-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtesting.py
39 lines (28 loc) · 1.08 KB
/
testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
import numpy as np
import librosa
import librosa.display
import matplotlib.pyplot as plt
import utils.audio as audio
import utils.dataset as dataset
from tensorflow import keras
from tensorflow.keras import layers
import sys
import model
filename = 'datasets/RAVDESS/Actor_01/03-01-01-01-01-01-01.wav'
# filename = 'datasets/RAVDESS/Actor_01/03-01-03-01-01-02-01.wav'
dataset_path = 'datasets/RAVDESS/audio_speech_actors_01-24/'
cmu_dataset = 'datasets/CMU_MOSI/Audio/WAV_16000/Segmented'
# dataset.load_ravdess_dataset(dataset_path)
dataset.load_cmu_dataset(cmu_dataset)
# np.set_printoptions(threshold=sys.maxsize)
# with open('test.txt', 'w') as f:
# sys.stdout = f # Change the standard output to the file we created.
# print(audio.convert_audio_to_log_mel_spectrogram(filename))
# sys.stdout = sys.original_stdout # Reset the standard output to its original value
# print(audio.convert_audio_to_log_mel_spectrogram(filename))
# plt.colorbar(format='%+2.0f dB')
# plt.savefig('plot.png')
# model.tfb()
# cnn = model.CNN(0, 4)