|
| 1 | +# Python speed and performance trick |
| 2 | + |
| 3 | +1. **Choose the Right Data Structure**: |
| 4 | + - Use appropriate data structures like lists, sets, dictionaries, etc., depending on your use case. |
| 5 | + - Example: |
| 6 | + ```python |
| 7 | + # Using a dictionary for fast lookup |
| 8 | + phonebook = {'Alice': '123-456', 'Bob': '789-012', 'Charlie': '345-678'} |
| 9 | + ``` |
| 10 | + |
| 11 | +2. **Sorting**: |
| 12 | + - Utilize efficient sorting methods like the built-in `sort()` function with the `key` parameter or list comprehensions. |
| 13 | + - Example: |
| 14 | + ```python |
| 15 | + # Sorting a list of tuples based on the second element |
| 16 | + data = [(3, 'c'), (1, 'a'), (2, 'b')] |
| 17 | + sorted_data = sorted(data, key=lambda x: x[1]) |
| 18 | + ``` |
| 19 | + |
| 20 | +3. **String Concatenation**: |
| 21 | + - Avoid repeated string concatenation in loops, as it creates new strings each time. |
| 22 | + - Use `join()` for efficient string concatenation. |
| 23 | + - Example: |
| 24 | + ```python |
| 25 | + # Inefficient string concatenation |
| 26 | + result = '' |
| 27 | + for word in words: |
| 28 | + result += word |
| 29 | + |
| 30 | + # Efficient string concatenation using join() |
| 31 | + result = ''.join(words) |
| 32 | + ``` |
| 33 | + |
| 34 | +4. **Loops**: |
| 35 | + - Use list comprehensions or generator expressions for compact and efficient loops. |
| 36 | + - Example: |
| 37 | + ```python |
| 38 | + # Using list comprehension |
| 39 | + squares = [x ** 2 for x in range(10)] |
| 40 | + |
| 41 | + # Using generator expression |
| 42 | + squares_gen = (x ** 2 for x in range(10)) |
| 43 | + ``` |
| 44 | + |
| 45 | +5. **Avoiding Dots**: |
| 46 | + - Reduce function call overhead by caching function references. |
| 47 | + - Example: |
| 48 | + ```python |
| 49 | + # Caching function references |
| 50 | + my_func = some_module.some_function |
| 51 | + result = my_func(data) |
| 52 | + ``` |
| 53 | + |
| 54 | +6. **Local Variables**: |
| 55 | + - Use local variables instead of global variables for improved performance. |
| 56 | + - Example: |
| 57 | + ```python |
| 58 | + def my_function(): |
| 59 | + local_var = 42 |
| 60 | + # Use local_var instead of accessing a global variable |
| 61 | + ``` |
| 62 | + |
| 63 | +7. **Initializing Dictionary Elements**: |
| 64 | + - Optimize dictionary initialization and element updates using techniques like `try-except` or the `get()` method. |
| 65 | + - Example: |
| 66 | + ```python |
| 67 | + # Using try-except |
| 68 | + my_dict = {} |
| 69 | + for word in words: |
| 70 | + try: |
| 71 | + my_dict[word] += 1 |
| 72 | + except KeyError: |
| 73 | + my_dict[word] = 1 |
| 74 | + ``` |
| 75 | + |
| 76 | +8. **Import Statement Overhead**: |
| 77 | + - Minimize import statement overhead by placing imports strategically. |
| 78 | + - Example: |
| 79 | + ```python |
| 80 | + def my_function(): |
| 81 | + import math # Import inside function |
| 82 | + return math.sqrt(2) |
| 83 | + ``` |
| 84 | + |
| 85 | +9. **Data Aggregation**: |
| 86 | + - Aggregate data and perform operations in bulk to reduce function call overhead. |
| 87 | + - Example: |
| 88 | + ```python |
| 89 | + # Aggregating data and performing operations |
| 90 | + def process_data(data): |
| 91 | + total = sum(data) |
| 92 | + average = total / len(data) |
| 93 | + return total, average |
| 94 | + ``` |
| 95 | + |
| 96 | +10. **Using xrange instead of range**: |
| 97 | + - Use `xrange` instead of `range` for large ranges to save memory. |
| 98 | + - Example: |
| 99 | + ```python |
| 100 | + # Using xrange for large ranges |
| 101 | + for i in xrange(1000000): |
| 102 | + # Do something |
| 103 | + ``` |
| 104 | + |
| 105 | +11. **Re-map Functions at runtime**: |
| 106 | + - Dynamically re-map functions at runtime to avoid unnecessary condition checks. |
| 107 | + - Example: |
| 108 | + ```python |
| 109 | + class Test: |
| 110 | + def __init__(self): |
| 111 | + self.func = self.check_first |
| 112 | + |
| 113 | + def check_first(self, data): |
| 114 | + # Check condition first |
| 115 | + pass |
| 116 | + |
| 117 | + def check_second(self, data): |
| 118 | + # Check condition later |
| 119 | + pass |
| 120 | + ``` |
| 121 | + |
| 122 | +12. **Profiling Code**: |
| 123 | + - Use profiling tools like `profile`, `cProfile`, or `trace` to identify performance bottlenecks. |
| 124 | + - Example: |
| 125 | + ```python |
| 126 | + import cProfile |
| 127 | + |
| 128 | + def my_function(): |
| 129 | + # Function code |
| 130 | + |
| 131 | + cProfile.run('my_function()') |
| 132 | + ``` |
| 133 | + |
| 134 | +13. **Using Built-in Functions**: |
| 135 | + - Leverage built-in functions for common operations instead of reinventing the wheel. |
| 136 | + - Example: |
| 137 | + ```python |
| 138 | + # Using built-in functions |
| 139 | + data = [1, 2, 3, 4, 5] |
| 140 | + max_value = max(data) |
| 141 | + ``` |
| 142 | + |
| 143 | +14. **Memory Management**: |
| 144 | + - Manage memory efficiently by deallocating resources when they're no longer needed, especially in resource-intensive applications. |
| 145 | + - Example: |
| 146 | + ```python |
| 147 | + # Efficient memory management |
| 148 | + with open('large_file.txt', 'r') as file: |
| 149 | + data = file.read() |
| 150 | + # Process data |
| 151 | + ``` |
| 152 | + |
| 153 | +15. **Optimizing Function Calls**: |
| 154 | + - Minimize function calls inside loops by moving them outside whenever possible. |
| 155 | + - Example: |
| 156 | + ```python |
| 157 | + # Optimizing function calls |
| 158 | + def process_data(data): |
| 159 | + # Process data here |
| 160 | + pass |
| 161 | + |
| 162 | + # Move function call outside the loop |
| 163 | + processed_data = [] |
| 164 | + for item in my_data: |
| 165 | + processed_data.append(process_data(item)) |
| 166 | + ``` |
| 167 | + |
| 168 | +16. **Lazy Evaluation**: |
| 169 | + - Utilize lazy evaluation techniques to defer computation until it's actually needed. |
| 170 | + - Example: |
| 171 | + ```python |
| 172 | + # Lazy evaluation |
| 173 | + def lazy_operation(): |
| 174 | + # Compute result only when needed |
| 175 | + pass |
| 176 | + |
| 177 | + result = lazy_operation() # Result computed here |
| 178 | + ``` |
| 179 | + |
| 180 | +17. **Using Cython**: |
| 181 | + - Use Cython to compile Python code to C for improved performance, especially in CPU-bound applications. |
| 182 | + - Example: |
| 183 | + ```python |
| 184 | + # Using Cython for performance optimization |
| 185 | + # my_module.pyx |
| 186 | + def my_function(): |
| 187 | + # Cython code here |
| 188 | + pass |
| 189 | + ``` |
| 190 | + |
| 191 | +18. **NumPy and Pandas**: |
| 192 | + - Utilize NumPy and Pandas for numerical and data manipulation tasks respectively, as they're optimized for performance. |
| 193 | + - Example: |
| 194 | + ```python |
| 195 | + # Using NumPy for array operations |
| 196 | + import numpy as np |
| 197 | + |
| 198 | + data = np.array([1, 2, 3, 4, 5]) |
| 199 | + result = np.sum(data) |
| 200 | + ``` |
| 201 | + |
| 202 | +19. **Inline Operations**: |
| 203 | + - Use inline operations instead of function calls for simple operations within loops. |
| 204 | + - Example: |
| 205 | + ```python |
| 206 | + # Inline operations |
| 207 | + total = 0 |
| 208 | + for item in my_list: |
| 209 | + total += item |
| 210 | + ``` |
| 211 | + |
| 212 | +20. **Avoiding Global Variables**: |
| 213 | + - Minimize the use of global variables as they can lead to performance overhead and make code harder to maintain. |
| 214 | + - Example: |
| 215 | + ```python |
| 216 | + # Avoiding global variables |
| 217 | + def my_function(): |
| 218 | + local_var = 42 |
| 219 | + # Use local_var instead of a global variable |
| 220 | + ``` |
| 221 | + |
| 222 | +21. **Using Set Operations**: |
| 223 | + - Utilize set operations for efficient membership tests and set arithmetic. |
| 224 | + - Example: |
| 225 | + ```python |
| 226 | + # Using set operations |
| 227 | + set1 = {1, 2, 3, 4} |
| 228 | + set2 = {3, 4, 5, 6} |
| 229 | + intersection = set1 & set2 |
| 230 | + ``` |
| 231 | + |
| 232 | +22. **Using List Comprehensions**: |
| 233 | + - Employ list comprehensions for concise and efficient creation of lists. |
| 234 | + - Example: |
| 235 | + ```python |
| 236 | + # Using list comprehensions |
| 237 | + squares = [x**2 for x in range(10)] |
| 238 | + ``` |
| 239 | + |
| 240 | +23. **Generator Expressions**: |
| 241 | + - Use generator expressions to lazily compute values and conserve memory. |
| 242 | + - Example: |
| 243 | + ```python |
| 244 | + # Generator expression |
| 245 | + gen = (x**2 for x in range(10)) |
| 246 | + ``` |
| 247 | + |
| 248 | +24. **String Formatting**: |
| 249 | + - Opt for efficient string formatting methods like f-strings or `str.format()` over concatenation for improved readability and performance. |
| 250 | + - Example: |
| 251 | + ```python |
| 252 | + # Efficient string formatting |
| 253 | + name = "John" |
| 254 | + age = 30 |
| 255 | + formatted_string = f"Name: {name}, Age: {age}" |
| 256 | + ``` |
| 257 | + |
| 258 | +25. **Memoization**: |
| 259 | + - Implement memoization to cache the results of expensive function calls and avoid redundant computations. |
| 260 | + - Example: |
| 261 | + ```python |
| 262 | + # Memoization |
| 263 | + cache = {} |
| 264 | + |
| 265 | + def fib(n): |
| 266 | + if n in cache: |
| 267 | + return cache[n] |
| 268 | + if n <= 1: |
| 269 | + return n |
| 270 | + result = fib(n-1) + fib(n-2) |
| 271 | + cache[n] = result |
| 272 | + return result |
| 273 | + ``` |
| 274 | + |
| 275 | +26. **Concurrency**: |
| 276 | + - Utilize concurrent programming techniques such as threading or multiprocessing to execute multiple tasks concurrently and improve performance, especially in I/O-bound scenarios. |
| 277 | + - Example: |
| 278 | + ```python |
| 279 | + # Concurrency with threading |
| 280 | + import threading |
| 281 | + |
| 282 | + def worker(): |
| 283 | + # Task execution here |
| 284 | + pass |
| 285 | + |
| 286 | + threads = [] |
| 287 | + for _ in range(5): |
| 288 | + t = threading.Thread(target=worker) |
| 289 | + threads.append(t) |
| 290 | + t.start() |
| 291 | + |
| 292 | + for thread in threads: |
| 293 | + thread.join() |
| 294 | + ``` |
| 295 | + |
| 296 | +27. **Profile and Optimize**: |
| 297 | + - Profile your code using tools like cProfile to identify bottlenecks and optimize accordingly. |
| 298 | + - Example: |
| 299 | + ```python |
| 300 | + # Profiling code |
| 301 | + import cProfile |
| 302 | + |
| 303 | + def my_function(): |
| 304 | + # Function implementation here |
| 305 | + pass |
| 306 | + |
| 307 | + cProfile.run('my_function()') |
| 308 | + ``` |
| 309 | + |
| 310 | +28. **Using Caching Libraries**: |
| 311 | + - Employ caching libraries like `functools.lru_cache` for automatic memoization and caching of function results. |
| 312 | + - Example: |
| 313 | + ```python |
| 314 | + # Using functools.lru_cache |
| 315 | + from functools import lru_cache |
| 316 | + |
| 317 | + @lru_cache(maxsize=None) |
| 318 | + def fib(n): |
| 319 | + if n <= 1: |
| 320 | + return n |
| 321 | + return fib(n-1) + fib(n-2) |
| 322 | + ``` |
| 323 | + |
| 324 | +29. **Using `collections.defaultdict`**: |
| 325 | + - `defaultdict` from the `collections` module allows you to define default values for missing keys in dictionaries, which can be faster than using `dict.setdefault()`. |
| 326 | + - Example: |
| 327 | + ```python |
| 328 | + from collections import defaultdict |
| 329 | + |
| 330 | + # defaultdict usage |
| 331 | + d = defaultdict(int) |
| 332 | + d['a'] += 1 # No need to check if 'a' exists |
| 333 | + ``` |
| 334 | + |
| 335 | +30. **Avoiding `global` Keyword**: |
| 336 | + - Minimize the use of the `global` keyword in functions as it can lead to slower performance due to global variable lookups. |
| 337 | + - Example: |
| 338 | + ```python |
| 339 | + # Avoiding global keyword |
| 340 | + def increment_counter(): |
| 341 | + global counter # Less efficient |
| 342 | + counter += 1 |
| 343 | + |
| 344 | + def increment_counter(counter): # Better approach |
| 345 | + return counter + 1 |
| 346 | + ``` |
| 347 | + |
| 348 | +31. **Leveraging `map()` and `filter()`**: |
| 349 | + - Utilize `map()` and `filter()` functions for efficient iteration and filtering over large datasets compared to list comprehensions. |
| 350 | + - Example: |
| 351 | + ```python |
| 352 | + # Using map() and filter() |
| 353 | + numbers = [1, 2, 3, 4, 5] |
| 354 | + doubled = list(map(lambda x: x * 2, numbers)) |
| 355 | + evens = list(filter(lambda x: x % 2 == 0, numbers)) |
| 356 | + ``` |
| 357 | + |
| 358 | +32. **Avoiding `len()` in Loops**: |
| 359 | + - Cache the length of sequences outside the loop to avoid calling `len()` repeatedly, which can improve performance, especially for large collections. |
| 360 | + - Example: |
| 361 | + ```python |
| 362 | + # Avoiding len() in loops |
| 363 | + items = [1, 2, 3, 4, 5] |
| 364 | + length = len(items) |
| 365 | + for i in range(length): |
| 366 | + # Loop body |
| 367 | + pass |
| 368 | + ``` |
| 369 | + |
| 370 | +33. **Using `itertools` Module**: |
| 371 | + - Leverage functions from the `itertools` module for efficient iteration, combination, and permutation operations. |
| 372 | + - Example: |
| 373 | + ```python |
| 374 | + from itertools import combinations |
| 375 | + |
| 376 | + # itertools usage |
| 377 | + combos = combinations([1, 2, 3], 2) |
| 378 | + ``` |
| 379 | + |
| 380 | +34. **Using Bitwise Operators for Flags**: |
| 381 | + - Represent multiple boolean flags using bitwise operations (`&`, `|`, `^`) for compactness and potentially improved performance. |
| 382 | + - Example: |
| 383 | + ```python |
| 384 | + FLAG_A = 1 |
| 385 | + FLAG_B = 2 |
| 386 | + FLAG_C = 4 |
| 387 | + |
| 388 | + # Bitwise flags |
| 389 | + flags = FLAG_A | FLAG_C |
| 390 | + ``` |
| 391 | + |
| 392 | +35. **Prefer Built-in Functions Over Custom Implementations**: |
| 393 | + - Utilize built-in functions and methods whenever possible as they are often optimized for performance. |
| 394 | + - Example: |
| 395 | + ```python |
| 396 | + # Using built-in functions |
| 397 | + max_value = max(numbers) |
| 398 | + ``` |
| 399 | + |
0 commit comments