-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsix_nightly_process.py
849 lines (781 loc) · 29 KB
/
six_nightly_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
from datetime import date
from datetime import datetime
from datetime import timedelta
import numpy as np
from osgeo import gdal
import os.path
import yaml
import logging
import time
# get paths from config file
with open(os.path.abspath(os.path.join(os.path.dirname(__file__), 'six_config.yml')), 'r') as ymlfile:
cfg = yaml.load(ymlfile)
mem_map_path = cfg["mem_map_path"]
six_path = cfg["six_path"]
daily_temp_path = cfg["daily_temp_path"]
avg_six_path = cfg["avg_six_path"]
six_30_year_average_path = cfg["six_30_year_average_path"]
six_anomaly_path = cfg["six_anomaly_path"]
log_path = cfg["log_path"]
solar_declination = [307,
308,
309,
310,
311,
312,
313,
314,
315,
316,
317,
318,
319,
320,
321,
322,
323,
324,
325,
326,
327,
328,
329,
330,
331,
332,
333,
334,
335,
336,
337,
338,
339,
340,
341,
342,
343,
344,
345,
346,
347,
348,
349,
350,
351,
352,
353,
354,
355,
356,
357,
358,
359,
360,
361,
362,
363,
364,
365,
366,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127,
128,
129,
130,
131,
132,
133,
134,
135,
136,
137,
138,
139,
140,
141,
142,
143,
144,
145,
146,
147,
148,
149,
150,
151,
152,
153,
154,
155,
156,
157,
158,
159,
160,
161,
162,
163,
164,
165,
166,
167,
168,
169,
170,
171,
172,
173,
174,
175,
176,
177,
178,
179,
180,
181,
182,
183,
184,
185,
186,
187,
188,
189,
190,
191,
192,
193,
194,
195,
196,
197,
198,
199,
200,
201,
202,
203,
204,
205,
206,
207,
208,
209,
210,
211,
212,
213,
214,
215,
216,
217,
218,
219,
220,
221,
222,
223,
224,
225,
226,
227,
228,
229,
230,
231,
232,
233,
234,
235,
236,
237,
238,
239,
240,
241,
242,
243,
244,
245,
246,
247,
248,
249,
250,
251,
252,
253,
254,
255,
256,
257,
258,
259,
260,
261,
262,
263,
264,
265,
266,
267,
268,
269,
270,
271,
272,
273,
274,
275,
276,
277,
278,
279,
280,
281,
282,
283,
284,
285,
286,
287,
288,
289,
290,
291,
292,
293,
294,
295,
296,
297,
298,
299,
300,
301,
302,
303,
304,
305,
306]
geo_transform = None
projection = None
ydim = None
xdim = None
def load_temperature(fp, temp_type, day, doy):
date_as_string = day.strftime("%Y%m%d")
temperature_files_path = f"{daily_temp_path}/{temp_type}/"
file_name = f"{temperature_files_path}{temp_type}_{date_as_string}.tif"
ds = gdal.Open(file_name)
#todo optimize, only set once
global geo_transform
global projection
global ydim
global xdim
geo_transform = ds.GetGeoTransform()
projection = ds.GetProjection()
ydim = ds.GetGeoTransform()[5] # pixel height (note: can be negative)
xdim = ds.GetGeoTransform()[1] # pixel width
temperature_array = np.array(ds.GetRasterBand(1).ReadAsArray())
# convert -9999 values to not a number so we don't have to worry about manipulating them
temperature_array[temperature_array == -9999.0] = np.nan
# convert to fahrenheit
temperature_array *= 1.8
temperature_array += 32
#temperature_shape = temperature_array.shape
fp[doy] = temperature_array[:]
def temperatures_to_memmap(start_date, stop_date):
temperature_shape = (1228, 2606)
for temperature_type in ("tmin", "tmax"):
mem_map_file = f"{mem_map_path}/mem_map_{temperature_type}.dat"
#if memmap already exists, just update the past 2 weeks
memmap_mode = 'w+' #create or overwrite
if os.path.exists(mem_map_file):
start_date = datetime.strftime((date.today() - timedelta(days=14)), "%Y-%m-%d")
memmap_mode = 'r+' #open for read and write
fp = np.memmap(mem_map_file, dtype='float32', mode=memmap_mode, shape=(365, temperature_shape[0], temperature_shape[1]))
day = datetime.strptime(start_date, "%Y-%m-%d")
stop = datetime.strptime(stop_date, "%Y-%m-%d")
doy = 0
while day <= stop:
print("loading {d}".format(d=day.strftime("%Y%m%d")))
load_temperature(fp, temperature_type, day, doy)
day = day + timedelta(days=1)
doy += 1
def get_day_lengths():
(upper_left_x, x_size, x_rotation, upper_left_y, y_rotation, y_size) = geo_transform
num_lats = 1228
num_longs = 2606
day_max = 240
# calculate latitudes
site_latitudes = np.arange(num_lats, dtype=float)
site_latitudes *= -ydim
site_latitudes += upper_left_y
# calculate day lengths and rounded day lengths
site_day_lengths = np.empty((day_max, num_lats))
for day in range(0, day_max):
temp_lats = np.copy(site_latitudes)
for i, temp_lat in enumerate(temp_lats):
if temp_lat < 40:
temp_lats[i] = 12.14 + 3.34 * np.tan(temp_lat * np.pi / 180) * np.cos(0.0172 * solar_declination[day] - 1.95)
else:
temp_lats[i] = 12.25 + (1.6164 + 1.7643 * (np.tan(temp_lat * np.pi / 180)) ** 2) * np.cos(0.0172 * solar_declination[day] - 1.95)
# print(str(day) + ' ' + str(i) + ' ' + str(temp_lats[i]))
site_day_lengths[day, :] = temp_lats
site_day_lengths[site_day_lengths < 1] = 1
site_day_lengths[site_day_lengths > 23] = 23
return site_day_lengths
def gdh_to_memmap(site_day_lengths):
print("computing growing degree hours")
base_temp = 31
temperature_shape = (1228, 2606)
gdh_mem_map_file = f"{mem_map_path}/mem_map_gdh.dat"
#if memmap already exists, just update the past 2 weeks
memmap_mode = 'w+' #create or overwrite
if os.path.exists(gdh_mem_map_file):
memmap_mode = 'r+' #open for read and write
growing_deg_hrs = np.memmap(gdh_mem_map_file, dtype='float32', mode=memmap_mode, shape=(temperature_shape[0], temperature_shape[1], 240))
#load temperatures
min_temps = np.memmap(f"{mem_map_path}/mem_map_tmin.dat", dtype='float32', mode='r', shape=(365, temperature_shape[0], temperature_shape[1]))
max_temps = np.memmap(f"{mem_map_path}/mem_map_tmax.dat", dtype='float32', mode='r', shape=(365, temperature_shape[0], temperature_shape[1]))
# reshape the array to be station lat, station long, day of year, temperature
min_temps = np.swapaxes(min_temps, 1, 0)
min_temps = np.swapaxes(min_temps, 2, 1)
max_temps = np.swapaxes(max_temps, 1, 0)
max_temps = np.swapaxes(max_temps, 2, 1)
# todo what is this for?
# for day in range(1, day_max):
# max_temps[:, :, day] = np.maximum(max_temps[:, :, day], min_temps[:, :, day - 1])
# min_temps[:, :, day] = np.minimum(min_temps[:, :, day], max_temps[:, :, day - 1])
#calculate temperature differences
# min_temps[min_temps == 0] = 0.01
# max_temps[max_temps == min_temps] += 0.01
temperature_differences = max_temps - min_temps
num_lats = max_temps.shape[0]
num_longs = max_temps.shape[1]
day_max = 240#max_temps.shape[2]
print(num_lats)
print(num_longs)
print(day_max)
site_day_lengths_rounded = site_day_lengths.astype(int)
# min day of year is either two weeks ago or beginning of the year
day_min = 0
# if memmap_mode == 'r+':
# today = datetime.now()
# day_of_year = (today - datetime(today.year, 1, 1)).days + 1
# day_min = max(0, day_of_year - 14)
# calculate growing degree hours (parallelized across all longitudes on a latitude)
for lat in range(0, num_lats):
lat_gdh = np.empty((day_max, num_longs))
# if memmap_mode == 'r+':
# lat_gdh = growing_deg_hrs[lat]
# np.swapaxes(lat_gdh, 0, 1)
for day in range(day_min, day_max):
lat_temp_difs = temperature_differences[lat, :, day]
lat_day_length = site_day_lengths[day, lat]
lat_min_temps = min_temps[lat, :, day]
daily_lat_gdh = np.copy(min_temps[lat, :, day])
daily_lat_gdh -= base_temp
daily_lat_gdh[daily_lat_gdh < 0] = 0
# calculate day time hourly temperatures
for hour in range(1, site_day_lengths_rounded[day, lat] + 1):
# gdh[hour] = dt * np.sin(np.pi/(day_length+4)*(hour)) + site_min_temp
aprox_temps_for_hour = lat_temp_difs * np.sin(np.pi / (lat_day_length + 4) * hour) + lat_min_temps
aprox_temps_for_hour -= base_temp
aprox_temps_for_hour[aprox_temps_for_hour < 0] = 0
daily_lat_gdh += aprox_temps_for_hour
# calculate sunset time and temperature
ts1 = lat_temp_difs * np.sin(np.pi / (lat_day_length + 4) * lat_day_length) + lat_min_temps
ts1[ts1 <= 0] = 0.01
# calculate night time hourly temperatures
count = 0
for hour in range(site_day_lengths_rounded[day, lat] + 1, 24):
count += 1
aprox_temps_for_hour = ts1 - (ts1 - lat_min_temps) / (np.log(24 - lat_day_length)) * np.log(count)
aprox_temps_for_hour -= base_temp
aprox_temps_for_hour[aprox_temps_for_hour < 0] = 0
daily_lat_gdh += aprox_temps_for_hour
lat_gdh[day] = daily_lat_gdh
gdh = np.swapaxes(lat_gdh, 0, 1)
# print(gdh.shape) #(2606, 240)
#todo add lat dimension and save to disk
gdh = gdh.tolist()
growing_deg_hrs[lat] = gdh
return growing_deg_hrs
def get_mem_map(path, filename, map_shape, type):
mem_map_file = f"{path}/{filename}.dat"
memmap_mode = 'w+' #create or overwrite
if os.path.exists(mem_map_file):
memmap_mode = 'r+' #open for read and write
fp = np.memmap(mem_map_file, dtype='float32', mode=memmap_mode, shape=map_shape)
return fp
def leaf(site_max_temps, base_temp, start_date, day_max, pheno_event, plant, gdh, lat, long, cached_six):
error = False
lag = np.zeros(7)
synop, agdh, mdsum1 = 0, 0, 0
out_date = 0
#todo get today's doy
limit = 0
if pheno_event == 'leaf':
limit = 637
elif pheno_event == 'bloom':
limit = 2001
else:
print('error: pheno_event not found - ' + pheno_event)
for day in range(0, day_max):
# if day == daystop:
# return agdh
if error is True:
cached_six[lat, long] = out_date + 1
return out_date + 1
# if site_max_temps[day] >= base_temp: # this line was present in matlab six code, but removed because it messes up lag window
# calculate the growing degree hours value and synoptic info
growing_degree_hours = gdh[day]
# set all lag values to day 1 first time through
if day == 0 and pheno_event == 'leaf':
lag[0] = growing_degree_hours
lag[1] = growing_degree_hours
# print('day:' + str(day))
# print(growing_degree_hours)
# print(lag[0])
# print(lag[1])
dde2 = growing_degree_hours + lag[0] + lag[1]
dd57 = sum(lag[4:7])
if dde2 >= limit:
syn_flag = 1
else:
syn_flag = 0
if day >= start_date:
agdh += growing_degree_hours
if syn_flag == 1:
synop += 1
# set agdh and synop accumulations
if day >= start_date:
mds0 = day - start_date
if pheno_event == 'leaf':
if plant == 'lilac':
mdsum1 = (3.306 * mds0) + (13.878 * synop) + (0.201 * dde2) + (0.153 * dd57)
elif plant == 'arnoldred':
mdsum1 = (4.266 * mds0) + (20.899 * synop) + (0.000 * dde2) + (0.248 * dd57)
elif plant == 'zabelli':
mdsum1 = (2.802 * mds0) + (21.433 * synop) + (0.266 * dde2) + (0.000 * dd57)
else:
print('error: plant not found - ' + plant)
elif pheno_event == 'bloom':
if plant == 'lilac':
mdsum1 = (-23.934 * mds0) + (0.116 * agdh)
elif plant == 'arnoldred':
mdsum1 = (-24.825 * mds0) + (0.127 * agdh)
elif plant == 'zabelli':
mdsum1 = (-11.368 * mds0) + (0.096 * agdh)
else:
print('error: plant not found - ' + plant)
else:
print('error: pheno_event not found - ' + pheno_event)
else:
mdsum1 = 1
if mdsum1 >= 999.5 and error is False:
error = True
if pheno_event == 'leaf':
if plant == 'lilac':
out_date = day
elif plant == 'arnoldred':
out_date = day + 1
elif plant == 'zabelli':
out_date = day
else:
print('error: plant not found - ' + plant)
elif pheno_event == 'bloom':
out_date = day
else:
print('error: pheno_event not found - ' + pheno_event)
# lag = np.roll(lag, 1)
lag[1:7] = lag[0:6]
lag[0] = growing_degree_hours
# end if #####
if error is False:
return np.nan
cached_six[lat, long] = round(out_date + 1)
return round(out_date + 1)
def compute_spring_index(plant, pheno_event, growing_deg_hrs, leaf_out_days):
print("computing spring index")
base_temp = 31
num_lats = 1228
num_longs = 2606
day_max = 90
max_temps = np.memmap(f"{mem_map_path}/mem_map_tmax.dat", dtype='float32', mode='r', shape=(365, num_lats, num_longs))
max_temps = np.swapaxes(max_temps, 1, 0)
max_temps = np.swapaxes(max_temps, 2, 1)
#max_temps = np.swapaxes(max_temps, 1, 0) #double check why this needed added
print(max_temps.shape)
spring_index_array = np.empty((num_lats, num_longs))
cached_six = get_mem_map(mem_map_path, f"{plant}_{pheno_event}", (num_lats, num_longs), 'float32')
#todo initialize to -9999s?
# now we have all the data structures built that could be parallelized, so now run the main six algorithm
for lat in range(0, num_lats):
for long in range(0, num_longs):
print(lat)
#print(long)
# print(max_temps[lat, long])
# print(growing_deg_hrs[lat, long])
#if not np.isnan(np.sum(max_temps[lat, long])):
if not np.isnan(max_temps[lat,long,0]):
if pheno_event == 'leaf':
start_date = 0
elif pheno_event == 'bloom':
start_date = leaf_out_days[lat, long]
else:
print('error: pheno_event not found - ' + pheno_event)
return spring_index_array
if cached_six[lat,long] != 0.0:
# print('using cached value')
spring_index_array[lat, long] = cached_six[lat,long]
else:
# print(cached_six[lat,long])
spring_index_array[lat, long] = leaf(max_temps[lat, long].tolist(), base_temp, start_date, day_max, pheno_event, plant, growing_deg_hrs[lat, long], lat, long, cached_six)
else:
# print('ocean')
spring_index_array[lat, long] = -9999.0
spring_index_array[np.isnan(spring_index_array)] = -9999.0
return spring_index_array
def write_int16_raster(file_path, rast_array, no_data_value, rast_cols, rast_rows, projection, transform):
print("writing geotiff to disk")
rast_array[np.isnan(rast_array)] = no_data_value
rast_array[rast_array > 240] = no_data_value
driver = gdal.GetDriverByName('Gtiff')
raster = driver.Create(file_path, rast_cols, rast_rows, 1, gdal.GDT_Int16)
band = raster.GetRasterBand(1)
band.SetNoDataValue(no_data_value)
band.WriteArray(rast_array)
raster.SetProjection(projection)
raster.SetGeoTransform(transform)
band.FlushCache()
def import_six_anomalies(anomaly_date, phenophase):
first_day_of_year = date(anomaly_date.year, 1, 1)
day = first_day_of_year
delta = timedelta(days=1)
#load 30 year average file from disk into numpy array
file_name = f"{six_30_year_average_path}/six_30yr_average_{phenophase}/six_average_{phenophase}_365.tif"
ds = gdal.Open(file_name)
avg_30yr_array = np.array(ds.GetRasterBand(1).ReadAsArray())
avg_30yr_array[avg_30yr_array == -9999] = np.nan
today = datetime.today().date()
while day <= anomaly_date:
day_of_year = day.timetuple().tm_yday
#can't see more than a week into the future
if day > (today + timedelta(days=8)):
day += delta
continue
#load current year ncep file from disk into numpy array
file_name = f"{six_path}/average_{phenophase}.tif"
ds = gdal.Open(file_name)
ncep_avg_array = np.array(ds.GetRasterBand(1).ReadAsArray())
ncep_avg_array[ncep_avg_array == -9999] = np.nan
diff_six = ncep_avg_array - avg_30yr_array
diff_six[np.isnan(diff_six)] = -9999
# write the raster to disk and import it to the database
datestring = day.strftime("%Y%m%d")
write_int16_raster(f"{six_anomaly_path}/six_{phenophase}_anomaly_{datestring}.tif", diff_six, no_data_value, diff_six.shape[1], diff_six.shape[0], projection, geo_transform)
# plant = 'average'
# six_anomaly_table_name = 'six_anomaly'
# time_series_table_name = 'six_' + phenophase + '_anomaly'
# import_six_postgis(file_path, file_name, six_anomaly_table_name, time_series_table_name, plant, phenophase,
# day)
new_table = False
logging.info('populated six %s anomaly for %s based on historical six average for doy %s', phenophase, day.strftime("%Y-%m-%d"), str(day_of_year))
day += delta
if __name__ == "__main__":
logging.basicConfig(filename=log_path+'six_nightly_process.log',
level=logging.INFO,
format='%(asctime)s %(message)s',
datefmt='%m/%d/%Y %I:%M:%S %p')
logging.info('**********************************')
logging.info('six_nightly_process.py has started')
logging.info('**********************************')
start_date = "2020-01-01"
# stop_date = "2020-01-22"
climate_provider = ['ncep']
# plants = ['lilac', 'arnoldred', 'zabelli']
plants = ['lilac']
# phenophases = ['leaf', 'bloom']
phenophases = ['leaf']
no_data_value = -9999
num_lats = 1228
num_longs = 2606
spring_index_average_leaf_array = np.empty((num_lats, num_longs))
spring_index_average_bloom_array = np.empty((num_lats, num_longs))
stop_date = datetime.strftime((date.today() + timedelta(days=6)), "%Y-%m-%d")
logging.info('loading daily tmin & tmax')
t0 = time.time()
temperatures_to_memmap(start_date,stop_date)
t1 = time.time()
logging.info(f"loading temperatures took time: {t1 - t0}")
logging.info('loading growing degree hours')
growing_deg_hrs = gdh_to_memmap(get_day_lengths())
t2 = time.time()
logging.info(f"loading gdh took time: {t2 - t1}")
logging.info('computing spring index submodels')
first_plant = True
for plant in plants:
for phenophase in phenophases:
logging.info(f"computing spring index for {plant} {phenophase}")
print(f"computing spring index for {plant} {phenophase}")
if phenophase == 'leaf':
spring_index_array = compute_spring_index(plant, phenophase, growing_deg_hrs, None)
else:
spring_index_array = compute_spring_index(plant, phenophase, growing_deg_hrs, spring_index_array)
write_int16_raster(f"{six_path}/{plant}_{phenophase}.tif", spring_index_array, no_data_value, spring_index_array.shape[1], spring_index_array.shape[0], projection, geo_transform)
#add to average array
print("adding to average")
if first_plant and phenophase == 'leaf':
spring_index_average_leaf_array = spring_index_array
elif first_plant and phenophase == 'bloom':
spring_index_average_bloom_array = spring_index_array
elif phenophase == 'leaf':
spring_index_average_leaf_array += spring_index_array
else:
spring_index_average_bloom_array += spring_index_array
spring_index_average_leaf_array[spring_index_average_leaf_array < 0] = np.nan
spring_index_average_bloom_array[spring_index_average_bloom_array < 0] = np.nan
first_plant = False
t3 = time.time()
logging.info(f"computing spring index submodels took: {t3 - t2}")
#write out the average spring index tiffs
logging.info('computing spring index average')
spring_index_average_leaf_array /= len(plants)
write_int16_raster(f"{avg_six_path}/average_leaf.tif", spring_index_average_leaf_array, no_data_value, spring_index_average_leaf_array.shape[1], spring_index_average_leaf_array.shape[0], projection, geo_transform)
spring_index_average_bloom_array /= len(plants)
write_int16_raster(f"{avg_six_path}/average_bloom.tif", spring_index_average_bloom_array, no_data_value, spring_index_average_bloom_array.shape[1], spring_index_average_bloom_array.shape[0], projection, geo_transform)
t4 = time.time()
logging.info(f"computing spring index averages took: {t4 - t3}")
logging.info('computing spring index anomalies')
for phenophase in phenophases:
import_six_anomalies(stop_date, phenophase)
t5 = time.time()
logging.info(f"computing spring anomalies took: {t5 - t4}")
logging.info(f"total script time: {t5 - t0}")