Skip to content

Latest commit

 

History

History
51 lines (44 loc) · 1.69 KB

README.md

File metadata and controls

51 lines (44 loc) · 1.69 KB

DoseDiff

This is the repository for the paper "DoseDiff: Distance-aware Diffusion Model for Dose Prediction in Radiotherapy".

DoseDiff

Requirements

  • python 3.6
  • pytorch 1.10
  • pydicom
  • albumentations
  • tensorboardX
  • SimpleITK

Training and evaluation on OpenKBP

Data Preparation

Download OpenKBP challenge repository, and copy the data folder "provided-data" into this repository. You can run data preprocess step with the following command:

cd DoseDiff-main

# Convert csv data into nii format
python csv2nii.py

# Generate distance map and missing ROI
python PSDM_OpenKBP.py

# Convert 3D into 2D for training
python NII_to_npy.py

Model training

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --master_port=9999 train.py --gpu 0,1 --bs 16 --T 1000 --epoch 1600

Model evaluation

CUDA_VISIBLE_DEVICES=0 python pred.py --gpu 0 --bs 64 --model_path trained_models/T1000_bs32_epoch1600/model_best_mae.pth --TTA 1 --T 1000 --ddim 8

Citation

if you find this repository useful in your research, please consider citing:

@ARTICLE{10486983,
  author={Zhang, Yiwen and Li, Chuanpu and Zhong, Liming and Chen, Zeli and Yang, Wei and Wang, Xuetao},
  journal={IEEE Transactions on Medical Imaging}, 
  title={DoseDiff: Distance-Aware Diffusion Model for Dose Prediction in Radiotherapy}, 
  year={2024},
  volume={43},
  number={10},
  pages={3621-3633},
  keywords={Computed tomography;Predictive models;Planning;Biomedical imaging;Training;Radiation therapy;Noise reduction;Deep learning;diffusion model;dose prediction;radiotherapy;signed distance map},
  doi={10.1109/TMI.2024.3383423}}