Skip to content

Latest commit

 

History

History
366 lines (312 loc) · 19.3 KB

author_RUN_AMAX.md

File metadata and controls

366 lines (312 loc) · 19.3 KB

DETAILS

Running Experiments

Pre-training:

Explained in the repos README.md as this, to pre-train ViT-B:

OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node=8 run_pretrain.py --batch_size 256 --model MIM_vit_base_patch16 --hog_nbins 9 --mask_ratio 0.75 --epochs 1600 --warmup_epochs 40 --blr 2e-4 --weight_decay 0.05 --data_path /path/to/imagenet/ --output_dir /output_dir/

Train Configurations:

  • Effective batch size is 2048
  • The learning rate is set to 2e-4 (based on repo README)
  • accum_iter set to 2 for 4 gpus (normally 8).
  • warm-up epoch is set to 10 for 100 epochs and 40 for all other epoch settings.
  • Note that min_lr is not set in the repo's command and is not explained in the paper.
  • Code uses as many gpus as there are available, hence, set CUDA_VISIBLE_DEVICES. (optional CUDA_VISIBLE_DEVICES=4,5,6,7 )

Freezeout Pretrain for 100 epochs:

bash record.sh CUDA_VISIBLE_DEVICES=4,5,6,7 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=4 --master_port=29501 run_pretrain.py \
--epochs 100 --batch_size 256 --warmup_epochs 10 \
--blr 2e-4 --world_size 4 --accum_iter 2 --model MIM_vit_base_patch16 \
--data_path /raid/utku/datasets/imagenet/classification/train/image_folders \
--output_dir pretrain/full_pretrain_out_freezeout_cubic_t0_85 --log_dir full_pretrain_out_freezeout_cubic_t0_85 \
--how_scale cubic --t_0 0.85
  • 8 GPU:
bash record.sh CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=8 --master_port=29502 run_pretrain.py \
--epochs 100 --batch_size 256 --warmup_epochs 10 \
--blr 2e-4 --world_size 8 --accum_iter 1 --model MIM_vit_base_patch16 \
--data_path /raid/utku/datasets/imagenet/classification/train/image_folders \
--output_dir pretrain/full_pretrain_out_freezeout_cubic_t0_8_fast --log_dir full_pretrain_out_freezeout_cubic_t0_8_fast \
--how_scale cubic --t_0 0.8
  • 1 GPU:
bash record.sh CUDA_VISIBLE_DEVICES=5 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=1 --master_port=29505  run_pretrain.py \
--epochs 100 --batch_size 256 --warmup_epochs 10 \
--blr 2e-4 --world_size 1 --accum_iter 8 --model MIM_vit_base_patch16 \
--data_path /raid/utku/datasets/imagenet/classification/train/image_folders \
--output_dir pretrain/bench_3/full_pretrain_out_freezeout_cubic_t0_8_1gpu_save5 --log_dir bench_3/full_pretrain_out_freezeout_cubic_t0_8_1gpu_save5 \
--how_scale cubic --t_0 0.8
  • NON LAYER WISE AND NOT SCALE LR
bash record.sh CUDA_VISIBLE_DEVICES=1 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=1 --master_port=29501  run_pretrain.py \
--epochs 100 --batch_size 256 --warmup_epochs 10 \
--blr 2e-4 --world_size 1 --accum_iter 8 --model MIM_vit_base_patch16 \
--data_path /raid/utku/datasets/imagenet/classification/train/image_folders \
--output_dir pretrain/non_scale_layerwise/freezeout_cubic_t0_8_1234_loss_scaler --log_dir pretrain/non_scale_layerwise/freezeout_cubic_t0_8_1234_loss_scaler \
--how_scale cubic --t_0 0.8 \
--non_layerwise_lr

bash record.sh CUDA_VISIBLE_DEVICES=5 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=1 --master_port=29505  run_pretrain.py \
--epochs 100 --batch_size 256 --warmup_epochs 10 \
--blr 2e-4 --world_size 1 --accum_iter 8 --model MIM_vit_base_patch16 \
--data_path /raid/utku/datasets/imagenet/classification/train/image_folders \
--output_dir pretrain/non_scale_layerwise/freezeout_cubic_t0_8_1overk_loss_scaler_all_stages --log_dir pretrain/non_scale_layerwise/freezeout_cubic_t0_8_1overk_loss_scaler_all_stages \
--how_scale cubic --t_0 0.8 \
--non_layerwise_lr --all_stages


bash record.sh CUDA_VISIBLE_DEVICES=7 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=1 --master_port=29507  run_pretrain.py \
--epochs 100 --batch_size 256 --warmup_epochs 10 \
--blr 2e-4 --world_size 1 --accum_iter 8 --model MIM_vit_base_patch16 \
--data_path /raid/utku/datasets/imagenet/classification/train/image_folders \
--output_dir pretrain/non_scale_layerwise/freezeout_cubic_t0_8_all_stages --log_dir pretrain/non_scale_layerwise/freezeout_cubic_t0_8_all_stages \
--how_scale cubic --t_0 0.8 \
--non_layerwise_lr --all_stages

bash record.sh CUDA_VISIBLE_DEVICES=4 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=1 --master_port=29509  run_pretrain.py \
--epochs 100 --batch_size 1024 --warmup_epochs 10 \
--blr 2e-4 --world_size 1 --accum_iter 2 --model MIM_vit_base_patch16 \
--data_path /raid/utku/datasets/imagenet/classification/train/image_folders \
--output_dir pretrain/non_scale_layerwise/freezeout_cubic_t0_1_like_no_freezeout --log_dir pretrain/non_scale_layerwise/freezeout_cubic_t0_1_like_no_freezeout \
--how_scale cubic --t_0 1.0 \
--non_layerwise_lr
  • DEBUG TRAIN
bash record.sh CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=8 --master_port=29501 run_pretrain.py \
--epochs 9 --batch_size 32 --warmup_epochs 1 \
--blr 2e-4 --world_size 8 --accum_iter 1 --model MIM_vit_base_patch16 \
--data_path /raid/utku/datasets/imagenet/classification/train/demo_dataset \
--output_dir pretrain/debug --log_dir debug --debug \
--how_scale cubic --t_0 0.8

Regular Pretrain for 100 epochs:

bash record.sh  CUDA_VISIBLE_DEVICES=4,5,6,7 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=4 --master_port=29502 run_pretrain.py \
--epochs 100 --batch_size 256 --warmup_epochs 10 \
--blr 2e-4 --world_size 4 --accum_iter 2 --weight_decay 0.05 \
--model MIM_vit_base_patch16 --hog_nbins 9 --mask_ratio 0.75 \
--data_path /raid/utku/datasets/imagenet/classification/train/image_folders \
--output_dir pretrain/full_pretrain_out --log_dir full_pretrain_out
  • 8 GPU:
bash record.sh CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=8 --master_port=29502 run_pretrain.py \
--epochs 100 --batch_size 256 --warmup_epochs 10 \
--blr 2e-4 --world_size 8 --accum_iter 1 --weight_decay 0.05 \
--model MIM_vit_base_patch16 --hog_nbins 9 --mask_ratio 0.75 \
--data_path /raid/utku/datasets/imagenet/classification/train/image_folders \
--output_dir pretrain/full_pretrain_out_fast --log_dir full_pretrain_out_fast
  • 1 GPU
bash record.sh CUDA_VISIBLE_DEVICES=7 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=1 --master_port=29501 run_pretrain.py \
--epochs 100 --batch_size 256 --warmup_epochs 10 \
--blr 2e-4 --world_size 1 --accum_iter 8 --weight_decay 0.05 \
--model MIM_vit_base_patch16 --hog_nbins 9 --mask_ratio 0.75 \
--data_path /raid/utku/datasets/imagenet/classification/train/image_folders \
--output_dir pretrain/full_pretrain_out_1gpu --log_dir full_pretrain_out_1gpu

Fine Tuning:

Explained in the repos README.md as this, to finetune ViT-B:

OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node=8 run_finetune.py --batch_size 128 --model vit_base_patch16 --finetune /path/to/checkpoint.pth --epochs 100 --warmup_epochs 20 --lr 2e-3 --min_lr 1e-5 --layer_decay 0.65 --weight_decay 0.05 --drop_path 0.1 --reprob 0.25 --mixup 0.8 --cutmix 1.0 --dist_eval --data_path /path/to/imagenet/ --output_dir /output_dir/

Training configurations

  • Effective batch size is 1024.
  • For 100-epoch pre-trained model, we set lr=4e-3, layer_decay=0.75 and min_lr=1e-6

Finetune Freezeout-100 epochs pre-trained model:

bash record.sh CUDA_VISIBLE_DEVICES=4,5,6,7 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=4 --master_port=29503 run_finetune.py \
--world_size 4 --accum_iter 2 \
--batch_size 128 --model vit_base_patch16 --finetune /raid/home_yedek/utku/ViTFreeze/ViT/full_pretrain_out_freezeout_cubic_t0_8_fast/checkpoint-99.pth \
--epochs 100 --warmup_epochs 20 --lr 4e-3 --min_lr 1e-6 --layer_decay 0.75 \
--weight_decay 0.05 --drop_path 0.1 --reprob 0.25 --mixup 0.8 --cutmix 1.0 --dist_eval \
--data_path /raid/utku/datasets/imagenet/classification/ \
--output_dir finetune/full_finetune_out_freezeout_cubic_t0_8_fast/ --log_dir finetune/full_finetune_out_freezeout_cubic_t0_8_fast
  • 8 GPU:
bash record.sh CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=8 --master_port=29500 run_finetune.py \
--world_size 8 --accum_iter 1 \
--batch_size 128 --model vit_base_patch16 --finetune /raid/home_yedek/utku/ViTFreeze/ViT/full_pretrain_out_freezeout_cubic_t0_8_fast/checkpoint-99.pth \
--epochs 100 --warmup_epochs 20 --lr 4e-3 --min_lr 1e-6 --layer_decay 0.75 \
--weight_decay 0.05 --drop_path 0.1 --reprob 0.25 --mixup 0.8 --cutmix 1.0 --dist_eval \
--data_path /raid/utku/datasets/imagenet/classification/ \
--output_dir finetune/full_finetune_out_freezeout_cubic_t0_8_fast/ --log_dir finetune/full_finetune_out_freezeout_cubic_t0_8_fast

-- 2 GPU:

bash record.sh CUDA_VISIBLE_DEVICES=0,1 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=2 --master_port=29500 run_finetune.py \
--world_size 2 --accum_iter 4 \
--batch_size 128 --model vit_base_patch16 --finetune /raid/home_yedek/utku/ViTFreeze/ViT/full_pretrain_out_freezeout_cubic_t0_8_fast/checkpoint-99.pth \
--epochs 100 --warmup_epochs 20 --lr 4e-3 --min_lr 1e-6 --layer_decay 0.75 \
--weight_decay 0.05 --drop_path 0.1 --reprob 0.25 --mixup 0.8 --cutmix 1.0 --dist_eval \
--data_path /raid/utku/datasets/imagenet/classification/ \
--output_dir finetune/full_finetune_out_freezeout_cubic_t0_8_fast/ --log_dir finetune/full_finetune_out_freezeout_cubic_t0_8_fast

bash record.sh CUDA_VISIBLE_DEVICES=1,2 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=2 --master_port=29504 run_finetune.py \
--world_size 2 --accum_iter 1 \
--batch_size 512 --model vit_base_patch16 --finetune /raid/utku/ViTFreeze/ViT/pretrain/non_scale_layerwise/freezeout_cubic_t0_8/checkpoint-49.pth \
--epochs 100 --warmup_epochs 20 --lr 4e-3 --min_lr 1e-6 --layer_decay 0.75 \
--weight_decay 0.05 --drop_path 0.1 --reprob 0.25 --mixup 0.8 --cutmix 1.0 --dist_eval \
--data_path /raid/utku/datasets/imagenet/classification/ \
--output_dir finetune/non_scale_layerwise/freezeout_cubic_t0_8_checkpoint-49 --log_dir finetune/non_scale_layerwise/freezeout_cubic_t0_8_checkpoint-49

-- 1 GPU:

bash record.sh CUDA_VISIBLE_DEVICES=4 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=1 --master_port=29504 run_finetune.py \
--world_size 1 --accum_iter 8 \
--batch_size 128 --model vit_base_patch16 --finetune /raid/utku/ViTFreeze/ViT/pretrain/non_scale_layerwise/freezeout_cubic_t0_6/checkpoint-99.pth \
--epochs 100 --warmup_epochs 20 --lr 4e-3 --min_lr 1e-6 --layer_decay 0.75 \
--weight_decay 0.05 --drop_path 0.1 --reprob 0.25 --mixup 0.8 --cutmix 1.0 --dist_eval \
--data_path /raid/utku/datasets/imagenet/classification/ \
--output_dir finetune/non_scale_layerwise/freezeout_cubic_t0_6_checkpoint-99 --log_dir finetune/non_scale_layerwise/freezeout_cubic_t0_6_checkpoint-99


bash record.sh CUDA_VISIBLE_DEVICES=1 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=1 --master_port=29501 run_finetune.py \
--world_size 1 --accum_iter 8 \
--batch_size 128 --model vit_base_patch16 --finetune /raid/utku/ViTFreeze/ViT/pretrain/non_scale_layerwise/freezeout_cubic_t0_7/checkpoint-99.pth \
--epochs 100 --warmup_epochs 20 --lr 4e-3 --min_lr 1e-6 --layer_decay 0.75 \
--weight_decay 0.05 --drop_path 0.1 --reprob 0.25 --mixup 0.8 --cutmix 1.0 --dist_eval \
--data_path /raid/utku/datasets/imagenet/classification/ \
--output_dir finetune/non_scale_layerwise/freezeout_cubic_t0_7_checkpoint-99 --log_dir finetune/non_scale_layerwise/freezeout_cubic_t0_7_checkpoint-99

bash record.sh CUDA_VISIBLE_DEVICES=2 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=1 --master_port=29502 run_finetune.py \
--world_size 1 --accum_iter 8 \
--batch_size 128 --model vit_base_patch16 --finetune /raid/utku/ViTFreeze/ViT/pretrain/non_scale_layerwise/freezeout_cubic_t0_8/checkpoint-99.pth \
--epochs 100 --warmup_epochs 20 --lr 4e-3 --min_lr 1e-6 --layer_decay 0.75 \
--weight_decay 0.05 --drop_path 0.1 --reprob 0.25 --mixup 0.8 --cutmix 1.0 --dist_eval \
--data_path /raid/utku/datasets/imagenet/classification/ \
--output_dir finetune/non_scale_layerwise/freezeout_cubic_t0_8_checkpoint-99 --log_dir finetune/non_scale_layerwise/freezeout_cubic_t0_8_checkpoint-99


bash record.sh CUDA_VISIBLE_DEVICES=3 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=1 --master_port=29503 run_finetune.py \
--world_size 1 --accum_iter 8 \
--batch_size 128 --model vit_base_patch16 --finetune /raid/home_yedek/utku/ViTFreeze/ViT_orig/full_pretrain_out_slow/checkpoint-80.pth \
--epochs 100 --warmup_epochs 20 --lr 4e-3 --min_lr 1e-6 --layer_decay 0.75 \
--weight_decay 0.05 --drop_path 0.1 --reprob 0.25 --mixup 0.8 --cutmix 1.0 --dist_eval \
--data_path /raid/utku/datasets/imagenet/classification/ \
--output_dir finetune/full_pretrain_out_slow/checkpoint-80 --log_dir finetune/full_pretrain_out_slow/checkpoint-80



bash record.sh CUDA_VISIBLE_DEVICES=5 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=1 --master_port=29505 run_finetune.py \
--world_size 1 --accum_iter 8 \
--batch_size 128 --model vit_base_patch16 --finetune /raid/home_yedek/utku/ViTFreeze/ViT_orig/full_pretrain_out_slow/checkpoint-60.pth \
--epochs 100 --warmup_epochs 20 --lr 4e-3 --min_lr 1e-6 --layer_decay 0.75 \
--weight_decay 0.05 --drop_path 0.1 --reprob 0.25 --mixup 0.8 --cutmix 1.0 --dist_eval \
--data_path /raid/utku/datasets/imagenet/classification/ \
--output_dir finetune/full_pretrain_out_slow/checkpoint-60 --log_dir finetune/full_pretrain_out_slow/checkpoint-60


bash record.sh CUDA_VISIBLE_DEVICES=5 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=1 --master_port=29505 run_finetune.py \
--world_size 1 --accum_iter 8 \
--batch_size 128 --model vit_base_patch16 --finetune /raid/utku/ViTFreeze/ViT/pretrain/non_scale_layerwise_failed/freezeout_cubic_t0_8/checkpoint-59.pth \
--epochs 100 --warmup_epochs 20 --lr 4e-3 --min_lr 1e-6 --layer_decay 0.75 \
--weight_decay 0.05 --drop_path 0.1 --reprob 0.25 --mixup 0.8 --cutmix 1.0 --dist_eval \
--data_path /raid/utku/datasets/imagenet/classification/ \
--output_dir finetune/non_scale_layerwise/freezeout_cubic_t0_8_checkpoint-59 --log_dir finetune/non_scale_layerwise/freezeout_cubic_t0_8_checkpoint-59

-- Resume 1 GPU:

bash record.sh CUDA_VISIBLE_DEVICES=7 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=1 --master_port=29507 run_finetune.py 
--resume /raid/home_yedek/utku/ViTFreeze/ViT/finetune/bench_1/full_finetune_out_freezeout_cubic_t0_85/checkpoint-40.pth \
--world_size 1 --accum_iter 8 \
--batch_size 128 --model vit_base_patch16 \
--epochs 100 --warmup_epochs 20 --lr 4e-3 --min_lr 1e-6 --layer_decay 0.75 \
--weight_decay 0.05 --drop_path 0.1 --reprob 0.25 --mixup 0.8 --cutmix 1.0 --dist_eval \
--data_path /raid/utku/datasets/imagenet/classification/ \
--output_dir finetune/bench_1/full_finetune_out_freezeout_cubic_t0_85 --log_dir finetune/bench_1/full_finetune_out_freezeout_cubic_t0_85

Finetune Regular-100 epochs pre-trained model:

bash record.sh CUDA_VISIBLE_DEVICES=4,5,6,7 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=4 --master_port=29504 run_finetune.py \
--world_size 4 --accum_iter 2 \
--batch_size 128 --model vit_base_patch16 --finetune /raid/home_yedek/utku/ViTFreeze/ViT/full_pretrain_out/checkpoint-99.pth \
--epochs 100 --warmup_epochs 20 --lr 4e-3 --min_lr 1e-6 --layer_decay 0.75 \
--weight_decay 0.05 --drop_path 0.1 --reprob 0.25 --mixup 0.8 --cutmix 1.0 --dist_eval \
--data_path /raid/utku/datasets/imagenet/classification/ \
--output_dir full_finetune_out/ --log_dir full_finetune_out
  • 8 GPU:
bash record.sh CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=8 --master_port=29504 run_finetune.py \
--world_size 8 --accum_iter 1 \
--batch_size 128 --model vit_base_patch16 --finetune /raid/home_yedek/utku/ViTFreeze/ViT/full_pretrain_out/checkpoint-99.pth \
--epochs 100 --warmup_epochs 20 --lr 4e-3 --min_lr 1e-6 --layer_decay 0.75 \
--weight_decay 0.05 --drop_path 0.1 --reprob 0.25 --mixup 0.8 --cutmix 1.0 --dist_eval \
--data_path /raid/utku/datasets/imagenet/classification/ \
--output_dir full_finetune_out/ --log_dir full_finetune_out

Linear Probing:

  • 2048 batch size * 8 gpu (or accum_iter)
  • blr is 0.1 ---> lr = 0.1*2048/256 * 8 = 6.4
  • weight_decay is 0.0
  • epochs 90
  • model vit_base_patch16
  • cls_token
  • world_size 1
  • accum_iter 8
bash record.sh CUDA_VISIBLE_DEVICES=6 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=1 --master_port=29506 run_linprobe.py \
--world_size 1 --accum_iter 8 \
--batch_size 2048 --model vit_base_patch16 --finetune /raid/home_yedek/utku/ViTFreeze/ViT/pretrain/bench_1/full_pretrain_out_freezeout_cubic_t0_8_fast/checkpoint-99.pth \
--epochs 90 --warmup_epochs 10 --blr 0.1 \
--weight_decay 0.0 --dist_eval \
--data_path /raid/utku/datasets/imagenet/classification/ \
--output_dir linprob_out/bench_1 --log_dir linprob_out/bench_1
bash record.sh CUDA_VISIBLE_DEVICES=7 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=1 --master_port=29507 run_linprobe.py \
--world_size 1 --accum_iter 8 \
--batch_size 2048 --model vit_base_patch16 --finetune /raid/home_yedek/utku/ViTFreeze/ViT/pretrain/bench_2/full_pretrain_out_freezeout_cubic_t0_65_1gpu/checkpoint-99.pth \
--epochs 90 --warmup_epochs 10 --blr 0.1 \
--weight_decay 0.0 --dist_eval \
--data_path /raid/utku/datasets/imagenet/classification/ \
--output_dir linprob_out/bench_2 --log_dir linprob_out/bench_2

k-NN Clasification:

  • results should be independent of batch-size
  • model vit_base_patch16
  • orig image is 256, and it is cropped to 224
  • cls_token
  • world_size 1
  • accum_iter 8
bash record.sh CUDA_VISIBLE_DEVICES=1 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=1 --master_port=29501 run_knn.py \
--world_size 1 \
--batch_size 128 --model vit_base_patch16 --finetune /raid/utku/ViTFreeze/ViT/pretrain/non_scale_layerwise/freezeout_cubic_t0_8/checkpoint-99.pth \
--dist_eval \
--data_path /raid/utku/datasets/imagenet/classification/ \
--output_dir knn_out/non_scale_layerwise/freezeout_cubic_t0_8_checkpoint-99 --log_dir knn_out/non_scale_layerwise/freezeout_cubic_t0_8_checkpoint-99

bash record.sh CUDA_VISIBLE_DEVICES=2 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=1 --master_port=29502 run_knn.py \
--world_size 1 \
--batch_size 128 --model vit_base_patch16 --finetune /raid/utku/ViTFreeze/ViT/pretrain/non_scale_layerwise/freezeout_cubic_t0_7/checkpoint-99.pth \
--dist_eval \
--data_path /raid/utku/datasets/imagenet/classification/ \
--output_dir knn_out/non_scale_layerwise/freezeout_cubic_t0_7_checkpoint-99 --log_dir knn_out/non_scale_layerwise/freezeout_cubic_t0_7_checkpoint-99

bash record.sh CUDA_VISIBLE_DEVICES=3 OMP_NUM_THREADS=1 \
python3 -m torch.distributed.launch --nproc_per_node=1 --master_port=29503 run_knn.py \
--world_size 1 \
--batch_size 128 --model vit_base_patch16 --finetune /raid/utku/ViTFreeze/ViT/pretrain/non_scale_layerwise/freezeout_cubic_t0_6/checkpoint-99.pth \
--dist_eval \
--data_path /raid/utku/datasets/imagenet/classification/ \
--output_dir knn_out/non_scale_layerwise/freezeout_cubic_t0_6_checkpoint-99 --log_dir knn_out/non_scale_layerwise/freezeout_cubic_t0_6_checkpoint-99