-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdialogue_management_model.py
35 lines (29 loc) · 1.27 KB
/
dialogue_management_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
import logging
import tensorflow
import rasa_core
from rasa_core.agent import Agent
from rasa_core.policies import FallbackPolicy, KerasPolicy, MemoizationPolicy
from rasa_core.interpreter import RasaNLUInterpreter
from rasa_core.run import serve_application
from rasa_core.utils import EndpointConfig
logger = logging.getLogger(__name__)
def train_dialogue(domain_file = './domain/domain.yml',
model_path = './models/dialogue',
training_data_file = './data/stories.md'):
fallback = FallbackPolicy(fallback_action_name="utter_unclear",core_threshold=0.2, nlu_threshold=0.65)
agent = Agent(domain_file , policies=[MemoizationPolicy(max_history=10), KerasPolicy(), fallback])
data = agent.load_data(training_data_file)
agent.train(data)
agent.persist(model_path)
return agent
def run_dialogue(serve_forever=True):
interpreter = RasaNLUInterpreter('./models/nlu/default/chatter')
action_endpoint = EndpointConfig(url="http://localhost:5055/webhook")
agent = Agent.load('./models/dialogue', interpreter=interpreter, action_endpoint=action_endpoint)
rasa_core.run.serve_application(agent ,channel='cmdline')
return agent
if __name__ == '__main__':
train_dialogue()