forked from OpenNMT/OpenNMT-py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
352 lines (313 loc) · 13.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
""" Onmt NMT Model base class definition """
import torch
import torch.nn as nn
from glob import glob
class BaseModel(nn.Module):
"""Core trainable object in OpenNMT. Implements a trainable interface
for a simple, generic encoder / decoder or decoder only model.
Args:
encoder (onmt.encoders.EncoderBase): an encoder object
decoder (onmt.decoders.DecoderBase): a decoder object"""
def __init__(self, encoder, decoder):
super(BaseModel, self).__init__()
def forward(self, src, tgt, src_len, bptt=False, with_align=False):
"""Forward propagate a `src` and `tgt` pair for training.
Args:
src (Tensor): A source sequence passed to encoder.
Typically for input this will be a padded `LongTensor`
of size ``(batch, len, features)``. However, may be an
image or other generic input depending on encoder.
tgt (LongTensor): A target sequence passed to decoder.
Size ``(batch, tgt_len, features)``.
src_len(LongTensor): The src lengths, pre-padding ``(batch,)``.
bptt (Boolean): A flag indicating if truncated bptt is set.
If bptt is false then init decoder state.
with_align (Boolean): A flag indicating whether output alignment,
Only valid for transformer decoder.
Returns:
(FloatTensor, dict[str, FloatTensor]):
* decoder output ``(batch, tgt_len, hidden)``
* dictionary of attention weights ``(batch, tgt_len, src_len)``"""
raise NotImplementedError
def update_dropout(self, dropout, attention_dropout):
raise NotImplementedError
def count_parameters(self, log=print):
raise NotImplementedError
def _load_param(self, name, module, param_name, param, buf_list, ckpt_t, offset):
if module.__class__.__name__ == "WQLinear_GEMM":
# ugly patch because in_feat and out_feat are reversed in WQLinear_GEMM
param.data = param.data.transpose(0, 1)
ckpt_t = ckpt_t.transpose(0, 1)
if name.split(".")[-1] in [
"linear_keys",
"linear_values",
"linear_query",
"w_1",
"w_3",
]:
col_slice_start = param.data.size(0) * offset
col_slice_end = param.data.size(0) * (offset + 1)
else:
col_slice_start = 0
col_slice_end = param.data.size(0)
if param.data.dim() == 2:
if name.split(".")[-1] in ["final_linear", "w_2"]:
row_slice_start = param.data.size(1) * offset
row_slice_end = param.data.size(1) * (offset + 1)
else:
row_slice_start = 0
row_slice_end = param.data.size(1)
assert (
param.data.size()
== ckpt_t[
col_slice_start:col_slice_end,
row_slice_start:row_slice_end,
].size()
), "An error in model's partition and checkpoint's slice was detected"
if name + "." + param_name in buf_list:
if module.__class__.__name__ == "WQLinear_GEMM":
module.register_buffer(
param_name,
ckpt_t[
col_slice_start:col_slice_end,
row_slice_start:row_slice_end,
].transpose(0, 1),
)
else:
module.register_buffer(
param_name,
ckpt_t[
col_slice_start:col_slice_end,
row_slice_start:row_slice_end,
],
)
else:
param.data = ckpt_t[
col_slice_start:col_slice_end,
row_slice_start:row_slice_end,
]
else:
assert (
param.data.size() == ckpt_t[col_slice_start:col_slice_end].size()
), "An error in model's partition and checkpoint's slice was detected"
if name + "." + param_name in buf_list:
module.register_buffer(
param_name, ckpt_t[col_slice_start:col_slice_end]
)
else:
param.data = ckpt_t[col_slice_start:col_slice_end]
def load_state_dict(
self,
checkpoint,
precision=torch.float32,
device=torch.device("cpu"),
strict=True,
offset=0,
):
"""Custom state_dict loading to enable moving module on device as they are loaded
Args:
checkpoint: Pytorch serialized checkpoint
precision: precision to move each module to
device: device to move each module to
strict: if True checks model keys wrt state_dict (both ways)
"""
# bitsandbytes quantize weights when .cuda() is called
# for huge models we need to save Ram
# so we load the weights module by module and transfer them to GPU for quantization
if device == torch.device("cpu"):
offset = 0
buf_list = []
for buf_name, buf in self.named_buffers():
buf_list.append(buf_name)
for name, module in self.named_modules():
named_buf_and_param = list(module.named_buffers()) + list(
module.named_parameters()
)
for param_name, param in named_buf_and_param:
if len(param_name.split(".")) == 1: # only last key
if name + "." + param_name in checkpoint["model"].keys():
ckpt_t = checkpoint["model"][name + "." + param_name]
self._load_param(
name, module, param_name, param, buf_list, ckpt_t, offset
)
del checkpoint["model"][name + "." + param_name]
elif (
"generator" in checkpoint.keys()
and "generator" in name
and checkpoint["generator"] is not None
and param_name in checkpoint["generator"].keys()
):
keyname = (
name + "." + param_name if "linear" in name else param_name
)
param.data = checkpoint["generator"][keyname]
del checkpoint["generator"][keyname]
elif strict and "lora" not in param_name:
raise ValueError(
"Missing key in checkpoint: %s" % name + "." + param_name
)
if precision != torch.int8:
module.to(precision)
module.to(device)
for key in checkpoint[
"model"
].keys(): # if some keys are left in checkpoint after deletion
if key not in buf_list:
raise ValueError(
"Extra keys in model state_dict do not match the model config %s"
% checkpoint["model"].keys()
)
if checkpoint["generator"]:
for key in checkpoint["generator"].keys():
if key not in buf_list:
raise ValueError(
"Extra keys in generator state_dict do not match the model config %s"
% checkpoint["generator"].keys()
)
def load_safe_state_dict(
self,
model_path,
precision=torch.float32,
device=torch.device("cpu"),
strict=True,
offset=0,
):
"""Custom state_dict loading to enable moving module on device as they are loaded
Args:
model_path: Model path
precision: same as above
device: same as above
strict: same as above
"""
# bitsandbytes quantize weights when .cuda() is called
# for huge models we need to save Ram
# so we load the weights module by module and transfer them to GPU for quantization
try:
import safetensors
except ImportError:
raise ImportError("run: pip install safetensors, to use safetensors")
keyfound = {}
shards = glob(model_path + ".*.safetensors")
if len(shards) == 0:
raise ValueError("No safetensors file found")
f = []
keys_shard = {}
for i, shard in enumerate(shards):
f.append(safetensors.safe_open(shard, framework="pt", device="cpu"))
for key in f[i].keys():
keys_shard[key] = i
if device == torch.device("cpu"):
offset = 0
buf_list = []
for buf_name, buf in self.named_buffers():
buf_list.append(buf_name)
for name, module in self.named_modules():
named_buf_and_param = list(module.named_buffers()) + list(
module.named_parameters()
)
for param_name, param in named_buf_and_param:
if len(param_name.split(".")) == 1: # only last key
if name + "." + param_name in keys_shard.keys():
ckpt_t = f[keys_shard[name + "." + param_name]].get_tensor(
name + "." + param_name
)
self._load_param(
name, module, param_name, param, buf_list, ckpt_t, offset
)
keyfound[name + "." + param_name] = True
elif strict and "lora" not in param_name:
raise ValueError(
"Missing key in safetensors checkpoint: %s" % name
+ "."
+ param_name
)
if precision == torch.int8:
torch.quantization.quantize_dynamic(module, inplace=True)
else:
module.to(precision)
module.to(device)
for key in keys_shard.keys():
if key not in keyfound.keys() and key not in buf_list:
raise ValueError(
"Extra keys in model state_dict do not match the model config %s"
% key
)
class NMTModel(BaseModel):
"""NMTModel Class
See :class:`~onmt.models.BaseModel` for options."""
def __init__(self, encoder, decoder):
super(NMTModel, self).__init__(encoder, decoder)
self.encoder = encoder
self.decoder = decoder
def forward(self, src, tgt, src_len, bptt=False, with_align=False):
"""An NMTModel forward the src side to the encoder.
Then the output of encoder ``enc_out`` is forwarded to the
decoder along with the target excluding the last token.
The decoder state is initiliazed with:
* enc_final_hs in the case of RNNs
* enc_out + enc_final_hs in the case of CNNs
* src in the case of Transformer"""
dec_in = tgt[:, :-1, :]
enc_out, enc_final_hs, src_len = self.encoder(src, src_len)
if not bptt:
self.decoder.init_state(src, enc_out, enc_final_hs)
dec_out, attns = self.decoder(
dec_in, enc_out, src_len=src_len, with_align=with_align
)
return dec_out, attns
def update_dropout(self, dropout, attention_dropout):
self.encoder.update_dropout(dropout, attention_dropout)
self.decoder.update_dropout(dropout, attention_dropout)
def count_parameters(self, log=print):
"""Count number of parameters in model (& print with `log` callback).
Returns:
(int, int):
* encoder side parameter count
* decoder side parameter count"""
enc, dec = 0, 0
for name, param in self.named_parameters():
if "encoder" in name:
enc += param.nelement()
else:
dec += param.nelement()
if callable(log):
log("encoder: {}".format(enc))
log("decoder: {}".format(dec))
log("* number of parameters: {}".format(enc + dec))
return enc, dec
class LanguageModel(BaseModel):
"""NMTModel Class
Currently TransformerLMDecoder is the only LM decoder implemented
Args:
decoder (onmt.decoders.TransformerLMDecoder): a transformer decoder"""
def __init__(self, encoder=None, decoder=None):
super(LanguageModel, self).__init__(encoder, decoder)
if encoder is not None:
raise ValueError("LanguageModel should not be used" "with an encoder")
self.decoder = decoder
def forward(self, src, tgt, src_len, bptt=False, with_align=False):
"""A LanguageModel forward the src side to the decoder along
with the source lengths vector. It is a decoder only LM (cf GPT-2)"""
if not bptt:
self.decoder.init_state()
dec_out, attns = self.decoder(
src, enc_out=None, src_len=src_len, with_align=with_align
)
return dec_out, attns
def update_dropout(self, dropout, attention_dropout):
self.decoder.update_dropout(dropout, attention_dropout)
def count_parameters(self, log=print):
"""Count number of parameters in model (& print with `log` callback).
Returns: (int, int)
encoder side parameter count
decoder side parameter count"""
enc, dec = 0, 0
for name, param in self.named_parameters():
if "decoder" in name:
dec += param.nelement()
if callable(log):
# No encoder in LM, seq2seq count formatting kept
log("encoder: {}".format(enc))
log("decoder: {}".format(dec))
log("* number of parameters: {}".format(enc + dec))
return enc, dec