diff --git a/trees/math-0008.tree b/trees/math-0008.tree new file mode 100644 index 0000000..a99c9ed --- /dev/null +++ b/trees/math-0008.tree @@ -0,0 +1,72 @@ +\import{tt-macros} +% clifford hopf spin tt math draft +\tag{draft} +\title{Testing string diagrams} + +% definition theorem lemma construction observation +% convention corollary axiom example exercise proof +% discussion remark notation +% \taxon{} + +\p{The following is testing string diagram drawing using the example from [Jon Sterling's String diagrams](https://www.jonmsterling.com/jms-00B8.xml):} + +\tikz{ + \begin{tikzpicture}[scale=0.5] + \CreateRect{7}{4} + + \path + coordinate[label=below:$M$] (s/M) at (spath cs:south 0.5) + coordinate[label=above:$F$] (n/F) at (spath cs:north 0.165) + coordinate[label=above:$M$] (n/M) at (spath cs:north 0.33) + coordinate[label=above:$N$] (n/N) at (spath cs:north 0.66) + coordinate[label=below:$F$] (s/F) at (spath cs:south 0.85) + ; + + \path[spath/save = middle-vert] (s/M) to (nw -| s/M); + \coordinate[dot,label=-135:$\mu$] (mu) at (spath cs:middle-vert 0.33); + + \draw[spath/save=swoosh] (n/F) to[out=-90,in=90] ($(s/F)+(0,1)$) to (s/F); + \draw[spath/save=cup] (n/M) to ($(n/M)+(0,-1.5)$) to[out=-90,in=180] (mu.center) to[out=0,in=-90] ($(n/N)+(0,-1.5)$) to (n/N); + \draw (s/M) to (mu.center); + + \path[name intersections={of=cup and swoosh}] + coordinate[dot,label=-135:$\lambda$] (lambda) at (intersection-1) + coordinate[dot,label=25:$\lambda$] (lambda') at (intersection-2) + ; + + \begin{scope}[on background layer] + \fill[catd] (nw) to (n/F) to[spath/use={swoosh,weld}] (s/F) to (sw) to cycle; + \fill[catc] (n/F) to[spath/use={swoosh,weld}] (s/F) to (se) to (ne) to cycle; + \end{scope} + \end{tikzpicture} +} + +\tikz{ + \begin{tikzpicture}[scale=0.6] + \node[box=0/2/0/1] (A) at (-2, 0) {A}; + \node[box=0/1/0/2] (B) at (+2, 0) {B}; + \node[box=0/1/0/1] (C) at ( 0,+1) {C}; + \node[box=0/1/0/1] (D) at ( 0,-1) {D}; + \wires{ + A = { east.1 = C.west, east.2 = D.west }, + C = { east = B.west.1 }, + D = { east = B.west.2 }, + }{ A.west, B.east } + \end{tikzpicture} +} + +\tikz{ + \begin{tikzpicture} + \node[box=0/1/0/2] (A) at ( 0,+1) {A}; + \node[box=0/2/0/1] (B) at ( 0,-1) {B}; + \node[dot] (x) at (+1, 0) {}; + \node[dot] (y) at (-1, 0) {}; + \wires[looseness=1.5, dashed]{ + A = { east = x.north }, + B = { east.1 = x.south }, + y = { north = A.west.2, south = B.west }, + }{ + A.west.1, B.east.2, x.east, y.west + } + \end{tikzpicture} +} \ No newline at end of file diff --git a/trees/tt-0003.tree b/trees/tt-0003.tree index 66299c0..a32ad40 100644 --- a/trees/tt-0003.tree +++ b/trees/tt-0003.tree @@ -12,66 +12,3 @@ \p{In most literatures (e.g. \cite{chen2016infinitely}), objects in #{\C} are denoted like #{X, Y \in \Ob(\C)}, the set of these arrows are denoted by #{\Hom_\C(X, Y)}, thus an arrow from #{X} to #{Y} is #{f \in \Hom_\C(X, Y)}. } \p{\cite{zhang2021type} simply writes the above as #{X \in \C} and #{f \in \C(X, Y)}, respectively, which is quite friendly, as long as one doesn't use the set theory mindset.} - -\p{The following is testing string diagram drawing using the example from [Jon Sterling's String diagrams](https://www.jonmsterling.com/jms-00B8.xml):} - -\tikz{ - \begin{tikzpicture}[scale=0.5] - \CreateRect{7}{4} - - \path - coordinate[label=below:$M$] (s/M) at (spath cs:south 0.5) - coordinate[label=above:$F$] (n/F) at (spath cs:north 0.165) - coordinate[label=above:$M$] (n/M) at (spath cs:north 0.33) - coordinate[label=above:$N$] (n/N) at (spath cs:north 0.66) - coordinate[label=below:$F$] (s/F) at (spath cs:south 0.85) - ; - - \path[spath/save = middle-vert] (s/M) to (nw -| s/M); - \coordinate[dot,label=-135:$\mu$] (mu) at (spath cs:middle-vert 0.33); - - \draw[spath/save=swoosh] (n/F) to[out=-90,in=90] ($(s/F)+(0,1)$) to (s/F); - \draw[spath/save=cup] (n/M) to ($(n/M)+(0,-1.5)$) to[out=-90,in=180] (mu.center) to[out=0,in=-90] ($(n/N)+(0,-1.5)$) to (n/N); - \draw (s/M) to (mu.center); - - \path[name intersections={of=cup and swoosh}] - coordinate[dot,label=-135:$\lambda$] (lambda) at (intersection-1) - coordinate[dot,label=25:$\lambda$] (lambda') at (intersection-2) - ; - - \begin{scope}[on background layer] - \fill[catd] (nw) to (n/F) to[spath/use={swoosh,weld}] (s/F) to (sw) to cycle; - \fill[catc] (n/F) to[spath/use={swoosh,weld}] (s/F) to (se) to (ne) to cycle; - \end{scope} - \end{tikzpicture} -} - -\tikz{ - \begin{tikzpicture}[scale=0.6] - \node[box=0/2/0/1] (A) at (-2, 0) {A}; - \node[box=0/1/0/2] (B) at (+2, 0) {B}; - \node[box=0/1/0/1] (C) at ( 0,+1) {C}; - \node[box=0/1/0/1] (D) at ( 0,-1) {D}; - \wires{ - A = { east.1 = C.west, east.2 = D.west }, - C = { east = B.west.1 }, - D = { east = B.west.2 }, - }{ A.west, B.east } - \end{tikzpicture} -} - -\tikz{ - \begin{tikzpicture} - \node[box=0/1/0/2] (A) at ( 0,+1) {A}; - \node[box=0/2/0/1] (B) at ( 0,-1) {B}; - \node[dot] (x) at (+1, 0) {}; - \node[dot] (y) at (-1, 0) {}; - \wires[looseness=1.5, dashed]{ - A = { east = x.north }, - B = { east.1 = x.south }, - y = { north = A.west.2, south = B.west }, - }{ - A.west.1, B.east.2, x.east, y.west - } - \end{tikzpicture} -} \ No newline at end of file