Skip to content

Commit 5d0f320

Browse files
authored
Merge pull request #200 from dnth/dnth/update-readme
Readme Updates
2 parents 90fcd32 + 8e1869b commit 5d0f320

File tree

6 files changed

+110
-32
lines changed

6 files changed

+110
-32
lines changed

README.md

Lines changed: 110 additions & 32 deletions
Original file line numberDiff line numberDiff line change
@@ -81,8 +81,8 @@
8181
</a>
8282
<br />
8383
<br />
84-
🔥 We've released
85-
<a href="./RELEASE_NOTES.md">fastdup V1.0</a> and <a href="https://techcrunch.com/2023/05/16/visual-layer-helps-enterprise-manage-the-massive-visual-data-sets-they-need-to-build-ai-models-raises-7m/">featured</a> in Techrunch, raising $7M!
84+
🔥 We released
85+
<a href="https://medium.com/@visual-layer/fastdup-one-year-strong-and-still-going-adb382a536d3">fastdup V1.0</a> and were <a href="https://techcrunch.com/2023/05/16/visual-layer-helps-enterprise-manage-the-massive-visual-data-sets-they-need-to-build-ai-models-raises-7m/">featured</a> in Techrunch, raising $7M!
8686
<br />
8787
</div>
8888

@@ -187,12 +187,12 @@ View the API docs [here](https://visual-layer.readme.io/docs/v1-api).
187187

188188
<table>
189189
<tr>
190-
<td rowspan="3" width="160">
190+
<td rowspan="4" width="160">
191191
<a href="https://visual-layer.readme.io/docs/getting-started">
192192
<img src="./gallery/cat_dog_thumbnail.jpg" width="256">
193193
</a>
194194
</td>
195-
<td rowspan="3">
195+
<td rowspan="4">
196196
<b>Quick Dataset Analysis:</b> In this example, learn how to quickly analyze a dataset for potential issues. Identify duplicates, outliers, dark/bright/blurry images, and cluster similar images with only a few lines of code. If you're new, start here.
197197
</td>
198198
<td align="center" width="80">
@@ -215,15 +215,23 @@ View the API docs [here](https://visual-layer.readme.io/docs/v1-api).
215215
</a>
216216
</td>
217217
</tr>
218+
<tr>
219+
<td align="center">
220+
<a href="https://kaggle.com/kernels/welcome?src=https://github.com/visual-layer/fastdup/blob/main/examples/quick-dataset-analysis.ipynb">
221+
<img src="./gallery/kaggle_logo.png" height="32">
222+
</a>
223+
</td>
224+
</tr>
218225

219226
<!-- ------------------------------------------------------------------- -->
227+
220228
<tr>
221-
<td rowspan="3" width="160">
229+
<td rowspan="4" width="160">
222230
<a href="https://visual-layer.readme.io/docs/getting-started">
223231
<img src="./gallery/dino.png" width="256">
224232
</a>
225233
</td>
226-
<td rowspan="3">
234+
<td rowspan="4">
227235
<b>DINOv2 Embeddings:</b> In this example, learn how to use DINOv2 models to visualize image embeddings of your dataset. Runs on CPU!
228236
</td>
229237
<td align="center" width="80">
@@ -246,17 +254,23 @@ View the API docs [here](https://visual-layer.readme.io/docs/v1-api).
246254
</a>
247255
</td>
248256
</tr>
249-
257+
<tr>
258+
<td align="center">
259+
<a href="https://kaggle.com/kernels/welcome?src=https://github.com/visual-layer/fastdup/blob/main/examples/dinov2_notebook.ipynb">
260+
<img src="./gallery/kaggle_logo.png" height="32">
261+
</a>
262+
</td>
263+
</tr>
264+
250265
<!-- ------------------------------------------------------------------- -->
251266

252-
253267
<tr>
254-
<td rowspan="3" width="160">
268+
<td rowspan="4" width="160">
255269
<a href="https://visual-layer.readme.io/docs/cleaning-image-dataset">
256270
<img src="gallery/food_101_thumbnail.jpg" width="256">
257271
</a>
258272
</td>
259-
<td rowspan="3">
273+
<td rowspan="4">
260274
<b>Cleaning Image Dataset:</b> In this tutorial, learn how to clean a dataset from broken images, duplicates, outliers, and identify dark/bright/blurry images.
261275
</td>
262276
<td align="center" width="80">
@@ -279,16 +293,23 @@ View the API docs [here](https://visual-layer.readme.io/docs/v1-api).
279293
</a>
280294
</td>
281295
</tr>
296+
<tr>
297+
<td align="center">
298+
<a href="https://kaggle.com/kernels/welcome?src=https://github.com/visual-layer/fastdup/blob/main/examples/cleaning-image-dataset.ipynb">
299+
<img src="./gallery/kaggle_logo.png" height="32">
300+
</a>
301+
</td>
302+
</tr>
282303

283304
<!-- ------------------------------------------------------------------- -->
284305

285306
<tr>
286-
<td rowspan="3" width="160">
307+
<td rowspan="4" width="160">
287308
<a href="https://visual-layer.readme.io/docs/analyzing-labeled-images">
288309
<img src="./gallery/imagenette_thumbnail.jpg" width="256">
289310
</a>
290311
</td>
291-
<td rowspan="3">
312+
<td rowspan="4">
292313
<b>Analyzing Labeled Image Classification Dataset:</b> In this tutorial, learn how to analyze a labeled image classification dataset for potential issues. We use the Imagenette dataset, a 10-class, 13k image subset of ImageNet as a working example.
293314
</td>
294315
<td align="center" width="80">
@@ -311,16 +332,23 @@ View the API docs [here](https://visual-layer.readme.io/docs/v1-api).
311332
</a>
312333
</td>
313334
</tr>
335+
<tr>
336+
<td align="center">
337+
<a href="https://kaggle.com/kernels/welcome?src=https://github.com/visual-layer/fastdup/blob/main/examples/analysing-image-classification-dataset.ipynb">
338+
<img src="./gallery/kaggle_logo.png" height="32">
339+
</a>
340+
</td>
341+
</tr>
314342

315343
<!-- ------------------------------------------------------------------- -->
316344

317345
<tr>
318-
<td rowspan="3" width="160">
346+
<td rowspan="4" width="160">
319347
<a href="https://visual-layer.readme.io/docs/objects-and-bounding-boxes">
320348
<img src="./gallery/coco_thumbnail.jpg" width="256">
321349
</a>
322350
</td>
323-
<td rowspan="3">
351+
<td rowspan="4">
324352
<b>Analyzing Labeled Object Detection Dataset:</b> In this tutorial learn how to load and analyze an object detection dataset with labeled bounding boxes and classes. We use the mini-coco dataset as a working example. Learn how to discover duplicates, outliers, and possible mislabeled bounding boxes.
325353
</td>
326354
<td align="center" width="80">
@@ -343,6 +371,13 @@ View the API docs [here](https://visual-layer.readme.io/docs/v1-api).
343371
</a>
344372
</td>
345373
</tr>
374+
<tr>
375+
<td align="center">
376+
<a href="https://kaggle.com/kernels/welcome?src=https://github.com/visual-layer/fastdup/blob/main/examples/analyzing-object-detection-dataset.ipynb">
377+
<img src="./gallery/kaggle_logo.png" height="32">
378+
</a>
379+
</td>
380+
</tr>
346381

347382
<!-- ------------------------------------------------------------------- -->
348383

@@ -355,12 +390,12 @@ Sign up for free to be a beta tester and get early access. Drop us an email at i
355390

356391
<table>
357392
<tr>
358-
<td rowspan="3" width="160">
393+
<td rowspan="4" width="160">
359394
<a href="https://visual-layer.readme.io/docs/video-face-detection">
360395
<img src="./gallery/video-face-detection.png" width="256">
361396
</a>
362397
</td>
363-
<td rowspan="3">
398+
<td rowspan="4">
364399
<b>Face Detection Video Analysis:</b> In this tutorial, learn how to use fastdup with a face detection model to detect and crop from videos. Following that we analyze the cropped faces for issues such as duplicates, near-duplicates, outliers, bright/dark/blurry faces.
365400
</td>
366401
<td align="center" width="80">
@@ -383,16 +418,23 @@ Sign up for free to be a beta tester and get early access. Drop us an email at i
383418
</a>
384419
</td>
385420
</tr>
421+
<tr>
422+
<td align="center">
423+
<a href="https://kaggle.com/kernels/welcome?src=https://github.com/visual-layer/fastdup/blob/main/examples/video-face-detection.ipynb">
424+
<img src="./gallery/kaggle_logo.png" height="32">
425+
</a>
426+
</td>
427+
</tr>
386428

387429
<!-- ------------------------------------------------------------------- -->
388430

389431
<tr>
390-
<td rowspan="3" width="160">
432+
<td rowspan="4" width="160">
391433
<a href="https://visual-layer.readme.io/docs/video-yolov5-detection">
392434
<img src="gallery/video-yolov5-detection.png" width="256">
393435
</a>
394436
</td>
395-
<td rowspan="3">
437+
<td rowspan="4">
396438
<b>YOLOv5 Object Detection Video Analysis:</b> In this tutorial, learn how to use fastdup with a pre-trained yolov5 object detection model to detect and crop from videos. Following that we analyze the cropped objects for issues such as duplicates, near-duplicates, outliers, bright/dark/blurry objects.
397439
</td>
398440
<td align="center" width="80">
@@ -415,15 +457,23 @@ Sign up for free to be a beta tester and get early access. Drop us an email at i
415457
</a>
416458
</td>
417459
</tr>
460+
<tr>
461+
<td align="center">
462+
<a href="https://kaggle.com/kernels/welcome?src=https://github.com/visual-layer/fastdup/blob/main/examples/video-yolov5-detection.ipynb">
463+
<img src="./gallery/kaggle_logo.png" height="32">
464+
</a>
465+
</td>
466+
</tr>
467+
418468
<!-- ------------------------------------------------------------------- -->
419469

420470
<tr>
421-
<td rowspan="3" width="160">
471+
<td rowspan="4" width="160">
422472
<a href="https://visual-layer.readme.io/docs/video-yolov5-detection">
423473
<img src="gallery/satellite.png" width="256">
424474
</a>
425475
</td>
426-
<td rowspan="3">
476+
<td rowspan="4">
427477
<b>Satellite Image Analysis:</b> In this tutorial, learn how to use fastdup to load 16-bit grayscale satellite image, work with rotated bounding boxes, understand your dataset, find issues with the data and check the quality of annotations.
428478
</td>
429479
<td align="center" width="80">
@@ -446,15 +496,23 @@ Sign up for free to be a beta tester and get early access. Drop us an email at i
446496
</a>
447497
</td>
448498
</tr>
499+
<tr>
500+
<td align="center">
501+
<a href="https://kaggle.com/kernels/welcome?src=https://github.com/visual-layer/fastdup/blob/main/examples/mafat-final.ipynb">
502+
<img src="./gallery/kaggle_logo.png" height="32">
503+
</a>
504+
</td>
505+
</tr>
506+
449507
<!-- ------------------------------------------------------------------- -->
450508

451509
<tr>
452-
<td rowspan="3" width="160">
510+
<td rowspan="4" width="160">
453511
<a href="https://visual-layer.readme.io/docs/video-yolov5-detection">
454512
<img src="gallery/surveillance.png" width="256">
455513
</a>
456514
</td>
457-
<td rowspan="3">
515+
<td rowspan="4">
458516
<b>Surveillance Camera Analysis:</b> In this tutorial, learn how to use fastdup to analyze surveillance camera videos, caption the activity inside the videos and detect indoor/ outdoor.
459517
</td>
460518
<td align="center" width="80">
@@ -476,17 +534,24 @@ Sign up for free to be a beta tester and get early access. Drop us an email at i
476534
<img src="./gallery/colab_logo.png" height="28">
477535
</a>
478536
</td>
479-
</tr>
537+
</tr>
538+
<tr>
539+
<td align="center">
540+
<a href="https://kaggle.com/kernels/welcome?src=https://github.com/visual-layer/fastdup/blob/main/examples/surveillance_videos.ipynb">
541+
<img src="./gallery/kaggle_logo.png" height="32">
542+
</a>
543+
</td>
544+
</tr>
480545

481546
<!-- ------------------------------------------------------------------- -->
482547

483548
<tr>
484-
<td rowspan="3" width="160">
549+
<td rowspan="4" width="160">
485550
<a href="https://visual-layer.readme.io/docs/image-search">
486-
<img src="gallery/product-matching.png" width="256">
551+
<img src="gallery/product-matching.jpg" width="256">
487552
</a>
488553
</td>
489-
<td rowspan="3">
554+
<td rowspan="4">
490555
<b>Image Search:</b> In this tutorial, learn how to use fastdup to search through large image datasets for duplicates/similar images using a query image. Runs on CPU!
491556
</td>
492557
<td align="center" width="80">
@@ -509,15 +574,22 @@ Sign up for free to be a beta tester and get early access. Drop us an email at i
509574
</a>
510575
</td>
511576
</tr>
577+
<tr>
578+
<td align="center">
579+
<a href="https://kaggle.com/kernels/welcome?src=https://github.com/visual-layer/fastdup/blob/main/examples/image-search.ipynb">
580+
<img src="./gallery/kaggle_logo.png" height="32">
581+
</a>
582+
</td>
583+
</tr>
512584
<!-- ------------------------------------------------------------------- -->
513585

514-
<tr>
515-
<td rowspan="3" width="160">
586+
<tr>
587+
<td rowspan="4" width="160">
516588
<a href="https://visual-layer.readme.io/docs/running-over-extracted-features">
517589
<img src="gallery/feature_vector.png" width="256">
518590
</a>
519591
</td>
520-
<td rowspan="3">
592+
<td rowspan="4">
521593
<b>Feature vectors:</b> In this tutorial, learn how to read fastdup generated feature vectors in Python and use them for downstream processing, or run fastdup on your calculated feature vectors.
522594
</td>
523595
<td align="center" width="80">
@@ -540,10 +612,16 @@ Sign up for free to be a beta tester and get early access. Drop us an email at i
540612
</a>
541613
</td>
542614
</tr>
543-
</table>
544-
545-
615+
<tr>
616+
<td align="center">
617+
<a href="https://kaggle.com/kernels/welcome?src=https://github.com/visual-layer/fastdup/blob/main/examples/feature_vectors.ipynb">
618+
<img src="./gallery/kaggle_logo.png" height="32">
619+
</a>
620+
</td>
621+
</tr>
546622

623+
624+
</table>
547625

548626

549627
## Getting Help

gallery/cat_dog_thumbnail.jpg

-203 KB
Loading

gallery/kaggle_logo.png

2.85 KB
Loading

gallery/product-matching.jpg

30.9 KB
Loading

gallery/product-matching.png

-50.5 KB
Binary file not shown.

gallery/video-face-detection.png

74.5 KB
Loading

0 commit comments

Comments
 (0)