-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathindex.html
265 lines (265 loc) · 10.6 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
---
title: Call for Participation
layout: subpage
---
<aside class="box" id="virtual">
<h2 class="footnote">
We go virtual!
</h2>
<p>
This workshop will be a 100% virtual event with both pre-recorded talks
and interactive sessions.
</p>
</aside>
<aside class="box" id="dates">
<h2 class="footnote">
Important Dates
</h2>
<dl>
<dt>July 3rd, 2020</dt>
<dd>Deadline to <a href="speakers.html#submit">submit a proposal for a talk</a></dd>
<dt>July 6th, 2020</dt>
<dd>Speakers acceptance notification</dd>
<dt>July 31st, 2020</dt>
<dd>Deadline for selected speakers to <a href="speakers.html#how">provide their recorded talks</a></dd>
<dt>August 14, 2020</dt>
<dd>Deadline to <a href="https://ti.to/w3c/web-machine-learning-virtual-workshop">register as workshop participant</a></dd>
<dt>August 20, 2020</dt>
<dd>Public release of <a href="presentations.html">all accepted talks</a></dd>
<dt>September 16, 2020, 2pm UTC</dt>
<dd>First live session: Introductions, Review of Opportunities and Challenges of Browser-Based Machine Learning</dd>
<dt>September 22, 2020, 2pm UTC</dt>
<dd>Live session: Web Platform Foundations for Machine Learning</dd>
<dt>September 23, 2020, 2pm UTC</dt>
<dd>Live session: Machine Learning Experiences on the Web: A Developer’s Perspective</dd>
<dt>September 29, 2020, 2pm UTC</dt>
<dd>Live session: Machine Learning Experiences on the Web: A User’s Perspective, Conclusions & Next Steps</dd>
</dl>
</aside>
<aside class="box" id="apply">
<h2 class="footnote">
Watch the Workshop presentations!
</h2>
<p>
As input to our September 2020 live sessions, we have gathered an exciting set of presentations from experts in the field: please <a href="presentations.html">watch their talks</a> and contribute to the discussions on <a href="https://github.com/w3c/machine-learning-workshop/issues">GitHub</a>.
</p>
</aside>
<main id="main" class="main">
<section id="home">
<section id="intro">
<h2 id="goals">
🙋♂️ What is the purpose of this workshop?
</h2>
<p>
The primary goal of the workshop is to bring together providers of
machine learning toolkits and framework providers with Web platform
practitioners to <strong>enrich the Open Web Platform with better
foundations for machine learning</strong>.
</p>
<p>
The secondary goals of the workshop are as follows:
</p>
<ul id="secondary-goals">
<li>Understand how machine learning fits into the Web technology
stack,
</li>
<li>Understand how browser-based machine learning fits into the
machine learning ecosystem,
</li>
<li>Explore the impact of machine learning technologies on Web
browsers and Web applications,
</li>
<li>Evaluate the opportunities for standardization around machine
learning APIs and formats.
</li>
</ul>
<h2 id="topics">
🧐 What topics will be covered?
</h2>
<p>
The following topics have been proposed (but not committed yet!).
We're looking for your <a href=
"https://bit.ly/webml-workshop-survey">feedback</a>!
</p>
<ul id="proposed-topics">
<li>
<span class="type type-lightning">lightning talks</span>
Opportunities and Challenges of Browser Based Machine Learning
<ul>
<li>Privacy-First approach to machine learning
</li>
<li>Real-time in-browser Machine Learning
</li>
<li>Performance, compatibility, JS environment gaps
</li>
<li>Domain-specific compilers for Machine Learning
</li>
</ul>
</li>
<li>
<span class="type type-lightning">lightning talks</span> Web
Platform Foundations for Machine Learning
<ul>
<li>Web Platform: a 30,000 foot view
</li>
<li>Web Platform and JS environment constraints
</li>
<li>Bringing Machine Learning to the JS ecosystem with Machine
Learning libraries
</li>
<li>Accelerated graphics and compute APIs for Machine Learning
</li>
<li>Fast, portable code with WebAssembly / WASI-nn
</li>
<li>Access purpose-built Machine Learning hardware with WebNN
</li>
</ul>
</li>
<li>
<span class="type type-lightning">lightning talks</span> Machine
Learning Experiences on the Web: A Developer's Perspective
<ul>
<li>On-device training in browser
</li>
<li>Datasets on the Web & Schema.org vocabularies
</li>
<li>Interoperability of Machine Learning models for the Web
</li>
<li>High-level load & run model vs low-level graph builder API
</li>
<li>Integration of models and in-browser data sources sensors,
AV
</li>
<li>Considerations when deploying models to the web
</li>
<li>TensorFlow.js
</li>
<li>ONNX.js
</li>
<li>Magenta.js
</li>
<li>ML5.js
</li>
<li>Paddle.js
</li>
<li>Machine Learning in Web Architecture
</li>
</ul>
</li>
<li>
<span class="type type-lightning">lightning talks</span> Machine
Learning Experiences on the Web: A User's Perspective
<ul>
<li>Teachable Machine & Project Euphonia
</li>
<li>Visualization of deep networks, "human-interpretable neural
nets"
</li>
<li>Web a11y opportunity
</li>
<li>Cross-industry case studies
</li>
<li>Media technologies roadmap for the Web
</li>
<li>Enhancing media experiences with Machine Learning
</li>
<li>Making art with Machine Learning
</li>
<li>Making music with Machine Learning
</li>
<li>Teaching machines how people speak
</li>
</ul>
</li>
<li>
<span class="type type-plenary">plenary</span> Machine Learning
Consensus Landscape
<ul>
<li>Who is doing what: what's happening in standards, what's
happening in related open source projects.
</li>
</ul>
</li>
</ul>
<h2 id="attend">
🤩 How can I attend?
</h2>
<p>
The attendance is <b>free</b> for all invited participants and is
open to the public, whether or not W3C members.
</p>
<p>Please <strong><a href="https://ti.to/w3c/web-machine-learning-virtual-workshop">register for the event</a></strong> before August 14, 2020 to be notified of the videos availability, of the forum set up to facilitate discussion among registered participants, and of the September 2020 live sessions logistics. The Program Committee will only accept participants whose registration data shows relevant to the topic of the workshop.</p>
<p>
This workshop, as other W3C meetings, operates under its <a href=
"https://www.w3.org/Consortium/cepc/">Code of Ethics and
Professional Conduct</a>.
</p>
<!--<p>See also the current <a href="participants.html">list of expected participants</a>.</p>-->
<h2 id="position-statements">
🗣️ How can I suggest a presentation topic?
</h2>
<p>To submit a talk for the workshop, please refer to our <strong><a href="speakers.html">information for speakers</a></strong>.</p>
</section>
<section>
<h2 id="w3c">
🌐 What is W3C?
</h2>
<p>
W3C is a voluntary standards consortium that convenes companies and
communities to help structure productive discussions around
existing and emerging technologies, and offers a Royalty-Free
patent framework for Web Recommendations. We focus primarily on
client-side (browser) technologies, and also have a mature history
of vocabulary (or “ontology”) development. W3C develops work based
on the priorities of our members and our community.
</p>
</section>
<section>
<h2 id="program">
👋 Program Committee
</h2>
<h4>
Chairs
</h4>
<ul class="pc">
<li>Kelly Davis (Mozilla)
</li>
<li>Anssi Kostiainen (Intel)
</li>
</ul>
<h4>
Committee
</h4>
<ul class="pc">
<li>Göran Eriksson (Ericsson)
</li>
<li>Dominique Hazaël-Massieux (W3C)
</li>
<li>Ningxin Hu (Intel)
</li>
<li>Dean Jackson (Apple)
</li>
<li>Sangwhan Moon
</li>
<li>Roy Ran (W3C)
</li>
<li>Georg Rehm (DFKI)
</li>
<li>Amy Siu (Beuth University of Applied Sciences, Berlin)
</li>
<li>Nikhil Thorat (Google)
</li>
</ul>
<p>
Please <a href="mailto:[email protected]">contact us</a> if you have any questions.
</p>
</section>
</section>
<section>
<h3>
Sponsors
</h3>
<p><a href="https://www.futurice.com/"><img src="images/futurice.png" alt="futurice" width=400></a></p>
<p>See <a href="sponsorship.html">sponsorship opportunities</a> for this workshop</a>.</p>
</section>
</main>