-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
404 lines (345 loc) · 17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import os
import shutil
import argparse
import time as t
import torch
import numpy as np
import torch.nn as nn
import tensorboardX as tX
import torch.optim as optim
import torch.nn.functional as F
import torchvision.transforms as T
from torch.utils.data import DataLoader
from dataloader.KITTI2015_loader import KITTI2015
from dataloader.PLantStereo2021 import PlantStereo2021, RandomCrop, ToTensor, Normalize, Pad
from models.GCNet.GCNet import GCNet
from models.GCNet.loss import L1Loss
from models.PSMNet.PSMnet import PSMNet
from models.PSMNet.smoothloss import SmoothL1Loss
from models.StereoNet.stereonet import StereoNet
from models.CFPNet.basic import CFPNet_b
from models.CFPNet.stackhourglass import CFPNet_s
from models.CFPNet.smoothloss import SmoothL1LossC
from models.HSMNet.hsm import HSMNet
from models.HSMNet.loss import SmoothL1LossHSM
from models.GwcNet.gwcnet import GwcNet
from models.GwcNet.loss import model_loss
from models.DANet.danet import DANet
from models.DANet.loss import model_loss
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser(description='stereo_matching_with_deep_learning')
parser.add_argument('--model', default='P', help='choose which model to use, GC: GCNet, P: PSMNet, Stereo: StereoNet, CFP: CFPNet, HSM: HSMNet, Gwc: GwcNet, D: DANet')
parser.add_argument('--maxdisp', type=int, default=256, help='max diparity')
parser.add_argument('--dispacc', type=bool, default=True, help='high or low accuracy disparity. False<--uint8, True<--float64')
parser.add_argument('--logdir', default='log/runs', help='log directory')
parser.add_argument('--dataset', default='KITTI2015', help='dataset to use: PlantStereo or KITTI2015')
parser.add_argument('--subset', default='pumpkin', help='subset of the PlantStereo: pumpkin, pepper, spinach or tomato')
parser.add_argument('--cuda', type=int, default=1, help='gpu number')
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--validate-batch-size', type=int, default=1, help='batch size')
parser.add_argument('--log-per-step', type=int, default=1, help='log per step')
parser.add_argument('--save-per-epoch', type=int, default=1, help='save model per epoch')
parser.add_argument('--model-dir', default='checkpoint', help='directory where save model checkpoint')
parser.add_argument('--model-path', default=None, help='path of model to load')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
parser.add_argument('--num-epochs', type=int, default=500, help='number of training epochs')
parser.add_argument('--num-workers', type=int, default=8, help='num workers in loading data')
args = parser.parse_args()
mean = [0.406, 0.456, 0.485]
std = [0.225, 0.224, 0.229]
device_ids = [0]
writer = tX.SummaryWriter(log_dir=args.logdir, comment='stereo_matching_with_deep_learning')
device = torch.device('cuda')
print(device)
def main(args):
if args.dataset == 'PlantStereo':
if args.subset == 'pumpkin':
datadir = '/home/wangqingyu/PlantStereo/PlantStereo2021/pumpkin'
elif args.subset == 'pepper':
datadir = '/home/wangqingyu/PlantStereo/PlantStereo2021/pepper'
elif args.subset == 'spinach':
datadir = '/home/wangqingyu/PlantStereo/PlantStereo2021/spinach'
elif args.subset == 'tomato':
datadir = '/home/wangqingyu/PlantStereo/PlantStereo2021/tomato'
train_transform = T.Compose([RandomCrop([256, 512]), Normalize(mean, std), ToTensor()])
train_dataset = PlantStereo2021(datadir, mode='train', transform=train_transform, high_acc=args.dispacc)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
validate_transform = T.Compose([Normalize(mean, std), ToTensor(), Pad(640, 1088)])
validate_dataset = PlantStereo2021(datadir, mode='validate', transform=validate_transform, high_acc=args.dispacc)
validate_loader = DataLoader(validate_dataset, batch_size=args.validate_batch_size, num_workers=args.num_workers)
elif args.dataset == 'KITTI2015':
datadir = '/home/wangqingyu/KITTI/2015/'
train_transform = T.Compose([RandomCrop([256, 512]), Normalize(mean, std), ToTensor()])
train_dataset = KITTI2015(datadir, mode='train', transform=train_transform)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
validate_transform = T.Compose([Normalize(mean, std), ToTensor(), Pad(384, 1248)])
validate_dataset = KITTI2015(datadir, mode='validate', transform=validate_transform)
validate_loader = DataLoader(validate_dataset, batch_size=args.validate_batch_size, num_workers=args.num_workers)
step = 0
best_1pixel_error = 100.0
best_3pixel_error = 100.0
best_5pixel_error = 100.0
best_epe = 100.0
best_rmse = 100.0
if args.model == 'GC':
model = GCNet(max_disp=args.maxdisp).to(device)
elif args.model == 'P':
model = PSMNet(max_disp=args.maxdisp).to(device)
elif args.model == 'Stereo':
batch_size = args.batch_size
cost_volume_method = "subtract"
# cost_volume_method = "concat"
model = StereoNet(batch_size=batch_size, cost_volume_method=cost_volume_method)
elif args.model == 'CFP':
model = CFPNet_s(maxdisp=args.maxdisp).to(device)
elif args.model == 'HSM':
model = HSMNet(maxdisp=args.maxdisp, clean=False, level=1).to(device)
elif args.model == 'Gwc':
model = GwcNet(maxdisp=args.maxdisp, use_concat_volume=False).to(device)
# GwcNet_G: use_concat_volune=False
# GwcNet_GC: use_concat_volune=True
elif args.model == 'D':
model = DANet(maxdisp=args.maxdisp, use_concat_volume=False).to(device)
model = nn.DataParallel(model, device_ids=device_ids)
if args.model == 'GC':
criterion = L1Loss().to(device)
elif args.model == 'P':
criterion = SmoothL1Loss().to(device)
elif args.model == 'Stereo':
criterion = SmoothL1LossC().to(device)
elif args.model == 'CFP':
criterion = SmoothL1LossC().to(device)
elif args.model == 'HSM':
criterion = SmoothL1LossHSM().to(device)
elif args.model == 'Gwc' or args.model == 'D':
criterion = SmoothL1Loss().to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
if args.model_path is not None:
state = torch.load(args.model_path)
model.load_state_dict(state['state_dict'])
optimizer.load_state_dict(state['optimizer'])
step = state['step']
best_1pixel_error = state['error_1']
best_3pixel_error = state['error_3']
best_5pixel_error = state['error_5']
best_epe = state['epe']
best_rmse = state['rmse']
print('load model from {}'.format(args.model_path))
print('Number of model parameters: {}'.format(sum([p.data.nelement() for p in model.parameters()])))
for epoch in range(1, args.num_epochs + 1):
dawn = t.time()
model.train()
step = train(model, train_loader, optimizer, criterion, step)
adjust_lr(optimizer, epoch)
if epoch % args.save_per_epoch == 0:
model.eval()
error_1, error_3, error_5, epe, rmse = validate(model, validate_loader, epoch)
best_1pixel_error, best_3pixel_error, best_5pixel_error, best_epe, best_rmse = save(model, optimizer, epoch, step, error_1, error_3, error_5, epe, rmse, best_1pixel_error, best_3pixel_error, best_5pixel_error, best_epe, best_rmse)
dusk = t.time()
time_consuming = dusk - dawn
print('time consuming in this epoch:{:.2f}s'.format(time_consuming))
def validate(model, validate_loader, epoch):
"""
validate 40 image pairs
"""
num_batches = len(validate_loader)
idx = np.random.randint(num_batches)
avg_error_1 = 0.0
avg_error_3 = 0.0
avg_error_5 = 0.0
avg_epe = 0.0
avg_rmse = 0.0
for i, batch in enumerate(validate_loader):
left_img = batch['left'].to(device)
right_img = batch['right'].to(device)
target_disp = batch['disp'].to(device)
mask = (target_disp < args.maxdisp) & (target_disp > 0)
mask = mask.detach_()
if args.model == 'GC':
with torch.inference_mode():
disp = model(left_img, right_img)
elif args.model == 'P':
with torch.inference_mode():
_, _, disp = model(left_img, right_img)
elif args.model == 'Stereo':
with torch.inference_mode():
disp = model(left_img, right_img)
elif args.model == 'CFP':
with torch.inference_mode():
disp = model(left_img, right_img)
elif args.model == 'HSM':
with torch.inference_mode():
disp = model(left_img, right_img)
elif args.model == 'Gwc':
with torch.inference_mode():
disp = model(left_img, right_img)
elif args.model == 'D':
with torch.inference_mode():
disp = model(left_img, right_img)
delta = torch.abs(disp[mask] - target_disp[mask])
error_mat_1pixel = (delta > 1.0)
error_mat_3pixel = (delta > 3.0)
error_mat_5pixel = (delta > 5.0)
error_1pixel = torch.sum(error_mat_1pixel).item() / torch.numel(disp[mask]) * 100
error_3pixel = torch.sum(error_mat_3pixel).item() / torch.numel(disp[mask]) * 100
error_5pixel = torch.sum(error_mat_5pixel).item() / torch.numel(disp[mask]) * 100
epe = F.l1_loss(input=disp[mask], target=target_disp[mask], size_average=True)
rmse = (F.mse_loss(input=disp[mask], target=target_disp[mask], size_average=True)) ** 0.5
avg_error_1 += error_1pixel
avg_error_3 += error_3pixel
avg_error_5 += error_5pixel
avg_epe += epe
avg_rmse += rmse
if i == idx:
left_save = left_img
disp_save = disp
avg_error_1 = avg_error_1 / num_batches
avg_error_3 = avg_error_3 / num_batches
avg_error_5 = avg_error_5 / num_batches
avg_epe = avg_epe / num_batches
avg_rmse = avg_rmse / num_batches
print('epoch: {:04} | 1px-error: {:.5}%'.format(epoch, avg_error_1))
print('epoch: {:04} | 3px-error: {:.5}%'.format(epoch, avg_error_3))
print('epoch: {:04} | 5px-error: {:.5}%'.format(epoch, avg_error_5))
print('epoch: {:04} | epe: {:.5}'.format(epoch, avg_epe))
print('epoch: {:04} | rmse: {:.5}'.format(epoch, avg_rmse))
writer.add_scalar('error/1px', avg_error_1, epoch)
writer.add_scalar('error/3px', avg_error_3, epoch)
writer.add_scalar('error/5px', avg_error_5, epoch)
writer.add_scalar('epe', avg_epe, epoch)
writer.add_scalar('rmse', avg_rmse, epoch)
save_image(left_save[0], disp_save[0], epoch)
return avg_error_1, avg_error_3, avg_error_5, avg_epe, avg_rmse
def save_image(left_image, disp, epoch):
for i in range(3):
left_image[i] = left_image[i] * std[i] + mean[i]
b, r = left_image[0], left_image[2]
left_image[0] = r # BGR --> RGB
left_image[2] = b
disp_img = disp.detach().cpu().numpy()
fig = plt.figure(figsize=(12.84, 3.84))
plt.axis('off') # hide axis
plt.imshow(disp_img)
plt.colorbar()
writer.add_figure('image/disp', fig, global_step=epoch)
writer.add_image('image/left', left_image, global_step=epoch)
def train(model, train_loader, optimizer, criterion, step):
"""
train one epoch
"""
for batch in train_loader:
step += 1
optimizer.zero_grad()
left_img = batch['left'].to(device)
right_img = batch['right'].to(device)
target_disp = batch['disp'].to(device)
mask = (target_disp > 0)
mask = mask.detach_()
if args.model == 'GC':
disp = model(left_img, right_img)
loss = criterion(disp[mask], target_disp[mask])
loss.backward()
optimizer.step()
if step % args.log_per_step == 0:
writer.add_scalar('loss/total_loss', loss, step)
print('step: {:07} | loss: {:.5}'.format(step, loss.item()))
elif args.model == 'P':
disp1, disp2, disp3 = model(left_img, right_img)
loss1, loss2, loss3 = criterion(disp1[mask], disp2[mask], disp3[mask], target_disp[mask])
total_loss = 0.5 * loss1 + 0.7 * loss2 + 1.0 * loss3
total_loss.backward()
optimizer.step()
if step % args.log_per_step == 0:
writer.add_scalar('loss/loss1', loss1, step)
writer.add_scalar('loss/loss2', loss2, step)
writer.add_scalar('loss/loss3', loss3, step)
writer.add_scalar('loss/total_loss', total_loss, step)
print('step: {:07} | total loss: {:.5} | loss1: {:.5} | loss2: {:.5} | loss3: {:.5}'.format(step, total_loss.item(), loss1.item(), loss2.item(), loss3.item()))
elif args.model == 'Stereo':
disp = model(left_img, right_img)
total_loss = criterion(disp[mask], target_disp[mask])
total_loss.backward()
optimizer.step()
if step % args.log_per_step == 0:
writer.add_scalar('loss/total_loss', total_loss, step)
print('step: {:07} | total loss: {:.5}'.format(step, total_loss.item()))
elif args.model == 'CFP':
disp = model(left_img, right_img)
total_loss = criterion(disp[mask], target_disp[mask])
total_loss.backward()
optimizer.step()
if step % args.log_per_step == 0:
writer.add_scalar('loss/total_loss', total_loss, step)
print('step: {:07} | total loss: {:.5}'.format(step, total_loss.item()))
elif args.model == 'HSM':
stacked, entropy = model(left_img, right_img)
total_loss = criterion(stacked, target_disp, mask)
total_loss.backward()
optimizer.step()
if step % args.log_per_step == 0:
writer.add_scalar('loss/total_loss', total_loss, step)
print('step: {:07} | total loss: {:.5}'.format(step, total_loss.item()))
elif args.model == 'Gwc' or args.model == 'D':
disp_ests = model(left_img, right_img)
total_loss = model_loss(disp_ests, target_disp, mask)
total_loss.backward()
optimizer.step()
if step % args.log_per_step == 0:
writer.add_scalar('loss/total_loss', total_loss, step)
print('step: {:07} | total loss: {:.5}'.format(step, total_loss.item()))
return step
def adjust_lr(optimizer, epoch):
if epoch == 200:
lr = 0.0001
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if epoch == 800:
lr = 0.00001
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def save(model, optimizer, epoch, step, error_1, error_3, error_5, epe, rmse, best_1pixel_error, best_3pixel_error, best_5pixel_error, best_epe, best_rmse):
path = os.path.join(args.model_dir, '{:04}.ckpt'.format(epoch))
state = {}
state['state_dict'] = model.state_dict()
state['optimizer'] = optimizer.state_dict()
state['error_1'] = error_1
state['error_3'] = error_3
state['error_5'] = error_5
state['epe'] = epe
state['rmse'] = rmse
state['epoch'] = epoch
state['step'] = step
# save model trained in this epoch
torch.save(state, path)
print('save model at epoch{}'.format(epoch))
# save best model:
if error_3 <= best_3pixel_error and epe <= best_epe:
best_1pixel_error = error_1
best_3pixel_error = error_3
best_5pixel_error = error_5
best_epe = epe
best_rmse = rmse
best_path = os.path.join(args.model_dir, 'best_model.ckpt'.format(epoch))
shutil.copyfile(path, best_path)
print('best model in epoch {}'.format(epoch))
# save best error model:
if error_3 <= best_3pixel_error:
best_1pixel_error = error_1
best_3pixel_error = error_3
best_5pixel_error = error_5
best_error_path = os.path.join(args.model_dir, 'best_error_model.ckpt'.format(epoch))
shutil.copyfile(path, best_error_path)
print('best error model in epoch {}'.format(epoch))
# save best epe model:
if epe <= best_epe:
best_epe = epe
best_rmse = rmse
best_epe_path = os.path.join(args.model_dir, 'best_epe_model.ckpt'.format(epoch))
shutil.copyfile(path, best_epe_path)
print('best epe model in epoch {}'.format(epoch))
return best_1pixel_error, best_3pixel_error, best_5pixel_error, best_epe, best_rmse
if __name__ == '__main__':
main(args)
writer.close()