Skip to content

Commit bf5ccf7

Browse files
authored
Create Speed and Performance.md
1 parent 0a21c5f commit bf5ccf7

File tree

1 file changed

+399
-0
lines changed

1 file changed

+399
-0
lines changed

Speed and Performance.md

+399
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,399 @@
1+
# Python speed and performance trick
2+
3+
1. **Choose the Right Data Structure**:
4+
- Use appropriate data structures like lists, sets, dictionaries, etc., depending on your use case.
5+
- Example:
6+
```python
7+
# Using a dictionary for fast lookup
8+
phonebook = {'Alice': '123-456', 'Bob': '789-012', 'Charlie': '345-678'}
9+
```
10+
11+
2. **Sorting**:
12+
- Utilize efficient sorting methods like the built-in `sort()` function with the `key` parameter or list comprehensions.
13+
- Example:
14+
```python
15+
# Sorting a list of tuples based on the second element
16+
data = [(3, 'c'), (1, 'a'), (2, 'b')]
17+
sorted_data = sorted(data, key=lambda x: x[1])
18+
```
19+
20+
3. **String Concatenation**:
21+
- Avoid repeated string concatenation in loops, as it creates new strings each time.
22+
- Use `join()` for efficient string concatenation.
23+
- Example:
24+
```python
25+
# Inefficient string concatenation
26+
result = ''
27+
for word in words:
28+
result += word
29+
30+
# Efficient string concatenation using join()
31+
result = ''.join(words)
32+
```
33+
34+
4. **Loops**:
35+
- Use list comprehensions or generator expressions for compact and efficient loops.
36+
- Example:
37+
```python
38+
# Using list comprehension
39+
squares = [x ** 2 for x in range(10)]
40+
41+
# Using generator expression
42+
squares_gen = (x ** 2 for x in range(10))
43+
```
44+
45+
5. **Avoiding Dots**:
46+
- Reduce function call overhead by caching function references.
47+
- Example:
48+
```python
49+
# Caching function references
50+
my_func = some_module.some_function
51+
result = my_func(data)
52+
```
53+
54+
6. **Local Variables**:
55+
- Use local variables instead of global variables for improved performance.
56+
- Example:
57+
```python
58+
def my_function():
59+
local_var = 42
60+
# Use local_var instead of accessing a global variable
61+
```
62+
63+
7. **Initializing Dictionary Elements**:
64+
- Optimize dictionary initialization and element updates using techniques like `try-except` or the `get()` method.
65+
- Example:
66+
```python
67+
# Using try-except
68+
my_dict = {}
69+
for word in words:
70+
try:
71+
my_dict[word] += 1
72+
except KeyError:
73+
my_dict[word] = 1
74+
```
75+
76+
8. **Import Statement Overhead**:
77+
- Minimize import statement overhead by placing imports strategically.
78+
- Example:
79+
```python
80+
def my_function():
81+
import math # Import inside function
82+
return math.sqrt(2)
83+
```
84+
85+
9. **Data Aggregation**:
86+
- Aggregate data and perform operations in bulk to reduce function call overhead.
87+
- Example:
88+
```python
89+
# Aggregating data and performing operations
90+
def process_data(data):
91+
total = sum(data)
92+
average = total / len(data)
93+
return total, average
94+
```
95+
96+
10. **Using xrange instead of range**:
97+
- Use `xrange` instead of `range` for large ranges to save memory.
98+
- Example:
99+
```python
100+
# Using xrange for large ranges
101+
for i in xrange(1000000):
102+
# Do something
103+
```
104+
105+
11. **Re-map Functions at runtime**:
106+
- Dynamically re-map functions at runtime to avoid unnecessary condition checks.
107+
- Example:
108+
```python
109+
class Test:
110+
def __init__(self):
111+
self.func = self.check_first
112+
113+
def check_first(self, data):
114+
# Check condition first
115+
pass
116+
117+
def check_second(self, data):
118+
# Check condition later
119+
pass
120+
```
121+
122+
12. **Profiling Code**:
123+
- Use profiling tools like `profile`, `cProfile`, or `trace` to identify performance bottlenecks.
124+
- Example:
125+
```python
126+
import cProfile
127+
128+
def my_function():
129+
# Function code
130+
131+
cProfile.run('my_function()')
132+
```
133+
134+
13. **Using Built-in Functions**:
135+
- Leverage built-in functions for common operations instead of reinventing the wheel.
136+
- Example:
137+
```python
138+
# Using built-in functions
139+
data = [1, 2, 3, 4, 5]
140+
max_value = max(data)
141+
```
142+
143+
14. **Memory Management**:
144+
- Manage memory efficiently by deallocating resources when they're no longer needed, especially in resource-intensive applications.
145+
- Example:
146+
```python
147+
# Efficient memory management
148+
with open('large_file.txt', 'r') as file:
149+
data = file.read()
150+
# Process data
151+
```
152+
153+
15. **Optimizing Function Calls**:
154+
- Minimize function calls inside loops by moving them outside whenever possible.
155+
- Example:
156+
```python
157+
# Optimizing function calls
158+
def process_data(data):
159+
# Process data here
160+
pass
161+
162+
# Move function call outside the loop
163+
processed_data = []
164+
for item in my_data:
165+
processed_data.append(process_data(item))
166+
```
167+
168+
16. **Lazy Evaluation**:
169+
- Utilize lazy evaluation techniques to defer computation until it's actually needed.
170+
- Example:
171+
```python
172+
# Lazy evaluation
173+
def lazy_operation():
174+
# Compute result only when needed
175+
pass
176+
177+
result = lazy_operation() # Result computed here
178+
```
179+
180+
17. **Using Cython**:
181+
- Use Cython to compile Python code to C for improved performance, especially in CPU-bound applications.
182+
- Example:
183+
```python
184+
# Using Cython for performance optimization
185+
# my_module.pyx
186+
def my_function():
187+
# Cython code here
188+
pass
189+
```
190+
191+
18. **NumPy and Pandas**:
192+
- Utilize NumPy and Pandas for numerical and data manipulation tasks respectively, as they're optimized for performance.
193+
- Example:
194+
```python
195+
# Using NumPy for array operations
196+
import numpy as np
197+
198+
data = np.array([1, 2, 3, 4, 5])
199+
result = np.sum(data)
200+
```
201+
202+
19. **Inline Operations**:
203+
- Use inline operations instead of function calls for simple operations within loops.
204+
- Example:
205+
```python
206+
# Inline operations
207+
total = 0
208+
for item in my_list:
209+
total += item
210+
```
211+
212+
20. **Avoiding Global Variables**:
213+
- Minimize the use of global variables as they can lead to performance overhead and make code harder to maintain.
214+
- Example:
215+
```python
216+
# Avoiding global variables
217+
def my_function():
218+
local_var = 42
219+
# Use local_var instead of a global variable
220+
```
221+
222+
21. **Using Set Operations**:
223+
- Utilize set operations for efficient membership tests and set arithmetic.
224+
- Example:
225+
```python
226+
# Using set operations
227+
set1 = {1, 2, 3, 4}
228+
set2 = {3, 4, 5, 6}
229+
intersection = set1 & set2
230+
```
231+
232+
22. **Using List Comprehensions**:
233+
- Employ list comprehensions for concise and efficient creation of lists.
234+
- Example:
235+
```python
236+
# Using list comprehensions
237+
squares = [x**2 for x in range(10)]
238+
```
239+
240+
23. **Generator Expressions**:
241+
- Use generator expressions to lazily compute values and conserve memory.
242+
- Example:
243+
```python
244+
# Generator expression
245+
gen = (x**2 for x in range(10))
246+
```
247+
248+
24. **String Formatting**:
249+
- Opt for efficient string formatting methods like f-strings or `str.format()` over concatenation for improved readability and performance.
250+
- Example:
251+
```python
252+
# Efficient string formatting
253+
name = "John"
254+
age = 30
255+
formatted_string = f"Name: {name}, Age: {age}"
256+
```
257+
258+
25. **Memoization**:
259+
- Implement memoization to cache the results of expensive function calls and avoid redundant computations.
260+
- Example:
261+
```python
262+
# Memoization
263+
cache = {}
264+
265+
def fib(n):
266+
if n in cache:
267+
return cache[n]
268+
if n <= 1:
269+
return n
270+
result = fib(n-1) + fib(n-2)
271+
cache[n] = result
272+
return result
273+
```
274+
275+
26. **Concurrency**:
276+
- Utilize concurrent programming techniques such as threading or multiprocessing to execute multiple tasks concurrently and improve performance, especially in I/O-bound scenarios.
277+
- Example:
278+
```python
279+
# Concurrency with threading
280+
import threading
281+
282+
def worker():
283+
# Task execution here
284+
pass
285+
286+
threads = []
287+
for _ in range(5):
288+
t = threading.Thread(target=worker)
289+
threads.append(t)
290+
t.start()
291+
292+
for thread in threads:
293+
thread.join()
294+
```
295+
296+
27. **Profile and Optimize**:
297+
- Profile your code using tools like cProfile to identify bottlenecks and optimize accordingly.
298+
- Example:
299+
```python
300+
# Profiling code
301+
import cProfile
302+
303+
def my_function():
304+
# Function implementation here
305+
pass
306+
307+
cProfile.run('my_function()')
308+
```
309+
310+
28. **Using Caching Libraries**:
311+
- Employ caching libraries like `functools.lru_cache` for automatic memoization and caching of function results.
312+
- Example:
313+
```python
314+
# Using functools.lru_cache
315+
from functools import lru_cache
316+
317+
@lru_cache(maxsize=None)
318+
def fib(n):
319+
if n <= 1:
320+
return n
321+
return fib(n-1) + fib(n-2)
322+
```
323+
324+
29. **Using `collections.defaultdict`**:
325+
- `defaultdict` from the `collections` module allows you to define default values for missing keys in dictionaries, which can be faster than using `dict.setdefault()`.
326+
- Example:
327+
```python
328+
from collections import defaultdict
329+
330+
# defaultdict usage
331+
d = defaultdict(int)
332+
d['a'] += 1 # No need to check if 'a' exists
333+
```
334+
335+
30. **Avoiding `global` Keyword**:
336+
- Minimize the use of the `global` keyword in functions as it can lead to slower performance due to global variable lookups.
337+
- Example:
338+
```python
339+
# Avoiding global keyword
340+
def increment_counter():
341+
global counter # Less efficient
342+
counter += 1
343+
344+
def increment_counter(counter): # Better approach
345+
return counter + 1
346+
```
347+
348+
31. **Leveraging `map()` and `filter()`**:
349+
- Utilize `map()` and `filter()` functions for efficient iteration and filtering over large datasets compared to list comprehensions.
350+
- Example:
351+
```python
352+
# Using map() and filter()
353+
numbers = [1, 2, 3, 4, 5]
354+
doubled = list(map(lambda x: x * 2, numbers))
355+
evens = list(filter(lambda x: x % 2 == 0, numbers))
356+
```
357+
358+
32. **Avoiding `len()` in Loops**:
359+
- Cache the length of sequences outside the loop to avoid calling `len()` repeatedly, which can improve performance, especially for large collections.
360+
- Example:
361+
```python
362+
# Avoiding len() in loops
363+
items = [1, 2, 3, 4, 5]
364+
length = len(items)
365+
for i in range(length):
366+
# Loop body
367+
pass
368+
```
369+
370+
33. **Using `itertools` Module**:
371+
- Leverage functions from the `itertools` module for efficient iteration, combination, and permutation operations.
372+
- Example:
373+
```python
374+
from itertools import combinations
375+
376+
# itertools usage
377+
combos = combinations([1, 2, 3], 2)
378+
```
379+
380+
34. **Using Bitwise Operators for Flags**:
381+
- Represent multiple boolean flags using bitwise operations (`&`, `|`, `^`) for compactness and potentially improved performance.
382+
- Example:
383+
```python
384+
FLAG_A = 1
385+
FLAG_B = 2
386+
FLAG_C = 4
387+
388+
# Bitwise flags
389+
flags = FLAG_A | FLAG_C
390+
```
391+
392+
35. **Prefer Built-in Functions Over Custom Implementations**:
393+
- Utilize built-in functions and methods whenever possible as they are often optimized for performance.
394+
- Example:
395+
```python
396+
# Using built-in functions
397+
max_value = max(numbers)
398+
```
399+

0 commit comments

Comments
 (0)