV( zzieIkvpj``9yJ%EwX`{+1CB1Je41b*p?K9si3es`Ub(z$nXMe{w79UQ7l(Bmwk*gL zA#(gA#D&OvAh4-A^tlb|^1^a6Qq$DjI&iNMFHMgqhTlW>k1_%ssdD00Om8rhB%T2{ zk0fO@7-66NSP^O~A+vGjSAmT9gZ0zY%c9C z@GJuJ;MwE^r%2iu@G;e=*p|{AjV1L>cVl&`p*#>JiAS(OB?Ov-r0EYvYuWdz5$Qnf=YO@?1&^YUl18v|x6A0nQl3#U+xp5yZ#S zttO_Ypg`7~H)4JAPve`6P)yy!gUmShjJ(qF?A*LU9CvscQs=KZ2&1lAgP$xIA0$TiBjvIr1g-b91`v`V1WoA)p_7xT#z^WA=}%t_sU7 z&M9l3KYvj&d0&~#D#VgkJY0$Wn|eX+RU+T<7FH)5i~Q$H!&4-C`eJ?`x*Mkw&lSwu zlscB>$}i6=tgag6m$BPgGdyK^?1dXCm0zHJ8 z$d$y?n7L}9o;``BqPDG5ZXV((&Zs$tpetS#tmPNx72Mk;132P?nOGfVGb5F}e!*|Uqw<&qbo1SGz8 zt~mwSx%u;}rO!@hJEIE6w-M;cGp7Qgr6(8IO^d+RYHJp{Q?r0$bc|f@Y_*Ulvr(C) z7coIE%*3XuB&|!m&7Lx98JhHTU$a$c2p2x*`)mg9NRmlilc3$gA*o%$i>{A%@6E8ZO zgS)83SN|34ve!L>qD-e*0zHl*sq@Urmmt_E)e?4*4mjTOpd!ad zW0@)$o)b7li{v-um3z2}OmpRyQ6RH-zsyZWA7^gEowLdqamF{wZ`bEp?K#NOxJpOs9eoq zKm0)mXlkuu!((6irFs|loc!`ddWTVB!2%2Y{N+IiMQXn8ejP1Q`W)yOTFIFa=&nPL z1O}j|n(0$#eCHSsVSt~8$>dsc6F6yQ%NCnvPl_=ND1?d4& z%6ugz;i#@9w}6f~X`v?|$H>9Iq5evhbJH;G9w{^G%ie5AXkhgjTCd?dFu5#h7qli3 zDzzqZ$uymT^NMn^v1b)7{ z)t9?NA%$%pfvv4%h1nHlgDuzSyb|QlJK$2)RSRqB(R&SpN>GWz2f75rIofI=x$({1 zf52P0#QMnXiDrL!;9V@DSI1#SDdBz7YzzYg9WC7jm3neJ z9yluV5a65LAzDNxzmQ|cF@pX>OTl@QI_8#28zdW#p|(^W0}L}xAyf3VkSd_$ALOGp3ncQUADzu!dhIC6E9H||C$n&Cp7wV@e~ zmb}2?n(0n;%WV5<2S?k$5>KgTrYEO^o|nHtA$jTwvQ_gQB76sZRDEJFn2yr?a&vOe z@|5FjT3yvd){e#5v$`sUHzT+PjB>kW)Kp))+t)!(df+aaX^vcJly3~+t>HvU1C!*5 z{kC)*P+kh|%uS)WKHMppVE0LgwI#7Q;eGiX8mTsqe?P?(S2CI!Vkl(8Ee^3(!c$Fb zQN_ob%4U-J7jza%Tci5xvpQC2o$9IxEfCI~m!C5SS8%0rc^UQ--dLe;a3M#rPPSe( zomg9YSAZRF{Q{h>_veA3lE*WX%B$NfDE*#F1z%A4m$Zg_(e$)W2a`DpQmj%Rl)P{D zBn!&0Rigns#j0b#f7pBphE9nmoL51%_+DM5&tf6aZhNxJ7nNYuCh#J*uB`6u43(_? zkSGpaHiyb9ccETt_v^hLyvcu~XF)E?qw2UfZ)l_B{fCWdYSk5#>WeDMW4vR`wXe^% zuEz}H(SsZ+ptQKWdx{phlwPz^3dXaX+AHj;&85{!v{H$6IJ^v&t2?klm84OG11Ao! zN<3x4$kO8cY)=7osq1rYaNKai4RYu(lyWJ*L*)6kj#-zIW<8<62#&c(T_A0!#3|gr z=mW^;yU6Z?Mkf+$WF)uzbvtInlgq(87dJG=^T^uEsr53P^f`VlPEXnPCFevKgc`*@ zf7pWs2ZlRaPK6n*^<_4016xV@i-GZ&)A}qGXv>y1pUqrscF<=YUXIJC)n@R9-sWoA zehnKP^6n#h&VZ@lG@VX%8LcNz!Z{pA(E0ju*@e4+B5H`&OhPY~^aT&~T?d59r6! z-wy7eSUCjxmeQ`F6^&GLB`Xz8=<^qZDWC4QgHc?nx6_o1Mpxd}M@xf|klr$Xfey^( zU=d3Vvj6(rPQdS)gN=jrM9bMtW+%Nnb?0qEqJfulM^ftEF8C#jS&NzNHj0f zy8|y9084>mFB)#EF%(L&cM}v+)SSr13sC7@GR!WH0@>Th%$BZaz&n&iiSypVwcdPv zN`tziWm*rDKFtjO!KO?UQ|Y-d!6TW+Nh=_)umqys;qxc@)A;z>^ETo^hnU7OsaKZo?dENx|93Mq0!iECjS8yhHt+06r3f4p~F@B z%ZMnwy(vW&v}KJfH@elX|VqbSkW%u~8Ri-*tot0#4sYF2x0e$lpJa1wpBW>sf3z=yIF= zvUzgkEpT&vk<9g$a10l^yiJm&_o7WoDXLD0N_h1hXq&i{_*_=|oPXc|cXa=Sz~CbE zJnlbRNj5Kj)iJTaRQ441M84D>s&bs7`&k|cbKJ?ALAh>p4=5kAMdU$MUlFDXG~|(3TYN-gPfb zL7W9SP}dIRX|%WHDb1NJ|Au2&z|vbP9cTD_PrG+#Ot?#}FO7$w-2vJ5{_ci0Ia_bl z{!?Cny0W$pCKX1q3F%d}ylOh_yx9nCn0t*ky;3MQ@vA@?jC zTJx0(;=iiMpjoBG^GdSSsb8H}p+`^kGdZ=XcK7qdwpxN`*974J+yQw~=-*4LwJn3x ziScqG7e;fdo7z(3>{bY(>L9Il%#RL%zhS`iC7v_C2+CHint{~RQ{uN{Qmfep*{nAe zFdn^wtJ{MInu3!cbcQ2A?U-&@uoYo`P(UkZ?!p#6HJlwvk#=R>Cy&oniLjWIwhICCREm z-t{Mhy4N4T$SBT`S2{DtR)KJt$<*yw7qA)`$Nf83%Q;F$`F9tLpOnUds%r_qj*WnZ zSH^7XJ9a}4w(o83pLU{1rBH;tg z#Ks%qkVo|Y98=1Z^Gg;L&8YVFm5hOAbH~TBe-Jbh(20e}mVsuV^EKw#N-JO97-&X1 z!%66)2~Y$l1o?7Ug?s)%W*6sKMzD1~P}c;@(m`gR@l~w6JjiS)j|?*FI_j{L4vtH5 zkqJ7-BSCxFJlAOL_GQ*jrVfUgXg=%QQJ#Mf=NDg4L5v(749lTFU5;YX;Inm|-!gI= za_wd^bqMNycMJ&0nvFvz7U9q0!&te0h}qGxTTTqY5%M4YG?d=p^kKeI=IfGuTR=To zJQO*8NorS}BXosvvLDpOud^og{zsPZW%Od4oF8hoH|oSl-C<^DM^70x30C-??8lcUT*j{34I6W3i(y#)vA z?0=4x-I+KVVRwu)F2u>6arl6)ILtT@E8&@DhH+1vOwTk&I3k#Kw1I(hWZ`#hjCc?? z+&&uX+-9jX>9ihmhiFo{zfx(Tyk*SO3oHqr%x3jN+i$`%cSpUvu_wKTXTyGHL0JjU%j$CN<=U_ z(&SH>fl}P}acN2ynLZ93b$zTEYCIh)VdKm!<9XHMk;WX=OQVeUV{q|n4v`__%}B?i z8?qqU(bg)2Qi{%H81C*E<9EbxKEjT$71FTS3A9UkSv(WW8;y~w?L)$#Zin_nCy!Cd zCpyD81;+YS*&%Z1Mzs1kskUt;%)3Gz8=2EknKjW2cLtI#*cZppg$Fy1$w~D^%<{?oeCzIQO2GacK=xCUu`|1QvKefAuPZCZCz~OTNL?(h zr*Vfe#dI2d)s%uE0u9e9rkHN$t;|4IHQcuM(sg(^M$Sz!Cpt&7NF5={KHlpHTiHmv z)4rH$hB?PF<`mics4=!yN1w+Ykc|V|Bh%3KpII90p%FzQvdwx%bPPi$%F=91>+5m+ znB{EFj36pMiXCZT45rew>FCsnq>k45M%WRz4Xzo?1UWd}oNjcCkwlM~WYmwB43C*+ zJOr68&uq&(72lLU$V&J0-#3Q^t3^A7R2bfQ%vO>T2T3@6h8bXN*2ylwGZ)@{Ph z7fQp?W`JY3?9MUUNuLzUscZKhqjlBMpg;(9syZ*1t+{3wv^N8Eoi@iw zcplFFfy^gKU=bAP!kC$7AvVYL8YKn^<8Gc&Um?;ZDXl;J&mLo zajejxN-&F{RaAc++BTRsfjXC+HF*c~^rxwBN#Z7yNb9#yZT+U{ugkgFU2h?2n8;wS9 z`v>|c6%tVd%Y~;T^G;u$Hx^-k`6pWX&PGjC6x=BL8gf7M5x$5pJ+tgu7RSi84Zi50 zhZ~n;B&*mQZv3l$drSLXrpxY(E0S3Z;l5P~x^PLXcv8^3%o4M!k!ZISg|-T&VT-Qt zFn^h??cze>{l&rTWG?vJ`Pvn@bVp#gb&g}3o`plj>dL@CXSKJ5p8&m1kYlGzPx1B6 z@l}Diy7L~AW%Ya{Uf9W*QfRWP^u$v=VPE3~NOBoM&f#2y_^_txXjkl*n#>?kTd-t( zV3bwu{Z#b;&0_yii=)_M;r+ZH~zMVW$D8Koh9?A z>hNe)Tt6zMf@H}p7|vHE^%j)Rv!I=0<9Kp{J~HjYz=p=Ba1h{vVk!28~u512@XikB{6Gc30>Y2n%%IfQ5f!qspGLDhiCJBkb~CQ5|l_gri4&n?B3t z9?;=5mq%_l!>!)_8iCf{@t1778zrc4+#|#o3)B!}qOCylK8oc6R3A#Enqcg+r=Ys) z8FB~Y;~Q~$<)rnwDb+K2*p&n&)#i*3k~5+h+wQ_A`S-?zxYHbEyrs5>AuzR5tV^{H z_qNe6RIVYwusFib?kBy?s(3K!scW}(o4uwK9Tpr79PdaLo2Ljk)rZ>=yDK)^U*4_6 z7J*wXZaYvgBuV|1AV6<=H>~fyE5S^Ua`Xq7P%6r)x>kaU6-;|;&B4#qqz%StUlWgE z*w*3x1`Z?vc7>PJ#0$b*tBwcL=DW=d$5hra!*HS3R-41+!ri9ZXo%f|{0o->eT)~> zyqIikvwNC11n%Neok<0!d7Sdf4rATMYprMK>DW4P`p% zdVi(b2Gbl#Qy-UO8_fYwRwyNyriH@vf}B!m4x#gKO7FE`puOVR&;e4p7TMpfrdt1C z=!$fr7vi{=^$&tBQWJjH+qTLCT5n5!?4f(KZHV%D)3Lg-R|e30F~A~&RdPJ3Pq)T>JqqgBOGIu-3N`nP!%TRl4rm3ug zc`($;hw9x=H+DVt@^N}VLzOXvjsuTBHO9~a`l=aGtCPaCyOWMPSJiKXIR{zk%*zyJihk-%!h)nxZ2t!5S?j8aXVbst2oucA2%`z!yBV4PZYyg_PiYN`nfaQUo_J#yOfuVf?i8T;)> zFK@&wyv!|qAgs1cr`^q+NXas8wZ#EdDB7d$-!CG38Tc56K;f}t_h(cRHCw<-(zVF1T5@^|l(SpiP{XUw zc3W{7pxB%Gyk)ByV$7)BJFpN5GZOSFl7wx@?X{W}D@EI|3?``ImzTFeQe10K$A(cll}$ZEYQ+MLcK!c%u-UWi>)-Oen*4K&owE&jh9YJ)UI*siRba8q(U4;pgbK zm*ph8t||%aFhh(7Vp+yOIaFeV=yTI>J@-_UeGj7JN02+k*Dn1bbnOdz2obHLJzGAO zxer0|TU}E|vh0B^m_D+7YqLj{FD@|cqvGTCZb6640}q2UWTO7$Te^ympu=#FP1c|Y z(;q>vHMHlNqFiqVSzetw6S0{8+f7i32TAy&I4?I-Y_E2&OnwxD^HHs~!av+TU7Dx@ zIl0OoR#A3UgQa9UTt0A_V)xYFwNk_1Fw{{Y+xD3)lu4U3fU|({9MJvFtdhcv|P%T^8)ZQW+?hcbVBi{yJUe_iRUrtlkN$nHP3rN%x5N zXVX1|)i1OpJ7^`;n*dkhABd_M8huc0X-iIT_A>?!EIdh=VA8!o6R7O<~-d=Sa zXXV5@rmpUv&zr%{+o6c(&(s83A#^?f)fb~ zQ~5vtq8a75Q_j7Fk!-yWRXrXjhxeOPLp-=G)_GivRus9u4<&7|+m`Z@IT+#_CW5|Q zhJ;b%)$zmh(5TxRcv^)S*PwyfZY0Hu6P;i;JunWLU<3Q^Joqx%6?Uu zOgR8q=Q%YjHU*bL!E)>Xr1eys!pv#GyxZ0(Pe`AGX1>Frn*>|sKnXvDg|S~v^r@k| zC$l>}0So<*={0h7kPJJF>7Q%2zaX#F9?lD}R5^?+F)Ao3guWiSsL6P?-0S0}ciC-*bAV5saC=S5DO}nuUnzZG!%BEc*C|A~GwG~b)Wny?uY=j$ zDiOb;`(fvv=GZQyJ_YvO(lxYKPHQM>CDnk&n;}8o`F5MiacQWdceOckuxxqL%nM4j zMS?QbjsoM98t*A|jSR9kh7)>v`X3FbXAFpuy>FY7{fXPg>hBJAW{<1z9LK}rdDk2p zl$&D@z)M=VrGGEy+hP%DZ%RmBS?+A!N-FGtgS;j|qS3aLi(? zlCc5<3ZLTZotpfE;OwZo@ms32#)jbA7NEAraq-M`ehe;yTXyxJ#@9#jn8NHho-N0O zbACI`G{j*%y;=8uuB$IU>u zuY>QFy~oWdLB1~Ppt?-QkhpyS-SnnP>oF#j6q`X@QH#5|vg>){1DwJ4>Qs{aA@ZB9R&H~@3rDE6 zk$t`=8`s;g42UxRQ4C&32%$}(E@-Uk(iU>|F?h1Uv4`OS{j_QsW7nT0b|JIDVCcFU)e| zYE7F4+80mlcm+~GyNtY==A4g{#V5@L&Woc z=G{UfPMgCW&1CU;%ph154zri=OwI$<<1l}VGFHd2c{%dr8JJ7JQ~xLwIq=6EYQ(A; z)PnAGzBN6cvl4n9IM{`02Rq%j!(+v94%4+O%p);%U=r;+d85gs{CdTI7LU+eN7+tS zeF=rY*NW>k_rK`lYsT-<5_;Y&HvWp0CFjj~*tAf$7Cx)@K$-FtZfO6|Ys@ps$dhAV z;Wp$?_LA}g%aPt+24njnu~GJ~!0_B3s(Y7BqcNV~CZ@OaB*GvBJqTAe!xLnxTY zWEdH^dAx$ncX5m?zG4>Rof`Hq{g2Wl;}{Daw38wFz?hKc2 zRC>^MJH+UZJb%T;0Vl->2j2Vm)tq6t<0+{%*WQcYo-lkW()ZPJQS{yhjx5-~)JMCh z4$7torpq_kTA(9ZUSbyQ1fH3(#*CW8%4gqqv2;=iYIFhWYPWv0+A$y?!YfFU{{UY< z!QNI|vT~kX`3JVH{nT_~)&FJq6!Lv=1$_=RQgPs58|oOOWoEo8)7PF0()7Nedb6B<4H~|m;pBSFTkeKswz=;(#}awq8rB9q2W8b?80Nd7jr!ZHMz^VP zpzlG1&%a0a_IdjV;&V#~Gg>N1cBXNYEfJ^?KF$&3lg76HPe_QdO>uj?(7@-p;635n zs~hPBrO0<($6#KpN$Oi-U)uwrBH?K-m)*%m?L0x}3k*TVCp8)9hrpzl!wNL6Lup1) zo0(8_qkX7u;L9~lmpH=;4PNh1hU+)n;4M|mjDGwB>|PGwbwe*{6ok#~v;kYS%|Wj)vY^d>o;uc#=6Eu zH6iR~!ke+Ju}8_VHI)Cc-4B-RK+9=)*k;^$;e{RK6{cNHbQ!6t2Ybqof$;k1N*#ALN^8pvvZe;K~Pl)U^7>j66BAptJV{U7d(Mfgljn;F%XtE;63bStTXO|9#R=NKV z|E~9hKCY7->GyNhS#CgHK~{ghA>b44TiKU^DwmVNR*134zKR6}PgsOtdKhYYgu@tC zJ>H`8!bLQ7(|7>~LSv|9h1LpdWRDkKk#O-{u{XB+W289D8tOR1j!F}_$c5O8>Y_ctl5X|u)mz&N zc-8rEBd)7D-?4`G%TsU-r5fXNf_1xz>5%S)R{=M!!|A;aqm_B5>Yw-{Vuk@KqxX-XxhkPel@n|aI2TIy3 z+$e2{L;eHxh^tcJG!$i|E6q_)^)iK&9P{_f^%&_JWsPl&8l{nHZRjp=tHmbzlVZMpxMTttOywrVT&;)C3czH42D=f3O(K%|QGp!YV&cm0Y zLgp2gEYdx;4i}Urcn#hQ^ReqWejd?OzKTJ2ZPeYRo^r&CcM(Px`??EGD|pQULumXQ zt*?@N&)WG~nP#i;eC{n)Ewh_YbzcSk(Zy^n@Gh)}iGbnjC*Q?cQI7BRMUe``tC)3+ z@1nI)hN9p_Nxak(kCLxJ?M*EmJWl#JDtYq4DaU@sF4PrTu)W=BuQqy(O zwGG*Imwe8?+PlZ-F6j-xGC$OI2+C9#FI$B>9?*(NMfjotTwmXp%vC7W=YG?`T5R{W zZH-?Evl_U2;(%;N`lzAR(1^sP4krea1>uP%UHD72GGE*XnLnv-*j47oNZ2Ij8d>9w zYQ?MK^cy93xF`x*Ol83W-=5AkZ(oWR%B%rK9)#=!tC#V{Z}@AX{DNU8s#Lh&Q;t&RAV`oX@Kf_CRwl@S1gi%hG4NeZ++*7YFd`oM z3YLRSG31Z3FXH8FQw!Ea9F3Aju=Hha!FYXCm-3fwqoT^VuNg*mvXrz&Dl{U2Pp>wR z>&-C3zE?ABsAS@uLnAz1&b76M%45x~V8;=C(Euy?4jWp)d3Oa%9mZ3!#iUsp!S%(G zJuOhH=WRyR!s=o4K}Kz?p&>XG&(`&6pj6`%91rP>UE1DqpFK-&96SUY?)XU(?!iP;$+hXej_Hu&ybx9q;nxyr9KfwwYiqLctZg#n3vo%K zHkh#4JYm+vSAH-)7V&zmDi+Tx&$D-&I_fHBjIqYn%&QzL+Cnn>LfJv+YKGZvM7mnf z)MO=XlB{53uYF;p5-&}%+{S0M5(_*ced0}K?Y8q##F~@(ueIC6AgOAHyl2B=kfVpE z@qG8Y_i#Dc&Fq$pxAi8}BH#(K5aS(nLvMF6-fwfsg=EN}Zz`>24Y{$s=$_J356*3! z?Co}yy;b-gwe%gcviva<1itO@#s#(hGK?RgMrOd#%P~_k zapgA*&#zd=0hvA!*?`c(?x081in6`+@jy!x>ke`j@OJyr7CfooQ+<8`#R+Zxe6Hq= zjVB?Eb+g7>(c~Wy=aB{u)CqRhU=zx^jL#y;scu;OgSElJ^=?)dFneV*fd?o$T1Wgv zsuxrab;pdJswCf7tsSeK<1?KBQZ$!M48P0I5_JW8U?=!Pm*^v?cY&j% zZUE|5L&Gzj^^8(=v1vCBPS!DwWqMCk@#u9eBfD8aRxdVH3F~;au)VQY2?sEx;un4O@D}Ocw9GE$U@mU8wV}A0t zN)^$zH>P2LEg0c#hPJY}H<-tbwwMV@M@J)G%f`#r-d5{SzNlu4S#C_{0T_MITL@ls z@NF1ZrKFEF+*(Rm5;f=+iWft4*&+V2`QVzQr9;ko+uwfDBEee*8xHEY}xxeU4%pogfr>CTyedEd_5YBRX)%fU_Hd1QZ3_4jA495SGQ~m zN5LNuQRbO%_w8{6RCSTP^x0}~z<*rmCh0@0cJ$(kcZQ+6d~RKMjNGT1{54vx53;&D zPh;e&dg~nUK6xFxxd)*&A8hqCQgC`5Y$eIX!B`D9#4$}$cp084$SJp3)bu#%JH#5~ za7o2rl!?du!tL>M%E+Nsk>FXfC|p7VFEf6_^TI=|Tb-YvrByfkOC9IDiPeB744jgs z_ji6>Ko{&4Bk-CA-a+=6ypCdDBz^~9g^9zhP-hu)YU_UBaU;WWt`+N;OR6jPW>6MZ=0%!GVXfRoUyvck*pvFRGYrti#At_NL+q2DrV2+coLQ^`l=F2ve#EJDUPH zIb~T%#s@JHI@;=LoQjj(W2_j#>jM$SqBtoY4W|2{>>7iOI6TU4J-%Ds9c?wYzGG2+ z55vikZ~3{i^A>vGMU3}5dXL6z11-XG_@m&N=U8K5j4T;rB^&pta#~t{bF@?re3eRm z9|K*`OH6Y1R6soet*)^a_XaE;Z<+;0_}=u=WB4F+P~%WrJTmRJ4-fOufoy%WJcPu~ z4jjj3`Za@($6DdeSaw7kO?W5O^!3jm#%t_<^}wRq_m)8e-k_Fa>*KRCF5!1rQ@xx&Lmc= zlmFe7P-N1PNxJ&q0;uDBl!RvfCqqK)j7CZJ1Z4D}teRl8atbGqdc_rvE4|%#Z^|1b zCmC|VA5xe9pur9E-9Mw{@{L%K>NVcvQEsR6O-4%9Z}jfTa>v-!A44)aV2nG-`7|+} zg|h$oK!i~*hPkve?!*{Pv^rbOIDVNoV_96E<8I-MVfG;b{n0hvN}>ToP0$P8fkbq>^bR7rg=jDl zoh`jXi24!@CHk0X7!jQ+y~ByB=q)3vBCVWg7ish2Z>T_Q!ucf9LD9Q_=o>~{NK~I_5z)_#cN5VC(rzX? zK-w)t_mH-jD1vASkwH{Jw3az9C7Q()%ZTWC=&iVwa6O63iE^0aHln4Z-A?p0X)B0c zA-aR8jEV0g>c@C@5z$T1TS?S~XeH6p46P!1o+<7on#0glMDNFN{;ei_lo8hu4P)?H zBDw^6*Acx;bPv%;hE@~B5UnQ)W7-Wwbo%oO(MG1Ymx#W8-uw9H7(+J_(YepN38=!m zhj25AbnNrqPehMC?*l~N6Kx@iWaw6+zRYGD(X9;KPV_KCcM#E6&-)+|o%6g85z#Bp z`!LaYYzE#(i0FpreN>H3G=m=_@j8h+iRgdleVm9scitz65}4sGqK>5PCaTXrPx8-0 zr0pT1gPnIT5uNJ1PZ4cq=+i_V(w-rj6wCSdEMW?RpCh94ocDR6&q;fM=o)D+6471G zyN_r%Lti4IZ=82O(Q=}fi9TZ?2Z%P4c91BLDGm``B|1!0K~FgED}?lb^S(+{pXfEB z9A@)6(PKn!5M3jBlV~~Py+xEn^fpmL{&|Ogb~4@(qPJLucZptSyrV?ph~88D?_R=V zB+@m_dz`3<=mgP8X7fH#5VQG!D4(Gp68%W@5m7MXeN6N_(I-SVGsUMw&obU;ME`OI zd``3jp%vaQ2AL0po`^nM-XDl|GVzZ@hlqY6s$w=5h|UrHOmvJX zE)so8bcv`5LoXAJC+!N+Z>0S~^e6MXs`%fRB>qZbCr12@=ohyAccL8({e!46ll)0E zkLVgvONRbMG?HomCW>e1KSar-{Y%t}=sJ;?p*PgWpP8gpI0&0E#31U*3{9f`L>5sy zq5z^1OyVS(#%x?ff0GtS6wO@RM6WV5h^R4X!9<@jmk^=?hK3Rih$H_CBOJY;uCkBn5{+hPJ)%8C(L`OCHik%8a4gYvqBx>gh~j}NyiXF= zC-G}$*nsF6(i#%cNyyuXXctjqqTh%Th#p{Zi9}VTH6eP1s43AbqGm*N?C~}y`im)A z5G^2TSwZ*_i)%%+kHpqQHxjiW>cPZqi5?^^iKsVQ*N*5drcEYl&CvEl^@vi4eq!2G zqHT=Vf#@Bgjzrzn{Od$m&4`_e+7WdjI?9M$i4Kw0jpz(fccNn~qzBOw(s~lLAxa~f z%Cx=*5=F3r6N%;`ZH0Fd;U^59Oq9*UQ-~H2O(kl; zLZ%TdBQ2X~2+?$+!%XWTI!82v=qvVH4$&Z{%_Ztelt;9mXeQC+3MQFF*okO1(X9;5 zC-SloFVXD`okJ8!S^-gAqC%q9Oi@G>&(;+aonmMS(c46GiFPwyDN!m>S$*!mTbXq^ ziI0&uk0_nl%qRMhp$mv!BU(r_gYgy-C6IQL3MK7kq6sYS7NWHbT};%SXbDjZ=B!p- zA>&mnC9wg6mk}i}n_Gz{5iKWrfDvya8qRpP6OABRLG%Jc?;!e^=uV>5OnVp6x1?1P zJi82{lMU zN7@FWddx+LQdyaMi9(sneLxl7C`Q~!VrLRJ5&g)Bn~Aa+dOy)X(jFkXOtgilgekTX z^CQLNPLUvQ6h`zF(MbU-bqx-3?C<& zNc03zd&b*E^a~5#P1KvAPZF(S=pLefi1re-W4xz`^5QuEo+iAH!Osx&Cwi9XEYWjB zwAuGQPjrRo1)>hD){8`LX1I^&PNJ8HjuY)Cy2z#YGSLR+cYvrKb2&&<5k}%6!fQl_ ziMlcID@2D$dzI)tCV7phISYQB=sD8fAW9|eO`;P_`xcRd=xw6?jQ0*v0^=Pa$|dbx z#s6{{@hFKGSl9Q6Vi@rl(PTzEPBe+}P7vM2YQ0Z%J3~JpT1nc6L{E|S5m5`GkBM$2 z`h;jZ(WgYMQAUOLGs1Fa{W(!E3;u$rjI@(PrI-P1+U3|2iVbnIf8KJ}VtVG@P_ppbBqS zMvPMtiQ@n!(Rij!BWgohFQU54r8iMU27~($E@l{kJ_w zrnhkcG@6x=1viXb-blK;$89AyF#PBBHL$?E20O8 zzTxEBLezwPxs_-!i`zyN$avd{Hj}o4s10cks!pFn;zJ~^An{?Mb*#c8M01E9CECc) z$B4R+wv*^*7W_C-8fi}ug)-hQqJ>1eiN0s(lSJP!#U7$-(VTyK2`d@#DWU*Ie46MN zR_hs}&l&nG(T7CO5k0_o&l9~*+6zRBiC!dX&$Ro9BH14=5xv9|`-z@pyqAe8Hj#LM zu$oB@5`9G4A)=*>c$g@Uv{#5qNPCrN4Qa0tr8Dj8M7@aKAWCDwZxY?Y6mJnFllC^z z8>GFX_}}+Ta)iVQB)&^@4{1k<9%Ui#5w&ILF`~cNg~y2|lXimWd(z$~3TGi75FKIK z4~bR~eMGc{DLy889;m|m31J^5`IM*u3;vAgAx8Y1s18HFAUa9fNur-v+$kalLr)VO zU?FFSo@KnVMA@XBBYK^*FNx}~jPpcm6#x5*@C!!#n&=ru{Dx>RBYsQt8AHD#%4F#G zM86XKKs1}7KN8(T^b^qpq64_8Uf ziEbwChKBf)MVf;sh%|%f5VJ9fN{B3?OrijynM6*a15E28dW5tm{|zF1 zl3526MKehVk;Rb>B^t~mVMOg28cuYCvczxyM0-h#C-M^2CtAU58W1It){v+^X^n_}B5F(&!0IOu-N<-} zM2$#mLgZ$=rWJ%&37ZiuWyI!0A*8h+dYhGLNfbj`E21q#t%(*eMH`}Vq_rjL#zK;a zdNXZ1qLoC+M4cJ0J<(q=ZC%MxHHjrq;(nyg_$ya*Z=%!8un*BeCP^nsA+0ab4MhEj zrW5riaxudJL{6fCL>WYbh<;+$9ETSs8qlgv} zIf!l|TF4YP6WzxY6}J%5M8&(9=p{y6LbR4hEzbvumXbD)iI)*|VB%YeVp-|sM1x4X zjp#O_+lefq6+{mc-9aQocM`p;&cAmN)+Mo$sGP;EBsOWTfi5~`OCBpKU4bi$Rp30G@M@9z;!Rbh>)E$&R$sh;t8@i5EmU8;YN~WCDXman z?Nlz8MlMue15_@<@6t{BTNU_mfvz_1)hb=~}aU!T<1jo|fUrR$R+x`dJHYvw{-H7`r3aK#Dm=7 zDjUxHO4r=m)~heB)JoT1m+w+v|;%I*eSi(p7PI{8|;r^;hZ2dAnMDaS2wsmSyPT$ucTkU;J~Y3gbG))Z4gD zeRWrvei3+|`r^8;bnUFrd2-=Zy8evQ#glhbx^|q_6(y^#bZxA7O=m-PQt6uT-Q6l1 zGL1^tkpLY=MpWr~ubvJgGpclbHCcbXtHSPmYo)H5`g(P0rTXIjfdXTz)EAjfrK|0} zd(;>Ahf3G6b``pX+)OH66FcjAlXXWzPN!_x_Yg9Tzzr(u5=lW-Rg@Qc%|#h&iad+c%^Gt?>#Dv z8+oPc<~mQ$8Aq%n9Ci@SQI>sr+FDvUdOrR!+-7t|Mb_exh% zvHnWYm6>sHPJvV|hZAVQhE*_sK2(W6eb!m6tu|eXbIq6V~ zKmS`KDAWF%4y`2b|L=rp{NFf8g@+#h)5|FCydD$d91NN%+i$X3(o`P5F|u-#6(&k7J>T0f)@I!G6Ka{iZ)1pFuQnJD)MJoJImckE(DEv@*!VkqJ{7_!P4+SOsKtkdVB_sU& zKgQlWFv{YI8}}aWd7ix_goK175CWlxp3nmVp@kAi2)#ofw4;UIo1$_8M1Eyz)l4KdlLZcMgXw?0Kkp|0DBAo>?#1T zj{v~F0RTG%0PGC_up0ot<39kuzyR=w55Pk`0FUuC0eNr-;87ibhjRcP#{qZ%2jGz# zfQM{=Wcp;S^Es(HQHx6n0I=!+u<8J?>Hx5d55TGez^Vhlssq5P1Hh^S zz^Vhlssq5P1Hh^SAXNvDRR@4o2Y^)vfK>;8RR@4o2Y^)vfK>;8RR@4o2Y^)vfK>;8 zRfmB}W7WYEs}2CG4uDi0Kvo?9c8392bpTj(I89No>fni02Y^)vfK>;8RR@4o2Y^)v zfK>;8RR@4o2Y^)vfK>-TstzEl4gjkT0ILoFs}2CG4gjkT0ILoFs}2CG4gjkT0ILoF zs}2CG4gjkT0ILoFs}2CG4uDi0Kvo?9RviFV9ROAx09G9URviFV9e`vS_qMa1HWZ(w zZiHc;whadS#@jgG;V){m7dJ4LZ>Go5nDx%Oj*=>3&T?;_?sE9S;Ed`>wUF^+kP?Wx&%1YPHdKNXiJ zS$Y|2{~jXBDU3}Y;A@#9h~VSzCEJFr^AF-iWHGR}hC)oxr1` zl*;1q27LG4a3dn{oeGzB@@6@07e z-VUsPED5)F)1&Eoj=_QdvO!|*JBv}%9T4EEV!ix4RB;_5_yPopvZ{Mj;yf5qe5{MKR={v!r&i1Z~;p ztfRec5xtyd6r=XL!RD5weSL}>;dF>&-m!4%AJF5qzZ4<-5UG;AkD`f|?twhG>VZ{z z)pR3)jJ=4MqcF~$L}g4ygmxDl@i083~R{3hfI^p6M4M<1H0O7U{}% zMqzvrF7wkkzgY5w8xfjbO12tK!h_sV)O$bfNFD#OQ4}YSo>m;rtK^z{<1>7n>Q-@Dbt}g^NARKGcnk41BTB(5X|qew{Qb_vV4-IP2u(wd zpx}kShW=js+?j;0#ihy>J?gBFN|fO|gsJi8KpS4%EJ)uRbtY*`tzO=+q*;h69z)Dc zOQqe%(Abj|bYFevYGmg$7#xY6J7CsJI zIMdMPb~r*%N^)r;R5oSyo6+<&QsGZa2KNt| zkyPfSGgZ1r?mopanfe!oNB3wBv6JMU!6EjO-19lau9Ew84zai7Ue6(RnB3bq#6FYz zAcxp(a-ZN3drt229Af9meS<^nKe_+pko*!sOPr3N+;CqY5h3=Z+(kLW&Xl`6huEKT z*WwVnRPH7mD$8+gImCXIyC;X(wQ{>T#NL&AJcro9a?j!r`&jOU9AY=i{U(Rl)0*zy zz(Mx5+&ekM4ww5=4zbVW{*puNcDXNeh&?a&FC1d$%l(fGF`iKZf9!&}qd3G~m^+a} z?1;H5bBHG@-E}#{-k7^Nhl*cMe(*ep*sXIf;E-H14Z3G>s67+E!6CWy_6~>S z(%W_!V!V$zB-h7Ia!9U^UEq*hAN!d@{NnBYi$iiL<{}VO3v&q^;;B4$ z1rFuojB9gzZerjd7h%iQ;ByT7Cuxnn~C7{uyU8N_bCy zmhR-iIb8V_4kgH&ptqr|BQab~{MxyMdW_N&sKz(WrL?Ys-kLg%){AL3O4I6ey^i(+ z?mh3UH=)O0V+7F0=%uu4rD@?`&MfV6X&QMK1N#TStf03geXL$mD^y03;l|KL7oANN z)rcLsLHow)B^ev z5R#p3tz#KV355*j8=(|=Z;CKF(M*qbw38gD?VnCl%PK>szjx-)i|Kk{ZGt7lSSf^- zi$gP;>s1`10&*W==ROn%B{-sx{PcHv>oHVzFdU%wTIu1Al>wZV z2XT@$@mq`@NhM{_*4V+zh&Ks#!QWvTThy*#3? zj@8=&$TmzWOODOD+lSoCMn=tHT67EC-?FONyVxYMuzzjQi}~nYvgwA;0Nr~Z!sD>$ zUQl#+Cpd7!SU0V<^Pi<_w|6BP|2TJ0vuA&zFO`?jz64j569z+X;8t#-q>_%^VnHT3r|u;A(XEEh1yDU=`q@aa)hoBLrt!USPD6Z z`Anfw7hH9g#MyhmOvMqI0DfHoV=3FU|H$^9l8s-XwKhqrQ=GgFhi&5b&Z3T1l8dqv z&6Bv1MrnDLNW)a7QluV9bm+RXEKVzuVoE^7F$xs^ z3RCLx<*sOu{2&~fId1S!}H zl8+SZIT`c`*54AWuZ;BxR!&tBPpRMzFj+-kC+dUwLNR|8eI~^Lil7dUaT?a00GVzx zo+Zj_-(@&C_l?Q_x zc{d_1Kn$fvg)!z;svzyZRvxEqaPI>V?n!N<$FM01*Hg8u3TgmofUCZ5fl2pFJwa<- zK^gUy71TJ8F1e&g0ifLFX<-~l%c@u@EQ~YO(^48?Y_9YUj!#<{AeXBzjHA4O{>o*% zv%PGI^pYhKU2zt{+2>N4EtWK^Dp0knI5TXcCCCO#kavOwc}WQ}Cs+_(#M=gyxfdYA zwr%=Q?T(f6Z7XNYcnKQxw;4fI8tNfhOhq*&MpaZ*qE)2cJM`LGL`78_`75g02m#(% zr@uCCDrTy@=MXBIOLzQympm14T5{ zle7tzBx5Z}ax2pDXj}|;s-a$18)bqMKw&FnvV8AXXXE`mH*+2JWy5BzOu4DZDoA|cx?YL$dtobS1H9%4kyh_ zfJQDDtH+{D7-JHtUK3r&|$S9o_ zChAQW$Dl580c9A;n<*c>igC9IvsZ>oORK~c`XVM|q*wz~&eEcHtVA1^nK3kc5$5Xp z*&;dma5xn=@i7};Cj=vDvFgiMUnhK|JOQ5e#QC5skn%%+{Y49xT@NR3+QO`l(Wg5Jd*cXkVmeG0~<{)K)Gz}kfI91zU$?uF7!@P_v(VxNe(zN_h2sYvO z0Q%qj^s=Ggf|hcWp@U^mO1K%70`kYOi}}!>%=~m97A;j=rY>2I86TiY2?ARQ1(KDr zlKHEuLMvf)TPi)z{qm%48J}sY{}oIVu0f4jBG61Z%+hM6UX_*Jdxf6pn5`t66(HGY zOg)!H%?x+x#c|G{6j|2HG$|KmQ<#^pt-wu+)m_H=+6rDQdu==cjSE<8so)EA#c9;G zFb67gGxev>f5n*kvl8Y&n#mH@E`dt2img6%ME3Cb?A=^lbJ7Vlm%eq8g&2 z=x(h5N;&q6yBPa%RR$+W^86f@?>jyg82(w4C5yCR78vl8vA}Cn*Y#6t7c2AIlK(9M zMUgeJR~FA#6L12!CV1u@w*n!HDvQuXrZbmRZAukxiX3|X2}ZJt4!Eo9loV?Mq*z!* z^_?3I^qrLfqAd4|;#ekwzBU0{Dak|`>yspxB^lrbeYNjdc(BwS?q!g3EsK(Sur{pBpKVHo6hPaGlWugr%*GJunm;k=C18kV6(_4W2@ zg(008TSKTEsxtSB{B-y}hN>o2)##a4RVnEN(u=^LNI?czf^@7(ZQ}JF#{JGac%r^Ld}L7=PM?=U&!}Mh)gW z2^NhVRL{K*a|jshf47+YW;1cTsduL#UBCpF;-pJclHJm$>5u?#S&5X;73nwv4GGeU zAOI^;HAqQO5?LQB1F8vT1RGeS8SyXfXt~KWa+^L~+55zgEbj(}1YCWFBw4jlz3=d% zFk8trOJ=X$EJi2uXdXjuabgs-bv!NjsdZ z#&p?8Gq$3Uet!wJ?Gs6$-YO0xtA=`So?cMN=cGRolIxQ?7ffmhG8KwkrZ5{b>mYT96OeNdrw^yJ6O)OGe zKN(1h21RR?>6>fnGi5@SJ4doD%QLF>9WT~FR0j*G^_sO4%@#B|A* z(&p&`m#@iL7{?lTr0Xn^)&z*O5Nj4gGLW#FAtzAWZ|PyQcdZ_# zeQ9yR{v?0lz)22dz>33siY(#hL7W0hI3-23@bUO4E2vQX6f_fO)QdTAr2tFf03Wje)Vm%KkN#{d3h+bK9jjPla?S@D-~2{7#gR*aQuzvtxwmk zTlMhaaJ@K{?xVk?{Sur#h-LO)sAx9KZKfOT)k^E39DOF;F03cfu)b)0Id}D85v-Dy z>ZcR+i^qcVnST00IXk(e8ZJ5SR}?b{v#YD7m_=6yS~iK+^wSGcfp44!MI=Z!LMBaw8pWv*V`*T!p=PtJ?T+P&&Z&oBVx;sp{+EVFjIx>7S&KNP&R89*(3762QzP&O`@KtYTynpeDyb&taa&*);<;vSuP=tgl2(D7&4JNe`-^1twcr zOBWz-QapU-Fcs9|w^V^fH_#*MQO;s}AFLzb1|B{j?02@+ieP zF?a{C8U5yG6lnWUB3UD&IMuH!|0vtXTMuySTjVUf)`WN0dpm02z;vkOs=l!1wUjjv z>7f^LbYmQAPN*}jp5Ysx(reMG9(n~w2aaotQ`(ta&gy5@QpS9JPYe>X1IT9ulQ-$5 zCu5wJ+r=S|nT;++CY7cPD zN`y*~?VF#&%JUDAL7%MvN2?ceEu+{Kxh1t;LbY;<&y-gq$I6ntWT2Ss(So8 zO|T0=ilbig#^Iu{J#Epp+a!^aX^SNjXc8UgluX}px;0Tyo5#zVI2l+)@m%j|NiHYF zPRO87DDdJ50vYEMsimqM|27xi4Du>!2+aonsg4}6(JF2E^#({fmAi#ze3p@v@@lDd z)O$rz9d54bTCF;2*sNYh4cp0*iGSFRsv~Pgi%`)%IlfnN@YWhQlu`sVQZH?S5sfu}S2L##}<8MINsMZT&=7v4Oi z)rL*v6*-s;%OC7LN7t83fCM#Yz1l)dS`O1fajEs8ET#*A2Ja} ztOLhc>w?)#pQ>d7on66RlQ2y++oGN2rEq>aA z;mG&TyZ9TOQn%{czK!E6W0t4cn>o` zcO^Wlsml0xc9y$A!QFQuk%b;NOW9tSiTSllT%akD5XG%Ee z>nmVxnG&vjpKz^}mhx6Etz%tovUgxXK!@qzx~gr)g+ZexShv|9wV@#3)+rv28eV5nuL-6`HP?cV4;pI*WI2b`*x;l8ssLP->KowfAiGHsuyR*7 zz!%tV1wqE zP5MRJxEyQV?#)QJ`7(Uhek+hrcncExbiwLbk2moc^&wLKeN!(%hdM7o2vyp6U>o_#H)w+u>{>+C@WO(2Hw#>dCgHxE**UFZv>Um?b-G&YxMF z7kh2a_#A*|Z{&u$x;s&{y#tIIymViHj_%Z#(ene1f;4Uy*!?olh^L#o^xd?3kP$)K zKhnEW>A^-UmD#Otr#pj<0`&84y&H9P8`y8QN8hR&nPZ2wrRcqSKbkwlC`?QC>RYMP zP$LdIol5N0JJF{@jdFBopFW8q_QCqD9A*^M@D6$UTlDuTdr+}rxDk&TnA3aF&98ik zg`bBUob zjYb;9G`EdjkamnTsyhY-pyvjlFCPW&^KJBKGDd^@+yM010qCbjV`tiC8@(Xa9fKWo zxMtcf`+EWCA!Cg=?Mxv0fhk6QdU32##BnNs=6C>2`*D!yFPkQs_Kt%@_X5!G1fb6z zk8OB`8wAw*uj7G^yDCph#{-}mo%&oiRc-E^fC4-lh+c9c3XrPMYcU8wFQ}&v9Xlb> zUdHSlNZEA~GU}lyyFNu3>1@@gO90_>frOsP*u6Mi5l(rEkWgn~)N_gvrmYL4LB*BB zW#zI|m}CwTlU|>SdOi|}?wSU4Oq_EiV9wl+UT43)S=?$M_l~qz-A8Uebu^@zN1?g( z>KHAdw36;2?t9a-C_L5RTW3yvi{U7uA?4h}u9RYQ`a7Sp#&bATi)%8s5KA+m?1E4-6(gQP0Sa$#Xly96$NYnnsF? zOM`j2hYbjibuhGZX?whVYP zj7-|w2%A3lD`7S^q=d#sCC45c&#_C&;n+b3&Z69p8iUO>KX$JsMipER>F4UW5QN>Z zDU5)gCe>C0^QBFVGMbh~DW70;d*VZFdmaX0WHY0XmSm$IZ)TL&$|zK=WE$@&t>Y8o z-E^?YuyG4DH|l6DEZk;6xJz0XMYZ8JYQGjnRc(lcI!K{vJ5Ut?b<8!xb-YBDOV&K5 zC$T|UPEYa%W$o=WrAS+g8%f$)i`^|^ZYZ@z6U2#Cq(pFmRmLrl?b=*PBQGaaZxur3k zJgAq^_FG7MtUPx$W^HOf?|h6|kRNPh{S&={cFjV*tdL{l z;cFHBDx2QXnIeUuj5SPnU4BZ%JPX%?&${5!lG9#2ljeR3@BET1ViVG47)_wNvYcmC zIr)PG?O!Y3+wj3=8Wq{);;OiBXQ};Zm6Jb3&`LB_?Ew6|=Zs_?*PMpsu3=nr8mSWh z9_)MW0JK|E8-LUDMq)wxqU*G0@sH0j8emtC zEz?myJ}g@g?VgQVdah9ouWdH!Z9l5)vL|j});Ok_zjnvGWYpH8a91$KH!Y%>G6rZ0 zSf-v@s*U&QJOgtL7G8CQhYzy?wFG90wd8BrroMhXNA&|)%Ojhqe%-qj9Q-HQxJ9Vv zDNJY%x3~^LGJ5!u(|VM)(8_s6GwOC4dr4lla9*-<2HO~X?a(&Ms1VsIXF}d6TgA88 zq;tQ-e%~$4D7!o43Z_ilrWU_LLFgW8I9}LcI*~WaS4~%~Q7N5YxC>FY z0!G*9M(Mas$m~CS41ealsOO@jOniBbE4QNQl?FzS;`4ATcE6!xbNde%jC-g!-Q67& z?w=nGZ;oc>k zPV-k$v#r9-O6T|YGL+n3uRz}4&<!%o7QbSiiU?XcOx{6JPiAL{rkZ233o{9R9q zXv`VLyU%bQO__ujlM9X=K6t=Hxh8D&`cs@>ZVw8UVAJktN8uf&JW7KP9^2Ai+1E9r zz9X7eS2t2=RPxiNqdQ|`{u97*b$k`mQil`R)5iZu2ls9YAB!pf z!GF&%QnVR1eo50vb4*qElY;RBEhRS^EG525m1^M;sGdzWmnXt#jLqRv%6DxpKJ-6a zaMi!G(V<1rG%N(~s3#T87yqTH917R?Pn%{zs8JP5QZkF*ohCnQS0S(Wzrb1#%w5YQv@sWt}k#8bWmsW2P2kc7E(M#%$aB0eQSD z^PpE-7}b65Q(bO>k=l8SL+zjS3|iD0{h22&wXYG)rZ()R9CVHB;ng-?Xy$&ux2jW`acGBqZWT5FAL{B6JJB^?a{ zQ0w_o13Na$$sPMkDUz>j)l@g&uZXpYt^EU72(3J6V2!)2uau*a#-;3a3NshWtjy=M zrsJoKTA1;$<$O(Lz5riS;7@nWN&}^%$u>|24#4e|JB`w|at~ zI~So$_W=BR+yn7H$2~}f2jf2j-w4WwA?Z}Qm(g6S(nh*{zKJ@>#RbvA1EMkBSF$#_ z$?v#(b5WYof!;<7t%p^fuAt-gd9@Gpc{(G&Iu36`_xc!>wJ8?TM9H*{HV$9obK{)J z!R+oD8@YC0BUxK%AuoRlxkx{w7$!~qoTvB0`0}xZy#FcWez}7gJR4`q7VhjT-oXN^)Ntj2>7ETol&iSc&4(2U%Ed;qsri%Kz@Scol*hD}DGonG|yt>*W8cJRb(+d0$pQFRiqVI^a7! zSu2sHdPlJ=IgV-yuRgUr2S2O1LdJ`22W(O09@P!zig$&a(UMO?8#xWCvVA;J()Is zWV}<>*K-eZpL2&`Tqtds ziuN_-7pf`wAO-D~RjR8O^+wtat3W>>lDqQzm*9biwpES!Ad8|e>oxF!+v>4UPo06K z&01TYD8L;1WvmlcvGMy}(W~L33W<+T!UFMS?{9t;o_4m4zvU{{S~C@X#{a;7{Tdo_ zjE%2<5B!k|e|RuHoaa1^Y}7&5^>oJ~g}N{pRf>}H1Ll7|vhff6pjX635h?n%VEmjP z!TO?&8ut@epHryc2BQXQ7*{Gc##RUn(+-%6`D zo=@9j&bMZ^YLL>|RILMA0vk0Mu_~g!cV^J<9q@YBF`M4(j5qEQ9Wm?HBb(}VgjXE+ zUd|W`JHqV++|ug>ouS=IYf%9C8bNrHq4I2kcO+wd0}M9erKfiyH)ju}kx9qnYle&!iESiqRn%kAshF&rPqe?{>3bl09|H0{rKspH@*IR^iK49<4% zPH0CLBaB9vby$dLJztq1oh;MOvP{0d9mN)_m71M-@~N|AR0Bw%W@n1xtNo`c+EI^L zR-xo-(3Rq^U^v5;8swq;%9_|@;h&tj{0f%2auLImGws_^y#*NAasse>wNo2Io-9Da z&2ASoK{HEb)Al;%Za}+yp-~yr2{P-=g^ZGpX&mM~?VP!PwlIAY9z*<3WKID z#ndPy5)k&m#*QCHHO$r+}lHnM+)Nn31DylPVf zW{5WD3}IBbDSTS>hB8v}Fq~8Em61w%2j16li`!8wR{sxYHd=O-%k8bMBIhehsk_tp z(sggCca1BK>AtS>2jl(4fA{(C0slSXzkm7fnGX2V_|M6I2LB2C{ilnCwd+4LXH5Ux z#Lgo|4f+4k(ZcMW7TSSc-T;^QCs{fERzT@wD}1J+eYFzCeqkxX9C8IZ)(x6dzJsco zlHH--_`LXat0&=%F@#g$JaUwe94`#~S}jiw>S$4>S2NOS$WkMXUYKFDqL}K?udyAJ zKIV2Hyu((-I;G8cgk-D@?I4@Ipx&fo(?$Uncd1SKUJZDfivvhsm83Xnr+%@r4fNmV+U7biS#n%t;GCF1T|WND$CEn8i#-lytJlKbv&dJBRqQ`k#_vE{;Z_By=2?Dt`B zUx(%0Jqml*Q`i9pfCc0J_)}0bVd2N$OrObW^(oa>^{yh9r}A}D>WB>$jkRYwDXa9@ zDrt*MEZUapq*SY5Ct8__wf{s5DWQ`xT}5#6AHSwe%mQ+{jeIH#$W1Kdw5O2YYm2Th z*hbEmjY-J?7IHruIneB|R9wslvL<|miB*M>>tL&`!ZiB8Xs5ktaeD)itaJ$*F*qGm zSvoe;gpGKG-)G_MwsPF5$`X;UOY27VtjBdf(do^2rP#g6D4<=nC@%$5($vk^I%Cr6 ztafR;KKSXzpF0!zjsvISo%nfc!-t1FAjhkaph4_G##A$yHB*yGC# zwbah4V2$@-4^wZMrIy*5R_()Hh#o4>t^s*=>a5yn>V9mAdCrf1aX+@iOjqbr{s;P= z16Z(J=SMGo5Y}alLSOkm&>bIR7UPH?y~oFL50k8bkAu-=r>^}8I`u6-`pci7yWLRS ze+WjGI@bRXUb4cwD1}5>KR<-2fY2^VYeg5OkSHkL?i$bspQ6E2Y-HDAw0IQ@xuT6M zIsb4NyKXwz$l0HvJ+dw2%%_l_Jpz+E-bP;a8MYg5ID(;jj72fhrjY%5)aUT6U$-f~ z{T%OxWFarIk)YWXZY4 zam>5qqwFJ?c|i3oK8`Wy8Jc;_8iTaQHh!RfvZis*!zO;Hu&?Lc=ALJ}kp`77XcUQR z(ADQlzWhIZNn~dEl9Z)FelM7?4!r>t&c{U8pfnSWa6~-v@IDqJZpGY?4lp+`@;4}D$t`>o-mDtU4 zE4x{4r7VTtM`0nYLb0bvXHR2A7a6jfNLgPRW4O4IJNt%I@r+9LJBIY`8HE$59B3=4 z9Mz<(+N}mubQeB%!x4iST6@d~KQ@Zeb6*=z_+i^+Oms&)F`eEm-=GyaD&ndyD*sv7 zHjcV`5zSS#g9!C5{tl~0IAb$nl^IL%*NtdJterO&aP$Yu%vkSx7mQ|1<^|b789*-G zWB|M;`#4shwhrO+?!IQU@Nx8l<9dmB=m(1;@uxtFhBpm^M&uJN?>9GWLA(`j8t+T8 z?`|2n%q;Cqh*$P1#Jlq==IvKFg^Q+^F+;txZ!5BcFF?=>zZyeqX@D8(op#4~Nk+lh zh@rp!Fk-!ReusK;Eu`!)W4x2^8U18dSN?!6#nH&Kf_KJWScSt*7ddg9a1>pr!hNF_ zAHvSn?VWbtaB{M*+FbNzYiB4G5F*68^B*IH(^w>eNOoE@?XC=&YdnN%W6DnQ-u}pF zrCo~if^7*00#w9dR`Is`*T~=}@5(2}L|^m{%FAaqrg+Uv3SAsx9eU%&H)gt7fktR% zE%3ZF-%OyeC9X)Sx6l>qy``CGI&eip#n7fSe1~{B(v0->cAD*Ed=Boz^`6wtUNX0; zra6WsJGn9w4~wj$JAAk(sAkT&8qmq{01a}}VAp(y0k z{AO)tg&ML1YOu&9ytl&5Oi5fX!hBH@`z7;2GPg|2h%#r$0M0LYP6m*}oM3EO4(iq$ zIvf>erpZK>(feFsvm<9be=ahvM6R;l_;|CSOb5HlUQbc8r+iADX%?kl$W@i97c+0u z^%F2IIFGZ1b_pI2_o=Unn~i-71J2f%DR?bKFXC;PXs&nQb3J^2xC|iYzLDU4r=%I? z;3GU=o(rCjl5wbJT8@bH-Y;d=0j@WtjJb~Cw`I+D8O}_SJiO&Am{%noHv>IsZ3=I4 zB{QAbw~c}L;1o+$V{k&4RQAJ_xgf~qaXqs%CB_Jxiq=nrdD~Pq7b-RxhzExPG&~lX zn2=)Dl<|eT1jf_GSk&6`YG!>0A2KSprQ(p$f|Odrtc4iw$QouDnFQ@CO7GVx9#>?XGS>=lK#-y5EIm$b-t~pl*ATxvnG1{`I7sNy5 zQ=>N(t7v+E08UWww1DpPZD{4gy5WV^j*}e9HD-MS2k^v2BJsjWD+c1rai-bP)T}4d zax% z_GR=$UU*1xLS=?*a=E-SdYOGWW_hTYu%nL|>A*3ua`gnq#AazfDE;<+kz)!6Klw{V zLpG!Teo+?33>D~S-gc~4IpQeUOoXMX@5nU^IrxxS=s*H(9&P5QrR78sZ{z?r6o^NI zCQzH1T;LB~ab6n8HHvsNT2X2}({ypXP6xKS@>B8%p?l*8n@t(Ri>jXaUlzJId?*_$ zu!w{$@lGFR4w6q$s6d7pd7`Md>Ik!?OCeMW0 zUY}^zkcqO}ps3OG>rPjwx8r2CPayJDK{SPpMz=jP#caePU~ntOH5Nq|tBCyG_S3i~ zfzBO;Ype+MsEYW@)6Fc7_d=x>Nd!ofO!2#2g(&oSv{smEt@K%D2EwwnHqAog%R_%N zz-#jcGmH|)qAs4iz@0y=u(!c%^MXY1=|Ch-*M#Nj;DP001a#@|9ANk669eY71~g-3 zH5B-bwJ7kWd1e)fgc`jhxuDy~Y{F^NI1%lA{0jFsoH>kal4w(PQHUN?7a??NE~w`( zG-pfdnAh0u0}E}H;9a@M-18K#`ZdvWUSFa_R=n!fL@8pHnoA@H9L$6P3>^HWShB)& zQerKLEAwjihWUcT{BF59Kn9?uCu9Ih1$_doEqj~VFrJ%MoA1bY)IbF~Ra?Y)QRpU9@x*6yL!y6hdcy3!;mLngBu@zoe?R|zD7a$;A^Dusn@{dBd@`R&$|ZT!>$p@2VH|3 zpK=YrM_dE&`PN9|!>u!fJlPrqe5^Gh`AqAK5P6{WbUgBL)&P8#H8SLbtU% zum<4ct5Fy}yE?-q53bILm8VvNfRC)k6W==pE__%uO2{WwXB3pjRD&6xQ4LH!pc)0_ z3+I3`iRsFQ$aASPipWE$fx{zvtSIv*SU^bTrXZs2<0_@}qu za2;^`(~J9D4IKaU${?Tc&GG-2Wskc5&vg&317`4XKP-iO!heVG*B|n)I&V&#&iUbb zDmSlGE|5!-_7ks7+D|MoKk;6L1#(}4{lps->?ht$&QFa17szep_EYbmw0hIACy5hz zE7JnGP04=Z{Yv%|R{%fpIuWks3wq*}AUlnhgzP6?8?v8xk;r~}rUQ=Uw;y@k$bRAl zB>Rb1lI$m5QnH`8YWaz)dV#EC`-v;te%d=hJ@Ms(3*7rB$P1^E-0JaUP~z#Jr!zrM z*Mgp|2R+>jdipcy>F=PYfABPrWmDNd3`z`{7$|Aspr>*{Pc?&{Y6U&j_C0y0T*9yz zIkd1;#-w@1=)uDW4(-2)^6p>=!bOXp+%hj|CF5w>U*<;|j>I;YF6Dl2cF=0aQQjZO zV?Zor-!`{t_Be^H#!u!CjI+x#e09@oq&117g+H6u`O+Qp zSMxAmwe!*U@XoJN`Kx9cU#m0xhS^?g8B4j>@WO?A0YAB6e!=$wHoR+o$@c|oZY{h{TlJmf;~li?*af1EdYGu0svpP0Kh{F01qtye8~cU zGL;xv=*Pd!wCQ}g0%Cb+0pM#D0C;Et;GqS8hZX=HS^$(ul|u`jcxVCOp#?yhRXMca zi7!n6P&QQ#EnK_bO@f+~?mKqy&@q(<52q84%~~#HUNPLz-uq@ZZ0C;q$E+XnConU| zfaG`T{g0Vi(|%?auJlnk!}^csb>n&AWBQL8R@shl+o*K>A2TJ8m3UxQ4t#F-z^oYf zJm!H}BJg?T1G8M<^Qotv9S_a&f$24#dLH=DtR9&D);KWR*H=ilW@l4zFx+0N= zy711_QHVJ%oWszyG;8(B_#;^Y_Q@&!e4>QMb) zB1^i)9_bl-q+{%nez8Zo#UAMud!$qBkv_3Uy2Kvo5qqRV?2-PkN4mov=?#0NGwhMR zut&PW9_a~t~hG7wmD@=KH@r(g_Arw46t}z#i!Vd!z&Gk^Zkoy1yRj{d%PH z>yf@M{?Vo$d4Y^aI=&w1_j=@|F&^pkLPXT7N4mTo>G2|7=6fv;!?j2HyB_K8dZf4O zkX8JklC@q%rbHTjY_Z$RjNgGDf?5q=)N~R>&ibkVo1ek2FCZX@NY_ z0D0K{Oa}qGwjODIJkt7jr19}c+XEI-cD6hoX?Q%+rS(XM7NW~?u+Dp=%6p{7d!)j9 zq`spV5{Iu}@kl=w|FX{5i*4qSUaUttu^#EedZY{Mksho^I+tHokOWv36$S7(SeOnV%Ay3R5Mur^-!5X(O&Y&~E#g>Xg@16g1LP z5xYSVXH9`^Slv{_so0IQzp1EhN{lU&=s*+9P8Vn7VR359Ei6RC+ADu`Cnu)41d|ZZOC^Q|pG$@DEuN8LvbWzHb5oagTz;sbZrJm;^ z#?qd2WSfhNPuzPI`ptAv+>{XqCQ?LmQA0g^GLbTxi?T*~EuhX;65bh#QY~mMVpQy0 zdcV0yQQ`UYeREO4(CPvkM;34eE@%hrN-adZah*$v9r+xa(*mucRYZhCMXYFn!f7=S zF)V=Y8>TzVjlYaz3sXc(QP^lu0TKTwxtp{U#f=Nx5`U_QtPG*U^_kQRcbrVl5TR7; zPs{>**bK&QLk8Ni4?o^+DNOpcnTVsXRw7QX3G#_5TPBYhAP?(xm!JB~GfD2RlaY#V z8Ch(}aNj-C$RC)9dyX?vr<*fG$dW(6ePb(Onv$&bB+8k9R(|U`rYNgqumV*9H(WKx z-129LBzhhNC*)et@K!}q9e+k~Dx#jBd8~@S$q*Un9;3Mj6jRuRTch$iGC9r@WX^3k zVlEeJs)~@UAa24j?b8}k$fOyxzO|^O!q3zGW+=jg*3hEE+$=6dSE-FCXUd2$?p8P# zx((Vrm)m!j!dTTtlrUw)o=Fth5h$11h(r~$e-i1LP*jauaG{0Y4EiwpM@)+M$%G`{ zN=Sk}u+-4OP@0zs&6KgRRG_&iAI9q9wOjHTtFqT!3IHj@d1X@8ceWUOLUddy7fP;+jHCT*bbN?@3D#`E40jZZ2h=FbQJ-#L?e-VQfC!$v>lqPJzkUD zzp98w?L>^(zAGZ?Po}#~;15WhRv#N%Rj>xH!0z*Yjym;hFXDM+cT#&%&tUTpjc?OY zsD*OEs(6UYA_dZ;_M(|WYE9pD6cy!yIF0Kd!kNX39Yh0$hdT&tQ$P>vDC#k6*->Ca zZXCVbQDDJ8j=t_F8ZnIPBbRF!)%r#^k-{k_x`~Di3v?Il6vj#mBcc~!7b^lPltPr8d_L&mJ589hWYmG2?)D+cdaC~bR)3e0*+57ZUl{vIMzX4O+?P6^#wQlWtzNz| zAGT?V@{)2vCK%pZNwuZ7XsZZMT4+#PgEsXNF;QbijqUI2c(SZtS|~mHDB@LpL^bw@ zzv?6EU{N=Jj>rJ$nj<;`Y{?OQ0iyeg9sncziar2e_7%+miu4m%0PcRGJ;1(xk}f1y zbih;ZT#?F4ldtDO=KwF~qKJUW{ZW5_Gy02GhP*Z|lvWQy@4Mb#JgXwYIif11t#!qP zsR2OZMJl{iT+JH>W4ZajT35k9glL6;O7$Vci!h(vk}P5sM#+JqvC685ikLPK) zsEDHjMGZ)~WRPgh!e$NBApjj3%f;o zhQr;WuOY9-dsZRd#D-)}NE;$1sD#EU;maYSfr@CRA}S0O?HF^~P|-yt;CmO&3r;}1 zVHjcP261MDzJ$=CrZ z78Man4+oivzTOYg1|v{Ni8RztT3tnqP!Z7liYj81il~++p5&@1R4gn(D19)> z$L(bmD~l8V5f;v|mKnuwVI@Y342Hu;qa^_kjuu@Nqu2fU73by37@<@TI3vf1n*6%< z&KNW*;GHp|lPNDPTt9^z9blnCr(m^_mn1`c9Svx&j71iJ*T#zGhD6^?r^aD*vFSLp z5fWyMgP{ccVw~v2u=IGSr9|AL5a;CK6?gu4QJzzGjz@=)sULG{72*X)YB@nfa%ztW z=shy^h@v&7h!}f)anpF%YM@=8Akq}t35C{hqNvUZVga7Ske1_ zs*tOJ@zXF8;koZLWDK}&8rl)?_B2rqZ`O&^MJ<5N(?$Ira@=i<8Gu2?Aj2~Tcb>UV zPeTqzX0RVxj1|=rlzPEVmA3V@pw!xY;j5yBeZ4bX6oqBXKSLz2ji@w36y=WH3J^Va zAfkK7n=-pj3C#bZ%|mv=K0&Dhf>}AJZWNSS)lNl4U*U}M(PPdZ)l_sQ@<%n)1?2M2 z6y2v+fcP&ia@WDkw!5MV-(? z9buQR?Q3|w&x;&~hLf9%ydVa;c$#34;ZB`NS#w1iMf|3@=-C(H1YUSSgodd}1mx{r zJ&8)Z9DqU=^i(-&MUe6KhC(+0`qM_oJFk9s3>?+L`ZY{SqEuAd}GIY!l zxnXMZfoT>?nvR@uWRB>g;ohPO9??bcyaNQpJ?t-urgXw1BEr-J1rwEoRP%698=^zv zaz>5HnOFsxmZ_?u0Q&S7OlUS+~ZSBKP{)PK~7(Tm(bzp_9K;`6CnEkyq5sj?ZP7`wz44Ulqk= zhVCtlwuSP)hMI*W178!PHC*;_;WaUeVcSJwXaO}x!-(DSH=C~RK!NTw(yLRU#TW&F zmb6$*)(+R8b%3FVF_i(8Sjz=@>MGN-YVXw?#t%R~l=VfYkl z42c|p7h8~S#Add6sBq*_o)X986ZG;@c-2*x3Xz{*eLv&MA>qEK1|IuF|V(2&C6TJ2KTfUrp9lGIF)vm(=him^N=rX z(#P1$^U9l;CAnjo5pK!hJY(_SY?@gqAFkr#4C*cy(JVpR4IETkTwD~HkTkW{&VjQxaZ_-{7daij5&RSNy_Cf;Sh zTC5bqG~BK*ex(?|@bXIZd^PLEEj1fGe+{^uS_w~Y#VS!KRHn`4w7G0ric<0#%;w1S zu+^flN}tc^^C@{Xd@L}Xvs#S6;f(iJi#&kAYs8RHHC4uF+qr-BK>V|7#q)f{%fYo` zHp5nLiAkYq@{I9%)4}&pqw>a>((CYY3X}%x#LF7)RXnjy%xBp1Z80rEO|LPD1Ans@ z(af#+@b)l1UlLtzt(%m*UX)|xuIt4NzWwC{M`T_Vma+W9I3an1 zcu`K~&5NXz%kU>pZh-m4jhXe{7vn%o$_IKpQnY;f{h}ffSMv?ZhuM*SlErbFW1HNjc}jCHi_6!iBl0J zpI49~OJK89qfKz46YJ5UO`>OLVm-;fHrLF{Tr&q=)O0#EKA+PlHF(^_D!G)r6jNv& z=E5Zh<4Q7#Jf}oxp{7?)I;kmwvOfr#9eJHvky3$sdW!z`=+Exh9vyrHrY`^fh zSt}%##kS@;)hs77NSA{V4E;7yliuGZ@`uZ`mYl|aN^Yj7aUWymz4&&BY|VB8r8SG3 z#Th@hUChyNuU*&C3MX}d6o_sR~uTEFHM#X==w zZ*Gjjl>LQPgud~LsoI5l)N!X+$?&h8Vs7XKuF~Vo?l`@)OCf}OB*qos$<%qex^)c@ zS4)d#eCM0XxyX&H)UJLcdWES8S0=7wl{xPS1j+jdMO(UCM1)I(dW^t-s^H)eO5?fU z1@;IdRH8Islm@D;_+Gh?x+-JNY2+R;MZ;~2zwHsTT|8-vW_STt20J zOAYRveVC@f0Wm?tJvuuNh_MW-9>l1wriK}DDi8BT2?eh}zaA7xDrp8M&7cw=i%}}# zd5(CV-uzhPFcZfo5a@74nrT7DAu%RY%^NeKi)I`W6AD=K#)t?*EY5%TqOE04Z4O~0 zd&f^jA!ai4Q?wf{B)Ih{Bn9k$SmcGNDQ0H2YZ6^OEJmo9Jsg9HW;Ni1;_9CFKNF=? z+I~*Ml=Jz|L|^99@Q9eH;hLC_0R>M%qt*^nqxX4Gn4GT=t^FKBm71Dn%7v5Y$$8NT zx6$B|f}=1nAWbkIg#caDkZFg1V8 zD6vxdW)yJ@C6-6eWo*rsvPUNTCg8 zw85+!%_#3QUh9y{%cs$nxNTT`iCh7ve<_BCsmXR0^zlTxxF4!3Z!d0s21NxFL z1>UQ^6%hqS^&dSJdo7gxU0a&8Z^Q@}&*P&SBc5085fG#4)Hg76a)N&=3&?-$Go~?{ zXlnSahzhgT0+5OY0qG63otm!}ZTeOeRcX7J66*t3)*$;kd3tDMU6p^2-hKgUoE0z2 zWdoSCxj(?8`u;512RG;T{!Y9Ys@4;@kP&p}JC!i>oS3I2)u9LHpw56(&x>(kYO#S4 zS4g!T#3_R>hy`-h0Tp=V0xB@}A}SD9b}zUno(ogU5iH`}iB#+oEQyS%q3R7gm*Qy0 zB{5R2Qp_tv5tlKJHMuNCyLj0G)s^XRz_=^YMVl|<`;rFNMC6il&X6d#THaup z8siUs`C!UkrZp#tyYz~P50w}VIYV5z(MgM;udayEausA=3{|~~mdm{geZgh*=dX$x z1=R8gOMDrBupigdm|f1guktGF^uB9QI1pU82G0kVmk#+JW|mh_AaSSXm7T!dr?{i& zItCTBw8A1LD>EyTPF#nX1?`RN;&lyoLeKg^taS0B3wY!_Pmgy(+xT|rB{T9x(*C!x zezgZrguA8-6jW<7%u!c`9!n`R^R)yjI>}F>1oNx=lX#WyEBoQ~gJJ5vqPm^x%YrxA0m6X#9egTfh;&K*0cS{el4%aNcdPR1ub^9H&u%I{c~# zKL1rLV1(|!iPsfEX^M0iWhn6uW`~h5=8ovh@c11uOd-V6-7tI@)#ENE8IkbLT}*lb z-nlE9Gfe$mJ)aDvTr9hL0knjQ{etna^xvWwow_HYRKg-o*!)C~ zUh)UtV?opA4>49HE$5_>no){={R30yNPG5AU)o!ocKcURhA#h!B_O1g`3s!`@XfzO zuA<+}I8*MZJX1KW^WUPYO4})UhvB2xZ~w-G9nIQ_n8$?)iXyg2|?`v+qr z;NpMKE`T@xfl~|E>4BKe@Y@IKxyeJkZQ^;wL(~D_9}m&KfK4AMey==2v*G#nBMfJN z*^hyb(~mYh2H(=zOa4XOyjs-eiNLV;M2thi;<~P$43@b@ zGFq6!wV2^rhii5|H_pncrMaqvE;g*KOY?Bsy5_0?)BYe!>S?1{sFNALint}3E0(^{ zTyYwRe$-qO8Rq13O=5U4pKB(=K2F!G22;*UqDj~B-daL;4d#S-x@$5+m*HB%aJAv; z#n558av0{Cu6_(ZH(di=%)s4_GoI>n6{jx3mCb1zglh=HIG1aP!s*30D}KcH*0zn$}mg`akbKLyxY_eS6hZBLtGigolFRbFT6rsaa1SN)twU-hq~Mh z9bxLZSC}i4pEriNx-ksN4?zKk<#%;ucqG3{j|+Eo)V5^Nh;YOM9u0RjWf)Na)s9mI zM-*^nhYoKe>+(YucTsa?TrrFi9pTDj_+o@>Ji{juu5k>O(Z zYZP?#axp9SZdvXKh`+Ucpdp0T;)kO#pw2N7Vr~E()ChTvOCF zfMG}i$`6>ApyE#@C>d)MQ+fQKvd%lO$E%CuX1EcfR@8`~_DG1)Ac!48j2N*a3GyI` zy*;s`LZZSGwUtt6?VC)ZMg*s-*SuX~j7?$=U%7}W6Y*T(mxl54Ae49a+~ z)mCM_FKer=)HSG%8c8y{4t8J2J9RjRnsrqz(tFlbElFn7RUJuwTo>yDS-zfXLvm0( z6-v^p$NYLdY*Xk}>Z|@FXVh0Qiss;~)oWY_@3Q@=zG}d1BeAGDs*2aG0ghMrr!-K_ zN$zTZ;}-HW=yH>0sWWxc>)oQ?Vft7z~Y!734=bVJqK znxh)RJinpp27bAr?p>#m>HsaJk!l06uaRmC@wkz;MTTh4mqJuWz*`}zhoW(uCpzD) zKB$~-jBWOOv^TY}YD{uZV^y2vwZ^JNzVMD-*(R!aaeCMQm-c{#`tB!y-gjTBc=NHz z6B8%LPE1V3%hcdGr-_Qp_fA*uViRl;$cjy|;*bNHV&mdXoO_M*X{Oqe-lZ9~807wD zDwSlD=T(YN5S_uwdN&RswRfLay~t2DRCObn5Q<$G@O7s%?(u?s`aYYsoWmigo6 zIAuUqY=J}|ofc}A&(JOiSjx*iQ?Rs`wFx3F!a+r#s*QQl!g~*VjTdC(sZf%8=5ag3qI6xtXwN_(De$bkEl{VaO zOdHjSxPMpGWK}EW>z6P!c5DiLAi(L}YgM?4e1_{>=tk)Q-)-UHR8`)a5{}CfIxY{# z-U#_gI8MTl0c}-prTfgK%&TPKmSk01RiA7*ZLtSK7H)_2hwKPhNc+CH(AyNLYN9Ss zmEhj1sCS7@s)_eUJLN}jtMF@2Q;hKjw8wD)xwbvdHIRR{S4kw3JK&rSd8-5KJv*`; zQ>*M<>4=@ZcMN7!!3*f5Li|j%4yJ{Yoxz=Oh@oqCC+r}QUw6Xps69?l8pq0FoA>F= zKAD|y*um$!&Ny8`wvFIE84;Y;C6b#vdZoIs?9)XxBYjyHED+>}U9bp{NGk$TXEdv; zs#}r^glM5Z<%O>8-J-Xo=r1E&>8eUnuW!5J`~+Du65AOvHWFDuu8qW!LSBzlt@GXN z?N#W8(IE$SQw>RGcEg^C7y7TCtg3seyQ)h{)9$K;-)g#T&7TBT@6X+__B@o{ES zD$Dw-I^Na3syJD{>5Hh4;r%cQWVVqH`{61NJ-R=x){tlWC zI~${Fcohezq2w@Y06Tm#K#gXHXT2Htik=rYQ1vEafkVS!;UF_`tS zgOyAAgTXk2A;X8@>;>r!!TlEG?IG9zkadP)ogh<;JUA5V0o`{P$BP-p>#%tk``;ag zYd!1{u^e}8EH(o4Z(=!q%i&l*=!=Kr>bIQK6b$Kwo&!}^1-i^KIA@?jiLxJx|d zhp)5bPQfmBDjvHWlpo`gdo#KVj_?iM`9xQOj6J&+z>#n9)+_mT1=fi1&f-y05&Qs}ittMPcT*P7Alg(7?V>U}4M zI^7znDy|xXvvcwoRTK`h#;D;CUyQ+Ja0&_4kRVOKxfJwP|>Y{)=fi-R2}?UGSE_r^#4k$gU~4!Gb)P zqFNNy-WBW!e|4%q4hsaQapQ1Vg1kBocWIC{#$#XpuB*3XJnlFl^G?7Ph3ql`lZMQm zfIS8B+X)J9-stL8o~SZO?wg3q8f5WFI9wt7P2zqVCt(l6cbFbeQiF@!$AaR>I!vpx zY>H~=EuD-b3s#(ZM*5HyXOJH!V|xZn;chq}@f5`r+!etKdrJaI9Qxx);`9=VDi+Kd z%G%Ki?}?wL+H;)07ATIam`<2CcRF?kDA);b>6or6l2UO72g{s+%PaJ|kcv`qPEeXi zq@35T5AI*OPr*BC7SB{g$t!!Niej&`8k(N0+jQ0?j;)UC`C>0Iixg(KL>2LlFHr@_<@6G|9HY)FUB$AiORlb0 zY%yFvPRG6n>z#BC+<7UE2nB0Ikgn$Fvw=h)Sx1|+9#cQr+ayq;Fun^Of@Xp zVCc}qq{N9shi0K1$oq2{0&quvZ$Ji4FrSz6He}$U40$sHOAZ;5iRnOQW#Wtu`F$p) zp{s>9Q1lI6>s2@jP?0J=tHh|4SF&`oNV);Hl#1JL_z#?Nuc>zna2 z6mr1JYAVSOU*>)hTht=bFK=Q0u3Pal75aNdhQETp*FZn|3il7&#`eS8)Fk3T+vy~X zBDL)}$3gzQT`i$1v7LKVptt2!9K29|cvWSPoU=o%AsMh!Z6%qrQ|%);br;*!ZuK(h zdv>ekB*XXMQV5A)Ls4?pYA)gNNxYbp++z+OdPae_l^zOS*Z_Tmf= zd3P_48_0-#I8K;X@OJFOH4#OgKM{m%@j3>9-1<89OUNSoad1JV?8hOgOW4MsNX;4J z?Rg!$J>HvBDnFiE@;pTDdfmE@#hrCD{taw1Z0P|u$>`~y@hKBWXKWRHven*jYqIdD73qC1SbHYaq^HKFIxg0&pT>{=gI?&VJ!Av0Uy~815 zj^Pvw{lGCSDrEWNY@dCc?cX2AT^e}!30y89H=e-B0`iv=*piTg-^IxR^6k()IEP&ZGU=R(E=DhAaEju2A^ksZ)2rCb1JC09O+TMgHOQ;- z`}mCn8S}pCi+abs?<0{C-h=mXn^nRKJCC2y8v1*g=T+%IdK`X~m+sRWSGP$MvhZ&y zzCnpe@d;BKjGr(u3;%d=>O78{VDG#0stH8k1spKJ-hd1Et4Xl8nzbtzR3m6UAE<^9 z&$B3T3BNfPe4s*r23}H)z55@i@@N;nsJ)tBRP~{ax~QWsyQrRnw*R6EhQJ_|yu7)} zA8m|O(QA^cDxr{6Pz|8fyErxwQbQ>VrqP0IKQ(XeYo#>_|Y@@O4599$hRL7XiXNUx4vn1mHTlRxb@rxGW(T0y@G{tLa)l zm@@=WSs%c10aV2YutI=|xQc)--}BId$4eIIA=bK9)s=m)uNPoCY$Bk`_BNvhkF6Hy z2-~cttNLJmRe8G%Cgc$U zx~A@JwBT{f0-fXutD#;`n@?KcqDoJb97}XT9wM9;U_zcFpo{6=M++VwSfIzqwVE!? zgZZ+6<2=NN0;muV9v{*E|BsN@$VFGzT}KNpH!RR&+_V~M^0fJu0IJ4=|7`(Oeh2Wi z02A>J0bO}_7cCbq_bkz4Jg}N`fFt}MfI7hc5dmG3_n5)Y7U%#^t>z5n0KW<_{(lhA z6?%Wt{)dqHP}QM{j!?jAx_A#}9|3=|ztVuJB7D(;M^OuOfZ|ru)p{^LBf$8VCh%S} zTK_U=!lj%ceC(CCnzNcGQBi>LuS`JK=>?*N0M#teDO9(b^OQGsO##Ng4gpu{?hv5? z5iaF}7Hl(0VSN|8)c^xdRCo z7Zb8Qfm&2y*8wefbhbc`(Zy=I01xI!0meUyfG&~iffhV^TR;I^r;k-pe5dXG1W?5t zI>ZQwWH3;G2|0v-6wRT_a0_&j@mAAycQB6-;8K+xNFotkQ0FihYk`iCY&BhP2mf&b zjQ>Oex*%>6TJV@^fetX;YACnU=9vs={i(hV9cGIQmDB;G3NRt(5zy6g^U;FGA`A2w zi>>AaaDXKOjQ=tMx==0yEd+ScwM0kAvYOMFBdii&I;#0F~9z`G2br6LLENT|f6KTIjRO0zJkat2v58?iE0#cJO~)fC+GbfUc@L zh!#BFw7}INk60B2ciMhb02SS#!!ZF=X$NpZfC+huKt5F3IXP&-x~2~HZv>bQcM0eUx$n?|$9)TQfQMFdsKO5B9|eqH@JImF&e8SfCm|-}69T$m z?kQUE_{{=6#vfKgDV;XwnfEXM`~-B-99704Kp_is0A)32oXbfS5n?(NBcO}kilc=H zB`weqN?T1A%fVb$z(LNboB*nfgGYG*CSoN5uC96uKoc%ih!D_YRI{2>f|IN+!1&i9 zpsV3(qlEzVEYJZOSPgY@+8ivv_=n7+^N*CmAwn~9A)q6KS`B4$IzkHpR5}O$Rs^K9 z4WO+BIzW4?>9RPOI|`suI6D7F5Yg3cT{LmJS)e0CSxwi$Awo|9#y^^XE^h0C7Cib} zpaTrBniI^cFh~IW_3w|NM07FRFtiXM&H^1F!D_n94d#&ojK4!b7qX2;3m!=p=m05J zbNX=#;{~{;!z3cQ_-is+h%n6p9btymoSAHP1*9^VCtyBAFQEx;_%9RX&Ez87GY=mCK}t?|EyXknE9SfKZ*$E3O1 z{uA4uSiAF-!EXY7XOIU4O&l^WS_oM{KtTqD1t0mjG2YI`i0np#|DM&1%kKHm3_%iWc2}WC~f%E?ELrGRPKS##kf3L|rd{ zq9W)f0Ve1c0Ve1+0~`+6lL!Hw`EIK@#=Mt+u7TXg{%=^I{SR8rImG6-1W?T+ za(YL=F$V9>r~O}tJjvueaWP|@6=0&C7hs}Z6kwuW7GQ#2C7=r;KSB$MT(e-5OMiy^ z)T+*BY`-ahDk$M`TfkQgz7=qX!S@30F?cB82L_J>JZA7Sgv)t7Ve+fE{Knu<0eMgk zheYy2aF+rM3JEC8pojoJ2E_%K*_RaX8LdB}mJwp+TTXzPZv_Enz5xQve5(jB^L&~ri;ll` zLfWGR&`CgN23-YE^(s8N3!oqXJq4H;(E?12egt$?YJcuBkbp}>=QUXDL)acGU^s&W z0aVwDK@$a-kYfax7|8-mjPU|EhU-isqN_$HqlKu`EYNAqu$nWI&8~n{2J-~WXRt^> z8iOSQ(ivn3a5I^#5R%2f6OhedjR2}{MV=c3Y-I4VfGrHR3E0kHr+{4yUi)h{X7;a( zi<$2M0cO631(^9B5n$%~jsP>?69UY1Pg&qPX1=E_am;+r2{7}$Ai&HwSAd!C6#-_x z9|+$2&!fJvl~0F#KX0Fy{j0Va_W3+ehJ<;F;)6uIbkk(5RY zz~2JBKF?asG3JT{sP@>Ygcke*Eztf|t!B;D3B1!4|Er<>U8lAsxOW}w}546Vcfj}Ose|@ zm{bpH5QB9+#9iL9KriXrR&$P`Mc3csLQbFsa7sW9gEIooGB_{b0)t!uml%8~;3|Vp z1cae>2%}sl;OgRTljsd`q152=g#eS;Z2=~;Zv>dk?g}uO-4kFkdnf>z>EECKA+ot6 z{`UwijQd{;^ol*Pn)8&+zX|xAK^{~ubAY^PAwU5E1sN0;KsDv?@MS>9pBc2MxR_x| z2r$Ex5@3cYE5Ho%ECKx~@A7D2m`WDtnN+r#W6V`uBD$o!8h5B+f$mVtYP#Ya@#+bv z&;G#zOn?vpRHTkBO$kW7IY4s@Fa&=8wzR4f#vR%S2xrhkw>6S8QTr1qi6UVq1}y{`WPx6bAy#vSvU#|GI0hpGjAY;l7|kF_fEmIa zC&WaZD8NLWBEUqQPJk-hof&8$&)F8}JX5Xa%wh9<0Sg$U30O?q9}&`pEM<@>U^#;< z0V^3~3s}uyt$=k5HVW9pV2gmQ47M+#{a;VzRVKT{WjBMp0`@U@L%;zBhXuUJ;B5g% z85|dIg25>PZVr<(Le4TcFW>@$Tmfd)uLv;f{E+~&&esGiMhnaQnE-?htv&@eza2>PGKU?CMb^b+wS?Avcn03yBLTk?5 ztaE+=W}STmm}OQ1%rd)vMCADbtWgOI^v+z;YECJ%U@j}bpFw#66&M5vsLY_MfNBhC z2q@|@sV&3|Q%`^yCP;u8rjYJDv~v=f*1 z3_1zu%%H0PGe&m-CTdRsCTO$(6SN-zdKSXzpT^g}ftKh*2V2bL(7P9s2%R5;VoLXcS&=saoDu{o8^^90Oiut-1} zgCzn?#AW{%WVyJQAXx;yqhAawIY_nzI*XUA=B#1!dI1|4Y!>h`gI5G>OT+vzu^mFp z7`p|SsCxyNsQU$&s0Rt$r`_)mS_t}<1v<~St>zqM^KlJa>Ojw4pu;I~$zgCt06ljB zkMja9Fvt~fiNS{gt}^&Uz%>S+3Alk4-G6=|j7L|vG8-2YogRIL}~<0DAfd9Zw1EFGI4j^M2JZ`a!r+2{Um08!U}oZ8CZb!x+b6? zgHHt%W^hA55e7E}6k~8pz%wqB+d@h+_*#HJgKq_tXK+_QB?jLM2xM?yKs60ke)e1* z{h#wtEN%_<{ZUA529E^PWAKxJAO=4RXvE;D0JD_85zz16Z^|BjTA>Xv;te=)j z`B?#d7*r5o0t66{cZy@bsbYbSSj}p#Gl(Npx5S~BkfTE_0{WpXdha+uT?=%C`c`w| z*c>Ea1cQbG5*dUDpvS-vvB?W`{?}t9GifF+;~9hsn8cukfT;|^1k7O2TEJ`u;R4J| z+7sX>xXk|F$r3%c2&*{@I6_we^dK2B?lh3aFqgp)0{X$SO$=f!&@+j%nzMz?2?Dlh;5s9P(4%RXTcUv73`Pss%V4a4 z{S1-?9Aq#~z?%#v2zZ;pBnEWqMBVI5n-+W%Qn)6d$ozP_gKNQg5s(?WZJ`oVj z;8Ov27!F>VFGrG$U0?sgaWPzUO zf30Sw<~mP>n7REXz|8GW0cLLbmhj@`am?Hb3NUjkEWk{yhyXLSVhreGT4rv~h>Mw9 zX#r+#{u+22eSK^D@P{h!PC4H)&2^hUPLW;|?^O;QF+MqIVnR|po^01P{y;^#8X;e9 zW&Vd3P{h}tzdcb|-+pobICPIqOiCDU`j=vxAH|MK9-ERlMoj!^iu7V5$H%6O`nQq4 zPm%6R{U(l&jgwydfr|8!I@#z+NpbXws@O4su_=jWNd8ns`ZJPp;HcQ7_`k-@%PAEf z9ve3rGyRvfzznajpKn!OrN>^dpKp0?H}HD+`3CZg`J)u+#m6R2O^6R1VY0AmR+R@R zjh8$m#mA0GPD=Pc7yd{^ddZ{&I1L~3{|@}Miu5vA&&df%i3v$@?BhN3^DPvrH_fm5 zpQFRXNH)A&&TqQ3Qt#^}mH&ZPRc8FlKXFDN<41wM z%S>#%_w}Pf1-*S$d_xLHc0`F!1*eyHtEz9T*R85=?SDGGQq?zvQv0;3Z{|NOYpQ9> Lq1UjK3=GIyQZm1zL_BQFk*Yt9a4~ivT4Ecsw=~;k zxQtG@64B0#k&;P9h-BPnCYgC<Ey^vPFJ~K>o#cfdjVLMUY^4U2dvmU? zkp;J#(QxFh6foiSV@+nI>d&P;JHSm-Uyt64inj;t{TOWZyqNb2g0zOIGk z1%(CWOJzZd*;h6cn=VIE!jOQO^2EK~cVSQ)bd+DhGaw+pQ}K#tcLeXN4{ z-h8>_Hd{&EMWc_a1T9~)wwvtS>PeG~IJZmoO*HyQhmGz)H2A)U(8ws@ATc~9Q~gu9lS_88MRiiP2Tp^5lMZiX=puO{8YKp<2w$om(yk*BDunwcKdxDJ(84 z%PXr{n=T#0JZ)r0q{kyGeg%*8JKde+SfXpF;U63!oy{PJ9w?q%Z@D+Sd}&FZ9GQnI zqN{t$p0;LyBUv`Si+1k6!U&ZYyl8^$GmQ39bkuONxGkjmF{76>zhF2~`w}_+fms4D zL^Xqq%QQXsDirVgX10XAYlf)4k??Axqx{p@bV|#+!I7V4LD3>f@}lE72o7Z#E=LPF zGSrOo%*iV)&(6)8Un~)~xMO9k&+G-Bv2tXv8OwG=>!h3Q&G~s=*}2JxlgwDNot%Be z9`~}M#%Rvj)4_vLnBzr1bdm+4T;wLymHj= zL1UJhD^h&|+5VJdMN8dXMtV?gfj7Un$Xi&mwvA+uGMmfZQL63x%lTxppM`1<)_rnr zlIg~vJMyJDQ$9IuhBKSNGVUM4iLTza*oc(9k(e6$uE!Whdnl>WQO3uZQ~0N)oc+}3 zAZhyzx9n_b&QR5{<`x%1lr2WnT>91QAc>oeG>)J?0p4=dR5D9Z!IOQgB(p3pPfo2h zW?IWwncwa)lKhz_Otd`m`Wu*!x6DPRYO24!(hR!HHmFl}QE};fZ(+eQ$d(`sJypEf z_Z#g^3|`sTg3}FMBQtiHZrL`~m=WNe?_E+Ohd(sEGUihdy_G0Q#s#C99PMF6C{gRO zCyWgEO;5ufa%?#V_gfHl4_}0If#B*VhYz?Tm?`J?7!&1CC!{{U(ilsz7o{Z9;rEOPN1|l?A5a;;;Iabdc+2u?R4r=X zG1KHioEfG^ihrpHmbw$}AnEiGrt{&5fK*xg5Tt0*-Qcnz1gpu(O%TSAasy>UFVh_r zSufJ(7nc_-@|G7A7is>I*~IK8Ih7cIiR&S)- z6(os`As4)bMiV)lY^E5+`I6KWtIWwTj3f-@nUe688H9o+E3qSoK1Ft@1tc8S4(Hs0 zB{gg9JkPy}AiwxEa&u&5s5vOGFt4mEI}gimp>$k>Ce9p-${&ofoLWd>oOWbOK>>K& z?CCD?mU`!Ub2`bX1PmNbVcC$1xRu$)c&ntixR8Q>u!P+WA-VT!tYy#b*TS}sBeyo3 zN&`fijO=IyW1Li;M)513z+$Ikp}+x4FgBOUxh#~e+gBzus($){H{8LxwO9H5yU^tr)JcdVyXu(2UTdKXC^N`sQ}SQzF`xUsycHTUe%7BdS)e#oiL{lDsn2v`Ro^bhnx+$(&eY zbdu~khy*NF8S>c}46Sj?Asy9fs4De|#|o|&R6XpXqd0QzM$9m14>4RdQ(Q_^l6lwO6@Y#kZpd=5Ao~>l8H&SK!X2Vmv3EgRgBk#n5fHYaQ*bJ2XKfpaZ z-%OE{`S?_tDQcH2Jq|!Fls&HJbFw+lTOvti7~oiex=P=xO_w}}bz9CIFj~6`7A?&# zo9C4Ufo8Y*LcP*>6sgghwz+)TpdxVa~j6x{QukJi4H`8O5enoaN{>(7(pV zp;wivu>3ttIIV49Xb0t&dUFdP50%n79i#s2W@o6J+ha^}l@u2)U4$8^1k1@K#xMyv z10k%GC=9W7foPv{Z$VLBsV&MXcbh%U0<7gwwcAVobf}Nd{fOEqiFm9znVtuJ`_6%vg8{*@ zeDD1EUM&nVx?(g^M^yR?^!5$`h`6?c*0t)|V17sT2^b|^sB>Zfb}?D0)W?hrM@#B; zagv_w36!+QP*OEocf5&dsFW$yWf>QZMsj!ublQi8QET}HlTMA)GhtS|qo%gj+1^;& zS!;-ilQGhuG7plIW5@(Lp3=b%u7?iRRuW%>PWAO_BSOaa2*|p;=2}>nI#DIFId}J9 z=Bsw5WOA0~aoov<`ytqJez7J>!5^p!C9mu$K<6ILgBW>!9>n2i=Z&5L3+K--P>Mo7 z${u^rf85jx!njtul*)bB37vh!bU7CnU~9Bk623L^O(rTCZ}io}lPZRc;-Y&x0lNwA z0LHwJfy&iaH`B>p5FV+$tq{LhpwMs^7v*KoE5-;_l0x-fVOjb7Y$b`LZZcT-b%rpj zASbU(7OZkMmb*8BE#_`JNnH{UEcgC{%AlATa=P4}n2>=UIkU=)uxF=~c%a~1(;JEg z$DI>8WX;-kdcE2H2~;mk_#T|KVM@ZP8a#LmU)bIalZlv4Rt((up_Z2G8*1(p@hEiao_T7WH+Vv8Q@B#%69q+H&nxN_zd7yFeYwQ(^D z()Ahuxz`n)q?$ri=i~{~Y2|WID6tjP0du`F-JC6-AM)>iq3fo|rC&_$A~Ll$a_c#x zNS^5j@j2icW2jSa#qKl2s>KBz{aYtKhjUyAW-{|)> zhFu%kIoxbxbKwYS<>t=8i~Y4kOo2?CEzWpxs2#Px-JMH{5!^{{&Uf!d3H83VKRWEE zEogitYDOnPrnOv!3B?7#SqL4$TdFtXoB}_#z@+Au$LXB|>x$MRon_^v3vJ$JTKlH`r@8p}nwQiq@L)?bn-e?80P=E`{g`tkczL!LD?}Ndr zcIm0Icmiawe++hz!?&qf+=}Z>D+k*0 z#gL*q4yfHxf^>Y@lK^3mtoCyWK5V&eeb1FF5#JmAoQ2+{d8K8Xn4`6DVq4ZGTaC3& ztW0#xPouc?h6_3TKB_a1h0x0E?LR>YQG3g?GmQX8npTPa34s;@`$LrMNH7P<+jpbe z)Ly?N8=8)u9?(A}GX@Hrk{0RDLcwS<2s#;tqF(-Mds!}-{v!A*U9$3LvyW}MpcNK6 zSqI%~N*XA2De+fGX|<13`|QFzbb>PCsv&bO0JEXvV;C}*rWnbNA~`a_7$D!oVUEF) zHC2x$r8yLzKtg+t_tFDGDVQCaVU8V%G)HLNjixovJa1`k+2Vq-d2GfZQZfPc_%YcW zsT##Bf$B5197`Lf``89H$^P51S!<(Z-_|c7H>#6iBb>7qy3xSjxO2oHj`Tubs#zOc zzpPtjf;NU`jTW@=q=Z1>z!IL5r))Ab zD%*-^VNWZZgL#fJVM+yeljW)CfWz@tPYfuf%+Y4(EG;hYnO-BOvM@V#TyRJFCp8R7}~g%j6A#reZF=b+I`2jMt|9~%a|>DJ~PR|@jR3SwSaGX2OASr zE{wVkWKR7-@8wG&G#e}ea(Jp4pkxrFVh^?NQ2AWl)NCdZ6EP>1T2Be5*CU998B+4M znoimvv-Wp%u+qPwt#_l*XNcRjxZ4JMwM@fK8X~jrgRNFC-Bcdy?hOdx%pL$UIXYeG z>KNoubBY(|m1>=?w0I#b=nEdl@KUyJ7RB(ENy(4U!A2KjL_hL1G>dC#L{r-rZpP%F zXk{IUnBOCvo2n6O<#%t@Mnv-fTu%fpWhB_&8!QoN}Chr><=FfeJ{=M%@7)Qe( z&&k!qDy5q!y%Dxc6?Y=`|tnma$y>mD~+5vGzC6j23eC_;;TfZ!RMCJ@rLp%E*#HuK2I z2e{c>g`Gp0V64*r!$q>QjNO2-xp655_FWGeQ|KhqyGqWL@YkV)3`*ddlnk-3rxmnv z#LDDG0s3!*87~=$7L?e27_`_y_r>M`CN4evsGz{a;Gv}^hVrPrOq~o>JdNT>sV|v= zGO3w~HtF8LdOGVJH}sI&v1TXPForGb zq2B&O$DTqX0^JJRhgyx*WZ>cwvS4A}!o2KqSbB>WmUB-tPmeH&uXfJG^YY-;)0#8e z&{du{zl?@(cxzf|oBXW1(1Q>`qiBvxRN5`^f;zS$M)t#i&kW<4rBO1U-9cR()6gB8{~^tpS{T2~uIgCZm<3ne6TDX(rE2K+jSpxXVkuIdI@Kms4S8Q=_1m zlVXtVtGQ$ZB0OgnsC&~!8ZUr24%DihYYLEBDxE{Pq&(ak6?tLsLE$)JCAn_ZlKQM_D zYSji_$ANkvE4`&(yv3GWAW7H4eRR#AP*h=dw#|)uZ*zycYc_{p;ke?8E5w_Q-GJI* z2Hp;h7c*y|Sq3YMa(tD%1>am&7vy(l8D_MaDX9^dDHKU=Y&*&eN(!-CV~qaO5QD0h z63XyC}5yU?xRMeAicl{!=Ju6^ld*yE`Ps@WK@EU&b%bcV5pHJIx{KS>P@2-9Npd35KW{ULpn z=U*utm!5*6rUnmZfPC^3Ce>wAZ?Xrr73CekEFNd?KBeDZm{iJ`j>R$EwuIBlJv$MG zs)rNl<@pQiNa9m)mfsZ$HC$=;*b}D8(lZdR&?&L2qkbO#AjGEf-E!aR!bX+Kp5Db# zov^qr>zTbP!)oEenh90ip6jZqc0B{N5l-(YZP{J11?)!W4js-&l5c^#tp6g0tUPPzt#^ zSVHfDw5JGDV{r6w>{XO|=peG&&2j7%@W#401LbSK)X|H9{wB?J zYJ*`P#o-wj^b2e-wjW`D=~4>V}{C} z7fpB1%oXF8)4}_6_EL<#e=V&OZUDE$x9yn6y7(4CZzfZBfDlM5S7!`4!h7**^^m#O2A_ z^G?jh`i&kB-1wAcq0G}2-BFSI;vmZ4yzk2uVw!CI6vbB>Ea#v_lTW>~uqRhUxMNO0 zbxKVL2y-;i4(k=6Xg1g_`fzoE2FYEsnwamjz@|?*by)v^@=`ifpdk)~{~+QKPjflf zL7j9_;uPnf`bg1f=xcA$XPy=TWo1Y@)K{oH`n-@-e`H#E>7k;pCWl&*X5NX0-8mha z(T>lsDex=c9Sjs+wKw`XS(Zmy;SDBaj{tZ=VgG}Jr(JC}+FR)~RFCEU0np_Yy$p1C z_nXMN5Ulc878=;?q_PSM&bYVGOG?4<%U9KA+;&Lsn~e71p}EC5WofWzrE=qk{eUua za^zu4UzSbFVFQ|M_#Pc_xyR;m&|@Wptfw?TJlRmEG$xw;W!xkz#Hw{+W9?3(+j#1` zP!uQ`ZH?R=P_(pWZP&}*DVhBn>Qr;wpZ=* zvN!qZli=~kp@#_h`9rM7#`7443BMa*jxLh*DxBltonR}tyr5-zxDS|%7EvD1<@Ck1 zEI?`fhtFD}lar3SVglACpy_4fZlfu?9cL!whvpdZ*FEZ=O&Cv}%TDvros>4zf?9+0BY6Tdfm6~0jM5+ZyJ2A5!y|zhlA4N9rKLN zw89LLy6MoIYSyYlYDiUQg!3eaOw;~S^3;@Jyn#6pg6yi-bSe@wx%&OlhR}C3=FFP?0%sQ zE4%ydK&ZX-M`^6WywVaj=TNS+)8x#9W}udSumE{-%k;sxD(a=vrT8y1O?zW#X)xv~ z7elmC%w^m~EI)NH);jFNWZgeAL)1{N46wS%v-caF^ad3IudS3k?Y6WyseT*Qn-yn} zcx+?LX(hbU?pDU8f7vl20y<(t1FPt2Ppf}x9G2AW#kzgnOAvcqZZ$HL&ryjaC0n<} zK_!G`YWQV0lQUOu?r|n>n0s-lw*>ZyeATFOHVP6{oz?U!G*)mYoO;2jg|ZU3rlex9 z*($bk>=jq64QuFqOP!xv;|q}kgUyyk`xrSj*o=<7CGK)8Wo1b%Ei13_eIj8)%%p_q z7=%V^9t##0UrNAD{l@nyEtbtterOgVw2t28OP$;1RO>T zmYKs%w=Ubku?oqOQ z1UP;~Dm-29LLwaiAz>~FQMx7P7nJ3s73Y@a_<5{~k<%m0G~<;xX*|;G>P%&mwBn{S zL5fC#-SteJtahQ{1;zek{aBgKa`^rRHSZWNpN%xz8ksTT83mR(anfs)ncz4p(?*${ zj4pAqeiRyQ02!v~Gk#x=G9#T$nPsZ>)5na4_vmX$8*TPB;^L)nG>UX78sVK7p5pQ6 zpDiawn;je(5;(@};Ot749qO$Xjp`e*Nt_goF`KmP5|0Rt{=L5G(e^DX($W^c&0J~( zy5gm7jG5xNN&X&VW*9%kN&m6tAZIM24*9nzjMOO_$IJ1t=1}A97}=c(7Y2k^gwZTs zf8bnEgs}}$b`nCMREHY3#z|PFInGFit0mJM?KmJ0XPV=UyjXE$nd2P=GJBFaAS^!* zr#!rcx}2#oOp+1hKRQyT$s=@`cxE?*XLj>6IYcqe2-WTkO}iPV8>T^p@{7sFMp8Vp zM=a&$)v>0?IoY_Kwo>WC*~z<6^&s6OYdN#8`PGD?S5rYBgF z?q=T(Qb#!5<(f25)lM!=G((IZq9t^anPvPKC*Dcs7~?Ds223)?8iQ~)UqpE6sat6bm5Ldr$JvT0bxFhQ4X4ih#yB}O19f}%a#bR2gT9XN3IlB0 z)WFn6p2V2Ux3RRlRVYc@_I>;zTnZp0?I@;)QY?wHr)&}5o@r*gJ;0NfGFoXx{iTPcu z?8!0P*OnPBO*pOcXfGLADA~_*%)!o|Szh~yCX^Vrju#y-m3d}+9>KF&-5*0%-K}rg z0a>N0L~V=}ikiZMS595BI*yF)(lONRY*+Js*^!IIV`Yr&%mvGFFB$cM2A!JhPYc5?N`}Q5YC0@Ybjvrx9CymecF?YItfaS*0J*dpJ01Vox^TxqIW-8O ziV2pKd74R511fjKnz~z(wrbXJy78!SuBJaKr{0uz z7TklhIH=d#Zp(HuV1=givnl;0b3G{Vr1iC@^)s<@d?Cu~Ki?PPI3kDM(5bo#%tC>7 z#ELjM{Dwc`g{#eQ$Ey+%gVNBL9;%OG>cZZKzPkxA84#k5bZGhu@SmD6I4bM=i9$$< zI?0%atP}yK2?Fg>&XSc;He+=_-zMLudqc&Bg(4tCo!i&EJ7GKD)z3S;2vggAmZwsFSsPInKZNsO#qgk3PS_Bf*}6orN6G)I_pycVl$ z_##NI!}qyy$;9`)R4y{78W*Fb<28t`f^fh+1jQ(d5pNsR+ke(I+;}!dk2{niMd}ut zPU8W@VcUSx-N?6taoHvvtfM62Z4?JzZDlr3CZ#PkosMm_r~Jf>r`*kv&%Jgs{~p8* zTBmqjeB2+1!RJgwS%#8l_6Z2Kd-7vN8t?c^PBlj(t6jyI7u*qu-8)`RwL_s44Sr(( zV*WZt(KY5(j>mMrs9?Cp!W^NstKk9*PcW|(7=3~z^G&w}KCj0y*MU-U+#M(@u0?el zDN27@v_tIiT?`wyzfa-sYUYU1k_ShodN_v2;iLXQzg-A+w0ji$Ixu6KtLtbdKT@>s zqvcqorm1@eVQ9zsQnwIwSLxMpqP?HFosQ|UFU&uB;SRxh3|jk(SYH|FRWst7o&86w5kp@C5Vvcw9?T%j`C(T!x1FbWZHr^teC*0R=yGOoK;#(#2pCpZO{G;TxpV$(; zgy{kK%`^8nNt6J)GR2LG0C#b?o!Re7sN3;|-C!mepWBk9j&A0)`LKxZy#boWpIo0= z8v38p9PKcoCKgzT{%Qekm zixF-&-_vRhR#bSF;tg+{l17SvbHUMewBN)5S*EDCju2*3cT(C9mN%;4#VMA`TY=-( zV0k?!S?i#W`hbl$R0|FY^yb=Y@>a4M62wzgy8PFvltEsYdNd(LB@e>)JWU9u>>C_} z3ru#5N#rrk5zdI?9QVrX4LHPbW*v$#MrOCcLl)_JIb}5LC3kr-)QgZ zHQw(`k8lK$$t3KHR5kwCfTCY*7aa!|bU9kd`Fso`nsWkSCDg=UC;6&dOI*vjxFyt7CtpmZ?F3IB=s0AL|z3;c-p)mh~MR0>b=` zn({@o9N&ap%pcM0uSt$9)kN~lEolC=T1P_W9VEC0)`m}Y20{5bb{}lOZJOI~L=65% zm+Y>=RGbwj3+_bS;6&?g_wHid>fG|_JU`HqlxM&~<`xve)1~PdQi<*fQMNiwiGo1i zWDW{e$E-EUr5AW64(72xO%>I|qp>cl9_IBR9q^v+Gn&=H>+cNdpei=s5KpmPs_S&y zD7&7H&@>*t1aqtdE+cA?@KL^ zB>sf0-UhTCNbaDbVq0VWv0-|3c)tWE35}BtBjbprE<>ei{!GUP4xKCtcj`WBuspF9 z+nkx$S8+*G6u6kf9a9=a!8J;Msk^CVQAZ3%S+w(1XM&50^<16X!1aP2&OtabrDNP< zj{;l-!zkDW@l;Via@q%7?xa$C{@~1u48H@V!F*&Js^a0$guks?t8oyl&SB{sj_QHT z)5V(bp_Ulc+c8zA>LL5-b`06!I%8hWmed^}*qVkSEZ>3M>KPpMwYbbP%F!Lz*q_$* zk;I)~R(84MQnV8cu&u(N-g zhY-CZ9B&J!%V7uag|zGIZ*rSkl7!!f{lM2)<8DJ|t5%tPAKES;-tLL|Y;hIRX*WU% z=ZoEjxELBJVfSOtJcD!8rcS>f-G!x+Bj|Dwa6Z>%v$*!ZMaS6#yXaS|o*E)>d)SR> zHegi!0L*n;aSPSN8P_Iopd~&C$ySQHH-BUG=1JI~`W<7J7^!~HoNrtiF9UwDLwP4Q z)VK=nqCQq)+nCcX5)IL#%W>G+75XUvI_;!pe>apS0kaV4xthZ|5_q52MzF6>V+tbdX5x4$kd z3GRyo*=&>K;C@`5-n$<&p;}fRLoHaaF#D>SX7YyJlZm(+>dCR!%7=8FNt5p%Lp9c2 zjy1se1IG*5`3Uaiu|+lR$E%X!O@|?l^K$5joteNT-N-t~?cjoya8X@+!VGf0Ljwmc ztA1|Gvy0kBn!o8!fg@s#0{v>s&oPqlroROc5)p_~OS$tB;#xFJp-be{G zy2i@517?Zgi063AcWhBb!C8y`vi@02kM}i;U}z&bn#C7(o2kOhI0zYVqw2j@s$4wL z6C}qDVznsYRGSqU_>7-nUO0qd zJn{%MqlpdbPp_Dc+9qBOA2ACYO;vuu^NVwB#c4j)@gwHUP<`P9fk1qZ5m<4bW zqQ7U#YtLhF4ZfTM6->Lz(`CR5W|`x9mVZ`=x)rRsZMK_!`HN`!aj+QwiVoiWqS?oI z3dXPx@ZrBD)XW|p9p(6I=m3!WT4(LCq%Zyi;o^_x+C!Bw*VEA!B;9adz|0HmWPg67 zf@k3Vso#in07o&8AhT+^l8?QD4M85x6~1atuV>Lu_P%P)sAmzPf^&?SvD{(C@~&ba z9_i58->h_BO`B`euy=TZT| z>mXb@(pmo5Xpqd&~eZ<-67`J7$_vNOQUv)k`B@g6lNT`sJfThEC>ytkxT4CF35 z+wqko9>XoC5tK)&+{#TGC?}6$P$$N-btb42uYvwn4p(iWh~dV$%O7qD!R0wCg|$*5 zQPs+Ss}9aE)g2Qgd8QF*7qVOxO8UQrQL(|6H#qkxRjXS21p>cqp-?kTeFsciV86)KVFzyw;*@@f^I4i?akR;PBqY*krPc@?B^Uz0 z9y}MK*|M!=_B$}G;rxwT{&^R3^%;uEHi{aE8+*Db_ctKs736E;0*Uw<=~d1+O6lJl zXJWk9mk4LKLm)bLd}QYG;zN{OvAvKrADGu#p!`2}{YxW{y1c zA(pgBYVESC$Ac`kU*$s%2itiKa+u+Xmz^J(E8wn6{Malv_Qy7;+{KUKP-w+w!8-sa z%)FrbdL`n?n-k_@=SyU_K(`s*7V_H^zKrJLwbbzfB{>f1eG2>Jlo(lY+TY-ZKZU>K zIwrOo9FFuzBMp7>0cwC-6miZ2%(pcCRH|FQlgYT5~Y2d-xR7eV}P zp^?f+GaLK1ou6agEICuZQD3TrS}RGv%kZ0@@w^aq8c^^a#ph;YZRA+MX(IKSl1FBJ0l(5{U3R>*k|S?^0sre)^nMnI<6R?9GQPz8 z8LZN0^LT%>@k6W}`qEtBxIsF8WfmIEVrBbR`0UAXvJ8hwK%Ff=d<|Ww4j)Ue!_Qix_k@GJJ=T1d?l=!_l!uUolJK6Hu_tz;d{X!XRwFcX7gSYGyjSjCCAR9%{wY(O=Y9*w?!I@;X3>YZvyQ)2Swy@c3O$3 z=W%e6Ai^##_KoT1%>pX~jx`B?3CFK+IA@&kOEi=EjI=me{*zhkD5Y93TgLnhy}6d0 z7HCdK-!dB6oimhC<^=JyiEf)v-LpG>L1#`x;eIuyg48A{)F(qd8AdD{?FS5YBJEnX$N(jjM z-?1sGrHlky5^(?4lJpA@Ze8@63u3$l={P5;#|OX#1TIGxOkj#l?uq_8J$R3 z|0nwNW>}*BGHZPY}iJ{zNzeB6y0V0Y=SIwo@MCmSxIJpb4%Sq|RX^-H7Swn|JoUS|t| z(Om5$?C$`)))weEtyN`}wx21steyRkUO?5i{iYt6y>pH2J;f57r_!?jRkO^@ClWtO)Jc}Jx0!Z ztll#Gyb)vf%~R+E@t!hz%4`e##&Zuo-cde^tR&pKv=TOD!>8m z*#S6??1a@8PS60WkCBdLh7KMcM3jpGXn<8@q#p;7(M}M8xP`?w*lDH6b|;#{pgF-N zoF(BIQO+sekPcQiq;+kEX~UOdjl;l=9S=yw-^|!PZrk2iq_kr@cf17jp98o-lI^yf z*5e$7%I2(6@}7h}U~X0I)mvSi2*K3}o$qMIUzrUXwTh3YCz@N|QBJAW!pTbirsI3r z>9NKddsX93v3AtQSsiGFTHn>P;guTo`iv}#HU0ME9&#?wnqYK5;y??pV?0prd~@4o zhRexL1YywJsSU4wDr9T0J^y~dte`8H~70xopo$x#3;*4ZwXH^Evb#L8d-t$okdy@FCXZZsMH0=MZ8AF zkG5}JWr63@Vjb|=Mp_y2VIwQjaZ=9}#j`^sqTi2oG}0Pxe5PFi96rf%Jkp9YZda>- z8mQ`SNP^62g3j~VZdMf$ryj$Nli|Yg%38%!`JEc+U2rgVN6KpVfK<_%C}lvfi#28DnD5 z)wkHQ=hhgczeo8};Nd)gI{y`E`p3&oJ?3~cUvRkp}oRTLuLzO@&xyQi^TCnQRj-RLmK!+LP+ZdKnCVR3RO5o{8Z%{F$s zEztr`U3|pLN@0#Cw4YBA@ajwiHUR2Wgd*UQc2jGI-LhCmL$E?s;arRHq}~SV3zWO@ zLZ!_fmuaIgZ5T1o=e76Y{dHd{jyTI4VK7E>E7NhDlk6(vQY^&`%yDFYa+48a&#YqG z`i_KtYiu-5V_Spaio!(iSHB0m$uE@Zugc*5P`I&3Rey-lBVIeW>kppFpd|ERMm$@m zZ(wIzv_5I~sft!@zqJ)^+^tFxSAVoExO(Z4supO}`}FFdf^b71+ISmE z1W#m;5@sJP*Hij}Dr8TY-_i;;=BrVwqsji3XsU~L?k8JXy&P+#84pU3Nnp`@+o$rp zJ|Cj;+LDaS-;J#i}fV z3yN?IQ3ri?Iinz4ztY4u%7LqIGRwnlQS^oSAOJ3HbqT_qIvwpQ`%n(Aa;bBKntUy+ z##dU?jW-(vOY?SEvLk6kfWJ4v9AJ;6jk-j&cSCb%b{k}ts&Tvai2NmG02DelK}CDZ zZQyPv+}GH`#G5_rQSFeE?X5}1!*=cYDwWOnWpo%LlN5}Hs_Z^F(XeKGTki7i{8pX> zu=7)|&XttaE3%Dr--M_eoVu2M?NO%6*CQ2U?@-cTqu80Y(9)TqmY?{vjHorjtX zL5V;~aeSh6Miq*yg~3wP4HaKO&luK)W~N_t7zIBf6RA5Xc*o3dWc$o+N=3(Od@URg zY0X9v@S=v_f_R6m1NbksBpAP9FVw@j%6gCrUid`li7IS;4@_<>XX-$eqTm(K7>os_ z{`v`FGNuQn#2=DbjDjjE9<_)z9)+!d>j){hn&tKsE!E9-o=U%t33`-)%YqFfx`J?r zOUHcCRtjtu>M;_(_hGYcOqCy=CWtUzw%0a4MLk>=>G)kQRhOxF!XV1{Ryhn+;Zo$2 z9+unji`L;0FJ01lLdkBz6)fpR+}Rl2$4Yg4qf5;<({MRCNDlYGXc}cpXi!s)1iPj1 z(MoV{EzEIPcb+2PS)p)iGI^eChMN_jB?aSoS9=*5YahNNS=#r*==oK*CvVuv@_rC8 zPuh(EN@tviRLA~!*F8ktb=M7+1Ti!iZM&l%d<=Lv#_va4i-QW*D9fPUq_XD?rXbv4 z(#d|at3j&t$$*Bn%idwc%EK8}VwipTRmWa_Id-a1U@K?5ABH20>iGm6?N4!JV0!f% zfY(Hh>Eik?ku@?txBHxwU>+paX?oeSlXvVw?U$8w$TYn;GC*z}2#GdENfjK?ZC^W2eUgK*g6lW1zN4xoM;o6irh`3x z_sw0x)Dk`fQ)8i;zI_7y%~++r2OC@Mk&nmLIv8>G2QOcT^YXRMbuJnhFI=m44e-X2 ze{TAqa1ZCUa;O#WY|c3L+Xq|6*IV{}iIGb~t)9*Y(VJ`gX%={KxskoP?1BGzlH^`=DSHPmQ=v&X}b=eIiy|7o7(GG>HTBzRIS5|>JW zR~kKHq;71IOYO$3si~u^ z5a%Gwg|+Q!N+0P&-~A$*p-4uB|hO2iQ~UFKh;Bm->4u4~VzJ9v%ht$ez)d1v_5GLj{>Hdn|X2 zZ#65Fs9EDVc9+fC!3rhunS~@o8o-S3qBq~#{`7TEn4_bt8*2@5{!V%?7Bo$E%yqjZ zY@8Kfg(0nEZufMAg#T-MynyaX7%rC_{|_4;ut-}=p82^<6;L>~^`tsw60K5T0hU#p`kD zKgnw2+-Rq{;7)Nop|inTfnjoZ5*YSlHdjhkfagl|?@01#DH}sP2{z~9q_pOHXDw_+ zcY>8TVUpsV+pJUG1i4t9Z4FnsW$ZHT0f^*EiclXu6< zuYTIa4q&m+P7^#S&TDi_;$hH4sk_R<6Ti>JkxvKXC%g_Z)#_^f04|bw4F-MU48%$( z1m|%~mZ~{dmv~~4Y+sxln`-s6<{?O`@5fQ+v5P%X2zWkD`cAVt8K-gNXPOmX!7GZs zK`6a1glI5Pd*tC8Ld2_yzM({)FmxCZFC_Yg6QweA1kr;G9ZAH?hrUrnymjasP1KWr z#_$g>8v4c(t!C)B_zL`8#Uz;|u4Hf)(Gt?e6J;~v1R~xt^i3qXm+>YM@phr_Dk5Gh z^i3w>RYKnsqAy6BN;H=#rV&*WO(){D!3y6DLf#eh%~TPIW)ZC-$|ib+Y-SVjR-n&I z#Or{*IYhhy=*uDM$UnLKlgZFLq8x_KB|6Kr`9xhvn@2RDf)NV{dHc`jBl?=OtBK^v}=fNWr}Nwl1W=mbbz!KM0w1lf~bI@ zl|-pTD~Whz&sT9BVF-zxq*1=LY_n#?aM7yn^Suk$+Aw-c3Z`uw`y0;vG9* z712PZSVQy!L)Q}h$n4e;oh5BO(V!TPzYT;pF-bL1IU{Z)x{b6=M6pD-5H%;NAv(qE zHWTsMoUfLM_vL&-ltbFBM7$yA+d_1hp|=t7Mx1XeP=)U=!rMvYZ8+aHB3^^@-9a>z zwCzOk{Ii39c=OG-lZcnze0LJvNOTtw@45NzCgR05-#tXU(dN6Cf39S_`-pgl&3C`* zof9NJKw=9LA0*=KHQz2G-dOWJMD!X%A0`ST+D){Vp?ip~VLkT}Jx#Qah_};xj}Qfr z_9)SJr0pj<9mnza7-2etA1C59G~W|M(fsoy|J={er-*pz%=a|W3euh-;zcvx0TqvF zpCwvJ+CiefnBox8NM?MP=oI4}A*#5i4KzAYeY#zuM_QN+Bb+ECGAb3J)|8~^6yTwO)jCh==Khax6 z&oK0Dq9dfeLsY@E?-IRA^d8ZD41J&I1*Z6bsE+7EqFF>Asdz|H;rp1d6O)`EdYWuL zA&O?iPlDk(FLacif9FCUlT>C z@_$442!p>RGRgWoqIZeDC+bG@1JN9!GeqG`@gtECoh8a4>vKe*{BxdvCNsrPM2`~v zOccx%zbN_Fgz#4qyYkO({1e7Mzw^)cWO#w-BI|jPsE8^4AbOVQPof8i{vygJ`kN?< z=pUkOYg@NuojYF_B617m-EOn-K$uUMCwT(PIpC5rwi&ZWT)8 zA!#~m=nBS*A$puBmWX$5d~rl`m^L1$!e z`iE>1iS8guB3i`I7DT@jwIuqSD4B>?VSKHK+L3c>qTd+Wrh+h&ur1MZL{}0$Mb_1*E z4j_D&i3bt|F?bMB0Ye89T}?EEs1=9fP@-QLZy3=PM8k>F8E*v9E95tl=p%-XBKnx2 zqlvy{=$IxPe_yb7#*+94(KwSuoV3M6FAyyu zI>T;SN_3iOml2gQ^cte}OnWWSGKMZEDkNTB5I`IsVoW2C!+? z6O}M{1JMkkYNA+%ZX~*v3^x&7O@_A+nGCHV+Dh7HqEe=&$-A%NK zq4yB+biMCh)f0UP?<4VVGQ6MYMWP3Y<`6wdbS2~MBKnE6hlu_r?O~!MqTNK*%x(|S z8;rM?=poYf5v?Qb5u!h0IsP6cbTjdOqVw##$A}Ix$>T&k;O={Zs14DRL_d?wQ$!O; zdzvVc4g3sI5&0b;n#_3559sSyE6C)k%MfWBih2y=ZW5Dk{5`+ zV7wQJZY1p`q7ue?ndk?iSBMTV-m65fG2UxLX{5bQ^fRmZhLV31Nqm#UHq7`aQB$%x zMl_$Oj%Wnq9VfEL@GYXjq`gfvowRp|u4jsOi8hn=9?>|W_lcfj=m$g{k+#D3A>mmP zKO*Wuh947kV_{AZeMH(PL8C@X(x$7NIOL|lPNwYx|yM;iDHPpAbN@D zOQJuN{`VDOdnWmssF3IzqQBWl-xBp_VZI~EXC~hh-Ntx75V^_l4ADT+ekA&ew6jDb zh|UoulFNCbaB}%c$-i@iKa-e3^b1i8+5AdW&cweFZ6NxcXd2^PAZkW*k*F<0{~#(P z`je;yv-^waS@Qdvs1-y1A-cfIRa_!`hHS2Aia+~_97GF<45CaTljuCzSVVh?0*FG1 zoJ1|j+C?;pG&j+QOzR=?urPr{Uo$j_Xn!o_Uoc@S5<`d*i9(5ZG}#wM^d-w0PV@q4 z5kym%T_Yl%LiR-xr7@GnL|4ADrYjRmUkWsw+1;!?7SCu&L5gy;>T zrbKF`Y)14xY0ZfSlT8BAXmUv;;yGbok_u(K7DPWVv?b9EOp#2~jI>r2ggqItHBk+N z+Yq&5P1+LmCAyNR1w-2r1v7DbqA{eU5cMSLK=dn%kV=$5S{l(eOp#91hqR7FN7Vke z6Jc`(cP4t1!Ci`bTsNxrvwLf7RgENRqi3SkWGVws7p`;BW3T4KFi6)XZgs3Is4JFz^+AyL=NE=SH zk10kFO&}Uc)P|v>nsWS&CUG>0wM1ixx-fVw(J?X{M>L2ilc)pBpG7o}DaI4=0IY8U zQD>rwL<`7e646zpT}5;=(PX0b;8Nk6Lii?$Q;A+=l4(S@kv5&EF=;c1&N921M8A?Y zi|8N5%O)C5+H9i7Nb?e%X8X<|x`wnIqOXZ^i5e*_EswB>#JNOeMEOL$$#5Rger8-i zbUTrch{sBOR}+mVDkQ38=zOBaL`6hS@+&4vXSo)`L=TY7BBDhMT};IDp1vhSw=&*RqS2%+Bl?clD3>^2T{ce6_LSe zD)u0%B&`F3R}#5NyN>8i(pC}8V0PCNbz~s;ZX~K<=uJc((r#9Wv?`)} zCI8kCwjgmW(OZnTj%W+fdZLSDy@BX+(yEExCv79q-AucQ=nzA1A&OyB*ANAgwwb7s z@oI^FWLg2L@bzZ!tt6f#+Cp?cgKs1Hj7hc<-A;5nk&kE_Q8F{RgXl2RZYSEz&>cjx ziFOjLVd$Mix#WBo(Q~BTtr~qbBi=(Ij~)8%CAx*^KB9XVdOy)l(jFk%Li8X}1dFhX z$V-L~5nWC6Fp-mJH_`1(v4?09`Ryf2Q1Wjd;bRPbgs3rtA0>L2Xg^UH(PKnQ$nbHZ zCy1UPI#2W@(GGHXis(tAr-{mlo+0W_E(eG#7W!GDisMXtknj>C9wI6x?J!X^lN=#B zN7{2lH<9){(ITQ3hHO(DA5|yjuAaiR7dn4Lyr?}XWF-j!dZm3iHo!_ zoTxi#r-{B)tNIs&Ynk{*xC|QRSoo9*&B7>+A(ThZpM4K6}G11GUMG^f@F3~_0zHb>EL*g$)u|!RX z;)uRsl6ay~L`{eiSgfW*he>NjG?^)y6OAS71fpMw5{aHDsKs1dgm1qn@(}&D1Bo4pQdopeM7>zg&O}EU+J)#-vgt~67vps!TFB7uL{&sRh_*6bPog-YUPN;l z+MCEnS|6f{<|Otd{Dlnr5j{xMpJ*2&W)PhsZ2(aKQw$_3Vdx;DCM@b;qUEFwA!0irQPZHdMb#WC?XqCG^JMB7-b zETZn@GM;EGX%mQ^C7MX|H_;@bwm=oWs|W*0oJJT1_;a$ia+f z5Dj3wnM55)n?>|HY1u?!q|GL3O5`QlPBcfwtKfXkA^elXT%w1WNgk1tg_%qA7a8Ug zEnvKPL{~7hfGC}zKBC18y_)Doaw#N=XXt#Qmq;rj`iivTX4LUQ4)~ zD3B3X5KSRc(=&^qm888z+Df8GqU(tA7`lq+5;MM@=s3|0L>n2pn&=6pxRIzI(M?1n zmH*>r!r@F(MKpoIYluE&;gkg8nI4ZYfxAL3O0ohsM0Eqv8L~U6o53O;=x0?CmPo#S5d==U*!7T^n=MSBzrw%BPx5z6z_W%~oOERrYVVb*qUA zt4`AeeN?6UWXfa}vq**g@Q}`MzWPcyq1y@mz6xYt(oNSXSOxB1H$^4Wj0W%GK^Z{l!UJ#5*0R5eZBqAV)ey&Q02OJ=MCzM6Ryft@$u6u)hERQ z#;mzeeNpsQxeolH6LOYTxy}yMF)56zTz@=!t%}KMR^|GAhGxonU*&4__Hq@*>09Nh zsk%;mQA}64);yrYD1541n=8)g3_0hkT$4xWsGRLpu72<9FG{B>*Bx1l6dTI@D%bk! zG#g6%D%ayvbjwgERk_9h`4ws&c)zq@q$q<+4)cDs8Np za`8a+ZFKe&DOIkATIw27o>jRp++2&RT(`Ybtpd3oSGksr+Ni#`aH1=osa0QGJkj?@ZdG4gK&xD< zpV^|mxO!K)?u)%$eQ^P=a`haezqp83xqfVXhYI6Dj!JCb;hIFL$JM;b^+MR)Dv&FB zl`DO{{^F`$$BI0gzOKW773GBbUeimvrVoB$RL4f6E72&VOm(HuHazzHUcbu^In`B6BnTt5G$M zBIwdKq~U#1RfBpO*ggBd?C{#_|5P;Ue=7QyPFT+idB*&=9l;;}YU*F@A*x)>-Lt=tirZfoEy|he?zFWr92H|81zS2IaRW4bH@;ZME9CC^b0F zmv6;vn7P$TL`9y(KZDq6CA%mz7#4Rs?uERv)yhKH?{V_icB@}7t`gwibflKxzvxVs z9k=6<^>W5)vCVo~PTg*0UQ2hL76jgg*rSmRxkDhzq}4y#M+wXvzG{69cx z>i+w5z=`d0QP}RZ@bu9c)xxx>%D*ULkTll3Og&!(V_@U;6AF53Fp{|415sf*)!i_@U~7AL<XP@%8t6@7+J{?3taNot>StJ6p~!`4s?gC?*mlPXd5k2mtaO0LW<;84nUnZ z0QK4c)LjEmKMg<~G(ZYJxY9gXn9g`U-F z0Fdbbkm&%B=>U-F0Fdbbkm&%B=>Q1R0VLA_AkzUL(*YpU0U*->AkzUL(*YpU0U*-> zAkzUL(*YpU0U*->AkzUL(*YpU0U*->5T*l2rUO8x13;z&K&AsgrUO8x13;z&K&Asg zrUO8x13;z&K&AsgrUO8x13;z&K&AsgrUM{M2arq$fJ_H~Ob38W2Y^fmfJ_H~Ob38W z2Y^fmfJ_H~Ob38W2Y^fmfJ_H~Ob38W2Y^fmK$s37nGOJ%4gi@B0GSQ|nGOJ%4gi@B zKnfr6xw$sJ|5&jVmz}q2r$+JXpW`5tPCR-$5ZO(2Ghek4pEh-0h3~1q;yD|Dov{ty z34Kk7K{DN_HRf>BOrEz2w}_vWs5$G+W}o5n-{5TMFp#8(`h#fFXW!!6~8pi9d2VJmCJ$=3!Y|7?yH=*E5*Fl0g zBT?p%4WPhr5v1_W{nc{(eM0mxiZxUPOCb0G61nYKb9vrsBjUM?kLU;q4-sOsSRGLfKYH$ zzDRRoEiQe1dn-sjmn0jvsuo^v3)FdpusuX(nsK>o(l&hiSam13hHk{l!C<@<1gK^>Xdz*@K`v(qkQc84fK`S)I0DZUd3`VJ^<55As^*^SsH zl057nJ~ZNlXeJR44?=h99w7QkegC^3Z@@r8oFPOpoQ{SI6JH-TYdk(w3&98AnS0Ic zm3SN_^R=4HZ|pbgrnyqc*X=ZwhnLa(aQg3xgHXr|i7zolqqF!4r6l0f`ordWO1IKH z`g?PfsVbj4RjaCWc4xOvO0ssBI8jM(+9ahteh6RX;Vc+pK0~4&G}c1VNC=cF6Be9O zOPdx;)L<#XzCGq(98Mvq?2@YPE^|qo$s|xmBvsODROSJJ;-4OYGM9X*6*u7&9?Gwt zO!i<5F1WrdQ7@$k)f!f#M;Xk>T&VaSTkPqzR;C?)vXG5&BL27N4(IL66QQw)Xm{Mip zB$>fy^PwHwl0lY!?%!R#2dG2 zVYt&xpsq>O%NANmoWVdS`aD&XJK`)ZgS`5^InIk>&R3LHsO5rpV;a4(I{A+zE3{;UHPNm%`*}C-jBZp%fxF$yz`m@|3JIDMZea zbuop+4*FFTBA3a!g+k;tSr1T%94G5>3X$(*y-Xo;pRB)Ah&(9kV+xTIWmTdk;-4HT zt6voU$d|H4Qi$9sYk3NhM`f)>A@N~CI)!M&Y|W++c~;gg6e8!!YNZhQSJsgfA{Wd0 zE``X;vd*OtIa=1G6e3@1qIC@g$=|YWrx3YZ)^909UYGSWg~;);UZ)WGUe-GlBKOPs z4~57Bvue@!BPYySj6&pxS)(XKu9&qFg=k{ZT8l#Dk6AM)baEmg+fb0)GHV`%$TPDJ zq!2l0*0B^K|I9j#Lgb=Z7f^`2H0vi6B1g@-fkNb~S$9)NOxvHJ5P59YD-+JPtMwsLgdU@J5z}KIqOgg zi7EO53XxZ5ok<~b?5v9^M82JM6@|#XvrgPXL2~h|2Pi~dp7l6|#OlRm3X!j8{hdN$ zCFn7Q#6pEq1|f3#tbP+VF0Ky+$rH2= zqmWqnm_#A5E;5TkVyW#T3ejlYx|%{Xy=UD@AsVGyzoyVr3Z0;kSP#2GA)3y!{y`xc zbX%WLh^FzZMasVQRuj1p=Z~OVh$}%Mu@DzeA+ZowokC(Et|5iQLR=1ol8JR!3K{Qp z)gN(%@oAoxr42Xb6OPw+@^cEv!juXuDVEsGa!GY2VM%JCKR z)$trxOj)=x9ins;Oob@9IIkc>?ap^hS3{HnL!R+&^7JpqvuCIkaQ%RgXQWFW^e93$ zlE^{|fkeda5=zv@73I*?AgY8GoJIl4KHOFEBW618kA$9Zfl-`kw@4sF+F^+FsHhsD z{A7r9o#G7@9mgTpb>RW8^i#ue0iTfTqRf!=L_G!R%v~4!J)4Q zha8^$(j1{IH8_0a;*hu+D(PQY_2orh;ZVy(M)CzRxv2&Z_}yIDVL8Rc6Hk3=)|Idr zzT&1iSyUlR2Q$wHQq<jSB5lq zaEk5+YKrpQkm0FOgui7@4k6CF330|P3PKcdR*IjgKIPDmqar%MO+NKE+>@HIvI^c! zPy;X?a7ut{X(!z?H&n7>sTOeJQ=;mN>m7iD>D(|!mF4kEkUPb%Im3Iw8 zXS;DMbaF%$RW#Y$m`(j3W}IysUP*W|1t3T&FMpIFI;R~q8 zD~?a70BiB9rIu2{aKSrSYH*yi)Ij)U4s)P3#>oGXNB&r4p!{jTt#pZ#Zwkx<$6<~w z62Q0rVJ@z81Ydexa^uKQ^0@E&Y6&>|LX7c3jQ(+CCNMX|C}RvUMjB!alVUh*C70iP zg^F(@vC6Hoyx==6o9A0JGrzamTt?YvNYV3e^8jVHk@t=`*}7qd0weUl&4Ij7SAB5! zrI6yfkm7h8_kUuppuvIC%L1tq$?)WfJMYCiPsUqr2` z6vwd@)VzYg!e>@RIUC|M548D8T6t39zzdd|NKg`UO=j%U&`+T|? zi{PEA;mxX7-e^wB8_h|1k4mC!(7Y*O678@Ox=|h76U}ibQw-?_{DDpo7ykK)T0(^g zIma7vE*h*xDxVu7t`s7sD<72SRfnj_%5p=9j}0LfdkR53NQg0>LSPArOr_L%bChz+ z5JK20?$ayA(e)NbeF!10mzM^MDHxR>+QW+SaI5O0FkBf;8dKwC6Z?00vfiqS5-)Y~ z+7RcZr#Rpy#JS=r&Jn2-n$=M<;$@AM-me5ZZ|I9r8iFw_7vqMxMb%(FX9>E8d8;sD zw;Gc4F(hdh&+$GdDZLCy^5SLfbj7J2)Y#YgLXB3qk!Zdv(X}tsYRX)hh_@@MrpN{f z$yR)+4p+W0QXFul;A_-c%3dRzU2fU9wG?T{mGoZ^Z14g*jG(A&N@>NJfR;icG{|Q&`8PcbcX+m9Z6hvZk&zjS@`A zgTwKcb4#JcM>ON39>d{TY82}uA&6-@e^m}@Nn~nC(;_!H7P#cV0Z5`;?(Xhzz9~+v ziPPepF%F*vGpsAB<1HOHOVz~;t8%rXv~=0hjKGoSmp?~Kb4jEXLY|jGVp29rd8?9C z`zwlWsNBH~TeH=wI6%;)qo*=g;b8tP!|t-3m$IFCBL-bWuzde$npde`iCpm&N}Wow zZ>(8K`Z3oRpsspIA(U=Fk}H{2i9GKRUbqk`J0k`4(j6+vCZ=5_X*Cl#8tmCdO56bN zNLhRl8f=@9XzCk@%72J5?=}+ckclwCGrj^U<;I7o(``n=&29iVM>(w$H3jmlbuGoh(K=7Cdf=Z|H%Q!`;yH2ypi{z1TONP zF%Ws5F=Rd^b3dNo(X$g9YShY?IH8%RQjotr1R+i&$QglkXlApt5n6pw z>L)q7-kwUGB;);0lJEb(D;N~_kOC;(fE4dPh^Uh-c@@b!<3YUtNyhu1C~#x{^D(R$P~L9TdBbskcrYtlk&nSyci-l?sc{Z=RdxK0LO4TT7iEqlmvRni$?>SW5uIjs15o<$xt$=E51$L8m!2Lt&1nHE z`j_G@GD5rt8ii{*ncUcebEr{)!dk*2qu`YfjXRX6Fa1G zwnmmv&S{G584=R&N-oetJP{d)6Bx2~^dNP``ZzX$QcT;cI#D!i$`j?NNPueaa%T}VqtZ4o;t~SJ-R9eN<60r>PyT~ zdgI&*&U&g?{lj+|e0xuIF8}PNxss!0OimFE5--uC~mCX^Y(kdUONW1SE4%5QD z?*9CP9E@-lrpT9ZUJ5C&2amr8+TExo8i4Hpk{YJfDGQ53>sKjm8xl~vv^hn#OB<0d z8P&P_7?b~DB>dHxkcQg09q9p1bN|^$dEnBiJ{uwNx->3o?_hmi`EJle< z&tjc@%V2O{-U8fToyFqY+e7f!b`oaPo}EKesAGwglxeOil*vZUSW_E40GZO%=hY=@sIt(IWS*2nnOs$R z5;H!AGdrg$PwT8^qc~#vb9z--gi_I(#@}6v)CY~!`<ilAUj)uCN^A z=?6x_yUv6ho$M-r@`bmHzscCKv9GNS*v;&5H=x*_LnvxD2dgaFG(LP z(hi=A2CsZIQo#hJ71}Y>BbH%-HX6%%)li1YrsfhQn#raVmi1_A%(Ew{IovN&ja4QZ z$;Wvl=k`doj%l=8`Vp@5O5E$R^50wfBt z9Z9J>167=I(-7sF%vLx)$ExuT+tj*P85gA!MY$mI5mOb|zeB}xG&aPJB-tvk4oP~5 z<|a_?({N3$Mpc(eefqDtqf(-}G^~i~QlPu9adv(>JW6^+Qmf1MCb7Ec%@!e8^PS9duba7D0cT!=~vb;F7wn9vDr5K$%@*^554U^DvE)y-hx6AeMeL6B6n zM={(W{`MgEIpNO?p*}H$nk$9kmgbOZnIY8@L#hwK#o4v~OBAP#PRee8cE>37YRJmK zoTcIZB$UExOl_XC*wL5Ps3EK7Q7JV>$*Uo)zAF(JR^OtAoUPmtg`rR<86ga&J%wwU z+6rb4TOoF2D|r2og~L{`@tCZZHs~nJ4Vf_WQkQ4fQDd=r%O%cYL!4rDG0Hq>h_jyv z3~@FoPxCz6B=k)RfwRt#mfM7G!eZ z@DfR3C4AL-)ImA8I@A*2{=g*;Ap&Yj2dw1=cs!+KgpeeX!bZCu4#(NBk}#!}!KI}q z7jnJ=d(mOd?rTHM-8eS=500>&NM)kI5mw+X7mOzvO^m<^kw(11z^##_a*~Sv@la7U zX+X4BO4)0u2&2zDv@YOUQ`ufq_7crnVOVw3km8z~6vuEoBaLjHw^GB<#JEJc;3mph zLp%3dV~||57U>w6HSlhc+%Yuq;?G-S+HYSQO#3m4HT+zaZ(0pWh=*HoAebo5R*{XP z#*fJ2&^|AvMJ-w5m?eK3d#b?1m=?|8$*a&W3g2tcpP!@t%|kT2W>S#Hr8 zzq1ni^g`CaU)o!XeDx4M?^6urPpwgB;D%iHtiLd_{@f$$qWt7!EsMv|9=3k#)P{Wg zPv)-NYdt)skw2S*_>T4J9A5kvtfu8{P_J$^&<)TRCr_`SEkR)Q$_&F=T4ITiwjNF41&; zG93qad+h;(Dh;s-Z_FMoCf&|-?Kv|h5 z?ZY&4LS5{wLsOXh7?UF%o#a~|V+4~c$=i66r_I&saoW0N8t){(_XO?w7)d_TlYH=X zHQ7S4qXUI(X|J&MQB;sPN>oR_BD6bE*=m&Na4oH-=_|od*ySiF3HrWaCN1o*FA|f*(;#xuC5b=&w`e83E z3bR&e$JKQH=QFhlU7>jzI*+d>b-w!_Y-7!)_=ZaTdffjurrX< zefv3TXQ(@65YIY;h24Bfju+n`KXnF61Q9P)x&YL{IR7OW&y$pMoRsdxfJCAgSYJJY z=E1NX?D7<^NV`3_2=BNoM}n`GiXo{e$6=!!&wRCFrh78GtMz!RqFM~L<%)7(V>AhN zOO&G?ujq#zoB@2&MU)tnll`~pOLNpS&5^#?4f)uaCaIrR2^(!(S={#|_qS>xN*H!)?pMbN8 zV|MB)jO=rsf8D5Uylp6tuz{(9u|pHhx@GTf}w^aVqNNjwK0|%DcH2^psY0-jO$CvI!;P=du)~} z>mftr?x=^pa@dDJkt9l>X+dcJAD7IMZ00Yo&2Pmni-vXBziHK|WzzgDJMM zqflq4P|f(s@3cU%13a*JgSXxq+9R*8YOR8OgxG(C@iq2vW12PR0o>W_-slvMh5`{x z2rR}lAn&dmKlztAo)?CpwMgSRcTp!v4ft| zHpQ)Zl7Idmm@Pn3%vZ*mFsz_F`yD~qFp_v+bb+S!BJAj+z?llB)M!B3tjAXsM+>*u zDa5PdXyM@0Ls;DZ?PNma=oni;?+$SjOQ8S3*nlW8HgIHTFs{qJN}_SQ;UqWxpqJta z^E4fL7ilherg2w3v?P@8CrBL1pDQ~l*Uoy}`S%aZs(%^urO@wFS8H+eU%cIkWzk60 zAex3sY&xG?R!g9PlamaSh)+=^iRo0bdVFX()J7*Kx#--WIwyHsC;7u`T5Y~OMk|5a z+#K9NZuD?t-O`NWLXr)!XwQ~9X(Qsa>ZXs}$QDV~3(}>5<3^)0*n00^J+M4lg1v6! zyFAHrk&0TP$;=NhDA7c~aGV^%+^UG? z09!o_@@|#1#$mAy$yLkiTVeeCIO{jq0KDKWu@8qw@4{xsvj4%QeFEAWw7>?J9}={> za2Z6V8UI1PGZ8IuzLUIal9qvnS&&=*gFG=Ap3^)h`SN6NpCid<{s;M-%Fxg@Cpk-j zhp<_aZ*-BH7VrQcO}_eg<3`bwuolrP4yppR-E#7{RYhxnoj5|m>nkRn!sV zD*~j_$y)rXh(T#;9q~fL1<$*J*HURj-!If~CM;GRwN=5Ha71-2QHe8X%e_I{z6LsW zd}?51@@);sn`zKCk+fLCbT3q(C=`8U05f;IXD{S?CcadeO5D=riw-BV3}R_a2C^hkFm5&+EUdjp0>-wPMK|5MkX!f1B~wyO7};w_d&ThxMJ` z>@|Lcde6N4Vf_XToL{Il>^-z!pMiW_u+~}G(TIn>r==+$3wfQMHS!d#)_6BG#zgpn z1`c0SYLF`i-b6mKEq>d*Emp3HG}sS7jq$X@P|9VaBo`XV*7!jOwE}PPJ$gu;uLwgG zJ!!<(evcyKs!6I9yclUgNW8xvCZe_P&Ea?<4uor!Ek0$={RiN%Y*KCW3zE8UZ(D9eph zAHR{R>Pd)m$Vt2Sq?W84G-&s`Xx$s}j;>;fo&z5M8LFk8LwRJRzHg*P>BXBu-G&l| zMghK{=?Tv%iZSDel4zRo6@DbzD0~SN>1d;n#yv+=r%>csX(SGNUMD>f`h-f!&X6AA z-WwRuwU8W}@l#O_b>`p1^m2ZN^awNfwVNt^z=x-!Q1LCICnWgPhllQ{F7)bT%~ z^_wH9XZ|lW`vn8{ZBFXJzhINhW=XyAf2lj%!aV;)C$;?+2CU~K^^gBcJ^xos!@hJ< zKlv5w?*B;YC;v-*{x@t>Db>VL%DTU+m6gaQvH=QjA{rn^5ljC8(gse_X@7vUzCl{Y zlXSqJi0kbn{q;}uyFCojZl0u9Z(|S5G$(1pJJ|31oleNqYD`^!w0B8uLJnSMC|4w>?M$)z-uEhV^!N zsXKBak6X_~V>g2UaE zIMq}dH%SKL7Y*t*A2FMgQny_=gw^ zf+sd%yMzS2`wN8Zgx{4eNE|}WAR)`}Bv>Hl`?1*dogr!S42&?pkz5bBxWZSV93072 z`TEg^h{|6^%HK|@O>uv>DC1qDj5|-Oeo8So1vCg$nu!sB;@?bKrEfFYEqY<(hCyk7 zxkdA)tz0!y%_Es~#FP{xZIUZ3CL6Mp4lZJvXi(Z2bgf-4fxYHicLHOx?!x~x z>uwR=ga1q%*(e_N;lIm#>j41k?q>W_u+~UfEz0TaejuZ0HK$3mquT7U+UUzr<&sgr zmtUfQcXF^_bon!EKmJ;S&wKp_X4%dgOu`Vyv=Qk~?c%b579>qcJ7 zllf+wTlRWS$*x}m*LzoFy(fdzvBQNkI?{`g&G=1SDKY9&o zC;0H%Df>z%xw}b0O+w|TJXMZw=4l=~iN3tONj%dzX0O8NGQ^^MTok^wg)8r1tz6C| zH>?>?4Zx@VQPFS{@$F_y=dzqVB7;Tm5f-442 z6*h;^#&_|(FXsGPLW~z*YB<2AxqKH>n#)Q)yhiiKHz6X=Ce3-NwOXvw&Y)@CT)wZ_ z&FOuu$DgmoD07^XHhUdtM;o*wJZS6k`1M+#X_=FD%6hGWvc#bM&_(O6P>3WHnk1r= z9X4D~mPCA}d|s9$YphmZIb(1;)tppVR*uF)$H9AkDzp8yIe&K?Z0>J^@L_Xu6f=1e zeRbS)ycVd0w%`vY!X+F!UJFx7w%{|z!$FdR|ESOwG(74XQs@ty}Q%6EU!tSrl*X$U=?E z8`vw#)e_1?Rg~T>cuWCCorXwGdatOrhY##Yj`vWHL=KT|6=-eH`>e=?!N4=ig^38U zFi&5}F@*qa2yNe!+IFC!O@Th{SqU#?_fha6I*Tp*R7Wj+;bM%$@fADev0mmubM>Y* zBJ7yV#n!8^m9A)JiI|T*RTB;Iq##h^M_l{GyXqT-oFz#tLIGp5GbB^+t*{t`zQXUg<1Z z>7_)p^UeEOIyUr8zw!s7sQ7Rfy!iA^N;qG<9m_uj85&c5HMsw5sH61`HBhm%lxe26>w_0*^VIh=t5y z2k{|6G`~3vT?aHi{vgI(CHbilcsa3wbO_!wL*IPZH>$s>p_B5+H|R>!BxOA(rQo^h zTeTQQ5DuQELuw_=VhWylo|JLNu>yVf5LTe4JIPbO!zaA&OY(P}PRhxL zA;OoEa+Q-3BD64_bP{d-9=jlpNunRziR$v%KS0jEoRok3068B>%De8A_4p4*;GKr# zI1MxED3})GlO{k-{sfF^Gw4ca;Q3L|*L2ZmAA?^}P10k}-v7`;57?*dqK6Jj@Nr!% zem=A-%a|nUAk(+|kMx62ApJyF`jaQ1!*P;+v?sm$>x=hJwAnZ0>#M+%s-35{7H4lL z_8j@*_WTznu|@DwHs#26i<}hYypi9b96tLs#=d7{ey7~>JDwx-K?}{wb0_(NQ)tJZ zO6tEosl{Au$?aHZEWvNS51RyYe?^Pp19XkSFHCzM8prno?>jVZmrzO z#9}9r*ZL1~;okIglFu`vPwFnoyZi^aI7elwll-cRIsGY;yx>2`#la$9ILWK)T0QuM zLYS5RK`zd6IqD>zg;`kB_mce3e~^nsmHSTeYZlBW-;v~h{0BKL>nee*rR_qUiQZT` z@@p*{RiD=d4axzn_?9D9XjO=*d-b9Kjv~|Kobs+K8?ml4$t{}+G8 zC0gN36s}(V@65rb>wNh#Z5TG*I~Ai`Y$F?;rOUNa%4;L* zdu@2?A-w`mT!A&Emo93|dkM8XX(PM@{^tq|Q%du>pJI*o9#8#5D~EN^fX~n@L=rIC zZBUESg{{PDBK9mx>WM4ynm3Tt^*yP@RBi81QH5CP1hoQr@Fhbqzw;^F?%pDe(xa^u zeDP;muxXlu>*LR~@}~DB*U4^NC$^O`ocbIxtZ`7+SOpnYOX|=5gF0%pR?2kTLH*up zEY}>7)Q3H(-75luiP!rHU-5-&Oo($J@FX_QV6Kt$?|AXCDTK~>pd*x&z;?1*FfG6` ziXXqZ5jN}7?*HbDN4FEsxc$@u&0Cr1@W!hVwg&yxqQ5%ySC9Tu>8}C(HKf1B^w)&` zn&IzFuf5QxRqy_op6eBrJ7~x|{~snqd|WdkE!y!ui{Q}X8|bx|%{O-Ope#Z+7J+qW zprv%^sbN>%F*Go1BUVKFN)7aGC#%}J36t+L+KIOu3*X;vLS0W2B&c#^Q&XATPE@mh zk@n5gTw}2H&Loe&!Z>e@OtRV|3IAa;=JifFDNAkv<#9=Q#7XI1&yY%#rH4mZFbPQ$ z4Rq9%V#$@Yndl4eeAl~5BroWyg_|^9W?xxjbheM&~z$@D6K* zT%t$^Jc<+{YnToyQ;M~hHSD`hYp(dWm)*W^ds(qRZ^Ij%(q2|<>GnL$uEi@!22mxX zqybkvi0xWCrJajz!gef=wKnLoU38)m?Xm;?^k^6H{vBAg9AOX-eS`Ruo#^J4xQJiv zgz0=}5HEBQpQ4e?g~aw&?$*jGyA9$UE@B~uwg*P_lZ)882gBv-2Jw|Qh+FK% z9wfDcQxRY8)ygYM2dS;sZxB!2he_Tz7xANgS`DR~Ag+liF^AHG6j%47e3>rV<=^4- zwB`pe8{EX;-sp`KfnTGW8|X?g>T4|iy<-sfeS^5mK~(Wv7xC_cXrN{p#53L?Ui=Me zdy9+s**B=|O$PD$H;B)E3lHeLi@4e$Oii3Ih)=nQ-Cr=66u`)e-ukcX_9d*;rbSZBj+u#|DmFb5Y06b)l_0S%C@E; zTPw}=)0o)?@gLb*5+89|8|I8YnuCfQ?qXM`l~$d9@uQ@0mmT?wH%Sv&Ii{g-n4g%2 z!j8~pbh4l6l@`e-pVeN|!JokUCo9&yX3!b1a<|`X(Ww{s=l=uNVsN_HJgq6$#QESB%+D zsCrkCTcWNHBkYAG1{3>fre}!sh^oXlc4nGA%S(q%LAH;*byy5|=Y$|`&^(LIugtUf z@vGh_>3CngIGM+gd8CT?%7<=*JdVLWOc9rb5NWBZiCznI~9d1eF zDJAv0I5tJp368;RqP&t-&Cit58#va@%*(NUH7{9>us4m;SD7$#@Gx5cP{Gml^fua8 zm)3mGa%DhVQA)z-`Ms1O#yzwF6;>@5=Yxx@x`SAt(}jE@Sy z#*YsSg-w=7)~kv%;q8&eiRbG>p}HlN^|~fF(9xyzEdI_Ba{#YdMX#p#h1v&K(aV_- z;IP0*zP7IJ&;5F{qW05Oi5>9QXF@&)KFr>ty1rQ8XH5rw_i{^sJ*1}Ifl&6rwe;yC z0I}x^A}X96iTjHuyyk*c5MTQ?^X0ZCu%90FjeN*H>@eIBfcAo)!82;>^rH z?t`NND9yHpdTkMhMj^>Qppo9j`NWexw-l9(eKPbqf>pC7QYxwG$j>c7{G*brm_581 z)d0i>8<-*T%ER5vcGONc@q|Vugcq#SHT$?M-OGd_obY6EBx*_is3o+A8wrF>G|twG zn&>HM63UlV4%PA?8X3&Y(b2p`hT8vXrLPx(m2LEIM4(?g1B1$1E-ZDSewPk(6&u@|_0qHGK@@RYFFn{qPq2m(eB)5v zmoJKC5%z$$so4M?Ra=6$m_$YY$`WSheMq;!qxvFw^GUje@G9TG+2YHS1~JuMyr15X zDC|)Br2l21+Kcu_%S9~E*OahN9H93VPcSWahMD;+(w;a-Zz_0=$*1N6X%L9#5As>C zJ$(o@L_m?`c1Rv%GM$r(!3nh`dD3tw_ne`fcZcgmO!Op-aoGqR-OaghyU!@HAfVBh ziOhp|{tydfgw&;a zNzzy`el>yl+FMT`O@dss2VfJyJ0}8veWKoy$f+5#13gL*L82sHe3vDddrv{5hVT8? z1%wHQ?UxnV_9XC`JE%Q2$R&<%NMXVJc?$F5C#NIz%(?peB6Y|->IguE>MCJhHecWU2CuqR@fs~&C?%G> zYF9-eLKf)@1qb*rT|El1@MBt`t_EpER;@nL-xGuvm*{Vc01WlG2*9jhQEmz<%3D-N zJGxh@FIxT7&3cA{*=+GXf3_Lj7(EHP6I=A| z^kfH*vL>vvh;{?VFc;(7?07xWjMu|!yRMk%NgRq(bpi{u*WRJS6H1dETkQ#~qbpRMUO18i6=)CL4Z8$U(l%7{#65a@6TVatjVX?IZe~ih=kL=?0%xDSUoUPl;V^>r zcrC=9Lmc;<0R$D5cllbsYD%%!K1f|~3UBg_{*RIpM&Gg* zq}ZPw)^)&bKcLmaqveS13&@krdNF(aQ7SbUU>u6mTaW1vK{4+*S^!Y+6Z#~FOQ0-o z#1l_K!W5o$QlI-D=-^ZOj{iWLPwU721Fiq4Z~b4i{n3xq_&B!jxbm!UR$u5qOYdY; z{Rp0L9xmSVvwE-pLli&ve~3CO4$jV0#HrZ;bYwOFotF(jhh=A)#Yx$CqGPi0L}z5< zi4MpHpwqDd=xA&JIu{#&4#ftb1F?~SPQwPEqp$(!9BjnVA=m)oW)WcN{A&O@{2Ev~ z`5J(Zy#}B&uL0=5Ymm@s*Lb3nt^w$nYar>2YXCan8b~_b8c%ezHJ<2PYdq1R)&O*( zb!HK9oHgRa%_4wwk~JdfW)VEm5!L{7el?JEcr{Yc$<;v8vDE-{W;NpIz-m0vY1NsU zII0>*I;R>5=#XkW(FxU=syLk*fR3ilWa3UOVbqxxaT0ZA zQE?14xX~HZh@%6jk&sTG#uFVqovDjsry&KMIgL0va2kM4n+6FTH4Q-LOe1?bWI8iQ zoG_i~EsmF-nCT@BmxfSuvNTBPSZSoEn?;a<&XWd`4wHs3bdogU=osnDP;rJdM5645NG_XO!d`uhfdy&?bd%lhbvBscDhvMvCeBlf7fo@leW>xmfC6HV{U5mR}tCz{i9 zJ<*;$dZImjbHwI7*AwmHb3K_SV($q((iW9DVmpfKiT0(qo=7qDMDyo!#8kQKiRR2* zPc(V%dZJl$*Aq>ryPg`f!y);uN19=GJ<(LV>xt&vT~9Rm?s_8C(i5qAj?l5|iInYn z+A~T%rJ%CrSoe(*7eK{X<>LvD$WtCqKYBd<2$J1XPPmevGo_aj}gQq?uo6P=& zN2J$icS*xNo?<nrSf~xf{c8Pt&o3;;=l-h{<9qJw zK@0EcQA(#U9&<;}HGRb|JknF?ioN+l zzc7&Rxu@S!_Jr~axAYvkT_@r%kOhbH{eS64m6y0L;(`8)5*p6$-q$-ReL^{Zpr7D8JoBZ4Q7R4u&?|-NtGTr7Y z?_)@x8_w(htUsZ9ZTj8QTZd3rfY&q5x(TW(EHR|_(Bb`ub>nHj>0x~J4SlWRAIfL_ zt)He#ZKnLDf3AEU%9}pbdn&k)ufZ*h#De*RJNi~^@reIj@2*@9<*~Q*3_t29Tx>)6 z!&`bd-|> zAHAmg^T~hoX!qwA|LDo?&()smmE4~PJl88!b@2n^LQB&TqodM>49UY?fJKM(9x|X3 z5S1jt>LTUGp6jvhtp0uDIq`*F-aWp@8_x?~=qc{;r(fu0+@D{+&?~q5KP%GXPNl2u>91qsJ>_(5QU?! zQ^T2Ve-O$78BKSXqu8HjQ=I*NS%y&}<{C=Hu&@2d1#l%S#pfomV!TU5#`yAhOfCDx zvTw~8=OULV-nk;ieXJrIW5(cVVl7}^%+$T?>yp?hi)pGIm^8#yadf z8dQv`$5y~ikEqXD3OCm#yj+`ba&5xLwFwv3COll5aBywHzqJYX)+W4Ln{aMz!nd^v z*VZOHTbpofZNjg$3AffJyjq*M*2N}VTAT1_ZPq??leSGbv^L?-+Jrl66W**%II}k4 z%i4r13xQD2HsQ$Hgdb}YZmdmsu{Pnv+Jp~l6W6gIOTnM~SDSEOZNhuC3Fj5!(%p+T z;k!a=sNN<#SDSELZKC0^iFU^(njM>Hb!?*1v57XvCYl_ZxJAV#+*O-sZfv5pu?b(* zCfXRAXku)lg|UeS#zyVSL}W?ri%m2yHqp93MM7Tk(rm)qZNl1Z!q}l$p#w5;o3L=3 zFmRi&Z<{c0o3L)1Fm7m9P}0RFs1ET@K7vhnq>WHwkv-jFViW$TO}L{r;f>maGinpA zs7-jHHsOfcgdb`XZm11j+?Q!ASIepdzb>2yJ*UoG150?WpshC zj^TY8vl{YYfRW$s#>g)#3G{U({hy5)CawvQI)?jauqyH)eGJdcU@_YC%82P8Ngwn_ zapq*O5Q*)~*JiL}8Sch^&S3G{-ddpEC#mPO0(HeEtT->94Y~80u+qG0CPE)K!C!hy z2!9T-+MS9>6HI9^H;7_tUdce<8#vNNI?AX`CyD@xXqm~>V)85~Yx(hSy%lE-pxXLU z#*WQo-v1Gcou*mP+Qv-G4gJ=X`D!A~M*h4hi&sha$!^TWsb}*I=5wiz7r8P2-`J1b zn6GZee07m#=@_0j3iXTY3!=3os?OhJb^2z)mXB2fVvaM@KqN}OR|)S-V7Q-suz zpmiqW+T|=H3me{V;IM8Uws4#n>2AfY3h&(4s7n#)MWrvx{rjli9(Z5AuO+Lf9j8WS zA4yz8J48Cfsola3vmtN?djE!Jvy%FuDu^02hA+;>`z#*D8uk5WHtM?tRmUfkva)uE znx13CF`V0P>0yps`%{f)O70)!ppEjPtnE@+=W|#Y?Ko-gXNeGX7~YENkg%5}HmenE zX*wA&&Uqv;K^Db3(d+g@D;B2rz>ZF9wXytRI{bl`tx$tcFfO*c=*Yro-L^?bR#T_`(Ynyk^G6+7 zGQ}M4$m$dH>%>|~ie(0ce^(aCv3l%X)KH#C|A`TMuoFwt1m-hd(3vIi@}1GB2*hfG zB)c< zFpw^Rn5A}QEeX!;%2Fl8L4)FUS4Wu-xza?^LUJG_7}!lpwW%A+mI+T7WUyC_Z|KTG ziVYhwytl*ZMA1$gBwf18#LK(0%H$xQ>CS3kRn|9;Wdd}_W4QpE@>mampdPFE2$BR)s)L|7 z^KrBRf<>sLDBXwQ3^w>vIKNZmJ)sX;4}mBl5kK@{RUqZUzN|S3o7I=KAoy`#mP7D? zfv?w(HIeBOWxD14SRxUe>c<+>Qfj!BwI(>w%6e$x9y(mSN~QhN%Gyvw>N{+djA$Su zPQSzINd!K8CCd2ztQApC=+D~Ah)fv)7oj*7SbYYtG=QuDsEathbO7Eqj8!fHOR&U1 zyj@r}%pJ&@YczJT_LQli#&CXaAo?$XeOqFo2ygzPuO8)i`;oNXAQVy%^>-#sk%&PO z0n4u-5kn-Raz3j=x#s6XZ-Dy@SadLJB?%`;!ZCy4_t12z6}x%|K%#wv(HaZHdy?Yi zU^IsUF-;=y7J2i|L(qW;>kK{8tG%&!zJNro_KdY~CRj8&z@t<}R&seliLv39z+A#l|=Zfb+>*n1q76lvYj z%kiRtZ1!+u0r=B!mZ1sqjr`;YEFm@=fjUA&!3Z>zfJaBLb_C0ggjov0-I8!xKDG+X z9LdU4?Dmm(VMOfL6q~?lRgpIx1@9cOok!vA5wVA5T5TK)ajhb57>TwTWWS7Jsgmrt zB&$D~rBKAM(JW0yoRJYHN8=4Zgf@m{$%sobV$c`|@+Gh?IA9!01z10hHPpl{jM#ZiFNDu{ z7C~!%apTcziAxz@$%u*LStW{CKOSYm%H7Z7nOO8IJ^?)uo_kC{#(PeeN>=jq6Xj|ub#8#)< zRb^VVuMZ}&NVJT;1*`d4N zo1iboK-DO{ko1*X#J_GOxa)?$=Z24U%OK7zgNJVPkKE{syU|BF=&7pX-6ASDB7l!} z!anF=TH%6rV)N6srCZ)^A%9zDyAAi`V3MN%B@h?&azN<=9_l;Zi*9JD3g zXTFqM#rK(2!5yHB-e-LXnx?T{K5{x@G?MJXS>@AMTZ%b6jdiDaiFg}p&uBIR^5L_h z8LS~cZe#x5VuIonB|62U3MJMnERW`B6Yzz3|M^y93Ih~pMpL=E$Ta6E&3S&WkfnR| zujL@+<{7LLUALJxgS98PYXJ6rhdS!|$0*a>0h*FV7sUmTTxau#}qHnW*OC474} z>#ZbK=f`G4LcsVrth1k-F`;zx@rO@CbCpn$)^AMjA%lk2694n9Aipt(^`*n~o6SZ3 zG+_co+9u(MjpVE7kVST{=CV?Oa<+vyP9%==3%l^SHdc!xvKSxx0ShcDC?*pH{qYGO zx}`71?|i^Q1b^#$MDiZ@od-=K<397)P~}b{c4M+31heO}{{C{Fh6roo@BR7wR6&ut zT->V@ya0V3=;9Wzv2JScX{Dd{&_ZMOMC2kW4dmdHl@NS%G-nCrheBg&{BwaS~+lOp|g{F@n_nt|7 z&MZgfxF4f}kDO>CzJ12*7x;HGe7m zm!eBqkhd|7h1gVn;}AqZR3$%wO{X;U_dd@KEdp^t~0eFkr*+lxXqK|eO9n=8Q+cKyYZwI zaHqg@+6p$vw3k0y!SVt6eZt=HmUCuAwvS$>&cN4M$)+g1s_+9V+4}^Weagmo_o6w6 z!9+KhANUfgPy7@%UiLGLLqSsSGd4@PQkx(DjLjt2<#RT{{|cGGF-k&zQ1ztEP<2#4 zHIXN+VzETmVHGP-8mI8ftJrYw#ZUDzZVQP{NF{;W7H<5i)^eL ziDV;B-U_jijp|j)$$(GU#NNR-qW3qUJxJtTzGD5n#55%(!8K4{u}(l&+>9o6ZgoCy zGbE=;M@XLIlpNPOc!l&EF*?DRv6M5J#9)z>{>Bzom9O2xe2a>xk0^@%q{Nh*kN6rh z>!r3rVq;DdBuh!+mXz=0t!$ctYg&D_u@4EZ+Qy~^%BfCj*M7qv8svPQ^Mz8IKiGzL zVxFCq^cED|AZKAXPphUz@N;%HUcqG>ZMU;!1fOhY)4k;kDaka4&)6Xeymqn?el$~B zsP?0)Ddq$6<(pX}x);h~o^QoPO*eP4uHJGsl@hmsTWCTS+JA4dY!q>; zD@MC}SeTETsU>yXAI(pG%F?*F@wL@nytPQ&e=nP$;If80d-3+sBrcfDG2Xs3y7$3{ z@7Ra7RnG5{G@tV;``}|BO}+hWl!6-rx9?}e2__yu&n)MCiLeZH)sgZ>*Lw$8oQ#U0 zs2CpoH5(!k=0Ilb-&bU1*~N6_Jj3Fudp zhW=!SgG*!m`RyZU;*E)G#J)uxPGjzW1Up#&S%ftsx{5UrOUyJQU4&Fce-4*HTswQ= zC|XYBbNeV<2Hc&{_ZVCTn&gJ;H^>Nt%aCxKl^0m+F5vm z<3|)6G#!6rg<_VyFq9wr5fkj@GjKu=Uf5@1?u0KQHtaR%|r&oh5NxecX~^n(sn;mSES$U;-}(5n9w=?sA|h@U)%s+zwL zJ=&xXSzSsT#Ot4D#k`HlePldJYA$uFS8Lo za_xZhcT5;;UyA8>h0W1u^#EnRaRpiny$Y@20=_v{p*6XzK)f@B)`oivOcklCNfY4u z-1q`teC)W!28tzz!eH)y9n(eW*V#}DtwBIfsZ;o*Z%{gM7vSt07*cJ#jx_atg0g(^ z7%<-|S1U*~JO1Fxe~R}~I8}~BWxWMWeabnQn{L2K`|$=FCYCh{LwMp%RA#T6WG!+0 z@=aFYFV{PW<{?Q+pBLci;!010Qfs5x6 ze`2))aQmOElNOr}J%{s(aX5t`a~5p!>25Cf>)!N3)8&>c2L62|etm9+9a>@J!* zL=@g-iwMTtV=D-Le~--}*y%o7EEAOFC+@RyJn8`^ei1S30m~(L>;b$dz&a1%!vU^- zh-oaq2M<{W!J3cc^Q1=@AmjPMBi5B*jlWoX3yEx<1N-15@1Vmh`;?W$8E$CML2&CY zc;SF8{$|4^;SwU;c$dZShkvuC6j$f5Bkog*OGw5Cq*orZ3`xJ5aI-6;lx?3#VU|8& zy=2@*iW~PpW|~aAa-XseGHyG?b$-aA`K6~=9l}wDC7-cw1SdX2zJNbGgKU76|3Rk- zxZoeu2jHLoFst?lc8L~7;AK>c^Wo3YRU_j3b7%)J{RIY>fFHkrHUR&AfeHp}_);>S z{Sx(t=esXi4}v+bK#v3F*1SRnzcyd^FO-kRHvhu$0=)JwTc!Ql9Qjq_Enc(g{Oi|j z1R@sHvUDNvp=B_U`IsyV2(C0)-uGExHg+mmaeY7~#gd>D#`6`5CEj;FFv3#P-h~1R z?y<0iiY1gE#dIiLHSnuq8BH*+h-D1Ht3@o62zEDHKF}y-VH{sF0@{vNE&V8>P_>LD zXwfVS39isAT?v|WOP+-iSesEskwdgFK1H{P`wYIfK??{@iM6+*{R)O0smS|-`BYw$(0s(q?S;`Si_Odjin<&P6S+WV9@UmoTOY1{e ze5~P(>Bk!0mQED0z}sRaX!4QIU41NB^t|53(vhH-uO*M*0AEW7f`@%&d{|LSTjgRd zA5;{0z#odDAb|dUr~;e=H^|SD<6RxQfzh&jMdEGf}H?n2U`XaJP>T@Ot4glr3b+& zA(o*8pM_Y45gZtbng@IsD${ofgJt0PLYRDR7>$2nkoc1&q>NQc z$~@+jl(OF|Y3WP%3AHbUbb$LySy~bdh(bLA4vT`30$z`j@fp#`AJ3mgTXG4$iUvQx z4y7&a=zH`{rNI}_uMFe^%qwG=K=5W6lpU~hS<5(rm&!suz|?ZcAMnd^$OkYu26fRb zgLjO9VFFHyvD78FKgQCVU~H@_0 z96je$u>3z|oq1qS#}>!!HIbl7wL}D^_ANzYk3F%~zAupk86;^UcCKAgAyMH{TPUTr zQi@g;C6<;7EiJ89pDw)G`gGCN`<^*7r|oo3l|w>fEME!Bba<60_$ zv|Me~nsjh&6;A5cW`3nMwjJzBbyR=Ssdcc;pqJ{Xu8QWObLL??cdw}``CaSc07YF= zUDcFydtDr;(9dAwbv|Y5sg{twEX(Stez0!W!@+u|H`WAyv#5_#QJ?y%H~7~2Djrh0 zf$HU|yEj1f+y<&E_=N_hb=UQEkYMYNAFJd7>ZY7VKXcjt8(lYNCcwMWbhNHZT>B z`-`5%tloWA^`wf&!&O((xNz*5(4*nl^PyFnV$X!mX$n7lZ|dWw*e{^L%`hUUZl4<{|O;>cp4g&qUBTgjHCY`W3pjn-85JCUl2`3zAn@IM{jO3x5C&edX z9*bh_6Q!Dvy*LVs0{tio6Nh3bkx(;=>77-rQk>I6qqxHNt2O*D`{9KQ52NtR@Q0mM zDQfj?XPj-IPj|t#g+_P5XrZgSU>TuTx~NtKD)sftcSY~eAzf7i(yXr7>F}cBwG&iT zUv*Qp$Y|V6H4D7g8T)p@_}B*7xU6M0#c611H&vFZw|B$k4O+ar>Q#)~bd3e@wO+Hk zV>icZ!_Rle5^Lk>mc*Sv(Nvf9Ly%#nY46hd!5SrTyS666oZ=A)T6MJLI&;z}(TSKe$ z;l@+?V0VUntPchRE!h_~Ubr~`TI>N|>8H_97WY>*{fm87399|3FQP&t`k@!-3afYf zshA?v3b*cS-@(|E`?JI8{O~qfm;=TR=72{BV}Zd-4qN^U=7BLhHt(Pw2FG6-K%{Ud<#8(>PH>Gd0&=)i^R?S0AI2 z@kX&#W7G@9rr=>L+!+p_!F)MN1uq|qvvA^A6$FRrW7P=AwXwM9P4OFzQ_X|OJ>%)* ziFiX=3f`PJMs@Ua$Eks+4oxsYmnNt_ux=)(ZjfgaRsSM`BGCrvmqqa)?zPD{t>z|T zE%5PyUlOsf(9TJ?MS<>1Qq6*lcX{bS8r69oivp+TpT|`PdhvPOPeH3CWB*N$F#GR4 zg`b|UCgc2t4}axP!RCZUrC|2Z6)D(Fpx>sb#-tU;t1Qyp<8k?dmPp013hkH5?Q&AF zd*LOQKcuQ5#ZL4v%XEO2Y4JqWz+W^0hZSmZ-WgSdYH|AbegZaT$V6_2qY;lmOvDWi zys)dpk>a>dCdIiW99burK8)34RA+zIWYv!2{Iyas43HvW=T*_4Jq5c2+F)0}MPrHz zCL?$%N6ngwGdb*=P(@?XM`^qm(Gz~#KDd&1n}|2cq)$^pds!LWltJQpbd0Lzx0->&0(CQI@SMJ#fvYdmRt}mR<_3`Ok|3Ny}*Lwj+GW;@Mz>P5U!3%11F*A$_G>i%U?FA~z z@4QeI^N%c4g~{dQLR^-il`>Q`yL#m6`Nh-W`f&z!L)6~L;J}?0;V6Nfu?QU_ZS?y^ zIF~`2ELMYynM9ooYMtTdUx?#;_+r%{sP3>~@d@$chYiC&{Ub4HF#>SIvi`tKoM@0w zxh@kIXXqE1SaN7s7N!Hu&cc};`dt>LVG@1TQS^0wtK~Q`P<|;rP3-SkqK0zyCaT`# zpLT&tWdQnQFQ$Z9PH3*D{vZymRYH$BC%=7 zN;L>_d!_Oq<6cq=A-}w&mO(OCsZ2=4)oN)VJ!q|OQQxM5;15*jUi`9Q=5Oex8HN zEOgj<+>VpIUQHzJw*fz)reQ{ z=NQ)dsStU&f2P0 zk%nwjn@DrFsokWLwsXDOpUqZ5F)P9^$pgZ@gz7NnNJlfBx=uxTc04#go7@ z_v4_(%WF!J>x&04YUu9=aCL=_dJ}&PfqwWVenLRozlH4#J^U7~9?-CZxPAVg?sE=e znQ-;EaS$f}X!WT90BJxR4rf~IEiy1@(1gm#vhfcoKjDb5qS!? ziqN&EFlgw5Q@HnFr(Tp~IPWxm#6yps#=Qx&r&47*YfO&il9tYv8vygCEldmi4pFsM4YI z$ognMqX>PCDm5h=|AG)uFFqkQZc^Rkl=0bkEbjOj96@3Jzt5;fkkGR@bi(|BXYm)3 zFn=XmAD&eWVHNp6HGn+JQt~{0dCvPlg#isZub%O5f1t{tT=bmrYI;u9fi?P^iN5%p zdJ5K_bE-ZBomBAi=c%$Nqo-iMQJ$)RGPJOwwIXj?l*e6QQ58G-d4}zyJXsF&HF( za`fOaL;xasM1~VFNqEsH0mM3B`WWdfeT*ZF7I1=r7C`BG2ryQFjhINlGRqFThQce^=d3Zo^?LC_fdk! z2M(A%@|o?j}keTy8mH`ncmPeV8NM6F?2%f1iNKw)=s>&kmRXzc|Yz z2!@zf=9RmW(dukrML1BS_q)bJNUPn zP3M0TfwJvDBE-dpY)7CvCD*k_2_BssFnvThOE=&ET?APF?gUJF+;b=)KraUxpk)ci~(MCw6YD(5i$92c_<;mhYpws7oBA??NI%(fP6gf%K|8u4j!Khun|8e zV4f5I0ws8O|8m6i@s+boG9Bu_5nvnKBw&)_{*4kmZaZKC+;x_Igop6GfB**f1yGtC zU4MQQVnaSK0I62`7nI=fy91_=Kb?iFIa8ev87bQ2(pmq41SAIz0UmL{1W?Y>bvzza zF(H&RhX%zBpp5bo3`#j*B9wNPPUQfP3z)><2?3N2hlu3_*oYMfcqZ2^1Vy-1B0|9Q zQN>w$14pPT!1`AwU~=GUpo9Rm9WVjvIt$rxrnmN49-2XQ~7)pRcgeK%d8F3~; zxU-NfXR4bCu>LIxNFEykv~j=$Xy+`G1&8Vm0x0i|&i|1_Oln({A-byrCPH^-nWQ&F z=pn%R_aWP{tX+HUZmd z{{wkV2qm5Y>=Ce+!F~aheg=<&0_=jlBfu`vQ2};|jtj6$bdt6|FMwU6_r%4n(OCg@ ziSh*4CHhc+U7||@>=IoTV3+7K0UK#MVm4n0v1{}%0o&Q*YXNqNZV0eT^ql~^M0W^K zx}Cm@5_y_$wvE_FG1P?e_@*w%_ssY`-A_Y`>KVQ1YLyj1q=g)d4g6r`e+OUv;jpB0FW3(b*vin-2ME5^!9Wmo-?=0Pc>a%sE07?f0=qjKa zgB}7XDG(lg1oUMvK)^r-LmcolB?+QUv?JP#3x9(VUDhyCX}VEogZrPH}OL%<@G=>8*1 z$P#wR7O;%L3IVo{RRV0(wE`$Ag02@}gKiXHgKj3^(JNQ=7H+eR2mv$l9nNyqy9k)P z#@+0{*8$_d&slmuSHC5I@*pv$cLY!pB*43KY5zANk1;tRF1C-;0&LVX0&LWC0&LU^ z0&LKW1WaP%C6v(bWd}xk^k>LVovACak2BQFTl<>On{wlV*z%) z;RLEt;#^adFuN8GnBBCMvvg~e==f_Zq#a5C9R+k^&{=>D*-ZciL6aT=Y>eIlY>a*c zLI&c0{kh2?0v-`Ft|3xClU?zh(0_HMUARvvwLID{JG6i^9OqL4CX5b50!C;ku)eP1N$YJoZ zfQ<|`3)sS7n}F>MUi)h{cJ{A}i=FQq0_=Pb2(a@#D8SD59RYT}M+MmF9(TagcD^Sa z(RRM?39$1$E5Ob-Pk^28hXU+;FA1>oy-dKQ(q2Ic8{50;h}qg-I7?sS`s)I|V(_hi z8w|b^aErlR0rwc(7w`jvp9MUi^~W%N6Jp2prvN*U{744nk=ub35?}}NhyXi~00DL& zK?3YRO3tV2kE9l3AdiuYd7(&YlmN;)VAkhJXK7mCk71DDfax^JS*|+8BVuxu$8&>;4wwd$ou#L6^>hI<7|aqt$<7$U zJOT3=qzia~!6E^RY5zl;B|=_gmt_Jd2^t zxPV*+rv#j4a7Msc26+O`Gx$irMFyV;xW<1=x~ zk=+zvM|Mkq9obz07@7I~`5z+n+u(oqQ9{2zIbc@ofwS~4T>ZO%KN#dgJ~Ic%j}ihD z5>S{yQ2~@?4vzo^bo|*)gT%#lQ&NEK<}m@bo5uy%Zk{AyK0{m%C3I840W*_|&eFEJ zvPZ-unOETk)f_MlsyoZ%pd(&w0d?5Fz5p8_OaP^=qe)`|l7SA;)B$vX-@nbBsatS^ z)&e3Jv=h*tK_>x`47v!QEO+$LU4RYRQ-BTH#{iEm9X4uzBAw_j1_Mw+kiia^wHWFw zJ&dbI2#8@YQotw%TEG|v2?A^v-t$6i)bRpr)QJLY)F}igCtgoQ3FDmMfEnjZXX#m7 zJy*ay25AD)Y5OBWhLA-JvIHz)kS$;tgB1c+GFUBO4TBs3>lthmu!+Hz1+@R0sl3W$ zySVINuuH&h273j(!Qg;^HyOMw;1Gi&0**2`F2KuWa!SZ)24@7EWsoPpuKI@p>^ff( zVAuJwfOM3w%%2Ic%lw5o{>%c{b^e#Q*meF|fL-Ss0_-|}C%~@r9RYTozZYPa`3DC) zZP)o{N3>n%Uj^88{zHIW=X^-I=8b39xu5{M&P4>+WmW?0GJAnU8&mcrVMFy1xRAEp}K#<3zh7j9LZ2`8MdID@W4F%Y48WCtk&rUQ( z2}2Ecz|5qXvvhN=ZbiT|4O%m4D=zIAbQI8uL1zKBk8T2N)E)wC(B1-U(0&ByNeSIQ zjjw-$95DkO;w(KBCCnpQzz7C$0!A{37oZu86M#M_Mv?#}-A&7dx9j1lZZ+OLvQGXH!rB z%?AAz5nv~y2+)HkIshej1UW$4#nUC6sY`PGV**MuC@bIz2IU0=GpHyaltC2%Pce8} zfE`6m26X({e(Q*f?YF)F+i#cv+izn5w%>39=7|w{A1fx?+yS!_wse;6z}2liA(2el z2%tw_5TTub?hHBz=*ggyfIbYO1oUUnMZh2i-5kKbe=vE@5gpB-r+`=ny#$3P3P+hrU9 zJaL2HpY(2A1WB@l{~DU?EKN`3pnAN3Oa>DK*Z`9W$oq8BWSRqJ+s|+oUIcF<&LrTO z1}mA&7MIlw<_e%EcMx*EfDH`N1kl4f@OVMM76ustwlP>NVCPi6{$&Z-%`Ptr*vlYW zzuNEov%N;9Wh&KkF!v38tfxr9ss(^5#Dsb_#bqZzQ)yu z1YBouSim<7jymA!n@o;5VjeQWD02neWsj2r{=?w3fFBvWFW>=#vjTo&a87`oiFbjB zd5io*cDd+)ncK(C(gpCG28MN6Kw$=-3Mk6ps(@k)z7SBH!IuIa^_W~2Qkucn0?IP@ zRzNuemX)ZQ&-|xvN=*fJ{Z2qAgWCeCFt{tgtH$JeAvGA>7f_qQj{@p3_*pF5C+W|6c*5m!6O3NFi-;8GbkpY6N4ZDof(u6 z(0Cf}|D}k~S3`Aob}8e48E9E&>7HEuq<}sQ$_uaoLI}u|a==8a;w(=O<_J|C z(ex&9G^kEMULFom%K;OijwmJ`$NU5tn2J;Q~?_ zG!rn1K??y>8MG2GgF%D%Vqcfj*ghQMLJ8*;|84t&?9At&{e=f2HgcL zX3#^x5(d2lWHabPz%#?}ne-EvmlzBXu!g}P0katlC14&gThAcc0W*^rXX%Yx9VcM3 z0iGTugdS4E+~Ni7U@%6&E(YTS>|u~7U>}3$1-!{1MZnt(QW?BLe8u1%d#rN6Y}_@@()YP~oq(ShtQTMdY$RYl zfAA}Nc$*zDAzyWt{)6kc3CM>>?J)Hn0&Ij`1kA&Dh1g?{1191d&eD%?^?m^X0QCFo zO(FC+AHYEYB^ewNVEZ^ifWDTjOS8u@2TZ5A&eCPM`lJBs{~iH6>F425KlFIkntbzl z&RP1${ANHG1l%iRz(oOr8GIt3H-k?F++gszfSyH6j4ugz^t7Qa9%#r{;_^&M1HKhd zo58;YnJM1OLYotmeA5n|`|y8t`4hXU-}3M}Ns%ct$!3Jb7v zD=NTFt(X8iwc-ru>veW+kBW<(TWJAyZeZt6ydK;;DvDkWty5Ye_#2$Tz?gmr=?Lws&em%=q}k zgy^xM(Mj>POa9(O#-lRi(9zKev48dZoB3y)j1nWFW5!^n|5N+t6u)R-KxJN~JAVDZ zfO1@}?mrh85Xv*=FH2;U7#BY&E;e+e9feyn{=P&;X}six$u`JGD;=H z!D+$`PALtKPaGf@dE4drrVGJdhm5m`GDR9a@zYUI3VS3cw2D52*M>Q1dRL} z-dKTg(U5=OH6e`iSNsQFUXk&y|HPT0jPHjAEVi+0_*s`8DeUjA6cAQ42mcm2y1d56 o0xJhZ`&}ys)cB{Meta#

variables (Container) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f124bd12e60>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f14c1a0ee60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • @@ -1442,7 +1442,7 @@

    Meta#

    variables (Container) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f124bd12e60>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f14c1a0ee60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • @@ -1519,7 +1519,7 @@

    Meta#

    variables (Container) – Variables to be optimized.

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f124bd12e60>) – The function used for the inner loop optimization. It takes the learnable +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f14c1a0ee60>) – The function used for the inner loop optimization. It takes the learnable weights,the derivative of the cost with respect to the weights, and the learning rate as arguments, and returns the updated variables. Default is gradient_descent_update.

  • diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html index 7851612d10..b7088e89d4 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html @@ -1391,7 +1391,7 @@

    fomaml_stepContainer) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f124bd12e60>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f14c1a0ee60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html index e303f5d68b..871b79373d 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html @@ -1391,7 +1391,7 @@

    maml_stepContainer) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f124bd12e60>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f14c1a0ee60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html index 4ed6b86e19..93cd7b9df8 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html @@ -1388,7 +1388,7 @@

    reptile_stepContainer) – Variables to be optimized.

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f124bd12e60>) – The function used for the inner loop optimization. It takes the learnable +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f14c1a0ee60>) – The function used for the inner loop optimization. It takes the learnable weights,the derivative of the cost with respect to the weights, and the learning rate as arguments, and returns the updated variables. Default is gradient_descent_update.

  • diff --git a/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html b/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html index bf7ef1d167..eba8e6ec8d 100644 --- a/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html +++ b/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html @@ -1377,7 +1377,7 @@

    Should not be used inside any of the test functions.

    -ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG: <object object at 0x7f123f279cd0>#
    +ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG: <object object at 0x7f14b4f19cb0>#
    diff --git a/ivy/docs/stateful/ivy.stateful.layers.html b/ivy/docs/stateful/ivy.stateful.layers.html index cdd8d99d79..5dd56b3428 100644 --- a/ivy/docs/stateful/ivy.stateful.layers.html +++ b/ivy/docs/stateful/ivy.stateful.layers.html @@ -1504,8 +1504,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f124b9224a0>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f124b922440>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f14c1622650>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f14c16225f0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NWC') – NWC” or “NCW”. Defaults to “NWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1542,8 +1542,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f124b9223e0>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f124b922380>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f14c1622590>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f14c1622530>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NWC') – NWC” or “NCW”. Defaults to “NWC”.

  • @@ -1581,8 +1581,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f124b922320>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f124b9222c0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f14c16224d0>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f14c1622470>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1619,8 +1619,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f124b922260>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f124b922200>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f14c1622410>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f14c16223b0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • @@ -1658,8 +1658,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f124b9220e0>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f124b922080>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f14c1622290>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f14c1622230>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NDHWC') – NDHWC” or “NCDHW”. Defaults to “NDHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1696,8 +1696,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f124b922020>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f124b921fc0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f14c16221d0>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f14c1622170>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NDHWC') – NDHWC” or “NCDHW”. Defaults to “NDHWC”.

  • @@ -1760,8 +1760,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f124b9221a0>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f124b922140>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f14c1622350>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f14c16222f0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1917,7 +1917,7 @@
    • input_channels – Number of input channels for the layer

    • output_channels – Number of output channels for the layer

    • -
    • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f124b921f60>) – Initializer for the weights. Default is GlorotUniform.

    • +
    • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f14c1622110>) – Initializer for the weights. Default is GlorotUniform.

    • num_layers (default: 1) – Number of lstm cells in the lstm layer, default is 1.

    • return_sequence (default: True) – Whether or not to return the entire output sequence, or just the latest timestep. @@ -1976,8 +1976,8 @@

      • input_channels – Number of input channels for the layer.

      • output_channels – Number of output channels for the layer.

      • -
      • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f124ba7cac0>) – Initializer for the weights. Default is GlorotUniform.

      • -
      • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f124ba7cc70>) – Initializer for the bias. Default is Zeros.

      • +
      • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f14c1780c70>) – Initializer for the weights. Default is GlorotUniform.

      • +
      • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f14c1780e20>) – Initializer for the bias. Default is Zeros.

      • with_bias (default: True) – Whether or not to include a bias term, default is True.

      • device (default: None) – device on which to create the layer’s variables ‘cuda:0’, ‘cuda:1’, ‘cpu’ etc. Default is cpu.

      • diff --git a/ivy/searchindex.js b/ivy/searchindex.js index 6ece7e8f8b..d94891cb04 100644 --- a/ivy/searchindex.js +++ b/ivy/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["demos/README", "demos/assets/01_template", "demos/examples_and_demos", "demos/examples_and_demos/alexnet_demo", "demos/examples_and_demos/bert_demo", "demos/examples_and_demos/image_segmentation_with_ivy_unet", "demos/examples_and_demos/mmpretrain_to_jax", "demos/examples_and_demos/resnet_demo", "demos/examples_and_demos/torch_to_jax", "demos/examples_and_demos/xgboost_demo", "demos/guides", "demos/guides/01_transpiling_a_torch_model", "demos/guides/02_transpiling_a_haiku_model", "demos/guides/03_transpiling_a_tf_model", "demos/guides/04_developing_a_convnet_with_ivy", "demos/index", "demos/learn_the_basics", "demos/learn_the_basics/01_write_ivy_code", "demos/learn_the_basics/02_unify_code", "demos/learn_the_basics/03_trace_code", "demos/learn_the_basics/04_transpile_code", "demos/learn_the_basics/05_lazy_vs_eager", "demos/learn_the_basics/06_how_to_use_decorators", "demos/learn_the_basics/07_transpile_any_library", "demos/learn_the_basics/08_transpile_any_model", "demos/learn_the_basics/09_write_a_model_using_ivy", "demos/misc/odsc", "demos/quickstart", "demos/wip/0_building_blocks/0_0_unify", "demos/wip/0_building_blocks/0_1_compile", "demos/wip/0_building_blocks/0_2_transpile", "demos/wip/1_the_basics/1_0_lazy_vs_eager", "demos/wip/1_the_basics/1_1_framework_selection", "demos/wip/1_the_basics/1_2_as_a_decorator", "demos/wip/1_the_basics/1_3_dynamic_vs_static", "demos/wip/2_libraries/2_0_kornia", "demos/wip/3_models/3_0_perceiver", "demos/wip/3_models/3_1_stable_diffusion", "demos/wip/basic_operations_with_ivy", "demos/wip/compilation_of_a_basic_function", "demos/wip/deepmind_perceiver_io", "demos/wip/deepmind_perceiverio", "demos/wip/end_to_end_training_pipeline_in_ivy", "demos/wip/hf_tensorflow_deit", "demos/wip/ivy_as_a_transpiler_intro", "demos/wip/resnet_18", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type", "docs/data_classes/data_classes/array/ivy.data_classes.array.device", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental", "docs/data_classes/data_classes/array/ivy.data_classes.array.general", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients", "docs/data_classes/data_classes/array/ivy.data_classes.array.image", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms", "docs/data_classes/data_classes/array/ivy.data_classes.array.random", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching", "docs/data_classes/data_classes/array/ivy.data_classes.array.set", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations", "docs/data_classes/data_classes/container/ivy.data_classes.container.base", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type", "docs/data_classes/data_classes/container/ivy.data_classes.container.device", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental", "docs/data_classes/data_classes/container/ivy.data_classes.container.general", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients", "docs/data_classes/data_classes/container/ivy.data_classes.container.image", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms", "docs/data_classes/data_classes/container/ivy.data_classes.container.random", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching", "docs/data_classes/data_classes/container/ivy.data_classes.container.set", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor", "docs/data_classes/data_classes/ivy.data_classes.array", "docs/data_classes/data_classes/ivy.data_classes.container", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor", "docs/data_classes/data_classes/ivy.data_classes.nested_array", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise", "docs/data_classes/ivy.data_classes", "docs/functional/ivy.functional.ivy", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.dev", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str", "docs/functional/ivy/general/ivy.functional.ivy.general.default", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat", "docs/functional/ivy/general/ivy.functional.ivy.general.exists", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.gather", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array", "docs/functional/ivy/general/ivy.functional.ivy.general.isin", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.shape", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow", "docs/functional/ivy/general/ivy.functional.ivy.general.strides", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad", "docs/functional/ivy/ivy.functional.ivy.activations", "docs/functional/ivy/ivy.functional.ivy.constants", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops", "docs/functional/ivy/ivy.functional.ivy.creation", "docs/functional/ivy/ivy.functional.ivy.data_type", "docs/functional/ivy/ivy.functional.ivy.device", "docs/functional/ivy/ivy.functional.ivy.elementwise", "docs/functional/ivy/ivy.functional.ivy.experimental", "docs/functional/ivy/ivy.functional.ivy.general", "docs/functional/ivy/ivy.functional.ivy.gradients", "docs/functional/ivy/ivy.functional.ivy.layers", "docs/functional/ivy/ivy.functional.ivy.linear_algebra", "docs/functional/ivy/ivy.functional.ivy.losses", "docs/functional/ivy/ivy.functional.ivy.manipulation", "docs/functional/ivy/ivy.functional.ivy.meta", "docs/functional/ivy/ivy.functional.ivy.nest", "docs/functional/ivy/ivy.functional.ivy.norms", "docs/functional/ivy/ivy.functional.ivy.random", "docs/functional/ivy/ivy.functional.ivy.searching", "docs/functional/ivy/ivy.functional.ivy.set", "docs/functional/ivy/ivy.functional.ivy.sorting", "docs/functional/ivy/ivy.functional.ivy.statistical", "docs/functional/ivy/ivy.functional.ivy.utility", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial", "docs/functional/ivy/random/ivy.functional.ivy.random.randint", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform", "docs/functional/ivy/random/ivy.functional.ivy.random.seed", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save", "docs/helpers/ivy_tests.test_ivy.helpers.assertions", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing", "docs/helpers/ivy_tests.test_ivy.helpers.globals", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper", "docs/helpers/ivy_tests.test_ivy.helpers.structs", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers", "docs/ivy.stateful", "docs/ivy.utils", "docs/ivy_tests.test_ivy.helpers", "docs/stateful/ivy.stateful.activations", "docs/stateful/ivy.stateful.converters", "docs/stateful/ivy.stateful.helpers", "docs/stateful/ivy.stateful.initializers", "docs/stateful/ivy.stateful.layers", "docs/stateful/ivy.stateful.losses", "docs/stateful/ivy.stateful.module", "docs/stateful/ivy.stateful.norms", "docs/stateful/ivy.stateful.optimizers", "docs/stateful/ivy.stateful.sequential", "docs/utils/ivy.utils.assertions", "docs/utils/ivy.utils.backend", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler", "docs/utils/ivy.utils.binaries", "docs/utils/ivy.utils.dynamic_import", "docs/utils/ivy.utils.einsum_parser", "docs/utils/ivy.utils.einsum_path_helpers", "docs/utils/ivy.utils.exceptions", "docs/utils/ivy.utils.inspection", "docs/utils/ivy.utils.logging", "docs/utils/ivy.utils.profiler", "docs/utils/ivy.utils.verbosity", "index", "overview/contributing", "overview/contributing/building_the_docs", "overview/contributing/error_handling", "overview/contributing/helpful_resources", "overview/contributing/open_tasks", "overview/contributing/setting_up", "overview/contributing/the_basics", "overview/deep_dive", "overview/deep_dive/array_api_tests", "overview/deep_dive/arrays", "overview/deep_dive/backend_setting", "overview/deep_dive/building_the_docs_pipeline", "overview/deep_dive/containers", "overview/deep_dive/continuous_integration", "overview/deep_dive/data_types", "overview/deep_dive/devices", "overview/deep_dive/docstring_examples", "overview/deep_dive/docstrings", "overview/deep_dive/exception_handling", "overview/deep_dive/fix_failing_tests", "overview/deep_dive/formatting", "overview/deep_dive/function_arguments", "overview/deep_dive/function_types", "overview/deep_dive/function_wrapping", "overview/deep_dive/gradients", "overview/deep_dive/inplace_updates", "overview/deep_dive/ivy_frontends", "overview/deep_dive/ivy_frontends_tests", "overview/deep_dive/ivy_lint", "overview/deep_dive/ivy_tests", "overview/deep_dive/navigating_the_code", "overview/deep_dive/operating_modes", "overview/deep_dive/superset_behaviour", "overview/design", "overview/design/building_blocks", "overview/design/ivy_as_a_framework", "overview/design/ivy_as_a_framework/ivy_array", "overview/design/ivy_as_a_framework/ivy_container", "overview/design/ivy_as_a_framework/ivy_stateful_api", "overview/design/ivy_as_a_transpiler", "overview/faq", "overview/get_started", "overview/glossary", "overview/motivation", "overview/motivation/ml_explosion", "overview/motivation/standardization", "overview/motivation/why_unify", "overview/one_liners", "overview/one_liners/trace", "overview/one_liners/transpile", "overview/one_liners/unify", "overview/related_work", "overview/related_work/api_standards", "overview/related_work/compiler_infrastructure", "overview/related_work/exchange_formats", "overview/related_work/frameworks", "overview/related_work/graph_tracers", "overview/related_work/ml_unifying_companies", "overview/related_work/multi_vendor_compiler_frameworks", "overview/related_work/vendor_specific_apis", "overview/related_work/vendor_specific_compilers", "overview/related_work/what_does_ivy_add", "overview/related_work/wrapper_frameworks"], "filenames": ["demos/README.md", "demos/assets/01_template.ipynb", "demos/examples_and_demos.rst", "demos/examples_and_demos/alexnet_demo.ipynb", "demos/examples_and_demos/bert_demo.ipynb", "demos/examples_and_demos/image_segmentation_with_ivy_unet.ipynb", "demos/examples_and_demos/mmpretrain_to_jax.ipynb", "demos/examples_and_demos/resnet_demo.ipynb", "demos/examples_and_demos/torch_to_jax.ipynb", "demos/examples_and_demos/xgboost_demo.ipynb", "demos/guides.rst", "demos/guides/01_transpiling_a_torch_model.ipynb", "demos/guides/02_transpiling_a_haiku_model.ipynb", "demos/guides/03_transpiling_a_tf_model.ipynb", "demos/guides/04_developing_a_convnet_with_ivy.ipynb", "demos/index.rst", "demos/learn_the_basics.rst", "demos/learn_the_basics/01_write_ivy_code.ipynb", "demos/learn_the_basics/02_unify_code.ipynb", "demos/learn_the_basics/03_trace_code.ipynb", "demos/learn_the_basics/04_transpile_code.ipynb", "demos/learn_the_basics/05_lazy_vs_eager.ipynb", "demos/learn_the_basics/06_how_to_use_decorators.ipynb", "demos/learn_the_basics/07_transpile_any_library.ipynb", "demos/learn_the_basics/08_transpile_any_model.ipynb", "demos/learn_the_basics/09_write_a_model_using_ivy.ipynb", "demos/misc/odsc.ipynb", "demos/quickstart.ipynb", "demos/wip/0_building_blocks/0_0_unify.ipynb", "demos/wip/0_building_blocks/0_1_compile.ipynb", "demos/wip/0_building_blocks/0_2_transpile.ipynb", "demos/wip/1_the_basics/1_0_lazy_vs_eager.ipynb", "demos/wip/1_the_basics/1_1_framework_selection.ipynb", "demos/wip/1_the_basics/1_2_as_a_decorator.ipynb", "demos/wip/1_the_basics/1_3_dynamic_vs_static.ipynb", "demos/wip/2_libraries/2_0_kornia.ipynb", "demos/wip/3_models/3_0_perceiver.ipynb", "demos/wip/3_models/3_1_stable_diffusion.ipynb", "demos/wip/basic_operations_with_ivy.ipynb", "demos/wip/compilation_of_a_basic_function.ipynb", "demos/wip/deepmind_perceiver_io.ipynb", "demos/wip/deepmind_perceiverio.ipynb", "demos/wip/end_to_end_training_pipeline_in_ivy.ipynb", "demos/wip/hf_tensorflow_deit.ipynb", "demos/wip/ivy_as_a_transpiler_intro.ipynb", "demos/wip/resnet_18.ipynb", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.device.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.general.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.image.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.random.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.set.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.base.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.device.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.general.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.image.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.random.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.set.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.array.rst", "docs/data_classes/data_classes/ivy.data_classes.container.rst", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.nested_array.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise.rst", "docs/data_classes/ivy.data_classes.rst", "docs/functional/ivy.functional.ivy.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta.rst", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson.rst", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile.rst", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.default.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.exists.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isin.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.strides.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad.rst", "docs/functional/ivy/ivy.functional.ivy.activations.rst", "docs/functional/ivy/ivy.functional.ivy.constants.rst", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops.rst", "docs/functional/ivy/ivy.functional.ivy.creation.rst", "docs/functional/ivy/ivy.functional.ivy.data_type.rst", "docs/functional/ivy/ivy.functional.ivy.device.rst", "docs/functional/ivy/ivy.functional.ivy.elementwise.rst", "docs/functional/ivy/ivy.functional.ivy.experimental.rst", "docs/functional/ivy/ivy.functional.ivy.general.rst", "docs/functional/ivy/ivy.functional.ivy.gradients.rst", "docs/functional/ivy/ivy.functional.ivy.layers.rst", "docs/functional/ivy/ivy.functional.ivy.linear_algebra.rst", "docs/functional/ivy/ivy.functional.ivy.losses.rst", "docs/functional/ivy/ivy.functional.ivy.manipulation.rst", "docs/functional/ivy/ivy.functional.ivy.meta.rst", "docs/functional/ivy/ivy.functional.ivy.nest.rst", "docs/functional/ivy/ivy.functional.ivy.norms.rst", "docs/functional/ivy/ivy.functional.ivy.random.rst", "docs/functional/ivy/ivy.functional.ivy.searching.rst", "docs/functional/ivy/ivy.functional.ivy.set.rst", "docs/functional/ivy/ivy.functional.ivy.sorting.rst", "docs/functional/ivy/ivy.functional.ivy.statistical.rst", "docs/functional/ivy/ivy.functional.ivy.utility.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices.rst", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.randint.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.seed.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save.rst", "docs/helpers/ivy_tests.test_ivy.helpers.assertions.rst", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks.rst", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.globals.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper.rst", "docs/helpers/ivy_tests.test_ivy.helpers.structs.rst", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags.rst", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers.rst", "docs/ivy.stateful.rst", "docs/ivy.utils.rst", "docs/ivy_tests.test_ivy.helpers.rst", "docs/stateful/ivy.stateful.activations.rst", "docs/stateful/ivy.stateful.converters.rst", "docs/stateful/ivy.stateful.helpers.rst", "docs/stateful/ivy.stateful.initializers.rst", "docs/stateful/ivy.stateful.layers.rst", "docs/stateful/ivy.stateful.losses.rst", "docs/stateful/ivy.stateful.module.rst", "docs/stateful/ivy.stateful.norms.rst", "docs/stateful/ivy.stateful.optimizers.rst", "docs/stateful/ivy.stateful.sequential.rst", "docs/utils/ivy.utils.assertions.rst", "docs/utils/ivy.utils.backend.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler.rst", "docs/utils/ivy.utils.binaries.rst", "docs/utils/ivy.utils.dynamic_import.rst", "docs/utils/ivy.utils.einsum_parser.rst", "docs/utils/ivy.utils.einsum_path_helpers.rst", "docs/utils/ivy.utils.exceptions.rst", "docs/utils/ivy.utils.inspection.rst", "docs/utils/ivy.utils.logging.rst", "docs/utils/ivy.utils.profiler.rst", "docs/utils/ivy.utils.verbosity.rst", "index.rst", "overview/contributing.rst", "overview/contributing/building_the_docs.rst", "overview/contributing/error_handling.rst", "overview/contributing/helpful_resources.rst", "overview/contributing/open_tasks.rst", "overview/contributing/setting_up.rst", "overview/contributing/the_basics.rst", "overview/deep_dive.rst", "overview/deep_dive/array_api_tests.rst", "overview/deep_dive/arrays.rst", "overview/deep_dive/backend_setting.rst", "overview/deep_dive/building_the_docs_pipeline.rst", "overview/deep_dive/containers.rst", "overview/deep_dive/continuous_integration.rst", "overview/deep_dive/data_types.rst", "overview/deep_dive/devices.rst", "overview/deep_dive/docstring_examples.rst", "overview/deep_dive/docstrings.rst", "overview/deep_dive/exception_handling.rst", "overview/deep_dive/fix_failing_tests.rst", "overview/deep_dive/formatting.rst", "overview/deep_dive/function_arguments.rst", "overview/deep_dive/function_types.rst", "overview/deep_dive/function_wrapping.rst", "overview/deep_dive/gradients.rst", "overview/deep_dive/inplace_updates.rst", "overview/deep_dive/ivy_frontends.rst", "overview/deep_dive/ivy_frontends_tests.rst", "overview/deep_dive/ivy_lint.rst", "overview/deep_dive/ivy_tests.rst", "overview/deep_dive/navigating_the_code.rst", "overview/deep_dive/operating_modes.rst", "overview/deep_dive/superset_behaviour.rst", "overview/design.rst", "overview/design/building_blocks.rst", "overview/design/ivy_as_a_framework.rst", "overview/design/ivy_as_a_framework/ivy_array.rst", "overview/design/ivy_as_a_framework/ivy_container.rst", "overview/design/ivy_as_a_framework/ivy_stateful_api.rst", "overview/design/ivy_as_a_transpiler.rst", "overview/faq.rst", "overview/get_started.rst", "overview/glossary.rst", "overview/motivation.rst", "overview/motivation/ml_explosion.rst", "overview/motivation/standardization.rst", "overview/motivation/why_unify.rst", "overview/one_liners.rst", "overview/one_liners/trace.rst", "overview/one_liners/transpile.rst", "overview/one_liners/unify.rst", "overview/related_work.rst", "overview/related_work/api_standards.rst", "overview/related_work/compiler_infrastructure.rst", "overview/related_work/exchange_formats.rst", "overview/related_work/frameworks.rst", "overview/related_work/graph_tracers.rst", "overview/related_work/ml_unifying_companies.rst", "overview/related_work/multi_vendor_compiler_frameworks.rst", "overview/related_work/vendor_specific_apis.rst", "overview/related_work/vendor_specific_compilers.rst", "overview/related_work/what_does_ivy_add.rst", "overview/related_work/wrapper_frameworks.rst"], "titles": ["Demos", "TO REPLACE: Title", "Examples and Demos", "Ivy AlexNet demo", "# Ivy Bert Demo", "Image Segmentation with Ivy UNet", "Accelerating MMPreTrain models with JAX", "Using Ivy ResNet", "Accelerating PyTorch models with JAX", "Accelerating XGBoost with JAX", "Guides", "Transpiling a PyTorch model to build on top", "Transpiling a haiku model to build on top", "Transpiling a Tensorflow model to build on top", "Developing a convolutional network using Ivy", "Tutorials And Examples", "Learn the basics", "Write Ivy code", "Unify code", "Trace code", "Transpile code", "Lazy vs Eager", "How to use decorators", "Transpile any library", "Transpile any model", "Write a model using Ivy", "ODSC Ivy Demo", "Quickstart", "0.0: Unify", "0.1: Compile", "0.2: Transpile", "1.0: Lazy vs Eager", "1.1: Framework Selection", "1.2: As a Decorator", "1.3: Dynamic vs Static", "2.0: Kornia", "3.0: Perceiver", "3.1: Stable Diffusion", "Basic Operations with Ivy", "Compilation of a Basic Function", "Demo: Transpiling DeepMind\u2019s PerceiverIO", "Deepmind PerceiverIO on GPU", "End-to-End Training Pipeline in Ivy", "HuggingFace Tensorflow DeiT", "Ivy as a Transpiler Introduction", "Resnet 18", "Activations", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Activations", "Base", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Base", "Cp tensor", "Parafac2 tensor", "Tr tensor", "Tt tensor", "Tucker tensor", "Array", "Container", "Factorized tensor", "Nested array", "Base", "Elementwise", "Data classes", "Functions", "gelu", "hardswish", "leaky_relu", "log_softmax", "mish", "relu", "sigmoid", "softmax", "softplus", "softsign", "cmp_is", "cmp_isnot", "for_loop", "if_else", "try_except", "while_loop", "arange", "array", "asarray", "copy_array", "empty", "empty_like", "eye", "from_dlpack", "frombuffer", "full", "full_like", "linspace", "logspace", "meshgrid", "native_array", "one_hot", "ones", "ones_like", "to_dlpack", "tril", "triu", "triu_indices", "zeros", "zeros_like", "as_ivy_dtype", "as_native_dtype", "astype", "broadcast_arrays", "broadcast_to", "can_cast", "check_float", "closest_valid_dtype", "default_complex_dtype", "default_dtype", "default_float_dtype", "default_int_dtype", "default_uint_dtype", "dtype", "dtype_bits", "finfo", "function_supported_dtypes", "function_unsupported_dtypes", "iinfo", "infer_default_dtype", "invalid_dtype", "is_bool_dtype", "is_complex_dtype", "is_float_dtype", "is_hashable_dtype", "is_int_dtype", "is_native_dtype", "is_uint_dtype", "promote_types", "promote_types_of_inputs", "result_type", "set_default_complex_dtype", "set_default_dtype", "set_default_float_dtype", "set_default_int_dtype", "set_default_uint_dtype", "type_promote_arrays", "unset_default_complex_dtype", "unset_default_dtype", "unset_default_float_dtype", "unset_default_int_dtype", "unset_default_uint_dtype", "valid_dtype", "as_ivy_dev", "as_native_dev", "clear_cached_mem_on_dev", "default_device", "dev", "dev_util", "function_supported_devices", "function_unsupported_devices", "get_all_ivy_arrays_on_dev", "gpu_is_available", "handle_soft_device_variable", "num_cpu_cores", "num_gpus", "num_ivy_arrays_on_dev", "percent_used_mem_on_dev", "print_all_ivy_arrays_on_dev", "set_default_device", "set_soft_device_mode", "set_split_factor", "split_factor", "split_func_call", "to_device", "total_mem_on_dev", "tpu_is_available", "unset_default_device", "unset_soft_device_mode", "used_mem_on_dev", "abs", "acos", "acosh", "add", "angle", "asin", "asinh", "atan", "atan2", "atanh", "bitwise_and", "bitwise_invert", "bitwise_left_shift", "bitwise_or", "bitwise_right_shift", "bitwise_xor", "ceil", "cos", "cosh", "deg2rad", "divide", "equal", "erf", "exp", "exp2", "expm1", "floor", "floor_divide", "fmin", "fmod", "gcd", "greater", "greater_equal", "imag", "isfinite", "isinf", "isnan", "isreal", "lcm", "less", "less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2", "logical_and", "logical_not", "logical_or", "logical_xor", "maximum", "minimum", "multiply", "nan_to_num", "negative", "not_equal", "positive", "pow", "rad2deg", "real", "reciprocal", "remainder", "round", "sign", "sin", "sinh", "sqrt", "square", "subtract", "tan", "tanh", "trapz", "trunc", "trunc_divide", "celu", "elu", "hardshrink", "hardtanh", "logit", "logsigmoid", "prelu", "relu6", "scaled_tanh", "selu", "silu", "softshrink", "stanh", "tanhshrink", "threshold", "thresholded_relu", "blackman_window", "eye_like", "hamming_window", "hann_window", "indices", "kaiser_bessel_derived_window", "kaiser_window", "mel_weight_matrix", "ndenumerate", "ndindex", "polyval", "random_cp", "random_parafac2", "random_tr", "random_tt", "random_tucker", "tril_indices", "trilu", "unsorted_segment_mean", "unsorted_segment_min", "unsorted_segment_sum", "vorbis_window", "allclose", "amax", "amin", "binarizer", "conj", "copysign", "count_nonzero", "diff", "digamma", "erfc", "fix", "float_power", "fmax", "frexp", "gradient", "hypot", "isclose", "ldexp", "lerp", "lgamma", "modf", "nansum", "nextafter", "signbit", "sinc", "sparsify_tensor", "xlogy", "zeta", "reduce", "bind_custom_gradient_function", "jvp", "vjp", "Activations", "Constants", "Creation", "Data type", "Device", "Elementwise", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Sparse array", "Statistical", "Utility", "adaptive_avg_pool1d", "adaptive_avg_pool2d", "adaptive_max_pool2d", "area_interpolate", "avg_pool1d", "avg_pool2d", "avg_pool3d", "dct", "dft", "dropout1d", "dropout2d", "dropout3d", "embedding", "fft", "fft2", "generate_einsum_equation", "get_interpolate_kernel", "idct", "ifft", "ifftn", "interp", "interpolate", "max_pool1d", "max_pool2d", "max_pool3d", "max_unpool1d", "nearest_interpolate", "pool", "reduce_window", "rfft", "rfftn", "sliding_window", "stft", "adjoint", "batched_outer", "cond", "diagflat", "dot", "eig", "eigh_tridiagonal", "eigvals", "general_inner_product", "higher_order_moment", "initialize_tucker", "khatri_rao", "kron", "kronecker", "make_svd_non_negative", "matrix_exp", "mode_dot", "multi_dot", "multi_mode_dot", "partial_tucker", "solve_triangular", "svd_flip", "tensor_train", "truncated_svd", "tt_matrix_to_tensor", "tucker", "huber_loss", "kl_div", "l1_loss", "log_poisson_loss", "poisson_nll_loss", "smooth_l1_loss", "soft_margin_loss", "as_strided", "associative_scan", "atleast_1d", "atleast_2d", "atleast_3d", "broadcast_shapes", "check_scalar", "choose", "column_stack", "concat_from_sequence", "dsplit", "dstack", "expand", "fill_diagonal", "flatten", "fliplr", "flipud", "fold", "heaviside", "hsplit", "hstack", "i0", "matricize", "moveaxis", "pad", "partial_fold", "partial_tensor_to_vec", "partial_unfold", "partial_vec_to_tensor", "put_along_axis", "rot90", "soft_thresholding", "take", "take_along_axis", "top_k", "trim_zeros", "unfold", "unique_consecutive", "vsplit", "vstack", "batch_norm", "group_norm", "instance_norm", "l1_normalize", "l2_normalize", "local_response_norm", "lp_normalize", "bernoulli", "beta", "dirichlet", "gamma", "poisson", "unravel_index", "invert_permutation", "lexsort", "is_ivy_sparse_array", "is_native_sparse_array", "native_sparse_array", "native_sparse_array_to_indices_values_and_shape", "bincount", "corrcoef", "cov", "cummax", "cummin", "histogram", "igamma", "median", "nanmean", "nanmedian", "nanmin", "nanprod", "quantile", "optional_get_element", "all_equal", "arg_info", "arg_names", "array_equal", "assert_supports_inplace", "cache_fn", "clip_matrix_norm", "clip_vector_norm", "container_types", "current_backend_str", "default", "einops_rearrange", "einops_reduce", "einops_repeat", "exists", "fourier_encode", "function_supported_devices_and_dtypes", "function_unsupported_devices_and_dtypes", "gather", "gather_nd", "get_all_arrays_in_memory", "get_item", "get_num_dims", "get_referrers_recursive", "has_nans", "inplace_arrays_supported", "inplace_decrement", "inplace_increment", "inplace_update", "inplace_variables_supported", "is_array", "is_ivy_array", "is_ivy_container", "is_ivy_nested_array", "is_native_array", "isin", "isscalar", "itemsize", "match_kwargs", "multiprocessing", "num_arrays_in_memory", "print_all_arrays_in_memory", "scatter_flat", "scatter_nd", "set_array_mode", "set_exception_trace_mode", "set_inplace_mode", "set_item", "set_min_base", "set_min_denominator", "set_nestable_mode", "set_precise_mode", "set_queue_timeout", "set_shape_array_mode", "set_show_func_wrapper_trace_mode", "set_tmp_dir", "shape", "stable_divide", "stable_pow", "strides", "supports_inplace_updates", "to_ivy_shape", "to_list", "to_native_shape", "to_numpy", "to_scalar", "try_else_none", "unset_array_mode", "unset_exception_trace_mode", "unset_inplace_mode", "unset_min_base", "unset_min_denominator", "unset_nestable_mode", "unset_precise_mode", "unset_queue_timeout", "unset_shape_array_mode", "unset_show_func_wrapper_trace_mode", "unset_tmp_dir", "value_is_nan", "vmap", "adam_step", "adam_update", "execute_with_gradients", "grad", "gradient_descent_update", "jac", "lamb_update", "lars_update", "optimizer_update", "stop_gradient", "value_and_grad", "Activations", "Constants", "Control flow ops", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "conv", "conv1d", "conv1d_transpose", "conv2d", "conv2d_transpose", "conv3d", "conv3d_transpose", "conv_general_dilated", "conv_general_transpose", "depthwise_conv2d", "dropout", "linear", "lstm_update", "multi_head_attention", "nms", "roi_align", "scaled_dot_product_attention", "cholesky", "cross", "det", "diag", "diagonal", "eig", "eigh", "eigvalsh", "inner", "inv", "lu_factor", "matmul", "matrix_norm", "matrix_power", "matrix_rank", "matrix_transpose", "outer", "pinv", "qr", "slogdet", "solve", "svd", "svdvals", "tensordot", "tensorsolve", "trace", "vander", "vecdot", "vector_norm", "vector_to_skew_symmetric_matrix", "binary_cross_entropy", "cross_entropy", "sparse_cross_entropy", "clip", "concat", "constant_pad", "expand_dims", "flip", "permute_dims", "repeat", "reshape", "roll", "split", "squeeze", "stack", "swapaxes", "tile", "unstack", "zero_pad", "fomaml_step", "maml_step", "reptile_step", "all_nested_indices", "copy_nest", "duplicate_array_index_chains", "index_nest", "insert_into_nest_at_index", "insert_into_nest_at_indices", "map", "map_nest_at_index", "map_nest_at_indices", "multi_index_nest", "nested_any", "nested_argwhere", "nested_map", "nested_multi_map", "prune_empty", "prune_nest_at_index", "prune_nest_at_indices", "set_nest_at_index", "set_nest_at_indices", "layer_norm", "multinomial", "randint", "random_normal", "random_uniform", "seed", "shuffle", "argmax", "argmin", "argwhere", "nonzero", "where", "unique_all", "unique_counts", "unique_inverse", "unique_values", "argsort", "msort", "searchsorted", "sort", "cumprod", "cumsum", "einsum", "max", "mean", "min", "prod", "std", "sum", "var", "all", "any", "load", "save", "Assertions", "Available frameworks", "Function testing", "Globals", "Hypothesis helpers", "Array helpers", "Dtype helpers", "General helpers", "Number helpers", "Multiprocessing", "Pipeline helper", "Structs", "Test parameter flags", "Testing helpers", "Framework classes", "Utils", "Testing", "Activations", "Converters", "Helpers", "Initializers", "Layers", "Losses", "Module", "Norms", "Optimizers", "Sequential", "Assertions", "Backend", "Ast helpers", "Handler", "Sub backend handler", "Binaries", "Dynamic import", "Einsum parser", "Einsum path helpers", "Exceptions", "Inspection", "Logging", "Profiler", "Verbosity", "Home", "Contributing", "Building the Docs", "Error Handling", "Helpful Resources", "Open Tasks", "Setting Up", "The Basics", "Deep Dive", "Array API Tests", "Arrays", "Backend Setting", "Building the Docs Pipeline", "Containers", "Continuous Integration", "Data Types", "Devices", "Docstring Examples", "Docstrings", "Exception Handling", "Fix Failing Tests:", "Formatting", "Function Arguments", "Function Types", "Function Wrapping", "Gradients", "Inplace Updates", "Ivy Frontends", "Ivy Frontend Tests", "Ivy-Lint: Ivy\u2019s Custom Code Formatters", "Ivy Tests", "Navigating the Code", "Operating Modes", "Superset Behaviour", "Design", "Building Blocks", "Ivy as a Framework", "Ivy Array", "Ivy Container", "Ivy Stateful API", "Ivy as a Transpiler", "FAQ", "Get Started", "Glossary", "Motivation", "ML Explosion", "Standardization", "Why Unify?", "One liners", "ivy.trace_graph()", "ivy.transpile()", "ivy.unify()", "Related Work", "API Standards", "Compiler Infrastructure", "Exchange Formats", "Frameworks", "Graph Tracers", "ML-Unifying Companies", "Multi-Vendor Compiler Frameworks", "Vendor-Specific APIs", "Vendor-Specific Compilers", "What does Ivy Add?", "Wrapper Frameworks"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 163, 166, 167, 168, 170, 174, 175, 189, 192, 202, 208, 209, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 567, 573, 578, 579, 580, 581, 583, 585, 586, 599, 600, 601, 602, 603, 605, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 706, 708, 710, 711, 716, 717, 721, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 760, 762, 763, 765, 774, 775, 777, 778, 780, 781, 782, 783, 792, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861], "repo": [0, 11, 40, 802, 805, 807, 810, 812, 813, 818, 826, 828, 843], "hold": [0, 52, 53, 57, 65, 75, 80, 88, 92, 93, 328, 344, 349, 365, 380, 458, 486, 510, 511, 516, 563, 564, 620, 623, 633, 664, 744, 760, 836, 855], "all": [0, 1, 3, 4, 5, 7, 8, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 39, 40, 42, 43, 45, 47, 48, 52, 53, 56, 57, 59, 61, 66, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 84, 89, 90, 92, 93, 121, 129, 136, 140, 141, 142, 196, 203, 235, 239, 267, 268, 322, 323, 335, 353, 362, 365, 368, 369, 371, 380, 401, 410, 412, 413, 421, 426, 434, 435, 437, 440, 461, 472, 480, 485, 515, 521, 524, 541, 561, 562, 578, 585, 586, 600, 603, 615, 617, 618, 620, 621, 622, 623, 625, 626, 627, 629, 630, 634, 645, 647, 648, 653, 666, 671, 672, 675, 680, 689, 693, 695, 701, 702, 703, 704, 705, 706, 715, 716, 717, 718, 724, 727, 732, 757, 759, 762, 763, 764, 765, 777, 778, 784, 787, 792, 794, 798, 799, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 850, 851, 852, 853, 854, 855, 857, 860, 861], "jupyt": [0, 844, 856], "exampl": [0, 6, 8, 17, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 167, 168, 170, 171, 172, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 427, 430, 432, 435, 439, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 455, 456, 457, 458, 459, 462, 463, 464, 466, 467, 468, 469, 471, 472, 477, 478, 479, 480, 481, 482, 483, 485, 486, 487, 491, 492, 494, 497, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 523, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 559, 560, 561, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 583, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 770, 787, 791, 792, 796, 801, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 817, 818, 819, 821, 822, 824, 825, 828, 829, 833, 835, 836, 837, 838, 839, 845, 851, 852, 855, 857, 860, 861], "tab": [0, 803, 804, 812, 818, 836], "ivi": [0, 1, 2, 6, 8, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 40, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 759, 770, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 799, 800, 801, 802, 804, 806, 807, 809, 811, 813, 814, 816, 818, 819, 820, 821, 822, 824, 831, 832, 839, 841, 844, 845, 846, 850, 861], "": [0, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 38, 41, 43, 44, 45, 48, 52, 53, 54, 57, 65, 75, 77, 80, 88, 117, 134, 140, 141, 161, 162, 191, 194, 195, 207, 242, 277, 323, 328, 329, 330, 332, 342, 344, 350, 354, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 384, 390, 396, 401, 412, 419, 423, 429, 438, 442, 444, 445, 461, 463, 464, 472, 488, 489, 490, 499, 509, 519, 537, 538, 544, 558, 580, 581, 602, 604, 605, 606, 607, 609, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 627, 633, 637, 639, 641, 643, 648, 655, 666, 673, 674, 680, 716, 750, 752, 763, 777, 778, 779, 780, 781, 782, 783, 787, 798, 799, 800, 801, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 841, 844, 845, 846, 847, 848, 849, 850, 853, 854, 855, 857, 858, 859, 860], "web": 0, "relev": [0, 48, 71, 133, 615, 782, 798, 803, 804, 805, 808, 811, 812, 813, 815, 818, 822, 823, 826, 827, 828, 836, 840, 844, 852, 859, 860], "link": [0, 17, 26, 27, 41, 798, 803, 804, 805, 810, 812, 813, 819, 825, 848, 850, 852], "list": [0, 4, 5, 6, 7, 9, 42, 47, 48, 49, 51, 52, 53, 56, 59, 60, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 129, 131, 134, 135, 136, 138, 144, 148, 150, 163, 167, 168, 175, 191, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 342, 343, 344, 350, 351, 352, 354, 355, 356, 365, 368, 369, 371, 378, 386, 387, 388, 390, 391, 392, 393, 404, 405, 406, 407, 411, 416, 421, 425, 428, 433, 434, 437, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 453, 456, 457, 458, 467, 478, 480, 481, 482, 486, 488, 490, 491, 492, 494, 496, 501, 509, 510, 511, 512, 521, 523, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 541, 543, 545, 547, 548, 549, 551, 552, 555, 559, 563, 564, 578, 579, 581, 583, 584, 585, 586, 587, 599, 600, 605, 610, 615, 616, 617, 618, 620, 622, 623, 625, 627, 628, 631, 632, 636, 637, 638, 639, 640, 641, 644, 645, 646, 648, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 675, 677, 682, 683, 684, 685, 686, 689, 692, 693, 694, 695, 696, 699, 700, 704, 705, 706, 707, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 740, 741, 743, 744, 747, 749, 750, 752, 753, 754, 757, 759, 762, 763, 764, 765, 770, 775, 778, 784, 791, 792, 802, 803, 804, 807, 808, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 821, 824, 825, 826, 828, 829, 833, 836, 837, 838, 839, 847, 854, 855, 860], "open": [0, 3, 5, 6, 7, 8, 23, 26, 27, 40, 41, 42, 43, 53, 61, 84, 121, 615, 629, 725, 727, 798, 799, 800, 804, 805, 810, 813, 816, 818, 825, 826, 831, 840, 843, 844, 845, 847, 848, 852, 853, 854, 856, 857], "task": [0, 43, 626, 701, 702, 703, 798, 799, 804, 805, 825, 826, 854, 860, 861], "avil": 0, "discuss": [0, 803, 805, 810, 813, 814, 824, 825, 827, 828, 831, 834, 835, 836, 839, 845, 850, 855], "suggest": [0, 803, 804, 805, 810, 813, 819, 823, 825, 828, 829, 830, 840], "new": [0, 6, 8, 10, 11, 13, 15, 18, 21, 22, 23, 24, 26, 27, 28, 42, 44, 47, 52, 53, 54, 59, 60, 69, 71, 75, 76, 77, 80, 82, 83, 125, 128, 130, 131, 136, 137, 138, 143, 144, 181, 224, 270, 272, 276, 328, 333, 344, 349, 365, 368, 371, 380, 403, 448, 456, 457, 471, 477, 516, 532, 533, 534, 536, 539, 540, 542, 563, 564, 567, 569, 576, 578, 579, 585, 602, 605, 607, 608, 609, 615, 616, 618, 620, 621, 622, 625, 627, 628, 648, 660, 668, 688, 692, 696, 709, 721, 722, 723, 775, 778, 781, 782, 787, 792, 798, 799, 803, 804, 805, 806, 808, 809, 811, 812, 813, 815, 816, 818, 819, 822, 824, 825, 826, 827, 828, 829, 831, 832, 835, 838, 840, 841, 843, 844, 845, 847, 852, 856, 860, 861], "should": [0, 4, 8, 9, 21, 22, 23, 24, 43, 46, 48, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 74, 75, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 95, 97, 98, 108, 112, 120, 134, 136, 140, 141, 149, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 296, 307, 323, 329, 330, 341, 345, 346, 347, 348, 352, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 375, 380, 383, 391, 392, 393, 395, 400, 411, 425, 434, 440, 446, 471, 472, 495, 496, 509, 510, 511, 526, 544, 549, 600, 602, 605, 607, 608, 609, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 642, 643, 651, 652, 653, 654, 656, 658, 659, 660, 661, 663, 664, 665, 666, 668, 669, 670, 671, 672, 673, 675, 677, 679, 680, 692, 708, 729, 730, 731, 733, 734, 735, 736, 737, 738, 739, 743, 744, 745, 746, 747, 748, 749, 751, 752, 759, 760, 762, 764, 774, 775, 777, 778, 780, 781, 782, 783, 791, 792, 800, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 842, 844, 848, 850, 851, 854, 856, 861], "comprehens": [0, 15, 805, 807, 827], "possibl": [0, 3, 32, 48, 52, 71, 75, 82, 92, 123, 242, 285, 306, 329, 330, 362, 365, 368, 370, 371, 390, 441, 450, 451, 452, 458, 460, 462, 463, 464, 471, 486, 559, 618, 620, 622, 633, 645, 688, 689, 690, 692, 694, 695, 697, 699, 746, 748, 762, 778, 792, 795, 798, 799, 801, 803, 804, 805, 807, 810, 811, 813, 815, 816, 818, 819, 821, 823, 824, 825, 826, 828, 831, 833, 836, 839, 844, 852, 854, 860], "us": [0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 85, 90, 92, 93, 95, 98, 105, 133, 136, 147, 159, 161, 162, 173, 174, 194, 195, 197, 202, 206, 207, 208, 209, 211, 214, 220, 228, 256, 257, 259, 260, 262, 263, 264, 266, 267, 269, 278, 282, 287, 306, 308, 309, 311, 312, 313, 321, 342, 345, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 394, 396, 401, 403, 404, 405, 406, 409, 411, 412, 414, 419, 421, 425, 429, 431, 433, 434, 436, 437, 438, 440, 445, 462, 466, 470, 472, 480, 488, 490, 494, 495, 496, 497, 498, 499, 500, 501, 502, 509, 516, 519, 537, 538, 547, 548, 559, 560, 567, 569, 570, 572, 578, 579, 591, 592, 594, 601, 602, 607, 608, 612, 613, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 631, 633, 646, 648, 651, 656, 658, 666, 670, 674, 677, 680, 682, 691, 692, 693, 697, 701, 702, 703, 704, 706, 707, 713, 714, 715, 717, 724, 725, 726, 727, 729, 730, 731, 732, 735, 737, 745, 760, 762, 763, 764, 765, 770, 774, 775, 777, 778, 779, 780, 781, 782, 787, 791, 792, 796, 799, 802, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 828, 829, 830, 831, 832, 833, 834, 835, 837, 838, 839, 841, 845, 849, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861], "easi": [0, 26, 27, 40, 804, 805, 808, 809, 811, 821, 823, 826, 828, 831, 844, 852, 854, 860, 861], "follow": [0, 9, 20, 21, 22, 24, 26, 27, 30, 31, 32, 38, 41, 42, 52, 53, 54, 56, 57, 63, 69, 75, 76, 77, 79, 80, 129, 160, 163, 208, 218, 235, 242, 268, 270, 277, 278, 313, 362, 368, 370, 371, 374, 390, 403, 411, 445, 460, 472, 488, 490, 547, 548, 549, 578, 579, 602, 605, 607, 608, 609, 615, 616, 617, 618, 620, 621, 622, 623, 627, 631, 648, 651, 664, 670, 680, 710, 716, 735, 736, 737, 738, 778, 782, 798, 800, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 843, 844, 847, 851, 854, 857], "attract": 0, "visual": [0, 9, 44, 796, 798, 804, 818, 825, 828, 839, 854, 856, 859], "graph": [0, 3, 5, 7, 9, 15, 16, 19, 21, 23, 24, 27, 33, 34, 39, 44, 45, 63, 631, 735, 736, 737, 738, 770, 798, 811, 821, 825, 827, 831, 833, 838, 839, 841, 845, 846, 847, 848, 849, 850, 854, 857], "nice": [0, 828, 845, 854], "format": [0, 23, 24, 26, 27, 38, 40, 41, 42, 50, 53, 56, 65, 68, 69, 70, 73, 79, 95, 113, 158, 192, 368, 369, 379, 409, 439, 505, 532, 612, 616, 617, 620, 622, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 745, 755, 756, 757, 774, 798, 804, 805, 806, 812, 813, 814, 815, 816, 817, 825, 827, 836, 848, 850, 852, 854, 855], "result": [0, 3, 5, 6, 7, 8, 9, 11, 13, 21, 22, 23, 24, 26, 27, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 175, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 423, 424, 426, 427, 429, 430, 431, 432, 433, 435, 439, 441, 442, 443, 444, 446, 447, 449, 456, 457, 460, 462, 463, 464, 465, 466, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 527, 528, 532, 533, 534, 539, 540, 544, 549, 556, 563, 564, 601, 602, 603, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 707, 710, 711, 713, 717, 721, 723, 724, 725, 726, 727, 729, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 764, 770, 784, 792, 796, 798, 801, 803, 805, 807, 808, 810, 811, 812, 813, 815, 816, 818, 820, 821, 823, 824, 825, 826, 828, 829, 833, 836, 839, 847, 848, 849, 855, 857], "etc": [0, 29, 34, 41, 48, 52, 61, 63, 67, 71, 75, 84, 90, 124, 132, 133, 136, 368, 375, 396, 401, 412, 495, 496, 498, 499, 615, 629, 631, 724, 725, 726, 727, 735, 736, 737, 738, 762, 765, 777, 778, 779, 780, 781, 782, 783, 803, 804, 805, 807, 808, 809, 810, 811, 813, 815, 817, 820, 825, 826, 828, 829, 833, 835, 836, 839, 841, 845, 847, 852, 854, 860], "gener": [0, 5, 15, 19, 24, 26, 27, 29, 32, 40, 42, 44, 45, 48, 51, 52, 56, 61, 67, 71, 74, 75, 79, 84, 90, 93, 121, 132, 133, 142, 150, 235, 238, 248, 249, 264, 268, 277, 306, 309, 313, 314, 315, 317, 318, 319, 320, 321, 322, 329, 330, 362, 365, 368, 369, 371, 375, 380, 411, 416, 436, 480, 497, 509, 615, 616, 618, 622, 623, 625, 629, 633, 645, 671, 672, 675, 678, 700, 724, 725, 727, 728, 750, 762, 765, 770, 782, 791, 803, 804, 805, 806, 807, 808, 810, 813, 814, 815, 816, 817, 820, 821, 824, 825, 826, 829, 832, 833, 835, 837, 838, 839, 841, 852, 853, 854, 855, 856, 857, 858, 859, 860], "tone": [0, 4], "feel": [0, 41, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 800, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 832, 840, 847], "free": [0, 5, 40, 41, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 800, 801, 802, 803, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 832, 840, 847, 855, 857], "includ": [0, 9, 15, 19, 29, 34, 48, 51, 52, 53, 57, 62, 65, 66, 69, 71, 74, 75, 76, 80, 85, 88, 89, 121, 122, 123, 132, 133, 135, 142, 215, 239, 243, 244, 245, 248, 250, 253, 261, 269, 282, 287, 308, 311, 312, 313, 316, 322, 325, 327, 329, 330, 334, 335, 336, 338, 339, 340, 341, 343, 345, 346, 348, 349, 350, 351, 354, 355, 362, 365, 368, 371, 380, 386, 387, 388, 417, 420, 422, 463, 464, 466, 469, 471, 473, 476, 497, 499, 500, 508, 512, 514, 515, 517, 518, 519, 545, 599, 615, 618, 620, 623, 627, 629, 630, 633, 634, 657, 678, 680, 704, 727, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 765, 777, 778, 781, 794, 798, 803, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 820, 821, 824, 825, 826, 827, 828, 829, 831, 833, 844, 847, 848, 851, 852, 854, 856, 859, 860, 861], "emoji": [0, 803], "don": [0, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 67, 90, 798, 803, 804, 805, 812, 813, 814, 819, 823, 828, 831, 837, 839, 840, 845, 847], "t": [0, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 42, 52, 56, 67, 75, 79, 90, 92, 93, 97, 342, 357, 365, 367, 369, 421, 549, 567, 581, 603, 620, 621, 622, 627, 646, 647, 712, 757, 778, 798, 800, 803, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 818, 819, 821, 822, 823, 824, 828, 829, 831, 833, 835, 836, 837, 838, 839, 840, 844, 845, 847, 848, 849, 852, 854, 856], "keep": [0, 1, 11, 13, 17, 23, 24, 26, 52, 59, 69, 75, 82, 92, 95, 353, 369, 440, 625, 699, 802, 803, 804, 805, 807, 810, 811, 812, 817, 824, 825, 828, 829, 831, 836, 838, 840, 848], "thing": [0, 24, 38, 40, 791, 802, 803, 804, 805, 809, 825, 828, 831, 835, 836, 843, 844, 845, 854], "super": [0, 3, 5, 11, 13, 26, 27, 40, 52, 75, 369, 421, 798, 817, 833, 836, 837, 838, 848], "seriou": 0, "given": [0, 3, 17, 26, 39, 52, 53, 58, 59, 61, 69, 75, 76, 77, 81, 82, 84, 92, 93, 95, 97, 98, 121, 125, 132, 133, 153, 154, 155, 156, 157, 169, 174, 193, 202, 204, 206, 207, 208, 210, 214, 287, 316, 325, 328, 334, 335, 342, 343, 344, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 389, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 412, 421, 426, 439, 442, 443, 444, 446, 447, 448, 449, 459, 460, 461, 468, 470, 482, 487, 491, 492, 493, 494, 495, 496, 497, 498, 499, 509, 510, 511, 512, 518, 540, 544, 563, 564, 574, 601, 602, 605, 607, 608, 609, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 681, 682, 683, 684, 685, 688, 689, 690, 691, 693, 694, 698, 699, 711, 712, 721, 722, 725, 726, 727, 729, 741, 742, 743, 744, 757, 762, 763, 764, 765, 770, 774, 775, 777, 778, 780, 781, 782, 783, 784, 791, 792, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 834, 835, 837, 844, 845, 851, 856, 857, 860, 861], "an": [0, 2, 3, 8, 9, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 170, 174, 175, 205, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 310, 311, 312, 314, 315, 322, 323, 324, 325, 326, 327, 329, 330, 332, 335, 338, 343, 347, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 399, 401, 403, 404, 405, 406, 409, 410, 411, 412, 413, 414, 415, 417, 420, 421, 422, 444, 445, 449, 450, 451, 452, 456, 457, 458, 460, 467, 471, 472, 478, 480, 485, 486, 488, 489, 490, 493, 495, 496, 498, 501, 502, 507, 508, 509, 510, 511, 512, 513, 516, 517, 520, 525, 527, 528, 536, 539, 543, 544, 545, 547, 548, 549, 551, 552, 553, 554, 555, 558, 564, 567, 568, 577, 581, 585, 586, 587, 600, 603, 610, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 710, 723, 725, 729, 730, 731, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 764, 765, 767, 770, 774, 775, 777, 778, 780, 781, 782, 783, 792, 798, 800, 801, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 840, 841, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 857, 858, 860, 861], "intern": [0, 9, 69, 100, 101, 102, 627, 704, 714, 715, 777, 778, 779, 780, 781, 783, 808, 811, 814, 816, 824, 826, 828, 830], "releas": [0, 41, 803, 804, 813, 829, 831, 839, 845, 854, 860], "tracer": [0, 3, 5, 7, 8, 21, 22, 23, 24, 27, 43, 45, 798, 825, 832, 834, 839, 841, 848, 849, 850], "i": [0, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 175, 187, 189, 191, 192, 194, 195, 197, 199, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 302, 303, 304, 305, 306, 307, 309, 310, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 418, 419, 420, 421, 423, 424, 425, 426, 428, 431, 432, 433, 434, 435, 436, 437, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 458, 460, 461, 462, 463, 464, 465, 466, 467, 470, 471, 472, 473, 475, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 501, 502, 507, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 554, 555, 556, 559, 560, 563, 564, 565, 567, 573, 577, 578, 579, 581, 583, 585, 586, 587, 599, 600, 602, 603, 604, 605, 607, 608, 609, 610, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 710, 711, 712, 713, 714, 715, 716, 717, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 760, 762, 763, 764, 765, 770, 774, 775, 777, 778, 779, 780, 781, 782, 784, 787, 788, 791, 792, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861], "around": [0, 10, 11, 13, 15, 52, 69, 75, 98, 371, 472, 480, 803, 805, 807, 808, 810, 814, 820, 821, 825, 829, 835, 839, 841, 847, 852, 854, 861], "corner": [0, 52, 75, 368, 403, 804, 805, 818, 825], "anybodi": 0, "abl": [0, 3, 5, 28, 32, 43, 45, 69, 92, 804, 805, 807, 813, 818, 821, 824, 825, 829, 833, 838, 847, 857, 860], "start": [0, 1, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 41, 42, 48, 52, 69, 71, 75, 79, 121, 129, 132, 133, 346, 356, 365, 366, 368, 371, 380, 410, 462, 465, 473, 475, 484, 518, 615, 764, 791, 799, 803, 804, 805, 806, 812, 813, 815, 816, 818, 819, 820, 825, 828, 831, 832, 833, 835, 836, 837, 839, 847, 848, 854, 860], "work": [0, 24, 26, 27, 38, 39, 41, 45, 47, 52, 75, 92, 380, 519, 623, 627, 674, 711, 712, 716, 721, 722, 798, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 824, 825, 826, 828, 829, 832, 833, 835, 837, 838, 840, 845, 847, 848, 849, 852, 854, 856, 858, 861], "shortli": 0, "so": [0, 1, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 368, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 622, 627, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 669, 670, 671, 673, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 704, 715, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 792, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 843, 844, 847, 848, 849, 854, 855, 856, 858], "worri": [0, 26, 27, 803, 804, 819], "about": [0, 15, 16, 17, 20, 22, 24, 26, 27, 30, 41, 42, 49, 72, 160, 163, 616, 798, 800, 802, 803, 804, 805, 806, 807, 810, 812, 813, 814, 819, 820, 824, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 845, 849, 855, 856, 859], "have": [0, 1, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 160, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 417, 418, 420, 421, 426, 427, 430, 431, 432, 433, 438, 441, 442, 443, 444, 445, 446, 447, 451, 452, 457, 458, 460, 465, 473, 474, 475, 476, 478, 480, 482, 484, 491, 492, 494, 495, 496, 498, 499, 500, 502, 509, 510, 511, 512, 516, 520, 527, 528, 532, 533, 534, 539, 540, 549, 563, 564, 567, 601, 602, 605, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 774, 775, 777, 778, 780, 781, 782, 783, 791, 792, 798, 800, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 849, 850, 851, 852, 853, 854, 856, 860, 861], "access": [0, 23, 26, 27, 69, 798, 803, 804, 805, 812, 813, 819, 824, 825, 840, 848, 854, 856, 858], "transpil": [0, 6, 7, 8, 10, 15, 16, 19, 29, 769, 770, 803, 804, 817, 818, 825, 832, 833, 834, 841, 846, 847, 849, 854, 860, 861], "code": [0, 4, 6, 7, 8, 15, 16, 23, 24, 26, 28, 29, 30, 31, 32, 33, 40, 41, 50, 51, 69, 73, 74, 98, 209, 255, 380, 516, 525, 533, 534, 549, 563, 567, 581, 617, 620, 622, 623, 625, 644, 665, 666, 667, 696, 796, 798, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 820, 821, 822, 824, 825, 826, 828, 831, 832, 833, 834, 835, 836, 837, 838, 839, 841, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 857, 858, 859, 860, 861], "now": [0, 4, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 42, 778, 779, 780, 798, 804, 807, 808, 809, 810, 811, 812, 813, 814, 818, 820, 822, 825, 826, 828, 829, 831, 835, 836, 838, 839, 845, 847, 848, 849, 854], "you": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 52, 53, 75, 76, 92, 97, 98, 371, 380, 460, 516, 539, 540, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 648, 774, 775, 777, 778, 780, 781, 782, 783, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 854], "can": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 41, 42, 45, 48, 49, 52, 53, 57, 59, 61, 63, 71, 72, 75, 76, 80, 82, 84, 86, 92, 93, 107, 110, 122, 123, 133, 135, 150, 189, 206, 207, 208, 296, 313, 360, 362, 368, 369, 370, 374, 375, 378, 380, 390, 403, 426, 431, 433, 438, 445, 457, 488, 496, 497, 502, 509, 556, 567, 600, 603, 612, 615, 616, 617, 620, 621, 622, 623, 625, 629, 648, 656, 663, 673, 677, 692, 696, 725, 726, 727, 735, 759, 762, 763, 764, 765, 770, 792, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 851, 852, 853, 854, 855, 857, 858, 860, 861], "style": [0, 9, 40, 42, 371, 472, 630, 733, 805, 819, 854], "stori": 0, "If": [0, 1, 3, 4, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 41, 44, 45, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 93, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 134, 136, 137, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 175, 191, 207, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 322, 323, 325, 328, 329, 330, 331, 332, 334, 335, 336, 339, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 411, 412, 414, 419, 421, 423, 425, 426, 431, 433, 435, 436, 438, 439, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 458, 460, 461, 462, 463, 464, 467, 471, 477, 478, 479, 480, 481, 482, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 555, 556, 563, 564, 568, 578, 579, 581, 583, 585, 586, 599, 600, 603, 605, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 645, 646, 648, 651, 652, 653, 655, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 688, 689, 690, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 716, 717, 724, 725, 726, 727, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 741, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 777, 778, 780, 781, 787, 792, 798, 799, 800, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 835, 836, 838, 839, 840, 843, 847, 848, 849], "anyon": [0, 798, 799, 805, 812, 839, 844, 860], "ha": [0, 3, 5, 7, 8, 9, 11, 13, 17, 19, 23, 26, 27, 29, 32, 34, 38, 45, 48, 52, 57, 59, 63, 65, 69, 72, 75, 76, 80, 82, 86, 88, 92, 134, 191, 215, 235, 238, 240, 242, 252, 268, 270, 275, 278, 280, 281, 285, 324, 325, 326, 362, 369, 370, 371, 380, 403, 435, 444, 455, 479, 481, 485, 508, 510, 511, 513, 545, 615, 617, 618, 622, 623, 625, 630, 631, 633, 647, 648, 663, 664, 672, 673, 675, 677, 680, 688, 695, 733, 736, 737, 738, 743, 744, 747, 749, 750, 751, 752, 762, 765, 787, 803, 805, 807, 809, 810, 811, 812, 813, 814, 815, 816, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 837, 838, 839, 840, 843, 844, 845, 847, 849, 850, 853, 854, 856, 857, 860], "ani": [0, 5, 7, 11, 13, 15, 16, 17, 18, 19, 28, 29, 32, 38, 39, 40, 41, 42, 44, 45, 47, 48, 50, 51, 52, 53, 57, 66, 67, 71, 73, 74, 75, 76, 89, 90, 92, 97, 98, 117, 118, 120, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 151, 166, 170, 174, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 412, 421, 426, 461, 472, 480, 488, 489, 490, 509, 512, 515, 516, 517, 521, 531, 532, 533, 534, 535, 539, 543, 545, 547, 551, 553, 554, 572, 579, 586, 587, 594, 600, 610, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 707, 710, 711, 713, 714, 721, 723, 727, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 757, 760, 764, 774, 775, 777, 778, 780, 781, 782, 783, 787, 791, 792, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 852, 853, 854, 855, 857, 860, 861], "question": [0, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 843, 844, 845], "ping": 0, "me": [0, 805], "guillermo": 0, "commun": [0, 41, 799, 803, 804, 805, 839, 844, 853, 854, 856], "ux": 0, "team": [0, 798, 799, 803, 804, 805, 825, 840, 856], "discord": [0, 41, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 833, 834, 835, 836, 837, 838, 840, 843, 844, 845], "channel": [0, 24, 42, 52, 53, 56, 75, 76, 79, 97, 98, 368, 374, 391, 392, 393, 403, 488, 489, 490, 493, 532, 536, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 774, 775, 777, 778, 780, 781, 782, 783, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831], "To": [0, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 26, 27, 38, 41, 42, 43, 93, 242, 370, 444, 573, 618, 620, 777, 803, 804, 807, 808, 809, 810, 813, 815, 817, 818, 819, 821, 822, 825, 826, 827, 828, 829, 836, 837, 838, 840, 847, 848], "ensur": [0, 7, 8, 11, 13, 21, 22, 23, 24, 52, 53, 75, 76, 368, 369, 404, 405, 406, 436, 549, 620, 757, 798, 803, 804, 805, 808, 813, 814, 815, 817, 819, 820, 822, 824, 825, 826, 827, 828, 829, 840, 854], "similar": [0, 17, 26, 27, 277, 618, 622, 648, 778, 801, 803, 804, 811, 812, 813, 814, 817, 818, 819, 821, 822, 823, 825, 826, 828, 829, 836, 839, 843, 848, 850, 851, 852, 853, 860], "ar": [0, 1, 3, 4, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 44, 47, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 92, 93, 97, 98, 121, 131, 133, 136, 142, 196, 201, 203, 208, 232, 234, 235, 238, 242, 263, 264, 268, 273, 274, 278, 280, 285, 286, 287, 322, 324, 325, 326, 328, 331, 333, 334, 335, 338, 339, 344, 349, 352, 356, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 384, 390, 391, 392, 393, 396, 401, 403, 411, 412, 420, 421, 425, 433, 434, 436, 440, 441, 445, 446, 450, 451, 452, 462, 463, 464, 466, 472, 475, 479, 480, 488, 490, 495, 496, 497, 498, 499, 509, 514, 515, 516, 517, 518, 519, 521, 524, 525, 526, 535, 541, 546, 550, 561, 562, 571, 581, 593, 603, 615, 617, 618, 620, 621, 622, 623, 625, 627, 629, 630, 631, 645, 646, 648, 651, 653, 657, 658, 659, 663, 664, 666, 669, 670, 673, 674, 678, 679, 680, 685, 686, 689, 693, 695, 705, 710, 715, 716, 717, 725, 726, 727, 730, 731, 732, 733, 735, 737, 757, 759, 762, 763, 764, 765, 770, 777, 780, 783, 784, 791, 792, 795, 796, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 850, 851, 854, 855, 856, 857, 858, 859, 860, 861], "across": [0, 7, 8, 9, 21, 22, 23, 24, 38, 62, 69, 76, 85, 97, 206, 207, 235, 242, 268, 286, 374, 490, 493, 524, 545, 580, 617, 618, 620, 622, 627, 630, 645, 648, 710, 730, 731, 778, 803, 807, 813, 815, 817, 820, 821, 823, 828, 831, 852, 854, 859], "templat": [0, 798, 810, 816, 828], "help": [0, 15, 42, 44, 49, 522, 567, 620, 633, 751, 777, 798, 799, 800, 803, 804, 808, 809, 810, 811, 812, 813, 815, 819, 821, 822, 824, 825, 828, 829, 835, 836, 837, 840, 841, 850, 854, 856, 860], "get": [0, 3, 4, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 40, 41, 43, 49, 50, 57, 69, 73, 80, 97, 158, 159, 160, 163, 191, 192, 193, 196, 202, 207, 210, 214, 371, 477, 523, 541, 562, 580, 616, 617, 620, 623, 627, 680, 706, 762, 777, 778, 791, 799, 802, 803, 804, 806, 807, 812, 813, 814, 818, 821, 822, 823, 824, 825, 826, 827, 828, 833, 834, 835, 836, 837, 841, 845, 848, 849, 854, 860], "It": [0, 3, 8, 9, 18, 21, 22, 23, 24, 26, 27, 28, 29, 38, 39, 40, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 415, 417, 418, 426, 427, 430, 431, 432, 433, 441, 442, 443, 444, 446, 447, 457, 460, 465, 473, 474, 475, 476, 478, 480, 484, 488, 491, 492, 494, 495, 496, 498, 499, 509, 510, 511, 512, 520, 527, 528, 532, 533, 534, 539, 540, 549, 563, 564, 565, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 666, 667, 668, 669, 672, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 703, 723, 724, 725, 726, 727, 729, 730, 731, 732, 734, 738, 739, 742, 743, 744, 747, 749, 750, 752, 753, 754, 777, 778, 798, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 815, 816, 822, 824, 825, 826, 827, 828, 829, 830, 831, 833, 835, 836, 837, 846, 849, 852, 854, 855, 857, 858, 859, 860, 861], "locat": [0, 42, 136, 380, 510, 615, 627, 629, 632, 708, 724, 741, 792, 803, 805, 809, 810, 814, 825, 826, 828, 829, 840, 852], "asset": [0, 841], "01_templat": 0, "ipynb": 0, "pleas": [0, 32, 41, 45, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 833, 834, 835, 836, 837, 838, 840, 843, 844, 845], "make": [0, 3, 5, 6, 7, 8, 9, 18, 26, 27, 28, 40, 44, 52, 75, 368, 411, 787, 798, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 835, 836, 838, 840, 844, 845, 848, 852, 854, 855, 856, 857, 860, 861], "copi": [0, 42, 45, 48, 49, 50, 51, 52, 53, 59, 69, 71, 72, 73, 74, 75, 76, 82, 92, 96, 122, 123, 124, 128, 139, 147, 209, 269, 371, 448, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 486, 542, 568, 578, 585, 586, 615, 616, 617, 618, 620, 625, 627, 632, 688, 689, 690, 692, 694, 695, 697, 699, 705, 740, 742, 770, 792, 804, 805, 807, 809, 812, 813, 816, 825, 826, 833, 839, 847, 848, 849], "firstli": [0, 18, 19, 22, 28, 29, 33, 38, 808, 813, 815, 816, 817, 821, 822, 824, 831, 836, 850, 860], "updat": [0, 4, 5, 6, 8, 9, 20, 21, 22, 23, 24, 26, 27, 40, 42, 47, 53, 54, 69, 76, 77, 92, 371, 477, 549, 563, 564, 567, 568, 590, 601, 602, 605, 607, 608, 609, 620, 621, 622, 626, 627, 645, 647, 701, 702, 703, 711, 712, 716, 721, 722, 770, 775, 781, 782, 787, 792, 798, 803, 804, 805, 806, 807, 808, 811, 812, 813, 815, 820, 822, 823, 825, 826, 828, 831, 833, 835, 836, 838, 839], "file": [0, 40, 41, 42, 53, 69, 576, 598, 620, 780, 800, 803, 804, 805, 807, 808, 809, 810, 811, 812, 814, 816, 817, 818, 819, 821, 825, 826, 827, 828, 829, 833, 836, 840, 850, 853, 854, 855], "name": [0, 6, 26, 27, 38, 40, 41, 42, 52, 57, 63, 67, 75, 80, 86, 90, 242, 368, 369, 371, 414, 420, 482, 485, 522, 523, 618, 620, 623, 631, 657, 658, 662, 670, 671, 673, 674, 678, 735, 736, 737, 759, 763, 770, 780, 787, 788, 790, 803, 804, 805, 809, 810, 811, 812, 815, 816, 817, 820, 825, 826, 828, 829, 830, 831, 833, 836, 838, 854], "match": [0, 49, 52, 69, 72, 75, 147, 242, 277, 333, 335, 365, 368, 371, 412, 455, 477, 481, 559, 616, 618, 620, 623, 658, 659, 664, 680, 757, 801, 803, 808, 810, 811, 815, 818, 826, 855, 860], "topic": [0, 15, 18, 19, 20, 28, 29, 30, 31, 32, 33, 822, 835, 854], "your": [0, 2, 3, 4, 6, 8, 9, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 44, 798, 799, 801, 802, 803, 804, 807, 809, 810, 812, 816, 818, 819, 823, 825, 827, 829, 831, 836, 837, 839, 840, 844, 845, 847, 848, 854], "Then": [0, 45, 622, 648, 800, 803, 804, 805, 809, 810, 812, 818, 819, 822, 824, 828, 829, 839], "place": [0, 7, 8, 21, 22, 23, 24, 40, 47, 48, 51, 52, 53, 57, 59, 69, 71, 73, 74, 75, 76, 80, 82, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 269, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 306, 307, 310, 322, 323, 328, 329, 330, 332, 335, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 462, 472, 477, 480, 496, 509, 512, 516, 525, 533, 534, 539, 543, 545, 547, 548, 549, 563, 567, 581, 586, 590, 610, 615, 616, 617, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 782, 798, 801, 802, 805, 806, 807, 810, 811, 812, 814, 815, 816, 818, 820, 821, 825, 826, 828, 829, 831, 838, 841, 856], "its": [0, 8, 17, 19, 26, 27, 29, 32, 39, 40, 42, 47, 49, 52, 59, 69, 72, 75, 76, 82, 95, 107, 110, 113, 118, 148, 153, 154, 155, 156, 157, 208, 235, 268, 287, 296, 360, 368, 371, 380, 407, 414, 485, 512, 536, 584, 612, 614, 616, 617, 618, 620, 623, 625, 627, 663, 688, 692, 693, 697, 710, 759, 792, 798, 803, 804, 808, 811, 812, 813, 814, 816, 817, 818, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 838, 839, 841, 847, 853, 854, 860], "folder": [0, 7, 8, 21, 22, 23, 24, 42, 798, 804, 805, 807, 810, 812, 818, 821, 825, 828, 829, 830], "next": [0, 5, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 40, 42, 52, 75, 160, 341, 345, 350, 354, 365, 616, 777, 782, 798, 803, 804, 805, 809, 813, 815, 816, 818, 819, 822, 834, 835, 836, 845, 854, 856], "edit": [0, 803, 804, 805, 819], "titl": [0, 9, 12, 14, 25, 41, 44, 798, 803, 805, 810], "descript": [0, 1, 35, 36, 37, 42, 45, 48, 51, 52, 57, 74, 75, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 472, 480, 509, 512, 539, 543, 545, 547, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 803, 805, 816, 823, 824], "accordingli": [0, 52, 57, 62, 63, 65, 66, 75, 80, 85, 88, 89, 134, 235, 240, 242, 258, 268, 282, 329, 330, 365, 615, 618, 623, 630, 631, 633, 634, 680, 731, 735, 736, 737, 738, 746, 747, 748, 749, 750, 751, 752, 753, 754, 825, 833, 840], "thei": [0, 9, 33, 38, 43, 52, 57, 61, 63, 69, 80, 84, 86, 173, 287, 339, 365, 616, 618, 623, 626, 629, 631, 678, 701, 702, 724, 735, 757, 783, 798, 802, 803, 804, 806, 807, 809, 810, 811, 812, 813, 814, 815, 817, 819, 821, 822, 824, 825, 828, 829, 831, 833, 835, 836, 837, 838, 839, 847, 851, 854, 856, 857, 860, 861], "render": [0, 810, 816], "correctli": [0, 23, 26, 27, 40, 52, 57, 62, 75, 80, 85, 334, 365, 380, 515, 516, 517, 518, 519, 623, 630, 664, 730, 803, 804, 805, 808, 811, 813, 815, 817, 819, 820, 826, 828, 831, 837, 839, 847, 848], "webpag": [0, 15], "content": [0, 1, 12, 14, 25, 26, 41, 42, 52, 69, 75, 380, 516, 803, 805, 810, 814, 824, 827, 833, 836, 840], "behind": [0, 17, 26, 798, 806, 820, 828, 832, 834], "exist": [0, 17, 26, 27, 40, 41, 42, 45, 48, 52, 53, 69, 71, 75, 76, 82, 123, 371, 450, 451, 457, 458, 460, 462, 463, 464, 471, 486, 531, 567, 620, 625, 686, 688, 689, 690, 692, 694, 695, 697, 699, 782, 784, 798, 803, 804, 807, 809, 814, 815, 816, 821, 822, 824, 825, 828, 831, 833, 839, 841, 843, 844, 852, 854, 857, 860], "cell": [0, 1, 3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 56, 79, 622, 647, 778, 812, 833], "where": [0, 6, 19, 23, 29, 30, 34, 42, 48, 51, 52, 53, 57, 59, 61, 62, 65, 66, 69, 71, 74, 75, 76, 80, 82, 84, 85, 88, 89, 92, 93, 130, 131, 134, 136, 142, 223, 233, 235, 238, 240, 242, 243, 252, 257, 258, 259, 266, 267, 268, 273, 275, 279, 281, 285, 294, 296, 322, 324, 325, 326, 340, 344, 351, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 382, 383, 384, 390, 395, 396, 400, 414, 420, 421, 425, 426, 428, 434, 440, 441, 450, 451, 452, 466, 472, 488, 489, 490, 493, 495, 496, 498, 499, 509, 517, 518, 519, 549, 563, 600, 615, 618, 620, 622, 623, 625, 627, 629, 630, 633, 634, 648, 653, 657, 658, 662, 664, 666, 668, 669, 670, 673, 674, 677, 679, 685, 687, 688, 690, 696, 700, 708, 715, 724, 725, 726, 727, 732, 733, 748, 750, 752, 753, 754, 762, 777, 781, 792, 798, 799, 801, 804, 805, 807, 808, 809, 810, 811, 813, 814, 816, 817, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 836, 837, 838, 839, 840, 843, 844, 845, 847, 852, 861], "The": [0, 3, 5, 6, 7, 8, 9, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 42, 43, 44, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 128, 129, 131, 133, 136, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 161, 162, 163, 165, 167, 168, 169, 172, 173, 175, 176, 178, 179, 180, 181, 187, 188, 189, 190, 191, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 341, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 417, 418, 419, 420, 421, 423, 425, 435, 436, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 459, 461, 462, 463, 464, 468, 471, 472, 477, 478, 480, 481, 482, 483, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 498, 500, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 522, 524, 525, 526, 527, 528, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 543, 544, 545, 547, 548, 549, 551, 552, 553, 554, 555, 558, 560, 563, 564, 567, 569, 570, 573, 576, 578, 579, 580, 581, 582, 583, 584, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 689, 690, 691, 692, 693, 694, 695, 696, 698, 699, 700, 701, 702, 703, 704, 705, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 764, 765, 770, 774, 775, 777, 778, 780, 781, 782, 787, 791, 792, 798, 799, 800, 801, 803, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 826, 828, 829, 831, 832, 833, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861], "h2": [0, 1, 12, 14, 25], "tag": [0, 1, 12, 14, 25, 804, 805], "section": [0, 1, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 46, 52, 63, 75, 107, 368, 371, 401, 412, 458, 467, 486, 631, 735, 736, 737, 738, 798, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 831, 832, 836, 837, 849, 850, 857, 860], "h3": [0, 1, 12, 14, 25], "subsect": [0, 1, 12, 14, 25, 803, 804, 805, 807, 812], "step": [0, 1, 12, 13, 14, 25, 26, 27, 38, 40, 41, 42, 52, 54, 71, 75, 77, 121, 132, 368, 371, 414, 466, 601, 602, 605, 607, 608, 609, 615, 621, 626, 701, 702, 703, 782, 798, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 818, 823, 825, 828, 833, 836, 837, 838, 845, 854], "explan": [0, 1, 12, 14, 25, 803, 804, 805, 811, 816, 820, 825, 829, 835], "go": [0, 4, 11, 13, 17, 24, 27, 32, 47, 52, 75, 79, 368, 410, 413, 627, 715, 716, 798, 799, 801, 803, 804, 805, 806, 809, 810, 813, 815, 818, 819, 825, 826, 828, 829, 832, 836, 839, 850, 854, 855, 859, 861], "default": [0, 3, 5, 26, 27, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 167, 168, 173, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 191, 192, 194, 195, 199, 202, 203, 204, 206, 207, 208, 209, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 383, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 417, 418, 419, 421, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 449, 450, 451, 452, 455, 456, 457, 458, 460, 461, 462, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 527, 528, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 555, 556, 559, 560, 563, 564, 567, 568, 573, 577, 578, 579, 581, 583, 585, 586, 599, 600, 601, 602, 603, 604, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 710, 711, 712, 714, 715, 716, 717, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 764, 765, 770, 774, 775, 777, 778, 779, 780, 781, 782, 783, 791, 792, 803, 804, 805, 809, 810, 813, 814, 815, 816, 817, 820, 821, 825, 828, 831, 833, 837, 841, 847, 854], "which": [0, 3, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 148, 150, 152, 158, 160, 163, 165, 168, 175, 187, 192, 196, 201, 203, 206, 207, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 316, 319, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 341, 343, 344, 345, 346, 348, 349, 350, 352, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 410, 411, 412, 413, 418, 421, 431, 434, 435, 436, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 477, 478, 479, 480, 481, 482, 488, 490, 491, 492, 494, 495, 496, 497, 498, 499, 501, 502, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 522, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 544, 545, 547, 548, 549, 551, 552, 555, 556, 561, 562, 563, 564, 578, 579, 581, 583, 585, 586, 599, 600, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 613, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 645, 646, 648, 651, 652, 653, 655, 656, 658, 659, 660, 661, 663, 664, 666, 667, 668, 670, 671, 672, 673, 677, 679, 680, 682, 683, 684, 685, 686, 688, 689, 691, 692, 693, 694, 695, 696, 699, 700, 709, 710, 711, 712, 717, 719, 720, 721, 722, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 774, 775, 777, 778, 779, 780, 781, 782, 783, 787, 788, 794, 798, 800, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 850, 851, 852, 853, 854, 855, 857, 859, 860, 861], "text": [0, 4, 7, 9, 40, 52, 53, 369, 433, 803, 805, 810, 815, 816], "paragraph": [0, 1, 12, 14, 25, 810], "p": [0, 1, 12, 14, 25, 38, 52, 53, 57, 75, 76, 80, 93, 134, 239, 369, 374, 417, 494, 527, 528, 615, 618, 620, 623, 627, 664, 680, 712, 778, 798, 804, 805, 806], "without": [0, 3, 9, 29, 38, 42, 45, 63, 69, 95, 573, 587, 620, 625, 627, 631, 692, 705, 735, 736, 737, 738, 762, 765, 791, 804, 805, 808, 809, 811, 812, 813, 814, 815, 817, 820, 821, 825, 828, 829, 831, 835, 836, 837, 839, 847, 851, 854, 855, 856, 860], "path": [0, 7, 8, 9, 21, 22, 23, 24, 41, 42, 759, 770, 786, 804, 810, 824, 825, 826, 840, 854], "correspond": [0, 3, 6, 8, 13, 26, 27, 41, 49, 51, 52, 53, 56, 59, 62, 63, 65, 69, 72, 74, 75, 79, 82, 88, 92, 95, 98, 148, 160, 163, 223, 273, 287, 325, 338, 339, 362, 365, 368, 369, 371, 374, 380, 390, 396, 407, 412, 417, 420, 421, 422, 439, 463, 464, 488, 489, 490, 493, 510, 511, 578, 600, 616, 618, 620, 622, 623, 625, 629, 630, 631, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 648, 653, 657, 658, 664, 671, 672, 692, 693, 724, 730, 731, 735, 736, 737, 738, 743, 744, 749, 750, 751, 752, 759, 762, 764, 791, 798, 803, 805, 808, 809, 811, 812, 813, 815, 816, 817, 820, 821, 823, 825, 828, 831, 833, 847, 848, 849, 854], "toctre": [0, 810], "index": [0, 40, 41, 42, 45, 48, 52, 53, 59, 62, 63, 64, 69, 71, 75, 76, 82, 85, 86, 87, 127, 134, 204, 307, 314, 315, 324, 325, 326, 362, 368, 369, 371, 376, 378, 380, 390, 396, 426, 428, 433, 455, 462, 465, 473, 475, 477, 480, 481, 484, 500, 501, 510, 519, 522, 540, 542, 563, 564, 568, 613, 615, 617, 620, 625, 627, 630, 631, 632, 692, 696, 706, 707, 708, 711, 712, 713, 719, 721, 730, 731, 733, 735, 736, 737, 739, 741, 763, 778, 792, 794, 811, 812, 817, 821, 822, 823, 824, 826, 828, 835, 854], "rst": [0, 821], "left": [0, 19, 29, 40, 41, 52, 57, 62, 64, 75, 80, 85, 87, 115, 116, 227, 242, 334, 349, 356, 365, 366, 368, 369, 371, 380, 402, 420, 425, 429, 436, 438, 463, 473, 514, 515, 516, 517, 518, 519, 532, 614, 618, 620, 623, 630, 632, 657, 658, 664, 673, 678, 730, 741, 762, 804, 805, 807, 810, 812, 813, 815, 818], "mai": [0, 50, 51, 52, 57, 63, 64, 73, 74, 80, 87, 97, 98, 121, 128, 139, 209, 235, 236, 242, 247, 255, 263, 264, 268, 269, 271, 286, 329, 330, 365, 396, 531, 567, 615, 617, 618, 620, 623, 631, 632, 633, 671, 680, 735, 736, 737, 738, 739, 742, 746, 747, 748, 750, 762, 792, 802, 803, 804, 805, 807, 811, 812, 813, 817, 818, 821, 822, 823, 825, 826, 828, 831, 834, 835, 837, 845, 861], "need": [0, 3, 6, 8, 15, 17, 23, 24, 26, 27, 40, 41, 42, 52, 53, 59, 75, 76, 82, 368, 369, 380, 390, 395, 396, 400, 420, 516, 527, 528, 549, 620, 622, 623, 625, 627, 648, 657, 685, 688, 715, 763, 798, 800, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 831, 833, 835, 836, 839, 840, 845, 847, 848, 850, 854, 855, 856, 860], "add": [0, 19, 29, 42, 44, 51, 52, 60, 67, 69, 74, 75, 83, 90, 97, 98, 356, 366, 368, 370, 371, 410, 445, 477, 559, 587, 618, 620, 622, 623, 628, 633, 648, 677, 723, 751, 759, 770, 778, 781, 798, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 818, 819, 820, 821, 822, 824, 825, 828, 829, 831, 833, 835, 839, 840, 850, 852, 854], "grid": [0, 42, 48, 134, 310, 362, 615, 815, 828], "item": [0, 4, 26, 27, 38, 40, 42, 47, 53, 67, 69, 71, 74, 75, 76, 129, 154, 191, 245, 261, 269, 335, 338, 351, 529, 539, 540, 544, 578, 579, 615, 616, 617, 620, 627, 634, 709, 710, 711, 712, 716, 721, 722, 756, 798, 803, 811, 813, 833, 835, 836, 838, 847], "card": [0, 52, 75, 353, 365, 859], "refer": [0, 5, 52, 59, 65, 66, 75, 77, 82, 88, 89, 127, 142, 240, 258, 307, 322, 351, 362, 365, 368, 369, 371, 396, 401, 412, 418, 440, 462, 601, 602, 615, 618, 621, 623, 625, 633, 634, 653, 655, 679, 692, 750, 752, 753, 754, 778, 798, 802, 803, 804, 805, 807, 808, 810, 812, 813, 820, 821, 822, 823, 824, 825, 826, 827, 828, 839, 840, 841, 854], "also": [0, 3, 4, 6, 8, 9, 11, 13, 17, 19, 21, 22, 24, 26, 27, 29, 31, 32, 33, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 163, 166, 167, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 615, 616, 618, 620, 621, 622, 623, 625, 626, 627, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 714, 715, 716, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 777, 778, 787, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 836, 837, 838, 839, 840, 843, 844, 847, 848, 850, 851, 852, 853, 854, 855, 857, 859, 860, 861], "look": [0, 5, 17, 26, 27, 40, 42, 45, 798, 801, 803, 804, 805, 809, 810, 811, 813, 814, 815, 817, 818, 819, 820, 821, 825, 826, 828, 829, 830, 831, 833, 835, 837, 838, 840, 843, 847, 850, 854], "document": [0, 17, 26, 59, 242, 329, 330, 365, 600, 618, 620, 696, 799, 800, 802, 805, 810, 812, 813, 815, 824, 825, 826, 828, 836, 838], "sphinx": [0, 800, 810], "design": [0, 9, 17, 26, 75, 242, 306, 311, 312, 362, 618, 798, 806, 810, 812, 813, 824, 825, 826, 827, 831, 833, 835, 839, 843, 844, 850, 852, 854, 857, 858, 859], "websit": [0, 44, 804, 807, 844], "alreadi": [1, 8, 18, 21, 22, 23, 24, 26, 27, 32, 40, 42, 45, 52, 57, 69, 75, 80, 231, 241, 268, 278, 288, 371, 380, 451, 452, 472, 507, 516, 618, 623, 660, 668, 791, 792, 798, 803, 804, 805, 809, 811, 813, 814, 820, 824, 825, 831, 839, 840, 854, 856, 861], "instal": [1, 5, 6, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 43, 44, 45, 800, 804, 805, 809, 810, 818, 819], "skip": [1, 4, 42, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 369, 371, 391, 392, 393, 411, 426, 428, 433, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 473, 476, 478, 480, 481, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 627, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 763, 791, 810, 821, 828], "colab": [1, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 40, 42, 44, 45], "manual": [1, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 627, 704, 714, 715, 803, 804, 805, 813, 819, 828, 837, 840], "do": [1, 3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 38, 40, 42, 52, 53, 69, 75, 76, 235, 268, 277, 370, 371, 380, 445, 457, 516, 519, 549, 618, 620, 627, 704, 711, 714, 715, 716, 721, 764, 792, 798, 801, 803, 804, 805, 807, 808, 809, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 829, 831, 833, 835, 836, 837, 838, 839, 841, 845, 855, 860, 861], "run": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 40, 42, 43, 44, 52, 54, 75, 77, 374, 488, 490, 601, 602, 607, 621, 626, 701, 702, 703, 759, 760, 778, 779, 780, 781, 791, 798, 800, 803, 804, 806, 808, 809, 812, 814, 815, 817, 819, 820, 822, 825, 826, 833, 834, 835, 836, 837, 838, 839, 840, 847, 848, 849, 852, 854, 855, 856, 857, 859, 860, 861], "below": [1, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 38, 41, 42, 43, 48, 52, 57, 75, 80, 88, 140, 141, 142, 242, 252, 275, 322, 323, 332, 362, 365, 371, 480, 615, 618, 623, 656, 677, 752, 799, 801, 803, 804, 806, 807, 811, 812, 813, 814, 815, 817, 818, 821, 824, 825, 826, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 847, 848, 849, 850, 852, 857, 859], "mind": [1, 11, 13, 17, 23, 26, 30, 803, 804, 808, 811, 828, 840, 848], "packag": [1, 3, 5, 7, 8, 11, 21, 22, 23, 24, 27, 40, 41, 42, 45, 790, 798, 801, 804, 812, 825, 839, 840, 854, 856], "avail": [1, 3, 5, 7, 21, 22, 24, 26, 27, 42, 53, 76, 191, 197, 199, 200, 211, 533, 617, 620, 623, 674, 763, 798, 804, 805, 811, 812, 813, 814, 816, 817, 825, 828, 831, 839, 840, 843, 847, 848, 849, 859, 860], "click": [1, 3, 42, 803, 804, 805, 812, 816, 818, 819, 834], "runtim": [1, 3, 4, 5, 6, 7, 8, 19, 26, 29, 40, 41, 806, 821, 828, 831, 854], "restart": [1, 3, 4, 5, 7, 40, 41, 804, 818], "pip": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 44, 45, 801, 804, 810, 819], "q": [1, 3, 4, 5, 6, 7, 8, 9, 40, 41, 42, 52, 56, 57, 75, 79, 80, 355, 365, 369, 380, 420, 519, 622, 623, 627, 648, 651, 657, 658, 670, 712, 804, 805, 806, 826, 839], "git": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 798, 800, 802, 804, 805, 807, 810, 812, 818, 819, 828, 840], "clone": [1, 3, 5, 7, 26, 40, 42, 43, 798, 800, 805, 818, 840], "http": [1, 3, 4, 5, 6, 7, 8, 13, 21, 22, 23, 24, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 480, 509, 601, 602, 615, 616, 618, 621, 623, 625, 633, 671, 672, 700, 750, 798, 800, 804, 805, 807, 810, 812, 813, 816, 818, 840, 848], "github": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 44, 798, 800, 802, 805, 807, 810, 812, 813, 815, 816, 818, 819, 827, 828, 840, 843], "com": [1, 3, 4, 5, 7, 13, 26, 40, 41, 42, 43, 44, 798, 800, 804, 805, 807, 810, 812, 813, 818, 840], "unifyai": [1, 3, 5, 7, 26, 40, 41, 42, 43, 44, 798, 800, 804, 805, 810, 818, 840], "model": [1, 2, 3, 9, 10, 15, 16, 17, 43, 45, 235, 268, 370, 441, 618, 775, 779, 780, 798, 836, 837, 841, 847, 848, 852, 853, 854, 855, 856, 857, 858, 860, 861], "depth": [1, 3, 5, 7, 41, 48, 52, 56, 71, 75, 79, 136, 368, 371, 403, 459, 532, 544, 615, 620, 622, 640, 641, 805, 812, 836, 837, 838, 840], "1": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 144, 147, 148, 149, 150, 154, 158, 159, 160, 163, 168, 170, 175, 191, 192, 196, 200, 201, 203, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 319, 320, 322, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 434, 435, 437, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 559, 561, 563, 564, 568, 577, 578, 579, 580, 581, 583, 585, 586, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 765, 767, 770, 774, 777, 778, 779, 780, 781, 782, 783, 787, 791, 792, 798, 801, 804, 805, 807, 809, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 821, 823, 824, 825, 826, 828, 831, 832, 833, 835, 836, 837, 838, 839, 844, 845, 847, 848, 849], "from": [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 85, 88, 89, 90, 92, 93, 95, 98, 121, 123, 126, 128, 129, 130, 131, 134, 135, 138, 142, 144, 150, 168, 174, 175, 191, 196, 201, 207, 208, 234, 242, 243, 270, 274, 275, 282, 286, 306, 307, 313, 316, 322, 324, 325, 326, 333, 336, 339, 340, 342, 343, 355, 359, 362, 365, 367, 368, 369, 370, 371, 375, 380, 391, 392, 393, 407, 412, 429, 436, 441, 445, 455, 458, 467, 472, 478, 480, 481, 483, 485, 486, 495, 496, 497, 498, 499, 510, 511, 531, 539, 540, 542, 562, 573, 583, 600, 602, 603, 607, 615, 616, 617, 618, 620, 621, 622, 623, 625, 626, 627, 629, 630, 631, 633, 634, 636, 644, 645, 653, 656, 673, 677, 678, 679, 686, 689, 692, 695, 701, 702, 703, 705, 716, 717, 718, 724, 725, 726, 727, 731, 734, 735, 737, 743, 744, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 764, 765, 770, 775, 777, 778, 779, 780, 782, 787, 792, 798, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 841, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 856, 858, 859, 860, 861], "repositori": [1, 3, 5, 7, 800, 803, 804, 805, 806, 807, 810, 818, 827, 845], "cd": [1, 3, 5, 7, 26, 43, 798, 800, 804, 805, 818, 840], "here": [1, 3, 9, 12, 14, 17, 22, 25, 26, 27, 38, 40, 41, 42, 43, 45, 75, 278, 447, 618, 798, 801, 802, 803, 804, 805, 807, 809, 810, 811, 812, 813, 815, 818, 819, 820, 822, 823, 824, 825, 826, 828, 829, 833, 834, 835, 836, 837, 838, 839, 847, 848, 849, 854, 855], "normal": [1, 3, 7, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 52, 60, 61, 75, 83, 84, 92, 93, 352, 365, 368, 374, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 488, 489, 490, 491, 492, 493, 494, 509, 512, 625, 628, 629, 686, 696, 723, 724, 726, 777, 778, 781, 798, 803, 824, 825, 831, 836, 847, 849, 852], "resnet": [2, 8, 15, 26, 847, 848], "imag": [2, 3, 6, 8, 11, 15, 23, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 56, 74, 75, 79, 97, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 278, 279, 281, 282, 286, 368, 386, 387, 403, 404, 405, 407, 532, 618, 620, 622, 635, 636, 637, 638, 639, 642, 643, 644, 778, 798, 804, 818, 831, 833, 834, 836, 838, 840, 847, 848, 854], "classif": [2, 3, 7, 9, 15, 40, 798, 854], "acceler": [2, 15, 798, 813, 825, 852, 856, 857, 858, 859], "pytorch": [2, 3, 4, 5, 6, 7, 10, 12, 13, 15, 16, 24, 26, 27, 38, 45, 278, 329, 330, 365, 618, 782, 798, 802, 803, 808, 813, 814, 817, 820, 821, 824, 825, 826, 831, 833, 838, 839, 841, 844, 845, 847, 848, 855, 857, 858, 860, 861], "jax": [2, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 44, 46, 51, 52, 53, 63, 68, 74, 75, 76, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 342, 360, 365, 380, 519, 549, 581, 600, 612, 618, 620, 631, 735, 736, 737, 738, 770, 774, 787, 798, 801, 802, 803, 804, 805, 807, 809, 813, 814, 817, 818, 820, 823, 824, 825, 826, 828, 829, 831, 833, 835, 838, 839, 844, 845, 847, 848, 849, 855, 857, 860, 861], "convert": [2, 5, 6, 8, 9, 11, 13, 15, 16, 18, 20, 23, 24, 26, 27, 28, 30, 32, 40, 43, 45, 47, 48, 51, 69, 70, 71, 74, 92, 122, 123, 135, 145, 146, 188, 189, 190, 191, 202, 210, 214, 234, 274, 371, 376, 450, 451, 452, 500, 565, 582, 584, 585, 586, 588, 615, 616, 617, 618, 620, 623, 627, 681, 705, 716, 717, 759, 787, 791, 798, 803, 808, 809, 822, 823, 825, 828, 830, 833, 839, 841, 845, 848, 852, 853, 860], "them": [2, 3, 6, 8, 11, 13, 15, 26, 27, 32, 369, 435, 526, 562, 620, 762, 778, 798, 800, 803, 805, 807, 808, 809, 810, 811, 812, 813, 817, 819, 822, 824, 825, 826, 828, 830, 833, 835, 836, 837, 839, 841, 842, 843, 844, 845, 846, 847, 848, 849, 851, 852, 854, 856, 860], "faster": [2, 3, 6, 8, 9, 15, 26, 27, 43, 45, 52, 57, 75, 80, 369, 438, 623, 673, 800, 802, 810, 841, 856, 859], "infer": [2, 6, 8, 9, 15, 19, 29, 31, 32, 41, 43, 45, 48, 52, 53, 56, 59, 71, 75, 76, 79, 82, 121, 123, 126, 130, 131, 135, 138, 144, 153, 154, 155, 156, 157, 306, 307, 368, 375, 403, 497, 543, 577, 615, 616, 620, 622, 625, 645, 692, 787, 788, 806, 809, 813, 814, 828, 833, 838, 848, 852, 853, 856, 858], "mmpretrain": [2, 15], "segment": [2, 15, 52, 75, 324, 325, 326, 362, 810, 815], "unet": [2, 15], "alexnet": [2, 15], "In": [2, 3, 4, 11, 13, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 45, 50, 52, 53, 59, 73, 76, 82, 92, 93, 202, 209, 210, 214, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 371, 374, 391, 392, 393, 450, 451, 452, 458, 460, 462, 463, 464, 465, 467, 471, 477, 478, 486, 488, 490, 522, 542, 549, 567, 617, 618, 620, 623, 625, 629, 671, 688, 689, 690, 692, 694, 695, 697, 699, 727, 798, 803, 804, 805, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 831, 835, 836, 837, 838, 839, 843, 845, 847, 848, 849, 850, 852, 854, 855, 857, 860], "we": [2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 43, 44, 45, 52, 57, 58, 59, 67, 75, 80, 81, 90, 92, 93, 113, 357, 367, 371, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 482, 486, 532, 542, 581, 603, 604, 606, 611, 612, 620, 621, 623, 624, 625, 666, 682, 688, 689, 690, 692, 694, 695, 697, 699, 774, 780, 787, 792, 798, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 854, 855, 859, 860], "show": [2, 3, 4, 7, 15, 21, 26, 27, 28, 29, 31, 38, 40, 42, 43, 566, 575, 597, 620, 798, 803, 804, 805, 810, 812, 815, 819, 824, 825, 828, 830, 839, 847, 854], "how": [2, 3, 4, 5, 6, 8, 11, 13, 15, 16, 17, 18, 19, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 38, 41, 44, 45, 46, 51, 52, 68, 74, 75, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 235, 268, 286, 290, 294, 295, 297, 360, 371, 455, 480, 481, 612, 618, 774, 777, 778, 779, 780, 798, 799, 800, 801, 802, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 819, 820, 822, 823, 824, 825, 826, 829, 830, 831, 832, 834, 835, 836, 837, 838, 839, 843, 845, 850, 854], "written": [2, 3, 4, 15, 17, 26, 27, 40, 53, 371, 461, 804, 807, 808, 816, 819, 820, 824, 825, 829, 833, 835, 838, 839, 843, 848, 852, 854, 858, 860, 861], "xgboost": [2, 15], "video": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 798, 799, 804, 805, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 840, 852], "tutori": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 798, 805, 825, 840], "nativ": [3, 4, 8, 17, 21, 22, 23, 24, 26, 27, 47, 48, 49, 50, 53, 70, 73, 76, 97, 101, 135, 145, 146, 152, 153, 154, 155, 156, 157, 171, 174, 189, 190, 191, 192, 202, 210, 214, 549, 551, 555, 562, 567, 584, 615, 616, 617, 620, 759, 770, 775, 787, 798, 801, 803, 813, 814, 817, 818, 821, 822, 824, 825, 826, 828, 833, 835, 836, 841, 847, 848, 849, 852, 861], "integr": [3, 4, 11, 13, 20, 27, 30, 49, 51, 52, 72, 74, 75, 147, 287, 348, 365, 380, 512, 616, 618, 798, 802, 804, 806, 822, 848, 852, 854, 856, 857, 858], "three": [3, 4, 15, 21, 31, 32, 42, 52, 134, 306, 362, 371, 452, 615, 804, 805, 811, 812, 813, 815, 825, 828, 831, 832, 833, 855, 860], "major": [3, 4, 630, 733, 813, 814, 826, 828, 839, 844, 851, 854], "ml": [3, 4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 45, 798, 799, 802, 825, 832, 833, 834, 836, 837, 838, 842, 844, 845, 848, 850, 851, 852, 853, 854, 857, 859, 861], "framework": [3, 4, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 40, 42, 44, 47, 53, 165, 187, 197, 200, 211, 530, 546, 550, 581, 584, 616, 617, 620, 627, 706, 757, 759, 763, 770, 775, 782, 787, 788, 798, 801, 803, 804, 806, 807, 808, 809, 810, 812, 813, 814, 815, 817, 818, 820, 821, 822, 824, 825, 828, 829, 831, 832, 833, 835, 838, 839, 840, 841, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 858], "sinc": [3, 5, 7, 23, 24, 26, 27, 40, 42, 52, 75, 93, 365, 798, 800, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 817, 824, 825, 839, 844, 854, 860], "want": [3, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 39, 40, 42, 52, 67, 75, 90, 235, 268, 371, 460, 618, 780, 798, 799, 800, 803, 804, 805, 810, 812, 814, 817, 819, 821, 822, 823, 824, 828, 831, 836, 837, 838, 839, 840, 844, 848], "after": [3, 4, 5, 6, 7, 8, 26, 27, 41, 52, 53, 54, 56, 60, 69, 75, 76, 77, 79, 83, 181, 282, 298, 302, 350, 360, 365, 368, 369, 371, 390, 391, 392, 393, 410, 413, 432, 461, 472, 549, 602, 605, 607, 608, 609, 616, 618, 620, 621, 622, 627, 628, 635, 636, 637, 638, 640, 642, 644, 645, 715, 723, 782, 787, 798, 803, 804, 805, 807, 809, 810, 812, 813, 815, 817, 820, 823, 826, 828, 832, 840, 847, 848, 854], "first": [3, 4, 5, 7, 11, 17, 19, 20, 21, 23, 26, 27, 29, 30, 31, 40, 43, 44, 45, 48, 51, 52, 57, 59, 61, 62, 63, 65, 71, 74, 75, 76, 80, 82, 84, 86, 88, 92, 93, 97, 98, 117, 118, 132, 133, 142, 173, 181, 191, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 285, 296, 306, 307, 322, 324, 325, 326, 328, 340, 342, 343, 344, 350, 354, 355, 360, 362, 365, 368, 369, 370, 371, 378, 380, 390, 419, 420, 421, 423, 427, 446, 456, 458, 462, 469, 472, 474, 475, 478, 485, 496, 498, 502, 510, 511, 512, 519, 524, 614, 615, 616, 617, 618, 620, 622, 623, 625, 626, 627, 630, 631, 632, 633, 648, 653, 656, 657, 658, 660, 663, 668, 670, 671, 673, 675, 677, 679, 692, 693, 696, 697, 701, 702, 703, 704, 705, 714, 715, 717, 729, 730, 731, 735, 736, 737, 740, 741, 743, 744, 759, 777, 778, 779, 780, 782, 787, 798, 800, 802, 803, 804, 805, 807, 808, 809, 810, 811, 814, 815, 819, 820, 821, 822, 824, 825, 828, 831, 833, 835, 836, 838, 840, 843, 844, 847, 848, 852, 854, 855, 859], "notebook": [3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 32, 41, 780, 798], "automat": [3, 5, 7, 24, 26, 27, 32, 798, 803, 804, 805, 806, 809, 810, 812, 813, 819, 821, 824, 828, 831, 832, 834, 837, 838, 840, 841, 845, 854, 857, 861], "sure": [3, 5, 6, 7, 8, 9, 26, 40, 803, 804, 805, 807, 812, 817, 818, 825, 826, 828, 831, 840], "gpu": [3, 4, 5, 6, 7, 8, 9, 40, 42, 44, 45, 191, 193, 194, 197, 200, 202, 204, 206, 207, 210, 212, 214, 617, 798, 804, 805, 812, 814, 835, 840, 852, 854, 857, 858, 859], "enabl": [3, 4, 5, 6, 7, 8, 9, 21, 22, 24, 41, 52, 57, 69, 80, 98, 368, 370, 390, 444, 567, 620, 623, 666, 780, 798, 804, 805, 808, 811, 813, 821, 822, 823, 824, 825, 828, 829, 832, 834, 836, 838, 839, 841, 844, 847, 852, 853, 854, 855, 856, 857, 860, 861], "dm": [3, 4, 5, 6, 8, 26, 27, 38, 40], "haiku": [3, 4, 5, 6, 8, 24, 26, 27, 38, 40, 44, 775, 798, 838, 845, 848, 854], "exit": [3, 5, 7, 26, 27, 814], "download": [3, 7, 11, 13, 26, 27, 41, 42, 45, 800, 804, 810, 828, 847, 848], "imagenet": [3, 13, 41, 43, 798], "class": [3, 5, 7, 9, 11, 13, 17, 26, 27, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 129, 138, 144, 160, 163, 176, 178, 179, 238, 275, 332, 353, 365, 379, 380, 387, 388, 420, 515, 516, 523, 532, 536, 549, 559, 581, 615, 616, 617, 618, 620, 622, 623, 624, 627, 628, 643, 647, 651, 657, 668, 672, 673, 675, 682, 698, 705, 716, 723, 738, 745, 749, 750, 759, 760, 767, 768, 769, 770, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 786, 787, 791, 796, 798, 803, 809, 810, 811, 813, 814, 815, 816, 820, 822, 823, 826, 827, 828, 831, 833, 834, 836, 837, 838, 841, 847, 848, 852, 854, 855, 861], "preprocess": [3, 7, 9, 26, 27, 40, 43, 847], "wget": [3, 5, 7, 40, 41, 44, 804], "raw": [3, 5, 6, 7, 8, 23, 26, 27, 40, 43, 44, 69, 798, 816, 848, 855], "githubusercont": [3, 5, 7, 40, 44], "hub": [3, 5, 7, 40, 43, 45], "master": [3, 5, 7, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 43, 44, 812, 854], "imagenet_class": [3, 7], "txt": [3, 7, 41, 53, 804, 807, 810], "r": [3, 7, 40, 41, 52, 57, 69, 75, 80, 92, 93, 342, 357, 365, 367, 603, 621, 623, 625, 670, 699, 804, 805, 806, 823, 826], "f": [3, 4, 6, 7, 26, 27, 39, 40, 42, 52, 59, 75, 82, 296, 313, 360, 362, 371, 462, 483, 625, 627, 692, 707, 711, 712, 713, 716, 721, 722, 798, 799, 805, 806, 811, 812, 817, 829, 833, 835, 836, 845, 850], "categori": [3, 7, 803, 807, 808, 811, 813, 817, 825, 829, 832], "strip": [3, 7, 19, 29, 844], "readlin": [3, 7, 41], "cat": [3, 7, 41, 826, 831, 833, 838, 847, 848], "jpg": [3, 5, 6, 7, 8, 23, 26, 27, 42, 43, 798, 848], "filenam": [3, 5, 7, 26, 27, 40, 42, 45, 53, 780, 786, 836], "3": [3, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 131, 132, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 189, 191, 192, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 427, 432, 435, 437, 440, 441, 442, 443, 444, 445, 446, 448, 450, 451, 452, 453, 455, 456, 457, 458, 459, 462, 463, 464, 466, 467, 468, 469, 471, 472, 477, 478, 479, 480, 481, 482, 483, 485, 486, 487, 491, 492, 493, 494, 497, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 559, 563, 564, 577, 578, 579, 583, 586, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 765, 778, 791, 792, 798, 801, 803, 804, 807, 808, 809, 811, 812, 813, 815, 817, 818, 821, 823, 826, 828, 833, 835, 836, 837, 838, 847, 848, 861], "import": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 43, 44, 45, 52, 63, 67, 71, 75, 90, 189, 190, 194, 204, 206, 292, 301, 380, 509, 544, 560, 617, 620, 626, 631, 702, 703, 738, 770, 787, 788, 798, 802, 803, 804, 805, 807, 808, 809, 810, 811, 813, 814, 815, 816, 819, 822, 823, 824, 825, 826, 827, 828, 829, 833, 835, 836, 838, 839, 840, 844, 847, 848, 849, 850, 852, 854, 857, 858, 860], "torchvis": [3, 6, 7, 40, 845], "transform": [3, 4, 6, 7, 8, 23, 26, 27, 40, 41, 43, 52, 56, 75, 79, 368, 369, 389, 390, 395, 396, 399, 400, 401, 411, 412, 414, 429, 622, 646, 762, 765, 778, 798, 822, 828, 838, 841, 847, 848, 852, 854, 855, 856], "pil": [3, 5, 6, 7, 8, 23, 26, 27, 41, 42, 43, 798, 848], "numpi": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 51, 52, 53, 65, 74, 75, 76, 142, 171, 189, 219, 279, 292, 301, 322, 362, 380, 509, 516, 525, 549, 578, 581, 585, 615, 616, 617, 618, 620, 633, 745, 757, 759, 770, 787, 791, 792, 798, 802, 803, 804, 805, 807, 808, 809, 812, 813, 814, 817, 818, 820, 824, 826, 828, 829, 831, 833, 835, 838, 840, 841, 843, 844, 847, 848, 849, 856, 861], "np": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 45, 48, 51, 52, 74, 75, 76, 122, 123, 124, 135, 171, 248, 252, 292, 301, 368, 369, 395, 400, 415, 578, 615, 616, 618, 620, 627, 710, 759, 787, 791, 792, 798, 803, 808, 813, 814, 817, 820, 824, 825, 826, 828, 829, 831, 833, 835, 836, 838, 841, 849], "warn": [3, 4, 5, 7, 8, 9, 21, 22, 23, 24, 40, 41, 42, 45, 795, 804, 805, 830, 847, 848, 849], "time": [3, 4, 6, 8, 24, 26, 27, 32, 40, 42, 43, 44, 52, 54, 57, 63, 75, 77, 86, 92, 93, 129, 335, 365, 368, 369, 371, 380, 396, 401, 414, 433, 440, 472, 478, 509, 602, 607, 615, 621, 622, 623, 625, 626, 630, 631, 645, 647, 663, 698, 701, 702, 703, 730, 731, 735, 736, 778, 779, 780, 803, 804, 805, 807, 809, 811, 812, 813, 815, 818, 820, 821, 822, 824, 825, 828, 829, 833, 836, 838, 839, 840, 843, 844, 845, 847, 848, 852, 854, 855, 858, 859, 860], "filterwarn": [3, 4], "ignor": [3, 4, 39, 47, 48, 52, 69, 75, 134, 368, 369, 371, 380, 391, 392, 393, 421, 435, 474, 475, 479, 517, 615, 622, 623, 627, 648, 662, 715, 716, 782, 804, 810, 812, 815, 828, 839, 860], "compos": [3, 6, 7, 26, 27, 40, 52, 75, 368, 382, 383, 384, 804, 811, 825, 828, 847, 849, 854, 861], "resiz": [3, 5, 6, 7, 40, 41, 52, 75, 368, 403, 831], "256": [3, 5, 7, 51, 76, 278, 279, 579, 622, 637, 639, 762], "centercrop": [3, 7], "224": [3, 7, 11, 13, 26, 27, 40, 41, 43, 798, 848], "totensor": [3, 6, 7, 40], "mean": [3, 6, 7, 8, 9, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 42, 52, 53, 56, 58, 59, 61, 65, 67, 69, 71, 75, 76, 79, 81, 82, 84, 88, 90, 92, 129, 208, 324, 334, 362, 365, 368, 369, 370, 371, 374, 375, 380, 396, 401, 418, 429, 441, 442, 443, 444, 445, 446, 447, 457, 462, 472, 488, 490, 496, 515, 516, 533, 603, 604, 606, 611, 615, 617, 620, 621, 622, 623, 624, 625, 626, 627, 629, 633, 637, 639, 640, 641, 643, 644, 645, 655, 682, 683, 684, 692, 701, 702, 703, 710, 725, 726, 762, 764, 765, 777, 778, 781, 798, 804, 805, 806, 807, 809, 811, 813, 814, 815, 821, 823, 824, 825, 828, 829, 831, 833, 835, 836, 837, 838, 839, 841, 848, 849, 851, 854], "0": [3, 4, 5, 6, 7, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 136, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 163, 164, 168, 170, 175, 188, 191, 193, 196, 201, 202, 203, 204, 206, 207, 208, 210, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 227, 229, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 319, 320, 322, 323, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 386, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 410, 411, 412, 413, 416, 417, 418, 420, 421, 422, 425, 426, 428, 429, 430, 433, 434, 435, 439, 440, 441, 442, 443, 444, 445, 446, 447, 449, 455, 457, 458, 459, 462, 463, 464, 465, 466, 467, 468, 469, 471, 472, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 524, 526, 527, 528, 531, 532, 533, 535, 536, 539, 540, 541, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 559, 561, 563, 564, 568, 573, 577, 578, 579, 581, 583, 585, 586, 595, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 661, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 765, 767, 774, 775, 777, 778, 779, 780, 781, 782, 783, 784, 787, 791, 792, 798, 801, 804, 805, 807, 809, 811, 812, 813, 814, 815, 816, 817, 818, 823, 824, 825, 826, 828, 829, 833, 835, 836, 837, 838, 839, 847, 848], "485": [3, 7, 40], "456": [3, 7, 40, 828], "406": [3, 7, 40, 52, 75, 389, 527, 620], "std": [3, 6, 7, 8, 9, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 41, 56, 61, 65, 79, 84, 88, 375, 496, 622, 629, 633, 637, 639, 640, 641, 643, 644, 725, 726, 798, 815, 849], "229": [3, 7, 40, 274, 618], "225": [3, 7, 40, 42, 229, 618], "torch_img": [3, 5, 7], "unsqueez": [3, 5, 6, 7], "img": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 798, 836, 848], "4": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 112, 113, 121, 122, 123, 124, 127, 129, 131, 132, 133, 134, 135, 136, 138, 142, 144, 148, 149, 150, 158, 160, 163, 168, 170, 175, 192, 193, 201, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 253, 254, 255, 256, 257, 258, 259, 260, 261, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 314, 315, 322, 324, 329, 330, 332, 334, 335, 337, 339, 340, 341, 342, 343, 344, 345, 346, 347, 349, 352, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 427, 429, 435, 441, 442, 443, 444, 445, 446, 448, 450, 451, 452, 455, 456, 457, 458, 459, 462, 463, 464, 467, 468, 469, 471, 472, 477, 478, 479, 480, 481, 482, 485, 486, 487, 491, 492, 493, 494, 497, 499, 500, 502, 507, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 542, 545, 547, 548, 549, 556, 563, 564, 578, 579, 580, 581, 583, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 642, 643, 644, 645, 646, 647, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 703, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 765, 777, 778, 782, 791, 792, 798, 801, 803, 804, 809, 810, 811, 812, 813, 815, 818, 823, 826, 828, 831, 833, 835, 836, 837, 838, 845, 847, 854, 860, 861], "ipython": [3, 5, 7, 21, 22, 23, 24, 26, 27, 45], "displai": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 45, 804, 810, 812, 817, 828, 836], "end": [3, 5, 40, 41, 52, 75, 121, 223, 279, 346, 365, 368, 371, 414, 462, 472, 474, 475, 615, 618, 792, 798, 804, 805, 809, 812, 818, 824, 829, 831, 832, 839, 852, 857], "see": [3, 4, 6, 8, 9, 18, 19, 24, 26, 27, 28, 29, 33, 38, 39, 45, 46, 49, 51, 52, 57, 62, 63, 65, 66, 68, 74, 75, 80, 85, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 128, 132, 139, 142, 149, 168, 175, 218, 223, 225, 227, 228, 229, 230, 235, 236, 240, 242, 246, 247, 254, 255, 258, 260, 262, 264, 265, 268, 271, 273, 277, 284, 286, 289, 290, 294, 295, 297, 322, 329, 330, 360, 362, 365, 369, 370, 371, 417, 442, 480, 612, 615, 616, 618, 623, 630, 631, 633, 634, 653, 666, 669, 672, 679, 680, 731, 735, 736, 737, 738, 746, 747, 748, 749, 750, 751, 752, 753, 754, 774, 798, 799, 801, 803, 804, 805, 807, 808, 810, 811, 812, 813, 814, 815, 818, 819, 820, 821, 825, 826, 828, 831, 833, 835, 836, 839, 843, 850], "5": [3, 4, 5, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 121, 122, 123, 129, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 148, 149, 150, 154, 158, 160, 168, 170, 175, 192, 201, 206, 209, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 324, 327, 329, 330, 332, 334, 336, 339, 340, 341, 342, 343, 345, 346, 347, 348, 349, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 413, 416, 419, 420, 422, 423, 425, 434, 437, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 456, 457, 458, 459, 462, 463, 466, 467, 468, 471, 472, 477, 478, 479, 480, 481, 482, 486, 487, 492, 493, 494, 497, 499, 500, 502, 507, 509, 510, 511, 512, 513, 514, 516, 519, 525, 526, 527, 528, 531, 532, 533, 534, 536, 539, 540, 542, 545, 547, 548, 549, 563, 564, 568, 578, 579, 580, 581, 583, 587, 600, 601, 602, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 640, 641, 642, 643, 644, 645, 646, 647, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 667, 668, 669, 670, 671, 673, 674, 675, 677, 678, 679, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 705, 707, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 763, 764, 765, 778, 791, 792, 798, 803, 804, 805, 807, 809, 811, 812, 813, 815, 817, 818, 820, 823, 826, 828, 835, 836, 837, 848], "set_default_devic": [3, 4, 5, 6, 7, 8, 212, 617, 814], "set_soft_device_mod": [3, 9, 213, 617, 814], "true": [3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 23, 24, 26, 27, 31, 32, 33, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 158, 160, 161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 175, 187, 191, 192, 194, 195, 199, 202, 203, 204, 205, 209, 211, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 458, 459, 460, 462, 463, 464, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 501, 502, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 563, 564, 565, 568, 571, 572, 574, 575, 577, 578, 579, 581, 583, 585, 586, 588, 593, 594, 596, 597, 599, 602, 603, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 710, 711, 712, 714, 715, 716, 717, 721, 722, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 764, 765, 778, 779, 780, 781, 782, 784, 787, 789, 791, 792, 796, 798, 801, 804, 809, 811, 812, 813, 814, 815, 817, 818, 820, 821, 822, 824, 825, 826, 828, 830, 831, 833, 836, 837, 838, 847, 848], "set_backend": [3, 4, 5, 7, 9, 17, 18, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 39, 41, 42, 43, 51, 53, 67, 74, 76, 162, 171, 189, 190, 204, 206, 211, 219, 525, 549, 616, 617, 620, 626, 702, 703, 787, 798, 807, 809, 813, 814, 821, 822, 823, 833, 835, 838, 847, 848, 849], "ivy_model": [3, 4, 5, 7, 43], "ivy_alexnet": 3, "order": [3, 20, 30, 32, 40, 43, 45, 48, 52, 53, 56, 57, 59, 63, 64, 69, 75, 79, 80, 82, 86, 87, 92, 97, 98, 122, 123, 134, 142, 223, 242, 285, 322, 342, 362, 365, 369, 371, 374, 378, 417, 420, 421, 422, 423, 424, 428, 432, 434, 437, 440, 462, 463, 464, 469, 470, 482, 488, 489, 490, 493, 502, 615, 618, 622, 623, 625, 626, 630, 631, 632, 636, 637, 638, 639, 640, 641, 644, 657, 658, 664, 673, 674, 678, 680, 689, 692, 701, 702, 733, 735, 736, 737, 738, 739, 741, 742, 759, 781, 783, 792, 798, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 825, 826, 827, 828, 829, 830, 831, 836, 838, 839, 843, 850, 853, 854, 855, 857, 860], "quick": [3, 15, 27, 805, 806, 826, 837], "call": [3, 6, 11, 13, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 33, 40, 44, 52, 67, 72, 75, 90, 92, 98, 117, 167, 168, 208, 369, 380, 432, 516, 567, 573, 587, 603, 604, 606, 614, 617, 620, 621, 623, 627, 671, 704, 710, 714, 715, 759, 770, 778, 779, 780, 782, 787, 792, 798, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 835, 836, 837, 838, 839, 844, 847, 848, 849, 854, 855, 858], "trace_graph": [3, 4, 5, 7, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 34, 43, 780, 798, 833, 838, 846], "take": [3, 7, 17, 24, 26, 27, 32, 38, 40, 43, 52, 57, 59, 65, 75, 82, 92, 117, 118, 120, 136, 275, 282, 296, 360, 368, 369, 371, 387, 395, 400, 405, 414, 423, 435, 455, 462, 481, 510, 511, 614, 615, 618, 622, 623, 625, 626, 648, 663, 667, 692, 703, 743, 762, 770, 777, 778, 791, 798, 799, 803, 804, 805, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 824, 825, 826, 828, 831, 833, 835, 837, 838, 839, 840, 845, 847, 848, 851, 852, 860], "moment": [3, 52, 54, 75, 77, 369, 424, 601, 602, 607, 621, 782, 803, 809, 839, 847, 848], "one": [3, 6, 8, 11, 13, 15, 16, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 44, 48, 52, 53, 56, 57, 59, 62, 63, 65, 69, 71, 74, 75, 76, 77, 79, 80, 82, 83, 85, 86, 87, 88, 92, 121, 124, 134, 136, 137, 138, 148, 150, 208, 229, 235, 242, 243, 260, 266, 267, 268, 287, 296, 306, 309, 310, 328, 334, 337, 340, 341, 344, 345, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 389, 391, 395, 396, 399, 400, 403, 411, 415, 417, 426, 433, 446, 450, 451, 452, 456, 462, 463, 464, 469, 471, 476, 479, 488, 489, 490, 495, 500, 510, 511, 514, 515, 516, 517, 518, 519, 521, 559, 563, 564, 566, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 615, 616, 617, 618, 620, 621, 622, 623, 625, 628, 630, 631, 633, 636, 637, 638, 639, 640, 641, 644, 660, 663, 664, 668, 670, 679, 680, 688, 689, 690, 693, 695, 699, 723, 730, 733, 735, 736, 737, 738, 743, 745, 762, 764, 781, 784, 787, 792, 795, 798, 803, 804, 805, 807, 808, 809, 810, 811, 813, 814, 815, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 830, 831, 832, 835, 836, 838, 839, 840, 841, 844, 845, 848, 854, 855, 857, 860], "cost": [3, 54, 77, 601, 602, 605, 607, 608, 609, 621, 626, 701, 702, 703, 792, 813, 831, 852], "arg": [3, 5, 6, 7, 11, 13, 21, 22, 24, 26, 27, 31, 32, 33, 44, 47, 69, 91, 101, 117, 198, 208, 587, 614, 615, 617, 620, 757, 759, 774, 775, 778, 779, 780, 784, 787, 791, 796, 798, 808, 813, 814, 817, 823, 824, 825, 831, 833, 837, 847, 848, 849], "asarrai": [3, 4, 5, 6, 7, 41, 48, 52, 53, 64, 71, 75, 76, 87, 122, 378, 501, 502, 532, 543, 547, 548, 578, 579, 615, 620, 622, 631, 632, 636, 736, 740, 817, 822, 825, 826], "cuda": [3, 4, 5, 6, 7, 8, 9, 17, 26, 41, 42, 45, 48, 52, 61, 71, 75, 84, 132, 133, 136, 188, 189, 190, 204, 206, 375, 495, 496, 498, 499, 615, 617, 623, 629, 674, 724, 725, 726, 727, 777, 778, 779, 780, 781, 782, 783, 798, 833, 839, 841, 859], "7": [3, 5, 6, 7, 8, 9, 11, 13, 18, 19, 21, 22, 23, 24, 38, 40, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 107, 108, 109, 110, 121, 122, 123, 132, 135, 136, 154, 160, 163, 193, 215, 218, 221, 225, 226, 228, 229, 230, 231, 233, 235, 236, 237, 238, 239, 241, 242, 245, 246, 247, 252, 253, 254, 255, 256, 257, 258, 259, 260, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 278, 279, 280, 282, 285, 286, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 312, 313, 324, 328, 332, 334, 335, 342, 343, 344, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 409, 410, 411, 412, 413, 416, 419, 430, 441, 442, 443, 444, 446, 447, 450, 451, 452, 456, 458, 462, 467, 468, 471, 472, 477, 478, 480, 481, 483, 486, 487, 497, 499, 500, 507, 510, 511, 513, 514, 519, 525, 527, 528, 532, 533, 536, 547, 548, 549, 556, 563, 564, 578, 581, 601, 602, 604, 605, 606, 607, 608, 609, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 636, 637, 639, 641, 643, 644, 645, 646, 651, 653, 654, 655, 656, 658, 659, 660, 663, 665, 668, 670, 671, 673, 674, 675, 677, 678, 679, 682, 683, 684, 685, 688, 689, 694, 696, 697, 699, 704, 705, 712, 716, 723, 724, 725, 726, 727, 729, 734, 735, 737, 739, 740, 742, 743, 744, 745, 747, 749, 751, 752, 762, 804, 805, 809, 811, 812, 815, 821, 824, 828], "output": [3, 4, 5, 7, 17, 23, 24, 26, 27, 39, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 415, 417, 418, 419, 421, 423, 426, 427, 430, 431, 432, 433, 435, 436, 439, 441, 442, 443, 444, 445, 446, 447, 448, 455, 456, 457, 460, 462, 463, 464, 465, 466, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 484, 485, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 526, 527, 528, 532, 533, 534, 536, 540, 549, 556, 563, 564, 565, 588, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 717, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 762, 777, 778, 791, 792, 798, 800, 804, 805, 806, 807, 808, 810, 811, 813, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 833, 835, 837, 838, 839, 841, 847, 848, 855], "softmax": [3, 7, 11, 24, 26, 27, 42, 46, 56, 67, 68, 79, 370, 442, 612, 622, 648, 651, 774, 798], "pass": [3, 5, 6, 7, 8, 9, 11, 13, 17, 24, 26, 27, 33, 39, 40, 42, 44, 45, 51, 52, 67, 69, 74, 75, 90, 98, 117, 118, 120, 152, 174, 189, 208, 223, 269, 370, 371, 374, 375, 380, 442, 462, 488, 490, 495, 515, 516, 549, 614, 616, 617, 618, 620, 626, 701, 702, 757, 759, 763, 770, 775, 779, 780, 782, 783, 787, 791, 796, 798, 801, 803, 805, 807, 808, 809, 811, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 831, 839, 847, 848, 849, 852], "argsort": [3, 7, 64, 87, 632, 741, 825], "descend": [3, 7, 64, 87, 623, 632, 673, 674, 739, 742], "top": [3, 7, 10, 15, 24, 26, 27, 40, 41, 52, 59, 75, 313, 362, 371, 482, 532, 620, 686, 798, 804, 805, 813, 818, 825, 827, 828, 831, 836, 837, 854, 858], "logit": [3, 4, 5, 7, 40, 41, 42, 43, 52, 58, 75, 81, 360, 375, 495, 498, 624, 682, 684, 774, 798, 847], "gather": [3, 7, 40, 52, 53, 75, 76, 324, 325, 326, 362, 540, 542, 620, 861], "print": [3, 4, 6, 7, 9, 11, 13, 17, 18, 20, 24, 26, 27, 28, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 161, 162, 165, 167, 168, 170, 175, 187, 188, 192, 194, 195, 196, 197, 199, 200, 201, 202, 203, 206, 207, 209, 210, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 300, 301, 303, 304, 305, 307, 314, 315, 322, 324, 328, 329, 330, 332, 346, 347, 352, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 394, 396, 399, 401, 404, 405, 406, 409, 411, 412, 416, 419, 421, 423, 424, 432, 439, 441, 442, 443, 444, 445, 446, 447, 453, 455, 457, 468, 472, 477, 478, 480, 481, 482, 487, 491, 492, 494, 509, 510, 511, 512, 519, 521, 523, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 559, 560, 562, 563, 564, 568, 569, 570, 573, 576, 577, 578, 579, 581, 583, 585, 586, 587, 591, 592, 595, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 651, 652, 653, 654, 656, 658, 659, 660, 661, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 787, 791, 792, 796, 798, 804, 805, 811, 813, 815, 826, 828, 830, 833, 835, 836, 837, 847, 849], "indic": [3, 7, 48, 52, 53, 56, 57, 59, 60, 62, 63, 64, 69, 71, 72, 75, 76, 79, 80, 82, 83, 85, 86, 87, 92, 95, 122, 123, 136, 140, 142, 163, 167, 168, 279, 322, 323, 324, 342, 362, 365, 368, 369, 370, 371, 376, 378, 386, 387, 388, 390, 394, 395, 396, 400, 401, 404, 405, 406, 407, 411, 412, 421, 440, 442, 450, 451, 452, 455, 458, 460, 462, 463, 464, 467, 471, 477, 478, 480, 481, 482, 485, 486, 500, 501, 502, 524, 539, 540, 542, 563, 564, 568, 600, 603, 604, 615, 618, 620, 621, 622, 623, 625, 627, 628, 629, 630, 631, 632, 636, 638, 639, 640, 641, 644, 648, 666, 680, 688, 689, 690, 692, 693, 694, 695, 697, 699, 704, 707, 709, 711, 712, 713, 715, 719, 720, 721, 722, 723, 724, 730, 731, 732, 733, 735, 737, 739, 741, 742, 759, 760, 762, 764, 778, 784, 791, 792, 794, 804, 812, 820, 823, 825, 838, 847], "to_list": [3, 7, 53, 76, 620], "arrai": [3, 4, 7, 8, 9, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 164, 166, 167, 168, 170, 172, 173, 174, 175, 181, 191, 192, 196, 201, 203, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 545, 546, 547, 548, 549, 551, 552, 553, 554, 555, 556, 558, 559, 561, 562, 563, 564, 565, 567, 568, 574, 575, 577, 578, 579, 580, 581, 583, 584, 585, 586, 587, 588, 596, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 710, 711, 712, 713, 716, 717, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 764, 770, 777, 778, 779, 780, 783, 787, 791, 792, 794, 798, 801, 803, 804, 805, 806, 809, 810, 811, 813, 814, 815, 816, 817, 818, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 841, 848, 849, 852, 853, 854, 856, 860, 861], "282": [3, 7], "281": [3, 7, 40, 42], "285": [3, 7, 75], "dev": [3, 6, 7, 8, 9, 19, 40, 42, 45, 50, 69, 73, 196, 203, 617, 804, 814, 818, 821, 835, 837], "64773697": 3, "29496649": 3, "04526037": 3, "39": [3, 4, 6, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 38, 40, 41, 42, 43, 45, 46, 51, 52, 57, 61, 68, 74, 75, 77, 80, 84, 107, 221, 256, 258, 260, 290, 291, 293, 360, 368, 380, 387, 389, 406, 409, 510, 601, 612, 618, 621, 623, 633, 660, 668, 726, 745], "tiger": [3, 7], "tabbi": [3, 7], "egyptian": [3, 7], "check": [3, 4, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 43, 45, 47, 49, 53, 57, 69, 72, 76, 80, 113, 151, 152, 161, 162, 165, 167, 168, 169, 172, 187, 194, 195, 202, 214, 525, 535, 537, 538, 545, 551, 552, 553, 554, 555, 571, 581, 593, 599, 612, 616, 617, 620, 623, 627, 658, 659, 666, 704, 714, 715, 716, 757, 764, 791, 792, 798, 800, 802, 803, 804, 805, 807, 811, 812, 814, 815, 817, 822, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 836, 837, 840, 847], "confirm": [3, 41, 803], "same": [3, 4, 5, 6, 7, 8, 13, 19, 21, 22, 23, 24, 26, 29, 31, 33, 38, 39, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 88, 92, 93, 94, 95, 96, 97, 111, 121, 126, 131, 133, 134, 136, 138, 140, 141, 142, 144, 147, 148, 149, 160, 163, 208, 215, 216, 217, 218, 220, 222, 226, 228, 231, 235, 241, 242, 248, 268, 270, 272, 275, 277, 278, 279, 288, 295, 307, 321, 322, 323, 324, 325, 326, 329, 330, 332, 339, 355, 360, 362, 365, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 404, 405, 406, 407, 409, 410, 411, 412, 413, 420, 425, 426, 434, 435, 436, 437, 438, 440, 442, 445, 455, 457, 472, 480, 481, 488, 490, 500, 502, 507, 508, 509, 510, 511, 512, 513, 519, 556, 610, 615, 616, 617, 618, 620, 621, 622, 623, 625, 626, 627, 629, 631, 632, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 648, 651, 652, 653, 654, 656, 657, 658, 659, 661, 663, 665, 667, 668, 669, 670, 671, 672, 673, 674, 677, 679, 686, 689, 690, 692, 693, 695, 696, 701, 702, 717, 727, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 757, 762, 763, 764, 770, 778, 791, 798, 804, 805, 808, 809, 811, 812, 813, 814, 815, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 835, 837, 838, 839, 843, 845, 847, 849, 851, 853, 860, 861], "8": [3, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 97, 98, 105, 120, 130, 131, 135, 138, 144, 153, 155, 156, 157, 160, 168, 193, 210, 218, 220, 221, 225, 226, 229, 230, 231, 233, 239, 242, 246, 247, 253, 254, 255, 259, 260, 263, 264, 266, 267, 268, 273, 274, 277, 278, 279, 282, 283, 286, 287, 288, 292, 297, 299, 300, 301, 303, 304, 306, 307, 324, 328, 339, 342, 344, 345, 346, 349, 356, 360, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 413, 416, 419, 427, 441, 442, 443, 445, 446, 447, 448, 450, 451, 452, 456, 458, 462, 467, 468, 477, 478, 481, 482, 483, 486, 487, 497, 499, 511, 514, 515, 519, 525, 526, 528, 532, 533, 536, 539, 543, 547, 548, 549, 551, 552, 555, 558, 563, 564, 568, 578, 579, 580, 581, 601, 604, 606, 608, 609, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 629, 630, 631, 632, 633, 636, 640, 641, 643, 644, 645, 646, 648, 654, 655, 656, 658, 659, 660, 663, 664, 665, 668, 670, 671, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 689, 696, 697, 699, 705, 712, 716, 724, 725, 726, 727, 729, 734, 735, 737, 739, 740, 742, 744, 745, 747, 749, 751, 752, 762, 765, 778, 804, 811, 812, 815, 828, 832, 836], "torch_alexnet": 3, "alexnet_weight": 3, "weight": [3, 9, 11, 13, 26, 27, 40, 41, 52, 54, 56, 58, 75, 77, 79, 81, 92, 93, 309, 313, 346, 362, 365, 368, 369, 380, 394, 426, 507, 509, 512, 601, 602, 605, 607, 608, 609, 621, 622, 624, 626, 646, 647, 648, 651, 682, 703, 764, 777, 778, 780, 782, 798, 811, 821, 828, 833, 837, 838, 853], "imagenet1k_v1": [3, 7], "dropout": [3, 56, 79, 368, 391, 392, 393, 622, 648, 651, 778, 836], "9": [3, 4, 5, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 68, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 97, 98, 105, 121, 122, 123, 135, 153, 154, 155, 156, 157, 160, 163, 216, 218, 220, 221, 224, 225, 226, 229, 230, 235, 236, 237, 242, 249, 255, 256, 257, 259, 263, 264, 266, 267, 268, 271, 273, 274, 278, 279, 282, 283, 284, 289, 294, 297, 298, 299, 336, 338, 342, 348, 349, 356, 360, 365, 366, 368, 370, 371, 378, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 413, 427, 441, 443, 445, 446, 450, 451, 452, 458, 462, 467, 477, 478, 479, 480, 482, 486, 497, 499, 502, 511, 528, 532, 533, 534, 536, 539, 547, 548, 551, 552, 555, 563, 564, 578, 580, 601, 602, 603, 607, 608, 612, 615, 616, 618, 620, 621, 622, 623, 625, 627, 629, 630, 631, 632, 633, 636, 637, 638, 644, 645, 646, 653, 654, 656, 658, 659, 660, 663, 664, 665, 668, 670, 671, 673, 674, 675, 677, 678, 679, 685, 689, 693, 694, 696, 697, 699, 704, 705, 710, 712, 715, 716, 724, 725, 726, 727, 729, 734, 735, 737, 739, 740, 742, 744, 745, 747, 749, 751, 752, 762, 782, 811, 813, 815, 823, 828, 836, 837, 850], "torch_output": [3, 5, 7], "dim": [3, 7, 42, 52, 69, 71, 75, 136, 307, 362, 368, 371, 385, 395, 396, 397, 400, 408, 462, 615, 622, 635, 642, 643, 647, 764, 778, 798, 813, 825, 826, 831], "torch_class": [3, 7], "torch_logit": [3, 7], "tensor": [3, 4, 6, 7, 8, 11, 13, 17, 18, 21, 22, 24, 26, 27, 28, 32, 38, 40, 48, 51, 52, 53, 56, 58, 59, 61, 69, 71, 74, 75, 76, 79, 80, 81, 82, 84, 91, 124, 132, 133, 136, 142, 158, 174, 266, 267, 296, 313, 317, 318, 319, 320, 321, 322, 331, 353, 360, 362, 365, 368, 369, 370, 371, 380, 381, 386, 387, 390, 394, 403, 404, 405, 406, 414, 416, 423, 424, 425, 426, 429, 431, 433, 434, 437, 439, 440, 442, 445, 446, 462, 465, 470, 473, 474, 475, 476, 479, 484, 515, 520, 563, 564, 615, 616, 618, 620, 622, 623, 624, 625, 629, 645, 647, 648, 662, 675, 682, 692, 694, 724, 778, 787, 792, 798, 808, 809, 813, 814, 818, 820, 821, 824, 825, 826, 828, 829, 831, 833, 835, 836, 838, 839, 841, 843, 847, 848, 849, 851, 852, 855, 857, 858, 861], "devic": [3, 5, 6, 7, 41, 42, 45, 48, 52, 61, 69, 71, 75, 84, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 212, 214, 306, 307, 322, 323, 362, 375, 460, 495, 496, 498, 499, 523, 537, 538, 615, 620, 629, 724, 725, 726, 727, 757, 759, 760, 775, 777, 778, 779, 780, 781, 782, 783, 784, 798, 805, 806, 809, 813, 817, 821, 822, 826, 828, 829, 831, 833, 838, 839, 840, 841, 844, 853, 854, 856, 857, 858, 859], "6477": 3, "2950": 3, "0453": 3, "grad_fn": [3, 7, 24, 38, 604, 611, 621, 836], "lt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 98], "takebackward0": [3, 7], "gt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 45, 98, 826, 833], "great": [3, 5, 798, 805, 828, 833, 835, 844, 845, 860], "With": [3, 19, 29, 38, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 163, 170, 175, 176, 177, 178, 179, 189, 192, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 329, 330, 332, 334, 337, 341, 344, 345, 346, 348, 349, 352, 360, 362, 365, 368, 369, 370, 371, 380, 389, 391, 392, 399, 411, 417, 418, 419, 421, 422, 423, 432, 435, 446, 462, 463, 464, 466, 469, 471, 472, 478, 480, 482, 485, 500, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 525, 526, 527, 528, 531, 532, 533, 534, 535, 539, 540, 543, 545, 547, 548, 549, 563, 564, 578, 579, 581, 583, 585, 586, 599, 600, 601, 602, 603, 605, 606, 607, 608, 609, 610, 611, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 651, 652, 653, 654, 655, 656, 658, 659, 661, 663, 664, 665, 666, 667, 670, 671, 672, 673, 674, 675, 677, 678, 679, 682, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 804, 813, 815, 825, 828, 831, 833, 844, 845, 847, 854, 857], "simpl": [3, 11, 15, 16, 18, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 38, 40, 42, 45, 52, 75, 380, 509, 764, 778, 792, 798, 803, 804, 805, 808, 810, 811, 813, 814, 815, 816, 821, 824, 825, 828, 829, 831, 835, 837, 838, 839, 841, 843, 847, 848, 853, 854, 855, 856], "chang": [3, 4, 9, 17, 27, 40, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 612, 618, 625, 627, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 669, 670, 671, 673, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 705, 716, 721, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 759, 798, 803, 804, 805, 807, 809, 810, 811, 812, 813, 815, 816, 818, 819, 825, 826, 827, 828, 829, 830, 831, 833, 837, 839, 840, 845, 847, 857, 860], "backend": [3, 8, 18, 19, 20, 21, 22, 23, 24, 27, 29, 30, 32, 47, 48, 52, 53, 57, 69, 75, 76, 80, 97, 124, 161, 162, 165, 187, 194, 195, 197, 200, 211, 329, 330, 365, 369, 419, 421, 516, 525, 537, 538, 546, 549, 550, 560, 567, 581, 584, 615, 616, 617, 620, 623, 673, 757, 759, 760, 762, 763, 764, 767, 769, 770, 775, 779, 780, 782, 786, 787, 798, 801, 802, 804, 805, 806, 807, 808, 812, 814, 815, 816, 817, 818, 820, 821, 822, 824, 825, 826, 828, 830, 831, 832, 834, 835, 838, 841, 843, 847, 848, 849, 854, 857, 860, 861], "let": [3, 4, 5, 6, 8, 9, 11, 13, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 43, 45, 53, 65, 76, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 279, 281, 282, 286, 539, 540, 618, 620, 623, 633, 677, 747, 749, 750, 751, 752, 798, 803, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 845, 847, 848, 861], "u": [3, 6, 40, 42, 44, 45, 52, 57, 71, 75, 80, 92, 93, 133, 369, 429, 436, 438, 623, 627, 652, 658, 659, 673, 712, 798, 799, 804, 805, 806, 811, 812, 819, 822, 824, 825, 826, 827, 828, 829, 831, 837, 839, 844], "differ": [3, 4, 6, 8, 9, 11, 15, 16, 20, 21, 22, 26, 27, 30, 31, 32, 33, 51, 52, 53, 57, 65, 69, 75, 76, 88, 97, 98, 107, 110, 160, 218, 235, 242, 243, 268, 284, 328, 335, 339, 340, 344, 365, 368, 369, 371, 380, 401, 412, 434, 440, 456, 463, 464, 478, 510, 511, 519, 539, 540, 612, 616, 618, 620, 622, 623, 625, 633, 645, 646, 660, 671, 686, 696, 743, 744, 749, 751, 752, 757, 762, 770, 779, 780, 798, 801, 802, 803, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 840, 843, 844, 845, 847, 848, 849, 851, 852, 853, 854, 857, 860, 861], "ll": [3, 5, 6, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 41, 798, 799, 801, 803, 804, 805, 810, 815, 818, 819, 823, 824, 836, 840, 845, 847, 848], "try": [3, 18, 28, 38, 41, 45, 69, 587, 620, 777, 787, 798, 803, 804, 805, 807, 808, 811, 812, 813, 817, 819, 824, 826, 833, 835, 839, 842, 844, 845, 849], "10": [3, 5, 7, 8, 9, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 42, 44, 45, 48, 51, 52, 53, 54, 56, 57, 61, 63, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 121, 131, 132, 133, 217, 225, 226, 229, 230, 233, 240, 245, 247, 253, 255, 257, 268, 274, 281, 282, 287, 295, 328, 329, 330, 333, 337, 339, 341, 342, 344, 345, 346, 348, 349, 353, 356, 365, 368, 371, 380, 386, 387, 388, 389, 399, 404, 405, 409, 410, 411, 412, 413, 452, 455, 458, 462, 467, 477, 478, 486, 507, 510, 511, 514, 516, 519, 532, 533, 534, 536, 539, 540, 542, 547, 548, 556, 564, 568, 573, 578, 580, 592, 595, 607, 615, 618, 620, 621, 622, 623, 625, 627, 628, 629, 630, 631, 632, 633, 636, 637, 639, 645, 654, 656, 660, 661, 663, 664, 665, 668, 673, 674, 675, 677, 679, 689, 694, 695, 696, 697, 699, 710, 712, 715, 716, 723, 724, 725, 726, 727, 733, 735, 741, 743, 744, 745, 746, 748, 749, 751, 752, 762, 764, 782, 798, 801, 804, 807, 811, 812, 813, 815, 818, 823, 826, 828, 833, 835, 836, 844, 849, 859], "tf": [3, 5, 8, 11, 13, 18, 21, 22, 24, 26, 27, 28, 29, 31, 33, 38, 43, 44, 775, 798, 808, 813, 814, 820, 824, 825, 828, 829, 831, 833, 838, 839, 841, 847, 848, 849, 854], "onc": [3, 5, 26, 27, 38, 40, 57, 61, 80, 84, 208, 369, 420, 617, 623, 629, 657, 658, 659, 673, 724, 798, 803, 804, 805, 811, 812, 813, 814, 815, 818, 819, 824, 825, 828, 831, 833, 836, 839, 840, 845, 847], "set": [3, 11, 13, 19, 26, 27, 29, 32, 40, 41, 42, 43, 44, 47, 52, 53, 56, 57, 62, 64, 65, 69, 75, 76, 79, 80, 85, 87, 88, 110, 113, 120, 140, 142, 176, 177, 178, 179, 180, 191, 204, 205, 206, 207, 208, 223, 322, 334, 349, 351, 356, 362, 365, 366, 368, 369, 370, 371, 380, 390, 411, 414, 418, 422, 425, 445, 446, 462, 472, 475, 482, 509, 514, 515, 516, 517, 518, 519, 521, 525, 532, 544, 549, 565, 566, 567, 569, 570, 571, 572, 573, 574, 575, 576, 581, 589, 612, 614, 615, 616, 617, 618, 620, 622, 623, 627, 629, 630, 632, 633, 645, 651, 653, 664, 666, 669, 672, 673, 704, 711, 714, 715, 716, 721, 722, 728, 730, 731, 735, 737, 738, 739, 742, 750, 752, 759, 762, 763, 764, 765, 770, 777, 778, 780, 782, 787, 792, 795, 798, 799, 805, 806, 807, 808, 810, 811, 812, 813, 814, 815, 817, 819, 821, 822, 824, 825, 826, 828, 829, 831, 833, 835, 836, 843, 846, 847, 848, 852, 853, 854, 855, 856, 858, 861], "our": [3, 6, 8, 9, 11, 13, 15, 18, 19, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 44, 67, 90, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 764, 774, 775, 777, 778, 780, 781, 782, 783, 798, 799, 800, 802, 803, 804, 805, 806, 807, 808, 810, 811, 812, 813, 815, 817, 818, 819, 822, 825, 826, 827, 828, 829, 831, 832, 833, 835, 836, 837, 838, 839, 843, 844, 847, 859, 860], "post": [3, 5, 40, 60, 83, 628, 723, 804, 818, 823, 838, 840], "process": [3, 5, 21, 26, 27, 31, 40, 202, 214, 617, 799, 804, 805, 810, 811, 812, 818, 819, 821, 823, 825, 826, 827, 828, 831, 833, 838, 844, 845, 847, 852, 853, 854, 857, 858, 860, 861], "11": [3, 5, 7, 8, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 53, 56, 57, 61, 65, 74, 75, 76, 79, 80, 82, 84, 88, 98, 218, 222, 225, 230, 240, 277, 278, 284, 346, 365, 368, 369, 371, 386, 387, 399, 404, 405, 409, 410, 413, 422, 455, 456, 458, 462, 467, 469, 486, 510, 511, 526, 532, 533, 539, 548, 564, 618, 620, 622, 623, 624, 625, 627, 629, 630, 631, 633, 636, 637, 645, 646, 656, 659, 660, 661, 663, 664, 668, 672, 673, 674, 675, 677, 679, 682, 684, 689, 694, 695, 697, 699, 710, 712, 722, 725, 726, 727, 734, 735, 743, 744, 745, 752, 811, 812, 813, 815, 823], "st": [3, 4, 6, 762, 807, 826, 828], "perf_count": [3, 6], "raw_logit": 3, "latenc": [3, 6], "nn": [3, 5, 13, 24, 26, 27, 40, 44, 134, 615, 798, 821, 826, 831, 838, 848, 855], "axi": [3, 5, 9, 41, 42, 43, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 108, 112, 132, 133, 136, 208, 282, 287, 329, 330, 334, 335, 342, 349, 365, 368, 370, 371, 374, 378, 380, 389, 390, 396, 399, 401, 411, 412, 444, 449, 457, 458, 459, 462, 463, 464, 467, 472, 477, 478, 480, 481, 482, 485, 486, 491, 492, 494, 502, 507, 510, 511, 512, 514, 515, 516, 517, 518, 519, 532, 539, 600, 612, 615, 617, 618, 620, 622, 623, 624, 625, 626, 629, 630, 631, 632, 633, 634, 644, 653, 656, 664, 677, 679, 680, 682, 683, 684, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 729, 730, 731, 735, 737, 739, 740, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 764, 774, 778, 779, 784, 811, 813, 815, 817, 820, 821, 824, 825, 828, 831, 833, 835, 838], "direct": [3, 52, 75, 335, 341, 345, 350, 354, 365, 368, 371, 401, 412, 463, 464, 478, 632, 742, 803, 808, 810, 825, 831, 837, 838, 850, 854, 855, 858], "tolist": 3, "652289830999962": 3, "shape": [3, 4, 5, 9, 11, 13, 19, 20, 21, 22, 26, 27, 32, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 96, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 203, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 310, 311, 312, 313, 315, 317, 318, 319, 320, 321, 322, 323, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 353, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 417, 418, 420, 421, 422, 425, 426, 427, 428, 430, 431, 432, 433, 434, 435, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 452, 453, 455, 457, 460, 465, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 484, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 508, 509, 510, 511, 512, 527, 528, 532, 533, 534, 536, 539, 540, 543, 549, 556, 563, 564, 574, 582, 584, 596, 600, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 628, 629, 630, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 739, 740, 742, 743, 744, 745, 747, 749, 750, 752, 753, 754, 759, 762, 764, 777, 778, 781, 791, 798, 805, 811, 813, 814, 815, 816, 817, 818, 820, 824, 825, 826, 828, 829, 830, 833, 835, 836, 837, 838, 847, 848], "dtype": [3, 5, 7, 9, 13, 19, 21, 22, 23, 24, 38, 41, 48, 49, 52, 53, 56, 57, 61, 62, 65, 69, 71, 72, 74, 75, 76, 79, 80, 84, 85, 88, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 203, 230, 269, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 327, 332, 334, 349, 362, 365, 368, 369, 370, 371, 375, 380, 389, 399, 411, 412, 414, 435, 445, 456, 480, 495, 496, 497, 498, 499, 509, 510, 511, 512, 515, 518, 519, 536, 537, 538, 540, 549, 558, 585, 615, 616, 617, 618, 620, 622, 623, 626, 629, 630, 632, 633, 634, 638, 645, 664, 680, 702, 703, 725, 726, 727, 730, 731, 732, 741, 742, 743, 744, 749, 751, 753, 754, 757, 759, 762, 764, 765, 777, 778, 779, 780, 781, 783, 798, 801, 807, 809, 813, 814, 815, 817, 818, 821, 822, 824, 825, 826, 828, 829, 833, 835, 848], "int32": [3, 38, 40, 49, 52, 53, 61, 62, 65, 72, 75, 76, 84, 85, 127, 132, 138, 144, 147, 150, 152, 154, 156, 158, 161, 163, 164, 168, 171, 175, 179, 183, 185, 203, 230, 376, 380, 500, 510, 511, 512, 540, 549, 585, 615, 616, 617, 618, 620, 629, 630, 633, 725, 726, 727, 731, 743, 744, 749, 751, 762, 763, 813, 825, 828, 833], "6477362": 3, "29496726": 3, "04526032": 3, "float32": [3, 5, 7, 9, 11, 13, 18, 19, 38, 40, 41, 42, 48, 49, 53, 56, 71, 72, 75, 76, 79, 88, 133, 136, 138, 144, 145, 146, 150, 154, 155, 158, 159, 160, 161, 164, 167, 168, 170, 175, 178, 184, 248, 275, 327, 339, 362, 365, 368, 369, 380, 389, 399, 412, 435, 445, 512, 549, 585, 615, 616, 618, 620, 622, 623, 626, 638, 640, 641, 644, 671, 673, 674, 680, 702, 703, 759, 762, 763, 798, 813, 815, 826, 828, 829, 848, 849], "As": [3, 5, 6, 8, 9, 11, 13, 19, 23, 24, 26, 27, 29, 32, 38, 39, 63, 67, 90, 631, 735, 736, 737, 738, 798, 801, 803, 804, 805, 808, 810, 811, 812, 813, 814, 817, 818, 819, 820, 821, 824, 825, 826, 827, 828, 831, 835, 836, 837, 839, 843, 847, 848, 849, 854, 859], "expect": [3, 5, 6, 8, 19, 23, 26, 27, 29, 42, 43, 45, 52, 57, 58, 75, 81, 174, 242, 286, 368, 370, 390, 412, 445, 523, 616, 618, 620, 624, 668, 682, 777, 778, 798, 804, 805, 807, 813, 814, 817, 819, 822, 824, 826, 828, 831, 839, 840, 845, 847, 848, 849], "ident": [3, 9, 24, 41, 43, 57, 69, 127, 196, 542, 568, 615, 617, 620, 623, 627, 660, 665, 717, 778, 811, 821, 822, 825, 826, 829, 831, 835, 836, 839, 841, 843, 845], "had": [3, 811, 812, 824, 829, 833, 854, 855], "anoth": [3, 17, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 128, 148, 150, 615, 616, 798, 803, 804, 805, 809, 811, 813, 814, 817, 819, 821, 824, 825, 828, 833, 835, 838, 841, 844, 846, 847, 848, 854, 860], "postprocess": 3, "routin": [3, 812, 824, 825, 831, 839, 854], "feed": [3, 208, 617, 847, 854, 855], "other": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 49, 51, 52, 53, 59, 65, 69, 72, 74, 75, 76, 82, 88, 92, 97, 98, 121, 136, 148, 174, 235, 240, 242, 258, 267, 268, 331, 335, 365, 371, 456, 457, 465, 521, 522, 615, 616, 618, 620, 629, 633, 686, 696, 727, 750, 752, 764, 798, 801, 803, 804, 805, 807, 808, 811, 812, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 835, 837, 838, 839, 840, 841, 844, 847, 848, 850, 852, 853, 854, 860, 861], "carefulli": [3, 273, 618, 777, 825, 852, 857], "rewrit": 3, "easili": [3, 23, 26, 27, 38, 798, 804, 808, 812, 818, 825, 831, 836, 837, 838, 839, 844, 854, 860, 861], "out": [3, 5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 41, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 158, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 415, 416, 417, 418, 419, 420, 423, 424, 426, 427, 428, 430, 431, 432, 433, 435, 439, 441, 442, 443, 444, 446, 447, 453, 455, 456, 457, 459, 460, 462, 463, 464, 465, 466, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 484, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 523, 527, 528, 532, 533, 534, 536, 539, 540, 549, 559, 563, 564, 601, 602, 605, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 734, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 770, 774, 775, 777, 778, 780, 781, 782, 783, 798, 799, 801, 802, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 821, 823, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 843, 844, 845, 847, 848, 854, 861], "quickest": 3, "particular": [3, 26, 27, 263, 618, 763, 804, 805, 807, 809, 812, 813, 815, 822, 824, 825, 828, 829, 850, 854, 860], "hardwar": [3, 40, 97, 101, 798, 804, 831, 844, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860], "again": [3, 5, 20, 21, 29, 30, 31, 32, 623, 671, 805, 808, 809, 810, 811, 815, 817, 819, 824, 825, 828, 829, 831, 836, 838, 839, 844, 845, 859, 860], "speed": [3, 6, 8, 9, 26, 27, 40, 45, 53, 76, 556, 620, 828, 843, 857], "up": [3, 5, 6, 8, 9, 26, 52, 53, 75, 76, 368, 371, 390, 403, 456, 464, 544, 556, 620, 622, 645, 798, 799, 801, 803, 805, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 843, 844, 845, 847, 855, 860, 861], "12": [3, 5, 6, 7, 9, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 49, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 83, 84, 88, 97, 98, 163, 218, 220, 225, 229, 230, 233, 235, 236, 237, 255, 268, 271, 278, 281, 288, 289, 311, 312, 342, 345, 346, 362, 365, 368, 371, 380, 386, 387, 388, 389, 391, 395, 396, 404, 405, 409, 410, 411, 412, 413, 455, 456, 458, 462, 467, 486, 499, 510, 516, 517, 518, 528, 532, 533, 564, 570, 578, 592, 618, 620, 622, 623, 625, 627, 628, 629, 630, 631, 633, 636, 640, 645, 646, 656, 658, 660, 664, 668, 672, 674, 675, 677, 679, 689, 693, 695, 697, 699, 716, 723, 725, 726, 727, 734, 735, 743, 744, 745, 749, 751, 762, 804, 809, 811, 813, 815, 823], "repeat": [3, 4, 20, 30, 52, 53, 59, 75, 76, 82, 368, 371, 380, 396, 401, 461, 509, 534, 620, 625, 626, 698, 702, 703, 791, 805, 808, 809, 815, 816, 824, 828], "previou": [3, 9, 19, 20, 21, 23, 29, 30, 31, 33, 54, 77, 182, 183, 184, 185, 186, 357, 367, 588, 590, 591, 592, 593, 595, 596, 598, 602, 607, 616, 620, 621, 777, 795, 804, 805, 807, 809, 812, 814, 820, 825, 828, 831, 838, 839, 857], "trace": [3, 4, 5, 6, 7, 8, 15, 16, 20, 23, 26, 29, 31, 32, 44, 53, 57, 69, 76, 80, 551, 552, 555, 566, 575, 589, 597, 620, 623, 759, 770, 780, 782, 798, 807, 811, 813, 825, 830, 831, 833, 838, 839, 846, 847, 848, 855, 860], "befor": [3, 4, 5, 18, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 40, 52, 56, 57, 59, 63, 65, 69, 75, 79, 80, 205, 208, 213, 368, 371, 380, 395, 400, 410, 413, 456, 463, 464, 465, 472, 510, 511, 617, 622, 623, 625, 626, 627, 631, 633, 635, 636, 637, 638, 640, 642, 644, 647, 648, 651, 663, 680, 686, 701, 702, 716, 735, 736, 737, 738, 743, 744, 749, 751, 778, 787, 791, 803, 804, 805, 807, 808, 810, 813, 814, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 828, 833, 836, 839, 847, 848, 854], "13": [3, 5, 6, 7, 17, 21, 22, 23, 24, 38, 40, 42, 46, 51, 52, 56, 57, 61, 65, 74, 75, 76, 77, 79, 82, 84, 88, 97, 113, 163, 193, 218, 233, 242, 253, 273, 282, 342, 349, 356, 365, 368, 371, 388, 389, 399, 404, 410, 413, 455, 456, 458, 462, 467, 486, 499, 510, 511, 527, 528, 532, 533, 548, 570, 578, 601, 612, 616, 617, 618, 620, 621, 622, 623, 625, 626, 627, 630, 631, 633, 636, 637, 645, 646, 656, 660, 668, 672, 674, 677, 699, 703, 716, 725, 726, 727, 734, 735, 743, 744, 745, 811, 813, 815, 825], "026875037000081647": 3, "14": [3, 5, 6, 7, 22, 38, 40, 41, 42, 49, 51, 52, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 147, 160, 163, 216, 221, 223, 230, 234, 260, 264, 268, 274, 281, 289, 338, 368, 369, 371, 380, 386, 387, 388, 389, 399, 406, 409, 410, 411, 413, 417, 423, 424, 456, 458, 462, 467, 486, 510, 578, 601, 616, 618, 620, 621, 622, 623, 625, 627, 631, 633, 636, 637, 639, 641, 643, 645, 656, 658, 660, 668, 675, 677, 679, 699, 716, 725, 726, 727, 735, 744, 745, 811, 815, 828], "overrid": [3, 5, 32, 41, 48, 52, 71, 75, 136, 380, 509, 615, 808, 810], "behavior": [3, 5, 52, 63, 235, 242, 268, 277, 381, 520, 567, 590, 618, 620, 631, 735, 736, 737, 738, 803, 810, 811, 812, 813, 824, 825, 826, 828, 831, 833, 839, 851], "prealloc": [3, 5], "75": [3, 5, 38, 51, 52, 74, 75, 76, 79, 84, 114, 132, 221, 223, 235, 237, 248, 309, 341, 342, 362, 365, 410, 519, 534, 547, 578, 612, 615, 618, 620, 623, 627, 629, 636, 661, 668, 712, 727], "memori": [3, 5, 8, 21, 22, 23, 24, 48, 52, 59, 71, 75, 82, 123, 134, 190, 202, 208, 210, 214, 371, 380, 450, 451, 458, 460, 462, 463, 464, 471, 486, 516, 562, 567, 590, 615, 617, 620, 622, 625, 647, 688, 689, 690, 692, 694, 695, 697, 699, 792, 812, 813, 814, 824, 825, 831, 833, 839, 847, 854, 856, 857, 858], "temporari": [3, 5, 576, 598, 620, 792, 813, 830], "fix": [3, 5, 42, 52, 75, 92, 93, 365, 369, 440, 622, 648, 798, 801, 804, 805, 807, 813, 819, 828, 829], "until": [3, 5, 792, 805, 824, 833, 839, 844, 847, 861], "handl": [3, 5, 38, 40, 46, 50, 51, 52, 68, 69, 73, 74, 75, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 188, 189, 190, 191, 192, 196, 201, 202, 210, 214, 220, 232, 257, 259, 273, 279, 280, 285, 286, 290, 294, 295, 297, 360, 371, 455, 481, 612, 617, 618, 623, 633, 677, 749, 751, 774, 782, 799, 806, 811, 812, 813, 819, 820, 821, 823, 824, 825, 826, 827, 828, 830, 831, 837, 851, 861], "o": [3, 5, 39, 40, 41, 42, 44, 559, 620, 622, 648, 798, 804, 806, 812, 833, 840], "environ": [3, 5, 8, 21, 22, 23, 24, 41, 44, 798, 799, 805, 840, 854, 856], "xla_python_client_alloc": [3, 5], "platform": [3, 5, 9, 21, 22, 24, 800, 802, 804, 810, 852, 856, 858], "jit": [3, 6, 8, 26, 29, 833, 839, 847, 854], "img_jax": [3, 5], "device_put": [3, 6], "15": [3, 5, 7, 8, 9, 22, 38, 40, 41, 42, 45, 51, 52, 53, 57, 61, 65, 71, 72, 74, 75, 76, 79, 80, 82, 84, 88, 98, 131, 160, 218, 225, 229, 235, 237, 246, 253, 254, 259, 260, 268, 277, 278, 279, 342, 356, 365, 366, 368, 369, 371, 380, 386, 387, 404, 406, 409, 410, 413, 419, 458, 462, 467, 486, 510, 528, 532, 533, 536, 547, 548, 573, 578, 595, 615, 616, 618, 620, 622, 623, 625, 627, 629, 630, 631, 633, 636, 646, 656, 659, 660, 661, 668, 674, 675, 693, 699, 704, 716, 725, 726, 733, 735, 743, 744, 745, 759, 804, 812, 815, 823, 857], "warm": 3, "_": [3, 6, 8, 9, 26, 39, 40, 51, 52, 69, 74, 75, 77, 93, 150, 238, 240, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 437, 440, 480, 509, 532, 601, 602, 616, 618, 620, 621, 623, 625, 627, 633, 671, 672, 674, 700, 711, 750, 805, 816, 824, 836], "rang": [3, 9, 26, 27, 38, 39, 40, 42, 48, 52, 65, 71, 75, 121, 132, 133, 282, 293, 301, 313, 360, 362, 369, 371, 380, 421, 431, 465, 473, 475, 480, 484, 510, 511, 512, 532, 600, 615, 618, 620, 631, 633, 735, 743, 744, 749, 751, 762, 764, 765, 777, 798, 803, 813, 817, 821, 828, 833, 836, 837, 838, 854, 860], "16": [3, 5, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 97, 98, 163, 229, 258, 278, 285, 339, 342, 346, 365, 368, 371, 380, 386, 387, 389, 395, 399, 400, 404, 405, 410, 413, 445, 462, 510, 516, 533, 536, 558, 578, 579, 611, 616, 618, 620, 621, 622, 623, 625, 627, 629, 630, 633, 644, 646, 652, 656, 659, 660, 668, 670, 674, 699, 712, 725, 726, 727, 734, 744, 745, 762, 765, 798, 805, 813, 815, 836], "0022192720000475674": 3, "64773613": 3, "29496723": 3, "exact": [3, 52, 68, 69, 105, 368, 370, 403, 408, 444, 445, 631, 735, 737, 764, 774, 804, 805, 807, 815, 833], "note": [3, 5, 9, 22, 26, 27, 32, 41, 42, 43, 52, 53, 57, 59, 63, 75, 80, 82, 92, 129, 142, 174, 242, 277, 278, 285, 322, 323, 342, 362, 365, 368, 369, 371, 390, 420, 425, 433, 434, 440, 462, 480, 616, 618, 622, 623, 625, 631, 633, 648, 657, 658, 670, 671, 673, 692, 696, 736, 738, 747, 778, 792, 801, 803, 804, 805, 808, 813, 815, 816, 819, 824, 825, 826, 828, 829, 831], "were": [3, 5, 43, 69, 72, 163, 167, 168, 242, 618, 622, 648, 803, 804, 805, 813, 817, 819, 823, 824, 826, 828, 829, 831, 833, 847, 854, 855, 860], "function": [3, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 161, 162, 163, 166, 167, 168, 170, 174, 175, 192, 194, 195, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 377, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 559, 562, 563, 564, 567, 568, 571, 573, 575, 578, 579, 580, 581, 583, 585, 586, 587, 593, 597, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 706, 708, 710, 711, 712, 714, 715, 716, 717, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 760, 762, 763, 764, 765, 770, 774, 777, 780, 787, 788, 794, 798, 801, 804, 805, 806, 807, 808, 809, 810, 812, 815, 816, 818, 824, 827, 832, 834, 835, 836, 837, 841, 843, 847, 849, 851, 852, 853, 854, 855, 860, 861], "calcul": [3, 9, 40, 51, 52, 53, 58, 65, 69, 74, 75, 76, 80, 81, 88, 98, 215, 216, 217, 218, 219, 220, 221, 222, 223, 232, 233, 235, 238, 239, 240, 256, 257, 258, 259, 260, 261, 266, 267, 268, 273, 280, 281, 282, 284, 285, 286, 292, 301, 329, 330, 342, 352, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 421, 445, 472, 488, 490, 516, 556, 618, 620, 623, 624, 633, 659, 668, 671, 682, 683, 684, 746, 747, 748, 749, 750, 751, 752, 762, 764, 777, 778, 781, 803, 816, 833, 844, 847], "dog": 3, "18": [3, 8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 61, 74, 75, 79, 80, 84, 88, 108, 230, 235, 277, 281, 290, 291, 342, 360, 365, 368, 371, 389, 395, 399, 400, 404, 410, 413, 462, 612, 618, 623, 629, 633, 640, 656, 663, 668, 675, 725, 726, 727, 744, 745, 749, 811, 813, 815], "19": [3, 8, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 61, 74, 75, 79, 80, 84, 221, 230, 258, 268, 285, 368, 369, 371, 380, 388, 389, 400, 404, 410, 413, 419, 424, 462, 510, 618, 623, 627, 629, 632, 656, 664, 677, 715, 725, 726, 727, 742, 815], "006431100999861883": 3, "258": [3, 622, 637, 639], "104": [3, 65, 623, 633, 668, 745], "259": 3, "72447652": 3, "13937832": 3, "05874982": 3, "samoi": 3, "wallabi": 3, "pomeranian": 3, "incorrect": [3, 812], "predict": [3, 5, 7, 9, 40, 41, 42, 43, 52, 58, 75, 81, 370, 441, 444, 447, 624, 682, 683, 684, 798, 813], "down": [3, 19, 29, 43, 52, 75, 368, 371, 403, 464, 804, 828, 841, 854, 860], "itself": [3, 21, 31, 51, 92, 269, 522, 587, 618, 620, 627, 716, 792, 801, 804, 805, 807, 810, 811, 812, 813, 814, 817, 818, 819, 824, 825, 837, 839, 843, 847, 853, 854, 855, 860], "version": [3, 9, 23, 24, 29, 40, 41, 42, 45, 46, 52, 75, 92, 105, 286, 334, 336, 365, 380, 514, 519, 600, 618, 620, 623, 658, 659, 759, 787, 788, 798, 804, 805, 810, 812, 813, 816, 824, 826, 833, 843, 844, 845, 848, 860, 861], "return": [3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 764, 765, 769, 770, 775, 777, 778, 780, 782, 787, 788, 791, 792, 793, 794, 795, 798, 804, 805, 808, 811, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 847, 848, 849, 855], "20": [3, 9, 13, 38, 40, 41, 42, 45, 51, 52, 53, 56, 61, 65, 74, 75, 76, 79, 80, 84, 88, 230, 234, 238, 274, 278, 282, 298, 342, 344, 346, 365, 368, 371, 386, 388, 404, 410, 413, 455, 477, 532, 539, 540, 542, 564, 568, 578, 618, 620, 623, 629, 630, 633, 636, 637, 647, 656, 661, 664, 668, 675, 725, 733, 734, 743, 744, 745, 749, 751, 798, 812, 831, 835], "004749261999904775": 3, "7245": 3, "1394": 3, "0587": 3, "promis": [3, 844], "sourc": [3, 7, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 33, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 759, 760, 762, 763, 764, 766, 767, 768, 769, 770, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 803, 804, 805, 807, 808, 810, 811, 812, 825, 827, 843, 844, 845, 846, 848, 849, 853, 854, 855, 856, 857], "21": [3, 9, 38, 40, 42, 45, 51, 52, 53, 61, 71, 74, 75, 79, 80, 84, 88, 97, 133, 163, 218, 221, 223, 229, 253, 268, 298, 349, 368, 369, 371, 380, 386, 389, 399, 404, 410, 412, 413, 417, 455, 510, 564, 615, 616, 618, 620, 623, 624, 627, 633, 656, 668, 672, 684, 710, 725, 726, 743, 744, 745, 817, 823], "modul": [3, 5, 6, 8, 11, 13, 15, 16, 17, 21, 22, 23, 24, 26, 27, 28, 32, 38, 39, 40, 42, 43, 44, 67, 69, 90, 98, 361, 363, 364, 372, 373, 377, 560, 620, 634, 755, 759, 774, 775, 776, 778, 779, 781, 783, 786, 787, 798, 800, 804, 808, 809, 810, 817, 821, 824, 825, 827, 828, 833, 834, 836, 838, 839, 845, 847, 849, 854, 855, 857], "def": [3, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 51, 74, 117, 219, 526, 544, 614, 620, 626, 627, 702, 703, 710, 791, 798, 801, 803, 804, 807, 808, 811, 813, 814, 815, 817, 818, 820, 821, 823, 824, 825, 826, 828, 829, 831, 833, 835, 836, 837, 838, 847, 848, 849], "__init__": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 69, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 760, 767, 768, 769, 774, 777, 778, 779, 780, 781, 782, 783, 786, 787, 791, 793, 796, 798, 803, 808, 809, 813, 817, 825, 829, 833, 835, 836, 837, 838, 848], "self": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 622, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 782, 791, 798, 805, 808, 811, 817, 825, 826, 833, 835, 836, 837, 838, 848], "num_class": [3, 11, 13, 26, 27, 40, 42, 44, 798, 838, 848], "1000": [3, 6, 7, 11, 26, 27, 40, 41, 42, 43, 45, 48, 71, 133, 615, 798, 836, 848], "v": [3, 4, 5, 15, 16, 19, 26, 27, 29, 32, 33, 38, 41, 42, 52, 56, 64, 71, 75, 79, 87, 133, 233, 238, 240, 281, 369, 371, 421, 429, 436, 437, 461, 618, 622, 626, 632, 648, 651, 702, 703, 741, 759, 778, 779, 780, 781, 782, 783, 798, 800, 804, 805, 806, 810, 818, 833, 836, 837, 838], "none": [3, 5, 6, 8, 9, 26, 38, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 96, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 165, 166, 167, 168, 170, 172, 175, 187, 190, 191, 203, 204, 205, 206, 207, 208, 209, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 555, 560, 563, 564, 565, 566, 567, 569, 570, 571, 572, 574, 575, 576, 578, 579, 581, 583, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 605, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 708, 709, 710, 711, 715, 716, 717, 719, 720, 721, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 759, 760, 762, 763, 764, 765, 770, 774, 775, 777, 778, 779, 780, 781, 782, 783, 786, 787, 790, 792, 798, 801, 804, 807, 808, 809, 811, 812, 813, 814, 815, 817, 818, 820, 821, 824, 825, 826, 828, 829, 831, 833, 835, 837, 838, 847, 848, 849], "_build": [3, 5, 779, 780, 798], "kwarg": [3, 4, 5, 8, 9, 26, 40, 44, 47, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 98, 101, 198, 371, 472, 559, 587, 615, 617, 620, 757, 759, 774, 775, 778, 779, 780, 787, 796, 798, 808, 813, 814, 817, 821, 824, 825, 831, 833, 837, 847, 848, 849], "featur": [3, 8, 9, 11, 13, 15, 17, 26, 27, 40, 44, 52, 75, 368, 382, 384, 391, 392, 393, 777, 778, 798, 803, 804, 805, 808, 809, 812, 813, 820, 829, 831, 836, 839, 848, 854, 855, 856, 860], "sequenti": [3, 5, 7, 24, 26, 27, 42, 798, 810, 811, 837, 848], "conv2d": [3, 5, 7, 24, 26, 27, 42, 45, 56, 79, 622, 639, 778, 798], "64": [3, 5, 7, 38, 40, 41, 42, 45, 51, 52, 56, 74, 75, 76, 79, 80, 84, 88, 98, 159, 229, 239, 273, 282, 283, 339, 365, 368, 389, 399, 532, 533, 579, 607, 616, 618, 620, 621, 622, 623, 627, 633, 637, 639, 641, 643, 644, 665, 668, 678, 712, 716, 726, 745, 749, 798, 804, 813, 836, 837, 859], "2": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 191, 192, 193, 196, 199, 201, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 310, 313, 314, 315, 322, 324, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 384, 386, 387, 388, 389, 390, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 427, 430, 432, 435, 439, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 455, 456, 457, 458, 459, 462, 463, 464, 466, 467, 468, 469, 471, 472, 477, 478, 479, 480, 481, 482, 485, 486, 487, 491, 492, 494, 497, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 559, 561, 563, 564, 568, 577, 578, 579, 580, 581, 583, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 764, 765, 774, 777, 778, 787, 791, 792, 798, 801, 804, 805, 807, 809, 810, 811, 812, 813, 815, 817, 818, 820, 821, 823, 824, 825, 826, 828, 832, 833, 835, 836, 837, 838, 839, 847, 848, 849, 860, 861], "data_format": [3, 42, 52, 56, 75, 79, 368, 374, 383, 386, 387, 388, 391, 392, 393, 404, 405, 406, 407, 409, 488, 489, 490, 493, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 762, 778, 781, 798], "nchw": [3, 42, 52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 493, 622, 635, 638, 639, 642, 643, 644, 778, 798], "relu": [3, 5, 7, 24, 26, 27, 38, 45, 46, 52, 67, 68, 75, 107, 296, 297, 305, 360, 612, 774, 798, 826, 836, 837], "maxpool2d": [3, 5, 7, 40, 778, 798], "192": [3, 42, 762, 791], "384": [3, 77, 601, 621, 627, 704], "avgpool": [3, 7], "adaptiveavgpool2d": [3, 7, 778], "6": [3, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 64, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 93, 97, 98, 105, 107, 112, 117, 122, 123, 130, 131, 134, 135, 138, 144, 148, 149, 150, 158, 160, 168, 214, 215, 217, 218, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 258, 259, 260, 261, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 289, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 306, 307, 313, 324, 329, 330, 332, 334, 342, 343, 345, 346, 347, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 378, 380, 389, 391, 394, 395, 399, 400, 404, 410, 411, 412, 413, 416, 419, 422, 423, 427, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 456, 458, 462, 463, 467, 468, 471, 472, 477, 478, 480, 481, 486, 487, 497, 499, 500, 502, 507, 509, 510, 511, 512, 514, 516, 518, 519, 525, 527, 528, 531, 532, 533, 539, 540, 547, 548, 549, 564, 578, 579, 580, 581, 583, 587, 601, 602, 603, 604, 605, 606, 607, 608, 609, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 651, 653, 654, 655, 656, 658, 659, 660, 663, 664, 665, 668, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 704, 705, 715, 716, 722, 723, 724, 725, 726, 727, 729, 730, 731, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 762, 777, 798, 801, 804, 807, 809, 811, 812, 813, 815, 818, 823, 828, 831, 833, 835, 836, 837], "classifi": [3, 9, 11, 13, 26, 27, 40, 42, 43, 798, 803, 847, 848], "prob": [3, 42, 52, 56, 75, 79, 84, 368, 375, 391, 392, 393, 495, 622, 629, 645, 724, 778, 798], "linear": [3, 7, 13, 25, 26, 27, 38, 39, 40, 42, 45, 52, 53, 56, 68, 75, 76, 79, 105, 107, 109, 110, 113, 290, 293, 297, 299, 300, 301, 305, 346, 360, 365, 368, 371, 380, 403, 435, 472, 519, 536, 559, 612, 620, 622, 627, 648, 672, 711, 762, 764, 765, 777, 778, 798, 811, 816, 821, 822, 824, 825, 828, 831, 833, 836, 837, 838, 848, 852, 853, 854, 857], "4096": 3, "_forward": [3, 5, 6, 8, 26, 27, 38, 39, 42, 798, 816, 833, 836, 837], "x": [3, 5, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 42, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 163, 164, 167, 168, 170, 175, 191, 192, 196, 201, 202, 203, 207, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 269, 270, 272, 273, 274, 275, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 322, 323, 327, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 378, 379, 380, 381, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 415, 417, 418, 420, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 453, 454, 456, 457, 459, 460, 462, 465, 468, 469, 470, 471, 472, 473, 474, 475, 476, 479, 480, 482, 484, 485, 487, 488, 489, 490, 491, 492, 493, 494, 501, 502, 503, 504, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 545, 547, 548, 549, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 568, 569, 570, 573, 576, 577, 578, 579, 580, 581, 583, 585, 586, 587, 599, 600, 602, 603, 604, 606, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 707, 710, 711, 712, 713, 714, 715, 716, 721, 722, 723, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 778, 781, 784, 787, 791, 796, 798, 801, 803, 806, 808, 809, 811, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 828, 829, 831, 833, 835, 836, 837, 838, 847, 848, 849], "reshap": [3, 26, 27, 42, 43, 52, 56, 57, 59, 69, 75, 79, 80, 82, 353, 365, 368, 369, 371, 386, 387, 388, 391, 404, 405, 406, 409, 417, 432, 456, 462, 600, 620, 622, 623, 625, 638, 640, 644, 664, 680, 798, 824, 825, 828, 831, 833, 835, 838], "bidirect": 4, "encod": [4, 11, 13, 26, 27, 40, 42, 53, 58, 76, 81, 536, 620, 624, 682, 798, 836, 844, 848], "mlm": 4, "support": [4, 8, 9, 17, 21, 22, 23, 24, 26, 29, 41, 50, 52, 53, 57, 73, 75, 76, 80, 142, 161, 165, 187, 194, 209, 218, 235, 242, 263, 264, 268, 278, 296, 322, 342, 360, 362, 365, 369, 371, 403, 420, 480, 525, 537, 546, 549, 550, 567, 581, 615, 616, 617, 618, 620, 622, 623, 646, 657, 658, 659, 662, 664, 673, 680, 757, 763, 770, 782, 787, 788, 791, 798, 800, 801, 803, 804, 805, 807, 808, 810, 814, 815, 816, 818, 820, 821, 823, 824, 826, 828, 829, 831, 832, 833, 835, 836, 838, 840, 841, 843, 844, 845, 848, 851, 853, 854, 857, 859, 860, 861], "googl": [4, 21, 22, 23, 24, 40, 41, 42, 44, 812, 844], "type": [4, 6, 11, 13, 17, 23, 26, 27, 32, 40, 41, 42, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 526, 527, 528, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 757, 759, 762, 763, 764, 765, 769, 770, 774, 777, 778, 779, 780, 784, 787, 791, 792, 793, 796, 798, 803, 804, 805, 806, 807, 808, 811, 814, 815, 816, 817, 820, 822, 824, 826, 828, 829, 831, 833, 835, 836, 847, 848, 849, 854, 855, 858], "choos": [4, 40, 42, 50, 62, 63, 73, 209, 235, 242, 263, 264, 268, 329, 330, 365, 371, 617, 618, 630, 631, 633, 734, 735, 736, 737, 738, 746, 747, 748, 750, 762, 798, 803, 804, 805, 822, 828, 834, 838, 847], "librari": [4, 6, 8, 15, 16, 22, 24, 38, 40, 50, 63, 73, 209, 240, 242, 258, 263, 264, 286, 329, 330, 365, 617, 618, 623, 631, 633, 658, 659, 735, 736, 737, 738, 746, 747, 748, 750, 798, 803, 804, 807, 813, 838, 839, 843, 844, 845, 847, 850, 851, 852, 854, 858, 861], "pretrain": [4, 6, 11, 12, 13, 26, 27, 45, 798, 848], "save": [4, 7, 40, 52, 69, 75, 380, 516, 576, 598, 617, 620, 634, 780, 804, 812, 819, 828, 839, 845, 853], "some": [4, 5, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 32, 38, 42, 43, 69, 77, 240, 242, 258, 368, 391, 392, 393, 601, 602, 605, 607, 608, 609, 617, 618, 621, 627, 715, 778, 798, 801, 803, 804, 805, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 835, 836, 837, 839, 840, 841, 844, 845, 847, 848, 850, 851, 853, 854, 855, 860, 861], "mohame54": 4, "automodel": [4, 8, 26], "autotoken": 4, "load": [4, 6, 8, 23, 26, 40, 41, 42, 43, 44, 45, 69, 369, 436, 634, 780, 798, 828, 839, 853, 860], "token": [4, 42], "bert_bas": 4, "from_pretrain": [4, 8, 26, 43, 847, 848], "base": [4, 9, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 100, 102, 133, 142, 174, 238, 239, 256, 257, 258, 259, 273, 313, 322, 324, 331, 334, 339, 346, 362, 365, 368, 369, 378, 410, 413, 436, 501, 569, 579, 591, 615, 616, 618, 620, 623, 625, 631, 633, 664, 688, 735, 736, 737, 738, 745, 760, 763, 764, 767, 768, 769, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 786, 787, 792, 793, 796, 798, 804, 805, 807, 811, 812, 813, 817, 820, 822, 823, 824, 826, 827, 828, 829, 830, 831, 833, 854, 859, 861], "uncas": 4, "eval": [4, 5, 7, 21, 22, 23, 24, 780], "evalu": [4, 51, 52, 69, 74, 75, 238, 240, 256, 257, 258, 259, 263, 270, 272, 279, 283, 316, 347, 358, 359, 362, 367, 369, 370, 371, 432, 445, 469, 611, 618, 621, 627, 634, 714, 715, 753, 754, 779, 780, 805, 811, 813, 821, 822, 854], "bert_token": 4, "sampl": [4, 6, 8, 11, 13, 23, 26, 27, 41, 48, 51, 52, 61, 65, 71, 74, 75, 84, 88, 132, 133, 287, 313, 362, 368, 370, 371, 375, 391, 392, 393, 403, 414, 445, 475, 495, 496, 497, 498, 499, 615, 618, 629, 633, 724, 725, 726, 727, 750, 752, 778, 826, 828], "test": [4, 18, 19, 21, 22, 28, 29, 31, 32, 33, 41, 42, 51, 53, 66, 74, 76, 89, 120, 166, 170, 249, 250, 251, 252, 275, 368, 391, 392, 393, 556, 614, 616, 618, 620, 634, 753, 754, 757, 760, 763, 792, 798, 800, 801, 802, 806, 810, 813, 815, 817, 819, 822, 825, 827, 829, 839, 840, 845, 847, 848, 849, 854], "did": [4, 40, 803, 810, 838, 844, 860], "realli": [4, 38, 804, 811, 818, 839, 847, 859, 860], "like": [4, 6, 8, 18, 19, 20, 26, 28, 29, 30, 31, 32, 33, 43, 45, 48, 51, 52, 59, 71, 74, 75, 79, 82, 87, 133, 151, 174, 219, 239, 245, 248, 261, 279, 335, 339, 351, 365, 368, 369, 370, 371, 378, 380, 410, 412, 420, 442, 451, 452, 461, 462, 501, 502, 519, 615, 616, 618, 623, 625, 629, 632, 657, 692, 727, 740, 792, 798, 801, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 832, 833, 835, 836, 837, 838, 839, 844, 847, 848, 854, 859], "input": [4, 5, 8, 11, 13, 23, 24, 26, 31, 32, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 150, 151, 152, 153, 155, 156, 157, 158, 159, 160, 163, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 189, 191, 192, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 357, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 425, 426, 427, 430, 432, 433, 434, 435, 436, 437, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 455, 456, 457, 458, 460, 462, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 542, 543, 545, 547, 548, 549, 551, 552, 553, 554, 555, 556, 558, 563, 564, 565, 571, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 588, 593, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 710, 711, 712, 713, 715, 716, 717, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 763, 770, 774, 777, 778, 779, 780, 781, 791, 792, 807, 808, 809, 811, 813, 814, 815, 816, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 847, 848, 855, 858], "pad": [4, 7, 40, 42, 52, 56, 59, 75, 79, 82, 93, 95, 368, 371, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 536, 620, 622, 625, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 687, 700, 764, 778, 798], "longest": 4, "return_tensor": [4, 8, 26, 43, 847, 848], "pt": [4, 8, 26, 847], "max_length": [4, 69], "512": [4, 5, 7, 40, 42, 80, 622, 637, 678, 798], "input_id": 4, "101": [4, 9, 41, 622, 623, 627, 646, 661, 710], "1045": 4, "2106": 4, "1005": 4, "1056": 4, "2428": 4, "2066": 4, "2115": 4, "4309": 4, "1012": 4, "102": [4, 9, 52, 75, 84, 389, 725], "token_type_id": 4, "attention_mask": [4, 56, 79, 622, 648], "pooler": 4, "compar": [4, 6, 8, 26, 39, 43, 45, 52, 53, 63, 64, 65, 69, 75, 76, 87, 88, 328, 344, 365, 380, 517, 521, 524, 620, 631, 632, 633, 735, 736, 737, 738, 739, 742, 748, 759, 798, 809, 815, 817, 826, 828, 831, 836, 850, 852, 854, 860, 861], "no_grad": [4, 40, 847], "bert_output": 4, "pooler_output": 4, "ivy_bert": 4, "bert_base_uncas": 4, "ivy_input": 4, "k": [4, 6, 39, 42, 48, 52, 53, 56, 57, 61, 71, 74, 75, 79, 80, 84, 92, 93, 117, 127, 140, 141, 142, 262, 307, 322, 323, 362, 369, 371, 375, 378, 380, 418, 431, 435, 437, 439, 478, 482, 495, 496, 497, 498, 499, 502, 512, 524, 614, 615, 620, 622, 623, 627, 629, 630, 648, 651, 655, 663, 664, 670, 672, 673, 674, 677, 712, 725, 726, 727, 733, 798, 806, 807, 825, 826, 833, 847, 850, 854], "ivy_output": [4, 43], "logits_clos": 4, "allclos": [4, 6, 8, 11, 13, 26, 43, 45, 52, 75, 365], "detach": [4, 6, 8, 11, 13, 26, 823], "rtol": [4, 11, 13, 52, 57, 75, 80, 328, 344, 365, 623, 666, 669, 757, 759, 801, 818, 826], "005": [4, 7, 52, 75, 328, 344, 365, 441], "atol": [4, 6, 8, 26, 52, 57, 75, 80, 328, 344, 365, 623, 666, 757, 759, 801, 818, 826], "equal": [4, 48, 49, 51, 52, 53, 57, 58, 59, 61, 63, 64, 65, 69, 72, 74, 75, 76, 80, 81, 82, 84, 87, 93, 97, 98, 127, 129, 130, 131, 137, 138, 147, 227, 229, 233, 238, 240, 249, 250, 271, 273, 278, 281, 282, 286, 324, 325, 326, 328, 344, 362, 365, 368, 369, 371, 374, 380, 390, 411, 435, 458, 467, 480, 486, 491, 492, 494, 512, 521, 524, 600, 615, 616, 618, 620, 623, 624, 625, 629, 630, 631, 632, 633, 656, 665, 666, 669, 671, 677, 682, 685, 687, 692, 694, 700, 727, 733, 735, 736, 737, 738, 739, 742, 747, 749, 750, 751, 752, 770, 777, 778, 810, 811, 813, 815, 817, 826, 828], "els": [4, 5, 6, 9, 41, 42, 44, 45, 52, 53, 61, 74, 75, 84, 153, 154, 155, 156, 157, 169, 275, 279, 369, 375, 425, 434, 438, 440, 496, 531, 535, 616, 618, 620, 622, 627, 629, 647, 714, 717, 725, 726, 727, 757, 791, 792, 798, 803, 804, 805, 807, 809, 813, 814, 817, 821, 824, 825, 826, 828, 829, 831, 833, 835, 837, 838, 839, 855], "768": 4, "fn": [4, 43, 45, 52, 69, 72, 75, 101, 161, 162, 194, 195, 198, 371, 449, 522, 537, 538, 587, 616, 617, 620, 627, 710, 711, 712, 714, 715, 716, 757, 759, 784, 787, 793, 794, 796, 814, 817, 824, 825, 833, 847], "finish": [4, 15, 26, 27, 38, 41, 798, 799, 803, 804, 806], "2f": [4, 6], "sec": 4, "89": [4, 9, 38, 51, 61, 72, 74, 75, 84, 98, 163, 230, 616, 623, 633, 675, 726, 727, 751], "43": [4, 9, 38, 40, 42, 52, 75, 84, 98, 229, 368, 369, 380, 388, 419, 510, 618, 629, 630, 726, 727, 734], "procedur": [4, 810, 812, 815, 826], "60": [4, 38, 42, 51, 65, 74, 76, 84, 88, 219, 253, 371, 477, 540, 548, 564, 578, 600, 618, 620, 623, 627, 633, 668, 707, 725, 743, 745, 749, 792, 812], "big": [4, 777, 799, 839, 854], "jnp": [4, 18, 23, 26, 27, 28, 29, 32, 38, 40, 44, 798, 813, 814, 817, 820, 824, 829, 833, 838, 848, 849], "config": [4, 5, 6, 8, 9, 20, 23, 26, 27, 40, 41, 43, 69, 627, 717, 798, 804, 807, 810, 812, 819, 826, 836, 847, 855], "jax_enable_x64": [4, 5, 6, 8, 9, 20, 23, 26, 27, 798], "ref": [4, 5, 76, 80, 254, 268, 271, 277, 284, 618, 625, 696, 804, 824], "initi": [4, 26, 27, 43, 52, 56, 65, 69, 75, 79, 88, 98, 369, 380, 425, 434, 440, 517, 518, 622, 633, 647, 748, 775, 778, 779, 780, 782, 783, 798, 805, 809, 813, 814, 818, 826, 828, 833, 844, 847, 848, 849, 854, 860, 861], "fast": [4, 21, 31, 52, 368, 390, 854], "valu": [4, 9, 38, 39, 41, 42, 48, 49, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 95, 97, 98, 100, 113, 117, 118, 120, 121, 127, 130, 131, 132, 133, 136, 142, 147, 164, 168, 174, 207, 208, 215, 216, 217, 218, 220, 222, 223, 224, 231, 235, 236, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 282, 283, 284, 285, 286, 287, 288, 289, 290, 292, 293, 296, 301, 304, 305, 307, 314, 316, 322, 324, 325, 326, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 344, 345, 347, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 379, 380, 390, 403, 410, 411, 414, 418, 421, 425, 429, 434, 436, 438, 440, 441, 443, 444, 445, 446, 455, 461, 466, 472, 477, 479, 480, 481, 482, 485, 488, 490, 495, 496, 498, 499, 505, 507, 510, 511, 512, 515, 516, 517, 518, 519, 525, 527, 528, 529, 531, 536, 539, 540, 542, 547, 548, 549, 556, 563, 564, 568, 569, 570, 573, 581, 586, 591, 592, 595, 598, 599, 600, 601, 602, 603, 607, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 648, 651, 655, 658, 659, 664, 665, 666, 669, 670, 671, 672, 673, 674, 677, 680, 685, 686, 687, 691, 692, 700, 701, 702, 706, 708, 709, 710, 711, 712, 717, 721, 722, 723, 724, 725, 726, 727, 728, 730, 731, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 757, 759, 762, 763, 764, 765, 767, 769, 774, 777, 778, 779, 780, 781, 782, 801, 804, 805, 807, 810, 811, 813, 814, 815, 816, 817, 818, 820, 821, 824, 825, 828, 830, 831, 833, 835, 839, 847, 854, 855], "demo": [5, 6, 7, 8, 9, 27, 34, 38, 42, 798], "milesi": 5, "blob": [5, 40, 42], "2f62e6b1c8e98022a6418d31a76f6abd800e5ae7": 5, "util": [5, 8, 21, 22, 23, 24, 40, 43, 52, 75, 193, 369, 436, 617, 784, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 804, 810, 814, 817, 818, 821, 824, 828, 829, 833, 848, 852, 860, 861], "data_load": 5, "py": [5, 7, 8, 21, 22, 23, 24, 40, 42, 45, 88, 369, 436, 745, 787, 791, 798, 803, 804, 805, 807, 809, 812, 813, 814, 816, 817, 818, 819, 820, 821, 825, 826, 828, 829, 833, 835, 837, 838], "l65": 5, "mask_valu": 5, "pil_img": 5, "scale": [5, 6, 40, 52, 56, 60, 75, 77, 79, 83, 107, 206, 207, 298, 299, 302, 313, 342, 360, 362, 365, 368, 369, 374, 385, 391, 392, 393, 401, 403, 408, 412, 427, 488, 489, 490, 608, 612, 617, 621, 622, 628, 645, 648, 651, 723, 762, 764, 765, 777, 778, 782, 792, 854, 856], "is_mask": 5, "w": [5, 8, 41, 42, 52, 53, 54, 56, 69, 74, 75, 76, 77, 79, 92, 262, 342, 357, 365, 367, 368, 369, 374, 386, 387, 388, 390, 404, 405, 406, 407, 422, 440, 493, 508, 532, 534, 578, 601, 602, 603, 605, 607, 608, 609, 620, 621, 622, 627, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 710, 798, 806, 823, 833, 836, 837, 848], "h": [5, 52, 53, 56, 75, 76, 79, 368, 374, 387, 388, 405, 406, 493, 532, 534, 620, 622, 627, 635, 638, 639, 640, 641, 642, 643, 644, 707, 711, 713, 716, 721, 806, 810, 811, 812, 848, 850], "size": [5, 9, 11, 13, 18, 21, 22, 28, 29, 31, 32, 33, 40, 42, 45, 52, 53, 56, 57, 59, 61, 62, 69, 75, 76, 79, 80, 82, 84, 85, 92, 93, 97, 98, 129, 132, 206, 207, 208, 306, 309, 313, 324, 325, 326, 327, 334, 349, 356, 362, 365, 366, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 385, 386, 387, 403, 404, 405, 407, 408, 413, 414, 421, 424, 434, 440, 442, 456, 458, 470, 480, 482, 489, 490, 493, 497, 502, 514, 515, 516, 517, 518, 519, 558, 563, 615, 617, 620, 622, 623, 625, 629, 630, 634, 648, 651, 653, 656, 660, 664, 668, 670, 673, 679, 688, 693, 694, 695, 724, 730, 733, 753, 754, 762, 764, 765, 778, 792, 798, 824, 826, 828, 831, 836, 847, 849], "neww": 5, "newh": 5, "int": [5, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 101, 108, 112, 113, 122, 123, 127, 129, 130, 131, 132, 133, 136, 140, 141, 142, 149, 156, 159, 160, 163, 170, 185, 199, 200, 201, 208, 209, 218, 225, 226, 227, 228, 229, 230, 242, 245, 269, 273, 278, 284, 287, 294, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 329, 330, 334, 335, 338, 342, 349, 351, 353, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 417, 421, 423, 424, 425, 426, 428, 431, 433, 434, 437, 438, 440, 444, 448, 449, 453, 457, 458, 461, 462, 465, 467, 470, 471, 472, 473, 474, 475, 476, 477, 478, 480, 481, 482, 484, 485, 486, 489, 491, 492, 494, 495, 496, 497, 498, 499, 500, 502, 507, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 522, 532, 533, 534, 536, 539, 540, 543, 544, 558, 561, 563, 578, 579, 580, 584, 600, 601, 602, 603, 604, 607, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 648, 653, 655, 656, 664, 665, 670, 675, 677, 678, 679, 680, 682, 683, 684, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 707, 710, 711, 713, 715, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 733, 735, 737, 739, 741, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 763, 764, 765, 774, 777, 778, 791, 792, 811, 813, 814, 815, 817, 820, 821, 824, 826, 828, 829, 831, 833, 838, 847], "assert": [5, 9, 41, 43, 45, 69, 525, 620, 770, 801, 806, 807, 818, 821, 824, 825, 826, 828, 829, 835, 836], "too": [5, 52, 75, 218, 235, 242, 268, 371, 480, 618, 777, 803, 804, 805, 807, 813, 817, 829, 839], "small": [5, 9, 42, 51, 52, 57, 60, 74, 75, 80, 83, 235, 242, 268, 269, 328, 344, 365, 369, 370, 374, 429, 445, 488, 489, 490, 618, 623, 628, 666, 669, 671, 723, 777, 781, 798, 804, 812, 815, 821, 826, 831, 833, 837, 839, 847, 848, 855], "would": [5, 8, 9, 20, 21, 22, 23, 24, 26, 27, 30, 32, 34, 42, 48, 50, 52, 71, 73, 75, 82, 108, 112, 123, 209, 368, 371, 395, 400, 450, 451, 458, 460, 462, 463, 464, 471, 475, 486, 612, 617, 688, 689, 690, 692, 694, 695, 697, 699, 764, 774, 778, 798, 799, 801, 803, 804, 805, 806, 807, 808, 809, 811, 812, 813, 815, 816, 818, 820, 822, 824, 825, 826, 828, 829, 831, 832, 833, 835, 837, 838, 839, 840, 844, 847, 854, 860], "pixel": [5, 40, 52, 75, 368, 403], "resampl": 5, "nearest": [5, 52, 75, 218, 235, 268, 278, 338, 365, 368, 380, 403, 519, 618, 831], "bicub": [5, 52, 75, 368, 403, 831], "zero": [5, 40, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 66, 71, 72, 74, 75, 77, 79, 80, 84, 85, 88, 89, 93, 107, 109, 110, 111, 113, 124, 125, 127, 129, 134, 136, 137, 138, 140, 141, 144, 147, 148, 216, 217, 218, 220, 221, 222, 223, 224, 227, 229, 230, 232, 233, 234, 235, 237, 240, 241, 242, 249, 250, 251, 252, 258, 263, 264, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 280, 281, 282, 283, 285, 286, 288, 289, 291, 293, 297, 299, 305, 307, 316, 323, 329, 330, 333, 334, 335, 338, 346, 349, 351, 352, 353, 354, 360, 362, 365, 368, 369, 371, 378, 380, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 410, 411, 412, 413, 414, 419, 421, 432, 435, 456, 466, 471, 472, 483, 501, 510, 511, 528, 532, 539, 559, 564, 601, 602, 607, 608, 609, 610, 612, 615, 616, 618, 620, 621, 622, 623, 625, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 642, 644, 645, 646, 648, 651, 652, 654, 658, 659, 661, 662, 663, 664, 665, 666, 667, 669, 671, 677, 679, 680, 687, 688, 689, 690, 692, 693, 700, 723, 725, 726, 727, 730, 731, 732, 733, 735, 736, 737, 738, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 777, 778, 782, 808, 811, 813, 814, 815, 820, 822, 823, 826, 833, 836, 837, 845, 853], "int64": [5, 52, 61, 62, 64, 65, 72, 84, 85, 87, 88, 137, 150, 156, 159, 161, 163, 167, 168, 172, 179, 310, 362, 378, 380, 502, 510, 511, 615, 616, 630, 632, 633, 725, 730, 731, 732, 741, 743, 744, 749, 751, 762, 763, 813, 825, 828, 833], "enumer": [5, 40, 42, 767, 798], "ndim": [5, 52, 57, 62, 75, 80, 85, 97, 101, 369, 371, 433, 434, 440, 450, 451, 452, 465, 473, 475, 484, 600, 620, 623, 630, 670, 673, 733, 811, 821, 828], "newaxi": [5, 613], "transpos": [5, 23, 26, 27, 44, 52, 56, 57, 69, 75, 79, 80, 97, 369, 415, 431, 433, 435, 508, 622, 623, 635, 637, 639, 641, 642, 643, 663, 667, 669, 675, 764, 778, 798, 818, 824, 835, 838, 848], "255": [5, 23, 26, 27, 40, 41, 42, 44, 56, 75, 79, 229, 618, 644, 798, 848], "car": 5, "full_img": 5, "from_numpi": [5, 836], "fals": [5, 6, 7, 8, 13, 17, 26, 29, 40, 41, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 191, 192, 197, 199, 202, 203, 205, 208, 209, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 409, 410, 411, 413, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 428, 429, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 449, 450, 451, 452, 456, 457, 458, 459, 460, 461, 462, 463, 464, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 501, 502, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 542, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 559, 563, 564, 565, 568, 571, 572, 574, 575, 577, 578, 579, 581, 583, 585, 586, 588, 593, 594, 596, 597, 599, 602, 603, 605, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 710, 714, 715, 716, 717, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 760, 762, 763, 764, 765, 770, 774, 775, 778, 779, 780, 782, 784, 787, 791, 792, 793, 796, 798, 801, 804, 807, 809, 812, 813, 814, 815, 817, 818, 824, 825, 826, 828, 830, 831, 833, 836, 837, 838, 847, 848], "permut": [5, 7, 40, 59, 82, 97, 378, 501, 625, 690, 697, 848], "img_numpi": 5, "cpu": [5, 6, 8, 21, 22, 23, 24, 26, 40, 41, 42, 44, 45, 48, 50, 52, 61, 71, 73, 75, 84, 121, 127, 130, 132, 133, 136, 137, 138, 144, 188, 189, 191, 192, 193, 194, 199, 202, 204, 206, 209, 210, 212, 214, 375, 495, 496, 498, 499, 615, 617, 623, 629, 662, 724, 725, 726, 727, 759, 777, 778, 779, 780, 781, 782, 783, 798, 801, 804, 805, 810, 813, 814, 818, 825, 828, 839, 852, 854, 857, 859], "torch_unet": 5, "unet_carvana": 5, "when": [5, 7, 8, 9, 17, 19, 21, 22, 23, 24, 26, 27, 29, 31, 32, 33, 41, 43, 47, 48, 49, 51, 52, 57, 58, 61, 62, 65, 69, 71, 72, 74, 75, 80, 81, 84, 85, 88, 98, 136, 147, 218, 235, 240, 242, 258, 268, 286, 287, 294, 329, 330, 360, 365, 368, 369, 370, 374, 375, 380, 390, 403, 414, 421, 425, 434, 440, 445, 488, 490, 496, 516, 519, 549, 565, 573, 579, 615, 616, 618, 620, 622, 623, 624, 625, 627, 629, 630, 633, 635, 648, 666, 671, 682, 683, 684, 692, 715, 716, 725, 726, 727, 730, 731, 733, 734, 746, 748, 750, 752, 762, 765, 777, 778, 779, 780, 781, 787, 799, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 838, 839, 840, 843, 844, 847, 848, 852, 854, 857, 858, 859, 860], "ivy_unet": 5, "n_channel": 5, "n_class": 5, "forward": [5, 7, 13, 26, 27, 40, 42, 52, 75, 358, 367, 368, 390, 395, 396, 400, 401, 411, 412, 775, 777, 778, 780, 782, 798, 804, 809, 816, 823, 828, 829, 831, 838, 839, 847, 854, 855], "effici": [5, 6, 7, 8, 15, 16, 18, 19, 26, 27, 28, 29, 52, 57, 75, 80, 369, 370, 429, 444, 572, 594, 620, 623, 666, 798, 804, 805, 811, 821, 822, 824, 828, 830, 833, 836, 839, 848, 854, 856, 857], "l62": 5, "mask_to_imag": 5, "ndarrai": [5, 48, 52, 53, 71, 75, 93, 122, 123, 135, 368, 369, 371, 380, 412, 434, 477, 515, 516, 585, 615, 620, 787, 791, 803, 808, 813, 814, 817, 820, 824, 825, 826, 829, 831, 833, 835, 838, 841], "isinst": [5, 9, 24, 26, 27, 817, 825, 828, 829, 837, 838], "len": [5, 9, 40, 42, 48, 52, 57, 75, 80, 134, 310, 319, 320, 362, 368, 369, 380, 401, 412, 423, 426, 434, 440, 519, 615, 623, 658, 678, 798, 811, 812, 817, 824, 825, 828, 835, 838, 847], "uint8": [5, 23, 26, 27, 42, 150, 157, 161, 172, 175, 180, 186, 616, 762, 763, 813, 828], "elif": [5, 6, 812, 817, 824, 825, 826], "bool": [5, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 122, 123, 124, 129, 130, 131, 132, 133, 134, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 177, 183, 187, 191, 192, 194, 195, 197, 199, 202, 203, 208, 209, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 386, 387, 388, 390, 391, 392, 393, 403, 404, 405, 406, 409, 411, 414, 421, 425, 428, 431, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 449, 450, 451, 452, 456, 457, 458, 460, 461, 462, 463, 464, 467, 471, 475, 478, 480, 481, 482, 486, 488, 490, 491, 492, 493, 494, 496, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 559, 563, 564, 568, 577, 578, 579, 581, 583, 585, 586, 599, 602, 603, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 645, 646, 647, 648, 651, 652, 653, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 670, 671, 672, 673, 677, 678, 680, 682, 683, 684, 685, 688, 689, 690, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 704, 705, 710, 711, 712, 714, 715, 716, 721, 722, 724, 725, 726, 727, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 760, 762, 763, 764, 774, 778, 781, 782, 791, 792, 796, 813, 815, 817, 824, 825, 828, 829, 831, 833, 838, 847, 848], "argmax": [5, 41, 42, 43, 62, 85, 371, 477, 630, 798, 825, 847], "fromarrai": [5, 23, 26, 27, 42], "interpol": [5, 40, 52, 75, 346, 365, 368, 380, 519, 622, 648, 831, 854], "mode": [5, 32, 44, 52, 57, 69, 75, 80, 91, 92, 93, 94, 95, 96, 205, 208, 213, 218, 235, 268, 321, 358, 359, 362, 367, 368, 369, 371, 398, 403, 411, 412, 423, 425, 431, 433, 434, 440, 455, 465, 470, 472, 473, 475, 477, 480, 481, 484, 565, 566, 567, 571, 572, 574, 575, 588, 589, 593, 594, 596, 597, 617, 618, 620, 623, 670, 770, 778, 779, 780, 795, 804, 805, 806, 811, 814, 815, 818, 831, 839, 854, 857], "bilinear": [5, 52, 75, 368, 403, 831], "torch_mask": 5, "squeez": [5, 40, 59, 82, 625, 854], "torch_result": 5, "to_numpi": [5, 9, 26, 27, 38, 41, 42, 45, 53, 76, 620, 798, 818, 826, 836], "give": [5, 18, 28, 38, 52, 56, 75, 79, 174, 358, 367, 368, 410, 413, 616, 622, 625, 635, 636, 637, 638, 640, 642, 644, 692, 777, 798, 804, 805, 806, 809, 812, 813, 815, 816, 818, 819, 820, 828, 845, 854, 858], "img_tf": 5, "math": [5, 43, 93, 285, 618, 813, 824, 825, 826, 838, 852], "ve": [5, 9, 15, 24, 26, 61, 84, 629, 724, 803, 804, 805, 818, 828, 831, 832, 835, 841], "lot": [5, 812, 813, 822, 828, 839, 844, 845, 853], "far": [5, 26, 27, 627, 704, 715, 792, 814, 815, 834, 859, 860], "space": [5, 48, 51, 52, 53, 71, 74, 75, 76, 121, 132, 133, 287, 342, 365, 370, 442, 532, 536, 615, 618, 620, 831, 844], "del": [5, 812], "empty_cach": 5, "permute_dim": [5, 59, 82, 625, 818], "usr": [5, 40, 41, 42, 45, 804], "local": [5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 40, 41, 42, 45, 374, 493, 544, 620, 799, 804, 807, 810, 818, 821, 826, 828], "lib": [5, 9, 21, 22, 23, 24, 40, 41, 42, 45], "python3": [5, 7, 21, 22, 23, 24, 26, 40, 42, 45, 798, 804, 805], "dist": [5, 40, 41, 42, 45], "func_wrapp": [5, 46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 612, 618, 774, 814, 825, 830], "242": [5, 75], "userwarn": [5, 7, 8, 21, 22, 23, 24, 45], "creat": [5, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 40, 41, 42, 44, 45, 48, 51, 52, 61, 69, 71, 74, 75, 80, 84, 93, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 269, 306, 307, 317, 319, 321, 322, 362, 368, 369, 371, 375, 386, 387, 388, 409, 425, 434, 440, 448, 456, 472, 477, 495, 496, 497, 498, 499, 567, 583, 600, 611, 615, 618, 620, 621, 629, 668, 724, 725, 726, 727, 729, 759, 770, 775, 777, 778, 779, 780, 781, 782, 783, 799, 804, 805, 808, 809, 810, 812, 813, 814, 817, 821, 822, 824, 825, 826, 828, 831, 833, 834, 837, 840, 841, 844, 847, 848, 849, 854, 855, 860], "mani": [5, 26, 27, 30, 59, 69, 82, 142, 322, 362, 615, 625, 694, 798, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 816, 820, 821, 822, 824, 825, 826, 828, 831, 833, 835, 836, 839, 843, 844, 845, 850, 854, 857, 860, 861], "view": [5, 8, 21, 22, 23, 24, 52, 59, 75, 97, 128, 139, 371, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 486, 542, 615, 620, 625, 688, 689, 690, 692, 694, 695, 697, 699, 804, 805, 817, 854], "lead": [5, 8, 21, 22, 23, 24, 57, 69, 80, 98, 242, 369, 429, 567, 618, 620, 623, 670, 673, 764, 812, 813, 815, 827, 829, 839, 844, 845], "overhead": [5, 8, 19, 21, 22, 23, 24, 26, 27, 29, 839, 847, 857], "perform": [5, 9, 19, 21, 22, 23, 24, 26, 27, 29, 31, 38, 40, 48, 52, 56, 57, 65, 66, 71, 75, 76, 79, 80, 88, 89, 108, 112, 132, 133, 205, 213, 235, 268, 289, 335, 356, 365, 366, 368, 369, 371, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 409, 411, 434, 449, 502, 510, 511, 532, 533, 534, 547, 548, 549, 565, 575, 612, 615, 617, 618, 620, 622, 623, 626, 627, 633, 634, 645, 647, 673, 675, 680, 701, 702, 703, 711, 712, 743, 744, 753, 754, 757, 774, 778, 792, 807, 808, 809, 811, 813, 814, 815, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 836, 839, 845, 847, 848, 851, 854, 855, 856, 857, 858, 859, 861], "inplac": [5, 7, 8, 9, 21, 22, 23, 24, 47, 53, 69, 76, 92, 95, 523, 525, 546, 549, 550, 567, 568, 620, 627, 711, 712, 716, 721, 722, 769, 770, 775, 782, 806, 808, 815, 818, 820, 822, 825, 831, 835, 837], "17": [5, 8, 9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 52, 57, 68, 74, 75, 76, 77, 79, 80, 84, 98, 107, 108, 133, 218, 235, 260, 268, 298, 306, 356, 362, 368, 371, 386, 387, 395, 396, 399, 400, 404, 405, 410, 413, 462, 533, 548, 601, 603, 612, 615, 618, 620, 621, 622, 623, 627, 629, 636, 645, 646, 656, 660, 712, 725, 726, 727, 729, 811], "factor": [5, 9, 52, 54, 56, 57, 75, 77, 79, 80, 91, 92, 93, 94, 95, 206, 207, 208, 368, 369, 374, 401, 412, 425, 426, 434, 437, 439, 440, 493, 601, 602, 607, 608, 617, 621, 622, 623, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 652, 762, 764, 765, 777, 778, 782, 817, 844], "inc": 5, "unetdoubleconv": 5, "down1": 5, "unetdown": 5, "128": [5, 7, 26, 27, 40, 49, 51, 56, 72, 74, 79, 98, 163, 239, 368, 389, 399, 532, 542, 616, 618, 620, 622, 623, 637, 639, 644, 668, 798], "down2": 5, "down3": 5, "down4": 5, "1024": [5, 7, 40, 41, 798], "up1": 5, "unetup": 5, "up2": 5, "up3": 5, "up4": 5, "outc": 5, "unetoutconv": 5, "x1": [5, 17, 26, 27, 45, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 87, 97, 98, 102, 148, 158, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 307, 328, 333, 339, 340, 341, 343, 345, 350, 354, 362, 365, 369, 371, 380, 435, 466, 509, 521, 524, 616, 617, 618, 620, 623, 630, 632, 653, 660, 663, 668, 672, 675, 676, 679, 734, 741, 759, 784, 798, 807, 813, 815, 817, 820, 824, 825, 848, 849], "x2": [5, 17, 26, 27, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 97, 98, 102, 148, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 328, 333, 339, 340, 341, 343, 345, 350, 354, 365, 369, 371, 380, 423, 435, 466, 509, 521, 524, 616, 617, 618, 620, 623, 630, 653, 660, 663, 668, 672, 675, 676, 679, 734, 759, 784, 807, 813, 815, 817, 820, 824, 825], "x3": [5, 49, 53, 148, 521, 616, 620], "x4": 5, "x5": 5, "in_channel": 5, "out_channel": 5, "mid_channel": 5, "double_conv": 5, "with_bia": [5, 778, 798, 837, 848], "batchnorm2d": [5, 7, 781], "downscal": [5, 53, 76, 527, 528, 549, 620], "maxpool": [5, 7], "doubl": 5, "conv": [5, 622, 778, 831], "maxpool_conv": 5, "upscal": 5, "scale_factor": [5, 52, 75, 368, 403, 831], "align_corn": [5, 52, 75, 368, 403, 831], "conv2dtranspos": [5, 778], "valid": [5, 40, 42, 52, 56, 66, 75, 79, 89, 92, 93, 152, 368, 369, 386, 387, 388, 404, 405, 406, 407, 409, 410, 413, 432, 440, 552, 616, 620, 622, 625, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 688, 696, 753, 754, 762, 763, 778, 791, 804, 809, 813, 815, 819, 823, 826, 828, 847, 855], "bhwc": 5, "diff_h": 5, "diff_w": 5, "pad_width": [5, 52, 59, 75, 82, 371, 472, 625, 687, 700], "constant_pad": [5, 59, 82, 625], "concat": [5, 38, 43, 53, 59, 69, 82, 208, 536, 617, 620, 625, 700, 826, 831, 833, 847], "openmim": 6, "mim": 6, "0rc8": 6, "torch": [6, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 43, 44, 45, 48, 53, 57, 67, 76, 80, 124, 162, 189, 190, 204, 206, 211, 278, 329, 330, 365, 525, 549, 581, 615, 616, 617, 618, 620, 623, 626, 673, 702, 703, 759, 770, 775, 787, 798, 801, 804, 805, 807, 808, 809, 810, 812, 813, 814, 817, 818, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 835, 836, 838, 839, 841, 847, 848, 849, 860], "request": [6, 7, 8, 21, 22, 23, 24, 26, 27, 40, 43, 52, 199, 375, 499, 617, 798, 799, 803, 815, 819, 829, 831, 845, 848], "get_model": 6, "list_model": 6, "mmengin": 6, "configdict": 6, "saniti": [6, 8, 9, 26, 825], "checkpoint": [6, 7, 43, 839], "correct": [6, 11, 13, 22, 32, 38, 40, 42, 65, 88, 181, 369, 436, 616, 625, 633, 685, 750, 752, 759, 762, 798, 801, 803, 805, 806, 811, 812, 813, 814, 817, 818, 820, 821, 824, 826, 828, 848], "against": [6, 49, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 148, 267, 286, 328, 331, 334, 344, 365, 380, 515, 516, 517, 518, 519, 556, 616, 618, 620, 623, 630, 663, 664, 666, 669, 730, 828, 833, 839, 843, 854], "zoo": 6, "checkpoint_nam": [6, 8, 26], "convnext": 6, "tiny_32xb128": 6, "noema_in1k": 6, "openmmlab": 6, "dure": [6, 8, 19, 21, 26, 29, 31, 32, 50, 54, 65, 69, 73, 77, 88, 209, 368, 391, 392, 393, 567, 587, 601, 602, 607, 617, 620, 621, 622, 623, 626, 633, 645, 663, 701, 702, 703, 750, 752, 770, 781, 782, 804, 811, 813, 814, 817, 821, 822, 824, 825, 826, 827, 828, 831, 839, 847, 854, 855, 860], "appropri": [6, 17, 21, 22, 24, 26, 27, 53, 62, 67, 85, 90, 218, 235, 242, 268, 328, 344, 365, 618, 630, 730, 798, 803, 804, 805, 817, 822, 828], "get_scal": 6, "cfg": [6, 819], "kei": [6, 19, 20, 26, 27, 42, 44, 47, 52, 56, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 378, 391, 392, 393, 411, 441, 442, 443, 444, 445, 446, 447, 456, 457, 478, 480, 482, 488, 490, 491, 492, 494, 496, 502, 509, 510, 511, 512, 521, 522, 524, 525, 527, 528, 529, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 620, 622, 626, 627, 636, 637, 638, 639, 645, 646, 648, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 701, 702, 707, 713, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 762, 763, 769, 775, 778, 782, 798, 810, 811, 812, 821, 824, 825, 826, 828, 836, 848, 854, 857, 861], "input_shap": [6, 13, 24, 26, 27, 798], "block": [6, 26, 27, 30, 31, 32, 33, 369, 427, 798, 805, 811, 813, 817, 821, 828, 832, 834, 838, 839, 841, 848, 859, 861], "url": [6, 8, 23, 26, 27, 40, 43, 798, 848], "cocodataset": [6, 8, 23, 26, 27, 43, 798, 848], "org": [6, 7, 8, 23, 26, 27, 40, 42, 43, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 480, 509, 601, 602, 615, 616, 618, 621, 623, 625, 633, 671, 672, 700, 750, 798, 816, 848], "val2017": [6, 8, 26, 43], "000000039769": [6, 8, 26, 43], "stream": [6, 8, 23, 26, 27, 40, 43, 50, 73, 209, 617, 798, 848, 858], "_config": 6, "train_pipelin": 6, "tensor_imag": 6, "And": [6, 8, 9, 11, 13, 18, 21, 26, 27, 28, 41, 72, 358, 359, 367, 798, 807, 810, 819, 821, 828, 847], "final": [6, 8, 11, 13, 15, 23, 26, 27, 32, 38, 39, 48, 52, 53, 75, 76, 92, 120, 132, 133, 316, 362, 368, 412, 536, 614, 615, 620, 622, 647, 648, 792, 803, 805, 807, 808, 810, 812, 813, 815, 816, 821, 823, 824, 825, 827, 831, 832, 836, 847, 848, 850, 860], "transpiled_graph": [6, 8, 26], "what": [6, 8, 15, 20, 26, 27, 30, 31, 34, 39, 40, 368, 401, 412, 764, 792, 798, 803, 805, 806, 811, 812, 815, 816, 819, 820, 822, 823, 824, 825, 826, 828, 832, 833, 835, 836, 837, 838, 839, 844, 845, 850, 855, 856, 859], "improv": [6, 8, 9, 26, 29, 805, 813, 820, 821, 831, 833, 841, 845, 847, 852, 854, 856, 857], "For": [6, 7, 8, 9, 17, 19, 26, 27, 29, 32, 34, 48, 52, 57, 63, 75, 80, 121, 134, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 270, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 324, 325, 326, 329, 330, 332, 352, 362, 365, 369, 371, 431, 433, 452, 472, 475, 615, 618, 623, 625, 631, 633, 671, 673, 677, 685, 696, 735, 736, 737, 738, 746, 748, 749, 751, 763, 775, 803, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 824, 825, 826, 827, 828, 829, 831, 833, 835, 836, 837, 838, 839, 840, 843, 844, 845, 847, 851, 852, 855, 860, 861], "compil": [6, 7, 8, 9, 21, 22, 24, 26, 27, 30, 43, 45, 286, 618, 770, 798, 804, 825, 829, 833, 839, 841, 848, 850, 853, 854, 855, 858, 861], "origin": [6, 8, 9, 24, 26, 27, 28, 29, 30, 32, 39, 40, 41, 45, 52, 57, 59, 65, 69, 75, 80, 82, 88, 92, 95, 97, 98, 223, 248, 275, 313, 362, 368, 369, 371, 380, 411, 434, 465, 471, 473, 476, 510, 511, 515, 516, 517, 518, 519, 618, 623, 625, 633, 664, 692, 693, 744, 759, 764, 787, 788, 798, 800, 803, 804, 805, 809, 810, 812, 813, 818, 822, 824, 825, 826, 833, 845, 847, 848, 854, 855], "_f": [6, 8, 26], "comp_model": [6, 8, 26], "equival": [6, 8, 26, 57, 80, 92, 93, 121, 229, 242, 263, 264, 277, 278, 371, 456, 480, 485, 615, 618, 623, 666, 669, 672, 680, 787, 824, 825, 831, 836, 838, 840, 848], "just": [6, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 42, 52, 57, 65, 80, 92, 95, 142, 322, 362, 369, 433, 615, 623, 633, 666, 745, 770, 778, 798, 801, 804, 805, 807, 809, 812, 813, 814, 815, 816, 818, 821, 822, 824, 825, 826, 828, 833, 835, 836, 839, 844, 845, 848, 854, 855, 860], "np_imag": [6, 23, 26, 27], "jax_imag": 6, "hk": [6, 8, 26, 40, 44, 798, 838, 848], "rng_kei": [6, 8, 26, 798, 848], "random": [6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 40, 42, 43, 52, 56, 69, 75, 79, 317, 318, 319, 320, 321, 362, 369, 370, 425, 434, 440, 445, 495, 496, 497, 498, 499, 622, 645, 724, 725, 726, 727, 728, 729, 762, 764, 777, 791, 792, 798, 803, 814, 826, 828, 829, 838, 848, 849, 854], "prngkei": [6, 8, 19, 20, 26, 27, 40, 798, 838, 848], "42": [6, 8, 9, 19, 20, 24, 26, 27, 38, 40, 41, 46, 61, 68, 77, 84, 113, 229, 368, 389, 399, 601, 605, 612, 618, 621, 623, 628, 629, 633, 664, 668, 723, 724, 725, 726, 727, 728, 743, 745, 798, 833, 838, 848], "jax_mlp_forward": 6, "param": [6, 8, 9, 26, 40, 41, 42, 44, 69, 75, 76, 98, 522, 539, 540, 620, 784, 798, 838, 848], "init": [6, 8, 26, 40, 42, 52, 75, 369, 425, 434, 440, 798, 807, 838, 848], "rng": [6, 8, 26, 40, 798, 838, 848], "appli": [6, 8, 21, 22, 23, 24, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 403, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 612, 616, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 631, 633, 635, 636, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 666, 668, 669, 670, 671, 673, 677, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 710, 713, 716, 717, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 764, 765, 774, 778, 781, 798, 803, 804, 805, 808, 811, 813, 814, 815, 816, 817, 819, 820, 821, 822, 824, 825, 828, 829, 831, 835, 836, 837, 838, 839, 847, 848, 855], "both": [6, 7, 8, 9, 11, 13, 21, 23, 26, 27, 31, 32, 39, 41, 48, 51, 52, 53, 56, 57, 71, 74, 75, 76, 79, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 173, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 333, 335, 339, 344, 362, 365, 368, 369, 371, 375, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 466, 472, 480, 483, 495, 509, 512, 539, 543, 545, 547, 556, 586, 610, 611, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 778, 798, 801, 803, 805, 809, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 824, 825, 828, 831, 833, 835, 836, 837, 838, 839, 847, 848, 854, 857, 859, 860, 861], "optim": [6, 8, 9, 17, 21, 22, 24, 26, 27, 40, 42, 43, 45, 52, 54, 75, 77, 306, 362, 370, 444, 445, 523, 609, 620, 621, 626, 701, 702, 703, 777, 792, 798, 813, 824, 831, 834, 836, 838, 845, 848, 852, 853, 854, 855, 856, 857, 858, 861], "each": [6, 8, 9, 19, 20, 21, 26, 27, 29, 30, 31, 33, 40, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 69, 72, 74, 75, 76, 77, 79, 80, 82, 85, 86, 88, 92, 93, 95, 97, 98, 106, 107, 109, 110, 111, 113, 117, 134, 148, 160, 163, 208, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 290, 292, 297, 299, 300, 301, 303, 304, 305, 310, 321, 324, 325, 326, 332, 339, 343, 347, 352, 355, 360, 362, 365, 368, 369, 371, 374, 375, 378, 380, 386, 387, 388, 391, 392, 393, 396, 404, 405, 406, 407, 410, 412, 413, 420, 421, 426, 433, 434, 438, 440, 450, 451, 452, 456, 457, 458, 463, 464, 466, 467, 469, 471, 472, 475, 477, 485, 486, 493, 495, 502, 507, 508, 509, 510, 511, 512, 521, 524, 532, 539, 540, 556, 580, 600, 602, 603, 605, 607, 608, 609, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 625, 627, 629, 630, 631, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 648, 652, 653, 654, 657, 658, 659, 663, 665, 666, 667, 669, 671, 672, 673, 678, 687, 691, 693, 694, 696, 698, 700, 710, 717, 724, 733, 735, 736, 738, 744, 745, 752, 762, 764, 778, 781, 782, 783, 792, 801, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 838, 839, 843, 844, 845, 847, 848, 850, 851, 855, 857, 860], "timeit": [6, 8, 9, 19, 26, 27, 43, 45], "06": [6, 9, 21, 42, 49, 61, 74, 77, 96, 105, 160, 217, 233, 368, 389, 399, 607, 612, 616, 621, 727, 757, 759, 828, 836], "m": [6, 7, 8, 9, 26, 39, 41, 43, 45, 48, 52, 57, 61, 74, 75, 80, 84, 97, 134, 140, 141, 142, 262, 322, 323, 362, 368, 369, 370, 371, 375, 390, 420, 425, 426, 428, 441, 452, 463, 464, 478, 495, 496, 497, 498, 499, 615, 623, 627, 629, 652, 654, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 677, 712, 725, 726, 727, 798, 804, 805, 806, 812, 833], "per": [6, 8, 9, 19, 40, 42, 52, 56, 75, 79, 313, 362, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 433, 479, 622, 636, 638, 639, 640, 641, 644, 648, 778, 805, 812, 822, 825, 836], "loop": [6, 8, 9, 19, 34, 67, 90, 117, 120, 614, 626, 701, 702, 703, 798, 809, 839, 847], "100": [6, 7, 8, 9, 38, 40, 42, 48, 51, 52, 71, 74, 75, 76, 79, 96, 133, 142, 229, 269, 282, 322, 344, 353, 362, 365, 368, 369, 371, 391, 392, 434, 440, 477, 540, 548, 564, 615, 618, 620, 623, 627, 661, 710, 798, 812, 813, 828, 836, 837, 838, 839, 844, 845, 847], "block_until_readi": 6, "08": [6, 52, 65, 75, 84, 221, 328, 344, 365, 368, 370, 389, 399, 445, 618, 726, 727, 752, 757, 762, 819], "\u00b5": [6, 8, 9, 19], "made": [6, 8, 26, 52, 59, 75, 369, 371, 427, 450, 451, 452, 696, 803, 805, 807, 808, 811, 812, 817, 819, 821, 823, 824, 825, 829, 831, 833, 835, 844, 854], "significantli": [6, 8, 26, 52, 57, 75, 80, 369, 438, 623, 673, 812, 843, 852], "line": [6, 8, 9, 15, 16, 19, 20, 23, 26, 27, 29, 30, 41, 42, 285, 618, 798, 804, 807, 808, 812, 814, 815, 817, 825, 828, 831, 834, 835, 836, 837, 845, 848, 857], "even": [6, 23, 26, 27, 52, 75, 92, 235, 268, 273, 278, 371, 380, 472, 509, 618, 804, 805, 807, 809, 812, 813, 814, 816, 820, 821, 824, 825, 826, 831, 835, 836, 837, 838, 839, 844, 845, 860], "better": [6, 9, 29, 38, 44, 45, 803, 806, 825, 826, 829, 831, 832, 835, 836, 837, 845, 857], "v100": 6, "3x": 6, "increas": [6, 8, 9, 19, 26, 29, 52, 57, 59, 75, 80, 82, 95, 371, 380, 472, 512, 623, 625, 678, 687, 700, 764, 813, 817, 825, 829, 831, 843, 847, 854], "execut": [6, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 29, 31, 34, 41, 43, 45, 118, 120, 587, 614, 617, 620, 804, 805, 810, 811, 812, 813, 814, 815, 817, 821, 822, 824, 828, 831, 833, 835, 838, 839, 841, 847, 850, 854, 855, 856, 857, 858, 860], "train2017": [6, 8, 23, 26, 27, 798, 848], "000000283921": [6, 8, 26], "out_torch": [6, 8, 26], "et": [6, 622, 623, 648, 673], "took": [6, 74, 275], "out_jax": [6, 8, 26], "1e": [6, 7, 8, 11, 13, 26, 38, 42, 49, 52, 54, 57, 58, 60, 72, 75, 77, 80, 81, 83, 96, 160, 328, 344, 365, 370, 374, 445, 488, 489, 490, 569, 570, 578, 591, 592, 601, 602, 607, 609, 616, 620, 621, 623, 624, 628, 673, 682, 683, 684, 723, 757, 759, 779, 781, 782, 798, 801, 811, 818, 821, 824, 826, 837, 838], "66m": 6, "53m": 6, "That": [6, 8, 11, 13, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 40, 277, 370, 444, 618, 791, 804, 805, 808, 828, 835, 836, 837, 855], "pretti": [6, 8, 26, 27, 40, 801, 818, 836, 860], "much": [6, 8, 9, 17, 18, 24, 26, 27, 28, 29, 40, 95, 328, 344, 365, 777, 803, 804, 805, 808, 811, 813, 821, 824, 825, 826, 829, 830, 831, 833, 835, 836, 844, 852, 854, 860, 861], "achiev": [6, 8, 9, 26, 798, 812, 813, 821, 822, 828, 831, 836, 838, 841], "solid": [6, 8, 26], "associ": [7, 52, 57, 75, 80, 218, 268, 371, 380, 449, 512, 618, 623, 666, 669, 681, 759, 805, 813, 821, 822, 825, 826, 828, 839], "python": [7, 11, 17, 29, 34, 38, 40, 41, 42, 44, 45, 52, 61, 75, 84, 121, 202, 214, 242, 277, 375, 495, 496, 497, 498, 499, 600, 615, 617, 618, 620, 629, 724, 725, 726, 727, 729, 787, 791, 792, 802, 804, 805, 807, 810, 811, 812, 817, 818, 825, 827, 828, 833, 835, 836, 839, 841, 842, 843, 844, 847, 851, 854, 855, 856, 860, 861], "2023": [7, 8, 21, 22, 23, 24, 40], "02": [7, 8, 40, 48, 53, 54, 60, 61, 74, 77, 84, 133, 220, 221, 260, 368, 389, 399, 400, 578, 579, 601, 602, 607, 615, 618, 620, 621, 624, 628, 629, 682, 723, 726, 727, 826], "52": [7, 9, 38, 51, 74, 76, 77, 84, 223, 233, 235, 380, 510, 532, 533, 548, 601, 618, 620, 621, 622, 623, 633, 646, 668, 727, 745, 791], "00": [7, 9, 40, 42, 45, 52, 53, 57, 75, 76, 80, 240, 306, 337, 362, 368, 389, 395, 399, 400, 536, 579, 618, 620, 623, 624, 659, 670, 682, 762, 819, 828], "resolv": [7, 40, 42, 52, 65, 242, 380, 510, 511, 618, 625, 633, 688, 743, 744, 749, 751, 805, 810, 813, 819, 833], "185": [7, 40, 68], "199": [7, 40, 221, 618], "110": [7, 40], "133": [7, 40, 56, 528, 620, 646], "111": [7, 40, 627, 722], "108": [7, 9, 21, 22, 23, 24, 40, 622, 633, 646, 745], "connect": [7, 40, 778, 798, 800, 804, 810, 827, 837, 838, 844, 852], "443": [7, 40, 280, 618], "sent": [7, 40], "await": [7, 40], "respons": [7, 40, 374, 493, 805, 812, 813], "200": [7, 9, 40, 76, 79, 229, 368, 391, 392, 540, 564, 618, 620, 791, 836], "ok": [7, 40, 804], "length": [7, 40, 41, 48, 52, 58, 59, 69, 75, 81, 82, 92, 93, 98, 121, 129, 134, 308, 311, 312, 327, 335, 362, 365, 368, 369, 371, 375, 378, 389, 390, 395, 396, 399, 400, 401, 411, 412, 414, 426, 433, 472, 481, 497, 502, 600, 615, 620, 622, 623, 624, 625, 631, 648, 673, 674, 682, 692, 735, 762, 778, 828, 836], "10472": 7, "10k": 7, "plain": [7, 40], "tx": 7, "23k": 7, "kb": [7, 40, 42, 45], "57": [7, 9, 38, 40, 51, 52, 74, 75, 193, 216, 217, 220, 221, 223, 233, 234, 274, 290, 291, 360, 617, 618], "mb": [7, 40, 42, 45, 812], "01": [7, 21, 22, 24, 42, 48, 52, 53, 54, 57, 75, 76, 77, 80, 84, 133, 260, 278, 279, 306, 312, 337, 344, 362, 368, 389, 399, 400, 536, 578, 579, 601, 602, 607, 615, 618, 620, 621, 623, 626, 629, 659, 670, 702, 703, 726, 727, 762, 809, 838], "109": [7, 40, 57, 623, 660], "634575": 7, "620k": 7, "jpeg": [7, 41, 42], "619": 7, "70k": 7, "113": 7, "resnet34_weight": 7, "torch_resnet_34": 7, "conv1": 7, "kernel_s": [7, 24, 26, 27, 42, 52, 75, 368, 386, 387, 388, 407, 413, 778, 784], "stride": [7, 52, 56, 75, 76, 79, 97, 368, 371, 386, 387, 388, 404, 405, 406, 407, 409, 410, 413, 448, 620, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 778, 824, 829, 854], "bia": [7, 52, 56, 75, 79, 83, 374, 380, 493, 509, 559, 620, 622, 628, 635, 636, 637, 638, 639, 640, 641, 642, 643, 646, 647, 648, 723, 778, 821, 828, 833, 837], "bn1": 7, "ep": [7, 52, 57, 60, 75, 80, 83, 160, 294, 360, 369, 370, 374, 421, 445, 488, 489, 490, 616, 623, 628, 666, 669, 723, 774, 781], "05": [7, 9, 42, 48, 51, 52, 54, 60, 74, 75, 77, 83, 133, 260, 312, 328, 337, 344, 362, 365, 374, 488, 489, 490, 547, 569, 591, 601, 602, 607, 615, 618, 620, 621, 623, 628, 664, 723, 757, 762, 777, 781, 826, 828], "momentum": [7, 40, 52, 75, 374, 488, 490, 781, 844], "affin": [7, 781], "track_running_stat": [7, 781], "dilat": [7, 44, 52, 56, 75, 79, 368, 371, 404, 405, 406, 409, 410, 413, 472, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 778], "ceil_mod": [7, 52, 75, 368, 386, 387, 388, 404, 405, 406, 409, 778], "layer1": 7, "basicblock": 7, "conv2": 7, "bn2": 7, "layer2": 7, "downsampl": [7, 52, 75, 403], "layer3": 7, "layer4": 7, "output_s": [7, 52, 75, 368, 382, 383, 384, 622, 650, 778, 798, 848], "fc": [7, 13, 40, 798, 837, 848], "in_featur": [7, 56, 79, 622, 646, 828], "out_featur": [7, 56, 79, 622, 646, 828], "resnet_34": 7, "ivy_resnet_34": 7, "34": [7, 9, 38, 40, 74, 75, 76, 84, 163, 233, 260, 281, 368, 380, 410, 516, 532, 533, 616, 618, 620, 622, 623, 629, 646, 665, 726, 727, 814], "333f7ec4": 7, "pth": 7, "root": [7, 8, 21, 22, 23, 24, 40, 41, 42, 45, 51, 74, 282, 618, 800, 803, 804, 805, 810, 818, 825, 836], "cach": [7, 8, 21, 22, 23, 24, 40, 42, 45, 190, 526, 617, 620, 787, 819, 821, 824, 828], "83": [7, 9, 38, 57, 79, 84, 282, 368, 380, 389, 399, 410, 510, 528, 618, 620, 622, 623, 646, 660, 726], "3m": 7, "56": [7, 9, 38, 40, 51, 52, 56, 61, 74, 75, 79, 133, 268, 282, 285, 288, 368, 389, 399, 601, 615, 618, 621, 622, 623, 627, 633, 637, 639, 641, 643, 646, 668, 704, 726, 745, 815], "4mb": 7, "preserv": [7, 8, 21, 22, 23, 24, 52, 53, 54, 69, 75, 76, 77, 98, 368, 369, 371, 380, 403, 434, 450, 451, 452, 463, 464, 483, 516, 549, 610, 620, 621, 625, 689, 762, 827, 828, 838, 839, 848], "multipl": [7, 8, 17, 21, 22, 23, 24, 26, 51, 52, 57, 60, 65, 66, 69, 74, 75, 76, 77, 80, 82, 83, 88, 89, 129, 229, 253, 260, 266, 267, 268, 270, 329, 330, 365, 368, 369, 371, 374, 378, 389, 396, 399, 401, 432, 458, 467, 486, 493, 502, 521, 528, 559, 601, 602, 605, 607, 608, 609, 610, 615, 618, 620, 621, 622, 623, 625, 628, 630, 633, 634, 637, 638, 639, 640, 652, 661, 663, 664, 677, 685, 688, 693, 694, 723, 730, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 778, 792, 798, 803, 805, 808, 809, 811, 815, 817, 819, 821, 824, 825, 826, 828, 831, 833, 839, 845, 847, 852, 853, 854, 861], "machin": [7, 8, 21, 22, 23, 24, 29, 30, 38, 44, 52, 57, 75, 80, 160, 163, 369, 421, 616, 623, 666, 669, 798, 804, 807, 821, 841, 844, 852, 854, 856, 857, 858, 859, 860], "rel": [7, 8, 21, 22, 23, 24, 52, 54, 57, 59, 64, 71, 75, 77, 80, 82, 87, 97, 131, 328, 344, 365, 370, 380, 444, 445, 509, 602, 605, 607, 608, 609, 621, 623, 625, 632, 656, 666, 669, 677, 689, 693, 739, 742, 757, 759, 805, 812, 826, 831, 854, 856], "project": [7, 8, 15, 20, 21, 22, 23, 24, 26, 27, 30, 93, 622, 648, 778, 798, 800, 803, 804, 805, 808, 809, 810, 828, 837, 839, 843, 844, 845, 848, 850, 852, 854, 857, 861], "consist": [7, 8, 9, 21, 22, 23, 24, 26, 27, 65, 69, 235, 242, 268, 368, 369, 411, 420, 618, 623, 633, 657, 658, 745, 779, 780, 807, 808, 812, 813, 819, 824, 833, 843, 855], "ad": [7, 8, 9, 21, 22, 23, 24, 52, 59, 75, 82, 90, 235, 268, 328, 344, 365, 374, 488, 489, 490, 578, 579, 618, 620, 622, 623, 625, 648, 658, 659, 688, 778, 783, 798, 801, 802, 803, 804, 805, 807, 808, 810, 811, 812, 813, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 837, 839, 844, 847, 853, 854], "home": [7, 8, 21, 22, 23, 24, 812], "workspac": [7, 8, 21, 22, 23, 24, 804, 818], "95": [7, 9, 38, 52, 54, 57, 61, 68, 77, 79, 84, 105, 353, 365, 410, 601, 605, 609, 612, 621, 623, 629, 660, 726, 727], "builtin": [7, 804, 835, 837], "callabl": [7, 44, 52, 53, 67, 75, 76, 79, 90, 117, 118, 120, 161, 162, 194, 195, 208, 356, 358, 359, 366, 367, 368, 371, 410, 414, 449, 472, 522, 526, 531, 533, 537, 538, 559, 587, 600, 604, 606, 611, 614, 616, 617, 620, 621, 626, 627, 701, 702, 703, 710, 711, 712, 714, 715, 716, 717, 757, 760, 770, 782, 793, 811, 817, 823, 825, 833, 846, 847, 848, 849], "track": [7, 17, 26, 27, 39, 40, 544, 620, 804, 805, 807, 823, 824, 847, 854], "properli": [7, 804, 806, 817, 819, 825, 828], "might": [7, 32, 53, 93, 174, 531, 616, 620, 801, 803, 804, 805, 812, 813, 815, 818, 819, 822, 825, 828, 829, 831, 833, 835, 836, 841], "_trace_graph": 7, "comparison": [7, 52, 75, 236, 271, 331, 365, 370, 444, 445, 618, 623, 674, 757, 817], "shown": [7, 24, 26, 67, 69, 90, 252, 275, 332, 365, 618, 803, 804, 805, 807, 810, 812, 813, 815, 817, 819, 820, 825, 826, 828, 829, 830, 833, 835, 839], "8507": 7, "1351": 7, "0069": 7, "85072625": 7, "13506091": 7, "00688289": 7, "resnet50_weight": 7, "torch_resnet_50": 7, "imagenet1k_v2": 7, "11ad3fa6": 7, "97": [7, 9, 38, 52, 54, 74, 77, 84, 221, 353, 365, 605, 618, 621, 726], "8m": 7, "8mb": 7, "bottleneck": [7, 843], "conv3": 7, "bn3": 7, "2048": [7, 579, 620], "resnet_50": 7, "ivy_resnet_50": 7, "3429": 7, "0408": 7, "0121": 7, "34288204": 7, "04077014": 7, "01212029": 7, "depend": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 31, 48, 49, 52, 53, 57, 63, 64, 72, 75, 80, 87, 88, 118, 124, 147, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 256, 257, 258, 259, 268, 270, 273, 280, 281, 285, 286, 352, 365, 369, 420, 436, 581, 614, 615, 616, 618, 620, 623, 630, 632, 657, 658, 670, 671, 672, 673, 734, 739, 742, 752, 798, 800, 801, 803, 804, 805, 810, 813, 814, 816, 818, 822, 824, 825, 826, 827, 828, 831, 833, 839, 840, 844, 847, 852, 854, 855], "yet": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 42, 361, 363, 364, 372, 373, 377, 803, 804, 818, 839, 840, 847, 848, 849], "doc": [8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 42, 75, 142, 322, 329, 330, 362, 365, 511, 615, 798, 799, 802, 803, 806, 815, 816, 819, 820, 828, 833, 836, 837, 847, 848, 849], "user": [8, 15, 21, 22, 23, 24, 26, 41, 42, 44, 269, 286, 371, 472, 567, 618, 620, 778, 779, 780, 791, 798, 804, 805, 806, 808, 809, 811, 812, 813, 814, 817, 822, 823, 824, 825, 828, 830, 831, 832, 833, 839, 840, 843, 844, 852, 854, 860, 861], "broken": [8, 21, 22, 23, 24, 850, 854], "permiss": [8, 21, 22, 23, 24, 804, 812], "conflict": [8, 21, 22, 23, 24, 32, 804, 805, 812, 825, 836], "behaviour": [8, 21, 22, 23, 24, 107, 110, 269, 612, 618, 802, 805, 806, 807, 808, 811, 813, 814, 816, 817, 820, 821, 822, 824, 825, 828, 829, 835], "system": [8, 21, 22, 23, 24, 42, 369, 435, 623, 672, 762, 798, 804, 805, 809, 812, 813, 839, 848, 852, 854, 857, 859, 861], "manag": [8, 17, 21, 22, 23, 24, 26, 567, 590, 620, 798, 799, 809, 813, 814, 824, 827, 839, 845, 856, 858], "recommend": [8, 21, 22, 23, 24, 263, 264, 277, 370, 442, 618, 633, 747, 750, 800, 804, 809, 810, 819, 822, 823, 847], "virtual": [8, 21, 22, 23, 24, 805, 825, 844, 857, 858], "instead": [8, 11, 13, 17, 21, 22, 23, 24, 26, 33, 40, 45, 51, 52, 57, 74, 75, 80, 93, 189, 277, 310, 362, 368, 380, 404, 405, 406, 509, 512, 617, 618, 623, 666, 762, 803, 804, 805, 807, 810, 812, 813, 815, 816, 817, 820, 821, 822, 824, 825, 826, 828, 831, 833, 835, 836, 839, 847, 848, 849, 852, 854, 860, 861], "pypa": [8, 21, 22, 23, 24], "io": [8, 21, 22, 23, 24, 41, 44, 804, 812], "venv": [8, 21, 22, 23, 24], "autofeatureextractor": [8, 26], "extractor": [8, 11, 13, 26, 42, 798], "hug": [8, 26, 847], "face": [8, 26, 799, 804, 807, 818, 819, 823, 831, 833, 847, 854, 860], "arch_nam": [8, 26], "microsoft": [8, 26, 844, 847, 848, 854, 859, 861], "50": [8, 9, 26, 27, 38, 42, 52, 65, 74, 75, 76, 234, 274, 350, 365, 368, 369, 371, 396, 419, 427, 477, 534, 540, 547, 548, 564, 578, 618, 620, 623, 627, 630, 633, 661, 668, 679, 705, 707, 733, 745, 762, 765, 823, 835, 847, 848], "feature_extractor": [8, 26], "23": [8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 57, 61, 71, 74, 75, 76, 79, 84, 131, 230, 233, 250, 251, 252, 275, 277, 278, 279, 281, 288, 332, 333, 365, 368, 371, 380, 386, 387, 389, 399, 404, 405, 406, 410, 413, 455, 510, 516, 615, 618, 622, 623, 627, 630, 641, 643, 656, 660, 664, 672, 674, 675, 705, 712, 716, 725, 726, 727, 734, 798, 812, 828, 833], "980130": 8, "e": [8, 26, 43, 44, 48, 52, 57, 61, 63, 64, 65, 67, 74, 75, 80, 84, 87, 88, 90, 92, 93, 97, 124, 133, 134, 137, 138, 142, 146, 175, 188, 215, 216, 217, 221, 223, 224, 227, 229, 231, 235, 236, 238, 241, 242, 248, 249, 256, 257, 258, 259, 266, 267, 268, 269, 271, 275, 277, 278, 281, 282, 286, 295, 322, 329, 330, 362, 365, 368, 369, 370, 371, 375, 380, 381, 386, 387, 390, 404, 405, 406, 407, 411, 423, 426, 432, 445, 480, 495, 496, 497, 498, 499, 510, 511, 520, 613, 615, 616, 617, 618, 622, 623, 625, 627, 629, 631, 632, 633, 648, 653, 658, 659, 663, 664, 666, 669, 672, 673, 674, 677, 680, 688, 696, 707, 711, 712, 713, 716, 721, 722, 725, 726, 727, 735, 736, 737, 738, 739, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 778, 791, 792, 798, 799, 801, 803, 804, 805, 806, 807, 809, 811, 813, 817, 818, 823, 825, 828, 833, 836, 839, 840, 841, 844, 845, 847, 850], "tensorflow": [8, 10, 11, 15, 17, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 44, 51, 52, 53, 74, 75, 142, 189, 219, 322, 362, 369, 421, 581, 615, 617, 620, 757, 770, 787, 798, 801, 802, 803, 804, 805, 807, 812, 813, 814, 818, 820, 824, 825, 826, 828, 829, 831, 833, 838, 839, 841, 844, 845, 848, 849, 852, 855, 857, 858, 860, 861], "xla": [8, 825, 839, 841, 854], "stream_executor": 8, "cuda_dnn": 8, "cc": [8, 21, 22, 24, 41, 818], "9342": 8, "unabl": [8, 805, 831], "regist": [8, 780, 805, 840, 847], "cudnn": 8, "factori": [8, 52, 370, 444, 445, 792], "attempt": [8, 21, 22, 23, 24, 40, 42, 45, 804, 830, 839], "plugin": [8, 804], "been": [8, 11, 13, 21, 23, 26, 27, 52, 53, 61, 75, 76, 84, 191, 278, 371, 479, 532, 533, 534, 617, 618, 620, 629, 724, 791, 792, 803, 805, 807, 809, 811, 812, 813, 814, 816, 817, 820, 821, 824, 828, 833, 835, 839, 840, 847, 854, 861], "980177": 8, "cuda_fft": 8, "609": 8, "cufft": 8, "980207": 8, "cuda_bla": 8, "1518": 8, "cubla": 8, "351203": 8, "tf2tensorrt": 8, "py_util": 8, "38": [8, 9, 22, 38, 40, 42, 45, 49, 52, 74, 75, 84, 160, 285, 350, 365, 368, 380, 387, 406, 409, 410, 510, 616, 618, 623, 665, 762, 815], "trt": 8, "could": [8, 26, 27, 32, 63, 631, 735, 736, 737, 738, 803, 804, 805, 807, 812, 813, 815, 822, 824, 825, 826, 828, 833, 835, 836, 837, 844, 845, 854, 859, 860], "find": [8, 15, 41, 42, 45, 57, 63, 69, 80, 623, 627, 631, 666, 706, 735, 736, 737, 738, 791, 792, 798, 799, 800, 802, 803, 804, 805, 807, 810, 812, 818, 823, 828, 831, 833, 836, 840, 841, 843, 847], "tensorrt": 8, "doe": [8, 9, 17, 21, 22, 23, 24, 26, 39, 41, 51, 52, 53, 59, 69, 74, 75, 82, 92, 142, 269, 271, 279, 322, 362, 369, 370, 380, 381, 420, 444, 445, 515, 516, 520, 549, 615, 618, 620, 623, 625, 657, 694, 757, 792, 801, 803, 805, 806, 809, 812, 813, 815, 816, 818, 819, 820, 821, 824, 825, 826, 828, 831, 833, 835, 836, 839, 841, 844, 847, 850, 854, 855, 861], "placement": [8, 803], "consid": [8, 9, 21, 22, 23, 24, 31, 32, 52, 57, 63, 75, 80, 113, 142, 263, 264, 322, 328, 333, 344, 362, 365, 369, 380, 421, 425, 434, 509, 612, 615, 618, 623, 631, 655, 666, 735, 736, 737, 738, 764, 777, 808, 812, 813, 821, 823, 829, 831, 834, 835, 836, 843, 844, 847, 851, 855, 859, 861], "except": [8, 21, 22, 23, 24, 41, 42, 45, 52, 53, 59, 61, 66, 69, 75, 76, 80, 84, 89, 149, 329, 330, 335, 353, 365, 371, 375, 380, 456, 480, 496, 515, 516, 531, 549, 566, 581, 587, 616, 620, 623, 625, 629, 630, 634, 669, 686, 688, 696, 725, 726, 727, 733, 753, 754, 757, 760, 764, 798, 805, 806, 807, 808, 812, 813, 814, 816, 818, 820, 824, 825, 829, 830, 831, 835, 839], "390": [8, 21, 22, 23, 24], "current": [8, 17, 21, 22, 23, 24, 26, 27, 40, 41, 47, 52, 53, 69, 75, 98, 117, 161, 162, 165, 182, 183, 184, 185, 186, 187, 193, 194, 195, 196, 201, 203, 369, 371, 419, 420, 472, 480, 537, 538, 541, 544, 546, 550, 561, 562, 581, 614, 616, 617, 620, 623, 627, 657, 704, 714, 715, 759, 763, 779, 780, 787, 788, 792, 795, 798, 800, 803, 804, 805, 807, 809, 811, 812, 813, 814, 817, 818, 819, 821, 824, 825, 826, 827, 828, 831, 833, 838, 839, 845, 847, 854, 860, 861], "quietli": [8, 21, 22, 23, 24], "control": [8, 21, 22, 23, 24, 34, 52, 75, 142, 291, 322, 360, 362, 368, 371, 391, 392, 393, 455, 481, 567, 615, 620, 623, 655, 811, 813, 814, 823, 824, 825, 826, 831, 835, 836, 841, 847, 854, 860], "set_inplace_mod": [8, 21, 22, 23, 24, 590, 620], "strict": [8, 21, 22, 23, 24, 567, 590, 620], "rais": [8, 21, 22, 23, 24, 41, 42, 48, 52, 53, 61, 63, 66, 69, 71, 75, 76, 82, 84, 86, 89, 123, 149, 238, 273, 329, 330, 339, 365, 368, 370, 371, 375, 380, 401, 412, 445, 450, 451, 458, 460, 462, 463, 464, 471, 480, 486, 496, 515, 516, 525, 549, 567, 569, 579, 581, 587, 591, 616, 618, 620, 623, 625, 629, 630, 631, 633, 634, 663, 665, 679, 688, 689, 690, 692, 694, 695, 696, 697, 699, 725, 726, 727, 733, 738, 746, 748, 753, 754, 757, 764, 782, 798, 805, 807, 809, 813, 814, 817, 824, 825, 829, 830, 833, 835, 840, 844], "error": [8, 9, 21, 22, 23, 24, 32, 43, 45, 51, 52, 56, 69, 74, 75, 79, 105, 237, 285, 329, 330, 337, 365, 369, 370, 371, 380, 381, 434, 440, 441, 443, 480, 516, 520, 567, 612, 618, 620, 622, 623, 633, 651, 671, 674, 746, 748, 764, 782, 795, 799, 802, 803, 804, 805, 807, 808, 809, 812, 813, 814, 815, 819, 820, 825, 828, 829, 830, 835, 839, 845, 854], "whenev": [8, 21, 22, 23, 24, 778, 805, 809, 812, 813, 817, 824, 827, 828, 830, 836], "inputs_jax": [8, 26], "last_hidden_st": [8, 26], "jax_forward": [8, 26], "jit_appli": 8, "63": [8, 9, 38, 42, 51, 68, 74, 79, 80, 113, 274, 281, 282, 368, 380, 389, 399, 410, 510, 618, 623, 627, 633, 652, 668, 705, 716, 745], "122": [8, 49, 163, 233, 618], "134": [8, 56, 623, 646, 665], "2x": [8, 26], "ipytest": 9, "panda": [9, 40, 42, 844], "matplotlib": [9, 21, 22, 23, 24, 40, 41, 42, 45], "scikit": [9, 369, 436, 844], "learn": [9, 11, 13, 17, 18, 19, 20, 22, 24, 26, 27, 28, 29, 30, 31, 38, 40, 54, 77, 369, 436, 532, 602, 605, 607, 608, 609, 620, 621, 626, 701, 702, 703, 782, 798, 799, 802, 803, 804, 806, 807, 813, 818, 819, 821, 823, 832, 841, 843, 844, 852, 856, 857, 858, 859, 860, 861], "cryptographi": 9, "frontend": [9, 566, 620, 759, 760, 763, 767, 770, 798, 802, 805, 806, 812, 813, 817, 818, 823, 827, 828, 831, 832, 834, 841, 848, 854], "sklearn": 9, "classification_report": 9, "model_select": 9, "train_test_split": 9, "dataset": [9, 26, 69, 798, 836, 847, 848], "load_breast_canc": 9, "pyplot": [9, 40, 41, 42, 45], "plt": [9, 40, 41, 42, 45], "pd": [9, 42], "functool": [9, 40, 817, 825, 835], "autoconfig": 9, "tqdm": [9, 21, 22, 23, 24, 40, 42, 798], "tqdm_notebook": 9, "These": [9, 33, 52, 75, 369, 371, 380, 420, 471, 509, 622, 623, 648, 657, 658, 798, 802, 803, 804, 805, 807, 811, 813, 815, 816, 820, 821, 824, 825, 828, 833, 834, 836, 837, 838, 839, 841, 843, 844, 845, 848, 854, 858, 860, 861], "sole": [9, 38, 820, 829, 853, 854, 855], "verifi": [9, 23, 319, 320, 362, 803, 813, 814, 825, 828, 829], "re": [9, 15, 18, 19, 20, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 43, 45, 52, 53, 62, 75, 85, 95, 208, 313, 362, 369, 371, 439, 473, 474, 532, 617, 620, 623, 625, 630, 675, 693, 732, 734, 799, 800, 803, 804, 805, 806, 807, 810, 813, 818, 823, 824, 825, 826, 827, 829, 831, 835, 838, 839, 842, 843, 844, 854], "test_jax_gpu": 9, "xla_bridg": [9, 40], "get_backend": [9, 821], "test_torch_gpu": 9, "is_avail": 9, "test_xgboost_gpu": 9, "capsi": 9, "load_diabet": 9, "y": [9, 26, 27, 38, 39, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 144, 147, 148, 149, 158, 160, 163, 175, 188, 192, 196, 201, 202, 203, 207, 209, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 328, 329, 330, 336, 343, 344, 345, 346, 347, 352, 354, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 387, 389, 391, 392, 396, 399, 401, 405, 411, 417, 421, 427, 432, 439, 441, 443, 444, 445, 446, 447, 457, 459, 468, 472, 480, 481, 482, 487, 491, 492, 494, 502, 508, 509, 510, 511, 512, 515, 517, 518, 519, 521, 524, 527, 528, 531, 532, 534, 535, 536, 539, 540, 541, 545, 547, 548, 549, 551, 552, 555, 556, 561, 568, 569, 570, 573, 576, 577, 578, 579, 581, 583, 585, 586, 587, 591, 592, 595, 598, 599, 600, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 637, 639, 641, 643, 644, 645, 646, 652, 653, 654, 658, 659, 660, 661, 663, 664, 666, 667, 668, 669, 671, 673, 674, 675, 677, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 704, 707, 710, 711, 713, 721, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 796, 798, 809, 811, 814, 815, 823, 825, 826, 828, 829, 831, 833, 835, 847], "target": [9, 11, 13, 19, 21, 22, 24, 26, 27, 29, 30, 31, 32, 33, 42, 52, 75, 190, 370, 441, 442, 443, 444, 445, 446, 447, 617, 757, 778, 780, 786, 798, 801, 804, 806, 809, 818, 819, 826, 827, 832, 836, 837, 838, 848, 849, 850, 852, 853, 854, 857, 859, 860], "xgb_model": 9, "xgbregressor": 9, "tree_method": 9, "caus": [9, 370, 442, 804, 805, 807, 809, 811, 812, 813, 815, 824, 826, 828, 839], "either": [9, 21, 22, 31, 32, 33, 34, 38, 44, 51, 52, 53, 56, 65, 69, 74, 75, 76, 79, 80, 107, 110, 113, 118, 128, 129, 139, 215, 216, 217, 218, 223, 233, 235, 236, 238, 240, 242, 249, 250, 256, 257, 258, 259, 260, 268, 277, 279, 280, 282, 285, 286, 331, 352, 365, 368, 374, 380, 389, 399, 409, 410, 413, 493, 510, 511, 531, 551, 559, 560, 568, 587, 612, 614, 615, 618, 620, 622, 623, 626, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 648, 663, 668, 671, 675, 701, 702, 703, 743, 744, 749, 751, 764, 778, 779, 780, 787, 800, 803, 804, 805, 809, 810, 811, 813, 814, 815, 816, 817, 819, 821, 824, 825, 826, 827, 828, 831, 833, 836, 839, 840, 848, 854], "fit": [9, 59, 82, 625, 691, 803, 825, 833, 850, 851, 854], "consol": [9, 562, 620, 798, 805, 819, 828, 835, 840], "gpu_hist": 9, "captur": [9, 823, 828, 838, 855], "readouterr": 9, "err": 9, "99": [9, 38, 51, 52, 54, 72, 74, 84, 130, 217, 232, 353, 365, 578, 605, 615, 618, 620, 621, 627, 633, 708, 716, 726, 745], "implement": [9, 17, 18, 26, 28, 32, 40, 43, 49, 50, 52, 63, 64, 72, 73, 75, 80, 87, 92, 147, 161, 162, 175, 194, 195, 209, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 268, 270, 273, 277, 280, 281, 285, 286, 329, 330, 352, 365, 369, 380, 419, 420, 515, 516, 537, 538, 616, 617, 618, 620, 622, 623, 631, 632, 633, 648, 657, 658, 659, 668, 677, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 763, 765, 787, 798, 801, 803, 806, 807, 808, 809, 811, 813, 814, 816, 817, 818, 820, 821, 822, 824, 826, 828, 829, 831, 833, 835, 836, 837, 838, 839, 841, 851, 852, 853, 854, 857, 860, 861], "binari": [9, 21, 22, 24, 52, 53, 56, 58, 79, 81, 225, 228, 230, 265, 285, 370, 444, 447, 618, 622, 624, 645, 648, 682], "tabular": 9, "pulsar": 9, "emploi": [9, 860], "remov": [9, 15, 16, 19, 24, 26, 27, 29, 57, 69, 80, 623, 625, 626, 627, 656, 663, 677, 695, 701, 702, 718, 792, 795, 798, 803, 809, 810, 812, 813, 816, 821, 827, 828, 831, 838, 847, 848, 854], "id": [9, 41, 52, 75, 191, 324, 325, 326, 362, 544, 617, 620, 798, 802, 804, 808, 810, 811, 819, 823, 828, 840], "column": [9, 42, 52, 57, 75, 80, 92, 93, 127, 142, 322, 362, 369, 371, 378, 380, 420, 426, 436, 456, 461, 463, 464, 468, 470, 502, 508, 509, 615, 623, 657, 658, 664, 670, 672, 673, 678, 762, 777], "well": [9, 26, 27, 40, 41, 42, 76, 370, 444, 545, 620, 623, 672, 764, 798, 800, 803, 805, 810, 812, 813, 817, 824, 825, 826, 828, 837, 838, 848, 853, 854, 855, 859], "standard": [9, 51, 57, 60, 61, 65, 74, 83, 84, 88, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 369, 371, 380, 411, 438, 480, 509, 600, 615, 616, 618, 620, 623, 625, 628, 629, 630, 631, 632, 633, 634, 652, 653, 654, 655, 656, 658, 659, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 686, 688, 689, 690, 692, 693, 695, 696, 700, 723, 726, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 764, 777, 781, 791, 792, 798, 803, 806, 807, 808, 811, 813, 816, 820, 824, 827, 828, 829, 839, 842, 848, 850, 852, 853, 856, 857, 859], "while": [9, 26, 27, 34, 52, 56, 69, 75, 79, 92, 93, 98, 120, 136, 174, 242, 243, 263, 264, 340, 365, 368, 369, 371, 412, 432, 474, 475, 508, 614, 615, 616, 618, 622, 631, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 735, 747, 750, 760, 801, 803, 804, 805, 808, 809, 810, 812, 813, 814, 815, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 831, 835, 837, 838, 839, 840, 843, 844, 847, 854, 860, 861], "extra": [9, 27, 69, 98, 117, 600, 614, 620, 808, 813, 815, 822, 824, 825, 826, 831, 833, 847, 848, 851, 856], "dimens": [9, 48, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 95, 97, 98, 101, 108, 112, 136, 140, 141, 310, 321, 323, 324, 325, 326, 329, 330, 334, 335, 342, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 410, 411, 413, 415, 417, 420, 436, 444, 450, 451, 452, 456, 462, 473, 474, 475, 476, 478, 480, 488, 489, 490, 493, 497, 499, 502, 512, 514, 515, 516, 517, 518, 519, 532, 533, 534, 536, 543, 577, 580, 600, 612, 615, 620, 622, 623, 624, 625, 626, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 648, 652, 653, 654, 656, 657, 658, 659, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 677, 679, 680, 683, 684, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 699, 701, 702, 703, 729, 730, 731, 733, 735, 736, 737, 738, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 764, 774, 778, 781, 815, 817, 823, 825, 826, 828, 831, 833, 836], "label": [9, 40, 41, 42, 52, 58, 75, 81, 370, 441, 443, 444, 445, 446, 447, 624, 682, 683, 684, 798, 803, 807, 825, 832, 833, 834, 838, 840, 854], "load_data": 9, "standardscal": 9, "df": [9, 42], "read_csv": [9, 42], "delimit": [9, 836], "drop": [9, 42, 52, 75, 325, 362, 370, 371, 444, 481, 777, 778, 804, 839], "sc": 9, "fit_transform": 9, "prepare_data": 9, "tupl": [9, 44, 47, 48, 49, 51, 52, 53, 56, 57, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 122, 123, 129, 131, 135, 136, 138, 142, 144, 148, 149, 150, 161, 162, 163, 167, 168, 174, 175, 181, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 315, 319, 322, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 341, 342, 343, 344, 348, 349, 350, 351, 352, 354, 355, 356, 357, 362, 365, 367, 368, 369, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 395, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 420, 421, 425, 429, 434, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 453, 456, 457, 467, 472, 478, 480, 481, 482, 485, 488, 490, 491, 492, 493, 494, 496, 497, 499, 500, 501, 509, 510, 511, 512, 514, 515, 516, 517, 518, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 568, 578, 579, 580, 581, 583, 584, 585, 586, 599, 600, 601, 602, 603, 605, 607, 610, 614, 615, 616, 617, 618, 620, 621, 622, 623, 625, 626, 627, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 651, 652, 653, 657, 658, 659, 660, 661, 662, 663, 664, 666, 668, 669, 670, 671, 673, 675, 676, 677, 680, 682, 683, 684, 685, 686, 687, 689, 690, 692, 693, 694, 695, 696, 699, 700, 701, 702, 703, 704, 705, 707, 708, 709, 711, 712, 713, 715, 716, 719, 720, 721, 722, 724, 725, 726, 727, 729, 732, 733, 735, 736, 737, 738, 739, 740, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 763, 764, 777, 778, 780, 791, 792, 808, 813, 820, 821, 824, 826, 828, 833, 836, 837, 839, 847, 848, 849], "expand_dim": [9, 23, 26, 27, 42, 44, 59, 82, 622, 625, 644, 798, 825, 833, 836, 848], "astyp": [9, 11, 13, 18, 40, 41, 42, 49, 56, 72, 79, 616, 622, 638, 640, 641, 644, 798, 813, 824, 825, 831, 849], "csv": [9, 42, 798], "instanc": [9, 17, 23, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 167, 168, 170, 175, 192, 204, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 404, 405, 406, 410, 411, 413, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 574, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 770, 775, 803, 804, 805, 807, 808, 809, 813, 815, 816, 817, 818, 820, 821, 822, 823, 824, 828, 836, 837, 838, 841, 847, 855], "117564": 9, "variou": [9, 20, 30, 32, 38, 798, 803, 804, 805, 807, 812, 813, 816, 817, 820, 822, 823, 825, 826, 827, 828, 840, 850, 852, 853, 854, 857, 860], "structur": [9, 27, 69, 72, 98, 160, 163, 529, 620, 627, 708, 717, 798, 803, 805, 808, 811, 821, 826, 827, 828, 829, 836, 837, 853, 854], "allow": [9, 24, 26, 27, 38, 52, 65, 75, 88, 132, 273, 369, 380, 437, 512, 516, 559, 615, 618, 620, 632, 633, 741, 748, 762, 763, 764, 765, 779, 780, 792, 796, 798, 803, 805, 808, 809, 812, 813, 817, 819, 821, 822, 823, 824, 825, 826, 828, 831, 833, 835, 839, 841, 844, 847, 848, 849, 852, 854, 858, 859], "navig": [9, 801, 804, 805, 806, 818], "choic": [9, 27, 44, 52, 65, 75, 88, 369, 371, 436, 455, 633, 750, 752, 798, 804, 812, 824, 825, 836, 845, 848, 854, 861], "rerun": [9, 40], "most": [9, 17, 26, 27, 69, 71, 92, 95, 136, 369, 420, 572, 594, 615, 620, 623, 657, 658, 795, 798, 802, 803, 804, 808, 811, 812, 813, 814, 818, 820, 821, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 839, 844, 854, 855, 857, 858, 860, 861], "method": [9, 17, 26, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 529, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 615, 616, 618, 620, 621, 623, 624, 627, 630, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 666, 667, 668, 669, 670, 671, 673, 674, 677, 678, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 715, 716, 717, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 759, 770, 776, 777, 778, 779, 780, 803, 805, 807, 808, 812, 813, 814, 815, 816, 820, 828, 829, 833, 834, 837, 838, 839, 847, 848, 849, 855, 861], "signific": [9, 52, 370, 445, 830, 839, 843, 844, 854], "object": [9, 17, 22, 24, 26, 40, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 98, 101, 102, 124, 128, 129, 139, 151, 160, 163, 171, 174, 209, 267, 496, 544, 560, 603, 615, 616, 617, 620, 621, 627, 629, 707, 708, 709, 711, 712, 713, 719, 720, 721, 722, 729, 757, 759, 760, 767, 768, 769, 775, 776, 778, 779, 780, 787, 791, 798, 808, 809, 811, 812, 821, 822, 825, 826, 828, 831, 835, 838, 846, 847, 848, 849, 854, 860], "logist": 9, "booster": 9, "gblinear": 9, "n_estim": 9, "learning_r": 9, "reg_lambda": 9, "reg_alpha": 9, "base_margin": 9, "xgb_cl": 9, "ivy_cl": 9, "n": [9, 38, 41, 42, 43, 45, 48, 51, 52, 56, 57, 59, 61, 62, 65, 66, 74, 75, 79, 80, 82, 84, 85, 88, 89, 92, 97, 134, 140, 141, 142, 215, 285, 287, 322, 323, 335, 362, 365, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 389, 390, 395, 396, 399, 400, 401, 409, 410, 411, 412, 413, 421, 422, 431, 433, 435, 440, 452, 458, 461, 465, 467, 478, 486, 488, 489, 490, 493, 495, 496, 497, 498, 499, 502, 509, 519, 615, 618, 622, 623, 625, 627, 629, 630, 633, 634, 635, 636, 637, 638, 640, 642, 644, 648, 653, 656, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 673, 674, 677, 678, 679, 680, 687, 688, 690, 696, 700, 712, 725, 726, 727, 733, 747, 749, 750, 751, 752, 753, 754, 778, 781, 791, 798, 806, 810, 812, 828, 840, 848], "436": 9, "48": [9, 38, 42, 51, 52, 74, 75, 76, 77, 84, 107, 217, 240, 282, 368, 387, 388, 389, 399, 405, 406, 409, 547, 601, 605, 612, 618, 620, 621, 623, 627, 633, 668, 705, 726, 745], "wai": [9, 15, 16, 17, 20, 22, 26, 30, 32, 38, 92, 95, 798, 800, 802, 804, 807, 808, 809, 810, 812, 813, 814, 824, 825, 826, 828, 831, 835, 836, 837, 838, 839, 840, 843, 844, 849, 856, 860, 861], "t4": 9, "higher": [9, 52, 75, 369, 371, 380, 424, 434, 440, 450, 451, 452, 519, 777, 813, 824, 832, 833, 838, 839, 851, 854, 855, 858, 860, 861], "tier": 9, "than": [9, 26, 27, 29, 32, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 69, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 97, 98, 121, 129, 160, 208, 216, 217, 220, 221, 223, 224, 227, 229, 231, 235, 241, 242, 256, 257, 258, 259, 266, 268, 273, 277, 279, 281, 282, 286, 287, 288, 296, 306, 328, 331, 344, 351, 362, 365, 368, 369, 371, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 415, 417, 434, 440, 463, 464, 510, 511, 512, 551, 552, 555, 572, 594, 615, 616, 617, 618, 620, 622, 623, 625, 629, 630, 631, 633, 651, 653, 663, 664, 665, 666, 669, 680, 685, 689, 695, 727, 733, 736, 737, 738, 743, 744, 749, 750, 751, 752, 778, 792, 801, 805, 807, 811, 812, 813, 815, 817, 818, 824, 825, 826, 828, 829, 830, 831, 833, 836, 837, 838, 839, 840, 844, 851, 852, 853, 854, 860, 861], "reduc": [9, 52, 53, 57, 62, 65, 66, 69, 75, 76, 80, 85, 88, 89, 208, 329, 330, 349, 365, 366, 380, 514, 515, 516, 517, 518, 519, 533, 617, 620, 623, 630, 633, 634, 670, 730, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 791, 792, 812, 817, 825, 831, 833, 835, 847, 852, 856, 857, 858], "lower": [9, 42, 48, 51, 52, 57, 61, 74, 75, 80, 84, 127, 140, 266, 301, 307, 313, 322, 323, 360, 362, 380, 512, 513, 519, 615, 618, 623, 629, 652, 658, 659, 666, 727, 764, 777, 798, 805, 813, 815, 825, 828, 833, 839, 841, 850, 851, 852, 854, 855, 860, 861], "although": [9, 623, 671, 798, 800, 808, 810, 811, 825, 831, 852, 854], "experi": [9, 15, 42, 804, 817, 828, 834, 836, 839], "demonstr": [9, 23, 26, 27, 41, 813, 815, 817, 835], "still": [9, 20, 22, 23, 26, 27, 29, 30, 33, 57, 69, 80, 623, 673, 762, 803, 804, 805, 808, 809, 813, 816, 817, 819, 821, 824, 825, 828, 831, 837, 839, 844, 847, 848, 851, 854, 860], "substanti": [9, 805, 808, 813, 828, 844, 854], "dive": [9, 15, 17, 26, 38, 799, 800, 802, 803, 805, 807, 811, 813, 819, 826, 832, 835, 836, 839, 860], "stuff": 9, "tool": [9, 17, 26, 27, 798, 804, 805, 815, 819, 834, 838, 839, 842, 845, 848, 852, 853, 854, 855, 857, 860, 861], "30": [9, 21, 22, 23, 24, 38, 40, 51, 52, 53, 75, 76, 84, 88, 98, 268, 298, 342, 350, 365, 368, 371, 389, 399, 410, 455, 477, 500, 532, 534, 539, 540, 547, 548, 564, 573, 578, 618, 620, 623, 627, 633, 661, 668, 713, 725, 726, 744, 745, 749, 764, 777, 792, 812], "25": [9, 38, 40, 41, 42, 51, 52, 53, 57, 58, 61, 65, 68, 74, 75, 76, 79, 80, 83, 84, 88, 97, 98, 113, 132, 218, 219, 229, 235, 237, 248, 253, 268, 273, 276, 278, 281, 282, 283, 288, 309, 362, 370, 380, 410, 441, 444, 446, 510, 519, 547, 548, 564, 578, 615, 618, 620, 623, 624, 627, 628, 633, 636, 652, 656, 661, 678, 683, 705, 712, 716, 723, 725, 726, 727, 744, 745, 747, 752, 811, 823], "22": [9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 51, 52, 53, 61, 65, 68, 75, 76, 79, 84, 108, 113, 230, 238, 298, 302, 360, 368, 369, 371, 376, 380, 386, 387, 389, 404, 405, 406, 410, 413, 419, 455, 500, 510, 533, 564, 599, 612, 618, 622, 623, 627, 630, 633, 645, 646, 656, 661, 668, 672, 712, 722, 725, 726, 727, 734, 744, 745, 804, 811, 817], "201": [9, 74, 75, 220, 389, 618], "20x": 9, "24": [9, 19, 38, 40, 51, 52, 57, 65, 74, 75, 76, 79, 80, 84, 97, 230, 238, 253, 255, 268, 278, 279, 282, 342, 345, 365, 368, 380, 386, 388, 389, 399, 404, 405, 406, 410, 413, 510, 532, 533, 618, 620, 623, 627, 633, 636, 656, 664, 668, 705, 716, 725, 726, 727, 743, 745, 759, 817, 836], "ivy_pr": 9, "xgb_pred": 9, "ivyclassifi": 9, "nxgbclassifi": 9, "precis": [9, 52, 57, 75, 80, 160, 248, 268, 275, 282, 339, 365, 369, 380, 421, 509, 572, 594, 616, 618, 620, 623, 658, 659, 664, 671, 673, 674, 680, 770, 812, 825, 830, 831, 858], "recal": 9, "f1": [9, 813], "score": [9, 56, 79, 370, 447, 622, 649, 651, 798], "94": [9, 38, 51, 52, 54, 61, 74, 75, 77, 84, 202, 278, 279, 353, 365, 399, 605, 617, 621, 727], "106597": 9, "33": [9, 38, 40, 41, 51, 61, 65, 74, 75, 76, 77, 79, 221, 222, 229, 278, 368, 369, 371, 380, 387, 409, 410, 437, 455, 510, 528, 578, 605, 618, 620, 621, 622, 623, 627, 633, 645, 646, 668, 722, 725, 745, 752, 762, 765], "10967": 9, "accuraci": [9, 40, 42, 45, 368, 411, 813], "macro": 9, "avg": [9, 368, 386, 388, 409], "96": [9, 38, 52, 54, 74, 75, 76, 84, 232, 253, 285, 353, 365, 368, 389, 532, 533, 605, 618, 620, 621, 623, 633, 668, 727, 745], "67": [9, 38, 51, 52, 53, 57, 74, 75, 76, 79, 84, 97, 233, 238, 278, 279, 281, 288, 298, 302, 360, 380, 410, 510, 532, 533, 578, 604, 606, 618, 620, 621, 623, 660, 727], "73": [9, 38, 51, 80, 282, 380, 510, 623, 629, 652, 726, 828], "92": [9, 38, 42, 52, 53, 84, 353, 365, 599, 609, 621, 623, 654, 726, 727], "28": [9, 24, 26, 27, 38, 40, 42, 45, 51, 52, 56, 60, 74, 75, 76, 79, 80, 84, 88, 234, 237, 258, 274, 368, 369, 389, 399, 419, 516, 547, 601, 618, 620, 621, 622, 623, 628, 633, 637, 639, 641, 643, 644, 646, 668, 723, 725, 726, 727, 745, 749, 798], "27": [9, 38, 40, 45, 51, 52, 57, 61, 74, 75, 79, 80, 84, 88, 229, 230, 233, 273, 281, 282, 339, 365, 368, 389, 399, 548, 618, 620, 623, 627, 633, 663, 668, 678, 705, 712, 726, 745, 749, 762], "852": [9, 622, 646], "449": [9, 528, 620], "47": [9, 38, 42, 51, 52, 57, 61, 74, 75, 76, 77, 79, 84, 224, 282, 368, 380, 387, 405, 406, 510, 532, 533, 605, 618, 620, 621, 622, 623, 629, 646, 660, 726, 727], "29": [9, 38, 40, 42, 45, 57, 74, 76, 77, 79, 84, 223, 380, 410, 510, 532, 533, 603, 607, 618, 620, 621, 623, 660, 725, 726, 727], "82": [9, 38, 40, 45, 46, 51, 77, 84, 108, 221, 380, 510, 601, 621, 726, 727, 801, 818], "68": [9, 38, 42, 45, 51, 84, 108, 130, 223, 368, 389, 399, 612, 615, 618, 623, 628, 679, 723, 726, 727], "nevertheless": 9, "fall": [9, 40, 782, 803, 813, 832], "short": [9, 38, 52, 75, 414, 622, 647, 803, 805, 813, 833, 837], "blaze": 9, "31": [9, 21, 22, 23, 24, 38, 40, 41, 45, 46, 51, 52, 74, 75, 76, 79, 84, 108, 113, 133, 229, 260, 268, 368, 371, 380, 388, 389, 455, 510, 527, 612, 615, 618, 620, 726, 727, 836], "32": [9, 24, 26, 27, 38, 40, 41, 42, 51, 52, 61, 74, 75, 79, 80, 84, 97, 98, 107, 159, 217, 229, 230, 239, 253, 259, 275, 278, 279, 332, 365, 368, 369, 371, 380, 387, 388, 389, 399, 409, 410, 419, 423, 455, 510, 532, 548, 612, 616, 618, 620, 622, 623, 629, 630, 633, 637, 639, 640, 644, 646, 663, 668, 679, 725, 726, 727, 734, 745, 762, 765, 798, 812, 813, 823, 836, 859], "03": [9, 22, 41, 48, 51, 53, 54, 74, 75, 77, 84, 133, 233, 258, 337, 578, 579, 602, 607, 615, 618, 620, 621, 623, 624, 661, 682, 726], "62": [9, 38, 40, 46, 68, 74, 84, 108, 253, 281, 618, 628, 629, 723, 725, 727], "36": [9, 38, 42, 51, 52, 56, 65, 75, 76, 80, 223, 278, 279, 342, 365, 368, 369, 380, 389, 399, 424, 510, 532, 533, 579, 618, 620, 623, 627, 633, 646, 665, 668, 678, 715, 745], "35": [9, 38, 46, 56, 57, 68, 74, 75, 79, 80, 84, 108, 223, 282, 368, 389, 399, 618, 622, 623, 630, 633, 646, 653, 660, 726, 734, 745], "37": [9, 21, 22, 23, 24, 38, 46, 51, 52, 68, 74, 75, 79, 97, 108, 221, 229, 278, 281, 285, 376, 410, 500, 618, 622, 623, 627, 629, 646, 665, 712, 726, 812], "surpass": 9, "remark": [9, 839], "artifici": 9, "simpli": [9, 17, 26, 27, 29, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 618, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 669, 670, 671, 673, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 798, 803, 804, 805, 808, 809, 810, 812, 813, 814, 815, 816, 818, 820, 821, 824, 825, 826, 828, 831, 833, 837, 838, 839, 841, 855, 860], "stack": [9, 19, 21, 22, 23, 24, 29, 38, 42, 52, 57, 59, 69, 75, 80, 82, 97, 140, 141, 323, 362, 369, 371, 420, 456, 457, 459, 468, 487, 566, 575, 597, 615, 620, 623, 625, 627, 654, 656, 657, 658, 659, 661, 663, 665, 666, 667, 669, 670, 671, 673, 674, 677, 704, 714, 715, 778, 798, 802, 807, 824, 833, 850, 852, 859, 860], "x_doubl": 9, "vstack": [9, 52, 75, 371, 468], "y_doubl": 9, "explor": [9, 11, 13, 17, 21, 22, 23, 26, 27, 32, 33, 34, 803, 804, 805, 813, 818, 831, 834, 838, 854, 857], "235128": 9, "41": [9, 21, 22, 23, 24, 38, 40, 45, 51, 52, 57, 74, 75, 76, 79, 80, 108, 222, 230, 237, 268, 282, 368, 369, 376, 380, 387, 405, 410, 429, 500, 510, 527, 528, 612, 618, 620, 623, 633, 652, 660, 751], "315": [9, 274, 618], "40": [9, 38, 40, 42, 52, 53, 74, 75, 76, 84, 88, 98, 229, 233, 253, 282, 342, 365, 368, 371, 387, 389, 399, 405, 477, 532, 534, 539, 540, 564, 578, 600, 603, 618, 620, 621, 623, 627, 633, 661, 668, 713, 726, 745, 749, 798, 812], "879": 9, "65": [9, 38, 40, 42, 45, 74, 77, 84, 229, 268, 528, 547, 601, 618, 620, 621, 623, 633, 668, 726, 727, 745, 812], "380": 9, "seem": [9, 803, 804, 831, 837, 838, 839, 854], "observ": [9, 52, 75, 380, 508, 509, 805, 813, 817, 833, 847, 856], "examin": 9, "600": [9, 42, 76, 79, 368, 391, 392, 540, 812], "plot": [9, 41, 798, 854], "conduct": [9, 858], "num_boosting_round": 9, "300": [9, 74, 76, 79, 278, 368, 391, 392, 540, 564, 618, 620, 623, 661, 828], "400": [9, 76, 79, 368, 391, 392, 540, 564, 620, 623, 661], "500": [9, 52, 75, 76, 79, 368, 369, 391, 392, 440, 540, 620], "ivy_elapsed_tim": 9, "xgb_elapsed_tim": 9, "ivy_tim": 9, "partial": [9, 52, 69, 75, 161, 162, 194, 195, 342, 365, 368, 369, 371, 380, 414, 434, 473, 474, 475, 476, 516, 537, 538, 606, 616, 617, 620, 621, 623, 662, 763, 765, 779, 780, 805, 810, 831], "append": [9, 41, 42, 52, 57, 69, 75, 227, 335, 365, 618, 623, 625, 656, 663, 688, 792, 798, 812, 828, 833, 836], "xgb_time": 9, "fivethirtyeight": 9, "legend": [9, 42, 803], "loc": 9, "best": [9, 40, 559, 620, 792, 798, 799, 801, 802, 803, 804, 805, 806, 812, 813, 817, 818, 827, 828, 829, 840, 857, 858], "xlabel": 9, "ylabel": 9, "obviou": [9, 836, 854], "trend": 9, "longer": [9, 804, 813, 824, 828, 854], "gap": 9, "between": [9, 15, 16, 21, 31, 32, 33, 38, 51, 52, 53, 56, 57, 58, 59, 63, 69, 74, 75, 79, 80, 81, 82, 98, 121, 160, 223, 236, 271, 287, 328, 344, 346, 365, 368, 369, 370, 371, 380, 391, 392, 393, 404, 405, 406, 413, 419, 423, 441, 442, 443, 444, 445, 446, 447, 472, 519, 615, 616, 618, 622, 624, 625, 627, 629, 631, 645, 668, 682, 683, 684, 688, 696, 710, 725, 736, 737, 738, 763, 770, 782, 798, 808, 809, 813, 815, 820, 821, 822, 824, 825, 826, 827, 828, 831, 832, 834, 835, 836, 838, 843, 847, 848, 850, 851, 853, 854, 855, 860], "within": [9, 11, 13, 17, 26, 27, 47, 52, 75, 121, 328, 344, 365, 368, 374, 404, 405, 406, 411, 413, 450, 451, 452, 493, 615, 629, 727, 792, 803, 805, 808, 812, 813, 825, 826, 827, 828, 837, 839, 848, 850, 851, 855], "slightli": [9, 306, 362, 811, 825, 828, 833, 837], "paramet": [9, 13, 24, 26, 27, 40, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 199, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 554, 555, 556, 558, 559, 560, 563, 564, 567, 568, 569, 570, 573, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 618, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 764, 765, 770, 775, 777, 778, 779, 780, 781, 782, 783, 787, 788, 791, 792, 794, 798, 803, 808, 816, 817, 820, 825, 826, 828, 829, 833, 835, 836, 847, 848, 849, 855], "x_train": 9, "y_train": [9, 42, 798], "train_siz": [9, 40], "random_st": [9, 369, 425], "51": [9, 38, 42, 51, 52, 74, 75, 76, 84, 230, 268, 281, 369, 389, 440, 618, 727, 762], "clear": [9, 190, 617, 803, 805, 809, 813, 814, 815, 825, 831, 833, 835, 843, 844, 845, 854], "amount": [9, 58, 81, 210, 617, 624, 682, 683, 684, 792, 804, 812, 814, 826], "widen": 9, "impress": 9, "outcom": [9, 52, 75, 331, 342, 365, 792], "howev": [9, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 57, 80, 242, 285, 286, 371, 374, 480, 488, 490, 567, 618, 620, 623, 671, 673, 787, 803, 804, 807, 808, 809, 811, 813, 814, 815, 816, 817, 819, 820, 821, 824, 825, 826, 828, 831, 833, 835, 836, 837, 838, 839, 844, 847, 853, 854, 860], "tend": 9, "outperform": 9, "proce": [9, 803, 804], "95933": 9, "9874": 9, "105807": 9, "70": [9, 38, 40, 52, 75, 76, 368, 389, 399, 540, 564, 623, 633, 668, 745, 844], "77": [9, 38, 42, 76, 579, 623, 633, 668, 745], "93": [9, 38, 52, 74, 76, 84, 193, 282, 353, 365, 532, 533, 617, 620, 726, 727], "wrap": [9, 17, 19, 26, 27, 29, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 575, 578, 579, 580, 581, 583, 585, 586, 597, 599, 601, 602, 605, 607, 608, 609, 610, 620, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 669, 670, 671, 673, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 759, 798, 806, 807, 808, 809, 811, 812, 813, 814, 816, 817, 820, 821, 824, 825, 828, 833, 835, 838, 839, 841, 847, 848, 850, 854, 855, 860, 861], "balanc": 9, "breast": 9, "cancer": 9, "53": [9, 21, 38, 57, 61, 74, 79, 154, 210, 240, 410, 604, 606, 616, 617, 621, 623, 628, 660, 723, 727], "return_x_i": 9, "x_test": 9, "y_test": 9, "test_siz": [9, 40], "76": [9, 19, 38, 51, 52, 65, 72, 74, 75, 84, 163, 217, 233, 281, 316, 362, 399, 616, 618, 623, 627, 633, 675, 712, 726, 745], "87": [9, 38, 77, 79, 229, 258, 368, 380, 410, 411, 510, 601, 618, 621, 762, 818], "171": [9, 57, 623, 660, 762], "90": [9, 38, 40, 42, 51, 52, 74, 75, 234, 274, 278, 353, 365, 371, 380, 478, 510, 618, 623, 633, 668, 745, 792, 844], "86": [9, 38, 61, 75, 84, 368, 380, 399, 510, 601, 621, 726, 727], "88": [9, 38, 77, 84, 107, 380, 510, 605, 612, 621, 623, 629, 633, 668, 727, 745], "perfectli": [9, 764, 845], "align": [9, 52, 69, 75, 368, 369, 403, 418, 622, 650, 792, 804, 812, 825, 827, 833, 835, 841, 860], "gain": [9, 777, 805, 807, 832, 837, 854], "combin": [9, 32, 52, 69, 75, 98, 368, 380, 401, 412, 509, 537, 538, 620, 623, 653, 663, 805, 808, 811, 812, 813, 815, 817, 821, 828, 838, 854], "build": [10, 14, 15, 17, 24, 26, 27, 30, 31, 32, 33, 38, 40, 45, 63, 69, 98, 631, 735, 736, 737, 738, 778, 779, 780, 798, 799, 804, 806, 812, 813, 821, 823, 832, 834, 837, 838, 839, 841, 844, 848, 852, 854, 856, 859, 860, 861], "timm": [10, 11, 15, 26, 27, 798, 848], "kera": [10, 11, 13, 15, 16, 24, 26, 27, 43, 44, 775, 798, 845, 848, 860], "seen": [11, 13, 18, 24, 26, 369, 375, 426, 497, 544, 620, 787, 812, 813, 815, 817, 825, 828, 833, 835, 836, 843, 844, 860], "veri": [11, 19, 26, 27, 29, 51, 74, 269, 328, 344, 365, 618, 623, 671, 764, 802, 803, 804, 805, 810, 811, 813, 814, 815, 817, 818, 820, 821, 824, 825, 826, 828, 829, 831, 834, 836, 837, 838, 839, 843, 844, 850, 851, 852, 854, 855, 856, 859, 860, 861], "guid": [11, 24, 798, 799, 803, 804, 805, 810, 819, 825, 827, 860], "focu": [11, 24, 803, 823, 852, 853, 856, 861], "more": [11, 14, 15, 17, 18, 19, 22, 24, 26, 27, 28, 29, 38, 40, 41, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 148, 240, 242, 258, 273, 286, 290, 294, 295, 297, 356, 360, 366, 369, 370, 371, 415, 417, 429, 432, 444, 450, 451, 452, 457, 478, 567, 612, 615, 616, 618, 620, 623, 625, 631, 656, 662, 663, 666, 669, 671, 673, 680, 689, 696, 735, 736, 737, 738, 764, 774, 792, 798, 800, 802, 803, 805, 806, 807, 808, 809, 810, 811, 812, 813, 815, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 848, 849, 852, 853, 854, 855, 856, 857, 860, 861], "involv": [11, 14, 15, 22, 24, 49, 72, 175, 218, 235, 242, 268, 273, 616, 618, 792, 799, 803, 806, 812, 813, 815, 826, 831, 838, 844, 854, 860], "develop": [11, 25, 26, 27, 798, 799, 800, 801, 802, 803, 804, 805, 807, 810, 812, 818, 827, 829, 839, 841, 843, 844, 845, 847, 848, 852, 853, 854, 855, 856, 859, 860, 861], "usual": [11, 13, 43, 235, 268, 618, 791, 804, 807, 813, 825, 828, 831], "own": [11, 13, 17, 26, 27, 32, 798, 804, 807, 812, 813, 816, 817, 824, 825, 829, 833, 839, 841, 844, 845, 850, 853, 854, 859, 860], "directli": [11, 13, 17, 20, 24, 26, 27, 30, 368, 369, 403, 426, 627, 716, 798, 803, 804, 805, 807, 808, 811, 812, 813, 814, 816, 819, 821, 822, 824, 825, 826, 829, 830, 833, 835, 837, 838, 839, 840, 845, 847, 848, 849, 858, 859, 860], "case": [11, 13, 19, 21, 26, 27, 29, 30, 31, 32, 40, 47, 48, 52, 53, 59, 65, 69, 71, 75, 76, 82, 92, 93, 98, 123, 134, 161, 162, 189, 194, 195, 202, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 243, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 340, 342, 352, 365, 368, 371, 374, 375, 381, 391, 392, 393, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 477, 478, 486, 488, 490, 497, 520, 537, 538, 542, 549, 563, 564, 565, 615, 616, 617, 618, 620, 623, 625, 627, 633, 671, 677, 688, 689, 690, 692, 694, 695, 697, 699, 707, 713, 746, 747, 748, 749, 750, 751, 752, 762, 763, 782, 792, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 835, 837, 838, 839, 844, 847, 848, 849, 853, 857], "mlp": 11, "mixer": 11, "onli": [11, 13, 26, 27, 32, 38, 40, 42, 44, 47, 48, 51, 52, 57, 59, 61, 69, 71, 74, 75, 80, 82, 84, 92, 95, 97, 113, 133, 173, 174, 203, 263, 264, 269, 275, 306, 336, 342, 362, 365, 368, 369, 371, 375, 380, 390, 403, 421, 426, 438, 440, 450, 451, 452, 462, 495, 496, 512, 526, 612, 615, 616, 617, 618, 620, 622, 623, 625, 627, 629, 630, 632, 633, 648, 663, 670, 673, 674, 689, 692, 704, 705, 711, 712, 714, 715, 716, 721, 722, 725, 726, 727, 730, 731, 741, 747, 750, 760, 762, 763, 765, 778, 782, 791, 798, 799, 800, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 820, 821, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 843, 847, 848, 853, 854, 855, 860, 861], "retriev": [11, 13, 17, 522, 544, 569, 620, 805, 825], "mlp_encod": [11, 26, 27, 798, 848], "create_model": [11, 26, 27, 798, 848], "mixer_b16_224": [11, 26, 27, 798, 848], "nois": [11, 13, 26, 27, 798, 847, 848], "randn": [11, 13, 26, 27, 798, 848], "tf_mlp_encod": [11, 26, 27], "output_torch": [11, 13], "output_tf": [11, 13], "constant": [11, 13, 18, 21, 22, 28, 31, 33, 38, 52, 59, 60, 75, 82, 83, 92, 93, 316, 362, 370, 371, 444, 445, 472, 625, 627, 628, 687, 710, 723, 777, 781, 798, 821, 826, 829, 837, 838, 839, 847, 849], "output_dens": [11, 26, 27, 798], "layer": [11, 13, 17, 23, 24, 26, 27, 38, 43, 52, 60, 75, 83, 628, 647, 648, 723, 775, 777, 779, 780, 781, 782, 783, 798, 816, 825, 829, 831, 833, 834, 837, 843, 848, 852, 854, 858, 861], "dens": [11, 24, 26, 27, 310, 362, 778, 798], "unit": [11, 26, 27, 52, 68, 75, 92, 93, 105, 107, 108, 109, 110, 111, 112, 113, 290, 291, 293, 297, 299, 300, 303, 304, 305, 360, 491, 492, 612, 798, 804, 807, 813, 825, 826, 828, 839, 855, 858], "activ": [11, 24, 26, 27, 52, 53, 56, 67, 75, 79, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 581, 622, 648, 651, 777, 778, 798, 803, 804, 805, 813, 819, 829, 830, 837, 848, 854, 857], "mention": [11, 13, 26, 27, 32, 803, 804, 805, 808, 815, 820, 821, 824, 825, 828, 831, 844, 849, 854], "basic": [11, 13, 17, 20, 24, 26, 27, 30, 33, 371, 479, 798, 799, 803, 815, 828], "fulli": [11, 13, 15, 16, 19, 24, 26, 27, 40, 52, 75, 380, 516, 778, 798, 808, 813, 820, 823, 831, 833, 834, 835, 836, 837, 838, 839, 845, 849, 852, 853, 854, 860, 861], "trainabl": [11, 13, 17, 23, 24, 26, 27, 44, 775, 779, 780, 783, 798, 816, 834, 836, 837, 848, 849], "fine": [11, 13, 26, 27, 804, 805, 813, 815, 825, 835, 838, 860], "tune": [11, 13, 26, 27, 859, 860], "train": [11, 13, 24, 26, 27, 43, 52, 54, 56, 75, 77, 79, 95, 368, 369, 374, 391, 392, 393, 437, 488, 490, 601, 602, 607, 621, 622, 645, 648, 651, 777, 778, 779, 780, 781, 798, 811, 814, 821, 836, 837, 838, 839, 845, 848, 852, 853, 858, 860, 861], "ground": [11, 13, 370, 441, 757, 759, 770, 801, 818, 825, 828, 843], "ret": [11, 13, 26, 27, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 417, 418, 419, 420, 422, 427, 430, 432, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 478, 480, 481, 482, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 558, 559, 560, 561, 563, 564, 568, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 710, 711, 712, 713, 714, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 765, 775, 780, 782, 787, 792, 794, 798, 813, 814, 816, 817, 823, 824, 825, 826, 829, 833, 838, 848], "op": [11, 17, 38, 774, 787, 829, 833, 839], "eagertensor": [11, 17, 38, 787, 826], "readi": [11, 13, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 803, 804], "deepmind": [12, 845], "perceiverio": [12, 845], "backbon": [12, 40, 798, 833, 836], "TO": [12, 14, 25], "replac": [12, 14, 25, 41, 51, 52, 53, 59, 61, 69, 74, 75, 76, 82, 84, 127, 269, 304, 307, 360, 362, 371, 477, 480, 563, 564, 568, 615, 618, 620, 625, 629, 685, 724, 762, 805, 810, 811, 813, 814, 822, 825, 828, 835, 838, 839, 844, 848, 861], "efficientnet": 13, "include_top": [13, 798], "eff_encod": [13, 798], "applic": [13, 15, 40, 42, 45, 52, 56, 75, 79, 95, 369, 440, 622, 623, 627, 633, 648, 651, 677, 710, 711, 712, 716, 717, 749, 751, 798, 804, 812, 813, 814, 822, 837, 851, 852, 854, 856, 858, 860], "efficientnet_v2": [13, 798], "efficientnetv2b0": [13, 798], "data": [13, 21, 22, 23, 24, 27, 32, 40, 42, 45, 46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 87, 88, 89, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 147, 149, 150, 152, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 176, 177, 178, 179, 181, 187, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 294, 295, 296, 297, 306, 307, 308, 309, 310, 311, 312, 323, 324, 325, 326, 327, 329, 330, 331, 347, 352, 360, 362, 365, 368, 369, 371, 375, 379, 380, 383, 391, 392, 393, 409, 411, 418, 420, 438, 455, 477, 480, 481, 483, 495, 496, 497, 498, 499, 505, 509, 510, 511, 515, 518, 519, 536, 549, 551, 552, 555, 581, 612, 615, 617, 618, 620, 622, 623, 625, 627, 629, 630, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 645, 646, 652, 653, 654, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 686, 689, 690, 692, 693, 695, 696, 700, 708, 725, 726, 727, 729, 730, 731, 733, 734, 739, 741, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 760, 762, 763, 764, 765, 770, 774, 777, 778, 779, 780, 784, 792, 798, 804, 806, 807, 808, 809, 810, 811, 814, 816, 820, 821, 822, 824, 826, 829, 831, 833, 835, 841, 842, 844, 854, 855, 856, 858, 859, 860], "storag": [13, 40, 41, 836, 844], "googleapi": [13, 40, 41], "efficientnetv2": 13, "b0_notop": 13, "h5": [13, 69], "24274472": 13, "0u": 13, "torch_eff_encod": [13, 798], "1280": [13, 532, 620, 798], "state": [14, 25, 40, 56, 79, 95, 182, 183, 184, 185, 186, 268, 588, 590, 593, 595, 596, 616, 618, 620, 622, 647, 760, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 798, 801, 804, 810, 813, 814, 816, 817, 818, 819, 820, 825, 828, 832, 833, 834, 836, 844, 848, 860, 861], "api": [14, 19, 24, 25, 29, 42, 44, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 173, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 480, 509, 615, 616, 618, 623, 625, 630, 631, 632, 633, 634, 652, 653, 654, 655, 656, 658, 659, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 686, 688, 689, 690, 692, 693, 695, 696, 700, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 798, 801, 804, 805, 806, 808, 810, 813, 814, 815, 816, 817, 818, 820, 822, 824, 825, 826, 828, 831, 832, 834, 836, 839, 841, 842, 843, 850, 852, 854, 856, 859, 861], "welcom": [15, 41, 798, 799, 804, 805, 827], "goal": [15, 40, 242, 618, 798, 803, 844, 854, 860], "provid": [15, 17, 21, 24, 26, 27, 31, 32, 38, 44, 48, 52, 53, 57, 59, 62, 65, 66, 69, 71, 75, 76, 80, 82, 85, 88, 89, 117, 134, 136, 153, 154, 155, 156, 157, 165, 175, 187, 191, 287, 368, 369, 371, 374, 380, 403, 411, 414, 419, 423, 434, 435, 439, 440, 456, 458, 467, 486, 488, 490, 519, 531, 563, 564, 614, 615, 616, 617, 618, 620, 622, 623, 625, 627, 630, 633, 634, 648, 665, 668, 679, 688, 689, 696, 708, 730, 750, 752, 753, 754, 763, 778, 782, 787, 788, 798, 803, 804, 805, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 823, 824, 825, 826, 828, 829, 831, 835, 837, 839, 843, 847, 848, 849, 852, 853, 854, 855, 856, 857, 858, 861], "varieti": [15, 807, 812, 813, 814, 828, 830, 850, 852, 856, 857, 860, 861], "organ": [15, 808, 811, 821, 825, 827, 829, 841, 844], "main": [15, 27, 48, 52, 57, 75, 80, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 418, 461, 615, 623, 655, 656, 677, 798, 803, 804, 805, 807, 810, 811, 818, 822, 824, 852, 854, 855, 860], "exactli": [15, 19, 29, 38, 39, 43, 285, 618, 803, 811, 812, 813, 814, 815, 817, 828, 831, 843, 845], "rush": [15, 845], "jump": [15, 826], "straight": [15, 798, 812, 825, 828, 835], "quickstart": 15, "introduct": [15, 17, 24, 26, 27, 854], "capabl": [15, 23, 27, 828, 831], "point": [15, 24, 49, 51, 52, 57, 61, 63, 65, 72, 74, 75, 80, 84, 88, 121, 122, 123, 125, 127, 130, 137, 138, 143, 147, 160, 164, 168, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 251, 256, 257, 258, 259, 260, 268, 270, 271, 273, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 306, 307, 309, 329, 330, 346, 347, 350, 352, 362, 365, 368, 369, 370, 375, 380, 383, 391, 392, 393, 411, 420, 438, 441, 495, 496, 497, 498, 499, 509, 510, 511, 519, 613, 615, 616, 618, 623, 629, 630, 631, 632, 633, 652, 654, 657, 658, 659, 661, 664, 665, 666, 669, 670, 671, 672, 673, 674, 675, 677, 680, 726, 727, 733, 735, 736, 737, 738, 741, 743, 744, 746, 747, 748, 749, 750, 751, 752, 787, 788, 798, 801, 803, 804, 805, 807, 808, 810, 812, 813, 815, 816, 818, 820, 824, 825, 828, 829, 831, 833, 835, 836, 845, 847, 860], "those": [15, 39, 40, 57, 59, 69, 75, 80, 82, 121, 174, 235, 268, 481, 600, 615, 616, 618, 620, 623, 625, 627, 630, 670, 673, 685, 706, 733, 803, 804, 805, 808, 811, 812, 813, 822, 824, 825, 826, 828, 831, 843, 851], "who": [15, 806, 817, 832, 839, 854, 856], "deeper": [15, 17, 27, 47, 627, 715, 716, 805, 806, 828, 832, 843], "showcas": [15, 798], "real": [15, 23, 51, 52, 65, 74, 75, 88, 97, 107, 110, 113, 137, 138, 215, 216, 217, 218, 220, 221, 222, 223, 224, 233, 235, 236, 238, 240, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 268, 270, 271, 273, 277, 278, 279, 281, 282, 283, 284, 285, 286, 288, 289, 329, 330, 336, 337, 347, 365, 368, 369, 390, 411, 412, 420, 421, 612, 615, 618, 623, 630, 633, 657, 658, 659, 664, 671, 673, 674, 677, 680, 733, 746, 748, 749, 750, 751, 811, 856], "world": [15, 23, 805, 856], "whether": [15, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 93, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 120, 122, 123, 129, 131, 136, 138, 144, 147, 148, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 165, 166, 167, 168, 170, 171, 172, 173, 175, 187, 191, 192, 194, 195, 197, 199, 202, 203, 205, 208, 209, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 390, 391, 392, 393, 409, 411, 414, 429, 435, 440, 441, 442, 443, 444, 445, 446, 447, 449, 450, 451, 452, 456, 457, 458, 460, 462, 463, 464, 467, 471, 478, 480, 481, 482, 486, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 559, 563, 564, 565, 566, 568, 571, 572, 574, 575, 577, 578, 579, 581, 583, 585, 586, 593, 594, 597, 599, 602, 603, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 633, 634, 636, 637, 638, 639, 645, 646, 647, 648, 651, 652, 653, 658, 659, 660, 661, 662, 663, 664, 666, 668, 670, 671, 672, 677, 682, 683, 684, 685, 688, 689, 690, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 704, 705, 710, 711, 712, 714, 715, 716, 717, 721, 722, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 757, 759, 762, 774, 775, 778, 779, 780, 781, 782, 791, 798, 799, 803, 804, 808, 811, 813, 815, 820, 824, 825, 828, 830, 831, 847, 848], "beginn": [15, 799, 854], "advanc": [15, 38, 804, 853], "got": [15, 38, 817], "cover": [15, 26, 52, 75, 368, 404, 405, 406, 803, 807, 808, 810, 813, 815, 816, 821, 822, 828, 831, 832], "write": [15, 16, 26, 27, 38, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 329, 330, 331, 332, 333, 334, 335, 337, 338, 339, 340, 341, 343, 345, 346, 347, 348, 351, 352, 353, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 415, 417, 418, 426, 427, 430, 431, 432, 433, 439, 441, 442, 443, 444, 446, 447, 456, 457, 460, 461, 462, 463, 464, 465, 466, 469, 470, 471, 473, 474, 475, 476, 478, 479, 480, 481, 482, 484, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 527, 528, 532, 533, 534, 539, 540, 549, 563, 564, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 669, 670, 672, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 723, 724, 725, 726, 727, 729, 731, 732, 734, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 760, 798, 802, 803, 805, 806, 807, 809, 810, 812, 813, 815, 816, 817, 821, 824, 826, 829, 833, 835, 838, 845, 854, 861], "familiar": [15, 16, 17, 798, 803, 804], "concept": [15, 16, 17], "agnost": [15, 16, 17, 18, 26, 27, 28, 32, 38, 798, 808, 813, 820, 833, 835, 838, 839, 860, 861], "unifi": [15, 16, 17, 19, 20, 26, 29, 30, 34, 41, 69, 208, 617, 806, 807, 808, 812, 813, 817, 822, 823, 825, 831, 833, 839, 842, 844, 846, 848, 850, 851, 852, 854, 858, 861], "alongsid": [15, 16, 17, 18, 28, 622, 648, 844], "turn": [15, 16, 19, 29, 56, 79, 92, 93, 391, 392, 393, 622, 645, 778, 804, 810, 811, 814, 815, 825, 828, 845], "wrapper": [15, 16, 19, 770, 808, 810, 811, 813, 817, 821, 824, 825, 835, 841, 850, 854], "unus": [15, 16, 19, 815, 824], "part": [15, 16, 19, 48, 51, 52, 74, 75, 80, 97, 107, 110, 113, 140, 141, 142, 248, 252, 275, 322, 323, 348, 362, 365, 368, 369, 371, 380, 411, 421, 472, 519, 612, 615, 618, 623, 658, 659, 759, 798, 803, 804, 805, 807, 810, 813, 819, 821, 824, 825, 828, 829, 831, 833, 834, 838, 839, 847, 848, 849, 852, 854, 859, 860, 861], "lazi": [15, 16, 19, 22, 29, 32, 33, 44], "eager": [15, 16, 19, 22, 24, 29, 32, 33, 44, 811, 839, 854], "understand": [15, 16, 17, 21, 38, 44, 801, 802, 803, 804, 805, 806, 807, 810, 815, 816, 820, 826, 827, 832, 845, 850, 860], "decor": [15, 16, 21, 23, 24, 32, 44, 526, 620, 762, 764, 770, 801, 807, 808, 811, 813, 814, 818, 821, 824, 825, 826, 831], "kornia": [15, 16, 23, 26, 27, 40, 44, 798, 848], "roundup": 17, "over": [17, 24, 27, 29, 40, 52, 57, 65, 66, 67, 72, 75, 79, 80, 88, 89, 90, 92, 117, 314, 315, 329, 330, 342, 349, 362, 365, 368, 369, 371, 378, 380, 382, 383, 384, 387, 396, 401, 405, 409, 410, 411, 412, 413, 433, 449, 462, 477, 480, 481, 502, 512, 518, 567, 600, 614, 620, 623, 628, 629, 633, 634, 653, 664, 675, 677, 679, 680, 723, 727, 746, 747, 748, 749, 750, 751, 752, 753, 754, 778, 781, 787, 791, 798, 804, 805, 809, 815, 816, 823, 824, 826, 829, 833, 835, 839, 843, 845, 852, 854], "indep": [17, 26], "futur": [17, 24, 26, 40, 623, 658, 659, 798, 804, 805, 812, 813, 828, 829, 831, 835, 839, 843, 845, 860], "proof": [17, 26], "delv": [17, 27, 798], "theori": [17, 800, 810], "deep": [17, 24, 26, 38, 69, 532, 620, 798, 799, 800, 802, 803, 805, 807, 810, 811, 813, 819, 823, 826, 832, 835, 836, 843, 852, 854, 857, 858, 860, 861], "esenti": [17, 26], "abstract": [17, 26, 27, 777, 782, 798, 811, 813, 824, 825, 828, 831, 837, 843, 852, 854, 856, 857, 861], "specif": [17, 18, 23, 24, 26, 27, 28, 30, 32, 40, 50, 52, 53, 73, 75, 76, 175, 206, 209, 242, 263, 264, 273, 316, 329, 330, 362, 365, 371, 375, 480, 499, 532, 533, 534, 560, 616, 617, 618, 620, 623, 625, 626, 629, 632, 633, 658, 659, 675, 696, 701, 702, 703, 724, 741, 746, 747, 748, 750, 757, 759, 779, 780, 787, 788, 794, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 813, 814, 817, 819, 820, 821, 824, 825, 826, 827, 828, 829, 831, 833, 834, 835, 837, 838, 839, 840, 841, 843, 847, 848, 849, 850, 852, 853, 855, 856, 857, 861], "quirk": [17, 26], "perk": [17, 26, 798, 808, 811], "under": [17, 26, 27, 52, 370, 444, 445, 791, 798, 803, 804, 806, 807, 814, 815, 816, 819, 825, 826, 828, 831, 832, 833, 836, 838, 839, 847, 848, 854, 857, 861], "hood": [17, 26, 27, 798, 806, 814, 815, 819, 825, 828, 831, 832, 833, 836, 838, 847, 848, 861], "appropi": 17, "string": [17, 26, 27, 42, 52, 53, 56, 69, 75, 79, 145, 146, 158, 165, 187, 188, 189, 190, 191, 193, 202, 209, 210, 214, 368, 369, 371, 410, 413, 421, 472, 483, 511, 530, 616, 617, 620, 622, 623, 635, 636, 637, 638, 640, 642, 644, 659, 757, 759, 763, 791, 792, 809, 810, 812, 813, 814, 817, 825, 833, 836], "simplest": [17, 804, 815, 828, 831], "interact": [17, 26, 41, 44, 803, 853, 854, 859], "submodul": [17, 26, 40, 42, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 803, 804, 805, 807, 810, 812, 814, 818, 821, 822, 828, 832, 833, 837, 841], "ones": [17, 24, 26, 38, 44, 48, 52, 54, 56, 61, 69, 71, 75, 79, 84, 127, 131, 136, 138, 144, 194, 195, 231, 307, 362, 380, 518, 601, 615, 617, 618, 621, 622, 640, 641, 725, 726, 727, 763, 798, 803, 808, 812, 815, 820, 821, 827, 828, 835, 836, 854], "likewis": [17, 22, 26, 33, 798, 805, 811, 813, 816, 820, 821, 825, 831, 836, 847, 848, 860], "nativearrai": [17, 26, 27, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 65, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 122, 123, 124, 126, 131, 132, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 166, 167, 168, 170, 172, 174, 175, 181, 191, 192, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 311, 312, 316, 323, 324, 325, 326, 327, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 455, 456, 457, 458, 460, 461, 462, 463, 464, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 509, 510, 511, 512, 513, 521, 524, 525, 527, 528, 532, 533, 534, 536, 539, 540, 541, 542, 543, 545, 547, 548, 549, 552, 555, 556, 558, 563, 564, 565, 568, 577, 578, 579, 580, 581, 583, 585, 586, 588, 599, 601, 602, 603, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 704, 705, 706, 707, 711, 712, 713, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 783, 808, 811, 815, 817, 820, 821, 822, 824, 825, 829, 830, 833, 835, 841], "alia": [17, 26, 329, 330, 365, 613, 803, 825, 846, 849], "select": [17, 26, 31, 44, 52, 65, 75, 88, 369, 371, 380, 421, 432, 480, 481, 510, 511, 633, 743, 744, 803, 804, 805, 812, 818, 824, 828, 833, 835, 838, 839, 854, 857, 858], "lastli": [17, 26, 808], "contain": [17, 26, 27, 41, 46, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 161, 162, 163, 166, 167, 168, 170, 172, 175, 192, 194, 195, 196, 201, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 360, 362, 365, 367, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 527, 528, 532, 533, 534, 535, 536, 537, 538, 539, 540, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 568, 571, 573, 578, 579, 580, 581, 583, 585, 586, 593, 599, 600, 601, 602, 603, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 707, 711, 712, 713, 716, 717, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 769, 770, 778, 779, 780, 782, 783, 787, 791, 792, 798, 800, 801, 803, 804, 806, 807, 808, 809, 810, 812, 813, 815, 816, 818, 820, 821, 822, 823, 824, 826, 828, 830, 831, 832, 833, 834, 837, 839, 840, 841, 843, 847, 854, 855, 860], "subclass": [17, 26, 27, 822, 825, 831, 848], "dict": [17, 26, 27, 40, 44, 47, 53, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 136, 138, 144, 148, 150, 161, 162, 163, 167, 168, 175, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 319, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 371, 390, 391, 392, 393, 411, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 472, 478, 480, 481, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 522, 524, 525, 527, 528, 532, 533, 534, 535, 536, 537, 538, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 559, 563, 564, 578, 579, 581, 583, 585, 586, 599, 610, 614, 616, 617, 620, 627, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 704, 705, 707, 710, 711, 712, 713, 715, 716, 717, 721, 722, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 759, 760, 775, 778, 780, 787, 792, 808, 811, 836, 837, 841, 847, 848, 849], "recurs": [17, 26, 27, 40, 42, 47, 69, 70, 161, 162, 194, 195, 369, 437, 537, 538, 544, 616, 617, 620, 627, 704, 705, 708, 714, 715, 716, 757, 804, 807, 810, 811, 818, 821, 824, 837, 839], "oper": [17, 18, 21, 22, 23, 24, 26, 27, 28, 32, 39, 42, 48, 49, 51, 52, 53, 56, 69, 71, 72, 74, 75, 76, 79, 98, 113, 132, 133, 175, 205, 213, 218, 220, 229, 232, 235, 242, 257, 259, 268, 269, 273, 277, 280, 285, 296, 304, 324, 325, 326, 357, 360, 362, 367, 368, 371, 382, 383, 384, 386, 387, 388, 394, 395, 396, 400, 404, 405, 406, 407, 409, 410, 412, 413, 414, 477, 479, 525, 532, 533, 534, 581, 612, 615, 616, 617, 618, 620, 622, 623, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 648, 675, 677, 749, 751, 762, 765, 778, 792, 798, 803, 804, 806, 807, 808, 811, 813, 814, 815, 816, 817, 821, 824, 825, 828, 831, 833, 836, 837, 841, 843, 847, 850, 851, 852, 853, 854, 855, 857, 858, 859, 860, 861], "fashion": [17, 764, 828, 848], "native_arrai": [17, 26, 27, 48, 49, 51, 71, 73, 74, 75, 76, 80, 87, 105, 108, 131, 134, 136, 138, 144, 147, 148, 149, 150, 158, 163, 170, 192, 201, 209, 225, 229, 234, 235, 236, 238, 242, 246, 254, 255, 263, 268, 271, 274, 277, 282, 329, 330, 356, 365, 370, 371, 446, 472, 478, 482, 521, 524, 551, 552, 555, 585, 612, 615, 616, 617, 618, 620, 622, 623, 624, 625, 629, 630, 633, 634, 636, 637, 644, 651, 654, 658, 659, 665, 666, 670, 674, 675, 677, 680, 682, 684, 685, 692, 724, 733, 742, 748, 751, 753, 759, 769, 787, 801, 818, 826, 828], "data_class": [17, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 387, 388, 532, 536, 673, 698], "low": [17, 26, 29, 45, 52, 56, 61, 75, 79, 84, 368, 410, 413, 622, 629, 635, 636, 637, 638, 640, 642, 644, 725, 727, 764, 811, 817, 824, 825, 831, 833, 850, 852, 854, 855, 856, 858, 860], "level": [17, 26, 27, 29, 52, 75, 76, 369, 437, 524, 792, 798, 799, 803, 804, 805, 811, 813, 817, 821, 823, 824, 825, 827, 830, 831, 832, 833, 836, 837, 838, 839, 841, 845, 850, 851, 852, 853, 854, 855, 856, 858, 859, 860, 861], "c": [17, 26, 32, 41, 42, 48, 52, 53, 54, 56, 59, 65, 71, 72, 74, 75, 76, 77, 79, 80, 82, 86, 88, 92, 93, 111, 122, 123, 133, 136, 160, 163, 218, 229, 235, 236, 256, 257, 259, 268, 271, 279, 286, 368, 369, 371, 374, 380, 382, 383, 384, 395, 400, 415, 417, 419, 420, 422, 432, 450, 451, 452, 462, 480, 488, 489, 490, 493, 511, 524, 532, 533, 534, 535, 543, 547, 548, 586, 601, 602, 605, 607, 608, 609, 612, 615, 616, 618, 620, 621, 622, 623, 625, 627, 630, 631, 633, 636, 637, 638, 639, 640, 641, 643, 657, 659, 661, 692, 696, 704, 707, 711, 712, 713, 715, 716, 721, 722, 733, 738, 744, 745, 750, 752, 781, 791, 792, 799, 804, 806, 809, 810, 811, 815, 821, 823, 832, 833, 834, 836, 839, 841, 842, 844, 845, 848, 850, 854, 858, 859, 861], "fundament": [17, 26, 812, 825, 831, 833, 843, 854], "common": [17, 20, 26, 30, 51, 52, 69, 74, 174, 245, 253, 333, 339, 365, 616, 618, 799, 801, 803, 804, 810, 813, 814, 815, 821, 822, 825, 829, 831, 839, 843, 851, 854, 861], "signatur": [17, 26, 371, 380, 472, 509, 813, 814, 815, 816, 820, 824, 828, 829, 831, 844, 851, 860], "matmul": [17, 26, 27, 43, 57, 80, 369, 435, 600, 620, 623, 673, 809, 828, 829, 833], "to_n": [17, 26, 27, 38, 47, 70, 833], "jaxlib": [17, 23, 41, 787, 804, 808, 813, 814, 820, 829, 833, 835], "xla_extens": [17, 23, 787, 808, 813, 814, 820, 829, 833, 835], "arrayimpl": [17, 23, 787], "abov": [17, 22, 26, 27, 32, 33, 48, 51, 52, 57, 61, 68, 74, 75, 80, 84, 93, 113, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 305, 307, 322, 323, 329, 330, 332, 335, 360, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 401, 404, 405, 406, 411, 412, 420, 421, 472, 480, 509, 512, 539, 543, 545, 547, 549, 586, 610, 612, 615, 616, 618, 620, 621, 622, 623, 625, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 725, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 798, 801, 803, 804, 805, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 828, 831, 833, 835, 836, 837, 838, 854, 859], "why": [17, 798, 805, 824, 835, 842, 844], "underli": [17, 26, 27, 38, 52, 59, 75, 82, 95, 225, 228, 230, 265, 370, 371, 445, 462, 618, 623, 625, 671, 692, 811, 824, 831, 847, 854], "disabl": [17, 26, 52, 75, 371, 480, 780, 810], "array_mod": [17, 26, 565, 588, 620, 830], "set_array_mod": [17, 26, 588, 620, 830], "composit": [17, 26, 161, 162, 194, 195, 287, 369, 427, 537, 538, 616, 617, 618, 620, 763, 765, 803, 806, 808, 809, 811, 813, 814, 822, 824, 825, 826, 828, 831, 833, 837, 838, 839, 841, 847, 855], "ultim": [17, 26, 847], "sigmoid": [17, 26, 27, 38, 46, 52, 68, 75, 295, 360, 375, 495, 612, 774, 833, 836, 837], "z": [17, 26, 27, 39, 40, 48, 51, 52, 53, 57, 58, 61, 63, 65, 71, 74, 75, 76, 80, 81, 82, 84, 88, 97, 98, 132, 133, 135, 136, 196, 218, 219, 223, 225, 228, 230, 235, 246, 247, 250, 251, 252, 254, 255, 260, 262, 264, 265, 266, 267, 275, 284, 294, 295, 329, 330, 332, 360, 365, 370, 380, 441, 443, 444, 445, 446, 447, 453, 457, 468, 508, 509, 512, 519, 524, 536, 539, 540, 547, 548, 564, 577, 578, 579, 587, 600, 615, 617, 618, 620, 623, 624, 625, 627, 629, 630, 631, 633, 653, 663, 668, 669, 673, 680, 682, 683, 684, 685, 707, 711, 713, 721, 725, 726, 727, 730, 735, 745, 746, 748, 749, 750, 777, 798, 809, 811, 814, 815, 833, 835, 847], "divid": [17, 22, 26, 27, 43, 51, 52, 53, 59, 69, 74, 75, 82, 97, 98, 242, 374, 442, 488, 489, 490, 493, 578, 618, 620, 625, 694, 808, 811, 815, 819, 828], "exp": [17, 26, 27, 51, 52, 74, 75, 111, 113, 240, 260, 273, 295, 360, 368, 370, 395, 400, 445, 612, 618, 623, 671, 823, 825], "high": [17, 26, 27, 45, 52, 56, 61, 75, 79, 84, 368, 410, 413, 572, 620, 622, 629, 635, 636, 637, 638, 640, 642, 644, 725, 727, 764, 803, 817, 823, 825, 836, 841, 845, 850, 851, 852, 853, 854, 858, 860, 861], "network": [17, 24, 26, 27, 38, 40, 45, 622, 646, 774, 777, 778, 798, 811, 821, 833, 837, 844, 848, 850, 852, 853, 854, 858, 860, 861], "entir": [17, 26, 27, 29, 42, 52, 65, 66, 69, 75, 76, 88, 89, 208, 238, 240, 280, 281, 329, 330, 365, 368, 371, 380, 391, 392, 393, 472, 512, 545, 617, 618, 633, 634, 746, 747, 748, 749, 750, 751, 752, 753, 754, 778, 792, 803, 804, 805, 807, 808, 811, 813, 815, 817, 824, 825, 826, 828, 831, 833, 836, 837, 838, 839, 844, 845, 848, 854, 860, 861], "further": [17, 69, 98, 764, 805, 807, 808, 812, 815, 817, 820, 821, 824, 825, 827, 828, 832, 833, 836, 837, 844, 845, 859, 860], "congratul": [17, 23], "There": [17, 24, 27, 32, 92, 361, 363, 364, 372, 373, 377, 764, 798, 803, 804, 805, 807, 808, 810, 811, 813, 814, 815, 817, 819, 821, 823, 825, 826, 830, 833, 836, 839, 843, 847, 855, 856, 860, 861], "come": [17, 40, 803, 804, 805, 808, 812, 825, 830, 831, 837, 841, 854], "independ": [17, 27, 52, 61, 75, 84, 218, 235, 268, 278, 374, 375, 493, 495, 618, 623, 629, 653, 672, 724, 798, 807, 813, 815, 822, 833, 838, 848, 852], "good": [17, 26, 27, 798, 802, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 826, 828, 829, 831, 833, 834, 837], "foundat": [17, 844, 857], "power": [17, 26, 27, 51, 52, 53, 57, 74, 75, 76, 80, 97, 98, 229, 238, 239, 273, 327, 339, 362, 365, 368, 414, 569, 579, 591, 618, 620, 623, 627, 665, 678, 710, 777, 830, 835, 836, 837, 854, 856, 860], "defin": [18, 24, 26, 27, 28, 48, 52, 53, 57, 71, 75, 76, 80, 95, 111, 136, 140, 141, 142, 218, 235, 242, 268, 269, 277, 279, 282, 294, 298, 302, 308, 311, 312, 313, 322, 323, 324, 325, 326, 329, 330, 332, 360, 362, 365, 368, 369, 371, 380, 403, 419, 472, 478, 512, 547, 548, 568, 612, 615, 618, 620, 623, 633, 653, 658, 659, 672, 746, 747, 748, 750, 798, 803, 804, 808, 809, 812, 813, 816, 820, 823, 825, 826, 828, 829, 835, 837, 839, 841, 849, 851, 852, 853, 854, 855, 858, 860, 861], "div": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 849], "sub": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 52, 57, 59, 69, 70, 74, 75, 76, 80, 82, 98, 267, 369, 371, 380, 421, 458, 467, 486, 515, 516, 544, 620, 623, 625, 626, 656, 677, 694, 701, 702, 703, 803, 805, 806, 811, 817, 825, 826, 828, 835, 836, 837, 849, 850], "By": [18, 38, 45, 52, 58, 59, 65, 66, 75, 81, 82, 88, 89, 282, 327, 329, 330, 342, 349, 362, 365, 368, 370, 371, 378, 380, 390, 444, 445, 480, 502, 509, 512, 567, 618, 620, 623, 624, 625, 633, 634, 653, 679, 682, 691, 743, 746, 747, 748, 749, 750, 751, 752, 753, 754, 804, 809, 813, 815, 817, 821, 823, 824, 825, 833, 837, 838, 847], "uniform": [18, 19, 20, 21, 22, 26, 27, 28, 29, 31, 32, 33, 40, 52, 61, 75, 84, 380, 512, 629, 724, 725, 727, 777, 798, 827, 837, 848, 849, 861], "x_": [18, 28, 93, 279, 618, 849], "82997245": 18, "44733784": 18, "32163444": 18, "93330479": 18, "52438271": 18, "20438017": 18, "252316": 18, "0827222": 18, "26017165": 18, "88881904": 18, "compat": [18, 24, 28, 32, 38, 45, 51, 52, 57, 59, 62, 65, 66, 74, 75, 80, 82, 85, 88, 89, 97, 98, 149, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 289, 329, 330, 365, 616, 618, 623, 625, 630, 633, 634, 653, 666, 669, 672, 675, 679, 680, 692, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 798, 804, 809, 820, 825, 826, 829, 833, 839, 844], "sever": [18, 19, 28, 29, 31, 32, 33, 52, 75, 92, 368, 369, 382, 383, 384, 433, 762, 804, 805, 829, 839, 852, 858], "pro": [18, 19, 20, 28, 29, 30, 31, 32, 33], "pick": [19, 29, 777], "off": [19, 29, 56, 57, 79, 80, 391, 392, 393, 622, 623, 645, 656, 677, 777, 778, 804, 818, 832, 845, 847, 860], "last": [19, 24, 26, 29, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 71, 75, 79, 80, 81, 82, 87, 88, 89, 93, 97, 132, 133, 136, 191, 307, 335, 362, 365, 368, 369, 370, 371, 378, 380, 396, 401, 411, 412, 423, 444, 462, 472, 474, 480, 502, 510, 511, 615, 617, 622, 623, 624, 625, 630, 632, 633, 634, 647, 648, 653, 656, 668, 677, 679, 683, 684, 686, 689, 692, 693, 694, 696, 730, 731, 739, 741, 742, 743, 744, 753, 754, 778, 787, 798, 805, 807, 809, 810, 813, 815, 824, 826, 828, 831, 833, 839, 845, 848, 854], "purpos": [19, 26, 27, 29, 40, 42, 142, 240, 258, 322, 362, 615, 618, 623, 671, 805, 806, 808, 811, 812, 814, 815, 817, 820, 821, 822, 825, 827, 828, 831, 832, 835, 841, 853, 855, 858, 859, 860], "illustr": [19, 29, 809, 833], "trigger": [19, 29, 780, 803, 819], "unif": [19, 21, 22, 29, 31, 799, 835, 844, 850, 860], "detail": [19, 29, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 76, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 128, 139, 286, 290, 294, 295, 297, 360, 369, 417, 457, 535, 612, 615, 618, 631, 656, 663, 669, 673, 696, 735, 736, 737, 738, 774, 798, 803, 805, 807, 809, 810, 811, 812, 819, 820, 821, 822, 825, 826, 827, 828, 829, 830, 833, 835, 836, 837, 856, 860], "55563945": 19, "65538704": 19, "14150524": 19, "46951997": 19, "30220294": 19, "14739668": 19, "57017946": 19, "91962677": 19, "51029003": 19, "59644395": 19, "arbitrari": [19, 29, 48, 49, 52, 69, 72, 75, 134, 148, 175, 316, 370, 442, 450, 451, 452, 603, 615, 616, 621, 820, 821, 823, 824, 825, 828, 837, 839, 847, 849, 855, 860], "constitu": [19, 29, 69, 838], "due": [19, 26, 27, 29, 43, 45, 268, 278, 371, 480, 618, 804, 807, 812, 817, 824, 825, 844, 847, 848, 854], "manner": [19, 27, 29, 39, 47, 70, 627, 716, 804, 813, 814, 816, 821, 825, 829, 836, 839, 843, 850, 852, 860, 861], "non": [19, 29, 49, 51, 52, 57, 61, 62, 65, 66, 72, 74, 75, 80, 84, 85, 88, 89, 129, 147, 165, 174, 243, 263, 264, 269, 329, 330, 334, 340, 353, 365, 368, 369, 371, 380, 411, 421, 425, 429, 451, 452, 512, 515, 615, 616, 618, 623, 627, 629, 630, 633, 634, 653, 654, 664, 666, 673, 675, 679, 680, 717, 726, 730, 731, 732, 733, 746, 747, 748, 749, 750, 752, 753, 754, 762, 777, 779, 780, 782, 808, 811, 815, 833, 847, 848, 849, 854], "5556394": 19, "655387": 19, "1415051": 19, "4695197": 19, "3022028": 19, "1473966": 19, "5701794": 19, "91962665": 19, "51028997": 19, "5964439": 19, "assess": [19, 29, 803, 831], "985": 19, "000": [19, 74, 269, 762, 801, 812, 818], "69": [19, 38, 45, 51, 77, 84, 216, 258, 368, 389, 399, 605, 618, 621, 623, 664, 665, 726, 828, 836], "slower": [19, 825], "On": [19, 26, 27, 804, 813, 814, 819, 825, 828, 831, 834, 838], "hand": [19, 51, 369, 435, 762, 798, 807, 813, 814, 819, 821, 828, 839], "singl": [19, 29, 38, 43, 51, 61, 69, 74, 84, 93, 287, 344, 365, 369, 375, 432, 496, 586, 599, 603, 618, 620, 621, 622, 629, 631, 648, 725, 726, 727, 735, 762, 778, 803, 804, 805, 807, 812, 815, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 836, 837, 838, 839, 845], "learnt": [20, 30], "two": [20, 30, 32, 38, 48, 52, 57, 63, 75, 76, 80, 97, 98, 118, 121, 127, 134, 140, 141, 142, 173, 181, 229, 243, 244, 278, 322, 323, 328, 340, 341, 343, 344, 346, 348, 355, 362, 365, 368, 369, 370, 371, 380, 396, 418, 419, 420, 432, 442, 446, 451, 472, 478, 482, 509, 519, 524, 614, 615, 616, 618, 620, 623, 625, 631, 652, 654, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 677, 679, 697, 735, 736, 737, 738, 762, 764, 770, 778, 803, 804, 807, 808, 813, 814, 815, 816, 821, 825, 826, 828, 831, 832, 836, 838, 845, 851, 859], "workflow": [20, 30, 41, 803, 805, 809, 813, 823, 825, 836, 841, 845, 853, 860, 861], "ivy_norm": 20, "jax_norm": [20, 26, 27], "wider": [20, 30, 572, 594, 620, 813, 830, 860], "avoid": [20, 30, 32, 52, 59, 75, 235, 240, 242, 258, 268, 370, 371, 374, 442, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 486, 488, 489, 490, 526, 542, 544, 567, 572, 594, 618, 620, 625, 688, 689, 690, 692, 694, 695, 697, 699, 764, 765, 804, 805, 809, 810, 811, 812, 813, 817, 822, 825, 828, 829, 830, 831, 854], "conveni": [20, 30, 803, 813, 814, 820, 826, 834, 836, 837, 841, 860], "act": [20, 30, 52, 75, 356, 366, 805, 815, 830, 839, 861], "shorthand": [20, 30, 32, 828], "pair": [20, 30, 40, 52, 56, 75, 79, 223, 242, 314, 355, 362, 365, 368, 401, 410, 412, 413, 618, 622, 623, 635, 636, 637, 638, 640, 642, 644, 651, 653, 792], "93968587": 20, "26075466": 20, "22723222": 20, "06276492": 20, "47426987": 20, "72835908": 20, "71737559": 20, "50411096": 20, "65419174": 20, "15576624": 20, "implic": [20, 30, 31, 34, 811], "requir": [21, 22, 23, 24, 31, 40, 41, 42, 45, 51, 52, 69, 74, 75, 269, 282, 286, 369, 371, 420, 421, 472, 618, 623, 625, 657, 658, 659, 696, 762, 770, 775, 792, 800, 803, 804, 808, 810, 812, 813, 814, 815, 816, 817, 819, 820, 822, 825, 826, 827, 828, 829, 831, 833, 835, 839, 848, 854, 860], "satisfi": [21, 22, 23, 24, 40, 42, 45, 52, 368, 369, 390, 421, 813, 815], "opt": [21, 22, 23, 24, 44, 804, 809, 813, 824, 828, 831], "fw": [21, 22, 23, 24, 56, 79, 380, 509, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 759, 804, 828], "mxnet": [21, 22, 23, 24, 787, 803, 804, 844, 861], "26": [21, 22, 23, 24, 38, 40, 42, 45, 51, 52, 60, 61, 75, 76, 77, 84, 230, 235, 281, 368, 369, 389, 424, 432, 547, 601, 618, 620, 621, 622, 623, 627, 628, 633, 644, 656, 668, 675, 705, 723, 725, 726, 745], "einop": [21, 22, 23, 24, 40, 42, 45, 53, 76, 532, 533, 534, 620, 813, 844], "miniconda": [21, 22, 23, 24], "env": [21, 22, 23, 24], "multienv": [21, 22, 23, 24], "site": [21, 22, 23, 24, 855], "psutil": [21, 22, 23, 24, 40, 42, 45], "termcolor": [21, 22, 23, 24, 40, 42, 45, 69, 98], "colorama": [21, 22, 23, 24, 40, 42], "nvidia": [21, 22, 23, 24, 40, 42, 45, 858, 859], "535": [21, 22, 23, 24, 46, 68, 113, 612, 817], "diskcach": [21, 22, 23, 24, 40], "auth": [21, 22, 23, 24], "urllib3": [21, 22, 23, 24, 40], "pyvi": [21, 22, 23, 24, 26, 27], "dill": [21, 22, 23, 24, 40], "astunpars": [21, 22, 23, 24], "cloudpickl": [21, 22, 23, 24], "gast": [21, 22, 23, 24], "66": [21, 22, 23, 24, 38, 40, 42, 65, 75, 76, 77, 368, 399, 532, 533, 605, 620, 621, 623, 633, 668, 745], "wheel": [21, 22, 23, 24, 40, 42, 45, 843], "six": [21, 22, 23, 24, 40, 45, 804, 831], "cachetool": [21, 22, 23, 24], "pyasn1": [21, 22, 23, 24], "rsa": [21, 22, 23, 24], "jinja2": [21, 22, 23, 24], "jsonpickl": [21, 22, 23, 24], "networkx": [21, 22, 23, 24, 45], "charset": [21, 22, 23, 24, 40], "idna": [21, 22, 23, 24, 40], "certifi": [21, 22, 23, 24, 40], "2017": [21, 22, 23, 24, 40, 622, 648], "jedi": [21, 22, 23, 24], "inlin": [21, 22, 23, 24, 810], "prompt": [21, 22, 23, 24, 803, 805], "toolkit": [21, 22, 23, 24, 854, 855, 861], "pygment": [21, 22, 23, 24], "traitlet": [21, 22, 23, 24], "exceptiongroup": [21, 22, 23, 24], "paddl": [21, 22, 23, 24, 329, 330, 365, 775, 787, 803, 804, 813, 818], "pexpect": [21, 22, 23, 24], "markupsaf": [21, 22, 23, 24], "parso": [21, 22, 23, 24], "ptyprocess": [21, 22, 23, 24], "wcwidth": [21, 22, 23, 24], "asttoken": [21, 22, 23, 24], "pure": [21, 22, 23, 24, 32, 42, 798, 816, 820, 825, 831, 835, 838, 839, 854, 860, 861], "eagerli": [21, 22, 26, 27, 31, 32, 33, 40, 798, 847, 848, 849], "lazili": [21, 22, 23, 26, 27, 31, 33, 44, 798, 847, 848, 849], "actual": [21, 31, 801, 805, 806, 812, 818, 821, 822, 824, 825, 826, 828, 831, 832, 837, 839, 855, 860], "occur": [21, 26, 27, 31, 44, 49, 51, 63, 72, 74, 86, 150, 269, 285, 616, 618, 630, 631, 730, 731, 735, 736, 737, 738, 807, 812, 814, 817, 830], "becaus": [21, 29, 31, 41, 52, 368, 390, 757, 804, 805, 807, 808, 809, 810, 811, 813, 814, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 828, 831, 833, 837, 838, 839, 854, 857, 860], "argument": [21, 23, 24, 26, 27, 29, 31, 32, 33, 38, 40, 42, 44, 47, 48, 51, 52, 53, 57, 69, 70, 74, 75, 76, 92, 93, 98, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 337, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 411, 414, 421, 472, 480, 509, 512, 516, 522, 523, 525, 526, 531, 533, 534, 539, 543, 545, 547, 549, 559, 563, 564, 581, 586, 587, 600, 610, 615, 616, 618, 620, 621, 622, 623, 625, 626, 627, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 703, 710, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 770, 775, 778, 779, 780, 787, 791, 794, 798, 803, 806, 807, 808, 809, 810, 811, 815, 816, 819, 821, 826, 828, 829, 831, 833, 835, 836, 841, 843, 847, 848, 849, 854], "altern": [21, 31, 41, 52, 75, 80, 92, 93, 328, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 365, 798, 803, 804, 810, 824, 836, 857], "dummi": [21, 22, 31, 32, 33, 39, 805], "seed": [21, 22, 42, 43, 52, 56, 61, 63, 69, 75, 79, 84, 317, 318, 319, 320, 321, 362, 369, 375, 425, 434, 440, 495, 496, 497, 498, 499, 622, 629, 631, 645, 724, 725, 726, 727, 729, 735, 770, 775, 777, 792, 822, 826, 828], "assum": [21, 22, 31, 32, 33, 48, 51, 52, 53, 56, 57, 58, 74, 75, 76, 79, 80, 81, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 307, 323, 329, 330, 332, 335, 352, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 433, 435, 472, 480, 509, 512, 539, 543, 545, 547, 556, 586, 610, 615, 616, 618, 620, 621, 622, 623, 624, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 682, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 778, 791, 798, 804, 807, 809, 812, 813, 816, 826, 828, 831, 835, 836, 839], "201733": 21, "core": [21, 22, 24, 40, 41, 42, 44, 45, 52, 75, 92, 95, 199, 369, 425, 434, 439, 440, 617, 804, 814, 818, 828, 838, 843, 852, 853, 854, 855, 859, 861], "cpu_feature_guard": [21, 22, 24], "182": [21, 22, 24, 75], "instruct": [21, 22, 24, 69, 98, 798, 803, 804, 807, 817, 819, 826, 828, 840, 852, 855, 858, 860], "critic": [21, 22, 24, 26, 27, 854, 860], "avx2": [21, 22, 24], "fma": [21, 22, 24], "rebuild": [21, 22, 24, 69, 98], "flag": [21, 22, 24, 69, 191, 370, 380, 442, 509, 617, 622, 648, 759, 770, 781, 805, 813, 814, 824, 825, 826, 828, 847, 848], "slowli": [21, 31], "norm": [21, 31, 32, 52, 53, 57, 75, 76, 80, 91, 92, 368, 369, 389, 390, 394, 395, 396, 399, 400, 401, 411, 412, 417, 421, 491, 492, 494, 527, 528, 549, 620, 623, 664, 680, 723, 778, 782, 829], "slow": [21, 31, 800, 804, 810], "34431235": [21, 22], "51129461": [21, 22], "06686894": [21, 22], "36452447": [21, 22], "98795534": [21, 22], "15493582": [21, 22], "91630631": [21, 22], "41939619": [21, 22], "78909753": [21, 22], "19475674": [21, 22], "norm_trac": 21, "float64": [21, 22, 49, 52, 61, 65, 71, 72, 74, 75, 76, 84, 88, 121, 129, 130, 147, 150, 154, 155, 160, 161, 164, 165, 170, 171, 175, 177, 178, 184, 187, 269, 339, 365, 370, 380, 445, 509, 558, 615, 616, 620, 623, 629, 658, 659, 664, 680, 726, 727, 744, 759, 762, 763, 813, 826, 828], "norm_tran": [21, 31], "know": [21, 22, 31, 32, 33, 63, 631, 735, 736, 737, 738, 800, 803, 805, 814, 822, 826, 828, 831, 845, 849, 855], "07": [22, 40, 42, 54, 58, 74, 77, 81, 84, 223, 256, 259, 260, 279, 368, 399, 591, 601, 602, 604, 605, 606, 607, 618, 620, 621, 624, 683, 684, 726, 779, 782, 837], "981554": 22, "happen": [22, 26, 27, 287, 618, 798, 804, 805, 814, 824, 828, 836, 845, 847, 848], "wherea": [22, 33, 805, 808, 811, 813, 814, 815, 820, 821, 828, 838, 851], "subtract": [22, 26, 27, 51, 74, 97, 98, 129, 371, 472, 615, 618, 808, 811, 815], "begin": [22, 52, 75, 279, 371, 456, 472, 473, 474, 475, 476, 618, 627, 704, 715, 762, 804, 807, 812, 826], "filelock": [23, 40], "extens": [23, 40, 51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 480, 509, 615, 616, 618, 623, 625, 630, 631, 632, 633, 634, 652, 653, 654, 655, 656, 658, 659, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 686, 688, 689, 690, 692, 693, 695, 696, 700, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 802, 804, 805, 816, 818, 819, 828, 851, 854, 861], "sympi": [23, 844], "fsspec": [23, 40], "mpmath": 23, "scenario": [23, 813, 823], "often": [23, 802, 807, 817, 820, 821, 825, 828, 839, 845, 855, 858, 861], "fortun": [23, 24, 807], "everyth": [23, 41, 791, 798, 803, 804, 805, 806, 812, 815, 824, 825, 826, 828, 834, 839, 840, 845], "practic": [23, 805, 809, 812, 825, 827, 857], "specifi": [23, 24, 26, 27, 31, 32, 33, 44, 46, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 125, 130, 132, 137, 140, 141, 143, 147, 149, 196, 201, 203, 207, 208, 209, 277, 286, 290, 294, 295, 297, 323, 328, 344, 349, 360, 362, 365, 368, 369, 370, 371, 375, 380, 386, 387, 388, 390, 396, 401, 411, 412, 413, 421, 431, 433, 438, 444, 445, 446, 448, 462, 465, 474, 475, 477, 478, 480, 496, 507, 509, 510, 511, 514, 515, 519, 522, 539, 540, 542, 544, 545, 558, 560, 568, 600, 612, 615, 616, 617, 618, 620, 622, 623, 624, 625, 627, 629, 630, 631, 632, 633, 634, 648, 651, 653, 655, 656, 658, 659, 664, 672, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 693, 695, 696, 699, 700, 708, 709, 711, 712, 719, 720, 721, 722, 725, 726, 727, 729, 730, 731, 733, 736, 737, 738, 739, 743, 744, 745, 749, 751, 753, 754, 762, 765, 774, 778, 779, 780, 792, 804, 806, 810, 813, 814, 820, 821, 822, 824, 825, 826, 828, 833, 836, 837, 847, 848, 849, 860], "everi": [23, 26, 27, 32, 40, 48, 52, 53, 75, 76, 130, 131, 295, 329, 330, 342, 360, 365, 368, 371, 404, 405, 406, 485, 521, 615, 620, 803, 805, 807, 809, 810, 812, 813, 815, 819, 820, 821, 822, 824, 825, 826, 828, 833, 835, 837, 847, 848, 849, 854], "jax_kornia": [23, 26, 27, 798, 848], "though": [23, 802, 803, 805, 813, 814, 816, 821, 824, 825, 831, 836, 839], "comput": [23, 24, 26, 27, 33, 34, 39, 40, 42, 46, 51, 52, 53, 54, 56, 57, 58, 63, 65, 68, 69, 74, 75, 76, 77, 79, 80, 81, 88, 92, 93, 95, 108, 112, 208, 218, 225, 228, 230, 235, 236, 237, 242, 243, 244, 246, 247, 253, 254, 255, 262, 263, 264, 265, 267, 268, 271, 276, 277, 294, 298, 302, 308, 311, 312, 324, 325, 326, 329, 330, 332, 336, 340, 342, 343, 347, 349, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 378, 380, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 414, 415, 417, 419, 420, 421, 422, 424, 425, 427, 430, 432, 434, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 466, 469, 482, 488, 490, 501, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 526, 527, 528, 572, 594, 601, 603, 604, 606, 610, 611, 617, 618, 620, 621, 622, 623, 624, 625, 627, 631, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 652, 653, 657, 658, 659, 662, 663, 664, 666, 668, 670, 672, 673, 675, 677, 679, 680, 682, 683, 684, 688, 710, 735, 736, 737, 738, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 759, 764, 778, 781, 792, 798, 804, 811, 812, 813, 821, 823, 825, 828, 830, 831, 833, 836, 839, 841, 844, 845, 847, 848, 850, 852, 854, 855, 857, 858, 860], "000000000034": [23, 26, 27, 798, 848], "raw_img": [23, 26, 27, 798, 848], "enhanc": [23, 26, 27, 798, 827, 848], "sharp": [23, 26, 27, 798], "prefer": [23, 26, 27, 242, 618, 798, 804, 811, 817, 818, 822, 825, 840, 854], "leverag": [23, 26, 27, 798, 804, 824, 848, 852, 854], "whole": [24, 52, 75, 371, 374, 479, 491, 492, 494, 805, 810, 819], "full": [24, 52, 57, 75, 79, 80, 92, 93, 95, 160, 247, 255, 317, 318, 319, 320, 321, 362, 369, 370, 371, 438, 439, 444, 445, 473, 476, 566, 575, 589, 597, 615, 616, 618, 620, 622, 623, 637, 639, 640, 641, 643, 666, 670, 672, 673, 763, 770, 798, 804, 805, 810, 813, 816, 817, 820, 821, 825, 828, 831, 833, 839, 844, 845, 852, 854, 860], "advantag": [24, 26, 27, 798, 804, 805, 813, 824, 825, 840, 848, 854], "complex": [24, 26, 27, 40, 46, 51, 52, 57, 65, 68, 72, 74, 75, 80, 88, 105, 106, 107, 108, 109, 110, 111, 112, 113, 137, 138, 153, 167, 176, 182, 215, 216, 217, 218, 219, 220, 221, 224, 232, 233, 235, 236, 238, 240, 248, 249, 250, 251, 252, 256, 257, 258, 259, 268, 270, 271, 273, 275, 278, 279, 280, 281, 282, 285, 286, 290, 294, 295, 297, 332, 337, 360, 365, 368, 369, 380, 390, 401, 411, 412, 415, 420, 421, 422, 431, 433, 517, 518, 578, 579, 612, 615, 616, 618, 620, 623, 630, 633, 657, 658, 659, 664, 671, 673, 675, 677, 680, 733, 748, 749, 751, 763, 774, 792, 803, 810, 813, 815, 822, 825, 828, 829, 831, 836, 837, 838, 839, 841, 848, 850, 852, 854, 856, 860, 861], "neccessari": 24, "set_random_se": [24, 43], "manual_se": 24, "301436": 24, "_c": 24, "0x7f252c392390": 24, "convolut": [24, 52, 56, 75, 79, 368, 388, 406, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 764, 778, 848, 852, 854], "flatten": [24, 26, 27, 40, 42, 45, 52, 53, 57, 59, 62, 63, 75, 76, 80, 82, 85, 86, 334, 349, 365, 369, 371, 380, 418, 461, 471, 475, 480, 481, 485, 507, 514, 515, 516, 517, 518, 519, 532, 536, 620, 623, 625, 630, 631, 660, 668, 680, 686, 691, 693, 730, 731, 735, 736, 737, 738, 757, 759, 798, 824, 831], "keyword": [24, 26, 27, 42, 44, 47, 48, 52, 69, 75, 98, 134, 269, 368, 371, 380, 414, 472, 509, 523, 526, 559, 587, 615, 618, 620, 623, 627, 633, 674, 710, 751, 757, 759, 763, 779, 780, 791, 803, 808, 811, 813, 814, 822, 824, 825, 826, 828, 829, 831, 836, 847, 848, 849], "input_arrai": [24, 26, 27, 824], "torch_model": [24, 26, 27, 44], "159": [24, 68, 105, 612, 622, 646], "state_upd": 24, "properti": [24, 69, 92, 93, 94, 95, 96, 97, 101, 780, 782, 807, 811, 821, 826, 828, 835, 836, 837, 860], "_transpil": 24, "thank": [24, 836, 844], "fledg": [24, 804, 833, 834], "rand": [24, 26, 27, 42, 791, 792, 798, 847], "output_arrai": [24, 26, 27, 52, 442], "0893": 24, "1504": 24, "1372": 24, "0991": 24, "0867": 24, "0851": 24, "0911": 24, "0804": 24, "0926": 24, "0881": 24, "softmaxbackward0": 24, "furthermor": 24, "relat": [24, 242, 618, 798, 800, 802, 803, 804, 805, 810, 817, 825, 828, 829, 830, 831, 848, 857], "interest": [24, 26, 38, 235, 268, 618, 803, 805], "continu": [24, 26, 27, 42, 120, 282, 290, 360, 614, 618, 798, 802, 803, 804, 806, 807, 818, 824, 827, 828, 839, 844, 845, 854], "regress": [25, 854, 861], "checkout": [26, 41, 805, 807, 828], "f705efe7cb5d18df17ce6c1e20f04d0eb4933f48": 26, "theoret": 26, "aspect": [26, 27, 799, 823, 836, 854], "switch": [26, 38, 770, 809, 817, 821, 822, 861], "easiest": [26, 798, 800, 804, 840], "defer": [26, 27, 803, 808, 813, 814, 821, 824, 825, 828, 860], "similarli": [26, 39, 134, 142, 218, 322, 329, 330, 362, 365, 615, 618, 809, 813, 825, 831, 835, 860], "obtain": [26, 27, 45, 52, 75, 313, 362, 368, 407, 622, 648, 764, 825, 847], "essenc": [26, 855, 860], "becom": [26, 52, 75, 92, 339, 365, 371, 452, 625, 685, 787, 805, 811, 813, 815, 817, 824, 839, 843, 845, 847], "regardless": [26, 27, 38, 69, 799, 813, 817, 835, 838, 845], "being": [26, 27, 38, 52, 69, 75, 90, 97, 101, 121, 369, 371, 429, 456, 472, 573, 615, 620, 623, 659, 759, 765, 777, 798, 804, 805, 807, 808, 809, 811, 813, 814, 815, 818, 820, 822, 824, 825, 826, 828, 829, 831, 833, 836, 839, 844, 845, 850, 852, 853, 854, 855, 860, 861], "slide": [26, 52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 410, 413, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 778], "A": [26, 27, 41, 48, 49, 52, 53, 59, 61, 65, 66, 69, 72, 74, 75, 76, 79, 80, 82, 84, 86, 89, 92, 93, 98, 117, 118, 120, 127, 135, 142, 148, 189, 208, 270, 272, 276, 307, 318, 322, 324, 325, 326, 328, 341, 344, 348, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 383, 396, 410, 414, 421, 432, 435, 442, 446, 457, 460, 478, 482, 483, 488, 489, 490, 491, 495, 496, 497, 498, 499, 507, 516, 519, 524, 526, 535, 544, 547, 548, 578, 579, 580, 583, 611, 614, 615, 616, 617, 618, 620, 621, 622, 623, 625, 627, 629, 633, 634, 645, 648, 656, 658, 661, 662, 667, 668, 672, 673, 685, 688, 690, 694, 696, 704, 707, 709, 711, 712, 713, 714, 715, 719, 720, 721, 722, 724, 725, 726, 727, 729, 735, 745, 753, 754, 757, 759, 760, 762, 763, 764, 765, 770, 777, 792, 796, 798, 802, 803, 804, 806, 811, 813, 814, 817, 820, 821, 825, 826, 828, 833, 836, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 854, 855], "regressor": [26, 27, 798], "input_dim": [26, 27, 41, 798], "output_dim": [26, 27, 41, 798], "linear0": [26, 27, 38, 798, 836, 837], "linear1": [26, 27, 38, 798, 836, 837], "instanti": [26, 27, 770, 816], "adam": [26, 27, 38, 42, 54, 77, 523, 601, 602, 607, 620, 621, 782, 798, 836, 837, 838, 854], "n_training_exampl": [26, 27, 798], "2000": [26, 27, 75, 308, 362, 798], "random_norm": [26, 27, 56, 57, 61, 79, 80, 84, 532, 620, 622, 623, 629, 637, 639, 640, 641, 643, 644, 647, 673, 798], "linspac": [26, 27, 48, 71, 121, 615, 798, 820, 831, 833, 861], "loss_fn": [26, 27, 38, 40, 42, 798, 836, 837, 838], "pred": [26, 27, 41, 42, 52, 58, 75, 81, 370, 441, 444, 624, 682, 683, 684, 798, 811, 821, 824], "epoch": [26, 27, 40, 42, 798], "loss": [26, 27, 40, 42, 52, 75, 92, 441, 442, 443, 444, 445, 446, 447, 572, 594, 620, 682, 683, 684, 798, 812, 813, 821, 825, 829, 830, 836, 837, 838, 854, 861], "gradient": [26, 27, 40, 42, 52, 75, 92, 208, 357, 365, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 617, 626, 701, 702, 703, 759, 770, 782, 798, 806, 829, 836, 837, 839, 854], "grad": [26, 27, 38, 42, 601, 621, 782, 798, 823, 836, 837, 838], "execute_with_gradi": [26, 27, 38, 42, 621, 798, 836, 837, 838, 839], "lambda": [26, 27, 43, 45, 75, 118, 120, 292, 301, 531, 603, 604, 606, 611, 614, 620, 621, 623, 627, 658, 711, 712, 716, 798, 803, 821, 822, 823, 826, 831, 833, 836], "2d": [26, 27, 42, 52, 75, 92, 307, 362, 368, 369, 371, 380, 383, 384, 391, 392, 431, 438, 451, 461, 509, 778, 798, 825, 831], "5f": [26, 27, 798], "nonetheless": [26, 27], "slight": [26, 27, 813, 828, 837], "introduc": [26, 27, 242, 618, 625, 631, 693, 735, 803, 811, 812, 813, 822, 826, 828, 831, 836, 843], "address": [26, 27, 52, 53, 75, 371, 480, 585, 620, 803, 805, 807, 808, 820, 827, 833, 845, 850, 852, 854, 860], "extract": [26, 27, 34, 41, 52, 75, 93, 371, 455, 481, 825, 827, 829, 850, 854, 855, 860], "gc": [26, 27, 544, 620], "decompos": [26, 27, 52, 75, 92, 95, 317, 318, 319, 320, 321, 341, 348, 362, 365, 369, 429, 434, 437, 440, 825, 838], "said": [26, 27, 764, 829, 845, 847], "otherwis": [26, 27, 44, 47, 48, 49, 51, 52, 53, 56, 57, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 123, 124, 129, 131, 132, 133, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 166, 170, 174, 175, 191, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 307, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 335, 336, 343, 344, 350, 352, 354, 355, 356, 360, 362, 365, 368, 369, 374, 386, 387, 388, 391, 392, 393, 411, 423, 436, 438, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 458, 460, 462, 463, 464, 471, 478, 480, 481, 482, 486, 488, 490, 491, 492, 494, 496, 508, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 556, 563, 564, 578, 579, 581, 583, 585, 586, 587, 599, 603, 605, 610, 614, 615, 616, 617, 618, 620, 621, 622, 623, 626, 627, 630, 631, 632, 633, 634, 636, 637, 638, 639, 645, 646, 648, 651, 652, 653, 654, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 673, 677, 679, 680, 682, 683, 684, 685, 688, 689, 690, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 717, 724, 725, 726, 727, 729, 730, 731, 732, 734, 735, 736, 737, 738, 739, 741, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 762, 763, 778, 780, 781, 787, 798, 805, 808, 811, 813, 814, 815, 821, 822, 824, 828, 833, 840, 847, 848], "x0": [26, 27, 45, 76, 524, 620, 815], "normalize_trac": [26, 27], "html": [26, 27, 41, 51, 52, 74, 75, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 480, 509, 615, 616, 618, 623, 625, 633, 671, 672, 700, 750, 798, 816, 844], "fname": [26, 27, 43, 45, 780, 836], "anticip": [26, 27], "addition": [26, 27, 811, 824, 825, 860], "backend_compil": [26, 27], "normalize_native_comp": [26, 27], "return_backend_compiled_fn": 26, "immedi": [26, 27, 803, 804], "built": [26, 27, 32, 40, 42, 45, 121, 615, 778, 779, 780, 798, 804, 805, 810, 811, 828, 834, 840, 847, 853, 854, 858], "summar": [26, 27, 92, 828], "eager_graph": [26, 27, 798, 847, 848], "lazy_graph": [26, 27, 798, 847, 848], "codebas": [26, 27, 206, 207, 617, 799, 806, 813, 819, 824, 825, 827, 828, 829, 832, 845], "thought": [26, 27, 804, 805, 820, 844, 852], "research": [26, 27, 40, 798, 843, 848, 854, 861], "wa": [26, 27, 32, 41, 52, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 351, 352, 354, 355, 356, 362, 365, 369, 391, 392, 393, 411, 439, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 478, 480, 481, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 587, 599, 605, 610, 618, 620, 627, 633, 634, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 787, 798, 800, 805, 807, 809, 810, 812, 815, 821, 823, 825, 833, 835, 844, 847, 848, 853, 854, 856], "No": [26, 27, 40, 52, 58, 75, 81, 370, 442, 443, 444, 446, 447, 624, 682, 805, 812, 813, 854], "matter": [26, 27, 32, 815, 843], "job": [26, 27, 798, 810, 812, 848], "haven": [26, 27, 32, 840, 854], "jax_out": [26, 27], "ideal": [26, 27, 812, 813, 825, 831, 836], "But": [26, 27, 764, 811, 812, 816, 819, 822, 831, 838], "bring": [26, 27, 807, 827, 828, 833, 834, 841, 844], "wise": [26, 46, 51, 52, 57, 68, 74, 75, 80, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 215, 216, 218, 219, 220, 222, 223, 225, 226, 227, 228, 229, 230, 234, 235, 236, 237, 239, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 263, 264, 265, 266, 267, 268, 271, 273, 274, 276, 277, 284, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 328, 331, 336, 338, 339, 340, 343, 344, 345, 346, 350, 351, 354, 355, 360, 365, 368, 369, 371, 391, 392, 393, 419, 426, 459, 466, 468, 469, 487, 612, 618, 625, 653, 685, 782, 831], "vision": [26, 27, 45, 850, 860], "worth": [26, 27], "differenti": [26, 27, 290, 358, 359, 360, 367, 854], "chosen": [26, 27, 45, 95, 121, 223, 615, 618, 630, 734, 803, 812, 825], "plai": [26, 27, 370, 444, 798, 804, 808, 814, 818, 825, 828, 838, 854, 857], "role": [26, 27, 798, 805, 814, 825, 834, 855, 857, 861], "dl": [26, 27], "cnn": [26, 27, 854], "effortlessli": [26, 27], "previous": [26, 27, 589, 620, 787, 804, 809, 821, 823, 828, 833], "pre": [26, 27, 798, 801, 803, 827, 828, 838, 839, 840, 854], "default_devic": [26, 27, 201, 204, 205, 206, 212, 213, 617, 814, 817, 818], "as_n": [26, 27, 49, 50, 69, 72, 73, 153, 154, 155, 156, 157, 158, 164, 191, 192, 204, 616, 617, 813], "certainli": [26, 27, 798, 844, 860], "upon": [26, 27, 44, 805, 815, 824, 828, 831, 839, 853, 854], "unnecessari": [26, 27, 825], "extend": [26, 27, 52, 75, 371, 380, 472, 512, 809, 810, 813, 816, 817, 820, 825, 829, 839, 851, 854, 860], "infrastructur": [26, 27, 798, 850, 856, 857], "least": [26, 51, 52, 57, 74, 75, 235, 253, 268, 368, 371, 380, 395, 400, 450, 451, 452, 461, 463, 509, 618, 623, 630, 663, 733, 798, 805, 808, 812, 813, 814, 815, 821, 824, 828, 848], "coco": 26, "seamlessli": [27, 828], "benefit": [27, 798, 804, 808, 811, 824, 831, 835, 836, 839, 844, 845, 852, 856, 859], "through": [27, 32, 40, 52, 75, 95, 223, 380, 515, 516, 618, 627, 707, 713, 780, 791, 798, 799, 801, 802, 803, 805, 806, 809, 810, 811, 812, 814, 815, 817, 818, 819, 821, 822, 824, 825, 826, 828, 830, 831, 832, 833, 836, 837, 838, 847, 852, 854, 855, 856], "therefor": [27, 32, 48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 465, 472, 473, 475, 480, 484, 509, 512, 516, 525, 533, 534, 539, 543, 545, 547, 549, 563, 581, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 803, 805, 807, 808, 811, 812, 813, 814, 815, 816, 817, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 835, 837, 839, 843, 851, 854, 860], "wide": [27, 798, 805, 828, 852, 854], "prepar": [27, 40, 42, 45, 798, 812], "plenti": 27, "resourc": [27, 799, 803, 804, 812], "visit": [27, 803, 804, 805, 812], "page": [27, 798, 803, 804, 805, 810, 812, 818, 834, 835, 838, 840, 849], "newli": [28, 29, 41, 43, 49, 72, 147, 526, 616, 620, 805, 812, 824, 828], "randon": [28, 29, 31, 32, 33], "mean_": 28, "std_": 28, "detect": [28, 32, 51, 69, 74, 250, 618, 627, 704, 715, 803, 804, 809, 811, 812, 819, 828, 836, 837], "inspect": [28, 32, 522, 620], "__": [28, 29, 30, 31, 32, 33, 69, 815, 836], "exhibit": [29, 860], "via": [29, 32, 242, 369, 371, 434, 437, 440, 480, 618, 627, 714, 715, 805, 807, 811, 813, 814, 824, 829, 831, 833, 835, 836, 854], "script": [29, 798, 804, 805, 807, 812, 815, 833, 839, 854], "comp": 29, "low_level": 29, "chain": [29, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 441, 442, 443, 444, 445, 446, 447, 456, 457, 478, 480, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 626, 627, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 701, 702, 706, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 783, 808, 811, 823, 825, 837, 838, 839, 854], "un": [29, 165, 616, 813, 833], "partial_comp": 29, "time_funct": 29, "slowest": [29, 52, 59, 75, 82, 371, 462, 625, 692], "express": [29, 51, 52, 74, 75, 93, 216, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 618, 784, 792, 816, 825, 833, 838, 854, 855], "fastest": [29, 52, 59, 75, 82, 369, 371, 432, 462, 625, 692], "maxim": [29, 821, 824, 833, 851, 852, 856, 857, 858], "conclud": [30, 829], "collect": [30, 40, 42, 44, 45, 47, 69, 70, 612, 617, 620, 621, 622, 624, 627, 628, 629, 717, 774, 778, 779, 780, 781, 782, 804, 812, 817, 818, 822, 823, 826, 828, 852, 854, 857], "norm_comp": [31, 32], "global": [31, 32, 42, 53, 69, 76, 98, 153, 154, 155, 156, 157, 206, 207, 208, 569, 570, 573, 578, 579, 591, 592, 595, 616, 617, 620, 770, 781, 787, 804, 808, 809, 812, 813, 814, 817, 821, 825, 833, 854], "approach": [31, 801, 803, 804, 805, 808, 811, 813, 814, 818, 821, 825, 828, 829, 831, 835, 836, 839, 851, 858, 860], "b": [32, 46, 51, 52, 53, 56, 57, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 122, 123, 124, 129, 130, 131, 133, 136, 138, 144, 147, 148, 149, 150, 158, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 375, 378, 380, 386, 387, 388, 389, 391, 392, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 416, 419, 421, 423, 427, 432, 435, 440, 441, 443, 444, 445, 446, 450, 451, 452, 453, 456, 457, 458, 459, 462, 463, 464, 466, 467, 468, 469, 471, 472, 478, 480, 481, 482, 483, 486, 487, 492, 494, 496, 497, 499, 500, 502, 509, 510, 511, 512, 514, 516, 519, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 556, 563, 564, 578, 579, 581, 585, 586, 599, 601, 602, 603, 605, 607, 608, 609, 610, 612, 615, 616, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 651, 652, 653, 654, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 704, 707, 710, 711, 712, 713, 715, 716, 721, 722, 723, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 791, 792, 798, 799, 801, 805, 806, 807, 809, 811, 812, 815, 818, 821, 823, 826, 832, 833, 834, 836, 837, 838, 842, 845, 847, 850], "option": [32, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 163, 165, 175, 187, 191, 203, 206, 207, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 414, 415, 417, 418, 419, 421, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 455, 456, 457, 458, 460, 462, 463, 464, 465, 466, 467, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 527, 528, 530, 532, 533, 534, 535, 536, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 555, 560, 563, 564, 568, 578, 579, 581, 583, 585, 586, 587, 599, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 710, 711, 715, 716, 721, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 763, 770, 774, 775, 777, 778, 780, 782, 783, 791, 796, 803, 804, 805, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 824, 825, 826, 828, 829, 831, 833, 838, 839, 847, 848, 849, 854, 860], "prioriti": [32, 69, 787, 803, 805, 814, 824], "normalize_via_oper": 32, "determin": [32, 51, 52, 57, 59, 63, 66, 69, 74, 75, 76, 80, 87, 89, 92, 95, 97, 98, 127, 150, 152, 159, 165, 166, 167, 168, 170, 171, 172, 187, 197, 199, 200, 211, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 248, 249, 250, 251, 252, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 298, 302, 347, 352, 360, 365, 368, 369, 370, 371, 380, 403, 411, 421, 441, 480, 509, 521, 524, 545, 546, 550, 551, 552, 553, 554, 555, 581, 599, 615, 616, 617, 618, 620, 623, 625, 626, 631, 634, 652, 653, 654, 656, 660, 661, 663, 665, 666, 668, 669, 671, 672, 677, 679, 680, 686, 701, 702, 703, 735, 736, 737, 738, 739, 753, 754, 764, 770, 777, 781, 811, 813, 814, 816, 821, 825, 828, 830, 831, 843], "think": [32, 803, 805, 812, 815, 831, 855], "uniqu": [32, 42, 52, 53, 63, 75, 76, 86, 368, 369, 371, 414, 435, 471, 472, 485, 556, 620, 626, 627, 631, 701, 702, 703, 706, 710, 735, 736, 737, 738, 764, 798, 803, 807, 811, 821, 825, 826, 827, 831, 839, 843, 857], "rule": [32, 49, 51, 52, 57, 72, 74, 75, 80, 147, 150, 173, 174, 175, 224, 235, 268, 270, 277, 279, 287, 289, 368, 371, 380, 411, 460, 509, 616, 618, 623, 625, 652, 653, 660, 665, 668, 672, 686, 764, 791, 807, 808, 811, 812, 813, 815, 819, 820, 821, 823, 828, 831, 855], "broadcast": [32, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 333, 334, 337, 339, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 415, 417, 418, 426, 427, 430, 431, 433, 441, 442, 443, 444, 446, 447, 453, 457, 460, 465, 473, 474, 475, 476, 478, 480, 482, 484, 488, 491, 492, 494, 495, 496, 498, 499, 509, 510, 511, 512, 515, 516, 517, 518, 519, 527, 528, 532, 533, 534, 539, 540, 549, 563, 564, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 628, 629, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 666, 667, 668, 669, 670, 672, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 734, 738, 739, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 764, 791, 811, 813, 815, 816, 817, 828, 829, 833], "elementwis": [32, 52, 60, 75, 83, 294, 296, 355, 360, 623, 628, 678, 723, 821, 829, 833], "must": [32, 40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 319, 320, 323, 324, 325, 326, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 417, 418, 420, 426, 427, 430, 431, 432, 433, 438, 441, 442, 443, 444, 446, 447, 450, 451, 452, 457, 458, 460, 462, 463, 464, 465, 467, 471, 473, 474, 475, 476, 478, 480, 481, 482, 484, 486, 491, 492, 494, 495, 496, 498, 499, 502, 509, 510, 511, 512, 519, 527, 528, 532, 533, 534, 539, 540, 542, 549, 563, 564, 600, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 777, 778, 782, 784, 802, 803, 804, 805, 807, 808, 812, 813, 814, 815, 816, 817, 820, 821, 822, 824, 825, 828, 829, 830, 831, 833, 837, 838, 843, 845, 848, 849, 855, 861], "taken": [32, 52, 57, 75, 80, 335, 365, 368, 412, 623, 656, 677, 803, 812, 825, 829, 838, 855], "account": [32, 42, 44, 52, 59, 75, 82, 282, 371, 462, 618, 625, 692, 777, 791, 804, 812, 816, 825, 829, 847], "rather": [32, 53, 69, 76, 121, 208, 551, 552, 555, 615, 617, 620, 801, 805, 807, 811, 813, 816, 818, 825, 826, 828, 829, 838, 839, 844, 850, 853, 854], "fact": [32, 92, 805, 807, 812, 825, 828, 833, 836], "consum": [32, 759, 811, 812, 820, 826, 828], "thrown": [32, 549, 620, 804, 808, 814, 817, 819, 839], "doesn": [32, 549, 567, 620, 757, 778, 803, 804, 809, 811, 812, 813, 814, 815, 818, 819, 821, 823, 828, 831, 833, 839, 847, 852], "consider": [32, 803, 815, 820, 831, 843, 851, 852], "effect": [32, 48, 52, 54, 65, 75, 77, 88, 134, 370, 403, 444, 601, 609, 615, 621, 622, 633, 648, 750, 752, 762, 765, 803, 808, 811, 812, 816, 820, 824, 826, 831, 839, 844], "explain": [32, 52, 75, 368, 401, 412, 798, 803, 804, 805, 807, 808, 809, 810, 811, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 828, 829, 831, 833, 834, 835, 836, 837, 838, 850, 857, 860], "necessari": [32, 48, 52, 71, 75, 82, 123, 235, 268, 371, 450, 451, 452, 458, 460, 461, 462, 463, 464, 471, 486, 572, 594, 618, 620, 688, 689, 690, 692, 694, 695, 697, 699, 798, 803, 804, 808, 809, 811, 813, 815, 824, 825, 828, 830, 831, 847, 848], "standalon": [33, 803, 808, 828, 841, 850, 855, 860, 861], "dynam": [33, 625, 692, 780, 787, 806, 812, 813, 814, 824, 825, 830, 833, 847, 854, 858], "static": [33, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 101, 102, 124, 313, 368, 388, 401, 406, 414, 434, 440, 478, 489, 581, 615, 622, 648, 668, 775, 780, 825, 830, 839, 853, 854, 855], "flow": [34, 811, 847, 854, 855], "statement": [34, 39, 812, 824, 828, 831, 839, 847, 848], "opposit": 34, "exclud": [34, 65, 75, 88, 121, 142, 322, 362, 510, 511, 615, 629, 727, 743, 762, 765, 787, 815, 833, 847], "todo": [35, 36, 37, 42, 45, 75, 511, 803, 813, 825], "aim": [38, 801, 805, 807, 818, 822, 825, 828, 832, 852, 854, 857], "interfac": [38, 71, 129, 615, 835, 838, 839, 841, 844, 850, 851, 852, 853, 854, 858, 861], "set_framework": [38, 45], "44": [38, 42, 51, 52, 61, 74, 75, 84, 221, 268, 278, 282, 283, 333, 365, 368, 388, 389, 618, 622, 623, 627, 630, 633, 645, 668, 712, 725, 726, 734, 745], "45": [38, 40, 42, 51, 52, 65, 74, 75, 77, 79, 84, 98, 219, 223, 235, 278, 279, 337, 350, 365, 368, 380, 389, 399, 410, 510, 516, 601, 607, 618, 621, 623, 625, 633, 668, 694, 726, 727, 745, 762], "46": [38, 40, 42, 52, 61, 75, 79, 84, 133, 258, 279, 308, 362, 368, 387, 405, 406, 615, 618, 627, 705, 725, 726], "underneath": [38, 812, 852], "sai": [38, 803, 804, 818, 822, 835, 845], "clip": [38, 51, 52, 59, 74, 75, 76, 82, 266, 267, 371, 455, 480, 481, 527, 528, 618, 620, 625, 811, 821, 823, 824, 836, 838], "a_min": 38, "a_max": 38, "tensforflow": 38, "clip_by_valu": [38, 838], "clip_value_min": 38, "clip_value_max": 38, "clamp": [38, 52, 75, 294, 360, 838], "min": [38, 42, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 140, 142, 160, 163, 267, 322, 325, 330, 362, 365, 369, 371, 421, 477, 517, 533, 563, 564, 578, 615, 616, 618, 620, 623, 633, 664, 670, 673, 674, 680, 798], "max": [38, 40, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 160, 163, 266, 329, 365, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 409, 411, 421, 477, 479, 480, 527, 528, 533, 549, 563, 564, 616, 618, 620, 623, 633, 664, 666, 669, 762, 778, 782, 812, 825], "49": [38, 42, 52, 61, 75, 79, 80, 282, 368, 369, 380, 389, 399, 410, 432, 510, 618, 633, 678, 726, 745], "devicearrai": [38, 808, 825, 833, 835], "concaten": [38, 52, 53, 59, 75, 80, 371, 457, 532, 536, 620, 622, 625, 648, 668, 686, 762, 826, 831, 833, 836], "accept": [38, 47, 48, 51, 52, 57, 70, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 336, 357, 362, 365, 367, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 472, 480, 509, 512, 516, 525, 533, 534, 539, 543, 545, 547, 549, 563, 581, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 798, 803, 804, 805, 808, 811, 813, 814, 815, 816, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 835, 841, 852], "jax_concat": 38, "tf_concat": 38, "np_concat": 38, "torch_concat": 38, "85": [38, 46, 52, 61, 68, 74, 75, 77, 79, 84, 98, 107, 220, 229, 230, 274, 290, 291, 293, 360, 380, 510, 578, 605, 612, 618, 620, 621, 622, 629, 646, 725, 726, 727], "mymodel": [38, 836], "x_in": [38, 836, 837, 838], "reduce_mean": [38, 798, 836, 837, 838], "91": [38, 52, 79, 84, 353, 365, 410, 622, 623, 629, 633, 646, 668, 726, 745], "49040043354034424": 38, "48975786566734314": 38, "4892795979976654": 38, "48886892199516296": 38, "4884953498840332": 38, "4881443977355957": 38, "4878086447715759": 38, "48748287558555603": 38, "48716384172439575": 38, "48684927821159363": 38, "48653748631477356": 38, "48622724413871765": 38, "4859171509742737": 38, "48560672998428345": 38, "48529526591300964": 38, "4849821627140045": 38, "48466697335243225": 38, "4843493402004242": 38, "4840289056301117": 38, "4837053418159485": 38, "4833785891532898": 38, "4830484390258789": 38, "48271444439888": 38, "48237672448158264": 38, "48203518986701965": 38, "48168954253196716": 38, "4813397228717804": 38, "4809857904911041": 38, "48062753677368164": 38, "48026490211486816": 38, "479898065328598": 38, "47952669858932495": 38, "4791509211063385": 38, "4787706732749939": 38, "47838595509529114": 38, "4779967665672302": 38, "47760307788848877": 38, "4772048890590668": 38, "47680220007896423": 38, "47639501094818115": 38, "47598329186439514": 38, "4755673110485077": 38, "4751465618610382": 38, "4747215211391449": 38, "4742920398712158": 38, "47385817766189575": 38, "47341999411582947": 38, "47297725081443787": 38, "4725303053855896": 38, "47207894921302795": 38, "47162333130836487": 38, "47116345167160034": 38, "470699280500412": 38, "47023090720176697": 38, "54": [38, 49, 51, 56, 74, 75, 79, 84, 163, 232, 233, 238, 253, 282, 288, 308, 362, 368, 380, 389, 399, 510, 618, 622, 623, 633, 646, 665, 668, 725, 726, 727, 745, 812, 815], "4697583019733429": 38, "55": [38, 46, 75, 84, 113, 229, 288, 380, 510, 547, 618, 620, 623, 629, 633, 661, 668, 726, 727, 745, 807], "46928152441978455": 38, "46880054473876953": 38, "4683155119419098": 38, "58": [38, 259, 527, 618, 620], "4678264260292053": 38, "59": [38, 51, 230, 380, 510], "46733325719833374": 38, "46683603525161743": 38, "61": [38, 40, 51, 52, 57, 74, 75, 77, 81, 84, 221, 256, 258, 283, 389, 601, 618, 621, 622, 623, 624, 644, 660, 682, 684, 727, 818], "4663347601890564": 38, "4658295214176178": 38, "465320348739624": 38, "4648073613643646": 38, "46429020166397095": 38, "4637692868709564": 38, "46324464678764343": 38, "4627160429954529": 38, "4621836841106415": 38, "4616474211215973": 38, "71": [38, 51, 74, 79, 234, 274, 410, 618], "46110764145851135": 38, "72": [38, 52, 61, 75, 77, 240, 342, 365, 368, 389, 399, 605, 618, 621, 623, 633, 668, 726, 745], "460563987493515": 38, "4600166976451874": 38, "74": [38, 40, 51, 84, 230, 260, 618, 623, 665], "45946577191352844": 38, "45891112089157104": 38, "45835286378860474": 38, "4577910006046295": 38, "78": [38, 54, 279, 607, 618, 621, 623, 629, 633, 668, 726, 745], "45722562074661255": 38, "79": [38, 40, 52, 53, 75, 76, 79, 84, 97, 235, 368, 389, 399, 410, 527, 528, 618, 620, 727], "45665669441223145": 38, "80": [38, 52, 75, 342, 365, 369, 380, 432, 510, 623, 627, 633, 668, 715, 745, 844], "4560841917991638": 38, "81": [38, 42, 51, 57, 72, 74, 80, 84, 163, 233, 258, 259, 283, 380, 510, 616, 618, 623, 627, 629, 633, 660, 665, 678, 712, 727, 745, 828], "4555082619190216": 38, "45492875576019287": 38, "45434585213661194": 38, "84": [38, 56, 65, 74, 84, 163, 193, 258, 616, 617, 623, 628, 633, 646, 668, 723, 726, 727, 745], "45375964045524597": 38, "4531698524951935": 38, "4525766670703888": 38, "45198020339012146": 38, "4513803720474243": 38, "4507772624492645": 38, "4501707851886749": 38, "4495610296726227": 38, "4489481747150421": 38, "44833192229270935": 38, "4477125108242035": 38, "44708991050720215": 38, "44646409153938293": 38, "44583529233932495": 38, "98": [38, 46, 52, 54, 61, 68, 74, 77, 84, 108, 233, 281, 353, 365, 605, 612, 621, 623, 627, 630, 633, 668, 705, 716, 725, 727, 734, 745], "4452032148838043": 38, "44456806778907776": 38, "4439": 38, "selectbackward0": 38, "hope": [38, 839, 844, 860], "ivy_compil": 39, "ic": 39, "produc": [39, 52, 53, 56, 75, 79, 296, 306, 309, 360, 362, 368, 414, 622, 651, 762, 792, 803, 813, 818, 819, 824, 826, 828, 829, 847, 855, 857], "numer": [39, 48, 49, 51, 52, 53, 57, 61, 62, 65, 72, 74, 75, 76, 80, 84, 85, 87, 97, 98, 134, 147, 215, 218, 231, 235, 240, 241, 242, 249, 250, 251, 254, 263, 264, 268, 270, 271, 272, 273, 277, 278, 279, 283, 284, 288, 289, 368, 370, 375, 380, 411, 442, 496, 509, 569, 570, 578, 579, 591, 592, 615, 616, 618, 620, 623, 629, 630, 633, 653, 660, 663, 668, 671, 673, 675, 677, 679, 725, 726, 727, 729, 730, 731, 733, 734, 739, 746, 749, 751, 762, 763, 764, 765, 777, 801, 813, 818, 823, 825, 826, 828, 829, 830, 831, 833, 837, 851, 854, 860], "anyth": [39, 52, 75, 380, 515, 516, 805, 817, 828, 829, 854, 855], "affect": [39, 45, 52, 370, 445, 812, 825], "intermedi": [39, 852, 853, 854, 855, 860], "variabl": [39, 41, 42, 44, 52, 53, 54, 60, 69, 75, 76, 77, 83, 117, 118, 120, 316, 362, 369, 375, 380, 436, 497, 508, 509, 525, 549, 550, 551, 552, 555, 581, 602, 603, 605, 607, 608, 609, 614, 620, 621, 623, 626, 628, 672, 701, 702, 703, 723, 759, 770, 775, 777, 778, 779, 780, 781, 782, 783, 805, 809, 813, 816, 820, 823, 824, 828, 829, 833, 836, 837, 838, 839, 840, 847, 855], "original_fn": 39, "100000": 39, "var": [39, 65, 88, 90, 117, 118, 119, 120, 614, 626, 633, 701, 702, 784, 804, 815, 833], "co": [39, 40, 51, 53, 74, 233, 238, 240, 281, 536, 618, 620, 802, 813, 833, 844], "sin": [39, 51, 53, 74, 233, 238, 240, 281, 536, 618, 620, 808, 833], "tan": [39, 51, 74, 523, 618, 620, 816, 820, 821, 824, 825, 833], "comp_fn": 39, "compile_graph": [39, 45], "expected_result": 39, "compiled_result": 39, "irrelev": [39, 812, 813, 815], "opeat": 39, "_layer": [39, 833], "net": [39, 44, 45, 833, 838, 844, 845], "compiled_net": 39, "proceed": 40, "latest": [40, 42, 51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 480, 509, 616, 618, 623, 625, 633, 671, 672, 700, 750, 778, 798, 803, 804, 805, 807, 809, 812, 816, 818, 829, 839, 840, 848, 859], "pypi": [40, 42, 45, 803, 804, 829, 839], "pkg": [40, 42, 45], "public": [40, 42, 45, 529, 620, 812, 823, 835, 857], "revis": [40, 42, 805], "tmp": [40, 42, 576, 598, 620], "req": [40, 42], "tabqrujw": 40, "command": [40, 42, 798, 800, 804, 807, 810, 812, 818, 819, 840], "filter": [40, 42, 44, 52, 56, 75, 79, 311, 312, 362, 368, 388, 406, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 764, 778, 798, 809, 812], "quiet": [40, 42], "commit": [40, 42, 801, 803, 807, 815, 827, 828], "f3be3702c9fab1c9fa97c743813a4bdb39525705": 40, "metadata": [40, 42, 45, 824], "setup": [40, 42, 45, 804, 805, 810, 812, 818], "done": [40, 42, 45, 623, 659, 802, 803, 804, 805, 807, 810, 812, 814, 815, 818, 819, 824, 825, 828, 836, 847, 848, 854], "py3": [40, 42, 45], "whl": [40, 41, 42, 45], "cp39": [40, 42], "manylinux_2_12_x86_64": [40, 42], "manylinux2010_x86_64": [40, 42], "manylinux_2_17_x86_64": [40, 42, 804], "manylinux2014_x86_64": [40, 41, 42], "eta": [40, 42, 45], "tar": [40, 41, 42, 45], "gz": [40, 41, 42, 45], "py2": [40, 42], "495": [40, 42], "nvidia_ml_pi": [40, 42], "pypars": [40, 42, 45], "ivy_cor": [40, 42, 45, 804], "1338326": 40, "sha256": [40, 42, 45], "e5c4205c80116b781373daf4502d61881235c5e3eb0d55096ab07dcc6eb66bec": 40, "store": [40, 42, 45, 49, 52, 53, 57, 59, 69, 72, 75, 76, 80, 82, 149, 368, 369, 412, 419, 423, 435, 439, 536, 620, 623, 625, 677, 694, 759, 760, 778, 779, 780, 800, 805, 808, 809, 811, 816, 822, 824, 825, 826, 833, 835, 836, 837, 841, 847], "directori": [40, 41, 42, 45, 576, 598, 617, 620, 800, 803, 804, 805, 810, 812, 818, 825, 828, 840], "ephem": [40, 42], "njrc_e6b": 40, "2e": [40, 42], "ae2d7c5ce8708e605368a33e08d57d1de8e107e3db157c3063": [40, 42], "4845": [40, 42], "a8cde63eca203d3bd7f900fa32f44dbd038476606a3836de14caf2b0a5ff7460": 40, "b6": [40, 42], "0d": [40, 42], "0d1bbd99855f99cb2f6c2e5ff96f8023fad8ec367695f7d72d": [40, 42], "successfulli": [40, 42, 45, 780, 804, 808], "uninstal": [40, 42, 45], "found": [40, 42, 43, 45, 57, 59, 63, 69, 75, 80, 82, 86, 98, 196, 380, 457, 510, 617, 627, 656, 663, 696, 715, 735, 792, 803, 804, 805, 808, 809, 810, 811, 813, 814, 816, 819, 822, 824, 825, 840, 856], "cannot": [40, 41, 42, 45, 52, 285, 450, 451, 452, 618, 805, 807, 809, 813, 825, 833, 838, 860], "vnd": [40, 42, 45], "json": [40, 42, 45, 69, 804, 818, 836], "psst": 40, "cv2": [40, 42, 44, 836], "pickl": [40, 41, 69, 780, 811, 836], "imageio": 40, "urllib": [40, 45], "_src": 40, "tpu": [40, 189, 195, 206, 211, 617, 814, 854, 857], "back": [40, 52, 59, 75, 82, 371, 462, 483, 565, 588, 620, 622, 625, 648, 692, 777, 782, 792, 804, 808, 813, 814, 817, 822, 823, 830, 832, 839, 840, 844, 852, 856], "tf_cpp_min_log_level": 40, "info": [40, 795, 798, 810, 816, 819], "mkdir": [40, 41, 42, 804, 812], "perceiv": [40, 41], "touch": 40, "io_processor": 40, "position_encod": 40, "absl": 40, "jmp": 40, "tabul": 40, "04": [40, 41, 48, 54, 68, 72, 75, 77, 107, 108, 133, 160, 240, 569, 601, 602, 607, 612, 615, 616, 618, 620, 621, 762, 804, 828], "29359": 40, "29k": 40, "67k": 40, "002": 40, "30179": 40, "47k": 40, "8107": 40, "9k": 40, "92k": 40, "itertool": 40, "preprocessor": 40, "vector": [40, 48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 134, 358, 359, 367, 368, 369, 371, 374, 375, 380, 390, 420, 425, 431, 433, 438, 472, 474, 476, 493, 497, 509, 528, 532, 549, 600, 615, 620, 622, 623, 646, 648, 653, 657, 658, 660, 663, 668, 673, 674, 678, 679, 680, 681, 762, 778, 854], "perceiverbackbon": 40, "input_preprocessor": 40, "_input_preprocessor": 40, "_encod": 40, "__call__": [40, 759, 778, 779, 780, 798, 848], "is_train": 40, "po": [40, 792], "input_mask": 40, "network_input_is_1d": 40, "_input_is_1d": 40, "queri": [40, 41, 56, 69, 79, 193, 207, 542, 568, 617, 620, 622, 648, 651, 778, 811, 813, 818, 835, 854], "decod": [40, 836], "cross": [40, 42, 57, 58, 80, 81, 93, 623, 624, 682, 683, 684, 798, 812, 813], "attend": [40, 622, 648], "encoder_queri": 40, "latent": [40, 626, 702, 703], "imagepreprocessor": 40, "deal": [40, 780, 801, 814, 821, 823, 825, 839], "image_s": 40, "fourier_pos_config": 40, "position_encoding_typ": 40, "fourier": [40, 52, 75, 368, 390, 395, 396, 400, 401, 411, 412, 414, 536, 620], "fourier_position_encoding_kwarg": 40, "concat_po": 40, "max_resolut": 40, "num_band": [40, 53, 76, 536, 620], "sine_onli": 40, "prep_typ": 40, "spatial_downsampl": 40, "cross_attend_widening_factor": 40, "cross_attention_shape_for_attn": 40, "kv": 40, "dropout_prob": 40, "num_block": 40, "num_cross_attend_head": 40, "num_self_attend_head": 40, "num_self_attends_per_block": 40, "num_z_channel": 40, "self_attend_widening_factor": 40, "use_query_residu": 40, "z_index_dim": 40, "z_pos_enc_init_scal": 40, "perceiver_backbon": [40, 798], "perceiverencod": 40, "At": [40, 803, 804, 805, 807, 818, 828, 829, 844, 854], "almost": [40, 802, 811, 826, 834, 836, 843], "publish": [40, 798, 839, 845, 848], "thankfulli": [40, 828], "perceiver_io": [40, 41], "imagenet_fourier_position_encod": 40, "pystat": 40, "imagenet_checkpoint": 40, "rb": 40, "ckpt": 40, "read": [40, 42, 52, 59, 69, 71, 75, 82, 129, 371, 462, 615, 625, 692, 803, 804, 810, 812, 818, 828, 830, 831, 854], "09": [40, 46, 51, 77, 84, 113, 273, 283, 601, 612, 618, 621, 726], "173": [40, 57, 623, 660], "194": 40, "217": [40, 817], "125": [40, 52, 57, 80, 229, 339, 365, 370, 441, 618, 623, 678], "177": [40, 42], "193776248": 40, "185m": 40, "octet": 40, "184": 40, "80m": 40, "144mb": 40, "144": 40, "mean_rgb": 40, "stddev_rgb": 40, "im": 40, "denorm": 40, "resize_and_center_crop": 40, "crop": [40, 52, 75, 368, 396, 401, 412], "center": [40, 777], "image_height": [40, 42, 798], "image_width": [40, 798], "padded_center_crop_s": 40, "minimum": [40, 51, 52, 53, 59, 62, 65, 74, 75, 76, 82, 85, 88, 215, 243, 270, 293, 325, 329, 330, 339, 360, 362, 365, 371, 380, 472, 507, 511, 517, 569, 570, 578, 579, 591, 592, 618, 620, 625, 630, 633, 685, 731, 746, 748, 762, 764, 765, 770, 813, 830, 851, 857, 861], "offset_height": 40, "offset_width": 40, "crop_window": 40, "inter_cub": 40, "ye": [40, 839], "dummy_input": [40, 798], "transpili": 40, "torch_perceiver_backbon": 40, "quicker": 40, "params_v": [40, 798, 848], "perceiverioclassifi": [40, 798], "max_pool": [40, 798], "huggingfac": [40, 847, 848], "Of": [40, 808, 824, 825, 836, 859, 860], "cours": [40, 804, 805, 807, 808, 815, 824, 825, 831, 836, 839, 859, 860], "468": 40, "huggingface_hub": 40, "multiprocess": [40, 69, 98, 620, 836, 839], "py39": 40, "132": [40, 75], "pyarrow": 40, "xxhash": 40, "212": [40, 52, 56, 75, 352, 365, 646], "pyyaml": 40, "2021": [40, 52, 75, 355, 365, 798], "aiohttp": 40, "async": 40, "timeout": [40, 69, 98, 573, 595, 620, 830], "0a3": 40, "async_timeout": 40, "frozenlist": 40, "manylinux_2_5_x86_64": [40, 45], "manylinux1_x86_64": [40, 45], "158": 40, "attr": [40, 813], "aiosign": 40, "multidict": 40, "114": [40, 368, 389, 399], "yarl": 40, "264": [40, 627, 704], "2022": [40, 41], "pytz": 40, "2020": [40, 807, 854], "dateutil": [40, 45], "wikiart": 40, "paint": [40, 798, 833, 843], "load_dataset": [40, 847, 848], "n_sampl": [40, 52, 75, 369, 371, 416, 424, 475], "10000": [40, 42, 48, 71, 133, 615], "huggan": 40, "split": [40, 41, 42, 46, 51, 52, 59, 68, 69, 74, 75, 82, 105, 106, 107, 108, 109, 110, 111, 112, 113, 206, 207, 208, 286, 290, 294, 295, 297, 341, 348, 360, 371, 458, 467, 486, 532, 559, 612, 617, 618, 620, 622, 625, 635, 642, 643, 697, 759, 774, 778, 798, 799, 805, 812, 832, 833, 839, 861], "wiki_art": 40, "gib": 40, "unknown": [40, 762], "total": [40, 42, 52, 65, 69, 75, 88, 98, 129, 210, 324, 325, 326, 334, 362, 365, 615, 617, 630, 633, 733, 750, 752, 792, 798, 799, 804, 805, 813, 814, 815, 828, 831, 836, 837, 839, 845], "huggan___parquet": 40, "36ee951979f9b56c": 40, "2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec": 40, "parquet": 40, "subsequ": [40, 787, 804, 808, 812, 813, 815, 820, 821, 824, 828, 837, 855], "reus": [40, 48, 71, 75, 82, 123, 450, 451, 458, 460, 462, 463, 464, 471, 486, 688, 689, 690, 692, 694, 695, 697, 699, 817, 828, 859], "curl": [40, 804], "server": [40, 798, 804, 805, 810, 818, 840, 854], "row": [40, 52, 75, 93, 127, 142, 322, 362, 369, 371, 378, 380, 426, 436, 464, 470, 487, 502, 508, 509, 615, 623, 629, 630, 664, 672, 673, 678, 724, 733, 777], "2fwikiart": 40, "receiv": [40, 44, 92, 523, 559, 620, 626, 701, 702, 703, 778, 804, 805, 813, 814, 828, 831], "xferd": 40, "averag": [40, 42, 52, 54, 58, 75, 77, 81, 368, 370, 374, 380, 382, 383, 386, 387, 388, 442, 443, 444, 445, 446, 447, 493, 509, 601, 602, 607, 621, 622, 624, 626, 648, 682, 701, 702, 777, 778], "dload": 40, "upload": [40, 828], "spent": [40, 845], "25936": 40, "278k": 40, "number": [40, 42, 43, 44, 45, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 92, 93, 95, 97, 98, 101, 121, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 142, 148, 153, 154, 155, 156, 157, 159, 160, 163, 166, 167, 168, 170, 172, 175, 199, 200, 201, 215, 216, 217, 218, 219, 221, 223, 224, 231, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 252, 256, 258, 266, 267, 268, 269, 270, 271, 273, 275, 277, 278, 279, 281, 282, 286, 288, 313, 317, 318, 319, 320, 321, 322, 324, 325, 326, 328, 329, 330, 332, 333, 334, 335, 344, 349, 353, 362, 365, 368, 369, 371, 374, 380, 401, 412, 414, 417, 420, 424, 425, 426, 434, 438, 440, 450, 451, 452, 472, 473, 474, 475, 476, 478, 480, 482, 485, 488, 489, 490, 507, 509, 510, 511, 512, 518, 536, 543, 561, 578, 579, 586, 599, 600, 613, 615, 616, 617, 618, 620, 622, 623, 624, 625, 626, 629, 630, 631, 633, 634, 635, 642, 643, 645, 648, 653, 657, 658, 659, 666, 671, 673, 677, 678, 679, 682, 685, 687, 688, 690, 691, 693, 694, 696, 698, 700, 701, 702, 703, 724, 728, 733, 735, 736, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 770, 777, 778, 781, 792, 798, 804, 805, 811, 812, 813, 814, 815, 822, 823, 824, 828, 829, 830, 831, 833, 836, 842, 843, 847], "abstract_expression": 40, "action_paint": 40, "analytical_cub": 40, "art_nouveau": 40, "baroqu": 40, "color_field_paint": 40, "contemporary_r": 40, "cubism": 40, "early_renaiss": 40, "expression": 40, "fauvism": 40, "high_renaiss": 40, "impression": 40, "mannerism_late_renaiss": 40, "minim": [40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 669, 670, 671, 673, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 792, 816, 824, 826, 831, 833, 847, 852, 860], "naive_art_primitiv": 40, "new_real": 40, "northern_renaiss": 40, "pointil": 40, "pop_art": 40, "post_impression": 40, "realism": 40, "rococo": 40, "romantic": 40, "symbol": [40, 791, 803, 804, 854, 855], "synthetic_cub": 40, "ukiyo_": 40, "custom": [40, 52, 75, 293, 305, 357, 360, 367, 762, 791, 800, 806, 812, 817, 822, 826, 828, 831, 837, 844, 854, 858, 859, 860], "hugginfac": 40, "customdataset": 40, "__len__": [40, 811], "__getitem__": [40, 69, 811], "idx": [40, 41, 42, 522, 620, 798, 814, 835], "random_split": 40, "224x224": 40, "val_siz": 40, "dataset_train": 40, "dataset_v": 40, "dataset_test": 40, "dataloader_train": 40, "batch_siz": [40, 42, 45, 52, 56, 61, 75, 79, 84, 368, 370, 386, 387, 388, 404, 405, 406, 407, 447, 622, 629, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 648, 724, 798, 836], "dataloader_v": 40, "dataloader_test": 40, "batch": [40, 41, 42, 52, 53, 57, 69, 75, 76, 80, 206, 207, 368, 374, 382, 384, 390, 403, 442, 488, 489, 490, 493, 536, 539, 540, 600, 617, 620, 622, 623, 626, 628, 646, 647, 648, 662, 680, 701, 702, 703, 723, 762, 778, 781, 798, 811, 821, 826, 836, 852], "iter": [40, 42, 47, 52, 53, 59, 67, 69, 75, 76, 82, 90, 95, 98, 117, 208, 314, 315, 362, 369, 371, 425, 434, 440, 456, 472, 521, 559, 614, 617, 620, 625, 627, 687, 691, 698, 700, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 719, 720, 722, 791, 792, 807, 809, 811, 833, 836, 845, 847], "train_featur": 40, "train_label": 40, "imshow": [40, 41], "crossentropyloss": [40, 779], "sgd": [40, 782, 854], "lr": [40, 54, 77, 523, 602, 605, 607, 608, 609, 620, 621, 782, 836, 837], "001": [40, 51, 52, 60, 72, 75, 77, 160, 258, 275, 332, 344, 365, 602, 616, 618, 621, 628, 723, 762, 836, 837], "train_step": 40, "running_loss": [40, 42, 798], "last_loss": 40, "training_load": 40, "intra": 40, "report": [40, 803, 828], "zero_grad": 40, "backward": [40, 52, 66, 75, 89, 277, 368, 390, 395, 396, 400, 401, 411, 412, 618, 623, 634, 653, 679, 753, 754, 778, 829, 839], "adjust": [40, 65, 88, 369, 436, 633, 750, 752, 787], "999": [40, 54, 74, 77, 286, 601, 602, 607, 609, 618, 621, 782, 837], "epoch_numb": 40, "best_vloss": 40, "1_000_000": 40, "avg_loss": 40, "running_vloss": 40, "vdata": 40, "vinput": 40, "vlabel": 40, "voutput": 40, "vloss": 40, "avg_vloss": 40, "model_path": 40, "model_": 40, "state_dict": [40, 779, 780], "highest": [40, 52, 61, 75, 84, 313, 316, 362, 629, 725, 813], "energi": 40, "sum": [40, 42, 51, 52, 53, 56, 57, 58, 65, 69, 74, 75, 76, 79, 80, 81, 88, 92, 97, 98, 208, 218, 260, 284, 326, 349, 362, 365, 369, 370, 371, 374, 380, 410, 419, 441, 442, 443, 444, 445, 446, 447, 477, 493, 515, 516, 533, 563, 564, 617, 618, 620, 622, 623, 624, 633, 645, 651, 664, 673, 677, 680, 682, 744, 745, 777, 779, 791, 798, 811, 813, 821, 823, 824, 825, 833, 847, 848, 849], "augment": 40, "mayb": [40, 41, 47, 798, 804, 812, 833, 835], "meta": [40, 701, 702, 703, 808, 829, 854], "finetun": 40, "deploi": [40, 798, 812, 841, 848, 852, 853, 854, 856, 860], "present": [41, 52, 65, 69, 75, 88, 332, 365, 374, 488, 489, 490, 633, 748, 803, 804, 805, 811, 813, 814, 820, 824, 833, 843, 851, 852, 861], "percieverio": 41, "ai": [41, 812, 852, 856], "contribut": [41, 52, 75, 380, 512, 802, 804, 805, 810, 818, 819, 825, 826, 833, 840, 847, 858], "highli": [41, 798, 803, 854], "invit": [41, 803, 825, 831], "g4ar9q7dtn": 41, "step1": 41, "printf": 41, "8packag": 41, "share": [41, 69, 181, 616, 762, 763, 798, 809, 811, 815, 821, 823, 825, 826, 828, 831, 833, 844, 852, 853, 860], "googledr": 41, "10_wfp1u4rmzc20eignrdqa9v2s9byjwv": 41, "file_id": 41, "drive": [41, 42], "uc": 41, "export": [41, 812, 853, 860], "tee": [41, 804], "file_id_wget_cmd": 41, "perl": 41, "pe": 41, "g": [41, 43, 44, 52, 61, 63, 65, 67, 75, 84, 90, 92, 146, 175, 188, 235, 248, 268, 275, 278, 329, 330, 365, 368, 369, 371, 375, 380, 404, 406, 440, 480, 495, 496, 497, 498, 499, 510, 511, 616, 617, 618, 623, 627, 629, 631, 633, 658, 659, 664, 671, 673, 674, 680, 707, 711, 713, 716, 721, 725, 726, 727, 735, 736, 737, 738, 743, 744, 746, 748, 749, 751, 777, 799, 803, 804, 806, 807, 809, 810, 811, 823, 825, 828, 833, 839, 841, 845, 850], "uuid": 41, "anywai": [41, 808, 822, 825], "bin": [41, 52, 75, 380, 507, 512, 804, 805, 807, 811], "bash": [41, 804, 805, 807], "step2": 41, "interpret": [41, 48, 52, 71, 75, 122, 123, 129, 135, 370, 380, 442, 509, 615, 812, 855], "sudo": [41, 804], "apt": [41, 804], "yf": 41, "step3": 41, "delet": [41, 805, 812], "xvzf": 41, "rm": [41, 43, 800, 805], "step4": 41, "symlink": 41, "unzip": [41, 42], "fr": 41, "l": [41, 57, 74, 80, 262, 369, 420, 622, 623, 648, 652, 657, 658, 659, 663, 677, 805, 806], "d": [41, 52, 53, 56, 57, 59, 71, 75, 76, 79, 80, 82, 95, 111, 133, 142, 175, 218, 235, 236, 268, 271, 322, 362, 368, 369, 371, 374, 375, 378, 386, 387, 388, 395, 400, 404, 405, 406, 407, 409, 418, 432, 452, 458, 460, 463, 467, 481, 483, 486, 493, 495, 501, 524, 535, 612, 615, 616, 618, 622, 623, 625, 627, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 655, 656, 660, 664, 668, 677, 678, 694, 707, 711, 712, 713, 716, 721, 722, 763, 792, 798, 799, 804, 806, 809, 810, 811, 818, 823, 828, 831, 836, 844, 845, 850], "ln": 41, "sf": 41, "la": 41, "step5": 41, "regular": [41, 75, 369, 380, 432, 513, 623, 662, 804, 825, 854], "step6": 41, "ipkykernel": 41, "step7": 41, "engbjapanpython3": 41, "separ": [41, 52, 53, 75, 374, 489, 536, 620, 622, 648, 804, 805, 808, 811, 812, 815, 826, 827, 828, 833, 835, 836, 855, 859], "ipykernel": 41, "reconnect": 41, "sy": 41, "oct": 41, "gcc": [41, 852, 859], "lf": 41, "upgrad": 41, "cuda11": 41, "cudnn805": 41, "cp38": [41, 45, 804], "helper": [41, 757, 759, 760, 766, 768, 769, 798, 801, 810, 813, 817, 818, 827, 836, 841], "feedforward": 41, "prenorm": 41, "perceiveriospec": 41, "fetch": [41, 544, 620, 804, 805, 807, 812], "ogbanugot": 41, "xmartlab": 41, "caffeflow": 41, "fetch_class": 41, "class_label": 41, "ground_truth": 41, "127": [41, 49, 52, 57, 72, 75, 163, 352, 365, 616, 623, 660], "path_to_imag": 41, "get_imag": 41, "ax": [41, 46, 52, 57, 59, 62, 65, 66, 68, 75, 80, 82, 85, 88, 89, 97, 101, 108, 112, 208, 329, 330, 334, 335, 349, 356, 365, 366, 368, 369, 371, 374, 380, 396, 401, 412, 435, 471, 472, 478, 491, 514, 515, 516, 517, 518, 519, 532, 600, 617, 620, 623, 625, 630, 633, 634, 653, 664, 672, 675, 676, 680, 687, 689, 690, 693, 695, 697, 700, 730, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 764, 778, 813, 815, 828, 829, 833, 835], "fig": [41, 42], "subplot": [41, 42], "spine": 41, "set_vis": 41, "right": [41, 52, 57, 69, 75, 80, 98, 115, 116, 227, 229, 282, 343, 365, 368, 369, 371, 402, 429, 435, 436, 438, 463, 532, 614, 618, 620, 623, 632, 673, 678, 741, 762, 799, 803, 804, 805, 806, 807, 815, 818, 831, 836, 847], "bottom": [41, 532, 620, 803, 804, 812, 818, 860], "tick_param": 41, "set_xticklabel": 41, "set_yticklabel": 41, "show_result": 41, "along": [41, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 95, 108, 112, 117, 132, 133, 208, 282, 285, 287, 324, 325, 326, 329, 330, 334, 335, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 389, 395, 396, 399, 400, 401, 411, 412, 434, 444, 457, 458, 459, 461, 463, 464, 472, 477, 480, 482, 491, 492, 493, 494, 510, 511, 512, 514, 515, 516, 517, 518, 519, 532, 539, 614, 615, 617, 618, 620, 623, 624, 625, 626, 629, 630, 632, 633, 634, 653, 668, 677, 679, 680, 682, 683, 684, 686, 689, 690, 691, 693, 694, 696, 698, 699, 701, 702, 703, 729, 730, 731, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 778, 798, 803, 806, 815, 824, 827, 829, 831, 833, 854], "figur": [41, 830], "figsiz": [41, 42], "listdir": [41, 42], "endswith": 41, "this_dir": 41, "dirnam": 41, "join": [41, 42, 59, 69, 75, 82, 456, 457, 625, 686, 696, 798], "add_subplot": 41, "xtick": 41, "ytick": 41, "set_titl": [41, 42], "color": [41, 69, 98, 797], "green": [41, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 797, 803, 804, 805], "red": 41, "perceiver_io_img_classif": 41, "normalize_imag": 41, "batch_shap": [41, 56, 61, 71, 79, 84, 127, 136, 615, 622, 623, 629, 647, 651, 681, 724, 778, 831, 833, 835], "img_dim": 41, "queries_dim": 41, "learn_queri": 41, "load_weight": 41, "num_input_ax": 41, "network_depth": 41, "num_lat_att_per_lay": 41, "query_shap": 41, "num_fourier_freq_band": 41, "weight_fpath": 41, "pretrained_weight": 41, "isfil": 41, "noinspect": [41, 835], "pybroadexcept": 41, "from_disk_as_pickl": 41, "larg": [41, 51, 52, 74, 75, 218, 235, 242, 268, 269, 371, 380, 480, 509, 618, 623, 671, 800, 804, 805, 810, 812, 818, 836, 847, 854], "action": [41, 802, 812, 815, 819, 828], "fail": [41, 757, 801, 804, 805, 807, 812, 813, 815, 819, 822, 824, 825, 826], "placehold": [41, 627, 711, 716, 721, 778, 805, 808, 820, 841], "pyunboundlocalvari": 41, "max_fourier_freq": 41, "random_uniform": [41, 45, 61, 84, 629, 814, 817, 828, 833, 837], "817437": 41, "common_runtim": 41, "gpu_bfc_alloc": 41, "orig_valu": 41, "tf_force_gpu_allow_growth": 41, "autograd": [41, 839], "declar": [41, 805, 827], "_3r2_73j": 42, "0edf8c1e8ea835f4c456bdf89737d89032f50b5a": 42, "1297564": 42, "05fcafac1e19fec835a9ac61270b3ac6039a5095f6b0f9fde20bacc2a5abba45": 42, "le3bu3_v": 42, "cc6508f5d7e25538c5df5fdae52a41d2bf17b9a517aedd125cfca913bb5b259b": 42, "third": [42, 92, 93, 371, 459, 485, 623, 631, 673, 735, 810, 813, 824, 839, 853, 854, 860], "parti": [42, 810, 813, 839, 844, 853, 854, 860], "mount": [42, 800, 805], "mydriv": 42, "chdir": 42, "One": [42, 52, 53, 59, 61, 75, 76, 82, 84, 95, 371, 450, 451, 452, 455, 472, 481, 533, 620, 625, 629, 692, 725, 808, 811, 813, 815, 821, 826, 828, 833, 835, 836], "kaggl": 42, "medium": 42, "articl": [42, 798, 819], "insert": [42, 52, 62, 75, 85, 371, 447, 457, 625, 627, 630, 632, 688, 708, 709, 730, 741, 812, 819], "www": [42, 329, 330, 365], "your_kaggle_usernam": 42, "competit": 42, "digit": 42, "recogn": 42, "zip": [42, 833], "readabl": [42, 808, 811, 817, 819, 820, 828, 829, 835, 836], "chmod": [42, 804, 812], "recent": [42, 795, 804, 805, 828, 843, 844], "modifi": [42, 52, 69, 75, 92, 371, 380, 469, 472, 477, 516, 762, 792, 803, 804, 805, 807, 809, 810, 813, 814, 816, 818, 819, 821, 824, 826, 828, 829, 833], "forc": [42, 810, 812, 814], "archiv": [42, 804], "inflat": [42, 813], "sample_submiss": 42, "frame": [42, 52, 75, 313, 362, 368, 414, 844, 854], "later": [42, 69, 526, 620, 803, 819, 824, 828, 829, 854], "my": [42, 812], "label_df": 42, "mod_train": 42, "data_valu": 42, "test_data_valu": 42, "correct_label": 42, "train_path": 42, "str": [42, 44, 47, 48, 52, 53, 56, 57, 58, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 134, 136, 138, 144, 145, 148, 150, 152, 153, 154, 155, 159, 160, 163, 164, 165, 166, 167, 168, 170, 172, 175, 176, 177, 178, 179, 180, 187, 188, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 368, 369, 370, 371, 374, 380, 383, 386, 387, 388, 390, 391, 392, 393, 395, 396, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 417, 421, 434, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 455, 456, 457, 462, 478, 480, 481, 482, 483, 488, 489, 490, 491, 492, 494, 496, 498, 509, 510, 511, 512, 519, 521, 522, 524, 525, 527, 528, 530, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 560, 563, 564, 566, 567, 576, 578, 579, 581, 583, 585, 586, 599, 603, 610, 614, 615, 616, 617, 620, 621, 622, 623, 624, 625, 626, 627, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 674, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 701, 702, 703, 710, 711, 716, 721, 724, 725, 726, 727, 729, 732, 735, 736, 737, 739, 743, 744, 745, 747, 749, 750, 752, 753, 754, 759, 760, 762, 763, 768, 770, 778, 780, 781, 791, 792, 813, 814, 817, 821, 824, 825, 829, 833, 838, 847, 848, 849], "makedir": 42, "valid_path": 42, "28x28": 42, "pic": 42, "pictur": [42, 798, 803, 833, 843], "int8": [42, 49, 61, 71, 72, 84, 129, 156, 161, 163, 164, 168, 615, 616, 725, 762, 763, 813, 828], "new_img": [42, 44], "builder": [42, 800], "batchwis": 42, "subset": [42, 764, 808, 812, 816, 820, 823, 825, 828, 833, 854], "goe": [42, 371, 455, 806, 819, 824, 831], "seed_valu": [42, 69, 629, 728], "randomize_dataset": 42, "shuffl": [42, 52, 61, 69, 75, 84, 497, 629], "create_dataset": 42, "num_examples_per_class": 42, "img_arrai": 42, "class_nam": [42, 759], "dir": [42, 836], "img_path": 42, "imread": [42, 44, 836], "imread_grayscal": 42, "generate_batch": [42, 798], "dataset_s": [42, 798], "ivyerror": [42, 793, 798, 817], "smaller": [42, 52, 59, 65, 75, 82, 296, 328, 344, 360, 365, 368, 380, 396, 401, 412, 509, 510, 511, 532, 620, 625, 633, 685, 693, 743, 744, 749, 751, 798, 805, 817, 833], "yield": [42, 62, 314, 315, 362, 371, 472, 630, 734, 798, 812], "x_batch_inst": 42, "form": [42, 44, 47, 48, 52, 57, 69, 71, 80, 91, 92, 93, 122, 123, 135, 140, 141, 306, 309, 323, 332, 362, 365, 369, 371, 420, 429, 459, 468, 472, 487, 522, 582, 584, 615, 620, 622, 623, 627, 652, 654, 656, 657, 658, 659, 661, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 677, 705, 716, 762, 777, 799, 803, 804, 821, 828, 831, 837, 838, 844, 854, 855, 860], "intialis": 42, "num_epoch": [42, 798], "inherit": [42, 808, 811, 817, 835, 839, 841], "creation": [42, 52, 69, 75, 98, 810, 813, 814, 820, 822, 825, 826, 828, 829, 833, 847, 854, 856, 860], "inform": [42, 44, 49, 52, 54, 72, 77, 160, 163, 313, 362, 522, 610, 616, 620, 621, 626, 703, 798, 802, 803, 804, 805, 807, 811, 812, 817, 821, 822, 824, 826, 828, 857], "insid": [42, 57, 80, 98, 371, 482, 623, 666, 760, 804, 805, 808, 811, 813, 814, 818, 821, 822, 828, 829, 847, 860], "ivynet": [42, 798], "h_w": [42, 798], "input_channel": [42, 778, 798, 833, 837], "output_channel": [42, 778, 798, 837], "gelu": [42, 43, 46, 68, 612, 774, 798], "image_widht": 42, "start_dim": [42, 52, 75, 371, 462, 798], "end_dim": [42, 52, 75, 371, 462, 798], "gpu_is_avail": [42, 617, 798], "120": [42, 65, 88, 98, 623, 668, 743, 798], "model_nam": [42, 798], "__name__": [42, 43, 45, 587, 620, 798, 817], "heavi": [42, 764, 804, 825, 826, 831, 855], "lift": [42, 826, 855], "num_correct": [42, 798], "y_pred": [42, 798], "cross_entropi": [42, 58, 81, 624, 684, 798, 811, 821, 824], "epoch_loss": [42, 798], "field": [42, 57, 63, 80, 86, 369, 371, 420, 485, 623, 631, 657, 658, 670, 671, 673, 735, 736, 737, 798, 812, 852, 860], "training_accuraci": [42, 798], "train_loss": [42, 798], "train_correct": [42, 798], "train_loop": [42, 798], "posit": [42, 44, 47, 51, 52, 53, 57, 58, 59, 74, 75, 76, 80, 81, 82, 92, 127, 129, 142, 160, 215, 216, 217, 221, 224, 235, 242, 249, 250, 256, 258, 268, 269, 276, 277, 281, 282, 286, 307, 322, 328, 333, 344, 362, 365, 369, 371, 418, 436, 446, 471, 480, 526, 536, 600, 613, 615, 616, 618, 620, 623, 624, 625, 629, 630, 634, 652, 655, 677, 682, 688, 693, 728, 733, 753, 754, 759, 762, 770, 775, 779, 780, 792, 798, 803, 805, 807, 811, 825, 828, 829, 836, 847, 856], "leav": [42, 47, 52, 70, 72, 74, 75, 76, 79, 80, 82, 88, 98, 160, 163, 235, 292, 294, 295, 301, 371, 456, 457, 462, 474, 475, 476, 491, 492, 494, 510, 511, 516, 536, 583, 625, 627, 641, 651, 656, 673, 687, 691, 696, 698, 699, 704, 705, 714, 715, 716, 717, 743, 744, 791, 798, 803, 811, 812, 813, 815, 816, 820, 821, 824, 825, 828, 836, 837], "xbatch": [42, 798], "ybatch": [42, 798], "to_devic": [42, 50, 73, 191, 617, 780, 798], "entropi": [42, 58, 81, 624, 682, 683, 684, 798], "hot": [42, 48, 71, 136, 615, 798], "ybatch_encod": [42, 798], "one_hot": [42, 48, 71, 615, 798, 838], "loss_prob": [42, 798], "ret_grad_idx": [42, 603, 621, 759, 823], "xs_grad_idx": [42, 603, 621, 759, 823], "batch_loss": [42, 798], "set_descript": [42, 798], "set_postfix": [42, 798], "accuracy_percentag": [42, 798], "naverag": [42, 798], "6f": [42, 798], "_train_summari": [42, 798], "writer": [42, 798], "writerow": [42, 798], "157it": 42, "06it": 42, "475401": 42, "11it": 42, "081436": 42, "13it": 42, "0187": 42, "029279": 42, "0324": 42, "008382": 42, "07it": 42, "00456": 42, "003816": 42, "82it": 42, "00277": 42, "002179": 42, "05it": 42, "00175": 42, "001569": 42, "00147": 42, "001235": 42, "09it": 42, "00128": 42, "001005": 42, "106": 42, "10it": 42, "00112": 42, "000837": 42, "129": [42, 622, 641, 643], "12it": 42, "000989": 42, "000709": 42, "145": 42, "000873": 42, "000606": 42, "168": [42, 527, 620, 627, 704], "08it": 42, "000774": 42, "000524": 42, "000688": 42, "000455": 42, "000613": 42, "000398": 42, "000547": 42, "000350": 42, "205": 42, "000488": 42, "000308": 42, "218": 42, "000437": 42, "000273": 42, "000391": 42, "000243": 42, "238": [42, 242, 618], "98it": 42, "000351": 42, "000216": 42, "260": 42, "plot_summari": 42, "seaborn": 42, "whitegrid": 42, "ax1": 42, "ax2": 42, "nrow": 42, "ncol": 42, "fontweight": 42, "bold": 42, "set_xlabel": 42, "set_ylabel": 42, "tight_layout": 42, "savefig": 42, "summary_plot": 42, "png": [42, 44, 45, 836], "close": [42, 57, 240, 258, 278, 306, 362, 618, 623, 625, 673, 688, 801, 803, 804, 805, 813, 816, 818, 825, 831, 854], "save_weight": [42, 780], "model_param": 42, "ivynet_weight": 42, "hdf5": [42, 69, 780, 836], "deitimageprocessor": 43, "tfdeitforimageclassif": 43, "tfdeitforimageclassificationwithteach": 43, "head": [43, 44, 622, 648, 778, 798, 802, 804, 812, 825], "distillation_classifi": 43, "cls_classifi": 43, "randomli": [43, 368, 391, 392, 393, 622, 645, 762, 763, 764, 765, 770, 778], "henc": [43, 63, 218, 332, 365, 618, 625, 631, 688, 735, 736, 737, 738, 787, 804, 811, 812, 813, 824, 828], "reproduc": [43, 56, 79, 622, 645, 762, 763, 764, 765, 770, 801, 807, 818], "image_processor": [43, 847, 848], "facebook": 43, "distil": [43, 855], "patch16": 43, "outputs_from_original_model": 43, "predicted_class_idx": 43, "id2label": [43, 847], "architectur": [43, 798, 804, 838, 839, 852, 853, 854, 857, 858, 859], "bertforsequenceclassif": 43, "bertforpretrain": 43, "NOT": [43, 263, 618, 791, 803], "probabl": [43, 52, 56, 58, 61, 75, 79, 81, 84, 368, 370, 375, 380, 391, 392, 393, 442, 495, 509, 512, 516, 622, 624, 629, 645, 648, 651, 682, 724, 764, 777, 778, 798, 828, 840, 845], "ptarmigan": 43, "rf": [43, 805], "branch": [43, 223, 235, 238, 240, 268, 280, 281, 282, 285, 618, 803, 804, 805, 807, 812, 819, 839, 847, 854], "moduleconvert": [43, 775, 780], "mc": 43, "from_keras_modul": [43, 775], "compiled_func": 43, "return_graph": [43, 45], "compiled_output": 43, "diverg": [43, 52, 75, 242, 370, 442, 618], "_all_funct": [43, 45], "convert_to_tensor_v2_with_dispatch": 43, "transpose_v2": 43, "convolution_v2": 43, "bias_add": 43, "binary_op_wrapp": 43, "cast": [43, 49, 51, 52, 57, 65, 72, 74, 80, 147, 150, 175, 269, 380, 510, 511, 616, 618, 623, 633, 680, 743, 744, 749, 751, 763, 821, 826, 833], "moments_v2": 43, "batch_norm": [43, 45, 52, 75, 374], "tensordot": [43, 57, 80, 623, 792, 813], "softmax_v2": 43, "_slice_help": 43, "save_to_disk": [43, 45, 780], "12265048989200113": 43, "11038777417100028": 43, "1167045795539998": 43, "ivy_api_kei": 44, "obj": [44, 122, 123, 544, 615, 620, 847, 848, 849], "combo": [44, 836], "permit": [44, 808, 820, 825, 828, 831], "usabl": [44, 820, 829], "neither": [44, 218, 235, 242, 268, 618, 623, 675, 812, 825, 831], "nor": [44, 218, 235, 242, 268, 618, 812, 825, 858], "specifc": 44, "invoc": 44, "represent": [44, 52, 53, 69, 75, 76, 98, 145, 146, 160, 163, 188, 189, 215, 218, 225, 228, 230, 235, 242, 265, 268, 270, 285, 310, 341, 345, 350, 354, 362, 365, 522, 583, 613, 616, 617, 618, 620, 762, 764, 765, 778, 813, 852, 853, 855, 859, 860], "externally_link": 44, "logo": 44, "patch": [44, 286, 618, 813, 854], "cv2_imshow": 44, "envrion": 44, "canni": 44, "original_img": 44, "fn_arg": 44, "dilate_edg": 44, "edg": [44, 52, 59, 75, 82, 313, 362, 368, 371, 380, 403, 472, 512, 625, 685, 687, 700, 765, 807, 828, 848, 854, 856, 860], "morphologi": 44, "hk_model": 44, "resnet18": [44, 45], "keras_model": 44, "count": [44, 52, 59, 63, 66, 71, 75, 82, 86, 89, 129, 201, 334, 365, 371, 380, 480, 485, 507, 512, 615, 617, 623, 625, 631, 634, 653, 679, 686, 689, 735, 736, 753, 754, 810, 811, 815, 836], "odsc": 44, "talk": [44, 859], "228": 45, "352": [45, 79, 622, 646, 817], "nvidia_ml_py3": 45, "19190": 45, "241af6b4a51197474b0da3ee7bfa32d847756c8f0d93b51448655d6458312714": 45, "b9": 45, "b1": [45, 623, 672], "cb4feab29709d4155310d29a421389665dcab9eb3b679b527b": 45, "cycler": 45, "fonttool": 45, "965": 45, "pillow": 45, "kiwisolv": 45, "show_graph": [45, 780], "to_ivy_modul": [45, 775, 838], "image_dim": 45, "v0": [45, 837], "urlerror": 45, "dev_str": 45, "comp_network": 45, "time_chronolog": 45, "ret0_nc": 45, "ret1_nc": 45, "ret0_c": 45, "ret1_c": 45, "pytorch_vision_v0": 45, "distribut": [45, 52, 58, 61, 75, 81, 84, 368, 369, 370, 375, 391, 392, 393, 425, 434, 440, 442, 444, 445, 447, 495, 496, 497, 498, 499, 624, 629, 682, 683, 684, 724, 725, 726, 727, 729, 777, 778, 803, 804, 812, 814, 839, 854, 857], "distributed_c10d": 45, "262": 45, "reduce_op": 45, "deprec": 45, "reduceop": 45, "004645566477999864": 45, "0044566806820000695": 45, "attribut": [45, 69, 160, 161, 162, 163, 194, 195, 203, 537, 538, 616, 617, 620, 760, 809, 810, 811, 816, 817, 821, 822, 824, 825, 831, 834, 835, 836, 837], "definit": [45, 51, 57, 74, 80, 287, 618, 623, 652, 798, 801, 805, 808, 813, 818, 821, 835, 848], "max_pool2d": [45, 52, 75, 368, 387], "__iadd__": 45, "adaptive_avg_pool2d": [45, 52, 75, 368], "_arraywithactiv": [46, 97], "abc": [46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 101, 535, 620, 627, 722, 777, 782, 791, 792, 835], "_abc_impl": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc_data": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "approxim": [46, 51, 52, 57, 68, 74, 75, 80, 92, 95, 105, 216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 242, 256, 257, 258, 259, 273, 280, 281, 285, 286, 287, 342, 352, 365, 370, 444, 445, 612, 618, 623, 666, 669, 774, 816, 825], "complex_mod": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 612, 618, 774, 822], "variant": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 666, 669, 670, 671, 673, 677, 678, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 808, 815, 816, 831], "docstr": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 600, 601, 602, 605, 607, 608, 609, 610, 615, 616, 618, 620, 623, 625, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 802, 803, 806, 810, 819, 820, 821, 822, 825, 827, 829], "liter": [46, 51, 52, 57, 68, 74, 75, 80, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 368, 369, 371, 374, 389, 399, 403, 411, 425, 429, 434, 437, 440, 472, 493, 612, 618, 623, 632, 664, 680, 741, 774, 831], "magnitud": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 215, 218, 235, 242, 268, 286, 290, 294, 295, 297, 360, 612, 618, 623, 673, 674, 774, 813], "handle_complex_input": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 612, 618, 774, 822], "element": [46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 72, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 93, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 124, 130, 131, 140, 141, 142, 158, 160, 163, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 336, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 371, 380, 381, 391, 392, 393, 396, 401, 404, 405, 406, 410, 412, 413, 419, 420, 421, 450, 451, 452, 462, 463, 464, 466, 469, 479, 480, 482, 485, 507, 508, 510, 511, 512, 513, 514, 515, 517, 518, 520, 524, 527, 528, 539, 540, 556, 558, 578, 579, 581, 585, 586, 612, 615, 618, 620, 622, 623, 625, 627, 629, 630, 631, 632, 633, 634, 645, 653, 655, 657, 658, 663, 668, 670, 671, 673, 677, 685, 688, 689, 690, 691, 692, 693, 694, 695, 704, 707, 713, 724, 732, 733, 734, 735, 736, 737, 738, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 764, 778, 792, 816, 826, 828, 831, 833, 858], "138": [46, 105, 612], "165": [46, 105, 612, 622, 646], "hardswish": [46, 68, 612, 774], "leaky_relu": [46, 68, 75, 290, 612, 763], "alpha": [46, 51, 52, 68, 74, 75, 102, 107, 218, 284, 290, 291, 298, 302, 308, 360, 362, 369, 374, 375, 421, 493, 496, 497, 498, 612, 618, 774, 820, 825, 826], "float": [46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 60, 61, 63, 65, 68, 71, 72, 74, 75, 76, 77, 79, 80, 81, 83, 84, 88, 92, 95, 97, 107, 113, 121, 122, 123, 125, 127, 129, 130, 131, 132, 133, 137, 138, 143, 147, 151, 155, 160, 164, 168, 174, 175, 178, 184, 193, 202, 206, 207, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 239, 240, 241, 242, 246, 248, 249, 250, 251, 252, 254, 256, 257, 258, 259, 260, 261, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 298, 301, 302, 304, 305, 306, 307, 308, 309, 311, 312, 313, 328, 329, 330, 331, 338, 339, 344, 346, 347, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 391, 392, 393, 410, 411, 417, 420, 421, 423, 434, 438, 440, 441, 445, 446, 461, 479, 488, 489, 490, 493, 494, 495, 496, 497, 498, 499, 509, 510, 511, 512, 517, 518, 519, 526, 527, 528, 536, 545, 569, 570, 573, 578, 579, 599, 601, 602, 605, 607, 608, 609, 612, 613, 615, 616, 617, 618, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 633, 645, 648, 651, 652, 654, 657, 658, 659, 661, 664, 665, 666, 669, 670, 671, 672, 673, 674, 675, 677, 680, 682, 683, 684, 701, 702, 703, 710, 723, 726, 727, 733, 735, 736, 737, 738, 743, 744, 746, 747, 748, 749, 750, 751, 752, 759, 762, 763, 765, 774, 777, 778, 781, 782, 801, 807, 811, 813, 816, 817, 818, 820, 821, 823, 824, 826, 828, 829, 831, 833, 835, 837], "slope": [46, 52, 68, 75, 107, 290, 291, 296, 298, 302, 360, 612, 774], "neg": [46, 51, 52, 57, 59, 61, 66, 68, 74, 75, 80, 82, 84, 89, 92, 107, 110, 113, 121, 127, 129, 142, 235, 242, 249, 250, 268, 269, 277, 282, 290, 307, 322, 325, 360, 362, 369, 370, 371, 375, 418, 425, 429, 445, 480, 499, 612, 615, 618, 623, 625, 629, 634, 653, 655, 673, 677, 679, 680, 686, 688, 689, 693, 726, 753, 754, 762, 764, 774, 811, 824], "leaki": [46, 68, 107, 612, 774], "log_softmax": [46, 68, 612, 774], "0719": [46, 68, 108], "221": [46, 108], "mish": [46, 68, 612, 774], "30340147": [46, 109, 612], "86509842": [46, 68, 109, 612], "269": [46, 111], "731": [46, 111], "881": [46, 51, 74, 111, 221, 234, 274, 618], "422": [46, 112, 612], "155": [46, 79, 112, 612, 622, 646], "softplu": [46, 68, 612, 774, 831], "beta": [46, 52, 60, 68, 75, 83, 113, 298, 302, 308, 311, 312, 360, 362, 369, 370, 374, 375, 421, 446, 493, 497, 498, 612, 628, 723, 774, 831], "threshold": [46, 51, 52, 68, 74, 75, 113, 266, 267, 305, 331, 360, 365, 370, 371, 441, 446, 479, 612, 618, 774, 831], "union": [46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 460, 461, 462, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 545, 547, 548, 549, 551, 552, 555, 556, 558, 559, 563, 564, 568, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 599, 600, 601, 602, 603, 604, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 777, 782, 783, 808, 811, 813, 814, 815, 817, 820, 821, 824, 829, 831, 833, 838, 847, 848, 849], "3461": [46, 68, 113, 612], "6491": [46, 68, 113, 612], "_array_to_new_backend": 47, "_to_ivi": 47, "_to_n": 47, "to_ignor": [47, 67, 90, 627, 715, 716], "_to_new_backend": 47, "args_to_ivi": 47, "include_deriv": [47, 70, 627, 705, 716, 759], "nest": [47, 69, 70, 98, 101, 238, 554, 583, 600, 603, 618, 620, 621, 626, 701, 702, 704, 705, 706, 707, 708, 709, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 782, 808, 810, 811, 821, 823, 829, 836, 837, 839, 841, 854], "unchang": [47, 51, 368, 371, 412, 462, 622, 645], "deriv": [47, 48, 52, 54, 70, 71, 75, 77, 126, 131, 138, 144, 307, 311, 336, 362, 365, 601, 602, 605, 606, 607, 608, 609, 615, 621, 626, 627, 703, 705, 716, 780, 782, 783, 813, 814, 835, 837], "word": [47, 121, 371, 465, 615, 629, 727, 775, 778, 811, 824, 825, 841], "args_to_n": [47, 824], "cont_inplac": 47, "decid": [47, 69, 627, 715, 716, 798, 803, 804, 813, 831], "args_to_new_backend": 47, "shallow": [47, 627, 711, 712, 716, 721, 722], "nativevari": 47, "mutabl": [47, 627, 705, 711, 712, 716, 721, 722, 809], "to_ivi": [47, 70, 627, 717, 824], "leaf": [47, 69, 76, 88, 98, 535, 627, 714, 715, 717, 744, 811, 821, 836], "travers": [47, 70, 627, 708, 716, 811, 813, 817, 833], "lowest": [47, 52, 61, 70, 75, 84, 380, 512, 627, 629, 716, 725, 792, 821, 839, 841, 851, 855, 859], "search": [47, 52, 70, 75, 730, 731, 770, 802, 804, 811, 815, 818, 828, 829, 843], "to_new_backend": 47, "_arraywithcr": [48, 97], "boolean": [48, 49, 51, 52, 53, 59, 62, 65, 69, 71, 72, 74, 75, 76, 82, 85, 88, 97, 98, 118, 120, 122, 123, 124, 130, 147, 163, 165, 167, 168, 171, 187, 197, 205, 211, 225, 226, 227, 228, 229, 230, 262, 263, 264, 265, 329, 330, 344, 365, 369, 371, 425, 434, 440, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 480, 486, 521, 524, 535, 542, 545, 546, 550, 551, 552, 553, 554, 555, 556, 565, 568, 571, 572, 574, 575, 599, 614, 615, 616, 617, 618, 620, 622, 625, 626, 627, 630, 633, 648, 688, 689, 690, 692, 694, 695, 697, 699, 701, 702, 714, 732, 733, 734, 746, 748, 762, 763, 764, 765, 770, 781, 811, 813, 821, 825, 828, 831], "alwai": [48, 49, 52, 53, 59, 71, 72, 75, 82, 105, 123, 147, 218, 268, 339, 365, 369, 371, 436, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 486, 542, 549, 612, 616, 618, 620, 625, 688, 689, 690, 692, 694, 695, 697, 699, 764, 798, 803, 804, 805, 808, 809, 811, 813, 816, 819, 820, 821, 824, 825, 826, 827, 828, 829, 831, 833, 839, 847], "never": [48, 52, 59, 71, 75, 82, 123, 371, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 486, 542, 620, 625, 688, 689, 690, 692, 694, 695, 697, 699, 805, 813, 824, 825, 828], "valueerror": [48, 52, 59, 71, 75, 82, 86, 123, 368, 370, 401, 412, 445, 450, 451, 458, 460, 462, 463, 464, 471, 486, 625, 688, 689, 690, 692, 694, 695, 697, 699, 738, 764, 793, 817], "buffer": [48, 71, 75, 82, 123, 129, 450, 451, 458, 460, 462, 463, 464, 471, 486, 615, 688, 689, 690, 692, 694, 695, 697, 699, 779, 780, 824, 839], "nativedtyp": [48, 49, 52, 56, 57, 61, 62, 65, 71, 75, 80, 84, 85, 88, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 146, 147, 152, 153, 154, 155, 156, 157, 158, 159, 164, 165, 169, 171, 173, 177, 187, 306, 307, 308, 309, 310, 311, 312, 327, 334, 349, 362, 365, 375, 380, 495, 496, 497, 498, 499, 509, 510, 511, 512, 515, 518, 615, 616, 622, 623, 629, 630, 632, 633, 645, 680, 725, 726, 727, 730, 731, 741, 743, 744, 749, 751, 777, 813, 814, 820, 829, 833], "datatyp": [48, 52, 69, 71, 75, 123, 131, 135, 152, 173, 177, 368, 414, 615, 616, 757, 829, 847], "nativedevic": [48, 50, 52, 61, 71, 73, 75, 84, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 189, 190, 191, 192, 193, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 306, 307, 322, 362, 375, 495, 496, 498, 499, 615, 617, 629, 724, 725, 726, 727, 777, 782, 783, 813, 814, 817, 820, 829], "39999998": [48, 122, 123, 615, 631, 736], "5999999": [48, 52, 75, 79, 122, 123, 292, 360, 369, 416, 615, 622, 645, 651], "0999999": [48, 65, 122, 123, 292, 301, 304, 346, 360, 365, 615, 747], "10000038": [48, 122, 123, 615], "90786433e": [48, 122, 123, 615], "310": [48, 122, 123, 615], "copy_arrai": [48, 71, 615], "to_ivy_arrai": [48, 71, 124, 615], "empty_lik": [48, 52, 71, 75, 259, 369, 419, 615, 618], "uniniti": [48, 125, 126, 615, 819], "from_dlpack": [48, 71, 615], "full_lik": [48, 71, 615, 829], "fill_valu": [48, 52, 62, 71, 75, 85, 130, 131, 247, 255, 371, 375, 480, 499, 615, 618, 630, 733, 813, 826, 829], "scalar": [48, 51, 52, 53, 57, 68, 71, 74, 75, 76, 80, 92, 107, 131, 136, 218, 239, 284, 290, 332, 333, 335, 339, 342, 344, 346, 351, 365, 368, 369, 371, 414, 421, 450, 451, 452, 461, 466, 586, 599, 615, 618, 620, 623, 680, 813, 823, 825, 839, 854], "fill": [48, 51, 52, 61, 62, 69, 71, 74, 75, 84, 85, 125, 130, 131, 133, 136, 137, 138, 143, 144, 269, 307, 362, 369, 371, 375, 425, 429, 434, 440, 461, 480, 481, 496, 498, 499, 615, 618, 629, 630, 725, 733, 777, 803, 826], "000123": [48, 131, 615], "stop": [48, 52, 54, 71, 75, 77, 121, 132, 133, 208, 369, 434, 440, 565, 602, 605, 607, 608, 609, 610, 615, 617, 620, 621, 626, 627, 701, 702, 703, 715, 782, 820, 823, 831, 833, 839, 854], "num": [48, 71, 132, 133, 615, 762, 805, 820, 833], "endpoint": [48, 71, 132, 133, 615, 777, 820], "logspac": [48, 71, 615, 833], "log": [48, 51, 52, 57, 71, 74, 75, 80, 113, 133, 258, 260, 273, 294, 295, 347, 354, 360, 365, 370, 375, 442, 444, 445, 495, 612, 615, 618, 671, 762, 764, 765, 774, 805, 811, 812, 815, 821, 824, 825, 826, 828, 830, 831, 833, 836], "sequenc": [48, 52, 56, 57, 59, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 127, 129, 131, 133, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 358, 359, 362, 365, 366, 367, 368, 369, 371, 375, 380, 381, 383, 384, 391, 392, 393, 395, 396, 400, 401, 403, 410, 411, 412, 413, 416, 424, 425, 426, 428, 432, 433, 434, 437, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 456, 457, 458, 459, 465, 467, 468, 470, 471, 473, 476, 478, 480, 481, 482, 486, 487, 488, 490, 491, 492, 494, 496, 497, 509, 510, 511, 512, 519, 520, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 559, 563, 564, 578, 579, 581, 583, 585, 586, 599, 600, 603, 604, 605, 610, 615, 618, 620, 621, 622, 623, 625, 627, 633, 634, 635, 636, 637, 638, 639, 640, 642, 644, 645, 646, 648, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 680, 682, 683, 684, 685, 686, 688, 689, 691, 692, 693, 694, 695, 696, 699, 700, 704, 711, 721, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 778, 781, 783, 805, 812, 813, 814, 815, 817, 828, 829, 831, 833, 838, 857], "on_valu": [48, 71, 133, 136, 615], "off_valu": [48, 71, 133, 136, 615], "evenli": [48, 51, 52, 56, 59, 69, 71, 74, 75, 79, 82, 121, 132, 133, 287, 368, 410, 413, 615, 618, 622, 625, 635, 636, 637, 638, 640, 642, 644, 694], "hint": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 472, 480, 509, 512, 539, 543, 545, 547, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 803, 808, 816, 818, 820, 821, 824, 825, 829], "simplic": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 472, 480, 509, 512, 539, 543, 545, 547, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 816, 831, 837], "nestabl": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 472, 480, 509, 512, 516, 525, 533, 534, 539, 543, 545, 547, 549, 563, 581, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 803, 806, 815, 816, 824, 828, 841], "464": [48, 51, 84, 133, 222, 223, 618], "15888336": [48, 133], "2154": [48, 133], "43469003": [48, 133], "meshgrid": [48, 71, 615], "spars": [48, 52, 58, 71, 75, 81, 134, 310, 362, 369, 425, 434, 440, 615, 624, 684], "xy": [48, 71, 134, 615], "dimension": [48, 51, 52, 57, 59, 62, 65, 66, 69, 71, 74, 75, 80, 82, 88, 89, 97, 121, 127, 129, 134, 142, 287, 322, 329, 330, 362, 365, 368, 369, 371, 380, 395, 396, 400, 401, 411, 412, 418, 450, 451, 452, 456, 461, 462, 507, 519, 615, 618, 623, 625, 630, 633, 634, 653, 654, 660, 663, 666, 668, 669, 679, 680, 694, 730, 731, 733, 746, 747, 748, 749, 750, 751, 752, 753, 754, 821, 823, 828, 831, 833, 851, 854, 861], "repres": [48, 51, 52, 56, 57, 74, 75, 79, 80, 95, 120, 134, 136, 159, 217, 218, 221, 224, 233, 235, 242, 268, 281, 285, 286, 310, 324, 325, 326, 342, 359, 362, 365, 367, 368, 369, 370, 371, 374, 375, 378, 410, 413, 427, 439, 445, 472, 483, 488, 489, 490, 495, 501, 508, 544, 614, 615, 616, 618, 620, 622, 623, 645, 646, 660, 668, 671, 672, 764, 777, 781, 792, 804, 808, 813, 831, 835, 851, 852, 855], "coordin": [48, 51, 62, 74, 75, 85, 134, 142, 223, 285, 314, 315, 322, 342, 362, 376, 500, 615, 618, 630, 733], "conserv": [48, 134, 615], "cartesian": [48, 134, 615], "matrix": [48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 97, 134, 140, 141, 142, 322, 323, 362, 369, 371, 380, 417, 420, 421, 424, 425, 426, 428, 429, 430, 431, 432, 433, 434, 435, 436, 439, 440, 470, 509, 521, 527, 615, 620, 622, 623, 646, 652, 654, 656, 657, 658, 659, 661, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 677, 678, 681, 762, 764, 777, 778, 792, 803, 813, 825, 852, 854], "ij": [48, 65, 134, 615, 633, 745, 792], "respect": [48, 51, 52, 54, 57, 74, 75, 77, 80, 92, 134, 215, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 277, 281, 284, 285, 294, 342, 357, 360, 365, 367, 369, 371, 374, 423, 438, 449, 488, 490, 544, 601, 602, 603, 604, 605, 606, 607, 608, 609, 611, 615, 618, 620, 621, 622, 623, 626, 635, 642, 643, 648, 653, 670, 673, 701, 702, 703, 759, 762, 777, 792, 802, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 820, 821, 823, 824, 825, 828, 829, 830, 850, 860], "rank": [48, 52, 57, 59, 66, 75, 80, 82, 89, 92, 93, 94, 95, 96, 101, 134, 317, 318, 319, 320, 321, 362, 369, 371, 380, 425, 426, 434, 437, 440, 472, 480, 519, 615, 623, 625, 630, 634, 653, 655, 664, 666, 670, 672, 677, 679, 680, 687, 688, 696, 699, 700, 733, 753, 754], "ni": [48, 134, 615], "xi": [48, 134, 615], "scatter": [48, 53, 71, 76, 136, 563, 564, 615, 620, 810, 824, 831, 861], "j": [48, 51, 52, 53, 57, 65, 71, 74, 75, 80, 92, 120, 136, 216, 217, 218, 219, 221, 224, 233, 235, 238, 240, 248, 256, 258, 262, 268, 279, 281, 282, 285, 286, 332, 365, 368, 369, 380, 395, 396, 400, 411, 412, 415, 420, 422, 431, 437, 519, 524, 614, 615, 618, 620, 623, 633, 657, 677, 745, 792, 805, 806, 810, 847, 850], "unless": [48, 52, 57, 71, 75, 136, 268, 328, 344, 349, 365, 615, 618, 623, 666, 809, 814, 824, 839, 848, 849], "ones_lik": [48, 71, 615, 809, 838], "tril": [48, 71, 615], "whose": [48, 51, 52, 53, 57, 59, 63, 65, 71, 74, 75, 76, 80, 82, 86, 88, 93, 95, 97, 131, 140, 141, 217, 221, 224, 232, 233, 234, 273, 274, 280, 281, 285, 286, 287, 323, 337, 341, 345, 346, 348, 352, 362, 369, 371, 420, 439, 471, 480, 485, 526, 581, 615, 618, 620, 623, 625, 631, 633, 652, 654, 656, 657, 658, 659, 660, 661, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 677, 680, 689, 693, 735, 736, 737, 744, 745, 764, 816, 828], "innermost": [48, 52, 57, 80, 140, 141, 323, 362, 369, 420, 615, 623, 652, 654, 656, 657, 658, 659, 661, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 677], "mxn": [48, 52, 57, 80, 140, 141, 323, 362, 615, 623, 656, 664, 666, 667, 669, 670, 674, 677], "matric": [48, 52, 57, 75, 80, 92, 93, 97, 134, 140, 141, 323, 362, 369, 371, 420, 425, 426, 428, 432, 433, 438, 461, 615, 622, 623, 646, 652, 654, 656, 657, 658, 659, 660, 661, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 677, 678, 764, 801, 818, 854], "diagon": [48, 52, 57, 75, 80, 93, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 418, 421, 429, 435, 461, 615, 623, 655, 677], "triangular": [48, 52, 57, 80, 140, 141, 142, 322, 323, 362, 369, 435, 615, 623, 652, 658, 659, 666, 670], "alloc": [48, 49, 52, 72, 140, 141, 147, 323, 362, 615, 616, 803, 805, 839], "triu": [48, 71, 615], "upper": [48, 52, 57, 61, 75, 80, 84, 127, 141, 142, 307, 323, 362, 369, 380, 435, 512, 615, 623, 629, 652, 658, 659, 670, 727, 813, 824, 828], "zeros_lik": [48, 52, 71, 147, 264, 371, 480, 601, 602, 605, 607, 608, 609, 615, 616, 618, 621, 623, 625, 670, 685, 825, 831], "data_typ": [49, 52, 72, 75, 177, 616, 810, 813, 828, 829], "_arraywithdatatyp": [49, 97], "irrespect": [49, 57, 72, 80, 147, 616, 623, 673, 811, 824, 835, 861], "promot": [49, 51, 52, 57, 72, 74, 75, 80, 87, 97, 98, 147, 150, 173, 174, 175, 181, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 339, 347, 352, 365, 368, 380, 411, 509, 572, 594, 616, 618, 620, 623, 625, 633, 652, 653, 660, 661, 663, 664, 665, 666, 668, 669, 671, 672, 679, 680, 686, 696, 739, 747, 750, 762, 763, 807, 816, 817, 821, 830], "nan": [49, 51, 52, 53, 63, 65, 72, 74, 75, 76, 147, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 243, 244, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 274, 277, 278, 279, 280, 281, 282, 285, 286, 288, 294, 328, 329, 330, 340, 344, 349, 352, 360, 365, 371, 380, 480, 507, 508, 515, 516, 517, 518, 545, 599, 613, 616, 618, 620, 631, 633, 634, 735, 736, 737, 738, 746, 747, 748, 750, 751, 752, 753, 754, 762, 765, 807, 813, 816, 823, 829, 830], "infin": [49, 51, 53, 57, 72, 74, 80, 147, 215, 216, 217, 218, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 277, 278, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 545, 613, 616, 618, 620, 623, 633, 634, 671, 680, 746, 748, 753, 754, 807, 816], "desir": [49, 50, 52, 62, 69, 72, 73, 75, 85, 92, 147, 149, 150, 209, 313, 353, 362, 365, 371, 380, 470, 515, 518, 519, 616, 617, 623, 630, 675, 732, 777, 778, 805, 809, 812, 813, 814, 825, 833, 843, 847, 854], "broadcast_arrai": [49, 72, 616], "mix": [49, 51, 72, 74, 75, 76, 81, 84, 97, 98, 148, 161, 162, 175, 194, 195, 225, 228, 229, 230, 235, 236, 242, 246, 254, 255, 265, 268, 271, 277, 370, 380, 446, 516, 535, 537, 538, 539, 540, 549, 583, 586, 616, 617, 618, 620, 622, 623, 624, 625, 628, 633, 636, 638, 641, 643, 644, 646, 651, 652, 675, 682, 684, 685, 723, 745, 747, 750, 763, 765, 803, 806, 813, 814, 815, 824, 831, 833, 841, 854, 858, 860], "broadcast_to": [49, 72, 616, 813], "can_cast": [49, 72, 616, 813, 821, 825], "accord": [49, 52, 53, 59, 65, 72, 82, 88, 150, 160, 218, 229, 235, 242, 268, 279, 313, 362, 368, 371, 412, 472, 539, 542, 563, 564, 616, 618, 620, 623, 625, 633, 679, 687, 700, 750, 752, 757, 764, 784, 791, 803, 804, 807, 813, 819, 821, 825, 828], "finfo": [49, 72, 616, 828], "resolut": [49, 72, 160, 616, 805], "4028235e": [49, 160, 616], "iinfo": [49, 72, 616], "integ": [49, 51, 52, 56, 57, 59, 61, 65, 66, 69, 74, 75, 76, 79, 80, 82, 84, 88, 89, 97, 98, 121, 130, 163, 164, 170, 174, 175, 179, 215, 225, 226, 227, 228, 229, 230, 231, 241, 242, 253, 265, 270, 273, 277, 278, 288, 289, 324, 325, 326, 329, 330, 334, 338, 339, 362, 365, 368, 371, 375, 378, 380, 395, 400, 410, 413, 414, 458, 467, 472, 480, 486, 495, 496, 497, 498, 499, 501, 502, 507, 509, 510, 511, 516, 519, 542, 558, 568, 600, 615, 616, 618, 620, 622, 623, 625, 629, 632, 633, 634, 635, 636, 637, 638, 640, 642, 644, 653, 655, 665, 679, 680, 694, 724, 725, 726, 727, 728, 729, 741, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 763, 764, 765, 770, 778, 792, 805, 811, 813, 823, 826, 828, 833, 835], "119": [49, 163], "1220": [49, 163], "int16": [49, 52, 61, 65, 72, 84, 150, 154, 156, 161, 163, 170, 185, 380, 510, 511, 616, 633, 725, 743, 744, 749, 751, 762, 763, 813, 825, 828, 833], "32768": [49, 72, 163, 579, 620], "32767": [49, 72, 163], "is_bool_dtyp": [49, 72, 616], "is_float_dtyp": [49, 72, 616, 829], "is_int_dtyp": [49, 72, 616, 826, 829], "is_uint_dtyp": [49, 72, 616, 826, 829], "result_typ": [49, 72, 616, 813], "arrays_and_dtyp": [49, 72, 175, 616], "_arraywithdevic": [50, 97], "move": [50, 52, 73, 75, 142, 205, 209, 213, 322, 362, 371, 471, 615, 617, 780, 798, 805, 814, 829], "addit": [50, 52, 53, 60, 73, 75, 76, 83, 118, 120, 209, 218, 278, 374, 380, 493, 508, 513, 532, 533, 534, 600, 614, 617, 618, 620, 622, 626, 628, 648, 703, 723, 778, 792, 803, 804, 805, 809, 813, 815, 816, 819, 821, 823, 824, 825, 828, 829, 831, 835, 836, 838, 847, 854, 855, 856, 860], "__dlpack__": [50, 73, 128, 209, 615, 617], "caveat": [50, 73, 209, 370, 444, 617], "portabl": [50, 73, 209, 617, 798, 852], "_arraywithelementwis": [51, 97], "ab": [51, 57, 67, 74, 90, 97, 98, 273, 328, 344, 365, 371, 479, 618, 623, 627, 664, 674, 680, 712, 715, 759, 791, 792, 801, 808, 813, 818, 822, 825, 828], "absolut": [51, 52, 57, 67, 69, 74, 75, 80, 97, 215, 279, 328, 344, 347, 353, 365, 369, 370, 421, 436, 441, 443, 618, 623, 664, 665, 666, 671, 757, 759, 762, 764, 765, 799, 804], "aco": [51, 74, 618], "invers": [51, 52, 57, 74, 75, 80, 216, 217, 220, 221, 222, 223, 224, 368, 378, 390, 399, 401, 411, 501, 618, 623, 661, 665, 669, 784, 813], "cosin": [51, 74, 216, 217, 232, 233, 306, 309, 362, 368, 389, 399, 618, 778], "acosh": [51, 74, 161, 162, 616, 618, 801, 818], "area": [51, 52, 74, 75, 79, 217, 221, 224, 368, 403, 410, 413, 618, 824, 831, 844, 850], "hyperbol": [51, 74, 217, 221, 224, 233, 281, 285, 286, 298, 302, 360, 618], "sector": [51, 74, 217, 221, 224, 618, 844], "second": [51, 52, 54, 57, 59, 63, 74, 75, 76, 77, 80, 82, 86, 93, 97, 98, 118, 142, 173, 181, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 313, 322, 328, 340, 342, 343, 344, 350, 354, 355, 362, 365, 369, 370, 371, 378, 380, 419, 420, 421, 423, 427, 446, 478, 485, 496, 498, 502, 509, 512, 524, 573, 595, 601, 602, 607, 614, 615, 616, 618, 620, 621, 623, 625, 626, 627, 631, 653, 656, 657, 658, 660, 663, 668, 670, 671, 673, 675, 677, 679, 696, 697, 702, 705, 735, 736, 737, 782, 804, 807, 810, 813, 815, 819, 824, 825, 828, 830, 835, 845, 859], "multipli": [51, 52, 56, 65, 74, 75, 79, 92, 218, 284, 345, 368, 369, 403, 431, 432, 510, 511, 618, 622, 633, 645, 743, 749, 805, 808, 809, 811, 815], "angl": [51, 74, 223, 233, 281, 286, 343, 365, 618], "deg": [51, 74, 219, 618], "radian": [51, 52, 74, 75, 216, 219, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 618, 816], "degre": [51, 52, 65, 74, 75, 88, 219, 234, 274, 316, 362, 371, 478, 618, 633, 750, 752, 853], "1j": [51, 74, 75, 219, 220, 232, 233, 238, 240, 252, 275, 280, 281, 285, 332, 578, 618, 620], "2j": [51, 52, 74, 75, 219, 248, 332, 368, 395, 400, 579, 618, 620], "3j": [51, 52, 74, 75, 219, 252, 275, 332, 365, 618], "35619449": [51, 219, 618], "78539816": [51, 219, 618], "135": [51, 219, 527, 618, 620], "asin": [51, 74, 618], "sine": [51, 74, 220, 221, 280, 281, 618], "927": [51, 74, 220], "asinh": [51, 74, 220, 618], "atan": [51, 74, 618], "tangent": [51, 74, 222, 223, 224, 285, 286, 298, 302, 358, 360, 367, 618, 816], "785": [51, 74, 222, 223, 618], "atan2": [51, 74, 618], "quotient": [51, 74, 223, 235, 242, 618], "245": [51, 79, 223, 622, 645, 646], "588": [51, 223, 618], "inf": [51, 52, 53, 57, 74, 75, 76, 80, 223, 240, 249, 250, 251, 252, 256, 257, 259, 269, 294, 347, 360, 365, 369, 380, 417, 512, 545, 599, 613, 618, 620, 622, 623, 649, 664, 680, 762, 765, 801, 813, 818, 823], "719": [51, 223, 618], "197": [51, 223, 618], "atanh": [51, 74, 618], "549": [51, 74, 79, 224, 618, 622, 646], "bitwise_and": [51, 74, 618], "bitwise_invert": [51, 74, 618], "bitiwse_invert": [51, 226], "bitwise_left_shift": [51, 74, 618], "bitwise_or": [51, 74, 618], "bitwise_right_shift": [51, 74, 97, 618], "bitwise_xor": [51, 74, 97, 618], "ceil": [51, 52, 74, 75, 92, 95, 121, 368, 386, 387, 388, 404, 405, 406, 409, 615, 618, 778, 824], "round": [51, 52, 74, 75, 92, 94, 95, 96, 218, 231, 235, 241, 242, 268, 282, 288, 289, 338, 365, 618, 801, 803, 804, 805, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 843, 844, 845], "416": [51, 232, 618], "540": [51, 232], "990": [51, 232], "cosh": [51, 74, 232, 618], "deg2rad": [51, 74, 618], "convers": [51, 52, 75, 234, 274, 565, 575, 620, 779, 780, 803, 832, 834, 838, 839, 841, 845, 853, 860], "180": [51, 74, 234, 274, 618], "270": [51, 74, 234, 274, 618], "360": [51, 74, 234, 274, 618, 812], "dividend": [51, 74, 235, 242, 277, 289, 618], "divisor": [51, 52, 54, 65, 74, 75, 77, 88, 235, 242, 245, 246, 277, 289, 368, 371, 386, 387, 388, 458, 467, 486, 601, 602, 607, 618, 621, 633, 750, 752, 778, 782], "375": [51, 236, 271], "erf": [51, 74, 337, 365, 618], "exponenti": [51, 52, 74, 75, 237, 238, 240, 260, 273, 290, 299, 360, 369, 430, 618], "gauss": [51, 74, 237, 618], "328": [51, 237, 285, 618], "677": [51, 237], "842": [51, 237, 285, 618], "71828198": [51, 74, 238], "38905573": [51, 74, 238], "08553696": [51, 74, 238, 618], "exp2": [51, 74, 618], "expm1": [51, 74, 618, 813], "244": [51, 240, 798], "918": [51, 240], "147": [51, 240, 618], "floor": [51, 52, 74, 75, 92, 95, 229, 242, 368, 386, 387, 388, 390, 404, 405, 406, 409, 618, 778, 824], "floor_divid": [51, 74, 618, 770, 813], "fmin": [51, 74, 618, 813], "gcd": [51, 74, 618, 813], "greater": [51, 52, 56, 59, 61, 74, 75, 79, 84, 97, 98, 129, 216, 217, 220, 221, 223, 224, 227, 229, 235, 241, 242, 256, 258, 273, 277, 279, 281, 282, 286, 287, 288, 331, 365, 368, 390, 395, 400, 411, 615, 618, 622, 623, 625, 629, 651, 653, 665, 695, 727, 764, 778, 805, 826], "greater_equ": [51, 74, 97, 98, 260, 618], "imaginari": [51, 74, 97, 107, 110, 113, 137, 138, 216, 217, 218, 233, 235, 236, 238, 240, 248, 268, 270, 271, 278, 281, 282, 286, 332, 365, 368, 369, 411, 421, 612, 615, 618, 630, 733, 815], "4j": [51, 74, 248, 368, 411, 579, 618, 620], "6j": [51, 52, 74, 248, 252, 332, 618], "isfinit": [51, 74, 618, 825], "out_i": [51, 74, 249, 250, 251, 252, 275, 618], "self_i": [51, 74, 249, 250, 251, 252, 275], "finit": [51, 74, 215, 216, 217, 218, 221, 223, 224, 233, 235, 236, 238, 240, 242, 249, 250, 256, 258, 268, 269, 271, 273, 277, 281, 282, 286, 618], "isinf": [51, 74, 618], "detect_posit": [51, 74, 250, 618], "detect_neg": [51, 74, 250, 618], "isnan": [51, 74, 618], "isreal": [51, 74, 618], "5j": [51, 74, 75, 252, 275, 332, 365, 618], "lcm": [51, 74, 618, 813], "less": [51, 52, 57, 61, 65, 74, 75, 80, 84, 97, 98, 216, 217, 220, 223, 224, 231, 235, 242, 256, 257, 258, 259, 273, 277, 279, 282, 351, 365, 368, 369, 380, 389, 390, 399, 411, 434, 440, 509, 512, 618, 623, 629, 633, 664, 665, 666, 669, 680, 727, 750, 752, 778, 804, 805, 811, 813, 815, 817, 820, 825, 828, 831, 832, 833, 844, 854, 856], "less_equ": [51, 74, 97, 98, 618, 817], "log10": [51, 52, 74, 313, 362, 618], "logarithm": [51, 74, 238, 256, 257, 258, 259, 260, 336, 347, 365, 618, 623, 671], "602": [51, 257, 618], "699": [51, 257, 618], "log1p": [51, 74, 618, 823], "693": [51, 74, 112, 221, 258, 612, 618, 624, 684], "0953": [51, 74, 256, 258, 618], "log2": [51, 74, 261, 618], "logaddexp": [51, 74, 618], "logaddexp2": [51, 74, 618, 801, 818], "169925": [51, 74, 261, 618], "logical_and": [51, 74, 618, 825, 831, 861], "logical_not": [51, 74, 618, 813], "logical_or": [51, 74, 618, 861], "conform": [51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 480, 509, 615, 616, 618, 623, 625, 630, 631, 632, 633, 634, 652, 653, 654, 655, 656, 658, 659, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 686, 688, 689, 690, 692, 693, 695, 696, 700, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 816, 819], "api_specif": [51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 411, 480, 616, 618, 625, 633, 700, 750, 816], "array_api": [51, 74, 150, 238, 248, 249, 264, 368, 371, 411, 480, 616, 618, 623, 625, 633, 671, 672, 700, 750, 816], "logical_xor": [51, 74, 618], "maximum": [51, 52, 53, 54, 59, 62, 65, 69, 74, 75, 76, 77, 82, 85, 88, 98, 208, 293, 329, 330, 340, 353, 360, 365, 368, 369, 371, 380, 384, 394, 434, 437, 440, 472, 510, 512, 517, 527, 528, 536, 544, 607, 617, 618, 620, 621, 623, 625, 630, 633, 664, 685, 730, 731, 746, 748, 762, 764, 765, 770, 792, 805, 813, 815, 824, 836, 861], "use_wher": [51, 74, 266, 267, 618], "formula": [51, 52, 74, 235, 257, 259, 266, 267, 268, 313, 346, 362, 365, 374, 488, 490, 618], "exce": [51, 52, 75, 267, 371, 482, 618], "product": [51, 52, 56, 57, 65, 74, 75, 79, 80, 88, 92, 93, 95, 268, 358, 359, 367, 369, 380, 416, 419, 423, 426, 427, 428, 431, 432, 433, 510, 511, 518, 618, 622, 623, 633, 648, 651, 653, 660, 663, 668, 675, 679, 743, 744, 745, 749, 750, 792, 803, 833, 854, 856], "nan_to_num": [51, 74, 618], "posinf": [51, 74, 269, 618], "neginf": [51, 74, 269, 618], "5e": [51, 54, 74, 75, 269, 350, 607, 618, 621], "not_equ": [51, 74, 97, 98, 618], "pow": [51, 74, 97, 98, 618, 807], "expon": [51, 52, 53, 75, 76, 273, 339, 341, 345, 365, 374, 493, 579, 618, 620, 623, 665], "rad2deg": [51, 74, 618], "286": [51, 75, 274], "458": [51, 274], "573": [51, 274, 618], "reciproc": [51, 74, 618], "333": [51, 74, 235, 276, 528, 618, 620], "remaind": [51, 52, 59, 69, 74, 75, 82, 244, 618, 625, 694, 807, 824], "modulu": [51, 74, 277, 618, 824], "sign": [51, 52, 57, 63, 65, 74, 75, 80, 92, 121, 215, 216, 217, 218, 221, 223, 224, 229, 233, 235, 238, 240, 242, 268, 270, 277, 281, 282, 286, 333, 365, 369, 371, 380, 436, 479, 480, 510, 511, 615, 618, 623, 631, 633, 671, 735, 736, 737, 738, 743, 744, 749, 751, 798, 804, 813, 833, 838, 844], "x2_i": [51, 74, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 618, 807], "decim": [51, 74, 278, 618, 830], "0001": [51, 52, 75, 278, 279, 369, 434, 440, 762, 765, 782], "678": [51, 278, 279], "np_variant": [51, 74, 279, 618], "841": [51, 68, 74, 105, 280, 612, 618], "909": [51, 74, 76, 280, 618], "141": [51, 74, 147, 280, 616, 618], "sinh": [51, 74, 280, 618], "232": [51, 74, 281, 618], "sqrt": [51, 52, 74, 75, 368, 390, 395, 396, 400, 401, 411, 618, 777, 778, 798], "squar": [51, 52, 57, 74, 75, 80, 282, 369, 370, 374, 380, 420, 430, 441, 493, 509, 603, 604, 606, 611, 618, 621, 623, 627, 652, 654, 655, 657, 658, 659, 661, 665, 671, 672, 673, 678, 710, 798], "tanh": [51, 52, 74, 75, 285, 298, 302, 360, 618, 774, 833], "762": [51, 74, 286, 618], "964": [51, 74, 286, 618], "trapz": [51, 74, 618], "dx": [51, 74, 287, 618], "apart": [51, 74, 287, 618], "trapezoid": [51, 74, 287, 618], "trunc": [51, 74, 618], "025": [51, 288, 370, 446, 618, 626, 703], "trunc_divid": [51, 74, 618], "_arraywithactivationsexperiment": [52, 97], "celu": [52, 75, 360], "formul": [52, 68, 75, 93, 105, 290, 292, 360, 774], "elu": [52, 75, 293, 360, 774], "scaler": [52, 75, 291, 360, 762, 765, 828], "hardshrink": [52, 75, 360], "lambd": [52, 75, 292, 301, 360], "hardtanh": [52, 75, 360], "max_val": [52, 75, 293, 360], "min_val": [52, 75, 293, 360], "region": [52, 75, 293, 301, 360, 804], "19722438": [52, 75, 294, 360], "38629448": [52, 75, 294, 360], "38629436": [52, 75, 294, 360], "logsigmoid": [52, 75, 360, 774], "31326175": [52, 68, 295, 360], "126928": [52, 75, 295], "01814993": [52, 295], "00004578": [52, 295], "57888985": [52, 295], "31326169": [52, 75, 295, 360], "69314718": [52, 57, 68, 75, 80, 295, 347, 360, 365, 623, 671], "01104775": [52, 295], "prelu": [52, 75, 360, 774], "unidirect": [52, 296, 360], "relu6": [52, 75, 360, 774], "rectifi": [52, 68, 75, 107, 109, 110, 297, 300, 305, 360, 612], "scaled_tanh": [52, 75, 302, 360], "7159": [52, 75, 298, 302, 360], "amplitud": [52, 75, 298, 302, 360], "65537548": [52, 75, 298], "49570239": [52, 75, 298], "77637792": [52, 298], "selu": [52, 75, 360, 774], "11133075": [52, 299, 360], "05070102": [52, 75, 299, 360], "10140204": [52, 299, 360], "15210295": [52, 299, 360], "20280409": [52, 299, 360], "25350523": [52, 299, 360], "30420589": [52, 299, 360], "35490704": [52, 299, 360], "silu": [52, 75, 360, 774], "26894143": [52, 300], "73105854": [52, 75, 300], "softshrink": [52, 75, 360], "bound": [52, 75, 301, 313, 360, 362, 371, 455, 480, 481, 762, 813, 817, 825, 828, 833, 860], "tanhshrink": [52, 75, 360], "23840582": [52, 75, 303, 360], "condit": [52, 62, 75, 85, 118, 304, 319, 320, 362, 369, 417, 614, 627, 630, 714, 715, 734, 764, 807, 813, 815, 817, 821, 822, 824, 828, 847], "met": [52, 75, 304, 817], "hreshold": [52, 304], "thresholded_relu": [52, 75, 360], "_arraywithconversionsexperiment": [52, 97], "_arraywithcreationexperiment": [52, 97], "blackman_window": [52, 75, 362], "period": [52, 75, 281, 285, 306, 308, 309, 311, 312, 362, 368, 402, 618, 805], "window": [52, 56, 75, 79, 306, 308, 309, 311, 312, 327, 362, 368, 374, 386, 387, 388, 390, 404, 405, 406, 407, 409, 410, 413, 414, 493, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 778, 800, 805, 810, 818, 859], "symmetr": [52, 57, 75, 80, 92, 93, 306, 308, 309, 311, 312, 362, 369, 371, 420, 472, 623, 652, 657, 658, 659, 681, 811], "38777878e": [52, 75, 306, 362], "40000000e": [52, 306, 362], "00000000e": [52, 57, 75, 76, 306, 337, 362, 368, 389, 395, 399, 400, 623, 670, 801, 818], "30000000e": [52, 75, 306, 362], "eye_lik": [52, 75, 362], "elsewher": [52, 75, 127, 307, 362, 615, 630, 734, 804], "mel_weight_matrix": [52, 75, 362], "num_mel_bin": [52, 75, 313, 362], "dft_length": [52, 75, 313, 362, 368, 390], "sample_r": [52, 75, 313, 362], "lower_edge_hertz": [52, 75, 313, 362], "upper_edge_hertz": [52, 75, 313, 362], "3000": [52, 75, 313, 362], "melweightmatrix": [52, 75, 313, 362], "linearli": [52, 53, 76, 313, 362, 536, 620, 623, 672], "frequenc": [52, 53, 75, 76, 313, 362, 380, 509, 536, 620, 805], "spectra": [52, 313, 362], "dft": [52, 75, 313, 362, 368], "stft": [52, 75, 313, 362, 368], "mel": [52, 75, 313, 362], "term": [52, 75, 306, 313, 316, 362, 370, 444, 445, 622, 647, 778, 792, 798, 805, 811, 833, 841, 843, 854], "hertz": [52, 313, 362], "2595": [52, 313, 362], "700": [52, 76, 313, 362, 540], "band": [52, 53, 75, 76, 313, 362, 536, 620], "spectrum": [52, 75, 313, 362], "n_fft": [52, 75, 313, 362, 368, 390], "signal": [52, 75, 313, 362, 368, 382, 383, 384, 389, 390, 399, 414, 778, 853, 854], "8000": [52, 75, 308, 313, 362], "75694758": [52, 313, 362], "trilu": [52, 75, 362], "retain": [52, 142, 322, 323, 362, 603, 615, 621, 823, 827, 841], "unsorted_segment_mean": [52, 75, 362], "segment_id": [52, 75, 324, 325, 326, 362, 784], "num_seg": [52, 75, 324, 325, 326, 362, 784], "identifi": [52, 75, 324, 325, 326, 362, 803, 807, 812, 813, 828, 831], "th": [52, 75, 93, 324, 325, 326, 335, 362, 365, 369, 380, 418, 425, 519], "distinct": [52, 63, 75, 324, 325, 326, 362, 631, 735, 736, 737, 738, 804, 811, 816, 823, 824, 825, 832, 844, 854], "unsorted_segment_min": [52, 75, 362], "unsorted_segment_sum": [52, 75, 362], "polyv": [52, 75, 362], "coeff": [52, 75, 316, 362], "polynomi": [52, 75, 316, 362], "coeffici": [52, 75, 308, 316, 362, 369, 435, 623, 672, 782], "indetermin": [52, 75, 316, 362], "simplifi": [52, 75, 316, 362, 791, 792, 817, 825, 833, 834, 837, 844, 847, 850, 852, 853, 854, 857, 860, 861], "substitut": [52, 75, 316, 362], "_arraywithdata_typeexperiment": [52, 97], "_arraywithdeviceexperiment": [52, 97], "_arraywithelementwiseexperiment": [52, 97], "equal_nan": [52, 75, 328, 344, 365], "toler": [52, 57, 75, 80, 328, 344, 365, 369, 421, 434, 440, 623, 666, 669, 757, 759, 807, 826, 854], "1e10": [52, 328, 344, 365], "00001e10": [52, 328, 344, 365], "00001e": [52, 328, 365], "amax": [52, 75, 365], "keepdim": [52, 57, 59, 62, 65, 66, 69, 75, 80, 82, 85, 88, 89, 329, 330, 334, 349, 356, 365, 366, 371, 380, 477, 514, 515, 516, 517, 518, 519, 623, 625, 630, 633, 634, 664, 680, 699, 730, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 817, 825, 833], "singleton": [52, 57, 62, 65, 66, 75, 80, 85, 88, 89, 329, 330, 365, 623, 625, 630, 633, 634, 680, 688, 695, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 833], "amin": [52, 75, 365], "binar": [52, 75, 365], "map": [52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 365, 368, 391, 392, 393, 411, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 478, 480, 481, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 600, 605, 610, 620, 627, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 711, 712, 716, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 792, 808, 811, 813, 820, 821, 825, 828, 829, 836, 839, 841, 848, 855], "conj": [52, 75, 233, 238, 240, 281, 282, 286, 365, 618], "conjug": [52, 57, 75, 80, 332, 365, 368, 369, 375, 390, 415, 421, 431, 433, 435, 497, 623, 663, 667, 675], "copysign": [52, 75, 365], "unsign": [52, 65, 75, 333, 365, 371, 380, 480, 510, 511, 633, 743, 744, 749, 751, 763, 813, 833], "count_nonzero": [52, 75, 365], "diff": [52, 69, 75, 365, 815, 824], "prepend": [52, 75, 335, 365, 623, 625, 663, 688, 804], "differenc": [52, 75, 335, 365], "prior": [52, 75, 335, 365, 375, 497, 623, 675, 817, 829], "expand": [52, 53, 59, 75, 76, 335, 365, 371, 536, 620, 625, 688, 811, 827], "discret": [52, 75, 335, 365, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 624, 683, 778], "digamma": [52, 75, 365], "7549271": [52, 336, 365], "92278427": [52, 75, 336, 365], "9988394": [52, 336, 365], "erfc": [52, 75, 365], "complementari": [52, 75, 327, 337, 362, 365, 852, 860], "84270084e": [52, 337], "80259693e": [52, 337], "toward": [52, 59, 75, 82, 242, 289, 338, 350, 365, 371, 380, 478, 512, 618, 625, 693, 798, 801, 803, 804, 818, 833, 850, 854], "float_pow": [52, 75, 365], "fmax": [52, 75, 365], "fmod": [52, 75, 618], "divis": [52, 53, 54, 75, 76, 77, 229, 235, 242, 244, 277, 279, 289, 371, 458, 570, 578, 592, 601, 602, 607, 618, 620, 621, 622, 635, 642, 643, 782, 821, 830], "frexp": [52, 75, 365], "edge_ord": [52, 75, 342, 365], "estim": [52, 75, 342, 365, 380, 509], "boundari": [52, 61, 75, 84, 95, 319, 320, 342, 362, 365, 368, 403, 629, 727, 854], "33333333": [52, 75, 276, 342, 365, 618], "hypot": [52, 75, 365], "hypotenus": [52, 343, 365], "4031": [52, 343, 365], "8102": [52, 343, 365], "isclos": [52, 75, 365, 807], "ldexp": [52, 75, 365], "lerp": [52, 75, 365], "lgamma": [52, 365], "45373654": [52, 347, 365], "6477685": [52, 347, 365], "modf": [52, 75, 365], "fraction": [52, 75, 348, 365, 380, 519, 622, 645], "nansum": [52, 75, 365], "accumul": [52, 75, 349, 365, 371, 477], "nextaft": [52, 75, 365], "0e": [52, 54, 75, 77, 350, 365, 607, 621], "4013e": [52, 75, 350, 365], "4028e": [52, 75, 350, 365], "signbit": [52, 75, 365], "637": [52, 75, 352, 365], "0909": [52, 75, 352, 365], "sparsify_tensor": [52, 75, 365], "sparsifi": [52, 75, 353, 365], "arang": [52, 57, 65, 75, 80, 132, 353, 365, 368, 369, 386, 387, 388, 395, 400, 404, 405, 406, 409, 417, 432, 464, 559, 600, 615, 620, 623, 626, 633, 664, 680, 702, 703, 745, 798, 813, 824, 861], "xlogi": [52, 75, 365], "0986": [52, 75, 354, 365], "3863": [52, 75, 354, 365], "0000": [52, 75, 308, 309, 312, 354, 362, 365, 369, 371, 430, 466], "zeta": [52, 75, 365], "0369": [52, 75, 355, 365], "_arraywithgeneralexperiment": [52, 97], "init_valu": [52, 75, 79, 356, 366, 368, 410], "reduct": [52, 53, 58, 66, 69, 75, 76, 79, 81, 89, 356, 366, 368, 370, 371, 410, 441, 442, 443, 444, 445, 446, 447, 477, 533, 563, 564, 620, 624, 634, 682, 683, 684, 753, 754, 779, 813, 821, 824, 828, 835], "_arraywithgradientsexperiment": [52, 97], "_arraywithimageexperiment": [52, 97], "_arraywithlayersexperiment": [52, 97], "adaptive_avg_pool1d": [52, 75, 368], "1d": [52, 75, 92, 93, 368, 369, 371, 380, 382, 389, 391, 393, 399, 431, 450, 455, 477, 481, 509, 762, 778], "adapt": [52, 75, 77, 368, 382, 383, 384, 608, 621, 778, 782, 844], "pool": [52, 75, 79, 368, 382, 383, 384, 386, 387, 388, 404, 405, 406, 407, 410, 778, 804], "plane": [52, 75, 235, 238, 240, 268, 280, 281, 282, 285, 368, 371, 382, 383, 384, 478, 618], "l_in": [52, 75, 368, 382], "spatial": [52, 56, 75, 79, 368, 374, 382, 383, 384, 403, 410, 413, 488, 489, 490, 493, 622, 635, 636, 637, 638, 640, 642, 644, 781], "Will": [52, 75, 368, 382, 383, 384, 787, 839], "l_out": [52, 75, 368, 382], "nhwc": [52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 493, 622, 635, 638, 639, 642, 643, 644, 778], "3d": [52, 57, 75, 368, 383, 391, 392, 452, 623, 660, 778, 831], "4d": [52, 75, 368, 369, 374, 383, 392, 393, 439, 493], "s_0": [52, 75, 368, 383, 384], "s_1": [52, 75, 368, 383, 384], "adaptive_max_pool2d": [52, 75, 368], "h_in": [52, 75, 368, 384], "w_in": [52, 75, 368, 384], "avg_pool1d": [52, 75, 368], "kernel": [52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 622, 647, 833, 839, 854, 857, 858], "nwc": [52, 56, 75, 79, 368, 386, 391, 404, 407, 622, 635, 636, 637, 642, 643, 778], "count_include_pad": [52, 75, 368, 386, 387, 388, 778], "d_in": [52, 56, 75, 79, 368, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644], "algorithm": [52, 56, 68, 75, 79, 105, 368, 369, 386, 387, 388, 403, 404, 405, 406, 407, 434, 436, 440, 623, 636, 638, 639, 640, 641, 644, 671, 774, 778, 792, 813, 825, 831, 839, 854, 856, 858], "ncw": [52, 56, 75, 79, 368, 386, 391, 392, 404, 407, 622, 635, 636, 637, 642, 643, 778], "avg_pool2d": [52, 75, 368], "divisor_overrid": [52, 75, 368, 386, 387, 388, 778], "avg_pool3d": [52, 75, 368], "ndhwc": [52, 56, 75, 79, 368, 388, 393, 406, 622, 635, 640, 641, 642, 643, 778], "volum": [52, 56, 75, 79, 368, 388, 390, 395, 396, 400, 406, 622, 640, 641], "ncdhw": [52, 56, 75, 79, 368, 388, 393, 406, 622, 635, 640, 641, 642, 643, 778], "dct": [52, 75, 368, 778, 836], "truncat": [52, 75, 368, 369, 389, 395, 399, 400, 401, 412, 438, 566, 620, 778, 817, 836], "larger": [52, 59, 65, 75, 82, 88, 160, 368, 389, 396, 399, 401, 412, 616, 625, 633, 685, 693, 750, 752, 778, 828, 831, 861], "ortho": [52, 75, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 778], "onesid": [52, 75, 368, 390], "fft": [52, 75, 368, 390, 396, 411, 412, 414, 778, 803, 854], "symmetri": [52, 368, 390], "rfft": [52, 75, 368, 390, 412], "invok": [52, 368, 390, 798, 819, 847, 848], "batch_idx": [52, 368, 390], "signal_dim1": [52, 368, 390], "signal_dim2": [52, 368, 390], "signal_dimn": [52, 368, 390], "signal_dim": [52, 368, 390], "embed": [52, 75, 368, 622, 648, 764, 778, 854], "max_norm": [52, 53, 75, 76, 368, 394, 527, 528, 620, 778], "ifft": [52, 75, 368, 395, 401, 778], "pi": [52, 75, 281, 285, 368, 370, 395, 400, 445, 613, 618], "44509285e": [52, 75, 368, 395], "14423775e": [52, 75, 368, 395], "17j": [52, 75, 368, 395, 400], "11483250e": [52, 75, 368, 395], "16j": [52, 75, 368, 395, 400], "33486982e": [52, 75, 368, 395], "22464680e": [52, 75, 368, 395], "95799250e": [52, 75, 368, 395], "66951701e": [52, 75, 368, 395], "fft2": [52, 368], "vari": [52, 63, 92, 93, 286, 396, 532, 618, 620, 623, 631, 670, 736, 737, 738, 792, 811, 815, 825, 828, 835], "20477401j": [52, 368, 396], "0614962j": [52, 368, 396], "idct": [52, 75, 368], "49862671": [52, 75, 368, 389, 399], "37691498": [52, 75, 368, 389, 399], "00390816": [52, 75, 368, 389, 399], "58938599": [52, 75, 368, 389, 399], "92713165": [52, 75, 368, 389, 399], "078475": [52, 75, 368, 389, 399], "19664812": [52, 75, 368, 389, 399], "95411837": [52, 75, 368, 389, 399], "30636606e": [52, 75, 368, 400], "43029718e": [52, 75, 368, 400], "18j": [52, 75, 368, 395, 400], "53080850e": [52, 75, 368, 400], "58689626e": [52, 75, 368, 400], "24474906e": [52, 75, 368, 400], "91858728e": [52, 75, 368, 400], "01435406e": [52, 75, 368, 400], "ifftn": [52, 75, 368], "24730653": [52, 75, 368, 401], "90832391j": [52, 75, 368, 401], "49495562": [52, 75, 368, 401], "9039565j": [52, 75, 368, 401], "98193269": [52, 75, 368, 401], "49560517j": [52, 75, 368, 401], "93280757": [52, 75, 368, 401], "48075343j": [52, 75, 368, 401], "28526384": [52, 75, 368, 401], "3351205j": [52, 75, 368, 401], "2343787": [52, 75, 368, 401], "83528011j": [52, 75, 368, 401], "18791352": [52, 75, 368, 401], "30690572j": [52, 75, 368, 401], "82115787": [52, 75, 368, 401], "96195183j": [52, 75, 368, 401], "44719226": [52, 75, 368, 401], "72654048j": [52, 75, 368, 401], "51476765": [52, 368, 401], "66160417j": [52, 368, 401], "04319742": [52, 368, 401], "05411636j": [52, 368, 401], "015561": [52, 368, 401], "04216015j": [52, 368, 401], "06310689": [52, 368, 401], "05347854j": [52, 368, 401], "13392983": [52, 368, 401], "16052352j": [52, 368, 401], "08371392": [52, 368, 401], "17252843j": [52, 368, 401], "0031429": [52, 368, 401], "05421245j": [52, 368, 401], "10446617": [52, 368, 401], "17747098j": [52, 368, 401], "05344324": [52, 368, 401], "07972424j": [52, 368, 401], "8344667": [52, 75, 368, 401], "98222595j": [52, 75, 368, 401], "48472244": [52, 75, 368, 401], "30233797j": [52, 75, 368, 401], "recompute_scale_factor": [52, 75, 368, 403, 831], "antialia": [52, 75, 368, 403, 831], "height": [52, 53, 56, 75, 76, 79, 368, 403, 532, 620, 622, 638, 639, 640, 641, 644, 836], "width": [52, 53, 56, 75, 76, 79, 368, 369, 371, 374, 380, 403, 421, 472, 493, 512, 532, 620, 622, 636, 637, 638, 639, 640, 641, 644, 648], "trilinear": [52, 75, 368, 403, 831], "nearest_exact": [52, 75, 368, 403, 831], "tf_area": [52, 75, 368, 403, 831], "mitchellcub": [52, 75, 368, 403, 831], "lanczos3": [52, 75, 368, 403, 831], "lanczos5": [52, 75, 368, 403, 831], "gaussian": [52, 75, 105, 368, 403, 612, 831], "overwrit": [52, 69, 75, 208, 368, 403, 617, 805, 824, 825, 833], "thu": [52, 75, 229, 242, 277, 285, 286, 368, 369, 403, 420, 618, 623, 657, 658, 803, 812, 817, 822, 825, 829], "antialias": [52, 75, 403], "max_pool1d": [52, 75, 368], "dilaton": [52, 75, 404, 405, 406], "max_pool3d": [52, 75, 368], "max_unpool1d": [52, 75, 368], "unpool": [52, 75, 368, 407], "reduce_window": [52, 79, 368], "window_dimens": [52, 79, 368, 410], "window_strid": [52, 79, 368, 410], "base_dil": [52, 79, 368, 410], "window_dil": [52, 79, 368, 410], "trim": [52, 69, 75, 368, 371, 411, 483], "orthonorm": [52, 57, 75, 80, 368, 411, 623, 670, 673], "8660254j": [52, 75, 368, 411], "rfftn": [52, 75, 368], "sliding_window": [52, 75, 368], "window_s": [52, 75, 368, 413], "frame_length": [52, 75, 368, 414], "frame_step": [52, 75, 368, 414], "fft_length": [52, 75, 368, 414], "window_fn": [52, 75, 368, 414], "pad_end": [52, 75, 368, 414], "smallest": [52, 69, 75, 160, 163, 231, 368, 371, 414, 482, 616, 618, 623, 664, 762, 764, 765], "enclos": [52, 75, 368, 414, 855], "window_length": [52, 75, 306, 308, 311, 312, 327, 362, 368, 414], "li": [52, 75, 368, 369, 380, 414, 421, 519, 843], "past": [52, 75, 368, 414, 805, 807, 826, 828, 840, 854], "fft_unique_bin": [52, 75, 368, 414], "complex64": [52, 72, 75, 153, 167, 176, 182, 248, 275, 368, 411, 414, 616, 618, 623, 671, 673, 674, 763, 813, 818], "complex128": [52, 75, 76, 153, 154, 167, 176, 182, 368, 414, 558, 616, 620, 623, 658, 659, 664, 680, 762, 763, 801, 813, 818], "compon": [52, 75, 137, 138, 216, 217, 218, 221, 224, 233, 235, 236, 238, 240, 268, 270, 271, 278, 281, 282, 285, 286, 317, 321, 332, 362, 365, 368, 369, 374, 414, 425, 434, 493, 615, 618, 630, 733, 798, 827, 833, 844, 850, 855, 857], "linear_algebra": [52, 57, 75, 80, 623, 829], "_arraywithlinearalgebraexperiment": [52, 97], "adjoint": [52, 57, 75, 80, 369, 435, 623, 661, 672, 673, 762], "batched_out": [52, 75, 369], "j1": [52, 75, 369, 416], "jn": [52, 75, 369, 416], "k1": [52, 75, 369, 416], "km": [52, 75, 369, 416], "outer": [52, 57, 75, 80, 92, 369, 416, 623, 626, 701, 702, 703, 792, 803], "30000001": [52, 75, 369, 416, 532, 620, 631, 736], "40000001": [52, 56, 68, 75, 97, 98, 107, 110, 291, 360, 369, 416, 612, 622, 631, 651, 736], "60000002": [52, 75, 88, 98, 369, 374, 416, 492, 494, 747], "80000001": [52, 75, 369, 374, 416, 492, 494], "60000001": [52, 75, 369, 416], "90000004": [52, 75, 369, 416, 633, 747], "20000002": [52, 75, 369, 416], "20000005": [52, 54, 75, 291, 298, 301, 302, 360, 369, 416, 601], "00000012": [52, 75, 369, 416], "49999994": [52, 75, 369, 416], "00000006": [52, 75, 369, 416], "60000014": [52, 75, 369, 416], "19999993": [52, 75, 369, 416], "80000007": [52, 75, 369, 416], "20000017": [52, 75, 369, 416], "89999992": [52, 75, 369, 416], "60000008": [52, 75, 369, 416], "80000019": [52, 75, 346, 365, 369, 416], "4000001": [52, 75, 79, 369, 416, 622, 645, 651], "cond": [52, 75, 118, 369, 614, 839], "933034373659268": [52, 417], "diagflat": [52, 75, 369, 427, 430], "offset": [52, 57, 60, 71, 75, 80, 83, 129, 369, 374, 418, 488, 489, 490, 615, 623, 628, 656, 677, 723, 769], "padding_valu": [52, 75, 369, 418], "right_left": [52, 75, 369, 418], "num_row": [52, 75, 369, 418], "num_col": [52, 75, 369, 418], "dot": [52, 56, 75, 79, 92, 369, 432, 622, 623, 648, 651, 679, 792, 798, 804, 812], "eig": [52, 57, 75, 369, 623, 658, 659], "37228132": [52, 75, 369, 420, 422, 657], "82456484": [52, 420, 657], "41597356": [52, 420, 657], "56576746": [52, 420, 657], "90937671": [52, 420, 657], "eigh_tridiagon": [52, 75, 369], "eigvals_onli": [52, 75, 369, 421], "select_rang": [52, 75, 369, 421], "tol": [52, 75, 96, 369, 421, 434, 440], "eigenvalu": [52, 57, 75, 80, 92, 93, 369, 420, 421, 422, 623, 657, 658, 659, 666], "eigenvector": [52, 75, 369, 420, 421, 623, 657, 658], "interv": [52, 61, 66, 75, 84, 89, 121, 132, 133, 140, 369, 380, 421, 512, 615, 623, 625, 629, 634, 653, 679, 685, 688, 696, 725, 727, 753, 754], "togeth": [52, 69, 75, 328, 344, 365, 369, 421, 783, 798, 808, 811, 813, 824, 825, 828, 829, 831, 837, 838, 839, 844, 852, 854, 855, 860], "cluster": [52, 75, 369, 421, 839, 854], "converg": [52, 75, 369, 421, 845], "_2": [52, 75, 369, 421], "eig_val": [52, 75, 369, 421], "decreas": [52, 75, 369, 421, 764], "eig_vector": [52, 75, 369, 421], "38196": [52, 421], "61803": [52, 421], "eigval": [52, 75, 369], "general_inner_product": [52, 80, 369], "n_mode": [52, 80, 369, 423], "tradit": [52, 80, 369, 423], "inner": [52, 57, 71, 80, 101, 136, 369, 420, 423, 615, 623, 626, 657, 658, 663, 701, 702, 703, 792, 803, 824], "higher_order_mo": [52, 75, 369], "n_featur": [52, 75, 369, 424], "d1": [52, 75, 369, 424], "dn": [52, 75, 369, 424], "initialize_tuck": [52, 75, 369], "svd": [52, 57, 75, 80, 95, 369, 425, 429, 434, 436, 437, 438, 440, 623, 674], "truncated_svd": [52, 75, 369, 425, 434, 437, 440], "non_neg": [52, 75, 321, 362, 369, 425], "mask": [52, 56, 75, 79, 92, 369, 371, 425, 426, 434, 440, 479, 542, 620, 622, 645, 648, 651, 831], "svd_mask_repeat": [52, 75, 369, 425, 434, 440], "tuckertensor": [52, 75, 96, 321, 362, 369, 425, 434, 440], "scheme": [52, 75, 369, 425, 434, 807, 837, 854], "tucker": [52, 75, 321, 362, 369, 425, 434], "decomposit": [52, 57, 75, 80, 92, 93, 95, 317, 318, 319, 320, 321, 362, 369, 425, 434, 437, 439, 440, 623, 652, 658, 662, 670, 673, 803, 861], "miss": [52, 75, 369, 371, 425, 434, 440, 479, 782, 803, 804, 808, 811, 812, 815, 825, 828, 831], "everywher": [52, 75, 369, 425, 434, 440], "imput": [52, 75, 369, 425, 434, 440], "kron": [52, 75, 369, 430, 861], "make_svd_non_neg": [52, 75, 369, 438], "nntype": [52, 75, 369, 429], "nndsvd": [52, 75, 369, 429], "singular": [52, 57, 75, 80, 369, 425, 429, 436, 438, 623, 664, 666, 669, 673, 674, 762, 764, 813], "nndsvda": [52, 75, 369, 429], "boutsidi": [52, 75, 369, 429], "gallopoulo": [52, 75, 369, 429], "pattern": [52, 53, 75, 76, 369, 429, 532, 533, 534, 620, 813, 816, 827, 845], "recognit": [52, 75, 369, 429], "1350": [52, 75, 369, 429], "1362": [52, 75, 369, 429], "2008": [52, 75, 369, 429, 854], "matrix_exp": [52, 75, 369], "7183": [52, 75, 369, 430], "3891": [52, 75, 369, 430], "mode_dot": [52, 75, 91, 92, 96, 369], "matrix_or_vector": [52, 75, 92, 96, 369, 431], "i_1": [52, 75, 92, 93, 369, 431], "i_k": [52, 75, 92, 369, 431], "i_n": [52, 75, 92, 369, 431], "i_": [52, 75, 92, 369, 380, 431, 512], "multi_dot": [52, 75, 369], "148": [52, 74, 75, 238, 369, 432], "multi_mode_dot": [52, 75, 369], "mat_or_vec_list": [52, 75, 369, 433], "times_0": [52, 369, 433], "vec": [52, 369, 433], "times_1": [52, 369, 433], "cdot": [52, 268, 369, 433, 618], "times_n": [52, 369, 433], "partial_tuck": [52, 75, 369], "n_iter_max": [52, 75, 369, 434, 440], "verbos": [52, 75, 369, 434, 437, 440, 828, 833], "return_error": [52, 75, 369, 434, 440], "variat": [52, 75, 369, 434, 440, 815, 825, 828], "reconstruct": [52, 57, 63, 75, 86, 95, 369, 371, 434, 440, 485, 623, 631, 673, 735, 737, 826], "return_erro": [52, 369, 434, 440], "svd_flip": [52, 75, 369], "u_based_decis": [52, 75, 369, 436], "basi": [52, 75, 369, 436, 805, 807, 836], "flip": [52, 59, 75, 82, 92, 226, 369, 371, 436, 463, 464, 618, 625, 824, 835, 836, 838], "decis": [52, 75, 369, 436, 798, 807, 813, 831, 833, 835, 854], "u_adjust": [52, 75, 369, 436], "v_adjust": [52, 75, 369, 436], "tensor_train": [52, 75, 369], "tt": [52, 75, 320, 362, 369, 437, 439], "kth": [52, 369, 437], "tttensor": [52, 95, 320, 362, 369, 437], "compute_uv": [52, 57, 75, 80, 369, 438, 623, 673], "n_eigenvec": [52, 75, 369, 438], "returnedv": [52, 438], "vh": [52, 57, 75, 80, 369, 438, 623, 673], "eigen": [52, 75, 369, 438], "namedtupl": [52, 57, 63, 75, 80, 86, 369, 371, 420, 438, 485, 623, 631, 657, 658, 670, 671, 673, 735, 736, 737], "tt_matrix_to_tensor": [52, 75, 369], "known": [52, 75, 279, 369, 437, 439, 618, 777, 807, 812, 813, 825, 828], "rank_k": [52, 75, 369, 439], "left_dim_k": [52, 75, 369, 439], "right_dim_k": [52, 75, 369, 439], "rank_": [52, 75, 369, 439], "49671414": [52, 75, 369, 439, 629, 726], "1382643": [52, 75, 369, 439, 629, 726], "64768857": [52, 75, 369, 439, 629, 726], "5230298": [52, 75, 369, 439, 629, 726], "23415337": [52, 75, 369, 439, 629, 726], "23413695": [52, 75, 369, 439, 629, 726], "57921278": [52, 75, 369, 439], "76743472": [52, 75, 369, 439], "1163073": [52, 75, 369, 439], "11629914": [52, 75, 369, 439], "03237505": [52, 75, 369, 439], "03237278": [52, 75, 369, 439], "78441733": [52, 75, 369, 439], "38119566": [52, 75, 369, 439], "21834874": [52, 75, 369, 439], "10610882": [52, 75, 369, 439], "15165846": [52, 75, 369, 439], "15164782": [52, 75, 369, 439], "35662258": [52, 75, 369, 439], "35659757": [52, 75, 369, 439], "02283812": [52, 75, 369, 439], "49705869": [52, 75, 369, 439], "40518808": [52, 75, 369, 439], "16882598": [52, 75, 369, 439], "fixed_factor": [52, 75, 369, 440], "tl": [52, 75, 369, 440], "kolda": [52, 75, 369, 440], "bader": [52, 75, 369, 440], "siam": [52, 75, 369, 437, 440], "review": [52, 75, 369, 440, 800, 803, 805, 810, 812, 815, 825, 829], "vol": [52, 75, 369, 440], "pp": [52, 75, 369, 440], "455": [52, 75, 369, 440], "2009": [52, 75, 369, 440], "_arraywithlossesexperiment": [52, 97], "huber_loss": [52, 75, 370], "delta": [52, 54, 75, 77, 370, 441, 601, 621], "transit": [52, 75, 370, 441, 854], "huber": [52, 75, 370, 441], "kl_div": [52, 75, 370], "log_target": [52, 75, 370, 442], "contai": [52, 442], "batchmean": [52, 370, 442], "kullback": [52, 75, 370, 442], "leibler": [52, 75, 370, 442], "0916": [52, 442], "l1_loss": [52, 75, 370, 444], "l1": [52, 57, 75, 80, 370, 374, 441, 443, 444, 446, 491, 623, 680, 811, 836], "targetict": [52, 75, 370, 443, 444, 446, 447], "20000000000000004": [52, 443], "log_poisson_loss": [52, 75, 370], "compute_full_loss": [52, 75, 370, 444, 779], "favor": [52, 75, 370, 444], "likelihood": [52, 75, 370, 444, 445], "28402555": [52, 370, 444], "03402555": [52, 370, 444], "1573164": [52, 370, 444], "poisson_nll_loss": [52, 75, 370], "log_input": [52, 75, 370, 445], "poisson": [52, 75, 370, 375, 444, 445], "assumpt": [52, 370, 444, 445], "minu": [52, 370, 444, 445], "omiss": [52, 370, 445], "stirl": [52, 75, 370, 444, 445], "describ": [52, 65, 75, 93, 218, 235, 236, 268, 271, 273, 370, 375, 378, 445, 499, 502, 618, 622, 633, 648, 745, 749, 751, 800, 803, 804, 805, 810, 812, 824, 825, 828, 833, 838, 854], "prevent": [52, 54, 75, 77, 370, 445, 544, 601, 602, 607, 620, 621, 622, 633, 645, 751, 777, 782, 803, 805, 812, 813, 817, 824, 825, 829], "input_tensor": [52, 75, 369, 370, 437, 445, 825], "target_tensor": [52, 370, 445], "1978": [52, 445], "smooth_l1_loss": [52, 75, 370], "smooth": [52, 58, 75, 81, 370, 441, 446, 624, 682, 683, 684, 823], "8125": [52, 446], "soft_margin_loss": [52, 75, 370], "soft": [52, 75, 301, 370, 371, 447, 479, 814], "margin": [52, 75, 370, 447, 825], "35667497": [52, 447, 624, 683], "22314353": [52, 447], "60943791": [52, 447], "manipul": [52, 75, 824, 825, 829, 831, 833, 838, 843, 854], "_arraywithmanipulationexperiment": [52, 97], "as_strid": [52, 75, 371], "nativeshap": [52, 56, 59, 61, 75, 82, 84, 122, 123, 125, 130, 137, 143, 371, 375, 448, 460, 465, 473, 476, 495, 496, 497, 498, 499, 564, 577, 582, 584, 615, 620, 622, 625, 629, 635, 637, 639, 641, 643, 692, 725, 726, 727, 820, 822], "byte": [52, 53, 71, 75, 76, 97, 129, 371, 448, 558, 615, 620, 859, 860], "associative_scan": [52, 75, 371], "revers": [52, 53, 57, 65, 75, 80, 88, 97, 98, 359, 367, 369, 371, 380, 428, 449, 463, 464, 510, 511, 531, 620, 623, 625, 633, 678, 689, 743, 744, 803, 811, 812, 813, 815, 816, 824, 825, 831, 838, 839], "scan": [52, 75, 371, 449, 839], "atleast_1d": [52, 75, 371], "ari": [52, 75, 371, 450, 451, 452, 458, 467, 486], "a1": [52, 76, 371, 450, 451, 452, 456, 524], "a2": [52, 76, 371, 450, 451, 452, 456, 524], "atleast_2d": [52, 75, 371], "atleast_3d": [52, 75, 371], "column_stack": [52, 75, 371], "concat_from_sequ": [52, 75, 371], "input_sequ": [52, 75, 371, 457], "new_axi": [52, 75, 371, 457, 838], "dsplit": [52, 75, 371], "indices_or_sect": [52, 75, 371, 458, 467, 486], "3rd": [52, 75, 371, 458], "dstack": [52, 75, 371], "fill_diagon": [52, 75, 371], "fill_diag": [52, 461], "fortran": [52, 59, 75, 82, 371, 462, 625, 692, 854, 858], "layout": [52, 59, 75, 82, 371, 462, 625, 692, 809, 824, 825, 831], "fliplr": [52, 75, 371, 824], "diag": [52, 57, 75, 80, 93, 371, 463, 464, 623, 658, 833], "flipud": [52, 75, 371, 824], "fold": [52, 75, 371, 473, 474, 812], "unfold": [52, 75, 92, 93, 95, 369, 371, 425, 465, 473, 475], "folded_tensor": [52, 371, 465], "heavisid": [52, 75, 371], "5000": [52, 371, 466, 623, 661, 792], "hsplit": [52, 75, 371], "horizont": [52, 75, 371, 456, 467, 532, 620], "hstack": [52, 75, 371, 456], "i0": [52, 75, 371, 380, 512], "bessel": [52, 65, 75, 88, 311, 362, 371, 469, 633, 750, 752], "kind": [52, 65, 75, 160, 163, 164, 380, 469, 510, 511, 516, 616, 633, 743, 744, 749, 751, 762, 763, 802, 825, 828, 831, 833, 839], "26606588": [52, 75, 371, 469], "2795853": [52, 75, 371, 469], "88079259": [52, 75, 371, 469], "row_mod": [52, 75, 371, 470], "column_mod": [52, 75, 371, 470], "ascend": [52, 64, 75, 87, 371, 378, 470, 502, 632, 739, 741], "prod": [52, 53, 65, 76, 88, 369, 371, 426, 428, 470, 518, 533, 620, 633, 762, 792, 813, 815, 833], "moveaxi": [52, 75, 371], "destin": [52, 75, 371, 471], "unstack": [52, 59, 69, 82, 471, 625, 811, 833, 836, 861], "reorder": [52, 59, 75, 82, 371, 471, 532, 620, 625, 689, 827], "stat_length": [52, 75, 371, 472], "constant_valu": [52, 75, 371, 472], "end_valu": [52, 75, 371, 472], "reflect_typ": [52, 75, 371, 472], "partial_fold": [52, 75, 371], "skip_begin": [52, 75, 371, 473, 474, 475, 476], "untouch": [52, 75, 371, 473, 474, 475, 476], "partial_tensor_to_vec": [52, 75, 371], "skip_end": [52, 75, 371, 474, 475], "vectoris": [52, 75, 92, 371, 474, 476], "partial_unfold": [52, 75, 371], "ravel_tensor": [52, 75, 371, 475], "n_1": [52, 75, 371, 475], "n_2": [52, 75, 371, 475], "n_i": [52, 75, 369, 371, 426, 475], "partial_vec_to_tensor": [52, 75, 371], "put_along_axi": [52, 75, 371], "rot90": [52, 75, 371, 824], "rotat": [52, 75, 371, 478], "soft_threshold": [52, 75, 371], "behav": [52, 75, 329, 330, 365, 369, 371, 420, 480, 623, 657, 807, 817, 822, 824, 825, 826, 835, 855], "invalid": [52, 66, 75, 89, 371, 480, 623, 625, 634, 679, 688, 753, 754, 762, 804, 813], "slice": [52, 65, 69, 75, 76, 88, 93, 142, 322, 362, 371, 455, 477, 480, 481, 539, 540, 542, 568, 615, 620, 627, 633, 713, 748, 854], "inexact": [52, 75, 339, 365, 371, 480], "largest": [52, 69, 75, 160, 163, 369, 371, 436, 480, 482, 616, 623, 664, 673], "take_along_axi": [52, 75, 371], "arr": [52, 53, 72, 75, 168, 371, 455, 477, 481, 564, 616, 813, 814], "top_k": [52, 75, 371], "sort": [52, 63, 69, 75, 86, 98, 287, 369, 371, 380, 420, 482, 502, 516, 618, 623, 631, 657, 658, 673, 674, 735, 739, 740, 741, 764, 798, 802, 812, 827, 829], "trim_zero": [52, 75, 371], "fb": [52, 75, 371, 483], "front": [52, 75, 371, 483, 825, 832, 833, 836, 843, 852, 854], "unfolded_tensor": [52, 371, 484], "unique_consecut": [52, 75, 371], "vsplit": [52, 75, 371], "vertic": [52, 75, 371, 486, 487, 532, 620, 805], "_arraywithnormsexperiment": [52, 97], "varianc": [52, 65, 75, 88, 374, 488, 490, 633, 752, 777, 781], "nsc": [52, 75, 374, 488, 489, 490, 781], "braodcast": [52, 75, 374, 488], "running_mean": [52, 75, 374, 488, 490, 781], "running_var": [52, 75, 374, 488, 490, 781], "nc": [52, 75, 374, 488, 489, 490, 781], "group_norm": [52, 75, 374], "num_group": [52, 75, 374, 489], "group": [52, 75, 371, 374, 485, 489, 622, 627, 635, 642, 643, 706, 807, 811, 813, 821, 825, 826, 850, 853, 859], "instance_norm": [52, 75, 374], "l1_normal": [52, 75, 374], "33333334": [52, 374, 491, 494, 603, 621, 622, 623, 644, 680], "33333337": [52, 132, 374, 491, 603, 615, 621], "28571439": [52, 374, 491], "l2_normal": [52, 75, 374, 494], "l2": [52, 57, 80, 91, 92, 374, 492, 494, 623, 680, 778, 811], "44721359": [52, 75, 374, 492, 494], "89442718": [52, 75, 374, 492, 494], "lp_normal": [52, 75, 374], "lp": [52, 374, 494], "_arraywithrandomexperiment": [52, 97], "bernoulli": [52, 75, 368, 375, 391, 392, 393], "event": [52, 75, 375, 495, 828], "entri": [52, 59, 69, 75, 82, 86, 93, 132, 369, 371, 375, 435, 461, 463, 464, 495, 615, 625, 627, 694, 717, 735, 804, 812, 828, 854], "parameter": [52, 61, 75, 84, 375, 495, 496, 498, 499, 629, 724, 726, 727], "odd": [52, 75, 273, 371, 375, 472, 495, 618, 792, 802, 807], "drawn": [52, 61, 75, 84, 375, 495, 496, 497, 498, 499, 629, 724, 725, 726, 727, 762, 763, 764, 777, 828], "dirichlet": [52, 75, 375], "10598304": [52, 375, 497], "21537054": [52, 375, 497], "67864642": [52, 375, 497], "48006698": [52, 375, 497], "07472073": [52, 375, 497], "44521229": [52, 375, 497], "55479872": [52, 375, 497], "05426367": [52, 375, 497], "39093761": [52, 375, 497], "19531053": [52, 375, 497], "51675832": [52, 375, 497], "28793114": [52, 375, 497], "12315625": [52, 375, 497], "29823365": [52, 375, 497], "5786101": [52, 375, 497], "15564976": [52, 375, 497], "50542368": [52, 375, 497], "33892656": [52, 375, 497], "1325352": [52, 375, 497], "44439589": [52, 375, 497], "42306891": [52, 375, 497], "gamma": [52, 60, 75, 83, 336, 347, 365, 375, 380, 513, 628, 723], "rate": [52, 54, 75, 77, 368, 375, 409, 499, 602, 605, 607, 608, 609, 621, 626, 701, 702, 703, 782, 812], "lam": [52, 75, 375, 499], "_arraywithsearchingexperiment": [52, 97], "unravel_index": [52, 75, 376], "unravel": [52, 75, 376, 500], "_arraywithsetexperiment": [52, 97], "_arraywithsortingexperiment": [52, 97], "lexsort": [52, 75, 378], "indirectli": [52, 75, 378, 502], "statist": [52, 75, 90, 371, 472, 781, 796, 803, 813, 828, 829, 854], "_arraywithstatisticalexperiment": [52, 97], "bincount": [52, 75, 380], "minlength": [52, 75, 380, 507], "corrcoef": [52, 75, 380], "rowvar": [52, 75, 380, 508, 509], "relationship": [52, 75, 508, 777, 827], "cov": [52, 75, 380], "ddof": [52, 75, 380, 509], "fweight": [52, 75, 380, 509], "aweight": [52, 75, 380, 509], "overridden": [52, 75, 380, 509, 782, 808], "unbias": [52, 65, 75, 88, 380, 509, 633, 752], "typic": [52, 75, 328, 344, 365, 380, 509, 632, 741, 778, 807, 821, 853, 861], "assign": [52, 75, 92, 380, 509, 803, 805, 809, 813, 824, 827, 835], "covari": [52, 75, 380, 509], "cummax": [52, 75, 380], "exclus": [52, 53, 65, 69, 75, 76, 88, 121, 369, 380, 434, 510, 511, 551, 552, 555, 615, 620, 629, 633, 725, 743, 744, 811, 813, 821, 838, 858, 860], "cumul": [52, 65, 75, 88, 380, 510, 511, 633, 743, 744], "uint64": [52, 65, 157, 162, 164, 165, 175, 177, 180, 380, 510, 511, 616, 633, 743, 744, 749, 751, 762, 763, 813, 828, 833], "uint16": [52, 65, 152, 157, 162, 163, 172, 380, 510, 511, 616, 633, 743, 744, 749, 751, 762, 763, 813, 825, 828, 833], "bit": [52, 65, 159, 160, 163, 226, 227, 229, 380, 510, 511, 616, 618, 633, 743, 744, 749, 751, 798, 802, 803, 804, 811, 812, 813, 815, 821, 833, 835, 860], "uint32": [52, 65, 157, 162, 163, 164, 186, 380, 510, 511, 616, 633, 743, 744, 749, 751, 762, 763, 813, 828, 833], "cummin": [52, 75, 380], "histogram": [52, 75, 380], "extend_lower_interv": [52, 75, 380, 512], "extend_upper_interv": [52, 75, 380, 512], "densiti": [52, 75, 380, 512], "monoton": [52, 75, 380, 512], "rightmost": [52, 75, 380, 512], "c1": [52, 75, 380, 512, 811], "ff": [52, 75, 380, 512], "c_": [52, 75, 93, 380, 512], "igamma": [52, 75, 380], "incomplet": [52, 75, 380, 513, 805], "3614": [52, 75, 380, 513], "2085": [52, 75, 380, 513], "median": [52, 75, 371, 380, 472, 516], "nanmean": [52, 75, 380], "6666666666666665": [52, 75, 380, 515], "nanmedian": [52, 75, 380], "overwrite_input": [52, 75, 380, 516], "treat": [52, 69, 75, 98, 273, 349, 365, 371, 374, 380, 481, 493, 516, 518, 618, 759, 823, 828, 834, 838], "undefin": [52, 75, 371, 380, 381, 472, 516, 520, 813, 817, 823], "nanmin": [52, 75, 380], "nanprod": [52, 75, 380], "Not": [52, 75, 349, 365, 369, 380, 422, 518, 613, 809, 817, 826, 836, 837, 839], "quantil": [52, 75, 380], "inclus": [52, 75, 121, 380, 519, 615, 629, 725, 799, 809, 824, 831], "midpoint": [52, 75, 380, 519], "surround": [52, 75, 380, 519, 831], "whichev": [52, 75, 380, 519], "_arraywithutilityexperiment": [52, 97], "optional_get_el": [52, 75, 381], "empti": [52, 53, 65, 69, 76, 88, 121, 371, 381, 472, 520, 527, 564, 615, 620, 623, 627, 633, 634, 677, 680, 718, 748, 749, 751, 753, 754, 803, 804, 808, 810, 813, 814, 824], "_arraywithgener": [53, 97], "all_equ": [53, 76, 620], "equality_matrix": [53, 76, 521, 620], "array_equ": [53, 76, 620], "assert_supports_inplac": [53, 76, 620], "ivybackendexcept": [53, 76, 525, 549, 620, 793, 808, 814, 817, 818], "clip_matrix_norm": [53, 76, 620], "894": [53, 76, 527, 528, 620, 628, 723], "clip_vector_norm": [53, 76, 620], "default_v": [53, 531, 620], "catch_except": [53, 531, 620], "rev": [53, 531, 620], "with_cal": [53, 531, 620], "catch": [53, 531, 620, 822, 828], "einops_rearrang": [53, 76, 620], "axes_length": [53, 76, 532, 533, 534, 620], "arrang": [53, 532, 620], "rearrang": [53, 76, 532, 534, 620, 827], "einops_reduc": [53, 76, 620, 813], "einops_repeat": [53, 76, 620], "fourier_encod": [53, 76, 620], "max_freq": [53, 76, 536, 620], "oppos": [53, 76, 536, 620, 813], "geometr": [53, 76, 536, 620, 623, 678], "0000000e": [53, 76, 536, 620], "2246468e": [53, 76, 536, 620], "4492936e": [53, 536, 620], "6739404e": [53, 76, 536, 620], "batch_dim": [53, 76, 539, 540, 620, 784], "gather_nd": [53, 76, 620], "get_num_dim": [53, 76, 620], "as_arrai": [53, 76, 543, 577, 620, 784], "has_nan": [53, 76, 620], "include_inf": [53, 76, 545, 599, 620], "inplace_decr": [53, 76, 620], "val": [53, 69, 74, 76, 248, 371, 461, 547, 548, 549, 568, 569, 570, 618, 620, 813, 824, 835], "decrement": [53, 76, 547, 620], "inplace_incr": [53, 76, 620], "increment": [53, 76, 548, 620, 805, 854], "inplace_upd": [53, 76, 567, 620, 775, 824], "ensure_in_backend": [53, 76, 549, 620, 824], "keep_input_dtyp": [53, 76, 549, 620, 824], "is_arrai": [53, 76, 620, 824, 825], "is_ivy_arrai": [53, 76, 620, 824, 835], "is_ivy_contain": [53, 620], "is_native_arrai": [53, 76, 171, 552, 616, 620, 835], "isin": [53, 76, 620], "test_el": [53, 76, 556, 620], "assume_uniqu": [53, 76, 556, 620], "invert": [53, 76, 226, 556, 618, 620, 623, 665], "scatter_flat": [53, 76, 620], "occupi": [53, 160, 163, 563, 564, 616, 620], "scatter_nd": [53, 76, 620, 831, 835], "stable_divid": [53, 76, 620, 821], "denomin": [53, 60, 76, 83, 570, 578, 592, 620, 628, 723, 781, 821, 830, 839, 851], "min_denomin": [53, 76, 570, 578, 592, 620, 830], "_min_denomin": [53, 578, 620], "stable_pow": [53, 76, 620], "min_bas": [53, 76, 569, 579, 591, 620, 781, 830], "stabl": [53, 64, 76, 87, 142, 322, 329, 330, 362, 365, 378, 502, 569, 570, 578, 579, 591, 592, 615, 620, 632, 739, 742, 764, 804, 809, 813, 825, 830, 833, 839], "00004": [53, 76, 579, 620], "00008": [53, 76, 579, 620], "00004000e": [53, 579], "56002560e": [53, 579], "60001200e": [53, 579], "09602048e": [53, 579], "supports_inplace_upd": [53, 76, 620], "to_fil": 53, "fid": 53, "sep": 53, "format_": 53, "recov": [53, 817, 825], "to_scalar": [53, 76, 620], "value_is_nan": [53, 76, 620], "_arraywithgradi": [54, 97], "adam_step": [54, 77, 621], "mw": [54, 77, 601, 602, 621, 837], "vw": [54, 77, 601, 602, 621, 837], "beta1": [54, 77, 523, 601, 602, 607, 620, 621, 782, 837], "beta2": [54, 77, 523, 601, 602, 607, 620, 621, 782, 837], "epsilon": [54, 57, 58, 77, 80, 81, 523, 601, 602, 607, 620, 621, 623, 624, 666, 669, 682, 683, 684, 774, 779, 781, 782, 811, 821, 824, 837], "dc": [54, 77, 601, 602, 605, 607, 608, 609, 621], "dw": [54, 77, 601, 602, 605, 607, 608, 609, 621], "forget": [54, 77, 601, 602, 607, 621, 782, 798, 813], "dcdw": [54, 77, 601, 602, 605, 607, 608, 621], "adam_step_delta": [54, 77, 601, 621], "2020105": [54, 601, 621], "22187898": [54, 601, 621], "24144873": [54, 601, 621], "10000002": [54, 88, 291, 360, 601, 747], "00300002": [54, 601], "00800002": [54, 601], "adam_upd": [54, 77, 621, 837], "mw_tm1": [54, 77, 602, 607, 621], "vw_tm1": [54, 77, 602, 607, 621], "stop_gradi": [54, 77, 208, 523, 602, 605, 607, 608, 609, 617, 620, 621, 626, 701, 702, 703, 782, 837], "ws_new": [54, 77, 602, 607, 608, 609, 621], "updated_weight": [54, 77, 602, 621], "92558753": [54, 602], "92558873": [54, 602, 621], "92558718": [54, 602, 621], "00000063e": [54, 77, 602, 621], "00000016e": [54, 77, 602, 621], "00000086e": [54, 77, 602, 621], "gradient_descent_upd": [54, 77, 621, 626, 701, 702, 703], "descent": [54, 77, 605, 621, 782, 837, 854], "new_weight": [54, 77, 605, 607, 608, 621, 836], "lamb_upd": [54, 77, 621], "max_trust_ratio": [54, 77, 607, 621, 782], "decay_lambda": [54, 77, 607, 608, 621, 782], "trust": [54, 77, 607, 621, 782], "ratio": [54, 77, 607, 621, 782], "decai": [54, 77, 607, 608, 621, 782], "lamb": [54, 77, 607, 621, 782, 837], "784": [54, 607, 621], "lars_upd": [54, 77, 621], "lar": [54, 77, 608, 621, 782, 837], "34077978": [54, 608, 621], "78025991": [54, 608, 621], "56051969": [54, 608, 621], "78026009": [54, 608, 621], "56051981": [54, 608, 621], "12103939": [54, 608, 621], "optimizer_upd": [54, 77, 621], "effective_grad": [54, 77, 609, 621], "3e": [54, 77, 609, 621], "preserve_typ": [54, 77, 610, 621], "_arraywithimag": [55, 97], "_arraywithlay": [56, 97], "conv1d": [56, 79, 622, 778], "filter_format": [56, 79, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643], "channel_last": [56, 79, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 762], "x_dilat": [56, 79, 622, 635, 636, 638, 639, 640, 642], "d_out": [56, 79, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643], "channel_first": [56, 79, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643], "wio": [56, 622, 635, 636, 637, 642], "conv1d_transpos": [56, 79, 622], "output_shap": [56, 79, 622, 635, 637, 639, 641, 643, 778], "iow": [56, 79, 622, 637], "woi": [56, 79, 622, 637], "fh": [56, 79, 622, 627, 635, 638, 639, 640, 641, 642, 643, 644, 716], "hwio": [56, 622, 635, 636, 638, 642], "conv2d_transpos": [56, 79, 622], "iohw": [56, 79, 622, 639], "hwoi": [56, 79, 622, 639], "conv3d": [56, 79, 622, 641, 778], "fd": [56, 79, 622, 635, 640, 641, 642, 643], "conv3d_transpos": [56, 79, 622, 643], "iodhw": [56, 79, 622, 641, 643], "dhwoi": [56, 79, 622, 641, 643], "depthwise_conv2d": [56, 79, 622], "randint": [56, 61, 63, 79, 84, 629, 631, 644, 647, 735, 813, 847], "noise_shap": [56, 79, 622, 645], "42857146": [56, 622, 645], "85714293": [56, 622, 645], "28571415": [56, 79, 622, 645], "71428585": [56, 79, 622, 645], "14285755": [56, 79, 622, 645], "5714283": [56, 622, 645], "4285717": [56, 79, 622, 645], "8571434": [56, 79, 622, 645], "2857151": [56, 622, 645], "dropout1d": [56, 79, 368], "droput1d": [56, 391, 392], "dropout2d": [56, 79, 368], "dropout3d": [56, 79, 368], "droput3d": [56, 393], "outer_batch_shap": [56, 79, 622, 646], "inner_batch_shap": [56, 79, 622, 646], "lstm_updat": [56, 79, 622, 833], "init_h": [56, 79, 622, 647, 833], "init_c": [56, 79, 622, 647, 833], "recurrent_kernel": [56, 79, 622, 647, 833], "recurrent_bia": [56, 79, 622, 647, 833], "hidden": [56, 79, 622, 647, 778, 810, 817, 833, 837], "recurr": [56, 79, 622, 647, 833, 854, 858], "timestep": [56, 79, 622, 647, 648, 778, 833], "h_i": [56, 79, 647], "c_i": [56, 79, 647], "rc": [56, 79, 647], "multi_head_attent": [56, 79, 622, 824], "num_head": [56, 79, 622, 648, 778], "in_proj_weight": [56, 79, 622, 648], "q_proj_weight": [56, 79, 622, 648], "k_proj_weight": [56, 79, 622, 648], "v_proj_weight": [56, 79, 622, 648], "out_proj_weight": [56, 79, 622, 648], "in_proj_bia": [56, 79, 622, 648], "out_proj_bia": [56, 79, 622, 648], "is_caus": [56, 79, 622, 648, 651], "key_padding_mask": [56, 79, 622, 648], "bias_k": [56, 79, 622, 648], "bias_v": [56, 79, 622, 648], "static_k": [56, 79, 622, 648], "static_v": [56, 79, 622, 648], "add_zero_attn": [56, 79, 622, 648], "return_attention_weight": [56, 79, 622, 648], "average_attention_weight": [56, 79, 622, 648], "scaled_dot_product_attent": [56, 79, 622], "dropout_p": [56, 79, 622, 651], "num_queri": [56, 79, 622, 651], "feat_dim": [56, 79, 622, 651], "num_kei": [56, 79, 622, 651], "causal": [56, 79, 622, 648, 651], "attent": [56, 79, 622, 648, 651, 778, 805, 808, 844], "29999995": [56, 291, 292, 301, 360, 622, 631, 651, 736], "19994521": [56, 622, 651], "09994531": [56, 622, 651], "30000019": [56, 371, 456, 622, 651], "_arraywithlinearalgebra": [57, 97], "choleski": [57, 80, 623, 824], "625": [57, 75, 341, 623, 652], "vif": [57, 80, 653], "det": [57, 80, 623, 671, 812], "axis1": [57, 59, 80, 82, 623, 625, 656, 677, 697], "axis2": [57, 80, 623, 656, 677], "eigh": [57, 80, 369, 420, 623, 657], "uplo": [57, 80, 623, 658, 659], "eigvalsh": [57, 80, 623], "array_lik": [57, 80, 368, 370, 371, 412, 441, 442, 446, 447, 477, 623, 660, 668, 792], "105": [57, 79, 622, 623, 624, 645, 646, 660, 668, 682], "149": [57, 623, 660], "143": [57, 74, 98, 285, 618, 623, 660, 815], "203": [57, 74, 224, 623, 628, 660, 723], "233": [57, 623, 660], "inv": [57, 80, 623], "transpose_a": [57, 80, 623, 663], "transpose_b": [57, 80, 623, 663], "adjoint_a": [57, 80, 623, 663], "adjoint_b": [57, 80, 623, 663], "matrix_norm": [57, 80, 623], "ord": [57, 80, 623, 664, 680], "fro": [57, 80, 370, 441, 623, 664], "nuc": [57, 80, 623, 664], "matrix_pow": [57, 80, 623], "matrix_rank": [57, 80, 623], "hermitian": [57, 80, 369, 420, 421, 623, 657, 658, 659, 666, 673], "largest_singular_valu": [57, 80, 623, 666, 669], "defici": [57, 623, 666], "matrix_transpos": [57, 80, 623, 835], "pinv": [57, 80, 623], "pseudo": [57, 80, 623, 669, 823], "99999988": [57, 80, 623, 669], "qr": [57, 80, 623, 826], "complet": [57, 69, 80, 623, 670, 763, 803, 804, 805, 807, 808, 811, 812, 815, 817, 821, 825, 826, 828, 831, 835, 836, 844, 852], "12309149": [57, 623, 670], "90453403": [57, 623, 670], "40824829": [57, 623, 670], "49236596": [57, 623, 670], "30151134": [57, 623, 670], "81649658": [57, 623, 670], "86164044": [57, 623, 670], "12403841e": [57, 623, 670], "60113630e": [57, 623, 670], "10782342e": [57, 623, 670], "04534034e": [57, 623, 670], "80906807e": [57, 623, 670], "88178420e": [57, 80, 623, 659, 670], "slogdet": [57, 80, 623], "logabsdet": [57, 80, 623, 671], "natur": [57, 80, 238, 256, 257, 258, 259, 278, 347, 365, 618, 623, 671, 808, 815, 817, 826, 844], "098611": [57, 623, 671], "solv": [57, 80, 369, 429, 623, 762, 798, 804, 807, 818, 825, 834, 856], "full_matric": [57, 80, 623, 673], "svf": [57, 673], "reconstructed_x": [57, 623, 673], "svdval": [57, 80, 623], "tensorsolv": [57, 80, 623], "vander": [57, 80, 623], "vandermond": [57, 80, 623, 678], "vecdot": [57, 80, 623], "vector_norm": [57, 80, 623], "mathemat": [57, 80, 218, 223, 235, 240, 242, 258, 268, 613, 618, 623, 664, 680, 813, 825, 831, 854, 860], "manhattan": [57, 80, 623, 680], "euclidean": [57, 80, 92, 93, 623, 680], "7416575": [57, 80, 623, 680], "vector_to_skew_symmetric_matrix": [57, 80, 623], "_arraywithloss": [58, 97], "binary_cross_entropi": [58, 81, 624, 812], "from_logit": [58, 81, 624, 682, 779], "pos_weight": [58, 81, 624, 682], "crossentropi": [58, 81, 624, 682], "357": [58, 81, 624, 682, 684], "223": [58, 81, 624, 682, 684], "3862944": [58, 624, 683], "sparse_cross_entropi": [58, 81, 624], "_arraywithmanipul": [59, 97], "x_min": [59, 82, 625, 685, 838], "x_max": [59, 82, 625, 685, 838], "before_1": [59, 82, 371, 472, 625, 687, 700], "after_1": [59, 82, 371, 472, 625, 687, 700], "before_n": [59, 82, 371, 472, 625, 687, 700], "after_n": [59, 82, 371, 472, 625, 687, 700], "repetit": [59, 82, 625, 691, 698, 831], "flat": [59, 69, 82, 376, 500, 563, 620, 625, 691], "allowzero": [59, 82, 625, 692], "remain": [59, 62, 75, 82, 85, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 391, 392, 393, 412, 618, 625, 627, 630, 692, 710, 733, 792, 804, 805, 812, 815, 817, 821, 829, 831, 839], "roll": [59, 82, 625, 820], "shift": [59, 71, 82, 98, 131, 142, 227, 229, 322, 362, 615, 618, 625, 693, 804, 805, 814, 815, 820, 827], "restor": [59, 82, 625, 693, 819], "num_or_size_split": [59, 69, 82, 625, 694, 833], "with_remaind": [59, 69, 82, 625, 694], "squeezabl": [59, 625, 695], "swapax": [59, 82, 625], "axis0": [59, 82, 625, 697], "swap_ax": [59, 697], "swap": [59, 82, 625, 697, 787, 848], "tile": [59, 76, 82, 534, 625], "unpack": [59, 82, 625, 699, 826, 828], "zero_pad": [59, 82, 625], "_arraywithnorm": [60, 97], "layer_norm": [60, 83, 628], "normalized_idx": [60, 83, 628, 723], "new_std": [60, 83, 628, 723, 781], "learnabl": [60, 83, 626, 628, 703, 723, 778, 781, 838], "deviat": [60, 61, 65, 83, 84, 88, 628, 629, 633, 723, 726, 750, 764, 777, 781, 807, 845], "0976": [60, 628, 723], "3452": [60, 628, 723], "2740": [60, 628, 723], "1047": [60, 628, 723], "5886": [60, 628, 723], "2732": [60, 628, 723], "7696": [60, 628, 723, 762], "7024": [60, 628, 723], "2518": [60, 628, 723], "826": [60, 628, 723], "178": [60, 628, 723], "981": [60, 628, 723], "831": [60, 628, 723], "421": [60, 628, 723], "_arraywithrandom": [61, 97], "multinomi": [61, 84, 375, 497, 629], "population_s": [61, 84, 629, 724], "num_sampl": [61, 84, 629, 724], "unnorm": [61, 84, 629, 724, 828], "popul": [61, 65, 69, 84, 88, 629, 633, 724, 750, 752, 813, 814, 824, 828, 833, 860], "draw": [61, 84, 375, 495, 497, 499, 629, 724, 726, 727, 762, 763, 764, 765, 770, 777, 803, 807, 826, 828], "half": [61, 84, 121, 282, 615, 618, 629, 725, 727, 801, 818, 831], "235": [61, 726], "float16": [61, 72, 84, 129, 152, 154, 155, 160, 162, 339, 365, 615, 616, 623, 680, 726, 727, 762, 763, 801, 813, 818, 825, 828], "807": [61, 726], "_arraywithsearch": [62, 97], "select_last_index": [62, 85, 630, 730, 731], "occurr": [62, 371, 380, 485, 507, 630, 631, 730, 731, 735], "argmin": [62, 85, 630], "output_dtyp": [62, 85, 630, 731], "argwher": [62, 85, 630], "nonzero": [62, 85, 93, 216, 217, 218, 221, 224, 233, 235, 238, 240, 242, 268, 281, 286, 618, 630], "as_tupl": [62, 85, 630, 733], "fewer": [62, 85, 630, 733], "_arraywithset": [63, 97], "unique_al": [63, 86, 631], "by_valu": [63, 86, 631, 735], "inverse_indic": [63, 86, 371, 485, 631, 735, 737], "unique_count": [63, 86, 631], "unique_invers": [63, 86, 631], "unique_valu": [63, 86, 631], "admonit": [63, 738], "dask": [63, 631, 735, 736, 737, 738, 844], "difficult": [63, 631, 735, 736, 737, 738, 805, 807, 813, 828, 839], "omit": [63, 278, 618, 631, 735, 736, 737, 738, 820, 824, 825], "x_i": [63, 65, 74, 93, 215, 216, 217, 220, 221, 222, 224, 226, 231, 232, 233, 238, 240, 241, 248, 249, 250, 251, 252, 256, 257, 258, 259, 263, 270, 275, 278, 279, 280, 281, 282, 283, 285, 286, 288, 329, 330, 332, 352, 365, 618, 631, 633, 735, 736, 737, 738, 746, 747, 748, 750, 751, 752, 777, 816], "x_j": [63, 631, 735, 736, 737, 738], "impli": [63, 631, 735, 736, 737, 738, 828], "typeerror": [63, 86, 631, 738, 835], "_arraywithsort": [64, 97], "stabil": [64, 87, 578, 579, 620, 632, 739, 742, 813, 823, 829, 831], "maintain": [64, 87, 632, 739, 742, 804, 805, 807, 819, 824, 826, 827, 828, 843, 853], "msort": [64, 87, 632], "searchsort": [64, 87, 632, 763], "side": [64, 87, 343, 365, 369, 435, 632, 741, 762, 778, 791, 792, 804, 805, 810], "sorter": [64, 87, 632, 741], "ret_dtyp": [64, 87, 632, 741], "_arraywithstatist": [65, 97], "cumprod": [65, 88, 633, 825, 838], "cumsum": [65, 88, 633, 813], "einsum": [65, 88, 633], "equat": [65, 75, 88, 308, 362, 369, 435, 623, 633, 672, 745, 762, 791, 812, 854], "operand": [65, 75, 79, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 356, 365, 366, 368, 410, 618, 623, 633, 671, 677, 745, 746, 748, 749, 751, 791, 792, 808, 811, 816, 825], "contract": [65, 623, 633, 675, 745, 792], "seq": [65, 633, 745, 762], "ii": [65, 88, 633, 745, 805], "jk": [65, 633, 745, 792], "ik": [65, 633, 745, 792], "126": [65, 105, 274, 612, 618, 623, 633, 665, 745], "510": [65, 633, 745], "special": [65, 80, 92, 93, 97, 98, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 618, 623, 633, 671, 677, 746, 747, 748, 749, 750, 751, 752, 762, 763, 764, 765, 770, 777, 803, 807, 808, 810, 812, 815, 816, 817, 820, 824, 826, 827, 828, 829, 831, 854, 855, 856], "arithmet": [65, 88, 229, 235, 268, 618, 633, 747, 825], "propag": [65, 229, 329, 330, 365, 618, 633, 746, 747, 748, 750, 751, 752, 823], "04999995": [65, 747], "freedom": [65, 88, 633, 750, 752, 809], "constitut": [65, 88, 633, 750, 752, 821, 833, 855], "commonli": [65, 88, 633, 750, 752, 817, 821, 823], "81649661": [65, 633, 750], "6666665": [65, 752, 836], "667": [65, 76, 235, 528, 578, 618, 620, 752], "_arraywithutil": [66, 97], "logic": [66, 89, 199, 235, 236, 262, 263, 264, 268, 271, 617, 618, 634, 753, 754, 803, 808, 812, 813, 814, 817, 821, 822, 823, 824, 825, 827, 828, 831, 835, 848], "AND": [66, 89, 225, 236, 262, 618, 634, 753], "OR": [66, 89, 228, 264, 271, 618, 634, 754, 804, 805, 823], "_wrap_funct": [67, 90, 810, 821, 822], "function_nam": [67, 90, 803, 829], "new_funct": [67, 90, 810], "add_ivy_array_instance_method": 67, "cl": [67, 90], "moduletyp": [67, 90, 847, 848, 849], "toi": [67, 90], "arrayexampl": 67, "hasattr": [67, 90], "_containerwithactiv": [68, 98], "dict_in": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 573, 595, 620, 830, 836], "queue_load_s": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "container_combine_method": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "list_join": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue_timeout": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 573, 595, 620, 830], "print_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "key_length_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_ind": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_line_spac": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "ivyh": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "default_key_color": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "keyword_color_dict": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "rebuild_child_contain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "types_to_iteratively_nest": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "alphabetical_kei": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "dynamic_backend": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 779, 780, 809, 830], "build_cal": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "containerbas": [68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 811], "_static_gelu": 68, "key_chain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 459, 468, 470, 472, 473, 474, 476, 477, 478, 479, 480, 481, 482, 485, 487, 488, 489, 490, 491, 492, 494, 496, 501, 502, 509, 510, 511, 512, 519, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754], "to_appli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 459, 468, 470, 472, 473, 474, 476, 477, 478, 479, 480, 481, 482, 485, 487, 488, 489, 490, 491, 492, 494, 496, 501, 502, 509, 510, 511, 512, 519, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 627, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754], "prune_unappli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 459, 468, 470, 472, 473, 474, 476, 477, 478, 479, 480, 481, 482, 485, 487, 488, 489, 490, 491, 492, 494, 496, 501, 502, 509, 510, 511, 512, 519, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 627, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754], "map_sequ": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 459, 468, 470, 472, 473, 474, 476, 477, 478, 479, 480, 481, 482, 485, 487, 488, 489, 490, 491, 492, 494, 496, 501, 502, 509, 510, 511, 512, 519, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754], "prune": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 478, 480, 481, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 627, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 717, 718, 719, 720, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 760, 763, 812], "static_gelu": 68, "046": 68, "_static_hardswish": 68, "_static_leaky_relu": 68, "static_leaky_relu": 68, "38999999": [68, 75, 107, 290, 291, 360], "_static_log_softmax": 68, "static_log_softmax": 68, "371": [68, 108], "_static_mish": 68, "static_mish": 68, "30883577": [68, 109, 612], "28903052": [68, 109, 612], "10714479": [68, 109, 612], "_static_relu": 68, "static_relu": 68, "_static_sigmoid": 68, "static_sigmoid": 68, "2689414": [68, 111, 112, 612], "7310586": [68, 111, 112, 612], "88079703": [68, 111, 612], "62245935": [68, 111], "4750208": [68, 111], "_static_softmax": 68, "static_softmax": 68, "72844321": [68, 112], "19852395": [68, 112], "07303288": [68, 112], "_static_softplu": 68, "revert": [68, 113, 612], "static_softplu": 68, "53499615": 68, "42036411": 68, "948": [68, 113, 627, 704], "166": [68, 105, 612], "dictionari": [69, 86, 98, 207, 587, 603, 617, 620, 621, 738, 757, 759, 792, 808, 812, 813, 821, 825, 826, 836, 839], "asynchron": [69, 98, 854], "wait": [69, 98, 573, 620, 798, 803, 805, 812, 825], "arriv": [69, 98, 573, 620, 831], "cont_list_join": [69, 98], "limit": [69, 98, 160, 163, 527, 528, 544, 616, 620, 625, 685, 762, 764, 765, 777, 784, 792, 798, 804, 805, 810, 812, 815, 817, 825, 828, 831, 836, 839, 853, 854, 855], "whitespac": [69, 98], "indent": [69, 98, 836], "newlin": [69, 98, 816], "termin": [69, 98, 804, 805, 811, 818, 819, 833, 836], "constructor": [69, 98, 523, 620, 759, 775, 783, 813, 814, 816, 835], "kept": [69, 98, 626, 701, 702, 805, 824, 829], "encount": [69, 98, 778, 801, 803, 813, 817, 818, 828], "node": [69, 76, 98, 525, 535, 581, 627, 714, 715, 777, 786, 810, 811, 825, 844, 847, 848, 855], "alphabet": [69, 98], "__setitem__": [69, 371, 480, 808, 811, 835], "_cont_at_key_chains_input_as_dict": 69, "current_chain": 69, "ignore_key_error": 69, "_cont_at_key_chains_input_as_seq": 69, "_cont_call_static_method_with_flexible_arg": 69, "static_method": 69, "kw": 69, "self_idx": 69, "_cont_concat_unifi": 69, "_cont_get_dev": 69, "_cont_get_dtyp": 69, "_cont_get_shap": 69, "_cont_ivi": 69, "_cont_mean_unifi": 69, "_1": 69, "_cont_prune_key_chains_input_as_dict": 69, "return_cont": 69, "_cont_prune_key_chains_input_as_seq": 69, "_cont_slice_kei": 69, "key_slic": 69, "_cont_sum_unifi": 69, "_get_queue_item": 69, "cont_all_fals": 69, "assert_is_bool": 69, "cont_all_key_chain": 69, "include_empti": 69, "cont_all_tru": [69, 811, 836], "cont_as_bool": 69, "cont_assert_contains_sub_contain": 69, "sub_cont": 69, "screen": [69, 803, 804, 836], "cont_assert_contains_sub_structur": 69, "check_shap": [69, 784], "cont_assert_ident": 69, "check_typ": 69, "same_arrai": [69, 836], "arrays_equ": 69, "cont_assert_identical_structur": 69, "assert_and_assign": 69, "congruent": 69, "cont_at_key_chain": 69, "ignore_non": 69, "cont_at_kei": 69, "substr": 69, "cont_combin": 69, "duplic": [69, 371, 477, 544, 620, 627, 706, 809, 816, 822, 823, 826, 837, 860], "configur": [69, 207, 617, 627, 717, 804, 805, 810, 812, 813, 818, 819], "container_rightmost": 69, "cont_common_key_chain": 69, "cont_config": 69, "cont_contains_sub_contain": 69, "cont_contains_sub_structur": 69, "cont_copi": [69, 836], "cont_create_if_abs": 69, "noth": [69, 831, 860], "cont_cutoff_at_depth": 69, "depth_cutoff": 69, "summari": [69, 164, 529, 616, 620, 804, 805, 828], "cont_cutoff_at_height": 69, "height_cutoff": 69, "cont_deep_copi": [69, 836, 847], "cont_dev": 69, "belong": [69, 803, 807, 837], "cont_dev_str": 69, "cont_diff": [69, 836], "diff_kei": 69, "detect_key_diff": 69, "detect_value_diff": 69, "detect_shape_diff": 69, "among": [69, 811, 812, 828, 831, 845, 854], "container0": 69, "cont_dtyp": 69, "cont_duplicate_array_keychain": 69, "cont_find_sub_contain": 69, "sub_cont_to_find": 69, "cont_find_sub_structur": 69, "sub_struc_to_find": 69, "cont_flatten_key_chain": [69, 836], "above_height": [69, 836], "below_depth": [69, 836], "cont_format_key_chain": 69, "format_fn": 69, "cont_from_disk_as_hdf5": [69, 836], "h5_obj_or_filepath": 69, "slice_obj": 69, "disk": [69, 780, 836, 853], "h5py": 69, "filepath": [69, 634, 755, 756, 805, 807], "cont_from_disk_as_json": [69, 836], "json_filepath": 69, "cont_from_disk_as_pickl": [69, 836], "pickle_filepath": 69, "cont_from_flat_list": 69, "flat_list": 69, "hierarchi": [69, 803, 827, 836, 850, 860], "cont_handle_inplac": 69, "prime": [69, 813], "overwritten": [69, 808, 809], "cont_has_kei": 69, "query_kei": 69, "somewher": [69, 812], "cont_has_key_chain": 69, "cont_ident": [69, 836], "cont_identical_array_shap": 69, "cont_identical_config": 69, "cont_identical_structur": 69, "cont_if_exist": 69, "cont_inplace_upd": 69, "cont_ivi": 69, "cont_key_chains_contain": 69, "sub_str": 69, "cont_list_stack": [69, 836], "cont_load": 69, "cont_map": [69, 811, 836], "func": [69, 92, 208, 357, 358, 359, 367, 526, 600, 603, 604, 606, 611, 617, 620, 621, 627, 717, 759, 803, 807, 808, 815, 817, 823], "cont_map_sub_cont": 69, "include_self": 69, "possibli": [69, 583, 620, 762, 828, 839], "cont_max_depth": 69, "cont_multi_map": 69, "map_nest": 69, "assert_ident": 69, "leftmost": [69, 627, 717], "cont_multi_map_in_funct": 69, "cont_num_arrai": 69, "cont_overwrite_at_key_chain": 69, "target_dict": 69, "return_dict": 69, "cont_prune_empti": 69, "keep_non": 69, "cont_prune_key_chain": 69, "key1": [69, 798, 837], "key2": [69, 798], "key3": 69, "cont_prune_key_from_key_chain": 69, "certain": [69, 121, 132, 133, 370, 442, 615, 804, 805, 807, 813, 821, 827, 828, 831, 839, 847, 848, 849, 858], "cont_prune_kei": 69, "cont_prune_keys_from_key_chain": 69, "cont_reduc": 69, "cont_remove_key_length_limit": 69, "cont_remove_print_limit": 69, "cont_reshape_lik": 69, "leading_shap": 69, "cont_restructur": 69, "keep_orig": 69, "old": [69, 804, 809, 824], "cont_restructure_key_chain": 69, "keychain_map": 69, "cont_sav": 69, "cont_set_at_key_chain": 69, "cont_set_at_kei": 69, "cont_shap": [69, 622, 640], "cont_show": 69, "cont_show_sub_contain": 69, "sub_cont_or_keychain": 69, "cont_size_ordered_arrai": 69, "keychain": [69, 75, 331, 450, 451, 452, 481], "cont_slice_kei": 69, "all_depth": 69, "cont_slice_via_kei": 69, "slice_kei": 69, "cont_sort_by_kei": 69, "cont_structural_diff": 69, "cont_to_dict": 69, "cont_to_disk_as_hdf5": [69, 836], "starting_index": 69, "max_batch_s": 69, "cont_to_disk_as_json": [69, 836], "cont_to_disk_as_pickl": [69, 836], "cont_to_flat_list": 69, "cont_to_iter": [69, 811], "leaf_keys_onli": 69, "cont_to_iterator_kei": 69, "cont_to_iterator_valu": 69, "cont_to_json": 69, "cont_to_nested_list": 69, "cont_to_raw": 69, "cont_trim_kei": 69, "cont_try_kc": 69, "cont_unifi": 69, "concatten": [69, 208, 617], "cont_unstack_cont": 69, "dim_siz": 69, "cont_update_config": 69, "cont_with_default_key_color": 69, "cont_with_entries_as_list": 69, "cont_with_ivy_backend": 69, "ivy_backend": [69, 826], "cont_with_key_length_limit": [69, 836], "cont_with_print_ind": [69, 836], "cont_with_print_limit": [69, 836], "cont_with_print_line_spac": 69, "h5_file_s": 69, "shuffle_h5_fil": 69, "split_cont": 69, "_is_json": 69, "_repr": 69, "_containerwithconvers": [70, 98], "_static_to_ivi": 70, "_static_to_n": 70, "_containerwithcr": [71, 98], "_static_arang": 71, "_static_asarrai": 71, "_static_copy_arrai": 71, "_static_empti": 71, "_static_empty_lik": 71, "_static_ey": 71, "n_row": [71, 75, 127, 142, 322, 362, 369, 428, 615], "n_col": [71, 75, 127, 142, 322, 362, 615], "_static_from_dlpack": 71, "_static_ful": 71, "_static_full_lik": 71, "static_full_lik": 71, "2324": [71, 131, 615], "234": [71, 74, 131, 154, 237, 288, 615, 616, 618, 622, 646, 762], "123": [71, 72, 131, 163, 535, 615, 620, 792, 828], "_static_linspac": 71, "_static_logspac": 71, "static_logspac": 71, "15443469": [71, 133], "64158883": [71, 133], "_static_meshgrid": 71, "_static_native_arrai": 71, "_static_one_hot": 71, "static_one_hot": 71, "_static_on": 71, "_static_ones_lik": 71, "_static_tril": 71, "_static_triu": 71, "_static_zero": 71, "_static_zeros_lik": 71, "frombuff": [71, 615], "expos": [71, 129, 529, 615, 620, 798, 812, 833, 837, 843], "x00": [71, 129, 615], "xf0": [71, 129, 615], "x01": [71, 129, 615], "x02": [71, 129, 615], "x03": [71, 129, 615], "x04": [71, 129, 615], "x05": [71, 129], "5443469": [71, 133, 615], "static_frombuff": 71, "static_triu_indic": 71, "triu_indic": [71, 615], "_containerwithdatatyp": [72, 98], "_static_astyp": 72, "718": [72, 74, 147, 264, 616], "618": [72, 74, 147, 264, 616], "static_astyp": 72, "_static_broadcast_arrai": 72, "static_broadcast_arrai": 72, "_static_broadcast_to": 72, "static_broadcast_to": 72, "_static_can_cast": 72, "from_": [72, 150, 616], "static_can_cast": 72, "_static_default_complex_dtyp": 72, "complex_dtyp": [72, 153, 176, 616], "_static_default_float_dtyp": 72, "float_dtyp": [72, 155, 178, 616], "_static_dtyp": 72, "_static_finfo": 72, "inquir": [72, 160, 163], "static_finfo": 72, "55040e": [72, 160, 616], "7976931348623157e": [72, 160, 616], "308": [72, 160, 616, 762, 828], "_static_function_supported_dtyp": 72, "_static_function_unsupported_dtyp": 72, "_static_iinfo": 72, "1800": [72, 163, 616], "1084": 72, "40000": 72, "static_iinfo": 72, "2147483648": [72, 75, 163, 371, 480, 616], "2147483647": [72, 163, 616], "_static_is_bool_dtyp": 72, "dtype_in": [72, 145, 146, 159, 165, 166, 167, 168, 169, 170, 171, 172, 187, 616], "_static_is_complex_dtyp": 72, "is_complex_dtyp": [72, 616, 829], "roughli": [72, 804, 807, 857], "static_is_complex_dtyp": 72, "_static_is_float_dtyp": 72, "static_is_float_dtyp": 72, "_static_is_int_dtyp": 72, "_static_is_uint_dtyp": 72, "_static_result_typ": 72, "static_result_typ": 72, "broadcats": [72, 148], "_containerwithdevic": [73, 98], "_static_dev": 73, "static_dev": 73, "_static_to_devic": 73, "static_to_devic": 73, "contaion": [73, 192], "_containerwithelementwis": [74, 98], "_static_ab": 74, "static_ab": 74, "_static_aco": 74, "static_aco": 74, "_static_acosh": 74, "static_acosh": 74, "_static_add": 74, "static_add": [74, 102], "_static_asin": 74, "static_asin": 74, "524": [74, 220, 618], "412": [74, 79, 220, 618, 627, 704], "_static_asinh": 74, "static_asinh": 74, "_static_atan": 74, "static_atan": 74, "_static_atan2": 74, "static_atan2": 74, "915": [74, 223, 618], "983": [74, 223, 618], "978": [74, 223, 618], "696": [74, 84, 223, 618, 726], "993": [74, 223, 618], "_static_atanh": 74, "static_atanh": 74, "_static_bitwise_and": 74, "static_bitwise_and": 74, "_static_bitwise_invert": 74, "static_bitwise_invert": 74, "_static_bitwise_left_shift": 74, "_static_bitwise_or": 74, "static_bitwise_or": 74, "_static_bitwise_right_shift": 74, "static_bitwise_right_shift": 74, "_static_bitwise_xor": 74, "static_bitwise_xor": 74, "_static_ceil": 74, "static_ceil": 74, "_static_co": 74, "static_co": 74, "_static_cosh": 74, "static_cosh": 74, "_static_deg2rad": 74, "static_deg2rad": 74, "0262": [74, 234, 274, 618], "873": [74, 234, 274, 618], "_static_divid": 74, "static_divid": 74, "_static_equ": 74, "static_equ": 74, "_static_erf": 74, "static_erf": 74, "27632612": [74, 237], "934008": [74, 237, 618], "99999928": [74, 237], "91903949": [74, 237], "_static_exp": 74, "static_exp": 74, "59814835": [74, 238, 618], "4131622": [74, 238], "_static_expm1": 74, "thefunct": [74, 237], "areal": 74, "static_expm1": 74, "71828175": [74, 238, 618], "38905621": [74, 238, 618], "59815216": 74, "_static_floor": 74, "static_floor": 74, "_static_floor_divid": 74, "static_floor_divid": 74, "_static_great": 74, "static_great": 74, "_static_greater_equ": 74, "static_greater_equ": 74, "_static_isfinit": 74, "999999999999": [74, 249, 618], "static_isfinit": 74, "_static_isinf": 74, "static_isinf": 74, "_static_isnan": 74, "static_isnan": 74, "_static_isr": 74, "0j": [74, 75, 137, 138, 216, 217, 218, 221, 224, 233, 238, 240, 252, 256, 258, 275, 279, 281, 282, 286, 332, 365, 615, 618, 623, 671], "23j": [74, 75], "9j": [74, 75], "static_isr": 74, "_static_lcm": 74, "1080": [74, 253], "1550": [74, 253], "130": [74, 253, 371, 477], "_static_less": 74, "static_less": 74, "_static_less_equ": 74, "static_less_equ": 74, "_static_log": 74, "static_log": 74, "_static_log10": 74, "static_log10": 74, "898": [74, 257, 618], "0414": [74, 257, 618], "_static_log1p": 74, "static_log1p": 74, "_static_log2": 74, "static_log2": 74, "_static_logaddexp": 74, "static_logaddexp": 74, "_static_logical_and": 74, "static_logical_and": 74, "_static_logical_not": 74, "static_logical_not": 74, "_static_logical_or": 74, "static_logical_or": 74, "_static_logical_xor": 74, "static_logical_xor": 74, "_static_maximum": 74, "static_maximum": 74, "_static_minimum": 74, "static_minimum": 74, "_static_multipli": 74, "static_multipli": 74, "_static_neg": 74, "static_neg": 74, "_static_not_equ": 74, "static_not_equ": 74, "_static_posit": 74, "static_posit": 74, "_static_pow": 74, "static_pow": 74, "_static_rad2deg": 74, "static_rad2deg": 74, "5160": 74, "10300": [74, 274, 618], "15500": 74, "20600": 74, "2860": [74, 274], "_static_reciproc": 74, "recirpoc": [74, 276], "static_reciproc": 74, "_static_remaind": 74, "static_remaind": 74, "_static_round": 74, "thevfunct": 74, "527": [74, 278, 618], "static_round": 74, "301": [74, 278, 618], "_static_sign": 74, "static_sign": 74, "_static_sin": 74, "static_sin": 74, "757": [74, 280, 618], "959": [74, 240, 280, 618], "279": [74, 280, 368, 389, 399, 527, 618, 620], "_static_sinh": 74, "static_sinh": 74, "835": [74, 281], "347": [74, 281], "721": [74, 281], "_static_sqrt": 74, "static_sqrt": 74, "_static_squar": 74, "static_squar": 74, "_static_subtract": 74, "static_subtract": 74, "_static_tan": 74, "static_tan": 74, "_static_tanh": 74, "static_tanh": 74, "995": [74, 286, 618], "9999": 74, "_static_trapz": 74, "static_trapz": 74, "_static_trunc": 74, "static_trunc": 74, "_static_trunc_divid": 74, "75j": [74, 219, 248], "01317055": [74, 219], "05634501": [74, 219], "115": [74, 219, 274, 618], "3461759": [74, 219], "524111": [74, 219], "644": [74, 220, 618, 837], "305": [74, 79, 220, 618], "351": [74, 234, 274], "00613": [74, 234], "0154": [74, 234], "403": [74, 238], "428772": [74, 238], "649": [74, 240], "220": [74, 240], "865": [74, 240], "metho": [74, 247, 259], "7j": [74, 75, 252, 275, 332, 365, 618], "956": [74, 258], "08746284": [74, 261], "32192809": [74, 261], "nuner": [74, 268], "413": [74, 274], "335": [74, 75, 275, 332], "345j": [74, 75, 275, 332], "static_angl": 74, "static_exp2": 74, "static_fmin": 74, "static_gcd": 74, "static_imag": 74, "static_logaddexp2": 74, "static_nan_to_num": 74, "static_r": 74, "_containerwithactivationexperiment": [75, 98], "_static_celu": 75, "formlat": 75, "static_celu": 75, "_static_elu": 75, "static_elu": 75, "_static_hardshrink": 75, "hard": [75, 292, 805, 835, 854], "shrinkag": [75, 292, 301, 371, 479], "_static_hardtanh": 75, "static_hardtanh": [75, 293], "_static_scaled_tanh": 75, "931": 75, "71587813": 75, "88367474": 75, "00376701": [75, 298], "2285642": 75, "99999881": 75, "49999905": 75, "_static_silu": 75, "static_silu": 75, "27777028": [75, 300], "23947507": [75, 300], "0900332": [75, 300], "_static_softshrink": 75, "_static_tanhshrink": 75, "36634541": [75, 303], "02005103": [75, 303], "00262468": [75, 303], "_static_threshold": 75, "19722462": [75, 294], "84729779": [75, 294], "31326163": [75, 295], "46328258": [75, 295], "51301527": [75, 295], "79813886": [75, 295], "simplywrap": [75, 298], "54939651": [75, 298], "09999998": [75, 298, 601, 621], "09999999": [75, 298], "08336546": [75, 298], "0379949": [75, 298], "22856998": [75, 299], "42028043": [75, 299], "31868932": [75, 299], "static_logit": 75, "static_logsigmoid": 75, "34115386": 75, "64439666": 75, "24115384": 75, "55435526": 75, "07888974": 75, "00741899": 75, "26328245": 75, "00012302": 75, "static_prelu": 75, "static_relu6": 75, "static_selu": 75, "static_thresholded_relu": 75, "_containerwithconversionexperiment": [75, 98], "_containerwithcreationexperiment": [75, 98], "_static_trilu": 75, "blackman": [75, 306, 362], "00770143e": [75, 306], "49229857e": [75, 306], "hamming_window": [75, 362], "ham": [75, 308, 362], "4180": [75, 308], "8180": [75, 308], "hann_window": [75, 362], "hann": [75, 309, 362], "7500": [75, 309], "3455": [75, 309], "9045": [75, 309], "kaiser_bessel_derived_window": [75, 362], "suitabl": [75, 311, 312, 362, 632, 741, 764, 804, 805, 811, 829, 854], "spectral": [75, 311, 312, 362], "analysi": [75, 311, 312, 362, 854, 855], "kaiser": [75, 306, 311, 312, 362], "70710677": [75, 311, 492, 494], "18493208": [75, 311, 362], "9827513": [75, 311, 362], "kaiser_window": [75, 362], "static_kaiser_window": [75, 312], "2049": [75, 312], "8712": [75, 312], "0367": [75, 312, 362], "7753": [75, 312], "static_blackman_window": 75, "static_eye_lik": 75, "static_hamming_window": 75, "static_hann_window": 75, "static_hann": 75, "static_kaiser_bessel_derived_window": 75, "static_mel_weight_matrix": 75, "static_polyv": 75, "static_tril_indic": 75, "static_unsorted_segment_mean": 75, "static_unsorted_segment_min": 75, "static_unsorted_segment_sum": 75, "static_vorbis_window": 75, "vorbis_window": [75, 362], "vorbi": [75, 327, 362], "38268343": [75, 327, 623, 658], "92387953": [75, 327], "14943586": [75, 327, 362], "51644717": [75, 327], "85631905": [75, 327], "98877142": [75, 327], "tril_indic": [75, 362], "_containerwithdata_typeexperiment": [75, 98], "_containerwithdeviceexperiment": [75, 98], "_containerwithelementwiseexperiment": [75, 98], "0003": [75, 328, 623, 661, 762, 765], "0006": [75, 328, 355], "2345j": [75, 332], "5772": [75, 336], "9635": [75, 336], "4228": [75, 336], "9228": [75, 336], "57299206e": [75, 337], "67773480e": [75, 337], "20904985e": [75, 337], "84270084": [75, 337, 365], "99532223": [75, 337], "99997795": [75, 337], "mantissa": [75, 341, 365, 813], "frist": [75, 342, 365], "coord": [75, 342], "6055": [75, 343], "160": [75, 345, 371, 477], "10240": [75, 345], "60000038": [75, 346, 365, 623, 679], "0707": [75, 352, 365], "0579": [75, 352, 365], "static_allclos": 75, "static_amax": 75, "static_amin": 75, "static_binar": 75, "static_conj": 75, "static_copysign": 75, "static_count_nonzero": 75, "static_diff": 75, "static_digamma": 75, "57721537": 75, "96351004": 75, "static_erfc": 75, "15729921": 75, "00467773": [75, 337, 365], "static_fix": 75, "static_float_pow": 75, "static_fmax": 75, "static_fmod": 75, "static_frexp": 75, "static_gradi": 75, "static_hypot": 75, "static_isclos": 75, "static_ldexp": 75, "static_lerp": 75, "90000057": [75, 346, 365], "70000076": [75, 346, 365], "55000019": [75, 346, 365], "05000019": [75, 346, 365], "static_modf": 75, "static_nansum": 75, "static_nextaft": 75, "static_signbit": 75, "static_sinc": 75, "636": 75, "090": 75, "070": 75, "057": 75, "static_sparsify_tensor": 75, "static_xlogi": 75, "static_zeta": 75, "0244": [75, 355], "_containerwithgeneralexperiment": [75, 98], "_static_reduc": 75, "static_reduc": 75, "_containerwithgradientsexperiment": [75, 98], "_containerwithimageexperiment": [75, 98], "_containerwithlayersexperiment": [75, 98], "_static_fft": 75, "static_fft": 75, "_static_sliding_window": 75, "673": [75, 389], "0507": [75, 389], "79711437": [75, 368, 389, 399], "94867325": [75, 368, 389, 399], "74089146": [75, 368, 389, 399], "25980937": [75, 368, 389, 399], "64958102": [75, 368, 389, 399], "2442648": [75, 368, 389, 399], "247306": [75, 401], "908323j": [75, 401], "494955": [75, 401], "90395j": [75, 401], "static_adaptive_avg_pool1d": 75, "static_adaptive_avg_pool2d": 75, "static_adaptive_max_pool2d": 75, "static_avg_pool1d": 75, "static_avg_pool2d": 75, "static_avg_pool3d": 75, "static_dct": 75, "253": [75, 281, 618], "515": [75, 629, 726], "467": 75, "static_dft": 75, "static_embed": 75, "static_idct": 75, "93732834": [75, 368, 389], "75048852": [75, 368, 389], "29723358": [75, 368, 399], "6950531": 75, "93914509": 75, "88008738": 75, "18951225": 75, "06697273": [75, 368, 399], "57439804": 75, "68861485": [75, 368, 399], "41308832": [75, 368, 399], "0700836": 75, "2449036": 75, "6711426": 75, "514": 75, "501709": 75, "4924011": 75, "static_ifft": 75, "static_ifftn": 75, "static_interpol": 75, "static_max_pool1d": 75, "static_max_pool2d": 75, "max_pool2dd": 75, "static_max_pool3d": 75, "static_max_unpool1d": 75, "static_rfft": 75, "static_rfftn": 75, "static_stft": 75, "_containerwithlinearalgebraexperiment": [75, 98], "933034": [75, 369, 417], "eigenvealu": [75, 420, 657], "xx": [75, 420, 422, 657], "37228107": [75, 420, 657], "3722816": [75, 420, 657], "8245648": [75, 420, 657], "41597357": [75, 420, 657], "56576747": [75, 420, 657], "9093767": [75, 420, 657], "56155": [75, 421], "82842": [75, 421], "450": [75, 427], "static_adjoint": 75, "static_batched_out": 75, "static_cond": 75, "static_diagflat": 75, "static_dot": 75, "static_eig": 75, "static_eigh_tridiagon": 75, "static_eigv": 75, "static_higher_order_mo": 75, "static_initialize_tuck": 75, "static_kron": 75, "kroneck": [75, 369, 426, 427], "static_make_svd_non_neg": 75, "static_matrix_exp": 75, "static_mode_dot": 75, "static_multi_dot": 75, "static_multi_mode_dot": 75, "static_partial_tuck": 75, "static_svd_flip": 75, "static_tensor_train": 75, "static_truncated_svd": 75, "static_tt_matrix_to_tensor": 75, "tt_matrix": [75, 369, 439], "output_tensor": [75, 95, 369, 439], "static_tuck": 75, "_containerwithlossesexperiment": [75, 98], "_static_huber_loss": 75, "static_huber_loss": 75, "0575": [75, 441], "_static_kl_div": 75, "_static_l1_loss": 75, "static_l1_loss": 75, "_static_log_poisson_loss": 75, "static_log_poisson_loss": 75, "_static_poisson_nll_loss": 75, "06446016": 75, "55611551": 75, "30244565": [75, 445], "_static_smooth_l1_loss": 75, "static_smooth_l1_loss": 75, "_static_soft_margin_loss": 75, "06429195": [75, 445], "_containerwithmanipulationexperiment": [75, 98], "_static_fill_diagon": 75, "_static_put_along_axi": 75, "_static_tak": 75, "69999981": [75, 301, 360, 371, 456, 480], "_static_trim_zero": 75, "_static_unique_consecut": 75, "ary1": [75, 371, 450, 451, 452], "ary2": [75, 371, 450, 451, 452], "broadcast_shap": [75, 101, 371, 762, 764], "static_concat_from_sequ": [75, 457], "30192195": [75, 469], "static_as_strid": 75, "static_atleast_1d": 75, "static_atleast_2d": 75, "static_atleast_3d": 75, "static_broadcast_shap": 75, "static_column_stack": 75, "static_dsplit": 75, "static_dstack": 75, "static_expand": 75, "static_flatten": 75, "static_fliplr": 75, "static_flipud": 75, "static_fold": 75, "static_heavisid": 75, "static_hsplit": 75, "static_hstack": 75, "static_i0": 75, "static_matric": 75, "static_moveaxi": 75, "static_pad": 75, "static_partial_fold": 75, "static_partial_tensor_to_vec": 75, "static_partial_unfold": 75, "static_partial_vec_to_tensor": 75, "static_rot90": 75, "static_soft_threshold": 75, "static_take_along_axi": 75, "static_top_k": 75, "static_unfold": 75, "static_vsplit": 75, "static_vstack": 75, "_containerwithnormsexperiment": [75, 98], "16903085": [75, 492, 494], "50709254": [75, 492, 494], "84515423": [75, 492, 494], "44183609": [75, 492, 494], "56807494": [75, 492, 494], "69431382": [75, 492, 494], "static_batch_norm": 75, "static_group_norm": 75, "static_instance_norm": 75, "static_l1_norm": 75, "static_l2_norm": 75, "static_lp_norm": 75, "12500000": 75, "37500000": 75, "62500000": 75, "27500000": 75, "35000000": 75, "42500000": 75, "0000000": 75, "5000000": 75, "2500000": 75, "_containerwithrandomexperiment": [75, 98], "43643127": [75, 497], "32325703": [75, 497], "24031169": [75, 497], "34251311": [75, 497], "31692529": [75, 497], "3405616": [75, 497], "5319725": [75, 497], "22458365": [75, 497], "24344385": [75, 497], "26588406": [75, 497], "61075421": [75, 497], "12336174": [75, 497], "51142915": [75, 497], "25041268": [75, 497], "23815817": [75, 497], "64042903": [75, 497], "25763214": [75, 497], "10193883": [75, 497], "31624692": [75, 497], "46567987": [75, 497], "21807321": [75, 497], "37677699": [75, 497], "39914594": [75, 497], "22407707": [75, 497], "static_bernoulli": 75, "static_beta": 75, "static_dirichlet": 75, "static_gamma": 75, "static_poisson": 75, "_containerwithsearchingexperiment": [75, 98], "static_unravel_index": 75, "_containerwithsetexperiment": [75, 98], "_containerwithsortingexperiment": [75, 98], "invert_permut": [75, 378], "static_invert_permut": 75, "static_lexsort": [75, 87], "_containerwithstatisticalexperiment": [75, 98], "_static_cummax": 75, "static_cummax": 75, "_static_cummin": 75, "static_cummin": 75, "_static_nanmin": 75, "static_nanmin": 75, "func_nam": [75, 512, 803, 815, 816, 821, 825], "static_bincount": 75, "static_corrcoef": 75, "static_cov": [75, 380, 509], "static_histogram": 75, "static_igamma": 75, "static_median": 75, "static_nanmean": 75, "static_nanmedian": 75, "static_nanprod": 75, "static_quantil": 75, "_containerwithutilityexperiment": [75, 98], "static_optional_get_el": 75, "_containerwithgener": [76, 98], "_static_all_equ": 76, "static_all_equ": 76, "_static_array_equ": 76, "a0": [76, 371, 456], "static_array_equ": 76, "_static_assert_supports_inplac": 76, "_static_clip_matrix_norm": 76, "static_clip_matrix_norm": 76, "849": [76, 527, 528, 620], "_static_clip_vector_norm": 76, "static_clip_vector_norm": 76, "_static_einops_rearrang": 76, "static_einops_rearrang": 76, "_static_einops_reduc": 76, "static_einops_reduc": 76, "29333329": [76, 533, 620], "53000069": [76, 533, 620], "39666676": [76, 533, 620], "20666695": [76, 533, 620], "_static_einops_repeat": 76, "static_einops_repeat": 76, "_static_exist": 76, "_static_fourier_encod": 76, "static_fourier_encod": 76, "classivi": [76, 625, 631, 694, 736], "89858720e": 76, "79717439e": 76, "_static_gath": 76, "static_gath": 76, "_static_gather_nd": 76, "static_gather_nd": 76, "_static_get_num_dim": 76, "static_get_num_dim": 76, "_static_has_nan": 76, "leafwis": 76, "static_has_nan": 76, "_static_inplace_decr": 76, "_static_inplace_incr": 76, "_static_inplace_upd": 76, "_static_is_arrai": 76, "static_is_arrai": 76, "_static_is_ivy_arrai": 76, "static_is_ivy_arrai": 76, "_static_is_native_arrai": 76, "static_is_native_arrai": 76, "_static_scatter_flat": 76, "_static_scatter_nd": 76, "static_scatter_nd": 76, "_static_stable_divid": 76, "22222222": 76, "11111111": 76, "857": [76, 578, 620], "444": 76, "_static_stable_pow": 76, "00012": [76, 579, 620], "00016": [76, 77, 579, 607, 620, 621], "00001": [76, 579, 620, 762], "00032": [76, 579], "00256": [76, 579], "1679638": [76, 579], "395": [76, 579], "16777383": [76, 579], "_static_supports_inplace_upd": 76, "_static_to_list": 76, "static_to_list": 76, "_static_to_numpi": 76, "static_to_numpi": 76, "_static_to_scalar": 76, "static_to_scalar": 76, "_static_value_is_nan": 76, "452": 76, "static_value_is_nan": 76, "833": [76, 528], "items": [76, 97, 620], "static_isin": 76, "static_items": 76, "static_strid": 76, "425": [76, 599], "_containerwithgradi": [77, 98], "_static_stop_gradi": 77, "static_stop_gradi": 77, "976": [77, 286, 601, 618, 621], "49e": [77, 601, 621], "74e": [77, 601, 621], "95e": [77, 601, 621], "024": [77, 601, 621], "096": [77, 601, 621], "216": [77, 80, 601, 621, 678], "626": [77, 601, 621], "en": [77, 601, 602, 621, 812], "wikipedia": [77, 601, 602, 621], "wiki": [77, 601, 602, 621], "stochastic_gradient_desc": [77, 601, 602, 621], "01099": [77, 602], "01003": [77, 602, 621], "01015": [77, 602, 621], "99936122": [77, 602, 621], "99936116": [77, 602, 621], "99936128": [77, 602, 621], "99936104": [77, 602, 621], "w_new": [77, 605, 621], "708": [77, 607, 621], "445": [77, 607, 621], "6e": [77, 607, 621], "00036": [77, 607, 621], "00049": [77, 607, 621], "layerwis": [77, 608, 621], "01132035": [77, 608, 621], "22264051": [77, 608, 621], "2056601": [77, 608, 621], "1324538": [77, 608, 621], "56490755": [77, 608, 621], "96622658": [77, 608, 621], "90848625": [77, 608, 621], "93616199": [77, 608, 621], "77232409": [77, 608, 621], "_containerwithimag": [78, 98], "_containerwithlay": [79, 98], "_static_conv1d": 79, "static_conv1d": 79, "_static_conv1d_transpos": 79, "static_conv1d_transpos": 79, "112": [79, 623, 633, 637, 668, 745], "_static_conv2d": 79, "ey": [79, 615, 622, 638, 644, 831, 838], "static_conv2d": 79, "_static_conv2d_transpos": 79, "static_conv2d_transpos": 79, "_static_conv3d": 79, "fdfh": [79, 640], "static_conv3d": 79, "_static_conv3d_transpos": 79, "static_conv3d_transpos": 79, "_static_depthwise_conv2d": 79, "inp": [79, 622, 644], "static_depthwise_conv2d": 79, "_static_dropout": 79, "static_dropout": 79, "_static_dropout1d": 79, "static_dropout1d": 79, "_static_dropout2d": 79, "_static_dropout3d": 79, "_static_linear": 79, "278": [79, 622, 645, 646], "static_linear": 79, "195": 79, "_static_lstm_upd": 79, "_static_multi_head_attent": 79, "_static_reduce_window": 79, "_static_scaled_dot_product_attent": 79, "static_scaled_dot_product_attent": 79, "39999962": [79, 622, 645, 646], "19999695": [79, 646], "11600018": [79, 646], "88399887": [79, 646], "196": [79, 622, 646], "306": [79, 622, 646], "19999981": [79, 292, 304, 360, 622, 645, 651], "59249449": [79, 622, 651], "68226194": [79, 622, 651], "19603825": [79, 622, 651], "9960382": [79, 622, 651], "26894283": [79, 622, 651], "40236187": [79, 622, 651], "39999437": [79, 622, 651], "59999037": [79, 622, 651], "35046196": [79, 622, 651], "54282808": [79, 622, 651], "39989519": [79, 622, 651], "5998764": [79, 622, 651], "_containerwithlinearalgebra": [80, 98], "_static_choleski": 80, "static_choleski": 80, "577": [80, 623, 652], "707": [80, 623, 652], "static_rol": [80, 82], "_static_cross": 80, "static_cross": 80, "_static_det": 80, "_static_diag": 80, "_static_diagon": 80, "static_diagon": 80, "_static_eigh": 80, "_static_eigvalsh": 80, "static_eigvalsh": 80, "51572949": [80, 623, 659], "17091519": [80, 623, 659], "3448143": [80, 623, 659], "35898387e": [80, 623, 659], "46410179e": [80, 623, 659], "_static_inn": 80, "static_inn": 80, "_static_inv": 80, "static_inv": 80, "_static_matmul": 80, "matul": 80, "static_matmul": 80, "_static_matrix_norm": 80, "deimens": 80, "static_matrix_norm": 80, "_static_matrix_pow": 80, "_static_matrix_rank": 80, "static_matrix_rank": 80, "_static_matrix_transpos": 80, "static_matrix_transpos": 80, "_static_out": 80, "n1": [80, 134, 615], "n2": [80, 134, 615], "static_out": [80, 668], "_static_pinv": 80, "static_pinv": 80, "0426": 80, "0964": 80, "0605": 80, "1368": 80, "_static_qr": 80, "static_qr": 80, "31622777": [80, 623, 670], "9486833": [80, 623, 670], "4472136": [80, 623, 670], "89442719": [80, 623, 670], "16227766": [80, 623, 670], "42718872": [80, 623, 670], "63245553": [80, 623, 670], "47213595": [80, 623, 670], "81377674": [80, 623, 670], "_static_slogdet": 80, "static_slogdet": 80, "6931472": 80, "0986123": 80, "_static_solv": 80, "_static_svd": 80, "static_svd": 80, "au": 80, "aS": 80, "avh": 80, "bu": [80, 844], "bvh": 80, "_static_svdv": 80, "_static_tensordot": 80, "_static_tensorsolv": 80, "_static_trac": 80, "static_trac": 80, "_static_vand": 80, "static_vand": 80, "343": [80, 278, 618, 678], "729": [80, 678, 837], "_static_vecdot": 80, "_static_vector_norm": 80, "static_vector_norm": 80, "77359247": [80, 680], "_static_vector_to_skew_symmetric_matrix": 80, "09861231": [80, 623, 671], "static_general_inner_product": 80, "3475602": [80, 673], "93765765": [80, 673], "58776021": [80, 673], "10416126": [80, 673], "80644298": [80, 673], "87024701": [80, 673], "48127627": [80, 673], "79101127": [80, 673], "98288572": [80, 673], "68917423": [80, 673], "_containerwithloss": [81, 98], "_static_binary_cross_entropi": 81, "static_binary_cross_entropi": 81, "511": [81, 624, 682, 684], "_static_cross_entropi": 81, "static_cross_entropi": 81, "20397282": 81, "83258148": 81, "60943794": [81, 623, 671], "_static_sparse_cross_entropi": 81, "static_sparse_cross_entropi": 81, "5108256": [81, 683], "609438": [81, 683], "_containerwithmanipul": [82, 98], "_static_clip": 82, "static_clip": 82, "_static_concat": 82, "_static_constant_pad": 82, "static_constant_pad": 82, "_static_expand_dim": 82, "static_expand_dim": 82, "container_axi": [82, 625, 688], "_static_flip": 82, "static_flip": 82, "_static_permute_dim": 82, "static_permute_dim": 82, "_static_repeat": 82, "static_repeat": 82, "_static_reshap": 82, "static_reshap": 82, "_static_rol": 82, "positivclip": 82, "_static_split": 82, "static_split": 82, "_static_squeez": 82, "static_squeez": 82, "_static_stack": 82, "leavv": 82, "static_stack": 82, "_static_swapax": 82, "_static_til": 82, "static_til": 82, "_static_unstack": 82, "static_unstack": 82, "_static_zero_pad": 82, "repreat": [82, 691], "_containerwithnorm": [83, 98], "34198591": [83, 628, 723], "04274819": [83, 628, 723], "29923761": [83, 628, 723], "24053511": [83, 628, 723], "62221265": [83, 723], "20277636": [83, 723], "41943574": [83, 723], "83710337": [83, 723], "_containerwithrandom": [84, 98], "_static_multinomi": 84, "_static_randint": 84, "static_randint": 84, "_static_random_norm": 84, "static_random_norm": 84, "651": 84, "_static_random_uniform": 84, "static_random_uniform": 84, "481": 84, "0999": 84, "_static_shuffl": 84, "static_shuffl": 84, "431": [84, 726], "274": [84, 726], "_containerwithsearch": [85, 98], "_static_argmax": 85, "static_argmax": 85, "_static_argmin": 85, "static_argmin": 85, "_static_argwher": 85, "static_argwher": 85, "_static_nonzero": 85, "_static_wher": 85, "static_wher": 85, "_containerwithset": [86, 98], "_static_unique_al": 86, "static_unique_al": 86, "_static_unique_count": 86, "static_unique_count": 86, "_static_unique_invers": 86, "static_unique_invers": 86, "_static_unique_valu": 86, "_containerwithsort": [87, 98], "_static_argsort": 87, "static_argsort": 87, "_static_searchsort": 87, "_static_sort": 87, "static_sort": 87, "static_msort": 87, "_containerwithstatist": [88, 98], "_static_cumprod": 88, "static_cumprod": 88, "_static_cumsum": 88, "static_cumsum": 88, "_static_min": 88, "_static_prod": 88, "static_prod": 88, "11000001": [88, 749], "23100001": [88, 749], "30800003": [88, 633, 749], "_static_sum": 88, "_static_var": 88, "static_var": 88, "12666667": [88, 633, 752], "11555555": [88, 633, 752], "rtype": [88, 745, 791], "respectv": [88, 750], "81649649": [88, 750], "94280904": [88, 750], "509902": [88, 633, 750], "2472192": [88, 750], "44948983": [88, 750], "41421354": [88, 750], "6666667": [88, 752], "_containerwithutil": [89, 98], "_static_al": 89, "static_al": 89, "_static_ani": 89, "static_ani": 89, "add_ivy_container_instance_method": 90, "containerexampl": 90, "factorized_tensor": [91, 92, 93, 94, 95, 96], "factorizedtensor": [91, 92, 93, 94, 95, 96], "matrix_or_tensor": 91, "to_tensor": [91, 92, 93, 94, 95, 96], "to_unfold": [91, 92, 93, 94, 95, 96], "to_vec": [91, 92, 93, 94, 95, 96], "cp_tensor": [92, 93], "cptensor": [92, 93, 317, 362], "cp_copi": 92, "cp_flip_sign": 92, "s_i": [92, 93], "normalisation_weight": [92, 93], "normalised_factor": [92, 93], "cp_lstsq_grad": 92, "return_loss": 92, "nabla": 92, "mathcal": 92, "mathbf": 92, "factor_matric": 92, "cp_gradient": 92, "quantiti": 92, "cp_mode_dot": 92, "keep_dim": [92, 96], "cp_multi_mode_dot": 92, "cp_n_param": 92, "tensor_shap": [92, 94, 95, 96], "n_param": [92, 93, 94, 95, 96], "cp_norm": 92, "cp_to_tensor": 92, "khatria": 92, "rao": [92, 369, 426], "khatri": [92, 369, 426], "cp_normal": 92, "normalis": [92, 93], "u_1": [92, 93], "u_n": [92, 93], "v_1": [92, 93], "v_n": [92, 93], "v_k": [92, 93], "u_k": [92, 93], "absorb": [92, 93], "refold": [92, 371, 465, 476], "cp_to_unfold": 92, "ie": 92, "s_u_i": 92, "exploit": [92, 857], "khatri_rao": [92, 369], "cp_to_vec": 92, "ravel": [92, 831], "unfolding_dot_khatri_rao": 92, "mttkrp": 92, "validate_cp_rank": 92, "percent": [92, 95], "validate_cp_tensor": 92, "parafac2_tensor": 93, "parafac2tensor": [93, 318, 362], "apply_parafac2_project": 93, "evolv": [93, 843, 854], "b_i": 93, "ijk": [93, 792], "sum_r": 93, "a_": 93, "ir": [93, 852, 855, 860], "jr": 93, "kr": 93, "coupl": [93, 804, 808, 835, 837, 854], "factoris": 93, "i1": [93, 380, 512], "classmethod": [93, 100, 101, 767], "from_cptensor": 93, "parafac2_tensor_ok": 93, "parafac2_normalis": 93, "normalised_project": 93, "parafac2_to_slic": 93, "slice_idx": 93, "frontal": 93, "a_i": 93, "j_i": 93, "b_": 93, "reformul": 93, "p_i": 93, "orthogon": [93, 317, 321, 362, 369, 420, 434, 440, 623, 657, 658], "sum_": 93, "ijr": 93, "constraint": [93, 792, 812, 813, 823], "projection_matric": 93, "parafac2_to_tensor": 93, "construct": [93, 625, 698, 778, 781, 782, 783, 827, 833, 837, 838, 852, 854, 861], "uneven": 93, "parafac2_to_unfold": 93, "parafac2_to_vec": 93, "validate_parafac2_tensor": 93, "cp": [93, 317, 362, 805], "tr_tensor": 94, "trtensor": [94, 319, 362], "tr_n_param": 94, "tr_to_tensor": 94, "tr_to_unfold": 94, "tr_to_vec": 94, "validate_tr_rank": 94, "validate_tr_tensor": 94, "tt_tensor": 95, "_tt_n_param": 95, "mp": [95, 320, 362], "index_upd": 95, "pad_tt_rank": 95, "factor_list": 95, "n_pad": 95, "pad_boundari": 95, "ring": 95, "bond": 95, "padded_factor_list": 95, "tt_to_tensor": 95, "assembl": [95, 369, 439], "tt_to_unfold": 95, "reassembl": 95, "tt_to_vec": 95, "validate_tt_rank": 95, "constant_rank": 95, "allow_overparametr": 95, "proport": [95, 777], "realiz": [95, 854], "validate_tt_tensor": 95, "tucker_tensor": 96, "tucker_copi": 96, "tucker_mode_dot": [96, 861], "tucker_n_param": 96, "tucker_norm": 96, "tucker_to_tensor": 96, "skip_factor": 96, "transpose_factor": 96, "tucker_to_unfold": 96, "tucker_to_vec": 96, "validate_tucker_rank": 96, "fixed_mod": 96, "validate_tucker_tensor": 96, "_bisection_root_find": 96, "fun": [96, 359, 367, 600, 620, 627, 715, 812], "max_it": 96, "__abs__": [97, 98], "__add__": [97, 98, 808, 811, 815, 816, 820, 825, 826, 835], "__eq__": [97, 98], "__ge__": [97, 98], "__gt__": [97, 98, 831], "__le__": [97, 98], "__lt__": [97, 98], "__ne__": [97, 98], "__pow__": [97, 98, 835], "69678056": 97, "59876156": 97, "82660675": 97, "__radd__": [97, 98, 815, 816, 825], "__rrshift__": [97, 98], "__rshift__": [97, 98], "__rsub__": [97, 98], "__sub__": [97, 98, 808, 811, 815, 820, 835], "__truediv__": [97, 98, 808, 811, 815], "__xor__": [97, 98], "referenc": [97, 817, 824], "resid": [97, 101, 625, 688, 825, 833, 837], "mt": [97, 835], "hopefulli": [97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 801, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 843, 844, 845], "overview": [97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 810, 812, 826, 828, 832], "reach": [97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 843, 844, 845, 853, 854], "eq": 98, "ge": 98, "le": 98, "ne": 98, "75979435": 98, "52153397": 98, "13532257": 98, "rshift": 98, "truediv": 98, "66666669": [98, 374, 494, 603, 621], "nested_arrai": [100, 101, 102, 810], "nestedarrai": 100, "nested_rank": [100, 101, 102], "inner_shap": [100, 101, 102], "nestedarraybas": [100, 101, 102], "from_row_length": 100, "row_length": 100, "from_row_split": 100, "row_split": 100, "ragged_map": 101, "ragged_multi_map": 101, "ragged_arrai": 101, "ragged_multi_map_in_funct": 101, "replace_ivy_arrai": 101, "unbind": 101, "nestedarrayelementwis": 102, "strictli": [107, 110, 113, 242, 612, 618, 820, 824], "24000001": [107, 612], "703": [108, 612], "683": [108, 612], "408": [108, 612], "313": [108, 612], "437": [108, 612], "40337825": [109, 612], "56114835": [109, 612], "20788449": [109, 612], "0768": [112, 612], "231": [112, 612], "\u03b2": [113, 612], "66666667": [114, 380, 509, 612], "body_fn": [117, 118, 120, 614], "bodi": [117, 120, 614, 807, 828], "lst": [117, 614], "orelse_fn": [118, 614], "body1": [119, 614], "body2": [119, 614], "test_fn": [120, 614, 760, 798, 848, 849], "repeatedli": [120, 614, 627, 713, 812, 828], "ml_framework": [121, 615], "distanc": [121, 615], "adjac": [121, 615], "nestedsequ": [122, 123, 615], "typevar": [122, 123, 615], "supportsbufferprotocol": [122, 123, 615], "static_copy_arrai": [124, 615], "intdtyp": [127, 138, 144, 156, 167, 172, 179, 185, 615, 616], "pycapsul": [128, 139, 615], "interchang": [128, 139, 615, 625, 697], "plu": [129, 615], "x00b": [129, 615], "x00d": [129, 615], "x00e": [129, 615], "66666663": [132, 615], "41588834": [133, 615], "7827941": [133, 615], "6227766": [133, 615], "23413252": [133, 615], "n3": [134, 615], "xv": [134, 615], "yv": [134, 615], "x_nativ": [135, 615, 824], "y_nativ": [135, 615], "z_nativ": [135, 615], "d_type": [137, 615], "col": [142, 322, 362, 615], "primari": [142, 161, 162, 194, 195, 322, 362, 378, 502, 537, 538, 615, 616, 617, 620, 763, 765, 803, 806, 809, 813, 822, 824, 825, 827, 828, 831, 839, 841], "upward": [142, 322, 362, 615], "downward": [142, 322, 362, 615], "2xn": [142, 322, 362, 615], "subarrai": [142, 322, 362, 615], "incompat": [149, 616], "closest": [152, 231, 241, 242, 278, 288, 616, 618, 828, 831], "xtype": [152, 616], "ytype": [152, 616], "native_uint16": [152, 616], "complexdtyp": [153, 167, 176, 616], "set_default_complex_dtyp": [153, 182, 616], "4294": [153, 155, 616], "967346": [153, 155, 616], "set_default_dtyp": [154, 183, 616, 813, 821], "floatdtyp": [155, 178, 616], "set_default_float_dtyp": [155, 164, 176, 184, 616, 813], "int_dtyp": [156, 179, 616], "set_default_int_dtyp": [156, 164, 185, 616, 813], "4294967346": [156, 157, 616], "uint_dtyp": [157, 180, 616], "uint": [157, 172, 180, 186, 616, 813, 826], "uintdtyp": [157, 172, 180, 186, 616], "set_default_uint_dtyp": [157, 164, 186, 616], "native_bool": [159, 616], "ieee": [160, 218, 235, 240, 258, 268, 277, 282, 285, 613, 616, 618, 844], "754": [160, 218, 235, 240, 258, 268, 277, 282, 285, 613, 616, 618, 844], "smallest_norm": [160, 616], "bfloat16": [161, 616, 762, 763, 813, 825, 828, 829], "unsupport": [162, 195, 538, 616, 617, 620, 757, 760, 801, 804, 818, 825], "encapsul": [163, 616, 812], "314": [163, 275, 332, 365, 616, 618], "9223372036854775808": [163, 616], "9223372036854775807": [163, 616], "65535": [163, 616], "4294967295": [163, 616], "native_uint8": [165, 616], "hashabl": [169, 616], "type1": [173, 616], "type2": [173, 616], "array_api_promot": [173, 174, 616, 762, 763], "unexpect": [174, 242, 616, 618, 813], "default_complex_dtyp": [176, 616], "default_dtype_stack": [177, 183, 616], "unset_default_dtyp": [177, 616], "native_uint64": [177, 616], "default_float_dtyp": [178, 616, 813], "default_int_dtyp": [179, 185, 616, 813], "default_uint_dtyp": [180, 186, 616], "ret1": [181, 616], "ret2": [181, 616], "reset": [182, 183, 184, 185, 186, 212, 213, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 616, 617, 620, 814], "default_complex_dtype_stack": [182, 616], "default_float_dtype_stack": [184, 616], "native_float16": [187, 616], "unmodifi": [189, 617, 809, 813], "aliv": [196, 201, 203, 541, 561, 562, 617, 620, 814], "139740789224448": [196, 617], "physic": [199, 617], "process_specif": [202, 214, 617], "percentag": [202, 617], "ram": [202, 210, 214, 617], "alon": [202, 214, 617, 798, 819, 828], "036902561555": [202, 617], "7024003467681645": [202, 617], "as_native_dev": [202, 617], "7095597456708771": [202, 617], "attr_onli": [203, 617], "soft_device_mod": [205, 213, 617], "chunk": [206, 207, 208, 617], "split_factor": [206, 617, 817], "max_chunk_s": [208, 617], "chunk_siz": [208, 617], "input_ax": [208, 617], "output_ax": [208, 617], "usag": [208, 617, 813, 821, 824, 828, 833, 839, 844, 857], "fed": [208, 617, 837], "fist": [208, 617], "gb": [210, 214, 617, 804, 818], "66700032": [210, 617], "589934592": [210, 617], "219563008": [214, 617], "902400346": [214, 617], "525205504": [214, 617], "na": [215, 618, 828], "noqa": [215, 282, 618, 778, 787, 826], "princip": [216, 220, 222, 352, 365, 618], "domain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 618, 816, 852, 854], "codomain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 618, 816], "\u03c0": [216, 220, 222, 223, 613, 618], "3\u03c0": [216, 223, 618], "unspecifi": [216, 217, 221, 224, 233, 238, 240, 242, 277, 281, 282, 286, 369, 420, 618, 623, 625, 657, 658, 696, 824], "\u03c0j": [217, 221, 224, 256, 258, 618], "3\u03c0j": [217, 256, 258, 618], "x1_i": [218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 618, 807], "2019": [218, 235, 240, 258, 268, 618, 854, 857], "overflow": [218, 235, 242, 618, 623, 633, 671, 751, 802, 813], "commut": [218, 618], "tabl": [218, 235, 268, 572, 594, 618, 620, 762, 763, 778, 825, 830, 854], "dj": [218, 235, 268, 618], "bj": [218, 235, 268, 332, 365, 618], "z1": [218, 618], "z2": [218, 618], "yj": [219, 618], "nanj": [221, 618], "809": [221, 618], "569": [221, 618], "733": [221, 618], "notat": [223, 618, 633, 745, 812], "denot": [223, 618, 780], "quadrant": [223, 618], "rai": [223, 618, 844], "bitwis": [225, 228, 230, 265, 618], "170": [229, 618], "243": [229, 618], "xor": [230, 265, 618], "654": [232, 618], "ci": [233, 238, 240, 281, 618, 807, 813, 819, 826, 828, 839], "368": [233, 618], "670": [233, 618], "202": [233, 618, 807], "548": [233, 618], "1490": [233, 618], "57079633": [234, 618], "14159265": [234, 618], "71238898": [234, 618], "28318531": [234, 618], "02617994": [234, 618], "87266463": [234, 618], "01919862": [234, 618], "03839725": [234, 618], "05759586": [234, 618], "07679449": [234, 618], "09599311": [234, 618], "11519173": [234, 618], "35081118": [234, 618], "88139129": [234, 618], "underflow": [235, 242, 618, 623, 671, 813], "textbook": [235, 268, 618], "frac": [235, 257, 259, 279, 281, 285, 368, 374, 395, 396, 400, 401, 488, 490, 618], "ac": [235, 268, 618, 791, 792], "bd": [235, 268, 618], "bc": [235, 268, 618, 791, 792], "versu": [235, 268, 618], "riemann": [235, 268, 618], "sphere": [235, 268, 618], "c99": [235, 268, 618], "infinit": [235, 268, 282, 618], "unlik": [235, 268, 618, 807, 812, 815, 844, 859, 861], "698": [235, 618], "truth": [236, 246, 247, 254, 255, 271, 370, 441, 618, 757, 759, 770, 801, 818, 825, 828], "32862675": [237, 618], "67780113": [237, 618], "11246294": [237, 618], "42839241": [237, 618], "52050018": [237, 618], "16799599": [237, 618], "30787992": [237, 618], "43796915": [237, 618], "98667163": [237, 618], "79690808": [237, 618], "88020504": [237, 618], "91031402": [237, 618], "95228523": [237, 618], "96610528": [237, 618], "cut": [238, 240, 280, 281, 282, 285, 618, 803, 843, 860], "08553692": [238, 618], "567": [238, 618], "00344786": [238, 618], "76297021": [238, 618], "197948": [238, 618], "53253174": [238, 618], "accur": [240, 258, 618, 623, 671, 822], "fdlibm": [240, 258, 618], "compliant": [240, 258, 263, 264, 329, 330, 365, 618, 633, 746, 747, 748, 750], "potenti": [240, 258, 618, 798, 803, 804, 812, 813, 825, 832, 857], "632": [240, 618], "20e": [240, 618], "72e": [240, 618, 762], "greatest": [241, 242, 245, 618], "pep": [242, 618, 820], "disambigu": [242, 618, 823], "former": [242, 618, 804, 813, 816, 825], "latter": [242, 618, 804, 807, 809, 813, 816, 825], "overload": [242, 618, 828], "led": [242, 618, 807, 856], "subtl": [242, 618, 813, 860], "bug": [242, 618, 798, 803, 805, 810, 818, 819, 825, 828, 840], "ambigu": [242, 618], "semant": [242, 277, 371, 480, 618, 813, 833, 838, 843, 855], "ill": [242, 618, 764], "surpris": [242, 618, 839], "arrau": [248, 618], "log_": [257, 259, 618], "742": [258, 618], "negat": [270, 332, 365, 618], "52095687": [273, 618], "92457771": [273, 618], "49372482": [273, 618], "22738838": [273, 618], "156": [273, 618, 762], "5877228": [273, 618], "189": [274, 618, 627, 704], "252": [274, 618], "378": [274, 618], "1150": [274, 618], "2890": [274, 618], "172": [274, 618], "487": [274, 618, 622, 646], "344": [274, 618], "355j": [275, 332, 365, 618], "55j": [275, 332, 365, 618], "primarili": [277, 618, 803, 811, 854], "reason": [277, 286, 618, 803, 805, 807, 808, 811, 812, 813, 815, 821, 824, 825, 828, 829, 831, 833, 835, 844, 860], "counterpart": [278, 618, 811, 822], "deliber": [278, 618, 831], "imprecis": [278, 618], "5654": [278, 618], "034": [278, 618], "433": [278, 604, 606, 618, 621], "signum": [279, 618], "operatornam": [279, 281, 618, 623, 658], "textrm": [279, 618], "932": [280, 618], "746": [280, 618], "657": [280, 528, 618, 620], "indistinguish": [282, 618], "convent": [282, 618, 623, 633, 663, 745, 805, 809, 820, 829, 843, 860], "infti": [282, 618], "32455532": [282, 618], "89897949": [282, 618], "169": [282, 618], "analyt": [285, 618, 854, 856, 860], "pole": [285, 618], "546": [285, 618, 622, 646], "916": [285, 618, 624, 682], "996": [285, 618], "histor": [286, 618], "stem": [286, 618, 824], "older": [286, 618], "advis": [286, 618, 825], "462": [286, 618], "604": [286, 618], "984": [286, 618], "997": [286, 618], "0375": [288, 618], "032": [288, 618], "57258511": [291, 360], "69999999": [291, 360, 611, 621], "90928203": [291, 360], "98772264": [291, 360], "99591321": [291, 360], "99863964": [291, 360], "69880581": [291, 360], "18126924": [291, 360], "79999995": [292, 301, 304, 360], "70000005": [292, 304, 360], "hardtanhx": [293, 360], "20141329": [295, 360], "40318608": [295, 360], "48683619": [295, 360], "46328247": [295, 360], "59813893": [295, 360], "43748799": [295, 360], "parametr": [296, 360, 807, 828, 854], "71589994": [298, 302, 360], "14324772": [298, 302, 360], "70648694": [298, 302, 360], "54488957": [298, 302, 360], "10740992": [298, 302, 360], "19514863": [298, 302, 360], "6705687": [299, 360], "52016652": [299, 360], "40560818": [299, 360], "45630932": [299, 360], "2689": [300, 360], "7310": [300, 360], "7615": [300, 360], "2784": [300, 360], "7168": [300, 360], "8708": [300, 360], "4374": [300, 360], "1379": [300, 360], "0089": [300, 360], "59999991": [301, 360], "03597236": [303, 360], "43827677": [303, 360], "80100036": [303, 360], "12954807": [303, 360], "76459098": [303, 360], "20044947": [303, 360], "60000372": [303, 360], "taper": [306, 309, 362], "summat": [306, 362, 633, 745, 791, 792], "leakag": [306, 362], "wors": [306, 362, 844], "y1": [307, 362], "0800": [308, 362], "3979": [308, 362], "9121": [308, 362], "5400": [308, 362], "han": [309, 362], "ith": [310, 362], "00726415": [311, 362], "9999736": [311, 362], "2773e": [312, 362], "0172e": [312, 362], "9294e": [312, 362], "4149": [312, 362], "9138": [312, 362], "5529": [312, 362], "multidimension": [314, 315, 362, 854], "normalise_factor": [317, 318, 362], "parafac2": [318, 362], "tr": [319, 362], "context": [319, 362, 560, 620, 803, 804, 805, 809, 813, 814, 815], "38268346": [327, 362], "38268352": [327, 362], "8563191": [327, 362], "14943568": [327, 362], "paddlepaddl": [329, 330, 365, 804], "cn": [329, 330, 365], "zh": [329, 330, 365], "amax_cn": [329, 365], "sentinel": [329, 330, 365, 633, 746, 748], "amin_cn": [330, 365], "position": [339, 365], "triangl": [343, 365], "999999e": [344, 365], "65999985": [346, 365], "52000046": [346, 365], "1500001": [346, 365, 533, 620], "11259177": [347, 365], "3574118": [347, 365], "20097363": [347, 365], "suppli": [351, 365, 371, 472, 791, 808, 810, 828], "217234": [352, 365], "hurwitz": [355, 365], "custom_grad_func": [357, 367], "bind": [357, 367, 803, 823, 853, 854], "upstream": [357, 367, 804, 805, 807, 818, 823], "primal": [358, 359, 367], "jacobian": [358, 359, 367, 606, 621, 839, 854], "cotang": [359, 367], "stanh": 360, "ndenumer": 362, "ndindex": 362, "random_cp": 362, "random_parafac2": 362, "random_tr": 362, "random_tt": 362, "random_tuck": 362, "bind_custom_gradient_funct": [367, 823], "jvp": 367, "vjp": 367, "area_interpol": 368, "01823380e": [368, 389, 399], "15385818e": [368, 389, 399], "36371466e": [368, 389, 399], "38763905e": [368, 389, 399], "60722279e": [368, 389, 399], "80319249e": [368, 389, 399], "05617893e": [368, 389, 399], "21500000e": [368, 389, 399], "24000015e": [368, 389, 399], "90734863e": [368, 389, 399], "10000420e": [368, 389, 399], "15899994e": [368, 389, 399], "24000053e": [368, 389, 399], "81469727e": [368, 389, 399], "09999847e": [368, 389, 399], "4135742": [368, 389, 399], "6779785": [368, 389, 399], "3770599": [368, 389, 399], "8719864": [368, 389, 399], "72109985": [368, 389, 399], "52869415": [368, 389, 399], "79182434": [368, 389, 399], "72489166": [368, 389, 399], "container_n": [368, 389, 399], "container_typ": [368, 389, 399, 620], "container_norm": [368, 389, 399], "1580677": [368, 389], "89422607": [368, 389], "86190414": [368, 389], "00041008": [368, 389], "75149155": [368, 389], "97056389": [368, 389], "87819386": [368, 389], "89381361": [368, 389], "50000000e": [368, 389, 399, 762], "22044605e": [368, 389, 399], "ed": [368, 391, 392, 393], "rest": [368, 371, 391, 392, 393, 458, 804, 810, 812, 828, 838, 856], "5d": [368, 393, 778], "emb": [368, 394], "51285338": [368, 394], "87183261": [368, 394], "2308116": [368, 394], "02733949e": [368, 395], "00j": [368, 395], "49660576e": [368, 395], "68178638e": [368, 395], "01j": [368, 395, 400], "98912367e": [368, 395], "21802426e": [368, 395, 400], "04549134e": [368, 395, 400], "82842712e": [368, 395, 400], "86902654e": [368, 395, 400], "25501143e": [368, 395, 400], "32978028e": [368, 395, 400], "52068201e": [368, 395, 400], "71158374e": [368, 395, 400], "generate_einsum_equ": 368, "get_interpolate_kernel": 368, "27279224e": [368, 399], "44232273e": [368, 399], "70464332e": [368, 399], "73454881e": [368, 399], "00902849e": [368, 399], "10039906e": [368, 399], "07022366e": [368, 399], "69506073": [368, 399], "93914604": [368, 399], "88008881": [368, 399], "18951607": [368, 399], "57439613": [368, 399], "15318303e": [368, 400], "15148591e": [368, 400], "19j": [368, 400], "25000000e": [368, 400], "35378602e": [368, 400], "02j": [368, 400], "65404249e": [368, 400], "17611649e": [368, 400], "24320230e": [368, 400], "79344813e": [368, 400], "22374531e": [368, 400], "45929364e": [368, 400], "14208718e": [368, 400], "07177031e": [368, 400], "indexerror": [368, 401, 412, 625, 688, 793, 817], "interp": [368, 831], "xp": [368, 402, 807], "fp": [368, 402], "nd": [368, 403], "tf_bicub": [368, 403, 831], "nearest_interpol": 368, "window_shap": [368, 409], "pool_typ": [368, 409], "irfft": [368, 411], "silent": [368, 411], "discard": [368, 411, 812], "639999": [368, 411], "516063j": [368, 411], "3999999": [368, 411], "3999996": [368, 411], "99038106j": [368, 412], "33012702": [368, 412], "23205081j": [368, 412], "33012702j": [368, 412], "superdiagon": [369, 418, 623, 655], "subdiagon": [369, 418, 623, 655], "eigendecomposit": [369, 420, 623, 657, 658], "qlq\u1d40": [369, 420, 623, 657, 658], "tridiagon": [369, 421], "38196602": [369, 421], "61803389": [369, 421], "35048741": [369, 421], "56710052": [369, 421], "06693714": [369, 421], "74234426": [369, 421], "56155282": [369, 421], "56155276": [369, 421], "82842714": [369, 421], "82842731": [369, 421, 623, 658], "necessarili": [369, 422, 808, 811], "generalis": [369, 423], "skip_matrix": [369, 426, 428], "khatri_rao_product": [369, 426], "kronecker_product": [369, 428], "n_column": [369, 428], "nnmf": [369, 429], "hoi": [369, 434, 440], "solve_triangular": 369, "unit_diagon": [369, 435], "solut": [369, 435, 623, 672, 762, 798, 801, 803, 804, 805, 811, 813, 818, 826, 828, 831, 852, 856], "determinist": [369, 436], "borrow": [369, 436, 806], "extmath": [369, 436], "ivan": [369, 437], "oseledet": [369, 437], "scientif": [369, 437, 854], "2295": [369, 437], "2317": [369, 437], "2011": [369, 437], "convention": [370, 442, 857], "issu": [370, 442, 777, 799, 800, 801, 802, 804, 807, 809, 810, 812, 813, 814, 815, 817, 818, 825, 828, 829, 831, 833, 837, 839, 845, 847], "explicit": [370, 371, 442, 480, 804, 811, 813, 823, 824, 825, 833, 839, 854], "555969": [370, 442], "223876": [370, 442], "111938": [370, 442], "42649534": [370, 442], "68651628": [370, 442], "51119184": [370, 442], "59967244": [370, 442], "mae": [370, 443], "91097307": [370, 445], "3467": [370, 446], "0133": [370, 446], "0250": [370, 446], "0056": [370, 446], "0025": [370, 446], "0675": [370, 446], "hing": [370, 447], "6987": [370, 447], "1606": [370, 447], "3711": [370, 447], "4032": [370, 447], "6931": [370, 447], "whilst": [371, 450, 451, 452, 838, 841, 854], "ary3": [371, 452], "check_scalar": 371, "force_integ": [371, 454], "force_posit": [371, 454], "mod": [371, 455, 807], "tall": [371, 461], "appear": [371, 463, 464, 600, 620, 804, 805, 807, 825, 831, 847], "horizot": [371, 468], "shortcut": [371, 472, 804], "linear_ramp": [371, 472], "reflect": [371, 472, 805, 808, 824, 828], "ramp": [371, 472], "mirror": [371, 472, 803, 854], "padding_func": [371, 472], "iaxis_pad_width": [371, 472], "iaxi": [371, 472], "unalt": [371, 472], "put": [371, 477, 798, 803, 828, 839, 860], "mul": [371, 477, 824, 835], "conceptu": [371, 480, 850, 855], "concern": [371, 480, 805, 806, 811, 813, 815, 824, 831, 832, 860], "regard": [371, 480, 802, 811, 825, 826, 831, 844], "mutat": [371, 480], "elimin": [371, 485, 804], "consecut": [371, 485], "batch_mean": [374, 488, 490], "batch_var": [374, 488, 490], "running_vari": [374, 488, 490], "local_response_norm": 374, "neighbour": [374, 493], "42857143": [374, 494], "5714286": [374, 494], "multivari": [375, 497], "bayesian": [375, 497], "supposedli": [378, 501], "indirect": [378, 502], "secondari": [378, 502], "is_ivy_sparse_arrai": 379, "is_native_sparse_arrai": 379, "native_sparse_arrai": 379, "coo_indic": [379, 505], "crow_indic": [379, 505], "col_indic": [379, 505], "ccol_indic": [379, 505], "row_indic": [379, 505], "dense_shap": [379, 505], "native_sparse_array_to_indices_values_and_shap": 379, "nativesparsearrai": 379, "sparsearrai": 379, "linalg": [380, 509, 623, 671, 672, 803, 824, 826], "aw": [380, 509, 844], "48447205": [380, 509], "c0": [380, 512], "ck": [380, 512], "c2": [380, 512], "nearest_jax": [380, 519], "trace_on_next_step": [523, 620, 782, 837], "recalcul": [526, 620], "my_sum": [526, 620], "val1": [526, 620], "val2": [526, 620], "cached_sum": [526, 620], "line_eq": [526, 620], "slp": [526, 620], "itc": [526, 620], "cached_line_eq": [526, 620], "0353": [527, 620], "424": [527, 620], "176": [527, 620], "339": [527, 620], "271": [527, 620], "391": [527, 620], "417": [528, 620], "583": [528, 620], "0667": [528, 620], "267": [528, 620], "131": [528, 620], "263": [528, 620], "394": [528, 620, 629, 729], "526": [528, 620], "788": [528, 620], "default_str": [531, 620], "46999979": [532, 620], "66000009": [532, 620], "93000001": [532, 620], "29000092": [532, 620], "33999991": [532, 620], "6400001": [532, 620], "96000004": [532, 620], "36000013": [532, 620], "51999998": [532, 620], "67000008": [532, 620], "suppos": [532, 620, 813, 828], "960": [532, 620], "3600": [532, 620], "h1": [532, 620], "w1": [532, 620], "40499985": [533, 620], "61000061": [533, 620], "max_depth": [544, 620], "seen_set": [544, 620], "local_set": [544, 620], "referr": [544, 620], "redund": [544, 620, 798, 813, 817, 825, 847], "example_funct": [544, 620], "ref_id_1": [544, 620], "ref_id_2": [544, 620], "ref_id_3": [544, 620], "ivyexcept": [549, 581, 620, 793, 814, 817, 822, 824, 825, 829], "allow_dupl": [559, 620], "fork": [560, 620, 799, 803, 807, 812, 818], "forkserv": [560, 620], "spawn": [560, 620], "mp_default": [560, 620], "defaultcontext": [560, 620], "0x7f4e3193e520": [560, 620], "mp_fork": [560, 620], "forkcontext": [560, 620], "0x7f4e3193e580": [560, 620], "mp_spawn": [560, 620], "spawncontext": [560, 620], "0x7f4e3193e5e0": [560, 620], "mp_forkserv": [560, 620], "forkservercontext": [560, 620], "0x7f4e3193e640": [560, 620], "garbag": [562, 620], "collector": [562, 620], "get_all_arrays_in_memori": [562, 620], "exception_trace_mod": [566, 589, 620, 830], "lenient": [567, 590, 620], "inplace_mod": [567, 590, 620], "break": [567, 620, 798, 809, 813, 820, 829, 839], "infus": [568, 620], "nestable_mod": [571, 593, 620, 830], "precise_mod": [572, 594, 620, 830], "shape_array_mod": [574, 596, 620, 830], "show_func_wrapper_trace_mod": [575, 597, 620, 830], "tmp_dr": [576, 620], "tmp_dir": [576, 598, 620, 830], "my_tmp": [576, 620], "49999999999975": [578, 620], "5015015015010504": [578, 620], "000444502911705e": [578, 620], "9999999999995j": [578, 620], "00000262": [579, 620], "15605032": [579, 620], "01208451j": [579, 620], "00048": [579, 620], "1296": [579, 620], "00864": [579, 620], "isn": [581, 620, 805, 822, 824, 836, 839, 856], "100000023841858": [583, 620], "200000047683716": [583, 620], "299999952316284": [583, 620], "400000095367432": [583, 620], "599999904632568": [583, 620], "hemant": [587, 620], "unset_shape_array_mod": [588, 620], "set_exception_trace_mod": [589, 620, 817], "set_min_bas": [591, 620], "set_min_denomin": [592, 620], "set_nestable_mod": [593, 620], "set_precise_mod": [594, 620], "set_queue_timeout": [595, 620], "set_shape_array_mod": [596, 620], "set_show_func_wrapper_trace_mod": [597, 620, 817], "set_tmp_dir": [598, 620], "my_dir": [598, 620], "451": [599, 620], "in_ax": [600, 620], "out_ax": [600, 620], "thereof": [600, 620], "summaris": [600, 620], "99999998": [601, 621], "19999998": [601, 621], "00000001": [601, 621], "00300001": [601, 621], "00800001": [601, 621], "0125": [601, 621], "17294501": [601, 621], "15770318": [601, 621], "20863818": [601, 621], "90000075": [602, 621], "90000164": [602, 621], "9000032": [602, 621], "50000012e": [602, 621], "92558754": [602, 621], "92558694": [602, 621], "92558682": [602, 621], "92558861": [602, 621], "60000025e": [602, 621], "01024": [602, 621], "retain_grad": [603, 621], "func_ret": [603, 621, 823], "666666": [603, 621], "333332": [603, 621], "66666675": [603, 611, 621], "argnum": [604, 621], "933": [604, 606, 621], "jac_fn": [606, 621], "639": [607, 621], "361": [607, 621], "52565837": [608, 621], "8418861": [608, 621], "68377209": [608, 621], "value_grad": [611, 621], "42333412": [611, 621], "5333333": [611, 621], "93333334": [611, 621], "43333334": [611, 621], "0666666": [611, 621], "softsign": 612, "718281828459045": 613, "euler": 613, "141592653589793": 613, "cmp_i": 614, "cmp_isnot": 614, "for_loop": 614, "if_els": 614, "try_except": 614, "while_loop": 614, "to_dlpack": 615, "as_ivy_dtyp": [616, 825], "as_native_dtyp": 616, "check_float": 616, "closest_valid_dtyp": 616, "default_dtyp": [616, 813, 821], "dtype_bit": 616, "function_supported_dtyp": [616, 813, 828], "function_unsupported_dtyp": [616, 813], "infer_default_dtyp": 616, "invalid_dtyp": [616, 813], "is_hashable_dtyp": 616, "is_native_dtyp": 616, "promote_typ": [616, 813], "promote_types_of_input": [616, 813, 824], "type_promote_arrai": [616, 813], "unset_default_complex_dtyp": 616, "unset_default_float_dtyp": 616, "unset_default_int_dtyp": 616, "unset_default_uint_dtyp": 616, "valid_dtyp": 616, "defaultcomplexdtyp": 616, "defaultdtyp": 616, "defaultfloatdtyp": 616, "defaultintdtyp": 616, "defaultuintdtyp": 616, "as_ivy_dev": [617, 835], "clear_cached_mem_on_dev": 617, "dev_util": [617, 814], "function_supported_devic": 617, "function_unsupported_devic": 617, "get_all_ivy_arrays_on_dev": [617, 814], "handle_soft_device_vari": [617, 814], "num_cpu_cor": [617, 814], "num_gpu": [617, 814, 828], "num_ivy_arrays_on_dev": 617, "percent_used_mem_on_dev": 617, "print_all_ivy_arrays_on_dev": 617, "set_split_factor": [617, 817], "split_func_cal": 617, "total_mem_on_dev": [617, 814], "tpu_is_avail": 617, "unset_default_devic": [617, 814], "unset_soft_device_mod": [617, 814], "used_mem_on_dev": 617, "defaultdevic": [617, 814], "profil": 617, "save_dir": 617, "arg_info": 620, "arg_nam": 620, "cache_fn": [620, 821], "current_backend_str": [620, 828, 833, 835], "function_supported_devices_and_dtyp": 620, "function_unsupported_devices_and_dtyp": 620, "get_item": [620, 824], "get_referrers_recurs": 620, "inplace_arrays_support": 620, "inplace_variables_support": 620, "is_ivy_nested_arrai": 620, "isscalar": 620, "match_kwarg": 620, "num_arrays_in_memori": 620, "print_all_arrays_in_memori": 620, "set_item": 620, "to_ivy_shap": 620, "to_native_shap": 620, "try_else_non": 620, "unset_array_mod": [620, 830], "unset_exception_trace_mod": 620, "unset_inplace_mod": 620, "unset_min_bas": 620, "unset_min_denomin": 620, "unset_nestable_mod": 620, "unset_precise_mod": 620, "unset_queue_timeout": 620, "unset_show_func_wrapper_trace_mod": 620, "unset_tmp_dir": 620, "vmap": [620, 839, 854], "arraymod": 620, "precisemod": [620, 813], "jac": 621, "value_and_grad": [621, 823], "neural": [622, 774, 778, 798, 848, 850, 852, 853, 854, 858, 860, 861], "feature_group_count": [622, 635, 642, 643], "oiw": [622, 635, 636, 642], "oihw": [622, 635, 638, 642], "oidhw": [622, 635, 640, 642], "dhwio": [622, 635, 636, 640, 642], "conv_general_dil": [622, 825], "conv_general_transpos": 622, "depthwis": [622, 644, 764, 778], "overfit": [622, 645], "overal": [622, 645, 792, 811, 813, 814, 816, 838, 847, 850, 852, 853, 854], "1428566": [622, 645], "49000001": [622, 645], "55599999": [622, 645], "21000004": [622, 645], "incom": [622, 646], "666": [622, 623, 646, 664], "4269": [622, 646], "911": [622, 646, 817], "157": [622, 646], "753": [622, 646], "545": [622, 629, 646, 727], "547": [622, 646, 814], "124": [622, 646], "963": [622, 646], "98495483": [622, 646], "0293808": [622, 646], "0159359": [622, 646], "74752808": [622, 646], "20942307": [622, 646], "3205719": [622, 646], "time_major": [622, 647], "long": [622, 647, 804, 805, 812, 813, 815, 817, 818, 825, 833, 854], "unrol": [622, 647, 833, 836], "lstm": [622, 647, 778, 833, 854], "batch_first": [622, 648], "multi": [622, 623, 648, 653, 764, 778, 815, 832, 839, 850, 852, 854, 858], "paper": [622, 648, 798, 845], "vaswani": [622, 648], "al": [622, 648], "num_attention_head": [622, 648], "key_dim": [622, 648, 778], "value_dim": [622, 648, 778], "measur": [622, 648, 778], "attention_weight": [622, 648], "unbatch": [622, 648], "nm": 622, "box": [622, 649, 650, 804], "iou_threshold": [622, 649], "max_output_s": [622, 649], "score_threshold": [622, 649], "roi_align": 622, "spatial_scal": [622, 650], "sampling_ratio": [622, 650], "23333359": [622, 651], "03946018": [622, 651], "0280633": [622, 651], "29981947": [622, 651], "29981089": [622, 651], "06345534": [622, 651], "9634552": [622, 651], "19336844": [622, 651], "09336829": [622, 651], "axisa": [623, 653], "axisb": [623, 653], "axisc": [623, 653], "293": [623, 654], "46997": [623, 654], "explicitli": [623, 658, 659, 675, 759, 778, 779, 780, 801, 807, 808, 809, 811, 813, 816, 817, 818, 821, 822, 823, 824, 826, 828, 833, 839, 848, 854], "17157288": [623, 658], "9238795": [623, 658], "78930789": [623, 658], "59803128": [623, 658], "19127655": [623, 658], "31213903": [623, 658], "63418275": [623, 658], "84632206": [623, 658], "70548367": [623, 658], "70223427": [623, 658], "09570674": [623, 658], "63116378": [623, 658], "56109613": [623, 658], "53554028": [623, 658], "32237405": [623, 658], "43822157": [623, 658], "83906901": [623, 658], "50766778": [623, 658], "71475857": [623, 658], "48103389": [623, 658], "3676433": [623, 658], "68466955": [623, 658], "62933773": [623, 658], "77917379": [623, 658], "14264561": [623, 658], "61036086": [623, 658], "45033181e": [623, 659], "02829754e": [623, 659], "54220343e": [623, 659], "12647155e": [623, 659], "38447177e": [623, 659], "56155300e": [623, 659], "26794919": [623, 659], "7320509": [623, 659], "0012": [623, 661], "00342": [623, 661], "000565": [623, 661], "0104": [623, 661], "000981": [623, 661], "00282": [623, 661], "000766": [623, 661], "0322": [623, 661], "00237": [623, 661], "000151": [623, 661], "00101": [623, 661], "00019": [623, 661], "0214": [623, 661], "00171": [623, 661], "0107": [623, 661], "0167": [623, 661], "0472": [623, 661], "0536": [623, 661], "0177": [623, 661], "000429": [623, 661], "00762": [623, 661], "lu_factor": 623, "pivot": [623, 662], "lu": [623, 662], "frobeniu": [623, 664], "nuclear": [623, 664], "induc": [623, 664], "ranl": [623, 664], "47722558": [623, 664], "776": [623, 664], "6000004": [623, 664], "118": [623, 665], "moor": [623, 669], "penros": [623, 669], "31622776": [623, 670], "94868332": [623, 670], "1622777": [623, 670], "42718887": [623, 670], "deteremin": [623, 671], "logsabsdet": [623, 671], "subject": [623, 671], "ordin": [623, 672], "b2": [623, 672], "usvh": [623, 673], "cetera": [623, 673], "driver": [623, 674, 839], "cusolv": [623, 674], "gesvd": [623, 674], "gesvdj": [623, 674], "gesvda": [623, 674], "86217213": [623, 674], "31816804": [623, 674], "615": [623, 674], "ss": [623, 674], "25994301": [623, 674], "16403675": [623, 674], "61529762": [623, 674], "51231241": [623, 674], "39777088": [623, 674], "15413129": [623, 674], "1029852": [623, 674], "01383495": [623, 674], "86647356": [623, 674], "7786541": [623, 674], "55970621": [623, 674], "16857576": [623, 674], "86412698": [623, 674], "37566757": [623, 674], "88477993": [623, 674], "95925522": [623, 674], "6444726": [623, 674], "54687881": [623, 674], "16134834": [623, 674], "35037804": [623, 674], "31025076": [623, 674], "35769391": [623, 674], "transposit": [623, 675], "success": [623, 633, 677, 749, 751, 804, 812, 844], "0x": [623, 678], "Such": [623, 678, 821, 828], "progress": [623, 678, 804, 805, 838], "alexandr": [623, 678], "theophil": [623, 678], "dot_product": [623, 679], "9000001": [623, 680], "64158917": [623, 680], "skew": [623, 681], "6666193": [624, 682], "67164493e": [624, 682], "05471958e": [624, 682], "32684899e": [624, 682], "30496836e": [624, 682], "05393649": [624, 682], "49992943": [624, 682], "83330965": [624, 682], "35667494": [624, 684], "79329094": [624, 684], "512926": [624, 684], "outsid": [625, 685, 696, 813, 814, 821, 835, 859], "honor": [625, 692], "beyond": [625, 693, 816, 825, 860], "famili": [625, 696], "intxx": [625, 696], "floatxx": [625, 696], "rep": [625, 698], "fomaml_step": 626, "inner_cost_fn": [626, 701, 702, 703], "outer_cost_fn": [626, 701, 702], "inner_grad_step": [626, 701, 702, 703], "inner_learning_r": [626, 701, 702, 703], "inner_optimization_step": [626, 701, 702, 703], "inner_batch_fn": [626, 701, 702], "outer_batch_fn": [626, 701, 702], "average_across_step": [626, 701, 702], "inner_v": [626, 701, 702], "keep_inner_v": [626, 701, 702], "outer_v": [626, 701, 702], "keep_outer_v": [626, 701, 702], "return_inner_v": [626, 701, 702, 703], "num_task": [626, 701, 702, 703], "maml": [626, 701, 702], "0x7f124bd12e60": [626, 701, 702, 703], "maml_step": 626, "vanilla": [626, 702, 837, 854], "_variabl": [626, 702, 703], "sub_batch": [626, 702], "40069818": [626, 702], "13723135": [626, 702], "reptile_step": 626, "cost_fn": [626, 703], "reptil": [626, 703], "batch_in": [626, 703], "4485182": [626, 703], "139": [626, 703], "9569855": [626, 703], "9880483": [626, 703], "01766968": [626, 703], "02197957": [626, 703], "02197981": [626, 703], "all_nested_indic": 627, "include_nest": [627, 704], "_index": [627, 704, 715], "_base": [627, 704, 714, 715, 824], "themselv": [627, 704, 803, 811, 813, 814, 816, 821, 825, 837, 851, 860], "863": [627, 704, 814], "672": [627, 704], "482": [627, 704], "674": [627, 704], "341": [627, 704], "copy_nest": 627, "to_mut": [627, 705, 716], "deepli": [627, 705, 839, 854], "copied_nest": [627, 705], "1337": [627, 705, 716], "duplicate_array_index_chain": 627, "index_nest": [627, 821], "insert_into_nest_at_index": 627, "insert_into_nest_at_indic": 627, "onto": [627, 710, 716, 842, 843, 854], "special_squar": [627, 710], "6666666666666667": [627, 710], "special_pow": [627, 710], "linear_model": [627, 710], "map_nest_at_index": 627, "_result": [627, 711, 721], "hh": [627, 711, 716], "map_nest_at_indic": 627, "ub": [627, 712], "tb": [627, 712], "multi_index_nest": 627, "nested_ani": 627, "check_nest": [627, 714, 715], "nested_argwher": 627, "stop_after_n_found": [627, 715], "nested_indic": [627, 715], "nested_map": [627, 814, 821], "_tuple_check_fn": [627, 716], "_list_check_fn": [627, 716], "_dict_check_fn": [627, 716], "wherebi": [627, 716, 803, 851], "ah": [627, 716], "bh": [627, 716], "ch": [627, 716], "dh": [627, 716, 807], "eh": [627, 716], "gh": [627, 716, 804, 818], "ih": [627, 716], "1338": [627, 716], "nested_multi_map": 627, "index_chain": [627, 717], "nest0": [627, 717], "ivy_arrai": [627, 717, 808, 825], "unappli": [627, 717], "prune_empti": 627, "prune_nest_at_index": 627, "prune_nest_at_indic": 627, "set_nest_at_index": 627, "set_nest_at_indic": 627, "xyz": [627, 722], "pqr": [627, 722], "mini": [628, 723, 778, 781], "uniformli": [629, 725, 727], "22346112": [629, 726], "0922": [629, 726], "9213753": [629, 726], "12818667": [629, 726], "799": [629, 726], "469": [629, 726], "287": [629, 726], "0366": [629, 726], "26431865": [629, 727], "475": [629, 727], "878": [629, 727], "861": [629, 727], "929": [629, 727], "789": [629, 727], "519": [629, 727], "0435": [629, 727], "381": [629, 727], "4608004": [629, 727], "8458502": [629, 727], "67270088": [629, 727], "31128597": [629, 727], "zeroel": [630, 733], "guarante": [631, 735, 737, 808, 813, 824, 839, 845], "aggreg": [631, 735, 812], "fourth": [631, 735], "1141": [631, 735], "8101": [631, 735], "9298": [631, 735], "8460": [631, 735], "2119": [631, 735], "3519": [631, 735], "6252": [631, 735], "4033": [631, 735], "7443": [631, 735], "2577": [631, 735], "3707": [631, 735], "0545": [631, 735], "3238": [631, 735], "5944": [631, 735], "0775": [631, 735], "4327": [631, 735], "62519997": [631, 735], "40329999": [631, 735], "59439999": [631, 735], "74430001": [631, 735], "81010002": [631, 735], "84600002": [631, 735], "92979997": [631, 735], "einstein": [633, 745, 791], "117": [633, 745], "intend": [633, 751, 760, 777, 807, 820, 823, 852, 854, 858, 859], "07472222": [633, 752], "00666667": [633, 752], "08966666": [633, 752], "simplicit": [634, 753, 754], "ivy_test": [757, 759, 760, 762, 763, 764, 765, 766, 767, 768, 769, 770, 803, 804, 805, 807, 810, 812, 818, 826], "test_ivi": [757, 759, 760, 762, 763, 764, 765, 766, 767, 768, 769, 770, 803, 804, 805, 810, 812, 818, 826, 828], "assert_all_clos": [757, 826], "ret_np": [757, 759, 826], "ret_from_gt_np": [757, 826], "ground_truth_backend": [757, 759, 760, 769, 770, 801, 818, 826], "mark": [757, 803, 805, 807, 828, 833], "assert_same_typ": 757, "ret_from_target": 757, "ret_from_gt": 757, "backend_to_test": [757, 759, 801, 818, 826], "gt_backend": 757, "with_backend": [757, 787], "assert_same_type_and_shap": 757, "this_key_chain": 757, "check_unsupported_devic": 757, "input_devic": 757, "all_as_kwargs_np": [757, 759], "presenc": [757, 811, 824], "check_unsupported_device_and_dtyp": 757, "input_dtyp": [757, 759, 769, 801, 818, 826, 828], "check_unsupported_dtyp": 757, "test_unsupported_funct": 757, "value_test": 757, "ret_np_flat": 757, "ret_np_from_gt_flat": 757, "specific_tolerance_dict": 757, "ret_from_np_gt_flat": 757, "function_test": 759, "args_to_contain": 759, "array_arg": [759, 821], "args_to_frontend": 759, "frontend_array_fn": 759, "arrays_to_frontend": 759, "as_list": 759, "convtru": 759, "nativeclass": 759, "counter": [759, 837], "create_args_kwarg": 759, "args_np": 759, "arg_np_val": 759, "args_idx": 759, "kwargs_np": 759, "kwarg_np_val": 759, "kwargs_idx": 759, "test_flag": [759, 801, 818, 826, 828], "on_devic": [759, 769, 801, 818, 826], "flatten_and_to_np": 759, "flatten_frontend": 759, "flatten_frontend_fw_to_np": 759, "frontend_ret": [759, 826], "isscalar_func": 759, "is_native_array_func": 759, "to_numpy_func": 759, "flatten_frontend_to_np": 759, "get_frontend_ret": 759, "frontend_fn": 759, "frontend_array_funct": 759, "precision_mod": [759, 769, 770, 818], "test_trac": [759, 769, 770, 801, 807, 818], "get_ret_and_flattened_np_arrai": 759, "gradient_incompatible_funct": 759, "gradient_test": [759, 828], "rtol_": [759, 801, 818], "atol_": [759, 801, 818, 826], "tolerance_dict": 759, "gradient_unsupported_dtyp": 759, "kwargs_to_args_n_kwarg": 759, "num_positional_arg": [759, 769, 770, 801, 818, 826, 828], "port": [759, 845], "test_frontend_funct": [759, 826], "fn_tree": [759, 760, 770, 801, 818, 825, 826, 828], "gt_fn_tree": [759, 770], "test_valu": [759, 826, 828], "frontend_function_flag": [759, 769], "functiontestflag": [759, 769, 801, 818], "with_out": [759, 769, 801, 818, 826, 828], "instance_method": [759, 769, 801, 818, 828], "as_vari": [759, 769, 801, 818, 826, 828], "namespac": [759, 803, 813, 822, 825, 826, 829, 833, 838], "test_frontend_method": [759, 826], "init_input_dtyp": [759, 826], "method_input_dtyp": [759, 826], "init_flag": [759, 826, 828], "method_flag": [759, 769, 826, 828], "init_all_as_kwargs_np": [759, 826], "method_all_as_kwargs_np": [759, 826], "frontend_method_data": [759, 826], "init_as_variable_flag": [759, 770], "dictat": [759, 808, 815, 820, 824], "init_num_positional_arg": [759, 770], "init_native_array_flag": 759, "with_v": 759, "ret_gt": 759, "test_funct": [759, 801, 804, 805, 812, 818, 826, 828], "fn_name": [759, 760, 770, 801, 809, 818, 826, 828], "return_flat_np_arrai": 759, "as_variable_flag": [759, 770, 828], "native_array_flag": [759, 770, 828], "container_flag": [759, 769, 770, 828], "test_function_backend_comput": 759, "test_function_ground_truth_comput": 759, "arg_np_arrai": 759, "arrays_args_indic": 759, "arrays_kwargs_indic": 759, "kwarg_np_arrai": 759, "test_gradient_backend_comput": 759, "test_gradient_ground_truth_comput": 759, "test_method": 759, "method_nam": [759, 768, 770, 826], "init_with_v": 759, "method_with_v": 759, "test_gradi": [759, 769, 770, 801, 818, 828], "method_as_variable_flag": [759, 770], "method_num_positional_arg": [759, 770], "method_native_array_flag": 759, "method_container_flag": [759, 770], "test_method_backend_comput": 759, "test_method_ground_truth_comput": 759, "org_con_data": 759, "args_np_method": 759, "met_arg_np_v": 759, "met_args_idx": 759, "kwargs_np_method": 759, "met_kwarg_np_v": 759, "met_kwargs_idx": 759, "v_np": 759, "traced_if_requir": 759, "wrap_frontend_function_arg": 759, "holder": 760, "current_frontend_config": 760, "0x7f123f279cd0": 760, "interruptedtest": 760, "test_interrupt": 760, "baseexcept": 760, "tri": [760, 813], "testdata": 760, "supported_device_dtyp": 760, "is_method": 760, "setup_api_test": 760, "test_data": 760, "setup_frontend_test": 760, "teardown_api_test": 760, "teardown_frontend_test": 760, "hypothesis_help": [762, 763, 764, 765], "array_help": 762, "array_and_broadcastable_shap": 762, "searchstrategi": [762, 763, 764, 765, 769, 770, 828], "array_bool": [762, 828], "min_valu": [762, 763, 764, 765, 801, 818, 826, 828], "max_valu": [762, 763, 764, 765, 826, 828], "ex": [762, 763, 764, 765, 770, 812, 848], "strategi": [762, 763, 764, 765, 769, 770, 803, 826], "array_helpers_dtype_info_help": 762, "kind_dtyp": [762, 764], "array_indices_axi": 762, "array_dtyp": [762, 763, 828], "indices_dtyp": 762, "get_dtyp": [762, 763, 801, 818, 826, 828], "disable_random_axi": 762, "axis_zero": 762, "allow_inf": [762, 765, 826, 828], "min_num_dim": [762, 764, 826, 828], "max_num_dim": [762, 764, 826, 828], "min_dim_s": [762, 764, 826, 828], "max_dim_s": [762, 764, 826], "first_dimension_onli": 762, "indices_same_dim": 762, "valid_bound": 762, "hypothesi": [762, 764, 770, 803, 805, 807, 812, 822], "65536": 762, "44758124e": [762, 828], "array_indices_put_along_axi": 762, "values_dtyp": 762, "array_valu": [762, 828], "abs_smallest_v": [762, 764, 765], "allow_nan": [762, 765, 828], "allow_subnorm": [762, 765, 828], "exclude_min": [762, 765, 828], "exclude_max": [762, 765], "large_abs_safety_factor": [762, 764, 765, 801, 818, 826, 828], "small_abs_safety_factor": [762, 764, 765, 801, 818, 826], "safety_factor_scal": [762, 764, 765, 826, 828], "subnorm": [762, 765], "safeti": [762, 764, 765, 854], "0002": [762, 765], "get_shap": [762, 764, 826, 828], "1806": 762, "36912": 762, "6955": 762, "59576": 762, "1025": 762, "arrays_and_ax": 762, "available_dtyp": [762, 763, 801, 818, 826, 828], "allow_non": [762, 764, 826, 828], "return_dtyp": 762, "force_int_axi": 762, "26e": 762, "10e": 762, "24322108": 762, "26446279e": 762, "96046448e": 762, "008": 762, "17549435e": 762, "038": 762, "06541027e": 762, "13725760e": 762, "07143888": 762, "arrays_for_pool": 762, "min_dim": 762, "max_dim": 762, "min_sid": 762, "max_sid": 762, "explicit_or_str_pad": 762, "only_explicit_pad": 762, "return_dil": 762, "mixed_fn_compo": [762, 763, 764, 765, 828], "return_data_format": 762, "cond_data_gen_help": 762, "create_concatenable_arrays_dtyp": 762, "min_num_arrai": 762, "max_num_arrai": 762, "concat_dim": 762, "common_shap": [762, 828], "stackabl": 762, "given_common_shap": 762, "create_nested_input": 762, "leaf_valu": 762, "dtype_and_valu": [762, 801, 818, 826, 828], "num_arrai": [762, 763, 826, 828], "shared_dtyp": [762, 763, 826], "ret_shap": 762, "array_api_dtyp": [762, 763], "shape_kei": 762, "37915": 762, "6322": 762, "26765": 762, "12413": 762, "26986": 762, "34665": 762, "000e": 762, "711e": 762, "100e": 762, "955e": [762, 828], "40817": 762, "56193": 762, "29200": 762, "5851": 762, "9746": 762, "9604645e": 762, "103": 762, "41795": 762, "1170789994": 762, "44251": 762, "44209": 762, "433075925": 762, "24791": 762, "24691": 762, "24892": 762, "16711": 762, "972": 762, "15357": 762, "72057594037927936": 762, "dtype_array_queri": 762, "allow_mask": 762, "allow_neg_step": 762, "dtype_array_query_v": 762, "dtype_values_axi": [762, 828], "min_axi": 762, "max_axi": 762, "valid_axi": 762, "allow_neg_ax": 762, "min_axes_s": 762, "max_axes_s": 762, "force_tuple_axi": 762, "29788": 762, "62222885e": 762, "68281172e": 762, "257j": 762, "40129846e": 762, "90000000e": 762, "63426649e": 762, "91931887e": 762, "29488e": 762, "14361019e": 762, "12445": 762, "einsum_help": 762, "get_first_solve_batch_matrix": 762, "choose_adjoint": 762, "get_second_solve_batch_matrix": 762, "get_first_solve_matrix": 762, "allow_simplifi": 762, "choose_sid": 762, "xa": 762, "get_second_solve_matrix": 762, "list_of_s": 762, "sampled_from": [762, 826, 828], "min_siz": [762, 764, 770, 828], "max_siz": [762, 764, 770, 828], "size_bound": [762, 828], "999999999999999": 762, "9394938006792373": 762, "mutually_broadcastable_shap": 762, "num_shap": 762, "base_shap": 762, "dtype_help": 763, "univers": [763, 825, 843], "cast_filt": 763, "cast_filter_help": 763, "current_backend": [763, 787, 803, 809, 817, 821, 826, 829, 833], "get_castable_dtyp": 763, "castabl": 763, "prune_funct": 763, "intersect": [763, 812, 828], "signed_integ": 763, "real_and_complex": 763, "float_and_complex": 763, "general_help": 764, "broadcasterror": 764, "apply_safety_factor": 764, "embedding_help": 764, "general_helpers_dtype_info_help": 764, "get_axi": [764, 828], "allow_neg": 764, "sort_valu": 764, "force_tupl": 764, "force_int": 764, "assertionerror": [764, 801, 807, 817, 818, 826, 828], "get_bound": [764, 828], "get_mean_std": 764, "matrix_is_st": 764, "cond_limit": 764, "instabl": [764, 801, 813, 818], "computation": [764, 804], "prone": [764, 813], "thumb": 764, "gradual": 764, "strong": [764, 839, 844, 854], "collinear": 764, "reshape_shap": [764, 828], "two_broadcastable_shap": 764, "x_and_filt": 764, "number_help": 765, "arbitrarili": [765, 836], "safety_factor": 765, "backend_proc": 766, "input_queu": 766, "output_queu": 766, "frontend_proc": 766, "pipeline_help": 767, "backendhandl": 767, "update_backend": [767, 826], "backendhandlermod": 767, "enum": 767, "setbackend": 767, "withbackend": 767, "withbackendcontext": 767, "get_frontend_config": 767, "frontendmethoddata": 768, "ivy_init_modul": 768, "framework_init_modul": 768, "init_nam": 768, "test_parameter_flag": 769, "dynamicflag": [769, 770], "frontendfunctiontestflag": [769, 818], "with_copi": 769, "generate_frontend_arrai": [769, 770, 818], "testflag": 769, "apply_flag": 769, "args_to_iter": 769, "frontendinittestflag": 769, "frontendmethodtestflag": 769, "initmethodtestflag": 769, "methodtestflag": 769, "build_flag": 769, "frontend_init_flag": 769, "frontend_method_flag": 769, "function_flag": 769, "init_method_flag": 769, "testing_help": 770, "handle_frontend_method": [770, 826, 828], "class_tre": [770, 826], "init_tre": [770, 826], "init_native_arrai": 770, "_as_varaible_strategi": 770, "method_native_arrai": 770, "test_inplac": [770, 828], "_given_kwarg": 770, "test_compil": 770, "handle_frontend_test": [770, 826, 828], "alias": [770, 803, 825, 826], "number_positional_arg": [770, 826], "test_with_out": [770, 826, 828], "test_with_copi": 770, "handle_method": [770, 828], "method_tre": [770, 826, 828], "_gradient_strategi": 770, "handle_test": [770, 801, 818, 828], "test_instance_method": [770, 828], "num_positional_args_help": 770, "num_positional_args_method": 770, "geglu": 774, "leakyrelu": 774, "logsoftmax": 774, "from_flax_modul": 775, "native_modul": 775, "params_fx": 775, "rng_seed": 775, "constructor_arg": 775, "constructor_kwarg": 775, "instance_arg": 775, "instance_kwarg": 775, "flax": [775, 838, 839, 845, 854], "from_haiku_modul": 775, "params_hk": 775, "from_paddle_modul": 775, "from_torch_modul": 775, "dedic": [775, 820, 831, 835, 837], "to_keras_modul": 775, "native_module_class": 775, "modulehelp": [776, 780], "create_vari": [777, 837], "var_shap": [777, 837], "fan_out": [777, 837], "fan_in": [777, 837], "rectangular": 777, "firstlayersiren": 777, "siren": 777, "glorotuniform": [777, 778, 837], "glorot": 777, "xavier": 777, "neuron": 777, "w_1x_1": 777, "w_2x_2": 777, "w_nx_n": 777, "w_i": 777, "vanish": 777, "explod": [777, 842, 843], "kaimingnorm": 777, "fan_mod": [777, 837], "kaim": 777, "he": 777, "negative_slop": 777, "fan": 777, "propog": 777, "fan_sum": [777, 837], "Ones": 777, "randomnorm": 777, "stddev": 777, "w0": 777, "wlim": 777, "predefin": 777, "fan_avg": 777, "adaptiveavgpool1d": 778, "avgpool1d": 778, "implicit": [778, 811, 816, 825, 828, 833, 854], "avgpool2d": 778, "avgpool3d": 778, "e501": 778, "filter_s": 778, "weight_initi": [778, 837], "bias_initi": [778, 837], "0x7f124b9224a0": 778, "0x7f124b922440": 778, "conv1dtranspos": 778, "0x7f124b9223e0": 778, "0x7f124b922380": 778, "filter_shap": 778, "0x7f124b922320": 778, "0x7f124b9222c0": 778, "0x7f124b922260": 778, "0x7f124b922200": 778, "0x7f124b9220e0": 778, "0x7f124b922080": 778, "conv3dtranspos": 778, "0x7f124b922020": 778, "0x7f124b921fc0": 778, "depthwiseconv2d": 778, "num_channel": 778, "0x7f124b9221a0": 778, "0x7f124b922140": 778, "bernoul": 778, "num_embed": 778, "embedding_dim": 778, "padding_idx": 778, "lookup": 778, "num_embeddingss": 778, "renorm": 778, "insensit": 778, "num_lay": 778, "return_sequ": 778, "return_st": 778, "0x7f124b921f60": 778, "get_initial_st": 778, "0x7f124ba7cac0": 778, "0x7f124ba7cc70": 778, "maxpool1d": 778, "maxpool3d": 778, "multiheadattent": 778, "embed_dim": 778, "head_dim": 778, "dropout_r": 778, "use_proj_bia": 778, "attention_ax": 778, "build_mod": [778, 779, 780], "on_init": [778, 780], "parallel": [778, 810, 854, 858, 859], "binarycrossentropyloss": 779, "store_var": [779, 780], "with_partial_v": [779, 780], "logpoissonloss": 779, "modulemeta": 780, "temporarili": [780, 801, 807, 818], "from_cal": 780, "module_dict": 780, "register_buff": 780, "register_paramet": 780, "weights_path": 780, "randomness_factor": 780, "with_edge_label": 780, "with_arg_label": 780, "with_output_label": 780, "output_connected_onli": 780, "highlight_subgraph": 780, "trace_kwarg": 780, "_unified_ivy_graph": 780, "_call": 780, "num_featur": 781, "trail": 781, "layernorm": 781, "normalized_shap": 781, "elementwise_affin": 781, "set_stat": [782, 837], "adamw": 782, "weight_decai": 782, "init_on_first_step": 782, "fallback_to_non_trac": 782, "ignore_miss": 782, "privat": [782, 825, 828], "_step": [782, 837], "stochast": [782, 854], "sub_modul": 783, "check_al": 784, "messag": [784, 793, 797, 804, 805, 812, 815, 817, 819, 825, 833, 835, 844], "check_all_or_any_fn": 784, "check_ani": 784, "check_dev_correct_format": 784, "check_dimens": 784, "check_elem_in_list": [784, 821, 824, 825], "elem": 784, "check_equ": [784, 825], "check_exist": 784, "check_fals": 784, "check_gather_input_valid": 784, "check_gather_nd_input_valid": 784, "check_great": 784, "allow_equ": [784, 817], "check_inplace_sizes_valid": [784, 824], "check_isinst": 784, "allowed_typ": 784, "check_kernel_padding_s": 784, "padding_s": 784, "check_less": [784, 817], "check_one_way_broadcast": 784, "check_same_dtyp": 784, "check_shapes_broadcast": 784, "check_tru": 784, "check_unsorted_segment_valid_param": 784, "ast_help": 786, "importtransform": 786, "nodetransform": 786, "impersonate_import": 786, "tree": [786, 813], "local_ivy_id": 786, "visit_import": 786, "visit_importfrom": 786, "ivyload": 786, "loader": [786, 836, 839], "exec_modul": 786, "ivypathfind": 786, "metapathfind": 786, "find_spec": 786, "fullnam": 786, "contextmanag": 787, "choose_random_backend": 787, "global_backend": 787, "dynamic_backend_convert": 787, "backend_stack": [787, 833], "prevent_access_loc": 787, "previous_backend": [787, 809], "unset": [787, 809, 833], "Or": [787, 798, 800, 824, 836], "set_backend_to_specific_vers": 787, "set_jax_backend": 787, "set_mxnet_backend": 787, "mx": 787, "set_numpy_backend": 787, "set_paddle_backend": 787, "set_tensorflow_backend": 787, "set_torch_backend": 787, "unset_backend": [787, 809], "sub_backend_handl": 788, "clear_sub_backend": 788, "find_available_sub_backend": 788, "sub_backends_loc": 788, "fn_name_from_version_specific_fn_nam": 788, "fn_name_from_version_specific_fn_name_sub_backend": 788, "sub_backend_vers": 788, "backend_vers": [788, 801, 813, 818], "set_sub_backend": 788, "sub_backend_str": 788, "set_sub_backend_to_specific_vers": 788, "sub_backend": 788, "unset_sub_backend": 788, "check_for_binari": 789, "cleanup_and_fetch_binari": [789, 804], "clean": [789, 805, 829, 833, 834, 836], "dynamic_import": 790, "import_modul": [790, 833], "einsum_pars": 791, "convert_interleaved_input": 791, "interleav": 791, "convert_subscript": 791, "old_sub": 791, "symbol_map": 791, "subscript": [791, 792], "oe": 791, "ellipsi": [791, 792], "find_output_shap": 791, "find_output_str": 791, "canon": 791, "gen_unused_symbol": 791, "abd": [791, 792], "get_symbol": 791, "letter": 791, "resort": 791, "unicod": 791, "charact": [791, 825, 844], "chr": 791, "surrog": 791, "\u0155": 791, "20000": 791, "\u4eac": 791, "has_valid_einsum_chars_onli": 791, "einsum_str": 791, "abaz": 791, "\u00f6ver": 791, "is_valid_einsum_char": 791, "\u01f5": 791, "legalise_einsum_expr": 791, "reproduct": [791, 792], "pars": [791, 792, 810, 815, 839], "intak": 791, "contract_path": 791, "parse_einsum_input": [791, 792], "einsum_eqn": 791, "legalis": 791, "legalise_einsum_eqn": 791, "za": [791, 792], "xza": [791, 792], "xz": [791, 792], "possibly_convert_to_numpi": 791, "myshap": 791, "__main__": 791, "0x10f850710": 791, "einsum_path_help": 792, "can_dot": 792, "idx_remov": 792, "bla": 792, "benefici": 792, "movement": 792, "costli": 792, "gemm": 792, "ijj": 792, "ddot": 792, "ikj": 792, "compute_size_by_dict": 792, "idx_dict": 792, "abbc": 792, "find_contract": 792, "input_set": 792, "output_set": 792, "lh": 792, "rh": 792, "new_result": 792, "idx_contract": 792, "iset": 792, "oset": 792, "bdc": 792, "flop_count": 792, "num_term": 792, "size_dictionari": 792, "flop": 792, "greedy_path": 792, "memory_limit": 792, "exhaust": [792, 824, 828, 851, 860], "indices_remov": 792, "priorit": [792, 803, 827, 831], "hadamard": 792, "cubic": 792, "greedi": 792, "idx_siz": 792, "optimal_path": 792, "siev": 792, "input_str": 792, "output_str": 792, "parse_possible_contract": 792, "path_cost": 792, "naive_cost": 792, "propos": [792, 805, 825, 831, 854], "intermediari": [792, 809], "unoptim": 792, "new_input_set": 792, "update_other_result": 792, "provision": 792, "_parse_possible_contract": 792, "mod_result": 792, "inplaceupdateexcept": 793, "include_backend": [793, 817], "ivyattributeerror": [793, 817], "attributeerror": [793, 817, 835], "ivybroadcastshapeerror": [793, 817], "ivydeviceerror": 793, "ivydtypepromotionerror": [793, 817], "ivyindexerror": [793, 817], "ivyinvalidbackendexcept": 793, "ivynotimplementedexcept": [793, 817], "notimplementederror": 793, "ivyvalueerror": [793, 817], "handle_except": [793, 820, 822], "add_array_spec": 794, "fn_array_spec": 794, "set_logging_mod": 795, "debug": [795, 804, 805, 811, 812, 823, 828, 831, 836, 854], "unset_logging_mod": 795, "print_stat": 796, "viz": 796, "snakeviz": 796, "bonu": 796, "cprofil": 796, "cprint": [797, 833], "grant": 798, "autotun": [798, 858], "grow": [798, 854], "peopl": [798, 802, 804, 805, 806, 854, 856], "wip": [798, 847], "docker": [798, 801, 802, 818], "pull": [798, 799, 803, 804, 807, 815, 819, 829, 831, 839, 840, 845], "sweat_smil": 798, "setting_up": 798, "awai": [798, 852, 854], "jax_fn": 798, "jax_x": 798, "torch_x": 798, "torch_fn": 798, "motiv": [798, 835, 844], "contextu": 798, "problem": [798, 803, 805, 807, 808, 814, 825, 835, 844, 850, 856, 860], "explos": [798, 842, 844], "adher": [798, 807, 813, 816, 820, 831, 833, 838, 843, 844, 850, 851, 860], "focus": [798, 813, 829, 852, 853, 854, 860, 861], "orient": 798, "contributor": [798, 799, 801, 803, 804, 805, 818, 825, 832, 854], "shorter": [798, 835], "ensp": 798, "customiz": [798, 810], "deepmind_perceiver_io": 798, "sm_framework": 798, "segmentation_model": 798, "sm": 798, "torch_sm": 798, "metric": [798, 839], "iou_scor": 798, "rax": 798, "torch_rax": 798, "poly1_softmax_loss": 798, "madmom": 798, "madmon": 798, "torch_madmom": 798, "freq": 798, "audio": 798, "hz2midi": 798, "torch_loss": 798, "maxpooling1d": 798, "pool_siz": 798, "tf_kornia": 798, "tf_rax": 798, "tf_madmom": 798, "tf_loss": 798, "_forward_classifi": [798, 848], "forward_classifi": [798, 848], "hk_eff_encod": 798, "dummy_x": 798, "jax_sm": 798, "jax_madmom": 798, "jax_loss": 798, "np_kornia": 798, "np_sm": 798, "np_rax": 798, "np_loss": 798, "yourself": [798, 803, 805, 819, 828, 831], "favourit": [798, 804], "pipelin": [798, 800, 806, 807, 808, 826, 829, 838, 841, 843, 848, 854, 855, 860], "hyperparam": 798, "idea": [798, 803, 827, 829, 834, 845, 853], "instantli": [798, 848], "essenti": [798, 803, 809, 811, 814, 815, 821, 824, 825, 826, 843, 844, 860], "mainli": [798, 803, 806, 823, 825, 828, 834, 836, 841, 854], "handler": [798, 832, 834, 838, 841], "scene": [798, 806, 832, 834, 842, 843, 854], "facilit": 798, "mse_loss": 798, "jax_ms": 798, "tf_mse": 798, "np_mse": 798, "torch_ms": 798, "someth": [798, 801, 805, 809, 818, 819, 829, 836, 837, 839, 840, 860], "favorit": 798, "flexibl": [798, 811, 813, 820, 823, 829, 831, 854], "everyon": [798, 799, 803, 804, 805, 839, 845], "plan": [798, 840], "interoper": [798, 844, 851, 852, 854, 857], "believ": [798, 805, 844], "feedback": [798, 803, 812], "appreci": 798, "amaz": 798, "journei": [798, 799], "ambiti": 798, "season": 798, "perfect": 798, "ask": [798, 803, 804, 815, 833, 835, 839, 840, 845], "fellow": 798, "twitter": 798, "sneak": 798, "peek": 798, "stai": [798, 812], "proper": [798, 803, 825, 848], "credit": 798, "accompani": 798, "lenton2021ivi": 798, "inter": 798, "author": [798, 803, 805, 852, 856], "lenton": 798, "daniel": 798, "pardo": 798, "fabio": 798, "falck": 798, "fabian": 798, "jame": 798, "stephen": 798, "clark": 798, "ronald": 798, "journal": 798, "arxiv": 798, "preprint": 798, "2102": 798, "02886": 798, "year": [798, 807, 839, 843, 845, 854], "strongli": [799, 804, 825, 860, 861], "engag": [799, 805, 844], "skill": [799, 856], "veteran": 799, "effort": [799, 803, 839, 844, 850, 854, 860], "board": [799, 810], "stage": [799, 805, 806, 807, 810, 828, 844, 854], "excit": [799, 806, 844], "Be": [800, 810], "awar": [800, 810, 817, 819], "linux": [800, 804, 805, 810, 857, 859], "regularli": [800, 810, 812], "internet": [800, 810], "codespac": [800, 810, 818], "make_doc": 800, "sh": [800, 804, 805, 807, 812], "host": [800, 812, 839, 844, 859], "pwd": 800, "ssh": [800, 812], "make_docs_without_dock": [800, 810], "assist": [801, 818], "runtimeerror": [801, 818], "logaddexp2_cpu": [801, 818], "falsifi": [801, 807, 818, 828], "test_logaddexp2": [801, 818], "backend_fw": [801, 818, 826], "dtype_and_x": [801, 818, 826, 828], "reproduce_failur": [801, 807, 818, 822, 828], "axicy2bkaamobaar2waaaacvaai": [801, 818], "decoartor": [801, 818], "with_unsupported_dtyp": [801, 813, 818, 825], "25830078125": [801, 818], "258544921875": [801, 818], "test_acosh": [801, 818], "axicy2baabyqwqgiaabdaai": [801, 818], "quit": [801, 805, 808, 815, 816, 818, 821, 822, 828, 831, 854, 860], "41421356": [801, 818], "41421356e": [801, 818], "34078079e": [801, 818], "154": [801, 818], "test_ab": [801, 804, 818, 828], "000j": [801, 818], "154j": [801, 818], "axicy2zkyaiibibgziaaxqhexsaab7juqaaamteazq": [801, 818], "experiment": [801, 805, 813, 825, 829, 833, 854], "pycharm": [801, 826, 828], "few": [802, 803, 805, 811, 813, 814, 820, 821, 823, 824, 826, 828, 831, 833, 834, 835, 836, 837, 845, 854, 856], "climb": 802, "steep": 802, "curv": 802, "realpython": 802, "pyn": 802, "exchang": [802, 844, 850, 852], "pilot": [802, 840], "stuck": [802, 803], "spell": 802, "sound": [802, 812, 832], "frequent": [803, 805, 809, 854], "outlin": [803, 804, 805, 806, 811, 813, 816, 821, 824, 825, 828], "broad": [803, 856], "individu": [803, 805, 807, 809, 813, 821, 825, 854, 857, 860, 861], "clearli": [803, 805, 815, 826, 828, 844, 858], "qualiti": [803, 805], "lie": 803, "craft": [803, 827, 828], "fault": [803, 815, 854], "situat": [803, 805, 812, 838], "opportun": 803, "tackl": [803, 825], "challeng": [803, 809, 860], "categoris": [803, 807, 825], "encourag": [803, 819, 839, 844], "comfort": [803, 804, 817], "valuabl": [803, 805], "linkag": 803, "confid": 803, "submit": [803, 819], "merg": [803, 805, 807, 812, 825, 854], "meet": [803, 825], "scipi": [803, 844, 856, 861], "mindspor": 803, "simpler": [803, 805, 819, 847, 855, 861], "member": [803, 805, 825, 840, 844], "comment": [803, 804, 805, 807, 813, 819, 825, 827, 831], "pr": [803, 805, 807, 819, 825, 826, 828], "composition": 803, "feasibl": [803, 812, 844, 847], "pend": 803, "helpfulli": [803, 831, 852], "problemat": [803, 804], "unimpl": 803, "issue_link": 803, "alias_nam": 803, "notic": [803, 808, 812, 818, 819, 828, 831, 847], "push": [803, 805, 807, 826, 828, 860], "liner": 803, "meanwhil": [803, 812], "reselect": 803, "faithfulli": 803, "creation_routin": [803, 826], "indexing_routin": 803, "ma": 803, "manipulation_routin": 803, "mathematical_funct": [803, 825], "sorting_searching_count": 803, "ufunc": [803, 825], "matrix_and_vector_product": 803, "matrix_eigenvalu": 803, "norms_and_other_numb": 803, "solving_equations_and_inverting_matric": 803, "gleam": 803, "uncom": 803, "test_numpy_inn": 803, "test_frontend": [803, 812, 818, 826], "unsur": [803, 828], "statu": [803, 812, 819, 845], "refrain": 803, "checkbox": [803, 804], "aforement": 803, "parent": [803, 812, 835], "arraywithelementwis": [803, 808, 835], "containerwithmanipul": 803, "thorough": [803, 816, 820, 828], "add_reformatting_checklist_": 803, "category_nam": [803, 813, 814, 816, 820, 821], "autom": [803, 812, 819, 828, 841, 856], "bot": [803, 819], "markdown": [803, 810], "patient": [803, 804], "elabor": 803, "struggl": 803, "assigne": 803, "status": 803, "central": [803, 819, 831, 844, 860], "analyz": [803, 841], "relevant_submodul": 803, "roadmap": [803, 812], "soon": [803, 805, 812, 813, 839, 847], "deem": [803, 825], "subtask": 803, "clearer": [803, 817, 826, 836], "backend_nam": [803, 809, 813, 814, 816, 820, 821, 822], "sometim": [803, 804, 805, 807, 813, 821, 825, 828, 831], "rare": [803, 814, 839, 859], "button": [803, 804, 805, 818], "centr": 803, "predetermin": 803, "superset": [803, 806, 821, 824, 839], "reserv": 803, "happi": [804, 818, 839, 845], "your_usernam": [804, 818], "your_fold": [804, 818], "enter": [804, 805, 808, 813, 814, 818, 820, 822], "sync": [804, 807, 818], "remot": [804, 807, 818, 819], "nutshel": [804, 820], "hook": [804, 819, 827], "lint": [804, 806], "succe": [804, 847], "whatev": [804, 811, 839], "elig": 804, "student": 804, "licens": [804, 857], "remind": 804, "expir": 804, "won": [804, 805, 811, 813, 838, 840, 844, 845, 847, 848, 849], "profession": 804, "trial": 804, "jetbrain": 804, "month": [804, 843], "bui": [804, 860], "paid": 804, "rapid": [804, 843, 844, 854], "pace": 804, "person": [804, 805], "abil": [804, 831, 834, 839, 854], "perhap": [804, 835, 836, 837, 839, 860], "conda": [804, 844, 856], "ivy_dev": [804, 805], "icon": [804, 805, 818], "panel": 804, "vscode": [804, 818], "palett": 804, "ctrl": [804, 805], "mac": [804, 805], "intel": [804, 844, 852, 859], "m1": 804, "optional_apple_silicon_1": 804, "optional_apple_silicon_2": 804, "array_api_test": [804, 805, 807, 818], "test_array_api": [804, 805, 807, 818, 828], "suit": [804, 806, 807, 812, 818, 827, 828, 836, 844, 854, 860], "cmd": 804, "bat": [804, 805], "virtualenv": 804, "tick": [804, 805, 812], "nz2": 804, "openssl": 804, "libssl1": 804, "1_1": 804, "1f": 804, "1ubuntu2": 804, "19_amd64": 804, "deb": 804, "dpkg": 804, "mitig": [804, 860], "desktop": [804, 818], "powershel": 804, "admin": 804, "deploy": [804, 848, 853, 856, 857, 860, 861], "menu": [804, 818], "introspect": 804, "dialog": 804, "persist": 804, "earlier": [804, 805, 813, 829], "virtualis": 804, "bio": [804, 844], "dropdown": [804, 812], "dockerfil": 804, "ca": 804, "certif": 804, "gnupg": 804, "lsb": 804, "keyr": 804, "fssl": 804, "gpg": 804, "dearmor": 804, "echo": [804, 812, 840], "arch": 804, "lsb_releas": 804, "null": [804, 818], "ce": 804, "cli": 804, "containerd": 804, "systemctl": 804, "softwar": [804, 805, 843, 844, 852, 857, 858, 859], "press": [804, 805, 836], "4a": 804, "socket": 804, "rwx": 804, "sock": 804, "pid": 804, "editor": 804, "pytest": [804, 805, 807, 812, 818, 822, 828], "keyboard": 804, "screenshot": 804, "pop": [804, 818, 844], "test_elementwis": 804, "bar": [804, 818], "shell": [804, 805, 807, 812], "setup_test": 804, "run_ivy_core_test": 804, "run_ivy_nn_test": 804, "run_ivy_stateful_test": 804, "run_test": [804, 812], "test_depend": 804, "test_ivy_cor": 804, "test_ivy_nn": 804, "test_ivy_st": 804, "unix": 804, "test_": [804, 826], "test_cor": [804, 805, 826], "offici": [804, 813, 833], "wish": [804, 825], "ivy_nn": 804, "ivy_st": 804, "header": [804, 805, 827], "arrow": 804, "test_stat": 804, "test_submodule_nam": 804, "test_function_nam": 804, "debugg": 804, "studio": [804, 818, 828], "especi": [804, 809, 819, 843, 854], "afterward": [804, 836], "background": [804, 810, 818, 854, 856], "overlap": [804, 812, 818, 829, 831, 855], "test_file_path": [804, 818], "test_fn_nam": [804, 818], "engin": [804, 854, 856, 857], "devcontain": 804, "comma": 804, "postcreatecommand": 804, "post_create_command": 804, "poststartcommand": 804, "safe": [804, 825], "containerworkspacefold": 804, "reopen": 804, "test_fle_path": 804, "slash": 804, "isol": [804, 805, 855, 860], "container": 804, "intens": 804, "headach": 804, "arm": [804, 805], "vm": [804, 812], "azur": 804, "cloud": [804, 812, 856], "theme": [804, 810], "ipad": 804, "browser": [804, 810], "quota": 804, "requisit": 804, "pane": [804, 805, 812], "dockerfilegpu": 804, "ivv": 804, "multiv": 804, "multivers": [804, 829], "dockerfilemultivers": 804, "dockerhub": 804, "upto": [804, 805], "minut": [804, 812], "launch": 804, "quickli": [804, 805, 812, 836, 837, 843, 845, 854, 861], "kindli": [804, 827], "guidelin": 804, "colour": 804, "chanc": 804, "troubleshoot": 804, "ever": 804, "flask": [804, 818], "toolbar": [804, 805, 818], "_array_modul": [804, 807, 818], "refresh": [804, 818], "pytestarg": [804, 818], "unittesten": [804, 818], "pytesten": [804, 818], "autotestdiscoveronsaveen": [804, 818], "conftest": 804, "serv": [804, 805, 808, 811, 820, 821, 825, 826, 828, 831, 832, 841, 852], "aren": [804, 813], "record": [804, 839, 855], "available_config": 804, "cp310": 804, "x86": [804, 859], "newer": [804, 828], "_compil": 804, "meantim": 804, "suffici": [804, 815, 825, 828], "bear": [804, 808, 811, 813, 825], "tendenc": 805, "land": 805, "unrel": [805, 844], "fly": [805, 854], "internship": 805, "suspect": 805, "iii": 805, "issue_numb": 805, "12345": 805, "rememb": 805, "respond": 805, "dai": [805, 819], "freed": 805, "obvious": [805, 812], "hypothet": 805, "frustrat": 805, "delai": [805, 847], "busi": 805, "inact": 805, "unfairli": 805, "investig": 805, "name_of_your_branch": 805, "date": [805, 807], "complic": [805, 826, 833], "merge_with_upstream": 805, "abort": 805, "tediou": [805, 815, 831], "stash": [805, 819], "reinstat": 805, "uncommit": 805, "unstag": [805, 819], "untrack": 805, "atlassian": 805, "wrote": 805, "piec": [805, 808, 821, 822, 833, 847, 850, 852], "blame": 805, "eg": 805, "week": [805, 845], "grep": 805, "commit_id": 805, "handi": 805, "histori": 805, "toggl": 805, "highlight": [805, 812, 815, 825, 827], "approv": 805, "someon": [805, 839], "hash": [805, 836], "cancel": 805, "speedup": 805, "unavail": 805, "tickbox": 805, "span": [805, 852, 860], "intent": [805, 824], "discourag": 805, "adopt": [805, 808, 820, 831, 844, 853, 854, 859], "philosophi": 805, "infrequ": 805, "earli": [805, 854], "wast": [805, 812], "spot": [805, 815, 821], "mistak": 805, "mountain": 805, "advoc": [805, 839], "session": [805, 854], "beauti": 805, "particularli": [805, 836, 839, 847, 852], "care": [805, 814, 825, 831, 838, 844], "undo": 805, "stress": 805, "nifti": 805, "reassur": 805, "local_path_to_ivi": 805, "subfold": [805, 826, 828, 829], "dep": 805, "fresh": 805, "arsen": 805, "exec": 805, "ivy_contain": 805, "test_imag": 805, "test_random_crop": 805, "test_creation_funct": 805, "test_arang": 805, "cursor": 805, "alt": 805, "blog": 805, "breakpoint": 805, "gutter": 805, "caret": 805, "f8": 805, "f9": 805, "Into": 805, "f7": 805, "smart": 805, "fragment": [805, 850, 852, 856], "wherein": [805, 821, 828], "failur": [805, 812, 826, 828], "weed": [806, 832], "tour": 806, "formatt": [806, 819], "conjunct": 807, "establish": [807, 856], "popular": [807, 854], "sens": [807, 813, 815, 825, 827, 835], "unconnect": 807, "initialis": [807, 825, 828], "strang": [807, 835], "thoroughli": 807, "test_linalg": [807, 826], "test_set_funct": 807, "test_signatur": 807, "excess": [807, 809, 815], "array_modul": 807, "vv": 807, "test_manipulation_funct": 807, "test_concat": [807, 828], "nb": 807, "liber": 807, "______________________": 807, "test_remaind": 807, "_______________________": 807, "test_operators_and_elementwise_funct": 807, "1264": 807, "1277": 807, "binary_param_assert_against_refimpl": 807, "ctx": 807, "620": 807, "binary_assert_against_refimpl": 807, "324": 807, "scalar_o": 807, "17304064": 807, "binaryparamcontext": 807, "axic42baaowcnp": 807, "rumwmabaear0": 807, "make_binary_param": 807, "numeric_dtyp": 807, "left_strat": 807, "left_sym": 807, "right_strat": 807, "right_sym": 807, "right_is_scalar": 807, "binary_param_assert_dtyp": 807, "binary_param_assert_shap": 807, "recreat": 807, "unexpectedli": 807, "discrep": [807, 826], "test_asarray_arrai": 807, "test_floor_divid": 807, "health": 807, "test_iop": 807, "__imod__": 807, "isequ": 807, "test_matrix_norm": 807, "alter": 807, "tweak": 807, "array_api_methods_to_test": 807, "test_special_cas": 807, "__ipow__": 807, "is_integ": 807, "easier": [807, 808, 809, 813, 826, 829, 841, 854, 856], "revisit": [807, 820], "_data": [808, 824, 825, 835], "organiz": [808, 811, 825], "underpin": [808, 811, 833], "programmat": [808, 811, 855], "backup": [808, 810, 811], "accident": [808, 811, 825], "absent": [808, 811], "auto": [808, 810, 811, 819, 836], "__mul__": [808, 811, 815, 820, 831, 835], "throw": [808, 813, 814, 817, 818, 835, 854], "imposs": 808, "inputs_to_native_arrai": [808, 821, 822], "outputs_to_ivy_arrai": [808, 813, 814, 820, 821, 822], "secondli": [808, 813], "__ivy_array_function__": 808, "inspir": 808, "__torch_function__": 808, "myarrai": 808, "handled_funct": 808, "notimpl": 808, "issubclass": 808, "four": [808, 813, 815, 820, 821, 828, 831, 836], "enough": [808, 812, 813, 814, 828, 835, 836, 837], "ivy_funct": 808, "my_ab": 808, "my_arrai": 808, "implicit_backend": [809, 833], "__dict__": [809, 824, 833], "ivy_original_dict": [809, 833], "fallback": 809, "live": [809, 810, 813, 844, 845, 850, 852], "scope": [809, 855, 859], "dlpack": 809, "set_dynamic_backend": 809, "unset_dynamic_backend": 809, "dynamic_backend_a": 809, "set_": 809, "unset_": 809, "backend_handl": 809, "requires_grad": 809, "memory_format": 809, "preserve_format": 809, "weren": 809, "vast": [809, 813, 854], "minor": [809, 831, 839], "fn_name_v_1p12_and_abov": 809, "fn_name_v_1p01_to_1p1": 809, "heavili": [810, 822, 839], "characterist": 810, "conf": 810, "cleanup": 810, "readm": [810, 839], "maxdepth": 810, "caption": 810, "related_work": 810, "deep_div": 810, "faq": 810, "glossari": 810, "autosummari": 810, "top_functional_toc": 810, "restructuredtext": 810, "discov": [810, 813], "ivy_toctree_caption_map": 810, "stub": 810, "unfortun": [810, 819], "linker": 810, "foo": 810, "discussion_channel_map": 810, "1000043690254946374": 810, "1000043749088436315": 810, "forum": [810, 840], "seri": [810, 813, 825, 828, 854, 856], "discussion_paragraph": 810, "discord_link": 810, "channel_link": 810, "gg": 810, "zvqdvbznqj": 810, "799879767196958751": 810, "channel_id": 810, "autoskippablemethod": 810, "skippable_method_attribut": 810, "__qualname__": 810, "autodoc": 810, "__doc__": 810, "autoivydata": 810, "mutual": [811, 821], "containerwithelementwis": 811, "__repr__": 811, "__getattr__": [811, 847], "__setattr__": [811, 847], "__contains__": 811, "__getstate__": 811, "__setstate__": 811, "unpickl": 811, "num_dim": [811, 838], "restrict": [811, 812, 825, 833, 847, 851], "enforc": [811, 835], "extern": [811, 820, 825, 828, 829], "lefthand": 811, "righthand": 811, "handle_nest": [811, 820, 821, 822, 833], "absenc": [811, 820, 854], "implicitli": [811, 823, 828, 833], "log_pr": [811, 821, 824], "intuit": [811, 828, 836, 837, 850], "chronolog": 811, "concurr": [811, 812, 821, 854], "despit": [811, 813, 814, 826, 833, 844, 851, 854], "__list__": 811, "whatsoev": [811, 821, 841, 860], "children": 811, "shallowest": 811, "deepest": 811, "rollback": 812, "incorpor": [812, 826, 836, 854], "techniqu": 812, "triplet": 812, "test_torch": [812, 826], "test_tensor": [812, 826], "test_torch_instance_arctan_": 812, "12500": 812, "daili": 812, "huge": [812, 836, 842, 844, 854, 860], "shoot": 812, "impact": [812, 828, 837, 856], "_reduce_loss": [812, 821, 824], "test_nn": 812, "test_loss": 812, "test_binary_cross_entropy_with_logit": 812, "test_cross_entropi": 812, "test_binary_cross_entropi": 812, "test_sparse_cross_entropi": 812, "test_loss_funct": 812, "test_torch_binary_cross_entropi": 812, "test_torch_cross_entropi": 812, "binary_cross_entropy_with_logit": 812, "torch_binary_cross_entropi": 812, "torch_cross_entropi": 812, "magic": 812, "readthedoc": 812, "pedagog": 812, "f_1": 812, "t_1": 812, "t_3": 812, "t_7": 812, "t_": 812, "f_m": 812, "cyclic": 812, "intellig": [812, 828, 856], "tests_fil": 812, "file_nam": [812, 828, 829], "tests_lin": 812, "correspondingli": 812, "tests_to_run": 812, "determine_tests_lin": 812, "mongodb": 812, "databas": [812, 828], "mechan": [812, 839], "secret": 812, "db": 812, "ssh_deploy_kei": 812, "suffic": [812, 822, 828], "massiv": 812, "yml": 812, "felicit": 812, "clone_map": 812, "deploy_kei": 812, "user_email": 812, "user_nam": 812, "target_branch": 812, "github_serv": 812, "deploy_key_fil": 812, "ssh_known_hosts_fil": 812, "known_host": 812, "keyscan": 812, "git_ssh_command": 812, "userknownhostsfil": 812, "email": [812, 844], "methodologi": 812, "master1": 812, "restructur": 812, "_map": 812, "t_2": 812, "t_n": 812, "index_map": 812, "test_map": 812, "snowbal": 812, "recalibr": 812, "workflow_dispatch": 812, "schedul": [812, 839, 854, 861], "cron": 812, "saturdai": 812, "night": 812, "pm": 812, "gut": 812, "lesser": [812, 817], "lol": 812, "hour": [812, 845], "cater": [812, 827], "master2": 812, "master32": 812, "synchron": 812, "runner2": 812, "corrupt": 812, "decoupl": [812, 837], "150": 812, "cycl": [812, 828], "yellow": 812, "queu": 812, "redirect": 812, "book": 812, "onrend": 812, "jo": 812, "ran": 812, "badg": 812, "clickabl": 812, "all_dtyp": 813, "all_numeric_dtyp": 813, "all_int_dtyp": 813, "all_float_dtyp": 813, "replic": [813, 823, 824, 825], "thirdli": 813, "native_float32": 813, "importantli": [813, 835, 838], "arguabl": [813, 814, 825], "jaxarrai": [813, 814, 817, 820, 824, 829, 833], "_handle_0_dim_output": 813, "subtli": [813, 824], "promote_types_frontend_nam": 813, "promote_types_of_frontend_name_input": 813, "frontend_nam": 813, "upcast": 813, "nearli": [813, 820, 822, 854], "downcast": 813, "footprint": 813, "concret": 813, "aris": [813, 819, 839, 844], "utterli": 813, "meant": [813, 815, 824], "twice": 813, "disadvantag": 813, "relax": 813, "f64": 813, "unwant": 813, "primaci": 813, "resembl": 813, "compound": 813, "infer_dtyp": [813, 814, 820, 822], "settabl": [813, 814], "handle_out_argu": [813, 814, 820, 821, 822, 824, 833], "infer_devic": [813, 814, 820, 822], "deleg": [813, 861], "shape_to_tupl": 813, "with_supported_dtyp": 813, "unment": 813, "_cast_for_unary_op": [813, 821, 824], "target_typ": 813, "syntax": [813, 843, 844, 854], "unsupported_dtyp": 813, "supported_dtypes_and_devic": 813, "with_unsupported_device_and_dtyp": 813, "globals_getter_func": 813, "f2": 813, "lack": [813, 824, 854, 861], "mandat": [813, 824, 828, 829, 844], "confus": [813, 817, 824, 831, 841, 845], "inconsist": [813, 817, 823], "is_nan": 813, "supported_dtyp": 813, "anytim": 813, "84530": 813, "unwarr": 813, "risk": [813, 860], "needlessli": 813, "bloat": 813, "undergo": [813, 839], "unsupported_devic": 813, "supported_devic": 813, "downsid": 813, "coverag": [813, 828], "undesir": 813, "accomplish": 813, "upcast_data_typ": 813, "downcast_data_typ": 813, "crosscast_data_typ": 813, "cast_data_typ": 813, "downcast_data_dtyp": 813, "vice": 813, "versa": 813, "till": 813, "crosscast": 813, "exmp1": 813, "watch": [813, 825], "handle_numpy_arrays_in_specific_backend": [813, 820], "cate": 813, "understood": 813, "consumpt": [813, 858], "dual": 814, "categor": [814, 821, 825], "210": 814, "_handle_except": [814, 817], "1013": 814, "_handle_nest": [814, 817], "905": 814, "_handle_out_argu": [814, 817], "441": 814, "_inputs_to_native_arrai": [814, 817], "new_arg": [814, 817], "new_kwarg": [814, 817], "_outputs_to_ivy_arrai": [814, 817], "358": 814, "_handle_array_funct": [814, 817], "_handle_device_shift": 814, "handle_device_shift": [814, 822], "crucial": [814, 823], "device_shifting_dev": 814, "__enter__": 814, "__exit__": 814, "mostli": [814, 824, 828], "soft_devic": 814, "eight": [815, 832], "op_nam": 815, "__r": 815, "unsurprisingli": [815, 843], "recap": [815, 837], "combinatori": 815, "okai": [815, 831, 833], "spec": [815, 816], "my_func": [815, 829], "some_flag": 815, "another_flag": 815, "jointli": 815, "5574077": 815, "1850398": 815, "5463025": 815, "8422884": 815, "91601413": 815, "9647598": 815, "3738229": 815, "1597457": 815, "0963247": 815, "9955841": 815, "3278579": 815, "asid": 815, "increasingli": [815, 847], "14254655": 815, "1578213": 815, "380515": 815, "trivial": [815, 824], "failing_fn_nam": 815, "onlin": [815, 816], "minutest": 815, "contrast": [816, 820, 825, 860], "preview": 816, "incorrectli": [816, 847], "needless": [816, 826], "renam": [816, 825], "judgment": 816, "operator_nam": 816, "succinct": 816, "docst": 816, "native_error": 817, "_combine_messag": 817, "truli": [817, 835], "wrong": [817, 819, 822, 825, 831], "198": 817, "392": 817, "_handle_array_like_without_promot": 817, "805": 817, "432": 817, "349": 817, "other_test": 817, "523": 817, "_handle_numpy_out": 817, "396": [817, 837], "_outputs_to_numpy_arrai": 817, "_inputs_to_ivy_arrays_np": 817, "ivy_arg": 817, "ivy_kwarg": 817, "453": 817, "_from_zero_dim_arrays_to_scalar": 817, "truth_value_test": 817, "visibl": 817, "unwieldi": 817, "squash": 817, "hide": [817, 847], "cleaner": [817, 836], "caught": [817, 819], "rethrow": 817, "_print_traceback_histori": 817, "error_stack": 817, "axiserror": 817, "polici": [817, 822, 828, 830], "moreov": 817, "submoodul": 818, "test_jax_transpos": 818, "manipulaiton": 818, "test_jax": [818, 826], "test_numpi": [818, 826], "test_manipul": [818, 826, 828], "preconditionnotmet": 818, "densetensor": 818, "holder_": 818, "phi": 818, "dense_tensor_impl": 818, "array_and_ax": 818, "aaegbaegaqaaaaaaaaaaaaab": 818, "black": 819, "flake8": 819, "linter": 819, "autoflak": 819, "docformatt": 819, "pydocstyl": 819, "yaml": 819, "patch1687898304": 819, "8072": 819, "3516aed563": 819, "reformat": 819, "akshai": 819, "jain": 819, "gui": 819, "cryptic": 819, "garden": 819, "utc": 819, "didn": 819, "human": 819, "intervent": 819, "typo": 819, "ui": 819, "handle_array_like_without_promot": [820, 822], "to_native_arrays_and_back": [820, 822, 833], "handle_array_funct": [820, 822], "inputs_to_native_shap": [820, 822], "rational": [820, 824, 831], "__div__": [820, 831], "484": 820, "annot": 820, "brittl": 820, "freeli": 820, "inde": [820, 831, 839, 852], "technic": [820, 824, 839, 854, 856], "original_typ": 820, "cumbersom": 820, "hinder": [820, 843], "venn": 821, "diagram": [821, 860], "light": [821, 829, 839, 841, 855, 860], "maximis": 821, "encompass": 821, "partial_mixed_handl": [821, 822, 831], "handle_partial_mixed_funct": [821, 822, 831], "fn_decor": 821, "mixed_backend_wrapp": [821, 824], "to_add": 821, "to_skip": 821, "inputs_to_ivy_arrai": [821, 822], "modif": [821, 854], "briefli": [821, 828, 836], "get_all_arrays_on_dev": 821, "outputs_to_ivy_shap": 822, "outputs_to_native_arrai": 822, "handle_view_index": [822, 824], "handle_view": [822, 824], "handle_rag": 822, "handle_backend_invalid": 822, "handle_nan": 822, "to_native_shapes_and_back": 822, "modern": [823, 843, 844, 859], "inter_func": 823, "custom_grad_fn": 823, "args1": 823, "eas": [823, 854], "program": [824, 851, 852, 854, 857, 858, 861], "speak": 824, "val_n": 824, "base_idx": 824, "_manipulation_stack": 824, "base_flat": 824, "_view_ref": 824, "_update_view": 824, "contigu": 824, "c_contigu": 824, "ascontiguousarrai": 824, "copyto": 824, "_is_vari": 824, "tensor_scatter_nd_upd": 824, "is_vari": 824, "_update_torch_view": 824, "predominantli": [824, 829], "support_native_out": [824, 833], "_scalar_output_to_0d_arrai": 824, "_wrap_fn": 824, "dim0": 824, "dim1": 824, "res_floor": 824, "extent": [824, 825], "to_out_fn": 824, "add_wrapp": 824, "paradigm": [824, 839, 854], "expans": 824, "brief": [824, 828], "weak": 824, "_torch_bas": 824, "_torch_view_ref": 824, "_torch_manipul": 824, "weakli": 824, "adequ": 824, "tf_frontend": 825, "lax": [825, 826, 831, 838, 839], "torch_frontend": [825, 826], "numpy_frontend": 825, "jax_frontend": 825, "to_ivy_arrays_and_back": [825, 826], "fidel": 825, "algebra": [825, 852, 853, 854, 857, 861], "dynamic": 825, "mimic": 825, "arithmetic_oper": 825, "handle_numpy_out": 825, "handle_numpy_dtyp": 825, "handle_numpy_cast": 825, "from_zero_dim_arrays_to_scalar": 825, "_add": 825, "same_kind": 825, "subok": [825, 826, 831], "promote_types_of_numpy_input": 825, "underscor": 825, "unhandl": 825, "trigonometric_funct": 825, "_tan": 825, "check_tensorflow_cast": 825, "raw_op": [825, 826], "map_raw_ops_alia": 825, "output_typ": 825, "kwargs_to_upd": 825, "pointwise_op": 825, "sensibl": 825, "ahead": [825, 829, 854], "reduce_logsumexp": 825, "logsumexp": 825, "trick": 825, "max_input_tensor": 825, "preferred_element_typ": 825, "languag": [825, 833, 841, 843, 845, 852, 855, 857, 858, 859, 860], "offer": [825, 837, 845, 854, 860, 861], "finer": 825, "logicaland": 825, "np_frontend": 825, "_ivy_arrai": 825, "radd": 825, "_init_data": 825, "_process_str_data": 825, "_dtype": [825, 826, 835], "_shape": [825, 835], "govern": 825, "promote_types_of_": 825, "_input": 825, "promote_types_of_torch_input": [825, 826], "handle_numpy_casting_speci": 825, "new_fn": 825, "equiv": 825, "unsaf": 825, "array_type_test": 825, "_isfinit": 825, "organis": 825, "grasp": 825, "youtub": 825, "knowledg": 826, "np_frontend_help": 826, "open_task": 826, "test_lax": 826, "test_oper": 826, "test_jax_tan": 826, "test_mathematical_funct": 826, "test_trigonometric_funct": 826, "dtypes_values_cast": 826, "dtypes_values_casting_dtyp": 826, "arr_func": 826, "get_num_positional_args_ufunc": 826, "test_numpy_tan": 826, "handle_where_and_array_bool": 826, "test_tensorflow": 826, "test_math": 826, "test_tensorflow_tan": 826, "test_pointwise_op": 826, "test_torch_tan": 826, "_fill_valu": 826, "test_glob": 826, "test_jax_ful": 826, "test_from_shape_or_valu": 826, "_input_fill_and_dtyp": 826, "dtype_and_input": 826, "dtype_to_cast": 826, "input_fill_dtyp": 826, "test_numpy_ful": 826, "test_raw_op": 826, "test_tensorflow_fil": 826, "test_creation_op": 826, "with_arrai": 826, "test_torch_ful": 826, "add_nois": 826, "all_clos": 826, "_get_dtype_and_matrix": 826, "test_torch_qr": 826, "frontend_q": 826, "frontend_r": 826, "walkthrough": 826, "comparison_op": 826, "test_comparison_op": 826, "test_torch_great": 826, "all_alias": 826, "test_ndarrai": 826, "test_numpy_instance_add__": 826, "test_tensorflow_instance_add": 826, "1e04": 826, "allow_infin": 826, "test_torch_instance_add": 826, "_arrays_idx_n_dtyp": 826, "surprisingli": 826, "closest_relevant_group": 826, "strive": [826, 828, 831, 839, 856], "tailor": 827, "clariti": [827, 828, 831, 854], "weav": 827, "thrill": 827, "brim": 827, "stand": [827, 828], "testament": 827, "landscap": 827, "forese": 827, "refin": 827, "inquiri": 827, "fixtur": 828, "hit": [828, 833, 847], "eleg": [828, 854], "unexplor": 828, "artifact": 828, "bespok": 828, "_array_or_typ": 828, "rigor": [828, 843], "test_default_int_dtyp": 828, "print_hypothesis_exampl": 828, "custom_strategi": 828, "randomis": 828, "simplist": 828, "intricaci": 828, "glanc": 828, "one_of": 828, "datum": 828, "pipe": 828, "array_or_scal": 828, "len_of_arrai": 828, "test_add": 828, "test_gpu_is_avail": 828, "pretest": 828, "snippet": [828, 848], "criterion": 828, "valid_ax": 828, "hoc": 828, "11228": 828, "268": 828, "wherev": 828, "9622": 828, "28136": 828, "6375": 828, "12720": 828, "21354": 828, "900e": 828, "57384": 828, "25687": 828, "248": 828, "test_devic": 828, "array_shap": 828, "test_lay": 828, "some_sequ": 828, "arrays_valu": 828, "36418": 828, "213": 828, "21716926": 828, "none_or_list_of_float": 828, "get_prob": 828, "103515625e": 828, "099609375": 828, "probabilist": 828, "number_positional_argu": 828, "unreproduc": 828, "x_and_linear": 828, "is_torch_backend": 828, "x_shape": [828, 833], "weight_shap": 828, "bias_shap": 828, "ivy_np": 828, "valid_float_dtyp": 828, "test_demo": 828, "failing_test": 828, "traceback": 828, "shrink": 828, "prescrib": 828, "scratch": 828, "therebi": 828, "test_gelu": 828, "test_fil": 828, "phase": [828, 839, 854], "notabl": [828, 854], "max_exampl": 828, "deadlin": 828, "weird": 828, "systemat": 828, "safeguard": 828, "inabl": 828, "test_result_typ": 828, "9090909090909091": 828, "judgement": 829, "some_namespac": 829, "some_backend": 829, "another_backend": 829, "refactor": 829, "ongo": 829, "check_fill_value_and_dtype_are_compat": 829, "_to_devic": 829, "shouldn": [829, 847], "pin": 829, "unpinn": 829, "culmin": 829, "unsett": 830, "array_significant_figur": 830, "array_decimal_valu": 830, "warning_level": 830, "nan_polici": 830, "stablest": 830, "constantli": [831, 843], "answer": [831, 835, 839], "contradict": 831, "entail": 831, "sacrif": 831, "jacfwd": 831, "jacrev": 831, "banner": 831, "expens": 831, "incredibli": [831, 836, 839, 857], "price": 831, "pai": 831, "intrus": 831, "x_beta": 831, "equip": 831, "simplif": 831, "allevi": 831, "ineffici": [831, 839, 854], "fuse": 831, "hybrid": 831, "workaround": 831, "slip": 831, "radar": 831, "stumbl": 831, "gone": [832, 844], "fulfil": 832, "syntact": [833, 838], "power_seq": 833, "_determine_backend_from_arg": 833, "importlib": 833, "_backend_dict": 833, "x_flat": 833, "wi": 833, "wi_x": 833, "wii_x": 833, "wif_x": 833, "wig_x": 833, "wio_x": 833, "wh": 833, "ht": 833, "ct": 833, "hts_list": 833, "wii_xt": 833, "wif_xt": 833, "wig_xt": 833, "wio_xt": 833, "htm1": 833, "ctm1": 833, "wh_htm1": 833, "whi_htm1": 833, "whf_htm1": 833, "whg_htm1": 833, "who_htm1": 833, "ft": 833, "ot": 833, "reliabl": 833, "scalabl": [833, 843, 859, 860], "sacrific": 833, "hear": 833, "virtu": [833, 851], "pure_ivi": 833, "pure_torch": 833, "unclean": 833, "wx": 833, "temp": 833, "ivy_func": 833, "emphas": 833, "torchscript": [833, 841, 861], "example_input": 833, "static_argnum": [833, 847], "static_argnam": [833, 847], "primit": [834, 839, 852, 854], "upcom": 834, "hierarch": [834, 836, 837, 854], "arraywithactiv": 835, "arraywithcr": 835, "arraywithdatatyp": 835, "arraywithdevic": 835, "arraywithgener": 835, "arraywithgradi": 835, "arraywithimag": 835, "arraywithlay": 835, "arraywithlinearalgebra": 835, "arraywithloss": 835, "arraywithmanipul": 835, "arraywithnorm": 835, "arraywithrandom": 835, "arraywithsearch": 835, "arraywithset": 835, "arraywithsort": 835, "arraywithstatist": 835, "arraywithutil": 835, "_init": 835, "_size": 835, "_devic": 835, "_dev_str": 835, "_pre_repr": 835, "_post_repr": 835, "framework_str": 835, "pypep8nam": 835, "immut": 835, "claim": 835, "_native_wrapp": 835, "genuin": 835, "some_method": 835, "rewritten": 835, "littl": [835, 843, 856], "wonder": [835, 843, 845], "compartment": 835, "newshap": 835, "new_shap": 835, "tidi": 835, "crystal": 835, "ton": 836, "ado": [836, 837], "soup": 836, "walk": [836, 837], "cnt": 836, "3333335": 836, "autocomplet": 836, "midwai": 836, "agent": 836, "total_spe": 836, "total_height": 836, "total_width": 836, "ag": 836, "tot": 836, "total_": 836, "total_h": 836, "cnt0": 836, "cnt1": 836, "diff_0": 836, "diff_1": 836, "config0": 836, "config1": 836, "l0": 836, "decoder__l0": 836, "decoder__l1": 836, "encoder__l0": 836, "encoder__l1": 836, "l0__b": 836, "l0__w": 836, "l1__b": 836, "l1__w": 836, "printabl": 836, "foresight": 836, "untidili": 836, "update_ag": 836, "normalize_img": 836, "img_max": 836, "reduce_max": 836, "img_min": 836, "reduce_min": 836, "img_rang": 836, "agent_posit": 836, "agent_veloc": 836, "agent_cam_front_rgb": 836, "agent_cam_front_depth": 836, "agent_cam_rear_rgb": 836, "agent_cam_rear_depth": 836, "agent_cam_lidar": 836, "camera": 836, "front_rgb": 836, "front_depth": 836, "rear_rgb": 836, "rear_depth": 836, "lidar": 836, "rgb": 836, "rear": 836, "veloc": 836, "cam": 836, "cam_max": 836, "cam_min": 836, "cam_rang": 836, "five": 836, "allud": [836, 844], "perman": 836, "thread": [836, 854], "straightforward": 836, "dataload": 836, "_cnt": 836, "img_": 836, "_dataset_s": 836, "_batch_siz": 836, "_count": [836, 837], "__next__": 836, "img_fnam": 836, "loaded_img": 836, "batch_slic": 836, "0145": 836, "addbackward0": 836, "_create_vari": 837, "_input_channel": 837, "_output_channel": 837, "_w_shape": 837, "_b_shape": 837, "_with_bia": 837, "764": 837, "872": 837, "211": 837, "439": 837, "nightmar": 837, "overcom": 837, "v1": 837, "key0": 837, "linear3": 837, "v2": 837, "preced": [837, 844], "_w_init": 837, "_b_init": 837, "misnom": 837, "saw": 837, "_beta1": 837, "_beta2": 837, "_epsilon": 837, "_mw": 837, "_vw": 837, "_first_pass": 837, "_should_trac": 837, "new_v": 837, "_lr": 837, "_inplac": 837, "_stop_gradi": 837, "sparse_funct": 838, "vital": [838, 843], "_linear": 838, "jax_graph": 838, "to_backend": 838, "thinli": 838, "to_haiku_modul": 838, "loss_fn_t": 838, "without_apply_rng": 838, "update_rul": 838, "tree_multimap": 838, "trax": [838, 845], "objax": [838, 845], "matur": [839, 844, 854], "doubt": 839, "grate": 839, "probe": 839, "lock": 839, "gold": 839, "dex": 839, "tricki": [839, 841], "predictor": 839, "tight": 839, "dispatch": [839, 854, 857], "ast": 839, "autodiff": 839, "shine": 839, "merci": 839, "compet": [839, 854], "parallelis": 839, "spmd": 839, "mixtur": 839, "expert": 839, "sophist": 839, "depart": 839, "hundr": 839, "thousand": 839, "broadli": [839, 860], "supplementari": 839, "reusabl": [839, 852, 854], "fanci": [839, 854], "fusion": [839, 858], "lose": 839, "pmap": 839, "eventu": 839, "supplement": 839, "backdoor": 839, "callback": 839, "door": 839, "somewhat": [839, 854], "outsourc": 839, "ivy_root": 840, "pem": 840, "api_kei": 840, "asap": 840, "nail": 841, "scientist": 841, "correl": 841, "collabor": [842, 843, 844], "consortium": [842, 844], "grown": 843, "rapidli": 843, "shareabl": 843, "outdat": 843, "newest": 843, "prototyp": [843, 854], "obsolet": [843, 845], "invent": 843, "simultan": [843, 845], "runner": 843, "principl": [843, 852, 854, 857], "2006": 843, "cloth": 843, "forgiven": 844, "eyebrow": 844, "somehow": 844, "industri": [844, 854, 856], "funni": 844, "comic": 844, "charger": 844, "instant": 844, "contrari": 844, "bumpi": 844, "road": 844, "technologi": [844, 852, 856], "pcie": 844, "motherboard": 844, "raid": 844, "bluetooth": 844, "wireless": 844, "btx": 844, "sata": 844, "tcp": 844, "ip": 844, "smtp": 844, "send": [844, 859], "gmail": 844, "outlook": 844, "innov": 844, "growth": [844, 857], "necess": 844, "2015": [844, 854], "aros": 844, "mission": [844, 856], "ourselv": [844, 860], "quansight": [844, 860], "compani": [844, 850], "apach": [844, 856, 860], "onnx": [844, 852, 860], "cupi": [844, 854, 861], "modin": 844, "spyder": 844, "octoml": [844, 860], "sponsor": 844, "lg": 844, "electron": 844, "shaw": 844, "pursuit": 844, "complianc": 844, "convinc": 844, "celebr": 844, "abund": 845, "streamlin": [845, 857], "awesom": 845, "love": 845, "slew": 845, "inevit": [845, 855], "erron": 845, "poor": 845, "spin": 845, "sake": 845, "wouldn": 845, "frantic": 845, "lucid": 845, "honk": 845, "hasn": 845, "spend": [845, 854], "sonnet": 845, "trainer": [845, 861], "quo": 845, "dopamin": 845, "ignit": 845, "catalyst": 845, "lightn": 845, "fastai": 845, "publicli": [847, 848, 849], "logger": 847, "arg_stateful_idx": 847, "kwarg_stateful_idx": 847, "include_gener": 847, "array_cach": 847, "return_backend_traced_fn": 847, "lazygraph": [847, 848, 849], "sum_j": 847, "traced_fn": 847, "impos": 847, "comp_func": 847, "trade": 847, "bake": 847, "cont": 847, "new_attribut": 847, "resnet50": 847, "breed": 847, "autoimageprocessor": [847, 848], "resnetforimageclassif": [847, 848], "traced_graph": 847, "predicted_label": 847, "debug_mod": 848, "rough": 848, "transformed_with_st": 848, "bigger": 848, "hf": 848, "tf_model": 848, "tf_input": 848, "transpile_kwarg": 849, "transpiled_func": 849, "unified_func": 849, "rwork": 850, "vendor": [850, 856], "complimentari": [850, 860], "acycl": [850, 855], "insert_numb": 851, "insert_t": 851, "scaffold": [852, 860], "heart": 852, "toolchain": [852, 857], "assembli": [852, 859, 860], "idl": 852, "middl": 852, "emit": 852, "gnu": [852, 857], "broader": 852, "heterogen": 852, "aid": 852, "coprocessor": 852, "programm": [852, 859], "gate": 852, "onednn": 852, "sit": [852, 855, 860], "tandem": 852, "possess": 852, "khrono": [853, 859], "appl": 853, "coremltool": 853, "albeit": 853, "promin": 854, "abbrevi": 854, "laboratori": 854, "proprietari": [854, 858, 859], "mathwork": 854, "commerci": 854, "1984": 854, "toolbox": 854, "mupad": 854, "simulink": 854, "graphic": [854, 858, 859], "simul": 854, "million": [854, 857], "worldwid": 854, "scienc": [854, 856], "econom": 854, "2001": 854, "od": 854, "solver": 854, "cython": 854, "friendli": 854, "2002": 854, "lua": 854, "luajit": 854, "idiap": 854, "epfl": 854, "2005": 854, "numarrai": 854, "cpython": 854, "partli": 854, "2007": 854, "forest": 854, "boost": 854, "dbscan": 854, "inbuilt": 854, "esqu": 854, "aesara": 854, "datafram": 854, "2012": 854, "Its": 854, "polymorph": 854, "mpi": 854, "openmp": 854, "glue": 854, "jaot": 854, "nasa": 854, "cern": 854, "climat": 854, "allianc": 854, "influenti": 854, "2014": 854, "scala": 854, "ship": 854, "forgiv": 854, "decemb": 854, "announc": 854, "mainten": 854, "v7": 854, "meaning": 854, "2016": 854, "imper": 854, "amazon": 854, "traction": 854, "cognit": [854, 861], "grade": 854, "dnn": 854, "rnn": 854, "backpropag": 854, "succumb": 854, "came": 854, "monitor": 854, "practition": [854, 858, 859, 860], "hobbyist": 854, "tremend": 854, "ecosystem": 854, "gear": 854, "batteri": 854, "zygot": 854, "jl": 854, "workload": 854, "daggerflux": 854, "frontier": 854, "hessian": 854, "2018": 854, "lightweight": [854, 861], "shortcom": 854, "barrier": 854, "inexperienc": 854, "underdevelop": 854, "fanat": 854, "ounc": 854, "infanc": 854, "emerg": 854, "nich": 854, "mobil": 854, "lite": 854, "enterpris": 854, "reinvent": [854, 856], "inertia": 854, "creator": [854, 856], "paszk": 854, "hi": 854, "bulk": 854, "haskel": 854, "dataflow": 855, "trace_modul": 855, "scriptfunct": 855, "scriptmodul": 855, "fake": 855, "proxi": 855, "graphmodul": 855, "travi": 856, "oliph": 856, "leader": 856, "cornerston": 856, "numba": 856, "numfocu": 856, "pydata": 856, "confer": 856, "consult": 856, "servic": 856, "expertis": 856, "devop": 856, "mlop": 856, "dashboard": 856, "startup": 856, "mlir": [856, 857, 860], "Their": 856, "held": 856, "privileg": 856, "presum": 856, "llvm": [856, 859], "founder": 856, "tvm": [856, 860], "sustain": 856, "empow": 856, "har": 856, "burden": 856, "benchmark": 856, "precompil": 857, "executor": 857, "julia": [857, 860], "fsf": 857, "gpl": 857, "biggest": [857, 860], "throughput": 858, "gpgpu": 858, "classic": 859, "sycl": 859, "dpc": 859, "processor": 859, "maco": 859, "oneapi": 859, "ia": 859, "aka": 859, "xeon": 859, "gen9": 859, "xe": 859, "arria": 859, "gx": 859, "fpga": 859, "lofti": 860, "ambit": 860, "realm": 860, "bedrock": 860, "flux": 860, "bite": 860, "chew": 860, "eagerpi": 860, "tensorli": 860, "thinc": 860, "neuropod": 860, "fx": 860, "retrain": 860, "closer": 860, "greatli": 860, "modular": 860, "anywher": 860, "theano": 861, "plaidml": 861, "partial_svd": 861, "excel": 861, "subsystem": 861}, "objects": {"ivy.Array": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [601, 0, 1, "", "adam_step"], [602, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [415, 0, 1, "", "adjoint"], [753, 0, 1, "", "all"], [521, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [754, 0, 1, "", "any"], [730, 0, 1, "", "argmax"], [731, 0, 1, "", "argmin"], [739, 0, 1, "", "argsort"], [732, 0, 1, "", "argwhere"], [524, 0, 1, "", "array_equal"], [448, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [525, 0, 1, "", "assert_supports_inplace"], [449, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [450, 0, 1, "", "atleast_1d"], [451, 0, 1, "", "atleast_2d"], [452, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [488, 0, 1, "", "batch_norm"], [416, 0, 1, "", "batched_outer"], [495, 0, 1, "", "bernoulli"], [496, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [682, 0, 1, "", "binary_cross_entropy"], [507, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [652, 0, 1, "", "cholesky"], [685, 0, 1, "", "clip"], [527, 0, 1, "", "clip_matrix_norm"], [528, 0, 1, "", "clip_vector_norm"], [456, 0, 1, "", "column_stack"], [686, 0, 1, "", "concat"], [457, 0, 1, "", "concat_from_sequence"], [417, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [687, 0, 1, "", "constant_pad"], [636, 0, 1, "", "conv1d"], [637, 0, 1, "", "conv1d_transpose"], [638, 0, 1, "", "conv2d"], [639, 0, 1, "", "conv2d_transpose"], [640, 0, 1, "", "conv3d"], [641, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [508, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [509, 0, 1, "", "cov"], [653, 0, 1, "", "cross"], [683, 0, 1, "", "cross_entropy"], [510, 0, 1, "", "cummax"], [511, 0, 1, "", "cummin"], [743, 0, 1, "", "cumprod"], [744, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [531, 0, 1, "", "default"], [234, 0, 1, "", "deg2rad"], [644, 0, 1, "", "depthwise_conv2d"], [654, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [655, 0, 1, "", "diag"], [418, 0, 1, "", "diagflat"], [656, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [497, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [419, 0, 1, "", "dot"], [645, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [458, 0, 1, "", "dsplit"], [459, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [420, 0, 1, "", "eig"], [658, 0, 1, "", "eigh"], [421, 0, 1, "", "eigh_tridiagonal"], [422, 0, 1, "", "eigvals"], [659, 0, 1, "", "eigvalsh"], [532, 0, 1, "", "einops_rearrange"], [533, 0, 1, "", "einops_reduce"], [534, 0, 1, "", "einops_repeat"], [745, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [535, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [460, 0, 1, "", "expand"], [688, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [396, 0, 1, "", "fft2"], [461, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [462, 0, 1, "", "flatten"], [689, 0, 1, "", "flip"], [463, 0, 1, "", "fliplr"], [464, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [465, 0, 1, "", "fold"], [536, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [131, 0, 1, "", "full_like"], [498, 0, 1, "", "gamma"], [539, 0, 1, "", "gather"], [540, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [423, 0, 1, "", "general_inner_product"], [543, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [605, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [489, 0, 1, "", "group_norm"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [545, 0, 1, "", "has_nans"], [466, 0, 1, "", "heaviside"], [424, 0, 1, "", "higher_order_moment"], [512, 0, 1, "", "histogram"], [467, 0, 1, "", "hsplit"], [468, 0, 1, "", "hstack"], [441, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [469, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [513, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [425, 0, 1, "", "initialize_tucker"], [660, 0, 1, "", "inner"], [547, 0, 1, "", "inplace_decrement"], [548, 0, 1, "", "inplace_increment"], [549, 0, 1, "", "inplace_update"], [490, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [661, 0, 1, "", "inv"], [551, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [552, 0, 1, "", "is_ivy_array"], [553, 0, 1, "", "is_ivy_container"], [555, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [556, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [558, 0, 1, "", "itemsize"], [442, 0, 1, "", "kl_div"], [427, 0, 1, "", "kron"], [443, 0, 1, "", "l1_loss"], [491, 0, 1, "", "l1_normalize"], [492, 0, 1, "", "l2_normalize"], [607, 0, 1, "", "lamb_update"], [608, 0, 1, "", "lars_update"], [723, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [502, 0, 1, "", "lexsort"], [347, 0, 1, "", "lgamma"], [646, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [444, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [494, 0, 1, "", "lp_normalize"], [647, 0, 1, "", "lstm_update"], [429, 0, 1, "", "make_svd_non_negative"], [663, 0, 1, "", "matmul"], [470, 0, 1, "", "matricize"], [430, 0, 1, "", "matrix_exp"], [664, 0, 1, "", "matrix_norm"], [665, 0, 1, "", "matrix_power"], [666, 0, 1, "", "matrix_rank"], [667, 0, 1, "", "matrix_transpose"], [746, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [747, 0, 1, "", "mean"], [514, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [748, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [431, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [471, 0, 1, "", "moveaxis"], [740, 0, 1, "", "msort"], [432, 0, 1, "", "multi_dot"], [648, 0, 1, "", "multi_head_attention"], [433, 0, 1, "", "multi_mode_dot"], [724, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [515, 0, 1, "", "nanmean"], [516, 0, 1, "", "nanmedian"], [517, 0, 1, "", "nanmin"], [518, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [733, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [609, 0, 1, "", "optimizer_update"], [520, 0, 1, "", "optional_get_element"], [668, 0, 1, "", "outer"], [472, 0, 1, "", "pad"], [473, 0, 1, "", "partial_fold"], [474, 0, 1, "", "partial_tensor_to_vec"], [434, 0, 1, "", "partial_tucker"], [475, 0, 1, "", "partial_unfold"], [476, 0, 1, "", "partial_vec_to_tensor"], [690, 0, 1, "", "permute_dims"], [669, 0, 1, "", "pinv"], [499, 0, 1, "", "poisson"], [445, 0, 1, "", "poisson_nll_loss"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [749, 0, 1, "", "prod"], [477, 0, 1, "", "put_along_axis"], [670, 0, 1, "", "qr"], [519, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [725, 0, 1, "", "randint"], [726, 0, 1, "", "random_normal"], [727, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [691, 0, 1, "", "repeat"], [692, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [693, 0, 1, "", "roll"], [478, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [651, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [563, 0, 1, "", "scatter_flat"], [564, 0, 1, "", "scatter_nd"], [741, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [577, 0, 1, "", "shape"], [729, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [413, 0, 1, "", "sliding_window"], [671, 0, 1, "", "slogdet"], [446, 0, 1, "", "smooth_l1_loss"], [447, 0, 1, "", "soft_margin_loss"], [479, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [672, 0, 1, "", "solve"], [742, 0, 1, "", "sort"], [684, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [694, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [695, 0, 1, "", "squeeze"], [578, 0, 1, "", "stable_divide"], [579, 0, 1, "", "stable_pow"], [696, 0, 1, "", "stack"], [750, 0, 1, "", "std"], [414, 0, 1, "", "stft"], [610, 0, 1, "", "stop_gradient"], [580, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [751, 0, 1, "", "sum"], [581, 0, 1, "", "supports_inplace_updates"], [673, 0, 1, "", "svd"], [436, 0, 1, "", "svd_flip"], [674, 0, 1, "", "svdvals"], [697, 0, 1, "", "swapaxes"], [480, 0, 1, "", "take"], [481, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [437, 0, 1, "", "tensor_train"], [675, 0, 1, "", "tensordot"], [676, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [698, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [583, 0, 1, "", "to_list"], [585, 0, 1, "", "to_numpy"], [586, 0, 1, "", "to_scalar"], [482, 0, 1, "", "top_k"], [677, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [323, 0, 1, "", "trilu"], [483, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [438, 0, 1, "", "truncated_svd"], [439, 0, 1, "", "tt_matrix_to_tensor"], [440, 0, 1, "", "tucker"], [484, 0, 1, "", "unfold"], [735, 0, 1, "", "unique_all"], [485, 0, 1, "", "unique_consecutive"], [736, 0, 1, "", "unique_counts"], [737, 0, 1, "", "unique_inverse"], [738, 0, 1, "", "unique_values"], [500, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [699, 0, 1, "", "unstack"], [599, 0, 1, "", "value_is_nan"], [678, 0, 1, "", "vander"], [752, 0, 1, "", "var"], [679, 0, 1, "", "vecdot"], [680, 0, 1, "", "vector_norm"], [681, 0, 1, "", "vector_to_skew_symmetric_matrix"], [486, 0, 1, "", "vsplit"], [487, 0, 1, "", "vstack"], [734, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [700, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy": [[620, 1, 1, "", "ArrayMode"], [616, 1, 1, "", "DefaultComplexDtype"], [617, 1, 1, "", "DefaultDevice"], [616, 1, 1, "", "DefaultDtype"], [616, 1, 1, "", "DefaultFloatDtype"], [616, 1, 1, "", "DefaultIntDtype"], [616, 1, 1, "", "DefaultUintDtype"], [379, 1, 1, "", "NativeSparseArray"], [615, 1, 1, "", "NestedSequence"], [620, 1, 1, "", "PreciseMode"], [617, 1, 1, "", "Profiler"], [379, 1, 1, "", "SparseArray"], [215, 2, 1, "", "abs"], [216, 2, 1, "", "acos"], [217, 2, 1, "", "acosh"], [621, 2, 1, "", "adam_step"], [621, 2, 1, "", "adam_update"], [382, 2, 1, "", "adaptive_avg_pool1d"], [383, 2, 1, "", "adaptive_avg_pool2d"], [384, 2, 1, "", "adaptive_max_pool2d"], [218, 2, 1, "", "add"], [369, 2, 1, "", "adjoint"], [634, 2, 1, "", "all"], [620, 2, 1, "", "all_equal"], [627, 2, 1, "", "all_nested_indices"], [365, 2, 1, "", "allclose"], [365, 2, 1, "", "amax"], [365, 2, 1, "", "amin"], [219, 2, 1, "", "angle"], [634, 2, 1, "", "any"], [615, 2, 1, "", "arange"], [385, 2, 1, "", "area_interpolate"], [620, 2, 1, "", "arg_info"], [620, 2, 1, "", "arg_names"], [630, 2, 1, "", "argmax"], [630, 2, 1, "", "argmin"], [632, 2, 1, "", "argsort"], [630, 2, 1, "", "argwhere"], [615, 2, 1, "", "array"], [620, 2, 1, "", "array_equal"], [188, 2, 1, "", "as_ivy_dev"], [616, 2, 1, "", "as_ivy_dtype"], [189, 2, 1, "", "as_native_dev"], [616, 2, 1, "", "as_native_dtype"], [371, 2, 1, "", "as_strided"], [615, 2, 1, "", "asarray"], [220, 2, 1, "", "asin"], [221, 2, 1, "", "asinh"], [620, 2, 1, "", "assert_supports_inplace"], [371, 2, 1, "", "associative_scan"], [616, 2, 1, "", "astype"], [222, 2, 1, "", "atan"], [223, 2, 1, "", "atan2"], [224, 2, 1, "", "atanh"], [371, 2, 1, "", "atleast_1d"], [371, 2, 1, "", "atleast_2d"], [371, 2, 1, "", "atleast_3d"], [386, 2, 1, "", "avg_pool1d"], [387, 2, 1, "", "avg_pool2d"], [388, 2, 1, "", "avg_pool3d"], [374, 2, 1, "", "batch_norm"], [369, 2, 1, "", "batched_outer"], [375, 2, 1, "", "bernoulli"], [375, 2, 1, "", "beta"], [365, 2, 1, "", "binarizer"], [624, 2, 1, "", "binary_cross_entropy"], [380, 2, 1, "", "bincount"], [367, 2, 1, "", "bind_custom_gradient_function"], [225, 2, 1, "", "bitwise_and"], [226, 2, 1, "", "bitwise_invert"], [227, 2, 1, "", "bitwise_left_shift"], [228, 2, 1, "", "bitwise_or"], [229, 2, 1, "", "bitwise_right_shift"], [230, 2, 1, "", "bitwise_xor"], [306, 2, 1, "", "blackman_window"], [616, 2, 1, "", "broadcast_arrays"], [371, 2, 1, "", "broadcast_shapes"], [616, 2, 1, "", "broadcast_to"], [620, 2, 1, "", "cache_fn"], [616, 2, 1, "", "can_cast"], [231, 2, 1, "", "ceil"], [290, 2, 1, "", "celu"], [616, 2, 1, "", "check_float"], [371, 2, 1, "", "check_scalar"], [623, 2, 1, "", "cholesky"], [371, 2, 1, "", "choose"], [190, 2, 1, "", "clear_cached_mem_on_dev"], [625, 2, 1, "", "clip"], [620, 2, 1, "", "clip_matrix_norm"], [620, 2, 1, "", "clip_vector_norm"], [616, 2, 1, "", "closest_valid_dtype"], [614, 2, 1, "", "cmp_is"], [614, 2, 1, "", "cmp_isnot"], [371, 2, 1, "", "column_stack"], [625, 2, 1, "", "concat"], [371, 2, 1, "", "concat_from_sequence"], [369, 2, 1, "", "cond"], [365, 2, 1, "", "conj"], [625, 2, 1, "", "constant_pad"], [620, 2, 1, "", "container_types"], [635, 2, 1, "", "conv"], [636, 2, 1, "", "conv1d"], [637, 2, 1, "", "conv1d_transpose"], [638, 2, 1, "", "conv2d"], [639, 2, 1, "", "conv2d_transpose"], [640, 2, 1, "", "conv3d"], [641, 2, 1, "", "conv3d_transpose"], [642, 2, 1, "", "conv_general_dilated"], [643, 2, 1, "", "conv_general_transpose"], [615, 2, 1, "", "copy_array"], [627, 2, 1, "", "copy_nest"], [365, 2, 1, "", "copysign"], [380, 2, 1, "", "corrcoef"], [232, 2, 1, "", "cos"], [233, 2, 1, "", "cosh"], [365, 2, 1, "", "count_nonzero"], [380, 2, 1, "", "cov"], [623, 2, 1, "", "cross"], [624, 2, 1, "", "cross_entropy"], [380, 2, 1, "", "cummax"], [380, 2, 1, "", "cummin"], [633, 2, 1, "", "cumprod"], [633, 2, 1, "", "cumsum"], [620, 2, 1, "", "current_backend_str"], [389, 2, 1, "", "dct"], [620, 2, 1, "", "default"], [616, 2, 1, "", "default_complex_dtype"], [191, 2, 1, "", "default_device"], [616, 2, 1, "", "default_dtype"], [616, 2, 1, "", "default_float_dtype"], [616, 2, 1, "", "default_int_dtype"], [616, 2, 1, "", "default_uint_dtype"], [234, 2, 1, "", "deg2rad"], [622, 2, 1, "", "depthwise_conv2d"], [623, 2, 1, "", "det"], [192, 2, 1, "", "dev"], [193, 2, 1, "", "dev_util"], [390, 2, 1, "", "dft"], [623, 2, 1, "", "diag"], [369, 2, 1, "", "diagflat"], [623, 2, 1, "", "diagonal"], [365, 2, 1, "", "diff"], [365, 2, 1, "", "digamma"], [375, 2, 1, "", "dirichlet"], [235, 2, 1, "", "divide"], [369, 2, 1, "", "dot"], [622, 2, 1, "", "dropout"], [391, 2, 1, "", "dropout1d"], [392, 2, 1, "", "dropout2d"], [393, 2, 1, "", "dropout3d"], [371, 2, 1, "", "dsplit"], [371, 2, 1, "", "dstack"], [616, 2, 1, "", "dtype"], [616, 2, 1, "", "dtype_bits"], [627, 2, 1, "", "duplicate_array_index_chains"], [613, 6, 1, "", "e"], [369, 2, 1, "", "eig"], [623, 2, 1, "", "eigh"], [369, 2, 1, "", "eigh_tridiagonal"], [369, 2, 1, "", "eigvals"], [623, 2, 1, "", "eigvalsh"], [620, 2, 1, "", "einops_rearrange"], [620, 2, 1, "", "einops_reduce"], [620, 2, 1, "", "einops_repeat"], [633, 2, 1, "", "einsum"], [291, 2, 1, "", "elu"], [394, 2, 1, "", "embedding"], [615, 2, 1, "", "empty"], [615, 2, 1, "", "empty_like"], [236, 2, 1, "", "equal"], [237, 2, 1, "", "erf"], [365, 2, 1, "", "erfc"], [621, 2, 1, "", "execute_with_gradients"], [620, 2, 1, "", "exists"], [238, 2, 1, "", "exp"], [239, 2, 1, "", "exp2"], [371, 2, 1, "", "expand"], [625, 2, 1, "", "expand_dims"], [240, 2, 1, "", "expm1"], [615, 2, 1, "", "eye"], [307, 2, 1, "", "eye_like"], [395, 2, 1, "", "fft"], [396, 2, 1, "", "fft2"], [371, 2, 1, "", "fill_diagonal"], [616, 2, 1, "", "finfo"], [365, 2, 1, "", "fix"], [371, 2, 1, "", "flatten"], [625, 2, 1, "", "flip"], [371, 2, 1, "", "fliplr"], [371, 2, 1, "", "flipud"], [365, 2, 1, "", "float_power"], [241, 2, 1, "", "floor"], [242, 2, 1, "", "floor_divide"], [365, 2, 1, "", "fmax"], [243, 2, 1, "", "fmin"], [244, 2, 1, "", "fmod"], [371, 2, 1, "", "fold"], [626, 2, 1, "", "fomaml_step"], [614, 2, 1, "", "for_loop"], [620, 2, 1, "", "fourier_encode"], [365, 2, 1, "", "frexp"], [615, 2, 1, "", "from_dlpack"], [615, 2, 1, "", "frombuffer"], [615, 2, 1, "", "full"], [615, 2, 1, "", "full_like"], [194, 2, 1, "", "function_supported_devices"], [620, 2, 1, "", "function_supported_devices_and_dtypes"], [616, 2, 1, "", "function_supported_dtypes"], [195, 2, 1, "", "function_unsupported_devices"], [620, 2, 1, "", "function_unsupported_devices_and_dtypes"], [616, 2, 1, "", "function_unsupported_dtypes"], [375, 2, 1, "", "gamma"], [620, 2, 1, "", "gather"], [620, 2, 1, "", "gather_nd"], [245, 2, 1, "", "gcd"], [612, 2, 1, "", "gelu"], [369, 2, 1, "", "general_inner_product"], [397, 2, 1, "", "generate_einsum_equation"], [620, 2, 1, "", "get_all_arrays_in_memory"], [196, 2, 1, "", "get_all_ivy_arrays_on_dev"], [398, 2, 1, "", "get_interpolate_kernel"], [620, 2, 1, "", "get_item"], [620, 2, 1, "", "get_num_dims"], [620, 2, 1, "", "get_referrers_recursive"], [197, 2, 1, "", "gpu_is_available"], [621, 2, 1, "", "grad"], [365, 2, 1, "", "gradient"], [621, 2, 1, "", "gradient_descent_update"], [246, 2, 1, "", "greater"], [247, 2, 1, "", "greater_equal"], [374, 2, 1, "", "group_norm"], [308, 2, 1, "", "hamming_window"], [198, 2, 1, "", "handle_soft_device_variable"], [309, 2, 1, "", "hann_window"], [292, 2, 1, "", "hardshrink"], [612, 2, 1, "", "hardswish"], [293, 2, 1, "", "hardtanh"], [620, 2, 1, "", "has_nans"], [371, 2, 1, "", "heaviside"], [369, 2, 1, "", "higher_order_moment"], [380, 2, 1, "", "histogram"], [371, 2, 1, "", "hsplit"], [371, 2, 1, "", "hstack"], [370, 2, 1, "", "huber_loss"], [365, 2, 1, "", "hypot"], [371, 2, 1, "", "i0"], [399, 2, 1, "", "idct"], [614, 2, 1, "", "if_else"], [400, 2, 1, "", "ifft"], [401, 2, 1, "", "ifftn"], [380, 2, 1, "", "igamma"], [616, 2, 1, "", "iinfo"], [248, 2, 1, "", "imag"], [627, 2, 1, "", "index_nest"], [310, 2, 1, "", "indices"], [613, 6, 1, "", "inf"], [616, 2, 1, "", "infer_default_dtype"], [369, 2, 1, "", "initialize_tucker"], [623, 2, 1, "", "inner"], [620, 2, 1, "", "inplace_arrays_supported"], [620, 2, 1, "", "inplace_decrement"], [620, 2, 1, "", "inplace_increment"], [620, 2, 1, "", "inplace_update"], [620, 2, 1, "", "inplace_variables_supported"], [627, 2, 1, "", "insert_into_nest_at_index"], [627, 2, 1, "", "insert_into_nest_at_indices"], [374, 2, 1, "", "instance_norm"], [402, 2, 1, "", "interp"], [403, 2, 1, "", "interpolate"], [623, 2, 1, "", "inv"], [616, 2, 1, "", "invalid_dtype"], [378, 2, 1, "", "invert_permutation"], [620, 2, 1, "", "is_array"], [616, 2, 1, "", "is_bool_dtype"], [616, 2, 1, "", "is_complex_dtype"], [616, 2, 1, "", "is_float_dtype"], [616, 2, 1, "", "is_hashable_dtype"], [616, 2, 1, "", "is_int_dtype"], [620, 2, 1, "", "is_ivy_array"], [620, 2, 1, "", "is_ivy_container"], [620, 2, 1, "", "is_ivy_nested_array"], [379, 2, 1, "", "is_ivy_sparse_array"], [620, 2, 1, "", "is_native_array"], [616, 2, 1, "", "is_native_dtype"], [379, 2, 1, "", "is_native_sparse_array"], [616, 2, 1, "", "is_uint_dtype"], [365, 2, 1, "", "isclose"], [249, 2, 1, "", "isfinite"], [620, 2, 1, "", "isin"], [250, 2, 1, "", "isinf"], [251, 2, 1, "", "isnan"], [252, 2, 1, "", "isreal"], [620, 2, 1, "", "isscalar"], [620, 2, 1, "", "itemsize"], [621, 2, 1, "", "jac"], [367, 2, 1, "", "jvp"], [311, 2, 1, "", "kaiser_bessel_derived_window"], [312, 2, 1, "", "kaiser_window"], [369, 2, 1, "", "khatri_rao"], [370, 2, 1, "", "kl_div"], [369, 2, 1, "", "kron"], [369, 2, 1, "", "kronecker"], [370, 2, 1, "", "l1_loss"], [374, 2, 1, "", "l1_normalize"], [374, 2, 1, "", "l2_normalize"], [621, 2, 1, "", "lamb_update"], [621, 2, 1, "", "lars_update"], [628, 2, 1, "", "layer_norm"], [253, 2, 1, "", "lcm"], [365, 2, 1, "", "ldexp"], [612, 2, 1, "", "leaky_relu"], [365, 2, 1, "", "lerp"], [254, 2, 1, "", "less"], [255, 2, 1, "", "less_equal"], [378, 2, 1, "", "lexsort"], [365, 2, 1, "", "lgamma"], [622, 2, 1, "", "linear"], [615, 2, 1, "", "linspace"], [634, 2, 1, "", "load"], [374, 2, 1, "", "local_response_norm"], [256, 2, 1, "", "log"], [257, 2, 1, "", "log10"], [258, 2, 1, "", "log1p"], [259, 2, 1, "", "log2"], [370, 2, 1, "", "log_poisson_loss"], [612, 2, 1, "", "log_softmax"], [260, 2, 1, "", "logaddexp"], [261, 2, 1, "", "logaddexp2"], [262, 2, 1, "", "logical_and"], [263, 2, 1, "", "logical_not"], [264, 2, 1, "", "logical_or"], [265, 2, 1, "", "logical_xor"], [294, 2, 1, "", "logit"], [295, 2, 1, "", "logsigmoid"], [615, 2, 1, "", "logspace"], [374, 2, 1, "", "lp_normalize"], [622, 2, 1, "", "lstm_update"], [623, 2, 1, "", "lu_factor"], [369, 2, 1, "", "make_svd_non_negative"], [626, 2, 1, "", "maml_step"], [627, 2, 1, "", "map"], [627, 2, 1, "", "map_nest_at_index"], [627, 2, 1, "", "map_nest_at_indices"], [620, 2, 1, "", "match_kwargs"], [623, 2, 1, "", "matmul"], [371, 2, 1, "", "matricize"], [369, 2, 1, "", "matrix_exp"], [623, 2, 1, "", "matrix_norm"], [623, 2, 1, "", "matrix_power"], [623, 2, 1, "", "matrix_rank"], [623, 2, 1, "", "matrix_transpose"], [633, 2, 1, "", "max"], [404, 2, 1, "", "max_pool1d"], [405, 2, 1, "", "max_pool2d"], [406, 2, 1, "", "max_pool3d"], [407, 2, 1, "", "max_unpool1d"], [266, 2, 1, "", "maximum"], [633, 2, 1, "", "mean"], [380, 2, 1, "", "median"], [313, 2, 1, "", "mel_weight_matrix"], [615, 2, 1, "", "meshgrid"], [633, 2, 1, "", "min"], [267, 2, 1, "", "minimum"], [612, 2, 1, "", "mish"], [369, 2, 1, "", "mode_dot"], [365, 2, 1, "", "modf"], [371, 2, 1, "", "moveaxis"], [632, 2, 1, "", "msort"], [369, 2, 1, "", "multi_dot"], [622, 2, 1, "", "multi_head_attention"], [627, 2, 1, "", "multi_index_nest"], [369, 2, 1, "", "multi_mode_dot"], [629, 2, 1, "", "multinomial"], [268, 2, 1, "", "multiply"], [620, 2, 1, "", "multiprocessing"], [613, 6, 1, "", "nan"], [269, 2, 1, "", "nan_to_num"], [380, 2, 1, "", "nanmean"], [380, 2, 1, "", "nanmedian"], [380, 2, 1, "", "nanmin"], [380, 2, 1, "", "nanprod"], [365, 2, 1, "", "nansum"], [615, 2, 1, "", "native_array"], [379, 2, 1, "", "native_sparse_array"], [379, 2, 1, "", "native_sparse_array_to_indices_values_and_shape"], [314, 2, 1, "", "ndenumerate"], [315, 2, 1, "", "ndindex"], [408, 2, 1, "", "nearest_interpolate"], [270, 2, 1, "", "negative"], [627, 2, 1, "", "nested_any"], [627, 2, 1, "", "nested_argwhere"], [627, 2, 1, "", "nested_map"], [627, 2, 1, "", "nested_multi_map"], [613, 6, 1, "", "newaxis"], [365, 2, 1, "", "nextafter"], [622, 2, 1, "", "nms"], [630, 2, 1, "", "nonzero"], [271, 2, 1, "", "not_equal"], [620, 2, 1, "", "num_arrays_in_memory"], [199, 2, 1, "", "num_cpu_cores"], [200, 2, 1, "", "num_gpus"], [201, 2, 1, "", "num_ivy_arrays_on_dev"], [615, 2, 1, "", "one_hot"], [615, 2, 1, "", "ones"], [615, 2, 1, "", "ones_like"], [621, 2, 1, "", "optimizer_update"], [381, 2, 1, "", "optional_get_element"], [623, 2, 1, "", "outer"], [371, 2, 1, "", "pad"], [371, 2, 1, "", "partial_fold"], [371, 2, 1, "", "partial_tensor_to_vec"], [369, 2, 1, "", "partial_tucker"], [371, 2, 1, "", "partial_unfold"], [371, 2, 1, "", "partial_vec_to_tensor"], [202, 2, 1, "", "percent_used_mem_on_dev"], [625, 2, 1, "", "permute_dims"], [613, 6, 1, "", "pi"], [623, 2, 1, "", "pinv"], [375, 2, 1, "", "poisson"], [370, 2, 1, "", "poisson_nll_loss"], [316, 2, 1, "", "polyval"], [409, 2, 1, "", "pool"], [272, 2, 1, "", "positive"], [273, 2, 1, "", "pow"], [296, 2, 1, "", "prelu"], [620, 2, 1, "", "print_all_arrays_in_memory"], [203, 2, 1, "", "print_all_ivy_arrays_on_dev"], [633, 2, 1, "", "prod"], [616, 2, 1, "", "promote_types"], [616, 2, 1, "", "promote_types_of_inputs"], [627, 2, 1, "", "prune_empty"], [627, 2, 1, "", "prune_nest_at_index"], [627, 2, 1, "", "prune_nest_at_indices"], [371, 2, 1, "", "put_along_axis"], [623, 2, 1, "", "qr"], [380, 2, 1, "", "quantile"], [274, 2, 1, "", "rad2deg"], [629, 2, 1, "", "randint"], [317, 2, 1, "", "random_cp"], [629, 2, 1, "", "random_normal"], [318, 2, 1, "", "random_parafac2"], [319, 2, 1, "", "random_tr"], [320, 2, 1, "", "random_tt"], [321, 2, 1, "", "random_tucker"], [629, 2, 1, "", "random_uniform"], [275, 2, 1, "", "real"], [276, 2, 1, "", "reciprocal"], [366, 2, 1, "", "reduce"], [410, 2, 1, "", "reduce_window"], [612, 2, 1, "", "relu"], [297, 2, 1, "", "relu6"], [277, 2, 1, "", "remainder"], [625, 2, 1, "", "repeat"], [626, 2, 1, "", "reptile_step"], [625, 2, 1, "", "reshape"], [616, 2, 1, "", "result_type"], [411, 2, 1, "", "rfft"], [412, 2, 1, "", "rfftn"], [622, 2, 1, "", "roi_align"], [625, 2, 1, "", "roll"], [371, 2, 1, "", "rot90"], [278, 2, 1, "", "round"], [634, 2, 1, "", "save"], [622, 2, 1, "", "scaled_dot_product_attention"], [298, 2, 1, "", "scaled_tanh"], [620, 2, 1, "", "scatter_flat"], [620, 2, 1, "", "scatter_nd"], [632, 2, 1, "", "searchsorted"], [629, 2, 1, "", "seed"], [299, 2, 1, "", "selu"], [620, 2, 1, "", "set_array_mode"], [616, 2, 1, "", "set_default_complex_dtype"], [204, 2, 1, "", "set_default_device"], [616, 2, 1, "", "set_default_dtype"], [616, 2, 1, "", "set_default_float_dtype"], [616, 2, 1, "", "set_default_int_dtype"], [616, 2, 1, "", "set_default_uint_dtype"], [620, 2, 1, "", "set_exception_trace_mode"], [620, 2, 1, "", "set_inplace_mode"], [620, 2, 1, "", "set_item"], [620, 2, 1, "", "set_min_base"], [620, 2, 1, "", "set_min_denominator"], [627, 2, 1, "", "set_nest_at_index"], [627, 2, 1, "", "set_nest_at_indices"], [620, 2, 1, "", "set_nestable_mode"], [620, 2, 1, "", "set_precise_mode"], [620, 2, 1, "", "set_queue_timeout"], [620, 2, 1, "", "set_shape_array_mode"], [620, 2, 1, "", "set_show_func_wrapper_trace_mode"], [205, 2, 1, "", "set_soft_device_mode"], [206, 2, 1, "", "set_split_factor"], [620, 2, 1, "", "set_tmp_dir"], [620, 2, 1, "", "shape"], [629, 2, 1, "", "shuffle"], [612, 2, 1, "", "sigmoid"], [279, 2, 1, "", "sign"], [365, 2, 1, "", "signbit"], [300, 2, 1, "", "silu"], [280, 2, 1, "", "sin"], [365, 2, 1, "", "sinc"], [281, 2, 1, "", "sinh"], [413, 2, 1, "", "sliding_window"], [623, 2, 1, "", "slogdet"], [370, 2, 1, "", "smooth_l1_loss"], [370, 2, 1, "", "soft_margin_loss"], [371, 2, 1, "", "soft_thresholding"], [612, 2, 1, "", "softmax"], [612, 2, 1, "", "softplus"], [301, 2, 1, "", "softshrink"], [612, 2, 1, "", "softsign"], [623, 2, 1, "", "solve"], [369, 2, 1, "", "solve_triangular"], [632, 2, 1, "", "sort"], [624, 2, 1, "", "sparse_cross_entropy"], [365, 2, 1, "", "sparsify_tensor"], [625, 2, 1, "", "split"], [207, 2, 1, "", "split_factor"], [208, 2, 1, "", "split_func_call"], [282, 2, 1, "", "sqrt"], [283, 2, 1, "", "square"], [625, 2, 1, "", "squeeze"], [620, 2, 1, "", "stable_divide"], [620, 2, 1, "", "stable_pow"], [625, 2, 1, "", "stack"], [302, 2, 1, "", "stanh"], [633, 2, 1, "", "std"], [368, 2, 1, "", "stft"], [621, 2, 1, "", "stop_gradient"], [620, 2, 1, "", "strides"], [284, 2, 1, "", "subtract"], [633, 2, 1, "", "sum"], [620, 2, 1, "", "supports_inplace_updates"], [623, 2, 1, "", "svd"], [369, 2, 1, "", "svd_flip"], [623, 2, 1, "", "svdvals"], [625, 2, 1, "", "swapaxes"], [371, 2, 1, "", "take"], [371, 2, 1, "", "take_along_axis"], [285, 2, 1, "", "tan"], [286, 2, 1, "", "tanh"], [303, 2, 1, "", "tanhshrink"], [369, 2, 1, "", "tensor_train"], [623, 2, 1, "", "tensordot"], [623, 2, 1, "", "tensorsolve"], [304, 2, 1, "", "threshold"], [305, 2, 1, "", "thresholded_relu"], [625, 2, 1, "", "tile"], [209, 2, 1, "", "to_device"], [615, 2, 1, "", "to_dlpack"], [620, 2, 1, "", "to_ivy_shape"], [620, 2, 1, "", "to_list"], [620, 2, 1, "", "to_native_shape"], [620, 2, 1, "", "to_numpy"], [620, 2, 1, "", "to_scalar"], [371, 2, 1, "", "top_k"], [210, 2, 1, "", "total_mem_on_dev"], [211, 2, 1, "", "tpu_is_available"], [623, 2, 1, "", "trace"], [847, 2, 1, "", "trace_graph"], [848, 2, 1, "", "transpile"], [287, 2, 1, "", "trapz"], [615, 2, 1, "", "tril"], [362, 2, 1, "", "tril_indices"], [362, 2, 1, "", "trilu"], [371, 2, 1, "", "trim_zeros"], [615, 2, 1, "", "triu"], [615, 2, 1, "", "triu_indices"], [288, 2, 1, "", "trunc"], [289, 2, 1, "", "trunc_divide"], [369, 2, 1, "", "truncated_svd"], [620, 2, 1, "", "try_else_none"], [614, 2, 1, "", "try_except"], [369, 2, 1, "", "tt_matrix_to_tensor"], [369, 2, 1, "", "tucker"], [616, 2, 1, "", "type_promote_arrays"], [371, 2, 1, "", "unfold"], [849, 2, 1, "", "unify"], [631, 2, 1, "", "unique_all"], [371, 2, 1, "", "unique_consecutive"], [631, 2, 1, "", "unique_counts"], [631, 2, 1, "", "unique_inverse"], [631, 2, 1, "", "unique_values"], [376, 2, 1, "", "unravel_index"], [620, 2, 1, "", "unset_array_mode"], [616, 2, 1, "", "unset_default_complex_dtype"], [212, 2, 1, "", "unset_default_device"], [616, 2, 1, "", "unset_default_dtype"], [184, 2, 1, "", "unset_default_float_dtype"], [185, 2, 1, "", "unset_default_int_dtype"], [186, 2, 1, "", "unset_default_uint_dtype"], [620, 2, 1, "", "unset_exception_trace_mode"], [620, 2, 1, "", "unset_inplace_mode"], [620, 2, 1, "", "unset_min_base"], [620, 2, 1, "", "unset_min_denominator"], [620, 2, 1, "", "unset_nestable_mode"], [620, 2, 1, "", "unset_precise_mode"], [620, 2, 1, "", "unset_queue_timeout"], [620, 2, 1, "", "unset_shape_array_mode"], [620, 2, 1, "", "unset_show_func_wrapper_trace_mode"], [213, 2, 1, "", "unset_soft_device_mode"], [620, 2, 1, "", "unset_tmp_dir"], [362, 2, 1, "", "unsorted_segment_mean"], [362, 2, 1, "", "unsorted_segment_min"], [362, 2, 1, "", "unsorted_segment_sum"], [625, 2, 1, "", "unstack"], [214, 2, 1, "", "used_mem_on_dev"], [187, 2, 1, "", "valid_dtype"], [621, 2, 1, "", "value_and_grad"], [620, 2, 1, "", "value_is_nan"], [623, 2, 1, "", "vander"], [633, 2, 1, "", "var"], [623, 2, 1, "", "vecdot"], [623, 2, 1, "", "vector_norm"], [623, 2, 1, "", "vector_to_skew_symmetric_matrix"], [367, 2, 1, "", "vjp"], [620, 2, 1, "", "vmap"], [362, 2, 1, "", "vorbis_window"], [371, 2, 1, "", "vsplit"], [371, 2, 1, "", "vstack"], [630, 2, 1, "", "where"], [614, 2, 1, "", "while_loop"], [365, 2, 1, "", "xlogy"], [625, 2, 1, "", "zero_pad"], [615, 2, 1, "", "zeros"], [615, 2, 1, "", "zeros_like"], [365, 2, 1, "", "zeta"]], "ivy.Container": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [601, 0, 1, "", "adam_step"], [602, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [415, 0, 1, "", "adjoint"], [753, 0, 1, "", "all"], [521, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [754, 0, 1, "", "any"], [730, 0, 1, "", "argmax"], [731, 0, 1, "", "argmin"], [739, 0, 1, "", "argsort"], [732, 0, 1, "", "argwhere"], [524, 0, 1, "", "array_equal"], [448, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [525, 0, 1, "", "assert_supports_inplace"], [449, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [450, 0, 1, "", "atleast_1d"], [451, 0, 1, "", "atleast_2d"], [452, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [488, 0, 1, "", "batch_norm"], [416, 0, 1, "", "batched_outer"], [495, 0, 1, "", "bernoulli"], [496, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [682, 0, 1, "", "binary_cross_entropy"], [507, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [453, 0, 1, "", "broadcast_shapes"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [652, 0, 1, "", "cholesky"], [685, 0, 1, "", "clip"], [527, 0, 1, "", "clip_matrix_norm"], [528, 0, 1, "", "clip_vector_norm"], [456, 0, 1, "", "column_stack"], [686, 0, 1, "", "concat"], [457, 0, 1, "", "concat_from_sequence"], [417, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [687, 0, 1, "", "constant_pad"], [636, 0, 1, "", "conv1d"], [637, 0, 1, "", "conv1d_transpose"], [638, 0, 1, "", "conv2d"], [639, 0, 1, "", "conv2d_transpose"], [640, 0, 1, "", "conv3d"], [641, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [508, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [509, 0, 1, "", "cov"], [653, 0, 1, "", "cross"], [683, 0, 1, "", "cross_entropy"], [510, 0, 1, "", "cummax"], [511, 0, 1, "", "cummin"], [743, 0, 1, "", "cumprod"], [744, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [234, 0, 1, "", "deg2rad"], [644, 0, 1, "", "depthwise_conv2d"], [654, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [655, 0, 1, "", "diag"], [418, 0, 1, "", "diagflat"], [656, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [497, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [419, 0, 1, "", "dot"], [645, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [458, 0, 1, "", "dsplit"], [459, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [420, 0, 1, "", "eig"], [658, 0, 1, "", "eigh"], [421, 0, 1, "", "eigh_tridiagonal"], [422, 0, 1, "", "eigvals"], [659, 0, 1, "", "eigvalsh"], [532, 0, 1, "", "einops_rearrange"], [533, 0, 1, "", "einops_reduce"], [534, 0, 1, "", "einops_repeat"], [745, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [535, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [460, 0, 1, "", "expand"], [688, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [461, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [462, 0, 1, "", "flatten"], [689, 0, 1, "", "flip"], [463, 0, 1, "", "fliplr"], [464, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [465, 0, 1, "", "fold"], [536, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [129, 0, 1, "", "frombuffer"], [131, 0, 1, "", "full_like"], [498, 0, 1, "", "gamma"], [539, 0, 1, "", "gather"], [540, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [423, 0, 1, "", "general_inner_product"], [543, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [605, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [489, 0, 1, "", "group_norm"], [308, 0, 1, "", "hamming_window"], [309, 0, 1, "", "hann_window"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [545, 0, 1, "", "has_nans"], [466, 0, 1, "", "heaviside"], [424, 0, 1, "", "higher_order_moment"], [512, 0, 1, "", "histogram"], [467, 0, 1, "", "hsplit"], [468, 0, 1, "", "hstack"], [441, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [469, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [513, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [425, 0, 1, "", "initialize_tucker"], [660, 0, 1, "", "inner"], [547, 0, 1, "", "inplace_decrement"], [548, 0, 1, "", "inplace_increment"], [549, 0, 1, "", "inplace_update"], [490, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [661, 0, 1, "", "inv"], [501, 0, 1, "", "invert_permutation"], [551, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [167, 0, 1, "", "is_complex_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [552, 0, 1, "", "is_ivy_array"], [555, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [556, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [558, 0, 1, "", "itemsize"], [311, 0, 1, "", "kaiser_bessel_derived_window"], [312, 0, 1, "", "kaiser_window"], [442, 0, 1, "", "kl_div"], [427, 0, 1, "", "kron"], [443, 0, 1, "", "l1_loss"], [491, 0, 1, "", "l1_normalize"], [492, 0, 1, "", "l2_normalize"], [607, 0, 1, "", "lamb_update"], [608, 0, 1, "", "lars_update"], [723, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [502, 0, 1, "", "lexsort"], [646, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [444, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [494, 0, 1, "", "lp_normalize"], [647, 0, 1, "", "lstm_update"], [429, 0, 1, "", "make_svd_non_negative"], [663, 0, 1, "", "matmul"], [470, 0, 1, "", "matricize"], [430, 0, 1, "", "matrix_exp"], [664, 0, 1, "", "matrix_norm"], [665, 0, 1, "", "matrix_power"], [666, 0, 1, "", "matrix_rank"], [667, 0, 1, "", "matrix_transpose"], [746, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [747, 0, 1, "", "mean"], [514, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [748, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [431, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [471, 0, 1, "", "moveaxis"], [740, 0, 1, "", "msort"], [432, 0, 1, "", "multi_dot"], [648, 0, 1, "", "multi_head_attention"], [433, 0, 1, "", "multi_mode_dot"], [724, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [515, 0, 1, "", "nanmean"], [516, 0, 1, "", "nanmedian"], [517, 0, 1, "", "nanmin"], [518, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [733, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [609, 0, 1, "", "optimizer_update"], [520, 0, 1, "", "optional_get_element"], [668, 0, 1, "", "outer"], [472, 0, 1, "", "pad"], [473, 0, 1, "", "partial_fold"], [474, 0, 1, "", "partial_tensor_to_vec"], [434, 0, 1, "", "partial_tucker"], [475, 0, 1, "", "partial_unfold"], [476, 0, 1, "", "partial_vec_to_tensor"], [690, 0, 1, "", "permute_dims"], [669, 0, 1, "", "pinv"], [499, 0, 1, "", "poisson"], [445, 0, 1, "", "poisson_nll_loss"], [316, 0, 1, "", "polyval"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [749, 0, 1, "", "prod"], [477, 0, 1, "", "put_along_axis"], [670, 0, 1, "", "qr"], [519, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [725, 0, 1, "", "randint"], [726, 0, 1, "", "random_normal"], [727, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [691, 0, 1, "", "repeat"], [692, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [693, 0, 1, "", "roll"], [478, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [651, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [563, 0, 1, "", "scatter_flat"], [564, 0, 1, "", "scatter_nd"], [741, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [729, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [413, 0, 1, "", "sliding_window"], [671, 0, 1, "", "slogdet"], [446, 0, 1, "", "smooth_l1_loss"], [447, 0, 1, "", "soft_margin_loss"], [479, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [672, 0, 1, "", "solve"], [742, 0, 1, "", "sort"], [684, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [694, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [695, 0, 1, "", "squeeze"], [578, 0, 1, "", "stable_divide"], [579, 0, 1, "", "stable_pow"], [696, 0, 1, "", "stack"], [750, 0, 1, "", "std"], [414, 0, 1, "", "stft"], [610, 0, 1, "", "stop_gradient"], [580, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [751, 0, 1, "", "sum"], [581, 0, 1, "", "supports_inplace_updates"], [673, 0, 1, "", "svd"], [436, 0, 1, "", "svd_flip"], [674, 0, 1, "", "svdvals"], [697, 0, 1, "", "swapaxes"], [480, 0, 1, "", "take"], [481, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [437, 0, 1, "", "tensor_train"], [675, 0, 1, "", "tensordot"], [676, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [698, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [583, 0, 1, "", "to_list"], [585, 0, 1, "", "to_numpy"], [586, 0, 1, "", "to_scalar"], [482, 0, 1, "", "top_k"], [677, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [322, 0, 1, "", "tril_indices"], [323, 0, 1, "", "trilu"], [483, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [142, 0, 1, "", "triu_indices"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [438, 0, 1, "", "truncated_svd"], [439, 0, 1, "", "tt_matrix_to_tensor"], [440, 0, 1, "", "tucker"], [484, 0, 1, "", "unfold"], [735, 0, 1, "", "unique_all"], [485, 0, 1, "", "unique_consecutive"], [736, 0, 1, "", "unique_counts"], [737, 0, 1, "", "unique_inverse"], [738, 0, 1, "", "unique_values"], [500, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [699, 0, 1, "", "unstack"], [599, 0, 1, "", "value_is_nan"], [678, 0, 1, "", "vander"], [752, 0, 1, "", "var"], [679, 0, 1, "", "vecdot"], [680, 0, 1, "", "vector_norm"], [681, 0, 1, "", "vector_to_skew_symmetric_matrix"], [327, 0, 1, "", "vorbis_window"], [486, 0, 1, "", "vsplit"], [487, 0, 1, "", "vstack"], [734, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [700, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy.data_classes.array": [[46, 3, 0, "-", "activations"], [97, 3, 0, "-", "array"], [47, 3, 0, "-", "conversions"], [48, 3, 0, "-", "creation"], [49, 3, 0, "-", "data_type"], [50, 3, 0, "-", "device"], [51, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "experimental"], [53, 3, 0, "-", "general"], [54, 3, 0, "-", "gradients"], [55, 3, 0, "-", "image"], [56, 3, 0, "-", "layers"], [57, 3, 0, "-", "linear_algebra"], [58, 3, 0, "-", "losses"], [59, 3, 0, "-", "manipulation"], [60, 3, 0, "-", "norms"], [61, 3, 0, "-", "random"], [62, 3, 0, "-", "searching"], [63, 3, 0, "-", "set"], [64, 3, 0, "-", "sorting"], [65, 3, 0, "-", "statistical"], [66, 3, 0, "-", "utility"], [67, 3, 0, "-", "wrapping"]], "ivy.data_classes.array.activations": [[46, 1, 1, "", "_ArrayWithActivations"]], "ivy.data_classes.array.activations._ArrayWithActivations": [[46, 4, 1, "", "_abc_impl"], [46, 0, 1, "", "gelu"], [46, 0, 1, "", "hardswish"], [46, 0, 1, "", "leaky_relu"], [46, 0, 1, "", "log_softmax"], [46, 0, 1, "", "mish"], [46, 0, 1, "", "relu"], [46, 0, 1, "", "sigmoid"], [46, 0, 1, "", "softmax"], [46, 0, 1, "", "softplus"]], "ivy.data_classes.array.array": [[97, 1, 1, "", "Array"]], "ivy.data_classes.array.array.Array": [[97, 5, 1, "", "T"], [97, 0, 1, "", "__abs__"], [97, 0, 1, "", "__add__"], [97, 0, 1, "", "__eq__"], [97, 0, 1, "", "__ge__"], [97, 0, 1, "", "__gt__"], [97, 0, 1, "", "__init__"], [97, 0, 1, "", "__le__"], [97, 0, 1, "", "__lt__"], [97, 0, 1, "", "__ne__"], [97, 0, 1, "", "__pow__"], [97, 0, 1, "", "__radd__"], [97, 0, 1, "", "__rrshift__"], [97, 0, 1, "", "__rshift__"], [97, 0, 1, "", "__rsub__"], [97, 0, 1, "", "__sub__"], [97, 0, 1, "", "__truediv__"], [97, 0, 1, "", "__xor__"], [97, 5, 1, "", "backend"], [97, 5, 1, "", "base"], [97, 5, 1, "", "data"], [97, 5, 1, "", "device"], [97, 5, 1, "", "dtype"], [97, 5, 1, "", "dynamic_backend"], [97, 5, 1, "", "imag"], [97, 5, 1, "", "itemsize"], [97, 5, 1, "", "mT"], [97, 5, 1, "", "ndim"], [97, 5, 1, "", "real"], [97, 5, 1, "", "shape"], [97, 5, 1, "", "size"], [97, 5, 1, "", "strides"]], "ivy.data_classes.array.conversions": [[47, 2, 1, "", "_array_to_new_backend"], [47, 2, 1, "", "_to_ivy"], [47, 2, 1, "", "_to_native"], [47, 2, 1, "", "_to_new_backend"], [47, 2, 1, "", "args_to_ivy"], [47, 2, 1, "", "args_to_native"], [47, 2, 1, "", "args_to_new_backend"], [47, 2, 1, "", "to_ivy"], [47, 2, 1, "", "to_native"], [47, 2, 1, "", "to_new_backend"]], "ivy.data_classes.array.creation": [[48, 1, 1, "", "_ArrayWithCreation"]], "ivy.data_classes.array.creation._ArrayWithCreation": [[48, 4, 1, "", "_abc_impl"], [48, 0, 1, "", "asarray"], [48, 0, 1, "", "copy_array"], [48, 0, 1, "", "empty_like"], [48, 0, 1, "", "from_dlpack"], [48, 0, 1, "", "full_like"], [48, 0, 1, "", "linspace"], [48, 0, 1, "", "logspace"], [48, 0, 1, "", "meshgrid"], [48, 0, 1, "", "native_array"], [48, 0, 1, "", "one_hot"], [48, 0, 1, "", "ones_like"], [48, 0, 1, "", "tril"], [48, 0, 1, "", "triu"], [48, 0, 1, "", "zeros_like"]], "ivy.data_classes.array.data_type": [[49, 1, 1, "", "_ArrayWithDataTypes"]], "ivy.data_classes.array.data_type._ArrayWithDataTypes": [[49, 4, 1, "", "_abc_impl"], [49, 0, 1, "", "astype"], [49, 0, 1, "", "broadcast_arrays"], [49, 0, 1, "", "broadcast_to"], [49, 0, 1, "", "can_cast"], [49, 0, 1, "", "dtype"], [49, 0, 1, "", "finfo"], [49, 0, 1, "", "iinfo"], [49, 0, 1, "", "is_bool_dtype"], [49, 0, 1, "", "is_float_dtype"], [49, 0, 1, "", "is_int_dtype"], [49, 0, 1, "", "is_uint_dtype"], [49, 0, 1, "", "result_type"]], "ivy.data_classes.array.device": [[50, 1, 1, "", "_ArrayWithDevice"]], "ivy.data_classes.array.device._ArrayWithDevice": [[50, 4, 1, "", "_abc_impl"], [50, 0, 1, "", "dev"], [50, 0, 1, "", "to_device"]], "ivy.data_classes.array.elementwise": [[51, 1, 1, "", "_ArrayWithElementwise"]], "ivy.data_classes.array.elementwise._ArrayWithElementwise": [[51, 4, 1, "", "_abc_impl"], [51, 0, 1, "", "abs"], [51, 0, 1, "", "acos"], [51, 0, 1, "", "acosh"], [51, 0, 1, "", "add"], [51, 0, 1, "", "angle"], [51, 0, 1, "", "asin"], [51, 0, 1, "", "asinh"], [51, 0, 1, "", "atan"], [51, 0, 1, "", "atan2"], [51, 0, 1, "", "atanh"], [51, 0, 1, "", "bitwise_and"], [51, 0, 1, "", "bitwise_invert"], [51, 0, 1, "", "bitwise_left_shift"], [51, 0, 1, "", "bitwise_or"], [51, 0, 1, "", "bitwise_right_shift"], [51, 0, 1, "", "bitwise_xor"], [51, 0, 1, "", "ceil"], [51, 0, 1, "", "cos"], [51, 0, 1, "", "cosh"], [51, 0, 1, "", "deg2rad"], [51, 0, 1, "", "divide"], [51, 0, 1, "", "equal"], [51, 0, 1, "", "erf"], [51, 0, 1, "", "exp"], [51, 0, 1, "", "exp2"], [51, 0, 1, "", "expm1"], [51, 0, 1, "", "floor"], [51, 0, 1, "", "floor_divide"], [51, 0, 1, "", "fmin"], [51, 0, 1, "", "gcd"], [51, 0, 1, "", "greater"], [51, 0, 1, "", "greater_equal"], [51, 0, 1, "", "imag"], [51, 0, 1, "", "isfinite"], [51, 0, 1, "", "isinf"], [51, 0, 1, "", "isnan"], [51, 0, 1, "", "isreal"], [51, 0, 1, "", "lcm"], [51, 0, 1, "", "less"], [51, 0, 1, "", "less_equal"], [51, 0, 1, "", "log"], [51, 0, 1, "", "log10"], [51, 0, 1, "", "log1p"], [51, 0, 1, "", "log2"], [51, 0, 1, "", "logaddexp"], [51, 0, 1, "", "logaddexp2"], [51, 0, 1, "", "logical_and"], [51, 0, 1, "", "logical_not"], [51, 0, 1, "", "logical_or"], [51, 0, 1, "", "logical_xor"], [51, 0, 1, "", "maximum"], [51, 0, 1, "", "minimum"], [51, 0, 1, "", "multiply"], [51, 0, 1, "", "nan_to_num"], [51, 0, 1, "", "negative"], [51, 0, 1, "", "not_equal"], [51, 0, 1, "", "positive"], [51, 0, 1, "", "pow"], [51, 0, 1, "", "rad2deg"], [51, 0, 1, "", "real"], [51, 0, 1, "", "reciprocal"], [51, 0, 1, "", "remainder"], [51, 0, 1, "", "round"], [51, 0, 1, "", "sign"], [51, 0, 1, "", "sin"], [51, 0, 1, "", "sinh"], [51, 0, 1, "", "sqrt"], [51, 0, 1, "", "square"], [51, 0, 1, "", "subtract"], [51, 0, 1, "", "tan"], [51, 0, 1, "", "tanh"], [51, 0, 1, "", "trapz"], [51, 0, 1, "", "trunc"], [51, 0, 1, "", "trunc_divide"]], "ivy.data_classes.array.experimental": [[52, 3, 0, "-", "activations"], [52, 3, 0, "-", "conversions"], [52, 3, 0, "-", "creation"], [52, 3, 0, "-", "data_type"], [52, 3, 0, "-", "device"], [52, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "general"], [52, 3, 0, "-", "gradients"], [52, 3, 0, "-", "image"], [52, 3, 0, "-", "layers"], [52, 3, 0, "-", "linear_algebra"], [52, 3, 0, "-", "losses"], [52, 3, 0, "-", "manipulation"], [52, 3, 0, "-", "norms"], [52, 3, 0, "-", "random"], [52, 3, 0, "-", "searching"], [52, 3, 0, "-", "set"], [52, 3, 0, "-", "sorting"], [52, 3, 0, "-", "statistical"], [52, 3, 0, "-", "utility"]], "ivy.data_classes.array.experimental.activations": [[52, 1, 1, "", "_ArrayWithActivationsExperimental"]], "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "celu"], [52, 0, 1, "", "elu"], [52, 0, 1, "", "hardshrink"], [52, 0, 1, "", "hardtanh"], [52, 0, 1, "", "logit"], [52, 0, 1, "", "logsigmoid"], [52, 0, 1, "", "prelu"], [52, 0, 1, "", "relu6"], [52, 0, 1, "", "scaled_tanh"], [52, 0, 1, "", "selu"], [52, 0, 1, "", "silu"], [52, 0, 1, "", "softshrink"], [52, 0, 1, "", "tanhshrink"], [52, 0, 1, "", "threshold"], [52, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.array.experimental.conversions": [[52, 1, 1, "", "_ArrayWithConversionsExperimental"]], "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.creation": [[52, 1, 1, "", "_ArrayWithCreationExperimental"], [52, 2, 1, "", "polyval"]], "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "blackman_window"], [52, 0, 1, "", "eye_like"], [52, 0, 1, "", "mel_weight_matrix"], [52, 0, 1, "", "trilu"], [52, 0, 1, "", "unsorted_segment_mean"], [52, 0, 1, "", "unsorted_segment_min"], [52, 0, 1, "", "unsorted_segment_sum"]], "ivy.data_classes.array.experimental.data_type": [[52, 1, 1, "", "_ArrayWithData_typeExperimental"]], "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.device": [[52, 1, 1, "", "_ArrayWithDeviceExperimental"]], "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.elementwise": [[52, 1, 1, "", "_ArrayWithElementWiseExperimental"]], "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "allclose"], [52, 0, 1, "", "amax"], [52, 0, 1, "", "amin"], [52, 0, 1, "", "binarizer"], [52, 0, 1, "", "conj"], [52, 0, 1, "", "copysign"], [52, 0, 1, "", "count_nonzero"], [52, 0, 1, "", "diff"], [52, 0, 1, "", "digamma"], [52, 0, 1, "", "erfc"], [52, 0, 1, "", "fix"], [52, 0, 1, "", "float_power"], [52, 0, 1, "", "fmax"], [52, 0, 1, "", "fmod"], [52, 0, 1, "", "frexp"], [52, 0, 1, "", "gradient"], [52, 0, 1, "", "hypot"], [52, 0, 1, "", "isclose"], [52, 0, 1, "", "ldexp"], [52, 0, 1, "", "lerp"], [52, 0, 1, "", "lgamma"], [52, 0, 1, "", "modf"], [52, 0, 1, "", "nansum"], [52, 0, 1, "", "nextafter"], [52, 0, 1, "", "signbit"], [52, 0, 1, "", "sinc"], [52, 0, 1, "", "sparsify_tensor"], [52, 0, 1, "", "xlogy"], [52, 0, 1, "", "zeta"]], "ivy.data_classes.array.experimental.general": [[52, 1, 1, "", "_ArrayWithGeneralExperimental"]], "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "reduce"]], "ivy.data_classes.array.experimental.gradients": [[52, 1, 1, "", "_ArrayWithGradientsExperimental"]], "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.image": [[52, 1, 1, "", "_ArrayWithImageExperimental"]], "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.layers": [[52, 1, 1, "", "_ArrayWithLayersExperimental"]], "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adaptive_avg_pool1d"], [52, 0, 1, "", "adaptive_avg_pool2d"], [52, 0, 1, "", "adaptive_max_pool2d"], [52, 0, 1, "", "avg_pool1d"], [52, 0, 1, "", "avg_pool2d"], [52, 0, 1, "", "avg_pool3d"], [52, 0, 1, "", "dct"], [52, 0, 1, "", "dft"], [52, 0, 1, "", "embedding"], [52, 0, 1, "", "fft"], [52, 0, 1, "", "fft2"], [52, 0, 1, "", "idct"], [52, 0, 1, "", "ifft"], [52, 0, 1, "", "ifftn"], [52, 0, 1, "", "interpolate"], [52, 0, 1, "", "max_pool1d"], [52, 0, 1, "", "max_pool2d"], [52, 0, 1, "", "max_pool3d"], [52, 0, 1, "", "max_unpool1d"], [52, 0, 1, "", "reduce_window"], [52, 0, 1, "", "rfft"], [52, 0, 1, "", "rfftn"], [52, 0, 1, "", "sliding_window"], [52, 0, 1, "", "stft"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, 1, 1, "", "_ArrayWithLinearAlgebraExperimental"]], "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adjoint"], [52, 0, 1, "", "batched_outer"], [52, 0, 1, "", "cond"], [52, 0, 1, "", "diagflat"], [52, 0, 1, "", "dot"], [52, 0, 1, "", "eig"], [52, 0, 1, "", "eigh_tridiagonal"], [52, 0, 1, "", "eigvals"], [52, 0, 1, "", "general_inner_product"], [52, 0, 1, "", "higher_order_moment"], [52, 0, 1, "", "initialize_tucker"], [52, 0, 1, "", "kron"], [52, 0, 1, "", "make_svd_non_negative"], [52, 0, 1, "", "matrix_exp"], [52, 0, 1, "", "mode_dot"], [52, 0, 1, "", "multi_dot"], [52, 0, 1, "", "multi_mode_dot"], [52, 0, 1, "", "partial_tucker"], [52, 0, 1, "", "svd_flip"], [52, 0, 1, "", "tensor_train"], [52, 0, 1, "", "truncated_svd"], [52, 0, 1, "", "tt_matrix_to_tensor"], [52, 0, 1, "", "tucker"]], "ivy.data_classes.array.experimental.losses": [[52, 1, 1, "", "_ArrayWithLossesExperimental"]], "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "huber_loss"], [52, 0, 1, "", "kl_div"], [52, 0, 1, "", "l1_loss"], [52, 0, 1, "", "log_poisson_loss"], [52, 0, 1, "", "poisson_nll_loss"], [52, 0, 1, "", "smooth_l1_loss"], [52, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.array.experimental.manipulation": [[52, 1, 1, "", "_ArrayWithManipulationExperimental"]], "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "as_strided"], [52, 0, 1, "", "associative_scan"], [52, 0, 1, "", "atleast_1d"], [52, 0, 1, "", "atleast_2d"], [52, 0, 1, "", "atleast_3d"], [52, 0, 1, "", "column_stack"], [52, 0, 1, "", "concat_from_sequence"], [52, 0, 1, "", "dsplit"], [52, 0, 1, "", "dstack"], [52, 0, 1, "", "expand"], [52, 0, 1, "", "fill_diagonal"], [52, 0, 1, "", "flatten"], [52, 0, 1, "", "fliplr"], [52, 0, 1, "", "flipud"], [52, 0, 1, "", "fold"], [52, 0, 1, "", "heaviside"], [52, 0, 1, "", "hsplit"], [52, 0, 1, "", "hstack"], [52, 0, 1, "", "i0"], [52, 0, 1, "", "matricize"], [52, 0, 1, "", "moveaxis"], [52, 0, 1, "", "pad"], [52, 0, 1, "", "partial_fold"], [52, 0, 1, "", "partial_tensor_to_vec"], [52, 0, 1, "", "partial_unfold"], [52, 0, 1, "", "partial_vec_to_tensor"], [52, 0, 1, "", "put_along_axis"], [52, 0, 1, "", "rot90"], [52, 0, 1, "", "soft_thresholding"], [52, 0, 1, "", "take"], [52, 0, 1, "", "take_along_axis"], [52, 0, 1, "", "top_k"], [52, 0, 1, "", "trim_zeros"], [52, 0, 1, "", "unfold"], [52, 0, 1, "", "unique_consecutive"], [52, 0, 1, "", "vsplit"], [52, 0, 1, "", "vstack"]], "ivy.data_classes.array.experimental.norms": [[52, 1, 1, "", "_ArrayWithNormsExperimental"]], "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "batch_norm"], [52, 0, 1, "", "group_norm"], [52, 0, 1, "", "instance_norm"], [52, 0, 1, "", "l1_normalize"], [52, 0, 1, "", "l2_normalize"], [52, 0, 1, "", "lp_normalize"]], "ivy.data_classes.array.experimental.random": [[52, 1, 1, "", "_ArrayWithRandomExperimental"]], "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bernoulli"], [52, 0, 1, "", "beta"], [52, 0, 1, "", "dirichlet"], [52, 0, 1, "", "gamma"], [52, 0, 1, "", "poisson"]], "ivy.data_classes.array.experimental.searching": [[52, 1, 1, "", "_ArrayWithSearchingExperimental"]], "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "unravel_index"]], "ivy.data_classes.array.experimental.set": [[52, 1, 1, "", "_ArrayWithSetExperimental"]], "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.sorting": [[52, 1, 1, "", "_ArrayWithSortingExperimental"]], "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "lexsort"]], "ivy.data_classes.array.experimental.statistical": [[52, 1, 1, "", "_ArrayWithStatisticalExperimental"]], "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bincount"], [52, 0, 1, "", "corrcoef"], [52, 0, 1, "", "cov"], [52, 0, 1, "", "cummax"], [52, 0, 1, "", "cummin"], [52, 0, 1, "", "histogram"], [52, 0, 1, "", "igamma"], [52, 0, 1, "", "median"], [52, 0, 1, "", "nanmean"], [52, 0, 1, "", "nanmedian"], [52, 0, 1, "", "nanmin"], [52, 0, 1, "", "nanprod"], [52, 0, 1, "", "quantile"]], "ivy.data_classes.array.experimental.utility": [[52, 1, 1, "", "_ArrayWithUtilityExperimental"]], "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "optional_get_element"]], "ivy.data_classes.array.general": [[53, 1, 1, "", "_ArrayWithGeneral"]], "ivy.data_classes.array.general._ArrayWithGeneral": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "all_equal"], [53, 0, 1, "", "array_equal"], [53, 0, 1, "", "assert_supports_inplace"], [53, 0, 1, "", "clip_matrix_norm"], [53, 0, 1, "", "clip_vector_norm"], [53, 0, 1, "", "default"], [53, 0, 1, "", "einops_rearrange"], [53, 0, 1, "", "einops_reduce"], [53, 0, 1, "", "einops_repeat"], [53, 0, 1, "", "exists"], [53, 0, 1, "", "fourier_encode"], [53, 0, 1, "", "gather"], [53, 0, 1, "", "gather_nd"], [53, 0, 1, "", "get_num_dims"], [53, 0, 1, "", "has_nans"], [53, 0, 1, "", "inplace_decrement"], [53, 0, 1, "", "inplace_increment"], [53, 0, 1, "", "inplace_update"], [53, 0, 1, "", "is_array"], [53, 0, 1, "", "is_ivy_array"], [53, 0, 1, "", "is_ivy_container"], [53, 0, 1, "", "is_native_array"], [53, 0, 1, "", "isin"], [53, 0, 1, "", "scatter_flat"], [53, 0, 1, "", "scatter_nd"], [53, 0, 1, "", "stable_divide"], [53, 0, 1, "", "stable_pow"], [53, 0, 1, "", "supports_inplace_updates"], [53, 0, 1, "", "to_file"], [53, 0, 1, "", "to_list"], [53, 0, 1, "", "to_numpy"], [53, 0, 1, "", "to_scalar"], [53, 0, 1, "", "value_is_nan"]], "ivy.data_classes.array.gradients": [[54, 1, 1, "", "_ArrayWithGradients"]], "ivy.data_classes.array.gradients._ArrayWithGradients": [[54, 4, 1, "", "_abc_impl"], [54, 0, 1, "", "adam_step"], [54, 0, 1, "", "adam_update"], [54, 0, 1, "", "gradient_descent_update"], [54, 0, 1, "", "lamb_update"], [54, 0, 1, "", "lars_update"], [54, 0, 1, "", "optimizer_update"], [54, 0, 1, "", "stop_gradient"]], "ivy.data_classes.array.image": [[55, 1, 1, "", "_ArrayWithImage"]], "ivy.data_classes.array.image._ArrayWithImage": [[55, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.layers": [[56, 1, 1, "", "_ArrayWithLayers"]], "ivy.data_classes.array.layers._ArrayWithLayers": [[56, 4, 1, "", "_abc_impl"], [56, 0, 1, "", "conv1d"], [56, 0, 1, "", "conv1d_transpose"], [56, 0, 1, "", "conv2d"], [56, 0, 1, "", "conv2d_transpose"], [56, 0, 1, "", "conv3d"], [56, 0, 1, "", "conv3d_transpose"], [56, 0, 1, "", "depthwise_conv2d"], [56, 0, 1, "", "dropout"], [56, 0, 1, "", "dropout1d"], [56, 0, 1, "", "dropout2d"], [56, 0, 1, "", "dropout3d"], [56, 0, 1, "", "linear"], [56, 0, 1, "", "lstm_update"], [56, 0, 1, "", "multi_head_attention"], [56, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.array.linear_algebra": [[57, 1, 1, "", "_ArrayWithLinearAlgebra"]], "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "cholesky"], [57, 0, 1, "", "cross"], [57, 0, 1, "", "det"], [57, 0, 1, "", "diag"], [57, 0, 1, "", "diagonal"], [57, 0, 1, "", "eig"], [57, 0, 1, "", "eigh"], [57, 0, 1, "", "eigvalsh"], [57, 0, 1, "", "inner"], [57, 0, 1, "", "inv"], [57, 0, 1, "", "matmul"], [57, 0, 1, "", "matrix_norm"], [57, 0, 1, "", "matrix_power"], [57, 0, 1, "", "matrix_rank"], [57, 0, 1, "", "matrix_transpose"], [57, 0, 1, "", "outer"], [57, 0, 1, "", "pinv"], [57, 0, 1, "", "qr"], [57, 0, 1, "", "slogdet"], [57, 0, 1, "", "solve"], [57, 0, 1, "", "svd"], [57, 0, 1, "", "svdvals"], [57, 0, 1, "", "tensordot"], [57, 0, 1, "", "tensorsolve"], [57, 0, 1, "", "trace"], [57, 0, 1, "", "vander"], [57, 0, 1, "", "vecdot"], [57, 0, 1, "", "vector_norm"], [57, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.array.losses": [[58, 1, 1, "", "_ArrayWithLosses"]], "ivy.data_classes.array.losses._ArrayWithLosses": [[58, 4, 1, "", "_abc_impl"], [58, 0, 1, "", "binary_cross_entropy"], [58, 0, 1, "", "cross_entropy"], [58, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.array.manipulation": [[59, 1, 1, "", "_ArrayWithManipulation"]], "ivy.data_classes.array.manipulation._ArrayWithManipulation": [[59, 4, 1, "", "_abc_impl"], [59, 0, 1, "", "clip"], [59, 0, 1, "", "concat"], [59, 0, 1, "", "constant_pad"], [59, 0, 1, "", "expand_dims"], [59, 0, 1, "", "flip"], [59, 0, 1, "", "permute_dims"], [59, 0, 1, "", "repeat"], [59, 0, 1, "", "reshape"], [59, 0, 1, "", "roll"], [59, 0, 1, "", "split"], [59, 0, 1, "", "squeeze"], [59, 0, 1, "", "stack"], [59, 0, 1, "", "swapaxes"], [59, 0, 1, "", "tile"], [59, 0, 1, "", "unstack"], [59, 0, 1, "", "view"], [59, 0, 1, "", "zero_pad"]], "ivy.data_classes.array.norms": [[60, 1, 1, "", "_ArrayWithNorms"]], "ivy.data_classes.array.norms._ArrayWithNorms": [[60, 4, 1, "", "_abc_impl"], [60, 0, 1, "", "layer_norm"]], "ivy.data_classes.array.random": [[61, 1, 1, "", "_ArrayWithRandom"]], "ivy.data_classes.array.random._ArrayWithRandom": [[61, 4, 1, "", "_abc_impl"], [61, 0, 1, "", "multinomial"], [61, 0, 1, "", "randint"], [61, 0, 1, "", "random_normal"], [61, 0, 1, "", "random_uniform"], [61, 0, 1, "", "shuffle"]], "ivy.data_classes.array.searching": [[62, 1, 1, "", "_ArrayWithSearching"]], "ivy.data_classes.array.searching._ArrayWithSearching": [[62, 4, 1, "", "_abc_impl"], [62, 0, 1, "", "argmax"], [62, 0, 1, "", "argmin"], [62, 0, 1, "", "argwhere"], [62, 0, 1, "", "nonzero"], [62, 0, 1, "", "where"]], "ivy.data_classes.array.set": [[63, 1, 1, "", "_ArrayWithSet"]], "ivy.data_classes.array.set._ArrayWithSet": [[63, 4, 1, "", "_abc_impl"], [63, 0, 1, "", "unique_all"], [63, 0, 1, "", "unique_counts"], [63, 0, 1, "", "unique_inverse"], [63, 0, 1, "", "unique_values"]], "ivy.data_classes.array.sorting": [[64, 1, 1, "", "_ArrayWithSorting"]], "ivy.data_classes.array.sorting._ArrayWithSorting": [[64, 4, 1, "", "_abc_impl"], [64, 0, 1, "", "argsort"], [64, 0, 1, "", "msort"], [64, 0, 1, "", "searchsorted"], [64, 0, 1, "", "sort"]], "ivy.data_classes.array.statistical": [[65, 1, 1, "", "_ArrayWithStatistical"]], "ivy.data_classes.array.statistical._ArrayWithStatistical": [[65, 4, 1, "", "_abc_impl"], [65, 0, 1, "", "cumprod"], [65, 0, 1, "", "cumsum"], [65, 0, 1, "", "einsum"], [65, 0, 1, "", "max"], [65, 0, 1, "", "mean"], [65, 0, 1, "", "min"], [65, 0, 1, "", "prod"], [65, 0, 1, "", "std"], [65, 0, 1, "", "sum"], [65, 0, 1, "", "var"]], "ivy.data_classes.array.utility": [[66, 1, 1, "", "_ArrayWithUtility"]], "ivy.data_classes.array.utility._ArrayWithUtility": [[66, 4, 1, "", "_abc_impl"], [66, 0, 1, "", "all"], [66, 0, 1, "", "any"]], "ivy.data_classes.array.wrapping": [[67, 2, 1, "", "_wrap_function"], [67, 2, 1, "", "add_ivy_array_instance_methods"]], "ivy.data_classes.container": [[68, 3, 0, "-", "activations"], [69, 3, 0, "-", "base"], [98, 3, 0, "-", "container"], [70, 3, 0, "-", "conversions"], [71, 3, 0, "-", "creation"], [72, 3, 0, "-", "data_type"], [73, 3, 0, "-", "device"], [74, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "experimental"], [76, 3, 0, "-", "general"], [77, 3, 0, "-", "gradients"], [78, 3, 0, "-", "image"], [79, 3, 0, "-", "layers"], [80, 3, 0, "-", "linear_algebra"], [81, 3, 0, "-", "losses"], [82, 3, 0, "-", "manipulation"], [83, 3, 0, "-", "norms"], [84, 3, 0, "-", "random"], [85, 3, 0, "-", "searching"], [86, 3, 0, "-", "set"], [87, 3, 0, "-", "sorting"], [88, 3, 0, "-", "statistical"], [89, 3, 0, "-", "utility"], [90, 3, 0, "-", "wrapping"]], "ivy.data_classes.container.activations": [[68, 1, 1, "", "_ContainerWithActivations"]], "ivy.data_classes.container.activations._ContainerWithActivations": [[68, 4, 1, "", "_abc_impl"], [68, 0, 1, "", "_static_gelu"], [68, 0, 1, "", "_static_hardswish"], [68, 0, 1, "", "_static_leaky_relu"], [68, 0, 1, "", "_static_log_softmax"], [68, 0, 1, "", "_static_mish"], [68, 0, 1, "", "_static_relu"], [68, 0, 1, "", "_static_sigmoid"], [68, 0, 1, "", "_static_softmax"], [68, 0, 1, "", "_static_softplus"], [68, 0, 1, "", "gelu"], [68, 0, 1, "", "hardswish"], [68, 0, 1, "", "leaky_relu"], [68, 0, 1, "", "log_softmax"], [68, 0, 1, "", "mish"], [68, 0, 1, "", "relu"], [68, 0, 1, "", "sigmoid"], [68, 0, 1, "", "softmax"], [68, 0, 1, "", "softplus"]], "ivy.data_classes.container.base": [[69, 1, 1, "", "ContainerBase"], [69, 2, 1, "", "_is_jsonable"], [69, 2, 1, "", "_repr"]], "ivy.data_classes.container.base.ContainerBase": [[69, 0, 1, "", "__getitem__"], [69, 0, 1, "", "__init__"], [69, 0, 1, "", "__setitem__"], [69, 4, 1, "", "_abc_impl"], [69, 0, 1, "", "_cont_at_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_at_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_call_static_method_with_flexible_args"], [69, 0, 1, "", "_cont_concat_unify"], [69, 0, 1, "", "_cont_get_dev"], [69, 0, 1, "", "_cont_get_dtype"], [69, 0, 1, "", "_cont_get_shape"], [69, 0, 1, "", "_cont_get_shapes"], [69, 5, 1, "", "_cont_ivy"], [69, 0, 1, "", "_cont_mean_unify"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_slice_keys"], [69, 0, 1, "", "_cont_sum_unify"], [69, 0, 1, "", "_get_queue_item"], [69, 0, 1, "", "cont_all_false"], [69, 0, 1, "", "cont_all_key_chains"], [69, 0, 1, "", "cont_all_true"], [69, 0, 1, "", "cont_as_bools"], [69, 0, 1, "", "cont_assert_contains_sub_container"], [69, 0, 1, "", "cont_assert_contains_sub_structure"], [69, 0, 1, "", "cont_assert_identical"], [69, 0, 1, "", "cont_assert_identical_structure"], [69, 0, 1, "", "cont_at_key_chain"], [69, 0, 1, "", "cont_at_key_chains"], [69, 0, 1, "", "cont_at_keys"], [69, 0, 1, "", "cont_combine"], [69, 0, 1, "", "cont_common_key_chains"], [69, 5, 1, "", "cont_config"], [69, 0, 1, "", "cont_contains_sub_container"], [69, 0, 1, "", "cont_contains_sub_structure"], [69, 0, 1, "", "cont_copy"], [69, 0, 1, "", "cont_create_if_absent"], [69, 0, 1, "", "cont_cutoff_at_depth"], [69, 0, 1, "", "cont_cutoff_at_height"], [69, 0, 1, "", "cont_deep_copy"], [69, 5, 1, "", "cont_dev"], [69, 5, 1, "", "cont_dev_str"], [69, 0, 1, "", "cont_diff"], [69, 5, 1, "", "cont_dtype"], [69, 0, 1, "", "cont_duplicate_array_keychains"], [69, 0, 1, "", "cont_find_sub_container"], [69, 0, 1, "", "cont_find_sub_structure"], [69, 0, 1, "", "cont_flatten_key_chain"], [69, 0, 1, "", "cont_flatten_key_chains"], [69, 0, 1, "", "cont_format_key_chains"], [69, 0, 1, "", "cont_from_disk_as_hdf5"], [69, 0, 1, "", "cont_from_disk_as_json"], [69, 0, 1, "", "cont_from_disk_as_pickled"], [69, 0, 1, "", "cont_from_flat_list"], [69, 0, 1, "", "cont_handle_inplace"], [69, 0, 1, "", "cont_has_key"], [69, 0, 1, "", "cont_has_key_chain"], [69, 0, 1, "", "cont_identical"], [69, 0, 1, "", "cont_identical_array_shapes"], [69, 0, 1, "", "cont_identical_configs"], [69, 0, 1, "", "cont_identical_structure"], [69, 0, 1, "", "cont_if_exists"], [69, 0, 1, "", "cont_inplace_update"], [69, 5, 1, "", "cont_ivy"], [69, 0, 1, "", "cont_key_chains_containing"], [69, 0, 1, "", "cont_list_join"], [69, 0, 1, "", "cont_list_stack"], [69, 0, 1, "", "cont_load"], [69, 0, 1, "", "cont_map"], [69, 0, 1, "", "cont_map_sub_conts"], [69, 5, 1, "", "cont_max_depth"], [69, 0, 1, "", "cont_multi_map"], [69, 0, 1, "", "cont_multi_map_in_function"], [69, 0, 1, "", "cont_num_arrays"], [69, 0, 1, "", "cont_overwrite_at_key_chain"], [69, 0, 1, "", "cont_overwrite_at_key_chains"], [69, 0, 1, "", "cont_prune_empty"], [69, 0, 1, "", "cont_prune_key_chain"], [69, 0, 1, "", "cont_prune_key_chains"], [69, 0, 1, "", "cont_prune_key_from_key_chains"], [69, 0, 1, "", "cont_prune_keys"], [69, 0, 1, "", "cont_prune_keys_from_key_chains"], [69, 0, 1, "", "cont_reduce"], [69, 0, 1, "", "cont_remove_key_length_limit"], [69, 0, 1, "", "cont_remove_print_limit"], [69, 0, 1, "", "cont_reshape_like"], [69, 0, 1, "", "cont_restructure"], [69, 0, 1, "", "cont_restructure_key_chains"], [69, 0, 1, "", "cont_save"], [69, 0, 1, "", "cont_set_at_key_chain"], [69, 0, 1, "", "cont_set_at_key_chains"], [69, 0, 1, "", "cont_set_at_keys"], [69, 5, 1, "", "cont_shape"], [69, 5, 1, "", "cont_shapes"], [69, 0, 1, "", "cont_show"], [69, 0, 1, "", "cont_show_sub_container"], [69, 0, 1, "", "cont_size_ordered_arrays"], [69, 0, 1, "", "cont_slice_keys"], [69, 0, 1, "", "cont_slice_via_key"], [69, 0, 1, "", "cont_sort_by_key"], [69, 0, 1, "", "cont_structural_diff"], [69, 0, 1, "", "cont_to_dict"], [69, 0, 1, "", "cont_to_disk_as_hdf5"], [69, 0, 1, "", "cont_to_disk_as_json"], [69, 0, 1, "", "cont_to_disk_as_pickled"], [69, 0, 1, "", "cont_to_flat_list"], [69, 0, 1, "", "cont_to_iterator"], [69, 0, 1, "", "cont_to_iterator_keys"], [69, 0, 1, "", "cont_to_iterator_values"], [69, 0, 1, "", "cont_to_jsonable"], [69, 0, 1, "", "cont_to_nested_list"], [69, 0, 1, "", "cont_to_raw"], [69, 0, 1, "", "cont_trim_key"], [69, 0, 1, "", "cont_try_kc"], [69, 0, 1, "", "cont_unify"], [69, 0, 1, "", "cont_unstack_conts"], [69, 0, 1, "", "cont_update_config"], [69, 0, 1, "", "cont_with_default_key_color"], [69, 0, 1, "", "cont_with_entries_as_lists"], [69, 0, 1, "", "cont_with_ivy_backend"], [69, 0, 1, "", "cont_with_key_length_limit"], [69, 0, 1, "", "cont_with_print_indent"], [69, 0, 1, "", "cont_with_print_limit"], [69, 0, 1, "", "cont_with_print_line_spacing"], [69, 5, 1, "", "dynamic_backend"], [69, 0, 1, "", "h5_file_size"], [69, 0, 1, "", "shuffle_h5_file"], [69, 0, 1, "", "split_conts"]], "ivy.data_classes.container.container": [[98, 1, 1, "", "Container"]], "ivy.data_classes.container.container.Container": [[98, 0, 1, "", "__abs__"], [98, 0, 1, "", "__add__"], [98, 0, 1, "", "__eq__"], [98, 0, 1, "", "__ge__"], [98, 0, 1, "", "__gt__"], [98, 0, 1, "", "__init__"], [98, 0, 1, "", "__le__"], [98, 0, 1, "", "__lt__"], [98, 0, 1, "", "__ne__"], [98, 0, 1, "", "__pow__"], [98, 0, 1, "", "__radd__"], [98, 0, 1, "", "__rrshift__"], [98, 0, 1, "", "__rshift__"], [98, 0, 1, "", "__rsub__"], [98, 0, 1, "", "__sub__"], [98, 0, 1, "", "__truediv__"], [98, 0, 1, "", "__xor__"]], "ivy.data_classes.container.conversions": [[70, 1, 1, "", "_ContainerWithConversions"]], "ivy.data_classes.container.conversions._ContainerWithConversions": [[70, 4, 1, "", "_abc_impl"], [70, 0, 1, "", "_static_to_ivy"], [70, 0, 1, "", "_static_to_native"], [70, 0, 1, "", "to_ivy"], [70, 0, 1, "", "to_native"]], "ivy.data_classes.container.creation": [[71, 1, 1, "", "_ContainerWithCreation"]], "ivy.data_classes.container.creation._ContainerWithCreation": [[71, 4, 1, "", "_abc_impl"], [71, 0, 1, "", "_static_arange"], [71, 0, 1, "", "_static_asarray"], [71, 0, 1, "", "_static_copy_array"], [71, 0, 1, "", "_static_empty"], [71, 0, 1, "", "_static_empty_like"], [71, 0, 1, "", "_static_eye"], [71, 0, 1, "", "_static_from_dlpack"], [71, 0, 1, "", "_static_full"], [71, 0, 1, "", "_static_full_like"], [71, 0, 1, "", "_static_linspace"], [71, 0, 1, "", "_static_logspace"], [71, 0, 1, "", "_static_meshgrid"], [71, 0, 1, "", "_static_native_array"], [71, 0, 1, "", "_static_one_hot"], [71, 0, 1, "", "_static_ones"], [71, 0, 1, "", "_static_ones_like"], [71, 0, 1, "", "_static_tril"], [71, 0, 1, "", "_static_triu"], [71, 0, 1, "", "_static_zeros"], [71, 0, 1, "", "_static_zeros_like"], [71, 0, 1, "", "asarray"], [71, 0, 1, "", "copy_array"], [71, 0, 1, "", "empty_like"], [71, 0, 1, "", "from_dlpack"], [71, 0, 1, "", "frombuffer"], [71, 0, 1, "", "full_like"], [71, 0, 1, "", "linspace"], [71, 0, 1, "", "logspace"], [71, 0, 1, "", "meshgrid"], [71, 0, 1, "", "native_array"], [71, 0, 1, "", "one_hot"], [71, 0, 1, "", "ones_like"], [71, 0, 1, "", "static_frombuffer"], [71, 0, 1, "", "static_triu_indices"], [71, 0, 1, "", "tril"], [71, 0, 1, "", "triu"], [71, 0, 1, "", "triu_indices"], [71, 0, 1, "", "zeros_like"]], "ivy.data_classes.container.data_type": [[72, 1, 1, "", "_ContainerWithDataTypes"]], "ivy.data_classes.container.data_type._ContainerWithDataTypes": [[72, 4, 1, "", "_abc_impl"], [72, 0, 1, "", "_static_astype"], [72, 0, 1, "", "_static_broadcast_arrays"], [72, 0, 1, "", "_static_broadcast_to"], [72, 0, 1, "", "_static_can_cast"], [72, 0, 1, "", "_static_default_complex_dtype"], [72, 0, 1, "", "_static_default_float_dtype"], [72, 0, 1, "", "_static_dtype"], [72, 0, 1, "", "_static_finfo"], [72, 0, 1, "", "_static_function_supported_dtypes"], [72, 0, 1, "", "_static_function_unsupported_dtypes"], [72, 0, 1, "", "_static_iinfo"], [72, 0, 1, "", "_static_is_bool_dtype"], [72, 0, 1, "", "_static_is_complex_dtype"], [72, 0, 1, "", "_static_is_float_dtype"], [72, 0, 1, "", "_static_is_int_dtype"], [72, 0, 1, "", "_static_is_uint_dtype"], [72, 0, 1, "", "_static_result_type"], [72, 0, 1, "", "astype"], [72, 0, 1, "", "broadcast_arrays"], [72, 0, 1, "", "broadcast_to"], [72, 0, 1, "", "can_cast"], [72, 0, 1, "", "dtype"], [72, 0, 1, "", "finfo"], [72, 0, 1, "", "iinfo"], [72, 0, 1, "", "is_bool_dtype"], [72, 0, 1, "", "is_complex_dtype"], [72, 0, 1, "", "is_float_dtype"], [72, 0, 1, "", "is_int_dtype"], [72, 0, 1, "", "is_uint_dtype"], [72, 0, 1, "", "result_type"]], "ivy.data_classes.container.device": [[73, 1, 1, "", "_ContainerWithDevice"]], "ivy.data_classes.container.device._ContainerWithDevice": [[73, 4, 1, "", "_abc_impl"], [73, 0, 1, "", "_static_dev"], [73, 0, 1, "", "_static_to_device"], [73, 0, 1, "", "dev"], [73, 0, 1, "", "to_device"]], "ivy.data_classes.container.elementwise": [[74, 1, 1, "", "_ContainerWithElementwise"]], "ivy.data_classes.container.elementwise._ContainerWithElementwise": [[74, 4, 1, "", "_abc_impl"], [74, 0, 1, "", "_static_abs"], [74, 0, 1, "", "_static_acos"], [74, 0, 1, "", "_static_acosh"], [74, 0, 1, "", "_static_add"], [74, 0, 1, "", "_static_asin"], [74, 0, 1, "", "_static_asinh"], [74, 0, 1, "", "_static_atan"], [74, 0, 1, "", "_static_atan2"], [74, 0, 1, "", "_static_atanh"], [74, 0, 1, "", "_static_bitwise_and"], [74, 0, 1, "", "_static_bitwise_invert"], [74, 0, 1, "", "_static_bitwise_left_shift"], [74, 0, 1, "", "_static_bitwise_or"], [74, 0, 1, "", "_static_bitwise_right_shift"], [74, 0, 1, "", "_static_bitwise_xor"], [74, 0, 1, "", "_static_ceil"], [74, 0, 1, "", "_static_cos"], [74, 0, 1, "", "_static_cosh"], [74, 0, 1, "", "_static_deg2rad"], [74, 0, 1, "", "_static_divide"], [74, 0, 1, "", "_static_equal"], [74, 0, 1, "", "_static_erf"], [74, 0, 1, "", "_static_exp"], [74, 0, 1, "", "_static_expm1"], [74, 0, 1, "", "_static_floor"], [74, 0, 1, "", "_static_floor_divide"], [74, 0, 1, "", "_static_greater"], [74, 0, 1, "", "_static_greater_equal"], [74, 0, 1, "", "_static_isfinite"], [74, 0, 1, "", "_static_isinf"], [74, 0, 1, "", "_static_isnan"], [74, 0, 1, "", "_static_isreal"], [74, 0, 1, "", "_static_lcm"], [74, 0, 1, "", "_static_less"], [74, 0, 1, "", "_static_less_equal"], [74, 0, 1, "", "_static_log"], [74, 0, 1, "", "_static_log10"], [74, 0, 1, "", "_static_log1p"], [74, 0, 1, "", "_static_log2"], [74, 0, 1, "", "_static_logaddexp"], [74, 0, 1, "", "_static_logical_and"], [74, 0, 1, "", "_static_logical_not"], [74, 0, 1, "", "_static_logical_or"], [74, 0, 1, "", "_static_logical_xor"], [74, 0, 1, "", "_static_maximum"], [74, 0, 1, "", "_static_minimum"], [74, 0, 1, "", "_static_multiply"], [74, 0, 1, "", "_static_negative"], [74, 0, 1, "", "_static_not_equal"], [74, 0, 1, "", "_static_positive"], [74, 0, 1, "", "_static_pow"], [74, 0, 1, "", "_static_rad2deg"], [74, 0, 1, "", "_static_reciprocal"], [74, 0, 1, "", "_static_remainder"], [74, 0, 1, "", "_static_round"], [74, 0, 1, "", "_static_sign"], [74, 0, 1, "", "_static_sin"], [74, 0, 1, "", "_static_sinh"], [74, 0, 1, "", "_static_sqrt"], [74, 0, 1, "", "_static_square"], [74, 0, 1, "", "_static_subtract"], [74, 0, 1, "", "_static_tan"], [74, 0, 1, "", "_static_tanh"], [74, 0, 1, "", "_static_trapz"], [74, 0, 1, "", "_static_trunc"], [74, 0, 1, "", "_static_trunc_divide"], [74, 0, 1, "", "abs"], [74, 0, 1, "", "acos"], [74, 0, 1, "", "acosh"], [74, 0, 1, "", "add"], [74, 0, 1, "", "angle"], [74, 0, 1, "", "asin"], [74, 0, 1, "", "asinh"], [74, 0, 1, "", "atan"], [74, 0, 1, "", "atan2"], [74, 0, 1, "", "atanh"], [74, 0, 1, "", "bitwise_and"], [74, 0, 1, "", "bitwise_invert"], [74, 0, 1, "", "bitwise_left_shift"], [74, 0, 1, "", "bitwise_or"], [74, 0, 1, "", "bitwise_right_shift"], [74, 0, 1, "", "bitwise_xor"], [74, 0, 1, "", "ceil"], [74, 0, 1, "", "cos"], [74, 0, 1, "", "cosh"], [74, 0, 1, "", "deg2rad"], [74, 0, 1, "", "divide"], [74, 0, 1, "", "equal"], [74, 0, 1, "", "erf"], [74, 0, 1, "", "exp"], [74, 0, 1, "", "exp2"], [74, 0, 1, "", "expm1"], [74, 0, 1, "", "floor"], [74, 0, 1, "", "floor_divide"], [74, 0, 1, "", "fmin"], [74, 0, 1, "", "gcd"], [74, 0, 1, "", "greater"], [74, 0, 1, "", "greater_equal"], [74, 0, 1, "", "imag"], [74, 0, 1, "", "isfinite"], [74, 0, 1, "", "isinf"], [74, 0, 1, "", "isnan"], [74, 0, 1, "", "isreal"], [74, 0, 1, "", "lcm"], [74, 0, 1, "", "less"], [74, 0, 1, "", "less_equal"], [74, 0, 1, "", "log"], [74, 0, 1, "", "log10"], [74, 0, 1, "", "log1p"], [74, 0, 1, "", "log2"], [74, 0, 1, "", "logaddexp"], [74, 0, 1, "", "logaddexp2"], [74, 0, 1, "", "logical_and"], [74, 0, 1, "", "logical_not"], [74, 0, 1, "", "logical_or"], [74, 0, 1, "", "logical_xor"], [74, 0, 1, "", "maximum"], [74, 0, 1, "", "minimum"], [74, 0, 1, "", "multiply"], [74, 0, 1, "", "nan_to_num"], [74, 0, 1, "", "negative"], [74, 0, 1, "", "not_equal"], [74, 0, 1, "", "positive"], [74, 0, 1, "", "pow"], [74, 0, 1, "", "rad2deg"], [74, 0, 1, "", "real"], [74, 0, 1, "", "reciprocal"], [74, 0, 1, "", "remainder"], [74, 0, 1, "", "round"], [74, 0, 1, "", "sign"], [74, 0, 1, "", "sin"], [74, 0, 1, "", "sinh"], [74, 0, 1, "", "sqrt"], [74, 0, 1, "", "square"], [74, 0, 1, "", "static_angle"], [74, 0, 1, "", "static_exp2"], [74, 0, 1, "", "static_fmin"], [74, 0, 1, "", "static_gcd"], [74, 0, 1, "", "static_imag"], [74, 0, 1, "", "static_logaddexp2"], [74, 0, 1, "", "static_nan_to_num"], [74, 0, 1, "", "static_real"], [74, 0, 1, "", "subtract"], [74, 0, 1, "", "tan"], [74, 0, 1, "", "tanh"], [74, 0, 1, "", "trapz"], [74, 0, 1, "", "trunc"], [74, 0, 1, "", "trunc_divide"]], "ivy.data_classes.container.experimental": [[75, 3, 0, "-", "activations"], [75, 3, 0, "-", "conversions"], [75, 3, 0, "-", "creation"], [75, 3, 0, "-", "data_type"], [75, 3, 0, "-", "device"], [75, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "general"], [75, 3, 0, "-", "gradients"], [75, 3, 0, "-", "image"], [75, 3, 0, "-", "layers"], [75, 3, 0, "-", "linear_algebra"], [75, 3, 0, "-", "losses"], [75, 3, 0, "-", "manipulation"], [75, 3, 0, "-", "norms"], [75, 3, 0, "-", "random"], [75, 3, 0, "-", "searching"], [75, 3, 0, "-", "set"], [75, 3, 0, "-", "sorting"], [75, 3, 0, "-", "statistical"], [75, 3, 0, "-", "utility"]], "ivy.data_classes.container.experimental.activations": [[75, 1, 1, "", "_ContainerWithActivationExperimental"]], "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_celu"], [75, 0, 1, "", "_static_elu"], [75, 0, 1, "", "_static_hardshrink"], [75, 0, 1, "", "_static_hardtanh"], [75, 0, 1, "", "_static_scaled_tanh"], [75, 0, 1, "", "_static_silu"], [75, 0, 1, "", "_static_softshrink"], [75, 0, 1, "", "_static_tanhshrink"], [75, 0, 1, "", "_static_threshold"], [75, 0, 1, "", "celu"], [75, 0, 1, "", "elu"], [75, 0, 1, "", "hardshrink"], [75, 0, 1, "", "hardtanh"], [75, 0, 1, "", "logit"], [75, 0, 1, "", "logsigmoid"], [75, 0, 1, "", "prelu"], [75, 0, 1, "", "relu6"], [75, 0, 1, "", "scaled_tanh"], [75, 0, 1, "", "selu"], [75, 0, 1, "", "silu"], [75, 0, 1, "", "softshrink"], [75, 0, 1, "", "static_logit"], [75, 0, 1, "", "static_logsigmoid"], [75, 0, 1, "", "static_prelu"], [75, 0, 1, "", "static_relu6"], [75, 0, 1, "", "static_selu"], [75, 0, 1, "", "static_thresholded_relu"], [75, 0, 1, "", "tanhshrink"], [75, 0, 1, "", "threshold"], [75, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.container.experimental.conversions": [[75, 1, 1, "", "_ContainerWithConversionExperimental"]], "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.creation": [[75, 1, 1, "", "_ContainerWithCreationExperimental"]], "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_trilu"], [75, 0, 1, "", "blackman_window"], [75, 0, 1, "", "eye_like"], [75, 0, 1, "", "hamming_window"], [75, 0, 1, "", "hann_window"], [75, 0, 1, "", "kaiser_bessel_derived_window"], [75, 0, 1, "", "kaiser_window"], [75, 0, 1, "", "mel_weight_matrix"], [75, 0, 1, "", "polyval"], [75, 0, 1, "", "static_blackman_window"], [75, 0, 1, "", "static_eye_like"], [75, 0, 1, "", "static_hamming_window"], [75, 0, 1, "", "static_hann_window"], [75, 0, 1, "", "static_kaiser_bessel_derived_window"], [75, 0, 1, "", "static_kaiser_window"], [75, 0, 1, "", "static_mel_weight_matrix"], [75, 0, 1, "", "static_polyval"], [75, 0, 1, "", "static_tril_indices"], [75, 0, 1, "", "static_unsorted_segment_mean"], [75, 0, 1, "", "static_unsorted_segment_min"], [75, 0, 1, "", "static_unsorted_segment_sum"], [75, 0, 1, "", "static_vorbis_window"], [75, 0, 1, "", "tril_indices"], [75, 0, 1, "", "trilu"], [75, 0, 1, "", "unsorted_segment_mean"], [75, 0, 1, "", "unsorted_segment_min"], [75, 0, 1, "", "unsorted_segment_sum"], [75, 0, 1, "", "vorbis_window"]], "ivy.data_classes.container.experimental.data_type": [[75, 1, 1, "", "_ContainerWithData_typeExperimental"]], "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.device": [[75, 1, 1, "", "_ContainerWithDeviceExperimental"]], "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.elementwise": [[75, 1, 1, "", "_ContainerWithElementWiseExperimental"]], "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "allclose"], [75, 0, 1, "", "amax"], [75, 0, 1, "", "amin"], [75, 0, 1, "", "binarizer"], [75, 0, 1, "", "conj"], [75, 0, 1, "", "copysign"], [75, 0, 1, "", "count_nonzero"], [75, 0, 1, "", "diff"], [75, 0, 1, "", "digamma"], [75, 0, 1, "", "erfc"], [75, 0, 1, "", "fix"], [75, 0, 1, "", "float_power"], [75, 0, 1, "", "fmax"], [75, 0, 1, "", "fmod"], [75, 0, 1, "", "frexp"], [75, 0, 1, "", "gradient"], [75, 0, 1, "", "hypot"], [75, 0, 1, "", "isclose"], [75, 0, 1, "", "ldexp"], [75, 0, 1, "", "lerp"], [75, 0, 1, "", "modf"], [75, 0, 1, "", "nansum"], [75, 0, 1, "", "nextafter"], [75, 0, 1, "", "signbit"], [75, 0, 1, "", "sinc"], [75, 0, 1, "", "sparsify_tensor"], [75, 0, 1, "", "static_allclose"], [75, 0, 1, "", "static_amax"], [75, 0, 1, "", "static_amin"], [75, 0, 1, "", "static_binarizer"], [75, 0, 1, "", "static_conj"], [75, 0, 1, "", "static_copysign"], [75, 0, 1, "", "static_count_nonzero"], [75, 0, 1, "", "static_diff"], [75, 0, 1, "", "static_digamma"], [75, 0, 1, "", "static_erfc"], [75, 0, 1, "", "static_fix"], [75, 0, 1, "", "static_float_power"], [75, 0, 1, "", "static_fmax"], [75, 0, 1, "", "static_fmod"], [75, 0, 1, "", "static_frexp"], [75, 0, 1, "", "static_gradient"], [75, 0, 1, "", "static_hypot"], [75, 0, 1, "", "static_isclose"], [75, 0, 1, "", "static_ldexp"], [75, 0, 1, "", "static_lerp"], [75, 0, 1, "", "static_modf"], [75, 0, 1, "", "static_nansum"], [75, 0, 1, "", "static_nextafter"], [75, 0, 1, "", "static_signbit"], [75, 0, 1, "", "static_sinc"], [75, 0, 1, "", "static_sparsify_tensor"], [75, 0, 1, "", "static_xlogy"], [75, 0, 1, "", "static_zeta"], [75, 0, 1, "", "xlogy"], [75, 0, 1, "", "zeta"]], "ivy.data_classes.container.experimental.general": [[75, 1, 1, "", "_ContainerWithGeneralExperimental"]], "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_reduce"], [75, 0, 1, "", "reduce"]], "ivy.data_classes.container.experimental.gradients": [[75, 1, 1, "", "_ContainerWithGradientsExperimental"]], "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.image": [[75, 1, 1, "", "_ContainerWithImageExperimental"]], "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.layers": [[75, 1, 1, "", "_ContainerWithLayersExperimental"]], "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fft"], [75, 0, 1, "", "_static_sliding_window"], [75, 0, 1, "", "adaptive_avg_pool1d"], [75, 0, 1, "", "adaptive_avg_pool2d"], [75, 0, 1, "", "adaptive_max_pool2d"], [75, 0, 1, "", "avg_pool1d"], [75, 0, 1, "", "avg_pool2d"], [75, 0, 1, "", "avg_pool3d"], [75, 0, 1, "", "dct"], [75, 0, 1, "", "dft"], [75, 0, 1, "", "embedding"], [75, 0, 1, "", "fft"], [75, 0, 1, "", "idct"], [75, 0, 1, "", "ifft"], [75, 0, 1, "", "ifftn"], [75, 0, 1, "", "interpolate"], [75, 0, 1, "", "max_pool1d"], [75, 0, 1, "", "max_pool2d"], [75, 0, 1, "", "max_pool3d"], [75, 0, 1, "", "max_unpool1d"], [75, 0, 1, "", "rfft"], [75, 0, 1, "", "rfftn"], [75, 0, 1, "", "sliding_window"], [75, 0, 1, "", "static_adaptive_avg_pool1d"], [75, 0, 1, "", "static_adaptive_avg_pool2d"], [75, 0, 1, "", "static_adaptive_max_pool2d"], [75, 0, 1, "", "static_avg_pool1d"], [75, 0, 1, "", "static_avg_pool2d"], [75, 0, 1, "", "static_avg_pool3d"], [75, 0, 1, "", "static_dct"], [75, 0, 1, "", "static_dft"], [75, 0, 1, "", "static_embedding"], [75, 0, 1, "", "static_idct"], [75, 0, 1, "", "static_ifft"], [75, 0, 1, "", "static_ifftn"], [75, 0, 1, "", "static_interpolate"], [75, 0, 1, "", "static_max_pool1d"], [75, 0, 1, "", "static_max_pool2d"], [75, 0, 1, "", "static_max_pool3d"], [75, 0, 1, "", "static_max_unpool1d"], [75, 0, 1, "", "static_rfft"], [75, 0, 1, "", "static_rfftn"], [75, 0, 1, "", "static_stft"], [75, 0, 1, "", "stft"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, 1, 1, "", "_ContainerWithLinearAlgebraExperimental"]], "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "adjoint"], [75, 0, 1, "", "batched_outer"], [75, 0, 1, "", "cond"], [75, 0, 1, "", "diagflat"], [75, 0, 1, "", "dot"], [75, 0, 1, "", "eig"], [75, 0, 1, "", "eigh_tridiagonal"], [75, 0, 1, "", "eigvals"], [75, 0, 1, "", "higher_order_moment"], [75, 0, 1, "", "initialize_tucker"], [75, 0, 1, "", "kron"], [75, 0, 1, "", "make_svd_non_negative"], [75, 0, 1, "", "matrix_exp"], [75, 0, 1, "", "mode_dot"], [75, 0, 1, "", "multi_dot"], [75, 0, 1, "", "multi_mode_dot"], [75, 0, 1, "", "partial_tucker"], [75, 0, 1, "", "static_adjoint"], [75, 0, 1, "", "static_batched_outer"], [75, 0, 1, "", "static_cond"], [75, 0, 1, "", "static_diagflat"], [75, 0, 1, "", "static_dot"], [75, 0, 1, "", "static_eig"], [75, 0, 1, "", "static_eigh_tridiagonal"], [75, 0, 1, "", "static_eigvals"], [75, 0, 1, "", "static_higher_order_moment"], [75, 0, 1, "", "static_initialize_tucker"], [75, 0, 1, "", "static_kron"], [75, 0, 1, "", "static_make_svd_non_negative"], [75, 0, 1, "", "static_matrix_exp"], [75, 0, 1, "", "static_mode_dot"], [75, 0, 1, "", "static_multi_dot"], [75, 0, 1, "", "static_multi_mode_dot"], [75, 0, 1, "", "static_partial_tucker"], [75, 0, 1, "", "static_svd_flip"], [75, 0, 1, "", "static_tensor_train"], [75, 0, 1, "", "static_truncated_svd"], [75, 0, 1, "", "static_tt_matrix_to_tensor"], [75, 0, 1, "", "static_tucker"], [75, 0, 1, "", "svd_flip"], [75, 0, 1, "", "tensor_train"], [75, 0, 1, "", "truncated_svd"], [75, 0, 1, "", "tt_matrix_to_tensor"], [75, 0, 1, "", "tucker"]], "ivy.data_classes.container.experimental.losses": [[75, 1, 1, "", "_ContainerWithLossesExperimental"]], "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_huber_loss"], [75, 0, 1, "", "_static_kl_div"], [75, 0, 1, "", "_static_l1_loss"], [75, 0, 1, "", "_static_log_poisson_loss"], [75, 0, 1, "", "_static_poisson_nll_loss"], [75, 0, 1, "", "_static_smooth_l1_loss"], [75, 0, 1, "", "_static_soft_margin_loss"], [75, 0, 1, "", "huber_loss"], [75, 0, 1, "", "kl_div"], [75, 0, 1, "", "l1_loss"], [75, 0, 1, "", "log_poisson_loss"], [75, 0, 1, "", "poisson_nll_loss"], [75, 0, 1, "", "smooth_l1_loss"], [75, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.container.experimental.manipulation": [[75, 1, 1, "", "_ContainerWithManipulationExperimental"], [75, 2, 1, "", "concat_from_sequence"]], "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fill_diagonal"], [75, 0, 1, "", "_static_put_along_axis"], [75, 0, 1, "", "_static_take"], [75, 0, 1, "", "_static_trim_zeros"], [75, 0, 1, "", "_static_unique_consecutive"], [75, 0, 1, "", "as_strided"], [75, 0, 1, "", "associative_scan"], [75, 0, 1, "", "atleast_1d"], [75, 0, 1, "", "atleast_2d"], [75, 0, 1, "", "atleast_3d"], [75, 0, 1, "", "broadcast_shapes"], [75, 0, 1, "", "column_stack"], [75, 0, 1, "", "concat_from_sequence"], [75, 0, 1, "", "dsplit"], [75, 0, 1, "", "dstack"], [75, 0, 1, "", "expand"], [75, 0, 1, "", "fill_diagonal"], [75, 0, 1, "", "flatten"], [75, 0, 1, "", "fliplr"], [75, 0, 1, "", "flipud"], [75, 0, 1, "", "fold"], [75, 0, 1, "", "heaviside"], [75, 0, 1, "", "hsplit"], [75, 0, 1, "", "hstack"], [75, 0, 1, "", "i0"], [75, 0, 1, "", "matricize"], [75, 0, 1, "", "moveaxis"], [75, 0, 1, "", "pad"], [75, 0, 1, "", "partial_fold"], [75, 0, 1, "", "partial_tensor_to_vec"], [75, 0, 1, "", "partial_unfold"], [75, 0, 1, "", "partial_vec_to_tensor"], [75, 0, 1, "", "put_along_axis"], [75, 0, 1, "", "rot90"], [75, 0, 1, "", "soft_thresholding"], [75, 0, 1, "", "static_as_strided"], [75, 0, 1, "", "static_atleast_1d"], [75, 0, 1, "", "static_atleast_2d"], [75, 0, 1, "", "static_atleast_3d"], [75, 0, 1, "", "static_broadcast_shapes"], [75, 0, 1, "", "static_column_stack"], [75, 0, 1, "", "static_concat_from_sequence"], [75, 0, 1, "", "static_dsplit"], [75, 0, 1, "", "static_dstack"], [75, 0, 1, "", "static_expand"], [75, 0, 1, "", "static_flatten"], [75, 0, 1, "", "static_fliplr"], [75, 0, 1, "", "static_flipud"], [75, 0, 1, "", "static_fold"], [75, 0, 1, "", "static_heaviside"], [75, 0, 1, "", "static_hsplit"], [75, 0, 1, "", "static_hstack"], [75, 0, 1, "", "static_i0"], [75, 0, 1, "", "static_matricize"], [75, 0, 1, "", "static_moveaxis"], [75, 0, 1, "", "static_pad"], [75, 0, 1, "", "static_partial_fold"], [75, 0, 1, "", "static_partial_tensor_to_vec"], [75, 0, 1, "", "static_partial_unfold"], [75, 0, 1, "", "static_partial_vec_to_tensor"], [75, 0, 1, "", "static_rot90"], [75, 0, 1, "", "static_soft_thresholding"], [75, 0, 1, "", "static_take_along_axis"], [75, 0, 1, "", "static_top_k"], [75, 0, 1, "", "static_unfold"], [75, 0, 1, "", "static_vsplit"], [75, 0, 1, "", "static_vstack"], [75, 0, 1, "", "take"], [75, 0, 1, "", "take_along_axis"], [75, 0, 1, "", "top_k"], [75, 0, 1, "", "trim_zeros"], [75, 0, 1, "", "unfold"], [75, 0, 1, "", "unique_consecutive"], [75, 0, 1, "", "vsplit"], [75, 0, 1, "", "vstack"]], "ivy.data_classes.container.experimental.norms": [[75, 1, 1, "", "_ContainerWithNormsExperimental"]], "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "batch_norm"], [75, 0, 1, "", "group_norm"], [75, 0, 1, "", "instance_norm"], [75, 0, 1, "", "l1_normalize"], [75, 0, 1, "", "l2_normalize"], [75, 0, 1, "", "lp_normalize"], [75, 0, 1, "", "static_batch_norm"], [75, 0, 1, "", "static_group_norm"], [75, 0, 1, "", "static_instance_norm"], [75, 0, 1, "", "static_l1_normalize"], [75, 0, 1, "", "static_l2_normalize"], [75, 0, 1, "", "static_lp_normalize"]], "ivy.data_classes.container.experimental.random": [[75, 1, 1, "", "_ContainerWithRandomExperimental"]], "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "bernoulli"], [75, 0, 1, "", "beta"], [75, 0, 1, "", "dirichlet"], [75, 0, 1, "", "gamma"], [75, 0, 1, "", "poisson"], [75, 0, 1, "", "static_bernoulli"], [75, 0, 1, "", "static_beta"], [75, 0, 1, "", "static_dirichlet"], [75, 0, 1, "", "static_gamma"], [75, 0, 1, "", "static_poisson"]], "ivy.data_classes.container.experimental.searching": [[75, 1, 1, "", "_ContainerWithSearchingExperimental"]], "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "static_unravel_index"], [75, 0, 1, "", "unravel_index"]], "ivy.data_classes.container.experimental.set": [[75, 1, 1, "", "_ContainerWithSetExperimental"]], "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.sorting": [[75, 1, 1, "", "_ContainerWithSortingExperimental"]], "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "invert_permutation"], [75, 0, 1, "", "lexsort"], [75, 0, 1, "", "static_invert_permutation"], [75, 0, 1, "", "static_lexsort"]], "ivy.data_classes.container.experimental.statistical": [[75, 1, 1, "", "_ContainerWithStatisticalExperimental"]], "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_cummax"], [75, 0, 1, "", "_static_cummin"], [75, 0, 1, "", "_static_nanmin"], [75, 0, 1, "", "bincount"], [75, 0, 1, "", "corrcoef"], [75, 0, 1, "", "cov"], [75, 0, 1, "", "cummax"], [75, 0, 1, "", "cummin"], [75, 0, 1, "", "histogram"], [75, 0, 1, "", "igamma"], [75, 0, 1, "", "median"], [75, 0, 1, "", "nanmean"], [75, 0, 1, "", "nanmedian"], [75, 0, 1, "", "nanmin"], [75, 0, 1, "", "nanprod"], [75, 0, 1, "", "quantile"], [75, 0, 1, "", "static_bincount"], [75, 0, 1, "", "static_corrcoef"], [75, 0, 1, "", "static_cov"], [75, 0, 1, "", "static_histogram"], [75, 0, 1, "", "static_igamma"], [75, 0, 1, "", "static_median"], [75, 0, 1, "", "static_nanmean"], [75, 0, 1, "", "static_nanmedian"], [75, 0, 1, "", "static_nanprod"], [75, 0, 1, "", "static_quantile"]], "ivy.data_classes.container.experimental.utility": [[75, 1, 1, "", "_ContainerWithUtilityExperimental"]], "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "optional_get_element"], [75, 0, 1, "", "static_optional_get_element"]], "ivy.data_classes.container.general": [[76, 1, 1, "", "_ContainerWithGeneral"]], "ivy.data_classes.container.general._ContainerWithGeneral": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_all_equal"], [76, 0, 1, "", "_static_array_equal"], [76, 0, 1, "", "_static_assert_supports_inplace"], [76, 0, 1, "", "_static_clip_matrix_norm"], [76, 0, 1, "", "_static_clip_vector_norm"], [76, 0, 1, "", "_static_einops_rearrange"], [76, 0, 1, "", "_static_einops_reduce"], [76, 0, 1, "", "_static_einops_repeat"], [76, 0, 1, "", "_static_exists"], [76, 0, 1, "", "_static_fourier_encode"], [76, 0, 1, "", "_static_gather"], [76, 0, 1, "", "_static_gather_nd"], [76, 0, 1, "", "_static_get_num_dims"], [76, 0, 1, "", "_static_has_nans"], [76, 0, 1, "", "_static_inplace_decrement"], [76, 0, 1, "", "_static_inplace_increment"], [76, 0, 1, "", "_static_inplace_update"], [76, 0, 1, "", "_static_is_array"], [76, 0, 1, "", "_static_is_ivy_array"], [76, 0, 1, "", "_static_is_native_array"], [76, 0, 1, "", "_static_scatter_flat"], [76, 0, 1, "", "_static_scatter_nd"], [76, 0, 1, "", "_static_stable_divide"], [76, 0, 1, "", "_static_stable_pow"], [76, 0, 1, "", "_static_supports_inplace_updates"], [76, 0, 1, "", "_static_to_list"], [76, 0, 1, "", "_static_to_numpy"], [76, 0, 1, "", "_static_to_scalar"], [76, 0, 1, "", "_static_value_is_nan"], [76, 0, 1, "", "all_equal"], [76, 0, 1, "", "array_equal"], [76, 0, 1, "", "assert_supports_inplace"], [76, 0, 1, "", "clip_matrix_norm"], [76, 0, 1, "", "clip_vector_norm"], [76, 0, 1, "", "einops_rearrange"], [76, 0, 1, "", "einops_reduce"], [76, 0, 1, "", "einops_repeat"], [76, 0, 1, "", "exists"], [76, 0, 1, "", "fourier_encode"], [76, 0, 1, "", "gather"], [76, 0, 1, "", "gather_nd"], [76, 0, 1, "", "get_num_dims"], [76, 0, 1, "", "has_nans"], [76, 0, 1, "", "inplace_decrement"], [76, 0, 1, "", "inplace_increment"], [76, 0, 1, "", "inplace_update"], [76, 0, 1, "", "is_array"], [76, 0, 1, "", "is_ivy_array"], [76, 0, 1, "", "is_native_array"], [76, 0, 1, "", "isin"], [76, 0, 1, "", "itemsize"], [76, 0, 1, "", "scatter_flat"], [76, 0, 1, "", "scatter_nd"], [76, 0, 1, "", "stable_divide"], [76, 0, 1, "", "stable_pow"], [76, 0, 1, "", "static_isin"], [76, 0, 1, "", "static_itemsize"], [76, 0, 1, "", "static_strides"], [76, 0, 1, "", "strides"], [76, 0, 1, "", "supports_inplace_updates"], [76, 0, 1, "", "to_list"], [76, 0, 1, "", "to_numpy"], [76, 0, 1, "", "to_scalar"], [76, 0, 1, "", "value_is_nan"]], "ivy.data_classes.container.gradients": [[77, 1, 1, "", "_ContainerWithGradients"]], "ivy.data_classes.container.gradients._ContainerWithGradients": [[77, 4, 1, "", "_abc_impl"], [77, 0, 1, "", "_static_stop_gradient"], [77, 0, 1, "", "adam_step"], [77, 0, 1, "", "adam_update"], [77, 0, 1, "", "gradient_descent_update"], [77, 0, 1, "", "lamb_update"], [77, 0, 1, "", "lars_update"], [77, 0, 1, "", "optimizer_update"], [77, 0, 1, "", "stop_gradient"]], "ivy.data_classes.container.image": [[78, 1, 1, "", "_ContainerWithImage"]], "ivy.data_classes.container.image._ContainerWithImage": [[78, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.layers": [[79, 1, 1, "", "_ContainerWithLayers"]], "ivy.data_classes.container.layers._ContainerWithLayers": [[79, 4, 1, "", "_abc_impl"], [79, 0, 1, "", "_static_conv1d"], [79, 0, 1, "", "_static_conv1d_transpose"], [79, 0, 1, "", "_static_conv2d"], [79, 0, 1, "", "_static_conv2d_transpose"], [79, 0, 1, "", "_static_conv3d"], [79, 0, 1, "", "_static_conv3d_transpose"], [79, 0, 1, "", "_static_depthwise_conv2d"], [79, 0, 1, "", "_static_dropout"], [79, 0, 1, "", "_static_dropout1d"], [79, 0, 1, "", "_static_dropout2d"], [79, 0, 1, "", "_static_dropout3d"], [79, 0, 1, "", "_static_linear"], [79, 0, 1, "", "_static_lstm_update"], [79, 0, 1, "", "_static_multi_head_attention"], [79, 0, 1, "", "_static_reduce_window"], [79, 0, 1, "", "_static_scaled_dot_product_attention"], [79, 0, 1, "", "conv1d"], [79, 0, 1, "", "conv1d_transpose"], [79, 0, 1, "", "conv2d"], [79, 0, 1, "", "conv2d_transpose"], [79, 0, 1, "", "conv3d"], [79, 0, 1, "", "conv3d_transpose"], [79, 0, 1, "", "depthwise_conv2d"], [79, 0, 1, "", "dropout"], [79, 0, 1, "", "dropout1d"], [79, 0, 1, "", "dropout2d"], [79, 0, 1, "", "dropout3d"], [79, 0, 1, "", "linear"], [79, 0, 1, "", "lstm_update"], [79, 0, 1, "", "multi_head_attention"], [79, 0, 1, "", "reduce_window"], [79, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.container.linear_algebra": [[80, 1, 1, "", "_ContainerWithLinearAlgebra"]], "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_cholesky"], [80, 0, 1, "", "_static_cross"], [80, 0, 1, "", "_static_det"], [80, 0, 1, "", "_static_diag"], [80, 0, 1, "", "_static_diagonal"], [80, 0, 1, "", "_static_eigh"], [80, 0, 1, "", "_static_eigvalsh"], [80, 0, 1, "", "_static_inner"], [80, 0, 1, "", "_static_inv"], [80, 0, 1, "", "_static_matmul"], [80, 0, 1, "", "_static_matrix_norm"], [80, 0, 1, "", "_static_matrix_power"], [80, 0, 1, "", "_static_matrix_rank"], [80, 0, 1, "", "_static_matrix_transpose"], [80, 0, 1, "", "_static_outer"], [80, 0, 1, "", "_static_pinv"], [80, 0, 1, "", "_static_qr"], [80, 0, 1, "", "_static_slogdet"], [80, 0, 1, "", "_static_solve"], [80, 0, 1, "", "_static_svd"], [80, 0, 1, "", "_static_svdvals"], [80, 0, 1, "", "_static_tensordot"], [80, 0, 1, "", "_static_tensorsolve"], [80, 0, 1, "", "_static_trace"], [80, 0, 1, "", "_static_vander"], [80, 0, 1, "", "_static_vecdot"], [80, 0, 1, "", "_static_vector_norm"], [80, 0, 1, "", "_static_vector_to_skew_symmetric_matrix"], [80, 0, 1, "", "cholesky"], [80, 0, 1, "", "cross"], [80, 0, 1, "", "det"], [80, 0, 1, "", "diag"], [80, 0, 1, "", "diagonal"], [80, 0, 1, "", "eigh"], [80, 0, 1, "", "eigvalsh"], [80, 0, 1, "", "general_inner_product"], [80, 0, 1, "", "inner"], [80, 0, 1, "", "inv"], [80, 0, 1, "", "matmul"], [80, 0, 1, "", "matrix_norm"], [80, 0, 1, "", "matrix_power"], [80, 0, 1, "", "matrix_rank"], [80, 0, 1, "", "matrix_transpose"], [80, 0, 1, "", "outer"], [80, 0, 1, "", "pinv"], [80, 0, 1, "", "qr"], [80, 0, 1, "", "slogdet"], [80, 0, 1, "", "solve"], [80, 0, 1, "", "static_general_inner_product"], [80, 0, 1, "", "svd"], [80, 0, 1, "", "svdvals"], [80, 0, 1, "", "tensordot"], [80, 0, 1, "", "tensorsolve"], [80, 0, 1, "", "trace"], [80, 0, 1, "", "vander"], [80, 0, 1, "", "vecdot"], [80, 0, 1, "", "vector_norm"], [80, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.container.losses": [[81, 1, 1, "", "_ContainerWithLosses"]], "ivy.data_classes.container.losses._ContainerWithLosses": [[81, 4, 1, "", "_abc_impl"], [81, 0, 1, "", "_static_binary_cross_entropy"], [81, 0, 1, "", "_static_cross_entropy"], [81, 0, 1, "", "_static_sparse_cross_entropy"], [81, 0, 1, "", "binary_cross_entropy"], [81, 0, 1, "", "cross_entropy"], [81, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.container.manipulation": [[82, 1, 1, "", "_ContainerWithManipulation"]], "ivy.data_classes.container.manipulation._ContainerWithManipulation": [[82, 4, 1, "", "_abc_impl"], [82, 0, 1, "", "_static_clip"], [82, 0, 1, "", "_static_concat"], [82, 0, 1, "", "_static_constant_pad"], [82, 0, 1, "", "_static_expand_dims"], [82, 0, 1, "", "_static_flip"], [82, 0, 1, "", "_static_permute_dims"], [82, 0, 1, "", "_static_repeat"], [82, 0, 1, "", "_static_reshape"], [82, 0, 1, "", "_static_roll"], [82, 0, 1, "", "_static_split"], [82, 0, 1, "", "_static_squeeze"], [82, 0, 1, "", "_static_stack"], [82, 0, 1, "", "_static_swapaxes"], [82, 0, 1, "", "_static_tile"], [82, 0, 1, "", "_static_unstack"], [82, 0, 1, "", "_static_zero_pad"], [82, 0, 1, "", "clip"], [82, 0, 1, "", "concat"], [82, 0, 1, "", "constant_pad"], [82, 0, 1, "", "expand_dims"], [82, 0, 1, "", "flip"], [82, 0, 1, "", "permute_dims"], [82, 0, 1, "", "repeat"], [82, 0, 1, "", "reshape"], [82, 0, 1, "", "roll"], [82, 0, 1, "", "split"], [82, 0, 1, "", "squeeze"], [82, 0, 1, "", "stack"], [82, 0, 1, "", "swapaxes"], [82, 0, 1, "", "tile"], [82, 0, 1, "", "unstack"], [82, 0, 1, "", "zero_pad"]], "ivy.data_classes.container.norms": [[83, 1, 1, "", "_ContainerWithNorms"]], "ivy.data_classes.container.norms._ContainerWithNorms": [[83, 4, 1, "", "_abc_impl"], [83, 0, 1, "", "layer_norm"]], "ivy.data_classes.container.random": [[84, 1, 1, "", "_ContainerWithRandom"]], "ivy.data_classes.container.random._ContainerWithRandom": [[84, 4, 1, "", "_abc_impl"], [84, 0, 1, "", "_static_multinomial"], [84, 0, 1, "", "_static_randint"], [84, 0, 1, "", "_static_random_normal"], [84, 0, 1, "", "_static_random_uniform"], [84, 0, 1, "", "_static_shuffle"], [84, 0, 1, "", "multinomial"], [84, 0, 1, "", "randint"], [84, 0, 1, "", "random_normal"], [84, 0, 1, "", "random_uniform"], [84, 0, 1, "", "shuffle"]], "ivy.data_classes.container.searching": [[85, 1, 1, "", "_ContainerWithSearching"]], "ivy.data_classes.container.searching._ContainerWithSearching": [[85, 4, 1, "", "_abc_impl"], [85, 0, 1, "", "_static_argmax"], [85, 0, 1, "", "_static_argmin"], [85, 0, 1, "", "_static_argwhere"], [85, 0, 1, "", "_static_nonzero"], [85, 0, 1, "", "_static_where"], [85, 0, 1, "", "argmax"], [85, 0, 1, "", "argmin"], [85, 0, 1, "", "argwhere"], [85, 0, 1, "", "nonzero"], [85, 0, 1, "", "where"]], "ivy.data_classes.container.set": [[86, 1, 1, "", "_ContainerWithSet"]], "ivy.data_classes.container.set._ContainerWithSet": [[86, 4, 1, "", "_abc_impl"], [86, 0, 1, "", "_static_unique_all"], [86, 0, 1, "", "_static_unique_counts"], [86, 0, 1, "", "_static_unique_inverse"], [86, 0, 1, "", "_static_unique_values"], [86, 0, 1, "", "unique_all"], [86, 0, 1, "", "unique_counts"], [86, 0, 1, "", "unique_inverse"], [86, 0, 1, "", "unique_values"]], "ivy.data_classes.container.sorting": [[87, 1, 1, "", "_ContainerWithSorting"]], "ivy.data_classes.container.sorting._ContainerWithSorting": [[87, 4, 1, "", "_abc_impl"], [87, 0, 1, "", "_static_argsort"], [87, 0, 1, "", "_static_searchsorted"], [87, 0, 1, "", "_static_sort"], [87, 0, 1, "", "argsort"], [87, 0, 1, "", "msort"], [87, 0, 1, "", "searchsorted"], [87, 0, 1, "", "sort"], [87, 0, 1, "", "static_msort"]], "ivy.data_classes.container.statistical": [[88, 1, 1, "", "_ContainerWithStatistical"]], "ivy.data_classes.container.statistical._ContainerWithStatistical": [[88, 4, 1, "", "_abc_impl"], [88, 0, 1, "", "_static_cumprod"], [88, 0, 1, "", "_static_cumsum"], [88, 0, 1, "", "_static_min"], [88, 0, 1, "", "_static_prod"], [88, 0, 1, "", "_static_sum"], [88, 0, 1, "", "_static_var"], [88, 0, 1, "", "cumprod"], [88, 0, 1, "", "cumsum"], [88, 0, 1, "", "einsum"], [88, 0, 1, "", "max"], [88, 0, 1, "", "mean"], [88, 0, 1, "", "min"], [88, 0, 1, "", "prod"], [88, 0, 1, "", "std"], [88, 0, 1, "", "sum"], [88, 0, 1, "", "var"]], "ivy.data_classes.container.utility": [[89, 1, 1, "", "_ContainerWithUtility"]], "ivy.data_classes.container.utility._ContainerWithUtility": [[89, 4, 1, "", "_abc_impl"], [89, 0, 1, "", "_static_all"], [89, 0, 1, "", "_static_any"], [89, 0, 1, "", "all"], [89, 0, 1, "", "any"]], "ivy.data_classes.container.wrapping": [[90, 2, 1, "", "_wrap_function"], [90, 2, 1, "", "add_ivy_container_instance_methods"]], "ivy.data_classes.factorized_tensor": [[91, 3, 0, "-", "base"], [92, 3, 0, "-", "cp_tensor"], [93, 3, 0, "-", "parafac2_tensor"], [94, 3, 0, "-", "tr_tensor"], [95, 3, 0, "-", "tt_tensor"], [96, 3, 0, "-", "tucker_tensor"]], "ivy.data_classes.factorized_tensor.base": [[91, 1, 1, "", "FactorizedTensor"]], "ivy.data_classes.factorized_tensor.base.FactorizedTensor": [[91, 0, 1, "", "__init__"], [91, 4, 1, "", "_abc_impl"], [91, 0, 1, "", "mode_dot"], [91, 0, 1, "", "norm"], [91, 0, 1, "", "to_tensor"], [91, 0, 1, "", "to_unfolded"], [91, 0, 1, "", "to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, 1, 1, "", "CPTensor"]], "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor": [[92, 0, 1, "", "__init__"], [92, 4, 1, "", "_abc_impl"], [92, 0, 1, "", "cp_copy"], [92, 0, 1, "", "cp_flip_sign"], [92, 0, 1, "", "cp_lstsq_grad"], [92, 0, 1, "", "cp_mode_dot"], [92, 0, 1, "", "cp_n_param"], [92, 0, 1, "", "cp_norm"], [92, 0, 1, "", "cp_normalize"], [92, 0, 1, "", "cp_to_tensor"], [92, 0, 1, "", "cp_to_unfolded"], [92, 0, 1, "", "cp_to_vec"], [92, 0, 1, "", "mode_dot"], [92, 5, 1, "", "n_param"], [92, 0, 1, "", "norm"], [92, 0, 1, "", "normalize"], [92, 0, 1, "", "to_tensor"], [92, 0, 1, "", "to_unfolded"], [92, 0, 1, "", "to_vec"], [92, 0, 1, "", "unfolding_dot_khatri_rao"], [92, 0, 1, "", "validate_cp_rank"], [92, 0, 1, "", "validate_cp_tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, 1, 1, "", "Parafac2Tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor": [[93, 0, 1, "", "__init__"], [93, 4, 1, "", "_abc_impl"], [93, 0, 1, "", "apply_parafac2_projections"], [93, 0, 1, "", "from_CPTensor"], [93, 5, 1, "", "n_param"], [93, 0, 1, "", "parafac2_normalise"], [93, 0, 1, "", "parafac2_to_slice"], [93, 0, 1, "", "parafac2_to_slices"], [93, 0, 1, "", "parafac2_to_tensor"], [93, 0, 1, "", "parafac2_to_unfolded"], [93, 0, 1, "", "parafac2_to_vec"], [93, 0, 1, "", "to_tensor"], [93, 0, 1, "", "to_unfolded"], [93, 0, 1, "", "to_vec"], [93, 0, 1, "", "validate_parafac2_tensor"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, 1, 1, "", "TRTensor"]], "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor": [[94, 0, 1, "", "__init__"], [94, 4, 1, "", "_abc_impl"], [94, 5, 1, "", "n_param"], [94, 0, 1, "", "to_tensor"], [94, 0, 1, "", "to_unfolded"], [94, 0, 1, "", "to_vec"], [94, 0, 1, "", "tr_n_param"], [94, 0, 1, "", "tr_to_tensor"], [94, 0, 1, "", "tr_to_unfolded"], [94, 0, 1, "", "tr_to_vec"], [94, 0, 1, "", "validate_tr_rank"], [94, 0, 1, "", "validate_tr_tensor"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, 1, 1, "", "TTTensor"]], "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor": [[95, 0, 1, "", "__init__"], [95, 4, 1, "", "_abc_impl"], [95, 0, 1, "", "_tt_n_param"], [95, 0, 1, "", "index_update"], [95, 5, 1, "", "n_param"], [95, 0, 1, "", "pad_tt_rank"], [95, 0, 1, "", "to_tensor"], [95, 0, 1, "", "to_unfolding"], [95, 0, 1, "", "to_vec"], [95, 0, 1, "", "tt_to_tensor"], [95, 0, 1, "", "tt_to_unfolded"], [95, 0, 1, "", "tt_to_vec"], [95, 0, 1, "", "validate_tt_rank"], [95, 0, 1, "", "validate_tt_tensor"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, 1, 1, "", "TuckerTensor"], [96, 2, 1, "", "_bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor": [[96, 0, 1, "", "__init__"], [96, 4, 1, "", "_abc_impl"], [96, 0, 1, "", "mode_dot"], [96, 5, 1, "", "n_param"], [96, 0, 1, "", "to_tensor"], [96, 0, 1, "", "to_unfolded"], [96, 0, 1, "", "to_vec"], [96, 0, 1, "", "tucker_copy"], [96, 0, 1, "", "tucker_mode_dot"], [96, 0, 1, "", "tucker_n_param"], [96, 0, 1, "", "tucker_normalize"], [96, 0, 1, "", "tucker_to_tensor"], [96, 0, 1, "", "tucker_to_unfolded"], [96, 0, 1, "", "tucker_to_vec"], [96, 0, 1, "", "validate_tucker_rank"], [96, 0, 1, "", "validate_tucker_tensor"]], "ivy.data_classes.nested_array": [[101, 3, 0, "-", "base"], [102, 3, 0, "-", "elementwise"], [100, 3, 0, "-", "nested_array"]], "ivy.data_classes.nested_array.base": [[101, 1, 1, "", "NestedArrayBase"]], "ivy.data_classes.nested_array.base.NestedArrayBase": [[101, 0, 1, "", "__init__"], [101, 4, 1, "", "_abc_impl"], [101, 0, 1, "", "broadcast_shapes"], [101, 5, 1, "", "data"], [101, 5, 1, "", "device"], [101, 5, 1, "", "dtype"], [101, 5, 1, "", "inner_shape"], [101, 5, 1, "", "ndim"], [101, 0, 1, "", "nested_array"], [101, 5, 1, "", "nested_rank"], [101, 0, 1, "", "ragged_map"], [101, 0, 1, "", "ragged_multi_map"], [101, 0, 1, "", "ragged_multi_map_in_function"], [101, 0, 1, "", "replace_ivy_arrays"], [101, 5, 1, "", "shape"], [101, 0, 1, "", "unbind"]], "ivy.data_classes.nested_array.elementwise": [[102, 1, 1, "", "NestedArrayElementwise"]], "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise": [[102, 4, 1, "", "_abc_impl"], [102, 0, 1, "", "static_add"]], "ivy.data_classes.nested_array.nested_array": [[100, 1, 1, "", "NestedArray"]], "ivy.data_classes.nested_array.nested_array.NestedArray": [[100, 0, 1, "", "__init__"], [100, 0, 1, "", "from_row_lengths"], [100, 0, 1, "", "from_row_splits"]], "ivy.functional.ivy": [[612, 3, 0, "-", "activations"], [613, 3, 0, "-", "constants"], [614, 3, 0, "-", "control_flow_ops"], [615, 3, 0, "-", "creation"], [616, 3, 0, "-", "data_type"], [617, 3, 0, "-", "device"], [618, 3, 0, "-", "elementwise"], [619, 3, 0, "-", "experimental"], [620, 3, 0, "-", "general"], [621, 3, 0, "-", "gradients"], [622, 3, 0, "-", "layers"], [623, 3, 0, "-", "linear_algebra"], [624, 3, 0, "-", "losses"], [625, 3, 0, "-", "manipulation"], [626, 3, 0, "-", "meta"], [627, 3, 0, "-", "nest"], [628, 3, 0, "-", "norms"], [629, 3, 0, "-", "random"], [630, 3, 0, "-", "searching"], [631, 3, 0, "-", "set"], [632, 3, 0, "-", "sorting"], [633, 3, 0, "-", "statistical"], [634, 3, 0, "-", "utility"]], "ivy.functional.ivy.experimental": [[360, 3, 0, "-", "activations"], [361, 3, 0, "-", "constants"], [362, 3, 0, "-", "creation"], [363, 3, 0, "-", "data_type"], [364, 3, 0, "-", "device"], [365, 3, 0, "-", "elementwise"], [366, 3, 0, "-", "general"], [367, 3, 0, "-", "gradients"], [368, 3, 0, "-", "layers"], [369, 3, 0, "-", "linear_algebra"], [370, 3, 0, "-", "losses"], [371, 3, 0, "-", "manipulation"], [372, 3, 0, "-", "meta"], [373, 3, 0, "-", "nest"], [374, 3, 0, "-", "norms"], [375, 3, 0, "-", "random"], [376, 3, 0, "-", "searching"], [377, 3, 0, "-", "set"], [378, 3, 0, "-", "sorting"], [379, 3, 0, "-", "sparse_array"], [380, 3, 0, "-", "statistical"], [381, 3, 0, "-", "utility"]], "ivy.stateful": [[774, 3, 0, "-", "activations"], [775, 3, 0, "-", "converters"], [776, 3, 0, "-", "helpers"], [777, 3, 0, "-", "initializers"], [778, 3, 0, "-", "layers"], [779, 3, 0, "-", "losses"], [780, 3, 0, "-", "module"], [781, 3, 0, "-", "norms"], [782, 3, 0, "-", "optimizers"], [783, 3, 0, "-", "sequential"]], "ivy.stateful.activations": [[774, 1, 1, "", "ELU"], [774, 1, 1, "", "GEGLU"], [774, 1, 1, "", "GELU"], [774, 1, 1, "", "Hardswish"], [774, 1, 1, "", "LeakyReLU"], [774, 1, 1, "", "LogSigmoid"], [774, 1, 1, "", "LogSoftmax"], [774, 1, 1, "", "Logit"], [774, 1, 1, "", "Mish"], [774, 1, 1, "", "PReLU"], [774, 1, 1, "", "ReLU"], [774, 1, 1, "", "ReLU6"], [774, 1, 1, "", "SeLU"], [774, 1, 1, "", "SiLU"], [774, 1, 1, "", "Sigmoid"], [774, 1, 1, "", "Softmax"], [774, 1, 1, "", "Softplus"], [774, 1, 1, "", "Tanh"]], "ivy.stateful.activations.ELU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.GEGLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.GELU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Hardswish": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.LeakyReLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSigmoid": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSoftmax": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Logit": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Mish": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.PReLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU6": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.SeLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.SiLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Sigmoid": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softmax": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softplus": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Tanh": [[774, 0, 1, "", "__init__"]], "ivy.stateful.converters": [[775, 1, 1, "", "ModuleConverters"], [775, 2, 1, "", "to_ivy_module"]], "ivy.stateful.converters.ModuleConverters": [[775, 0, 1, "", "from_flax_module"], [775, 0, 1, "", "from_haiku_module"], [775, 0, 1, "", "from_keras_module"], [775, 0, 1, "", "from_paddle_module"], [775, 0, 1, "", "from_torch_module"], [775, 0, 1, "", "to_keras_module"]], "ivy.stateful.helpers": [[776, 1, 1, "", "ModuleHelpers"]], "ivy.stateful.initializers": [[777, 1, 1, "", "Constant"], [777, 1, 1, "", "FirstLayerSiren"], [777, 1, 1, "", "GlorotUniform"], [777, 1, 1, "", "Initializer"], [777, 1, 1, "", "KaimingNormal"], [777, 1, 1, "", "Ones"], [777, 1, 1, "", "RandomNormal"], [777, 1, 1, "", "Siren"], [777, 1, 1, "", "Uniform"], [777, 1, 1, "", "Zeros"]], "ivy.stateful.initializers.Constant": [[777, 0, 1, "", "__init__"], [777, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.FirstLayerSiren": [[777, 0, 1, "", "__init__"]], "ivy.stateful.initializers.GlorotUniform": [[777, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Initializer": [[777, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.KaimingNormal": [[777, 0, 1, "", "__init__"], [777, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Ones": [[777, 0, 1, "", "__init__"]], "ivy.stateful.initializers.RandomNormal": [[777, 0, 1, "", "__init__"], [777, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Siren": [[777, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Uniform": [[777, 0, 1, "", "__init__"], [777, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Zeros": [[777, 0, 1, "", "__init__"]], "ivy.stateful.layers": [[778, 1, 1, "", "AdaptiveAvgPool1d"], [778, 1, 1, "", "AdaptiveAvgPool2d"], [778, 1, 1, "", "AvgPool1D"], [778, 1, 1, "", "AvgPool2D"], [778, 1, 1, "", "AvgPool3D"], [778, 1, 1, "", "Conv1D"], [778, 1, 1, "", "Conv1DTranspose"], [778, 1, 1, "", "Conv2D"], [778, 1, 1, "", "Conv2DTranspose"], [778, 1, 1, "", "Conv3D"], [778, 1, 1, "", "Conv3DTranspose"], [778, 1, 1, "", "Dct"], [778, 1, 1, "", "DepthwiseConv2D"], [778, 1, 1, "", "Dropout"], [778, 1, 1, "", "Embedding"], [778, 1, 1, "", "FFT"], [778, 1, 1, "", "IFFT"], [778, 1, 1, "", "Identity"], [778, 1, 1, "", "LSTM"], [778, 1, 1, "", "Linear"], [778, 1, 1, "", "MaxPool1D"], [778, 1, 1, "", "MaxPool2D"], [778, 1, 1, "", "MaxPool3D"], [778, 1, 1, "", "MultiHeadAttention"]], "ivy.stateful.layers.AdaptiveAvgPool1d": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.AdaptiveAvgPool2d": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool1D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool2D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool3D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1DTranspose": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2DTranspose": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3DTranspose": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dct": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.DepthwiseConv2D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dropout": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Embedding": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.FFT": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.IFFT": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Identity": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.LSTM": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "get_initial_state"]], "ivy.stateful.layers.Linear": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool1D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool2D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool3D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.MultiHeadAttention": [[778, 0, 1, "", "__init__"]], "ivy.stateful.losses": [[779, 1, 1, "", "BinaryCrossEntropyLoss"], [779, 1, 1, "", "CrossEntropyLoss"], [779, 1, 1, "", "LogPoissonLoss"]], "ivy.stateful.losses.BinaryCrossEntropyLoss": [[779, 0, 1, "", "__init__"]], "ivy.stateful.losses.CrossEntropyLoss": [[779, 0, 1, "", "__init__"]], "ivy.stateful.losses.LogPoissonLoss": [[779, 0, 1, "", "__init__"]], "ivy.stateful.module": [[780, 1, 1, "", "Module"], [780, 1, 1, "", "ModuleMeta"]], "ivy.stateful.module.Module": [[780, 0, 1, "", "__call__"], [780, 0, 1, "", "__init__"], [780, 5, 1, "", "buffers"], [780, 0, 1, "", "build"], [780, 5, 1, "", "build_mode"], [780, 5, 1, "", "built"], [780, 5, 1, "", "device"], [780, 5, 1, "", "dtype"], [780, 0, 1, "", "eval"], [780, 0, 1, "", "load"], [780, 5, 1, "", "module_dict"], [780, 0, 1, "", "register_buffer"], [780, 0, 1, "", "register_parameter"], [780, 0, 1, "", "save"], [780, 0, 1, "", "save_weights"], [780, 0, 1, "", "show_graph"], [780, 5, 1, "", "state_dict"], [780, 0, 1, "", "to_device"], [780, 0, 1, "", "trace_graph"], [780, 0, 1, "", "train"], [780, 5, 1, "", "training"], [780, 5, 1, "", "v"]], "ivy.stateful.norms": [[781, 1, 1, "", "BatchNorm2D"], [781, 1, 1, "", "LayerNorm"]], "ivy.stateful.norms.BatchNorm2D": [[781, 0, 1, "", "__init__"]], "ivy.stateful.norms.LayerNorm": [[781, 0, 1, "", "__init__"]], "ivy.stateful.optimizers": [[782, 1, 1, "", "Adam"], [782, 1, 1, "", "AdamW"], [782, 1, 1, "", "LAMB"], [782, 1, 1, "", "LARS"], [782, 1, 1, "", "Optimizer"], [782, 1, 1, "", "SGD"]], "ivy.stateful.optimizers.Adam": [[782, 0, 1, "", "__init__"], [782, 0, 1, "", "set_state"], [782, 5, 1, "", "state"]], "ivy.stateful.optimizers.AdamW": [[782, 0, 1, "", "__init__"]], "ivy.stateful.optimizers.LAMB": [[782, 0, 1, "", "__init__"], [782, 0, 1, "", "set_state"], [782, 5, 1, "", "state"]], "ivy.stateful.optimizers.LARS": [[782, 0, 1, "", "__init__"], [782, 0, 1, "", "set_state"], [782, 5, 1, "", "state"]], "ivy.stateful.optimizers.Optimizer": [[782, 0, 1, "", "__init__"], [782, 0, 1, "", "set_state"], [782, 0, 1, "", "step"]], "ivy.stateful.optimizers.SGD": [[782, 0, 1, "", "__init__"], [782, 0, 1, "", "set_state"], [782, 5, 1, "", "state"]], "ivy.stateful.sequential": [[783, 1, 1, "", "Sequential"]], "ivy.stateful.sequential.Sequential": [[783, 0, 1, "", "__init__"]], "ivy.utils": [[784, 3, 0, "-", "assertions"], [785, 3, 0, "-", "backend"], [789, 3, 0, "-", "binaries"], [790, 3, 0, "-", "dynamic_import"], [791, 3, 0, "-", "einsum_parser"], [792, 3, 0, "-", "einsum_path_helpers"], [793, 3, 0, "-", "exceptions"], [794, 3, 0, "-", "inspection"], [795, 3, 0, "-", "logging"], [796, 3, 0, "-", "profiler"], [797, 3, 0, "-", "verbosity"]], "ivy.utils.assertions": [[784, 2, 1, "", "check_all"], [784, 2, 1, "", "check_all_or_any_fn"], [784, 2, 1, "", "check_any"], [784, 2, 1, "", "check_dev_correct_formatting"], [784, 2, 1, "", "check_dimensions"], [784, 2, 1, "", "check_elem_in_list"], [784, 2, 1, "", "check_equal"], [784, 2, 1, "", "check_exists"], [784, 2, 1, "", "check_false"], [784, 2, 1, "", "check_gather_input_valid"], [784, 2, 1, "", "check_gather_nd_input_valid"], [784, 2, 1, "", "check_greater"], [784, 2, 1, "", "check_inplace_sizes_valid"], [784, 2, 1, "", "check_isinstance"], [784, 2, 1, "", "check_kernel_padding_size"], [784, 2, 1, "", "check_less"], [784, 2, 1, "", "check_one_way_broadcastable"], [784, 2, 1, "", "check_same_dtype"], [784, 2, 1, "", "check_shape"], [784, 2, 1, "", "check_shapes_broadcastable"], [784, 2, 1, "", "check_true"], [784, 2, 1, "", "check_unsorted_segment_valid_params"]], "ivy.utils.backend": [[786, 3, 0, "-", "ast_helpers"], [787, 3, 0, "-", "handler"], [788, 3, 0, "-", "sub_backend_handler"]], "ivy.utils.backend.ast_helpers": [[786, 1, 1, "", "ImportTransformer"], [786, 1, 1, "", "IvyLoader"], [786, 1, 1, "", "IvyPathFinder"]], "ivy.utils.backend.ast_helpers.ImportTransformer": [[786, 0, 1, "", "__init__"], [786, 0, 1, "", "impersonate_import"], [786, 0, 1, "", "visit_Import"], [786, 0, 1, "", "visit_ImportFrom"]], "ivy.utils.backend.ast_helpers.IvyLoader": [[786, 0, 1, "", "__init__"], [786, 0, 1, "", "exec_module"]], "ivy.utils.backend.ast_helpers.IvyPathFinder": [[786, 0, 1, "", "find_spec"]], "ivy.utils.backend.handler": [[787, 1, 1, "", "ContextManager"], [787, 2, 1, "", "choose_random_backend"], [787, 2, 1, "", "current_backend"], [787, 2, 1, "", "dynamic_backend_converter"], [787, 2, 1, "", "prevent_access_locally"], [787, 2, 1, "", "previous_backend"], [787, 2, 1, "", "set_backend"], [787, 2, 1, "", "set_backend_to_specific_version"], [787, 2, 1, "", "set_jax_backend"], [787, 2, 1, "", "set_mxnet_backend"], [787, 2, 1, "", "set_numpy_backend"], [787, 2, 1, "", "set_paddle_backend"], [787, 2, 1, "", "set_tensorflow_backend"], [787, 2, 1, "", "set_torch_backend"], [787, 2, 1, "", "unset_backend"], [787, 2, 1, "", "with_backend"]], "ivy.utils.backend.handler.ContextManager": [[787, 0, 1, "", "__init__"]], "ivy.utils.backend.sub_backend_handler": [[788, 2, 1, "", "clear_sub_backends"], [788, 2, 1, "", "find_available_sub_backends"], [788, 2, 1, "", "fn_name_from_version_specific_fn_name"], [788, 2, 1, "", "fn_name_from_version_specific_fn_name_sub_backend"], [788, 2, 1, "", "set_sub_backend"], [788, 2, 1, "", "set_sub_backend_to_specific_version"], [788, 2, 1, "", "unset_sub_backend"]], "ivy.utils.binaries": [[789, 2, 1, "", "check_for_binaries"], [789, 2, 1, "", "cleanup_and_fetch_binaries"]], "ivy.utils.dynamic_import": [[790, 2, 1, "", "import_module"]], "ivy.utils.einsum_parser": [[791, 2, 1, "", "convert_interleaved_input"], [791, 2, 1, "", "convert_subscripts"], [791, 2, 1, "", "find_output_shape"], [791, 2, 1, "", "find_output_str"], [791, 2, 1, "", "gen_unused_symbols"], [791, 2, 1, "", "get_symbol"], [791, 2, 1, "", "has_valid_einsum_chars_only"], [791, 2, 1, "", "is_valid_einsum_char"], [791, 2, 1, "", "legalise_einsum_expr"], [791, 2, 1, "", "possibly_convert_to_numpy"]], "ivy.utils.einsum_path_helpers": [[792, 2, 1, "", "can_dot"], [792, 2, 1, "", "compute_size_by_dict"], [792, 2, 1, "", "find_contraction"], [792, 2, 1, "", "flop_count"], [792, 2, 1, "", "greedy_path"], [792, 2, 1, "", "optimal_path"], [792, 2, 1, "", "parse_einsum_input"], [792, 2, 1, "", "parse_possible_contraction"], [792, 2, 1, "", "update_other_results"]], "ivy.utils.exceptions": [[793, 7, 1, "", "InplaceUpdateException"], [793, 7, 1, "", "IvyAttributeError"], [793, 7, 1, "", "IvyBackendException"], [793, 7, 1, "", "IvyBroadcastShapeError"], [793, 7, 1, "", "IvyDeviceError"], [793, 7, 1, "", "IvyDtypePromotionError"], [793, 7, 1, "", "IvyError"], [793, 7, 1, "", "IvyException"], [793, 7, 1, "", "IvyIndexError"], [793, 7, 1, "", "IvyInvalidBackendException"], [793, 7, 1, "", "IvyNotImplementedException"], [793, 7, 1, "", "IvyValueError"], [793, 2, 1, "", "handle_exceptions"]], "ivy.utils.exceptions.InplaceUpdateException": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyAttributeError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBackendException": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBroadcastShapeError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDeviceError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDtypePromotionError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyException": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyIndexError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyInvalidBackendException": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyNotImplementedException": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyValueError": [[793, 0, 1, "", "__init__"]], "ivy.utils.inspection": [[794, 2, 1, "", "add_array_specs"], [794, 2, 1, "", "fn_array_spec"]], "ivy.utils.logging": [[795, 2, 1, "", "set_logging_mode"], [795, 2, 1, "", "unset_logging_mode"]], "ivy.utils.profiler": [[796, 1, 1, "", "Profiler"]], "ivy.utils.profiler.Profiler": [[796, 0, 1, "", "__init__"], [796, 4, 1, "", "print_stats"], [796, 4, 1, "", "viz"]], "ivy.utils.verbosity": [[797, 2, 1, "", "cprint"]], "ivy_tests.test_ivy.helpers": [[757, 3, 0, "-", "assertions"], [758, 3, 0, "-", "available_frameworks"], [759, 3, 0, "-", "function_testing"], [760, 3, 0, "-", "globals"], [761, 3, 0, "-", "hypothesis_helpers"], [766, 3, 0, "-", "multiprocessing"], [767, 3, 0, "-", "pipeline_helper"], [768, 3, 0, "-", "structs"], [769, 3, 0, "-", "test_parameter_flags"], [770, 3, 0, "-", "testing_helpers"]], "ivy_tests.test_ivy.helpers.assertions": [[757, 2, 1, "", "assert_all_close"], [757, 2, 1, "", "assert_same_type"], [757, 2, 1, "", "assert_same_type_and_shape"], [757, 2, 1, "", "check_unsupported_device"], [757, 2, 1, "", "check_unsupported_device_and_dtype"], [757, 2, 1, "", "check_unsupported_dtype"], [757, 2, 1, "", "test_unsupported_function"], [757, 2, 1, "", "value_test"]], "ivy_tests.test_ivy.helpers.function_testing": [[759, 2, 1, "", "args_to_container"], [759, 2, 1, "", "args_to_frontend"], [759, 2, 1, "", "arrays_to_frontend"], [759, 2, 1, "", "as_lists"], [759, 2, 1, "", "convtrue"], [759, 2, 1, "", "create_args_kwargs"], [759, 2, 1, "", "flatten"], [759, 2, 1, "", "flatten_and_to_np"], [759, 2, 1, "", "flatten_frontend"], [759, 2, 1, "", "flatten_frontend_fw_to_np"], [759, 2, 1, "", "flatten_frontend_to_np"], [759, 2, 1, "", "get_frontend_ret"], [759, 2, 1, "", "get_ret_and_flattened_np_array"], [759, 2, 1, "", "gradient_incompatible_function"], [759, 2, 1, "", "gradient_test"], [759, 2, 1, "", "gradient_unsupported_dtypes"], [759, 2, 1, "", "kwargs_to_args_n_kwargs"], [759, 2, 1, "", "test_frontend_function"], [759, 2, 1, "", "test_frontend_method"], [759, 2, 1, "", "test_function"], [759, 2, 1, "", "test_function_backend_computation"], [759, 2, 1, "", "test_function_ground_truth_computation"], [759, 2, 1, "", "test_gradient_backend_computation"], [759, 2, 1, "", "test_gradient_ground_truth_computation"], [759, 2, 1, "", "test_method"], [759, 2, 1, "", "test_method_backend_computation"], [759, 2, 1, "", "test_method_ground_truth_computation"], [759, 2, 1, "", "traced_if_required"], [759, 2, 1, "", "wrap_frontend_function_args"]], "ivy_tests.test_ivy.helpers.globals": [[760, 6, 1, "", "CURRENT_FRONTEND_CONFIG"], [760, 7, 1, "", "InterruptedTest"], [760, 1, 1, "", "TestData"], [760, 2, 1, "", "setup_api_test"], [760, 2, 1, "", "setup_frontend_test"], [760, 2, 1, "", "teardown_api_test"], [760, 2, 1, "", "teardown_frontend_test"]], "ivy_tests.test_ivy.helpers.globals.InterruptedTest": [[760, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.globals.TestData": [[760, 0, 1, "", "__init__"], [760, 4, 1, "", "fn_name"], [760, 4, 1, "", "fn_tree"], [760, 4, 1, "", "is_method"], [760, 4, 1, "", "supported_device_dtypes"], [760, 4, 1, "", "test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[762, 3, 0, "-", "array_helpers"], [763, 3, 0, "-", "dtype_helpers"], [764, 3, 0, "-", "general_helpers"], [765, 3, 0, "-", "number_helpers"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[762, 2, 1, "", "array_and_broadcastable_shape"], [762, 2, 1, "", "array_bools"], [762, 2, 1, "", "array_helpers_dtype_info_helper"], [762, 2, 1, "", "array_indices_axis"], [762, 2, 1, "", "array_indices_put_along_axis"], [762, 2, 1, "", "array_values"], [762, 2, 1, "", "arrays_and_axes"], [762, 2, 1, "", "arrays_for_pooling"], [762, 2, 1, "", "broadcast_shapes"], [762, 2, 1, "", "cond_data_gen_helper"], [762, 2, 1, "", "create_concatenable_arrays_dtypes"], [762, 2, 1, "", "create_nested_input"], [762, 2, 1, "", "dtype_and_values"], [762, 2, 1, "", "dtype_array_query"], [762, 2, 1, "", "dtype_array_query_val"], [762, 2, 1, "", "dtype_values_axis"], [762, 2, 1, "", "einsum_helper"], [762, 2, 1, "", "get_first_solve_batch_matrix"], [762, 2, 1, "", "get_first_solve_matrix"], [762, 2, 1, "", "get_second_solve_batch_matrix"], [762, 2, 1, "", "get_second_solve_matrix"], [762, 2, 1, "", "list_of_size"], [762, 2, 1, "", "lists"], [762, 2, 1, "", "mutually_broadcastable_shapes"], [762, 2, 1, "", "prod"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[763, 2, 1, "", "array_dtypes"], [763, 2, 1, "", "cast_filter"], [763, 2, 1, "", "cast_filter_helper"], [763, 2, 1, "", "get_castable_dtype"], [763, 2, 1, "", "get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[764, 7, 1, "", "BroadcastError"], [764, 2, 1, "", "apply_safety_factor"], [764, 2, 1, "", "broadcast_shapes"], [764, 2, 1, "", "embedding_helper"], [764, 2, 1, "", "general_helpers_dtype_info_helper"], [764, 2, 1, "", "get_axis"], [764, 2, 1, "", "get_bounds"], [764, 2, 1, "", "get_mean_std"], [764, 2, 1, "", "get_shape"], [764, 2, 1, "", "matrix_is_stable"], [764, 2, 1, "", "reshape_shapes"], [764, 2, 1, "", "subsets"], [764, 2, 1, "", "two_broadcastable_shapes"], [764, 2, 1, "", "x_and_filters"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[765, 2, 1, "", "floats"], [765, 2, 1, "", "ints"], [765, 2, 1, "", "number"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[766, 2, 1, "", "backend_proc"], [766, 2, 1, "", "frontend_proc"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[767, 1, 1, "", "BackendHandler"], [767, 1, 1, "", "BackendHandlerMode"], [767, 1, 1, "", "WithBackendContext"], [767, 2, 1, "", "get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler": [[767, 0, 1, "", "update_backend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode": [[767, 4, 1, "", "SetBackend"], [767, 4, 1, "", "WithBackend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext": [[767, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.structs": [[768, 1, 1, "", "FrontendMethodData"]], "ivy_tests.test_ivy.helpers.structs.FrontendMethodData": [[768, 0, 1, "", "__init__"], [768, 4, 1, "", "framework_init_module"], [768, 4, 1, "", "init_name"], [768, 4, 1, "", "ivy_init_module"], [768, 4, 1, "", "method_name"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[769, 1, 1, "", "DynamicFlag"], [769, 1, 1, "", "FrontendFunctionTestFlags"], [769, 1, 1, "", "FrontendInitTestFlags"], [769, 1, 1, "", "FrontendMethodTestFlags"], [769, 1, 1, "", "FunctionTestFlags"], [769, 1, 1, "", "InitMethodTestFlags"], [769, 1, 1, "", "MethodTestFlags"], [769, 1, 1, "", "TestFlags"], [769, 2, 1, "", "build_flag"], [769, 2, 1, "", "frontend_function_flags"], [769, 2, 1, "", "frontend_init_flags"], [769, 2, 1, "", "frontend_method_flags"], [769, 2, 1, "", "function_flags"], [769, 2, 1, "", "init_method_flags"], [769, 2, 1, "", "method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag": [[769, 0, 1, "", "__init__"], [769, 4, 1, "", "strategy"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags": [[769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[770, 2, 1, "", "handle_frontend_method"], [770, 2, 1, "", "handle_frontend_test"], [770, 2, 1, "", "handle_method"], [770, 2, 1, "", "handle_test"], [770, 2, 1, "", "num_positional_args"], [770, 2, 1, "", "num_positional_args_helper"], [770, 2, 1, "", "num_positional_args_method"], [770, 2, 1, "", "seed"]]}, "objtypes": {"0": "py:method", "1": "py:class", "2": "py:function", "3": "py:module", "4": "py:attribute", "5": "py:property", "6": "py:data", "7": "py:exception"}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "class", "Python class"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"demo": [0, 2, 3, 4, 15, 26, 40, 41], "creat": [0, 38, 39, 803], "notebook": 0, "TO": 1, "replac": 1, "titl": 1, "exampl": [2, 5, 7, 9, 15, 34, 798, 815, 820, 823, 826, 831, 847, 848, 849], "ivi": [3, 4, 5, 7, 14, 17, 25, 26, 27, 38, 39, 41, 42, 44, 798, 803, 805, 808, 810, 812, 815, 817, 823, 825, 826, 827, 828, 829, 830, 833, 834, 835, 836, 837, 838, 840, 847, 848, 849, 860], "alexnet": 3, "instal": [3, 4, 7, 17, 38, 39, 41, 798, 840], "data": [3, 4, 5, 7, 9, 17, 26, 38, 49, 72, 103, 363, 616, 631, 735, 736, 737, 738, 813, 825, 828, 836, 839], "prepar": [3, 4, 5, 7], "infer": [3, 4, 5, 7, 822], "torch": [3, 4, 5, 7, 34, 41, 854, 855], "tensorflow": [3, 4, 5, 9, 13, 34, 41, 42, 43, 854], "jax": [3, 4, 5, 6, 8, 9, 34, 41, 854], "appendix": [3, 5], "code": [3, 17, 18, 19, 20, 27, 38, 819, 827, 829], "implement": [3, 5, 812, 823, 825, 845], "bert": 4, "dependeci": 4, "import": [4, 5, 7, 9, 17, 38, 39, 42, 790], "modul": [4, 780, 813, 814, 837, 848], "sequenc": [4, 820], "classif": 4, "model": [4, 5, 6, 7, 8, 11, 12, 13, 24, 25, 26, 27, 38, 39, 40, 41, 42, 44, 838, 839], "imag": [5, 7, 55, 78, 248, 800, 810], "segment": 5, "unet": 5, "custom": [5, 808, 810, 823, 827, 836, 839], "preprocess": 5, "load": [5, 7, 9, 755, 836], "visualis": [5, 7], "initi": [5, 7, 777, 837], "nativ": [5, 7, 808, 831], "pretrain": [5, 7], "weight": [5, 7, 836], "mask": 5, "function": [5, 17, 26, 27, 38, 39, 40, 42, 44, 104, 759, 803, 811, 813, 814, 817, 820, 821, 822, 823, 825, 826, 828, 829, 830, 831, 833, 838, 839, 848], "us": [5, 7, 14, 22, 25, 42, 44, 798, 800, 803, 804, 807, 823, 826, 836, 840, 847, 848], "your": [5, 7, 805, 828], "backend": [5, 9, 17, 26, 38, 39, 41, 42, 785, 788, 803, 809, 813, 823, 829, 833, 839], "acceler": [6, 8, 9], "mmpretrain": 6, "resnet": [7, 45], "set": [7, 34, 38, 39, 63, 86, 377, 631, 804, 809, 818, 830, 840], "label": 7, "resnet34": 7, "classifi": 7, "resnet50": 7, "pytorch": [8, 9, 11, 40, 854], "xgboost": 9, "test": [9, 40, 759, 769, 770, 773, 803, 804, 805, 807, 812, 818, 826, 828], "compar": 9, "xgb_frontend": 9, "xgbclassifi": 9, "xgb": 9, "more": [9, 804, 831, 845], "exhaust": 9, "evalu": 9, "train": [9, 38, 40, 42], "time": 9, "v": [9, 21, 31, 34, 819, 839, 844, 847], "number": [9, 765, 820], "boost": 9, "round": [9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 278, 827], "fraction": 9, "comparison": [9, 836], "metric": [9, 42], "guid": [10, 15], "transpil": [11, 12, 13, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 40, 44, 798, 838, 840, 848], "build": [11, 12, 13, 42, 800, 810, 833], "top": [11, 12, 13, 812], "up": [11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 804, 818, 827, 840], "haiku": 12, "develop": 14, "convolut": 14, "network": [14, 39, 42, 836, 838], "tutori": [15, 42], "And": 15, "learn": [15, 16, 854], "basic": [15, 16, 38, 39, 805, 825], "write": [17, 25, 825, 828], "content": [17, 40], "handler": [17, 26, 787, 788, 833], "structur": [17, 26, 810, 823, 839], "api": [17, 26, 27, 803, 807, 811, 812, 823, 829, 833, 835, 837, 838, 840, 844, 847, 848, 849, 851, 858, 860], "state": [17, 26, 27, 837, 839, 847], "unifi": [18, 21, 22, 28, 31, 32, 33, 38, 798, 835, 845, 849, 856, 860], "trace": [19, 21, 22, 27, 677, 817], "lazi": [21, 31, 847], "eager": [21, 31, 847], "how": [22, 803, 810, 818, 827, 828], "decor": [22, 33, 817, 822, 828], "ani": [23, 24, 26, 27, 754], "librari": [23, 26, 27, 42, 44, 848], "odsc": 26, "framework": [26, 32, 38, 758, 771, 823, 826, 834, 854, 857, 860, 861], "graph": [26, 43, 855, 860], "tracer": [26, 833, 838, 840, 847, 855, 860], "quickstart": 27, "get": [27, 798, 805, 840], "familiar": 27, "0": [28, 29, 30, 31, 35, 36], "1": [29, 31, 32, 33, 34, 37, 44, 854], "compil": [29, 31, 32, 33, 39, 847, 852, 857, 859, 860], "2": [30, 33, 35, 44, 854], "select": 32, "As": 33, "3": [34, 36, 37, 44], "dynam": [34, 42, 790, 809, 839], "static": 34, "todo": [34, 805], "explain": 34, "via": 34, "why": [34, 828, 845], "mode": [34, 813, 817, 830], "i": [34, 798, 810, 831], "true": 34, "default": [34, 531], "when": [34, 798], "from": [34, 41, 840], "numpi": [34, 41, 825, 854], "fals": 34, "kornia": 35, "perceiv": 36, "stabl": 37, "diffus": 37, "oper": [38, 820, 830, 835, 839], "ml": [38, 843, 856, 860], "chang": 38, "one": 38, "line": [38, 805], "No": [38, 804, 845], "need": [38, 828], "worri": 38, "about": 38, "type": [38, 49, 72, 363, 616, 813, 821, 825, 839], "differ": 38, "them": 38, "all": [38, 753], "standalon": [38, 821], "defin": [38, 39, 40, 42], "optim": [38, 782, 837], "input": [38, 39, 820], "target": 38, "loss": [38, 58, 81, 370, 624, 779], "loop": [38, 42], "sampl": 39, "check": [39, 819, 839], "result": 39, "simpl": 39, "neural": 39, "deepmind": [40, 41], "": [40, 42, 803, 810, 827, 840], "perceiverio": [40, 41], "tabl": [40, 810, 813], "construct": [40, 836], "some": 40, "helper": [40, 761, 762, 763, 764, 765, 767, 770, 776, 786, 792, 826, 828, 829], "pipelin": [40, 42, 767, 810, 812, 828, 839], "dataset": [40, 42], "download": 40, "dataload": 40, "gpu": [41, 839], "introduct": [41, 44, 825, 826], "python3": 41, "8": 41, "setup": [41, 819], "kernel": 41, "clone": [41, 804, 812], "repo": [41, 804], "ivy_model": 41, "run": [41, 805, 807, 810, 818, 828], "end": 42, "let": 42, "we": [42, 828], "ar": 42, "mnist": 42, "thi": 42, "temporari": 42, "loader": 42, "util": [42, 66, 89, 381, 634, 772], "plot": 42, "save": [42, 756, 836], "huggingfac": 43, "deit": 43, "can": 43, "visual": 43, "displai": 43, "html": 43, "file": 43, "browser": [43, 805], "To": [44, 805], "interfac": 44, "telemetri": 44, "18": 45, "activ": [46, 68, 360, 612, 774], "convers": [47, 70, 822], "creation": [48, 71, 362, 615], "devic": [50, 73, 364, 617, 814, 820, 825], "elementwis": [51, 74, 102, 365, 618], "experiment": [52, 75, 619, 803], "gener": [53, 76, 366, 620, 764, 823, 828, 831, 847], "gradient": [54, 77, 342, 367, 621, 823], "layer": [56, 79, 368, 622, 778], "linear": [57, 80, 369, 623, 646], "algebra": [57, 80, 369, 623], "manipul": [59, 82, 371, 625], "norm": [60, 83, 374, 628, 781], "random": [61, 84, 375, 629], "search": [62, 85, 376, 630], "sort": [64, 87, 378, 632, 742], "statist": [65, 88, 380, 633], "wrap": [67, 90, 822], "base": [69, 91, 101], "cp": 92, "tensor": [92, 93, 94, 95, 96, 99], "parafac2": 93, "tr": 94, "tt": 95, "tucker": [96, 440], "arrai": [97, 100, 122, 379, 762, 807, 808, 812, 820, 835, 844, 847, 851], "contain": [98, 805, 811, 836], "factor": 99, "nest": [100, 373, 627], "class": [103, 771, 808, 817, 825, 835], "gelu": 105, "hardswish": 106, "leaky_relu": 107, "log_softmax": 108, "mish": 109, "relu": 110, "sigmoid": 111, "softmax": 112, "softplu": 113, "softsign": 114, "cmp_i": 115, "cmp_isnot": 116, "for_loop": 117, "if_els": 118, "try_except": 119, "while_loop": 120, "arang": 121, "asarrai": 123, "copy_arrai": 124, "empti": 125, "empty_lik": 126, "ey": 127, "from_dlpack": 128, "note": [128, 139, 615], "frombuff": 129, "full": [130, 826], "full_lik": 131, "linspac": 132, "logspac": 133, "meshgrid": 134, "native_arrai": 135, "one_hot": 136, "ones": 137, "ones_lik": 138, "to_dlpack": 139, "tril": 140, "triu": 141, "triu_indic": 142, "zero": 143, "zeros_lik": 144, "as_ivy_dtyp": 145, "as_native_dtyp": 146, "astyp": 147, "broadcast_arrai": 148, "broadcast_to": 149, "can_cast": 150, "check_float": 151, "closest_valid_dtyp": 152, "default_complex_dtyp": 153, "default_dtyp": 154, "default_float_dtyp": 155, "default_int_dtyp": 156, "default_uint_dtyp": 157, "dtype": [158, 763, 820], "dtype_bit": 159, "finfo": 160, "function_supported_dtyp": 161, "function_unsupported_dtyp": 162, "iinfo": 163, "infer_default_dtyp": 164, "invalid_dtyp": 165, "is_bool_dtyp": 166, "is_complex_dtyp": 167, "is_float_dtyp": 168, "is_hashable_dtyp": 169, "is_int_dtyp": 170, "is_native_dtyp": 171, "is_uint_dtyp": 172, "promote_typ": 173, "promote_types_of_input": 174, "result_typ": 175, "set_default_complex_dtyp": 176, "set_default_dtyp": 177, "set_default_float_dtyp": 178, "set_default_int_dtyp": 179, "set_default_uint_dtyp": 180, "type_promote_arrai": 181, "unset_default_complex_dtyp": 182, "unset_default_dtyp": 183, "unset_default_float_dtyp": 184, "unset_default_int_dtyp": 185, "unset_default_uint_dtyp": 186, "valid_dtyp": 187, "as_ivy_dev": 188, "as_native_dev": 189, "clear_cached_mem_on_dev": 190, "default_devic": 191, "dev": 192, "dev_util": 193, "function_supported_devic": 194, "function_unsupported_devic": 195, "get_all_ivy_arrays_on_dev": 196, "gpu_is_avail": 197, "handle_soft_device_vari": 198, "num_cpu_cor": 199, "num_gpu": 200, "num_ivy_arrays_on_dev": 201, "percent_used_mem_on_dev": 202, "print_all_ivy_arrays_on_dev": 203, "set_default_devic": 204, "set_soft_device_mod": 205, "paramet": [205, 565, 566, 571, 572, 574, 575, 617, 620, 769, 774, 830], "set_split_factor": 206, "split_factor": 207, "split_func_cal": 208, "to_devic": 209, "total_mem_on_dev": 210, "tpu_is_avail": 211, "unset_default_devic": 212, "unset_soft_device_mod": 213, "used_mem_on_dev": 214, "ab": 215, "aco": 216, "acosh": 217, "add": [218, 815, 826, 860], "angl": 219, "asin": 220, "asinh": 221, "atan": 222, "atan2": 223, "atanh": 224, "bitwise_and": 225, "bitwise_invert": 226, "bitwise_left_shift": 227, "bitwise_or": 228, "bitwise_right_shift": 229, "bitwise_xor": 230, "ceil": 231, "co": 232, "cosh": 233, "deg2rad": 234, "divid": 235, "equal": 236, "erf": 237, "exp": 238, "exp2": 239, "expm1": 240, "floor": 241, "floor_divid": 242, "fmin": 243, "fmod": 244, "gcd": 245, "greater": 246, "greater_equ": 247, "isfinit": 249, "isinf": 250, "isnan": 251, "isreal": 252, "lcm": 253, "less": 254, "less_equ": 255, "log": [256, 795, 804], "log10": 257, "log1p": 258, "log2": 259, "logaddexp": 260, "logaddexp2": 261, "logical_and": 262, "logical_not": 263, "logical_or": 264, "logical_xor": 265, "maximum": 266, "minimum": 267, "multipli": 268, "nan_to_num": 269, "neg": 270, "not_equ": 271, "posit": [272, 820], "pow": 273, "rad2deg": 274, "real": 275, "reciproc": 276, "remaind": 277, "sign": 279, "sin": 280, "sinh": 281, "sqrt": 282, "squar": 283, "subtract": 284, "tan": [285, 815, 826], "tanh": 286, "trapz": 287, "trunc": 288, "trunc_divid": 289, "celu": 290, "elu": 291, "hardshrink": 292, "hardtanh": 293, "logit": 294, "logsigmoid": 295, "prelu": 296, "relu6": 297, "scaled_tanh": 298, "selu": 299, "silu": 300, "softshrink": 301, "stanh": 302, "tanhshrink": 303, "threshold": 304, "thresholded_relu": 305, "blackman_window": 306, "eye_lik": 307, "hamming_window": 308, "hann_window": 309, "indic": 310, "kaiser_bessel_derived_window": 311, "kaiser_window": 312, "mel_weight_matrix": 313, "ndenumer": 314, "ndindex": 315, "polyv": 316, "random_cp": 317, "random_parafac2": 318, "random_tr": 319, "random_tt": 320, "random_tuck": 321, "tril_indic": 322, "trilu": 323, "unsorted_segment_mean": 324, "unsorted_segment_min": 325, "unsorted_segment_sum": 326, "vorbis_window": 327, "allclos": 328, "amax": 329, "amin": 330, "binar": 331, "conj": 332, "copysign": 333, "count_nonzero": 334, "diff": 335, "digamma": 336, "erfc": 337, "fix": [338, 803, 818], "float_pow": 339, "fmax": 340, "frexp": 341, "hypot": 343, "isclos": 344, "ldexp": 345, "lerp": 346, "lgamma": 347, "modf": 348, "nansum": 349, "nextaft": 350, "signbit": 351, "sinc": 352, "sparsify_tensor": 353, "xlogi": 354, "zeta": 355, "reduc": 356, "bind_custom_gradient_funct": 357, "jvp": 358, "vjp": 359, "constant": [361, 613], "meta": [372, 626], "spars": 379, "adaptive_avg_pool1d": 382, "adaptive_avg_pool2d": 383, "adaptive_max_pool2d": 384, "area_interpol": 385, "avg_pool1d": 386, "avg_pool2d": 387, "avg_pool3d": 388, "dct": 389, "dft": 390, "dropout1d": 391, "dropout2d": 392, "dropout3d": 393, "embed": 394, "fft": 395, "fft2": 396, "generate_einsum_equ": 397, "get_interpolate_kernel": 398, "idct": 399, "ifft": 400, "ifftn": 401, "interp": 402, "interpol": 403, "max_pool1d": 404, "max_pool2d": 405, "max_pool3d": 406, "max_unpool1d": 407, "nearest_interpol": 408, "pool": 409, "reduce_window": 410, "rfft": 411, "rfftn": 412, "sliding_window": 413, "stft": 414, "adjoint": 415, "batched_out": 416, "cond": 417, "diagflat": 418, "dot": 419, "eig": [420, 657], "eigh_tridiagon": 421, "eigval": 422, "general_inner_product": 423, "higher_order_mo": 424, "initialize_tuck": 425, "khatri_rao": 426, "kron": 427, "kroneck": 428, "make_svd_non_neg": 429, "matrix_exp": 430, "mode_dot": 431, "multi_dot": 432, "multi_mode_dot": 433, "partial_tuck": 434, "solve_triangular": 435, "svd_flip": 436, "tensor_train": 437, "truncated_svd": 438, "tt_matrix_to_tensor": 439, "huber_loss": 441, "kl_div": 442, "l1_loss": 443, "log_poisson_loss": 444, "poisson_nll_loss": 445, "smooth_l1_loss": 446, "soft_margin_loss": 447, "as_strid": 448, "associative_scan": 449, "atleast_1d": 450, "atleast_2d": 451, "atleast_3d": 452, "broadcast_shap": 453, "check_scalar": 454, "choos": 455, "column_stack": 456, "concat_from_sequ": 457, "dsplit": 458, "dstack": 459, "expand": 460, "fill_diagon": 461, "flatten": 462, "fliplr": 463, "flipud": 464, "fold": 465, "heavisid": 466, "hsplit": 467, "hstack": 468, "i0": 469, "matric": 470, "moveaxi": 471, "pad": 472, "partial_fold": 473, "partial_tensor_to_vec": 474, "partial_unfold": 475, "partial_vec_to_tensor": 476, "put_along_axi": 477, "rot90": 478, "soft_threshold": 479, "take": 480, "take_along_axi": 481, "top_k": 482, "trim_zero": 483, "unfold": 484, "unique_consecut": 485, "vsplit": 486, "vstack": 487, "batch_norm": 488, "group_norm": 489, "instance_norm": 490, "l1_normal": 491, "l2_normal": 492, "local_response_norm": 493, "lp_normal": 494, "bernoulli": 495, "beta": 496, "dirichlet": 497, "gamma": 498, "poisson": 499, "unravel_index": 500, "invert_permut": 501, "lexsort": 502, "is_ivy_sparse_arrai": 503, "is_native_sparse_arrai": 504, "native_sparse_arrai": 505, "native_sparse_array_to_indices_values_and_shap": 506, "bincount": 507, "corrcoef": 508, "cov": 509, "cummax": 510, "cummin": 511, "histogram": 512, "igamma": 513, "median": 514, "nanmean": 515, "nanmedian": 516, "nanmin": 517, "nanprod": 518, "quantil": 519, "optional_get_el": 520, "all_equ": 521, "arg_info": 522, "arg_nam": 523, "array_equ": 524, "assert_supports_inplac": 525, "cache_fn": 526, "clip_matrix_norm": 527, "clip_vector_norm": 528, "container_typ": 529, "current_backend_str": 530, "einops_rearrang": 532, "einops_reduc": 533, "einops_repeat": 534, "exist": [535, 800, 827], "fourier_encod": 536, "function_supported_devices_and_dtyp": 537, "function_unsupported_devices_and_dtyp": 538, "gather": 539, "gather_nd": 540, "get_all_arrays_in_memori": 541, "get_item": 542, "get_num_dim": 543, "get_referrers_recurs": 544, "has_nan": 545, "inplace_arrays_support": 546, "inplace_decr": 547, "inplace_incr": 548, "inplace_upd": 549, "inplace_variables_support": 550, "is_arrai": 551, "is_ivy_arrai": 552, "is_ivy_contain": 553, "is_ivy_nested_arrai": 554, "is_native_arrai": 555, "isin": 556, "isscalar": 557, "items": 558, "match_kwarg": 559, "multiprocess": [560, 766], "num_arrays_in_memori": 561, "print_all_arrays_in_memori": 562, "scatter_flat": 563, "scatter_nd": 564, "set_array_mod": 565, "set_exception_trace_mod": 566, "set_inplace_mod": 567, "set_item": 568, "set_min_bas": 569, "set_min_denomin": 570, "set_nestable_mod": 571, "set_precise_mod": 572, "set_queue_timeout": 573, "set_shape_array_mod": 574, "set_show_func_wrapper_trace_mod": 575, "set_tmp_dir": 576, "shape": [577, 631, 735, 736, 737, 738, 822, 839], "stable_divid": 578, "stable_pow": 579, "stride": 580, "supports_inplace_upd": 581, "to_ivy_shap": 582, "to_list": 583, "to_native_shap": 584, "to_numpi": 585, "to_scalar": 586, "try_else_non": 587, "unset_array_mod": 588, "unset_exception_trace_mod": 589, "unset_inplace_mod": 590, "unset_min_bas": 591, "unset_min_denomin": 592, "unset_nestable_mod": 593, "unset_precise_mod": 594, "unset_queue_timeout": 595, "unset_shape_array_mod": 596, "unset_show_func_wrapper_trace_mod": 597, "unset_tmp_dir": 598, "value_is_nan": 599, "vmap": 600, "adam_step": 601, "adam_upd": 602, "execute_with_gradi": [603, 823], "grad": 604, "gradient_descent_upd": 605, "jac": 606, "lamb_upd": 607, "lars_upd": 608, "optimizer_upd": 609, "stop_gradi": 610, "value_and_grad": 611, "control": [614, 839], "flow": [614, 839], "op": 614, "depend": [631, 735, 736, 737, 738], "output": [631, 735, 736, 737, 738], "conv": 635, "conv1d": 636, "conv1d_transpos": 637, "conv2d": 638, "conv2d_transpos": 639, "conv3d": 640, "conv3d_transpos": 641, "conv_general_dil": 642, "conv_general_transpos": 643, "depthwise_conv2d": 644, "dropout": 645, "lstm_updat": 647, "multi_head_attent": 648, "nm": 649, "roi_align": 650, "scaled_dot_product_attent": 651, "choleski": 652, "cross": 653, "det": 654, "diag": 655, "diagon": 656, "eigh": 658, "eigvalsh": 659, "inner": 660, "inv": 661, "lu_factor": 662, "matmul": 663, "matrix_norm": 664, "matrix_pow": 665, "matrix_rank": 666, "matrix_transpos": 667, "outer": 668, "pinv": 669, "qr": 670, "slogdet": 671, "solv": 672, "svd": 673, "svdval": 674, "tensordot": 675, "tensorsolv": 676, "vander": 678, "vecdot": 679, "vector_norm": 680, "vector_to_skew_symmetric_matrix": 681, "binary_cross_entropi": 682, "cross_entropi": 683, "sparse_cross_entropi": 684, "clip": 685, "concat": 686, "constant_pad": 687, "expand_dim": 688, "flip": 689, "permute_dim": 690, "repeat": 691, "reshap": 692, "roll": [693, 815], "split": 694, "squeez": 695, "stack": [696, 817], "swapax": 697, "tile": 698, "unstack": 699, "zero_pad": 700, "fomaml_step": 701, "maml_step": 702, "reptile_step": 703, "all_nested_indic": 704, "copy_nest": 705, "duplicate_array_index_chain": 706, "index_nest": 707, "insert_into_nest_at_index": 708, "insert_into_nest_at_indic": 709, "map": [710, 812], "map_nest_at_index": 711, "map_nest_at_indic": 712, "multi_index_nest": 713, "nested_ani": 714, "nested_argwher": 715, "nested_map": 716, "nested_multi_map": 717, "prune_empti": 718, "prune_nest_at_index": 719, "prune_nest_at_indic": 720, "set_nest_at_index": 721, "set_nest_at_indic": 722, "layer_norm": 723, "multinomi": 724, "randint": 725, "random_norm": 726, "random_uniform": 727, "seed": 728, "shuffl": 729, "argmax": 730, "argmin": 731, "argwher": 732, "nonzero": 733, "where": [734, 803, 818], "unique_al": 735, "unique_count": 736, "unique_invers": 737, "unique_valu": 738, "argsort": 739, "msort": 740, "searchsort": 741, "cumprod": 743, "cumsum": 744, "einsum": [745, 791, 792], "max": 746, "mean": 747, "min": 748, "prod": 749, "std": 750, "sum": 751, "var": 752, "assert": [757, 784, 817], "avail": 758, "global": [760, 830], "hypothesi": [761, 804, 826, 828], "struct": 768, "flag": 769, "convert": [775, 838], "sequenti": 783, "ast": 786, "sub": 788, "binari": [789, 804], "parser": 791, "path": 792, "except": [793, 817, 822], "inspect": 794, "profil": 796, "verbos": 797, "statu": 798, "ai": 798, "start": [798, 840], "pip": [798, 840], "document": 798, "dive": [798, 806], "deeper": 798, "should": 798, "contribut": [798, 799, 803, 827], "commun": 798, "citat": 798, "doc": [800, 810], "docker": [800, 804, 805, 810, 840], "conveni": [800, 810, 821], "script": [800, 810], "hub": 800, "local": [800, 805, 819], "without": [800, 826], "error": [801, 817, 818], "handl": [801, 808, 814, 817, 822, 839], "help": [802, 805, 818], "resourc": 802, "open": 803, "task": 803, "fail": [803, 818, 828], "frontend": [803, 809, 825, 826, 838], "place": 803, "checklist": 803, "format": [803, 819, 853, 860], "extend": [803, 828, 831], "an": [803, 823], "issu": [803, 805, 819, 840], "github": [803, 804], "templat": 803, "fork": [804, 805], "pre": [804, 819], "commit": [804, 805, 812, 819], "pycharm": [804, 805, 819], "virtual": 804, "environ": 804, "miniconda": 804, "venv": 804, "interpret": 804, "window": 804, "maco": 804, "ubuntu": 804, "detail": 804, "free": 804, "wsl": 804, "codespac": 804, "The": [804, 805, 810, 823, 825, 835, 839, 844], "list": 805, "manag": 805, "who": 805, "ask": [805, 818], "With": 805, "command": 805, "pull": [805, 812], "request": [805, 812], "small": 805, "often": 805, "interact": 805, "most": 805, "out": [805, 820, 822, 824], "id": [805, 807], "deep": 806, "termin": 807, "regener": 807, "failur": 807, "skip": 807, "integr": [808, 812, 819, 827, 828], "version": [809, 829, 839], "support": [809, 813, 822, 825, 839], "builder": 810, "being": 810, "option": 810, "index": 810, "rst": 810, "partial_conf": 810, "py": 810, "prebuild": 810, "sh": 810, "extens": 810, "custom_autosummari": 810, "hide": 810, "discussion_link": 810, "skippable_funct": 810, "ivy_data": 810, "instanc": [811, 825, 826, 835], "method": [811, 825, 826, 835, 836], "special": [811, 813, 825], "nestabl": [811, 820, 821, 822], "continu": [812, 819], "push": 812, "pr": 812, "trigger": 812, "A": [812, 831], "down": 812, "view": [812, 822, 824], "store": 812, "retriev": 812, "repositori": 812, "nitti": 812, "gritti": 812, "storag": 812, "space": 812, "unifyai": 812, "determin": 812, "coverag": 812, "workflow": 812, "multipl": 812, "runner": 812, "race": 812, "condit": 812, "period": 812, "manual": 812, "dispatch": 812, "ci": 812, "dashboard": 812, "promot": [813, 825], "precis": 813, "non": [813, 831], "argument": [813, 814, 820, 822, 824, 825], "other": [813, 814], "unsupport": 813, "attribut": [813, 830], "case": [813, 836], "bug": 813, "cast": [813, 825], "superset": [813, 831], "docstr": [815, 816], "configur": [817, 826, 836], "func_wrapp": 817, "prune": 817, "handle_except": 817, "consist": [817, 828], "prerequir": 818, "common": [818, 819], "lint": [819, 827], "keyword": 820, "integ": 820, "primari": 821, "composit": 821, "mix": [821, 822, 828], "partial": [821, 822, 828], "order": 822, "wrapper": [822, 860, 861], "miscellan": 822, "overview": [823, 827], "usag": [823, 827, 831, 849], "signatur": 823, "design": [823, 829, 832], "our": 823, "polici": [823, 825], "specif": [823, 858, 859, 860], "consider": 823, "inplac": 824, "updat": 824, "copi": 824, "short": 825, "unus": 825, "rule": 825, "duplic": [825, 831], "valu": 826, "alia": 826, "formatt": 827, "functionorderingformatt": 827, "work": [827, 844, 850], "own": 828, "strategi": 828, "do": [828, 844], "effect": 828, "bonu": 828, "featur": 828, "self": 828, "explicit": 828, "test_array_funct": 828, "re": [828, 845], "navig": 829, "categor": 829, "submodul": 829, "unpin": 829, "properti": 830, "getter": 830, "setter": 830, "set_": 830, "unset_": 830, "behaviour": 831, "standard": [831, 844, 851, 860], "what": [831, 860], "balanc": 831, "effici": 831, "maxim": 831, "block": 833, "monkei": 835, "patch": 835, "represent": 836, "recurs": 836, "built": 836, "ins": 836, "access": 836, "compartment": 836, "role": 838, "faq": 839, "maintain": 839, "size": 839, "deploy": 839, "auto": 839, "differenti": 839, "replica": 839, "parallel": 839, "altern": 839, "sourc": 840, "folder": 840, "kei": 840, "question": 840, "glossari": 841, "motiv": 842, "explos": 843, "skeptic": 844, "complimentari": 844, "competit": 844, "infinit": 845, "shelf": 845, "life": 845, "One": 846, "liner": 846, "trace_graph": 847, "cach": 847, "sharp": [847, 848, 849], "bit": [847, 848, 849], "relat": 850, "infrastructur": [852, 860], "llvm": 852, "mlir": 852, "oneapi": 852, "exchang": [853, 860], "onnx": 853, "nnef": 853, "coreml": 853, "matlab": 854, "scipi": 854, "scikit": 854, "theano": 854, "panda": 854, "julia": 854, "apach": [854, 857], "spark": 854, "mllib": 854, "caff": 854, "chainer": 854, "mxnet": 854, "cntk": 854, "flux": 854, "dex": 854, "languag": 854, "tf": 855, "jaxpr": 855, "jit": 855, "fx": 855, "compani": [856, 860], "quansight": 856, "modular": 856, "octoml": 856, "multi": [857, 860], "vendor": [857, 858, 859, 860], "tvm": 857, "xla": 857, "gcc": 857, "tensorrt": 858, "cuda": 858, "icc": 859, "icx": 859, "nvcc": 859, "doe": 860, "eagerpi": 861, "kera": 861, "thinc": 861, "tensorli": 861, "neuropod": 861}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"unset_default_dtype": [[183, "unset-default-dtype"]], "set_default_int_dtype": [[179, "set-default-int-dtype"]], "to_dlpack": [[139, "to-dlpack"]], "Note": [[139, null], [128, null], [615, null], [615, null]], "promote_types": [[173, "promote-types"]], "triu": [[141, "triu"]], "set_default_dtype": [[177, "set-default-dtype"]], "tril": [[140, "tril"]], "type_promote_arrays": [[181, "type-promote-arrays"]], "is_hashable_dtype": [[169, "is-hashable-dtype"]], "set_default_uint_dtype": [[180, "set-default-uint-dtype"]], "function_supported_dtypes": [[161, "function-supported-dtypes"]], "as_native_dtype": [[146, "as-native-dtype"]], "infer_default_dtype": [[164, "infer-default-dtype"]], "is_float_dtype": [[168, "is-float-dtype"]], "is_int_dtype": [[170, "is-int-dtype"]], "is_uint_dtype": [[172, "is-uint-dtype"]], "default_uint_dtype": [[157, "default-uint-dtype"]], "default_float_dtype": [[155, "default-float-dtype"]], "ones_like": [[138, "ones-like"]], "is_bool_dtype": [[166, "is-bool-dtype"]], "promote_types_of_inputs": [[174, "promote-types-of-inputs"]], "dtype_bits": [[159, "dtype-bits"]], "unset_default_complex_dtype": [[182, "unset-default-complex-dtype"]], "as_ivy_dtype": [[145, "as-ivy-dtype"]], "broadcast_to": [[149, "broadcast-to"]], "default_int_dtype": [[156, "default-int-dtype"]], "set_default_float_dtype": [[178, "set-default-float-dtype"]], "iinfo": [[163, "iinfo"]], "can_cast": [[150, "can-cast"]], "default_dtype": [[154, "default-dtype"]], "broadcast_arrays": [[148, "broadcast-arrays"]], "closest_valid_dtype": [[152, "closest-valid-dtype"]], "result_type": [[175, "result-type"]], "zeros_like": [[144, "zeros-like"]], "is_complex_dtype": [[167, "is-complex-dtype"]], "function_unsupported_dtypes": [[162, "function-unsupported-dtypes"]], "zeros": [[143, "zeros"]], "finfo": [[160, "finfo"]], "set_default_complex_dtype": [[176, "set-default-complex-dtype"]], "invalid_dtype": [[165, "invalid-dtype"]], "dtype": [[158, "dtype"]], "triu_indices": [[142, "triu-indices"]], "is_native_dtype": [[171, "is-native-dtype"]], "check_float": [[151, "check-float"]], "astype": [[147, "astype"]], "default_complex_dtype": [[153, "default-complex-dtype"]], "Wrapper Frameworks": [[861, "wrapper-frameworks"], [860, "wrapper-frameworks"]], "EagerPy eagerpy": [[861, "eagerpy-eagerpy"]], "Keras keras": [[861, "keras-keras"]], "Thinc thinc": [[861, "thinc-thinc"]], "TensorLy tensorly": [[861, "tensorly-tensorly"]], "NeuroPod": [[861, "id1"]], "Ivy Stateful API": [[837, "ivy-stateful-api"], [26, "Ivy-Stateful-API"], [17, "Ivy-Stateful-API"]], "Modules": [[837, "modules"]], "Initializers": [[837, "initializers"], [777, "module-ivy.stateful.initializers"]], "Optimizers": [[837, "optimizers"], [782, "module-ivy.stateful.optimizers"]], "Why Unify?": [[845, "why-unify"]], "No More Re-implementations \ud83d\udea7": [[845, "no-more-re-implementations"]], "\u201cInfinite\u201d Shelf-Life \u2705": [[845, "infinite-shelf-life"]], "ML-Unifying Companies": [[856, "ml-unifying-companies"], [860, "ml-unifying-companies"]], "Quansight": [[856, "id1"]], "Modular": [[856, "id2"]], "OctoML": [[856, "id3"]], "Graph Tracers": [[855, "graph-tracers"], [860, "graph-tracers"]], "tf.Graph": [[855, "tf-graph"]], "Jaxpr": [[855, "jaxpr"]], "torch.jit": [[855, "torch-jit"]], "torch.fx": [[855, "torch-fx"]], "Building Blocks": [[833, "building-blocks"]], "Backend Functional APIs \u2705": [[833, "backend-functional-apis"]], "Ivy Functional API \u2705": [[833, "ivy-functional-api"]], "Backend Handler \u2705": [[833, "backend-handler"]], "Tracer \ud83d\udea7": [[833, "tracer"]], "Superset Behaviour": [[831, "superset-behaviour"]], "Extending the Standard": [[831, "extending-the-standard"]], "What is the Superset?": [[831, "what-is-the-superset"]], "A Non-Duplicate Superset": [[831, "a-non-duplicate-superset"]], "What is not the Superset?": [[831, "what-is-not-the-superset"]], "Balancing Generalization with Efficiency": [[831, "balancing-generalization-with-efficiency"]], "More Examples": [[831, "more-examples"]], "Maximizing Usage of Native Functionality": [[831, "maximizing-usage-of-native-functionality"]], "Vendor-Specific Compilers": [[859, "vendor-specific-compilers"], [860, "vendor-specific-compilers"]], "ICC": [[859, "id1"]], "ICX": [[859, "icx"]], "NVCC": [[859, "nvcc"]], "ivy.unify()": [[849, "ivy-unify"]], "Unify API": [[849, "unify-api"]], "Usage": [[849, "usage"]], "Sharp bits": [[849, "sharp-bits"], [848, "sharp-bits"], [847, "sharp-bits"]], "Examples": [[849, "examples"], [848, "examples"], [847, "examples"], [798, "examples"], [820, "examples"]], "Ivy Tests": [[828, "ivy-tests"], [812, "ivy-tests"]], "Testing Pipeline": [[828, "testing-pipeline"]], "Hypothesis": [[828, "id1"]], "Data Generation": [[828, "id2"]], "Writing your own strategy": [[828, "writing-your-own-strategy"]], "Writing Hypothesis Tests": [[828, "writing-hypothesis-tests"]], "Ivy Test Decorators": [[828, "ivy-test-decorators"]], "Writing Ivy Tests": [[828, "writing-ivy-tests"]], "Integration of Strategies into Ivy Tests": [[828, "integration-of-strategies-into-ivy-tests"]], "Why do we need helper functions?": [[828, "why-do-we-need-helper-functions"]], "How to write Hypothesis Tests effectively": [[828, "how-to-write-hypothesis-tests-effectively"]], "Testing Partial Mixed Functions": [[828, "testing-partial-mixed-functions"]], "Bonus: Hypothesis\u2019 Extended Features": [[828, "bonus-hypothesis-extended-features"]], "Self-Consistent and Explicit Testing": [[828, "self-consistent-and-explicit-testing"]], "test_array_function": [[828, "id4"]], "Running Ivy Tests": [[828, "running-ivy-tests"]], "Re-Running Failed Ivy Tests": [[828, "re-running-failed-ivy-tests"]], "Design": [[832, "design"]], "ivy.transpile()": [[848, "ivy-transpile"]], "Transpiler API": [[848, "transpiler-api"]], "Using the transpiler": [[848, "using-the-transpiler"]], "Transpiling functions": [[848, "transpiling-functions"]], "Transpiling Libraries": [[848, "transpiling-libraries"]], "Transpiling Modules": [[848, "transpiling-modules"]], "FAQ": [[839, "faq"]], "Maintaining Backend Versions": [[839, "maintaining-backend-versions"]], "Dynamic Sizes": [[839, "dynamic-sizes"]], "Type and Shape Checking": [[839, "type-and-shape-checking"]], "GPU handling": [[839, "gpu-handling"]], "Model Deployment": [[839, "model-deployment"]], "Dynamic Control Flow": [[839, "dynamic-control-flow"]], "Auto-Differentiation": [[839, "auto-differentiation"]], "Replicas, and Data vs Model Parallelism": [[839, "replicas-and-data-vs-model-parallelism"]], "Support for Functions": [[839, "support-for-functions"]], "Alternative Data Structures": [[839, "alternative-data-structures"]], "Custom Operations": [[839, "custom-operations"]], "The Pipeline": [[839, "the-pipeline"]], "State": [[839, "state"]], "Vendor-Specific APIs": [[858, "vendor-specific-apis"], [860, "vendor-specific-apis"]], "TensorRT tensorrt": [[858, "tensorrt-tensorrt"]], "CUDA cuda": [[858, "cuda-cuda"]], "ML Explosion": [[843, "ml-explosion"]], "Compiler Infrastructure": [[852, "compiler-infrastructure"], [860, "compiler-infrastructure"]], "LLVM": [[852, "id1"]], "MLIR": [[852, "id2"]], "OneAPI": [[852, "id3"]], "Motivation": [[842, "motivation"]], "Navigating the Code": [[829, "navigating-the-code"]], "Categorization": [[829, "categorization"]], "Submodule Design": [[829, "submodule-design"]], "Ivy API": [[829, "ivy-api"]], "Backend API": [[829, "backend-api"]], "Submodule Helper Functions": [[829, "submodule-helper-functions"]], "Version Unpinning": [[829, "version-unpinning"]], "API Standards": [[851, "api-standards"], [860, "api-standards"]], "Array API Standard": [[851, "id1"]], "Exchange Formats": [[853, "exchange-formats"], [860, "exchange-formats"]], "ONNX onnx": [[853, "onnx-onnx"]], "NNEF nnef": [[853, "nnef-nnef"]], "CoreML coreml": [[853, "coreml-coreml"]], "Operating Modes": [[830, "operating-modes"]], "Global Parameter Properties": [[830, "global-parameter-properties"]], "Getter: ivy. attribute": [[830, "getter-ivy-setting-attribute"]], "Setter: ivy.set_ and ivy.unset_ functions": [[830, "setter-ivy-set-setting-and-ivy-unset-setting-functions"]], "Glossary": [[841, "glossary"]], "One liners": [[846, "one-liners"]], "Ivy Array": [[835, "ivy-array"], [808, "ivy-array"]], "The Array Class": [[835, "the-array-class"]], "Unifying Operators": [[835, "unifying-operators"]], "API Monkey Patching": [[835, "api-monkey-patching"]], "Instance Methods": [[835, "instance-methods"]], "Frameworks": [[854, "frameworks"], [860, "frameworks"]], "MATLAB matlab": [[854, "matlab-matlab"]], "SciPy scipy": [[854, "scipy-scipy"]], "Torch torch": [[854, "torch-torch"]], "NumPy numpy": [[854, "numpy-numpy"]], "SciKit Learn scikit-learn": [[854, "scikit-learn-scikit-learn"]], "Theano theano": [[854, "theano-theano"]], "Pandas pandas": [[854, "pandas-pandas"]], "Julia julia": [[854, "julia-julia"]], "Apache Spark MLlib apache-spark-mllib": [[854, "apache-spark-mllib-apache-spark-mllib"]], "Caffe caffe": [[854, "caffe-caffe"]], "Chainer chainer": [[854, "chainer-chainer"]], "TensorFlow 1 tensorflow-1": [[854, "tensorflow-1-tensorflow-1"]], "MXNet mxnet": [[854, "mxnet-mxnet"]], "CNTK cntk": [[854, "cntk-cntk"]], "PyTorch pytorch": [[854, "pytorch-pytorch"]], "Flux flux": [[854, "flux-flux"]], "JAX jax": [[854, "jax-jax"]], "TensorFlow 2 tensorflow-2": [[854, "tensorflow-2-tensorflow-2"]], "DEX Language dex-language": [[854, "dex-language-dex-language"]], "What does Ivy Add?": [[860, "what-does-ivy-add"]], "Multi-Vendor Compiler Frameworks": [[860, "multi-vendor-compiler-frameworks"], [857, "multi-vendor-compiler-frameworks"]], "ivy.trace_graph()": [[847, "ivy-trace-graph"]], "Tracer API": [[847, "tracer-api"]], "Using the tracer": [[847, "using-the-tracer"]], "Eager vs lazy Compilation": [[847, "eager-vs-lazy-compilation"]], "Array caching": [[847, "array-caching"]], "Generators": [[847, "generators"]], "Stateful": [[847, "stateful"]], "Get Started": [[840, "get-started"]], "Installing using pip": [[840, "installing-using-pip"], [798, "installing-using-pip"]], "Docker": [[840, "docker"]], "Installing from source": [[840, "installing-from-source"]], "Ivy\u2019s tracer and transpiler": [[840, "ivy-s-tracer-and-transpiler"]], "Ivy Folder": [[840, "ivy-folder"]], "Setting Up the API key": [[840, "setting-up-the-api-key"]], "Issues and Questions": [[840, "issues-and-questions"]], "Related Work": [[850, "related-work"]], "Apache TVM": [[857, "apache-tvm"]], "XLA": [[857, "xla"]], "GCC": [[857, "gcc"]], "Standardization": [[844, "standardization"]], "Skepticism": [[844, "skepticism"]], "Complimentary vs Competitive": [[844, "complimentary-vs-competitive"]], "Do Standards Work?": [[844, "do-standards-work"]], "The Array API Standard": [[844, "the-array-api-standard"]], "Ivy as a Framework": [[834, "ivy-as-a-framework"], [26, "Ivy-as-a-Framework"]], "Ivy Container": [[836, "ivy-container"]], "Construction": [[836, "construction"]], "Representation": [[836, "representation"]], "Recursive Methods": [[836, "recursive-methods"]], "Built-ins": [[836, "built-ins"]], "Access": [[836, "access"]], "Saving and Loading": [[836, "saving-and-loading"]], "Comparisons": [[836, "comparisons"]], "Customized Representations": [[836, "customized-representations"]], "Use Cases": [[836, "use-cases"]], "Compartmentalization": [[836, "compartmentalization"]], "Configuration": [[836, "configuration"]], "Data loading": [[836, "data-loading"]], "Network weights": [[836, "network-weights"]], "Ivy as a Transpiler": [[838, "ivy-as-a-transpiler"], [26, "Ivy-as-a-Transpiler"], [27, "Ivy-as-a-Transpiler"]], "Frontend Functional APIs \ud83d\udea7": [[838, "frontend-functional-apis"]], "Role of the Tracer \ud83d\udea7": [[838, "role-of-the-tracer"]], "Converting Network Models \ud83d\udea7": [[838, "converting-network-models"]], "softplus": [[113, "softplus"]], "Tt tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "Factorized tensor": [[99, "factorized-tensor"]], "array": [[122, "array"]], "sigmoid": [[111, "sigmoid"]], "mish": [[109, "mish"]], "leaky_relu": [[107, "leaky-relu"]], "Tr tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "copy_array": [[124, "copy-array"]], "Parafac2 tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "empty": [[125, "empty"]], "meshgrid": [[134, "meshgrid"]], "native_array": [[135, "native-array"]], "linspace": [[132, "linspace"]], "Base": [[101, "module-ivy.data_classes.nested_array.base"], [69, "module-ivy.data_classes.container.base"], [91, "module-ivy.data_classes.factorized_tensor.base"]], "hardswish": [[106, "hardswish"]], "try_except": [[119, "try-except"]], "cmp_is": [[115, "cmp-is"]], "one_hot": [[136, "one-hot"]], "asarray": [[123, "asarray"]], "full_like": [[131, "full-like"]], "log_softmax": [[108, "log-softmax"]], "empty_like": [[126, "empty-like"]], "relu": [[110, "relu"]], "Container": [[98, "container"]], "logspace": [[133, "logspace"]], "if_else": [[118, "if-else"]], "softmax": [[112, "softmax"]], "Functions": [[104, "functions"]], "Array": [[97, "array"]], "gelu": [[105, "gelu"]], "full": [[130, "full"]], "frombuffer": [[129, "frombuffer"]], "eye": [[127, "eye"]], "Cp tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "softsign": [[114, "softsign"]], "cmp_isnot": [[116, "cmp-isnot"]], "ones": [[137, "ones"]], "Elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"], [618, "elementwise"], [365, "elementwise"], [51, "module-ivy.data_classes.array.elementwise"], [74, "module-ivy.data_classes.container.elementwise"]], "Nested array": [[100, "nested-array"]], "for_loop": [[117, "for-loop"]], "arange": [[121, "arange"]], "Data classes": [[103, "data-classes"]], "while_loop": [[120, "while-loop"]], "Tucker tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "from_dlpack": [[128, "from-dlpack"]], "Ivy-Lint: Ivy\u2019s Custom Code Formatters": [[827, "ivy-lint-ivy-s-custom-code-formatters"]], "Overview": [[827, "overview"], [823, "overview"]], "Existing Formatters": [[827, "existing-formatters"]], "FunctionOrderingFormatter": [[827, "functionorderingformatter"]], "How the Formatter Works:": [[827, "how-the-formatter-works"]], "Integration and Usage": [[827, "integration-and-usage"]], "Contribution": [[827, "contribution"]], "Round Up": [[827, "round-up"], [40, "Round-Up"], [30, "Round-Up"], [19, "Round-Up"], [31, "Round-Up"], [11, "Round-Up"], [32, "Round-Up"], [21, "Round-Up"], [17, "Round-Up"], [20, "Round-Up"], [18, "Round-Up"], [33, "Round-Up"], [23, "Round-Up"], [29, "Round-Up"], [13, "Round-Up"], [27, "Round-Up"], [28, "Round-Up"], [22, "Round-Up"]], "Function Types": [[821, "function-types"]], "Primary Functions": [[821, "primary-functions"]], "Compositional Functions": [[821, "compositional-functions"]], "Mixed Functions": [[821, "mixed-functions"]], "Partial Mixed Functions": [[821, "partial-mixed-functions"]], "Standalone Functions": [[821, "standalone-functions"]], "Nestable Functions": [[821, "nestable-functions"], [811, "nestable-functions"], [820, "nestable-functions"]], "Convenience Functions": [[821, "convenience-functions"]], "Backend Setting": [[809, "backend-setting"]], "Dynamic Backend Setting": [[809, "dynamic-backend-setting"]], "Backend and Frontend Version Support": [[809, "backend-and-frontend-version-support"]], "Array API Tests": [[807, "array-api-tests"], [812, "array-api-tests"]], "Running the Tests": [[807, "running-the-tests"]], "Using Terminal": [[807, "using-terminal"]], "Using the IDE": [[807, "using-the-ide"]], "Regenerating Test Failures": [[807, "regenerating-test-failures"]], "Test Skipping": [[807, "test-skipping"]], "Function Wrapping": [[822, "function-wrapping"]], "Decorator order": [[822, "decorator-order"]], "Conversion Wrappers": [[822, "conversion-wrappers"]], "Inference Wrappers": [[822, "inference-wrappers"]], "Out Argument Support": [[822, "out-argument-support"]], "Nestable Support": [[822, "nestable-support"]], "Partial Mixed Function Support": [[822, "partial-mixed-function-support"]], "Shape Conversion": [[822, "shape-conversion"]], "View Handling": [[822, "view-handling"]], "Exception Handling": [[822, "exception-handling"], [817, "exception-handling"]], "Miscellaneous Wrappers": [[822, "miscellaneous-wrappers"]], "Open Tasks": [[803, "open-tasks"]], "Fixing Failing Tests": [[803, "fixing-failing-tests"]], "How to Contribute": [[803, "how-to-contribute"]], "Frontend APIs": [[803, "frontend-apis"]], "Where to place a frontend function": [[803, "where-to-place-a-frontend-function"]], "Frontend checklist": [[803, "frontend-checklist"]], "Function Formatting": [[803, "function-formatting"]], "Formatting checklist": [[803, "formatting-checklist"]], "Ivy Experimental API": [[803, "ivy-experimental-api"]], "Extending the Ivy API": [[803, "extending-the-ivy-api"]], "Where to place a backend function": [[803, "where-to-place-a-backend-function"]], "Creating an Issue on Ivy\u2019s GitHub using a Template": [[803, "creating-an-issue-on-ivy-s-github-using-a-template"]], "Einsum path helpers": [[792, "module-ivy.utils.einsum_path_helpers"]], "Containers": [[811, "containers"]], "Container Instance Methods": [[811, "container-instance-methods"]], "API Instance Methods": [[811, "api-instance-methods"]], "API Special Methods": [[811, "api-special-methods"]], "Profiler": [[796, "module-ivy.utils.profiler"]], "Devices": [[814, "devices"]], "Device Module": [[814, "device-module"]], "Arguments in other Functions": [[814, "arguments-in-other-functions"], [813, "arguments-in-other-functions"]], "Device handling": [[814, "device-handling"]], "Dynamic import": [[790, "module-ivy.utils.dynamic_import"]], "Setting Up": [[804, "setting-up"], [818, "setting-up"]], "Forking and cloning the repo": [[804, "forking-and-cloning-the-repo"]], "Pre-Commit": [[804, "pre-commit"]], "PyCharm": [[804, "pycharm"], [819, "pycharm"]], "Virtual environments - No Docker": [[804, "virtual-environments-no-docker"]], "Using miniconda": [[804, "using-miniconda"]], "Using venv": [[804, "using-venv"]], "Docker Interpreter with PyCharm": [[804, "docker-interpreter-with-pycharm"]], "Windows": [[804, "windows"], [804, "id6"]], "MacOS": [[804, "macos"]], "Ubuntu": [[804, "ubuntu"], [804, "id8"]], "Setting Up Testing in PyCharm": [[804, "setting-up-testing-in-pycharm"]], "More Detailed Hypothesis Logs in PyCharm": [[804, "more-detailed-hypothesis-logs-in-pycharm"]], "Setting up for Free": [[804, "setting-up-for-free"]], "WSL": [[804, "wsl"]], "GitHub Codespaces": [[804, "github-codespaces"]], "The Binaries": [[804, "the-binaries"]], "Deep Dive": [[806, "deep-dive"]], "Verbosity": [[797, "module-ivy.utils.verbosity"]], "Gradients": [[823, "gradients"], [621, "gradients"], [367, "gradients"], [54, "module-ivy.data_classes.array.gradients"], [77, "module-ivy.data_classes.container.gradients"]], "Example Usage of the Gradient API": [[823, "example-usage-of-the-gradient-api"]], "The ivy.execute_with_gradients() function signature": [[823, "the-ivy-execute-with-gradients-function-signature"]], "An example using ivy.execute_with_gradients()": [[823, "an-example-using-ivy-execute-with-gradients"]], "Custom Gradient Functions": [[823, "custom-gradient-functions"]], "Design of the Gradient API": [[823, "design-of-the-gradient-api"]], "Our policy on gradients": [[823, "our-policy-on-gradients"]], "Gradient APIs of frameworks": [[823, "gradient-apis-of-frameworks"]], "General Structure of Backend-specific implementations": [[823, "general-structure-of-backend-specific-implementations"]], "Framework-specific Considerations": [[823, "framework-specific-considerations"]], "Sequential": [[783, "module-ivy.stateful.sequential"]], "Ivy Frontends": [[825, "ivy-frontends"]], "Introduction": [[825, "introduction"], [826, "introduction"], [41, "Introduction"]], "The Frontend Basics": [[825, "the-frontend-basics"]], "Writing Frontend Functions": [[825, "writing-frontend-functions"]], "Short Frontend Implementations": [[825, "short-frontend-implementations"]], "Unused Arguments": [[825, "unused-arguments"]], "Supported Data Types and Devices": [[825, "supported-data-types-and-devices"]], "Classes and Instance Methods": [[825, "classes-and-instance-methods"]], "Frontend Data Type Promotion Rules": [[825, "frontend-data-type-promotion-rules"]], "NumPy Special Argument - Casting": [[825, "numpy-special-argument-casting"]], "Frontends Duplicate Policy": [[825, "frontends-duplicate-policy"]], "Status": [[798, "status"]], "Unified AI": [[798, "unified-ai"]], "Getting started": [[798, "getting-started"]], "Installing ivy": [[798, "installing-ivy"]], "Using Ivy": [[798, "using-ivy"]], "Documentation": [[798, "documentation"]], "Diving deeper": [[798, "diving-deeper"]], "When should I use Ivy as a transpiler?": [[798, "when-should-i-use-ivy-as-a-transpiler"]], "Contributing": [[798, "contributing"], [799, "contributing"]], "Community": [[798, "community"]], "Citation": [[798, "citation"]], "Helpful Resources": [[802, "helpful-resources"]], "The Basics": [[805, "the-basics"]], "Getting Help": [[805, "getting-help"]], "ToDo List Issues": [[805, "todo-list-issues"]], "Managing Your Fork": [[805, "managing-your-fork"]], "Who To Ask": [[805, "who-to-ask"]], "With Command Line:": [[805, "with-command-line"]], "With Browser:": [[805, "with-browser"]], "Pull Requests": [[805, "pull-requests"]], "Small Commits Often": [[805, "small-commits-often"]], "Interactive Ivy Docker Container": [[805, "interactive-ivy-docker-container"]], "Running Tests Locally": [[805, "running-tests-locally"]], "With Docker": [[805, "with-docker"]], "Getting the most out of IDE": [[805, "getting-the-most-out-of-ide"]], "with PyCharm": [[805, "with-pycharm"]], "Ivy Exception Class": [[817, "ivy-exception-class"]], "Configurable Mode for Stack Trace": [[817, "configurable-mode-for-stack-trace"]], "Ivy func_wrapper Pruning": [[817, "ivy-func-wrapper-pruning"]], "@handle_exceptions Decorator": [[817, "handle-exceptions-decorator"]], "Consistency in Errors": [[817, "consistency-in-errors"]], "Assertion Function": [[817, "assertion-function"]], "Docstrings": [[816, "docstrings"]], "Logging": [[795, "module-ivy.utils.logging"]], "Ast helpers": [[786, "module-ivy.utils.backend.ast_helpers"]], "Function Arguments": [[820, "function-arguments"]], "Positional and Keyword Arguments": [[820, "positional-and-keyword-arguments"]], "Input Arrays": [[820, "input-arrays"]], "out Argument": [[820, "out-argument"]], "dtype and device arguments": [[820, "dtype-and-device-arguments"]], "Numbers in Operator Functions": [[820, "numbers-in-operator-functions"]], "Integer Sequences": [[820, "integer-sequences"]], "Exceptions": [[793, "module-ivy.utils.exceptions"]], "Continuous Integration": [[812, "continuous-integration"], [819, "continuous-integration"]], "Commit (Push/PR) Triggered Testing": [[812, "commit-push-pr-triggered-testing"]], "Implementation": [[812, "implementation"]], "A Top-Down View": [[812, "a-top-down-view"]], "Storing (and retrieving) the Mapping": [[812, "storing-and-retrieving-the-mapping"]], "Cloning and Pushing to the Repository": [[812, "cloning-and-pushing-to-the-repository"]], "Implementational Nitty Gritties": [[812, "implementational-nitty-gritties"]], "Storage Space (unifyai/Mapping)": [[812, "storage-space-unifyai-mapping"]], "Determine Test Coverage Workflow": [[812, "determine-test-coverage-workflow"]], "Multiple Runners": [[812, "multiple-runners"]], "Race Condition": [[812, "race-condition"]], "Periodic Testing": [[812, "periodic-testing"]], "Manually Dispatched Workflows": [[812, "manually-dispatched-workflows"]], "CI Pipeline \u27a1\ufe0f": [[812, "ci-pipeline"]], "Push": [[812, "push"]], "Pull Request": [[812, "pull-request"]], "Dashboard": [[812, "dashboard"]], "Data Types": [[813, "data-types"]], "Data Type Module": [[813, "data-type-module"]], "Data Type Promotion": [[813, "data-type-promotion"]], "Precise Mode": [[813, "precise-mode"]], "Precise Promotion Table": [[813, "precise-promotion-table"]], "Non-Precise Promotion Table": [[813, "non-precise-promotion-table"]], "Supported and Unsupported Data Types": [[813, "supported-and-unsupported-data-types"]], "Supported and Unsupported Data Types Attributes": [[813, "supported-and-unsupported-data-types-attributes"]], "Special Case": [[813, "special-case"]], "Backend Data Type Bugs": [[813, "backend-data-type-bugs"]], "Data Type Casting Modes": [[813, "data-type-casting-modes"]], "Superset Data Type Support": [[813, "superset-data-type-support"]], "Assertions": [[784, "module-ivy.utils.assertions"], [757, "module-ivy_tests.test_ivy.helpers.assertions"]], "Backend": [[785, "backend"]], "Binaries": [[789, "module-ivy.utils.binaries"]], "Handler": [[787, "module-ivy.utils.backend.handler"]], "Building the Docs": [[800, "building-the-docs"]], "Building the Docs using Docker": [[800, "building-the-docs-using-docker"]], "Using convenience script": [[800, "using-convenience-script"]], "Using existing image on Docker Hub": [[800, "using-existing-image-on-docker-hub"]], "Building the image locally": [[800, "building-the-image-locally"]], "Building the Docs without Docker": [[800, "building-the-docs-without-docker"]], "Ivy Frontend Tests": [[826, "ivy-frontend-tests"]], "Frontend Test Examples": [[826, "frontend-test-examples"]], "ivy.tan()": [[826, "ivy-tan"]], "ivy.full()": [[826, "ivy-full"]], "Testing Without Using Tests Values": [[826, "testing-without-using-tests-values"]], "Alias functions": [[826, "alias-functions"]], "Frontend Instance Method Tests": [[826, "frontend-instance-method-tests"]], "Frontend Instance Method Test Examples": [[826, "frontend-instance-method-test-examples"]], "ivy.add()": [[826, "ivy-add"]], "Hypothesis Helpers": [[826, "hypothesis-helpers"]], "Frontend Framework Testing Configuration": [[826, "frontend-framework-testing-configuration"]], "Docstring Examples": [[815, "docstring-examples"]], "ivy.tan": [[815, "ivy-tan"]], "ivy.roll": [[815, "ivy-roll"]], "ivy.add": [[815, "ivy-add"]], "Arrays": [[808, "arrays"]], "Native Array": [[808, "native-array"]], "Array Handling": [[808, "array-handling"]], "Integrating custom classes with Ivy": [[808, "integrating-custom-classes-with-ivy"]], "Inplace Updates": [[824, "inplace-updates"]], "out argument": [[824, "out-argument"]], "copy argument": [[824, "copy-argument"]], "Views": [[824, "views"]], "Inspection": [[794, "module-ivy.utils.inspection"]], "Error Handling": [[801, "error-handling"]], "Einsum parser": [[791, "module-ivy.utils.einsum_parser"]], "Building the Docs Pipeline": [[810, "building-the-docs-pipeline"]], "How the doc-builder is being run": [[810, "how-the-doc-builder-is-being-run"]], "The convenience script": [[810, "the-convenience-script"]], "Options": [[810, "options"]], "The Docker image": [[810, "the-docker-image"]], "How Ivy\u2019s docs is structured": [[810, "how-ivy-s-docs-is-structured"]], "index.rst": [[810, "index-rst"]], "partial_conf.py": [[810, "partial-conf-py"]], "prebuild.sh": [[810, "prebuild-sh"]], "Custom Extensions": [[810, "custom-extensions"]], "custom_autosummary": [[810, "custom-autosummary"]], ":hide-table:": [[810, "hide-table"]], "discussion_linker": [[810, "discussion-linker"]], "skippable_function": [[810, "skippable-function"]], "ivy_data": [[810, "ivy-data"]], "Fix Failing Tests:": [[818, "fix-failing-tests"]], "Prerequirement:": [[818, "prerequirement"]], "How to run tests": [[818, "how-to-run-tests"]], "Common Errors": [[818, "common-errors"]], "Where to ask for Help": [[818, "where-to-ask-for-help"]], "Formatting": [[819, "formatting"]], "Lint Checks": [[819, "lint-checks"], [819, "id2"]], "Setup Formatting Locally": [[819, "setup-formatting-locally"]], "Pre-commit": [[819, "pre-commit"]], "VS Code": [[819, "vs-code"]], "Common Issues with Pre-Commit": [[819, "common-issues-with-pre-commit"]], "Lint Formatting": [[819, "lint-formatting"]], "Sub backend handler": [[788, "module-ivy.utils.backend.sub_backend_handler"]], "seed": [[728, "seed"]], "set_nest_at_indices": [[722, "set-nest-at-indices"]], "nested_multi_map": [[717, "nested-multi-map"]], "fomaml_step": [[701, "fomaml-step"]], "stack": [[696, "stack"]], "nested_argwhere": [[715, "nested-argwhere"]], "map_nest_at_index": [[711, "map-nest-at-index"]], "repeat": [[691, "repeat"]], "random_uniform": [[727, "random-uniform"]], "index_nest": [[707, "index-nest"]], "reptile_step": [[703, "reptile-step"]], "shuffle": [[729, "shuffle"]], "zero_pad": [[700, "zero-pad"]], "insert_into_nest_at_indices": [[709, "insert-into-nest-at-indices"]], "prune_nest_at_index": [[719, "prune-nest-at-index"]], "multinomial": [[724, "multinomial"]], "layer_norm": [[723, "layer-norm"]], "randint": [[725, "randint"]], "map_nest_at_indices": [[712, "map-nest-at-indices"]], "reshape": [[692, "reshape"]], "nested_any": [[714, "nested-any"]], "where": [[734, "where"]], "argwhere": [[732, "argwhere"]], "roll": [[693, "roll"]], "insert_into_nest_at_index": [[708, "insert-into-nest-at-index"]], "unique_all": [[735, "unique-all"]], "Data-dependent output shape": [[735, null], [737, null], [736, null], [738, null], [631, null], [631, null], [631, null], [631, null]], "multi_index_nest": [[713, "multi-index-nest"]], "split": [[694, "split"]], "argmax": [[730, "argmax"]], "prune_nest_at_indices": [[720, "prune-nest-at-indices"]], "squeeze": [[695, "squeeze"]], "map": [[710, "map"]], "random_normal": [[726, "random-normal"]], "all_nested_indices": [[704, "all-nested-indices"]], "nested_map": [[716, "nested-map"]], "set_nest_at_index": [[721, "set-nest-at-index"]], "unstack": [[699, "unstack"]], "prune_empty": [[718, "prune-empty"]], "permute_dims": [[690, "permute-dims"]], "nonzero": [[733, "nonzero"]], "tile": [[698, "tile"]], "swapaxes": [[697, "swapaxes"]], "duplicate_array_index_chains": [[706, "duplicate-array-index-chains"]], "argmin": [[731, "argmin"]], "maml_step": [[702, "maml-step"]], "copy_nest": [[705, "copy-nest"]], "Multiprocessing": [[766, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "Module": [[780, "module-ivy.stateful.module"]], "load": [[755, "load"]], "Activations": [[774, "module-ivy.stateful.activations"], [612, "activations"], [360, "activations"], [68, "module-ivy.data_classes.container.activations"], [46, "module-ivy.data_classes.array.activations"]], "Parameter": [[774, "parameter"], [774, "id1"], [571, "parameter"], [575, "parameter"], [566, "parameter"], [565, "parameter"], [572, "parameter"], [574, "parameter"], [620, "parameter"], [620, "id1"], [620, "id2"], [620, "id3"], [620, "id4"], [620, "id5"], [617, "parameter"], [205, "parameter"]], "cumprod": [[743, "cumprod"]], "var": [[752, "var"]], "Pipeline helper": [[767, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "any": [[754, "any"]], "Function testing": [[759, "module-ivy_tests.test_ivy.helpers.function_testing"]], "Layers": [[778, "module-ivy.stateful.layers"], [622, "layers"], [368, "layers"], [79, "module-ivy.data_classes.container.layers"], [56, "module-ivy.data_classes.array.layers"]], "unique_inverse": [[737, "unique-inverse"]], "Array helpers": [[762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "Test parameter flags": [[769, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "searchsorted": [[741, "searchsorted"]], "msort": [[740, "msort"]], "unique_counts": [[736, "unique-counts"]], "mean": [[747, "mean"]], "cumsum": [[744, "cumsum"]], "Utils": [[772, "utils"]], "max": [[746, "max"]], "General helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "Converters": [[775, "module-ivy.stateful.converters"]], "Structs": [[768, "module-ivy_tests.test_ivy.helpers.structs"]], "std": [[750, "std"]], "Hypothesis helpers": [[761, "hypothesis-helpers"]], "Available frameworks": [[758, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "all": [[753, "all"]], "sort": [[742, "sort"]], "einsum": [[745, "einsum"]], "Dtype helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "Framework classes": [[771, "framework-classes"]], "Helpers": [[776, "module-ivy.stateful.helpers"]], "Testing helpers": [[770, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "sum": [[751, "sum"]], "min": [[748, "min"]], "Number helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "Testing": [[773, "testing"], [40, "Testing"]], "Norms": [[781, "module-ivy.stateful.norms"], [628, "norms"], [374, "norms"], [60, "module-ivy.data_classes.array.norms"], [83, "module-ivy.data_classes.container.norms"]], "save": [[756, "save"]], "Losses": [[779, "module-ivy.stateful.losses"], [624, "losses"], [370, "losses"], [58, "module-ivy.data_classes.array.losses"], [81, "module-ivy.data_classes.container.losses"]], "Globals": [[760, "module-ivy_tests.test_ivy.helpers.globals"]], "prod": [[749, "prod"]], "argsort": [[739, "argsort"]], "unique_values": [[738, "unique-values"]], "cholesky": [[652, "cholesky"]], "depthwise_conv2d": [[644, "depthwise-conv2d"]], "vector_to_skew_symmetric_matrix": [[681, "vector-to-skew-symmetric-matrix"]], "tensorsolve": [[676, "tensorsolve"]], "nms": [[649, "nms"]], "svd": [[673, "svd"]], "slogdet": [[671, "slogdet"]], "trace": [[677, "trace"]], "sparse_cross_entropy": [[684, "sparse-cross-entropy"]], "matrix_norm": [[664, "matrix-norm"]], "diag": [[655, "diag"]], "inv": [[661, "inv"]], "expand_dims": [[688, "expand-dims"]], "vecdot": [[679, "vecdot"]], "matrix_power": [[665, "matrix-power"]], "cross_entropy": [[683, "cross-entropy"]], "concat": [[686, "concat"]], "lstm_update": [[647, "lstm-update"]], "linear": [[646, "linear"]], "svdvals": [[674, "svdvals"]], "constant_pad": [[687, "constant-pad"]], "eig": [[657, "eig"], [420, "eig"]], "eigh": [[658, "eigh"]], "inner": [[660, "inner"]], "tensordot": [[675, "tensordot"]], "outer": [[668, "outer"]], "pinv": [[669, "pinv"]], "qr": [[670, "qr"]], "dropout": [[645, "dropout"]], "vander": [[678, "vander"]], "vector_norm": [[680, "vector-norm"]], "matrix_transpose": [[667, "matrix-transpose"]], "lu_factor": [[662, "lu-factor"]], "diagonal": [[656, "diagonal"]], "binary_cross_entropy": [[682, "binary-cross-entropy"]], "matrix_rank": [[666, "matrix-rank"]], "det": [[654, "det"]], "roi_align": [[650, "roi-align"]], "clip": [[685, "clip"]], "multi_head_attention": [[648, "multi-head-attention"]], "eigvalsh": [[659, "eigvalsh"]], "flip": [[689, "flip"]], "scaled_dot_product_attention": [[651, "scaled-dot-product-attention"]], "solve": [[672, "solve"]], "cross": [[653, "cross"]], "matmul": [[663, "matmul"]], "set_nestable_mode": [[571, "set-nestable-mode"]], "print_all_arrays_in_memory": [[562, "print-all-arrays-in-memory"]], "set_show_func_wrapper_trace_mode": [[575, "set-show-func-wrapper-trace-mode"]], "to_numpy": [[585, "to-numpy"]], "unset_exception_trace_mode": [[589, "unset-exception-trace-mode"]], "scatter_nd": [[564, "scatter-nd"]], "set_exception_trace_mode": [[566, "set-exception-trace-mode"]], "to_scalar": [[586, "to-scalar"]], "unset_array_mode": [[588, "unset-array-mode"]], "unset_nestable_mode": [[593, "unset-nestable-mode"]], "isin": [[556, "isin"]], "supports_inplace_updates": [[581, "supports-inplace-updates"]], "set_queue_timeout": [[573, "set-queue-timeout"]], "strides": [[580, "strides"]], "try_else_none": [[587, "try-else-none"]], "isscalar": [[557, "isscalar"]], "set_item": [[568, "set-item"]], "unset_inplace_mode": [[590, "unset-inplace-mode"]], "unset_show_func_wrapper_trace_mode": [[597, "unset-show-func-wrapper-trace-mode"]], "set_array_mode": [[565, "set-array-mode"]], "to_native_shape": [[584, "to-native-shape"]], "set_tmp_dir": [[576, "set-tmp-dir"]], "scatter_flat": [[563, "scatter-flat"]], "set_precise_mode": [[572, "set-precise-mode"]], "shape": [[577, "shape"]], "to_list": [[583, "to-list"]], "unset_precise_mode": [[594, "unset-precise-mode"]], "unset_min_base": [[591, "unset-min-base"]], "to_ivy_shape": [[582, "to-ivy-shape"]], "multiprocessing": [[560, "multiprocessing"]], "unset_queue_timeout": [[595, "unset-queue-timeout"]], "itemsize": [[558, "itemsize"]], "is_ivy_array": [[552, "is-ivy-array"]], "set_inplace_mode": [[567, "set-inplace-mode"]], "unset_min_denominator": [[592, "unset-min-denominator"]], "is_native_array": [[555, "is-native-array"]], "set_min_denominator": [[570, "set-min-denominator"]], "unset_shape_array_mode": [[596, "unset-shape-array-mode"]], "is_ivy_container": [[553, "is-ivy-container"]], "is_ivy_nested_array": [[554, "is-ivy-nested-array"]], "stable_divide": [[578, "stable-divide"]], "set_min_base": [[569, "set-min-base"]], "match_kwargs": [[559, "match-kwargs"]], "stable_pow": [[579, "stable-pow"]], "set_shape_array_mode": [[574, "set-shape-array-mode"]], "num_arrays_in_memory": [[561, "num-arrays-in-memory"]], "nanmedian": [[516, "nanmedian"]], "get_num_dims": [[543, "get-num-dims"]], "optional_get_element": [[520, "optional-get-element"]], "inplace_variables_supported": [[550, "inplace-variables-supported"]], "corrcoef": [[508, "corrcoef"]], "all_equal": [[521, "all-equal"]], "gather": [[539, "gather"]], "arg_names": [[523, "arg-names"]], "get_all_arrays_in_memory": [[541, "get-all-arrays-in-memory"]], "cummin": [[511, "cummin"]], "container_types": [[529, "container-types"]], "inplace_increment": [[548, "inplace-increment"]], "nanmin": [[517, "nanmin"]], "fourier_encode": [[536, "fourier-encode"]], "einops_repeat": [[534, "einops-repeat"]], "nanprod": [[518, "nanprod"]], "gather_nd": [[540, "gather-nd"]], "inplace_decrement": [[547, "inplace-decrement"]], "has_nans": [[545, "has-nans"]], "get_item": [[542, "get-item"]], "native_sparse_array_to_indices_values_and_shape": [[506, "native-sparse-array-to-indices-values-and-shape"]], "einops_reduce": [[533, "einops-reduce"]], "array_equal": [[524, "array-equal"]], "current_backend_str": [[530, "current-backend-str"]], "arg_info": [[522, "arg-info"]], "function_unsupported_devices_and_dtypes": [[538, "function-unsupported-devices-and-dtypes"]], "nanmean": [[515, "nanmean"]], "einops_rearrange": [[532, "einops-rearrange"]], "get_referrers_recursive": [[544, "get-referrers-recursive"]], "function_supported_devices_and_dtypes": [[537, "function-supported-devices-and-dtypes"]], "igamma": [[513, "igamma"]], "assert_supports_inplace": [[525, "assert-supports-inplace"]], "inplace_update": [[549, "inplace-update"]], "exists": [[535, "exists"]], "quantile": [[519, "quantile"]], "default": [[531, "default"]], "median": [[514, "median"]], "cov": [[509, "cov"]], "clip_vector_norm": [[528, "clip-vector-norm"]], "cummax": [[510, "cummax"]], "is_array": [[551, "is-array"]], "histogram": [[512, "histogram"]], "cache_fn": [[526, "cache-fn"]], "bincount": [[507, "bincount"]], "inplace_arrays_supported": [[546, "inplace-arrays-supported"]], "clip_matrix_norm": [[527, "clip-matrix-norm"]], "flatten": [[462, "flatten"]], "partial_unfold": [[475, "partial-unfold"]], "l1_normalize": [[491, "l1-normalize"]], "fold": [[465, "fold"]], "i0": [[469, "i0"]], "trim_zeros": [[483, "trim-zeros"]], "expand": [[460, "expand"]], "unfold": [[484, "unfold"]], "l2_normalize": [[492, "l2-normalize"]], "soft_thresholding": [[479, "soft-thresholding"]], "batch_norm": [[488, "batch-norm"]], "local_response_norm": [[493, "local-response-norm"]], "gamma": [[498, "gamma"]], "group_norm": [[489, "group-norm"]], "unique_consecutive": [[485, "unique-consecutive"]], "take_along_axis": [[481, "take-along-axis"]], "flipud": [[464, "flipud"]], "pad": [[472, "pad"]], "beta": [[496, "beta"]], "vstack": [[487, "vstack"]], "bernoulli": [[495, "bernoulli"]], "unravel_index": [[500, "unravel-index"]], "is_ivy_sparse_array": [[503, "is-ivy-sparse-array"]], "native_sparse_array": [[505, "native-sparse-array"]], "poisson": [[499, "poisson"]], "instance_norm": [[490, "instance-norm"]], "moveaxis": [[471, "moveaxis"]], "fliplr": [[463, "fliplr"]], "partial_tensor_to_vec": [[474, "partial-tensor-to-vec"]], "put_along_axis": [[477, "put-along-axis"]], "heaviside": [[466, "heaviside"]], "rot90": [[478, "rot90"]], "invert_permutation": [[501, "invert-permutation"]], "hsplit": [[467, "hsplit"]], "fill_diagonal": [[461, "fill-diagonal"]], "matricize": [[470, "matricize"]], "vsplit": [[486, "vsplit"]], "is_native_sparse_array": [[504, "is-native-sparse-array"]], "hstack": [[468, "hstack"]], "top_k": [[482, "top-k"]], "partial_vec_to_tensor": [[476, "partial-vec-to-tensor"]], "lexsort": [[502, "lexsort"]], "lp_normalize": [[494, "lp-normalize"]], "take": [[480, "take"]], "partial_fold": [[473, "partial-fold"]], "dirichlet": [[497, "dirichlet"]], "Meta": [[626, "meta"], [372, "module-ivy.functional.ivy.experimental.meta"]], "optimizer_update": [[609, "optimizer-update"]], "General": [[620, "general"], [366, "general"], [53, "module-ivy.data_classes.array.general"], [76, "module-ivy.data_classes.container.general"]], "jac": [[606, "jac"]], "conv1d_transpose": [[637, "conv1d-transpose"]], "adam_step": [[601, "adam-step"]], "conv": [[635, "conv"]], "execute_with_gradients": [[603, "execute-with-gradients"]], "adam_update": [[602, "adam-update"]], "conv3d": [[640, "conv3d"]], "Manipulation": [[625, "manipulation"], [371, "manipulation"], [59, "module-ivy.data_classes.array.manipulation"], [82, "module-ivy.data_classes.container.manipulation"]], "Constants": [[613, "module-ivy.functional.ivy.constants"], [361, "module-ivy.functional.ivy.experimental.constants"]], "Random": [[629, "random"], [375, "random"], [61, "module-ivy.data_classes.array.random"], [84, "module-ivy.data_classes.container.random"]], "Device": [[617, "device"], [364, "module-ivy.functional.ivy.experimental.device"], [73, "module-ivy.data_classes.container.device"], [50, "module-ivy.data_classes.array.device"]], "value_is_nan": [[599, "value-is-nan"]], "Statistical": [[633, "statistical"], [380, "statistical"], [88, "module-ivy.data_classes.container.statistical"], [65, "module-ivy.data_classes.array.statistical"]], "conv_general_dilated": [[642, "conv-general-dilated"]], "value_and_grad": [[611, "value-and-grad"]], "conv_general_transpose": [[643, "conv-general-transpose"]], "unset_tmp_dir": [[598, "unset-tmp-dir"]], "Searching": [[630, "searching"], [376, "searching"], [85, "module-ivy.data_classes.container.searching"], [62, "module-ivy.data_classes.array.searching"]], "conv1d": [[636, "conv1d"]], "Nest": [[627, "nest"], [373, "module-ivy.functional.ivy.experimental.nest"]], "Control flow ops": [[614, "control-flow-ops"]], "gradient_descent_update": [[605, "gradient-descent-update"]], "Experimental": [[619, "experimental"], [75, "module-ivy.data_classes.container.experimental"], [52, "module-ivy.data_classes.array.experimental"]], "stop_gradient": [[610, "stop-gradient"]], "Creation": [[615, "creation"], [362, "creation"], [48, "module-ivy.data_classes.array.creation"], [71, "module-ivy.data_classes.container.creation"]], "grad": [[604, "grad"]], "Set": [[631, "set"], [377, "module-ivy.functional.ivy.experimental.set"], [86, "module-ivy.data_classes.container.set"], [63, "module-ivy.data_classes.array.set"]], "Data type": [[616, "data-type"], [363, "module-ivy.functional.ivy.experimental.data_type"], [72, "module-ivy.data_classes.container.data_type"], [49, "module-ivy.data_classes.array.data_type"]], "lars_update": [[608, "lars-update"]], "vmap": [[600, "vmap"]], "conv2d": [[638, "conv2d"]], "conv3d_transpose": [[641, "conv3d-transpose"]], "lamb_update": [[607, "lamb-update"]], "Utility": [[634, "utility"], [381, "utility"], [89, "module-ivy.data_classes.container.utility"], [66, "module-ivy.data_classes.array.utility"]], "Sorting": [[632, "sorting"], [378, "sorting"], [64, "module-ivy.data_classes.array.sorting"], [87, "module-ivy.data_classes.container.sorting"]], "conv2d_transpose": [[639, "conv2d-transpose"]], "Linear algebra": [[623, "linear-algebra"], [369, "linear-algebra"], [57, "module-ivy.data_classes.array.linear_algebra"], [80, "module-ivy.data_classes.container.linear_algebra"]], "partial_tucker": [[434, "partial-tucker"]], "atleast_2d": [[451, "atleast-2d"]], "check_scalar": [[454, "check-scalar"]], "choose": [[455, "choose"]], "as_strided": [[448, "as-strided"]], "initialize_tucker": [[425, "initialize-tucker"]], "multi_dot": [[432, "multi-dot"]], "kron": [[427, "kron"]], "svd_flip": [[436, "svd-flip"]], "log_poisson_loss": [[444, "log-poisson-loss"]], "mode_dot": [[431, "mode-dot"]], "batched_outer": [[416, "batched-outer"]], "atleast_3d": [[452, "atleast-3d"]], "tensor_train": [[437, "tensor-train"]], "huber_loss": [[441, "huber-loss"]], "cond": [[417, "cond"]], "stft": [[414, "stft"]], "concat_from_sequence": [[457, "concat-from-sequence"]], "eigh_tridiagonal": [[421, "eigh-tridiagonal"]], "dsplit": [[458, "dsplit"]], "truncated_svd": [[438, "truncated-svd"]], "general_inner_product": [[423, "general-inner-product"]], "dot": [[419, "dot"]], "poisson_nll_loss": [[445, "poisson-nll-loss"]], "make_svd_non_negative": [[429, "make-svd-non-negative"]], "matrix_exp": [[430, "matrix-exp"]], "diagflat": [[418, "diagflat"]], "broadcast_shapes": [[453, "broadcast-shapes"]], "higher_order_moment": [[424, "higher-order-moment"]], "soft_margin_loss": [[447, "soft-margin-loss"]], "tucker": [[440, "tucker"]], "tt_matrix_to_tensor": [[439, "tt-matrix-to-tensor"]], "eigvals": [[422, "eigvals"]], "solve_triangular": [[435, "solve-triangular"]], "multi_mode_dot": [[433, "multi-mode-dot"]], "adjoint": [[415, "adjoint"]], "atleast_1d": [[450, "atleast-1d"]], "associative_scan": [[449, "associative-scan"]], "kronecker": [[428, "kronecker"]], "dstack": [[459, "dstack"]], "l1_loss": [[443, "l1-loss"]], "kl_div": [[442, "kl-div"]], "smooth_l1_loss": [[446, "smooth-l1-loss"]], "column_stack": [[456, "column-stack"]], "khatri_rao": [[426, "khatri-rao"]], "modf": [[348, "modf"]], "zeta": [[355, "zeta"]], "vorbis_window": [[327, "vorbis-window"]], "trilu": [[323, "trilu"]], "float_power": [[339, "float-power"]], "fix": [[338, "fix"]], "amax": [[329, "amax"]], "sinc": [[352, "sinc"]], "unsorted_segment_min": [[325, "unsorted-segment-min"]], "isclose": [[344, "isclose"]], "hypot": [[343, "hypot"]], "bind_custom_gradient_function": [[357, "bind-custom-gradient-function"]], "sparsify_tensor": [[353, "sparsify-tensor"]], "allclose": [[328, "allclose"]], "fmax": [[340, "fmax"]], "copysign": [[333, "copysign"]], "unsorted_segment_sum": [[326, "unsorted-segment-sum"]], "lerp": [[346, "lerp"]], "lgamma": [[347, "lgamma"]], "xlogy": [[354, "xlogy"]], "amin": [[330, "amin"]], "jvp": [[358, "jvp"]], "vjp": [[359, "vjp"]], "nextafter": [[350, "nextafter"]], "erfc": [[337, "erfc"]], "gradient": [[342, "gradient"]], "reduce": [[356, "reduce"]], "unsorted_segment_mean": [[324, "unsorted-segment-mean"]], "signbit": [[351, "signbit"]], "tril_indices": [[322, "tril-indices"]], "count_nonzero": [[334, "count-nonzero"]], "binarizer": [[331, "binarizer"]], "diff": [[335, "diff"]], "nansum": [[349, "nansum"]], "digamma": [[336, "digamma"]], "conj": [[332, "conj"]], "frexp": [[341, "frexp"]], "ldexp": [[345, "ldexp"]], "max_unpool1d": [[407, "max-unpool1d"]], "Sparse array": [[379, "sparse-array"]], "ifftn": [[401, "ifftn"]], "dct": [[389, "dct"]], "get_interpolate_kernel": [[398, "get-interpolate-kernel"]], "avg_pool3d": [[388, "avg-pool3d"]], "rfftn": [[412, "rfftn"]], "dropout3d": [[393, "dropout3d"]], "avg_pool2d": [[387, "avg-pool2d"]], "adaptive_max_pool2d": [[384, "adaptive-max-pool2d"]], "pool": [[409, "pool"]], "max_pool1d": [[404, "max-pool1d"]], "embedding": [[394, "embedding"]], "interpolate": [[403, "interpolate"]], "adaptive_avg_pool2d": [[383, "adaptive-avg-pool2d"]], "fft": [[395, "fft"]], "max_pool2d": [[405, "max-pool2d"]], "rfft": [[411, "rfft"]], "sliding_window": [[413, "sliding-window"]], "dropout1d": [[391, "dropout1d"]], "idct": [[399, "idct"]], "dropout2d": [[392, "dropout2d"]], "nearest_interpolate": [[408, "nearest-interpolate"]], "avg_pool1d": [[386, "avg-pool1d"]], "ifft": [[400, "ifft"]], "reduce_window": [[410, "reduce-window"]], "adaptive_avg_pool1d": [[382, "adaptive-avg-pool1d"]], "max_pool3d": [[406, "max-pool3d"]], "area_interpolate": [[385, "area-interpolate"]], "dft": [[390, "dft"]], "fft2": [[396, "fft2"]], "generate_einsum_equation": [[397, "generate-einsum-equation"]], "interp": [[402, "interp"]], "prelu": [[296, "prelu"]], "thresholded_relu": [[305, "thresholded-relu"]], "mel_weight_matrix": [[313, "mel-weight-matrix"]], "trunc": [[288, "trunc"]], "softshrink": [[301, "softshrink"]], "hardtanh": [[293, "hardtanh"]], "ndenumerate": [[314, "ndenumerate"]], "square": [[283, "square"]], "trunc_divide": [[289, "trunc-divide"]], "threshold": [[304, "threshold"]], "kaiser_window": [[312, "kaiser-window"]], "logit": [[294, "logit"]], "kaiser_bessel_derived_window": [[311, "kaiser-bessel-derived-window"]], "random_tucker": [[321, "random-tucker"]], "random_parafac2": [[318, "random-parafac2"]], "round": [[278, "round"]], "logsigmoid": [[295, "logsigmoid"]], "indices": [[310, "indices"]], "random_cp": [[317, "random-cp"]], "hamming_window": [[308, "hamming-window"]], "selu": [[299, "selu"]], "hardshrink": [[292, "hardshrink"]], "elu": [[291, "elu"]], "subtract": [[284, "subtract"]], "tanhshrink": [[303, "tanhshrink"]], "sqrt": [[282, "sqrt"]], "eye_like": [[307, "eye-like"]], "hann_window": [[309, "hann-window"]], "random_tt": [[320, "random-tt"]], "celu": [[290, "celu"]], "blackman_window": [[306, "blackman-window"]], "ndindex": [[315, "ndindex"]], "remainder": [[277, "remainder"]], "tan": [[285, "tan"]], "trapz": [[287, "trapz"]], "polyval": [[316, "polyval"]], "silu": [[300, "silu"]], "relu6": [[297, "relu6"]], "sin": [[280, "sin"]], "scaled_tanh": [[298, "scaled-tanh"]], "tanh": [[286, "tanh"]], "sign": [[279, "sign"]], "stanh": [[302, "stanh"]], "sinh": [[281, "sinh"]], "reciprocal": [[276, "reciprocal"]], "random_tr": [[319, "random-tr"]], "expm1": [[240, "expm1"]], "log": [[256, "log"]], "isinf": [[250, "isinf"]], "logaddexp2": [[261, "logaddexp2"]], "isreal": [[252, "isreal"]], "deg2rad": [[234, "deg2rad"]], "exp2": [[239, "exp2"]], "greater_equal": [[247, "greater-equal"]], "isfinite": [[249, "isfinite"]], "erf": [[237, "erf"]], "logical_not": [[263, "logical-not"]], "fmod": [[244, "fmod"]], "less_equal": [[255, "less-equal"]], "fmin": [[243, "fmin"]], "log10": [[257, "log10"]], "bitwise_xor": [[230, "bitwise-xor"]], "divide": [[235, "divide"]], "ceil": [[231, "ceil"]], "pow": [[273, "pow"]], "log2": [[259, "log2"]], "less": [[254, "less"]], "floor": [[241, "floor"]], "exp": [[238, "exp"]], "cos": [[232, "cos"]], "floor_divide": [[242, "floor-divide"]], "rad2deg": [[274, "rad2deg"]], "real": [[275, "real"]], "logical_or": [[264, "logical-or"]], "lcm": [[253, "lcm"]], "negative": [[270, "negative"]], "cosh": [[233, "cosh"]], "isnan": [[251, "isnan"]], "log1p": [[258, "log1p"]], "not_equal": [[271, "not-equal"]], "equal": [[236, "equal"]], "maximum": [[266, "maximum"]], "nan_to_num": [[269, "nan-to-num"]], "minimum": [[267, "minimum"]], "logical_xor": [[265, "logical-xor"]], "multiply": [[268, "multiply"]], "greater": [[246, "greater"]], "imag": [[248, "imag"]], "logical_and": [[262, "logical-and"]], "gcd": [[245, "gcd"]], "positive": [[272, "positive"]], "logaddexp": [[260, "logaddexp"]], "print_all_ivy_arrays_on_dev": [[203, "print-all-ivy-arrays-on-dev"]], "valid_dtype": [[187, "valid-dtype"]], "atan": [[222, "atan"]], "atanh": [[224, "atanh"]], "unset_default_uint_dtype": [[186, "unset-default-uint-dtype"]], "as_ivy_dev": [[188, "as-ivy-dev"]], "clear_cached_mem_on_dev": [[190, "clear-cached-mem-on-dev"]], "set_default_device": [[204, "set-default-device"]], "bitwise_right_shift": [[229, "bitwise-right-shift"]], "total_mem_on_dev": [[210, "total-mem-on-dev"]], "asinh": [[221, "asinh"]], "asin": [[220, "asin"]], "acosh": [[217, "acosh"]], "unset_soft_device_mode": [[213, "unset-soft-device-mode"]], "bitwise_invert": [[226, "bitwise-invert"]], "split_func_call": [[208, "split-func-call"]], "set_split_factor": [[206, "set-split-factor"]], "function_supported_devices": [[194, "function-supported-devices"]], "abs": [[215, "abs"]], "unset_default_float_dtype": [[184, "unset-default-float-dtype"]], "num_cpu_cores": [[199, "num-cpu-cores"]], "unset_default_int_dtype": [[185, "unset-default-int-dtype"]], "as_native_dev": [[189, "as-native-dev"]], "handle_soft_device_variable": [[198, "handle-soft-device-variable"]], "set_soft_device_mode": [[205, "set-soft-device-mode"]], "add": [[218, "add"]], "bitwise_left_shift": [[227, "bitwise-left-shift"]], "dev_util": [[193, "dev-util"]], "default_device": [[191, "default-device"]], "function_unsupported_devices": [[195, "function-unsupported-devices"]], "get_all_ivy_arrays_on_dev": [[196, "get-all-ivy-arrays-on-dev"]], "used_mem_on_dev": [[214, "used-mem-on-dev"]], "dev": [[192, "dev"]], "tpu_is_available": [[211, "tpu-is-available"]], "num_gpus": [[200, "num-gpus"]], "atan2": [[223, "atan2"]], "angle": [[219, "angle"]], "bitwise_or": [[228, "bitwise-or"]], "split_factor": [[207, "split-factor"]], "acos": [[216, "acos"]], "unset_default_device": [[212, "unset-default-device"]], "bitwise_and": [[225, "bitwise-and"]], "num_ivy_arrays_on_dev": [[201, "num-ivy-arrays-on-dev"]], "gpu_is_available": [[197, "gpu-is-available"]], "percent_used_mem_on_dev": [[202, "percent-used-mem-on-dev"]], "to_device": [[209, "to-device"]], "Image": [[78, "module-ivy.data_classes.container.image"], [55, "module-ivy.data_classes.array.image"]], "Conversions": [[70, "module-ivy.data_classes.container.conversions"], [47, "module-ivy.data_classes.array.conversions"]], "Wrapping": [[67, "module-ivy.data_classes.array.wrapping"], [90, "module-ivy.data_classes.container.wrapping"]], "HuggingFace Tensorflow DeiT": [[43, "HuggingFace-Tensorflow-DeiT"]], "Graph can be visualized and displayed as html file on browser": [[43, "Graph-can-be-visualized-and-displayed-as-html-file-on-browser"]], "ODSC Ivy Demo": [[26, "ODSC-Ivy-Demo"]], "Ivy Backend Handler": [[26, "Ivy-Backend-Handler"], [17, "Ivy-Backend-Handler"]], "Data Structures": [[26, "Data-Structures"], [17, "Data-Structures"]], "Ivy Functional API": [[26, "Ivy-Functional-API"], [17, "Ivy-Functional-API"]], "Graph Tracer": [[26, "Graph-Tracer"]], "Any function": [[26, "Any-function"], [27, "Any-function"]], "Any library": [[26, "Any-library"], [27, "Any-library"]], "Any model": [[26, "Any-model"], [27, "Any-model"]], "Demo: Transpiling DeepMind\u2019s PerceiverIO": [[40, "Demo:-Transpiling-DeepMind's-PerceiverIO"]], "Table of Contents": [[40, "Table-of-Contents"]], "Defining the model": [[40, "Defining-the-model"]], "Model construction": [[40, "Model-construction"]], "Some helper functions": [[40, "Some-helper-functions"]], "Transpiling the model": [[40, "Transpiling-the-model"]], "PyTorch pipeline": [[40, "PyTorch-pipeline"]], "Dataset download": [[40, "Dataset-download"]], "DataLoader": [[40, "DataLoader"]], "Training": [[40, "Training"]], "0.2: Transpile": [[30, "0.2:-Transpile"]], "Trace code": [[19, "Trace-code"]], "Using Ivy ResNet": [[7, "Using-Ivy-ResNet"]], "Installation": [[7, "Installation"], [3, "Installation"]], "Imports": [[7, "Imports"], [5, "Imports"], [9, "Imports"]], "Data Preparation": [[7, "Data-Preparation"], [4, "Data-Preparation"], [3, "Data-Preparation"], [5, "Data-Preparation"]], "Prepare the set of labels": [[7, "Prepare-the-set-of-labels"]], "Load the image example \ud83d\uddbc\ufe0f": [[7, "Load-the-image-example-\ud83d\uddbc\ufe0f"], [5, "Load-the-image-example-\ud83d\uddbc\ufe0f"]], "Visualise image": [[7, "Visualise-image"], [5, "Visualise-image"]], "Model Inference ResNet34": [[7, "Model-Inference-ResNet34"]], "Initializing Native Torch ResNet34": [[7, "Initializing-Native-Torch-ResNet34"]], "Initializing Ivy ResNet34 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet34-with-Pretrained-Weights-\u2b07\ufe0f"]], "Use the model to classify your images \ud83d\ude80": [[7, "Use-the-model-to-classify-your-images-\ud83d\ude80"], [7, "id1"]], "Model Inference ResNet50": [[7, "Model-Inference-ResNet50"]], "Initializing Native Torch ResNet50": [[7, "Initializing-Native-Torch-ResNet50"]], "Initializing Ivy ResNet50 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet50-with-Pretrained-Weights-\u2b07\ufe0f"]], "1.0: Lazy vs Eager": [[31, "1.0:-Lazy-vs-Eager"]], "Unify": [[31, "Unify"], [32, "Unify"], [21, "Unify"], [33, "Unify"], [22, "Unify"]], "Compile": [[31, "Compile"], [32, "Compile"], [33, "Compile"]], "Transpile": [[31, "Transpile"], [32, "Transpile"], [21, "Transpile"], [33, "Transpile"], [22, "Transpile"]], "Deepmind PerceiverIO on GPU": [[41, "Deepmind-PerceiverIO-on-GPU"]], "Install Python3.8 and setup the kernel": [[41, "Install-Python3.8-and-setup-the-kernel"]], "Clone the ivy and ivy-models repo": [[41, "Clone-the-ivy-and-ivy-models-repo"]], "Install ivy and ivy_models from the repos": [[41, "Install-ivy-and-ivy_models-from-the-repos"]], "Run the demo\u2026": [[41, "Run-the-demo..."]], "\u2026with torch backend": [[41, "...with-torch-backend"]], "\u2026.with tensorflow backend": [[41, "....with-tensorflow-backend"]], "\u2026with jax backend": [[41, "...with-jax-backend"]], "\u2026with numpy backend": [[41, "...with-numpy-backend"]], "Transpiling a PyTorch model to build on top": [[11, "Transpiling-a-PyTorch-model-to-build-on-top"]], "1.3: Dynamic vs Static": [[34, "1.3:-Dynamic-vs-Static"]], "Dynamic": [[34, "Dynamic"]], "Static": [[34, "Static"]], "ToDo: explain via examples why dynamic mode is set to True by default when transpiling to and from numpy and torch, but set to False by default when transpiling to and from tensorflow and jax.": [[34, "ToDo:-explain-via-examples-why-dynamic-mode-is-set-to-True-by-default-when-transpiling-to-and-from-numpy-and-torch,-but-set-to-False-by-default-when-transpiling-to-and-from-tensorflow-and-jax."]], "1.1: Framework Selection": [[32, "1.1:-Framework-Selection"]], "Lazy vs Eager": [[21, "Lazy-vs-Eager"]], "Trace": [[21, "Trace"], [22, "Trace"]], "# Ivy Bert Demo": [[4, "#-Ivy-Bert-Demo"]], "Install the dependecies": [[4, "Install-the-dependecies"]], "Import the modules": [[4, "Import-the-modules"]], "Ivy inference with Sequence Classification": [[4, "Ivy-inference-with-Sequence-Classification"]], "Ivy model inference with tensorflow": [[4, "Ivy-model-inference-with-tensorflow"]], "Ivy model inference with Jax": [[4, "Ivy-model-inference-with-Jax"]], "Ivy model inference with torch": [[4, "Ivy-model-inference-with-torch"]], "Ivy AlexNet demo": [[3, "Ivy-AlexNet-demo"]], "Ivy AlexNet inference in Torch": [[3, "Ivy-AlexNet-inference-in-Torch"]], "TensorFlow inference": [[3, "TensorFlow-inference"]], "JAX inference": [[3, "JAX-inference"]], "Appendix (Ivy code for AlexNet implementation)": [[3, "Appendix-(Ivy-code-for-AlexNet-implementation)"]], "Write Ivy code": [[17, "Write-Ivy-code"]], "Contents": [[17, "Contents"]], "Installing Ivy": [[17, "Installing-Ivy"]], "Importing Ivy": [[17, "Importing-Ivy"]], "Compilation of a Basic Function": [[39, "Compilation-of-a-Basic-Function"]], "Installs \ud83d\udcbe": [[39, "Installs-\ud83d\udcbe"], [38, "Installs-\ud83d\udcbe"]], "Imports \ud83d\udec3": [[39, "Imports-\ud83d\udec3"], [38, "Imports-\ud83d\udec3"]], "Import Ivy compiler": [[39, "Import-Ivy-compiler"]], "Function compilation \ud83d\udee0": [[39, "Function-compilation-\ud83d\udee0"]], "Set backend": [[39, "Set-backend"]], "Sample input": [[39, "Sample-input"]], "Define function to compile": [[39, "Define-function-to-compile"]], "Compile the function": [[39, "Compile-the-function"]], "Check results": [[39, "Check-results"], [39, "id1"]], "Compiling simple neural network \ud83e\udde0": [[39, "Compiling-simple-neural-network-\ud83e\udde0"]], "Define Model": [[39, "Define-Model"], [38, "Define-Model"]], "Create model": [[39, "Create-model"]], "Define input": [[39, "Define-input"]], "Compile network": [[39, "Compile-network"]], "Transpiling a haiku model to build on top": [[12, "Transpiling-a-haiku-model-to-build-on-top"]], "Examples and Demos": [[2, "examples-and-demos"], [15, "examples-and-demos"]], "Transpile code": [[20, "Transpile-code"]], "Accelerating PyTorch models with JAX": [[8, "Accelerating-PyTorch-models-with-JAX"]], "Developing a convolutional network using Ivy": [[14, "Developing-a-convolutional-network-using-Ivy"]], "Write a model using Ivy": [[25, "Write-a-model-using-Ivy"]], "Unify code": [[18, "Unify-code"]], "TO REPLACE: Title": [[1, "TO-REPLACE:-Title"]], "Accelerating MMPreTrain models with JAX": [[6, "Accelerating-MMPreTrain-models-with-JAX"]], "3.1: Stable Diffusion": [[37, "3.1:-Stable-Diffusion"]], "Tutorials And Examples": [[15, "tutorials-and-examples"]], "Learn the basics": [[15, "learn-the-basics"], [16, "learn-the-basics"]], "Guides": [[15, "guides"], [10, "guides"]], "1.2: As a Decorator": [[33, "1.2:-As-a-Decorator"]], "3.0: Perceiver": [[36, "3.0:-Perceiver"]], "Transpile any library": [[23, "Transpile-any-library"]], "End-to-End Training Pipeline in Ivy": [[42, "End-to-End-Training-Pipeline-in-Ivy"]], "Importing libraries": [[42, "Importing-libraries"]], "Let\u2019s build the pipeline with a Tensorflow backend": [[42, "Let's-build-the-pipeline-with-a-Tensorflow-backend"]], "We are using MNIST dataset for this Tutorial": [[42, "We-are-using-MNIST-dataset-for-this-Tutorial"]], "Temporary Dataset and Dynamic loader": [[42, "Temporary-Dataset-and-Dynamic-loader"]], "Defining the Ivy Network": [[42, "Defining-the-Ivy-Network"]], "Training Loop with utility functions": [[42, "Training-Loop-with-utility-functions"]], "Plotting the training metrics": [[42, "Plotting-the-training-metrics"]], "Save the trained Model": [[42, "Save-the-trained-Model"]], "2.0: Kornia": [[35, "2.0:-Kornia"]], "Demos": [[0, "demos"]], "Creating a Notebook for Demo": [[0, "creating-a-notebook-for-demo"]], "0.1: Compile": [[29, "0.1:-Compile"]], "Image Segmentation with Ivy UNet": [[5, "Image-Segmentation-with-Ivy-UNet"]], "Custom Preprocessing": [[5, "Custom-Preprocessing"]], "Model Inference": [[5, "Model-Inference"]], "Initializing Native Torch UNet": [[5, "Initializing-Native-Torch-UNet"]], "Initializing Ivy UNet with Pretrained Weights \u2b07\ufe0f": [[5, "Initializing-Ivy-UNet-with-Pretrained-Weights-\u2b07\ufe0f"]], "Custom masking function": [[5, "Custom-masking-function"]], "Use the model to segment your images \ud83d\ude80": [[5, "Use-the-model-to-segment-your-images-\ud83d\ude80"]], "TensorFlow backend": [[5, "TensorFlow-backend"]], "JAX": [[5, "JAX"]], "Appendix: the Ivy native implementation of UNet": [[5, "Appendix:-the-Ivy-native-implementation-of-UNet"]], "Accelerating XGBoost with JAX": [[9, "Accelerating-XGBoost-with-JAX"]], "Tests": [[9, "Tests"]], "Loading the Data": [[9, "Loading-the-Data"]], "Comparing xgb_frontend.XGBClassifier and xgb.XGBClassifier": [[9, "Comparing-xgb_frontend.XGBClassifier-and-xgb.XGBClassifier"]], "JAX backend": [[9, "JAX-backend"]], "Tensorflow backend": [[9, "Tensorflow-backend"]], "PyTorch backend": [[9, "PyTorch-backend"]], "More exhaustive example": [[9, "More-exhaustive-example"]], "Evaluating Training Time vs. Number of Boosting Rounds": [[9, "Evaluating-Training-Time-vs.-Number-of-Boosting-Rounds"]], "Training Time vs. Fractions of Data": [[9, "Training-Time-vs.-Fractions-of-Data"]], "Comparison of Metrics": [[9, "Comparison-of-Metrics"]], "Transpiling a Tensorflow model to build on top": [[13, "Transpiling-a-Tensorflow-model-to-build-on-top"]], "Resnet 18": [[45, "Resnet-18"]], "Quickstart": [[27, "Quickstart"]], "Get familiar with Ivy": [[27, "Get-familiar-with-Ivy"]], "Functional API": [[27, "Functional-API"]], "Stateful API": [[27, "Stateful-API"]], "Tracing code": [[27, "Tracing-code"]], "Transpile any model": [[24, "Transpile-any-model"]], "Round up": [[24, "Round-up"]], "Ivy as a Transpiler Introduction": [[44, "Ivy-as-a-Transpiler-Introduction"]], "To use the transpiler:": [[44, "To-use-the-transpiler:"]], "Transpiler Interface": [[44, "Transpiler-Interface"]], "Telemetry": [[44, "Telemetry"]], "1. Transpile Functions \ud83d\udd22": [[44, "1.-Transpile-Functions-\ud83d\udd22"]], "2. Transpile Libraries \ud83d\udcda": [[44, "2.-Transpile-Libraries-\ud83d\udcda"]], "3. Transpile Models \ud83c\udf10": [[44, "3.-Transpile-Models-\ud83c\udf10"]], "0.0: Unify": [[28, "0.0:-Unify"]], "Basic Operations with Ivy": [[38, "Basic-Operations-with-Ivy"]], "Ivy as a Unified ML Framework \ud83d\udd00": [[38, "Ivy-as-a-Unified-ML-Framework-\ud83d\udd00"]], "Change frameworks by one line of code \u261d": [[38, "Change-frameworks-by-one-line-of-code-\u261d"]], "No need to worry about data types \ud83c\udfa8": [[38, "No-need-to-worry-about-data-types-\ud83c\udfa8"]], "No need to worry about framework differences \ud83d\udcb1": [[38, "No-need-to-worry-about-framework-differences-\ud83d\udcb1"]], "Unifying them all! \ud83c\udf72": [[38, "Unifying-them-all!-\ud83c\udf72"]], "Ivy as a standalone ML framework \ud83c\udf00": [[38, "Ivy-as-a-standalone-ML-framework-\ud83c\udf00"]], "Set Backend Framework": [[38, "Set-Backend-Framework"]], "Create Model": [[38, "Create-Model"]], "Create Optimizer": [[38, "Create-Optimizer"]], "Input and Target": [[38, "Input-and-Target"]], "Loss Function": [[38, "Loss-Function"]], "Training Loop": [[38, "Training-Loop"]], "How to use decorators": [[22, "How-to-use-decorators"]]}, "indexentries": {"_arraywithactivations (class in ivy.data_classes.array.activations)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations"]], "_abc_impl (ivy.data_classes.array.activations._arraywithactivations attribute)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations._abc_impl"]], "gelu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.gelu"]], "hardswish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.hardswish"]], "ivy.data_classes.array.activations": [[46, "module-ivy.data_classes.array.activations"]], "leaky_relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.log_softmax"]], "mish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.mish"]], "module": [[46, "module-ivy.data_classes.array.activations"], [47, "module-ivy.data_classes.array.conversions"], [48, "module-ivy.data_classes.array.creation"], [49, "module-ivy.data_classes.array.data_type"], [50, "module-ivy.data_classes.array.device"], [51, "module-ivy.data_classes.array.elementwise"], [52, "module-ivy.data_classes.array.experimental"], [52, "module-ivy.data_classes.array.experimental.activations"], [52, "module-ivy.data_classes.array.experimental.conversions"], [52, "module-ivy.data_classes.array.experimental.creation"], [52, "module-ivy.data_classes.array.experimental.data_type"], [52, "module-ivy.data_classes.array.experimental.device"], [52, "module-ivy.data_classes.array.experimental.elementwise"], [52, "module-ivy.data_classes.array.experimental.general"], [52, "module-ivy.data_classes.array.experimental.gradients"], [52, "module-ivy.data_classes.array.experimental.image"], [52, "module-ivy.data_classes.array.experimental.layers"], [52, "module-ivy.data_classes.array.experimental.linear_algebra"], [52, "module-ivy.data_classes.array.experimental.losses"], [52, "module-ivy.data_classes.array.experimental.manipulation"], [52, "module-ivy.data_classes.array.experimental.norms"], [52, "module-ivy.data_classes.array.experimental.random"], [52, "module-ivy.data_classes.array.experimental.searching"], [52, "module-ivy.data_classes.array.experimental.set"], [52, "module-ivy.data_classes.array.experimental.sorting"], [52, "module-ivy.data_classes.array.experimental.statistical"], [52, "module-ivy.data_classes.array.experimental.utility"], [53, "module-ivy.data_classes.array.general"], [54, "module-ivy.data_classes.array.gradients"], [55, "module-ivy.data_classes.array.image"], [56, "module-ivy.data_classes.array.layers"], [57, "module-ivy.data_classes.array.linear_algebra"], [58, "module-ivy.data_classes.array.losses"], [59, "module-ivy.data_classes.array.manipulation"], [60, "module-ivy.data_classes.array.norms"], [61, "module-ivy.data_classes.array.random"], [62, "module-ivy.data_classes.array.searching"], [63, "module-ivy.data_classes.array.set"], [64, "module-ivy.data_classes.array.sorting"], [65, "module-ivy.data_classes.array.statistical"], [66, "module-ivy.data_classes.array.utility"], [67, "module-ivy.data_classes.array.wrapping"], [68, "module-ivy.data_classes.container.activations"], [69, "module-ivy.data_classes.container.base"], [70, "module-ivy.data_classes.container.conversions"], [71, "module-ivy.data_classes.container.creation"], [72, "module-ivy.data_classes.container.data_type"], [73, "module-ivy.data_classes.container.device"], [74, "module-ivy.data_classes.container.elementwise"], [75, "module-ivy.data_classes.container.experimental"], [75, "module-ivy.data_classes.container.experimental.activations"], [75, "module-ivy.data_classes.container.experimental.conversions"], [75, "module-ivy.data_classes.container.experimental.creation"], [75, "module-ivy.data_classes.container.experimental.data_type"], [75, "module-ivy.data_classes.container.experimental.device"], [75, "module-ivy.data_classes.container.experimental.elementwise"], [75, "module-ivy.data_classes.container.experimental.general"], [75, "module-ivy.data_classes.container.experimental.gradients"], [75, "module-ivy.data_classes.container.experimental.image"], [75, "module-ivy.data_classes.container.experimental.layers"], [75, "module-ivy.data_classes.container.experimental.linear_algebra"], [75, "module-ivy.data_classes.container.experimental.losses"], [75, "module-ivy.data_classes.container.experimental.manipulation"], [75, "module-ivy.data_classes.container.experimental.norms"], [75, "module-ivy.data_classes.container.experimental.random"], [75, "module-ivy.data_classes.container.experimental.searching"], [75, "module-ivy.data_classes.container.experimental.set"], [75, "module-ivy.data_classes.container.experimental.sorting"], [75, "module-ivy.data_classes.container.experimental.statistical"], [75, "module-ivy.data_classes.container.experimental.utility"], [76, "module-ivy.data_classes.container.general"], [77, "module-ivy.data_classes.container.gradients"], [78, "module-ivy.data_classes.container.image"], [79, "module-ivy.data_classes.container.layers"], [80, "module-ivy.data_classes.container.linear_algebra"], [81, "module-ivy.data_classes.container.losses"], [82, "module-ivy.data_classes.container.manipulation"], [83, "module-ivy.data_classes.container.norms"], [84, "module-ivy.data_classes.container.random"], [85, "module-ivy.data_classes.container.searching"], [86, "module-ivy.data_classes.container.set"], [87, "module-ivy.data_classes.container.sorting"], [88, "module-ivy.data_classes.container.statistical"], [89, "module-ivy.data_classes.container.utility"], [90, "module-ivy.data_classes.container.wrapping"], [91, "module-ivy.data_classes.factorized_tensor.base"], [92, "module-ivy.data_classes.factorized_tensor.cp_tensor"], [93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"], [94, "module-ivy.data_classes.factorized_tensor.tr_tensor"], [95, "module-ivy.data_classes.factorized_tensor.tt_tensor"], [96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"], [97, "module-ivy.data_classes.array.array"], [98, "module-ivy.data_classes.container.container"], [100, "module-ivy.data_classes.nested_array.nested_array"], [101, "module-ivy.data_classes.nested_array.base"], [102, "module-ivy.data_classes.nested_array.elementwise"], [360, "module-ivy.functional.ivy.experimental.activations"], [361, "module-ivy.functional.ivy.experimental.constants"], [362, "module-ivy.functional.ivy.experimental.creation"], [363, "module-ivy.functional.ivy.experimental.data_type"], [364, "module-ivy.functional.ivy.experimental.device"], [365, "module-ivy.functional.ivy.experimental.elementwise"], [366, "module-ivy.functional.ivy.experimental.general"], [367, "module-ivy.functional.ivy.experimental.gradients"], [368, "module-ivy.functional.ivy.experimental.layers"], [369, "module-ivy.functional.ivy.experimental.linear_algebra"], [370, "module-ivy.functional.ivy.experimental.losses"], [371, "module-ivy.functional.ivy.experimental.manipulation"], [372, "module-ivy.functional.ivy.experimental.meta"], [373, "module-ivy.functional.ivy.experimental.nest"], [374, "module-ivy.functional.ivy.experimental.norms"], [375, "module-ivy.functional.ivy.experimental.random"], [376, "module-ivy.functional.ivy.experimental.searching"], [377, "module-ivy.functional.ivy.experimental.set"], [378, "module-ivy.functional.ivy.experimental.sorting"], [379, "module-ivy.functional.ivy.experimental.sparse_array"], [380, "module-ivy.functional.ivy.experimental.statistical"], [381, "module-ivy.functional.ivy.experimental.utility"], [612, "module-ivy.functional.ivy.activations"], [613, "module-ivy.functional.ivy.constants"], [614, "module-ivy.functional.ivy.control_flow_ops"], [615, "module-ivy.functional.ivy.creation"], [616, "module-ivy.functional.ivy.data_type"], [617, "module-ivy.functional.ivy.device"], [618, "module-ivy.functional.ivy.elementwise"], [619, "module-ivy.functional.ivy.experimental"], [620, "module-ivy.functional.ivy.general"], [621, "module-ivy.functional.ivy.gradients"], [622, "module-ivy.functional.ivy.layers"], [623, "module-ivy.functional.ivy.linear_algebra"], [624, "module-ivy.functional.ivy.losses"], [625, "module-ivy.functional.ivy.manipulation"], [626, "module-ivy.functional.ivy.meta"], [627, "module-ivy.functional.ivy.nest"], [628, "module-ivy.functional.ivy.norms"], [629, "module-ivy.functional.ivy.random"], [630, "module-ivy.functional.ivy.searching"], [631, "module-ivy.functional.ivy.set"], [632, "module-ivy.functional.ivy.sorting"], [633, "module-ivy.functional.ivy.statistical"], [634, "module-ivy.functional.ivy.utility"], [757, "module-ivy_tests.test_ivy.helpers.assertions"], [758, "module-ivy_tests.test_ivy.helpers.available_frameworks"], [759, "module-ivy_tests.test_ivy.helpers.function_testing"], [760, "module-ivy_tests.test_ivy.helpers.globals"], [761, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"], [762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"], [763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"], [764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"], [765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"], [766, "module-ivy_tests.test_ivy.helpers.multiprocessing"], [767, "module-ivy_tests.test_ivy.helpers.pipeline_helper"], [768, "module-ivy_tests.test_ivy.helpers.structs"], [769, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"], [770, "module-ivy_tests.test_ivy.helpers.testing_helpers"], [774, "module-ivy.stateful.activations"], [775, "module-ivy.stateful.converters"], [776, "module-ivy.stateful.helpers"], [777, "module-ivy.stateful.initializers"], [778, "module-ivy.stateful.layers"], [779, "module-ivy.stateful.losses"], [780, "module-ivy.stateful.module"], [781, "module-ivy.stateful.norms"], [782, "module-ivy.stateful.optimizers"], [783, "module-ivy.stateful.sequential"], [784, "module-ivy.utils.assertions"], [785, "module-ivy.utils.backend"], [786, "module-ivy.utils.backend.ast_helpers"], [787, "module-ivy.utils.backend.handler"], [788, "module-ivy.utils.backend.sub_backend_handler"], [789, "module-ivy.utils.binaries"], [790, "module-ivy.utils.dynamic_import"], [791, "module-ivy.utils.einsum_parser"], [792, "module-ivy.utils.einsum_path_helpers"], [793, "module-ivy.utils.exceptions"], [794, "module-ivy.utils.inspection"], [795, "module-ivy.utils.logging"], [796, "module-ivy.utils.profiler"], [797, "module-ivy.utils.verbosity"]], "relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.relu"]], "sigmoid() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.sigmoid"]], "softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softmax"]], "softplus() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softplus"]], "_array_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._array_to_new_backend"]], "_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_ivy"]], "_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_native"]], "_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_new_backend"]], "args_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_ivy"]], "args_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_native"]], "args_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_new_backend"]], "ivy.data_classes.array.conversions": [[47, "module-ivy.data_classes.array.conversions"]], "to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_ivy"]], "to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_native"]], "to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_new_backend"]], "_arraywithcreation (class in ivy.data_classes.array.creation)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation"]], "_abc_impl (ivy.data_classes.array.creation._arraywithcreation attribute)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation._abc_impl"]], "asarray() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.asarray"]], "copy_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.copy_array"]], "empty_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.from_dlpack"]], "full_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.full_like"]], "ivy.data_classes.array.creation": [[48, "module-ivy.data_classes.array.creation"]], "linspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.linspace"]], "logspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.logspace"]], "meshgrid() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.meshgrid"]], "native_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.native_array"]], "one_hot() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.one_hot"]], "ones_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.ones_like"]], "tril() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.tril"]], "triu() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.triu"]], "zeros_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.zeros_like"]], "_arraywithdatatypes (class in ivy.data_classes.array.data_type)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes"]], "_abc_impl (ivy.data_classes.array.data_type._arraywithdatatypes attribute)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes._abc_impl"]], "astype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.dtype"]], "finfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_bool_dtype"]], "is_float_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_uint_dtype"]], "ivy.data_classes.array.data_type": [[49, "module-ivy.data_classes.array.data_type"]], "result_type() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.result_type"]], "_arraywithdevice (class in ivy.data_classes.array.device)": [[50, "ivy.data_classes.array.device._ArrayWithDevice"]], "_abc_impl (ivy.data_classes.array.device._arraywithdevice attribute)": [[50, "ivy.data_classes.array.device._ArrayWithDevice._abc_impl"]], "dev() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.dev"]], "ivy.data_classes.array.device": [[50, "module-ivy.data_classes.array.device"]], "to_device() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.to_device"]], "_arraywithelementwise (class in ivy.data_classes.array.elementwise)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise"]], "_abc_impl (ivy.data_classes.array.elementwise._arraywithelementwise attribute)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise._abc_impl"]], "abs() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.abs"]], "acos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acos"]], "acosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acosh"]], "add() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.add"]], "angle() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.angle"]], "asin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asin"]], "asinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asinh"]], "atan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan"]], "atan2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan2"]], "atanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.ceil"]], "cos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cos"]], "cosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.deg2rad"]], "divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.divide"]], "equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.equal"]], "erf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.erf"]], "exp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp"]], "exp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp2"]], "expm1() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.expm1"]], "floor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor"]], "floor_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.fmin"]], "gcd() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.gcd"]], "greater() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater"]], "greater_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater_equal"]], "imag() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.imag"]], "isfinite() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isfinite"]], "isinf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isinf"]], "isnan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isnan"]], "isreal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isreal"]], "ivy.data_classes.array.elementwise": [[51, "module-ivy.data_classes.array.elementwise"]], "lcm() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.lcm"]], "less() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less"]], "less_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less_equal"]], "log() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log"]], "log10() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log10"]], "log1p() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log1p"]], "log2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log2"]], "logaddexp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.maximum"]], "minimum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.minimum"]], "multiply() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.negative"]], "not_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.not_equal"]], "positive() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.positive"]], "pow() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.pow"]], "rad2deg() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.rad2deg"]], "real() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.real"]], "reciprocal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.remainder"]], "round() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.round"]], "sign() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sign"]], "sin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sin"]], "sinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sinh"]], "sqrt() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sqrt"]], "square() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.square"]], "subtract() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.subtract"]], "tan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tan"]], "tanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tanh"]], "trapz() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trapz"]], "trunc() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc_divide"]], "_arraywithactivationsexperimental (class in ivy.data_classes.array.experimental.activations)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental"]], "_arraywithconversionsexperimental (class in ivy.data_classes.array.experimental.conversions)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental"]], "_arraywithcreationexperimental (class in ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental"]], "_arraywithdata_typeexperimental (class in ivy.data_classes.array.experimental.data_type)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental"]], "_arraywithdeviceexperimental (class in ivy.data_classes.array.experimental.device)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental"]], "_arraywithelementwiseexperimental (class in ivy.data_classes.array.experimental.elementwise)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental"]], "_arraywithgeneralexperimental (class in ivy.data_classes.array.experimental.general)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental"]], "_arraywithgradientsexperimental (class in ivy.data_classes.array.experimental.gradients)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental"]], "_arraywithimageexperimental (class in ivy.data_classes.array.experimental.image)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental"]], "_arraywithlayersexperimental (class in ivy.data_classes.array.experimental.layers)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental"]], "_arraywithlinearalgebraexperimental (class in ivy.data_classes.array.experimental.linear_algebra)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental"]], "_arraywithlossesexperimental (class in ivy.data_classes.array.experimental.losses)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental"]], "_arraywithmanipulationexperimental (class in ivy.data_classes.array.experimental.manipulation)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental"]], "_arraywithnormsexperimental (class in ivy.data_classes.array.experimental.norms)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental"]], "_arraywithrandomexperimental (class in ivy.data_classes.array.experimental.random)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental"]], "_arraywithsearchingexperimental (class in ivy.data_classes.array.experimental.searching)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental"]], "_arraywithsetexperimental (class in ivy.data_classes.array.experimental.set)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental"]], "_arraywithsortingexperimental (class in ivy.data_classes.array.experimental.sorting)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental"]], "_arraywithstatisticalexperimental (class in ivy.data_classes.array.experimental.statistical)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental"]], "_arraywithutilityexperimental (class in ivy.data_classes.array.experimental.utility)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.conversions._arraywithconversionsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.data_type._arraywithdata_typeexperimental attribute)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.device._arraywithdeviceexperimental attribute)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental attribute)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental attribute)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.gradients._arraywithgradientsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.image._arraywithimageexperimental attribute)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental attribute)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental attribute)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental attribute)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.random._arraywithrandomexperimental attribute)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.set._arraywithsetexperimental attribute)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental attribute)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental attribute)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental._abc_impl"]], "adaptive_avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.blackman_window"]], "celu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.celu"]], "column_stack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.column_stack"]], "concat_from_sequence() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dct"]], "dft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.elu"]], "embedding() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft"]], "fft2() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft2"]], "fill_diagonal() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.gamma"]], "general_inner_product() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.general_inner_product"]], "gradient() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.group_norm"]], "hardshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardtanh"]], "heaviside() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.interpolate"]], "isclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.isclose"]], "ivy.data_classes.array.experimental": [[52, "module-ivy.data_classes.array.experimental"]], "ivy.data_classes.array.experimental.activations": [[52, "module-ivy.data_classes.array.experimental.activations"]], "ivy.data_classes.array.experimental.conversions": [[52, "module-ivy.data_classes.array.experimental.conversions"]], "ivy.data_classes.array.experimental.creation": [[52, "module-ivy.data_classes.array.experimental.creation"]], "ivy.data_classes.array.experimental.data_type": [[52, "module-ivy.data_classes.array.experimental.data_type"]], "ivy.data_classes.array.experimental.device": [[52, "module-ivy.data_classes.array.experimental.device"]], "ivy.data_classes.array.experimental.elementwise": [[52, "module-ivy.data_classes.array.experimental.elementwise"]], "ivy.data_classes.array.experimental.general": [[52, "module-ivy.data_classes.array.experimental.general"]], "ivy.data_classes.array.experimental.gradients": [[52, "module-ivy.data_classes.array.experimental.gradients"]], "ivy.data_classes.array.experimental.image": [[52, "module-ivy.data_classes.array.experimental.image"]], "ivy.data_classes.array.experimental.layers": [[52, "module-ivy.data_classes.array.experimental.layers"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, "module-ivy.data_classes.array.experimental.linear_algebra"]], "ivy.data_classes.array.experimental.losses": [[52, "module-ivy.data_classes.array.experimental.losses"]], "ivy.data_classes.array.experimental.manipulation": [[52, "module-ivy.data_classes.array.experimental.manipulation"]], "ivy.data_classes.array.experimental.norms": [[52, "module-ivy.data_classes.array.experimental.norms"]], "ivy.data_classes.array.experimental.random": [[52, "module-ivy.data_classes.array.experimental.random"]], "ivy.data_classes.array.experimental.searching": [[52, "module-ivy.data_classes.array.experimental.searching"]], "ivy.data_classes.array.experimental.set": [[52, "module-ivy.data_classes.array.experimental.set"]], "ivy.data_classes.array.experimental.sorting": [[52, "module-ivy.data_classes.array.experimental.sorting"]], "ivy.data_classes.array.experimental.statistical": [[52, "module-ivy.data_classes.array.experimental.statistical"]], "ivy.data_classes.array.experimental.utility": [[52, "module-ivy.data_classes.array.experimental.utility"]], "kl_div() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental method)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logit"]], "logsigmoid() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental static method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental method)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.poisson_nll_loss"]], "polyval() (in module ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation.polyval"]], "prelu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.prelu"]], "put_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental method)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental.reduce"]], "reduce_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.reduce_window"]], "relu6() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.relu6"]], "rfft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.scaled_tanh"]], "selu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.selu"]], "signbit() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.silu"]], "sinc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sparsify_tensor"]], "stft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.top_k"]], "trilu() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental method)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_sum"]], "vsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.zeta"]], "_arraywithgeneral (class in ivy.data_classes.array.general)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral"]], "_abc_impl (ivy.data_classes.array.general._arraywithgeneral attribute)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral._abc_impl"]], "all_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_vector_norm"]], "default() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.default"]], "einops_rearrange() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather"]], "gather_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_array"]], "is_ivy_container() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_container"]], "is_native_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_native_array"]], "isin() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.isin"]], "ivy.data_classes.array.general": [[53, "module-ivy.data_classes.array.general"]], "scatter_flat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_pow"]], "supports_inplace_updates() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.supports_inplace_updates"]], "to_file() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_file"]], "to_list() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.value_is_nan"]], "_arraywithgradients (class in ivy.data_classes.array.gradients)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients"]], "_abc_impl (ivy.data_classes.array.gradients._arraywithgradients attribute)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients._abc_impl"]], "adam_step() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_step"]], "adam_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.gradient_descent_update"]], "ivy.data_classes.array.gradients": [[54, "module-ivy.data_classes.array.gradients"]], "lamb_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.stop_gradient"]], "_arraywithimage (class in ivy.data_classes.array.image)": [[55, "ivy.data_classes.array.image._ArrayWithImage"]], "_abc_impl (ivy.data_classes.array.image._arraywithimage attribute)": [[55, "ivy.data_classes.array.image._ArrayWithImage._abc_impl"]], "ivy.data_classes.array.image": [[55, "module-ivy.data_classes.array.image"]], "_arraywithlayers (class in ivy.data_classes.array.layers)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers"]], "_abc_impl (ivy.data_classes.array.layers._arraywithlayers attribute)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers._abc_impl"]], "conv1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout"]], "dropout1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout3d"]], "ivy.data_classes.array.layers": [[56, "module-ivy.data_classes.array.layers"]], "linear() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.linear"]], "lstm_update() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.multi_head_attention"]], "scaled_dot_product_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.scaled_dot_product_attention"]], "_arraywithlinearalgebra (class in ivy.data_classes.array.linear_algebra)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra attribute)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra._abc_impl"]], "cholesky() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cross"]], "det() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.det"]], "diag() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diagonal"]], "eig() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eig"]], "eigh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigvalsh"]], "inner() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inv"]], "ivy.data_classes.array.linear_algebra": [[57, "module-ivy.data_classes.array.linear_algebra"]], "matmul() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.solve"]], "svd() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_arraywithlosses (class in ivy.data_classes.array.losses)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses"]], "_abc_impl (ivy.data_classes.array.losses._arraywithlosses attribute)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses._abc_impl"]], "binary_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.cross_entropy"]], "ivy.data_classes.array.losses": [[58, "module-ivy.data_classes.array.losses"]], "sparse_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.sparse_cross_entropy"]], "_arraywithmanipulation (class in ivy.data_classes.array.manipulation)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation"]], "_abc_impl (ivy.data_classes.array.manipulation._arraywithmanipulation attribute)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation._abc_impl"]], "clip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.clip"]], "concat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.concat"]], "constant_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.expand_dims"]], "flip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.flip"]], "ivy.data_classes.array.manipulation": [[59, "module-ivy.data_classes.array.manipulation"]], "permute_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.repeat"]], "reshape() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.reshape"]], "roll() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.roll"]], "split() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.split"]], "squeeze() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.squeeze"]], "stack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.stack"]], "swapaxes() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.swapaxes"]], "tile() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.tile"]], "unstack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.unstack"]], "view() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.view"]], "zero_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.zero_pad"]], "_arraywithnorms (class in ivy.data_classes.array.norms)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms"]], "_abc_impl (ivy.data_classes.array.norms._arraywithnorms attribute)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms._abc_impl"]], "ivy.data_classes.array.norms": [[60, "module-ivy.data_classes.array.norms"]], "layer_norm() (ivy.data_classes.array.norms._arraywithnorms method)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms.layer_norm"]], "_arraywithrandom (class in ivy.data_classes.array.random)": [[61, "ivy.data_classes.array.random._ArrayWithRandom"]], "_abc_impl (ivy.data_classes.array.random._arraywithrandom attribute)": [[61, "ivy.data_classes.array.random._ArrayWithRandom._abc_impl"]], "ivy.data_classes.array.random": [[61, "module-ivy.data_classes.array.random"]], "multinomial() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.multinomial"]], "randint() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.randint"]], "random_normal() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.shuffle"]], "_arraywithsearching (class in ivy.data_classes.array.searching)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching"]], "_abc_impl (ivy.data_classes.array.searching._arraywithsearching attribute)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching._abc_impl"]], "argmax() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmax"]], "argmin() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmin"]], "argwhere() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argwhere"]], "ivy.data_classes.array.searching": [[62, "module-ivy.data_classes.array.searching"]], "nonzero() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.nonzero"]], "where() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.where"]], "_arraywithset (class in ivy.data_classes.array.set)": [[63, "ivy.data_classes.array.set._ArrayWithSet"]], "_abc_impl (ivy.data_classes.array.set._arraywithset attribute)": [[63, "ivy.data_classes.array.set._ArrayWithSet._abc_impl"]], "ivy.data_classes.array.set": [[63, "module-ivy.data_classes.array.set"]], "unique_all() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_all"]], "unique_counts() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_values"]], "_arraywithsorting (class in ivy.data_classes.array.sorting)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting"]], "_abc_impl (ivy.data_classes.array.sorting._arraywithsorting attribute)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting._abc_impl"]], "argsort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.argsort"]], "ivy.data_classes.array.sorting": [[64, "module-ivy.data_classes.array.sorting"]], "msort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.msort"]], "searchsorted() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.searchsorted"]], "sort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.sort"]], "_arraywithstatistical (class in ivy.data_classes.array.statistical)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical"]], "_abc_impl (ivy.data_classes.array.statistical._arraywithstatistical attribute)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical._abc_impl"]], "cumprod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumsum"]], "einsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.einsum"]], "ivy.data_classes.array.statistical": [[65, "module-ivy.data_classes.array.statistical"]], "max() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.max"]], "mean() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.mean"]], "min() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.min"]], "prod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.prod"]], "std() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.std"]], "sum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.sum"]], "var() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.var"]], "_arraywithutility (class in ivy.data_classes.array.utility)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility"]], "_abc_impl (ivy.data_classes.array.utility._arraywithutility attribute)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility._abc_impl"]], "all() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.all"]], "any() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.any"]], "ivy.data_classes.array.utility": [[66, "module-ivy.data_classes.array.utility"]], "_wrap_function() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping._wrap_function"]], "add_ivy_array_instance_methods() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping.add_ivy_array_instance_methods"]], "ivy.data_classes.array.wrapping": [[67, "module-ivy.data_classes.array.wrapping"]], "_containerwithactivations (class in ivy.data_classes.container.activations)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations"]], "_abc_impl (ivy.data_classes.container.activations._containerwithactivations attribute)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._abc_impl"]], "_static_gelu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_gelu"]], "_static_hardswish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_hardswish"]], "_static_leaky_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_leaky_relu"]], "_static_log_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_log_softmax"]], "_static_mish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_mish"]], "_static_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_relu"]], "_static_sigmoid() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_sigmoid"]], "_static_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softmax"]], "_static_softplus() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softplus"]], "gelu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.gelu"]], "hardswish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.hardswish"]], "ivy.data_classes.container.activations": [[68, "module-ivy.data_classes.container.activations"]], "leaky_relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.log_softmax"]], "mish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.mish"]], "relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.relu"]], "sigmoid() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.sigmoid"]], "softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softmax"]], "softplus() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softplus"]], "containerbase (class in ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base.ContainerBase"]], "__getitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__getitem__"]], "__init__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__init__"]], "__setitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__setitem__"]], "_abc_impl (ivy.data_classes.container.base.containerbase attribute)": [[69, "ivy.data_classes.container.base.ContainerBase._abc_impl"]], "_cont_at_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_dict"]], "_cont_at_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_seq"]], "_cont_call_static_method_with_flexible_args() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_call_static_method_with_flexible_args"]], "_cont_concat_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_concat_unify"]], "_cont_get_dev() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dev"]], "_cont_get_dtype() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dtype"]], "_cont_get_shape() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shape"]], "_cont_get_shapes() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shapes"]], "_cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_ivy"]], "_cont_mean_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_mean_unify"]], "_cont_prune_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_dict"]], "_cont_prune_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_seq"]], "_cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_slice_keys"]], "_cont_sum_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_sum_unify"]], "_get_queue_item() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._get_queue_item"]], "_is_jsonable() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._is_jsonable"]], "_repr() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._repr"]], "cont_all_false() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_false"]], "cont_all_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_key_chains"]], "cont_all_true() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_true"]], "cont_as_bools() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_as_bools"]], "cont_assert_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_container"]], "cont_assert_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_structure"]], "cont_assert_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical"]], "cont_assert_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical_structure"]], "cont_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chain"]], "cont_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chains"]], "cont_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_keys"]], "cont_combine() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_combine"]], "cont_common_key_chains() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_common_key_chains"]], "cont_config (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_config"]], "cont_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_container"]], "cont_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_structure"]], "cont_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_copy"]], "cont_create_if_absent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_create_if_absent"]], "cont_cutoff_at_depth() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_depth"]], "cont_cutoff_at_height() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_height"]], "cont_deep_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_deep_copy"]], "cont_dev (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev"]], "cont_dev_str (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev_str"]], "cont_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_diff"]], "cont_dtype (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dtype"]], "cont_duplicate_array_keychains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_duplicate_array_keychains"]], "cont_find_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_container"]], "cont_find_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_structure"]], "cont_flatten_key_chain() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chain"]], "cont_flatten_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chains"]], "cont_format_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_format_key_chains"]], "cont_from_disk_as_hdf5() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_hdf5"]], "cont_from_disk_as_json() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_json"]], "cont_from_disk_as_pickled() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_pickled"]], "cont_from_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_flat_list"]], "cont_handle_inplace() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_handle_inplace"]], "cont_has_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key"]], "cont_has_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key_chain"]], "cont_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical"]], "cont_identical_array_shapes() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_array_shapes"]], "cont_identical_configs() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_configs"]], "cont_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_structure"]], "cont_if_exists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_if_exists"]], "cont_inplace_update() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_inplace_update"]], "cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_ivy"]], "cont_key_chains_containing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_key_chains_containing"]], "cont_list_join() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_join"]], "cont_list_stack() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_stack"]], "cont_load() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_load"]], "cont_map() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map"]], "cont_map_sub_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map_sub_conts"]], "cont_max_depth (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_max_depth"]], "cont_multi_map() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map"]], "cont_multi_map_in_function() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map_in_function"]], "cont_num_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_num_arrays"]], "cont_overwrite_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chain"]], "cont_overwrite_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chains"]], "cont_prune_empty() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_empty"]], "cont_prune_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chain"]], "cont_prune_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chains"]], "cont_prune_key_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_from_key_chains"]], "cont_prune_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys"]], "cont_prune_keys_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys_from_key_chains"]], "cont_reduce() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reduce"]], "cont_remove_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_key_length_limit"]], "cont_remove_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_print_limit"]], "cont_reshape_like() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reshape_like"]], "cont_restructure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure"]], "cont_restructure_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure_key_chains"]], "cont_save() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_save"]], "cont_set_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chain"]], "cont_set_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chains"]], "cont_set_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_keys"]], "cont_shape (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shape"]], "cont_shapes (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shapes"]], "cont_show() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show"]], "cont_show_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show_sub_container"]], "cont_size_ordered_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_size_ordered_arrays"]], "cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_keys"]], "cont_slice_via_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_via_key"]], "cont_sort_by_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_sort_by_key"]], "cont_structural_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_structural_diff"]], "cont_to_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_dict"]], "cont_to_disk_as_hdf5() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_hdf5"]], "cont_to_disk_as_json() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_json"]], "cont_to_disk_as_pickled() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_pickled"]], "cont_to_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_flat_list"]], "cont_to_iterator() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator"]], "cont_to_iterator_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_keys"]], "cont_to_iterator_values() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_values"]], "cont_to_jsonable() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_jsonable"]], "cont_to_nested_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_nested_list"]], "cont_to_raw() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_raw"]], "cont_trim_key() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_trim_key"]], "cont_try_kc() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_try_kc"]], "cont_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unify"]], "cont_unstack_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unstack_conts"]], "cont_update_config() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_update_config"]], "cont_with_default_key_color() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_default_key_color"]], "cont_with_entries_as_lists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_entries_as_lists"]], "cont_with_ivy_backend() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_ivy_backend"]], "cont_with_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_key_length_limit"]], "cont_with_print_indent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_indent"]], "cont_with_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_limit"]], "cont_with_print_line_spacing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_line_spacing"]], "dynamic_backend (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.dynamic_backend"]], "h5_file_size() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.h5_file_size"]], "ivy.data_classes.container.base": [[69, "module-ivy.data_classes.container.base"]], "shuffle_h5_file() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.shuffle_h5_file"]], "split_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.split_conts"]], "_containerwithconversions (class in ivy.data_classes.container.conversions)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions"]], "_abc_impl (ivy.data_classes.container.conversions._containerwithconversions attribute)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._abc_impl"]], "_static_to_ivy() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_ivy"]], "_static_to_native() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_native"]], "ivy.data_classes.container.conversions": [[70, "module-ivy.data_classes.container.conversions"]], "to_ivy() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_ivy"]], "to_native() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_native"]], "_containerwithcreation (class in ivy.data_classes.container.creation)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation"]], "_abc_impl (ivy.data_classes.container.creation._containerwithcreation attribute)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._abc_impl"]], "_static_arange() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_arange"]], "_static_asarray() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_asarray"]], "_static_copy_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_copy_array"]], "_static_empty() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty"]], "_static_empty_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty_like"]], "_static_eye() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_eye"]], "_static_from_dlpack() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_from_dlpack"]], "_static_full() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full"]], "_static_full_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full_like"]], "_static_linspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_linspace"]], "_static_logspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_logspace"]], "_static_meshgrid() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_meshgrid"]], "_static_native_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_native_array"]], "_static_one_hot() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_one_hot"]], "_static_ones() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones"]], "_static_ones_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones_like"]], "_static_tril() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_tril"]], "_static_triu() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_triu"]], "_static_zeros() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros"]], "_static_zeros_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros_like"]], "asarray() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.asarray"]], "copy_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.copy_array"]], "empty_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.from_dlpack"]], "frombuffer() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.frombuffer"]], "full_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.full_like"]], "ivy.data_classes.container.creation": [[71, "module-ivy.data_classes.container.creation"]], "linspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.linspace"]], "logspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.logspace"]], "meshgrid() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.meshgrid"]], "native_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.native_array"]], "one_hot() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.one_hot"]], "ones_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.ones_like"]], "static_frombuffer() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_frombuffer"]], "static_triu_indices() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_triu_indices"]], "tril() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.tril"]], "triu() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu"]], "triu_indices() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu_indices"]], "zeros_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.zeros_like"]], "_containerwithdatatypes (class in ivy.data_classes.container.data_type)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes"]], "_abc_impl (ivy.data_classes.container.data_type._containerwithdatatypes attribute)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._abc_impl"]], "_static_astype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_astype"]], "_static_broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_arrays"]], "_static_broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_to"]], "_static_can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_can_cast"]], "_static_default_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_complex_dtype"]], "_static_default_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_float_dtype"]], "_static_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_dtype"]], "_static_finfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_finfo"]], "_static_function_supported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_supported_dtypes"]], "_static_function_unsupported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_unsupported_dtypes"]], "_static_iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_iinfo"]], "_static_is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_bool_dtype"]], "_static_is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_complex_dtype"]], "_static_is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_float_dtype"]], "_static_is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_int_dtype"]], "_static_is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_uint_dtype"]], "_static_result_type() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_result_type"]], "astype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.dtype"]], "finfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_bool_dtype"]], "is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_complex_dtype"]], "is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_uint_dtype"]], "ivy.data_classes.container.data_type": [[72, "module-ivy.data_classes.container.data_type"]], "result_type() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.result_type"]], "_containerwithdevice (class in ivy.data_classes.container.device)": [[73, "ivy.data_classes.container.device._ContainerWithDevice"]], "_abc_impl (ivy.data_classes.container.device._containerwithdevice attribute)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._abc_impl"]], "_static_dev() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_dev"]], "_static_to_device() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_to_device"]], "dev() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.dev"]], "ivy.data_classes.container.device": [[73, "module-ivy.data_classes.container.device"]], "to_device() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.to_device"]], "_containerwithelementwise (class in ivy.data_classes.container.elementwise)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise"]], "_abc_impl (ivy.data_classes.container.elementwise._containerwithelementwise attribute)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._abc_impl"]], "_static_abs() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_abs"]], "_static_acos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acos"]], "_static_acosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acosh"]], "_static_add() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_add"]], "_static_asin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asin"]], "_static_asinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asinh"]], "_static_atan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan"]], "_static_atan2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan2"]], "_static_atanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atanh"]], "_static_bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_and"]], "_static_bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_invert"]], "_static_bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_left_shift"]], "_static_bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_or"]], "_static_bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_right_shift"]], "_static_bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_xor"]], "_static_ceil() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_ceil"]], "_static_cos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cos"]], "_static_cosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cosh"]], "_static_deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_deg2rad"]], "_static_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_divide"]], "_static_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_equal"]], "_static_erf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_erf"]], "_static_exp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_exp"]], "_static_expm1() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_expm1"]], "_static_floor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor"]], "_static_floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor_divide"]], "_static_greater() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater"]], "_static_greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater_equal"]], "_static_isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isfinite"]], "_static_isinf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isinf"]], "_static_isnan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isnan"]], "_static_isreal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isreal"]], "_static_lcm() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_lcm"]], "_static_less() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less"]], "_static_less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less_equal"]], "_static_log() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log"]], "_static_log10() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log10"]], "_static_log1p() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log1p"]], "_static_log2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log2"]], "_static_logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logaddexp"]], "_static_logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_and"]], "_static_logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_not"]], "_static_logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_or"]], "_static_logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_xor"]], "_static_maximum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_maximum"]], "_static_minimum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_minimum"]], "_static_multiply() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_multiply"]], "_static_negative() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_negative"]], "_static_not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_not_equal"]], "_static_positive() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_positive"]], "_static_pow() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_pow"]], "_static_rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_rad2deg"]], "_static_reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_reciprocal"]], "_static_remainder() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_remainder"]], "_static_round() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_round"]], "_static_sign() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sign"]], "_static_sin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sin"]], "_static_sinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sinh"]], "_static_sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sqrt"]], "_static_square() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_square"]], "_static_subtract() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_subtract"]], "_static_tan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tan"]], "_static_tanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tanh"]], "_static_trapz() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trapz"]], "_static_trunc() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc"]], "_static_trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc_divide"]], "abs() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.abs"]], "acos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acos"]], "acosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acosh"]], "add() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.add"]], "angle() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.angle"]], "asin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asin"]], "asinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asinh"]], "atan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan"]], "atan2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan2"]], "atanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.ceil"]], "cos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cos"]], "cosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.deg2rad"]], "divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.divide"]], "equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.equal"]], "erf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.erf"]], "exp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp"]], "exp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp2"]], "expm1() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.expm1"]], "floor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor"]], "floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.fmin"]], "gcd() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.gcd"]], "greater() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater"]], "greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater_equal"]], "imag() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.imag"]], "isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isfinite"]], "isinf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isinf"]], "isnan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isnan"]], "isreal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isreal"]], "ivy.data_classes.container.elementwise": [[74, "module-ivy.data_classes.container.elementwise"]], "lcm() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.lcm"]], "less() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less"]], "less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less_equal"]], "log() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log"]], "log10() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log10"]], "log1p() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log1p"]], "log2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log2"]], "logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.maximum"]], "minimum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.minimum"]], "multiply() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.negative"]], "not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.not_equal"]], "positive() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.positive"]], "pow() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.pow"]], "rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.rad2deg"]], "real() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.real"]], "reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.remainder"]], "round() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.round"]], "sign() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sign"]], "sin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sin"]], "sinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sinh"]], "sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sqrt"]], "square() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.square"]], "static_angle() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_angle"]], "static_exp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_exp2"]], "static_fmin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_fmin"]], "static_gcd() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_gcd"]], "static_imag() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_imag"]], "static_logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_logaddexp2"]], "static_nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_nan_to_num"]], "static_real() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_real"]], "subtract() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.subtract"]], "tan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tan"]], "tanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tanh"]], "trapz() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trapz"]], "trunc() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc_divide"]], "_containerwithactivationexperimental (class in ivy.data_classes.container.experimental.activations)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental"]], "_containerwithconversionexperimental (class in ivy.data_classes.container.experimental.conversions)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental"]], "_containerwithcreationexperimental (class in ivy.data_classes.container.experimental.creation)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental"]], "_containerwithdata_typeexperimental (class in ivy.data_classes.container.experimental.data_type)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental"]], "_containerwithdeviceexperimental (class in ivy.data_classes.container.experimental.device)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental"]], "_containerwithelementwiseexperimental (class in ivy.data_classes.container.experimental.elementwise)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental"]], "_containerwithgeneralexperimental (class in ivy.data_classes.container.experimental.general)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental"]], "_containerwithgradientsexperimental (class in ivy.data_classes.container.experimental.gradients)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental"]], "_containerwithimageexperimental (class in ivy.data_classes.container.experimental.image)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental"]], "_containerwithlayersexperimental (class in ivy.data_classes.container.experimental.layers)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental"]], "_containerwithlinearalgebraexperimental (class in ivy.data_classes.container.experimental.linear_algebra)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental"]], "_containerwithlossesexperimental (class in ivy.data_classes.container.experimental.losses)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental"]], "_containerwithmanipulationexperimental (class in ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental"]], "_containerwithnormsexperimental (class in ivy.data_classes.container.experimental.norms)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental"]], "_containerwithrandomexperimental (class in ivy.data_classes.container.experimental.random)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental"]], "_containerwithsearchingexperimental (class in ivy.data_classes.container.experimental.searching)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental"]], "_containerwithsetexperimental (class in ivy.data_classes.container.experimental.set)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental"]], "_containerwithsortingexperimental (class in ivy.data_classes.container.experimental.sorting)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental"]], "_containerwithstatisticalexperimental (class in ivy.data_classes.container.experimental.statistical)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental"]], "_containerwithutilityexperimental (class in ivy.data_classes.container.experimental.utility)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.conversions._containerwithconversionexperimental attribute)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.data_type._containerwithdata_typeexperimental attribute)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.device._containerwithdeviceexperimental attribute)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental attribute)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental attribute)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.gradients._containerwithgradientsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.image._containerwithimageexperimental attribute)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental attribute)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental attribute)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental attribute)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.random._containerwithrandomexperimental attribute)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.set._containerwithsetexperimental attribute)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental attribute)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental attribute)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental._abc_impl"]], "_static_celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_celu"]], "_static_cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummax"]], "_static_cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummin"]], "_static_elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_elu"]], "_static_fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_fft"]], "_static_fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_fill_diagonal"]], "_static_hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardshrink"]], "_static_hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardtanh"]], "_static_huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_huber_loss"]], "_static_kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_kl_div"]], "_static_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_l1_loss"]], "_static_log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_log_poisson_loss"]], "_static_nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_nanmin"]], "_static_poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_poisson_nll_loss"]], "_static_put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_put_along_axis"]], "_static_reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental static method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._static_reduce"]], "_static_scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_scaled_tanh"]], "_static_silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_silu"]], "_static_sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_sliding_window"]], "_static_smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_smooth_l1_loss"]], "_static_soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_soft_margin_loss"]], "_static_softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_softshrink"]], "_static_take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_take"]], "_static_tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_tanhshrink"]], "_static_threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_threshold"]], "_static_trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._static_trilu"]], "_static_trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_trim_zeros"]], "_static_unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unique_consecutive"]], "adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.blackman_window"]], "broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.broadcast_shapes"]], "celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.celu"]], "column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.column_stack"]], "concat_from_sequence() (in module ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation.concat_from_sequence"]], "concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dct"]], "dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.elu"]], "embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.fft"]], "fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.gamma"]], "gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.group_norm"]], "hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hamming_window"]], "hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hann_window"]], "hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardtanh"]], "heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.interpolate"]], "invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.invert_permutation"]], "isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.isclose"]], "ivy.data_classes.container.experimental": [[75, "module-ivy.data_classes.container.experimental"]], "ivy.data_classes.container.experimental.activations": [[75, "module-ivy.data_classes.container.experimental.activations"]], "ivy.data_classes.container.experimental.conversions": [[75, "module-ivy.data_classes.container.experimental.conversions"]], "ivy.data_classes.container.experimental.creation": [[75, "module-ivy.data_classes.container.experimental.creation"]], "ivy.data_classes.container.experimental.data_type": [[75, "module-ivy.data_classes.container.experimental.data_type"]], "ivy.data_classes.container.experimental.device": [[75, "module-ivy.data_classes.container.experimental.device"]], "ivy.data_classes.container.experimental.elementwise": [[75, "module-ivy.data_classes.container.experimental.elementwise"]], "ivy.data_classes.container.experimental.general": [[75, "module-ivy.data_classes.container.experimental.general"]], "ivy.data_classes.container.experimental.gradients": [[75, "module-ivy.data_classes.container.experimental.gradients"]], "ivy.data_classes.container.experimental.image": [[75, "module-ivy.data_classes.container.experimental.image"]], "ivy.data_classes.container.experimental.layers": [[75, "module-ivy.data_classes.container.experimental.layers"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, "module-ivy.data_classes.container.experimental.linear_algebra"]], "ivy.data_classes.container.experimental.losses": [[75, "module-ivy.data_classes.container.experimental.losses"]], "ivy.data_classes.container.experimental.manipulation": [[75, "module-ivy.data_classes.container.experimental.manipulation"]], "ivy.data_classes.container.experimental.norms": [[75, "module-ivy.data_classes.container.experimental.norms"]], "ivy.data_classes.container.experimental.random": [[75, "module-ivy.data_classes.container.experimental.random"]], "ivy.data_classes.container.experimental.searching": [[75, "module-ivy.data_classes.container.experimental.searching"]], "ivy.data_classes.container.experimental.set": [[75, "module-ivy.data_classes.container.experimental.set"]], "ivy.data_classes.container.experimental.sorting": [[75, "module-ivy.data_classes.container.experimental.sorting"]], "ivy.data_classes.container.experimental.statistical": [[75, "module-ivy.data_classes.container.experimental.statistical"]], "ivy.data_classes.container.experimental.utility": [[75, "module-ivy.data_classes.container.experimental.utility"]], "kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_bessel_derived_window"]], "kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_window"]], "kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.lexsort"]], "log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logit"]], "logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.poisson_nll_loss"]], "polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.polyval"]], "prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.prelu"]], "put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental.reduce"]], "relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.relu6"]], "rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.scaled_tanh"]], "selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.selu"]], "signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.silu"]], "sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sparsify_tensor"]], "static_adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool1d"]], "static_adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool2d"]], "static_adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool2d"]], "static_adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_adjoint"]], "static_allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_allclose"]], "static_amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amax"]], "static_amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amin"]], "static_as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_as_strided"]], "static_atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_1d"]], "static_atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_2d"]], "static_atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_3d"]], "static_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool1d"]], "static_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool2d"]], "static_avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool3d"]], "static_batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_batch_norm"]], "static_batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_batched_outer"]], "static_bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_bernoulli"]], "static_beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_beta"]], "static_binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_binarizer"]], "static_bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_bincount"]], "static_blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_blackman_window"]], "static_broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_broadcast_shapes"]], "static_column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_column_stack"]], "static_concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_concat_from_sequence"]], "static_cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_cond"]], "static_conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_conj"]], "static_copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_copysign"]], "static_corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_corrcoef"]], "static_count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_count_nonzero"]], "static_cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_cov"]], "static_dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dct"]], "static_dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dft"]], "static_diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_diagflat"]], "static_diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_diff"]], "static_digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_digamma"]], "static_dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_dirichlet"]], "static_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_dot"]], "static_dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dsplit"]], "static_dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dstack"]], "static_eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eig"]], "static_eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigh_tridiagonal"]], "static_eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigvals"]], "static_embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_embedding"]], "static_erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfc"]], "static_expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_expand"]], "static_eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_eye_like"]], "static_fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fix"]], "static_flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flatten"]], "static_fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fliplr"]], "static_flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flipud"]], "static_float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_float_power"]], "static_fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmax"]], "static_fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmod"]], "static_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fold"]], "static_frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_frexp"]], "static_gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_gamma"]], "static_gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_gradient"]], "static_group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_group_norm"]], "static_hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hamming_window"]], "static_hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hann_window"]], "static_heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_heaviside"]], "static_higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_higher_order_moment"]], "static_histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_histogram"]], "static_hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hsplit"]], "static_hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hstack"]], "static_hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_hypot"]], "static_i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_i0"]], "static_idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_idct"]], "static_ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifft"]], "static_ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifftn"]], "static_igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_igamma"]], "static_initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_initialize_tucker"]], "static_instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_instance_norm"]], "static_interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_interpolate"]], "static_invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_invert_permutation"]], "static_isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_isclose"]], "static_kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_bessel_derived_window"]], "static_kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_window"]], "static_kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_kron"]], "static_l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l1_normalize"]], "static_l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l2_normalize"]], "static_ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_ldexp"]], "static_lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_lerp"]], "static_lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_lexsort"]], "static_logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logit"]], "static_logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logsigmoid"]], "static_lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_lp_normalize"]], "static_make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_make_svd_non_negative"]], "static_matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_matricize"]], "static_matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_matrix_exp"]], "static_max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool1d"]], "static_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool2d"]], "static_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool3d"]], "static_max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_unpool1d"]], "static_median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_median"]], "static_mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_mel_weight_matrix"]], "static_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_mode_dot"]], "static_modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_modf"]], "static_moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_moveaxis"]], "static_multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_dot"]], "static_multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_mode_dot"]], "static_nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmean"]], "static_nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmedian"]], "static_nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanprod"]], "static_nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nansum"]], "static_nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nextafter"]], "static_optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental static method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.static_optional_get_element"]], "static_pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_pad"]], "static_partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_fold"]], "static_partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_tensor_to_vec"]], "static_partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_partial_tucker"]], "static_partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_unfold"]], "static_partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_vec_to_tensor"]], "static_poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_poisson"]], "static_polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_polyval"]], "static_prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_prelu"]], "static_quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_quantile"]], "static_relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_relu6"]], "static_rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfft"]], "static_rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfftn"]], "static_rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_rot90"]], "static_selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_selu"]], "static_signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_signbit"]], "static_sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sinc"]], "static_soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_soft_thresholding"]], "static_sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sparsify_tensor"]], "static_stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_stft"]], "static_svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_svd_flip"]], "static_take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_take_along_axis"]], "static_tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tensor_train"]], "static_thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_thresholded_relu"]], "static_top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_top_k"]], "static_tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_tril_indices"]], "static_truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_truncated_svd"]], "static_tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tt_matrix_to_tensor"]], "static_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tucker"]], "static_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_unfold"]], "static_unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental static method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.static_unravel_index"]], "static_unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_mean"]], "static_unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_min"]], "static_unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_sum"]], "static_vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_vorbis_window"]], "static_vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vsplit"]], "static_vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vstack"]], "static_xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_xlogy"]], "static_zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_zeta"]], "stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.top_k"]], "tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.tril_indices"]], "trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_sum"]], "vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.vorbis_window"]], "vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.zeta"]], "_containerwithgeneral (class in ivy.data_classes.container.general)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral"]], "_abc_impl (ivy.data_classes.container.general._containerwithgeneral attribute)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._abc_impl"]], "_static_all_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_all_equal"]], "_static_array_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_array_equal"]], "_static_assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_assert_supports_inplace"]], "_static_clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_matrix_norm"]], "_static_clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_vector_norm"]], "_static_einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_rearrange"]], "_static_einops_reduce() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_reduce"]], "_static_einops_repeat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_repeat"]], "_static_exists() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_exists"]], "_static_fourier_encode() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_fourier_encode"]], "_static_gather() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather"]], "_static_gather_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather_nd"]], "_static_get_num_dims() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_get_num_dims"]], "_static_has_nans() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_has_nans"]], "_static_inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_decrement"]], "_static_inplace_increment() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_increment"]], "_static_inplace_update() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_update"]], "_static_is_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_array"]], "_static_is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_ivy_array"]], "_static_is_native_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_native_array"]], "_static_scatter_flat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_flat"]], "_static_scatter_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_nd"]], "_static_stable_divide() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_divide"]], "_static_stable_pow() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_pow"]], "_static_supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_supports_inplace_updates"]], "_static_to_list() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_list"]], "_static_to_numpy() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_numpy"]], "_static_to_scalar() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_scalar"]], "_static_value_is_nan() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_value_is_nan"]], "all_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_vector_norm"]], "einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather"]], "gather_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_ivy_array"]], "is_native_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_native_array"]], "isin() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.isin"]], "itemsize() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.itemsize"]], "ivy.data_classes.container.general": [[76, "module-ivy.data_classes.container.general"]], "scatter_flat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_pow"]], "static_isin() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_isin"]], "static_itemsize() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_itemsize"]], "static_strides() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_strides"]], "strides() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.strides"]], "supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.supports_inplace_updates"]], "to_list() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.value_is_nan"]], "_containerwithgradients (class in ivy.data_classes.container.gradients)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients"]], "_abc_impl (ivy.data_classes.container.gradients._containerwithgradients attribute)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._abc_impl"]], "_static_stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients static method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._static_stop_gradient"]], "adam_step() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_step"]], "adam_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.gradient_descent_update"]], "ivy.data_classes.container.gradients": [[77, "module-ivy.data_classes.container.gradients"]], "lamb_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.stop_gradient"]], "_containerwithimage (class in ivy.data_classes.container.image)": [[78, "ivy.data_classes.container.image._ContainerWithImage"]], "_abc_impl (ivy.data_classes.container.image._containerwithimage attribute)": [[78, "ivy.data_classes.container.image._ContainerWithImage._abc_impl"]], "ivy.data_classes.container.image": [[78, "module-ivy.data_classes.container.image"]], "_containerwithlayers (class in ivy.data_classes.container.layers)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers"]], "_abc_impl (ivy.data_classes.container.layers._containerwithlayers attribute)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._abc_impl"]], "_static_conv1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d"]], "_static_conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d_transpose"]], "_static_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d"]], "_static_conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d_transpose"]], "_static_conv3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d"]], "_static_conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d_transpose"]], "_static_depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_depthwise_conv2d"]], "_static_dropout() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout"]], "_static_dropout1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout1d"]], "_static_dropout2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout2d"]], "_static_dropout3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout3d"]], "_static_linear() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_linear"]], "_static_lstm_update() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_lstm_update"]], "_static_multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_multi_head_attention"]], "_static_reduce_window() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_reduce_window"]], "_static_scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_scaled_dot_product_attention"]], "conv1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout"]], "dropout1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout3d"]], "ivy.data_classes.container.layers": [[79, "module-ivy.data_classes.container.layers"]], "linear() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.linear"]], "lstm_update() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.multi_head_attention"]], "reduce_window() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.reduce_window"]], "scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.scaled_dot_product_attention"]], "_containerwithlinearalgebra (class in ivy.data_classes.container.linear_algebra)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra attribute)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._abc_impl"]], "_static_cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cholesky"]], "_static_cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cross"]], "_static_det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_det"]], "_static_diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diag"]], "_static_diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diagonal"]], "_static_eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigh"]], "_static_eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigvalsh"]], "_static_inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inner"]], "_static_inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inv"]], "_static_matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matmul"]], "_static_matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_norm"]], "_static_matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_power"]], "_static_matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_rank"]], "_static_matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_transpose"]], "_static_outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_outer"]], "_static_pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_pinv"]], "_static_qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_qr"]], "_static_slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_slogdet"]], "_static_solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_solve"]], "_static_svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svd"]], "_static_svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svdvals"]], "_static_tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensordot"]], "_static_tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensorsolve"]], "_static_trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_trace"]], "_static_vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vander"]], "_static_vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vecdot"]], "_static_vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_norm"]], "_static_vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_to_skew_symmetric_matrix"]], "cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cross"]], "det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.det"]], "diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diagonal"]], "eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigvalsh"]], "general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.general_inner_product"]], "inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inv"]], "ivy.data_classes.container.linear_algebra": [[80, "module-ivy.data_classes.container.linear_algebra"]], "matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.solve"]], "static_general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.static_general_inner_product"]], "svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_containerwithlosses (class in ivy.data_classes.container.losses)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses"]], "_abc_impl (ivy.data_classes.container.losses._containerwithlosses attribute)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._abc_impl"]], "_static_binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_binary_cross_entropy"]], "_static_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_cross_entropy"]], "_static_sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_sparse_cross_entropy"]], "binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.cross_entropy"]], "ivy.data_classes.container.losses": [[81, "module-ivy.data_classes.container.losses"]], "sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.sparse_cross_entropy"]], "_containerwithmanipulation (class in ivy.data_classes.container.manipulation)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation"]], "_abc_impl (ivy.data_classes.container.manipulation._containerwithmanipulation attribute)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._abc_impl"]], "_static_clip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_clip"]], "_static_concat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_concat"]], "_static_constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_constant_pad"]], "_static_expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_expand_dims"]], "_static_flip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_flip"]], "_static_permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_permute_dims"]], "_static_repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_repeat"]], "_static_reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_reshape"]], "_static_roll() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_roll"]], "_static_split() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_split"]], "_static_squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_squeeze"]], "_static_stack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_stack"]], "_static_swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_swapaxes"]], "_static_tile() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_tile"]], "_static_unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_unstack"]], "_static_zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_zero_pad"]], "clip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.clip"]], "concat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.concat"]], "constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.expand_dims"]], "flip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.flip"]], "ivy.data_classes.container.manipulation": [[82, "module-ivy.data_classes.container.manipulation"]], "permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.repeat"]], "reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.reshape"]], "roll() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.roll"]], "split() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.split"]], "squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.squeeze"]], "stack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.stack"]], "swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.swapaxes"]], "tile() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.tile"]], "unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.unstack"]], "zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.zero_pad"]], "_containerwithnorms (class in ivy.data_classes.container.norms)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms"]], "_abc_impl (ivy.data_classes.container.norms._containerwithnorms attribute)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms._abc_impl"]], "ivy.data_classes.container.norms": [[83, "module-ivy.data_classes.container.norms"]], "layer_norm() (ivy.data_classes.container.norms._containerwithnorms method)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms.layer_norm"]], "_containerwithrandom (class in ivy.data_classes.container.random)": [[84, "ivy.data_classes.container.random._ContainerWithRandom"]], "_abc_impl (ivy.data_classes.container.random._containerwithrandom attribute)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._abc_impl"]], "_static_multinomial() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_multinomial"]], "_static_randint() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_randint"]], "_static_random_normal() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_normal"]], "_static_random_uniform() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_uniform"]], "_static_shuffle() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_shuffle"]], "ivy.data_classes.container.random": [[84, "module-ivy.data_classes.container.random"]], "multinomial() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.multinomial"]], "randint() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.randint"]], "random_normal() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.shuffle"]], "_containerwithsearching (class in ivy.data_classes.container.searching)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching"]], "_abc_impl (ivy.data_classes.container.searching._containerwithsearching attribute)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._abc_impl"]], "_static_argmax() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmax"]], "_static_argmin() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmin"]], "_static_argwhere() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argwhere"]], "_static_nonzero() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_nonzero"]], "_static_where() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_where"]], "argmax() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmax"]], "argmin() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmin"]], "argwhere() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argwhere"]], "ivy.data_classes.container.searching": [[85, "module-ivy.data_classes.container.searching"]], "nonzero() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.nonzero"]], "where() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.where"]], "_containerwithset (class in ivy.data_classes.container.set)": [[86, "ivy.data_classes.container.set._ContainerWithSet"]], "_abc_impl (ivy.data_classes.container.set._containerwithset attribute)": [[86, "ivy.data_classes.container.set._ContainerWithSet._abc_impl"]], "_static_unique_all() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_all"]], "_static_unique_counts() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_counts"]], "_static_unique_inverse() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_inverse"]], "_static_unique_values() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_values"]], "ivy.data_classes.container.set": [[86, "module-ivy.data_classes.container.set"]], "unique_all() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_all"]], "unique_counts() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_values"]], "_containerwithsorting (class in ivy.data_classes.container.sorting)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting"]], "_abc_impl (ivy.data_classes.container.sorting._containerwithsorting attribute)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._abc_impl"]], "_static_argsort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_argsort"]], "_static_searchsorted() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_searchsorted"]], "_static_sort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_sort"]], "argsort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.argsort"]], "ivy.data_classes.container.sorting": [[87, "module-ivy.data_classes.container.sorting"]], "msort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.msort"]], "searchsorted() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.searchsorted"]], "sort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.sort"]], "static_msort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.static_msort"]], "_containerwithstatistical (class in ivy.data_classes.container.statistical)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical"]], "_abc_impl (ivy.data_classes.container.statistical._containerwithstatistical attribute)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._abc_impl"]], "_static_cumprod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumprod"]], "_static_cumsum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumsum"]], "_static_min() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_min"]], "_static_prod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_prod"]], "_static_sum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_sum"]], "_static_var() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_var"]], "cumprod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumsum"]], "einsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.einsum"]], "ivy.data_classes.container.statistical": [[88, "module-ivy.data_classes.container.statistical"]], "max() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.max"]], "mean() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.mean"]], "min() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.min"]], "prod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.prod"]], "std() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.std"]], "sum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.sum"]], "var() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.var"]], "_containerwithutility (class in ivy.data_classes.container.utility)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility"]], "_abc_impl (ivy.data_classes.container.utility._containerwithutility attribute)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._abc_impl"]], "_static_all() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_all"]], "_static_any() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_any"]], "all() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.all"]], "any() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.any"]], "ivy.data_classes.container.utility": [[89, "module-ivy.data_classes.container.utility"]], "_wrap_function() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping._wrap_function"]], "add_ivy_container_instance_methods() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping.add_ivy_container_instance_methods"]], "ivy.data_classes.container.wrapping": [[90, "module-ivy.data_classes.container.wrapping"]], "factorizedtensor (class in ivy.data_classes.factorized_tensor.base)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor"]], "__init__() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.base.factorizedtensor attribute)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.base": [[91, "module-ivy.data_classes.factorized_tensor.base"]], "mode_dot() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.mode_dot"]], "norm() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.norm"]], "to_tensor() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_vec"]], "cptensor (class in ivy.data_classes.factorized_tensor.cp_tensor)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor"]], "__init__() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.cp_tensor.cptensor attribute)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor._abc_impl"]], "cp_copy() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_copy"]], "cp_flip_sign() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_flip_sign"]], "cp_lstsq_grad() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_lstsq_grad"]], "cp_mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_mode_dot"]], "cp_n_param() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_n_param"]], "cp_norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_norm"]], "cp_normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_normalize"]], "cp_to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_tensor"]], "cp_to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_unfolded"]], "cp_to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.cp_tensor.cptensor property)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.n_param"]], "norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.norm"]], "normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.normalize"]], "to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_vec"]], "unfolding_dot_khatri_rao() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.unfolding_dot_khatri_rao"]], "validate_cp_rank() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_rank"]], "validate_cp_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_tensor"]], "parafac2tensor (class in ivy.data_classes.factorized_tensor.parafac2_tensor)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor"]], "__init__() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor attribute)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor._abc_impl"]], "apply_parafac2_projections() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.apply_parafac2_projections"]], "from_cptensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor class method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.from_CPTensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "n_param (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor property)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.n_param"]], "parafac2_normalise() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_normalise"]], "parafac2_to_slice() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slice"]], "parafac2_to_slices() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slices"]], "parafac2_to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_tensor"]], "parafac2_to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_unfolded"]], "parafac2_to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_vec"]], "to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_vec"]], "validate_parafac2_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.validate_parafac2_tensor"]], "trtensor (class in ivy.data_classes.factorized_tensor.tr_tensor)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tr_tensor.trtensor attribute)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tr_tensor.trtensor property)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_vec"]], "tr_n_param() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_n_param"]], "tr_to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_tensor"]], "tr_to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_unfolded"]], "tr_to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_vec"]], "validate_tr_rank() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_rank"]], "validate_tr_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_tensor"]], "tttensor (class in ivy.data_classes.factorized_tensor.tt_tensor)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tt_tensor.tttensor attribute)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._abc_impl"]], "_tt_n_param() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._tt_n_param"]], "index_update() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.index_update"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tt_tensor.tttensor property)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.n_param"]], "pad_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.pad_tt_rank"]], "to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_tensor"]], "to_unfolding() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_unfolding"]], "to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_vec"]], "tt_to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_tensor"]], "tt_to_unfolded() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_unfolded"]], "tt_to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_vec"]], "validate_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_rank"]], "validate_tt_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_tensor"]], "tuckertensor (class in ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor attribute)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor._abc_impl"]], "_bisection_root_finder() (in module ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor._bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor property)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_vec"]], "tucker_copy() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_copy"]], "tucker_mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_mode_dot"]], "tucker_n_param() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_n_param"]], "tucker_normalize() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_normalize"]], "tucker_to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_tensor"]], "tucker_to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_unfolded"]], "tucker_to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_vec"]], "validate_tucker_rank() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_rank"]], "validate_tucker_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_tensor"]], "array (class in ivy.data_classes.array.array)": [[97, "ivy.data_classes.array.array.Array"]], "t (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.T"]], "__abs__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__abs__"]], "__add__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__add__"]], "__eq__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__eq__"]], "__ge__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ge__"]], "__gt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__gt__"]], "__init__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__init__"]], "__le__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__le__"]], "__lt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__lt__"]], "__ne__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ne__"]], "__pow__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__pow__"]], "__radd__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__radd__"]], "__rrshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rrshift__"]], "__rshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rshift__"]], "__rsub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rsub__"]], "__sub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__sub__"]], "__truediv__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__truediv__"]], "__xor__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__xor__"]], "backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.backend"]], "base (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.base"]], "data (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.data"]], "device (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.device"]], "dtype (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dtype"]], "dynamic_backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dynamic_backend"]], "imag (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.imag"]], "itemsize (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.itemsize"]], "ivy.data_classes.array.array": [[97, "module-ivy.data_classes.array.array"]], "mt (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.mT"]], "ndim (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.ndim"]], "real (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.real"]], "shape (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.shape"]], "size (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.size"]], "strides (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.strides"]], "container (class in ivy.data_classes.container.container)": [[98, "ivy.data_classes.container.container.Container"]], "__abs__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__abs__"]], "__add__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__add__"]], "__eq__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__eq__"]], "__ge__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ge__"]], "__gt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__gt__"]], "__init__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__init__"]], "__le__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__le__"]], "__lt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__lt__"]], "__ne__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ne__"]], "__pow__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__pow__"]], "__radd__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__radd__"]], "__rrshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rrshift__"]], "__rshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rshift__"]], "__rsub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rsub__"]], "__sub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__sub__"]], "__truediv__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__truediv__"]], "__xor__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__xor__"]], "ivy.data_classes.container.container": [[98, "module-ivy.data_classes.container.container"]], "nestedarray (class in ivy.data_classes.nested_array.nested_array)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray"]], "__init__() (ivy.data_classes.nested_array.nested_array.nestedarray method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.__init__"]], "from_row_lengths() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_lengths"]], "from_row_splits() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_splits"]], "ivy.data_classes.nested_array.nested_array": [[100, "module-ivy.data_classes.nested_array.nested_array"]], "nestedarraybase (class in ivy.data_classes.nested_array.base)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase"]], "__init__() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.__init__"]], "_abc_impl (ivy.data_classes.nested_array.base.nestedarraybase attribute)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase._abc_impl"]], "broadcast_shapes() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.broadcast_shapes"]], "data (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.data"]], "device (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.device"]], "dtype (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.dtype"]], "inner_shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.inner_shape"]], "ivy.data_classes.nested_array.base": [[101, "module-ivy.data_classes.nested_array.base"]], "ndim (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ndim"]], "nested_array() (ivy.data_classes.nested_array.base.nestedarraybase class method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_array"]], "nested_rank (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_rank"]], "ragged_map() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_map"]], "ragged_multi_map() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map"]], "ragged_multi_map_in_function() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map_in_function"]], "replace_ivy_arrays() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.replace_ivy_arrays"]], "shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.shape"]], "unbind() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.unbind"]], "nestedarrayelementwise (class in ivy.data_classes.nested_array.elementwise)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise"]], "_abc_impl (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise attribute)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise._abc_impl"]], "ivy.data_classes.nested_array.elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"]], "static_add() (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise static method)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise.static_add"]], "gelu() (in module ivy)": [[105, "ivy.gelu"], [612, "ivy.gelu"]], "gelu() (ivy.array method)": [[105, "ivy.Array.gelu"]], "gelu() (ivy.container method)": [[105, "ivy.Container.gelu"]], "hardswish() (in module ivy)": [[106, "ivy.hardswish"], [612, "ivy.hardswish"]], "hardswish() (ivy.array method)": [[106, "ivy.Array.hardswish"]], "hardswish() (ivy.container method)": [[106, "ivy.Container.hardswish"]], "leaky_relu() (in module ivy)": [[107, "ivy.leaky_relu"], [612, "ivy.leaky_relu"]], "leaky_relu() (ivy.array method)": [[107, "ivy.Array.leaky_relu"]], "leaky_relu() (ivy.container method)": [[107, "ivy.Container.leaky_relu"]], "log_softmax() (in module ivy)": [[108, "ivy.log_softmax"], [612, "ivy.log_softmax"]], "log_softmax() (ivy.array method)": [[108, "ivy.Array.log_softmax"]], "log_softmax() (ivy.container method)": [[108, "ivy.Container.log_softmax"]], "mish() (in module ivy)": [[109, "ivy.mish"], [612, "ivy.mish"]], "mish() (ivy.array method)": [[109, "ivy.Array.mish"]], "mish() (ivy.container method)": [[109, "ivy.Container.mish"]], "relu() (in module ivy)": [[110, "ivy.relu"], [612, "ivy.relu"]], "relu() (ivy.array method)": [[110, "ivy.Array.relu"]], "relu() (ivy.container method)": [[110, "ivy.Container.relu"]], "sigmoid() (in module ivy)": [[111, "ivy.sigmoid"], [612, "ivy.sigmoid"]], "sigmoid() (ivy.array method)": [[111, "ivy.Array.sigmoid"]], "sigmoid() (ivy.container method)": [[111, "ivy.Container.sigmoid"]], "softmax() (in module ivy)": [[112, "ivy.softmax"], [612, "ivy.softmax"]], "softmax() (ivy.array method)": [[112, "ivy.Array.softmax"]], "softmax() (ivy.container method)": [[112, "ivy.Container.softmax"]], "softplus() (in module ivy)": [[113, "ivy.softplus"], [612, "ivy.softplus"]], "softplus() (ivy.array method)": [[113, "ivy.Array.softplus"]], "softplus() (ivy.container method)": [[113, "ivy.Container.softplus"]], "softsign() (in module ivy)": [[114, "ivy.softsign"], [612, "ivy.softsign"]], "cmp_is() (in module ivy)": [[115, "ivy.cmp_is"], [614, "ivy.cmp_is"]], "cmp_isnot() (in module ivy)": [[116, "ivy.cmp_isnot"], [614, "ivy.cmp_isnot"]], "for_loop() (in module ivy)": [[117, "ivy.for_loop"], [614, "ivy.for_loop"]], "if_else() (in module ivy)": [[118, "ivy.if_else"], [614, "ivy.if_else"]], "try_except() (in module ivy)": [[119, "ivy.try_except"], [614, "ivy.try_except"]], "while_loop() (in module ivy)": [[120, "ivy.while_loop"], [614, "ivy.while_loop"]], "arange() (in module ivy)": [[121, "ivy.arange"], [615, "ivy.arange"]], "array() (in module ivy)": [[122, "ivy.array"], [615, "ivy.array"]], "asarray() (in module ivy)": [[123, "ivy.asarray"], [615, "ivy.asarray"]], "asarray() (ivy.array method)": [[123, "ivy.Array.asarray"]], "asarray() (ivy.container method)": [[123, "ivy.Container.asarray"]], "copy_array() (in module ivy)": [[124, "ivy.copy_array"], [615, "ivy.copy_array"]], "copy_array() (ivy.array method)": [[124, "ivy.Array.copy_array"]], "copy_array() (ivy.container method)": [[124, "ivy.Container.copy_array"]], "empty() (in module ivy)": [[125, "ivy.empty"], [615, "ivy.empty"]], "empty_like() (in module ivy)": [[126, "ivy.empty_like"], [615, "ivy.empty_like"]], "empty_like() (ivy.array method)": [[126, "ivy.Array.empty_like"]], "empty_like() (ivy.container method)": [[126, "ivy.Container.empty_like"]], "eye() (in module ivy)": [[127, "ivy.eye"], [615, "ivy.eye"]], "from_dlpack() (in module ivy)": [[128, "ivy.from_dlpack"], [615, "ivy.from_dlpack"]], "from_dlpack() (ivy.array method)": [[128, "ivy.Array.from_dlpack"]], "from_dlpack() (ivy.container method)": [[128, "ivy.Container.from_dlpack"]], "frombuffer() (in module ivy)": [[129, "ivy.frombuffer"], [615, "ivy.frombuffer"]], "frombuffer() (ivy.container method)": [[129, "ivy.Container.frombuffer"]], "full() (in module ivy)": [[130, "ivy.full"], [615, "ivy.full"]], "full_like() (in module ivy)": [[131, "ivy.full_like"], [615, "ivy.full_like"]], "full_like() (ivy.array method)": [[131, "ivy.Array.full_like"]], "full_like() (ivy.container method)": [[131, "ivy.Container.full_like"]], "linspace() (in module ivy)": [[132, "ivy.linspace"], [615, "ivy.linspace"]], "linspace() (ivy.array method)": [[132, "ivy.Array.linspace"]], "linspace() (ivy.container method)": [[132, "ivy.Container.linspace"]], "logspace() (in module ivy)": [[133, "ivy.logspace"], [615, "ivy.logspace"]], "logspace() (ivy.array method)": [[133, "ivy.Array.logspace"]], "logspace() (ivy.container method)": [[133, "ivy.Container.logspace"]], "meshgrid() (in module ivy)": [[134, "ivy.meshgrid"], [615, "ivy.meshgrid"]], "meshgrid() (ivy.array method)": [[134, "ivy.Array.meshgrid"]], "meshgrid() (ivy.container method)": [[134, "ivy.Container.meshgrid"]], "native_array() (in module ivy)": [[135, "ivy.native_array"], [615, "ivy.native_array"]], "native_array() (ivy.array method)": [[135, "ivy.Array.native_array"]], "native_array() (ivy.container method)": [[135, "ivy.Container.native_array"]], "one_hot() (in module ivy)": [[136, "ivy.one_hot"], [615, "ivy.one_hot"]], "one_hot() (ivy.array method)": [[136, "ivy.Array.one_hot"]], "one_hot() (ivy.container method)": [[136, "ivy.Container.one_hot"]], "ones() (in module ivy)": [[137, "ivy.ones"], [615, "ivy.ones"]], "ones_like() (in module ivy)": [[138, "ivy.ones_like"], [615, "ivy.ones_like"]], "ones_like() (ivy.array method)": [[138, "ivy.Array.ones_like"]], "ones_like() (ivy.container method)": [[138, "ivy.Container.ones_like"]], "to_dlpack() (in module ivy)": [[139, "ivy.to_dlpack"], [615, "ivy.to_dlpack"]], "tril() (in module ivy)": [[140, "ivy.tril"], [615, "ivy.tril"]], "tril() (ivy.array method)": [[140, "ivy.Array.tril"]], "tril() (ivy.container method)": [[140, "ivy.Container.tril"]], "triu() (in module ivy)": [[141, "ivy.triu"], [615, "ivy.triu"]], "triu() (ivy.array method)": [[141, "ivy.Array.triu"]], "triu() (ivy.container method)": [[141, "ivy.Container.triu"]], "triu_indices() (in module ivy)": [[142, "ivy.triu_indices"], [615, "ivy.triu_indices"]], "triu_indices() (ivy.container method)": [[142, "ivy.Container.triu_indices"]], "zeros() (in module ivy)": [[143, "ivy.zeros"], [615, "ivy.zeros"]], "zeros_like() (in module ivy)": [[144, "ivy.zeros_like"], [615, "ivy.zeros_like"]], "zeros_like() (ivy.array method)": [[144, "ivy.Array.zeros_like"]], "zeros_like() (ivy.container method)": [[144, "ivy.Container.zeros_like"]], "as_ivy_dtype() (in module ivy)": [[145, "ivy.as_ivy_dtype"], [616, "ivy.as_ivy_dtype"]], "as_native_dtype() (in module ivy)": [[146, "ivy.as_native_dtype"], [616, "ivy.as_native_dtype"]], "astype() (in module ivy)": [[147, "ivy.astype"], [616, "ivy.astype"]], "astype() (ivy.array method)": [[147, "ivy.Array.astype"]], "astype() (ivy.container method)": [[147, "ivy.Container.astype"]], "broadcast_arrays() (in module ivy)": [[148, "ivy.broadcast_arrays"], [616, "ivy.broadcast_arrays"]], "broadcast_arrays() (ivy.array method)": [[148, "ivy.Array.broadcast_arrays"]], "broadcast_arrays() (ivy.container method)": [[148, "ivy.Container.broadcast_arrays"]], "broadcast_to() (in module ivy)": [[149, "ivy.broadcast_to"], [616, "ivy.broadcast_to"]], "broadcast_to() (ivy.array method)": [[149, "ivy.Array.broadcast_to"]], "broadcast_to() (ivy.container method)": [[149, "ivy.Container.broadcast_to"]], "can_cast() (in module ivy)": [[150, "ivy.can_cast"], [616, "ivy.can_cast"]], "can_cast() (ivy.array method)": [[150, "ivy.Array.can_cast"]], "can_cast() (ivy.container method)": [[150, "ivy.Container.can_cast"]], "check_float() (in module ivy)": [[151, "ivy.check_float"], [616, "ivy.check_float"]], "closest_valid_dtype() (in module ivy)": [[152, "ivy.closest_valid_dtype"], [616, "ivy.closest_valid_dtype"]], "default_complex_dtype() (in module ivy)": [[153, "ivy.default_complex_dtype"], [616, "ivy.default_complex_dtype"]], "default_dtype() (in module ivy)": [[154, "ivy.default_dtype"], [616, "ivy.default_dtype"]], "default_float_dtype() (in module ivy)": [[155, "ivy.default_float_dtype"], [616, "ivy.default_float_dtype"]], "default_int_dtype() (in module ivy)": [[156, "ivy.default_int_dtype"], [616, "ivy.default_int_dtype"]], "default_uint_dtype() (in module ivy)": [[157, "ivy.default_uint_dtype"], [616, "ivy.default_uint_dtype"]], "dtype() (in module ivy)": [[158, "ivy.dtype"], [616, "ivy.dtype"]], "dtype() (ivy.array method)": [[158, "ivy.Array.dtype"]], "dtype() (ivy.container method)": [[158, "ivy.Container.dtype"]], "dtype_bits() (in module ivy)": [[159, "ivy.dtype_bits"], [616, "ivy.dtype_bits"]], "finfo() (in module ivy)": [[160, "ivy.finfo"], [616, "ivy.finfo"]], "finfo() (ivy.array method)": [[160, "ivy.Array.finfo"]], "finfo() (ivy.container method)": [[160, "ivy.Container.finfo"]], "function_supported_dtypes() (in module ivy)": [[161, "ivy.function_supported_dtypes"], [616, "ivy.function_supported_dtypes"]], "function_unsupported_dtypes() (in module ivy)": [[162, "ivy.function_unsupported_dtypes"], [616, "ivy.function_unsupported_dtypes"]], "iinfo() (in module ivy)": [[163, "ivy.iinfo"], [616, "ivy.iinfo"]], "iinfo() (ivy.array method)": [[163, "ivy.Array.iinfo"]], "iinfo() (ivy.container method)": [[163, "ivy.Container.iinfo"]], "infer_default_dtype() (in module ivy)": [[164, "ivy.infer_default_dtype"], [616, "ivy.infer_default_dtype"]], "invalid_dtype() (in module ivy)": [[165, "ivy.invalid_dtype"], [616, "ivy.invalid_dtype"]], "is_bool_dtype() (in module ivy)": [[166, "ivy.is_bool_dtype"], [616, "ivy.is_bool_dtype"]], "is_bool_dtype() (ivy.array method)": [[166, "ivy.Array.is_bool_dtype"]], "is_bool_dtype() (ivy.container method)": [[166, "ivy.Container.is_bool_dtype"]], "is_complex_dtype() (in module ivy)": [[167, "ivy.is_complex_dtype"], [616, "ivy.is_complex_dtype"]], "is_complex_dtype() (ivy.container method)": [[167, "ivy.Container.is_complex_dtype"]], "is_float_dtype() (in module ivy)": [[168, "ivy.is_float_dtype"], [616, "ivy.is_float_dtype"]], "is_float_dtype() (ivy.array method)": [[168, "ivy.Array.is_float_dtype"]], "is_float_dtype() (ivy.container method)": [[168, "ivy.Container.is_float_dtype"]], "is_hashable_dtype() (in module ivy)": [[169, "ivy.is_hashable_dtype"], [616, "ivy.is_hashable_dtype"]], "is_int_dtype() (in module ivy)": [[170, "ivy.is_int_dtype"], [616, "ivy.is_int_dtype"]], "is_int_dtype() (ivy.array method)": [[170, "ivy.Array.is_int_dtype"]], "is_int_dtype() (ivy.container method)": [[170, "ivy.Container.is_int_dtype"]], "is_native_dtype() (in module ivy)": [[171, "ivy.is_native_dtype"], [616, "ivy.is_native_dtype"]], "is_uint_dtype() (in module ivy)": [[172, "ivy.is_uint_dtype"], [616, "ivy.is_uint_dtype"]], "is_uint_dtype() (ivy.array method)": [[172, "ivy.Array.is_uint_dtype"]], "is_uint_dtype() (ivy.container method)": [[172, "ivy.Container.is_uint_dtype"]], "promote_types() (in module ivy)": [[173, "ivy.promote_types"], [616, "ivy.promote_types"]], "promote_types_of_inputs() (in module ivy)": [[174, "ivy.promote_types_of_inputs"], [616, "ivy.promote_types_of_inputs"]], "result_type() (in module ivy)": [[175, "ivy.result_type"], [616, "ivy.result_type"]], "result_type() (ivy.array method)": [[175, "ivy.Array.result_type"]], "result_type() (ivy.container method)": [[175, "ivy.Container.result_type"]], "set_default_complex_dtype() (in module ivy)": [[176, "ivy.set_default_complex_dtype"], [616, "ivy.set_default_complex_dtype"]], "set_default_dtype() (in module ivy)": [[177, "ivy.set_default_dtype"], [616, "ivy.set_default_dtype"]], "set_default_float_dtype() (in module ivy)": [[178, "ivy.set_default_float_dtype"], [616, "ivy.set_default_float_dtype"]], "set_default_int_dtype() (in module ivy)": [[179, "ivy.set_default_int_dtype"], [616, "ivy.set_default_int_dtype"]], "set_default_uint_dtype() (in module ivy)": [[180, "ivy.set_default_uint_dtype"], [616, "ivy.set_default_uint_dtype"]], "type_promote_arrays() (in module ivy)": [[181, "ivy.type_promote_arrays"], [616, "ivy.type_promote_arrays"]], "unset_default_complex_dtype() (in module ivy)": [[182, "ivy.unset_default_complex_dtype"], [616, "ivy.unset_default_complex_dtype"]], "unset_default_dtype() (in module ivy)": [[183, "ivy.unset_default_dtype"], [616, "ivy.unset_default_dtype"]], "unset_default_float_dtype() (in module ivy)": [[184, "ivy.unset_default_float_dtype"], [616, "ivy.unset_default_float_dtype"]], "unset_default_int_dtype() (in module ivy)": [[185, "ivy.unset_default_int_dtype"], [616, "ivy.unset_default_int_dtype"]], "unset_default_uint_dtype() (in module ivy)": [[186, "ivy.unset_default_uint_dtype"], [616, "ivy.unset_default_uint_dtype"]], "valid_dtype() (in module ivy)": [[187, "ivy.valid_dtype"], [616, "ivy.valid_dtype"]], "as_ivy_dev() (in module ivy)": [[188, "ivy.as_ivy_dev"], [617, "ivy.as_ivy_dev"]], "as_native_dev() (in module ivy)": [[189, "ivy.as_native_dev"], [617, "ivy.as_native_dev"]], "clear_cached_mem_on_dev() (in module ivy)": [[190, "ivy.clear_cached_mem_on_dev"], [617, "ivy.clear_cached_mem_on_dev"]], "default_device() (in module ivy)": [[191, "ivy.default_device"], [617, "ivy.default_device"]], "dev() (in module ivy)": [[192, "ivy.dev"], [617, "ivy.dev"]], "dev() (ivy.array method)": [[192, "ivy.Array.dev"]], "dev() (ivy.container method)": [[192, "ivy.Container.dev"]], "dev_util() (in module ivy)": [[193, "ivy.dev_util"], [617, "ivy.dev_util"]], "function_supported_devices() (in module ivy)": [[194, "ivy.function_supported_devices"], [617, "ivy.function_supported_devices"]], "function_unsupported_devices() (in module ivy)": [[195, "ivy.function_unsupported_devices"], [617, "ivy.function_unsupported_devices"]], "get_all_ivy_arrays_on_dev() (in module ivy)": [[196, "ivy.get_all_ivy_arrays_on_dev"], [617, "ivy.get_all_ivy_arrays_on_dev"]], "gpu_is_available() (in module ivy)": [[197, "ivy.gpu_is_available"], [617, "ivy.gpu_is_available"]], "handle_soft_device_variable() (in module ivy)": [[198, "ivy.handle_soft_device_variable"], [617, "ivy.handle_soft_device_variable"]], "num_cpu_cores() (in module ivy)": [[199, "ivy.num_cpu_cores"], [617, "ivy.num_cpu_cores"]], "num_gpus() (in module ivy)": [[200, "ivy.num_gpus"], [617, "ivy.num_gpus"]], "num_ivy_arrays_on_dev() (in module ivy)": [[201, "ivy.num_ivy_arrays_on_dev"], [617, "ivy.num_ivy_arrays_on_dev"]], "percent_used_mem_on_dev() (in module ivy)": [[202, "ivy.percent_used_mem_on_dev"], [617, "ivy.percent_used_mem_on_dev"]], "print_all_ivy_arrays_on_dev() (in module ivy)": [[203, "ivy.print_all_ivy_arrays_on_dev"], [617, "ivy.print_all_ivy_arrays_on_dev"]], "set_default_device() (in module ivy)": [[204, "ivy.set_default_device"], [617, "ivy.set_default_device"]], "set_soft_device_mode() (in module ivy)": [[205, "ivy.set_soft_device_mode"], [617, "ivy.set_soft_device_mode"]], "set_split_factor() (in module ivy)": [[206, "ivy.set_split_factor"], [617, "ivy.set_split_factor"]], "split_factor() (in module ivy)": [[207, "ivy.split_factor"], [617, "ivy.split_factor"]], "split_func_call() (in module ivy)": [[208, "ivy.split_func_call"], [617, "ivy.split_func_call"]], "to_device() (in module ivy)": [[209, "ivy.to_device"], [617, "ivy.to_device"]], "to_device() (ivy.array method)": [[209, "ivy.Array.to_device"]], "to_device() (ivy.container method)": [[209, "ivy.Container.to_device"]], "total_mem_on_dev() (in module ivy)": [[210, "ivy.total_mem_on_dev"], [617, "ivy.total_mem_on_dev"]], "tpu_is_available() (in module ivy)": [[211, "ivy.tpu_is_available"], [617, "ivy.tpu_is_available"]], "unset_default_device() (in module ivy)": [[212, "ivy.unset_default_device"], [617, "ivy.unset_default_device"]], "unset_soft_device_mode() (in module ivy)": [[213, "ivy.unset_soft_device_mode"], [617, "ivy.unset_soft_device_mode"]], "used_mem_on_dev() (in module ivy)": [[214, "ivy.used_mem_on_dev"], [617, "ivy.used_mem_on_dev"]], "abs() (in module ivy)": [[215, "ivy.abs"], [618, "ivy.abs"]], "abs() (ivy.array method)": [[215, "ivy.Array.abs"]], "abs() (ivy.container method)": [[215, "ivy.Container.abs"]], "acos() (in module ivy)": [[216, "ivy.acos"], [618, "ivy.acos"]], "acos() (ivy.array method)": [[216, "ivy.Array.acos"]], "acos() (ivy.container method)": [[216, "ivy.Container.acos"]], "acosh() (in module ivy)": [[217, "ivy.acosh"], [618, "ivy.acosh"]], "acosh() (ivy.array method)": [[217, "ivy.Array.acosh"]], "acosh() (ivy.container method)": [[217, "ivy.Container.acosh"]], "add() (in module ivy)": [[218, "ivy.add"], [618, "ivy.add"]], "add() (ivy.array method)": [[218, "ivy.Array.add"]], "add() (ivy.container method)": [[218, "ivy.Container.add"]], "angle() (in module ivy)": [[219, "ivy.angle"], [618, "ivy.angle"]], "angle() (ivy.array method)": [[219, "ivy.Array.angle"]], "angle() (ivy.container method)": [[219, "ivy.Container.angle"]], "asin() (in module ivy)": [[220, "ivy.asin"], [618, "ivy.asin"]], "asin() (ivy.array method)": [[220, "ivy.Array.asin"]], "asin() (ivy.container method)": [[220, "ivy.Container.asin"]], "asinh() (in module ivy)": [[221, "ivy.asinh"], [618, "ivy.asinh"]], "asinh() (ivy.array method)": [[221, "ivy.Array.asinh"]], "asinh() (ivy.container method)": [[221, "ivy.Container.asinh"]], "atan() (in module ivy)": [[222, "ivy.atan"], [618, "ivy.atan"]], "atan() (ivy.array method)": [[222, "ivy.Array.atan"]], "atan() (ivy.container method)": [[222, "ivy.Container.atan"]], "atan2() (in module ivy)": [[223, "ivy.atan2"], [618, "ivy.atan2"]], "atan2() (ivy.array method)": [[223, "ivy.Array.atan2"]], "atan2() (ivy.container method)": [[223, "ivy.Container.atan2"]], "atanh() (in module ivy)": [[224, "ivy.atanh"], [618, "ivy.atanh"]], "atanh() (ivy.array method)": [[224, "ivy.Array.atanh"]], "atanh() (ivy.container method)": [[224, "ivy.Container.atanh"]], "bitwise_and() (in module ivy)": [[225, "ivy.bitwise_and"], [618, "ivy.bitwise_and"]], "bitwise_and() (ivy.array method)": [[225, "ivy.Array.bitwise_and"]], "bitwise_and() (ivy.container method)": [[225, "ivy.Container.bitwise_and"]], "bitwise_invert() (in module ivy)": [[226, "ivy.bitwise_invert"], [618, "ivy.bitwise_invert"]], "bitwise_invert() (ivy.array method)": [[226, "ivy.Array.bitwise_invert"]], "bitwise_invert() (ivy.container method)": [[226, "ivy.Container.bitwise_invert"]], "bitwise_left_shift() (in module ivy)": [[227, "ivy.bitwise_left_shift"], [618, "ivy.bitwise_left_shift"]], "bitwise_left_shift() (ivy.array method)": [[227, "ivy.Array.bitwise_left_shift"]], "bitwise_left_shift() (ivy.container method)": [[227, "ivy.Container.bitwise_left_shift"]], "bitwise_or() (in module ivy)": [[228, "ivy.bitwise_or"], [618, "ivy.bitwise_or"]], "bitwise_or() (ivy.array method)": [[228, "ivy.Array.bitwise_or"]], "bitwise_or() (ivy.container method)": [[228, "ivy.Container.bitwise_or"]], "bitwise_right_shift() (in module ivy)": [[229, "ivy.bitwise_right_shift"], [618, "ivy.bitwise_right_shift"]], "bitwise_right_shift() (ivy.array method)": [[229, "ivy.Array.bitwise_right_shift"]], "bitwise_right_shift() (ivy.container method)": [[229, "ivy.Container.bitwise_right_shift"]], "bitwise_xor() (in module ivy)": [[230, "ivy.bitwise_xor"], [618, "ivy.bitwise_xor"]], "bitwise_xor() (ivy.array method)": [[230, "ivy.Array.bitwise_xor"]], "bitwise_xor() (ivy.container method)": [[230, "ivy.Container.bitwise_xor"]], "ceil() (in module ivy)": [[231, "ivy.ceil"], [618, "ivy.ceil"]], "ceil() (ivy.array method)": [[231, "ivy.Array.ceil"]], "ceil() (ivy.container method)": [[231, "ivy.Container.ceil"]], "cos() (in module ivy)": [[232, "ivy.cos"], [618, "ivy.cos"]], "cos() (ivy.array method)": [[232, "ivy.Array.cos"]], "cos() (ivy.container method)": [[232, "ivy.Container.cos"]], "cosh() (in module ivy)": [[233, "ivy.cosh"], [618, "ivy.cosh"]], "cosh() (ivy.array method)": [[233, "ivy.Array.cosh"]], "cosh() (ivy.container method)": [[233, "ivy.Container.cosh"]], "deg2rad() (in module ivy)": [[234, "ivy.deg2rad"], [618, "ivy.deg2rad"]], "deg2rad() (ivy.array method)": [[234, "ivy.Array.deg2rad"]], "deg2rad() (ivy.container method)": [[234, "ivy.Container.deg2rad"]], "divide() (in module ivy)": [[235, "ivy.divide"], [618, "ivy.divide"]], "divide() (ivy.array method)": [[235, "ivy.Array.divide"]], "divide() (ivy.container method)": [[235, "ivy.Container.divide"]], "equal() (in module ivy)": [[236, "ivy.equal"], [618, "ivy.equal"]], "equal() (ivy.array method)": [[236, "ivy.Array.equal"]], "equal() (ivy.container method)": [[236, "ivy.Container.equal"]], "erf() (in module ivy)": [[237, "ivy.erf"], [618, "ivy.erf"]], "erf() (ivy.array method)": [[237, "ivy.Array.erf"]], "erf() (ivy.container method)": [[237, "ivy.Container.erf"]], "exp() (in module ivy)": [[238, "ivy.exp"], [618, "ivy.exp"]], "exp() (ivy.array method)": [[238, "ivy.Array.exp"]], "exp() (ivy.container method)": [[238, "ivy.Container.exp"]], "exp2() (in module ivy)": [[239, "ivy.exp2"], [618, "ivy.exp2"]], "exp2() (ivy.array method)": [[239, "ivy.Array.exp2"]], "exp2() (ivy.container method)": [[239, "ivy.Container.exp2"]], "expm1() (in module ivy)": [[240, "ivy.expm1"], [618, "ivy.expm1"]], "expm1() (ivy.array method)": [[240, "ivy.Array.expm1"]], "expm1() (ivy.container method)": [[240, "ivy.Container.expm1"]], "floor() (in module ivy)": [[241, "ivy.floor"], [618, "ivy.floor"]], "floor() (ivy.array method)": [[241, "ivy.Array.floor"]], "floor() (ivy.container method)": [[241, "ivy.Container.floor"]], "floor_divide() (in module ivy)": [[242, "ivy.floor_divide"], [618, "ivy.floor_divide"]], "floor_divide() (ivy.array method)": [[242, "ivy.Array.floor_divide"]], "floor_divide() (ivy.container method)": [[242, "ivy.Container.floor_divide"]], "fmin() (in module ivy)": [[243, "ivy.fmin"], [618, "ivy.fmin"]], "fmin() (ivy.array method)": [[243, "ivy.Array.fmin"]], "fmin() (ivy.container method)": [[243, "ivy.Container.fmin"]], "fmod() (in module ivy)": [[244, "ivy.fmod"], [618, "ivy.fmod"]], "fmod() (ivy.array method)": [[244, "ivy.Array.fmod"]], "fmod() (ivy.container method)": [[244, "ivy.Container.fmod"]], "gcd() (in module ivy)": [[245, "ivy.gcd"], [618, "ivy.gcd"]], "gcd() (ivy.array method)": [[245, "ivy.Array.gcd"]], "gcd() (ivy.container method)": [[245, "ivy.Container.gcd"]], "greater() (in module ivy)": [[246, "ivy.greater"], [618, "ivy.greater"]], "greater() (ivy.array method)": [[246, "ivy.Array.greater"]], "greater() (ivy.container method)": [[246, "ivy.Container.greater"]], "greater_equal() (in module ivy)": [[247, "ivy.greater_equal"], [618, "ivy.greater_equal"]], "greater_equal() (ivy.array method)": [[247, "ivy.Array.greater_equal"]], "greater_equal() (ivy.container method)": [[247, "ivy.Container.greater_equal"]], "imag() (in module ivy)": [[248, "ivy.imag"], [618, "ivy.imag"]], "imag() (ivy.array method)": [[248, "ivy.Array.imag"]], "imag() (ivy.container method)": [[248, "ivy.Container.imag"]], "isfinite() (in module ivy)": [[249, "ivy.isfinite"], [618, "ivy.isfinite"]], "isfinite() (ivy.array method)": [[249, "ivy.Array.isfinite"]], "isfinite() (ivy.container method)": [[249, "ivy.Container.isfinite"]], "isinf() (in module ivy)": [[250, "ivy.isinf"], [618, "ivy.isinf"]], "isinf() (ivy.array method)": [[250, "ivy.Array.isinf"]], "isinf() (ivy.container method)": [[250, "ivy.Container.isinf"]], "isnan() (in module ivy)": [[251, "ivy.isnan"], [618, "ivy.isnan"]], "isnan() (ivy.array method)": [[251, "ivy.Array.isnan"]], "isnan() (ivy.container method)": [[251, "ivy.Container.isnan"]], "isreal() (in module ivy)": [[252, "ivy.isreal"], [618, "ivy.isreal"]], "isreal() (ivy.array method)": [[252, "ivy.Array.isreal"]], "isreal() (ivy.container method)": [[252, "ivy.Container.isreal"]], "lcm() (in module ivy)": [[253, "ivy.lcm"], [618, "ivy.lcm"]], "lcm() (ivy.array method)": [[253, "ivy.Array.lcm"]], "lcm() (ivy.container method)": [[253, "ivy.Container.lcm"]], "less() (in module ivy)": [[254, "ivy.less"], [618, "ivy.less"]], "less() (ivy.array method)": [[254, "ivy.Array.less"]], "less() (ivy.container method)": [[254, "ivy.Container.less"]], "less_equal() (in module ivy)": [[255, "ivy.less_equal"], [618, "ivy.less_equal"]], "less_equal() (ivy.array method)": [[255, "ivy.Array.less_equal"]], "less_equal() (ivy.container method)": [[255, "ivy.Container.less_equal"]], "log() (in module ivy)": [[256, "ivy.log"], [618, "ivy.log"]], "log() (ivy.array method)": [[256, "ivy.Array.log"]], "log() (ivy.container method)": [[256, "ivy.Container.log"]], "log10() (in module ivy)": [[257, "ivy.log10"], [618, "ivy.log10"]], "log10() (ivy.array method)": [[257, "ivy.Array.log10"]], "log10() (ivy.container method)": [[257, "ivy.Container.log10"]], "log1p() (in module ivy)": [[258, "ivy.log1p"], [618, "ivy.log1p"]], "log1p() (ivy.array method)": [[258, "ivy.Array.log1p"]], "log1p() (ivy.container method)": [[258, "ivy.Container.log1p"]], "log2() (in module ivy)": [[259, "ivy.log2"], [618, "ivy.log2"]], "log2() (ivy.array method)": [[259, "ivy.Array.log2"]], "log2() (ivy.container method)": [[259, "ivy.Container.log2"]], "logaddexp() (in module ivy)": [[260, "ivy.logaddexp"], [618, "ivy.logaddexp"]], "logaddexp() (ivy.array method)": [[260, "ivy.Array.logaddexp"]], "logaddexp() (ivy.container method)": [[260, "ivy.Container.logaddexp"]], "logaddexp2() (in module ivy)": [[261, "ivy.logaddexp2"], [618, "ivy.logaddexp2"]], "logaddexp2() (ivy.array method)": [[261, "ivy.Array.logaddexp2"]], "logaddexp2() (ivy.container method)": [[261, "ivy.Container.logaddexp2"]], "logical_and() (in module ivy)": [[262, "ivy.logical_and"], [618, "ivy.logical_and"]], "logical_and() (ivy.array method)": [[262, "ivy.Array.logical_and"]], "logical_and() (ivy.container method)": [[262, "ivy.Container.logical_and"]], "logical_not() (in module ivy)": [[263, "ivy.logical_not"], [618, "ivy.logical_not"]], "logical_not() (ivy.array method)": [[263, "ivy.Array.logical_not"]], "logical_not() (ivy.container method)": [[263, "ivy.Container.logical_not"]], "logical_or() (in module ivy)": [[264, "ivy.logical_or"], [618, "ivy.logical_or"]], "logical_or() (ivy.array method)": [[264, "ivy.Array.logical_or"]], "logical_or() (ivy.container method)": [[264, "ivy.Container.logical_or"]], "logical_xor() (in module ivy)": [[265, "ivy.logical_xor"], [618, "ivy.logical_xor"]], "logical_xor() (ivy.array method)": [[265, "ivy.Array.logical_xor"]], "logical_xor() (ivy.container method)": [[265, "ivy.Container.logical_xor"]], "maximum() (in module ivy)": [[266, "ivy.maximum"], [618, "ivy.maximum"]], "maximum() (ivy.array method)": [[266, "ivy.Array.maximum"]], "maximum() (ivy.container method)": [[266, "ivy.Container.maximum"]], "minimum() (in module ivy)": [[267, "ivy.minimum"], [618, "ivy.minimum"]], "minimum() (ivy.array method)": [[267, "ivy.Array.minimum"]], "minimum() (ivy.container method)": [[267, "ivy.Container.minimum"]], "multiply() (in module ivy)": [[268, "ivy.multiply"], [618, "ivy.multiply"]], "multiply() (ivy.array method)": [[268, "ivy.Array.multiply"]], "multiply() (ivy.container method)": [[268, "ivy.Container.multiply"]], "nan_to_num() (in module ivy)": [[269, "ivy.nan_to_num"], [618, "ivy.nan_to_num"]], "nan_to_num() (ivy.array method)": [[269, "ivy.Array.nan_to_num"]], "nan_to_num() (ivy.container method)": [[269, "ivy.Container.nan_to_num"]], "negative() (in module ivy)": [[270, "ivy.negative"], [618, "ivy.negative"]], "negative() (ivy.array method)": [[270, "ivy.Array.negative"]], "negative() (ivy.container method)": [[270, "ivy.Container.negative"]], "not_equal() (in module ivy)": [[271, "ivy.not_equal"], [618, "ivy.not_equal"]], "not_equal() (ivy.array method)": [[271, "ivy.Array.not_equal"]], "not_equal() (ivy.container method)": [[271, "ivy.Container.not_equal"]], "positive() (in module ivy)": [[272, "ivy.positive"], [618, "ivy.positive"]], "positive() (ivy.array method)": [[272, "ivy.Array.positive"]], "positive() (ivy.container method)": [[272, "ivy.Container.positive"]], "pow() (in module ivy)": [[273, "ivy.pow"], [618, "ivy.pow"]], "pow() (ivy.array method)": [[273, "ivy.Array.pow"]], "pow() (ivy.container method)": [[273, "ivy.Container.pow"]], "rad2deg() (in module ivy)": [[274, "ivy.rad2deg"], [618, "ivy.rad2deg"]], "rad2deg() (ivy.array method)": [[274, "ivy.Array.rad2deg"]], "rad2deg() (ivy.container method)": [[274, "ivy.Container.rad2deg"]], "real() (in module ivy)": [[275, "ivy.real"], [618, "ivy.real"]], "real() (ivy.array method)": [[275, "ivy.Array.real"]], "real() (ivy.container method)": [[275, "ivy.Container.real"]], "reciprocal() (in module ivy)": [[276, "ivy.reciprocal"], [618, "ivy.reciprocal"]], "reciprocal() (ivy.array method)": [[276, "ivy.Array.reciprocal"]], "reciprocal() (ivy.container method)": [[276, "ivy.Container.reciprocal"]], "remainder() (in module ivy)": [[277, "ivy.remainder"], [618, "ivy.remainder"]], "remainder() (ivy.array method)": [[277, "ivy.Array.remainder"]], "remainder() (ivy.container method)": [[277, "ivy.Container.remainder"]], "round() (in module ivy)": [[278, "ivy.round"], [618, "ivy.round"]], "round() (ivy.array method)": [[278, "ivy.Array.round"]], "round() (ivy.container method)": [[278, "ivy.Container.round"]], "sign() (in module ivy)": [[279, "ivy.sign"], [618, "ivy.sign"]], "sign() (ivy.array method)": [[279, "ivy.Array.sign"]], "sign() (ivy.container method)": [[279, "ivy.Container.sign"]], "sin() (in module ivy)": [[280, "ivy.sin"], [618, "ivy.sin"]], "sin() (ivy.array method)": [[280, "ivy.Array.sin"]], "sin() (ivy.container method)": [[280, "ivy.Container.sin"]], "sinh() (in module ivy)": [[281, "ivy.sinh"], [618, "ivy.sinh"]], "sinh() (ivy.array method)": [[281, "ivy.Array.sinh"]], "sinh() (ivy.container method)": [[281, "ivy.Container.sinh"]], "sqrt() (in module ivy)": [[282, "ivy.sqrt"], [618, "ivy.sqrt"]], "sqrt() (ivy.array method)": [[282, "ivy.Array.sqrt"]], "sqrt() (ivy.container method)": [[282, "ivy.Container.sqrt"]], "square() (in module ivy)": [[283, "ivy.square"], [618, "ivy.square"]], "square() (ivy.array method)": [[283, "ivy.Array.square"]], "square() (ivy.container method)": [[283, "ivy.Container.square"]], "subtract() (in module ivy)": [[284, "ivy.subtract"], [618, "ivy.subtract"]], "subtract() (ivy.array method)": [[284, "ivy.Array.subtract"]], "subtract() (ivy.container method)": [[284, "ivy.Container.subtract"]], "tan() (in module ivy)": [[285, "ivy.tan"], [618, "ivy.tan"]], "tan() (ivy.array method)": [[285, "ivy.Array.tan"]], "tan() (ivy.container method)": [[285, "ivy.Container.tan"]], "tanh() (in module ivy)": [[286, "ivy.tanh"], [618, "ivy.tanh"]], "tanh() (ivy.array method)": [[286, "ivy.Array.tanh"]], "tanh() (ivy.container method)": [[286, "ivy.Container.tanh"]], "trapz() (in module ivy)": [[287, "ivy.trapz"], [618, "ivy.trapz"]], "trapz() (ivy.array method)": [[287, "ivy.Array.trapz"]], "trapz() (ivy.container method)": [[287, "ivy.Container.trapz"]], "trunc() (in module ivy)": [[288, "ivy.trunc"], [618, "ivy.trunc"]], "trunc() (ivy.array method)": [[288, "ivy.Array.trunc"]], "trunc() (ivy.container method)": [[288, "ivy.Container.trunc"]], "trunc_divide() (in module ivy)": [[289, "ivy.trunc_divide"], [618, "ivy.trunc_divide"]], "trunc_divide() (ivy.array method)": [[289, "ivy.Array.trunc_divide"]], "trunc_divide() (ivy.container method)": [[289, "ivy.Container.trunc_divide"]], "celu() (in module ivy)": [[290, "ivy.celu"], [360, "ivy.celu"]], "celu() (ivy.array method)": [[290, "ivy.Array.celu"]], "celu() (ivy.container method)": [[290, "ivy.Container.celu"]], "elu() (in module ivy)": [[291, "ivy.elu"], [360, "ivy.elu"]], "elu() (ivy.array method)": [[291, "ivy.Array.elu"]], "elu() (ivy.container method)": [[291, "ivy.Container.elu"]], "hardshrink() (in module ivy)": [[292, "ivy.hardshrink"], [360, "ivy.hardshrink"]], "hardshrink() (ivy.array method)": [[292, "ivy.Array.hardshrink"]], "hardshrink() (ivy.container method)": [[292, "ivy.Container.hardshrink"]], "hardtanh() (in module ivy)": [[293, "ivy.hardtanh"], [360, "ivy.hardtanh"]], "hardtanh() (ivy.array method)": [[293, "ivy.Array.hardtanh"]], "hardtanh() (ivy.container method)": [[293, "ivy.Container.hardtanh"]], "logit() (in module ivy)": [[294, "ivy.logit"], [360, "ivy.logit"]], "logit() (ivy.array method)": [[294, "ivy.Array.logit"]], "logit() (ivy.container method)": [[294, "ivy.Container.logit"]], "logsigmoid() (in module ivy)": [[295, "ivy.logsigmoid"], [360, "ivy.logsigmoid"]], "logsigmoid() (ivy.array method)": [[295, "ivy.Array.logsigmoid"]], "logsigmoid() (ivy.container method)": [[295, "ivy.Container.logsigmoid"]], "prelu() (in module ivy)": [[296, "ivy.prelu"], [360, "ivy.prelu"]], "prelu() (ivy.array method)": [[296, "ivy.Array.prelu"]], "prelu() (ivy.container method)": [[296, "ivy.Container.prelu"]], "relu6() (in module ivy)": [[297, "ivy.relu6"], [360, "ivy.relu6"]], "relu6() (ivy.array method)": [[297, "ivy.Array.relu6"]], "relu6() (ivy.container method)": [[297, "ivy.Container.relu6"]], "scaled_tanh() (in module ivy)": [[298, "ivy.scaled_tanh"], [360, "ivy.scaled_tanh"]], "scaled_tanh() (ivy.array method)": [[298, "ivy.Array.scaled_tanh"]], "scaled_tanh() (ivy.container method)": [[298, "ivy.Container.scaled_tanh"]], "selu() (in module ivy)": [[299, "ivy.selu"], [360, "ivy.selu"]], "selu() (ivy.array method)": [[299, "ivy.Array.selu"]], "selu() (ivy.container method)": [[299, "ivy.Container.selu"]], "silu() (in module ivy)": [[300, "ivy.silu"], [360, "ivy.silu"]], "silu() (ivy.array method)": [[300, "ivy.Array.silu"]], "silu() (ivy.container method)": [[300, "ivy.Container.silu"]], "softshrink() (in module ivy)": [[301, "ivy.softshrink"], [360, "ivy.softshrink"]], "softshrink() (ivy.array method)": [[301, "ivy.Array.softshrink"]], "softshrink() (ivy.container method)": [[301, "ivy.Container.softshrink"]], "stanh() (in module ivy)": [[302, "ivy.stanh"], [360, "ivy.stanh"]], "tanhshrink() (in module ivy)": [[303, "ivy.tanhshrink"], [360, "ivy.tanhshrink"]], "tanhshrink() (ivy.array method)": [[303, "ivy.Array.tanhshrink"]], "tanhshrink() (ivy.container method)": [[303, "ivy.Container.tanhshrink"]], "threshold() (in module ivy)": [[304, "ivy.threshold"], [360, "ivy.threshold"]], "threshold() (ivy.array method)": [[304, "ivy.Array.threshold"]], "threshold() (ivy.container method)": [[304, "ivy.Container.threshold"]], "thresholded_relu() (in module ivy)": [[305, "ivy.thresholded_relu"], [360, "ivy.thresholded_relu"]], "thresholded_relu() (ivy.array method)": [[305, "ivy.Array.thresholded_relu"]], "thresholded_relu() (ivy.container method)": [[305, "ivy.Container.thresholded_relu"]], "blackman_window() (in module ivy)": [[306, "ivy.blackman_window"], [362, "ivy.blackman_window"]], "blackman_window() (ivy.array method)": [[306, "ivy.Array.blackman_window"]], "blackman_window() (ivy.container method)": [[306, "ivy.Container.blackman_window"]], "eye_like() (in module ivy)": [[307, "ivy.eye_like"], [362, "ivy.eye_like"]], "eye_like() (ivy.array method)": [[307, "ivy.Array.eye_like"]], "eye_like() (ivy.container method)": [[307, "ivy.Container.eye_like"]], "hamming_window() (in module ivy)": [[308, "ivy.hamming_window"], [362, "ivy.hamming_window"]], "hamming_window() (ivy.container method)": [[308, "ivy.Container.hamming_window"]], "hann_window() (in module ivy)": [[309, "ivy.hann_window"], [362, "ivy.hann_window"]], "hann_window() (ivy.container method)": [[309, "ivy.Container.hann_window"]], "indices() (in module ivy)": [[310, "ivy.indices"], [362, "ivy.indices"]], "kaiser_bessel_derived_window() (in module ivy)": [[311, "ivy.kaiser_bessel_derived_window"], [362, "ivy.kaiser_bessel_derived_window"]], "kaiser_bessel_derived_window() (ivy.container method)": [[311, "ivy.Container.kaiser_bessel_derived_window"]], "kaiser_window() (in module ivy)": [[312, "ivy.kaiser_window"], [362, "ivy.kaiser_window"]], "kaiser_window() (ivy.container method)": [[312, "ivy.Container.kaiser_window"]], "mel_weight_matrix() (in module ivy)": [[313, "ivy.mel_weight_matrix"], [362, "ivy.mel_weight_matrix"]], "mel_weight_matrix() (ivy.array static method)": [[313, "ivy.Array.mel_weight_matrix"]], "mel_weight_matrix() (ivy.container method)": [[313, "ivy.Container.mel_weight_matrix"]], "ndenumerate() (in module ivy)": [[314, "ivy.ndenumerate"], [362, "ivy.ndenumerate"]], "ndindex() (in module ivy)": [[315, "ivy.ndindex"], [362, "ivy.ndindex"]], "polyval() (in module ivy)": [[316, "ivy.polyval"], [362, "ivy.polyval"]], "polyval() (ivy.container method)": [[316, "ivy.Container.polyval"]], "random_cp() (in module ivy)": [[317, "ivy.random_cp"], [362, "ivy.random_cp"]], "random_parafac2() (in module ivy)": [[318, "ivy.random_parafac2"], [362, "ivy.random_parafac2"]], "random_tr() (in module ivy)": [[319, "ivy.random_tr"], [362, "ivy.random_tr"]], "random_tt() (in module ivy)": [[320, "ivy.random_tt"], [362, "ivy.random_tt"]], "random_tucker() (in module ivy)": [[321, "ivy.random_tucker"], [362, "ivy.random_tucker"]], "tril_indices() (in module ivy)": [[322, "ivy.tril_indices"], [362, "ivy.tril_indices"]], "tril_indices() (ivy.container method)": [[322, "ivy.Container.tril_indices"]], "trilu() (in module ivy)": [[323, "ivy.trilu"], [362, "ivy.trilu"]], "trilu() (ivy.array method)": [[323, "ivy.Array.trilu"]], "trilu() (ivy.container method)": [[323, "ivy.Container.trilu"]], "unsorted_segment_mean() (in module ivy)": [[324, "ivy.unsorted_segment_mean"], [362, "ivy.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.array method)": [[324, "ivy.Array.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.container method)": [[324, "ivy.Container.unsorted_segment_mean"]], "unsorted_segment_min() (in module ivy)": [[325, "ivy.unsorted_segment_min"], [362, "ivy.unsorted_segment_min"]], "unsorted_segment_min() (ivy.array method)": [[325, "ivy.Array.unsorted_segment_min"]], "unsorted_segment_min() (ivy.container method)": [[325, "ivy.Container.unsorted_segment_min"]], "unsorted_segment_sum() (in module ivy)": [[326, "ivy.unsorted_segment_sum"], [362, "ivy.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.array method)": [[326, "ivy.Array.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.container method)": [[326, "ivy.Container.unsorted_segment_sum"]], "vorbis_window() (in module ivy)": [[327, "ivy.vorbis_window"], [362, "ivy.vorbis_window"]], "vorbis_window() (ivy.container method)": [[327, "ivy.Container.vorbis_window"]], "allclose() (in module ivy)": [[328, "ivy.allclose"], [365, "ivy.allclose"]], "allclose() (ivy.array method)": [[328, "ivy.Array.allclose"]], "allclose() (ivy.container method)": [[328, "ivy.Container.allclose"]], "amax() (in module ivy)": [[329, "ivy.amax"], [365, "ivy.amax"]], "amax() (ivy.array method)": [[329, "ivy.Array.amax"]], "amax() (ivy.container method)": [[329, "ivy.Container.amax"]], "amin() (in module ivy)": [[330, "ivy.amin"], [365, "ivy.amin"]], "amin() (ivy.array method)": [[330, "ivy.Array.amin"]], "amin() (ivy.container method)": [[330, "ivy.Container.amin"]], "binarizer() (in module ivy)": [[331, "ivy.binarizer"], [365, "ivy.binarizer"]], "binarizer() (ivy.array method)": [[331, "ivy.Array.binarizer"]], "binarizer() (ivy.container method)": [[331, "ivy.Container.binarizer"]], "conj() (in module ivy)": [[332, "ivy.conj"], [365, "ivy.conj"]], "conj() (ivy.array method)": [[332, "ivy.Array.conj"]], "conj() (ivy.container method)": [[332, "ivy.Container.conj"]], "copysign() (in module ivy)": [[333, "ivy.copysign"], [365, "ivy.copysign"]], "copysign() (ivy.array method)": [[333, "ivy.Array.copysign"]], "copysign() (ivy.container method)": [[333, "ivy.Container.copysign"]], "count_nonzero() (in module ivy)": [[334, "ivy.count_nonzero"], [365, "ivy.count_nonzero"]], "count_nonzero() (ivy.array method)": [[334, "ivy.Array.count_nonzero"]], "count_nonzero() (ivy.container method)": [[334, "ivy.Container.count_nonzero"]], "diff() (in module ivy)": [[335, "ivy.diff"], [365, "ivy.diff"]], "diff() (ivy.array method)": [[335, "ivy.Array.diff"]], "diff() (ivy.container method)": [[335, "ivy.Container.diff"]], "digamma() (in module ivy)": [[336, "ivy.digamma"], [365, "ivy.digamma"]], "digamma() (ivy.array method)": [[336, "ivy.Array.digamma"]], "digamma() (ivy.container method)": [[336, "ivy.Container.digamma"]], "erfc() (in module ivy)": [[337, "ivy.erfc"], [365, "ivy.erfc"]], "erfc() (ivy.array method)": [[337, "ivy.Array.erfc"]], "erfc() (ivy.container method)": [[337, "ivy.Container.erfc"]], "fix() (in module ivy)": [[338, "ivy.fix"], [365, "ivy.fix"]], "fix() (ivy.array method)": [[338, "ivy.Array.fix"]], "fix() (ivy.container method)": [[338, "ivy.Container.fix"]], "float_power() (in module ivy)": [[339, "ivy.float_power"], [365, "ivy.float_power"]], "float_power() (ivy.array method)": [[339, "ivy.Array.float_power"]], "float_power() (ivy.container method)": [[339, "ivy.Container.float_power"]], "fmax() (in module ivy)": [[340, "ivy.fmax"], [365, "ivy.fmax"]], "fmax() (ivy.array method)": [[340, "ivy.Array.fmax"]], "fmax() (ivy.container method)": [[340, "ivy.Container.fmax"]], "frexp() (in module ivy)": [[341, "ivy.frexp"], [365, "ivy.frexp"]], "frexp() (ivy.array method)": [[341, "ivy.Array.frexp"]], "frexp() (ivy.container method)": [[341, "ivy.Container.frexp"]], "gradient() (in module ivy)": [[342, "ivy.gradient"], [365, "ivy.gradient"]], "gradient() (ivy.array method)": [[342, "ivy.Array.gradient"]], "gradient() (ivy.container method)": [[342, "ivy.Container.gradient"]], "hypot() (in module ivy)": [[343, "ivy.hypot"], [365, "ivy.hypot"]], "hypot() (ivy.array method)": [[343, "ivy.Array.hypot"]], "hypot() (ivy.container method)": [[343, "ivy.Container.hypot"]], "isclose() (in module ivy)": [[344, "ivy.isclose"], [365, "ivy.isclose"]], "isclose() (ivy.array method)": [[344, "ivy.Array.isclose"]], "isclose() (ivy.container method)": [[344, "ivy.Container.isclose"]], "ldexp() (in module ivy)": [[345, "ivy.ldexp"], [365, "ivy.ldexp"]], "ldexp() (ivy.array method)": [[345, "ivy.Array.ldexp"]], "ldexp() (ivy.container method)": [[345, "ivy.Container.ldexp"]], "lerp() (in module ivy)": [[346, "ivy.lerp"], [365, "ivy.lerp"]], "lerp() (ivy.array method)": [[346, "ivy.Array.lerp"]], "lerp() (ivy.container method)": [[346, "ivy.Container.lerp"]], "lgamma() (in module ivy)": [[347, "ivy.lgamma"], [365, "ivy.lgamma"]], "lgamma() (ivy.array method)": [[347, "ivy.Array.lgamma"]], "modf() (in module ivy)": [[348, "ivy.modf"], [365, "ivy.modf"]], "modf() (ivy.array method)": [[348, "ivy.Array.modf"]], "modf() (ivy.container method)": [[348, "ivy.Container.modf"]], "nansum() (in module ivy)": [[349, "ivy.nansum"], [365, "ivy.nansum"]], "nansum() (ivy.array method)": [[349, "ivy.Array.nansum"]], "nansum() (ivy.container method)": [[349, "ivy.Container.nansum"]], "nextafter() (in module ivy)": [[350, "ivy.nextafter"], [365, "ivy.nextafter"]], "nextafter() (ivy.array method)": [[350, "ivy.Array.nextafter"]], "nextafter() (ivy.container method)": [[350, "ivy.Container.nextafter"]], "signbit() (in module ivy)": [[351, "ivy.signbit"], [365, "ivy.signbit"]], "signbit() (ivy.array method)": [[351, "ivy.Array.signbit"]], "signbit() (ivy.container method)": [[351, "ivy.Container.signbit"]], "sinc() (in module ivy)": [[352, "ivy.sinc"], [365, "ivy.sinc"]], "sinc() (ivy.array method)": [[352, "ivy.Array.sinc"]], "sinc() (ivy.container method)": [[352, "ivy.Container.sinc"]], "sparsify_tensor() (in module ivy)": [[353, "ivy.sparsify_tensor"], [365, "ivy.sparsify_tensor"]], "sparsify_tensor() (ivy.array method)": [[353, "ivy.Array.sparsify_tensor"]], "sparsify_tensor() (ivy.container method)": [[353, "ivy.Container.sparsify_tensor"]], "xlogy() (in module ivy)": [[354, "ivy.xlogy"], [365, "ivy.xlogy"]], "xlogy() (ivy.array method)": [[354, "ivy.Array.xlogy"]], "xlogy() (ivy.container method)": [[354, "ivy.Container.xlogy"]], "zeta() (in module ivy)": [[355, "ivy.zeta"], [365, "ivy.zeta"]], "zeta() (ivy.array method)": [[355, "ivy.Array.zeta"]], "zeta() (ivy.container method)": [[355, "ivy.Container.zeta"]], "reduce() (in module ivy)": [[356, "ivy.reduce"], [366, "ivy.reduce"]], "reduce() (ivy.array method)": [[356, "ivy.Array.reduce"]], "reduce() (ivy.container method)": [[356, "ivy.Container.reduce"]], "bind_custom_gradient_function() (in module ivy)": [[357, "ivy.bind_custom_gradient_function"], [367, "ivy.bind_custom_gradient_function"]], "jvp() (in module ivy)": [[358, "ivy.jvp"], [367, "ivy.jvp"]], "vjp() (in module ivy)": [[359, "ivy.vjp"], [367, "ivy.vjp"]], "ivy.functional.ivy.experimental.activations": [[360, "module-ivy.functional.ivy.experimental.activations"]], "ivy.functional.ivy.experimental.constants": [[361, "module-ivy.functional.ivy.experimental.constants"]], "ivy.functional.ivy.experimental.creation": [[362, "module-ivy.functional.ivy.experimental.creation"]], "ivy.functional.ivy.experimental.data_type": [[363, "module-ivy.functional.ivy.experimental.data_type"]], "ivy.functional.ivy.experimental.device": [[364, "module-ivy.functional.ivy.experimental.device"]], "ivy.functional.ivy.experimental.elementwise": [[365, "module-ivy.functional.ivy.experimental.elementwise"]], "ivy.functional.ivy.experimental.general": [[366, "module-ivy.functional.ivy.experimental.general"]], "ivy.functional.ivy.experimental.gradients": [[367, "module-ivy.functional.ivy.experimental.gradients"]], "adaptive_avg_pool1d() (in module ivy)": [[368, "ivy.adaptive_avg_pool1d"], [382, "ivy.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (in module ivy)": [[368, "ivy.adaptive_avg_pool2d"], [383, "ivy.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (in module ivy)": [[368, "ivy.adaptive_max_pool2d"], [384, "ivy.adaptive_max_pool2d"]], "area_interpolate() (in module ivy)": [[368, "ivy.area_interpolate"], [385, "ivy.area_interpolate"]], "avg_pool1d() (in module ivy)": [[368, "ivy.avg_pool1d"], [386, "ivy.avg_pool1d"]], "avg_pool2d() (in module ivy)": [[368, "ivy.avg_pool2d"], [387, "ivy.avg_pool2d"]], "avg_pool3d() (in module ivy)": [[368, "ivy.avg_pool3d"], [388, "ivy.avg_pool3d"]], "dct() (in module ivy)": [[368, "ivy.dct"], [389, "ivy.dct"]], "dft() (in module ivy)": [[368, "ivy.dft"], [390, "ivy.dft"]], "dropout1d() (in module ivy)": [[368, "ivy.dropout1d"], [391, "ivy.dropout1d"]], "dropout2d() (in module ivy)": [[368, "ivy.dropout2d"], [392, "ivy.dropout2d"]], "dropout3d() (in module ivy)": [[368, "ivy.dropout3d"], [393, "ivy.dropout3d"]], "embedding() (in module ivy)": [[368, "ivy.embedding"], [394, "ivy.embedding"]], "fft() (in module ivy)": [[368, "ivy.fft"], [395, "ivy.fft"]], "fft2() (in module ivy)": [[368, "ivy.fft2"], [396, "ivy.fft2"]], "generate_einsum_equation() (in module ivy)": [[368, "ivy.generate_einsum_equation"], [397, "ivy.generate_einsum_equation"]], "get_interpolate_kernel() (in module ivy)": [[368, "ivy.get_interpolate_kernel"], [398, "ivy.get_interpolate_kernel"]], "idct() (in module ivy)": [[368, "ivy.idct"], [399, "ivy.idct"]], "ifft() (in module ivy)": [[368, "ivy.ifft"], [400, "ivy.ifft"]], "ifftn() (in module ivy)": [[368, "ivy.ifftn"], [401, "ivy.ifftn"]], "interp() (in module ivy)": [[368, "ivy.interp"], [402, "ivy.interp"]], "interpolate() (in module ivy)": [[368, "ivy.interpolate"], [403, "ivy.interpolate"]], "ivy.functional.ivy.experimental.layers": [[368, "module-ivy.functional.ivy.experimental.layers"]], "max_pool1d() (in module ivy)": [[368, "ivy.max_pool1d"], [404, "ivy.max_pool1d"]], "max_pool2d() (in module ivy)": [[368, "ivy.max_pool2d"], [405, "ivy.max_pool2d"]], "max_pool3d() (in module ivy)": [[368, "ivy.max_pool3d"], [406, "ivy.max_pool3d"]], "max_unpool1d() (in module ivy)": [[368, "ivy.max_unpool1d"], [407, "ivy.max_unpool1d"]], "nearest_interpolate() (in module ivy)": [[368, "ivy.nearest_interpolate"], [408, "ivy.nearest_interpolate"]], "pool() (in module ivy)": [[368, "ivy.pool"], [409, "ivy.pool"]], "reduce_window() (in module ivy)": [[368, "ivy.reduce_window"], [410, "ivy.reduce_window"]], "rfft() (in module ivy)": [[368, "ivy.rfft"], [411, "ivy.rfft"]], "rfftn() (in module ivy)": [[368, "ivy.rfftn"], [412, "ivy.rfftn"]], "sliding_window() (in module ivy)": [[368, "ivy.sliding_window"], [413, "ivy.sliding_window"]], "stft() (in module ivy)": [[368, "ivy.stft"], [414, "ivy.stft"]], "adjoint() (in module ivy)": [[369, "ivy.adjoint"], [415, "ivy.adjoint"]], "batched_outer() (in module ivy)": [[369, "ivy.batched_outer"], [416, "ivy.batched_outer"]], "cond() (in module ivy)": [[369, "ivy.cond"], [417, "ivy.cond"]], "diagflat() (in module ivy)": [[369, "ivy.diagflat"], [418, "ivy.diagflat"]], "dot() (in module ivy)": [[369, "ivy.dot"], [419, "ivy.dot"]], "eig() (in module ivy)": [[369, "ivy.eig"], [420, "ivy.eig"], [623, "ivy.eig"], [657, "ivy.eig"]], "eigh_tridiagonal() (in module ivy)": [[369, "ivy.eigh_tridiagonal"], [421, "ivy.eigh_tridiagonal"]], "eigvals() (in module ivy)": [[369, "ivy.eigvals"], [422, "ivy.eigvals"]], "general_inner_product() (in module ivy)": [[369, "ivy.general_inner_product"], [423, "ivy.general_inner_product"]], "higher_order_moment() (in module ivy)": [[369, "ivy.higher_order_moment"], [424, "ivy.higher_order_moment"]], "initialize_tucker() (in module ivy)": [[369, "ivy.initialize_tucker"], [425, "ivy.initialize_tucker"]], "ivy.functional.ivy.experimental.linear_algebra": [[369, "module-ivy.functional.ivy.experimental.linear_algebra"]], "khatri_rao() (in module ivy)": [[369, "ivy.khatri_rao"], [426, "ivy.khatri_rao"]], "kron() (in module ivy)": [[369, "ivy.kron"], [427, "ivy.kron"]], "kronecker() (in module ivy)": [[369, "ivy.kronecker"], [428, "ivy.kronecker"]], "make_svd_non_negative() (in module ivy)": [[369, "ivy.make_svd_non_negative"], [429, "ivy.make_svd_non_negative"]], "matrix_exp() (in module ivy)": [[369, "ivy.matrix_exp"], [430, "ivy.matrix_exp"]], "mode_dot() (in module ivy)": [[369, "ivy.mode_dot"], [431, "ivy.mode_dot"]], "multi_dot() (in module ivy)": [[369, "ivy.multi_dot"], [432, "ivy.multi_dot"]], "multi_mode_dot() (in module ivy)": [[369, "ivy.multi_mode_dot"], [433, "ivy.multi_mode_dot"]], "partial_tucker() (in module ivy)": [[369, "ivy.partial_tucker"], [434, "ivy.partial_tucker"]], "solve_triangular() (in module ivy)": [[369, "ivy.solve_triangular"], [435, "ivy.solve_triangular"]], "svd_flip() (in module ivy)": [[369, "ivy.svd_flip"], [436, "ivy.svd_flip"]], "tensor_train() (in module ivy)": [[369, "ivy.tensor_train"], [437, "ivy.tensor_train"]], "truncated_svd() (in module ivy)": [[369, "ivy.truncated_svd"], [438, "ivy.truncated_svd"]], "tt_matrix_to_tensor() (in module ivy)": [[369, "ivy.tt_matrix_to_tensor"], [439, "ivy.tt_matrix_to_tensor"]], "tucker() (in module ivy)": [[369, "ivy.tucker"], [440, "ivy.tucker"]], "huber_loss() (in module ivy)": [[370, "ivy.huber_loss"], [441, "ivy.huber_loss"]], "ivy.functional.ivy.experimental.losses": [[370, "module-ivy.functional.ivy.experimental.losses"]], "kl_div() (in module ivy)": [[370, "ivy.kl_div"], [442, "ivy.kl_div"]], "l1_loss() (in module ivy)": [[370, "ivy.l1_loss"], [443, "ivy.l1_loss"]], "log_poisson_loss() (in module ivy)": [[370, "ivy.log_poisson_loss"], [444, "ivy.log_poisson_loss"]], "poisson_nll_loss() (in module ivy)": [[370, "ivy.poisson_nll_loss"], [445, "ivy.poisson_nll_loss"]], "smooth_l1_loss() (in module ivy)": [[370, "ivy.smooth_l1_loss"], [446, "ivy.smooth_l1_loss"]], "soft_margin_loss() (in module ivy)": [[370, "ivy.soft_margin_loss"], [447, "ivy.soft_margin_loss"]], "as_strided() (in module ivy)": [[371, "ivy.as_strided"], [448, "ivy.as_strided"]], "associative_scan() (in module ivy)": [[371, "ivy.associative_scan"], [449, "ivy.associative_scan"]], "atleast_1d() (in module ivy)": [[371, "ivy.atleast_1d"], [450, "ivy.atleast_1d"]], "atleast_2d() (in module ivy)": [[371, "ivy.atleast_2d"], [451, "ivy.atleast_2d"]], "atleast_3d() (in module ivy)": [[371, "ivy.atleast_3d"], [452, "ivy.atleast_3d"]], "broadcast_shapes() (in module ivy)": [[371, "ivy.broadcast_shapes"], [453, "ivy.broadcast_shapes"]], "check_scalar() (in module ivy)": [[371, "ivy.check_scalar"], [454, "ivy.check_scalar"]], "choose() (in module ivy)": [[371, "ivy.choose"], [455, "ivy.choose"]], "column_stack() (in module ivy)": [[371, "ivy.column_stack"], [456, "ivy.column_stack"]], "concat_from_sequence() (in module ivy)": [[371, "ivy.concat_from_sequence"], [457, "ivy.concat_from_sequence"]], "dsplit() (in module ivy)": [[371, "ivy.dsplit"], [458, "ivy.dsplit"]], "dstack() (in module ivy)": [[371, "ivy.dstack"], [459, "ivy.dstack"]], "expand() (in module ivy)": [[371, "ivy.expand"], [460, "ivy.expand"]], "fill_diagonal() (in module ivy)": [[371, "ivy.fill_diagonal"], [461, "ivy.fill_diagonal"]], "flatten() (in module ivy)": [[371, "ivy.flatten"], [462, "ivy.flatten"]], "fliplr() (in module ivy)": [[371, "ivy.fliplr"], [463, "ivy.fliplr"]], "flipud() (in module ivy)": [[371, "ivy.flipud"], [464, "ivy.flipud"]], "fold() (in module ivy)": [[371, "ivy.fold"], [465, "ivy.fold"]], "heaviside() (in module ivy)": [[371, "ivy.heaviside"], [466, "ivy.heaviside"]], "hsplit() (in module ivy)": [[371, "ivy.hsplit"], [467, "ivy.hsplit"]], "hstack() (in module ivy)": [[371, "ivy.hstack"], [468, "ivy.hstack"]], "i0() (in module ivy)": [[371, "ivy.i0"], [469, "ivy.i0"]], "ivy.functional.ivy.experimental.manipulation": [[371, "module-ivy.functional.ivy.experimental.manipulation"]], "matricize() (in module ivy)": [[371, "ivy.matricize"], [470, "ivy.matricize"]], "moveaxis() (in module ivy)": [[371, "ivy.moveaxis"], [471, "ivy.moveaxis"]], "pad() (in module ivy)": [[371, "ivy.pad"], [472, "ivy.pad"]], "partial_fold() (in module ivy)": [[371, "ivy.partial_fold"], [473, "ivy.partial_fold"]], "partial_tensor_to_vec() (in module ivy)": [[371, "ivy.partial_tensor_to_vec"], [474, "ivy.partial_tensor_to_vec"]], "partial_unfold() (in module ivy)": [[371, "ivy.partial_unfold"], [475, "ivy.partial_unfold"]], "partial_vec_to_tensor() (in module ivy)": [[371, "ivy.partial_vec_to_tensor"], [476, "ivy.partial_vec_to_tensor"]], "put_along_axis() (in module ivy)": [[371, "ivy.put_along_axis"], [477, "ivy.put_along_axis"]], "rot90() (in module ivy)": [[371, "ivy.rot90"], [478, "ivy.rot90"]], "soft_thresholding() (in module ivy)": [[371, "ivy.soft_thresholding"], [479, "ivy.soft_thresholding"]], "take() (in module ivy)": [[371, "ivy.take"], [480, "ivy.take"]], "take_along_axis() (in module ivy)": [[371, "ivy.take_along_axis"], [481, "ivy.take_along_axis"]], "top_k() (in module ivy)": [[371, "ivy.top_k"], [482, "ivy.top_k"]], "trim_zeros() (in module ivy)": [[371, "ivy.trim_zeros"], [483, "ivy.trim_zeros"]], "unfold() (in module ivy)": [[371, "ivy.unfold"], [484, "ivy.unfold"]], "unique_consecutive() (in module ivy)": [[371, "ivy.unique_consecutive"], [485, "ivy.unique_consecutive"]], "vsplit() (in module ivy)": [[371, "ivy.vsplit"], [486, "ivy.vsplit"]], "vstack() (in module ivy)": [[371, "ivy.vstack"], [487, "ivy.vstack"]], "ivy.functional.ivy.experimental.meta": [[372, "module-ivy.functional.ivy.experimental.meta"]], "ivy.functional.ivy.experimental.nest": [[373, "module-ivy.functional.ivy.experimental.nest"]], "batch_norm() (in module ivy)": [[374, "ivy.batch_norm"], [488, "ivy.batch_norm"]], "group_norm() (in module ivy)": [[374, "ivy.group_norm"], [489, "ivy.group_norm"]], "instance_norm() (in module ivy)": [[374, "ivy.instance_norm"], [490, "ivy.instance_norm"]], "ivy.functional.ivy.experimental.norms": [[374, "module-ivy.functional.ivy.experimental.norms"]], "l1_normalize() (in module ivy)": [[374, "ivy.l1_normalize"], [491, "ivy.l1_normalize"]], "l2_normalize() (in module ivy)": [[374, "ivy.l2_normalize"], [492, "ivy.l2_normalize"]], "local_response_norm() (in module ivy)": [[374, "ivy.local_response_norm"], [493, "ivy.local_response_norm"]], "lp_normalize() (in module ivy)": [[374, "ivy.lp_normalize"], [494, "ivy.lp_normalize"]], "bernoulli() (in module ivy)": [[375, "ivy.bernoulli"], [495, "ivy.bernoulli"]], "beta() (in module ivy)": [[375, "ivy.beta"], [496, "ivy.beta"]], "dirichlet() (in module ivy)": [[375, "ivy.dirichlet"], [497, "ivy.dirichlet"]], "gamma() (in module ivy)": [[375, "ivy.gamma"], [498, "ivy.gamma"]], "ivy.functional.ivy.experimental.random": [[375, "module-ivy.functional.ivy.experimental.random"]], "poisson() (in module ivy)": [[375, "ivy.poisson"], [499, "ivy.poisson"]], "ivy.functional.ivy.experimental.searching": [[376, "module-ivy.functional.ivy.experimental.searching"]], "unravel_index() (in module ivy)": [[376, "ivy.unravel_index"], [500, "ivy.unravel_index"]], "ivy.functional.ivy.experimental.set": [[377, "module-ivy.functional.ivy.experimental.set"]], "invert_permutation() (in module ivy)": [[378, "ivy.invert_permutation"], [501, "ivy.invert_permutation"]], "ivy.functional.ivy.experimental.sorting": [[378, "module-ivy.functional.ivy.experimental.sorting"]], "lexsort() (in module ivy)": [[378, "ivy.lexsort"], [502, "ivy.lexsort"]], "nativesparsearray (class in ivy)": [[379, "ivy.NativeSparseArray"]], "sparsearray (class in ivy)": [[379, "ivy.SparseArray"]], "is_ivy_sparse_array() (in module ivy)": [[379, "ivy.is_ivy_sparse_array"], [503, "ivy.is_ivy_sparse_array"]], "is_native_sparse_array() (in module ivy)": [[379, "ivy.is_native_sparse_array"], [504, "ivy.is_native_sparse_array"]], "ivy.functional.ivy.experimental.sparse_array": [[379, "module-ivy.functional.ivy.experimental.sparse_array"]], "native_sparse_array() (in module ivy)": [[379, "ivy.native_sparse_array"], [505, "ivy.native_sparse_array"]], "native_sparse_array_to_indices_values_and_shape() (in module ivy)": [[379, "ivy.native_sparse_array_to_indices_values_and_shape"], [506, "ivy.native_sparse_array_to_indices_values_and_shape"]], "bincount() (in module ivy)": [[380, "ivy.bincount"], [507, "ivy.bincount"]], "corrcoef() (in module ivy)": [[380, "ivy.corrcoef"], [508, "ivy.corrcoef"]], "cov() (in module ivy)": [[380, "ivy.cov"], [509, "ivy.cov"]], "cummax() (in module ivy)": [[380, "ivy.cummax"], [510, "ivy.cummax"]], "cummin() (in module ivy)": [[380, "ivy.cummin"], [511, "ivy.cummin"]], "histogram() (in module ivy)": [[380, "ivy.histogram"], [512, "ivy.histogram"]], "igamma() (in module ivy)": [[380, "ivy.igamma"], [513, "ivy.igamma"]], "ivy.functional.ivy.experimental.statistical": [[380, "module-ivy.functional.ivy.experimental.statistical"]], "median() (in module ivy)": [[380, "ivy.median"], [514, "ivy.median"]], "nanmean() (in module ivy)": [[380, "ivy.nanmean"], [515, "ivy.nanmean"]], "nanmedian() (in module ivy)": [[380, "ivy.nanmedian"], [516, "ivy.nanmedian"]], "nanmin() (in module ivy)": [[380, "ivy.nanmin"], [517, "ivy.nanmin"]], "nanprod() (in module ivy)": [[380, "ivy.nanprod"], [518, "ivy.nanprod"]], "quantile() (in module ivy)": [[380, "ivy.quantile"], [519, "ivy.quantile"]], "ivy.functional.ivy.experimental.utility": [[381, "module-ivy.functional.ivy.experimental.utility"]], "optional_get_element() (in module ivy)": [[381, "ivy.optional_get_element"], [520, "ivy.optional_get_element"]], "adaptive_avg_pool1d() (ivy.array method)": [[382, "ivy.Array.adaptive_avg_pool1d"]], "adaptive_avg_pool1d() (ivy.container method)": [[382, "ivy.Container.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.array method)": [[383, "ivy.Array.adaptive_avg_pool2d"]], "adaptive_avg_pool2d() (ivy.container method)": [[383, "ivy.Container.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.array method)": [[384, "ivy.Array.adaptive_max_pool2d"]], "adaptive_max_pool2d() (ivy.container method)": [[384, "ivy.Container.adaptive_max_pool2d"]], "avg_pool1d() (ivy.array method)": [[386, "ivy.Array.avg_pool1d"]], "avg_pool1d() (ivy.container method)": [[386, "ivy.Container.avg_pool1d"]], "avg_pool2d() (ivy.array method)": [[387, "ivy.Array.avg_pool2d"]], "avg_pool2d() (ivy.container method)": [[387, "ivy.Container.avg_pool2d"]], "avg_pool3d() (ivy.array method)": [[388, "ivy.Array.avg_pool3d"]], "avg_pool3d() (ivy.container method)": [[388, "ivy.Container.avg_pool3d"]], "dct() (ivy.array method)": [[389, "ivy.Array.dct"]], "dct() (ivy.container method)": [[389, "ivy.Container.dct"]], "dft() (ivy.array method)": [[390, "ivy.Array.dft"]], "dft() (ivy.container method)": [[390, "ivy.Container.dft"]], "dropout1d() (ivy.array method)": [[391, "ivy.Array.dropout1d"]], "dropout1d() (ivy.container method)": [[391, "ivy.Container.dropout1d"]], "dropout2d() (ivy.array method)": [[392, "ivy.Array.dropout2d"]], "dropout2d() (ivy.container method)": [[392, "ivy.Container.dropout2d"]], "dropout3d() (ivy.array method)": [[393, "ivy.Array.dropout3d"]], "dropout3d() (ivy.container method)": [[393, "ivy.Container.dropout3d"]], "embedding() (ivy.array method)": [[394, "ivy.Array.embedding"]], "embedding() (ivy.container method)": [[394, "ivy.Container.embedding"]], "fft() (ivy.array method)": [[395, "ivy.Array.fft"]], "fft() (ivy.container method)": [[395, "ivy.Container.fft"]], "fft2() (ivy.array method)": [[396, "ivy.Array.fft2"]], "idct() (ivy.array method)": [[399, "ivy.Array.idct"]], "idct() (ivy.container method)": [[399, "ivy.Container.idct"]], "ifft() (ivy.array method)": [[400, "ivy.Array.ifft"]], "ifft() (ivy.container method)": [[400, "ivy.Container.ifft"]], "ifftn() (ivy.array method)": [[401, "ivy.Array.ifftn"]], "ifftn() (ivy.container method)": [[401, "ivy.Container.ifftn"]], "interpolate() (ivy.array method)": [[403, "ivy.Array.interpolate"]], "interpolate() (ivy.container method)": [[403, "ivy.Container.interpolate"]], "max_pool1d() (ivy.array method)": [[404, "ivy.Array.max_pool1d"]], "max_pool1d() (ivy.container method)": [[404, "ivy.Container.max_pool1d"]], "max_pool2d() (ivy.array method)": [[405, "ivy.Array.max_pool2d"]], "max_pool2d() (ivy.container method)": [[405, "ivy.Container.max_pool2d"]], "max_pool3d() (ivy.array method)": [[406, "ivy.Array.max_pool3d"]], "max_pool3d() (ivy.container method)": [[406, "ivy.Container.max_pool3d"]], "max_unpool1d() (ivy.array method)": [[407, "ivy.Array.max_unpool1d"]], "max_unpool1d() (ivy.container method)": [[407, "ivy.Container.max_unpool1d"]], "reduce_window() (ivy.array method)": [[410, "ivy.Array.reduce_window"]], "reduce_window() (ivy.container method)": [[410, "ivy.Container.reduce_window"]], "rfft() (ivy.array method)": [[411, "ivy.Array.rfft"]], "rfft() (ivy.container method)": [[411, "ivy.Container.rfft"]], "rfftn() (ivy.array method)": [[412, "ivy.Array.rfftn"]], "rfftn() (ivy.container method)": [[412, "ivy.Container.rfftn"]], "sliding_window() (ivy.array method)": [[413, "ivy.Array.sliding_window"]], "sliding_window() (ivy.container method)": [[413, "ivy.Container.sliding_window"]], "stft() (ivy.array method)": [[414, "ivy.Array.stft"]], "stft() (ivy.container method)": [[414, "ivy.Container.stft"]], "adjoint() (ivy.array method)": [[415, "ivy.Array.adjoint"]], "adjoint() (ivy.container method)": [[415, "ivy.Container.adjoint"]], "batched_outer() (ivy.array method)": [[416, "ivy.Array.batched_outer"]], "batched_outer() (ivy.container method)": [[416, "ivy.Container.batched_outer"]], "cond() (ivy.array method)": [[417, "ivy.Array.cond"]], "cond() (ivy.container method)": [[417, "ivy.Container.cond"]], "diagflat() (ivy.array method)": [[418, "ivy.Array.diagflat"]], "diagflat() (ivy.container method)": [[418, "ivy.Container.diagflat"]], "dot() (ivy.array method)": [[419, "ivy.Array.dot"]], "dot() (ivy.container method)": [[419, "ivy.Container.dot"]], "eig() (ivy.array method)": [[420, "ivy.Array.eig"], [657, "ivy.Array.eig"]], "eig() (ivy.container method)": [[420, "ivy.Container.eig"], [657, "ivy.Container.eig"]], "eigh_tridiagonal() (ivy.array method)": [[421, "ivy.Array.eigh_tridiagonal"]], "eigh_tridiagonal() (ivy.container method)": [[421, "ivy.Container.eigh_tridiagonal"]], "eigvals() (ivy.array method)": [[422, "ivy.Array.eigvals"]], "eigvals() (ivy.container method)": [[422, "ivy.Container.eigvals"]], "general_inner_product() (ivy.array method)": [[423, "ivy.Array.general_inner_product"]], "general_inner_product() (ivy.container method)": [[423, "ivy.Container.general_inner_product"]], "higher_order_moment() (ivy.array method)": [[424, "ivy.Array.higher_order_moment"]], "higher_order_moment() (ivy.container method)": [[424, "ivy.Container.higher_order_moment"]], "initialize_tucker() (ivy.array method)": [[425, "ivy.Array.initialize_tucker"]], "initialize_tucker() (ivy.container method)": [[425, "ivy.Container.initialize_tucker"]], "kron() (ivy.array method)": [[427, "ivy.Array.kron"]], "kron() (ivy.container method)": [[427, "ivy.Container.kron"]], "make_svd_non_negative() (ivy.array method)": [[429, "ivy.Array.make_svd_non_negative"]], "make_svd_non_negative() (ivy.container method)": [[429, "ivy.Container.make_svd_non_negative"]], "matrix_exp() (ivy.array method)": [[430, "ivy.Array.matrix_exp"]], "matrix_exp() (ivy.container method)": [[430, "ivy.Container.matrix_exp"]], "mode_dot() (ivy.array method)": [[431, "ivy.Array.mode_dot"]], "mode_dot() (ivy.container method)": [[431, "ivy.Container.mode_dot"]], "multi_dot() (ivy.array method)": [[432, "ivy.Array.multi_dot"]], "multi_dot() (ivy.container method)": [[432, "ivy.Container.multi_dot"]], "multi_mode_dot() (ivy.array method)": [[433, "ivy.Array.multi_mode_dot"]], "multi_mode_dot() (ivy.container method)": [[433, "ivy.Container.multi_mode_dot"]], "partial_tucker() (ivy.array method)": [[434, "ivy.Array.partial_tucker"]], "partial_tucker() (ivy.container method)": [[434, "ivy.Container.partial_tucker"]], "svd_flip() (ivy.array method)": [[436, "ivy.Array.svd_flip"]], "svd_flip() (ivy.container method)": [[436, "ivy.Container.svd_flip"]], "tensor_train() (ivy.array method)": [[437, "ivy.Array.tensor_train"]], "tensor_train() (ivy.container method)": [[437, "ivy.Container.tensor_train"]], "truncated_svd() (ivy.array method)": [[438, "ivy.Array.truncated_svd"]], "truncated_svd() (ivy.container method)": [[438, "ivy.Container.truncated_svd"]], "tt_matrix_to_tensor() (ivy.array method)": [[439, "ivy.Array.tt_matrix_to_tensor"]], "tt_matrix_to_tensor() (ivy.container method)": [[439, "ivy.Container.tt_matrix_to_tensor"]], "tucker() (ivy.array method)": [[440, "ivy.Array.tucker"]], "tucker() (ivy.container method)": [[440, "ivy.Container.tucker"]], "huber_loss() (ivy.array method)": [[441, "ivy.Array.huber_loss"]], "huber_loss() (ivy.container method)": [[441, "ivy.Container.huber_loss"]], "kl_div() (ivy.array method)": [[442, "ivy.Array.kl_div"]], "kl_div() (ivy.container method)": [[442, "ivy.Container.kl_div"]], "l1_loss() (ivy.array method)": [[443, "ivy.Array.l1_loss"]], "l1_loss() (ivy.container method)": [[443, "ivy.Container.l1_loss"]], "log_poisson_loss() (ivy.array method)": [[444, "ivy.Array.log_poisson_loss"]], "log_poisson_loss() (ivy.container method)": [[444, "ivy.Container.log_poisson_loss"]], "poisson_nll_loss() (ivy.array method)": [[445, "ivy.Array.poisson_nll_loss"]], "poisson_nll_loss() (ivy.container method)": [[445, "ivy.Container.poisson_nll_loss"]], "smooth_l1_loss() (ivy.array method)": [[446, "ivy.Array.smooth_l1_loss"]], "smooth_l1_loss() (ivy.container method)": [[446, "ivy.Container.smooth_l1_loss"]], "soft_margin_loss() (ivy.array method)": [[447, "ivy.Array.soft_margin_loss"]], "soft_margin_loss() (ivy.container method)": [[447, "ivy.Container.soft_margin_loss"]], "as_strided() (ivy.array method)": [[448, "ivy.Array.as_strided"]], "as_strided() (ivy.container method)": [[448, "ivy.Container.as_strided"]], "associative_scan() (ivy.array method)": [[449, "ivy.Array.associative_scan"]], "associative_scan() (ivy.container method)": [[449, "ivy.Container.associative_scan"]], "atleast_1d() (ivy.array method)": [[450, "ivy.Array.atleast_1d"]], "atleast_1d() (ivy.container method)": [[450, "ivy.Container.atleast_1d"]], "atleast_2d() (ivy.array method)": [[451, "ivy.Array.atleast_2d"]], "atleast_2d() (ivy.container method)": [[451, "ivy.Container.atleast_2d"]], "atleast_3d() (ivy.array method)": [[452, "ivy.Array.atleast_3d"]], "atleast_3d() (ivy.container method)": [[452, "ivy.Container.atleast_3d"]], "broadcast_shapes() (ivy.container method)": [[453, "ivy.Container.broadcast_shapes"]], "column_stack() (ivy.array method)": [[456, "ivy.Array.column_stack"]], "column_stack() (ivy.container method)": [[456, "ivy.Container.column_stack"]], "concat_from_sequence() (ivy.array method)": [[457, "ivy.Array.concat_from_sequence"]], "concat_from_sequence() (ivy.container method)": [[457, "ivy.Container.concat_from_sequence"]], "dsplit() (ivy.array method)": [[458, "ivy.Array.dsplit"]], "dsplit() (ivy.container method)": [[458, "ivy.Container.dsplit"]], "dstack() (ivy.array method)": [[459, "ivy.Array.dstack"]], "dstack() (ivy.container method)": [[459, "ivy.Container.dstack"]], "expand() (ivy.array method)": [[460, "ivy.Array.expand"]], "expand() (ivy.container method)": [[460, "ivy.Container.expand"]], "fill_diagonal() (ivy.array method)": [[461, "ivy.Array.fill_diagonal"]], "fill_diagonal() (ivy.container method)": [[461, "ivy.Container.fill_diagonal"]], "flatten() (ivy.array method)": [[462, "ivy.Array.flatten"]], "flatten() (ivy.container method)": [[462, "ivy.Container.flatten"]], "fliplr() (ivy.array method)": [[463, "ivy.Array.fliplr"]], "fliplr() (ivy.container method)": [[463, "ivy.Container.fliplr"]], "flipud() (ivy.array method)": [[464, "ivy.Array.flipud"]], "flipud() (ivy.container method)": [[464, "ivy.Container.flipud"]], "fold() (ivy.array method)": [[465, "ivy.Array.fold"]], "fold() (ivy.container method)": [[465, "ivy.Container.fold"]], "heaviside() (ivy.array method)": [[466, "ivy.Array.heaviside"]], "heaviside() (ivy.container method)": [[466, "ivy.Container.heaviside"]], "hsplit() (ivy.array method)": [[467, "ivy.Array.hsplit"]], "hsplit() (ivy.container method)": [[467, "ivy.Container.hsplit"]], "hstack() (ivy.array method)": [[468, "ivy.Array.hstack"]], "hstack() (ivy.container method)": [[468, "ivy.Container.hstack"]], "i0() (ivy.array method)": [[469, "ivy.Array.i0"]], "i0() (ivy.container method)": [[469, "ivy.Container.i0"]], "matricize() (ivy.array method)": [[470, "ivy.Array.matricize"]], "matricize() (ivy.container method)": [[470, "ivy.Container.matricize"]], "moveaxis() (ivy.array method)": [[471, "ivy.Array.moveaxis"]], "moveaxis() (ivy.container method)": [[471, "ivy.Container.moveaxis"]], "pad() (ivy.array method)": [[472, "ivy.Array.pad"]], "pad() (ivy.container method)": [[472, "ivy.Container.pad"]], "partial_fold() (ivy.array method)": [[473, "ivy.Array.partial_fold"]], "partial_fold() (ivy.container method)": [[473, "ivy.Container.partial_fold"]], "partial_tensor_to_vec() (ivy.array method)": [[474, "ivy.Array.partial_tensor_to_vec"]], "partial_tensor_to_vec() (ivy.container method)": [[474, "ivy.Container.partial_tensor_to_vec"]], "partial_unfold() (ivy.array method)": [[475, "ivy.Array.partial_unfold"]], "partial_unfold() (ivy.container method)": [[475, "ivy.Container.partial_unfold"]], "partial_vec_to_tensor() (ivy.array method)": [[476, "ivy.Array.partial_vec_to_tensor"]], "partial_vec_to_tensor() (ivy.container method)": [[476, "ivy.Container.partial_vec_to_tensor"]], "put_along_axis() (ivy.array method)": [[477, "ivy.Array.put_along_axis"]], "put_along_axis() (ivy.container method)": [[477, "ivy.Container.put_along_axis"]], "rot90() (ivy.array method)": [[478, "ivy.Array.rot90"]], "rot90() (ivy.container method)": [[478, "ivy.Container.rot90"]], "soft_thresholding() (ivy.array method)": [[479, "ivy.Array.soft_thresholding"]], "soft_thresholding() (ivy.container method)": [[479, "ivy.Container.soft_thresholding"]], "take() (ivy.array method)": [[480, "ivy.Array.take"]], "take() (ivy.container method)": [[480, "ivy.Container.take"]], "take_along_axis() (ivy.array method)": [[481, "ivy.Array.take_along_axis"]], "take_along_axis() (ivy.container method)": [[481, "ivy.Container.take_along_axis"]], "top_k() (ivy.array method)": [[482, "ivy.Array.top_k"]], "top_k() (ivy.container method)": [[482, "ivy.Container.top_k"]], "trim_zeros() (ivy.array method)": [[483, "ivy.Array.trim_zeros"]], "trim_zeros() (ivy.container method)": [[483, "ivy.Container.trim_zeros"]], "unfold() (ivy.array method)": [[484, "ivy.Array.unfold"]], "unfold() (ivy.container method)": [[484, "ivy.Container.unfold"]], "unique_consecutive() (ivy.array method)": [[485, "ivy.Array.unique_consecutive"]], "unique_consecutive() (ivy.container method)": [[485, "ivy.Container.unique_consecutive"]], "vsplit() (ivy.array method)": [[486, "ivy.Array.vsplit"]], "vsplit() (ivy.container method)": [[486, "ivy.Container.vsplit"]], "vstack() (ivy.array method)": [[487, "ivy.Array.vstack"]], "vstack() (ivy.container method)": [[487, "ivy.Container.vstack"]], "batch_norm() (ivy.array method)": [[488, "ivy.Array.batch_norm"]], "batch_norm() (ivy.container method)": [[488, "ivy.Container.batch_norm"]], "group_norm() (ivy.array method)": [[489, "ivy.Array.group_norm"]], "group_norm() (ivy.container method)": [[489, "ivy.Container.group_norm"]], "instance_norm() (ivy.array method)": [[490, "ivy.Array.instance_norm"]], "instance_norm() (ivy.container method)": [[490, "ivy.Container.instance_norm"]], "l1_normalize() (ivy.array method)": [[491, "ivy.Array.l1_normalize"]], "l1_normalize() (ivy.container method)": [[491, "ivy.Container.l1_normalize"]], "l2_normalize() (ivy.array method)": [[492, "ivy.Array.l2_normalize"]], "l2_normalize() (ivy.container method)": [[492, "ivy.Container.l2_normalize"]], "lp_normalize() (ivy.array method)": [[494, "ivy.Array.lp_normalize"]], "lp_normalize() (ivy.container method)": [[494, "ivy.Container.lp_normalize"]], "bernoulli() (ivy.array method)": [[495, "ivy.Array.bernoulli"]], "bernoulli() (ivy.container method)": [[495, "ivy.Container.bernoulli"]], "beta() (ivy.array method)": [[496, "ivy.Array.beta"]], "beta() (ivy.container method)": [[496, "ivy.Container.beta"]], "dirichlet() (ivy.array method)": [[497, "ivy.Array.dirichlet"]], "dirichlet() (ivy.container method)": [[497, "ivy.Container.dirichlet"]], "gamma() (ivy.array method)": [[498, "ivy.Array.gamma"]], "gamma() (ivy.container method)": [[498, "ivy.Container.gamma"]], "poisson() (ivy.array method)": [[499, "ivy.Array.poisson"]], "poisson() (ivy.container method)": [[499, "ivy.Container.poisson"]], "unravel_index() (ivy.array method)": [[500, "ivy.Array.unravel_index"]], "unravel_index() (ivy.container method)": [[500, "ivy.Container.unravel_index"]], "invert_permutation() (ivy.container method)": [[501, "ivy.Container.invert_permutation"]], "lexsort() (ivy.array method)": [[502, "ivy.Array.lexsort"]], "lexsort() (ivy.container method)": [[502, "ivy.Container.lexsort"]], "bincount() (ivy.array method)": [[507, "ivy.Array.bincount"]], "bincount() (ivy.container method)": [[507, "ivy.Container.bincount"]], "corrcoef() (ivy.array method)": [[508, "ivy.Array.corrcoef"]], "corrcoef() (ivy.container method)": [[508, "ivy.Container.corrcoef"]], "cov() (ivy.array method)": [[509, "ivy.Array.cov"]], "cov() (ivy.container method)": [[509, "ivy.Container.cov"]], "cummax() (ivy.array method)": [[510, "ivy.Array.cummax"]], "cummax() (ivy.container method)": [[510, "ivy.Container.cummax"]], "cummin() (ivy.array method)": [[511, "ivy.Array.cummin"]], "cummin() (ivy.container method)": [[511, "ivy.Container.cummin"]], "histogram() (ivy.array method)": [[512, "ivy.Array.histogram"]], "histogram() (ivy.container method)": [[512, "ivy.Container.histogram"]], "igamma() (ivy.array method)": [[513, "ivy.Array.igamma"]], "igamma() (ivy.container method)": [[513, "ivy.Container.igamma"]], "median() (ivy.array method)": [[514, "ivy.Array.median"]], "median() (ivy.container method)": [[514, "ivy.Container.median"]], "nanmean() (ivy.array method)": [[515, "ivy.Array.nanmean"]], "nanmean() (ivy.container method)": [[515, "ivy.Container.nanmean"]], "nanmedian() (ivy.array method)": [[516, "ivy.Array.nanmedian"]], "nanmedian() (ivy.container method)": [[516, "ivy.Container.nanmedian"]], "nanmin() (ivy.array method)": [[517, "ivy.Array.nanmin"]], "nanmin() (ivy.container method)": [[517, "ivy.Container.nanmin"]], "nanprod() (ivy.array method)": [[518, "ivy.Array.nanprod"]], "nanprod() (ivy.container method)": [[518, "ivy.Container.nanprod"]], "quantile() (ivy.array method)": [[519, "ivy.Array.quantile"]], "quantile() (ivy.container method)": [[519, "ivy.Container.quantile"]], "optional_get_element() (ivy.array method)": [[520, "ivy.Array.optional_get_element"]], "optional_get_element() (ivy.container method)": [[520, "ivy.Container.optional_get_element"]], "all_equal() (in module ivy)": [[521, "ivy.all_equal"], [620, "ivy.all_equal"]], "all_equal() (ivy.array method)": [[521, "ivy.Array.all_equal"]], "all_equal() (ivy.container method)": [[521, "ivy.Container.all_equal"]], "arg_info() (in module ivy)": [[522, "ivy.arg_info"], [620, "ivy.arg_info"]], "arg_names() (in module ivy)": [[523, "ivy.arg_names"], [620, "ivy.arg_names"]], "array_equal() (in module ivy)": [[524, "ivy.array_equal"], [620, "ivy.array_equal"]], "array_equal() (ivy.array method)": [[524, "ivy.Array.array_equal"]], "array_equal() (ivy.container method)": [[524, "ivy.Container.array_equal"]], "assert_supports_inplace() (in module ivy)": [[525, "ivy.assert_supports_inplace"], [620, "ivy.assert_supports_inplace"]], "assert_supports_inplace() (ivy.array method)": [[525, "ivy.Array.assert_supports_inplace"]], "assert_supports_inplace() (ivy.container method)": [[525, "ivy.Container.assert_supports_inplace"]], "cache_fn() (in module ivy)": [[526, "ivy.cache_fn"], [620, "ivy.cache_fn"]], "clip_matrix_norm() (in module ivy)": [[527, "ivy.clip_matrix_norm"], [620, "ivy.clip_matrix_norm"]], "clip_matrix_norm() (ivy.array method)": [[527, "ivy.Array.clip_matrix_norm"]], "clip_matrix_norm() (ivy.container method)": [[527, "ivy.Container.clip_matrix_norm"]], "clip_vector_norm() (in module ivy)": [[528, "ivy.clip_vector_norm"], [620, "ivy.clip_vector_norm"]], "clip_vector_norm() (ivy.array method)": [[528, "ivy.Array.clip_vector_norm"]], "clip_vector_norm() (ivy.container method)": [[528, "ivy.Container.clip_vector_norm"]], "container_types() (in module ivy)": [[529, "ivy.container_types"], [620, "ivy.container_types"]], "current_backend_str() (in module ivy)": [[530, "ivy.current_backend_str"], [620, "ivy.current_backend_str"]], "default() (in module ivy)": [[531, "ivy.default"], [620, "ivy.default"]], "default() (ivy.array method)": [[531, "ivy.Array.default"]], "einops_rearrange() (in module ivy)": [[532, "ivy.einops_rearrange"], [620, "ivy.einops_rearrange"]], "einops_rearrange() (ivy.array method)": [[532, "ivy.Array.einops_rearrange"]], "einops_rearrange() (ivy.container method)": [[532, "ivy.Container.einops_rearrange"]], "einops_reduce() (in module ivy)": [[533, "ivy.einops_reduce"], [620, "ivy.einops_reduce"]], "einops_reduce() (ivy.array method)": [[533, "ivy.Array.einops_reduce"]], "einops_reduce() (ivy.container method)": [[533, "ivy.Container.einops_reduce"]], "einops_repeat() (in module ivy)": [[534, "ivy.einops_repeat"], [620, "ivy.einops_repeat"]], "einops_repeat() (ivy.array method)": [[534, "ivy.Array.einops_repeat"]], "einops_repeat() (ivy.container method)": [[534, "ivy.Container.einops_repeat"]], "exists() (in module ivy)": [[535, "ivy.exists"], [620, "ivy.exists"]], "exists() (ivy.array method)": [[535, "ivy.Array.exists"]], "exists() (ivy.container method)": [[535, "ivy.Container.exists"]], "fourier_encode() (in module ivy)": [[536, "ivy.fourier_encode"], [620, "ivy.fourier_encode"]], "fourier_encode() (ivy.array method)": [[536, "ivy.Array.fourier_encode"]], "fourier_encode() (ivy.container method)": [[536, "ivy.Container.fourier_encode"]], "function_supported_devices_and_dtypes() (in module ivy)": [[537, "ivy.function_supported_devices_and_dtypes"], [620, "ivy.function_supported_devices_and_dtypes"]], "function_unsupported_devices_and_dtypes() (in module ivy)": [[538, "ivy.function_unsupported_devices_and_dtypes"], [620, "ivy.function_unsupported_devices_and_dtypes"]], "gather() (in module ivy)": [[539, "ivy.gather"], [620, "ivy.gather"]], "gather() (ivy.array method)": [[539, "ivy.Array.gather"]], "gather() (ivy.container method)": [[539, "ivy.Container.gather"]], "gather_nd() (in module ivy)": [[540, "ivy.gather_nd"], [620, "ivy.gather_nd"]], "gather_nd() (ivy.array method)": [[540, "ivy.Array.gather_nd"]], "gather_nd() (ivy.container method)": [[540, "ivy.Container.gather_nd"]], "get_all_arrays_in_memory() (in module ivy)": [[541, "ivy.get_all_arrays_in_memory"], [620, "ivy.get_all_arrays_in_memory"]], "get_item() (in module ivy)": [[542, "ivy.get_item"], [620, "ivy.get_item"]], "get_num_dims() (in module ivy)": [[543, "ivy.get_num_dims"], [620, "ivy.get_num_dims"]], "get_num_dims() (ivy.array method)": [[543, "ivy.Array.get_num_dims"]], "get_num_dims() (ivy.container method)": [[543, "ivy.Container.get_num_dims"]], "get_referrers_recursive() (in module ivy)": [[544, "ivy.get_referrers_recursive"], [620, "ivy.get_referrers_recursive"]], "has_nans() (in module ivy)": [[545, "ivy.has_nans"], [620, "ivy.has_nans"]], "has_nans() (ivy.array method)": [[545, "ivy.Array.has_nans"]], "has_nans() (ivy.container method)": [[545, "ivy.Container.has_nans"]], "inplace_arrays_supported() (in module ivy)": [[546, "ivy.inplace_arrays_supported"], [620, "ivy.inplace_arrays_supported"]], "inplace_decrement() (in module ivy)": [[547, "ivy.inplace_decrement"], [620, "ivy.inplace_decrement"]], "inplace_decrement() (ivy.array method)": [[547, "ivy.Array.inplace_decrement"]], "inplace_decrement() (ivy.container method)": [[547, "ivy.Container.inplace_decrement"]], "inplace_increment() (in module ivy)": [[548, "ivy.inplace_increment"], [620, "ivy.inplace_increment"]], "inplace_increment() (ivy.array method)": [[548, "ivy.Array.inplace_increment"]], "inplace_increment() (ivy.container method)": [[548, "ivy.Container.inplace_increment"]], "inplace_update() (in module ivy)": [[549, "ivy.inplace_update"], [620, "ivy.inplace_update"]], "inplace_update() (ivy.array method)": [[549, "ivy.Array.inplace_update"]], "inplace_update() (ivy.container method)": [[549, "ivy.Container.inplace_update"]], "inplace_variables_supported() (in module ivy)": [[550, "ivy.inplace_variables_supported"], [620, "ivy.inplace_variables_supported"]], "is_array() (in module ivy)": [[551, "ivy.is_array"], [620, "ivy.is_array"]], "is_array() (ivy.array method)": [[551, "ivy.Array.is_array"]], "is_array() (ivy.container method)": [[551, "ivy.Container.is_array"]], "is_ivy_array() (in module ivy)": [[552, "ivy.is_ivy_array"], [620, "ivy.is_ivy_array"]], "is_ivy_array() (ivy.array method)": [[552, "ivy.Array.is_ivy_array"]], "is_ivy_array() (ivy.container method)": [[552, "ivy.Container.is_ivy_array"]], "is_ivy_container() (in module ivy)": [[553, "ivy.is_ivy_container"], [620, "ivy.is_ivy_container"]], "is_ivy_container() (ivy.array method)": [[553, "ivy.Array.is_ivy_container"]], "is_ivy_nested_array() (in module ivy)": [[554, "ivy.is_ivy_nested_array"], [620, "ivy.is_ivy_nested_array"]], "is_native_array() (in module ivy)": [[555, "ivy.is_native_array"], [620, "ivy.is_native_array"]], "is_native_array() (ivy.array method)": [[555, "ivy.Array.is_native_array"]], "is_native_array() (ivy.container method)": [[555, "ivy.Container.is_native_array"]], "isin() (in module ivy)": [[556, "ivy.isin"], [620, "ivy.isin"]], "isin() (ivy.array method)": [[556, "ivy.Array.isin"]], "isin() (ivy.container method)": [[556, "ivy.Container.isin"]], "isscalar() (in module ivy)": [[557, "ivy.isscalar"], [620, "ivy.isscalar"]], "itemsize() (in module ivy)": [[558, "ivy.itemsize"], [620, "ivy.itemsize"]], "itemsize() (ivy.array method)": [[558, "ivy.Array.itemsize"]], "itemsize() (ivy.container method)": [[558, "ivy.Container.itemsize"]], "match_kwargs() (in module ivy)": [[559, "ivy.match_kwargs"], [620, "ivy.match_kwargs"]], "multiprocessing() (in module ivy)": [[560, "ivy.multiprocessing"], [620, "ivy.multiprocessing"]], "num_arrays_in_memory() (in module ivy)": [[561, "ivy.num_arrays_in_memory"], [620, "ivy.num_arrays_in_memory"]], "print_all_arrays_in_memory() (in module ivy)": [[562, "ivy.print_all_arrays_in_memory"], [620, "ivy.print_all_arrays_in_memory"]], "scatter_flat() (in module ivy)": [[563, "ivy.scatter_flat"], [620, "ivy.scatter_flat"]], "scatter_flat() (ivy.array method)": [[563, "ivy.Array.scatter_flat"]], "scatter_flat() (ivy.container method)": [[563, "ivy.Container.scatter_flat"]], "scatter_nd() (in module ivy)": [[564, "ivy.scatter_nd"], [620, "ivy.scatter_nd"]], "scatter_nd() (ivy.array method)": [[564, "ivy.Array.scatter_nd"]], "scatter_nd() (ivy.container method)": [[564, "ivy.Container.scatter_nd"]], "set_array_mode() (in module ivy)": [[565, "ivy.set_array_mode"], [620, "ivy.set_array_mode"]], "set_exception_trace_mode() (in module ivy)": [[566, "ivy.set_exception_trace_mode"], [620, "ivy.set_exception_trace_mode"]], "set_inplace_mode() (in module ivy)": [[567, "ivy.set_inplace_mode"], [620, "ivy.set_inplace_mode"]], "set_item() (in module ivy)": [[568, "ivy.set_item"], [620, "ivy.set_item"]], "set_min_base() (in module ivy)": [[569, "ivy.set_min_base"], [620, "ivy.set_min_base"]], "set_min_denominator() (in module ivy)": [[570, "ivy.set_min_denominator"], [620, "ivy.set_min_denominator"]], "set_nestable_mode() (in module ivy)": [[571, "ivy.set_nestable_mode"], [620, "ivy.set_nestable_mode"]], "set_precise_mode() (in module ivy)": [[572, "ivy.set_precise_mode"], [620, "ivy.set_precise_mode"]], "set_queue_timeout() (in module ivy)": [[573, "ivy.set_queue_timeout"], [620, "ivy.set_queue_timeout"]], "set_shape_array_mode() (in module ivy)": [[574, "ivy.set_shape_array_mode"], [620, "ivy.set_shape_array_mode"]], "set_show_func_wrapper_trace_mode() (in module ivy)": [[575, "ivy.set_show_func_wrapper_trace_mode"], [620, "ivy.set_show_func_wrapper_trace_mode"]], "set_tmp_dir() (in module ivy)": [[576, "ivy.set_tmp_dir"], [620, "ivy.set_tmp_dir"]], "shape() (in module ivy)": [[577, "ivy.shape"], [620, "ivy.shape"]], "shape() (ivy.array method)": [[577, "ivy.Array.shape"]], "stable_divide() (in module ivy)": [[578, "ivy.stable_divide"], [620, "ivy.stable_divide"]], "stable_divide() (ivy.array method)": [[578, "ivy.Array.stable_divide"]], "stable_divide() (ivy.container method)": [[578, "ivy.Container.stable_divide"]], "stable_pow() (in module ivy)": [[579, "ivy.stable_pow"], [620, "ivy.stable_pow"]], "stable_pow() (ivy.array method)": [[579, "ivy.Array.stable_pow"]], "stable_pow() (ivy.container method)": [[579, "ivy.Container.stable_pow"]], "strides() (in module ivy)": [[580, "ivy.strides"], [620, "ivy.strides"]], "strides() (ivy.array method)": [[580, "ivy.Array.strides"]], "strides() (ivy.container method)": [[580, "ivy.Container.strides"]], "supports_inplace_updates() (in module ivy)": [[581, "ivy.supports_inplace_updates"], [620, "ivy.supports_inplace_updates"]], "supports_inplace_updates() (ivy.array method)": [[581, "ivy.Array.supports_inplace_updates"]], "supports_inplace_updates() (ivy.container method)": [[581, "ivy.Container.supports_inplace_updates"]], "to_ivy_shape() (in module ivy)": [[582, "ivy.to_ivy_shape"], [620, "ivy.to_ivy_shape"]], "to_list() (in module ivy)": [[583, "ivy.to_list"], [620, "ivy.to_list"]], "to_list() (ivy.array method)": [[583, "ivy.Array.to_list"]], "to_list() (ivy.container method)": [[583, "ivy.Container.to_list"]], "to_native_shape() (in module ivy)": [[584, "ivy.to_native_shape"], [620, "ivy.to_native_shape"]], "to_numpy() (in module ivy)": [[585, "ivy.to_numpy"], [620, "ivy.to_numpy"]], "to_numpy() (ivy.array method)": [[585, "ivy.Array.to_numpy"]], "to_numpy() (ivy.container method)": [[585, "ivy.Container.to_numpy"]], "to_scalar() (in module ivy)": [[586, "ivy.to_scalar"], [620, "ivy.to_scalar"]], "to_scalar() (ivy.array method)": [[586, "ivy.Array.to_scalar"]], "to_scalar() (ivy.container method)": [[586, "ivy.Container.to_scalar"]], "try_else_none() (in module ivy)": [[587, "ivy.try_else_none"], [620, "ivy.try_else_none"]], "unset_array_mode() (in module ivy)": [[588, "ivy.unset_array_mode"], [620, "ivy.unset_array_mode"]], "unset_exception_trace_mode() (in module ivy)": [[589, "ivy.unset_exception_trace_mode"], [620, "ivy.unset_exception_trace_mode"]], "unset_inplace_mode() (in module ivy)": [[590, "ivy.unset_inplace_mode"], [620, "ivy.unset_inplace_mode"]], "unset_min_base() (in module ivy)": [[591, "ivy.unset_min_base"], [620, "ivy.unset_min_base"]], "unset_min_denominator() (in module ivy)": [[592, "ivy.unset_min_denominator"], [620, "ivy.unset_min_denominator"]], "unset_nestable_mode() (in module ivy)": [[593, "ivy.unset_nestable_mode"], [620, "ivy.unset_nestable_mode"]], "unset_precise_mode() (in module ivy)": [[594, "ivy.unset_precise_mode"], [620, "ivy.unset_precise_mode"]], "unset_queue_timeout() (in module ivy)": [[595, "ivy.unset_queue_timeout"], [620, "ivy.unset_queue_timeout"]], "unset_shape_array_mode() (in module ivy)": [[596, "ivy.unset_shape_array_mode"], [620, "ivy.unset_shape_array_mode"]], "unset_show_func_wrapper_trace_mode() (in module ivy)": [[597, "ivy.unset_show_func_wrapper_trace_mode"], [620, "ivy.unset_show_func_wrapper_trace_mode"]], "unset_tmp_dir() (in module ivy)": [[598, "ivy.unset_tmp_dir"], [620, "ivy.unset_tmp_dir"]], "value_is_nan() (in module ivy)": [[599, "ivy.value_is_nan"], [620, "ivy.value_is_nan"]], "value_is_nan() (ivy.array method)": [[599, "ivy.Array.value_is_nan"]], "value_is_nan() (ivy.container method)": [[599, "ivy.Container.value_is_nan"]], "vmap() (in module ivy)": [[600, "ivy.vmap"], [620, "ivy.vmap"]], "adam_step() (in module ivy)": [[601, "ivy.adam_step"], [621, "ivy.adam_step"]], "adam_step() (ivy.array method)": [[601, "ivy.Array.adam_step"]], "adam_step() (ivy.container method)": [[601, "ivy.Container.adam_step"]], "adam_update() (in module ivy)": [[602, "ivy.adam_update"], [621, "ivy.adam_update"]], "adam_update() (ivy.array method)": [[602, "ivy.Array.adam_update"]], "adam_update() (ivy.container method)": [[602, "ivy.Container.adam_update"]], "execute_with_gradients() (in module ivy)": [[603, "ivy.execute_with_gradients"], [621, "ivy.execute_with_gradients"]], "grad() (in module ivy)": [[604, "ivy.grad"], [621, "ivy.grad"]], "gradient_descent_update() (in module ivy)": [[605, "ivy.gradient_descent_update"], [621, "ivy.gradient_descent_update"]], "gradient_descent_update() (ivy.array method)": [[605, "ivy.Array.gradient_descent_update"]], "gradient_descent_update() (ivy.container method)": [[605, "ivy.Container.gradient_descent_update"]], "jac() (in module ivy)": [[606, "ivy.jac"], [621, "ivy.jac"]], "lamb_update() (in module ivy)": [[607, "ivy.lamb_update"], [621, "ivy.lamb_update"]], "lamb_update() (ivy.array method)": [[607, "ivy.Array.lamb_update"]], "lamb_update() (ivy.container method)": [[607, "ivy.Container.lamb_update"]], "lars_update() (in module ivy)": [[608, "ivy.lars_update"], [621, "ivy.lars_update"]], "lars_update() (ivy.array method)": [[608, "ivy.Array.lars_update"]], "lars_update() (ivy.container method)": [[608, "ivy.Container.lars_update"]], "optimizer_update() (in module ivy)": [[609, "ivy.optimizer_update"], [621, "ivy.optimizer_update"]], "optimizer_update() (ivy.array method)": [[609, "ivy.Array.optimizer_update"]], "optimizer_update() (ivy.container method)": [[609, "ivy.Container.optimizer_update"]], "stop_gradient() (in module ivy)": [[610, "ivy.stop_gradient"], [621, "ivy.stop_gradient"]], "stop_gradient() (ivy.array method)": [[610, "ivy.Array.stop_gradient"]], "stop_gradient() (ivy.container method)": [[610, "ivy.Container.stop_gradient"]], "value_and_grad() (in module ivy)": [[611, "ivy.value_and_grad"], [621, "ivy.value_and_grad"]], "ivy.functional.ivy.activations": [[612, "module-ivy.functional.ivy.activations"]], "e (in module ivy)": [[613, "ivy.e"]], "inf (in module ivy)": [[613, "ivy.inf"]], "ivy.functional.ivy.constants": [[613, "module-ivy.functional.ivy.constants"]], "nan (in module ivy)": [[613, "ivy.nan"]], "newaxis (in module ivy)": [[613, "ivy.newaxis"]], "pi (in module ivy)": [[613, "ivy.pi"]], "ivy.functional.ivy.control_flow_ops": [[614, "module-ivy.functional.ivy.control_flow_ops"]], "nestedsequence (class in ivy)": [[615, "ivy.NestedSequence"]], "ivy.functional.ivy.creation": [[615, "module-ivy.functional.ivy.creation"]], "defaultcomplexdtype (class in ivy)": [[616, "ivy.DefaultComplexDtype"]], "defaultdtype (class in ivy)": [[616, "ivy.DefaultDtype"]], "defaultfloatdtype (class in ivy)": [[616, "ivy.DefaultFloatDtype"]], "defaultintdtype (class in ivy)": [[616, "ivy.DefaultIntDtype"]], "defaultuintdtype (class in ivy)": [[616, "ivy.DefaultUintDtype"]], "ivy.functional.ivy.data_type": [[616, "module-ivy.functional.ivy.data_type"]], "defaultdevice (class in ivy)": [[617, "ivy.DefaultDevice"]], "profiler (class in ivy)": [[617, "ivy.Profiler"]], "ivy.functional.ivy.device": [[617, "module-ivy.functional.ivy.device"]], "ivy.functional.ivy.elementwise": [[618, "module-ivy.functional.ivy.elementwise"]], "ivy.functional.ivy.experimental": [[619, "module-ivy.functional.ivy.experimental"]], "arraymode (class in ivy)": [[620, "ivy.ArrayMode"]], "precisemode (class in ivy)": [[620, "ivy.PreciseMode"]], "ivy.functional.ivy.general": [[620, "module-ivy.functional.ivy.general"]], "ivy.functional.ivy.gradients": [[621, "module-ivy.functional.ivy.gradients"]], "conv() (in module ivy)": [[622, "ivy.conv"], [635, "ivy.conv"]], "conv1d() (in module ivy)": [[622, "ivy.conv1d"], [636, "ivy.conv1d"]], "conv1d_transpose() (in module ivy)": [[622, "ivy.conv1d_transpose"], [637, "ivy.conv1d_transpose"]], "conv2d() (in module ivy)": [[622, "ivy.conv2d"], [638, "ivy.conv2d"]], "conv2d_transpose() (in module ivy)": [[622, "ivy.conv2d_transpose"], [639, "ivy.conv2d_transpose"]], "conv3d() (in module ivy)": [[622, "ivy.conv3d"], [640, "ivy.conv3d"]], "conv3d_transpose() (in module ivy)": [[622, "ivy.conv3d_transpose"], [641, "ivy.conv3d_transpose"]], "conv_general_dilated() (in module ivy)": [[622, "ivy.conv_general_dilated"], [642, "ivy.conv_general_dilated"]], "conv_general_transpose() (in module ivy)": [[622, "ivy.conv_general_transpose"], [643, "ivy.conv_general_transpose"]], "depthwise_conv2d() (in module ivy)": [[622, "ivy.depthwise_conv2d"], [644, "ivy.depthwise_conv2d"]], "dropout() (in module ivy)": [[622, "ivy.dropout"], [645, "ivy.dropout"]], "ivy.functional.ivy.layers": [[622, "module-ivy.functional.ivy.layers"]], "linear() (in module ivy)": [[622, "ivy.linear"], [646, "ivy.linear"]], "lstm_update() (in module ivy)": [[622, "ivy.lstm_update"], [647, "ivy.lstm_update"]], "multi_head_attention() (in module ivy)": [[622, "ivy.multi_head_attention"], [648, "ivy.multi_head_attention"]], "nms() (in module ivy)": [[622, "ivy.nms"], [649, "ivy.nms"]], "roi_align() (in module ivy)": [[622, "ivy.roi_align"], [650, "ivy.roi_align"]], "scaled_dot_product_attention() (in module ivy)": [[622, "ivy.scaled_dot_product_attention"], [651, "ivy.scaled_dot_product_attention"]], "cholesky() (in module ivy)": [[623, "ivy.cholesky"], [652, "ivy.cholesky"]], "cross() (in module ivy)": [[623, "ivy.cross"], [653, "ivy.cross"]], "det() (in module ivy)": [[623, "ivy.det"], [654, "ivy.det"]], "diag() (in module ivy)": [[623, "ivy.diag"], [655, "ivy.diag"]], "diagonal() (in module ivy)": [[623, "ivy.diagonal"], [656, "ivy.diagonal"]], "eigh() (in module ivy)": [[623, "ivy.eigh"], [658, "ivy.eigh"]], "eigvalsh() (in module ivy)": [[623, "ivy.eigvalsh"], [659, "ivy.eigvalsh"]], "inner() (in module ivy)": [[623, "ivy.inner"], [660, "ivy.inner"]], "inv() (in module ivy)": [[623, "ivy.inv"], [661, "ivy.inv"]], "ivy.functional.ivy.linear_algebra": [[623, "module-ivy.functional.ivy.linear_algebra"]], "lu_factor() (in module ivy)": [[623, "ivy.lu_factor"], [662, "ivy.lu_factor"]], "matmul() (in module ivy)": [[623, "ivy.matmul"], [663, "ivy.matmul"]], "matrix_norm() (in module ivy)": [[623, "ivy.matrix_norm"], [664, "ivy.matrix_norm"]], "matrix_power() (in module ivy)": [[623, "ivy.matrix_power"], [665, "ivy.matrix_power"]], "matrix_rank() (in module ivy)": [[623, "ivy.matrix_rank"], [666, "ivy.matrix_rank"]], "matrix_transpose() (in module ivy)": [[623, "ivy.matrix_transpose"], [667, "ivy.matrix_transpose"]], "outer() (in module ivy)": [[623, "ivy.outer"], [668, "ivy.outer"]], "pinv() (in module ivy)": [[623, "ivy.pinv"], [669, "ivy.pinv"]], "qr() (in module ivy)": [[623, "ivy.qr"], [670, "ivy.qr"]], "slogdet() (in module ivy)": [[623, "ivy.slogdet"], [671, "ivy.slogdet"]], "solve() (in module ivy)": [[623, "ivy.solve"], [672, "ivy.solve"]], "svd() (in module ivy)": [[623, "ivy.svd"], [673, "ivy.svd"]], "svdvals() (in module ivy)": [[623, "ivy.svdvals"], [674, "ivy.svdvals"]], "tensordot() (in module ivy)": [[623, "ivy.tensordot"], [675, "ivy.tensordot"]], "tensorsolve() (in module ivy)": [[623, "ivy.tensorsolve"], [676, "ivy.tensorsolve"]], "trace() (in module ivy)": [[623, "ivy.trace"], [677, "ivy.trace"]], "vander() (in module ivy)": [[623, "ivy.vander"], [678, "ivy.vander"]], "vecdot() (in module ivy)": [[623, "ivy.vecdot"], [679, "ivy.vecdot"]], "vector_norm() (in module ivy)": [[623, "ivy.vector_norm"], [680, "ivy.vector_norm"]], "vector_to_skew_symmetric_matrix() (in module ivy)": [[623, "ivy.vector_to_skew_symmetric_matrix"], [681, "ivy.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (in module ivy)": [[624, "ivy.binary_cross_entropy"], [682, "ivy.binary_cross_entropy"]], "cross_entropy() (in module ivy)": [[624, "ivy.cross_entropy"], [683, "ivy.cross_entropy"]], "ivy.functional.ivy.losses": [[624, "module-ivy.functional.ivy.losses"]], "sparse_cross_entropy() (in module ivy)": [[624, "ivy.sparse_cross_entropy"], [684, "ivy.sparse_cross_entropy"]], "clip() (in module ivy)": [[625, "ivy.clip"], [685, "ivy.clip"]], "concat() (in module ivy)": [[625, "ivy.concat"], [686, "ivy.concat"]], "constant_pad() (in module ivy)": [[625, "ivy.constant_pad"], [687, "ivy.constant_pad"]], "expand_dims() (in module ivy)": [[625, "ivy.expand_dims"], [688, "ivy.expand_dims"]], "flip() (in module ivy)": [[625, "ivy.flip"], [689, "ivy.flip"]], "ivy.functional.ivy.manipulation": [[625, "module-ivy.functional.ivy.manipulation"]], "permute_dims() (in module ivy)": [[625, "ivy.permute_dims"], [690, "ivy.permute_dims"]], "repeat() (in module ivy)": [[625, "ivy.repeat"], [691, "ivy.repeat"]], "reshape() (in module ivy)": [[625, "ivy.reshape"], [692, "ivy.reshape"]], "roll() (in module ivy)": [[625, "ivy.roll"], [693, "ivy.roll"]], "split() (in module ivy)": [[625, "ivy.split"], [694, "ivy.split"]], "squeeze() (in module ivy)": [[625, "ivy.squeeze"], [695, "ivy.squeeze"]], "stack() (in module ivy)": [[625, "ivy.stack"], [696, "ivy.stack"]], "swapaxes() (in module ivy)": [[625, "ivy.swapaxes"], [697, "ivy.swapaxes"]], "tile() (in module ivy)": [[625, "ivy.tile"], [698, "ivy.tile"]], "unstack() (in module ivy)": [[625, "ivy.unstack"], [699, "ivy.unstack"]], "zero_pad() (in module ivy)": [[625, "ivy.zero_pad"], [700, "ivy.zero_pad"]], "fomaml_step() (in module ivy)": [[626, "ivy.fomaml_step"], [701, "ivy.fomaml_step"]], "ivy.functional.ivy.meta": [[626, "module-ivy.functional.ivy.meta"]], "maml_step() (in module ivy)": [[626, "ivy.maml_step"], [702, "ivy.maml_step"]], "reptile_step() (in module ivy)": [[626, "ivy.reptile_step"], [703, "ivy.reptile_step"]], "all_nested_indices() (in module ivy)": [[627, "ivy.all_nested_indices"], [704, "ivy.all_nested_indices"]], "copy_nest() (in module ivy)": [[627, "ivy.copy_nest"], [705, "ivy.copy_nest"]], "duplicate_array_index_chains() (in module ivy)": [[627, "ivy.duplicate_array_index_chains"], [706, "ivy.duplicate_array_index_chains"]], "index_nest() (in module ivy)": [[627, "ivy.index_nest"], [707, "ivy.index_nest"]], "insert_into_nest_at_index() (in module ivy)": [[627, "ivy.insert_into_nest_at_index"], [708, "ivy.insert_into_nest_at_index"]], "insert_into_nest_at_indices() (in module ivy)": [[627, "ivy.insert_into_nest_at_indices"], [709, "ivy.insert_into_nest_at_indices"]], "ivy.functional.ivy.nest": [[627, "module-ivy.functional.ivy.nest"]], "map() (in module ivy)": [[627, "ivy.map"], [710, "ivy.map"]], "map_nest_at_index() (in module ivy)": [[627, "ivy.map_nest_at_index"], [711, "ivy.map_nest_at_index"]], "map_nest_at_indices() (in module ivy)": [[627, "ivy.map_nest_at_indices"], [712, "ivy.map_nest_at_indices"]], "multi_index_nest() (in module ivy)": [[627, "ivy.multi_index_nest"], [713, "ivy.multi_index_nest"]], "nested_any() (in module ivy)": [[627, "ivy.nested_any"], [714, "ivy.nested_any"]], "nested_argwhere() (in module ivy)": [[627, "ivy.nested_argwhere"], [715, "ivy.nested_argwhere"]], "nested_map() (in module ivy)": [[627, "ivy.nested_map"], [716, "ivy.nested_map"]], "nested_multi_map() (in module ivy)": [[627, "ivy.nested_multi_map"], [717, "ivy.nested_multi_map"]], "prune_empty() (in module ivy)": [[627, "ivy.prune_empty"], [718, "ivy.prune_empty"]], "prune_nest_at_index() (in module ivy)": [[627, "ivy.prune_nest_at_index"], [719, "ivy.prune_nest_at_index"]], "prune_nest_at_indices() (in module ivy)": [[627, "ivy.prune_nest_at_indices"], [720, "ivy.prune_nest_at_indices"]], "set_nest_at_index() (in module ivy)": [[627, "ivy.set_nest_at_index"], [721, "ivy.set_nest_at_index"]], "set_nest_at_indices() (in module ivy)": [[627, "ivy.set_nest_at_indices"], [722, "ivy.set_nest_at_indices"]], "ivy.functional.ivy.norms": [[628, "module-ivy.functional.ivy.norms"]], "layer_norm() (in module ivy)": [[628, "ivy.layer_norm"], [723, "ivy.layer_norm"]], "ivy.functional.ivy.random": [[629, "module-ivy.functional.ivy.random"]], "multinomial() (in module ivy)": [[629, "ivy.multinomial"], [724, "ivy.multinomial"]], "randint() (in module ivy)": [[629, "ivy.randint"], [725, "ivy.randint"]], "random_normal() (in module ivy)": [[629, "ivy.random_normal"], [726, "ivy.random_normal"]], "random_uniform() (in module ivy)": [[629, "ivy.random_uniform"], [727, "ivy.random_uniform"]], "seed() (in module ivy)": [[629, "ivy.seed"], [728, "ivy.seed"]], "shuffle() (in module ivy)": [[629, "ivy.shuffle"], [729, "ivy.shuffle"]], "argmax() (in module ivy)": [[630, "ivy.argmax"], [730, "ivy.argmax"]], "argmin() (in module ivy)": [[630, "ivy.argmin"], [731, "ivy.argmin"]], "argwhere() (in module ivy)": [[630, "ivy.argwhere"], [732, "ivy.argwhere"]], "ivy.functional.ivy.searching": [[630, "module-ivy.functional.ivy.searching"]], "nonzero() (in module ivy)": [[630, "ivy.nonzero"], [733, "ivy.nonzero"]], "where() (in module ivy)": [[630, "ivy.where"], [734, "ivy.where"]], "ivy.functional.ivy.set": [[631, "module-ivy.functional.ivy.set"]], "unique_all() (in module ivy)": [[631, "ivy.unique_all"], [735, "ivy.unique_all"]], "unique_counts() (in module ivy)": [[631, "ivy.unique_counts"], [736, "ivy.unique_counts"]], "unique_inverse() (in module ivy)": [[631, "ivy.unique_inverse"], [737, "ivy.unique_inverse"]], "unique_values() (in module ivy)": [[631, "ivy.unique_values"], [738, "ivy.unique_values"]], "argsort() (in module ivy)": [[632, "ivy.argsort"], [739, "ivy.argsort"]], "ivy.functional.ivy.sorting": [[632, "module-ivy.functional.ivy.sorting"]], "msort() (in module ivy)": [[632, "ivy.msort"], [740, "ivy.msort"]], "searchsorted() (in module ivy)": [[632, "ivy.searchsorted"], [741, "ivy.searchsorted"]], "sort() (in module ivy)": [[632, "ivy.sort"], [742, "ivy.sort"]], "cumprod() (in module ivy)": [[633, "ivy.cumprod"], [743, "ivy.cumprod"]], "cumsum() (in module ivy)": [[633, "ivy.cumsum"], [744, "ivy.cumsum"]], "einsum() (in module ivy)": [[633, "ivy.einsum"], [745, "ivy.einsum"]], "ivy.functional.ivy.statistical": [[633, "module-ivy.functional.ivy.statistical"]], "max() (in module ivy)": [[633, "ivy.max"], [746, "ivy.max"]], "mean() (in module ivy)": [[633, "ivy.mean"], [747, "ivy.mean"]], "min() (in module ivy)": [[633, "ivy.min"], [748, "ivy.min"]], "prod() (in module ivy)": [[633, "ivy.prod"], [749, "ivy.prod"]], "std() (in module ivy)": [[633, "ivy.std"], [750, "ivy.std"]], "sum() (in module ivy)": [[633, "ivy.sum"], [751, "ivy.sum"]], "var() (in module ivy)": [[633, "ivy.var"], [752, "ivy.var"]], "all() (in module ivy)": [[634, "ivy.all"], [753, "ivy.all"]], "any() (in module ivy)": [[634, "ivy.any"], [754, "ivy.any"]], "ivy.functional.ivy.utility": [[634, "module-ivy.functional.ivy.utility"]], "load() (in module ivy)": [[634, "ivy.load"], [755, "ivy.load"]], "save() (in module ivy)": [[634, "ivy.save"], [756, "ivy.save"]], "conv1d() (ivy.array method)": [[636, "ivy.Array.conv1d"]], "conv1d() (ivy.container method)": [[636, "ivy.Container.conv1d"]], "conv1d_transpose() (ivy.array method)": [[637, "ivy.Array.conv1d_transpose"]], "conv1d_transpose() (ivy.container method)": [[637, "ivy.Container.conv1d_transpose"]], "conv2d() (ivy.array method)": [[638, "ivy.Array.conv2d"]], "conv2d() (ivy.container method)": [[638, "ivy.Container.conv2d"]], "conv2d_transpose() (ivy.array method)": [[639, "ivy.Array.conv2d_transpose"]], "conv2d_transpose() (ivy.container method)": [[639, "ivy.Container.conv2d_transpose"]], "conv3d() (ivy.array method)": [[640, "ivy.Array.conv3d"]], "conv3d() (ivy.container method)": [[640, "ivy.Container.conv3d"]], "conv3d_transpose() (ivy.array method)": [[641, "ivy.Array.conv3d_transpose"]], "conv3d_transpose() (ivy.container method)": [[641, "ivy.Container.conv3d_transpose"]], "depthwise_conv2d() (ivy.array method)": [[644, "ivy.Array.depthwise_conv2d"]], "depthwise_conv2d() (ivy.container method)": [[644, "ivy.Container.depthwise_conv2d"]], "dropout() (ivy.array method)": [[645, "ivy.Array.dropout"]], "dropout() (ivy.container method)": [[645, "ivy.Container.dropout"]], "linear() (ivy.array method)": [[646, "ivy.Array.linear"]], "linear() (ivy.container method)": [[646, "ivy.Container.linear"]], "lstm_update() (ivy.array method)": [[647, "ivy.Array.lstm_update"]], "lstm_update() (ivy.container method)": [[647, "ivy.Container.lstm_update"]], "multi_head_attention() (ivy.array method)": [[648, "ivy.Array.multi_head_attention"]], "multi_head_attention() (ivy.container method)": [[648, "ivy.Container.multi_head_attention"]], "scaled_dot_product_attention() (ivy.array method)": [[651, "ivy.Array.scaled_dot_product_attention"]], "scaled_dot_product_attention() (ivy.container method)": [[651, "ivy.Container.scaled_dot_product_attention"]], "cholesky() (ivy.array method)": [[652, "ivy.Array.cholesky"]], "cholesky() (ivy.container method)": [[652, "ivy.Container.cholesky"]], "cross() (ivy.array method)": [[653, "ivy.Array.cross"]], "cross() (ivy.container method)": [[653, "ivy.Container.cross"]], "det() (ivy.array method)": [[654, "ivy.Array.det"]], "det() (ivy.container method)": [[654, "ivy.Container.det"]], "diag() (ivy.array method)": [[655, "ivy.Array.diag"]], "diag() (ivy.container method)": [[655, "ivy.Container.diag"]], "diagonal() (ivy.array method)": [[656, "ivy.Array.diagonal"]], "diagonal() (ivy.container method)": [[656, "ivy.Container.diagonal"]], "eigh() (ivy.array method)": [[658, "ivy.Array.eigh"]], "eigh() (ivy.container method)": [[658, "ivy.Container.eigh"]], "eigvalsh() (ivy.array method)": [[659, "ivy.Array.eigvalsh"]], "eigvalsh() (ivy.container method)": [[659, "ivy.Container.eigvalsh"]], "inner() (ivy.array method)": [[660, "ivy.Array.inner"]], "inner() (ivy.container method)": [[660, "ivy.Container.inner"]], "inv() (ivy.array method)": [[661, "ivy.Array.inv"]], "inv() (ivy.container method)": [[661, "ivy.Container.inv"]], "matmul() (ivy.array method)": [[663, "ivy.Array.matmul"]], "matmul() (ivy.container method)": [[663, "ivy.Container.matmul"]], "matrix_norm() (ivy.array method)": [[664, "ivy.Array.matrix_norm"]], "matrix_norm() (ivy.container method)": [[664, "ivy.Container.matrix_norm"]], "matrix_power() (ivy.array method)": [[665, "ivy.Array.matrix_power"]], "matrix_power() (ivy.container method)": [[665, "ivy.Container.matrix_power"]], "matrix_rank() (ivy.array method)": [[666, "ivy.Array.matrix_rank"]], "matrix_rank() (ivy.container method)": [[666, "ivy.Container.matrix_rank"]], "matrix_transpose() (ivy.array method)": [[667, "ivy.Array.matrix_transpose"]], "matrix_transpose() (ivy.container method)": [[667, "ivy.Container.matrix_transpose"]], "outer() (ivy.array method)": [[668, "ivy.Array.outer"]], "outer() (ivy.container method)": [[668, "ivy.Container.outer"]], "pinv() (ivy.array method)": [[669, "ivy.Array.pinv"]], "pinv() (ivy.container method)": [[669, "ivy.Container.pinv"]], "qr() (ivy.array method)": [[670, "ivy.Array.qr"]], "qr() (ivy.container method)": [[670, "ivy.Container.qr"]], "slogdet() (ivy.array method)": [[671, "ivy.Array.slogdet"]], "slogdet() (ivy.container method)": [[671, "ivy.Container.slogdet"]], "solve() (ivy.array method)": [[672, "ivy.Array.solve"]], "solve() (ivy.container method)": [[672, "ivy.Container.solve"]], "svd() (ivy.array method)": [[673, "ivy.Array.svd"]], "svd() (ivy.container method)": [[673, "ivy.Container.svd"]], "svdvals() (ivy.array method)": [[674, "ivy.Array.svdvals"]], "svdvals() (ivy.container method)": [[674, "ivy.Container.svdvals"]], "tensordot() (ivy.array method)": [[675, "ivy.Array.tensordot"]], "tensordot() (ivy.container method)": [[675, "ivy.Container.tensordot"]], "tensorsolve() (ivy.array method)": [[676, "ivy.Array.tensorsolve"]], "tensorsolve() (ivy.container method)": [[676, "ivy.Container.tensorsolve"]], "trace() (ivy.array method)": [[677, "ivy.Array.trace"]], "trace() (ivy.container method)": [[677, "ivy.Container.trace"]], "vander() (ivy.array method)": [[678, "ivy.Array.vander"]], "vander() (ivy.container method)": [[678, "ivy.Container.vander"]], "vecdot() (ivy.array method)": [[679, "ivy.Array.vecdot"]], "vecdot() (ivy.container method)": [[679, "ivy.Container.vecdot"]], "vector_norm() (ivy.array method)": [[680, "ivy.Array.vector_norm"]], "vector_norm() (ivy.container method)": [[680, "ivy.Container.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.array method)": [[681, "ivy.Array.vector_to_skew_symmetric_matrix"]], "vector_to_skew_symmetric_matrix() (ivy.container method)": [[681, "ivy.Container.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (ivy.array method)": [[682, "ivy.Array.binary_cross_entropy"]], "binary_cross_entropy() (ivy.container method)": [[682, "ivy.Container.binary_cross_entropy"]], "cross_entropy() (ivy.array method)": [[683, "ivy.Array.cross_entropy"]], "cross_entropy() (ivy.container method)": [[683, "ivy.Container.cross_entropy"]], "sparse_cross_entropy() (ivy.array method)": [[684, "ivy.Array.sparse_cross_entropy"]], "sparse_cross_entropy() (ivy.container method)": [[684, "ivy.Container.sparse_cross_entropy"]], "clip() (ivy.array method)": [[685, "ivy.Array.clip"]], "clip() (ivy.container method)": [[685, "ivy.Container.clip"]], "concat() (ivy.array method)": [[686, "ivy.Array.concat"]], "concat() (ivy.container method)": [[686, "ivy.Container.concat"]], "constant_pad() (ivy.array method)": [[687, "ivy.Array.constant_pad"]], "constant_pad() (ivy.container method)": [[687, "ivy.Container.constant_pad"]], "expand_dims() (ivy.array method)": [[688, "ivy.Array.expand_dims"]], "expand_dims() (ivy.container method)": [[688, "ivy.Container.expand_dims"]], "flip() (ivy.array method)": [[689, "ivy.Array.flip"]], "flip() (ivy.container method)": [[689, "ivy.Container.flip"]], "permute_dims() (ivy.array method)": [[690, "ivy.Array.permute_dims"]], "permute_dims() (ivy.container method)": [[690, "ivy.Container.permute_dims"]], "repeat() (ivy.array method)": [[691, "ivy.Array.repeat"]], "repeat() (ivy.container method)": [[691, "ivy.Container.repeat"]], "reshape() (ivy.array method)": [[692, "ivy.Array.reshape"]], "reshape() (ivy.container method)": [[692, "ivy.Container.reshape"]], "roll() (ivy.array method)": [[693, "ivy.Array.roll"]], "roll() (ivy.container method)": [[693, "ivy.Container.roll"]], "split() (ivy.array method)": [[694, "ivy.Array.split"]], "split() (ivy.container method)": [[694, "ivy.Container.split"]], "squeeze() (ivy.array method)": [[695, "ivy.Array.squeeze"]], "squeeze() (ivy.container method)": [[695, "ivy.Container.squeeze"]], "stack() (ivy.array method)": [[696, "ivy.Array.stack"]], "stack() (ivy.container method)": [[696, "ivy.Container.stack"]], "swapaxes() (ivy.array method)": [[697, "ivy.Array.swapaxes"]], "swapaxes() (ivy.container method)": [[697, "ivy.Container.swapaxes"]], "tile() (ivy.array method)": [[698, "ivy.Array.tile"]], "tile() (ivy.container method)": [[698, "ivy.Container.tile"]], "unstack() (ivy.array method)": [[699, "ivy.Array.unstack"]], "unstack() (ivy.container method)": [[699, "ivy.Container.unstack"]], "zero_pad() (ivy.array method)": [[700, "ivy.Array.zero_pad"]], "zero_pad() (ivy.container method)": [[700, "ivy.Container.zero_pad"]], "layer_norm() (ivy.array method)": [[723, "ivy.Array.layer_norm"]], "layer_norm() (ivy.container method)": [[723, "ivy.Container.layer_norm"]], "multinomial() (ivy.array method)": [[724, "ivy.Array.multinomial"]], "multinomial() (ivy.container method)": [[724, "ivy.Container.multinomial"]], "randint() (ivy.array method)": [[725, "ivy.Array.randint"]], "randint() (ivy.container method)": [[725, "ivy.Container.randint"]], "random_normal() (ivy.array method)": [[726, "ivy.Array.random_normal"]], "random_normal() (ivy.container method)": [[726, "ivy.Container.random_normal"]], "random_uniform() (ivy.array method)": [[727, "ivy.Array.random_uniform"]], "random_uniform() (ivy.container method)": [[727, "ivy.Container.random_uniform"]], "shuffle() (ivy.array method)": [[729, "ivy.Array.shuffle"]], "shuffle() (ivy.container method)": [[729, "ivy.Container.shuffle"]], "argmax() (ivy.array method)": [[730, "ivy.Array.argmax"]], "argmax() (ivy.container method)": [[730, "ivy.Container.argmax"]], "argmin() (ivy.array method)": [[731, "ivy.Array.argmin"]], "argmin() (ivy.container method)": [[731, "ivy.Container.argmin"]], "argwhere() (ivy.array method)": [[732, "ivy.Array.argwhere"]], "argwhere() (ivy.container method)": [[732, "ivy.Container.argwhere"]], "nonzero() (ivy.array method)": [[733, "ivy.Array.nonzero"]], "nonzero() (ivy.container method)": [[733, "ivy.Container.nonzero"]], "where() (ivy.array method)": [[734, "ivy.Array.where"]], "where() (ivy.container method)": [[734, "ivy.Container.where"]], "unique_all() (ivy.array method)": [[735, "ivy.Array.unique_all"]], "unique_all() (ivy.container method)": [[735, "ivy.Container.unique_all"]], "unique_counts() (ivy.array method)": [[736, "ivy.Array.unique_counts"]], "unique_counts() (ivy.container method)": [[736, "ivy.Container.unique_counts"]], "unique_inverse() (ivy.array method)": [[737, "ivy.Array.unique_inverse"]], "unique_inverse() (ivy.container method)": [[737, "ivy.Container.unique_inverse"]], "unique_values() (ivy.array method)": [[738, "ivy.Array.unique_values"]], "unique_values() (ivy.container method)": [[738, "ivy.Container.unique_values"]], "argsort() (ivy.array method)": [[739, "ivy.Array.argsort"]], "argsort() (ivy.container method)": [[739, "ivy.Container.argsort"]], "msort() (ivy.array method)": [[740, "ivy.Array.msort"]], "msort() (ivy.container method)": [[740, "ivy.Container.msort"]], "searchsorted() (ivy.array method)": [[741, "ivy.Array.searchsorted"]], "searchsorted() (ivy.container method)": [[741, "ivy.Container.searchsorted"]], "sort() (ivy.array method)": [[742, "ivy.Array.sort"]], "sort() (ivy.container method)": [[742, "ivy.Container.sort"]], "cumprod() (ivy.array method)": [[743, "ivy.Array.cumprod"]], "cumprod() (ivy.container method)": [[743, "ivy.Container.cumprod"]], "cumsum() (ivy.array method)": [[744, "ivy.Array.cumsum"]], "cumsum() (ivy.container method)": [[744, "ivy.Container.cumsum"]], "einsum() (ivy.array method)": [[745, "ivy.Array.einsum"]], "einsum() (ivy.container method)": [[745, "ivy.Container.einsum"]], "max() (ivy.array method)": [[746, "ivy.Array.max"]], "max() (ivy.container method)": [[746, "ivy.Container.max"]], "mean() (ivy.array method)": [[747, "ivy.Array.mean"]], "mean() (ivy.container method)": [[747, "ivy.Container.mean"]], "min() (ivy.array method)": [[748, "ivy.Array.min"]], "min() (ivy.container method)": [[748, "ivy.Container.min"]], "prod() (ivy.array method)": [[749, "ivy.Array.prod"]], "prod() (ivy.container method)": [[749, "ivy.Container.prod"]], "std() (ivy.array method)": [[750, "ivy.Array.std"]], "std() (ivy.container method)": [[750, "ivy.Container.std"]], "sum() (ivy.array method)": [[751, "ivy.Array.sum"]], "sum() (ivy.container method)": [[751, "ivy.Container.sum"]], "var() (ivy.array method)": [[752, "ivy.Array.var"]], "var() (ivy.container method)": [[752, "ivy.Container.var"]], "all() (ivy.array method)": [[753, "ivy.Array.all"]], "all() (ivy.container method)": [[753, "ivy.Container.all"]], "any() (ivy.array method)": [[754, "ivy.Array.any"]], "any() (ivy.container method)": [[754, "ivy.Container.any"]], "assert_all_close() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.assert_all_close"]], "assert_same_type() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.assert_same_type"]], "assert_same_type_and_shape() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.assert_same_type_and_shape"]], "check_unsupported_device() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device"]], "check_unsupported_device_and_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device_and_dtype"]], "check_unsupported_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_dtype"]], "ivy_tests.test_ivy.helpers.assertions": [[757, "module-ivy_tests.test_ivy.helpers.assertions"]], "test_unsupported_function() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.test_unsupported_function"]], "value_test() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.value_test"]], "ivy_tests.test_ivy.helpers.available_frameworks": [[758, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "args_to_container() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.args_to_container"]], "args_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.args_to_frontend"]], "arrays_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.arrays_to_frontend"]], "as_lists() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.as_lists"]], "convtrue() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.convtrue"]], "create_args_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.create_args_kwargs"]], "flatten() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.flatten"]], "flatten_and_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.flatten_and_to_np"]], "flatten_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend"]], "flatten_frontend_fw_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_fw_to_np"]], "flatten_frontend_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_to_np"]], "get_frontend_ret() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.get_frontend_ret"]], "get_ret_and_flattened_np_array() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.get_ret_and_flattened_np_array"]], "gradient_incompatible_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.gradient_incompatible_function"]], "gradient_test() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.gradient_test"]], "gradient_unsupported_dtypes() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.gradient_unsupported_dtypes"]], "ivy_tests.test_ivy.helpers.function_testing": [[759, "module-ivy_tests.test_ivy.helpers.function_testing"]], "kwargs_to_args_n_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.kwargs_to_args_n_kwargs"]], "test_frontend_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_function"]], "test_frontend_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_method"]], "test_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_function"]], "test_function_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_function_backend_computation"]], "test_function_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_function_ground_truth_computation"]], "test_gradient_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_backend_computation"]], "test_gradient_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_ground_truth_computation"]], "test_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_method"]], "test_method_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_method_backend_computation"]], "test_method_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_method_ground_truth_computation"]], "traced_if_required() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.traced_if_required"]], "wrap_frontend_function_args() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.wrap_frontend_function_args"]], "current_frontend_config (in module ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG"]], "interruptedtest": [[760, "ivy_tests.test_ivy.helpers.globals.InterruptedTest"]], "testdata (class in ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData"]], "__init__() (ivy_tests.test_ivy.helpers.globals.interruptedtest method)": [[760, "ivy_tests.test_ivy.helpers.globals.InterruptedTest.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.globals.testdata method)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.__init__"]], "fn_name (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.fn_name"]], "fn_tree (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.fn_tree"]], "is_method (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.is_method"]], "ivy_tests.test_ivy.helpers.globals": [[760, "module-ivy_tests.test_ivy.helpers.globals"]], "setup_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.setup_api_test"]], "setup_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.setup_frontend_test"]], "supported_device_dtypes (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.supported_device_dtypes"]], "teardown_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.teardown_api_test"]], "teardown_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.teardown_frontend_test"]], "test_fn (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[761, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"]], "array_and_broadcastable_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_and_broadcastable_shape"]], "array_bools() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_bools"]], "array_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_helpers_dtype_info_helper"]], "array_indices_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_axis"]], "array_indices_put_along_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_put_along_axis"]], "array_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_values"]], "arrays_and_axes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_and_axes"]], "arrays_for_pooling() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_for_pooling"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.broadcast_shapes"]], "cond_data_gen_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.cond_data_gen_helper"]], "create_concatenable_arrays_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_concatenable_arrays_dtypes"]], "create_nested_input() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_nested_input"]], "dtype_and_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_and_values"]], "dtype_array_query() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query"]], "dtype_array_query_val() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query_val"]], "dtype_values_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_values_axis"]], "einsum_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.einsum_helper"]], "get_first_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_batch_matrix"]], "get_first_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_matrix"]], "get_second_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_batch_matrix"]], "get_second_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_matrix"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "list_of_size() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.list_of_size"]], "lists() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.lists"]], "mutually_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.mutually_broadcastable_shapes"]], "prod() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.prod"]], "array_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.array_dtypes"]], "cast_filter() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter"]], "cast_filter_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter_helper"]], "get_castable_dtype() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_castable_dtype"]], "get_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "broadcasterror": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.BroadcastError"]], "apply_safety_factor() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.apply_safety_factor"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.broadcast_shapes"]], "embedding_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.embedding_helper"]], "general_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.general_helpers_dtype_info_helper"]], "get_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_axis"]], "get_bounds() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_bounds"]], "get_mean_std() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_mean_std"]], "get_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_shape"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "matrix_is_stable() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.matrix_is_stable"]], "reshape_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.reshape_shapes"]], "subsets() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.subsets"]], "two_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.two_broadcastable_shapes"]], "x_and_filters() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.x_and_filters"]], "floats() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.floats"]], "ints() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.ints"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "number() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.number"]], "backend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[766, "ivy_tests.test_ivy.helpers.multiprocessing.backend_proc"]], "frontend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[766, "ivy_tests.test_ivy.helpers.multiprocessing.frontend_proc"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[766, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "backendhandler (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler"]], "backendhandlermode (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode"]], "setbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.SetBackend"]], "withbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.WithBackend"]], "withbackendcontext (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext"]], "__init__() (ivy_tests.test_ivy.helpers.pipeline_helper.withbackendcontext method)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext.__init__"]], "get_frontend_config() (in module ivy_tests.test_ivy.helpers.pipeline_helper)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[767, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "update_backend() (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandler class method)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler.update_backend"]], "frontendmethoddata (class in ivy_tests.test_ivy.helpers.structs)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData"]], "__init__() (ivy_tests.test_ivy.helpers.structs.frontendmethoddata method)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.__init__"]], "framework_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.framework_init_module"]], "init_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.init_name"]], "ivy_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.ivy_init_module"]], "ivy_tests.test_ivy.helpers.structs": [[768, "module-ivy_tests.test_ivy.helpers.structs"]], "method_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.method_name"]], "dynamicflag (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag"]], "frontendfunctiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags"]], "frontendinittestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags"]], "frontendmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags"]], "functiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags"]], "initmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags"]], "methodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags"]], "testflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.__init__"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.testflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags.apply_flags"]], "build_flag() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.build_flag"]], "frontend_function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_function_flags"]], "frontend_init_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_init_flags"]], "frontend_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_method_flags"]], "function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.function_flags"]], "init_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.init_method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[769, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.method_flags"]], "strategy (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag attribute)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.strategy"]], "handle_frontend_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_method"]], "handle_frontend_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_test"]], "handle_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.handle_method"]], "handle_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.handle_test"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[770, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "num_positional_args() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args"]], "num_positional_args_helper() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_helper"]], "num_positional_args_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_method"]], "seed() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.seed"]], "elu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.ELU"]], "geglu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.GEGLU"]], "gelu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.GELU"]], "hardswish (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Hardswish"]], "leakyrelu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.LeakyReLU"]], "logsigmoid (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.LogSigmoid"]], "logsoftmax (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.LogSoftmax"]], "logit (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Logit"]], "mish (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Mish"]], "prelu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.PReLU"]], "relu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.ReLU"]], "relu6 (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.ReLU6"]], "selu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.SeLU"]], "silu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.SiLU"]], "sigmoid (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Sigmoid"]], "softmax (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Softmax"]], "softplus (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Softplus"]], "tanh (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Tanh"]], "__init__() (ivy.stateful.activations.elu method)": [[774, "ivy.stateful.activations.ELU.__init__"]], "__init__() (ivy.stateful.activations.geglu method)": [[774, "ivy.stateful.activations.GEGLU.__init__"]], "__init__() (ivy.stateful.activations.gelu method)": [[774, "ivy.stateful.activations.GELU.__init__"]], "__init__() (ivy.stateful.activations.hardswish method)": [[774, "ivy.stateful.activations.Hardswish.__init__"]], "__init__() (ivy.stateful.activations.leakyrelu method)": [[774, "ivy.stateful.activations.LeakyReLU.__init__"]], "__init__() (ivy.stateful.activations.logsigmoid method)": [[774, "ivy.stateful.activations.LogSigmoid.__init__"]], "__init__() (ivy.stateful.activations.logsoftmax method)": [[774, "ivy.stateful.activations.LogSoftmax.__init__"]], "__init__() (ivy.stateful.activations.logit method)": [[774, "ivy.stateful.activations.Logit.__init__"]], "__init__() (ivy.stateful.activations.mish method)": [[774, "ivy.stateful.activations.Mish.__init__"]], "__init__() (ivy.stateful.activations.prelu method)": [[774, "ivy.stateful.activations.PReLU.__init__"]], "__init__() (ivy.stateful.activations.relu method)": [[774, "ivy.stateful.activations.ReLU.__init__"]], "__init__() (ivy.stateful.activations.relu6 method)": [[774, "ivy.stateful.activations.ReLU6.__init__"]], "__init__() (ivy.stateful.activations.selu method)": [[774, "ivy.stateful.activations.SeLU.__init__"]], "__init__() (ivy.stateful.activations.silu method)": [[774, "ivy.stateful.activations.SiLU.__init__"]], "__init__() (ivy.stateful.activations.sigmoid method)": [[774, "ivy.stateful.activations.Sigmoid.__init__"]], "__init__() (ivy.stateful.activations.softmax method)": [[774, "ivy.stateful.activations.Softmax.__init__"]], "__init__() (ivy.stateful.activations.softplus method)": [[774, "ivy.stateful.activations.Softplus.__init__"]], "__init__() (ivy.stateful.activations.tanh method)": [[774, "ivy.stateful.activations.Tanh.__init__"]], "ivy.stateful.activations": [[774, "module-ivy.stateful.activations"]], "moduleconverters (class in ivy.stateful.converters)": [[775, "ivy.stateful.converters.ModuleConverters"]], "from_flax_module() (ivy.stateful.converters.moduleconverters static method)": [[775, "ivy.stateful.converters.ModuleConverters.from_flax_module"]], "from_haiku_module() (ivy.stateful.converters.moduleconverters static method)": [[775, "ivy.stateful.converters.ModuleConverters.from_haiku_module"]], "from_keras_module() (ivy.stateful.converters.moduleconverters static method)": [[775, "ivy.stateful.converters.ModuleConverters.from_keras_module"]], "from_paddle_module() (ivy.stateful.converters.moduleconverters static method)": [[775, "ivy.stateful.converters.ModuleConverters.from_paddle_module"]], "from_torch_module() (ivy.stateful.converters.moduleconverters static method)": [[775, "ivy.stateful.converters.ModuleConverters.from_torch_module"]], "ivy.stateful.converters": [[775, "module-ivy.stateful.converters"]], "to_ivy_module() (in module ivy.stateful.converters)": [[775, "ivy.stateful.converters.to_ivy_module"]], "to_keras_module() (ivy.stateful.converters.moduleconverters method)": [[775, "ivy.stateful.converters.ModuleConverters.to_keras_module"]], "modulehelpers (class in ivy.stateful.helpers)": [[776, "ivy.stateful.helpers.ModuleHelpers"]], "ivy.stateful.helpers": [[776, "module-ivy.stateful.helpers"]], "constant (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Constant"]], "firstlayersiren (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.FirstLayerSiren"]], "glorotuniform (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.GlorotUniform"]], "initializer (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Initializer"]], "kaimingnormal (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.KaimingNormal"]], "ones (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Ones"]], "randomnormal (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.RandomNormal"]], "siren (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Siren"]], "uniform (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Uniform"]], "zeros (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Zeros"]], "__init__() (ivy.stateful.initializers.constant method)": [[777, "ivy.stateful.initializers.Constant.__init__"]], "__init__() (ivy.stateful.initializers.firstlayersiren method)": [[777, "ivy.stateful.initializers.FirstLayerSiren.__init__"]], "__init__() (ivy.stateful.initializers.glorotuniform method)": [[777, "ivy.stateful.initializers.GlorotUniform.__init__"]], "__init__() (ivy.stateful.initializers.kaimingnormal method)": [[777, "ivy.stateful.initializers.KaimingNormal.__init__"]], "__init__() (ivy.stateful.initializers.ones method)": [[777, "ivy.stateful.initializers.Ones.__init__"]], "__init__() (ivy.stateful.initializers.randomnormal method)": [[777, "ivy.stateful.initializers.RandomNormal.__init__"]], "__init__() (ivy.stateful.initializers.siren method)": [[777, "ivy.stateful.initializers.Siren.__init__"]], "__init__() (ivy.stateful.initializers.uniform method)": [[777, "ivy.stateful.initializers.Uniform.__init__"]], "__init__() (ivy.stateful.initializers.zeros method)": [[777, "ivy.stateful.initializers.Zeros.__init__"]], "create_variables() (ivy.stateful.initializers.constant method)": [[777, "ivy.stateful.initializers.Constant.create_variables"]], "create_variables() (ivy.stateful.initializers.initializer method)": [[777, "ivy.stateful.initializers.Initializer.create_variables"]], "create_variables() (ivy.stateful.initializers.kaimingnormal method)": [[777, "ivy.stateful.initializers.KaimingNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.randomnormal method)": [[777, "ivy.stateful.initializers.RandomNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.uniform method)": [[777, "ivy.stateful.initializers.Uniform.create_variables"]], "ivy.stateful.initializers": [[777, "module-ivy.stateful.initializers"]], "adaptiveavgpool1d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.AdaptiveAvgPool1d"]], "adaptiveavgpool2d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.AdaptiveAvgPool2d"]], "avgpool1d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.AvgPool1D"]], "avgpool2d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.AvgPool2D"]], "avgpool3d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.AvgPool3D"]], "conv1d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv1D"]], "conv1dtranspose (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv1DTranspose"]], "conv2d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv2D"]], "conv2dtranspose (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv2DTranspose"]], "conv3d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv3D"]], "conv3dtranspose (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv3DTranspose"]], "dct (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Dct"]], "depthwiseconv2d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.DepthwiseConv2D"]], "dropout (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Dropout"]], "embedding (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Embedding"]], "fft (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.FFT"]], "ifft (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.IFFT"]], "identity (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Identity"]], "lstm (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.LSTM"]], "linear (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Linear"]], "maxpool1d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.MaxPool1D"]], "maxpool2d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.MaxPool2D"]], "maxpool3d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.MaxPool3D"]], "multiheadattention (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.MultiHeadAttention"]], "__init__() (ivy.stateful.layers.adaptiveavgpool1d method)": [[778, "ivy.stateful.layers.AdaptiveAvgPool1d.__init__"]], "__init__() (ivy.stateful.layers.adaptiveavgpool2d method)": [[778, "ivy.stateful.layers.AdaptiveAvgPool2d.__init__"]], "__init__() (ivy.stateful.layers.avgpool1d method)": [[778, "ivy.stateful.layers.AvgPool1D.__init__"]], "__init__() (ivy.stateful.layers.avgpool2d method)": [[778, "ivy.stateful.layers.AvgPool2D.__init__"]], "__init__() (ivy.stateful.layers.avgpool3d method)": [[778, "ivy.stateful.layers.AvgPool3D.__init__"]], "__init__() (ivy.stateful.layers.conv1d method)": [[778, "ivy.stateful.layers.Conv1D.__init__"]], "__init__() (ivy.stateful.layers.conv1dtranspose method)": [[778, "ivy.stateful.layers.Conv1DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv2d method)": [[778, "ivy.stateful.layers.Conv2D.__init__"]], "__init__() (ivy.stateful.layers.conv2dtranspose method)": [[778, "ivy.stateful.layers.Conv2DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv3d method)": [[778, "ivy.stateful.layers.Conv3D.__init__"]], "__init__() (ivy.stateful.layers.conv3dtranspose method)": [[778, "ivy.stateful.layers.Conv3DTranspose.__init__"]], "__init__() (ivy.stateful.layers.dct method)": [[778, "ivy.stateful.layers.Dct.__init__"]], "__init__() (ivy.stateful.layers.depthwiseconv2d method)": [[778, "ivy.stateful.layers.DepthwiseConv2D.__init__"]], "__init__() (ivy.stateful.layers.dropout method)": [[778, "ivy.stateful.layers.Dropout.__init__"]], "__init__() (ivy.stateful.layers.embedding method)": [[778, "ivy.stateful.layers.Embedding.__init__"]], "__init__() (ivy.stateful.layers.fft method)": [[778, "ivy.stateful.layers.FFT.__init__"]], "__init__() (ivy.stateful.layers.ifft method)": [[778, "ivy.stateful.layers.IFFT.__init__"]], "__init__() (ivy.stateful.layers.identity method)": [[778, "ivy.stateful.layers.Identity.__init__"]], "__init__() (ivy.stateful.layers.lstm method)": [[778, "ivy.stateful.layers.LSTM.__init__"]], "__init__() (ivy.stateful.layers.linear method)": [[778, "ivy.stateful.layers.Linear.__init__"]], "__init__() (ivy.stateful.layers.maxpool1d method)": [[778, "ivy.stateful.layers.MaxPool1D.__init__"]], "__init__() (ivy.stateful.layers.maxpool2d method)": [[778, "ivy.stateful.layers.MaxPool2D.__init__"]], "__init__() (ivy.stateful.layers.maxpool3d method)": [[778, "ivy.stateful.layers.MaxPool3D.__init__"]], "__init__() (ivy.stateful.layers.multiheadattention method)": [[778, "ivy.stateful.layers.MultiHeadAttention.__init__"]], "get_initial_state() (ivy.stateful.layers.lstm method)": [[778, "ivy.stateful.layers.LSTM.get_initial_state"]], "ivy.stateful.layers": [[778, "module-ivy.stateful.layers"]], "binarycrossentropyloss (class in ivy.stateful.losses)": [[779, "ivy.stateful.losses.BinaryCrossEntropyLoss"]], "crossentropyloss (class in ivy.stateful.losses)": [[779, "ivy.stateful.losses.CrossEntropyLoss"]], "logpoissonloss (class in ivy.stateful.losses)": [[779, "ivy.stateful.losses.LogPoissonLoss"]], "__init__() (ivy.stateful.losses.binarycrossentropyloss method)": [[779, "ivy.stateful.losses.BinaryCrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.crossentropyloss method)": [[779, "ivy.stateful.losses.CrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.logpoissonloss method)": [[779, "ivy.stateful.losses.LogPoissonLoss.__init__"]], "ivy.stateful.losses": [[779, "module-ivy.stateful.losses"]], "module (class in ivy.stateful.module)": [[780, "ivy.stateful.module.Module"]], "modulemeta (class in ivy.stateful.module)": [[780, "ivy.stateful.module.ModuleMeta"]], "__call__() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.__call__"]], "__init__() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.__init__"]], "buffers (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.buffers"]], "build() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.build"]], "build_mode (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.build_mode"]], "built (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.built"]], "device (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.device"]], "dtype (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.dtype"]], "eval() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.eval"]], "ivy.stateful.module": [[780, "module-ivy.stateful.module"]], "load() (ivy.stateful.module.module static method)": [[780, "ivy.stateful.module.Module.load"]], "module_dict (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.module_dict"]], "register_buffer() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.register_buffer"]], "register_parameter() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.register_parameter"]], "save() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.save"]], "save_weights() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.save_weights"]], "show_graph() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.show_graph"]], "state_dict (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.state_dict"]], "to_device() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.to_device"]], "trace_graph() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.trace_graph"]], "train() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.train"]], "training (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.training"]], "v (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.v"]], "batchnorm2d (class in ivy.stateful.norms)": [[781, "ivy.stateful.norms.BatchNorm2D"]], "layernorm (class in ivy.stateful.norms)": [[781, "ivy.stateful.norms.LayerNorm"]], "__init__() (ivy.stateful.norms.batchnorm2d method)": [[781, "ivy.stateful.norms.BatchNorm2D.__init__"]], "__init__() (ivy.stateful.norms.layernorm method)": [[781, "ivy.stateful.norms.LayerNorm.__init__"]], "ivy.stateful.norms": [[781, "module-ivy.stateful.norms"]], "adam (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.Adam"]], "adamw (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.AdamW"]], "lamb (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.LAMB"]], "lars (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.LARS"]], "optimizer (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.Optimizer"]], "sgd (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.SGD"]], "__init__() (ivy.stateful.optimizers.adam method)": [[782, "ivy.stateful.optimizers.Adam.__init__"]], "__init__() (ivy.stateful.optimizers.adamw method)": [[782, "ivy.stateful.optimizers.AdamW.__init__"]], "__init__() (ivy.stateful.optimizers.lamb method)": [[782, "ivy.stateful.optimizers.LAMB.__init__"]], "__init__() (ivy.stateful.optimizers.lars method)": [[782, "ivy.stateful.optimizers.LARS.__init__"]], "__init__() (ivy.stateful.optimizers.optimizer method)": [[782, "ivy.stateful.optimizers.Optimizer.__init__"]], "__init__() (ivy.stateful.optimizers.sgd method)": [[782, "ivy.stateful.optimizers.SGD.__init__"]], "ivy.stateful.optimizers": [[782, "module-ivy.stateful.optimizers"]], "set_state() (ivy.stateful.optimizers.adam method)": [[782, "ivy.stateful.optimizers.Adam.set_state"]], "set_state() (ivy.stateful.optimizers.lamb method)": [[782, "ivy.stateful.optimizers.LAMB.set_state"]], "set_state() (ivy.stateful.optimizers.lars method)": [[782, "ivy.stateful.optimizers.LARS.set_state"]], "set_state() (ivy.stateful.optimizers.optimizer method)": [[782, "ivy.stateful.optimizers.Optimizer.set_state"]], "set_state() (ivy.stateful.optimizers.sgd method)": [[782, "ivy.stateful.optimizers.SGD.set_state"]], "state (ivy.stateful.optimizers.adam property)": [[782, "ivy.stateful.optimizers.Adam.state"]], "state (ivy.stateful.optimizers.lamb property)": [[782, "ivy.stateful.optimizers.LAMB.state"]], "state (ivy.stateful.optimizers.lars property)": [[782, "ivy.stateful.optimizers.LARS.state"]], "state (ivy.stateful.optimizers.sgd property)": [[782, "ivy.stateful.optimizers.SGD.state"]], "step() (ivy.stateful.optimizers.optimizer method)": [[782, "ivy.stateful.optimizers.Optimizer.step"]], "sequential (class in ivy.stateful.sequential)": [[783, "ivy.stateful.sequential.Sequential"]], "__init__() (ivy.stateful.sequential.sequential method)": [[783, "ivy.stateful.sequential.Sequential.__init__"]], "ivy.stateful.sequential": [[783, "module-ivy.stateful.sequential"]], "check_all() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_all"]], "check_all_or_any_fn() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_all_or_any_fn"]], "check_any() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_any"]], "check_dev_correct_formatting() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_dev_correct_formatting"]], "check_dimensions() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_dimensions"]], "check_elem_in_list() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_elem_in_list"]], "check_equal() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_equal"]], "check_exists() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_exists"]], "check_false() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_false"]], "check_gather_input_valid() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_gather_input_valid"]], "check_gather_nd_input_valid() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_gather_nd_input_valid"]], "check_greater() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_greater"]], "check_inplace_sizes_valid() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_inplace_sizes_valid"]], "check_isinstance() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_isinstance"]], "check_kernel_padding_size() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_kernel_padding_size"]], "check_less() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_less"]], "check_one_way_broadcastable() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_one_way_broadcastable"]], "check_same_dtype() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_same_dtype"]], "check_shape() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_shape"]], "check_shapes_broadcastable() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_shapes_broadcastable"]], "check_true() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_true"]], "check_unsorted_segment_valid_params() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_unsorted_segment_valid_params"]], "ivy.utils.assertions": [[784, "module-ivy.utils.assertions"]], "ivy.utils.backend": [[785, "module-ivy.utils.backend"]], "importtransformer (class in ivy.utils.backend.ast_helpers)": [[786, "ivy.utils.backend.ast_helpers.ImportTransformer"]], "ivyloader (class in ivy.utils.backend.ast_helpers)": [[786, "ivy.utils.backend.ast_helpers.IvyLoader"]], "ivypathfinder (class in ivy.utils.backend.ast_helpers)": [[786, "ivy.utils.backend.ast_helpers.IvyPathFinder"]], "__init__() (ivy.utils.backend.ast_helpers.importtransformer method)": [[786, "ivy.utils.backend.ast_helpers.ImportTransformer.__init__"]], "__init__() (ivy.utils.backend.ast_helpers.ivyloader method)": [[786, "ivy.utils.backend.ast_helpers.IvyLoader.__init__"]], "exec_module() (ivy.utils.backend.ast_helpers.ivyloader method)": [[786, "ivy.utils.backend.ast_helpers.IvyLoader.exec_module"]], "find_spec() (ivy.utils.backend.ast_helpers.ivypathfinder method)": [[786, "ivy.utils.backend.ast_helpers.IvyPathFinder.find_spec"]], "impersonate_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[786, "ivy.utils.backend.ast_helpers.ImportTransformer.impersonate_import"]], "ivy.utils.backend.ast_helpers": [[786, "module-ivy.utils.backend.ast_helpers"]], "visit_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[786, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_Import"]], "visit_importfrom() (ivy.utils.backend.ast_helpers.importtransformer method)": [[786, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_ImportFrom"]], "contextmanager (class in ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.ContextManager"]], "__init__() (ivy.utils.backend.handler.contextmanager method)": [[787, "ivy.utils.backend.handler.ContextManager.__init__"]], "choose_random_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.choose_random_backend"]], "current_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.current_backend"]], "dynamic_backend_converter() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.dynamic_backend_converter"]], "ivy.utils.backend.handler": [[787, "module-ivy.utils.backend.handler"]], "prevent_access_locally() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.prevent_access_locally"]], "previous_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.previous_backend"]], "set_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_backend"]], "set_backend_to_specific_version() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_backend_to_specific_version"]], "set_jax_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_jax_backend"]], "set_mxnet_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_mxnet_backend"]], "set_numpy_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_numpy_backend"]], "set_paddle_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_paddle_backend"]], "set_tensorflow_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_tensorflow_backend"]], "set_torch_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_torch_backend"]], "unset_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.unset_backend"]], "with_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.with_backend"]], "clear_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.clear_sub_backends"]], "find_available_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.find_available_sub_backends"]], "fn_name_from_version_specific_fn_name() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name"]], "fn_name_from_version_specific_fn_name_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name_sub_backend"]], "ivy.utils.backend.sub_backend_handler": [[788, "module-ivy.utils.backend.sub_backend_handler"]], "set_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.set_sub_backend"]], "set_sub_backend_to_specific_version() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.set_sub_backend_to_specific_version"]], "unset_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.unset_sub_backend"]], "check_for_binaries() (in module ivy.utils.binaries)": [[789, "ivy.utils.binaries.check_for_binaries"]], "cleanup_and_fetch_binaries() (in module ivy.utils.binaries)": [[789, "ivy.utils.binaries.cleanup_and_fetch_binaries"]], "ivy.utils.binaries": [[789, "module-ivy.utils.binaries"]], "import_module() (in module ivy.utils.dynamic_import)": [[790, "ivy.utils.dynamic_import.import_module"]], "ivy.utils.dynamic_import": [[790, "module-ivy.utils.dynamic_import"]], "convert_interleaved_input() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.convert_interleaved_input"]], "convert_subscripts() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.convert_subscripts"]], "find_output_shape() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.find_output_shape"]], "find_output_str() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.find_output_str"]], "gen_unused_symbols() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.gen_unused_symbols"]], "get_symbol() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.get_symbol"]], "has_valid_einsum_chars_only() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.has_valid_einsum_chars_only"]], "is_valid_einsum_char() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.is_valid_einsum_char"]], "ivy.utils.einsum_parser": [[791, "module-ivy.utils.einsum_parser"]], "legalise_einsum_expr() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.legalise_einsum_expr"]], "possibly_convert_to_numpy() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.possibly_convert_to_numpy"]], "can_dot() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.can_dot"]], "compute_size_by_dict() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.compute_size_by_dict"]], "find_contraction() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.find_contraction"]], "flop_count() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.flop_count"]], "greedy_path() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.greedy_path"]], "ivy.utils.einsum_path_helpers": [[792, "module-ivy.utils.einsum_path_helpers"]], "optimal_path() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.optimal_path"]], "parse_einsum_input() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.parse_einsum_input"]], "parse_possible_contraction() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.parse_possible_contraction"]], "update_other_results() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.update_other_results"]], "inplaceupdateexception": [[793, "ivy.utils.exceptions.InplaceUpdateException"]], "ivyattributeerror": [[793, "ivy.utils.exceptions.IvyAttributeError"]], "ivybackendexception": [[793, "ivy.utils.exceptions.IvyBackendException"]], "ivybroadcastshapeerror": [[793, "ivy.utils.exceptions.IvyBroadcastShapeError"]], "ivydeviceerror": [[793, "ivy.utils.exceptions.IvyDeviceError"]], "ivydtypepromotionerror": [[793, "ivy.utils.exceptions.IvyDtypePromotionError"]], "ivyerror": [[793, "ivy.utils.exceptions.IvyError"]], "ivyexception": [[793, "ivy.utils.exceptions.IvyException"]], "ivyindexerror": [[793, "ivy.utils.exceptions.IvyIndexError"]], "ivyinvalidbackendexception": [[793, "ivy.utils.exceptions.IvyInvalidBackendException"]], "ivynotimplementedexception": [[793, "ivy.utils.exceptions.IvyNotImplementedException"]], "ivyvalueerror": [[793, "ivy.utils.exceptions.IvyValueError"]], "__init__() (ivy.utils.exceptions.inplaceupdateexception method)": [[793, "ivy.utils.exceptions.InplaceUpdateException.__init__"]], "__init__() (ivy.utils.exceptions.ivyattributeerror method)": [[793, "ivy.utils.exceptions.IvyAttributeError.__init__"]], "__init__() (ivy.utils.exceptions.ivybackendexception method)": [[793, "ivy.utils.exceptions.IvyBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivybroadcastshapeerror method)": [[793, "ivy.utils.exceptions.IvyBroadcastShapeError.__init__"]], "__init__() (ivy.utils.exceptions.ivydeviceerror method)": [[793, "ivy.utils.exceptions.IvyDeviceError.__init__"]], "__init__() (ivy.utils.exceptions.ivydtypepromotionerror method)": [[793, "ivy.utils.exceptions.IvyDtypePromotionError.__init__"]], "__init__() (ivy.utils.exceptions.ivyerror method)": [[793, "ivy.utils.exceptions.IvyError.__init__"]], "__init__() (ivy.utils.exceptions.ivyexception method)": [[793, "ivy.utils.exceptions.IvyException.__init__"]], "__init__() (ivy.utils.exceptions.ivyindexerror method)": [[793, "ivy.utils.exceptions.IvyIndexError.__init__"]], "__init__() (ivy.utils.exceptions.ivyinvalidbackendexception method)": [[793, "ivy.utils.exceptions.IvyInvalidBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivynotimplementedexception method)": [[793, "ivy.utils.exceptions.IvyNotImplementedException.__init__"]], "__init__() (ivy.utils.exceptions.ivyvalueerror method)": [[793, "ivy.utils.exceptions.IvyValueError.__init__"]], "handle_exceptions() (in module ivy.utils.exceptions)": [[793, "ivy.utils.exceptions.handle_exceptions"]], "ivy.utils.exceptions": [[793, "module-ivy.utils.exceptions"]], "add_array_specs() (in module ivy.utils.inspection)": [[794, "ivy.utils.inspection.add_array_specs"]], "fn_array_spec() (in module ivy.utils.inspection)": [[794, "ivy.utils.inspection.fn_array_spec"]], "ivy.utils.inspection": [[794, "module-ivy.utils.inspection"]], "ivy.utils.logging": [[795, "module-ivy.utils.logging"]], "set_logging_mode() (in module ivy.utils.logging)": [[795, "ivy.utils.logging.set_logging_mode"]], "unset_logging_mode() (in module ivy.utils.logging)": [[795, "ivy.utils.logging.unset_logging_mode"]], "profiler (class in ivy.utils.profiler)": [[796, "ivy.utils.profiler.Profiler"]], "__init__() (ivy.utils.profiler.profiler method)": [[796, "ivy.utils.profiler.Profiler.__init__"]], "ivy.utils.profiler": [[796, "module-ivy.utils.profiler"]], "print_stats (ivy.utils.profiler.profiler attribute)": [[796, "ivy.utils.profiler.Profiler.print_stats"]], "viz (ivy.utils.profiler.profiler attribute)": [[796, "ivy.utils.profiler.Profiler.viz"]], "cprint() (in module ivy.utils.verbosity)": [[797, "ivy.utils.verbosity.cprint"]], "ivy.utils.verbosity": [[797, "module-ivy.utils.verbosity"]], "automatic code conversions": [[841, "term-Automatic-Code-Conversions"]], "backend handler": [[841, "term-Backend-Handler"]], "compositional functions": [[841, "term-Compositional-Functions"]], "convenience functions": [[841, "term-Convenience-Functions"]], "framework": [[841, "term-Framework"]], "framework handler": [[841, "term-Framework-Handler"]], "graph compiler": [[841, "term-Graph-Compiler"]], "ivy array": [[841, "term-Ivy-Array"]], "ivy backends": [[841, "term-Ivy-Backends"]], "ivy compiler": [[841, "term-Ivy-Compiler"]], "ivy container": [[841, "term-Ivy-Container"]], "ivy frontends": [[841, "term-Ivy-Frontends"]], "ivy functional api": [[841, "term-Ivy-Functional-API"]], "ivy tracer": [[841, "term-Ivy-Tracer"]], "ivy transpiler": [[841, "term-Ivy-Transpiler"]], "mixed functions": [[841, "term-Mixed-Functions"]], "native array": [[841, "term-Native-Array"]], "nestable functions": [[841, "term-Nestable-Functions"]], "pipeline": [[841, "term-Pipeline"]], "primary functions": [[841, "term-Primary-Functions"]], "standalone functions": [[841, "term-Standalone-Functions"]], "submodule helper functions": [[841, "term-Submodule-Helper-Functions"]], "built-in function": [[847, "ivy.trace_graph"], [848, "ivy.transpile"], [849, "ivy.unify"]], "ivy.trace_graph()": [[847, "ivy.trace_graph"]], "ivy.transpile()": [[848, "ivy.transpile"]], "ivy.unify()": [[849, "ivy.unify"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["demos/README", "demos/assets/01_template", "demos/examples_and_demos", "demos/examples_and_demos/alexnet_demo", "demos/examples_and_demos/bert_demo", "demos/examples_and_demos/image_segmentation_with_ivy_unet", "demos/examples_and_demos/mmpretrain_to_jax", "demos/examples_and_demos/resnet_demo", "demos/examples_and_demos/torch_to_jax", "demos/examples_and_demos/xgboost_demo", "demos/guides", "demos/guides/01_transpiling_a_torch_model", "demos/guides/02_transpiling_a_haiku_model", "demos/guides/03_transpiling_a_tf_model", "demos/guides/04_developing_a_convnet_with_ivy", "demos/index", "demos/learn_the_basics", "demos/learn_the_basics/01_write_ivy_code", "demos/learn_the_basics/02_unify_code", "demos/learn_the_basics/03_trace_code", "demos/learn_the_basics/04_transpile_code", "demos/learn_the_basics/05_lazy_vs_eager", "demos/learn_the_basics/06_how_to_use_decorators", "demos/learn_the_basics/07_transpile_any_library", "demos/learn_the_basics/08_transpile_any_model", "demos/learn_the_basics/09_write_a_model_using_ivy", "demos/misc/odsc", "demos/quickstart", "demos/wip/0_building_blocks/0_0_unify", "demos/wip/0_building_blocks/0_1_compile", "demos/wip/0_building_blocks/0_2_transpile", "demos/wip/1_the_basics/1_0_lazy_vs_eager", "demos/wip/1_the_basics/1_1_framework_selection", "demos/wip/1_the_basics/1_2_as_a_decorator", "demos/wip/1_the_basics/1_3_dynamic_vs_static", "demos/wip/2_libraries/2_0_kornia", "demos/wip/3_models/3_0_perceiver", "demos/wip/3_models/3_1_stable_diffusion", "demos/wip/basic_operations_with_ivy", "demos/wip/compilation_of_a_basic_function", "demos/wip/deepmind_perceiver_io", "demos/wip/deepmind_perceiverio", "demos/wip/end_to_end_training_pipeline_in_ivy", "demos/wip/hf_tensorflow_deit", "demos/wip/ivy_as_a_transpiler_intro", "demos/wip/resnet_18", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type", "docs/data_classes/data_classes/array/ivy.data_classes.array.device", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental", "docs/data_classes/data_classes/array/ivy.data_classes.array.general", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients", "docs/data_classes/data_classes/array/ivy.data_classes.array.image", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms", "docs/data_classes/data_classes/array/ivy.data_classes.array.random", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching", "docs/data_classes/data_classes/array/ivy.data_classes.array.set", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations", "docs/data_classes/data_classes/container/ivy.data_classes.container.base", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type", "docs/data_classes/data_classes/container/ivy.data_classes.container.device", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental", "docs/data_classes/data_classes/container/ivy.data_classes.container.general", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients", "docs/data_classes/data_classes/container/ivy.data_classes.container.image", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms", "docs/data_classes/data_classes/container/ivy.data_classes.container.random", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching", "docs/data_classes/data_classes/container/ivy.data_classes.container.set", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor", "docs/data_classes/data_classes/ivy.data_classes.array", "docs/data_classes/data_classes/ivy.data_classes.container", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor", "docs/data_classes/data_classes/ivy.data_classes.nested_array", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise", "docs/data_classes/ivy.data_classes", "docs/functional/ivy.functional.ivy", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.dev", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str", "docs/functional/ivy/general/ivy.functional.ivy.general.default", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat", "docs/functional/ivy/general/ivy.functional.ivy.general.exists", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.gather", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array", "docs/functional/ivy/general/ivy.functional.ivy.general.isin", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.shape", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow", "docs/functional/ivy/general/ivy.functional.ivy.general.strides", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad", "docs/functional/ivy/ivy.functional.ivy.activations", "docs/functional/ivy/ivy.functional.ivy.constants", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops", "docs/functional/ivy/ivy.functional.ivy.creation", "docs/functional/ivy/ivy.functional.ivy.data_type", "docs/functional/ivy/ivy.functional.ivy.device", "docs/functional/ivy/ivy.functional.ivy.elementwise", "docs/functional/ivy/ivy.functional.ivy.experimental", "docs/functional/ivy/ivy.functional.ivy.general", "docs/functional/ivy/ivy.functional.ivy.gradients", "docs/functional/ivy/ivy.functional.ivy.layers", "docs/functional/ivy/ivy.functional.ivy.linear_algebra", "docs/functional/ivy/ivy.functional.ivy.losses", "docs/functional/ivy/ivy.functional.ivy.manipulation", "docs/functional/ivy/ivy.functional.ivy.meta", "docs/functional/ivy/ivy.functional.ivy.nest", "docs/functional/ivy/ivy.functional.ivy.norms", "docs/functional/ivy/ivy.functional.ivy.random", "docs/functional/ivy/ivy.functional.ivy.searching", "docs/functional/ivy/ivy.functional.ivy.set", "docs/functional/ivy/ivy.functional.ivy.sorting", "docs/functional/ivy/ivy.functional.ivy.statistical", "docs/functional/ivy/ivy.functional.ivy.utility", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial", "docs/functional/ivy/random/ivy.functional.ivy.random.randint", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform", "docs/functional/ivy/random/ivy.functional.ivy.random.seed", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save", "docs/helpers/ivy_tests.test_ivy.helpers.assertions", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing", "docs/helpers/ivy_tests.test_ivy.helpers.globals", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper", "docs/helpers/ivy_tests.test_ivy.helpers.structs", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers", "docs/ivy.stateful", "docs/ivy.utils", "docs/ivy_tests.test_ivy.helpers", "docs/stateful/ivy.stateful.activations", "docs/stateful/ivy.stateful.converters", "docs/stateful/ivy.stateful.helpers", "docs/stateful/ivy.stateful.initializers", "docs/stateful/ivy.stateful.layers", "docs/stateful/ivy.stateful.losses", "docs/stateful/ivy.stateful.module", "docs/stateful/ivy.stateful.norms", "docs/stateful/ivy.stateful.optimizers", "docs/stateful/ivy.stateful.sequential", "docs/utils/ivy.utils.assertions", "docs/utils/ivy.utils.backend", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler", "docs/utils/ivy.utils.binaries", "docs/utils/ivy.utils.dynamic_import", "docs/utils/ivy.utils.einsum_parser", "docs/utils/ivy.utils.einsum_path_helpers", "docs/utils/ivy.utils.exceptions", "docs/utils/ivy.utils.inspection", "docs/utils/ivy.utils.logging", "docs/utils/ivy.utils.profiler", "docs/utils/ivy.utils.verbosity", "index", "overview/contributing", "overview/contributing/building_the_docs", "overview/contributing/error_handling", "overview/contributing/helpful_resources", "overview/contributing/open_tasks", "overview/contributing/setting_up", "overview/contributing/the_basics", "overview/deep_dive", "overview/deep_dive/array_api_tests", "overview/deep_dive/arrays", "overview/deep_dive/backend_setting", "overview/deep_dive/building_the_docs_pipeline", "overview/deep_dive/containers", "overview/deep_dive/continuous_integration", "overview/deep_dive/data_types", "overview/deep_dive/devices", "overview/deep_dive/docstring_examples", "overview/deep_dive/docstrings", "overview/deep_dive/exception_handling", "overview/deep_dive/fix_failing_tests", "overview/deep_dive/formatting", "overview/deep_dive/function_arguments", "overview/deep_dive/function_types", "overview/deep_dive/function_wrapping", "overview/deep_dive/gradients", "overview/deep_dive/inplace_updates", "overview/deep_dive/ivy_frontends", "overview/deep_dive/ivy_frontends_tests", "overview/deep_dive/ivy_lint", "overview/deep_dive/ivy_tests", "overview/deep_dive/navigating_the_code", "overview/deep_dive/operating_modes", "overview/deep_dive/superset_behaviour", "overview/design", "overview/design/building_blocks", "overview/design/ivy_as_a_framework", "overview/design/ivy_as_a_framework/ivy_array", "overview/design/ivy_as_a_framework/ivy_container", "overview/design/ivy_as_a_framework/ivy_stateful_api", "overview/design/ivy_as_a_transpiler", "overview/faq", "overview/get_started", "overview/glossary", "overview/motivation", "overview/motivation/ml_explosion", "overview/motivation/standardization", "overview/motivation/why_unify", "overview/one_liners", "overview/one_liners/trace", "overview/one_liners/transpile", "overview/one_liners/unify", "overview/related_work", "overview/related_work/api_standards", "overview/related_work/compiler_infrastructure", "overview/related_work/exchange_formats", "overview/related_work/frameworks", "overview/related_work/graph_tracers", "overview/related_work/ml_unifying_companies", "overview/related_work/multi_vendor_compiler_frameworks", "overview/related_work/vendor_specific_apis", "overview/related_work/vendor_specific_compilers", "overview/related_work/what_does_ivy_add", "overview/related_work/wrapper_frameworks"], "filenames": ["demos/README.md", "demos/assets/01_template.ipynb", "demos/examples_and_demos.rst", "demos/examples_and_demos/alexnet_demo.ipynb", "demos/examples_and_demos/bert_demo.ipynb", "demos/examples_and_demos/image_segmentation_with_ivy_unet.ipynb", "demos/examples_and_demos/mmpretrain_to_jax.ipynb", "demos/examples_and_demos/resnet_demo.ipynb", "demos/examples_and_demos/torch_to_jax.ipynb", "demos/examples_and_demos/xgboost_demo.ipynb", "demos/guides.rst", "demos/guides/01_transpiling_a_torch_model.ipynb", "demos/guides/02_transpiling_a_haiku_model.ipynb", "demos/guides/03_transpiling_a_tf_model.ipynb", "demos/guides/04_developing_a_convnet_with_ivy.ipynb", "demos/index.rst", "demos/learn_the_basics.rst", "demos/learn_the_basics/01_write_ivy_code.ipynb", "demos/learn_the_basics/02_unify_code.ipynb", "demos/learn_the_basics/03_trace_code.ipynb", "demos/learn_the_basics/04_transpile_code.ipynb", "demos/learn_the_basics/05_lazy_vs_eager.ipynb", "demos/learn_the_basics/06_how_to_use_decorators.ipynb", "demos/learn_the_basics/07_transpile_any_library.ipynb", "demos/learn_the_basics/08_transpile_any_model.ipynb", "demos/learn_the_basics/09_write_a_model_using_ivy.ipynb", "demos/misc/odsc.ipynb", "demos/quickstart.ipynb", "demos/wip/0_building_blocks/0_0_unify.ipynb", "demos/wip/0_building_blocks/0_1_compile.ipynb", "demos/wip/0_building_blocks/0_2_transpile.ipynb", "demos/wip/1_the_basics/1_0_lazy_vs_eager.ipynb", "demos/wip/1_the_basics/1_1_framework_selection.ipynb", "demos/wip/1_the_basics/1_2_as_a_decorator.ipynb", "demos/wip/1_the_basics/1_3_dynamic_vs_static.ipynb", "demos/wip/2_libraries/2_0_kornia.ipynb", "demos/wip/3_models/3_0_perceiver.ipynb", "demos/wip/3_models/3_1_stable_diffusion.ipynb", "demos/wip/basic_operations_with_ivy.ipynb", "demos/wip/compilation_of_a_basic_function.ipynb", "demos/wip/deepmind_perceiver_io.ipynb", "demos/wip/deepmind_perceiverio.ipynb", "demos/wip/end_to_end_training_pipeline_in_ivy.ipynb", "demos/wip/hf_tensorflow_deit.ipynb", "demos/wip/ivy_as_a_transpiler_intro.ipynb", "demos/wip/resnet_18.ipynb", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.device.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.general.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.image.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.random.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.set.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.base.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.device.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.general.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.image.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.random.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.set.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.array.rst", "docs/data_classes/data_classes/ivy.data_classes.container.rst", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.nested_array.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise.rst", "docs/data_classes/ivy.data_classes.rst", "docs/functional/ivy.functional.ivy.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta.rst", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson.rst", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile.rst", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.default.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.exists.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isin.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.strides.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad.rst", "docs/functional/ivy/ivy.functional.ivy.activations.rst", "docs/functional/ivy/ivy.functional.ivy.constants.rst", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops.rst", "docs/functional/ivy/ivy.functional.ivy.creation.rst", "docs/functional/ivy/ivy.functional.ivy.data_type.rst", "docs/functional/ivy/ivy.functional.ivy.device.rst", "docs/functional/ivy/ivy.functional.ivy.elementwise.rst", "docs/functional/ivy/ivy.functional.ivy.experimental.rst", "docs/functional/ivy/ivy.functional.ivy.general.rst", "docs/functional/ivy/ivy.functional.ivy.gradients.rst", "docs/functional/ivy/ivy.functional.ivy.layers.rst", "docs/functional/ivy/ivy.functional.ivy.linear_algebra.rst", "docs/functional/ivy/ivy.functional.ivy.losses.rst", "docs/functional/ivy/ivy.functional.ivy.manipulation.rst", "docs/functional/ivy/ivy.functional.ivy.meta.rst", "docs/functional/ivy/ivy.functional.ivy.nest.rst", "docs/functional/ivy/ivy.functional.ivy.norms.rst", "docs/functional/ivy/ivy.functional.ivy.random.rst", "docs/functional/ivy/ivy.functional.ivy.searching.rst", "docs/functional/ivy/ivy.functional.ivy.set.rst", "docs/functional/ivy/ivy.functional.ivy.sorting.rst", "docs/functional/ivy/ivy.functional.ivy.statistical.rst", "docs/functional/ivy/ivy.functional.ivy.utility.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices.rst", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.randint.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.seed.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save.rst", "docs/helpers/ivy_tests.test_ivy.helpers.assertions.rst", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks.rst", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.globals.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper.rst", "docs/helpers/ivy_tests.test_ivy.helpers.structs.rst", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags.rst", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers.rst", "docs/ivy.stateful.rst", "docs/ivy.utils.rst", "docs/ivy_tests.test_ivy.helpers.rst", "docs/stateful/ivy.stateful.activations.rst", "docs/stateful/ivy.stateful.converters.rst", "docs/stateful/ivy.stateful.helpers.rst", "docs/stateful/ivy.stateful.initializers.rst", "docs/stateful/ivy.stateful.layers.rst", "docs/stateful/ivy.stateful.losses.rst", "docs/stateful/ivy.stateful.module.rst", "docs/stateful/ivy.stateful.norms.rst", "docs/stateful/ivy.stateful.optimizers.rst", "docs/stateful/ivy.stateful.sequential.rst", "docs/utils/ivy.utils.assertions.rst", "docs/utils/ivy.utils.backend.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler.rst", "docs/utils/ivy.utils.binaries.rst", "docs/utils/ivy.utils.dynamic_import.rst", "docs/utils/ivy.utils.einsum_parser.rst", "docs/utils/ivy.utils.einsum_path_helpers.rst", "docs/utils/ivy.utils.exceptions.rst", "docs/utils/ivy.utils.inspection.rst", "docs/utils/ivy.utils.logging.rst", "docs/utils/ivy.utils.profiler.rst", "docs/utils/ivy.utils.verbosity.rst", "index.rst", "overview/contributing.rst", "overview/contributing/building_the_docs.rst", "overview/contributing/error_handling.rst", "overview/contributing/helpful_resources.rst", "overview/contributing/open_tasks.rst", "overview/contributing/setting_up.rst", "overview/contributing/the_basics.rst", "overview/deep_dive.rst", "overview/deep_dive/array_api_tests.rst", "overview/deep_dive/arrays.rst", "overview/deep_dive/backend_setting.rst", "overview/deep_dive/building_the_docs_pipeline.rst", "overview/deep_dive/containers.rst", "overview/deep_dive/continuous_integration.rst", "overview/deep_dive/data_types.rst", "overview/deep_dive/devices.rst", "overview/deep_dive/docstring_examples.rst", "overview/deep_dive/docstrings.rst", "overview/deep_dive/exception_handling.rst", "overview/deep_dive/fix_failing_tests.rst", "overview/deep_dive/formatting.rst", "overview/deep_dive/function_arguments.rst", "overview/deep_dive/function_types.rst", "overview/deep_dive/function_wrapping.rst", "overview/deep_dive/gradients.rst", "overview/deep_dive/inplace_updates.rst", "overview/deep_dive/ivy_frontends.rst", "overview/deep_dive/ivy_frontends_tests.rst", "overview/deep_dive/ivy_lint.rst", "overview/deep_dive/ivy_tests.rst", "overview/deep_dive/navigating_the_code.rst", "overview/deep_dive/operating_modes.rst", "overview/deep_dive/superset_behaviour.rst", "overview/design.rst", "overview/design/building_blocks.rst", "overview/design/ivy_as_a_framework.rst", "overview/design/ivy_as_a_framework/ivy_array.rst", "overview/design/ivy_as_a_framework/ivy_container.rst", "overview/design/ivy_as_a_framework/ivy_stateful_api.rst", "overview/design/ivy_as_a_transpiler.rst", "overview/faq.rst", "overview/get_started.rst", "overview/glossary.rst", "overview/motivation.rst", "overview/motivation/ml_explosion.rst", "overview/motivation/standardization.rst", "overview/motivation/why_unify.rst", "overview/one_liners.rst", "overview/one_liners/trace.rst", "overview/one_liners/transpile.rst", "overview/one_liners/unify.rst", "overview/related_work.rst", "overview/related_work/api_standards.rst", "overview/related_work/compiler_infrastructure.rst", "overview/related_work/exchange_formats.rst", "overview/related_work/frameworks.rst", "overview/related_work/graph_tracers.rst", "overview/related_work/ml_unifying_companies.rst", "overview/related_work/multi_vendor_compiler_frameworks.rst", "overview/related_work/vendor_specific_apis.rst", "overview/related_work/vendor_specific_compilers.rst", "overview/related_work/what_does_ivy_add.rst", "overview/related_work/wrapper_frameworks.rst"], "titles": ["Demos", "TO REPLACE: Title", "Examples and Demos", "Ivy AlexNet demo", "# Ivy Bert Demo", "Image Segmentation with Ivy UNet", "Accelerating MMPreTrain models with JAX", "Using Ivy ResNet", "Accelerating PyTorch models with JAX", "Accelerating XGBoost with JAX", "Guides", "Transpiling a PyTorch model to build on top", "Transpiling a haiku model to build on top", "Transpiling a Tensorflow model to build on top", "Developing a convolutional network using Ivy", "Tutorials And Examples", "Learn the basics", "Write Ivy code", "Unify code", "Trace code", "Transpile code", "Lazy vs Eager", "How to use decorators", "Transpile any library", "Transpile any model", "Write a model using Ivy", "ODSC Ivy Demo", "Quickstart", "0.0: Unify", "0.1: Compile", "0.2: Transpile", "1.0: Lazy vs Eager", "1.1: Framework Selection", "1.2: As a Decorator", "1.3: Dynamic vs Static", "2.0: Kornia", "3.0: Perceiver", "3.1: Stable Diffusion", "Basic Operations with Ivy", "Compilation of a Basic Function", "Demo: Transpiling DeepMind\u2019s PerceiverIO", "Deepmind PerceiverIO on GPU", "End-to-End Training Pipeline in Ivy", "HuggingFace Tensorflow DeiT", "Ivy as a Transpiler Introduction", "Resnet 18", "Activations", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Activations", "Base", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Base", "Cp tensor", "Parafac2 tensor", "Tr tensor", "Tt tensor", "Tucker tensor", "Array", "Container", "Factorized tensor", "Nested array", "Base", "Elementwise", "Data classes", "Functions", "gelu", "hardswish", "leaky_relu", "log_softmax", "mish", "relu", "sigmoid", "softmax", "softplus", "softsign", "cmp_is", "cmp_isnot", "for_loop", "if_else", "try_except", "while_loop", "arange", "array", "asarray", "copy_array", "empty", "empty_like", "eye", "from_dlpack", "frombuffer", "full", "full_like", "linspace", "logspace", "meshgrid", "native_array", "one_hot", "ones", "ones_like", "to_dlpack", "tril", "triu", "triu_indices", "zeros", "zeros_like", "as_ivy_dtype", "as_native_dtype", "astype", "broadcast_arrays", "broadcast_to", "can_cast", "check_float", "closest_valid_dtype", "default_complex_dtype", "default_dtype", "default_float_dtype", "default_int_dtype", "default_uint_dtype", "dtype", "dtype_bits", "finfo", "function_supported_dtypes", "function_unsupported_dtypes", "iinfo", "infer_default_dtype", "invalid_dtype", "is_bool_dtype", "is_complex_dtype", "is_float_dtype", "is_hashable_dtype", "is_int_dtype", "is_native_dtype", "is_uint_dtype", "promote_types", "promote_types_of_inputs", "result_type", "set_default_complex_dtype", "set_default_dtype", "set_default_float_dtype", "set_default_int_dtype", "set_default_uint_dtype", "type_promote_arrays", "unset_default_complex_dtype", "unset_default_dtype", "unset_default_float_dtype", "unset_default_int_dtype", "unset_default_uint_dtype", "valid_dtype", "as_ivy_dev", "as_native_dev", "clear_cached_mem_on_dev", "default_device", "dev", "dev_util", "function_supported_devices", "function_unsupported_devices", "get_all_ivy_arrays_on_dev", "gpu_is_available", "handle_soft_device_variable", "num_cpu_cores", "num_gpus", "num_ivy_arrays_on_dev", "percent_used_mem_on_dev", "print_all_ivy_arrays_on_dev", "set_default_device", "set_soft_device_mode", "set_split_factor", "split_factor", "split_func_call", "to_device", "total_mem_on_dev", "tpu_is_available", "unset_default_device", "unset_soft_device_mode", "used_mem_on_dev", "abs", "acos", "acosh", "add", "angle", "asin", "asinh", "atan", "atan2", "atanh", "bitwise_and", "bitwise_invert", "bitwise_left_shift", "bitwise_or", "bitwise_right_shift", "bitwise_xor", "ceil", "cos", "cosh", "deg2rad", "divide", "equal", "erf", "exp", "exp2", "expm1", "floor", "floor_divide", "fmin", "fmod", "gcd", "greater", "greater_equal", "imag", "isfinite", "isinf", "isnan", "isreal", "lcm", "less", "less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2", "logical_and", "logical_not", "logical_or", "logical_xor", "maximum", "minimum", "multiply", "nan_to_num", "negative", "not_equal", "positive", "pow", "rad2deg", "real", "reciprocal", "remainder", "round", "sign", "sin", "sinh", "sqrt", "square", "subtract", "tan", "tanh", "trapz", "trunc", "trunc_divide", "celu", "elu", "hardshrink", "hardtanh", "logit", "logsigmoid", "prelu", "relu6", "scaled_tanh", "selu", "silu", "softshrink", "stanh", "tanhshrink", "threshold", "thresholded_relu", "blackman_window", "eye_like", "hamming_window", "hann_window", "indices", "kaiser_bessel_derived_window", "kaiser_window", "mel_weight_matrix", "ndenumerate", "ndindex", "polyval", "random_cp", "random_parafac2", "random_tr", "random_tt", "random_tucker", "tril_indices", "trilu", "unsorted_segment_mean", "unsorted_segment_min", "unsorted_segment_sum", "vorbis_window", "allclose", "amax", "amin", "binarizer", "conj", "copysign", "count_nonzero", "diff", "digamma", "erfc", "fix", "float_power", "fmax", "frexp", "gradient", "hypot", "isclose", "ldexp", "lerp", "lgamma", "modf", "nansum", "nextafter", "signbit", "sinc", "sparsify_tensor", "xlogy", "zeta", "reduce", "bind_custom_gradient_function", "jvp", "vjp", "Activations", "Constants", "Creation", "Data type", "Device", "Elementwise", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Sparse array", "Statistical", "Utility", "adaptive_avg_pool1d", "adaptive_avg_pool2d", "adaptive_max_pool2d", "area_interpolate", "avg_pool1d", "avg_pool2d", "avg_pool3d", "dct", "dft", "dropout1d", "dropout2d", "dropout3d", "embedding", "fft", "fft2", "generate_einsum_equation", "get_interpolate_kernel", "idct", "ifft", "ifftn", "interp", "interpolate", "max_pool1d", "max_pool2d", "max_pool3d", "max_unpool1d", "nearest_interpolate", "pool", "reduce_window", "rfft", "rfftn", "sliding_window", "stft", "adjoint", "batched_outer", "cond", "diagflat", "dot", "eig", "eigh_tridiagonal", "eigvals", "general_inner_product", "higher_order_moment", "initialize_tucker", "khatri_rao", "kron", "kronecker", "make_svd_non_negative", "matrix_exp", "mode_dot", "multi_dot", "multi_mode_dot", "partial_tucker", "solve_triangular", "svd_flip", "tensor_train", "truncated_svd", "tt_matrix_to_tensor", "tucker", "huber_loss", "kl_div", "l1_loss", "log_poisson_loss", "poisson_nll_loss", "smooth_l1_loss", "soft_margin_loss", "as_strided", "associative_scan", "atleast_1d", "atleast_2d", "atleast_3d", "broadcast_shapes", "check_scalar", "choose", "column_stack", "concat_from_sequence", "dsplit", "dstack", "expand", "fill_diagonal", "flatten", "fliplr", "flipud", "fold", "heaviside", "hsplit", "hstack", "i0", "matricize", "moveaxis", "pad", "partial_fold", "partial_tensor_to_vec", "partial_unfold", "partial_vec_to_tensor", "put_along_axis", "rot90", "soft_thresholding", "take", "take_along_axis", "top_k", "trim_zeros", "unfold", "unique_consecutive", "vsplit", "vstack", "batch_norm", "group_norm", "instance_norm", "l1_normalize", "l2_normalize", "local_response_norm", "lp_normalize", "bernoulli", "beta", "dirichlet", "gamma", "poisson", "unravel_index", "invert_permutation", "lexsort", "is_ivy_sparse_array", "is_native_sparse_array", "native_sparse_array", "native_sparse_array_to_indices_values_and_shape", "bincount", "corrcoef", "cov", "cummax", "cummin", "histogram", "igamma", "median", "nanmean", "nanmedian", "nanmin", "nanprod", "quantile", "optional_get_element", "all_equal", "arg_info", "arg_names", "array_equal", "assert_supports_inplace", "cache_fn", "clip_matrix_norm", "clip_vector_norm", "container_types", "current_backend_str", "default", "einops_rearrange", "einops_reduce", "einops_repeat", "exists", "fourier_encode", "function_supported_devices_and_dtypes", "function_unsupported_devices_and_dtypes", "gather", "gather_nd", "get_all_arrays_in_memory", "get_item", "get_num_dims", "get_referrers_recursive", "has_nans", "inplace_arrays_supported", "inplace_decrement", "inplace_increment", "inplace_update", "inplace_variables_supported", "is_array", "is_ivy_array", "is_ivy_container", "is_ivy_nested_array", "is_native_array", "isin", "isscalar", "itemsize", "match_kwargs", "multiprocessing", "num_arrays_in_memory", "print_all_arrays_in_memory", "scatter_flat", "scatter_nd", "set_array_mode", "set_exception_trace_mode", "set_inplace_mode", "set_item", "set_min_base", "set_min_denominator", "set_nestable_mode", "set_precise_mode", "set_queue_timeout", "set_shape_array_mode", "set_show_func_wrapper_trace_mode", "set_tmp_dir", "shape", "stable_divide", "stable_pow", "strides", "supports_inplace_updates", "to_ivy_shape", "to_list", "to_native_shape", "to_numpy", "to_scalar", "try_else_none", "unset_array_mode", "unset_exception_trace_mode", "unset_inplace_mode", "unset_min_base", "unset_min_denominator", "unset_nestable_mode", "unset_precise_mode", "unset_queue_timeout", "unset_shape_array_mode", "unset_show_func_wrapper_trace_mode", "unset_tmp_dir", "value_is_nan", "vmap", "adam_step", "adam_update", "execute_with_gradients", "grad", "gradient_descent_update", "jac", "lamb_update", "lars_update", "optimizer_update", "stop_gradient", "value_and_grad", "Activations", "Constants", "Control flow ops", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "conv", "conv1d", "conv1d_transpose", "conv2d", "conv2d_transpose", "conv3d", "conv3d_transpose", "conv_general_dilated", "conv_general_transpose", "depthwise_conv2d", "dropout", "linear", "lstm_update", "multi_head_attention", "nms", "roi_align", "scaled_dot_product_attention", "cholesky", "cross", "det", "diag", "diagonal", "eig", "eigh", "eigvalsh", "inner", "inv", "lu_factor", "matmul", "matrix_norm", "matrix_power", "matrix_rank", "matrix_transpose", "outer", "pinv", "qr", "slogdet", "solve", "svd", "svdvals", "tensordot", "tensorsolve", "trace", "vander", "vecdot", "vector_norm", "vector_to_skew_symmetric_matrix", "binary_cross_entropy", "cross_entropy", "sparse_cross_entropy", "clip", "concat", "constant_pad", "expand_dims", "flip", "permute_dims", "repeat", "reshape", "roll", "split", "squeeze", "stack", "swapaxes", "tile", "unstack", "zero_pad", "fomaml_step", "maml_step", "reptile_step", "all_nested_indices", "copy_nest", "duplicate_array_index_chains", "index_nest", "insert_into_nest_at_index", "insert_into_nest_at_indices", "map", "map_nest_at_index", "map_nest_at_indices", "multi_index_nest", "nested_any", "nested_argwhere", "nested_map", "nested_multi_map", "prune_empty", "prune_nest_at_index", "prune_nest_at_indices", "set_nest_at_index", "set_nest_at_indices", "layer_norm", "multinomial", "randint", "random_normal", "random_uniform", "seed", "shuffle", "argmax", "argmin", "argwhere", "nonzero", "where", "unique_all", "unique_counts", "unique_inverse", "unique_values", "argsort", "msort", "searchsorted", "sort", "cumprod", "cumsum", "einsum", "max", "mean", "min", "prod", "std", "sum", "var", "all", "any", "load", "save", "Assertions", "Available frameworks", "Function testing", "Globals", "Hypothesis helpers", "Array helpers", "Dtype helpers", "General helpers", "Number helpers", "Multiprocessing", "Pipeline helper", "Structs", "Test parameter flags", "Testing helpers", "Framework classes", "Utils", "Testing", "Activations", "Converters", "Helpers", "Initializers", "Layers", "Losses", "Module", "Norms", "Optimizers", "Sequential", "Assertions", "Backend", "Ast helpers", "Handler", "Sub backend handler", "Binaries", "Dynamic import", "Einsum parser", "Einsum path helpers", "Exceptions", "Inspection", "Logging", "Profiler", "Verbosity", "Home", "Contributing", "Building the Docs", "Error Handling", "Helpful Resources", "Open Tasks", "Setting Up", "The Basics", "Deep Dive", "Array API Tests", "Arrays", "Backend Setting", "Building the Docs Pipeline", "Containers", "Continuous Integration", "Data Types", "Devices", "Docstring Examples", "Docstrings", "Exception Handling", "Fix Failing Tests:", "Formatting", "Function Arguments", "Function Types", "Function Wrapping", "Gradients", "Inplace Updates", "Ivy Frontends", "Ivy Frontend Tests", "Ivy-Lint: Ivy\u2019s Custom Code Formatters", "Ivy Tests", "Navigating the Code", "Operating Modes", "Superset Behaviour", "Design", "Building Blocks", "Ivy as a Framework", "Ivy Array", "Ivy Container", "Ivy Stateful API", "Ivy as a Transpiler", "FAQ", "Get Started", "Glossary", "Motivation", "ML Explosion", "Standardization", "Why Unify?", "One liners", "ivy.trace_graph()", "ivy.transpile()", "ivy.unify()", "Related Work", "API Standards", "Compiler Infrastructure", "Exchange Formats", "Frameworks", "Graph Tracers", "ML-Unifying Companies", "Multi-Vendor Compiler Frameworks", "Vendor-Specific APIs", "Vendor-Specific Compilers", "What does Ivy Add?", "Wrapper Frameworks"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 163, 166, 167, 168, 170, 174, 175, 189, 192, 202, 208, 209, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 567, 573, 578, 579, 580, 581, 583, 585, 586, 599, 600, 601, 602, 603, 605, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 706, 708, 710, 711, 716, 717, 721, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 760, 762, 763, 765, 774, 775, 777, 778, 780, 781, 782, 783, 792, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861], "repo": [0, 11, 40, 802, 805, 807, 810, 812, 813, 818, 826, 828, 843], "hold": [0, 52, 53, 57, 65, 75, 80, 88, 92, 93, 328, 344, 349, 365, 380, 458, 486, 510, 511, 516, 563, 564, 620, 623, 633, 664, 744, 760, 836, 855], "all": [0, 1, 3, 4, 5, 7, 8, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 39, 40, 42, 43, 45, 47, 48, 52, 53, 56, 57, 59, 61, 66, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 84, 89, 90, 92, 93, 121, 129, 136, 140, 141, 142, 196, 203, 235, 239, 267, 268, 322, 323, 335, 353, 362, 365, 368, 369, 371, 380, 401, 410, 412, 413, 421, 426, 434, 435, 437, 440, 461, 472, 480, 485, 515, 521, 524, 541, 561, 562, 578, 585, 586, 600, 603, 615, 617, 618, 620, 621, 622, 623, 625, 626, 627, 629, 630, 634, 645, 647, 648, 653, 666, 671, 672, 675, 680, 689, 693, 695, 701, 702, 703, 704, 705, 706, 715, 716, 717, 718, 724, 727, 732, 757, 759, 762, 763, 764, 765, 777, 778, 784, 787, 792, 794, 798, 799, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 850, 851, 852, 853, 854, 855, 857, 860, 861], "jupyt": [0, 844, 856], "exampl": [0, 6, 8, 17, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 167, 168, 170, 171, 172, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 427, 430, 432, 435, 439, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 455, 456, 457, 458, 459, 462, 463, 464, 466, 467, 468, 469, 471, 472, 477, 478, 479, 480, 481, 482, 483, 485, 486, 487, 491, 492, 494, 497, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 523, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 559, 560, 561, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 583, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 770, 787, 791, 792, 796, 801, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 817, 818, 819, 821, 822, 824, 825, 828, 829, 833, 835, 836, 837, 838, 839, 845, 851, 852, 855, 857, 860, 861], "tab": [0, 803, 804, 812, 818, 836], "ivi": [0, 1, 2, 6, 8, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 40, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 759, 770, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 799, 800, 801, 802, 804, 806, 807, 809, 811, 813, 814, 816, 818, 819, 820, 821, 822, 824, 831, 832, 839, 841, 844, 845, 846, 850, 861], "": [0, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 38, 41, 43, 44, 45, 48, 52, 53, 54, 57, 65, 75, 77, 80, 88, 117, 134, 140, 141, 161, 162, 191, 194, 195, 207, 242, 277, 323, 328, 329, 330, 332, 342, 344, 350, 354, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 384, 390, 396, 401, 412, 419, 423, 429, 438, 442, 444, 445, 461, 463, 464, 472, 488, 489, 490, 499, 509, 519, 537, 538, 544, 558, 580, 581, 602, 604, 605, 606, 607, 609, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 627, 633, 637, 639, 641, 643, 648, 655, 666, 673, 674, 680, 716, 750, 752, 763, 777, 778, 779, 780, 781, 782, 783, 787, 798, 799, 800, 801, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 841, 844, 845, 846, 847, 848, 849, 850, 853, 854, 855, 857, 858, 859, 860], "web": 0, "relev": [0, 48, 71, 133, 615, 782, 798, 803, 804, 805, 808, 811, 812, 813, 815, 818, 822, 823, 826, 827, 828, 836, 840, 844, 852, 859, 860], "link": [0, 17, 26, 27, 41, 798, 803, 804, 805, 810, 812, 813, 819, 825, 848, 850, 852], "list": [0, 4, 5, 6, 7, 9, 42, 47, 48, 49, 51, 52, 53, 56, 59, 60, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 129, 131, 134, 135, 136, 138, 144, 148, 150, 163, 167, 168, 175, 191, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 342, 343, 344, 350, 351, 352, 354, 355, 356, 365, 368, 369, 371, 378, 386, 387, 388, 390, 391, 392, 393, 404, 405, 406, 407, 411, 416, 421, 425, 428, 433, 434, 437, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 453, 456, 457, 458, 467, 478, 480, 481, 482, 486, 488, 490, 491, 492, 494, 496, 501, 509, 510, 511, 512, 521, 523, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 541, 543, 545, 547, 548, 549, 551, 552, 555, 559, 563, 564, 578, 579, 581, 583, 584, 585, 586, 587, 599, 600, 605, 610, 615, 616, 617, 618, 620, 622, 623, 625, 627, 628, 631, 632, 636, 637, 638, 639, 640, 641, 644, 645, 646, 648, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 675, 677, 682, 683, 684, 685, 686, 689, 692, 693, 694, 695, 696, 699, 700, 704, 705, 706, 707, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 740, 741, 743, 744, 747, 749, 750, 752, 753, 754, 757, 759, 762, 763, 764, 765, 770, 775, 778, 784, 791, 792, 802, 803, 804, 807, 808, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 821, 824, 825, 826, 828, 829, 833, 836, 837, 838, 839, 847, 854, 855, 860], "open": [0, 3, 5, 6, 7, 8, 23, 26, 27, 40, 41, 42, 43, 53, 61, 84, 121, 615, 629, 725, 727, 798, 799, 800, 804, 805, 810, 813, 816, 818, 825, 826, 831, 840, 843, 844, 845, 847, 848, 852, 853, 854, 856, 857], "task": [0, 43, 626, 701, 702, 703, 798, 799, 804, 805, 825, 826, 854, 860, 861], "avil": 0, "discuss": [0, 803, 805, 810, 813, 814, 824, 825, 827, 828, 831, 834, 835, 836, 839, 845, 850, 855], "suggest": [0, 803, 804, 805, 810, 813, 819, 823, 825, 828, 829, 830, 840], "new": [0, 6, 8, 10, 11, 13, 15, 18, 21, 22, 23, 24, 26, 27, 28, 42, 44, 47, 52, 53, 54, 59, 60, 69, 71, 75, 76, 77, 80, 82, 83, 125, 128, 130, 131, 136, 137, 138, 143, 144, 181, 224, 270, 272, 276, 328, 333, 344, 349, 365, 368, 371, 380, 403, 448, 456, 457, 471, 477, 516, 532, 533, 534, 536, 539, 540, 542, 563, 564, 567, 569, 576, 578, 579, 585, 602, 605, 607, 608, 609, 615, 616, 618, 620, 621, 622, 625, 627, 628, 648, 660, 668, 688, 692, 696, 709, 721, 722, 723, 775, 778, 781, 782, 787, 792, 798, 799, 803, 804, 805, 806, 808, 809, 811, 812, 813, 815, 816, 818, 819, 822, 824, 825, 826, 827, 828, 829, 831, 832, 835, 838, 840, 841, 843, 844, 845, 847, 852, 856, 860, 861], "should": [0, 4, 8, 9, 21, 22, 23, 24, 43, 46, 48, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 74, 75, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 95, 97, 98, 108, 112, 120, 134, 136, 140, 141, 149, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 296, 307, 323, 329, 330, 341, 345, 346, 347, 348, 352, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 375, 380, 383, 391, 392, 393, 395, 400, 411, 425, 434, 440, 446, 471, 472, 495, 496, 509, 510, 511, 526, 544, 549, 600, 602, 605, 607, 608, 609, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 642, 643, 651, 652, 653, 654, 656, 658, 659, 660, 661, 663, 664, 665, 666, 668, 669, 670, 671, 672, 673, 675, 677, 679, 680, 692, 708, 729, 730, 731, 733, 734, 735, 736, 737, 738, 739, 743, 744, 745, 746, 747, 748, 749, 751, 752, 759, 760, 762, 764, 774, 775, 777, 778, 780, 781, 782, 783, 791, 792, 800, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 842, 844, 848, 850, 851, 854, 856, 861], "comprehens": [0, 15, 805, 807, 827], "possibl": [0, 3, 32, 48, 52, 71, 75, 82, 92, 123, 242, 285, 306, 329, 330, 362, 365, 368, 370, 371, 390, 441, 450, 451, 452, 458, 460, 462, 463, 464, 471, 486, 559, 618, 620, 622, 633, 645, 688, 689, 690, 692, 694, 695, 697, 699, 746, 748, 762, 778, 792, 795, 798, 799, 801, 803, 804, 805, 807, 810, 811, 813, 815, 816, 818, 819, 821, 823, 824, 825, 826, 828, 831, 833, 836, 839, 844, 852, 854, 860], "us": [0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 85, 90, 92, 93, 95, 98, 105, 133, 136, 147, 159, 161, 162, 173, 174, 194, 195, 197, 202, 206, 207, 208, 209, 211, 214, 220, 228, 256, 257, 259, 260, 262, 263, 264, 266, 267, 269, 278, 282, 287, 306, 308, 309, 311, 312, 313, 321, 342, 345, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 394, 396, 401, 403, 404, 405, 406, 409, 411, 412, 414, 419, 421, 425, 429, 431, 433, 434, 436, 437, 438, 440, 445, 462, 466, 470, 472, 480, 488, 490, 494, 495, 496, 497, 498, 499, 500, 501, 502, 509, 516, 519, 537, 538, 547, 548, 559, 560, 567, 569, 570, 572, 578, 579, 591, 592, 594, 601, 602, 607, 608, 612, 613, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 631, 633, 646, 648, 651, 656, 658, 666, 670, 674, 677, 680, 682, 691, 692, 693, 697, 701, 702, 703, 704, 706, 707, 713, 714, 715, 717, 724, 725, 726, 727, 729, 730, 731, 732, 735, 737, 745, 760, 762, 763, 764, 765, 770, 774, 775, 777, 778, 779, 780, 781, 782, 787, 791, 792, 796, 799, 802, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 828, 829, 830, 831, 832, 833, 834, 835, 837, 838, 839, 841, 845, 849, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861], "easi": [0, 26, 27, 40, 804, 805, 808, 809, 811, 821, 823, 826, 828, 831, 844, 852, 854, 860, 861], "follow": [0, 9, 20, 21, 22, 24, 26, 27, 30, 31, 32, 38, 41, 42, 52, 53, 54, 56, 57, 63, 69, 75, 76, 77, 79, 80, 129, 160, 163, 208, 218, 235, 242, 268, 270, 277, 278, 313, 362, 368, 370, 371, 374, 390, 403, 411, 445, 460, 472, 488, 490, 547, 548, 549, 578, 579, 602, 605, 607, 608, 609, 615, 616, 617, 618, 620, 621, 622, 623, 627, 631, 648, 651, 664, 670, 680, 710, 716, 735, 736, 737, 738, 778, 782, 798, 800, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 843, 844, 847, 851, 854, 857], "attract": 0, "visual": [0, 9, 44, 796, 798, 804, 818, 825, 828, 839, 854, 856, 859], "graph": [0, 3, 5, 7, 9, 15, 16, 19, 21, 23, 24, 27, 33, 34, 39, 44, 45, 63, 631, 735, 736, 737, 738, 770, 798, 811, 821, 825, 827, 831, 833, 838, 839, 841, 845, 846, 847, 848, 849, 850, 854, 857], "nice": [0, 828, 845, 854], "format": [0, 23, 24, 26, 27, 38, 40, 41, 42, 50, 53, 56, 65, 68, 69, 70, 73, 79, 95, 113, 158, 192, 368, 369, 379, 409, 439, 505, 532, 612, 616, 617, 620, 622, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 745, 755, 756, 757, 774, 798, 804, 805, 806, 812, 813, 814, 815, 816, 817, 825, 827, 836, 848, 850, 852, 854, 855], "result": [0, 3, 5, 6, 7, 8, 9, 11, 13, 21, 22, 23, 24, 26, 27, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 175, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 423, 424, 426, 427, 429, 430, 431, 432, 433, 435, 439, 441, 442, 443, 444, 446, 447, 449, 456, 457, 460, 462, 463, 464, 465, 466, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 527, 528, 532, 533, 534, 539, 540, 544, 549, 556, 563, 564, 601, 602, 603, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 707, 710, 711, 713, 717, 721, 723, 724, 725, 726, 727, 729, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 764, 770, 784, 792, 796, 798, 801, 803, 805, 807, 808, 810, 811, 812, 813, 815, 816, 818, 820, 821, 823, 824, 825, 826, 828, 829, 833, 836, 839, 847, 848, 849, 855, 857], "etc": [0, 29, 34, 41, 48, 52, 61, 63, 67, 71, 75, 84, 90, 124, 132, 133, 136, 368, 375, 396, 401, 412, 495, 496, 498, 499, 615, 629, 631, 724, 725, 726, 727, 735, 736, 737, 738, 762, 765, 777, 778, 779, 780, 781, 782, 783, 803, 804, 805, 807, 808, 809, 810, 811, 813, 815, 817, 820, 825, 826, 828, 829, 833, 835, 836, 839, 841, 845, 847, 852, 854, 860], "gener": [0, 5, 15, 19, 24, 26, 27, 29, 32, 40, 42, 44, 45, 48, 51, 52, 56, 61, 67, 71, 74, 75, 79, 84, 90, 93, 121, 132, 133, 142, 150, 235, 238, 248, 249, 264, 268, 277, 306, 309, 313, 314, 315, 317, 318, 319, 320, 321, 322, 329, 330, 362, 365, 368, 369, 371, 375, 380, 411, 416, 436, 480, 497, 509, 615, 616, 618, 622, 623, 625, 629, 633, 645, 671, 672, 675, 678, 700, 724, 725, 727, 728, 750, 762, 765, 770, 782, 791, 803, 804, 805, 806, 807, 808, 810, 813, 814, 815, 816, 817, 820, 821, 824, 825, 826, 829, 832, 833, 835, 837, 838, 839, 841, 852, 853, 854, 855, 856, 857, 858, 859, 860], "tone": [0, 4], "feel": [0, 41, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 800, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 832, 840, 847], "free": [0, 5, 40, 41, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 800, 801, 802, 803, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 832, 840, 847, 855, 857], "includ": [0, 9, 15, 19, 29, 34, 48, 51, 52, 53, 57, 62, 65, 66, 69, 71, 74, 75, 76, 80, 85, 88, 89, 121, 122, 123, 132, 133, 135, 142, 215, 239, 243, 244, 245, 248, 250, 253, 261, 269, 282, 287, 308, 311, 312, 313, 316, 322, 325, 327, 329, 330, 334, 335, 336, 338, 339, 340, 341, 343, 345, 346, 348, 349, 350, 351, 354, 355, 362, 365, 368, 371, 380, 386, 387, 388, 417, 420, 422, 463, 464, 466, 469, 471, 473, 476, 497, 499, 500, 508, 512, 514, 515, 517, 518, 519, 545, 599, 615, 618, 620, 623, 627, 629, 630, 633, 634, 657, 678, 680, 704, 727, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 765, 777, 778, 781, 794, 798, 803, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 820, 821, 824, 825, 826, 827, 828, 829, 831, 833, 844, 847, 848, 851, 852, 854, 856, 859, 860, 861], "emoji": [0, 803], "don": [0, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 67, 90, 798, 803, 804, 805, 812, 813, 814, 819, 823, 828, 831, 837, 839, 840, 845, 847], "t": [0, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 42, 52, 56, 67, 75, 79, 90, 92, 93, 97, 342, 357, 365, 367, 369, 421, 549, 567, 581, 603, 620, 621, 622, 627, 646, 647, 712, 757, 778, 798, 800, 803, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 818, 819, 821, 822, 823, 824, 828, 829, 831, 833, 835, 836, 837, 838, 839, 840, 844, 845, 847, 848, 849, 852, 854, 856], "keep": [0, 1, 11, 13, 17, 23, 24, 26, 52, 59, 69, 75, 82, 92, 95, 353, 369, 440, 625, 699, 802, 803, 804, 805, 807, 810, 811, 812, 817, 824, 825, 828, 829, 831, 836, 838, 840, 848], "thing": [0, 24, 38, 40, 791, 802, 803, 804, 805, 809, 825, 828, 831, 835, 836, 843, 844, 845, 854], "super": [0, 3, 5, 11, 13, 26, 27, 40, 52, 75, 369, 421, 798, 817, 833, 836, 837, 838, 848], "seriou": 0, "given": [0, 3, 17, 26, 39, 52, 53, 58, 59, 61, 69, 75, 76, 77, 81, 82, 84, 92, 93, 95, 97, 98, 121, 125, 132, 133, 153, 154, 155, 156, 157, 169, 174, 193, 202, 204, 206, 207, 208, 210, 214, 287, 316, 325, 328, 334, 335, 342, 343, 344, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 389, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 412, 421, 426, 439, 442, 443, 444, 446, 447, 448, 449, 459, 460, 461, 468, 470, 482, 487, 491, 492, 493, 494, 495, 496, 497, 498, 499, 509, 510, 511, 512, 518, 540, 544, 563, 564, 574, 601, 602, 605, 607, 608, 609, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 681, 682, 683, 684, 685, 688, 689, 690, 691, 693, 694, 698, 699, 711, 712, 721, 722, 725, 726, 727, 729, 741, 742, 743, 744, 757, 762, 763, 764, 765, 770, 774, 775, 777, 778, 780, 781, 782, 783, 784, 791, 792, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 834, 835, 837, 844, 845, 851, 856, 857, 860, 861], "an": [0, 2, 3, 8, 9, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 170, 174, 175, 205, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 310, 311, 312, 314, 315, 322, 323, 324, 325, 326, 327, 329, 330, 332, 335, 338, 343, 347, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 399, 401, 403, 404, 405, 406, 409, 410, 411, 412, 413, 414, 415, 417, 420, 421, 422, 444, 445, 449, 450, 451, 452, 456, 457, 458, 460, 467, 471, 472, 478, 480, 485, 486, 488, 489, 490, 493, 495, 496, 498, 501, 502, 507, 508, 509, 510, 511, 512, 513, 516, 517, 520, 525, 527, 528, 536, 539, 543, 544, 545, 547, 548, 549, 551, 552, 553, 554, 555, 558, 564, 567, 568, 577, 581, 585, 586, 587, 600, 603, 610, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 710, 723, 725, 729, 730, 731, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 764, 765, 767, 770, 774, 775, 777, 778, 780, 781, 782, 783, 792, 798, 800, 801, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 840, 841, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 857, 858, 860, 861], "intern": [0, 9, 69, 100, 101, 102, 627, 704, 714, 715, 777, 778, 779, 780, 781, 783, 808, 811, 814, 816, 824, 826, 828, 830], "releas": [0, 41, 803, 804, 813, 829, 831, 839, 845, 854, 860], "tracer": [0, 3, 5, 7, 8, 21, 22, 23, 24, 27, 43, 45, 798, 825, 832, 834, 839, 841, 848, 849, 850], "i": [0, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 175, 187, 189, 191, 192, 194, 195, 197, 199, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 302, 303, 304, 305, 306, 307, 309, 310, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 418, 419, 420, 421, 423, 424, 425, 426, 428, 431, 432, 433, 434, 435, 436, 437, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 458, 460, 461, 462, 463, 464, 465, 466, 467, 470, 471, 472, 473, 475, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 501, 502, 507, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 554, 555, 556, 559, 560, 563, 564, 565, 567, 573, 577, 578, 579, 581, 583, 585, 586, 587, 599, 600, 602, 603, 604, 605, 607, 608, 609, 610, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 710, 711, 712, 713, 714, 715, 716, 717, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 760, 762, 763, 764, 765, 770, 774, 775, 777, 778, 779, 780, 781, 782, 784, 787, 788, 791, 792, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861], "around": [0, 10, 11, 13, 15, 52, 69, 75, 98, 371, 472, 480, 803, 805, 807, 808, 810, 814, 820, 821, 825, 829, 835, 839, 841, 847, 852, 854, 861], "corner": [0, 52, 75, 368, 403, 804, 805, 818, 825], "anybodi": 0, "abl": [0, 3, 5, 28, 32, 43, 45, 69, 92, 804, 805, 807, 813, 818, 821, 824, 825, 829, 833, 838, 847, 857, 860], "start": [0, 1, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 41, 42, 48, 52, 69, 71, 75, 79, 121, 129, 132, 133, 346, 356, 365, 366, 368, 371, 380, 410, 462, 465, 473, 475, 484, 518, 615, 764, 791, 799, 803, 804, 805, 806, 812, 813, 815, 816, 818, 819, 820, 825, 828, 831, 832, 833, 835, 836, 837, 839, 847, 848, 854, 860], "work": [0, 24, 26, 27, 38, 39, 41, 45, 47, 52, 75, 92, 380, 519, 623, 627, 674, 711, 712, 716, 721, 722, 798, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 824, 825, 826, 828, 829, 832, 833, 835, 837, 838, 840, 845, 847, 848, 849, 852, 854, 856, 858, 861], "shortli": 0, "so": [0, 1, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 368, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 622, 627, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 669, 670, 671, 673, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 704, 715, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 792, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 843, 844, 847, 848, 849, 854, 855, 856, 858], "worri": [0, 26, 27, 803, 804, 819], "about": [0, 15, 16, 17, 20, 22, 24, 26, 27, 30, 41, 42, 49, 72, 160, 163, 616, 798, 800, 802, 803, 804, 805, 806, 807, 810, 812, 813, 814, 819, 820, 824, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 845, 849, 855, 856, 859], "have": [0, 1, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 160, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 417, 418, 420, 421, 426, 427, 430, 431, 432, 433, 438, 441, 442, 443, 444, 445, 446, 447, 451, 452, 457, 458, 460, 465, 473, 474, 475, 476, 478, 480, 482, 484, 491, 492, 494, 495, 496, 498, 499, 500, 502, 509, 510, 511, 512, 516, 520, 527, 528, 532, 533, 534, 539, 540, 549, 563, 564, 567, 601, 602, 605, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 774, 775, 777, 778, 780, 781, 782, 783, 791, 792, 798, 800, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 849, 850, 851, 852, 853, 854, 856, 860, 861], "access": [0, 23, 26, 27, 69, 798, 803, 804, 805, 812, 813, 819, 824, 825, 840, 848, 854, 856, 858], "transpil": [0, 6, 7, 8, 10, 15, 16, 19, 29, 769, 770, 803, 804, 817, 818, 825, 832, 833, 834, 841, 846, 847, 849, 854, 860, 861], "code": [0, 4, 6, 7, 8, 15, 16, 23, 24, 26, 28, 29, 30, 31, 32, 33, 40, 41, 50, 51, 69, 73, 74, 98, 209, 255, 380, 516, 525, 533, 534, 549, 563, 567, 581, 617, 620, 622, 623, 625, 644, 665, 666, 667, 696, 796, 798, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 820, 821, 822, 824, 825, 826, 828, 831, 832, 833, 834, 835, 836, 837, 838, 839, 841, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 857, 858, 859, 860, 861], "now": [0, 4, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 42, 778, 779, 780, 798, 804, 807, 808, 809, 810, 811, 812, 813, 814, 818, 820, 822, 825, 826, 828, 829, 831, 835, 836, 838, 839, 845, 847, 848, 849, 854], "you": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 52, 53, 75, 76, 92, 97, 98, 371, 380, 460, 516, 539, 540, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 648, 774, 775, 777, 778, 780, 781, 782, 783, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 854], "can": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 41, 42, 45, 48, 49, 52, 53, 57, 59, 61, 63, 71, 72, 75, 76, 80, 82, 84, 86, 92, 93, 107, 110, 122, 123, 133, 135, 150, 189, 206, 207, 208, 296, 313, 360, 362, 368, 369, 370, 374, 375, 378, 380, 390, 403, 426, 431, 433, 438, 445, 457, 488, 496, 497, 502, 509, 556, 567, 600, 603, 612, 615, 616, 617, 620, 621, 622, 623, 625, 629, 648, 656, 663, 673, 677, 692, 696, 725, 726, 727, 735, 759, 762, 763, 764, 765, 770, 792, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 851, 852, 853, 854, 855, 857, 858, 860, 861], "style": [0, 9, 40, 42, 371, 472, 630, 733, 805, 819, 854], "stori": 0, "If": [0, 1, 3, 4, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 41, 44, 45, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 93, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 134, 136, 137, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 175, 191, 207, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 322, 323, 325, 328, 329, 330, 331, 332, 334, 335, 336, 339, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 411, 412, 414, 419, 421, 423, 425, 426, 431, 433, 435, 436, 438, 439, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 458, 460, 461, 462, 463, 464, 467, 471, 477, 478, 479, 480, 481, 482, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 555, 556, 563, 564, 568, 578, 579, 581, 583, 585, 586, 599, 600, 603, 605, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 645, 646, 648, 651, 652, 653, 655, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 688, 689, 690, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 716, 717, 724, 725, 726, 727, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 741, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 777, 778, 780, 781, 787, 792, 798, 799, 800, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 835, 836, 838, 839, 840, 843, 847, 848, 849], "anyon": [0, 798, 799, 805, 812, 839, 844, 860], "ha": [0, 3, 5, 7, 8, 9, 11, 13, 17, 19, 23, 26, 27, 29, 32, 34, 38, 45, 48, 52, 57, 59, 63, 65, 69, 72, 75, 76, 80, 82, 86, 88, 92, 134, 191, 215, 235, 238, 240, 242, 252, 268, 270, 275, 278, 280, 281, 285, 324, 325, 326, 362, 369, 370, 371, 380, 403, 435, 444, 455, 479, 481, 485, 508, 510, 511, 513, 545, 615, 617, 618, 622, 623, 625, 630, 631, 633, 647, 648, 663, 664, 672, 673, 675, 677, 680, 688, 695, 733, 736, 737, 738, 743, 744, 747, 749, 750, 751, 752, 762, 765, 787, 803, 805, 807, 809, 810, 811, 812, 813, 814, 815, 816, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 837, 838, 839, 840, 843, 844, 845, 847, 849, 850, 853, 854, 856, 857, 860], "ani": [0, 5, 7, 11, 13, 15, 16, 17, 18, 19, 28, 29, 32, 38, 39, 40, 41, 42, 44, 45, 47, 48, 50, 51, 52, 53, 57, 66, 67, 71, 73, 74, 75, 76, 89, 90, 92, 97, 98, 117, 118, 120, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 151, 166, 170, 174, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 412, 421, 426, 461, 472, 480, 488, 489, 490, 509, 512, 515, 516, 517, 521, 531, 532, 533, 534, 535, 539, 543, 545, 547, 551, 553, 554, 572, 579, 586, 587, 594, 600, 610, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 707, 710, 711, 713, 714, 721, 723, 727, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 757, 760, 764, 774, 775, 777, 778, 780, 781, 782, 783, 787, 791, 792, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 852, 853, 854, 855, 857, 860, 861], "question": [0, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 843, 844, 845], "ping": 0, "me": [0, 805], "guillermo": 0, "commun": [0, 41, 799, 803, 804, 805, 839, 844, 853, 854, 856], "ux": 0, "team": [0, 798, 799, 803, 804, 805, 825, 840, 856], "discord": [0, 41, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 833, 834, 835, 836, 837, 838, 840, 843, 844, 845], "channel": [0, 24, 42, 52, 53, 56, 75, 76, 79, 97, 98, 368, 374, 391, 392, 393, 403, 488, 489, 490, 493, 532, 536, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 774, 775, 777, 778, 780, 781, 782, 783, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831], "To": [0, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 26, 27, 38, 41, 42, 43, 93, 242, 370, 444, 573, 618, 620, 777, 803, 804, 807, 808, 809, 810, 813, 815, 817, 818, 819, 821, 822, 825, 826, 827, 828, 829, 836, 837, 838, 840, 847, 848], "ensur": [0, 7, 8, 11, 13, 21, 22, 23, 24, 52, 53, 75, 76, 368, 369, 404, 405, 406, 436, 549, 620, 757, 798, 803, 804, 805, 808, 813, 814, 815, 817, 819, 820, 822, 824, 825, 826, 827, 828, 829, 840, 854], "similar": [0, 17, 26, 27, 277, 618, 622, 648, 778, 801, 803, 804, 811, 812, 813, 814, 817, 818, 819, 821, 822, 823, 825, 826, 828, 829, 836, 839, 843, 848, 850, 851, 852, 853, 860], "ar": [0, 1, 3, 4, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 44, 47, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 92, 93, 97, 98, 121, 131, 133, 136, 142, 196, 201, 203, 208, 232, 234, 235, 238, 242, 263, 264, 268, 273, 274, 278, 280, 285, 286, 287, 322, 324, 325, 326, 328, 331, 333, 334, 335, 338, 339, 344, 349, 352, 356, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 384, 390, 391, 392, 393, 396, 401, 403, 411, 412, 420, 421, 425, 433, 434, 436, 440, 441, 445, 446, 450, 451, 452, 462, 463, 464, 466, 472, 475, 479, 480, 488, 490, 495, 496, 497, 498, 499, 509, 514, 515, 516, 517, 518, 519, 521, 524, 525, 526, 535, 541, 546, 550, 561, 562, 571, 581, 593, 603, 615, 617, 618, 620, 621, 622, 623, 625, 627, 629, 630, 631, 645, 646, 648, 651, 653, 657, 658, 659, 663, 664, 666, 669, 670, 673, 674, 678, 679, 680, 685, 686, 689, 693, 695, 705, 710, 715, 716, 717, 725, 726, 727, 730, 731, 732, 733, 735, 737, 757, 759, 762, 763, 764, 765, 770, 777, 780, 783, 784, 791, 792, 795, 796, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 850, 851, 854, 855, 856, 857, 858, 859, 860, 861], "across": [0, 7, 8, 9, 21, 22, 23, 24, 38, 62, 69, 76, 85, 97, 206, 207, 235, 242, 268, 286, 374, 490, 493, 524, 545, 580, 617, 618, 620, 622, 627, 630, 645, 648, 710, 730, 731, 778, 803, 807, 813, 815, 817, 820, 821, 823, 828, 831, 852, 854, 859], "templat": [0, 798, 810, 816, 828], "help": [0, 15, 42, 44, 49, 522, 567, 620, 633, 751, 777, 798, 799, 800, 803, 804, 808, 809, 810, 811, 812, 813, 815, 819, 821, 822, 824, 825, 828, 829, 835, 836, 837, 840, 841, 850, 854, 856, 860], "get": [0, 3, 4, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 40, 41, 43, 49, 50, 57, 69, 73, 80, 97, 158, 159, 160, 163, 191, 192, 193, 196, 202, 207, 210, 214, 371, 477, 523, 541, 562, 580, 616, 617, 620, 623, 627, 680, 706, 762, 777, 778, 791, 799, 802, 803, 804, 806, 807, 812, 813, 814, 818, 821, 822, 823, 824, 825, 826, 827, 828, 833, 834, 835, 836, 837, 841, 845, 848, 849, 854, 860], "It": [0, 3, 8, 9, 18, 21, 22, 23, 24, 26, 27, 28, 29, 38, 39, 40, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 415, 417, 418, 426, 427, 430, 431, 432, 433, 441, 442, 443, 444, 446, 447, 457, 460, 465, 473, 474, 475, 476, 478, 480, 484, 488, 491, 492, 494, 495, 496, 498, 499, 509, 510, 511, 512, 520, 527, 528, 532, 533, 534, 539, 540, 549, 563, 564, 565, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 666, 667, 668, 669, 672, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 703, 723, 724, 725, 726, 727, 729, 730, 731, 732, 734, 738, 739, 742, 743, 744, 747, 749, 750, 752, 753, 754, 777, 778, 798, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 815, 816, 822, 824, 825, 826, 827, 828, 829, 830, 831, 833, 835, 836, 837, 846, 849, 852, 854, 855, 857, 858, 859, 860, 861], "locat": [0, 42, 136, 380, 510, 615, 627, 629, 632, 708, 724, 741, 792, 803, 805, 809, 810, 814, 825, 826, 828, 829, 840, 852], "asset": [0, 841], "01_templat": 0, "ipynb": 0, "pleas": [0, 32, 41, 45, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 833, 834, 835, 836, 837, 838, 840, 843, 844, 845], "make": [0, 3, 5, 6, 7, 8, 9, 18, 26, 27, 28, 40, 44, 52, 75, 368, 411, 787, 798, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 835, 836, 838, 840, 844, 845, 848, 852, 854, 855, 856, 857, 860, 861], "copi": [0, 42, 45, 48, 49, 50, 51, 52, 53, 59, 69, 71, 72, 73, 74, 75, 76, 82, 92, 96, 122, 123, 124, 128, 139, 147, 209, 269, 371, 448, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 486, 542, 568, 578, 585, 586, 615, 616, 617, 618, 620, 625, 627, 632, 688, 689, 690, 692, 694, 695, 697, 699, 705, 740, 742, 770, 792, 804, 805, 807, 809, 812, 813, 816, 825, 826, 833, 839, 847, 848, 849], "firstli": [0, 18, 19, 22, 28, 29, 33, 38, 808, 813, 815, 816, 817, 821, 822, 824, 831, 836, 850, 860], "updat": [0, 4, 5, 6, 8, 9, 20, 21, 22, 23, 24, 26, 27, 40, 42, 47, 53, 54, 69, 76, 77, 92, 371, 477, 549, 563, 564, 567, 568, 590, 601, 602, 605, 607, 608, 609, 620, 621, 622, 626, 627, 645, 647, 701, 702, 703, 711, 712, 716, 721, 722, 770, 775, 781, 782, 787, 792, 798, 803, 804, 805, 806, 807, 808, 811, 812, 813, 815, 820, 822, 823, 825, 826, 828, 831, 833, 835, 836, 838, 839], "file": [0, 40, 41, 42, 53, 69, 576, 598, 620, 780, 800, 803, 804, 805, 807, 808, 809, 810, 811, 812, 814, 816, 817, 818, 819, 821, 825, 826, 827, 828, 829, 833, 836, 840, 850, 853, 854, 855], "name": [0, 6, 26, 27, 38, 40, 41, 42, 52, 57, 63, 67, 75, 80, 86, 90, 242, 368, 369, 371, 414, 420, 482, 485, 522, 523, 618, 620, 623, 631, 657, 658, 662, 670, 671, 673, 674, 678, 735, 736, 737, 759, 763, 770, 780, 787, 788, 790, 803, 804, 805, 809, 810, 811, 812, 815, 816, 817, 820, 825, 826, 828, 829, 830, 831, 833, 836, 838, 854], "match": [0, 49, 52, 69, 72, 75, 147, 242, 277, 333, 335, 365, 368, 371, 412, 455, 477, 481, 559, 616, 618, 620, 623, 658, 659, 664, 680, 757, 801, 803, 808, 810, 811, 815, 818, 826, 855, 860], "topic": [0, 15, 18, 19, 20, 28, 29, 30, 31, 32, 33, 822, 835, 854], "your": [0, 2, 3, 4, 6, 8, 9, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 44, 798, 799, 801, 802, 803, 804, 807, 809, 810, 812, 816, 818, 819, 823, 825, 827, 829, 831, 836, 837, 839, 840, 844, 845, 847, 848, 854], "Then": [0, 45, 622, 648, 800, 803, 804, 805, 809, 810, 812, 818, 819, 822, 824, 828, 829, 839], "place": [0, 7, 8, 21, 22, 23, 24, 40, 47, 48, 51, 52, 53, 57, 59, 69, 71, 73, 74, 75, 76, 80, 82, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 269, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 306, 307, 310, 322, 323, 328, 329, 330, 332, 335, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 462, 472, 477, 480, 496, 509, 512, 516, 525, 533, 534, 539, 543, 545, 547, 548, 549, 563, 567, 581, 586, 590, 610, 615, 616, 617, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 782, 798, 801, 802, 805, 806, 807, 810, 811, 812, 814, 815, 816, 818, 820, 821, 825, 826, 828, 829, 831, 838, 841, 856], "its": [0, 8, 17, 19, 26, 27, 29, 32, 39, 40, 42, 47, 49, 52, 59, 69, 72, 75, 76, 82, 95, 107, 110, 113, 118, 148, 153, 154, 155, 156, 157, 208, 235, 268, 287, 296, 360, 368, 371, 380, 407, 414, 485, 512, 536, 584, 612, 614, 616, 617, 618, 620, 623, 625, 627, 663, 688, 692, 693, 697, 710, 759, 792, 798, 803, 804, 808, 811, 812, 813, 814, 816, 817, 818, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 838, 839, 841, 847, 853, 854, 860], "folder": [0, 7, 8, 21, 22, 23, 24, 42, 798, 804, 805, 807, 810, 812, 818, 821, 825, 828, 829, 830], "next": [0, 5, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 40, 42, 52, 75, 160, 341, 345, 350, 354, 365, 616, 777, 782, 798, 803, 804, 805, 809, 813, 815, 816, 818, 819, 822, 834, 835, 836, 845, 854, 856], "edit": [0, 803, 804, 805, 819], "titl": [0, 9, 12, 14, 25, 41, 44, 798, 803, 805, 810], "descript": [0, 1, 35, 36, 37, 42, 45, 48, 51, 52, 57, 74, 75, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 472, 480, 509, 512, 539, 543, 545, 547, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 803, 805, 816, 823, 824], "accordingli": [0, 52, 57, 62, 63, 65, 66, 75, 80, 85, 88, 89, 134, 235, 240, 242, 258, 268, 282, 329, 330, 365, 615, 618, 623, 630, 631, 633, 634, 680, 731, 735, 736, 737, 738, 746, 747, 748, 749, 750, 751, 752, 753, 754, 825, 833, 840], "thei": [0, 9, 33, 38, 43, 52, 57, 61, 63, 69, 80, 84, 86, 173, 287, 339, 365, 616, 618, 623, 626, 629, 631, 678, 701, 702, 724, 735, 757, 783, 798, 802, 803, 804, 806, 807, 809, 810, 811, 812, 813, 814, 815, 817, 819, 821, 822, 824, 825, 828, 829, 831, 833, 835, 836, 837, 838, 839, 847, 851, 854, 856, 857, 860, 861], "render": [0, 810, 816], "correctli": [0, 23, 26, 27, 40, 52, 57, 62, 75, 80, 85, 334, 365, 380, 515, 516, 517, 518, 519, 623, 630, 664, 730, 803, 804, 805, 808, 811, 813, 815, 817, 819, 820, 826, 828, 831, 837, 839, 847, 848], "webpag": [0, 15], "content": [0, 1, 12, 14, 25, 26, 41, 42, 52, 69, 75, 380, 516, 803, 805, 810, 814, 824, 827, 833, 836, 840], "behind": [0, 17, 26, 798, 806, 820, 828, 832, 834], "exist": [0, 17, 26, 27, 40, 41, 42, 45, 48, 52, 53, 69, 71, 75, 76, 82, 123, 371, 450, 451, 457, 458, 460, 462, 463, 464, 471, 486, 531, 567, 620, 625, 686, 688, 689, 690, 692, 694, 695, 697, 699, 782, 784, 798, 803, 804, 807, 809, 814, 815, 816, 821, 822, 824, 825, 828, 831, 833, 839, 841, 843, 844, 852, 854, 857, 860], "cell": [0, 1, 3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 56, 79, 622, 647, 778, 812, 833], "where": [0, 6, 19, 23, 29, 30, 34, 42, 48, 51, 52, 53, 57, 59, 61, 62, 65, 66, 69, 71, 74, 75, 76, 80, 82, 84, 85, 88, 89, 92, 93, 130, 131, 134, 136, 142, 223, 233, 235, 238, 240, 242, 243, 252, 257, 258, 259, 266, 267, 268, 273, 275, 279, 281, 285, 294, 296, 322, 324, 325, 326, 340, 344, 351, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 382, 383, 384, 390, 395, 396, 400, 414, 420, 421, 425, 426, 428, 434, 440, 441, 450, 451, 452, 466, 472, 488, 489, 490, 493, 495, 496, 498, 499, 509, 517, 518, 519, 549, 563, 600, 615, 618, 620, 622, 623, 625, 627, 629, 630, 633, 634, 648, 653, 657, 658, 662, 664, 666, 668, 669, 670, 673, 674, 677, 679, 685, 687, 688, 690, 696, 700, 708, 715, 724, 725, 726, 727, 732, 733, 748, 750, 752, 753, 754, 762, 777, 781, 792, 798, 799, 801, 804, 805, 807, 808, 809, 810, 811, 813, 814, 816, 817, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 836, 837, 838, 839, 840, 843, 844, 845, 847, 852, 861], "The": [0, 3, 5, 6, 7, 8, 9, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 42, 43, 44, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 128, 129, 131, 133, 136, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 161, 162, 163, 165, 167, 168, 169, 172, 173, 175, 176, 178, 179, 180, 181, 187, 188, 189, 190, 191, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 341, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 417, 418, 419, 420, 421, 423, 425, 435, 436, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 459, 461, 462, 463, 464, 468, 471, 472, 477, 478, 480, 481, 482, 483, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 498, 500, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 522, 524, 525, 526, 527, 528, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 543, 544, 545, 547, 548, 549, 551, 552, 553, 554, 555, 558, 560, 563, 564, 567, 569, 570, 573, 576, 578, 579, 580, 581, 582, 583, 584, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 689, 690, 691, 692, 693, 694, 695, 696, 698, 699, 700, 701, 702, 703, 704, 705, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 764, 765, 770, 774, 775, 777, 778, 780, 781, 782, 787, 791, 792, 798, 799, 800, 801, 803, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 826, 828, 829, 831, 832, 833, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861], "h2": [0, 1, 12, 14, 25], "tag": [0, 1, 12, 14, 25, 804, 805], "section": [0, 1, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 46, 52, 63, 75, 107, 368, 371, 401, 412, 458, 467, 486, 631, 735, 736, 737, 738, 798, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 831, 832, 836, 837, 849, 850, 857, 860], "h3": [0, 1, 12, 14, 25], "subsect": [0, 1, 12, 14, 25, 803, 804, 805, 807, 812], "step": [0, 1, 12, 13, 14, 25, 26, 27, 38, 40, 41, 42, 52, 54, 71, 75, 77, 121, 132, 368, 371, 414, 466, 601, 602, 605, 607, 608, 609, 615, 621, 626, 701, 702, 703, 782, 798, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 818, 823, 825, 828, 833, 836, 837, 838, 845, 854], "explan": [0, 1, 12, 14, 25, 803, 804, 805, 811, 816, 820, 825, 829, 835], "go": [0, 4, 11, 13, 17, 24, 27, 32, 47, 52, 75, 79, 368, 410, 413, 627, 715, 716, 798, 799, 801, 803, 804, 805, 806, 809, 810, 813, 815, 818, 819, 825, 826, 828, 829, 832, 836, 839, 850, 854, 855, 859, 861], "default": [0, 3, 5, 26, 27, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 167, 168, 173, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 191, 192, 194, 195, 199, 202, 203, 204, 206, 207, 208, 209, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 383, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 417, 418, 419, 421, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 449, 450, 451, 452, 455, 456, 457, 458, 460, 461, 462, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 527, 528, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 555, 556, 559, 560, 563, 564, 567, 568, 573, 577, 578, 579, 581, 583, 585, 586, 599, 600, 601, 602, 603, 604, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 710, 711, 712, 714, 715, 716, 717, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 764, 765, 770, 774, 775, 777, 778, 779, 780, 781, 782, 783, 791, 792, 803, 804, 805, 809, 810, 813, 814, 815, 816, 817, 820, 821, 825, 828, 831, 833, 837, 841, 847, 854], "which": [0, 3, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 148, 150, 152, 158, 160, 163, 165, 168, 175, 187, 192, 196, 201, 203, 206, 207, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 316, 319, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 341, 343, 344, 345, 346, 348, 349, 350, 352, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 410, 411, 412, 413, 418, 421, 431, 434, 435, 436, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 477, 478, 479, 480, 481, 482, 488, 490, 491, 492, 494, 495, 496, 497, 498, 499, 501, 502, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 522, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 544, 545, 547, 548, 549, 551, 552, 555, 556, 561, 562, 563, 564, 578, 579, 581, 583, 585, 586, 599, 600, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 613, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 645, 646, 648, 651, 652, 653, 655, 656, 658, 659, 660, 661, 663, 664, 666, 667, 668, 670, 671, 672, 673, 677, 679, 680, 682, 683, 684, 685, 686, 688, 689, 691, 692, 693, 694, 695, 696, 699, 700, 709, 710, 711, 712, 717, 719, 720, 721, 722, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 774, 775, 777, 778, 779, 780, 781, 782, 783, 787, 788, 794, 798, 800, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 850, 851, 852, 853, 854, 855, 857, 859, 860, 861], "text": [0, 4, 7, 9, 40, 52, 53, 369, 433, 803, 805, 810, 815, 816], "paragraph": [0, 1, 12, 14, 25, 810], "p": [0, 1, 12, 14, 25, 38, 52, 53, 57, 75, 76, 80, 93, 134, 239, 369, 374, 417, 494, 527, 528, 615, 618, 620, 623, 627, 664, 680, 712, 778, 798, 804, 805, 806], "without": [0, 3, 9, 29, 38, 42, 45, 63, 69, 95, 573, 587, 620, 625, 627, 631, 692, 705, 735, 736, 737, 738, 762, 765, 791, 804, 805, 808, 809, 811, 812, 813, 814, 815, 817, 820, 821, 825, 828, 829, 831, 835, 836, 837, 839, 847, 851, 854, 855, 856, 860], "path": [0, 7, 8, 9, 21, 22, 23, 24, 41, 42, 759, 770, 786, 804, 810, 824, 825, 826, 840, 854], "correspond": [0, 3, 6, 8, 13, 26, 27, 41, 49, 51, 52, 53, 56, 59, 62, 63, 65, 69, 72, 74, 75, 79, 82, 88, 92, 95, 98, 148, 160, 163, 223, 273, 287, 325, 338, 339, 362, 365, 368, 369, 371, 374, 380, 390, 396, 407, 412, 417, 420, 421, 422, 439, 463, 464, 488, 489, 490, 493, 510, 511, 578, 600, 616, 618, 620, 622, 623, 625, 629, 630, 631, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 648, 653, 657, 658, 664, 671, 672, 692, 693, 724, 730, 731, 735, 736, 737, 738, 743, 744, 749, 750, 751, 752, 759, 762, 764, 791, 798, 803, 805, 808, 809, 811, 812, 813, 815, 816, 817, 820, 821, 823, 825, 828, 831, 833, 847, 848, 849, 854], "toctre": [0, 810], "index": [0, 40, 41, 42, 45, 48, 52, 53, 59, 62, 63, 64, 69, 71, 75, 76, 82, 85, 86, 87, 127, 134, 204, 307, 314, 315, 324, 325, 326, 362, 368, 369, 371, 376, 378, 380, 390, 396, 426, 428, 433, 455, 462, 465, 473, 475, 477, 480, 481, 484, 500, 501, 510, 519, 522, 540, 542, 563, 564, 568, 613, 615, 617, 620, 625, 627, 630, 631, 632, 692, 696, 706, 707, 708, 711, 712, 713, 719, 721, 730, 731, 733, 735, 736, 737, 739, 741, 763, 778, 792, 794, 811, 812, 817, 821, 822, 823, 824, 826, 828, 835, 854], "rst": [0, 821], "left": [0, 19, 29, 40, 41, 52, 57, 62, 64, 75, 80, 85, 87, 115, 116, 227, 242, 334, 349, 356, 365, 366, 368, 369, 371, 380, 402, 420, 425, 429, 436, 438, 463, 473, 514, 515, 516, 517, 518, 519, 532, 614, 618, 620, 623, 630, 632, 657, 658, 664, 673, 678, 730, 741, 762, 804, 805, 807, 810, 812, 813, 815, 818], "mai": [0, 50, 51, 52, 57, 63, 64, 73, 74, 80, 87, 97, 98, 121, 128, 139, 209, 235, 236, 242, 247, 255, 263, 264, 268, 269, 271, 286, 329, 330, 365, 396, 531, 567, 615, 617, 618, 620, 623, 631, 632, 633, 671, 680, 735, 736, 737, 738, 739, 742, 746, 747, 748, 750, 762, 792, 802, 803, 804, 805, 807, 811, 812, 813, 817, 818, 821, 822, 823, 825, 826, 828, 831, 834, 835, 837, 845, 861], "need": [0, 3, 6, 8, 15, 17, 23, 24, 26, 27, 40, 41, 42, 52, 53, 59, 75, 76, 82, 368, 369, 380, 390, 395, 396, 400, 420, 516, 527, 528, 549, 620, 622, 623, 625, 627, 648, 657, 685, 688, 715, 763, 798, 800, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 831, 833, 835, 836, 839, 840, 845, 847, 848, 850, 854, 855, 856, 860], "add": [0, 19, 29, 42, 44, 51, 52, 60, 67, 69, 74, 75, 83, 90, 97, 98, 356, 366, 368, 370, 371, 410, 445, 477, 559, 587, 618, 620, 622, 623, 628, 633, 648, 677, 723, 751, 759, 770, 778, 781, 798, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 818, 819, 820, 821, 822, 824, 825, 828, 829, 831, 833, 835, 839, 840, 850, 852, 854], "grid": [0, 42, 48, 134, 310, 362, 615, 815, 828], "item": [0, 4, 26, 27, 38, 40, 42, 47, 53, 67, 69, 71, 74, 75, 76, 129, 154, 191, 245, 261, 269, 335, 338, 351, 529, 539, 540, 544, 578, 579, 615, 616, 617, 620, 627, 634, 709, 710, 711, 712, 716, 721, 722, 756, 798, 803, 811, 813, 833, 835, 836, 838, 847], "card": [0, 52, 75, 353, 365, 859], "refer": [0, 5, 52, 59, 65, 66, 75, 77, 82, 88, 89, 127, 142, 240, 258, 307, 322, 351, 362, 365, 368, 369, 371, 396, 401, 412, 418, 440, 462, 601, 602, 615, 618, 621, 623, 625, 633, 634, 653, 655, 679, 692, 750, 752, 753, 754, 778, 798, 802, 803, 804, 805, 807, 808, 810, 812, 813, 820, 821, 822, 823, 824, 825, 826, 827, 828, 839, 840, 841, 854], "also": [0, 3, 4, 6, 8, 9, 11, 13, 17, 19, 21, 22, 24, 26, 27, 29, 31, 32, 33, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 163, 166, 167, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 615, 616, 618, 620, 621, 622, 623, 625, 626, 627, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 714, 715, 716, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 777, 778, 787, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 836, 837, 838, 839, 840, 843, 844, 847, 848, 850, 851, 852, 853, 854, 855, 857, 859, 860, 861], "look": [0, 5, 17, 26, 27, 40, 42, 45, 798, 801, 803, 804, 805, 809, 810, 811, 813, 814, 815, 817, 818, 819, 820, 821, 825, 826, 828, 829, 830, 831, 833, 835, 837, 838, 840, 843, 847, 850, 854], "document": [0, 17, 26, 59, 242, 329, 330, 365, 600, 618, 620, 696, 799, 800, 802, 805, 810, 812, 813, 815, 824, 825, 826, 828, 836, 838], "sphinx": [0, 800, 810], "design": [0, 9, 17, 26, 75, 242, 306, 311, 312, 362, 618, 798, 806, 810, 812, 813, 824, 825, 826, 827, 831, 833, 835, 839, 843, 844, 850, 852, 854, 857, 858, 859], "websit": [0, 44, 804, 807, 844], "alreadi": [1, 8, 18, 21, 22, 23, 24, 26, 27, 32, 40, 42, 45, 52, 57, 69, 75, 80, 231, 241, 268, 278, 288, 371, 380, 451, 452, 472, 507, 516, 618, 623, 660, 668, 791, 792, 798, 803, 804, 805, 809, 811, 813, 814, 820, 824, 825, 831, 839, 840, 854, 856, 861], "instal": [1, 5, 6, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 43, 44, 45, 800, 804, 805, 809, 810, 818, 819], "skip": [1, 4, 42, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 369, 371, 391, 392, 393, 411, 426, 428, 433, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 473, 476, 478, 480, 481, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 627, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 763, 791, 810, 821, 828], "colab": [1, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 40, 42, 44, 45], "manual": [1, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 627, 704, 714, 715, 803, 804, 805, 813, 819, 828, 837, 840], "do": [1, 3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 38, 40, 42, 52, 53, 69, 75, 76, 235, 268, 277, 370, 371, 380, 445, 457, 516, 519, 549, 618, 620, 627, 704, 711, 714, 715, 716, 721, 764, 792, 798, 801, 803, 804, 805, 807, 808, 809, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 829, 831, 833, 835, 836, 837, 838, 839, 841, 845, 855, 860, 861], "run": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 40, 42, 43, 44, 52, 54, 75, 77, 374, 488, 490, 601, 602, 607, 621, 626, 701, 702, 703, 759, 760, 778, 779, 780, 781, 791, 798, 800, 803, 804, 806, 808, 809, 812, 814, 815, 817, 819, 820, 822, 825, 826, 833, 834, 835, 836, 837, 838, 839, 840, 847, 848, 849, 852, 854, 855, 856, 857, 859, 860, 861], "below": [1, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 38, 41, 42, 43, 48, 52, 57, 75, 80, 88, 140, 141, 142, 242, 252, 275, 322, 323, 332, 362, 365, 371, 480, 615, 618, 623, 656, 677, 752, 799, 801, 803, 804, 806, 807, 811, 812, 813, 814, 815, 817, 818, 821, 824, 825, 826, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 847, 848, 849, 850, 852, 857, 859], "mind": [1, 11, 13, 17, 23, 26, 30, 803, 804, 808, 811, 828, 840, 848], "packag": [1, 3, 5, 7, 8, 11, 21, 22, 23, 24, 27, 40, 41, 42, 45, 790, 798, 801, 804, 812, 825, 839, 840, 854, 856], "avail": [1, 3, 5, 7, 21, 22, 24, 26, 27, 42, 53, 76, 191, 197, 199, 200, 211, 533, 617, 620, 623, 674, 763, 798, 804, 805, 811, 812, 813, 814, 816, 817, 825, 828, 831, 839, 840, 843, 847, 848, 849, 859, 860], "click": [1, 3, 42, 803, 804, 805, 812, 816, 818, 819, 834], "runtim": [1, 3, 4, 5, 6, 7, 8, 19, 26, 29, 40, 41, 806, 821, 828, 831, 854], "restart": [1, 3, 4, 5, 7, 40, 41, 804, 818], "pip": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 44, 45, 801, 804, 810, 819], "q": [1, 3, 4, 5, 6, 7, 8, 9, 40, 41, 42, 52, 56, 57, 75, 79, 80, 355, 365, 369, 380, 420, 519, 622, 623, 627, 648, 651, 657, 658, 670, 712, 804, 805, 806, 826, 839], "git": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 798, 800, 802, 804, 805, 807, 810, 812, 818, 819, 828, 840], "clone": [1, 3, 5, 7, 26, 40, 42, 43, 798, 800, 805, 818, 840], "http": [1, 3, 4, 5, 6, 7, 8, 13, 21, 22, 23, 24, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 480, 509, 601, 602, 615, 616, 618, 621, 623, 625, 633, 671, 672, 700, 750, 798, 800, 804, 805, 807, 810, 812, 813, 816, 818, 840, 848], "github": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 44, 798, 800, 802, 805, 807, 810, 812, 813, 815, 816, 818, 819, 827, 828, 840, 843], "com": [1, 3, 4, 5, 7, 13, 26, 40, 41, 42, 43, 44, 798, 800, 804, 805, 807, 810, 812, 813, 818, 840], "unifyai": [1, 3, 5, 7, 26, 40, 41, 42, 43, 44, 798, 800, 804, 805, 810, 818, 840], "model": [1, 2, 3, 9, 10, 15, 16, 17, 43, 45, 235, 268, 370, 441, 618, 775, 779, 780, 798, 836, 837, 841, 847, 848, 852, 853, 854, 855, 856, 857, 858, 860, 861], "depth": [1, 3, 5, 7, 41, 48, 52, 56, 71, 75, 79, 136, 368, 371, 403, 459, 532, 544, 615, 620, 622, 640, 641, 805, 812, 836, 837, 838, 840], "1": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 144, 147, 148, 149, 150, 154, 158, 159, 160, 163, 168, 170, 175, 191, 192, 196, 200, 201, 203, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 319, 320, 322, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 434, 435, 437, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 559, 561, 563, 564, 568, 577, 578, 579, 580, 581, 583, 585, 586, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 765, 767, 770, 774, 777, 778, 779, 780, 781, 782, 783, 787, 791, 792, 798, 801, 804, 805, 807, 809, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 821, 823, 824, 825, 826, 828, 831, 832, 833, 835, 836, 837, 838, 839, 844, 845, 847, 848, 849], "from": [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 85, 88, 89, 90, 92, 93, 95, 98, 121, 123, 126, 128, 129, 130, 131, 134, 135, 138, 142, 144, 150, 168, 174, 175, 191, 196, 201, 207, 208, 234, 242, 243, 270, 274, 275, 282, 286, 306, 307, 313, 316, 322, 324, 325, 326, 333, 336, 339, 340, 342, 343, 355, 359, 362, 365, 367, 368, 369, 370, 371, 375, 380, 391, 392, 393, 407, 412, 429, 436, 441, 445, 455, 458, 467, 472, 478, 480, 481, 483, 485, 486, 495, 496, 497, 498, 499, 510, 511, 531, 539, 540, 542, 562, 573, 583, 600, 602, 603, 607, 615, 616, 617, 618, 620, 621, 622, 623, 625, 626, 627, 629, 630, 631, 633, 634, 636, 644, 645, 653, 656, 673, 677, 678, 679, 686, 689, 692, 695, 701, 702, 703, 705, 716, 717, 718, 724, 725, 726, 727, 731, 734, 735, 737, 743, 744, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 764, 765, 770, 775, 777, 778, 779, 780, 782, 787, 792, 798, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 841, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 856, 858, 859, 860, 861], "repositori": [1, 3, 5, 7, 800, 803, 804, 805, 806, 807, 810, 818, 827, 845], "cd": [1, 3, 5, 7, 26, 43, 798, 800, 804, 805, 818, 840], "here": [1, 3, 9, 12, 14, 17, 22, 25, 26, 27, 38, 40, 41, 42, 43, 45, 75, 278, 447, 618, 798, 801, 802, 803, 804, 805, 807, 809, 810, 811, 812, 813, 815, 818, 819, 820, 822, 823, 824, 825, 826, 828, 829, 833, 834, 835, 836, 837, 838, 839, 847, 848, 849, 854, 855], "normal": [1, 3, 7, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 52, 60, 61, 75, 83, 84, 92, 93, 352, 365, 368, 374, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 488, 489, 490, 491, 492, 493, 494, 509, 512, 625, 628, 629, 686, 696, 723, 724, 726, 777, 778, 781, 798, 803, 824, 825, 831, 836, 847, 849, 852], "resnet": [2, 8, 15, 26, 847, 848], "imag": [2, 3, 6, 8, 11, 15, 23, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 56, 74, 75, 79, 97, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 278, 279, 281, 282, 286, 368, 386, 387, 403, 404, 405, 407, 532, 618, 620, 622, 635, 636, 637, 638, 639, 642, 643, 644, 778, 798, 804, 818, 831, 833, 834, 836, 838, 840, 847, 848, 854], "classif": [2, 3, 7, 9, 15, 40, 798, 854], "acceler": [2, 15, 798, 813, 825, 852, 856, 857, 858, 859], "pytorch": [2, 3, 4, 5, 6, 7, 10, 12, 13, 15, 16, 24, 26, 27, 38, 45, 278, 329, 330, 365, 618, 782, 798, 802, 803, 808, 813, 814, 817, 820, 821, 824, 825, 826, 831, 833, 838, 839, 841, 844, 845, 847, 848, 855, 857, 858, 860, 861], "jax": [2, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 44, 46, 51, 52, 53, 63, 68, 74, 75, 76, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 342, 360, 365, 380, 519, 549, 581, 600, 612, 618, 620, 631, 735, 736, 737, 738, 770, 774, 787, 798, 801, 802, 803, 804, 805, 807, 809, 813, 814, 817, 818, 820, 823, 824, 825, 826, 828, 829, 831, 833, 835, 838, 839, 844, 845, 847, 848, 849, 855, 857, 860, 861], "convert": [2, 5, 6, 8, 9, 11, 13, 15, 16, 18, 20, 23, 24, 26, 27, 28, 30, 32, 40, 43, 45, 47, 48, 51, 69, 70, 71, 74, 92, 122, 123, 135, 145, 146, 188, 189, 190, 191, 202, 210, 214, 234, 274, 371, 376, 450, 451, 452, 500, 565, 582, 584, 585, 586, 588, 615, 616, 617, 618, 620, 623, 627, 681, 705, 716, 717, 759, 787, 791, 798, 803, 808, 809, 822, 823, 825, 828, 830, 833, 839, 841, 845, 848, 852, 853, 860], "them": [2, 3, 6, 8, 11, 13, 15, 26, 27, 32, 369, 435, 526, 562, 620, 762, 778, 798, 800, 803, 805, 807, 808, 809, 810, 811, 812, 813, 817, 819, 822, 824, 825, 826, 828, 830, 833, 835, 836, 837, 839, 841, 842, 843, 844, 845, 846, 847, 848, 849, 851, 852, 854, 856, 860], "faster": [2, 3, 6, 8, 9, 15, 26, 27, 43, 45, 52, 57, 75, 80, 369, 438, 623, 673, 800, 802, 810, 841, 856, 859], "infer": [2, 6, 8, 9, 15, 19, 29, 31, 32, 41, 43, 45, 48, 52, 53, 56, 59, 71, 75, 76, 79, 82, 121, 123, 126, 130, 131, 135, 138, 144, 153, 154, 155, 156, 157, 306, 307, 368, 375, 403, 497, 543, 577, 615, 616, 620, 622, 625, 645, 692, 787, 788, 806, 809, 813, 814, 828, 833, 838, 848, 852, 853, 856, 858], "mmpretrain": [2, 15], "segment": [2, 15, 52, 75, 324, 325, 326, 362, 810, 815], "unet": [2, 15], "alexnet": [2, 15], "In": [2, 3, 4, 11, 13, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 45, 50, 52, 53, 59, 73, 76, 82, 92, 93, 202, 209, 210, 214, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 371, 374, 391, 392, 393, 450, 451, 452, 458, 460, 462, 463, 464, 465, 467, 471, 477, 478, 486, 488, 490, 522, 542, 549, 567, 617, 618, 620, 623, 625, 629, 671, 688, 689, 690, 692, 694, 695, 697, 699, 727, 798, 803, 804, 805, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 831, 835, 836, 837, 838, 839, 843, 845, 847, 848, 849, 850, 852, 854, 855, 857, 860], "we": [2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 43, 44, 45, 52, 57, 58, 59, 67, 75, 80, 81, 90, 92, 93, 113, 357, 367, 371, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 482, 486, 532, 542, 581, 603, 604, 606, 611, 612, 620, 621, 623, 624, 625, 666, 682, 688, 689, 690, 692, 694, 695, 697, 699, 774, 780, 787, 792, 798, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 854, 855, 859, 860], "show": [2, 3, 4, 7, 15, 21, 26, 27, 28, 29, 31, 38, 40, 42, 43, 566, 575, 597, 620, 798, 803, 804, 805, 810, 812, 815, 819, 824, 825, 828, 830, 839, 847, 854], "how": [2, 3, 4, 5, 6, 8, 11, 13, 15, 16, 17, 18, 19, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 38, 41, 44, 45, 46, 51, 52, 68, 74, 75, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 235, 268, 286, 290, 294, 295, 297, 360, 371, 455, 480, 481, 612, 618, 774, 777, 778, 779, 780, 798, 799, 800, 801, 802, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 819, 820, 822, 823, 824, 825, 826, 829, 830, 831, 832, 834, 835, 836, 837, 838, 839, 843, 845, 850, 854], "written": [2, 3, 4, 15, 17, 26, 27, 40, 53, 371, 461, 804, 807, 808, 816, 819, 820, 824, 825, 829, 833, 835, 838, 839, 843, 848, 852, 854, 858, 860, 861], "xgboost": [2, 15], "video": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 798, 799, 804, 805, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 840, 852], "tutori": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 798, 805, 825, 840], "nativ": [3, 4, 8, 17, 21, 22, 23, 24, 26, 27, 47, 48, 49, 50, 53, 70, 73, 76, 97, 101, 135, 145, 146, 152, 153, 154, 155, 156, 157, 171, 174, 189, 190, 191, 192, 202, 210, 214, 549, 551, 555, 562, 567, 584, 615, 616, 617, 620, 759, 770, 775, 787, 798, 801, 803, 813, 814, 817, 818, 821, 822, 824, 825, 826, 828, 833, 835, 836, 841, 847, 848, 849, 852, 861], "integr": [3, 4, 11, 13, 20, 27, 30, 49, 51, 52, 72, 74, 75, 147, 287, 348, 365, 380, 512, 616, 618, 798, 802, 804, 806, 822, 848, 852, 854, 856, 857, 858], "three": [3, 4, 15, 21, 31, 32, 42, 52, 134, 306, 362, 371, 452, 615, 804, 805, 811, 812, 813, 815, 825, 828, 831, 832, 833, 855, 860], "major": [3, 4, 630, 733, 813, 814, 826, 828, 839, 844, 851, 854], "ml": [3, 4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 45, 798, 799, 802, 825, 832, 833, 834, 836, 837, 838, 842, 844, 845, 848, 850, 851, 852, 853, 854, 857, 859, 861], "framework": [3, 4, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 40, 42, 44, 47, 53, 165, 187, 197, 200, 211, 530, 546, 550, 581, 584, 616, 617, 620, 627, 706, 757, 759, 763, 770, 775, 782, 787, 788, 798, 801, 803, 804, 806, 807, 808, 809, 810, 812, 813, 814, 815, 817, 818, 820, 821, 822, 824, 825, 828, 829, 831, 832, 833, 835, 838, 839, 840, 841, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 858], "sinc": [3, 5, 7, 23, 24, 26, 27, 40, 42, 52, 75, 93, 365, 798, 800, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 817, 824, 825, 839, 844, 854, 860], "want": [3, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 39, 40, 42, 52, 67, 75, 90, 235, 268, 371, 460, 618, 780, 798, 799, 800, 803, 804, 805, 810, 812, 814, 817, 819, 821, 822, 823, 824, 828, 831, 836, 837, 838, 839, 840, 844, 848], "after": [3, 4, 5, 6, 7, 8, 26, 27, 41, 52, 53, 54, 56, 60, 69, 75, 76, 77, 79, 83, 181, 282, 298, 302, 350, 360, 365, 368, 369, 371, 390, 391, 392, 393, 410, 413, 432, 461, 472, 549, 602, 605, 607, 608, 609, 616, 618, 620, 621, 622, 627, 628, 635, 636, 637, 638, 640, 642, 644, 645, 715, 723, 782, 787, 798, 803, 804, 805, 807, 809, 810, 812, 813, 815, 817, 820, 823, 826, 828, 832, 840, 847, 848, 854], "first": [3, 4, 5, 7, 11, 17, 19, 20, 21, 23, 26, 27, 29, 30, 31, 40, 43, 44, 45, 48, 51, 52, 57, 59, 61, 62, 63, 65, 71, 74, 75, 76, 80, 82, 84, 86, 88, 92, 93, 97, 98, 117, 118, 132, 133, 142, 173, 181, 191, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 285, 296, 306, 307, 322, 324, 325, 326, 328, 340, 342, 343, 344, 350, 354, 355, 360, 362, 365, 368, 369, 370, 371, 378, 380, 390, 419, 420, 421, 423, 427, 446, 456, 458, 462, 469, 472, 474, 475, 478, 485, 496, 498, 502, 510, 511, 512, 519, 524, 614, 615, 616, 617, 618, 620, 622, 623, 625, 626, 627, 630, 631, 632, 633, 648, 653, 656, 657, 658, 660, 663, 668, 670, 671, 673, 675, 677, 679, 692, 693, 696, 697, 701, 702, 703, 704, 705, 714, 715, 717, 729, 730, 731, 735, 736, 737, 740, 741, 743, 744, 759, 777, 778, 779, 780, 782, 787, 798, 800, 802, 803, 804, 805, 807, 808, 809, 810, 811, 814, 815, 819, 820, 821, 822, 824, 825, 828, 831, 833, 835, 836, 838, 840, 843, 844, 847, 848, 852, 854, 855, 859], "notebook": [3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 32, 41, 780, 798], "automat": [3, 5, 7, 24, 26, 27, 32, 798, 803, 804, 805, 806, 809, 810, 812, 813, 819, 821, 824, 828, 831, 832, 834, 837, 838, 840, 841, 845, 854, 857, 861], "sure": [3, 5, 6, 7, 8, 9, 26, 40, 803, 804, 805, 807, 812, 817, 818, 825, 826, 828, 831, 840], "gpu": [3, 4, 5, 6, 7, 8, 9, 40, 42, 44, 45, 191, 193, 194, 197, 200, 202, 204, 206, 207, 210, 212, 214, 617, 798, 804, 805, 812, 814, 835, 840, 852, 854, 857, 858, 859], "enabl": [3, 4, 5, 6, 7, 8, 9, 21, 22, 24, 41, 52, 57, 69, 80, 98, 368, 370, 390, 444, 567, 620, 623, 666, 780, 798, 804, 805, 808, 811, 813, 821, 822, 823, 824, 825, 828, 829, 832, 834, 836, 838, 839, 841, 844, 847, 852, 853, 854, 855, 856, 857, 860, 861], "dm": [3, 4, 5, 6, 8, 26, 27, 38, 40], "haiku": [3, 4, 5, 6, 8, 24, 26, 27, 38, 40, 44, 775, 798, 838, 845, 848, 854], "exit": [3, 5, 7, 26, 27, 814], "download": [3, 7, 11, 13, 26, 27, 41, 42, 45, 800, 804, 810, 828, 847, 848], "imagenet": [3, 13, 41, 43, 798], "class": [3, 5, 7, 9, 11, 13, 17, 26, 27, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 129, 138, 144, 160, 163, 176, 178, 179, 238, 275, 332, 353, 365, 379, 380, 387, 388, 420, 515, 516, 523, 532, 536, 549, 559, 581, 615, 616, 617, 618, 620, 622, 623, 624, 627, 628, 643, 647, 651, 657, 668, 672, 673, 675, 682, 698, 705, 716, 723, 738, 745, 749, 750, 759, 760, 767, 768, 769, 770, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 786, 787, 791, 796, 798, 803, 809, 810, 811, 813, 814, 815, 816, 820, 822, 823, 826, 827, 828, 831, 833, 834, 836, 837, 838, 841, 847, 848, 852, 854, 855, 861], "preprocess": [3, 7, 9, 26, 27, 40, 43, 847], "wget": [3, 5, 7, 40, 41, 44, 804], "raw": [3, 5, 6, 7, 8, 23, 26, 27, 40, 43, 44, 69, 798, 816, 848, 855], "githubusercont": [3, 5, 7, 40, 44], "hub": [3, 5, 7, 40, 43, 45], "master": [3, 5, 7, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 43, 44, 812, 854], "imagenet_class": [3, 7], "txt": [3, 7, 41, 53, 804, 807, 810], "r": [3, 7, 40, 41, 52, 57, 69, 75, 80, 92, 93, 342, 357, 365, 367, 603, 621, 623, 625, 670, 699, 804, 805, 806, 823, 826], "f": [3, 4, 6, 7, 26, 27, 39, 40, 42, 52, 59, 75, 82, 296, 313, 360, 362, 371, 462, 483, 625, 627, 692, 707, 711, 712, 713, 716, 721, 722, 798, 799, 805, 806, 811, 812, 817, 829, 833, 835, 836, 845, 850], "categori": [3, 7, 803, 807, 808, 811, 813, 817, 825, 829, 832], "strip": [3, 7, 19, 29, 844], "readlin": [3, 7, 41], "cat": [3, 7, 41, 826, 831, 833, 838, 847, 848], "jpg": [3, 5, 6, 7, 8, 23, 26, 27, 42, 43, 798, 848], "filenam": [3, 5, 7, 26, 27, 40, 42, 45, 53, 780, 786, 836], "3": [3, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 131, 132, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 189, 191, 192, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 427, 432, 435, 437, 440, 441, 442, 443, 444, 445, 446, 448, 450, 451, 452, 453, 455, 456, 457, 458, 459, 462, 463, 464, 466, 467, 468, 469, 471, 472, 477, 478, 479, 480, 481, 482, 483, 485, 486, 487, 491, 492, 493, 494, 497, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 559, 563, 564, 577, 578, 579, 583, 586, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 765, 778, 791, 792, 798, 801, 803, 804, 807, 808, 809, 811, 812, 813, 815, 817, 818, 821, 823, 826, 828, 833, 835, 836, 837, 838, 847, 848, 861], "import": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 43, 44, 45, 52, 63, 67, 71, 75, 90, 189, 190, 194, 204, 206, 292, 301, 380, 509, 544, 560, 617, 620, 626, 631, 702, 703, 738, 770, 787, 788, 798, 802, 803, 804, 805, 807, 808, 809, 810, 811, 813, 814, 815, 816, 819, 822, 823, 824, 825, 826, 827, 828, 829, 833, 835, 836, 838, 839, 840, 844, 847, 848, 849, 850, 852, 854, 857, 858, 860], "torchvis": [3, 6, 7, 40, 845], "transform": [3, 4, 6, 7, 8, 23, 26, 27, 40, 41, 43, 52, 56, 75, 79, 368, 369, 389, 390, 395, 396, 399, 400, 401, 411, 412, 414, 429, 622, 646, 762, 765, 778, 798, 822, 828, 838, 841, 847, 848, 852, 854, 855, 856], "pil": [3, 5, 6, 7, 8, 23, 26, 27, 41, 42, 43, 798, 848], "numpi": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 51, 52, 53, 65, 74, 75, 76, 142, 171, 189, 219, 279, 292, 301, 322, 362, 380, 509, 516, 525, 549, 578, 581, 585, 615, 616, 617, 618, 620, 633, 745, 757, 759, 770, 787, 791, 792, 798, 802, 803, 804, 805, 807, 808, 809, 812, 813, 814, 817, 818, 820, 824, 826, 828, 829, 831, 833, 835, 838, 840, 841, 843, 844, 847, 848, 849, 856, 861], "np": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 45, 48, 51, 52, 74, 75, 76, 122, 123, 124, 135, 171, 248, 252, 292, 301, 368, 369, 395, 400, 415, 578, 615, 616, 618, 620, 627, 710, 759, 787, 791, 792, 798, 803, 808, 813, 814, 817, 820, 824, 825, 826, 828, 829, 831, 833, 835, 836, 838, 841, 849], "warn": [3, 4, 5, 7, 8, 9, 21, 22, 23, 24, 40, 41, 42, 45, 795, 804, 805, 830, 847, 848, 849], "time": [3, 4, 6, 8, 24, 26, 27, 32, 40, 42, 43, 44, 52, 54, 57, 63, 75, 77, 86, 92, 93, 129, 335, 365, 368, 369, 371, 380, 396, 401, 414, 433, 440, 472, 478, 509, 602, 607, 615, 621, 622, 623, 625, 626, 630, 631, 645, 647, 663, 698, 701, 702, 703, 730, 731, 735, 736, 778, 779, 780, 803, 804, 805, 807, 809, 811, 812, 813, 815, 818, 820, 821, 822, 824, 825, 828, 829, 833, 836, 838, 839, 840, 843, 844, 845, 847, 848, 852, 854, 855, 858, 859, 860], "filterwarn": [3, 4], "ignor": [3, 4, 39, 47, 48, 52, 69, 75, 134, 368, 369, 371, 380, 391, 392, 393, 421, 435, 474, 475, 479, 517, 615, 622, 623, 627, 648, 662, 715, 716, 782, 804, 810, 812, 815, 828, 839, 860], "compos": [3, 6, 7, 26, 27, 40, 52, 75, 368, 382, 383, 384, 804, 811, 825, 828, 847, 849, 854, 861], "resiz": [3, 5, 6, 7, 40, 41, 52, 75, 368, 403, 831], "256": [3, 5, 7, 51, 76, 278, 279, 579, 622, 637, 639, 762], "centercrop": [3, 7], "224": [3, 7, 11, 13, 26, 27, 40, 41, 43, 798, 848], "totensor": [3, 6, 7, 40], "mean": [3, 6, 7, 8, 9, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 42, 52, 53, 56, 58, 59, 61, 65, 67, 69, 71, 75, 76, 79, 81, 82, 84, 88, 90, 92, 129, 208, 324, 334, 362, 365, 368, 369, 370, 371, 374, 375, 380, 396, 401, 418, 429, 441, 442, 443, 444, 445, 446, 447, 457, 462, 472, 488, 490, 496, 515, 516, 533, 603, 604, 606, 611, 615, 617, 620, 621, 622, 623, 624, 625, 626, 627, 629, 633, 637, 639, 640, 641, 643, 644, 645, 655, 682, 683, 684, 692, 701, 702, 703, 710, 725, 726, 762, 764, 765, 777, 778, 781, 798, 804, 805, 806, 807, 809, 811, 813, 814, 815, 821, 823, 824, 825, 828, 829, 831, 833, 835, 836, 837, 838, 839, 841, 848, 849, 851, 854], "0": [3, 4, 5, 6, 7, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 136, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 163, 164, 168, 170, 175, 188, 191, 193, 196, 201, 202, 203, 204, 206, 207, 208, 210, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 227, 229, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 319, 320, 322, 323, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 386, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 410, 411, 412, 413, 416, 417, 418, 420, 421, 422, 425, 426, 428, 429, 430, 433, 434, 435, 439, 440, 441, 442, 443, 444, 445, 446, 447, 449, 455, 457, 458, 459, 462, 463, 464, 465, 466, 467, 468, 469, 471, 472, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 524, 526, 527, 528, 531, 532, 533, 535, 536, 539, 540, 541, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 559, 561, 563, 564, 568, 573, 577, 578, 579, 581, 583, 585, 586, 595, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 661, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 765, 767, 774, 775, 777, 778, 779, 780, 781, 782, 783, 784, 787, 791, 792, 798, 801, 804, 805, 807, 809, 811, 812, 813, 814, 815, 816, 817, 818, 823, 824, 825, 826, 828, 829, 833, 835, 836, 837, 838, 839, 847, 848], "485": [3, 7, 40], "456": [3, 7, 40, 828], "406": [3, 7, 40, 52, 75, 389, 527, 620], "std": [3, 6, 7, 8, 9, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 41, 56, 61, 65, 79, 84, 88, 375, 496, 622, 629, 633, 637, 639, 640, 641, 643, 644, 725, 726, 798, 815, 849], "229": [3, 7, 40, 274, 618], "225": [3, 7, 40, 42, 229, 618], "torch_img": [3, 5, 7], "unsqueez": [3, 5, 6, 7], "img": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 798, 836, 848], "4": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 112, 113, 121, 122, 123, 124, 127, 129, 131, 132, 133, 134, 135, 136, 138, 142, 144, 148, 149, 150, 158, 160, 163, 168, 170, 175, 192, 193, 201, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 253, 254, 255, 256, 257, 258, 259, 260, 261, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 314, 315, 322, 324, 329, 330, 332, 334, 335, 337, 339, 340, 341, 342, 343, 344, 345, 346, 347, 349, 352, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 427, 429, 435, 441, 442, 443, 444, 445, 446, 448, 450, 451, 452, 455, 456, 457, 458, 459, 462, 463, 464, 467, 468, 469, 471, 472, 477, 478, 479, 480, 481, 482, 485, 486, 487, 491, 492, 493, 494, 497, 499, 500, 502, 507, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 542, 545, 547, 548, 549, 556, 563, 564, 578, 579, 580, 581, 583, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 642, 643, 644, 645, 646, 647, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 703, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 765, 777, 778, 782, 791, 792, 798, 801, 803, 804, 809, 810, 811, 812, 813, 815, 818, 823, 826, 828, 831, 833, 835, 836, 837, 838, 845, 847, 854, 860, 861], "ipython": [3, 5, 7, 21, 22, 23, 24, 26, 27, 45], "displai": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 45, 804, 810, 812, 817, 828, 836], "end": [3, 5, 40, 41, 52, 75, 121, 223, 279, 346, 365, 368, 371, 414, 462, 472, 474, 475, 615, 618, 792, 798, 804, 805, 809, 812, 818, 824, 829, 831, 832, 839, 852, 857], "see": [3, 4, 6, 8, 9, 18, 19, 24, 26, 27, 28, 29, 33, 38, 39, 45, 46, 49, 51, 52, 57, 62, 63, 65, 66, 68, 74, 75, 80, 85, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 128, 132, 139, 142, 149, 168, 175, 218, 223, 225, 227, 228, 229, 230, 235, 236, 240, 242, 246, 247, 254, 255, 258, 260, 262, 264, 265, 268, 271, 273, 277, 284, 286, 289, 290, 294, 295, 297, 322, 329, 330, 360, 362, 365, 369, 370, 371, 417, 442, 480, 612, 615, 616, 618, 623, 630, 631, 633, 634, 653, 666, 669, 672, 679, 680, 731, 735, 736, 737, 738, 746, 747, 748, 749, 750, 751, 752, 753, 754, 774, 798, 799, 801, 803, 804, 805, 807, 808, 810, 811, 812, 813, 814, 815, 818, 819, 820, 821, 825, 826, 828, 831, 833, 835, 836, 839, 843, 850], "5": [3, 4, 5, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 121, 122, 123, 129, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 148, 149, 150, 154, 158, 160, 168, 170, 175, 192, 201, 206, 209, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 324, 327, 329, 330, 332, 334, 336, 339, 340, 341, 342, 343, 345, 346, 347, 348, 349, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 413, 416, 419, 420, 422, 423, 425, 434, 437, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 456, 457, 458, 459, 462, 463, 466, 467, 468, 471, 472, 477, 478, 479, 480, 481, 482, 486, 487, 492, 493, 494, 497, 499, 500, 502, 507, 509, 510, 511, 512, 513, 514, 516, 519, 525, 526, 527, 528, 531, 532, 533, 534, 536, 539, 540, 542, 545, 547, 548, 549, 563, 564, 568, 578, 579, 580, 581, 583, 587, 600, 601, 602, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 640, 641, 642, 643, 644, 645, 646, 647, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 667, 668, 669, 670, 671, 673, 674, 675, 677, 678, 679, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 705, 707, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 763, 764, 765, 778, 791, 792, 798, 803, 804, 805, 807, 809, 811, 812, 813, 815, 817, 818, 820, 823, 826, 828, 835, 836, 837, 848], "set_default_devic": [3, 4, 5, 6, 7, 8, 212, 617, 814], "set_soft_device_mod": [3, 9, 213, 617, 814], "true": [3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 23, 24, 26, 27, 31, 32, 33, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 158, 160, 161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 175, 187, 191, 192, 194, 195, 199, 202, 203, 204, 205, 209, 211, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 458, 459, 460, 462, 463, 464, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 501, 502, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 563, 564, 565, 568, 571, 572, 574, 575, 577, 578, 579, 581, 583, 585, 586, 588, 593, 594, 596, 597, 599, 602, 603, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 710, 711, 712, 714, 715, 716, 717, 721, 722, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 764, 765, 778, 779, 780, 781, 782, 784, 787, 789, 791, 792, 796, 798, 801, 804, 809, 811, 812, 813, 814, 815, 817, 818, 820, 821, 822, 824, 825, 826, 828, 830, 831, 833, 836, 837, 838, 847, 848], "set_backend": [3, 4, 5, 7, 9, 17, 18, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 39, 41, 42, 43, 51, 53, 67, 74, 76, 162, 171, 189, 190, 204, 206, 211, 219, 525, 549, 616, 617, 620, 626, 702, 703, 787, 798, 807, 809, 813, 814, 821, 822, 823, 833, 835, 838, 847, 848, 849], "ivy_model": [3, 4, 5, 7, 43], "ivy_alexnet": 3, "order": [3, 20, 30, 32, 40, 43, 45, 48, 52, 53, 56, 57, 59, 63, 64, 69, 75, 79, 80, 82, 86, 87, 92, 97, 98, 122, 123, 134, 142, 223, 242, 285, 322, 342, 362, 365, 369, 371, 374, 378, 417, 420, 421, 422, 423, 424, 428, 432, 434, 437, 440, 462, 463, 464, 469, 470, 482, 488, 489, 490, 493, 502, 615, 618, 622, 623, 625, 626, 630, 631, 632, 636, 637, 638, 639, 640, 641, 644, 657, 658, 664, 673, 674, 678, 680, 689, 692, 701, 702, 733, 735, 736, 737, 738, 739, 741, 742, 759, 781, 783, 792, 798, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 825, 826, 827, 828, 829, 830, 831, 836, 838, 839, 843, 850, 853, 854, 855, 857, 860], "quick": [3, 15, 27, 805, 806, 826, 837], "call": [3, 6, 11, 13, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 33, 40, 44, 52, 67, 72, 75, 90, 92, 98, 117, 167, 168, 208, 369, 380, 432, 516, 567, 573, 587, 603, 604, 606, 614, 617, 620, 621, 623, 627, 671, 704, 710, 714, 715, 759, 770, 778, 779, 780, 782, 787, 792, 798, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 835, 836, 837, 838, 839, 844, 847, 848, 849, 854, 855, 858], "trace_graph": [3, 4, 5, 7, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 34, 43, 780, 798, 833, 838, 846], "take": [3, 7, 17, 24, 26, 27, 32, 38, 40, 43, 52, 57, 59, 65, 75, 82, 92, 117, 118, 120, 136, 275, 282, 296, 360, 368, 369, 371, 387, 395, 400, 405, 414, 423, 435, 455, 462, 481, 510, 511, 614, 615, 618, 622, 623, 625, 626, 648, 663, 667, 692, 703, 743, 762, 770, 777, 778, 791, 798, 799, 803, 804, 805, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 824, 825, 826, 828, 831, 833, 835, 837, 838, 839, 840, 845, 847, 848, 851, 852, 860], "moment": [3, 52, 54, 75, 77, 369, 424, 601, 602, 607, 621, 782, 803, 809, 839, 847, 848], "one": [3, 6, 8, 11, 13, 15, 16, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 44, 48, 52, 53, 56, 57, 59, 62, 63, 65, 69, 71, 74, 75, 76, 77, 79, 80, 82, 83, 85, 86, 87, 88, 92, 121, 124, 134, 136, 137, 138, 148, 150, 208, 229, 235, 242, 243, 260, 266, 267, 268, 287, 296, 306, 309, 310, 328, 334, 337, 340, 341, 344, 345, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 389, 391, 395, 396, 399, 400, 403, 411, 415, 417, 426, 433, 446, 450, 451, 452, 456, 462, 463, 464, 469, 471, 476, 479, 488, 489, 490, 495, 500, 510, 511, 514, 515, 516, 517, 518, 519, 521, 559, 563, 564, 566, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 615, 616, 617, 618, 620, 621, 622, 623, 625, 628, 630, 631, 633, 636, 637, 638, 639, 640, 641, 644, 660, 663, 664, 668, 670, 679, 680, 688, 689, 690, 693, 695, 699, 723, 730, 733, 735, 736, 737, 738, 743, 745, 762, 764, 781, 784, 787, 792, 795, 798, 803, 804, 805, 807, 808, 809, 810, 811, 813, 814, 815, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 830, 831, 832, 835, 836, 838, 839, 840, 841, 844, 845, 848, 854, 855, 857, 860], "cost": [3, 54, 77, 601, 602, 605, 607, 608, 609, 621, 626, 701, 702, 703, 792, 813, 831, 852], "arg": [3, 5, 6, 7, 11, 13, 21, 22, 24, 26, 27, 31, 32, 33, 44, 47, 69, 91, 101, 117, 198, 208, 587, 614, 615, 617, 620, 757, 759, 774, 775, 778, 779, 780, 784, 787, 791, 796, 798, 808, 813, 814, 817, 823, 824, 825, 831, 833, 837, 847, 848, 849], "asarrai": [3, 4, 5, 6, 7, 41, 48, 52, 53, 64, 71, 75, 76, 87, 122, 378, 501, 502, 532, 543, 547, 548, 578, 579, 615, 620, 622, 631, 632, 636, 736, 740, 817, 822, 825, 826], "cuda": [3, 4, 5, 6, 7, 8, 9, 17, 26, 41, 42, 45, 48, 52, 61, 71, 75, 84, 132, 133, 136, 188, 189, 190, 204, 206, 375, 495, 496, 498, 499, 615, 617, 623, 629, 674, 724, 725, 726, 727, 777, 778, 779, 780, 781, 782, 783, 798, 833, 839, 841, 859], "7": [3, 5, 6, 7, 8, 9, 11, 13, 18, 19, 21, 22, 23, 24, 38, 40, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 107, 108, 109, 110, 121, 122, 123, 132, 135, 136, 154, 160, 163, 193, 215, 218, 221, 225, 226, 228, 229, 230, 231, 233, 235, 236, 237, 238, 239, 241, 242, 245, 246, 247, 252, 253, 254, 255, 256, 257, 258, 259, 260, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 278, 279, 280, 282, 285, 286, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 312, 313, 324, 328, 332, 334, 335, 342, 343, 344, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 409, 410, 411, 412, 413, 416, 419, 430, 441, 442, 443, 444, 446, 447, 450, 451, 452, 456, 458, 462, 467, 468, 471, 472, 477, 478, 480, 481, 483, 486, 487, 497, 499, 500, 507, 510, 511, 513, 514, 519, 525, 527, 528, 532, 533, 536, 547, 548, 549, 556, 563, 564, 578, 581, 601, 602, 604, 605, 606, 607, 608, 609, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 636, 637, 639, 641, 643, 644, 645, 646, 651, 653, 654, 655, 656, 658, 659, 660, 663, 665, 668, 670, 671, 673, 674, 675, 677, 678, 679, 682, 683, 684, 685, 688, 689, 694, 696, 697, 699, 704, 705, 712, 716, 723, 724, 725, 726, 727, 729, 734, 735, 737, 739, 740, 742, 743, 744, 745, 747, 749, 751, 752, 762, 804, 805, 809, 811, 812, 815, 821, 824, 828], "output": [3, 4, 5, 7, 17, 23, 24, 26, 27, 39, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 415, 417, 418, 419, 421, 423, 426, 427, 430, 431, 432, 433, 435, 436, 439, 441, 442, 443, 444, 445, 446, 447, 448, 455, 456, 457, 460, 462, 463, 464, 465, 466, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 484, 485, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 526, 527, 528, 532, 533, 534, 536, 540, 549, 556, 563, 564, 565, 588, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 717, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 762, 777, 778, 791, 792, 798, 800, 804, 805, 806, 807, 808, 810, 811, 813, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 833, 835, 837, 838, 839, 841, 847, 848, 855], "softmax": [3, 7, 11, 24, 26, 27, 42, 46, 56, 67, 68, 79, 370, 442, 612, 622, 648, 651, 774, 798], "pass": [3, 5, 6, 7, 8, 9, 11, 13, 17, 24, 26, 27, 33, 39, 40, 42, 44, 45, 51, 52, 67, 69, 74, 75, 90, 98, 117, 118, 120, 152, 174, 189, 208, 223, 269, 370, 371, 374, 375, 380, 442, 462, 488, 490, 495, 515, 516, 549, 614, 616, 617, 618, 620, 626, 701, 702, 757, 759, 763, 770, 775, 779, 780, 782, 783, 787, 791, 796, 798, 801, 803, 805, 807, 808, 809, 811, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 831, 839, 847, 848, 849, 852], "argsort": [3, 7, 64, 87, 632, 741, 825], "descend": [3, 7, 64, 87, 623, 632, 673, 674, 739, 742], "top": [3, 7, 10, 15, 24, 26, 27, 40, 41, 52, 59, 75, 313, 362, 371, 482, 532, 620, 686, 798, 804, 805, 813, 818, 825, 827, 828, 831, 836, 837, 854, 858], "logit": [3, 4, 5, 7, 40, 41, 42, 43, 52, 58, 75, 81, 360, 375, 495, 498, 624, 682, 684, 774, 798, 847], "gather": [3, 7, 40, 52, 53, 75, 76, 324, 325, 326, 362, 540, 542, 620, 861], "print": [3, 4, 6, 7, 9, 11, 13, 17, 18, 20, 24, 26, 27, 28, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 161, 162, 165, 167, 168, 170, 175, 187, 188, 192, 194, 195, 196, 197, 199, 200, 201, 202, 203, 206, 207, 209, 210, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 300, 301, 303, 304, 305, 307, 314, 315, 322, 324, 328, 329, 330, 332, 346, 347, 352, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 394, 396, 399, 401, 404, 405, 406, 409, 411, 412, 416, 419, 421, 423, 424, 432, 439, 441, 442, 443, 444, 445, 446, 447, 453, 455, 457, 468, 472, 477, 478, 480, 481, 482, 487, 491, 492, 494, 509, 510, 511, 512, 519, 521, 523, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 559, 560, 562, 563, 564, 568, 569, 570, 573, 576, 577, 578, 579, 581, 583, 585, 586, 587, 591, 592, 595, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 651, 652, 653, 654, 656, 658, 659, 660, 661, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 787, 791, 792, 796, 798, 804, 805, 811, 813, 815, 826, 828, 830, 833, 835, 836, 837, 847, 849], "indic": [3, 7, 48, 52, 53, 56, 57, 59, 60, 62, 63, 64, 69, 71, 72, 75, 76, 79, 80, 82, 83, 85, 86, 87, 92, 95, 122, 123, 136, 140, 142, 163, 167, 168, 279, 322, 323, 324, 342, 362, 365, 368, 369, 370, 371, 376, 378, 386, 387, 388, 390, 394, 395, 396, 400, 401, 404, 405, 406, 407, 411, 412, 421, 440, 442, 450, 451, 452, 455, 458, 460, 462, 463, 464, 467, 471, 477, 478, 480, 481, 482, 485, 486, 500, 501, 502, 524, 539, 540, 542, 563, 564, 568, 600, 603, 604, 615, 618, 620, 621, 622, 623, 625, 627, 628, 629, 630, 631, 632, 636, 638, 639, 640, 641, 644, 648, 666, 680, 688, 689, 690, 692, 693, 694, 695, 697, 699, 704, 707, 709, 711, 712, 713, 715, 719, 720, 721, 722, 723, 724, 730, 731, 732, 733, 735, 737, 739, 741, 742, 759, 760, 762, 764, 778, 784, 791, 792, 794, 804, 812, 820, 823, 825, 838, 847], "to_list": [3, 7, 53, 76, 620], "arrai": [3, 4, 7, 8, 9, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 164, 166, 167, 168, 170, 172, 173, 174, 175, 181, 191, 192, 196, 201, 203, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 545, 546, 547, 548, 549, 551, 552, 553, 554, 555, 556, 558, 559, 561, 562, 563, 564, 565, 567, 568, 574, 575, 577, 578, 579, 580, 581, 583, 584, 585, 586, 587, 588, 596, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 710, 711, 712, 713, 716, 717, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 764, 770, 777, 778, 779, 780, 783, 787, 791, 792, 794, 798, 801, 803, 804, 805, 806, 809, 810, 811, 813, 814, 815, 816, 817, 818, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 841, 848, 849, 852, 853, 854, 856, 860, 861], "282": [3, 7], "281": [3, 7, 40, 42], "285": [3, 7, 75], "dev": [3, 6, 7, 8, 9, 19, 40, 42, 45, 50, 69, 73, 196, 203, 617, 804, 814, 818, 821, 835, 837], "64773697": 3, "29496649": 3, "04526037": 3, "39": [3, 4, 6, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 38, 40, 41, 42, 43, 45, 46, 51, 52, 57, 61, 68, 74, 75, 77, 80, 84, 107, 221, 256, 258, 260, 290, 291, 293, 360, 368, 380, 387, 389, 406, 409, 510, 601, 612, 618, 621, 623, 633, 660, 668, 726, 745], "tiger": [3, 7], "tabbi": [3, 7], "egyptian": [3, 7], "check": [3, 4, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 43, 45, 47, 49, 53, 57, 69, 72, 76, 80, 113, 151, 152, 161, 162, 165, 167, 168, 169, 172, 187, 194, 195, 202, 214, 525, 535, 537, 538, 545, 551, 552, 553, 554, 555, 571, 581, 593, 599, 612, 616, 617, 620, 623, 627, 658, 659, 666, 704, 714, 715, 716, 757, 764, 791, 792, 798, 800, 802, 803, 804, 805, 807, 811, 812, 814, 815, 817, 822, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 836, 837, 840, 847], "confirm": [3, 41, 803], "same": [3, 4, 5, 6, 7, 8, 13, 19, 21, 22, 23, 24, 26, 29, 31, 33, 38, 39, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 88, 92, 93, 94, 95, 96, 97, 111, 121, 126, 131, 133, 134, 136, 138, 140, 141, 142, 144, 147, 148, 149, 160, 163, 208, 215, 216, 217, 218, 220, 222, 226, 228, 231, 235, 241, 242, 248, 268, 270, 272, 275, 277, 278, 279, 288, 295, 307, 321, 322, 323, 324, 325, 326, 329, 330, 332, 339, 355, 360, 362, 365, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 404, 405, 406, 407, 409, 410, 411, 412, 413, 420, 425, 426, 434, 435, 436, 437, 438, 440, 442, 445, 455, 457, 472, 480, 481, 488, 490, 500, 502, 507, 508, 509, 510, 511, 512, 513, 519, 556, 610, 615, 616, 617, 618, 620, 621, 622, 623, 625, 626, 627, 629, 631, 632, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 648, 651, 652, 653, 654, 656, 657, 658, 659, 661, 663, 665, 667, 668, 669, 670, 671, 672, 673, 674, 677, 679, 686, 689, 690, 692, 693, 695, 696, 701, 702, 717, 727, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 757, 762, 763, 764, 770, 778, 791, 798, 804, 805, 808, 809, 811, 812, 813, 814, 815, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 835, 837, 838, 839, 843, 845, 847, 849, 851, 853, 860, 861], "8": [3, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 97, 98, 105, 120, 130, 131, 135, 138, 144, 153, 155, 156, 157, 160, 168, 193, 210, 218, 220, 221, 225, 226, 229, 230, 231, 233, 239, 242, 246, 247, 253, 254, 255, 259, 260, 263, 264, 266, 267, 268, 273, 274, 277, 278, 279, 282, 283, 286, 287, 288, 292, 297, 299, 300, 301, 303, 304, 306, 307, 324, 328, 339, 342, 344, 345, 346, 349, 356, 360, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 413, 416, 419, 427, 441, 442, 443, 445, 446, 447, 448, 450, 451, 452, 456, 458, 462, 467, 468, 477, 478, 481, 482, 483, 486, 487, 497, 499, 511, 514, 515, 519, 525, 526, 528, 532, 533, 536, 539, 543, 547, 548, 549, 551, 552, 555, 558, 563, 564, 568, 578, 579, 580, 581, 601, 604, 606, 608, 609, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 629, 630, 631, 632, 633, 636, 640, 641, 643, 644, 645, 646, 648, 654, 655, 656, 658, 659, 660, 663, 664, 665, 668, 670, 671, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 689, 696, 697, 699, 705, 712, 716, 724, 725, 726, 727, 729, 734, 735, 737, 739, 740, 742, 744, 745, 747, 749, 751, 752, 762, 765, 778, 804, 811, 812, 815, 828, 832, 836], "torch_alexnet": 3, "alexnet_weight": 3, "weight": [3, 9, 11, 13, 26, 27, 40, 41, 52, 54, 56, 58, 75, 77, 79, 81, 92, 93, 309, 313, 346, 362, 365, 368, 369, 380, 394, 426, 507, 509, 512, 601, 602, 605, 607, 608, 609, 621, 622, 624, 626, 646, 647, 648, 651, 682, 703, 764, 777, 778, 780, 782, 798, 811, 821, 828, 833, 837, 838, 853], "imagenet1k_v1": [3, 7], "dropout": [3, 56, 79, 368, 391, 392, 393, 622, 648, 651, 778, 836], "9": [3, 4, 5, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 68, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 97, 98, 105, 121, 122, 123, 135, 153, 154, 155, 156, 157, 160, 163, 216, 218, 220, 221, 224, 225, 226, 229, 230, 235, 236, 237, 242, 249, 255, 256, 257, 259, 263, 264, 266, 267, 268, 271, 273, 274, 278, 279, 282, 283, 284, 289, 294, 297, 298, 299, 336, 338, 342, 348, 349, 356, 360, 365, 366, 368, 370, 371, 378, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 413, 427, 441, 443, 445, 446, 450, 451, 452, 458, 462, 467, 477, 478, 479, 480, 482, 486, 497, 499, 502, 511, 528, 532, 533, 534, 536, 539, 547, 548, 551, 552, 555, 563, 564, 578, 580, 601, 602, 603, 607, 608, 612, 615, 616, 618, 620, 621, 622, 623, 625, 627, 629, 630, 631, 632, 633, 636, 637, 638, 644, 645, 646, 653, 654, 656, 658, 659, 660, 663, 664, 665, 668, 670, 671, 673, 674, 675, 677, 678, 679, 685, 689, 693, 694, 696, 697, 699, 704, 705, 710, 712, 715, 716, 724, 725, 726, 727, 729, 734, 735, 737, 739, 740, 742, 744, 745, 747, 749, 751, 752, 762, 782, 811, 813, 815, 823, 828, 836, 837, 850], "torch_output": [3, 5, 7], "dim": [3, 7, 42, 52, 69, 71, 75, 136, 307, 362, 368, 371, 385, 395, 396, 397, 400, 408, 462, 615, 622, 635, 642, 643, 647, 764, 778, 798, 813, 825, 826, 831], "torch_class": [3, 7], "torch_logit": [3, 7], "tensor": [3, 4, 6, 7, 8, 11, 13, 17, 18, 21, 22, 24, 26, 27, 28, 32, 38, 40, 48, 51, 52, 53, 56, 58, 59, 61, 69, 71, 74, 75, 76, 79, 80, 81, 82, 84, 91, 124, 132, 133, 136, 142, 158, 174, 266, 267, 296, 313, 317, 318, 319, 320, 321, 322, 331, 353, 360, 362, 365, 368, 369, 370, 371, 380, 381, 386, 387, 390, 394, 403, 404, 405, 406, 414, 416, 423, 424, 425, 426, 429, 431, 433, 434, 437, 439, 440, 442, 445, 446, 462, 465, 470, 473, 474, 475, 476, 479, 484, 515, 520, 563, 564, 615, 616, 618, 620, 622, 623, 624, 625, 629, 645, 647, 648, 662, 675, 682, 692, 694, 724, 778, 787, 792, 798, 808, 809, 813, 814, 818, 820, 821, 824, 825, 826, 828, 829, 831, 833, 835, 836, 838, 839, 841, 843, 847, 848, 849, 851, 852, 855, 857, 858, 861], "devic": [3, 5, 6, 7, 41, 42, 45, 48, 52, 61, 69, 71, 75, 84, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 212, 214, 306, 307, 322, 323, 362, 375, 460, 495, 496, 498, 499, 523, 537, 538, 615, 620, 629, 724, 725, 726, 727, 757, 759, 760, 775, 777, 778, 779, 780, 781, 782, 783, 784, 798, 805, 806, 809, 813, 817, 821, 822, 826, 828, 829, 831, 833, 838, 839, 840, 841, 844, 853, 854, 856, 857, 858, 859], "6477": 3, "2950": 3, "0453": 3, "grad_fn": [3, 7, 24, 38, 604, 611, 621, 836], "lt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 98], "takebackward0": [3, 7], "gt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 45, 98, 826, 833], "great": [3, 5, 798, 805, 828, 833, 835, 844, 845, 860], "With": [3, 19, 29, 38, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 163, 170, 175, 176, 177, 178, 179, 189, 192, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 329, 330, 332, 334, 337, 341, 344, 345, 346, 348, 349, 352, 360, 362, 365, 368, 369, 370, 371, 380, 389, 391, 392, 399, 411, 417, 418, 419, 421, 422, 423, 432, 435, 446, 462, 463, 464, 466, 469, 471, 472, 478, 480, 482, 485, 500, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 525, 526, 527, 528, 531, 532, 533, 534, 535, 539, 540, 543, 545, 547, 548, 549, 563, 564, 578, 579, 581, 583, 585, 586, 599, 600, 601, 602, 603, 605, 606, 607, 608, 609, 610, 611, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 651, 652, 653, 654, 655, 656, 658, 659, 661, 663, 664, 665, 666, 667, 670, 671, 672, 673, 674, 675, 677, 678, 679, 682, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 804, 813, 815, 825, 828, 831, 833, 844, 845, 847, 854, 857], "simpl": [3, 11, 15, 16, 18, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 38, 40, 42, 45, 52, 75, 380, 509, 764, 778, 792, 798, 803, 804, 805, 808, 810, 811, 813, 814, 815, 816, 821, 824, 825, 828, 829, 831, 835, 837, 838, 839, 841, 843, 847, 848, 853, 854, 855, 856], "chang": [3, 4, 9, 17, 27, 40, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 612, 618, 625, 627, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 669, 670, 671, 673, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 705, 716, 721, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 759, 798, 803, 804, 805, 807, 809, 810, 811, 812, 813, 815, 816, 818, 819, 825, 826, 827, 828, 829, 830, 831, 833, 837, 839, 840, 845, 847, 857, 860], "backend": [3, 8, 18, 19, 20, 21, 22, 23, 24, 27, 29, 30, 32, 47, 48, 52, 53, 57, 69, 75, 76, 80, 97, 124, 161, 162, 165, 187, 194, 195, 197, 200, 211, 329, 330, 365, 369, 419, 421, 516, 525, 537, 538, 546, 549, 550, 560, 567, 581, 584, 615, 616, 617, 620, 623, 673, 757, 759, 760, 762, 763, 764, 767, 769, 770, 775, 779, 780, 782, 786, 787, 798, 801, 802, 804, 805, 806, 807, 808, 812, 814, 815, 816, 817, 818, 820, 821, 822, 824, 825, 826, 828, 830, 831, 832, 834, 835, 838, 841, 843, 847, 848, 849, 854, 857, 860, 861], "let": [3, 4, 5, 6, 8, 9, 11, 13, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 43, 45, 53, 65, 76, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 279, 281, 282, 286, 539, 540, 618, 620, 623, 633, 677, 747, 749, 750, 751, 752, 798, 803, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 845, 847, 848, 861], "u": [3, 6, 40, 42, 44, 45, 52, 57, 71, 75, 80, 92, 93, 133, 369, 429, 436, 438, 623, 627, 652, 658, 659, 673, 712, 798, 799, 804, 805, 806, 811, 812, 819, 822, 824, 825, 826, 827, 828, 829, 831, 837, 839, 844], "differ": [3, 4, 6, 8, 9, 11, 15, 16, 20, 21, 22, 26, 27, 30, 31, 32, 33, 51, 52, 53, 57, 65, 69, 75, 76, 88, 97, 98, 107, 110, 160, 218, 235, 242, 243, 268, 284, 328, 335, 339, 340, 344, 365, 368, 369, 371, 380, 401, 412, 434, 440, 456, 463, 464, 478, 510, 511, 519, 539, 540, 612, 616, 618, 620, 622, 623, 625, 633, 645, 646, 660, 671, 686, 696, 743, 744, 749, 751, 752, 757, 762, 770, 779, 780, 798, 801, 802, 803, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 840, 843, 844, 845, 847, 848, 849, 851, 852, 853, 854, 857, 860, 861], "ll": [3, 5, 6, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 41, 798, 799, 801, 803, 804, 805, 810, 815, 818, 819, 823, 824, 836, 840, 845, 847, 848], "try": [3, 18, 28, 38, 41, 45, 69, 587, 620, 777, 787, 798, 803, 804, 805, 807, 808, 811, 812, 813, 817, 819, 824, 826, 833, 835, 839, 842, 844, 845, 849], "10": [3, 5, 7, 8, 9, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 42, 44, 45, 48, 51, 52, 53, 54, 56, 57, 61, 63, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 121, 131, 132, 133, 217, 225, 226, 229, 230, 233, 240, 245, 247, 253, 255, 257, 268, 274, 281, 282, 287, 295, 328, 329, 330, 333, 337, 339, 341, 342, 344, 345, 346, 348, 349, 353, 356, 365, 368, 371, 380, 386, 387, 388, 389, 399, 404, 405, 409, 410, 411, 412, 413, 452, 455, 458, 462, 467, 477, 478, 486, 507, 510, 511, 514, 516, 519, 532, 533, 534, 536, 539, 540, 542, 547, 548, 556, 564, 568, 573, 578, 580, 592, 595, 607, 615, 618, 620, 621, 622, 623, 625, 627, 628, 629, 630, 631, 632, 633, 636, 637, 639, 645, 654, 656, 660, 661, 663, 664, 665, 668, 673, 674, 675, 677, 679, 689, 694, 695, 696, 697, 699, 710, 712, 715, 716, 723, 724, 725, 726, 727, 733, 735, 741, 743, 744, 745, 746, 748, 749, 751, 752, 762, 764, 782, 798, 801, 804, 807, 811, 812, 813, 815, 818, 823, 826, 828, 833, 835, 836, 844, 849, 859], "tf": [3, 5, 8, 11, 13, 18, 21, 22, 24, 26, 27, 28, 29, 31, 33, 38, 43, 44, 775, 798, 808, 813, 814, 820, 824, 825, 828, 829, 831, 833, 838, 839, 841, 847, 848, 849, 854], "onc": [3, 5, 26, 27, 38, 40, 57, 61, 80, 84, 208, 369, 420, 617, 623, 629, 657, 658, 659, 673, 724, 798, 803, 804, 805, 811, 812, 813, 814, 815, 818, 819, 824, 825, 828, 831, 833, 836, 839, 840, 845, 847], "set": [3, 11, 13, 19, 26, 27, 29, 32, 40, 41, 42, 43, 44, 47, 52, 53, 56, 57, 62, 64, 65, 69, 75, 76, 79, 80, 85, 87, 88, 110, 113, 120, 140, 142, 176, 177, 178, 179, 180, 191, 204, 205, 206, 207, 208, 223, 322, 334, 349, 351, 356, 362, 365, 366, 368, 369, 370, 371, 380, 390, 411, 414, 418, 422, 425, 445, 446, 462, 472, 475, 482, 509, 514, 515, 516, 517, 518, 519, 521, 525, 532, 544, 549, 565, 566, 567, 569, 570, 571, 572, 573, 574, 575, 576, 581, 589, 612, 614, 615, 616, 617, 618, 620, 622, 623, 627, 629, 630, 632, 633, 645, 651, 653, 664, 666, 669, 672, 673, 704, 711, 714, 715, 716, 721, 722, 728, 730, 731, 735, 737, 738, 739, 742, 750, 752, 759, 762, 763, 764, 765, 770, 777, 778, 780, 782, 787, 792, 795, 798, 799, 805, 806, 807, 808, 810, 811, 812, 813, 814, 815, 817, 819, 821, 822, 824, 825, 826, 828, 829, 831, 833, 835, 836, 843, 846, 847, 848, 852, 853, 854, 855, 856, 858, 861], "our": [3, 6, 8, 9, 11, 13, 15, 18, 19, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 44, 67, 90, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 764, 774, 775, 777, 778, 780, 781, 782, 783, 798, 799, 800, 802, 803, 804, 805, 806, 807, 808, 810, 811, 812, 813, 815, 817, 818, 819, 822, 825, 826, 827, 828, 829, 831, 832, 833, 835, 836, 837, 838, 839, 843, 844, 847, 859, 860], "post": [3, 5, 40, 60, 83, 628, 723, 804, 818, 823, 838, 840], "process": [3, 5, 21, 26, 27, 31, 40, 202, 214, 617, 799, 804, 805, 810, 811, 812, 818, 819, 821, 823, 825, 826, 827, 828, 831, 833, 838, 844, 845, 847, 852, 853, 854, 857, 858, 860, 861], "11": [3, 5, 7, 8, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 53, 56, 57, 61, 65, 74, 75, 76, 79, 80, 82, 84, 88, 98, 218, 222, 225, 230, 240, 277, 278, 284, 346, 365, 368, 369, 371, 386, 387, 399, 404, 405, 409, 410, 413, 422, 455, 456, 458, 462, 467, 469, 486, 510, 511, 526, 532, 533, 539, 548, 564, 618, 620, 622, 623, 624, 625, 627, 629, 630, 631, 633, 636, 637, 645, 646, 656, 659, 660, 661, 663, 664, 668, 672, 673, 674, 675, 677, 679, 682, 684, 689, 694, 695, 697, 699, 710, 712, 722, 725, 726, 727, 734, 735, 743, 744, 745, 752, 811, 812, 813, 815, 823], "st": [3, 4, 6, 762, 807, 826, 828], "perf_count": [3, 6], "raw_logit": 3, "latenc": [3, 6], "nn": [3, 5, 13, 24, 26, 27, 40, 44, 134, 615, 798, 821, 826, 831, 838, 848, 855], "axi": [3, 5, 9, 41, 42, 43, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 108, 112, 132, 133, 136, 208, 282, 287, 329, 330, 334, 335, 342, 349, 365, 368, 370, 371, 374, 378, 380, 389, 390, 396, 399, 401, 411, 412, 444, 449, 457, 458, 459, 462, 463, 464, 467, 472, 477, 478, 480, 481, 482, 485, 486, 491, 492, 494, 502, 507, 510, 511, 512, 514, 515, 516, 517, 518, 519, 532, 539, 600, 612, 615, 617, 618, 620, 622, 623, 624, 625, 626, 629, 630, 631, 632, 633, 634, 644, 653, 656, 664, 677, 679, 680, 682, 683, 684, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 729, 730, 731, 735, 737, 739, 740, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 764, 774, 778, 779, 784, 811, 813, 815, 817, 820, 821, 824, 825, 828, 831, 833, 835, 838], "direct": [3, 52, 75, 335, 341, 345, 350, 354, 365, 368, 371, 401, 412, 463, 464, 478, 632, 742, 803, 808, 810, 825, 831, 837, 838, 850, 854, 855, 858], "tolist": 3, "652289830999962": 3, "shape": [3, 4, 5, 9, 11, 13, 19, 20, 21, 22, 26, 27, 32, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 96, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 203, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 310, 311, 312, 313, 315, 317, 318, 319, 320, 321, 322, 323, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 353, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 417, 418, 420, 421, 422, 425, 426, 427, 428, 430, 431, 432, 433, 434, 435, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 452, 453, 455, 457, 460, 465, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 484, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 508, 509, 510, 511, 512, 527, 528, 532, 533, 534, 536, 539, 540, 543, 549, 556, 563, 564, 574, 582, 584, 596, 600, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 628, 629, 630, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 739, 740, 742, 743, 744, 745, 747, 749, 750, 752, 753, 754, 759, 762, 764, 777, 778, 781, 791, 798, 805, 811, 813, 814, 815, 816, 817, 818, 820, 824, 825, 826, 828, 829, 830, 833, 835, 836, 837, 838, 847, 848], "dtype": [3, 5, 7, 9, 13, 19, 21, 22, 23, 24, 38, 41, 48, 49, 52, 53, 56, 57, 61, 62, 65, 69, 71, 72, 74, 75, 76, 79, 80, 84, 85, 88, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 203, 230, 269, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 327, 332, 334, 349, 362, 365, 368, 369, 370, 371, 375, 380, 389, 399, 411, 412, 414, 435, 445, 456, 480, 495, 496, 497, 498, 499, 509, 510, 511, 512, 515, 518, 519, 536, 537, 538, 540, 549, 558, 585, 615, 616, 617, 618, 620, 622, 623, 626, 629, 630, 632, 633, 634, 638, 645, 664, 680, 702, 703, 725, 726, 727, 730, 731, 732, 741, 742, 743, 744, 749, 751, 753, 754, 757, 759, 762, 764, 765, 777, 778, 779, 780, 781, 783, 798, 801, 807, 809, 813, 814, 815, 817, 818, 821, 822, 824, 825, 826, 828, 829, 833, 835, 848], "int32": [3, 38, 40, 49, 52, 53, 61, 62, 65, 72, 75, 76, 84, 85, 127, 132, 138, 144, 147, 150, 152, 154, 156, 158, 161, 163, 164, 168, 171, 175, 179, 183, 185, 203, 230, 376, 380, 500, 510, 511, 512, 540, 549, 585, 615, 616, 617, 618, 620, 629, 630, 633, 725, 726, 727, 731, 743, 744, 749, 751, 762, 763, 813, 825, 828, 833], "6477362": 3, "29496726": 3, "04526032": 3, "float32": [3, 5, 7, 9, 11, 13, 18, 19, 38, 40, 41, 42, 48, 49, 53, 56, 71, 72, 75, 76, 79, 88, 133, 136, 138, 144, 145, 146, 150, 154, 155, 158, 159, 160, 161, 164, 167, 168, 170, 175, 178, 184, 248, 275, 327, 339, 362, 365, 368, 369, 380, 389, 399, 412, 435, 445, 512, 549, 585, 615, 616, 618, 620, 622, 623, 626, 638, 640, 641, 644, 671, 673, 674, 680, 702, 703, 759, 762, 763, 798, 813, 815, 826, 828, 829, 848, 849], "As": [3, 5, 6, 8, 9, 11, 13, 19, 23, 24, 26, 27, 29, 32, 38, 39, 63, 67, 90, 631, 735, 736, 737, 738, 798, 801, 803, 804, 805, 808, 810, 811, 812, 813, 814, 817, 818, 819, 820, 821, 824, 825, 826, 827, 828, 831, 835, 836, 837, 839, 843, 847, 848, 849, 854, 859], "expect": [3, 5, 6, 8, 19, 23, 26, 27, 29, 42, 43, 45, 52, 57, 58, 75, 81, 174, 242, 286, 368, 370, 390, 412, 445, 523, 616, 618, 620, 624, 668, 682, 777, 778, 798, 804, 805, 807, 813, 814, 817, 819, 822, 824, 826, 828, 831, 839, 840, 845, 847, 848, 849], "ident": [3, 9, 24, 41, 43, 57, 69, 127, 196, 542, 568, 615, 617, 620, 623, 627, 660, 665, 717, 778, 811, 821, 822, 825, 826, 829, 831, 835, 836, 839, 841, 843, 845], "had": [3, 811, 812, 824, 829, 833, 854, 855], "anoth": [3, 17, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 128, 148, 150, 615, 616, 798, 803, 804, 805, 809, 811, 813, 814, 817, 819, 821, 824, 825, 828, 833, 835, 838, 841, 844, 846, 847, 848, 854, 860], "postprocess": 3, "routin": [3, 812, 824, 825, 831, 839, 854], "feed": [3, 208, 617, 847, 854, 855], "other": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 49, 51, 52, 53, 59, 65, 69, 72, 74, 75, 76, 82, 88, 92, 97, 98, 121, 136, 148, 174, 235, 240, 242, 258, 267, 268, 331, 335, 365, 371, 456, 457, 465, 521, 522, 615, 616, 618, 620, 629, 633, 686, 696, 727, 750, 752, 764, 798, 801, 803, 804, 805, 807, 808, 811, 812, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 835, 837, 838, 839, 840, 841, 844, 847, 848, 850, 852, 853, 854, 860, 861], "carefulli": [3, 273, 618, 777, 825, 852, 857], "rewrit": 3, "easili": [3, 23, 26, 27, 38, 798, 804, 808, 812, 818, 825, 831, 836, 837, 838, 839, 844, 854, 860, 861], "out": [3, 5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 41, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 158, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 415, 416, 417, 418, 419, 420, 423, 424, 426, 427, 428, 430, 431, 432, 433, 435, 439, 441, 442, 443, 444, 446, 447, 453, 455, 456, 457, 459, 460, 462, 463, 464, 465, 466, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 484, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 523, 527, 528, 532, 533, 534, 536, 539, 540, 549, 559, 563, 564, 601, 602, 605, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 734, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 770, 774, 775, 777, 778, 780, 781, 782, 783, 798, 799, 801, 802, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 821, 823, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 843, 844, 845, 847, 848, 854, 861], "quickest": 3, "particular": [3, 26, 27, 263, 618, 763, 804, 805, 807, 809, 812, 813, 815, 822, 824, 825, 828, 829, 850, 854, 860], "hardwar": [3, 40, 97, 101, 798, 804, 831, 844, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860], "again": [3, 5, 20, 21, 29, 30, 31, 32, 623, 671, 805, 808, 809, 810, 811, 815, 817, 819, 824, 825, 828, 829, 831, 836, 838, 839, 844, 845, 859, 860], "speed": [3, 6, 8, 9, 26, 27, 40, 45, 53, 76, 556, 620, 828, 843, 857], "up": [3, 5, 6, 8, 9, 26, 52, 53, 75, 76, 368, 371, 390, 403, 456, 464, 544, 556, 620, 622, 645, 798, 799, 801, 803, 805, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 843, 844, 845, 847, 855, 860, 861], "12": [3, 5, 6, 7, 9, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 49, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 83, 84, 88, 97, 98, 163, 218, 220, 225, 229, 230, 233, 235, 236, 237, 255, 268, 271, 278, 281, 288, 289, 311, 312, 342, 345, 346, 362, 365, 368, 371, 380, 386, 387, 388, 389, 391, 395, 396, 404, 405, 409, 410, 411, 412, 413, 455, 456, 458, 462, 467, 486, 499, 510, 516, 517, 518, 528, 532, 533, 564, 570, 578, 592, 618, 620, 622, 623, 625, 627, 628, 629, 630, 631, 633, 636, 640, 645, 646, 656, 658, 660, 664, 668, 672, 674, 675, 677, 679, 689, 693, 695, 697, 699, 716, 723, 725, 726, 727, 734, 735, 743, 744, 745, 749, 751, 762, 804, 809, 811, 813, 815, 823], "repeat": [3, 4, 20, 30, 52, 53, 59, 75, 76, 82, 368, 371, 380, 396, 401, 461, 509, 534, 620, 625, 626, 698, 702, 703, 791, 805, 808, 809, 815, 816, 824, 828], "previou": [3, 9, 19, 20, 21, 23, 29, 30, 31, 33, 54, 77, 182, 183, 184, 185, 186, 357, 367, 588, 590, 591, 592, 593, 595, 596, 598, 602, 607, 616, 620, 621, 777, 795, 804, 805, 807, 809, 812, 814, 820, 825, 828, 831, 838, 839, 857], "trace": [3, 4, 5, 6, 7, 8, 15, 16, 20, 23, 26, 29, 31, 32, 44, 53, 57, 69, 76, 80, 551, 552, 555, 566, 575, 589, 597, 620, 623, 759, 770, 780, 782, 798, 807, 811, 813, 825, 830, 831, 833, 838, 839, 846, 847, 848, 855, 860], "befor": [3, 4, 5, 18, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 40, 52, 56, 57, 59, 63, 65, 69, 75, 79, 80, 205, 208, 213, 368, 371, 380, 395, 400, 410, 413, 456, 463, 464, 465, 472, 510, 511, 617, 622, 623, 625, 626, 627, 631, 633, 635, 636, 637, 638, 640, 642, 644, 647, 648, 651, 663, 680, 686, 701, 702, 716, 735, 736, 737, 738, 743, 744, 749, 751, 778, 787, 791, 803, 804, 805, 807, 808, 810, 813, 814, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 828, 833, 836, 839, 847, 848, 854], "13": [3, 5, 6, 7, 17, 21, 22, 23, 24, 38, 40, 42, 46, 51, 52, 56, 57, 61, 65, 74, 75, 76, 77, 79, 82, 84, 88, 97, 113, 163, 193, 218, 233, 242, 253, 273, 282, 342, 349, 356, 365, 368, 371, 388, 389, 399, 404, 410, 413, 455, 456, 458, 462, 467, 486, 499, 510, 511, 527, 528, 532, 533, 548, 570, 578, 601, 612, 616, 617, 618, 620, 621, 622, 623, 625, 626, 627, 630, 631, 633, 636, 637, 645, 646, 656, 660, 668, 672, 674, 677, 699, 703, 716, 725, 726, 727, 734, 735, 743, 744, 745, 811, 813, 815, 825], "026875037000081647": 3, "14": [3, 5, 6, 7, 22, 38, 40, 41, 42, 49, 51, 52, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 147, 160, 163, 216, 221, 223, 230, 234, 260, 264, 268, 274, 281, 289, 338, 368, 369, 371, 380, 386, 387, 388, 389, 399, 406, 409, 410, 411, 413, 417, 423, 424, 456, 458, 462, 467, 486, 510, 578, 601, 616, 618, 620, 621, 622, 623, 625, 627, 631, 633, 636, 637, 639, 641, 643, 645, 656, 658, 660, 668, 675, 677, 679, 699, 716, 725, 726, 727, 735, 744, 745, 811, 815, 828], "overrid": [3, 5, 32, 41, 48, 52, 71, 75, 136, 380, 509, 615, 808, 810], "behavior": [3, 5, 52, 63, 235, 242, 268, 277, 381, 520, 567, 590, 618, 620, 631, 735, 736, 737, 738, 803, 810, 811, 812, 813, 824, 825, 826, 828, 831, 833, 839, 851], "prealloc": [3, 5], "75": [3, 5, 38, 51, 52, 74, 75, 76, 79, 84, 114, 132, 221, 223, 235, 237, 248, 309, 341, 342, 362, 365, 410, 519, 534, 547, 578, 612, 615, 618, 620, 623, 627, 629, 636, 661, 668, 712, 727], "memori": [3, 5, 8, 21, 22, 23, 24, 48, 52, 59, 71, 75, 82, 123, 134, 190, 202, 208, 210, 214, 371, 380, 450, 451, 458, 460, 462, 463, 464, 471, 486, 516, 562, 567, 590, 615, 617, 620, 622, 625, 647, 688, 689, 690, 692, 694, 695, 697, 699, 792, 812, 813, 814, 824, 825, 831, 833, 839, 847, 854, 856, 857, 858], "temporari": [3, 5, 576, 598, 620, 792, 813, 830], "fix": [3, 5, 42, 52, 75, 92, 93, 365, 369, 440, 622, 648, 798, 801, 804, 805, 807, 813, 819, 828, 829], "until": [3, 5, 792, 805, 824, 833, 839, 844, 847, 861], "handl": [3, 5, 38, 40, 46, 50, 51, 52, 68, 69, 73, 74, 75, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 188, 189, 190, 191, 192, 196, 201, 202, 210, 214, 220, 232, 257, 259, 273, 279, 280, 285, 286, 290, 294, 295, 297, 360, 371, 455, 481, 612, 617, 618, 623, 633, 677, 749, 751, 774, 782, 799, 806, 811, 812, 813, 819, 820, 821, 823, 824, 825, 826, 827, 828, 830, 831, 837, 851, 861], "o": [3, 5, 39, 40, 41, 42, 44, 559, 620, 622, 648, 798, 804, 806, 812, 833, 840], "environ": [3, 5, 8, 21, 22, 23, 24, 41, 44, 798, 799, 805, 840, 854, 856], "xla_python_client_alloc": [3, 5], "platform": [3, 5, 9, 21, 22, 24, 800, 802, 804, 810, 852, 856, 858], "jit": [3, 6, 8, 26, 29, 833, 839, 847, 854], "img_jax": [3, 5], "device_put": [3, 6], "15": [3, 5, 7, 8, 9, 22, 38, 40, 41, 42, 45, 51, 52, 53, 57, 61, 65, 71, 72, 74, 75, 76, 79, 80, 82, 84, 88, 98, 131, 160, 218, 225, 229, 235, 237, 246, 253, 254, 259, 260, 268, 277, 278, 279, 342, 356, 365, 366, 368, 369, 371, 380, 386, 387, 404, 406, 409, 410, 413, 419, 458, 462, 467, 486, 510, 528, 532, 533, 536, 547, 548, 573, 578, 595, 615, 616, 618, 620, 622, 623, 625, 627, 629, 630, 631, 633, 636, 646, 656, 659, 660, 661, 668, 674, 675, 693, 699, 704, 716, 725, 726, 733, 735, 743, 744, 745, 759, 804, 812, 815, 823, 857], "warm": 3, "_": [3, 6, 8, 9, 26, 39, 40, 51, 52, 69, 74, 75, 77, 93, 150, 238, 240, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 437, 440, 480, 509, 532, 601, 602, 616, 618, 620, 621, 623, 625, 627, 633, 671, 672, 674, 700, 711, 750, 805, 816, 824, 836], "rang": [3, 9, 26, 27, 38, 39, 40, 42, 48, 52, 65, 71, 75, 121, 132, 133, 282, 293, 301, 313, 360, 362, 369, 371, 380, 421, 431, 465, 473, 475, 480, 484, 510, 511, 512, 532, 600, 615, 618, 620, 631, 633, 735, 743, 744, 749, 751, 762, 764, 765, 777, 798, 803, 813, 817, 821, 828, 833, 836, 837, 838, 854, 860], "16": [3, 5, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 97, 98, 163, 229, 258, 278, 285, 339, 342, 346, 365, 368, 371, 380, 386, 387, 389, 395, 399, 400, 404, 405, 410, 413, 445, 462, 510, 516, 533, 536, 558, 578, 579, 611, 616, 618, 620, 621, 622, 623, 625, 627, 629, 630, 633, 644, 646, 652, 656, 659, 660, 668, 670, 674, 699, 712, 725, 726, 727, 734, 744, 745, 762, 765, 798, 805, 813, 815, 836], "0022192720000475674": 3, "64773613": 3, "29496723": 3, "exact": [3, 52, 68, 69, 105, 368, 370, 403, 408, 444, 445, 631, 735, 737, 764, 774, 804, 805, 807, 815, 833], "note": [3, 5, 9, 22, 26, 27, 32, 41, 42, 43, 52, 53, 57, 59, 63, 75, 80, 82, 92, 129, 142, 174, 242, 277, 278, 285, 322, 323, 342, 362, 365, 368, 369, 371, 390, 420, 425, 433, 434, 440, 462, 480, 616, 618, 622, 623, 625, 631, 633, 648, 657, 658, 670, 671, 673, 692, 696, 736, 738, 747, 778, 792, 801, 803, 804, 805, 808, 813, 815, 816, 819, 824, 825, 826, 828, 829, 831], "were": [3, 5, 43, 69, 72, 163, 167, 168, 242, 618, 622, 648, 803, 804, 805, 813, 817, 819, 823, 824, 826, 828, 829, 831, 833, 847, 854, 855, 860], "function": [3, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 161, 162, 163, 166, 167, 168, 170, 174, 175, 192, 194, 195, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 377, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 559, 562, 563, 564, 567, 568, 571, 573, 575, 578, 579, 580, 581, 583, 585, 586, 587, 593, 597, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 706, 708, 710, 711, 712, 714, 715, 716, 717, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 760, 762, 763, 764, 765, 770, 774, 777, 780, 787, 788, 794, 798, 801, 804, 805, 806, 807, 808, 809, 810, 812, 815, 816, 818, 824, 827, 832, 834, 835, 836, 837, 841, 843, 847, 849, 851, 852, 853, 854, 855, 860, 861], "calcul": [3, 9, 40, 51, 52, 53, 58, 65, 69, 74, 75, 76, 80, 81, 88, 98, 215, 216, 217, 218, 219, 220, 221, 222, 223, 232, 233, 235, 238, 239, 240, 256, 257, 258, 259, 260, 261, 266, 267, 268, 273, 280, 281, 282, 284, 285, 286, 292, 301, 329, 330, 342, 352, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 421, 445, 472, 488, 490, 516, 556, 618, 620, 623, 624, 633, 659, 668, 671, 682, 683, 684, 746, 747, 748, 749, 750, 751, 752, 762, 764, 777, 778, 781, 803, 816, 833, 844, 847], "dog": 3, "18": [3, 8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 61, 74, 75, 79, 80, 84, 88, 108, 230, 235, 277, 281, 290, 291, 342, 360, 365, 368, 371, 389, 395, 399, 400, 404, 410, 413, 462, 612, 618, 623, 629, 633, 640, 656, 663, 668, 675, 725, 726, 727, 744, 745, 749, 811, 813, 815], "19": [3, 8, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 61, 74, 75, 79, 80, 84, 221, 230, 258, 268, 285, 368, 369, 371, 380, 388, 389, 400, 404, 410, 413, 419, 424, 462, 510, 618, 623, 627, 629, 632, 656, 664, 677, 715, 725, 726, 727, 742, 815], "006431100999861883": 3, "258": [3, 622, 637, 639], "104": [3, 65, 623, 633, 668, 745], "259": 3, "72447652": 3, "13937832": 3, "05874982": 3, "samoi": 3, "wallabi": 3, "pomeranian": 3, "incorrect": [3, 812], "predict": [3, 5, 7, 9, 40, 41, 42, 43, 52, 58, 75, 81, 370, 441, 444, 447, 624, 682, 683, 684, 798, 813], "down": [3, 19, 29, 43, 52, 75, 368, 371, 403, 464, 804, 828, 841, 854, 860], "itself": [3, 21, 31, 51, 92, 269, 522, 587, 618, 620, 627, 716, 792, 801, 804, 805, 807, 810, 811, 812, 813, 814, 817, 818, 819, 824, 825, 837, 839, 843, 847, 853, 854, 855, 860], "version": [3, 9, 23, 24, 29, 40, 41, 42, 45, 46, 52, 75, 92, 105, 286, 334, 336, 365, 380, 514, 519, 600, 618, 620, 623, 658, 659, 759, 787, 788, 798, 804, 805, 810, 812, 813, 816, 824, 826, 833, 843, 844, 845, 848, 860, 861], "return": [3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 764, 765, 769, 770, 775, 777, 778, 780, 782, 787, 788, 791, 792, 793, 794, 795, 798, 804, 805, 808, 811, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 847, 848, 849, 855], "20": [3, 9, 13, 38, 40, 41, 42, 45, 51, 52, 53, 56, 61, 65, 74, 75, 76, 79, 80, 84, 88, 230, 234, 238, 274, 278, 282, 298, 342, 344, 346, 365, 368, 371, 386, 388, 404, 410, 413, 455, 477, 532, 539, 540, 542, 564, 568, 578, 618, 620, 623, 629, 630, 633, 636, 637, 647, 656, 661, 664, 668, 675, 725, 733, 734, 743, 744, 745, 749, 751, 798, 812, 831, 835], "004749261999904775": 3, "7245": 3, "1394": 3, "0587": 3, "promis": [3, 844], "sourc": [3, 7, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 33, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 759, 760, 762, 763, 764, 766, 767, 768, 769, 770, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 803, 804, 805, 807, 808, 810, 811, 812, 825, 827, 843, 844, 845, 846, 848, 849, 853, 854, 855, 856, 857], "21": [3, 9, 38, 40, 42, 45, 51, 52, 53, 61, 71, 74, 75, 79, 80, 84, 88, 97, 133, 163, 218, 221, 223, 229, 253, 268, 298, 349, 368, 369, 371, 380, 386, 389, 399, 404, 410, 412, 413, 417, 455, 510, 564, 615, 616, 618, 620, 623, 624, 627, 633, 656, 668, 672, 684, 710, 725, 726, 743, 744, 745, 817, 823], "modul": [3, 5, 6, 8, 11, 13, 15, 16, 17, 21, 22, 23, 24, 26, 27, 28, 32, 38, 39, 40, 42, 43, 44, 67, 69, 90, 98, 361, 363, 364, 372, 373, 377, 560, 620, 634, 755, 759, 774, 775, 776, 778, 779, 781, 783, 786, 787, 798, 800, 804, 808, 809, 810, 817, 821, 824, 825, 827, 828, 833, 834, 836, 838, 839, 845, 847, 849, 854, 855, 857], "def": [3, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 51, 74, 117, 219, 526, 544, 614, 620, 626, 627, 702, 703, 710, 791, 798, 801, 803, 804, 807, 808, 811, 813, 814, 815, 817, 818, 820, 821, 823, 824, 825, 826, 828, 829, 831, 833, 835, 836, 837, 838, 847, 848, 849], "__init__": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 69, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 760, 767, 768, 769, 774, 777, 778, 779, 780, 781, 782, 783, 786, 787, 791, 793, 796, 798, 803, 808, 809, 813, 817, 825, 829, 833, 835, 836, 837, 838, 848], "self": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 622, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 782, 791, 798, 805, 808, 811, 817, 825, 826, 833, 835, 836, 837, 838, 848], "num_class": [3, 11, 13, 26, 27, 40, 42, 44, 798, 838, 848], "1000": [3, 6, 7, 11, 26, 27, 40, 41, 42, 43, 45, 48, 71, 133, 615, 798, 836, 848], "v": [3, 4, 5, 15, 16, 19, 26, 27, 29, 32, 33, 38, 41, 42, 52, 56, 64, 71, 75, 79, 87, 133, 233, 238, 240, 281, 369, 371, 421, 429, 436, 437, 461, 618, 622, 626, 632, 648, 651, 702, 703, 741, 759, 778, 779, 780, 781, 782, 783, 798, 800, 804, 805, 806, 810, 818, 833, 836, 837, 838], "none": [3, 5, 6, 8, 9, 26, 38, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 96, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 165, 166, 167, 168, 170, 172, 175, 187, 190, 191, 203, 204, 205, 206, 207, 208, 209, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 555, 560, 563, 564, 565, 566, 567, 569, 570, 571, 572, 574, 575, 576, 578, 579, 581, 583, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 605, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 708, 709, 710, 711, 715, 716, 717, 719, 720, 721, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 759, 760, 762, 763, 764, 765, 770, 774, 775, 777, 778, 779, 780, 781, 782, 783, 786, 787, 790, 792, 798, 801, 804, 807, 808, 809, 811, 812, 813, 814, 815, 817, 818, 820, 821, 824, 825, 826, 828, 829, 831, 833, 835, 837, 838, 847, 848, 849], "_build": [3, 5, 779, 780, 798], "kwarg": [3, 4, 5, 8, 9, 26, 40, 44, 47, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 98, 101, 198, 371, 472, 559, 587, 615, 617, 620, 757, 759, 774, 775, 778, 779, 780, 787, 796, 798, 808, 813, 814, 817, 821, 824, 825, 831, 833, 837, 847, 848, 849], "featur": [3, 8, 9, 11, 13, 15, 17, 26, 27, 40, 44, 52, 75, 368, 382, 384, 391, 392, 393, 777, 778, 798, 803, 804, 805, 808, 809, 812, 813, 820, 829, 831, 836, 839, 848, 854, 855, 856, 860], "sequenti": [3, 5, 7, 24, 26, 27, 42, 798, 810, 811, 837, 848], "conv2d": [3, 5, 7, 24, 26, 27, 42, 45, 56, 79, 622, 639, 778, 798], "64": [3, 5, 7, 38, 40, 41, 42, 45, 51, 52, 56, 74, 75, 76, 79, 80, 84, 88, 98, 159, 229, 239, 273, 282, 283, 339, 365, 368, 389, 399, 532, 533, 579, 607, 616, 618, 620, 621, 622, 623, 627, 633, 637, 639, 641, 643, 644, 665, 668, 678, 712, 716, 726, 745, 749, 798, 804, 813, 836, 837, 859], "2": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 191, 192, 193, 196, 199, 201, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 310, 313, 314, 315, 322, 324, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 384, 386, 387, 388, 389, 390, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 427, 430, 432, 435, 439, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 455, 456, 457, 458, 459, 462, 463, 464, 466, 467, 468, 469, 471, 472, 477, 478, 479, 480, 481, 482, 485, 486, 487, 491, 492, 494, 497, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 559, 561, 563, 564, 568, 577, 578, 579, 580, 581, 583, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 764, 765, 774, 777, 778, 787, 791, 792, 798, 801, 804, 805, 807, 809, 810, 811, 812, 813, 815, 817, 818, 820, 821, 823, 824, 825, 826, 828, 832, 833, 835, 836, 837, 838, 839, 847, 848, 849, 860, 861], "data_format": [3, 42, 52, 56, 75, 79, 368, 374, 383, 386, 387, 388, 391, 392, 393, 404, 405, 406, 407, 409, 488, 489, 490, 493, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 762, 778, 781, 798], "nchw": [3, 42, 52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 493, 622, 635, 638, 639, 642, 643, 644, 778, 798], "relu": [3, 5, 7, 24, 26, 27, 38, 45, 46, 52, 67, 68, 75, 107, 296, 297, 305, 360, 612, 774, 798, 826, 836, 837], "maxpool2d": [3, 5, 7, 40, 778, 798], "192": [3, 42, 762, 791], "384": [3, 77, 601, 621, 627, 704], "avgpool": [3, 7], "adaptiveavgpool2d": [3, 7, 778], "6": [3, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 64, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 93, 97, 98, 105, 107, 112, 117, 122, 123, 130, 131, 134, 135, 138, 144, 148, 149, 150, 158, 160, 168, 214, 215, 217, 218, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 258, 259, 260, 261, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 289, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 306, 307, 313, 324, 329, 330, 332, 334, 342, 343, 345, 346, 347, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 378, 380, 389, 391, 394, 395, 399, 400, 404, 410, 411, 412, 413, 416, 419, 422, 423, 427, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 456, 458, 462, 463, 467, 468, 471, 472, 477, 478, 480, 481, 486, 487, 497, 499, 500, 502, 507, 509, 510, 511, 512, 514, 516, 518, 519, 525, 527, 528, 531, 532, 533, 539, 540, 547, 548, 549, 564, 578, 579, 580, 581, 583, 587, 601, 602, 603, 604, 605, 606, 607, 608, 609, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 651, 653, 654, 655, 656, 658, 659, 660, 663, 664, 665, 668, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 704, 705, 715, 716, 722, 723, 724, 725, 726, 727, 729, 730, 731, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 762, 777, 798, 801, 804, 807, 809, 811, 812, 813, 815, 818, 823, 828, 831, 833, 835, 836, 837], "classifi": [3, 9, 11, 13, 26, 27, 40, 42, 43, 798, 803, 847, 848], "prob": [3, 42, 52, 56, 75, 79, 84, 368, 375, 391, 392, 393, 495, 622, 629, 645, 724, 778, 798], "linear": [3, 7, 13, 25, 26, 27, 38, 39, 40, 42, 45, 52, 53, 56, 68, 75, 76, 79, 105, 107, 109, 110, 113, 290, 293, 297, 299, 300, 301, 305, 346, 360, 365, 368, 371, 380, 403, 435, 472, 519, 536, 559, 612, 620, 622, 627, 648, 672, 711, 762, 764, 765, 777, 778, 798, 811, 816, 821, 822, 824, 825, 828, 831, 833, 836, 837, 838, 848, 852, 853, 854, 857], "4096": 3, "_forward": [3, 5, 6, 8, 26, 27, 38, 39, 42, 798, 816, 833, 836, 837], "x": [3, 5, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 42, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 163, 164, 167, 168, 170, 175, 191, 192, 196, 201, 202, 203, 207, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 269, 270, 272, 273, 274, 275, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 322, 323, 327, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 378, 379, 380, 381, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 415, 417, 418, 420, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 453, 454, 456, 457, 459, 460, 462, 465, 468, 469, 470, 471, 472, 473, 474, 475, 476, 479, 480, 482, 484, 485, 487, 488, 489, 490, 491, 492, 493, 494, 501, 502, 503, 504, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 545, 547, 548, 549, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 568, 569, 570, 573, 576, 577, 578, 579, 580, 581, 583, 585, 586, 587, 599, 600, 602, 603, 604, 606, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 707, 710, 711, 712, 713, 714, 715, 716, 721, 722, 723, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 778, 781, 784, 787, 791, 796, 798, 801, 803, 806, 808, 809, 811, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 828, 829, 831, 833, 835, 836, 837, 838, 847, 848, 849], "reshap": [3, 26, 27, 42, 43, 52, 56, 57, 59, 69, 75, 79, 80, 82, 353, 365, 368, 369, 371, 386, 387, 388, 391, 404, 405, 406, 409, 417, 432, 456, 462, 600, 620, 622, 623, 625, 638, 640, 644, 664, 680, 798, 824, 825, 828, 831, 833, 835, 838], "bidirect": 4, "encod": [4, 11, 13, 26, 27, 40, 42, 53, 58, 76, 81, 536, 620, 624, 682, 798, 836, 844, 848], "mlm": 4, "support": [4, 8, 9, 17, 21, 22, 23, 24, 26, 29, 41, 50, 52, 53, 57, 73, 75, 76, 80, 142, 161, 165, 187, 194, 209, 218, 235, 242, 263, 264, 268, 278, 296, 322, 342, 360, 362, 365, 369, 371, 403, 420, 480, 525, 537, 546, 549, 550, 567, 581, 615, 616, 617, 618, 620, 622, 623, 646, 657, 658, 659, 662, 664, 673, 680, 757, 763, 770, 782, 787, 788, 791, 798, 800, 801, 803, 804, 805, 807, 808, 810, 814, 815, 816, 818, 820, 821, 823, 824, 826, 828, 829, 831, 832, 833, 835, 836, 838, 840, 841, 843, 844, 845, 848, 851, 853, 854, 857, 859, 860, 861], "googl": [4, 21, 22, 23, 24, 40, 41, 42, 44, 812, 844], "type": [4, 6, 11, 13, 17, 23, 26, 27, 32, 40, 41, 42, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 526, 527, 528, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 757, 759, 762, 763, 764, 765, 769, 770, 774, 777, 778, 779, 780, 784, 787, 791, 792, 793, 796, 798, 803, 804, 805, 806, 807, 808, 811, 814, 815, 816, 817, 820, 822, 824, 826, 828, 829, 831, 833, 835, 836, 847, 848, 849, 854, 855, 858], "choos": [4, 40, 42, 50, 62, 63, 73, 209, 235, 242, 263, 264, 268, 329, 330, 365, 371, 617, 618, 630, 631, 633, 734, 735, 736, 737, 738, 746, 747, 748, 750, 762, 798, 803, 804, 805, 822, 828, 834, 838, 847], "librari": [4, 6, 8, 15, 16, 22, 24, 38, 40, 50, 63, 73, 209, 240, 242, 258, 263, 264, 286, 329, 330, 365, 617, 618, 623, 631, 633, 658, 659, 735, 736, 737, 738, 746, 747, 748, 750, 798, 803, 804, 807, 813, 838, 839, 843, 844, 845, 847, 850, 851, 852, 854, 858, 861], "pretrain": [4, 6, 11, 12, 13, 26, 27, 45, 798, 848], "save": [4, 7, 40, 52, 69, 75, 380, 516, 576, 598, 617, 620, 634, 780, 804, 812, 819, 828, 839, 845, 853], "some": [4, 5, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 32, 38, 42, 43, 69, 77, 240, 242, 258, 368, 391, 392, 393, 601, 602, 605, 607, 608, 609, 617, 618, 621, 627, 715, 778, 798, 801, 803, 804, 805, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 835, 836, 837, 839, 840, 841, 844, 845, 847, 848, 850, 851, 853, 854, 855, 860, 861], "mohame54": 4, "automodel": [4, 8, 26], "autotoken": 4, "load": [4, 6, 8, 23, 26, 40, 41, 42, 43, 44, 45, 69, 369, 436, 634, 780, 798, 828, 839, 853, 860], "token": [4, 42], "bert_bas": 4, "from_pretrain": [4, 8, 26, 43, 847, 848], "base": [4, 9, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 100, 102, 133, 142, 174, 238, 239, 256, 257, 258, 259, 273, 313, 322, 324, 331, 334, 339, 346, 362, 365, 368, 369, 378, 410, 413, 436, 501, 569, 579, 591, 615, 616, 618, 620, 623, 625, 631, 633, 664, 688, 735, 736, 737, 738, 745, 760, 763, 764, 767, 768, 769, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 786, 787, 792, 793, 796, 798, 804, 805, 807, 811, 812, 813, 817, 820, 822, 823, 824, 826, 827, 828, 829, 830, 831, 833, 854, 859, 861], "uncas": 4, "eval": [4, 5, 7, 21, 22, 23, 24, 780], "evalu": [4, 51, 52, 69, 74, 75, 238, 240, 256, 257, 258, 259, 263, 270, 272, 279, 283, 316, 347, 358, 359, 362, 367, 369, 370, 371, 432, 445, 469, 611, 618, 621, 627, 634, 714, 715, 753, 754, 779, 780, 805, 811, 813, 821, 822, 854], "bert_token": 4, "sampl": [4, 6, 8, 11, 13, 23, 26, 27, 41, 48, 51, 52, 61, 65, 71, 74, 75, 84, 88, 132, 133, 287, 313, 362, 368, 370, 371, 375, 391, 392, 393, 403, 414, 445, 475, 495, 496, 497, 498, 499, 615, 618, 629, 633, 724, 725, 726, 727, 750, 752, 778, 826, 828], "test": [4, 18, 19, 21, 22, 28, 29, 31, 32, 33, 41, 42, 51, 53, 66, 74, 76, 89, 120, 166, 170, 249, 250, 251, 252, 275, 368, 391, 392, 393, 556, 614, 616, 618, 620, 634, 753, 754, 757, 760, 763, 792, 798, 800, 801, 802, 806, 810, 813, 815, 817, 819, 822, 825, 827, 829, 839, 840, 845, 847, 848, 849, 854], "did": [4, 40, 803, 810, 838, 844, 860], "realli": [4, 38, 804, 811, 818, 839, 847, 859, 860], "like": [4, 6, 8, 18, 19, 20, 26, 28, 29, 30, 31, 32, 33, 43, 45, 48, 51, 52, 59, 71, 74, 75, 79, 82, 87, 133, 151, 174, 219, 239, 245, 248, 261, 279, 335, 339, 351, 365, 368, 369, 370, 371, 378, 380, 410, 412, 420, 442, 451, 452, 461, 462, 501, 502, 519, 615, 616, 618, 623, 625, 629, 632, 657, 692, 727, 740, 792, 798, 801, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 832, 833, 835, 836, 837, 838, 839, 844, 847, 848, 854, 859], "input": [4, 5, 8, 11, 13, 23, 24, 26, 31, 32, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 150, 151, 152, 153, 155, 156, 157, 158, 159, 160, 163, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 189, 191, 192, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 357, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 425, 426, 427, 430, 432, 433, 434, 435, 436, 437, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 455, 456, 457, 458, 460, 462, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 542, 543, 545, 547, 548, 549, 551, 552, 553, 554, 555, 556, 558, 563, 564, 565, 571, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 588, 593, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 710, 711, 712, 713, 715, 716, 717, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 763, 770, 774, 777, 778, 779, 780, 781, 791, 792, 807, 808, 809, 811, 813, 814, 815, 816, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 847, 848, 855, 858], "pad": [4, 7, 40, 42, 52, 56, 59, 75, 79, 82, 93, 95, 368, 371, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 536, 620, 622, 625, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 687, 700, 764, 778, 798], "longest": 4, "return_tensor": [4, 8, 26, 43, 847, 848], "pt": [4, 8, 26, 847], "max_length": [4, 69], "512": [4, 5, 7, 40, 42, 80, 622, 637, 678, 798], "input_id": 4, "101": [4, 9, 41, 622, 623, 627, 646, 661, 710], "1045": 4, "2106": 4, "1005": 4, "1056": 4, "2428": 4, "2066": 4, "2115": 4, "4309": 4, "1012": 4, "102": [4, 9, 52, 75, 84, 389, 725], "token_type_id": 4, "attention_mask": [4, 56, 79, 622, 648], "pooler": 4, "compar": [4, 6, 8, 26, 39, 43, 45, 52, 53, 63, 64, 65, 69, 75, 76, 87, 88, 328, 344, 365, 380, 517, 521, 524, 620, 631, 632, 633, 735, 736, 737, 738, 739, 742, 748, 759, 798, 809, 815, 817, 826, 828, 831, 836, 850, 852, 854, 860, 861], "no_grad": [4, 40, 847], "bert_output": 4, "pooler_output": 4, "ivy_bert": 4, "bert_base_uncas": 4, "ivy_input": 4, "k": [4, 6, 39, 42, 48, 52, 53, 56, 57, 61, 71, 74, 75, 79, 80, 84, 92, 93, 117, 127, 140, 141, 142, 262, 307, 322, 323, 362, 369, 371, 375, 378, 380, 418, 431, 435, 437, 439, 478, 482, 495, 496, 497, 498, 499, 502, 512, 524, 614, 615, 620, 622, 623, 627, 629, 630, 648, 651, 655, 663, 664, 670, 672, 673, 674, 677, 712, 725, 726, 727, 733, 798, 806, 807, 825, 826, 833, 847, 850, 854], "ivy_output": [4, 43], "logits_clos": 4, "allclos": [4, 6, 8, 11, 13, 26, 43, 45, 52, 75, 365], "detach": [4, 6, 8, 11, 13, 26, 823], "rtol": [4, 11, 13, 52, 57, 75, 80, 328, 344, 365, 623, 666, 669, 757, 759, 801, 818, 826], "005": [4, 7, 52, 75, 328, 344, 365, 441], "atol": [4, 6, 8, 26, 52, 57, 75, 80, 328, 344, 365, 623, 666, 757, 759, 801, 818, 826], "equal": [4, 48, 49, 51, 52, 53, 57, 58, 59, 61, 63, 64, 65, 69, 72, 74, 75, 76, 80, 81, 82, 84, 87, 93, 97, 98, 127, 129, 130, 131, 137, 138, 147, 227, 229, 233, 238, 240, 249, 250, 271, 273, 278, 281, 282, 286, 324, 325, 326, 328, 344, 362, 365, 368, 369, 371, 374, 380, 390, 411, 435, 458, 467, 480, 486, 491, 492, 494, 512, 521, 524, 600, 615, 616, 618, 620, 623, 624, 625, 629, 630, 631, 632, 633, 656, 665, 666, 669, 671, 677, 682, 685, 687, 692, 694, 700, 727, 733, 735, 736, 737, 738, 739, 742, 747, 749, 750, 751, 752, 770, 777, 778, 810, 811, 813, 815, 817, 826, 828], "els": [4, 5, 6, 9, 41, 42, 44, 45, 52, 53, 61, 74, 75, 84, 153, 154, 155, 156, 157, 169, 275, 279, 369, 375, 425, 434, 438, 440, 496, 531, 535, 616, 618, 620, 622, 627, 629, 647, 714, 717, 725, 726, 727, 757, 791, 792, 798, 803, 804, 805, 807, 809, 813, 814, 817, 821, 824, 825, 826, 828, 829, 831, 833, 835, 837, 838, 839, 855], "768": 4, "fn": [4, 43, 45, 52, 69, 72, 75, 101, 161, 162, 194, 195, 198, 371, 449, 522, 537, 538, 587, 616, 617, 620, 627, 710, 711, 712, 714, 715, 716, 757, 759, 784, 787, 793, 794, 796, 814, 817, 824, 825, 833, 847], "finish": [4, 15, 26, 27, 38, 41, 798, 799, 803, 804, 806], "2f": [4, 6], "sec": 4, "89": [4, 9, 38, 51, 61, 72, 74, 75, 84, 98, 163, 230, 616, 623, 633, 675, 726, 727, 751], "43": [4, 9, 38, 40, 42, 52, 75, 84, 98, 229, 368, 369, 380, 388, 419, 510, 618, 629, 630, 726, 727, 734], "procedur": [4, 810, 812, 815, 826], "60": [4, 38, 42, 51, 65, 74, 76, 84, 88, 219, 253, 371, 477, 540, 548, 564, 578, 600, 618, 620, 623, 627, 633, 668, 707, 725, 743, 745, 749, 792, 812], "big": [4, 777, 799, 839, 854], "jnp": [4, 18, 23, 26, 27, 28, 29, 32, 38, 40, 44, 798, 813, 814, 817, 820, 824, 829, 833, 838, 848, 849], "config": [4, 5, 6, 8, 9, 20, 23, 26, 27, 40, 41, 43, 69, 627, 717, 798, 804, 807, 810, 812, 819, 826, 836, 847, 855], "jax_enable_x64": [4, 5, 6, 8, 9, 20, 23, 26, 27, 798], "ref": [4, 5, 76, 80, 254, 268, 271, 277, 284, 618, 625, 696, 804, 824], "initi": [4, 26, 27, 43, 52, 56, 65, 69, 75, 79, 88, 98, 369, 380, 425, 434, 440, 517, 518, 622, 633, 647, 748, 775, 778, 779, 780, 782, 783, 798, 805, 809, 813, 814, 818, 826, 828, 833, 844, 847, 848, 849, 854, 860, 861], "fast": [4, 21, 31, 52, 368, 390, 854], "valu": [4, 9, 38, 39, 41, 42, 48, 49, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 95, 97, 98, 100, 113, 117, 118, 120, 121, 127, 130, 131, 132, 133, 136, 142, 147, 164, 168, 174, 207, 208, 215, 216, 217, 218, 220, 222, 223, 224, 231, 235, 236, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 282, 283, 284, 285, 286, 287, 288, 289, 290, 292, 293, 296, 301, 304, 305, 307, 314, 316, 322, 324, 325, 326, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 344, 345, 347, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 379, 380, 390, 403, 410, 411, 414, 418, 421, 425, 429, 434, 436, 438, 440, 441, 443, 444, 445, 446, 455, 461, 466, 472, 477, 479, 480, 481, 482, 485, 488, 490, 495, 496, 498, 499, 505, 507, 510, 511, 512, 515, 516, 517, 518, 519, 525, 527, 528, 529, 531, 536, 539, 540, 542, 547, 548, 549, 556, 563, 564, 568, 569, 570, 573, 581, 586, 591, 592, 595, 598, 599, 600, 601, 602, 603, 607, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 648, 651, 655, 658, 659, 664, 665, 666, 669, 670, 671, 672, 673, 674, 677, 680, 685, 686, 687, 691, 692, 700, 701, 702, 706, 708, 709, 710, 711, 712, 717, 721, 722, 723, 724, 725, 726, 727, 728, 730, 731, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 757, 759, 762, 763, 764, 765, 767, 769, 774, 777, 778, 779, 780, 781, 782, 801, 804, 805, 807, 810, 811, 813, 814, 815, 816, 817, 818, 820, 821, 824, 825, 828, 830, 831, 833, 835, 839, 847, 854, 855], "demo": [5, 6, 7, 8, 9, 27, 34, 38, 42, 798], "milesi": 5, "blob": [5, 40, 42], "2f62e6b1c8e98022a6418d31a76f6abd800e5ae7": 5, "util": [5, 8, 21, 22, 23, 24, 40, 43, 52, 75, 193, 369, 436, 617, 784, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 804, 810, 814, 817, 818, 821, 824, 828, 829, 833, 848, 852, 860, 861], "data_load": 5, "py": [5, 7, 8, 21, 22, 23, 24, 40, 42, 45, 88, 369, 436, 745, 787, 791, 798, 803, 804, 805, 807, 809, 812, 813, 814, 816, 817, 818, 819, 820, 821, 825, 826, 828, 829, 833, 835, 837, 838], "l65": 5, "mask_valu": 5, "pil_img": 5, "scale": [5, 6, 40, 52, 56, 60, 75, 77, 79, 83, 107, 206, 207, 298, 299, 302, 313, 342, 360, 362, 365, 368, 369, 374, 385, 391, 392, 393, 401, 403, 408, 412, 427, 488, 489, 490, 608, 612, 617, 621, 622, 628, 645, 648, 651, 723, 762, 764, 765, 777, 778, 782, 792, 854, 856], "is_mask": 5, "w": [5, 8, 41, 42, 52, 53, 54, 56, 69, 74, 75, 76, 77, 79, 92, 262, 342, 357, 365, 367, 368, 369, 374, 386, 387, 388, 390, 404, 405, 406, 407, 422, 440, 493, 508, 532, 534, 578, 601, 602, 603, 605, 607, 608, 609, 620, 621, 622, 627, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 710, 798, 806, 823, 833, 836, 837, 848], "h": [5, 52, 53, 56, 75, 76, 79, 368, 374, 387, 388, 405, 406, 493, 532, 534, 620, 622, 627, 635, 638, 639, 640, 641, 642, 643, 644, 707, 711, 713, 716, 721, 806, 810, 811, 812, 848, 850], "size": [5, 9, 11, 13, 18, 21, 22, 28, 29, 31, 32, 33, 40, 42, 45, 52, 53, 56, 57, 59, 61, 62, 69, 75, 76, 79, 80, 82, 84, 85, 92, 93, 97, 98, 129, 132, 206, 207, 208, 306, 309, 313, 324, 325, 326, 327, 334, 349, 356, 362, 365, 366, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 385, 386, 387, 403, 404, 405, 407, 408, 413, 414, 421, 424, 434, 440, 442, 456, 458, 470, 480, 482, 489, 490, 493, 497, 502, 514, 515, 516, 517, 518, 519, 558, 563, 615, 617, 620, 622, 623, 625, 629, 630, 634, 648, 651, 653, 656, 660, 664, 668, 670, 673, 679, 688, 693, 694, 695, 724, 730, 733, 753, 754, 762, 764, 765, 778, 792, 798, 824, 826, 828, 831, 836, 847, 849], "neww": 5, "newh": 5, "int": [5, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 101, 108, 112, 113, 122, 123, 127, 129, 130, 131, 132, 133, 136, 140, 141, 142, 149, 156, 159, 160, 163, 170, 185, 199, 200, 201, 208, 209, 218, 225, 226, 227, 228, 229, 230, 242, 245, 269, 273, 278, 284, 287, 294, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 329, 330, 334, 335, 338, 342, 349, 351, 353, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 417, 421, 423, 424, 425, 426, 428, 431, 433, 434, 437, 438, 440, 444, 448, 449, 453, 457, 458, 461, 462, 465, 467, 470, 471, 472, 473, 474, 475, 476, 477, 478, 480, 481, 482, 484, 485, 486, 489, 491, 492, 494, 495, 496, 497, 498, 499, 500, 502, 507, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 522, 532, 533, 534, 536, 539, 540, 543, 544, 558, 561, 563, 578, 579, 580, 584, 600, 601, 602, 603, 604, 607, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 648, 653, 655, 656, 664, 665, 670, 675, 677, 678, 679, 680, 682, 683, 684, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 707, 710, 711, 713, 715, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 733, 735, 737, 739, 741, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 763, 764, 765, 774, 777, 778, 791, 792, 811, 813, 814, 815, 817, 820, 821, 824, 826, 828, 829, 831, 833, 838, 847], "assert": [5, 9, 41, 43, 45, 69, 525, 620, 770, 801, 806, 807, 818, 821, 824, 825, 826, 828, 829, 835, 836], "too": [5, 52, 75, 218, 235, 242, 268, 371, 480, 618, 777, 803, 804, 805, 807, 813, 817, 829, 839], "small": [5, 9, 42, 51, 52, 57, 60, 74, 75, 80, 83, 235, 242, 268, 269, 328, 344, 365, 369, 370, 374, 429, 445, 488, 489, 490, 618, 623, 628, 666, 669, 671, 723, 777, 781, 798, 804, 812, 815, 821, 826, 831, 833, 837, 839, 847, 848, 855], "would": [5, 8, 9, 20, 21, 22, 23, 24, 26, 27, 30, 32, 34, 42, 48, 50, 52, 71, 73, 75, 82, 108, 112, 123, 209, 368, 371, 395, 400, 450, 451, 458, 460, 462, 463, 464, 471, 475, 486, 612, 617, 688, 689, 690, 692, 694, 695, 697, 699, 764, 774, 778, 798, 799, 801, 803, 804, 805, 806, 807, 808, 809, 811, 812, 813, 815, 816, 818, 820, 822, 824, 825, 826, 828, 829, 831, 832, 833, 835, 837, 838, 839, 840, 844, 847, 854, 860], "pixel": [5, 40, 52, 75, 368, 403], "resampl": 5, "nearest": [5, 52, 75, 218, 235, 268, 278, 338, 365, 368, 380, 403, 519, 618, 831], "bicub": [5, 52, 75, 368, 403, 831], "zero": [5, 40, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 66, 71, 72, 74, 75, 77, 79, 80, 84, 85, 88, 89, 93, 107, 109, 110, 111, 113, 124, 125, 127, 129, 134, 136, 137, 138, 140, 141, 144, 147, 148, 216, 217, 218, 220, 221, 222, 223, 224, 227, 229, 230, 232, 233, 234, 235, 237, 240, 241, 242, 249, 250, 251, 252, 258, 263, 264, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 280, 281, 282, 283, 285, 286, 288, 289, 291, 293, 297, 299, 305, 307, 316, 323, 329, 330, 333, 334, 335, 338, 346, 349, 351, 352, 353, 354, 360, 362, 365, 368, 369, 371, 378, 380, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 410, 411, 412, 413, 414, 419, 421, 432, 435, 456, 466, 471, 472, 483, 501, 510, 511, 528, 532, 539, 559, 564, 601, 602, 607, 608, 609, 610, 612, 615, 616, 618, 620, 621, 622, 623, 625, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 642, 644, 645, 646, 648, 651, 652, 654, 658, 659, 661, 662, 663, 664, 665, 666, 667, 669, 671, 677, 679, 680, 687, 688, 689, 690, 692, 693, 700, 723, 725, 726, 727, 730, 731, 732, 733, 735, 736, 737, 738, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 777, 778, 782, 808, 811, 813, 814, 815, 820, 822, 823, 826, 833, 836, 837, 845, 853], "int64": [5, 52, 61, 62, 64, 65, 72, 84, 85, 87, 88, 137, 150, 156, 159, 161, 163, 167, 168, 172, 179, 310, 362, 378, 380, 502, 510, 511, 615, 616, 630, 632, 633, 725, 730, 731, 732, 741, 743, 744, 749, 751, 762, 763, 813, 825, 828, 833], "enumer": [5, 40, 42, 767, 798], "ndim": [5, 52, 57, 62, 75, 80, 85, 97, 101, 369, 371, 433, 434, 440, 450, 451, 452, 465, 473, 475, 484, 600, 620, 623, 630, 670, 673, 733, 811, 821, 828], "newaxi": [5, 613], "transpos": [5, 23, 26, 27, 44, 52, 56, 57, 69, 75, 79, 80, 97, 369, 415, 431, 433, 435, 508, 622, 623, 635, 637, 639, 641, 642, 643, 663, 667, 669, 675, 764, 778, 798, 818, 824, 835, 838, 848], "255": [5, 23, 26, 27, 40, 41, 42, 44, 56, 75, 79, 229, 618, 644, 798, 848], "car": 5, "full_img": 5, "from_numpi": [5, 836], "fals": [5, 6, 7, 8, 13, 17, 26, 29, 40, 41, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 191, 192, 197, 199, 202, 203, 205, 208, 209, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 409, 410, 411, 413, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 428, 429, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 449, 450, 451, 452, 456, 457, 458, 459, 460, 461, 462, 463, 464, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 501, 502, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 542, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 559, 563, 564, 565, 568, 571, 572, 574, 575, 577, 578, 579, 581, 583, 585, 586, 588, 593, 594, 596, 597, 599, 602, 603, 605, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 710, 714, 715, 716, 717, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 760, 762, 763, 764, 765, 770, 774, 775, 778, 779, 780, 782, 784, 787, 791, 792, 793, 796, 798, 801, 804, 807, 809, 812, 813, 814, 815, 817, 818, 824, 825, 826, 828, 830, 831, 833, 836, 837, 838, 847, 848], "permut": [5, 7, 40, 59, 82, 97, 378, 501, 625, 690, 697, 848], "img_numpi": 5, "cpu": [5, 6, 8, 21, 22, 23, 24, 26, 40, 41, 42, 44, 45, 48, 50, 52, 61, 71, 73, 75, 84, 121, 127, 130, 132, 133, 136, 137, 138, 144, 188, 189, 191, 192, 193, 194, 199, 202, 204, 206, 209, 210, 212, 214, 375, 495, 496, 498, 499, 615, 617, 623, 629, 662, 724, 725, 726, 727, 759, 777, 778, 779, 780, 781, 782, 783, 798, 801, 804, 805, 810, 813, 814, 818, 825, 828, 839, 852, 854, 857, 859], "torch_unet": 5, "unet_carvana": 5, "when": [5, 7, 8, 9, 17, 19, 21, 22, 23, 24, 26, 27, 29, 31, 32, 33, 41, 43, 47, 48, 49, 51, 52, 57, 58, 61, 62, 65, 69, 71, 72, 74, 75, 80, 81, 84, 85, 88, 98, 136, 147, 218, 235, 240, 242, 258, 268, 286, 287, 294, 329, 330, 360, 365, 368, 369, 370, 374, 375, 380, 390, 403, 414, 421, 425, 434, 440, 445, 488, 490, 496, 516, 519, 549, 565, 573, 579, 615, 616, 618, 620, 622, 623, 624, 625, 627, 629, 630, 633, 635, 648, 666, 671, 682, 683, 684, 692, 715, 716, 725, 726, 727, 730, 731, 733, 734, 746, 748, 750, 752, 762, 765, 777, 778, 779, 780, 781, 787, 799, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 838, 839, 840, 843, 844, 847, 848, 852, 854, 857, 858, 859, 860], "ivy_unet": 5, "n_channel": 5, "n_class": 5, "forward": [5, 7, 13, 26, 27, 40, 42, 52, 75, 358, 367, 368, 390, 395, 396, 400, 401, 411, 412, 775, 777, 778, 780, 782, 798, 804, 809, 816, 823, 828, 829, 831, 838, 839, 847, 854, 855], "effici": [5, 6, 7, 8, 15, 16, 18, 19, 26, 27, 28, 29, 52, 57, 75, 80, 369, 370, 429, 444, 572, 594, 620, 623, 666, 798, 804, 805, 811, 821, 822, 824, 828, 830, 833, 836, 839, 848, 854, 856, 857], "l62": 5, "mask_to_imag": 5, "ndarrai": [5, 48, 52, 53, 71, 75, 93, 122, 123, 135, 368, 369, 371, 380, 412, 434, 477, 515, 516, 585, 615, 620, 787, 791, 803, 808, 813, 814, 817, 820, 824, 825, 826, 829, 831, 833, 835, 838, 841], "isinst": [5, 9, 24, 26, 27, 817, 825, 828, 829, 837, 838], "len": [5, 9, 40, 42, 48, 52, 57, 75, 80, 134, 310, 319, 320, 362, 368, 369, 380, 401, 412, 423, 426, 434, 440, 519, 615, 623, 658, 678, 798, 811, 812, 817, 824, 825, 828, 835, 838, 847], "uint8": [5, 23, 26, 27, 42, 150, 157, 161, 172, 175, 180, 186, 616, 762, 763, 813, 828], "elif": [5, 6, 812, 817, 824, 825, 826], "bool": [5, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 122, 123, 124, 129, 130, 131, 132, 133, 134, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 177, 183, 187, 191, 192, 194, 195, 197, 199, 202, 203, 208, 209, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 386, 387, 388, 390, 391, 392, 393, 403, 404, 405, 406, 409, 411, 414, 421, 425, 428, 431, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 449, 450, 451, 452, 456, 457, 458, 460, 461, 462, 463, 464, 467, 471, 475, 478, 480, 481, 482, 486, 488, 490, 491, 492, 493, 494, 496, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 559, 563, 564, 568, 577, 578, 579, 581, 583, 585, 586, 599, 602, 603, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 645, 646, 647, 648, 651, 652, 653, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 670, 671, 672, 673, 677, 678, 680, 682, 683, 684, 685, 688, 689, 690, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 704, 705, 710, 711, 712, 714, 715, 716, 721, 722, 724, 725, 726, 727, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 760, 762, 763, 764, 774, 778, 781, 782, 791, 792, 796, 813, 815, 817, 824, 825, 828, 829, 831, 833, 838, 847, 848], "argmax": [5, 41, 42, 43, 62, 85, 371, 477, 630, 798, 825, 847], "fromarrai": [5, 23, 26, 27, 42], "interpol": [5, 40, 52, 75, 346, 365, 368, 380, 519, 622, 648, 831, 854], "mode": [5, 32, 44, 52, 57, 69, 75, 80, 91, 92, 93, 94, 95, 96, 205, 208, 213, 218, 235, 268, 321, 358, 359, 362, 367, 368, 369, 371, 398, 403, 411, 412, 423, 425, 431, 433, 434, 440, 455, 465, 470, 472, 473, 475, 477, 480, 481, 484, 565, 566, 567, 571, 572, 574, 575, 588, 589, 593, 594, 596, 597, 617, 618, 620, 623, 670, 770, 778, 779, 780, 795, 804, 805, 806, 811, 814, 815, 818, 831, 839, 854, 857], "bilinear": [5, 52, 75, 368, 403, 831], "torch_mask": 5, "squeez": [5, 40, 59, 82, 625, 854], "torch_result": 5, "to_numpi": [5, 9, 26, 27, 38, 41, 42, 45, 53, 76, 620, 798, 818, 826, 836], "give": [5, 18, 28, 38, 52, 56, 75, 79, 174, 358, 367, 368, 410, 413, 616, 622, 625, 635, 636, 637, 638, 640, 642, 644, 692, 777, 798, 804, 805, 806, 809, 812, 813, 815, 816, 818, 819, 820, 828, 845, 854, 858], "img_tf": 5, "math": [5, 43, 93, 285, 618, 813, 824, 825, 826, 838, 852], "ve": [5, 9, 15, 24, 26, 61, 84, 629, 724, 803, 804, 805, 818, 828, 831, 832, 835, 841], "lot": [5, 812, 813, 822, 828, 839, 844, 845, 853], "far": [5, 26, 27, 627, 704, 715, 792, 814, 815, 834, 859, 860], "space": [5, 48, 51, 52, 53, 71, 74, 75, 76, 121, 132, 133, 287, 342, 365, 370, 442, 532, 536, 615, 618, 620, 831, 844], "del": [5, 812], "empty_cach": 5, "permute_dim": [5, 59, 82, 625, 818], "usr": [5, 40, 41, 42, 45, 804], "local": [5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 40, 41, 42, 45, 374, 493, 544, 620, 799, 804, 807, 810, 818, 821, 826, 828], "lib": [5, 9, 21, 22, 23, 24, 40, 41, 42, 45], "python3": [5, 7, 21, 22, 23, 24, 26, 40, 42, 45, 798, 804, 805], "dist": [5, 40, 41, 42, 45], "func_wrapp": [5, 46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 612, 618, 774, 814, 825, 830], "242": [5, 75], "userwarn": [5, 7, 8, 21, 22, 23, 24, 45], "creat": [5, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 40, 41, 42, 44, 45, 48, 51, 52, 61, 69, 71, 74, 75, 80, 84, 93, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 269, 306, 307, 317, 319, 321, 322, 362, 368, 369, 371, 375, 386, 387, 388, 409, 425, 434, 440, 448, 456, 472, 477, 495, 496, 497, 498, 499, 567, 583, 600, 611, 615, 618, 620, 621, 629, 668, 724, 725, 726, 727, 729, 759, 770, 775, 777, 778, 779, 780, 781, 782, 783, 799, 804, 805, 808, 809, 810, 812, 813, 814, 817, 821, 822, 824, 825, 826, 828, 831, 833, 834, 837, 840, 841, 844, 847, 848, 849, 854, 855, 860], "mani": [5, 26, 27, 30, 59, 69, 82, 142, 322, 362, 615, 625, 694, 798, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 816, 820, 821, 822, 824, 825, 826, 828, 831, 833, 835, 836, 839, 843, 844, 845, 850, 854, 857, 860, 861], "view": [5, 8, 21, 22, 23, 24, 52, 59, 75, 97, 128, 139, 371, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 486, 542, 615, 620, 625, 688, 689, 690, 692, 694, 695, 697, 699, 804, 805, 817, 854], "lead": [5, 8, 21, 22, 23, 24, 57, 69, 80, 98, 242, 369, 429, 567, 618, 620, 623, 670, 673, 764, 812, 813, 815, 827, 829, 839, 844, 845], "overhead": [5, 8, 19, 21, 22, 23, 24, 26, 27, 29, 839, 847, 857], "perform": [5, 9, 19, 21, 22, 23, 24, 26, 27, 29, 31, 38, 40, 48, 52, 56, 57, 65, 66, 71, 75, 76, 79, 80, 88, 89, 108, 112, 132, 133, 205, 213, 235, 268, 289, 335, 356, 365, 366, 368, 369, 371, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 409, 411, 434, 449, 502, 510, 511, 532, 533, 534, 547, 548, 549, 565, 575, 612, 615, 617, 618, 620, 622, 623, 626, 627, 633, 634, 645, 647, 673, 675, 680, 701, 702, 703, 711, 712, 743, 744, 753, 754, 757, 774, 778, 792, 807, 808, 809, 811, 813, 814, 815, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 836, 839, 845, 847, 848, 851, 854, 855, 856, 857, 858, 859, 861], "inplac": [5, 7, 8, 9, 21, 22, 23, 24, 47, 53, 69, 76, 92, 95, 523, 525, 546, 549, 550, 567, 568, 620, 627, 711, 712, 716, 721, 722, 769, 770, 775, 782, 806, 808, 815, 818, 820, 822, 825, 831, 835, 837], "17": [5, 8, 9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 52, 57, 68, 74, 75, 76, 77, 79, 80, 84, 98, 107, 108, 133, 218, 235, 260, 268, 298, 306, 356, 362, 368, 371, 386, 387, 395, 396, 399, 400, 404, 405, 410, 413, 462, 533, 548, 601, 603, 612, 615, 618, 620, 621, 622, 623, 627, 629, 636, 645, 646, 656, 660, 712, 725, 726, 727, 729, 811], "factor": [5, 9, 52, 54, 56, 57, 75, 77, 79, 80, 91, 92, 93, 94, 95, 206, 207, 208, 368, 369, 374, 401, 412, 425, 426, 434, 437, 439, 440, 493, 601, 602, 607, 608, 617, 621, 622, 623, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 652, 762, 764, 765, 777, 778, 782, 817, 844], "inc": 5, "unetdoubleconv": 5, "down1": 5, "unetdown": 5, "128": [5, 7, 26, 27, 40, 49, 51, 56, 72, 74, 79, 98, 163, 239, 368, 389, 399, 532, 542, 616, 618, 620, 622, 623, 637, 639, 644, 668, 798], "down2": 5, "down3": 5, "down4": 5, "1024": [5, 7, 40, 41, 798], "up1": 5, "unetup": 5, "up2": 5, "up3": 5, "up4": 5, "outc": 5, "unetoutconv": 5, "x1": [5, 17, 26, 27, 45, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 87, 97, 98, 102, 148, 158, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 307, 328, 333, 339, 340, 341, 343, 345, 350, 354, 362, 365, 369, 371, 380, 435, 466, 509, 521, 524, 616, 617, 618, 620, 623, 630, 632, 653, 660, 663, 668, 672, 675, 676, 679, 734, 741, 759, 784, 798, 807, 813, 815, 817, 820, 824, 825, 848, 849], "x2": [5, 17, 26, 27, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 97, 98, 102, 148, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 328, 333, 339, 340, 341, 343, 345, 350, 354, 365, 369, 371, 380, 423, 435, 466, 509, 521, 524, 616, 617, 618, 620, 623, 630, 653, 660, 663, 668, 672, 675, 676, 679, 734, 759, 784, 807, 813, 815, 817, 820, 824, 825], "x3": [5, 49, 53, 148, 521, 616, 620], "x4": 5, "x5": 5, "in_channel": 5, "out_channel": 5, "mid_channel": 5, "double_conv": 5, "with_bia": [5, 778, 798, 837, 848], "batchnorm2d": [5, 7, 781], "downscal": [5, 53, 76, 527, 528, 549, 620], "maxpool": [5, 7], "doubl": 5, "conv": [5, 622, 778, 831], "maxpool_conv": 5, "upscal": 5, "scale_factor": [5, 52, 75, 368, 403, 831], "align_corn": [5, 52, 75, 368, 403, 831], "conv2dtranspos": [5, 778], "valid": [5, 40, 42, 52, 56, 66, 75, 79, 89, 92, 93, 152, 368, 369, 386, 387, 388, 404, 405, 406, 407, 409, 410, 413, 432, 440, 552, 616, 620, 622, 625, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 688, 696, 753, 754, 762, 763, 778, 791, 804, 809, 813, 815, 819, 823, 826, 828, 847, 855], "bhwc": 5, "diff_h": 5, "diff_w": 5, "pad_width": [5, 52, 59, 75, 82, 371, 472, 625, 687, 700], "constant_pad": [5, 59, 82, 625], "concat": [5, 38, 43, 53, 59, 69, 82, 208, 536, 617, 620, 625, 700, 826, 831, 833, 847], "openmim": 6, "mim": 6, "0rc8": 6, "torch": [6, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 43, 44, 45, 48, 53, 57, 67, 76, 80, 124, 162, 189, 190, 204, 206, 211, 278, 329, 330, 365, 525, 549, 581, 615, 616, 617, 618, 620, 623, 626, 673, 702, 703, 759, 770, 775, 787, 798, 801, 804, 805, 807, 808, 809, 810, 812, 813, 814, 817, 818, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 835, 836, 838, 839, 841, 847, 848, 849, 860], "request": [6, 7, 8, 21, 22, 23, 24, 26, 27, 40, 43, 52, 199, 375, 499, 617, 798, 799, 803, 815, 819, 829, 831, 845, 848], "get_model": 6, "list_model": 6, "mmengin": 6, "configdict": 6, "saniti": [6, 8, 9, 26, 825], "checkpoint": [6, 7, 43, 839], "correct": [6, 11, 13, 22, 32, 38, 40, 42, 65, 88, 181, 369, 436, 616, 625, 633, 685, 750, 752, 759, 762, 798, 801, 803, 805, 806, 811, 812, 813, 814, 817, 818, 820, 821, 824, 826, 828, 848], "against": [6, 49, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 148, 267, 286, 328, 331, 334, 344, 365, 380, 515, 516, 517, 518, 519, 556, 616, 618, 620, 623, 630, 663, 664, 666, 669, 730, 828, 833, 839, 843, 854], "zoo": 6, "checkpoint_nam": [6, 8, 26], "convnext": 6, "tiny_32xb128": 6, "noema_in1k": 6, "openmmlab": 6, "dure": [6, 8, 19, 21, 26, 29, 31, 32, 50, 54, 65, 69, 73, 77, 88, 209, 368, 391, 392, 393, 567, 587, 601, 602, 607, 617, 620, 621, 622, 623, 626, 633, 645, 663, 701, 702, 703, 750, 752, 770, 781, 782, 804, 811, 813, 814, 817, 821, 822, 824, 825, 826, 827, 828, 831, 839, 847, 854, 855, 860], "appropri": [6, 17, 21, 22, 24, 26, 27, 53, 62, 67, 85, 90, 218, 235, 242, 268, 328, 344, 365, 618, 630, 730, 798, 803, 804, 805, 817, 822, 828], "get_scal": 6, "cfg": [6, 819], "kei": [6, 19, 20, 26, 27, 42, 44, 47, 52, 56, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 378, 391, 392, 393, 411, 441, 442, 443, 444, 445, 446, 447, 456, 457, 478, 480, 482, 488, 490, 491, 492, 494, 496, 502, 509, 510, 511, 512, 521, 522, 524, 525, 527, 528, 529, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 620, 622, 626, 627, 636, 637, 638, 639, 645, 646, 648, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 701, 702, 707, 713, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 762, 763, 769, 775, 778, 782, 798, 810, 811, 812, 821, 824, 825, 826, 828, 836, 848, 854, 857, 861], "input_shap": [6, 13, 24, 26, 27, 798], "block": [6, 26, 27, 30, 31, 32, 33, 369, 427, 798, 805, 811, 813, 817, 821, 828, 832, 834, 838, 839, 841, 848, 859, 861], "url": [6, 8, 23, 26, 27, 40, 43, 798, 848], "cocodataset": [6, 8, 23, 26, 27, 43, 798, 848], "org": [6, 7, 8, 23, 26, 27, 40, 42, 43, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 480, 509, 601, 602, 615, 616, 618, 621, 623, 625, 633, 671, 672, 700, 750, 798, 816, 848], "val2017": [6, 8, 26, 43], "000000039769": [6, 8, 26, 43], "stream": [6, 8, 23, 26, 27, 40, 43, 50, 73, 209, 617, 798, 848, 858], "_config": 6, "train_pipelin": 6, "tensor_imag": 6, "And": [6, 8, 9, 11, 13, 18, 21, 26, 27, 28, 41, 72, 358, 359, 367, 798, 807, 810, 819, 821, 828, 847], "final": [6, 8, 11, 13, 15, 23, 26, 27, 32, 38, 39, 48, 52, 53, 75, 76, 92, 120, 132, 133, 316, 362, 368, 412, 536, 614, 615, 620, 622, 647, 648, 792, 803, 805, 807, 808, 810, 812, 813, 815, 816, 821, 823, 824, 825, 827, 831, 832, 836, 847, 848, 850, 860], "transpiled_graph": [6, 8, 26], "what": [6, 8, 15, 20, 26, 27, 30, 31, 34, 39, 40, 368, 401, 412, 764, 792, 798, 803, 805, 806, 811, 812, 815, 816, 819, 820, 822, 823, 824, 825, 826, 828, 832, 833, 835, 836, 837, 838, 839, 844, 845, 850, 855, 856, 859], "improv": [6, 8, 9, 26, 29, 805, 813, 820, 821, 831, 833, 841, 845, 847, 852, 854, 856, 857], "For": [6, 7, 8, 9, 17, 19, 26, 27, 29, 32, 34, 48, 52, 57, 63, 75, 80, 121, 134, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 270, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 324, 325, 326, 329, 330, 332, 352, 362, 365, 369, 371, 431, 433, 452, 472, 475, 615, 618, 623, 625, 631, 633, 671, 673, 677, 685, 696, 735, 736, 737, 738, 746, 748, 749, 751, 763, 775, 803, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 824, 825, 826, 827, 828, 829, 831, 833, 835, 836, 837, 838, 839, 840, 843, 844, 845, 847, 851, 852, 855, 860, 861], "compil": [6, 7, 8, 9, 21, 22, 24, 26, 27, 30, 43, 45, 286, 618, 770, 798, 804, 825, 829, 833, 839, 841, 848, 850, 853, 854, 855, 858, 861], "origin": [6, 8, 9, 24, 26, 27, 28, 29, 30, 32, 39, 40, 41, 45, 52, 57, 59, 65, 69, 75, 80, 82, 88, 92, 95, 97, 98, 223, 248, 275, 313, 362, 368, 369, 371, 380, 411, 434, 465, 471, 473, 476, 510, 511, 515, 516, 517, 518, 519, 618, 623, 625, 633, 664, 692, 693, 744, 759, 764, 787, 788, 798, 800, 803, 804, 805, 809, 810, 812, 813, 818, 822, 824, 825, 826, 833, 845, 847, 848, 854, 855], "_f": [6, 8, 26], "comp_model": [6, 8, 26], "equival": [6, 8, 26, 57, 80, 92, 93, 121, 229, 242, 263, 264, 277, 278, 371, 456, 480, 485, 615, 618, 623, 666, 669, 672, 680, 787, 824, 825, 831, 836, 838, 840, 848], "just": [6, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 42, 52, 57, 65, 80, 92, 95, 142, 322, 362, 369, 433, 615, 623, 633, 666, 745, 770, 778, 798, 801, 804, 805, 807, 809, 812, 813, 814, 815, 816, 818, 821, 822, 824, 825, 826, 828, 833, 835, 836, 839, 844, 845, 848, 854, 855, 860], "np_imag": [6, 23, 26, 27], "jax_imag": 6, "hk": [6, 8, 26, 40, 44, 798, 838, 848], "rng_kei": [6, 8, 26, 798, 848], "random": [6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 40, 42, 43, 52, 56, 69, 75, 79, 317, 318, 319, 320, 321, 362, 369, 370, 425, 434, 440, 445, 495, 496, 497, 498, 499, 622, 645, 724, 725, 726, 727, 728, 729, 762, 764, 777, 791, 792, 798, 803, 814, 826, 828, 829, 838, 848, 849, 854], "prngkei": [6, 8, 19, 20, 26, 27, 40, 798, 838, 848], "42": [6, 8, 9, 19, 20, 24, 26, 27, 38, 40, 41, 46, 61, 68, 77, 84, 113, 229, 368, 389, 399, 601, 605, 612, 618, 621, 623, 628, 629, 633, 664, 668, 723, 724, 725, 726, 727, 728, 743, 745, 798, 833, 838, 848], "jax_mlp_forward": 6, "param": [6, 8, 9, 26, 40, 41, 42, 44, 69, 75, 76, 98, 522, 539, 540, 620, 784, 798, 838, 848], "init": [6, 8, 26, 40, 42, 52, 75, 369, 425, 434, 440, 798, 807, 838, 848], "rng": [6, 8, 26, 40, 798, 838, 848], "appli": [6, 8, 21, 22, 23, 24, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 403, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 612, 616, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 631, 633, 635, 636, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 666, 668, 669, 670, 671, 673, 677, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 710, 713, 716, 717, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 764, 765, 774, 778, 781, 798, 803, 804, 805, 808, 811, 813, 814, 815, 816, 817, 819, 820, 821, 822, 824, 825, 828, 829, 831, 835, 836, 837, 838, 839, 847, 848, 855], "both": [6, 7, 8, 9, 11, 13, 21, 23, 26, 27, 31, 32, 39, 41, 48, 51, 52, 53, 56, 57, 71, 74, 75, 76, 79, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 173, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 333, 335, 339, 344, 362, 365, 368, 369, 371, 375, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 466, 472, 480, 483, 495, 509, 512, 539, 543, 545, 547, 556, 586, 610, 611, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 778, 798, 801, 803, 805, 809, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 824, 825, 828, 831, 833, 835, 836, 837, 838, 839, 847, 848, 854, 857, 859, 860, 861], "optim": [6, 8, 9, 17, 21, 22, 24, 26, 27, 40, 42, 43, 45, 52, 54, 75, 77, 306, 362, 370, 444, 445, 523, 609, 620, 621, 626, 701, 702, 703, 777, 792, 798, 813, 824, 831, 834, 836, 838, 845, 848, 852, 853, 854, 855, 856, 857, 858, 861], "each": [6, 8, 9, 19, 20, 21, 26, 27, 29, 30, 31, 33, 40, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 69, 72, 74, 75, 76, 77, 79, 80, 82, 85, 86, 88, 92, 93, 95, 97, 98, 106, 107, 109, 110, 111, 113, 117, 134, 148, 160, 163, 208, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 290, 292, 297, 299, 300, 301, 303, 304, 305, 310, 321, 324, 325, 326, 332, 339, 343, 347, 352, 355, 360, 362, 365, 368, 369, 371, 374, 375, 378, 380, 386, 387, 388, 391, 392, 393, 396, 404, 405, 406, 407, 410, 412, 413, 420, 421, 426, 433, 434, 438, 440, 450, 451, 452, 456, 457, 458, 463, 464, 466, 467, 469, 471, 472, 475, 477, 485, 486, 493, 495, 502, 507, 508, 509, 510, 511, 512, 521, 524, 532, 539, 540, 556, 580, 600, 602, 603, 605, 607, 608, 609, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 625, 627, 629, 630, 631, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 648, 652, 653, 654, 657, 658, 659, 663, 665, 666, 667, 669, 671, 672, 673, 678, 687, 691, 693, 694, 696, 698, 700, 710, 717, 724, 733, 735, 736, 738, 744, 745, 752, 762, 764, 778, 781, 782, 783, 792, 801, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 838, 839, 843, 844, 845, 847, 848, 850, 851, 855, 857, 860], "timeit": [6, 8, 9, 19, 26, 27, 43, 45], "06": [6, 9, 21, 42, 49, 61, 74, 77, 96, 105, 160, 217, 233, 368, 389, 399, 607, 612, 616, 621, 727, 757, 759, 828, 836], "m": [6, 7, 8, 9, 26, 39, 41, 43, 45, 48, 52, 57, 61, 74, 75, 80, 84, 97, 134, 140, 141, 142, 262, 322, 323, 362, 368, 369, 370, 371, 375, 390, 420, 425, 426, 428, 441, 452, 463, 464, 478, 495, 496, 497, 498, 499, 615, 623, 627, 629, 652, 654, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 677, 712, 725, 726, 727, 798, 804, 805, 806, 812, 833], "per": [6, 8, 9, 19, 40, 42, 52, 56, 75, 79, 313, 362, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 433, 479, 622, 636, 638, 639, 640, 641, 644, 648, 778, 805, 812, 822, 825, 836], "loop": [6, 8, 9, 19, 34, 67, 90, 117, 120, 614, 626, 701, 702, 703, 798, 809, 839, 847], "100": [6, 7, 8, 9, 38, 40, 42, 48, 51, 52, 71, 74, 75, 76, 79, 96, 133, 142, 229, 269, 282, 322, 344, 353, 362, 365, 368, 369, 371, 391, 392, 434, 440, 477, 540, 548, 564, 615, 618, 620, 623, 627, 661, 710, 798, 812, 813, 828, 836, 837, 838, 839, 844, 845, 847], "block_until_readi": 6, "08": [6, 52, 65, 75, 84, 221, 328, 344, 365, 368, 370, 389, 399, 445, 618, 726, 727, 752, 757, 762, 819], "\u00b5": [6, 8, 9, 19], "made": [6, 8, 26, 52, 59, 75, 369, 371, 427, 450, 451, 452, 696, 803, 805, 807, 808, 811, 812, 817, 819, 821, 823, 824, 825, 829, 831, 833, 835, 844, 854], "significantli": [6, 8, 26, 52, 57, 75, 80, 369, 438, 623, 673, 812, 843, 852], "line": [6, 8, 9, 15, 16, 19, 20, 23, 26, 27, 29, 30, 41, 42, 285, 618, 798, 804, 807, 808, 812, 814, 815, 817, 825, 828, 831, 834, 835, 836, 837, 845, 848, 857], "even": [6, 23, 26, 27, 52, 75, 92, 235, 268, 273, 278, 371, 380, 472, 509, 618, 804, 805, 807, 809, 812, 813, 814, 816, 820, 821, 824, 825, 826, 831, 835, 836, 837, 838, 839, 844, 845, 860], "better": [6, 9, 29, 38, 44, 45, 803, 806, 825, 826, 829, 831, 832, 835, 836, 837, 845, 857], "v100": 6, "3x": 6, "increas": [6, 8, 9, 19, 26, 29, 52, 57, 59, 75, 80, 82, 95, 371, 380, 472, 512, 623, 625, 678, 687, 700, 764, 813, 817, 825, 829, 831, 843, 847, 854], "execut": [6, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 29, 31, 34, 41, 43, 45, 118, 120, 587, 614, 617, 620, 804, 805, 810, 811, 812, 813, 814, 815, 817, 821, 822, 824, 828, 831, 833, 835, 838, 839, 841, 847, 850, 854, 855, 856, 857, 858, 860], "train2017": [6, 8, 23, 26, 27, 798, 848], "000000283921": [6, 8, 26], "out_torch": [6, 8, 26], "et": [6, 622, 623, 648, 673], "took": [6, 74, 275], "out_jax": [6, 8, 26], "1e": [6, 7, 8, 11, 13, 26, 38, 42, 49, 52, 54, 57, 58, 60, 72, 75, 77, 80, 81, 83, 96, 160, 328, 344, 365, 370, 374, 445, 488, 489, 490, 569, 570, 578, 591, 592, 601, 602, 607, 609, 616, 620, 621, 623, 624, 628, 673, 682, 683, 684, 723, 757, 759, 779, 781, 782, 798, 801, 811, 818, 821, 824, 826, 837, 838], "66m": 6, "53m": 6, "That": [6, 8, 11, 13, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 40, 277, 370, 444, 618, 791, 804, 805, 808, 828, 835, 836, 837, 855], "pretti": [6, 8, 26, 27, 40, 801, 818, 836, 860], "much": [6, 8, 9, 17, 18, 24, 26, 27, 28, 29, 40, 95, 328, 344, 365, 777, 803, 804, 805, 808, 811, 813, 821, 824, 825, 826, 829, 830, 831, 833, 835, 836, 844, 852, 854, 860, 861], "achiev": [6, 8, 9, 26, 798, 812, 813, 821, 822, 828, 831, 836, 838, 841], "solid": [6, 8, 26], "associ": [7, 52, 57, 75, 80, 218, 268, 371, 380, 449, 512, 618, 623, 666, 669, 681, 759, 805, 813, 821, 822, 825, 826, 828, 839], "python": [7, 11, 17, 29, 34, 38, 40, 41, 42, 44, 45, 52, 61, 75, 84, 121, 202, 214, 242, 277, 375, 495, 496, 497, 498, 499, 600, 615, 617, 618, 620, 629, 724, 725, 726, 727, 729, 787, 791, 792, 802, 804, 805, 807, 810, 811, 812, 817, 818, 825, 827, 828, 833, 835, 836, 839, 841, 842, 843, 844, 847, 851, 854, 855, 856, 860, 861], "2023": [7, 8, 21, 22, 23, 24, 40], "02": [7, 8, 40, 48, 53, 54, 60, 61, 74, 77, 84, 133, 220, 221, 260, 368, 389, 399, 400, 578, 579, 601, 602, 607, 615, 618, 620, 621, 624, 628, 629, 682, 723, 726, 727, 826], "52": [7, 9, 38, 51, 74, 76, 77, 84, 223, 233, 235, 380, 510, 532, 533, 548, 601, 618, 620, 621, 622, 623, 633, 646, 668, 727, 745, 791], "00": [7, 9, 40, 42, 45, 52, 53, 57, 75, 76, 80, 240, 306, 337, 362, 368, 389, 395, 399, 400, 536, 579, 618, 620, 623, 624, 659, 670, 682, 762, 819, 828], "resolv": [7, 40, 42, 52, 65, 242, 380, 510, 511, 618, 625, 633, 688, 743, 744, 749, 751, 805, 810, 813, 819, 833], "185": [7, 40, 68], "199": [7, 40, 221, 618], "110": [7, 40], "133": [7, 40, 56, 528, 620, 646], "111": [7, 40, 627, 722], "108": [7, 9, 21, 22, 23, 24, 40, 622, 633, 646, 745], "connect": [7, 40, 778, 798, 800, 804, 810, 827, 837, 838, 844, 852], "443": [7, 40, 280, 618], "sent": [7, 40], "await": [7, 40], "respons": [7, 40, 374, 493, 805, 812, 813], "200": [7, 9, 40, 76, 79, 229, 368, 391, 392, 540, 564, 618, 620, 791, 836], "ok": [7, 40, 804], "length": [7, 40, 41, 48, 52, 58, 59, 69, 75, 81, 82, 92, 93, 98, 121, 129, 134, 308, 311, 312, 327, 335, 362, 365, 368, 369, 371, 375, 378, 389, 390, 395, 396, 399, 400, 401, 411, 412, 414, 426, 433, 472, 481, 497, 502, 600, 615, 620, 622, 623, 624, 625, 631, 648, 673, 674, 682, 692, 735, 762, 778, 828, 836], "10472": 7, "10k": 7, "plain": [7, 40], "tx": 7, "23k": 7, "kb": [7, 40, 42, 45], "57": [7, 9, 38, 40, 51, 52, 74, 75, 193, 216, 217, 220, 221, 223, 233, 234, 274, 290, 291, 360, 617, 618], "mb": [7, 40, 42, 45, 812], "01": [7, 21, 22, 24, 42, 48, 52, 53, 54, 57, 75, 76, 77, 80, 84, 133, 260, 278, 279, 306, 312, 337, 344, 362, 368, 389, 399, 400, 536, 578, 579, 601, 602, 607, 615, 618, 620, 621, 623, 626, 629, 659, 670, 702, 703, 726, 727, 762, 809, 838], "109": [7, 40, 57, 623, 660], "634575": 7, "620k": 7, "jpeg": [7, 41, 42], "619": 7, "70k": 7, "113": 7, "resnet34_weight": 7, "torch_resnet_34": 7, "conv1": 7, "kernel_s": [7, 24, 26, 27, 42, 52, 75, 368, 386, 387, 388, 407, 413, 778, 784], "stride": [7, 52, 56, 75, 76, 79, 97, 368, 371, 386, 387, 388, 404, 405, 406, 407, 409, 410, 413, 448, 620, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 778, 824, 829, 854], "bia": [7, 52, 56, 75, 79, 83, 374, 380, 493, 509, 559, 620, 622, 628, 635, 636, 637, 638, 639, 640, 641, 642, 643, 646, 647, 648, 723, 778, 821, 828, 833, 837], "bn1": 7, "ep": [7, 52, 57, 60, 75, 80, 83, 160, 294, 360, 369, 370, 374, 421, 445, 488, 489, 490, 616, 623, 628, 666, 669, 723, 774, 781], "05": [7, 9, 42, 48, 51, 52, 54, 60, 74, 75, 77, 83, 133, 260, 312, 328, 337, 344, 362, 365, 374, 488, 489, 490, 547, 569, 591, 601, 602, 607, 615, 618, 620, 621, 623, 628, 664, 723, 757, 762, 777, 781, 826, 828], "momentum": [7, 40, 52, 75, 374, 488, 490, 781, 844], "affin": [7, 781], "track_running_stat": [7, 781], "dilat": [7, 44, 52, 56, 75, 79, 368, 371, 404, 405, 406, 409, 410, 413, 472, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 778], "ceil_mod": [7, 52, 75, 368, 386, 387, 388, 404, 405, 406, 409, 778], "layer1": 7, "basicblock": 7, "conv2": 7, "bn2": 7, "layer2": 7, "downsampl": [7, 52, 75, 403], "layer3": 7, "layer4": 7, "output_s": [7, 52, 75, 368, 382, 383, 384, 622, 650, 778, 798, 848], "fc": [7, 13, 40, 798, 837, 848], "in_featur": [7, 56, 79, 622, 646, 828], "out_featur": [7, 56, 79, 622, 646, 828], "resnet_34": 7, "ivy_resnet_34": 7, "34": [7, 9, 38, 40, 74, 75, 76, 84, 163, 233, 260, 281, 368, 380, 410, 516, 532, 533, 616, 618, 620, 622, 623, 629, 646, 665, 726, 727, 814], "333f7ec4": 7, "pth": 7, "root": [7, 8, 21, 22, 23, 24, 40, 41, 42, 45, 51, 74, 282, 618, 800, 803, 804, 805, 810, 818, 825, 836], "cach": [7, 8, 21, 22, 23, 24, 40, 42, 45, 190, 526, 617, 620, 787, 819, 821, 824, 828], "83": [7, 9, 38, 57, 79, 84, 282, 368, 380, 389, 399, 410, 510, 528, 618, 620, 622, 623, 646, 660, 726], "3m": 7, "56": [7, 9, 38, 40, 51, 52, 56, 61, 74, 75, 79, 133, 268, 282, 285, 288, 368, 389, 399, 601, 615, 618, 621, 622, 623, 627, 633, 637, 639, 641, 643, 646, 668, 704, 726, 745, 815], "4mb": 7, "preserv": [7, 8, 21, 22, 23, 24, 52, 53, 54, 69, 75, 76, 77, 98, 368, 369, 371, 380, 403, 434, 450, 451, 452, 463, 464, 483, 516, 549, 610, 620, 621, 625, 689, 762, 827, 828, 838, 839, 848], "multipl": [7, 8, 17, 21, 22, 23, 24, 26, 51, 52, 57, 60, 65, 66, 69, 74, 75, 76, 77, 80, 82, 83, 88, 89, 129, 229, 253, 260, 266, 267, 268, 270, 329, 330, 365, 368, 369, 371, 374, 378, 389, 396, 399, 401, 432, 458, 467, 486, 493, 502, 521, 528, 559, 601, 602, 605, 607, 608, 609, 610, 615, 618, 620, 621, 622, 623, 625, 628, 630, 633, 634, 637, 638, 639, 640, 652, 661, 663, 664, 677, 685, 688, 693, 694, 723, 730, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 778, 792, 798, 803, 805, 808, 809, 811, 815, 817, 819, 821, 824, 825, 826, 828, 831, 833, 839, 845, 847, 852, 853, 854, 861], "machin": [7, 8, 21, 22, 23, 24, 29, 30, 38, 44, 52, 57, 75, 80, 160, 163, 369, 421, 616, 623, 666, 669, 798, 804, 807, 821, 841, 844, 852, 854, 856, 857, 858, 859, 860], "rel": [7, 8, 21, 22, 23, 24, 52, 54, 57, 59, 64, 71, 75, 77, 80, 82, 87, 97, 131, 328, 344, 365, 370, 380, 444, 445, 509, 602, 605, 607, 608, 609, 621, 623, 625, 632, 656, 666, 669, 677, 689, 693, 739, 742, 757, 759, 805, 812, 826, 831, 854, 856], "project": [7, 8, 15, 20, 21, 22, 23, 24, 26, 27, 30, 93, 622, 648, 778, 798, 800, 803, 804, 805, 808, 809, 810, 828, 837, 839, 843, 844, 845, 848, 850, 852, 854, 857, 861], "consist": [7, 8, 9, 21, 22, 23, 24, 26, 27, 65, 69, 235, 242, 268, 368, 369, 411, 420, 618, 623, 633, 657, 658, 745, 779, 780, 807, 808, 812, 813, 819, 824, 833, 843, 855], "ad": [7, 8, 9, 21, 22, 23, 24, 52, 59, 75, 82, 90, 235, 268, 328, 344, 365, 374, 488, 489, 490, 578, 579, 618, 620, 622, 623, 625, 648, 658, 659, 688, 778, 783, 798, 801, 802, 803, 804, 805, 807, 808, 810, 811, 812, 813, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 837, 839, 844, 847, 853, 854], "home": [7, 8, 21, 22, 23, 24, 812], "workspac": [7, 8, 21, 22, 23, 24, 804, 818], "95": [7, 9, 38, 52, 54, 57, 61, 68, 77, 79, 84, 105, 353, 365, 410, 601, 605, 609, 612, 621, 623, 629, 660, 726, 727], "builtin": [7, 804, 835, 837], "callabl": [7, 44, 52, 53, 67, 75, 76, 79, 90, 117, 118, 120, 161, 162, 194, 195, 208, 356, 358, 359, 366, 367, 368, 371, 410, 414, 449, 472, 522, 526, 531, 533, 537, 538, 559, 587, 600, 604, 606, 611, 614, 616, 617, 620, 621, 626, 627, 701, 702, 703, 710, 711, 712, 714, 715, 716, 717, 757, 760, 770, 782, 793, 811, 817, 823, 825, 833, 846, 847, 848, 849], "track": [7, 17, 26, 27, 39, 40, 544, 620, 804, 805, 807, 823, 824, 847, 854], "properli": [7, 804, 806, 817, 819, 825, 828], "might": [7, 32, 53, 93, 174, 531, 616, 620, 801, 803, 804, 805, 812, 813, 815, 818, 819, 822, 825, 828, 829, 831, 833, 835, 836, 841], "_trace_graph": 7, "comparison": [7, 52, 75, 236, 271, 331, 365, 370, 444, 445, 618, 623, 674, 757, 817], "shown": [7, 24, 26, 67, 69, 90, 252, 275, 332, 365, 618, 803, 804, 805, 807, 810, 812, 813, 815, 817, 819, 820, 825, 826, 828, 829, 830, 833, 835, 839], "8507": 7, "1351": 7, "0069": 7, "85072625": 7, "13506091": 7, "00688289": 7, "resnet50_weight": 7, "torch_resnet_50": 7, "imagenet1k_v2": 7, "11ad3fa6": 7, "97": [7, 9, 38, 52, 54, 74, 77, 84, 221, 353, 365, 605, 618, 621, 726], "8m": 7, "8mb": 7, "bottleneck": [7, 843], "conv3": 7, "bn3": 7, "2048": [7, 579, 620], "resnet_50": 7, "ivy_resnet_50": 7, "3429": 7, "0408": 7, "0121": 7, "34288204": 7, "04077014": 7, "01212029": 7, "depend": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 31, 48, 49, 52, 53, 57, 63, 64, 72, 75, 80, 87, 88, 118, 124, 147, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 256, 257, 258, 259, 268, 270, 273, 280, 281, 285, 286, 352, 365, 369, 420, 436, 581, 614, 615, 616, 618, 620, 623, 630, 632, 657, 658, 670, 671, 672, 673, 734, 739, 742, 752, 798, 800, 801, 803, 804, 805, 810, 813, 814, 816, 818, 822, 824, 825, 826, 827, 828, 831, 833, 839, 840, 844, 847, 852, 854, 855], "yet": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 42, 361, 363, 364, 372, 373, 377, 803, 804, 818, 839, 840, 847, 848, 849], "doc": [8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 42, 75, 142, 322, 329, 330, 362, 365, 511, 615, 798, 799, 802, 803, 806, 815, 816, 819, 820, 828, 833, 836, 837, 847, 848, 849], "user": [8, 15, 21, 22, 23, 24, 26, 41, 42, 44, 269, 286, 371, 472, 567, 618, 620, 778, 779, 780, 791, 798, 804, 805, 806, 808, 809, 811, 812, 813, 814, 817, 822, 823, 824, 825, 828, 830, 831, 832, 833, 839, 840, 843, 844, 852, 854, 860, 861], "broken": [8, 21, 22, 23, 24, 850, 854], "permiss": [8, 21, 22, 23, 24, 804, 812], "conflict": [8, 21, 22, 23, 24, 32, 804, 805, 812, 825, 836], "behaviour": [8, 21, 22, 23, 24, 107, 110, 269, 612, 618, 802, 805, 806, 807, 808, 811, 813, 814, 816, 817, 820, 821, 822, 824, 825, 828, 829, 835], "system": [8, 21, 22, 23, 24, 42, 369, 435, 623, 672, 762, 798, 804, 805, 809, 812, 813, 839, 848, 852, 854, 857, 859, 861], "manag": [8, 17, 21, 22, 23, 24, 26, 567, 590, 620, 798, 799, 809, 813, 814, 824, 827, 839, 845, 856, 858], "recommend": [8, 21, 22, 23, 24, 263, 264, 277, 370, 442, 618, 633, 747, 750, 800, 804, 809, 810, 819, 822, 823, 847], "virtual": [8, 21, 22, 23, 24, 805, 825, 844, 857, 858], "instead": [8, 11, 13, 17, 21, 22, 23, 24, 26, 33, 40, 45, 51, 52, 57, 74, 75, 80, 93, 189, 277, 310, 362, 368, 380, 404, 405, 406, 509, 512, 617, 618, 623, 666, 762, 803, 804, 805, 807, 810, 812, 813, 815, 816, 817, 820, 821, 822, 824, 825, 826, 828, 831, 833, 835, 836, 839, 847, 848, 849, 852, 854, 860, 861], "pypa": [8, 21, 22, 23, 24], "io": [8, 21, 22, 23, 24, 41, 44, 804, 812], "venv": [8, 21, 22, 23, 24], "autofeatureextractor": [8, 26], "extractor": [8, 11, 13, 26, 42, 798], "hug": [8, 26, 847], "face": [8, 26, 799, 804, 807, 818, 819, 823, 831, 833, 847, 854, 860], "arch_nam": [8, 26], "microsoft": [8, 26, 844, 847, 848, 854, 859, 861], "50": [8, 9, 26, 27, 38, 42, 52, 65, 74, 75, 76, 234, 274, 350, 365, 368, 369, 371, 396, 419, 427, 477, 534, 540, 547, 548, 564, 578, 618, 620, 623, 627, 630, 633, 661, 668, 679, 705, 707, 733, 745, 762, 765, 823, 835, 847, 848], "feature_extractor": [8, 26], "23": [8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 57, 61, 71, 74, 75, 76, 79, 84, 131, 230, 233, 250, 251, 252, 275, 277, 278, 279, 281, 288, 332, 333, 365, 368, 371, 380, 386, 387, 389, 399, 404, 405, 406, 410, 413, 455, 510, 516, 615, 618, 622, 623, 627, 630, 641, 643, 656, 660, 664, 672, 674, 675, 705, 712, 716, 725, 726, 727, 734, 798, 812, 828, 833], "980130": 8, "e": [8, 26, 43, 44, 48, 52, 57, 61, 63, 64, 65, 67, 74, 75, 80, 84, 87, 88, 90, 92, 93, 97, 124, 133, 134, 137, 138, 142, 146, 175, 188, 215, 216, 217, 221, 223, 224, 227, 229, 231, 235, 236, 238, 241, 242, 248, 249, 256, 257, 258, 259, 266, 267, 268, 269, 271, 275, 277, 278, 281, 282, 286, 295, 322, 329, 330, 362, 365, 368, 369, 370, 371, 375, 380, 381, 386, 387, 390, 404, 405, 406, 407, 411, 423, 426, 432, 445, 480, 495, 496, 497, 498, 499, 510, 511, 520, 613, 615, 616, 617, 618, 622, 623, 625, 627, 629, 631, 632, 633, 648, 653, 658, 659, 663, 664, 666, 669, 672, 673, 674, 677, 680, 688, 696, 707, 711, 712, 713, 716, 721, 722, 725, 726, 727, 735, 736, 737, 738, 739, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 778, 791, 792, 798, 799, 801, 803, 804, 805, 806, 807, 809, 811, 813, 817, 818, 823, 825, 828, 833, 836, 839, 840, 841, 844, 845, 847, 850], "tensorflow": [8, 10, 11, 15, 17, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 44, 51, 52, 53, 74, 75, 142, 189, 219, 322, 362, 369, 421, 581, 615, 617, 620, 757, 770, 787, 798, 801, 802, 803, 804, 805, 807, 812, 813, 814, 818, 820, 824, 825, 826, 828, 829, 831, 833, 838, 839, 841, 844, 845, 848, 849, 852, 855, 857, 858, 860, 861], "xla": [8, 825, 839, 841, 854], "stream_executor": 8, "cuda_dnn": 8, "cc": [8, 21, 22, 24, 41, 818], "9342": 8, "unabl": [8, 805, 831], "regist": [8, 780, 805, 840, 847], "cudnn": 8, "factori": [8, 52, 370, 444, 445, 792], "attempt": [8, 21, 22, 23, 24, 40, 42, 45, 804, 830, 839], "plugin": [8, 804], "been": [8, 11, 13, 21, 23, 26, 27, 52, 53, 61, 75, 76, 84, 191, 278, 371, 479, 532, 533, 534, 617, 618, 620, 629, 724, 791, 792, 803, 805, 807, 809, 811, 812, 813, 814, 816, 817, 820, 821, 824, 828, 833, 835, 839, 840, 847, 854, 861], "980177": 8, "cuda_fft": 8, "609": 8, "cufft": 8, "980207": 8, "cuda_bla": 8, "1518": 8, "cubla": 8, "351203": 8, "tf2tensorrt": 8, "py_util": 8, "38": [8, 9, 22, 38, 40, 42, 45, 49, 52, 74, 75, 84, 160, 285, 350, 365, 368, 380, 387, 406, 409, 410, 510, 616, 618, 623, 665, 762, 815], "trt": 8, "could": [8, 26, 27, 32, 63, 631, 735, 736, 737, 738, 803, 804, 805, 807, 812, 813, 815, 822, 824, 825, 826, 828, 833, 835, 836, 837, 844, 845, 854, 859, 860], "find": [8, 15, 41, 42, 45, 57, 63, 69, 80, 623, 627, 631, 666, 706, 735, 736, 737, 738, 791, 792, 798, 799, 800, 802, 803, 804, 805, 807, 810, 812, 818, 823, 828, 831, 833, 836, 840, 841, 843, 847], "tensorrt": 8, "doe": [8, 9, 17, 21, 22, 23, 24, 26, 39, 41, 51, 52, 53, 59, 69, 74, 75, 82, 92, 142, 269, 271, 279, 322, 362, 369, 370, 380, 381, 420, 444, 445, 515, 516, 520, 549, 615, 618, 620, 623, 625, 657, 694, 757, 792, 801, 803, 805, 806, 809, 812, 813, 815, 816, 818, 819, 820, 821, 824, 825, 826, 828, 831, 833, 835, 836, 839, 841, 844, 847, 850, 854, 855, 861], "placement": [8, 803], "consid": [8, 9, 21, 22, 23, 24, 31, 32, 52, 57, 63, 75, 80, 113, 142, 263, 264, 322, 328, 333, 344, 362, 365, 369, 380, 421, 425, 434, 509, 612, 615, 618, 623, 631, 655, 666, 735, 736, 737, 738, 764, 777, 808, 812, 813, 821, 823, 829, 831, 834, 835, 836, 843, 844, 847, 851, 855, 859, 861], "except": [8, 21, 22, 23, 24, 41, 42, 45, 52, 53, 59, 61, 66, 69, 75, 76, 80, 84, 89, 149, 329, 330, 335, 353, 365, 371, 375, 380, 456, 480, 496, 515, 516, 531, 549, 566, 581, 587, 616, 620, 623, 625, 629, 630, 634, 669, 686, 688, 696, 725, 726, 727, 733, 753, 754, 757, 760, 764, 798, 805, 806, 807, 808, 812, 813, 814, 816, 818, 820, 824, 825, 829, 830, 831, 835, 839], "390": [8, 21, 22, 23, 24], "current": [8, 17, 21, 22, 23, 24, 26, 27, 40, 41, 47, 52, 53, 69, 75, 98, 117, 161, 162, 165, 182, 183, 184, 185, 186, 187, 193, 194, 195, 196, 201, 203, 369, 371, 419, 420, 472, 480, 537, 538, 541, 544, 546, 550, 561, 562, 581, 614, 616, 617, 620, 623, 627, 657, 704, 714, 715, 759, 763, 779, 780, 787, 788, 792, 795, 798, 800, 803, 804, 805, 807, 809, 811, 812, 813, 814, 817, 818, 819, 821, 824, 825, 826, 827, 828, 831, 833, 838, 839, 845, 847, 854, 860, 861], "quietli": [8, 21, 22, 23, 24], "control": [8, 21, 22, 23, 24, 34, 52, 75, 142, 291, 322, 360, 362, 368, 371, 391, 392, 393, 455, 481, 567, 615, 620, 623, 655, 811, 813, 814, 823, 824, 825, 826, 831, 835, 836, 841, 847, 854, 860], "set_inplace_mod": [8, 21, 22, 23, 24, 590, 620], "strict": [8, 21, 22, 23, 24, 567, 590, 620], "rais": [8, 21, 22, 23, 24, 41, 42, 48, 52, 53, 61, 63, 66, 69, 71, 75, 76, 82, 84, 86, 89, 123, 149, 238, 273, 329, 330, 339, 365, 368, 370, 371, 375, 380, 401, 412, 445, 450, 451, 458, 460, 462, 463, 464, 471, 480, 486, 496, 515, 516, 525, 549, 567, 569, 579, 581, 587, 591, 616, 618, 620, 623, 625, 629, 630, 631, 633, 634, 663, 665, 679, 688, 689, 690, 692, 694, 695, 696, 697, 699, 725, 726, 727, 733, 738, 746, 748, 753, 754, 757, 764, 782, 798, 805, 807, 809, 813, 814, 817, 824, 825, 829, 830, 833, 835, 840, 844], "error": [8, 9, 21, 22, 23, 24, 32, 43, 45, 51, 52, 56, 69, 74, 75, 79, 105, 237, 285, 329, 330, 337, 365, 369, 370, 371, 380, 381, 434, 440, 441, 443, 480, 516, 520, 567, 612, 618, 620, 622, 623, 633, 651, 671, 674, 746, 748, 764, 782, 795, 799, 802, 803, 804, 805, 807, 808, 809, 812, 813, 814, 815, 819, 820, 825, 828, 829, 830, 835, 839, 845, 854], "whenev": [8, 21, 22, 23, 24, 778, 805, 809, 812, 813, 817, 824, 827, 828, 830, 836], "inputs_jax": [8, 26], "last_hidden_st": [8, 26], "jax_forward": [8, 26], "jit_appli": 8, "63": [8, 9, 38, 42, 51, 68, 74, 79, 80, 113, 274, 281, 282, 368, 380, 389, 399, 410, 510, 618, 623, 627, 633, 652, 668, 705, 716, 745], "122": [8, 49, 163, 233, 618], "134": [8, 56, 623, 646, 665], "2x": [8, 26], "ipytest": 9, "panda": [9, 40, 42, 844], "matplotlib": [9, 21, 22, 23, 24, 40, 41, 42, 45], "scikit": [9, 369, 436, 844], "learn": [9, 11, 13, 17, 18, 19, 20, 22, 24, 26, 27, 28, 29, 30, 31, 38, 40, 54, 77, 369, 436, 532, 602, 605, 607, 608, 609, 620, 621, 626, 701, 702, 703, 782, 798, 799, 802, 803, 804, 806, 807, 813, 818, 819, 821, 823, 832, 841, 843, 844, 852, 856, 857, 858, 859, 860, 861], "cryptographi": 9, "frontend": [9, 566, 620, 759, 760, 763, 767, 770, 798, 802, 805, 806, 812, 813, 817, 818, 823, 827, 828, 831, 832, 834, 841, 848, 854], "sklearn": 9, "classification_report": 9, "model_select": 9, "train_test_split": 9, "dataset": [9, 26, 69, 798, 836, 847, 848], "load_breast_canc": 9, "pyplot": [9, 40, 41, 42, 45], "plt": [9, 40, 41, 42, 45], "pd": [9, 42], "functool": [9, 40, 817, 825, 835], "autoconfig": 9, "tqdm": [9, 21, 22, 23, 24, 40, 42, 798], "tqdm_notebook": 9, "These": [9, 33, 52, 75, 369, 371, 380, 420, 471, 509, 622, 623, 648, 657, 658, 798, 802, 803, 804, 805, 807, 811, 813, 815, 816, 820, 821, 824, 825, 828, 833, 834, 836, 837, 838, 839, 841, 843, 844, 845, 848, 854, 858, 860, 861], "sole": [9, 38, 820, 829, 853, 854, 855], "verifi": [9, 23, 319, 320, 362, 803, 813, 814, 825, 828, 829], "re": [9, 15, 18, 19, 20, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 43, 45, 52, 53, 62, 75, 85, 95, 208, 313, 362, 369, 371, 439, 473, 474, 532, 617, 620, 623, 625, 630, 675, 693, 732, 734, 799, 800, 803, 804, 805, 806, 807, 810, 813, 818, 823, 824, 825, 826, 827, 829, 831, 835, 838, 839, 842, 843, 844, 854], "test_jax_gpu": 9, "xla_bridg": [9, 40], "get_backend": [9, 821], "test_torch_gpu": 9, "is_avail": 9, "test_xgboost_gpu": 9, "capsi": 9, "load_diabet": 9, "y": [9, 26, 27, 38, 39, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 144, 147, 148, 149, 158, 160, 163, 175, 188, 192, 196, 201, 202, 203, 207, 209, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 328, 329, 330, 336, 343, 344, 345, 346, 347, 352, 354, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 387, 389, 391, 392, 396, 399, 401, 405, 411, 417, 421, 427, 432, 439, 441, 443, 444, 445, 446, 447, 457, 459, 468, 472, 480, 481, 482, 487, 491, 492, 494, 502, 508, 509, 510, 511, 512, 515, 517, 518, 519, 521, 524, 527, 528, 531, 532, 534, 535, 536, 539, 540, 541, 545, 547, 548, 549, 551, 552, 555, 556, 561, 568, 569, 570, 573, 576, 577, 578, 579, 581, 583, 585, 586, 587, 591, 592, 595, 598, 599, 600, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 637, 639, 641, 643, 644, 645, 646, 652, 653, 654, 658, 659, 660, 661, 663, 664, 666, 667, 668, 669, 671, 673, 674, 675, 677, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 704, 707, 710, 711, 713, 721, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 796, 798, 809, 811, 814, 815, 823, 825, 826, 828, 829, 831, 833, 835, 847], "target": [9, 11, 13, 19, 21, 22, 24, 26, 27, 29, 30, 31, 32, 33, 42, 52, 75, 190, 370, 441, 442, 443, 444, 445, 446, 447, 617, 757, 778, 780, 786, 798, 801, 804, 806, 809, 818, 819, 826, 827, 832, 836, 837, 838, 848, 849, 850, 852, 853, 854, 857, 859, 860], "xgb_model": 9, "xgbregressor": 9, "tree_method": 9, "caus": [9, 370, 442, 804, 805, 807, 809, 811, 812, 813, 815, 824, 826, 828, 839], "either": [9, 21, 22, 31, 32, 33, 34, 38, 44, 51, 52, 53, 56, 65, 69, 74, 75, 76, 79, 80, 107, 110, 113, 118, 128, 129, 139, 215, 216, 217, 218, 223, 233, 235, 236, 238, 240, 242, 249, 250, 256, 257, 258, 259, 260, 268, 277, 279, 280, 282, 285, 286, 331, 352, 365, 368, 374, 380, 389, 399, 409, 410, 413, 493, 510, 511, 531, 551, 559, 560, 568, 587, 612, 614, 615, 618, 620, 622, 623, 626, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 648, 663, 668, 671, 675, 701, 702, 703, 743, 744, 749, 751, 764, 778, 779, 780, 787, 800, 803, 804, 805, 809, 810, 811, 813, 814, 815, 816, 817, 819, 821, 824, 825, 826, 827, 828, 831, 833, 836, 839, 840, 848, 854], "fit": [9, 59, 82, 625, 691, 803, 825, 833, 850, 851, 854], "consol": [9, 562, 620, 798, 805, 819, 828, 835, 840], "gpu_hist": 9, "captur": [9, 823, 828, 838, 855], "readouterr": 9, "err": 9, "99": [9, 38, 51, 52, 54, 72, 74, 84, 130, 217, 232, 353, 365, 578, 605, 615, 618, 620, 621, 627, 633, 708, 716, 726, 745], "implement": [9, 17, 18, 26, 28, 32, 40, 43, 49, 50, 52, 63, 64, 72, 73, 75, 80, 87, 92, 147, 161, 162, 175, 194, 195, 209, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 268, 270, 273, 277, 280, 281, 285, 286, 329, 330, 352, 365, 369, 380, 419, 420, 515, 516, 537, 538, 616, 617, 618, 620, 622, 623, 631, 632, 633, 648, 657, 658, 659, 668, 677, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 763, 765, 787, 798, 801, 803, 806, 807, 808, 809, 811, 813, 814, 816, 817, 818, 820, 821, 822, 824, 826, 828, 829, 831, 833, 835, 836, 837, 838, 839, 841, 851, 852, 853, 854, 857, 860, 861], "binari": [9, 21, 22, 24, 52, 53, 56, 58, 79, 81, 225, 228, 230, 265, 285, 370, 444, 447, 618, 622, 624, 645, 648, 682], "tabular": 9, "pulsar": 9, "emploi": [9, 860], "remov": [9, 15, 16, 19, 24, 26, 27, 29, 57, 69, 80, 623, 625, 626, 627, 656, 663, 677, 695, 701, 702, 718, 792, 795, 798, 803, 809, 810, 812, 813, 816, 821, 827, 828, 831, 838, 847, 848, 854], "id": [9, 41, 52, 75, 191, 324, 325, 326, 362, 544, 617, 620, 798, 802, 804, 808, 810, 811, 819, 823, 828, 840], "column": [9, 42, 52, 57, 75, 80, 92, 93, 127, 142, 322, 362, 369, 371, 378, 380, 420, 426, 436, 456, 461, 463, 464, 468, 470, 502, 508, 509, 615, 623, 657, 658, 664, 670, 672, 673, 678, 762, 777], "well": [9, 26, 27, 40, 41, 42, 76, 370, 444, 545, 620, 623, 672, 764, 798, 800, 803, 805, 810, 812, 813, 817, 824, 825, 826, 828, 837, 838, 848, 853, 854, 855, 859], "standard": [9, 51, 57, 60, 61, 65, 74, 83, 84, 88, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 369, 371, 380, 411, 438, 480, 509, 600, 615, 616, 618, 620, 623, 625, 628, 629, 630, 631, 632, 633, 634, 652, 653, 654, 655, 656, 658, 659, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 686, 688, 689, 690, 692, 693, 695, 696, 700, 723, 726, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 764, 777, 781, 791, 792, 798, 803, 806, 807, 808, 811, 813, 816, 820, 824, 827, 828, 829, 839, 842, 848, 850, 852, 853, 856, 857, 859], "while": [9, 26, 27, 34, 52, 56, 69, 75, 79, 92, 93, 98, 120, 136, 174, 242, 243, 263, 264, 340, 365, 368, 369, 371, 412, 432, 474, 475, 508, 614, 615, 616, 618, 622, 631, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 735, 747, 750, 760, 801, 803, 804, 805, 808, 809, 810, 812, 813, 814, 815, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 831, 835, 837, 838, 839, 840, 843, 844, 847, 854, 860, 861], "extra": [9, 27, 69, 98, 117, 600, 614, 620, 808, 813, 815, 822, 824, 825, 826, 831, 833, 847, 848, 851, 856], "dimens": [9, 48, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 95, 97, 98, 101, 108, 112, 136, 140, 141, 310, 321, 323, 324, 325, 326, 329, 330, 334, 335, 342, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 410, 411, 413, 415, 417, 420, 436, 444, 450, 451, 452, 456, 462, 473, 474, 475, 476, 478, 480, 488, 489, 490, 493, 497, 499, 502, 512, 514, 515, 516, 517, 518, 519, 532, 533, 534, 536, 543, 577, 580, 600, 612, 615, 620, 622, 623, 624, 625, 626, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 648, 652, 653, 654, 656, 657, 658, 659, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 677, 679, 680, 683, 684, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 699, 701, 702, 703, 729, 730, 731, 733, 735, 736, 737, 738, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 764, 774, 778, 781, 815, 817, 823, 825, 826, 828, 831, 833, 836], "label": [9, 40, 41, 42, 52, 58, 75, 81, 370, 441, 443, 444, 445, 446, 447, 624, 682, 683, 684, 798, 803, 807, 825, 832, 833, 834, 838, 840, 854], "load_data": 9, "standardscal": 9, "df": [9, 42], "read_csv": [9, 42], "delimit": [9, 836], "drop": [9, 42, 52, 75, 325, 362, 370, 371, 444, 481, 777, 778, 804, 839], "sc": 9, "fit_transform": 9, "prepare_data": 9, "tupl": [9, 44, 47, 48, 49, 51, 52, 53, 56, 57, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 122, 123, 129, 131, 135, 136, 138, 142, 144, 148, 149, 150, 161, 162, 163, 167, 168, 174, 175, 181, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 315, 319, 322, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 341, 342, 343, 344, 348, 349, 350, 351, 352, 354, 355, 356, 357, 362, 365, 367, 368, 369, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 395, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 420, 421, 425, 429, 434, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 453, 456, 457, 467, 472, 478, 480, 481, 482, 485, 488, 490, 491, 492, 493, 494, 496, 497, 499, 500, 501, 509, 510, 511, 512, 514, 515, 516, 517, 518, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 568, 578, 579, 580, 581, 583, 584, 585, 586, 599, 600, 601, 602, 603, 605, 607, 610, 614, 615, 616, 617, 618, 620, 621, 622, 623, 625, 626, 627, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 651, 652, 653, 657, 658, 659, 660, 661, 662, 663, 664, 666, 668, 669, 670, 671, 673, 675, 676, 677, 680, 682, 683, 684, 685, 686, 687, 689, 690, 692, 693, 694, 695, 696, 699, 700, 701, 702, 703, 704, 705, 707, 708, 709, 711, 712, 713, 715, 716, 719, 720, 721, 722, 724, 725, 726, 727, 729, 732, 733, 735, 736, 737, 738, 739, 740, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 763, 764, 777, 778, 780, 791, 792, 808, 813, 820, 821, 824, 826, 828, 833, 836, 837, 839, 847, 848, 849], "expand_dim": [9, 23, 26, 27, 42, 44, 59, 82, 622, 625, 644, 798, 825, 833, 836, 848], "astyp": [9, 11, 13, 18, 40, 41, 42, 49, 56, 72, 79, 616, 622, 638, 640, 641, 644, 798, 813, 824, 825, 831, 849], "csv": [9, 42, 798], "instanc": [9, 17, 23, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 167, 168, 170, 175, 192, 204, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 404, 405, 406, 410, 411, 413, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 574, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 770, 775, 803, 804, 805, 807, 808, 809, 813, 815, 816, 817, 818, 820, 821, 822, 823, 824, 828, 836, 837, 838, 841, 847, 855], "117564": 9, "variou": [9, 20, 30, 32, 38, 798, 803, 804, 805, 807, 812, 813, 816, 817, 820, 822, 823, 825, 826, 827, 828, 840, 850, 852, 853, 854, 857, 860], "structur": [9, 27, 69, 72, 98, 160, 163, 529, 620, 627, 708, 717, 798, 803, 805, 808, 811, 821, 826, 827, 828, 829, 836, 837, 853, 854], "allow": [9, 24, 26, 27, 38, 52, 65, 75, 88, 132, 273, 369, 380, 437, 512, 516, 559, 615, 618, 620, 632, 633, 741, 748, 762, 763, 764, 765, 779, 780, 792, 796, 798, 803, 805, 808, 809, 812, 813, 817, 819, 821, 822, 823, 824, 825, 826, 828, 831, 833, 835, 839, 841, 844, 847, 848, 849, 852, 854, 858, 859], "navig": [9, 801, 804, 805, 806, 818], "choic": [9, 27, 44, 52, 65, 75, 88, 369, 371, 436, 455, 633, 750, 752, 798, 804, 812, 824, 825, 836, 845, 848, 854, 861], "rerun": [9, 40], "most": [9, 17, 26, 27, 69, 71, 92, 95, 136, 369, 420, 572, 594, 615, 620, 623, 657, 658, 795, 798, 802, 803, 804, 808, 811, 812, 813, 814, 818, 820, 821, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 839, 844, 854, 855, 857, 858, 860, 861], "method": [9, 17, 26, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 529, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 615, 616, 618, 620, 621, 623, 624, 627, 630, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 666, 667, 668, 669, 670, 671, 673, 674, 677, 678, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 715, 716, 717, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 759, 770, 776, 777, 778, 779, 780, 803, 805, 807, 808, 812, 813, 814, 815, 816, 820, 828, 829, 833, 834, 837, 838, 839, 847, 848, 849, 855, 861], "signific": [9, 52, 370, 445, 830, 839, 843, 844, 854], "object": [9, 17, 22, 24, 26, 40, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 98, 101, 102, 124, 128, 129, 139, 151, 160, 163, 171, 174, 209, 267, 496, 544, 560, 603, 615, 616, 617, 620, 621, 627, 629, 707, 708, 709, 711, 712, 713, 719, 720, 721, 722, 729, 757, 759, 760, 767, 768, 769, 775, 776, 778, 779, 780, 787, 791, 798, 808, 809, 811, 812, 821, 822, 825, 826, 828, 831, 835, 838, 846, 847, 848, 849, 854, 860], "logist": 9, "booster": 9, "gblinear": 9, "n_estim": 9, "learning_r": 9, "reg_lambda": 9, "reg_alpha": 9, "base_margin": 9, "xgb_cl": 9, "ivy_cl": 9, "n": [9, 38, 41, 42, 43, 45, 48, 51, 52, 56, 57, 59, 61, 62, 65, 66, 74, 75, 79, 80, 82, 84, 85, 88, 89, 92, 97, 134, 140, 141, 142, 215, 285, 287, 322, 323, 335, 362, 365, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 389, 390, 395, 396, 399, 400, 401, 409, 410, 411, 412, 413, 421, 422, 431, 433, 435, 440, 452, 458, 461, 465, 467, 478, 486, 488, 489, 490, 493, 495, 496, 497, 498, 499, 502, 509, 519, 615, 618, 622, 623, 625, 627, 629, 630, 633, 634, 635, 636, 637, 638, 640, 642, 644, 648, 653, 656, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 673, 674, 677, 678, 679, 680, 687, 688, 690, 696, 700, 712, 725, 726, 727, 733, 747, 749, 750, 751, 752, 753, 754, 778, 781, 791, 798, 806, 810, 812, 828, 840, 848], "436": 9, "48": [9, 38, 42, 51, 52, 74, 75, 76, 77, 84, 107, 217, 240, 282, 368, 387, 388, 389, 399, 405, 406, 409, 547, 601, 605, 612, 618, 620, 621, 623, 627, 633, 668, 705, 726, 745], "wai": [9, 15, 16, 17, 20, 22, 26, 30, 32, 38, 92, 95, 798, 800, 802, 804, 807, 808, 809, 810, 812, 813, 814, 824, 825, 826, 828, 831, 835, 836, 837, 838, 839, 840, 843, 844, 849, 856, 860, 861], "t4": 9, "higher": [9, 52, 75, 369, 371, 380, 424, 434, 440, 450, 451, 452, 519, 777, 813, 824, 832, 833, 838, 839, 851, 854, 855, 858, 860, 861], "tier": 9, "than": [9, 26, 27, 29, 32, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 69, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 97, 98, 121, 129, 160, 208, 216, 217, 220, 221, 223, 224, 227, 229, 231, 235, 241, 242, 256, 257, 258, 259, 266, 268, 273, 277, 279, 281, 282, 286, 287, 288, 296, 306, 328, 331, 344, 351, 362, 365, 368, 369, 371, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 415, 417, 434, 440, 463, 464, 510, 511, 512, 551, 552, 555, 572, 594, 615, 616, 617, 618, 620, 622, 623, 625, 629, 630, 631, 633, 651, 653, 663, 664, 665, 666, 669, 680, 685, 689, 695, 727, 733, 736, 737, 738, 743, 744, 749, 750, 751, 752, 778, 792, 801, 805, 807, 811, 812, 813, 815, 817, 818, 824, 825, 826, 828, 829, 830, 831, 833, 836, 837, 838, 839, 840, 844, 851, 852, 853, 854, 860, 861], "reduc": [9, 52, 53, 57, 62, 65, 66, 69, 75, 76, 80, 85, 88, 89, 208, 329, 330, 349, 365, 366, 380, 514, 515, 516, 517, 518, 519, 533, 617, 620, 623, 630, 633, 634, 670, 730, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 791, 792, 812, 817, 825, 831, 833, 835, 847, 852, 856, 857, 858], "lower": [9, 42, 48, 51, 52, 57, 61, 74, 75, 80, 84, 127, 140, 266, 301, 307, 313, 322, 323, 360, 362, 380, 512, 513, 519, 615, 618, 623, 629, 652, 658, 659, 666, 727, 764, 777, 798, 805, 813, 815, 825, 828, 833, 839, 841, 850, 851, 852, 854, 855, 860, 861], "although": [9, 623, 671, 798, 800, 808, 810, 811, 825, 831, 852, 854], "experi": [9, 15, 42, 804, 817, 828, 834, 836, 839], "demonstr": [9, 23, 26, 27, 41, 813, 815, 817, 835], "still": [9, 20, 22, 23, 26, 27, 29, 30, 33, 57, 69, 80, 623, 673, 762, 803, 804, 805, 808, 809, 813, 816, 817, 819, 821, 824, 825, 828, 831, 837, 839, 844, 847, 848, 851, 854, 860], "substanti": [9, 805, 808, 813, 828, 844, 854], "dive": [9, 15, 17, 26, 38, 799, 800, 802, 803, 805, 807, 811, 813, 819, 826, 832, 835, 836, 839, 860], "stuff": 9, "tool": [9, 17, 26, 27, 798, 804, 805, 815, 819, 834, 838, 839, 842, 845, 848, 852, 853, 854, 855, 857, 860, 861], "30": [9, 21, 22, 23, 24, 38, 40, 51, 52, 53, 75, 76, 84, 88, 98, 268, 298, 342, 350, 365, 368, 371, 389, 399, 410, 455, 477, 500, 532, 534, 539, 540, 547, 548, 564, 573, 578, 618, 620, 623, 627, 633, 661, 668, 713, 725, 726, 744, 745, 749, 764, 777, 792, 812], "25": [9, 38, 40, 41, 42, 51, 52, 53, 57, 58, 61, 65, 68, 74, 75, 76, 79, 80, 83, 84, 88, 97, 98, 113, 132, 218, 219, 229, 235, 237, 248, 253, 268, 273, 276, 278, 281, 282, 283, 288, 309, 362, 370, 380, 410, 441, 444, 446, 510, 519, 547, 548, 564, 578, 615, 618, 620, 623, 624, 627, 628, 633, 636, 652, 656, 661, 678, 683, 705, 712, 716, 723, 725, 726, 727, 744, 745, 747, 752, 811, 823], "22": [9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 51, 52, 53, 61, 65, 68, 75, 76, 79, 84, 108, 113, 230, 238, 298, 302, 360, 368, 369, 371, 376, 380, 386, 387, 389, 404, 405, 406, 410, 413, 419, 455, 500, 510, 533, 564, 599, 612, 618, 622, 623, 627, 630, 633, 645, 646, 656, 661, 668, 672, 712, 722, 725, 726, 727, 734, 744, 745, 804, 811, 817], "201": [9, 74, 75, 220, 389, 618], "20x": 9, "24": [9, 19, 38, 40, 51, 52, 57, 65, 74, 75, 76, 79, 80, 84, 97, 230, 238, 253, 255, 268, 278, 279, 282, 342, 345, 365, 368, 380, 386, 388, 389, 399, 404, 405, 406, 410, 413, 510, 532, 533, 618, 620, 623, 627, 633, 636, 656, 664, 668, 705, 716, 725, 726, 727, 743, 745, 759, 817, 836], "ivy_pr": 9, "xgb_pred": 9, "ivyclassifi": 9, "nxgbclassifi": 9, "precis": [9, 52, 57, 75, 80, 160, 248, 268, 275, 282, 339, 365, 369, 380, 421, 509, 572, 594, 616, 618, 620, 623, 658, 659, 664, 671, 673, 674, 680, 770, 812, 825, 830, 831, 858], "recal": 9, "f1": [9, 813], "score": [9, 56, 79, 370, 447, 622, 649, 651, 798], "94": [9, 38, 51, 52, 54, 61, 74, 75, 77, 84, 202, 278, 279, 353, 365, 399, 605, 617, 621, 727], "106597": 9, "33": [9, 38, 40, 41, 51, 61, 65, 74, 75, 76, 77, 79, 221, 222, 229, 278, 368, 369, 371, 380, 387, 409, 410, 437, 455, 510, 528, 578, 605, 618, 620, 621, 622, 623, 627, 633, 645, 646, 668, 722, 725, 745, 752, 762, 765], "10967": 9, "accuraci": [9, 40, 42, 45, 368, 411, 813], "macro": 9, "avg": [9, 368, 386, 388, 409], "96": [9, 38, 52, 54, 74, 75, 76, 84, 232, 253, 285, 353, 365, 368, 389, 532, 533, 605, 618, 620, 621, 623, 633, 668, 727, 745], "67": [9, 38, 51, 52, 53, 57, 74, 75, 76, 79, 84, 97, 233, 238, 278, 279, 281, 288, 298, 302, 360, 380, 410, 510, 532, 533, 578, 604, 606, 618, 620, 621, 623, 660, 727], "73": [9, 38, 51, 80, 282, 380, 510, 623, 629, 652, 726, 828], "92": [9, 38, 42, 52, 53, 84, 353, 365, 599, 609, 621, 623, 654, 726, 727], "28": [9, 24, 26, 27, 38, 40, 42, 45, 51, 52, 56, 60, 74, 75, 76, 79, 80, 84, 88, 234, 237, 258, 274, 368, 369, 389, 399, 419, 516, 547, 601, 618, 620, 621, 622, 623, 628, 633, 637, 639, 641, 643, 644, 646, 668, 723, 725, 726, 727, 745, 749, 798], "27": [9, 38, 40, 45, 51, 52, 57, 61, 74, 75, 79, 80, 84, 88, 229, 230, 233, 273, 281, 282, 339, 365, 368, 389, 399, 548, 618, 620, 623, 627, 633, 663, 668, 678, 705, 712, 726, 745, 749, 762], "852": [9, 622, 646], "449": [9, 528, 620], "47": [9, 38, 42, 51, 52, 57, 61, 74, 75, 76, 77, 79, 84, 224, 282, 368, 380, 387, 405, 406, 510, 532, 533, 605, 618, 620, 621, 622, 623, 629, 646, 660, 726, 727], "29": [9, 38, 40, 42, 45, 57, 74, 76, 77, 79, 84, 223, 380, 410, 510, 532, 533, 603, 607, 618, 620, 621, 623, 660, 725, 726, 727], "82": [9, 38, 40, 45, 46, 51, 77, 84, 108, 221, 380, 510, 601, 621, 726, 727, 801, 818], "68": [9, 38, 42, 45, 51, 84, 108, 130, 223, 368, 389, 399, 612, 615, 618, 623, 628, 679, 723, 726, 727], "nevertheless": 9, "fall": [9, 40, 782, 803, 813, 832], "short": [9, 38, 52, 75, 414, 622, 647, 803, 805, 813, 833, 837], "blaze": 9, "31": [9, 21, 22, 23, 24, 38, 40, 41, 45, 46, 51, 52, 74, 75, 76, 79, 84, 108, 113, 133, 229, 260, 268, 368, 371, 380, 388, 389, 455, 510, 527, 612, 615, 618, 620, 726, 727, 836], "32": [9, 24, 26, 27, 38, 40, 41, 42, 51, 52, 61, 74, 75, 79, 80, 84, 97, 98, 107, 159, 217, 229, 230, 239, 253, 259, 275, 278, 279, 332, 365, 368, 369, 371, 380, 387, 388, 389, 399, 409, 410, 419, 423, 455, 510, 532, 548, 612, 616, 618, 620, 622, 623, 629, 630, 633, 637, 639, 640, 644, 646, 663, 668, 679, 725, 726, 727, 734, 745, 762, 765, 798, 812, 813, 823, 836, 859], "03": [9, 22, 41, 48, 51, 53, 54, 74, 75, 77, 84, 133, 233, 258, 337, 578, 579, 602, 607, 615, 618, 620, 621, 623, 624, 661, 682, 726], "62": [9, 38, 40, 46, 68, 74, 84, 108, 253, 281, 618, 628, 629, 723, 725, 727], "36": [9, 38, 42, 51, 52, 56, 65, 75, 76, 80, 223, 278, 279, 342, 365, 368, 369, 380, 389, 399, 424, 510, 532, 533, 579, 618, 620, 623, 627, 633, 646, 665, 668, 678, 715, 745], "35": [9, 38, 46, 56, 57, 68, 74, 75, 79, 80, 84, 108, 223, 282, 368, 389, 399, 618, 622, 623, 630, 633, 646, 653, 660, 726, 734, 745], "37": [9, 21, 22, 23, 24, 38, 46, 51, 52, 68, 74, 75, 79, 97, 108, 221, 229, 278, 281, 285, 376, 410, 500, 618, 622, 623, 627, 629, 646, 665, 712, 726, 812], "surpass": 9, "remark": [9, 839], "artifici": 9, "simpli": [9, 17, 26, 27, 29, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 618, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 669, 670, 671, 673, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 798, 803, 804, 805, 808, 809, 810, 812, 813, 814, 815, 816, 818, 820, 821, 824, 825, 826, 828, 831, 833, 837, 838, 839, 841, 855, 860], "stack": [9, 19, 21, 22, 23, 24, 29, 38, 42, 52, 57, 59, 69, 75, 80, 82, 97, 140, 141, 323, 362, 369, 371, 420, 456, 457, 459, 468, 487, 566, 575, 597, 615, 620, 623, 625, 627, 654, 656, 657, 658, 659, 661, 663, 665, 666, 667, 669, 670, 671, 673, 674, 677, 704, 714, 715, 778, 798, 802, 807, 824, 833, 850, 852, 859, 860], "x_doubl": 9, "vstack": [9, 52, 75, 371, 468], "y_doubl": 9, "explor": [9, 11, 13, 17, 21, 22, 23, 26, 27, 32, 33, 34, 803, 804, 805, 813, 818, 831, 834, 838, 854, 857], "235128": 9, "41": [9, 21, 22, 23, 24, 38, 40, 45, 51, 52, 57, 74, 75, 76, 79, 80, 108, 222, 230, 237, 268, 282, 368, 369, 376, 380, 387, 405, 410, 429, 500, 510, 527, 528, 612, 618, 620, 623, 633, 652, 660, 751], "315": [9, 274, 618], "40": [9, 38, 40, 42, 52, 53, 74, 75, 76, 84, 88, 98, 229, 233, 253, 282, 342, 365, 368, 371, 387, 389, 399, 405, 477, 532, 534, 539, 540, 564, 578, 600, 603, 618, 620, 621, 623, 627, 633, 661, 668, 713, 726, 745, 749, 798, 812], "879": 9, "65": [9, 38, 40, 42, 45, 74, 77, 84, 229, 268, 528, 547, 601, 618, 620, 621, 623, 633, 668, 726, 727, 745, 812], "380": 9, "seem": [9, 803, 804, 831, 837, 838, 839, 854], "observ": [9, 52, 75, 380, 508, 509, 805, 813, 817, 833, 847, 856], "examin": 9, "600": [9, 42, 76, 79, 368, 391, 392, 540, 812], "plot": [9, 41, 798, 854], "conduct": [9, 858], "num_boosting_round": 9, "300": [9, 74, 76, 79, 278, 368, 391, 392, 540, 564, 618, 620, 623, 661, 828], "400": [9, 76, 79, 368, 391, 392, 540, 564, 620, 623, 661], "500": [9, 52, 75, 76, 79, 368, 369, 391, 392, 440, 540, 620], "ivy_elapsed_tim": 9, "xgb_elapsed_tim": 9, "ivy_tim": 9, "partial": [9, 52, 69, 75, 161, 162, 194, 195, 342, 365, 368, 369, 371, 380, 414, 434, 473, 474, 475, 476, 516, 537, 538, 606, 616, 617, 620, 621, 623, 662, 763, 765, 779, 780, 805, 810, 831], "append": [9, 41, 42, 52, 57, 69, 75, 227, 335, 365, 618, 623, 625, 656, 663, 688, 792, 798, 812, 828, 833, 836], "xgb_time": 9, "fivethirtyeight": 9, "legend": [9, 42, 803], "loc": 9, "best": [9, 40, 559, 620, 792, 798, 799, 801, 802, 803, 804, 805, 806, 812, 813, 817, 818, 827, 828, 829, 840, 857, 858], "xlabel": 9, "ylabel": 9, "obviou": [9, 836, 854], "trend": 9, "longer": [9, 804, 813, 824, 828, 854], "gap": 9, "between": [9, 15, 16, 21, 31, 32, 33, 38, 51, 52, 53, 56, 57, 58, 59, 63, 69, 74, 75, 79, 80, 81, 82, 98, 121, 160, 223, 236, 271, 287, 328, 344, 346, 365, 368, 369, 370, 371, 380, 391, 392, 393, 404, 405, 406, 413, 419, 423, 441, 442, 443, 444, 445, 446, 447, 472, 519, 615, 616, 618, 622, 624, 625, 627, 629, 631, 645, 668, 682, 683, 684, 688, 696, 710, 725, 736, 737, 738, 763, 770, 782, 798, 808, 809, 813, 815, 820, 821, 822, 824, 825, 826, 827, 828, 831, 832, 834, 835, 836, 838, 843, 847, 848, 850, 851, 853, 854, 855, 860], "within": [9, 11, 13, 17, 26, 27, 47, 52, 75, 121, 328, 344, 365, 368, 374, 404, 405, 406, 411, 413, 450, 451, 452, 493, 615, 629, 727, 792, 803, 805, 808, 812, 813, 825, 826, 827, 828, 837, 839, 848, 850, 851, 855], "slightli": [9, 306, 362, 811, 825, 828, 833, 837], "paramet": [9, 13, 24, 26, 27, 40, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 199, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 554, 555, 556, 558, 559, 560, 563, 564, 567, 568, 569, 570, 573, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 618, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 764, 765, 770, 775, 777, 778, 779, 780, 781, 782, 783, 787, 788, 791, 792, 794, 798, 803, 808, 816, 817, 820, 825, 826, 828, 829, 833, 835, 836, 847, 848, 849, 855], "x_train": 9, "y_train": [9, 42, 798], "train_siz": [9, 40], "random_st": [9, 369, 425], "51": [9, 38, 42, 51, 52, 74, 75, 76, 84, 230, 268, 281, 369, 389, 440, 618, 727, 762], "clear": [9, 190, 617, 803, 805, 809, 813, 814, 815, 825, 831, 833, 835, 843, 844, 845, 854], "amount": [9, 58, 81, 210, 617, 624, 682, 683, 684, 792, 804, 812, 814, 826], "widen": 9, "impress": 9, "outcom": [9, 52, 75, 331, 342, 365, 792], "howev": [9, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 57, 80, 242, 285, 286, 371, 374, 480, 488, 490, 567, 618, 620, 623, 671, 673, 787, 803, 804, 807, 808, 809, 811, 813, 814, 815, 816, 817, 819, 820, 821, 824, 825, 826, 828, 831, 833, 835, 836, 837, 838, 839, 844, 847, 853, 854, 860], "tend": 9, "outperform": 9, "proce": [9, 803, 804], "95933": 9, "9874": 9, "105807": 9, "70": [9, 38, 40, 52, 75, 76, 368, 389, 399, 540, 564, 623, 633, 668, 745, 844], "77": [9, 38, 42, 76, 579, 623, 633, 668, 745], "93": [9, 38, 52, 74, 76, 84, 193, 282, 353, 365, 532, 533, 617, 620, 726, 727], "wrap": [9, 17, 19, 26, 27, 29, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 575, 578, 579, 580, 581, 583, 585, 586, 597, 599, 601, 602, 605, 607, 608, 609, 610, 620, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 669, 670, 671, 673, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 759, 798, 806, 807, 808, 809, 811, 812, 813, 814, 816, 817, 820, 821, 824, 825, 828, 833, 835, 838, 839, 841, 847, 848, 850, 854, 855, 860, 861], "balanc": 9, "breast": 9, "cancer": 9, "53": [9, 21, 38, 57, 61, 74, 79, 154, 210, 240, 410, 604, 606, 616, 617, 621, 623, 628, 660, 723, 727], "return_x_i": 9, "x_test": 9, "y_test": 9, "test_siz": [9, 40], "76": [9, 19, 38, 51, 52, 65, 72, 74, 75, 84, 163, 217, 233, 281, 316, 362, 399, 616, 618, 623, 627, 633, 675, 712, 726, 745], "87": [9, 38, 77, 79, 229, 258, 368, 380, 410, 411, 510, 601, 618, 621, 762, 818], "171": [9, 57, 623, 660, 762], "90": [9, 38, 40, 42, 51, 52, 74, 75, 234, 274, 278, 353, 365, 371, 380, 478, 510, 618, 623, 633, 668, 745, 792, 844], "86": [9, 38, 61, 75, 84, 368, 380, 399, 510, 601, 621, 726, 727], "88": [9, 38, 77, 84, 107, 380, 510, 605, 612, 621, 623, 629, 633, 668, 727, 745], "perfectli": [9, 764, 845], "align": [9, 52, 69, 75, 368, 369, 403, 418, 622, 650, 792, 804, 812, 825, 827, 833, 835, 841, 860], "gain": [9, 777, 805, 807, 832, 837, 854], "combin": [9, 32, 52, 69, 75, 98, 368, 380, 401, 412, 509, 537, 538, 620, 623, 653, 663, 805, 808, 811, 812, 813, 815, 817, 821, 828, 838, 854], "build": [10, 14, 15, 17, 24, 26, 27, 30, 31, 32, 33, 38, 40, 45, 63, 69, 98, 631, 735, 736, 737, 738, 778, 779, 780, 798, 799, 804, 806, 812, 813, 821, 823, 832, 834, 837, 838, 839, 841, 844, 848, 852, 854, 856, 859, 860, 861], "timm": [10, 11, 15, 26, 27, 798, 848], "kera": [10, 11, 13, 15, 16, 24, 26, 27, 43, 44, 775, 798, 845, 848, 860], "seen": [11, 13, 18, 24, 26, 369, 375, 426, 497, 544, 620, 787, 812, 813, 815, 817, 825, 828, 833, 835, 836, 843, 844, 860], "veri": [11, 19, 26, 27, 29, 51, 74, 269, 328, 344, 365, 618, 623, 671, 764, 802, 803, 804, 805, 810, 811, 813, 814, 815, 817, 818, 820, 821, 824, 825, 826, 828, 829, 831, 834, 836, 837, 838, 839, 843, 844, 850, 851, 852, 854, 855, 856, 859, 860, 861], "guid": [11, 24, 798, 799, 803, 804, 805, 810, 819, 825, 827, 860], "focu": [11, 24, 803, 823, 852, 853, 856, 861], "more": [11, 14, 15, 17, 18, 19, 22, 24, 26, 27, 28, 29, 38, 40, 41, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 148, 240, 242, 258, 273, 286, 290, 294, 295, 297, 356, 360, 366, 369, 370, 371, 415, 417, 429, 432, 444, 450, 451, 452, 457, 478, 567, 612, 615, 616, 618, 620, 623, 625, 631, 656, 662, 663, 666, 669, 671, 673, 680, 689, 696, 735, 736, 737, 738, 764, 774, 792, 798, 800, 802, 803, 805, 806, 807, 808, 809, 810, 811, 812, 813, 815, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 848, 849, 852, 853, 854, 855, 856, 857, 860, 861], "involv": [11, 14, 15, 22, 24, 49, 72, 175, 218, 235, 242, 268, 273, 616, 618, 792, 799, 803, 806, 812, 813, 815, 826, 831, 838, 844, 854, 860], "develop": [11, 25, 26, 27, 798, 799, 800, 801, 802, 803, 804, 805, 807, 810, 812, 818, 827, 829, 839, 841, 843, 844, 845, 847, 848, 852, 853, 854, 855, 856, 859, 860, 861], "usual": [11, 13, 43, 235, 268, 618, 791, 804, 807, 813, 825, 828, 831], "own": [11, 13, 17, 26, 27, 32, 798, 804, 807, 812, 813, 816, 817, 824, 825, 829, 833, 839, 841, 844, 845, 850, 853, 854, 859, 860], "directli": [11, 13, 17, 20, 24, 26, 27, 30, 368, 369, 403, 426, 627, 716, 798, 803, 804, 805, 807, 808, 811, 812, 813, 814, 816, 819, 821, 822, 824, 825, 826, 829, 830, 833, 835, 837, 838, 839, 840, 845, 847, 848, 849, 858, 859, 860], "case": [11, 13, 19, 21, 26, 27, 29, 30, 31, 32, 40, 47, 48, 52, 53, 59, 65, 69, 71, 75, 76, 82, 92, 93, 98, 123, 134, 161, 162, 189, 194, 195, 202, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 243, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 340, 342, 352, 365, 368, 371, 374, 375, 381, 391, 392, 393, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 477, 478, 486, 488, 490, 497, 520, 537, 538, 542, 549, 563, 564, 565, 615, 616, 617, 618, 620, 623, 625, 627, 633, 671, 677, 688, 689, 690, 692, 694, 695, 697, 699, 707, 713, 746, 747, 748, 749, 750, 751, 752, 762, 763, 782, 792, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 835, 837, 838, 839, 844, 847, 848, 849, 853, 857], "mlp": 11, "mixer": 11, "onli": [11, 13, 26, 27, 32, 38, 40, 42, 44, 47, 48, 51, 52, 57, 59, 61, 69, 71, 74, 75, 80, 82, 84, 92, 95, 97, 113, 133, 173, 174, 203, 263, 264, 269, 275, 306, 336, 342, 362, 365, 368, 369, 371, 375, 380, 390, 403, 421, 426, 438, 440, 450, 451, 452, 462, 495, 496, 512, 526, 612, 615, 616, 617, 618, 620, 622, 623, 625, 627, 629, 630, 632, 633, 648, 663, 670, 673, 674, 689, 692, 704, 705, 711, 712, 714, 715, 716, 721, 722, 725, 726, 727, 730, 731, 741, 747, 750, 760, 762, 763, 765, 778, 782, 791, 798, 799, 800, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 820, 821, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 843, 847, 848, 853, 854, 855, 860, 861], "retriev": [11, 13, 17, 522, 544, 569, 620, 805, 825], "mlp_encod": [11, 26, 27, 798, 848], "create_model": [11, 26, 27, 798, 848], "mixer_b16_224": [11, 26, 27, 798, 848], "nois": [11, 13, 26, 27, 798, 847, 848], "randn": [11, 13, 26, 27, 798, 848], "tf_mlp_encod": [11, 26, 27], "output_torch": [11, 13], "output_tf": [11, 13], "constant": [11, 13, 18, 21, 22, 28, 31, 33, 38, 52, 59, 60, 75, 82, 83, 92, 93, 316, 362, 370, 371, 444, 445, 472, 625, 627, 628, 687, 710, 723, 777, 781, 798, 821, 826, 829, 837, 838, 839, 847, 849], "output_dens": [11, 26, 27, 798], "layer": [11, 13, 17, 23, 24, 26, 27, 38, 43, 52, 60, 75, 83, 628, 647, 648, 723, 775, 777, 779, 780, 781, 782, 783, 798, 816, 825, 829, 831, 833, 834, 837, 843, 848, 852, 854, 858, 861], "dens": [11, 24, 26, 27, 310, 362, 778, 798], "unit": [11, 26, 27, 52, 68, 75, 92, 93, 105, 107, 108, 109, 110, 111, 112, 113, 290, 291, 293, 297, 299, 300, 303, 304, 305, 360, 491, 492, 612, 798, 804, 807, 813, 825, 826, 828, 839, 855, 858], "activ": [11, 24, 26, 27, 52, 53, 56, 67, 75, 79, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 581, 622, 648, 651, 777, 778, 798, 803, 804, 805, 813, 819, 829, 830, 837, 848, 854, 857], "mention": [11, 13, 26, 27, 32, 803, 804, 805, 808, 815, 820, 821, 824, 825, 828, 831, 844, 849, 854], "basic": [11, 13, 17, 20, 24, 26, 27, 30, 33, 371, 479, 798, 799, 803, 815, 828], "fulli": [11, 13, 15, 16, 19, 24, 26, 27, 40, 52, 75, 380, 516, 778, 798, 808, 813, 820, 823, 831, 833, 834, 835, 836, 837, 838, 839, 845, 849, 852, 853, 854, 860, 861], "trainabl": [11, 13, 17, 23, 24, 26, 27, 44, 775, 779, 780, 783, 798, 816, 834, 836, 837, 848, 849], "fine": [11, 13, 26, 27, 804, 805, 813, 815, 825, 835, 838, 860], "tune": [11, 13, 26, 27, 859, 860], "train": [11, 13, 24, 26, 27, 43, 52, 54, 56, 75, 77, 79, 95, 368, 369, 374, 391, 392, 393, 437, 488, 490, 601, 602, 607, 621, 622, 645, 648, 651, 777, 778, 779, 780, 781, 798, 811, 814, 821, 836, 837, 838, 839, 845, 848, 852, 853, 858, 860, 861], "ground": [11, 13, 370, 441, 757, 759, 770, 801, 818, 825, 828, 843], "ret": [11, 13, 26, 27, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 417, 418, 419, 420, 422, 427, 430, 432, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 478, 480, 481, 482, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 558, 559, 560, 561, 563, 564, 568, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 710, 711, 712, 713, 714, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 765, 775, 780, 782, 787, 792, 794, 798, 813, 814, 816, 817, 823, 824, 825, 826, 829, 833, 838, 848], "op": [11, 17, 38, 774, 787, 829, 833, 839], "eagertensor": [11, 17, 38, 787, 826], "readi": [11, 13, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 803, 804], "deepmind": [12, 845], "perceiverio": [12, 845], "backbon": [12, 40, 798, 833, 836], "TO": [12, 14, 25], "replac": [12, 14, 25, 41, 51, 52, 53, 59, 61, 69, 74, 75, 76, 82, 84, 127, 269, 304, 307, 360, 362, 371, 477, 480, 563, 564, 568, 615, 618, 620, 625, 629, 685, 724, 762, 805, 810, 811, 813, 814, 822, 825, 828, 835, 838, 839, 844, 848, 861], "efficientnet": 13, "include_top": [13, 798], "eff_encod": [13, 798], "applic": [13, 15, 40, 42, 45, 52, 56, 75, 79, 95, 369, 440, 622, 623, 627, 633, 648, 651, 677, 710, 711, 712, 716, 717, 749, 751, 798, 804, 812, 813, 814, 822, 837, 851, 852, 854, 856, 858, 860], "efficientnet_v2": [13, 798], "efficientnetv2b0": [13, 798], "data": [13, 21, 22, 23, 24, 27, 32, 40, 42, 45, 46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 87, 88, 89, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 147, 149, 150, 152, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 176, 177, 178, 179, 181, 187, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 294, 295, 296, 297, 306, 307, 308, 309, 310, 311, 312, 323, 324, 325, 326, 327, 329, 330, 331, 347, 352, 360, 362, 365, 368, 369, 371, 375, 379, 380, 383, 391, 392, 393, 409, 411, 418, 420, 438, 455, 477, 480, 481, 483, 495, 496, 497, 498, 499, 505, 509, 510, 511, 515, 518, 519, 536, 549, 551, 552, 555, 581, 612, 615, 617, 618, 620, 622, 623, 625, 627, 629, 630, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 645, 646, 652, 653, 654, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 686, 689, 690, 692, 693, 695, 696, 700, 708, 725, 726, 727, 729, 730, 731, 733, 734, 739, 741, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 760, 762, 763, 764, 765, 770, 774, 777, 778, 779, 780, 784, 792, 798, 804, 806, 807, 808, 809, 810, 811, 814, 816, 820, 821, 822, 824, 826, 829, 831, 833, 835, 841, 842, 844, 854, 855, 856, 858, 859, 860], "storag": [13, 40, 41, 836, 844], "googleapi": [13, 40, 41], "efficientnetv2": 13, "b0_notop": 13, "h5": [13, 69], "24274472": 13, "0u": 13, "torch_eff_encod": [13, 798], "1280": [13, 532, 620, 798], "state": [14, 25, 40, 56, 79, 95, 182, 183, 184, 185, 186, 268, 588, 590, 593, 595, 596, 616, 618, 620, 622, 647, 760, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 798, 801, 804, 810, 813, 814, 816, 817, 818, 819, 820, 825, 828, 832, 833, 834, 836, 844, 848, 860, 861], "api": [14, 19, 24, 25, 29, 42, 44, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 173, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 480, 509, 615, 616, 618, 623, 625, 630, 631, 632, 633, 634, 652, 653, 654, 655, 656, 658, 659, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 686, 688, 689, 690, 692, 693, 695, 696, 700, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 798, 801, 804, 805, 806, 808, 810, 813, 814, 815, 816, 817, 818, 820, 822, 824, 825, 826, 828, 831, 832, 834, 836, 839, 841, 842, 843, 850, 852, 854, 856, 859, 861], "welcom": [15, 41, 798, 799, 804, 805, 827], "goal": [15, 40, 242, 618, 798, 803, 844, 854, 860], "provid": [15, 17, 21, 24, 26, 27, 31, 32, 38, 44, 48, 52, 53, 57, 59, 62, 65, 66, 69, 71, 75, 76, 80, 82, 85, 88, 89, 117, 134, 136, 153, 154, 155, 156, 157, 165, 175, 187, 191, 287, 368, 369, 371, 374, 380, 403, 411, 414, 419, 423, 434, 435, 439, 440, 456, 458, 467, 486, 488, 490, 519, 531, 563, 564, 614, 615, 616, 617, 618, 620, 622, 623, 625, 627, 630, 633, 634, 648, 665, 668, 679, 688, 689, 696, 708, 730, 750, 752, 753, 754, 763, 778, 782, 787, 788, 798, 803, 804, 805, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 823, 824, 825, 826, 828, 829, 831, 835, 837, 839, 843, 847, 848, 849, 852, 853, 854, 855, 856, 857, 858, 861], "varieti": [15, 807, 812, 813, 814, 828, 830, 850, 852, 856, 857, 860, 861], "organ": [15, 808, 811, 821, 825, 827, 829, 841, 844], "main": [15, 27, 48, 52, 57, 75, 80, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 418, 461, 615, 623, 655, 656, 677, 798, 803, 804, 805, 807, 810, 811, 818, 822, 824, 852, 854, 855, 860], "exactli": [15, 19, 29, 38, 39, 43, 285, 618, 803, 811, 812, 813, 814, 815, 817, 828, 831, 843, 845], "rush": [15, 845], "jump": [15, 826], "straight": [15, 798, 812, 825, 828, 835], "quickstart": 15, "introduct": [15, 17, 24, 26, 27, 854], "capabl": [15, 23, 27, 828, 831], "point": [15, 24, 49, 51, 52, 57, 61, 63, 65, 72, 74, 75, 80, 84, 88, 121, 122, 123, 125, 127, 130, 137, 138, 143, 147, 160, 164, 168, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 251, 256, 257, 258, 259, 260, 268, 270, 271, 273, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 306, 307, 309, 329, 330, 346, 347, 350, 352, 362, 365, 368, 369, 370, 375, 380, 383, 391, 392, 393, 411, 420, 438, 441, 495, 496, 497, 498, 499, 509, 510, 511, 519, 613, 615, 616, 618, 623, 629, 630, 631, 632, 633, 652, 654, 657, 658, 659, 661, 664, 665, 666, 669, 670, 671, 672, 673, 674, 675, 677, 680, 726, 727, 733, 735, 736, 737, 738, 741, 743, 744, 746, 747, 748, 749, 750, 751, 752, 787, 788, 798, 801, 803, 804, 805, 807, 808, 810, 812, 813, 815, 816, 818, 820, 824, 825, 828, 829, 831, 833, 835, 836, 845, 847, 860], "those": [15, 39, 40, 57, 59, 69, 75, 80, 82, 121, 174, 235, 268, 481, 600, 615, 616, 618, 620, 623, 625, 627, 630, 670, 673, 685, 706, 733, 803, 804, 805, 808, 811, 812, 813, 822, 824, 825, 826, 828, 831, 843, 851], "who": [15, 806, 817, 832, 839, 854, 856], "deeper": [15, 17, 27, 47, 627, 715, 716, 805, 806, 828, 832, 843], "showcas": [15, 798], "real": [15, 23, 51, 52, 65, 74, 75, 88, 97, 107, 110, 113, 137, 138, 215, 216, 217, 218, 220, 221, 222, 223, 224, 233, 235, 236, 238, 240, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 268, 270, 271, 273, 277, 278, 279, 281, 282, 283, 284, 285, 286, 288, 289, 329, 330, 336, 337, 347, 365, 368, 369, 390, 411, 412, 420, 421, 612, 615, 618, 623, 630, 633, 657, 658, 659, 664, 671, 673, 674, 677, 680, 733, 746, 748, 749, 750, 751, 811, 856], "world": [15, 23, 805, 856], "whether": [15, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 93, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 120, 122, 123, 129, 131, 136, 138, 144, 147, 148, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 165, 166, 167, 168, 170, 171, 172, 173, 175, 187, 191, 192, 194, 195, 197, 199, 202, 203, 205, 208, 209, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 390, 391, 392, 393, 409, 411, 414, 429, 435, 440, 441, 442, 443, 444, 445, 446, 447, 449, 450, 451, 452, 456, 457, 458, 460, 462, 463, 464, 467, 471, 478, 480, 481, 482, 486, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 559, 563, 564, 565, 566, 568, 571, 572, 574, 575, 577, 578, 579, 581, 583, 585, 586, 593, 594, 597, 599, 602, 603, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 633, 634, 636, 637, 638, 639, 645, 646, 647, 648, 651, 652, 653, 658, 659, 660, 661, 662, 663, 664, 666, 668, 670, 671, 672, 677, 682, 683, 684, 685, 688, 689, 690, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 704, 705, 710, 711, 712, 714, 715, 716, 717, 721, 722, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 757, 759, 762, 774, 775, 778, 779, 780, 781, 782, 791, 798, 799, 803, 804, 808, 811, 813, 815, 820, 824, 825, 828, 830, 831, 847, 848], "beginn": [15, 799, 854], "advanc": [15, 38, 804, 853], "got": [15, 38, 817], "cover": [15, 26, 52, 75, 368, 404, 405, 406, 803, 807, 808, 810, 813, 815, 816, 821, 822, 828, 831, 832], "write": [15, 16, 26, 27, 38, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 329, 330, 331, 332, 333, 334, 335, 337, 338, 339, 340, 341, 343, 345, 346, 347, 348, 351, 352, 353, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 415, 417, 418, 426, 427, 430, 431, 432, 433, 439, 441, 442, 443, 444, 446, 447, 456, 457, 460, 461, 462, 463, 464, 465, 466, 469, 470, 471, 473, 474, 475, 476, 478, 479, 480, 481, 482, 484, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 527, 528, 532, 533, 534, 539, 540, 549, 563, 564, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 669, 670, 672, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 723, 724, 725, 726, 727, 729, 731, 732, 734, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 760, 798, 802, 803, 805, 806, 807, 809, 810, 812, 813, 815, 816, 817, 821, 824, 826, 829, 833, 835, 838, 845, 854, 861], "familiar": [15, 16, 17, 798, 803, 804], "concept": [15, 16, 17], "agnost": [15, 16, 17, 18, 26, 27, 28, 32, 38, 798, 808, 813, 820, 833, 835, 838, 839, 860, 861], "unifi": [15, 16, 17, 19, 20, 26, 29, 30, 34, 41, 69, 208, 617, 806, 807, 808, 812, 813, 817, 822, 823, 825, 831, 833, 839, 842, 844, 846, 848, 850, 851, 852, 854, 858, 861], "alongsid": [15, 16, 17, 18, 28, 622, 648, 844], "turn": [15, 16, 19, 29, 56, 79, 92, 93, 391, 392, 393, 622, 645, 778, 804, 810, 811, 814, 815, 825, 828, 845], "wrapper": [15, 16, 19, 770, 808, 810, 811, 813, 817, 821, 824, 825, 835, 841, 850, 854], "unus": [15, 16, 19, 815, 824], "part": [15, 16, 19, 48, 51, 52, 74, 75, 80, 97, 107, 110, 113, 140, 141, 142, 248, 252, 275, 322, 323, 348, 362, 365, 368, 369, 371, 380, 411, 421, 472, 519, 612, 615, 618, 623, 658, 659, 759, 798, 803, 804, 805, 807, 810, 813, 819, 821, 824, 825, 828, 829, 831, 833, 834, 838, 839, 847, 848, 849, 852, 854, 859, 860, 861], "lazi": [15, 16, 19, 22, 29, 32, 33, 44], "eager": [15, 16, 19, 22, 24, 29, 32, 33, 44, 811, 839, 854], "understand": [15, 16, 17, 21, 38, 44, 801, 802, 803, 804, 805, 806, 807, 810, 815, 816, 820, 826, 827, 832, 845, 850, 860], "decor": [15, 16, 21, 23, 24, 32, 44, 526, 620, 762, 764, 770, 801, 807, 808, 811, 813, 814, 818, 821, 824, 825, 826, 831], "kornia": [15, 16, 23, 26, 27, 40, 44, 798, 848], "roundup": 17, "over": [17, 24, 27, 29, 40, 52, 57, 65, 66, 67, 72, 75, 79, 80, 88, 89, 90, 92, 117, 314, 315, 329, 330, 342, 349, 362, 365, 368, 369, 371, 378, 380, 382, 383, 384, 387, 396, 401, 405, 409, 410, 411, 412, 413, 433, 449, 462, 477, 480, 481, 502, 512, 518, 567, 600, 614, 620, 623, 628, 629, 633, 634, 653, 664, 675, 677, 679, 680, 723, 727, 746, 747, 748, 749, 750, 751, 752, 753, 754, 778, 781, 787, 791, 798, 804, 805, 809, 815, 816, 823, 824, 826, 829, 833, 835, 839, 843, 845, 852, 854], "indep": [17, 26], "futur": [17, 24, 26, 40, 623, 658, 659, 798, 804, 805, 812, 813, 828, 829, 831, 835, 839, 843, 845, 860], "proof": [17, 26], "delv": [17, 27, 798], "theori": [17, 800, 810], "deep": [17, 24, 26, 38, 69, 532, 620, 798, 799, 800, 802, 803, 805, 807, 810, 811, 813, 819, 823, 826, 832, 835, 836, 843, 852, 854, 857, 858, 860, 861], "esenti": [17, 26], "abstract": [17, 26, 27, 777, 782, 798, 811, 813, 824, 825, 828, 831, 837, 843, 852, 854, 856, 857, 861], "specif": [17, 18, 23, 24, 26, 27, 28, 30, 32, 40, 50, 52, 53, 73, 75, 76, 175, 206, 209, 242, 263, 264, 273, 316, 329, 330, 362, 365, 371, 375, 480, 499, 532, 533, 534, 560, 616, 617, 618, 620, 623, 625, 626, 629, 632, 633, 658, 659, 675, 696, 701, 702, 703, 724, 741, 746, 747, 748, 750, 757, 759, 779, 780, 787, 788, 794, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 813, 814, 817, 819, 820, 821, 824, 825, 826, 827, 828, 829, 831, 833, 834, 835, 837, 838, 839, 840, 841, 843, 847, 848, 849, 850, 852, 853, 855, 856, 857, 861], "quirk": [17, 26], "perk": [17, 26, 798, 808, 811], "under": [17, 26, 27, 52, 370, 444, 445, 791, 798, 803, 804, 806, 807, 814, 815, 816, 819, 825, 826, 828, 831, 832, 833, 836, 838, 839, 847, 848, 854, 857, 861], "hood": [17, 26, 27, 798, 806, 814, 815, 819, 825, 828, 831, 832, 833, 836, 838, 847, 848, 861], "appropi": 17, "string": [17, 26, 27, 42, 52, 53, 56, 69, 75, 79, 145, 146, 158, 165, 187, 188, 189, 190, 191, 193, 202, 209, 210, 214, 368, 369, 371, 410, 413, 421, 472, 483, 511, 530, 616, 617, 620, 622, 623, 635, 636, 637, 638, 640, 642, 644, 659, 757, 759, 763, 791, 792, 809, 810, 812, 813, 814, 817, 825, 833, 836], "simplest": [17, 804, 815, 828, 831], "interact": [17, 26, 41, 44, 803, 853, 854, 859], "submodul": [17, 26, 40, 42, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 803, 804, 805, 807, 810, 812, 814, 818, 821, 822, 828, 832, 833, 837, 841], "ones": [17, 24, 26, 38, 44, 48, 52, 54, 56, 61, 69, 71, 75, 79, 84, 127, 131, 136, 138, 144, 194, 195, 231, 307, 362, 380, 518, 601, 615, 617, 618, 621, 622, 640, 641, 725, 726, 727, 763, 798, 803, 808, 812, 815, 820, 821, 827, 828, 835, 836, 854], "likewis": [17, 22, 26, 33, 798, 805, 811, 813, 816, 820, 821, 825, 831, 836, 847, 848, 860], "nativearrai": [17, 26, 27, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 65, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 122, 123, 124, 126, 131, 132, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 166, 167, 168, 170, 172, 174, 175, 181, 191, 192, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 311, 312, 316, 323, 324, 325, 326, 327, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 455, 456, 457, 458, 460, 461, 462, 463, 464, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 509, 510, 511, 512, 513, 521, 524, 525, 527, 528, 532, 533, 534, 536, 539, 540, 541, 542, 543, 545, 547, 548, 549, 552, 555, 556, 558, 563, 564, 565, 568, 577, 578, 579, 580, 581, 583, 585, 586, 588, 599, 601, 602, 603, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 704, 705, 706, 707, 711, 712, 713, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 783, 808, 811, 815, 817, 820, 821, 822, 824, 825, 829, 830, 833, 835, 841], "alia": [17, 26, 329, 330, 365, 613, 803, 825, 846, 849], "select": [17, 26, 31, 44, 52, 65, 75, 88, 369, 371, 380, 421, 432, 480, 481, 510, 511, 633, 743, 744, 803, 804, 805, 812, 818, 824, 828, 833, 835, 838, 839, 854, 857, 858], "lastli": [17, 26, 808], "contain": [17, 26, 27, 41, 46, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 161, 162, 163, 166, 167, 168, 170, 172, 175, 192, 194, 195, 196, 201, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 360, 362, 365, 367, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 527, 528, 532, 533, 534, 535, 536, 537, 538, 539, 540, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 568, 571, 573, 578, 579, 580, 581, 583, 585, 586, 593, 599, 600, 601, 602, 603, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 707, 711, 712, 713, 716, 717, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 769, 770, 778, 779, 780, 782, 783, 787, 791, 792, 798, 800, 801, 803, 804, 806, 807, 808, 809, 810, 812, 813, 815, 816, 818, 820, 821, 822, 823, 824, 826, 828, 830, 831, 832, 833, 834, 837, 839, 840, 841, 843, 847, 854, 855, 860], "subclass": [17, 26, 27, 822, 825, 831, 848], "dict": [17, 26, 27, 40, 44, 47, 53, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 136, 138, 144, 148, 150, 161, 162, 163, 167, 168, 175, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 319, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 371, 390, 391, 392, 393, 411, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 472, 478, 480, 481, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 522, 524, 525, 527, 528, 532, 533, 534, 535, 536, 537, 538, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 559, 563, 564, 578, 579, 581, 583, 585, 586, 599, 610, 614, 616, 617, 620, 627, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 704, 705, 707, 710, 711, 712, 713, 715, 716, 717, 721, 722, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 759, 760, 775, 778, 780, 787, 792, 808, 811, 836, 837, 841, 847, 848, 849], "recurs": [17, 26, 27, 40, 42, 47, 69, 70, 161, 162, 194, 195, 369, 437, 537, 538, 544, 616, 617, 620, 627, 704, 705, 708, 714, 715, 716, 757, 804, 807, 810, 811, 818, 821, 824, 837, 839], "oper": [17, 18, 21, 22, 23, 24, 26, 27, 28, 32, 39, 42, 48, 49, 51, 52, 53, 56, 69, 71, 72, 74, 75, 76, 79, 98, 113, 132, 133, 175, 205, 213, 218, 220, 229, 232, 235, 242, 257, 259, 268, 269, 273, 277, 280, 285, 296, 304, 324, 325, 326, 357, 360, 362, 367, 368, 371, 382, 383, 384, 386, 387, 388, 394, 395, 396, 400, 404, 405, 406, 407, 409, 410, 412, 413, 414, 477, 479, 525, 532, 533, 534, 581, 612, 615, 616, 617, 618, 620, 622, 623, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 648, 675, 677, 749, 751, 762, 765, 778, 792, 798, 803, 804, 806, 807, 808, 811, 813, 814, 815, 816, 817, 821, 824, 825, 828, 831, 833, 836, 837, 841, 843, 847, 850, 851, 852, 853, 854, 855, 857, 858, 859, 860, 861], "fashion": [17, 764, 828, 848], "native_arrai": [17, 26, 27, 48, 49, 51, 71, 73, 74, 75, 76, 80, 87, 105, 108, 131, 134, 136, 138, 144, 147, 148, 149, 150, 158, 163, 170, 192, 201, 209, 225, 229, 234, 235, 236, 238, 242, 246, 254, 255, 263, 268, 271, 274, 277, 282, 329, 330, 356, 365, 370, 371, 446, 472, 478, 482, 521, 524, 551, 552, 555, 585, 612, 615, 616, 617, 618, 620, 622, 623, 624, 625, 629, 630, 633, 634, 636, 637, 644, 651, 654, 658, 659, 665, 666, 670, 674, 675, 677, 680, 682, 684, 685, 692, 724, 733, 742, 748, 751, 753, 759, 769, 787, 801, 818, 826, 828], "data_class": [17, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 387, 388, 532, 536, 673, 698], "low": [17, 26, 29, 45, 52, 56, 61, 75, 79, 84, 368, 410, 413, 622, 629, 635, 636, 637, 638, 640, 642, 644, 725, 727, 764, 811, 817, 824, 825, 831, 833, 850, 852, 854, 855, 856, 858, 860], "level": [17, 26, 27, 29, 52, 75, 76, 369, 437, 524, 792, 798, 799, 803, 804, 805, 811, 813, 817, 821, 823, 824, 825, 827, 830, 831, 832, 833, 836, 837, 838, 839, 841, 845, 850, 851, 852, 853, 854, 855, 856, 858, 859, 860, 861], "c": [17, 26, 32, 41, 42, 48, 52, 53, 54, 56, 59, 65, 71, 72, 74, 75, 76, 77, 79, 80, 82, 86, 88, 92, 93, 111, 122, 123, 133, 136, 160, 163, 218, 229, 235, 236, 256, 257, 259, 268, 271, 279, 286, 368, 369, 371, 374, 380, 382, 383, 384, 395, 400, 415, 417, 419, 420, 422, 432, 450, 451, 452, 462, 480, 488, 489, 490, 493, 511, 524, 532, 533, 534, 535, 543, 547, 548, 586, 601, 602, 605, 607, 608, 609, 612, 615, 616, 618, 620, 621, 622, 623, 625, 627, 630, 631, 633, 636, 637, 638, 639, 640, 641, 643, 657, 659, 661, 692, 696, 704, 707, 711, 712, 713, 715, 716, 721, 722, 733, 738, 744, 745, 750, 752, 781, 791, 792, 799, 804, 806, 809, 810, 811, 815, 821, 823, 832, 833, 834, 836, 839, 841, 842, 844, 845, 848, 850, 854, 858, 859, 861], "fundament": [17, 26, 812, 825, 831, 833, 843, 854], "common": [17, 20, 26, 30, 51, 52, 69, 74, 174, 245, 253, 333, 339, 365, 616, 618, 799, 801, 803, 804, 810, 813, 814, 815, 821, 822, 825, 829, 831, 839, 843, 851, 854, 861], "signatur": [17, 26, 371, 380, 472, 509, 813, 814, 815, 816, 820, 824, 828, 829, 831, 844, 851, 860], "matmul": [17, 26, 27, 43, 57, 80, 369, 435, 600, 620, 623, 673, 809, 828, 829, 833], "to_n": [17, 26, 27, 38, 47, 70, 833], "jaxlib": [17, 23, 41, 787, 804, 808, 813, 814, 820, 829, 833, 835], "xla_extens": [17, 23, 787, 808, 813, 814, 820, 829, 833, 835], "arrayimpl": [17, 23, 787], "abov": [17, 22, 26, 27, 32, 33, 48, 51, 52, 57, 61, 68, 74, 75, 80, 84, 93, 113, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 305, 307, 322, 323, 329, 330, 332, 335, 360, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 401, 404, 405, 406, 411, 412, 420, 421, 472, 480, 509, 512, 539, 543, 545, 547, 549, 586, 610, 612, 615, 616, 618, 620, 621, 622, 623, 625, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 725, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 798, 801, 803, 804, 805, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 828, 831, 833, 835, 836, 837, 838, 854, 859], "why": [17, 798, 805, 824, 835, 842, 844], "underli": [17, 26, 27, 38, 52, 59, 75, 82, 95, 225, 228, 230, 265, 370, 371, 445, 462, 618, 623, 625, 671, 692, 811, 824, 831, 847, 854], "disabl": [17, 26, 52, 75, 371, 480, 780, 810], "array_mod": [17, 26, 565, 588, 620, 830], "set_array_mod": [17, 26, 588, 620, 830], "composit": [17, 26, 161, 162, 194, 195, 287, 369, 427, 537, 538, 616, 617, 618, 620, 763, 765, 803, 806, 808, 809, 811, 813, 814, 822, 824, 825, 826, 828, 831, 833, 837, 838, 839, 841, 847, 855], "ultim": [17, 26, 847], "sigmoid": [17, 26, 27, 38, 46, 52, 68, 75, 295, 360, 375, 495, 612, 774, 833, 836, 837], "z": [17, 26, 27, 39, 40, 48, 51, 52, 53, 57, 58, 61, 63, 65, 71, 74, 75, 76, 80, 81, 82, 84, 88, 97, 98, 132, 133, 135, 136, 196, 218, 219, 223, 225, 228, 230, 235, 246, 247, 250, 251, 252, 254, 255, 260, 262, 264, 265, 266, 267, 275, 284, 294, 295, 329, 330, 332, 360, 365, 370, 380, 441, 443, 444, 445, 446, 447, 453, 457, 468, 508, 509, 512, 519, 524, 536, 539, 540, 547, 548, 564, 577, 578, 579, 587, 600, 615, 617, 618, 620, 623, 624, 625, 627, 629, 630, 631, 633, 653, 663, 668, 669, 673, 680, 682, 683, 684, 685, 707, 711, 713, 721, 725, 726, 727, 730, 735, 745, 746, 748, 749, 750, 777, 798, 809, 811, 814, 815, 833, 835, 847], "divid": [17, 22, 26, 27, 43, 51, 52, 53, 59, 69, 74, 75, 82, 97, 98, 242, 374, 442, 488, 489, 490, 493, 578, 618, 620, 625, 694, 808, 811, 815, 819, 828], "exp": [17, 26, 27, 51, 52, 74, 75, 111, 113, 240, 260, 273, 295, 360, 368, 370, 395, 400, 445, 612, 618, 623, 671, 823, 825], "high": [17, 26, 27, 45, 52, 56, 61, 75, 79, 84, 368, 410, 413, 572, 620, 622, 629, 635, 636, 637, 638, 640, 642, 644, 725, 727, 764, 803, 817, 823, 825, 836, 841, 845, 850, 851, 852, 853, 854, 858, 860, 861], "network": [17, 24, 26, 27, 38, 40, 45, 622, 646, 774, 777, 778, 798, 811, 821, 833, 837, 844, 848, 850, 852, 853, 854, 858, 860, 861], "entir": [17, 26, 27, 29, 42, 52, 65, 66, 69, 75, 76, 88, 89, 208, 238, 240, 280, 281, 329, 330, 365, 368, 371, 380, 391, 392, 393, 472, 512, 545, 617, 618, 633, 634, 746, 747, 748, 749, 750, 751, 752, 753, 754, 778, 792, 803, 804, 805, 807, 808, 811, 813, 815, 817, 824, 825, 826, 828, 831, 833, 836, 837, 838, 839, 844, 845, 848, 854, 860, 861], "further": [17, 69, 98, 764, 805, 807, 808, 812, 815, 817, 820, 821, 824, 825, 827, 828, 832, 833, 836, 837, 844, 845, 859, 860], "congratul": [17, 23], "There": [17, 24, 27, 32, 92, 361, 363, 364, 372, 373, 377, 764, 798, 803, 804, 805, 807, 808, 810, 811, 813, 814, 815, 817, 819, 821, 823, 825, 826, 830, 833, 836, 839, 843, 847, 855, 856, 860, 861], "come": [17, 40, 803, 804, 805, 808, 812, 825, 830, 831, 837, 841, 854], "independ": [17, 27, 52, 61, 75, 84, 218, 235, 268, 278, 374, 375, 493, 495, 618, 623, 629, 653, 672, 724, 798, 807, 813, 815, 822, 833, 838, 848, 852], "good": [17, 26, 27, 798, 802, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 826, 828, 829, 831, 833, 834, 837], "foundat": [17, 844, 857], "power": [17, 26, 27, 51, 52, 53, 57, 74, 75, 76, 80, 97, 98, 229, 238, 239, 273, 327, 339, 362, 365, 368, 414, 569, 579, 591, 618, 620, 623, 627, 665, 678, 710, 777, 830, 835, 836, 837, 854, 856, 860], "defin": [18, 24, 26, 27, 28, 48, 52, 53, 57, 71, 75, 76, 80, 95, 111, 136, 140, 141, 142, 218, 235, 242, 268, 269, 277, 279, 282, 294, 298, 302, 308, 311, 312, 313, 322, 323, 324, 325, 326, 329, 330, 332, 360, 362, 365, 368, 369, 371, 380, 403, 419, 472, 478, 512, 547, 548, 568, 612, 615, 618, 620, 623, 633, 653, 658, 659, 672, 746, 747, 748, 750, 798, 803, 804, 808, 809, 812, 813, 816, 820, 823, 825, 826, 828, 829, 835, 837, 839, 841, 849, 851, 852, 853, 854, 855, 858, 860, 861], "div": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 849], "sub": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 52, 57, 59, 69, 70, 74, 75, 76, 80, 82, 98, 267, 369, 371, 380, 421, 458, 467, 486, 515, 516, 544, 620, 623, 625, 626, 656, 677, 694, 701, 702, 703, 803, 805, 806, 811, 817, 825, 826, 828, 835, 836, 837, 849, 850], "By": [18, 38, 45, 52, 58, 59, 65, 66, 75, 81, 82, 88, 89, 282, 327, 329, 330, 342, 349, 362, 365, 368, 370, 371, 378, 380, 390, 444, 445, 480, 502, 509, 512, 567, 618, 620, 623, 624, 625, 633, 634, 653, 679, 682, 691, 743, 746, 747, 748, 749, 750, 751, 752, 753, 754, 804, 809, 813, 815, 817, 821, 823, 824, 825, 833, 837, 838, 847], "uniform": [18, 19, 20, 21, 22, 26, 27, 28, 29, 31, 32, 33, 40, 52, 61, 75, 84, 380, 512, 629, 724, 725, 727, 777, 798, 827, 837, 848, 849, 861], "x_": [18, 28, 93, 279, 618, 849], "82997245": 18, "44733784": 18, "32163444": 18, "93330479": 18, "52438271": 18, "20438017": 18, "252316": 18, "0827222": 18, "26017165": 18, "88881904": 18, "compat": [18, 24, 28, 32, 38, 45, 51, 52, 57, 59, 62, 65, 66, 74, 75, 80, 82, 85, 88, 89, 97, 98, 149, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 289, 329, 330, 365, 616, 618, 623, 625, 630, 633, 634, 653, 666, 669, 672, 675, 679, 680, 692, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 798, 804, 809, 820, 825, 826, 829, 833, 839, 844], "sever": [18, 19, 28, 29, 31, 32, 33, 52, 75, 92, 368, 369, 382, 383, 384, 433, 762, 804, 805, 829, 839, 852, 858], "pro": [18, 19, 20, 28, 29, 30, 31, 32, 33], "pick": [19, 29, 777], "off": [19, 29, 56, 57, 79, 80, 391, 392, 393, 622, 623, 645, 656, 677, 777, 778, 804, 818, 832, 845, 847, 860], "last": [19, 24, 26, 29, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 71, 75, 79, 80, 81, 82, 87, 88, 89, 93, 97, 132, 133, 136, 191, 307, 335, 362, 365, 368, 369, 370, 371, 378, 380, 396, 401, 411, 412, 423, 444, 462, 472, 474, 480, 502, 510, 511, 615, 617, 622, 623, 624, 625, 630, 632, 633, 634, 647, 648, 653, 656, 668, 677, 679, 683, 684, 686, 689, 692, 693, 694, 696, 730, 731, 739, 741, 742, 743, 744, 753, 754, 778, 787, 798, 805, 807, 809, 810, 813, 815, 824, 826, 828, 831, 833, 839, 845, 848, 854], "purpos": [19, 26, 27, 29, 40, 42, 142, 240, 258, 322, 362, 615, 618, 623, 671, 805, 806, 808, 811, 812, 814, 815, 817, 820, 821, 822, 825, 827, 828, 831, 832, 835, 841, 853, 855, 858, 859, 860], "illustr": [19, 29, 809, 833], "trigger": [19, 29, 780, 803, 819], "unif": [19, 21, 22, 29, 31, 799, 835, 844, 850, 860], "detail": [19, 29, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 76, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 128, 139, 286, 290, 294, 295, 297, 360, 369, 417, 457, 535, 612, 615, 618, 631, 656, 663, 669, 673, 696, 735, 736, 737, 738, 774, 798, 803, 805, 807, 809, 810, 811, 812, 819, 820, 821, 822, 825, 826, 827, 828, 829, 830, 833, 835, 836, 837, 856, 860], "55563945": 19, "65538704": 19, "14150524": 19, "46951997": 19, "30220294": 19, "14739668": 19, "57017946": 19, "91962677": 19, "51029003": 19, "59644395": 19, "arbitrari": [19, 29, 48, 49, 52, 69, 72, 75, 134, 148, 175, 316, 370, 442, 450, 451, 452, 603, 615, 616, 621, 820, 821, 823, 824, 825, 828, 837, 839, 847, 849, 855, 860], "constitu": [19, 29, 69, 838], "due": [19, 26, 27, 29, 43, 45, 268, 278, 371, 480, 618, 804, 807, 812, 817, 824, 825, 844, 847, 848, 854], "manner": [19, 27, 29, 39, 47, 70, 627, 716, 804, 813, 814, 816, 821, 825, 829, 836, 839, 843, 850, 852, 860, 861], "non": [19, 29, 49, 51, 52, 57, 61, 62, 65, 66, 72, 74, 75, 80, 84, 85, 88, 89, 129, 147, 165, 174, 243, 263, 264, 269, 329, 330, 334, 340, 353, 365, 368, 369, 371, 380, 411, 421, 425, 429, 451, 452, 512, 515, 615, 616, 618, 623, 627, 629, 630, 633, 634, 653, 654, 664, 666, 673, 675, 679, 680, 717, 726, 730, 731, 732, 733, 746, 747, 748, 749, 750, 752, 753, 754, 762, 777, 779, 780, 782, 808, 811, 815, 833, 847, 848, 849, 854], "5556394": 19, "655387": 19, "1415051": 19, "4695197": 19, "3022028": 19, "1473966": 19, "5701794": 19, "91962665": 19, "51028997": 19, "5964439": 19, "assess": [19, 29, 803, 831], "985": 19, "000": [19, 74, 269, 762, 801, 812, 818], "69": [19, 38, 45, 51, 77, 84, 216, 258, 368, 389, 399, 605, 618, 621, 623, 664, 665, 726, 828, 836], "slower": [19, 825], "On": [19, 26, 27, 804, 813, 814, 819, 825, 828, 831, 834, 838], "hand": [19, 51, 369, 435, 762, 798, 807, 813, 814, 819, 821, 828, 839], "singl": [19, 29, 38, 43, 51, 61, 69, 74, 84, 93, 287, 344, 365, 369, 375, 432, 496, 586, 599, 603, 618, 620, 621, 622, 629, 631, 648, 725, 726, 727, 735, 762, 778, 803, 804, 805, 807, 812, 815, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 836, 837, 838, 839, 845], "learnt": [20, 30], "two": [20, 30, 32, 38, 48, 52, 57, 63, 75, 76, 80, 97, 98, 118, 121, 127, 134, 140, 141, 142, 173, 181, 229, 243, 244, 278, 322, 323, 328, 340, 341, 343, 344, 346, 348, 355, 362, 365, 368, 369, 370, 371, 380, 396, 418, 419, 420, 432, 442, 446, 451, 472, 478, 482, 509, 519, 524, 614, 615, 616, 618, 620, 623, 625, 631, 652, 654, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 677, 679, 697, 735, 736, 737, 738, 762, 764, 770, 778, 803, 804, 807, 808, 813, 814, 815, 816, 821, 825, 826, 828, 831, 832, 836, 838, 845, 851, 859], "workflow": [20, 30, 41, 803, 805, 809, 813, 823, 825, 836, 841, 845, 853, 860, 861], "ivy_norm": 20, "jax_norm": [20, 26, 27], "wider": [20, 30, 572, 594, 620, 813, 830, 860], "avoid": [20, 30, 32, 52, 59, 75, 235, 240, 242, 258, 268, 370, 371, 374, 442, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 486, 488, 489, 490, 526, 542, 544, 567, 572, 594, 618, 620, 625, 688, 689, 690, 692, 694, 695, 697, 699, 764, 765, 804, 805, 809, 810, 811, 812, 813, 817, 822, 825, 828, 829, 830, 831, 854], "conveni": [20, 30, 803, 813, 814, 820, 826, 834, 836, 837, 841, 860], "act": [20, 30, 52, 75, 356, 366, 805, 815, 830, 839, 861], "shorthand": [20, 30, 32, 828], "pair": [20, 30, 40, 52, 56, 75, 79, 223, 242, 314, 355, 362, 365, 368, 401, 410, 412, 413, 618, 622, 623, 635, 636, 637, 638, 640, 642, 644, 651, 653, 792], "93968587": 20, "26075466": 20, "22723222": 20, "06276492": 20, "47426987": 20, "72835908": 20, "71737559": 20, "50411096": 20, "65419174": 20, "15576624": 20, "implic": [20, 30, 31, 34, 811], "requir": [21, 22, 23, 24, 31, 40, 41, 42, 45, 51, 52, 69, 74, 75, 269, 282, 286, 369, 371, 420, 421, 472, 618, 623, 625, 657, 658, 659, 696, 762, 770, 775, 792, 800, 803, 804, 808, 810, 812, 813, 814, 815, 816, 817, 819, 820, 822, 825, 826, 827, 828, 829, 831, 833, 835, 839, 848, 854, 860], "satisfi": [21, 22, 23, 24, 40, 42, 45, 52, 368, 369, 390, 421, 813, 815], "opt": [21, 22, 23, 24, 44, 804, 809, 813, 824, 828, 831], "fw": [21, 22, 23, 24, 56, 79, 380, 509, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 759, 804, 828], "mxnet": [21, 22, 23, 24, 787, 803, 804, 844, 861], "26": [21, 22, 23, 24, 38, 40, 42, 45, 51, 52, 60, 61, 75, 76, 77, 84, 230, 235, 281, 368, 369, 389, 424, 432, 547, 601, 618, 620, 621, 622, 623, 627, 628, 633, 644, 656, 668, 675, 705, 723, 725, 726, 745], "einop": [21, 22, 23, 24, 40, 42, 45, 53, 76, 532, 533, 534, 620, 813, 844], "miniconda": [21, 22, 23, 24], "env": [21, 22, 23, 24], "multienv": [21, 22, 23, 24], "site": [21, 22, 23, 24, 855], "psutil": [21, 22, 23, 24, 40, 42, 45], "termcolor": [21, 22, 23, 24, 40, 42, 45, 69, 98], "colorama": [21, 22, 23, 24, 40, 42], "nvidia": [21, 22, 23, 24, 40, 42, 45, 858, 859], "535": [21, 22, 23, 24, 46, 68, 113, 612, 817], "diskcach": [21, 22, 23, 24, 40], "auth": [21, 22, 23, 24], "urllib3": [21, 22, 23, 24, 40], "pyvi": [21, 22, 23, 24, 26, 27], "dill": [21, 22, 23, 24, 40], "astunpars": [21, 22, 23, 24], "cloudpickl": [21, 22, 23, 24], "gast": [21, 22, 23, 24], "66": [21, 22, 23, 24, 38, 40, 42, 65, 75, 76, 77, 368, 399, 532, 533, 605, 620, 621, 623, 633, 668, 745], "wheel": [21, 22, 23, 24, 40, 42, 45, 843], "six": [21, 22, 23, 24, 40, 45, 804, 831], "cachetool": [21, 22, 23, 24], "pyasn1": [21, 22, 23, 24], "rsa": [21, 22, 23, 24], "jinja2": [21, 22, 23, 24], "jsonpickl": [21, 22, 23, 24], "networkx": [21, 22, 23, 24, 45], "charset": [21, 22, 23, 24, 40], "idna": [21, 22, 23, 24, 40], "certifi": [21, 22, 23, 24, 40], "2017": [21, 22, 23, 24, 40, 622, 648], "jedi": [21, 22, 23, 24], "inlin": [21, 22, 23, 24, 810], "prompt": [21, 22, 23, 24, 803, 805], "toolkit": [21, 22, 23, 24, 854, 855, 861], "pygment": [21, 22, 23, 24], "traitlet": [21, 22, 23, 24], "exceptiongroup": [21, 22, 23, 24], "paddl": [21, 22, 23, 24, 329, 330, 365, 775, 787, 803, 804, 813, 818], "pexpect": [21, 22, 23, 24], "markupsaf": [21, 22, 23, 24], "parso": [21, 22, 23, 24], "ptyprocess": [21, 22, 23, 24], "wcwidth": [21, 22, 23, 24], "asttoken": [21, 22, 23, 24], "pure": [21, 22, 23, 24, 32, 42, 798, 816, 820, 825, 831, 835, 838, 839, 854, 860, 861], "eagerli": [21, 22, 26, 27, 31, 32, 33, 40, 798, 847, 848, 849], "lazili": [21, 22, 23, 26, 27, 31, 33, 44, 798, 847, 848, 849], "actual": [21, 31, 801, 805, 806, 812, 818, 821, 822, 824, 825, 826, 828, 831, 832, 837, 839, 855, 860], "occur": [21, 26, 27, 31, 44, 49, 51, 63, 72, 74, 86, 150, 269, 285, 616, 618, 630, 631, 730, 731, 735, 736, 737, 738, 807, 812, 814, 817, 830], "becaus": [21, 29, 31, 41, 52, 368, 390, 757, 804, 805, 807, 808, 809, 810, 811, 813, 814, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 828, 831, 833, 837, 838, 839, 854, 857, 860], "argument": [21, 23, 24, 26, 27, 29, 31, 32, 33, 38, 40, 42, 44, 47, 48, 51, 52, 53, 57, 69, 70, 74, 75, 76, 92, 93, 98, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 337, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 411, 414, 421, 472, 480, 509, 512, 516, 522, 523, 525, 526, 531, 533, 534, 539, 543, 545, 547, 549, 559, 563, 564, 581, 586, 587, 600, 610, 615, 616, 618, 620, 621, 622, 623, 625, 626, 627, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 703, 710, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 770, 775, 778, 779, 780, 787, 791, 794, 798, 803, 806, 807, 808, 809, 810, 811, 815, 816, 819, 821, 826, 828, 829, 831, 833, 835, 836, 841, 843, 847, 848, 849, 854], "altern": [21, 31, 41, 52, 75, 80, 92, 93, 328, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 365, 798, 803, 804, 810, 824, 836, 857], "dummi": [21, 22, 31, 32, 33, 39, 805], "seed": [21, 22, 42, 43, 52, 56, 61, 63, 69, 75, 79, 84, 317, 318, 319, 320, 321, 362, 369, 375, 425, 434, 440, 495, 496, 497, 498, 499, 622, 629, 631, 645, 724, 725, 726, 727, 729, 735, 770, 775, 777, 792, 822, 826, 828], "assum": [21, 22, 31, 32, 33, 48, 51, 52, 53, 56, 57, 58, 74, 75, 76, 79, 80, 81, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 307, 323, 329, 330, 332, 335, 352, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 433, 435, 472, 480, 509, 512, 539, 543, 545, 547, 556, 586, 610, 615, 616, 618, 620, 621, 622, 623, 624, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 682, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 778, 791, 798, 804, 807, 809, 812, 813, 816, 826, 828, 831, 835, 836, 839], "201733": 21, "core": [21, 22, 24, 40, 41, 42, 44, 45, 52, 75, 92, 95, 199, 369, 425, 434, 439, 440, 617, 804, 814, 818, 828, 838, 843, 852, 853, 854, 855, 859, 861], "cpu_feature_guard": [21, 22, 24], "182": [21, 22, 24, 75], "instruct": [21, 22, 24, 69, 98, 798, 803, 804, 807, 817, 819, 826, 828, 840, 852, 855, 858, 860], "critic": [21, 22, 24, 26, 27, 854, 860], "avx2": [21, 22, 24], "fma": [21, 22, 24], "rebuild": [21, 22, 24, 69, 98], "flag": [21, 22, 24, 69, 191, 370, 380, 442, 509, 617, 622, 648, 759, 770, 781, 805, 813, 814, 824, 825, 826, 828, 847, 848], "slowli": [21, 31], "norm": [21, 31, 32, 52, 53, 57, 75, 76, 80, 91, 92, 368, 369, 389, 390, 394, 395, 396, 399, 400, 401, 411, 412, 417, 421, 491, 492, 494, 527, 528, 549, 620, 623, 664, 680, 723, 778, 782, 829], "slow": [21, 31, 800, 804, 810], "34431235": [21, 22], "51129461": [21, 22], "06686894": [21, 22], "36452447": [21, 22], "98795534": [21, 22], "15493582": [21, 22], "91630631": [21, 22], "41939619": [21, 22], "78909753": [21, 22], "19475674": [21, 22], "norm_trac": 21, "float64": [21, 22, 49, 52, 61, 65, 71, 72, 74, 75, 76, 84, 88, 121, 129, 130, 147, 150, 154, 155, 160, 161, 164, 165, 170, 171, 175, 177, 178, 184, 187, 269, 339, 365, 370, 380, 445, 509, 558, 615, 616, 620, 623, 629, 658, 659, 664, 680, 726, 727, 744, 759, 762, 763, 813, 826, 828], "norm_tran": [21, 31], "know": [21, 22, 31, 32, 33, 63, 631, 735, 736, 737, 738, 800, 803, 805, 814, 822, 826, 828, 831, 845, 849, 855], "07": [22, 40, 42, 54, 58, 74, 77, 81, 84, 223, 256, 259, 260, 279, 368, 399, 591, 601, 602, 604, 605, 606, 607, 618, 620, 621, 624, 683, 684, 726, 779, 782, 837], "981554": 22, "happen": [22, 26, 27, 287, 618, 798, 804, 805, 814, 824, 828, 836, 845, 847, 848], "wherea": [22, 33, 805, 808, 811, 813, 814, 815, 820, 821, 828, 838, 851], "subtract": [22, 26, 27, 51, 74, 97, 98, 129, 371, 472, 615, 618, 808, 811, 815], "begin": [22, 52, 75, 279, 371, 456, 472, 473, 474, 475, 476, 618, 627, 704, 715, 762, 804, 807, 812, 826], "filelock": [23, 40], "extens": [23, 40, 51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 480, 509, 615, 616, 618, 623, 625, 630, 631, 632, 633, 634, 652, 653, 654, 655, 656, 658, 659, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 686, 688, 689, 690, 692, 693, 695, 696, 700, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 802, 804, 805, 816, 818, 819, 828, 851, 854, 861], "sympi": [23, 844], "fsspec": [23, 40], "mpmath": 23, "scenario": [23, 813, 823], "often": [23, 802, 807, 817, 820, 821, 825, 828, 839, 845, 855, 858, 861], "fortun": [23, 24, 807], "everyth": [23, 41, 791, 798, 803, 804, 805, 806, 812, 815, 824, 825, 826, 828, 834, 839, 840, 845], "practic": [23, 805, 809, 812, 825, 827, 857], "specifi": [23, 24, 26, 27, 31, 32, 33, 44, 46, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 125, 130, 132, 137, 140, 141, 143, 147, 149, 196, 201, 203, 207, 208, 209, 277, 286, 290, 294, 295, 297, 323, 328, 344, 349, 360, 362, 365, 368, 369, 370, 371, 375, 380, 386, 387, 388, 390, 396, 401, 411, 412, 413, 421, 431, 433, 438, 444, 445, 446, 448, 462, 465, 474, 475, 477, 478, 480, 496, 507, 509, 510, 511, 514, 515, 519, 522, 539, 540, 542, 544, 545, 558, 560, 568, 600, 612, 615, 616, 617, 618, 620, 622, 623, 624, 625, 627, 629, 630, 631, 632, 633, 634, 648, 651, 653, 655, 656, 658, 659, 664, 672, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 693, 695, 696, 699, 700, 708, 709, 711, 712, 719, 720, 721, 722, 725, 726, 727, 729, 730, 731, 733, 736, 737, 738, 739, 743, 744, 745, 749, 751, 753, 754, 762, 765, 774, 778, 779, 780, 792, 804, 806, 810, 813, 814, 820, 821, 822, 824, 825, 826, 828, 833, 836, 837, 847, 848, 849, 860], "everi": [23, 26, 27, 32, 40, 48, 52, 53, 75, 76, 130, 131, 295, 329, 330, 342, 360, 365, 368, 371, 404, 405, 406, 485, 521, 615, 620, 803, 805, 807, 809, 810, 812, 813, 815, 819, 820, 821, 822, 824, 825, 826, 828, 833, 835, 837, 847, 848, 849, 854], "jax_kornia": [23, 26, 27, 798, 848], "though": [23, 802, 803, 805, 813, 814, 816, 821, 824, 825, 831, 836, 839], "comput": [23, 24, 26, 27, 33, 34, 39, 40, 42, 46, 51, 52, 53, 54, 56, 57, 58, 63, 65, 68, 69, 74, 75, 76, 77, 79, 80, 81, 88, 92, 93, 95, 108, 112, 208, 218, 225, 228, 230, 235, 236, 237, 242, 243, 244, 246, 247, 253, 254, 255, 262, 263, 264, 265, 267, 268, 271, 276, 277, 294, 298, 302, 308, 311, 312, 324, 325, 326, 329, 330, 332, 336, 340, 342, 343, 347, 349, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 378, 380, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 414, 415, 417, 419, 420, 421, 422, 424, 425, 427, 430, 432, 434, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 466, 469, 482, 488, 490, 501, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 526, 527, 528, 572, 594, 601, 603, 604, 606, 610, 611, 617, 618, 620, 621, 622, 623, 624, 625, 627, 631, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 652, 653, 657, 658, 659, 662, 663, 664, 666, 668, 670, 672, 673, 675, 677, 679, 680, 682, 683, 684, 688, 710, 735, 736, 737, 738, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 759, 764, 778, 781, 792, 798, 804, 811, 812, 813, 821, 823, 825, 828, 830, 831, 833, 836, 839, 841, 844, 845, 847, 848, 850, 852, 854, 855, 857, 858, 860], "000000000034": [23, 26, 27, 798, 848], "raw_img": [23, 26, 27, 798, 848], "enhanc": [23, 26, 27, 798, 827, 848], "sharp": [23, 26, 27, 798], "prefer": [23, 26, 27, 242, 618, 798, 804, 811, 817, 818, 822, 825, 840, 854], "leverag": [23, 26, 27, 798, 804, 824, 848, 852, 854], "whole": [24, 52, 75, 371, 374, 479, 491, 492, 494, 805, 810, 819], "full": [24, 52, 57, 75, 79, 80, 92, 93, 95, 160, 247, 255, 317, 318, 319, 320, 321, 362, 369, 370, 371, 438, 439, 444, 445, 473, 476, 566, 575, 589, 597, 615, 616, 618, 620, 622, 623, 637, 639, 640, 641, 643, 666, 670, 672, 673, 763, 770, 798, 804, 805, 810, 813, 816, 817, 820, 821, 825, 828, 831, 833, 839, 844, 845, 852, 854, 860], "advantag": [24, 26, 27, 798, 804, 805, 813, 824, 825, 840, 848, 854], "complex": [24, 26, 27, 40, 46, 51, 52, 57, 65, 68, 72, 74, 75, 80, 88, 105, 106, 107, 108, 109, 110, 111, 112, 113, 137, 138, 153, 167, 176, 182, 215, 216, 217, 218, 219, 220, 221, 224, 232, 233, 235, 236, 238, 240, 248, 249, 250, 251, 252, 256, 257, 258, 259, 268, 270, 271, 273, 275, 278, 279, 280, 281, 282, 285, 286, 290, 294, 295, 297, 332, 337, 360, 365, 368, 369, 380, 390, 401, 411, 412, 415, 420, 421, 422, 431, 433, 517, 518, 578, 579, 612, 615, 616, 618, 620, 623, 630, 633, 657, 658, 659, 664, 671, 673, 675, 677, 680, 733, 748, 749, 751, 763, 774, 792, 803, 810, 813, 815, 822, 825, 828, 829, 831, 836, 837, 838, 839, 841, 848, 850, 852, 854, 856, 860, 861], "neccessari": 24, "set_random_se": [24, 43], "manual_se": 24, "301436": 24, "_c": 24, "0x7f252c392390": 24, "convolut": [24, 52, 56, 75, 79, 368, 388, 406, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 764, 778, 848, 852, 854], "flatten": [24, 26, 27, 40, 42, 45, 52, 53, 57, 59, 62, 63, 75, 76, 80, 82, 85, 86, 334, 349, 365, 369, 371, 380, 418, 461, 471, 475, 480, 481, 485, 507, 514, 515, 516, 517, 518, 519, 532, 536, 620, 623, 625, 630, 631, 660, 668, 680, 686, 691, 693, 730, 731, 735, 736, 737, 738, 757, 759, 798, 824, 831], "keyword": [24, 26, 27, 42, 44, 47, 48, 52, 69, 75, 98, 134, 269, 368, 371, 380, 414, 472, 509, 523, 526, 559, 587, 615, 618, 620, 623, 627, 633, 674, 710, 751, 757, 759, 763, 779, 780, 791, 803, 808, 811, 813, 814, 822, 824, 825, 826, 828, 829, 831, 836, 847, 848, 849], "input_arrai": [24, 26, 27, 824], "torch_model": [24, 26, 27, 44], "159": [24, 68, 105, 612, 622, 646], "state_upd": 24, "properti": [24, 69, 92, 93, 94, 95, 96, 97, 101, 780, 782, 807, 811, 821, 826, 828, 835, 836, 837, 860], "_transpil": 24, "thank": [24, 836, 844], "fledg": [24, 804, 833, 834], "rand": [24, 26, 27, 42, 791, 792, 798, 847], "output_arrai": [24, 26, 27, 52, 442], "0893": 24, "1504": 24, "1372": 24, "0991": 24, "0867": 24, "0851": 24, "0911": 24, "0804": 24, "0926": 24, "0881": 24, "softmaxbackward0": 24, "furthermor": 24, "relat": [24, 242, 618, 798, 800, 802, 803, 804, 805, 810, 817, 825, 828, 829, 830, 831, 848, 857], "interest": [24, 26, 38, 235, 268, 618, 803, 805], "continu": [24, 26, 27, 42, 120, 282, 290, 360, 614, 618, 798, 802, 803, 804, 806, 807, 818, 824, 827, 828, 839, 844, 845, 854], "regress": [25, 854, 861], "checkout": [26, 41, 805, 807, 828], "f705efe7cb5d18df17ce6c1e20f04d0eb4933f48": 26, "theoret": 26, "aspect": [26, 27, 799, 823, 836, 854], "switch": [26, 38, 770, 809, 817, 821, 822, 861], "easiest": [26, 798, 800, 804, 840], "defer": [26, 27, 803, 808, 813, 814, 821, 824, 825, 828, 860], "similarli": [26, 39, 134, 142, 218, 322, 329, 330, 362, 365, 615, 618, 809, 813, 825, 831, 835, 860], "obtain": [26, 27, 45, 52, 75, 313, 362, 368, 407, 622, 648, 764, 825, 847], "essenc": [26, 855, 860], "becom": [26, 52, 75, 92, 339, 365, 371, 452, 625, 685, 787, 805, 811, 813, 815, 817, 824, 839, 843, 845, 847], "regardless": [26, 27, 38, 69, 799, 813, 817, 835, 838, 845], "being": [26, 27, 38, 52, 69, 75, 90, 97, 101, 121, 369, 371, 429, 456, 472, 573, 615, 620, 623, 659, 759, 765, 777, 798, 804, 805, 807, 808, 809, 811, 813, 814, 815, 818, 820, 822, 824, 825, 826, 828, 829, 831, 833, 836, 839, 844, 845, 850, 852, 853, 854, 855, 860, 861], "slide": [26, 52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 410, 413, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 778], "A": [26, 27, 41, 48, 49, 52, 53, 59, 61, 65, 66, 69, 72, 74, 75, 76, 79, 80, 82, 84, 86, 89, 92, 93, 98, 117, 118, 120, 127, 135, 142, 148, 189, 208, 270, 272, 276, 307, 318, 322, 324, 325, 326, 328, 341, 344, 348, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 383, 396, 410, 414, 421, 432, 435, 442, 446, 457, 460, 478, 482, 483, 488, 489, 490, 491, 495, 496, 497, 498, 499, 507, 516, 519, 524, 526, 535, 544, 547, 548, 578, 579, 580, 583, 611, 614, 615, 616, 617, 618, 620, 621, 622, 623, 625, 627, 629, 633, 634, 645, 648, 656, 658, 661, 662, 667, 668, 672, 673, 685, 688, 690, 694, 696, 704, 707, 709, 711, 712, 713, 714, 715, 719, 720, 721, 722, 724, 725, 726, 727, 729, 735, 745, 753, 754, 757, 759, 760, 762, 763, 764, 765, 770, 777, 792, 796, 798, 802, 803, 804, 806, 811, 813, 814, 817, 820, 821, 825, 826, 828, 833, 836, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 854, 855], "regressor": [26, 27, 798], "input_dim": [26, 27, 41, 798], "output_dim": [26, 27, 41, 798], "linear0": [26, 27, 38, 798, 836, 837], "linear1": [26, 27, 38, 798, 836, 837], "instanti": [26, 27, 770, 816], "adam": [26, 27, 38, 42, 54, 77, 523, 601, 602, 607, 620, 621, 782, 798, 836, 837, 838, 854], "n_training_exampl": [26, 27, 798], "2000": [26, 27, 75, 308, 362, 798], "random_norm": [26, 27, 56, 57, 61, 79, 80, 84, 532, 620, 622, 623, 629, 637, 639, 640, 641, 643, 644, 647, 673, 798], "linspac": [26, 27, 48, 71, 121, 615, 798, 820, 831, 833, 861], "loss_fn": [26, 27, 38, 40, 42, 798, 836, 837, 838], "pred": [26, 27, 41, 42, 52, 58, 75, 81, 370, 441, 444, 624, 682, 683, 684, 798, 811, 821, 824], "epoch": [26, 27, 40, 42, 798], "loss": [26, 27, 40, 42, 52, 75, 92, 441, 442, 443, 444, 445, 446, 447, 572, 594, 620, 682, 683, 684, 798, 812, 813, 821, 825, 829, 830, 836, 837, 838, 854, 861], "gradient": [26, 27, 40, 42, 52, 75, 92, 208, 357, 365, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 617, 626, 701, 702, 703, 759, 770, 782, 798, 806, 829, 836, 837, 839, 854], "grad": [26, 27, 38, 42, 601, 621, 782, 798, 823, 836, 837, 838], "execute_with_gradi": [26, 27, 38, 42, 621, 798, 836, 837, 838, 839], "lambda": [26, 27, 43, 45, 75, 118, 120, 292, 301, 531, 603, 604, 606, 611, 614, 620, 621, 623, 627, 658, 711, 712, 716, 798, 803, 821, 822, 823, 826, 831, 833, 836], "2d": [26, 27, 42, 52, 75, 92, 307, 362, 368, 369, 371, 380, 383, 384, 391, 392, 431, 438, 451, 461, 509, 778, 798, 825, 831], "5f": [26, 27, 798], "nonetheless": [26, 27], "slight": [26, 27, 813, 828, 837], "introduc": [26, 27, 242, 618, 625, 631, 693, 735, 803, 811, 812, 813, 822, 826, 828, 831, 836, 843], "address": [26, 27, 52, 53, 75, 371, 480, 585, 620, 803, 805, 807, 808, 820, 827, 833, 845, 850, 852, 854, 860], "extract": [26, 27, 34, 41, 52, 75, 93, 371, 455, 481, 825, 827, 829, 850, 854, 855, 860], "gc": [26, 27, 544, 620], "decompos": [26, 27, 52, 75, 92, 95, 317, 318, 319, 320, 321, 341, 348, 362, 365, 369, 429, 434, 437, 440, 825, 838], "said": [26, 27, 764, 829, 845, 847], "otherwis": [26, 27, 44, 47, 48, 49, 51, 52, 53, 56, 57, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 123, 124, 129, 131, 132, 133, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 166, 170, 174, 175, 191, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 307, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 335, 336, 343, 344, 350, 352, 354, 355, 356, 360, 362, 365, 368, 369, 374, 386, 387, 388, 391, 392, 393, 411, 423, 436, 438, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 458, 460, 462, 463, 464, 471, 478, 480, 481, 482, 486, 488, 490, 491, 492, 494, 496, 508, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 556, 563, 564, 578, 579, 581, 583, 585, 586, 587, 599, 603, 605, 610, 614, 615, 616, 617, 618, 620, 621, 622, 623, 626, 627, 630, 631, 632, 633, 634, 636, 637, 638, 639, 645, 646, 648, 651, 652, 653, 654, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 673, 677, 679, 680, 682, 683, 684, 685, 688, 689, 690, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 717, 724, 725, 726, 727, 729, 730, 731, 732, 734, 735, 736, 737, 738, 739, 741, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 762, 763, 778, 780, 781, 787, 798, 805, 808, 811, 813, 814, 815, 821, 822, 824, 828, 833, 840, 847, 848], "x0": [26, 27, 45, 76, 524, 620, 815], "normalize_trac": [26, 27], "html": [26, 27, 41, 51, 52, 74, 75, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 480, 509, 615, 616, 618, 623, 625, 633, 671, 672, 700, 750, 798, 816, 844], "fname": [26, 27, 43, 45, 780, 836], "anticip": [26, 27], "addition": [26, 27, 811, 824, 825, 860], "backend_compil": [26, 27], "normalize_native_comp": [26, 27], "return_backend_compiled_fn": 26, "immedi": [26, 27, 803, 804], "built": [26, 27, 32, 40, 42, 45, 121, 615, 778, 779, 780, 798, 804, 805, 810, 811, 828, 834, 840, 847, 853, 854, 858], "summar": [26, 27, 92, 828], "eager_graph": [26, 27, 798, 847, 848], "lazy_graph": [26, 27, 798, 847, 848], "codebas": [26, 27, 206, 207, 617, 799, 806, 813, 819, 824, 825, 827, 828, 829, 832, 845], "thought": [26, 27, 804, 805, 820, 844, 852], "research": [26, 27, 40, 798, 843, 848, 854, 861], "wa": [26, 27, 32, 41, 52, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 351, 352, 354, 355, 356, 362, 365, 369, 391, 392, 393, 411, 439, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 478, 480, 481, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 587, 599, 605, 610, 618, 620, 627, 633, 634, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 787, 798, 800, 805, 807, 809, 810, 812, 815, 821, 823, 825, 833, 835, 844, 847, 848, 853, 854, 856], "No": [26, 27, 40, 52, 58, 75, 81, 370, 442, 443, 444, 446, 447, 624, 682, 805, 812, 813, 854], "matter": [26, 27, 32, 815, 843], "job": [26, 27, 798, 810, 812, 848], "haven": [26, 27, 32, 840, 854], "jax_out": [26, 27], "ideal": [26, 27, 812, 813, 825, 831, 836], "But": [26, 27, 764, 811, 812, 816, 819, 822, 831, 838], "bring": [26, 27, 807, 827, 828, 833, 834, 841, 844], "wise": [26, 46, 51, 52, 57, 68, 74, 75, 80, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 215, 216, 218, 219, 220, 222, 223, 225, 226, 227, 228, 229, 230, 234, 235, 236, 237, 239, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 263, 264, 265, 266, 267, 268, 271, 273, 274, 276, 277, 284, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 328, 331, 336, 338, 339, 340, 343, 344, 345, 346, 350, 351, 354, 355, 360, 365, 368, 369, 371, 391, 392, 393, 419, 426, 459, 466, 468, 469, 487, 612, 618, 625, 653, 685, 782, 831], "vision": [26, 27, 45, 850, 860], "worth": [26, 27], "differenti": [26, 27, 290, 358, 359, 360, 367, 854], "chosen": [26, 27, 45, 95, 121, 223, 615, 618, 630, 734, 803, 812, 825], "plai": [26, 27, 370, 444, 798, 804, 808, 814, 818, 825, 828, 838, 854, 857], "role": [26, 27, 798, 805, 814, 825, 834, 855, 857, 861], "dl": [26, 27], "cnn": [26, 27, 854], "effortlessli": [26, 27], "previous": [26, 27, 589, 620, 787, 804, 809, 821, 823, 828, 833], "pre": [26, 27, 798, 801, 803, 827, 828, 838, 839, 840, 854], "default_devic": [26, 27, 201, 204, 205, 206, 212, 213, 617, 814, 817, 818], "as_n": [26, 27, 49, 50, 69, 72, 73, 153, 154, 155, 156, 157, 158, 164, 191, 192, 204, 616, 617, 813], "certainli": [26, 27, 798, 844, 860], "upon": [26, 27, 44, 805, 815, 824, 828, 831, 839, 853, 854], "unnecessari": [26, 27, 825], "extend": [26, 27, 52, 75, 371, 380, 472, 512, 809, 810, 813, 816, 817, 820, 825, 829, 839, 851, 854, 860], "infrastructur": [26, 27, 798, 850, 856, 857], "least": [26, 51, 52, 57, 74, 75, 235, 253, 268, 368, 371, 380, 395, 400, 450, 451, 452, 461, 463, 509, 618, 623, 630, 663, 733, 798, 805, 808, 812, 813, 814, 815, 821, 824, 828, 848], "coco": 26, "seamlessli": [27, 828], "benefit": [27, 798, 804, 808, 811, 824, 831, 835, 836, 839, 844, 845, 852, 856, 859], "through": [27, 32, 40, 52, 75, 95, 223, 380, 515, 516, 618, 627, 707, 713, 780, 791, 798, 799, 801, 802, 803, 805, 806, 809, 810, 811, 812, 814, 815, 817, 818, 819, 821, 822, 824, 825, 826, 828, 830, 831, 832, 833, 836, 837, 838, 847, 852, 854, 855, 856], "therefor": [27, 32, 48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 465, 472, 473, 475, 480, 484, 509, 512, 516, 525, 533, 534, 539, 543, 545, 547, 549, 563, 581, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 803, 805, 807, 808, 811, 812, 813, 814, 815, 816, 817, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 835, 837, 839, 843, 851, 854, 860], "wide": [27, 798, 805, 828, 852, 854], "prepar": [27, 40, 42, 45, 798, 812], "plenti": 27, "resourc": [27, 799, 803, 804, 812], "visit": [27, 803, 804, 805, 812], "page": [27, 798, 803, 804, 805, 810, 812, 818, 834, 835, 838, 840, 849], "newli": [28, 29, 41, 43, 49, 72, 147, 526, 616, 620, 805, 812, 824, 828], "randon": [28, 29, 31, 32, 33], "mean_": 28, "std_": 28, "detect": [28, 32, 51, 69, 74, 250, 618, 627, 704, 715, 803, 804, 809, 811, 812, 819, 828, 836, 837], "inspect": [28, 32, 522, 620], "__": [28, 29, 30, 31, 32, 33, 69, 815, 836], "exhibit": [29, 860], "via": [29, 32, 242, 369, 371, 434, 437, 440, 480, 618, 627, 714, 715, 805, 807, 811, 813, 814, 824, 829, 831, 833, 835, 836, 854], "script": [29, 798, 804, 805, 807, 812, 815, 833, 839, 854], "comp": 29, "low_level": 29, "chain": [29, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 441, 442, 443, 444, 445, 446, 447, 456, 457, 478, 480, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 626, 627, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 701, 702, 706, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 783, 808, 811, 823, 825, 837, 838, 839, 854], "un": [29, 165, 616, 813, 833], "partial_comp": 29, "time_funct": 29, "slowest": [29, 52, 59, 75, 82, 371, 462, 625, 692], "express": [29, 51, 52, 74, 75, 93, 216, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 618, 784, 792, 816, 825, 833, 838, 854, 855], "fastest": [29, 52, 59, 75, 82, 369, 371, 432, 462, 625, 692], "maxim": [29, 821, 824, 833, 851, 852, 856, 857, 858], "conclud": [30, 829], "collect": [30, 40, 42, 44, 45, 47, 69, 70, 612, 617, 620, 621, 622, 624, 627, 628, 629, 717, 774, 778, 779, 780, 781, 782, 804, 812, 817, 818, 822, 823, 826, 828, 852, 854, 857], "norm_comp": [31, 32], "global": [31, 32, 42, 53, 69, 76, 98, 153, 154, 155, 156, 157, 206, 207, 208, 569, 570, 573, 578, 579, 591, 592, 595, 616, 617, 620, 770, 781, 787, 804, 808, 809, 812, 813, 814, 817, 821, 825, 833, 854], "approach": [31, 801, 803, 804, 805, 808, 811, 813, 814, 818, 821, 825, 828, 829, 831, 835, 836, 839, 851, 858, 860], "b": [32, 46, 51, 52, 53, 56, 57, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 122, 123, 124, 129, 130, 131, 133, 136, 138, 144, 147, 148, 149, 150, 158, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 375, 378, 380, 386, 387, 388, 389, 391, 392, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 416, 419, 421, 423, 427, 432, 435, 440, 441, 443, 444, 445, 446, 450, 451, 452, 453, 456, 457, 458, 459, 462, 463, 464, 466, 467, 468, 469, 471, 472, 478, 480, 481, 482, 483, 486, 487, 492, 494, 496, 497, 499, 500, 502, 509, 510, 511, 512, 514, 516, 519, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 556, 563, 564, 578, 579, 581, 585, 586, 599, 601, 602, 603, 605, 607, 608, 609, 610, 612, 615, 616, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 651, 652, 653, 654, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 704, 707, 710, 711, 712, 713, 715, 716, 721, 722, 723, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 791, 792, 798, 799, 801, 805, 806, 807, 809, 811, 812, 815, 818, 821, 823, 826, 832, 833, 834, 836, 837, 838, 842, 845, 847, 850], "option": [32, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 163, 165, 175, 187, 191, 203, 206, 207, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 414, 415, 417, 418, 419, 421, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 455, 456, 457, 458, 460, 462, 463, 464, 465, 466, 467, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 527, 528, 530, 532, 533, 534, 535, 536, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 555, 560, 563, 564, 568, 578, 579, 581, 583, 585, 586, 587, 599, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 710, 711, 715, 716, 721, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 763, 770, 774, 775, 777, 778, 780, 782, 783, 791, 796, 803, 804, 805, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 824, 825, 826, 828, 829, 831, 833, 838, 839, 847, 848, 849, 854, 860], "prioriti": [32, 69, 787, 803, 805, 814, 824], "normalize_via_oper": 32, "determin": [32, 51, 52, 57, 59, 63, 66, 69, 74, 75, 76, 80, 87, 89, 92, 95, 97, 98, 127, 150, 152, 159, 165, 166, 167, 168, 170, 171, 172, 187, 197, 199, 200, 211, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 248, 249, 250, 251, 252, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 298, 302, 347, 352, 360, 365, 368, 369, 370, 371, 380, 403, 411, 421, 441, 480, 509, 521, 524, 545, 546, 550, 551, 552, 553, 554, 555, 581, 599, 615, 616, 617, 618, 620, 623, 625, 626, 631, 634, 652, 653, 654, 656, 660, 661, 663, 665, 666, 668, 669, 671, 672, 677, 679, 680, 686, 701, 702, 703, 735, 736, 737, 738, 739, 753, 754, 764, 770, 777, 781, 811, 813, 814, 816, 821, 825, 828, 830, 831, 843], "think": [32, 803, 805, 812, 815, 831, 855], "uniqu": [32, 42, 52, 53, 63, 75, 76, 86, 368, 369, 371, 414, 435, 471, 472, 485, 556, 620, 626, 627, 631, 701, 702, 703, 706, 710, 735, 736, 737, 738, 764, 798, 803, 807, 811, 821, 825, 826, 827, 831, 839, 843, 857], "rule": [32, 49, 51, 52, 57, 72, 74, 75, 80, 147, 150, 173, 174, 175, 224, 235, 268, 270, 277, 279, 287, 289, 368, 371, 380, 411, 460, 509, 616, 618, 623, 625, 652, 653, 660, 665, 668, 672, 686, 764, 791, 807, 808, 811, 812, 813, 815, 819, 820, 821, 823, 828, 831, 855], "broadcast": [32, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 333, 334, 337, 339, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 415, 417, 418, 426, 427, 430, 431, 433, 441, 442, 443, 444, 446, 447, 453, 457, 460, 465, 473, 474, 475, 476, 478, 480, 482, 484, 488, 491, 492, 494, 495, 496, 498, 499, 509, 510, 511, 512, 515, 516, 517, 518, 519, 527, 528, 532, 533, 534, 539, 540, 549, 563, 564, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 628, 629, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 666, 667, 668, 669, 670, 672, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 734, 738, 739, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 764, 791, 811, 813, 815, 816, 817, 828, 829, 833], "elementwis": [32, 52, 60, 75, 83, 294, 296, 355, 360, 623, 628, 678, 723, 821, 829, 833], "must": [32, 40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 319, 320, 323, 324, 325, 326, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 417, 418, 420, 426, 427, 430, 431, 432, 433, 438, 441, 442, 443, 444, 446, 447, 450, 451, 452, 457, 458, 460, 462, 463, 464, 465, 467, 471, 473, 474, 475, 476, 478, 480, 481, 482, 484, 486, 491, 492, 494, 495, 496, 498, 499, 502, 509, 510, 511, 512, 519, 527, 528, 532, 533, 534, 539, 540, 542, 549, 563, 564, 600, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 777, 778, 782, 784, 802, 803, 804, 805, 807, 808, 812, 813, 814, 815, 816, 817, 820, 821, 822, 824, 825, 828, 829, 830, 831, 833, 837, 838, 843, 845, 848, 849, 855, 861], "taken": [32, 52, 57, 75, 80, 335, 365, 368, 412, 623, 656, 677, 803, 812, 825, 829, 838, 855], "account": [32, 42, 44, 52, 59, 75, 82, 282, 371, 462, 618, 625, 692, 777, 791, 804, 812, 816, 825, 829, 847], "rather": [32, 53, 69, 76, 121, 208, 551, 552, 555, 615, 617, 620, 801, 805, 807, 811, 813, 816, 818, 825, 826, 828, 829, 838, 839, 844, 850, 853, 854], "fact": [32, 92, 805, 807, 812, 825, 828, 833, 836], "consum": [32, 759, 811, 812, 820, 826, 828], "thrown": [32, 549, 620, 804, 808, 814, 817, 819, 839], "doesn": [32, 549, 567, 620, 757, 778, 803, 804, 809, 811, 812, 813, 814, 815, 818, 819, 821, 823, 828, 831, 833, 839, 847, 852], "consider": [32, 803, 815, 820, 831, 843, 851, 852], "effect": [32, 48, 52, 54, 65, 75, 77, 88, 134, 370, 403, 444, 601, 609, 615, 621, 622, 633, 648, 750, 752, 762, 765, 803, 808, 811, 812, 816, 820, 824, 826, 831, 839, 844], "explain": [32, 52, 75, 368, 401, 412, 798, 803, 804, 805, 807, 808, 809, 810, 811, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 828, 829, 831, 833, 834, 835, 836, 837, 838, 850, 857, 860], "necessari": [32, 48, 52, 71, 75, 82, 123, 235, 268, 371, 450, 451, 452, 458, 460, 461, 462, 463, 464, 471, 486, 572, 594, 618, 620, 688, 689, 690, 692, 694, 695, 697, 699, 798, 803, 804, 808, 809, 811, 813, 815, 824, 825, 828, 830, 831, 847, 848], "standalon": [33, 803, 808, 828, 841, 850, 855, 860, 861], "dynam": [33, 625, 692, 780, 787, 806, 812, 813, 814, 824, 825, 830, 833, 847, 854, 858], "static": [33, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 101, 102, 124, 313, 368, 388, 401, 406, 414, 434, 440, 478, 489, 581, 615, 622, 648, 668, 775, 780, 825, 830, 839, 853, 854, 855], "flow": [34, 811, 847, 854, 855], "statement": [34, 39, 812, 824, 828, 831, 839, 847, 848], "opposit": 34, "exclud": [34, 65, 75, 88, 121, 142, 322, 362, 510, 511, 615, 629, 727, 743, 762, 765, 787, 815, 833, 847], "todo": [35, 36, 37, 42, 45, 75, 511, 803, 813, 825], "aim": [38, 801, 805, 807, 818, 822, 825, 828, 832, 852, 854, 857], "interfac": [38, 71, 129, 615, 835, 838, 839, 841, 844, 850, 851, 852, 853, 854, 858, 861], "set_framework": [38, 45], "44": [38, 42, 51, 52, 61, 74, 75, 84, 221, 268, 278, 282, 283, 333, 365, 368, 388, 389, 618, 622, 623, 627, 630, 633, 645, 668, 712, 725, 726, 734, 745], "45": [38, 40, 42, 51, 52, 65, 74, 75, 77, 79, 84, 98, 219, 223, 235, 278, 279, 337, 350, 365, 368, 380, 389, 399, 410, 510, 516, 601, 607, 618, 621, 623, 625, 633, 668, 694, 726, 727, 745, 762], "46": [38, 40, 42, 52, 61, 75, 79, 84, 133, 258, 279, 308, 362, 368, 387, 405, 406, 615, 618, 627, 705, 725, 726], "underneath": [38, 812, 852], "sai": [38, 803, 804, 818, 822, 835, 845], "clip": [38, 51, 52, 59, 74, 75, 76, 82, 266, 267, 371, 455, 480, 481, 527, 528, 618, 620, 625, 811, 821, 823, 824, 836, 838], "a_min": 38, "a_max": 38, "tensforflow": 38, "clip_by_valu": [38, 838], "clip_value_min": 38, "clip_value_max": 38, "clamp": [38, 52, 75, 294, 360, 838], "min": [38, 42, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 140, 142, 160, 163, 267, 322, 325, 330, 362, 365, 369, 371, 421, 477, 517, 533, 563, 564, 578, 615, 616, 618, 620, 623, 633, 664, 670, 673, 674, 680, 798], "max": [38, 40, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 160, 163, 266, 329, 365, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 409, 411, 421, 477, 479, 480, 527, 528, 533, 549, 563, 564, 616, 618, 620, 623, 633, 664, 666, 669, 762, 778, 782, 812, 825], "49": [38, 42, 52, 61, 75, 79, 80, 282, 368, 369, 380, 389, 399, 410, 432, 510, 618, 633, 678, 726, 745], "devicearrai": [38, 808, 825, 833, 835], "concaten": [38, 52, 53, 59, 75, 80, 371, 457, 532, 536, 620, 622, 625, 648, 668, 686, 762, 826, 831, 833, 836], "accept": [38, 47, 48, 51, 52, 57, 70, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 336, 357, 362, 365, 367, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 472, 480, 509, 512, 516, 525, 533, 534, 539, 543, 545, 547, 549, 563, 581, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 798, 803, 804, 805, 808, 811, 813, 814, 815, 816, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 835, 841, 852], "jax_concat": 38, "tf_concat": 38, "np_concat": 38, "torch_concat": 38, "85": [38, 46, 52, 61, 68, 74, 75, 77, 79, 84, 98, 107, 220, 229, 230, 274, 290, 291, 293, 360, 380, 510, 578, 605, 612, 618, 620, 621, 622, 629, 646, 725, 726, 727], "mymodel": [38, 836], "x_in": [38, 836, 837, 838], "reduce_mean": [38, 798, 836, 837, 838], "91": [38, 52, 79, 84, 353, 365, 410, 622, 623, 629, 633, 646, 668, 726, 745], "49040043354034424": 38, "48975786566734314": 38, "4892795979976654": 38, "48886892199516296": 38, "4884953498840332": 38, "4881443977355957": 38, "4878086447715759": 38, "48748287558555603": 38, "48716384172439575": 38, "48684927821159363": 38, "48653748631477356": 38, "48622724413871765": 38, "4859171509742737": 38, "48560672998428345": 38, "48529526591300964": 38, "4849821627140045": 38, "48466697335243225": 38, "4843493402004242": 38, "4840289056301117": 38, "4837053418159485": 38, "4833785891532898": 38, "4830484390258789": 38, "48271444439888": 38, "48237672448158264": 38, "48203518986701965": 38, "48168954253196716": 38, "4813397228717804": 38, "4809857904911041": 38, "48062753677368164": 38, "48026490211486816": 38, "479898065328598": 38, "47952669858932495": 38, "4791509211063385": 38, "4787706732749939": 38, "47838595509529114": 38, "4779967665672302": 38, "47760307788848877": 38, "4772048890590668": 38, "47680220007896423": 38, "47639501094818115": 38, "47598329186439514": 38, "4755673110485077": 38, "4751465618610382": 38, "4747215211391449": 38, "4742920398712158": 38, "47385817766189575": 38, "47341999411582947": 38, "47297725081443787": 38, "4725303053855896": 38, "47207894921302795": 38, "47162333130836487": 38, "47116345167160034": 38, "470699280500412": 38, "47023090720176697": 38, "54": [38, 49, 51, 56, 74, 75, 79, 84, 163, 232, 233, 238, 253, 282, 288, 308, 362, 368, 380, 389, 399, 510, 618, 622, 623, 633, 646, 665, 668, 725, 726, 727, 745, 812, 815], "4697583019733429": 38, "55": [38, 46, 75, 84, 113, 229, 288, 380, 510, 547, 618, 620, 623, 629, 633, 661, 668, 726, 727, 745, 807], "46928152441978455": 38, "46880054473876953": 38, "4683155119419098": 38, "58": [38, 259, 527, 618, 620], "4678264260292053": 38, "59": [38, 51, 230, 380, 510], "46733325719833374": 38, "46683603525161743": 38, "61": [38, 40, 51, 52, 57, 74, 75, 77, 81, 84, 221, 256, 258, 283, 389, 601, 618, 621, 622, 623, 624, 644, 660, 682, 684, 727, 818], "4663347601890564": 38, "4658295214176178": 38, "465320348739624": 38, "4648073613643646": 38, "46429020166397095": 38, "4637692868709564": 38, "46324464678764343": 38, "4627160429954529": 38, "4621836841106415": 38, "4616474211215973": 38, "71": [38, 51, 74, 79, 234, 274, 410, 618], "46110764145851135": 38, "72": [38, 52, 61, 75, 77, 240, 342, 365, 368, 389, 399, 605, 618, 621, 623, 633, 668, 726, 745], "460563987493515": 38, "4600166976451874": 38, "74": [38, 40, 51, 84, 230, 260, 618, 623, 665], "45946577191352844": 38, "45891112089157104": 38, "45835286378860474": 38, "4577910006046295": 38, "78": [38, 54, 279, 607, 618, 621, 623, 629, 633, 668, 726, 745], "45722562074661255": 38, "79": [38, 40, 52, 53, 75, 76, 79, 84, 97, 235, 368, 389, 399, 410, 527, 528, 618, 620, 727], "45665669441223145": 38, "80": [38, 52, 75, 342, 365, 369, 380, 432, 510, 623, 627, 633, 668, 715, 745, 844], "4560841917991638": 38, "81": [38, 42, 51, 57, 72, 74, 80, 84, 163, 233, 258, 259, 283, 380, 510, 616, 618, 623, 627, 629, 633, 660, 665, 678, 712, 727, 745, 828], "4555082619190216": 38, "45492875576019287": 38, "45434585213661194": 38, "84": [38, 56, 65, 74, 84, 163, 193, 258, 616, 617, 623, 628, 633, 646, 668, 723, 726, 727, 745], "45375964045524597": 38, "4531698524951935": 38, "4525766670703888": 38, "45198020339012146": 38, "4513803720474243": 38, "4507772624492645": 38, "4501707851886749": 38, "4495610296726227": 38, "4489481747150421": 38, "44833192229270935": 38, "4477125108242035": 38, "44708991050720215": 38, "44646409153938293": 38, "44583529233932495": 38, "98": [38, 46, 52, 54, 61, 68, 74, 77, 84, 108, 233, 281, 353, 365, 605, 612, 621, 623, 627, 630, 633, 668, 705, 716, 725, 727, 734, 745], "4452032148838043": 38, "44456806778907776": 38, "4439": 38, "selectbackward0": 38, "hope": [38, 839, 844, 860], "ivy_compil": 39, "ic": 39, "produc": [39, 52, 53, 56, 75, 79, 296, 306, 309, 360, 362, 368, 414, 622, 651, 762, 792, 803, 813, 818, 819, 824, 826, 828, 829, 847, 855, 857], "numer": [39, 48, 49, 51, 52, 53, 57, 61, 62, 65, 72, 74, 75, 76, 80, 84, 85, 87, 97, 98, 134, 147, 215, 218, 231, 235, 240, 241, 242, 249, 250, 251, 254, 263, 264, 268, 270, 271, 272, 273, 277, 278, 279, 283, 284, 288, 289, 368, 370, 375, 380, 411, 442, 496, 509, 569, 570, 578, 579, 591, 592, 615, 616, 618, 620, 623, 629, 630, 633, 653, 660, 663, 668, 671, 673, 675, 677, 679, 725, 726, 727, 729, 730, 731, 733, 734, 739, 746, 749, 751, 762, 763, 764, 765, 777, 801, 813, 818, 823, 825, 826, 828, 829, 830, 831, 833, 837, 851, 854, 860], "anyth": [39, 52, 75, 380, 515, 516, 805, 817, 828, 829, 854, 855], "affect": [39, 45, 52, 370, 445, 812, 825], "intermedi": [39, 852, 853, 854, 855, 860], "variabl": [39, 41, 42, 44, 52, 53, 54, 60, 69, 75, 76, 77, 83, 117, 118, 120, 316, 362, 369, 375, 380, 436, 497, 508, 509, 525, 549, 550, 551, 552, 555, 581, 602, 603, 605, 607, 608, 609, 614, 620, 621, 623, 626, 628, 672, 701, 702, 703, 723, 759, 770, 775, 777, 778, 779, 780, 781, 782, 783, 805, 809, 813, 816, 820, 823, 824, 828, 829, 833, 836, 837, 838, 839, 840, 847, 855], "original_fn": 39, "100000": 39, "var": [39, 65, 88, 90, 117, 118, 119, 120, 614, 626, 633, 701, 702, 784, 804, 815, 833], "co": [39, 40, 51, 53, 74, 233, 238, 240, 281, 536, 618, 620, 802, 813, 833, 844], "sin": [39, 51, 53, 74, 233, 238, 240, 281, 536, 618, 620, 808, 833], "tan": [39, 51, 74, 523, 618, 620, 816, 820, 821, 824, 825, 833], "comp_fn": 39, "compile_graph": [39, 45], "expected_result": 39, "compiled_result": 39, "irrelev": [39, 812, 813, 815], "opeat": 39, "_layer": [39, 833], "net": [39, 44, 45, 833, 838, 844, 845], "compiled_net": 39, "proceed": 40, "latest": [40, 42, 51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 480, 509, 616, 618, 623, 625, 633, 671, 672, 700, 750, 778, 798, 803, 804, 805, 807, 809, 812, 816, 818, 829, 839, 840, 848, 859], "pypi": [40, 42, 45, 803, 804, 829, 839], "pkg": [40, 42, 45], "public": [40, 42, 45, 529, 620, 812, 823, 835, 857], "revis": [40, 42, 805], "tmp": [40, 42, 576, 598, 620], "req": [40, 42], "tabqrujw": 40, "command": [40, 42, 798, 800, 804, 807, 810, 812, 818, 819, 840], "filter": [40, 42, 44, 52, 56, 75, 79, 311, 312, 362, 368, 388, 406, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 764, 778, 798, 809, 812], "quiet": [40, 42], "commit": [40, 42, 801, 803, 807, 815, 827, 828], "f3be3702c9fab1c9fa97c743813a4bdb39525705": 40, "metadata": [40, 42, 45, 824], "setup": [40, 42, 45, 804, 805, 810, 812, 818], "done": [40, 42, 45, 623, 659, 802, 803, 804, 805, 807, 810, 812, 814, 815, 818, 819, 824, 825, 828, 836, 847, 848, 854], "py3": [40, 42, 45], "whl": [40, 41, 42, 45], "cp39": [40, 42], "manylinux_2_12_x86_64": [40, 42], "manylinux2010_x86_64": [40, 42], "manylinux_2_17_x86_64": [40, 42, 804], "manylinux2014_x86_64": [40, 41, 42], "eta": [40, 42, 45], "tar": [40, 41, 42, 45], "gz": [40, 41, 42, 45], "py2": [40, 42], "495": [40, 42], "nvidia_ml_pi": [40, 42], "pypars": [40, 42, 45], "ivy_cor": [40, 42, 45, 804], "1338326": 40, "sha256": [40, 42, 45], "e5c4205c80116b781373daf4502d61881235c5e3eb0d55096ab07dcc6eb66bec": 40, "store": [40, 42, 45, 49, 52, 53, 57, 59, 69, 72, 75, 76, 80, 82, 149, 368, 369, 412, 419, 423, 435, 439, 536, 620, 623, 625, 677, 694, 759, 760, 778, 779, 780, 800, 805, 808, 809, 811, 816, 822, 824, 825, 826, 833, 835, 836, 837, 841, 847], "directori": [40, 41, 42, 45, 576, 598, 617, 620, 800, 803, 804, 805, 810, 812, 818, 825, 828, 840], "ephem": [40, 42], "njrc_e6b": 40, "2e": [40, 42], "ae2d7c5ce8708e605368a33e08d57d1de8e107e3db157c3063": [40, 42], "4845": [40, 42], "a8cde63eca203d3bd7f900fa32f44dbd038476606a3836de14caf2b0a5ff7460": 40, "b6": [40, 42], "0d": [40, 42], "0d1bbd99855f99cb2f6c2e5ff96f8023fad8ec367695f7d72d": [40, 42], "successfulli": [40, 42, 45, 780, 804, 808], "uninstal": [40, 42, 45], "found": [40, 42, 43, 45, 57, 59, 63, 69, 75, 80, 82, 86, 98, 196, 380, 457, 510, 617, 627, 656, 663, 696, 715, 735, 792, 803, 804, 805, 808, 809, 810, 811, 813, 814, 816, 819, 822, 824, 825, 840, 856], "cannot": [40, 41, 42, 45, 52, 285, 450, 451, 452, 618, 805, 807, 809, 813, 825, 833, 838, 860], "vnd": [40, 42, 45], "json": [40, 42, 45, 69, 804, 818, 836], "psst": 40, "cv2": [40, 42, 44, 836], "pickl": [40, 41, 69, 780, 811, 836], "imageio": 40, "urllib": [40, 45], "_src": 40, "tpu": [40, 189, 195, 206, 211, 617, 814, 854, 857], "back": [40, 52, 59, 75, 82, 371, 462, 483, 565, 588, 620, 622, 625, 648, 692, 777, 782, 792, 804, 808, 813, 814, 817, 822, 823, 830, 832, 839, 840, 844, 852, 856], "tf_cpp_min_log_level": 40, "info": [40, 795, 798, 810, 816, 819], "mkdir": [40, 41, 42, 804, 812], "perceiv": [40, 41], "touch": 40, "io_processor": 40, "position_encod": 40, "absl": 40, "jmp": 40, "tabul": 40, "04": [40, 41, 48, 54, 68, 72, 75, 77, 107, 108, 133, 160, 240, 569, 601, 602, 607, 612, 615, 616, 618, 620, 621, 762, 804, 828], "29359": 40, "29k": 40, "67k": 40, "002": 40, "30179": 40, "47k": 40, "8107": 40, "9k": 40, "92k": 40, "itertool": 40, "preprocessor": 40, "vector": [40, 48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 134, 358, 359, 367, 368, 369, 371, 374, 375, 380, 390, 420, 425, 431, 433, 438, 472, 474, 476, 493, 497, 509, 528, 532, 549, 600, 615, 620, 622, 623, 646, 648, 653, 657, 658, 660, 663, 668, 673, 674, 678, 679, 680, 681, 762, 778, 854], "perceiverbackbon": 40, "input_preprocessor": 40, "_input_preprocessor": 40, "_encod": 40, "__call__": [40, 759, 778, 779, 780, 798, 848], "is_train": 40, "po": [40, 792], "input_mask": 40, "network_input_is_1d": 40, "_input_is_1d": 40, "queri": [40, 41, 56, 69, 79, 193, 207, 542, 568, 617, 620, 622, 648, 651, 778, 811, 813, 818, 835, 854], "decod": [40, 836], "cross": [40, 42, 57, 58, 80, 81, 93, 623, 624, 682, 683, 684, 798, 812, 813], "attend": [40, 622, 648], "encoder_queri": 40, "latent": [40, 626, 702, 703], "imagepreprocessor": 40, "deal": [40, 780, 801, 814, 821, 823, 825, 839], "image_s": 40, "fourier_pos_config": 40, "position_encoding_typ": 40, "fourier": [40, 52, 75, 368, 390, 395, 396, 400, 401, 411, 412, 414, 536, 620], "fourier_position_encoding_kwarg": 40, "concat_po": 40, "max_resolut": 40, "num_band": [40, 53, 76, 536, 620], "sine_onli": 40, "prep_typ": 40, "spatial_downsampl": 40, "cross_attend_widening_factor": 40, "cross_attention_shape_for_attn": 40, "kv": 40, "dropout_prob": 40, "num_block": 40, "num_cross_attend_head": 40, "num_self_attend_head": 40, "num_self_attends_per_block": 40, "num_z_channel": 40, "self_attend_widening_factor": 40, "use_query_residu": 40, "z_index_dim": 40, "z_pos_enc_init_scal": 40, "perceiver_backbon": [40, 798], "perceiverencod": 40, "At": [40, 803, 804, 805, 807, 818, 828, 829, 844, 854], "almost": [40, 802, 811, 826, 834, 836, 843], "publish": [40, 798, 839, 845, 848], "thankfulli": [40, 828], "perceiver_io": [40, 41], "imagenet_fourier_position_encod": 40, "pystat": 40, "imagenet_checkpoint": 40, "rb": 40, "ckpt": 40, "read": [40, 42, 52, 59, 69, 71, 75, 82, 129, 371, 462, 615, 625, 692, 803, 804, 810, 812, 818, 828, 830, 831, 854], "09": [40, 46, 51, 77, 84, 113, 273, 283, 601, 612, 618, 621, 726], "173": [40, 57, 623, 660], "194": 40, "217": [40, 817], "125": [40, 52, 57, 80, 229, 339, 365, 370, 441, 618, 623, 678], "177": [40, 42], "193776248": 40, "185m": 40, "octet": 40, "184": 40, "80m": 40, "144mb": 40, "144": 40, "mean_rgb": 40, "stddev_rgb": 40, "im": 40, "denorm": 40, "resize_and_center_crop": 40, "crop": [40, 52, 75, 368, 396, 401, 412], "center": [40, 777], "image_height": [40, 42, 798], "image_width": [40, 798], "padded_center_crop_s": 40, "minimum": [40, 51, 52, 53, 59, 62, 65, 74, 75, 76, 82, 85, 88, 215, 243, 270, 293, 325, 329, 330, 339, 360, 362, 365, 371, 380, 472, 507, 511, 517, 569, 570, 578, 579, 591, 592, 618, 620, 625, 630, 633, 685, 731, 746, 748, 762, 764, 765, 770, 813, 830, 851, 857, 861], "offset_height": 40, "offset_width": 40, "crop_window": 40, "inter_cub": 40, "ye": [40, 839], "dummy_input": [40, 798], "transpili": 40, "torch_perceiver_backbon": 40, "quicker": 40, "params_v": [40, 798, 848], "perceiverioclassifi": [40, 798], "max_pool": [40, 798], "huggingfac": [40, 847, 848], "Of": [40, 808, 824, 825, 836, 859, 860], "cours": [40, 804, 805, 807, 808, 815, 824, 825, 831, 836, 839, 859, 860], "468": 40, "huggingface_hub": 40, "multiprocess": [40, 69, 98, 620, 836, 839], "py39": 40, "132": [40, 75], "pyarrow": 40, "xxhash": 40, "212": [40, 52, 56, 75, 352, 365, 646], "pyyaml": 40, "2021": [40, 52, 75, 355, 365, 798], "aiohttp": 40, "async": 40, "timeout": [40, 69, 98, 573, 595, 620, 830], "0a3": 40, "async_timeout": 40, "frozenlist": 40, "manylinux_2_5_x86_64": [40, 45], "manylinux1_x86_64": [40, 45], "158": 40, "attr": [40, 813], "aiosign": 40, "multidict": 40, "114": [40, 368, 389, 399], "yarl": 40, "264": [40, 627, 704], "2022": [40, 41], "pytz": 40, "2020": [40, 807, 854], "dateutil": [40, 45], "wikiart": 40, "paint": [40, 798, 833, 843], "load_dataset": [40, 847, 848], "n_sampl": [40, 52, 75, 369, 371, 416, 424, 475], "10000": [40, 42, 48, 71, 133, 615], "huggan": 40, "split": [40, 41, 42, 46, 51, 52, 59, 68, 69, 74, 75, 82, 105, 106, 107, 108, 109, 110, 111, 112, 113, 206, 207, 208, 286, 290, 294, 295, 297, 341, 348, 360, 371, 458, 467, 486, 532, 559, 612, 617, 618, 620, 622, 625, 635, 642, 643, 697, 759, 774, 778, 798, 799, 805, 812, 832, 833, 839, 861], "wiki_art": 40, "gib": 40, "unknown": [40, 762], "total": [40, 42, 52, 65, 69, 75, 88, 98, 129, 210, 324, 325, 326, 334, 362, 365, 615, 617, 630, 633, 733, 750, 752, 792, 798, 799, 804, 805, 813, 814, 815, 828, 831, 836, 837, 839, 845], "huggan___parquet": 40, "36ee951979f9b56c": 40, "2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec": 40, "parquet": 40, "subsequ": [40, 787, 804, 808, 812, 813, 815, 820, 821, 824, 828, 837, 855], "reus": [40, 48, 71, 75, 82, 123, 450, 451, 458, 460, 462, 463, 464, 471, 486, 688, 689, 690, 692, 694, 695, 697, 699, 817, 828, 859], "curl": [40, 804], "server": [40, 798, 804, 805, 810, 818, 840, 854], "row": [40, 52, 75, 93, 127, 142, 322, 362, 369, 371, 378, 380, 426, 436, 464, 470, 487, 502, 508, 509, 615, 623, 629, 630, 664, 672, 673, 678, 724, 733, 777], "2fwikiart": 40, "receiv": [40, 44, 92, 523, 559, 620, 626, 701, 702, 703, 778, 804, 805, 813, 814, 828, 831], "xferd": 40, "averag": [40, 42, 52, 54, 58, 75, 77, 81, 368, 370, 374, 380, 382, 383, 386, 387, 388, 442, 443, 444, 445, 446, 447, 493, 509, 601, 602, 607, 621, 622, 624, 626, 648, 682, 701, 702, 777, 778], "dload": 40, "upload": [40, 828], "spent": [40, 845], "25936": 40, "278k": 40, "number": [40, 42, 43, 44, 45, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 92, 93, 95, 97, 98, 101, 121, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 142, 148, 153, 154, 155, 156, 157, 159, 160, 163, 166, 167, 168, 170, 172, 175, 199, 200, 201, 215, 216, 217, 218, 219, 221, 223, 224, 231, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 252, 256, 258, 266, 267, 268, 269, 270, 271, 273, 275, 277, 278, 279, 281, 282, 286, 288, 313, 317, 318, 319, 320, 321, 322, 324, 325, 326, 328, 329, 330, 332, 333, 334, 335, 344, 349, 353, 362, 365, 368, 369, 371, 374, 380, 401, 412, 414, 417, 420, 424, 425, 426, 434, 438, 440, 450, 451, 452, 472, 473, 474, 475, 476, 478, 480, 482, 485, 488, 489, 490, 507, 509, 510, 511, 512, 518, 536, 543, 561, 578, 579, 586, 599, 600, 613, 615, 616, 617, 618, 620, 622, 623, 624, 625, 626, 629, 630, 631, 633, 634, 635, 642, 643, 645, 648, 653, 657, 658, 659, 666, 671, 673, 677, 678, 679, 682, 685, 687, 688, 690, 691, 693, 694, 696, 698, 700, 701, 702, 703, 724, 728, 733, 735, 736, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 770, 777, 778, 781, 792, 798, 804, 805, 811, 812, 813, 814, 815, 822, 823, 824, 828, 829, 830, 831, 833, 836, 842, 843, 847], "abstract_expression": 40, "action_paint": 40, "analytical_cub": 40, "art_nouveau": 40, "baroqu": 40, "color_field_paint": 40, "contemporary_r": 40, "cubism": 40, "early_renaiss": 40, "expression": 40, "fauvism": 40, "high_renaiss": 40, "impression": 40, "mannerism_late_renaiss": 40, "minim": [40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 669, 670, 671, 673, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 792, 816, 824, 826, 831, 833, 847, 852, 860], "naive_art_primitiv": 40, "new_real": 40, "northern_renaiss": 40, "pointil": 40, "pop_art": 40, "post_impression": 40, "realism": 40, "rococo": 40, "romantic": 40, "symbol": [40, 791, 803, 804, 854, 855], "synthetic_cub": 40, "ukiyo_": 40, "custom": [40, 52, 75, 293, 305, 357, 360, 367, 762, 791, 800, 806, 812, 817, 822, 826, 828, 831, 837, 844, 854, 858, 859, 860], "hugginfac": 40, "customdataset": 40, "__len__": [40, 811], "__getitem__": [40, 69, 811], "idx": [40, 41, 42, 522, 620, 798, 814, 835], "random_split": 40, "224x224": 40, "val_siz": 40, "dataset_train": 40, "dataset_v": 40, "dataset_test": 40, "dataloader_train": 40, "batch_siz": [40, 42, 45, 52, 56, 61, 75, 79, 84, 368, 370, 386, 387, 388, 404, 405, 406, 407, 447, 622, 629, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 648, 724, 798, 836], "dataloader_v": 40, "dataloader_test": 40, "batch": [40, 41, 42, 52, 53, 57, 69, 75, 76, 80, 206, 207, 368, 374, 382, 384, 390, 403, 442, 488, 489, 490, 493, 536, 539, 540, 600, 617, 620, 622, 623, 626, 628, 646, 647, 648, 662, 680, 701, 702, 703, 723, 762, 778, 781, 798, 811, 821, 826, 836, 852], "iter": [40, 42, 47, 52, 53, 59, 67, 69, 75, 76, 82, 90, 95, 98, 117, 208, 314, 315, 362, 369, 371, 425, 434, 440, 456, 472, 521, 559, 614, 617, 620, 625, 627, 687, 691, 698, 700, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 719, 720, 722, 791, 792, 807, 809, 811, 833, 836, 845, 847], "train_featur": 40, "train_label": 40, "imshow": [40, 41], "crossentropyloss": [40, 779], "sgd": [40, 782, 854], "lr": [40, 54, 77, 523, 602, 605, 607, 608, 609, 620, 621, 782, 836, 837], "001": [40, 51, 52, 60, 72, 75, 77, 160, 258, 275, 332, 344, 365, 602, 616, 618, 621, 628, 723, 762, 836, 837], "train_step": 40, "running_loss": [40, 42, 798], "last_loss": 40, "training_load": 40, "intra": 40, "report": [40, 803, 828], "zero_grad": 40, "backward": [40, 52, 66, 75, 89, 277, 368, 390, 395, 396, 400, 401, 411, 412, 618, 623, 634, 653, 679, 753, 754, 778, 829, 839], "adjust": [40, 65, 88, 369, 436, 633, 750, 752, 787], "999": [40, 54, 74, 77, 286, 601, 602, 607, 609, 618, 621, 782, 837], "epoch_numb": 40, "best_vloss": 40, "1_000_000": 40, "avg_loss": 40, "running_vloss": 40, "vdata": 40, "vinput": 40, "vlabel": 40, "voutput": 40, "vloss": 40, "avg_vloss": 40, "model_path": 40, "model_": 40, "state_dict": [40, 779, 780], "highest": [40, 52, 61, 75, 84, 313, 316, 362, 629, 725, 813], "energi": 40, "sum": [40, 42, 51, 52, 53, 56, 57, 58, 65, 69, 74, 75, 76, 79, 80, 81, 88, 92, 97, 98, 208, 218, 260, 284, 326, 349, 362, 365, 369, 370, 371, 374, 380, 410, 419, 441, 442, 443, 444, 445, 446, 447, 477, 493, 515, 516, 533, 563, 564, 617, 618, 620, 622, 623, 624, 633, 645, 651, 664, 673, 677, 680, 682, 744, 745, 777, 779, 791, 798, 811, 813, 821, 823, 824, 825, 833, 847, 848, 849], "augment": 40, "mayb": [40, 41, 47, 798, 804, 812, 833, 835], "meta": [40, 701, 702, 703, 808, 829, 854], "finetun": 40, "deploi": [40, 798, 812, 841, 848, 852, 853, 854, 856, 860], "present": [41, 52, 65, 69, 75, 88, 332, 365, 374, 488, 489, 490, 633, 748, 803, 804, 805, 811, 813, 814, 820, 824, 833, 843, 851, 852, 861], "percieverio": 41, "ai": [41, 812, 852, 856], "contribut": [41, 52, 75, 380, 512, 802, 804, 805, 810, 818, 819, 825, 826, 833, 840, 847, 858], "highli": [41, 798, 803, 854], "invit": [41, 803, 825, 831], "g4ar9q7dtn": 41, "step1": 41, "printf": 41, "8packag": 41, "share": [41, 69, 181, 616, 762, 763, 798, 809, 811, 815, 821, 823, 825, 826, 828, 831, 833, 844, 852, 853, 860], "googledr": 41, "10_wfp1u4rmzc20eignrdqa9v2s9byjwv": 41, "file_id": 41, "drive": [41, 42], "uc": 41, "export": [41, 812, 853, 860], "tee": [41, 804], "file_id_wget_cmd": 41, "perl": 41, "pe": 41, "g": [41, 43, 44, 52, 61, 63, 65, 67, 75, 84, 90, 92, 146, 175, 188, 235, 248, 268, 275, 278, 329, 330, 365, 368, 369, 371, 375, 380, 404, 406, 440, 480, 495, 496, 497, 498, 499, 510, 511, 616, 617, 618, 623, 627, 629, 631, 633, 658, 659, 664, 671, 673, 674, 680, 707, 711, 713, 716, 721, 725, 726, 727, 735, 736, 737, 738, 743, 744, 746, 748, 749, 751, 777, 799, 803, 804, 806, 807, 809, 810, 811, 823, 825, 828, 833, 839, 841, 845, 850], "uuid": 41, "anywai": [41, 808, 822, 825], "bin": [41, 52, 75, 380, 507, 512, 804, 805, 807, 811], "bash": [41, 804, 805, 807], "step2": 41, "interpret": [41, 48, 52, 71, 75, 122, 123, 129, 135, 370, 380, 442, 509, 615, 812, 855], "sudo": [41, 804], "apt": [41, 804], "yf": 41, "step3": 41, "delet": [41, 805, 812], "xvzf": 41, "rm": [41, 43, 800, 805], "step4": 41, "symlink": 41, "unzip": [41, 42], "fr": 41, "l": [41, 57, 74, 80, 262, 369, 420, 622, 623, 648, 652, 657, 658, 659, 663, 677, 805, 806], "d": [41, 52, 53, 56, 57, 59, 71, 75, 76, 79, 80, 82, 95, 111, 133, 142, 175, 218, 235, 236, 268, 271, 322, 362, 368, 369, 371, 374, 375, 378, 386, 387, 388, 395, 400, 404, 405, 406, 407, 409, 418, 432, 452, 458, 460, 463, 467, 481, 483, 486, 493, 495, 501, 524, 535, 612, 615, 616, 618, 622, 623, 625, 627, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 655, 656, 660, 664, 668, 677, 678, 694, 707, 711, 712, 713, 716, 721, 722, 763, 792, 798, 799, 804, 806, 809, 810, 811, 818, 823, 828, 831, 836, 844, 845, 850], "ln": 41, "sf": 41, "la": 41, "step5": 41, "regular": [41, 75, 369, 380, 432, 513, 623, 662, 804, 825, 854], "step6": 41, "ipkykernel": 41, "step7": 41, "engbjapanpython3": 41, "separ": [41, 52, 53, 75, 374, 489, 536, 620, 622, 648, 804, 805, 808, 811, 812, 815, 826, 827, 828, 833, 835, 836, 855, 859], "ipykernel": 41, "reconnect": 41, "sy": 41, "oct": 41, "gcc": [41, 852, 859], "lf": 41, "upgrad": 41, "cuda11": 41, "cudnn805": 41, "cp38": [41, 45, 804], "helper": [41, 757, 759, 760, 766, 768, 769, 798, 801, 810, 813, 817, 818, 827, 836, 841], "feedforward": 41, "prenorm": 41, "perceiveriospec": 41, "fetch": [41, 544, 620, 804, 805, 807, 812], "ogbanugot": 41, "xmartlab": 41, "caffeflow": 41, "fetch_class": 41, "class_label": 41, "ground_truth": 41, "127": [41, 49, 52, 57, 72, 75, 163, 352, 365, 616, 623, 660], "path_to_imag": 41, "get_imag": 41, "ax": [41, 46, 52, 57, 59, 62, 65, 66, 68, 75, 80, 82, 85, 88, 89, 97, 101, 108, 112, 208, 329, 330, 334, 335, 349, 356, 365, 366, 368, 369, 371, 374, 380, 396, 401, 412, 435, 471, 472, 478, 491, 514, 515, 516, 517, 518, 519, 532, 600, 617, 620, 623, 625, 630, 633, 634, 653, 664, 672, 675, 676, 680, 687, 689, 690, 693, 695, 697, 700, 730, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 764, 778, 813, 815, 828, 829, 833, 835], "fig": [41, 42], "subplot": [41, 42], "spine": 41, "set_vis": 41, "right": [41, 52, 57, 69, 75, 80, 98, 115, 116, 227, 229, 282, 343, 365, 368, 369, 371, 402, 429, 435, 436, 438, 463, 532, 614, 618, 620, 623, 632, 673, 678, 741, 762, 799, 803, 804, 805, 806, 807, 815, 818, 831, 836, 847], "bottom": [41, 532, 620, 803, 804, 812, 818, 860], "tick_param": 41, "set_xticklabel": 41, "set_yticklabel": 41, "show_result": 41, "along": [41, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 95, 108, 112, 117, 132, 133, 208, 282, 285, 287, 324, 325, 326, 329, 330, 334, 335, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 389, 395, 396, 399, 400, 401, 411, 412, 434, 444, 457, 458, 459, 461, 463, 464, 472, 477, 480, 482, 491, 492, 493, 494, 510, 511, 512, 514, 515, 516, 517, 518, 519, 532, 539, 614, 615, 617, 618, 620, 623, 624, 625, 626, 629, 630, 632, 633, 634, 653, 668, 677, 679, 680, 682, 683, 684, 686, 689, 690, 691, 693, 694, 696, 698, 699, 701, 702, 703, 729, 730, 731, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 778, 798, 803, 806, 815, 824, 827, 829, 831, 833, 854], "figur": [41, 830], "figsiz": [41, 42], "listdir": [41, 42], "endswith": 41, "this_dir": 41, "dirnam": 41, "join": [41, 42, 59, 69, 75, 82, 456, 457, 625, 686, 696, 798], "add_subplot": 41, "xtick": 41, "ytick": 41, "set_titl": [41, 42], "color": [41, 69, 98, 797], "green": [41, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 797, 803, 804, 805], "red": 41, "perceiver_io_img_classif": 41, "normalize_imag": 41, "batch_shap": [41, 56, 61, 71, 79, 84, 127, 136, 615, 622, 623, 629, 647, 651, 681, 724, 778, 831, 833, 835], "img_dim": 41, "queries_dim": 41, "learn_queri": 41, "load_weight": 41, "num_input_ax": 41, "network_depth": 41, "num_lat_att_per_lay": 41, "query_shap": 41, "num_fourier_freq_band": 41, "weight_fpath": 41, "pretrained_weight": 41, "isfil": 41, "noinspect": [41, 835], "pybroadexcept": 41, "from_disk_as_pickl": 41, "larg": [41, 51, 52, 74, 75, 218, 235, 242, 268, 269, 371, 380, 480, 509, 618, 623, 671, 800, 804, 805, 810, 812, 818, 836, 847, 854], "action": [41, 802, 812, 815, 819, 828], "fail": [41, 757, 801, 804, 805, 807, 812, 813, 815, 819, 822, 824, 825, 826], "placehold": [41, 627, 711, 716, 721, 778, 805, 808, 820, 841], "pyunboundlocalvari": 41, "max_fourier_freq": 41, "random_uniform": [41, 45, 61, 84, 629, 814, 817, 828, 833, 837], "817437": 41, "common_runtim": 41, "gpu_bfc_alloc": 41, "orig_valu": 41, "tf_force_gpu_allow_growth": 41, "autograd": [41, 839], "declar": [41, 805, 827], "_3r2_73j": 42, "0edf8c1e8ea835f4c456bdf89737d89032f50b5a": 42, "1297564": 42, "05fcafac1e19fec835a9ac61270b3ac6039a5095f6b0f9fde20bacc2a5abba45": 42, "le3bu3_v": 42, "cc6508f5d7e25538c5df5fdae52a41d2bf17b9a517aedd125cfca913bb5b259b": 42, "third": [42, 92, 93, 371, 459, 485, 623, 631, 673, 735, 810, 813, 824, 839, 853, 854, 860], "parti": [42, 810, 813, 839, 844, 853, 854, 860], "mount": [42, 800, 805], "mydriv": 42, "chdir": 42, "One": [42, 52, 53, 59, 61, 75, 76, 82, 84, 95, 371, 450, 451, 452, 455, 472, 481, 533, 620, 625, 629, 692, 725, 808, 811, 813, 815, 821, 826, 828, 833, 835, 836], "kaggl": 42, "medium": 42, "articl": [42, 798, 819], "insert": [42, 52, 62, 75, 85, 371, 447, 457, 625, 627, 630, 632, 688, 708, 709, 730, 741, 812, 819], "www": [42, 329, 330, 365], "your_kaggle_usernam": 42, "competit": 42, "digit": 42, "recogn": 42, "zip": [42, 833], "readabl": [42, 808, 811, 817, 819, 820, 828, 829, 835, 836], "chmod": [42, 804, 812], "recent": [42, 795, 804, 805, 828, 843, 844], "modifi": [42, 52, 69, 75, 92, 371, 380, 469, 472, 477, 516, 762, 792, 803, 804, 805, 807, 809, 810, 813, 814, 816, 818, 819, 821, 824, 826, 828, 829, 833], "forc": [42, 810, 812, 814], "archiv": [42, 804], "inflat": [42, 813], "sample_submiss": 42, "frame": [42, 52, 75, 313, 362, 368, 414, 844, 854], "later": [42, 69, 526, 620, 803, 819, 824, 828, 829, 854], "my": [42, 812], "label_df": 42, "mod_train": 42, "data_valu": 42, "test_data_valu": 42, "correct_label": 42, "train_path": 42, "str": [42, 44, 47, 48, 52, 53, 56, 57, 58, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 134, 136, 138, 144, 145, 148, 150, 152, 153, 154, 155, 159, 160, 163, 164, 165, 166, 167, 168, 170, 172, 175, 176, 177, 178, 179, 180, 187, 188, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 368, 369, 370, 371, 374, 380, 383, 386, 387, 388, 390, 391, 392, 393, 395, 396, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 417, 421, 434, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 455, 456, 457, 462, 478, 480, 481, 482, 483, 488, 489, 490, 491, 492, 494, 496, 498, 509, 510, 511, 512, 519, 521, 522, 524, 525, 527, 528, 530, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 560, 563, 564, 566, 567, 576, 578, 579, 581, 583, 585, 586, 599, 603, 610, 614, 615, 616, 617, 620, 621, 622, 623, 624, 625, 626, 627, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 674, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 701, 702, 703, 710, 711, 716, 721, 724, 725, 726, 727, 729, 732, 735, 736, 737, 739, 743, 744, 745, 747, 749, 750, 752, 753, 754, 759, 760, 762, 763, 768, 770, 778, 780, 781, 791, 792, 813, 814, 817, 821, 824, 825, 829, 833, 838, 847, 848, 849], "makedir": 42, "valid_path": 42, "28x28": 42, "pic": 42, "pictur": [42, 798, 803, 833, 843], "int8": [42, 49, 61, 71, 72, 84, 129, 156, 161, 163, 164, 168, 615, 616, 725, 762, 763, 813, 828], "new_img": [42, 44], "builder": [42, 800], "batchwis": 42, "subset": [42, 764, 808, 812, 816, 820, 823, 825, 828, 833, 854], "goe": [42, 371, 455, 806, 819, 824, 831], "seed_valu": [42, 69, 629, 728], "randomize_dataset": 42, "shuffl": [42, 52, 61, 69, 75, 84, 497, 629], "create_dataset": 42, "num_examples_per_class": 42, "img_arrai": 42, "class_nam": [42, 759], "dir": [42, 836], "img_path": 42, "imread": [42, 44, 836], "imread_grayscal": 42, "generate_batch": [42, 798], "dataset_s": [42, 798], "ivyerror": [42, 793, 798, 817], "smaller": [42, 52, 59, 65, 75, 82, 296, 328, 344, 360, 365, 368, 380, 396, 401, 412, 509, 510, 511, 532, 620, 625, 633, 685, 693, 743, 744, 749, 751, 798, 805, 817, 833], "yield": [42, 62, 314, 315, 362, 371, 472, 630, 734, 798, 812], "x_batch_inst": 42, "form": [42, 44, 47, 48, 52, 57, 69, 71, 80, 91, 92, 93, 122, 123, 135, 140, 141, 306, 309, 323, 332, 362, 365, 369, 371, 420, 429, 459, 468, 472, 487, 522, 582, 584, 615, 620, 622, 623, 627, 652, 654, 656, 657, 658, 659, 661, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 677, 705, 716, 762, 777, 799, 803, 804, 821, 828, 831, 837, 838, 844, 854, 855, 860], "intialis": 42, "num_epoch": [42, 798], "inherit": [42, 808, 811, 817, 835, 839, 841], "creation": [42, 52, 69, 75, 98, 810, 813, 814, 820, 822, 825, 826, 828, 829, 833, 847, 854, 856, 860], "inform": [42, 44, 49, 52, 54, 72, 77, 160, 163, 313, 362, 522, 610, 616, 620, 621, 626, 703, 798, 802, 803, 804, 805, 807, 811, 812, 817, 821, 822, 824, 826, 828, 857], "insid": [42, 57, 80, 98, 371, 482, 623, 666, 760, 804, 805, 808, 811, 813, 814, 818, 821, 822, 828, 829, 847, 860], "ivynet": [42, 798], "h_w": [42, 798], "input_channel": [42, 778, 798, 833, 837], "output_channel": [42, 778, 798, 837], "gelu": [42, 43, 46, 68, 612, 774, 798], "image_widht": 42, "start_dim": [42, 52, 75, 371, 462, 798], "end_dim": [42, 52, 75, 371, 462, 798], "gpu_is_avail": [42, 617, 798], "120": [42, 65, 88, 98, 623, 668, 743, 798], "model_nam": [42, 798], "__name__": [42, 43, 45, 587, 620, 798, 817], "heavi": [42, 764, 804, 825, 826, 831, 855], "lift": [42, 826, 855], "num_correct": [42, 798], "y_pred": [42, 798], "cross_entropi": [42, 58, 81, 624, 684, 798, 811, 821, 824], "epoch_loss": [42, 798], "field": [42, 57, 63, 80, 86, 369, 371, 420, 485, 623, 631, 657, 658, 670, 671, 673, 735, 736, 737, 798, 812, 852, 860], "training_accuraci": [42, 798], "train_loss": [42, 798], "train_correct": [42, 798], "train_loop": [42, 798], "posit": [42, 44, 47, 51, 52, 53, 57, 58, 59, 74, 75, 76, 80, 81, 82, 92, 127, 129, 142, 160, 215, 216, 217, 221, 224, 235, 242, 249, 250, 256, 258, 268, 269, 276, 277, 281, 282, 286, 307, 322, 328, 333, 344, 362, 365, 369, 371, 418, 436, 446, 471, 480, 526, 536, 600, 613, 615, 616, 618, 620, 623, 624, 625, 629, 630, 634, 652, 655, 677, 682, 688, 693, 728, 733, 753, 754, 759, 762, 770, 775, 779, 780, 792, 798, 803, 805, 807, 811, 825, 828, 829, 836, 847, 856], "leav": [42, 47, 52, 70, 72, 74, 75, 76, 79, 80, 82, 88, 98, 160, 163, 235, 292, 294, 295, 301, 371, 456, 457, 462, 474, 475, 476, 491, 492, 494, 510, 511, 516, 536, 583, 625, 627, 641, 651, 656, 673, 687, 691, 696, 698, 699, 704, 705, 714, 715, 716, 717, 743, 744, 791, 798, 803, 811, 812, 813, 815, 816, 820, 821, 824, 825, 828, 836, 837], "xbatch": [42, 798], "ybatch": [42, 798], "to_devic": [42, 50, 73, 191, 617, 780, 798], "entropi": [42, 58, 81, 624, 682, 683, 684, 798], "hot": [42, 48, 71, 136, 615, 798], "ybatch_encod": [42, 798], "one_hot": [42, 48, 71, 615, 798, 838], "loss_prob": [42, 798], "ret_grad_idx": [42, 603, 621, 759, 823], "xs_grad_idx": [42, 603, 621, 759, 823], "batch_loss": [42, 798], "set_descript": [42, 798], "set_postfix": [42, 798], "accuracy_percentag": [42, 798], "naverag": [42, 798], "6f": [42, 798], "_train_summari": [42, 798], "writer": [42, 798], "writerow": [42, 798], "157it": 42, "06it": 42, "475401": 42, "11it": 42, "081436": 42, "13it": 42, "0187": 42, "029279": 42, "0324": 42, "008382": 42, "07it": 42, "00456": 42, "003816": 42, "82it": 42, "00277": 42, "002179": 42, "05it": 42, "00175": 42, "001569": 42, "00147": 42, "001235": 42, "09it": 42, "00128": 42, "001005": 42, "106": 42, "10it": 42, "00112": 42, "000837": 42, "129": [42, 622, 641, 643], "12it": 42, "000989": 42, "000709": 42, "145": 42, "000873": 42, "000606": 42, "168": [42, 527, 620, 627, 704], "08it": 42, "000774": 42, "000524": 42, "000688": 42, "000455": 42, "000613": 42, "000398": 42, "000547": 42, "000350": 42, "205": 42, "000488": 42, "000308": 42, "218": 42, "000437": 42, "000273": 42, "000391": 42, "000243": 42, "238": [42, 242, 618], "98it": 42, "000351": 42, "000216": 42, "260": 42, "plot_summari": 42, "seaborn": 42, "whitegrid": 42, "ax1": 42, "ax2": 42, "nrow": 42, "ncol": 42, "fontweight": 42, "bold": 42, "set_xlabel": 42, "set_ylabel": 42, "tight_layout": 42, "savefig": 42, "summary_plot": 42, "png": [42, 44, 45, 836], "close": [42, 57, 240, 258, 278, 306, 362, 618, 623, 625, 673, 688, 801, 803, 804, 805, 813, 816, 818, 825, 831, 854], "save_weight": [42, 780], "model_param": 42, "ivynet_weight": 42, "hdf5": [42, 69, 780, 836], "deitimageprocessor": 43, "tfdeitforimageclassif": 43, "tfdeitforimageclassificationwithteach": 43, "head": [43, 44, 622, 648, 778, 798, 802, 804, 812, 825], "distillation_classifi": 43, "cls_classifi": 43, "randomli": [43, 368, 391, 392, 393, 622, 645, 762, 763, 764, 765, 770, 778], "henc": [43, 63, 218, 332, 365, 618, 625, 631, 688, 735, 736, 737, 738, 787, 804, 811, 812, 813, 824, 828], "reproduc": [43, 56, 79, 622, 645, 762, 763, 764, 765, 770, 801, 807, 818], "image_processor": [43, 847, 848], "facebook": 43, "distil": [43, 855], "patch16": 43, "outputs_from_original_model": 43, "predicted_class_idx": 43, "id2label": [43, 847], "architectur": [43, 798, 804, 838, 839, 852, 853, 854, 857, 858, 859], "bertforsequenceclassif": 43, "bertforpretrain": 43, "NOT": [43, 263, 618, 791, 803], "probabl": [43, 52, 56, 58, 61, 75, 79, 81, 84, 368, 370, 375, 380, 391, 392, 393, 442, 495, 509, 512, 516, 622, 624, 629, 645, 648, 651, 682, 724, 764, 777, 778, 798, 828, 840, 845], "ptarmigan": 43, "rf": [43, 805], "branch": [43, 223, 235, 238, 240, 268, 280, 281, 282, 285, 618, 803, 804, 805, 807, 812, 819, 839, 847, 854], "moduleconvert": [43, 775, 780], "mc": 43, "from_keras_modul": [43, 775], "compiled_func": 43, "return_graph": [43, 45], "compiled_output": 43, "diverg": [43, 52, 75, 242, 370, 442, 618], "_all_funct": [43, 45], "convert_to_tensor_v2_with_dispatch": 43, "transpose_v2": 43, "convolution_v2": 43, "bias_add": 43, "binary_op_wrapp": 43, "cast": [43, 49, 51, 52, 57, 65, 72, 74, 80, 147, 150, 175, 269, 380, 510, 511, 616, 618, 623, 633, 680, 743, 744, 749, 751, 763, 821, 826, 833], "moments_v2": 43, "batch_norm": [43, 45, 52, 75, 374], "tensordot": [43, 57, 80, 623, 792, 813], "softmax_v2": 43, "_slice_help": 43, "save_to_disk": [43, 45, 780], "12265048989200113": 43, "11038777417100028": 43, "1167045795539998": 43, "ivy_api_kei": 44, "obj": [44, 122, 123, 544, 615, 620, 847, 848, 849], "combo": [44, 836], "permit": [44, 808, 820, 825, 828, 831], "usabl": [44, 820, 829], "neither": [44, 218, 235, 242, 268, 618, 623, 675, 812, 825, 831], "nor": [44, 218, 235, 242, 268, 618, 812, 825, 858], "specifc": 44, "invoc": 44, "represent": [44, 52, 53, 69, 75, 76, 98, 145, 146, 160, 163, 188, 189, 215, 218, 225, 228, 230, 235, 242, 265, 268, 270, 285, 310, 341, 345, 350, 354, 362, 365, 522, 583, 613, 616, 617, 618, 620, 762, 764, 765, 778, 813, 852, 853, 855, 859, 860], "externally_link": 44, "logo": 44, "patch": [44, 286, 618, 813, 854], "cv2_imshow": 44, "envrion": 44, "canni": 44, "original_img": 44, "fn_arg": 44, "dilate_edg": 44, "edg": [44, 52, 59, 75, 82, 313, 362, 368, 371, 380, 403, 472, 512, 625, 685, 687, 700, 765, 807, 828, 848, 854, 856, 860], "morphologi": 44, "hk_model": 44, "resnet18": [44, 45], "keras_model": 44, "count": [44, 52, 59, 63, 66, 71, 75, 82, 86, 89, 129, 201, 334, 365, 371, 380, 480, 485, 507, 512, 615, 617, 623, 625, 631, 634, 653, 679, 686, 689, 735, 736, 753, 754, 810, 811, 815, 836], "odsc": 44, "talk": [44, 859], "228": 45, "352": [45, 79, 622, 646, 817], "nvidia_ml_py3": 45, "19190": 45, "241af6b4a51197474b0da3ee7bfa32d847756c8f0d93b51448655d6458312714": 45, "b9": 45, "b1": [45, 623, 672], "cb4feab29709d4155310d29a421389665dcab9eb3b679b527b": 45, "cycler": 45, "fonttool": 45, "965": 45, "pillow": 45, "kiwisolv": 45, "show_graph": [45, 780], "to_ivy_modul": [45, 775, 838], "image_dim": 45, "v0": [45, 837], "urlerror": 45, "dev_str": 45, "comp_network": 45, "time_chronolog": 45, "ret0_nc": 45, "ret1_nc": 45, "ret0_c": 45, "ret1_c": 45, "pytorch_vision_v0": 45, "distribut": [45, 52, 58, 61, 75, 81, 84, 368, 369, 370, 375, 391, 392, 393, 425, 434, 440, 442, 444, 445, 447, 495, 496, 497, 498, 499, 624, 629, 682, 683, 684, 724, 725, 726, 727, 729, 777, 778, 803, 804, 812, 814, 839, 854, 857], "distributed_c10d": 45, "262": 45, "reduce_op": 45, "deprec": 45, "reduceop": 45, "004645566477999864": 45, "0044566806820000695": 45, "attribut": [45, 69, 160, 161, 162, 163, 194, 195, 203, 537, 538, 616, 617, 620, 760, 809, 810, 811, 816, 817, 821, 822, 824, 825, 831, 834, 835, 836, 837], "definit": [45, 51, 57, 74, 80, 287, 618, 623, 652, 798, 801, 805, 808, 813, 818, 821, 835, 848], "max_pool2d": [45, 52, 75, 368, 387], "__iadd__": 45, "adaptive_avg_pool2d": [45, 52, 75, 368], "_arraywithactiv": [46, 97], "abc": [46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 101, 535, 620, 627, 722, 777, 782, 791, 792, 835], "_abc_impl": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc_data": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "approxim": [46, 51, 52, 57, 68, 74, 75, 80, 92, 95, 105, 216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 242, 256, 257, 258, 259, 273, 280, 281, 285, 286, 287, 342, 352, 365, 370, 444, 445, 612, 618, 623, 666, 669, 774, 816, 825], "complex_mod": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 612, 618, 774, 822], "variant": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 666, 669, 670, 671, 673, 677, 678, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 808, 815, 816, 831], "docstr": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 600, 601, 602, 605, 607, 608, 609, 610, 615, 616, 618, 620, 623, 625, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 802, 803, 806, 810, 819, 820, 821, 822, 825, 827, 829], "liter": [46, 51, 52, 57, 68, 74, 75, 80, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 368, 369, 371, 374, 389, 399, 403, 411, 425, 429, 434, 437, 440, 472, 493, 612, 618, 623, 632, 664, 680, 741, 774, 831], "magnitud": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 215, 218, 235, 242, 268, 286, 290, 294, 295, 297, 360, 612, 618, 623, 673, 674, 774, 813], "handle_complex_input": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 612, 618, 774, 822], "element": [46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 72, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 93, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 124, 130, 131, 140, 141, 142, 158, 160, 163, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 336, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 371, 380, 381, 391, 392, 393, 396, 401, 404, 405, 406, 410, 412, 413, 419, 420, 421, 450, 451, 452, 462, 463, 464, 466, 469, 479, 480, 482, 485, 507, 508, 510, 511, 512, 513, 514, 515, 517, 518, 520, 524, 527, 528, 539, 540, 556, 558, 578, 579, 581, 585, 586, 612, 615, 618, 620, 622, 623, 625, 627, 629, 630, 631, 632, 633, 634, 645, 653, 655, 657, 658, 663, 668, 670, 671, 673, 677, 685, 688, 689, 690, 691, 692, 693, 694, 695, 704, 707, 713, 724, 732, 733, 734, 735, 736, 737, 738, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 764, 778, 792, 816, 826, 828, 831, 833, 858], "138": [46, 105, 612], "165": [46, 105, 612, 622, 646], "hardswish": [46, 68, 612, 774], "leaky_relu": [46, 68, 75, 290, 612, 763], "alpha": [46, 51, 52, 68, 74, 75, 102, 107, 218, 284, 290, 291, 298, 302, 308, 360, 362, 369, 374, 375, 421, 493, 496, 497, 498, 612, 618, 774, 820, 825, 826], "float": [46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 60, 61, 63, 65, 68, 71, 72, 74, 75, 76, 77, 79, 80, 81, 83, 84, 88, 92, 95, 97, 107, 113, 121, 122, 123, 125, 127, 129, 130, 131, 132, 133, 137, 138, 143, 147, 151, 155, 160, 164, 168, 174, 175, 178, 184, 193, 202, 206, 207, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 239, 240, 241, 242, 246, 248, 249, 250, 251, 252, 254, 256, 257, 258, 259, 260, 261, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 298, 301, 302, 304, 305, 306, 307, 308, 309, 311, 312, 313, 328, 329, 330, 331, 338, 339, 344, 346, 347, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 391, 392, 393, 410, 411, 417, 420, 421, 423, 434, 438, 440, 441, 445, 446, 461, 479, 488, 489, 490, 493, 494, 495, 496, 497, 498, 499, 509, 510, 511, 512, 517, 518, 519, 526, 527, 528, 536, 545, 569, 570, 573, 578, 579, 599, 601, 602, 605, 607, 608, 609, 612, 613, 615, 616, 617, 618, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 633, 645, 648, 651, 652, 654, 657, 658, 659, 661, 664, 665, 666, 669, 670, 671, 672, 673, 674, 675, 677, 680, 682, 683, 684, 701, 702, 703, 710, 723, 726, 727, 733, 735, 736, 737, 738, 743, 744, 746, 747, 748, 749, 750, 751, 752, 759, 762, 763, 765, 774, 777, 778, 781, 782, 801, 807, 811, 813, 816, 817, 818, 820, 821, 823, 824, 826, 828, 829, 831, 833, 835, 837], "slope": [46, 52, 68, 75, 107, 290, 291, 296, 298, 302, 360, 612, 774], "neg": [46, 51, 52, 57, 59, 61, 66, 68, 74, 75, 80, 82, 84, 89, 92, 107, 110, 113, 121, 127, 129, 142, 235, 242, 249, 250, 268, 269, 277, 282, 290, 307, 322, 325, 360, 362, 369, 370, 371, 375, 418, 425, 429, 445, 480, 499, 612, 615, 618, 623, 625, 629, 634, 653, 655, 673, 677, 679, 680, 686, 688, 689, 693, 726, 753, 754, 762, 764, 774, 811, 824], "leaki": [46, 68, 107, 612, 774], "log_softmax": [46, 68, 612, 774], "0719": [46, 68, 108], "221": [46, 108], "mish": [46, 68, 612, 774], "30340147": [46, 109, 612], "86509842": [46, 68, 109, 612], "269": [46, 111], "731": [46, 111], "881": [46, 51, 74, 111, 221, 234, 274, 618], "422": [46, 112, 612], "155": [46, 79, 112, 612, 622, 646], "softplu": [46, 68, 612, 774, 831], "beta": [46, 52, 60, 68, 75, 83, 113, 298, 302, 308, 311, 312, 360, 362, 369, 370, 374, 375, 421, 446, 493, 497, 498, 612, 628, 723, 774, 831], "threshold": [46, 51, 52, 68, 74, 75, 113, 266, 267, 305, 331, 360, 365, 370, 371, 441, 446, 479, 612, 618, 774, 831], "union": [46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 460, 461, 462, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 545, 547, 548, 549, 551, 552, 555, 556, 558, 559, 563, 564, 568, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 599, 600, 601, 602, 603, 604, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 777, 782, 783, 808, 811, 813, 814, 815, 817, 820, 821, 824, 829, 831, 833, 838, 847, 848, 849], "3461": [46, 68, 113, 612], "6491": [46, 68, 113, 612], "_array_to_new_backend": 47, "_to_ivi": 47, "_to_n": 47, "to_ignor": [47, 67, 90, 627, 715, 716], "_to_new_backend": 47, "args_to_ivi": 47, "include_deriv": [47, 70, 627, 705, 716, 759], "nest": [47, 69, 70, 98, 101, 238, 554, 583, 600, 603, 618, 620, 621, 626, 701, 702, 704, 705, 706, 707, 708, 709, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 782, 808, 810, 811, 821, 823, 829, 836, 837, 839, 841, 854], "unchang": [47, 51, 368, 371, 412, 462, 622, 645], "deriv": [47, 48, 52, 54, 70, 71, 75, 77, 126, 131, 138, 144, 307, 311, 336, 362, 365, 601, 602, 605, 606, 607, 608, 609, 615, 621, 626, 627, 703, 705, 716, 780, 782, 783, 813, 814, 835, 837], "word": [47, 121, 371, 465, 615, 629, 727, 775, 778, 811, 824, 825, 841], "args_to_n": [47, 824], "cont_inplac": 47, "decid": [47, 69, 627, 715, 716, 798, 803, 804, 813, 831], "args_to_new_backend": 47, "shallow": [47, 627, 711, 712, 716, 721, 722], "nativevari": 47, "mutabl": [47, 627, 705, 711, 712, 716, 721, 722, 809], "to_ivi": [47, 70, 627, 717, 824], "leaf": [47, 69, 76, 88, 98, 535, 627, 714, 715, 717, 744, 811, 821, 836], "travers": [47, 70, 627, 708, 716, 811, 813, 817, 833], "lowest": [47, 52, 61, 70, 75, 84, 380, 512, 627, 629, 716, 725, 792, 821, 839, 841, 851, 855, 859], "search": [47, 52, 70, 75, 730, 731, 770, 802, 804, 811, 815, 818, 828, 829, 843], "to_new_backend": 47, "_arraywithcr": [48, 97], "boolean": [48, 49, 51, 52, 53, 59, 62, 65, 69, 71, 72, 74, 75, 76, 82, 85, 88, 97, 98, 118, 120, 122, 123, 124, 130, 147, 163, 165, 167, 168, 171, 187, 197, 205, 211, 225, 226, 227, 228, 229, 230, 262, 263, 264, 265, 329, 330, 344, 365, 369, 371, 425, 434, 440, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 480, 486, 521, 524, 535, 542, 545, 546, 550, 551, 552, 553, 554, 555, 556, 565, 568, 571, 572, 574, 575, 599, 614, 615, 616, 617, 618, 620, 622, 625, 626, 627, 630, 633, 648, 688, 689, 690, 692, 694, 695, 697, 699, 701, 702, 714, 732, 733, 734, 746, 748, 762, 763, 764, 765, 770, 781, 811, 813, 821, 825, 828, 831], "alwai": [48, 49, 52, 53, 59, 71, 72, 75, 82, 105, 123, 147, 218, 268, 339, 365, 369, 371, 436, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 486, 542, 549, 612, 616, 618, 620, 625, 688, 689, 690, 692, 694, 695, 697, 699, 764, 798, 803, 804, 805, 808, 809, 811, 813, 816, 819, 820, 821, 824, 825, 826, 827, 828, 829, 831, 833, 839, 847], "never": [48, 52, 59, 71, 75, 82, 123, 371, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 486, 542, 620, 625, 688, 689, 690, 692, 694, 695, 697, 699, 805, 813, 824, 825, 828], "valueerror": [48, 52, 59, 71, 75, 82, 86, 123, 368, 370, 401, 412, 445, 450, 451, 458, 460, 462, 463, 464, 471, 486, 625, 688, 689, 690, 692, 694, 695, 697, 699, 738, 764, 793, 817], "buffer": [48, 71, 75, 82, 123, 129, 450, 451, 458, 460, 462, 463, 464, 471, 486, 615, 688, 689, 690, 692, 694, 695, 697, 699, 779, 780, 824, 839], "nativedtyp": [48, 49, 52, 56, 57, 61, 62, 65, 71, 75, 80, 84, 85, 88, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 146, 147, 152, 153, 154, 155, 156, 157, 158, 159, 164, 165, 169, 171, 173, 177, 187, 306, 307, 308, 309, 310, 311, 312, 327, 334, 349, 362, 365, 375, 380, 495, 496, 497, 498, 499, 509, 510, 511, 512, 515, 518, 615, 616, 622, 623, 629, 630, 632, 633, 645, 680, 725, 726, 727, 730, 731, 741, 743, 744, 749, 751, 777, 813, 814, 820, 829, 833], "datatyp": [48, 52, 69, 71, 75, 123, 131, 135, 152, 173, 177, 368, 414, 615, 616, 757, 829, 847], "nativedevic": [48, 50, 52, 61, 71, 73, 75, 84, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 189, 190, 191, 192, 193, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 306, 307, 322, 362, 375, 495, 496, 498, 499, 615, 617, 629, 724, 725, 726, 727, 777, 782, 783, 813, 814, 817, 820, 829], "39999998": [48, 122, 123, 615, 631, 736], "5999999": [48, 52, 75, 79, 122, 123, 292, 360, 369, 416, 615, 622, 645, 651], "0999999": [48, 65, 122, 123, 292, 301, 304, 346, 360, 365, 615, 747], "10000038": [48, 122, 123, 615], "90786433e": [48, 122, 123, 615], "310": [48, 122, 123, 615], "copy_arrai": [48, 71, 615], "to_ivy_arrai": [48, 71, 124, 615], "empty_lik": [48, 52, 71, 75, 259, 369, 419, 615, 618], "uniniti": [48, 125, 126, 615, 819], "from_dlpack": [48, 71, 615], "full_lik": [48, 71, 615, 829], "fill_valu": [48, 52, 62, 71, 75, 85, 130, 131, 247, 255, 371, 375, 480, 499, 615, 618, 630, 733, 813, 826, 829], "scalar": [48, 51, 52, 53, 57, 68, 71, 74, 75, 76, 80, 92, 107, 131, 136, 218, 239, 284, 290, 332, 333, 335, 339, 342, 344, 346, 351, 365, 368, 369, 371, 414, 421, 450, 451, 452, 461, 466, 586, 599, 615, 618, 620, 623, 680, 813, 823, 825, 839, 854], "fill": [48, 51, 52, 61, 62, 69, 71, 74, 75, 84, 85, 125, 130, 131, 133, 136, 137, 138, 143, 144, 269, 307, 362, 369, 371, 375, 425, 429, 434, 440, 461, 480, 481, 496, 498, 499, 615, 618, 629, 630, 725, 733, 777, 803, 826], "000123": [48, 131, 615], "stop": [48, 52, 54, 71, 75, 77, 121, 132, 133, 208, 369, 434, 440, 565, 602, 605, 607, 608, 609, 610, 615, 617, 620, 621, 626, 627, 701, 702, 703, 715, 782, 820, 823, 831, 833, 839, 854], "num": [48, 71, 132, 133, 615, 762, 805, 820, 833], "endpoint": [48, 71, 132, 133, 615, 777, 820], "logspac": [48, 71, 615, 833], "log": [48, 51, 52, 57, 71, 74, 75, 80, 113, 133, 258, 260, 273, 294, 295, 347, 354, 360, 365, 370, 375, 442, 444, 445, 495, 612, 615, 618, 671, 762, 764, 765, 774, 805, 811, 812, 815, 821, 824, 825, 826, 828, 830, 831, 833, 836], "sequenc": [48, 52, 56, 57, 59, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 127, 129, 131, 133, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 358, 359, 362, 365, 366, 367, 368, 369, 371, 375, 380, 381, 383, 384, 391, 392, 393, 395, 396, 400, 401, 403, 410, 411, 412, 413, 416, 424, 425, 426, 428, 432, 433, 434, 437, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 456, 457, 458, 459, 465, 467, 468, 470, 471, 473, 476, 478, 480, 481, 482, 486, 487, 488, 490, 491, 492, 494, 496, 497, 509, 510, 511, 512, 519, 520, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 559, 563, 564, 578, 579, 581, 583, 585, 586, 599, 600, 603, 604, 605, 610, 615, 618, 620, 621, 622, 623, 625, 627, 633, 634, 635, 636, 637, 638, 639, 640, 642, 644, 645, 646, 648, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 680, 682, 683, 684, 685, 686, 688, 689, 691, 692, 693, 694, 695, 696, 699, 700, 704, 711, 721, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 778, 781, 783, 805, 812, 813, 814, 815, 817, 828, 829, 831, 833, 838, 857], "on_valu": [48, 71, 133, 136, 615], "off_valu": [48, 71, 133, 136, 615], "evenli": [48, 51, 52, 56, 59, 69, 71, 74, 75, 79, 82, 121, 132, 133, 287, 368, 410, 413, 615, 618, 622, 625, 635, 636, 637, 638, 640, 642, 644, 694], "hint": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 472, 480, 509, 512, 539, 543, 545, 547, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 803, 808, 816, 818, 820, 821, 824, 825, 829], "simplic": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 472, 480, 509, 512, 539, 543, 545, 547, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 816, 831, 837], "nestabl": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 472, 480, 509, 512, 516, 525, 533, 534, 539, 543, 545, 547, 549, 563, 581, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 803, 806, 815, 816, 824, 828, 841], "464": [48, 51, 84, 133, 222, 223, 618], "15888336": [48, 133], "2154": [48, 133], "43469003": [48, 133], "meshgrid": [48, 71, 615], "spars": [48, 52, 58, 71, 75, 81, 134, 310, 362, 369, 425, 434, 440, 615, 624, 684], "xy": [48, 71, 134, 615], "dimension": [48, 51, 52, 57, 59, 62, 65, 66, 69, 71, 74, 75, 80, 82, 88, 89, 97, 121, 127, 129, 134, 142, 287, 322, 329, 330, 362, 365, 368, 369, 371, 380, 395, 396, 400, 401, 411, 412, 418, 450, 451, 452, 456, 461, 462, 507, 519, 615, 618, 623, 625, 630, 633, 634, 653, 654, 660, 663, 666, 668, 669, 679, 680, 694, 730, 731, 733, 746, 747, 748, 749, 750, 751, 752, 753, 754, 821, 823, 828, 831, 833, 851, 854, 861], "repres": [48, 51, 52, 56, 57, 74, 75, 79, 80, 95, 120, 134, 136, 159, 217, 218, 221, 224, 233, 235, 242, 268, 281, 285, 286, 310, 324, 325, 326, 342, 359, 362, 365, 367, 368, 369, 370, 371, 374, 375, 378, 410, 413, 427, 439, 445, 472, 483, 488, 489, 490, 495, 501, 508, 544, 614, 615, 616, 618, 620, 622, 623, 645, 646, 660, 668, 671, 672, 764, 777, 781, 792, 804, 808, 813, 831, 835, 851, 852, 855], "coordin": [48, 51, 62, 74, 75, 85, 134, 142, 223, 285, 314, 315, 322, 342, 362, 376, 500, 615, 618, 630, 733], "conserv": [48, 134, 615], "cartesian": [48, 134, 615], "matrix": [48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 97, 134, 140, 141, 142, 322, 323, 362, 369, 371, 380, 417, 420, 421, 424, 425, 426, 428, 429, 430, 431, 432, 433, 434, 435, 436, 439, 440, 470, 509, 521, 527, 615, 620, 622, 623, 646, 652, 654, 656, 657, 658, 659, 661, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 677, 678, 681, 762, 764, 777, 778, 792, 803, 813, 825, 852, 854], "ij": [48, 65, 134, 615, 633, 745, 792], "respect": [48, 51, 52, 54, 57, 74, 75, 77, 80, 92, 134, 215, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 277, 281, 284, 285, 294, 342, 357, 360, 365, 367, 369, 371, 374, 423, 438, 449, 488, 490, 544, 601, 602, 603, 604, 605, 606, 607, 608, 609, 611, 615, 618, 620, 621, 622, 623, 626, 635, 642, 643, 648, 653, 670, 673, 701, 702, 703, 759, 762, 777, 792, 802, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 820, 821, 823, 824, 825, 828, 829, 830, 850, 860], "rank": [48, 52, 57, 59, 66, 75, 80, 82, 89, 92, 93, 94, 95, 96, 101, 134, 317, 318, 319, 320, 321, 362, 369, 371, 380, 425, 426, 434, 437, 440, 472, 480, 519, 615, 623, 625, 630, 634, 653, 655, 664, 666, 670, 672, 677, 679, 680, 687, 688, 696, 699, 700, 733, 753, 754], "ni": [48, 134, 615], "xi": [48, 134, 615], "scatter": [48, 53, 71, 76, 136, 563, 564, 615, 620, 810, 824, 831, 861], "j": [48, 51, 52, 53, 57, 65, 71, 74, 75, 80, 92, 120, 136, 216, 217, 218, 219, 221, 224, 233, 235, 238, 240, 248, 256, 258, 262, 268, 279, 281, 282, 285, 286, 332, 365, 368, 369, 380, 395, 396, 400, 411, 412, 415, 420, 422, 431, 437, 519, 524, 614, 615, 618, 620, 623, 633, 657, 677, 745, 792, 805, 806, 810, 847, 850], "unless": [48, 52, 57, 71, 75, 136, 268, 328, 344, 349, 365, 615, 618, 623, 666, 809, 814, 824, 839, 848, 849], "ones_lik": [48, 71, 615, 809, 838], "tril": [48, 71, 615], "whose": [48, 51, 52, 53, 57, 59, 63, 65, 71, 74, 75, 76, 80, 82, 86, 88, 93, 95, 97, 131, 140, 141, 217, 221, 224, 232, 233, 234, 273, 274, 280, 281, 285, 286, 287, 323, 337, 341, 345, 346, 348, 352, 362, 369, 371, 420, 439, 471, 480, 485, 526, 581, 615, 618, 620, 623, 625, 631, 633, 652, 654, 656, 657, 658, 659, 660, 661, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 677, 680, 689, 693, 735, 736, 737, 744, 745, 764, 816, 828], "innermost": [48, 52, 57, 80, 140, 141, 323, 362, 369, 420, 615, 623, 652, 654, 656, 657, 658, 659, 661, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 677], "mxn": [48, 52, 57, 80, 140, 141, 323, 362, 615, 623, 656, 664, 666, 667, 669, 670, 674, 677], "matric": [48, 52, 57, 75, 80, 92, 93, 97, 134, 140, 141, 323, 362, 369, 371, 420, 425, 426, 428, 432, 433, 438, 461, 615, 622, 623, 646, 652, 654, 656, 657, 658, 659, 660, 661, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 677, 678, 764, 801, 818, 854], "diagon": [48, 52, 57, 75, 80, 93, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 418, 421, 429, 435, 461, 615, 623, 655, 677], "triangular": [48, 52, 57, 80, 140, 141, 142, 322, 323, 362, 369, 435, 615, 623, 652, 658, 659, 666, 670], "alloc": [48, 49, 52, 72, 140, 141, 147, 323, 362, 615, 616, 803, 805, 839], "triu": [48, 71, 615], "upper": [48, 52, 57, 61, 75, 80, 84, 127, 141, 142, 307, 323, 362, 369, 380, 435, 512, 615, 623, 629, 652, 658, 659, 670, 727, 813, 824, 828], "zeros_lik": [48, 52, 71, 147, 264, 371, 480, 601, 602, 605, 607, 608, 609, 615, 616, 618, 621, 623, 625, 670, 685, 825, 831], "data_typ": [49, 52, 72, 75, 177, 616, 810, 813, 828, 829], "_arraywithdatatyp": [49, 97], "irrespect": [49, 57, 72, 80, 147, 616, 623, 673, 811, 824, 835, 861], "promot": [49, 51, 52, 57, 72, 74, 75, 80, 87, 97, 98, 147, 150, 173, 174, 175, 181, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 339, 347, 352, 365, 368, 380, 411, 509, 572, 594, 616, 618, 620, 623, 625, 633, 652, 653, 660, 661, 663, 664, 665, 666, 668, 669, 671, 672, 679, 680, 686, 696, 739, 747, 750, 762, 763, 807, 816, 817, 821, 830], "nan": [49, 51, 52, 53, 63, 65, 72, 74, 75, 76, 147, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 243, 244, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 274, 277, 278, 279, 280, 281, 282, 285, 286, 288, 294, 328, 329, 330, 340, 344, 349, 352, 360, 365, 371, 380, 480, 507, 508, 515, 516, 517, 518, 545, 599, 613, 616, 618, 620, 631, 633, 634, 735, 736, 737, 738, 746, 747, 748, 750, 751, 752, 753, 754, 762, 765, 807, 813, 816, 823, 829, 830], "infin": [49, 51, 53, 57, 72, 74, 80, 147, 215, 216, 217, 218, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 277, 278, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 545, 613, 616, 618, 620, 623, 633, 634, 671, 680, 746, 748, 753, 754, 807, 816], "desir": [49, 50, 52, 62, 69, 72, 73, 75, 85, 92, 147, 149, 150, 209, 313, 353, 362, 365, 371, 380, 470, 515, 518, 519, 616, 617, 623, 630, 675, 732, 777, 778, 805, 809, 812, 813, 814, 825, 833, 843, 847, 854], "broadcast_arrai": [49, 72, 616], "mix": [49, 51, 72, 74, 75, 76, 81, 84, 97, 98, 148, 161, 162, 175, 194, 195, 225, 228, 229, 230, 235, 236, 242, 246, 254, 255, 265, 268, 271, 277, 370, 380, 446, 516, 535, 537, 538, 539, 540, 549, 583, 586, 616, 617, 618, 620, 622, 623, 624, 625, 628, 633, 636, 638, 641, 643, 644, 646, 651, 652, 675, 682, 684, 685, 723, 745, 747, 750, 763, 765, 803, 806, 813, 814, 815, 824, 831, 833, 841, 854, 858, 860], "broadcast_to": [49, 72, 616, 813], "can_cast": [49, 72, 616, 813, 821, 825], "accord": [49, 52, 53, 59, 65, 72, 82, 88, 150, 160, 218, 229, 235, 242, 268, 279, 313, 362, 368, 371, 412, 472, 539, 542, 563, 564, 616, 618, 620, 623, 625, 633, 679, 687, 700, 750, 752, 757, 764, 784, 791, 803, 804, 807, 813, 819, 821, 825, 828], "finfo": [49, 72, 616, 828], "resolut": [49, 72, 160, 616, 805], "4028235e": [49, 160, 616], "iinfo": [49, 72, 616], "integ": [49, 51, 52, 56, 57, 59, 61, 65, 66, 69, 74, 75, 76, 79, 80, 82, 84, 88, 89, 97, 98, 121, 130, 163, 164, 170, 174, 175, 179, 215, 225, 226, 227, 228, 229, 230, 231, 241, 242, 253, 265, 270, 273, 277, 278, 288, 289, 324, 325, 326, 329, 330, 334, 338, 339, 362, 365, 368, 371, 375, 378, 380, 395, 400, 410, 413, 414, 458, 467, 472, 480, 486, 495, 496, 497, 498, 499, 501, 502, 507, 509, 510, 511, 516, 519, 542, 558, 568, 600, 615, 616, 618, 620, 622, 623, 625, 629, 632, 633, 634, 635, 636, 637, 638, 640, 642, 644, 653, 655, 665, 679, 680, 694, 724, 725, 726, 727, 728, 729, 741, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 763, 764, 765, 770, 778, 792, 805, 811, 813, 823, 826, 828, 833, 835], "119": [49, 163], "1220": [49, 163], "int16": [49, 52, 61, 65, 72, 84, 150, 154, 156, 161, 163, 170, 185, 380, 510, 511, 616, 633, 725, 743, 744, 749, 751, 762, 763, 813, 825, 828, 833], "32768": [49, 72, 163, 579, 620], "32767": [49, 72, 163], "is_bool_dtyp": [49, 72, 616], "is_float_dtyp": [49, 72, 616, 829], "is_int_dtyp": [49, 72, 616, 826, 829], "is_uint_dtyp": [49, 72, 616, 826, 829], "result_typ": [49, 72, 616, 813], "arrays_and_dtyp": [49, 72, 175, 616], "_arraywithdevic": [50, 97], "move": [50, 52, 73, 75, 142, 205, 209, 213, 322, 362, 371, 471, 615, 617, 780, 798, 805, 814, 829], "addit": [50, 52, 53, 60, 73, 75, 76, 83, 118, 120, 209, 218, 278, 374, 380, 493, 508, 513, 532, 533, 534, 600, 614, 617, 618, 620, 622, 626, 628, 648, 703, 723, 778, 792, 803, 804, 805, 809, 813, 815, 816, 819, 821, 823, 824, 825, 828, 829, 831, 835, 836, 838, 847, 854, 855, 856, 860], "__dlpack__": [50, 73, 128, 209, 615, 617], "caveat": [50, 73, 209, 370, 444, 617], "portabl": [50, 73, 209, 617, 798, 852], "_arraywithelementwis": [51, 97], "ab": [51, 57, 67, 74, 90, 97, 98, 273, 328, 344, 365, 371, 479, 618, 623, 627, 664, 674, 680, 712, 715, 759, 791, 792, 801, 808, 813, 818, 822, 825, 828], "absolut": [51, 52, 57, 67, 69, 74, 75, 80, 97, 215, 279, 328, 344, 347, 353, 365, 369, 370, 421, 436, 441, 443, 618, 623, 664, 665, 666, 671, 757, 759, 762, 764, 765, 799, 804], "aco": [51, 74, 618], "invers": [51, 52, 57, 74, 75, 80, 216, 217, 220, 221, 222, 223, 224, 368, 378, 390, 399, 401, 411, 501, 618, 623, 661, 665, 669, 784, 813], "cosin": [51, 74, 216, 217, 232, 233, 306, 309, 362, 368, 389, 399, 618, 778], "acosh": [51, 74, 161, 162, 616, 618, 801, 818], "area": [51, 52, 74, 75, 79, 217, 221, 224, 368, 403, 410, 413, 618, 824, 831, 844, 850], "hyperbol": [51, 74, 217, 221, 224, 233, 281, 285, 286, 298, 302, 360, 618], "sector": [51, 74, 217, 221, 224, 618, 844], "second": [51, 52, 54, 57, 59, 63, 74, 75, 76, 77, 80, 82, 86, 93, 97, 98, 118, 142, 173, 181, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 313, 322, 328, 340, 342, 343, 344, 350, 354, 355, 362, 365, 369, 370, 371, 378, 380, 419, 420, 421, 423, 427, 446, 478, 485, 496, 498, 502, 509, 512, 524, 573, 595, 601, 602, 607, 614, 615, 616, 618, 620, 621, 623, 625, 626, 627, 631, 653, 656, 657, 658, 660, 663, 668, 670, 671, 673, 675, 677, 679, 696, 697, 702, 705, 735, 736, 737, 782, 804, 807, 810, 813, 815, 819, 824, 825, 828, 830, 835, 845, 859], "multipli": [51, 52, 56, 65, 74, 75, 79, 92, 218, 284, 345, 368, 369, 403, 431, 432, 510, 511, 618, 622, 633, 645, 743, 749, 805, 808, 809, 811, 815], "angl": [51, 74, 223, 233, 281, 286, 343, 365, 618], "deg": [51, 74, 219, 618], "radian": [51, 52, 74, 75, 216, 219, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 618, 816], "degre": [51, 52, 65, 74, 75, 88, 219, 234, 274, 316, 362, 371, 478, 618, 633, 750, 752, 853], "1j": [51, 74, 75, 219, 220, 232, 233, 238, 240, 252, 275, 280, 281, 285, 332, 578, 618, 620], "2j": [51, 52, 74, 75, 219, 248, 332, 368, 395, 400, 579, 618, 620], "3j": [51, 52, 74, 75, 219, 252, 275, 332, 365, 618], "35619449": [51, 219, 618], "78539816": [51, 219, 618], "135": [51, 219, 527, 618, 620], "asin": [51, 74, 618], "sine": [51, 74, 220, 221, 280, 281, 618], "927": [51, 74, 220], "asinh": [51, 74, 220, 618], "atan": [51, 74, 618], "tangent": [51, 74, 222, 223, 224, 285, 286, 298, 302, 358, 360, 367, 618, 816], "785": [51, 74, 222, 223, 618], "atan2": [51, 74, 618], "quotient": [51, 74, 223, 235, 242, 618], "245": [51, 79, 223, 622, 645, 646], "588": [51, 223, 618], "inf": [51, 52, 53, 57, 74, 75, 76, 80, 223, 240, 249, 250, 251, 252, 256, 257, 259, 269, 294, 347, 360, 365, 369, 380, 417, 512, 545, 599, 613, 618, 620, 622, 623, 649, 664, 680, 762, 765, 801, 813, 818, 823], "719": [51, 223, 618], "197": [51, 223, 618], "atanh": [51, 74, 618], "549": [51, 74, 79, 224, 618, 622, 646], "bitwise_and": [51, 74, 618], "bitwise_invert": [51, 74, 618], "bitiwse_invert": [51, 226], "bitwise_left_shift": [51, 74, 618], "bitwise_or": [51, 74, 618], "bitwise_right_shift": [51, 74, 97, 618], "bitwise_xor": [51, 74, 97, 618], "ceil": [51, 52, 74, 75, 92, 95, 121, 368, 386, 387, 388, 404, 405, 406, 409, 615, 618, 778, 824], "round": [51, 52, 74, 75, 92, 94, 95, 96, 218, 231, 235, 241, 242, 268, 282, 288, 289, 338, 365, 618, 801, 803, 804, 805, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 843, 844, 845], "416": [51, 232, 618], "540": [51, 232], "990": [51, 232], "cosh": [51, 74, 232, 618], "deg2rad": [51, 74, 618], "convers": [51, 52, 75, 234, 274, 565, 575, 620, 779, 780, 803, 832, 834, 838, 839, 841, 845, 853, 860], "180": [51, 74, 234, 274, 618], "270": [51, 74, 234, 274, 618], "360": [51, 74, 234, 274, 618, 812], "dividend": [51, 74, 235, 242, 277, 289, 618], "divisor": [51, 52, 54, 65, 74, 75, 77, 88, 235, 242, 245, 246, 277, 289, 368, 371, 386, 387, 388, 458, 467, 486, 601, 602, 607, 618, 621, 633, 750, 752, 778, 782], "375": [51, 236, 271], "erf": [51, 74, 337, 365, 618], "exponenti": [51, 52, 74, 75, 237, 238, 240, 260, 273, 290, 299, 360, 369, 430, 618], "gauss": [51, 74, 237, 618], "328": [51, 237, 285, 618], "677": [51, 237], "842": [51, 237, 285, 618], "71828198": [51, 74, 238], "38905573": [51, 74, 238], "08553696": [51, 74, 238, 618], "exp2": [51, 74, 618], "expm1": [51, 74, 618, 813], "244": [51, 240, 798], "918": [51, 240], "147": [51, 240, 618], "floor": [51, 52, 74, 75, 92, 95, 229, 242, 368, 386, 387, 388, 390, 404, 405, 406, 409, 618, 778, 824], "floor_divid": [51, 74, 618, 770, 813], "fmin": [51, 74, 618, 813], "gcd": [51, 74, 618, 813], "greater": [51, 52, 56, 59, 61, 74, 75, 79, 84, 97, 98, 129, 216, 217, 220, 221, 223, 224, 227, 229, 235, 241, 242, 256, 258, 273, 277, 279, 281, 282, 286, 287, 288, 331, 365, 368, 390, 395, 400, 411, 615, 618, 622, 623, 625, 629, 651, 653, 665, 695, 727, 764, 778, 805, 826], "greater_equ": [51, 74, 97, 98, 260, 618], "imaginari": [51, 74, 97, 107, 110, 113, 137, 138, 216, 217, 218, 233, 235, 236, 238, 240, 248, 268, 270, 271, 278, 281, 282, 286, 332, 365, 368, 369, 411, 421, 612, 615, 618, 630, 733, 815], "4j": [51, 74, 248, 368, 411, 579, 618, 620], "6j": [51, 52, 74, 248, 252, 332, 618], "isfinit": [51, 74, 618, 825], "out_i": [51, 74, 249, 250, 251, 252, 275, 618], "self_i": [51, 74, 249, 250, 251, 252, 275], "finit": [51, 74, 215, 216, 217, 218, 221, 223, 224, 233, 235, 236, 238, 240, 242, 249, 250, 256, 258, 268, 269, 271, 273, 277, 281, 282, 286, 618], "isinf": [51, 74, 618], "detect_posit": [51, 74, 250, 618], "detect_neg": [51, 74, 250, 618], "isnan": [51, 74, 618], "isreal": [51, 74, 618], "5j": [51, 74, 75, 252, 275, 332, 365, 618], "lcm": [51, 74, 618, 813], "less": [51, 52, 57, 61, 65, 74, 75, 80, 84, 97, 98, 216, 217, 220, 223, 224, 231, 235, 242, 256, 257, 258, 259, 273, 277, 279, 282, 351, 365, 368, 369, 380, 389, 390, 399, 411, 434, 440, 509, 512, 618, 623, 629, 633, 664, 665, 666, 669, 680, 727, 750, 752, 778, 804, 805, 811, 813, 815, 817, 820, 825, 828, 831, 832, 833, 844, 854, 856], "less_equ": [51, 74, 97, 98, 618, 817], "log10": [51, 52, 74, 313, 362, 618], "logarithm": [51, 74, 238, 256, 257, 258, 259, 260, 336, 347, 365, 618, 623, 671], "602": [51, 257, 618], "699": [51, 257, 618], "log1p": [51, 74, 618, 823], "693": [51, 74, 112, 221, 258, 612, 618, 624, 684], "0953": [51, 74, 256, 258, 618], "log2": [51, 74, 261, 618], "logaddexp": [51, 74, 618], "logaddexp2": [51, 74, 618, 801, 818], "169925": [51, 74, 261, 618], "logical_and": [51, 74, 618, 825, 831, 861], "logical_not": [51, 74, 618, 813], "logical_or": [51, 74, 618, 861], "conform": [51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 480, 509, 615, 616, 618, 623, 625, 630, 631, 632, 633, 634, 652, 653, 654, 655, 656, 658, 659, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 686, 688, 689, 690, 692, 693, 695, 696, 700, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 816, 819], "api_specif": [51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 411, 480, 616, 618, 625, 633, 700, 750, 816], "array_api": [51, 74, 150, 238, 248, 249, 264, 368, 371, 411, 480, 616, 618, 623, 625, 633, 671, 672, 700, 750, 816], "logical_xor": [51, 74, 618], "maximum": [51, 52, 53, 54, 59, 62, 65, 69, 74, 75, 76, 77, 82, 85, 88, 98, 208, 293, 329, 330, 340, 353, 360, 365, 368, 369, 371, 380, 384, 394, 434, 437, 440, 472, 510, 512, 517, 527, 528, 536, 544, 607, 617, 618, 620, 621, 623, 625, 630, 633, 664, 685, 730, 731, 746, 748, 762, 764, 765, 770, 792, 805, 813, 815, 824, 836, 861], "use_wher": [51, 74, 266, 267, 618], "formula": [51, 52, 74, 235, 257, 259, 266, 267, 268, 313, 346, 362, 365, 374, 488, 490, 618], "exce": [51, 52, 75, 267, 371, 482, 618], "product": [51, 52, 56, 57, 65, 74, 75, 79, 80, 88, 92, 93, 95, 268, 358, 359, 367, 369, 380, 416, 419, 423, 426, 427, 428, 431, 432, 433, 510, 511, 518, 618, 622, 623, 633, 648, 651, 653, 660, 663, 668, 675, 679, 743, 744, 745, 749, 750, 792, 803, 833, 854, 856], "nan_to_num": [51, 74, 618], "posinf": [51, 74, 269, 618], "neginf": [51, 74, 269, 618], "5e": [51, 54, 74, 75, 269, 350, 607, 618, 621], "not_equ": [51, 74, 97, 98, 618], "pow": [51, 74, 97, 98, 618, 807], "expon": [51, 52, 53, 75, 76, 273, 339, 341, 345, 365, 374, 493, 579, 618, 620, 623, 665], "rad2deg": [51, 74, 618], "286": [51, 75, 274], "458": [51, 274], "573": [51, 274, 618], "reciproc": [51, 74, 618], "333": [51, 74, 235, 276, 528, 618, 620], "remaind": [51, 52, 59, 69, 74, 75, 82, 244, 618, 625, 694, 807, 824], "modulu": [51, 74, 277, 618, 824], "sign": [51, 52, 57, 63, 65, 74, 75, 80, 92, 121, 215, 216, 217, 218, 221, 223, 224, 229, 233, 235, 238, 240, 242, 268, 270, 277, 281, 282, 286, 333, 365, 369, 371, 380, 436, 479, 480, 510, 511, 615, 618, 623, 631, 633, 671, 735, 736, 737, 738, 743, 744, 749, 751, 798, 804, 813, 833, 838, 844], "x2_i": [51, 74, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 618, 807], "decim": [51, 74, 278, 618, 830], "0001": [51, 52, 75, 278, 279, 369, 434, 440, 762, 765, 782], "678": [51, 278, 279], "np_variant": [51, 74, 279, 618], "841": [51, 68, 74, 105, 280, 612, 618], "909": [51, 74, 76, 280, 618], "141": [51, 74, 147, 280, 616, 618], "sinh": [51, 74, 280, 618], "232": [51, 74, 281, 618], "sqrt": [51, 52, 74, 75, 368, 390, 395, 396, 400, 401, 411, 618, 777, 778, 798], "squar": [51, 52, 57, 74, 75, 80, 282, 369, 370, 374, 380, 420, 430, 441, 493, 509, 603, 604, 606, 611, 618, 621, 623, 627, 652, 654, 655, 657, 658, 659, 661, 665, 671, 672, 673, 678, 710, 798], "tanh": [51, 52, 74, 75, 285, 298, 302, 360, 618, 774, 833], "762": [51, 74, 286, 618], "964": [51, 74, 286, 618], "trapz": [51, 74, 618], "dx": [51, 74, 287, 618], "apart": [51, 74, 287, 618], "trapezoid": [51, 74, 287, 618], "trunc": [51, 74, 618], "025": [51, 288, 370, 446, 618, 626, 703], "trunc_divid": [51, 74, 618], "_arraywithactivationsexperiment": [52, 97], "celu": [52, 75, 360], "formul": [52, 68, 75, 93, 105, 290, 292, 360, 774], "elu": [52, 75, 293, 360, 774], "scaler": [52, 75, 291, 360, 762, 765, 828], "hardshrink": [52, 75, 360], "lambd": [52, 75, 292, 301, 360], "hardtanh": [52, 75, 360], "max_val": [52, 75, 293, 360], "min_val": [52, 75, 293, 360], "region": [52, 75, 293, 301, 360, 804], "19722438": [52, 75, 294, 360], "38629448": [52, 75, 294, 360], "38629436": [52, 75, 294, 360], "logsigmoid": [52, 75, 360, 774], "31326175": [52, 68, 295, 360], "126928": [52, 75, 295], "01814993": [52, 295], "00004578": [52, 295], "57888985": [52, 295], "31326169": [52, 75, 295, 360], "69314718": [52, 57, 68, 75, 80, 295, 347, 360, 365, 623, 671], "01104775": [52, 295], "prelu": [52, 75, 360, 774], "unidirect": [52, 296, 360], "relu6": [52, 75, 360, 774], "rectifi": [52, 68, 75, 107, 109, 110, 297, 300, 305, 360, 612], "scaled_tanh": [52, 75, 302, 360], "7159": [52, 75, 298, 302, 360], "amplitud": [52, 75, 298, 302, 360], "65537548": [52, 75, 298], "49570239": [52, 75, 298], "77637792": [52, 298], "selu": [52, 75, 360, 774], "11133075": [52, 299, 360], "05070102": [52, 75, 299, 360], "10140204": [52, 299, 360], "15210295": [52, 299, 360], "20280409": [52, 299, 360], "25350523": [52, 299, 360], "30420589": [52, 299, 360], "35490704": [52, 299, 360], "silu": [52, 75, 360, 774], "26894143": [52, 300], "73105854": [52, 75, 300], "softshrink": [52, 75, 360], "bound": [52, 75, 301, 313, 360, 362, 371, 455, 480, 481, 762, 813, 817, 825, 828, 833, 860], "tanhshrink": [52, 75, 360], "23840582": [52, 75, 303, 360], "condit": [52, 62, 75, 85, 118, 304, 319, 320, 362, 369, 417, 614, 627, 630, 714, 715, 734, 764, 807, 813, 815, 817, 821, 822, 824, 828, 847], "met": [52, 75, 304, 817], "hreshold": [52, 304], "thresholded_relu": [52, 75, 360], "_arraywithconversionsexperiment": [52, 97], "_arraywithcreationexperiment": [52, 97], "blackman_window": [52, 75, 362], "period": [52, 75, 281, 285, 306, 308, 309, 311, 312, 362, 368, 402, 618, 805], "window": [52, 56, 75, 79, 306, 308, 309, 311, 312, 327, 362, 368, 374, 386, 387, 388, 390, 404, 405, 406, 407, 409, 410, 413, 414, 493, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 778, 800, 805, 810, 818, 859], "symmetr": [52, 57, 75, 80, 92, 93, 306, 308, 309, 311, 312, 362, 369, 371, 420, 472, 623, 652, 657, 658, 659, 681, 811], "38777878e": [52, 75, 306, 362], "40000000e": [52, 306, 362], "00000000e": [52, 57, 75, 76, 306, 337, 362, 368, 389, 395, 399, 400, 623, 670, 801, 818], "30000000e": [52, 75, 306, 362], "eye_lik": [52, 75, 362], "elsewher": [52, 75, 127, 307, 362, 615, 630, 734, 804], "mel_weight_matrix": [52, 75, 362], "num_mel_bin": [52, 75, 313, 362], "dft_length": [52, 75, 313, 362, 368, 390], "sample_r": [52, 75, 313, 362], "lower_edge_hertz": [52, 75, 313, 362], "upper_edge_hertz": [52, 75, 313, 362], "3000": [52, 75, 313, 362], "melweightmatrix": [52, 75, 313, 362], "linearli": [52, 53, 76, 313, 362, 536, 620, 623, 672], "frequenc": [52, 53, 75, 76, 313, 362, 380, 509, 536, 620, 805], "spectra": [52, 313, 362], "dft": [52, 75, 313, 362, 368], "stft": [52, 75, 313, 362, 368], "mel": [52, 75, 313, 362], "term": [52, 75, 306, 313, 316, 362, 370, 444, 445, 622, 647, 778, 792, 798, 805, 811, 833, 841, 843, 854], "hertz": [52, 313, 362], "2595": [52, 313, 362], "700": [52, 76, 313, 362, 540], "band": [52, 53, 75, 76, 313, 362, 536, 620], "spectrum": [52, 75, 313, 362], "n_fft": [52, 75, 313, 362, 368, 390], "signal": [52, 75, 313, 362, 368, 382, 383, 384, 389, 390, 399, 414, 778, 853, 854], "8000": [52, 75, 308, 313, 362], "75694758": [52, 313, 362], "trilu": [52, 75, 362], "retain": [52, 142, 322, 323, 362, 603, 615, 621, 823, 827, 841], "unsorted_segment_mean": [52, 75, 362], "segment_id": [52, 75, 324, 325, 326, 362, 784], "num_seg": [52, 75, 324, 325, 326, 362, 784], "identifi": [52, 75, 324, 325, 326, 362, 803, 807, 812, 813, 828, 831], "th": [52, 75, 93, 324, 325, 326, 335, 362, 365, 369, 380, 418, 425, 519], "distinct": [52, 63, 75, 324, 325, 326, 362, 631, 735, 736, 737, 738, 804, 811, 816, 823, 824, 825, 832, 844, 854], "unsorted_segment_min": [52, 75, 362], "unsorted_segment_sum": [52, 75, 362], "polyv": [52, 75, 362], "coeff": [52, 75, 316, 362], "polynomi": [52, 75, 316, 362], "coeffici": [52, 75, 308, 316, 362, 369, 435, 623, 672, 782], "indetermin": [52, 75, 316, 362], "simplifi": [52, 75, 316, 362, 791, 792, 817, 825, 833, 834, 837, 844, 847, 850, 852, 853, 854, 857, 860, 861], "substitut": [52, 75, 316, 362], "_arraywithdata_typeexperiment": [52, 97], "_arraywithdeviceexperiment": [52, 97], "_arraywithelementwiseexperiment": [52, 97], "equal_nan": [52, 75, 328, 344, 365], "toler": [52, 57, 75, 80, 328, 344, 365, 369, 421, 434, 440, 623, 666, 669, 757, 759, 807, 826, 854], "1e10": [52, 328, 344, 365], "00001e10": [52, 328, 344, 365], "00001e": [52, 328, 365], "amax": [52, 75, 365], "keepdim": [52, 57, 59, 62, 65, 66, 69, 75, 80, 82, 85, 88, 89, 329, 330, 334, 349, 356, 365, 366, 371, 380, 477, 514, 515, 516, 517, 518, 519, 623, 625, 630, 633, 634, 664, 680, 699, 730, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 817, 825, 833], "singleton": [52, 57, 62, 65, 66, 75, 80, 85, 88, 89, 329, 330, 365, 623, 625, 630, 633, 634, 680, 688, 695, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 833], "amin": [52, 75, 365], "binar": [52, 75, 365], "map": [52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 365, 368, 391, 392, 393, 411, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 478, 480, 481, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 600, 605, 610, 620, 627, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 711, 712, 716, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 792, 808, 811, 813, 820, 821, 825, 828, 829, 836, 839, 841, 848, 855], "conj": [52, 75, 233, 238, 240, 281, 282, 286, 365, 618], "conjug": [52, 57, 75, 80, 332, 365, 368, 369, 375, 390, 415, 421, 431, 433, 435, 497, 623, 663, 667, 675], "copysign": [52, 75, 365], "unsign": [52, 65, 75, 333, 365, 371, 380, 480, 510, 511, 633, 743, 744, 749, 751, 763, 813, 833], "count_nonzero": [52, 75, 365], "diff": [52, 69, 75, 365, 815, 824], "prepend": [52, 75, 335, 365, 623, 625, 663, 688, 804], "differenc": [52, 75, 335, 365], "prior": [52, 75, 335, 365, 375, 497, 623, 675, 817, 829], "expand": [52, 53, 59, 75, 76, 335, 365, 371, 536, 620, 625, 688, 811, 827], "discret": [52, 75, 335, 365, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 624, 683, 778], "digamma": [52, 75, 365], "7549271": [52, 336, 365], "92278427": [52, 75, 336, 365], "9988394": [52, 336, 365], "erfc": [52, 75, 365], "complementari": [52, 75, 327, 337, 362, 365, 852, 860], "84270084e": [52, 337], "80259693e": [52, 337], "toward": [52, 59, 75, 82, 242, 289, 338, 350, 365, 371, 380, 478, 512, 618, 625, 693, 798, 801, 803, 804, 818, 833, 850, 854], "float_pow": [52, 75, 365], "fmax": [52, 75, 365], "fmod": [52, 75, 618], "divis": [52, 53, 54, 75, 76, 77, 229, 235, 242, 244, 277, 279, 289, 371, 458, 570, 578, 592, 601, 602, 607, 618, 620, 621, 622, 635, 642, 643, 782, 821, 830], "frexp": [52, 75, 365], "edge_ord": [52, 75, 342, 365], "estim": [52, 75, 342, 365, 380, 509], "boundari": [52, 61, 75, 84, 95, 319, 320, 342, 362, 365, 368, 403, 629, 727, 854], "33333333": [52, 75, 276, 342, 365, 618], "hypot": [52, 75, 365], "hypotenus": [52, 343, 365], "4031": [52, 343, 365], "8102": [52, 343, 365], "isclos": [52, 75, 365, 807], "ldexp": [52, 75, 365], "lerp": [52, 75, 365], "lgamma": [52, 365], "45373654": [52, 347, 365], "6477685": [52, 347, 365], "modf": [52, 75, 365], "fraction": [52, 75, 348, 365, 380, 519, 622, 645], "nansum": [52, 75, 365], "accumul": [52, 75, 349, 365, 371, 477], "nextaft": [52, 75, 365], "0e": [52, 54, 75, 77, 350, 365, 607, 621], "4013e": [52, 75, 350, 365], "4028e": [52, 75, 350, 365], "signbit": [52, 75, 365], "637": [52, 75, 352, 365], "0909": [52, 75, 352, 365], "sparsify_tensor": [52, 75, 365], "sparsifi": [52, 75, 353, 365], "arang": [52, 57, 65, 75, 80, 132, 353, 365, 368, 369, 386, 387, 388, 395, 400, 404, 405, 406, 409, 417, 432, 464, 559, 600, 615, 620, 623, 626, 633, 664, 680, 702, 703, 745, 798, 813, 824, 861], "xlogi": [52, 75, 365], "0986": [52, 75, 354, 365], "3863": [52, 75, 354, 365], "0000": [52, 75, 308, 309, 312, 354, 362, 365, 369, 371, 430, 466], "zeta": [52, 75, 365], "0369": [52, 75, 355, 365], "_arraywithgeneralexperiment": [52, 97], "init_valu": [52, 75, 79, 356, 366, 368, 410], "reduct": [52, 53, 58, 66, 69, 75, 76, 79, 81, 89, 356, 366, 368, 370, 371, 410, 441, 442, 443, 444, 445, 446, 447, 477, 533, 563, 564, 620, 624, 634, 682, 683, 684, 753, 754, 779, 813, 821, 824, 828, 835], "_arraywithgradientsexperiment": [52, 97], "_arraywithimageexperiment": [52, 97], "_arraywithlayersexperiment": [52, 97], "adaptive_avg_pool1d": [52, 75, 368], "1d": [52, 75, 92, 93, 368, 369, 371, 380, 382, 389, 391, 393, 399, 431, 450, 455, 477, 481, 509, 762, 778], "adapt": [52, 75, 77, 368, 382, 383, 384, 608, 621, 778, 782, 844], "pool": [52, 75, 79, 368, 382, 383, 384, 386, 387, 388, 404, 405, 406, 407, 410, 778, 804], "plane": [52, 75, 235, 238, 240, 268, 280, 281, 282, 285, 368, 371, 382, 383, 384, 478, 618], "l_in": [52, 75, 368, 382], "spatial": [52, 56, 75, 79, 368, 374, 382, 383, 384, 403, 410, 413, 488, 489, 490, 493, 622, 635, 636, 637, 638, 640, 642, 644, 781], "Will": [52, 75, 368, 382, 383, 384, 787, 839], "l_out": [52, 75, 368, 382], "nhwc": [52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 493, 622, 635, 638, 639, 642, 643, 644, 778], "3d": [52, 57, 75, 368, 383, 391, 392, 452, 623, 660, 778, 831], "4d": [52, 75, 368, 369, 374, 383, 392, 393, 439, 493], "s_0": [52, 75, 368, 383, 384], "s_1": [52, 75, 368, 383, 384], "adaptive_max_pool2d": [52, 75, 368], "h_in": [52, 75, 368, 384], "w_in": [52, 75, 368, 384], "avg_pool1d": [52, 75, 368], "kernel": [52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 622, 647, 833, 839, 854, 857, 858], "nwc": [52, 56, 75, 79, 368, 386, 391, 404, 407, 622, 635, 636, 637, 642, 643, 778], "count_include_pad": [52, 75, 368, 386, 387, 388, 778], "d_in": [52, 56, 75, 79, 368, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644], "algorithm": [52, 56, 68, 75, 79, 105, 368, 369, 386, 387, 388, 403, 404, 405, 406, 407, 434, 436, 440, 623, 636, 638, 639, 640, 641, 644, 671, 774, 778, 792, 813, 825, 831, 839, 854, 856, 858], "ncw": [52, 56, 75, 79, 368, 386, 391, 392, 404, 407, 622, 635, 636, 637, 642, 643, 778], "avg_pool2d": [52, 75, 368], "divisor_overrid": [52, 75, 368, 386, 387, 388, 778], "avg_pool3d": [52, 75, 368], "ndhwc": [52, 56, 75, 79, 368, 388, 393, 406, 622, 635, 640, 641, 642, 643, 778], "volum": [52, 56, 75, 79, 368, 388, 390, 395, 396, 400, 406, 622, 640, 641], "ncdhw": [52, 56, 75, 79, 368, 388, 393, 406, 622, 635, 640, 641, 642, 643, 778], "dct": [52, 75, 368, 778, 836], "truncat": [52, 75, 368, 369, 389, 395, 399, 400, 401, 412, 438, 566, 620, 778, 817, 836], "larger": [52, 59, 65, 75, 82, 88, 160, 368, 389, 396, 399, 401, 412, 616, 625, 633, 685, 693, 750, 752, 778, 828, 831, 861], "ortho": [52, 75, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 778], "onesid": [52, 75, 368, 390], "fft": [52, 75, 368, 390, 396, 411, 412, 414, 778, 803, 854], "symmetri": [52, 368, 390], "rfft": [52, 75, 368, 390, 412], "invok": [52, 368, 390, 798, 819, 847, 848], "batch_idx": [52, 368, 390], "signal_dim1": [52, 368, 390], "signal_dim2": [52, 368, 390], "signal_dimn": [52, 368, 390], "signal_dim": [52, 368, 390], "embed": [52, 75, 368, 622, 648, 764, 778, 854], "max_norm": [52, 53, 75, 76, 368, 394, 527, 528, 620, 778], "ifft": [52, 75, 368, 395, 401, 778], "pi": [52, 75, 281, 285, 368, 370, 395, 400, 445, 613, 618], "44509285e": [52, 75, 368, 395], "14423775e": [52, 75, 368, 395], "17j": [52, 75, 368, 395, 400], "11483250e": [52, 75, 368, 395], "16j": [52, 75, 368, 395, 400], "33486982e": [52, 75, 368, 395], "22464680e": [52, 75, 368, 395], "95799250e": [52, 75, 368, 395], "66951701e": [52, 75, 368, 395], "fft2": [52, 368], "vari": [52, 63, 92, 93, 286, 396, 532, 618, 620, 623, 631, 670, 736, 737, 738, 792, 811, 815, 825, 828, 835], "20477401j": [52, 368, 396], "0614962j": [52, 368, 396], "idct": [52, 75, 368], "49862671": [52, 75, 368, 389, 399], "37691498": [52, 75, 368, 389, 399], "00390816": [52, 75, 368, 389, 399], "58938599": [52, 75, 368, 389, 399], "92713165": [52, 75, 368, 389, 399], "078475": [52, 75, 368, 389, 399], "19664812": [52, 75, 368, 389, 399], "95411837": [52, 75, 368, 389, 399], "30636606e": [52, 75, 368, 400], "43029718e": [52, 75, 368, 400], "18j": [52, 75, 368, 395, 400], "53080850e": [52, 75, 368, 400], "58689626e": [52, 75, 368, 400], "24474906e": [52, 75, 368, 400], "91858728e": [52, 75, 368, 400], "01435406e": [52, 75, 368, 400], "ifftn": [52, 75, 368], "24730653": [52, 75, 368, 401], "90832391j": [52, 75, 368, 401], "49495562": [52, 75, 368, 401], "9039565j": [52, 75, 368, 401], "98193269": [52, 75, 368, 401], "49560517j": [52, 75, 368, 401], "93280757": [52, 75, 368, 401], "48075343j": [52, 75, 368, 401], "28526384": [52, 75, 368, 401], "3351205j": [52, 75, 368, 401], "2343787": [52, 75, 368, 401], "83528011j": [52, 75, 368, 401], "18791352": [52, 75, 368, 401], "30690572j": [52, 75, 368, 401], "82115787": [52, 75, 368, 401], "96195183j": [52, 75, 368, 401], "44719226": [52, 75, 368, 401], "72654048j": [52, 75, 368, 401], "51476765": [52, 368, 401], "66160417j": [52, 368, 401], "04319742": [52, 368, 401], "05411636j": [52, 368, 401], "015561": [52, 368, 401], "04216015j": [52, 368, 401], "06310689": [52, 368, 401], "05347854j": [52, 368, 401], "13392983": [52, 368, 401], "16052352j": [52, 368, 401], "08371392": [52, 368, 401], "17252843j": [52, 368, 401], "0031429": [52, 368, 401], "05421245j": [52, 368, 401], "10446617": [52, 368, 401], "17747098j": [52, 368, 401], "05344324": [52, 368, 401], "07972424j": [52, 368, 401], "8344667": [52, 75, 368, 401], "98222595j": [52, 75, 368, 401], "48472244": [52, 75, 368, 401], "30233797j": [52, 75, 368, 401], "recompute_scale_factor": [52, 75, 368, 403, 831], "antialia": [52, 75, 368, 403, 831], "height": [52, 53, 56, 75, 76, 79, 368, 403, 532, 620, 622, 638, 639, 640, 641, 644, 836], "width": [52, 53, 56, 75, 76, 79, 368, 369, 371, 374, 380, 403, 421, 472, 493, 512, 532, 620, 622, 636, 637, 638, 639, 640, 641, 644, 648], "trilinear": [52, 75, 368, 403, 831], "nearest_exact": [52, 75, 368, 403, 831], "tf_area": [52, 75, 368, 403, 831], "mitchellcub": [52, 75, 368, 403, 831], "lanczos3": [52, 75, 368, 403, 831], "lanczos5": [52, 75, 368, 403, 831], "gaussian": [52, 75, 105, 368, 403, 612, 831], "overwrit": [52, 69, 75, 208, 368, 403, 617, 805, 824, 825, 833], "thu": [52, 75, 229, 242, 277, 285, 286, 368, 369, 403, 420, 618, 623, 657, 658, 803, 812, 817, 822, 825, 829], "antialias": [52, 75, 403], "max_pool1d": [52, 75, 368], "dilaton": [52, 75, 404, 405, 406], "max_pool3d": [52, 75, 368], "max_unpool1d": [52, 75, 368], "unpool": [52, 75, 368, 407], "reduce_window": [52, 79, 368], "window_dimens": [52, 79, 368, 410], "window_strid": [52, 79, 368, 410], "base_dil": [52, 79, 368, 410], "window_dil": [52, 79, 368, 410], "trim": [52, 69, 75, 368, 371, 411, 483], "orthonorm": [52, 57, 75, 80, 368, 411, 623, 670, 673], "8660254j": [52, 75, 368, 411], "rfftn": [52, 75, 368], "sliding_window": [52, 75, 368], "window_s": [52, 75, 368, 413], "frame_length": [52, 75, 368, 414], "frame_step": [52, 75, 368, 414], "fft_length": [52, 75, 368, 414], "window_fn": [52, 75, 368, 414], "pad_end": [52, 75, 368, 414], "smallest": [52, 69, 75, 160, 163, 231, 368, 371, 414, 482, 616, 618, 623, 664, 762, 764, 765], "enclos": [52, 75, 368, 414, 855], "window_length": [52, 75, 306, 308, 311, 312, 327, 362, 368, 414], "li": [52, 75, 368, 369, 380, 414, 421, 519, 843], "past": [52, 75, 368, 414, 805, 807, 826, 828, 840, 854], "fft_unique_bin": [52, 75, 368, 414], "complex64": [52, 72, 75, 153, 167, 176, 182, 248, 275, 368, 411, 414, 616, 618, 623, 671, 673, 674, 763, 813, 818], "complex128": [52, 75, 76, 153, 154, 167, 176, 182, 368, 414, 558, 616, 620, 623, 658, 659, 664, 680, 762, 763, 801, 813, 818], "compon": [52, 75, 137, 138, 216, 217, 218, 221, 224, 233, 235, 236, 238, 240, 268, 270, 271, 278, 281, 282, 285, 286, 317, 321, 332, 362, 365, 368, 369, 374, 414, 425, 434, 493, 615, 618, 630, 733, 798, 827, 833, 844, 850, 855, 857], "linear_algebra": [52, 57, 75, 80, 623, 829], "_arraywithlinearalgebraexperiment": [52, 97], "adjoint": [52, 57, 75, 80, 369, 435, 623, 661, 672, 673, 762], "batched_out": [52, 75, 369], "j1": [52, 75, 369, 416], "jn": [52, 75, 369, 416], "k1": [52, 75, 369, 416], "km": [52, 75, 369, 416], "outer": [52, 57, 75, 80, 92, 369, 416, 623, 626, 701, 702, 703, 792, 803], "30000001": [52, 75, 369, 416, 532, 620, 631, 736], "40000001": [52, 56, 68, 75, 97, 98, 107, 110, 291, 360, 369, 416, 612, 622, 631, 651, 736], "60000002": [52, 75, 88, 98, 369, 374, 416, 492, 494, 747], "80000001": [52, 75, 369, 374, 416, 492, 494], "60000001": [52, 75, 369, 416], "90000004": [52, 75, 369, 416, 633, 747], "20000002": [52, 75, 369, 416], "20000005": [52, 54, 75, 291, 298, 301, 302, 360, 369, 416, 601], "00000012": [52, 75, 369, 416], "49999994": [52, 75, 369, 416], "00000006": [52, 75, 369, 416], "60000014": [52, 75, 369, 416], "19999993": [52, 75, 369, 416], "80000007": [52, 75, 369, 416], "20000017": [52, 75, 369, 416], "89999992": [52, 75, 369, 416], "60000008": [52, 75, 369, 416], "80000019": [52, 75, 346, 365, 369, 416], "4000001": [52, 75, 79, 369, 416, 622, 645, 651], "cond": [52, 75, 118, 369, 614, 839], "933034373659268": [52, 417], "diagflat": [52, 75, 369, 427, 430], "offset": [52, 57, 60, 71, 75, 80, 83, 129, 369, 374, 418, 488, 489, 490, 615, 623, 628, 656, 677, 723, 769], "padding_valu": [52, 75, 369, 418], "right_left": [52, 75, 369, 418], "num_row": [52, 75, 369, 418], "num_col": [52, 75, 369, 418], "dot": [52, 56, 75, 79, 92, 369, 432, 622, 623, 648, 651, 679, 792, 798, 804, 812], "eig": [52, 57, 75, 369, 623, 658, 659], "37228132": [52, 75, 369, 420, 422, 657], "82456484": [52, 420, 657], "41597356": [52, 420, 657], "56576746": [52, 420, 657], "90937671": [52, 420, 657], "eigh_tridiagon": [52, 75, 369], "eigvals_onli": [52, 75, 369, 421], "select_rang": [52, 75, 369, 421], "tol": [52, 75, 96, 369, 421, 434, 440], "eigenvalu": [52, 57, 75, 80, 92, 93, 369, 420, 421, 422, 623, 657, 658, 659, 666], "eigenvector": [52, 75, 369, 420, 421, 623, 657, 658], "interv": [52, 61, 66, 75, 84, 89, 121, 132, 133, 140, 369, 380, 421, 512, 615, 623, 625, 629, 634, 653, 679, 685, 688, 696, 725, 727, 753, 754], "togeth": [52, 69, 75, 328, 344, 365, 369, 421, 783, 798, 808, 811, 813, 824, 825, 828, 829, 831, 837, 838, 839, 844, 852, 854, 855, 860], "cluster": [52, 75, 369, 421, 839, 854], "converg": [52, 75, 369, 421, 845], "_2": [52, 75, 369, 421], "eig_val": [52, 75, 369, 421], "decreas": [52, 75, 369, 421, 764], "eig_vector": [52, 75, 369, 421], "38196": [52, 421], "61803": [52, 421], "eigval": [52, 75, 369], "general_inner_product": [52, 80, 369], "n_mode": [52, 80, 369, 423], "tradit": [52, 80, 369, 423], "inner": [52, 57, 71, 80, 101, 136, 369, 420, 423, 615, 623, 626, 657, 658, 663, 701, 702, 703, 792, 803, 824], "higher_order_mo": [52, 75, 369], "n_featur": [52, 75, 369, 424], "d1": [52, 75, 369, 424], "dn": [52, 75, 369, 424], "initialize_tuck": [52, 75, 369], "svd": [52, 57, 75, 80, 95, 369, 425, 429, 434, 436, 437, 438, 440, 623, 674], "truncated_svd": [52, 75, 369, 425, 434, 437, 440], "non_neg": [52, 75, 321, 362, 369, 425], "mask": [52, 56, 75, 79, 92, 369, 371, 425, 426, 434, 440, 479, 542, 620, 622, 645, 648, 651, 831], "svd_mask_repeat": [52, 75, 369, 425, 434, 440], "tuckertensor": [52, 75, 96, 321, 362, 369, 425, 434, 440], "scheme": [52, 75, 369, 425, 434, 807, 837, 854], "tucker": [52, 75, 321, 362, 369, 425, 434], "decomposit": [52, 57, 75, 80, 92, 93, 95, 317, 318, 319, 320, 321, 362, 369, 425, 434, 437, 439, 440, 623, 652, 658, 662, 670, 673, 803, 861], "miss": [52, 75, 369, 371, 425, 434, 440, 479, 782, 803, 804, 808, 811, 812, 815, 825, 828, 831], "everywher": [52, 75, 369, 425, 434, 440], "imput": [52, 75, 369, 425, 434, 440], "kron": [52, 75, 369, 430, 861], "make_svd_non_neg": [52, 75, 369, 438], "nntype": [52, 75, 369, 429], "nndsvd": [52, 75, 369, 429], "singular": [52, 57, 75, 80, 369, 425, 429, 436, 438, 623, 664, 666, 669, 673, 674, 762, 764, 813], "nndsvda": [52, 75, 369, 429], "boutsidi": [52, 75, 369, 429], "gallopoulo": [52, 75, 369, 429], "pattern": [52, 53, 75, 76, 369, 429, 532, 533, 534, 620, 813, 816, 827, 845], "recognit": [52, 75, 369, 429], "1350": [52, 75, 369, 429], "1362": [52, 75, 369, 429], "2008": [52, 75, 369, 429, 854], "matrix_exp": [52, 75, 369], "7183": [52, 75, 369, 430], "3891": [52, 75, 369, 430], "mode_dot": [52, 75, 91, 92, 96, 369], "matrix_or_vector": [52, 75, 92, 96, 369, 431], "i_1": [52, 75, 92, 93, 369, 431], "i_k": [52, 75, 92, 369, 431], "i_n": [52, 75, 92, 369, 431], "i_": [52, 75, 92, 369, 380, 431, 512], "multi_dot": [52, 75, 369], "148": [52, 74, 75, 238, 369, 432], "multi_mode_dot": [52, 75, 369], "mat_or_vec_list": [52, 75, 369, 433], "times_0": [52, 369, 433], "vec": [52, 369, 433], "times_1": [52, 369, 433], "cdot": [52, 268, 369, 433, 618], "times_n": [52, 369, 433], "partial_tuck": [52, 75, 369], "n_iter_max": [52, 75, 369, 434, 440], "verbos": [52, 75, 369, 434, 437, 440, 828, 833], "return_error": [52, 75, 369, 434, 440], "variat": [52, 75, 369, 434, 440, 815, 825, 828], "reconstruct": [52, 57, 63, 75, 86, 95, 369, 371, 434, 440, 485, 623, 631, 673, 735, 737, 826], "return_erro": [52, 369, 434, 440], "svd_flip": [52, 75, 369], "u_based_decis": [52, 75, 369, 436], "basi": [52, 75, 369, 436, 805, 807, 836], "flip": [52, 59, 75, 82, 92, 226, 369, 371, 436, 463, 464, 618, 625, 824, 835, 836, 838], "decis": [52, 75, 369, 436, 798, 807, 813, 831, 833, 835, 854], "u_adjust": [52, 75, 369, 436], "v_adjust": [52, 75, 369, 436], "tensor_train": [52, 75, 369], "tt": [52, 75, 320, 362, 369, 437, 439], "kth": [52, 369, 437], "tttensor": [52, 95, 320, 362, 369, 437], "compute_uv": [52, 57, 75, 80, 369, 438, 623, 673], "n_eigenvec": [52, 75, 369, 438], "returnedv": [52, 438], "vh": [52, 57, 75, 80, 369, 438, 623, 673], "eigen": [52, 75, 369, 438], "namedtupl": [52, 57, 63, 75, 80, 86, 369, 371, 420, 438, 485, 623, 631, 657, 658, 670, 671, 673, 735, 736, 737], "tt_matrix_to_tensor": [52, 75, 369], "known": [52, 75, 279, 369, 437, 439, 618, 777, 807, 812, 813, 825, 828], "rank_k": [52, 75, 369, 439], "left_dim_k": [52, 75, 369, 439], "right_dim_k": [52, 75, 369, 439], "rank_": [52, 75, 369, 439], "49671414": [52, 75, 369, 439, 629, 726], "1382643": [52, 75, 369, 439, 629, 726], "64768857": [52, 75, 369, 439, 629, 726], "5230298": [52, 75, 369, 439, 629, 726], "23415337": [52, 75, 369, 439, 629, 726], "23413695": [52, 75, 369, 439, 629, 726], "57921278": [52, 75, 369, 439], "76743472": [52, 75, 369, 439], "1163073": [52, 75, 369, 439], "11629914": [52, 75, 369, 439], "03237505": [52, 75, 369, 439], "03237278": [52, 75, 369, 439], "78441733": [52, 75, 369, 439], "38119566": [52, 75, 369, 439], "21834874": [52, 75, 369, 439], "10610882": [52, 75, 369, 439], "15165846": [52, 75, 369, 439], "15164782": [52, 75, 369, 439], "35662258": [52, 75, 369, 439], "35659757": [52, 75, 369, 439], "02283812": [52, 75, 369, 439], "49705869": [52, 75, 369, 439], "40518808": [52, 75, 369, 439], "16882598": [52, 75, 369, 439], "fixed_factor": [52, 75, 369, 440], "tl": [52, 75, 369, 440], "kolda": [52, 75, 369, 440], "bader": [52, 75, 369, 440], "siam": [52, 75, 369, 437, 440], "review": [52, 75, 369, 440, 800, 803, 805, 810, 812, 815, 825, 829], "vol": [52, 75, 369, 440], "pp": [52, 75, 369, 440], "455": [52, 75, 369, 440], "2009": [52, 75, 369, 440], "_arraywithlossesexperiment": [52, 97], "huber_loss": [52, 75, 370], "delta": [52, 54, 75, 77, 370, 441, 601, 621], "transit": [52, 75, 370, 441, 854], "huber": [52, 75, 370, 441], "kl_div": [52, 75, 370], "log_target": [52, 75, 370, 442], "contai": [52, 442], "batchmean": [52, 370, 442], "kullback": [52, 75, 370, 442], "leibler": [52, 75, 370, 442], "0916": [52, 442], "l1_loss": [52, 75, 370, 444], "l1": [52, 57, 75, 80, 370, 374, 441, 443, 444, 446, 491, 623, 680, 811, 836], "targetict": [52, 75, 370, 443, 444, 446, 447], "20000000000000004": [52, 443], "log_poisson_loss": [52, 75, 370], "compute_full_loss": [52, 75, 370, 444, 779], "favor": [52, 75, 370, 444], "likelihood": [52, 75, 370, 444, 445], "28402555": [52, 370, 444], "03402555": [52, 370, 444], "1573164": [52, 370, 444], "poisson_nll_loss": [52, 75, 370], "log_input": [52, 75, 370, 445], "poisson": [52, 75, 370, 375, 444, 445], "assumpt": [52, 370, 444, 445], "minu": [52, 370, 444, 445], "omiss": [52, 370, 445], "stirl": [52, 75, 370, 444, 445], "describ": [52, 65, 75, 93, 218, 235, 236, 268, 271, 273, 370, 375, 378, 445, 499, 502, 618, 622, 633, 648, 745, 749, 751, 800, 803, 804, 805, 810, 812, 824, 825, 828, 833, 838, 854], "prevent": [52, 54, 75, 77, 370, 445, 544, 601, 602, 607, 620, 621, 622, 633, 645, 751, 777, 782, 803, 805, 812, 813, 817, 824, 825, 829], "input_tensor": [52, 75, 369, 370, 437, 445, 825], "target_tensor": [52, 370, 445], "1978": [52, 445], "smooth_l1_loss": [52, 75, 370], "smooth": [52, 58, 75, 81, 370, 441, 446, 624, 682, 683, 684, 823], "8125": [52, 446], "soft_margin_loss": [52, 75, 370], "soft": [52, 75, 301, 370, 371, 447, 479, 814], "margin": [52, 75, 370, 447, 825], "35667497": [52, 447, 624, 683], "22314353": [52, 447], "60943791": [52, 447], "manipul": [52, 75, 824, 825, 829, 831, 833, 838, 843, 854], "_arraywithmanipulationexperiment": [52, 97], "as_strid": [52, 75, 371], "nativeshap": [52, 56, 59, 61, 75, 82, 84, 122, 123, 125, 130, 137, 143, 371, 375, 448, 460, 465, 473, 476, 495, 496, 497, 498, 499, 564, 577, 582, 584, 615, 620, 622, 625, 629, 635, 637, 639, 641, 643, 692, 725, 726, 727, 820, 822], "byte": [52, 53, 71, 75, 76, 97, 129, 371, 448, 558, 615, 620, 859, 860], "associative_scan": [52, 75, 371], "revers": [52, 53, 57, 65, 75, 80, 88, 97, 98, 359, 367, 369, 371, 380, 428, 449, 463, 464, 510, 511, 531, 620, 623, 625, 633, 678, 689, 743, 744, 803, 811, 812, 813, 815, 816, 824, 825, 831, 838, 839], "scan": [52, 75, 371, 449, 839], "atleast_1d": [52, 75, 371], "ari": [52, 75, 371, 450, 451, 452, 458, 467, 486], "a1": [52, 76, 371, 450, 451, 452, 456, 524], "a2": [52, 76, 371, 450, 451, 452, 456, 524], "atleast_2d": [52, 75, 371], "atleast_3d": [52, 75, 371], "column_stack": [52, 75, 371], "concat_from_sequ": [52, 75, 371], "input_sequ": [52, 75, 371, 457], "new_axi": [52, 75, 371, 457, 838], "dsplit": [52, 75, 371], "indices_or_sect": [52, 75, 371, 458, 467, 486], "3rd": [52, 75, 371, 458], "dstack": [52, 75, 371], "fill_diagon": [52, 75, 371], "fill_diag": [52, 461], "fortran": [52, 59, 75, 82, 371, 462, 625, 692, 854, 858], "layout": [52, 59, 75, 82, 371, 462, 625, 692, 809, 824, 825, 831], "fliplr": [52, 75, 371, 824], "diag": [52, 57, 75, 80, 93, 371, 463, 464, 623, 658, 833], "flipud": [52, 75, 371, 824], "fold": [52, 75, 371, 473, 474, 812], "unfold": [52, 75, 92, 93, 95, 369, 371, 425, 465, 473, 475], "folded_tensor": [52, 371, 465], "heavisid": [52, 75, 371], "5000": [52, 371, 466, 623, 661, 792], "hsplit": [52, 75, 371], "horizont": [52, 75, 371, 456, 467, 532, 620], "hstack": [52, 75, 371, 456], "i0": [52, 75, 371, 380, 512], "bessel": [52, 65, 75, 88, 311, 362, 371, 469, 633, 750, 752], "kind": [52, 65, 75, 160, 163, 164, 380, 469, 510, 511, 516, 616, 633, 743, 744, 749, 751, 762, 763, 802, 825, 828, 831, 833, 839], "26606588": [52, 75, 371, 469], "2795853": [52, 75, 371, 469], "88079259": [52, 75, 371, 469], "row_mod": [52, 75, 371, 470], "column_mod": [52, 75, 371, 470], "ascend": [52, 64, 75, 87, 371, 378, 470, 502, 632, 739, 741], "prod": [52, 53, 65, 76, 88, 369, 371, 426, 428, 470, 518, 533, 620, 633, 762, 792, 813, 815, 833], "moveaxi": [52, 75, 371], "destin": [52, 75, 371, 471], "unstack": [52, 59, 69, 82, 471, 625, 811, 833, 836, 861], "reorder": [52, 59, 75, 82, 371, 471, 532, 620, 625, 689, 827], "stat_length": [52, 75, 371, 472], "constant_valu": [52, 75, 371, 472], "end_valu": [52, 75, 371, 472], "reflect_typ": [52, 75, 371, 472], "partial_fold": [52, 75, 371], "skip_begin": [52, 75, 371, 473, 474, 475, 476], "untouch": [52, 75, 371, 473, 474, 475, 476], "partial_tensor_to_vec": [52, 75, 371], "skip_end": [52, 75, 371, 474, 475], "vectoris": [52, 75, 92, 371, 474, 476], "partial_unfold": [52, 75, 371], "ravel_tensor": [52, 75, 371, 475], "n_1": [52, 75, 371, 475], "n_2": [52, 75, 371, 475], "n_i": [52, 75, 369, 371, 426, 475], "partial_vec_to_tensor": [52, 75, 371], "put_along_axi": [52, 75, 371], "rot90": [52, 75, 371, 824], "rotat": [52, 75, 371, 478], "soft_threshold": [52, 75, 371], "behav": [52, 75, 329, 330, 365, 369, 371, 420, 480, 623, 657, 807, 817, 822, 824, 825, 826, 835, 855], "invalid": [52, 66, 75, 89, 371, 480, 623, 625, 634, 679, 688, 753, 754, 762, 804, 813], "slice": [52, 65, 69, 75, 76, 88, 93, 142, 322, 362, 371, 455, 477, 480, 481, 539, 540, 542, 568, 615, 620, 627, 633, 713, 748, 854], "inexact": [52, 75, 339, 365, 371, 480], "largest": [52, 69, 75, 160, 163, 369, 371, 436, 480, 482, 616, 623, 664, 673], "take_along_axi": [52, 75, 371], "arr": [52, 53, 72, 75, 168, 371, 455, 477, 481, 564, 616, 813, 814], "top_k": [52, 75, 371], "sort": [52, 63, 69, 75, 86, 98, 287, 369, 371, 380, 420, 482, 502, 516, 618, 623, 631, 657, 658, 673, 674, 735, 739, 740, 741, 764, 798, 802, 812, 827, 829], "trim_zero": [52, 75, 371], "fb": [52, 75, 371, 483], "front": [52, 75, 371, 483, 825, 832, 833, 836, 843, 852, 854], "unfolded_tensor": [52, 371, 484], "unique_consecut": [52, 75, 371], "vsplit": [52, 75, 371], "vertic": [52, 75, 371, 486, 487, 532, 620, 805], "_arraywithnormsexperiment": [52, 97], "varianc": [52, 65, 75, 88, 374, 488, 490, 633, 752, 777, 781], "nsc": [52, 75, 374, 488, 489, 490, 781], "braodcast": [52, 75, 374, 488], "running_mean": [52, 75, 374, 488, 490, 781], "running_var": [52, 75, 374, 488, 490, 781], "nc": [52, 75, 374, 488, 489, 490, 781], "group_norm": [52, 75, 374], "num_group": [52, 75, 374, 489], "group": [52, 75, 371, 374, 485, 489, 622, 627, 635, 642, 643, 706, 807, 811, 813, 821, 825, 826, 850, 853, 859], "instance_norm": [52, 75, 374], "l1_normal": [52, 75, 374], "33333334": [52, 374, 491, 494, 603, 621, 622, 623, 644, 680], "33333337": [52, 132, 374, 491, 603, 615, 621], "28571439": [52, 374, 491], "l2_normal": [52, 75, 374, 494], "l2": [52, 57, 80, 91, 92, 374, 492, 494, 623, 680, 778, 811], "44721359": [52, 75, 374, 492, 494], "89442718": [52, 75, 374, 492, 494], "lp_normal": [52, 75, 374], "lp": [52, 374, 494], "_arraywithrandomexperiment": [52, 97], "bernoulli": [52, 75, 368, 375, 391, 392, 393], "event": [52, 75, 375, 495, 828], "entri": [52, 59, 69, 75, 82, 86, 93, 132, 369, 371, 375, 435, 461, 463, 464, 495, 615, 625, 627, 694, 717, 735, 804, 812, 828, 854], "parameter": [52, 61, 75, 84, 375, 495, 496, 498, 499, 629, 724, 726, 727], "odd": [52, 75, 273, 371, 375, 472, 495, 618, 792, 802, 807], "drawn": [52, 61, 75, 84, 375, 495, 496, 497, 498, 499, 629, 724, 725, 726, 727, 762, 763, 764, 777, 828], "dirichlet": [52, 75, 375], "10598304": [52, 375, 497], "21537054": [52, 375, 497], "67864642": [52, 375, 497], "48006698": [52, 375, 497], "07472073": [52, 375, 497], "44521229": [52, 375, 497], "55479872": [52, 375, 497], "05426367": [52, 375, 497], "39093761": [52, 375, 497], "19531053": [52, 375, 497], "51675832": [52, 375, 497], "28793114": [52, 375, 497], "12315625": [52, 375, 497], "29823365": [52, 375, 497], "5786101": [52, 375, 497], "15564976": [52, 375, 497], "50542368": [52, 375, 497], "33892656": [52, 375, 497], "1325352": [52, 375, 497], "44439589": [52, 375, 497], "42306891": [52, 375, 497], "gamma": [52, 60, 75, 83, 336, 347, 365, 375, 380, 513, 628, 723], "rate": [52, 54, 75, 77, 368, 375, 409, 499, 602, 605, 607, 608, 609, 621, 626, 701, 702, 703, 782, 812], "lam": [52, 75, 375, 499], "_arraywithsearchingexperiment": [52, 97], "unravel_index": [52, 75, 376], "unravel": [52, 75, 376, 500], "_arraywithsetexperiment": [52, 97], "_arraywithsortingexperiment": [52, 97], "lexsort": [52, 75, 378], "indirectli": [52, 75, 378, 502], "statist": [52, 75, 90, 371, 472, 781, 796, 803, 813, 828, 829, 854], "_arraywithstatisticalexperiment": [52, 97], "bincount": [52, 75, 380], "minlength": [52, 75, 380, 507], "corrcoef": [52, 75, 380], "rowvar": [52, 75, 380, 508, 509], "relationship": [52, 75, 508, 777, 827], "cov": [52, 75, 380], "ddof": [52, 75, 380, 509], "fweight": [52, 75, 380, 509], "aweight": [52, 75, 380, 509], "overridden": [52, 75, 380, 509, 782, 808], "unbias": [52, 65, 75, 88, 380, 509, 633, 752], "typic": [52, 75, 328, 344, 365, 380, 509, 632, 741, 778, 807, 821, 853, 861], "assign": [52, 75, 92, 380, 509, 803, 805, 809, 813, 824, 827, 835], "covari": [52, 75, 380, 509], "cummax": [52, 75, 380], "exclus": [52, 53, 65, 69, 75, 76, 88, 121, 369, 380, 434, 510, 511, 551, 552, 555, 615, 620, 629, 633, 725, 743, 744, 811, 813, 821, 838, 858, 860], "cumul": [52, 65, 75, 88, 380, 510, 511, 633, 743, 744], "uint64": [52, 65, 157, 162, 164, 165, 175, 177, 180, 380, 510, 511, 616, 633, 743, 744, 749, 751, 762, 763, 813, 828, 833], "uint16": [52, 65, 152, 157, 162, 163, 172, 380, 510, 511, 616, 633, 743, 744, 749, 751, 762, 763, 813, 825, 828, 833], "bit": [52, 65, 159, 160, 163, 226, 227, 229, 380, 510, 511, 616, 618, 633, 743, 744, 749, 751, 798, 802, 803, 804, 811, 812, 813, 815, 821, 833, 835, 860], "uint32": [52, 65, 157, 162, 163, 164, 186, 380, 510, 511, 616, 633, 743, 744, 749, 751, 762, 763, 813, 828, 833], "cummin": [52, 75, 380], "histogram": [52, 75, 380], "extend_lower_interv": [52, 75, 380, 512], "extend_upper_interv": [52, 75, 380, 512], "densiti": [52, 75, 380, 512], "monoton": [52, 75, 380, 512], "rightmost": [52, 75, 380, 512], "c1": [52, 75, 380, 512, 811], "ff": [52, 75, 380, 512], "c_": [52, 75, 93, 380, 512], "igamma": [52, 75, 380], "incomplet": [52, 75, 380, 513, 805], "3614": [52, 75, 380, 513], "2085": [52, 75, 380, 513], "median": [52, 75, 371, 380, 472, 516], "nanmean": [52, 75, 380], "6666666666666665": [52, 75, 380, 515], "nanmedian": [52, 75, 380], "overwrite_input": [52, 75, 380, 516], "treat": [52, 69, 75, 98, 273, 349, 365, 371, 374, 380, 481, 493, 516, 518, 618, 759, 823, 828, 834, 838], "undefin": [52, 75, 371, 380, 381, 472, 516, 520, 813, 817, 823], "nanmin": [52, 75, 380], "nanprod": [52, 75, 380], "Not": [52, 75, 349, 365, 369, 380, 422, 518, 613, 809, 817, 826, 836, 837, 839], "quantil": [52, 75, 380], "inclus": [52, 75, 121, 380, 519, 615, 629, 725, 799, 809, 824, 831], "midpoint": [52, 75, 380, 519], "surround": [52, 75, 380, 519, 831], "whichev": [52, 75, 380, 519], "_arraywithutilityexperiment": [52, 97], "optional_get_el": [52, 75, 381], "empti": [52, 53, 65, 69, 76, 88, 121, 371, 381, 472, 520, 527, 564, 615, 620, 623, 627, 633, 634, 677, 680, 718, 748, 749, 751, 753, 754, 803, 804, 808, 810, 813, 814, 824], "_arraywithgener": [53, 97], "all_equ": [53, 76, 620], "equality_matrix": [53, 76, 521, 620], "array_equ": [53, 76, 620], "assert_supports_inplac": [53, 76, 620], "ivybackendexcept": [53, 76, 525, 549, 620, 793, 808, 814, 817, 818], "clip_matrix_norm": [53, 76, 620], "894": [53, 76, 527, 528, 620, 628, 723], "clip_vector_norm": [53, 76, 620], "default_v": [53, 531, 620], "catch_except": [53, 531, 620], "rev": [53, 531, 620], "with_cal": [53, 531, 620], "catch": [53, 531, 620, 822, 828], "einops_rearrang": [53, 76, 620], "axes_length": [53, 76, 532, 533, 534, 620], "arrang": [53, 532, 620], "rearrang": [53, 76, 532, 534, 620, 827], "einops_reduc": [53, 76, 620, 813], "einops_repeat": [53, 76, 620], "fourier_encod": [53, 76, 620], "max_freq": [53, 76, 536, 620], "oppos": [53, 76, 536, 620, 813], "geometr": [53, 76, 536, 620, 623, 678], "0000000e": [53, 76, 536, 620], "2246468e": [53, 76, 536, 620], "4492936e": [53, 536, 620], "6739404e": [53, 76, 536, 620], "batch_dim": [53, 76, 539, 540, 620, 784], "gather_nd": [53, 76, 620], "get_num_dim": [53, 76, 620], "as_arrai": [53, 76, 543, 577, 620, 784], "has_nan": [53, 76, 620], "include_inf": [53, 76, 545, 599, 620], "inplace_decr": [53, 76, 620], "val": [53, 69, 74, 76, 248, 371, 461, 547, 548, 549, 568, 569, 570, 618, 620, 813, 824, 835], "decrement": [53, 76, 547, 620], "inplace_incr": [53, 76, 620], "increment": [53, 76, 548, 620, 805, 854], "inplace_upd": [53, 76, 567, 620, 775, 824], "ensure_in_backend": [53, 76, 549, 620, 824], "keep_input_dtyp": [53, 76, 549, 620, 824], "is_arrai": [53, 76, 620, 824, 825], "is_ivy_arrai": [53, 76, 620, 824, 835], "is_ivy_contain": [53, 620], "is_native_arrai": [53, 76, 171, 552, 616, 620, 835], "isin": [53, 76, 620], "test_el": [53, 76, 556, 620], "assume_uniqu": [53, 76, 556, 620], "invert": [53, 76, 226, 556, 618, 620, 623, 665], "scatter_flat": [53, 76, 620], "occupi": [53, 160, 163, 563, 564, 616, 620], "scatter_nd": [53, 76, 620, 831, 835], "stable_divid": [53, 76, 620, 821], "denomin": [53, 60, 76, 83, 570, 578, 592, 620, 628, 723, 781, 821, 830, 839, 851], "min_denomin": [53, 76, 570, 578, 592, 620, 830], "_min_denomin": [53, 578, 620], "stable_pow": [53, 76, 620], "min_bas": [53, 76, 569, 579, 591, 620, 781, 830], "stabl": [53, 64, 76, 87, 142, 322, 329, 330, 362, 365, 378, 502, 569, 570, 578, 579, 591, 592, 615, 620, 632, 739, 742, 764, 804, 809, 813, 825, 830, 833, 839], "00004": [53, 76, 579, 620], "00008": [53, 76, 579, 620], "00004000e": [53, 579], "56002560e": [53, 579], "60001200e": [53, 579], "09602048e": [53, 579], "supports_inplace_upd": [53, 76, 620], "to_fil": 53, "fid": 53, "sep": 53, "format_": 53, "recov": [53, 817, 825], "to_scalar": [53, 76, 620], "value_is_nan": [53, 76, 620], "_arraywithgradi": [54, 97], "adam_step": [54, 77, 621], "mw": [54, 77, 601, 602, 621, 837], "vw": [54, 77, 601, 602, 621, 837], "beta1": [54, 77, 523, 601, 602, 607, 620, 621, 782, 837], "beta2": [54, 77, 523, 601, 602, 607, 620, 621, 782, 837], "epsilon": [54, 57, 58, 77, 80, 81, 523, 601, 602, 607, 620, 621, 623, 624, 666, 669, 682, 683, 684, 774, 779, 781, 782, 811, 821, 824, 837], "dc": [54, 77, 601, 602, 605, 607, 608, 609, 621], "dw": [54, 77, 601, 602, 605, 607, 608, 609, 621], "forget": [54, 77, 601, 602, 607, 621, 782, 798, 813], "dcdw": [54, 77, 601, 602, 605, 607, 608, 621], "adam_step_delta": [54, 77, 601, 621], "2020105": [54, 601, 621], "22187898": [54, 601, 621], "24144873": [54, 601, 621], "10000002": [54, 88, 291, 360, 601, 747], "00300002": [54, 601], "00800002": [54, 601], "adam_upd": [54, 77, 621, 837], "mw_tm1": [54, 77, 602, 607, 621], "vw_tm1": [54, 77, 602, 607, 621], "stop_gradi": [54, 77, 208, 523, 602, 605, 607, 608, 609, 617, 620, 621, 626, 701, 702, 703, 782, 837], "ws_new": [54, 77, 602, 607, 608, 609, 621], "updated_weight": [54, 77, 602, 621], "92558753": [54, 602], "92558873": [54, 602, 621], "92558718": [54, 602, 621], "00000063e": [54, 77, 602, 621], "00000016e": [54, 77, 602, 621], "00000086e": [54, 77, 602, 621], "gradient_descent_upd": [54, 77, 621, 626, 701, 702, 703], "descent": [54, 77, 605, 621, 782, 837, 854], "new_weight": [54, 77, 605, 607, 608, 621, 836], "lamb_upd": [54, 77, 621], "max_trust_ratio": [54, 77, 607, 621, 782], "decay_lambda": [54, 77, 607, 608, 621, 782], "trust": [54, 77, 607, 621, 782], "ratio": [54, 77, 607, 621, 782], "decai": [54, 77, 607, 608, 621, 782], "lamb": [54, 77, 607, 621, 782, 837], "784": [54, 607, 621], "lars_upd": [54, 77, 621], "lar": [54, 77, 608, 621, 782, 837], "34077978": [54, 608, 621], "78025991": [54, 608, 621], "56051969": [54, 608, 621], "78026009": [54, 608, 621], "56051981": [54, 608, 621], "12103939": [54, 608, 621], "optimizer_upd": [54, 77, 621], "effective_grad": [54, 77, 609, 621], "3e": [54, 77, 609, 621], "preserve_typ": [54, 77, 610, 621], "_arraywithimag": [55, 97], "_arraywithlay": [56, 97], "conv1d": [56, 79, 622, 778], "filter_format": [56, 79, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643], "channel_last": [56, 79, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 762], "x_dilat": [56, 79, 622, 635, 636, 638, 639, 640, 642], "d_out": [56, 79, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643], "channel_first": [56, 79, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643], "wio": [56, 622, 635, 636, 637, 642], "conv1d_transpos": [56, 79, 622], "output_shap": [56, 79, 622, 635, 637, 639, 641, 643, 778], "iow": [56, 79, 622, 637], "woi": [56, 79, 622, 637], "fh": [56, 79, 622, 627, 635, 638, 639, 640, 641, 642, 643, 644, 716], "hwio": [56, 622, 635, 636, 638, 642], "conv2d_transpos": [56, 79, 622], "iohw": [56, 79, 622, 639], "hwoi": [56, 79, 622, 639], "conv3d": [56, 79, 622, 641, 778], "fd": [56, 79, 622, 635, 640, 641, 642, 643], "conv3d_transpos": [56, 79, 622, 643], "iodhw": [56, 79, 622, 641, 643], "dhwoi": [56, 79, 622, 641, 643], "depthwise_conv2d": [56, 79, 622], "randint": [56, 61, 63, 79, 84, 629, 631, 644, 647, 735, 813, 847], "noise_shap": [56, 79, 622, 645], "42857146": [56, 622, 645], "85714293": [56, 622, 645], "28571415": [56, 79, 622, 645], "71428585": [56, 79, 622, 645], "14285755": [56, 79, 622, 645], "5714283": [56, 622, 645], "4285717": [56, 79, 622, 645], "8571434": [56, 79, 622, 645], "2857151": [56, 622, 645], "dropout1d": [56, 79, 368], "droput1d": [56, 391, 392], "dropout2d": [56, 79, 368], "dropout3d": [56, 79, 368], "droput3d": [56, 393], "outer_batch_shap": [56, 79, 622, 646], "inner_batch_shap": [56, 79, 622, 646], "lstm_updat": [56, 79, 622, 833], "init_h": [56, 79, 622, 647, 833], "init_c": [56, 79, 622, 647, 833], "recurrent_kernel": [56, 79, 622, 647, 833], "recurrent_bia": [56, 79, 622, 647, 833], "hidden": [56, 79, 622, 647, 778, 810, 817, 833, 837], "recurr": [56, 79, 622, 647, 833, 854, 858], "timestep": [56, 79, 622, 647, 648, 778, 833], "h_i": [56, 79, 647], "c_i": [56, 79, 647], "rc": [56, 79, 647], "multi_head_attent": [56, 79, 622, 824], "num_head": [56, 79, 622, 648, 778], "in_proj_weight": [56, 79, 622, 648], "q_proj_weight": [56, 79, 622, 648], "k_proj_weight": [56, 79, 622, 648], "v_proj_weight": [56, 79, 622, 648], "out_proj_weight": [56, 79, 622, 648], "in_proj_bia": [56, 79, 622, 648], "out_proj_bia": [56, 79, 622, 648], "is_caus": [56, 79, 622, 648, 651], "key_padding_mask": [56, 79, 622, 648], "bias_k": [56, 79, 622, 648], "bias_v": [56, 79, 622, 648], "static_k": [56, 79, 622, 648], "static_v": [56, 79, 622, 648], "add_zero_attn": [56, 79, 622, 648], "return_attention_weight": [56, 79, 622, 648], "average_attention_weight": [56, 79, 622, 648], "scaled_dot_product_attent": [56, 79, 622], "dropout_p": [56, 79, 622, 651], "num_queri": [56, 79, 622, 651], "feat_dim": [56, 79, 622, 651], "num_kei": [56, 79, 622, 651], "causal": [56, 79, 622, 648, 651], "attent": [56, 79, 622, 648, 651, 778, 805, 808, 844], "29999995": [56, 291, 292, 301, 360, 622, 631, 651, 736], "19994521": [56, 622, 651], "09994531": [56, 622, 651], "30000019": [56, 371, 456, 622, 651], "_arraywithlinearalgebra": [57, 97], "choleski": [57, 80, 623, 824], "625": [57, 75, 341, 623, 652], "vif": [57, 80, 653], "det": [57, 80, 623, 671, 812], "axis1": [57, 59, 80, 82, 623, 625, 656, 677, 697], "axis2": [57, 80, 623, 656, 677], "eigh": [57, 80, 369, 420, 623, 657], "uplo": [57, 80, 623, 658, 659], "eigvalsh": [57, 80, 623], "array_lik": [57, 80, 368, 370, 371, 412, 441, 442, 446, 447, 477, 623, 660, 668, 792], "105": [57, 79, 622, 623, 624, 645, 646, 660, 668, 682], "149": [57, 623, 660], "143": [57, 74, 98, 285, 618, 623, 660, 815], "203": [57, 74, 224, 623, 628, 660, 723], "233": [57, 623, 660], "inv": [57, 80, 623], "transpose_a": [57, 80, 623, 663], "transpose_b": [57, 80, 623, 663], "adjoint_a": [57, 80, 623, 663], "adjoint_b": [57, 80, 623, 663], "matrix_norm": [57, 80, 623], "ord": [57, 80, 623, 664, 680], "fro": [57, 80, 370, 441, 623, 664], "nuc": [57, 80, 623, 664], "matrix_pow": [57, 80, 623], "matrix_rank": [57, 80, 623], "hermitian": [57, 80, 369, 420, 421, 623, 657, 658, 659, 666, 673], "largest_singular_valu": [57, 80, 623, 666, 669], "defici": [57, 623, 666], "matrix_transpos": [57, 80, 623, 835], "pinv": [57, 80, 623], "pseudo": [57, 80, 623, 669, 823], "99999988": [57, 80, 623, 669], "qr": [57, 80, 623, 826], "complet": [57, 69, 80, 623, 670, 763, 803, 804, 805, 807, 808, 811, 812, 815, 817, 821, 825, 826, 828, 831, 835, 836, 844, 852], "12309149": [57, 623, 670], "90453403": [57, 623, 670], "40824829": [57, 623, 670], "49236596": [57, 623, 670], "30151134": [57, 623, 670], "81649658": [57, 623, 670], "86164044": [57, 623, 670], "12403841e": [57, 623, 670], "60113630e": [57, 623, 670], "10782342e": [57, 623, 670], "04534034e": [57, 623, 670], "80906807e": [57, 623, 670], "88178420e": [57, 80, 623, 659, 670], "slogdet": [57, 80, 623], "logabsdet": [57, 80, 623, 671], "natur": [57, 80, 238, 256, 257, 258, 259, 278, 347, 365, 618, 623, 671, 808, 815, 817, 826, 844], "098611": [57, 623, 671], "solv": [57, 80, 369, 429, 623, 762, 798, 804, 807, 818, 825, 834, 856], "full_matric": [57, 80, 623, 673], "svf": [57, 673], "reconstructed_x": [57, 623, 673], "svdval": [57, 80, 623], "tensorsolv": [57, 80, 623], "vander": [57, 80, 623], "vandermond": [57, 80, 623, 678], "vecdot": [57, 80, 623], "vector_norm": [57, 80, 623], "mathemat": [57, 80, 218, 223, 235, 240, 242, 258, 268, 613, 618, 623, 664, 680, 813, 825, 831, 854, 860], "manhattan": [57, 80, 623, 680], "euclidean": [57, 80, 92, 93, 623, 680], "7416575": [57, 80, 623, 680], "vector_to_skew_symmetric_matrix": [57, 80, 623], "_arraywithloss": [58, 97], "binary_cross_entropi": [58, 81, 624, 812], "from_logit": [58, 81, 624, 682, 779], "pos_weight": [58, 81, 624, 682], "crossentropi": [58, 81, 624, 682], "357": [58, 81, 624, 682, 684], "223": [58, 81, 624, 682, 684], "3862944": [58, 624, 683], "sparse_cross_entropi": [58, 81, 624], "_arraywithmanipul": [59, 97], "x_min": [59, 82, 625, 685, 838], "x_max": [59, 82, 625, 685, 838], "before_1": [59, 82, 371, 472, 625, 687, 700], "after_1": [59, 82, 371, 472, 625, 687, 700], "before_n": [59, 82, 371, 472, 625, 687, 700], "after_n": [59, 82, 371, 472, 625, 687, 700], "repetit": [59, 82, 625, 691, 698, 831], "flat": [59, 69, 82, 376, 500, 563, 620, 625, 691], "allowzero": [59, 82, 625, 692], "remain": [59, 62, 75, 82, 85, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 391, 392, 393, 412, 618, 625, 627, 630, 692, 710, 733, 792, 804, 805, 812, 815, 817, 821, 829, 831, 839], "roll": [59, 82, 625, 820], "shift": [59, 71, 82, 98, 131, 142, 227, 229, 322, 362, 615, 618, 625, 693, 804, 805, 814, 815, 820, 827], "restor": [59, 82, 625, 693, 819], "num_or_size_split": [59, 69, 82, 625, 694, 833], "with_remaind": [59, 69, 82, 625, 694], "squeezabl": [59, 625, 695], "swapax": [59, 82, 625], "axis0": [59, 82, 625, 697], "swap_ax": [59, 697], "swap": [59, 82, 625, 697, 787, 848], "tile": [59, 76, 82, 534, 625], "unpack": [59, 82, 625, 699, 826, 828], "zero_pad": [59, 82, 625], "_arraywithnorm": [60, 97], "layer_norm": [60, 83, 628], "normalized_idx": [60, 83, 628, 723], "new_std": [60, 83, 628, 723, 781], "learnabl": [60, 83, 626, 628, 703, 723, 778, 781, 838], "deviat": [60, 61, 65, 83, 84, 88, 628, 629, 633, 723, 726, 750, 764, 777, 781, 807, 845], "0976": [60, 628, 723], "3452": [60, 628, 723], "2740": [60, 628, 723], "1047": [60, 628, 723], "5886": [60, 628, 723], "2732": [60, 628, 723], "7696": [60, 628, 723, 762], "7024": [60, 628, 723], "2518": [60, 628, 723], "826": [60, 628, 723], "178": [60, 628, 723], "981": [60, 628, 723], "831": [60, 628, 723], "421": [60, 628, 723], "_arraywithrandom": [61, 97], "multinomi": [61, 84, 375, 497, 629], "population_s": [61, 84, 629, 724], "num_sampl": [61, 84, 629, 724], "unnorm": [61, 84, 629, 724, 828], "popul": [61, 65, 69, 84, 88, 629, 633, 724, 750, 752, 813, 814, 824, 828, 833, 860], "draw": [61, 84, 375, 495, 497, 499, 629, 724, 726, 727, 762, 763, 764, 765, 770, 777, 803, 807, 826, 828], "half": [61, 84, 121, 282, 615, 618, 629, 725, 727, 801, 818, 831], "235": [61, 726], "float16": [61, 72, 84, 129, 152, 154, 155, 160, 162, 339, 365, 615, 616, 623, 680, 726, 727, 762, 763, 801, 813, 818, 825, 828], "807": [61, 726], "_arraywithsearch": [62, 97], "select_last_index": [62, 85, 630, 730, 731], "occurr": [62, 371, 380, 485, 507, 630, 631, 730, 731, 735], "argmin": [62, 85, 630], "output_dtyp": [62, 85, 630, 731], "argwher": [62, 85, 630], "nonzero": [62, 85, 93, 216, 217, 218, 221, 224, 233, 235, 238, 240, 242, 268, 281, 286, 618, 630], "as_tupl": [62, 85, 630, 733], "fewer": [62, 85, 630, 733], "_arraywithset": [63, 97], "unique_al": [63, 86, 631], "by_valu": [63, 86, 631, 735], "inverse_indic": [63, 86, 371, 485, 631, 735, 737], "unique_count": [63, 86, 631], "unique_invers": [63, 86, 631], "unique_valu": [63, 86, 631], "admonit": [63, 738], "dask": [63, 631, 735, 736, 737, 738, 844], "difficult": [63, 631, 735, 736, 737, 738, 805, 807, 813, 828, 839], "omit": [63, 278, 618, 631, 735, 736, 737, 738, 820, 824, 825], "x_i": [63, 65, 74, 93, 215, 216, 217, 220, 221, 222, 224, 226, 231, 232, 233, 238, 240, 241, 248, 249, 250, 251, 252, 256, 257, 258, 259, 263, 270, 275, 278, 279, 280, 281, 282, 283, 285, 286, 288, 329, 330, 332, 352, 365, 618, 631, 633, 735, 736, 737, 738, 746, 747, 748, 750, 751, 752, 777, 816], "x_j": [63, 631, 735, 736, 737, 738], "impli": [63, 631, 735, 736, 737, 738, 828], "typeerror": [63, 86, 631, 738, 835], "_arraywithsort": [64, 97], "stabil": [64, 87, 578, 579, 620, 632, 739, 742, 813, 823, 829, 831], "maintain": [64, 87, 632, 739, 742, 804, 805, 807, 819, 824, 826, 827, 828, 843, 853], "msort": [64, 87, 632], "searchsort": [64, 87, 632, 763], "side": [64, 87, 343, 365, 369, 435, 632, 741, 762, 778, 791, 792, 804, 805, 810], "sorter": [64, 87, 632, 741], "ret_dtyp": [64, 87, 632, 741], "_arraywithstatist": [65, 97], "cumprod": [65, 88, 633, 825, 838], "cumsum": [65, 88, 633, 813], "einsum": [65, 88, 633], "equat": [65, 75, 88, 308, 362, 369, 435, 623, 633, 672, 745, 762, 791, 812, 854], "operand": [65, 75, 79, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 356, 365, 366, 368, 410, 618, 623, 633, 671, 677, 745, 746, 748, 749, 751, 791, 792, 808, 811, 816, 825], "contract": [65, 623, 633, 675, 745, 792], "seq": [65, 633, 745, 762], "ii": [65, 88, 633, 745, 805], "jk": [65, 633, 745, 792], "ik": [65, 633, 745, 792], "126": [65, 105, 274, 612, 618, 623, 633, 665, 745], "510": [65, 633, 745], "special": [65, 80, 92, 93, 97, 98, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 618, 623, 633, 671, 677, 746, 747, 748, 749, 750, 751, 752, 762, 763, 764, 765, 770, 777, 803, 807, 808, 810, 812, 815, 816, 817, 820, 824, 826, 827, 828, 829, 831, 854, 855, 856], "arithmet": [65, 88, 229, 235, 268, 618, 633, 747, 825], "propag": [65, 229, 329, 330, 365, 618, 633, 746, 747, 748, 750, 751, 752, 823], "04999995": [65, 747], "freedom": [65, 88, 633, 750, 752, 809], "constitut": [65, 88, 633, 750, 752, 821, 833, 855], "commonli": [65, 88, 633, 750, 752, 817, 821, 823], "81649661": [65, 633, 750], "6666665": [65, 752, 836], "667": [65, 76, 235, 528, 578, 618, 620, 752], "_arraywithutil": [66, 97], "logic": [66, 89, 199, 235, 236, 262, 263, 264, 268, 271, 617, 618, 634, 753, 754, 803, 808, 812, 813, 814, 817, 821, 822, 823, 824, 825, 827, 828, 831, 835, 848], "AND": [66, 89, 225, 236, 262, 618, 634, 753], "OR": [66, 89, 228, 264, 271, 618, 634, 754, 804, 805, 823], "_wrap_funct": [67, 90, 810, 821, 822], "function_nam": [67, 90, 803, 829], "new_funct": [67, 90, 810], "add_ivy_array_instance_method": 67, "cl": [67, 90], "moduletyp": [67, 90, 847, 848, 849], "toi": [67, 90], "arrayexampl": 67, "hasattr": [67, 90], "_containerwithactiv": [68, 98], "dict_in": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 573, 595, 620, 830, 836], "queue_load_s": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "container_combine_method": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "list_join": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue_timeout": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 573, 595, 620, 830], "print_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "key_length_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_ind": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_line_spac": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "ivyh": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "default_key_color": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "keyword_color_dict": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "rebuild_child_contain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "types_to_iteratively_nest": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "alphabetical_kei": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "dynamic_backend": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 779, 780, 809, 830], "build_cal": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "containerbas": [68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 811], "_static_gelu": 68, "key_chain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 459, 468, 470, 472, 473, 474, 476, 477, 478, 479, 480, 481, 482, 485, 487, 488, 489, 490, 491, 492, 494, 496, 501, 502, 509, 510, 511, 512, 519, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754], "to_appli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 459, 468, 470, 472, 473, 474, 476, 477, 478, 479, 480, 481, 482, 485, 487, 488, 489, 490, 491, 492, 494, 496, 501, 502, 509, 510, 511, 512, 519, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 627, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754], "prune_unappli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 459, 468, 470, 472, 473, 474, 476, 477, 478, 479, 480, 481, 482, 485, 487, 488, 489, 490, 491, 492, 494, 496, 501, 502, 509, 510, 511, 512, 519, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 627, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754], "map_sequ": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 459, 468, 470, 472, 473, 474, 476, 477, 478, 479, 480, 481, 482, 485, 487, 488, 489, 490, 491, 492, 494, 496, 501, 502, 509, 510, 511, 512, 519, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754], "prune": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 478, 480, 481, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 627, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 717, 718, 719, 720, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 760, 763, 812], "static_gelu": 68, "046": 68, "_static_hardswish": 68, "_static_leaky_relu": 68, "static_leaky_relu": 68, "38999999": [68, 75, 107, 290, 291, 360], "_static_log_softmax": 68, "static_log_softmax": 68, "371": [68, 108], "_static_mish": 68, "static_mish": 68, "30883577": [68, 109, 612], "28903052": [68, 109, 612], "10714479": [68, 109, 612], "_static_relu": 68, "static_relu": 68, "_static_sigmoid": 68, "static_sigmoid": 68, "2689414": [68, 111, 112, 612], "7310586": [68, 111, 112, 612], "88079703": [68, 111, 612], "62245935": [68, 111], "4750208": [68, 111], "_static_softmax": 68, "static_softmax": 68, "72844321": [68, 112], "19852395": [68, 112], "07303288": [68, 112], "_static_softplu": 68, "revert": [68, 113, 612], "static_softplu": 68, "53499615": 68, "42036411": 68, "948": [68, 113, 627, 704], "166": [68, 105, 612], "dictionari": [69, 86, 98, 207, 587, 603, 617, 620, 621, 738, 757, 759, 792, 808, 812, 813, 821, 825, 826, 836, 839], "asynchron": [69, 98, 854], "wait": [69, 98, 573, 620, 798, 803, 805, 812, 825], "arriv": [69, 98, 573, 620, 831], "cont_list_join": [69, 98], "limit": [69, 98, 160, 163, 527, 528, 544, 616, 620, 625, 685, 762, 764, 765, 777, 784, 792, 798, 804, 805, 810, 812, 815, 817, 825, 828, 831, 836, 839, 853, 854, 855], "whitespac": [69, 98], "indent": [69, 98, 836], "newlin": [69, 98, 816], "termin": [69, 98, 804, 805, 811, 818, 819, 833, 836], "constructor": [69, 98, 523, 620, 759, 775, 783, 813, 814, 816, 835], "kept": [69, 98, 626, 701, 702, 805, 824, 829], "encount": [69, 98, 778, 801, 803, 813, 817, 818, 828], "node": [69, 76, 98, 525, 535, 581, 627, 714, 715, 777, 786, 810, 811, 825, 844, 847, 848, 855], "alphabet": [69, 98], "__setitem__": [69, 371, 480, 808, 811, 835], "_cont_at_key_chains_input_as_dict": 69, "current_chain": 69, "ignore_key_error": 69, "_cont_at_key_chains_input_as_seq": 69, "_cont_call_static_method_with_flexible_arg": 69, "static_method": 69, "kw": 69, "self_idx": 69, "_cont_concat_unifi": 69, "_cont_get_dev": 69, "_cont_get_dtyp": 69, "_cont_get_shap": 69, "_cont_ivi": 69, "_cont_mean_unifi": 69, "_1": 69, "_cont_prune_key_chains_input_as_dict": 69, "return_cont": 69, "_cont_prune_key_chains_input_as_seq": 69, "_cont_slice_kei": 69, "key_slic": 69, "_cont_sum_unifi": 69, "_get_queue_item": 69, "cont_all_fals": 69, "assert_is_bool": 69, "cont_all_key_chain": 69, "include_empti": 69, "cont_all_tru": [69, 811, 836], "cont_as_bool": 69, "cont_assert_contains_sub_contain": 69, "sub_cont": 69, "screen": [69, 803, 804, 836], "cont_assert_contains_sub_structur": 69, "check_shap": [69, 784], "cont_assert_ident": 69, "check_typ": 69, "same_arrai": [69, 836], "arrays_equ": 69, "cont_assert_identical_structur": 69, "assert_and_assign": 69, "congruent": 69, "cont_at_key_chain": 69, "ignore_non": 69, "cont_at_kei": 69, "substr": 69, "cont_combin": 69, "duplic": [69, 371, 477, 544, 620, 627, 706, 809, 816, 822, 823, 826, 837, 860], "configur": [69, 207, 617, 627, 717, 804, 805, 810, 812, 813, 818, 819], "container_rightmost": 69, "cont_common_key_chain": 69, "cont_config": 69, "cont_contains_sub_contain": 69, "cont_contains_sub_structur": 69, "cont_copi": [69, 836], "cont_create_if_abs": 69, "noth": [69, 831, 860], "cont_cutoff_at_depth": 69, "depth_cutoff": 69, "summari": [69, 164, 529, 616, 620, 804, 805, 828], "cont_cutoff_at_height": 69, "height_cutoff": 69, "cont_deep_copi": [69, 836, 847], "cont_dev": 69, "belong": [69, 803, 807, 837], "cont_dev_str": 69, "cont_diff": [69, 836], "diff_kei": 69, "detect_key_diff": 69, "detect_value_diff": 69, "detect_shape_diff": 69, "among": [69, 811, 812, 828, 831, 845, 854], "container0": 69, "cont_dtyp": 69, "cont_duplicate_array_keychain": 69, "cont_find_sub_contain": 69, "sub_cont_to_find": 69, "cont_find_sub_structur": 69, "sub_struc_to_find": 69, "cont_flatten_key_chain": [69, 836], "above_height": [69, 836], "below_depth": [69, 836], "cont_format_key_chain": 69, "format_fn": 69, "cont_from_disk_as_hdf5": [69, 836], "h5_obj_or_filepath": 69, "slice_obj": 69, "disk": [69, 780, 836, 853], "h5py": 69, "filepath": [69, 634, 755, 756, 805, 807], "cont_from_disk_as_json": [69, 836], "json_filepath": 69, "cont_from_disk_as_pickl": [69, 836], "pickle_filepath": 69, "cont_from_flat_list": 69, "flat_list": 69, "hierarchi": [69, 803, 827, 836, 850, 860], "cont_handle_inplac": 69, "prime": [69, 813], "overwritten": [69, 808, 809], "cont_has_kei": 69, "query_kei": 69, "somewher": [69, 812], "cont_has_key_chain": 69, "cont_ident": [69, 836], "cont_identical_array_shap": 69, "cont_identical_config": 69, "cont_identical_structur": 69, "cont_if_exist": 69, "cont_inplace_upd": 69, "cont_ivi": 69, "cont_key_chains_contain": 69, "sub_str": 69, "cont_list_stack": [69, 836], "cont_load": 69, "cont_map": [69, 811, 836], "func": [69, 92, 208, 357, 358, 359, 367, 526, 600, 603, 604, 606, 611, 617, 620, 621, 627, 717, 759, 803, 807, 808, 815, 817, 823], "cont_map_sub_cont": 69, "include_self": 69, "possibli": [69, 583, 620, 762, 828, 839], "cont_max_depth": 69, "cont_multi_map": 69, "map_nest": 69, "assert_ident": 69, "leftmost": [69, 627, 717], "cont_multi_map_in_funct": 69, "cont_num_arrai": 69, "cont_overwrite_at_key_chain": 69, "target_dict": 69, "return_dict": 69, "cont_prune_empti": 69, "keep_non": 69, "cont_prune_key_chain": 69, "key1": [69, 798, 837], "key2": [69, 798], "key3": 69, "cont_prune_key_from_key_chain": 69, "certain": [69, 121, 132, 133, 370, 442, 615, 804, 805, 807, 813, 821, 827, 828, 831, 839, 847, 848, 849, 858], "cont_prune_kei": 69, "cont_prune_keys_from_key_chain": 69, "cont_reduc": 69, "cont_remove_key_length_limit": 69, "cont_remove_print_limit": 69, "cont_reshape_lik": 69, "leading_shap": 69, "cont_restructur": 69, "keep_orig": 69, "old": [69, 804, 809, 824], "cont_restructure_key_chain": 69, "keychain_map": 69, "cont_sav": 69, "cont_set_at_key_chain": 69, "cont_set_at_kei": 69, "cont_shap": [69, 622, 640], "cont_show": 69, "cont_show_sub_contain": 69, "sub_cont_or_keychain": 69, "cont_size_ordered_arrai": 69, "keychain": [69, 75, 331, 450, 451, 452, 481], "cont_slice_kei": 69, "all_depth": 69, "cont_slice_via_kei": 69, "slice_kei": 69, "cont_sort_by_kei": 69, "cont_structural_diff": 69, "cont_to_dict": 69, "cont_to_disk_as_hdf5": [69, 836], "starting_index": 69, "max_batch_s": 69, "cont_to_disk_as_json": [69, 836], "cont_to_disk_as_pickl": [69, 836], "cont_to_flat_list": 69, "cont_to_iter": [69, 811], "leaf_keys_onli": 69, "cont_to_iterator_kei": 69, "cont_to_iterator_valu": 69, "cont_to_json": 69, "cont_to_nested_list": 69, "cont_to_raw": 69, "cont_trim_kei": 69, "cont_try_kc": 69, "cont_unifi": 69, "concatten": [69, 208, 617], "cont_unstack_cont": 69, "dim_siz": 69, "cont_update_config": 69, "cont_with_default_key_color": 69, "cont_with_entries_as_list": 69, "cont_with_ivy_backend": 69, "ivy_backend": [69, 826], "cont_with_key_length_limit": [69, 836], "cont_with_print_ind": [69, 836], "cont_with_print_limit": [69, 836], "cont_with_print_line_spac": 69, "h5_file_s": 69, "shuffle_h5_fil": 69, "split_cont": 69, "_is_json": 69, "_repr": 69, "_containerwithconvers": [70, 98], "_static_to_ivi": 70, "_static_to_n": 70, "_containerwithcr": [71, 98], "_static_arang": 71, "_static_asarrai": 71, "_static_copy_arrai": 71, "_static_empti": 71, "_static_empty_lik": 71, "_static_ey": 71, "n_row": [71, 75, 127, 142, 322, 362, 369, 428, 615], "n_col": [71, 75, 127, 142, 322, 362, 615], "_static_from_dlpack": 71, "_static_ful": 71, "_static_full_lik": 71, "static_full_lik": 71, "2324": [71, 131, 615], "234": [71, 74, 131, 154, 237, 288, 615, 616, 618, 622, 646, 762], "123": [71, 72, 131, 163, 535, 615, 620, 792, 828], "_static_linspac": 71, "_static_logspac": 71, "static_logspac": 71, "15443469": [71, 133], "64158883": [71, 133], "_static_meshgrid": 71, "_static_native_arrai": 71, "_static_one_hot": 71, "static_one_hot": 71, "_static_on": 71, "_static_ones_lik": 71, "_static_tril": 71, "_static_triu": 71, "_static_zero": 71, "_static_zeros_lik": 71, "frombuff": [71, 615], "expos": [71, 129, 529, 615, 620, 798, 812, 833, 837, 843], "x00": [71, 129, 615], "xf0": [71, 129, 615], "x01": [71, 129, 615], "x02": [71, 129, 615], "x03": [71, 129, 615], "x04": [71, 129, 615], "x05": [71, 129], "5443469": [71, 133, 615], "static_frombuff": 71, "static_triu_indic": 71, "triu_indic": [71, 615], "_containerwithdatatyp": [72, 98], "_static_astyp": 72, "718": [72, 74, 147, 264, 616], "618": [72, 74, 147, 264, 616], "static_astyp": 72, "_static_broadcast_arrai": 72, "static_broadcast_arrai": 72, "_static_broadcast_to": 72, "static_broadcast_to": 72, "_static_can_cast": 72, "from_": [72, 150, 616], "static_can_cast": 72, "_static_default_complex_dtyp": 72, "complex_dtyp": [72, 153, 176, 616], "_static_default_float_dtyp": 72, "float_dtyp": [72, 155, 178, 616], "_static_dtyp": 72, "_static_finfo": 72, "inquir": [72, 160, 163], "static_finfo": 72, "55040e": [72, 160, 616], "7976931348623157e": [72, 160, 616], "308": [72, 160, 616, 762, 828], "_static_function_supported_dtyp": 72, "_static_function_unsupported_dtyp": 72, "_static_iinfo": 72, "1800": [72, 163, 616], "1084": 72, "40000": 72, "static_iinfo": 72, "2147483648": [72, 75, 163, 371, 480, 616], "2147483647": [72, 163, 616], "_static_is_bool_dtyp": 72, "dtype_in": [72, 145, 146, 159, 165, 166, 167, 168, 169, 170, 171, 172, 187, 616], "_static_is_complex_dtyp": 72, "is_complex_dtyp": [72, 616, 829], "roughli": [72, 804, 807, 857], "static_is_complex_dtyp": 72, "_static_is_float_dtyp": 72, "static_is_float_dtyp": 72, "_static_is_int_dtyp": 72, "_static_is_uint_dtyp": 72, "_static_result_typ": 72, "static_result_typ": 72, "broadcats": [72, 148], "_containerwithdevic": [73, 98], "_static_dev": 73, "static_dev": 73, "_static_to_devic": 73, "static_to_devic": 73, "contaion": [73, 192], "_containerwithelementwis": [74, 98], "_static_ab": 74, "static_ab": 74, "_static_aco": 74, "static_aco": 74, "_static_acosh": 74, "static_acosh": 74, "_static_add": 74, "static_add": [74, 102], "_static_asin": 74, "static_asin": 74, "524": [74, 220, 618], "412": [74, 79, 220, 618, 627, 704], "_static_asinh": 74, "static_asinh": 74, "_static_atan": 74, "static_atan": 74, "_static_atan2": 74, "static_atan2": 74, "915": [74, 223, 618], "983": [74, 223, 618], "978": [74, 223, 618], "696": [74, 84, 223, 618, 726], "993": [74, 223, 618], "_static_atanh": 74, "static_atanh": 74, "_static_bitwise_and": 74, "static_bitwise_and": 74, "_static_bitwise_invert": 74, "static_bitwise_invert": 74, "_static_bitwise_left_shift": 74, "_static_bitwise_or": 74, "static_bitwise_or": 74, "_static_bitwise_right_shift": 74, "static_bitwise_right_shift": 74, "_static_bitwise_xor": 74, "static_bitwise_xor": 74, "_static_ceil": 74, "static_ceil": 74, "_static_co": 74, "static_co": 74, "_static_cosh": 74, "static_cosh": 74, "_static_deg2rad": 74, "static_deg2rad": 74, "0262": [74, 234, 274, 618], "873": [74, 234, 274, 618], "_static_divid": 74, "static_divid": 74, "_static_equ": 74, "static_equ": 74, "_static_erf": 74, "static_erf": 74, "27632612": [74, 237], "934008": [74, 237, 618], "99999928": [74, 237], "91903949": [74, 237], "_static_exp": 74, "static_exp": 74, "59814835": [74, 238, 618], "4131622": [74, 238], "_static_expm1": 74, "thefunct": [74, 237], "areal": 74, "static_expm1": 74, "71828175": [74, 238, 618], "38905621": [74, 238, 618], "59815216": 74, "_static_floor": 74, "static_floor": 74, "_static_floor_divid": 74, "static_floor_divid": 74, "_static_great": 74, "static_great": 74, "_static_greater_equ": 74, "static_greater_equ": 74, "_static_isfinit": 74, "999999999999": [74, 249, 618], "static_isfinit": 74, "_static_isinf": 74, "static_isinf": 74, "_static_isnan": 74, "static_isnan": 74, "_static_isr": 74, "0j": [74, 75, 137, 138, 216, 217, 218, 221, 224, 233, 238, 240, 252, 256, 258, 275, 279, 281, 282, 286, 332, 365, 615, 618, 623, 671], "23j": [74, 75], "9j": [74, 75], "static_isr": 74, "_static_lcm": 74, "1080": [74, 253], "1550": [74, 253], "130": [74, 253, 371, 477], "_static_less": 74, "static_less": 74, "_static_less_equ": 74, "static_less_equ": 74, "_static_log": 74, "static_log": 74, "_static_log10": 74, "static_log10": 74, "898": [74, 257, 618], "0414": [74, 257, 618], "_static_log1p": 74, "static_log1p": 74, "_static_log2": 74, "static_log2": 74, "_static_logaddexp": 74, "static_logaddexp": 74, "_static_logical_and": 74, "static_logical_and": 74, "_static_logical_not": 74, "static_logical_not": 74, "_static_logical_or": 74, "static_logical_or": 74, "_static_logical_xor": 74, "static_logical_xor": 74, "_static_maximum": 74, "static_maximum": 74, "_static_minimum": 74, "static_minimum": 74, "_static_multipli": 74, "static_multipli": 74, "_static_neg": 74, "static_neg": 74, "_static_not_equ": 74, "static_not_equ": 74, "_static_posit": 74, "static_posit": 74, "_static_pow": 74, "static_pow": 74, "_static_rad2deg": 74, "static_rad2deg": 74, "5160": 74, "10300": [74, 274, 618], "15500": 74, "20600": 74, "2860": [74, 274], "_static_reciproc": 74, "recirpoc": [74, 276], "static_reciproc": 74, "_static_remaind": 74, "static_remaind": 74, "_static_round": 74, "thevfunct": 74, "527": [74, 278, 618], "static_round": 74, "301": [74, 278, 618], "_static_sign": 74, "static_sign": 74, "_static_sin": 74, "static_sin": 74, "757": [74, 280, 618], "959": [74, 240, 280, 618], "279": [74, 280, 368, 389, 399, 527, 618, 620], "_static_sinh": 74, "static_sinh": 74, "835": [74, 281], "347": [74, 281], "721": [74, 281], "_static_sqrt": 74, "static_sqrt": 74, "_static_squar": 74, "static_squar": 74, "_static_subtract": 74, "static_subtract": 74, "_static_tan": 74, "static_tan": 74, "_static_tanh": 74, "static_tanh": 74, "995": [74, 286, 618], "9999": 74, "_static_trapz": 74, "static_trapz": 74, "_static_trunc": 74, "static_trunc": 74, "_static_trunc_divid": 74, "75j": [74, 219, 248], "01317055": [74, 219], "05634501": [74, 219], "115": [74, 219, 274, 618], "3461759": [74, 219], "524111": [74, 219], "644": [74, 220, 618, 837], "305": [74, 79, 220, 618], "351": [74, 234, 274], "00613": [74, 234], "0154": [74, 234], "403": [74, 238], "428772": [74, 238], "649": [74, 240], "220": [74, 240], "865": [74, 240], "metho": [74, 247, 259], "7j": [74, 75, 252, 275, 332, 365, 618], "956": [74, 258], "08746284": [74, 261], "32192809": [74, 261], "nuner": [74, 268], "413": [74, 274], "335": [74, 75, 275, 332], "345j": [74, 75, 275, 332], "static_angl": 74, "static_exp2": 74, "static_fmin": 74, "static_gcd": 74, "static_imag": 74, "static_logaddexp2": 74, "static_nan_to_num": 74, "static_r": 74, "_containerwithactivationexperiment": [75, 98], "_static_celu": 75, "formlat": 75, "static_celu": 75, "_static_elu": 75, "static_elu": 75, "_static_hardshrink": 75, "hard": [75, 292, 805, 835, 854], "shrinkag": [75, 292, 301, 371, 479], "_static_hardtanh": 75, "static_hardtanh": [75, 293], "_static_scaled_tanh": 75, "931": 75, "71587813": 75, "88367474": 75, "00376701": [75, 298], "2285642": 75, "99999881": 75, "49999905": 75, "_static_silu": 75, "static_silu": 75, "27777028": [75, 300], "23947507": [75, 300], "0900332": [75, 300], "_static_softshrink": 75, "_static_tanhshrink": 75, "36634541": [75, 303], "02005103": [75, 303], "00262468": [75, 303], "_static_threshold": 75, "19722462": [75, 294], "84729779": [75, 294], "31326163": [75, 295], "46328258": [75, 295], "51301527": [75, 295], "79813886": [75, 295], "simplywrap": [75, 298], "54939651": [75, 298], "09999998": [75, 298, 601, 621], "09999999": [75, 298], "08336546": [75, 298], "0379949": [75, 298], "22856998": [75, 299], "42028043": [75, 299], "31868932": [75, 299], "static_logit": 75, "static_logsigmoid": 75, "34115386": 75, "64439666": 75, "24115384": 75, "55435526": 75, "07888974": 75, "00741899": 75, "26328245": 75, "00012302": 75, "static_prelu": 75, "static_relu6": 75, "static_selu": 75, "static_thresholded_relu": 75, "_containerwithconversionexperiment": [75, 98], "_containerwithcreationexperiment": [75, 98], "_static_trilu": 75, "blackman": [75, 306, 362], "00770143e": [75, 306], "49229857e": [75, 306], "hamming_window": [75, 362], "ham": [75, 308, 362], "4180": [75, 308], "8180": [75, 308], "hann_window": [75, 362], "hann": [75, 309, 362], "7500": [75, 309], "3455": [75, 309], "9045": [75, 309], "kaiser_bessel_derived_window": [75, 362], "suitabl": [75, 311, 312, 362, 632, 741, 764, 804, 805, 811, 829, 854], "spectral": [75, 311, 312, 362], "analysi": [75, 311, 312, 362, 854, 855], "kaiser": [75, 306, 311, 312, 362], "70710677": [75, 311, 492, 494], "18493208": [75, 311, 362], "9827513": [75, 311, 362], "kaiser_window": [75, 362], "static_kaiser_window": [75, 312], "2049": [75, 312], "8712": [75, 312], "0367": [75, 312, 362], "7753": [75, 312], "static_blackman_window": 75, "static_eye_lik": 75, "static_hamming_window": 75, "static_hann_window": 75, "static_hann": 75, "static_kaiser_bessel_derived_window": 75, "static_mel_weight_matrix": 75, "static_polyv": 75, "static_tril_indic": 75, "static_unsorted_segment_mean": 75, "static_unsorted_segment_min": 75, "static_unsorted_segment_sum": 75, "static_vorbis_window": 75, "vorbis_window": [75, 362], "vorbi": [75, 327, 362], "38268343": [75, 327, 623, 658], "92387953": [75, 327], "14943586": [75, 327, 362], "51644717": [75, 327], "85631905": [75, 327], "98877142": [75, 327], "tril_indic": [75, 362], "_containerwithdata_typeexperiment": [75, 98], "_containerwithdeviceexperiment": [75, 98], "_containerwithelementwiseexperiment": [75, 98], "0003": [75, 328, 623, 661, 762, 765], "0006": [75, 328, 355], "2345j": [75, 332], "5772": [75, 336], "9635": [75, 336], "4228": [75, 336], "9228": [75, 336], "57299206e": [75, 337], "67773480e": [75, 337], "20904985e": [75, 337], "84270084": [75, 337, 365], "99532223": [75, 337], "99997795": [75, 337], "mantissa": [75, 341, 365, 813], "frist": [75, 342, 365], "coord": [75, 342], "6055": [75, 343], "160": [75, 345, 371, 477], "10240": [75, 345], "60000038": [75, 346, 365, 623, 679], "0707": [75, 352, 365], "0579": [75, 352, 365], "static_allclos": 75, "static_amax": 75, "static_amin": 75, "static_binar": 75, "static_conj": 75, "static_copysign": 75, "static_count_nonzero": 75, "static_diff": 75, "static_digamma": 75, "57721537": 75, "96351004": 75, "static_erfc": 75, "15729921": 75, "00467773": [75, 337, 365], "static_fix": 75, "static_float_pow": 75, "static_fmax": 75, "static_fmod": 75, "static_frexp": 75, "static_gradi": 75, "static_hypot": 75, "static_isclos": 75, "static_ldexp": 75, "static_lerp": 75, "90000057": [75, 346, 365], "70000076": [75, 346, 365], "55000019": [75, 346, 365], "05000019": [75, 346, 365], "static_modf": 75, "static_nansum": 75, "static_nextaft": 75, "static_signbit": 75, "static_sinc": 75, "636": 75, "090": 75, "070": 75, "057": 75, "static_sparsify_tensor": 75, "static_xlogi": 75, "static_zeta": 75, "0244": [75, 355], "_containerwithgeneralexperiment": [75, 98], "_static_reduc": 75, "static_reduc": 75, "_containerwithgradientsexperiment": [75, 98], "_containerwithimageexperiment": [75, 98], "_containerwithlayersexperiment": [75, 98], "_static_fft": 75, "static_fft": 75, "_static_sliding_window": 75, "673": [75, 389], "0507": [75, 389], "79711437": [75, 368, 389, 399], "94867325": [75, 368, 389, 399], "74089146": [75, 368, 389, 399], "25980937": [75, 368, 389, 399], "64958102": [75, 368, 389, 399], "2442648": [75, 368, 389, 399], "247306": [75, 401], "908323j": [75, 401], "494955": [75, 401], "90395j": [75, 401], "static_adaptive_avg_pool1d": 75, "static_adaptive_avg_pool2d": 75, "static_adaptive_max_pool2d": 75, "static_avg_pool1d": 75, "static_avg_pool2d": 75, "static_avg_pool3d": 75, "static_dct": 75, "253": [75, 281, 618], "515": [75, 629, 726], "467": 75, "static_dft": 75, "static_embed": 75, "static_idct": 75, "93732834": [75, 368, 389], "75048852": [75, 368, 389], "29723358": [75, 368, 399], "6950531": 75, "93914509": 75, "88008738": 75, "18951225": 75, "06697273": [75, 368, 399], "57439804": 75, "68861485": [75, 368, 399], "41308832": [75, 368, 399], "0700836": 75, "2449036": 75, "6711426": 75, "514": 75, "501709": 75, "4924011": 75, "static_ifft": 75, "static_ifftn": 75, "static_interpol": 75, "static_max_pool1d": 75, "static_max_pool2d": 75, "max_pool2dd": 75, "static_max_pool3d": 75, "static_max_unpool1d": 75, "static_rfft": 75, "static_rfftn": 75, "static_stft": 75, "_containerwithlinearalgebraexperiment": [75, 98], "933034": [75, 369, 417], "eigenvealu": [75, 420, 657], "xx": [75, 420, 422, 657], "37228107": [75, 420, 657], "3722816": [75, 420, 657], "8245648": [75, 420, 657], "41597357": [75, 420, 657], "56576747": [75, 420, 657], "9093767": [75, 420, 657], "56155": [75, 421], "82842": [75, 421], "450": [75, 427], "static_adjoint": 75, "static_batched_out": 75, "static_cond": 75, "static_diagflat": 75, "static_dot": 75, "static_eig": 75, "static_eigh_tridiagon": 75, "static_eigv": 75, "static_higher_order_mo": 75, "static_initialize_tuck": 75, "static_kron": 75, "kroneck": [75, 369, 426, 427], "static_make_svd_non_neg": 75, "static_matrix_exp": 75, "static_mode_dot": 75, "static_multi_dot": 75, "static_multi_mode_dot": 75, "static_partial_tuck": 75, "static_svd_flip": 75, "static_tensor_train": 75, "static_truncated_svd": 75, "static_tt_matrix_to_tensor": 75, "tt_matrix": [75, 369, 439], "output_tensor": [75, 95, 369, 439], "static_tuck": 75, "_containerwithlossesexperiment": [75, 98], "_static_huber_loss": 75, "static_huber_loss": 75, "0575": [75, 441], "_static_kl_div": 75, "_static_l1_loss": 75, "static_l1_loss": 75, "_static_log_poisson_loss": 75, "static_log_poisson_loss": 75, "_static_poisson_nll_loss": 75, "06446016": 75, "55611551": 75, "30244565": [75, 445], "_static_smooth_l1_loss": 75, "static_smooth_l1_loss": 75, "_static_soft_margin_loss": 75, "06429195": [75, 445], "_containerwithmanipulationexperiment": [75, 98], "_static_fill_diagon": 75, "_static_put_along_axi": 75, "_static_tak": 75, "69999981": [75, 301, 360, 371, 456, 480], "_static_trim_zero": 75, "_static_unique_consecut": 75, "ary1": [75, 371, 450, 451, 452], "ary2": [75, 371, 450, 451, 452], "broadcast_shap": [75, 101, 371, 762, 764], "static_concat_from_sequ": [75, 457], "30192195": [75, 469], "static_as_strid": 75, "static_atleast_1d": 75, "static_atleast_2d": 75, "static_atleast_3d": 75, "static_broadcast_shap": 75, "static_column_stack": 75, "static_dsplit": 75, "static_dstack": 75, "static_expand": 75, "static_flatten": 75, "static_fliplr": 75, "static_flipud": 75, "static_fold": 75, "static_heavisid": 75, "static_hsplit": 75, "static_hstack": 75, "static_i0": 75, "static_matric": 75, "static_moveaxi": 75, "static_pad": 75, "static_partial_fold": 75, "static_partial_tensor_to_vec": 75, "static_partial_unfold": 75, "static_partial_vec_to_tensor": 75, "static_rot90": 75, "static_soft_threshold": 75, "static_take_along_axi": 75, "static_top_k": 75, "static_unfold": 75, "static_vsplit": 75, "static_vstack": 75, "_containerwithnormsexperiment": [75, 98], "16903085": [75, 492, 494], "50709254": [75, 492, 494], "84515423": [75, 492, 494], "44183609": [75, 492, 494], "56807494": [75, 492, 494], "69431382": [75, 492, 494], "static_batch_norm": 75, "static_group_norm": 75, "static_instance_norm": 75, "static_l1_norm": 75, "static_l2_norm": 75, "static_lp_norm": 75, "12500000": 75, "37500000": 75, "62500000": 75, "27500000": 75, "35000000": 75, "42500000": 75, "0000000": 75, "5000000": 75, "2500000": 75, "_containerwithrandomexperiment": [75, 98], "43643127": [75, 497], "32325703": [75, 497], "24031169": [75, 497], "34251311": [75, 497], "31692529": [75, 497], "3405616": [75, 497], "5319725": [75, 497], "22458365": [75, 497], "24344385": [75, 497], "26588406": [75, 497], "61075421": [75, 497], "12336174": [75, 497], "51142915": [75, 497], "25041268": [75, 497], "23815817": [75, 497], "64042903": [75, 497], "25763214": [75, 497], "10193883": [75, 497], "31624692": [75, 497], "46567987": [75, 497], "21807321": [75, 497], "37677699": [75, 497], "39914594": [75, 497], "22407707": [75, 497], "static_bernoulli": 75, "static_beta": 75, "static_dirichlet": 75, "static_gamma": 75, "static_poisson": 75, "_containerwithsearchingexperiment": [75, 98], "static_unravel_index": 75, "_containerwithsetexperiment": [75, 98], "_containerwithsortingexperiment": [75, 98], "invert_permut": [75, 378], "static_invert_permut": 75, "static_lexsort": [75, 87], "_containerwithstatisticalexperiment": [75, 98], "_static_cummax": 75, "static_cummax": 75, "_static_cummin": 75, "static_cummin": 75, "_static_nanmin": 75, "static_nanmin": 75, "func_nam": [75, 512, 803, 815, 816, 821, 825], "static_bincount": 75, "static_corrcoef": 75, "static_cov": [75, 380, 509], "static_histogram": 75, "static_igamma": 75, "static_median": 75, "static_nanmean": 75, "static_nanmedian": 75, "static_nanprod": 75, "static_quantil": 75, "_containerwithutilityexperiment": [75, 98], "static_optional_get_el": 75, "_containerwithgener": [76, 98], "_static_all_equ": 76, "static_all_equ": 76, "_static_array_equ": 76, "a0": [76, 371, 456], "static_array_equ": 76, "_static_assert_supports_inplac": 76, "_static_clip_matrix_norm": 76, "static_clip_matrix_norm": 76, "849": [76, 527, 528, 620], "_static_clip_vector_norm": 76, "static_clip_vector_norm": 76, "_static_einops_rearrang": 76, "static_einops_rearrang": 76, "_static_einops_reduc": 76, "static_einops_reduc": 76, "29333329": [76, 533, 620], "53000069": [76, 533, 620], "39666676": [76, 533, 620], "20666695": [76, 533, 620], "_static_einops_repeat": 76, "static_einops_repeat": 76, "_static_exist": 76, "_static_fourier_encod": 76, "static_fourier_encod": 76, "classivi": [76, 625, 631, 694, 736], "89858720e": 76, "79717439e": 76, "_static_gath": 76, "static_gath": 76, "_static_gather_nd": 76, "static_gather_nd": 76, "_static_get_num_dim": 76, "static_get_num_dim": 76, "_static_has_nan": 76, "leafwis": 76, "static_has_nan": 76, "_static_inplace_decr": 76, "_static_inplace_incr": 76, "_static_inplace_upd": 76, "_static_is_arrai": 76, "static_is_arrai": 76, "_static_is_ivy_arrai": 76, "static_is_ivy_arrai": 76, "_static_is_native_arrai": 76, "static_is_native_arrai": 76, "_static_scatter_flat": 76, "_static_scatter_nd": 76, "static_scatter_nd": 76, "_static_stable_divid": 76, "22222222": 76, "11111111": 76, "857": [76, 578, 620], "444": 76, "_static_stable_pow": 76, "00012": [76, 579, 620], "00016": [76, 77, 579, 607, 620, 621], "00001": [76, 579, 620, 762], "00032": [76, 579], "00256": [76, 579], "1679638": [76, 579], "395": [76, 579], "16777383": [76, 579], "_static_supports_inplace_upd": 76, "_static_to_list": 76, "static_to_list": 76, "_static_to_numpi": 76, "static_to_numpi": 76, "_static_to_scalar": 76, "static_to_scalar": 76, "_static_value_is_nan": 76, "452": 76, "static_value_is_nan": 76, "833": [76, 528], "items": [76, 97, 620], "static_isin": 76, "static_items": 76, "static_strid": 76, "425": [76, 599], "_containerwithgradi": [77, 98], "_static_stop_gradi": 77, "static_stop_gradi": 77, "976": [77, 286, 601, 618, 621], "49e": [77, 601, 621], "74e": [77, 601, 621], "95e": [77, 601, 621], "024": [77, 601, 621], "096": [77, 601, 621], "216": [77, 80, 601, 621, 678], "626": [77, 601, 621], "en": [77, 601, 602, 621, 812], "wikipedia": [77, 601, 602, 621], "wiki": [77, 601, 602, 621], "stochastic_gradient_desc": [77, 601, 602, 621], "01099": [77, 602], "01003": [77, 602, 621], "01015": [77, 602, 621], "99936122": [77, 602, 621], "99936116": [77, 602, 621], "99936128": [77, 602, 621], "99936104": [77, 602, 621], "w_new": [77, 605, 621], "708": [77, 607, 621], "445": [77, 607, 621], "6e": [77, 607, 621], "00036": [77, 607, 621], "00049": [77, 607, 621], "layerwis": [77, 608, 621], "01132035": [77, 608, 621], "22264051": [77, 608, 621], "2056601": [77, 608, 621], "1324538": [77, 608, 621], "56490755": [77, 608, 621], "96622658": [77, 608, 621], "90848625": [77, 608, 621], "93616199": [77, 608, 621], "77232409": [77, 608, 621], "_containerwithimag": [78, 98], "_containerwithlay": [79, 98], "_static_conv1d": 79, "static_conv1d": 79, "_static_conv1d_transpos": 79, "static_conv1d_transpos": 79, "112": [79, 623, 633, 637, 668, 745], "_static_conv2d": 79, "ey": [79, 615, 622, 638, 644, 831, 838], "static_conv2d": 79, "_static_conv2d_transpos": 79, "static_conv2d_transpos": 79, "_static_conv3d": 79, "fdfh": [79, 640], "static_conv3d": 79, "_static_conv3d_transpos": 79, "static_conv3d_transpos": 79, "_static_depthwise_conv2d": 79, "inp": [79, 622, 644], "static_depthwise_conv2d": 79, "_static_dropout": 79, "static_dropout": 79, "_static_dropout1d": 79, "static_dropout1d": 79, "_static_dropout2d": 79, "_static_dropout3d": 79, "_static_linear": 79, "278": [79, 622, 645, 646], "static_linear": 79, "195": 79, "_static_lstm_upd": 79, "_static_multi_head_attent": 79, "_static_reduce_window": 79, "_static_scaled_dot_product_attent": 79, "static_scaled_dot_product_attent": 79, "39999962": [79, 622, 645, 646], "19999695": [79, 646], "11600018": [79, 646], "88399887": [79, 646], "196": [79, 622, 646], "306": [79, 622, 646], "19999981": [79, 292, 304, 360, 622, 645, 651], "59249449": [79, 622, 651], "68226194": [79, 622, 651], "19603825": [79, 622, 651], "9960382": [79, 622, 651], "26894283": [79, 622, 651], "40236187": [79, 622, 651], "39999437": [79, 622, 651], "59999037": [79, 622, 651], "35046196": [79, 622, 651], "54282808": [79, 622, 651], "39989519": [79, 622, 651], "5998764": [79, 622, 651], "_containerwithlinearalgebra": [80, 98], "_static_choleski": 80, "static_choleski": 80, "577": [80, 623, 652], "707": [80, 623, 652], "static_rol": [80, 82], "_static_cross": 80, "static_cross": 80, "_static_det": 80, "_static_diag": 80, "_static_diagon": 80, "static_diagon": 80, "_static_eigh": 80, "_static_eigvalsh": 80, "static_eigvalsh": 80, "51572949": [80, 623, 659], "17091519": [80, 623, 659], "3448143": [80, 623, 659], "35898387e": [80, 623, 659], "46410179e": [80, 623, 659], "_static_inn": 80, "static_inn": 80, "_static_inv": 80, "static_inv": 80, "_static_matmul": 80, "matul": 80, "static_matmul": 80, "_static_matrix_norm": 80, "deimens": 80, "static_matrix_norm": 80, "_static_matrix_pow": 80, "_static_matrix_rank": 80, "static_matrix_rank": 80, "_static_matrix_transpos": 80, "static_matrix_transpos": 80, "_static_out": 80, "n1": [80, 134, 615], "n2": [80, 134, 615], "static_out": [80, 668], "_static_pinv": 80, "static_pinv": 80, "0426": 80, "0964": 80, "0605": 80, "1368": 80, "_static_qr": 80, "static_qr": 80, "31622777": [80, 623, 670], "9486833": [80, 623, 670], "4472136": [80, 623, 670], "89442719": [80, 623, 670], "16227766": [80, 623, 670], "42718872": [80, 623, 670], "63245553": [80, 623, 670], "47213595": [80, 623, 670], "81377674": [80, 623, 670], "_static_slogdet": 80, "static_slogdet": 80, "6931472": 80, "0986123": 80, "_static_solv": 80, "_static_svd": 80, "static_svd": 80, "au": 80, "aS": 80, "avh": 80, "bu": [80, 844], "bvh": 80, "_static_svdv": 80, "_static_tensordot": 80, "_static_tensorsolv": 80, "_static_trac": 80, "static_trac": 80, "_static_vand": 80, "static_vand": 80, "343": [80, 278, 618, 678], "729": [80, 678, 837], "_static_vecdot": 80, "_static_vector_norm": 80, "static_vector_norm": 80, "77359247": [80, 680], "_static_vector_to_skew_symmetric_matrix": 80, "09861231": [80, 623, 671], "static_general_inner_product": 80, "3475602": [80, 673], "93765765": [80, 673], "58776021": [80, 673], "10416126": [80, 673], "80644298": [80, 673], "87024701": [80, 673], "48127627": [80, 673], "79101127": [80, 673], "98288572": [80, 673], "68917423": [80, 673], "_containerwithloss": [81, 98], "_static_binary_cross_entropi": 81, "static_binary_cross_entropi": 81, "511": [81, 624, 682, 684], "_static_cross_entropi": 81, "static_cross_entropi": 81, "20397282": 81, "83258148": 81, "60943794": [81, 623, 671], "_static_sparse_cross_entropi": 81, "static_sparse_cross_entropi": 81, "5108256": [81, 683], "609438": [81, 683], "_containerwithmanipul": [82, 98], "_static_clip": 82, "static_clip": 82, "_static_concat": 82, "_static_constant_pad": 82, "static_constant_pad": 82, "_static_expand_dim": 82, "static_expand_dim": 82, "container_axi": [82, 625, 688], "_static_flip": 82, "static_flip": 82, "_static_permute_dim": 82, "static_permute_dim": 82, "_static_repeat": 82, "static_repeat": 82, "_static_reshap": 82, "static_reshap": 82, "_static_rol": 82, "positivclip": 82, "_static_split": 82, "static_split": 82, "_static_squeez": 82, "static_squeez": 82, "_static_stack": 82, "leavv": 82, "static_stack": 82, "_static_swapax": 82, "_static_til": 82, "static_til": 82, "_static_unstack": 82, "static_unstack": 82, "_static_zero_pad": 82, "repreat": [82, 691], "_containerwithnorm": [83, 98], "34198591": [83, 628, 723], "04274819": [83, 628, 723], "29923761": [83, 628, 723], "24053511": [83, 628, 723], "62221265": [83, 723], "20277636": [83, 723], "41943574": [83, 723], "83710337": [83, 723], "_containerwithrandom": [84, 98], "_static_multinomi": 84, "_static_randint": 84, "static_randint": 84, "_static_random_norm": 84, "static_random_norm": 84, "651": 84, "_static_random_uniform": 84, "static_random_uniform": 84, "481": 84, "0999": 84, "_static_shuffl": 84, "static_shuffl": 84, "431": [84, 726], "274": [84, 726], "_containerwithsearch": [85, 98], "_static_argmax": 85, "static_argmax": 85, "_static_argmin": 85, "static_argmin": 85, "_static_argwher": 85, "static_argwher": 85, "_static_nonzero": 85, "_static_wher": 85, "static_wher": 85, "_containerwithset": [86, 98], "_static_unique_al": 86, "static_unique_al": 86, "_static_unique_count": 86, "static_unique_count": 86, "_static_unique_invers": 86, "static_unique_invers": 86, "_static_unique_valu": 86, "_containerwithsort": [87, 98], "_static_argsort": 87, "static_argsort": 87, "_static_searchsort": 87, "_static_sort": 87, "static_sort": 87, "static_msort": 87, "_containerwithstatist": [88, 98], "_static_cumprod": 88, "static_cumprod": 88, "_static_cumsum": 88, "static_cumsum": 88, "_static_min": 88, "_static_prod": 88, "static_prod": 88, "11000001": [88, 749], "23100001": [88, 749], "30800003": [88, 633, 749], "_static_sum": 88, "_static_var": 88, "static_var": 88, "12666667": [88, 633, 752], "11555555": [88, 633, 752], "rtype": [88, 745, 791], "respectv": [88, 750], "81649649": [88, 750], "94280904": [88, 750], "509902": [88, 633, 750], "2472192": [88, 750], "44948983": [88, 750], "41421354": [88, 750], "6666667": [88, 752], "_containerwithutil": [89, 98], "_static_al": 89, "static_al": 89, "_static_ani": 89, "static_ani": 89, "add_ivy_container_instance_method": 90, "containerexampl": 90, "factorized_tensor": [91, 92, 93, 94, 95, 96], "factorizedtensor": [91, 92, 93, 94, 95, 96], "matrix_or_tensor": 91, "to_tensor": [91, 92, 93, 94, 95, 96], "to_unfold": [91, 92, 93, 94, 95, 96], "to_vec": [91, 92, 93, 94, 95, 96], "cp_tensor": [92, 93], "cptensor": [92, 93, 317, 362], "cp_copi": 92, "cp_flip_sign": 92, "s_i": [92, 93], "normalisation_weight": [92, 93], "normalised_factor": [92, 93], "cp_lstsq_grad": 92, "return_loss": 92, "nabla": 92, "mathcal": 92, "mathbf": 92, "factor_matric": 92, "cp_gradient": 92, "quantiti": 92, "cp_mode_dot": 92, "keep_dim": [92, 96], "cp_multi_mode_dot": 92, "cp_n_param": 92, "tensor_shap": [92, 94, 95, 96], "n_param": [92, 93, 94, 95, 96], "cp_norm": 92, "cp_to_tensor": 92, "khatria": 92, "rao": [92, 369, 426], "khatri": [92, 369, 426], "cp_normal": 92, "normalis": [92, 93], "u_1": [92, 93], "u_n": [92, 93], "v_1": [92, 93], "v_n": [92, 93], "v_k": [92, 93], "u_k": [92, 93], "absorb": [92, 93], "refold": [92, 371, 465, 476], "cp_to_unfold": 92, "ie": 92, "s_u_i": 92, "exploit": [92, 857], "khatri_rao": [92, 369], "cp_to_vec": 92, "ravel": [92, 831], "unfolding_dot_khatri_rao": 92, "mttkrp": 92, "validate_cp_rank": 92, "percent": [92, 95], "validate_cp_tensor": 92, "parafac2_tensor": 93, "parafac2tensor": [93, 318, 362], "apply_parafac2_project": 93, "evolv": [93, 843, 854], "b_i": 93, "ijk": [93, 792], "sum_r": 93, "a_": 93, "ir": [93, 852, 855, 860], "jr": 93, "kr": 93, "coupl": [93, 804, 808, 835, 837, 854], "factoris": 93, "i1": [93, 380, 512], "classmethod": [93, 100, 101, 767], "from_cptensor": 93, "parafac2_tensor_ok": 93, "parafac2_normalis": 93, "normalised_project": 93, "parafac2_to_slic": 93, "slice_idx": 93, "frontal": 93, "a_i": 93, "j_i": 93, "b_": 93, "reformul": 93, "p_i": 93, "orthogon": [93, 317, 321, 362, 369, 420, 434, 440, 623, 657, 658], "sum_": 93, "ijr": 93, "constraint": [93, 792, 812, 813, 823], "projection_matric": 93, "parafac2_to_tensor": 93, "construct": [93, 625, 698, 778, 781, 782, 783, 827, 833, 837, 838, 852, 854, 861], "uneven": 93, "parafac2_to_unfold": 93, "parafac2_to_vec": 93, "validate_parafac2_tensor": 93, "cp": [93, 317, 362, 805], "tr_tensor": 94, "trtensor": [94, 319, 362], "tr_n_param": 94, "tr_to_tensor": 94, "tr_to_unfold": 94, "tr_to_vec": 94, "validate_tr_rank": 94, "validate_tr_tensor": 94, "tt_tensor": 95, "_tt_n_param": 95, "mp": [95, 320, 362], "index_upd": 95, "pad_tt_rank": 95, "factor_list": 95, "n_pad": 95, "pad_boundari": 95, "ring": 95, "bond": 95, "padded_factor_list": 95, "tt_to_tensor": 95, "assembl": [95, 369, 439], "tt_to_unfold": 95, "reassembl": 95, "tt_to_vec": 95, "validate_tt_rank": 95, "constant_rank": 95, "allow_overparametr": 95, "proport": [95, 777], "realiz": [95, 854], "validate_tt_tensor": 95, "tucker_tensor": 96, "tucker_copi": 96, "tucker_mode_dot": [96, 861], "tucker_n_param": 96, "tucker_norm": 96, "tucker_to_tensor": 96, "skip_factor": 96, "transpose_factor": 96, "tucker_to_unfold": 96, "tucker_to_vec": 96, "validate_tucker_rank": 96, "fixed_mod": 96, "validate_tucker_tensor": 96, "_bisection_root_find": 96, "fun": [96, 359, 367, 600, 620, 627, 715, 812], "max_it": 96, "__abs__": [97, 98], "__add__": [97, 98, 808, 811, 815, 816, 820, 825, 826, 835], "__eq__": [97, 98], "__ge__": [97, 98], "__gt__": [97, 98, 831], "__le__": [97, 98], "__lt__": [97, 98], "__ne__": [97, 98], "__pow__": [97, 98, 835], "69678056": 97, "59876156": 97, "82660675": 97, "__radd__": [97, 98, 815, 816, 825], "__rrshift__": [97, 98], "__rshift__": [97, 98], "__rsub__": [97, 98], "__sub__": [97, 98, 808, 811, 815, 820, 835], "__truediv__": [97, 98, 808, 811, 815], "__xor__": [97, 98], "referenc": [97, 817, 824], "resid": [97, 101, 625, 688, 825, 833, 837], "mt": [97, 835], "hopefulli": [97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 801, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 843, 844, 845], "overview": [97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 810, 812, 826, 828, 832], "reach": [97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 843, 844, 845, 853, 854], "eq": 98, "ge": 98, "le": 98, "ne": 98, "75979435": 98, "52153397": 98, "13532257": 98, "rshift": 98, "truediv": 98, "66666669": [98, 374, 494, 603, 621], "nested_arrai": [100, 101, 102, 810], "nestedarrai": 100, "nested_rank": [100, 101, 102], "inner_shap": [100, 101, 102], "nestedarraybas": [100, 101, 102], "from_row_length": 100, "row_length": 100, "from_row_split": 100, "row_split": 100, "ragged_map": 101, "ragged_multi_map": 101, "ragged_arrai": 101, "ragged_multi_map_in_funct": 101, "replace_ivy_arrai": 101, "unbind": 101, "nestedarrayelementwis": 102, "strictli": [107, 110, 113, 242, 612, 618, 820, 824], "24000001": [107, 612], "703": [108, 612], "683": [108, 612], "408": [108, 612], "313": [108, 612], "437": [108, 612], "40337825": [109, 612], "56114835": [109, 612], "20788449": [109, 612], "0768": [112, 612], "231": [112, 612], "\u03b2": [113, 612], "66666667": [114, 380, 509, 612], "body_fn": [117, 118, 120, 614], "bodi": [117, 120, 614, 807, 828], "lst": [117, 614], "orelse_fn": [118, 614], "body1": [119, 614], "body2": [119, 614], "test_fn": [120, 614, 760, 798, 848, 849], "repeatedli": [120, 614, 627, 713, 812, 828], "ml_framework": [121, 615], "distanc": [121, 615], "adjac": [121, 615], "nestedsequ": [122, 123, 615], "typevar": [122, 123, 615], "supportsbufferprotocol": [122, 123, 615], "static_copy_arrai": [124, 615], "intdtyp": [127, 138, 144, 156, 167, 172, 179, 185, 615, 616], "pycapsul": [128, 139, 615], "interchang": [128, 139, 615, 625, 697], "plu": [129, 615], "x00b": [129, 615], "x00d": [129, 615], "x00e": [129, 615], "66666663": [132, 615], "41588834": [133, 615], "7827941": [133, 615], "6227766": [133, 615], "23413252": [133, 615], "n3": [134, 615], "xv": [134, 615], "yv": [134, 615], "x_nativ": [135, 615, 824], "y_nativ": [135, 615], "z_nativ": [135, 615], "d_type": [137, 615], "col": [142, 322, 362, 615], "primari": [142, 161, 162, 194, 195, 322, 362, 378, 502, 537, 538, 615, 616, 617, 620, 763, 765, 803, 806, 809, 813, 822, 824, 825, 827, 828, 831, 839, 841], "upward": [142, 322, 362, 615], "downward": [142, 322, 362, 615], "2xn": [142, 322, 362, 615], "subarrai": [142, 322, 362, 615], "incompat": [149, 616], "closest": [152, 231, 241, 242, 278, 288, 616, 618, 828, 831], "xtype": [152, 616], "ytype": [152, 616], "native_uint16": [152, 616], "complexdtyp": [153, 167, 176, 616], "set_default_complex_dtyp": [153, 182, 616], "4294": [153, 155, 616], "967346": [153, 155, 616], "set_default_dtyp": [154, 183, 616, 813, 821], "floatdtyp": [155, 178, 616], "set_default_float_dtyp": [155, 164, 176, 184, 616, 813], "int_dtyp": [156, 179, 616], "set_default_int_dtyp": [156, 164, 185, 616, 813], "4294967346": [156, 157, 616], "uint_dtyp": [157, 180, 616], "uint": [157, 172, 180, 186, 616, 813, 826], "uintdtyp": [157, 172, 180, 186, 616], "set_default_uint_dtyp": [157, 164, 186, 616], "native_bool": [159, 616], "ieee": [160, 218, 235, 240, 258, 268, 277, 282, 285, 613, 616, 618, 844], "754": [160, 218, 235, 240, 258, 268, 277, 282, 285, 613, 616, 618, 844], "smallest_norm": [160, 616], "bfloat16": [161, 616, 762, 763, 813, 825, 828, 829], "unsupport": [162, 195, 538, 616, 617, 620, 757, 760, 801, 804, 818, 825], "encapsul": [163, 616, 812], "314": [163, 275, 332, 365, 616, 618], "9223372036854775808": [163, 616], "9223372036854775807": [163, 616], "65535": [163, 616], "4294967295": [163, 616], "native_uint8": [165, 616], "hashabl": [169, 616], "type1": [173, 616], "type2": [173, 616], "array_api_promot": [173, 174, 616, 762, 763], "unexpect": [174, 242, 616, 618, 813], "default_complex_dtyp": [176, 616], "default_dtype_stack": [177, 183, 616], "unset_default_dtyp": [177, 616], "native_uint64": [177, 616], "default_float_dtyp": [178, 616, 813], "default_int_dtyp": [179, 185, 616, 813], "default_uint_dtyp": [180, 186, 616], "ret1": [181, 616], "ret2": [181, 616], "reset": [182, 183, 184, 185, 186, 212, 213, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 616, 617, 620, 814], "default_complex_dtype_stack": [182, 616], "default_float_dtype_stack": [184, 616], "native_float16": [187, 616], "unmodifi": [189, 617, 809, 813], "aliv": [196, 201, 203, 541, 561, 562, 617, 620, 814], "139740789224448": [196, 617], "physic": [199, 617], "process_specif": [202, 214, 617], "percentag": [202, 617], "ram": [202, 210, 214, 617], "alon": [202, 214, 617, 798, 819, 828], "036902561555": [202, 617], "7024003467681645": [202, 617], "as_native_dev": [202, 617], "7095597456708771": [202, 617], "attr_onli": [203, 617], "soft_device_mod": [205, 213, 617], "chunk": [206, 207, 208, 617], "split_factor": [206, 617, 817], "max_chunk_s": [208, 617], "chunk_siz": [208, 617], "input_ax": [208, 617], "output_ax": [208, 617], "usag": [208, 617, 813, 821, 824, 828, 833, 839, 844, 857], "fed": [208, 617, 837], "fist": [208, 617], "gb": [210, 214, 617, 804, 818], "66700032": [210, 617], "589934592": [210, 617], "219563008": [214, 617], "902400346": [214, 617], "525205504": [214, 617], "na": [215, 618, 828], "noqa": [215, 282, 618, 778, 787, 826], "princip": [216, 220, 222, 352, 365, 618], "domain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 618, 816, 852, 854], "codomain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 618, 816], "\u03c0": [216, 220, 222, 223, 613, 618], "3\u03c0": [216, 223, 618], "unspecifi": [216, 217, 221, 224, 233, 238, 240, 242, 277, 281, 282, 286, 369, 420, 618, 623, 625, 657, 658, 696, 824], "\u03c0j": [217, 221, 224, 256, 258, 618], "3\u03c0j": [217, 256, 258, 618], "x1_i": [218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 618, 807], "2019": [218, 235, 240, 258, 268, 618, 854, 857], "overflow": [218, 235, 242, 618, 623, 633, 671, 751, 802, 813], "commut": [218, 618], "tabl": [218, 235, 268, 572, 594, 618, 620, 762, 763, 778, 825, 830, 854], "dj": [218, 235, 268, 618], "bj": [218, 235, 268, 332, 365, 618], "z1": [218, 618], "z2": [218, 618], "yj": [219, 618], "nanj": [221, 618], "809": [221, 618], "569": [221, 618], "733": [221, 618], "notat": [223, 618, 633, 745, 812], "denot": [223, 618, 780], "quadrant": [223, 618], "rai": [223, 618, 844], "bitwis": [225, 228, 230, 265, 618], "170": [229, 618], "243": [229, 618], "xor": [230, 265, 618], "654": [232, 618], "ci": [233, 238, 240, 281, 618, 807, 813, 819, 826, 828, 839], "368": [233, 618], "670": [233, 618], "202": [233, 618, 807], "548": [233, 618], "1490": [233, 618], "57079633": [234, 618], "14159265": [234, 618], "71238898": [234, 618], "28318531": [234, 618], "02617994": [234, 618], "87266463": [234, 618], "01919862": [234, 618], "03839725": [234, 618], "05759586": [234, 618], "07679449": [234, 618], "09599311": [234, 618], "11519173": [234, 618], "35081118": [234, 618], "88139129": [234, 618], "underflow": [235, 242, 618, 623, 671, 813], "textbook": [235, 268, 618], "frac": [235, 257, 259, 279, 281, 285, 368, 374, 395, 396, 400, 401, 488, 490, 618], "ac": [235, 268, 618, 791, 792], "bd": [235, 268, 618], "bc": [235, 268, 618, 791, 792], "versu": [235, 268, 618], "riemann": [235, 268, 618], "sphere": [235, 268, 618], "c99": [235, 268, 618], "infinit": [235, 268, 282, 618], "unlik": [235, 268, 618, 807, 812, 815, 844, 859, 861], "698": [235, 618], "truth": [236, 246, 247, 254, 255, 271, 370, 441, 618, 757, 759, 770, 801, 818, 825, 828], "32862675": [237, 618], "67780113": [237, 618], "11246294": [237, 618], "42839241": [237, 618], "52050018": [237, 618], "16799599": [237, 618], "30787992": [237, 618], "43796915": [237, 618], "98667163": [237, 618], "79690808": [237, 618], "88020504": [237, 618], "91031402": [237, 618], "95228523": [237, 618], "96610528": [237, 618], "cut": [238, 240, 280, 281, 282, 285, 618, 803, 843, 860], "08553692": [238, 618], "567": [238, 618], "00344786": [238, 618], "76297021": [238, 618], "197948": [238, 618], "53253174": [238, 618], "accur": [240, 258, 618, 623, 671, 822], "fdlibm": [240, 258, 618], "compliant": [240, 258, 263, 264, 329, 330, 365, 618, 633, 746, 747, 748, 750], "potenti": [240, 258, 618, 798, 803, 804, 812, 813, 825, 832, 857], "632": [240, 618], "20e": [240, 618], "72e": [240, 618, 762], "greatest": [241, 242, 245, 618], "pep": [242, 618, 820], "disambigu": [242, 618, 823], "former": [242, 618, 804, 813, 816, 825], "latter": [242, 618, 804, 807, 809, 813, 816, 825], "overload": [242, 618, 828], "led": [242, 618, 807, 856], "subtl": [242, 618, 813, 860], "bug": [242, 618, 798, 803, 805, 810, 818, 819, 825, 828, 840], "ambigu": [242, 618], "semant": [242, 277, 371, 480, 618, 813, 833, 838, 843, 855], "ill": [242, 618, 764], "surpris": [242, 618, 839], "arrau": [248, 618], "log_": [257, 259, 618], "742": [258, 618], "negat": [270, 332, 365, 618], "52095687": [273, 618], "92457771": [273, 618], "49372482": [273, 618], "22738838": [273, 618], "156": [273, 618, 762], "5877228": [273, 618], "189": [274, 618, 627, 704], "252": [274, 618], "378": [274, 618], "1150": [274, 618], "2890": [274, 618], "172": [274, 618], "487": [274, 618, 622, 646], "344": [274, 618], "355j": [275, 332, 365, 618], "55j": [275, 332, 365, 618], "primarili": [277, 618, 803, 811, 854], "reason": [277, 286, 618, 803, 805, 807, 808, 811, 812, 813, 815, 821, 824, 825, 828, 829, 831, 833, 835, 844, 860], "counterpart": [278, 618, 811, 822], "deliber": [278, 618, 831], "imprecis": [278, 618], "5654": [278, 618], "034": [278, 618], "433": [278, 604, 606, 618, 621], "signum": [279, 618], "operatornam": [279, 281, 618, 623, 658], "textrm": [279, 618], "932": [280, 618], "746": [280, 618], "657": [280, 528, 618, 620], "indistinguish": [282, 618], "convent": [282, 618, 623, 633, 663, 745, 805, 809, 820, 829, 843, 860], "infti": [282, 618], "32455532": [282, 618], "89897949": [282, 618], "169": [282, 618], "analyt": [285, 618, 854, 856, 860], "pole": [285, 618], "546": [285, 618, 622, 646], "916": [285, 618, 624, 682], "996": [285, 618], "histor": [286, 618], "stem": [286, 618, 824], "older": [286, 618], "advis": [286, 618, 825], "462": [286, 618], "604": [286, 618], "984": [286, 618], "997": [286, 618], "0375": [288, 618], "032": [288, 618], "57258511": [291, 360], "69999999": [291, 360, 611, 621], "90928203": [291, 360], "98772264": [291, 360], "99591321": [291, 360], "99863964": [291, 360], "69880581": [291, 360], "18126924": [291, 360], "79999995": [292, 301, 304, 360], "70000005": [292, 304, 360], "hardtanhx": [293, 360], "20141329": [295, 360], "40318608": [295, 360], "48683619": [295, 360], "46328247": [295, 360], "59813893": [295, 360], "43748799": [295, 360], "parametr": [296, 360, 807, 828, 854], "71589994": [298, 302, 360], "14324772": [298, 302, 360], "70648694": [298, 302, 360], "54488957": [298, 302, 360], "10740992": [298, 302, 360], "19514863": [298, 302, 360], "6705687": [299, 360], "52016652": [299, 360], "40560818": [299, 360], "45630932": [299, 360], "2689": [300, 360], "7310": [300, 360], "7615": [300, 360], "2784": [300, 360], "7168": [300, 360], "8708": [300, 360], "4374": [300, 360], "1379": [300, 360], "0089": [300, 360], "59999991": [301, 360], "03597236": [303, 360], "43827677": [303, 360], "80100036": [303, 360], "12954807": [303, 360], "76459098": [303, 360], "20044947": [303, 360], "60000372": [303, 360], "taper": [306, 309, 362], "summat": [306, 362, 633, 745, 791, 792], "leakag": [306, 362], "wors": [306, 362, 844], "y1": [307, 362], "0800": [308, 362], "3979": [308, 362], "9121": [308, 362], "5400": [308, 362], "han": [309, 362], "ith": [310, 362], "00726415": [311, 362], "9999736": [311, 362], "2773e": [312, 362], "0172e": [312, 362], "9294e": [312, 362], "4149": [312, 362], "9138": [312, 362], "5529": [312, 362], "multidimension": [314, 315, 362, 854], "normalise_factor": [317, 318, 362], "parafac2": [318, 362], "tr": [319, 362], "context": [319, 362, 560, 620, 803, 804, 805, 809, 813, 814, 815], "38268346": [327, 362], "38268352": [327, 362], "8563191": [327, 362], "14943568": [327, 362], "paddlepaddl": [329, 330, 365, 804], "cn": [329, 330, 365], "zh": [329, 330, 365], "amax_cn": [329, 365], "sentinel": [329, 330, 365, 633, 746, 748], "amin_cn": [330, 365], "position": [339, 365], "triangl": [343, 365], "999999e": [344, 365], "65999985": [346, 365], "52000046": [346, 365], "1500001": [346, 365, 533, 620], "11259177": [347, 365], "3574118": [347, 365], "20097363": [347, 365], "suppli": [351, 365, 371, 472, 791, 808, 810, 828], "217234": [352, 365], "hurwitz": [355, 365], "custom_grad_func": [357, 367], "bind": [357, 367, 803, 823, 853, 854], "upstream": [357, 367, 804, 805, 807, 818, 823], "primal": [358, 359, 367], "jacobian": [358, 359, 367, 606, 621, 839, 854], "cotang": [359, 367], "stanh": 360, "ndenumer": 362, "ndindex": 362, "random_cp": 362, "random_parafac2": 362, "random_tr": 362, "random_tt": 362, "random_tuck": 362, "bind_custom_gradient_funct": [367, 823], "jvp": 367, "vjp": 367, "area_interpol": 368, "01823380e": [368, 389, 399], "15385818e": [368, 389, 399], "36371466e": [368, 389, 399], "38763905e": [368, 389, 399], "60722279e": [368, 389, 399], "80319249e": [368, 389, 399], "05617893e": [368, 389, 399], "21500000e": [368, 389, 399], "24000015e": [368, 389, 399], "90734863e": [368, 389, 399], "10000420e": [368, 389, 399], "15899994e": [368, 389, 399], "24000053e": [368, 389, 399], "81469727e": [368, 389, 399], "09999847e": [368, 389, 399], "4135742": [368, 389, 399], "6779785": [368, 389, 399], "3770599": [368, 389, 399], "8719864": [368, 389, 399], "72109985": [368, 389, 399], "52869415": [368, 389, 399], "79182434": [368, 389, 399], "72489166": [368, 389, 399], "container_n": [368, 389, 399], "container_typ": [368, 389, 399, 620], "container_norm": [368, 389, 399], "1580677": [368, 389], "89422607": [368, 389], "86190414": [368, 389], "00041008": [368, 389], "75149155": [368, 389], "97056389": [368, 389], "87819386": [368, 389], "89381361": [368, 389], "50000000e": [368, 389, 399, 762], "22044605e": [368, 389, 399], "ed": [368, 391, 392, 393], "rest": [368, 371, 391, 392, 393, 458, 804, 810, 812, 828, 838, 856], "5d": [368, 393, 778], "emb": [368, 394], "51285338": [368, 394], "87183261": [368, 394], "2308116": [368, 394], "02733949e": [368, 395], "00j": [368, 395], "49660576e": [368, 395], "68178638e": [368, 395], "01j": [368, 395, 400], "98912367e": [368, 395], "21802426e": [368, 395, 400], "04549134e": [368, 395, 400], "82842712e": [368, 395, 400], "86902654e": [368, 395, 400], "25501143e": [368, 395, 400], "32978028e": [368, 395, 400], "52068201e": [368, 395, 400], "71158374e": [368, 395, 400], "generate_einsum_equ": 368, "get_interpolate_kernel": 368, "27279224e": [368, 399], "44232273e": [368, 399], "70464332e": [368, 399], "73454881e": [368, 399], "00902849e": [368, 399], "10039906e": [368, 399], "07022366e": [368, 399], "69506073": [368, 399], "93914604": [368, 399], "88008881": [368, 399], "18951607": [368, 399], "57439613": [368, 399], "15318303e": [368, 400], "15148591e": [368, 400], "19j": [368, 400], "25000000e": [368, 400], "35378602e": [368, 400], "02j": [368, 400], "65404249e": [368, 400], "17611649e": [368, 400], "24320230e": [368, 400], "79344813e": [368, 400], "22374531e": [368, 400], "45929364e": [368, 400], "14208718e": [368, 400], "07177031e": [368, 400], "indexerror": [368, 401, 412, 625, 688, 793, 817], "interp": [368, 831], "xp": [368, 402, 807], "fp": [368, 402], "nd": [368, 403], "tf_bicub": [368, 403, 831], "nearest_interpol": 368, "window_shap": [368, 409], "pool_typ": [368, 409], "irfft": [368, 411], "silent": [368, 411], "discard": [368, 411, 812], "639999": [368, 411], "516063j": [368, 411], "3999999": [368, 411], "3999996": [368, 411], "99038106j": [368, 412], "33012702": [368, 412], "23205081j": [368, 412], "33012702j": [368, 412], "superdiagon": [369, 418, 623, 655], "subdiagon": [369, 418, 623, 655], "eigendecomposit": [369, 420, 623, 657, 658], "qlq\u1d40": [369, 420, 623, 657, 658], "tridiagon": [369, 421], "38196602": [369, 421], "61803389": [369, 421], "35048741": [369, 421], "56710052": [369, 421], "06693714": [369, 421], "74234426": [369, 421], "56155282": [369, 421], "56155276": [369, 421], "82842714": [369, 421], "82842731": [369, 421, 623, 658], "necessarili": [369, 422, 808, 811], "generalis": [369, 423], "skip_matrix": [369, 426, 428], "khatri_rao_product": [369, 426], "kronecker_product": [369, 428], "n_column": [369, 428], "nnmf": [369, 429], "hoi": [369, 434, 440], "solve_triangular": 369, "unit_diagon": [369, 435], "solut": [369, 435, 623, 672, 762, 798, 801, 803, 804, 805, 811, 813, 818, 826, 828, 831, 852, 856], "determinist": [369, 436], "borrow": [369, 436, 806], "extmath": [369, 436], "ivan": [369, 437], "oseledet": [369, 437], "scientif": [369, 437, 854], "2295": [369, 437], "2317": [369, 437], "2011": [369, 437], "convention": [370, 442, 857], "issu": [370, 442, 777, 799, 800, 801, 802, 804, 807, 809, 810, 812, 813, 814, 815, 817, 818, 825, 828, 829, 831, 833, 837, 839, 845, 847], "explicit": [370, 371, 442, 480, 804, 811, 813, 823, 824, 825, 833, 839, 854], "555969": [370, 442], "223876": [370, 442], "111938": [370, 442], "42649534": [370, 442], "68651628": [370, 442], "51119184": [370, 442], "59967244": [370, 442], "mae": [370, 443], "91097307": [370, 445], "3467": [370, 446], "0133": [370, 446], "0250": [370, 446], "0056": [370, 446], "0025": [370, 446], "0675": [370, 446], "hing": [370, 447], "6987": [370, 447], "1606": [370, 447], "3711": [370, 447], "4032": [370, 447], "6931": [370, 447], "whilst": [371, 450, 451, 452, 838, 841, 854], "ary3": [371, 452], "check_scalar": 371, "force_integ": [371, 454], "force_posit": [371, 454], "mod": [371, 455, 807], "tall": [371, 461], "appear": [371, 463, 464, 600, 620, 804, 805, 807, 825, 831, 847], "horizot": [371, 468], "shortcut": [371, 472, 804], "linear_ramp": [371, 472], "reflect": [371, 472, 805, 808, 824, 828], "ramp": [371, 472], "mirror": [371, 472, 803, 854], "padding_func": [371, 472], "iaxis_pad_width": [371, 472], "iaxi": [371, 472], "unalt": [371, 472], "put": [371, 477, 798, 803, 828, 839, 860], "mul": [371, 477, 824, 835], "conceptu": [371, 480, 850, 855], "concern": [371, 480, 805, 806, 811, 813, 815, 824, 831, 832, 860], "regard": [371, 480, 802, 811, 825, 826, 831, 844], "mutat": [371, 480], "elimin": [371, 485, 804], "consecut": [371, 485], "batch_mean": [374, 488, 490], "batch_var": [374, 488, 490], "running_vari": [374, 488, 490], "local_response_norm": 374, "neighbour": [374, 493], "42857143": [374, 494], "5714286": [374, 494], "multivari": [375, 497], "bayesian": [375, 497], "supposedli": [378, 501], "indirect": [378, 502], "secondari": [378, 502], "is_ivy_sparse_arrai": 379, "is_native_sparse_arrai": 379, "native_sparse_arrai": 379, "coo_indic": [379, 505], "crow_indic": [379, 505], "col_indic": [379, 505], "ccol_indic": [379, 505], "row_indic": [379, 505], "dense_shap": [379, 505], "native_sparse_array_to_indices_values_and_shap": 379, "nativesparsearrai": 379, "sparsearrai": 379, "linalg": [380, 509, 623, 671, 672, 803, 824, 826], "aw": [380, 509, 844], "48447205": [380, 509], "c0": [380, 512], "ck": [380, 512], "c2": [380, 512], "nearest_jax": [380, 519], "trace_on_next_step": [523, 620, 782, 837], "recalcul": [526, 620], "my_sum": [526, 620], "val1": [526, 620], "val2": [526, 620], "cached_sum": [526, 620], "line_eq": [526, 620], "slp": [526, 620], "itc": [526, 620], "cached_line_eq": [526, 620], "0353": [527, 620], "424": [527, 620], "176": [527, 620], "339": [527, 620], "271": [527, 620], "391": [527, 620], "417": [528, 620], "583": [528, 620], "0667": [528, 620], "267": [528, 620], "131": [528, 620], "263": [528, 620], "394": [528, 620, 629, 729], "526": [528, 620], "788": [528, 620], "default_str": [531, 620], "46999979": [532, 620], "66000009": [532, 620], "93000001": [532, 620], "29000092": [532, 620], "33999991": [532, 620], "6400001": [532, 620], "96000004": [532, 620], "36000013": [532, 620], "51999998": [532, 620], "67000008": [532, 620], "suppos": [532, 620, 813, 828], "960": [532, 620], "3600": [532, 620], "h1": [532, 620], "w1": [532, 620], "40499985": [533, 620], "61000061": [533, 620], "max_depth": [544, 620], "seen_set": [544, 620], "local_set": [544, 620], "referr": [544, 620], "redund": [544, 620, 798, 813, 817, 825, 847], "example_funct": [544, 620], "ref_id_1": [544, 620], "ref_id_2": [544, 620], "ref_id_3": [544, 620], "ivyexcept": [549, 581, 620, 793, 814, 817, 822, 824, 825, 829], "allow_dupl": [559, 620], "fork": [560, 620, 799, 803, 807, 812, 818], "forkserv": [560, 620], "spawn": [560, 620], "mp_default": [560, 620], "defaultcontext": [560, 620], "0x7f4e3193e520": [560, 620], "mp_fork": [560, 620], "forkcontext": [560, 620], "0x7f4e3193e580": [560, 620], "mp_spawn": [560, 620], "spawncontext": [560, 620], "0x7f4e3193e5e0": [560, 620], "mp_forkserv": [560, 620], "forkservercontext": [560, 620], "0x7f4e3193e640": [560, 620], "garbag": [562, 620], "collector": [562, 620], "get_all_arrays_in_memori": [562, 620], "exception_trace_mod": [566, 589, 620, 830], "lenient": [567, 590, 620], "inplace_mod": [567, 590, 620], "break": [567, 620, 798, 809, 813, 820, 829, 839], "infus": [568, 620], "nestable_mod": [571, 593, 620, 830], "precise_mod": [572, 594, 620, 830], "shape_array_mod": [574, 596, 620, 830], "show_func_wrapper_trace_mod": [575, 597, 620, 830], "tmp_dr": [576, 620], "tmp_dir": [576, 598, 620, 830], "my_tmp": [576, 620], "49999999999975": [578, 620], "5015015015010504": [578, 620], "000444502911705e": [578, 620], "9999999999995j": [578, 620], "00000262": [579, 620], "15605032": [579, 620], "01208451j": [579, 620], "00048": [579, 620], "1296": [579, 620], "00864": [579, 620], "isn": [581, 620, 805, 822, 824, 836, 839, 856], "100000023841858": [583, 620], "200000047683716": [583, 620], "299999952316284": [583, 620], "400000095367432": [583, 620], "599999904632568": [583, 620], "hemant": [587, 620], "unset_shape_array_mod": [588, 620], "set_exception_trace_mod": [589, 620, 817], "set_min_bas": [591, 620], "set_min_denomin": [592, 620], "set_nestable_mod": [593, 620], "set_precise_mod": [594, 620], "set_queue_timeout": [595, 620], "set_shape_array_mod": [596, 620], "set_show_func_wrapper_trace_mod": [597, 620, 817], "set_tmp_dir": [598, 620], "my_dir": [598, 620], "451": [599, 620], "in_ax": [600, 620], "out_ax": [600, 620], "thereof": [600, 620], "summaris": [600, 620], "99999998": [601, 621], "19999998": [601, 621], "00000001": [601, 621], "00300001": [601, 621], "00800001": [601, 621], "0125": [601, 621], "17294501": [601, 621], "15770318": [601, 621], "20863818": [601, 621], "90000075": [602, 621], "90000164": [602, 621], "9000032": [602, 621], "50000012e": [602, 621], "92558754": [602, 621], "92558694": [602, 621], "92558682": [602, 621], "92558861": [602, 621], "60000025e": [602, 621], "01024": [602, 621], "retain_grad": [603, 621], "func_ret": [603, 621, 823], "666666": [603, 621], "333332": [603, 621], "66666675": [603, 611, 621], "argnum": [604, 621], "933": [604, 606, 621], "jac_fn": [606, 621], "639": [607, 621], "361": [607, 621], "52565837": [608, 621], "8418861": [608, 621], "68377209": [608, 621], "value_grad": [611, 621], "42333412": [611, 621], "5333333": [611, 621], "93333334": [611, 621], "43333334": [611, 621], "0666666": [611, 621], "softsign": 612, "718281828459045": 613, "euler": 613, "141592653589793": 613, "cmp_i": 614, "cmp_isnot": 614, "for_loop": 614, "if_els": 614, "try_except": 614, "while_loop": 614, "to_dlpack": 615, "as_ivy_dtyp": [616, 825], "as_native_dtyp": 616, "check_float": 616, "closest_valid_dtyp": 616, "default_dtyp": [616, 813, 821], "dtype_bit": 616, "function_supported_dtyp": [616, 813, 828], "function_unsupported_dtyp": [616, 813], "infer_default_dtyp": 616, "invalid_dtyp": [616, 813], "is_hashable_dtyp": 616, "is_native_dtyp": 616, "promote_typ": [616, 813], "promote_types_of_input": [616, 813, 824], "type_promote_arrai": [616, 813], "unset_default_complex_dtyp": 616, "unset_default_float_dtyp": 616, "unset_default_int_dtyp": 616, "unset_default_uint_dtyp": 616, "valid_dtyp": 616, "defaultcomplexdtyp": 616, "defaultdtyp": 616, "defaultfloatdtyp": 616, "defaultintdtyp": 616, "defaultuintdtyp": 616, "as_ivy_dev": [617, 835], "clear_cached_mem_on_dev": 617, "dev_util": [617, 814], "function_supported_devic": 617, "function_unsupported_devic": 617, "get_all_ivy_arrays_on_dev": [617, 814], "handle_soft_device_vari": [617, 814], "num_cpu_cor": [617, 814], "num_gpu": [617, 814, 828], "num_ivy_arrays_on_dev": 617, "percent_used_mem_on_dev": 617, "print_all_ivy_arrays_on_dev": 617, "set_split_factor": [617, 817], "split_func_cal": 617, "total_mem_on_dev": [617, 814], "tpu_is_avail": 617, "unset_default_devic": [617, 814], "unset_soft_device_mod": [617, 814], "used_mem_on_dev": 617, "defaultdevic": [617, 814], "profil": 617, "save_dir": 617, "arg_info": 620, "arg_nam": 620, "cache_fn": [620, 821], "current_backend_str": [620, 828, 833, 835], "function_supported_devices_and_dtyp": 620, "function_unsupported_devices_and_dtyp": 620, "get_item": [620, 824], "get_referrers_recurs": 620, "inplace_arrays_support": 620, "inplace_variables_support": 620, "is_ivy_nested_arrai": 620, "isscalar": 620, "match_kwarg": 620, "num_arrays_in_memori": 620, "print_all_arrays_in_memori": 620, "set_item": 620, "to_ivy_shap": 620, "to_native_shap": 620, "try_else_non": 620, "unset_array_mod": [620, 830], "unset_exception_trace_mod": 620, "unset_inplace_mod": 620, "unset_min_bas": 620, "unset_min_denomin": 620, "unset_nestable_mod": 620, "unset_precise_mod": 620, "unset_queue_timeout": 620, "unset_show_func_wrapper_trace_mod": 620, "unset_tmp_dir": 620, "vmap": [620, 839, 854], "arraymod": 620, "precisemod": [620, 813], "jac": 621, "value_and_grad": [621, 823], "neural": [622, 774, 778, 798, 848, 850, 852, 853, 854, 858, 860, 861], "feature_group_count": [622, 635, 642, 643], "oiw": [622, 635, 636, 642], "oihw": [622, 635, 638, 642], "oidhw": [622, 635, 640, 642], "dhwio": [622, 635, 636, 640, 642], "conv_general_dil": [622, 825], "conv_general_transpos": 622, "depthwis": [622, 644, 764, 778], "overfit": [622, 645], "overal": [622, 645, 792, 811, 813, 814, 816, 838, 847, 850, 852, 853, 854], "1428566": [622, 645], "49000001": [622, 645], "55599999": [622, 645], "21000004": [622, 645], "incom": [622, 646], "666": [622, 623, 646, 664], "4269": [622, 646], "911": [622, 646, 817], "157": [622, 646], "753": [622, 646], "545": [622, 629, 646, 727], "547": [622, 646, 814], "124": [622, 646], "963": [622, 646], "98495483": [622, 646], "0293808": [622, 646], "0159359": [622, 646], "74752808": [622, 646], "20942307": [622, 646], "3205719": [622, 646], "time_major": [622, 647], "long": [622, 647, 804, 805, 812, 813, 815, 817, 818, 825, 833, 854], "unrol": [622, 647, 833, 836], "lstm": [622, 647, 778, 833, 854], "batch_first": [622, 648], "multi": [622, 623, 648, 653, 764, 778, 815, 832, 839, 850, 852, 854, 858], "paper": [622, 648, 798, 845], "vaswani": [622, 648], "al": [622, 648], "num_attention_head": [622, 648], "key_dim": [622, 648, 778], "value_dim": [622, 648, 778], "measur": [622, 648, 778], "attention_weight": [622, 648], "unbatch": [622, 648], "nm": 622, "box": [622, 649, 650, 804], "iou_threshold": [622, 649], "max_output_s": [622, 649], "score_threshold": [622, 649], "roi_align": 622, "spatial_scal": [622, 650], "sampling_ratio": [622, 650], "23333359": [622, 651], "03946018": [622, 651], "0280633": [622, 651], "29981947": [622, 651], "29981089": [622, 651], "06345534": [622, 651], "9634552": [622, 651], "19336844": [622, 651], "09336829": [622, 651], "axisa": [623, 653], "axisb": [623, 653], "axisc": [623, 653], "293": [623, 654], "46997": [623, 654], "explicitli": [623, 658, 659, 675, 759, 778, 779, 780, 801, 807, 808, 809, 811, 813, 816, 817, 818, 821, 822, 823, 824, 826, 828, 833, 839, 848, 854], "17157288": [623, 658], "9238795": [623, 658], "78930789": [623, 658], "59803128": [623, 658], "19127655": [623, 658], "31213903": [623, 658], "63418275": [623, 658], "84632206": [623, 658], "70548367": [623, 658], "70223427": [623, 658], "09570674": [623, 658], "63116378": [623, 658], "56109613": [623, 658], "53554028": [623, 658], "32237405": [623, 658], "43822157": [623, 658], "83906901": [623, 658], "50766778": [623, 658], "71475857": [623, 658], "48103389": [623, 658], "3676433": [623, 658], "68466955": [623, 658], "62933773": [623, 658], "77917379": [623, 658], "14264561": [623, 658], "61036086": [623, 658], "45033181e": [623, 659], "02829754e": [623, 659], "54220343e": [623, 659], "12647155e": [623, 659], "38447177e": [623, 659], "56155300e": [623, 659], "26794919": [623, 659], "7320509": [623, 659], "0012": [623, 661], "00342": [623, 661], "000565": [623, 661], "0104": [623, 661], "000981": [623, 661], "00282": [623, 661], "000766": [623, 661], "0322": [623, 661], "00237": [623, 661], "000151": [623, 661], "00101": [623, 661], "00019": [623, 661], "0214": [623, 661], "00171": [623, 661], "0107": [623, 661], "0167": [623, 661], "0472": [623, 661], "0536": [623, 661], "0177": [623, 661], "000429": [623, 661], "00762": [623, 661], "lu_factor": 623, "pivot": [623, 662], "lu": [623, 662], "frobeniu": [623, 664], "nuclear": [623, 664], "induc": [623, 664], "ranl": [623, 664], "47722558": [623, 664], "776": [623, 664], "6000004": [623, 664], "118": [623, 665], "moor": [623, 669], "penros": [623, 669], "31622776": [623, 670], "94868332": [623, 670], "1622777": [623, 670], "42718887": [623, 670], "deteremin": [623, 671], "logsabsdet": [623, 671], "subject": [623, 671], "ordin": [623, 672], "b2": [623, 672], "usvh": [623, 673], "cetera": [623, 673], "driver": [623, 674, 839], "cusolv": [623, 674], "gesvd": [623, 674], "gesvdj": [623, 674], "gesvda": [623, 674], "86217213": [623, 674], "31816804": [623, 674], "615": [623, 674], "ss": [623, 674], "25994301": [623, 674], "16403675": [623, 674], "61529762": [623, 674], "51231241": [623, 674], "39777088": [623, 674], "15413129": [623, 674], "1029852": [623, 674], "01383495": [623, 674], "86647356": [623, 674], "7786541": [623, 674], "55970621": [623, 674], "16857576": [623, 674], "86412698": [623, 674], "37566757": [623, 674], "88477993": [623, 674], "95925522": [623, 674], "6444726": [623, 674], "54687881": [623, 674], "16134834": [623, 674], "35037804": [623, 674], "31025076": [623, 674], "35769391": [623, 674], "transposit": [623, 675], "success": [623, 633, 677, 749, 751, 804, 812, 844], "0x": [623, 678], "Such": [623, 678, 821, 828], "progress": [623, 678, 804, 805, 838], "alexandr": [623, 678], "theophil": [623, 678], "dot_product": [623, 679], "9000001": [623, 680], "64158917": [623, 680], "skew": [623, 681], "6666193": [624, 682], "67164493e": [624, 682], "05471958e": [624, 682], "32684899e": [624, 682], "30496836e": [624, 682], "05393649": [624, 682], "49992943": [624, 682], "83330965": [624, 682], "35667494": [624, 684], "79329094": [624, 684], "512926": [624, 684], "outsid": [625, 685, 696, 813, 814, 821, 835, 859], "honor": [625, 692], "beyond": [625, 693, 816, 825, 860], "famili": [625, 696], "intxx": [625, 696], "floatxx": [625, 696], "rep": [625, 698], "fomaml_step": 626, "inner_cost_fn": [626, 701, 702, 703], "outer_cost_fn": [626, 701, 702], "inner_grad_step": [626, 701, 702, 703], "inner_learning_r": [626, 701, 702, 703], "inner_optimization_step": [626, 701, 702, 703], "inner_batch_fn": [626, 701, 702], "outer_batch_fn": [626, 701, 702], "average_across_step": [626, 701, 702], "inner_v": [626, 701, 702], "keep_inner_v": [626, 701, 702], "outer_v": [626, 701, 702], "keep_outer_v": [626, 701, 702], "return_inner_v": [626, 701, 702, 703], "num_task": [626, 701, 702, 703], "maml": [626, 701, 702], "0x7f14c1a0ee60": [626, 701, 702, 703], "maml_step": 626, "vanilla": [626, 702, 837, 854], "_variabl": [626, 702, 703], "sub_batch": [626, 702], "40069818": [626, 702], "13723135": [626, 702], "reptile_step": 626, "cost_fn": [626, 703], "reptil": [626, 703], "batch_in": [626, 703], "4485182": [626, 703], "139": [626, 703], "9569855": [626, 703], "9880483": [626, 703], "01766968": [626, 703], "02197957": [626, 703], "02197981": [626, 703], "all_nested_indic": 627, "include_nest": [627, 704], "_index": [627, 704, 715], "_base": [627, 704, 714, 715, 824], "themselv": [627, 704, 803, 811, 813, 814, 816, 821, 825, 837, 851, 860], "863": [627, 704, 814], "672": [627, 704], "482": [627, 704], "674": [627, 704], "341": [627, 704], "copy_nest": 627, "to_mut": [627, 705, 716], "deepli": [627, 705, 839, 854], "copied_nest": [627, 705], "1337": [627, 705, 716], "duplicate_array_index_chain": 627, "index_nest": [627, 821], "insert_into_nest_at_index": 627, "insert_into_nest_at_indic": 627, "onto": [627, 710, 716, 842, 843, 854], "special_squar": [627, 710], "6666666666666667": [627, 710], "special_pow": [627, 710], "linear_model": [627, 710], "map_nest_at_index": 627, "_result": [627, 711, 721], "hh": [627, 711, 716], "map_nest_at_indic": 627, "ub": [627, 712], "tb": [627, 712], "multi_index_nest": 627, "nested_ani": 627, "check_nest": [627, 714, 715], "nested_argwher": 627, "stop_after_n_found": [627, 715], "nested_indic": [627, 715], "nested_map": [627, 814, 821], "_tuple_check_fn": [627, 716], "_list_check_fn": [627, 716], "_dict_check_fn": [627, 716], "wherebi": [627, 716, 803, 851], "ah": [627, 716], "bh": [627, 716], "ch": [627, 716], "dh": [627, 716, 807], "eh": [627, 716], "gh": [627, 716, 804, 818], "ih": [627, 716], "1338": [627, 716], "nested_multi_map": 627, "index_chain": [627, 717], "nest0": [627, 717], "ivy_arrai": [627, 717, 808, 825], "unappli": [627, 717], "prune_empti": 627, "prune_nest_at_index": 627, "prune_nest_at_indic": 627, "set_nest_at_index": 627, "set_nest_at_indic": 627, "xyz": [627, 722], "pqr": [627, 722], "mini": [628, 723, 778, 781], "uniformli": [629, 725, 727], "22346112": [629, 726], "0922": [629, 726], "9213753": [629, 726], "12818667": [629, 726], "799": [629, 726], "469": [629, 726], "287": [629, 726], "0366": [629, 726], "26431865": [629, 727], "475": [629, 727], "878": [629, 727], "861": [629, 727], "929": [629, 727], "789": [629, 727], "519": [629, 727], "0435": [629, 727], "381": [629, 727], "4608004": [629, 727], "8458502": [629, 727], "67270088": [629, 727], "31128597": [629, 727], "zeroel": [630, 733], "guarante": [631, 735, 737, 808, 813, 824, 839, 845], "aggreg": [631, 735, 812], "fourth": [631, 735], "1141": [631, 735], "8101": [631, 735], "9298": [631, 735], "8460": [631, 735], "2119": [631, 735], "3519": [631, 735], "6252": [631, 735], "4033": [631, 735], "7443": [631, 735], "2577": [631, 735], "3707": [631, 735], "0545": [631, 735], "3238": [631, 735], "5944": [631, 735], "0775": [631, 735], "4327": [631, 735], "62519997": [631, 735], "40329999": [631, 735], "59439999": [631, 735], "74430001": [631, 735], "81010002": [631, 735], "84600002": [631, 735], "92979997": [631, 735], "einstein": [633, 745, 791], "117": [633, 745], "intend": [633, 751, 760, 777, 807, 820, 823, 852, 854, 858, 859], "07472222": [633, 752], "00666667": [633, 752], "08966666": [633, 752], "simplicit": [634, 753, 754], "ivy_test": [757, 759, 760, 762, 763, 764, 765, 766, 767, 768, 769, 770, 803, 804, 805, 807, 810, 812, 818, 826], "test_ivi": [757, 759, 760, 762, 763, 764, 765, 766, 767, 768, 769, 770, 803, 804, 805, 810, 812, 818, 826, 828], "assert_all_clos": [757, 826], "ret_np": [757, 759, 826], "ret_from_gt_np": [757, 826], "ground_truth_backend": [757, 759, 760, 769, 770, 801, 818, 826], "mark": [757, 803, 805, 807, 828, 833], "assert_same_typ": 757, "ret_from_target": 757, "ret_from_gt": 757, "backend_to_test": [757, 759, 801, 818, 826], "gt_backend": 757, "with_backend": [757, 787], "assert_same_type_and_shap": 757, "this_key_chain": 757, "check_unsupported_devic": 757, "input_devic": 757, "all_as_kwargs_np": [757, 759], "presenc": [757, 811, 824], "check_unsupported_device_and_dtyp": 757, "input_dtyp": [757, 759, 769, 801, 818, 826, 828], "check_unsupported_dtyp": 757, "test_unsupported_funct": 757, "value_test": 757, "ret_np_flat": 757, "ret_np_from_gt_flat": 757, "specific_tolerance_dict": 757, "ret_from_np_gt_flat": 757, "function_test": 759, "args_to_contain": 759, "array_arg": [759, 821], "args_to_frontend": 759, "frontend_array_fn": 759, "arrays_to_frontend": 759, "as_list": 759, "convtru": 759, "nativeclass": 759, "counter": [759, 837], "create_args_kwarg": 759, "args_np": 759, "arg_np_val": 759, "args_idx": 759, "kwargs_np": 759, "kwarg_np_val": 759, "kwargs_idx": 759, "test_flag": [759, 801, 818, 826, 828], "on_devic": [759, 769, 801, 818, 826], "flatten_and_to_np": 759, "flatten_frontend": 759, "flatten_frontend_fw_to_np": 759, "frontend_ret": [759, 826], "isscalar_func": 759, "is_native_array_func": 759, "to_numpy_func": 759, "flatten_frontend_to_np": 759, "get_frontend_ret": 759, "frontend_fn": 759, "frontend_array_funct": 759, "precision_mod": [759, 769, 770, 818], "test_trac": [759, 769, 770, 801, 807, 818], "get_ret_and_flattened_np_arrai": 759, "gradient_incompatible_funct": 759, "gradient_test": [759, 828], "rtol_": [759, 801, 818], "atol_": [759, 801, 818, 826], "tolerance_dict": 759, "gradient_unsupported_dtyp": 759, "kwargs_to_args_n_kwarg": 759, "num_positional_arg": [759, 769, 770, 801, 818, 826, 828], "port": [759, 845], "test_frontend_funct": [759, 826], "fn_tree": [759, 760, 770, 801, 818, 825, 826, 828], "gt_fn_tree": [759, 770], "test_valu": [759, 826, 828], "frontend_function_flag": [759, 769], "functiontestflag": [759, 769, 801, 818], "with_out": [759, 769, 801, 818, 826, 828], "instance_method": [759, 769, 801, 818, 828], "as_vari": [759, 769, 801, 818, 826, 828], "namespac": [759, 803, 813, 822, 825, 826, 829, 833, 838], "test_frontend_method": [759, 826], "init_input_dtyp": [759, 826], "method_input_dtyp": [759, 826], "init_flag": [759, 826, 828], "method_flag": [759, 769, 826, 828], "init_all_as_kwargs_np": [759, 826], "method_all_as_kwargs_np": [759, 826], "frontend_method_data": [759, 826], "init_as_variable_flag": [759, 770], "dictat": [759, 808, 815, 820, 824], "init_num_positional_arg": [759, 770], "init_native_array_flag": 759, "with_v": 759, "ret_gt": 759, "test_funct": [759, 801, 804, 805, 812, 818, 826, 828], "fn_name": [759, 760, 770, 801, 809, 818, 826, 828], "return_flat_np_arrai": 759, "as_variable_flag": [759, 770, 828], "native_array_flag": [759, 770, 828], "container_flag": [759, 769, 770, 828], "test_function_backend_comput": 759, "test_function_ground_truth_comput": 759, "arg_np_arrai": 759, "arrays_args_indic": 759, "arrays_kwargs_indic": 759, "kwarg_np_arrai": 759, "test_gradient_backend_comput": 759, "test_gradient_ground_truth_comput": 759, "test_method": 759, "method_nam": [759, 768, 770, 826], "init_with_v": 759, "method_with_v": 759, "test_gradi": [759, 769, 770, 801, 818, 828], "method_as_variable_flag": [759, 770], "method_num_positional_arg": [759, 770], "method_native_array_flag": 759, "method_container_flag": [759, 770], "test_method_backend_comput": 759, "test_method_ground_truth_comput": 759, "org_con_data": 759, "args_np_method": 759, "met_arg_np_v": 759, "met_args_idx": 759, "kwargs_np_method": 759, "met_kwarg_np_v": 759, "met_kwargs_idx": 759, "v_np": 759, "traced_if_requir": 759, "wrap_frontend_function_arg": 759, "holder": 760, "current_frontend_config": 760, "0x7f14b4f19cb0": 760, "interruptedtest": 760, "test_interrupt": 760, "baseexcept": 760, "tri": [760, 813], "testdata": 760, "supported_device_dtyp": 760, "is_method": 760, "setup_api_test": 760, "test_data": 760, "setup_frontend_test": 760, "teardown_api_test": 760, "teardown_frontend_test": 760, "hypothesis_help": [762, 763, 764, 765], "array_help": 762, "array_and_broadcastable_shap": 762, "searchstrategi": [762, 763, 764, 765, 769, 770, 828], "array_bool": [762, 828], "min_valu": [762, 763, 764, 765, 801, 818, 826, 828], "max_valu": [762, 763, 764, 765, 826, 828], "ex": [762, 763, 764, 765, 770, 812, 848], "strategi": [762, 763, 764, 765, 769, 770, 803, 826], "array_helpers_dtype_info_help": 762, "kind_dtyp": [762, 764], "array_indices_axi": 762, "array_dtyp": [762, 763, 828], "indices_dtyp": 762, "get_dtyp": [762, 763, 801, 818, 826, 828], "disable_random_axi": 762, "axis_zero": 762, "allow_inf": [762, 765, 826, 828], "min_num_dim": [762, 764, 826, 828], "max_num_dim": [762, 764, 826, 828], "min_dim_s": [762, 764, 826, 828], "max_dim_s": [762, 764, 826], "first_dimension_onli": 762, "indices_same_dim": 762, "valid_bound": 762, "hypothesi": [762, 764, 770, 803, 805, 807, 812, 822], "65536": 762, "44758124e": [762, 828], "array_indices_put_along_axi": 762, "values_dtyp": 762, "array_valu": [762, 828], "abs_smallest_v": [762, 764, 765], "allow_nan": [762, 765, 828], "allow_subnorm": [762, 765, 828], "exclude_min": [762, 765, 828], "exclude_max": [762, 765], "large_abs_safety_factor": [762, 764, 765, 801, 818, 826, 828], "small_abs_safety_factor": [762, 764, 765, 801, 818, 826], "safety_factor_scal": [762, 764, 765, 826, 828], "subnorm": [762, 765], "safeti": [762, 764, 765, 854], "0002": [762, 765], "get_shap": [762, 764, 826, 828], "1806": 762, "36912": 762, "6955": 762, "59576": 762, "1025": 762, "arrays_and_ax": 762, "available_dtyp": [762, 763, 801, 818, 826, 828], "allow_non": [762, 764, 826, 828], "return_dtyp": 762, "force_int_axi": 762, "26e": 762, "10e": 762, "24322108": 762, "26446279e": 762, "96046448e": 762, "008": 762, "17549435e": 762, "038": 762, "06541027e": 762, "13725760e": 762, "07143888": 762, "arrays_for_pool": 762, "min_dim": 762, "max_dim": 762, "min_sid": 762, "max_sid": 762, "explicit_or_str_pad": 762, "only_explicit_pad": 762, "return_dil": 762, "mixed_fn_compo": [762, 763, 764, 765, 828], "return_data_format": 762, "cond_data_gen_help": 762, "create_concatenable_arrays_dtyp": 762, "min_num_arrai": 762, "max_num_arrai": 762, "concat_dim": 762, "common_shap": [762, 828], "stackabl": 762, "given_common_shap": 762, "create_nested_input": 762, "leaf_valu": 762, "dtype_and_valu": [762, 801, 818, 826, 828], "num_arrai": [762, 763, 826, 828], "shared_dtyp": [762, 763, 826], "ret_shap": 762, "array_api_dtyp": [762, 763], "shape_kei": 762, "37915": 762, "6322": 762, "26765": 762, "12413": 762, "26986": 762, "34665": 762, "000e": 762, "711e": 762, "100e": 762, "955e": [762, 828], "40817": 762, "56193": 762, "29200": 762, "5851": 762, "9746": 762, "9604645e": 762, "103": 762, "41795": 762, "1170789994": 762, "44251": 762, "44209": 762, "433075925": 762, "24791": 762, "24691": 762, "24892": 762, "16711": 762, "972": 762, "15357": 762, "72057594037927936": 762, "dtype_array_queri": 762, "allow_mask": 762, "allow_neg_step": 762, "dtype_array_query_v": 762, "dtype_values_axi": [762, 828], "min_axi": 762, "max_axi": 762, "valid_axi": 762, "allow_neg_ax": 762, "min_axes_s": 762, "max_axes_s": 762, "force_tuple_axi": 762, "29788": 762, "62222885e": 762, "68281172e": 762, "257j": 762, "40129846e": 762, "90000000e": 762, "63426649e": 762, "91931887e": 762, "29488e": 762, "14361019e": 762, "12445": 762, "einsum_help": 762, "get_first_solve_batch_matrix": 762, "choose_adjoint": 762, "get_second_solve_batch_matrix": 762, "get_first_solve_matrix": 762, "allow_simplifi": 762, "choose_sid": 762, "xa": 762, "get_second_solve_matrix": 762, "list_of_s": 762, "sampled_from": [762, 826, 828], "min_siz": [762, 764, 770, 828], "max_siz": [762, 764, 770, 828], "size_bound": [762, 828], "999999999999999": 762, "9394938006792373": 762, "mutually_broadcastable_shap": 762, "num_shap": 762, "base_shap": 762, "dtype_help": 763, "univers": [763, 825, 843], "cast_filt": 763, "cast_filter_help": 763, "current_backend": [763, 787, 803, 809, 817, 821, 826, 829, 833], "get_castable_dtyp": 763, "castabl": 763, "prune_funct": 763, "intersect": [763, 812, 828], "signed_integ": 763, "real_and_complex": 763, "float_and_complex": 763, "general_help": 764, "broadcasterror": 764, "apply_safety_factor": 764, "embedding_help": 764, "general_helpers_dtype_info_help": 764, "get_axi": [764, 828], "allow_neg": 764, "sort_valu": 764, "force_tupl": 764, "force_int": 764, "assertionerror": [764, 801, 807, 817, 818, 826, 828], "get_bound": [764, 828], "get_mean_std": 764, "matrix_is_st": 764, "cond_limit": 764, "instabl": [764, 801, 813, 818], "computation": [764, 804], "prone": [764, 813], "thumb": 764, "gradual": 764, "strong": [764, 839, 844, 854], "collinear": 764, "reshape_shap": [764, 828], "two_broadcastable_shap": 764, "x_and_filt": 764, "number_help": 765, "arbitrarili": [765, 836], "safety_factor": 765, "backend_proc": 766, "input_queu": 766, "output_queu": 766, "frontend_proc": 766, "pipeline_help": 767, "backendhandl": 767, "update_backend": [767, 826], "backendhandlermod": 767, "enum": 767, "setbackend": 767, "withbackend": 767, "withbackendcontext": 767, "get_frontend_config": 767, "frontendmethoddata": 768, "ivy_init_modul": 768, "framework_init_modul": 768, "init_nam": 768, "test_parameter_flag": 769, "dynamicflag": [769, 770], "frontendfunctiontestflag": [769, 818], "with_copi": 769, "generate_frontend_arrai": [769, 770, 818], "testflag": 769, "apply_flag": 769, "args_to_iter": 769, "frontendinittestflag": 769, "frontendmethodtestflag": 769, "initmethodtestflag": 769, "methodtestflag": 769, "build_flag": 769, "frontend_init_flag": 769, "frontend_method_flag": 769, "function_flag": 769, "init_method_flag": 769, "testing_help": 770, "handle_frontend_method": [770, 826, 828], "class_tre": [770, 826], "init_tre": [770, 826], "init_native_arrai": 770, "_as_varaible_strategi": 770, "method_native_arrai": 770, "test_inplac": [770, 828], "_given_kwarg": 770, "test_compil": 770, "handle_frontend_test": [770, 826, 828], "alias": [770, 803, 825, 826], "number_positional_arg": [770, 826], "test_with_out": [770, 826, 828], "test_with_copi": 770, "handle_method": [770, 828], "method_tre": [770, 826, 828], "_gradient_strategi": 770, "handle_test": [770, 801, 818, 828], "test_instance_method": [770, 828], "num_positional_args_help": 770, "num_positional_args_method": 770, "geglu": 774, "leakyrelu": 774, "logsoftmax": 774, "from_flax_modul": 775, "native_modul": 775, "params_fx": 775, "rng_seed": 775, "constructor_arg": 775, "constructor_kwarg": 775, "instance_arg": 775, "instance_kwarg": 775, "flax": [775, 838, 839, 845, 854], "from_haiku_modul": 775, "params_hk": 775, "from_paddle_modul": 775, "from_torch_modul": 775, "dedic": [775, 820, 831, 835, 837], "to_keras_modul": 775, "native_module_class": 775, "modulehelp": [776, 780], "create_vari": [777, 837], "var_shap": [777, 837], "fan_out": [777, 837], "fan_in": [777, 837], "rectangular": 777, "firstlayersiren": 777, "siren": 777, "glorotuniform": [777, 778, 837], "glorot": 777, "xavier": 777, "neuron": 777, "w_1x_1": 777, "w_2x_2": 777, "w_nx_n": 777, "w_i": 777, "vanish": 777, "explod": [777, 842, 843], "kaimingnorm": 777, "fan_mod": [777, 837], "kaim": 777, "he": 777, "negative_slop": 777, "fan": 777, "propog": 777, "fan_sum": [777, 837], "Ones": 777, "randomnorm": 777, "stddev": 777, "w0": 777, "wlim": 777, "predefin": 777, "fan_avg": 777, "adaptiveavgpool1d": 778, "avgpool1d": 778, "implicit": [778, 811, 816, 825, 828, 833, 854], "avgpool2d": 778, "avgpool3d": 778, "e501": 778, "filter_s": 778, "weight_initi": [778, 837], "bias_initi": [778, 837], "0x7f14c1622650": 778, "0x7f14c16225f0": 778, "conv1dtranspos": 778, "0x7f14c1622590": 778, "0x7f14c1622530": 778, "filter_shap": 778, "0x7f14c16224d0": 778, "0x7f14c1622470": 778, "0x7f14c1622410": 778, "0x7f14c16223b0": 778, "0x7f14c1622290": 778, "0x7f14c1622230": 778, "conv3dtranspos": 778, "0x7f14c16221d0": 778, "0x7f14c1622170": 778, "depthwiseconv2d": 778, "num_channel": 778, "0x7f14c1622350": 778, "0x7f14c16222f0": 778, "bernoul": 778, "num_embed": 778, "embedding_dim": 778, "padding_idx": 778, "lookup": 778, "num_embeddingss": 778, "renorm": 778, "insensit": 778, "num_lay": 778, "return_sequ": 778, "return_st": 778, "0x7f14c1622110": 778, "get_initial_st": 778, "0x7f14c1780c70": 778, "0x7f14c1780e20": 778, "maxpool1d": 778, "maxpool3d": 778, "multiheadattent": 778, "embed_dim": 778, "head_dim": 778, "dropout_r": 778, "use_proj_bia": 778, "attention_ax": 778, "build_mod": [778, 779, 780], "on_init": [778, 780], "parallel": [778, 810, 854, 858, 859], "binarycrossentropyloss": 779, "store_var": [779, 780], "with_partial_v": [779, 780], "logpoissonloss": 779, "modulemeta": 780, "temporarili": [780, 801, 807, 818], "from_cal": 780, "module_dict": 780, "register_buff": 780, "register_paramet": 780, "weights_path": 780, "randomness_factor": 780, "with_edge_label": 780, "with_arg_label": 780, "with_output_label": 780, "output_connected_onli": 780, "highlight_subgraph": 780, "trace_kwarg": 780, "_unified_ivy_graph": 780, "_call": 780, "num_featur": 781, "trail": 781, "layernorm": 781, "normalized_shap": 781, "elementwise_affin": 781, "set_stat": [782, 837], "adamw": 782, "weight_decai": 782, "init_on_first_step": 782, "fallback_to_non_trac": 782, "ignore_miss": 782, "privat": [782, 825, 828], "_step": [782, 837], "stochast": [782, 854], "sub_modul": 783, "check_al": 784, "messag": [784, 793, 797, 804, 805, 812, 815, 817, 819, 825, 833, 835, 844], "check_all_or_any_fn": 784, "check_ani": 784, "check_dev_correct_format": 784, "check_dimens": 784, "check_elem_in_list": [784, 821, 824, 825], "elem": 784, "check_equ": [784, 825], "check_exist": 784, "check_fals": 784, "check_gather_input_valid": 784, "check_gather_nd_input_valid": 784, "check_great": 784, "allow_equ": [784, 817], "check_inplace_sizes_valid": [784, 824], "check_isinst": 784, "allowed_typ": 784, "check_kernel_padding_s": 784, "padding_s": 784, "check_less": [784, 817], "check_one_way_broadcast": 784, "check_same_dtyp": 784, "check_shapes_broadcast": 784, "check_tru": 784, "check_unsorted_segment_valid_param": 784, "ast_help": 786, "importtransform": 786, "nodetransform": 786, "impersonate_import": 786, "tree": [786, 813], "local_ivy_id": 786, "visit_import": 786, "visit_importfrom": 786, "ivyload": 786, "loader": [786, 836, 839], "exec_modul": 786, "ivypathfind": 786, "metapathfind": 786, "find_spec": 786, "fullnam": 786, "contextmanag": 787, "choose_random_backend": 787, "global_backend": 787, "dynamic_backend_convert": 787, "backend_stack": [787, 833], "prevent_access_loc": 787, "previous_backend": [787, 809], "unset": [787, 809, 833], "Or": [787, 798, 800, 824, 836], "set_backend_to_specific_vers": 787, "set_jax_backend": 787, "set_mxnet_backend": 787, "mx": 787, "set_numpy_backend": 787, "set_paddle_backend": 787, "set_tensorflow_backend": 787, "set_torch_backend": 787, "unset_backend": [787, 809], "sub_backend_handl": 788, "clear_sub_backend": 788, "find_available_sub_backend": 788, "sub_backends_loc": 788, "fn_name_from_version_specific_fn_nam": 788, "fn_name_from_version_specific_fn_name_sub_backend": 788, "sub_backend_vers": 788, "backend_vers": [788, 801, 813, 818], "set_sub_backend": 788, "sub_backend_str": 788, "set_sub_backend_to_specific_vers": 788, "sub_backend": 788, "unset_sub_backend": 788, "check_for_binari": 789, "cleanup_and_fetch_binari": [789, 804], "clean": [789, 805, 829, 833, 834, 836], "dynamic_import": 790, "import_modul": [790, 833], "einsum_pars": 791, "convert_interleaved_input": 791, "interleav": 791, "convert_subscript": 791, "old_sub": 791, "symbol_map": 791, "subscript": [791, 792], "oe": 791, "ellipsi": [791, 792], "find_output_shap": 791, "find_output_str": 791, "canon": 791, "gen_unused_symbol": 791, "abd": [791, 792], "get_symbol": 791, "letter": 791, "resort": 791, "unicod": 791, "charact": [791, 825, 844], "chr": 791, "surrog": 791, "\u0155": 791, "20000": 791, "\u4eac": 791, "has_valid_einsum_chars_onli": 791, "einsum_str": 791, "abaz": 791, "\u00f6ver": 791, "is_valid_einsum_char": 791, "\u01f5": 791, "legalise_einsum_expr": 791, "reproduct": [791, 792], "pars": [791, 792, 810, 815, 839], "intak": 791, "contract_path": 791, "parse_einsum_input": [791, 792], "einsum_eqn": 791, "legalis": 791, "legalise_einsum_eqn": 791, "za": [791, 792], "xza": [791, 792], "xz": [791, 792], "possibly_convert_to_numpi": 791, "myshap": 791, "__main__": 791, "0x10f850710": 791, "einsum_path_help": 792, "can_dot": 792, "idx_remov": 792, "bla": 792, "benefici": 792, "movement": 792, "costli": 792, "gemm": 792, "ijj": 792, "ddot": 792, "ikj": 792, "compute_size_by_dict": 792, "idx_dict": 792, "abbc": 792, "find_contract": 792, "input_set": 792, "output_set": 792, "lh": 792, "rh": 792, "new_result": 792, "idx_contract": 792, "iset": 792, "oset": 792, "bdc": 792, "flop_count": 792, "num_term": 792, "size_dictionari": 792, "flop": 792, "greedy_path": 792, "memory_limit": 792, "exhaust": [792, 824, 828, 851, 860], "indices_remov": 792, "priorit": [792, 803, 827, 831], "hadamard": 792, "cubic": 792, "greedi": 792, "idx_siz": 792, "optimal_path": 792, "siev": 792, "input_str": 792, "output_str": 792, "parse_possible_contract": 792, "path_cost": 792, "naive_cost": 792, "propos": [792, 805, 825, 831, 854], "intermediari": [792, 809], "unoptim": 792, "new_input_set": 792, "update_other_result": 792, "provision": 792, "_parse_possible_contract": 792, "mod_result": 792, "inplaceupdateexcept": 793, "include_backend": [793, 817], "ivyattributeerror": [793, 817], "attributeerror": [793, 817, 835], "ivybroadcastshapeerror": [793, 817], "ivydeviceerror": 793, "ivydtypepromotionerror": [793, 817], "ivyindexerror": [793, 817], "ivyinvalidbackendexcept": 793, "ivynotimplementedexcept": [793, 817], "notimplementederror": 793, "ivyvalueerror": [793, 817], "handle_except": [793, 820, 822], "add_array_spec": 794, "fn_array_spec": 794, "set_logging_mod": 795, "debug": [795, 804, 805, 811, 812, 823, 828, 831, 836, 854], "unset_logging_mod": 795, "print_stat": 796, "viz": 796, "snakeviz": 796, "bonu": 796, "cprofil": 796, "cprint": [797, 833], "grant": 798, "autotun": [798, 858], "grow": [798, 854], "peopl": [798, 802, 804, 805, 806, 854, 856], "wip": [798, 847], "docker": [798, 801, 802, 818], "pull": [798, 799, 803, 804, 807, 815, 819, 829, 831, 839, 840, 845], "sweat_smil": 798, "setting_up": 798, "awai": [798, 852, 854], "jax_fn": 798, "jax_x": 798, "torch_x": 798, "torch_fn": 798, "motiv": [798, 835, 844], "contextu": 798, "problem": [798, 803, 805, 807, 808, 814, 825, 835, 844, 850, 856, 860], "explos": [798, 842, 844], "adher": [798, 807, 813, 816, 820, 831, 833, 838, 843, 844, 850, 851, 860], "focus": [798, 813, 829, 852, 853, 854, 860, 861], "orient": 798, "contributor": [798, 799, 801, 803, 804, 805, 818, 825, 832, 854], "shorter": [798, 835], "ensp": 798, "customiz": [798, 810], "deepmind_perceiver_io": 798, "sm_framework": 798, "segmentation_model": 798, "sm": 798, "torch_sm": 798, "metric": [798, 839], "iou_scor": 798, "rax": 798, "torch_rax": 798, "poly1_softmax_loss": 798, "madmom": 798, "madmon": 798, "torch_madmom": 798, "freq": 798, "audio": 798, "hz2midi": 798, "torch_loss": 798, "maxpooling1d": 798, "pool_siz": 798, "tf_kornia": 798, "tf_rax": 798, "tf_madmom": 798, "tf_loss": 798, "_forward_classifi": [798, 848], "forward_classifi": [798, 848], "hk_eff_encod": 798, "dummy_x": 798, "jax_sm": 798, "jax_madmom": 798, "jax_loss": 798, "np_kornia": 798, "np_sm": 798, "np_rax": 798, "np_loss": 798, "yourself": [798, 803, 805, 819, 828, 831], "favourit": [798, 804], "pipelin": [798, 800, 806, 807, 808, 826, 829, 838, 841, 843, 848, 854, 855, 860], "hyperparam": 798, "idea": [798, 803, 827, 829, 834, 845, 853], "instantli": [798, 848], "essenti": [798, 803, 809, 811, 814, 815, 821, 824, 825, 826, 843, 844, 860], "mainli": [798, 803, 806, 823, 825, 828, 834, 836, 841, 854], "handler": [798, 832, 834, 838, 841], "scene": [798, 806, 832, 834, 842, 843, 854], "facilit": 798, "mse_loss": 798, "jax_ms": 798, "tf_mse": 798, "np_mse": 798, "torch_ms": 798, "someth": [798, 801, 805, 809, 818, 819, 829, 836, 837, 839, 840, 860], "favorit": 798, "flexibl": [798, 811, 813, 820, 823, 829, 831, 854], "everyon": [798, 799, 803, 804, 805, 839, 845], "plan": [798, 840], "interoper": [798, 844, 851, 852, 854, 857], "believ": [798, 805, 844], "feedback": [798, 803, 812], "appreci": 798, "amaz": 798, "journei": [798, 799], "ambiti": 798, "season": 798, "perfect": 798, "ask": [798, 803, 804, 815, 833, 835, 839, 840, 845], "fellow": 798, "twitter": 798, "sneak": 798, "peek": 798, "stai": [798, 812], "proper": [798, 803, 825, 848], "credit": 798, "accompani": 798, "lenton2021ivi": 798, "inter": 798, "author": [798, 803, 805, 852, 856], "lenton": 798, "daniel": 798, "pardo": 798, "fabio": 798, "falck": 798, "fabian": 798, "jame": 798, "stephen": 798, "clark": 798, "ronald": 798, "journal": 798, "arxiv": 798, "preprint": 798, "2102": 798, "02886": 798, "year": [798, 807, 839, 843, 845, 854], "strongli": [799, 804, 825, 860, 861], "engag": [799, 805, 844], "skill": [799, 856], "veteran": 799, "effort": [799, 803, 839, 844, 850, 854, 860], "board": [799, 810], "stage": [799, 805, 806, 807, 810, 828, 844, 854], "excit": [799, 806, 844], "Be": [800, 810], "awar": [800, 810, 817, 819], "linux": [800, 804, 805, 810, 857, 859], "regularli": [800, 810, 812], "internet": [800, 810], "codespac": [800, 810, 818], "make_doc": 800, "sh": [800, 804, 805, 807, 812], "host": [800, 812, 839, 844, 859], "pwd": 800, "ssh": [800, 812], "make_docs_without_dock": [800, 810], "assist": [801, 818], "runtimeerror": [801, 818], "logaddexp2_cpu": [801, 818], "falsifi": [801, 807, 818, 828], "test_logaddexp2": [801, 818], "backend_fw": [801, 818, 826], "dtype_and_x": [801, 818, 826, 828], "reproduce_failur": [801, 807, 818, 822, 828], "axicy2bkaamobaar2waaaacvaai": [801, 818], "decoartor": [801, 818], "with_unsupported_dtyp": [801, 813, 818, 825], "25830078125": [801, 818], "258544921875": [801, 818], "test_acosh": [801, 818], "axicy2baabyqwqgiaabdaai": [801, 818], "quit": [801, 805, 808, 815, 816, 818, 821, 822, 828, 831, 854, 860], "41421356": [801, 818], "41421356e": [801, 818], "34078079e": [801, 818], "154": [801, 818], "test_ab": [801, 804, 818, 828], "000j": [801, 818], "154j": [801, 818], "axicy2zkyaiibibgziaaxqhexsaab7juqaaamteazq": [801, 818], "experiment": [801, 805, 813, 825, 829, 833, 854], "pycharm": [801, 826, 828], "few": [802, 803, 805, 811, 813, 814, 820, 821, 823, 824, 826, 828, 831, 833, 834, 835, 836, 837, 845, 854, 856], "climb": 802, "steep": 802, "curv": 802, "realpython": 802, "pyn": 802, "exchang": [802, 844, 850, 852], "pilot": [802, 840], "stuck": [802, 803], "spell": 802, "sound": [802, 812, 832], "frequent": [803, 805, 809, 854], "outlin": [803, 804, 805, 806, 811, 813, 816, 821, 824, 825, 828], "broad": [803, 856], "individu": [803, 805, 807, 809, 813, 821, 825, 854, 857, 860, 861], "clearli": [803, 805, 815, 826, 828, 844, 858], "qualiti": [803, 805], "lie": 803, "craft": [803, 827, 828], "fault": [803, 815, 854], "situat": [803, 805, 812, 838], "opportun": 803, "tackl": [803, 825], "challeng": [803, 809, 860], "categoris": [803, 807, 825], "encourag": [803, 819, 839, 844], "comfort": [803, 804, 817], "valuabl": [803, 805], "linkag": 803, "confid": 803, "submit": [803, 819], "merg": [803, 805, 807, 812, 825, 854], "meet": [803, 825], "scipi": [803, 844, 856, 861], "mindspor": 803, "simpler": [803, 805, 819, 847, 855, 861], "member": [803, 805, 825, 840, 844], "comment": [803, 804, 805, 807, 813, 819, 825, 827, 831], "pr": [803, 805, 807, 819, 825, 826, 828], "composition": 803, "feasibl": [803, 812, 844, 847], "pend": 803, "helpfulli": [803, 831, 852], "problemat": [803, 804], "unimpl": 803, "issue_link": 803, "alias_nam": 803, "notic": [803, 808, 812, 818, 819, 828, 831, 847], "push": [803, 805, 807, 826, 828, 860], "liner": 803, "meanwhil": [803, 812], "reselect": 803, "faithfulli": 803, "creation_routin": [803, 826], "indexing_routin": 803, "ma": 803, "manipulation_routin": 803, "mathematical_funct": [803, 825], "sorting_searching_count": 803, "ufunc": [803, 825], "matrix_and_vector_product": 803, "matrix_eigenvalu": 803, "norms_and_other_numb": 803, "solving_equations_and_inverting_matric": 803, "gleam": 803, "uncom": 803, "test_numpy_inn": 803, "test_frontend": [803, 812, 818, 826], "unsur": [803, 828], "statu": [803, 812, 819, 845], "refrain": 803, "checkbox": [803, 804], "aforement": 803, "parent": [803, 812, 835], "arraywithelementwis": [803, 808, 835], "containerwithmanipul": 803, "thorough": [803, 816, 820, 828], "add_reformatting_checklist_": 803, "category_nam": [803, 813, 814, 816, 820, 821], "autom": [803, 812, 819, 828, 841, 856], "bot": [803, 819], "markdown": [803, 810], "patient": [803, 804], "elabor": 803, "struggl": 803, "assigne": 803, "status": 803, "central": [803, 819, 831, 844, 860], "analyz": [803, 841], "relevant_submodul": 803, "roadmap": [803, 812], "soon": [803, 805, 812, 813, 839, 847], "deem": [803, 825], "subtask": 803, "clearer": [803, 817, 826, 836], "backend_nam": [803, 809, 813, 814, 816, 820, 821, 822], "sometim": [803, 804, 805, 807, 813, 821, 825, 828, 831], "rare": [803, 814, 839, 859], "button": [803, 804, 805, 818], "centr": 803, "predetermin": 803, "superset": [803, 806, 821, 824, 839], "reserv": 803, "happi": [804, 818, 839, 845], "your_usernam": [804, 818], "your_fold": [804, 818], "enter": [804, 805, 808, 813, 814, 818, 820, 822], "sync": [804, 807, 818], "remot": [804, 807, 818, 819], "nutshel": [804, 820], "hook": [804, 819, 827], "lint": [804, 806], "succe": [804, 847], "whatev": [804, 811, 839], "elig": 804, "student": 804, "licens": [804, 857], "remind": 804, "expir": 804, "won": [804, 805, 811, 813, 838, 840, 844, 845, 847, 848, 849], "profession": 804, "trial": 804, "jetbrain": 804, "month": [804, 843], "bui": [804, 860], "paid": 804, "rapid": [804, 843, 844, 854], "pace": 804, "person": [804, 805], "abil": [804, 831, 834, 839, 854], "perhap": [804, 835, 836, 837, 839, 860], "conda": [804, 844, 856], "ivy_dev": [804, 805], "icon": [804, 805, 818], "panel": 804, "vscode": [804, 818], "palett": 804, "ctrl": [804, 805], "mac": [804, 805], "intel": [804, 844, 852, 859], "m1": 804, "optional_apple_silicon_1": 804, "optional_apple_silicon_2": 804, "array_api_test": [804, 805, 807, 818], "test_array_api": [804, 805, 807, 818, 828], "suit": [804, 806, 807, 812, 818, 827, 828, 836, 844, 854, 860], "cmd": 804, "bat": [804, 805], "virtualenv": 804, "tick": [804, 805, 812], "nz2": 804, "openssl": 804, "libssl1": 804, "1_1": 804, "1f": 804, "1ubuntu2": 804, "19_amd64": 804, "deb": 804, "dpkg": 804, "mitig": [804, 860], "desktop": [804, 818], "powershel": 804, "admin": 804, "deploy": [804, 848, 853, 856, 857, 860, 861], "menu": [804, 818], "introspect": 804, "dialog": 804, "persist": 804, "earlier": [804, 805, 813, 829], "virtualis": 804, "bio": [804, 844], "dropdown": [804, 812], "dockerfil": 804, "ca": 804, "certif": 804, "gnupg": 804, "lsb": 804, "keyr": 804, "fssl": 804, "gpg": 804, "dearmor": 804, "echo": [804, 812, 840], "arch": 804, "lsb_releas": 804, "null": [804, 818], "ce": 804, "cli": 804, "containerd": 804, "systemctl": 804, "softwar": [804, 805, 843, 844, 852, 857, 858, 859], "press": [804, 805, 836], "4a": 804, "socket": 804, "rwx": 804, "sock": 804, "pid": 804, "editor": 804, "pytest": [804, 805, 807, 812, 818, 822, 828], "keyboard": 804, "screenshot": 804, "pop": [804, 818, 844], "test_elementwis": 804, "bar": [804, 818], "shell": [804, 805, 807, 812], "setup_test": 804, "run_ivy_core_test": 804, "run_ivy_nn_test": 804, "run_ivy_stateful_test": 804, "run_test": [804, 812], "test_depend": 804, "test_ivy_cor": 804, "test_ivy_nn": 804, "test_ivy_st": 804, "unix": 804, "test_": [804, 826], "test_cor": [804, 805, 826], "offici": [804, 813, 833], "wish": [804, 825], "ivy_nn": 804, "ivy_st": 804, "header": [804, 805, 827], "arrow": 804, "test_stat": 804, "test_submodule_nam": 804, "test_function_nam": 804, "debugg": 804, "studio": [804, 818, 828], "especi": [804, 809, 819, 843, 854], "afterward": [804, 836], "background": [804, 810, 818, 854, 856], "overlap": [804, 812, 818, 829, 831, 855], "test_file_path": [804, 818], "test_fn_nam": [804, 818], "engin": [804, 854, 856, 857], "devcontain": 804, "comma": 804, "postcreatecommand": 804, "post_create_command": 804, "poststartcommand": 804, "safe": [804, 825], "containerworkspacefold": 804, "reopen": 804, "test_fle_path": 804, "slash": 804, "isol": [804, 805, 855, 860], "container": 804, "intens": 804, "headach": 804, "arm": [804, 805], "vm": [804, 812], "azur": 804, "cloud": [804, 812, 856], "theme": [804, 810], "ipad": 804, "browser": [804, 810], "quota": 804, "requisit": 804, "pane": [804, 805, 812], "dockerfilegpu": 804, "ivv": 804, "multiv": 804, "multivers": [804, 829], "dockerfilemultivers": 804, "dockerhub": 804, "upto": [804, 805], "minut": [804, 812], "launch": 804, "quickli": [804, 805, 812, 836, 837, 843, 845, 854, 861], "kindli": [804, 827], "guidelin": 804, "colour": 804, "chanc": 804, "troubleshoot": 804, "ever": 804, "flask": [804, 818], "toolbar": [804, 805, 818], "_array_modul": [804, 807, 818], "refresh": [804, 818], "pytestarg": [804, 818], "unittesten": [804, 818], "pytesten": [804, 818], "autotestdiscoveronsaveen": [804, 818], "conftest": 804, "serv": [804, 805, 808, 811, 820, 821, 825, 826, 828, 831, 832, 841, 852], "aren": [804, 813], "record": [804, 839, 855], "available_config": 804, "cp310": 804, "x86": [804, 859], "newer": [804, 828], "_compil": 804, "meantim": 804, "suffici": [804, 815, 825, 828], "bear": [804, 808, 811, 813, 825], "tendenc": 805, "land": 805, "unrel": [805, 844], "fly": [805, 854], "internship": 805, "suspect": 805, "iii": 805, "issue_numb": 805, "12345": 805, "rememb": 805, "respond": 805, "dai": [805, 819], "freed": 805, "obvious": [805, 812], "hypothet": 805, "frustrat": 805, "delai": [805, 847], "busi": 805, "inact": 805, "unfairli": 805, "investig": 805, "name_of_your_branch": 805, "date": [805, 807], "complic": [805, 826, 833], "merge_with_upstream": 805, "abort": 805, "tediou": [805, 815, 831], "stash": [805, 819], "reinstat": 805, "uncommit": 805, "unstag": [805, 819], "untrack": 805, "atlassian": 805, "wrote": 805, "piec": [805, 808, 821, 822, 833, 847, 850, 852], "blame": 805, "eg": 805, "week": [805, 845], "grep": 805, "commit_id": 805, "handi": 805, "histori": 805, "toggl": 805, "highlight": [805, 812, 815, 825, 827], "approv": 805, "someon": [805, 839], "hash": [805, 836], "cancel": 805, "speedup": 805, "unavail": 805, "tickbox": 805, "span": [805, 852, 860], "intent": [805, 824], "discourag": 805, "adopt": [805, 808, 820, 831, 844, 853, 854, 859], "philosophi": 805, "infrequ": 805, "earli": [805, 854], "wast": [805, 812], "spot": [805, 815, 821], "mistak": 805, "mountain": 805, "advoc": [805, 839], "session": [805, 854], "beauti": 805, "particularli": [805, 836, 839, 847, 852], "care": [805, 814, 825, 831, 838, 844], "undo": 805, "stress": 805, "nifti": 805, "reassur": 805, "local_path_to_ivi": 805, "subfold": [805, 826, 828, 829], "dep": 805, "fresh": 805, "arsen": 805, "exec": 805, "ivy_contain": 805, "test_imag": 805, "test_random_crop": 805, "test_creation_funct": 805, "test_arang": 805, "cursor": 805, "alt": 805, "blog": 805, "breakpoint": 805, "gutter": 805, "caret": 805, "f8": 805, "f9": 805, "Into": 805, "f7": 805, "smart": 805, "fragment": [805, 850, 852, 856], "wherein": [805, 821, 828], "failur": [805, 812, 826, 828], "weed": [806, 832], "tour": 806, "formatt": [806, 819], "conjunct": 807, "establish": [807, 856], "popular": [807, 854], "sens": [807, 813, 815, 825, 827, 835], "unconnect": 807, "initialis": [807, 825, 828], "strang": [807, 835], "thoroughli": 807, "test_linalg": [807, 826], "test_set_funct": 807, "test_signatur": 807, "excess": [807, 809, 815], "array_modul": 807, "vv": 807, "test_manipulation_funct": 807, "test_concat": [807, 828], "nb": 807, "liber": 807, "______________________": 807, "test_remaind": 807, "_______________________": 807, "test_operators_and_elementwise_funct": 807, "1264": 807, "1277": 807, "binary_param_assert_against_refimpl": 807, "ctx": 807, "620": 807, "binary_assert_against_refimpl": 807, "324": 807, "scalar_o": 807, "17304064": 807, "binaryparamcontext": 807, "axic42baaowcnp": 807, "rumwmabaear0": 807, "make_binary_param": 807, "numeric_dtyp": 807, "left_strat": 807, "left_sym": 807, "right_strat": 807, "right_sym": 807, "right_is_scalar": 807, "binary_param_assert_dtyp": 807, "binary_param_assert_shap": 807, "recreat": 807, "unexpectedli": 807, "discrep": [807, 826], "test_asarray_arrai": 807, "test_floor_divid": 807, "health": 807, "test_iop": 807, "__imod__": 807, "isequ": 807, "test_matrix_norm": 807, "alter": 807, "tweak": 807, "array_api_methods_to_test": 807, "test_special_cas": 807, "__ipow__": 807, "is_integ": 807, "easier": [807, 808, 809, 813, 826, 829, 841, 854, 856], "revisit": [807, 820], "_data": [808, 824, 825, 835], "organiz": [808, 811, 825], "underpin": [808, 811, 833], "programmat": [808, 811, 855], "backup": [808, 810, 811], "accident": [808, 811, 825], "absent": [808, 811], "auto": [808, 810, 811, 819, 836], "__mul__": [808, 811, 815, 820, 831, 835], "throw": [808, 813, 814, 817, 818, 835, 854], "imposs": 808, "inputs_to_native_arrai": [808, 821, 822], "outputs_to_ivy_arrai": [808, 813, 814, 820, 821, 822], "secondli": [808, 813], "__ivy_array_function__": 808, "inspir": 808, "__torch_function__": 808, "myarrai": 808, "handled_funct": 808, "notimpl": 808, "issubclass": 808, "four": [808, 813, 815, 820, 821, 828, 831, 836], "enough": [808, 812, 813, 814, 828, 835, 836, 837], "ivy_funct": 808, "my_ab": 808, "my_arrai": 808, "implicit_backend": [809, 833], "__dict__": [809, 824, 833], "ivy_original_dict": [809, 833], "fallback": 809, "live": [809, 810, 813, 844, 845, 850, 852], "scope": [809, 855, 859], "dlpack": 809, "set_dynamic_backend": 809, "unset_dynamic_backend": 809, "dynamic_backend_a": 809, "set_": 809, "unset_": 809, "backend_handl": 809, "requires_grad": 809, "memory_format": 809, "preserve_format": 809, "weren": 809, "vast": [809, 813, 854], "minor": [809, 831, 839], "fn_name_v_1p12_and_abov": 809, "fn_name_v_1p01_to_1p1": 809, "heavili": [810, 822, 839], "characterist": 810, "conf": 810, "cleanup": 810, "readm": [810, 839], "maxdepth": 810, "caption": 810, "related_work": 810, "deep_div": 810, "faq": 810, "glossari": 810, "autosummari": 810, "top_functional_toc": 810, "restructuredtext": 810, "discov": [810, 813], "ivy_toctree_caption_map": 810, "stub": 810, "unfortun": [810, 819], "linker": 810, "foo": 810, "discussion_channel_map": 810, "1000043690254946374": 810, "1000043749088436315": 810, "forum": [810, 840], "seri": [810, 813, 825, 828, 854, 856], "discussion_paragraph": 810, "discord_link": 810, "channel_link": 810, "gg": 810, "zvqdvbznqj": 810, "799879767196958751": 810, "channel_id": 810, "autoskippablemethod": 810, "skippable_method_attribut": 810, "__qualname__": 810, "autodoc": 810, "__doc__": 810, "autoivydata": 810, "mutual": [811, 821], "containerwithelementwis": 811, "__repr__": 811, "__getattr__": [811, 847], "__setattr__": [811, 847], "__contains__": 811, "__getstate__": 811, "__setstate__": 811, "unpickl": 811, "num_dim": [811, 838], "restrict": [811, 812, 825, 833, 847, 851], "enforc": [811, 835], "extern": [811, 820, 825, 828, 829], "lefthand": 811, "righthand": 811, "handle_nest": [811, 820, 821, 822, 833], "absenc": [811, 820, 854], "implicitli": [811, 823, 828, 833], "log_pr": [811, 821, 824], "intuit": [811, 828, 836, 837, 850], "chronolog": 811, "concurr": [811, 812, 821, 854], "despit": [811, 813, 814, 826, 833, 844, 851, 854], "__list__": 811, "whatsoev": [811, 821, 841, 860], "children": 811, "shallowest": 811, "deepest": 811, "rollback": 812, "incorpor": [812, 826, 836, 854], "techniqu": 812, "triplet": 812, "test_torch": [812, 826], "test_tensor": [812, 826], "test_torch_instance_arctan_": 812, "12500": 812, "daili": 812, "huge": [812, 836, 842, 844, 854, 860], "shoot": 812, "impact": [812, 828, 837, 856], "_reduce_loss": [812, 821, 824], "test_nn": 812, "test_loss": 812, "test_binary_cross_entropy_with_logit": 812, "test_cross_entropi": 812, "test_binary_cross_entropi": 812, "test_sparse_cross_entropi": 812, "test_loss_funct": 812, "test_torch_binary_cross_entropi": 812, "test_torch_cross_entropi": 812, "binary_cross_entropy_with_logit": 812, "torch_binary_cross_entropi": 812, "torch_cross_entropi": 812, "magic": 812, "readthedoc": 812, "pedagog": 812, "f_1": 812, "t_1": 812, "t_3": 812, "t_7": 812, "t_": 812, "f_m": 812, "cyclic": 812, "intellig": [812, 828, 856], "tests_fil": 812, "file_nam": [812, 828, 829], "tests_lin": 812, "correspondingli": 812, "tests_to_run": 812, "determine_tests_lin": 812, "mongodb": 812, "databas": [812, 828], "mechan": [812, 839], "secret": 812, "db": 812, "ssh_deploy_kei": 812, "suffic": [812, 822, 828], "massiv": 812, "yml": 812, "felicit": 812, "clone_map": 812, "deploy_kei": 812, "user_email": 812, "user_nam": 812, "target_branch": 812, "github_serv": 812, "deploy_key_fil": 812, "ssh_known_hosts_fil": 812, "known_host": 812, "keyscan": 812, "git_ssh_command": 812, "userknownhostsfil": 812, "email": [812, 844], "methodologi": 812, "master1": 812, "restructur": 812, "_map": 812, "t_2": 812, "t_n": 812, "index_map": 812, "test_map": 812, "snowbal": 812, "recalibr": 812, "workflow_dispatch": 812, "schedul": [812, 839, 854, 861], "cron": 812, "saturdai": 812, "night": 812, "pm": 812, "gut": 812, "lesser": [812, 817], "lol": 812, "hour": [812, 845], "cater": [812, 827], "master2": 812, "master32": 812, "synchron": 812, "runner2": 812, "corrupt": 812, "decoupl": [812, 837], "150": 812, "cycl": [812, 828], "yellow": 812, "queu": 812, "redirect": 812, "book": 812, "onrend": 812, "jo": 812, "ran": 812, "badg": 812, "clickabl": 812, "all_dtyp": 813, "all_numeric_dtyp": 813, "all_int_dtyp": 813, "all_float_dtyp": 813, "replic": [813, 823, 824, 825], "thirdli": 813, "native_float32": 813, "importantli": [813, 835, 838], "arguabl": [813, 814, 825], "jaxarrai": [813, 814, 817, 820, 824, 829, 833], "_handle_0_dim_output": 813, "subtli": [813, 824], "promote_types_frontend_nam": 813, "promote_types_of_frontend_name_input": 813, "frontend_nam": 813, "upcast": 813, "nearli": [813, 820, 822, 854], "downcast": 813, "footprint": 813, "concret": 813, "aris": [813, 819, 839, 844], "utterli": 813, "meant": [813, 815, 824], "twice": 813, "disadvantag": 813, "relax": 813, "f64": 813, "unwant": 813, "primaci": 813, "resembl": 813, "compound": 813, "infer_dtyp": [813, 814, 820, 822], "settabl": [813, 814], "handle_out_argu": [813, 814, 820, 821, 822, 824, 833], "infer_devic": [813, 814, 820, 822], "deleg": [813, 861], "shape_to_tupl": 813, "with_supported_dtyp": 813, "unment": 813, "_cast_for_unary_op": [813, 821, 824], "target_typ": 813, "syntax": [813, 843, 844, 854], "unsupported_dtyp": 813, "supported_dtypes_and_devic": 813, "with_unsupported_device_and_dtyp": 813, "globals_getter_func": 813, "f2": 813, "lack": [813, 824, 854, 861], "mandat": [813, 824, 828, 829, 844], "confus": [813, 817, 824, 831, 841, 845], "inconsist": [813, 817, 823], "is_nan": 813, "supported_dtyp": 813, "anytim": 813, "84530": 813, "unwarr": 813, "risk": [813, 860], "needlessli": 813, "bloat": 813, "undergo": [813, 839], "unsupported_devic": 813, "supported_devic": 813, "downsid": 813, "coverag": [813, 828], "undesir": 813, "accomplish": 813, "upcast_data_typ": 813, "downcast_data_typ": 813, "crosscast_data_typ": 813, "cast_data_typ": 813, "downcast_data_dtyp": 813, "vice": 813, "versa": 813, "till": 813, "crosscast": 813, "exmp1": 813, "watch": [813, 825], "handle_numpy_arrays_in_specific_backend": [813, 820], "cate": 813, "understood": 813, "consumpt": [813, 858], "dual": 814, "categor": [814, 821, 825], "210": 814, "_handle_except": [814, 817], "1013": 814, "_handle_nest": [814, 817], "905": 814, "_handle_out_argu": [814, 817], "441": 814, "_inputs_to_native_arrai": [814, 817], "new_arg": [814, 817], "new_kwarg": [814, 817], "_outputs_to_ivy_arrai": [814, 817], "358": 814, "_handle_array_funct": [814, 817], "_handle_device_shift": 814, "handle_device_shift": [814, 822], "crucial": [814, 823], "device_shifting_dev": 814, "__enter__": 814, "__exit__": 814, "mostli": [814, 824, 828], "soft_devic": 814, "eight": [815, 832], "op_nam": 815, "__r": 815, "unsurprisingli": [815, 843], "recap": [815, 837], "combinatori": 815, "okai": [815, 831, 833], "spec": [815, 816], "my_func": [815, 829], "some_flag": 815, "another_flag": 815, "jointli": 815, "5574077": 815, "1850398": 815, "5463025": 815, "8422884": 815, "91601413": 815, "9647598": 815, "3738229": 815, "1597457": 815, "0963247": 815, "9955841": 815, "3278579": 815, "asid": 815, "increasingli": [815, 847], "14254655": 815, "1578213": 815, "380515": 815, "trivial": [815, 824], "failing_fn_nam": 815, "onlin": [815, 816], "minutest": 815, "contrast": [816, 820, 825, 860], "preview": 816, "incorrectli": [816, 847], "needless": [816, 826], "renam": [816, 825], "judgment": 816, "operator_nam": 816, "succinct": 816, "docst": 816, "native_error": 817, "_combine_messag": 817, "truli": [817, 835], "wrong": [817, 819, 822, 825, 831], "198": 817, "392": 817, "_handle_array_like_without_promot": 817, "805": 817, "432": 817, "349": 817, "other_test": 817, "523": 817, "_handle_numpy_out": 817, "396": [817, 837], "_outputs_to_numpy_arrai": 817, "_inputs_to_ivy_arrays_np": 817, "ivy_arg": 817, "ivy_kwarg": 817, "453": 817, "_from_zero_dim_arrays_to_scalar": 817, "truth_value_test": 817, "visibl": 817, "unwieldi": 817, "squash": 817, "hide": [817, 847], "cleaner": [817, 836], "caught": [817, 819], "rethrow": 817, "_print_traceback_histori": 817, "error_stack": 817, "axiserror": 817, "polici": [817, 822, 828, 830], "moreov": 817, "submoodul": 818, "test_jax_transpos": 818, "manipulaiton": 818, "test_jax": [818, 826], "test_numpi": [818, 826], "test_manipul": [818, 826, 828], "preconditionnotmet": 818, "densetensor": 818, "holder_": 818, "phi": 818, "dense_tensor_impl": 818, "array_and_ax": 818, "aaegbaegaqaaaaaaaaaaaaab": 818, "black": 819, "flake8": 819, "linter": 819, "autoflak": 819, "docformatt": 819, "pydocstyl": 819, "yaml": 819, "patch1687898304": 819, "8072": 819, "3516aed563": 819, "reformat": 819, "akshai": 819, "jain": 819, "gui": 819, "cryptic": 819, "garden": 819, "utc": 819, "didn": 819, "human": 819, "intervent": 819, "typo": 819, "ui": 819, "handle_array_like_without_promot": [820, 822], "to_native_arrays_and_back": [820, 822, 833], "handle_array_funct": [820, 822], "inputs_to_native_shap": [820, 822], "rational": [820, 824, 831], "__div__": [820, 831], "484": 820, "annot": 820, "brittl": 820, "freeli": 820, "inde": [820, 831, 839, 852], "technic": [820, 824, 839, 854, 856], "original_typ": 820, "cumbersom": 820, "hinder": [820, 843], "venn": 821, "diagram": [821, 860], "light": [821, 829, 839, 841, 855, 860], "maximis": 821, "encompass": 821, "partial_mixed_handl": [821, 822, 831], "handle_partial_mixed_funct": [821, 822, 831], "fn_decor": 821, "mixed_backend_wrapp": [821, 824], "to_add": 821, "to_skip": 821, "inputs_to_ivy_arrai": [821, 822], "modif": [821, 854], "briefli": [821, 828, 836], "get_all_arrays_on_dev": 821, "outputs_to_ivy_shap": 822, "outputs_to_native_arrai": 822, "handle_view_index": [822, 824], "handle_view": [822, 824], "handle_rag": 822, "handle_backend_invalid": 822, "handle_nan": 822, "to_native_shapes_and_back": 822, "modern": [823, 843, 844, 859], "inter_func": 823, "custom_grad_fn": 823, "args1": 823, "eas": [823, 854], "program": [824, 851, 852, 854, 857, 858, 861], "speak": 824, "val_n": 824, "base_idx": 824, "_manipulation_stack": 824, "base_flat": 824, "_view_ref": 824, "_update_view": 824, "contigu": 824, "c_contigu": 824, "ascontiguousarrai": 824, "copyto": 824, "_is_vari": 824, "tensor_scatter_nd_upd": 824, "is_vari": 824, "_update_torch_view": 824, "predominantli": [824, 829], "support_native_out": [824, 833], "_scalar_output_to_0d_arrai": 824, "_wrap_fn": 824, "dim0": 824, "dim1": 824, "res_floor": 824, "extent": [824, 825], "to_out_fn": 824, "add_wrapp": 824, "paradigm": [824, 839, 854], "expans": 824, "brief": [824, 828], "weak": 824, "_torch_bas": 824, "_torch_view_ref": 824, "_torch_manipul": 824, "weakli": 824, "adequ": 824, "tf_frontend": 825, "lax": [825, 826, 831, 838, 839], "torch_frontend": [825, 826], "numpy_frontend": 825, "jax_frontend": 825, "to_ivy_arrays_and_back": [825, 826], "fidel": 825, "algebra": [825, 852, 853, 854, 857, 861], "dynamic": 825, "mimic": 825, "arithmetic_oper": 825, "handle_numpy_out": 825, "handle_numpy_dtyp": 825, "handle_numpy_cast": 825, "from_zero_dim_arrays_to_scalar": 825, "_add": 825, "same_kind": 825, "subok": [825, 826, 831], "promote_types_of_numpy_input": 825, "underscor": 825, "unhandl": 825, "trigonometric_funct": 825, "_tan": 825, "check_tensorflow_cast": 825, "raw_op": [825, 826], "map_raw_ops_alia": 825, "output_typ": 825, "kwargs_to_upd": 825, "pointwise_op": 825, "sensibl": 825, "ahead": [825, 829, 854], "reduce_logsumexp": 825, "logsumexp": 825, "trick": 825, "max_input_tensor": 825, "preferred_element_typ": 825, "languag": [825, 833, 841, 843, 845, 852, 855, 857, 858, 859, 860], "offer": [825, 837, 845, 854, 860, 861], "finer": 825, "logicaland": 825, "np_frontend": 825, "_ivy_arrai": 825, "radd": 825, "_init_data": 825, "_process_str_data": 825, "_dtype": [825, 826, 835], "_shape": [825, 835], "govern": 825, "promote_types_of_": 825, "_input": 825, "promote_types_of_torch_input": [825, 826], "handle_numpy_casting_speci": 825, "new_fn": 825, "equiv": 825, "unsaf": 825, "array_type_test": 825, "_isfinit": 825, "organis": 825, "grasp": 825, "youtub": 825, "knowledg": 826, "np_frontend_help": 826, "open_task": 826, "test_lax": 826, "test_oper": 826, "test_jax_tan": 826, "test_mathematical_funct": 826, "test_trigonometric_funct": 826, "dtypes_values_cast": 826, "dtypes_values_casting_dtyp": 826, "arr_func": 826, "get_num_positional_args_ufunc": 826, "test_numpy_tan": 826, "handle_where_and_array_bool": 826, "test_tensorflow": 826, "test_math": 826, "test_tensorflow_tan": 826, "test_pointwise_op": 826, "test_torch_tan": 826, "_fill_valu": 826, "test_glob": 826, "test_jax_ful": 826, "test_from_shape_or_valu": 826, "_input_fill_and_dtyp": 826, "dtype_and_input": 826, "dtype_to_cast": 826, "input_fill_dtyp": 826, "test_numpy_ful": 826, "test_raw_op": 826, "test_tensorflow_fil": 826, "test_creation_op": 826, "with_arrai": 826, "test_torch_ful": 826, "add_nois": 826, "all_clos": 826, "_get_dtype_and_matrix": 826, "test_torch_qr": 826, "frontend_q": 826, "frontend_r": 826, "walkthrough": 826, "comparison_op": 826, "test_comparison_op": 826, "test_torch_great": 826, "all_alias": 826, "test_ndarrai": 826, "test_numpy_instance_add__": 826, "test_tensorflow_instance_add": 826, "1e04": 826, "allow_infin": 826, "test_torch_instance_add": 826, "_arrays_idx_n_dtyp": 826, "surprisingli": 826, "closest_relevant_group": 826, "strive": [826, 828, 831, 839, 856], "tailor": 827, "clariti": [827, 828, 831, 854], "weav": 827, "thrill": 827, "brim": 827, "stand": [827, 828], "testament": 827, "landscap": 827, "forese": 827, "refin": 827, "inquiri": 827, "fixtur": 828, "hit": [828, 833, 847], "eleg": [828, 854], "unexplor": 828, "artifact": 828, "bespok": 828, "_array_or_typ": 828, "rigor": [828, 843], "test_default_int_dtyp": 828, "print_hypothesis_exampl": 828, "custom_strategi": 828, "randomis": 828, "simplist": 828, "intricaci": 828, "glanc": 828, "one_of": 828, "datum": 828, "pipe": 828, "array_or_scal": 828, "len_of_arrai": 828, "test_add": 828, "test_gpu_is_avail": 828, "pretest": 828, "snippet": [828, 848], "criterion": 828, "valid_ax": 828, "hoc": 828, "11228": 828, "268": 828, "wherev": 828, "9622": 828, "28136": 828, "6375": 828, "12720": 828, "21354": 828, "900e": 828, "57384": 828, "25687": 828, "248": 828, "test_devic": 828, "array_shap": 828, "test_lay": 828, "some_sequ": 828, "arrays_valu": 828, "36418": 828, "213": 828, "21716926": 828, "none_or_list_of_float": 828, "get_prob": 828, "103515625e": 828, "099609375": 828, "probabilist": 828, "number_positional_argu": 828, "unreproduc": 828, "x_and_linear": 828, "is_torch_backend": 828, "x_shape": [828, 833], "weight_shap": 828, "bias_shap": 828, "ivy_np": 828, "valid_float_dtyp": 828, "test_demo": 828, "failing_test": 828, "traceback": 828, "shrink": 828, "prescrib": 828, "scratch": 828, "therebi": 828, "test_gelu": 828, "test_fil": 828, "phase": [828, 839, 854], "notabl": [828, 854], "max_exampl": 828, "deadlin": 828, "weird": 828, "systemat": 828, "safeguard": 828, "inabl": 828, "test_result_typ": 828, "9090909090909091": 828, "judgement": 829, "some_namespac": 829, "some_backend": 829, "another_backend": 829, "refactor": 829, "ongo": 829, "check_fill_value_and_dtype_are_compat": 829, "_to_devic": 829, "shouldn": [829, 847], "pin": 829, "unpinn": 829, "culmin": 829, "unsett": 830, "array_significant_figur": 830, "array_decimal_valu": 830, "warning_level": 830, "nan_polici": 830, "stablest": 830, "constantli": [831, 843], "answer": [831, 835, 839], "contradict": 831, "entail": 831, "sacrif": 831, "jacfwd": 831, "jacrev": 831, "banner": 831, "expens": 831, "incredibli": [831, 836, 839, 857], "price": 831, "pai": 831, "intrus": 831, "x_beta": 831, "equip": 831, "simplif": 831, "allevi": 831, "ineffici": [831, 839, 854], "fuse": 831, "hybrid": 831, "workaround": 831, "slip": 831, "radar": 831, "stumbl": 831, "gone": [832, 844], "fulfil": 832, "syntact": [833, 838], "power_seq": 833, "_determine_backend_from_arg": 833, "importlib": 833, "_backend_dict": 833, "x_flat": 833, "wi": 833, "wi_x": 833, "wii_x": 833, "wif_x": 833, "wig_x": 833, "wio_x": 833, "wh": 833, "ht": 833, "ct": 833, "hts_list": 833, "wii_xt": 833, "wif_xt": 833, "wig_xt": 833, "wio_xt": 833, "htm1": 833, "ctm1": 833, "wh_htm1": 833, "whi_htm1": 833, "whf_htm1": 833, "whg_htm1": 833, "who_htm1": 833, "ft": 833, "ot": 833, "reliabl": 833, "scalabl": [833, 843, 859, 860], "sacrific": 833, "hear": 833, "virtu": [833, 851], "pure_ivi": 833, "pure_torch": 833, "unclean": 833, "wx": 833, "temp": 833, "ivy_func": 833, "emphas": 833, "torchscript": [833, 841, 861], "example_input": 833, "static_argnum": [833, 847], "static_argnam": [833, 847], "primit": [834, 839, 852, 854], "upcom": 834, "hierarch": [834, 836, 837, 854], "arraywithactiv": 835, "arraywithcr": 835, "arraywithdatatyp": 835, "arraywithdevic": 835, "arraywithgener": 835, "arraywithgradi": 835, "arraywithimag": 835, "arraywithlay": 835, "arraywithlinearalgebra": 835, "arraywithloss": 835, "arraywithmanipul": 835, "arraywithnorm": 835, "arraywithrandom": 835, "arraywithsearch": 835, "arraywithset": 835, "arraywithsort": 835, "arraywithstatist": 835, "arraywithutil": 835, "_init": 835, "_size": 835, "_devic": 835, "_dev_str": 835, "_pre_repr": 835, "_post_repr": 835, "framework_str": 835, "pypep8nam": 835, "immut": 835, "claim": 835, "_native_wrapp": 835, "genuin": 835, "some_method": 835, "rewritten": 835, "littl": [835, 843, 856], "wonder": [835, 843, 845], "compartment": 835, "newshap": 835, "new_shap": 835, "tidi": 835, "crystal": 835, "ton": 836, "ado": [836, 837], "soup": 836, "walk": [836, 837], "cnt": 836, "3333335": 836, "autocomplet": 836, "midwai": 836, "agent": 836, "total_spe": 836, "total_height": 836, "total_width": 836, "ag": 836, "tot": 836, "total_": 836, "total_h": 836, "cnt0": 836, "cnt1": 836, "diff_0": 836, "diff_1": 836, "config0": 836, "config1": 836, "l0": 836, "decoder__l0": 836, "decoder__l1": 836, "encoder__l0": 836, "encoder__l1": 836, "l0__b": 836, "l0__w": 836, "l1__b": 836, "l1__w": 836, "printabl": 836, "foresight": 836, "untidili": 836, "update_ag": 836, "normalize_img": 836, "img_max": 836, "reduce_max": 836, "img_min": 836, "reduce_min": 836, "img_rang": 836, "agent_posit": 836, "agent_veloc": 836, "agent_cam_front_rgb": 836, "agent_cam_front_depth": 836, "agent_cam_rear_rgb": 836, "agent_cam_rear_depth": 836, "agent_cam_lidar": 836, "camera": 836, "front_rgb": 836, "front_depth": 836, "rear_rgb": 836, "rear_depth": 836, "lidar": 836, "rgb": 836, "rear": 836, "veloc": 836, "cam": 836, "cam_max": 836, "cam_min": 836, "cam_rang": 836, "five": 836, "allud": [836, 844], "perman": 836, "thread": [836, 854], "straightforward": 836, "dataload": 836, "_cnt": 836, "img_": 836, "_dataset_s": 836, "_batch_siz": 836, "_count": [836, 837], "__next__": 836, "img_fnam": 836, "loaded_img": 836, "batch_slic": 836, "0145": 836, "addbackward0": 836, "_create_vari": 837, "_input_channel": 837, "_output_channel": 837, "_w_shape": 837, "_b_shape": 837, "_with_bia": 837, "764": 837, "872": 837, "211": 837, "439": 837, "nightmar": 837, "overcom": 837, "v1": 837, "key0": 837, "linear3": 837, "v2": 837, "preced": [837, 844], "_w_init": 837, "_b_init": 837, "misnom": 837, "saw": 837, "_beta1": 837, "_beta2": 837, "_epsilon": 837, "_mw": 837, "_vw": 837, "_first_pass": 837, "_should_trac": 837, "new_v": 837, "_lr": 837, "_inplac": 837, "_stop_gradi": 837, "sparse_funct": 838, "vital": [838, 843], "_linear": 838, "jax_graph": 838, "to_backend": 838, "thinli": 838, "to_haiku_modul": 838, "loss_fn_t": 838, "without_apply_rng": 838, "update_rul": 838, "tree_multimap": 838, "trax": [838, 845], "objax": [838, 845], "matur": [839, 844, 854], "doubt": 839, "grate": 839, "probe": 839, "lock": 839, "gold": 839, "dex": 839, "tricki": [839, 841], "predictor": 839, "tight": 839, "dispatch": [839, 854, 857], "ast": 839, "autodiff": 839, "shine": 839, "merci": 839, "compet": [839, 854], "parallelis": 839, "spmd": 839, "mixtur": 839, "expert": 839, "sophist": 839, "depart": 839, "hundr": 839, "thousand": 839, "broadli": [839, 860], "supplementari": 839, "reusabl": [839, 852, 854], "fanci": [839, 854], "fusion": [839, 858], "lose": 839, "pmap": 839, "eventu": 839, "supplement": 839, "backdoor": 839, "callback": 839, "door": 839, "somewhat": [839, 854], "outsourc": 839, "ivy_root": 840, "pem": 840, "api_kei": 840, "asap": 840, "nail": 841, "scientist": 841, "correl": 841, "collabor": [842, 843, 844], "consortium": [842, 844], "grown": 843, "rapidli": 843, "shareabl": 843, "outdat": 843, "newest": 843, "prototyp": [843, 854], "obsolet": [843, 845], "invent": 843, "simultan": [843, 845], "runner": 843, "principl": [843, 852, 854, 857], "2006": 843, "cloth": 843, "forgiven": 844, "eyebrow": 844, "somehow": 844, "industri": [844, 854, 856], "funni": 844, "comic": 844, "charger": 844, "instant": 844, "contrari": 844, "bumpi": 844, "road": 844, "technologi": [844, 852, 856], "pcie": 844, "motherboard": 844, "raid": 844, "bluetooth": 844, "wireless": 844, "btx": 844, "sata": 844, "tcp": 844, "ip": 844, "smtp": 844, "send": [844, 859], "gmail": 844, "outlook": 844, "innov": 844, "growth": [844, 857], "necess": 844, "2015": [844, 854], "aros": 844, "mission": [844, 856], "ourselv": [844, 860], "quansight": [844, 860], "compani": [844, 850], "apach": [844, 856, 860], "onnx": [844, 852, 860], "cupi": [844, 854, 861], "modin": 844, "spyder": 844, "octoml": [844, 860], "sponsor": 844, "lg": 844, "electron": 844, "shaw": 844, "pursuit": 844, "complianc": 844, "convinc": 844, "celebr": 844, "abund": 845, "streamlin": [845, 857], "awesom": 845, "love": 845, "slew": 845, "inevit": [845, 855], "erron": 845, "poor": 845, "spin": 845, "sake": 845, "wouldn": 845, "frantic": 845, "lucid": 845, "honk": 845, "hasn": 845, "spend": [845, 854], "sonnet": 845, "trainer": [845, 861], "quo": 845, "dopamin": 845, "ignit": 845, "catalyst": 845, "lightn": 845, "fastai": 845, "publicli": [847, 848, 849], "logger": 847, "arg_stateful_idx": 847, "kwarg_stateful_idx": 847, "include_gener": 847, "array_cach": 847, "return_backend_traced_fn": 847, "lazygraph": [847, 848, 849], "sum_j": 847, "traced_fn": 847, "impos": 847, "comp_func": 847, "trade": 847, "bake": 847, "cont": 847, "new_attribut": 847, "resnet50": 847, "breed": 847, "autoimageprocessor": [847, 848], "resnetforimageclassif": [847, 848], "traced_graph": 847, "predicted_label": 847, "debug_mod": 848, "rough": 848, "transformed_with_st": 848, "bigger": 848, "hf": 848, "tf_model": 848, "tf_input": 848, "transpile_kwarg": 849, "transpiled_func": 849, "unified_func": 849, "rwork": 850, "vendor": [850, 856], "complimentari": [850, 860], "acycl": [850, 855], "insert_numb": 851, "insert_t": 851, "scaffold": [852, 860], "heart": 852, "toolchain": [852, 857], "assembli": [852, 859, 860], "idl": 852, "middl": 852, "emit": 852, "gnu": [852, 857], "broader": 852, "heterogen": 852, "aid": 852, "coprocessor": 852, "programm": [852, 859], "gate": 852, "onednn": 852, "sit": [852, 855, 860], "tandem": 852, "possess": 852, "khrono": [853, 859], "appl": 853, "coremltool": 853, "albeit": 853, "promin": 854, "abbrevi": 854, "laboratori": 854, "proprietari": [854, 858, 859], "mathwork": 854, "commerci": 854, "1984": 854, "toolbox": 854, "mupad": 854, "simulink": 854, "graphic": [854, 858, 859], "simul": 854, "million": [854, 857], "worldwid": 854, "scienc": [854, 856], "econom": 854, "2001": 854, "od": 854, "solver": 854, "cython": 854, "friendli": 854, "2002": 854, "lua": 854, "luajit": 854, "idiap": 854, "epfl": 854, "2005": 854, "numarrai": 854, "cpython": 854, "partli": 854, "2007": 854, "forest": 854, "boost": 854, "dbscan": 854, "inbuilt": 854, "esqu": 854, "aesara": 854, "datafram": 854, "2012": 854, "Its": 854, "polymorph": 854, "mpi": 854, "openmp": 854, "glue": 854, "jaot": 854, "nasa": 854, "cern": 854, "climat": 854, "allianc": 854, "influenti": 854, "2014": 854, "scala": 854, "ship": 854, "forgiv": 854, "decemb": 854, "announc": 854, "mainten": 854, "v7": 854, "meaning": 854, "2016": 854, "imper": 854, "amazon": 854, "traction": 854, "cognit": [854, 861], "grade": 854, "dnn": 854, "rnn": 854, "backpropag": 854, "succumb": 854, "came": 854, "monitor": 854, "practition": [854, 858, 859, 860], "hobbyist": 854, "tremend": 854, "ecosystem": 854, "gear": 854, "batteri": 854, "zygot": 854, "jl": 854, "workload": 854, "daggerflux": 854, "frontier": 854, "hessian": 854, "2018": 854, "lightweight": [854, 861], "shortcom": 854, "barrier": 854, "inexperienc": 854, "underdevelop": 854, "fanat": 854, "ounc": 854, "infanc": 854, "emerg": 854, "nich": 854, "mobil": 854, "lite": 854, "enterpris": 854, "reinvent": [854, 856], "inertia": 854, "creator": [854, 856], "paszk": 854, "hi": 854, "bulk": 854, "haskel": 854, "dataflow": 855, "trace_modul": 855, "scriptfunct": 855, "scriptmodul": 855, "fake": 855, "proxi": 855, "graphmodul": 855, "travi": 856, "oliph": 856, "leader": 856, "cornerston": 856, "numba": 856, "numfocu": 856, "pydata": 856, "confer": 856, "consult": 856, "servic": 856, "expertis": 856, "devop": 856, "mlop": 856, "dashboard": 856, "startup": 856, "mlir": [856, 857, 860], "Their": 856, "held": 856, "privileg": 856, "presum": 856, "llvm": [856, 859], "founder": 856, "tvm": [856, 860], "sustain": 856, "empow": 856, "har": 856, "burden": 856, "benchmark": 856, "precompil": 857, "executor": 857, "julia": [857, 860], "fsf": 857, "gpl": 857, "biggest": [857, 860], "throughput": 858, "gpgpu": 858, "classic": 859, "sycl": 859, "dpc": 859, "processor": 859, "maco": 859, "oneapi": 859, "ia": 859, "aka": 859, "xeon": 859, "gen9": 859, "xe": 859, "arria": 859, "gx": 859, "fpga": 859, "lofti": 860, "ambit": 860, "realm": 860, "bedrock": 860, "flux": 860, "bite": 860, "chew": 860, "eagerpi": 860, "tensorli": 860, "thinc": 860, "neuropod": 860, "fx": 860, "retrain": 860, "closer": 860, "greatli": 860, "modular": 860, "anywher": 860, "theano": 861, "plaidml": 861, "partial_svd": 861, "excel": 861, "subsystem": 861}, "objects": {"ivy.Array": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [601, 0, 1, "", "adam_step"], [602, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [415, 0, 1, "", "adjoint"], [753, 0, 1, "", "all"], [521, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [754, 0, 1, "", "any"], [730, 0, 1, "", "argmax"], [731, 0, 1, "", "argmin"], [739, 0, 1, "", "argsort"], [732, 0, 1, "", "argwhere"], [524, 0, 1, "", "array_equal"], [448, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [525, 0, 1, "", "assert_supports_inplace"], [449, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [450, 0, 1, "", "atleast_1d"], [451, 0, 1, "", "atleast_2d"], [452, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [488, 0, 1, "", "batch_norm"], [416, 0, 1, "", "batched_outer"], [495, 0, 1, "", "bernoulli"], [496, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [682, 0, 1, "", "binary_cross_entropy"], [507, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [652, 0, 1, "", "cholesky"], [685, 0, 1, "", "clip"], [527, 0, 1, "", "clip_matrix_norm"], [528, 0, 1, "", "clip_vector_norm"], [456, 0, 1, "", "column_stack"], [686, 0, 1, "", "concat"], [457, 0, 1, "", "concat_from_sequence"], [417, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [687, 0, 1, "", "constant_pad"], [636, 0, 1, "", "conv1d"], [637, 0, 1, "", "conv1d_transpose"], [638, 0, 1, "", "conv2d"], [639, 0, 1, "", "conv2d_transpose"], [640, 0, 1, "", "conv3d"], [641, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [508, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [509, 0, 1, "", "cov"], [653, 0, 1, "", "cross"], [683, 0, 1, "", "cross_entropy"], [510, 0, 1, "", "cummax"], [511, 0, 1, "", "cummin"], [743, 0, 1, "", "cumprod"], [744, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [531, 0, 1, "", "default"], [234, 0, 1, "", "deg2rad"], [644, 0, 1, "", "depthwise_conv2d"], [654, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [655, 0, 1, "", "diag"], [418, 0, 1, "", "diagflat"], [656, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [497, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [419, 0, 1, "", "dot"], [645, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [458, 0, 1, "", "dsplit"], [459, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [420, 0, 1, "", "eig"], [658, 0, 1, "", "eigh"], [421, 0, 1, "", "eigh_tridiagonal"], [422, 0, 1, "", "eigvals"], [659, 0, 1, "", "eigvalsh"], [532, 0, 1, "", "einops_rearrange"], [533, 0, 1, "", "einops_reduce"], [534, 0, 1, "", "einops_repeat"], [745, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [535, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [460, 0, 1, "", "expand"], [688, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [396, 0, 1, "", "fft2"], [461, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [462, 0, 1, "", "flatten"], [689, 0, 1, "", "flip"], [463, 0, 1, "", "fliplr"], [464, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [465, 0, 1, "", "fold"], [536, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [131, 0, 1, "", "full_like"], [498, 0, 1, "", "gamma"], [539, 0, 1, "", "gather"], [540, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [423, 0, 1, "", "general_inner_product"], [543, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [605, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [489, 0, 1, "", "group_norm"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [545, 0, 1, "", "has_nans"], [466, 0, 1, "", "heaviside"], [424, 0, 1, "", "higher_order_moment"], [512, 0, 1, "", "histogram"], [467, 0, 1, "", "hsplit"], [468, 0, 1, "", "hstack"], [441, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [469, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [513, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [425, 0, 1, "", "initialize_tucker"], [660, 0, 1, "", "inner"], [547, 0, 1, "", "inplace_decrement"], [548, 0, 1, "", "inplace_increment"], [549, 0, 1, "", "inplace_update"], [490, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [661, 0, 1, "", "inv"], [551, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [552, 0, 1, "", "is_ivy_array"], [553, 0, 1, "", "is_ivy_container"], [555, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [556, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [558, 0, 1, "", "itemsize"], [442, 0, 1, "", "kl_div"], [427, 0, 1, "", "kron"], [443, 0, 1, "", "l1_loss"], [491, 0, 1, "", "l1_normalize"], [492, 0, 1, "", "l2_normalize"], [607, 0, 1, "", "lamb_update"], [608, 0, 1, "", "lars_update"], [723, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [502, 0, 1, "", "lexsort"], [347, 0, 1, "", "lgamma"], [646, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [444, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [494, 0, 1, "", "lp_normalize"], [647, 0, 1, "", "lstm_update"], [429, 0, 1, "", "make_svd_non_negative"], [663, 0, 1, "", "matmul"], [470, 0, 1, "", "matricize"], [430, 0, 1, "", "matrix_exp"], [664, 0, 1, "", "matrix_norm"], [665, 0, 1, "", "matrix_power"], [666, 0, 1, "", "matrix_rank"], [667, 0, 1, "", "matrix_transpose"], [746, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [747, 0, 1, "", "mean"], [514, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [748, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [431, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [471, 0, 1, "", "moveaxis"], [740, 0, 1, "", "msort"], [432, 0, 1, "", "multi_dot"], [648, 0, 1, "", "multi_head_attention"], [433, 0, 1, "", "multi_mode_dot"], [724, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [515, 0, 1, "", "nanmean"], [516, 0, 1, "", "nanmedian"], [517, 0, 1, "", "nanmin"], [518, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [733, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [609, 0, 1, "", "optimizer_update"], [520, 0, 1, "", "optional_get_element"], [668, 0, 1, "", "outer"], [472, 0, 1, "", "pad"], [473, 0, 1, "", "partial_fold"], [474, 0, 1, "", "partial_tensor_to_vec"], [434, 0, 1, "", "partial_tucker"], [475, 0, 1, "", "partial_unfold"], [476, 0, 1, "", "partial_vec_to_tensor"], [690, 0, 1, "", "permute_dims"], [669, 0, 1, "", "pinv"], [499, 0, 1, "", "poisson"], [445, 0, 1, "", "poisson_nll_loss"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [749, 0, 1, "", "prod"], [477, 0, 1, "", "put_along_axis"], [670, 0, 1, "", "qr"], [519, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [725, 0, 1, "", "randint"], [726, 0, 1, "", "random_normal"], [727, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [691, 0, 1, "", "repeat"], [692, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [693, 0, 1, "", "roll"], [478, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [651, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [563, 0, 1, "", "scatter_flat"], [564, 0, 1, "", "scatter_nd"], [741, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [577, 0, 1, "", "shape"], [729, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [413, 0, 1, "", "sliding_window"], [671, 0, 1, "", "slogdet"], [446, 0, 1, "", "smooth_l1_loss"], [447, 0, 1, "", "soft_margin_loss"], [479, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [672, 0, 1, "", "solve"], [742, 0, 1, "", "sort"], [684, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [694, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [695, 0, 1, "", "squeeze"], [578, 0, 1, "", "stable_divide"], [579, 0, 1, "", "stable_pow"], [696, 0, 1, "", "stack"], [750, 0, 1, "", "std"], [414, 0, 1, "", "stft"], [610, 0, 1, "", "stop_gradient"], [580, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [751, 0, 1, "", "sum"], [581, 0, 1, "", "supports_inplace_updates"], [673, 0, 1, "", "svd"], [436, 0, 1, "", "svd_flip"], [674, 0, 1, "", "svdvals"], [697, 0, 1, "", "swapaxes"], [480, 0, 1, "", "take"], [481, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [437, 0, 1, "", "tensor_train"], [675, 0, 1, "", "tensordot"], [676, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [698, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [583, 0, 1, "", "to_list"], [585, 0, 1, "", "to_numpy"], [586, 0, 1, "", "to_scalar"], [482, 0, 1, "", "top_k"], [677, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [323, 0, 1, "", "trilu"], [483, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [438, 0, 1, "", "truncated_svd"], [439, 0, 1, "", "tt_matrix_to_tensor"], [440, 0, 1, "", "tucker"], [484, 0, 1, "", "unfold"], [735, 0, 1, "", "unique_all"], [485, 0, 1, "", "unique_consecutive"], [736, 0, 1, "", "unique_counts"], [737, 0, 1, "", "unique_inverse"], [738, 0, 1, "", "unique_values"], [500, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [699, 0, 1, "", "unstack"], [599, 0, 1, "", "value_is_nan"], [678, 0, 1, "", "vander"], [752, 0, 1, "", "var"], [679, 0, 1, "", "vecdot"], [680, 0, 1, "", "vector_norm"], [681, 0, 1, "", "vector_to_skew_symmetric_matrix"], [486, 0, 1, "", "vsplit"], [487, 0, 1, "", "vstack"], [734, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [700, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy": [[620, 1, 1, "", "ArrayMode"], [616, 1, 1, "", "DefaultComplexDtype"], [617, 1, 1, "", "DefaultDevice"], [616, 1, 1, "", "DefaultDtype"], [616, 1, 1, "", "DefaultFloatDtype"], [616, 1, 1, "", "DefaultIntDtype"], [616, 1, 1, "", "DefaultUintDtype"], [379, 1, 1, "", "NativeSparseArray"], [615, 1, 1, "", "NestedSequence"], [620, 1, 1, "", "PreciseMode"], [617, 1, 1, "", "Profiler"], [379, 1, 1, "", "SparseArray"], [215, 2, 1, "", "abs"], [216, 2, 1, "", "acos"], [217, 2, 1, "", "acosh"], [621, 2, 1, "", "adam_step"], [621, 2, 1, "", "adam_update"], [382, 2, 1, "", "adaptive_avg_pool1d"], [383, 2, 1, "", "adaptive_avg_pool2d"], [384, 2, 1, "", "adaptive_max_pool2d"], [218, 2, 1, "", "add"], [369, 2, 1, "", "adjoint"], [634, 2, 1, "", "all"], [620, 2, 1, "", "all_equal"], [627, 2, 1, "", "all_nested_indices"], [365, 2, 1, "", "allclose"], [365, 2, 1, "", "amax"], [365, 2, 1, "", "amin"], [219, 2, 1, "", "angle"], [634, 2, 1, "", "any"], [615, 2, 1, "", "arange"], [385, 2, 1, "", "area_interpolate"], [620, 2, 1, "", "arg_info"], [620, 2, 1, "", "arg_names"], [630, 2, 1, "", "argmax"], [630, 2, 1, "", "argmin"], [632, 2, 1, "", "argsort"], [630, 2, 1, "", "argwhere"], [615, 2, 1, "", "array"], [620, 2, 1, "", "array_equal"], [188, 2, 1, "", "as_ivy_dev"], [616, 2, 1, "", "as_ivy_dtype"], [189, 2, 1, "", "as_native_dev"], [616, 2, 1, "", "as_native_dtype"], [371, 2, 1, "", "as_strided"], [615, 2, 1, "", "asarray"], [220, 2, 1, "", "asin"], [221, 2, 1, "", "asinh"], [620, 2, 1, "", "assert_supports_inplace"], [371, 2, 1, "", "associative_scan"], [616, 2, 1, "", "astype"], [222, 2, 1, "", "atan"], [223, 2, 1, "", "atan2"], [224, 2, 1, "", "atanh"], [371, 2, 1, "", "atleast_1d"], [371, 2, 1, "", "atleast_2d"], [371, 2, 1, "", "atleast_3d"], [386, 2, 1, "", "avg_pool1d"], [387, 2, 1, "", "avg_pool2d"], [388, 2, 1, "", "avg_pool3d"], [374, 2, 1, "", "batch_norm"], [369, 2, 1, "", "batched_outer"], [375, 2, 1, "", "bernoulli"], [375, 2, 1, "", "beta"], [365, 2, 1, "", "binarizer"], [624, 2, 1, "", "binary_cross_entropy"], [380, 2, 1, "", "bincount"], [367, 2, 1, "", "bind_custom_gradient_function"], [225, 2, 1, "", "bitwise_and"], [226, 2, 1, "", "bitwise_invert"], [227, 2, 1, "", "bitwise_left_shift"], [228, 2, 1, "", "bitwise_or"], [229, 2, 1, "", "bitwise_right_shift"], [230, 2, 1, "", "bitwise_xor"], [306, 2, 1, "", "blackman_window"], [616, 2, 1, "", "broadcast_arrays"], [371, 2, 1, "", "broadcast_shapes"], [616, 2, 1, "", "broadcast_to"], [620, 2, 1, "", "cache_fn"], [616, 2, 1, "", "can_cast"], [231, 2, 1, "", "ceil"], [290, 2, 1, "", "celu"], [616, 2, 1, "", "check_float"], [371, 2, 1, "", "check_scalar"], [623, 2, 1, "", "cholesky"], [371, 2, 1, "", "choose"], [190, 2, 1, "", "clear_cached_mem_on_dev"], [625, 2, 1, "", "clip"], [620, 2, 1, "", "clip_matrix_norm"], [620, 2, 1, "", "clip_vector_norm"], [616, 2, 1, "", "closest_valid_dtype"], [614, 2, 1, "", "cmp_is"], [614, 2, 1, "", "cmp_isnot"], [371, 2, 1, "", "column_stack"], [625, 2, 1, "", "concat"], [371, 2, 1, "", "concat_from_sequence"], [369, 2, 1, "", "cond"], [365, 2, 1, "", "conj"], [625, 2, 1, "", "constant_pad"], [620, 2, 1, "", "container_types"], [635, 2, 1, "", "conv"], [636, 2, 1, "", "conv1d"], [637, 2, 1, "", "conv1d_transpose"], [638, 2, 1, "", "conv2d"], [639, 2, 1, "", "conv2d_transpose"], [640, 2, 1, "", "conv3d"], [641, 2, 1, "", "conv3d_transpose"], [642, 2, 1, "", "conv_general_dilated"], [643, 2, 1, "", "conv_general_transpose"], [615, 2, 1, "", "copy_array"], [627, 2, 1, "", "copy_nest"], [365, 2, 1, "", "copysign"], [380, 2, 1, "", "corrcoef"], [232, 2, 1, "", "cos"], [233, 2, 1, "", "cosh"], [365, 2, 1, "", "count_nonzero"], [380, 2, 1, "", "cov"], [623, 2, 1, "", "cross"], [624, 2, 1, "", "cross_entropy"], [380, 2, 1, "", "cummax"], [380, 2, 1, "", "cummin"], [633, 2, 1, "", "cumprod"], [633, 2, 1, "", "cumsum"], [620, 2, 1, "", "current_backend_str"], [389, 2, 1, "", "dct"], [620, 2, 1, "", "default"], [616, 2, 1, "", "default_complex_dtype"], [191, 2, 1, "", "default_device"], [616, 2, 1, "", "default_dtype"], [616, 2, 1, "", "default_float_dtype"], [616, 2, 1, "", "default_int_dtype"], [616, 2, 1, "", "default_uint_dtype"], [234, 2, 1, "", "deg2rad"], [622, 2, 1, "", "depthwise_conv2d"], [623, 2, 1, "", "det"], [192, 2, 1, "", "dev"], [193, 2, 1, "", "dev_util"], [390, 2, 1, "", "dft"], [623, 2, 1, "", "diag"], [369, 2, 1, "", "diagflat"], [623, 2, 1, "", "diagonal"], [365, 2, 1, "", "diff"], [365, 2, 1, "", "digamma"], [375, 2, 1, "", "dirichlet"], [235, 2, 1, "", "divide"], [369, 2, 1, "", "dot"], [622, 2, 1, "", "dropout"], [391, 2, 1, "", "dropout1d"], [392, 2, 1, "", "dropout2d"], [393, 2, 1, "", "dropout3d"], [371, 2, 1, "", "dsplit"], [371, 2, 1, "", "dstack"], [616, 2, 1, "", "dtype"], [616, 2, 1, "", "dtype_bits"], [627, 2, 1, "", "duplicate_array_index_chains"], [613, 6, 1, "", "e"], [369, 2, 1, "", "eig"], [623, 2, 1, "", "eigh"], [369, 2, 1, "", "eigh_tridiagonal"], [369, 2, 1, "", "eigvals"], [623, 2, 1, "", "eigvalsh"], [620, 2, 1, "", "einops_rearrange"], [620, 2, 1, "", "einops_reduce"], [620, 2, 1, "", "einops_repeat"], [633, 2, 1, "", "einsum"], [291, 2, 1, "", "elu"], [394, 2, 1, "", "embedding"], [615, 2, 1, "", "empty"], [615, 2, 1, "", "empty_like"], [236, 2, 1, "", "equal"], [237, 2, 1, "", "erf"], [365, 2, 1, "", "erfc"], [621, 2, 1, "", "execute_with_gradients"], [620, 2, 1, "", "exists"], [238, 2, 1, "", "exp"], [239, 2, 1, "", "exp2"], [371, 2, 1, "", "expand"], [625, 2, 1, "", "expand_dims"], [240, 2, 1, "", "expm1"], [615, 2, 1, "", "eye"], [307, 2, 1, "", "eye_like"], [395, 2, 1, "", "fft"], [396, 2, 1, "", "fft2"], [371, 2, 1, "", "fill_diagonal"], [616, 2, 1, "", "finfo"], [365, 2, 1, "", "fix"], [371, 2, 1, "", "flatten"], [625, 2, 1, "", "flip"], [371, 2, 1, "", "fliplr"], [371, 2, 1, "", "flipud"], [365, 2, 1, "", "float_power"], [241, 2, 1, "", "floor"], [242, 2, 1, "", "floor_divide"], [365, 2, 1, "", "fmax"], [243, 2, 1, "", "fmin"], [244, 2, 1, "", "fmod"], [371, 2, 1, "", "fold"], [626, 2, 1, "", "fomaml_step"], [614, 2, 1, "", "for_loop"], [620, 2, 1, "", "fourier_encode"], [365, 2, 1, "", "frexp"], [615, 2, 1, "", "from_dlpack"], [615, 2, 1, "", "frombuffer"], [615, 2, 1, "", "full"], [615, 2, 1, "", "full_like"], [194, 2, 1, "", "function_supported_devices"], [620, 2, 1, "", "function_supported_devices_and_dtypes"], [616, 2, 1, "", "function_supported_dtypes"], [195, 2, 1, "", "function_unsupported_devices"], [620, 2, 1, "", "function_unsupported_devices_and_dtypes"], [616, 2, 1, "", "function_unsupported_dtypes"], [375, 2, 1, "", "gamma"], [620, 2, 1, "", "gather"], [620, 2, 1, "", "gather_nd"], [245, 2, 1, "", "gcd"], [612, 2, 1, "", "gelu"], [369, 2, 1, "", "general_inner_product"], [397, 2, 1, "", "generate_einsum_equation"], [620, 2, 1, "", "get_all_arrays_in_memory"], [196, 2, 1, "", "get_all_ivy_arrays_on_dev"], [398, 2, 1, "", "get_interpolate_kernel"], [620, 2, 1, "", "get_item"], [620, 2, 1, "", "get_num_dims"], [620, 2, 1, "", "get_referrers_recursive"], [197, 2, 1, "", "gpu_is_available"], [621, 2, 1, "", "grad"], [365, 2, 1, "", "gradient"], [621, 2, 1, "", "gradient_descent_update"], [246, 2, 1, "", "greater"], [247, 2, 1, "", "greater_equal"], [374, 2, 1, "", "group_norm"], [308, 2, 1, "", "hamming_window"], [198, 2, 1, "", "handle_soft_device_variable"], [309, 2, 1, "", "hann_window"], [292, 2, 1, "", "hardshrink"], [612, 2, 1, "", "hardswish"], [293, 2, 1, "", "hardtanh"], [620, 2, 1, "", "has_nans"], [371, 2, 1, "", "heaviside"], [369, 2, 1, "", "higher_order_moment"], [380, 2, 1, "", "histogram"], [371, 2, 1, "", "hsplit"], [371, 2, 1, "", "hstack"], [370, 2, 1, "", "huber_loss"], [365, 2, 1, "", "hypot"], [371, 2, 1, "", "i0"], [399, 2, 1, "", "idct"], [614, 2, 1, "", "if_else"], [400, 2, 1, "", "ifft"], [401, 2, 1, "", "ifftn"], [380, 2, 1, "", "igamma"], [616, 2, 1, "", "iinfo"], [248, 2, 1, "", "imag"], [627, 2, 1, "", "index_nest"], [310, 2, 1, "", "indices"], [613, 6, 1, "", "inf"], [616, 2, 1, "", "infer_default_dtype"], [369, 2, 1, "", "initialize_tucker"], [623, 2, 1, "", "inner"], [620, 2, 1, "", "inplace_arrays_supported"], [620, 2, 1, "", "inplace_decrement"], [620, 2, 1, "", "inplace_increment"], [620, 2, 1, "", "inplace_update"], [620, 2, 1, "", "inplace_variables_supported"], [627, 2, 1, "", "insert_into_nest_at_index"], [627, 2, 1, "", "insert_into_nest_at_indices"], [374, 2, 1, "", "instance_norm"], [402, 2, 1, "", "interp"], [403, 2, 1, "", "interpolate"], [623, 2, 1, "", "inv"], [616, 2, 1, "", "invalid_dtype"], [378, 2, 1, "", "invert_permutation"], [620, 2, 1, "", "is_array"], [616, 2, 1, "", "is_bool_dtype"], [616, 2, 1, "", "is_complex_dtype"], [616, 2, 1, "", "is_float_dtype"], [616, 2, 1, "", "is_hashable_dtype"], [616, 2, 1, "", "is_int_dtype"], [620, 2, 1, "", "is_ivy_array"], [620, 2, 1, "", "is_ivy_container"], [620, 2, 1, "", "is_ivy_nested_array"], [379, 2, 1, "", "is_ivy_sparse_array"], [620, 2, 1, "", "is_native_array"], [616, 2, 1, "", "is_native_dtype"], [379, 2, 1, "", "is_native_sparse_array"], [616, 2, 1, "", "is_uint_dtype"], [365, 2, 1, "", "isclose"], [249, 2, 1, "", "isfinite"], [620, 2, 1, "", "isin"], [250, 2, 1, "", "isinf"], [251, 2, 1, "", "isnan"], [252, 2, 1, "", "isreal"], [620, 2, 1, "", "isscalar"], [620, 2, 1, "", "itemsize"], [621, 2, 1, "", "jac"], [367, 2, 1, "", "jvp"], [311, 2, 1, "", "kaiser_bessel_derived_window"], [312, 2, 1, "", "kaiser_window"], [369, 2, 1, "", "khatri_rao"], [370, 2, 1, "", "kl_div"], [369, 2, 1, "", "kron"], [369, 2, 1, "", "kronecker"], [370, 2, 1, "", "l1_loss"], [374, 2, 1, "", "l1_normalize"], [374, 2, 1, "", "l2_normalize"], [621, 2, 1, "", "lamb_update"], [621, 2, 1, "", "lars_update"], [628, 2, 1, "", "layer_norm"], [253, 2, 1, "", "lcm"], [365, 2, 1, "", "ldexp"], [612, 2, 1, "", "leaky_relu"], [365, 2, 1, "", "lerp"], [254, 2, 1, "", "less"], [255, 2, 1, "", "less_equal"], [378, 2, 1, "", "lexsort"], [365, 2, 1, "", "lgamma"], [622, 2, 1, "", "linear"], [615, 2, 1, "", "linspace"], [634, 2, 1, "", "load"], [374, 2, 1, "", "local_response_norm"], [256, 2, 1, "", "log"], [257, 2, 1, "", "log10"], [258, 2, 1, "", "log1p"], [259, 2, 1, "", "log2"], [370, 2, 1, "", "log_poisson_loss"], [612, 2, 1, "", "log_softmax"], [260, 2, 1, "", "logaddexp"], [261, 2, 1, "", "logaddexp2"], [262, 2, 1, "", "logical_and"], [263, 2, 1, "", "logical_not"], [264, 2, 1, "", "logical_or"], [265, 2, 1, "", "logical_xor"], [294, 2, 1, "", "logit"], [295, 2, 1, "", "logsigmoid"], [615, 2, 1, "", "logspace"], [374, 2, 1, "", "lp_normalize"], [622, 2, 1, "", "lstm_update"], [623, 2, 1, "", "lu_factor"], [369, 2, 1, "", "make_svd_non_negative"], [626, 2, 1, "", "maml_step"], [627, 2, 1, "", "map"], [627, 2, 1, "", "map_nest_at_index"], [627, 2, 1, "", "map_nest_at_indices"], [620, 2, 1, "", "match_kwargs"], [623, 2, 1, "", "matmul"], [371, 2, 1, "", "matricize"], [369, 2, 1, "", "matrix_exp"], [623, 2, 1, "", "matrix_norm"], [623, 2, 1, "", "matrix_power"], [623, 2, 1, "", "matrix_rank"], [623, 2, 1, "", "matrix_transpose"], [633, 2, 1, "", "max"], [404, 2, 1, "", "max_pool1d"], [405, 2, 1, "", "max_pool2d"], [406, 2, 1, "", "max_pool3d"], [407, 2, 1, "", "max_unpool1d"], [266, 2, 1, "", "maximum"], [633, 2, 1, "", "mean"], [380, 2, 1, "", "median"], [313, 2, 1, "", "mel_weight_matrix"], [615, 2, 1, "", "meshgrid"], [633, 2, 1, "", "min"], [267, 2, 1, "", "minimum"], [612, 2, 1, "", "mish"], [369, 2, 1, "", "mode_dot"], [365, 2, 1, "", "modf"], [371, 2, 1, "", "moveaxis"], [632, 2, 1, "", "msort"], [369, 2, 1, "", "multi_dot"], [622, 2, 1, "", "multi_head_attention"], [627, 2, 1, "", "multi_index_nest"], [369, 2, 1, "", "multi_mode_dot"], [629, 2, 1, "", "multinomial"], [268, 2, 1, "", "multiply"], [620, 2, 1, "", "multiprocessing"], [613, 6, 1, "", "nan"], [269, 2, 1, "", "nan_to_num"], [380, 2, 1, "", "nanmean"], [380, 2, 1, "", "nanmedian"], [380, 2, 1, "", "nanmin"], [380, 2, 1, "", "nanprod"], [365, 2, 1, "", "nansum"], [615, 2, 1, "", "native_array"], [379, 2, 1, "", "native_sparse_array"], [379, 2, 1, "", "native_sparse_array_to_indices_values_and_shape"], [314, 2, 1, "", "ndenumerate"], [315, 2, 1, "", "ndindex"], [408, 2, 1, "", "nearest_interpolate"], [270, 2, 1, "", "negative"], [627, 2, 1, "", "nested_any"], [627, 2, 1, "", "nested_argwhere"], [627, 2, 1, "", "nested_map"], [627, 2, 1, "", "nested_multi_map"], [613, 6, 1, "", "newaxis"], [365, 2, 1, "", "nextafter"], [622, 2, 1, "", "nms"], [630, 2, 1, "", "nonzero"], [271, 2, 1, "", "not_equal"], [620, 2, 1, "", "num_arrays_in_memory"], [199, 2, 1, "", "num_cpu_cores"], [200, 2, 1, "", "num_gpus"], [201, 2, 1, "", "num_ivy_arrays_on_dev"], [615, 2, 1, "", "one_hot"], [615, 2, 1, "", "ones"], [615, 2, 1, "", "ones_like"], [621, 2, 1, "", "optimizer_update"], [381, 2, 1, "", "optional_get_element"], [623, 2, 1, "", "outer"], [371, 2, 1, "", "pad"], [371, 2, 1, "", "partial_fold"], [371, 2, 1, "", "partial_tensor_to_vec"], [369, 2, 1, "", "partial_tucker"], [371, 2, 1, "", "partial_unfold"], [371, 2, 1, "", "partial_vec_to_tensor"], [202, 2, 1, "", "percent_used_mem_on_dev"], [625, 2, 1, "", "permute_dims"], [613, 6, 1, "", "pi"], [623, 2, 1, "", "pinv"], [375, 2, 1, "", "poisson"], [370, 2, 1, "", "poisson_nll_loss"], [316, 2, 1, "", "polyval"], [409, 2, 1, "", "pool"], [272, 2, 1, "", "positive"], [273, 2, 1, "", "pow"], [296, 2, 1, "", "prelu"], [620, 2, 1, "", "print_all_arrays_in_memory"], [203, 2, 1, "", "print_all_ivy_arrays_on_dev"], [633, 2, 1, "", "prod"], [616, 2, 1, "", "promote_types"], [616, 2, 1, "", "promote_types_of_inputs"], [627, 2, 1, "", "prune_empty"], [627, 2, 1, "", "prune_nest_at_index"], [627, 2, 1, "", "prune_nest_at_indices"], [371, 2, 1, "", "put_along_axis"], [623, 2, 1, "", "qr"], [380, 2, 1, "", "quantile"], [274, 2, 1, "", "rad2deg"], [629, 2, 1, "", "randint"], [317, 2, 1, "", "random_cp"], [629, 2, 1, "", "random_normal"], [318, 2, 1, "", "random_parafac2"], [319, 2, 1, "", "random_tr"], [320, 2, 1, "", "random_tt"], [321, 2, 1, "", "random_tucker"], [629, 2, 1, "", "random_uniform"], [275, 2, 1, "", "real"], [276, 2, 1, "", "reciprocal"], [366, 2, 1, "", "reduce"], [410, 2, 1, "", "reduce_window"], [612, 2, 1, "", "relu"], [297, 2, 1, "", "relu6"], [277, 2, 1, "", "remainder"], [625, 2, 1, "", "repeat"], [626, 2, 1, "", "reptile_step"], [625, 2, 1, "", "reshape"], [616, 2, 1, "", "result_type"], [411, 2, 1, "", "rfft"], [412, 2, 1, "", "rfftn"], [622, 2, 1, "", "roi_align"], [625, 2, 1, "", "roll"], [371, 2, 1, "", "rot90"], [278, 2, 1, "", "round"], [634, 2, 1, "", "save"], [622, 2, 1, "", "scaled_dot_product_attention"], [298, 2, 1, "", "scaled_tanh"], [620, 2, 1, "", "scatter_flat"], [620, 2, 1, "", "scatter_nd"], [632, 2, 1, "", "searchsorted"], [629, 2, 1, "", "seed"], [299, 2, 1, "", "selu"], [620, 2, 1, "", "set_array_mode"], [616, 2, 1, "", "set_default_complex_dtype"], [204, 2, 1, "", "set_default_device"], [616, 2, 1, "", "set_default_dtype"], [616, 2, 1, "", "set_default_float_dtype"], [616, 2, 1, "", "set_default_int_dtype"], [616, 2, 1, "", "set_default_uint_dtype"], [620, 2, 1, "", "set_exception_trace_mode"], [620, 2, 1, "", "set_inplace_mode"], [620, 2, 1, "", "set_item"], [620, 2, 1, "", "set_min_base"], [620, 2, 1, "", "set_min_denominator"], [627, 2, 1, "", "set_nest_at_index"], [627, 2, 1, "", "set_nest_at_indices"], [620, 2, 1, "", "set_nestable_mode"], [620, 2, 1, "", "set_precise_mode"], [620, 2, 1, "", "set_queue_timeout"], [620, 2, 1, "", "set_shape_array_mode"], [620, 2, 1, "", "set_show_func_wrapper_trace_mode"], [205, 2, 1, "", "set_soft_device_mode"], [206, 2, 1, "", "set_split_factor"], [620, 2, 1, "", "set_tmp_dir"], [620, 2, 1, "", "shape"], [629, 2, 1, "", "shuffle"], [612, 2, 1, "", "sigmoid"], [279, 2, 1, "", "sign"], [365, 2, 1, "", "signbit"], [300, 2, 1, "", "silu"], [280, 2, 1, "", "sin"], [365, 2, 1, "", "sinc"], [281, 2, 1, "", "sinh"], [413, 2, 1, "", "sliding_window"], [623, 2, 1, "", "slogdet"], [370, 2, 1, "", "smooth_l1_loss"], [370, 2, 1, "", "soft_margin_loss"], [371, 2, 1, "", "soft_thresholding"], [612, 2, 1, "", "softmax"], [612, 2, 1, "", "softplus"], [301, 2, 1, "", "softshrink"], [612, 2, 1, "", "softsign"], [623, 2, 1, "", "solve"], [369, 2, 1, "", "solve_triangular"], [632, 2, 1, "", "sort"], [624, 2, 1, "", "sparse_cross_entropy"], [365, 2, 1, "", "sparsify_tensor"], [625, 2, 1, "", "split"], [207, 2, 1, "", "split_factor"], [208, 2, 1, "", "split_func_call"], [282, 2, 1, "", "sqrt"], [283, 2, 1, "", "square"], [625, 2, 1, "", "squeeze"], [620, 2, 1, "", "stable_divide"], [620, 2, 1, "", "stable_pow"], [625, 2, 1, "", "stack"], [302, 2, 1, "", "stanh"], [633, 2, 1, "", "std"], [368, 2, 1, "", "stft"], [621, 2, 1, "", "stop_gradient"], [620, 2, 1, "", "strides"], [284, 2, 1, "", "subtract"], [633, 2, 1, "", "sum"], [620, 2, 1, "", "supports_inplace_updates"], [623, 2, 1, "", "svd"], [369, 2, 1, "", "svd_flip"], [623, 2, 1, "", "svdvals"], [625, 2, 1, "", "swapaxes"], [371, 2, 1, "", "take"], [371, 2, 1, "", "take_along_axis"], [285, 2, 1, "", "tan"], [286, 2, 1, "", "tanh"], [303, 2, 1, "", "tanhshrink"], [369, 2, 1, "", "tensor_train"], [623, 2, 1, "", "tensordot"], [623, 2, 1, "", "tensorsolve"], [304, 2, 1, "", "threshold"], [305, 2, 1, "", "thresholded_relu"], [625, 2, 1, "", "tile"], [209, 2, 1, "", "to_device"], [615, 2, 1, "", "to_dlpack"], [620, 2, 1, "", "to_ivy_shape"], [620, 2, 1, "", "to_list"], [620, 2, 1, "", "to_native_shape"], [620, 2, 1, "", "to_numpy"], [620, 2, 1, "", "to_scalar"], [371, 2, 1, "", "top_k"], [210, 2, 1, "", "total_mem_on_dev"], [211, 2, 1, "", "tpu_is_available"], [623, 2, 1, "", "trace"], [847, 2, 1, "", "trace_graph"], [848, 2, 1, "", "transpile"], [287, 2, 1, "", "trapz"], [615, 2, 1, "", "tril"], [362, 2, 1, "", "tril_indices"], [362, 2, 1, "", "trilu"], [371, 2, 1, "", "trim_zeros"], [615, 2, 1, "", "triu"], [615, 2, 1, "", "triu_indices"], [288, 2, 1, "", "trunc"], [289, 2, 1, "", "trunc_divide"], [369, 2, 1, "", "truncated_svd"], [620, 2, 1, "", "try_else_none"], [614, 2, 1, "", "try_except"], [369, 2, 1, "", "tt_matrix_to_tensor"], [369, 2, 1, "", "tucker"], [616, 2, 1, "", "type_promote_arrays"], [371, 2, 1, "", "unfold"], [849, 2, 1, "", "unify"], [631, 2, 1, "", "unique_all"], [371, 2, 1, "", "unique_consecutive"], [631, 2, 1, "", "unique_counts"], [631, 2, 1, "", "unique_inverse"], [631, 2, 1, "", "unique_values"], [376, 2, 1, "", "unravel_index"], [620, 2, 1, "", "unset_array_mode"], [616, 2, 1, "", "unset_default_complex_dtype"], [212, 2, 1, "", "unset_default_device"], [616, 2, 1, "", "unset_default_dtype"], [184, 2, 1, "", "unset_default_float_dtype"], [185, 2, 1, "", "unset_default_int_dtype"], [186, 2, 1, "", "unset_default_uint_dtype"], [620, 2, 1, "", "unset_exception_trace_mode"], [620, 2, 1, "", "unset_inplace_mode"], [620, 2, 1, "", "unset_min_base"], [620, 2, 1, "", "unset_min_denominator"], [620, 2, 1, "", "unset_nestable_mode"], [620, 2, 1, "", "unset_precise_mode"], [620, 2, 1, "", "unset_queue_timeout"], [620, 2, 1, "", "unset_shape_array_mode"], [620, 2, 1, "", "unset_show_func_wrapper_trace_mode"], [213, 2, 1, "", "unset_soft_device_mode"], [620, 2, 1, "", "unset_tmp_dir"], [362, 2, 1, "", "unsorted_segment_mean"], [362, 2, 1, "", "unsorted_segment_min"], [362, 2, 1, "", "unsorted_segment_sum"], [625, 2, 1, "", "unstack"], [214, 2, 1, "", "used_mem_on_dev"], [187, 2, 1, "", "valid_dtype"], [621, 2, 1, "", "value_and_grad"], [620, 2, 1, "", "value_is_nan"], [623, 2, 1, "", "vander"], [633, 2, 1, "", "var"], [623, 2, 1, "", "vecdot"], [623, 2, 1, "", "vector_norm"], [623, 2, 1, "", "vector_to_skew_symmetric_matrix"], [367, 2, 1, "", "vjp"], [620, 2, 1, "", "vmap"], [362, 2, 1, "", "vorbis_window"], [371, 2, 1, "", "vsplit"], [371, 2, 1, "", "vstack"], [630, 2, 1, "", "where"], [614, 2, 1, "", "while_loop"], [365, 2, 1, "", "xlogy"], [625, 2, 1, "", "zero_pad"], [615, 2, 1, "", "zeros"], [615, 2, 1, "", "zeros_like"], [365, 2, 1, "", "zeta"]], "ivy.Container": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [601, 0, 1, "", "adam_step"], [602, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [415, 0, 1, "", "adjoint"], [753, 0, 1, "", "all"], [521, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [754, 0, 1, "", "any"], [730, 0, 1, "", "argmax"], [731, 0, 1, "", "argmin"], [739, 0, 1, "", "argsort"], [732, 0, 1, "", "argwhere"], [524, 0, 1, "", "array_equal"], [448, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [525, 0, 1, "", "assert_supports_inplace"], [449, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [450, 0, 1, "", "atleast_1d"], [451, 0, 1, "", "atleast_2d"], [452, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [488, 0, 1, "", "batch_norm"], [416, 0, 1, "", "batched_outer"], [495, 0, 1, "", "bernoulli"], [496, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [682, 0, 1, "", "binary_cross_entropy"], [507, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [453, 0, 1, "", "broadcast_shapes"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [652, 0, 1, "", "cholesky"], [685, 0, 1, "", "clip"], [527, 0, 1, "", "clip_matrix_norm"], [528, 0, 1, "", "clip_vector_norm"], [456, 0, 1, "", "column_stack"], [686, 0, 1, "", "concat"], [457, 0, 1, "", "concat_from_sequence"], [417, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [687, 0, 1, "", "constant_pad"], [636, 0, 1, "", "conv1d"], [637, 0, 1, "", "conv1d_transpose"], [638, 0, 1, "", "conv2d"], [639, 0, 1, "", "conv2d_transpose"], [640, 0, 1, "", "conv3d"], [641, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [508, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [509, 0, 1, "", "cov"], [653, 0, 1, "", "cross"], [683, 0, 1, "", "cross_entropy"], [510, 0, 1, "", "cummax"], [511, 0, 1, "", "cummin"], [743, 0, 1, "", "cumprod"], [744, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [234, 0, 1, "", "deg2rad"], [644, 0, 1, "", "depthwise_conv2d"], [654, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [655, 0, 1, "", "diag"], [418, 0, 1, "", "diagflat"], [656, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [497, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [419, 0, 1, "", "dot"], [645, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [458, 0, 1, "", "dsplit"], [459, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [420, 0, 1, "", "eig"], [658, 0, 1, "", "eigh"], [421, 0, 1, "", "eigh_tridiagonal"], [422, 0, 1, "", "eigvals"], [659, 0, 1, "", "eigvalsh"], [532, 0, 1, "", "einops_rearrange"], [533, 0, 1, "", "einops_reduce"], [534, 0, 1, "", "einops_repeat"], [745, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [535, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [460, 0, 1, "", "expand"], [688, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [461, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [462, 0, 1, "", "flatten"], [689, 0, 1, "", "flip"], [463, 0, 1, "", "fliplr"], [464, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [465, 0, 1, "", "fold"], [536, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [129, 0, 1, "", "frombuffer"], [131, 0, 1, "", "full_like"], [498, 0, 1, "", "gamma"], [539, 0, 1, "", "gather"], [540, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [423, 0, 1, "", "general_inner_product"], [543, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [605, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [489, 0, 1, "", "group_norm"], [308, 0, 1, "", "hamming_window"], [309, 0, 1, "", "hann_window"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [545, 0, 1, "", "has_nans"], [466, 0, 1, "", "heaviside"], [424, 0, 1, "", "higher_order_moment"], [512, 0, 1, "", "histogram"], [467, 0, 1, "", "hsplit"], [468, 0, 1, "", "hstack"], [441, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [469, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [513, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [425, 0, 1, "", "initialize_tucker"], [660, 0, 1, "", "inner"], [547, 0, 1, "", "inplace_decrement"], [548, 0, 1, "", "inplace_increment"], [549, 0, 1, "", "inplace_update"], [490, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [661, 0, 1, "", "inv"], [501, 0, 1, "", "invert_permutation"], [551, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [167, 0, 1, "", "is_complex_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [552, 0, 1, "", "is_ivy_array"], [555, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [556, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [558, 0, 1, "", "itemsize"], [311, 0, 1, "", "kaiser_bessel_derived_window"], [312, 0, 1, "", "kaiser_window"], [442, 0, 1, "", "kl_div"], [427, 0, 1, "", "kron"], [443, 0, 1, "", "l1_loss"], [491, 0, 1, "", "l1_normalize"], [492, 0, 1, "", "l2_normalize"], [607, 0, 1, "", "lamb_update"], [608, 0, 1, "", "lars_update"], [723, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [502, 0, 1, "", "lexsort"], [646, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [444, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [494, 0, 1, "", "lp_normalize"], [647, 0, 1, "", "lstm_update"], [429, 0, 1, "", "make_svd_non_negative"], [663, 0, 1, "", "matmul"], [470, 0, 1, "", "matricize"], [430, 0, 1, "", "matrix_exp"], [664, 0, 1, "", "matrix_norm"], [665, 0, 1, "", "matrix_power"], [666, 0, 1, "", "matrix_rank"], [667, 0, 1, "", "matrix_transpose"], [746, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [747, 0, 1, "", "mean"], [514, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [748, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [431, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [471, 0, 1, "", "moveaxis"], [740, 0, 1, "", "msort"], [432, 0, 1, "", "multi_dot"], [648, 0, 1, "", "multi_head_attention"], [433, 0, 1, "", "multi_mode_dot"], [724, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [515, 0, 1, "", "nanmean"], [516, 0, 1, "", "nanmedian"], [517, 0, 1, "", "nanmin"], [518, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [733, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [609, 0, 1, "", "optimizer_update"], [520, 0, 1, "", "optional_get_element"], [668, 0, 1, "", "outer"], [472, 0, 1, "", "pad"], [473, 0, 1, "", "partial_fold"], [474, 0, 1, "", "partial_tensor_to_vec"], [434, 0, 1, "", "partial_tucker"], [475, 0, 1, "", "partial_unfold"], [476, 0, 1, "", "partial_vec_to_tensor"], [690, 0, 1, "", "permute_dims"], [669, 0, 1, "", "pinv"], [499, 0, 1, "", "poisson"], [445, 0, 1, "", "poisson_nll_loss"], [316, 0, 1, "", "polyval"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [749, 0, 1, "", "prod"], [477, 0, 1, "", "put_along_axis"], [670, 0, 1, "", "qr"], [519, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [725, 0, 1, "", "randint"], [726, 0, 1, "", "random_normal"], [727, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [691, 0, 1, "", "repeat"], [692, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [693, 0, 1, "", "roll"], [478, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [651, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [563, 0, 1, "", "scatter_flat"], [564, 0, 1, "", "scatter_nd"], [741, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [729, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [413, 0, 1, "", "sliding_window"], [671, 0, 1, "", "slogdet"], [446, 0, 1, "", "smooth_l1_loss"], [447, 0, 1, "", "soft_margin_loss"], [479, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [672, 0, 1, "", "solve"], [742, 0, 1, "", "sort"], [684, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [694, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [695, 0, 1, "", "squeeze"], [578, 0, 1, "", "stable_divide"], [579, 0, 1, "", "stable_pow"], [696, 0, 1, "", "stack"], [750, 0, 1, "", "std"], [414, 0, 1, "", "stft"], [610, 0, 1, "", "stop_gradient"], [580, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [751, 0, 1, "", "sum"], [581, 0, 1, "", "supports_inplace_updates"], [673, 0, 1, "", "svd"], [436, 0, 1, "", "svd_flip"], [674, 0, 1, "", "svdvals"], [697, 0, 1, "", "swapaxes"], [480, 0, 1, "", "take"], [481, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [437, 0, 1, "", "tensor_train"], [675, 0, 1, "", "tensordot"], [676, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [698, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [583, 0, 1, "", "to_list"], [585, 0, 1, "", "to_numpy"], [586, 0, 1, "", "to_scalar"], [482, 0, 1, "", "top_k"], [677, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [322, 0, 1, "", "tril_indices"], [323, 0, 1, "", "trilu"], [483, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [142, 0, 1, "", "triu_indices"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [438, 0, 1, "", "truncated_svd"], [439, 0, 1, "", "tt_matrix_to_tensor"], [440, 0, 1, "", "tucker"], [484, 0, 1, "", "unfold"], [735, 0, 1, "", "unique_all"], [485, 0, 1, "", "unique_consecutive"], [736, 0, 1, "", "unique_counts"], [737, 0, 1, "", "unique_inverse"], [738, 0, 1, "", "unique_values"], [500, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [699, 0, 1, "", "unstack"], [599, 0, 1, "", "value_is_nan"], [678, 0, 1, "", "vander"], [752, 0, 1, "", "var"], [679, 0, 1, "", "vecdot"], [680, 0, 1, "", "vector_norm"], [681, 0, 1, "", "vector_to_skew_symmetric_matrix"], [327, 0, 1, "", "vorbis_window"], [486, 0, 1, "", "vsplit"], [487, 0, 1, "", "vstack"], [734, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [700, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy.data_classes.array": [[46, 3, 0, "-", "activations"], [97, 3, 0, "-", "array"], [47, 3, 0, "-", "conversions"], [48, 3, 0, "-", "creation"], [49, 3, 0, "-", "data_type"], [50, 3, 0, "-", "device"], [51, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "experimental"], [53, 3, 0, "-", "general"], [54, 3, 0, "-", "gradients"], [55, 3, 0, "-", "image"], [56, 3, 0, "-", "layers"], [57, 3, 0, "-", "linear_algebra"], [58, 3, 0, "-", "losses"], [59, 3, 0, "-", "manipulation"], [60, 3, 0, "-", "norms"], [61, 3, 0, "-", "random"], [62, 3, 0, "-", "searching"], [63, 3, 0, "-", "set"], [64, 3, 0, "-", "sorting"], [65, 3, 0, "-", "statistical"], [66, 3, 0, "-", "utility"], [67, 3, 0, "-", "wrapping"]], "ivy.data_classes.array.activations": [[46, 1, 1, "", "_ArrayWithActivations"]], "ivy.data_classes.array.activations._ArrayWithActivations": [[46, 4, 1, "", "_abc_impl"], [46, 0, 1, "", "gelu"], [46, 0, 1, "", "hardswish"], [46, 0, 1, "", "leaky_relu"], [46, 0, 1, "", "log_softmax"], [46, 0, 1, "", "mish"], [46, 0, 1, "", "relu"], [46, 0, 1, "", "sigmoid"], [46, 0, 1, "", "softmax"], [46, 0, 1, "", "softplus"]], "ivy.data_classes.array.array": [[97, 1, 1, "", "Array"]], "ivy.data_classes.array.array.Array": [[97, 5, 1, "", "T"], [97, 0, 1, "", "__abs__"], [97, 0, 1, "", "__add__"], [97, 0, 1, "", "__eq__"], [97, 0, 1, "", "__ge__"], [97, 0, 1, "", "__gt__"], [97, 0, 1, "", "__init__"], [97, 0, 1, "", "__le__"], [97, 0, 1, "", "__lt__"], [97, 0, 1, "", "__ne__"], [97, 0, 1, "", "__pow__"], [97, 0, 1, "", "__radd__"], [97, 0, 1, "", "__rrshift__"], [97, 0, 1, "", "__rshift__"], [97, 0, 1, "", "__rsub__"], [97, 0, 1, "", "__sub__"], [97, 0, 1, "", "__truediv__"], [97, 0, 1, "", "__xor__"], [97, 5, 1, "", "backend"], [97, 5, 1, "", "base"], [97, 5, 1, "", "data"], [97, 5, 1, "", "device"], [97, 5, 1, "", "dtype"], [97, 5, 1, "", "dynamic_backend"], [97, 5, 1, "", "imag"], [97, 5, 1, "", "itemsize"], [97, 5, 1, "", "mT"], [97, 5, 1, "", "ndim"], [97, 5, 1, "", "real"], [97, 5, 1, "", "shape"], [97, 5, 1, "", "size"], [97, 5, 1, "", "strides"]], "ivy.data_classes.array.conversions": [[47, 2, 1, "", "_array_to_new_backend"], [47, 2, 1, "", "_to_ivy"], [47, 2, 1, "", "_to_native"], [47, 2, 1, "", "_to_new_backend"], [47, 2, 1, "", "args_to_ivy"], [47, 2, 1, "", "args_to_native"], [47, 2, 1, "", "args_to_new_backend"], [47, 2, 1, "", "to_ivy"], [47, 2, 1, "", "to_native"], [47, 2, 1, "", "to_new_backend"]], "ivy.data_classes.array.creation": [[48, 1, 1, "", "_ArrayWithCreation"]], "ivy.data_classes.array.creation._ArrayWithCreation": [[48, 4, 1, "", "_abc_impl"], [48, 0, 1, "", "asarray"], [48, 0, 1, "", "copy_array"], [48, 0, 1, "", "empty_like"], [48, 0, 1, "", "from_dlpack"], [48, 0, 1, "", "full_like"], [48, 0, 1, "", "linspace"], [48, 0, 1, "", "logspace"], [48, 0, 1, "", "meshgrid"], [48, 0, 1, "", "native_array"], [48, 0, 1, "", "one_hot"], [48, 0, 1, "", "ones_like"], [48, 0, 1, "", "tril"], [48, 0, 1, "", "triu"], [48, 0, 1, "", "zeros_like"]], "ivy.data_classes.array.data_type": [[49, 1, 1, "", "_ArrayWithDataTypes"]], "ivy.data_classes.array.data_type._ArrayWithDataTypes": [[49, 4, 1, "", "_abc_impl"], [49, 0, 1, "", "astype"], [49, 0, 1, "", "broadcast_arrays"], [49, 0, 1, "", "broadcast_to"], [49, 0, 1, "", "can_cast"], [49, 0, 1, "", "dtype"], [49, 0, 1, "", "finfo"], [49, 0, 1, "", "iinfo"], [49, 0, 1, "", "is_bool_dtype"], [49, 0, 1, "", "is_float_dtype"], [49, 0, 1, "", "is_int_dtype"], [49, 0, 1, "", "is_uint_dtype"], [49, 0, 1, "", "result_type"]], "ivy.data_classes.array.device": [[50, 1, 1, "", "_ArrayWithDevice"]], "ivy.data_classes.array.device._ArrayWithDevice": [[50, 4, 1, "", "_abc_impl"], [50, 0, 1, "", "dev"], [50, 0, 1, "", "to_device"]], "ivy.data_classes.array.elementwise": [[51, 1, 1, "", "_ArrayWithElementwise"]], "ivy.data_classes.array.elementwise._ArrayWithElementwise": [[51, 4, 1, "", "_abc_impl"], [51, 0, 1, "", "abs"], [51, 0, 1, "", "acos"], [51, 0, 1, "", "acosh"], [51, 0, 1, "", "add"], [51, 0, 1, "", "angle"], [51, 0, 1, "", "asin"], [51, 0, 1, "", "asinh"], [51, 0, 1, "", "atan"], [51, 0, 1, "", "atan2"], [51, 0, 1, "", "atanh"], [51, 0, 1, "", "bitwise_and"], [51, 0, 1, "", "bitwise_invert"], [51, 0, 1, "", "bitwise_left_shift"], [51, 0, 1, "", "bitwise_or"], [51, 0, 1, "", "bitwise_right_shift"], [51, 0, 1, "", "bitwise_xor"], [51, 0, 1, "", "ceil"], [51, 0, 1, "", "cos"], [51, 0, 1, "", "cosh"], [51, 0, 1, "", "deg2rad"], [51, 0, 1, "", "divide"], [51, 0, 1, "", "equal"], [51, 0, 1, "", "erf"], [51, 0, 1, "", "exp"], [51, 0, 1, "", "exp2"], [51, 0, 1, "", "expm1"], [51, 0, 1, "", "floor"], [51, 0, 1, "", "floor_divide"], [51, 0, 1, "", "fmin"], [51, 0, 1, "", "gcd"], [51, 0, 1, "", "greater"], [51, 0, 1, "", "greater_equal"], [51, 0, 1, "", "imag"], [51, 0, 1, "", "isfinite"], [51, 0, 1, "", "isinf"], [51, 0, 1, "", "isnan"], [51, 0, 1, "", "isreal"], [51, 0, 1, "", "lcm"], [51, 0, 1, "", "less"], [51, 0, 1, "", "less_equal"], [51, 0, 1, "", "log"], [51, 0, 1, "", "log10"], [51, 0, 1, "", "log1p"], [51, 0, 1, "", "log2"], [51, 0, 1, "", "logaddexp"], [51, 0, 1, "", "logaddexp2"], [51, 0, 1, "", "logical_and"], [51, 0, 1, "", "logical_not"], [51, 0, 1, "", "logical_or"], [51, 0, 1, "", "logical_xor"], [51, 0, 1, "", "maximum"], [51, 0, 1, "", "minimum"], [51, 0, 1, "", "multiply"], [51, 0, 1, "", "nan_to_num"], [51, 0, 1, "", "negative"], [51, 0, 1, "", "not_equal"], [51, 0, 1, "", "positive"], [51, 0, 1, "", "pow"], [51, 0, 1, "", "rad2deg"], [51, 0, 1, "", "real"], [51, 0, 1, "", "reciprocal"], [51, 0, 1, "", "remainder"], [51, 0, 1, "", "round"], [51, 0, 1, "", "sign"], [51, 0, 1, "", "sin"], [51, 0, 1, "", "sinh"], [51, 0, 1, "", "sqrt"], [51, 0, 1, "", "square"], [51, 0, 1, "", "subtract"], [51, 0, 1, "", "tan"], [51, 0, 1, "", "tanh"], [51, 0, 1, "", "trapz"], [51, 0, 1, "", "trunc"], [51, 0, 1, "", "trunc_divide"]], "ivy.data_classes.array.experimental": [[52, 3, 0, "-", "activations"], [52, 3, 0, "-", "conversions"], [52, 3, 0, "-", "creation"], [52, 3, 0, "-", "data_type"], [52, 3, 0, "-", "device"], [52, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "general"], [52, 3, 0, "-", "gradients"], [52, 3, 0, "-", "image"], [52, 3, 0, "-", "layers"], [52, 3, 0, "-", "linear_algebra"], [52, 3, 0, "-", "losses"], [52, 3, 0, "-", "manipulation"], [52, 3, 0, "-", "norms"], [52, 3, 0, "-", "random"], [52, 3, 0, "-", "searching"], [52, 3, 0, "-", "set"], [52, 3, 0, "-", "sorting"], [52, 3, 0, "-", "statistical"], [52, 3, 0, "-", "utility"]], "ivy.data_classes.array.experimental.activations": [[52, 1, 1, "", "_ArrayWithActivationsExperimental"]], "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "celu"], [52, 0, 1, "", "elu"], [52, 0, 1, "", "hardshrink"], [52, 0, 1, "", "hardtanh"], [52, 0, 1, "", "logit"], [52, 0, 1, "", "logsigmoid"], [52, 0, 1, "", "prelu"], [52, 0, 1, "", "relu6"], [52, 0, 1, "", "scaled_tanh"], [52, 0, 1, "", "selu"], [52, 0, 1, "", "silu"], [52, 0, 1, "", "softshrink"], [52, 0, 1, "", "tanhshrink"], [52, 0, 1, "", "threshold"], [52, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.array.experimental.conversions": [[52, 1, 1, "", "_ArrayWithConversionsExperimental"]], "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.creation": [[52, 1, 1, "", "_ArrayWithCreationExperimental"], [52, 2, 1, "", "polyval"]], "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "blackman_window"], [52, 0, 1, "", "eye_like"], [52, 0, 1, "", "mel_weight_matrix"], [52, 0, 1, "", "trilu"], [52, 0, 1, "", "unsorted_segment_mean"], [52, 0, 1, "", "unsorted_segment_min"], [52, 0, 1, "", "unsorted_segment_sum"]], "ivy.data_classes.array.experimental.data_type": [[52, 1, 1, "", "_ArrayWithData_typeExperimental"]], "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.device": [[52, 1, 1, "", "_ArrayWithDeviceExperimental"]], "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.elementwise": [[52, 1, 1, "", "_ArrayWithElementWiseExperimental"]], "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "allclose"], [52, 0, 1, "", "amax"], [52, 0, 1, "", "amin"], [52, 0, 1, "", "binarizer"], [52, 0, 1, "", "conj"], [52, 0, 1, "", "copysign"], [52, 0, 1, "", "count_nonzero"], [52, 0, 1, "", "diff"], [52, 0, 1, "", "digamma"], [52, 0, 1, "", "erfc"], [52, 0, 1, "", "fix"], [52, 0, 1, "", "float_power"], [52, 0, 1, "", "fmax"], [52, 0, 1, "", "fmod"], [52, 0, 1, "", "frexp"], [52, 0, 1, "", "gradient"], [52, 0, 1, "", "hypot"], [52, 0, 1, "", "isclose"], [52, 0, 1, "", "ldexp"], [52, 0, 1, "", "lerp"], [52, 0, 1, "", "lgamma"], [52, 0, 1, "", "modf"], [52, 0, 1, "", "nansum"], [52, 0, 1, "", "nextafter"], [52, 0, 1, "", "signbit"], [52, 0, 1, "", "sinc"], [52, 0, 1, "", "sparsify_tensor"], [52, 0, 1, "", "xlogy"], [52, 0, 1, "", "zeta"]], "ivy.data_classes.array.experimental.general": [[52, 1, 1, "", "_ArrayWithGeneralExperimental"]], "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "reduce"]], "ivy.data_classes.array.experimental.gradients": [[52, 1, 1, "", "_ArrayWithGradientsExperimental"]], "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.image": [[52, 1, 1, "", "_ArrayWithImageExperimental"]], "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.layers": [[52, 1, 1, "", "_ArrayWithLayersExperimental"]], "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adaptive_avg_pool1d"], [52, 0, 1, "", "adaptive_avg_pool2d"], [52, 0, 1, "", "adaptive_max_pool2d"], [52, 0, 1, "", "avg_pool1d"], [52, 0, 1, "", "avg_pool2d"], [52, 0, 1, "", "avg_pool3d"], [52, 0, 1, "", "dct"], [52, 0, 1, "", "dft"], [52, 0, 1, "", "embedding"], [52, 0, 1, "", "fft"], [52, 0, 1, "", "fft2"], [52, 0, 1, "", "idct"], [52, 0, 1, "", "ifft"], [52, 0, 1, "", "ifftn"], [52, 0, 1, "", "interpolate"], [52, 0, 1, "", "max_pool1d"], [52, 0, 1, "", "max_pool2d"], [52, 0, 1, "", "max_pool3d"], [52, 0, 1, "", "max_unpool1d"], [52, 0, 1, "", "reduce_window"], [52, 0, 1, "", "rfft"], [52, 0, 1, "", "rfftn"], [52, 0, 1, "", "sliding_window"], [52, 0, 1, "", "stft"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, 1, 1, "", "_ArrayWithLinearAlgebraExperimental"]], "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adjoint"], [52, 0, 1, "", "batched_outer"], [52, 0, 1, "", "cond"], [52, 0, 1, "", "diagflat"], [52, 0, 1, "", "dot"], [52, 0, 1, "", "eig"], [52, 0, 1, "", "eigh_tridiagonal"], [52, 0, 1, "", "eigvals"], [52, 0, 1, "", "general_inner_product"], [52, 0, 1, "", "higher_order_moment"], [52, 0, 1, "", "initialize_tucker"], [52, 0, 1, "", "kron"], [52, 0, 1, "", "make_svd_non_negative"], [52, 0, 1, "", "matrix_exp"], [52, 0, 1, "", "mode_dot"], [52, 0, 1, "", "multi_dot"], [52, 0, 1, "", "multi_mode_dot"], [52, 0, 1, "", "partial_tucker"], [52, 0, 1, "", "svd_flip"], [52, 0, 1, "", "tensor_train"], [52, 0, 1, "", "truncated_svd"], [52, 0, 1, "", "tt_matrix_to_tensor"], [52, 0, 1, "", "tucker"]], "ivy.data_classes.array.experimental.losses": [[52, 1, 1, "", "_ArrayWithLossesExperimental"]], "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "huber_loss"], [52, 0, 1, "", "kl_div"], [52, 0, 1, "", "l1_loss"], [52, 0, 1, "", "log_poisson_loss"], [52, 0, 1, "", "poisson_nll_loss"], [52, 0, 1, "", "smooth_l1_loss"], [52, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.array.experimental.manipulation": [[52, 1, 1, "", "_ArrayWithManipulationExperimental"]], "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "as_strided"], [52, 0, 1, "", "associative_scan"], [52, 0, 1, "", "atleast_1d"], [52, 0, 1, "", "atleast_2d"], [52, 0, 1, "", "atleast_3d"], [52, 0, 1, "", "column_stack"], [52, 0, 1, "", "concat_from_sequence"], [52, 0, 1, "", "dsplit"], [52, 0, 1, "", "dstack"], [52, 0, 1, "", "expand"], [52, 0, 1, "", "fill_diagonal"], [52, 0, 1, "", "flatten"], [52, 0, 1, "", "fliplr"], [52, 0, 1, "", "flipud"], [52, 0, 1, "", "fold"], [52, 0, 1, "", "heaviside"], [52, 0, 1, "", "hsplit"], [52, 0, 1, "", "hstack"], [52, 0, 1, "", "i0"], [52, 0, 1, "", "matricize"], [52, 0, 1, "", "moveaxis"], [52, 0, 1, "", "pad"], [52, 0, 1, "", "partial_fold"], [52, 0, 1, "", "partial_tensor_to_vec"], [52, 0, 1, "", "partial_unfold"], [52, 0, 1, "", "partial_vec_to_tensor"], [52, 0, 1, "", "put_along_axis"], [52, 0, 1, "", "rot90"], [52, 0, 1, "", "soft_thresholding"], [52, 0, 1, "", "take"], [52, 0, 1, "", "take_along_axis"], [52, 0, 1, "", "top_k"], [52, 0, 1, "", "trim_zeros"], [52, 0, 1, "", "unfold"], [52, 0, 1, "", "unique_consecutive"], [52, 0, 1, "", "vsplit"], [52, 0, 1, "", "vstack"]], "ivy.data_classes.array.experimental.norms": [[52, 1, 1, "", "_ArrayWithNormsExperimental"]], "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "batch_norm"], [52, 0, 1, "", "group_norm"], [52, 0, 1, "", "instance_norm"], [52, 0, 1, "", "l1_normalize"], [52, 0, 1, "", "l2_normalize"], [52, 0, 1, "", "lp_normalize"]], "ivy.data_classes.array.experimental.random": [[52, 1, 1, "", "_ArrayWithRandomExperimental"]], "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bernoulli"], [52, 0, 1, "", "beta"], [52, 0, 1, "", "dirichlet"], [52, 0, 1, "", "gamma"], [52, 0, 1, "", "poisson"]], "ivy.data_classes.array.experimental.searching": [[52, 1, 1, "", "_ArrayWithSearchingExperimental"]], "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "unravel_index"]], "ivy.data_classes.array.experimental.set": [[52, 1, 1, "", "_ArrayWithSetExperimental"]], "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.sorting": [[52, 1, 1, "", "_ArrayWithSortingExperimental"]], "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "lexsort"]], "ivy.data_classes.array.experimental.statistical": [[52, 1, 1, "", "_ArrayWithStatisticalExperimental"]], "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bincount"], [52, 0, 1, "", "corrcoef"], [52, 0, 1, "", "cov"], [52, 0, 1, "", "cummax"], [52, 0, 1, "", "cummin"], [52, 0, 1, "", "histogram"], [52, 0, 1, "", "igamma"], [52, 0, 1, "", "median"], [52, 0, 1, "", "nanmean"], [52, 0, 1, "", "nanmedian"], [52, 0, 1, "", "nanmin"], [52, 0, 1, "", "nanprod"], [52, 0, 1, "", "quantile"]], "ivy.data_classes.array.experimental.utility": [[52, 1, 1, "", "_ArrayWithUtilityExperimental"]], "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "optional_get_element"]], "ivy.data_classes.array.general": [[53, 1, 1, "", "_ArrayWithGeneral"]], "ivy.data_classes.array.general._ArrayWithGeneral": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "all_equal"], [53, 0, 1, "", "array_equal"], [53, 0, 1, "", "assert_supports_inplace"], [53, 0, 1, "", "clip_matrix_norm"], [53, 0, 1, "", "clip_vector_norm"], [53, 0, 1, "", "default"], [53, 0, 1, "", "einops_rearrange"], [53, 0, 1, "", "einops_reduce"], [53, 0, 1, "", "einops_repeat"], [53, 0, 1, "", "exists"], [53, 0, 1, "", "fourier_encode"], [53, 0, 1, "", "gather"], [53, 0, 1, "", "gather_nd"], [53, 0, 1, "", "get_num_dims"], [53, 0, 1, "", "has_nans"], [53, 0, 1, "", "inplace_decrement"], [53, 0, 1, "", "inplace_increment"], [53, 0, 1, "", "inplace_update"], [53, 0, 1, "", "is_array"], [53, 0, 1, "", "is_ivy_array"], [53, 0, 1, "", "is_ivy_container"], [53, 0, 1, "", "is_native_array"], [53, 0, 1, "", "isin"], [53, 0, 1, "", "scatter_flat"], [53, 0, 1, "", "scatter_nd"], [53, 0, 1, "", "stable_divide"], [53, 0, 1, "", "stable_pow"], [53, 0, 1, "", "supports_inplace_updates"], [53, 0, 1, "", "to_file"], [53, 0, 1, "", "to_list"], [53, 0, 1, "", "to_numpy"], [53, 0, 1, "", "to_scalar"], [53, 0, 1, "", "value_is_nan"]], "ivy.data_classes.array.gradients": [[54, 1, 1, "", "_ArrayWithGradients"]], "ivy.data_classes.array.gradients._ArrayWithGradients": [[54, 4, 1, "", "_abc_impl"], [54, 0, 1, "", "adam_step"], [54, 0, 1, "", "adam_update"], [54, 0, 1, "", "gradient_descent_update"], [54, 0, 1, "", "lamb_update"], [54, 0, 1, "", "lars_update"], [54, 0, 1, "", "optimizer_update"], [54, 0, 1, "", "stop_gradient"]], "ivy.data_classes.array.image": [[55, 1, 1, "", "_ArrayWithImage"]], "ivy.data_classes.array.image._ArrayWithImage": [[55, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.layers": [[56, 1, 1, "", "_ArrayWithLayers"]], "ivy.data_classes.array.layers._ArrayWithLayers": [[56, 4, 1, "", "_abc_impl"], [56, 0, 1, "", "conv1d"], [56, 0, 1, "", "conv1d_transpose"], [56, 0, 1, "", "conv2d"], [56, 0, 1, "", "conv2d_transpose"], [56, 0, 1, "", "conv3d"], [56, 0, 1, "", "conv3d_transpose"], [56, 0, 1, "", "depthwise_conv2d"], [56, 0, 1, "", "dropout"], [56, 0, 1, "", "dropout1d"], [56, 0, 1, "", "dropout2d"], [56, 0, 1, "", "dropout3d"], [56, 0, 1, "", "linear"], [56, 0, 1, "", "lstm_update"], [56, 0, 1, "", "multi_head_attention"], [56, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.array.linear_algebra": [[57, 1, 1, "", "_ArrayWithLinearAlgebra"]], "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "cholesky"], [57, 0, 1, "", "cross"], [57, 0, 1, "", "det"], [57, 0, 1, "", "diag"], [57, 0, 1, "", "diagonal"], [57, 0, 1, "", "eig"], [57, 0, 1, "", "eigh"], [57, 0, 1, "", "eigvalsh"], [57, 0, 1, "", "inner"], [57, 0, 1, "", "inv"], [57, 0, 1, "", "matmul"], [57, 0, 1, "", "matrix_norm"], [57, 0, 1, "", "matrix_power"], [57, 0, 1, "", "matrix_rank"], [57, 0, 1, "", "matrix_transpose"], [57, 0, 1, "", "outer"], [57, 0, 1, "", "pinv"], [57, 0, 1, "", "qr"], [57, 0, 1, "", "slogdet"], [57, 0, 1, "", "solve"], [57, 0, 1, "", "svd"], [57, 0, 1, "", "svdvals"], [57, 0, 1, "", "tensordot"], [57, 0, 1, "", "tensorsolve"], [57, 0, 1, "", "trace"], [57, 0, 1, "", "vander"], [57, 0, 1, "", "vecdot"], [57, 0, 1, "", "vector_norm"], [57, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.array.losses": [[58, 1, 1, "", "_ArrayWithLosses"]], "ivy.data_classes.array.losses._ArrayWithLosses": [[58, 4, 1, "", "_abc_impl"], [58, 0, 1, "", "binary_cross_entropy"], [58, 0, 1, "", "cross_entropy"], [58, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.array.manipulation": [[59, 1, 1, "", "_ArrayWithManipulation"]], "ivy.data_classes.array.manipulation._ArrayWithManipulation": [[59, 4, 1, "", "_abc_impl"], [59, 0, 1, "", "clip"], [59, 0, 1, "", "concat"], [59, 0, 1, "", "constant_pad"], [59, 0, 1, "", "expand_dims"], [59, 0, 1, "", "flip"], [59, 0, 1, "", "permute_dims"], [59, 0, 1, "", "repeat"], [59, 0, 1, "", "reshape"], [59, 0, 1, "", "roll"], [59, 0, 1, "", "split"], [59, 0, 1, "", "squeeze"], [59, 0, 1, "", "stack"], [59, 0, 1, "", "swapaxes"], [59, 0, 1, "", "tile"], [59, 0, 1, "", "unstack"], [59, 0, 1, "", "view"], [59, 0, 1, "", "zero_pad"]], "ivy.data_classes.array.norms": [[60, 1, 1, "", "_ArrayWithNorms"]], "ivy.data_classes.array.norms._ArrayWithNorms": [[60, 4, 1, "", "_abc_impl"], [60, 0, 1, "", "layer_norm"]], "ivy.data_classes.array.random": [[61, 1, 1, "", "_ArrayWithRandom"]], "ivy.data_classes.array.random._ArrayWithRandom": [[61, 4, 1, "", "_abc_impl"], [61, 0, 1, "", "multinomial"], [61, 0, 1, "", "randint"], [61, 0, 1, "", "random_normal"], [61, 0, 1, "", "random_uniform"], [61, 0, 1, "", "shuffle"]], "ivy.data_classes.array.searching": [[62, 1, 1, "", "_ArrayWithSearching"]], "ivy.data_classes.array.searching._ArrayWithSearching": [[62, 4, 1, "", "_abc_impl"], [62, 0, 1, "", "argmax"], [62, 0, 1, "", "argmin"], [62, 0, 1, "", "argwhere"], [62, 0, 1, "", "nonzero"], [62, 0, 1, "", "where"]], "ivy.data_classes.array.set": [[63, 1, 1, "", "_ArrayWithSet"]], "ivy.data_classes.array.set._ArrayWithSet": [[63, 4, 1, "", "_abc_impl"], [63, 0, 1, "", "unique_all"], [63, 0, 1, "", "unique_counts"], [63, 0, 1, "", "unique_inverse"], [63, 0, 1, "", "unique_values"]], "ivy.data_classes.array.sorting": [[64, 1, 1, "", "_ArrayWithSorting"]], "ivy.data_classes.array.sorting._ArrayWithSorting": [[64, 4, 1, "", "_abc_impl"], [64, 0, 1, "", "argsort"], [64, 0, 1, "", "msort"], [64, 0, 1, "", "searchsorted"], [64, 0, 1, "", "sort"]], "ivy.data_classes.array.statistical": [[65, 1, 1, "", "_ArrayWithStatistical"]], "ivy.data_classes.array.statistical._ArrayWithStatistical": [[65, 4, 1, "", "_abc_impl"], [65, 0, 1, "", "cumprod"], [65, 0, 1, "", "cumsum"], [65, 0, 1, "", "einsum"], [65, 0, 1, "", "max"], [65, 0, 1, "", "mean"], [65, 0, 1, "", "min"], [65, 0, 1, "", "prod"], [65, 0, 1, "", "std"], [65, 0, 1, "", "sum"], [65, 0, 1, "", "var"]], "ivy.data_classes.array.utility": [[66, 1, 1, "", "_ArrayWithUtility"]], "ivy.data_classes.array.utility._ArrayWithUtility": [[66, 4, 1, "", "_abc_impl"], [66, 0, 1, "", "all"], [66, 0, 1, "", "any"]], "ivy.data_classes.array.wrapping": [[67, 2, 1, "", "_wrap_function"], [67, 2, 1, "", "add_ivy_array_instance_methods"]], "ivy.data_classes.container": [[68, 3, 0, "-", "activations"], [69, 3, 0, "-", "base"], [98, 3, 0, "-", "container"], [70, 3, 0, "-", "conversions"], [71, 3, 0, "-", "creation"], [72, 3, 0, "-", "data_type"], [73, 3, 0, "-", "device"], [74, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "experimental"], [76, 3, 0, "-", "general"], [77, 3, 0, "-", "gradients"], [78, 3, 0, "-", "image"], [79, 3, 0, "-", "layers"], [80, 3, 0, "-", "linear_algebra"], [81, 3, 0, "-", "losses"], [82, 3, 0, "-", "manipulation"], [83, 3, 0, "-", "norms"], [84, 3, 0, "-", "random"], [85, 3, 0, "-", "searching"], [86, 3, 0, "-", "set"], [87, 3, 0, "-", "sorting"], [88, 3, 0, "-", "statistical"], [89, 3, 0, "-", "utility"], [90, 3, 0, "-", "wrapping"]], "ivy.data_classes.container.activations": [[68, 1, 1, "", "_ContainerWithActivations"]], "ivy.data_classes.container.activations._ContainerWithActivations": [[68, 4, 1, "", "_abc_impl"], [68, 0, 1, "", "_static_gelu"], [68, 0, 1, "", "_static_hardswish"], [68, 0, 1, "", "_static_leaky_relu"], [68, 0, 1, "", "_static_log_softmax"], [68, 0, 1, "", "_static_mish"], [68, 0, 1, "", "_static_relu"], [68, 0, 1, "", "_static_sigmoid"], [68, 0, 1, "", "_static_softmax"], [68, 0, 1, "", "_static_softplus"], [68, 0, 1, "", "gelu"], [68, 0, 1, "", "hardswish"], [68, 0, 1, "", "leaky_relu"], [68, 0, 1, "", "log_softmax"], [68, 0, 1, "", "mish"], [68, 0, 1, "", "relu"], [68, 0, 1, "", "sigmoid"], [68, 0, 1, "", "softmax"], [68, 0, 1, "", "softplus"]], "ivy.data_classes.container.base": [[69, 1, 1, "", "ContainerBase"], [69, 2, 1, "", "_is_jsonable"], [69, 2, 1, "", "_repr"]], "ivy.data_classes.container.base.ContainerBase": [[69, 0, 1, "", "__getitem__"], [69, 0, 1, "", "__init__"], [69, 0, 1, "", "__setitem__"], [69, 4, 1, "", "_abc_impl"], [69, 0, 1, "", "_cont_at_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_at_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_call_static_method_with_flexible_args"], [69, 0, 1, "", "_cont_concat_unify"], [69, 0, 1, "", "_cont_get_dev"], [69, 0, 1, "", "_cont_get_dtype"], [69, 0, 1, "", "_cont_get_shape"], [69, 0, 1, "", "_cont_get_shapes"], [69, 5, 1, "", "_cont_ivy"], [69, 0, 1, "", "_cont_mean_unify"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_slice_keys"], [69, 0, 1, "", "_cont_sum_unify"], [69, 0, 1, "", "_get_queue_item"], [69, 0, 1, "", "cont_all_false"], [69, 0, 1, "", "cont_all_key_chains"], [69, 0, 1, "", "cont_all_true"], [69, 0, 1, "", "cont_as_bools"], [69, 0, 1, "", "cont_assert_contains_sub_container"], [69, 0, 1, "", "cont_assert_contains_sub_structure"], [69, 0, 1, "", "cont_assert_identical"], [69, 0, 1, "", "cont_assert_identical_structure"], [69, 0, 1, "", "cont_at_key_chain"], [69, 0, 1, "", "cont_at_key_chains"], [69, 0, 1, "", "cont_at_keys"], [69, 0, 1, "", "cont_combine"], [69, 0, 1, "", "cont_common_key_chains"], [69, 5, 1, "", "cont_config"], [69, 0, 1, "", "cont_contains_sub_container"], [69, 0, 1, "", "cont_contains_sub_structure"], [69, 0, 1, "", "cont_copy"], [69, 0, 1, "", "cont_create_if_absent"], [69, 0, 1, "", "cont_cutoff_at_depth"], [69, 0, 1, "", "cont_cutoff_at_height"], [69, 0, 1, "", "cont_deep_copy"], [69, 5, 1, "", "cont_dev"], [69, 5, 1, "", "cont_dev_str"], [69, 0, 1, "", "cont_diff"], [69, 5, 1, "", "cont_dtype"], [69, 0, 1, "", "cont_duplicate_array_keychains"], [69, 0, 1, "", "cont_find_sub_container"], [69, 0, 1, "", "cont_find_sub_structure"], [69, 0, 1, "", "cont_flatten_key_chain"], [69, 0, 1, "", "cont_flatten_key_chains"], [69, 0, 1, "", "cont_format_key_chains"], [69, 0, 1, "", "cont_from_disk_as_hdf5"], [69, 0, 1, "", "cont_from_disk_as_json"], [69, 0, 1, "", "cont_from_disk_as_pickled"], [69, 0, 1, "", "cont_from_flat_list"], [69, 0, 1, "", "cont_handle_inplace"], [69, 0, 1, "", "cont_has_key"], [69, 0, 1, "", "cont_has_key_chain"], [69, 0, 1, "", "cont_identical"], [69, 0, 1, "", "cont_identical_array_shapes"], [69, 0, 1, "", "cont_identical_configs"], [69, 0, 1, "", "cont_identical_structure"], [69, 0, 1, "", "cont_if_exists"], [69, 0, 1, "", "cont_inplace_update"], [69, 5, 1, "", "cont_ivy"], [69, 0, 1, "", "cont_key_chains_containing"], [69, 0, 1, "", "cont_list_join"], [69, 0, 1, "", "cont_list_stack"], [69, 0, 1, "", "cont_load"], [69, 0, 1, "", "cont_map"], [69, 0, 1, "", "cont_map_sub_conts"], [69, 5, 1, "", "cont_max_depth"], [69, 0, 1, "", "cont_multi_map"], [69, 0, 1, "", "cont_multi_map_in_function"], [69, 0, 1, "", "cont_num_arrays"], [69, 0, 1, "", "cont_overwrite_at_key_chain"], [69, 0, 1, "", "cont_overwrite_at_key_chains"], [69, 0, 1, "", "cont_prune_empty"], [69, 0, 1, "", "cont_prune_key_chain"], [69, 0, 1, "", "cont_prune_key_chains"], [69, 0, 1, "", "cont_prune_key_from_key_chains"], [69, 0, 1, "", "cont_prune_keys"], [69, 0, 1, "", "cont_prune_keys_from_key_chains"], [69, 0, 1, "", "cont_reduce"], [69, 0, 1, "", "cont_remove_key_length_limit"], [69, 0, 1, "", "cont_remove_print_limit"], [69, 0, 1, "", "cont_reshape_like"], [69, 0, 1, "", "cont_restructure"], [69, 0, 1, "", "cont_restructure_key_chains"], [69, 0, 1, "", "cont_save"], [69, 0, 1, "", "cont_set_at_key_chain"], [69, 0, 1, "", "cont_set_at_key_chains"], [69, 0, 1, "", "cont_set_at_keys"], [69, 5, 1, "", "cont_shape"], [69, 5, 1, "", "cont_shapes"], [69, 0, 1, "", "cont_show"], [69, 0, 1, "", "cont_show_sub_container"], [69, 0, 1, "", "cont_size_ordered_arrays"], [69, 0, 1, "", "cont_slice_keys"], [69, 0, 1, "", "cont_slice_via_key"], [69, 0, 1, "", "cont_sort_by_key"], [69, 0, 1, "", "cont_structural_diff"], [69, 0, 1, "", "cont_to_dict"], [69, 0, 1, "", "cont_to_disk_as_hdf5"], [69, 0, 1, "", "cont_to_disk_as_json"], [69, 0, 1, "", "cont_to_disk_as_pickled"], [69, 0, 1, "", "cont_to_flat_list"], [69, 0, 1, "", "cont_to_iterator"], [69, 0, 1, "", "cont_to_iterator_keys"], [69, 0, 1, "", "cont_to_iterator_values"], [69, 0, 1, "", "cont_to_jsonable"], [69, 0, 1, "", "cont_to_nested_list"], [69, 0, 1, "", "cont_to_raw"], [69, 0, 1, "", "cont_trim_key"], [69, 0, 1, "", "cont_try_kc"], [69, 0, 1, "", "cont_unify"], [69, 0, 1, "", "cont_unstack_conts"], [69, 0, 1, "", "cont_update_config"], [69, 0, 1, "", "cont_with_default_key_color"], [69, 0, 1, "", "cont_with_entries_as_lists"], [69, 0, 1, "", "cont_with_ivy_backend"], [69, 0, 1, "", "cont_with_key_length_limit"], [69, 0, 1, "", "cont_with_print_indent"], [69, 0, 1, "", "cont_with_print_limit"], [69, 0, 1, "", "cont_with_print_line_spacing"], [69, 5, 1, "", "dynamic_backend"], [69, 0, 1, "", "h5_file_size"], [69, 0, 1, "", "shuffle_h5_file"], [69, 0, 1, "", "split_conts"]], "ivy.data_classes.container.container": [[98, 1, 1, "", "Container"]], "ivy.data_classes.container.container.Container": [[98, 0, 1, "", "__abs__"], [98, 0, 1, "", "__add__"], [98, 0, 1, "", "__eq__"], [98, 0, 1, "", "__ge__"], [98, 0, 1, "", "__gt__"], [98, 0, 1, "", "__init__"], [98, 0, 1, "", "__le__"], [98, 0, 1, "", "__lt__"], [98, 0, 1, "", "__ne__"], [98, 0, 1, "", "__pow__"], [98, 0, 1, "", "__radd__"], [98, 0, 1, "", "__rrshift__"], [98, 0, 1, "", "__rshift__"], [98, 0, 1, "", "__rsub__"], [98, 0, 1, "", "__sub__"], [98, 0, 1, "", "__truediv__"], [98, 0, 1, "", "__xor__"]], "ivy.data_classes.container.conversions": [[70, 1, 1, "", "_ContainerWithConversions"]], "ivy.data_classes.container.conversions._ContainerWithConversions": [[70, 4, 1, "", "_abc_impl"], [70, 0, 1, "", "_static_to_ivy"], [70, 0, 1, "", "_static_to_native"], [70, 0, 1, "", "to_ivy"], [70, 0, 1, "", "to_native"]], "ivy.data_classes.container.creation": [[71, 1, 1, "", "_ContainerWithCreation"]], "ivy.data_classes.container.creation._ContainerWithCreation": [[71, 4, 1, "", "_abc_impl"], [71, 0, 1, "", "_static_arange"], [71, 0, 1, "", "_static_asarray"], [71, 0, 1, "", "_static_copy_array"], [71, 0, 1, "", "_static_empty"], [71, 0, 1, "", "_static_empty_like"], [71, 0, 1, "", "_static_eye"], [71, 0, 1, "", "_static_from_dlpack"], [71, 0, 1, "", "_static_full"], [71, 0, 1, "", "_static_full_like"], [71, 0, 1, "", "_static_linspace"], [71, 0, 1, "", "_static_logspace"], [71, 0, 1, "", "_static_meshgrid"], [71, 0, 1, "", "_static_native_array"], [71, 0, 1, "", "_static_one_hot"], [71, 0, 1, "", "_static_ones"], [71, 0, 1, "", "_static_ones_like"], [71, 0, 1, "", "_static_tril"], [71, 0, 1, "", "_static_triu"], [71, 0, 1, "", "_static_zeros"], [71, 0, 1, "", "_static_zeros_like"], [71, 0, 1, "", "asarray"], [71, 0, 1, "", "copy_array"], [71, 0, 1, "", "empty_like"], [71, 0, 1, "", "from_dlpack"], [71, 0, 1, "", "frombuffer"], [71, 0, 1, "", "full_like"], [71, 0, 1, "", "linspace"], [71, 0, 1, "", "logspace"], [71, 0, 1, "", "meshgrid"], [71, 0, 1, "", "native_array"], [71, 0, 1, "", "one_hot"], [71, 0, 1, "", "ones_like"], [71, 0, 1, "", "static_frombuffer"], [71, 0, 1, "", "static_triu_indices"], [71, 0, 1, "", "tril"], [71, 0, 1, "", "triu"], [71, 0, 1, "", "triu_indices"], [71, 0, 1, "", "zeros_like"]], "ivy.data_classes.container.data_type": [[72, 1, 1, "", "_ContainerWithDataTypes"]], "ivy.data_classes.container.data_type._ContainerWithDataTypes": [[72, 4, 1, "", "_abc_impl"], [72, 0, 1, "", "_static_astype"], [72, 0, 1, "", "_static_broadcast_arrays"], [72, 0, 1, "", "_static_broadcast_to"], [72, 0, 1, "", "_static_can_cast"], [72, 0, 1, "", "_static_default_complex_dtype"], [72, 0, 1, "", "_static_default_float_dtype"], [72, 0, 1, "", "_static_dtype"], [72, 0, 1, "", "_static_finfo"], [72, 0, 1, "", "_static_function_supported_dtypes"], [72, 0, 1, "", "_static_function_unsupported_dtypes"], [72, 0, 1, "", "_static_iinfo"], [72, 0, 1, "", "_static_is_bool_dtype"], [72, 0, 1, "", "_static_is_complex_dtype"], [72, 0, 1, "", "_static_is_float_dtype"], [72, 0, 1, "", "_static_is_int_dtype"], [72, 0, 1, "", "_static_is_uint_dtype"], [72, 0, 1, "", "_static_result_type"], [72, 0, 1, "", "astype"], [72, 0, 1, "", "broadcast_arrays"], [72, 0, 1, "", "broadcast_to"], [72, 0, 1, "", "can_cast"], [72, 0, 1, "", "dtype"], [72, 0, 1, "", "finfo"], [72, 0, 1, "", "iinfo"], [72, 0, 1, "", "is_bool_dtype"], [72, 0, 1, "", "is_complex_dtype"], [72, 0, 1, "", "is_float_dtype"], [72, 0, 1, "", "is_int_dtype"], [72, 0, 1, "", "is_uint_dtype"], [72, 0, 1, "", "result_type"]], "ivy.data_classes.container.device": [[73, 1, 1, "", "_ContainerWithDevice"]], "ivy.data_classes.container.device._ContainerWithDevice": [[73, 4, 1, "", "_abc_impl"], [73, 0, 1, "", "_static_dev"], [73, 0, 1, "", "_static_to_device"], [73, 0, 1, "", "dev"], [73, 0, 1, "", "to_device"]], "ivy.data_classes.container.elementwise": [[74, 1, 1, "", "_ContainerWithElementwise"]], "ivy.data_classes.container.elementwise._ContainerWithElementwise": [[74, 4, 1, "", "_abc_impl"], [74, 0, 1, "", "_static_abs"], [74, 0, 1, "", "_static_acos"], [74, 0, 1, "", "_static_acosh"], [74, 0, 1, "", "_static_add"], [74, 0, 1, "", "_static_asin"], [74, 0, 1, "", "_static_asinh"], [74, 0, 1, "", "_static_atan"], [74, 0, 1, "", "_static_atan2"], [74, 0, 1, "", "_static_atanh"], [74, 0, 1, "", "_static_bitwise_and"], [74, 0, 1, "", "_static_bitwise_invert"], [74, 0, 1, "", "_static_bitwise_left_shift"], [74, 0, 1, "", "_static_bitwise_or"], [74, 0, 1, "", "_static_bitwise_right_shift"], [74, 0, 1, "", "_static_bitwise_xor"], [74, 0, 1, "", "_static_ceil"], [74, 0, 1, "", "_static_cos"], [74, 0, 1, "", "_static_cosh"], [74, 0, 1, "", "_static_deg2rad"], [74, 0, 1, "", "_static_divide"], [74, 0, 1, "", "_static_equal"], [74, 0, 1, "", "_static_erf"], [74, 0, 1, "", "_static_exp"], [74, 0, 1, "", "_static_expm1"], [74, 0, 1, "", "_static_floor"], [74, 0, 1, "", "_static_floor_divide"], [74, 0, 1, "", "_static_greater"], [74, 0, 1, "", "_static_greater_equal"], [74, 0, 1, "", "_static_isfinite"], [74, 0, 1, "", "_static_isinf"], [74, 0, 1, "", "_static_isnan"], [74, 0, 1, "", "_static_isreal"], [74, 0, 1, "", "_static_lcm"], [74, 0, 1, "", "_static_less"], [74, 0, 1, "", "_static_less_equal"], [74, 0, 1, "", "_static_log"], [74, 0, 1, "", "_static_log10"], [74, 0, 1, "", "_static_log1p"], [74, 0, 1, "", "_static_log2"], [74, 0, 1, "", "_static_logaddexp"], [74, 0, 1, "", "_static_logical_and"], [74, 0, 1, "", "_static_logical_not"], [74, 0, 1, "", "_static_logical_or"], [74, 0, 1, "", "_static_logical_xor"], [74, 0, 1, "", "_static_maximum"], [74, 0, 1, "", "_static_minimum"], [74, 0, 1, "", "_static_multiply"], [74, 0, 1, "", "_static_negative"], [74, 0, 1, "", "_static_not_equal"], [74, 0, 1, "", "_static_positive"], [74, 0, 1, "", "_static_pow"], [74, 0, 1, "", "_static_rad2deg"], [74, 0, 1, "", "_static_reciprocal"], [74, 0, 1, "", "_static_remainder"], [74, 0, 1, "", "_static_round"], [74, 0, 1, "", "_static_sign"], [74, 0, 1, "", "_static_sin"], [74, 0, 1, "", "_static_sinh"], [74, 0, 1, "", "_static_sqrt"], [74, 0, 1, "", "_static_square"], [74, 0, 1, "", "_static_subtract"], [74, 0, 1, "", "_static_tan"], [74, 0, 1, "", "_static_tanh"], [74, 0, 1, "", "_static_trapz"], [74, 0, 1, "", "_static_trunc"], [74, 0, 1, "", "_static_trunc_divide"], [74, 0, 1, "", "abs"], [74, 0, 1, "", "acos"], [74, 0, 1, "", "acosh"], [74, 0, 1, "", "add"], [74, 0, 1, "", "angle"], [74, 0, 1, "", "asin"], [74, 0, 1, "", "asinh"], [74, 0, 1, "", "atan"], [74, 0, 1, "", "atan2"], [74, 0, 1, "", "atanh"], [74, 0, 1, "", "bitwise_and"], [74, 0, 1, "", "bitwise_invert"], [74, 0, 1, "", "bitwise_left_shift"], [74, 0, 1, "", "bitwise_or"], [74, 0, 1, "", "bitwise_right_shift"], [74, 0, 1, "", "bitwise_xor"], [74, 0, 1, "", "ceil"], [74, 0, 1, "", "cos"], [74, 0, 1, "", "cosh"], [74, 0, 1, "", "deg2rad"], [74, 0, 1, "", "divide"], [74, 0, 1, "", "equal"], [74, 0, 1, "", "erf"], [74, 0, 1, "", "exp"], [74, 0, 1, "", "exp2"], [74, 0, 1, "", "expm1"], [74, 0, 1, "", "floor"], [74, 0, 1, "", "floor_divide"], [74, 0, 1, "", "fmin"], [74, 0, 1, "", "gcd"], [74, 0, 1, "", "greater"], [74, 0, 1, "", "greater_equal"], [74, 0, 1, "", "imag"], [74, 0, 1, "", "isfinite"], [74, 0, 1, "", "isinf"], [74, 0, 1, "", "isnan"], [74, 0, 1, "", "isreal"], [74, 0, 1, "", "lcm"], [74, 0, 1, "", "less"], [74, 0, 1, "", "less_equal"], [74, 0, 1, "", "log"], [74, 0, 1, "", "log10"], [74, 0, 1, "", "log1p"], [74, 0, 1, "", "log2"], [74, 0, 1, "", "logaddexp"], [74, 0, 1, "", "logaddexp2"], [74, 0, 1, "", "logical_and"], [74, 0, 1, "", "logical_not"], [74, 0, 1, "", "logical_or"], [74, 0, 1, "", "logical_xor"], [74, 0, 1, "", "maximum"], [74, 0, 1, "", "minimum"], [74, 0, 1, "", "multiply"], [74, 0, 1, "", "nan_to_num"], [74, 0, 1, "", "negative"], [74, 0, 1, "", "not_equal"], [74, 0, 1, "", "positive"], [74, 0, 1, "", "pow"], [74, 0, 1, "", "rad2deg"], [74, 0, 1, "", "real"], [74, 0, 1, "", "reciprocal"], [74, 0, 1, "", "remainder"], [74, 0, 1, "", "round"], [74, 0, 1, "", "sign"], [74, 0, 1, "", "sin"], [74, 0, 1, "", "sinh"], [74, 0, 1, "", "sqrt"], [74, 0, 1, "", "square"], [74, 0, 1, "", "static_angle"], [74, 0, 1, "", "static_exp2"], [74, 0, 1, "", "static_fmin"], [74, 0, 1, "", "static_gcd"], [74, 0, 1, "", "static_imag"], [74, 0, 1, "", "static_logaddexp2"], [74, 0, 1, "", "static_nan_to_num"], [74, 0, 1, "", "static_real"], [74, 0, 1, "", "subtract"], [74, 0, 1, "", "tan"], [74, 0, 1, "", "tanh"], [74, 0, 1, "", "trapz"], [74, 0, 1, "", "trunc"], [74, 0, 1, "", "trunc_divide"]], "ivy.data_classes.container.experimental": [[75, 3, 0, "-", "activations"], [75, 3, 0, "-", "conversions"], [75, 3, 0, "-", "creation"], [75, 3, 0, "-", "data_type"], [75, 3, 0, "-", "device"], [75, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "general"], [75, 3, 0, "-", "gradients"], [75, 3, 0, "-", "image"], [75, 3, 0, "-", "layers"], [75, 3, 0, "-", "linear_algebra"], [75, 3, 0, "-", "losses"], [75, 3, 0, "-", "manipulation"], [75, 3, 0, "-", "norms"], [75, 3, 0, "-", "random"], [75, 3, 0, "-", "searching"], [75, 3, 0, "-", "set"], [75, 3, 0, "-", "sorting"], [75, 3, 0, "-", "statistical"], [75, 3, 0, "-", "utility"]], "ivy.data_classes.container.experimental.activations": [[75, 1, 1, "", "_ContainerWithActivationExperimental"]], "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_celu"], [75, 0, 1, "", "_static_elu"], [75, 0, 1, "", "_static_hardshrink"], [75, 0, 1, "", "_static_hardtanh"], [75, 0, 1, "", "_static_scaled_tanh"], [75, 0, 1, "", "_static_silu"], [75, 0, 1, "", "_static_softshrink"], [75, 0, 1, "", "_static_tanhshrink"], [75, 0, 1, "", "_static_threshold"], [75, 0, 1, "", "celu"], [75, 0, 1, "", "elu"], [75, 0, 1, "", "hardshrink"], [75, 0, 1, "", "hardtanh"], [75, 0, 1, "", "logit"], [75, 0, 1, "", "logsigmoid"], [75, 0, 1, "", "prelu"], [75, 0, 1, "", "relu6"], [75, 0, 1, "", "scaled_tanh"], [75, 0, 1, "", "selu"], [75, 0, 1, "", "silu"], [75, 0, 1, "", "softshrink"], [75, 0, 1, "", "static_logit"], [75, 0, 1, "", "static_logsigmoid"], [75, 0, 1, "", "static_prelu"], [75, 0, 1, "", "static_relu6"], [75, 0, 1, "", "static_selu"], [75, 0, 1, "", "static_thresholded_relu"], [75, 0, 1, "", "tanhshrink"], [75, 0, 1, "", "threshold"], [75, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.container.experimental.conversions": [[75, 1, 1, "", "_ContainerWithConversionExperimental"]], "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.creation": [[75, 1, 1, "", "_ContainerWithCreationExperimental"]], "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_trilu"], [75, 0, 1, "", "blackman_window"], [75, 0, 1, "", "eye_like"], [75, 0, 1, "", "hamming_window"], [75, 0, 1, "", "hann_window"], [75, 0, 1, "", "kaiser_bessel_derived_window"], [75, 0, 1, "", "kaiser_window"], [75, 0, 1, "", "mel_weight_matrix"], [75, 0, 1, "", "polyval"], [75, 0, 1, "", "static_blackman_window"], [75, 0, 1, "", "static_eye_like"], [75, 0, 1, "", "static_hamming_window"], [75, 0, 1, "", "static_hann_window"], [75, 0, 1, "", "static_kaiser_bessel_derived_window"], [75, 0, 1, "", "static_kaiser_window"], [75, 0, 1, "", "static_mel_weight_matrix"], [75, 0, 1, "", "static_polyval"], [75, 0, 1, "", "static_tril_indices"], [75, 0, 1, "", "static_unsorted_segment_mean"], [75, 0, 1, "", "static_unsorted_segment_min"], [75, 0, 1, "", "static_unsorted_segment_sum"], [75, 0, 1, "", "static_vorbis_window"], [75, 0, 1, "", "tril_indices"], [75, 0, 1, "", "trilu"], [75, 0, 1, "", "unsorted_segment_mean"], [75, 0, 1, "", "unsorted_segment_min"], [75, 0, 1, "", "unsorted_segment_sum"], [75, 0, 1, "", "vorbis_window"]], "ivy.data_classes.container.experimental.data_type": [[75, 1, 1, "", "_ContainerWithData_typeExperimental"]], "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.device": [[75, 1, 1, "", "_ContainerWithDeviceExperimental"]], "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.elementwise": [[75, 1, 1, "", "_ContainerWithElementWiseExperimental"]], "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "allclose"], [75, 0, 1, "", "amax"], [75, 0, 1, "", "amin"], [75, 0, 1, "", "binarizer"], [75, 0, 1, "", "conj"], [75, 0, 1, "", "copysign"], [75, 0, 1, "", "count_nonzero"], [75, 0, 1, "", "diff"], [75, 0, 1, "", "digamma"], [75, 0, 1, "", "erfc"], [75, 0, 1, "", "fix"], [75, 0, 1, "", "float_power"], [75, 0, 1, "", "fmax"], [75, 0, 1, "", "fmod"], [75, 0, 1, "", "frexp"], [75, 0, 1, "", "gradient"], [75, 0, 1, "", "hypot"], [75, 0, 1, "", "isclose"], [75, 0, 1, "", "ldexp"], [75, 0, 1, "", "lerp"], [75, 0, 1, "", "modf"], [75, 0, 1, "", "nansum"], [75, 0, 1, "", "nextafter"], [75, 0, 1, "", "signbit"], [75, 0, 1, "", "sinc"], [75, 0, 1, "", "sparsify_tensor"], [75, 0, 1, "", "static_allclose"], [75, 0, 1, "", "static_amax"], [75, 0, 1, "", "static_amin"], [75, 0, 1, "", "static_binarizer"], [75, 0, 1, "", "static_conj"], [75, 0, 1, "", "static_copysign"], [75, 0, 1, "", "static_count_nonzero"], [75, 0, 1, "", "static_diff"], [75, 0, 1, "", "static_digamma"], [75, 0, 1, "", "static_erfc"], [75, 0, 1, "", "static_fix"], [75, 0, 1, "", "static_float_power"], [75, 0, 1, "", "static_fmax"], [75, 0, 1, "", "static_fmod"], [75, 0, 1, "", "static_frexp"], [75, 0, 1, "", "static_gradient"], [75, 0, 1, "", "static_hypot"], [75, 0, 1, "", "static_isclose"], [75, 0, 1, "", "static_ldexp"], [75, 0, 1, "", "static_lerp"], [75, 0, 1, "", "static_modf"], [75, 0, 1, "", "static_nansum"], [75, 0, 1, "", "static_nextafter"], [75, 0, 1, "", "static_signbit"], [75, 0, 1, "", "static_sinc"], [75, 0, 1, "", "static_sparsify_tensor"], [75, 0, 1, "", "static_xlogy"], [75, 0, 1, "", "static_zeta"], [75, 0, 1, "", "xlogy"], [75, 0, 1, "", "zeta"]], "ivy.data_classes.container.experimental.general": [[75, 1, 1, "", "_ContainerWithGeneralExperimental"]], "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_reduce"], [75, 0, 1, "", "reduce"]], "ivy.data_classes.container.experimental.gradients": [[75, 1, 1, "", "_ContainerWithGradientsExperimental"]], "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.image": [[75, 1, 1, "", "_ContainerWithImageExperimental"]], "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.layers": [[75, 1, 1, "", "_ContainerWithLayersExperimental"]], "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fft"], [75, 0, 1, "", "_static_sliding_window"], [75, 0, 1, "", "adaptive_avg_pool1d"], [75, 0, 1, "", "adaptive_avg_pool2d"], [75, 0, 1, "", "adaptive_max_pool2d"], [75, 0, 1, "", "avg_pool1d"], [75, 0, 1, "", "avg_pool2d"], [75, 0, 1, "", "avg_pool3d"], [75, 0, 1, "", "dct"], [75, 0, 1, "", "dft"], [75, 0, 1, "", "embedding"], [75, 0, 1, "", "fft"], [75, 0, 1, "", "idct"], [75, 0, 1, "", "ifft"], [75, 0, 1, "", "ifftn"], [75, 0, 1, "", "interpolate"], [75, 0, 1, "", "max_pool1d"], [75, 0, 1, "", "max_pool2d"], [75, 0, 1, "", "max_pool3d"], [75, 0, 1, "", "max_unpool1d"], [75, 0, 1, "", "rfft"], [75, 0, 1, "", "rfftn"], [75, 0, 1, "", "sliding_window"], [75, 0, 1, "", "static_adaptive_avg_pool1d"], [75, 0, 1, "", "static_adaptive_avg_pool2d"], [75, 0, 1, "", "static_adaptive_max_pool2d"], [75, 0, 1, "", "static_avg_pool1d"], [75, 0, 1, "", "static_avg_pool2d"], [75, 0, 1, "", "static_avg_pool3d"], [75, 0, 1, "", "static_dct"], [75, 0, 1, "", "static_dft"], [75, 0, 1, "", "static_embedding"], [75, 0, 1, "", "static_idct"], [75, 0, 1, "", "static_ifft"], [75, 0, 1, "", "static_ifftn"], [75, 0, 1, "", "static_interpolate"], [75, 0, 1, "", "static_max_pool1d"], [75, 0, 1, "", "static_max_pool2d"], [75, 0, 1, "", "static_max_pool3d"], [75, 0, 1, "", "static_max_unpool1d"], [75, 0, 1, "", "static_rfft"], [75, 0, 1, "", "static_rfftn"], [75, 0, 1, "", "static_stft"], [75, 0, 1, "", "stft"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, 1, 1, "", "_ContainerWithLinearAlgebraExperimental"]], "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "adjoint"], [75, 0, 1, "", "batched_outer"], [75, 0, 1, "", "cond"], [75, 0, 1, "", "diagflat"], [75, 0, 1, "", "dot"], [75, 0, 1, "", "eig"], [75, 0, 1, "", "eigh_tridiagonal"], [75, 0, 1, "", "eigvals"], [75, 0, 1, "", "higher_order_moment"], [75, 0, 1, "", "initialize_tucker"], [75, 0, 1, "", "kron"], [75, 0, 1, "", "make_svd_non_negative"], [75, 0, 1, "", "matrix_exp"], [75, 0, 1, "", "mode_dot"], [75, 0, 1, "", "multi_dot"], [75, 0, 1, "", "multi_mode_dot"], [75, 0, 1, "", "partial_tucker"], [75, 0, 1, "", "static_adjoint"], [75, 0, 1, "", "static_batched_outer"], [75, 0, 1, "", "static_cond"], [75, 0, 1, "", "static_diagflat"], [75, 0, 1, "", "static_dot"], [75, 0, 1, "", "static_eig"], [75, 0, 1, "", "static_eigh_tridiagonal"], [75, 0, 1, "", "static_eigvals"], [75, 0, 1, "", "static_higher_order_moment"], [75, 0, 1, "", "static_initialize_tucker"], [75, 0, 1, "", "static_kron"], [75, 0, 1, "", "static_make_svd_non_negative"], [75, 0, 1, "", "static_matrix_exp"], [75, 0, 1, "", "static_mode_dot"], [75, 0, 1, "", "static_multi_dot"], [75, 0, 1, "", "static_multi_mode_dot"], [75, 0, 1, "", "static_partial_tucker"], [75, 0, 1, "", "static_svd_flip"], [75, 0, 1, "", "static_tensor_train"], [75, 0, 1, "", "static_truncated_svd"], [75, 0, 1, "", "static_tt_matrix_to_tensor"], [75, 0, 1, "", "static_tucker"], [75, 0, 1, "", "svd_flip"], [75, 0, 1, "", "tensor_train"], [75, 0, 1, "", "truncated_svd"], [75, 0, 1, "", "tt_matrix_to_tensor"], [75, 0, 1, "", "tucker"]], "ivy.data_classes.container.experimental.losses": [[75, 1, 1, "", "_ContainerWithLossesExperimental"]], "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_huber_loss"], [75, 0, 1, "", "_static_kl_div"], [75, 0, 1, "", "_static_l1_loss"], [75, 0, 1, "", "_static_log_poisson_loss"], [75, 0, 1, "", "_static_poisson_nll_loss"], [75, 0, 1, "", "_static_smooth_l1_loss"], [75, 0, 1, "", "_static_soft_margin_loss"], [75, 0, 1, "", "huber_loss"], [75, 0, 1, "", "kl_div"], [75, 0, 1, "", "l1_loss"], [75, 0, 1, "", "log_poisson_loss"], [75, 0, 1, "", "poisson_nll_loss"], [75, 0, 1, "", "smooth_l1_loss"], [75, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.container.experimental.manipulation": [[75, 1, 1, "", "_ContainerWithManipulationExperimental"], [75, 2, 1, "", "concat_from_sequence"]], "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fill_diagonal"], [75, 0, 1, "", "_static_put_along_axis"], [75, 0, 1, "", "_static_take"], [75, 0, 1, "", "_static_trim_zeros"], [75, 0, 1, "", "_static_unique_consecutive"], [75, 0, 1, "", "as_strided"], [75, 0, 1, "", "associative_scan"], [75, 0, 1, "", "atleast_1d"], [75, 0, 1, "", "atleast_2d"], [75, 0, 1, "", "atleast_3d"], [75, 0, 1, "", "broadcast_shapes"], [75, 0, 1, "", "column_stack"], [75, 0, 1, "", "concat_from_sequence"], [75, 0, 1, "", "dsplit"], [75, 0, 1, "", "dstack"], [75, 0, 1, "", "expand"], [75, 0, 1, "", "fill_diagonal"], [75, 0, 1, "", "flatten"], [75, 0, 1, "", "fliplr"], [75, 0, 1, "", "flipud"], [75, 0, 1, "", "fold"], [75, 0, 1, "", "heaviside"], [75, 0, 1, "", "hsplit"], [75, 0, 1, "", "hstack"], [75, 0, 1, "", "i0"], [75, 0, 1, "", "matricize"], [75, 0, 1, "", "moveaxis"], [75, 0, 1, "", "pad"], [75, 0, 1, "", "partial_fold"], [75, 0, 1, "", "partial_tensor_to_vec"], [75, 0, 1, "", "partial_unfold"], [75, 0, 1, "", "partial_vec_to_tensor"], [75, 0, 1, "", "put_along_axis"], [75, 0, 1, "", "rot90"], [75, 0, 1, "", "soft_thresholding"], [75, 0, 1, "", "static_as_strided"], [75, 0, 1, "", "static_atleast_1d"], [75, 0, 1, "", "static_atleast_2d"], [75, 0, 1, "", "static_atleast_3d"], [75, 0, 1, "", "static_broadcast_shapes"], [75, 0, 1, "", "static_column_stack"], [75, 0, 1, "", "static_concat_from_sequence"], [75, 0, 1, "", "static_dsplit"], [75, 0, 1, "", "static_dstack"], [75, 0, 1, "", "static_expand"], [75, 0, 1, "", "static_flatten"], [75, 0, 1, "", "static_fliplr"], [75, 0, 1, "", "static_flipud"], [75, 0, 1, "", "static_fold"], [75, 0, 1, "", "static_heaviside"], [75, 0, 1, "", "static_hsplit"], [75, 0, 1, "", "static_hstack"], [75, 0, 1, "", "static_i0"], [75, 0, 1, "", "static_matricize"], [75, 0, 1, "", "static_moveaxis"], [75, 0, 1, "", "static_pad"], [75, 0, 1, "", "static_partial_fold"], [75, 0, 1, "", "static_partial_tensor_to_vec"], [75, 0, 1, "", "static_partial_unfold"], [75, 0, 1, "", "static_partial_vec_to_tensor"], [75, 0, 1, "", "static_rot90"], [75, 0, 1, "", "static_soft_thresholding"], [75, 0, 1, "", "static_take_along_axis"], [75, 0, 1, "", "static_top_k"], [75, 0, 1, "", "static_unfold"], [75, 0, 1, "", "static_vsplit"], [75, 0, 1, "", "static_vstack"], [75, 0, 1, "", "take"], [75, 0, 1, "", "take_along_axis"], [75, 0, 1, "", "top_k"], [75, 0, 1, "", "trim_zeros"], [75, 0, 1, "", "unfold"], [75, 0, 1, "", "unique_consecutive"], [75, 0, 1, "", "vsplit"], [75, 0, 1, "", "vstack"]], "ivy.data_classes.container.experimental.norms": [[75, 1, 1, "", "_ContainerWithNormsExperimental"]], "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "batch_norm"], [75, 0, 1, "", "group_norm"], [75, 0, 1, "", "instance_norm"], [75, 0, 1, "", "l1_normalize"], [75, 0, 1, "", "l2_normalize"], [75, 0, 1, "", "lp_normalize"], [75, 0, 1, "", "static_batch_norm"], [75, 0, 1, "", "static_group_norm"], [75, 0, 1, "", "static_instance_norm"], [75, 0, 1, "", "static_l1_normalize"], [75, 0, 1, "", "static_l2_normalize"], [75, 0, 1, "", "static_lp_normalize"]], "ivy.data_classes.container.experimental.random": [[75, 1, 1, "", "_ContainerWithRandomExperimental"]], "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "bernoulli"], [75, 0, 1, "", "beta"], [75, 0, 1, "", "dirichlet"], [75, 0, 1, "", "gamma"], [75, 0, 1, "", "poisson"], [75, 0, 1, "", "static_bernoulli"], [75, 0, 1, "", "static_beta"], [75, 0, 1, "", "static_dirichlet"], [75, 0, 1, "", "static_gamma"], [75, 0, 1, "", "static_poisson"]], "ivy.data_classes.container.experimental.searching": [[75, 1, 1, "", "_ContainerWithSearchingExperimental"]], "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "static_unravel_index"], [75, 0, 1, "", "unravel_index"]], "ivy.data_classes.container.experimental.set": [[75, 1, 1, "", "_ContainerWithSetExperimental"]], "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.sorting": [[75, 1, 1, "", "_ContainerWithSortingExperimental"]], "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "invert_permutation"], [75, 0, 1, "", "lexsort"], [75, 0, 1, "", "static_invert_permutation"], [75, 0, 1, "", "static_lexsort"]], "ivy.data_classes.container.experimental.statistical": [[75, 1, 1, "", "_ContainerWithStatisticalExperimental"]], "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_cummax"], [75, 0, 1, "", "_static_cummin"], [75, 0, 1, "", "_static_nanmin"], [75, 0, 1, "", "bincount"], [75, 0, 1, "", "corrcoef"], [75, 0, 1, "", "cov"], [75, 0, 1, "", "cummax"], [75, 0, 1, "", "cummin"], [75, 0, 1, "", "histogram"], [75, 0, 1, "", "igamma"], [75, 0, 1, "", "median"], [75, 0, 1, "", "nanmean"], [75, 0, 1, "", "nanmedian"], [75, 0, 1, "", "nanmin"], [75, 0, 1, "", "nanprod"], [75, 0, 1, "", "quantile"], [75, 0, 1, "", "static_bincount"], [75, 0, 1, "", "static_corrcoef"], [75, 0, 1, "", "static_cov"], [75, 0, 1, "", "static_histogram"], [75, 0, 1, "", "static_igamma"], [75, 0, 1, "", "static_median"], [75, 0, 1, "", "static_nanmean"], [75, 0, 1, "", "static_nanmedian"], [75, 0, 1, "", "static_nanprod"], [75, 0, 1, "", "static_quantile"]], "ivy.data_classes.container.experimental.utility": [[75, 1, 1, "", "_ContainerWithUtilityExperimental"]], "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "optional_get_element"], [75, 0, 1, "", "static_optional_get_element"]], "ivy.data_classes.container.general": [[76, 1, 1, "", "_ContainerWithGeneral"]], "ivy.data_classes.container.general._ContainerWithGeneral": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_all_equal"], [76, 0, 1, "", "_static_array_equal"], [76, 0, 1, "", "_static_assert_supports_inplace"], [76, 0, 1, "", "_static_clip_matrix_norm"], [76, 0, 1, "", "_static_clip_vector_norm"], [76, 0, 1, "", "_static_einops_rearrange"], [76, 0, 1, "", "_static_einops_reduce"], [76, 0, 1, "", "_static_einops_repeat"], [76, 0, 1, "", "_static_exists"], [76, 0, 1, "", "_static_fourier_encode"], [76, 0, 1, "", "_static_gather"], [76, 0, 1, "", "_static_gather_nd"], [76, 0, 1, "", "_static_get_num_dims"], [76, 0, 1, "", "_static_has_nans"], [76, 0, 1, "", "_static_inplace_decrement"], [76, 0, 1, "", "_static_inplace_increment"], [76, 0, 1, "", "_static_inplace_update"], [76, 0, 1, "", "_static_is_array"], [76, 0, 1, "", "_static_is_ivy_array"], [76, 0, 1, "", "_static_is_native_array"], [76, 0, 1, "", "_static_scatter_flat"], [76, 0, 1, "", "_static_scatter_nd"], [76, 0, 1, "", "_static_stable_divide"], [76, 0, 1, "", "_static_stable_pow"], [76, 0, 1, "", "_static_supports_inplace_updates"], [76, 0, 1, "", "_static_to_list"], [76, 0, 1, "", "_static_to_numpy"], [76, 0, 1, "", "_static_to_scalar"], [76, 0, 1, "", "_static_value_is_nan"], [76, 0, 1, "", "all_equal"], [76, 0, 1, "", "array_equal"], [76, 0, 1, "", "assert_supports_inplace"], [76, 0, 1, "", "clip_matrix_norm"], [76, 0, 1, "", "clip_vector_norm"], [76, 0, 1, "", "einops_rearrange"], [76, 0, 1, "", "einops_reduce"], [76, 0, 1, "", "einops_repeat"], [76, 0, 1, "", "exists"], [76, 0, 1, "", "fourier_encode"], [76, 0, 1, "", "gather"], [76, 0, 1, "", "gather_nd"], [76, 0, 1, "", "get_num_dims"], [76, 0, 1, "", "has_nans"], [76, 0, 1, "", "inplace_decrement"], [76, 0, 1, "", "inplace_increment"], [76, 0, 1, "", "inplace_update"], [76, 0, 1, "", "is_array"], [76, 0, 1, "", "is_ivy_array"], [76, 0, 1, "", "is_native_array"], [76, 0, 1, "", "isin"], [76, 0, 1, "", "itemsize"], [76, 0, 1, "", "scatter_flat"], [76, 0, 1, "", "scatter_nd"], [76, 0, 1, "", "stable_divide"], [76, 0, 1, "", "stable_pow"], [76, 0, 1, "", "static_isin"], [76, 0, 1, "", "static_itemsize"], [76, 0, 1, "", "static_strides"], [76, 0, 1, "", "strides"], [76, 0, 1, "", "supports_inplace_updates"], [76, 0, 1, "", "to_list"], [76, 0, 1, "", "to_numpy"], [76, 0, 1, "", "to_scalar"], [76, 0, 1, "", "value_is_nan"]], "ivy.data_classes.container.gradients": [[77, 1, 1, "", "_ContainerWithGradients"]], "ivy.data_classes.container.gradients._ContainerWithGradients": [[77, 4, 1, "", "_abc_impl"], [77, 0, 1, "", "_static_stop_gradient"], [77, 0, 1, "", "adam_step"], [77, 0, 1, "", "adam_update"], [77, 0, 1, "", "gradient_descent_update"], [77, 0, 1, "", "lamb_update"], [77, 0, 1, "", "lars_update"], [77, 0, 1, "", "optimizer_update"], [77, 0, 1, "", "stop_gradient"]], "ivy.data_classes.container.image": [[78, 1, 1, "", "_ContainerWithImage"]], "ivy.data_classes.container.image._ContainerWithImage": [[78, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.layers": [[79, 1, 1, "", "_ContainerWithLayers"]], "ivy.data_classes.container.layers._ContainerWithLayers": [[79, 4, 1, "", "_abc_impl"], [79, 0, 1, "", "_static_conv1d"], [79, 0, 1, "", "_static_conv1d_transpose"], [79, 0, 1, "", "_static_conv2d"], [79, 0, 1, "", "_static_conv2d_transpose"], [79, 0, 1, "", "_static_conv3d"], [79, 0, 1, "", "_static_conv3d_transpose"], [79, 0, 1, "", "_static_depthwise_conv2d"], [79, 0, 1, "", "_static_dropout"], [79, 0, 1, "", "_static_dropout1d"], [79, 0, 1, "", "_static_dropout2d"], [79, 0, 1, "", "_static_dropout3d"], [79, 0, 1, "", "_static_linear"], [79, 0, 1, "", "_static_lstm_update"], [79, 0, 1, "", "_static_multi_head_attention"], [79, 0, 1, "", "_static_reduce_window"], [79, 0, 1, "", "_static_scaled_dot_product_attention"], [79, 0, 1, "", "conv1d"], [79, 0, 1, "", "conv1d_transpose"], [79, 0, 1, "", "conv2d"], [79, 0, 1, "", "conv2d_transpose"], [79, 0, 1, "", "conv3d"], [79, 0, 1, "", "conv3d_transpose"], [79, 0, 1, "", "depthwise_conv2d"], [79, 0, 1, "", "dropout"], [79, 0, 1, "", "dropout1d"], [79, 0, 1, "", "dropout2d"], [79, 0, 1, "", "dropout3d"], [79, 0, 1, "", "linear"], [79, 0, 1, "", "lstm_update"], [79, 0, 1, "", "multi_head_attention"], [79, 0, 1, "", "reduce_window"], [79, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.container.linear_algebra": [[80, 1, 1, "", "_ContainerWithLinearAlgebra"]], "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_cholesky"], [80, 0, 1, "", "_static_cross"], [80, 0, 1, "", "_static_det"], [80, 0, 1, "", "_static_diag"], [80, 0, 1, "", "_static_diagonal"], [80, 0, 1, "", "_static_eigh"], [80, 0, 1, "", "_static_eigvalsh"], [80, 0, 1, "", "_static_inner"], [80, 0, 1, "", "_static_inv"], [80, 0, 1, "", "_static_matmul"], [80, 0, 1, "", "_static_matrix_norm"], [80, 0, 1, "", "_static_matrix_power"], [80, 0, 1, "", "_static_matrix_rank"], [80, 0, 1, "", "_static_matrix_transpose"], [80, 0, 1, "", "_static_outer"], [80, 0, 1, "", "_static_pinv"], [80, 0, 1, "", "_static_qr"], [80, 0, 1, "", "_static_slogdet"], [80, 0, 1, "", "_static_solve"], [80, 0, 1, "", "_static_svd"], [80, 0, 1, "", "_static_svdvals"], [80, 0, 1, "", "_static_tensordot"], [80, 0, 1, "", "_static_tensorsolve"], [80, 0, 1, "", "_static_trace"], [80, 0, 1, "", "_static_vander"], [80, 0, 1, "", "_static_vecdot"], [80, 0, 1, "", "_static_vector_norm"], [80, 0, 1, "", "_static_vector_to_skew_symmetric_matrix"], [80, 0, 1, "", "cholesky"], [80, 0, 1, "", "cross"], [80, 0, 1, "", "det"], [80, 0, 1, "", "diag"], [80, 0, 1, "", "diagonal"], [80, 0, 1, "", "eigh"], [80, 0, 1, "", "eigvalsh"], [80, 0, 1, "", "general_inner_product"], [80, 0, 1, "", "inner"], [80, 0, 1, "", "inv"], [80, 0, 1, "", "matmul"], [80, 0, 1, "", "matrix_norm"], [80, 0, 1, "", "matrix_power"], [80, 0, 1, "", "matrix_rank"], [80, 0, 1, "", "matrix_transpose"], [80, 0, 1, "", "outer"], [80, 0, 1, "", "pinv"], [80, 0, 1, "", "qr"], [80, 0, 1, "", "slogdet"], [80, 0, 1, "", "solve"], [80, 0, 1, "", "static_general_inner_product"], [80, 0, 1, "", "svd"], [80, 0, 1, "", "svdvals"], [80, 0, 1, "", "tensordot"], [80, 0, 1, "", "tensorsolve"], [80, 0, 1, "", "trace"], [80, 0, 1, "", "vander"], [80, 0, 1, "", "vecdot"], [80, 0, 1, "", "vector_norm"], [80, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.container.losses": [[81, 1, 1, "", "_ContainerWithLosses"]], "ivy.data_classes.container.losses._ContainerWithLosses": [[81, 4, 1, "", "_abc_impl"], [81, 0, 1, "", "_static_binary_cross_entropy"], [81, 0, 1, "", "_static_cross_entropy"], [81, 0, 1, "", "_static_sparse_cross_entropy"], [81, 0, 1, "", "binary_cross_entropy"], [81, 0, 1, "", "cross_entropy"], [81, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.container.manipulation": [[82, 1, 1, "", "_ContainerWithManipulation"]], "ivy.data_classes.container.manipulation._ContainerWithManipulation": [[82, 4, 1, "", "_abc_impl"], [82, 0, 1, "", "_static_clip"], [82, 0, 1, "", "_static_concat"], [82, 0, 1, "", "_static_constant_pad"], [82, 0, 1, "", "_static_expand_dims"], [82, 0, 1, "", "_static_flip"], [82, 0, 1, "", "_static_permute_dims"], [82, 0, 1, "", "_static_repeat"], [82, 0, 1, "", "_static_reshape"], [82, 0, 1, "", "_static_roll"], [82, 0, 1, "", "_static_split"], [82, 0, 1, "", "_static_squeeze"], [82, 0, 1, "", "_static_stack"], [82, 0, 1, "", "_static_swapaxes"], [82, 0, 1, "", "_static_tile"], [82, 0, 1, "", "_static_unstack"], [82, 0, 1, "", "_static_zero_pad"], [82, 0, 1, "", "clip"], [82, 0, 1, "", "concat"], [82, 0, 1, "", "constant_pad"], [82, 0, 1, "", "expand_dims"], [82, 0, 1, "", "flip"], [82, 0, 1, "", "permute_dims"], [82, 0, 1, "", "repeat"], [82, 0, 1, "", "reshape"], [82, 0, 1, "", "roll"], [82, 0, 1, "", "split"], [82, 0, 1, "", "squeeze"], [82, 0, 1, "", "stack"], [82, 0, 1, "", "swapaxes"], [82, 0, 1, "", "tile"], [82, 0, 1, "", "unstack"], [82, 0, 1, "", "zero_pad"]], "ivy.data_classes.container.norms": [[83, 1, 1, "", "_ContainerWithNorms"]], "ivy.data_classes.container.norms._ContainerWithNorms": [[83, 4, 1, "", "_abc_impl"], [83, 0, 1, "", "layer_norm"]], "ivy.data_classes.container.random": [[84, 1, 1, "", "_ContainerWithRandom"]], "ivy.data_classes.container.random._ContainerWithRandom": [[84, 4, 1, "", "_abc_impl"], [84, 0, 1, "", "_static_multinomial"], [84, 0, 1, "", "_static_randint"], [84, 0, 1, "", "_static_random_normal"], [84, 0, 1, "", "_static_random_uniform"], [84, 0, 1, "", "_static_shuffle"], [84, 0, 1, "", "multinomial"], [84, 0, 1, "", "randint"], [84, 0, 1, "", "random_normal"], [84, 0, 1, "", "random_uniform"], [84, 0, 1, "", "shuffle"]], "ivy.data_classes.container.searching": [[85, 1, 1, "", "_ContainerWithSearching"]], "ivy.data_classes.container.searching._ContainerWithSearching": [[85, 4, 1, "", "_abc_impl"], [85, 0, 1, "", "_static_argmax"], [85, 0, 1, "", "_static_argmin"], [85, 0, 1, "", "_static_argwhere"], [85, 0, 1, "", "_static_nonzero"], [85, 0, 1, "", "_static_where"], [85, 0, 1, "", "argmax"], [85, 0, 1, "", "argmin"], [85, 0, 1, "", "argwhere"], [85, 0, 1, "", "nonzero"], [85, 0, 1, "", "where"]], "ivy.data_classes.container.set": [[86, 1, 1, "", "_ContainerWithSet"]], "ivy.data_classes.container.set._ContainerWithSet": [[86, 4, 1, "", "_abc_impl"], [86, 0, 1, "", "_static_unique_all"], [86, 0, 1, "", "_static_unique_counts"], [86, 0, 1, "", "_static_unique_inverse"], [86, 0, 1, "", "_static_unique_values"], [86, 0, 1, "", "unique_all"], [86, 0, 1, "", "unique_counts"], [86, 0, 1, "", "unique_inverse"], [86, 0, 1, "", "unique_values"]], "ivy.data_classes.container.sorting": [[87, 1, 1, "", "_ContainerWithSorting"]], "ivy.data_classes.container.sorting._ContainerWithSorting": [[87, 4, 1, "", "_abc_impl"], [87, 0, 1, "", "_static_argsort"], [87, 0, 1, "", "_static_searchsorted"], [87, 0, 1, "", "_static_sort"], [87, 0, 1, "", "argsort"], [87, 0, 1, "", "msort"], [87, 0, 1, "", "searchsorted"], [87, 0, 1, "", "sort"], [87, 0, 1, "", "static_msort"]], "ivy.data_classes.container.statistical": [[88, 1, 1, "", "_ContainerWithStatistical"]], "ivy.data_classes.container.statistical._ContainerWithStatistical": [[88, 4, 1, "", "_abc_impl"], [88, 0, 1, "", "_static_cumprod"], [88, 0, 1, "", "_static_cumsum"], [88, 0, 1, "", "_static_min"], [88, 0, 1, "", "_static_prod"], [88, 0, 1, "", "_static_sum"], [88, 0, 1, "", "_static_var"], [88, 0, 1, "", "cumprod"], [88, 0, 1, "", "cumsum"], [88, 0, 1, "", "einsum"], [88, 0, 1, "", "max"], [88, 0, 1, "", "mean"], [88, 0, 1, "", "min"], [88, 0, 1, "", "prod"], [88, 0, 1, "", "std"], [88, 0, 1, "", "sum"], [88, 0, 1, "", "var"]], "ivy.data_classes.container.utility": [[89, 1, 1, "", "_ContainerWithUtility"]], "ivy.data_classes.container.utility._ContainerWithUtility": [[89, 4, 1, "", "_abc_impl"], [89, 0, 1, "", "_static_all"], [89, 0, 1, "", "_static_any"], [89, 0, 1, "", "all"], [89, 0, 1, "", "any"]], "ivy.data_classes.container.wrapping": [[90, 2, 1, "", "_wrap_function"], [90, 2, 1, "", "add_ivy_container_instance_methods"]], "ivy.data_classes.factorized_tensor": [[91, 3, 0, "-", "base"], [92, 3, 0, "-", "cp_tensor"], [93, 3, 0, "-", "parafac2_tensor"], [94, 3, 0, "-", "tr_tensor"], [95, 3, 0, "-", "tt_tensor"], [96, 3, 0, "-", "tucker_tensor"]], "ivy.data_classes.factorized_tensor.base": [[91, 1, 1, "", "FactorizedTensor"]], "ivy.data_classes.factorized_tensor.base.FactorizedTensor": [[91, 0, 1, "", "__init__"], [91, 4, 1, "", "_abc_impl"], [91, 0, 1, "", "mode_dot"], [91, 0, 1, "", "norm"], [91, 0, 1, "", "to_tensor"], [91, 0, 1, "", "to_unfolded"], [91, 0, 1, "", "to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, 1, 1, "", "CPTensor"]], "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor": [[92, 0, 1, "", "__init__"], [92, 4, 1, "", "_abc_impl"], [92, 0, 1, "", "cp_copy"], [92, 0, 1, "", "cp_flip_sign"], [92, 0, 1, "", "cp_lstsq_grad"], [92, 0, 1, "", "cp_mode_dot"], [92, 0, 1, "", "cp_n_param"], [92, 0, 1, "", "cp_norm"], [92, 0, 1, "", "cp_normalize"], [92, 0, 1, "", "cp_to_tensor"], [92, 0, 1, "", "cp_to_unfolded"], [92, 0, 1, "", "cp_to_vec"], [92, 0, 1, "", "mode_dot"], [92, 5, 1, "", "n_param"], [92, 0, 1, "", "norm"], [92, 0, 1, "", "normalize"], [92, 0, 1, "", "to_tensor"], [92, 0, 1, "", "to_unfolded"], [92, 0, 1, "", "to_vec"], [92, 0, 1, "", "unfolding_dot_khatri_rao"], [92, 0, 1, "", "validate_cp_rank"], [92, 0, 1, "", "validate_cp_tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, 1, 1, "", "Parafac2Tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor": [[93, 0, 1, "", "__init__"], [93, 4, 1, "", "_abc_impl"], [93, 0, 1, "", "apply_parafac2_projections"], [93, 0, 1, "", "from_CPTensor"], [93, 5, 1, "", "n_param"], [93, 0, 1, "", "parafac2_normalise"], [93, 0, 1, "", "parafac2_to_slice"], [93, 0, 1, "", "parafac2_to_slices"], [93, 0, 1, "", "parafac2_to_tensor"], [93, 0, 1, "", "parafac2_to_unfolded"], [93, 0, 1, "", "parafac2_to_vec"], [93, 0, 1, "", "to_tensor"], [93, 0, 1, "", "to_unfolded"], [93, 0, 1, "", "to_vec"], [93, 0, 1, "", "validate_parafac2_tensor"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, 1, 1, "", "TRTensor"]], "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor": [[94, 0, 1, "", "__init__"], [94, 4, 1, "", "_abc_impl"], [94, 5, 1, "", "n_param"], [94, 0, 1, "", "to_tensor"], [94, 0, 1, "", "to_unfolded"], [94, 0, 1, "", "to_vec"], [94, 0, 1, "", "tr_n_param"], [94, 0, 1, "", "tr_to_tensor"], [94, 0, 1, "", "tr_to_unfolded"], [94, 0, 1, "", "tr_to_vec"], [94, 0, 1, "", "validate_tr_rank"], [94, 0, 1, "", "validate_tr_tensor"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, 1, 1, "", "TTTensor"]], "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor": [[95, 0, 1, "", "__init__"], [95, 4, 1, "", "_abc_impl"], [95, 0, 1, "", "_tt_n_param"], [95, 0, 1, "", "index_update"], [95, 5, 1, "", "n_param"], [95, 0, 1, "", "pad_tt_rank"], [95, 0, 1, "", "to_tensor"], [95, 0, 1, "", "to_unfolding"], [95, 0, 1, "", "to_vec"], [95, 0, 1, "", "tt_to_tensor"], [95, 0, 1, "", "tt_to_unfolded"], [95, 0, 1, "", "tt_to_vec"], [95, 0, 1, "", "validate_tt_rank"], [95, 0, 1, "", "validate_tt_tensor"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, 1, 1, "", "TuckerTensor"], [96, 2, 1, "", "_bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor": [[96, 0, 1, "", "__init__"], [96, 4, 1, "", "_abc_impl"], [96, 0, 1, "", "mode_dot"], [96, 5, 1, "", "n_param"], [96, 0, 1, "", "to_tensor"], [96, 0, 1, "", "to_unfolded"], [96, 0, 1, "", "to_vec"], [96, 0, 1, "", "tucker_copy"], [96, 0, 1, "", "tucker_mode_dot"], [96, 0, 1, "", "tucker_n_param"], [96, 0, 1, "", "tucker_normalize"], [96, 0, 1, "", "tucker_to_tensor"], [96, 0, 1, "", "tucker_to_unfolded"], [96, 0, 1, "", "tucker_to_vec"], [96, 0, 1, "", "validate_tucker_rank"], [96, 0, 1, "", "validate_tucker_tensor"]], "ivy.data_classes.nested_array": [[101, 3, 0, "-", "base"], [102, 3, 0, "-", "elementwise"], [100, 3, 0, "-", "nested_array"]], "ivy.data_classes.nested_array.base": [[101, 1, 1, "", "NestedArrayBase"]], "ivy.data_classes.nested_array.base.NestedArrayBase": [[101, 0, 1, "", "__init__"], [101, 4, 1, "", "_abc_impl"], [101, 0, 1, "", "broadcast_shapes"], [101, 5, 1, "", "data"], [101, 5, 1, "", "device"], [101, 5, 1, "", "dtype"], [101, 5, 1, "", "inner_shape"], [101, 5, 1, "", "ndim"], [101, 0, 1, "", "nested_array"], [101, 5, 1, "", "nested_rank"], [101, 0, 1, "", "ragged_map"], [101, 0, 1, "", "ragged_multi_map"], [101, 0, 1, "", "ragged_multi_map_in_function"], [101, 0, 1, "", "replace_ivy_arrays"], [101, 5, 1, "", "shape"], [101, 0, 1, "", "unbind"]], "ivy.data_classes.nested_array.elementwise": [[102, 1, 1, "", "NestedArrayElementwise"]], "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise": [[102, 4, 1, "", "_abc_impl"], [102, 0, 1, "", "static_add"]], "ivy.data_classes.nested_array.nested_array": [[100, 1, 1, "", "NestedArray"]], "ivy.data_classes.nested_array.nested_array.NestedArray": [[100, 0, 1, "", "__init__"], [100, 0, 1, "", "from_row_lengths"], [100, 0, 1, "", "from_row_splits"]], "ivy.functional.ivy": [[612, 3, 0, "-", "activations"], [613, 3, 0, "-", "constants"], [614, 3, 0, "-", "control_flow_ops"], [615, 3, 0, "-", "creation"], [616, 3, 0, "-", "data_type"], [617, 3, 0, "-", "device"], [618, 3, 0, "-", "elementwise"], [619, 3, 0, "-", "experimental"], [620, 3, 0, "-", "general"], [621, 3, 0, "-", "gradients"], [622, 3, 0, "-", "layers"], [623, 3, 0, "-", "linear_algebra"], [624, 3, 0, "-", "losses"], [625, 3, 0, "-", "manipulation"], [626, 3, 0, "-", "meta"], [627, 3, 0, "-", "nest"], [628, 3, 0, "-", "norms"], [629, 3, 0, "-", "random"], [630, 3, 0, "-", "searching"], [631, 3, 0, "-", "set"], [632, 3, 0, "-", "sorting"], [633, 3, 0, "-", "statistical"], [634, 3, 0, "-", "utility"]], "ivy.functional.ivy.experimental": [[360, 3, 0, "-", "activations"], [361, 3, 0, "-", "constants"], [362, 3, 0, "-", "creation"], [363, 3, 0, "-", "data_type"], [364, 3, 0, "-", "device"], [365, 3, 0, "-", "elementwise"], [366, 3, 0, "-", "general"], [367, 3, 0, "-", "gradients"], [368, 3, 0, "-", "layers"], [369, 3, 0, "-", "linear_algebra"], [370, 3, 0, "-", "losses"], [371, 3, 0, "-", "manipulation"], [372, 3, 0, "-", "meta"], [373, 3, 0, "-", "nest"], [374, 3, 0, "-", "norms"], [375, 3, 0, "-", "random"], [376, 3, 0, "-", "searching"], [377, 3, 0, "-", "set"], [378, 3, 0, "-", "sorting"], [379, 3, 0, "-", "sparse_array"], [380, 3, 0, "-", "statistical"], [381, 3, 0, "-", "utility"]], "ivy.stateful": [[774, 3, 0, "-", "activations"], [775, 3, 0, "-", "converters"], [776, 3, 0, "-", "helpers"], [777, 3, 0, "-", "initializers"], [778, 3, 0, "-", "layers"], [779, 3, 0, "-", "losses"], [780, 3, 0, "-", "module"], [781, 3, 0, "-", "norms"], [782, 3, 0, "-", "optimizers"], [783, 3, 0, "-", "sequential"]], "ivy.stateful.activations": [[774, 1, 1, "", "ELU"], [774, 1, 1, "", "GEGLU"], [774, 1, 1, "", "GELU"], [774, 1, 1, "", "Hardswish"], [774, 1, 1, "", "LeakyReLU"], [774, 1, 1, "", "LogSigmoid"], [774, 1, 1, "", "LogSoftmax"], [774, 1, 1, "", "Logit"], [774, 1, 1, "", "Mish"], [774, 1, 1, "", "PReLU"], [774, 1, 1, "", "ReLU"], [774, 1, 1, "", "ReLU6"], [774, 1, 1, "", "SeLU"], [774, 1, 1, "", "SiLU"], [774, 1, 1, "", "Sigmoid"], [774, 1, 1, "", "Softmax"], [774, 1, 1, "", "Softplus"], [774, 1, 1, "", "Tanh"]], "ivy.stateful.activations.ELU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.GEGLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.GELU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Hardswish": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.LeakyReLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSigmoid": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSoftmax": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Logit": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Mish": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.PReLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU6": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.SeLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.SiLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Sigmoid": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softmax": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softplus": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Tanh": [[774, 0, 1, "", "__init__"]], "ivy.stateful.converters": [[775, 1, 1, "", "ModuleConverters"], [775, 2, 1, "", "to_ivy_module"]], "ivy.stateful.converters.ModuleConverters": [[775, 0, 1, "", "from_flax_module"], [775, 0, 1, "", "from_haiku_module"], [775, 0, 1, "", "from_keras_module"], [775, 0, 1, "", "from_paddle_module"], [775, 0, 1, "", "from_torch_module"], [775, 0, 1, "", "to_keras_module"]], "ivy.stateful.helpers": [[776, 1, 1, "", "ModuleHelpers"]], "ivy.stateful.initializers": [[777, 1, 1, "", "Constant"], [777, 1, 1, "", "FirstLayerSiren"], [777, 1, 1, "", "GlorotUniform"], [777, 1, 1, "", "Initializer"], [777, 1, 1, "", "KaimingNormal"], [777, 1, 1, "", "Ones"], [777, 1, 1, "", "RandomNormal"], [777, 1, 1, "", "Siren"], [777, 1, 1, "", "Uniform"], [777, 1, 1, "", "Zeros"]], "ivy.stateful.initializers.Constant": [[777, 0, 1, "", "__init__"], [777, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.FirstLayerSiren": [[777, 0, 1, "", "__init__"]], "ivy.stateful.initializers.GlorotUniform": [[777, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Initializer": [[777, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.KaimingNormal": [[777, 0, 1, "", "__init__"], [777, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Ones": [[777, 0, 1, "", "__init__"]], "ivy.stateful.initializers.RandomNormal": [[777, 0, 1, "", "__init__"], [777, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Siren": [[777, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Uniform": [[777, 0, 1, "", "__init__"], [777, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Zeros": [[777, 0, 1, "", "__init__"]], "ivy.stateful.layers": [[778, 1, 1, "", "AdaptiveAvgPool1d"], [778, 1, 1, "", "AdaptiveAvgPool2d"], [778, 1, 1, "", "AvgPool1D"], [778, 1, 1, "", "AvgPool2D"], [778, 1, 1, "", "AvgPool3D"], [778, 1, 1, "", "Conv1D"], [778, 1, 1, "", "Conv1DTranspose"], [778, 1, 1, "", "Conv2D"], [778, 1, 1, "", "Conv2DTranspose"], [778, 1, 1, "", "Conv3D"], [778, 1, 1, "", "Conv3DTranspose"], [778, 1, 1, "", "Dct"], [778, 1, 1, "", "DepthwiseConv2D"], [778, 1, 1, "", "Dropout"], [778, 1, 1, "", "Embedding"], [778, 1, 1, "", "FFT"], [778, 1, 1, "", "IFFT"], [778, 1, 1, "", "Identity"], [778, 1, 1, "", "LSTM"], [778, 1, 1, "", "Linear"], [778, 1, 1, "", "MaxPool1D"], [778, 1, 1, "", "MaxPool2D"], [778, 1, 1, "", "MaxPool3D"], [778, 1, 1, "", "MultiHeadAttention"]], "ivy.stateful.layers.AdaptiveAvgPool1d": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.AdaptiveAvgPool2d": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool1D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool2D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool3D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1DTranspose": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2DTranspose": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3DTranspose": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dct": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.DepthwiseConv2D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dropout": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Embedding": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.FFT": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.IFFT": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Identity": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.LSTM": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "get_initial_state"]], "ivy.stateful.layers.Linear": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool1D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool2D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool3D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.MultiHeadAttention": [[778, 0, 1, "", "__init__"]], "ivy.stateful.losses": [[779, 1, 1, "", "BinaryCrossEntropyLoss"], [779, 1, 1, "", "CrossEntropyLoss"], [779, 1, 1, "", "LogPoissonLoss"]], "ivy.stateful.losses.BinaryCrossEntropyLoss": [[779, 0, 1, "", "__init__"]], "ivy.stateful.losses.CrossEntropyLoss": [[779, 0, 1, "", "__init__"]], "ivy.stateful.losses.LogPoissonLoss": [[779, 0, 1, "", "__init__"]], "ivy.stateful.module": [[780, 1, 1, "", "Module"], [780, 1, 1, "", "ModuleMeta"]], "ivy.stateful.module.Module": [[780, 0, 1, "", "__call__"], [780, 0, 1, "", "__init__"], [780, 5, 1, "", "buffers"], [780, 0, 1, "", "build"], [780, 5, 1, "", "build_mode"], [780, 5, 1, "", "built"], [780, 5, 1, "", "device"], [780, 5, 1, "", "dtype"], [780, 0, 1, "", "eval"], [780, 0, 1, "", "load"], [780, 5, 1, "", "module_dict"], [780, 0, 1, "", "register_buffer"], [780, 0, 1, "", "register_parameter"], [780, 0, 1, "", "save"], [780, 0, 1, "", "save_weights"], [780, 0, 1, "", "show_graph"], [780, 5, 1, "", "state_dict"], [780, 0, 1, "", "to_device"], [780, 0, 1, "", "trace_graph"], [780, 0, 1, "", "train"], [780, 5, 1, "", "training"], [780, 5, 1, "", "v"]], "ivy.stateful.norms": [[781, 1, 1, "", "BatchNorm2D"], [781, 1, 1, "", "LayerNorm"]], "ivy.stateful.norms.BatchNorm2D": [[781, 0, 1, "", "__init__"]], "ivy.stateful.norms.LayerNorm": [[781, 0, 1, "", "__init__"]], "ivy.stateful.optimizers": [[782, 1, 1, "", "Adam"], [782, 1, 1, "", "AdamW"], [782, 1, 1, "", "LAMB"], [782, 1, 1, "", "LARS"], [782, 1, 1, "", "Optimizer"], [782, 1, 1, "", "SGD"]], "ivy.stateful.optimizers.Adam": [[782, 0, 1, "", "__init__"], [782, 0, 1, "", "set_state"], [782, 5, 1, "", "state"]], "ivy.stateful.optimizers.AdamW": [[782, 0, 1, "", "__init__"]], "ivy.stateful.optimizers.LAMB": [[782, 0, 1, "", "__init__"], [782, 0, 1, "", "set_state"], [782, 5, 1, "", "state"]], "ivy.stateful.optimizers.LARS": [[782, 0, 1, "", "__init__"], [782, 0, 1, "", "set_state"], [782, 5, 1, "", "state"]], "ivy.stateful.optimizers.Optimizer": [[782, 0, 1, "", "__init__"], [782, 0, 1, "", "set_state"], [782, 0, 1, "", "step"]], "ivy.stateful.optimizers.SGD": [[782, 0, 1, "", "__init__"], [782, 0, 1, "", "set_state"], [782, 5, 1, "", "state"]], "ivy.stateful.sequential": [[783, 1, 1, "", "Sequential"]], "ivy.stateful.sequential.Sequential": [[783, 0, 1, "", "__init__"]], "ivy.utils": [[784, 3, 0, "-", "assertions"], [785, 3, 0, "-", "backend"], [789, 3, 0, "-", "binaries"], [790, 3, 0, "-", "dynamic_import"], [791, 3, 0, "-", "einsum_parser"], [792, 3, 0, "-", "einsum_path_helpers"], [793, 3, 0, "-", "exceptions"], [794, 3, 0, "-", "inspection"], [795, 3, 0, "-", "logging"], [796, 3, 0, "-", "profiler"], [797, 3, 0, "-", "verbosity"]], "ivy.utils.assertions": [[784, 2, 1, "", "check_all"], [784, 2, 1, "", "check_all_or_any_fn"], [784, 2, 1, "", "check_any"], [784, 2, 1, "", "check_dev_correct_formatting"], [784, 2, 1, "", "check_dimensions"], [784, 2, 1, "", "check_elem_in_list"], [784, 2, 1, "", "check_equal"], [784, 2, 1, "", "check_exists"], [784, 2, 1, "", "check_false"], [784, 2, 1, "", "check_gather_input_valid"], [784, 2, 1, "", "check_gather_nd_input_valid"], [784, 2, 1, "", "check_greater"], [784, 2, 1, "", "check_inplace_sizes_valid"], [784, 2, 1, "", "check_isinstance"], [784, 2, 1, "", "check_kernel_padding_size"], [784, 2, 1, "", "check_less"], [784, 2, 1, "", "check_one_way_broadcastable"], [784, 2, 1, "", "check_same_dtype"], [784, 2, 1, "", "check_shape"], [784, 2, 1, "", "check_shapes_broadcastable"], [784, 2, 1, "", "check_true"], [784, 2, 1, "", "check_unsorted_segment_valid_params"]], "ivy.utils.backend": [[786, 3, 0, "-", "ast_helpers"], [787, 3, 0, "-", "handler"], [788, 3, 0, "-", "sub_backend_handler"]], "ivy.utils.backend.ast_helpers": [[786, 1, 1, "", "ImportTransformer"], [786, 1, 1, "", "IvyLoader"], [786, 1, 1, "", "IvyPathFinder"]], "ivy.utils.backend.ast_helpers.ImportTransformer": [[786, 0, 1, "", "__init__"], [786, 0, 1, "", "impersonate_import"], [786, 0, 1, "", "visit_Import"], [786, 0, 1, "", "visit_ImportFrom"]], "ivy.utils.backend.ast_helpers.IvyLoader": [[786, 0, 1, "", "__init__"], [786, 0, 1, "", "exec_module"]], "ivy.utils.backend.ast_helpers.IvyPathFinder": [[786, 0, 1, "", "find_spec"]], "ivy.utils.backend.handler": [[787, 1, 1, "", "ContextManager"], [787, 2, 1, "", "choose_random_backend"], [787, 2, 1, "", "current_backend"], [787, 2, 1, "", "dynamic_backend_converter"], [787, 2, 1, "", "prevent_access_locally"], [787, 2, 1, "", "previous_backend"], [787, 2, 1, "", "set_backend"], [787, 2, 1, "", "set_backend_to_specific_version"], [787, 2, 1, "", "set_jax_backend"], [787, 2, 1, "", "set_mxnet_backend"], [787, 2, 1, "", "set_numpy_backend"], [787, 2, 1, "", "set_paddle_backend"], [787, 2, 1, "", "set_tensorflow_backend"], [787, 2, 1, "", "set_torch_backend"], [787, 2, 1, "", "unset_backend"], [787, 2, 1, "", "with_backend"]], "ivy.utils.backend.handler.ContextManager": [[787, 0, 1, "", "__init__"]], "ivy.utils.backend.sub_backend_handler": [[788, 2, 1, "", "clear_sub_backends"], [788, 2, 1, "", "find_available_sub_backends"], [788, 2, 1, "", "fn_name_from_version_specific_fn_name"], [788, 2, 1, "", "fn_name_from_version_specific_fn_name_sub_backend"], [788, 2, 1, "", "set_sub_backend"], [788, 2, 1, "", "set_sub_backend_to_specific_version"], [788, 2, 1, "", "unset_sub_backend"]], "ivy.utils.binaries": [[789, 2, 1, "", "check_for_binaries"], [789, 2, 1, "", "cleanup_and_fetch_binaries"]], "ivy.utils.dynamic_import": [[790, 2, 1, "", "import_module"]], "ivy.utils.einsum_parser": [[791, 2, 1, "", "convert_interleaved_input"], [791, 2, 1, "", "convert_subscripts"], [791, 2, 1, "", "find_output_shape"], [791, 2, 1, "", "find_output_str"], [791, 2, 1, "", "gen_unused_symbols"], [791, 2, 1, "", "get_symbol"], [791, 2, 1, "", "has_valid_einsum_chars_only"], [791, 2, 1, "", "is_valid_einsum_char"], [791, 2, 1, "", "legalise_einsum_expr"], [791, 2, 1, "", "possibly_convert_to_numpy"]], "ivy.utils.einsum_path_helpers": [[792, 2, 1, "", "can_dot"], [792, 2, 1, "", "compute_size_by_dict"], [792, 2, 1, "", "find_contraction"], [792, 2, 1, "", "flop_count"], [792, 2, 1, "", "greedy_path"], [792, 2, 1, "", "optimal_path"], [792, 2, 1, "", "parse_einsum_input"], [792, 2, 1, "", "parse_possible_contraction"], [792, 2, 1, "", "update_other_results"]], "ivy.utils.exceptions": [[793, 7, 1, "", "InplaceUpdateException"], [793, 7, 1, "", "IvyAttributeError"], [793, 7, 1, "", "IvyBackendException"], [793, 7, 1, "", "IvyBroadcastShapeError"], [793, 7, 1, "", "IvyDeviceError"], [793, 7, 1, "", "IvyDtypePromotionError"], [793, 7, 1, "", "IvyError"], [793, 7, 1, "", "IvyException"], [793, 7, 1, "", "IvyIndexError"], [793, 7, 1, "", "IvyInvalidBackendException"], [793, 7, 1, "", "IvyNotImplementedException"], [793, 7, 1, "", "IvyValueError"], [793, 2, 1, "", "handle_exceptions"]], "ivy.utils.exceptions.InplaceUpdateException": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyAttributeError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBackendException": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBroadcastShapeError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDeviceError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDtypePromotionError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyException": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyIndexError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyInvalidBackendException": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyNotImplementedException": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyValueError": [[793, 0, 1, "", "__init__"]], "ivy.utils.inspection": [[794, 2, 1, "", "add_array_specs"], [794, 2, 1, "", "fn_array_spec"]], "ivy.utils.logging": [[795, 2, 1, "", "set_logging_mode"], [795, 2, 1, "", "unset_logging_mode"]], "ivy.utils.profiler": [[796, 1, 1, "", "Profiler"]], "ivy.utils.profiler.Profiler": [[796, 0, 1, "", "__init__"], [796, 4, 1, "", "print_stats"], [796, 4, 1, "", "viz"]], "ivy.utils.verbosity": [[797, 2, 1, "", "cprint"]], "ivy_tests.test_ivy.helpers": [[757, 3, 0, "-", "assertions"], [758, 3, 0, "-", "available_frameworks"], [759, 3, 0, "-", "function_testing"], [760, 3, 0, "-", "globals"], [761, 3, 0, "-", "hypothesis_helpers"], [766, 3, 0, "-", "multiprocessing"], [767, 3, 0, "-", "pipeline_helper"], [768, 3, 0, "-", "structs"], [769, 3, 0, "-", "test_parameter_flags"], [770, 3, 0, "-", "testing_helpers"]], "ivy_tests.test_ivy.helpers.assertions": [[757, 2, 1, "", "assert_all_close"], [757, 2, 1, "", "assert_same_type"], [757, 2, 1, "", "assert_same_type_and_shape"], [757, 2, 1, "", "check_unsupported_device"], [757, 2, 1, "", "check_unsupported_device_and_dtype"], [757, 2, 1, "", "check_unsupported_dtype"], [757, 2, 1, "", "test_unsupported_function"], [757, 2, 1, "", "value_test"]], "ivy_tests.test_ivy.helpers.function_testing": [[759, 2, 1, "", "args_to_container"], [759, 2, 1, "", "args_to_frontend"], [759, 2, 1, "", "arrays_to_frontend"], [759, 2, 1, "", "as_lists"], [759, 2, 1, "", "convtrue"], [759, 2, 1, "", "create_args_kwargs"], [759, 2, 1, "", "flatten"], [759, 2, 1, "", "flatten_and_to_np"], [759, 2, 1, "", "flatten_frontend"], [759, 2, 1, "", "flatten_frontend_fw_to_np"], [759, 2, 1, "", "flatten_frontend_to_np"], [759, 2, 1, "", "get_frontend_ret"], [759, 2, 1, "", "get_ret_and_flattened_np_array"], [759, 2, 1, "", "gradient_incompatible_function"], [759, 2, 1, "", "gradient_test"], [759, 2, 1, "", "gradient_unsupported_dtypes"], [759, 2, 1, "", "kwargs_to_args_n_kwargs"], [759, 2, 1, "", "test_frontend_function"], [759, 2, 1, "", "test_frontend_method"], [759, 2, 1, "", "test_function"], [759, 2, 1, "", "test_function_backend_computation"], [759, 2, 1, "", "test_function_ground_truth_computation"], [759, 2, 1, "", "test_gradient_backend_computation"], [759, 2, 1, "", "test_gradient_ground_truth_computation"], [759, 2, 1, "", "test_method"], [759, 2, 1, "", "test_method_backend_computation"], [759, 2, 1, "", "test_method_ground_truth_computation"], [759, 2, 1, "", "traced_if_required"], [759, 2, 1, "", "wrap_frontend_function_args"]], "ivy_tests.test_ivy.helpers.globals": [[760, 6, 1, "", "CURRENT_FRONTEND_CONFIG"], [760, 7, 1, "", "InterruptedTest"], [760, 1, 1, "", "TestData"], [760, 2, 1, "", "setup_api_test"], [760, 2, 1, "", "setup_frontend_test"], [760, 2, 1, "", "teardown_api_test"], [760, 2, 1, "", "teardown_frontend_test"]], "ivy_tests.test_ivy.helpers.globals.InterruptedTest": [[760, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.globals.TestData": [[760, 0, 1, "", "__init__"], [760, 4, 1, "", "fn_name"], [760, 4, 1, "", "fn_tree"], [760, 4, 1, "", "is_method"], [760, 4, 1, "", "supported_device_dtypes"], [760, 4, 1, "", "test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[762, 3, 0, "-", "array_helpers"], [763, 3, 0, "-", "dtype_helpers"], [764, 3, 0, "-", "general_helpers"], [765, 3, 0, "-", "number_helpers"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[762, 2, 1, "", "array_and_broadcastable_shape"], [762, 2, 1, "", "array_bools"], [762, 2, 1, "", "array_helpers_dtype_info_helper"], [762, 2, 1, "", "array_indices_axis"], [762, 2, 1, "", "array_indices_put_along_axis"], [762, 2, 1, "", "array_values"], [762, 2, 1, "", "arrays_and_axes"], [762, 2, 1, "", "arrays_for_pooling"], [762, 2, 1, "", "broadcast_shapes"], [762, 2, 1, "", "cond_data_gen_helper"], [762, 2, 1, "", "create_concatenable_arrays_dtypes"], [762, 2, 1, "", "create_nested_input"], [762, 2, 1, "", "dtype_and_values"], [762, 2, 1, "", "dtype_array_query"], [762, 2, 1, "", "dtype_array_query_val"], [762, 2, 1, "", "dtype_values_axis"], [762, 2, 1, "", "einsum_helper"], [762, 2, 1, "", "get_first_solve_batch_matrix"], [762, 2, 1, "", "get_first_solve_matrix"], [762, 2, 1, "", "get_second_solve_batch_matrix"], [762, 2, 1, "", "get_second_solve_matrix"], [762, 2, 1, "", "list_of_size"], [762, 2, 1, "", "lists"], [762, 2, 1, "", "mutually_broadcastable_shapes"], [762, 2, 1, "", "prod"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[763, 2, 1, "", "array_dtypes"], [763, 2, 1, "", "cast_filter"], [763, 2, 1, "", "cast_filter_helper"], [763, 2, 1, "", "get_castable_dtype"], [763, 2, 1, "", "get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[764, 7, 1, "", "BroadcastError"], [764, 2, 1, "", "apply_safety_factor"], [764, 2, 1, "", "broadcast_shapes"], [764, 2, 1, "", "embedding_helper"], [764, 2, 1, "", "general_helpers_dtype_info_helper"], [764, 2, 1, "", "get_axis"], [764, 2, 1, "", "get_bounds"], [764, 2, 1, "", "get_mean_std"], [764, 2, 1, "", "get_shape"], [764, 2, 1, "", "matrix_is_stable"], [764, 2, 1, "", "reshape_shapes"], [764, 2, 1, "", "subsets"], [764, 2, 1, "", "two_broadcastable_shapes"], [764, 2, 1, "", "x_and_filters"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[765, 2, 1, "", "floats"], [765, 2, 1, "", "ints"], [765, 2, 1, "", "number"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[766, 2, 1, "", "backend_proc"], [766, 2, 1, "", "frontend_proc"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[767, 1, 1, "", "BackendHandler"], [767, 1, 1, "", "BackendHandlerMode"], [767, 1, 1, "", "WithBackendContext"], [767, 2, 1, "", "get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler": [[767, 0, 1, "", "update_backend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode": [[767, 4, 1, "", "SetBackend"], [767, 4, 1, "", "WithBackend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext": [[767, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.structs": [[768, 1, 1, "", "FrontendMethodData"]], "ivy_tests.test_ivy.helpers.structs.FrontendMethodData": [[768, 0, 1, "", "__init__"], [768, 4, 1, "", "framework_init_module"], [768, 4, 1, "", "init_name"], [768, 4, 1, "", "ivy_init_module"], [768, 4, 1, "", "method_name"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[769, 1, 1, "", "DynamicFlag"], [769, 1, 1, "", "FrontendFunctionTestFlags"], [769, 1, 1, "", "FrontendInitTestFlags"], [769, 1, 1, "", "FrontendMethodTestFlags"], [769, 1, 1, "", "FunctionTestFlags"], [769, 1, 1, "", "InitMethodTestFlags"], [769, 1, 1, "", "MethodTestFlags"], [769, 1, 1, "", "TestFlags"], [769, 2, 1, "", "build_flag"], [769, 2, 1, "", "frontend_function_flags"], [769, 2, 1, "", "frontend_init_flags"], [769, 2, 1, "", "frontend_method_flags"], [769, 2, 1, "", "function_flags"], [769, 2, 1, "", "init_method_flags"], [769, 2, 1, "", "method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag": [[769, 0, 1, "", "__init__"], [769, 4, 1, "", "strategy"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags": [[769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[770, 2, 1, "", "handle_frontend_method"], [770, 2, 1, "", "handle_frontend_test"], [770, 2, 1, "", "handle_method"], [770, 2, 1, "", "handle_test"], [770, 2, 1, "", "num_positional_args"], [770, 2, 1, "", "num_positional_args_helper"], [770, 2, 1, "", "num_positional_args_method"], [770, 2, 1, "", "seed"]]}, "objtypes": {"0": "py:method", "1": "py:class", "2": "py:function", "3": "py:module", "4": "py:attribute", "5": "py:property", "6": "py:data", "7": "py:exception"}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "class", "Python class"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"demo": [0, 2, 3, 4, 15, 26, 40, 41], "creat": [0, 38, 39, 803], "notebook": 0, "TO": 1, "replac": 1, "titl": 1, "exampl": [2, 5, 7, 9, 15, 34, 798, 815, 820, 823, 826, 831, 847, 848, 849], "ivi": [3, 4, 5, 7, 14, 17, 25, 26, 27, 38, 39, 41, 42, 44, 798, 803, 805, 808, 810, 812, 815, 817, 823, 825, 826, 827, 828, 829, 830, 833, 834, 835, 836, 837, 838, 840, 847, 848, 849, 860], "alexnet": 3, "instal": [3, 4, 7, 17, 38, 39, 41, 798, 840], "data": [3, 4, 5, 7, 9, 17, 26, 38, 49, 72, 103, 363, 616, 631, 735, 736, 737, 738, 813, 825, 828, 836, 839], "prepar": [3, 4, 5, 7], "infer": [3, 4, 5, 7, 822], "torch": [3, 4, 5, 7, 34, 41, 854, 855], "tensorflow": [3, 4, 5, 9, 13, 34, 41, 42, 43, 854], "jax": [3, 4, 5, 6, 8, 9, 34, 41, 854], "appendix": [3, 5], "code": [3, 17, 18, 19, 20, 27, 38, 819, 827, 829], "implement": [3, 5, 812, 823, 825, 845], "bert": 4, "dependeci": 4, "import": [4, 5, 7, 9, 17, 38, 39, 42, 790], "modul": [4, 780, 813, 814, 837, 848], "sequenc": [4, 820], "classif": 4, "model": [4, 5, 6, 7, 8, 11, 12, 13, 24, 25, 26, 27, 38, 39, 40, 41, 42, 44, 838, 839], "imag": [5, 7, 55, 78, 248, 800, 810], "segment": 5, "unet": 5, "custom": [5, 808, 810, 823, 827, 836, 839], "preprocess": 5, "load": [5, 7, 9, 755, 836], "visualis": [5, 7], "initi": [5, 7, 777, 837], "nativ": [5, 7, 808, 831], "pretrain": [5, 7], "weight": [5, 7, 836], "mask": 5, "function": [5, 17, 26, 27, 38, 39, 40, 42, 44, 104, 759, 803, 811, 813, 814, 817, 820, 821, 822, 823, 825, 826, 828, 829, 830, 831, 833, 838, 839, 848], "us": [5, 7, 14, 22, 25, 42, 44, 798, 800, 803, 804, 807, 823, 826, 836, 840, 847, 848], "your": [5, 7, 805, 828], "backend": [5, 9, 17, 26, 38, 39, 41, 42, 785, 788, 803, 809, 813, 823, 829, 833, 839], "acceler": [6, 8, 9], "mmpretrain": 6, "resnet": [7, 45], "set": [7, 34, 38, 39, 63, 86, 377, 631, 804, 809, 818, 830, 840], "label": 7, "resnet34": 7, "classifi": 7, "resnet50": 7, "pytorch": [8, 9, 11, 40, 854], "xgboost": 9, "test": [9, 40, 759, 769, 770, 773, 803, 804, 805, 807, 812, 818, 826, 828], "compar": 9, "xgb_frontend": 9, "xgbclassifi": 9, "xgb": 9, "more": [9, 804, 831, 845], "exhaust": 9, "evalu": 9, "train": [9, 38, 40, 42], "time": 9, "v": [9, 21, 31, 34, 819, 839, 844, 847], "number": [9, 765, 820], "boost": 9, "round": [9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 278, 827], "fraction": 9, "comparison": [9, 836], "metric": [9, 42], "guid": [10, 15], "transpil": [11, 12, 13, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 40, 44, 798, 838, 840, 848], "build": [11, 12, 13, 42, 800, 810, 833], "top": [11, 12, 13, 812], "up": [11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 804, 818, 827, 840], "haiku": 12, "develop": 14, "convolut": 14, "network": [14, 39, 42, 836, 838], "tutori": [15, 42], "And": 15, "learn": [15, 16, 854], "basic": [15, 16, 38, 39, 805, 825], "write": [17, 25, 825, 828], "content": [17, 40], "handler": [17, 26, 787, 788, 833], "structur": [17, 26, 810, 823, 839], "api": [17, 26, 27, 803, 807, 811, 812, 823, 829, 833, 835, 837, 838, 840, 844, 847, 848, 849, 851, 858, 860], "state": [17, 26, 27, 837, 839, 847], "unifi": [18, 21, 22, 28, 31, 32, 33, 38, 798, 835, 845, 849, 856, 860], "trace": [19, 21, 22, 27, 677, 817], "lazi": [21, 31, 847], "eager": [21, 31, 847], "how": [22, 803, 810, 818, 827, 828], "decor": [22, 33, 817, 822, 828], "ani": [23, 24, 26, 27, 754], "librari": [23, 26, 27, 42, 44, 848], "odsc": 26, "framework": [26, 32, 38, 758, 771, 823, 826, 834, 854, 857, 860, 861], "graph": [26, 43, 855, 860], "tracer": [26, 833, 838, 840, 847, 855, 860], "quickstart": 27, "get": [27, 798, 805, 840], "familiar": 27, "0": [28, 29, 30, 31, 35, 36], "1": [29, 31, 32, 33, 34, 37, 44, 854], "compil": [29, 31, 32, 33, 39, 847, 852, 857, 859, 860], "2": [30, 33, 35, 44, 854], "select": 32, "As": 33, "3": [34, 36, 37, 44], "dynam": [34, 42, 790, 809, 839], "static": 34, "todo": [34, 805], "explain": 34, "via": 34, "why": [34, 828, 845], "mode": [34, 813, 817, 830], "i": [34, 798, 810, 831], "true": 34, "default": [34, 531], "when": [34, 798], "from": [34, 41, 840], "numpi": [34, 41, 825, 854], "fals": 34, "kornia": 35, "perceiv": 36, "stabl": 37, "diffus": 37, "oper": [38, 820, 830, 835, 839], "ml": [38, 843, 856, 860], "chang": 38, "one": 38, "line": [38, 805], "No": [38, 804, 845], "need": [38, 828], "worri": 38, "about": 38, "type": [38, 49, 72, 363, 616, 813, 821, 825, 839], "differ": 38, "them": 38, "all": [38, 753], "standalon": [38, 821], "defin": [38, 39, 40, 42], "optim": [38, 782, 837], "input": [38, 39, 820], "target": 38, "loss": [38, 58, 81, 370, 624, 779], "loop": [38, 42], "sampl": 39, "check": [39, 819, 839], "result": 39, "simpl": 39, "neural": 39, "deepmind": [40, 41], "": [40, 42, 803, 810, 827, 840], "perceiverio": [40, 41], "tabl": [40, 810, 813], "construct": [40, 836], "some": 40, "helper": [40, 761, 762, 763, 764, 765, 767, 770, 776, 786, 792, 826, 828, 829], "pipelin": [40, 42, 767, 810, 812, 828, 839], "dataset": [40, 42], "download": 40, "dataload": 40, "gpu": [41, 839], "introduct": [41, 44, 825, 826], "python3": 41, "8": 41, "setup": [41, 819], "kernel": 41, "clone": [41, 804, 812], "repo": [41, 804], "ivy_model": 41, "run": [41, 805, 807, 810, 818, 828], "end": 42, "let": 42, "we": [42, 828], "ar": 42, "mnist": 42, "thi": 42, "temporari": 42, "loader": 42, "util": [42, 66, 89, 381, 634, 772], "plot": 42, "save": [42, 756, 836], "huggingfac": 43, "deit": 43, "can": 43, "visual": 43, "displai": 43, "html": 43, "file": 43, "browser": [43, 805], "To": [44, 805], "interfac": 44, "telemetri": 44, "18": 45, "activ": [46, 68, 360, 612, 774], "convers": [47, 70, 822], "creation": [48, 71, 362, 615], "devic": [50, 73, 364, 617, 814, 820, 825], "elementwis": [51, 74, 102, 365, 618], "experiment": [52, 75, 619, 803], "gener": [53, 76, 366, 620, 764, 823, 828, 831, 847], "gradient": [54, 77, 342, 367, 621, 823], "layer": [56, 79, 368, 622, 778], "linear": [57, 80, 369, 623, 646], "algebra": [57, 80, 369, 623], "manipul": [59, 82, 371, 625], "norm": [60, 83, 374, 628, 781], "random": [61, 84, 375, 629], "search": [62, 85, 376, 630], "sort": [64, 87, 378, 632, 742], "statist": [65, 88, 380, 633], "wrap": [67, 90, 822], "base": [69, 91, 101], "cp": 92, "tensor": [92, 93, 94, 95, 96, 99], "parafac2": 93, "tr": 94, "tt": 95, "tucker": [96, 440], "arrai": [97, 100, 122, 379, 762, 807, 808, 812, 820, 835, 844, 847, 851], "contain": [98, 805, 811, 836], "factor": 99, "nest": [100, 373, 627], "class": [103, 771, 808, 817, 825, 835], "gelu": 105, "hardswish": 106, "leaky_relu": 107, "log_softmax": 108, "mish": 109, "relu": 110, "sigmoid": 111, "softmax": 112, "softplu": 113, "softsign": 114, "cmp_i": 115, "cmp_isnot": 116, "for_loop": 117, "if_els": 118, "try_except": 119, "while_loop": 120, "arang": 121, "asarrai": 123, "copy_arrai": 124, "empti": 125, "empty_lik": 126, "ey": 127, "from_dlpack": 128, "note": [128, 139, 615], "frombuff": 129, "full": [130, 826], "full_lik": 131, "linspac": 132, "logspac": 133, "meshgrid": 134, "native_arrai": 135, "one_hot": 136, "ones": 137, "ones_lik": 138, "to_dlpack": 139, "tril": 140, "triu": 141, "triu_indic": 142, "zero": 143, "zeros_lik": 144, "as_ivy_dtyp": 145, "as_native_dtyp": 146, "astyp": 147, "broadcast_arrai": 148, "broadcast_to": 149, "can_cast": 150, "check_float": 151, "closest_valid_dtyp": 152, "default_complex_dtyp": 153, "default_dtyp": 154, "default_float_dtyp": 155, "default_int_dtyp": 156, "default_uint_dtyp": 157, "dtype": [158, 763, 820], "dtype_bit": 159, "finfo": 160, "function_supported_dtyp": 161, "function_unsupported_dtyp": 162, "iinfo": 163, "infer_default_dtyp": 164, "invalid_dtyp": 165, "is_bool_dtyp": 166, "is_complex_dtyp": 167, "is_float_dtyp": 168, "is_hashable_dtyp": 169, "is_int_dtyp": 170, "is_native_dtyp": 171, "is_uint_dtyp": 172, "promote_typ": 173, "promote_types_of_input": 174, "result_typ": 175, "set_default_complex_dtyp": 176, "set_default_dtyp": 177, "set_default_float_dtyp": 178, "set_default_int_dtyp": 179, "set_default_uint_dtyp": 180, "type_promote_arrai": 181, "unset_default_complex_dtyp": 182, "unset_default_dtyp": 183, "unset_default_float_dtyp": 184, "unset_default_int_dtyp": 185, "unset_default_uint_dtyp": 186, "valid_dtyp": 187, "as_ivy_dev": 188, "as_native_dev": 189, "clear_cached_mem_on_dev": 190, "default_devic": 191, "dev": 192, "dev_util": 193, "function_supported_devic": 194, "function_unsupported_devic": 195, "get_all_ivy_arrays_on_dev": 196, "gpu_is_avail": 197, "handle_soft_device_vari": 198, "num_cpu_cor": 199, "num_gpu": 200, "num_ivy_arrays_on_dev": 201, "percent_used_mem_on_dev": 202, "print_all_ivy_arrays_on_dev": 203, "set_default_devic": 204, "set_soft_device_mod": 205, "paramet": [205, 565, 566, 571, 572, 574, 575, 617, 620, 769, 774, 830], "set_split_factor": 206, "split_factor": 207, "split_func_cal": 208, "to_devic": 209, "total_mem_on_dev": 210, "tpu_is_avail": 211, "unset_default_devic": 212, "unset_soft_device_mod": 213, "used_mem_on_dev": 214, "ab": 215, "aco": 216, "acosh": 217, "add": [218, 815, 826, 860], "angl": 219, "asin": 220, "asinh": 221, "atan": 222, "atan2": 223, "atanh": 224, "bitwise_and": 225, "bitwise_invert": 226, "bitwise_left_shift": 227, "bitwise_or": 228, "bitwise_right_shift": 229, "bitwise_xor": 230, "ceil": 231, "co": 232, "cosh": 233, "deg2rad": 234, "divid": 235, "equal": 236, "erf": 237, "exp": 238, "exp2": 239, "expm1": 240, "floor": 241, "floor_divid": 242, "fmin": 243, "fmod": 244, "gcd": 245, "greater": 246, "greater_equ": 247, "isfinit": 249, "isinf": 250, "isnan": 251, "isreal": 252, "lcm": 253, "less": 254, "less_equ": 255, "log": [256, 795, 804], "log10": 257, "log1p": 258, "log2": 259, "logaddexp": 260, "logaddexp2": 261, "logical_and": 262, "logical_not": 263, "logical_or": 264, "logical_xor": 265, "maximum": 266, "minimum": 267, "multipli": 268, "nan_to_num": 269, "neg": 270, "not_equ": 271, "posit": [272, 820], "pow": 273, "rad2deg": 274, "real": 275, "reciproc": 276, "remaind": 277, "sign": 279, "sin": 280, "sinh": 281, "sqrt": 282, "squar": 283, "subtract": 284, "tan": [285, 815, 826], "tanh": 286, "trapz": 287, "trunc": 288, "trunc_divid": 289, "celu": 290, "elu": 291, "hardshrink": 292, "hardtanh": 293, "logit": 294, "logsigmoid": 295, "prelu": 296, "relu6": 297, "scaled_tanh": 298, "selu": 299, "silu": 300, "softshrink": 301, "stanh": 302, "tanhshrink": 303, "threshold": 304, "thresholded_relu": 305, "blackman_window": 306, "eye_lik": 307, "hamming_window": 308, "hann_window": 309, "indic": 310, "kaiser_bessel_derived_window": 311, "kaiser_window": 312, "mel_weight_matrix": 313, "ndenumer": 314, "ndindex": 315, "polyv": 316, "random_cp": 317, "random_parafac2": 318, "random_tr": 319, "random_tt": 320, "random_tuck": 321, "tril_indic": 322, "trilu": 323, "unsorted_segment_mean": 324, "unsorted_segment_min": 325, "unsorted_segment_sum": 326, "vorbis_window": 327, "allclos": 328, "amax": 329, "amin": 330, "binar": 331, "conj": 332, "copysign": 333, "count_nonzero": 334, "diff": 335, "digamma": 336, "erfc": 337, "fix": [338, 803, 818], "float_pow": 339, "fmax": 340, "frexp": 341, "hypot": 343, "isclos": 344, "ldexp": 345, "lerp": 346, "lgamma": 347, "modf": 348, "nansum": 349, "nextaft": 350, "signbit": 351, "sinc": 352, "sparsify_tensor": 353, "xlogi": 354, "zeta": 355, "reduc": 356, "bind_custom_gradient_funct": 357, "jvp": 358, "vjp": 359, "constant": [361, 613], "meta": [372, 626], "spars": 379, "adaptive_avg_pool1d": 382, "adaptive_avg_pool2d": 383, "adaptive_max_pool2d": 384, "area_interpol": 385, "avg_pool1d": 386, "avg_pool2d": 387, "avg_pool3d": 388, "dct": 389, "dft": 390, "dropout1d": 391, "dropout2d": 392, "dropout3d": 393, "embed": 394, "fft": 395, "fft2": 396, "generate_einsum_equ": 397, "get_interpolate_kernel": 398, "idct": 399, "ifft": 400, "ifftn": 401, "interp": 402, "interpol": 403, "max_pool1d": 404, "max_pool2d": 405, "max_pool3d": 406, "max_unpool1d": 407, "nearest_interpol": 408, "pool": 409, "reduce_window": 410, "rfft": 411, "rfftn": 412, "sliding_window": 413, "stft": 414, "adjoint": 415, "batched_out": 416, "cond": 417, "diagflat": 418, "dot": 419, "eig": [420, 657], "eigh_tridiagon": 421, "eigval": 422, "general_inner_product": 423, "higher_order_mo": 424, "initialize_tuck": 425, "khatri_rao": 426, "kron": 427, "kroneck": 428, "make_svd_non_neg": 429, "matrix_exp": 430, "mode_dot": 431, "multi_dot": 432, "multi_mode_dot": 433, "partial_tuck": 434, "solve_triangular": 435, "svd_flip": 436, "tensor_train": 437, "truncated_svd": 438, "tt_matrix_to_tensor": 439, "huber_loss": 441, "kl_div": 442, "l1_loss": 443, "log_poisson_loss": 444, "poisson_nll_loss": 445, "smooth_l1_loss": 446, "soft_margin_loss": 447, "as_strid": 448, "associative_scan": 449, "atleast_1d": 450, "atleast_2d": 451, "atleast_3d": 452, "broadcast_shap": 453, "check_scalar": 454, "choos": 455, "column_stack": 456, "concat_from_sequ": 457, "dsplit": 458, "dstack": 459, "expand": 460, "fill_diagon": 461, "flatten": 462, "fliplr": 463, "flipud": 464, "fold": 465, "heavisid": 466, "hsplit": 467, "hstack": 468, "i0": 469, "matric": 470, "moveaxi": 471, "pad": 472, "partial_fold": 473, "partial_tensor_to_vec": 474, "partial_unfold": 475, "partial_vec_to_tensor": 476, "put_along_axi": 477, "rot90": 478, "soft_threshold": 479, "take": 480, "take_along_axi": 481, "top_k": 482, "trim_zero": 483, "unfold": 484, "unique_consecut": 485, "vsplit": 486, "vstack": 487, "batch_norm": 488, "group_norm": 489, "instance_norm": 490, "l1_normal": 491, "l2_normal": 492, "local_response_norm": 493, "lp_normal": 494, "bernoulli": 495, "beta": 496, "dirichlet": 497, "gamma": 498, "poisson": 499, "unravel_index": 500, "invert_permut": 501, "lexsort": 502, "is_ivy_sparse_arrai": 503, "is_native_sparse_arrai": 504, "native_sparse_arrai": 505, "native_sparse_array_to_indices_values_and_shap": 506, "bincount": 507, "corrcoef": 508, "cov": 509, "cummax": 510, "cummin": 511, "histogram": 512, "igamma": 513, "median": 514, "nanmean": 515, "nanmedian": 516, "nanmin": 517, "nanprod": 518, "quantil": 519, "optional_get_el": 520, "all_equ": 521, "arg_info": 522, "arg_nam": 523, "array_equ": 524, "assert_supports_inplac": 525, "cache_fn": 526, "clip_matrix_norm": 527, "clip_vector_norm": 528, "container_typ": 529, "current_backend_str": 530, "einops_rearrang": 532, "einops_reduc": 533, "einops_repeat": 534, "exist": [535, 800, 827], "fourier_encod": 536, "function_supported_devices_and_dtyp": 537, "function_unsupported_devices_and_dtyp": 538, "gather": 539, "gather_nd": 540, "get_all_arrays_in_memori": 541, "get_item": 542, "get_num_dim": 543, "get_referrers_recurs": 544, "has_nan": 545, "inplace_arrays_support": 546, "inplace_decr": 547, "inplace_incr": 548, "inplace_upd": 549, "inplace_variables_support": 550, "is_arrai": 551, "is_ivy_arrai": 552, "is_ivy_contain": 553, "is_ivy_nested_arrai": 554, "is_native_arrai": 555, "isin": 556, "isscalar": 557, "items": 558, "match_kwarg": 559, "multiprocess": [560, 766], "num_arrays_in_memori": 561, "print_all_arrays_in_memori": 562, "scatter_flat": 563, "scatter_nd": 564, "set_array_mod": 565, "set_exception_trace_mod": 566, "set_inplace_mod": 567, "set_item": 568, "set_min_bas": 569, "set_min_denomin": 570, "set_nestable_mod": 571, "set_precise_mod": 572, "set_queue_timeout": 573, "set_shape_array_mod": 574, "set_show_func_wrapper_trace_mod": 575, "set_tmp_dir": 576, "shape": [577, 631, 735, 736, 737, 738, 822, 839], "stable_divid": 578, "stable_pow": 579, "stride": 580, "supports_inplace_upd": 581, "to_ivy_shap": 582, "to_list": 583, "to_native_shap": 584, "to_numpi": 585, "to_scalar": 586, "try_else_non": 587, "unset_array_mod": 588, "unset_exception_trace_mod": 589, "unset_inplace_mod": 590, "unset_min_bas": 591, "unset_min_denomin": 592, "unset_nestable_mod": 593, "unset_precise_mod": 594, "unset_queue_timeout": 595, "unset_shape_array_mod": 596, "unset_show_func_wrapper_trace_mod": 597, "unset_tmp_dir": 598, "value_is_nan": 599, "vmap": 600, "adam_step": 601, "adam_upd": 602, "execute_with_gradi": [603, 823], "grad": 604, "gradient_descent_upd": 605, "jac": 606, "lamb_upd": 607, "lars_upd": 608, "optimizer_upd": 609, "stop_gradi": 610, "value_and_grad": 611, "control": [614, 839], "flow": [614, 839], "op": 614, "depend": [631, 735, 736, 737, 738], "output": [631, 735, 736, 737, 738], "conv": 635, "conv1d": 636, "conv1d_transpos": 637, "conv2d": 638, "conv2d_transpos": 639, "conv3d": 640, "conv3d_transpos": 641, "conv_general_dil": 642, "conv_general_transpos": 643, "depthwise_conv2d": 644, "dropout": 645, "lstm_updat": 647, "multi_head_attent": 648, "nm": 649, "roi_align": 650, "scaled_dot_product_attent": 651, "choleski": 652, "cross": 653, "det": 654, "diag": 655, "diagon": 656, "eigh": 658, "eigvalsh": 659, "inner": 660, "inv": 661, "lu_factor": 662, "matmul": 663, "matrix_norm": 664, "matrix_pow": 665, "matrix_rank": 666, "matrix_transpos": 667, "outer": 668, "pinv": 669, "qr": 670, "slogdet": 671, "solv": 672, "svd": 673, "svdval": 674, "tensordot": 675, "tensorsolv": 676, "vander": 678, "vecdot": 679, "vector_norm": 680, "vector_to_skew_symmetric_matrix": 681, "binary_cross_entropi": 682, "cross_entropi": 683, "sparse_cross_entropi": 684, "clip": 685, "concat": 686, "constant_pad": 687, "expand_dim": 688, "flip": 689, "permute_dim": 690, "repeat": 691, "reshap": 692, "roll": [693, 815], "split": 694, "squeez": 695, "stack": [696, 817], "swapax": 697, "tile": 698, "unstack": 699, "zero_pad": 700, "fomaml_step": 701, "maml_step": 702, "reptile_step": 703, "all_nested_indic": 704, "copy_nest": 705, "duplicate_array_index_chain": 706, "index_nest": 707, "insert_into_nest_at_index": 708, "insert_into_nest_at_indic": 709, "map": [710, 812], "map_nest_at_index": 711, "map_nest_at_indic": 712, "multi_index_nest": 713, "nested_ani": 714, "nested_argwher": 715, "nested_map": 716, "nested_multi_map": 717, "prune_empti": 718, "prune_nest_at_index": 719, "prune_nest_at_indic": 720, "set_nest_at_index": 721, "set_nest_at_indic": 722, "layer_norm": 723, "multinomi": 724, "randint": 725, "random_norm": 726, "random_uniform": 727, "seed": 728, "shuffl": 729, "argmax": 730, "argmin": 731, "argwher": 732, "nonzero": 733, "where": [734, 803, 818], "unique_al": 735, "unique_count": 736, "unique_invers": 737, "unique_valu": 738, "argsort": 739, "msort": 740, "searchsort": 741, "cumprod": 743, "cumsum": 744, "einsum": [745, 791, 792], "max": 746, "mean": 747, "min": 748, "prod": 749, "std": 750, "sum": 751, "var": 752, "assert": [757, 784, 817], "avail": 758, "global": [760, 830], "hypothesi": [761, 804, 826, 828], "struct": 768, "flag": 769, "convert": [775, 838], "sequenti": 783, "ast": 786, "sub": 788, "binari": [789, 804], "parser": 791, "path": 792, "except": [793, 817, 822], "inspect": 794, "profil": 796, "verbos": 797, "statu": 798, "ai": 798, "start": [798, 840], "pip": [798, 840], "document": 798, "dive": [798, 806], "deeper": 798, "should": 798, "contribut": [798, 799, 803, 827], "commun": 798, "citat": 798, "doc": [800, 810], "docker": [800, 804, 805, 810, 840], "conveni": [800, 810, 821], "script": [800, 810], "hub": 800, "local": [800, 805, 819], "without": [800, 826], "error": [801, 817, 818], "handl": [801, 808, 814, 817, 822, 839], "help": [802, 805, 818], "resourc": 802, "open": 803, "task": 803, "fail": [803, 818, 828], "frontend": [803, 809, 825, 826, 838], "place": 803, "checklist": 803, "format": [803, 819, 853, 860], "extend": [803, 828, 831], "an": [803, 823], "issu": [803, 805, 819, 840], "github": [803, 804], "templat": 803, "fork": [804, 805], "pre": [804, 819], "commit": [804, 805, 812, 819], "pycharm": [804, 805, 819], "virtual": 804, "environ": 804, "miniconda": 804, "venv": 804, "interpret": 804, "window": 804, "maco": 804, "ubuntu": 804, "detail": 804, "free": 804, "wsl": 804, "codespac": 804, "The": [804, 805, 810, 823, 825, 835, 839, 844], "list": 805, "manag": 805, "who": 805, "ask": [805, 818], "With": 805, "command": 805, "pull": [805, 812], "request": [805, 812], "small": 805, "often": 805, "interact": 805, "most": 805, "out": [805, 820, 822, 824], "id": [805, 807], "deep": 806, "termin": 807, "regener": 807, "failur": 807, "skip": 807, "integr": [808, 812, 819, 827, 828], "version": [809, 829, 839], "support": [809, 813, 822, 825, 839], "builder": 810, "being": 810, "option": 810, "index": 810, "rst": 810, "partial_conf": 810, "py": 810, "prebuild": 810, "sh": 810, "extens": 810, "custom_autosummari": 810, "hide": 810, "discussion_link": 810, "skippable_funct": 810, "ivy_data": 810, "instanc": [811, 825, 826, 835], "method": [811, 825, 826, 835, 836], "special": [811, 813, 825], "nestabl": [811, 820, 821, 822], "continu": [812, 819], "push": 812, "pr": 812, "trigger": 812, "A": [812, 831], "down": 812, "view": [812, 822, 824], "store": 812, "retriev": 812, "repositori": 812, "nitti": 812, "gritti": 812, "storag": 812, "space": 812, "unifyai": 812, "determin": 812, "coverag": 812, "workflow": 812, "multipl": 812, "runner": 812, "race": 812, "condit": 812, "period": 812, "manual": 812, "dispatch": 812, "ci": 812, "dashboard": 812, "promot": [813, 825], "precis": 813, "non": [813, 831], "argument": [813, 814, 820, 822, 824, 825], "other": [813, 814], "unsupport": 813, "attribut": [813, 830], "case": [813, 836], "bug": 813, "cast": [813, 825], "superset": [813, 831], "docstr": [815, 816], "configur": [817, 826, 836], "func_wrapp": 817, "prune": 817, "handle_except": 817, "consist": [817, 828], "prerequir": 818, "common": [818, 819], "lint": [819, 827], "keyword": 820, "integ": 820, "primari": 821, "composit": 821, "mix": [821, 822, 828], "partial": [821, 822, 828], "order": 822, "wrapper": [822, 860, 861], "miscellan": 822, "overview": [823, 827], "usag": [823, 827, 831, 849], "signatur": 823, "design": [823, 829, 832], "our": 823, "polici": [823, 825], "specif": [823, 858, 859, 860], "consider": 823, "inplac": 824, "updat": 824, "copi": 824, "short": 825, "unus": 825, "rule": 825, "duplic": [825, 831], "valu": 826, "alia": 826, "formatt": 827, "functionorderingformatt": 827, "work": [827, 844, 850], "own": 828, "strategi": 828, "do": [828, 844], "effect": 828, "bonu": 828, "featur": 828, "self": 828, "explicit": 828, "test_array_funct": 828, "re": [828, 845], "navig": 829, "categor": 829, "submodul": 829, "unpin": 829, "properti": 830, "getter": 830, "setter": 830, "set_": 830, "unset_": 830, "behaviour": 831, "standard": [831, 844, 851, 860], "what": [831, 860], "balanc": 831, "effici": 831, "maxim": 831, "block": 833, "monkei": 835, "patch": 835, "represent": 836, "recurs": 836, "built": 836, "ins": 836, "access": 836, "compartment": 836, "role": 838, "faq": 839, "maintain": 839, "size": 839, "deploy": 839, "auto": 839, "differenti": 839, "replica": 839, "parallel": 839, "altern": 839, "sourc": 840, "folder": 840, "kei": 840, "question": 840, "glossari": 841, "motiv": 842, "explos": 843, "skeptic": 844, "complimentari": 844, "competit": 844, "infinit": 845, "shelf": 845, "life": 845, "One": 846, "liner": 846, "trace_graph": 847, "cach": 847, "sharp": [847, 848, 849], "bit": [847, 848, 849], "relat": 850, "infrastructur": [852, 860], "llvm": 852, "mlir": 852, "oneapi": 852, "exchang": [853, 860], "onnx": 853, "nnef": 853, "coreml": 853, "matlab": 854, "scipi": 854, "scikit": 854, "theano": 854, "panda": 854, "julia": 854, "apach": [854, 857], "spark": 854, "mllib": 854, "caff": 854, "chainer": 854, "mxnet": 854, "cntk": 854, "flux": 854, "dex": 854, "languag": 854, "tf": 855, "jaxpr": 855, "jit": 855, "fx": 855, "compani": [856, 860], "quansight": 856, "modular": 856, "octoml": 856, "multi": [857, 860], "vendor": [857, 858, 859, 860], "tvm": 857, "xla": 857, "gcc": 857, "tensorrt": 858, "cuda": 858, "icc": 859, "icx": 859, "nvcc": 859, "doe": 860, "eagerpi": 861, "kera": 861, "thinc": 861, "tensorli": 861, "neuropod": 861}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"result_type": [[175, "result-type"]], "broadcast_to": [[149, "broadcast-to"]], "astype": [[147, "astype"]], "is_native_dtype": [[171, "is-native-dtype"]], "broadcast_arrays": [[148, "broadcast-arrays"]], "set_default_uint_dtype": [[180, "set-default-uint-dtype"]], "triu": [[141, "triu"]], "zeros": [[143, "zeros"]], "set_default_float_dtype": [[178, "set-default-float-dtype"]], "default_uint_dtype": [[157, "default-uint-dtype"]], "default_int_dtype": [[156, "default-int-dtype"]], "promote_types": [[173, "promote-types"]], "default_complex_dtype": [[153, "default-complex-dtype"]], "unset_default_complex_dtype": [[182, "unset-default-complex-dtype"]], "is_complex_dtype": [[167, "is-complex-dtype"]], "set_default_complex_dtype": [[176, "set-default-complex-dtype"]], "is_int_dtype": [[170, "is-int-dtype"]], "infer_default_dtype": [[164, "infer-default-dtype"]], "tril": [[140, "tril"]], "function_supported_dtypes": [[161, "function-supported-dtypes"]], "type_promote_arrays": [[181, "type-promote-arrays"]], "invalid_dtype": [[165, "invalid-dtype"]], "iinfo": [[163, "iinfo"]], "set_default_int_dtype": [[179, "set-default-int-dtype"]], "finfo": [[160, "finfo"]], "triu_indices": [[142, "triu-indices"]], "unset_default_dtype": [[183, "unset-default-dtype"]], "as_ivy_dtype": [[145, "as-ivy-dtype"]], "closest_valid_dtype": [[152, "closest-valid-dtype"]], "is_uint_dtype": [[172, "is-uint-dtype"]], "default_dtype": [[154, "default-dtype"]], "promote_types_of_inputs": [[174, "promote-types-of-inputs"]], "as_native_dtype": [[146, "as-native-dtype"]], "dtype_bits": [[159, "dtype-bits"]], "is_bool_dtype": [[166, "is-bool-dtype"]], "can_cast": [[150, "can-cast"]], "is_hashable_dtype": [[169, "is-hashable-dtype"]], "to_dlpack": [[139, "to-dlpack"]], "Note": [[139, null], [128, null], [615, null], [615, null]], "default_float_dtype": [[155, "default-float-dtype"]], "set_default_dtype": [[177, "set-default-dtype"]], "ones_like": [[138, "ones-like"]], "zeros_like": [[144, "zeros-like"]], "check_float": [[151, "check-float"]], "is_float_dtype": [[168, "is-float-dtype"]], "dtype": [[158, "dtype"]], "function_unsupported_dtypes": [[162, "function-unsupported-dtypes"]], "Frameworks": [[854, "frameworks"], [860, "frameworks"]], "MATLAB matlab": [[854, "matlab-matlab"]], "SciPy scipy": [[854, "scipy-scipy"]], "Torch torch": [[854, "torch-torch"]], "NumPy numpy": [[854, "numpy-numpy"]], "SciKit Learn scikit-learn": [[854, "scikit-learn-scikit-learn"]], "Theano theano": [[854, "theano-theano"]], "Pandas pandas": [[854, "pandas-pandas"]], "Julia julia": [[854, "julia-julia"]], "Apache Spark MLlib apache-spark-mllib": [[854, "apache-spark-mllib-apache-spark-mllib"]], "Caffe caffe": [[854, "caffe-caffe"]], "Chainer chainer": [[854, "chainer-chainer"]], "TensorFlow 1 tensorflow-1": [[854, "tensorflow-1-tensorflow-1"]], "MXNet mxnet": [[854, "mxnet-mxnet"]], "CNTK cntk": [[854, "cntk-cntk"]], "PyTorch pytorch": [[854, "pytorch-pytorch"]], "Flux flux": [[854, "flux-flux"]], "JAX jax": [[854, "jax-jax"]], "TensorFlow 2 tensorflow-2": [[854, "tensorflow-2-tensorflow-2"]], "DEX Language dex-language": [[854, "dex-language-dex-language"]], "Compiler Infrastructure": [[852, "compiler-infrastructure"], [860, "compiler-infrastructure"]], "LLVM": [[852, "id1"]], "MLIR": [[852, "id2"]], "OneAPI": [[852, "id3"]], "Navigating the Code": [[829, "navigating-the-code"]], "Categorization": [[829, "categorization"]], "Submodule Design": [[829, "submodule-design"]], "Ivy API": [[829, "ivy-api"]], "Backend API": [[829, "backend-api"]], "Submodule Helper Functions": [[829, "submodule-helper-functions"]], "Version Unpinning": [[829, "version-unpinning"]], "FAQ": [[839, "faq"]], "Maintaining Backend Versions": [[839, "maintaining-backend-versions"]], "Dynamic Sizes": [[839, "dynamic-sizes"]], "Type and Shape Checking": [[839, "type-and-shape-checking"]], "GPU handling": [[839, "gpu-handling"]], "Model Deployment": [[839, "model-deployment"]], "Dynamic Control Flow": [[839, "dynamic-control-flow"]], "Auto-Differentiation": [[839, "auto-differentiation"]], "Replicas, and Data vs Model Parallelism": [[839, "replicas-and-data-vs-model-parallelism"]], "Support for Functions": [[839, "support-for-functions"]], "Alternative Data Structures": [[839, "alternative-data-structures"]], "Custom Operations": [[839, "custom-operations"]], "The Pipeline": [[839, "the-pipeline"]], "State": [[839, "state"]], "Ivy Stateful API": [[837, "ivy-stateful-api"], [26, "Ivy-Stateful-API"], [17, "Ivy-Stateful-API"]], "Modules": [[837, "modules"]], "Initializers": [[837, "initializers"], [777, "module-ivy.stateful.initializers"]], "Optimizers": [[837, "optimizers"], [782, "module-ivy.stateful.optimizers"]], "ML-Unifying Companies": [[856, "ml-unifying-companies"], [860, "ml-unifying-companies"]], "Quansight": [[856, "id1"]], "Modular": [[856, "id2"]], "OctoML": [[856, "id3"]], "What does Ivy Add?": [[860, "what-does-ivy-add"]], "API Standards": [[860, "api-standards"], [851, "api-standards"]], "Wrapper Frameworks": [[860, "wrapper-frameworks"], [861, "wrapper-frameworks"]], "Graph Tracers": [[860, "graph-tracers"], [855, "graph-tracers"]], "Exchange Formats": [[860, "exchange-formats"], [853, "exchange-formats"]], "Multi-Vendor Compiler Frameworks": [[860, "multi-vendor-compiler-frameworks"], [857, "multi-vendor-compiler-frameworks"]], "Vendor-Specific APIs": [[860, "vendor-specific-apis"], [858, "vendor-specific-apis"]], "Vendor-Specific Compilers": [[860, "vendor-specific-compilers"], [859, "vendor-specific-compilers"]], "tf.Graph": [[855, "tf-graph"]], "Jaxpr": [[855, "jaxpr"]], "torch.jit": [[855, "torch-jit"]], "torch.fx": [[855, "torch-fx"]], "Motivation": [[842, "motivation"]], "ivy.unify()": [[849, "ivy-unify"]], "Unify API": [[849, "unify-api"]], "Usage": [[849, "usage"]], "Sharp bits": [[849, "sharp-bits"], [847, "sharp-bits"], [848, "sharp-bits"]], "Examples": [[849, "examples"], [847, "examples"], [848, "examples"], [820, "examples"], [798, "examples"]], "Array API Standard": [[851, "id1"]], "Ivy Tests": [[828, "ivy-tests"], [812, "ivy-tests"]], "Testing Pipeline": [[828, "testing-pipeline"]], "Hypothesis": [[828, "id1"]], "Data Generation": [[828, "id2"]], "Writing your own strategy": [[828, "writing-your-own-strategy"]], "Writing Hypothesis Tests": [[828, "writing-hypothesis-tests"]], "Ivy Test Decorators": [[828, "ivy-test-decorators"]], "Writing Ivy Tests": [[828, "writing-ivy-tests"]], "Integration of Strategies into Ivy Tests": [[828, "integration-of-strategies-into-ivy-tests"]], "Why do we need helper functions?": [[828, "why-do-we-need-helper-functions"]], "How to write Hypothesis Tests effectively": [[828, "how-to-write-hypothesis-tests-effectively"]], "Testing Partial Mixed Functions": [[828, "testing-partial-mixed-functions"]], "Bonus: Hypothesis\u2019 Extended Features": [[828, "bonus-hypothesis-extended-features"]], "Self-Consistent and Explicit Testing": [[828, "self-consistent-and-explicit-testing"]], "test_array_function": [[828, "id4"]], "Running Ivy Tests": [[828, "running-ivy-tests"]], "Re-Running Failed Ivy Tests": [[828, "re-running-failed-ivy-tests"]], "Why Unify?": [[845, "why-unify"]], "No More Re-implementations \ud83d\udea7": [[845, "no-more-re-implementations"]], "\u201cInfinite\u201d Shelf-Life \u2705": [[845, "infinite-shelf-life"]], "EagerPy eagerpy": [[861, "eagerpy-eagerpy"]], "Keras keras": [[861, "keras-keras"]], "Thinc thinc": [[861, "thinc-thinc"]], "TensorLy tensorly": [[861, "tensorly-tensorly"]], "NeuroPod": [[861, "id1"]], "ML Explosion": [[843, "ml-explosion"]], "ICC": [[859, "id1"]], "ICX": [[859, "icx"]], "NVCC": [[859, "nvcc"]], "Ivy as a Transpiler": [[838, "ivy-as-a-transpiler"], [27, "Ivy-as-a-Transpiler"], [26, "Ivy-as-a-Transpiler"]], "Frontend Functional APIs \ud83d\udea7": [[838, "frontend-functional-apis"]], "Role of the Tracer \ud83d\udea7": [[838, "role-of-the-tracer"]], "Converting Network Models \ud83d\udea7": [[838, "converting-network-models"]], "One liners": [[846, "one-liners"]], "Ivy Array": [[835, "ivy-array"], [808, "ivy-array"]], "The Array Class": [[835, "the-array-class"]], "Unifying Operators": [[835, "unifying-operators"]], "API Monkey Patching": [[835, "api-monkey-patching"]], "Instance Methods": [[835, "instance-methods"]], "Standardization": [[844, "standardization"]], "Skepticism": [[844, "skepticism"]], "Complimentary vs Competitive": [[844, "complimentary-vs-competitive"]], "Do Standards Work?": [[844, "do-standards-work"]], "The Array API Standard": [[844, "the-array-api-standard"]], "Building Blocks": [[833, "building-blocks"]], "Backend Functional APIs \u2705": [[833, "backend-functional-apis"]], "Ivy Functional API \u2705": [[833, "ivy-functional-api"]], "Backend Handler \u2705": [[833, "backend-handler"]], "Tracer \ud83d\udea7": [[833, "tracer"]], "Ivy as a Framework": [[834, "ivy-as-a-framework"], [26, "Ivy-as-a-Framework"]], "Superset Behaviour": [[831, "superset-behaviour"]], "Extending the Standard": [[831, "extending-the-standard"]], "What is the Superset?": [[831, "what-is-the-superset"]], "A Non-Duplicate Superset": [[831, "a-non-duplicate-superset"]], "What is not the Superset?": [[831, "what-is-not-the-superset"]], "Balancing Generalization with Efficiency": [[831, "balancing-generalization-with-efficiency"]], "More Examples": [[831, "more-examples"]], "Maximizing Usage of Native Functionality": [[831, "maximizing-usage-of-native-functionality"]], "Operating Modes": [[830, "operating-modes"]], "Global Parameter Properties": [[830, "global-parameter-properties"]], "Getter: ivy. attribute": [[830, "getter-ivy-setting-attribute"]], "Setter: ivy.set_ and ivy.unset_ functions": [[830, "setter-ivy-set-setting-and-ivy-unset-setting-functions"]], "Design": [[832, "design"]], "ivy.trace_graph()": [[847, "ivy-trace-graph"]], "Tracer API": [[847, "tracer-api"]], "Using the tracer": [[847, "using-the-tracer"]], "Eager vs lazy Compilation": [[847, "eager-vs-lazy-compilation"]], "Array caching": [[847, "array-caching"]], "Generators": [[847, "generators"]], "Stateful": [[847, "stateful"]], "Related Work": [[850, "related-work"]], "Glossary": [[841, "glossary"]], "TensorRT tensorrt": [[858, "tensorrt-tensorrt"]], "CUDA cuda": [[858, "cuda-cuda"]], "Get Started": [[840, "get-started"]], "Installing using pip": [[840, "installing-using-pip"], [798, "installing-using-pip"]], "Docker": [[840, "docker"]], "Installing from source": [[840, "installing-from-source"]], "Ivy\u2019s tracer and transpiler": [[840, "ivy-s-tracer-and-transpiler"]], "Ivy Folder": [[840, "ivy-folder"]], "Setting Up the API key": [[840, "setting-up-the-api-key"]], "Issues and Questions": [[840, "issues-and-questions"]], "ONNX onnx": [[853, "onnx-onnx"]], "NNEF nnef": [[853, "nnef-nnef"]], "CoreML coreml": [[853, "coreml-coreml"]], "Apache TVM": [[857, "apache-tvm"]], "XLA": [[857, "xla"]], "GCC": [[857, "gcc"]], "Ivy Container": [[836, "ivy-container"]], "Construction": [[836, "construction"]], "Representation": [[836, "representation"]], "Recursive Methods": [[836, "recursive-methods"]], "Built-ins": [[836, "built-ins"]], "Access": [[836, "access"]], "Saving and Loading": [[836, "saving-and-loading"]], "Comparisons": [[836, "comparisons"]], "Customized Representations": [[836, "customized-representations"]], "Use Cases": [[836, "use-cases"]], "Compartmentalization": [[836, "compartmentalization"]], "Configuration": [[836, "configuration"]], "Data loading": [[836, "data-loading"]], "Network weights": [[836, "network-weights"]], "ivy.transpile()": [[848, "ivy-transpile"]], "Transpiler API": [[848, "transpiler-api"]], "Using the transpiler": [[848, "using-the-transpiler"]], "Transpiling functions": [[848, "transpiling-functions"]], "Transpiling Libraries": [[848, "transpiling-libraries"]], "Transpiling Modules": [[848, "transpiling-modules"]], "full_like": [[131, "full-like"]], "Parafac2 tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "Base": [[101, "module-ivy.data_classes.nested_array.base"], [91, "module-ivy.data_classes.factorized_tensor.base"], [69, "module-ivy.data_classes.container.base"]], "arange": [[121, "arange"]], "empty_like": [[126, "empty-like"]], "softmax": [[112, "softmax"]], "gelu": [[105, "gelu"]], "softsign": [[114, "softsign"]], "Tucker tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "Functions": [[104, "functions"]], "log_softmax": [[108, "log-softmax"]], "sigmoid": [[111, "sigmoid"]], "array": [[122, "array"]], "Factorized tensor": [[99, "factorized-tensor"]], "linspace": [[132, "linspace"]], "eye": [[127, "eye"]], "Tt tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "softplus": [[113, "softplus"]], "from_dlpack": [[128, "from-dlpack"]], "copy_array": [[124, "copy-array"]], "leaky_relu": [[107, "leaky-relu"]], "if_else": [[118, "if-else"]], "for_loop": [[117, "for-loop"]], "Elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"], [618, "elementwise"], [365, "elementwise"], [51, "module-ivy.data_classes.array.elementwise"], [74, "module-ivy.data_classes.container.elementwise"]], "Array": [[97, "array"]], "cmp_is": [[115, "cmp-is"]], "Cp tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "frombuffer": [[129, "frombuffer"]], "full": [[130, "full"]], "relu": [[110, "relu"]], "while_loop": [[120, "while-loop"]], "logspace": [[133, "logspace"]], "cmp_isnot": [[116, "cmp-isnot"]], "Nested array": [[100, "nested-array"]], "mish": [[109, "mish"]], "Container": [[98, "container"]], "Tr tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "Data classes": [[103, "data-classes"]], "native_array": [[135, "native-array"]], "one_hot": [[136, "one-hot"]], "meshgrid": [[134, "meshgrid"]], "asarray": [[123, "asarray"]], "empty": [[125, "empty"]], "ones": [[137, "ones"]], "try_except": [[119, "try-except"]], "hardswish": [[106, "hardswish"]], "Sequential": [[783, "module-ivy.stateful.sequential"]], "Function Arguments": [[820, "function-arguments"]], "Positional and Keyword Arguments": [[820, "positional-and-keyword-arguments"]], "Input Arrays": [[820, "input-arrays"]], "out Argument": [[820, "out-argument"]], "dtype and device arguments": [[820, "dtype-and-device-arguments"]], "Numbers in Operator Functions": [[820, "numbers-in-operator-functions"]], "Integer Sequences": [[820, "integer-sequences"]], "Nestable Functions": [[820, "nestable-functions"], [821, "nestable-functions"], [811, "nestable-functions"]], "Open Tasks": [[803, "open-tasks"]], "Fixing Failing Tests": [[803, "fixing-failing-tests"]], "How to Contribute": [[803, "how-to-contribute"]], "Frontend APIs": [[803, "frontend-apis"]], "Where to place a frontend function": [[803, "where-to-place-a-frontend-function"]], "Frontend checklist": [[803, "frontend-checklist"]], "Function Formatting": [[803, "function-formatting"]], "Formatting checklist": [[803, "formatting-checklist"]], "Ivy Experimental API": [[803, "ivy-experimental-api"]], "Extending the Ivy API": [[803, "extending-the-ivy-api"]], "Where to place a backend function": [[803, "where-to-place-a-backend-function"]], "Creating an Issue on Ivy\u2019s GitHub using a Template": [[803, "creating-an-issue-on-ivy-s-github-using-a-template"]], "Building the Docs Pipeline": [[810, "building-the-docs-pipeline"]], "How the doc-builder is being run": [[810, "how-the-doc-builder-is-being-run"]], "The convenience script": [[810, "the-convenience-script"]], "Options": [[810, "options"]], "The Docker image": [[810, "the-docker-image"]], "How Ivy\u2019s docs is structured": [[810, "how-ivy-s-docs-is-structured"]], "index.rst": [[810, "index-rst"]], "partial_conf.py": [[810, "partial-conf-py"]], "prebuild.sh": [[810, "prebuild-sh"]], "Custom Extensions": [[810, "custom-extensions"]], "custom_autosummary": [[810, "custom-autosummary"]], ":hide-table:": [[810, "hide-table"]], "discussion_linker": [[810, "discussion-linker"]], "skippable_function": [[810, "skippable-function"]], "ivy_data": [[810, "ivy-data"]], "Handler": [[787, "module-ivy.utils.backend.handler"]], "Einsum parser": [[791, "module-ivy.utils.einsum_parser"]], "Ivy Frontends": [[825, "ivy-frontends"]], "Introduction": [[825, "introduction"], [826, "introduction"], [41, "Introduction"]], "The Frontend Basics": [[825, "the-frontend-basics"]], "Writing Frontend Functions": [[825, "writing-frontend-functions"]], "Short Frontend Implementations": [[825, "short-frontend-implementations"]], "Unused Arguments": [[825, "unused-arguments"]], "Supported Data Types and Devices": [[825, "supported-data-types-and-devices"]], "Classes and Instance Methods": [[825, "classes-and-instance-methods"]], "Frontend Data Type Promotion Rules": [[825, "frontend-data-type-promotion-rules"]], "NumPy Special Argument - Casting": [[825, "numpy-special-argument-casting"]], "Frontends Duplicate Policy": [[825, "frontends-duplicate-policy"]], "Function Types": [[821, "function-types"]], "Primary Functions": [[821, "primary-functions"]], "Compositional Functions": [[821, "compositional-functions"]], "Mixed Functions": [[821, "mixed-functions"]], "Partial Mixed Functions": [[821, "partial-mixed-functions"]], "Standalone Functions": [[821, "standalone-functions"]], "Convenience Functions": [[821, "convenience-functions"]], "Data Types": [[813, "data-types"]], "Data Type Module": [[813, "data-type-module"]], "Data Type Promotion": [[813, "data-type-promotion"]], "Precise Mode": [[813, "precise-mode"]], "Precise Promotion Table": [[813, "precise-promotion-table"]], "Non-Precise Promotion Table": [[813, "non-precise-promotion-table"]], "Arguments in other Functions": [[813, "arguments-in-other-functions"], [814, "arguments-in-other-functions"]], "Supported and Unsupported Data Types": [[813, "supported-and-unsupported-data-types"]], "Supported and Unsupported Data Types Attributes": [[813, "supported-and-unsupported-data-types-attributes"]], "Special Case": [[813, "special-case"]], "Backend Data Type Bugs": [[813, "backend-data-type-bugs"]], "Data Type Casting Modes": [[813, "data-type-casting-modes"]], "Superset Data Type Support": [[813, "superset-data-type-support"]], "The Basics": [[805, "the-basics"]], "Getting Help": [[805, "getting-help"]], "ToDo List Issues": [[805, "todo-list-issues"]], "Managing Your Fork": [[805, "managing-your-fork"]], "Who To Ask": [[805, "who-to-ask"]], "With Command Line:": [[805, "with-command-line"]], "With Browser:": [[805, "with-browser"]], "Pull Requests": [[805, "pull-requests"]], "Small Commits Often": [[805, "small-commits-often"]], "Interactive Ivy Docker Container": [[805, "interactive-ivy-docker-container"]], "Running Tests Locally": [[805, "running-tests-locally"]], "With Docker": [[805, "with-docker"]], "Getting the most out of IDE": [[805, "getting-the-most-out-of-ide"]], "with PyCharm": [[805, "with-pycharm"]], "Containers": [[811, "containers"]], "Container Instance Methods": [[811, "container-instance-methods"]], "API Instance Methods": [[811, "api-instance-methods"]], "API Special Methods": [[811, "api-special-methods"]], "Profiler": [[796, "module-ivy.utils.profiler"]], "Docstrings": [[816, "docstrings"]], "Ivy Frontend Tests": [[826, "ivy-frontend-tests"]], "Frontend Test Examples": [[826, "frontend-test-examples"]], "ivy.tan()": [[826, "ivy-tan"]], "ivy.full()": [[826, "ivy-full"]], "Testing Without Using Tests Values": [[826, "testing-without-using-tests-values"]], "Alias functions": [[826, "alias-functions"]], "Frontend Instance Method Tests": [[826, "frontend-instance-method-tests"]], "Frontend Instance Method Test Examples": [[826, "frontend-instance-method-test-examples"]], "ivy.add()": [[826, "ivy-add"]], "Hypothesis Helpers": [[826, "hypothesis-helpers"]], "Frontend Framework Testing Configuration": [[826, "frontend-framework-testing-configuration"]], "Status": [[798, "status"]], "Unified AI": [[798, "unified-ai"]], "Getting started": [[798, "getting-started"]], "Installing ivy": [[798, "installing-ivy"]], "Using Ivy": [[798, "using-ivy"]], "Documentation": [[798, "documentation"]], "Diving deeper": [[798, "diving-deeper"]], "When should I use Ivy as a transpiler?": [[798, "when-should-i-use-ivy-as-a-transpiler"]], "Contributing": [[798, "contributing"], [799, "contributing"]], "Community": [[798, "community"]], "Citation": [[798, "citation"]], "Formatting": [[819, "formatting"]], "Lint Checks": [[819, "lint-checks"], [819, "id2"]], "Setup Formatting Locally": [[819, "setup-formatting-locally"]], "Pre-commit": [[819, "pre-commit"]], "VS Code": [[819, "vs-code"]], "PyCharm": [[819, "pycharm"], [804, "pycharm"]], "Common Issues with Pre-Commit": [[819, "common-issues-with-pre-commit"]], "Continuous Integration": [[819, "continuous-integration"], [812, "continuous-integration"]], "Lint Formatting": [[819, "lint-formatting"]], "Binaries": [[789, "module-ivy.utils.binaries"]], "Inspection": [[794, "module-ivy.utils.inspection"]], "Ivy-Lint: Ivy\u2019s Custom Code Formatters": [[827, "ivy-lint-ivy-s-custom-code-formatters"]], "Overview": [[827, "overview"], [823, "overview"]], "Existing Formatters": [[827, "existing-formatters"]], "FunctionOrderingFormatter": [[827, "functionorderingformatter"]], "How the Formatter Works:": [[827, "how-the-formatter-works"]], "Integration and Usage": [[827, "integration-and-usage"]], "Contribution": [[827, "contribution"]], "Round Up": [[827, "round-up"], [30, "Round-Up"], [19, "Round-Up"], [22, "Round-Up"], [23, "Round-Up"], [27, "Round-Up"], [18, "Round-Up"], [20, "Round-Up"], [28, "Round-Up"], [17, "Round-Up"], [40, "Round-Up"], [29, "Round-Up"], [32, "Round-Up"], [31, "Round-Up"], [11, "Round-Up"], [21, "Round-Up"], [33, "Round-Up"], [13, "Round-Up"]], "Arrays": [[808, "arrays"]], "Native Array": [[808, "native-array"]], "Array Handling": [[808, "array-handling"]], "Integrating custom classes with Ivy": [[808, "integrating-custom-classes-with-ivy"]], "Exceptions": [[793, "module-ivy.utils.exceptions"]], "Deep Dive": [[806, "deep-dive"]], "Backend Setting": [[809, "backend-setting"]], "Dynamic Backend Setting": [[809, "dynamic-backend-setting"]], "Backend and Frontend Version Support": [[809, "backend-and-frontend-version-support"]], "Commit (Push/PR) Triggered Testing": [[812, "commit-push-pr-triggered-testing"]], "Implementation": [[812, "implementation"]], "A Top-Down View": [[812, "a-top-down-view"]], "Storing (and retrieving) the Mapping": [[812, "storing-and-retrieving-the-mapping"]], "Cloning and Pushing to the Repository": [[812, "cloning-and-pushing-to-the-repository"]], "Implementational Nitty Gritties": [[812, "implementational-nitty-gritties"]], "Storage Space (unifyai/Mapping)": [[812, "storage-space-unifyai-mapping"]], "Determine Test Coverage Workflow": [[812, "determine-test-coverage-workflow"]], "Multiple Runners": [[812, "multiple-runners"]], "Race Condition": [[812, "race-condition"]], "Array API Tests": [[812, "array-api-tests"], [807, "array-api-tests"]], "Periodic Testing": [[812, "periodic-testing"]], "Manually Dispatched Workflows": [[812, "manually-dispatched-workflows"]], "CI Pipeline \u27a1\ufe0f": [[812, "ci-pipeline"]], "Push": [[812, "push"]], "Pull Request": [[812, "pull-request"]], "Dashboard": [[812, "dashboard"]], "Function Wrapping": [[822, "function-wrapping"]], "Decorator order": [[822, "decorator-order"]], "Conversion Wrappers": [[822, "conversion-wrappers"]], "Inference Wrappers": [[822, "inference-wrappers"]], "Out Argument Support": [[822, "out-argument-support"]], "Nestable Support": [[822, "nestable-support"]], "Partial Mixed Function Support": [[822, "partial-mixed-function-support"]], "Shape Conversion": [[822, "shape-conversion"]], "View Handling": [[822, "view-handling"]], "Exception Handling": [[822, "exception-handling"], [817, "exception-handling"]], "Miscellaneous Wrappers": [[822, "miscellaneous-wrappers"]], "Setting Up": [[804, "setting-up"], [818, "setting-up"]], "Forking and cloning the repo": [[804, "forking-and-cloning-the-repo"]], "Pre-Commit": [[804, "pre-commit"]], "Virtual environments - No Docker": [[804, "virtual-environments-no-docker"]], "Using miniconda": [[804, "using-miniconda"]], "Using venv": [[804, "using-venv"]], "Docker Interpreter with PyCharm": [[804, "docker-interpreter-with-pycharm"]], "Windows": [[804, "windows"], [804, "id6"]], "MacOS": [[804, "macos"]], "Ubuntu": [[804, "ubuntu"], [804, "id8"]], "Setting Up Testing in PyCharm": [[804, "setting-up-testing-in-pycharm"]], "More Detailed Hypothesis Logs in PyCharm": [[804, "more-detailed-hypothesis-logs-in-pycharm"]], "Setting up for Free": [[804, "setting-up-for-free"]], "WSL": [[804, "wsl"]], "GitHub Codespaces": [[804, "github-codespaces"]], "The Binaries": [[804, "the-binaries"]], "Gradients": [[823, "gradients"], [621, "gradients"], [367, "gradients"], [54, "module-ivy.data_classes.array.gradients"], [77, "module-ivy.data_classes.container.gradients"]], "Example Usage of the Gradient API": [[823, "example-usage-of-the-gradient-api"]], "The ivy.execute_with_gradients() function signature": [[823, "the-ivy-execute-with-gradients-function-signature"]], "An example using ivy.execute_with_gradients()": [[823, "an-example-using-ivy-execute-with-gradients"]], "Custom Gradient Functions": [[823, "custom-gradient-functions"]], "Design of the Gradient API": [[823, "design-of-the-gradient-api"]], "Our policy on gradients": [[823, "our-policy-on-gradients"]], "Gradient APIs of frameworks": [[823, "gradient-apis-of-frameworks"]], "General Structure of Backend-specific implementations": [[823, "general-structure-of-backend-specific-implementations"]], "Framework-specific Considerations": [[823, "framework-specific-considerations"]], "Logging": [[795, "module-ivy.utils.logging"]], "Backend": [[785, "backend"]], "Sub backend handler": [[788, "module-ivy.utils.backend.sub_backend_handler"]], "Assertions": [[784, "module-ivy.utils.assertions"], [757, "module-ivy_tests.test_ivy.helpers.assertions"]], "Einsum path helpers": [[792, "module-ivy.utils.einsum_path_helpers"]], "Ivy Exception Class": [[817, "ivy-exception-class"]], "Configurable Mode for Stack Trace": [[817, "configurable-mode-for-stack-trace"]], "Ivy func_wrapper Pruning": [[817, "ivy-func-wrapper-pruning"]], "@handle_exceptions Decorator": [[817, "handle-exceptions-decorator"]], "Consistency in Errors": [[817, "consistency-in-errors"]], "Assertion Function": [[817, "assertion-function"]], "Ast helpers": [[786, "module-ivy.utils.backend.ast_helpers"]], "Fix Failing Tests:": [[818, "fix-failing-tests"]], "Prerequirement:": [[818, "prerequirement"]], "How to run tests": [[818, "how-to-run-tests"]], "Common Errors": [[818, "common-errors"]], "Where to ask for Help": [[818, "where-to-ask-for-help"]], "Error Handling": [[801, "error-handling"]], "Dynamic import": [[790, "module-ivy.utils.dynamic_import"]], "Building the Docs": [[800, "building-the-docs"]], "Building the Docs using Docker": [[800, "building-the-docs-using-docker"]], "Using convenience script": [[800, "using-convenience-script"]], "Using existing image on Docker Hub": [[800, "using-existing-image-on-docker-hub"]], "Building the image locally": [[800, "building-the-image-locally"]], "Building the Docs without Docker": [[800, "building-the-docs-without-docker"]], "Running the Tests": [[807, "running-the-tests"]], "Using Terminal": [[807, "using-terminal"]], "Using the IDE": [[807, "using-the-ide"]], "Regenerating Test Failures": [[807, "regenerating-test-failures"]], "Test Skipping": [[807, "test-skipping"]], "Docstring Examples": [[815, "docstring-examples"]], "ivy.tan": [[815, "ivy-tan"]], "ivy.roll": [[815, "ivy-roll"]], "ivy.add": [[815, "ivy-add"]], "Verbosity": [[797, "module-ivy.utils.verbosity"]], "Devices": [[814, "devices"]], "Device Module": [[814, "device-module"]], "Device handling": [[814, "device-handling"]], "Helpful Resources": [[802, "helpful-resources"]], "Inplace Updates": [[824, "inplace-updates"]], "out argument": [[824, "out-argument"]], "copy argument": [[824, "copy-argument"]], "Views": [[824, "views"]], "permute_dims": [[690, "permute-dims"]], "duplicate_array_index_chains": [[706, "duplicate-array-index-chains"]], "nested_multi_map": [[717, "nested-multi-map"]], "nonzero": [[733, "nonzero"]], "prune_empty": [[718, "prune-empty"]], "set_nest_at_indices": [[722, "set-nest-at-indices"]], "argmax": [[730, "argmax"]], "zero_pad": [[700, "zero-pad"]], "squeeze": [[695, "squeeze"]], "argmin": [[731, "argmin"]], "random_normal": [[726, "random-normal"]], "stack": [[696, "stack"]], "nested_argwhere": [[715, "nested-argwhere"]], "multi_index_nest": [[713, "multi-index-nest"]], "reptile_step": [[703, "reptile-step"]], "multinomial": [[724, "multinomial"]], "all_nested_indices": [[704, "all-nested-indices"]], "tile": [[698, "tile"]], "fomaml_step": [[701, "fomaml-step"]], "argwhere": [[732, "argwhere"]], "prune_nest_at_indices": [[720, "prune-nest-at-indices"]], "index_nest": [[707, "index-nest"]], "copy_nest": [[705, "copy-nest"]], "nested_any": [[714, "nested-any"]], "unique_all": [[735, "unique-all"]], "Data-dependent output shape": [[735, null], [738, null], [736, null], [737, null], [631, null], [631, null], [631, null], [631, null]], "unstack": [[699, "unstack"]], "roll": [[693, "roll"]], "reshape": [[692, "reshape"]], "insert_into_nest_at_indices": [[709, "insert-into-nest-at-indices"]], "repeat": [[691, "repeat"]], "map_nest_at_index": [[711, "map-nest-at-index"]], "insert_into_nest_at_index": [[708, "insert-into-nest-at-index"]], "swapaxes": [[697, "swapaxes"]], "map": [[710, "map"]], "layer_norm": [[723, "layer-norm"]], "shuffle": [[729, "shuffle"]], "split": [[694, "split"]], "map_nest_at_indices": [[712, "map-nest-at-indices"]], "maml_step": [[702, "maml-step"]], "seed": [[728, "seed"]], "nested_map": [[716, "nested-map"]], "where": [[734, "where"]], "set_nest_at_index": [[721, "set-nest-at-index"]], "random_uniform": [[727, "random-uniform"]], "randint": [[725, "randint"]], "prune_nest_at_index": [[719, "prune-nest-at-index"]], "Hypothesis helpers": [[761, "hypothesis-helpers"]], "msort": [[740, "msort"]], "Globals": [[760, "module-ivy_tests.test_ivy.helpers.globals"]], "sort": [[742, "sort"]], "Module": [[780, "module-ivy.stateful.module"]], "load": [[755, "load"]], "Pipeline helper": [[767, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "min": [[748, "min"]], "Function testing": [[759, "module-ivy_tests.test_ivy.helpers.function_testing"]], "Dtype helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "einsum": [[745, "einsum"]], "Number helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "Layers": [[778, "module-ivy.stateful.layers"], [622, "layers"], [368, "layers"], [79, "module-ivy.data_classes.container.layers"], [56, "module-ivy.data_classes.array.layers"]], "cumsum": [[744, "cumsum"]], "Activations": [[774, "module-ivy.stateful.activations"], [612, "activations"], [360, "activations"], [68, "module-ivy.data_classes.container.activations"], [46, "module-ivy.data_classes.array.activations"]], "Parameter": [[774, "parameter"], [774, "id1"], [571, "parameter"], [572, "parameter"], [565, "parameter"], [574, "parameter"], [575, "parameter"], [566, "parameter"], [617, "parameter"], [620, "parameter"], [620, "id1"], [620, "id2"], [620, "id3"], [620, "id4"], [620, "id5"], [205, "parameter"]], "Testing helpers": [[770, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "prod": [[749, "prod"]], "max": [[746, "max"]], "Test parameter flags": [[769, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "save": [[756, "save"]], "cumprod": [[743, "cumprod"]], "unique_values": [[738, "unique-values"]], "Testing": [[773, "testing"], [40, "Testing"]], "General helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "std": [[750, "std"]], "any": [[754, "any"]], "Helpers": [[776, "module-ivy.stateful.helpers"]], "unique_counts": [[736, "unique-counts"]], "Norms": [[781, "module-ivy.stateful.norms"], [628, "norms"], [374, "norms"], [83, "module-ivy.data_classes.container.norms"], [60, "module-ivy.data_classes.array.norms"]], "argsort": [[739, "argsort"]], "all": [[753, "all"]], "var": [[752, "var"]], "Converters": [[775, "module-ivy.stateful.converters"]], "searchsorted": [[741, "searchsorted"]], "unique_inverse": [[737, "unique-inverse"]], "mean": [[747, "mean"]], "Multiprocessing": [[766, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "Structs": [[768, "module-ivy_tests.test_ivy.helpers.structs"]], "Array helpers": [[762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "sum": [[751, "sum"]], "Framework classes": [[771, "framework-classes"]], "Utils": [[772, "utils"]], "Losses": [[779, "module-ivy.stateful.losses"], [624, "losses"], [370, "losses"], [58, "module-ivy.data_classes.array.losses"], [81, "module-ivy.data_classes.container.losses"]], "Available frameworks": [[758, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "matrix_norm": [[664, "matrix-norm"]], "det": [[654, "det"]], "eigvalsh": [[659, "eigvalsh"]], "inv": [[661, "inv"]], "inner": [[660, "inner"]], "expand_dims": [[688, "expand-dims"]], "flip": [[689, "flip"]], "scaled_dot_product_attention": [[651, "scaled-dot-product-attention"]], "vander": [[678, "vander"]], "lu_factor": [[662, "lu-factor"]], "linear": [[646, "linear"]], "matrix_rank": [[666, "matrix-rank"]], "trace": [[677, "trace"]], "vector_norm": [[680, "vector-norm"]], "nms": [[649, "nms"]], "slogdet": [[671, "slogdet"]], "matrix_power": [[665, "matrix-power"]], "concat": [[686, "concat"]], "diagonal": [[656, "diagonal"]], "cholesky": [[652, "cholesky"]], "tensorsolve": [[676, "tensorsolve"]], "clip": [[685, "clip"]], "svdvals": [[674, "svdvals"]], "vecdot": [[679, "vecdot"]], "cross": [[653, "cross"]], "matrix_transpose": [[667, "matrix-transpose"]], "binary_cross_entropy": [[682, "binary-cross-entropy"]], "dropout": [[645, "dropout"]], "roi_align": [[650, "roi-align"]], "pinv": [[669, "pinv"]], "tensordot": [[675, "tensordot"]], "svd": [[673, "svd"]], "lstm_update": [[647, "lstm-update"]], "outer": [[668, "outer"]], "qr": [[670, "qr"]], "constant_pad": [[687, "constant-pad"]], "matmul": [[663, "matmul"]], "multi_head_attention": [[648, "multi-head-attention"]], "vector_to_skew_symmetric_matrix": [[681, "vector-to-skew-symmetric-matrix"]], "solve": [[672, "solve"]], "depthwise_conv2d": [[644, "depthwise-conv2d"]], "eig": [[657, "eig"], [420, "eig"]], "diag": [[655, "diag"]], "sparse_cross_entropy": [[684, "sparse-cross-entropy"]], "eigh": [[658, "eigh"]], "cross_entropy": [[683, "cross-entropy"]], "set_item": [[568, "set-item"]], "scatter_nd": [[564, "scatter-nd"]], "shape": [[577, "shape"]], "unset_precise_mode": [[594, "unset-precise-mode"]], "itemsize": [[558, "itemsize"]], "num_arrays_in_memory": [[561, "num-arrays-in-memory"]], "set_nestable_mode": [[571, "set-nestable-mode"]], "unset_exception_trace_mode": [[589, "unset-exception-trace-mode"]], "is_ivy_array": [[552, "is-ivy-array"]], "print_all_arrays_in_memory": [[562, "print-all-arrays-in-memory"]], "is_ivy_container": [[553, "is-ivy-container"]], "unset_min_denominator": [[592, "unset-min-denominator"]], "multiprocessing": [[560, "multiprocessing"]], "to_numpy": [[585, "to-numpy"]], "stable_divide": [[578, "stable-divide"]], "set_min_denominator": [[570, "set-min-denominator"]], "set_precise_mode": [[572, "set-precise-mode"]], "unset_queue_timeout": [[595, "unset-queue-timeout"]], "set_queue_timeout": [[573, "set-queue-timeout"]], "set_min_base": [[569, "set-min-base"]], "strides": [[580, "strides"]], "is_ivy_nested_array": [[554, "is-ivy-nested-array"]], "set_array_mode": [[565, "set-array-mode"]], "to_native_shape": [[584, "to-native-shape"]], "isscalar": [[557, "isscalar"]], "to_list": [[583, "to-list"]], "isin": [[556, "isin"]], "to_scalar": [[586, "to-scalar"]], "set_inplace_mode": [[567, "set-inplace-mode"]], "unset_min_base": [[591, "unset-min-base"]], "unset_shape_array_mode": [[596, "unset-shape-array-mode"]], "supports_inplace_updates": [[581, "supports-inplace-updates"]], "unset_array_mode": [[588, "unset-array-mode"]], "scatter_flat": [[563, "scatter-flat"]], "set_shape_array_mode": [[574, "set-shape-array-mode"]], "unset_show_func_wrapper_trace_mode": [[597, "unset-show-func-wrapper-trace-mode"]], "is_native_array": [[555, "is-native-array"]], "unset_inplace_mode": [[590, "unset-inplace-mode"]], "set_show_func_wrapper_trace_mode": [[575, "set-show-func-wrapper-trace-mode"]], "set_exception_trace_mode": [[566, "set-exception-trace-mode"]], "try_else_none": [[587, "try-else-none"]], "set_tmp_dir": [[576, "set-tmp-dir"]], "stable_pow": [[579, "stable-pow"]], "to_ivy_shape": [[582, "to-ivy-shape"]], "unset_nestable_mode": [[593, "unset-nestable-mode"]], "match_kwargs": [[559, "match-kwargs"]], "native_sparse_array_to_indices_values_and_shape": [[506, "native-sparse-array-to-indices-values-and-shape"]], "igamma": [[513, "igamma"]], "inplace_arrays_supported": [[546, "inplace-arrays-supported"]], "cache_fn": [[526, "cache-fn"]], "quantile": [[519, "quantile"]], "get_all_arrays_in_memory": [[541, "get-all-arrays-in-memory"]], "all_equal": [[521, "all-equal"]], "inplace_increment": [[548, "inplace-increment"]], "array_equal": [[524, "array-equal"]], "median": [[514, "median"]], "einops_reduce": [[533, "einops-reduce"]], "inplace_decrement": [[547, "inplace-decrement"]], "is_array": [[551, "is-array"]], "get_num_dims": [[543, "get-num-dims"]], "nanmin": [[517, "nanmin"]], "inplace_variables_supported": [[550, "inplace-variables-supported"]], "nanmean": [[515, "nanmean"]], "optional_get_element": [[520, "optional-get-element"]], "clip_matrix_norm": [[527, "clip-matrix-norm"]], "nanprod": [[518, "nanprod"]], "exists": [[535, "exists"]], "cummin": [[511, "cummin"]], "cummax": [[510, "cummax"]], "fourier_encode": [[536, "fourier-encode"]], "einops_rearrange": [[532, "einops-rearrange"]], "get_item": [[542, "get-item"]], "nanmedian": [[516, "nanmedian"]], "current_backend_str": [[530, "current-backend-str"]], "arg_names": [[523, "arg-names"]], "clip_vector_norm": [[528, "clip-vector-norm"]], "container_types": [[529, "container-types"]], "histogram": [[512, "histogram"]], "inplace_update": [[549, "inplace-update"]], "cov": [[509, "cov"]], "gather_nd": [[540, "gather-nd"]], "has_nans": [[545, "has-nans"]], "function_supported_devices_and_dtypes": [[537, "function-supported-devices-and-dtypes"]], "assert_supports_inplace": [[525, "assert-supports-inplace"]], "bincount": [[507, "bincount"]], "corrcoef": [[508, "corrcoef"]], "function_unsupported_devices_and_dtypes": [[538, "function-unsupported-devices-and-dtypes"]], "get_referrers_recursive": [[544, "get-referrers-recursive"]], "einops_repeat": [[534, "einops-repeat"]], "default": [[531, "default"]], "gather": [[539, "gather"]], "arg_info": [[522, "arg-info"]], "lexsort": [[502, "lexsort"]], "fill_diagonal": [[461, "fill-diagonal"]], "matricize": [[470, "matricize"]], "take": [[480, "take"]], "is_ivy_sparse_array": [[503, "is-ivy-sparse-array"]], "native_sparse_array": [[505, "native-sparse-array"]], "gamma": [[498, "gamma"]], "partial_unfold": [[475, "partial-unfold"]], "i0": [[469, "i0"]], "partial_fold": [[473, "partial-fold"]], "unravel_index": [[500, "unravel-index"]], "fold": [[465, "fold"]], "soft_thresholding": [[479, "soft-thresholding"]], "partial_vec_to_tensor": [[476, "partial-vec-to-tensor"]], "vstack": [[487, "vstack"]], "local_response_norm": [[493, "local-response-norm"]], "heaviside": [[466, "heaviside"]], "is_native_sparse_array": [[504, "is-native-sparse-array"]], "hstack": [[468, "hstack"]], "vsplit": [[486, "vsplit"]], "beta": [[496, "beta"]], "dirichlet": [[497, "dirichlet"]], "expand": [[460, "expand"]], "take_along_axis": [[481, "take-along-axis"]], "instance_norm": [[490, "instance-norm"]], "batch_norm": [[488, "batch-norm"]], "fliplr": [[463, "fliplr"]], "unfold": [[484, "unfold"]], "flipud": [[464, "flipud"]], "rot90": [[478, "rot90"]], "invert_permutation": [[501, "invert-permutation"]], "moveaxis": [[471, "moveaxis"]], "put_along_axis": [[477, "put-along-axis"]], "l2_normalize": [[492, "l2-normalize"]], "lp_normalize": [[494, "lp-normalize"]], "poisson": [[499, "poisson"]], "flatten": [[462, "flatten"]], "l1_normalize": [[491, "l1-normalize"]], "hsplit": [[467, "hsplit"]], "top_k": [[482, "top-k"]], "group_norm": [[489, "group-norm"]], "trim_zeros": [[483, "trim-zeros"]], "partial_tensor_to_vec": [[474, "partial-tensor-to-vec"]], "bernoulli": [[495, "bernoulli"]], "pad": [[472, "pad"]], "unique_consecutive": [[485, "unique-consecutive"]], "gradient_descent_update": [[605, "gradient-descent-update"]], "unset_tmp_dir": [[598, "unset-tmp-dir"]], "Set": [[631, "set"], [377, "module-ivy.functional.ivy.experimental.set"], [86, "module-ivy.data_classes.container.set"], [63, "module-ivy.data_classes.array.set"]], "conv1d": [[636, "conv1d"]], "Random": [[629, "random"], [375, "random"], [61, "module-ivy.data_classes.array.random"], [84, "module-ivy.data_classes.container.random"]], "Constants": [[613, "module-ivy.functional.ivy.constants"], [361, "module-ivy.functional.ivy.experimental.constants"]], "Sorting": [[632, "sorting"], [378, "sorting"], [87, "module-ivy.data_classes.container.sorting"], [64, "module-ivy.data_classes.array.sorting"]], "conv1d_transpose": [[637, "conv1d-transpose"]], "lamb_update": [[607, "lamb-update"]], "Device": [[617, "device"], [364, "module-ivy.functional.ivy.experimental.device"], [50, "module-ivy.data_classes.array.device"], [73, "module-ivy.data_classes.container.device"]], "Control flow ops": [[614, "control-flow-ops"]], "optimizer_update": [[609, "optimizer-update"]], "Data type": [[616, "data-type"], [363, "module-ivy.functional.ivy.experimental.data_type"], [72, "module-ivy.data_classes.container.data_type"], [49, "module-ivy.data_classes.array.data_type"]], "grad": [[604, "grad"]], "conv3d_transpose": [[641, "conv3d-transpose"]], "execute_with_gradients": [[603, "execute-with-gradients"]], "Statistical": [[633, "statistical"], [380, "statistical"], [88, "module-ivy.data_classes.container.statistical"], [65, "module-ivy.data_classes.array.statistical"]], "value_and_grad": [[611, "value-and-grad"]], "conv": [[635, "conv"]], "Manipulation": [[625, "manipulation"], [371, "manipulation"], [82, "module-ivy.data_classes.container.manipulation"], [59, "module-ivy.data_classes.array.manipulation"]], "lars_update": [[608, "lars-update"]], "Searching": [[630, "searching"], [376, "searching"], [85, "module-ivy.data_classes.container.searching"], [62, "module-ivy.data_classes.array.searching"]], "Creation": [[615, "creation"], [362, "creation"], [48, "module-ivy.data_classes.array.creation"], [71, "module-ivy.data_classes.container.creation"]], "adam_step": [[601, "adam-step"]], "conv2d_transpose": [[639, "conv2d-transpose"]], "conv_general_dilated": [[642, "conv-general-dilated"]], "conv_general_transpose": [[643, "conv-general-transpose"]], "stop_gradient": [[610, "stop-gradient"]], "Meta": [[626, "meta"], [372, "module-ivy.functional.ivy.experimental.meta"]], "General": [[620, "general"], [366, "general"], [53, "module-ivy.data_classes.array.general"], [76, "module-ivy.data_classes.container.general"]], "conv2d": [[638, "conv2d"]], "Utility": [[634, "utility"], [381, "utility"], [66, "module-ivy.data_classes.array.utility"], [89, "module-ivy.data_classes.container.utility"]], "adam_update": [[602, "adam-update"]], "vmap": [[600, "vmap"]], "Experimental": [[619, "experimental"], [52, "module-ivy.data_classes.array.experimental"], [75, "module-ivy.data_classes.container.experimental"]], "Linear algebra": [[623, "linear-algebra"], [369, "linear-algebra"], [80, "module-ivy.data_classes.container.linear_algebra"], [57, "module-ivy.data_classes.array.linear_algebra"]], "conv3d": [[640, "conv3d"]], "Nest": [[627, "nest"], [373, "module-ivy.functional.ivy.experimental.nest"]], "jac": [[606, "jac"]], "value_is_nan": [[599, "value-is-nan"]], "l1_loss": [[443, "l1-loss"]], "tt_matrix_to_tensor": [[439, "tt-matrix-to-tensor"]], "make_svd_non_negative": [[429, "make-svd-non-negative"]], "concat_from_sequence": [[457, "concat-from-sequence"]], "atleast_2d": [[451, "atleast-2d"]], "as_strided": [[448, "as-strided"]], "associative_scan": [[449, "associative-scan"]], "atleast_1d": [[450, "atleast-1d"]], "multi_dot": [[432, "multi-dot"]], "soft_margin_loss": [[447, "soft-margin-loss"]], "atleast_3d": [[452, "atleast-3d"]], "stft": [[414, "stft"]], "higher_order_moment": [[424, "higher-order-moment"]], "partial_tucker": [[434, "partial-tucker"]], "multi_mode_dot": [[433, "multi-mode-dot"]], "dstack": [[459, "dstack"]], "dot": [[419, "dot"]], "choose": [[455, "choose"]], "adjoint": [[415, "adjoint"]], "eigh_tridiagonal": [[421, "eigh-tridiagonal"]], "cond": [[417, "cond"]], "mode_dot": [[431, "mode-dot"]], "solve_triangular": [[435, "solve-triangular"]], "matrix_exp": [[430, "matrix-exp"]], "eigvals": [[422, "eigvals"]], "truncated_svd": [[438, "truncated-svd"]], "log_poisson_loss": [[444, "log-poisson-loss"]], "poisson_nll_loss": [[445, "poisson-nll-loss"]], "huber_loss": [[441, "huber-loss"]], "batched_outer": [[416, "batched-outer"]], "kron": [[427, "kron"]], "initialize_tucker": [[425, "initialize-tucker"]], "khatri_rao": [[426, "khatri-rao"]], "general_inner_product": [[423, "general-inner-product"]], "kronecker": [[428, "kronecker"]], "column_stack": [[456, "column-stack"]], "svd_flip": [[436, "svd-flip"]], "tucker": [[440, "tucker"]], "diagflat": [[418, "diagflat"]], "kl_div": [[442, "kl-div"]], "smooth_l1_loss": [[446, "smooth-l1-loss"]], "dsplit": [[458, "dsplit"]], "tensor_train": [[437, "tensor-train"]], "check_scalar": [[454, "check-scalar"]], "broadcast_shapes": [[453, "broadcast-shapes"]], "count_nonzero": [[334, "count-nonzero"]], "gradient": [[342, "gradient"]], "lgamma": [[347, "lgamma"]], "nextafter": [[350, "nextafter"]], "lerp": [[346, "lerp"]], "sinc": [[352, "sinc"]], "amax": [[329, "amax"]], "diff": [[335, "diff"]], "xlogy": [[354, "xlogy"]], "modf": [[348, "modf"]], "jvp": [[358, "jvp"]], "frexp": [[341, "frexp"]], "hypot": [[343, "hypot"]], "copysign": [[333, "copysign"]], "amin": [[330, "amin"]], "isclose": [[344, "isclose"]], "digamma": [[336, "digamma"]], "erfc": [[337, "erfc"]], "unsorted_segment_sum": [[326, "unsorted-segment-sum"]], "bind_custom_gradient_function": [[357, "bind-custom-gradient-function"]], "vorbis_window": [[327, "vorbis-window"]], "reduce": [[356, "reduce"]], "nansum": [[349, "nansum"]], "signbit": [[351, "signbit"]], "float_power": [[339, "float-power"]], "unsorted_segment_min": [[325, "unsorted-segment-min"]], "fmax": [[340, "fmax"]], "tril_indices": [[322, "tril-indices"]], "binarizer": [[331, "binarizer"]], "allclose": [[328, "allclose"]], "conj": [[332, "conj"]], "sparsify_tensor": [[353, "sparsify-tensor"]], "vjp": [[359, "vjp"]], "ldexp": [[345, "ldexp"]], "zeta": [[355, "zeta"]], "fix": [[338, "fix"]], "trilu": [[323, "trilu"]], "unsorted_segment_mean": [[324, "unsorted-segment-mean"]], "idct": [[399, "idct"]], "dropout3d": [[393, "dropout3d"]], "interp": [[402, "interp"]], "dropout2d": [[392, "dropout2d"]], "nearest_interpolate": [[408, "nearest-interpolate"]], "dropout1d": [[391, "dropout1d"]], "adaptive_avg_pool1d": [[382, "adaptive-avg-pool1d"]], "rfftn": [[412, "rfftn"]], "avg_pool1d": [[386, "avg-pool1d"]], "ifftn": [[401, "ifftn"]], "rfft": [[411, "rfft"]], "sliding_window": [[413, "sliding-window"]], "max_pool2d": [[405, "max-pool2d"]], "reduce_window": [[410, "reduce-window"]], "fft2": [[396, "fft2"]], "max_unpool1d": [[407, "max-unpool1d"]], "dct": [[389, "dct"]], "Sparse array": [[379, "sparse-array"]], "dft": [[390, "dft"]], "adaptive_max_pool2d": [[384, "adaptive-max-pool2d"]], "max_pool1d": [[404, "max-pool1d"]], "generate_einsum_equation": [[397, "generate-einsum-equation"]], "avg_pool3d": [[388, "avg-pool3d"]], "pool": [[409, "pool"]], "embedding": [[394, "embedding"]], "ifft": [[400, "ifft"]], "adaptive_avg_pool2d": [[383, "adaptive-avg-pool2d"]], "area_interpolate": [[385, "area-interpolate"]], "avg_pool2d": [[387, "avg-pool2d"]], "max_pool3d": [[406, "max-pool3d"]], "fft": [[395, "fft"]], "get_interpolate_kernel": [[398, "get-interpolate-kernel"]], "interpolate": [[403, "interpolate"]], "trunc": [[288, "trunc"]], "tanh": [[286, "tanh"]], "elu": [[291, "elu"]], "kaiser_window": [[312, "kaiser-window"]], "polyval": [[316, "polyval"]], "tan": [[285, "tan"]], "thresholded_relu": [[305, "thresholded-relu"]], "random_cp": [[317, "random-cp"]], "square": [[283, "square"]], "hardshrink": [[292, "hardshrink"]], "hamming_window": [[308, "hamming-window"]], "random_tt": [[320, "random-tt"]], "trunc_divide": [[289, "trunc-divide"]], "celu": [[290, "celu"]], "sinh": [[281, "sinh"]], "remainder": [[277, "remainder"]], "tanhshrink": [[303, "tanhshrink"]], "mel_weight_matrix": [[313, "mel-weight-matrix"]], "blackman_window": [[306, "blackman-window"]], "threshold": [[304, "threshold"]], "hann_window": [[309, "hann-window"]], "logsigmoid": [[295, "logsigmoid"]], "sqrt": [[282, "sqrt"]], "silu": [[300, "silu"]], "kaiser_bessel_derived_window": [[311, "kaiser-bessel-derived-window"]], "eye_like": [[307, "eye-like"]], "ndenumerate": [[314, "ndenumerate"]], "logit": [[294, "logit"]], "ndindex": [[315, "ndindex"]], "trapz": [[287, "trapz"]], "sign": [[279, "sign"]], "random_tucker": [[321, "random-tucker"]], "scaled_tanh": [[298, "scaled-tanh"]], "reciprocal": [[276, "reciprocal"]], "subtract": [[284, "subtract"]], "hardtanh": [[293, "hardtanh"]], "relu6": [[297, "relu6"]], "softshrink": [[301, "softshrink"]], "indices": [[310, "indices"]], "stanh": [[302, "stanh"]], "random_parafac2": [[318, "random-parafac2"]], "random_tr": [[319, "random-tr"]], "prelu": [[296, "prelu"]], "round": [[278, "round"]], "sin": [[280, "sin"]], "selu": [[299, "selu"]], "isnan": [[251, "isnan"]], "equal": [[236, "equal"]], "logaddexp2": [[261, "logaddexp2"]], "fmin": [[243, "fmin"]], "log": [[256, "log"]], "pow": [[273, "pow"]], "maximum": [[266, "maximum"]], "gcd": [[245, "gcd"]], "bitwise_xor": [[230, "bitwise-xor"]], "logaddexp": [[260, "logaddexp"]], "greater_equal": [[247, "greater-equal"]], "less": [[254, "less"]], "cos": [[232, "cos"]], "real": [[275, "real"]], "floor_divide": [[242, "floor-divide"]], "floor": [[241, "floor"]], "isinf": [[250, "isinf"]], "positive": [[272, "positive"]], "erf": [[237, "erf"]], "nan_to_num": [[269, "nan-to-num"]], "multiply": [[268, "multiply"]], "log2": [[259, "log2"]], "isfinite": [[249, "isfinite"]], "logical_not": [[263, "logical-not"]], "expm1": [[240, "expm1"]], "isreal": [[252, "isreal"]], "exp2": [[239, "exp2"]], "logical_xor": [[265, "logical-xor"]], "ceil": [[231, "ceil"]], "rad2deg": [[274, "rad2deg"]], "exp": [[238, "exp"]], "negative": [[270, "negative"]], "less_equal": [[255, "less-equal"]], "logical_and": [[262, "logical-and"]], "cosh": [[233, "cosh"]], "not_equal": [[271, "not-equal"]], "log1p": [[258, "log1p"]], "imag": [[248, "imag"]], "greater": [[246, "greater"]], "fmod": [[244, "fmod"]], "divide": [[235, "divide"]], "log10": [[257, "log10"]], "lcm": [[253, "lcm"]], "deg2rad": [[234, "deg2rad"]], "logical_or": [[264, "logical-or"]], "minimum": [[267, "minimum"]], "bitwise_and": [[225, "bitwise-and"]], "bitwise_right_shift": [[229, "bitwise-right-shift"]], "set_split_factor": [[206, "set-split-factor"]], "clear_cached_mem_on_dev": [[190, "clear-cached-mem-on-dev"]], "add": [[218, "add"]], "get_all_ivy_arrays_on_dev": [[196, "get-all-ivy-arrays-on-dev"]], "function_supported_devices": [[194, "function-supported-devices"]], "valid_dtype": [[187, "valid-dtype"]], "gpu_is_available": [[197, "gpu-is-available"]], "as_ivy_dev": [[188, "as-ivy-dev"]], "num_ivy_arrays_on_dev": [[201, "num-ivy-arrays-on-dev"]], "unset_default_float_dtype": [[184, "unset-default-float-dtype"]], "atan2": [[223, "atan2"]], "abs": [[215, "abs"]], "split_func_call": [[208, "split-func-call"]], "unset_default_uint_dtype": [[186, "unset-default-uint-dtype"]], "unset_soft_device_mode": [[213, "unset-soft-device-mode"]], "bitwise_or": [[228, "bitwise-or"]], "acosh": [[217, "acosh"]], "atan": [[222, "atan"]], "acos": [[216, "acos"]], "handle_soft_device_variable": [[198, "handle-soft-device-variable"]], "print_all_ivy_arrays_on_dev": [[203, "print-all-ivy-arrays-on-dev"]], "percent_used_mem_on_dev": [[202, "percent-used-mem-on-dev"]], "unset_default_device": [[212, "unset-default-device"]], "dev": [[192, "dev"]], "set_soft_device_mode": [[205, "set-soft-device-mode"]], "set_default_device": [[204, "set-default-device"]], "atanh": [[224, "atanh"]], "total_mem_on_dev": [[210, "total-mem-on-dev"]], "num_cpu_cores": [[199, "num-cpu-cores"]], "num_gpus": [[200, "num-gpus"]], "angle": [[219, "angle"]], "asin": [[220, "asin"]], "dev_util": [[193, "dev-util"]], "unset_default_int_dtype": [[185, "unset-default-int-dtype"]], "as_native_dev": [[189, "as-native-dev"]], "used_mem_on_dev": [[214, "used-mem-on-dev"]], "to_device": [[209, "to-device"]], "asinh": [[221, "asinh"]], "default_device": [[191, "default-device"]], "split_factor": [[207, "split-factor"]], "function_unsupported_devices": [[195, "function-unsupported-devices"]], "bitwise_invert": [[226, "bitwise-invert"]], "bitwise_left_shift": [[227, "bitwise-left-shift"]], "tpu_is_available": [[211, "tpu-is-available"]], "Wrapping": [[90, "module-ivy.data_classes.container.wrapping"], [67, "module-ivy.data_classes.array.wrapping"]], "Image": [[55, "module-ivy.data_classes.array.image"], [78, "module-ivy.data_classes.container.image"]], "Conversions": [[47, "module-ivy.data_classes.array.conversions"], [70, "module-ivy.data_classes.container.conversions"]], "Ivy as a Transpiler Introduction": [[44, "Ivy-as-a-Transpiler-Introduction"]], "To use the transpiler:": [[44, "To-use-the-transpiler:"]], "Transpiler Interface": [[44, "Transpiler-Interface"]], "Telemetry": [[44, "Telemetry"]], "1. Transpile Functions \ud83d\udd22": [[44, "1.-Transpile-Functions-\ud83d\udd22"]], "2. Transpile Libraries \ud83d\udcda": [[44, "2.-Transpile-Libraries-\ud83d\udcda"]], "3. Transpile Models \ud83c\udf10": [[44, "3.-Transpile-Models-\ud83c\udf10"]], "0.2: Transpile": [[30, "0.2:-Transpile"]], "Demos": [[0, "demos"]], "Creating a Notebook for Demo": [[0, "creating-a-notebook-for-demo"]], "Trace code": [[19, "Trace-code"]], "Image Segmentation with Ivy UNet": [[5, "Image-Segmentation-with-Ivy-UNet"]], "Imports": [[5, "Imports"], [9, "Imports"], [7, "Imports"]], "Data Preparation": [[5, "Data-Preparation"], [3, "Data-Preparation"], [4, "Data-Preparation"], [7, "Data-Preparation"]], "Custom Preprocessing": [[5, "Custom-Preprocessing"]], "Load the image example \ud83d\uddbc\ufe0f": [[5, "Load-the-image-example-\ud83d\uddbc\ufe0f"], [7, "Load-the-image-example-\ud83d\uddbc\ufe0f"]], "Visualise image": [[5, "Visualise-image"], [7, "Visualise-image"]], "Model Inference": [[5, "Model-Inference"]], "Initializing Native Torch UNet": [[5, "Initializing-Native-Torch-UNet"]], "Initializing Ivy UNet with Pretrained Weights \u2b07\ufe0f": [[5, "Initializing-Ivy-UNet-with-Pretrained-Weights-\u2b07\ufe0f"]], "Custom masking function": [[5, "Custom-masking-function"]], "Use the model to segment your images \ud83d\ude80": [[5, "Use-the-model-to-segment-your-images-\ud83d\ude80"]], "TensorFlow backend": [[5, "TensorFlow-backend"]], "JAX": [[5, "JAX"]], "Appendix: the Ivy native implementation of UNet": [[5, "Appendix:-the-Ivy-native-implementation-of-UNet"]], "How to use decorators": [[22, "How-to-use-decorators"]], "Unify": [[22, "Unify"], [32, "Unify"], [31, "Unify"], [21, "Unify"], [33, "Unify"]], "Trace": [[22, "Trace"], [21, "Trace"]], "Transpile": [[22, "Transpile"], [32, "Transpile"], [31, "Transpile"], [21, "Transpile"], [33, "Transpile"]], "End-to-End Training Pipeline in Ivy": [[42, "End-to-End-Training-Pipeline-in-Ivy"]], "Importing libraries": [[42, "Importing-libraries"]], "Let\u2019s build the pipeline with a Tensorflow backend": [[42, "Let's-build-the-pipeline-with-a-Tensorflow-backend"]], "We are using MNIST dataset for this Tutorial": [[42, "We-are-using-MNIST-dataset-for-this-Tutorial"]], "Temporary Dataset and Dynamic loader": [[42, "Temporary-Dataset-and-Dynamic-loader"]], "Defining the Ivy Network": [[42, "Defining-the-Ivy-Network"]], "Training Loop with utility functions": [[42, "Training-Loop-with-utility-functions"]], "Plotting the training metrics": [[42, "Plotting-the-training-metrics"]], "Save the trained Model": [[42, "Save-the-trained-Model"]], "Transpile any library": [[23, "Transpile-any-library"]], "Transpile any model": [[24, "Transpile-any-model"]], "Round up": [[24, "Round-up"]], "Quickstart": [[27, "Quickstart"]], "Get familiar with Ivy": [[27, "Get-familiar-with-Ivy"]], "Functional API": [[27, "Functional-API"]], "Stateful API": [[27, "Stateful-API"]], "Tracing code": [[27, "Tracing-code"]], "Any function": [[27, "Any-function"], [26, "Any-function"]], "Any library": [[27, "Any-library"], [26, "Any-library"]], "Any model": [[27, "Any-model"], [26, "Any-model"]], "Accelerating XGBoost with JAX": [[9, "Accelerating-XGBoost-with-JAX"]], "Tests": [[9, "Tests"]], "Loading the Data": [[9, "Loading-the-Data"]], "Comparing xgb_frontend.XGBClassifier and xgb.XGBClassifier": [[9, "Comparing-xgb_frontend.XGBClassifier-and-xgb.XGBClassifier"]], "JAX backend": [[9, "JAX-backend"]], "Tensorflow backend": [[9, "Tensorflow-backend"]], "PyTorch backend": [[9, "PyTorch-backend"]], "More exhaustive example": [[9, "More-exhaustive-example"]], "Evaluating Training Time vs. Number of Boosting Rounds": [[9, "Evaluating-Training-Time-vs.-Number-of-Boosting-Rounds"]], "Training Time vs. Fractions of Data": [[9, "Training-Time-vs.-Fractions-of-Data"]], "Comparison of Metrics": [[9, "Comparison-of-Metrics"]], "Ivy AlexNet demo": [[3, "Ivy-AlexNet-demo"]], "Installation": [[3, "Installation"], [7, "Installation"]], "Ivy AlexNet inference in Torch": [[3, "Ivy-AlexNet-inference-in-Torch"]], "TensorFlow inference": [[3, "TensorFlow-inference"]], "JAX inference": [[3, "JAX-inference"]], "Appendix (Ivy code for AlexNet implementation)": [[3, "Appendix-(Ivy-code-for-AlexNet-implementation)"]], "Write a model using Ivy": [[25, "Write-a-model-using-Ivy"]], "3.1: Stable Diffusion": [[37, "3.1:-Stable-Diffusion"]], "Unify code": [[18, "Unify-code"]], "ODSC Ivy Demo": [[26, "ODSC-Ivy-Demo"]], "Ivy Backend Handler": [[26, "Ivy-Backend-Handler"], [17, "Ivy-Backend-Handler"]], "Data Structures": [[26, "Data-Structures"], [17, "Data-Structures"]], "Ivy Functional API": [[26, "Ivy-Functional-API"], [17, "Ivy-Functional-API"]], "Graph Tracer": [[26, "Graph-Tracer"]], "3.0: Perceiver": [[36, "3.0:-Perceiver"]], "Compilation of a Basic Function": [[39, "Compilation-of-a-Basic-Function"]], "Installs \ud83d\udcbe": [[39, "Installs-\ud83d\udcbe"], [38, "Installs-\ud83d\udcbe"]], "Imports \ud83d\udec3": [[39, "Imports-\ud83d\udec3"], [38, "Imports-\ud83d\udec3"]], "Import Ivy compiler": [[39, "Import-Ivy-compiler"]], "Function compilation \ud83d\udee0": [[39, "Function-compilation-\ud83d\udee0"]], "Set backend": [[39, "Set-backend"]], "Sample input": [[39, "Sample-input"]], "Define function to compile": [[39, "Define-function-to-compile"]], "Compile the function": [[39, "Compile-the-function"]], "Check results": [[39, "Check-results"], [39, "id1"]], "Compiling simple neural network \ud83e\udde0": [[39, "Compiling-simple-neural-network-\ud83e\udde0"]], "Define Model": [[39, "Define-Model"], [38, "Define-Model"]], "Create model": [[39, "Create-model"]], "Define input": [[39, "Define-input"]], "Compile network": [[39, "Compile-network"]], "Developing a convolutional network using Ivy": [[14, "Developing-a-convolutional-network-using-Ivy"]], "Transpile code": [[20, "Transpile-code"]], "0.0: Unify": [[28, "0.0:-Unify"]], "1.3: Dynamic vs Static": [[34, "1.3:-Dynamic-vs-Static"]], "Dynamic": [[34, "Dynamic"]], "Static": [[34, "Static"]], "ToDo: explain via examples why dynamic mode is set to True by default when transpiling to and from numpy and torch, but set to False by default when transpiling to and from tensorflow and jax.": [[34, "ToDo:-explain-via-examples-why-dynamic-mode-is-set-to-True-by-default-when-transpiling-to-and-from-numpy-and-torch,-but-set-to-False-by-default-when-transpiling-to-and-from-tensorflow-and-jax."]], "Write Ivy code": [[17, "Write-Ivy-code"]], "Contents": [[17, "Contents"]], "Installing Ivy": [[17, "Installing-Ivy"]], "Importing Ivy": [[17, "Importing-Ivy"]], "Demo: Transpiling DeepMind\u2019s PerceiverIO": [[40, "Demo:-Transpiling-DeepMind's-PerceiverIO"]], "Table of Contents": [[40, "Table-of-Contents"]], "Defining the model": [[40, "Defining-the-model"]], "Model construction": [[40, "Model-construction"]], "Some helper functions": [[40, "Some-helper-functions"]], "Transpiling the model": [[40, "Transpiling-the-model"]], "PyTorch pipeline": [[40, "PyTorch-pipeline"]], "Dataset download": [[40, "Dataset-download"]], "DataLoader": [[40, "DataLoader"]], "Training": [[40, "Training"]], "Accelerating PyTorch models with JAX": [[8, "Accelerating-PyTorch-models-with-JAX"]], "0.1: Compile": [[29, "0.1:-Compile"]], "Resnet 18": [[45, "Resnet-18"]], "Deepmind PerceiverIO on GPU": [[41, "Deepmind-PerceiverIO-on-GPU"]], "Install Python3.8 and setup the kernel": [[41, "Install-Python3.8-and-setup-the-kernel"]], "Clone the ivy and ivy-models repo": [[41, "Clone-the-ivy-and-ivy-models-repo"]], "Install ivy and ivy_models from the repos": [[41, "Install-ivy-and-ivy_models-from-the-repos"]], "Run the demo\u2026": [[41, "Run-the-demo..."]], "\u2026with torch backend": [[41, "...with-torch-backend"]], "\u2026.with tensorflow backend": [[41, "....with-tensorflow-backend"]], "\u2026with jax backend": [[41, "...with-jax-backend"]], "\u2026with numpy backend": [[41, "...with-numpy-backend"]], "# Ivy Bert Demo": [[4, "#-Ivy-Bert-Demo"]], "Install the dependecies": [[4, "Install-the-dependecies"]], "Import the modules": [[4, "Import-the-modules"]], "Ivy inference with Sequence Classification": [[4, "Ivy-inference-with-Sequence-Classification"]], "Ivy model inference with tensorflow": [[4, "Ivy-model-inference-with-tensorflow"]], "Ivy model inference with Jax": [[4, "Ivy-model-inference-with-Jax"]], "Ivy model inference with torch": [[4, "Ivy-model-inference-with-torch"]], "1.1: Framework Selection": [[32, "1.1:-Framework-Selection"]], "Compile": [[32, "Compile"], [31, "Compile"], [33, "Compile"]], "Transpiling a haiku model to build on top": [[12, "Transpiling-a-haiku-model-to-build-on-top"]], "Learn the basics": [[16, "learn-the-basics"], [15, "learn-the-basics"]], "1.0: Lazy vs Eager": [[31, "1.0:-Lazy-vs-Eager"]], "Transpiling a PyTorch model to build on top": [[11, "Transpiling-a-PyTorch-model-to-build-on-top"]], "Tutorials And Examples": [[15, "tutorials-and-examples"]], "Guides": [[15, "guides"], [10, "guides"]], "Examples and Demos": [[15, "examples-and-demos"], [2, "examples-and-demos"]], "Accelerating MMPreTrain models with JAX": [[6, "Accelerating-MMPreTrain-models-with-JAX"]], "Lazy vs Eager": [[21, "Lazy-vs-Eager"]], "Using Ivy ResNet": [[7, "Using-Ivy-ResNet"]], "Prepare the set of labels": [[7, "Prepare-the-set-of-labels"]], "Model Inference ResNet34": [[7, "Model-Inference-ResNet34"]], "Initializing Native Torch ResNet34": [[7, "Initializing-Native-Torch-ResNet34"]], "Initializing Ivy ResNet34 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet34-with-Pretrained-Weights-\u2b07\ufe0f"]], "Use the model to classify your images \ud83d\ude80": [[7, "Use-the-model-to-classify-your-images-\ud83d\ude80"], [7, "id1"]], "Model Inference ResNet50": [[7, "Model-Inference-ResNet50"]], "Initializing Native Torch ResNet50": [[7, "Initializing-Native-Torch-ResNet50"]], "Initializing Ivy ResNet50 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet50-with-Pretrained-Weights-\u2b07\ufe0f"]], "TO REPLACE: Title": [[1, "TO-REPLACE:-Title"]], "1.2: As a Decorator": [[33, "1.2:-As-a-Decorator"]], "2.0: Kornia": [[35, "2.0:-Kornia"]], "Basic Operations with Ivy": [[38, "Basic-Operations-with-Ivy"]], "Ivy as a Unified ML Framework \ud83d\udd00": [[38, "Ivy-as-a-Unified-ML-Framework-\ud83d\udd00"]], "Change frameworks by one line of code \u261d": [[38, "Change-frameworks-by-one-line-of-code-\u261d"]], "No need to worry about data types \ud83c\udfa8": [[38, "No-need-to-worry-about-data-types-\ud83c\udfa8"]], "No need to worry about framework differences \ud83d\udcb1": [[38, "No-need-to-worry-about-framework-differences-\ud83d\udcb1"]], "Unifying them all! \ud83c\udf72": [[38, "Unifying-them-all!-\ud83c\udf72"]], "Ivy as a standalone ML framework \ud83c\udf00": [[38, "Ivy-as-a-standalone-ML-framework-\ud83c\udf00"]], "Set Backend Framework": [[38, "Set-Backend-Framework"]], "Create Model": [[38, "Create-Model"]], "Create Optimizer": [[38, "Create-Optimizer"]], "Input and Target": [[38, "Input-and-Target"]], "Loss Function": [[38, "Loss-Function"]], "Training Loop": [[38, "Training-Loop"]], "HuggingFace Tensorflow DeiT": [[43, "HuggingFace-Tensorflow-DeiT"]], "Graph can be visualized and displayed as html file on browser": [[43, "Graph-can-be-visualized-and-displayed-as-html-file-on-browser"]], "Transpiling a Tensorflow model to build on top": [[13, "Transpiling-a-Tensorflow-model-to-build-on-top"]]}, "indexentries": {"_arraywithactivations (class in ivy.data_classes.array.activations)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations"]], "_abc_impl (ivy.data_classes.array.activations._arraywithactivations attribute)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations._abc_impl"]], "gelu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.gelu"]], "hardswish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.hardswish"]], "ivy.data_classes.array.activations": [[46, "module-ivy.data_classes.array.activations"]], "leaky_relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.log_softmax"]], "mish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.mish"]], "module": [[46, "module-ivy.data_classes.array.activations"], [47, "module-ivy.data_classes.array.conversions"], [48, "module-ivy.data_classes.array.creation"], [49, "module-ivy.data_classes.array.data_type"], [50, "module-ivy.data_classes.array.device"], [51, "module-ivy.data_classes.array.elementwise"], [52, "module-ivy.data_classes.array.experimental"], [52, "module-ivy.data_classes.array.experimental.activations"], [52, "module-ivy.data_classes.array.experimental.conversions"], [52, "module-ivy.data_classes.array.experimental.creation"], [52, "module-ivy.data_classes.array.experimental.data_type"], [52, "module-ivy.data_classes.array.experimental.device"], [52, "module-ivy.data_classes.array.experimental.elementwise"], [52, "module-ivy.data_classes.array.experimental.general"], [52, "module-ivy.data_classes.array.experimental.gradients"], [52, "module-ivy.data_classes.array.experimental.image"], [52, "module-ivy.data_classes.array.experimental.layers"], [52, "module-ivy.data_classes.array.experimental.linear_algebra"], [52, "module-ivy.data_classes.array.experimental.losses"], [52, "module-ivy.data_classes.array.experimental.manipulation"], [52, "module-ivy.data_classes.array.experimental.norms"], [52, "module-ivy.data_classes.array.experimental.random"], [52, "module-ivy.data_classes.array.experimental.searching"], [52, "module-ivy.data_classes.array.experimental.set"], [52, "module-ivy.data_classes.array.experimental.sorting"], [52, "module-ivy.data_classes.array.experimental.statistical"], [52, "module-ivy.data_classes.array.experimental.utility"], [53, "module-ivy.data_classes.array.general"], [54, "module-ivy.data_classes.array.gradients"], [55, "module-ivy.data_classes.array.image"], [56, "module-ivy.data_classes.array.layers"], [57, "module-ivy.data_classes.array.linear_algebra"], [58, "module-ivy.data_classes.array.losses"], [59, "module-ivy.data_classes.array.manipulation"], [60, "module-ivy.data_classes.array.norms"], [61, "module-ivy.data_classes.array.random"], [62, "module-ivy.data_classes.array.searching"], [63, "module-ivy.data_classes.array.set"], [64, "module-ivy.data_classes.array.sorting"], [65, "module-ivy.data_classes.array.statistical"], [66, "module-ivy.data_classes.array.utility"], [67, "module-ivy.data_classes.array.wrapping"], [68, "module-ivy.data_classes.container.activations"], [69, "module-ivy.data_classes.container.base"], [70, "module-ivy.data_classes.container.conversions"], [71, "module-ivy.data_classes.container.creation"], [72, "module-ivy.data_classes.container.data_type"], [73, "module-ivy.data_classes.container.device"], [74, "module-ivy.data_classes.container.elementwise"], [75, "module-ivy.data_classes.container.experimental"], [75, "module-ivy.data_classes.container.experimental.activations"], [75, "module-ivy.data_classes.container.experimental.conversions"], [75, "module-ivy.data_classes.container.experimental.creation"], [75, "module-ivy.data_classes.container.experimental.data_type"], [75, "module-ivy.data_classes.container.experimental.device"], [75, "module-ivy.data_classes.container.experimental.elementwise"], [75, "module-ivy.data_classes.container.experimental.general"], [75, "module-ivy.data_classes.container.experimental.gradients"], [75, "module-ivy.data_classes.container.experimental.image"], [75, "module-ivy.data_classes.container.experimental.layers"], [75, "module-ivy.data_classes.container.experimental.linear_algebra"], [75, "module-ivy.data_classes.container.experimental.losses"], [75, "module-ivy.data_classes.container.experimental.manipulation"], [75, "module-ivy.data_classes.container.experimental.norms"], [75, "module-ivy.data_classes.container.experimental.random"], [75, "module-ivy.data_classes.container.experimental.searching"], [75, "module-ivy.data_classes.container.experimental.set"], [75, "module-ivy.data_classes.container.experimental.sorting"], [75, "module-ivy.data_classes.container.experimental.statistical"], [75, "module-ivy.data_classes.container.experimental.utility"], [76, "module-ivy.data_classes.container.general"], [77, "module-ivy.data_classes.container.gradients"], [78, "module-ivy.data_classes.container.image"], [79, "module-ivy.data_classes.container.layers"], [80, "module-ivy.data_classes.container.linear_algebra"], [81, "module-ivy.data_classes.container.losses"], [82, "module-ivy.data_classes.container.manipulation"], [83, "module-ivy.data_classes.container.norms"], [84, "module-ivy.data_classes.container.random"], [85, "module-ivy.data_classes.container.searching"], [86, "module-ivy.data_classes.container.set"], [87, "module-ivy.data_classes.container.sorting"], [88, "module-ivy.data_classes.container.statistical"], [89, "module-ivy.data_classes.container.utility"], [90, "module-ivy.data_classes.container.wrapping"], [91, "module-ivy.data_classes.factorized_tensor.base"], [92, "module-ivy.data_classes.factorized_tensor.cp_tensor"], [93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"], [94, "module-ivy.data_classes.factorized_tensor.tr_tensor"], [95, "module-ivy.data_classes.factorized_tensor.tt_tensor"], [96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"], [97, "module-ivy.data_classes.array.array"], [98, "module-ivy.data_classes.container.container"], [100, "module-ivy.data_classes.nested_array.nested_array"], [101, "module-ivy.data_classes.nested_array.base"], [102, "module-ivy.data_classes.nested_array.elementwise"], [360, "module-ivy.functional.ivy.experimental.activations"], [361, "module-ivy.functional.ivy.experimental.constants"], [362, "module-ivy.functional.ivy.experimental.creation"], [363, "module-ivy.functional.ivy.experimental.data_type"], [364, "module-ivy.functional.ivy.experimental.device"], [365, "module-ivy.functional.ivy.experimental.elementwise"], [366, "module-ivy.functional.ivy.experimental.general"], [367, "module-ivy.functional.ivy.experimental.gradients"], [368, "module-ivy.functional.ivy.experimental.layers"], [369, "module-ivy.functional.ivy.experimental.linear_algebra"], [370, "module-ivy.functional.ivy.experimental.losses"], [371, "module-ivy.functional.ivy.experimental.manipulation"], [372, "module-ivy.functional.ivy.experimental.meta"], [373, "module-ivy.functional.ivy.experimental.nest"], [374, "module-ivy.functional.ivy.experimental.norms"], [375, "module-ivy.functional.ivy.experimental.random"], [376, "module-ivy.functional.ivy.experimental.searching"], [377, "module-ivy.functional.ivy.experimental.set"], [378, "module-ivy.functional.ivy.experimental.sorting"], [379, "module-ivy.functional.ivy.experimental.sparse_array"], [380, "module-ivy.functional.ivy.experimental.statistical"], [381, "module-ivy.functional.ivy.experimental.utility"], [612, "module-ivy.functional.ivy.activations"], [613, "module-ivy.functional.ivy.constants"], [614, "module-ivy.functional.ivy.control_flow_ops"], [615, "module-ivy.functional.ivy.creation"], [616, "module-ivy.functional.ivy.data_type"], [617, "module-ivy.functional.ivy.device"], [618, "module-ivy.functional.ivy.elementwise"], [619, "module-ivy.functional.ivy.experimental"], [620, "module-ivy.functional.ivy.general"], [621, "module-ivy.functional.ivy.gradients"], [622, "module-ivy.functional.ivy.layers"], [623, "module-ivy.functional.ivy.linear_algebra"], [624, "module-ivy.functional.ivy.losses"], [625, "module-ivy.functional.ivy.manipulation"], [626, "module-ivy.functional.ivy.meta"], [627, "module-ivy.functional.ivy.nest"], [628, "module-ivy.functional.ivy.norms"], [629, "module-ivy.functional.ivy.random"], [630, "module-ivy.functional.ivy.searching"], [631, "module-ivy.functional.ivy.set"], [632, "module-ivy.functional.ivy.sorting"], [633, "module-ivy.functional.ivy.statistical"], [634, "module-ivy.functional.ivy.utility"], [757, "module-ivy_tests.test_ivy.helpers.assertions"], [758, "module-ivy_tests.test_ivy.helpers.available_frameworks"], [759, "module-ivy_tests.test_ivy.helpers.function_testing"], [760, "module-ivy_tests.test_ivy.helpers.globals"], [761, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"], [762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"], [763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"], [764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"], [765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"], [766, "module-ivy_tests.test_ivy.helpers.multiprocessing"], [767, "module-ivy_tests.test_ivy.helpers.pipeline_helper"], [768, "module-ivy_tests.test_ivy.helpers.structs"], [769, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"], [770, "module-ivy_tests.test_ivy.helpers.testing_helpers"], [774, "module-ivy.stateful.activations"], [775, "module-ivy.stateful.converters"], [776, "module-ivy.stateful.helpers"], [777, "module-ivy.stateful.initializers"], [778, "module-ivy.stateful.layers"], [779, "module-ivy.stateful.losses"], [780, "module-ivy.stateful.module"], [781, "module-ivy.stateful.norms"], [782, "module-ivy.stateful.optimizers"], [783, "module-ivy.stateful.sequential"], [784, "module-ivy.utils.assertions"], [785, "module-ivy.utils.backend"], [786, "module-ivy.utils.backend.ast_helpers"], [787, "module-ivy.utils.backend.handler"], [788, "module-ivy.utils.backend.sub_backend_handler"], [789, "module-ivy.utils.binaries"], [790, "module-ivy.utils.dynamic_import"], [791, "module-ivy.utils.einsum_parser"], [792, "module-ivy.utils.einsum_path_helpers"], [793, "module-ivy.utils.exceptions"], [794, "module-ivy.utils.inspection"], [795, "module-ivy.utils.logging"], [796, "module-ivy.utils.profiler"], [797, "module-ivy.utils.verbosity"]], "relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.relu"]], "sigmoid() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.sigmoid"]], "softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softmax"]], "softplus() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softplus"]], "_array_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._array_to_new_backend"]], "_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_ivy"]], "_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_native"]], "_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_new_backend"]], "args_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_ivy"]], "args_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_native"]], "args_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_new_backend"]], "ivy.data_classes.array.conversions": [[47, "module-ivy.data_classes.array.conversions"]], "to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_ivy"]], "to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_native"]], "to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_new_backend"]], "_arraywithcreation (class in ivy.data_classes.array.creation)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation"]], "_abc_impl (ivy.data_classes.array.creation._arraywithcreation attribute)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation._abc_impl"]], "asarray() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.asarray"]], "copy_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.copy_array"]], "empty_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.from_dlpack"]], "full_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.full_like"]], "ivy.data_classes.array.creation": [[48, "module-ivy.data_classes.array.creation"]], "linspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.linspace"]], "logspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.logspace"]], "meshgrid() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.meshgrid"]], "native_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.native_array"]], "one_hot() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.one_hot"]], "ones_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.ones_like"]], "tril() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.tril"]], "triu() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.triu"]], "zeros_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.zeros_like"]], "_arraywithdatatypes (class in ivy.data_classes.array.data_type)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes"]], "_abc_impl (ivy.data_classes.array.data_type._arraywithdatatypes attribute)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes._abc_impl"]], "astype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.dtype"]], "finfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_bool_dtype"]], "is_float_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_uint_dtype"]], "ivy.data_classes.array.data_type": [[49, "module-ivy.data_classes.array.data_type"]], "result_type() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.result_type"]], "_arraywithdevice (class in ivy.data_classes.array.device)": [[50, "ivy.data_classes.array.device._ArrayWithDevice"]], "_abc_impl (ivy.data_classes.array.device._arraywithdevice attribute)": [[50, "ivy.data_classes.array.device._ArrayWithDevice._abc_impl"]], "dev() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.dev"]], "ivy.data_classes.array.device": [[50, "module-ivy.data_classes.array.device"]], "to_device() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.to_device"]], "_arraywithelementwise (class in ivy.data_classes.array.elementwise)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise"]], "_abc_impl (ivy.data_classes.array.elementwise._arraywithelementwise attribute)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise._abc_impl"]], "abs() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.abs"]], "acos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acos"]], "acosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acosh"]], "add() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.add"]], "angle() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.angle"]], "asin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asin"]], "asinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asinh"]], "atan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan"]], "atan2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan2"]], "atanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.ceil"]], "cos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cos"]], "cosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.deg2rad"]], "divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.divide"]], "equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.equal"]], "erf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.erf"]], "exp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp"]], "exp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp2"]], "expm1() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.expm1"]], "floor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor"]], "floor_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.fmin"]], "gcd() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.gcd"]], "greater() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater"]], "greater_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater_equal"]], "imag() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.imag"]], "isfinite() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isfinite"]], "isinf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isinf"]], "isnan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isnan"]], "isreal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isreal"]], "ivy.data_classes.array.elementwise": [[51, "module-ivy.data_classes.array.elementwise"]], "lcm() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.lcm"]], "less() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less"]], "less_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less_equal"]], "log() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log"]], "log10() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log10"]], "log1p() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log1p"]], "log2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log2"]], "logaddexp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.maximum"]], "minimum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.minimum"]], "multiply() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.negative"]], "not_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.not_equal"]], "positive() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.positive"]], "pow() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.pow"]], "rad2deg() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.rad2deg"]], "real() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.real"]], "reciprocal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.remainder"]], "round() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.round"]], "sign() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sign"]], "sin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sin"]], "sinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sinh"]], "sqrt() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sqrt"]], "square() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.square"]], "subtract() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.subtract"]], "tan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tan"]], "tanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tanh"]], "trapz() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trapz"]], "trunc() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc_divide"]], "_arraywithactivationsexperimental (class in ivy.data_classes.array.experimental.activations)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental"]], "_arraywithconversionsexperimental (class in ivy.data_classes.array.experimental.conversions)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental"]], "_arraywithcreationexperimental (class in ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental"]], "_arraywithdata_typeexperimental (class in ivy.data_classes.array.experimental.data_type)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental"]], "_arraywithdeviceexperimental (class in ivy.data_classes.array.experimental.device)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental"]], "_arraywithelementwiseexperimental (class in ivy.data_classes.array.experimental.elementwise)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental"]], "_arraywithgeneralexperimental (class in ivy.data_classes.array.experimental.general)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental"]], "_arraywithgradientsexperimental (class in ivy.data_classes.array.experimental.gradients)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental"]], "_arraywithimageexperimental (class in ivy.data_classes.array.experimental.image)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental"]], "_arraywithlayersexperimental (class in ivy.data_classes.array.experimental.layers)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental"]], "_arraywithlinearalgebraexperimental (class in ivy.data_classes.array.experimental.linear_algebra)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental"]], "_arraywithlossesexperimental (class in ivy.data_classes.array.experimental.losses)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental"]], "_arraywithmanipulationexperimental (class in ivy.data_classes.array.experimental.manipulation)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental"]], "_arraywithnormsexperimental (class in ivy.data_classes.array.experimental.norms)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental"]], "_arraywithrandomexperimental (class in ivy.data_classes.array.experimental.random)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental"]], "_arraywithsearchingexperimental (class in ivy.data_classes.array.experimental.searching)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental"]], "_arraywithsetexperimental (class in ivy.data_classes.array.experimental.set)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental"]], "_arraywithsortingexperimental (class in ivy.data_classes.array.experimental.sorting)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental"]], "_arraywithstatisticalexperimental (class in ivy.data_classes.array.experimental.statistical)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental"]], "_arraywithutilityexperimental (class in ivy.data_classes.array.experimental.utility)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.conversions._arraywithconversionsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.data_type._arraywithdata_typeexperimental attribute)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.device._arraywithdeviceexperimental attribute)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental attribute)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental attribute)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.gradients._arraywithgradientsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.image._arraywithimageexperimental attribute)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental attribute)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental attribute)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental attribute)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.random._arraywithrandomexperimental attribute)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.set._arraywithsetexperimental attribute)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental attribute)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental attribute)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental._abc_impl"]], "adaptive_avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.blackman_window"]], "celu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.celu"]], "column_stack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.column_stack"]], "concat_from_sequence() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dct"]], "dft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.elu"]], "embedding() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft"]], "fft2() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft2"]], "fill_diagonal() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.gamma"]], "general_inner_product() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.general_inner_product"]], "gradient() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.group_norm"]], "hardshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardtanh"]], "heaviside() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.interpolate"]], "isclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.isclose"]], "ivy.data_classes.array.experimental": [[52, "module-ivy.data_classes.array.experimental"]], "ivy.data_classes.array.experimental.activations": [[52, "module-ivy.data_classes.array.experimental.activations"]], "ivy.data_classes.array.experimental.conversions": [[52, "module-ivy.data_classes.array.experimental.conversions"]], "ivy.data_classes.array.experimental.creation": [[52, "module-ivy.data_classes.array.experimental.creation"]], "ivy.data_classes.array.experimental.data_type": [[52, "module-ivy.data_classes.array.experimental.data_type"]], "ivy.data_classes.array.experimental.device": [[52, "module-ivy.data_classes.array.experimental.device"]], "ivy.data_classes.array.experimental.elementwise": [[52, "module-ivy.data_classes.array.experimental.elementwise"]], "ivy.data_classes.array.experimental.general": [[52, "module-ivy.data_classes.array.experimental.general"]], "ivy.data_classes.array.experimental.gradients": [[52, "module-ivy.data_classes.array.experimental.gradients"]], "ivy.data_classes.array.experimental.image": [[52, "module-ivy.data_classes.array.experimental.image"]], "ivy.data_classes.array.experimental.layers": [[52, "module-ivy.data_classes.array.experimental.layers"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, "module-ivy.data_classes.array.experimental.linear_algebra"]], "ivy.data_classes.array.experimental.losses": [[52, "module-ivy.data_classes.array.experimental.losses"]], "ivy.data_classes.array.experimental.manipulation": [[52, "module-ivy.data_classes.array.experimental.manipulation"]], "ivy.data_classes.array.experimental.norms": [[52, "module-ivy.data_classes.array.experimental.norms"]], "ivy.data_classes.array.experimental.random": [[52, "module-ivy.data_classes.array.experimental.random"]], "ivy.data_classes.array.experimental.searching": [[52, "module-ivy.data_classes.array.experimental.searching"]], "ivy.data_classes.array.experimental.set": [[52, "module-ivy.data_classes.array.experimental.set"]], "ivy.data_classes.array.experimental.sorting": [[52, "module-ivy.data_classes.array.experimental.sorting"]], "ivy.data_classes.array.experimental.statistical": [[52, "module-ivy.data_classes.array.experimental.statistical"]], "ivy.data_classes.array.experimental.utility": [[52, "module-ivy.data_classes.array.experimental.utility"]], "kl_div() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental method)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logit"]], "logsigmoid() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental static method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental method)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.poisson_nll_loss"]], "polyval() (in module ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation.polyval"]], "prelu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.prelu"]], "put_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental method)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental.reduce"]], "reduce_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.reduce_window"]], "relu6() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.relu6"]], "rfft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.scaled_tanh"]], "selu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.selu"]], "signbit() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.silu"]], "sinc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sparsify_tensor"]], "stft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.top_k"]], "trilu() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental method)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_sum"]], "vsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.zeta"]], "_arraywithgeneral (class in ivy.data_classes.array.general)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral"]], "_abc_impl (ivy.data_classes.array.general._arraywithgeneral attribute)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral._abc_impl"]], "all_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_vector_norm"]], "default() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.default"]], "einops_rearrange() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather"]], "gather_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_array"]], "is_ivy_container() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_container"]], "is_native_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_native_array"]], "isin() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.isin"]], "ivy.data_classes.array.general": [[53, "module-ivy.data_classes.array.general"]], "scatter_flat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_pow"]], "supports_inplace_updates() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.supports_inplace_updates"]], "to_file() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_file"]], "to_list() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.value_is_nan"]], "_arraywithgradients (class in ivy.data_classes.array.gradients)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients"]], "_abc_impl (ivy.data_classes.array.gradients._arraywithgradients attribute)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients._abc_impl"]], "adam_step() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_step"]], "adam_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.gradient_descent_update"]], "ivy.data_classes.array.gradients": [[54, "module-ivy.data_classes.array.gradients"]], "lamb_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.stop_gradient"]], "_arraywithimage (class in ivy.data_classes.array.image)": [[55, "ivy.data_classes.array.image._ArrayWithImage"]], "_abc_impl (ivy.data_classes.array.image._arraywithimage attribute)": [[55, "ivy.data_classes.array.image._ArrayWithImage._abc_impl"]], "ivy.data_classes.array.image": [[55, "module-ivy.data_classes.array.image"]], "_arraywithlayers (class in ivy.data_classes.array.layers)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers"]], "_abc_impl (ivy.data_classes.array.layers._arraywithlayers attribute)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers._abc_impl"]], "conv1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout"]], "dropout1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout3d"]], "ivy.data_classes.array.layers": [[56, "module-ivy.data_classes.array.layers"]], "linear() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.linear"]], "lstm_update() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.multi_head_attention"]], "scaled_dot_product_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.scaled_dot_product_attention"]], "_arraywithlinearalgebra (class in ivy.data_classes.array.linear_algebra)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra attribute)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra._abc_impl"]], "cholesky() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cross"]], "det() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.det"]], "diag() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diagonal"]], "eig() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eig"]], "eigh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigvalsh"]], "inner() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inv"]], "ivy.data_classes.array.linear_algebra": [[57, "module-ivy.data_classes.array.linear_algebra"]], "matmul() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.solve"]], "svd() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_arraywithlosses (class in ivy.data_classes.array.losses)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses"]], "_abc_impl (ivy.data_classes.array.losses._arraywithlosses attribute)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses._abc_impl"]], "binary_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.cross_entropy"]], "ivy.data_classes.array.losses": [[58, "module-ivy.data_classes.array.losses"]], "sparse_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.sparse_cross_entropy"]], "_arraywithmanipulation (class in ivy.data_classes.array.manipulation)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation"]], "_abc_impl (ivy.data_classes.array.manipulation._arraywithmanipulation attribute)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation._abc_impl"]], "clip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.clip"]], "concat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.concat"]], "constant_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.expand_dims"]], "flip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.flip"]], "ivy.data_classes.array.manipulation": [[59, "module-ivy.data_classes.array.manipulation"]], "permute_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.repeat"]], "reshape() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.reshape"]], "roll() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.roll"]], "split() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.split"]], "squeeze() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.squeeze"]], "stack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.stack"]], "swapaxes() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.swapaxes"]], "tile() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.tile"]], "unstack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.unstack"]], "view() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.view"]], "zero_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.zero_pad"]], "_arraywithnorms (class in ivy.data_classes.array.norms)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms"]], "_abc_impl (ivy.data_classes.array.norms._arraywithnorms attribute)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms._abc_impl"]], "ivy.data_classes.array.norms": [[60, "module-ivy.data_classes.array.norms"]], "layer_norm() (ivy.data_classes.array.norms._arraywithnorms method)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms.layer_norm"]], "_arraywithrandom (class in ivy.data_classes.array.random)": [[61, "ivy.data_classes.array.random._ArrayWithRandom"]], "_abc_impl (ivy.data_classes.array.random._arraywithrandom attribute)": [[61, "ivy.data_classes.array.random._ArrayWithRandom._abc_impl"]], "ivy.data_classes.array.random": [[61, "module-ivy.data_classes.array.random"]], "multinomial() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.multinomial"]], "randint() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.randint"]], "random_normal() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.shuffle"]], "_arraywithsearching (class in ivy.data_classes.array.searching)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching"]], "_abc_impl (ivy.data_classes.array.searching._arraywithsearching attribute)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching._abc_impl"]], "argmax() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmax"]], "argmin() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmin"]], "argwhere() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argwhere"]], "ivy.data_classes.array.searching": [[62, "module-ivy.data_classes.array.searching"]], "nonzero() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.nonzero"]], "where() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.where"]], "_arraywithset (class in ivy.data_classes.array.set)": [[63, "ivy.data_classes.array.set._ArrayWithSet"]], "_abc_impl (ivy.data_classes.array.set._arraywithset attribute)": [[63, "ivy.data_classes.array.set._ArrayWithSet._abc_impl"]], "ivy.data_classes.array.set": [[63, "module-ivy.data_classes.array.set"]], "unique_all() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_all"]], "unique_counts() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_values"]], "_arraywithsorting (class in ivy.data_classes.array.sorting)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting"]], "_abc_impl (ivy.data_classes.array.sorting._arraywithsorting attribute)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting._abc_impl"]], "argsort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.argsort"]], "ivy.data_classes.array.sorting": [[64, "module-ivy.data_classes.array.sorting"]], "msort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.msort"]], "searchsorted() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.searchsorted"]], "sort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.sort"]], "_arraywithstatistical (class in ivy.data_classes.array.statistical)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical"]], "_abc_impl (ivy.data_classes.array.statistical._arraywithstatistical attribute)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical._abc_impl"]], "cumprod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumsum"]], "einsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.einsum"]], "ivy.data_classes.array.statistical": [[65, "module-ivy.data_classes.array.statistical"]], "max() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.max"]], "mean() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.mean"]], "min() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.min"]], "prod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.prod"]], "std() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.std"]], "sum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.sum"]], "var() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.var"]], "_arraywithutility (class in ivy.data_classes.array.utility)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility"]], "_abc_impl (ivy.data_classes.array.utility._arraywithutility attribute)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility._abc_impl"]], "all() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.all"]], "any() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.any"]], "ivy.data_classes.array.utility": [[66, "module-ivy.data_classes.array.utility"]], "_wrap_function() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping._wrap_function"]], "add_ivy_array_instance_methods() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping.add_ivy_array_instance_methods"]], "ivy.data_classes.array.wrapping": [[67, "module-ivy.data_classes.array.wrapping"]], "_containerwithactivations (class in ivy.data_classes.container.activations)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations"]], "_abc_impl (ivy.data_classes.container.activations._containerwithactivations attribute)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._abc_impl"]], "_static_gelu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_gelu"]], "_static_hardswish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_hardswish"]], "_static_leaky_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_leaky_relu"]], "_static_log_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_log_softmax"]], "_static_mish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_mish"]], "_static_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_relu"]], "_static_sigmoid() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_sigmoid"]], "_static_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softmax"]], "_static_softplus() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softplus"]], "gelu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.gelu"]], "hardswish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.hardswish"]], "ivy.data_classes.container.activations": [[68, "module-ivy.data_classes.container.activations"]], "leaky_relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.log_softmax"]], "mish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.mish"]], "relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.relu"]], "sigmoid() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.sigmoid"]], "softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softmax"]], "softplus() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softplus"]], "containerbase (class in ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base.ContainerBase"]], "__getitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__getitem__"]], "__init__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__init__"]], "__setitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__setitem__"]], "_abc_impl (ivy.data_classes.container.base.containerbase attribute)": [[69, "ivy.data_classes.container.base.ContainerBase._abc_impl"]], "_cont_at_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_dict"]], "_cont_at_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_seq"]], "_cont_call_static_method_with_flexible_args() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_call_static_method_with_flexible_args"]], "_cont_concat_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_concat_unify"]], "_cont_get_dev() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dev"]], "_cont_get_dtype() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dtype"]], "_cont_get_shape() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shape"]], "_cont_get_shapes() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shapes"]], "_cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_ivy"]], "_cont_mean_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_mean_unify"]], "_cont_prune_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_dict"]], "_cont_prune_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_seq"]], "_cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_slice_keys"]], "_cont_sum_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_sum_unify"]], "_get_queue_item() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._get_queue_item"]], "_is_jsonable() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._is_jsonable"]], "_repr() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._repr"]], "cont_all_false() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_false"]], "cont_all_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_key_chains"]], "cont_all_true() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_true"]], "cont_as_bools() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_as_bools"]], "cont_assert_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_container"]], "cont_assert_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_structure"]], "cont_assert_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical"]], "cont_assert_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical_structure"]], "cont_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chain"]], "cont_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chains"]], "cont_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_keys"]], "cont_combine() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_combine"]], "cont_common_key_chains() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_common_key_chains"]], "cont_config (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_config"]], "cont_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_container"]], "cont_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_structure"]], "cont_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_copy"]], "cont_create_if_absent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_create_if_absent"]], "cont_cutoff_at_depth() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_depth"]], "cont_cutoff_at_height() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_height"]], "cont_deep_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_deep_copy"]], "cont_dev (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev"]], "cont_dev_str (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev_str"]], "cont_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_diff"]], "cont_dtype (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dtype"]], "cont_duplicate_array_keychains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_duplicate_array_keychains"]], "cont_find_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_container"]], "cont_find_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_structure"]], "cont_flatten_key_chain() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chain"]], "cont_flatten_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chains"]], "cont_format_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_format_key_chains"]], "cont_from_disk_as_hdf5() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_hdf5"]], "cont_from_disk_as_json() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_json"]], "cont_from_disk_as_pickled() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_pickled"]], "cont_from_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_flat_list"]], "cont_handle_inplace() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_handle_inplace"]], "cont_has_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key"]], "cont_has_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key_chain"]], "cont_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical"]], "cont_identical_array_shapes() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_array_shapes"]], "cont_identical_configs() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_configs"]], "cont_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_structure"]], "cont_if_exists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_if_exists"]], "cont_inplace_update() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_inplace_update"]], "cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_ivy"]], "cont_key_chains_containing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_key_chains_containing"]], "cont_list_join() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_join"]], "cont_list_stack() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_stack"]], "cont_load() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_load"]], "cont_map() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map"]], "cont_map_sub_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map_sub_conts"]], "cont_max_depth (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_max_depth"]], "cont_multi_map() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map"]], "cont_multi_map_in_function() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map_in_function"]], "cont_num_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_num_arrays"]], "cont_overwrite_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chain"]], "cont_overwrite_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chains"]], "cont_prune_empty() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_empty"]], "cont_prune_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chain"]], "cont_prune_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chains"]], "cont_prune_key_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_from_key_chains"]], "cont_prune_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys"]], "cont_prune_keys_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys_from_key_chains"]], "cont_reduce() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reduce"]], "cont_remove_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_key_length_limit"]], "cont_remove_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_print_limit"]], "cont_reshape_like() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reshape_like"]], "cont_restructure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure"]], "cont_restructure_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure_key_chains"]], "cont_save() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_save"]], "cont_set_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chain"]], "cont_set_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chains"]], "cont_set_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_keys"]], "cont_shape (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shape"]], "cont_shapes (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shapes"]], "cont_show() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show"]], "cont_show_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show_sub_container"]], "cont_size_ordered_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_size_ordered_arrays"]], "cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_keys"]], "cont_slice_via_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_via_key"]], "cont_sort_by_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_sort_by_key"]], "cont_structural_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_structural_diff"]], "cont_to_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_dict"]], "cont_to_disk_as_hdf5() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_hdf5"]], "cont_to_disk_as_json() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_json"]], "cont_to_disk_as_pickled() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_pickled"]], "cont_to_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_flat_list"]], "cont_to_iterator() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator"]], "cont_to_iterator_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_keys"]], "cont_to_iterator_values() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_values"]], "cont_to_jsonable() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_jsonable"]], "cont_to_nested_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_nested_list"]], "cont_to_raw() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_raw"]], "cont_trim_key() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_trim_key"]], "cont_try_kc() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_try_kc"]], "cont_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unify"]], "cont_unstack_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unstack_conts"]], "cont_update_config() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_update_config"]], "cont_with_default_key_color() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_default_key_color"]], "cont_with_entries_as_lists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_entries_as_lists"]], "cont_with_ivy_backend() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_ivy_backend"]], "cont_with_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_key_length_limit"]], "cont_with_print_indent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_indent"]], "cont_with_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_limit"]], "cont_with_print_line_spacing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_line_spacing"]], "dynamic_backend (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.dynamic_backend"]], "h5_file_size() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.h5_file_size"]], "ivy.data_classes.container.base": [[69, "module-ivy.data_classes.container.base"]], "shuffle_h5_file() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.shuffle_h5_file"]], "split_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.split_conts"]], "_containerwithconversions (class in ivy.data_classes.container.conversions)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions"]], "_abc_impl (ivy.data_classes.container.conversions._containerwithconversions attribute)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._abc_impl"]], "_static_to_ivy() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_ivy"]], "_static_to_native() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_native"]], "ivy.data_classes.container.conversions": [[70, "module-ivy.data_classes.container.conversions"]], "to_ivy() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_ivy"]], "to_native() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_native"]], "_containerwithcreation (class in ivy.data_classes.container.creation)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation"]], "_abc_impl (ivy.data_classes.container.creation._containerwithcreation attribute)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._abc_impl"]], "_static_arange() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_arange"]], "_static_asarray() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_asarray"]], "_static_copy_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_copy_array"]], "_static_empty() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty"]], "_static_empty_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty_like"]], "_static_eye() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_eye"]], "_static_from_dlpack() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_from_dlpack"]], "_static_full() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full"]], "_static_full_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full_like"]], "_static_linspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_linspace"]], "_static_logspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_logspace"]], "_static_meshgrid() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_meshgrid"]], "_static_native_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_native_array"]], "_static_one_hot() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_one_hot"]], "_static_ones() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones"]], "_static_ones_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones_like"]], "_static_tril() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_tril"]], "_static_triu() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_triu"]], "_static_zeros() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros"]], "_static_zeros_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros_like"]], "asarray() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.asarray"]], "copy_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.copy_array"]], "empty_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.from_dlpack"]], "frombuffer() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.frombuffer"]], "full_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.full_like"]], "ivy.data_classes.container.creation": [[71, "module-ivy.data_classes.container.creation"]], "linspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.linspace"]], "logspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.logspace"]], "meshgrid() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.meshgrid"]], "native_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.native_array"]], "one_hot() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.one_hot"]], "ones_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.ones_like"]], "static_frombuffer() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_frombuffer"]], "static_triu_indices() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_triu_indices"]], "tril() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.tril"]], "triu() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu"]], "triu_indices() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu_indices"]], "zeros_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.zeros_like"]], "_containerwithdatatypes (class in ivy.data_classes.container.data_type)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes"]], "_abc_impl (ivy.data_classes.container.data_type._containerwithdatatypes attribute)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._abc_impl"]], "_static_astype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_astype"]], "_static_broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_arrays"]], "_static_broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_to"]], "_static_can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_can_cast"]], "_static_default_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_complex_dtype"]], "_static_default_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_float_dtype"]], "_static_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_dtype"]], "_static_finfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_finfo"]], "_static_function_supported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_supported_dtypes"]], "_static_function_unsupported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_unsupported_dtypes"]], "_static_iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_iinfo"]], "_static_is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_bool_dtype"]], "_static_is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_complex_dtype"]], "_static_is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_float_dtype"]], "_static_is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_int_dtype"]], "_static_is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_uint_dtype"]], "_static_result_type() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_result_type"]], "astype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.dtype"]], "finfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_bool_dtype"]], "is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_complex_dtype"]], "is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_uint_dtype"]], "ivy.data_classes.container.data_type": [[72, "module-ivy.data_classes.container.data_type"]], "result_type() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.result_type"]], "_containerwithdevice (class in ivy.data_classes.container.device)": [[73, "ivy.data_classes.container.device._ContainerWithDevice"]], "_abc_impl (ivy.data_classes.container.device._containerwithdevice attribute)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._abc_impl"]], "_static_dev() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_dev"]], "_static_to_device() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_to_device"]], "dev() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.dev"]], "ivy.data_classes.container.device": [[73, "module-ivy.data_classes.container.device"]], "to_device() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.to_device"]], "_containerwithelementwise (class in ivy.data_classes.container.elementwise)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise"]], "_abc_impl (ivy.data_classes.container.elementwise._containerwithelementwise attribute)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._abc_impl"]], "_static_abs() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_abs"]], "_static_acos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acos"]], "_static_acosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acosh"]], "_static_add() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_add"]], "_static_asin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asin"]], "_static_asinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asinh"]], "_static_atan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan"]], "_static_atan2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan2"]], "_static_atanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atanh"]], "_static_bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_and"]], "_static_bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_invert"]], "_static_bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_left_shift"]], "_static_bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_or"]], "_static_bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_right_shift"]], "_static_bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_xor"]], "_static_ceil() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_ceil"]], "_static_cos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cos"]], "_static_cosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cosh"]], "_static_deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_deg2rad"]], "_static_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_divide"]], "_static_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_equal"]], "_static_erf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_erf"]], "_static_exp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_exp"]], "_static_expm1() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_expm1"]], "_static_floor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor"]], "_static_floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor_divide"]], "_static_greater() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater"]], "_static_greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater_equal"]], "_static_isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isfinite"]], "_static_isinf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isinf"]], "_static_isnan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isnan"]], "_static_isreal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isreal"]], "_static_lcm() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_lcm"]], "_static_less() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less"]], "_static_less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less_equal"]], "_static_log() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log"]], "_static_log10() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log10"]], "_static_log1p() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log1p"]], "_static_log2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log2"]], "_static_logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logaddexp"]], "_static_logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_and"]], "_static_logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_not"]], "_static_logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_or"]], "_static_logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_xor"]], "_static_maximum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_maximum"]], "_static_minimum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_minimum"]], "_static_multiply() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_multiply"]], "_static_negative() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_negative"]], "_static_not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_not_equal"]], "_static_positive() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_positive"]], "_static_pow() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_pow"]], "_static_rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_rad2deg"]], "_static_reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_reciprocal"]], "_static_remainder() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_remainder"]], "_static_round() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_round"]], "_static_sign() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sign"]], "_static_sin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sin"]], "_static_sinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sinh"]], "_static_sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sqrt"]], "_static_square() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_square"]], "_static_subtract() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_subtract"]], "_static_tan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tan"]], "_static_tanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tanh"]], "_static_trapz() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trapz"]], "_static_trunc() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc"]], "_static_trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc_divide"]], "abs() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.abs"]], "acos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acos"]], "acosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acosh"]], "add() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.add"]], "angle() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.angle"]], "asin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asin"]], "asinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asinh"]], "atan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan"]], "atan2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan2"]], "atanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.ceil"]], "cos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cos"]], "cosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.deg2rad"]], "divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.divide"]], "equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.equal"]], "erf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.erf"]], "exp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp"]], "exp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp2"]], "expm1() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.expm1"]], "floor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor"]], "floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.fmin"]], "gcd() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.gcd"]], "greater() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater"]], "greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater_equal"]], "imag() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.imag"]], "isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isfinite"]], "isinf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isinf"]], "isnan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isnan"]], "isreal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isreal"]], "ivy.data_classes.container.elementwise": [[74, "module-ivy.data_classes.container.elementwise"]], "lcm() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.lcm"]], "less() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less"]], "less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less_equal"]], "log() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log"]], "log10() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log10"]], "log1p() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log1p"]], "log2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log2"]], "logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.maximum"]], "minimum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.minimum"]], "multiply() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.negative"]], "not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.not_equal"]], "positive() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.positive"]], "pow() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.pow"]], "rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.rad2deg"]], "real() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.real"]], "reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.remainder"]], "round() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.round"]], "sign() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sign"]], "sin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sin"]], "sinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sinh"]], "sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sqrt"]], "square() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.square"]], "static_angle() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_angle"]], "static_exp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_exp2"]], "static_fmin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_fmin"]], "static_gcd() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_gcd"]], "static_imag() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_imag"]], "static_logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_logaddexp2"]], "static_nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_nan_to_num"]], "static_real() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_real"]], "subtract() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.subtract"]], "tan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tan"]], "tanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tanh"]], "trapz() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trapz"]], "trunc() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc_divide"]], "_containerwithactivationexperimental (class in ivy.data_classes.container.experimental.activations)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental"]], "_containerwithconversionexperimental (class in ivy.data_classes.container.experimental.conversions)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental"]], "_containerwithcreationexperimental (class in ivy.data_classes.container.experimental.creation)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental"]], "_containerwithdata_typeexperimental (class in ivy.data_classes.container.experimental.data_type)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental"]], "_containerwithdeviceexperimental (class in ivy.data_classes.container.experimental.device)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental"]], "_containerwithelementwiseexperimental (class in ivy.data_classes.container.experimental.elementwise)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental"]], "_containerwithgeneralexperimental (class in ivy.data_classes.container.experimental.general)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental"]], "_containerwithgradientsexperimental (class in ivy.data_classes.container.experimental.gradients)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental"]], "_containerwithimageexperimental (class in ivy.data_classes.container.experimental.image)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental"]], "_containerwithlayersexperimental (class in ivy.data_classes.container.experimental.layers)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental"]], "_containerwithlinearalgebraexperimental (class in ivy.data_classes.container.experimental.linear_algebra)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental"]], "_containerwithlossesexperimental (class in ivy.data_classes.container.experimental.losses)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental"]], "_containerwithmanipulationexperimental (class in ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental"]], "_containerwithnormsexperimental (class in ivy.data_classes.container.experimental.norms)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental"]], "_containerwithrandomexperimental (class in ivy.data_classes.container.experimental.random)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental"]], "_containerwithsearchingexperimental (class in ivy.data_classes.container.experimental.searching)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental"]], "_containerwithsetexperimental (class in ivy.data_classes.container.experimental.set)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental"]], "_containerwithsortingexperimental (class in ivy.data_classes.container.experimental.sorting)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental"]], "_containerwithstatisticalexperimental (class in ivy.data_classes.container.experimental.statistical)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental"]], "_containerwithutilityexperimental (class in ivy.data_classes.container.experimental.utility)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.conversions._containerwithconversionexperimental attribute)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.data_type._containerwithdata_typeexperimental attribute)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.device._containerwithdeviceexperimental attribute)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental attribute)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental attribute)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.gradients._containerwithgradientsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.image._containerwithimageexperimental attribute)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental attribute)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental attribute)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental attribute)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.random._containerwithrandomexperimental attribute)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.set._containerwithsetexperimental attribute)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental attribute)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental attribute)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental._abc_impl"]], "_static_celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_celu"]], "_static_cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummax"]], "_static_cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummin"]], "_static_elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_elu"]], "_static_fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_fft"]], "_static_fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_fill_diagonal"]], "_static_hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardshrink"]], "_static_hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardtanh"]], "_static_huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_huber_loss"]], "_static_kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_kl_div"]], "_static_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_l1_loss"]], "_static_log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_log_poisson_loss"]], "_static_nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_nanmin"]], "_static_poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_poisson_nll_loss"]], "_static_put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_put_along_axis"]], "_static_reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental static method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._static_reduce"]], "_static_scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_scaled_tanh"]], "_static_silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_silu"]], "_static_sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_sliding_window"]], "_static_smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_smooth_l1_loss"]], "_static_soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_soft_margin_loss"]], "_static_softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_softshrink"]], "_static_take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_take"]], "_static_tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_tanhshrink"]], "_static_threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_threshold"]], "_static_trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._static_trilu"]], "_static_trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_trim_zeros"]], "_static_unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unique_consecutive"]], "adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.blackman_window"]], "broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.broadcast_shapes"]], "celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.celu"]], "column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.column_stack"]], "concat_from_sequence() (in module ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation.concat_from_sequence"]], "concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dct"]], "dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.elu"]], "embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.fft"]], "fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.gamma"]], "gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.group_norm"]], "hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hamming_window"]], "hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hann_window"]], "hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardtanh"]], "heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.interpolate"]], "invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.invert_permutation"]], "isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.isclose"]], "ivy.data_classes.container.experimental": [[75, "module-ivy.data_classes.container.experimental"]], "ivy.data_classes.container.experimental.activations": [[75, "module-ivy.data_classes.container.experimental.activations"]], "ivy.data_classes.container.experimental.conversions": [[75, "module-ivy.data_classes.container.experimental.conversions"]], "ivy.data_classes.container.experimental.creation": [[75, "module-ivy.data_classes.container.experimental.creation"]], "ivy.data_classes.container.experimental.data_type": [[75, "module-ivy.data_classes.container.experimental.data_type"]], "ivy.data_classes.container.experimental.device": [[75, "module-ivy.data_classes.container.experimental.device"]], "ivy.data_classes.container.experimental.elementwise": [[75, "module-ivy.data_classes.container.experimental.elementwise"]], "ivy.data_classes.container.experimental.general": [[75, "module-ivy.data_classes.container.experimental.general"]], "ivy.data_classes.container.experimental.gradients": [[75, "module-ivy.data_classes.container.experimental.gradients"]], "ivy.data_classes.container.experimental.image": [[75, "module-ivy.data_classes.container.experimental.image"]], "ivy.data_classes.container.experimental.layers": [[75, "module-ivy.data_classes.container.experimental.layers"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, "module-ivy.data_classes.container.experimental.linear_algebra"]], "ivy.data_classes.container.experimental.losses": [[75, "module-ivy.data_classes.container.experimental.losses"]], "ivy.data_classes.container.experimental.manipulation": [[75, "module-ivy.data_classes.container.experimental.manipulation"]], "ivy.data_classes.container.experimental.norms": [[75, "module-ivy.data_classes.container.experimental.norms"]], "ivy.data_classes.container.experimental.random": [[75, "module-ivy.data_classes.container.experimental.random"]], "ivy.data_classes.container.experimental.searching": [[75, "module-ivy.data_classes.container.experimental.searching"]], "ivy.data_classes.container.experimental.set": [[75, "module-ivy.data_classes.container.experimental.set"]], "ivy.data_classes.container.experimental.sorting": [[75, "module-ivy.data_classes.container.experimental.sorting"]], "ivy.data_classes.container.experimental.statistical": [[75, "module-ivy.data_classes.container.experimental.statistical"]], "ivy.data_classes.container.experimental.utility": [[75, "module-ivy.data_classes.container.experimental.utility"]], "kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_bessel_derived_window"]], "kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_window"]], "kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.lexsort"]], "log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logit"]], "logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.poisson_nll_loss"]], "polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.polyval"]], "prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.prelu"]], "put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental.reduce"]], "relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.relu6"]], "rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.scaled_tanh"]], "selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.selu"]], "signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.silu"]], "sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sparsify_tensor"]], "static_adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool1d"]], "static_adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool2d"]], "static_adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool2d"]], "static_adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_adjoint"]], "static_allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_allclose"]], "static_amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amax"]], "static_amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amin"]], "static_as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_as_strided"]], "static_atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_1d"]], "static_atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_2d"]], "static_atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_3d"]], "static_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool1d"]], "static_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool2d"]], "static_avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool3d"]], "static_batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_batch_norm"]], "static_batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_batched_outer"]], "static_bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_bernoulli"]], "static_beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_beta"]], "static_binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_binarizer"]], "static_bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_bincount"]], "static_blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_blackman_window"]], "static_broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_broadcast_shapes"]], "static_column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_column_stack"]], "static_concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_concat_from_sequence"]], "static_cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_cond"]], "static_conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_conj"]], "static_copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_copysign"]], "static_corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_corrcoef"]], "static_count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_count_nonzero"]], "static_cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_cov"]], "static_dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dct"]], "static_dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dft"]], "static_diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_diagflat"]], "static_diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_diff"]], "static_digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_digamma"]], "static_dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_dirichlet"]], "static_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_dot"]], "static_dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dsplit"]], "static_dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dstack"]], "static_eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eig"]], "static_eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigh_tridiagonal"]], "static_eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigvals"]], "static_embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_embedding"]], "static_erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfc"]], "static_expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_expand"]], "static_eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_eye_like"]], "static_fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fix"]], "static_flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flatten"]], "static_fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fliplr"]], "static_flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flipud"]], "static_float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_float_power"]], "static_fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmax"]], "static_fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmod"]], "static_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fold"]], "static_frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_frexp"]], "static_gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_gamma"]], "static_gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_gradient"]], "static_group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_group_norm"]], "static_hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hamming_window"]], "static_hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hann_window"]], "static_heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_heaviside"]], "static_higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_higher_order_moment"]], "static_histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_histogram"]], "static_hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hsplit"]], "static_hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hstack"]], "static_hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_hypot"]], "static_i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_i0"]], "static_idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_idct"]], "static_ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifft"]], "static_ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifftn"]], "static_igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_igamma"]], "static_initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_initialize_tucker"]], "static_instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_instance_norm"]], "static_interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_interpolate"]], "static_invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_invert_permutation"]], "static_isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_isclose"]], "static_kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_bessel_derived_window"]], "static_kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_window"]], "static_kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_kron"]], "static_l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l1_normalize"]], "static_l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l2_normalize"]], "static_ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_ldexp"]], "static_lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_lerp"]], "static_lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_lexsort"]], "static_logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logit"]], "static_logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logsigmoid"]], "static_lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_lp_normalize"]], "static_make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_make_svd_non_negative"]], "static_matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_matricize"]], "static_matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_matrix_exp"]], "static_max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool1d"]], "static_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool2d"]], "static_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool3d"]], "static_max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_unpool1d"]], "static_median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_median"]], "static_mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_mel_weight_matrix"]], "static_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_mode_dot"]], "static_modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_modf"]], "static_moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_moveaxis"]], "static_multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_dot"]], "static_multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_mode_dot"]], "static_nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmean"]], "static_nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmedian"]], "static_nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanprod"]], "static_nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nansum"]], "static_nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nextafter"]], "static_optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental static method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.static_optional_get_element"]], "static_pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_pad"]], "static_partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_fold"]], "static_partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_tensor_to_vec"]], "static_partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_partial_tucker"]], "static_partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_unfold"]], "static_partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_vec_to_tensor"]], "static_poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_poisson"]], "static_polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_polyval"]], "static_prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_prelu"]], "static_quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_quantile"]], "static_relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_relu6"]], "static_rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfft"]], "static_rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfftn"]], "static_rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_rot90"]], "static_selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_selu"]], "static_signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_signbit"]], "static_sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sinc"]], "static_soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_soft_thresholding"]], "static_sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sparsify_tensor"]], "static_stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_stft"]], "static_svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_svd_flip"]], "static_take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_take_along_axis"]], "static_tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tensor_train"]], "static_thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_thresholded_relu"]], "static_top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_top_k"]], "static_tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_tril_indices"]], "static_truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_truncated_svd"]], "static_tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tt_matrix_to_tensor"]], "static_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tucker"]], "static_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_unfold"]], "static_unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental static method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.static_unravel_index"]], "static_unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_mean"]], "static_unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_min"]], "static_unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_sum"]], "static_vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_vorbis_window"]], "static_vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vsplit"]], "static_vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vstack"]], "static_xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_xlogy"]], "static_zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_zeta"]], "stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.top_k"]], "tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.tril_indices"]], "trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_sum"]], "vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.vorbis_window"]], "vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.zeta"]], "_containerwithgeneral (class in ivy.data_classes.container.general)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral"]], "_abc_impl (ivy.data_classes.container.general._containerwithgeneral attribute)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._abc_impl"]], "_static_all_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_all_equal"]], "_static_array_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_array_equal"]], "_static_assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_assert_supports_inplace"]], "_static_clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_matrix_norm"]], "_static_clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_vector_norm"]], "_static_einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_rearrange"]], "_static_einops_reduce() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_reduce"]], "_static_einops_repeat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_repeat"]], "_static_exists() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_exists"]], "_static_fourier_encode() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_fourier_encode"]], "_static_gather() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather"]], "_static_gather_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather_nd"]], "_static_get_num_dims() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_get_num_dims"]], "_static_has_nans() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_has_nans"]], "_static_inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_decrement"]], "_static_inplace_increment() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_increment"]], "_static_inplace_update() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_update"]], "_static_is_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_array"]], "_static_is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_ivy_array"]], "_static_is_native_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_native_array"]], "_static_scatter_flat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_flat"]], "_static_scatter_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_nd"]], "_static_stable_divide() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_divide"]], "_static_stable_pow() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_pow"]], "_static_supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_supports_inplace_updates"]], "_static_to_list() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_list"]], "_static_to_numpy() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_numpy"]], "_static_to_scalar() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_scalar"]], "_static_value_is_nan() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_value_is_nan"]], "all_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_vector_norm"]], "einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather"]], "gather_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_ivy_array"]], "is_native_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_native_array"]], "isin() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.isin"]], "itemsize() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.itemsize"]], "ivy.data_classes.container.general": [[76, "module-ivy.data_classes.container.general"]], "scatter_flat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_pow"]], "static_isin() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_isin"]], "static_itemsize() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_itemsize"]], "static_strides() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_strides"]], "strides() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.strides"]], "supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.supports_inplace_updates"]], "to_list() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.value_is_nan"]], "_containerwithgradients (class in ivy.data_classes.container.gradients)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients"]], "_abc_impl (ivy.data_classes.container.gradients._containerwithgradients attribute)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._abc_impl"]], "_static_stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients static method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._static_stop_gradient"]], "adam_step() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_step"]], "adam_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.gradient_descent_update"]], "ivy.data_classes.container.gradients": [[77, "module-ivy.data_classes.container.gradients"]], "lamb_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.stop_gradient"]], "_containerwithimage (class in ivy.data_classes.container.image)": [[78, "ivy.data_classes.container.image._ContainerWithImage"]], "_abc_impl (ivy.data_classes.container.image._containerwithimage attribute)": [[78, "ivy.data_classes.container.image._ContainerWithImage._abc_impl"]], "ivy.data_classes.container.image": [[78, "module-ivy.data_classes.container.image"]], "_containerwithlayers (class in ivy.data_classes.container.layers)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers"]], "_abc_impl (ivy.data_classes.container.layers._containerwithlayers attribute)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._abc_impl"]], "_static_conv1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d"]], "_static_conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d_transpose"]], "_static_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d"]], "_static_conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d_transpose"]], "_static_conv3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d"]], "_static_conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d_transpose"]], "_static_depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_depthwise_conv2d"]], "_static_dropout() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout"]], "_static_dropout1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout1d"]], "_static_dropout2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout2d"]], "_static_dropout3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout3d"]], "_static_linear() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_linear"]], "_static_lstm_update() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_lstm_update"]], "_static_multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_multi_head_attention"]], "_static_reduce_window() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_reduce_window"]], "_static_scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_scaled_dot_product_attention"]], "conv1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout"]], "dropout1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout3d"]], "ivy.data_classes.container.layers": [[79, "module-ivy.data_classes.container.layers"]], "linear() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.linear"]], "lstm_update() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.multi_head_attention"]], "reduce_window() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.reduce_window"]], "scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.scaled_dot_product_attention"]], "_containerwithlinearalgebra (class in ivy.data_classes.container.linear_algebra)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra attribute)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._abc_impl"]], "_static_cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cholesky"]], "_static_cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cross"]], "_static_det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_det"]], "_static_diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diag"]], "_static_diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diagonal"]], "_static_eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigh"]], "_static_eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigvalsh"]], "_static_inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inner"]], "_static_inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inv"]], "_static_matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matmul"]], "_static_matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_norm"]], "_static_matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_power"]], "_static_matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_rank"]], "_static_matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_transpose"]], "_static_outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_outer"]], "_static_pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_pinv"]], "_static_qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_qr"]], "_static_slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_slogdet"]], "_static_solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_solve"]], "_static_svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svd"]], "_static_svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svdvals"]], "_static_tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensordot"]], "_static_tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensorsolve"]], "_static_trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_trace"]], "_static_vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vander"]], "_static_vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vecdot"]], "_static_vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_norm"]], "_static_vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_to_skew_symmetric_matrix"]], "cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cross"]], "det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.det"]], "diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diagonal"]], "eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigvalsh"]], "general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.general_inner_product"]], "inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inv"]], "ivy.data_classes.container.linear_algebra": [[80, "module-ivy.data_classes.container.linear_algebra"]], "matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.solve"]], "static_general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.static_general_inner_product"]], "svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_containerwithlosses (class in ivy.data_classes.container.losses)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses"]], "_abc_impl (ivy.data_classes.container.losses._containerwithlosses attribute)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._abc_impl"]], "_static_binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_binary_cross_entropy"]], "_static_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_cross_entropy"]], "_static_sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_sparse_cross_entropy"]], "binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.cross_entropy"]], "ivy.data_classes.container.losses": [[81, "module-ivy.data_classes.container.losses"]], "sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.sparse_cross_entropy"]], "_containerwithmanipulation (class in ivy.data_classes.container.manipulation)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation"]], "_abc_impl (ivy.data_classes.container.manipulation._containerwithmanipulation attribute)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._abc_impl"]], "_static_clip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_clip"]], "_static_concat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_concat"]], "_static_constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_constant_pad"]], "_static_expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_expand_dims"]], "_static_flip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_flip"]], "_static_permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_permute_dims"]], "_static_repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_repeat"]], "_static_reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_reshape"]], "_static_roll() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_roll"]], "_static_split() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_split"]], "_static_squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_squeeze"]], "_static_stack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_stack"]], "_static_swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_swapaxes"]], "_static_tile() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_tile"]], "_static_unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_unstack"]], "_static_zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_zero_pad"]], "clip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.clip"]], "concat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.concat"]], "constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.expand_dims"]], "flip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.flip"]], "ivy.data_classes.container.manipulation": [[82, "module-ivy.data_classes.container.manipulation"]], "permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.repeat"]], "reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.reshape"]], "roll() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.roll"]], "split() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.split"]], "squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.squeeze"]], "stack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.stack"]], "swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.swapaxes"]], "tile() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.tile"]], "unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.unstack"]], "zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.zero_pad"]], "_containerwithnorms (class in ivy.data_classes.container.norms)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms"]], "_abc_impl (ivy.data_classes.container.norms._containerwithnorms attribute)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms._abc_impl"]], "ivy.data_classes.container.norms": [[83, "module-ivy.data_classes.container.norms"]], "layer_norm() (ivy.data_classes.container.norms._containerwithnorms method)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms.layer_norm"]], "_containerwithrandom (class in ivy.data_classes.container.random)": [[84, "ivy.data_classes.container.random._ContainerWithRandom"]], "_abc_impl (ivy.data_classes.container.random._containerwithrandom attribute)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._abc_impl"]], "_static_multinomial() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_multinomial"]], "_static_randint() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_randint"]], "_static_random_normal() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_normal"]], "_static_random_uniform() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_uniform"]], "_static_shuffle() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_shuffle"]], "ivy.data_classes.container.random": [[84, "module-ivy.data_classes.container.random"]], "multinomial() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.multinomial"]], "randint() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.randint"]], "random_normal() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.shuffle"]], "_containerwithsearching (class in ivy.data_classes.container.searching)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching"]], "_abc_impl (ivy.data_classes.container.searching._containerwithsearching attribute)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._abc_impl"]], "_static_argmax() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmax"]], "_static_argmin() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmin"]], "_static_argwhere() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argwhere"]], "_static_nonzero() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_nonzero"]], "_static_where() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_where"]], "argmax() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmax"]], "argmin() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmin"]], "argwhere() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argwhere"]], "ivy.data_classes.container.searching": [[85, "module-ivy.data_classes.container.searching"]], "nonzero() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.nonzero"]], "where() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.where"]], "_containerwithset (class in ivy.data_classes.container.set)": [[86, "ivy.data_classes.container.set._ContainerWithSet"]], "_abc_impl (ivy.data_classes.container.set._containerwithset attribute)": [[86, "ivy.data_classes.container.set._ContainerWithSet._abc_impl"]], "_static_unique_all() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_all"]], "_static_unique_counts() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_counts"]], "_static_unique_inverse() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_inverse"]], "_static_unique_values() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_values"]], "ivy.data_classes.container.set": [[86, "module-ivy.data_classes.container.set"]], "unique_all() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_all"]], "unique_counts() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_values"]], "_containerwithsorting (class in ivy.data_classes.container.sorting)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting"]], "_abc_impl (ivy.data_classes.container.sorting._containerwithsorting attribute)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._abc_impl"]], "_static_argsort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_argsort"]], "_static_searchsorted() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_searchsorted"]], "_static_sort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_sort"]], "argsort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.argsort"]], "ivy.data_classes.container.sorting": [[87, "module-ivy.data_classes.container.sorting"]], "msort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.msort"]], "searchsorted() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.searchsorted"]], "sort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.sort"]], "static_msort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.static_msort"]], "_containerwithstatistical (class in ivy.data_classes.container.statistical)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical"]], "_abc_impl (ivy.data_classes.container.statistical._containerwithstatistical attribute)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._abc_impl"]], "_static_cumprod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumprod"]], "_static_cumsum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumsum"]], "_static_min() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_min"]], "_static_prod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_prod"]], "_static_sum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_sum"]], "_static_var() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_var"]], "cumprod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumsum"]], "einsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.einsum"]], "ivy.data_classes.container.statistical": [[88, "module-ivy.data_classes.container.statistical"]], "max() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.max"]], "mean() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.mean"]], "min() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.min"]], "prod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.prod"]], "std() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.std"]], "sum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.sum"]], "var() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.var"]], "_containerwithutility (class in ivy.data_classes.container.utility)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility"]], "_abc_impl (ivy.data_classes.container.utility._containerwithutility attribute)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._abc_impl"]], "_static_all() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_all"]], "_static_any() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_any"]], "all() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.all"]], "any() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.any"]], "ivy.data_classes.container.utility": [[89, "module-ivy.data_classes.container.utility"]], "_wrap_function() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping._wrap_function"]], "add_ivy_container_instance_methods() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping.add_ivy_container_instance_methods"]], "ivy.data_classes.container.wrapping": [[90, "module-ivy.data_classes.container.wrapping"]], "factorizedtensor (class in ivy.data_classes.factorized_tensor.base)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor"]], "__init__() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.base.factorizedtensor attribute)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.base": [[91, "module-ivy.data_classes.factorized_tensor.base"]], "mode_dot() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.mode_dot"]], "norm() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.norm"]], "to_tensor() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_vec"]], "cptensor (class in ivy.data_classes.factorized_tensor.cp_tensor)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor"]], "__init__() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.cp_tensor.cptensor attribute)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor._abc_impl"]], "cp_copy() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_copy"]], "cp_flip_sign() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_flip_sign"]], "cp_lstsq_grad() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_lstsq_grad"]], "cp_mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_mode_dot"]], "cp_n_param() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_n_param"]], "cp_norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_norm"]], "cp_normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_normalize"]], "cp_to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_tensor"]], "cp_to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_unfolded"]], "cp_to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.cp_tensor.cptensor property)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.n_param"]], "norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.norm"]], "normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.normalize"]], "to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_vec"]], "unfolding_dot_khatri_rao() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.unfolding_dot_khatri_rao"]], "validate_cp_rank() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_rank"]], "validate_cp_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_tensor"]], "parafac2tensor (class in ivy.data_classes.factorized_tensor.parafac2_tensor)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor"]], "__init__() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor attribute)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor._abc_impl"]], "apply_parafac2_projections() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.apply_parafac2_projections"]], "from_cptensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor class method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.from_CPTensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "n_param (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor property)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.n_param"]], "parafac2_normalise() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_normalise"]], "parafac2_to_slice() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slice"]], "parafac2_to_slices() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slices"]], "parafac2_to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_tensor"]], "parafac2_to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_unfolded"]], "parafac2_to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_vec"]], "to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_vec"]], "validate_parafac2_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.validate_parafac2_tensor"]], "trtensor (class in ivy.data_classes.factorized_tensor.tr_tensor)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tr_tensor.trtensor attribute)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tr_tensor.trtensor property)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_vec"]], "tr_n_param() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_n_param"]], "tr_to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_tensor"]], "tr_to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_unfolded"]], "tr_to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_vec"]], "validate_tr_rank() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_rank"]], "validate_tr_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_tensor"]], "tttensor (class in ivy.data_classes.factorized_tensor.tt_tensor)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tt_tensor.tttensor attribute)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._abc_impl"]], "_tt_n_param() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._tt_n_param"]], "index_update() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.index_update"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tt_tensor.tttensor property)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.n_param"]], "pad_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.pad_tt_rank"]], "to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_tensor"]], "to_unfolding() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_unfolding"]], "to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_vec"]], "tt_to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_tensor"]], "tt_to_unfolded() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_unfolded"]], "tt_to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_vec"]], "validate_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_rank"]], "validate_tt_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_tensor"]], "tuckertensor (class in ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor attribute)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor._abc_impl"]], "_bisection_root_finder() (in module ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor._bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor property)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_vec"]], "tucker_copy() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_copy"]], "tucker_mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_mode_dot"]], "tucker_n_param() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_n_param"]], "tucker_normalize() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_normalize"]], "tucker_to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_tensor"]], "tucker_to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_unfolded"]], "tucker_to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_vec"]], "validate_tucker_rank() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_rank"]], "validate_tucker_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_tensor"]], "array (class in ivy.data_classes.array.array)": [[97, "ivy.data_classes.array.array.Array"]], "t (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.T"]], "__abs__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__abs__"]], "__add__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__add__"]], "__eq__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__eq__"]], "__ge__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ge__"]], "__gt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__gt__"]], "__init__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__init__"]], "__le__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__le__"]], "__lt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__lt__"]], "__ne__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ne__"]], "__pow__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__pow__"]], "__radd__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__radd__"]], "__rrshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rrshift__"]], "__rshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rshift__"]], "__rsub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rsub__"]], "__sub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__sub__"]], "__truediv__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__truediv__"]], "__xor__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__xor__"]], "backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.backend"]], "base (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.base"]], "data (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.data"]], "device (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.device"]], "dtype (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dtype"]], "dynamic_backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dynamic_backend"]], "imag (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.imag"]], "itemsize (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.itemsize"]], "ivy.data_classes.array.array": [[97, "module-ivy.data_classes.array.array"]], "mt (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.mT"]], "ndim (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.ndim"]], "real (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.real"]], "shape (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.shape"]], "size (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.size"]], "strides (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.strides"]], "container (class in ivy.data_classes.container.container)": [[98, "ivy.data_classes.container.container.Container"]], "__abs__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__abs__"]], "__add__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__add__"]], "__eq__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__eq__"]], "__ge__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ge__"]], "__gt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__gt__"]], "__init__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__init__"]], "__le__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__le__"]], "__lt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__lt__"]], "__ne__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ne__"]], "__pow__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__pow__"]], "__radd__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__radd__"]], "__rrshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rrshift__"]], "__rshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rshift__"]], "__rsub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rsub__"]], "__sub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__sub__"]], "__truediv__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__truediv__"]], "__xor__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__xor__"]], "ivy.data_classes.container.container": [[98, "module-ivy.data_classes.container.container"]], "nestedarray (class in ivy.data_classes.nested_array.nested_array)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray"]], "__init__() (ivy.data_classes.nested_array.nested_array.nestedarray method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.__init__"]], "from_row_lengths() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_lengths"]], "from_row_splits() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_splits"]], "ivy.data_classes.nested_array.nested_array": [[100, "module-ivy.data_classes.nested_array.nested_array"]], "nestedarraybase (class in ivy.data_classes.nested_array.base)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase"]], "__init__() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.__init__"]], "_abc_impl (ivy.data_classes.nested_array.base.nestedarraybase attribute)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase._abc_impl"]], "broadcast_shapes() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.broadcast_shapes"]], "data (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.data"]], "device (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.device"]], "dtype (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.dtype"]], "inner_shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.inner_shape"]], "ivy.data_classes.nested_array.base": [[101, "module-ivy.data_classes.nested_array.base"]], "ndim (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ndim"]], "nested_array() (ivy.data_classes.nested_array.base.nestedarraybase class method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_array"]], "nested_rank (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_rank"]], "ragged_map() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_map"]], "ragged_multi_map() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map"]], "ragged_multi_map_in_function() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map_in_function"]], "replace_ivy_arrays() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.replace_ivy_arrays"]], "shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.shape"]], "unbind() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.unbind"]], "nestedarrayelementwise (class in ivy.data_classes.nested_array.elementwise)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise"]], "_abc_impl (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise attribute)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise._abc_impl"]], "ivy.data_classes.nested_array.elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"]], "static_add() (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise static method)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise.static_add"]], "gelu() (in module ivy)": [[105, "ivy.gelu"], [612, "ivy.gelu"]], "gelu() (ivy.array method)": [[105, "ivy.Array.gelu"]], "gelu() (ivy.container method)": [[105, "ivy.Container.gelu"]], "hardswish() (in module ivy)": [[106, "ivy.hardswish"], [612, "ivy.hardswish"]], "hardswish() (ivy.array method)": [[106, "ivy.Array.hardswish"]], "hardswish() (ivy.container method)": [[106, "ivy.Container.hardswish"]], "leaky_relu() (in module ivy)": [[107, "ivy.leaky_relu"], [612, "ivy.leaky_relu"]], "leaky_relu() (ivy.array method)": [[107, "ivy.Array.leaky_relu"]], "leaky_relu() (ivy.container method)": [[107, "ivy.Container.leaky_relu"]], "log_softmax() (in module ivy)": [[108, "ivy.log_softmax"], [612, "ivy.log_softmax"]], "log_softmax() (ivy.array method)": [[108, "ivy.Array.log_softmax"]], "log_softmax() (ivy.container method)": [[108, "ivy.Container.log_softmax"]], "mish() (in module ivy)": [[109, "ivy.mish"], [612, "ivy.mish"]], "mish() (ivy.array method)": [[109, "ivy.Array.mish"]], "mish() (ivy.container method)": [[109, "ivy.Container.mish"]], "relu() (in module ivy)": [[110, "ivy.relu"], [612, "ivy.relu"]], "relu() (ivy.array method)": [[110, "ivy.Array.relu"]], "relu() (ivy.container method)": [[110, "ivy.Container.relu"]], "sigmoid() (in module ivy)": [[111, "ivy.sigmoid"], [612, "ivy.sigmoid"]], "sigmoid() (ivy.array method)": [[111, "ivy.Array.sigmoid"]], "sigmoid() (ivy.container method)": [[111, "ivy.Container.sigmoid"]], "softmax() (in module ivy)": [[112, "ivy.softmax"], [612, "ivy.softmax"]], "softmax() (ivy.array method)": [[112, "ivy.Array.softmax"]], "softmax() (ivy.container method)": [[112, "ivy.Container.softmax"]], "softplus() (in module ivy)": [[113, "ivy.softplus"], [612, "ivy.softplus"]], "softplus() (ivy.array method)": [[113, "ivy.Array.softplus"]], "softplus() (ivy.container method)": [[113, "ivy.Container.softplus"]], "softsign() (in module ivy)": [[114, "ivy.softsign"], [612, "ivy.softsign"]], "cmp_is() (in module ivy)": [[115, "ivy.cmp_is"], [614, "ivy.cmp_is"]], "cmp_isnot() (in module ivy)": [[116, "ivy.cmp_isnot"], [614, "ivy.cmp_isnot"]], "for_loop() (in module ivy)": [[117, "ivy.for_loop"], [614, "ivy.for_loop"]], "if_else() (in module ivy)": [[118, "ivy.if_else"], [614, "ivy.if_else"]], "try_except() (in module ivy)": [[119, "ivy.try_except"], [614, "ivy.try_except"]], "while_loop() (in module ivy)": [[120, "ivy.while_loop"], [614, "ivy.while_loop"]], "arange() (in module ivy)": [[121, "ivy.arange"], [615, "ivy.arange"]], "array() (in module ivy)": [[122, "ivy.array"], [615, "ivy.array"]], "asarray() (in module ivy)": [[123, "ivy.asarray"], [615, "ivy.asarray"]], "asarray() (ivy.array method)": [[123, "ivy.Array.asarray"]], "asarray() (ivy.container method)": [[123, "ivy.Container.asarray"]], "copy_array() (in module ivy)": [[124, "ivy.copy_array"], [615, "ivy.copy_array"]], "copy_array() (ivy.array method)": [[124, "ivy.Array.copy_array"]], "copy_array() (ivy.container method)": [[124, "ivy.Container.copy_array"]], "empty() (in module ivy)": [[125, "ivy.empty"], [615, "ivy.empty"]], "empty_like() (in module ivy)": [[126, "ivy.empty_like"], [615, "ivy.empty_like"]], "empty_like() (ivy.array method)": [[126, "ivy.Array.empty_like"]], "empty_like() (ivy.container method)": [[126, "ivy.Container.empty_like"]], "eye() (in module ivy)": [[127, "ivy.eye"], [615, "ivy.eye"]], "from_dlpack() (in module ivy)": [[128, "ivy.from_dlpack"], [615, "ivy.from_dlpack"]], "from_dlpack() (ivy.array method)": [[128, "ivy.Array.from_dlpack"]], "from_dlpack() (ivy.container method)": [[128, "ivy.Container.from_dlpack"]], "frombuffer() (in module ivy)": [[129, "ivy.frombuffer"], [615, "ivy.frombuffer"]], "frombuffer() (ivy.container method)": [[129, "ivy.Container.frombuffer"]], "full() (in module ivy)": [[130, "ivy.full"], [615, "ivy.full"]], "full_like() (in module ivy)": [[131, "ivy.full_like"], [615, "ivy.full_like"]], "full_like() (ivy.array method)": [[131, "ivy.Array.full_like"]], "full_like() (ivy.container method)": [[131, "ivy.Container.full_like"]], "linspace() (in module ivy)": [[132, "ivy.linspace"], [615, "ivy.linspace"]], "linspace() (ivy.array method)": [[132, "ivy.Array.linspace"]], "linspace() (ivy.container method)": [[132, "ivy.Container.linspace"]], "logspace() (in module ivy)": [[133, "ivy.logspace"], [615, "ivy.logspace"]], "logspace() (ivy.array method)": [[133, "ivy.Array.logspace"]], "logspace() (ivy.container method)": [[133, "ivy.Container.logspace"]], "meshgrid() (in module ivy)": [[134, "ivy.meshgrid"], [615, "ivy.meshgrid"]], "meshgrid() (ivy.array method)": [[134, "ivy.Array.meshgrid"]], "meshgrid() (ivy.container method)": [[134, "ivy.Container.meshgrid"]], "native_array() (in module ivy)": [[135, "ivy.native_array"], [615, "ivy.native_array"]], "native_array() (ivy.array method)": [[135, "ivy.Array.native_array"]], "native_array() (ivy.container method)": [[135, "ivy.Container.native_array"]], "one_hot() (in module ivy)": [[136, "ivy.one_hot"], [615, "ivy.one_hot"]], "one_hot() (ivy.array method)": [[136, "ivy.Array.one_hot"]], "one_hot() (ivy.container method)": [[136, "ivy.Container.one_hot"]], "ones() (in module ivy)": [[137, "ivy.ones"], [615, "ivy.ones"]], "ones_like() (in module ivy)": [[138, "ivy.ones_like"], [615, "ivy.ones_like"]], "ones_like() (ivy.array method)": [[138, "ivy.Array.ones_like"]], "ones_like() (ivy.container method)": [[138, "ivy.Container.ones_like"]], "to_dlpack() (in module ivy)": [[139, "ivy.to_dlpack"], [615, "ivy.to_dlpack"]], "tril() (in module ivy)": [[140, "ivy.tril"], [615, "ivy.tril"]], "tril() (ivy.array method)": [[140, "ivy.Array.tril"]], "tril() (ivy.container method)": [[140, "ivy.Container.tril"]], "triu() (in module ivy)": [[141, "ivy.triu"], [615, "ivy.triu"]], "triu() (ivy.array method)": [[141, "ivy.Array.triu"]], "triu() (ivy.container method)": [[141, "ivy.Container.triu"]], "triu_indices() (in module ivy)": [[142, "ivy.triu_indices"], [615, "ivy.triu_indices"]], "triu_indices() (ivy.container method)": [[142, "ivy.Container.triu_indices"]], "zeros() (in module ivy)": [[143, "ivy.zeros"], [615, "ivy.zeros"]], "zeros_like() (in module ivy)": [[144, "ivy.zeros_like"], [615, "ivy.zeros_like"]], "zeros_like() (ivy.array method)": [[144, "ivy.Array.zeros_like"]], "zeros_like() (ivy.container method)": [[144, "ivy.Container.zeros_like"]], "as_ivy_dtype() (in module ivy)": [[145, "ivy.as_ivy_dtype"], [616, "ivy.as_ivy_dtype"]], "as_native_dtype() (in module ivy)": [[146, "ivy.as_native_dtype"], [616, "ivy.as_native_dtype"]], "astype() (in module ivy)": [[147, "ivy.astype"], [616, "ivy.astype"]], "astype() (ivy.array method)": [[147, "ivy.Array.astype"]], "astype() (ivy.container method)": [[147, "ivy.Container.astype"]], "broadcast_arrays() (in module ivy)": [[148, "ivy.broadcast_arrays"], [616, "ivy.broadcast_arrays"]], "broadcast_arrays() (ivy.array method)": [[148, "ivy.Array.broadcast_arrays"]], "broadcast_arrays() (ivy.container method)": [[148, "ivy.Container.broadcast_arrays"]], "broadcast_to() (in module ivy)": [[149, "ivy.broadcast_to"], [616, "ivy.broadcast_to"]], "broadcast_to() (ivy.array method)": [[149, "ivy.Array.broadcast_to"]], "broadcast_to() (ivy.container method)": [[149, "ivy.Container.broadcast_to"]], "can_cast() (in module ivy)": [[150, "ivy.can_cast"], [616, "ivy.can_cast"]], "can_cast() (ivy.array method)": [[150, "ivy.Array.can_cast"]], "can_cast() (ivy.container method)": [[150, "ivy.Container.can_cast"]], "check_float() (in module ivy)": [[151, "ivy.check_float"], [616, "ivy.check_float"]], "closest_valid_dtype() (in module ivy)": [[152, "ivy.closest_valid_dtype"], [616, "ivy.closest_valid_dtype"]], "default_complex_dtype() (in module ivy)": [[153, "ivy.default_complex_dtype"], [616, "ivy.default_complex_dtype"]], "default_dtype() (in module ivy)": [[154, "ivy.default_dtype"], [616, "ivy.default_dtype"]], "default_float_dtype() (in module ivy)": [[155, "ivy.default_float_dtype"], [616, "ivy.default_float_dtype"]], "default_int_dtype() (in module ivy)": [[156, "ivy.default_int_dtype"], [616, "ivy.default_int_dtype"]], "default_uint_dtype() (in module ivy)": [[157, "ivy.default_uint_dtype"], [616, "ivy.default_uint_dtype"]], "dtype() (in module ivy)": [[158, "ivy.dtype"], [616, "ivy.dtype"]], "dtype() (ivy.array method)": [[158, "ivy.Array.dtype"]], "dtype() (ivy.container method)": [[158, "ivy.Container.dtype"]], "dtype_bits() (in module ivy)": [[159, "ivy.dtype_bits"], [616, "ivy.dtype_bits"]], "finfo() (in module ivy)": [[160, "ivy.finfo"], [616, "ivy.finfo"]], "finfo() (ivy.array method)": [[160, "ivy.Array.finfo"]], "finfo() (ivy.container method)": [[160, "ivy.Container.finfo"]], "function_supported_dtypes() (in module ivy)": [[161, "ivy.function_supported_dtypes"], [616, "ivy.function_supported_dtypes"]], "function_unsupported_dtypes() (in module ivy)": [[162, "ivy.function_unsupported_dtypes"], [616, "ivy.function_unsupported_dtypes"]], "iinfo() (in module ivy)": [[163, "ivy.iinfo"], [616, "ivy.iinfo"]], "iinfo() (ivy.array method)": [[163, "ivy.Array.iinfo"]], "iinfo() (ivy.container method)": [[163, "ivy.Container.iinfo"]], "infer_default_dtype() (in module ivy)": [[164, "ivy.infer_default_dtype"], [616, "ivy.infer_default_dtype"]], "invalid_dtype() (in module ivy)": [[165, "ivy.invalid_dtype"], [616, "ivy.invalid_dtype"]], "is_bool_dtype() (in module ivy)": [[166, "ivy.is_bool_dtype"], [616, "ivy.is_bool_dtype"]], "is_bool_dtype() (ivy.array method)": [[166, "ivy.Array.is_bool_dtype"]], "is_bool_dtype() (ivy.container method)": [[166, "ivy.Container.is_bool_dtype"]], "is_complex_dtype() (in module ivy)": [[167, "ivy.is_complex_dtype"], [616, "ivy.is_complex_dtype"]], "is_complex_dtype() (ivy.container method)": [[167, "ivy.Container.is_complex_dtype"]], "is_float_dtype() (in module ivy)": [[168, "ivy.is_float_dtype"], [616, "ivy.is_float_dtype"]], "is_float_dtype() (ivy.array method)": [[168, "ivy.Array.is_float_dtype"]], "is_float_dtype() (ivy.container method)": [[168, "ivy.Container.is_float_dtype"]], "is_hashable_dtype() (in module ivy)": [[169, "ivy.is_hashable_dtype"], [616, "ivy.is_hashable_dtype"]], "is_int_dtype() (in module ivy)": [[170, "ivy.is_int_dtype"], [616, "ivy.is_int_dtype"]], "is_int_dtype() (ivy.array method)": [[170, "ivy.Array.is_int_dtype"]], "is_int_dtype() (ivy.container method)": [[170, "ivy.Container.is_int_dtype"]], "is_native_dtype() (in module ivy)": [[171, "ivy.is_native_dtype"], [616, "ivy.is_native_dtype"]], "is_uint_dtype() (in module ivy)": [[172, "ivy.is_uint_dtype"], [616, "ivy.is_uint_dtype"]], "is_uint_dtype() (ivy.array method)": [[172, "ivy.Array.is_uint_dtype"]], "is_uint_dtype() (ivy.container method)": [[172, "ivy.Container.is_uint_dtype"]], "promote_types() (in module ivy)": [[173, "ivy.promote_types"], [616, "ivy.promote_types"]], "promote_types_of_inputs() (in module ivy)": [[174, "ivy.promote_types_of_inputs"], [616, "ivy.promote_types_of_inputs"]], "result_type() (in module ivy)": [[175, "ivy.result_type"], [616, "ivy.result_type"]], "result_type() (ivy.array method)": [[175, "ivy.Array.result_type"]], "result_type() (ivy.container method)": [[175, "ivy.Container.result_type"]], "set_default_complex_dtype() (in module ivy)": [[176, "ivy.set_default_complex_dtype"], [616, "ivy.set_default_complex_dtype"]], "set_default_dtype() (in module ivy)": [[177, "ivy.set_default_dtype"], [616, "ivy.set_default_dtype"]], "set_default_float_dtype() (in module ivy)": [[178, "ivy.set_default_float_dtype"], [616, "ivy.set_default_float_dtype"]], "set_default_int_dtype() (in module ivy)": [[179, "ivy.set_default_int_dtype"], [616, "ivy.set_default_int_dtype"]], "set_default_uint_dtype() (in module ivy)": [[180, "ivy.set_default_uint_dtype"], [616, "ivy.set_default_uint_dtype"]], "type_promote_arrays() (in module ivy)": [[181, "ivy.type_promote_arrays"], [616, "ivy.type_promote_arrays"]], "unset_default_complex_dtype() (in module ivy)": [[182, "ivy.unset_default_complex_dtype"], [616, "ivy.unset_default_complex_dtype"]], "unset_default_dtype() (in module ivy)": [[183, "ivy.unset_default_dtype"], [616, "ivy.unset_default_dtype"]], "unset_default_float_dtype() (in module ivy)": [[184, "ivy.unset_default_float_dtype"], [616, "ivy.unset_default_float_dtype"]], "unset_default_int_dtype() (in module ivy)": [[185, "ivy.unset_default_int_dtype"], [616, "ivy.unset_default_int_dtype"]], "unset_default_uint_dtype() (in module ivy)": [[186, "ivy.unset_default_uint_dtype"], [616, "ivy.unset_default_uint_dtype"]], "valid_dtype() (in module ivy)": [[187, "ivy.valid_dtype"], [616, "ivy.valid_dtype"]], "as_ivy_dev() (in module ivy)": [[188, "ivy.as_ivy_dev"], [617, "ivy.as_ivy_dev"]], "as_native_dev() (in module ivy)": [[189, "ivy.as_native_dev"], [617, "ivy.as_native_dev"]], "clear_cached_mem_on_dev() (in module ivy)": [[190, "ivy.clear_cached_mem_on_dev"], [617, "ivy.clear_cached_mem_on_dev"]], "default_device() (in module ivy)": [[191, "ivy.default_device"], [617, "ivy.default_device"]], "dev() (in module ivy)": [[192, "ivy.dev"], [617, "ivy.dev"]], "dev() (ivy.array method)": [[192, "ivy.Array.dev"]], "dev() (ivy.container method)": [[192, "ivy.Container.dev"]], "dev_util() (in module ivy)": [[193, "ivy.dev_util"], [617, "ivy.dev_util"]], "function_supported_devices() (in module ivy)": [[194, "ivy.function_supported_devices"], [617, "ivy.function_supported_devices"]], "function_unsupported_devices() (in module ivy)": [[195, "ivy.function_unsupported_devices"], [617, "ivy.function_unsupported_devices"]], "get_all_ivy_arrays_on_dev() (in module ivy)": [[196, "ivy.get_all_ivy_arrays_on_dev"], [617, "ivy.get_all_ivy_arrays_on_dev"]], "gpu_is_available() (in module ivy)": [[197, "ivy.gpu_is_available"], [617, "ivy.gpu_is_available"]], "handle_soft_device_variable() (in module ivy)": [[198, "ivy.handle_soft_device_variable"], [617, "ivy.handle_soft_device_variable"]], "num_cpu_cores() (in module ivy)": [[199, "ivy.num_cpu_cores"], [617, "ivy.num_cpu_cores"]], "num_gpus() (in module ivy)": [[200, "ivy.num_gpus"], [617, "ivy.num_gpus"]], "num_ivy_arrays_on_dev() (in module ivy)": [[201, "ivy.num_ivy_arrays_on_dev"], [617, "ivy.num_ivy_arrays_on_dev"]], "percent_used_mem_on_dev() (in module ivy)": [[202, "ivy.percent_used_mem_on_dev"], [617, "ivy.percent_used_mem_on_dev"]], "print_all_ivy_arrays_on_dev() (in module ivy)": [[203, "ivy.print_all_ivy_arrays_on_dev"], [617, "ivy.print_all_ivy_arrays_on_dev"]], "set_default_device() (in module ivy)": [[204, "ivy.set_default_device"], [617, "ivy.set_default_device"]], "set_soft_device_mode() (in module ivy)": [[205, "ivy.set_soft_device_mode"], [617, "ivy.set_soft_device_mode"]], "set_split_factor() (in module ivy)": [[206, "ivy.set_split_factor"], [617, "ivy.set_split_factor"]], "split_factor() (in module ivy)": [[207, "ivy.split_factor"], [617, "ivy.split_factor"]], "split_func_call() (in module ivy)": [[208, "ivy.split_func_call"], [617, "ivy.split_func_call"]], "to_device() (in module ivy)": [[209, "ivy.to_device"], [617, "ivy.to_device"]], "to_device() (ivy.array method)": [[209, "ivy.Array.to_device"]], "to_device() (ivy.container method)": [[209, "ivy.Container.to_device"]], "total_mem_on_dev() (in module ivy)": [[210, "ivy.total_mem_on_dev"], [617, "ivy.total_mem_on_dev"]], "tpu_is_available() (in module ivy)": [[211, "ivy.tpu_is_available"], [617, "ivy.tpu_is_available"]], "unset_default_device() (in module ivy)": [[212, "ivy.unset_default_device"], [617, "ivy.unset_default_device"]], "unset_soft_device_mode() (in module ivy)": [[213, "ivy.unset_soft_device_mode"], [617, "ivy.unset_soft_device_mode"]], "used_mem_on_dev() (in module ivy)": [[214, "ivy.used_mem_on_dev"], [617, "ivy.used_mem_on_dev"]], "abs() (in module ivy)": [[215, "ivy.abs"], [618, "ivy.abs"]], "abs() (ivy.array method)": [[215, "ivy.Array.abs"]], "abs() (ivy.container method)": [[215, "ivy.Container.abs"]], "acos() (in module ivy)": [[216, "ivy.acos"], [618, "ivy.acos"]], "acos() (ivy.array method)": [[216, "ivy.Array.acos"]], "acos() (ivy.container method)": [[216, "ivy.Container.acos"]], "acosh() (in module ivy)": [[217, "ivy.acosh"], [618, "ivy.acosh"]], "acosh() (ivy.array method)": [[217, "ivy.Array.acosh"]], "acosh() (ivy.container method)": [[217, "ivy.Container.acosh"]], "add() (in module ivy)": [[218, "ivy.add"], [618, "ivy.add"]], "add() (ivy.array method)": [[218, "ivy.Array.add"]], "add() (ivy.container method)": [[218, "ivy.Container.add"]], "angle() (in module ivy)": [[219, "ivy.angle"], [618, "ivy.angle"]], "angle() (ivy.array method)": [[219, "ivy.Array.angle"]], "angle() (ivy.container method)": [[219, "ivy.Container.angle"]], "asin() (in module ivy)": [[220, "ivy.asin"], [618, "ivy.asin"]], "asin() (ivy.array method)": [[220, "ivy.Array.asin"]], "asin() (ivy.container method)": [[220, "ivy.Container.asin"]], "asinh() (in module ivy)": [[221, "ivy.asinh"], [618, "ivy.asinh"]], "asinh() (ivy.array method)": [[221, "ivy.Array.asinh"]], "asinh() (ivy.container method)": [[221, "ivy.Container.asinh"]], "atan() (in module ivy)": [[222, "ivy.atan"], [618, "ivy.atan"]], "atan() (ivy.array method)": [[222, "ivy.Array.atan"]], "atan() (ivy.container method)": [[222, "ivy.Container.atan"]], "atan2() (in module ivy)": [[223, "ivy.atan2"], [618, "ivy.atan2"]], "atan2() (ivy.array method)": [[223, "ivy.Array.atan2"]], "atan2() (ivy.container method)": [[223, "ivy.Container.atan2"]], "atanh() (in module ivy)": [[224, "ivy.atanh"], [618, "ivy.atanh"]], "atanh() (ivy.array method)": [[224, "ivy.Array.atanh"]], "atanh() (ivy.container method)": [[224, "ivy.Container.atanh"]], "bitwise_and() (in module ivy)": [[225, "ivy.bitwise_and"], [618, "ivy.bitwise_and"]], "bitwise_and() (ivy.array method)": [[225, "ivy.Array.bitwise_and"]], "bitwise_and() (ivy.container method)": [[225, "ivy.Container.bitwise_and"]], "bitwise_invert() (in module ivy)": [[226, "ivy.bitwise_invert"], [618, "ivy.bitwise_invert"]], "bitwise_invert() (ivy.array method)": [[226, "ivy.Array.bitwise_invert"]], "bitwise_invert() (ivy.container method)": [[226, "ivy.Container.bitwise_invert"]], "bitwise_left_shift() (in module ivy)": [[227, "ivy.bitwise_left_shift"], [618, "ivy.bitwise_left_shift"]], "bitwise_left_shift() (ivy.array method)": [[227, "ivy.Array.bitwise_left_shift"]], "bitwise_left_shift() (ivy.container method)": [[227, "ivy.Container.bitwise_left_shift"]], "bitwise_or() (in module ivy)": [[228, "ivy.bitwise_or"], [618, "ivy.bitwise_or"]], "bitwise_or() (ivy.array method)": [[228, "ivy.Array.bitwise_or"]], "bitwise_or() (ivy.container method)": [[228, "ivy.Container.bitwise_or"]], "bitwise_right_shift() (in module ivy)": [[229, "ivy.bitwise_right_shift"], [618, "ivy.bitwise_right_shift"]], "bitwise_right_shift() (ivy.array method)": [[229, "ivy.Array.bitwise_right_shift"]], "bitwise_right_shift() (ivy.container method)": [[229, "ivy.Container.bitwise_right_shift"]], "bitwise_xor() (in module ivy)": [[230, "ivy.bitwise_xor"], [618, "ivy.bitwise_xor"]], "bitwise_xor() (ivy.array method)": [[230, "ivy.Array.bitwise_xor"]], "bitwise_xor() (ivy.container method)": [[230, "ivy.Container.bitwise_xor"]], "ceil() (in module ivy)": [[231, "ivy.ceil"], [618, "ivy.ceil"]], "ceil() (ivy.array method)": [[231, "ivy.Array.ceil"]], "ceil() (ivy.container method)": [[231, "ivy.Container.ceil"]], "cos() (in module ivy)": [[232, "ivy.cos"], [618, "ivy.cos"]], "cos() (ivy.array method)": [[232, "ivy.Array.cos"]], "cos() (ivy.container method)": [[232, "ivy.Container.cos"]], "cosh() (in module ivy)": [[233, "ivy.cosh"], [618, "ivy.cosh"]], "cosh() (ivy.array method)": [[233, "ivy.Array.cosh"]], "cosh() (ivy.container method)": [[233, "ivy.Container.cosh"]], "deg2rad() (in module ivy)": [[234, "ivy.deg2rad"], [618, "ivy.deg2rad"]], "deg2rad() (ivy.array method)": [[234, "ivy.Array.deg2rad"]], "deg2rad() (ivy.container method)": [[234, "ivy.Container.deg2rad"]], "divide() (in module ivy)": [[235, "ivy.divide"], [618, "ivy.divide"]], "divide() (ivy.array method)": [[235, "ivy.Array.divide"]], "divide() (ivy.container method)": [[235, "ivy.Container.divide"]], "equal() (in module ivy)": [[236, "ivy.equal"], [618, "ivy.equal"]], "equal() (ivy.array method)": [[236, "ivy.Array.equal"]], "equal() (ivy.container method)": [[236, "ivy.Container.equal"]], "erf() (in module ivy)": [[237, "ivy.erf"], [618, "ivy.erf"]], "erf() (ivy.array method)": [[237, "ivy.Array.erf"]], "erf() (ivy.container method)": [[237, "ivy.Container.erf"]], "exp() (in module ivy)": [[238, "ivy.exp"], [618, "ivy.exp"]], "exp() (ivy.array method)": [[238, "ivy.Array.exp"]], "exp() (ivy.container method)": [[238, "ivy.Container.exp"]], "exp2() (in module ivy)": [[239, "ivy.exp2"], [618, "ivy.exp2"]], "exp2() (ivy.array method)": [[239, "ivy.Array.exp2"]], "exp2() (ivy.container method)": [[239, "ivy.Container.exp2"]], "expm1() (in module ivy)": [[240, "ivy.expm1"], [618, "ivy.expm1"]], "expm1() (ivy.array method)": [[240, "ivy.Array.expm1"]], "expm1() (ivy.container method)": [[240, "ivy.Container.expm1"]], "floor() (in module ivy)": [[241, "ivy.floor"], [618, "ivy.floor"]], "floor() (ivy.array method)": [[241, "ivy.Array.floor"]], "floor() (ivy.container method)": [[241, "ivy.Container.floor"]], "floor_divide() (in module ivy)": [[242, "ivy.floor_divide"], [618, "ivy.floor_divide"]], "floor_divide() (ivy.array method)": [[242, "ivy.Array.floor_divide"]], "floor_divide() (ivy.container method)": [[242, "ivy.Container.floor_divide"]], "fmin() (in module ivy)": [[243, "ivy.fmin"], [618, "ivy.fmin"]], "fmin() (ivy.array method)": [[243, "ivy.Array.fmin"]], "fmin() (ivy.container method)": [[243, "ivy.Container.fmin"]], "fmod() (in module ivy)": [[244, "ivy.fmod"], [618, "ivy.fmod"]], "fmod() (ivy.array method)": [[244, "ivy.Array.fmod"]], "fmod() (ivy.container method)": [[244, "ivy.Container.fmod"]], "gcd() (in module ivy)": [[245, "ivy.gcd"], [618, "ivy.gcd"]], "gcd() (ivy.array method)": [[245, "ivy.Array.gcd"]], "gcd() (ivy.container method)": [[245, "ivy.Container.gcd"]], "greater() (in module ivy)": [[246, "ivy.greater"], [618, "ivy.greater"]], "greater() (ivy.array method)": [[246, "ivy.Array.greater"]], "greater() (ivy.container method)": [[246, "ivy.Container.greater"]], "greater_equal() (in module ivy)": [[247, "ivy.greater_equal"], [618, "ivy.greater_equal"]], "greater_equal() (ivy.array method)": [[247, "ivy.Array.greater_equal"]], "greater_equal() (ivy.container method)": [[247, "ivy.Container.greater_equal"]], "imag() (in module ivy)": [[248, "ivy.imag"], [618, "ivy.imag"]], "imag() (ivy.array method)": [[248, "ivy.Array.imag"]], "imag() (ivy.container method)": [[248, "ivy.Container.imag"]], "isfinite() (in module ivy)": [[249, "ivy.isfinite"], [618, "ivy.isfinite"]], "isfinite() (ivy.array method)": [[249, "ivy.Array.isfinite"]], "isfinite() (ivy.container method)": [[249, "ivy.Container.isfinite"]], "isinf() (in module ivy)": [[250, "ivy.isinf"], [618, "ivy.isinf"]], "isinf() (ivy.array method)": [[250, "ivy.Array.isinf"]], "isinf() (ivy.container method)": [[250, "ivy.Container.isinf"]], "isnan() (in module ivy)": [[251, "ivy.isnan"], [618, "ivy.isnan"]], "isnan() (ivy.array method)": [[251, "ivy.Array.isnan"]], "isnan() (ivy.container method)": [[251, "ivy.Container.isnan"]], "isreal() (in module ivy)": [[252, "ivy.isreal"], [618, "ivy.isreal"]], "isreal() (ivy.array method)": [[252, "ivy.Array.isreal"]], "isreal() (ivy.container method)": [[252, "ivy.Container.isreal"]], "lcm() (in module ivy)": [[253, "ivy.lcm"], [618, "ivy.lcm"]], "lcm() (ivy.array method)": [[253, "ivy.Array.lcm"]], "lcm() (ivy.container method)": [[253, "ivy.Container.lcm"]], "less() (in module ivy)": [[254, "ivy.less"], [618, "ivy.less"]], "less() (ivy.array method)": [[254, "ivy.Array.less"]], "less() (ivy.container method)": [[254, "ivy.Container.less"]], "less_equal() (in module ivy)": [[255, "ivy.less_equal"], [618, "ivy.less_equal"]], "less_equal() (ivy.array method)": [[255, "ivy.Array.less_equal"]], "less_equal() (ivy.container method)": [[255, "ivy.Container.less_equal"]], "log() (in module ivy)": [[256, "ivy.log"], [618, "ivy.log"]], "log() (ivy.array method)": [[256, "ivy.Array.log"]], "log() (ivy.container method)": [[256, "ivy.Container.log"]], "log10() (in module ivy)": [[257, "ivy.log10"], [618, "ivy.log10"]], "log10() (ivy.array method)": [[257, "ivy.Array.log10"]], "log10() (ivy.container method)": [[257, "ivy.Container.log10"]], "log1p() (in module ivy)": [[258, "ivy.log1p"], [618, "ivy.log1p"]], "log1p() (ivy.array method)": [[258, "ivy.Array.log1p"]], "log1p() (ivy.container method)": [[258, "ivy.Container.log1p"]], "log2() (in module ivy)": [[259, "ivy.log2"], [618, "ivy.log2"]], "log2() (ivy.array method)": [[259, "ivy.Array.log2"]], "log2() (ivy.container method)": [[259, "ivy.Container.log2"]], "logaddexp() (in module ivy)": [[260, "ivy.logaddexp"], [618, "ivy.logaddexp"]], "logaddexp() (ivy.array method)": [[260, "ivy.Array.logaddexp"]], "logaddexp() (ivy.container method)": [[260, "ivy.Container.logaddexp"]], "logaddexp2() (in module ivy)": [[261, "ivy.logaddexp2"], [618, "ivy.logaddexp2"]], "logaddexp2() (ivy.array method)": [[261, "ivy.Array.logaddexp2"]], "logaddexp2() (ivy.container method)": [[261, "ivy.Container.logaddexp2"]], "logical_and() (in module ivy)": [[262, "ivy.logical_and"], [618, "ivy.logical_and"]], "logical_and() (ivy.array method)": [[262, "ivy.Array.logical_and"]], "logical_and() (ivy.container method)": [[262, "ivy.Container.logical_and"]], "logical_not() (in module ivy)": [[263, "ivy.logical_not"], [618, "ivy.logical_not"]], "logical_not() (ivy.array method)": [[263, "ivy.Array.logical_not"]], "logical_not() (ivy.container method)": [[263, "ivy.Container.logical_not"]], "logical_or() (in module ivy)": [[264, "ivy.logical_or"], [618, "ivy.logical_or"]], "logical_or() (ivy.array method)": [[264, "ivy.Array.logical_or"]], "logical_or() (ivy.container method)": [[264, "ivy.Container.logical_or"]], "logical_xor() (in module ivy)": [[265, "ivy.logical_xor"], [618, "ivy.logical_xor"]], "logical_xor() (ivy.array method)": [[265, "ivy.Array.logical_xor"]], "logical_xor() (ivy.container method)": [[265, "ivy.Container.logical_xor"]], "maximum() (in module ivy)": [[266, "ivy.maximum"], [618, "ivy.maximum"]], "maximum() (ivy.array method)": [[266, "ivy.Array.maximum"]], "maximum() (ivy.container method)": [[266, "ivy.Container.maximum"]], "minimum() (in module ivy)": [[267, "ivy.minimum"], [618, "ivy.minimum"]], "minimum() (ivy.array method)": [[267, "ivy.Array.minimum"]], "minimum() (ivy.container method)": [[267, "ivy.Container.minimum"]], "multiply() (in module ivy)": [[268, "ivy.multiply"], [618, "ivy.multiply"]], "multiply() (ivy.array method)": [[268, "ivy.Array.multiply"]], "multiply() (ivy.container method)": [[268, "ivy.Container.multiply"]], "nan_to_num() (in module ivy)": [[269, "ivy.nan_to_num"], [618, "ivy.nan_to_num"]], "nan_to_num() (ivy.array method)": [[269, "ivy.Array.nan_to_num"]], "nan_to_num() (ivy.container method)": [[269, "ivy.Container.nan_to_num"]], "negative() (in module ivy)": [[270, "ivy.negative"], [618, "ivy.negative"]], "negative() (ivy.array method)": [[270, "ivy.Array.negative"]], "negative() (ivy.container method)": [[270, "ivy.Container.negative"]], "not_equal() (in module ivy)": [[271, "ivy.not_equal"], [618, "ivy.not_equal"]], "not_equal() (ivy.array method)": [[271, "ivy.Array.not_equal"]], "not_equal() (ivy.container method)": [[271, "ivy.Container.not_equal"]], "positive() (in module ivy)": [[272, "ivy.positive"], [618, "ivy.positive"]], "positive() (ivy.array method)": [[272, "ivy.Array.positive"]], "positive() (ivy.container method)": [[272, "ivy.Container.positive"]], "pow() (in module ivy)": [[273, "ivy.pow"], [618, "ivy.pow"]], "pow() (ivy.array method)": [[273, "ivy.Array.pow"]], "pow() (ivy.container method)": [[273, "ivy.Container.pow"]], "rad2deg() (in module ivy)": [[274, "ivy.rad2deg"], [618, "ivy.rad2deg"]], "rad2deg() (ivy.array method)": [[274, "ivy.Array.rad2deg"]], "rad2deg() (ivy.container method)": [[274, "ivy.Container.rad2deg"]], "real() (in module ivy)": [[275, "ivy.real"], [618, "ivy.real"]], "real() (ivy.array method)": [[275, "ivy.Array.real"]], "real() (ivy.container method)": [[275, "ivy.Container.real"]], "reciprocal() (in module ivy)": [[276, "ivy.reciprocal"], [618, "ivy.reciprocal"]], "reciprocal() (ivy.array method)": [[276, "ivy.Array.reciprocal"]], "reciprocal() (ivy.container method)": [[276, "ivy.Container.reciprocal"]], "remainder() (in module ivy)": [[277, "ivy.remainder"], [618, "ivy.remainder"]], "remainder() (ivy.array method)": [[277, "ivy.Array.remainder"]], "remainder() (ivy.container method)": [[277, "ivy.Container.remainder"]], "round() (in module ivy)": [[278, "ivy.round"], [618, "ivy.round"]], "round() (ivy.array method)": [[278, "ivy.Array.round"]], "round() (ivy.container method)": [[278, "ivy.Container.round"]], "sign() (in module ivy)": [[279, "ivy.sign"], [618, "ivy.sign"]], "sign() (ivy.array method)": [[279, "ivy.Array.sign"]], "sign() (ivy.container method)": [[279, "ivy.Container.sign"]], "sin() (in module ivy)": [[280, "ivy.sin"], [618, "ivy.sin"]], "sin() (ivy.array method)": [[280, "ivy.Array.sin"]], "sin() (ivy.container method)": [[280, "ivy.Container.sin"]], "sinh() (in module ivy)": [[281, "ivy.sinh"], [618, "ivy.sinh"]], "sinh() (ivy.array method)": [[281, "ivy.Array.sinh"]], "sinh() (ivy.container method)": [[281, "ivy.Container.sinh"]], "sqrt() (in module ivy)": [[282, "ivy.sqrt"], [618, "ivy.sqrt"]], "sqrt() (ivy.array method)": [[282, "ivy.Array.sqrt"]], "sqrt() (ivy.container method)": [[282, "ivy.Container.sqrt"]], "square() (in module ivy)": [[283, "ivy.square"], [618, "ivy.square"]], "square() (ivy.array method)": [[283, "ivy.Array.square"]], "square() (ivy.container method)": [[283, "ivy.Container.square"]], "subtract() (in module ivy)": [[284, "ivy.subtract"], [618, "ivy.subtract"]], "subtract() (ivy.array method)": [[284, "ivy.Array.subtract"]], "subtract() (ivy.container method)": [[284, "ivy.Container.subtract"]], "tan() (in module ivy)": [[285, "ivy.tan"], [618, "ivy.tan"]], "tan() (ivy.array method)": [[285, "ivy.Array.tan"]], "tan() (ivy.container method)": [[285, "ivy.Container.tan"]], "tanh() (in module ivy)": [[286, "ivy.tanh"], [618, "ivy.tanh"]], "tanh() (ivy.array method)": [[286, "ivy.Array.tanh"]], "tanh() (ivy.container method)": [[286, "ivy.Container.tanh"]], "trapz() (in module ivy)": [[287, "ivy.trapz"], [618, "ivy.trapz"]], "trapz() (ivy.array method)": [[287, "ivy.Array.trapz"]], "trapz() (ivy.container method)": [[287, "ivy.Container.trapz"]], "trunc() (in module ivy)": [[288, "ivy.trunc"], [618, "ivy.trunc"]], "trunc() (ivy.array method)": [[288, "ivy.Array.trunc"]], "trunc() (ivy.container method)": [[288, "ivy.Container.trunc"]], "trunc_divide() (in module ivy)": [[289, "ivy.trunc_divide"], [618, "ivy.trunc_divide"]], "trunc_divide() (ivy.array method)": [[289, "ivy.Array.trunc_divide"]], "trunc_divide() (ivy.container method)": [[289, "ivy.Container.trunc_divide"]], "celu() (in module ivy)": [[290, "ivy.celu"], [360, "ivy.celu"]], "celu() (ivy.array method)": [[290, "ivy.Array.celu"]], "celu() (ivy.container method)": [[290, "ivy.Container.celu"]], "elu() (in module ivy)": [[291, "ivy.elu"], [360, "ivy.elu"]], "elu() (ivy.array method)": [[291, "ivy.Array.elu"]], "elu() (ivy.container method)": [[291, "ivy.Container.elu"]], "hardshrink() (in module ivy)": [[292, "ivy.hardshrink"], [360, "ivy.hardshrink"]], "hardshrink() (ivy.array method)": [[292, "ivy.Array.hardshrink"]], "hardshrink() (ivy.container method)": [[292, "ivy.Container.hardshrink"]], "hardtanh() (in module ivy)": [[293, "ivy.hardtanh"], [360, "ivy.hardtanh"]], "hardtanh() (ivy.array method)": [[293, "ivy.Array.hardtanh"]], "hardtanh() (ivy.container method)": [[293, "ivy.Container.hardtanh"]], "logit() (in module ivy)": [[294, "ivy.logit"], [360, "ivy.logit"]], "logit() (ivy.array method)": [[294, "ivy.Array.logit"]], "logit() (ivy.container method)": [[294, "ivy.Container.logit"]], "logsigmoid() (in module ivy)": [[295, "ivy.logsigmoid"], [360, "ivy.logsigmoid"]], "logsigmoid() (ivy.array method)": [[295, "ivy.Array.logsigmoid"]], "logsigmoid() (ivy.container method)": [[295, "ivy.Container.logsigmoid"]], "prelu() (in module ivy)": [[296, "ivy.prelu"], [360, "ivy.prelu"]], "prelu() (ivy.array method)": [[296, "ivy.Array.prelu"]], "prelu() (ivy.container method)": [[296, "ivy.Container.prelu"]], "relu6() (in module ivy)": [[297, "ivy.relu6"], [360, "ivy.relu6"]], "relu6() (ivy.array method)": [[297, "ivy.Array.relu6"]], "relu6() (ivy.container method)": [[297, "ivy.Container.relu6"]], "scaled_tanh() (in module ivy)": [[298, "ivy.scaled_tanh"], [360, "ivy.scaled_tanh"]], "scaled_tanh() (ivy.array method)": [[298, "ivy.Array.scaled_tanh"]], "scaled_tanh() (ivy.container method)": [[298, "ivy.Container.scaled_tanh"]], "selu() (in module ivy)": [[299, "ivy.selu"], [360, "ivy.selu"]], "selu() (ivy.array method)": [[299, "ivy.Array.selu"]], "selu() (ivy.container method)": [[299, "ivy.Container.selu"]], "silu() (in module ivy)": [[300, "ivy.silu"], [360, "ivy.silu"]], "silu() (ivy.array method)": [[300, "ivy.Array.silu"]], "silu() (ivy.container method)": [[300, "ivy.Container.silu"]], "softshrink() (in module ivy)": [[301, "ivy.softshrink"], [360, "ivy.softshrink"]], "softshrink() (ivy.array method)": [[301, "ivy.Array.softshrink"]], "softshrink() (ivy.container method)": [[301, "ivy.Container.softshrink"]], "stanh() (in module ivy)": [[302, "ivy.stanh"], [360, "ivy.stanh"]], "tanhshrink() (in module ivy)": [[303, "ivy.tanhshrink"], [360, "ivy.tanhshrink"]], "tanhshrink() (ivy.array method)": [[303, "ivy.Array.tanhshrink"]], "tanhshrink() (ivy.container method)": [[303, "ivy.Container.tanhshrink"]], "threshold() (in module ivy)": [[304, "ivy.threshold"], [360, "ivy.threshold"]], "threshold() (ivy.array method)": [[304, "ivy.Array.threshold"]], "threshold() (ivy.container method)": [[304, "ivy.Container.threshold"]], "thresholded_relu() (in module ivy)": [[305, "ivy.thresholded_relu"], [360, "ivy.thresholded_relu"]], "thresholded_relu() (ivy.array method)": [[305, "ivy.Array.thresholded_relu"]], "thresholded_relu() (ivy.container method)": [[305, "ivy.Container.thresholded_relu"]], "blackman_window() (in module ivy)": [[306, "ivy.blackman_window"], [362, "ivy.blackman_window"]], "blackman_window() (ivy.array method)": [[306, "ivy.Array.blackman_window"]], "blackman_window() (ivy.container method)": [[306, "ivy.Container.blackman_window"]], "eye_like() (in module ivy)": [[307, "ivy.eye_like"], [362, "ivy.eye_like"]], "eye_like() (ivy.array method)": [[307, "ivy.Array.eye_like"]], "eye_like() (ivy.container method)": [[307, "ivy.Container.eye_like"]], "hamming_window() (in module ivy)": [[308, "ivy.hamming_window"], [362, "ivy.hamming_window"]], "hamming_window() (ivy.container method)": [[308, "ivy.Container.hamming_window"]], "hann_window() (in module ivy)": [[309, "ivy.hann_window"], [362, "ivy.hann_window"]], "hann_window() (ivy.container method)": [[309, "ivy.Container.hann_window"]], "indices() (in module ivy)": [[310, "ivy.indices"], [362, "ivy.indices"]], "kaiser_bessel_derived_window() (in module ivy)": [[311, "ivy.kaiser_bessel_derived_window"], [362, "ivy.kaiser_bessel_derived_window"]], "kaiser_bessel_derived_window() (ivy.container method)": [[311, "ivy.Container.kaiser_bessel_derived_window"]], "kaiser_window() (in module ivy)": [[312, "ivy.kaiser_window"], [362, "ivy.kaiser_window"]], "kaiser_window() (ivy.container method)": [[312, "ivy.Container.kaiser_window"]], "mel_weight_matrix() (in module ivy)": [[313, "ivy.mel_weight_matrix"], [362, "ivy.mel_weight_matrix"]], "mel_weight_matrix() (ivy.array static method)": [[313, "ivy.Array.mel_weight_matrix"]], "mel_weight_matrix() (ivy.container method)": [[313, "ivy.Container.mel_weight_matrix"]], "ndenumerate() (in module ivy)": [[314, "ivy.ndenumerate"], [362, "ivy.ndenumerate"]], "ndindex() (in module ivy)": [[315, "ivy.ndindex"], [362, "ivy.ndindex"]], "polyval() (in module ivy)": [[316, "ivy.polyval"], [362, "ivy.polyval"]], "polyval() (ivy.container method)": [[316, "ivy.Container.polyval"]], "random_cp() (in module ivy)": [[317, "ivy.random_cp"], [362, "ivy.random_cp"]], "random_parafac2() (in module ivy)": [[318, "ivy.random_parafac2"], [362, "ivy.random_parafac2"]], "random_tr() (in module ivy)": [[319, "ivy.random_tr"], [362, "ivy.random_tr"]], "random_tt() (in module ivy)": [[320, "ivy.random_tt"], [362, "ivy.random_tt"]], "random_tucker() (in module ivy)": [[321, "ivy.random_tucker"], [362, "ivy.random_tucker"]], "tril_indices() (in module ivy)": [[322, "ivy.tril_indices"], [362, "ivy.tril_indices"]], "tril_indices() (ivy.container method)": [[322, "ivy.Container.tril_indices"]], "trilu() (in module ivy)": [[323, "ivy.trilu"], [362, "ivy.trilu"]], "trilu() (ivy.array method)": [[323, "ivy.Array.trilu"]], "trilu() (ivy.container method)": [[323, "ivy.Container.trilu"]], "unsorted_segment_mean() (in module ivy)": [[324, "ivy.unsorted_segment_mean"], [362, "ivy.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.array method)": [[324, "ivy.Array.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.container method)": [[324, "ivy.Container.unsorted_segment_mean"]], "unsorted_segment_min() (in module ivy)": [[325, "ivy.unsorted_segment_min"], [362, "ivy.unsorted_segment_min"]], "unsorted_segment_min() (ivy.array method)": [[325, "ivy.Array.unsorted_segment_min"]], "unsorted_segment_min() (ivy.container method)": [[325, "ivy.Container.unsorted_segment_min"]], "unsorted_segment_sum() (in module ivy)": [[326, "ivy.unsorted_segment_sum"], [362, "ivy.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.array method)": [[326, "ivy.Array.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.container method)": [[326, "ivy.Container.unsorted_segment_sum"]], "vorbis_window() (in module ivy)": [[327, "ivy.vorbis_window"], [362, "ivy.vorbis_window"]], "vorbis_window() (ivy.container method)": [[327, "ivy.Container.vorbis_window"]], "allclose() (in module ivy)": [[328, "ivy.allclose"], [365, "ivy.allclose"]], "allclose() (ivy.array method)": [[328, "ivy.Array.allclose"]], "allclose() (ivy.container method)": [[328, "ivy.Container.allclose"]], "amax() (in module ivy)": [[329, "ivy.amax"], [365, "ivy.amax"]], "amax() (ivy.array method)": [[329, "ivy.Array.amax"]], "amax() (ivy.container method)": [[329, "ivy.Container.amax"]], "amin() (in module ivy)": [[330, "ivy.amin"], [365, "ivy.amin"]], "amin() (ivy.array method)": [[330, "ivy.Array.amin"]], "amin() (ivy.container method)": [[330, "ivy.Container.amin"]], "binarizer() (in module ivy)": [[331, "ivy.binarizer"], [365, "ivy.binarizer"]], "binarizer() (ivy.array method)": [[331, "ivy.Array.binarizer"]], "binarizer() (ivy.container method)": [[331, "ivy.Container.binarizer"]], "conj() (in module ivy)": [[332, "ivy.conj"], [365, "ivy.conj"]], "conj() (ivy.array method)": [[332, "ivy.Array.conj"]], "conj() (ivy.container method)": [[332, "ivy.Container.conj"]], "copysign() (in module ivy)": [[333, "ivy.copysign"], [365, "ivy.copysign"]], "copysign() (ivy.array method)": [[333, "ivy.Array.copysign"]], "copysign() (ivy.container method)": [[333, "ivy.Container.copysign"]], "count_nonzero() (in module ivy)": [[334, "ivy.count_nonzero"], [365, "ivy.count_nonzero"]], "count_nonzero() (ivy.array method)": [[334, "ivy.Array.count_nonzero"]], "count_nonzero() (ivy.container method)": [[334, "ivy.Container.count_nonzero"]], "diff() (in module ivy)": [[335, "ivy.diff"], [365, "ivy.diff"]], "diff() (ivy.array method)": [[335, "ivy.Array.diff"]], "diff() (ivy.container method)": [[335, "ivy.Container.diff"]], "digamma() (in module ivy)": [[336, "ivy.digamma"], [365, "ivy.digamma"]], "digamma() (ivy.array method)": [[336, "ivy.Array.digamma"]], "digamma() (ivy.container method)": [[336, "ivy.Container.digamma"]], "erfc() (in module ivy)": [[337, "ivy.erfc"], [365, "ivy.erfc"]], "erfc() (ivy.array method)": [[337, "ivy.Array.erfc"]], "erfc() (ivy.container method)": [[337, "ivy.Container.erfc"]], "fix() (in module ivy)": [[338, "ivy.fix"], [365, "ivy.fix"]], "fix() (ivy.array method)": [[338, "ivy.Array.fix"]], "fix() (ivy.container method)": [[338, "ivy.Container.fix"]], "float_power() (in module ivy)": [[339, "ivy.float_power"], [365, "ivy.float_power"]], "float_power() (ivy.array method)": [[339, "ivy.Array.float_power"]], "float_power() (ivy.container method)": [[339, "ivy.Container.float_power"]], "fmax() (in module ivy)": [[340, "ivy.fmax"], [365, "ivy.fmax"]], "fmax() (ivy.array method)": [[340, "ivy.Array.fmax"]], "fmax() (ivy.container method)": [[340, "ivy.Container.fmax"]], "frexp() (in module ivy)": [[341, "ivy.frexp"], [365, "ivy.frexp"]], "frexp() (ivy.array method)": [[341, "ivy.Array.frexp"]], "frexp() (ivy.container method)": [[341, "ivy.Container.frexp"]], "gradient() (in module ivy)": [[342, "ivy.gradient"], [365, "ivy.gradient"]], "gradient() (ivy.array method)": [[342, "ivy.Array.gradient"]], "gradient() (ivy.container method)": [[342, "ivy.Container.gradient"]], "hypot() (in module ivy)": [[343, "ivy.hypot"], [365, "ivy.hypot"]], "hypot() (ivy.array method)": [[343, "ivy.Array.hypot"]], "hypot() (ivy.container method)": [[343, "ivy.Container.hypot"]], "isclose() (in module ivy)": [[344, "ivy.isclose"], [365, "ivy.isclose"]], "isclose() (ivy.array method)": [[344, "ivy.Array.isclose"]], "isclose() (ivy.container method)": [[344, "ivy.Container.isclose"]], "ldexp() (in module ivy)": [[345, "ivy.ldexp"], [365, "ivy.ldexp"]], "ldexp() (ivy.array method)": [[345, "ivy.Array.ldexp"]], "ldexp() (ivy.container method)": [[345, "ivy.Container.ldexp"]], "lerp() (in module ivy)": [[346, "ivy.lerp"], [365, "ivy.lerp"]], "lerp() (ivy.array method)": [[346, "ivy.Array.lerp"]], "lerp() (ivy.container method)": [[346, "ivy.Container.lerp"]], "lgamma() (in module ivy)": [[347, "ivy.lgamma"], [365, "ivy.lgamma"]], "lgamma() (ivy.array method)": [[347, "ivy.Array.lgamma"]], "modf() (in module ivy)": [[348, "ivy.modf"], [365, "ivy.modf"]], "modf() (ivy.array method)": [[348, "ivy.Array.modf"]], "modf() (ivy.container method)": [[348, "ivy.Container.modf"]], "nansum() (in module ivy)": [[349, "ivy.nansum"], [365, "ivy.nansum"]], "nansum() (ivy.array method)": [[349, "ivy.Array.nansum"]], "nansum() (ivy.container method)": [[349, "ivy.Container.nansum"]], "nextafter() (in module ivy)": [[350, "ivy.nextafter"], [365, "ivy.nextafter"]], "nextafter() (ivy.array method)": [[350, "ivy.Array.nextafter"]], "nextafter() (ivy.container method)": [[350, "ivy.Container.nextafter"]], "signbit() (in module ivy)": [[351, "ivy.signbit"], [365, "ivy.signbit"]], "signbit() (ivy.array method)": [[351, "ivy.Array.signbit"]], "signbit() (ivy.container method)": [[351, "ivy.Container.signbit"]], "sinc() (in module ivy)": [[352, "ivy.sinc"], [365, "ivy.sinc"]], "sinc() (ivy.array method)": [[352, "ivy.Array.sinc"]], "sinc() (ivy.container method)": [[352, "ivy.Container.sinc"]], "sparsify_tensor() (in module ivy)": [[353, "ivy.sparsify_tensor"], [365, "ivy.sparsify_tensor"]], "sparsify_tensor() (ivy.array method)": [[353, "ivy.Array.sparsify_tensor"]], "sparsify_tensor() (ivy.container method)": [[353, "ivy.Container.sparsify_tensor"]], "xlogy() (in module ivy)": [[354, "ivy.xlogy"], [365, "ivy.xlogy"]], "xlogy() (ivy.array method)": [[354, "ivy.Array.xlogy"]], "xlogy() (ivy.container method)": [[354, "ivy.Container.xlogy"]], "zeta() (in module ivy)": [[355, "ivy.zeta"], [365, "ivy.zeta"]], "zeta() (ivy.array method)": [[355, "ivy.Array.zeta"]], "zeta() (ivy.container method)": [[355, "ivy.Container.zeta"]], "reduce() (in module ivy)": [[356, "ivy.reduce"], [366, "ivy.reduce"]], "reduce() (ivy.array method)": [[356, "ivy.Array.reduce"]], "reduce() (ivy.container method)": [[356, "ivy.Container.reduce"]], "bind_custom_gradient_function() (in module ivy)": [[357, "ivy.bind_custom_gradient_function"], [367, "ivy.bind_custom_gradient_function"]], "jvp() (in module ivy)": [[358, "ivy.jvp"], [367, "ivy.jvp"]], "vjp() (in module ivy)": [[359, "ivy.vjp"], [367, "ivy.vjp"]], "ivy.functional.ivy.experimental.activations": [[360, "module-ivy.functional.ivy.experimental.activations"]], "ivy.functional.ivy.experimental.constants": [[361, "module-ivy.functional.ivy.experimental.constants"]], "ivy.functional.ivy.experimental.creation": [[362, "module-ivy.functional.ivy.experimental.creation"]], "ivy.functional.ivy.experimental.data_type": [[363, "module-ivy.functional.ivy.experimental.data_type"]], "ivy.functional.ivy.experimental.device": [[364, "module-ivy.functional.ivy.experimental.device"]], "ivy.functional.ivy.experimental.elementwise": [[365, "module-ivy.functional.ivy.experimental.elementwise"]], "ivy.functional.ivy.experimental.general": [[366, "module-ivy.functional.ivy.experimental.general"]], "ivy.functional.ivy.experimental.gradients": [[367, "module-ivy.functional.ivy.experimental.gradients"]], "adaptive_avg_pool1d() (in module ivy)": [[368, "ivy.adaptive_avg_pool1d"], [382, "ivy.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (in module ivy)": [[368, "ivy.adaptive_avg_pool2d"], [383, "ivy.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (in module ivy)": [[368, "ivy.adaptive_max_pool2d"], [384, "ivy.adaptive_max_pool2d"]], "area_interpolate() (in module ivy)": [[368, "ivy.area_interpolate"], [385, "ivy.area_interpolate"]], "avg_pool1d() (in module ivy)": [[368, "ivy.avg_pool1d"], [386, "ivy.avg_pool1d"]], "avg_pool2d() (in module ivy)": [[368, "ivy.avg_pool2d"], [387, "ivy.avg_pool2d"]], "avg_pool3d() (in module ivy)": [[368, "ivy.avg_pool3d"], [388, "ivy.avg_pool3d"]], "dct() (in module ivy)": [[368, "ivy.dct"], [389, "ivy.dct"]], "dft() (in module ivy)": [[368, "ivy.dft"], [390, "ivy.dft"]], "dropout1d() (in module ivy)": [[368, "ivy.dropout1d"], [391, "ivy.dropout1d"]], "dropout2d() (in module ivy)": [[368, "ivy.dropout2d"], [392, "ivy.dropout2d"]], "dropout3d() (in module ivy)": [[368, "ivy.dropout3d"], [393, "ivy.dropout3d"]], "embedding() (in module ivy)": [[368, "ivy.embedding"], [394, "ivy.embedding"]], "fft() (in module ivy)": [[368, "ivy.fft"], [395, "ivy.fft"]], "fft2() (in module ivy)": [[368, "ivy.fft2"], [396, "ivy.fft2"]], "generate_einsum_equation() (in module ivy)": [[368, "ivy.generate_einsum_equation"], [397, "ivy.generate_einsum_equation"]], "get_interpolate_kernel() (in module ivy)": [[368, "ivy.get_interpolate_kernel"], [398, "ivy.get_interpolate_kernel"]], "idct() (in module ivy)": [[368, "ivy.idct"], [399, "ivy.idct"]], "ifft() (in module ivy)": [[368, "ivy.ifft"], [400, "ivy.ifft"]], "ifftn() (in module ivy)": [[368, "ivy.ifftn"], [401, "ivy.ifftn"]], "interp() (in module ivy)": [[368, "ivy.interp"], [402, "ivy.interp"]], "interpolate() (in module ivy)": [[368, "ivy.interpolate"], [403, "ivy.interpolate"]], "ivy.functional.ivy.experimental.layers": [[368, "module-ivy.functional.ivy.experimental.layers"]], "max_pool1d() (in module ivy)": [[368, "ivy.max_pool1d"], [404, "ivy.max_pool1d"]], "max_pool2d() (in module ivy)": [[368, "ivy.max_pool2d"], [405, "ivy.max_pool2d"]], "max_pool3d() (in module ivy)": [[368, "ivy.max_pool3d"], [406, "ivy.max_pool3d"]], "max_unpool1d() (in module ivy)": [[368, "ivy.max_unpool1d"], [407, "ivy.max_unpool1d"]], "nearest_interpolate() (in module ivy)": [[368, "ivy.nearest_interpolate"], [408, "ivy.nearest_interpolate"]], "pool() (in module ivy)": [[368, "ivy.pool"], [409, "ivy.pool"]], "reduce_window() (in module ivy)": [[368, "ivy.reduce_window"], [410, "ivy.reduce_window"]], "rfft() (in module ivy)": [[368, "ivy.rfft"], [411, "ivy.rfft"]], "rfftn() (in module ivy)": [[368, "ivy.rfftn"], [412, "ivy.rfftn"]], "sliding_window() (in module ivy)": [[368, "ivy.sliding_window"], [413, "ivy.sliding_window"]], "stft() (in module ivy)": [[368, "ivy.stft"], [414, "ivy.stft"]], "adjoint() (in module ivy)": [[369, "ivy.adjoint"], [415, "ivy.adjoint"]], "batched_outer() (in module ivy)": [[369, "ivy.batched_outer"], [416, "ivy.batched_outer"]], "cond() (in module ivy)": [[369, "ivy.cond"], [417, "ivy.cond"]], "diagflat() (in module ivy)": [[369, "ivy.diagflat"], [418, "ivy.diagflat"]], "dot() (in module ivy)": [[369, "ivy.dot"], [419, "ivy.dot"]], "eig() (in module ivy)": [[369, "ivy.eig"], [420, "ivy.eig"], [623, "ivy.eig"], [657, "ivy.eig"]], "eigh_tridiagonal() (in module ivy)": [[369, "ivy.eigh_tridiagonal"], [421, "ivy.eigh_tridiagonal"]], "eigvals() (in module ivy)": [[369, "ivy.eigvals"], [422, "ivy.eigvals"]], "general_inner_product() (in module ivy)": [[369, "ivy.general_inner_product"], [423, "ivy.general_inner_product"]], "higher_order_moment() (in module ivy)": [[369, "ivy.higher_order_moment"], [424, "ivy.higher_order_moment"]], "initialize_tucker() (in module ivy)": [[369, "ivy.initialize_tucker"], [425, "ivy.initialize_tucker"]], "ivy.functional.ivy.experimental.linear_algebra": [[369, "module-ivy.functional.ivy.experimental.linear_algebra"]], "khatri_rao() (in module ivy)": [[369, "ivy.khatri_rao"], [426, "ivy.khatri_rao"]], "kron() (in module ivy)": [[369, "ivy.kron"], [427, "ivy.kron"]], "kronecker() (in module ivy)": [[369, "ivy.kronecker"], [428, "ivy.kronecker"]], "make_svd_non_negative() (in module ivy)": [[369, "ivy.make_svd_non_negative"], [429, "ivy.make_svd_non_negative"]], "matrix_exp() (in module ivy)": [[369, "ivy.matrix_exp"], [430, "ivy.matrix_exp"]], "mode_dot() (in module ivy)": [[369, "ivy.mode_dot"], [431, "ivy.mode_dot"]], "multi_dot() (in module ivy)": [[369, "ivy.multi_dot"], [432, "ivy.multi_dot"]], "multi_mode_dot() (in module ivy)": [[369, "ivy.multi_mode_dot"], [433, "ivy.multi_mode_dot"]], "partial_tucker() (in module ivy)": [[369, "ivy.partial_tucker"], [434, "ivy.partial_tucker"]], "solve_triangular() (in module ivy)": [[369, "ivy.solve_triangular"], [435, "ivy.solve_triangular"]], "svd_flip() (in module ivy)": [[369, "ivy.svd_flip"], [436, "ivy.svd_flip"]], "tensor_train() (in module ivy)": [[369, "ivy.tensor_train"], [437, "ivy.tensor_train"]], "truncated_svd() (in module ivy)": [[369, "ivy.truncated_svd"], [438, "ivy.truncated_svd"]], "tt_matrix_to_tensor() (in module ivy)": [[369, "ivy.tt_matrix_to_tensor"], [439, "ivy.tt_matrix_to_tensor"]], "tucker() (in module ivy)": [[369, "ivy.tucker"], [440, "ivy.tucker"]], "huber_loss() (in module ivy)": [[370, "ivy.huber_loss"], [441, "ivy.huber_loss"]], "ivy.functional.ivy.experimental.losses": [[370, "module-ivy.functional.ivy.experimental.losses"]], "kl_div() (in module ivy)": [[370, "ivy.kl_div"], [442, "ivy.kl_div"]], "l1_loss() (in module ivy)": [[370, "ivy.l1_loss"], [443, "ivy.l1_loss"]], "log_poisson_loss() (in module ivy)": [[370, "ivy.log_poisson_loss"], [444, "ivy.log_poisson_loss"]], "poisson_nll_loss() (in module ivy)": [[370, "ivy.poisson_nll_loss"], [445, "ivy.poisson_nll_loss"]], "smooth_l1_loss() (in module ivy)": [[370, "ivy.smooth_l1_loss"], [446, "ivy.smooth_l1_loss"]], "soft_margin_loss() (in module ivy)": [[370, "ivy.soft_margin_loss"], [447, "ivy.soft_margin_loss"]], "as_strided() (in module ivy)": [[371, "ivy.as_strided"], [448, "ivy.as_strided"]], "associative_scan() (in module ivy)": [[371, "ivy.associative_scan"], [449, "ivy.associative_scan"]], "atleast_1d() (in module ivy)": [[371, "ivy.atleast_1d"], [450, "ivy.atleast_1d"]], "atleast_2d() (in module ivy)": [[371, "ivy.atleast_2d"], [451, "ivy.atleast_2d"]], "atleast_3d() (in module ivy)": [[371, "ivy.atleast_3d"], [452, "ivy.atleast_3d"]], "broadcast_shapes() (in module ivy)": [[371, "ivy.broadcast_shapes"], [453, "ivy.broadcast_shapes"]], "check_scalar() (in module ivy)": [[371, "ivy.check_scalar"], [454, "ivy.check_scalar"]], "choose() (in module ivy)": [[371, "ivy.choose"], [455, "ivy.choose"]], "column_stack() (in module ivy)": [[371, "ivy.column_stack"], [456, "ivy.column_stack"]], "concat_from_sequence() (in module ivy)": [[371, "ivy.concat_from_sequence"], [457, "ivy.concat_from_sequence"]], "dsplit() (in module ivy)": [[371, "ivy.dsplit"], [458, "ivy.dsplit"]], "dstack() (in module ivy)": [[371, "ivy.dstack"], [459, "ivy.dstack"]], "expand() (in module ivy)": [[371, "ivy.expand"], [460, "ivy.expand"]], "fill_diagonal() (in module ivy)": [[371, "ivy.fill_diagonal"], [461, "ivy.fill_diagonal"]], "flatten() (in module ivy)": [[371, "ivy.flatten"], [462, "ivy.flatten"]], "fliplr() (in module ivy)": [[371, "ivy.fliplr"], [463, "ivy.fliplr"]], "flipud() (in module ivy)": [[371, "ivy.flipud"], [464, "ivy.flipud"]], "fold() (in module ivy)": [[371, "ivy.fold"], [465, "ivy.fold"]], "heaviside() (in module ivy)": [[371, "ivy.heaviside"], [466, "ivy.heaviside"]], "hsplit() (in module ivy)": [[371, "ivy.hsplit"], [467, "ivy.hsplit"]], "hstack() (in module ivy)": [[371, "ivy.hstack"], [468, "ivy.hstack"]], "i0() (in module ivy)": [[371, "ivy.i0"], [469, "ivy.i0"]], "ivy.functional.ivy.experimental.manipulation": [[371, "module-ivy.functional.ivy.experimental.manipulation"]], "matricize() (in module ivy)": [[371, "ivy.matricize"], [470, "ivy.matricize"]], "moveaxis() (in module ivy)": [[371, "ivy.moveaxis"], [471, "ivy.moveaxis"]], "pad() (in module ivy)": [[371, "ivy.pad"], [472, "ivy.pad"]], "partial_fold() (in module ivy)": [[371, "ivy.partial_fold"], [473, "ivy.partial_fold"]], "partial_tensor_to_vec() (in module ivy)": [[371, "ivy.partial_tensor_to_vec"], [474, "ivy.partial_tensor_to_vec"]], "partial_unfold() (in module ivy)": [[371, "ivy.partial_unfold"], [475, "ivy.partial_unfold"]], "partial_vec_to_tensor() (in module ivy)": [[371, "ivy.partial_vec_to_tensor"], [476, "ivy.partial_vec_to_tensor"]], "put_along_axis() (in module ivy)": [[371, "ivy.put_along_axis"], [477, "ivy.put_along_axis"]], "rot90() (in module ivy)": [[371, "ivy.rot90"], [478, "ivy.rot90"]], "soft_thresholding() (in module ivy)": [[371, "ivy.soft_thresholding"], [479, "ivy.soft_thresholding"]], "take() (in module ivy)": [[371, "ivy.take"], [480, "ivy.take"]], "take_along_axis() (in module ivy)": [[371, "ivy.take_along_axis"], [481, "ivy.take_along_axis"]], "top_k() (in module ivy)": [[371, "ivy.top_k"], [482, "ivy.top_k"]], "trim_zeros() (in module ivy)": [[371, "ivy.trim_zeros"], [483, "ivy.trim_zeros"]], "unfold() (in module ivy)": [[371, "ivy.unfold"], [484, "ivy.unfold"]], "unique_consecutive() (in module ivy)": [[371, "ivy.unique_consecutive"], [485, "ivy.unique_consecutive"]], "vsplit() (in module ivy)": [[371, "ivy.vsplit"], [486, "ivy.vsplit"]], "vstack() (in module ivy)": [[371, "ivy.vstack"], [487, "ivy.vstack"]], "ivy.functional.ivy.experimental.meta": [[372, "module-ivy.functional.ivy.experimental.meta"]], "ivy.functional.ivy.experimental.nest": [[373, "module-ivy.functional.ivy.experimental.nest"]], "batch_norm() (in module ivy)": [[374, "ivy.batch_norm"], [488, "ivy.batch_norm"]], "group_norm() (in module ivy)": [[374, "ivy.group_norm"], [489, "ivy.group_norm"]], "instance_norm() (in module ivy)": [[374, "ivy.instance_norm"], [490, "ivy.instance_norm"]], "ivy.functional.ivy.experimental.norms": [[374, "module-ivy.functional.ivy.experimental.norms"]], "l1_normalize() (in module ivy)": [[374, "ivy.l1_normalize"], [491, "ivy.l1_normalize"]], "l2_normalize() (in module ivy)": [[374, "ivy.l2_normalize"], [492, "ivy.l2_normalize"]], "local_response_norm() (in module ivy)": [[374, "ivy.local_response_norm"], [493, "ivy.local_response_norm"]], "lp_normalize() (in module ivy)": [[374, "ivy.lp_normalize"], [494, "ivy.lp_normalize"]], "bernoulli() (in module ivy)": [[375, "ivy.bernoulli"], [495, "ivy.bernoulli"]], "beta() (in module ivy)": [[375, "ivy.beta"], [496, "ivy.beta"]], "dirichlet() (in module ivy)": [[375, "ivy.dirichlet"], [497, "ivy.dirichlet"]], "gamma() (in module ivy)": [[375, "ivy.gamma"], [498, "ivy.gamma"]], "ivy.functional.ivy.experimental.random": [[375, "module-ivy.functional.ivy.experimental.random"]], "poisson() (in module ivy)": [[375, "ivy.poisson"], [499, "ivy.poisson"]], "ivy.functional.ivy.experimental.searching": [[376, "module-ivy.functional.ivy.experimental.searching"]], "unravel_index() (in module ivy)": [[376, "ivy.unravel_index"], [500, "ivy.unravel_index"]], "ivy.functional.ivy.experimental.set": [[377, "module-ivy.functional.ivy.experimental.set"]], "invert_permutation() (in module ivy)": [[378, "ivy.invert_permutation"], [501, "ivy.invert_permutation"]], "ivy.functional.ivy.experimental.sorting": [[378, "module-ivy.functional.ivy.experimental.sorting"]], "lexsort() (in module ivy)": [[378, "ivy.lexsort"], [502, "ivy.lexsort"]], "nativesparsearray (class in ivy)": [[379, "ivy.NativeSparseArray"]], "sparsearray (class in ivy)": [[379, "ivy.SparseArray"]], "is_ivy_sparse_array() (in module ivy)": [[379, "ivy.is_ivy_sparse_array"], [503, "ivy.is_ivy_sparse_array"]], "is_native_sparse_array() (in module ivy)": [[379, "ivy.is_native_sparse_array"], [504, "ivy.is_native_sparse_array"]], "ivy.functional.ivy.experimental.sparse_array": [[379, "module-ivy.functional.ivy.experimental.sparse_array"]], "native_sparse_array() (in module ivy)": [[379, "ivy.native_sparse_array"], [505, "ivy.native_sparse_array"]], "native_sparse_array_to_indices_values_and_shape() (in module ivy)": [[379, "ivy.native_sparse_array_to_indices_values_and_shape"], [506, "ivy.native_sparse_array_to_indices_values_and_shape"]], "bincount() (in module ivy)": [[380, "ivy.bincount"], [507, "ivy.bincount"]], "corrcoef() (in module ivy)": [[380, "ivy.corrcoef"], [508, "ivy.corrcoef"]], "cov() (in module ivy)": [[380, "ivy.cov"], [509, "ivy.cov"]], "cummax() (in module ivy)": [[380, "ivy.cummax"], [510, "ivy.cummax"]], "cummin() (in module ivy)": [[380, "ivy.cummin"], [511, "ivy.cummin"]], "histogram() (in module ivy)": [[380, "ivy.histogram"], [512, "ivy.histogram"]], "igamma() (in module ivy)": [[380, "ivy.igamma"], [513, "ivy.igamma"]], "ivy.functional.ivy.experimental.statistical": [[380, "module-ivy.functional.ivy.experimental.statistical"]], "median() (in module ivy)": [[380, "ivy.median"], [514, "ivy.median"]], "nanmean() (in module ivy)": [[380, "ivy.nanmean"], [515, "ivy.nanmean"]], "nanmedian() (in module ivy)": [[380, "ivy.nanmedian"], [516, "ivy.nanmedian"]], "nanmin() (in module ivy)": [[380, "ivy.nanmin"], [517, "ivy.nanmin"]], "nanprod() (in module ivy)": [[380, "ivy.nanprod"], [518, "ivy.nanprod"]], "quantile() (in module ivy)": [[380, "ivy.quantile"], [519, "ivy.quantile"]], "ivy.functional.ivy.experimental.utility": [[381, "module-ivy.functional.ivy.experimental.utility"]], "optional_get_element() (in module ivy)": [[381, "ivy.optional_get_element"], [520, "ivy.optional_get_element"]], "adaptive_avg_pool1d() (ivy.array method)": [[382, "ivy.Array.adaptive_avg_pool1d"]], "adaptive_avg_pool1d() (ivy.container method)": [[382, "ivy.Container.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.array method)": [[383, "ivy.Array.adaptive_avg_pool2d"]], "adaptive_avg_pool2d() (ivy.container method)": [[383, "ivy.Container.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.array method)": [[384, "ivy.Array.adaptive_max_pool2d"]], "adaptive_max_pool2d() (ivy.container method)": [[384, "ivy.Container.adaptive_max_pool2d"]], "avg_pool1d() (ivy.array method)": [[386, "ivy.Array.avg_pool1d"]], "avg_pool1d() (ivy.container method)": [[386, "ivy.Container.avg_pool1d"]], "avg_pool2d() (ivy.array method)": [[387, "ivy.Array.avg_pool2d"]], "avg_pool2d() (ivy.container method)": [[387, "ivy.Container.avg_pool2d"]], "avg_pool3d() (ivy.array method)": [[388, "ivy.Array.avg_pool3d"]], "avg_pool3d() (ivy.container method)": [[388, "ivy.Container.avg_pool3d"]], "dct() (ivy.array method)": [[389, "ivy.Array.dct"]], "dct() (ivy.container method)": [[389, "ivy.Container.dct"]], "dft() (ivy.array method)": [[390, "ivy.Array.dft"]], "dft() (ivy.container method)": [[390, "ivy.Container.dft"]], "dropout1d() (ivy.array method)": [[391, "ivy.Array.dropout1d"]], "dropout1d() (ivy.container method)": [[391, "ivy.Container.dropout1d"]], "dropout2d() (ivy.array method)": [[392, "ivy.Array.dropout2d"]], "dropout2d() (ivy.container method)": [[392, "ivy.Container.dropout2d"]], "dropout3d() (ivy.array method)": [[393, "ivy.Array.dropout3d"]], "dropout3d() (ivy.container method)": [[393, "ivy.Container.dropout3d"]], "embedding() (ivy.array method)": [[394, "ivy.Array.embedding"]], "embedding() (ivy.container method)": [[394, "ivy.Container.embedding"]], "fft() (ivy.array method)": [[395, "ivy.Array.fft"]], "fft() (ivy.container method)": [[395, "ivy.Container.fft"]], "fft2() (ivy.array method)": [[396, "ivy.Array.fft2"]], "idct() (ivy.array method)": [[399, "ivy.Array.idct"]], "idct() (ivy.container method)": [[399, "ivy.Container.idct"]], "ifft() (ivy.array method)": [[400, "ivy.Array.ifft"]], "ifft() (ivy.container method)": [[400, "ivy.Container.ifft"]], "ifftn() (ivy.array method)": [[401, "ivy.Array.ifftn"]], "ifftn() (ivy.container method)": [[401, "ivy.Container.ifftn"]], "interpolate() (ivy.array method)": [[403, "ivy.Array.interpolate"]], "interpolate() (ivy.container method)": [[403, "ivy.Container.interpolate"]], "max_pool1d() (ivy.array method)": [[404, "ivy.Array.max_pool1d"]], "max_pool1d() (ivy.container method)": [[404, "ivy.Container.max_pool1d"]], "max_pool2d() (ivy.array method)": [[405, "ivy.Array.max_pool2d"]], "max_pool2d() (ivy.container method)": [[405, "ivy.Container.max_pool2d"]], "max_pool3d() (ivy.array method)": [[406, "ivy.Array.max_pool3d"]], "max_pool3d() (ivy.container method)": [[406, "ivy.Container.max_pool3d"]], "max_unpool1d() (ivy.array method)": [[407, "ivy.Array.max_unpool1d"]], "max_unpool1d() (ivy.container method)": [[407, "ivy.Container.max_unpool1d"]], "reduce_window() (ivy.array method)": [[410, "ivy.Array.reduce_window"]], "reduce_window() (ivy.container method)": [[410, "ivy.Container.reduce_window"]], "rfft() (ivy.array method)": [[411, "ivy.Array.rfft"]], "rfft() (ivy.container method)": [[411, "ivy.Container.rfft"]], "rfftn() (ivy.array method)": [[412, "ivy.Array.rfftn"]], "rfftn() (ivy.container method)": [[412, "ivy.Container.rfftn"]], "sliding_window() (ivy.array method)": [[413, "ivy.Array.sliding_window"]], "sliding_window() (ivy.container method)": [[413, "ivy.Container.sliding_window"]], "stft() (ivy.array method)": [[414, "ivy.Array.stft"]], "stft() (ivy.container method)": [[414, "ivy.Container.stft"]], "adjoint() (ivy.array method)": [[415, "ivy.Array.adjoint"]], "adjoint() (ivy.container method)": [[415, "ivy.Container.adjoint"]], "batched_outer() (ivy.array method)": [[416, "ivy.Array.batched_outer"]], "batched_outer() (ivy.container method)": [[416, "ivy.Container.batched_outer"]], "cond() (ivy.array method)": [[417, "ivy.Array.cond"]], "cond() (ivy.container method)": [[417, "ivy.Container.cond"]], "diagflat() (ivy.array method)": [[418, "ivy.Array.diagflat"]], "diagflat() (ivy.container method)": [[418, "ivy.Container.diagflat"]], "dot() (ivy.array method)": [[419, "ivy.Array.dot"]], "dot() (ivy.container method)": [[419, "ivy.Container.dot"]], "eig() (ivy.array method)": [[420, "ivy.Array.eig"], [657, "ivy.Array.eig"]], "eig() (ivy.container method)": [[420, "ivy.Container.eig"], [657, "ivy.Container.eig"]], "eigh_tridiagonal() (ivy.array method)": [[421, "ivy.Array.eigh_tridiagonal"]], "eigh_tridiagonal() (ivy.container method)": [[421, "ivy.Container.eigh_tridiagonal"]], "eigvals() (ivy.array method)": [[422, "ivy.Array.eigvals"]], "eigvals() (ivy.container method)": [[422, "ivy.Container.eigvals"]], "general_inner_product() (ivy.array method)": [[423, "ivy.Array.general_inner_product"]], "general_inner_product() (ivy.container method)": [[423, "ivy.Container.general_inner_product"]], "higher_order_moment() (ivy.array method)": [[424, "ivy.Array.higher_order_moment"]], "higher_order_moment() (ivy.container method)": [[424, "ivy.Container.higher_order_moment"]], "initialize_tucker() (ivy.array method)": [[425, "ivy.Array.initialize_tucker"]], "initialize_tucker() (ivy.container method)": [[425, "ivy.Container.initialize_tucker"]], "kron() (ivy.array method)": [[427, "ivy.Array.kron"]], "kron() (ivy.container method)": [[427, "ivy.Container.kron"]], "make_svd_non_negative() (ivy.array method)": [[429, "ivy.Array.make_svd_non_negative"]], "make_svd_non_negative() (ivy.container method)": [[429, "ivy.Container.make_svd_non_negative"]], "matrix_exp() (ivy.array method)": [[430, "ivy.Array.matrix_exp"]], "matrix_exp() (ivy.container method)": [[430, "ivy.Container.matrix_exp"]], "mode_dot() (ivy.array method)": [[431, "ivy.Array.mode_dot"]], "mode_dot() (ivy.container method)": [[431, "ivy.Container.mode_dot"]], "multi_dot() (ivy.array method)": [[432, "ivy.Array.multi_dot"]], "multi_dot() (ivy.container method)": [[432, "ivy.Container.multi_dot"]], "multi_mode_dot() (ivy.array method)": [[433, "ivy.Array.multi_mode_dot"]], "multi_mode_dot() (ivy.container method)": [[433, "ivy.Container.multi_mode_dot"]], "partial_tucker() (ivy.array method)": [[434, "ivy.Array.partial_tucker"]], "partial_tucker() (ivy.container method)": [[434, "ivy.Container.partial_tucker"]], "svd_flip() (ivy.array method)": [[436, "ivy.Array.svd_flip"]], "svd_flip() (ivy.container method)": [[436, "ivy.Container.svd_flip"]], "tensor_train() (ivy.array method)": [[437, "ivy.Array.tensor_train"]], "tensor_train() (ivy.container method)": [[437, "ivy.Container.tensor_train"]], "truncated_svd() (ivy.array method)": [[438, "ivy.Array.truncated_svd"]], "truncated_svd() (ivy.container method)": [[438, "ivy.Container.truncated_svd"]], "tt_matrix_to_tensor() (ivy.array method)": [[439, "ivy.Array.tt_matrix_to_tensor"]], "tt_matrix_to_tensor() (ivy.container method)": [[439, "ivy.Container.tt_matrix_to_tensor"]], "tucker() (ivy.array method)": [[440, "ivy.Array.tucker"]], "tucker() (ivy.container method)": [[440, "ivy.Container.tucker"]], "huber_loss() (ivy.array method)": [[441, "ivy.Array.huber_loss"]], "huber_loss() (ivy.container method)": [[441, "ivy.Container.huber_loss"]], "kl_div() (ivy.array method)": [[442, "ivy.Array.kl_div"]], "kl_div() (ivy.container method)": [[442, "ivy.Container.kl_div"]], "l1_loss() (ivy.array method)": [[443, "ivy.Array.l1_loss"]], "l1_loss() (ivy.container method)": [[443, "ivy.Container.l1_loss"]], "log_poisson_loss() (ivy.array method)": [[444, "ivy.Array.log_poisson_loss"]], "log_poisson_loss() (ivy.container method)": [[444, "ivy.Container.log_poisson_loss"]], "poisson_nll_loss() (ivy.array method)": [[445, "ivy.Array.poisson_nll_loss"]], "poisson_nll_loss() (ivy.container method)": [[445, "ivy.Container.poisson_nll_loss"]], "smooth_l1_loss() (ivy.array method)": [[446, "ivy.Array.smooth_l1_loss"]], "smooth_l1_loss() (ivy.container method)": [[446, "ivy.Container.smooth_l1_loss"]], "soft_margin_loss() (ivy.array method)": [[447, "ivy.Array.soft_margin_loss"]], "soft_margin_loss() (ivy.container method)": [[447, "ivy.Container.soft_margin_loss"]], "as_strided() (ivy.array method)": [[448, "ivy.Array.as_strided"]], "as_strided() (ivy.container method)": [[448, "ivy.Container.as_strided"]], "associative_scan() (ivy.array method)": [[449, "ivy.Array.associative_scan"]], "associative_scan() (ivy.container method)": [[449, "ivy.Container.associative_scan"]], "atleast_1d() (ivy.array method)": [[450, "ivy.Array.atleast_1d"]], "atleast_1d() (ivy.container method)": [[450, "ivy.Container.atleast_1d"]], "atleast_2d() (ivy.array method)": [[451, "ivy.Array.atleast_2d"]], "atleast_2d() (ivy.container method)": [[451, "ivy.Container.atleast_2d"]], "atleast_3d() (ivy.array method)": [[452, "ivy.Array.atleast_3d"]], "atleast_3d() (ivy.container method)": [[452, "ivy.Container.atleast_3d"]], "broadcast_shapes() (ivy.container method)": [[453, "ivy.Container.broadcast_shapes"]], "column_stack() (ivy.array method)": [[456, "ivy.Array.column_stack"]], "column_stack() (ivy.container method)": [[456, "ivy.Container.column_stack"]], "concat_from_sequence() (ivy.array method)": [[457, "ivy.Array.concat_from_sequence"]], "concat_from_sequence() (ivy.container method)": [[457, "ivy.Container.concat_from_sequence"]], "dsplit() (ivy.array method)": [[458, "ivy.Array.dsplit"]], "dsplit() (ivy.container method)": [[458, "ivy.Container.dsplit"]], "dstack() (ivy.array method)": [[459, "ivy.Array.dstack"]], "dstack() (ivy.container method)": [[459, "ivy.Container.dstack"]], "expand() (ivy.array method)": [[460, "ivy.Array.expand"]], "expand() (ivy.container method)": [[460, "ivy.Container.expand"]], "fill_diagonal() (ivy.array method)": [[461, "ivy.Array.fill_diagonal"]], "fill_diagonal() (ivy.container method)": [[461, "ivy.Container.fill_diagonal"]], "flatten() (ivy.array method)": [[462, "ivy.Array.flatten"]], "flatten() (ivy.container method)": [[462, "ivy.Container.flatten"]], "fliplr() (ivy.array method)": [[463, "ivy.Array.fliplr"]], "fliplr() (ivy.container method)": [[463, "ivy.Container.fliplr"]], "flipud() (ivy.array method)": [[464, "ivy.Array.flipud"]], "flipud() (ivy.container method)": [[464, "ivy.Container.flipud"]], "fold() (ivy.array method)": [[465, "ivy.Array.fold"]], "fold() (ivy.container method)": [[465, "ivy.Container.fold"]], "heaviside() (ivy.array method)": [[466, "ivy.Array.heaviside"]], "heaviside() (ivy.container method)": [[466, "ivy.Container.heaviside"]], "hsplit() (ivy.array method)": [[467, "ivy.Array.hsplit"]], "hsplit() (ivy.container method)": [[467, "ivy.Container.hsplit"]], "hstack() (ivy.array method)": [[468, "ivy.Array.hstack"]], "hstack() (ivy.container method)": [[468, "ivy.Container.hstack"]], "i0() (ivy.array method)": [[469, "ivy.Array.i0"]], "i0() (ivy.container method)": [[469, "ivy.Container.i0"]], "matricize() (ivy.array method)": [[470, "ivy.Array.matricize"]], "matricize() (ivy.container method)": [[470, "ivy.Container.matricize"]], "moveaxis() (ivy.array method)": [[471, "ivy.Array.moveaxis"]], "moveaxis() (ivy.container method)": [[471, "ivy.Container.moveaxis"]], "pad() (ivy.array method)": [[472, "ivy.Array.pad"]], "pad() (ivy.container method)": [[472, "ivy.Container.pad"]], "partial_fold() (ivy.array method)": [[473, "ivy.Array.partial_fold"]], "partial_fold() (ivy.container method)": [[473, "ivy.Container.partial_fold"]], "partial_tensor_to_vec() (ivy.array method)": [[474, "ivy.Array.partial_tensor_to_vec"]], "partial_tensor_to_vec() (ivy.container method)": [[474, "ivy.Container.partial_tensor_to_vec"]], "partial_unfold() (ivy.array method)": [[475, "ivy.Array.partial_unfold"]], "partial_unfold() (ivy.container method)": [[475, "ivy.Container.partial_unfold"]], "partial_vec_to_tensor() (ivy.array method)": [[476, "ivy.Array.partial_vec_to_tensor"]], "partial_vec_to_tensor() (ivy.container method)": [[476, "ivy.Container.partial_vec_to_tensor"]], "put_along_axis() (ivy.array method)": [[477, "ivy.Array.put_along_axis"]], "put_along_axis() (ivy.container method)": [[477, "ivy.Container.put_along_axis"]], "rot90() (ivy.array method)": [[478, "ivy.Array.rot90"]], "rot90() (ivy.container method)": [[478, "ivy.Container.rot90"]], "soft_thresholding() (ivy.array method)": [[479, "ivy.Array.soft_thresholding"]], "soft_thresholding() (ivy.container method)": [[479, "ivy.Container.soft_thresholding"]], "take() (ivy.array method)": [[480, "ivy.Array.take"]], "take() (ivy.container method)": [[480, "ivy.Container.take"]], "take_along_axis() (ivy.array method)": [[481, "ivy.Array.take_along_axis"]], "take_along_axis() (ivy.container method)": [[481, "ivy.Container.take_along_axis"]], "top_k() (ivy.array method)": [[482, "ivy.Array.top_k"]], "top_k() (ivy.container method)": [[482, "ivy.Container.top_k"]], "trim_zeros() (ivy.array method)": [[483, "ivy.Array.trim_zeros"]], "trim_zeros() (ivy.container method)": [[483, "ivy.Container.trim_zeros"]], "unfold() (ivy.array method)": [[484, "ivy.Array.unfold"]], "unfold() (ivy.container method)": [[484, "ivy.Container.unfold"]], "unique_consecutive() (ivy.array method)": [[485, "ivy.Array.unique_consecutive"]], "unique_consecutive() (ivy.container method)": [[485, "ivy.Container.unique_consecutive"]], "vsplit() (ivy.array method)": [[486, "ivy.Array.vsplit"]], "vsplit() (ivy.container method)": [[486, "ivy.Container.vsplit"]], "vstack() (ivy.array method)": [[487, "ivy.Array.vstack"]], "vstack() (ivy.container method)": [[487, "ivy.Container.vstack"]], "batch_norm() (ivy.array method)": [[488, "ivy.Array.batch_norm"]], "batch_norm() (ivy.container method)": [[488, "ivy.Container.batch_norm"]], "group_norm() (ivy.array method)": [[489, "ivy.Array.group_norm"]], "group_norm() (ivy.container method)": [[489, "ivy.Container.group_norm"]], "instance_norm() (ivy.array method)": [[490, "ivy.Array.instance_norm"]], "instance_norm() (ivy.container method)": [[490, "ivy.Container.instance_norm"]], "l1_normalize() (ivy.array method)": [[491, "ivy.Array.l1_normalize"]], "l1_normalize() (ivy.container method)": [[491, "ivy.Container.l1_normalize"]], "l2_normalize() (ivy.array method)": [[492, "ivy.Array.l2_normalize"]], "l2_normalize() (ivy.container method)": [[492, "ivy.Container.l2_normalize"]], "lp_normalize() (ivy.array method)": [[494, "ivy.Array.lp_normalize"]], "lp_normalize() (ivy.container method)": [[494, "ivy.Container.lp_normalize"]], "bernoulli() (ivy.array method)": [[495, "ivy.Array.bernoulli"]], "bernoulli() (ivy.container method)": [[495, "ivy.Container.bernoulli"]], "beta() (ivy.array method)": [[496, "ivy.Array.beta"]], "beta() (ivy.container method)": [[496, "ivy.Container.beta"]], "dirichlet() (ivy.array method)": [[497, "ivy.Array.dirichlet"]], "dirichlet() (ivy.container method)": [[497, "ivy.Container.dirichlet"]], "gamma() (ivy.array method)": [[498, "ivy.Array.gamma"]], "gamma() (ivy.container method)": [[498, "ivy.Container.gamma"]], "poisson() (ivy.array method)": [[499, "ivy.Array.poisson"]], "poisson() (ivy.container method)": [[499, "ivy.Container.poisson"]], "unravel_index() (ivy.array method)": [[500, "ivy.Array.unravel_index"]], "unravel_index() (ivy.container method)": [[500, "ivy.Container.unravel_index"]], "invert_permutation() (ivy.container method)": [[501, "ivy.Container.invert_permutation"]], "lexsort() (ivy.array method)": [[502, "ivy.Array.lexsort"]], "lexsort() (ivy.container method)": [[502, "ivy.Container.lexsort"]], "bincount() (ivy.array method)": [[507, "ivy.Array.bincount"]], "bincount() (ivy.container method)": [[507, "ivy.Container.bincount"]], "corrcoef() (ivy.array method)": [[508, "ivy.Array.corrcoef"]], "corrcoef() (ivy.container method)": [[508, "ivy.Container.corrcoef"]], "cov() (ivy.array method)": [[509, "ivy.Array.cov"]], "cov() (ivy.container method)": [[509, "ivy.Container.cov"]], "cummax() (ivy.array method)": [[510, "ivy.Array.cummax"]], "cummax() (ivy.container method)": [[510, "ivy.Container.cummax"]], "cummin() (ivy.array method)": [[511, "ivy.Array.cummin"]], "cummin() (ivy.container method)": [[511, "ivy.Container.cummin"]], "histogram() (ivy.array method)": [[512, "ivy.Array.histogram"]], "histogram() (ivy.container method)": [[512, "ivy.Container.histogram"]], "igamma() (ivy.array method)": [[513, "ivy.Array.igamma"]], "igamma() (ivy.container method)": [[513, "ivy.Container.igamma"]], "median() (ivy.array method)": [[514, "ivy.Array.median"]], "median() (ivy.container method)": [[514, "ivy.Container.median"]], "nanmean() (ivy.array method)": [[515, "ivy.Array.nanmean"]], "nanmean() (ivy.container method)": [[515, "ivy.Container.nanmean"]], "nanmedian() (ivy.array method)": [[516, "ivy.Array.nanmedian"]], "nanmedian() (ivy.container method)": [[516, "ivy.Container.nanmedian"]], "nanmin() (ivy.array method)": [[517, "ivy.Array.nanmin"]], "nanmin() (ivy.container method)": [[517, "ivy.Container.nanmin"]], "nanprod() (ivy.array method)": [[518, "ivy.Array.nanprod"]], "nanprod() (ivy.container method)": [[518, "ivy.Container.nanprod"]], "quantile() (ivy.array method)": [[519, "ivy.Array.quantile"]], "quantile() (ivy.container method)": [[519, "ivy.Container.quantile"]], "optional_get_element() (ivy.array method)": [[520, "ivy.Array.optional_get_element"]], "optional_get_element() (ivy.container method)": [[520, "ivy.Container.optional_get_element"]], "all_equal() (in module ivy)": [[521, "ivy.all_equal"], [620, "ivy.all_equal"]], "all_equal() (ivy.array method)": [[521, "ivy.Array.all_equal"]], "all_equal() (ivy.container method)": [[521, "ivy.Container.all_equal"]], "arg_info() (in module ivy)": [[522, "ivy.arg_info"], [620, "ivy.arg_info"]], "arg_names() (in module ivy)": [[523, "ivy.arg_names"], [620, "ivy.arg_names"]], "array_equal() (in module ivy)": [[524, "ivy.array_equal"], [620, "ivy.array_equal"]], "array_equal() (ivy.array method)": [[524, "ivy.Array.array_equal"]], "array_equal() (ivy.container method)": [[524, "ivy.Container.array_equal"]], "assert_supports_inplace() (in module ivy)": [[525, "ivy.assert_supports_inplace"], [620, "ivy.assert_supports_inplace"]], "assert_supports_inplace() (ivy.array method)": [[525, "ivy.Array.assert_supports_inplace"]], "assert_supports_inplace() (ivy.container method)": [[525, "ivy.Container.assert_supports_inplace"]], "cache_fn() (in module ivy)": [[526, "ivy.cache_fn"], [620, "ivy.cache_fn"]], "clip_matrix_norm() (in module ivy)": [[527, "ivy.clip_matrix_norm"], [620, "ivy.clip_matrix_norm"]], "clip_matrix_norm() (ivy.array method)": [[527, "ivy.Array.clip_matrix_norm"]], "clip_matrix_norm() (ivy.container method)": [[527, "ivy.Container.clip_matrix_norm"]], "clip_vector_norm() (in module ivy)": [[528, "ivy.clip_vector_norm"], [620, "ivy.clip_vector_norm"]], "clip_vector_norm() (ivy.array method)": [[528, "ivy.Array.clip_vector_norm"]], "clip_vector_norm() (ivy.container method)": [[528, "ivy.Container.clip_vector_norm"]], "container_types() (in module ivy)": [[529, "ivy.container_types"], [620, "ivy.container_types"]], "current_backend_str() (in module ivy)": [[530, "ivy.current_backend_str"], [620, "ivy.current_backend_str"]], "default() (in module ivy)": [[531, "ivy.default"], [620, "ivy.default"]], "default() (ivy.array method)": [[531, "ivy.Array.default"]], "einops_rearrange() (in module ivy)": [[532, "ivy.einops_rearrange"], [620, "ivy.einops_rearrange"]], "einops_rearrange() (ivy.array method)": [[532, "ivy.Array.einops_rearrange"]], "einops_rearrange() (ivy.container method)": [[532, "ivy.Container.einops_rearrange"]], "einops_reduce() (in module ivy)": [[533, "ivy.einops_reduce"], [620, "ivy.einops_reduce"]], "einops_reduce() (ivy.array method)": [[533, "ivy.Array.einops_reduce"]], "einops_reduce() (ivy.container method)": [[533, "ivy.Container.einops_reduce"]], "einops_repeat() (in module ivy)": [[534, "ivy.einops_repeat"], [620, "ivy.einops_repeat"]], "einops_repeat() (ivy.array method)": [[534, "ivy.Array.einops_repeat"]], "einops_repeat() (ivy.container method)": [[534, "ivy.Container.einops_repeat"]], "exists() (in module ivy)": [[535, "ivy.exists"], [620, "ivy.exists"]], "exists() (ivy.array method)": [[535, "ivy.Array.exists"]], "exists() (ivy.container method)": [[535, "ivy.Container.exists"]], "fourier_encode() (in module ivy)": [[536, "ivy.fourier_encode"], [620, "ivy.fourier_encode"]], "fourier_encode() (ivy.array method)": [[536, "ivy.Array.fourier_encode"]], "fourier_encode() (ivy.container method)": [[536, "ivy.Container.fourier_encode"]], "function_supported_devices_and_dtypes() (in module ivy)": [[537, "ivy.function_supported_devices_and_dtypes"], [620, "ivy.function_supported_devices_and_dtypes"]], "function_unsupported_devices_and_dtypes() (in module ivy)": [[538, "ivy.function_unsupported_devices_and_dtypes"], [620, "ivy.function_unsupported_devices_and_dtypes"]], "gather() (in module ivy)": [[539, "ivy.gather"], [620, "ivy.gather"]], "gather() (ivy.array method)": [[539, "ivy.Array.gather"]], "gather() (ivy.container method)": [[539, "ivy.Container.gather"]], "gather_nd() (in module ivy)": [[540, "ivy.gather_nd"], [620, "ivy.gather_nd"]], "gather_nd() (ivy.array method)": [[540, "ivy.Array.gather_nd"]], "gather_nd() (ivy.container method)": [[540, "ivy.Container.gather_nd"]], "get_all_arrays_in_memory() (in module ivy)": [[541, "ivy.get_all_arrays_in_memory"], [620, "ivy.get_all_arrays_in_memory"]], "get_item() (in module ivy)": [[542, "ivy.get_item"], [620, "ivy.get_item"]], "get_num_dims() (in module ivy)": [[543, "ivy.get_num_dims"], [620, "ivy.get_num_dims"]], "get_num_dims() (ivy.array method)": [[543, "ivy.Array.get_num_dims"]], "get_num_dims() (ivy.container method)": [[543, "ivy.Container.get_num_dims"]], "get_referrers_recursive() (in module ivy)": [[544, "ivy.get_referrers_recursive"], [620, "ivy.get_referrers_recursive"]], "has_nans() (in module ivy)": [[545, "ivy.has_nans"], [620, "ivy.has_nans"]], "has_nans() (ivy.array method)": [[545, "ivy.Array.has_nans"]], "has_nans() (ivy.container method)": [[545, "ivy.Container.has_nans"]], "inplace_arrays_supported() (in module ivy)": [[546, "ivy.inplace_arrays_supported"], [620, "ivy.inplace_arrays_supported"]], "inplace_decrement() (in module ivy)": [[547, "ivy.inplace_decrement"], [620, "ivy.inplace_decrement"]], "inplace_decrement() (ivy.array method)": [[547, "ivy.Array.inplace_decrement"]], "inplace_decrement() (ivy.container method)": [[547, "ivy.Container.inplace_decrement"]], "inplace_increment() (in module ivy)": [[548, "ivy.inplace_increment"], [620, "ivy.inplace_increment"]], "inplace_increment() (ivy.array method)": [[548, "ivy.Array.inplace_increment"]], "inplace_increment() (ivy.container method)": [[548, "ivy.Container.inplace_increment"]], "inplace_update() (in module ivy)": [[549, "ivy.inplace_update"], [620, "ivy.inplace_update"]], "inplace_update() (ivy.array method)": [[549, "ivy.Array.inplace_update"]], "inplace_update() (ivy.container method)": [[549, "ivy.Container.inplace_update"]], "inplace_variables_supported() (in module ivy)": [[550, "ivy.inplace_variables_supported"], [620, "ivy.inplace_variables_supported"]], "is_array() (in module ivy)": [[551, "ivy.is_array"], [620, "ivy.is_array"]], "is_array() (ivy.array method)": [[551, "ivy.Array.is_array"]], "is_array() (ivy.container method)": [[551, "ivy.Container.is_array"]], "is_ivy_array() (in module ivy)": [[552, "ivy.is_ivy_array"], [620, "ivy.is_ivy_array"]], "is_ivy_array() (ivy.array method)": [[552, "ivy.Array.is_ivy_array"]], "is_ivy_array() (ivy.container method)": [[552, "ivy.Container.is_ivy_array"]], "is_ivy_container() (in module ivy)": [[553, "ivy.is_ivy_container"], [620, "ivy.is_ivy_container"]], "is_ivy_container() (ivy.array method)": [[553, "ivy.Array.is_ivy_container"]], "is_ivy_nested_array() (in module ivy)": [[554, "ivy.is_ivy_nested_array"], [620, "ivy.is_ivy_nested_array"]], "is_native_array() (in module ivy)": [[555, "ivy.is_native_array"], [620, "ivy.is_native_array"]], "is_native_array() (ivy.array method)": [[555, "ivy.Array.is_native_array"]], "is_native_array() (ivy.container method)": [[555, "ivy.Container.is_native_array"]], "isin() (in module ivy)": [[556, "ivy.isin"], [620, "ivy.isin"]], "isin() (ivy.array method)": [[556, "ivy.Array.isin"]], "isin() (ivy.container method)": [[556, "ivy.Container.isin"]], "isscalar() (in module ivy)": [[557, "ivy.isscalar"], [620, "ivy.isscalar"]], "itemsize() (in module ivy)": [[558, "ivy.itemsize"], [620, "ivy.itemsize"]], "itemsize() (ivy.array method)": [[558, "ivy.Array.itemsize"]], "itemsize() (ivy.container method)": [[558, "ivy.Container.itemsize"]], "match_kwargs() (in module ivy)": [[559, "ivy.match_kwargs"], [620, "ivy.match_kwargs"]], "multiprocessing() (in module ivy)": [[560, "ivy.multiprocessing"], [620, "ivy.multiprocessing"]], "num_arrays_in_memory() (in module ivy)": [[561, "ivy.num_arrays_in_memory"], [620, "ivy.num_arrays_in_memory"]], "print_all_arrays_in_memory() (in module ivy)": [[562, "ivy.print_all_arrays_in_memory"], [620, "ivy.print_all_arrays_in_memory"]], "scatter_flat() (in module ivy)": [[563, "ivy.scatter_flat"], [620, "ivy.scatter_flat"]], "scatter_flat() (ivy.array method)": [[563, "ivy.Array.scatter_flat"]], "scatter_flat() (ivy.container method)": [[563, "ivy.Container.scatter_flat"]], "scatter_nd() (in module ivy)": [[564, "ivy.scatter_nd"], [620, "ivy.scatter_nd"]], "scatter_nd() (ivy.array method)": [[564, "ivy.Array.scatter_nd"]], "scatter_nd() (ivy.container method)": [[564, "ivy.Container.scatter_nd"]], "set_array_mode() (in module ivy)": [[565, "ivy.set_array_mode"], [620, "ivy.set_array_mode"]], "set_exception_trace_mode() (in module ivy)": [[566, "ivy.set_exception_trace_mode"], [620, "ivy.set_exception_trace_mode"]], "set_inplace_mode() (in module ivy)": [[567, "ivy.set_inplace_mode"], [620, "ivy.set_inplace_mode"]], "set_item() (in module ivy)": [[568, "ivy.set_item"], [620, "ivy.set_item"]], "set_min_base() (in module ivy)": [[569, "ivy.set_min_base"], [620, "ivy.set_min_base"]], "set_min_denominator() (in module ivy)": [[570, "ivy.set_min_denominator"], [620, "ivy.set_min_denominator"]], "set_nestable_mode() (in module ivy)": [[571, "ivy.set_nestable_mode"], [620, "ivy.set_nestable_mode"]], "set_precise_mode() (in module ivy)": [[572, "ivy.set_precise_mode"], [620, "ivy.set_precise_mode"]], "set_queue_timeout() (in module ivy)": [[573, "ivy.set_queue_timeout"], [620, "ivy.set_queue_timeout"]], "set_shape_array_mode() (in module ivy)": [[574, "ivy.set_shape_array_mode"], [620, "ivy.set_shape_array_mode"]], "set_show_func_wrapper_trace_mode() (in module ivy)": [[575, "ivy.set_show_func_wrapper_trace_mode"], [620, "ivy.set_show_func_wrapper_trace_mode"]], "set_tmp_dir() (in module ivy)": [[576, "ivy.set_tmp_dir"], [620, "ivy.set_tmp_dir"]], "shape() (in module ivy)": [[577, "ivy.shape"], [620, "ivy.shape"]], "shape() (ivy.array method)": [[577, "ivy.Array.shape"]], "stable_divide() (in module ivy)": [[578, "ivy.stable_divide"], [620, "ivy.stable_divide"]], "stable_divide() (ivy.array method)": [[578, "ivy.Array.stable_divide"]], "stable_divide() (ivy.container method)": [[578, "ivy.Container.stable_divide"]], "stable_pow() (in module ivy)": [[579, "ivy.stable_pow"], [620, "ivy.stable_pow"]], "stable_pow() (ivy.array method)": [[579, "ivy.Array.stable_pow"]], "stable_pow() (ivy.container method)": [[579, "ivy.Container.stable_pow"]], "strides() (in module ivy)": [[580, "ivy.strides"], [620, "ivy.strides"]], "strides() (ivy.array method)": [[580, "ivy.Array.strides"]], "strides() (ivy.container method)": [[580, "ivy.Container.strides"]], "supports_inplace_updates() (in module ivy)": [[581, "ivy.supports_inplace_updates"], [620, "ivy.supports_inplace_updates"]], "supports_inplace_updates() (ivy.array method)": [[581, "ivy.Array.supports_inplace_updates"]], "supports_inplace_updates() (ivy.container method)": [[581, "ivy.Container.supports_inplace_updates"]], "to_ivy_shape() (in module ivy)": [[582, "ivy.to_ivy_shape"], [620, "ivy.to_ivy_shape"]], "to_list() (in module ivy)": [[583, "ivy.to_list"], [620, "ivy.to_list"]], "to_list() (ivy.array method)": [[583, "ivy.Array.to_list"]], "to_list() (ivy.container method)": [[583, "ivy.Container.to_list"]], "to_native_shape() (in module ivy)": [[584, "ivy.to_native_shape"], [620, "ivy.to_native_shape"]], "to_numpy() (in module ivy)": [[585, "ivy.to_numpy"], [620, "ivy.to_numpy"]], "to_numpy() (ivy.array method)": [[585, "ivy.Array.to_numpy"]], "to_numpy() (ivy.container method)": [[585, "ivy.Container.to_numpy"]], "to_scalar() (in module ivy)": [[586, "ivy.to_scalar"], [620, "ivy.to_scalar"]], "to_scalar() (ivy.array method)": [[586, "ivy.Array.to_scalar"]], "to_scalar() (ivy.container method)": [[586, "ivy.Container.to_scalar"]], "try_else_none() (in module ivy)": [[587, "ivy.try_else_none"], [620, "ivy.try_else_none"]], "unset_array_mode() (in module ivy)": [[588, "ivy.unset_array_mode"], [620, "ivy.unset_array_mode"]], "unset_exception_trace_mode() (in module ivy)": [[589, "ivy.unset_exception_trace_mode"], [620, "ivy.unset_exception_trace_mode"]], "unset_inplace_mode() (in module ivy)": [[590, "ivy.unset_inplace_mode"], [620, "ivy.unset_inplace_mode"]], "unset_min_base() (in module ivy)": [[591, "ivy.unset_min_base"], [620, "ivy.unset_min_base"]], "unset_min_denominator() (in module ivy)": [[592, "ivy.unset_min_denominator"], [620, "ivy.unset_min_denominator"]], "unset_nestable_mode() (in module ivy)": [[593, "ivy.unset_nestable_mode"], [620, "ivy.unset_nestable_mode"]], "unset_precise_mode() (in module ivy)": [[594, "ivy.unset_precise_mode"], [620, "ivy.unset_precise_mode"]], "unset_queue_timeout() (in module ivy)": [[595, "ivy.unset_queue_timeout"], [620, "ivy.unset_queue_timeout"]], "unset_shape_array_mode() (in module ivy)": [[596, "ivy.unset_shape_array_mode"], [620, "ivy.unset_shape_array_mode"]], "unset_show_func_wrapper_trace_mode() (in module ivy)": [[597, "ivy.unset_show_func_wrapper_trace_mode"], [620, "ivy.unset_show_func_wrapper_trace_mode"]], "unset_tmp_dir() (in module ivy)": [[598, "ivy.unset_tmp_dir"], [620, "ivy.unset_tmp_dir"]], "value_is_nan() (in module ivy)": [[599, "ivy.value_is_nan"], [620, "ivy.value_is_nan"]], "value_is_nan() (ivy.array method)": [[599, "ivy.Array.value_is_nan"]], "value_is_nan() (ivy.container method)": [[599, "ivy.Container.value_is_nan"]], "vmap() (in module ivy)": [[600, "ivy.vmap"], [620, "ivy.vmap"]], "adam_step() (in module ivy)": [[601, "ivy.adam_step"], [621, "ivy.adam_step"]], "adam_step() (ivy.array method)": [[601, "ivy.Array.adam_step"]], "adam_step() (ivy.container method)": [[601, "ivy.Container.adam_step"]], "adam_update() (in module ivy)": [[602, "ivy.adam_update"], [621, "ivy.adam_update"]], "adam_update() (ivy.array method)": [[602, "ivy.Array.adam_update"]], "adam_update() (ivy.container method)": [[602, "ivy.Container.adam_update"]], "execute_with_gradients() (in module ivy)": [[603, "ivy.execute_with_gradients"], [621, "ivy.execute_with_gradients"]], "grad() (in module ivy)": [[604, "ivy.grad"], [621, "ivy.grad"]], "gradient_descent_update() (in module ivy)": [[605, "ivy.gradient_descent_update"], [621, "ivy.gradient_descent_update"]], "gradient_descent_update() (ivy.array method)": [[605, "ivy.Array.gradient_descent_update"]], "gradient_descent_update() (ivy.container method)": [[605, "ivy.Container.gradient_descent_update"]], "jac() (in module ivy)": [[606, "ivy.jac"], [621, "ivy.jac"]], "lamb_update() (in module ivy)": [[607, "ivy.lamb_update"], [621, "ivy.lamb_update"]], "lamb_update() (ivy.array method)": [[607, "ivy.Array.lamb_update"]], "lamb_update() (ivy.container method)": [[607, "ivy.Container.lamb_update"]], "lars_update() (in module ivy)": [[608, "ivy.lars_update"], [621, "ivy.lars_update"]], "lars_update() (ivy.array method)": [[608, "ivy.Array.lars_update"]], "lars_update() (ivy.container method)": [[608, "ivy.Container.lars_update"]], "optimizer_update() (in module ivy)": [[609, "ivy.optimizer_update"], [621, "ivy.optimizer_update"]], "optimizer_update() (ivy.array method)": [[609, "ivy.Array.optimizer_update"]], "optimizer_update() (ivy.container method)": [[609, "ivy.Container.optimizer_update"]], "stop_gradient() (in module ivy)": [[610, "ivy.stop_gradient"], [621, "ivy.stop_gradient"]], "stop_gradient() (ivy.array method)": [[610, "ivy.Array.stop_gradient"]], "stop_gradient() (ivy.container method)": [[610, "ivy.Container.stop_gradient"]], "value_and_grad() (in module ivy)": [[611, "ivy.value_and_grad"], [621, "ivy.value_and_grad"]], "ivy.functional.ivy.activations": [[612, "module-ivy.functional.ivy.activations"]], "e (in module ivy)": [[613, "ivy.e"]], "inf (in module ivy)": [[613, "ivy.inf"]], "ivy.functional.ivy.constants": [[613, "module-ivy.functional.ivy.constants"]], "nan (in module ivy)": [[613, "ivy.nan"]], "newaxis (in module ivy)": [[613, "ivy.newaxis"]], "pi (in module ivy)": [[613, "ivy.pi"]], "ivy.functional.ivy.control_flow_ops": [[614, "module-ivy.functional.ivy.control_flow_ops"]], "nestedsequence (class in ivy)": [[615, "ivy.NestedSequence"]], "ivy.functional.ivy.creation": [[615, "module-ivy.functional.ivy.creation"]], "defaultcomplexdtype (class in ivy)": [[616, "ivy.DefaultComplexDtype"]], "defaultdtype (class in ivy)": [[616, "ivy.DefaultDtype"]], "defaultfloatdtype (class in ivy)": [[616, "ivy.DefaultFloatDtype"]], "defaultintdtype (class in ivy)": [[616, "ivy.DefaultIntDtype"]], "defaultuintdtype (class in ivy)": [[616, "ivy.DefaultUintDtype"]], "ivy.functional.ivy.data_type": [[616, "module-ivy.functional.ivy.data_type"]], "defaultdevice (class in ivy)": [[617, "ivy.DefaultDevice"]], "profiler (class in ivy)": [[617, "ivy.Profiler"]], "ivy.functional.ivy.device": [[617, "module-ivy.functional.ivy.device"]], "ivy.functional.ivy.elementwise": [[618, "module-ivy.functional.ivy.elementwise"]], "ivy.functional.ivy.experimental": [[619, "module-ivy.functional.ivy.experimental"]], "arraymode (class in ivy)": [[620, "ivy.ArrayMode"]], "precisemode (class in ivy)": [[620, "ivy.PreciseMode"]], "ivy.functional.ivy.general": [[620, "module-ivy.functional.ivy.general"]], "ivy.functional.ivy.gradients": [[621, "module-ivy.functional.ivy.gradients"]], "conv() (in module ivy)": [[622, "ivy.conv"], [635, "ivy.conv"]], "conv1d() (in module ivy)": [[622, "ivy.conv1d"], [636, "ivy.conv1d"]], "conv1d_transpose() (in module ivy)": [[622, "ivy.conv1d_transpose"], [637, "ivy.conv1d_transpose"]], "conv2d() (in module ivy)": [[622, "ivy.conv2d"], [638, "ivy.conv2d"]], "conv2d_transpose() (in module ivy)": [[622, "ivy.conv2d_transpose"], [639, "ivy.conv2d_transpose"]], "conv3d() (in module ivy)": [[622, "ivy.conv3d"], [640, "ivy.conv3d"]], "conv3d_transpose() (in module ivy)": [[622, "ivy.conv3d_transpose"], [641, "ivy.conv3d_transpose"]], "conv_general_dilated() (in module ivy)": [[622, "ivy.conv_general_dilated"], [642, "ivy.conv_general_dilated"]], "conv_general_transpose() (in module ivy)": [[622, "ivy.conv_general_transpose"], [643, "ivy.conv_general_transpose"]], "depthwise_conv2d() (in module ivy)": [[622, "ivy.depthwise_conv2d"], [644, "ivy.depthwise_conv2d"]], "dropout() (in module ivy)": [[622, "ivy.dropout"], [645, "ivy.dropout"]], "ivy.functional.ivy.layers": [[622, "module-ivy.functional.ivy.layers"]], "linear() (in module ivy)": [[622, "ivy.linear"], [646, "ivy.linear"]], "lstm_update() (in module ivy)": [[622, "ivy.lstm_update"], [647, "ivy.lstm_update"]], "multi_head_attention() (in module ivy)": [[622, "ivy.multi_head_attention"], [648, "ivy.multi_head_attention"]], "nms() (in module ivy)": [[622, "ivy.nms"], [649, "ivy.nms"]], "roi_align() (in module ivy)": [[622, "ivy.roi_align"], [650, "ivy.roi_align"]], "scaled_dot_product_attention() (in module ivy)": [[622, "ivy.scaled_dot_product_attention"], [651, "ivy.scaled_dot_product_attention"]], "cholesky() (in module ivy)": [[623, "ivy.cholesky"], [652, "ivy.cholesky"]], "cross() (in module ivy)": [[623, "ivy.cross"], [653, "ivy.cross"]], "det() (in module ivy)": [[623, "ivy.det"], [654, "ivy.det"]], "diag() (in module ivy)": [[623, "ivy.diag"], [655, "ivy.diag"]], "diagonal() (in module ivy)": [[623, "ivy.diagonal"], [656, "ivy.diagonal"]], "eigh() (in module ivy)": [[623, "ivy.eigh"], [658, "ivy.eigh"]], "eigvalsh() (in module ivy)": [[623, "ivy.eigvalsh"], [659, "ivy.eigvalsh"]], "inner() (in module ivy)": [[623, "ivy.inner"], [660, "ivy.inner"]], "inv() (in module ivy)": [[623, "ivy.inv"], [661, "ivy.inv"]], "ivy.functional.ivy.linear_algebra": [[623, "module-ivy.functional.ivy.linear_algebra"]], "lu_factor() (in module ivy)": [[623, "ivy.lu_factor"], [662, "ivy.lu_factor"]], "matmul() (in module ivy)": [[623, "ivy.matmul"], [663, "ivy.matmul"]], "matrix_norm() (in module ivy)": [[623, "ivy.matrix_norm"], [664, "ivy.matrix_norm"]], "matrix_power() (in module ivy)": [[623, "ivy.matrix_power"], [665, "ivy.matrix_power"]], "matrix_rank() (in module ivy)": [[623, "ivy.matrix_rank"], [666, "ivy.matrix_rank"]], "matrix_transpose() (in module ivy)": [[623, "ivy.matrix_transpose"], [667, "ivy.matrix_transpose"]], "outer() (in module ivy)": [[623, "ivy.outer"], [668, "ivy.outer"]], "pinv() (in module ivy)": [[623, "ivy.pinv"], [669, "ivy.pinv"]], "qr() (in module ivy)": [[623, "ivy.qr"], [670, "ivy.qr"]], "slogdet() (in module ivy)": [[623, "ivy.slogdet"], [671, "ivy.slogdet"]], "solve() (in module ivy)": [[623, "ivy.solve"], [672, "ivy.solve"]], "svd() (in module ivy)": [[623, "ivy.svd"], [673, "ivy.svd"]], "svdvals() (in module ivy)": [[623, "ivy.svdvals"], [674, "ivy.svdvals"]], "tensordot() (in module ivy)": [[623, "ivy.tensordot"], [675, "ivy.tensordot"]], "tensorsolve() (in module ivy)": [[623, "ivy.tensorsolve"], [676, "ivy.tensorsolve"]], "trace() (in module ivy)": [[623, "ivy.trace"], [677, "ivy.trace"]], "vander() (in module ivy)": [[623, "ivy.vander"], [678, "ivy.vander"]], "vecdot() (in module ivy)": [[623, "ivy.vecdot"], [679, "ivy.vecdot"]], "vector_norm() (in module ivy)": [[623, "ivy.vector_norm"], [680, "ivy.vector_norm"]], "vector_to_skew_symmetric_matrix() (in module ivy)": [[623, "ivy.vector_to_skew_symmetric_matrix"], [681, "ivy.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (in module ivy)": [[624, "ivy.binary_cross_entropy"], [682, "ivy.binary_cross_entropy"]], "cross_entropy() (in module ivy)": [[624, "ivy.cross_entropy"], [683, "ivy.cross_entropy"]], "ivy.functional.ivy.losses": [[624, "module-ivy.functional.ivy.losses"]], "sparse_cross_entropy() (in module ivy)": [[624, "ivy.sparse_cross_entropy"], [684, "ivy.sparse_cross_entropy"]], "clip() (in module ivy)": [[625, "ivy.clip"], [685, "ivy.clip"]], "concat() (in module ivy)": [[625, "ivy.concat"], [686, "ivy.concat"]], "constant_pad() (in module ivy)": [[625, "ivy.constant_pad"], [687, "ivy.constant_pad"]], "expand_dims() (in module ivy)": [[625, "ivy.expand_dims"], [688, "ivy.expand_dims"]], "flip() (in module ivy)": [[625, "ivy.flip"], [689, "ivy.flip"]], "ivy.functional.ivy.manipulation": [[625, "module-ivy.functional.ivy.manipulation"]], "permute_dims() (in module ivy)": [[625, "ivy.permute_dims"], [690, "ivy.permute_dims"]], "repeat() (in module ivy)": [[625, "ivy.repeat"], [691, "ivy.repeat"]], "reshape() (in module ivy)": [[625, "ivy.reshape"], [692, "ivy.reshape"]], "roll() (in module ivy)": [[625, "ivy.roll"], [693, "ivy.roll"]], "split() (in module ivy)": [[625, "ivy.split"], [694, "ivy.split"]], "squeeze() (in module ivy)": [[625, "ivy.squeeze"], [695, "ivy.squeeze"]], "stack() (in module ivy)": [[625, "ivy.stack"], [696, "ivy.stack"]], "swapaxes() (in module ivy)": [[625, "ivy.swapaxes"], [697, "ivy.swapaxes"]], "tile() (in module ivy)": [[625, "ivy.tile"], [698, "ivy.tile"]], "unstack() (in module ivy)": [[625, "ivy.unstack"], [699, "ivy.unstack"]], "zero_pad() (in module ivy)": [[625, "ivy.zero_pad"], [700, "ivy.zero_pad"]], "fomaml_step() (in module ivy)": [[626, "ivy.fomaml_step"], [701, "ivy.fomaml_step"]], "ivy.functional.ivy.meta": [[626, "module-ivy.functional.ivy.meta"]], "maml_step() (in module ivy)": [[626, "ivy.maml_step"], [702, "ivy.maml_step"]], "reptile_step() (in module ivy)": [[626, "ivy.reptile_step"], [703, "ivy.reptile_step"]], "all_nested_indices() (in module ivy)": [[627, "ivy.all_nested_indices"], [704, "ivy.all_nested_indices"]], "copy_nest() (in module ivy)": [[627, "ivy.copy_nest"], [705, "ivy.copy_nest"]], "duplicate_array_index_chains() (in module ivy)": [[627, "ivy.duplicate_array_index_chains"], [706, "ivy.duplicate_array_index_chains"]], "index_nest() (in module ivy)": [[627, "ivy.index_nest"], [707, "ivy.index_nest"]], "insert_into_nest_at_index() (in module ivy)": [[627, "ivy.insert_into_nest_at_index"], [708, "ivy.insert_into_nest_at_index"]], "insert_into_nest_at_indices() (in module ivy)": [[627, "ivy.insert_into_nest_at_indices"], [709, "ivy.insert_into_nest_at_indices"]], "ivy.functional.ivy.nest": [[627, "module-ivy.functional.ivy.nest"]], "map() (in module ivy)": [[627, "ivy.map"], [710, "ivy.map"]], "map_nest_at_index() (in module ivy)": [[627, "ivy.map_nest_at_index"], [711, "ivy.map_nest_at_index"]], "map_nest_at_indices() (in module ivy)": [[627, "ivy.map_nest_at_indices"], [712, "ivy.map_nest_at_indices"]], "multi_index_nest() (in module ivy)": [[627, "ivy.multi_index_nest"], [713, "ivy.multi_index_nest"]], "nested_any() (in module ivy)": [[627, "ivy.nested_any"], [714, "ivy.nested_any"]], "nested_argwhere() (in module ivy)": [[627, "ivy.nested_argwhere"], [715, "ivy.nested_argwhere"]], "nested_map() (in module ivy)": [[627, "ivy.nested_map"], [716, "ivy.nested_map"]], "nested_multi_map() (in module ivy)": [[627, "ivy.nested_multi_map"], [717, "ivy.nested_multi_map"]], "prune_empty() (in module ivy)": [[627, "ivy.prune_empty"], [718, "ivy.prune_empty"]], "prune_nest_at_index() (in module ivy)": [[627, "ivy.prune_nest_at_index"], [719, "ivy.prune_nest_at_index"]], "prune_nest_at_indices() (in module ivy)": [[627, "ivy.prune_nest_at_indices"], [720, "ivy.prune_nest_at_indices"]], "set_nest_at_index() (in module ivy)": [[627, "ivy.set_nest_at_index"], [721, "ivy.set_nest_at_index"]], "set_nest_at_indices() (in module ivy)": [[627, "ivy.set_nest_at_indices"], [722, "ivy.set_nest_at_indices"]], "ivy.functional.ivy.norms": [[628, "module-ivy.functional.ivy.norms"]], "layer_norm() (in module ivy)": [[628, "ivy.layer_norm"], [723, "ivy.layer_norm"]], "ivy.functional.ivy.random": [[629, "module-ivy.functional.ivy.random"]], "multinomial() (in module ivy)": [[629, "ivy.multinomial"], [724, "ivy.multinomial"]], "randint() (in module ivy)": [[629, "ivy.randint"], [725, "ivy.randint"]], "random_normal() (in module ivy)": [[629, "ivy.random_normal"], [726, "ivy.random_normal"]], "random_uniform() (in module ivy)": [[629, "ivy.random_uniform"], [727, "ivy.random_uniform"]], "seed() (in module ivy)": [[629, "ivy.seed"], [728, "ivy.seed"]], "shuffle() (in module ivy)": [[629, "ivy.shuffle"], [729, "ivy.shuffle"]], "argmax() (in module ivy)": [[630, "ivy.argmax"], [730, "ivy.argmax"]], "argmin() (in module ivy)": [[630, "ivy.argmin"], [731, "ivy.argmin"]], "argwhere() (in module ivy)": [[630, "ivy.argwhere"], [732, "ivy.argwhere"]], "ivy.functional.ivy.searching": [[630, "module-ivy.functional.ivy.searching"]], "nonzero() (in module ivy)": [[630, "ivy.nonzero"], [733, "ivy.nonzero"]], "where() (in module ivy)": [[630, "ivy.where"], [734, "ivy.where"]], "ivy.functional.ivy.set": [[631, "module-ivy.functional.ivy.set"]], "unique_all() (in module ivy)": [[631, "ivy.unique_all"], [735, "ivy.unique_all"]], "unique_counts() (in module ivy)": [[631, "ivy.unique_counts"], [736, "ivy.unique_counts"]], "unique_inverse() (in module ivy)": [[631, "ivy.unique_inverse"], [737, "ivy.unique_inverse"]], "unique_values() (in module ivy)": [[631, "ivy.unique_values"], [738, "ivy.unique_values"]], "argsort() (in module ivy)": [[632, "ivy.argsort"], [739, "ivy.argsort"]], "ivy.functional.ivy.sorting": [[632, "module-ivy.functional.ivy.sorting"]], "msort() (in module ivy)": [[632, "ivy.msort"], [740, "ivy.msort"]], "searchsorted() (in module ivy)": [[632, "ivy.searchsorted"], [741, "ivy.searchsorted"]], "sort() (in module ivy)": [[632, "ivy.sort"], [742, "ivy.sort"]], "cumprod() (in module ivy)": [[633, "ivy.cumprod"], [743, "ivy.cumprod"]], "cumsum() (in module ivy)": [[633, "ivy.cumsum"], [744, "ivy.cumsum"]], "einsum() (in module ivy)": [[633, "ivy.einsum"], [745, "ivy.einsum"]], "ivy.functional.ivy.statistical": [[633, "module-ivy.functional.ivy.statistical"]], "max() (in module ivy)": [[633, "ivy.max"], [746, "ivy.max"]], "mean() (in module ivy)": [[633, "ivy.mean"], [747, "ivy.mean"]], "min() (in module ivy)": [[633, "ivy.min"], [748, "ivy.min"]], "prod() (in module ivy)": [[633, "ivy.prod"], [749, "ivy.prod"]], "std() (in module ivy)": [[633, "ivy.std"], [750, "ivy.std"]], "sum() (in module ivy)": [[633, "ivy.sum"], [751, "ivy.sum"]], "var() (in module ivy)": [[633, "ivy.var"], [752, "ivy.var"]], "all() (in module ivy)": [[634, "ivy.all"], [753, "ivy.all"]], "any() (in module ivy)": [[634, "ivy.any"], [754, "ivy.any"]], "ivy.functional.ivy.utility": [[634, "module-ivy.functional.ivy.utility"]], "load() (in module ivy)": [[634, "ivy.load"], [755, "ivy.load"]], "save() (in module ivy)": [[634, "ivy.save"], [756, "ivy.save"]], "conv1d() (ivy.array method)": [[636, "ivy.Array.conv1d"]], "conv1d() (ivy.container method)": [[636, "ivy.Container.conv1d"]], "conv1d_transpose() (ivy.array method)": [[637, "ivy.Array.conv1d_transpose"]], "conv1d_transpose() (ivy.container method)": [[637, "ivy.Container.conv1d_transpose"]], "conv2d() (ivy.array method)": [[638, "ivy.Array.conv2d"]], "conv2d() (ivy.container method)": [[638, "ivy.Container.conv2d"]], "conv2d_transpose() (ivy.array method)": [[639, "ivy.Array.conv2d_transpose"]], "conv2d_transpose() (ivy.container method)": [[639, "ivy.Container.conv2d_transpose"]], "conv3d() (ivy.array method)": [[640, "ivy.Array.conv3d"]], "conv3d() (ivy.container method)": [[640, "ivy.Container.conv3d"]], "conv3d_transpose() (ivy.array method)": [[641, "ivy.Array.conv3d_transpose"]], "conv3d_transpose() (ivy.container method)": [[641, "ivy.Container.conv3d_transpose"]], "depthwise_conv2d() (ivy.array method)": [[644, "ivy.Array.depthwise_conv2d"]], "depthwise_conv2d() (ivy.container method)": [[644, "ivy.Container.depthwise_conv2d"]], "dropout() (ivy.array method)": [[645, "ivy.Array.dropout"]], "dropout() (ivy.container method)": [[645, "ivy.Container.dropout"]], "linear() (ivy.array method)": [[646, "ivy.Array.linear"]], "linear() (ivy.container method)": [[646, "ivy.Container.linear"]], "lstm_update() (ivy.array method)": [[647, "ivy.Array.lstm_update"]], "lstm_update() (ivy.container method)": [[647, "ivy.Container.lstm_update"]], "multi_head_attention() (ivy.array method)": [[648, "ivy.Array.multi_head_attention"]], "multi_head_attention() (ivy.container method)": [[648, "ivy.Container.multi_head_attention"]], "scaled_dot_product_attention() (ivy.array method)": [[651, "ivy.Array.scaled_dot_product_attention"]], "scaled_dot_product_attention() (ivy.container method)": [[651, "ivy.Container.scaled_dot_product_attention"]], "cholesky() (ivy.array method)": [[652, "ivy.Array.cholesky"]], "cholesky() (ivy.container method)": [[652, "ivy.Container.cholesky"]], "cross() (ivy.array method)": [[653, "ivy.Array.cross"]], "cross() (ivy.container method)": [[653, "ivy.Container.cross"]], "det() (ivy.array method)": [[654, "ivy.Array.det"]], "det() (ivy.container method)": [[654, "ivy.Container.det"]], "diag() (ivy.array method)": [[655, "ivy.Array.diag"]], "diag() (ivy.container method)": [[655, "ivy.Container.diag"]], "diagonal() (ivy.array method)": [[656, "ivy.Array.diagonal"]], "diagonal() (ivy.container method)": [[656, "ivy.Container.diagonal"]], "eigh() (ivy.array method)": [[658, "ivy.Array.eigh"]], "eigh() (ivy.container method)": [[658, "ivy.Container.eigh"]], "eigvalsh() (ivy.array method)": [[659, "ivy.Array.eigvalsh"]], "eigvalsh() (ivy.container method)": [[659, "ivy.Container.eigvalsh"]], "inner() (ivy.array method)": [[660, "ivy.Array.inner"]], "inner() (ivy.container method)": [[660, "ivy.Container.inner"]], "inv() (ivy.array method)": [[661, "ivy.Array.inv"]], "inv() (ivy.container method)": [[661, "ivy.Container.inv"]], "matmul() (ivy.array method)": [[663, "ivy.Array.matmul"]], "matmul() (ivy.container method)": [[663, "ivy.Container.matmul"]], "matrix_norm() (ivy.array method)": [[664, "ivy.Array.matrix_norm"]], "matrix_norm() (ivy.container method)": [[664, "ivy.Container.matrix_norm"]], "matrix_power() (ivy.array method)": [[665, "ivy.Array.matrix_power"]], "matrix_power() (ivy.container method)": [[665, "ivy.Container.matrix_power"]], "matrix_rank() (ivy.array method)": [[666, "ivy.Array.matrix_rank"]], "matrix_rank() (ivy.container method)": [[666, "ivy.Container.matrix_rank"]], "matrix_transpose() (ivy.array method)": [[667, "ivy.Array.matrix_transpose"]], "matrix_transpose() (ivy.container method)": [[667, "ivy.Container.matrix_transpose"]], "outer() (ivy.array method)": [[668, "ivy.Array.outer"]], "outer() (ivy.container method)": [[668, "ivy.Container.outer"]], "pinv() (ivy.array method)": [[669, "ivy.Array.pinv"]], "pinv() (ivy.container method)": [[669, "ivy.Container.pinv"]], "qr() (ivy.array method)": [[670, "ivy.Array.qr"]], "qr() (ivy.container method)": [[670, "ivy.Container.qr"]], "slogdet() (ivy.array method)": [[671, "ivy.Array.slogdet"]], "slogdet() (ivy.container method)": [[671, "ivy.Container.slogdet"]], "solve() (ivy.array method)": [[672, "ivy.Array.solve"]], "solve() (ivy.container method)": [[672, "ivy.Container.solve"]], "svd() (ivy.array method)": [[673, "ivy.Array.svd"]], "svd() (ivy.container method)": [[673, "ivy.Container.svd"]], "svdvals() (ivy.array method)": [[674, "ivy.Array.svdvals"]], "svdvals() (ivy.container method)": [[674, "ivy.Container.svdvals"]], "tensordot() (ivy.array method)": [[675, "ivy.Array.tensordot"]], "tensordot() (ivy.container method)": [[675, "ivy.Container.tensordot"]], "tensorsolve() (ivy.array method)": [[676, "ivy.Array.tensorsolve"]], "tensorsolve() (ivy.container method)": [[676, "ivy.Container.tensorsolve"]], "trace() (ivy.array method)": [[677, "ivy.Array.trace"]], "trace() (ivy.container method)": [[677, "ivy.Container.trace"]], "vander() (ivy.array method)": [[678, "ivy.Array.vander"]], "vander() (ivy.container method)": [[678, "ivy.Container.vander"]], "vecdot() (ivy.array method)": [[679, "ivy.Array.vecdot"]], "vecdot() (ivy.container method)": [[679, "ivy.Container.vecdot"]], "vector_norm() (ivy.array method)": [[680, "ivy.Array.vector_norm"]], "vector_norm() (ivy.container method)": [[680, "ivy.Container.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.array method)": [[681, "ivy.Array.vector_to_skew_symmetric_matrix"]], "vector_to_skew_symmetric_matrix() (ivy.container method)": [[681, "ivy.Container.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (ivy.array method)": [[682, "ivy.Array.binary_cross_entropy"]], "binary_cross_entropy() (ivy.container method)": [[682, "ivy.Container.binary_cross_entropy"]], "cross_entropy() (ivy.array method)": [[683, "ivy.Array.cross_entropy"]], "cross_entropy() (ivy.container method)": [[683, "ivy.Container.cross_entropy"]], "sparse_cross_entropy() (ivy.array method)": [[684, "ivy.Array.sparse_cross_entropy"]], "sparse_cross_entropy() (ivy.container method)": [[684, "ivy.Container.sparse_cross_entropy"]], "clip() (ivy.array method)": [[685, "ivy.Array.clip"]], "clip() (ivy.container method)": [[685, "ivy.Container.clip"]], "concat() (ivy.array method)": [[686, "ivy.Array.concat"]], "concat() (ivy.container method)": [[686, "ivy.Container.concat"]], "constant_pad() (ivy.array method)": [[687, "ivy.Array.constant_pad"]], "constant_pad() (ivy.container method)": [[687, "ivy.Container.constant_pad"]], "expand_dims() (ivy.array method)": [[688, "ivy.Array.expand_dims"]], "expand_dims() (ivy.container method)": [[688, "ivy.Container.expand_dims"]], "flip() (ivy.array method)": [[689, "ivy.Array.flip"]], "flip() (ivy.container method)": [[689, "ivy.Container.flip"]], "permute_dims() (ivy.array method)": [[690, "ivy.Array.permute_dims"]], "permute_dims() (ivy.container method)": [[690, "ivy.Container.permute_dims"]], "repeat() (ivy.array method)": [[691, "ivy.Array.repeat"]], "repeat() (ivy.container method)": [[691, "ivy.Container.repeat"]], "reshape() (ivy.array method)": [[692, "ivy.Array.reshape"]], "reshape() (ivy.container method)": [[692, "ivy.Container.reshape"]], "roll() (ivy.array method)": [[693, "ivy.Array.roll"]], "roll() (ivy.container method)": [[693, "ivy.Container.roll"]], "split() (ivy.array method)": [[694, "ivy.Array.split"]], "split() (ivy.container method)": [[694, "ivy.Container.split"]], "squeeze() (ivy.array method)": [[695, "ivy.Array.squeeze"]], "squeeze() (ivy.container method)": [[695, "ivy.Container.squeeze"]], "stack() (ivy.array method)": [[696, "ivy.Array.stack"]], "stack() (ivy.container method)": [[696, "ivy.Container.stack"]], "swapaxes() (ivy.array method)": [[697, "ivy.Array.swapaxes"]], "swapaxes() (ivy.container method)": [[697, "ivy.Container.swapaxes"]], "tile() (ivy.array method)": [[698, "ivy.Array.tile"]], "tile() (ivy.container method)": [[698, "ivy.Container.tile"]], "unstack() (ivy.array method)": [[699, "ivy.Array.unstack"]], "unstack() (ivy.container method)": [[699, "ivy.Container.unstack"]], "zero_pad() (ivy.array method)": [[700, "ivy.Array.zero_pad"]], "zero_pad() (ivy.container method)": [[700, "ivy.Container.zero_pad"]], "layer_norm() (ivy.array method)": [[723, "ivy.Array.layer_norm"]], "layer_norm() (ivy.container method)": [[723, "ivy.Container.layer_norm"]], "multinomial() (ivy.array method)": [[724, "ivy.Array.multinomial"]], "multinomial() (ivy.container method)": [[724, "ivy.Container.multinomial"]], "randint() (ivy.array method)": [[725, "ivy.Array.randint"]], "randint() (ivy.container method)": [[725, "ivy.Container.randint"]], "random_normal() (ivy.array method)": [[726, "ivy.Array.random_normal"]], "random_normal() (ivy.container method)": [[726, "ivy.Container.random_normal"]], "random_uniform() (ivy.array method)": [[727, "ivy.Array.random_uniform"]], "random_uniform() (ivy.container method)": [[727, "ivy.Container.random_uniform"]], "shuffle() (ivy.array method)": [[729, "ivy.Array.shuffle"]], "shuffle() (ivy.container method)": [[729, "ivy.Container.shuffle"]], "argmax() (ivy.array method)": [[730, "ivy.Array.argmax"]], "argmax() (ivy.container method)": [[730, "ivy.Container.argmax"]], "argmin() (ivy.array method)": [[731, "ivy.Array.argmin"]], "argmin() (ivy.container method)": [[731, "ivy.Container.argmin"]], "argwhere() (ivy.array method)": [[732, "ivy.Array.argwhere"]], "argwhere() (ivy.container method)": [[732, "ivy.Container.argwhere"]], "nonzero() (ivy.array method)": [[733, "ivy.Array.nonzero"]], "nonzero() (ivy.container method)": [[733, "ivy.Container.nonzero"]], "where() (ivy.array method)": [[734, "ivy.Array.where"]], "where() (ivy.container method)": [[734, "ivy.Container.where"]], "unique_all() (ivy.array method)": [[735, "ivy.Array.unique_all"]], "unique_all() (ivy.container method)": [[735, "ivy.Container.unique_all"]], "unique_counts() (ivy.array method)": [[736, "ivy.Array.unique_counts"]], "unique_counts() (ivy.container method)": [[736, "ivy.Container.unique_counts"]], "unique_inverse() (ivy.array method)": [[737, "ivy.Array.unique_inverse"]], "unique_inverse() (ivy.container method)": [[737, "ivy.Container.unique_inverse"]], "unique_values() (ivy.array method)": [[738, "ivy.Array.unique_values"]], "unique_values() (ivy.container method)": [[738, "ivy.Container.unique_values"]], "argsort() (ivy.array method)": [[739, "ivy.Array.argsort"]], "argsort() (ivy.container method)": [[739, "ivy.Container.argsort"]], "msort() (ivy.array method)": [[740, "ivy.Array.msort"]], "msort() (ivy.container method)": [[740, "ivy.Container.msort"]], "searchsorted() (ivy.array method)": [[741, "ivy.Array.searchsorted"]], "searchsorted() (ivy.container method)": [[741, "ivy.Container.searchsorted"]], "sort() (ivy.array method)": [[742, "ivy.Array.sort"]], "sort() (ivy.container method)": [[742, "ivy.Container.sort"]], "cumprod() (ivy.array method)": [[743, "ivy.Array.cumprod"]], "cumprod() (ivy.container method)": [[743, "ivy.Container.cumprod"]], "cumsum() (ivy.array method)": [[744, "ivy.Array.cumsum"]], "cumsum() (ivy.container method)": [[744, "ivy.Container.cumsum"]], "einsum() (ivy.array method)": [[745, "ivy.Array.einsum"]], "einsum() (ivy.container method)": [[745, "ivy.Container.einsum"]], "max() (ivy.array method)": [[746, "ivy.Array.max"]], "max() (ivy.container method)": [[746, "ivy.Container.max"]], "mean() (ivy.array method)": [[747, "ivy.Array.mean"]], "mean() (ivy.container method)": [[747, "ivy.Container.mean"]], "min() (ivy.array method)": [[748, "ivy.Array.min"]], "min() (ivy.container method)": [[748, "ivy.Container.min"]], "prod() (ivy.array method)": [[749, "ivy.Array.prod"]], "prod() (ivy.container method)": [[749, "ivy.Container.prod"]], "std() (ivy.array method)": [[750, "ivy.Array.std"]], "std() (ivy.container method)": [[750, "ivy.Container.std"]], "sum() (ivy.array method)": [[751, "ivy.Array.sum"]], "sum() (ivy.container method)": [[751, "ivy.Container.sum"]], "var() (ivy.array method)": [[752, "ivy.Array.var"]], "var() (ivy.container method)": [[752, "ivy.Container.var"]], "all() (ivy.array method)": [[753, "ivy.Array.all"]], "all() (ivy.container method)": [[753, "ivy.Container.all"]], "any() (ivy.array method)": [[754, "ivy.Array.any"]], "any() (ivy.container method)": [[754, "ivy.Container.any"]], "assert_all_close() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.assert_all_close"]], "assert_same_type() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.assert_same_type"]], "assert_same_type_and_shape() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.assert_same_type_and_shape"]], "check_unsupported_device() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device"]], "check_unsupported_device_and_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device_and_dtype"]], "check_unsupported_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_dtype"]], "ivy_tests.test_ivy.helpers.assertions": [[757, "module-ivy_tests.test_ivy.helpers.assertions"]], "test_unsupported_function() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.test_unsupported_function"]], "value_test() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.value_test"]], "ivy_tests.test_ivy.helpers.available_frameworks": [[758, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "args_to_container() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.args_to_container"]], "args_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.args_to_frontend"]], "arrays_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.arrays_to_frontend"]], "as_lists() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.as_lists"]], "convtrue() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.convtrue"]], "create_args_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.create_args_kwargs"]], "flatten() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.flatten"]], "flatten_and_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.flatten_and_to_np"]], "flatten_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend"]], "flatten_frontend_fw_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_fw_to_np"]], "flatten_frontend_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_to_np"]], "get_frontend_ret() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.get_frontend_ret"]], "get_ret_and_flattened_np_array() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.get_ret_and_flattened_np_array"]], "gradient_incompatible_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.gradient_incompatible_function"]], "gradient_test() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.gradient_test"]], "gradient_unsupported_dtypes() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.gradient_unsupported_dtypes"]], "ivy_tests.test_ivy.helpers.function_testing": [[759, "module-ivy_tests.test_ivy.helpers.function_testing"]], "kwargs_to_args_n_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.kwargs_to_args_n_kwargs"]], "test_frontend_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_function"]], "test_frontend_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_method"]], "test_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_function"]], "test_function_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_function_backend_computation"]], "test_function_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_function_ground_truth_computation"]], "test_gradient_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_backend_computation"]], "test_gradient_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_ground_truth_computation"]], "test_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_method"]], "test_method_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_method_backend_computation"]], "test_method_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_method_ground_truth_computation"]], "traced_if_required() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.traced_if_required"]], "wrap_frontend_function_args() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.wrap_frontend_function_args"]], "current_frontend_config (in module ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG"]], "interruptedtest": [[760, "ivy_tests.test_ivy.helpers.globals.InterruptedTest"]], "testdata (class in ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData"]], "__init__() (ivy_tests.test_ivy.helpers.globals.interruptedtest method)": [[760, "ivy_tests.test_ivy.helpers.globals.InterruptedTest.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.globals.testdata method)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.__init__"]], "fn_name (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.fn_name"]], "fn_tree (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.fn_tree"]], "is_method (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.is_method"]], "ivy_tests.test_ivy.helpers.globals": [[760, "module-ivy_tests.test_ivy.helpers.globals"]], "setup_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.setup_api_test"]], "setup_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.setup_frontend_test"]], "supported_device_dtypes (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.supported_device_dtypes"]], "teardown_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.teardown_api_test"]], "teardown_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.teardown_frontend_test"]], "test_fn (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[761, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"]], "array_and_broadcastable_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_and_broadcastable_shape"]], "array_bools() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_bools"]], "array_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_helpers_dtype_info_helper"]], "array_indices_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_axis"]], "array_indices_put_along_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_put_along_axis"]], "array_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_values"]], "arrays_and_axes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_and_axes"]], "arrays_for_pooling() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_for_pooling"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.broadcast_shapes"]], "cond_data_gen_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.cond_data_gen_helper"]], "create_concatenable_arrays_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_concatenable_arrays_dtypes"]], "create_nested_input() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_nested_input"]], "dtype_and_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_and_values"]], "dtype_array_query() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query"]], "dtype_array_query_val() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query_val"]], "dtype_values_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_values_axis"]], "einsum_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.einsum_helper"]], "get_first_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_batch_matrix"]], "get_first_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_matrix"]], "get_second_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_batch_matrix"]], "get_second_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_matrix"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "list_of_size() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.list_of_size"]], "lists() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.lists"]], "mutually_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.mutually_broadcastable_shapes"]], "prod() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.prod"]], "array_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.array_dtypes"]], "cast_filter() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter"]], "cast_filter_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter_helper"]], "get_castable_dtype() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_castable_dtype"]], "get_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "broadcasterror": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.BroadcastError"]], "apply_safety_factor() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.apply_safety_factor"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.broadcast_shapes"]], "embedding_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.embedding_helper"]], "general_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.general_helpers_dtype_info_helper"]], "get_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_axis"]], "get_bounds() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_bounds"]], "get_mean_std() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_mean_std"]], "get_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_shape"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "matrix_is_stable() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.matrix_is_stable"]], "reshape_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.reshape_shapes"]], "subsets() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.subsets"]], "two_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.two_broadcastable_shapes"]], "x_and_filters() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.x_and_filters"]], "floats() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.floats"]], "ints() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.ints"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "number() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.number"]], "backend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[766, "ivy_tests.test_ivy.helpers.multiprocessing.backend_proc"]], "frontend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[766, "ivy_tests.test_ivy.helpers.multiprocessing.frontend_proc"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[766, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "backendhandler (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler"]], "backendhandlermode (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode"]], "setbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.SetBackend"]], "withbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.WithBackend"]], "withbackendcontext (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext"]], "__init__() (ivy_tests.test_ivy.helpers.pipeline_helper.withbackendcontext method)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext.__init__"]], "get_frontend_config() (in module ivy_tests.test_ivy.helpers.pipeline_helper)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[767, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "update_backend() (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandler class method)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler.update_backend"]], "frontendmethoddata (class in ivy_tests.test_ivy.helpers.structs)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData"]], "__init__() (ivy_tests.test_ivy.helpers.structs.frontendmethoddata method)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.__init__"]], "framework_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.framework_init_module"]], "init_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.init_name"]], "ivy_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.ivy_init_module"]], "ivy_tests.test_ivy.helpers.structs": [[768, "module-ivy_tests.test_ivy.helpers.structs"]], "method_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.method_name"]], "dynamicflag (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag"]], "frontendfunctiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags"]], "frontendinittestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags"]], "frontendmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags"]], "functiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags"]], "initmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags"]], "methodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags"]], "testflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.__init__"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.testflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags.apply_flags"]], "build_flag() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.build_flag"]], "frontend_function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_function_flags"]], "frontend_init_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_init_flags"]], "frontend_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_method_flags"]], "function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.function_flags"]], "init_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.init_method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[769, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.method_flags"]], "strategy (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag attribute)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.strategy"]], "handle_frontend_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_method"]], "handle_frontend_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_test"]], "handle_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.handle_method"]], "handle_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.handle_test"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[770, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "num_positional_args() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args"]], "num_positional_args_helper() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_helper"]], "num_positional_args_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_method"]], "seed() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.seed"]], "elu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.ELU"]], "geglu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.GEGLU"]], "gelu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.GELU"]], "hardswish (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Hardswish"]], "leakyrelu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.LeakyReLU"]], "logsigmoid (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.LogSigmoid"]], "logsoftmax (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.LogSoftmax"]], "logit (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Logit"]], "mish (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Mish"]], "prelu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.PReLU"]], "relu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.ReLU"]], "relu6 (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.ReLU6"]], "selu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.SeLU"]], "silu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.SiLU"]], "sigmoid (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Sigmoid"]], "softmax (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Softmax"]], "softplus (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Softplus"]], "tanh (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Tanh"]], "__init__() (ivy.stateful.activations.elu method)": [[774, "ivy.stateful.activations.ELU.__init__"]], "__init__() (ivy.stateful.activations.geglu method)": [[774, "ivy.stateful.activations.GEGLU.__init__"]], "__init__() (ivy.stateful.activations.gelu method)": [[774, "ivy.stateful.activations.GELU.__init__"]], "__init__() (ivy.stateful.activations.hardswish method)": [[774, "ivy.stateful.activations.Hardswish.__init__"]], "__init__() (ivy.stateful.activations.leakyrelu method)": [[774, "ivy.stateful.activations.LeakyReLU.__init__"]], "__init__() (ivy.stateful.activations.logsigmoid method)": [[774, "ivy.stateful.activations.LogSigmoid.__init__"]], "__init__() (ivy.stateful.activations.logsoftmax method)": [[774, "ivy.stateful.activations.LogSoftmax.__init__"]], "__init__() (ivy.stateful.activations.logit method)": [[774, "ivy.stateful.activations.Logit.__init__"]], "__init__() (ivy.stateful.activations.mish method)": [[774, "ivy.stateful.activations.Mish.__init__"]], "__init__() (ivy.stateful.activations.prelu method)": [[774, "ivy.stateful.activations.PReLU.__init__"]], "__init__() (ivy.stateful.activations.relu method)": [[774, "ivy.stateful.activations.ReLU.__init__"]], "__init__() (ivy.stateful.activations.relu6 method)": [[774, "ivy.stateful.activations.ReLU6.__init__"]], "__init__() (ivy.stateful.activations.selu method)": [[774, "ivy.stateful.activations.SeLU.__init__"]], "__init__() (ivy.stateful.activations.silu method)": [[774, "ivy.stateful.activations.SiLU.__init__"]], "__init__() (ivy.stateful.activations.sigmoid method)": [[774, "ivy.stateful.activations.Sigmoid.__init__"]], "__init__() (ivy.stateful.activations.softmax method)": [[774, "ivy.stateful.activations.Softmax.__init__"]], "__init__() (ivy.stateful.activations.softplus method)": [[774, "ivy.stateful.activations.Softplus.__init__"]], "__init__() (ivy.stateful.activations.tanh method)": [[774, "ivy.stateful.activations.Tanh.__init__"]], "ivy.stateful.activations": [[774, "module-ivy.stateful.activations"]], "moduleconverters (class in ivy.stateful.converters)": [[775, "ivy.stateful.converters.ModuleConverters"]], "from_flax_module() (ivy.stateful.converters.moduleconverters static method)": [[775, "ivy.stateful.converters.ModuleConverters.from_flax_module"]], "from_haiku_module() (ivy.stateful.converters.moduleconverters static method)": [[775, "ivy.stateful.converters.ModuleConverters.from_haiku_module"]], "from_keras_module() (ivy.stateful.converters.moduleconverters static method)": [[775, "ivy.stateful.converters.ModuleConverters.from_keras_module"]], "from_paddle_module() (ivy.stateful.converters.moduleconverters static method)": [[775, "ivy.stateful.converters.ModuleConverters.from_paddle_module"]], "from_torch_module() (ivy.stateful.converters.moduleconverters static method)": [[775, "ivy.stateful.converters.ModuleConverters.from_torch_module"]], "ivy.stateful.converters": [[775, "module-ivy.stateful.converters"]], "to_ivy_module() (in module ivy.stateful.converters)": [[775, "ivy.stateful.converters.to_ivy_module"]], "to_keras_module() (ivy.stateful.converters.moduleconverters method)": [[775, "ivy.stateful.converters.ModuleConverters.to_keras_module"]], "modulehelpers (class in ivy.stateful.helpers)": [[776, "ivy.stateful.helpers.ModuleHelpers"]], "ivy.stateful.helpers": [[776, "module-ivy.stateful.helpers"]], "constant (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Constant"]], "firstlayersiren (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.FirstLayerSiren"]], "glorotuniform (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.GlorotUniform"]], "initializer (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Initializer"]], "kaimingnormal (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.KaimingNormal"]], "ones (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Ones"]], "randomnormal (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.RandomNormal"]], "siren (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Siren"]], "uniform (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Uniform"]], "zeros (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Zeros"]], "__init__() (ivy.stateful.initializers.constant method)": [[777, "ivy.stateful.initializers.Constant.__init__"]], "__init__() (ivy.stateful.initializers.firstlayersiren method)": [[777, "ivy.stateful.initializers.FirstLayerSiren.__init__"]], "__init__() (ivy.stateful.initializers.glorotuniform method)": [[777, "ivy.stateful.initializers.GlorotUniform.__init__"]], "__init__() (ivy.stateful.initializers.kaimingnormal method)": [[777, "ivy.stateful.initializers.KaimingNormal.__init__"]], "__init__() (ivy.stateful.initializers.ones method)": [[777, "ivy.stateful.initializers.Ones.__init__"]], "__init__() (ivy.stateful.initializers.randomnormal method)": [[777, "ivy.stateful.initializers.RandomNormal.__init__"]], "__init__() (ivy.stateful.initializers.siren method)": [[777, "ivy.stateful.initializers.Siren.__init__"]], "__init__() (ivy.stateful.initializers.uniform method)": [[777, "ivy.stateful.initializers.Uniform.__init__"]], "__init__() (ivy.stateful.initializers.zeros method)": [[777, "ivy.stateful.initializers.Zeros.__init__"]], "create_variables() (ivy.stateful.initializers.constant method)": [[777, "ivy.stateful.initializers.Constant.create_variables"]], "create_variables() (ivy.stateful.initializers.initializer method)": [[777, "ivy.stateful.initializers.Initializer.create_variables"]], "create_variables() (ivy.stateful.initializers.kaimingnormal method)": [[777, "ivy.stateful.initializers.KaimingNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.randomnormal method)": [[777, "ivy.stateful.initializers.RandomNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.uniform method)": [[777, "ivy.stateful.initializers.Uniform.create_variables"]], "ivy.stateful.initializers": [[777, "module-ivy.stateful.initializers"]], "adaptiveavgpool1d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.AdaptiveAvgPool1d"]], "adaptiveavgpool2d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.AdaptiveAvgPool2d"]], "avgpool1d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.AvgPool1D"]], "avgpool2d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.AvgPool2D"]], "avgpool3d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.AvgPool3D"]], "conv1d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv1D"]], "conv1dtranspose (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv1DTranspose"]], "conv2d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv2D"]], "conv2dtranspose (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv2DTranspose"]], "conv3d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv3D"]], "conv3dtranspose (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv3DTranspose"]], "dct (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Dct"]], "depthwiseconv2d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.DepthwiseConv2D"]], "dropout (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Dropout"]], "embedding (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Embedding"]], "fft (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.FFT"]], "ifft (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.IFFT"]], "identity (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Identity"]], "lstm (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.LSTM"]], "linear (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Linear"]], "maxpool1d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.MaxPool1D"]], "maxpool2d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.MaxPool2D"]], "maxpool3d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.MaxPool3D"]], "multiheadattention (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.MultiHeadAttention"]], "__init__() (ivy.stateful.layers.adaptiveavgpool1d method)": [[778, "ivy.stateful.layers.AdaptiveAvgPool1d.__init__"]], "__init__() (ivy.stateful.layers.adaptiveavgpool2d method)": [[778, "ivy.stateful.layers.AdaptiveAvgPool2d.__init__"]], "__init__() (ivy.stateful.layers.avgpool1d method)": [[778, "ivy.stateful.layers.AvgPool1D.__init__"]], "__init__() (ivy.stateful.layers.avgpool2d method)": [[778, "ivy.stateful.layers.AvgPool2D.__init__"]], "__init__() (ivy.stateful.layers.avgpool3d method)": [[778, "ivy.stateful.layers.AvgPool3D.__init__"]], "__init__() (ivy.stateful.layers.conv1d method)": [[778, "ivy.stateful.layers.Conv1D.__init__"]], "__init__() (ivy.stateful.layers.conv1dtranspose method)": [[778, "ivy.stateful.layers.Conv1DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv2d method)": [[778, "ivy.stateful.layers.Conv2D.__init__"]], "__init__() (ivy.stateful.layers.conv2dtranspose method)": [[778, "ivy.stateful.layers.Conv2DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv3d method)": [[778, "ivy.stateful.layers.Conv3D.__init__"]], "__init__() (ivy.stateful.layers.conv3dtranspose method)": [[778, "ivy.stateful.layers.Conv3DTranspose.__init__"]], "__init__() (ivy.stateful.layers.dct method)": [[778, "ivy.stateful.layers.Dct.__init__"]], "__init__() (ivy.stateful.layers.depthwiseconv2d method)": [[778, "ivy.stateful.layers.DepthwiseConv2D.__init__"]], "__init__() (ivy.stateful.layers.dropout method)": [[778, "ivy.stateful.layers.Dropout.__init__"]], "__init__() (ivy.stateful.layers.embedding method)": [[778, "ivy.stateful.layers.Embedding.__init__"]], "__init__() (ivy.stateful.layers.fft method)": [[778, "ivy.stateful.layers.FFT.__init__"]], "__init__() (ivy.stateful.layers.ifft method)": [[778, "ivy.stateful.layers.IFFT.__init__"]], "__init__() (ivy.stateful.layers.identity method)": [[778, "ivy.stateful.layers.Identity.__init__"]], "__init__() (ivy.stateful.layers.lstm method)": [[778, "ivy.stateful.layers.LSTM.__init__"]], "__init__() (ivy.stateful.layers.linear method)": [[778, "ivy.stateful.layers.Linear.__init__"]], "__init__() (ivy.stateful.layers.maxpool1d method)": [[778, "ivy.stateful.layers.MaxPool1D.__init__"]], "__init__() (ivy.stateful.layers.maxpool2d method)": [[778, "ivy.stateful.layers.MaxPool2D.__init__"]], "__init__() (ivy.stateful.layers.maxpool3d method)": [[778, "ivy.stateful.layers.MaxPool3D.__init__"]], "__init__() (ivy.stateful.layers.multiheadattention method)": [[778, "ivy.stateful.layers.MultiHeadAttention.__init__"]], "get_initial_state() (ivy.stateful.layers.lstm method)": [[778, "ivy.stateful.layers.LSTM.get_initial_state"]], "ivy.stateful.layers": [[778, "module-ivy.stateful.layers"]], "binarycrossentropyloss (class in ivy.stateful.losses)": [[779, "ivy.stateful.losses.BinaryCrossEntropyLoss"]], "crossentropyloss (class in ivy.stateful.losses)": [[779, "ivy.stateful.losses.CrossEntropyLoss"]], "logpoissonloss (class in ivy.stateful.losses)": [[779, "ivy.stateful.losses.LogPoissonLoss"]], "__init__() (ivy.stateful.losses.binarycrossentropyloss method)": [[779, "ivy.stateful.losses.BinaryCrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.crossentropyloss method)": [[779, "ivy.stateful.losses.CrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.logpoissonloss method)": [[779, "ivy.stateful.losses.LogPoissonLoss.__init__"]], "ivy.stateful.losses": [[779, "module-ivy.stateful.losses"]], "module (class in ivy.stateful.module)": [[780, "ivy.stateful.module.Module"]], "modulemeta (class in ivy.stateful.module)": [[780, "ivy.stateful.module.ModuleMeta"]], "__call__() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.__call__"]], "__init__() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.__init__"]], "buffers (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.buffers"]], "build() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.build"]], "build_mode (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.build_mode"]], "built (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.built"]], "device (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.device"]], "dtype (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.dtype"]], "eval() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.eval"]], "ivy.stateful.module": [[780, "module-ivy.stateful.module"]], "load() (ivy.stateful.module.module static method)": [[780, "ivy.stateful.module.Module.load"]], "module_dict (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.module_dict"]], "register_buffer() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.register_buffer"]], "register_parameter() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.register_parameter"]], "save() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.save"]], "save_weights() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.save_weights"]], "show_graph() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.show_graph"]], "state_dict (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.state_dict"]], "to_device() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.to_device"]], "trace_graph() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.trace_graph"]], "train() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.train"]], "training (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.training"]], "v (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.v"]], "batchnorm2d (class in ivy.stateful.norms)": [[781, "ivy.stateful.norms.BatchNorm2D"]], "layernorm (class in ivy.stateful.norms)": [[781, "ivy.stateful.norms.LayerNorm"]], "__init__() (ivy.stateful.norms.batchnorm2d method)": [[781, "ivy.stateful.norms.BatchNorm2D.__init__"]], "__init__() (ivy.stateful.norms.layernorm method)": [[781, "ivy.stateful.norms.LayerNorm.__init__"]], "ivy.stateful.norms": [[781, "module-ivy.stateful.norms"]], "adam (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.Adam"]], "adamw (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.AdamW"]], "lamb (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.LAMB"]], "lars (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.LARS"]], "optimizer (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.Optimizer"]], "sgd (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.SGD"]], "__init__() (ivy.stateful.optimizers.adam method)": [[782, "ivy.stateful.optimizers.Adam.__init__"]], "__init__() (ivy.stateful.optimizers.adamw method)": [[782, "ivy.stateful.optimizers.AdamW.__init__"]], "__init__() (ivy.stateful.optimizers.lamb method)": [[782, "ivy.stateful.optimizers.LAMB.__init__"]], "__init__() (ivy.stateful.optimizers.lars method)": [[782, "ivy.stateful.optimizers.LARS.__init__"]], "__init__() (ivy.stateful.optimizers.optimizer method)": [[782, "ivy.stateful.optimizers.Optimizer.__init__"]], "__init__() (ivy.stateful.optimizers.sgd method)": [[782, "ivy.stateful.optimizers.SGD.__init__"]], "ivy.stateful.optimizers": [[782, "module-ivy.stateful.optimizers"]], "set_state() (ivy.stateful.optimizers.adam method)": [[782, "ivy.stateful.optimizers.Adam.set_state"]], "set_state() (ivy.stateful.optimizers.lamb method)": [[782, "ivy.stateful.optimizers.LAMB.set_state"]], "set_state() (ivy.stateful.optimizers.lars method)": [[782, "ivy.stateful.optimizers.LARS.set_state"]], "set_state() (ivy.stateful.optimizers.optimizer method)": [[782, "ivy.stateful.optimizers.Optimizer.set_state"]], "set_state() (ivy.stateful.optimizers.sgd method)": [[782, "ivy.stateful.optimizers.SGD.set_state"]], "state (ivy.stateful.optimizers.adam property)": [[782, "ivy.stateful.optimizers.Adam.state"]], "state (ivy.stateful.optimizers.lamb property)": [[782, "ivy.stateful.optimizers.LAMB.state"]], "state (ivy.stateful.optimizers.lars property)": [[782, "ivy.stateful.optimizers.LARS.state"]], "state (ivy.stateful.optimizers.sgd property)": [[782, "ivy.stateful.optimizers.SGD.state"]], "step() (ivy.stateful.optimizers.optimizer method)": [[782, "ivy.stateful.optimizers.Optimizer.step"]], "sequential (class in ivy.stateful.sequential)": [[783, "ivy.stateful.sequential.Sequential"]], "__init__() (ivy.stateful.sequential.sequential method)": [[783, "ivy.stateful.sequential.Sequential.__init__"]], "ivy.stateful.sequential": [[783, "module-ivy.stateful.sequential"]], "check_all() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_all"]], "check_all_or_any_fn() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_all_or_any_fn"]], "check_any() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_any"]], "check_dev_correct_formatting() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_dev_correct_formatting"]], "check_dimensions() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_dimensions"]], "check_elem_in_list() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_elem_in_list"]], "check_equal() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_equal"]], "check_exists() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_exists"]], "check_false() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_false"]], "check_gather_input_valid() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_gather_input_valid"]], "check_gather_nd_input_valid() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_gather_nd_input_valid"]], "check_greater() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_greater"]], "check_inplace_sizes_valid() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_inplace_sizes_valid"]], "check_isinstance() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_isinstance"]], "check_kernel_padding_size() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_kernel_padding_size"]], "check_less() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_less"]], "check_one_way_broadcastable() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_one_way_broadcastable"]], "check_same_dtype() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_same_dtype"]], "check_shape() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_shape"]], "check_shapes_broadcastable() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_shapes_broadcastable"]], "check_true() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_true"]], "check_unsorted_segment_valid_params() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_unsorted_segment_valid_params"]], "ivy.utils.assertions": [[784, "module-ivy.utils.assertions"]], "ivy.utils.backend": [[785, "module-ivy.utils.backend"]], "importtransformer (class in ivy.utils.backend.ast_helpers)": [[786, "ivy.utils.backend.ast_helpers.ImportTransformer"]], "ivyloader (class in ivy.utils.backend.ast_helpers)": [[786, "ivy.utils.backend.ast_helpers.IvyLoader"]], "ivypathfinder (class in ivy.utils.backend.ast_helpers)": [[786, "ivy.utils.backend.ast_helpers.IvyPathFinder"]], "__init__() (ivy.utils.backend.ast_helpers.importtransformer method)": [[786, "ivy.utils.backend.ast_helpers.ImportTransformer.__init__"]], "__init__() (ivy.utils.backend.ast_helpers.ivyloader method)": [[786, "ivy.utils.backend.ast_helpers.IvyLoader.__init__"]], "exec_module() (ivy.utils.backend.ast_helpers.ivyloader method)": [[786, "ivy.utils.backend.ast_helpers.IvyLoader.exec_module"]], "find_spec() (ivy.utils.backend.ast_helpers.ivypathfinder method)": [[786, "ivy.utils.backend.ast_helpers.IvyPathFinder.find_spec"]], "impersonate_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[786, "ivy.utils.backend.ast_helpers.ImportTransformer.impersonate_import"]], "ivy.utils.backend.ast_helpers": [[786, "module-ivy.utils.backend.ast_helpers"]], "visit_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[786, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_Import"]], "visit_importfrom() (ivy.utils.backend.ast_helpers.importtransformer method)": [[786, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_ImportFrom"]], "contextmanager (class in ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.ContextManager"]], "__init__() (ivy.utils.backend.handler.contextmanager method)": [[787, "ivy.utils.backend.handler.ContextManager.__init__"]], "choose_random_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.choose_random_backend"]], "current_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.current_backend"]], "dynamic_backend_converter() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.dynamic_backend_converter"]], "ivy.utils.backend.handler": [[787, "module-ivy.utils.backend.handler"]], "prevent_access_locally() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.prevent_access_locally"]], "previous_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.previous_backend"]], "set_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_backend"]], "set_backend_to_specific_version() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_backend_to_specific_version"]], "set_jax_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_jax_backend"]], "set_mxnet_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_mxnet_backend"]], "set_numpy_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_numpy_backend"]], "set_paddle_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_paddle_backend"]], "set_tensorflow_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_tensorflow_backend"]], "set_torch_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_torch_backend"]], "unset_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.unset_backend"]], "with_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.with_backend"]], "clear_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.clear_sub_backends"]], "find_available_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.find_available_sub_backends"]], "fn_name_from_version_specific_fn_name() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name"]], "fn_name_from_version_specific_fn_name_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name_sub_backend"]], "ivy.utils.backend.sub_backend_handler": [[788, "module-ivy.utils.backend.sub_backend_handler"]], "set_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.set_sub_backend"]], "set_sub_backend_to_specific_version() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.set_sub_backend_to_specific_version"]], "unset_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.unset_sub_backend"]], "check_for_binaries() (in module ivy.utils.binaries)": [[789, "ivy.utils.binaries.check_for_binaries"]], "cleanup_and_fetch_binaries() (in module ivy.utils.binaries)": [[789, "ivy.utils.binaries.cleanup_and_fetch_binaries"]], "ivy.utils.binaries": [[789, "module-ivy.utils.binaries"]], "import_module() (in module ivy.utils.dynamic_import)": [[790, "ivy.utils.dynamic_import.import_module"]], "ivy.utils.dynamic_import": [[790, "module-ivy.utils.dynamic_import"]], "convert_interleaved_input() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.convert_interleaved_input"]], "convert_subscripts() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.convert_subscripts"]], "find_output_shape() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.find_output_shape"]], "find_output_str() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.find_output_str"]], "gen_unused_symbols() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.gen_unused_symbols"]], "get_symbol() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.get_symbol"]], "has_valid_einsum_chars_only() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.has_valid_einsum_chars_only"]], "is_valid_einsum_char() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.is_valid_einsum_char"]], "ivy.utils.einsum_parser": [[791, "module-ivy.utils.einsum_parser"]], "legalise_einsum_expr() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.legalise_einsum_expr"]], "possibly_convert_to_numpy() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.possibly_convert_to_numpy"]], "can_dot() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.can_dot"]], "compute_size_by_dict() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.compute_size_by_dict"]], "find_contraction() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.find_contraction"]], "flop_count() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.flop_count"]], "greedy_path() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.greedy_path"]], "ivy.utils.einsum_path_helpers": [[792, "module-ivy.utils.einsum_path_helpers"]], "optimal_path() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.optimal_path"]], "parse_einsum_input() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.parse_einsum_input"]], "parse_possible_contraction() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.parse_possible_contraction"]], "update_other_results() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.update_other_results"]], "inplaceupdateexception": [[793, "ivy.utils.exceptions.InplaceUpdateException"]], "ivyattributeerror": [[793, "ivy.utils.exceptions.IvyAttributeError"]], "ivybackendexception": [[793, "ivy.utils.exceptions.IvyBackendException"]], "ivybroadcastshapeerror": [[793, "ivy.utils.exceptions.IvyBroadcastShapeError"]], "ivydeviceerror": [[793, "ivy.utils.exceptions.IvyDeviceError"]], "ivydtypepromotionerror": [[793, "ivy.utils.exceptions.IvyDtypePromotionError"]], "ivyerror": [[793, "ivy.utils.exceptions.IvyError"]], "ivyexception": [[793, "ivy.utils.exceptions.IvyException"]], "ivyindexerror": [[793, "ivy.utils.exceptions.IvyIndexError"]], "ivyinvalidbackendexception": [[793, "ivy.utils.exceptions.IvyInvalidBackendException"]], "ivynotimplementedexception": [[793, "ivy.utils.exceptions.IvyNotImplementedException"]], "ivyvalueerror": [[793, "ivy.utils.exceptions.IvyValueError"]], "__init__() (ivy.utils.exceptions.inplaceupdateexception method)": [[793, "ivy.utils.exceptions.InplaceUpdateException.__init__"]], "__init__() (ivy.utils.exceptions.ivyattributeerror method)": [[793, "ivy.utils.exceptions.IvyAttributeError.__init__"]], "__init__() (ivy.utils.exceptions.ivybackendexception method)": [[793, "ivy.utils.exceptions.IvyBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivybroadcastshapeerror method)": [[793, "ivy.utils.exceptions.IvyBroadcastShapeError.__init__"]], "__init__() (ivy.utils.exceptions.ivydeviceerror method)": [[793, "ivy.utils.exceptions.IvyDeviceError.__init__"]], "__init__() (ivy.utils.exceptions.ivydtypepromotionerror method)": [[793, "ivy.utils.exceptions.IvyDtypePromotionError.__init__"]], "__init__() (ivy.utils.exceptions.ivyerror method)": [[793, "ivy.utils.exceptions.IvyError.__init__"]], "__init__() (ivy.utils.exceptions.ivyexception method)": [[793, "ivy.utils.exceptions.IvyException.__init__"]], "__init__() (ivy.utils.exceptions.ivyindexerror method)": [[793, "ivy.utils.exceptions.IvyIndexError.__init__"]], "__init__() (ivy.utils.exceptions.ivyinvalidbackendexception method)": [[793, "ivy.utils.exceptions.IvyInvalidBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivynotimplementedexception method)": [[793, "ivy.utils.exceptions.IvyNotImplementedException.__init__"]], "__init__() (ivy.utils.exceptions.ivyvalueerror method)": [[793, "ivy.utils.exceptions.IvyValueError.__init__"]], "handle_exceptions() (in module ivy.utils.exceptions)": [[793, "ivy.utils.exceptions.handle_exceptions"]], "ivy.utils.exceptions": [[793, "module-ivy.utils.exceptions"]], "add_array_specs() (in module ivy.utils.inspection)": [[794, "ivy.utils.inspection.add_array_specs"]], "fn_array_spec() (in module ivy.utils.inspection)": [[794, "ivy.utils.inspection.fn_array_spec"]], "ivy.utils.inspection": [[794, "module-ivy.utils.inspection"]], "ivy.utils.logging": [[795, "module-ivy.utils.logging"]], "set_logging_mode() (in module ivy.utils.logging)": [[795, "ivy.utils.logging.set_logging_mode"]], "unset_logging_mode() (in module ivy.utils.logging)": [[795, "ivy.utils.logging.unset_logging_mode"]], "profiler (class in ivy.utils.profiler)": [[796, "ivy.utils.profiler.Profiler"]], "__init__() (ivy.utils.profiler.profiler method)": [[796, "ivy.utils.profiler.Profiler.__init__"]], "ivy.utils.profiler": [[796, "module-ivy.utils.profiler"]], "print_stats (ivy.utils.profiler.profiler attribute)": [[796, "ivy.utils.profiler.Profiler.print_stats"]], "viz (ivy.utils.profiler.profiler attribute)": [[796, "ivy.utils.profiler.Profiler.viz"]], "cprint() (in module ivy.utils.verbosity)": [[797, "ivy.utils.verbosity.cprint"]], "ivy.utils.verbosity": [[797, "module-ivy.utils.verbosity"]], "automatic code conversions": [[841, "term-Automatic-Code-Conversions"]], "backend handler": [[841, "term-Backend-Handler"]], "compositional functions": [[841, "term-Compositional-Functions"]], "convenience functions": [[841, "term-Convenience-Functions"]], "framework": [[841, "term-Framework"]], "framework handler": [[841, "term-Framework-Handler"]], "graph compiler": [[841, "term-Graph-Compiler"]], "ivy array": [[841, "term-Ivy-Array"]], "ivy backends": [[841, "term-Ivy-Backends"]], "ivy compiler": [[841, "term-Ivy-Compiler"]], "ivy container": [[841, "term-Ivy-Container"]], "ivy frontends": [[841, "term-Ivy-Frontends"]], "ivy functional api": [[841, "term-Ivy-Functional-API"]], "ivy tracer": [[841, "term-Ivy-Tracer"]], "ivy transpiler": [[841, "term-Ivy-Transpiler"]], "mixed functions": [[841, "term-Mixed-Functions"]], "native array": [[841, "term-Native-Array"]], "nestable functions": [[841, "term-Nestable-Functions"]], "pipeline": [[841, "term-Pipeline"]], "primary functions": [[841, "term-Primary-Functions"]], "standalone functions": [[841, "term-Standalone-Functions"]], "submodule helper functions": [[841, "term-Submodule-Helper-Functions"]], "built-in function": [[847, "ivy.trace_graph"], [848, "ivy.transpile"], [849, "ivy.unify"]], "ivy.trace_graph()": [[847, "ivy.trace_graph"]], "ivy.transpile()": [[848, "ivy.transpile"]], "ivy.unify()": [[849, "ivy.unify"]]}}) \ No newline at end of file