-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinkdin_scraper.py
482 lines (401 loc) · 20.7 KB
/
linkdin_scraper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
from calendar import c
import logging
import os
import json
from datetime import datetime
from socket import timeout
import time
from typing import Dict, List
import random
import pandas as pd
from urllib.parse import urlencode
from playwright.sync_api import sync_playwright
from dotenv import load_dotenv
from utils import get_unique_filename, create_folder
# Clean data
def clean_text(text):
if pd.isna(text):
return text
return ' '.join(text.strip().replace('\n', ' ').split())
def get_clean_table(jobs):
# Clean columns with basic text cleaning
jobs['title'] = jobs['title'].apply(clean_text)
jobs['company'] = jobs['company'].apply(clean_text)
jobs['location'] = jobs['location'].apply(clean_text)
jobs['metadata'] = jobs['metadata'].apply(clean_text)
# Remove "with verification" from titles
jobs['title'] = jobs['title'].str.replace(r'\s*with verification$', '', regex=True)
# Clean job titles that are duplicated
jobs['title'] = jobs['title'].str.replace(r'(\w+)\1', r'\1', regex=True)
# Extract city and state from location
jobs['location'] = jobs['location'].str.replace(r'\s*\([^)]*\)', '', regex=True)
# Split location into city and state
location_split = jobs['location'].str.extract(r'(.*?),\s*(.*?)(?:\s|$)')
jobs['city'] = location_split[0]
jobs['state'] = location_split[1]
# Split metadata into separate columns if it contains multiple pieces of info
if 'metadata' in jobs.columns:
# Extract salary range if present
salary_pattern = r'\$(\d+(?:,\d+)?(?:\.\d+)?[KM]?)(?:/\w+)?\s*-\s*\$?(\d+(?:,\d+)?(?:\.\d+)?[KM]?)(?:/\w+)?'
salary_split = jobs['metadata'].str.extract(salary_pattern)
jobs['salary_min'] = salary_split[0]
jobs['salary_max'] = salary_split[1]
# Extract job type (Full-time, Contract, etc.)
jobs['job_type'] = jobs['metadata'].str.extract(r'(Full-time|Part-time|Contract|Internship)')
# Extract experience level
jobs['experience_level'] = jobs['metadata'].str.extract(r'(Entry level|Associate|Mid-Senior level|Executive)')
# Extract work model (Remote, Hybrid, On-site)
jobs['work_model'] = jobs['metadata'].str.extract(r'(Remote|Hybrid|On-site)')
# Clean up description HTML and excessive whitespace
if 'description' in jobs.columns:
jobs['description'] = jobs['description'].str.replace(r'<[^>]+>', '', regex=True)
jobs['description'] = jobs['description'].apply(clean_text)
# Extract skills from description if available
if 'skills' in jobs.columns:
jobs['skills'] = jobs['skills'].apply(clean_text)
# Remove common filler words
jobs['skills'] = jobs['skills'].str.replace(r'\b(and|or|the|with|in|of|to|for)\b', '', regex=True)
# Drop duplicates based on link
jobs = jobs.drop_duplicates(subset=['link'], keep='first')
# Remove any rows where essential fields are empty
jobs = jobs.dropna(subset=['title', 'company'])
# Capitalize all column names
jobs.columns = jobs.columns.str.upper()
# Set a specific column order for better readability
desired_columns = [
'TITLE', 'COMPANY', 'CITY', 'STATE', 'SALARY_MIN', 'SALARY_MAX',
'JOB_TYPE', 'WORK_MODEL', 'EXPERIENCE_LEVEL', 'SKILLS',
'DESCRIPTION', 'LINK', 'METADATA'
]
jobs = jobs.reindex(columns=[col for col in desired_columns if col in jobs.columns])
return jobs
def scroll_down_jobs_list(page, container_selector, scroll_steps=5, delay=1000):
"""
Scrolls down a specific container element on the page.
Args:
page: The Playwright page object.
container_selector: The CSS selector of the container to scroll.
scroll_steps: Number of times to scroll down.
delay: Delay in milliseconds between scrolls.
"""
for _ in range(scroll_steps):
page.evaluate(f"""
const container = document.querySelector('{container_selector}');
if (container) {{
container.scrollBy(0, container.clientHeight);
}}
""")
page.wait_for_timeout(delay) # Wait to allow new items to load
class LinkedInJobCrawler:
def __init__(self):
load_dotenv()
self.email = os.getenv('LINKEDIN_EMAIL')
self.password = os.getenv('LINKEDIN_PASSWORD')
self.jobs = []
self.logger = logging.getLogger(__name__)
def _setup_browser(self, p):
"""Set up the browser with stealth mode and persistent context."""
browser_args = [
'--disable-blink-features=AutomationControlled',
'--disable-features=IsolateOrigins,site-per-process',
'--disable-site-isolation-trials',
'--disable-features=BlockInsecurePrivateNetworkRequests'
]
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/121.0.0.0 Safari/537.36'
]
# Create user data directory if it doesn't exist
user_data_dir = "./chrome_data"
if not os.path.exists(user_data_dir):
os.makedirs(user_data_dir)
browser = p.chromium.launch_persistent_context(
user_data_dir=user_data_dir,
headless=os.getenv('BROWSER_HEADLESS', 'true').lower() == 'true',
args=browser_args,
user_agent=random.choice(user_agents),
viewport={'width': 1024, 'height': 768},
ignore_https_errors=True,
permissions=['geolocation']
)
return browser, browser.new_page()
def _login(self, page):
"""Check login status and only login if needed."""
try:
# Go to LinkedIn feed first to check login status
page.goto('https://www.linkedin.com/feed', timeout=60000)
# If we're already logged in, we'll be on the feed page
if page.url.startswith('https://www.linkedin.com/feed'):
self.logger.info("Already logged in")
return
# If not on feed, we need to login
page.goto('https://www.linkedin.com/login', timeout=60000)
page.fill('input[name="session_key"]', self.email)
page.fill('input[name="session_password"]', self.password)
with page.expect_navigation(timeout=60000):
page.click('button[type="submit"]')
if 'checkpoint' in page.url or 'challenge' in page.url:
self.logger.warning("Verification page detected")
page.wait_for_selector('.feed-shared-update-v2', timeout=600000)
else:
page.wait_for_selector('.feed-shared-update-v2', timeout=10000)
if not page.url.startswith('https://www.linkedin.com/feed'):
raise Exception("Login failed - unexpected redirect")
self.logger.info("Login successful")
except Exception as e:
self.logger.error(f"Login failed: {e}")
raise
def run(self, search_params: Dict, max_pages: int = 3):
"""Run crawler with improved page handling for multiple pages."""
browser = None
with sync_playwright() as p:
try:
browser, page = self._setup_browser(p)
self._login(page)
page.wait_for_timeout(1000)
search_url = self._build_search_url(search_params)
self.logger.info(f"Navigating to: {search_url}")
page.goto(search_url, timeout=60000)
selectors = [
'.jobs-search-results',
'.jobs-search-results-list',
'[data-job-id]',
'.jobs-search__job-details'
]
for selector in selectors:
try:
page.wait_for_selector(selector, timeout=10000)
self.logger.info(f"Found selector: {selector}")
break
except Exception:
continue
if not any(s in page.url for s in ['/jobs/search', '/jobs/collections']):
raise Exception("Failed to reach jobs search page")
current_page = 1
while current_page <= max_pages:
self.logger.info(f"Scraping page {current_page} of {max_pages}")
container_selector = ".jobs-search-results-list"
scroll_down_jobs_list(page, container_selector, scroll_steps=10, delay=1000)
job_cards = page.query_selector_all('.job-card-container')
self.logger.info(f"Found {len(job_cards)} job cards on page {current_page}")
for index, job_card in enumerate(job_cards):
self.logger.info(f"Processing job card {index + 1} of {len(job_cards)}")
job_details = self._click_job_card_and_extract(page, job_card)
if job_details:
self.jobs.append(job_details)
time.sleep(2) # Mimic human interaction
if current_page < max_pages and not self._navigate_next_page(page):
self.logger.info("No more pages available")
break
current_page += 1
page.wait_for_timeout(100) # Wait between pages
label = search_params.get('keywords', '')
self.save_results(label)
except Exception as e:
self.logger.error(f"Crawler failed: {e}")
raise
finally:
if browser:
browser.close()
def _build_search_url(self, params: Dict) -> str:
"""Build search URL with parameters."""
base_url = "https://www.linkedin.com/jobs/search/?"
query_params = {
'keywords': params.get('keywords', ''),
'location': params.get('location', ''),
'f_TPR': params.get('timespan', 'r604800'),
'f_E': ','.join(params.get('experience', [])),
'f_JT': ','.join(params.get('job_type', []))
}
return base_url + urlencode(query_params)
def _get_job_cards(self, page):
selectors = ['.job-card-container', '[data-job-id]']
job_cards = []
for selector in selectors:
try:
page.wait_for_selector(selector, timeout=100, state='visible')
cards = page.query_selector_all(selector)
if cards:
self.logger.info(f"Found {len(cards)} job cards using selector: {selector}")
job_cards.extend(cards)
except Exception as e:
self.logger.warning(f"Selector {selector} failed: {e}")
if not job_cards:
raise Exception("No job cards found after checking selectors")
return job_cards
def _extract_job_details(self, page):
"""Extract job details from the job detail panel."""
try:
title = self._get_text(page, '.job-details-jobs-unified-top-card__job-title')
company = self._get_text(page, '.job-details-jobs-unified-top-card__company-name')
location = self._get_text(page, '.job-details-jobs-unified-top-card__primary-description-container')
metadata = self._get_text(page, '.job-details-jobs-unified-top-card__job-insight')
skills = self._get_text(page, '.job-details-preferences-and-skills')
about_the_job = self._get_text(page, '.jobs-description__content')
link = self._get_attribute(page, '.job-details-jobs-unified-top-card__job-title a', 'href')
link = f"https://www.linkedin.com{link}" if link and not link.startswith("http") else link
# link = self._get_apply_link(page)
# self.logger.info(f"Job Title: {title}, Company: {company}, Location: {location}")
# self.logger.info(f"About the Job: {about_the_job[:100]}...") # Log the first 100 characters of the description
return {
'title': title,
'company': company,
'location': location,
'metadata': metadata,
'skills': skills,
'description': about_the_job,
'link': link,
}
except Exception as e:
self.logger.error(f"Failed to extract job details: {e}")
return None
def _click_job_card_and_extract(self, page, job_card):
"""Click on a job card and extract its details, then attempt Easy Apply if available."""
try:
job_card.scroll_into_view_if_needed()
job_card.click()
page.wait_for_selector('.jobs-description__container', timeout=3000) # Wait for job detail panel
# Extract job details
job_details = self._extract_job_details(page)
# Check for Easy Apply and handle it
if page.query_selector('button[aria-label^="Easy Apply"]'):
self.logger.info(f"Attempting Easy Apply for job: {job_details['title']}")
result = self.easy_apply(page)
self.logger.info(f"Easy Apply result: {result}")
return job_details
except Exception as e:
self.logger.error(f"Failed to process job card: {e}")
return None
# easy apply not working
def easy_apply(self, page):
"""
Automates the LinkedIn Easy Apply process using patterns from LinkedinEasyApply
"""
try:
# Click Easy Apply button
easy_apply_button = page.query_selector('.jobs-apply-button--top-card button[aria-label^="Easy Apply"]')
if not easy_apply_button:
return "Easy Apply button not available"
easy_apply_button.click()
page.wait_for_selector('.jobs-easy-apply-modal', timeout=5000)
max_steps = 20 # Maximum number of form steps to prevent infinite loops
step_count = 0
while step_count < max_steps:
try:
# Wait for form elements to load
page.wait_for_selector('.jobs-easy-apply-form-section__grouping', timeout=5000)
except Exception:
# If no form elements found, we might be done or there's an error
break
step_count += 1
# Handle contact info
contact_info = page.query_selector_all('.jobs-easy-apply-form-section__grouping')
for info in contact_info:
text = info.text_content().lower()
if 'phone number' in text:
country_code = info.query_selector('select[id*="phoneNumber"][id*="country"]')
if country_code:
country_code.select_option(os.getenv('PHONE_COUNTRY_CODE', '+1'))
phone_field = info.query_selector('input[id*="phoneNumber"][id*="nationalNumber"]')
if phone_field:
phone_field.fill(os.getenv('LINKEDIN_PHONE', ''))
# Handle file uploads
upload_buttons = page.query_selector_all('input[type="file"]')
for upload in upload_buttons:
upload_type = upload.evaluate('el => el.parentElement.previousElementSibling.textContent').lower()
if 'resume' in upload_type:
upload.set_input_files(os.getenv('RESUME_PATH', ''))
elif 'cover' in upload_type and os.getenv('COVER_LETTER_PATH'):
upload.set_input_files(os.getenv('COVER_LETTER_PATH'))
# Handle additional questions
questions = page.query_selector_all('.jobs-easy-apply-form-element')
for question in questions:
# Handle radio buttons
radios = question.query_selector_all('.fb-text-selectable__option')
if radios:
question_text = question.text_content().lower()
if any(keyword in question_text for keyword in ['authorized', 'clearance', 'citizenship']):
radios[-1].click() # Select last option
continue
# Handle dropdowns
dropdown = question.query_selector('select')
if dropdown:
options = dropdown.query_selector_all('option')
if options and len(options) > 1:
dropdown.select_option(index=1) # Select first non-empty option
# Find and click next/submit button
next_button = page.query_selector('.artdeco-button--primary')
if not next_button:
return "No next button found - application may be incomplete"
button_text = next_button.text_content().lower()
# Check for discard button which may indicate an error
if page.query_selector('button[aria-label="Dismiss"]'):
return "Application failed - encountered error dialog"
if 'submit' in button_text:
# Unfollow company if checkbox exists
follow_checkbox = page.query_selector('label[for*="follow-company"]')
if follow_checkbox:
follow_checkbox.click()
next_button.click()
page.wait_for_timeout(2000) # Increased timeout for better reliability
if 'submit' in button_text:
# Unfollow company if checkbox exists
follow_checkbox = page.query_selector('label[for*="follow-company"]')
if follow_checkbox:
follow_checkbox.click()
next_button.click()
page.wait_for_timeout(1000)
# Check for success message
if page.query_selector('.jobs-apply-success'):
return "Application submitted successfully"
return "Application process completed"
except Exception as e:
self.logger.error(f"Easy Apply failed: {e}")
return f"Error during Easy Apply: {e}"
def _get_text(self, element, selector: str) -> str:
"""Safely extract text content."""
el = element.query_selector(selector)
return el.text_content().strip() if el else None
def _get_attribute(self, element, selector: str, attr: str) -> str:
"""Safely extract attribute value."""
el = element.query_selector(selector)
return el.get_attribute(attr).strip() if el else None
def save_results(self, label: str = "jobs"):
output_folder = create_folder(label)
filename = os.path.join(output_folder, "positions")
filename = get_unique_filename(filename)
df = pd.DataFrame(self.jobs)
df = get_clean_table(df)
df.to_csv(filename, index=False)
self.logger.info(f"Saved {len(self.jobs)} positions to {filename}")
def _navigate_next_page(self, page):
"""Navigate to the next page of job listings."""
try:
current_page = page.query_selector('.artdeco-pagination__indicator--number.active')
if not current_page:
return False
next_button = current_page.evaluate_handle('node => node.nextElementSibling')
if not next_button:
return False
next_button_element = next_button.as_element()
if not next_button_element:
return False
next_button_element.click()
page.wait_for_timeout(1000) # Wait for new content to load
return True
except Exception as e:
self.logger.error(f"Failed to navigate to next page: {e}")
return False
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
crawler = LinkedInJobCrawler()
max_pages = 10
search_params = {
'keywords': 'Software Engineer',
'location': 'California, United States',
'job_type': ['F', 'C'],
'experience': ['2', '3'],
'timespan': 'r604800'
}
crawler.run(search_params, max_pages = 10)