-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
38 lines (31 loc) · 1.2 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import os
import torch.utils.data as data
from torchvision.transforms import transforms
import cv2
class ImageDataset(data.Dataset):
def __init__(self, root_dir, transform=None):
self.transform = transform
self.root_dir = root_dir
self.image_list = os.listdir(root_dir)
def __len__(self):
return len(self.image_list)
def __getitem__(self, index):
image_path = f'{self.root_dir}\\{self.image_list[index]}'
# image_path = f'{self.root_dir}/{self.image_list[index]}'
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (640, 640))
if self.transform is not None:
image = self.transform(image)
return image
def train_loader(root_dir, batch_size):
agumentation = [
transforms.ToPILImage(),
# transforms.Resize(224),
transforms.ToTensor(),
# transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]
transform = transforms.Compose(agumentation)
train_dataset = ImageDataset(root_dir, transform=transform)
train_loader = data.DataLoader(train_dataset, shuffle=False, batch_size=batch_size)
return train_loader