You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
New content: Add definition for shape broadcasting
This change introduces a new section for Algorithms, following APIs,
to collect algorithms referenced throughout the specification.
A section for Broadcasting is introduced, which defines broadcasting
shapes and gives an explicit algorithm matching WebNN implementations
of NumPy's General Broadcasting Rules. Definitions for "broadcastable"
and "unidirectionally broadcastable" are introduced. The previous
definition of "broadcast-shapes" is removed in favor of these new
algorithms.
For #324, #378, #462, and potentially #523.
1. If |a|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}} is not equal to |b|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}}, then [=exception/throw=] a "{{DataError}}" {{DOMException}}.
2407
2407
1. Let |descriptor| be a new {{MLOperandDescriptor}}.
2408
2408
1. Set |descriptor|.{{MLOperandDescriptor/dataType}} to |a|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}}.
2409
-
1. Set |descriptor|.{{MLOperandDescriptor/dimensions}} to the result of running the [=MLGraphBuilder/broadcast-shapes=] steps given |a|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}} and |b|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}}.
2410
-
1. If that [=exception/throws=] an error, re-[=exception/throw=]the error.
2409
+
1. Set |descriptor|.{{MLOperandDescriptor/dimensions}} to the result of [=bidirectionally broadcasting the shapes=] |a|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}} and |b|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}}.
2410
+
1. If that returns failure, then [=exception/throw=]a "{{DataError}}" {{DOMException}}.
2411
2411
1. If any of the following sub-steps fail, [=exception/throw=] an "{{OperationError}}" {{DOMException}}.
2412
2412
1. Let |output| be the result of [=creating an MLOperand=] given [=this=] and |descriptor|.
To <dfn for="MLGraphBuilder">broadcast-shapes</dfn> given |shape1| and |shape2|, run the following steps:
2427
-
</summary>
2428
-
<div class=algorithm-steps>
2429
-
1. [=Assert=]: The type of |shape1| and |shape2| is `sequence of unsigned long`.
2430
-
1. Let |output| be the result of invoking the [=implementation-defined=] shape broadcast on |shape1| and |shape2|.
2431
-
1. If that fails, then [=exception/throw=] a "{{DataError}}" {{DOMException}}.
2432
-
1. Return |output|.
2433
-
<div class = "note">
2434
-
The most common implementation is that two shapes are compatible, when each of their corresponding dimensions are equal, or one of them is 1. The output shape consists of the maximum of the corresponding dimensions.
2435
-
</div>
2436
-
</div>
2437
-
</details>
2438
-
2439
2424
<details open>
2440
2425
<summary>
2441
2426
The element-wise binary operation algorithms invoke the [=MLGraphBuilder/element-wise-binary-op | create element-wise binary operation=] steps as follows.
@@ -2542,8 +2527,8 @@ Although operations *greaterOrEqual* and *lesserOrEqual* can each be implemented
2542
2527
1. If |a|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}} is not equal to |b|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}}, then [=exception/throw=] a "{{DataError}}" {{DOMException}}.
2543
2528
1. Let |descriptor| be a new {{MLOperandDescriptor}}.
2544
2529
1. Set |descriptor|.{{MLOperandDescriptor/dataType}} to {{MLOperandDataType/"uint8"}}.
2545
-
1. Set |descriptor|.{{MLOperandDescriptor/dimensions}} to the result of running the [=MLGraphBuilder/broadcast-shapes=] steps given |a|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}} and |b|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}}.
2546
-
1. If that [=exception/throws=] an error, re-[=exception/throw=]the error.
2530
+
1. Set |descriptor|.{{MLOperandDescriptor/dimensions}} to the result of [=bidirectionally broadcasting the shapes=] |a|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}} and |b|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}}.
2531
+
1. If that returns failure, then [=exception/throw=]a "{{DataError}}" {{DOMException}}.
2547
2532
1. If any of the following sub-steps fail, [=exception/throw=] an "{{OperationError}}" {{DOMException}}.
2548
2533
1. Let |output| be the result of [=creating an MLOperand=] given [=this=] and |descriptor|.
Calculate the [general matrix multiplication of the Basic Linear Algebra Subprograms](https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3). The calculation follows the expression `alpha * A * B + beta * C`, where `A` is a 2-D tensor with shape [M, K] or [K, M], `B` is a 2-D tensor with shape [K, N] or [N, K], and `C` is broadcastable to the shape [M, N]. `A` and `B` may optionally be transposed prior to the calculation.
3017
+
Calculate the [general matrix multiplication of the Basic Linear Algebra Subprograms](https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3). The calculation follows the expression `alpha * A * B + beta * C`, where `A` is a 2-D tensor with shape [M, K] or [K, M], `B` is a 2-D tensor with shape [K, N] or [N, K], and `C` is [=unidirectionally broadcastable=] to the shape [M, N]. `A` and `B` may optionally be transposed prior to the calculation.
An {{MLOperand}}. Specifies the third input tensor. It is either a scalar, or of the shape that is unidirectionally broadcastable to the shape [M, N] according to [[!numpy-broadcasting-rule]]. When it is not specified, the computation is done as if *c* is a scalar 0.0.
3037
+
An {{MLOperand}}. Specifies the third input tensor. It is either a scalar, or of the shape that is [=unidirectionally broadcastable=] to the shape [M, N]. When it is not specified, the computation is done as if *c* is a scalar 0.0.
1. If |options|.{{MLGemmOptions/aTranspose}} is true, then let |shapeA| be the reverse array of |shapeA|.
3089
3075
1. If |options|.{{MLGemmOptions/bTranspose}} is true, then let |shapeB| be the reverse array of |shapeB|.
3090
3076
1. If |shapeA|[1] is not equal to |shapeB|[0], then [=exception/throw=] a "{{DataError}}" {{DOMException}}.
3091
-
1. If |options|.{{MLGemmOptions/c}}[=map/exists=] and is not unidirectionally broadcastable to the shape [|shapeA|[0], |shapeB|[1]] according to the [[!numpy-broadcasting-rule]], then [=exception/throw=] a "{{DataError}}" {{DOMException}}.
3077
+
1. If |options|.{{MLGemmOptions/c}}[=map/exists=] and is not [=unidirectionally broadcastable=] to the shape [|shapeA|[0], |shapeB|[1]], then [=exception/throw=] a "{{DataError}}" {{DOMException}}.
3092
3078
<div class="note">
3093
3079
Type compatibility between |a|, |b| and |options|.{{MLGemmOptions/c}} can be also checked.
- *slope*: an {{MLOperand}}. The slope tensor. Its shape is either the same as, or unidirectionally broadcastable to the shape of input tensor *input* according to [[!numpy-broadcasting-rule]].
4891
+
- *slope*: an {{MLOperand}}. The slope tensor. Its shape is either the same as, or [=unidirectionally broadcastable=] to the shape of input tensor *input*.
4906
4892
4907
4893
**Returns:**
4908
4894
- an {{MLOperand}}. The output tensor of the same shape as *input*.
1. Let |descriptor| be a new {{MLOperandDescriptor}}.
4918
4904
1. Set |descriptor|.{{MLOperandDescriptor/dataType}} to |input|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}}.
4919
-
1. Set |descriptor|.{{MLOperandDescriptor/dimensions}} to the result of running the [=MLGraphBuilder/broadcast-shapes=] steps given |input|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}} and |slope|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}}.
4920
-
1. If that [=exception/throws=] an error, re-[=exception/throw=]the error.
4905
+
1. Set |descriptor|.{{MLOperandDescriptor/dimensions}} to the result of [=unidirectionally broadcasting the shapes=] |input|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}} and |slope|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}}.
4906
+
1. If that returns failure, then [=exception/throw=]a "{{DataError}}" {{DOMException}}.
4921
4907
1. If any of the following sub-steps fail, [=exception/throw=] an "{{OperationError}}" {{DOMException}}.
4922
4908
1. Let |output| be the result of [=creating an MLOperand=] given [=this=] and |descriptor|.
1. If |input|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}} is not equal to |other|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}}, then [=exception/throw=] a "{{DataError}}" {{DOMException}}.
6046
6032
1. Let |descriptor| be a new {{MLOperandDescriptor}}.
6047
6033
1. Set |descriptor|.{{MLOperandDescriptor/dataType}} to |input|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dataType}}.
6048
-
1. Set |descriptor|.{{MLOperandDescriptor/dimensions}} to the result of running the [=MLGraphBuilder/broadcast-shapes=] steps given |input|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}} and |other|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}}.
6049
-
1. If that [=exception/throws=] an error, re-[=exception/throw=]the error.
6050
-
1. If |condition| is not unidirectionally broadcastable to |descriptor|.{{MLOperandDescriptor/dimensions}} according to the [[!numpy-broadcasting-rule]], then [=exception/throw=] a "{{DataError}}" {{DOMException}}.
6034
+
1. Set |descriptor|.{{MLOperandDescriptor/dimensions}} to the result of [=bidirectionally broadcasting the shapes=] |input|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}} and |other|.{{MLOperand/[[descriptor]]}}.{{MLOperandDescriptor/dimensions}}.
6035
+
1. If that returns failure, then [=exception/throw=]a "{{DataError}}" {{DOMException}}.
6036
+
1. If |condition| is not [=unidirectionally broadcastable=] to |descriptor|.{{MLOperandDescriptor/dimensions}}, then [=exception/throw=] a "{{DataError}}" {{DOMException}}.
6051
6037
1. If any of the following sub-steps fail, [=exception/throw=] an "{{OperationError}}" {{DOMException}}.
6052
6038
1. Let |output| be the result of [=creating an MLOperand=] given [=this=] and |descriptor|.
Broadcasting refers to how operations treat tensors with different shapes, and follow the precedent set by [[!numpy-broadcasting-rule]].
6255
+
6256
+
<div algorithm>
6257
+
To <dfn data-lt="unidirectionally broadcasting the shapes">unidirectionally broadcast the shapes</dfn> |A| and |B|, perform the following steps. |A| and |B| are [=/lists=] of positive integers, representing the dimensions of tensors, and the steps return a new [=/list=] of positive integers, or failure.
6258
+
6259
+
1. Let |sizeA| be the [=list/size=] of |A|.
6260
+
1. Let |sizeB| be the [=list/size=] of |B|.
6261
+
1. Let |output| be a new [=/list=].
6262
+
1. [=list/For each=] |index| in [=the range=] 0 to |sizeA|, exclusive:
6263
+
1. Let |dimA| be |A|[|sizeA| - |index| - 1] if |index| < |sizeA|, or 1 otherwise.
6264
+
1. Let |dimB| be |B|[|sizeB| - |index| - 1] if |index| < |sizeB|, or 1 otherwise.
6265
+
1. If |dimA| is not equal to |dimB| and |dimA| is not equal to 1, then return failure.
6266
+
1. [=list/Prepend=] |dimA| to |output|.
6267
+
1. Return |output|.
6268
+
6269
+
</div>
6270
+
6271
+
<div algorithm>
6272
+
|A| is <dfn>unidirectionally broadcastable</dfn> to |B| if [=unidirectionally broadcasting the shapes=] |A| and |B| does not result in failure.
6273
+
</div>
6274
+
6275
+
<div algorithm>
6276
+
To <dfn data-lt="bidirectionally broadcasting the shapes">bidirectionally broadcast the shapes</dfn> |A| and |B|, perform the following steps. |A| and |B| are [=/lists=] of positive integers, representing the dimensions of tensors, and the steps return a new [=/list=] of positive integers, or failure.
6277
+
6278
+
1. Let |sizeA| be the [=list/size=] of |A|.
6279
+
1. Let |sizeB| be the [=list/size=] of |B|.
6280
+
1. Let |outputSize| be the maximum of |sizeA| and |sizeB|.
6281
+
1. Let |output| be a new [=/list=].
6282
+
1. [=list/For each=] |index| in [=the range=] 0 to |outputSize|, exclusive:
6283
+
1. Let |dimA| be |A|[|sizeA| - |index| - 1] if |index| < |sizeA|, or 1 otherwise.
6284
+
1. Let |dimB| be |B|[|sizeB| - |index| - 1] if |index| < |sizeB|, or 1 otherwise.
6285
+
1. If |dimA| is not equal to |dimB|, and |dimA| is not equal to 1, and |dimB| is not equal to 1, then return failure.
6286
+
1. [=list/Prepend=] the maximum of |dimA| and |dimB| to |output|.
0 commit comments