-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple.py
42 lines (37 loc) · 885 Bytes
/
simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import rusvm
import numpy as np
import matplotlib.pyplot as plt
# generate sample dataset
n = 20
np.random.seed(42)
x = np.random.rand(n)
y = np.sin(2.0 * np.pi * x)
# define parameters for training problem
# regularization parameter
lmbda = 1.0
# scaling parameter
gamma = 10.0
# solve training problem
res = rusvm.solve_smo(
x=np.sqrt(gamma) * x[:, None],
y=y,
params_problem=dict(
lmbda=lmbda,
kind='regression',
),
params_smo=dict(
time_limit=1.0,
),
)
print(res['opt_status'])
a = np.array(res['a']) / lmbda
a = a[:n] + a[n:]
# generate reference points
xplot = np.linspace(0.0, 1.0, 100)
# evaluate decision function at reference points
k = np.exp(-gamma * (xplot[:, None] - x[None, :]) ** 2)
yplot = k.dot(a) + res['b']
# plot training points and decision function
plt.plot(x, y, 'kx')
plt.plot(xplot, yplot, 'r')
plt.show()