-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpdf.py
144 lines (106 loc) · 4.23 KB
/
pdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
###############################
#
# This file is written by Vladan Stevanovic
#
###############################
######################################
def g_r(strc,dr=0.1,cutoff_r=10.):
"""
Function that computes pair distribution function
between 0. and cutoff_r with the grid on the distance
axis defined by dr.
Returns a dictionary with keys labeling the types of atoms
for which g(r) is calculated (e.g. 'Si-Si','Si-O', etc.)
and the values are corresponding g(r)
"""
from copy import deepcopy
import numpy as np
from pylada.crystal import neighbors
import itertools
# rescale the structure just in case
strc.cell=strc.cell*float(strc.scale)
for ii in range(len(strc)):
strc[ii].pos=strc[ii].pos*float(strc.scale)
strc.scale=1.
# number density
n_dense = len(strc)/float(strc.volume)
# the distance axis used to calculate rdf
rs = np.arange(0.,cutoff_r+dr,dr)
atom_types=list(set([atom.type for atom in strc]))
atom_types_indices={at:[ii for ii in range(len(strc)) if strc[ii].type==at] for at in atom_types}
g_r_dict={}
for type1,type2 in itertools.product(atom_types,atom_types):
n_dense_type2 = len(atom_types_indices[type2])/float(strc.volume)
# dummy g_r
gr = np.zeros(len(rs))
for atom_index in atom_types_indices[type1]:
# how many neighbors should we expect within cutoff_r
# well, the number density times the volume (4pi/3*cutoff_r**3)
n_nghs=n_dense*4*np.pi/3*cutoff_r**3
# increase this number by 30% for good behavior
n_nghs=int(1.3*n_nghs)
# get the neighbors
nghs = neighbors(strc,n_nghs,strc[atom_index].pos,0.3)
# Increasing n_nghs as long as there the neighbor at a maximal
# distance is closer than cutoff_r
while nghs[-1][-1]<cutoff_r:
#print("DOING THE n_nghs because %s is smaller than %s" %(nghs[-1][-1],cutoff_r))
n_nghs=int(1.1*n_nghs)
nghs = neighbors(strc,n_nghs,strc[atom_index].pos,0.3)
#print("NOW %s vs. %s" %(nghs[-1][-1],cutoff_r))
nghs = [ngh for ngh in nghs if ngh[0].type==type2]
# count neighbors into bins between r and r+dr
no_nghs=[]
ii=0
for r in rs[1:]:
hlp=0.
for jj in range(ii,len(nghs)):
if r-0.5*dr <= nghs[jj][-1] < r+0.5*dr:
hlp=hlp+1
else:
ii=jj
break
no_nghs.append(hlp / (4*np.pi*r**2*dr))
no_nghs.insert(0,0.)
gr = gr + np.array(no_nghs)
# gr = gr/n_dense_type2/len(atom_types_indices[type1])
gr = gr/n_dense/len(atom_types_indices[type1])
g_r_dict[type1+'-'+type2]=np.array(list(zip(rs,gr)))
return g_r_dict
######################################
def n_r(strc,dr=0.1,cutoff_r=10.):
"""
Function that computes number of atoms at a distance r
between 0. and cutoff_r with the grid on the distance
axis defined by dr
"""
from copy import deepcopy
import numpy as np
from pylada.crystal import neighbors
# rescale the structure
cell=deepcopy(strc.cell)
scale=deepcopy(strc.scale)
positions=deepcopy([atom.pos for atom in strc])
strc.scale=1.
strc.cell=cell*float(scale)
for ii in range(len(strc)):
strc[ii].pos=np.array(positions[ii])*float(scale)
# DONE
# the distance axis used to calculate rdf
rs = np.arange(0.,cutoff_r+dr,dr)
# dummy g_r
nr = np.zeros(len(rs))
for atom in strc:
# get the neighbors
n_nghs = 100
nghs = neighbors(strc,n_nghs,atom.pos,0.3)
# make sure that neighbors are further away than cutoff_r
while nghs[-1][-1]<cutoff_r:
n_nghs = n_nghs+5
nghs = neighbors(strc,n_nghs,atom.pos,0.3)
# count neighbors into bins between r and r+dr
no_nghs = [ len([ ng for ng in nghs if ng[-1] < r+0.5*dr ]) for r in rs[1:]]
no_nghs.insert(0,0.)
nr = nr + np.array(no_nghs)
nr = nr/len(strc)
return zip(rs,nr)