-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathindex.html
207 lines (205 loc) · 7.52 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
---
title: Workshop overview
layout: subpage
---
<main id="main" class="main">
<section id="home">
<section id="intro">
<h2>Introduction</h2>
<p>Over the months of August and September 2020, W3C conducted a virtual <a href="https://www.w3.org/2003/08/Workshops/">workshop</a> to pave the way for <strong>enriching the Open Web Platform with better
foundations for machine learning</strong>.</p>
<h2>Outcomes & Proceedings</h2>
<p><a href="presentations.html">34 presentations were recorded and published</a>.</p>
<p>These presentations triggered <a href="https://github.com/w3c/machine-learning-workshop/issues?q=is%3Aissue+label%3A%22Discussion+topic%22+">25 online workstreams</a> which were discussed in <a href="proceeding.html">4 minuted live sessions</a>.</p>
<p>The <strong><a href="report.html">Workshop Report</a></strong> summarizes the key findings from the workshop.</p>
<h2 id="goals">
What was the purpose of this workshop?
</h2>
<p>
The primary goal of the workshop was to bring together providers of
machine learning toolkits and framework providers with Web platform
practitioners to <strong>enrich the Open Web Platform with better
foundations for machine learning</strong>.
</p>
<p>
The secondary goals of the workshop were as follows:
</p>
<ul id="secondary-goals">
<li>Understand how machine learning fits into the Web technology
stack,
</li>
<li>Understand how browser-based machine learning fits into the
machine learning ecosystem,
</li>
<li>Explore the impact of machine learning technologies on Web
browsers and Web applications,
</li>
<li>Evaluate the opportunities for standardization around machine
learning APIs and formats.
</li>
</ul>
<h2 id="topics">
🧐 What topics were in scope?
</h2>
<p>
The following topics were identified as in scope
</p>
<ul id="proposed-topics">
<li>
Opportunities and Challenges of Browser Based Machine Learning
<ul>
<li>Privacy-First approach to machine learning
</li>
<li>Real-time in-browser Machine Learning
</li>
<li>Performance, compatibility, JS environment gaps
</li>
<li>Domain-specific compilers for Machine Learning
</li>
</ul>
</li>
<li>
Web
Platform Foundations for Machine Learning
<ul>
<li>Web Platform: a 30,000 foot view
</li>
<li>Web Platform and JS environment constraints
</li>
<li>Bringing Machine Learning to the JS ecosystem with Machine
Learning libraries
</li>
<li>Accelerated graphics and compute APIs for Machine Learning
</li>
<li>Fast, portable code with WebAssembly / WASI-nn
</li>
<li>Access purpose-built Machine Learning hardware with WebNN
</li>
</ul>
</li>
<li>
Machine
Learning Experiences on the Web: A Developer's Perspective
<ul>
<li>On-device training in browser
</li>
<li>Datasets on the Web & Schema.org vocabularies
</li>
<li>Interoperability of Machine Learning models for the Web
</li>
<li>High-level load & run model vs low-level graph builder API
</li>
<li>Integration of models and in-browser data sources sensors,
AV
</li>
<li>Considerations when deploying models to the web
</li>
<li>TensorFlow.js
</li>
<li>ONNX.js
</li>
<li>Magenta.js
</li>
<li>ML5.js
</li>
<li>Paddle.js
</li>
<li>Machine Learning in Web Architecture
</li>
</ul>
</li>
<li>
Machine
Learning Experiences on the Web: A User's Perspective
<ul>
<li>Teachable Machine & Project Euphonia
</li>
<li>Visualization of deep networks, "human-interpretable neural
nets"
</li>
<li>Web a11y opportunity
</li>
<li>Cross-industry case studies
</li>
<li>Media technologies roadmap for the Web
</li>
<li>Enhancing media experiences with Machine Learning
</li>
<li>Making art with Machine Learning
</li>
<li>Making music with Machine Learning
</li>
<li>Teaching machines how people speak
</li>
</ul>
</li>
<li>
<span class="type type-plenary">plenary</span> Machine Learning
Consensus Landscape
<ul>
<li>Who is doing what: what's happening in standards, what's
happening in related open source projects.
</li>
</ul>
</li>
</ul>
</section>
<section>
<h2 id="w3c">
🌐 What is W3C?
</h2>
<p>
W3C is a voluntary standards consortium that convenes companies and
communities to help structure productive discussions around
existing and emerging technologies, and offers a Royalty-Free
patent framework for Web Recommendations. We focus primarily on
client-side (browser) technologies, and also have a mature history
of vocabulary (or “ontology”) development. W3C develops work based
on the priorities of our members and our community.
</p>
</section>
<section>
<h2 id="program">
👋 Program Committee
</h2>
<h4>
Chairs
</h4>
<ul class="pc">
<li>Kelly Davis (Mozilla)
</li>
<li>Anssi Kostiainen (Intel)
</li>
</ul>
<h4>
Committee
</h4>
<ul class="pc">
<li>Göran Eriksson (Ericsson)
</li>
<li>Dominique Hazaël-Massieux (W3C)
</li>
<li>Ningxin Hu (Intel)
</li>
<li>Dean Jackson (Apple)
</li>
<li>Sangwhan Moon
</li>
<li>Roy Ran (W3C)
</li>
<li>Georg Rehm (DFKI)
</li>
<li>Amy Siu (Beuth University of Applied Sciences, Berlin)
</li>
<li>Nikhil Thorat (Google)
</li>
</ul>
</section>
</section>
<section>
<h3>
Sponsors
</h3>
<p><a href="https://www.futurice.com/"><img src="images/futurice.png" alt="futurice" width=400></a></p>
</section>
</main>