-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathhandling_imbalance_datasets_pythoncode_tutorial.py
224 lines (188 loc) · 7.69 KB
/
handling_imbalance_datasets_pythoncode_tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# %% [markdown]
# ## Loading the dataset
# %%
# !pip install --upgrade gdown
# %%
# !gdown --id 12vfq3DYFId3bsXuNj_PhsACMzrLTfObs
# %%
import numpy as np
from sklearn.model_selection import train_test_split
from imblearn.over_sampling import SMOTE
from sklearn.utils import resample
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_auc_score, classification_report
from sklearn.metrics import roc_auc_score
from sklearn.metrics import confusion_matrix
from sklearn.linear_model import LogisticRegression
import statsmodels.api as sm
import seaborn as sns
from sklearn.preprocessing import OrdinalEncoder
# %%
data=pd.read_csv("data_regression.csv")
# get the first 10 rows
data.head(10)
# %%
# check for the missing values and dataframes
def datainspection(dataframe):
print("Types of the variables we are working with:")
print(dataframe.dtypes)
print("Total Samples with missing values:")
print(data.isnull().any(axis=1).sum()) # null values
print("Total Missing Values per Variable")
print(data.isnull().sum())
print("Map of missing values")
sns.heatmap(dataframe.isnull())
# %%
datainspection(data)
# %%
data = data.dropna() # cleaning up null values
# %%
# function for encoding categorical variables
def encode_cat(data, vars):
ord_en = OrdinalEncoder()
for v in vars:
name = v+'_code' # add _code for encoded variables
data[name] = ord_en.fit_transform(data[[v]])
print('The encoded values for '+ v + ' are:')
print(data[name].unique())
return data
data.head()
# %%
# check for the encoded variables
data = encode_cat(data, ['gender', 'multi_screen', 'mail_subscribed'])
data.head()
# %%
def full_plot(data, class_col, cols_to_exclude):
cols = data.select_dtypes(include=np.number).columns.tolist() # finding all the numerical columns from the dataframe
X = data[cols] # creating a dataframe only with the numerical columns
X = X[X.columns.difference(cols_to_exclude)] # columns to exclude
X = X[X.columns.difference([class_col])]
sns.pairplot(data, hue=class_col)
# %%
full_plot(data,class_col='churn', cols_to_exclude=['customer_id','phone_no', 'year'])
# %%
# function for creating plots for selective columns only
def selected_diagnotic(data,class_col, cols_to_eval):
cols_to_eval.append(class_col)
X = data[cols_to_eval] # only selective columns
sns.pairplot(X, hue=class_col) # plot
# %%
selected_diagnotic(data, class_col='churn', cols_to_eval=['videos_watched', 'no_of_days_subscribed'])
# %%
def logistic_regression(data, class_col, cols_to_exclude):
cols = data.select_dtypes(include=np.number).columns.tolist()
X = data[cols]
X = X[X.columns.difference([class_col])]
X = X[X.columns.difference(cols_to_exclude)] # unwanted columns
y = data[class_col] # the target variable
logit_model = sm.Logit(y,X)
result = logit_model.fit() # fit the model
print(result.summary2()) # check for summary
# %%
logistic_regression(data, class_col='churn', cols_to_exclude=['customer_id', 'phone_no', 'year'])
# %%
def prepare_data(data, class_col, cols_to_exclude):
## Split in training and test set
## Selecting only the numerical columns and excluding the columns we specified in the function
cols = data.select_dtypes(include=np.number).columns.tolist()
X = data[cols]
X = X[X.columns.difference([class_col])]
X = X[X.columns.difference(cols_to_exclude)]
## Selecting y as a column
y = data[class_col]
return train_test_split(X, y, test_size=0.3, random_state=0) # perform train test split
# %%
def run_model(X_train, X_test, y_train, y_test):
# Fitting the logistic regression
logreg = LogisticRegression(random_state=13)
logreg.fit(X_train, y_train) # fit the model
# Predicting y values
y_pred = logreg.predict(X_test) # make predictions on th test data
logit_roc_auc = roc_auc_score(y_test, logreg.predict(X_test))
print(classification_report(y_test, y_pred)) # check for classification report
print("The area under the curve is:", logit_roc_auc) # check for AUC
return y_pred
# %%
X_train, X_test, y_train, y_test = prepare_data(data, class_col='churn', cols_to_exclude=['customer_id', 'phone_no', 'year'])
y_pred = run_model(X_train, X_test, y_train, y_test)
# %%
from sklearn.metrics import confusion_matrix
def confusion_m(y_test, y_pred):
cm = confusion_matrix(y_test, y_pred)
print(cm)
tn, fp, fn, tp = cm.ravel()
print("TN:", tn)
print("TP:", tp)
print("FN:", fn)
print("FP:", fp)
# %%
## Call the function
confusion_m(y_test, y_pred)
# %%
# class imbalance method 1
def run_model_bweights(X_train, X_test, y_train, y_test):
logreg = LogisticRegression(random_state=13, class_weight='balanced') # define class_weight parameter
logreg.fit(X_train, y_train) # fit the model
y_pred = logreg.predict(X_test) # predict on test data
logit_roc_auc = roc_auc_score(y_test, logreg.predict(X_test)) # ROC AUC score
print(classification_report(y_test, y_pred))
print("The area under the curve is:", logit_roc_auc) # AUC curve
# %%
run_model_bweights(X_train, X_test, y_train, y_test)
# %%
# class imbalance method 2
def run_model_aweights(X_train, X_test, y_train, y_test, w):
logreg = LogisticRegression(random_state=13, class_weight=w) # define class_weight parameter
logreg.fit(X_train, y_train) # fit the model
y_pred = logreg.predict(X_test) # predict on test data
logit_roc_auc = roc_auc_score(y_test, logreg.predict(X_test)) # ROC AUC score
print(classification_report(y_test, y_pred))
print("The area under the curve is: %0.2f"%logit_roc_auc) # AUC curve
# %%
run_model_aweights(X_train,X_test,y_train,y_test,{0:90, 1:10})
# %%
# class imbalance method 3
def adjust_imbalance(X_train, y_train, class_col):
X = pd.concat([X_train, y_train], axis=1)
# separate the 2 classes. Here we divide majority and minority classes
class0 = X[X[class_col] == 0]
class1 = X[X[class_col] == 1]
# Case 1 - bootstraps from the minority class
if len(class1)<len(class0):
resampled = resample(class1,
replace=True, # Upsampling with replacement
n_samples=len(class0), ## Number to match majority class
random_state=10)
resampled_data = pd.concat([resampled, class0]) ## # Combination of majority and upsampled minority class
# Case 1 - resamples from the majority class
else:
resampled = resample(class1,
replace=False, ## false instead of True like above
n_samples=len(class0),
random_state=10)
resampled_data = pd.concat([resampled, class0])
return resampled_data
# %%
## Call the function
resampled_data = adjust_imbalance(X_train, y_train, class_col='churn')
# %%
X_train, X_test, y_train, y_test = prepare_data(resampled_data, class_col='churn', cols_to_exclude=['customer_id', 'phone_no', 'year'])
run_model(X_train, X_test, y_train, y_test)
# %%
def prepare_data_smote(data,class_col,cols_to_exclude):
# Synthetic Minority Oversampling Technique.
# Generates new instances from existing minority cases that you supply as input.
cols = data.select_dtypes(include=np.number).columns.tolist()
X = data[cols]
X = X[X.columns.difference([class_col])]
X = X[X.columns.difference(cols_to_exclude)]
y = data[class_col]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
sm = SMOTE(random_state=0, sampling_strategy=1.0)
# run SMOTE on training set only
X_train, y_train = sm.fit_resample(X_train, y_train)
return X_train, X_test, y_train, y_test
# %%
X_train, X_test, y_train, y_test = prepare_data_smote(data,class_col='churn', cols_to_exclude=['customer_id', 'phone_no', 'year'])
run_model(X_train, X_test, y_train, y_test)