-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsd_enc.c
393 lines (342 loc) · 11.7 KB
/
sd_enc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
#include "autoconf.h"
#include "libc/types.h"
#include "libc/string.h"
#include "libc/stdio.h"
#include "libc/sync.h"
#include "libc/arpa/inet.h"
#include "aes.h"
#include "hmac.h"
#include "libsd.h"
#include "libcryp.h"
#include "sd_enc.h"
#ifdef CONFIG_USR_LIB_FIDOSTORAGE_DEBUG
# define log_printf(...) printf(__VA_ARGS__)
#else
# define log_printf(...)
#endif
/* A "cryptographic" sector size */
#define CRYPTO_SECTOR_SIZE 4096
#define SD_SECTOR_SIZE 512
static uint32_t SD_capacity = 0;
static int check_SD_overflow(uint32_t sector_num, uint32_t buff_len)
{
if(SD_capacity == 0){
SD_capacity = sd_get_capacity();
}
/* Sanity check that we do not overflow the SD card capacity */
if((sector_num + (buff_len / SECTOR_SIZE)) > (SD_capacity / 1024)){
goto err;
}
return 0;
err:
return -1;
}
/**************************** DO NOT USE SD ENCRYPTION ****************************/
#ifndef CONFIG_USR_LIB_FIDOSTORAGE_SD_ENCRYPTION
mbed_error_t sd_enc_declare(void) {
return MBED_ERROR_NONE;
}
mbed_error_t set_encrypted_SD_key(const uint8_t *key __attribute__((unused)), uint32_t key_len __attribute__((unused)))
{
return MBED_ERROR_NONE;
}
/* Read encrypted data from a sector_number and put the decrypted data in the buffer.
* Note: the sector number is a "cryptographic" sector of 4096 bytes.
*/
mbed_error_t read_encrypted_SD_crypto_sectors(uint8_t *buff_out, uint32_t buff_len, uint32_t sector_num)
{
mbed_error_t errcode = MBED_ERROR_NONE;
int ret;
if(check_SD_overflow(sector_num, buff_len)){
errcode = MBED_ERROR_INVPARAM;
goto err;
}
if ((ret = sd_read((uint32_t*)buff_out, sector_num * (CRYPTO_SECTOR_SIZE / SD_SECTOR_SIZE), buff_len)) != SD_SUCCESS) {
log_printf("[fidostorage] Failed during SD_read, from sector %d, %d words to be read: ret=%d\n", sector_num * (CRYPTO_SECTOR_SIZE / SD_SECTOR_SIZE), buff_len, ret);
errcode = MBED_ERROR_RDERROR;
goto err;
}
err:
return errcode;
}
/* Write clear data from the input buffer and put encrypted data on SD from sector_number.
* Note: the sector number is a "cryptographic" sector of 4096 bytes.
*/
mbed_error_t write_encrypted_SD_crypto_sectors(uint8_t *buff_in, uint32_t buff_len, uint32_t sector_num)
{
mbed_error_t errcode = MBED_ERROR_NONE;
int ret;
if(check_SD_overflow(sector_num, buff_len)){
errcode = MBED_ERROR_INVPARAM;
goto err;
}
if ((ret = sd_write((uint32_t*)buff_in, sector_num * (CRYPTO_SECTOR_SIZE / SD_SECTOR_SIZE), buff_len)) != SD_SUCCESS) {
log_printf("[fidostorage] Failed during SD_write, to sector %d, %d words to be write: ret=%d\n", sector_num * (CRYPTO_SECTOR_SIZE / SD_SECTOR_SIZE), buff_len, ret);
errcode = MBED_ERROR_RDERROR;
goto err;
}
err:
return errcode;
}
/**************************** USE SD ENCRYPTION **********************************/
#else
/* CRYP DMA callback routines */
typedef struct {
bool dmain_done;
bool dmain_hdone;
bool dmain_fifo_err;
bool dmain_dm_err;
bool dmain_tr_err;
bool dmaout_done;
bool dmaout_hdone;
bool dmaout_fifo_err;
bool dmaout_dm_err;
bool dmaout_tr_err;
} status_reg_t;
static volatile bool dma_in_finished = false;
static volatile status_reg_t status_reg = { 0 };
static void dma_in_complete(uint8_t irq __attribute__((unused)), uint32_t status) {
if (status & DMA_FIFO_ERROR) {
status_reg.dmain_fifo_err = true;
}
if (status & DMA_DIRECT_MODE_ERROR) {
status_reg.dmain_dm_err = true;
}
if (status & DMA_TRANSFER_ERROR) {
status_reg.dmain_tr_err = true;
}
if (status & DMA_HALF_TRANSFER) {
status_reg.dmain_hdone = true;
}
if (status & DMA_TRANSFER) {
status_reg.dmain_done = true;
}
dma_in_finished = true;
request_data_membarrier();
}
static volatile bool dma_out_finished = false;
static void dma_out_complete(uint8_t irq __attribute__((unused)), uint32_t status) {
if (status & DMA_FIFO_ERROR) {
status_reg.dmaout_fifo_err = true;
}
if (status & DMA_DIRECT_MODE_ERROR) {
status_reg.dmaout_dm_err = true;
}
if (status & DMA_TRANSFER_ERROR) {
status_reg.dmaout_tr_err = true;
}
if (status & DMA_HALF_TRANSFER) {
status_reg.dmaout_hdone = true;
}
if (status & DMA_TRANSFER) {
status_reg.dmaout_done = true;
}
dma_out_finished = true;
request_data_membarrier();
}
/* CRYP DMA descriptors */
static volatile int dma_in_desc = -1, dma_out_desc = -1;
/* Declare low level stuff */
mbed_error_t sd_enc_declare(void)
{
mbed_error_t errcode = MBED_ERROR_NONE;
errcode = cryp_early_init(true, CRYP_MAP_AUTO, CRYP_CFG, (int*)&dma_in_desc, (int*)&dma_out_desc);
request_data_membarrier();
return errcode;
}
/*
* AES-CBC-ESSIV derive IV from a sector.
*/
static mbed_error_t aes_cbc_essiv_derive_iv(uint32_t sector, uint8_t *key_h, uint32_t key_h_len, uint8_t *iv, uint32_t iv_len)
{
mbed_error_t errcode = MBED_ERROR_NONE;
aes_context aes_ctx;
if((key_h == NULL) || (key_h_len != 32) || (iv == NULL) || (iv_len != 16)){
errcode = MBED_ERROR_INVPARAM;
goto err;
}
/* Put the sector in a big endian format */
uint32_t big_endian_sector_number = htonl(sector);
/* marshaling from uint32 to u[4] buffer */
uint8_t sector_number_buff[16] = { 0 };
sector_number_buff[0] = (big_endian_sector_number >> 0) & 0xff;
sector_number_buff[1] = (big_endian_sector_number >> 8) & 0xff;
sector_number_buff[2] = (big_endian_sector_number >> 16) & 0xff;
sector_number_buff[3] = (big_endian_sector_number >> 24) & 0xff;
/* Now create the ESSIV IV from sector number */
if (aes_init(&aes_ctx, key_h, AES256, NULL, ECB, AES_ENCRYPT, AES_SOFT_UNMASKED, NULL, NULL, -1, -1)) {
errcode = MBED_ERROR_UNKNOWN;
goto err;
}
/* and encrypt sector in AES-ECB */
if (aes_exec(&aes_ctx, sector_number_buff, iv, iv_len, -1, -1)) {
errcode = MBED_ERROR_UNKNOWN;
goto err;
}
err:
return errcode;
}
/* AES-CBC-ESSIV master key */
static uint8_t AES_CBC_ESSIV_key[32] = { 0 };
/* AES-CBC-ESSIV master key hash */
static uint8_t AES_CBC_ESSIV_hkey[32] = { 0 };
typedef enum {
AES_ESSIV_NONE = 0,
AES_ESSIV_ENCRYPT = 1,
AES_ESSIV_DECRYPT = 2,
} switch_dir;
static volatile switch_dir aes_essiv_last_dir = AES_ESSIV_NONE;
/**********************/
/*
* Set the SD AES-CBC-ESSIV encryption master key.
*/
mbed_error_t set_encrypted_SD_key(const uint8_t *key, uint32_t key_len)
{
mbed_error_t errcode = MBED_ERROR_NONE;
sha256_context sha256_ctx;
if((key == NULL) || (key_len != sizeof(AES_CBC_ESSIV_key))){
errcode = MBED_ERROR_INVPARAM;
goto err;
}
/* Copy the provided key in buffer */
memcpy(AES_CBC_ESSIV_key, key, sizeof(AES_CBC_ESSIV_key));
/* Compute the hash and store it in buffer */
sha256_init(&sha256_ctx);
sha256_update(&sha256_ctx, key, key_len);
sha256_final(&sha256_ctx, AES_CBC_ESSIV_hkey);
/* Initialize our CRYP in DMA mode */
cryp_init_dma(dma_in_complete, dma_out_complete, dma_in_desc, dma_out_desc);
err:
return errcode;
}
static mbed_error_t crypt_do_dma_buff(const uint8_t *buff_in, uint8_t *buff_out, uint32_t buff_len, uint32_t sector_num, switch_dir dir)
{
/* Encrypt the buffer in place */
mbed_error_t errcode = MBED_ERROR_NONE;
uint32_t i_sector, total_sectors;
if((buff_in == NULL) || (buff_out == NULL)){
errcode = MBED_ERROR_INVPARAM;
goto err;
}
if((buff_len) % 16 != 0){
/* AES expects multiple of blocks size */
errcode = MBED_ERROR_INVPARAM;
goto err;
}
total_sectors = (buff_len / CRYPTO_SECTOR_SIZE);
if((buff_len % CRYPTO_SECTOR_SIZE) != 0){
total_sectors += 1;
}
/* Do our AES-CBC-ESSIV for all the sectors */
for(i_sector = 0; i_sector < total_sectors; i_sector++){
uint8_t iv[16];
/* Derive the CBC-ESSIV IV */
if((errcode = aes_cbc_essiv_derive_iv(sector_num + i_sector, AES_CBC_ESSIV_hkey, sizeof(AES_CBC_ESSIV_hkey), iv, sizeof(iv))) != MBED_ERROR_NONE){
goto err;
}
if(aes_essiv_last_dir != dir){
cryp_wait_for_emtpy_fifos();
/* Inject our key in CRYP */
if((aes_essiv_last_dir == AES_ESSIV_ENCRYPT) || ((aes_essiv_last_dir == AES_ESSIV_NONE) && (dir == AES_ESSIV_DECRYPT))){
cryp_set_mode(AES_KEY_PREPARE);
cryp_init_injector(AES_CBC_ESSIV_key, KEY_256);
}
else{
cryp_init_injector(AES_CBC_ESSIV_key, KEY_256);
}
aes_essiv_last_dir = dir;
}
/* Encrypt the buffer "in place" */
if(dir == AES_ESSIV_ENCRYPT){
cryp_init_user(KEY_256, iv, sizeof(iv), AES_CBC, ENCRYPT);
}
else if (dir == AES_ESSIV_DECRYPT){
cryp_init_user(KEY_256, iv, sizeof(iv), AES_CBC, DECRYPT);
}
else{
errcode = MBED_ERROR_INVPARAM;
goto err;
}
uint32_t size = CRYPTO_SECTOR_SIZE;
if(((i_sector + 1) * CRYPTO_SECTOR_SIZE) > buff_len){
size = buff_len % CRYPTO_SECTOR_SIZE;
}
DMA_XFR_AGAIN:
dma_in_finished = dma_out_finished = false;
status_reg.dmain_fifo_err = status_reg.dmain_dm_err = status_reg.dmain_tr_err = false;
status_reg.dmaout_fifo_err = status_reg.dmaout_dm_err = status_reg.dmaout_tr_err = false;
const uint8_t *curr_buff_in = buff_in + (i_sector * CRYPTO_SECTOR_SIZE);
uint8_t *curr_buff_out = buff_out + (i_sector * CRYPTO_SECTOR_SIZE);
cryp_do_dma((const uint8_t *) curr_buff_in, (uint8_t *) curr_buff_out, size, dma_in_desc, dma_out_desc);
/* Wait for DMA ending */
while(dma_out_finished == false){
bool dma_error = status_reg.dmaout_fifo_err || status_reg.dmaout_dm_err || status_reg.dmaout_tr_err;
if (dma_error == true) {
cryp_flush_fifos();
goto DMA_XFR_AGAIN;
}
}
cryp_wait_for_emtpy_fifos();
dma_in_finished = dma_out_finished = false;
}
err:
return errcode;
}
/* Read encrypted data from a sector_number and put the decrypted data in the buffer.
* Note: the sector number is a "cryptographic" sector of 4096 bytes.
*/
mbed_error_t read_encrypted_SD_crypto_sectors(uint8_t *buff_out, uint32_t buff_len, uint32_t sector_num)
{
mbed_error_t errcode = MBED_ERROR_NONE;
int ret;
/* Sanity checks */
if(buff_out == NULL){
errcode = MBED_ERROR_INVPARAM;
goto err;
}
if(check_SD_overflow(sector_num, buff_len)){
errcode = MBED_ERROR_INVPARAM;
goto err;
}
if ((ret = sd_read((uint32_t*)buff_out, sector_num * (CRYPTO_SECTOR_SIZE / SD_SECTOR_SIZE), buff_len)) != SD_SUCCESS) {
log_printf("[fidostorage] Failed during SD_read, from sector %d, %d words to be read: ret=%d\n", sector_num * (CRYPTO_SECTOR_SIZE / SD_SECTOR_SIZE), buff_len, errcode);
errcode = MBED_ERROR_RDERROR;
goto err;
}
/* Decrypt the buffer in place */
if((errcode = crypt_do_dma_buff(buff_out, buff_out, buff_len, sector_num, AES_ESSIV_DECRYPT)) != MBED_ERROR_NONE){
goto err;
}
err:
return errcode;
}
/* Write clear data from the input buffer and put encrypted data on SD from sector_number.
* Note: the sector number is a "cryptographic" sector of 4096 bytes.
*/
mbed_error_t write_encrypted_SD_crypto_sectors(uint8_t *buff_in, uint32_t buff_len, uint32_t sector_num)
{
mbed_error_t errcode = MBED_ERROR_NONE;
int ret;
/* Sanity checks */
if(buff_in == NULL){
errcode = MBED_ERROR_INVPARAM;
goto err;
}
if(check_SD_overflow(sector_num, buff_len)){
errcode = MBED_ERROR_INVPARAM;
goto err;
}
/* Encrypt the buffer in place */
if((errcode = crypt_do_dma_buff(buff_in, buff_in, buff_len, sector_num, AES_ESSIV_ENCRYPT)) != MBED_ERROR_NONE){
goto err;
}
/* Data are encrypted, now write them on the SD card */
if ((ret = sd_write((uint32_t*)buff_in, sector_num * (CRYPTO_SECTOR_SIZE / SD_SECTOR_SIZE), buff_len)) != SD_SUCCESS) {
log_printf("[fidostorage] Failed during SD_write, to sector %d, %d words to be write: ret=%d\n", sector_num * (CRYPTO_SECTOR_SIZE / SD_SECTOR_SIZE), buff_len, errcode);
errcode = MBED_ERROR_RDERROR;
goto err;
}
err:
return errcode;
}
#endif /* CONFIG_USR_LIB_FIDOSTORAGE_SD_ENCRYPTION */