-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathprepare.py
299 lines (237 loc) · 10.6 KB
/
prepare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
#!/usr/bin/env python
# _*_ coding:utf-8 _*_
# ============================================
# @Time : 2020/05/21 15:53
# @Author : WanDaoYi
# @FileName : prepare.py
# ============================================
"""
从 coco 的 json 数据中,得到一张图片的标注信息如下,包含5大部分的字段信息:
"info"的value是一个dict,存储数据集的一些基本信息,我们不需要关注;
"licenses"的value是一个list,存储license信息,我们不需要关注;
"categories"的value是一个list,存储数据集的类别信息,包括类别的超类、类别id、类别名称;
“images”的value是一个list,存储这张图片的基本信息,包括图片名、长、宽、id等重要信息;
"annotations"的value是一个list,存储这张图片的标注信息,非常重要,list中的每一个元素是一个dict,
也即一个标注对象(instance)的信息。包括的字段有"segmentation":标注点的坐标,
从第一个的x,y坐标一直到最后一个点的x,y坐标;
"area"是标注的闭合多边形的面积;
"iscrowd"表示对象之间是否有重叠; 0 表示不重叠
"image_id"是图片的id;
"bbox"是instance的边界框的左上角的x,y,边界框的宽和高;
"category_id"是这个instance对应的类别id;
"id"表示此instance标注信息在所有instance标注信息中的id。
"""
from datetime import datetime
import os
import json
import random
import numpy as np
from config import cfg
class Prepare(object):
def __init__(self):
self.label_me_json_file_path = "./dataset/ann_json"
self.ori_image_file_path = "./dataset/images"
self.save_data_path = "./infos"
self.cate_and_super = self.load_json_data("./infos/cate_and_super.json")
# 默认 BG 为背景 class name
self.class_name_list = self.load_txt_data("./infos/our_class_names.txt")
# 数据的百分比
self.test_percent = cfg.COMMON.TEST_PERCENT
self.val_percent = cfg.COMMON.VAL_PERCENT
# 各成分数据保存路径
self.train_data_path = cfg.COMMON.TRAIN_DATA_PATH
self.val_data_path = cfg.COMMON.VAL_DATA_PATH
self.test_data_path = cfg.COMMON.TEST_DATA_PATH
self.train_image_name_list = []
self.val_image_name_list = []
# info 和 licenses 基本是固定的,所以可以在这里写死。
# 具体信息你想怎么写就怎么写,感觉,无关痛痒。如果是要做记录,则需要写好点而已。
self.info = {"description": "our data", "url": "",
"version": "1.0", "year": 2020,
"contributor": "our leader",
"date_created": "2020/05/20"}
self.licenses = [{'url': "", 'id': 1, 'name': 'our leader'}]
self.categories = self.category_info()
self.images = []
self.annotations = []
self.ann_id = 0
pass
def load_txt_data(self, file_path):
with open(file_path, encoding="utf-8") as file:
data_info = file.readlines()
data_list = [data.strip() for data in data_info]
return data_list
pass
pass
def load_json_data(self, file_path):
with open(file_path, encoding="utf-8") as file:
return json.load(file)
pass
pass
def divide_data(self):
"""
train, val, test 数据划分
:return:
"""
# 原始图像名字的 list
image_name_list = os.listdir(self.ori_image_file_path)
# 统计有多少张图像
image_number = len(image_name_list)
# 根据百分比得到各成分 数据量
n_test = int(image_number * self.test_percent)
n_val = int(image_number * self.val_percent)
n_train = image_number - n_test - n_val
if os.path.exists(self.train_data_path):
os.remove(self.train_data_path)
pass
if os.path.exists(self.val_data_path):
os.remove(self.val_data_path)
pass
if os.path.exists(self.test_data_path):
os.remove(self.test_data_path)
pass
# 随机划分数据
n_train_val = n_train + n_val
train_val_list = random.sample(image_name_list, n_train_val)
train_list = random.sample(train_val_list, n_train)
train_file = open(self.train_data_path, "w")
val_file = open(self.val_data_path, "w")
test_file = open(self.test_data_path, "w")
for image_name in image_name_list:
if image_name in train_val_list:
if image_name in train_list:
# 将训练的数据名称放到 list 中,不用再次去读写。
self.train_image_name_list.append(image_name)
# 将训练数据保存下来,可以用来参考,后续代码中不用到这个文件
train_file.write(image_name + "\n")
pass
else:
# 将验证的数据名称放到 list 中,不用再次去读写。
self.val_image_name_list.append(image_name)
# 将验证数据保存下来,可以用来参考,后续代码中不用到这个文件
val_file.write(image_name + "\n")
pass
pass
else:
# 测试图像,这个可以在 mask_test.py 文件中用于 test
test_file.write(image_name + "\n")
pass
pass
train_file.close()
val_file.close()
test_file.close()
pass
def category_info(self):
categories = []
class_name_list_len = len(self.class_name_list)
for i in range(1, class_name_list_len):
category_info = {}
class_name = self.class_name_list[i]
super_cate = self.cate_and_super[class_name]
category_info.update({"supercategory": super_cate})
category_info.update({"id": i})
category_info.update({"name": class_name})
categories.append(category_info)
pass
return categories
pass
def json_dump(self, data_info, file_path):
with open(file_path, 'w', encoding='utf-8') as file:
json.dump(data_info, file, ensure_ascii=False, indent=2)
pass
def coco_data_info(self):
data_info = {}
data_info.update({"info": self.info})
data_info.update({"license": self.licenses})
data_info.update({"categories": self.categories})
data_info.update({"images": self.images})
data_info.update({"annotations": self.annotations})
return data_info
pass
def do_data_2_coco(self):
# 划分数据
self.divide_data()
# 将划分的训练数据做成 coco 数据
for train_image_name in self.train_image_name_list:
name_info = train_image_name.split(".")[0]
ann_json_name = name_info + ".json"
ann_json_path = os.path.join(self.label_me_json_file_path, ann_json_name)
json_data = self.load_json_data(ann_json_path)
self.image_info(json_data, name_info, train_image_name)
self.annotation_info(json_data, name_info)
pass
train_data = self.coco_data_info()
train_data_path = os.path.join(self.save_data_path, "train_data.json")
self.json_dump(train_data, train_data_path)
# 初始化,不受上面训练数据影响
self.images = []
self.annotations = []
# 将划分的验证数据做成 coco 数据
for val_image_name in self.val_image_name_list:
name_info = val_image_name.split(".")[0]
ann_json_name = name_info + ".json"
ann_json_path = os.path.join(self.label_me_json_file_path, ann_json_name)
json_data = self.load_json_data(ann_json_path)
self.image_info(json_data, name_info, val_image_name)
self.annotation_info(json_data, name_info)
pass
val_data = self.coco_data_info()
val_data_path = os.path.join(self.save_data_path, "val_data.json")
self.json_dump(val_data, val_data_path)
pass
def image_info(self, json_data, name_info, train_image_name):
image_info = {}
height = json_data["imageHeight"]
width = json_data["imageWidth"]
image_info.update({"height": height})
image_info.update({"width": width})
image_info.update({"id": int(name_info)})
image_info.update({"file_name": train_image_name})
self.images.append(image_info)
pass
def annotation_info(self, json_data, name_info):
data_shape = json_data["shapes"]
for shape_info in data_shape:
annotation = {}
label = shape_info["label"]
points = shape_info["points"]
category_id = self.class_name_list.index(label)
annotation.update({"id": self.ann_id})
annotation.update({"image_id": int(name_info)})
annotation.update({"category_id": category_id})
segmentation = [np.asarray(points).flatten().tolist()]
annotation.update({"segmentation": segmentation})
bbox = self.bounding_box_info(points)
annotation.update({"bbox": bbox})
annotation.update({"iscrowd": 0})
area = annotation['bbox'][-1] * annotation['bbox'][-2]
annotation.update({"area": area})
self.annotations.append(annotation)
self.ann_id += 1
pass
def bounding_box_info(self, points):
"""
# COCO的格式: [x1, y1, w, h] 对应COCO的bbox格式
:param points: "points": [[160.0, 58.985], [151.2, 60.1], ..., [166.1, 56.1]]
:return:
"""
# np.inf 为无穷大
min_x = min_y = np.inf
max_x = max_y = 0
for x, y in points:
min_x = min(min_x, x)
min_y = min(min_y, y)
max_x = max(max_x, x)
max_y = max(max_y, y)
return [min_x, min_y, max_x - min_x, max_y - min_y]
pass
if __name__ == "__main__":
# 代码开始时间
start_time = datetime.now()
print("开始时间: {}".format(start_time))
demo = Prepare()
demo.do_data_2_coco()
# 代码结束时间
end_time = datetime.now()
print("结束时间: {}, 训练模型耗时: {}".format(end_time, end_time - start_time))
pass