-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_methods.py
372 lines (290 loc) · 12.7 KB
/
test_methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import argparse
from copy import copy
import os
## Restrict the number of threads used by numpy
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
import numpy as np
from evaluation import evaluate_model
from models.DEFAULTS import *
from experiment_scripts.COMMON import dataset_num_classes
import wandb
wandb.require("core")
PROJECT_NAME = "rers"
def load_data(**kwargs):
dataset_name = kwargs.get("dataset_name", DEFAULT_DATASET_NAME)
noise_frac = kwargs.get("noise_frac", None)
noise_type = kwargs.get("noise_type", None)
features = kwargs.get("features", DEFAULT_FEATURES)
use_clusters = kwargs.get("use_clusters", False)
if use_clusters:
num_clusters = kwargs.get("num_clusters", None)
if num_clusters is None or num_clusters == 0:
num_clusters = dataset_num_classes[dataset_name]
cluster_method = kwargs.get("cluster_method", "kmeans")
cluster_filename = f"data/{dataset_name}_clusters_{features}_{num_clusters}_{cluster_method}.npy"
if not os.path.exists(cluster_filename):
raise ValueError(f"Clusters not found for {dataset_name} {kwargs['features']} {num_clusters} {cluster_method}")
y = np.load(cluster_filename)
if features != DEFAULT_FEATURES:
X_filepath = f"data/{dataset_name}_X_{features}.npy"
else:
X_filepath = f"data/{dataset_name}_X.npy"
X = np.load(X_filepath)
return X, y, y
if features != DEFAULT_FEATURES:
X_filepath = f"data/{dataset_name}_X_{features}.npy"
y_gt_filepath = f"data/{dataset_name}_y_{features}_gt.npy"
else:
X_filepath = f"data/{dataset_name}_X.npy"
y_gt_filepath = f"data/{dataset_name}_y_gt.npy"
prefix = f"data/{dataset_name}_y_noisy_"
seed = kwargs.get("noise_seed", None)
suffix = f"_{seed}.npy" if (seed is not None and seed != None) else ".npy"
if noise_frac == 0.0:
y_noisy_filepath = y_gt_filepath
elif noise_type == "human" and (noise_frac is None or noise_frac == None):
y_noisy_filepath = f"{prefix}{noise_type}{suffix}"
elif noise_type == "confidence":
model_size = kwargs.get("noise_conf_model_size", "s")
y_noisy_filepath = f"{prefix}{noise_frac}_{noise_type}_yolov8{model_size}_cls{suffix}"
else:
y_noisy_filepath = f"{prefix}{noise_frac}_{noise_type}{suffix}"
X = np.load(X_filepath)
y_gt = np.load(y_gt_filepath)
y_noisy = np.load(y_noisy_filepath)
return X, y_gt, y_noisy
def get_model(model_name):
if model_name == "confident_learning":
from models.confident_learning import ConfidentLearningModel
return ConfidentLearningModel
elif model_name == "simifeat":
from models.simifeat import SimiFeatModel
return SimiFeatModel
elif model_name == "reconstruction":
from models.reconstruction import UMAPAutoEncoderModel
return UMAPAutoEncoderModel
elif model_name == "zero_shot":
from models.zero_shot import ZeroShotModel
return ZeroShotModel
else:
raise ValueError(f"Unknown model name: {model_name}")
def run_model(model_name, X, y_noisy, **kwargs):
model = get_model(model_name)
if model_name == "zero_shot":
from data_preparation_scripts.generate_embeddings import (
get_class_name_embeddings,
)
class_name_embs = get_class_name_embeddings(**kwargs)
kwargs["class_name_embs"] = class_name_embs
model = model(X, y_noisy, **kwargs)
results_dict = model.detect_label_errors()
return results_dict
def run_and_evaluate(**kwargs):
config = _create_config(kwargs)
notes = kwargs.get("wandb_notes", "Comparing different methods for mislabel detection")
project_name = kwargs.get("project_name", PROJECT_NAME)
wandb.init(
project=project_name,
notes=notes,
config=config,
)
X, y_gt, y_noisy = load_data(**kwargs)
if kwargs.get("wandb_log_artifacts", False):
_log_initial_artifacts(**kwargs)
method = kwargs.get("method")
results_dict = run_model(method, X, y_noisy, **kwargs)
y_pred = results_dict["y_pred"]
threshold = results_dict["threshold"]
mistakenness = results_dict["mistakenness"]
mistakenness_probs = results_dict.get("mistakenness_probs", None)
if kwargs.get("wandb_log_artifacts", False):
_log_final_artifacts(results_dict)
noise_frac = kwargs.get("noise_frac", None)
if noise_frac != 0.0:
res = evaluate_model(
y_true=y_gt,
y_noisy=y_noisy,
y_pred=y_pred,
mistakenness_scores=mistakenness,
mistakenness_probs=mistakenness_probs,
threshold=threshold,
**kwargs,
)
for k, v in res.items():
wandb.run.summary[k] = v
for k, v in results_dict.items():
if k in ["y_pred", "mistakenness", "mistakenness_probs"]:
continue
wandb.run.summary[k] = v
wandb.finish()
def _create_config(kwargs):
config = copy(kwargs)
config.pop("project_name")
config.pop("wandb_log_artifacts")
config.pop("wandb_notes")
method = kwargs.get("method")
for k, _ in kwargs.items():
if k.startswith(f"sf_") and method != "simifeat":
config.pop(k)
if k.startswith(f"cl_") and method != "confident_learning":
config.pop(k)
if k.startswith(f"recon_") and method != "reconstruction":
config.pop(k)
train_clf_flag = kwargs.get("train_clf", False)
if k.startswith(f"train_clf_") and not train_clf_flag:
config.pop(k)
noise_type = kwargs.get("noise_type")
if noise_type != "confidence":
config.pop("noise_conf_model_size")
return config
def _log_initial_artifacts(**kwargs):
## Log y_gt, y_noisy as artifacts
api = wandb.Api(timeout=29)
y_gt_artifact_name = f"y_gt_{kwargs['dataset_name']}"
if not api.artifact_exists(y_gt_artifact_name):
y_gt_artifact = wandb.Artifact(y_gt_artifact_name, type="data")
y_gt_artifact.add_file(f"data/{kwargs['dataset_name']}_y_gt.npy")
wandb.run.log_artifact(y_gt_artifact)
if kwargs['noise_frac'] == 0.0:
return
if kwargs["noise_type"] == "human" and kwargs['noise_frac'] is None:
noise_str = "human"
elif kwargs["noise_type"] == "confidence":
noise_str = f"{kwargs['noise_frac']}_{kwargs['noise_type']}_yolov8{kwargs['noise_conf_model_size']}_cls"
else:
noise_str = f"{kwargs['noise_frac']}_{kwargs['noise_type']}"
seed_str = f"_{kwargs['noise_seed']}" if kwargs["noise_seed"] is not None else ""
y_noisy_artifact_name = f"y_noisy_{kwargs['dataset_name']}_{noise_str}{seed_str}"
if not api.artifact_exists(y_noisy_artifact_name):
y_noisy_artifact = wandb.Artifact(y_noisy_artifact_name, type="data")
y_noisy_artifact.add_file(
f"data/{kwargs['dataset_name']}_y_noisy_{noise_str}{seed_str}.npy"
)
wandb.run.log_artifact(y_noisy_artifact)
def _log_mistakenness(mistakenness):
uuid = wandb.run.name
filename = f"mistakenness_{uuid}.npy"
np.save(filename, mistakenness)
artifact = wandb.Artifact(f"mistakenness_{uuid}", type="data")
artifact.add_file(filename)
wandb.run.log_artifact(artifact)
## clean up
os.remove(filename)
def _log_probs(probs):
# PDF of the mistake probability
uuid = wandb.run.name
filename = f"p_mistake_estimated_{uuid}.npy"
np.save(filename, probs)
artifact = wandb.Artifact(f"p_mistake_estimated_{uuid}", type="data")
artifact.add_file(filename)
wandb.run.log_artifact(artifact)
## clean up
os.remove(filename)
def _log_final_artifacts(results_dict):
## save artifacts ##
mistakenness = results_dict["mistakenness"]
mistakenness_probs = results_dict.get("mistakenness_probs", None)
if mistakenness_probs is not None:
_log_probs(mistakenness_probs)
_log_mistakenness(mistakenness)
artifacts = results_dict.get("artifacts", {})
for artifact_name, artifact in artifacts.items():
uuid = wandb.run.name
filename = f"{artifact_name}_{uuid}.npy"
np.save(filename, artifact)
artifact = wandb.Artifact(f"{artifact_name}_{uuid}", type="data")
artifact.add_file(filename)
wandb.run.log_artifact(artifact)
## clean up
os.remove(filename)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--project_name", type=str, default=PROJECT_NAME
) # wandb project name
parser.add_argument("--wandb_log_artifacts", action="store_true")
parser.add_argument("--wandb_notes", type=str, default=None)
parser.add_argument("--compute_f1_optimal", action="store_true")
parser.add_argument("--train_clf", action="store_true")
parser.add_argument("--train_clf_model_size", type=str, default="s")
parser.add_argument(
"--method",
type=str,
default="reconstruction",
choices=["reconstruction", "confident_learning", "simifeat", "zero_shot"],
)
parser.add_argument("--dataset_name", type=str, default="cifar10")
parser.add_argument("--features", type=str, default="clip-vit-large-patch14")
parser.add_argument("--noise_frac", type=float, default=None)
parser.add_argument(
"--noise_type",
type=str,
required=True,
choices=["symmetric", "asymmetric", "human", "confidence"],
)
parser.add_argument("--noise_conf_model_size", type=str, default="s")
parser.add_argument("--noise_seed", type=int)
### Use clusters for unsupervised difficulty estimation
parser.add_argument("--use_clusters", action="store_true")
parser.add_argument("--cluster_method", type=str, default="kmeans")
parser.add_argument("--num_clusters", type=int, default=0)
### Reconstruction
group = parser.add_mutually_exclusive_group(required=False)
group.add_argument("--recon_fit_frac", type=float, default=None)
group.add_argument("--recon_fit_samples_per_class", type=int, default=None)
parser.add_argument(
"--recon_reg_strength", type=float, default=DEFAULT_REG_STRENGTH
)
parser.add_argument("--recon_n_components", type=int, default=DEFAULT_N_COMPONENTS)
parser.add_argument("--recon_dropout", type=float, default=DEFAULT_DROPOUT)
parser.add_argument("--recon_n_epochs", type=int, default=DEFAULT_N_EPOCHS)
parser.add_argument("--recon_batch_size", type=int, default=DEFAULT_BATCH_SIZE)
parser.add_argument(
"--recon_parametric_reconstruction_loss_weight",
type=float,
default=DEFAULT_PARAMETRIC_RECONSTRUCTION_LOSS_WEIGHT,
)
parser.add_argument(
"--recon_hidden_dims",
type=int,
nargs="+",
default=DEFAULT_HIDDEN_DIMS,
)
parser.add_argument("--recon_lr", type=float, default=DEFAULT_LR)
parser.add_argument("--recon_metric", type=str, default=DEFAULT_METRIC)
parser.add_argument("--recon_n_neighbors", type=int, default=DEFAULT_N_NEIGHBORS)
parser.add_argument("--recon_spread", type=float, default=None)
parser.add_argument("--recon_min_dist", type=float, default=None)
parser.add_argument("--recon_a", type=float, default=None)
parser.add_argument("--recon_b", type=float, default=None)
parser.add_argument(
"--recon_repulsion_strength", type=float, default=DEFAULT_REPULSION_STRENGTH
)
parser.add_argument("--recon_gamma1", type=float, default=DEFAULT_GAMMA1)
parser.add_argument("--recon_gamma2", type=float, default=DEFAULT_GAMMA2)
parser.add_argument("--recon_gamma3", type=float, default=DEFAULT_GAMMA3)
parser.add_argument("--recon_n_workers", type=int, default=DEFAULT_N_WORKERS)
parser.add_argument("--recon_skip_multiprocessing", action="store_true")
parser.add_argument("--recon_estimate_probs", action="store_true")
parser.add_argument("--recon_store_error_array", action="store_true")
parser.add_argument("--recon_compute_2d_umap", action="store_true")
### Confident Learning
parser.add_argument(
"--cl_classifier_arch", type=str, default=DEFAULT_CL_CLASSIFIER_ARCH
)
parser.add_argument("--cl_max_iter", type=int, default=DEFAULT_CL_MAX_ITER)
### SimiFeat
parser.add_argument(
"--sf_selection_cutoff", type=float, default=DEFAULT_SF_SELECTION_CUTOFF
)
args = parser.parse_args()
## Validation: human noise only for CIFAR10 and CIFAR100
if args.noise_type == "human" and args.dataset_name not in ["cifar10", "cifar100"]:
raise ValueError(f"Human noise is only supported for CIFAR10 and CIFAR100")
run_and_evaluate(**vars(args))
if __name__ == "__main__":
main()