diff --git a/trees/uts-0002.tree b/trees/uts-0002.tree index 93c3b52..2baa71d 100644 --- a/trees/uts-0002.tree +++ b/trees/uts-0002.tree @@ -12,18 +12,16 @@ \latex{ -\begin{minipage}{5.8in} \setlength{\parindent}{10pt} \setlength{\parskip}{3ex plus 0.5ex minus 0.2ex} The Pin group of $(V, q)$ is the subgroup $\operatorname{Pin}(V, q)$ of $P(V, q)$ generated by the elements $v \in V$ with $q(v) = \pm 1$. The associated spin group of $(V, q)$ is then defined by -$ +\[ \operatorname{Spin}(V, q)=\operatorname{Pin}(V, q) \cap \mathrm{Cl}^0(V, q) -$ +\] -\end{minipage} } \p{See [[lawson2016spin]].}