forked from OpenNMT/OpenNMT-py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_builder.py
502 lines (438 loc) · 17.9 KB
/
model_builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
"""
This file is for models creation, which consults options
and creates each encoder and decoder accordingly.
"""
import torch
import torch.nn as nn
from torch.nn.utils import skip_init
from torch.nn.init import xavier_uniform_, zeros_, uniform_
from onmt.models.model import NMTModel, LanguageModel
from onmt.encoders import str2enc
from onmt.decoders import str2dec
from onmt.inputters.inputter import dict_to_vocabs
from onmt.modules import Embeddings, CopyGenerator
from onmt.utils.misc import use_gpu
from onmt.utils.logging import logger
from onmt.utils.parse import ArgumentParser
from onmt.models.model_saver import load_checkpoint
from onmt.constants import DefaultTokens, ModelTask
from onmt.modules.lora import (
replace_lora_linear,
replace_lora_embedding,
mark_only_lora_as_trainable,
)
def build_embeddings(opt, vocabs, for_encoder=True):
"""
Args:
opt: the option in current environment.
vocab.
for_encoder(bool): build Embeddings for encoder or decoder?
"""
feat_pad_indices = []
num_feat_embeddings = []
if for_encoder:
emb_dim = opt.src_word_vec_size
word_padding_idx = vocabs["src"][DefaultTokens.PAD]
num_word_embeddings = len(vocabs["src"])
if "src_feats" in vocabs:
feat_pad_indices = [fv[DefaultTokens.PAD] for fv in vocabs["src_feats"]]
num_feat_embeddings = [len(fv) for fv in vocabs["src_feats"]]
freeze_word_vecs = opt.freeze_word_vecs_enc
else:
emb_dim = opt.tgt_word_vec_size
word_padding_idx = vocabs["tgt"][DefaultTokens.PAD]
num_word_embeddings = len(vocabs["tgt"])
freeze_word_vecs = opt.freeze_word_vecs_dec
emb = Embeddings(
word_vec_size=emb_dim,
position_encoding=opt.position_encoding,
position_encoding_type=opt.position_encoding_type,
feat_merge=opt.feat_merge,
feat_vec_exponent=opt.feat_vec_exponent,
feat_vec_size=opt.feat_vec_size,
dropout=opt.dropout[0] if type(opt.dropout) is list else opt.dropout,
word_padding_idx=word_padding_idx,
feat_padding_idx=feat_pad_indices,
word_vocab_size=num_word_embeddings,
feat_vocab_sizes=num_feat_embeddings,
sparse=opt.optim == "sparseadam",
freeze_word_vecs=freeze_word_vecs,
)
return emb
def build_encoder(opt, embeddings):
"""
Various encoder dispatcher function.
Args:
opt: the option in current environment.
embeddings (Embeddings): vocab embeddings for this encoder.
"""
enc_type = opt.encoder_type if opt.model_type == "text" else opt.model_type
return str2enc[enc_type].from_opt(opt, embeddings)
def build_decoder(opt, embeddings):
"""
Various decoder dispatcher function.
Args:
opt: the option in current environment.
embeddings (Embeddings): vocab embeddings for this decoder.
"""
dec_type = (
"ifrnn" if opt.decoder_type == "rnn" and opt.input_feed else opt.decoder_type
)
return str2dec[dec_type].from_opt(opt, embeddings)
def load_test_model(opt, device_id=0, model_path=None):
if model_path is None:
model_path = opt.models[0]
checkpoint = load_checkpoint(model_path)
model_opt = ArgumentParser.ckpt_model_opts(checkpoint["opt"])
if hasattr(model_opt, "quant_type") and model_opt.quant_type in [
"llm_awq",
"aawq_gemm",
"aawq_gemv",
]: # if the loaded model is a awq quantized one, inference config cannot overwrite this
if (
hasattr(opt, "quant_type")
and opt.quant_type != ""
and opt.quant_type != model_opt.quant_type
):
raise ValueError(
"Model is a awq quantized model, cannot overwrite with another quant method"
)
elif hasattr(opt, "quant_type") and opt.quant_type not in [
"llm_awq",
"aawq_gemm",
"aawq_gemv",
]: # we still want to be able to load fp16/32 models with bnb 4bit to minimize ram footprint
model_opt.quant_layers = opt.quant_layers
model_opt.quant_type = opt.quant_type
model_opt.lora_layers = []
if opt.world_size > 1 and opt.parallel_mode == "tensor_parallel":
model_opt.world_size = opt.world_size
model_opt.parallel_mode = opt.parallel_mode
model_opt.gpu_ranks = opt.gpu_ranks
device = torch.device("cuda", device_id)
offset = device_id
else:
if use_gpu(opt):
if len(opt.gpu_ranks) > 0:
device_id = opt.gpu_ranks[0]
elif opt.gpu > -1:
device_id = opt.gpu
device = torch.device("cuda", device_id)
else:
device = torch.device("cpu")
offset = 0
ArgumentParser.update_model_opts(model_opt)
ArgumentParser.validate_model_opts(model_opt)
vocabs = dict_to_vocabs(checkpoint["vocab"])
# Avoid functionality on inference
model_opt.update_vocab = False
model_opt.attention_dropout = (
0.0 # required to force no dropout at inference with flash
)
model = build_base_model(model_opt, vocabs)
precision = torch.float32
if opt.precision == "fp16":
precision = torch.float16
elif opt.precision == "int8":
if opt.gpu >= 0:
raise ValueError("Dynamic 8-bit quantization is not supported on GPU")
else:
precision = torch.float32
logger.info("Loading data into the model")
if "model" in checkpoint.keys():
# weights are in the .pt file
model.load_state_dict(
checkpoint,
precision=precision,
device=device,
strict=True,
offset=offset,
)
else:
# weights are not in the .pt checkpoint but stored in the safetensors file
base_name = model_path[:-3] if model_path[-3:] == ".pt" else model_path
model.load_safe_state_dict(
base_name,
precision=precision,
device=device,
strict=True,
offset=offset,
)
if opt.precision == torch.int8:
torch.quantization.quantize_dynamic(model, dtype=torch.qint8, inplace=True)
del checkpoint
model.eval()
for name, module in model.named_modules():
if hasattr(module, "dropout_p"):
module.dropout_p = 0.0
return vocabs, model, model_opt
def build_src_emb(model_opt, vocabs):
# Build embeddings.
if model_opt.model_type == "text":
src_emb = build_embeddings(model_opt, vocabs)
else:
src_emb = None
return src_emb
def build_encoder_with_embeddings(model_opt, vocabs):
# Build encoder.
src_emb = build_src_emb(model_opt, vocabs)
encoder = build_encoder(model_opt, src_emb)
return encoder, src_emb
def build_decoder_with_embeddings(
model_opt, vocabs, share_embeddings=False, src_emb=None
):
# Build embeddings.
tgt_emb = build_embeddings(model_opt, vocabs, for_encoder=False)
if share_embeddings:
tgt_emb.word_lut.weight = src_emb.word_lut.weight
# Build decoder.
decoder = build_decoder(model_opt, tgt_emb)
return decoder, tgt_emb
def build_task_specific_model(model_opt, vocabs):
# Share the embedding matrix - preprocess with share_vocab required.
if model_opt.share_embeddings:
# src/tgt vocab should be the same if `-share_vocab` is specified.
assert (
vocabs["src"] == vocabs["tgt"]
), "preprocess with -share_vocab if you use share_embeddings"
if model_opt.model_task == ModelTask.SEQ2SEQ:
encoder, src_emb = build_encoder_with_embeddings(model_opt, vocabs)
decoder, _ = build_decoder_with_embeddings(
model_opt,
vocabs,
share_embeddings=model_opt.share_embeddings,
src_emb=src_emb,
)
return NMTModel(encoder=encoder, decoder=decoder)
elif model_opt.model_task == ModelTask.LANGUAGE_MODEL:
src_emb = build_src_emb(model_opt, vocabs)
decoder, _ = build_decoder_with_embeddings(
model_opt, vocabs, share_embeddings=True, src_emb=src_emb
)
return LanguageModel(decoder=decoder)
else:
raise ValueError(f"No model defined for {model_opt.model_task} task")
def use_embeddings_from_checkpoint(vocabs, model, checkpoint):
# Update vocabulary embeddings with checkpoint embeddings
logger.info("Updating vocabulary embeddings with checkpoint embeddings")
# Embedding layers
enc_emb_name = "encoder.embeddings.make_embedding.emb_luts.0.weight"
dec_emb_name = "decoder.embeddings.make_embedding.emb_luts.0.weight"
model_dict = {k: v for k, v in model.state_dict().items() if "generator" not in k}
generator_dict = model.generator.state_dict()
for side, emb_name in [("src", enc_emb_name), ("tgt", dec_emb_name)]:
if emb_name not in checkpoint["model"]:
continue
new_tokens = []
ckp_vocabs = dict_to_vocabs(checkpoint["vocab"])
for i, tok in enumerate(vocabs[side].ids_to_tokens):
if tok in ckp_vocabs[side]:
old_i = ckp_vocabs[side].lookup_token(tok)
model_dict[emb_name][i] = checkpoint["model"][emb_name][old_i]
if side == "tgt":
generator_dict["weight"][i] = checkpoint["generator"]["weight"][
old_i
]
generator_dict["bias"][i] = checkpoint["generator"]["bias"][old_i]
else:
# Just for debugging purposes
new_tokens.append(tok)
logger.info("%s: %d new tokens" % (side, len(new_tokens)))
# Remove old vocabulary associated embeddings
del checkpoint["model"][emb_name]
del checkpoint["generator"]["weight"], checkpoint["generator"]["bias"]
fake_ckpt = {"model": model_dict, "generator": generator_dict}
model.load_state_dict(fake_ckpt)
def build_base_model(model_opt, vocabs):
"""Build a model from opts.
Args:
model_opt: the option loaded from checkpoint. It's important that
the opts have been updated and validated. See
:class:`onmt.utils.parse.ArgumentParser`.
vocabs (dict[str, Vocab]):
`Field` objects for the model.
Returns:
the NMTModel.
"""
# for back compat when attention_dropout was not defined
try:
model_opt.attention_dropout
except AttributeError:
model_opt.attention_dropout = model_opt.dropout
# Build Model
model = build_task_specific_model(model_opt, vocabs)
nonlora_to_quant = [
layer
for layer in getattr(model_opt, "quant_layers", [])
if layer not in getattr(model_opt, "lora_layers", [])
]
if hasattr(model_opt, "quant_layers") and len(nonlora_to_quant) > 0:
if model_opt.quant_type in ["bnb_8bit", "bnb_FP4", "bnb_NF4"]:
logger.info(
"%s compression of layer %s" % (model_opt.quant_type, nonlora_to_quant)
)
try:
from onmt.modules.bnb_linear import replace_bnb_linear
except ImportError:
raise ImportError("Install bitsandbytes to use 4/8bit compression")
model = replace_bnb_linear(
model, module_to_convert=nonlora_to_quant, q_type=model_opt.quant_type
)
elif model_opt.quant_type in ["llm_awq", "aawq_gemm", "aawq_gemv"]:
logger.info(
"%s compression of layer %s" % (model_opt.quant_type, nonlora_to_quant)
)
try:
from onmt.modules.awq_linear import replace_awq_linear
except ImportError:
raise ImportError("Install llm-awq/AutoAWQ to use awq quantized model")
model = replace_awq_linear(
model,
module_to_convert=nonlora_to_quant,
w_bit=model_opt.w_bit,
group_size=model_opt.group_size,
q_type=model_opt.quant_type,
)
else:
logger.info("compression type %s not supported." % model_opt.quant_type)
mark_lora = False
if hasattr(model_opt, "lora_layers") and len(model_opt.lora_layers) > 0:
if model_opt.freeze_encoder or model_opt.freeze_decoder:
raise ValueError("Cannot use LoRa with Enc/Dec-oder freezing")
for layer in model_opt.lora_layers:
if hasattr(model_opt, "quant_layers") and layer in model_opt.quant_layers:
quant_type = model_opt.quant_type
else:
quant_type = None
logger.info("Adding LoRa layers for %s quant %s" % (layer, quant_type))
model = replace_lora_linear(
model,
r=model_opt.lora_rank,
lora_alpha=model_opt.lora_alpha,
lora_dropout=model_opt.lora_dropout,
layer=layer,
quant_type=quant_type,
use_ckpting=model_opt.use_ckpting,
)
mark_lora = True
if hasattr(model_opt, "lora_embedding") and model_opt.lora_embedding:
if model_opt.freeze_encoder or model_opt.freeze_decoder:
raise ValueError("Cannot use LoRa with Enc/Dec-oder freezing")
logger.info("Adding LoRa Embeddings")
model = replace_lora_embedding(
model, r=model_opt.lora_rank, lora_alpha=model_opt.lora_alpha
)
mark_lora = True
if mark_lora:
mark_only_lora_as_trainable(model, bias="lora_only")
# Build Generator.
if not model_opt.copy_attn:
generator = skip_init(
nn.Linear,
in_features=model_opt.dec_hid_size,
out_features=len(vocabs["tgt"]),
)
if model_opt.share_decoder_embeddings:
generator.weight = model.decoder.embeddings.word_lut.weight
else:
vocab_size = len(vocabs["tgt"])
pad_idx = vocabs["tgt"][DefaultTokens.PAD]
generator = CopyGenerator(model_opt.dec_hid_size, vocab_size, pad_idx)
if model_opt.share_decoder_embeddings:
generator.linear.weight = model.decoder.embeddings.word_lut.weight
model.generator = generator
return model
def build_model(model_opt, opt, vocabs, checkpoint, device_id):
logger.info("Building model...")
model = build_base_model(model_opt, vocabs)
# If new training initialize the model params
# If update_vocab init also but checkpoint will overwrite old weights
if checkpoint is None or model_opt.update_vocab:
if model_opt.param_init != 0.0:
for param in model.parameters():
uniform_(param, -model_opt.param_init, model_opt.param_init)
elif model_opt.param_init_glorot:
for name, module in model.named_modules():
for param_name, param in module.named_parameters():
if param_name == "weight" and param.dim() > 1:
xavier_uniform_(param)
elif param_name == "bias":
zeros_(param)
else:
raise ValueError("You need either param_init != 0 OR init_glorot True")
if hasattr(model, "encoder") and hasattr(model.encoder, "embeddings"):
model.encoder.embeddings.load_pretrained_vectors(
model_opt.pre_word_vecs_enc
)
if hasattr(model.decoder, "embeddings"):
model.decoder.embeddings.load_pretrained_vectors(
model_opt.pre_word_vecs_dec
)
# ONLY for legacy fusedam with amp pytorch requires NOT to half the model
if (
model_opt.model_dtype == "fp16"
and model_opt.apex_opt_level not in ["O0", "O1", "O2", "O3"]
and model_opt.optim == "fusedadam"
):
precision = torch.float16
logger.info("Switching model to half() for FusedAdam legacy")
logger.info("Non quantized layer compute is %s", model_opt.model_dtype)
else:
precision = torch.float32
logger.info("Switching model to float32 for amp/apex_amp")
logger.info("Non quantized layer compute is %s", model_opt.model_dtype)
if opt.world_size > 1 and opt.parallel_mode == "tensor_parallel":
device = torch.device("cuda")
offset = device_id
else:
if use_gpu(opt):
device = torch.device("cuda")
else:
device = torch.device("cpu")
offset = 0
if checkpoint is not None:
if model_opt.update_vocab:
if "model" in checkpoint.keys():
# Update model embeddings with those from the checkpoint
# after initialization
use_embeddings_from_checkpoint(vocabs, model, checkpoint)
# after this checkpoint contains no embeddings
else:
raise ValueError(
"Update Vocab is not compatible with safetensors mode (yet"
)
# when using LoRa or updating the vocab (no more embeddings in ckpt)
# => strict=False when loading state_dict
strict = not model_opt.update_vocab
if "model" in checkpoint.keys():
# weights are in the .pt file
model.load_state_dict(
checkpoint,
precision=precision,
device=device,
strict=strict,
offset=offset,
)
else:
# weights are not in the .pt checkpoint but stored in the safetensors file
model_path = (
opt.train_from[:-3] if opt.train_from[-3:] == ".pt" else opt.train_from
)
model.load_safe_state_dict(
model_path,
precision=precision,
device=device,
strict=strict,
offset=offset,
)
else:
model.to(precision)
model.to(device)
if model_opt.freeze_encoder:
model.encoder.requires_grad_(False)
model.encoder.embeddings.requires_grad_()
if model_opt.freeze_decoder:
model.decoder.requires_grad_(False)
model.decoder.embeddings.requires_grad_()
logger.info(model)
return model