-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_judging.py
123 lines (85 loc) · 3.34 KB
/
training_judging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import cv2
import os
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.optimizers import SGD
import theano
import numpy as np
def norm(img,datashape=(13,55)):
img = cv2.resize(img, (datashape[1], datashape[0]));
#flag,img = cv2.threshold(img, 0, 255, cv2.THRESH_OTSU | cv2.THRESH_BINARY)
img = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, \
cv2.THRESH_BINARY, 5, 0.5)
#
# cv2.imshow("imgx",img);
# cv2.waitKey(0)
img = (img.astype(np.float32) / 255)
shape = img.shape
if len(shape) == 2:
img -= img.mean()
img = np.expand_dims(img, 2)
else:
img[:,:,1] -= img[:,:,1].mean()
return img
def loadData(pathT,pathF,datashape=(13,55)):
prepare_data =[]
prepare_label = [];
for parent,dirnames,filenames in os.walk(pathT):
for filename in filenames:
path = os.path.join(parent,filename)
if path.endswith(".jpg") or path.endswith(".png") or path.endswith(".bmp"):
img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
img = norm(img,datashape)
prepare_data.append(img);
prepare_label.append([1,0]);
for parent, dirnames, filenames in os.walk(pathF):
for filename in filenames:
path = os.path.join(parent, filename)
if path.endswith(".jpg") or path.endswith(".png") or path.endswith(".bmp"):
img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
img = norm(img,datashape)
prepare_data.append(img);
prepare_label.append([0,1]);
return np.array(prepare_data),np.array(prepare_label)
def arrangeData(data):
prepare_data, prepare_label = data;
rand = np.random.RandomState(321)
shuffle = rand.permutation(len(prepare_data))
shuffle = np.random.permutation(len(prepare_data));
digits, labels = prepare_data[shuffle], prepare_label[shuffle]
return digits,labels
def constructmodel(inputshape):
model = Sequential()
extract_conv1 = Convolution2D(8, 3, 3, border_mode='valid', input_shape=(inputshape))
model.add(extract_conv1)
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(16, 2, 2, border_mode='valid'))
# model.add(Convolution2D(64, 1, 1, border_mode='valid'))
# model.add(Activation('relu'))
# model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(128, init='normal'))
model.add(Activation('relu'))
model.add(Dropout(0.50))
# model.add(Dense(32, init='normal'))
# model.add(Activation('relu'))
model.add(Dense(2, init='normal'))
model.add(Activation('softmax'))
return model
def train(pathT,pathF):
model = constructmodel((13,55,1))
model.compile(optimizer='Adam', loss='categorical_crossentropy', metrics=["accuracy"])
data = loadData(pathT,pathF);
training_data,training_label = arrangeData(data)
print training_label.shape,training_data.shape
print training_label
model.fit(training_data,training_label,nb_epoch=50,validation_split=0.1,show_accuracy=True)
model.save("./judge1.h5")
#
#
#train("./training_T","./training_F")
#