-
Notifications
You must be signed in to change notification settings - Fork 175
/
Copy pathtest_knockoffgan.py
159 lines (130 loc) · 4.6 KB
/
test_knockoffgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
'''
Test script knockoffGAN: it executes the tutorial notebook
'''
import sys
import os
import argparse
from pathlib import Path
import pandas as pd
import json
from sklearn.datasets import load_breast_cancer
from sklearn.datasets import fetch_covtype
import initpath_alg
initpath_alg.init_sys_path()
import utilmlab
def set_filenames(odir):
utilmlab.ensure_dir(odir)
fn_csv = '{}/data.csv.gz'.format(odir)
return fn_csv
def init_arg():
parser = argparse.ArgumentParser()
parser.add_argument('--exe', help='python interpreter to use')
parser.add_argument('--projdir')
parser.add_argument('--it', default=2000, type=int)
parser.add_argument('--replication', default=20, type=int)
return parser.parse_args()
if __name__ == '__main__':
args = init_arg()
if args.exe is not None:
python_exe = args.exe
else:
python_exe = 'python' if sys.version_info[0] < 3 else 'python3'
proj_dir = utilmlab.get_proj_dir() \
if args.projdir is None else args.projdir
alg = 'knockoffgan'
version = 1
niter = args.it
nreplication = args.replication
resdir = '{}/result/{}/v_{}/h_{}'.format(
proj_dir,
alg,
version,
os.environ['HOSTNAME'] if 'HOSTNAME' in os.environ else 'unknown')
utilmlab.ensure_dir(resdir)
logger = utilmlab.init_logger(
resdir,
'log_test_knockoffgan_{}.txt'.format(utilmlab.get_hostname()))
script = Path('{}/alg/knockoffgan/knockoffgan.r'.format(proj_dir))
for dataset, nsample, sep, generate_error in [
('bc', 0, ',', 0),
('cover', 5000, ',', 1)]:
odir = '{}/misc/dataset_{}'.format(resdir, dataset)
fn_csv = set_filenames(odir)
if dataset == 'bc':
x, y = load_breast_cancer(return_X_y=True)
elif dataset == 'cover':
x, y = fetch_covtype(return_X_y=True)
else:
assert 0
lbl = 'target'
df = pd.DataFrame(x)
df[lbl] = y
df.to_csv(
fn_csv,
index=False,
compression='gzip',
sep=sep)
try:
utilmlab.exe_cmd(
logger,
'Rscript {} -i {} --target {} --exe {} --it {} '
' --replication {} --projdir {}' .format(
script,
fn_csv,
lbl,
python_exe,
niter,
nreplication,
proj_dir
),
assert_on_error=not generate_error # assert if an error is not expected
)
except:
if generate_error:
logger.info('expected error generated')
pass
assert 0
fn_data_csv = '{}/data.csv'.format(resdir)
fn_json = '{}/generated_data_properties.json'.format(resdir)
utilmlab.exe_cmd(
logger,
'Rscript {}/alg/knockoffgan/gen_data.r -o {} --target {} '
' --ojson {}'.format(proj_dir, fn_data_csv, lbl, fn_json))
with open(fn_json, "r") as fp:
features_gen_data = json.load(fp)
logger.info('relevant variables:{}'.format(
features_gen_data['features_selected']))
false_discovery_rate = 0.1
stat = "glm" # Importance statistics based on glmnet_coefdiff (glm)
fn_json_ko = '{}/result_knockoff_gan.json'.format(resdir)
utilmlab.exe_cmd(
logger,
'Rscript {} -i {} --target {} --it {} --fdr {} --replication {} '
' -o {} --stat {} --exe {} --projdir {}'.format(
script,
fn_data_csv,
lbl,
niter,
false_discovery_rate,
nreplication,
fn_json_ko,
stat,
python_exe,
proj_dir))
with open(fn_json_ko, 'r') as fp:
result = json.load(fp)
agree_set = set(result['features_selected']).intersection(set(
features_gen_data['features_selected']))
disagree_set = set(result['features_selected']) - set(
features_gen_data['features_selected'])
logger.info('relevant explanatory variables:{}\n'.format(
result['features_selected']))
logger.info('agreement generated and detectect explanatory '
'variables:{}) {}'.format(
len(agree_set), agree_set))
logger.info('disagreement: {}'.format(
disagree_set if len(disagree_set) else '-'))
assert len(disagree_set) <= (false_discovery_rate * len(features_gen_data['features_selected']) + 1)
assert len(agree_set) == len(features_gen_data['features_selected'])
logger.info('pass')
logger.info('-*-')