Skip to content

Commit dd30d79

Browse files
committed
fix: typos from Mark Sellke (thanks!)
1 parent 56883a9 commit dd30d79

File tree

8 files changed

+24
-20
lines changed

8 files changed

+24
-20
lines changed

Diff for: thesis/acknowledgments.tex

+3
Original file line numberDiff line numberDiff line change
@@ -24,6 +24,9 @@ \chapter*{Acknowledgments}
2424
for inviting me to speak about my work-in-progress, and their helpful comments on it
2525
leading directly to improvements to this thesis.
2626

27+
I thank Mark Sellke for proofreading a draft of this thesis
28+
and finding several corrections.
29+
2730
Finally, I thank Zhiwei Yun and Ben Howard for serving on my thesis committee,
2831
as well as David Vogan and Nike Sun for serving on my qualifying exams committee.
2932

Diff for: thesis/bg.tex

+2-2
Original file line numberDiff line numberDiff line change
@@ -186,7 +186,7 @@ \section{The spaces $S_n(F)$ and $S_n(F) \times V'_n(F)$}
186186
\[ V'_n(F) \coloneqq F^n \times (F^n)^\vee \]
187187
where $-^\vee$ denotes the $F$-dual space, i.e., $(F^n)^\vee = \Hom_F(F^n, F)$.
188188
Then we may also consider the augmented space
189-
\[ S_n(F) \times V'_n(F) \]
189+
\[ S_n(F) \times V'_n(F). \]
190190
If we identify $F^n$ with column vectors of length $n-1$ and $(F^n)^\vee$
191191
with row vectors of length $n$ then we have a left action of $\GL_n(F)$ by
192192
\begin{align*}
@@ -250,7 +250,7 @@ \section{The specific Hecke algebras $\HH(\GL_n(E))$ and $\HH(\U(\VV_n^+))$ and
250250
that will come up consistently:
251251
\begin{align*}
252252
\HH(\GL_n(E)) &\coloneqq \HH(\GL_n(E), \GL_n(\OO_E)) \\
253-
\HH(\U(\VV_n^+)) &\coloneqq \HH(\U(\VV_n^+), \U(\VV_n^+) \cap \GL_n(\OO_E))
253+
\HH(\U(\VV_n^+)) &\coloneqq \HH(\U(\VV_n^+), \U(\VV_n^+) \cap \GL_n(\OO_E)).
254254
\end{align*}
255255
Note that $\GL_n(\OO_E)$ and $\U(\VV_n^+) \cap \GL_n(\OO_E)$
256256
are the natural hyperspecial maximal compact subgroups of $\GL_n(E)$ and $\U(\VV_n^+$),

Diff for: thesis/match.tex

+8-7
Original file line numberDiff line numberDiff line change
@@ -147,10 +147,11 @@ \section{Matching in the group version of the inhomogeneous AFL}
147147
We write the following abbreviation:
148148
\begin{definition}
149149
[$S_n(F)\rs^\pm$]
150-
We let \[ S_n(F)\rs^- \]
151-
denote the set of subset of those orbits $[S_n(F) \times V'_n(F)]\rs$
152-
which with an element of $[\U(\VV_n^-) \times \VV_n^-]\rs$.
150+
We let \[ S_n(F)\rs^- \subset S_n(F)\rs \]
151+
denote the subset of elements in $S_n(F)\rs$ that match
152+
with an element in $\U(\VV_n^-)\rs$.
153153
Define $S_n(F)\rs^+$ similarly.
154+
Hence $S_n(F)\rs = S_n(F)\rs^- \amalg S_n(F)\rs^+$.
154155
\end{definition}
155156

156157
\section{Matching in the semi-Lie version of the AFL}
@@ -194,9 +195,9 @@ \section{Matching in the semi-Lie version of the AFL}
194195
Accordingly we write the following shorthand:
195196
\begin{definition}
196197
[$(S_n(F) \times V'_n(F))\rs^\pm$]
197-
We let
198-
\[ (S_n(F) \times V'_n(F))\rs^- \]
199-
denote the set of subset of those orbits $[S_n(F) \times V'_n(F)]\rs$
200-
which with an element of $[\U(\VV_n^-) \times \VV_n^-]\rs$.
198+
We let \[ (S_n(F) \times V'_n(F))\rs^- \subset (S_n(F) \times V'_n(F))\rs \]
199+
denote the subset of those elements in $(S_n(F) \times V'_n(F))\rs$ that match
200+
with an element of $(\U(\VV_n^-) \times \VV_n^-)\rs$.
201201
Define $(S_n(F) \times V'_n(F))\rs^+$ analogously.
202+
Hence $(S_n(F) \times V'_n(F))\rs = (S_n(F) \times V'_n(F))\rs^- \amalg (S_n(F) \times V'_n(F))\rs^+$.
202203
\end{definition}

Diff for: thesis/orb0.tex

+4-4
Original file line numberDiff line numberDiff line change
@@ -51,7 +51,7 @@ \section{Basis for the indicator functions in $\HH(S_3(F))$}
5151
\label{ch:orbital0_hecke_basis}
5252
From now on assume $n = 3$.
5353
We have the symmetric space
54-
\[ S_3(F) \coloneqq \left\{ g \in \GL_3(E) \mid g \bar{g} = \id_3 \right\}. \]
54+
\[ S_3(F) \coloneqq \left\{ g \in \GL_3(E) \mid g \bar{g} = \id_3 \right\} \]
5555
which has a left action under $\GL_3(E)$ by $g \cdot s \mapsto gs\bar{g}\inv$.
5656

5757
Then $S_3(F)$ admits the following decomposition, which we will use:
@@ -243,7 +243,7 @@ \section{Parameters used in the calculation of the weighted orbital integral}
243243
\ell \coloneqq v(b^2 - 4 a \ol d).
244244
\label{eq:ell}
245245
\end{equation}
246-
We will also define one additional parameter useful when $\ell$ is even
246+
We will also define one additional parameter which is useful when $\ell$ is even
247247
(but as we will see, redundant for odd $\ell$):
248248
\begin{equation}
249249
\lambda \coloneqq v(1-u \bar u) \equiv 1 \pmod 2.
@@ -590,7 +590,7 @@ \subsection{Full explicit weighted orbital integral for the case where $\ell$ od
590590
\[
591591
\Orb(\gamma, \mathbf{1}_{K'_{S, \le r}}, s)
592592
= \sum_{k = -2r}^{\ell + 2\delta + 2r}
593-
(-1)^k \left( 1 + q + q^2 + \dots + q^{\nn_{\gamma}(k)} \right) (q^s)^k
593+
(-1)^k \left( 1 + q + q^2 + \dots + q^{\nn_{\gamma}(k)} \right) (q^s)^k.
594594
\]
595595
\end{restatable}
596596
\begin{remark}
@@ -815,7 +815,7 @@ \subsection{Full explicit weighted orbital integral for the case $\ell < 0$}
815815
\Orb(\gamma, \mathbf{1}_{K'_{S, \le r}}, s)
816816
&= \sum_{k = -2r}^{\lambda + 2r-4|v(d)|}
817817
(-1)^k \left( 1 + q + q^2 + \dots + q^{\nn_{\gamma}(k)} \right) (q^s)^k \\
818-
&+ \sum_{k = -r-|v(d)|}^{\lambda+r-3|v(d)|} \cc_\gamma(k) (-1)^k q^{r-|v(d)|} (q^s)^k \\
818+
&+ \sum_{k = -r-|v(d)|}^{\lambda+r-3|v(d)|} \cc_\gamma(k) (-1)^k q^{r-|v(d)|} (q^s)^k.
819819
\end{align*}
820820
\end{restatable}
821821

Diff for: thesis/orb2.tex

+2-2
Original file line numberDiff line numberDiff line change
@@ -434,7 +434,7 @@ \section{Merging of $I_{n \le 0}$ with $I_{n > 0}^{\text{1+2}}$ (and proof of \C
434434
\left\lfloor \frac{k+r}{2} \right\rfloor + r & \text{if }{-r} \le k \le \ell-r \\
435435
\frac{\ell}{2} + r - (k-r) \% 2 & \text{if } \ell - r \le k \le 2\delta + r \\
436436
\left\lfloor \frac{(\ell+2\delta+r)-k}{2} \right\rfloor + r & \text{if } 2\delta + r \le k \le 2\lambda - \ell + 2\delta + r \\
437-
(\lambda + 2\delta + 2r) - k & \text{if } 2 \delta + 2 \lambda - \ell + r \le k \le \lambda + 2\delta + 2r.
437+
(\lambda + 2\delta + 2r) - k & \text{if } 2 \delta + 2 \lambda - \ell + r \le k \le \lambda + 2\delta + 2r
438438
\end{cases}
439439
\]
440440
in the case $\lambda \le \ell+r$.
@@ -1602,7 +1602,7 @@ \subsection{Analysis of the $\cc_\gamma$ sum}
16021602
\begin{aligned}
16031603
&\sum_{k=-r}^{W-r-1} (-1)^{k} \cdot k \cdot (k+r)
16041604
+ \sum_{k=W+L+r+1}^{2W+L+r} (-1)^{k} \cdot k \cdot (2W+L+r-k) \\
1605-
&= (-1)^{W+r} \frac{W(L+2r+2)}{2} - (-1)^{W+r} (W\%2) \cdot \frac{2W+L+2r}{2}
1605+
&= (-1)^{W+r} \frac{W(L+2r+2)}{2} - (-1)^{W+r} (W\%2) \cdot \frac{2W+L+2r}{2}.
16061606
\end{aligned}
16071607
\label{eq:moment15}
16081608
\end{equation}

Diff for: thesis/orbFJ1.tex

+1-1
Original file line numberDiff line numberDiff line change
@@ -121,7 +121,7 @@ \subsection{The quadratic constraint}
121121
As before, we complete the square:
122122
\[
123123
-y^2+ \frac{d-a}{c} y + \frac bc
124-
= -\left( y - \frac{d-a}{2c} \right)^2 + \frac bc + \frac{(d-a)^2}{4c^2}
124+
= -\left( y - \frac{d-a}{2c} \right)^2 + \frac bc + \frac{(d-a)^2}{4c^2}.
125125
\]
126126
Because $b \bar c = 1 - a \bar a$ has odd valuation,
127127
it follows that $\frac b c = \frac{1-a \bar a}{c\bar c}$ has odd valuation to.

Diff for: thesis/orbFJ2.tex

+2-2
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ \section{The contribution for Case 5}
4545
\end{align*}
4646
We'll change the summation variable to
4747
\[ k \coloneqq 2n_2 - m + v(c) + r
48-
\iff m = 2n_2 - k + v(c) + r \]
48+
\iff m = 2n_2 - k + v(c) + r. \]
4949
Then
5050
\begin{align*}
5151
I^{\text{5}}
@@ -239,7 +239,7 @@ \subsection{Sub-case where $v(e) > \frac{\theta}{2} + r$}
239239
\sum_{k = \theta - v(b) + r + 1}^{2v(e) - \theta + v(c) - r - 1}
240240
\bigg( 1 + \min\left( v(e), k - \frac{\theta}{2} + v(b) \right) \\
241241
&\hspace{16ex} - \max\left( \frac{\theta}{2} + r + 1,
242-
\left\lceil \frac{k + \theta - v(c) + r + 1}{2} \right\rceil \right) \bigg) (-q^s)^k
242+
\left\lceil \frac{k + \theta - v(c) + r + 1}{2} \right\rceil \right) \bigg) (-q^s)^k.
243243
\end{align*}
244244
It is natural to split this sum into $k \le v(c) + r$ and $k > v(c) + r$.
245245
In the former case, we have both $k - \frac{\theta}{2} + v(b) \le v(e)$

Diff for: thesis/satake.tex

+2-2
Original file line numberDiff line numberDiff line change
@@ -208,7 +208,7 @@ \section{The map $\BC^{\eta^{n-1}}_{S_n}$}
208208
\section{Calculation of $\BC_{S_n}$ when $n = 3$}
209209
The goal of this section is to make the base change
210210
fully known in the special case $n = 3$, where $m = \left\lfloor n/2 \right\rfloor = 1$.
211-
(In this case $\BC_{S_n}^{\eta^{n-1}} = \BC_{S_n}$ as $\eta^2 = 1$).
211+
(In this case $\BC_{S_n}^{\eta^{n-1}} = \BC_{S_n}$ as $\eta^2 = 1$.)
212212
The completed result is \Cref{prop:BC_S3}.
213213

214214
This calculation parallels the $n = 2$ case that was done in \cite[Lemma 7.1.1]{ref:AFLspherical}.
@@ -231,7 +231,7 @@ \subsection{Overview}
231231
\[ \mathbf{1}_{K'\varpi^{(n_1, n_2, n_3)}K'} \]
232232
is given by triples of integers $n_1 \ge n_2 \ge n_3 \ge 0$, and is much larger.
233233
So explicit calculations for the $\rproj_\ast$ or the Satake transforms viewed in
234-
$\CC[X_1, X_2, X_3]^{\Sym(n)}$ is nontrivial if one works with the entire basis.
234+
$\CC[X_1, X_2, X_3]^{\Sym(n)}$ are nontrivial if one works with the entire basis.
235235

236236
Hence the overall strategy, to reduce the amount of work we have to do,
237237
is to focus on only the $\ZZ$-indexed elements

0 commit comments

Comments
 (0)