-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_generation.py
386 lines (290 loc) · 13.9 KB
/
plot_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import warnings
warnings.filterwarnings("ignore")
import os
import argparse
import IPython
import subprocess
import matplotlib.pyplot as plt
import numpy as np
from pyquaternion import Quaternion
from PIL import Image
from numpy import mean, sqrt, square, arange
from math import pi, sqrt, sin, cos, atan2
from config import *
# sample call python3.5 plot_generation.py --learned_and_analytical True --n_actions 4 --chosen_objs 1 --number_of_samples 10 --error_type xy --combine_error False
parser = argparse.ArgumentParser(description='Parareal for Robotic Manipulation')
parser.add_argument('--learned_and_analytical', action='store', default="True")
parser.add_argument('--n_actions', action="store", default=4)
parser.add_argument('--chosen_objs', action="store", default=1)
parser.add_argument('--number_of_samples', action="store", default=10)
parser.add_argument('--error_type', action="store", default='xy')
parser.add_argument('--combine_error', action="store", default="True")
args = parser.parse_args()
number_of_samples = int(args.number_of_samples) # Number of random samples for experiment
chosen_objs = [int(args.chosen_objs)] # Number of objects in a scene 1 - 4
n_actions = int(args.n_actions) # Number of actions in a control sequence (tested for 4 and 8)
error_type = args.error_type # Error options for plots -- other options are xytheta and all
if args.learned_and_analytical == "True": # To use both learned and analytical during experiments (valid only for 1 slider)
learned_and_analytical = True
else:
learned_and_analytical = False
if args.combine_error == "True": # For the multi-object case combine errors from all objects.
combine_error = True
else:
combine_error = False
num_time_slices = n_actions
max_parareal_iter = n_actions + 1
dataset_path = "./exp_dataset/"
clear_plots = False # Clear folders containing plots
def load_data(run_mode):
if run_mode == 0:
run_folder = 'learned_model'
elif run_mode == 1:
run_folder = 'analytical_model'
data_path = dataset_path+'{}slider_{}/parareal_data/{}/sequence_{}/'.format(N_S, n_actions, run_folder,sequence)
Q = np.load(data_path+'Q.npy')
mujoco_state_sequence = Q[-1].copy()
mujoco_time_array = np.load(data_path+'mujoco_time_array.npy')
parareal_time_array = np.load(data_path+'expected_parareal_time_array.npy')
return Q, mujoco_state_sequence, parareal_time_array, mujoco_time_array
def get_displacment_results(run_mode):
if run_mode == 0:
run_folder = 'learned_model'
elif run_mode == 1:
run_folder = 'analytical_model'
N_S = chosen_objs[0]
total_disp = np.zeros((number_of_samples, chosen_objs[0]))
for sample in range (1, number_of_samples+1):
data_path = dataset_path+'{}slider_{}/parareal_data/{}/sequence_{}/'.format(N_S, n_actions, run_folder,sample)
Q = np.load(data_path+'Q.npy')
mujoco_state_sequence = Q[-1].copy()
for m in range(chosen_objs[0]):
r_disp = 0
for p in range(num_time_slices):
# Calculate position displacements
y_disp = mujoco_state_sequence[p+1][DOF+7*m+1] - mujoco_state_sequence[p][DOF+7*m+1]
x_disp = mujoco_state_sequence[p+1][DOF+7*m] - mujoco_state_sequence[p][DOF+7*m]
r_disp += sqrt(x_disp**2 + y_disp**2)
total_disp[sample-1,m] = r_disp
mean_disp = np.mean(total_disp, axis=0)
std_disp = np.std(total_disp, axis=0)
# Write results to file
file1 = open(dataset_path+"{}slider_{}/results.txt".format(N_S, n_actions),"w+")
file1.write("+++++++++++++++ Total Object Dispacement Results (m) +++++++++++ \n")
file1.write("Mean total object displacement: {} \n".format(np.mean(mean_disp)))
file1.write("Standard deviation of object displacement: {} \n".format(np.mean(std_disp)))
file1.close()
return None
def get_results(run_mode):
Q, mujoco_state_sequence, parareal_time_array, mujoco_time_array = load_data(run_mode)
sq = sequence - value*number_of_samples
if run_mode == 0 and sq == number_of_samples:
# Timing results for Learned Model
mean_mujoco_time_array = np.mean(mujoco_time_array, axis=1)
mean_parareal_time_array = np.mean(parareal_time_array, axis=1)
time_plots(mean_parareal_time_array, mean_mujoco_time_array, run_mode)
if run_mode == 1 and sq == number_of_samples:
# Timing results for Analytical Model
mean_mujoco_time_array = np.mean(mujoco_time_array, axis=1)
mean_parareal_time_array = np.mean(parareal_time_array, axis=1)
time_plots(mean_parareal_time_array, mean_mujoco_time_array, run_mode)
state_error_plots(Q, mujoco_state_sequence, run_mode)
return None
def state_error_plots(Q, Q_actual, run_mode):
PLT_OFFSET = 1
plot_path = dataset_path+'{}slider_{}/'.format(N_S, n_actions)
font_size = 13.5
line_width = 2.5
line_style = '-.'
legend_loc = "lower left"
plt.rcParams.update({'font.size': font_size})
plt.rcParams.update({'figure.figsize': [6.4, 4.8]})
if error_type == "xy":
plot_ylabel = "RMS error (m)"
else:
plot_ylabel = "RMS error"
y_min = 1e-4
y_max = 0.04
x_min = 0
PLOT_MAX = num_time_slices+1
x_max = PLOT_MAX-1-PLT_OFFSET
obj_error_x = np.zeros((max_parareal_iter,num_time_slices+1,N_S))
obj_error_y = np.zeros((max_parareal_iter,num_time_slices+1,N_S))
obj_error_theta = np.zeros((max_parareal_iter,num_time_slices+1,N_S))
#rob_error_x = np.zeros((max_parareal_iter,num_time_slices+1))
#rob_error_y = np.zeros((max_parareal_iter,num_time_slices+1))
rms_obj_y = np.zeros((max_parareal_iter,N_S))
rms_obj_x = np.zeros((max_parareal_iter,N_S))
rms_obj_theta = np.zeros((max_parareal_iter,N_S))
#rms_rob_y = np.zeros(max_parareal_iter)
#rms_rob_x = np.zeros(max_parareal_iter)
obj_error_vx = np.zeros((max_parareal_iter,num_time_slices+1,N_S))
obj_error_vy = np.zeros((max_parareal_iter,num_time_slices+1,N_S))
obj_error_vtheta = np.zeros((max_parareal_iter,num_time_slices+1,N_S))
rms_obj_vy = np.zeros((max_parareal_iter,N_S))
rms_obj_vx = np.zeros((max_parareal_iter,N_S))
rms_obj_vtheta = np.zeros((max_parareal_iter,N_S))
ROBOT_INDEX = 0
for m in range(N_S):
for p in range(num_time_slices+1):
for k in range(max_parareal_iter):
quat_actual = Q_actual[p][DOF+7*m+3:DOF+7*m+7]
quat = Q[k][p][DOF+7*m+3:DOF+7*m+7]
quat_error = Quaternion.absolute_distance(Quaternion(quat_actual).unit,Quaternion(quat).unit)
obj_error_theta[k,p,m]= quat_error
# Calculate position errors
obj_error_y[k,p,m]=Q_actual[p][DOF+7*m+1]- Q[k][p][DOF+7*m+1]
obj_error_x[k,p,m]=Q_actual[p][DOF+7*m] - Q[k][p][DOF+7*m]
#rob_error_y[k,p]=Q_actual[p][ROBOT_INDEX+1] - Q[k][p][ROBOT_INDEX+1]
#rob_error_x[k,p]=Q_actual[p][ROBOT_INDEX] - Q[k][p][ROBOT_INDEX]
else:
# Calculate the RMS error along the whole trajectory
for k in range(max_parareal_iter):
rms_obj_theta[k,m]= sqrt(mean(square(obj_error_theta[k,:,m])))
rms_obj_y[k,m]= sqrt(mean(square(obj_error_y[k,:,m])))
rms_obj_x[k,m]= sqrt(mean(square(obj_error_x[k,:,m])))
#rms_rob_y[k]= sqrt(mean(square(rob_error_y[k,:])))
#rms_rob_x[k]= sqrt(mean(square(rob_error_x[k,:])))
for p in range(num_time_slices+1):
for k in range(max_parareal_iter):
# Calculate velocity errors
obj_error_vtheta[k,p,m] = Q_actual[p][N_QPOS+DOF+6*m+5]- Q[k][p][N_QPOS+DOF+6*m+5]
obj_error_vy[k,p,m] = Q_actual[p][N_QPOS+DOF+6*m+1]- Q[k][p][N_QPOS+DOF+6*m+1]
obj_error_vx[k,p,m] = Q_actual[p][N_QPOS+DOF+6*m] - Q[k][p][N_QPOS+DOF+6*m]
# Calculate the RMS error along the whole trajectory
for k in range(max_parareal_iter):
rms_obj_vtheta[k,m]= sqrt(mean(square(obj_error_vtheta[k,:,m])))
rms_obj_vy[k,m]= sqrt(mean(square(obj_error_vy[k,:,m])))
rms_obj_vx[k,m]= sqrt(mean(square(obj_error_vx[k,:,m])))
if sequence == 1:
#subprocess.call(["rm", "-r", plot_path+"parareal_plots"])
subprocess.call(["mkdir", "-p", plot_path+"parareal_plots"])
x_axis = np.arange(PLOT_MAX)
if error_type == "xy":
rms_obj_overall[:,:,sequence-number_of_samples*value-1,run_mode] = (rms_obj_y[0:PLOT_MAX,:]+rms_obj_x[0:PLOT_MAX,:])/2
elif error_type == "xytheta":
rms_obj_overall[:,:,sequence-number_of_samples*value-1,run_mode] = (rms_obj_y[0:PLOT_MAX,:]+rms_obj_x[0:PLOT_MAX,:]+rms_obj_theta[0:PLOT_MAX,:])/3
elif error_type == "all":
rms_obj_overall[:,:,sequence-number_of_samples*value-1,run_mode] = (rms_obj_y[0:PLOT_MAX,:]+rms_obj_x[0:PLOT_MAX,:]+rms_obj_theta[0:PLOT_MAX,:]+rms_obj_vx[0:PLOT_MAX,:]+rms_obj_vy[0:PLOT_MAX,:]+rms_obj_vtheta[0:PLOT_MAX,:])/6
if sequence == (value+1)*number_of_samples:
# Decide plot filenames
if combine_error:
plotname = plot_path+'parareal_plots/{}S_rms_{}_error_combined.png'.format(N_S, error_type)
log_plotname = plot_path+'parareal_plots/{}S_rms_log_{}_error_combined.png'.format(N_S, error_type)
else:
plotname = plot_path+'parareal_plots/{}S_rms_{}_error.png'.format(N_S, error_type)
log_plotname = plot_path+'parareal_plots/{}S_rms_log_{}_error.png'.format(N_S, error_type)
# STANDARD plots
# Either plot single line, or one for each slider
if combine_error:
std = np.std(rms_obj_overall, axis=(1,2))
err = 1.96*np.sqrt( std/rms_obj_overall[0,:,:].size )
plt.plot(x_axis[0:PLOT_MAX-PLT_OFFSET], np.mean(np.mean(rms_obj_overall, axis=1), axis=1)[0:PLOT_MAX-PLT_OFFSET], linewidth=line_width)
else:
for m in range(N_S):
if learned_and_analytical:
plt.plot(x_axis[0:PLOT_MAX], np.mean(rms_obj_overall[:,m,:,0], axis=1), label='Learned model', linewidth=line_width)
plt.plot(x_axis[0:PLOT_MAX], np.mean(rms_obj_overall[:,m,:,1], axis=1), label='Analytical model', linewidth=line_width)
else:
plt.plot(x_axis[0:PLOT_MAX-PLT_OFFSET], np.mean(rms_obj_overall[:,m,:,0], axis=1)[0:PLOT_MAX-PLT_OFFSET], label='$Slider_{}$'.format(m+1), linewidth=line_width)
if not combine_error:
plt.legend(loc="best", frameon=True)
plt.xlim(x_min, x_max)
plt.margins(x=0)
plt.xticks(np.arange(0, x_max+1, step=1))
plt.grid(True)
plt.xlabel('Number of iterations', fontsize=font_size)
plt.ylabel('{}'.format(plot_ylabel),fontsize=font_size)
plt.title('{} ({}) vs. Number of iterations'.format(plot_ylabel, error_type))
plt.savefig(plotname)
plt.cla()
# LOG plots
# Either plot single line, or one for each slider
if combine_error:
print ('True')
plt.semilogy(x_axis[0:PLOT_MAX-PLT_OFFSET], np.mean(np.mean(rms_obj_overall, axis=1), axis=1)[0:PLOT_MAX-PLT_OFFSET], linewidth=line_width)
else:
for m in range(N_S):
if learned_and_analytical:
plt.semilogy(x_axis[0:PLOT_MAX-PLT_OFFSET], np.mean(rms_obj_overall[:,m,:,0], axis=1)[0:PLOT_MAX-PLT_OFFSET], label='Learned model', linewidth=line_width)
plt.semilogy(x_axis[0:PLOT_MAX-PLT_OFFSET], np.mean(rms_obj_overall[:,m,:,1], axis=1)[0:PLOT_MAX-PLT_OFFSET], label='Analytical model', linewidth=line_width)
else:
plt.semilogy(x_axis[0:PLOT_MAX-PLT_OFFSET], np.mean(rms_obj_overall[:,m,:,0], axis=1)[0:PLOT_MAX-PLT_OFFSET], label='$Slider_{}$'.format(m+1), linewidth=line_width)
if not combine_error:
plt.legend(loc=legend_loc, frameon=True)
plt.ylim(y_min, y_max)
plt.xlim(x_min, x_max)
plt.margins(x=0)
plt.xticks(np.arange(0, x_max+1, step=1))
plt.grid(True)
axes = plt.axes()
axes.spines['right'].set_visible(True)
axes.spines['top'].set_visible(True)
plt.xlabel('Number of iterations', fontsize=font_size)
plt.ylabel('{}'.format(plot_ylabel), fontsize=font_size)
#plt.title('RMS log error vs. Number of iterations')
plt.savefig(log_plotname)
plt.cla()
def time_plots(par_time_arr, mujoco_time_arr, run_mode):
font_size = 13.5
line_width = 2.5
line_style = '-.'
plot_path = dataset_path+'{}slider_{}/'.format(N_S, n_actions)
plt.rcParams.update({'font.size': font_size})
plt.rcParams.update({'figure.figsize': [6.4, 4.8]})
y_min = 0
y_max = np.mean(mujoco_time_arr)*1.2
x_axis_range = mujoco_time_arr.shape[0]
x_min = 0
x_max = x_axis_range - 1
x_axis = np.arange(x_axis_range)
if run_mode == 0:
run_folder = 'learned_model'
elif run_mode == 1:
run_folder = 'analytical_model'
if sequence == 1: #and clear_plots:
subprocess.call(["rm", "-rf", plot_path+"time_plots"])
subprocess.call(["mkdir", "-p", plot_path+"time_plots"])
#mujoco_plot_array = np.mean(mujoco_time_arr)*np.ones(mujoco_time_arr.shape)
mujoco_plot_array = mujoco_time_arr.copy()
plt.plot(x_axis, mujoco_plot_array, linewidth=line_width, marker='o')
plt.plot(x_axis, par_time_arr, linewidth=line_width, marker='o')
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.margins(0)
plt.xticks(np.arange(0, len(x_axis), step=1))
plt.grid(True)
plt.legend(['Physics engine','Parareal'], loc='best')
plt.xlabel('Number of iterations', fontsize=font_size)
plt.ylabel('Physics simulation time (s)',fontsize=font_size)
plt.savefig(plot_path+'time_plots/%dS_time_plot' % N_S)
plt.cla()
#print ("mujoco total time for {} is {}".format(run_mode,mujoco_time_arr))
#print ("Parareal total time for {} is {}".format(run_mode, par_time_arr))
# Write results to file
file1 = open(dataset_path+"{}slider_{}/results.txt".format(N_S, n_actions),"a")
if run_mode == 1:
# Analytical model
file1.write("Parareal time per iteration (Analytical): {} \n".format(par_time_arr))
else:
file1.write("\n")
file1.write("+++++++++++++++ Physics Simulation Timining Results (s) +++++++++++ \n")
file1.write("Mean Mujoco total time: {} \n".format(np.mean(mujoco_time_arr)))
file1.write("Parareal time per iteration (Learned): {} \n".format(par_time_arr))
file1.close()
if __name__ == "__main__":
sequence = 1
get_displacment_results(0)
for value in range(len(chosen_objs)): # choose number of active sliders in the environment
N_S = chosen_objs[value]
rms_obj_overall = np.zeros((max_parareal_iter, N_S, number_of_samples,2))
parareal_time_array = np.zeros((n_actions+1,number_of_samples))
mujoco_time_array = np.zeros((n_actions+1,number_of_samples))
expected_parareal_time_array = np.zeros((n_actions+1,number_of_samples))
while sequence - number_of_samples*value <= number_of_samples:
#print ('seququence', sequence)
get_results(0)
if learned_and_analytical:
get_results(1)
sequence += 1
print ('\n Done. Plots and image frames generated. Results written to file. \n')