-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
464 lines (365 loc) · 17.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
# -*- coding: utf-8 -*-
import os, sys
import torch
import argparse
import numpy as np
import torch.utils.data
from easydict import EasyDict as edict
from timeit import default_timer as timer
from utils.eval import Metric
from utils.gpu_dispatch import GPU
from utils.common_utils import dir_check, to_device, ws, unfold_dict, dict_merge, GpuId2CudaId, Logger
from algorithm.dataset import CleanDataset, TrafficDataset
from algorithm.diffstg.model import DiffSTG, save2file
def setup_seed(seed):
import random
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
# random.seed(seed)
torch.backends.cudnn.deterministic = True
# for tensorboard
try:
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(log_dir = os.path.join(os.environ["NNI_OUTPUT_DIR"], 'tensorboard'))
except:
pass
def get_params():
parser = argparse.ArgumentParser(description='Entry point of the code')
# model
parser.add_argument("--epsilon_theta", type=str, default='UGnet')
parser.add_argument("--hidden_size", type=int, default=32)
parser.add_argument("--N", type=int, default=200)
parser.add_argument("--beta_schedule", type=str, default='quad') # uniform, quad
parser.add_argument("--beta_end", type=float, default=0.1)
parser.add_argument("--sample_steps", type=int, default=200) # sample_steps
parser.add_argument("--ss", type=str, default='ddpm') #help='sample strategy', ddpm, multi_diffusion, one_diffusion
parser.add_argument("--T_h", type=int, default=12)
# eval
parser.add_argument('--n_samples', type=int, default=8)
# train
parser.add_argument("--is_train", type=bool, default=True) # train or evaluate
parser.add_argument("--data", type=str, default='PEMS08')
parser.add_argument("--mask_ratio", type=float, default=0.0) # mask of history data
parser.add_argument("--is_test", type=bool, default=True)
parser.add_argument("--nni", type=bool, default=False)
parser.add_argument("--lr", type=float, default=0.002)
parser.add_argument("--batch_size", type=int, default=8)
args, _ = parser.parse_known_args()
return args
def default_config(data='AIR_BJ'):
config = edict()
config.PATH_MOD = ws + '/output/model/'
config.PATH_LOG = ws + '/output/log/'
config.PATH_FORECAST = ws + '/output/forecast/'
# Data Config
config.data = edict()
config.data.name = data
config.data.path = ws + '/data/dataset/'
config.data.feature_file = config.data.path + config.data.name + '/flow.npy'
config.data.spatial = config.data.path + config.data.name + '/adj.npy'
config.data.num_recent = 1
if config.data.name == 'PEMS08':
config.data.num_features = 1
config.data.num_vertices = 170
config.data.points_per_hour = 12
config.data.val_start_idx = int(17856 * 0.6)
config.data.test_start_idx = int(17856 * 0.8)
if config.data.name == "AIR_BJ":
config.data.num_features = 1
config.data.num_vertices = 34
config.data.points_per_hour = 1
config.data.val_start_idx = int(8760 * 0.6)
config.data.test_start_idx = int(8760 * 0.8)
if config.data.name == 'AIR_GZ':
config.data.num_features = 1
config.data.num_vertices = 41
config.data.points_per_hour = 1
config.data.val_start_idx = int(8760 * 10 / 12) #
config.data.test_start_idx = int(8160 * 11 / 12)
gpu_id = GPU().get_usefuel_gpu(max_memory=6000, condidate_gpu_id=[0,1,2,3,4,6,7,8])
config.gpu_id = gpu_id
if gpu_id != None:
cuda_id = GpuId2CudaId(gpu_id)
torch.cuda.set_device(f"cuda:{cuda_id}")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# model config
config.model = edict()
config.model.T_p = 12
config.model.T_h = 12
config.model.V = config.data.num_vertices
config.model.F = config.data.num_features
config.model.week_len = 7
config.model.day_len = config.data.points_per_hour * 24
config.model.device = device
config.model.d_h = 32
# config for diffusion model
config.model.N = 200
config.model.sample_steps = 200
config.model.epsilon_theta = 'UGnet'
config.model.is_label_condition = True
config.model.beta_end = 0.02
config.model.beta_schedule = 'quad'
config.model.sample_strategy = 'ddpm'
config.n_samples = 2
# config for UGnet
config.model.channel_multipliers = [1, 2] # The list of channel numbers at each resolution.
config.model.supports_len = 2
# training config
config.model_name = 'DiffSTG'
config.is_test = False # Whether run the code in the test mode
config.epoch = 300 # Number of max training epoch
config.optimizer = "adam"
config.lr = 1e-4
config.batch_size = 32
config.wd = 1e-5
config.early_stop = 10
config.start_epoch = 0
config.device = device
config.logger = Logger()
if not os.path.exists(config.PATH_MOD):
os.makedirs(config.PATH_MOD)
if not os.path.exists(config.PATH_LOG):
os.makedirs(config.PATH_LOG)
if not os.path.exists(config.PATH_FORECAST):
os.makedirs(config.PATH_FORECAST)
return config
def evals(model, data_loader, epoch, metric, config, clean_data, mode='Test'):
setup_seed(2022)
y_pred, y_true, time_lst = [], [], []
metrics_future = Metric(T_p=config.model.T_p)
metrics_history = Metric(T_p=config.model.T_h)
model.eval()
samples, targets = [], []
for i, batch in enumerate(data_loader):
if i > 0 and config.is_test: break
time_start = timer()
future, history, pos_w, pos_d = to_device(batch, config.device) # target:(B,T,V,1), history:(B,T,V,1), pos_w: (B,1), pos_d:(B,T,1)
x = torch.cat((history, future), dim=1).to(config.device) # in cpu (B, T, V, F), T = T_h + T_p
x_masked = torch.cat((history, torch.zeros_like(future)), dim=1).to(config.device) # (B, T, V, F)
targets.append(x.cpu())
x = x.transpose(1, 3) # (B, F, V, T)
x_masked = x_masked.transpose(1, 3) # (B, F, V, T)
n_samples = 1 if mode == 'Val' else config.n_samples
# n_samples = config.n_samples
x_hat = model((x_masked, pos_w, pos_d), n_samples) # (B, n_samples, F, V, T)
samples.append(x_hat.transpose(2,4).cpu())
if x_hat.shape[-1] != (config.model.T_h + config.model.T_p): x_hat = x_hat.transpose(2,4)
# assert x.shape == x_hat.shape, f"shape of x ({x.shape}) does not equal to shape of x_hat ({x_hat.shape})"
time_lst.append((timer() - time_start))
x, x_hat= clean_data.reverse_normalization(x), clean_data.reverse_normalization(x_hat)
x_hat = x_hat.detach()
f_x, f_x_hat = x[:,:,:,-config.model.T_p:], x_hat[:,:,:,:,-config.model.T_p:] # future
_y_true_ = f_x.transpose(1, 3).cpu().numpy() # y_true: (B, T_p, V, D)
_y_pred_ = f_x_hat.transpose(2, 4).cpu().numpy() # y_pred: (B, n_samples, T_p, V, D)
_y_pred_ = np.clip(_y_pred_, 0, np.inf)
metrics_future.update_metrics(_y_true_, _y_pred_)
y_pred.append(_y_pred_)
y_true.append(_y_true_)
h_x, h_x_hat = x[:, :, :, :config.model.T_h], x_hat[:, :, :, :, :config.model.T_h]
_y_true_ = h_x.transpose(1, 3).cpu().numpy() # y_true: (B, T_p, V, D)
_y_pred_ = h_x_hat.transpose(2, 4).cpu().numpy()
_y_pred_ = np.clip(_y_pred_, 0, np.inf)
metrics_history.update_metrics(_y_true_, _y_pred_)
y_true = np.concatenate(y_true, axis=0)
y_pred = np.concatenate(y_pred, axis=0)
time_cost = np.sum(time_lst)
metric.update_metrics(y_true, y_pred)
metric.update_best_metrics(epoch=epoch)
metric.metrics['time'] = time_cost
if mode == 'test': # save the prediction result to file
samples = torch.cat(samples, dim=0)[:50]
targets = torch.cat(targets, dim=0)[:50]
observed_flag = torch.ones_like(targets) #(B, T, V, F)
evaluate_flag = observed_flag
evaluate_flag[:, -config.model.T_p:, :, :] = 1
import pickle
with open (config.forecast_path, 'wb') as f:
pickle.dump([samples, targets, observed_flag, evaluate_flag], f)
message = f"predict_path = '{config.forecast_path}'"
config.logger.message_buffer += f"{message}\n"
config.logger.write_message_buffer()
if config.nni: nni.report_intermediate_result(metric.metrics['mae'])
# log of performance in future prediction
if metric.best_metrics['epoch'] == epoch:
message = f" |[{metric.metrics['mae']:<7.2f}{metric.metrics['rmse']:<7.2f}]"
else:
message = f" | {metric.metrics['mae']:<7.2f}{metric.metrics['rmse']:<7.2f}"
print(message, end='', flush=False)
config.logger.message_buffer += message
# log of performance in historical prediction
message = f" | {metrics_history.metrics['mae']:<7.2f}{metrics_history.metrics['rmse']:<7.2f}{time_cost:<5.2f}s"
print(message, end='\n', flush=False)
config.logger.message_buffer += f"{message}\n"
# write log message buffer
config.logger.write_message_buffer()
torch.cuda.empty_cache()
return metric
from pprint import pprint
def main(params: dict):
# torch.manual_seed(2022)
setup_seed(2022)
torch.set_num_threads(2)
config = default_config(params['data'])
config.is_test = params['is_test']
config.nni = params['nni']
config.lr = params['lr']
config.batch_size = params['batch_size']
config.mask_ratio = params['mask_ratio']
# model
config.model.N = params['N']
config.T_h = config.model.T_h = params['T_h']
config.T_p = config.model.T_p = params['T_h']
config.model.epsilon_theta = params['epsilon_theta']
config.model.sample_steps = params['sample_steps']
config.model.d_h = params['hidden_size']
config.model.C = params['hidden_size']
config.model.n_channels = params['hidden_size']
config.model.beta_end = params['beta_end']
config.model.beta_schedule = params["beta_schedule"]
config.model.sample_strategy = params["ss"]
config.n_samples = params['n_samples']
if config.model.sample_steps > config.model.N:
print('sample steps large than N, exit')
# nni.report_intermediate_result(50)
nni.report_final_result(50)
return 0
config.trial_name = '+'.join([f"{v}" for k, v in params.items()])
config.log_path = f"{config.PATH_LOG}/{config.trial_name}.log"
pprint(config)
dir_check(config.log_path)
config.logger.open(config.log_path, mode="w")
#log parameters
config.logger.write(config.__str__()+'\n', is_terminal=False)
# data pre-processing
# print('\n1. data pre-processing ...')
clean_data = CleanDataset(config)
config.model.A = clean_data.adj
model = DiffSTG(config.model)
model = model.to(config.device)
# Load training dataset
train_dataset = TrafficDataset(clean_data, (0 + config.model.T_p, config.data.val_start_idx - config.model.T_p + 1), config)
train_loader = torch.utils.data.DataLoader(train_dataset, config.batch_size, shuffle=True, pin_memory=True)
val_dataset = TrafficDataset(clean_data, (config.data.val_start_idx + config.model.T_p, config.data.test_start_idx - config.model.T_p + 1), config)
# val_dataset = TrafficDataset(clean_data, (config.data.val_start_idx + config.model.T_p, config.data.val_start_idx + config.model.T_p + 512), config)
val_loader = torch.utils.data.DataLoader(val_dataset, 64, shuffle=False)
test_dataset = TrafficDataset(clean_data, (config.data.test_start_idx + config.model.T_p, -1), config)
test_loader = torch.utils.data.DataLoader(test_dataset, 64, shuffle=False)
# Create optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=config.lr, weight_decay=0)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=5)
# metrics in val, and test dataset, note that we cannot evaluate the performance in the train dataset
metrics_val = Metric(T_p=config.model.T_h + config.model.T_p)
model_path = config.PATH_MOD + config.trial_name + model.model_file_name()
config.model_path = model_path
config.logger.write(f"model path:{model_path}\n", is_terminal=False)
print('model_path:', model_path)
dir_check(model_path)
config.forecast_path = forecast_path = config.PATH_FORECAST + config.trial_name + '.pkl'
config.logger.write(f"forecast_path:{model_path}\n", is_terminal=False)
print('forecast_path:', forecast_path)
dir_check(forecast_path)
# log model architecture
print(model)
config.logger.write(model.__str__())
# log training process
config.logger.write(f'Num_of_parameters:{sum([p.numel() for p in model.parameters()])}\n', is_terminal=True)
message = " |---Train--- |---Val Future-- -|-----Val History----|\n"
config.logger.write(message, is_terminal=True)
message = "Epoch | Loss Time | MAE RMSE | MAE RMSE Time|\n" #f"{'Type':^5}{'Epoch':^5} | {'MAE':^7}{'RMSE':^7}{'MAPE':^7}
config.logger.write(message, is_terminal=True)
train_start_t = timer()
# Train and sample the data
for epoch in range(config.epoch):
if not params['is_train']: break
if epoch > 1 and config.is_test: break
n, avg_loss, time_lst = 0, 0, []
# train diffusion model
for i, batch in enumerate(train_loader):
if i > 3 and config.is_test:break
time_start = timer()
future, history, pos_w, pos_d = batch # future:(B, T_p, V, F), history: (B, T_h, V, F)
# get x0
x = torch.cat((history, future), dim=1).to(config.device) # (B, T, V, F)
# get x0_masked
mask = torch.randint_like(history, low=0, high=100) < int(config.mask_ratio * 100)# mask the history in a ratio with mask_ratio
history[mask] = 0
x_masked = torch.cat((history, torch.zeros_like(future)), dim=1).to(config.device) # (B, T, V, F)
# reshape
x = x.transpose(1,3) # (B, F, V, T)
x_masked = x_masked.transpose(1,3) # (B, F, V, T)
# loss calculate
loss = 10 * model.loss(x, (x_masked, pos_w, pos_d))
optimizer.zero_grad()
loss.backward()
optimizer.step()
# calculate the moving average training loss
n += 1
avg_loss = avg_loss * (n - 1) / n + loss.item() / n
time_lst.append((timer() - time_start))
message = f"{i / len(train_loader) + epoch:6.1f}| {avg_loss:0.3f} {np.sum(time_lst):.1f}s"
print('\r' + message, end='', flush=True)
config.logger.message_buffer += message
try:
writer.add_scalar('train/loss', avg_loss, epoch)
except:
pass
if epoch >= config.start_epoch:
evals(model, val_loader, epoch, metrics_val, config, clean_data, mode='Val')
scheduler.step(metrics_val.metrics['mae'])
if metrics_val.best_metrics['epoch'] == epoch:
#print('[save model]>> ', model_path)
torch.save(model, model_path)
if epoch - metrics_val.best_metrics['epoch'] > config.early_stop: break # Early_stop
try:
model = torch.load(model_path, map_location=config.device)
print('best model loaded from: <<', model_path)
except Exception as err:
print(err)
print('load best model failed')
# conduct multiple-samples, then report the best
metric_lst = []
for sample_strategy, sample_steps in [('ddim_multi', 40)]:
if sample_steps > config.model.N: break
config.model.sample_strategy = sample_strategy
config.model.sample_steps = sample_steps
model.set_ddim_sample_steps(sample_steps)
model.set_sample_strategy(sample_strategy)
metrics_test = Metric(T_p=config.model.T_h + config.model.T_p)
evals(model, test_loader, epoch, metrics_test, config, clean_data, mode='test')
message = f'sample_strategy:{sample_strategy}, sample_steps:{sample_steps} Final results in test:{metrics_test}\n'
config.logger.write(message, is_terminal=True)
params = unfold_dict(config)
params = dict_merge([params, metrics_test.to_dict()])
params['best_epoch'] = metrics_val.best_metrics['epoch']
params['model'] = config.model.epsilon_theta
save2file(params)
metric_lst.append(metrics_test.metrics['mae'])
# rename log file
log_file, log_name = os.path.split(config.log_path)
new_log_path = os.path.join(log_file, f"[{config.data.name}]mae{min(metric_lst):7.2f}+{log_name}")
import shutil
# os.rename(config.log_path, new_log_path)
shutil.copy(config.log_path, new_log_path)
config.log_path = new_log_path
try:
writer.close()
except:
pass
nni.report_final_result(min(metric_lst))
# data.name model model.N model.epsilon_theta model.d_h model.T_h model.T_p model.sample_strategy
# PEMS08 UGnet 200 UGnet 32 12 12 ddpm
if __name__ == '__main__':
import nni
import logging
logger = logging.getLogger('training')
print('GPU:', torch.cuda.current_device())
try:
tuner_params = nni.get_next_parameter()
logger.debug(tuner_params)
params = vars(get_params())
params.update(tuner_params)
main(params)
except Exception as exception:
logger.exception(exception)
raise