-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathlive_kmeans_segmentation.py
41 lines (29 loc) · 1.05 KB
/
live_kmeans_segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import cv2
import numpy as np
cap = cv2.VideoCapture(0)
k = 5
# define stopping criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)
while True:
# read the image
_, image = cap.read()
# reshape the image to a 2D array of pixels and 3 color values (RGB)
pixel_values = image.reshape((-1, 3))
# convert to float
pixel_values = np.float32(pixel_values)
# number of clusters (K)
_, labels, (centers) = cv2.kmeans(pixel_values, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
# convert back to 8 bit values
centers = np.uint8(centers)
# convert all pixels to the color of the centroids
segmented_image = centers[labels.flatten()]
# reshape back to the original image dimension
segmented_image = segmented_image.reshape(image.shape)
# reshape labels too
labels = labels.reshape(image.shape[0], image.shape[1])
cv2.imshow("segmented_image", segmented_image)
# visualize each segment
if cv2.waitKey(1) == ord("q"):
break
cap.release()
cv2.destroyAllWindows()