Skip to content

Commit a11c384

Browse files
author
Ilia Karmanov
committed
Folder Structure
1 parent e1f14ba commit a11c384

36 files changed

+28
-28
lines changed

README.md

+28-28
Original file line numberDiff line numberDiff line change
@@ -15,34 +15,34 @@ The notebooks are executed on an Azure [Deep Learning Virtual Machine](https://a
1515

1616
| DL Library | K80/CUDA 8/CuDNN 6 | P100/CUDA 8/CuDNN 6 |
1717
| ---------------------------------------------- | :-------------------: | :-------------------: |
18-
| [Caffe2](Caffe2_CNN.ipynb) | 148 | 54 |
19-
| [Chainer](Chainer_CNN.ipynb) | 162 | 69 |
20-
| [CNTK](CNTK_CNN.ipynb) | 163 | 53 |
21-
| [Gluon](Gluon_CNN.ipynb) | 152 | 62 |
22-
| [Keras(CNTK)](Keras_CNTK_CNN.ipynb) | 194 | 76 |
23-
| [Keras(TF)](Keras_TF_CNN.ipynb) | 241 | 76 |
24-
| [Keras(Theano)](Keras_Theano_CNN.ipynb) | 269 | 93 |
25-
| [Knet(Julia)](Knet_CNN.ipynb) | 159 | ?? |
26-
| [Tensorflow](Tensorflow_CNN.ipynb) | 173 | 57 |
27-
| [Lasagne(Theano)](Theano_Lasagne_CNN.ipynb) | 253 | 65 |
28-
| [MXNet](MXNet_CNN.ipynb) | 145 | 51 |
29-
| [PyTorch](PyTorch_CNN.ipynb) | 169 | 51 |
18+
| [Caffe2](notebooks/Caffe2_CNN.ipynb) | 148 | 54 |
19+
| [Chainer](notebooks/Chainer_CNN.ipynb) | 162 | 69 |
20+
| [CNTK](notebooks/CNTK_CNN.ipynb) | 163 | 53 |
21+
| [Gluon](notebooks/Gluon_CNN.ipynb) | 152 | 62 |
22+
| [Keras(CNTK)](notebooks/Keras_CNTK_CNN.ipynb) | 194 | 76 |
23+
| [Keras(TF)](notebooks/Keras_TF_CNN.ipynb) | 241 | 76 |
24+
| [Keras(Theano)](notebooks/Keras_Theano_CNN.ipynb) | 269 | 93 |
25+
| [Knet(Julia)](notebooks/Knet_CNN.ipynb) | 159 | ?? |
26+
| [Tensorflow](notebooks/Tensorflow_CNN.ipynb) | 173 | 57 |
27+
| [Lasagne(Theano)](notebooks/Theano_Lasagne_CNN.ipynb) | 253 | 65 |
28+
| [MXNet](notebooks/MXNet_CNN.ipynb) | 145 | 51 |
29+
| [PyTorch](notebooks/PyTorch_CNN.ipynb) | 169 | 51 |
3030

3131
Input for this model is the standard [CIFAR-10 dataset](http://www.cs.toronto.edu/~kriz/cifar.html) containing 50k training images and 10k test images, uniformly split across 10 classes. Each 32 by 32 image is supplied as a tensor of shape (3, 32, 32) with pixel intensity re-scaled from 0-255 to 0-1.
3232

3333
### 2. Images per second: ResNet-50 - Feature Extraction
3434

3535
| DL Library | K80/CUDA 8/CuDNN 6 | P100/CUDA 8/CuDNN 6|
3636
| ---------------------------------------- | ------------------ | ------------------ |
37-
| [Caffe2](Caffe2_Inference.ipynb) | 71 | 127 |
38-
| [Chainer](Chainer_Inference.ipynb) | 107 | 364 |
39-
| [CNTK](CNTK_Inference.ipynb) | 117 | 624 |
40-
| [Keras(CNTK)](Keras_CNTK_Inference.ipynb) | 46 | 170 |
41-
| [Keras(TF)](Keras_TF_Inference.ipynb) | 98 | 350 |
42-
| [Knet(Julia)](Knet_Inference.ipynb) | 160 | ??? |
43-
| [Tensorflow](Tensorflow_Inference.ipynb) | 155 | 566 |
44-
| [MXNet](MXNet_Inference.ipynb) | 130 | 502 |
45-
| [PyTorch](PyTorch_Inference.ipynb) | 130 | 525 |
37+
| [Caffe2](notebooks/Caffe2_Inference.ipynb) | 71 | 127 |
38+
| [Chainer](notebooks/Chainer_Inference.ipynb) | 107 | 364 |
39+
| [CNTK](notebooks/CNTK_Inference.ipynb) | 117 | 624 |
40+
| [Keras(CNTK)](notebooks/Keras_CNTK_Inference.ipynb) | 46 | 170 |
41+
| [Keras(TF)](notebooks/Keras_TF_Inference.ipynb) | 98 | 350 |
42+
| [Knet(Julia)](notebooks/Knet_Inference.ipynb) | 160 | ??? |
43+
| [Tensorflow](notebooks/Tensorflow_Inference.ipynb) | 155 | 566 |
44+
| [MXNet](notebooks/MXNet_Inference.ipynb) | 130 | 502 |
45+
| [PyTorch](notebooks/PyTorch_Inference.ipynb) | 130 | 525 |
4646

4747

4848
A pre-trained ResNet50 model is loaded and chopped just after the avg_pooling at the end (7, 7), which outputs a 2048D dimensional vector. This can be plugged into a softmax layer or another classifier such as a boosted tree to perform transfer learning. Allowing for a warm start; this forward-only pass to the avg_pool layer is timed.
@@ -51,13 +51,13 @@ A pre-trained ResNet50 model is loaded and chopped just after the avg_pooling at
5151

5252
| DL Library | K80/CUDA 8/CuDNN 6 | P100/CUDA 8/CuDNN 6 | Using CuDNN? |
5353
| ---------------------------------------- | :----------------: | :----------------: | :----------: |
54-
| [CNTK](CNTK_RNN.ipynb) | 32 | 15 | Yes |
55-
| [Keras(CNTK)](Keras_CNTK_RNN.ipynb) | 86 | 53 | No |
56-
| [Keras(TF)](Keras_TF_RNN.ipynb) | 35 | 26 | Yes |
57-
| [Knet(Julia)](Knet_RNN.ipynb) | 29 | ?? | Yes |
58-
| [MXNet](MXNet_RNN.ipynb) | 29 | 24 | Yes |
59-
| [Pytorch](PyTorch_RNN.ipynb) | 31 | 16 | Yes |
60-
| [Tensorflow](Tensorflow_RNN.ipynb) | 30 | 22 | Yes |
54+
| [CNTK](notebooks/CNTK_RNN.ipynb) | 32 | 15 | Yes |
55+
| [Keras(CNTK)](notebooks/Keras_CNTK_RNN.ipynb) | 86 | 53 | No |
56+
| [Keras(TF)](notebooks/Keras_TF_RNN.ipynb) | 35 | 26 | Yes |
57+
| [Knet(Julia)](notebooks/Knet_RNN.ipynb) | 29 | ?? | Yes |
58+
| [MXNet](notebooks/MXNet_RNN.ipynb) | 29 | 24 | Yes |
59+
| [Pytorch](notebooks/PyTorch_RNN.ipynb) | 31 | 16 | Yes |
60+
| [Tensorflow](notebooks/Tensorflow_RNN.ipynb) | 30 | 22 | Yes |
6161

6262
Input for this model is the standard [IMDB movie review dataset](http://ai.stanford.edu/~amaas/data/sentiment/) containing 25k training reviews and 25k test reviews, uniformly split across 2 classes (positive/negative). Processing follows [Keras](https://github.com/fchollet/keras/blob/master/keras/datasets/imdb.py) approach where start-character is set as 1, out-of-vocab (vocab size of 30k is used) represented as 2 and thus word-index starts from 3. Zero-padded / truncated to fixed axis of 150 words per review.
6363

File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.

0 commit comments

Comments
 (0)