-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathreadcropimages.m
257 lines (233 loc) · 7.82 KB
/
readcropimages.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
% This Script is used to train a CNN classifier, which contains code to
% read in dataset images, construct a CNN, train and test a CNN.
%
%
%% Step 1: read in loop image
folder = 'loops_notsogood';
%folder = 'loops';
images = dir([folder,'\*.jpg']);
%%
numImgs = size(images,1);
trainingset=zeros(64,64,3,numImgs);
parfor fileID = 1:numImgs
imagename = images(fileID).name;
filename = fullfile(images(fileID).folder,imagename);
I = imread(filename);
% Some images may be rgb. Convert to grayscale image.
if ~ismatrix(I)
I = rgb2gray(I);
end
I2 = imadjust(I);
I3 = imgaussfilt(I,2);
I = cat(3,I,I2,I3);
% Resize the image as required for the CNN.
Iout = imresize(I, [64 64]);
trainingset(:,:,:,fileID) = Iout;
end
%% Step 2: read in nonloop image
negfolder = 'nonloop_notsogood';
%negfolder = 'nonloop';
negimages = dir([negfolder,'\*.jpg']);
%%
numImgs = size(negimages,1);
negtrainingset=zeros(64,64,3,numImgs);
parfor fileID = 1:numImgs
imagename = negimages(fileID).name;
filename = fullfile(negimages(fileID).folder,imagename);
I = imread(filename);
% Some images may be rgb. Convert to grayscale image.
if ~ismatrix(I)
I = rgb2gray(I);
end
I2 = imadjust(I);
I3 = imgaussfilt(I,2);
I = cat(3,I,I2,I3);
% Resize the image as required for the CNN.
Iout = imresize(I, [64 64]);
negtrainingset(:,:,:,fileID) = Iout;
end
%% Step 3: Add labels to loop and nonloop data
largeSet2 = cat(4,trainingset,negtrainingset);
largeSet2lbs = cell(size(largeSet2,4),1);
largeSet2lbs(1:size(trainingset,4))={'loop'};
largeSet2lbs(size(trainingset,4)+1:end)={'nonloop'};
largeSet2lbs = categorical(largeSet2lbs);
% ramdomize the dataset
randidx = randperm(size(largeSet2lbs,1));
largeSet2 = largeSet2(:,:,:,randidx);
largeSet2lbs = largeSet2lbs(randidx);
% split the data into training set and testing set
% [trainidx, validx, testidx] = dividerand(size(clean_datasetLbs1,1),0.7,0,0.3);
% trainimgs = clean_dataset1(:,:,:,trainidx);
% trainlbs = clean_datasetLbs1(trainidx);
% testimgs = clean_dataset1(:,:,:,testidx);
% testlbs = clean_datasetLbs1(testidx);
% trainimgs = uint8(trainimgs);
% testimgs = uint8(testimgs);
%%
%%%% (Alternatively)load previously saved dataset to save time
% load largeSet2.mat
%%%% To obtain the test image set, change the directory and rerun the above
%%%% code.
% or simply load complete workspace saved
% load cnn_training.mat
%% Step 4: Display a few of the training images, resizing them for display.
numImageCategories = 2;
categories(largeSet2)
figure
thumbnails = uint8(largeSetAll(:,:,1,101:200));
thumbnails = imresize(thumbnails, [64 64]);
montage(thumbnails)
%% Step 5: Construct simple CNN strucuture
[height, width, numChannels, ~] = size(largeSet2);
imageSize = [height width numChannels];
inputLayer = imageInputLayer(imageSize)
%%
% Convolutional layer parameters
filterSize = [10 10];
numFilters = 64;
middleLayers = [
convolution2dLayer(filterSize, numFilters, 'Stride', 6, 'Padding', 0)
% Next add the ReLU layer:
reluLayer()
maxPooling2dLayer(3, 'Stride', 2)
% Repeat the 3 core layers to complete the middle of the network.
convolution2dLayer(filterSize, numFilters, 'Stride', 6, 'Padding', 0)
reluLayer()
maxPooling2dLayer(3, 'Stride',2)
convolution2dLayer(filterSize, numFilters, 'Stride', 6, 'Padding', 0)
reluLayer()
maxPooling2dLayer(3, 'Stride',2)
]
%%
finalLayers = [
% Add a fully connected layer with 64 output neurons. The output size of
% this layer will be an array with a length of 64.
fullyConnectedLayer(64)
% Add an ReLU non-linearity.
reluLayer()
fullyConnectedLayer(numImageCategories)
% Add the softmax loss layer and classification layer. The final layers use
% the output of the fully connected layer to compute the categorical
% probability distribution over the image classes. During the training
% process, all the network weights are tuned to minimize the loss over this
% categorical distribution.
softmaxLayer
classificationLayer
]
%%
layers = [
inputLayer
middleLayers
finalLayers
]
layers(2).Weights = 0.0001 * randn([filterSize numChannels numFilters]);
%%
functions = { ...
@plotTrainingAccuracy, ...
@(info) stopTrainingAtThreshold(info,95)};
% Set the network training options
opts = trainingOptions('sgdm', ...
'Momentum', 0.9, ...
'InitialLearnRate', 0.001, ...
'LearnRateSchedule', 'piecewise', ...
'LearnRateDropFactor', 0.05, ...
'LearnRateDropPeriod', 8, ...
'L2Regularization', 0.08, ...
'MaxEpochs', 40, ...
'MiniBatchSize', 128, ...
'Verbose', true, ...
'OutputFcn', functions,...
'CheckpointPath','.\cnncheckpoint');
% A trained network is loaded from disk to save time when running the
% example. Set this flag to true to train the network.
%% Step 6: train a CNN
figure;
loopNet = trainNetwork(largeSet2, largeSet2lbs, layers, opts);
save('cnn_training.mat')
%%
% The following set is used for cleaning up the dataset.
% %% clean dataset
% result =classify(loopNet, largeSet2s);
% accuracy = sum(result == largeSet2slbs)/numel(largeSet2slbs)
%
% %%
% falseAlarms = (result ~= largeSetLbs2) & (result == 'loop');
% figure
% thumbnails = uint8(largeSet2(:,:,1,falseAlarms));
% thumbnails = imresize(thumbnails, [64 64]);
% montage(thumbnails(:,:,:,1:100))
% %%
% for i = 1:sum(falseAlarms)
% imagename = ['clean_loops\fa_',num2str(i),'.jpg'];
% imwrite(uint8(thumbnails(:,:,:,i)), imagename);
% end
% %%
% falseNegative = (result ~= largeSetLbs2) & (result == 'nonloop');
% figure
% thumbnails = uint8(largeSet2(:,:,1,falseNegative));
% thumbnails = imresize(thumbnails, [64 64]);
% montage(thumbnails(:,:,:,1:100))
% %%
% for i = 1:sum(falseNegative)
% imagename = ['clean_nonloop\fn_',num2str(i),'.jpg'];
% imwrite(uint8(thumbnails(:,:,:,i)), imagename);
% end
% %% keep the correct ones
% trueClf = (result == largeSetLbs2);
% trueImgs = uint8(largeSet2(:,:,:,trueClf));
% trueLbs = largeSetLbs2(trueClf);
% %% re-read the debuged ones
% largeSet2s = cat(4, trueImgs, largeSet2);
% largeSet2slbs = cat(1, trueLbs, largeSet2lbs);
%
% %%
% figure;
% loopNet = trainNetwork(largeSet1, largeSetLbs1, loopNet3D4.Layers, opts);
% save('cnn_training.mat')
% %%
% % Extract the first convolutional layer weights
% w = loopNet.Layers(2).Weights;
%
% % rescale and resize the weights for better visualization
% w = mat2gray(w);
%
% w = imresize(w, [100 100]);
% w = w(:,:,2,:);
% figure
% montage(w)
% %%
% lasttime = load('.\cnncheckpoint\convnet_checkpoint__9016__2017_08_15__13_37_59.mat');
% %%
% result2=classify(loopNet, cropimages_new);
% accuracy = sum(result2 == cropimglabels_new)/numel(cropimglabels_new)
%
% %%
% falseAlarms = (result2 ~= cropimglabels_new) & (result2 == 'loop');
% figure
% thumbnails = uint8(cropimages_new(:,:,1,falseAlarms));
% thumbnails = imresize(thumbnails, [64 64]);
% montage(thumbnails)
% %%
% falseNegative = (result2 ~= cropimglabels_new) & (result2 == 'nonloop');
% figure
% thumbnails = uint8(cropimages_new(:,:,1,falseNegative));
% thumbnails = imresize(thumbnails, [64 64]);
% montage(thumbnails)
%% Step 7: Run the network on the test set.
[YTest,r] = classify(loopNet3D7, cropimages_new);
% Calculate the accuracy.
accuracy = sum(YTest == cropimglabels_new)/numel(cropimglabels_new)
%% Step 8: Plot the precision-recall curve
[X,Y,T] = perfcurve(cropimglabels_new,r(:,1),'loop','XCrit','prec');
%%
figure
plot(X,Y,'LineWidth',2)
xlabel('Precision')
ylabel('Recall')
title('Precision and Recall Curve for Loop Classification ')
% %%
% YTest = classify(loopNet3D3, largeSet1(:,:,:,1:45000));
%
% % Calculate the accuracy.
% accuracy = sum(YTest == largeSetLbs1(1:45000))/numel(largeSetLbs1(1:45000))