Skip to content

Commit e48e603

Browse files
committed
Divide special functors
1 parent eb5c0ef commit e48e603

File tree

9 files changed

+87
-35
lines changed

9 files changed

+87
-35
lines changed

trees/tt-0016.tree

Lines changed: 2 additions & 33 deletions
Original file line numberDiff line numberDiff line change
@@ -5,38 +5,7 @@
55
% definition theorem lemma construction observation
66
% convention corollary axiom example exercise proof
77
% discussion remark notation
8-
\taxon{example}\refnotet{special functors}{eq. 54}{kostecki2011introduction}{
9-
10-
\p{
11-
The \newvocab{identity functor} #{\id_{\C}: \C \to \C} (denoted also by #{ 1_{\C}: \C \to \C}), defined by #{\id_{\C}(X)=X} and #{\id_{\C}(f)=f} for every #{X \in \Ob(\C)} and every #{f \in \Arr(\C)}.
12-
}
13-
14-
\p{
15-
The \newvocab{constant functor} #{\Delta_O: \C \to \D} which assigns a fixed #{O \in \mathrm{Ob}(\D)} to any object of #{\C} and #{\id_O}, the identity arrow on #{O}, to any arrows from #{\C} :
16-
17-
\tikz{
18-
\begin{tikzcd}
19-
X &&&& O \\
20-
& {} && {} \\
21-
Y &&&& O \\
22-
\C &&&& \D
23-
\arrow["f"', from=1-1, to=3-1]
24-
\arrow["{\id_O}", from=1-5, to=3-5]
25-
\arrow["{\Delta_O}", Rightarrow, maps to, from=2-2, to=2-4]
26-
\arrow["{\Delta_O}", Rightarrow, from=4-1, to=4-5]
27-
\end{tikzcd}
8+
\taxon{example}\refnotet{other special functors}{3.1, example 10, 11, 4.6}{kostecki2011introduction}{
9+
\p{Some other special functors are introduced in later sections in context, e.g. \vocabk{hom-functor}{tt-001S}, \vocabk{Yoneda embedding functors}{tt-002T}, \vocabk{object functor}{tt-003H}.
2810
}
29-
30-
with compositions and identities preserved in a trivial way.}
31-
32-
\p{The \newvocab{forgetful functor}, which \em{forgets} some part of structure, however arrows, compositions and identities are preserved.
33-
}
34-
35-
\p{
36-
Let #{\C} be a subcategory of #{\D}. The \newvocab{inclusion functor}, denoted #{\hookrightarrow}, sends objects and arrows of #{\D} into themselves in category #{\D}.}
37-
38-
\p{
39-
The \newvocab{diagonal functor} #{\Delta: \C \to \C \times \C, \Delta(X)=(X, X)} and #{\Delta(f)=(f, f)} for #{f: X \to X^{\prime}}.
40-
}
41-
4211
}

trees/tt-0027.tree

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@
1313
Let #{\C^{\J}} be a [functor category](tt-001F), where #{\J} is a [small category](tt-000A).
1414
}
1515

16-
\p{Let #{\Delta_O} be a [constant functor](tt-0016), which assigns the same object #{O} in #{\C} to any object #{J} in #{\J}.
16+
\p{Let #{\Delta_O} be a [constant functor](tt-003Q), which assigns the same object #{O} in #{\C} to any object #{J} in #{\J}.
1717
}
1818

1919
\p{Let #{K \in \Ob(\J)} and let #{j \in \operatorname{Arr}(\J)} such that #{j: J \to K}. Let #{\fF} be any functor in #{\C^{\J}}, i.e. it's a [diagram](tt-0025) in #{\C} of shape #{\J}.

trees/tt-0028.tree

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@ of arrows in #{\C} such that for all arrows #{J \to J'} in #{\J}, the triangle
3434
commutes.
3535
}
3636

37-
\p{The family of arrows are components of a \vocabk{natural transformation}{tt-001E} #{\pi: \Delta_V \to \fD}, i.e. from the \vocabk{constant functor}{tt-0016} ( which assigns the same object #{V} to any object #{J_i} in #{\J}) to diagram functor #{\fD}.
37+
\p{The family of arrows are components of a \vocabk{natural transformation}{tt-001E} #{\pi: \Delta_V \to \fD}, i.e. from the \vocabk{constant functor}{tt-003Q} ( which assigns the same object #{V} to any object #{J_i} in #{\J}) to diagram functor #{\fD}.
3838
}
3939

4040
\p{For simplicity, we refer to a cone by "a cone #{(V, \pi)} on #{\fD}".

trees/tt-003N.tree

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -12,4 +12,14 @@
1212

1313
\title{special functors}
1414

15+
\transclude{tt-003P}
16+
17+
\transclude{tt-003Q}
18+
19+
\transclude{tt-003R}
20+
21+
\transclude{tt-003S}
22+
23+
\transclude{tt-003T}
24+
1525
\transclude{tt-0016}

trees/tt-003P.tree

Lines changed: 12 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,12 @@
1+
\import{tt-macros}
2+
% clifford hopf spin tt math draft
3+
\tag{tt}
4+
5+
% definition theorem lemma construction observation
6+
% convention corollary axiom example exercise proof
7+
% discussion remark notation
8+
\refdeft{identity functor}{3.1, example 1}{kostecki2011introduction}{
9+
\p{
10+
The \newvocab{identity functor} #{\id_{\C}: \C \to \C} (denoted also by #{ 1_{\C}: \C \to \C}), defined by #{\id_{\C}(X)=X} and #{\id_{\C}(f)=f} for every #{X \in \Ob(\C)} and every #{f \in \Arr(\C)}.
11+
}
12+
}

trees/tt-003Q.tree

Lines changed: 27 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,27 @@
1+
\import{tt-macros}
2+
% clifford hopf spin tt math draft
3+
\tag{tt}
4+
5+
% definition theorem lemma construction observation
6+
% convention corollary axiom example exercise proof
7+
% discussion remark notation
8+
\refdeft{constant functor}{3.1, example 2}{kostecki2011introduction}{
9+
\p{
10+
The \newvocab{constant functor} #{\Delta_O: \C \to \D} which assigns a fixed #{O \in \mathrm{Ob}(\D)} to any object of #{\C} and #{\id_O}, the identity arrow on #{O}, to any arrows from #{\C} :
11+
12+
\tikz{
13+
\begin{tikzcd}
14+
X &&&& O \\
15+
& {} && {} \\
16+
Y &&&& O \\
17+
\C &&&& \D
18+
\arrow["f"', from=1-1, to=3-1]
19+
\arrow["{\id_O}", from=1-5, to=3-5]
20+
\arrow["{\Delta_O}", Rightarrow, maps to, from=2-2, to=2-4]
21+
\arrow["{\Delta_O}", Rightarrow, from=4-1, to=4-5]
22+
\end{tikzcd}
23+
}
24+
25+
with compositions and identities preserved in a trivial way.}
26+
27+
}

trees/tt-003R.tree

Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,11 @@
1+
\import{tt-macros}
2+
% clifford hopf spin tt math draft
3+
\tag{tt}
4+
5+
% definition theorem lemma construction observation
6+
% convention corollary axiom example exercise proof
7+
% discussion remark notation
8+
\refdeft{forgetful functor}{3.1, example 3}{kostecki2011introduction}{
9+
\p{The \newvocab{forgetful functor}, which \em{forgets} some part of structure, however arrows, compositions and identities are preserved.
10+
}
11+
}

trees/tt-003S.tree

Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,11 @@
1+
\import{tt-macros}
2+
% clifford hopf spin tt math draft
3+
\tag{tt}
4+
5+
% definition theorem lemma construction observation
6+
% convention corollary axiom example exercise proof
7+
% discussion remark notation
8+
\refdeft{inclusion functor}{3.1, example 4}{kostecki2011introduction}{
9+
\p{
10+
Let #{\C} be a \vocabk{subcategory}{tt-002Y} of #{\D}. The \newvocab{inclusion functor}, denoted #{\hookrightarrow}, sends objects and arrows of #{\D} into themselves in category #{\D}.}
11+
}

trees/tt-003T.tree

Lines changed: 12 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,12 @@
1+
\import{tt-macros}
2+
% clifford hopf spin tt math draft
3+
\tag{tt}
4+
5+
% definition theorem lemma construction observation
6+
% convention corollary axiom example exercise proof
7+
% discussion remark notation
8+
\refdeft{diagonal functor}{3.1, example 6}{kostecki2011introduction}{
9+
\p{
10+
The \newvocab{diagonal functor} #{\Delta: \C \to \C \times \C, \Delta(X)=(X, X)} and #{\Delta(f)=(f, f)} for #{f: X \to X^{\prime}}.
11+
}
12+
}

0 commit comments

Comments
 (0)