-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.py
238 lines (207 loc) · 11.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import argparse
from pathlib import Path
import torch
from torch.utils.data import DistributedSampler
import tools.prepare_things as prt
from engine import train_one_epoch, evaluate
from dataset.choose_dataset import select_dataset
from tools.prepare_things import DataLoaderX
from sloter.slot_model import SlotModel
from tools.calculate_tool import MetricLog
import datetime
import time
import numpy as np
from thop import profile, clever_format
import tensorly as tl
def get_args_parser():
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Unsupported value encountered.')
parser = argparse.ArgumentParser('Set SCOUTER model', add_help=False)
parser.add_argument('--model', default="resnet18", type=str)
parser.add_argument('--dataset', default="MNIST", type=str)
parser.add_argument('--channel', default=512, type=int)
# training set
parser.add_argument('--lr', default=0.0001, type=float)
parser.add_argument('--lr_drop', default=70, type=int)
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--weight_decay', default=0.0001, type=float)
parser.add_argument('--epochs', default=10, type=int)
parser.add_argument("--num_classes", default="10", type=str)
parser.add_argument('--img_size', default=260, help='path for save data')
parser.add_argument('--pre_trained', default=True, type=str2bool, help='whether use pre parameter for backbone')
parser.add_argument('--use_slot', default=True, type=str2bool, help='whether use slot module')
parser.add_argument('--use_pre', default=False, type=str2bool, help='whether use pre dataset parameter')
parser.add_argument('--aug', default=False, type=str2bool, help='whether use pre dataset parameter')
parser.add_argument('--grad', default=False, type=str2bool, help='whether use grad-cam for visulazition')
parser.add_argument('--grad_min_level', default=0., type=float, help='control the grad-cam vis area')
parser.add_argument('--iterated_evaluation_num', default=1, type=int, help='used for iterated evaluation')
parser.add_argument('--cal_area_size', default=False, type=str2bool, help='whether to calculate for area size of the attention map')
parser.add_argument('--thop', default=False, type=str2bool, help='whether to only calculate for the model costs (no training)')
# slot setting
parser.add_argument('--loss_status', default=1, type=int, help='positive or negative loss')
parser.add_argument('--freeze_layers', default=2, type=int, help='number of freeze layers')
parser.add_argument('--hidden_dim', default=64, type=int, help='dimension of to_k')
parser.add_argument('--slots_per_class', default="3", type=str, help='number of slot for each class')
parser.add_argument('--power', default="2", type=str, help='power of the slot loss')
parser.add_argument('--to_k_layer', default=1, type=int, help='number of layers in to_k')
parser.add_argument('--lambda_value', default="1.", type=str, help='lambda of slot loss')
parser.add_argument('--vis', default=False, type=str2bool, help='whether save slot visualization')
parser.add_argument('--vis_id', default=0, type=int, help='choose image to visualization')
# data/machine set
parser.add_argument('--dataset_dir', default='../PAN/bird_200/CUB_200_2011/CUB_200_2011/',
help='path for save data')
parser.add_argument('--output_dir', default='saved_model/',
help='path where to save, empty for no saving')
parser.add_argument('--pre_dir', default='pre_model/',
help='path of pre-train model')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch')
parser.add_argument('--resume', default=False, type=str2bool, help='resume from checkpoint')
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument("--local_rank", type=int)
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def main(args):
prt.init_distributed_mode(args)
device = torch.device(args.device)
model = SlotModel(args)
print("train model: " + f"{'use slot ' if args.use_slot else 'without slot '}" + f"{'negetive loss' if args.use_slot and args.loss_status != 1 else 'positive loss'}")
model.to(device)
model_without_ddp = model
if args.thop:
def freeze_layers(model):
for layer in model.children():
if isinstance(layer, torch.nn.Sequential):
for sub_layer in layer:
sub_layer.requires_grad = False
for parameter in sub_layer.parameters():
parameter.requires_grad = False
else:
layer.requires_grad = False
for parameter in layer.parameters():
parameter.requires_grad = False
def unfreeze_layers(model):
for layer in model.children():
if isinstance(layer, torch.nn.Sequential):
for sub_layer in layer:
sub_layer.requires_grad = True
for parameter in sub_layer.parameters():
parameter.requires_grad = True
else:
layer.requires_grad = True
for parameter in layer.parameters():
parameter.requires_grad = True
unfreeze_layers(model)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(float(n_parameters)/1000000, 'M')
freeze_layers(model)
model.cpu()
model.eval()
tl.set_backend('pytorch')
input_ = torch.randn(1, 3, 260, 260)
flops_list = []
params_list = []
acc_list = []
flops, params = profile(model, inputs=(input_, ))
flops_list.append(flops)
params_list.append(params)
flops, params = clever_format([flops, params], "%.3f")
print(float(n_parameters)/1000000, 'M', params, flops)
return [float(n_parameters)/1000000, flops_list[-1]/1000000000]
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
params = [p for p in model_without_ddp.parameters() if p.requires_grad]
optimizer = torch.optim.AdamW(params, lr=args.lr)
criterion = torch.nn.CrossEntropyLoss()
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_drop)
dataset_train, dataset_val = select_dataset(args)
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoaderX(dataset_train, batch_sampler=batch_sampler_train, num_workers=args.num_workers)
data_loader_val = DataLoaderX(dataset_val, args.batch_size, sampler=sampler_val, num_workers=args.num_workers)
output_dir = Path(args.output_dir)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
print("Start training")
start_time = time.time()
log = MetricLog()
record = log.record
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
sampler_train.set_epoch(epoch)
train_one_epoch(model, data_loader_train, optimizer, device, record, epoch)
lr_scheduler.step()
if args.output_dir:
checkpoint_paths = [output_dir / (f"{args.dataset}_" + f"{'use_slot_' if args.use_slot else 'no_slot_'}"\
+ f"{'negative_' if args.use_slot and args.loss_status != 1 else ''}"\
+ f"{'for_area_size_'+str(args.lambda_value) + '_'+ str(args.slots_per_class) + '_' if args.cal_area_size else ''}" + 'checkpoint.pth')]
# extra checkpoint before LR drop and every 10 epochs
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 10 == 0:
checkpoint_paths.append(output_dir / (f"{args.dataset}_" + f"{'use_slot_' if args.use_slot else 'no_slot_'}"\
+ f"{'negative_' if args.use_slot and args.loss_status != 1 else ''}"\
+ f"{'for_area_size_'+str(args.lambda_value) + '_'+ str(args.slots_per_class) + '_' if args.cal_area_size else ''}" + f'checkpoint{epoch:04}.pth'))
for checkpoint_path in checkpoint_paths:
prt.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
evaluate(model, data_loader_val, device, record, epoch)
log.print_metric()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
return [record["train"]["acc"][-1], record["val"]["acc"][-1]]
def param_translation(args):
args_dict = vars(args)
args_for_evaluation = ['num_classes', 'lambda_value', 'power', 'slots_per_class']
args_type = [int, float, int, int]
target_arg = None
for arg_id, arg in enumerate(args_for_evaluation):
if args_dict[arg].find(',') > 0:
target_arg = arg
target_type = args_type[arg_id]
setting_list = args_dict[arg].split(",")
else:
args_dict[arg] = args_type[arg_id](args_dict[arg])
if target_arg is None:
main(args)
else:
record = {}
circle_turns = args.iterated_evaluation_num
for set in setting_list:
record.update({f"{target_arg}-"+set: []})
args_dict[target_arg] = target_type(set)
for turn in range(circle_turns):
record[f"{target_arg}-"+set].append(main(args))
print(record)
if __name__ == '__main__':
parser = argparse.ArgumentParser('model training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
param_translation(args)