-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_hdam.py
450 lines (383 loc) · 20.3 KB
/
custom_hdam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import time
import math
def to_var(x):
if torch.cuda.is_available():
x = x.cuda()
return Variable(x)
def batch_matmul_bias(seq, weight, bias, nonlinearity=''):
s = None
bias_dim = bias.size()
for i in range(seq.size(0)):
_s = torch.mm(seq[i], weight)
_s_bias = _s + bias.expand(bias_dim[0], _s.size()[0]).transpose(0,1)
if(nonlinearity=='tanh'):
_s_bias = torch.tanh(_s_bias)
_s_bias = _s_bias.unsqueeze(0)
if(s is None):
s = _s_bias
else:
s = torch.cat((s,_s_bias),0)
return s.squeeze()
def batch_matmul(seq, weight, nonlinearity=''):
s = None
for i in range(seq.size(0)):
_s = torch.mm(seq[i], weight)
if(nonlinearity=='tanh'):
_s = torch.tanh(_s)
_s = _s.unsqueeze(0)
if(s is None):
s = _s
else:
s = torch.cat((s,_s),0)
return s.squeeze()
def attention_mul(rnn_outputs, att_weights):
attn_vectors = None
for i in range(rnn_outputs.size(0)):
h_i = rnn_outputs[i]
a_i = att_weights[i].unsqueeze(1).expand_as(h_i)
h_i = a_i * h_i
h_i = h_i.unsqueeze(0)
if(attn_vectors is None):
attn_vectors = h_i
else:
attn_vectors = torch.cat((attn_vectors,h_i),0)
return torch.sum(attn_vectors, 0).unsqueeze(0)
class AttentionWordRNN(nn.Module):
def __init__(self, batch_size, num_tokens, embed_size, word_gru_hidden, bidirectional= True):
super(AttentionWordRNN, self).__init__()
self.batch_size = batch_size
self.num_tokens = num_tokens
self.embed_size = embed_size
self.word_gru_hidden = word_gru_hidden
self.bidirectional = bidirectional
self.lookup = nn.Embedding(num_tokens, embed_size)
if bidirectional == True:
self.word_gru = nn.GRU(embed_size, word_gru_hidden, bidirectional= True)
self.weight_W_word = nn.Parameter(torch.Tensor(2* word_gru_hidden,2*word_gru_hidden))
self.bias_word = nn.Parameter(torch.Tensor(2* word_gru_hidden,1))
self.weight_proj_word = nn.Parameter(torch.Tensor(2*word_gru_hidden, 1))
else:
self.word_gru = nn.GRU(embed_size, word_gru_hidden, bidirectional= False)
self.weight_W_word = nn.Parameter(torch.Tensor(word_gru_hidden, word_gru_hidden))
self.bias_word = nn.Parameter(torch.Tensor(word_gru_hidden,1))
self.weight_proj_word = nn.Parameter(torch.Tensor(word_gru_hidden, 1))
self.softmax_word = nn.Softmax()
self.weight_W_word.data.uniform_(-0.1, 0.1)
self.weight_proj_word.data.uniform_(-0.1,0.1)
def forward(self, embed, state_word):
# embeddings
embedded = self.lookup(embed)
# word level gru
output_word, state_word = self.word_gru(embedded, state_word)
# print output_word.size()
word_squish = batch_matmul_bias(output_word, self.weight_W_word,self.bias_word, nonlinearity='tanh')
word_attn = batch_matmul(word_squish, self.weight_proj_word)
word_attn_norm = self.softmax_word(word_attn.transpose(1,0))
word_attn_vectors = attention_mul(output_word, word_attn_norm.transpose(1,0))
return word_attn_vectors, state_word, word_attn_norm
def init_hidden(self, batch_size=None):
if batch_size is None:
if self.bidirectional == True:
return Variable(torch.zeros(2, self.batch_size, self.word_gru_hidden))
else:
return Variable(torch.zeros(1, self.batch_size, self.word_gru_hidden))
else:
if self.bidirectional == True:
return Variable(torch.zeros(2, batch_size, self.word_gru_hidden))
else:
return Variable(torch.zeros(1, batch_size, self.word_gru_hidden))
# ## Sentence Attention model with bias
class AttentionSentRNN(nn.Module):
def __init__(self, batch_size, sent_gru_hidden, word_gru_hidden, n_classes, bidirectional=True, return_softmax=False):
super(AttentionSentRNN, self).__init__()
self.batch_size = batch_size
self.sent_gru_hidden = sent_gru_hidden
self.n_classes = n_classes
self.word_gru_hidden = word_gru_hidden
self.bidirectional = bidirectional
self.return_softmax=return_softmax
if bidirectional == True:
self.sent_gru = nn.GRU(2 * word_gru_hidden, sent_gru_hidden, bidirectional= True)
self.weight_W_sent = nn.Parameter(torch.Tensor(2* sent_gru_hidden ,2* sent_gru_hidden))
self.bias_sent = nn.Parameter(torch.Tensor(2* sent_gru_hidden,1))
self.weight_proj_sent = nn.Parameter(torch.Tensor(2* sent_gru_hidden, 1))
self.final_linear = nn.Linear(2* sent_gru_hidden, n_classes)
else:
self.sent_gru = nn.GRU(word_gru_hidden, sent_gru_hidden, bidirectional= False)
self.weight_W_sent = nn.Parameter(torch.Tensor(sent_gru_hidden ,sent_gru_hidden))
self.bias_sent = nn.Parameter(torch.Tensor(sent_gru_hidden,1))
self.weight_proj_sent = nn.Parameter(torch.Tensor(sent_gru_hidden, 1))
self.final_linear = nn.Linear(sent_gru_hidden, n_classes)
self.softmax_sent = nn.Softmax()
self.final_softmax = nn.Softmax()
self.weight_W_sent.data.uniform_(-0.1, 0.1)
self.weight_proj_sent.data.uniform_(-0.1,0.1)
def forward(self, word_attention_vectors, state_sent):
output_sent, state_sent = self.sent_gru(word_attention_vectors, state_sent)
sent_squish = batch_matmul_bias(output_sent, self.weight_W_sent,self.bias_sent, nonlinearity='tanh')
sent_attn = batch_matmul(sent_squish, self.weight_proj_sent)
sent_attn_norm = self.softmax_sent(sent_attn.transpose(1,0))
sent_attn_vectors = attention_mul(output_sent, sent_attn_norm.transpose(1,0))
final_map = self.final_linear(sent_attn_vectors.squeeze(0))
if self.return_softmax:
return F.softmax(final_map), state_sent, sent_attn_norm
else:
return final_map, state_sent, sent_attn_norm
def init_hidden(self, batch_size=None):
if batch_size is None:
if self.bidirectional == True:
return Variable(torch.zeros(2, self.batch_size, self.sent_gru_hidden))
else:
return Variable(torch.zeros(1, self.batch_size, self.sent_gru_hidden))
else:
if self.bidirectional == True:
return Variable(torch.zeros(2, batch_size, self.sent_gru_hidden))
else:
return Variable(torch.zeros(1, batch_size, self.sent_gru_hidden))
class AttentionSentRNNVAE(nn.Module):
def __init__(self, batch_size, sent_gru_hidden, word_gru_hidden, n_classes, bidirectional=True, return_softmax=False):
super(AttentionSentRNNVAE, self).__init__()
self.batch_size = batch_size
self.sent_gru_hidden = sent_gru_hidden
self.n_classes = n_classes
self.word_gru_hidden = word_gru_hidden
self.bidirectional = bidirectional
self.return_softmax=return_softmax
if bidirectional == True:
self.sent_gru = nn.GRU(2 * word_gru_hidden, 2*sent_gru_hidden, bidirectional= True)
self.weight_W_sent = nn.Parameter(torch.Tensor(2* sent_gru_hidden ,2* sent_gru_hidden))
self.bias_sent = nn.Parameter(torch.Tensor(2* sent_gru_hidden,1))
self.weight_proj_sent = nn.Parameter(torch.Tensor(2* sent_gru_hidden, 1))
self.final_linear = nn.Linear(2* sent_gru_hidden, n_classes)
else:
self.sent_gru = nn.GRU(word_gru_hidden, 2*sent_gru_hidden, bidirectional= True)
self.weight_W_sent = nn.Parameter(torch.Tensor(sent_gru_hidden ,sent_gru_hidden))
self.bias_sent = nn.Parameter(torch.Tensor(sent_gru_hidden,1))
self.weight_proj_sent = nn.Parameter(torch.Tensor(sent_gru_hidden, 1))
self.final_linear = nn.Linear(sent_gru_hidden, n_classes)
self.softmax_sent = nn.Softmax()
self.final_softmax = nn.Softmax()
self.weight_W_sent.data.uniform_(-0.1, 0.1)
self.weight_proj_sent.data.uniform_(-0.1,0.1)
def reparameterize(self, mu, log_var):
""""z = mean + eps * sigma where eps is sampled from N(0, 1)."""
eps = to_var(torch.randn(mu.size(0), mu.size(1), mu.size(2)))
z = mu + eps * torch.exp(log_var/2) # 2 for convert var to std
return z
def forward(self, word_attention_vectors, state_sent):
z, state_sent = self.sent_gru(word_attention_vectors, state_sent)
#print "Size of z", z.size()
sent_mu, sent_log_var = torch.chunk(z, 2, dim=2)
#print "Size of sentmu, sent_lv", sent_mu.size(), sent_log_var.size()
output_sent = self.reparameterize(sent_mu, sent_log_var)
sent_squish = batch_matmul_bias(output_sent, self.weight_W_sent,self.bias_sent, nonlinearity='tanh')
sent_attn = batch_matmul(sent_squish, self.weight_proj_sent)
sent_attn_norm = self.softmax_sent(sent_attn.transpose(1,0))
sent_attn_vectors = attention_mul(output_sent, sent_attn_norm.transpose(1,0))
final_map = self.final_linear(sent_attn_vectors.squeeze(0))
if self.return_softmax:
return F.softmax(final_map), state_sent, sent_attn_norm, sent_mu, sent_log_var
else:
return final_map, state_sent, sent_attn_norm, sent_mu, sent_log_var
def init_hidden(self, batch_size=None):
if batch_size is None:
if self.bidirectional == True:
return Variable(torch.zeros(2, self.batch_size, 2*self.sent_gru_hidden))
else:
return Variable(torch.zeros(1, self.batch_size, 2*self.sent_gru_hidden))
else:
if self.bidirectional == True:
return Variable(torch.zeros(2, batch_size, 2*self.sent_gru_hidden))
else:
return Variable(torch.zeros(1, batch_size, 2*self.sent_gru_hidden))
# ## Functions to train the model
# In[7]:
class CustomHDAMVAE(nn.Module):
def __init__(self, batch_size=64, num_tokens=100000, embed_size=300,
word_gru_hidden=100, bidirectional= True,
sent_gru_hidden=100, n_classes=3, return_softmax=False):
super(CustomHDAMVAE, self).__init__()
self.batch_size=batch_size
self.num_tokens=num_tokens
self.embed_size=embed_size
self.word_gru_hidden=word_gru_hidden
self.bidirectional=bidirectional
self.sent_gru_hidden=sent_gru_hidden
self.n_classes=n_classes
self.return_softmax=return_softmax
self.word_attn_model = AttentionWordRNN(batch_size=self.batch_size, num_tokens=self.num_tokens,
embed_size=self.embed_size,
word_gru_hidden=self.word_gru_hidden, bidirectional= self.bidirectional)
self.sent_attn_model = AttentionSentRNNVAE(batch_size=self.batch_size, sent_gru_hidden=self.sent_gru_hidden,
word_gru_hidden=self.word_gru_hidden,
n_classes=self.n_classes, bidirectional= self.bidirectional, return_softmax=False) # We will return softmax if needed
def forward(self, mini_batch):
max_sents, batch_size, max_tokens = mini_batch.size()
state_word = self.word_attn_model.init_hidden(batch_size).cuda()
state_sent = self.sent_attn_model.init_hidden(batch_size).cuda()
s = None
for i in xrange(max_sents):
_s, state_word, _ = self.word_attn_model(mini_batch[i,:,:].transpose(0,1), state_word)
if(s is None):
s = _s
else:
s = torch.cat((s,_s),0)
y_pred, state_sent, _ , sent_mu, sent_log_var= self.sent_attn_model(s, state_sent)
if self.return_softmax:
return F.log_softmax(y_pred), sent_mu, sent_log_var
else:
return y_pred, sent_mu, sent_log_var
class CustomHDAM(nn.Module):
def __init__(self, batch_size=64, num_tokens=100000, embed_size=300,
word_gru_hidden=100, bidirectional= True,
sent_gru_hidden=100, n_classes=3, return_softmax=False):
super(CustomHDAM, self).__init__()
self.batch_size=batch_size
self.num_tokens=num_tokens
self.embed_size=embed_size
self.word_gru_hidden=word_gru_hidden
self.bidirectional=bidirectional
self.sent_gru_hidden=sent_gru_hidden
self.n_classes=n_classes
self.return_softmax=return_softmax
self.word_attn_model = AttentionWordRNN(batch_size=self.batch_size, num_tokens=self.num_tokens,
embed_size=self.embed_size,
word_gru_hidden=self.word_gru_hidden, bidirectional= self.bidirectional)
self.sent_attn_model = AttentionSentRNN(batch_size=self.batch_size, sent_gru_hidden=self.sent_gru_hidden,
word_gru_hidden=self.word_gru_hidden,
n_classes=self.n_classes, bidirectional= self.bidirectional, return_softmax=False) # We will return softmax if needed
def forward(self, mini_batch):
max_sents, batch_size, max_tokens = mini_batch.size()
state_word = self.word_attn_model.init_hidden(batch_size).cuda()
state_sent = self.sent_attn_model.init_hidden(batch_size).cuda()
s = None
for i in xrange(max_sents):
_s, state_word, _ = self.word_attn_model(mini_batch[i,:,:].transpose(0,1), state_word)
if(s is None):
s = _s
else:
s = torch.cat((s,_s),0)
y_pred, state_sent, _ = self.sent_attn_model(s, state_sent)
if self.return_softmax:
return F.log_softmax(y_pred)
else:
return y_pred
def get_predictions(val_tokens, hadm_model):
return hadm_model(val_tokens)
def pad_batch(mini_batch):
mini_batch_size = len(mini_batch)
max_sent_len = int(np.mean([len(x) for x in mini_batch]))
max_token_len = int(np.mean([len(val) for sublist in mini_batch for val in sublist]))
main_matrix = np.zeros((mini_batch_size, max_sent_len, max_token_len), dtype= np.int)
for i in xrange(main_matrix.shape[0]):
for j in xrange(main_matrix.shape[1]):
for k in xrange(main_matrix.shape[2]):
try:
main_matrix[i,j,k] = mini_batch[i][j][k]
except IndexError:
pass
return Variable(torch.from_numpy(main_matrix).transpose(0,1))
def test_accuracy_mini_batch(tokens, labels, hadm_model):
from sklearn.metrics import f1_score
y_pred = get_predictions(tokens, hadm_model)
_, y_pred = torch.max(y_pred, 1)
correct = np.ndarray.flatten(y_pred.data.cpu().numpy())
labels = np.ndarray.flatten(labels.data.cpu().numpy())
return f1_score(labels, correct, average='weighted')
def test_accuracy_full_batch(tokens, labels, mini_batch_size, hadm_model):
from sklearn.metrics import f1_score
p = []
l = []
g = gen_minibatch(tokens, labels, mini_batch_size)
for token, label in g:
y_pred = get_predictions(token.cuda(), hadm_model)
_, y_pred = torch.max(y_pred, 1)
p.append(np.ndarray.flatten(y_pred.data.cpu().numpy()))
l.append(np.ndarray.flatten(label.data.cpu().numpy()))
p = [item for sublist in p for item in sublist]
l = [item for sublist in l for item in sublist]
p = np.array(p)
l = np.array(l)
return f1_score(l, p, average='weighted')
def test_data(mini_batch, targets, hadm_model):
y_pred=hadm_model(mini_batch)
loss = criterion(y_pred.cuda(), targets)
return loss.data[0]
def iterate_minibatches(inputs, targets, batchsize, shuffle=False):
assert inputs.shape[0] == targets.shape[0]
if shuffle:
indices = np.arange(inputs.shape[0])
np.random.shuffle(indices)
for start_idx in range(0, inputs.shape[0] - batchsize + 1, batchsize):
if shuffle:
excerpt = indices[start_idx:start_idx + batchsize]
else:
excerpt = slice(start_idx, start_idx + batchsize)
yield inputs[excerpt], targets[excerpt]
def gen_minibatch(tokens, labels, mini_batch_size, shuffle= True):
for token, label in iterate_minibatches(tokens, labels, mini_batch_size, shuffle= shuffle):
token = pad_batch(token)
yield token.cuda(), Variable(torch.from_numpy(label), requires_grad= False).cuda()
def check_val_loss(val_tokens, val_labels, mini_batch_size, hadm_model):
val_loss = []
for token, label in iterate_minibatches(val_tokens, val_labels, mini_batch_size, shuffle= True):
val_loss.append(test_data(pad_batch(token).cuda(), Variable(torch.from_numpy(label), requires_grad= False).cuda(),
hadm_model))
return np.mean(val_loss)
def timeSince(since):
now = time.time()
s = now - since
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
def train_early_stopping(mini_batch_size, X_train, y_train, X_test, y_test, hadm_model,
optimizer, loss_criterion, num_epoch,
print_val_loss_every = 1000, print_loss_every = 50):
start = time.time()
loss_full = []
loss_epoch = []
accuracy_epoch = []
loss_smooth = []
accuracy_full = []
epoch_counter = 0
g = gen_minibatch(X_train, y_train, mini_batch_size)
for i in xrange(1, num_epoch + 1):
try:
optimizer.zero_grad()
tokens, labels = next(g)
y_pred=hadm_model(tokens)
loss = criterion(y_pred.cuda(), labels)
loss.backward()
optimizer.step()
acc = test_accuracy_mini_batch(tokens, labels, hadm_model)
accuracy_full.append(acc)
accuracy_epoch.append(acc)
loss_full.append(loss.data[0])
loss_epoch.append(loss.data[0])
# print loss every n passes
if i % print_loss_every == 0:
accuracy_epoch.append(acc)
print 'Loss at %d minibatches, %d epoch,(%s) is %f' %(i, epoch_counter, timeSince(start), np.mean(loss_epoch))
print 'Accuracy at %d minibatches is %f' % (i, np.mean(accuracy_epoch))
#check validation loss every n passes
if i % print_val_loss_every == 0:
val_loss = check_val_loss(X_test, y_test, mini_batch_size, hadm_model)
print 'Average training loss at this epoch..minibatch..%d..is %f' % (i, np.mean(loss_epoch))
print 'Validation loss after %d passes is %f' %(i, val_loss)
if val_loss > np.mean(loss_full):
print 'Validation loss is higher than training loss at %d is %f , stopping training!' % (i, val_loss)
print 'Average training loss at %d is %f' % (i, np.mean(loss_full))
except StopIteration:
epoch_counter += 1
print 'Reached %d epocs' % epoch_counter
print 'i %d' % i
g = gen_minibatch(X_train, y_train, mini_batch_size)
loss_epoch = []
accuracy_epoch = []
return loss_full