|
| 1 | +--- |
| 2 | +title: AI datasets and models |
| 3 | +description: Machine learning datasets and models |
| 4 | +toc: true |
| 5 | +--- |
| 6 | + |
| 7 | +## Datasets |
| 8 | + |
| 9 | +<html> |
| 10 | +<iframe |
| 11 | + src="https://huggingface.co/datasets/CIRCL/vulnerability-scores/embed/viewer/default/train" |
| 12 | + frameborder="0" |
| 13 | + width="100%" |
| 14 | + height="560px" |
| 15 | +></iframe> |
| 16 | +</html> |
| 17 | +
|
| 18 | +This dataset is updated daily. |
| 19 | + |
| 20 | +Sources of the data: |
| 21 | + |
| 22 | +- [CVE Program](https://vulnerability.circl.lu/recent#cvelistv5) (enriched with data from vulnrichment and Fraunhofer FKIE) |
| 23 | +- [GitHub Security Advisories](https://vulnerability.circl.lu/recent#github) |
| 24 | +- [PySec advisories](https://vulnerability.circl.lu/recent#pysec) |
| 25 | +- [CSAF Red Hat](https://vulnerability.circl.lu/recent#csaf_redhat) |
| 26 | +- [CSAF Cisco](https://vulnerability.circl.lu/recent#csaf_cisco) |
| 27 | + |
| 28 | +The licenses for each security advisory feed are listed here: |
| 29 | +https://vulnerability.circl.lu/about#sources |
| 30 | + |
| 31 | +### Get started with the dataset |
| 32 | + |
| 33 | +```python |
| 34 | +import json |
| 35 | +from datasets import load_dataset |
| 36 | + |
| 37 | +dataset = load_dataset("CIRCL/vulnerability-scores") |
| 38 | + |
| 39 | +vulnerabilities = ["CVE-2012-2339", "RHSA-2023:5964", "GHSA-7chm-34j8-4f22", "PYSEC-2024-225"] |
| 40 | + |
| 41 | +filtered_entries = dataset.filter(lambda elem: elem["id"] in vulnerabilities) |
| 42 | + |
| 43 | +for entry in filtered_entries["train"]: |
| 44 | + print(json.dumps(entry, indent=4)) |
| 45 | +``` |
| 46 | + |
| 47 | +For each vulnerability, you will find all assigned severity scores and associated CPEs. |
| 48 | + |
| 49 | + |
| 50 | +## Models |
| 51 | + |
| 52 | +### Text classification |
| 53 | + |
| 54 | +#### vulnerability-severity-classification-roberta-base |
| 55 | + |
| 56 | +This model is a fine-tuned version of ``roberta-base`` on the dataset |
| 57 | +[CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores). |
| 58 | +The time of generation with two GPUs NVIDIA L40S is approximately 6 hours. |
| 59 | + |
| 60 | +Try it with Python: |
| 61 | + |
| 62 | +```python |
| 63 | +>>> from transformers import AutoModelForSequenceClassification, AutoTokenizer |
| 64 | +... import torch |
| 65 | +... |
| 66 | +... labels = ["low", "medium", "high", "critical"] |
| 67 | +... |
| 68 | +... model_name = "CIRCL/vulnerability-severity-classification-roberta-base" |
| 69 | +... tokenizer = AutoTokenizer.from_pretrained(model_name) |
| 70 | +... model = AutoModelForSequenceClassification.from_pretrained(model_name) |
| 71 | +... model.eval() |
| 72 | +... |
| 73 | +... test_description = "langchain_experimental 0.0.14 allows an attacker to bypass the CVE-2023-36258 fix and execute arbitrary code via the PALChain in the python exec method." |
| 74 | +... inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True) |
| 75 | +... |
| 76 | +... # Run inference |
| 77 | +... with torch.no_grad(): |
| 78 | +... outputs = model(**inputs) |
| 79 | +... predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) |
| 80 | +... |
| 81 | +... |
| 82 | +... # Print results |
| 83 | +... print("Predictions:", predictions) |
| 84 | +... predicted_class = torch.argmax(predictions, dim=-1).item() |
| 85 | +... print("Predicted severity:", labels[predicted_class]) |
| 86 | +... |
| 87 | +tokenizer_config.json: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1.25k/1.25k [00:00<00:00, 4.51MB/s] |
| 88 | +vocab.json: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 798k/798k [00:00<00:00, 2.66MB/s] |
| 89 | +merges.txt: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 456k/456k [00:00<00:00, 3.42MB/s] |
| 90 | +tokenizer.json: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3.56M/3.56M [00:00<00:00, 5.92MB/s] |
| 91 | +special_tokens_map.json: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 280/280 [00:00<00:00, 1.14MB/s] |
| 92 | +config.json: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 913/913 [00:00<00:00, 3.40MB/s] |
| 93 | +model.safetensors: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 499M/499M [00:44<00:00, 11.2MB/s] |
| 94 | +Predictions: tensor([[2.5910e-04, 2.1585e-03, 1.3680e-02, 9.8390e-01]]) |
| 95 | +Predicted severity: critical |
| 96 | +``` |
| 97 | + |
| 98 | +``critical`` has a score of 98%. |
| 99 | + |
| 100 | + |
| 101 | +Try it with the Hugging Face space: |
| 102 | + |
| 103 | +<html> |
| 104 | +<iframe |
| 105 | + src="https://circl-vulnerability-severity-classification-roberta-base.hf.space" |
| 106 | + frameborder="0" |
| 107 | + width="850" |
| 108 | + height="450" |
| 109 | +></iframe> |
| 110 | +</html> |
0 commit comments