-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathinstruct_pix2pix_pythoncodetutorial.py
389 lines (290 loc) · 12.2 KB
/
instruct_pix2pix_pythoncodetutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# %%
!pip install -qU diffusers accelerate safetensors transformers
# %% [markdown]
# # Hugging Face
# %%
import PIL
import requests
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
# %%
def download_image(url):
image = PIL.Image.open(requests.get(url, stream=True).raw)
image = PIL.ImageOps.exif_transpose(image)
image = image.convert("RGB")
return image
# %%
model_id = "timbrooks/instruct-pix2pix"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None)
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# %%
url = "https://cdn.pixabay.com/photo/2013/01/05/21/02/art-74050_640.jpg"
image = download_image(url)
image
# %%
prompt = "convert the lady into a highly detailed marble statue"
images = pipe(prompt, image=image, num_inference_steps=10, image_guidance_scale=1).images
images[0]
# %%
prompt = "convert the lady into a highly detailed marble statue"
images = pipe(prompt, image=image, num_inference_steps=10, image_guidance_scale=1.5).images
images[0]
# %%
url = "https://cdn.pixabay.com/photo/2017/02/07/16/47/kingfisher-2046453_640.jpg"
image = download_image(url)
image
# %%
prompt = "turn the bird to red"
images = pipe(prompt, image=image, num_inference_steps=10, image_guidance_scale=1).images
images[0]
# %%
url = "https://cdn.pixabay.com/photo/2018/05/08/06/52/vacation-3382400_640.jpg"
image = download_image(url)
image
# %%
prompt = "turn the suitcase yellow"
images = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1.7).images
images[0]
# %%
# %%
# %% [markdown]
# # Custom implementation
# %%
from tqdm import tqdm
from torch import autocast
# %%
class InstructPix2PixPipelineCustom:
"""custom implementation of the InstructPix2Pix Pipeline"""
def __init__(self,
vae,
tokenizer,
text_encoder,
unet,
scheduler,
image_processor):
self.vae = vae
self.tokenizer = tokenizer
self.text_encoder = text_encoder
self.unet = unet
self.scheduler = scheduler
self.image_processor = image_processor
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
def get_text_embeds(self, text):
"""returns embeddings for the given `text`"""
# tokenize the text
text_input = self.tokenizer(text,
padding='max_length',
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors='pt')
# embed the text
with torch.no_grad():
text_embeds = self.text_encoder(text_input.input_ids.to(self.device))[0]
return text_embeds
def get_prompt_embeds(self, prompt, prompt_negative=None):
"""returns prompt embeddings based on classifier free guidance"""
if isinstance(prompt, str):
prompt = [prompt]
if prompt_negative is None:
prompt_negative = ['']
elif isinstance(prompt_negative, str):
prompt_negative = [prompt_negative]
# get conditional prompt embeddings
cond_embeds = self.get_text_embeds(prompt)
# get unconditional prompt embeddings
uncond_embeds = self.get_text_embeds(prompt_negative)
# instructpix2pix takes conditional embeds first, followed by unconditional embeds twice
# this is different from other diffusion pipelines
prompt_embeds = torch.cat([cond_embeds, uncond_embeds, uncond_embeds])
return prompt_embeds
def transform_image(self, image):
"""transform image from pytorch tensor to PIL format"""
image = self.image_processor.postprocess(image, output_type='pil')
return image
def get_image_latents(self, image):
"""get image latents to be used with classifier free guidance"""
# get conditional image embeds
image = image.to(self.device)
image_latents_cond = self.vae.encode(image).latent_dist.mode()
# get unconditional image embeds
image_latents_uncond = torch.zeros_like(image_latents_cond)
image_latents = torch.cat([image_latents_cond, image_latents_cond, image_latents_uncond])
return image_latents
def get_initial_latents(self, height, width, num_channels_latents, batch_size):
"""returns noise latent tensor of relevant shape scaled by the scheduler"""
image_latents = torch.randn((batch_size, num_channels_latents, height, width))
image_latents = image_latents.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
image_latents = image_latents * self.scheduler.init_noise_sigma
return image_latents
def denoise_latents(self,
prompt_embeds,
image_latents,
timesteps,
latents,
guidance_scale,
image_guidance_scale):
"""denoises latents from noisy latent to a meaningful latent as conditioned by image_latents"""
# use autocast for automatic mixed precision (AMP) inference
with autocast('cuda'):
for i, t in tqdm(enumerate(timesteps)):
# duplicate image latents *thrice* to do classifier free guidance
latent_model_input = torch.cat([latents] * 3)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
latent_model_input = torch.cat([latent_model_input, image_latents], dim=1)
# predict noise residuals
with torch.no_grad():
noise_pred = self.unet(latent_model_input, t,
encoder_hidden_states=prompt_embeds)['sample']
# separate predictions into conditional (on text), conditional (on image) and unconditional outputs
noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(3)
# perform guidance
noise_pred = (
noise_pred_uncond
+ guidance_scale * (noise_pred_text - noise_pred_image)
+ image_guidance_scale * (noise_pred_image - noise_pred_uncond)
)
# remove the noise from the current sample i.e. go from x_t to x_{t-1}
latents = self.scheduler.step(noise_pred, t, latents)['prev_sample']
return latents
def __call__(self,
prompt,
image,
prompt_negative=None,
num_inference_steps=20,
guidance_scale=7.5,
image_guidance_scale=1.5):
"""generates new image based on the `prompt` and the `image`"""
# encode input prompt
prompt_embeds = self.get_prompt_embeds(prompt, prompt_negative)
# preprocess image
image = self.image_processor.preprocess(image)
# prepare image latents
image = image.half()
image_latents = self.get_image_latents(image)
# prepare timesteps
self.scheduler.set_timesteps(num_inference_steps)
timesteps = self.scheduler.timesteps
height_latents, width_latents = image_latents.shape[-2:]
# prepare the initial image in the latent space (noise on which we will do reverse diffusion)
num_channels_latents = self.vae.config.latent_channels
batch_size = prompt_embeds.shape[0] // 2
latents = self.get_initial_latents(height_latents, width_latents, num_channels_latents, batch_size)
# denoise latents
latents = self.denoise_latents(prompt_embeds,
image_latents,
timesteps,
latents,
guidance_scale,
image_guidance_scale)
# decode latents to get the image into pixel space
latents = latents.to(torch.float16) # change dtype of latents since
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
# convert to PIL Image format
image = image.detach() # detach to remove any computed gradients
image = self.transform_image(image)
return image
# %%
# We can get all the components from the InstructPix2Pix Pipeline
vae = pipe.vae
tokenizer = pipe.tokenizer
text_encoder = pipe.text_encoder
unet = pipe.unet
scheduler = pipe.scheduler
image_processor = pipe.image_processor
# %%
custom_pipe = InstructPix2PixPipelineCustom(vae, tokenizer, text_encoder, unet, scheduler, image_processor)
# %%
url = "https://cdn.pixabay.com/photo/2013/01/05/21/02/art-74050_640.jpg"
image = download_image(url)
image
# %%
# sample image 1
prompt = "convert the lady into a highly detailed marble statue"
images_custom = custom_pipe(prompt, image, num_inference_steps=20)
images_custom[0]
# %%
url = "https://cdn.pixabay.com/photo/2023/03/22/01/41/little-girl-7868485_640.jpg"
image = download_image(url)
image
# %%
# sample image 2
prompt = "turn into 8k anime"
images_custom = custom_pipe(prompt, image, num_inference_steps=20)
images_custom[0]
# %% [markdown]
# # Limitations
# %%
prompt = "turn entire pic into anime frame"
images_custom = custom_pipe(prompt, image, num_inference_steps=20)
images_custom[0]
# %%
# %% [markdown]
# # Rough
#
# %%
prompt = "convert the lady into a highly detailed marble statue"
images = pipe(prompt, image=image, num_inference_steps=10, image_guidance_scale=1.6).images
images[0]
# %%
prompt = "convert the lady into a highly detailed marble statue"
images = pipe(prompt, image=image, num_inference_steps=10, image_guidance_scale=2).images
images[0]
# %%
prompt = "convert the lady into a highly detailed marble statue"
images = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1).images
images[0]
# %%
prompt = "convert the lady into a highly detailed marble statue"
images = pipe(prompt, image=image, num_inference_steps=30, image_guidance_scale=1).images
images[0]
# %%
prompt = "convert the lady into a highly detailed marble statue"
images = pipe(prompt, image=image, num_inference_steps=50, image_guidance_scale=1).images
images[0]
# %%
prompt = "convert the lady into a highly detailed marble statue"
images = pipe(prompt, image=image, num_inference_steps=30, image_guidance_scale=1.6).images
images[0]
# %%
prompt = "convert the lady into a highly detailed marble statue"
images = pipe(prompt, image=image, num_inference_steps=50, image_guidance_scale=1.6).images
images[0]
# %%
prompt = "convert the lady into a highly detailed marble statue"
images = pipe(prompt, image=image, num_inference_steps=100, image_guidance_scale=1.6).images
images[0]
# %%
prompt = "convert the lady into a highly detailed marble statue"
images = pipe(prompt, image=image, num_inference_steps=100, image_guidance_scale=1.2).images
images[0]
# %%
prompt = "convert the lady into a highly detailed marble statue"
images = pipe(prompt, image=image, num_inference_steps=100, image_guidance_scale=1.3).images
images[0]
# %%
prompt = "convert the lady into a highly detailed marble statue"
images = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=0.8).images
images[0]
# %%
prompt = "convert the lady into a highly detailed marble statue"
images = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=0.6).images
images[0]
# %%
prompt = "convert the lady into a highly detailed marble statue"
images = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5).images
images[0]
# %%
prompt = "convert the lady into a highly detailed marble statue"
images = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=10).images
images[0]
# %%
prompt = "convert the lady into a highly detailed marble statue"
images = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=15).images
images[0]
# %%
# %%
prompt = "turn the red wooden stick to brown"
images2 = pipe(prompt, image=images[0], num_inference_steps=10, image_guidance_scale=1).images
images2[0]