-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
105 lines (92 loc) · 5.23 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from tools.tool import ICNetLoss, load_model
from engine import *
from tools.data_gen import load_data
import torch.optim as optim
import torch
import torch.nn as nn
from tools.sync_batchnorm import convert_model
import argparse
from tools.tool import print_param
def get_args_parser():
parser = argparse.ArgumentParser(description="PSP-Net Network", add_help=False)
# train settings
parser.add_argument("--model_name", type=str, default="PSPNet")
parser.add_argument("--batch_size", type=int, default=16,
help="Number of images sent to the network in one step.")
parser.add_argument("--sequence_len", type=int, default=4,
help="Length of sequence for LSTM model.")
parser.add_argument("--data_dir", type=str, default="/home/wangbowen/",
help="Path to the directory containing the image list.")
parser.add_argument("--data_extra", type=str, default="/home/wangbowen/PycharmProjects/data_eye_train/",
help="Path to the directory of noise data")
parser.add_argument("--original_size", type=int, default=[1024, 2048],
help="original size of data set image.")
parser.add_argument("--need_size", type=int, default=[512, 1024],
help="image size require for this program.")
parser.add_argument("--input_size", type=int, default=[448, 448],
help="Comma-separated string with height and width of images. It also consider as crop size.")
parser.add_argument("--learning_rate", type=float, default=0.0001,
help="Base learning rate for training with polynomial decay.")
parser.add_argument("--ignore_label", type=int, default=19,
help="this kind of pixel will not used for both train and evaluation")
parser.add_argument("--num_classes", type=int, default=19,
help="Number of classes to predict (including background).")
parser.add_argument("--num_epoch", type=int, default=40,
help="Number of training steps.")
parser.add_argument("--use_pre", type=bool, default=True)
# lstm setting
parser.add_argument("--lstm", type=bool, default=True)
parser.add_argument("--merge", type=bool, default=True,
help="merge previous frame, set false for all frame visualization")
parser.add_argument("--lstm_kernel", type=int, default=1)
parser.add_argument("--lstm_layer", type=int, default=1)
parser.add_argument("--noise", type=bool, default=True)
parser.add_argument("--frame_cut", type=int, default=1)
parser.add_argument("--noise_type", type=str, default="extra")
# augment tools
parser.add_argument("--random_crop", type=bool, default=True,
help="Whether to randomly crop the inputs during the training.")
parser.add_argument("--random_mirror", type=bool, default=True,
help="Whether to randomly mirror the inputs during the training.")
parser.add_argument("--random_scale", type=bool, default=False,
help="Whether to randomly scale the inputs during the training.")
parser.add_argument("--random_rotate", type=bool, default=False,
help="Whether to randomly scale the inputs during the training.")
parser.add_argument("--noise_ratio", type=int, default=50,
help="define the possibility of noise.")
# device settings
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--show_sequence', default=False, type=bool)
parser.add_argument('--multi_gpu', default=False, type=bool)
parser.add_argument("--device", type=str, default='cuda:0',
help="choose gpu device.")
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def train(args):
dataloaders = load_data(args, lstm=args.lstm, use_noise=args.noise)
device = torch.device(args.device)
init_model = load_model(args)
if args.multi_gpu:
device_ids = [0, 1]
init_model = convert_model(init_model)
init_model = init_model.cuda()
if torch.cuda.device_count() > 1:
init_model = nn.DataParallel(init_model, device_ids=device_ids)
else:
init_model.to(device)
n_parameters = sum(p.numel() for p in init_model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
optimizer = optim.AdamW(filter(lambda p: p.requires_grad, init_model.parameters()), lr=args.learning_rate)
if args.model_name == "ICNet":
criterion = ICNetLoss(ignore_index=args.ignore_label).to(args.device)
else:
criterion = torch.nn.CrossEntropyLoss(ignore_index=args.ignore_label)
print("start train")
save_name = args.model_name + f"{'_lstm' if args.lstm else ''}" + f"{'_noise' if args.noise else ''}"
print("model name: ", save_name)
train_model(args, init_model, dataloaders, criterion, optimizer,
save_name, num_epochs=args.num_epoch, use_lstm=args.lstm)
if __name__ == '__main__':
parser = argparse.ArgumentParser('model training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
train(args)