@@ -8,8 +8,8 @@ \section{Base change}
8
8
with order $ n!$
9
9
(since $ S_n(F) \subseteq \GL _n(E)$ is already reserved for the symmetric space).
10
10
11
- \subsection {Background on the Satake transformation in general }
12
- We recall a general form of the Satake transformation , which will be used later.
11
+ \subsection {Background on the Satake transform in general }
12
+ We recall a general form of the Satake transform , which will be used later.
13
13
14
14
For this subsection, $ G$ will denote an arbitrary connected reductive group
15
15
over some non-Archimedean local field $ F$ .
@@ -50,7 +50,7 @@ \subsection{Background on the Satake transformation in general}
50
50
and once when $ G$ is a unitary group.
51
51
52
52
53
- \subsection {The Satake transformation for the particular Hecke algebras $ \HH (\GL _n(E))$ and $ \HH (\U (\VV _n^+))$ }
53
+ \subsection {The Satake transform for the particular Hecke algebras $ \HH (\GL _n(E))$ and $ \HH (\U (\VV _n^+))$ }
54
54
To take the Satake transform of $ \HH (\U (\VV _n^+))$ , we define the following abbreviations.
55
55
\begin {itemize }
56
56
\ii Let $ T$ denote the split diagonal torus of $ \GL _n$ .
@@ -95,11 +95,11 @@ \subsection{The Satake transformation for the particular Hecke algebras $\HH(\GL
95
95
% & $\left< \frac{m-1}{2}, \frac{m-3}{2}, \dots, -\frac{m-1}{2} \right>$??
96
96
\bottomrule
97
97
\end {tabular }
98
- \caption {Data needed to run the Satake transformation .}
98
+ \caption {Data needed to run the Satake transform .}
99
99
\label {tab:satakestuff }
100
100
\end {table }
101
101
102
- Hence, the Satake transformations obtained can be viewed as
102
+ Hence, the Satake transforms obtained can be viewed as
103
103
\begin {align* }
104
104
\Sat &\colon \HH (\GL _n(E)) \xrightarrow {\sim } \QQ [T(E) / T(\OO _E)]^{\Sym (n)} \\
105
105
\Sat &\colon \HH (\U (\VV _n^+))\xrightarrow {\sim } \QQ [A(F) / A(\OO _F)]^{W_m}
@@ -132,11 +132,11 @@ \subsection{The Satake transformation for the particular Hecke algebras $\HH(\GL
132
132
\Sat &\colon \HH (\U (\VV _n^+)) \xrightarrow {\sim } \QQ [Y_1^{\pm }, \dots , Y_m^{\pm }]^{W_m}.
133
133
\end {align* }
134
134
135
- \subsection {Relation of Satake transformation to base change }
135
+ \subsection {Relation of Satake transform to base change }
136
136
Let
137
137
\[ \BC \colon \HH (\GL _n(E)) \to \HH (\U (\VV _n^+)) \]
138
138
denote the stable base change morphism from $ \GL _n(E)$ to the unitary group $ \U $ .
139
- The relevance of the Satake transformation is that
139
+ The relevance of the Satake transform is that
140
140
(see e.g.\ \cite [Proposition 3.4]{ref:leslie })
141
141
it gives a way to make this $ \BC $ completely explicit:
142
142
we have a commutative diagram
0 commit comments