-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsims_cassandra.py
841 lines (734 loc) · 27.6 KB
/
sims_cassandra.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
import copy
import glob
import locale
import os
import shutil
import subprocess
import sys
import numpy as np
from openmm import unit
def set_inp_param(inp_file, out_file, **kwargs):
"""
Creates a new (copy) of an Cassandra input file with the specified parameters
changed, where the keyword arguments are taken as the parameter names and
the associated values are the new entries.
Inputs:
inp_file - file to modify and save modified copy of
out_file - name of modified copy to write
**kwargs - parameter names and new entry values; names should not
include the '# ' part in the .inp file and values should
be the full entry for all lines up until the next '!----'.
Generally, value should be a list containing the string of
each line to replace without a newline character. For a
single line, this can just be a string.
"""
# Read original file
with open(inp_file, encoding=locale.getpreferredencoding(False)) as f:
orig_contents = f.read()
# Split into list by line
orig_contents = orig_contents.splitlines()
# Before changing things, create copy of file
new_contents = copy.deepcopy(orig_contents)
# Loop over elements of kwargs dictionary, which are parameters to change
for param_name, new_entry in kwargs.items():
# Get starting index for this parameter
start_ind = new_contents.index("# %s" % param_name)
# Find ending index by looking for next occurrence of '!----', etc.
# Or just a blank line (could have spaces only) if 'Prob' starts this param_name
end_ind = start_ind + 1
for i in range(start_ind + 1, len(new_contents)):
if param_name[:4] == "Prob":
if len(new_contents[i].strip()) == 0:
end_ind = i
break
else:
if new_contents[i][:2] == "!-":
end_ind = i
break
# Check if new_entry is float, int, etc.
# Then check if it's a str, making list if just str
if isinstance(new_entry, (int, float)):
new_entry = str(new_entry)
if isinstance(new_entry, str):
new_entry = [
new_entry,
]
# Replace whatever is between start_ind and end_ind with new entry
new_contents = (
new_contents[: start_ind + 1] + new_entry + new_contents[end_ind:]
)
# Write new file
with open(out_file, "w", encoding=locale.getpreferredencoding(False)) as f:
f.write("\n".join(new_contents))
def calc_temp_and_mass(T_red, eps=1.0 * unit.kilojoule_per_mole):
"""
Given a reduced temperature, calculate the temperature in Kelvin and mass of a
particle in amu so that the thermal de Broglie wavelength is 1. This is useful
for an LJ system.
"""
# Temperature is related to reduced temperature simply
kB = unit.MOLAR_GAS_CONSTANT_R.value_in_unit(unit.kilojoules_per_mole / unit.kelvin)
T_vals = T_red * eps.value_in_unit(unit.kilojoule_per_mole) / kB
# Also need to calculate mass to get 1 for thermal de Broglie wavelength AT EACH TEMPERATURE
# Expression is: m = 2*pi*h_bar^2 / (kB*T*lambda^2)
# Want lambda^2 to be 1 and T = eps*T_r/kB, where eps = 1 kJ/mol for convenience
# So then have: m = 2*pi*h_bar^2 / (eps*T_r)
# But need to be careful with units, even for values not in final expression
# (e.g., we want lambda in units of Angstroms, so set to that)
# And at end, want mass in amu, which is mass/moles according to openmm.unit
# So at beginning, multiply h_bar by Avogadro's constant
h_planck = 6.62607015e-34
h_bar = (h_planck / (2.0 * np.pi)) * unit.joules * unit.second
h_bar *= unit.AVOGADRO_CONSTANT_NA
lambda_deBrog = 1.0 * unit.angstrom
masses = 2 * np.pi * (h_bar**2) / (eps * T_red * (lambda_deBrog**2))
masses = masses.value_in_unit(unit.amu)
return T_vals, masses
def calc_pressure(p_red, eps=1.0 * unit.kilojoule_per_mole, sigma=1.0 * unit.angstrom):
"""Calculates pressure in bar given reduced pressure and LJ parameters."""
p = p_red * eps / (sigma**3)
p /= unit.AVOGADRO_CONSTANT_NA
return p.value_in_unit(unit.bar)
def calc_mu(lnz, T_red):
"""
Given a ln(z) value, where z is the activity, and a reduced temperature,
compute the chemical potential.
"""
return lnz * T_red
def calc_length(dens_red, N_mols, sigma=1.0 * unit.angstrom):
"""
Given the reduced density, number of molecules and LJ sigma, computes the box
edge length.
"""
dens = dens_red / (sigma**3)
vols = N_mols / dens
return (vols ** (1 / 3)).value_in_unit(unit.angstrom)
def setup_sim_dir(output_dir, ff_file, pdb_file):
"""
Creates a directory for simulation and copies in necessary files.
Simple, but will need many times.
"""
os.makedirs(output_dir, exist_ok=True)
shutil.copy(ff_file, output_dir)
shutil.copy(pdb_file, output_dir)
# Return names of files as outputs
return os.path.split(ff_file)[-1], os.path.split(pdb_file)[-1]
def update_mcf_file(output_dir, mcf_file, mass):
"""Opens a .mcf file and replaces mass with new mass"""
# Read lines of input mcf
with open(mcf_file, encoding=locale.getpreferredencoding(False)) as f:
mcf_lines = f.read().splitlines()
# Replace line we care about
replace_line = mcf_lines[10].strip().split()
replace_line[3] = "%f" % mass
replace_line[-2] = "%f" % (
1
/ unit.MOLAR_GAS_CONSTANT_R.value_in_unit(
unit.kilojoules_per_mole / unit.kelvin
)
)
replace_line = " ".join(replace_line)
mcf_lines[10] = replace_line
# Save new mcf file
mcf_name = os.path.split(mcf_file)[-1]
with open(os.path.join(output_dir, mcf_name), "w", encoding=locale.getpreferredencoding(False)) as f:
f.write("\n".join(mcf_lines))
def run_NVT(
T_red,
dens_red,
N_mols=500,
inp_file="equil_nvt.inp",
mcf_file="LJ.mcf",
ff_file="LJ.ff",
pdb_file="LJ.pdb",
output_base_dir="./",
output_prefix="nvt",
inp_kwargs=None,
):
"""
Given a temperature and density, in reduced units for an LJ system, and run input
files, runs an NVT simulation with Cassandra.
"""
# Create directory for this run and copy files into it
if inp_kwargs is None:
inp_kwargs = {}
output_path = os.path.join(
output_base_dir, f"{output_prefix}_T{T_red:1.1f}_rho{dens_red:1.2f}"
)
ff_file, pdb_file = setup_sim_dir(output_path, ff_file, pdb_file)
# Get temperature, mass, and edge length
T, mass = calc_temp_and_mass(T_red)
box_l = calc_length(dens_red, N_mols)
# Write new mcf file with updated mass
update_mcf_file(output_path, mcf_file, mass)
# Set up random number seeds
rng = np.random.default_rng()
# Next write inp file
inp_name = os.path.split(inp_file)[-1]
set_inp_param(
inp_file,
os.path.join(output_path, inp_name),
Seed_Info="%i %i" % tuple(rng.integers(np.iinfo(np.int32).max, size=2)),
Box_Info=["1", "cubic", "%f" % box_l],
Temperature_Info=T,
**inp_kwargs,
)
# Get current working directory so can come back
cwd = os.getcwd()
# Before running, need to make sure paths are set up so can access Cassandra bin in conda
conda_bin = os.path.join(sys.exec_prefix, "bin")
library_setup = os.path.join(conda_bin, "library_setup.py")
cassandra_exe = os.path.join(conda_bin, "cassandra.exe")
# Change to simulation directory and run simulation
os.chdir(output_path)
subprocess.run(
[library_setup, cassandra_exe, inp_name, pdb_file],
check=True,
capture_output=True,
)
subprocess.run(
[cassandra_exe, inp_name],
check=True,
capture_output=True,
)
# Move back to original directory
os.chdir(cwd)
return output_path
def run_NPT(
T_red,
dens_red,
p_red,
N_mols=500,
inp_file="equil_npt.inp",
mcf_file="LJ.mcf",
ff_file="LJ.ff",
pdb_file="LJ.pdb",
output_base_dir="./",
output_prefix="npt",
inp_kwargs=None,
):
"""
Given a temperature, density, and pressure, all in reduced units for an LJ system,
and necessary input files runs an NPT simulation with Cassandra.
"""
# Create directory for this run and copy files into it
if inp_kwargs is None:
inp_kwargs = {}
output_path = os.path.join(
output_base_dir,
f"{output_prefix}_T{T_red:1.1f}_p{p_red:1.3f}_rho{dens_red:1.2f}",
)
ff_file, pdb_file = setup_sim_dir(output_path, ff_file, pdb_file)
# Get temperature, mass, and edge length
T, mass = calc_temp_and_mass(T_red)
box_l = calc_length(dens_red, N_mols)
# Get pressure
p = calc_pressure(p_red)
# Write new mcf file with updated mass
update_mcf_file(output_path, mcf_file, mass)
# Set up random number seeds
rng = np.random.default_rng()
# Next write inp file
inp_name = os.path.split(inp_file)[-1]
set_inp_param(
inp_file,
os.path.join(output_path, inp_name),
Seed_Info="%i %i" % tuple(rng.integers(np.iinfo(np.int32).max, size=2)),
Box_Info=["1", "cubic", "%f" % box_l],
Temperature_Info=T,
Pressure_Info=p,
**inp_kwargs,
)
# Get current working directory so can come back
cwd = os.getcwd()
# Before running, need to make sure paths are set up so can access Cassandra bin in conda
conda_bin = os.path.join(sys.exec_prefix, "bin")
library_setup = os.path.join(conda_bin, "library_setup.py")
cassandra_exe = os.path.join(conda_bin, "cassandra.exe")
# Change to simulation directory and run simulation
os.chdir(output_path)
subprocess.run(
[library_setup, cassandra_exe, inp_name, pdb_file],
check=True,
capture_output=True,
)
subprocess.run(
[cassandra_exe, inp_name],
check=True,
capture_output=True,
)
# Move back to original directory
os.chdir(cwd)
return output_path
def run_GCMC(
T_red,
dens_red,
lnz,
N_mols=500,
inp_file="equil_gcmc.inp",
mcf_file="LJ.mcf",
ff_file="LJ.ff",
pdb_file="LJ.pdb",
output_base_dir="./",
output_prefix="gcmc",
inp_kwargs=None,
):
"""
Given a temperature, density, and log-activity, all in reduced units for an LJ system,
and necessary input files, runs a GCMC simulation with Cassandra.
"""
# Create directory for this run and copy files into it
if inp_kwargs is None:
inp_kwargs = {}
output_path = os.path.join(
output_base_dir,
f"{output_prefix}_T{T_red:1.1f}_lnz{lnz:1.3f}_rho{dens_red:1.2f}",
)
ff_file, pdb_file = setup_sim_dir(output_path, ff_file, pdb_file)
# Get temperature, mass, and edge length
T, mass = calc_temp_and_mass(T_red)
box_l = calc_length(dens_red, N_mols)
# Get chemical potential
mu = calc_mu(lnz, T_red)
# Write new mcf file with updated mass
update_mcf_file(output_path, mcf_file, mass)
# Set up random number seeds
rng = np.random.default_rng()
# Next write inp file
inp_name = os.path.split(inp_file)[-1]
set_inp_param(
inp_file,
os.path.join(output_path, inp_name),
Seed_Info="%i %i" % tuple(rng.integers(np.iinfo(np.int32).max, size=2)),
Box_Info=["1", "cubic", "%f" % box_l],
Temperature_Info=T,
Chemical_Potential_Info=mu,
**inp_kwargs,
)
# Get current working directory so can come back
cwd = os.getcwd()
# Before running, need to make sure paths are set up so can access Cassandra bin in conda
conda_bin = os.path.join(sys.exec_prefix, "bin")
library_setup = os.path.join(conda_bin, "library_setup.py")
cassandra_exe = os.path.join(conda_bin, "cassandra.exe")
# Change to simulation directory and run simulation
os.chdir(output_path)
subprocess.run(
[library_setup, cassandra_exe, inp_name, pdb_file],
check=True,
capture_output=True,
)
subprocess.run(
[cassandra_exe, inp_name],
check=True,
capture_output=True,
)
# Move back to original directory
os.chdir(cwd)
return output_path
def run_GEMC(
T_red,
dens_low,
dens_hi,
N_mols=None,
inp_file="equil_gemc.inp",
mcf_file="LJ.mcf",
ff_file="LJ.ff",
pdb_file="LJ.pdb",
output_base_dir="./",
output_prefix="gemc",
inp_kwargs=None,
):
"""
Given a temperature and low and high densities, all in reduced units for an LJ system,
and necessary input files, runs a GEMC simulation with Cassandra.
"""
# Create directory for this run and copy files into it
if inp_kwargs is None:
inp_kwargs = {}
if N_mols is None:
N_mols = [50, 500]
output_path = os.path.join(output_base_dir, f"{output_prefix}_T{T_red:1.1f}")
ff_file, pdb_file = setup_sim_dir(output_path, ff_file, pdb_file)
# Get temperature, mass, and edge length
T, mass = calc_temp_and_mass(T_red)
box_l = calc_length(np.array([dens_low, dens_hi]), np.array(N_mols))
# Write new mcf file with updated mass
update_mcf_file(output_path, mcf_file, mass)
# Set up random number seeds
rng = np.random.default_rng()
# Next write inp file
inp_name = os.path.split(inp_file)[-1]
set_inp_param(
inp_file,
os.path.join(output_path, inp_name),
Seed_Info="%i %i" % tuple(rng.integers(np.iinfo(np.int32).max, size=2)),
Box_Info=["2", "cubic", "%f" % box_l[0], "", "cubic", "%f" % box_l[1]],
Temperature_Info=["%f" % T, "%f" % T],
**inp_kwargs,
)
# Get current working directory so can come back
cwd = os.getcwd()
# Before running, need to make sure paths are set up so can access Cassandra bin in conda
conda_bin = os.path.join(sys.exec_prefix, "bin")
library_setup = os.path.join(conda_bin, "library_setup.py")
cassandra_exe = os.path.join(conda_bin, "cassandra.exe")
# Change to simulation directory and run simulation
os.chdir(output_path)
subprocess.run(
[library_setup, cassandra_exe, inp_name, pdb_file],
check=True,
capture_output=True,
)
subprocess.run(
[cassandra_exe, inp_name],
check=True,
capture_output=True,
)
# Move back to original directory
os.chdir(cwd)
return output_path
def sim_VLE_GEMC(
input_file_list,
unused_arg, # Needed to fit with SimWrapper expectations
beta,
densities=None,
model_pred=None,
model_std=None,
file_prefix="./",
info_name="sim_info_out",
bias_name="cv_bias_out",
mcf_file="LJ.mcf",
ff_file="LJ.ff",
pdb_file="LJ.pdb",
N_mols=None,
sim_num=None,
):
"""
Runs GEMC simulation of VLE given a list of input files, list of two densities, and
a reciprocal temperature. After simulations, reconfigures files so easy for
post-processing.
The list of two densities can be passed in the argument densities or via model_pred,
which is intended to be predictions from a model for the densities and will take
the place of the defaults if specified.
Note that file naming is hard-coded for outputs, so provided .inp files should follow:
equil_nvt.out* for equilibration NVT simulations
equil.out* for equilibration GEMC simulations
prod.out* for production GEMC simulations
"""
# Ignore unused argument just for compatibility with SimWrapper
if N_mols is None:
N_mols = [50, 500]
if densities is None:
densities = [0.05, 0.7]
del unused_arg
# Also ignore model_std, which don't need here
del model_std
# Expect 3 input files - equilibration in NVT, equilibration in GEMC, production in GEMC
# All three files should be Cassandra .inp format, but will not check for that
if len(input_file_list) != 3:
raise ValueError(
"input_file_list must contain 3 files. Currently is: %s"
% str(input_file_list)
)
# Also check that have only two densities
if model_pred is not None:
densities = model_pred
if len(densities) != 2:
raise ValueError(
"Should only provide two densities, but got %s" % str(densities)
)
# Expect beta to just be 1/Tr so that can work fully in reduced units
Tr = 1 / beta
# file_prefix will be the directory for this temperature
# Within that, need to specify what we call this run directory
run_prefix = "gemc"
if sim_num is None:
run_dirs = glob.glob(os.path.join(file_prefix, run_prefix + "*_T*"))
sim_num = len(run_dirs)
run_prefix = run_prefix + "%i" % sim_num
this_run_dir = f"{run_prefix}_T{Tr:1.1f}" # Should match naming in run_GEMC
# Run NVT equilibrations for both densities
for i, dens in enumerate(densities):
this_path = run_NVT(
Tr,
dens,
N_mols=N_mols[i],
inp_file=input_file_list[0],
mcf_file=mcf_file,
ff_file=ff_file,
pdb_file=pdb_file,
output_base_dir=os.path.join(file_prefix, this_run_dir),
inp_kwargs={"Start_Type": "make_config %i" % N_mols[i]},
)
# And set up outputs so .xyz inputs match expected naming for GEMC
with open(os.path.join(this_path, "equil_nvt.out.xyz"), encoding=locale.getpreferredencoding(False)) as f:
xyz_lines = f.read().splitlines()
with open(
os.path.join(
file_prefix, this_run_dir, "equil_nvt.out.box%i.xyz" % (i + 1)
),
"w", encoding=locale.getpreferredencoding(False),
) as f:
f.write("\n".join(xyz_lines[-(N_mols[i] + 2) :]))
# Run GEMC equilibration
this_path = run_GEMC(
Tr,
densities[0],
densities[1],
N_mols=N_mols,
inp_file=input_file_list[1],
mcf_file=mcf_file,
ff_file=ff_file,
pdb_file=pdb_file,
output_base_dir=file_prefix,
output_prefix=run_prefix,
inp_kwargs={
"Start_Type": [
"read_config %i equil_nvt.out.box1.xyz" % N_mols[0],
"read_config %i equil_nvt.out.box2.xyz" % N_mols[1],
],
},
)
# Run GEMC production
this_path = run_GEMC(
Tr,
densities[0],
densities[1],
N_mols=N_mols,
inp_file=input_file_list[2],
mcf_file=mcf_file,
ff_file=ff_file,
pdb_file=pdb_file,
output_base_dir=file_prefix,
output_prefix=run_prefix,
)
# Now need to assemble files needed for DataWrapper class
# And make it easier for post-processing, which need because want x_files in DataWrapper
# Combine box property outputs, renaming columns
box_props = []
header_info = []
unit_info = ""
for i in range(2):
this_prop_file = os.path.join(
file_prefix, this_run_dir, "prod.out.box%i.prp" % (i + 1)
)
with open(this_prop_file, encoding=locale.getpreferredencoding(False)) as f:
f.readline()
this_header = f.readline()
this_units = f.readline().strip()
this_header = this_header.strip().split()
header_info = header_info + [
"%15s" % (label + "_box%i" % (i + 1)) for label in this_header
]
unit_info = unit_info + this_units
box_props.append(np.loadtxt(this_prop_file))
full_props = np.hstack(box_props)
# Add on sum of potential energies in both boxes since counts as full system potential
# Need to use that for extrapolating any quantity over temperature for GEMC
full_props = np.hstack(
[full_props, (box_props[0][:, 1] + box_props[1][:, 1])[:, None]]
)
header_info.append("System_Energy_Total")
unit_info = unit_info + " (kJ/mol)-Ext"
np.savetxt(
os.path.join(file_prefix, "%s%i.txt" % (info_name, sim_num)),
full_props,
header=(" ".join(header_info) + "\n" + unit_info),
)
# Need dummy cv_bias_out%i.txt file
np.savetxt(
os.path.join(file_prefix, "%s%i.txt" % (bias_name, sim_num)),
np.hstack([full_props[:, :1], np.zeros((full_props.shape[0], 2))]),
header="Dummy file full of zeros since no CV biasing here",
)
def sim_VLE_NPT(
input_file_list,
unused_arg, # Needed to fit with SimWrapper expectations
beta,
psat_red=1.0,
densities=None,
model_pred=None,
model_std=None,
file_prefix="./",
info_name="sim_info_out",
bias_name="cv_bias_out",
vle_name="vle_info",
mcf_file="LJ.mcf",
ff_file="LJ.ff",
pdb_file="LJ.pdb",
N_mols=None,
sim_num=None,
):
"""
Runs two NPT simulations, hopefully at the saturation pressure to determine VLE
properties. Must be given a list of input files, a reciprocal temperature, and should
provide keyword argument for pressure. After simulations, reconfigures files so easy for
post-processing. Pressure should be in reduced units.
Here, model_pred can be used to replace the saturation pressure so can update with
output of a GPR model. model_std is unused. Note that expect GP (or other) model to
predict ln(P_sat) since more slowly varying, so will exponentiate model_pred.
Note that file naming is hard-coded for outputs, so provided .inp files should follow:
equil_nvt.out* for equilibration NVT simulations
equil.out* for equilibration NPT simulations
prod.out* for production NPT simulations
"""
# Ignore unused argument just for compatibility with SimWrapper
if N_mols is None:
N_mols = [350, 350]
if densities is None:
densities = [0.05, 0.7]
del unused_arg
# Also ignore model_std, which don't need here
del model_std
# Expect 3 input files - equilibration in NVT, equilibration in NPT, production in NPT
# All three files should be Cassandra .inp format, but will not check for that
if len(input_file_list) != 3:
raise ValueError(
"input_file_list must contain 3 files. Currently is: %s"
% str(input_file_list)
)
# Place model prediction in saturation pressure
if model_pred is not None:
psat_red = float(np.exp(model_pred))
# Check that densities provided correctly (two of them)
if len(densities) != 2:
raise ValueError(
"Should only provide two densities, but got %s" % str(densities)
)
# Expect beta to just be 1/Tr so that can work fully in reduced units
Tr = 1 / beta
# file_prefix will be the directory for this temperature
# Within that, need to specify what we call this run directory
run_prefix = "npt"
if sim_num is None:
run_dirs = glob.glob(os.path.join(file_prefix, run_prefix + "*_T*"))
sim_num = len(run_dirs)
run_prefix = run_prefix + "%i" % sim_num
this_run_dir = f"{run_prefix}_T{Tr:1.1f}"
# Run simulations for both densities
# On the way, assemble files for DataWrapper class
box_props = []
header_info = []
unit_info = ""
for i, dens in enumerate(densities):
# Start with NVT equilibration
this_path = run_NVT(
Tr,
dens,
N_mols=N_mols[i],
inp_file=input_file_list[0],
mcf_file=mcf_file,
ff_file=ff_file,
pdb_file=pdb_file,
output_base_dir=os.path.join(file_prefix, this_run_dir),
inp_kwargs={"Start_Type": "make_config %i" % N_mols[i]},
)
# And set up outputs so .xyz inputs match expected naming for GEMC
with open(os.path.join(this_path, "equil_nvt.out.xyz"), encoding=locale.getpreferredencoding(False)) as f:
xyz_lines = f.read().splitlines()
this_equil_xyz = os.path.join(
file_prefix, this_run_dir, "equil_nvt.out.box%i.xyz" % (i + 1)
)
this_equil_xyz = os.path.abspath(this_equil_xyz)
with open(this_equil_xyz, "w", encoding=locale.getpreferredencoding(False)) as f:
f.write("\n".join(xyz_lines[-(N_mols[i] + 2) :]))
# Run NPT equilibration
this_path = run_NPT(
Tr,
dens,
psat_red,
N_mols=N_mols[i],
inp_file=input_file_list[1],
mcf_file=mcf_file,
ff_file=ff_file,
pdb_file=pdb_file,
output_base_dir=os.path.join(file_prefix, this_run_dir),
inp_kwargs={
"Start_Type": "read_config %i %s" % (N_mols[i], this_equil_xyz)
},
)
# Run NPT production
this_path = run_NPT(
Tr,
dens,
psat_red,
N_mols=N_mols[i],
inp_file=input_file_list[2],
mcf_file=mcf_file,
ff_file=ff_file,
pdb_file=pdb_file,
output_base_dir=os.path.join(file_prefix, this_run_dir),
)
# Collect necessary output info
this_prop_file = os.path.join(this_path, "prod.out.prp")
with open(this_prop_file, encoding=locale.getpreferredencoding(False)) as f:
f.readline()
this_header = f.readline()
this_units = f.readline().strip()
this_header = this_header.strip().split()
header_info = header_info + [
"%15s" % (label + "_box%i" % (i + 1)) for label in this_header
]
unit_info = unit_info + this_units
box_props.append(np.loadtxt(this_prop_file))
# Finish collecting data
full_props = np.hstack(box_props)
np.savetxt(
os.path.join(file_prefix, "%s%i.txt" % (info_name, sim_num)),
full_props,
header=(" ".join(header_info) + "\n" + unit_info),
)
# Need dummy cv_bias_out%i.txt file
np.savetxt(
os.path.join(file_prefix, "%s%i.txt" % (bias_name, sim_num)),
np.hstack([full_props[:, :1], np.zeros((full_props.shape[0], 2))]),
header="Dummy file full of zeros since no CV biasing here",
)
# Also just output VLE information needed for lnPsat and its derivative
np.savetxt(
os.path.join(file_prefix, "%s%i.txt" % (vle_name, sim_num)),
np.hstack(
[
np.log(psat_red),
np.average(full_props[:, [1, 4]], axis=0) / N_mols[0],
np.average(full_props[:, [10, 13]], axis=0) / N_mols[1],
]
)[None, :],
header=" ln(Psat) u_box1 h_box1 u_box2 h_box2",
)
def pull_density_info(
base_dir,
out_name,
sim_num=None,
info_name="sim_info_out",
):
"""
Post-processing to pull vapor and liquid densities from simulation output.
Just convenient and need so will run with SimWrapper and DataWrapper
"""
if sim_num is None:
sim_num = len(glob.glob(os.path.join(base_dir, info_name + "*.txt"))) - 1
# Load most recent info file
sim_info = np.loadtxt(os.path.join(base_dir, info_name + "%i.txt" % sim_num))
# Save just the times and densities
header_info = "MC_STEPS density_box1 density_box2"
np.savetxt(
os.path.join(base_dir, "%s%i.txt" % (out_name, sim_num)),
sim_info[:, [0, 7, 16]],
header=header_info,
)
def pull_psat_info(
base_dir,
out_name,
sim_num=None,
):
"""
Post-processes that doesn't really do anything except check that file name exists.
For psat information, can only get set-point pressure in method from which simulation
is run (or that's the easiest way), so already produces vle_name file in sim_VLE_NPT.
"""
if sim_num is None:
sim_num = len(glob.glob(os.path.join(base_dir, out_name + "*.txt"))) - 1
if os.path.exists(os.path.join(base_dir, out_name + "%i.txt" % sim_num)):
pass