-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpool_match.py
603 lines (501 loc) · 23.5 KB
/
pool_match.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
import os
import sys
import time
import random
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torchvision.utils import save_image, make_grid
import models.resnet as RN
import models.convnet as CN
import models.resnet_ap as RNAP
import models.densenet_cifar as DN
from gan_model import Generator, Discriminator
from utils import AverageMeter, accuracy, Normalize, Logger, rand_bbox
from augment import DiffAug
def str2bool(v):
"""Cast string to boolean
"""
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def load_data(args):
'''Obtain data
'''
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
if args.data == 'cifar10':
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.491, 0.482, 0.447), (0.202, 0.199, 0.201))
])
trainset = datasets.CIFAR10(root=args.data_dir, train=True, download=True,
transform=transform_train)
testset = datasets.CIFAR10(root=args.data_dir, train=False, download=True,
transform=transform_test)
elif args.data == 'svhn':
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.437, 0.444, 0.473), (0.198, 0.201, 0.197))
])
trainset = datasets.SVHN(os.path.join(args.data_dir, 'svhn'),
split='train',
download=True,
transform=transform_train)
testset = datasets.SVHN(os.path.join(args.data_dir, 'svhn'),
split='test',
download=True,
transform=transform_test)
elif args.data == 'fashion':
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.286,), (0.353,))
])
trainset = datasets.FashionMNIST(args.data_dir, train=True, download=True,
transform=transform_train)
testset = datasets.FashionMNIST(args.data_dir, train=False, download=True,
transform=transform_train)
elif args.data == 'mnist':
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.131,), (0.308,))
])
trainset = datasets.MNIST(args.data_dir, train=True, download=True,
transform=transform_train)
testset = datasets.MNIST(args.data_dir, train=False, download=True,
transform=transform_train)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers, drop_last=True
)
testloader = torch.utils.data.DataLoader(
testset, batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers
)
return trainloader, testloader
def define_model(args, num_classes, e_model=None):
'''Obtain model for training, validating and matching
With no 'e_model' specified, it returns a random model
'''
if e_model:
model = e_model
else:
model_pool = ['convnet', 'resnet10', 'resnet18',
'resnet10_ap', 'resnet18_ap']
model = random.choice(model_pool)
print('Random model: {}'.format(model))
if args.data == 'mnist' or args.data == 'fashion':
nch = 1
else:
nch = 3
if model == 'convnet':
return CN.ConvNet(num_classes, channel=nch)
elif model == 'resnet10':
return RN.ResNet(args.data, 10, num_classes, nch=nch)
elif model == 'resnet18':
return RN.ResNet(args.data, 18, num_classes, nch=nch)
elif model == 'resnet34':
return RN.ResNet(args.data, 34, num_classes, nch=nch)
elif model == 'resnet50':
return RN.ResNet(args.data, 50, num_classes, nch=nch)
elif model == 'resnet101':
return RN.ResNet(args.data, 101, num_classes, nch=nch)
elif model == 'resnet10_ap':
return RNAP.ResNetAP(args.data, 10, num_classes, nch=nch)
elif model == 'resnet18_ap':
return RNAP.ResNetAP(args.data, 18, num_classes, nch=nch)
elif model == 'resnet34_ap':
return RNAP.ResNetAP(args.data, 34, num_classes, nch=nch)
elif model == 'resnet50_ap':
return RNAP.ResNetAP(args.data, 50, num_classes, nch=nch)
elif model == 'resnet101_ap':
return RNAP.ResNetAP(args.data, 101, num_classes, nch=nch)
elif model == 'densenet':
return DN.densenet_cifar(num_classes)
def calc_gradient_penalty(args, discriminator, img_real, img_syn):
''' Gradient penalty from Wasserstein GAN
'''
LAMBDA = 10
n_size = img_real.shape[-1]
batch_size = img_real.shape[0]
n_channels = img_real.shape[1]
alpha = torch.rand(batch_size, 1)
alpha = alpha.expand(batch_size, int(img_real.nelement() / batch_size)).contiguous()
alpha = alpha.view(batch_size, n_channels, n_size, n_size)
alpha = alpha.cuda()
img_syn = img_syn.view(batch_size, n_channels, n_size, n_size)
interpolates = alpha * img_real.detach() + ((1 - alpha) * img_syn.detach())
interpolates = interpolates.cuda()
interpolates.requires_grad_(True)
disc_interpolates, _ = discriminator(interpolates)
gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size()).cuda(),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * LAMBDA
return gradient_penalty
def dist(x, y, method='mse'):
"""Distance objectives
"""
if method == 'mse':
dist_ = (x - y).pow(2).sum()
elif method == 'l1':
dist_ = (x - y).abs().sum()
elif method == 'l1_mean':
n_b = x.shape[0]
dist_ = (x - y).abs().reshape(n_b, -1).mean(-1).sum()
elif method == 'cos':
x = x.reshape(x.shape[0], -1)
y = y.reshape(y.shape[0], -1)
dist_ = torch.sum(1 - torch.sum(x * y, dim=-1) /
(torch.norm(x, dim=-1) * torch.norm(y, dim=-1) + 1e-6))
return dist_
def add_loss(loss_sum, loss):
if loss_sum == None:
return loss
else:
return loss_sum + loss
def matchloss(args, img_real, img_syn, lab_real, lab_syn, model):
"""Matching losses (feature or gradient)
"""
loss = None
if 'feat' in args.match:
with torch.no_grad():
feat_tg = model.get_feature(img_real, args.idx_from, args.idx_to)
feat = model.get_feature(img_syn, args.idx_from, args.idx_to)
for i in range(len(feat)):
loss = add_loss(loss, dist(feat_tg[i].mean(0), feat[i].mean(0), method=args.metric) * 0.001)
elif 'grad' in args.match:
criterion = nn.CrossEntropyLoss()
output_real = model(img_real)
loss_real = criterion(output_real, lab_real)
g_real = torch.autograd.grad(loss_real, model.parameters())
g_real = list((g.detach() for g in g_real))
output_syn = model(img_syn)
loss_syn = criterion(output_syn, lab_syn)
g_syn = torch.autograd.grad(loss_syn, model.parameters(), create_graph=True)
for i in range(len(g_real)):
if (len(g_real[i].shape) == 1) and not args.bias: # bias, normliazation
continue
if (len(g_real[i].shape) == 2) and not args.fc:
continue
loss = add_loss(loss, dist(g_real[i], g_syn[i], method=args.metric) * 0.001)
elif 'logit' in args.match:
output_real = F.log_softmax(model(img_real), dim=1)
output_syn = F.log_softmax(model(img_syn), dim=1)
loss = add_loss(loss, ((output_real - output_syn) ** 2).mean() * 0.01)
return loss
def remove_aug(augtype, remove_aug):
aug_list = []
for aug in augtype.split("_"):
if aug not in remove_aug.split("_"):
aug_list.append(aug)
return "_".join(aug_list)
def diffaug(args, device='cuda'):
"""Differentiable augmentation for condensation
"""
aug_type = args.aug_type
if args.data == 'cifar10':
normalize = Normalize((0.491, 0.482, 0.447), (0.202, 0.199, 0.201), device='cuda')
elif args.data == 'svhn':
normalize = Normalize((0.437, 0.444, 0.473), (0.198, 0.201, 0.197), device='cuda')
elif args.data == 'fashion':
normalize = Normalize((0.286,), (0.353,), device='cuda')
elif args.data == 'mnist':
normalize = Normalize((0.131,), (0.308,), device='cuda')
print("Augmentataion Matching: ", aug_type)
augment = DiffAug(strategy=aug_type, batch=True)
aug_batch = transforms.Compose([normalize, augment])
if args.mixup_net == 'cut':
aug_type = remove_aug(aug_type, 'cutout')
print("Augmentataion Net update: ", aug_type)
augment_rand = DiffAug(strategy=aug_type, batch=False)
aug_rand = transforms.Compose([normalize, augment_rand])
return aug_batch, aug_rand
def train(args, epoch, generator, discriminator, optim_g, optim_d, trainloader, criterion, aug, aug_rand):
'''The main training function for the generator
'''
generator.train()
gen_losses = AverageMeter()
disc_losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
model = define_model(args, args.num_classes).cuda()
model.train()
optim_model = torch.optim.SGD(model.parameters(), args.eval_lr, momentum=args.momentum,
weight_decay=args.weight_decay)
for batch_idx, (img_real, lab_real) in enumerate(trainloader):
img_real = img_real.cuda()
lab_real = lab_real.cuda()
# train the generator
discriminator.eval()
optim_g.zero_grad()
# obtain the noise with one-hot class labels
noise = torch.normal(0, 1, (args.batch_size, args.dim_noise))
lab_onehot = torch.zeros((args.batch_size, args.num_classes))
lab_onehot[torch.arange(args.batch_size), lab_real] = 1
noise[torch.arange(args.batch_size), :args.num_classes] = lab_onehot[torch.arange(args.batch_size)]
noise = noise.cuda()
img_syn = generator(noise)
gen_source, gen_class = discriminator(img_syn)
gen_source = gen_source.mean()
gen_class = criterion(gen_class, lab_real)
gen_loss = - gen_source + gen_class
# update the match model to obtain more various matching signals
train_match_model(args, model, optim_model, trainloader, criterion, aug_rand)
# calculate the matching loss
if args.match_aug:
img_aug = aug(torch.cat([img_real, img_syn]))
match_loss = matchloss(args, img_aug[:args.batch_size], img_aug[args.batch_size:], lab_real, lab_real, model)# * args.match_coeff
else:
match_loss = matchloss(args, img_real, img_syn, lab_real, lab_real, model)# * args.match_coeff
gen_loss = gen_loss + match_loss
gen_loss.backward()
optim_g.step()
# train the discriminator
discriminator.train()
optim_d.zero_grad()
lab_syn = torch.randint(args.num_classes, (args.batch_size,))
noise = torch.normal(0, 1, (args.batch_size, args.dim_noise))
lab_onehot = torch.zeros((args.batch_size, args.num_classes))
lab_onehot[torch.arange(args.batch_size), lab_syn] = 1
noise[torch.arange(args.batch_size), :args.num_classes] = lab_onehot[torch.arange(args.batch_size)]
noise = noise.cuda()
lab_syn = lab_syn.cuda()
with torch.no_grad():
img_syn = generator(noise)
disc_fake_source, disc_fake_class = discriminator(img_syn)
disc_fake_source = disc_fake_source.mean()
disc_fake_class = criterion(disc_fake_class, lab_syn)
disc_real_source, disc_real_class = discriminator(img_real)
acc1, acc5 = accuracy(disc_real_class.data, lab_real, topk=(1, 5))
disc_real_source = disc_real_source.mean()
disc_real_class = criterion(disc_real_class, lab_real)
gradient_penalty = calc_gradient_penalty(args, discriminator, img_real, img_syn)
disc_loss = disc_fake_source - disc_real_source + disc_fake_class + disc_real_class + gradient_penalty
disc_loss.backward()
optim_d.step()
gen_losses.update(gen_loss.item())
disc_losses.update(disc_loss.item())
top1.update(acc1.item())
top5.update(acc5.item())
if (batch_idx + 1) % args.print_freq == 0:
print('[Train Epoch {} Iter {}] G Loss: {:.3f}({:.3f}) D Loss: {:.3f}({:.3f}) D Acc: {:.3f}({:.3f})'.format(
epoch, batch_idx + 1, gen_losses.val, gen_losses.avg, disc_losses.val, disc_losses.avg, top1.val, top1.avg)
)
def train_match_model(args, model, optim_model, trainloader, criterion, aug_rand):
'''The training function for the match model
'''
for batch_idx, (img, lab) in enumerate(trainloader):
if batch_idx == args.epochs_match_train:
break
img = img.cuda()
lab = lab.cuda()
output = model(aug_rand(img))
loss = criterion(output, lab)
optim_model.zero_grad()
loss.backward()
optim_model.step()
def test(args, model, testloader, criterion):
'''Calculate accuracy
'''
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
for batch_idx, (img, lab) in enumerate(testloader):
img = img.cuda()
lab = lab.cuda()
with torch.no_grad():
output = model(img)
loss = criterion(output, lab)
acc1, acc5 = accuracy(output.data, lab, topk=(1, 5))
losses.update(loss.item(), output.shape[0])
top1.update(acc1.item(), output.shape[0])
top5.update(acc5.item(), output.shape[0])
return top1.avg, top5.avg, losses.avg
def validate(args, generator, testloader, criterion, aug_rand):
'''Validate the generator performance
'''
all_best_top1 = []
all_best_top5 = []
for e_model in args.eval_model:
print('Evaluating {}'.format(e_model))
model = define_model(args, args.num_classes, e_model).cuda()
model.train()
optim_model = torch.optim.SGD(model.parameters(), args.eval_lr, momentum=args.momentum,
weight_decay=args.weight_decay)
generator.eval()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
best_top1 = 0.0
best_top5 = 0.0
for epoch_idx in range(args.epochs_eval):
for batch_idx in range(10 * args.ipc // args.batch_size + 1):
# obtain pseudo samples with the generator
lab_syn = torch.randint(args.num_classes, (args.batch_size,))
noise = torch.normal(0, 1, (args.batch_size, args.dim_noise))
lab_onehot = torch.zeros((args.batch_size, args.num_classes))
lab_onehot[torch.arange(args.batch_size), lab_syn] = 1
noise[torch.arange(args.batch_size), :args.num_classes] = lab_onehot[torch.arange(args.batch_size)]
noise = noise.cuda()
lab_syn = lab_syn.cuda()
with torch.no_grad():
img_syn = generator(noise)
img_syn = aug_rand((img_syn + 1.0) / 2.0)
if np.random.rand(1) < args.mix_p and args.mixup_net == 'cut':
lam = np.random.beta(args.beta, args.beta)
rand_index = torch.randperm(len(img_syn)).cuda()
lab_syn_b = lab_syn[rand_index]
bbx1, bby1, bbx2, bby2 = rand_bbox(img_syn.size(), lam)
img_syn[:, :, bbx1:bbx2, bby1:bby2] = img_syn[rand_index, :, bbx1:bbx2, bby1:bby2]
ratio = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (img_syn.size()[-1] * img_syn.size()[-2]))
output = model(img_syn)
loss = criterion(output, lab_syn) * ratio + criterion(output, lab_syn_b) * (1. - ratio)
else:
output = model(img_syn)
loss = criterion(output, lab_syn)
acc1, acc5 = accuracy(output.data, lab_syn, topk=(1, 5))
losses.update(loss.item(), img_syn.shape[0])
top1.update(acc1.item(), img_syn.shape[0])
top5.update(acc5.item(), img_syn.shape[0])
optim_model.zero_grad()
loss.backward()
optim_model.step()
if (epoch_idx + 1) % args.test_interval == 0:
test_top1, test_top5, test_loss = test(args, model, testloader, criterion)
print('[Test Epoch {}] Top1: {:.3f} Top5: {:.3f}'.format(epoch_idx + 1, test_top1, test_top5))
if test_top1 > best_top1:
best_top1 = test_top1
best_top5 = test_top5
all_best_top1.append(best_top1)
all_best_top5.append(best_top5)
return all_best_top1, all_best_top5
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--ipc', type=int, default=50)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--epochs-eval', type=int, default=1000)
parser.add_argument('--epochs-match', type=int, default=100)
parser.add_argument('--epochs-match-train', type=int, default=16)
parser.add_argument('--lr', type=float, default=5e-6)
parser.add_argument('--eval-lr', type=float, default=0.01)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight-decay', type=float, default=5e-4)
parser.add_argument('--match-coeff', type=float, default=0.001)
parser.add_argument('--match-model', type=str, default='convnet')
parser.add_argument('--match', type=str, default='grad')
parser.add_argument('--eval-model', type=str, nargs='+', default=['convnet'])
parser.add_argument('--dim-noise', type=int, default=100)
parser.add_argument('--num-workers', type=int, default=4)
parser.add_argument('--print-freq', type=int, default=50)
parser.add_argument('--eval-interval', type=int, default=10)
parser.add_argument('--test-interval', type=int, default=200)
parser.add_argument('--fix-disc', action='store_true', default=False)
parser.add_argument('--data', type=str, default='cifar10')
parser.add_argument('--num-classes', type=int, default=10)
parser.add_argument('--data-dir', type=str, default='./data')
parser.add_argument('--output-dir', type=str, default='./results/')
parser.add_argument('--logs-dir', type=str, default='./logs/')
parser.add_argument('--weight', type=str, default='')
parser.add_argument('--match-aug', action='store_true', default=False)
parser.add_argument('--aug-type', type=str, default='color_crop_cutout')
parser.add_argument('--mixup-net', type=str, default='cut')
parser.add_argument('--metric', type=str, default='l1')
parser.add_argument('--bias', type=str2bool, default=False)
parser.add_argument('--fc', type=str2bool, default=False)
parser.add_argument('--mix-p', type=float, default=-1.0)
parser.add_argument('--beta', type=float, default=1.0)
parser.add_argument('--tag', type=str, default='test')
parser.add_argument('--seed', type=int, default=3407)
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
args.output_dir = args.output_dir + args.tag
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if not os.path.exists(args.output_dir + '/outputs'):
os.makedirs(args.output_dir + '/outputs')
if not os.path.exists(args.logs_dir):
os.makedirs(args.logs_dir)
args.logs_dir = args.logs_dir + args.tag
if not os.path.exists(args.logs_dir):
os.makedirs(args.logs_dir)
sys.stdout = Logger(os.path.join(args.logs_dir, 'logs.txt'))
print(args)
trainloader, testloader = load_data(args)
generator = Generator(args).cuda()
discriminator = Discriminator(args).cuda()
optim_g = torch.optim.Adam(generator.parameters(), lr=args.lr, betas=(0, 0.9))
optim_d = torch.optim.Adam(discriminator.parameters(), lr=args.lr, betas=(0, 0.9))
model_dict = torch.load(args.weight)
generator.load_state_dict(model_dict['generator'])
discriminator.load_state_dict(model_dict['discriminator'])
optim_g.load_state_dict(model_dict['optim_g'])
optim_d.load_state_dict(model_dict['optim_d'])
for g in optim_g.param_groups:
g['lr'] = args.lr
for g in optim_d.param_groups:
g['lr'] = args.lr
criterion = nn.CrossEntropyLoss()
aug, aug_rand = diffaug(args)
best_top1s = np.zeros((len(args.eval_model),))
best_top5s = np.zeros((len(args.eval_model),))
best_epochs = np.zeros((len(args.eval_model),))
for epoch in range(args.epochs):
generator.train()
discriminator.train()
train(args, epoch, generator, discriminator, optim_g, optim_d, trainloader, criterion, aug, aug_rand)
# save image for visualization
generator.eval()
test_label = torch.tensor(list(range(10)) * 10)
test_noise = torch.normal(0, 1, (100, 100))
lab_onehot = torch.zeros((100, args.num_classes))
lab_onehot[torch.arange(100), test_label] = 1
test_noise[torch.arange(100), :args.num_classes] = lab_onehot[torch.arange(100)]
test_noise = test_noise.cuda()
test_img_syn = (generator(test_noise) + 1.0) / 2.0
test_img_syn = make_grid(test_img_syn, nrow=10)
save_image(test_img_syn, os.path.join(args.output_dir, 'outputs/img_{}.png'.format(epoch)))
generator.train()
if (epoch + 1) % args.eval_interval == 0:
top1s, top5s = validate(args, generator, testloader, criterion, aug_rand)
for e_idx, e_model in enumerate(args.eval_model):
if top1s[e_idx] > best_top1s[e_idx]:
best_top1s[e_idx] = top1s[e_idx]
best_top5s[e_idx] = top5s[e_idx]
best_epochs[e_idx] = epoch
model_dict = {'generator': generator.state_dict(),
'discriminator': discriminator.state_dict(),
'optim_g': optim_g.state_dict(),
'optim_d': optim_d.state_dict()}
torch.save(
model_dict,
os.path.join(args.output_dir, 'model_dict_{}.pth'.format(e_model)))
print('Save model for {}'.format(e_model))
print('Current Best Epoch for {}: {}, Top1: {:.3f}, Top5: {:.3f}'.format(e_model, best_epochs[e_idx], best_top1s[e_idx], best_top5s[e_idx]))