diff --git a/trees/tt-000J.tree b/trees/tt-000J.tree index 77728d7..5d16f73 100644 --- a/trees/tt-000J.tree +++ b/trees/tt-000J.tree @@ -5,11 +5,11 @@ % definition theorem lemma construction observation % convention corollary axiom example exercise proof % discussion remark notation -\taxon{notation} +\taxon{convention} -\title{Uniqueness} +\title{uniqueness: dashed arrow} -\p{Uniqueness of an arrow is denoted #{\exists ! f} or simply #{!f}, and visualized as a dashed arrow in diagrams, and #{!} is often omitted.} +\p{Uniqueness of an arrow is denoted #{\exists ! f} or simply #{!f}, and visualized as a \vocab{dashed arrow} in diagrams, and #{!} is often omitted.} \tikz{ \begin{tikzcd} diff --git a/trees/tt-000O.tree b/trees/tt-000O.tree index 50c97c2..241f044 100644 --- a/trees/tt-000O.tree +++ b/trees/tt-000O.tree @@ -9,7 +9,7 @@ \refdef{fork}{leinster2016basic}{ \p{ - Two objects with two arrows between them + The diagram \tikz{ \begin{tikzcd} @@ -20,6 +20,9 @@ } is called a \newvocab{fork}. } + +\p{For simplicity, we refer to a fork by "a fork #{(f, g)}".} + } diff --git a/trees/tt-000P.tree b/trees/tt-000P.tree index 7d30972..e76b895 100644 --- a/trees/tt-000P.tree +++ b/trees/tt-000P.tree @@ -13,5 +13,8 @@ \transclude{tt-000O} -\transclude{tt-000Q} +\transclude{tt-000R} + +\transclude{tt-000S} +\transclude{tt-000Q} diff --git a/trees/tt-000Q.tree b/trees/tt-000Q.tree index 51cf362..2580a65 100644 --- a/trees/tt-000Q.tree +++ b/trees/tt-000Q.tree @@ -9,7 +9,7 @@ \refdef{equalizer}{kostecki2011introduction}{ \p{ -An \newvocab{equalizer} of two given arrows #{f, g: A \rightarrow B} is an object #{E} together with a morphism #{e: E \rightarrow A} such that #{f \circ e=g \circ e}, and for any object #{D} and morphism #{h: D \rightarrow A} there exists a unique morphism #{k: D \rightarrow E} such that the diagram +An \newvocab{equalizer} of a fork #{(f, g)} in the same \vocab{fork} is an object #{E} together with a arrow #{e: E \rightarrow A} such that #{f \circ e=g \circ e}, and for any object #{D} and arrow #{h: D \rightarrow A}, the diagram \tikz{ \begin{tikzcd} diff --git a/trees/tt-000R.tree b/trees/tt-000R.tree new file mode 100644 index 0000000..b7072f5 --- /dev/null +++ b/trees/tt-000R.tree @@ -0,0 +1,29 @@ +\import{tt-macros} +% clifford hopf spin tt math draft +\tag{tt} + +% definition theorem lemma construction observation +% convention corollary axiom example exercise proof +% discussion remark notation +% \taxon{} + +\refdef{cone}{leinster2016basic}{ +\p{ +A \newvocab{cone} over a \vocab{fork} #{(f, g)} is an object #{E} and arrows over the fork which make the diagram + +\tikz{ + \begin{tikzcd} + & E \\ + X && Y + \arrow["e"', from=1-2, to=2-1] + \arrow["{e;f = e;g}", curve={height=-6pt}, dotted, from=1-2, to=2-3] + \arrow["f", shift left, from=2-1, to=2-3] + \arrow["g"', shift right, from=2-1, to=2-3] + \end{tikzcd} +} + + commute. +}} + +\p{For simplicity, we refer to a cone by "a cone #{e}".} + diff --git a/trees/tt-000S.tree b/trees/tt-000S.tree new file mode 100644 index 0000000..87ec589 --- /dev/null +++ b/trees/tt-000S.tree @@ -0,0 +1,12 @@ +\import{tt-macros} +% clifford hopf spin tt math draft +\tag{tt} + +% definition theorem lemma construction observation +% convention corollary axiom example exercise proof +% discussion remark notation +\taxon{convention} + +\title{dotted arrow} + +\p{We use \newvocab{dotted arrow}s to represent the composition arrow in a \vocab{cone}. This convention is not from the literature and is subject to change.}