-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathHotSpot.js
420 lines (374 loc) · 11.8 KB
/
HotSpot.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
/*
判斷指定的不規則四邊形區域,是否有否變化,如果有就將變化的中心的座標回傳
//產生 Tracking 物件 (左上角)
var block = new BlockDetect(canvas,true,0,0,100,0,100,100,0,100);
//當有物件進入四邊形內部時觸發,提供該物件座標 (如果有多個物件,會循序被觸發)
tracking.inside(function(pos) {
...
});
//當有物件離開四邊形內部時觸發,提供該物件座標最後座標 (如果有多個物件,可能會有問題!?)
tracking.outside(function(pos) {
...
});
//掃描追蹤區域,此命令必須放在canvas更新時呼叫,才能持續掃瞄
tracking.scan();
//提供API判斷是否有物件在區域內
var YesOrNo = tracking.isInside();
//重新設定背景偵測
tracking.reset();
//設定區域內物件移動的最小異動量 (決定是否觸發 inside , outside callback)
tracking.setTrackingStep(3); // 3 pixel
//暫停偵測
tracking.pause();
//繼續偵測
tracking.resume();
//設定是否顯示偵測區域 (預設是true)
tracking.setShowArea(true);
//設定標示物件的線條和顏色
setStroke(1, "#f0f0f0");
*/
class Hotspot {
//預設顯示追蹤情況會繪製到 targetCanvas
constructor(sourceCanvas, targetCanvas, showArea, x1, y1, x2, y2, x3, y3, x4, y4) {
var canvas = document.createElement('canvas');
this.canvas = canvas; //建立canvas元素,預處理畫布,此物件內部處理
this.canvas.style.display = 'none';
this.canvas.width = sourceCanvas.width;
this.canvas.height = sourceCanvas.height;
this.ctx = canvas.getContext("2d");
this.sourceCanvas = sourceCanvas;
this.targetCanvas = targetCanvas;
this.sourceCtx = sourceCanvas.getContext("2d");
//設定要顯示到哪個畫布上 (sourceCanvas (同來源影像) , targetCanvas (空白,適合投影))
this.drawCanvas = targetCanvas; //顯示的畫布
this.drawCtx = this.drawCanvas.getContext('2d');
document.body.appendChild(this.canvas);
this.ctx.beginPath();
this.ctx.moveTo(x1, y1);
this.ctx.lineTo(x2, y2);
this.ctx.lineTo(x3, y3);
this.ctx.lineTo(x4, y4);
this.ctx.lineTo(x1, y1);
this.ctx.clip();
this.x1 = x1;
this.x2 = x2;
this.x3 = x3;
this.x4 = x4;
this.y1 = y1;
this.y2 = y2;
this.y3 = y3;
this.y4 = y4;
this.scanX = Math.min.apply(null, [x1, x2, x3, x4]);
this.scanY = Math.min.apply(null, [y1, y2, y3, y4]);
this.scanWidth = Math.max.apply(null, [x1, x2, x3, x4]) - this.scanX;
this.scanHeight = Math.max.apply(null, [y1, y2, y3, y4]) - this.scanY;
this.detectCB = this.in = this.out = function (pos, canvas) {};
this.startDetect = false;
this.firstDetect = true;
this.pause = false;
this._inside = false;
this.lastPos = false;
this.setTrackingStep(1); //異動量 1 pixel
this.setShowArea(showArea);
this.imgList = [];
this.insideObjList = []; //目前區域內偵測到所有物件的座標
this.res = {}; //儲存圖片、音效資源
}
start() {
var self = this;
if (this.startDetect) {
this.reset();
} else {
var history = this.jsonInfo['history'];
var varThreshold = this.jsonInfo['varThreshold'];
var detectShadows = this.jsonInfo['detectShadows'];
this.objMinSize = this.jsonInfo['objMinSize'];
this.filter = this.jsonInfo['filter'];
this.learningRate = this.jsonInfo['learningRate'];
if (typeof history == 'undefined') {
history = 500;
}
if (typeof varThreshold == 'undefined') {
varThreshold = 100;
}
if (typeof detectShadows == 'undefined') {
detectShadows = false;
}
if (typeof this.jsonInfo['lineWidth'] != 'undefined') {
this.lineWidth = this.jsonInfo['lineWidth'];
}
if (typeof this.jsonInfo['strokeStyle'] != 'undefined') {
this.strokeStyle = this.jsonInfo['strokeStyle'];
}
if (typeof this.objMinSize == 'undefined') {
this.objMinSize = 5;
}
if (typeof this.learningRate == 'undefined') {
this.learningRate = 0;
}
if (typeof this.filter == 'undefined') {
this.filter = ['e3', 'g7', 'd15'];
}
if (this.bs != null) {
this.bs.delete();
}
this.bs = new cv.BackgroundSubtractorMOG2(history, varThreshold, detectShadows);
self.startDetect = true;
}
}
debug() {
this.showDectectCanvas = true;
}
reset() {
var self = this;
if (this.bs != null) {
this.bs.delete();
}
this.bs = new cv.BackgroundSubtractorMOG2(500, 160, false);
this.lastPos = false;
self.firstDetect = true;
self.resetImageCollision();
}
stop() {
this.startDetect = false;
this.canvas.remove();
}
setFlip(flip) {
this.isFlip = flip;
}
setShowArea(b) {
this.showArea = b;
}
setTrackingStep(step) {
this.posMinStep = step;
}
moveTo(x, y) {
this.scanX = x;
this.scanY = y;
this.x1 = this.scanX;
this.y1 = this.scanY;
this.x2 = this.scanX + this.scanWidth;
this.y2 = this.scanY;
this.x3 = this.scanX + this.scanWidth;
this.y3 = this.scanY + this.scanHeight;
this.x4 = this.scanX;
this.y4 = this.scanY + this.scanHeight;
this.reset();
}
setCvProcess(imgFilter) {
this.imgFilter = imgFilter;
this.cv = imgFilter.getOpenCV();
let src = cv.matFromImageData(this.getImageData());
let dstx = new this.cv.Mat();
if (this.bs != null) {
this.bs.delete();
}
this.bs = new cv.BackgroundSubtractorMOG2(100, 500, false);
src.delete()
dstx.delete();
}
drawTrackingArea() {
var offsetY = 0;
var offsetX = 0;
if (this.showArea && this.lineWidth > 0) {
var a = { x: this.x1, y: this.y1 };
var b = { x: this.x2, y: this.y2 };
var c = { x: this.x3, y: this.y3 };
var d = { x: this.x4, y: this.y4 };
//targetCanvas.width = targetCanvas.width;
this.drawCtx.lineWidth = this.lineWidth;
this.drawCtx.strokeStyle = this.strokeStyle
this.drawCtx.beginPath();
this.drawCtx.moveTo(a.x - this.lineWidth * 2 + offsetX, a.y - this.lineWidth * 2 + offsetY);
this.drawCtx.lineTo(b.x + this.lineWidth * 2 + offsetX, b.y - this.lineWidth * 2 + offsetY);
this.drawCtx.lineTo(c.x + this.lineWidth * 2 + offsetX, c.y + this.lineWidth * 2 + offsetY);
this.drawCtx.lineTo(d.x - this.lineWidth * 2 + offsetX, d.y + this.lineWidth * 2 + offsetY);
this.drawCtx.lineTo(a.x - this.lineWidth * 2 + offsetX, a.y - this.lineWidth * 2 + offsetY);
this.drawCtx.stroke();
}
}
getImageData() {
this.drawTrackingArea();
this.ctx.drawImage(this.drawCanvas, 0, 0);
var x = this.scanX;
if (this.isFlip) {
x = this.sourceCanvas.width - x - this.scanWidth;
}
this.background = this.sourceCtx.getImageData(
x, this.scanY, this.scanWidth, this.scanHeight);
return this.background;
}
pause() {
this.pause = true;
}
resume() {
this.pause = false;
}
scan() {
if (!this.startDetect) {
return;
}
if (this.pause) {
return;
}
if (this.cv == null) {
return;
}
this.insideObjList = [];
this._inside = false;
let src = cv.matFromImageData(this.getImageData());
let dstx = new this.cv.Mat();
this.bs.apply(src, dstx, this.learningRate); //去背偵測物件
for (var i in this.filter) {
var key = this.filter[i];
var value = parseInt(key.substring(1));
key = key.substring(0, 1);
switch (key) {
case 'e':
dstx = this.imgFilter.erosion(dstx, value);
break;
case 'g':
if (value % 2 == 1) {
dstx = this.imgFilter.gaussianBlur(dstx, value);
}
break;
case 'd':
dstx = this.imgFilter.dilation(dstx, value);
break;
}
}
src.delete();
if (this.showDectectCanvas) {
cv.imshow('c2', dstx);
}
if (!this.startDetect) {
dstx.delete();
return;
}
//skip firstDetect
if (this.firstDetect) {
this.firstDetect = false;
dstx.delete();
return;
}
var posList = this.imgFilter.enclosingCircleMaxOne(dstx, this.objMinSize);
dstx.delete();
//*
if (posList.length == 0 && this.lastPos != false) {
this.out(this.lastPos, this.targetCanvas);
this.lastPos = false;
}
for (var i = 0; i < posList.length; i++) {
//偵測區域裡面的座標 x:0 ,y:0
var pos = posList[i];
pos.x = pos.x + this.scanX;
pos.y = pos.y + this.scanY;
if (pos.radius > this.objMinSize) {
this._inside = this.checkInside(pos);
if (this._inside) {
//console.log("inside , srcPos:", pos);
this.detectCB(pos);
this.insideObjList.push(pos);
// 大於最小異動量才會觸發
if (this.lastPos == false) {
this.lastPos = { x: -1, y: -1 };
}
var minX = Math.abs(pos.x - this.lastPos.x);
var minY = Math.abs(pos.y - this.lastPos.y);
if (minX > this.posMinStep || minY > this.posMinStep) {
this.lastPos = pos;
this.in(pos, this.sourceCanvas);
}
}
}
}
//*/
}
addResource(info) {
var self = this;
if (!(info.sndFile in this.res)) {
this.res[info.sndFile] = new Audio(info.sndFile);
}
var p = info.imgPos;
info.x = Math.min.apply(null, [p[0], p[2], p[4], p[6]]);
info.y = Math.min.apply(null, [p[1], p[3], p[5], p[7]]);
info.w = Math.max.apply(null, [p[0], p[2], p[4], p[6]]) - info.x;
info.h = Math.max.apply(null, [p[1], p[3], p[5], p[7]]) - info.y;
info.audio = this.res[info.sndFile];
info.isCollision = false;
self.imgList.push(info);
}
resetImageCollision() {
for (var i = 0; i < this.imgList.length; i++) {
this.imgList[i].isCollision = false;
}
}
setStroke(lineWidth, strokeStyle) {
this.lineWidth = lineWidth;
this.strokeStyle = strokeStyle;
}
getStroke() {
return [this.lineWidth, this.strokeStyle];
}
isInside() {
return this._inside;
}
inside(ins) {
this.in = ins;
}
detect(detectCB) {
this.detectCB = detectCB;
}
getInsideObjList() {
return this.insideObjList;
}
outside(out) {
this.out = out;
}
crossMul(v1, v2) {
return v1.x * v2.y - v1.y * v2.x;
}
checkCross(p1, p2, p3, p4) {
var v1 = { x: p1.x - p3.x, y: p1.y - p3.y },
v2 = { x: p2.x - p3.x, y: p2.y - p3.y },
v3 = { x: p4.x - p3.x, y: p4.y - p3.y },
v = this.crossMul(v1, v3) * this.crossMul(v2, v3)
v1 = { x: p3.x - p1.x, y: p3.y - p1.y }
v2 = { x: p4.x - p1.x, y: p4.y - p1.y }
v3 = { x: p2.x - p1.x, y: p2.y - p1.y }
return (v <= 0 && this.crossMul(v1, v3) * this.crossMul(v2, v3) <= 0) ? true : false
}
checkInside(point) {
var maxX = Math.max.apply(null, [this.x1, this.x2, this.x3, this.x4]);
var minX = Math.min.apply(null, [this.x1, this.x2, this.x3, this.x4]);
var maxY = Math.max.apply(null, [this.y1, this.y2, this.y3, this.y4]);
var minY = Math.min.apply(null, [this.y1, this.y2, this.y3, this.y4]);
if (point.x > maxX || point.x < minX || point.y > maxY || point.y < minY) {
return false;
}
var polygon = [
{ x: this.x1, y: this.y1 },
{ x: this.x2, y: this.y2 },
{ x: this.x3, y: this.y3 },
{ x: this.x4, y: this.y4 }
];
var p1, p2, p3, p4;
p1 = point;
p2 = { x: -100, y: point.y }
var count = 0;
for (var i = 0; i < polygon.length - 1; i++) {
p3 = polygon[i];
p4 = polygon[i + 1]
if (this.checkCross(p1, p2, p3, p4) == true) {
count++
}
}
p3 = polygon[polygon.length - 1];
p4 = polygon[0];
if (this.checkCross(p1, p2, p3, p4) == true) {
count++;
}
this._inside = (count % 2 == 0) ? false : true;
return this._inside;
}
}