-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathrefactored_kmeans_segmentation.py
55 lines (48 loc) · 2.14 KB
/
refactored_kmeans_segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import cv2
import numpy as np
import matplotlib.pyplot as plt
import sys
def read_image(file_path):
"""Read the image and convert it to RGB."""
image = cv2.imread(file_path)
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
def preprocess_image(image):
"""Reshape the image to a 2D array of pixels and 3 color values (RGB) and convert to float."""
pixel_values = image.reshape((-1, 3))
return np.float32(pixel_values)
def perform_kmeans_clustering(pixel_values, k=3):
"""Perform k-means clustering on the pixel values."""
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)
compactness, labels, centers = cv2.kmeans(pixel_values, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
return compactness, labels, np.uint8(centers)
def create_segmented_image(pixel_values, labels, centers):
"""Create a segmented image using the cluster centroids."""
segmented_image = centers[labels.flatten()]
return segmented_image.reshape(image.shape)
def create_masked_image(image, labels, cluster_to_disable):
"""Create a masked image by disabling a specific cluster."""
masked_image = np.copy(image).reshape((-1, 3))
masked_image[labels.flatten() == cluster_to_disable] = [0, 0, 0]
return masked_image.reshape(image.shape)
def display_image(image):
"""Display the image using matplotlib."""
plt.imshow(image)
plt.show()
if __name__ == "__main__":
image_path = sys.argv[1]
k = int(sys.argv[2])
# read the image
image = read_image(image_path)
# preprocess the image
pixel_values = preprocess_image(image)
# compactness is the sum of squared distance from each point to their corresponding centers
compactness, labels, centers = perform_kmeans_clustering(pixel_values, k)
# create the segmented image
segmented_image = create_segmented_image(pixel_values, labels, centers)
# display the image
display_image(segmented_image)
# disable only the cluster number 2 (turn the pixel into black)
cluster_to_disable = 2
# create the masked image
masked_image = create_masked_image(image, labels, cluster_to_disable)
display_image(masked_image)