-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDecisionTreeClassifier.py
226 lines (191 loc) · 7.3 KB
/
DecisionTreeClassifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from load_data import *
class Ques:
def __init__(self, about, detail):
self.about = about
self.detail = detail
self.arr = None
def compre(self, case):
if case[self.about] >= self.detail:
return True
else:
return False
def crate_arr(self):
self.arr = [self.about, self.detail]
class Pick:
def __init__(self, is_ques, index):
self.is_ques = is_ques
self.index = index
class Node:
def __init__(self, data, ques=None, left=None, right=None, guess=None, chances=None):
self.data = data
self.ques = ques
self.left = left
self.right = right
self.guess = guess
self.chances = chances
self.arr = None
def crate_arr(self):
self.arr = [len(self.data), self.guess, self.chances]
def display(self, clf, lst_of_pickers):
lines, _, _, _ = self._display_aux(clf, lst_of_pickers)
for line in lines:
print(line)
def _display_aux(self, clf, lst_of_pickers):
"""Returns list of strings, width, height, and horizontal coordinate of the root."""
if self.arr is None:
self.crate_arr()
if self.ques != None and self.ques.arr is None:
self.ques.crate_arr()
lst = []
for item in lst_of_pickers:
if item.is_ques:
if self.ques is None:
lst.append(None)
else:
lst.append(dict_ques_title[item.index])
if item.index == 0:
# about
lst[-1] += classes[self.ques.about]
else:
lst[-1] += dict_ques_detail[self.ques.detail]
else:
lst.append(dict_title[item.index])
if item.index == 1:
lst[-1] += dict_guess[self.arr[item.index]]
elif item.index == 2 and self.arr[item.index] is not None:
lst[-1] += str(self.arr[item.index] * 100)
lst[-1] += "%"
else:
lst[-1] += str(self.arr[item.index])
# No child.
if self.right is None and self.left is None:
line = str(lst)
width = len(line)
height = 1
middle = width // 2
return [line], width, height, middle
# Only left child.
if self.right is None:
lines, n, p, x = self.left._display_aux(clf, lst_of_pickers)
s = str(lst)
u = len(s)
first_line = (x + 1) * ' ' + (n - x - 1) * '_' + s
second_line = x * ' ' + '/' + (n - x - 1 + u) * ' '
shifted_lines = [line + u * ' ' for line in lines]
return [first_line, second_line] + shifted_lines, n + u, p + 2, n + u // 2
# Only right child.
if self.left is None:
lines, n, p, x = self.right._display_aux(clf, lst_of_pickers)
s = str(lst)
u = len(s)
first_line = s + x * '_' + (n - x) * ' '
second_line = (u + x) * ' ' + '\\' + (n - x - 1) * ' '
shifted_lines = [u * ' ' + line for line in lines]
return [first_line, second_line] + shifted_lines, n + u, p + 2, u // 2
# Two children.
left, n, p, x = self.left._display_aux(clf, lst_of_pickers)
right, m, q, y = self.right._display_aux(clf, lst_of_pickers)
s = str(lst)
u = len(s)
first_line = (x + 1) * ' ' + (n - x - 1) * '_' + s + y * '_' + (m - y) * ' '
second_line = x * ' ' + '/' + (n - x - 1 + u + y) * ' ' + '\\' + (m - y - 1) * ' '
if p < q:
left += [n * ' '] * (q - p)
elif q < p:
right += [m * ' '] * (p - q)
zipped_lines = zip(left, right)
lines = [first_line, second_line] + [a + u * ' ' + b for a, b in zipped_lines]
return lines, n + m + u, max(p, q) + 2, n + u // 2
class TreeClassifier:
def __init__(self):
self.is_raedy = False
self.opstions = None
self.tree = None
def fit(self, x_train, y):
self.is_raedy = True
def find_options(train_y):
unique = set()
for l in train_y:
unique.add(l)
return unique
opstions_to_anser = find_options(y)
self.opstions = opstions_to_anser
def cuc_impurity(lst_of_index):
if len(lst_of_index) == 0:
return 0, None
if len(lst_of_index) == 1:
return 0, y[lst_of_index[0]]
best_num = -1
best_guess = None
for guess in opstions_to_anser:
num = 0
for i in lst_of_index:
if y[i] == guess:
num += 1
if best_num < num:
best_num = num
best_guess = guess
score = 1 - (best_num / len(lst_of_index))
return score, best_guess
def split(ques, lst_of_index):
t = []
f = []
for i in lst_of_index:
if ques.compre(x_train[i]):
t.append(i)
else:
f.append(i)
return f, t
def find_best_split(lst_of_index):
if len(lst_of_index) == 0:
return None, None, None
befor_score, g = cuc_impurity(lst_of_index)
max = 0
best_q = None
rem_f, rem_t = None, None
for index in lst_of_index:
case = x_train[index]
for i in range(len(case)):
ques = Ques(i, case[i])
f, t = split(ques, lst_of_index)
score1, g1 = cuc_impurity(f)
score2, g2 = cuc_impurity(t)
avg_impurity = ((len(f) / len(lst_of_index)) * score1) + ((len(t) / len(lst_of_index)) * score2)
gain = befor_score - avg_impurity
if gain > max:
max = gain
best_q = ques
rem_f, rem_t = f, t
return best_q, rem_f, rem_t
def make_tree(lst_of_index):
q, f, t = find_best_split(lst_of_index)
if q is None:
impurity, guess = cuc_impurity(lst_of_index)
return Node(lst_of_index, guess=guess, chances=1 - impurity)
return Node(lst_of_index, q, make_tree(f), make_tree(t))
self.tree = make_tree(range(len(x_train)))
def pracdict(self, x_test):
if not self.is_raedy:
raise NotImplementedError
else:
def pridct(row, node):
if node.ques is None:
return node.guess, node.chances
if node.ques.compre(row):
return pridct(row, node.right)
else:
return pridct(row, node.left)
pridcttions = []
for i in range(len(x_test)):
g, ch = pridct(x_test[i], self.tree)
pridcttions.append(g)
return pridcttions
def accuracy_score(y_test, pridcttions):
t = 0
f = 0
for i in range(len(y_test)):
if y_test[i] == pridcttions[i]:
t += 1
else:
f += 1
return t / (t + f)