-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3. tutorial.R
372 lines (230 loc) · 8.83 KB
/
3. tutorial.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
#-----------------------------------#
# packages
library(randomForest) # estimating random forest model
## setup tutorial directory
setwd(dirname(rstudioapi::getSourceEditorContext()$path))
dir.create('dat/top-down-tutorial', recursive=T, showWarnings=F)
file.copy(from = 'wd/out/master_predict.csv',
to = 'dat/top-down-tutorial/master_predict.csv',
overwrite = TRUE)
file.copy(from = 'wd/out/master_train.csv',
to = 'dat/top-down-tutorial/master_train.csv',
overwrite = TRUE)
# working directory
setwd(file.path(dirname(rstudioapi::getSourceEditorContext()$path),'dat/top-down-tutorial'))
#--
# training data from municipalities
master_train <- read.csv("master_train.csv")
# covariates from enumeration areas
master_predict <- read.csv("master_predict.csv")
head(master_train[,1:5]) # only showing first five columns
head(master_predict[,1:4]) # only showing first four columns
#--
# response
y_data <- master_train$pop / master_train$area
y_data <- log(y_data)
#--
# histogram of response
hist(y_data, main=NA, xlab="log(population_density)")
#--
# covariate names (i.e. column names)
cols <- colnames(master_train)
print(cols)
# select column names that contain the word 'mean'
cov_names <- cols[grepl('mean', cols)]
print(cov_names)
# subset the data.frame to only these columns
x_data <- master_train[,cov_names]
head(x_data[,1:2]) # only showing first two columns
#--
# model fitting
popfit <- tuneRF(x=x_data,
y=y_data,
plot=TRUE,
mtryStart=length(x_data)/3,
ntreeTry=500,
improve=0.0001, # threshold on the OOB error to continue the search
stepFactor=1.20, # incremental improvement of mtry
trace=TRUE,
doBest=TRUE, # last model trained with the best mtry
nodesize=length(y_data)/1000,
na.action=na.omit,
importance=TRUE,
sampsize=length(y_data), # size of the sample to draw for OOB
replace=TRUE) # sample with replacement
#--
names(popfit)
#--
popfit$mtry
#--
# save model
save(popfit, file='popfit.Rdata')
#--
# load model
load('popfit.Rdata')
#--
# random forest predictions
master_predict$predicted <- predict(popfit,
newdata = master_predict)
#--
# back-transform predictions to natural scale
master_predict$predicted_exp <- exp(master_predict$predicted)
#--
# sum exponentiated predictions among EAs in each municipality
predicted_exp_sum <- aggregate(master_predict$predicted_exp,
by = list(geo_code=master_predict$geo_code),
FUN = sum)
# modify column names
names(predicted_exp_sum) <- c('geo_code','predicted_exp_sum')
# merge predicted_exp_sum into master_train based on geo_code
master_predict <- merge(master_predict,
predicted_exp_sum,
by='geo_code')
#--
# merge municipality total populations from master_train into master_predict
master_predict <- merge(master_predict,
master_train[,c('geo_code','pop')],
by = 'geo_code')
# modify column name
names(master_predict)[ncol(master_predict)] <- 'pop_municipality'
#--
# calculate EA-level population estimates
master_predict$predicted_pop <- with(master_predict, predicted_exp / predicted_exp_sum * pop_municipality)
#--
# sum EA population estimates within each municipality
test <- aggregate(master_predict$predicted_pop,
by = list(geo_code=master_predict$geo_code),
FUN = sum)
# modify column names
names(test) <- c('geo_code','predicted_pop')
# merge municipality population totals
test <- merge(test,
master_train[,c('geo_code','pop')],
by = 'geo_code')
# test if estimates match muncipality population totals
all(round(test$pop) == round(test$predicted_pop))
#--
# goodness-of-fit metrics
print(popfit)
#--
# plot observed vs predicted (out-of-bag)
plot(x = y_data,
y = predict(popfit),
main = 'Observed vs Predicted log-Densities')
# 1:1 line
abline(a=0, b=1, col='red')
#--
# plot residuals (out-of-bag)
plot(x = predict(popfit),
y = y_data - predict(popfit),
main = 'Residuals vs Predicted',
ylab = 'Out-of-bag residuals',
xlab = 'Out-of-bag prediction')
# horizontal line at zero
abline(h=0, col='red')
#--
# for covariate importance
varImpPlot(popfit, type=1)
#--
# for covariate importance
varImpPlot(popfit, type=2)
#--
layout(matrix(1:2, nrow=1))
for(cov_name in c('mean.bra_srtm_slope_100m', 'mean.bra_viirs_100m_2016')){
# combine EA-level and municipality-level values into a single vector
y <- c(master_predict[,cov_name], master_train[,cov_name])
# create corresponding vector identifying spatial scale
x <- c(rep('enumeration_area', nrow(master_predict)),
rep('municipality', nrow(master_train)))
# create boxplot
boxplot(y~x, xlab='Spatial Scale', ylab=cov_name)
}
#----------------- figures -------------------#
if(F){
# enumeration areas
ea <- sf::st_read(file.path(rd,'wd/in/censusEAs/BR_Setores_2019.shp'))
ea$EA_id <- 1:nrow(ea)
ea <- merge(ea,
master_predict[,c('EA_id','predicted_pop')],
by = 'EA_id')
sf::st_write(ea, file.path(rd,'wd/out/enumeration_areas.gpkg'))
# municipalities
municipality <- sf::st_read(file.path(rd,'wd/in/adminBoundaries/admin_municipality.gpkg'))
municipality$geo_code <- municipality$CD_GEOCODI
municipality <- merge(municipality,
master_train[,c('geo_code','pop')],
by = 'geo_code')
sf::st_write(municipality, file.path(rd,'wd/out/municipality.gpkg'))
}
#------- tips and tricks ------#
if(F){
# results to EA polygons
library('sf')
sf_polygons <- st_read('../../wd/in/censusEAs/BR_Setores_2019.shp')
sf_polygons$EA_id <- 1:nrow(sf_polygons)
sf_polygons <- merge(sf_polygons,
master_predict,
by='EA_id')
st_write(sf_polygons,
'master_predict_polygons.shp')
st_write(sf_polygons,
'master_predict_polygons.gpkg')
# zonal statistics
library(raster)
library(exactextractr)
raster_covariate <- raster('../../wd/in/covariates/bra_viirs_100m_2016.tif')
sf_polygons$mean.bra_viirs_100m_2016 <- exact_extract(x = raster_covariate,
y = sf_polygons[1:100,],
fun = 'mean')
write.csv(st_drop_geometry(sf_polygons),
file = 'EA_covariates.csv',
row.names = FALSE)
st_write(sf_polygons, 'EA_covariates.shp')
# gridded population estimates
mastergrid <- raster('../../wd/in/bra_level0_100m_2000_2020.tif')
cells <- which(!is.na(mastergrid[1:1e7]))
mastergrid_predict <- data.frame(row.names = cells)
raster_covariate <- raster('../../wd/in/covariates/bra_viirs_100m_2016.tif')
mastergrid_predict[cells, 'bra_viirs_100m_2016'] <- raster_covariate[cells]
xy <- xyFromCell(mastergrid, cells)
mastergrid_predict[cells, 'bra_viirs_100m_2016_alt'] <- extract(raster_covariate, xy)
write.csv(mastergrid_predict,
file = 'mastergrid_predict.csv',
row.names = FALSE)
mastergrid_predict$predicted_pop <- runif(nrow(mastergrid_predict), 0, 1000)
raster_predict <- raster(mastergrid)
raster_predict[cells] <- mastergrid_predict[cells, 'predicted_pop']
writeRaster(raster_predict,
file = 'raster_predict.tif')
# parallel processing
library(doParallel)
predict_pop <- function(df, model=popfit){
# EA-level predictions
prediction <- predict(model, newdata = df)
# back-transform to population density
density <- exp(prediction)
# calculate weights
weights <- density / sum(density)
# disaggregate municipality total to EA-level
pop <- weights * df$pop_municipality[1]
# result to data.frame
result <- data.frame(id=df$id, predicted_pop_parallel=pop)
# return result
return(result)
}
master_predict$id <- 1:nrow(master_predict)
list_master_predict <- split(x = master_predict,
f = master_predict$geo_code)
cores <- detectCores()
cluster <- makeCluster(cores)
registerDoParallel(cluster)
predicted <- foreach(i = 1:length(list_master_predict),
.combine = 'rbind',
.packages = c("randomForest")) %dopar%
predict_pop(df = list_master_predict[[i]])
stopCluster(cluster)
master_predict <- merge(master_predict,
predicted,
by = 'id')
}
#---------------------------------------------#