-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
197 lines (152 loc) · 10.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import sys
import time
import datetime
import argparse
import functools
import torch
import torch.nn as nn
import clevr
import coco
import models
import eqv
def set_seed(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def build_model(args):
model = models.SlotAttentionAutoEncoder(resolution = args.resolution, num_slots = args.num_slots, num_iter = args.num_iter, hidden_dim = args.hidden_dim).to(args.device)
if args.checkpoint or args.checkpoint_tensorflow:
model_state_dict = torch.load(args.checkpoint, map_location = 'cpu')['model_state_dict'] if args.checkpoint else rename_and_transpose_tfcheckpoint(torch.load(args.checkpoint_tensorflow, map_location = 'cpu'))
model_state_dict = {'.'.join(k.split('.')[1:]) if k.startswith('module.') else k : v for k, v in model_state_dict.items()}
status = model.load_state_dict(model_state_dict, strict = False)
assert not status.missing_keys or set(status.missing_keys) == set(['encoder_pos.grid', 'decoder_pos.grid'])
if args.data_parallel:
model = nn.DataParallel(model)
model = model.to(args.device).eval()
return model
def build_dataset(args, filter = None):
assert os.path.exists(args.dataset_root_dir), f'provided dataset path [{args.dataset_root_dir}] does not exist'
if args.dataset == 'CLEVR':
dataset = clevr.CLEVR(args.dataset_root_dir, args.dataset_split_name, filter = filter)
batch_frontend = models.ClevrImagePreprocessor(resolution = args.resolution, crop = args.crop)
collate_fn = lambda batch: (torch.utils.data.dataloader.default_collate([t[0] for t in batch]), [t[1] for t in batch])
elif args.dataset == 'COCO':
PATHS = dict(
train = (os.path.join(args.dataset_root_dir, f'train{args.coco_year}'), os.path.join(args.dataset_root_dir, 'annotations', f'{args.coco_mode}_train{args.coco_year}.json')),
val = (os.path.join(args.dataset_root_dir, f'val{args.coco_year}'), os.path.join(args.dataset_root_dir, 'annotations', f'{args.coco_mode}_val{args.coco_year}.json')),
)
dataset = coco.CocoDetection(*PATHS[args.dataset_split_name], transforms = models.CocoImagePreprocessorSimple(args.dataset_split_name), return_masks = args.coco_masks)
batch_frontend = nn.Identity()
collate_fn = lambda batch: (torch.utils.data.dataloader.default_collate([t[0] for t in batch]), [t[1] for t in batch])
return dataset, collate_fn, batch_frontend
def build_criterion(args):
reconstruction = nn.MSELoss()
equivariance = eqv.EquivarianceLoss()
if args.loss_scale_equivariance == 0 and args.loss_scale_reconstruction > 0:
return lambda true_images, pred_images, **kwargs: dict(reconstruction = reconstruction(pred_images, true_images), equivariance = 0)
return lambda true_images, pred_images, aug_pred_masks, pred_aug_masks: dict(reconstruction = reconstruction(pred_images, true_images), equivariance = equivariance(pred_aug_masks, aug_pred_masks)[0] )
def sample_affine_transform_params(batch_size = 1, angle_min = -20, angle_max = 20, generator = None):
return dict(angle = angle_min + float(torch.rand(batch_size, generator = generator)) * (angle_max - angle_min))
def mix_losses(args, losses):
return sum(v * getattr(args, 'loss_scale_' + k) for k, v in losses.items())
def main(args):
set_seed(args.seed)
log = open(args.log, 'w')
os.makedirs(args.checkpoint_dir, exist_ok = True)
dataset, collate_fn, batch_frontend = build_dataset(args, filter = lambda scene_objects: len(scene_objects) <= 6)
model = build_model(args)
criterion = build_criterion(args)
aug = eqv.AffineTransform()
data_loader = torch.utils.data.DataLoader(dataset, batch_size = args.batch_size, num_workers = args.num_workers, collate_fn = collate_fn, shuffle = True)
optimizer = torch.optim.Adam(model.parameters(), lr = args.learning_rate)
start = time.time()
iteration = 0
for epoch in range(args.num_epochs):
model.train()
total_loss = 0
total_losses = dict()
for i, (images, extra) in enumerate(data_loader):
learning_rate = (args.learning_rate * (iteration / args.warmup_steps) if iteration < args.warmup_steps else args.learning_rate) * (args.decay_rate ** (iteration / args.decay_steps))
optimizer.param_groups[0]['lr'] = learning_rate
transform_params = sample_affine_transform_params()
true_images = batch_frontend(images.to(args.device))
aug_images = aug(true_images, **transform_params)
pred_images, _, pred_masks, _, _ = model(true_images)
_, _, pred_aug_masks, _, _ = model(aug_images)
aug_pred_masks = aug(pred_masks.squeeze(-3), **transform_params)
losses = criterion(pred_images, true_images, aug_pred_masks = aug_pred_masks, pred_aug_masks = pred_aug_masks.squeeze(-3))
loss = mix_losses(args, losses)
print({k: f'{v:.04f}' for k, v in losses.items()})
loss_item = float(loss)
total_loss += loss_item
total_losses = {k : float(v) + total_losses.get(k, 0.0) for k, v in losses.items()}
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Epoch:', epoch, '#', iteration, '|', i, '/', len(data_loader), 'Loss:', loss_item)
iteration += 1
total_loss /= len(data_loader)
total_losses = {k : v / len(data_loader) for k, v in total_losses.items()}
for f in [sys.stdout, log]:
print('Epoch:', epoch, 'Loss:', total_loss, 'Time:', datetime.timedelta(seconds = time.time() - start), 'All losses:', total_losses, file = f, flush = True)
if epoch % args.checkpoint_epoch_interval == 0 or epoch == args.num_epochs - 1:
model_state_dict = model.module.state_dict() if isinstance(model, nn.DataParallel) else model.state_dict()
torch.save(dict(model_state_dict = model_state_dict), os.path.join(args.checkpoint_dir, args.checkpoint_pattern.format(epoch = epoch)))
def rename_and_transpose_tfcheckpoint(ckpt):
# converted with https://github.com/vadimkantorov/tfcheckpoint2pytorch
# checkpoint format: https://www.tensorflow.org/guide/checkpoint
replace = {
'network/layer_with_weights-0/': '',
'/.ATTRIBUTES/VARIABLE_VALUE': '',
'/': '_',
'encoder_cnn_layer_with_weights-': 'encoder_cnn.',
'decoder_cnn_layer_with_weights-': 'decoder_cnn.',
'slot_attention_': 'slot_attention.',
'mlp_layer_with_weights-': 'mlp.',
'encoder_pos_': 'encoder_pos.',
'decoder_pos_': 'decoder_pos.',
'_kernel': '.weight',
'_bias': '.bias',
'_gamma': '.weight',
'_beta': '.bias',
'slot_attention.gru.weight': 'slot_attention.gru.weight_ih',
'slot_attention.gru_recurrent.weight': 'slot_attention.gru.weight_hh'
}
ckpt = {functools.reduce(lambda acc, from_to: acc.replace(*from_to), replace.items(), k) : v for k, v in ckpt.items() if k.startswith('network/layer_with_weights-0/') and k.endswith('.ATTRIBUTES/VARIABLE_VALUE') and '.OPTIMIZER_SLOT' not in k}
ckpt = { ('.'.join(k.split('.')[:-2] + [str(int(k.split('.')[-2]) * 2), k.split('.')[-1]]) if 'encoder_cnn.' in k or 'decoder_cnn.' in k or k.startswith('mlp.') or 'slot_attention.mlp.' in k else k) : v for k, v in ckpt.items() }
ckpt['slot_attention.gru.bias_ih'], ckpt['slot_attention.gru.bias_hh'] = ckpt.pop('slot_attention.gru.bias').unbind()
return {k : v.permute(3, 2, 0, 1) if v.ndim == 4 else v.t() if v.ndim == 2 else v for k, v in ckpt.items()}
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--num-epochs', default=10000, type=int, help='number of workers for loading data')
parser.add_argument('--num-train-steps', default=500000, type=int, help='Number of training steps.')
parser.add_argument('--batch-size', default=64, type=int, help='Batch size for the model.')
parser.add_argument('--data-parallel', action = 'store_true')
parser.add_argument('--device', default = 'cuda', choices = ['cuda', 'cpu'])
parser.add_argument('--num-workers', default=16, type=int, help='number of workers for loading data')
parser.add_argument('--learning-rate', default=0.0004, type=float, help='Learning rate.')
parser.add_argument('--warmup-steps', default=10000, type=int, help='Number of warmup steps for the learning rate.')
parser.add_argument('--decay-rate', default=0.5, type=float, help='Rate for the learning rate decay.')
parser.add_argument('--decay-steps', default=100000, type=int, help='Number of steps for the learning rate decay.')
parser.add_argument('--seed', default=0, type=int, help='Random seed.')
parser.add_argument('--num-iter', default=3, type=int, help='Number of attention iterations.')
parser.add_argument('--num-slots', default=7, type=int, help='Number of slots in Slot Attention.')
parser.add_argument('--hidden-dim', default=64, type=int, help='hidden dimension size')
parser.add_argument('--resolution', type = int, nargs = 2, default = (128, 128))
parser.add_argument('--crop', type = int, nargs = 4, default = (29, 221, 64, 256))
parser.add_argument('--loss-scale-reconstruction', type = float, default = 1.0)
parser.add_argument('--loss-scale-equivariance', type = float, default = 0.5)
parser.add_argument('--checkpoint-dir', default='./checkpoints', type=str, help='where to save models' )
parser.add_argument('--checkpoint')
parser.add_argument('--checkpoint-epoch-interval', type = int, default = 2)
parser.add_argument('--checkpoint-pattern', default = 'ckpt_{epoch:04d}.pt')
parser.add_argument('--checkpoint-tensorflow')
parser.add_argument('--dataset', default = 'CLEVR', choices = ['CLEVR', 'COCO'])
parser.add_argument('--dataset-root-dir', default = './CLEVR_v1.0')
parser.add_argument('--dataset-split-name', default = 'train', choices = ['train', 'val'])
parser.add_argument('--coco-year', type = int, default = 2017)
parser.add_argument('--coco-masks', action = 'store_true')
parser.add_argument('--coco-mode', default = 'instances')
parser.add_argument('--log', default = 'log.txt')
main(parser.parse_args())