forked from kasia-kobalczyk/informed-meta-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
258 lines (237 loc) · 7.63 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import argparse
import toml
class Config:
def __init__(self, **entries):
self.__dict__.update(entries)
@classmethod
def from_toml(cls, file_path):
with open(file_path) as f:
config_dict = toml.load(f)
return cls(**config_dict)
@classmethod
def from_args(cls, args):
return cls(**vars(args))
def write_config(self, file_path):
with open(file_path, "w") as f:
toml.dump(self.__dict__, f)
def get(self, item):
return self.__dict__.get(item, None)
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--project-name", type=str, help="Project name", default="meta-regression"
)
# training
parser.add_argument("--seed", type=int, help="Random seed", default=0)
parser.add_argument("--load-dir", type=str, help="Load directory")
parser.add_argument("--load-it", type=str, help="Load iteration", default="best")
parser.add_argument("--batch-size", type=int, help="Batch size", default=32)
parser.add_argument("--num-epochs", type=int, help="Number of epochs", default=10)
parser.add_argument(
"--sort-context",
type=str2bool,
const=True,
nargs="?",
help="Sort context",
default=False,
)
parser.add_argument("--lr", type=float, help="Learning rate", default=1e-3)
parser.add_argument("--decay-lr", type=int, help="Decay learning rate", default=10)
parser.add_argument("--train-split", type=str, help="Train split", default="train")
parser.add_argument("--val-split", type=str, help="Validation split", default="val")
parser.add_argument(
"--n-trials", type=int, help="Number of optuna trials", default=1
)
parser.add_argument("--beta", type=float, help="Beta VAE", default=1)
# dataloader
parser.add_argument(
"--dataset", type=str, help="Dataset", default="custom-regression"
)
parser.add_argument("--split-file", type=str, help="Split file", default=None)
parser.add_argument(
"--knowledge-type", type=str, help="Knowledge type", default="none"
)
parser.add_argument(
"--min-num-context", type=int, help="Minimum number of context", default=0
)
parser.add_argument(
"--max-num-context", type=int, help="Maximum number of context", default=100
)
parser.add_argument(
"--num-targets", type=int, help="Number of targets", default=100
)
parser.add_argument("--noise", type=float, help="Observation noise std", default=0)
parser.add_argument("--x-sampler", type=str, help="X sampler", default="uniform")
# knowledge and parameter freezing
parser.add_argument(
"--use-knowledge",
type=str2bool,
const=True,
nargs="?",
help="Use text inputs",
default=False,
)
parser.add_argument(
"--text-encoder",
type=str,
help="Text encoder",
default="none",
choices=["simple", "none", "roberta", "set", "set2", "mlp"],
)
parser.add_argument(
"--freeze-llm",
type=str2bool,
const=True,
nargs="?",
help="Freeze LLM",
default=True,
)
parser.add_argument(
"--tune-llm-layer-norms",
type=str2bool,
const=True,
nargs="?",
help="Tune LLM layer norms",
default=False,
)
parser.add_argument(
"--train-num-z-samples",
type=int,
help="Number of training z samples",
default=1,
)
parser.add_argument(
"--test-num-z-samples", type=int, help="Number of testing z samples", default=16
)
parser.add_argument(
"--knowledge-dropout", type=float, help="Knowledge dropout", default=0.3
)
# model architecture
parser.add_argument("--input-dim", type=int, help="Input dimension", default=1)
parser.add_argument("--output-dim", type=int, help="Output dimension", default=1)
parser.add_argument("--hidden-dim", type=int, help="Hidden dimension", default=128)
parser.add_argument(
"--xy-encoder-num-hidden",
type=int,
help="Number of XY encoder hidden layers",
default=2,
)
parser.add_argument(
"--xy-encoder-hidden-dim",
type=int,
help="XY encoder hidden ndimension size",
default=None,
)
parser.add_argument(
"--xy-self-attention",
type=str,
help="XY self attention",
default="none",
choices=["none", "dot", "multihead"],
)
parser.add_argument(
"--xy-self-attention-num-layers",
type=int,
help="XY self attention number of layers",
default=1,
)
parser.add_argument(
"--data-agg-func",
type=str,
help="Data aggregation function",
default="mean",
choices=["mean", "sum", "none", "cross-attention"],
)
parser.add_argument(
"--latent-encoder-num-hidden",
type=int,
help="Number of latent encoder hidden layers",
default=1,
)
parser.add_argument(
"--decoder-hidden-dim", type=int, help="Decoder hidden dimension", default=None
)
parser.add_argument(
"--decoder-num-hidden",
type=int,
help="Number of decoder hidden layers",
default=3,
)
parser.add_argument(
"--decoder-activation", type=str, help="Decoder activation", default="gelu"
)
parser.add_argument(
"--x-transf-dim", type=int, help="X transformation dimension", default=None
)
parser.add_argument(
"--x-encoder-num-hidden",
type=int,
help="Number of X encoder hidden layers",
default=1,
)
parser.add_argument(
"--path",
type=str,
help="Path",
default="latent",
choices=["latent", "deterministic", "both"],
)
parser.add_argument(
"--knowledge-extractor-num-hidden",
type=int,
help="Number of knowledge extractor hidden layers",
default=2,
)
parser.add_argument(
"--knowledge-extractor-hidden-dim",
type=int,
help="Knowledge extractor hidden dimension",
default=None,
)
parser.add_argument(
"--knowledge-merge",
type=str,
help="Knowledge merge",
default="concat",
choices=["concat", "sum", "mlp"],
)
parser.add_argument(
"--knowledge-dim",
type=int,
help="Dimension of knowledge representaiton",
default=None,
)
# saving args
parser.add_argument(
"--run-name-prefix", type=str, help="Run name prefix", default="run"
)
parser.add_argument(
"--run-name-suffix", type=str, help="Run name suffix", default="tuned"
)
# Add other arguments as needed
args = parser.parse_args()
if args.xy_encoder_hidden_dim is None:
args.xy_encoder_hidden_dim = args.hidden_dim * 3
if args.decoder_hidden_dim is None:
args.decoder_hidden_dim = args.hidden_dim
if args.x_transf_dim is None:
args.x_transf_dim = args.hidden_dim
if args.knowledge_extractor_hidden_dim is None:
args.knowledge_extractor_hidden_dim = args.hidden_dim
if args.knowledge_dim is None:
args.knowledge_dim = args.hidden_dim
print("Setting config.toml")
config = Config.from_args(args)
config.write_config("config.toml")
return config
if __name__ == "__main__":
config = main()