-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
34 lines (29 loc) · 1.11 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from flask import Flask
from flask import Flask, render_template, request, redirect, url_for, flash, session,app,jsonify,url_for
import numpy as np
import pandas as pd
import pickle
app=Flask(__name__)
dataset = pd.read_csv('temp212.csv')
regmodel = pickle.load(open('temp.pkl', 'rb'))
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predct_api',methods=['POST'])
def predct_api():
data = request.get_json(force=True)
# Access the temperature values within the 'data' key
min_temp = data['data']['Min Temperature (°C)']
max_temp = data['data']['Max Temperature (°C)']
prediction = regmodel.predict([[min_temp, max_temp]])
output = prediction[0]
return jsonify(output)
@app.route('/predict',methods=['POST'])
def predict():
int_features=[int(x) for x in request.form.values()]
final_features=[np.array(int_features)]
prediction=regmodel.predict(final_features)
output=round(prediction[0],2)
return render_template('index.html',prediction_text='Predicted Soil Mositure: {}%'.format(output))
if __name__ == "__main__":
app.run(debug=True)